Daily bump.
[official-gcc.git] / gcc / ipa-inline-analysis.c
blob2f2993ce2995117e524c2a35d36fcfd38e9b00c0
1 /* Inlining decision heuristics.
2 Copyright (C) 2003-2014 Free Software Foundation, Inc.
3 Contributed by Jan Hubicka
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* Analysis used by the inliner and other passes limiting code size growth.
23 We estimate for each function
24 - function body size
25 - average function execution time
26 - inlining size benefit (that is how much of function body size
27 and its call sequence is expected to disappear by inlining)
28 - inlining time benefit
29 - function frame size
30 For each call
31 - call statement size and time
33 inlinie_summary datastructures store above information locally (i.e.
34 parameters of the function itself) and globally (i.e. parameters of
35 the function created by applying all the inline decisions already
36 present in the callgraph).
38 We provide accestor to the inline_summary datastructure and
39 basic logic updating the parameters when inlining is performed.
41 The summaries are context sensitive. Context means
42 1) partial assignment of known constant values of operands
43 2) whether function is inlined into the call or not.
44 It is easy to add more variants. To represent function size and time
45 that depends on context (i.e. it is known to be optimized away when
46 context is known either by inlining or from IP-CP and clonning),
47 we use predicates. Predicates are logical formulas in
48 conjunctive-disjunctive form consisting of clauses. Clauses are bitmaps
49 specifying what conditions must be true. Conditions are simple test
50 of the form described above.
52 In order to make predicate (possibly) true, all of its clauses must
53 be (possibly) true. To make clause (possibly) true, one of conditions
54 it mentions must be (possibly) true. There are fixed bounds on
55 number of clauses and conditions and all the manipulation functions
56 are conservative in positive direction. I.e. we may lose precision
57 by thinking that predicate may be true even when it is not.
59 estimate_edge_size and estimate_edge_growth can be used to query
60 function size/time in the given context. inline_merge_summary merges
61 properties of caller and callee after inlining.
63 Finally pass_inline_parameters is exported. This is used to drive
64 computation of function parameters used by the early inliner. IPA
65 inlined performs analysis via its analyze_function method. */
67 #include "config.h"
68 #include "system.h"
69 #include "coretypes.h"
70 #include "tm.h"
71 #include "tree.h"
72 #include "stor-layout.h"
73 #include "stringpool.h"
74 #include "print-tree.h"
75 #include "tree-inline.h"
76 #include "langhooks.h"
77 #include "flags.h"
78 #include "diagnostic.h"
79 #include "gimple-pretty-print.h"
80 #include "params.h"
81 #include "tree-pass.h"
82 #include "coverage.h"
83 #include "predict.h"
84 #include "vec.h"
85 #include "hashtab.h"
86 #include "hash-set.h"
87 #include "machmode.h"
88 #include "hard-reg-set.h"
89 #include "input.h"
90 #include "function.h"
91 #include "dominance.h"
92 #include "cfg.h"
93 #include "cfganal.h"
94 #include "basic-block.h"
95 #include "tree-ssa-alias.h"
96 #include "internal-fn.h"
97 #include "gimple-expr.h"
98 #include "is-a.h"
99 #include "gimple.h"
100 #include "gimple-iterator.h"
101 #include "gimple-ssa.h"
102 #include "tree-cfg.h"
103 #include "tree-phinodes.h"
104 #include "ssa-iterators.h"
105 #include "tree-ssanames.h"
106 #include "tree-ssa-loop-niter.h"
107 #include "tree-ssa-loop.h"
108 #include "hash-map.h"
109 #include "plugin-api.h"
110 #include "ipa-ref.h"
111 #include "cgraph.h"
112 #include "alloc-pool.h"
113 #include "ipa-prop.h"
114 #include "lto-streamer.h"
115 #include "data-streamer.h"
116 #include "tree-streamer.h"
117 #include "ipa-inline.h"
118 #include "cfgloop.h"
119 #include "tree-scalar-evolution.h"
120 #include "ipa-utils.h"
121 #include "cilk.h"
122 #include "cfgexpand.h"
124 /* Estimate runtime of function can easilly run into huge numbers with many
125 nested loops. Be sure we can compute time * INLINE_SIZE_SCALE * 2 in an
126 integer. For anything larger we use gcov_type. */
127 #define MAX_TIME 500000
129 /* Number of bits in integer, but we really want to be stable across different
130 hosts. */
131 #define NUM_CONDITIONS 32
133 enum predicate_conditions
135 predicate_false_condition = 0,
136 predicate_not_inlined_condition = 1,
137 predicate_first_dynamic_condition = 2
140 /* Special condition code we use to represent test that operand is compile time
141 constant. */
142 #define IS_NOT_CONSTANT ERROR_MARK
143 /* Special condition code we use to represent test that operand is not changed
144 across invocation of the function. When operand IS_NOT_CONSTANT it is always
145 CHANGED, however i.e. loop invariants can be NOT_CHANGED given percentage
146 of executions even when they are not compile time constants. */
147 #define CHANGED IDENTIFIER_NODE
149 /* Holders of ipa cgraph hooks: */
150 static struct cgraph_node_hook_list *function_insertion_hook_holder;
151 static struct cgraph_node_hook_list *node_removal_hook_holder;
152 static struct cgraph_2node_hook_list *node_duplication_hook_holder;
153 static struct cgraph_2edge_hook_list *edge_duplication_hook_holder;
154 static struct cgraph_edge_hook_list *edge_removal_hook_holder;
155 static void inline_node_removal_hook (struct cgraph_node *, void *);
156 static void inline_node_duplication_hook (struct cgraph_node *,
157 struct cgraph_node *, void *);
158 static void inline_edge_removal_hook (struct cgraph_edge *, void *);
159 static void inline_edge_duplication_hook (struct cgraph_edge *,
160 struct cgraph_edge *, void *);
162 /* VECtor holding inline summaries.
163 In GGC memory because conditions might point to constant trees. */
164 vec<inline_summary_t, va_gc> *inline_summary_vec;
165 vec<inline_edge_summary_t> inline_edge_summary_vec;
167 /* Cached node/edge growths. */
168 vec<int> node_growth_cache;
169 vec<edge_growth_cache_entry> edge_growth_cache;
171 /* Edge predicates goes here. */
172 static alloc_pool edge_predicate_pool;
174 /* Return true predicate (tautology).
175 We represent it by empty list of clauses. */
177 static inline struct predicate
178 true_predicate (void)
180 struct predicate p;
181 p.clause[0] = 0;
182 return p;
186 /* Return predicate testing single condition number COND. */
188 static inline struct predicate
189 single_cond_predicate (int cond)
191 struct predicate p;
192 p.clause[0] = 1 << cond;
193 p.clause[1] = 0;
194 return p;
198 /* Return false predicate. First clause require false condition. */
200 static inline struct predicate
201 false_predicate (void)
203 return single_cond_predicate (predicate_false_condition);
207 /* Return true if P is (true). */
209 static inline bool
210 true_predicate_p (struct predicate *p)
212 return !p->clause[0];
216 /* Return true if P is (false). */
218 static inline bool
219 false_predicate_p (struct predicate *p)
221 if (p->clause[0] == (1 << predicate_false_condition))
223 gcc_checking_assert (!p->clause[1]
224 && p->clause[0] == 1 << predicate_false_condition);
225 return true;
227 return false;
231 /* Return predicate that is set true when function is not inlined. */
233 static inline struct predicate
234 not_inlined_predicate (void)
236 return single_cond_predicate (predicate_not_inlined_condition);
239 /* Simple description of whether a memory load or a condition refers to a load
240 from an aggregate and if so, how and where from in the aggregate.
241 Individual fields have the same meaning like fields with the same name in
242 struct condition. */
244 struct agg_position_info
246 HOST_WIDE_INT offset;
247 bool agg_contents;
248 bool by_ref;
251 /* Add condition to condition list CONDS. AGGPOS describes whether the used
252 oprand is loaded from an aggregate and where in the aggregate it is. It can
253 be NULL, which means this not a load from an aggregate. */
255 static struct predicate
256 add_condition (struct inline_summary *summary, int operand_num,
257 struct agg_position_info *aggpos,
258 enum tree_code code, tree val)
260 int i;
261 struct condition *c;
262 struct condition new_cond;
263 HOST_WIDE_INT offset;
264 bool agg_contents, by_ref;
266 if (aggpos)
268 offset = aggpos->offset;
269 agg_contents = aggpos->agg_contents;
270 by_ref = aggpos->by_ref;
272 else
274 offset = 0;
275 agg_contents = false;
276 by_ref = false;
279 gcc_checking_assert (operand_num >= 0);
280 for (i = 0; vec_safe_iterate (summary->conds, i, &c); i++)
282 if (c->operand_num == operand_num
283 && c->code == code
284 && c->val == val
285 && c->agg_contents == agg_contents
286 && (!agg_contents || (c->offset == offset && c->by_ref == by_ref)))
287 return single_cond_predicate (i + predicate_first_dynamic_condition);
289 /* Too many conditions. Give up and return constant true. */
290 if (i == NUM_CONDITIONS - predicate_first_dynamic_condition)
291 return true_predicate ();
293 new_cond.operand_num = operand_num;
294 new_cond.code = code;
295 new_cond.val = val;
296 new_cond.agg_contents = agg_contents;
297 new_cond.by_ref = by_ref;
298 new_cond.offset = offset;
299 vec_safe_push (summary->conds, new_cond);
300 return single_cond_predicate (i + predicate_first_dynamic_condition);
304 /* Add clause CLAUSE into the predicate P. */
306 static inline void
307 add_clause (conditions conditions, struct predicate *p, clause_t clause)
309 int i;
310 int i2;
311 int insert_here = -1;
312 int c1, c2;
314 /* True clause. */
315 if (!clause)
316 return;
318 /* False clause makes the whole predicate false. Kill the other variants. */
319 if (clause == (1 << predicate_false_condition))
321 p->clause[0] = (1 << predicate_false_condition);
322 p->clause[1] = 0;
323 return;
325 if (false_predicate_p (p))
326 return;
328 /* No one should be silly enough to add false into nontrivial clauses. */
329 gcc_checking_assert (!(clause & (1 << predicate_false_condition)));
331 /* Look where to insert the clause. At the same time prune out
332 clauses of P that are implied by the new clause and thus
333 redundant. */
334 for (i = 0, i2 = 0; i <= MAX_CLAUSES; i++)
336 p->clause[i2] = p->clause[i];
338 if (!p->clause[i])
339 break;
341 /* If p->clause[i] implies clause, there is nothing to add. */
342 if ((p->clause[i] & clause) == p->clause[i])
344 /* We had nothing to add, none of clauses should've become
345 redundant. */
346 gcc_checking_assert (i == i2);
347 return;
350 if (p->clause[i] < clause && insert_here < 0)
351 insert_here = i2;
353 /* If clause implies p->clause[i], then p->clause[i] becomes redundant.
354 Otherwise the p->clause[i] has to stay. */
355 if ((p->clause[i] & clause) != clause)
356 i2++;
359 /* Look for clauses that are obviously true. I.e.
360 op0 == 5 || op0 != 5. */
361 for (c1 = predicate_first_dynamic_condition; c1 < NUM_CONDITIONS; c1++)
363 condition *cc1;
364 if (!(clause & (1 << c1)))
365 continue;
366 cc1 = &(*conditions)[c1 - predicate_first_dynamic_condition];
367 /* We have no way to represent !CHANGED and !IS_NOT_CONSTANT
368 and thus there is no point for looking for them. */
369 if (cc1->code == CHANGED || cc1->code == IS_NOT_CONSTANT)
370 continue;
371 for (c2 = c1 + 1; c2 < NUM_CONDITIONS; c2++)
372 if (clause & (1 << c2))
374 condition *cc1 =
375 &(*conditions)[c1 - predicate_first_dynamic_condition];
376 condition *cc2 =
377 &(*conditions)[c2 - predicate_first_dynamic_condition];
378 if (cc1->operand_num == cc2->operand_num
379 && cc1->val == cc2->val
380 && cc2->code != IS_NOT_CONSTANT
381 && cc2->code != CHANGED
382 && cc1->code == invert_tree_comparison
383 (cc2->code,
384 HONOR_NANS (TYPE_MODE (TREE_TYPE (cc1->val)))))
385 return;
390 /* We run out of variants. Be conservative in positive direction. */
391 if (i2 == MAX_CLAUSES)
392 return;
393 /* Keep clauses in decreasing order. This makes equivalence testing easy. */
394 p->clause[i2 + 1] = 0;
395 if (insert_here >= 0)
396 for (; i2 > insert_here; i2--)
397 p->clause[i2] = p->clause[i2 - 1];
398 else
399 insert_here = i2;
400 p->clause[insert_here] = clause;
404 /* Return P & P2. */
406 static struct predicate
407 and_predicates (conditions conditions,
408 struct predicate *p, struct predicate *p2)
410 struct predicate out = *p;
411 int i;
413 /* Avoid busy work. */
414 if (false_predicate_p (p2) || true_predicate_p (p))
415 return *p2;
416 if (false_predicate_p (p) || true_predicate_p (p2))
417 return *p;
419 /* See how far predicates match. */
420 for (i = 0; p->clause[i] && p->clause[i] == p2->clause[i]; i++)
422 gcc_checking_assert (i < MAX_CLAUSES);
425 /* Combine the predicates rest. */
426 for (; p2->clause[i]; i++)
428 gcc_checking_assert (i < MAX_CLAUSES);
429 add_clause (conditions, &out, p2->clause[i]);
431 return out;
435 /* Return true if predicates are obviously equal. */
437 static inline bool
438 predicates_equal_p (struct predicate *p, struct predicate *p2)
440 int i;
441 for (i = 0; p->clause[i]; i++)
443 gcc_checking_assert (i < MAX_CLAUSES);
444 gcc_checking_assert (p->clause[i] > p->clause[i + 1]);
445 gcc_checking_assert (!p2->clause[i]
446 || p2->clause[i] > p2->clause[i + 1]);
447 if (p->clause[i] != p2->clause[i])
448 return false;
450 return !p2->clause[i];
454 /* Return P | P2. */
456 static struct predicate
457 or_predicates (conditions conditions,
458 struct predicate *p, struct predicate *p2)
460 struct predicate out = true_predicate ();
461 int i, j;
463 /* Avoid busy work. */
464 if (false_predicate_p (p2) || true_predicate_p (p))
465 return *p;
466 if (false_predicate_p (p) || true_predicate_p (p2))
467 return *p2;
468 if (predicates_equal_p (p, p2))
469 return *p;
471 /* OK, combine the predicates. */
472 for (i = 0; p->clause[i]; i++)
473 for (j = 0; p2->clause[j]; j++)
475 gcc_checking_assert (i < MAX_CLAUSES && j < MAX_CLAUSES);
476 add_clause (conditions, &out, p->clause[i] | p2->clause[j]);
478 return out;
482 /* Having partial truth assignment in POSSIBLE_TRUTHS, return false
483 if predicate P is known to be false. */
485 static bool
486 evaluate_predicate (struct predicate *p, clause_t possible_truths)
488 int i;
490 /* True remains true. */
491 if (true_predicate_p (p))
492 return true;
494 gcc_assert (!(possible_truths & (1 << predicate_false_condition)));
496 /* See if we can find clause we can disprove. */
497 for (i = 0; p->clause[i]; i++)
499 gcc_checking_assert (i < MAX_CLAUSES);
500 if (!(p->clause[i] & possible_truths))
501 return false;
503 return true;
506 /* Return the probability in range 0...REG_BR_PROB_BASE that the predicated
507 instruction will be recomputed per invocation of the inlined call. */
509 static int
510 predicate_probability (conditions conds,
511 struct predicate *p, clause_t possible_truths,
512 vec<inline_param_summary> inline_param_summary)
514 int i;
515 int combined_prob = REG_BR_PROB_BASE;
517 /* True remains true. */
518 if (true_predicate_p (p))
519 return REG_BR_PROB_BASE;
521 if (false_predicate_p (p))
522 return 0;
524 gcc_assert (!(possible_truths & (1 << predicate_false_condition)));
526 /* See if we can find clause we can disprove. */
527 for (i = 0; p->clause[i]; i++)
529 gcc_checking_assert (i < MAX_CLAUSES);
530 if (!(p->clause[i] & possible_truths))
531 return 0;
532 else
534 int this_prob = 0;
535 int i2;
536 if (!inline_param_summary.exists ())
537 return REG_BR_PROB_BASE;
538 for (i2 = 0; i2 < NUM_CONDITIONS; i2++)
539 if ((p->clause[i] & possible_truths) & (1 << i2))
541 if (i2 >= predicate_first_dynamic_condition)
543 condition *c =
544 &(*conds)[i2 - predicate_first_dynamic_condition];
545 if (c->code == CHANGED
546 && (c->operand_num <
547 (int) inline_param_summary.length ()))
549 int iprob =
550 inline_param_summary[c->operand_num].change_prob;
551 this_prob = MAX (this_prob, iprob);
553 else
554 this_prob = REG_BR_PROB_BASE;
556 else
557 this_prob = REG_BR_PROB_BASE;
559 combined_prob = MIN (this_prob, combined_prob);
560 if (!combined_prob)
561 return 0;
564 return combined_prob;
568 /* Dump conditional COND. */
570 static void
571 dump_condition (FILE *f, conditions conditions, int cond)
573 condition *c;
574 if (cond == predicate_false_condition)
575 fprintf (f, "false");
576 else if (cond == predicate_not_inlined_condition)
577 fprintf (f, "not inlined");
578 else
580 c = &(*conditions)[cond - predicate_first_dynamic_condition];
581 fprintf (f, "op%i", c->operand_num);
582 if (c->agg_contents)
583 fprintf (f, "[%soffset: " HOST_WIDE_INT_PRINT_DEC "]",
584 c->by_ref ? "ref " : "", c->offset);
585 if (c->code == IS_NOT_CONSTANT)
587 fprintf (f, " not constant");
588 return;
590 if (c->code == CHANGED)
592 fprintf (f, " changed");
593 return;
595 fprintf (f, " %s ", op_symbol_code (c->code));
596 print_generic_expr (f, c->val, 1);
601 /* Dump clause CLAUSE. */
603 static void
604 dump_clause (FILE *f, conditions conds, clause_t clause)
606 int i;
607 bool found = false;
608 fprintf (f, "(");
609 if (!clause)
610 fprintf (f, "true");
611 for (i = 0; i < NUM_CONDITIONS; i++)
612 if (clause & (1 << i))
614 if (found)
615 fprintf (f, " || ");
616 found = true;
617 dump_condition (f, conds, i);
619 fprintf (f, ")");
623 /* Dump predicate PREDICATE. */
625 static void
626 dump_predicate (FILE *f, conditions conds, struct predicate *pred)
628 int i;
629 if (true_predicate_p (pred))
630 dump_clause (f, conds, 0);
631 else
632 for (i = 0; pred->clause[i]; i++)
634 if (i)
635 fprintf (f, " && ");
636 dump_clause (f, conds, pred->clause[i]);
638 fprintf (f, "\n");
642 /* Dump inline hints. */
643 void
644 dump_inline_hints (FILE *f, inline_hints hints)
646 if (!hints)
647 return;
648 fprintf (f, "inline hints:");
649 if (hints & INLINE_HINT_indirect_call)
651 hints &= ~INLINE_HINT_indirect_call;
652 fprintf (f, " indirect_call");
654 if (hints & INLINE_HINT_loop_iterations)
656 hints &= ~INLINE_HINT_loop_iterations;
657 fprintf (f, " loop_iterations");
659 if (hints & INLINE_HINT_loop_stride)
661 hints &= ~INLINE_HINT_loop_stride;
662 fprintf (f, " loop_stride");
664 if (hints & INLINE_HINT_same_scc)
666 hints &= ~INLINE_HINT_same_scc;
667 fprintf (f, " same_scc");
669 if (hints & INLINE_HINT_in_scc)
671 hints &= ~INLINE_HINT_in_scc;
672 fprintf (f, " in_scc");
674 if (hints & INLINE_HINT_cross_module)
676 hints &= ~INLINE_HINT_cross_module;
677 fprintf (f, " cross_module");
679 if (hints & INLINE_HINT_declared_inline)
681 hints &= ~INLINE_HINT_declared_inline;
682 fprintf (f, " declared_inline");
684 if (hints & INLINE_HINT_array_index)
686 hints &= ~INLINE_HINT_array_index;
687 fprintf (f, " array_index");
689 if (hints & INLINE_HINT_known_hot)
691 hints &= ~INLINE_HINT_known_hot;
692 fprintf (f, " known_hot");
694 gcc_assert (!hints);
698 /* Record SIZE and TIME under condition PRED into the inline summary. */
700 static void
701 account_size_time (struct inline_summary *summary, int size, int time,
702 struct predicate *pred)
704 size_time_entry *e;
705 bool found = false;
706 int i;
708 if (false_predicate_p (pred))
709 return;
711 /* We need to create initial empty unconitional clause, but otherwie
712 we don't need to account empty times and sizes. */
713 if (!size && !time && summary->entry)
714 return;
716 /* Watch overflow that might result from insane profiles. */
717 if (time > MAX_TIME * INLINE_TIME_SCALE)
718 time = MAX_TIME * INLINE_TIME_SCALE;
719 gcc_assert (time >= 0);
721 for (i = 0; vec_safe_iterate (summary->entry, i, &e); i++)
722 if (predicates_equal_p (&e->predicate, pred))
724 found = true;
725 break;
727 if (i == 256)
729 i = 0;
730 found = true;
731 e = &(*summary->entry)[0];
732 gcc_assert (!e->predicate.clause[0]);
733 if (dump_file && (dump_flags & TDF_DETAILS))
734 fprintf (dump_file,
735 "\t\tReached limit on number of entries, "
736 "ignoring the predicate.");
738 if (dump_file && (dump_flags & TDF_DETAILS) && (time || size))
740 fprintf (dump_file,
741 "\t\tAccounting size:%3.2f, time:%3.2f on %spredicate:",
742 ((double) size) / INLINE_SIZE_SCALE,
743 ((double) time) / INLINE_TIME_SCALE, found ? "" : "new ");
744 dump_predicate (dump_file, summary->conds, pred);
746 if (!found)
748 struct size_time_entry new_entry;
749 new_entry.size = size;
750 new_entry.time = time;
751 new_entry.predicate = *pred;
752 vec_safe_push (summary->entry, new_entry);
754 else
756 e->size += size;
757 e->time += time;
758 if (e->time > MAX_TIME * INLINE_TIME_SCALE)
759 e->time = MAX_TIME * INLINE_TIME_SCALE;
763 /* Set predicate for edge E. */
765 static void
766 edge_set_predicate (struct cgraph_edge *e, struct predicate *predicate)
768 struct inline_edge_summary *es = inline_edge_summary (e);
770 /* If the edge is determined to be never executed, redirect it
771 to BUILTIN_UNREACHABLE to save inliner from inlining into it. */
772 if (predicate && false_predicate_p (predicate) && e->callee)
774 struct cgraph_node *callee = !e->inline_failed ? e->callee : NULL;
776 e->redirect_callee (cgraph_node::get_create
777 (builtin_decl_implicit (BUILT_IN_UNREACHABLE)));
778 e->inline_failed = CIF_UNREACHABLE;
779 if (callee)
780 callee->remove_symbol_and_inline_clones ();
782 if (predicate && !true_predicate_p (predicate))
784 if (!es->predicate)
785 es->predicate = (struct predicate *) pool_alloc (edge_predicate_pool);
786 *es->predicate = *predicate;
788 else
790 if (es->predicate)
791 pool_free (edge_predicate_pool, es->predicate);
792 es->predicate = NULL;
796 /* Set predicate for hint *P. */
798 static void
799 set_hint_predicate (struct predicate **p, struct predicate new_predicate)
801 if (false_predicate_p (&new_predicate) || true_predicate_p (&new_predicate))
803 if (*p)
804 pool_free (edge_predicate_pool, *p);
805 *p = NULL;
807 else
809 if (!*p)
810 *p = (struct predicate *) pool_alloc (edge_predicate_pool);
811 **p = new_predicate;
816 /* KNOWN_VALS is partial mapping of parameters of NODE to constant values.
817 KNOWN_AGGS is a vector of aggreggate jump functions for each parameter.
818 Return clause of possible truths. When INLINE_P is true, assume that we are
819 inlining.
821 ERROR_MARK means compile time invariant. */
823 static clause_t
824 evaluate_conditions_for_known_args (struct cgraph_node *node,
825 bool inline_p,
826 vec<tree> known_vals,
827 vec<ipa_agg_jump_function_p>
828 known_aggs)
830 clause_t clause = inline_p ? 0 : 1 << predicate_not_inlined_condition;
831 struct inline_summary *info = inline_summary (node);
832 int i;
833 struct condition *c;
835 for (i = 0; vec_safe_iterate (info->conds, i, &c); i++)
837 tree val;
838 tree res;
840 /* We allow call stmt to have fewer arguments than the callee function
841 (especially for K&R style programs). So bound check here (we assume
842 known_aggs vector, if non-NULL, has the same length as
843 known_vals). */
844 gcc_checking_assert (!known_aggs.exists ()
845 || (known_vals.length () == known_aggs.length ()));
846 if (c->operand_num >= (int) known_vals.length ())
848 clause |= 1 << (i + predicate_first_dynamic_condition);
849 continue;
852 if (c->agg_contents)
854 struct ipa_agg_jump_function *agg;
856 if (c->code == CHANGED
857 && !c->by_ref
858 && (known_vals[c->operand_num] == error_mark_node))
859 continue;
861 if (known_aggs.exists ())
863 agg = known_aggs[c->operand_num];
864 val = ipa_find_agg_cst_for_param (agg, c->offset, c->by_ref);
866 else
867 val = NULL_TREE;
869 else
871 val = known_vals[c->operand_num];
872 if (val == error_mark_node && c->code != CHANGED)
873 val = NULL_TREE;
876 if (!val)
878 clause |= 1 << (i + predicate_first_dynamic_condition);
879 continue;
881 if (c->code == IS_NOT_CONSTANT || c->code == CHANGED)
882 continue;
883 res = fold_binary_to_constant (c->code, boolean_type_node, val, c->val);
884 if (res && integer_zerop (res))
885 continue;
886 clause |= 1 << (i + predicate_first_dynamic_condition);
888 return clause;
892 /* Work out what conditions might be true at invocation of E. */
894 static void
895 evaluate_properties_for_edge (struct cgraph_edge *e, bool inline_p,
896 clause_t *clause_ptr,
897 vec<tree> *known_vals_ptr,
898 vec<ipa_polymorphic_call_context>
899 *known_contexts_ptr,
900 vec<ipa_agg_jump_function_p> *known_aggs_ptr)
902 struct cgraph_node *callee = e->callee->ultimate_alias_target ();
903 struct inline_summary *info = inline_summary (callee);
904 vec<tree> known_vals = vNULL;
905 vec<ipa_agg_jump_function_p> known_aggs = vNULL;
907 if (clause_ptr)
908 *clause_ptr = inline_p ? 0 : 1 << predicate_not_inlined_condition;
909 if (known_vals_ptr)
910 known_vals_ptr->create (0);
911 if (known_contexts_ptr)
912 known_contexts_ptr->create (0);
914 if (ipa_node_params_vector.exists ()
915 && !e->call_stmt_cannot_inline_p
916 && ((clause_ptr && info->conds) || known_vals_ptr || known_contexts_ptr))
918 struct ipa_node_params *parms_info;
919 struct ipa_edge_args *args = IPA_EDGE_REF (e);
920 struct inline_edge_summary *es = inline_edge_summary (e);
921 int i, count = ipa_get_cs_argument_count (args);
923 if (e->caller->global.inlined_to)
924 parms_info = IPA_NODE_REF (e->caller->global.inlined_to);
925 else
926 parms_info = IPA_NODE_REF (e->caller);
928 if (count && (info->conds || known_vals_ptr))
929 known_vals.safe_grow_cleared (count);
930 if (count && (info->conds || known_aggs_ptr))
931 known_aggs.safe_grow_cleared (count);
932 if (count && known_contexts_ptr)
933 known_contexts_ptr->safe_grow_cleared (count);
935 for (i = 0; i < count; i++)
937 struct ipa_jump_func *jf = ipa_get_ith_jump_func (args, i);
938 tree cst = ipa_value_from_jfunc (parms_info, jf);
939 if (cst)
941 gcc_checking_assert (TREE_CODE (cst) != TREE_BINFO);
942 if (known_vals.exists ())
943 known_vals[i] = cst;
945 else if (inline_p && !es->param[i].change_prob)
946 known_vals[i] = error_mark_node;
948 if (known_contexts_ptr)
949 (*known_contexts_ptr)[i] = ipa_context_from_jfunc (parms_info, e,
950 i, jf);
951 /* TODO: When IPA-CP starts propagating and merging aggregate jump
952 functions, use its knowledge of the caller too, just like the
953 scalar case above. */
954 known_aggs[i] = &jf->agg;
958 if (clause_ptr)
959 *clause_ptr = evaluate_conditions_for_known_args (callee, inline_p,
960 known_vals, known_aggs);
962 if (known_vals_ptr)
963 *known_vals_ptr = known_vals;
964 else
965 known_vals.release ();
967 if (known_aggs_ptr)
968 *known_aggs_ptr = known_aggs;
969 else
970 known_aggs.release ();
974 /* Allocate the inline summary vector or resize it to cover all cgraph nodes. */
976 static void
977 inline_summary_alloc (void)
979 if (!node_removal_hook_holder)
980 node_removal_hook_holder =
981 symtab->add_cgraph_removal_hook (&inline_node_removal_hook, NULL);
982 if (!edge_removal_hook_holder)
983 edge_removal_hook_holder =
984 symtab->add_edge_removal_hook (&inline_edge_removal_hook, NULL);
985 if (!node_duplication_hook_holder)
986 node_duplication_hook_holder =
987 symtab->add_cgraph_duplication_hook (&inline_node_duplication_hook, NULL);
988 if (!edge_duplication_hook_holder)
989 edge_duplication_hook_holder =
990 symtab->add_edge_duplication_hook (&inline_edge_duplication_hook, NULL);
992 if (vec_safe_length (inline_summary_vec) <= (unsigned) symtab->cgraph_max_uid)
993 vec_safe_grow_cleared (inline_summary_vec, symtab->cgraph_max_uid + 1);
994 if (inline_edge_summary_vec.length () <= (unsigned) symtab->edges_max_uid)
995 inline_edge_summary_vec.safe_grow_cleared (symtab->edges_max_uid + 1);
996 if (!edge_predicate_pool)
997 edge_predicate_pool = create_alloc_pool ("edge predicates",
998 sizeof (struct predicate), 10);
1001 /* We are called multiple time for given function; clear
1002 data from previous run so they are not cumulated. */
1004 static void
1005 reset_inline_edge_summary (struct cgraph_edge *e)
1007 if (e->uid < (int) inline_edge_summary_vec.length ())
1009 struct inline_edge_summary *es = inline_edge_summary (e);
1011 es->call_stmt_size = es->call_stmt_time = 0;
1012 if (es->predicate)
1013 pool_free (edge_predicate_pool, es->predicate);
1014 es->predicate = NULL;
1015 es->param.release ();
1019 /* We are called multiple time for given function; clear
1020 data from previous run so they are not cumulated. */
1022 static void
1023 reset_inline_summary (struct cgraph_node *node)
1025 struct inline_summary *info = inline_summary (node);
1026 struct cgraph_edge *e;
1028 info->self_size = info->self_time = 0;
1029 info->estimated_stack_size = 0;
1030 info->estimated_self_stack_size = 0;
1031 info->stack_frame_offset = 0;
1032 info->size = 0;
1033 info->time = 0;
1034 info->growth = 0;
1035 info->scc_no = 0;
1036 if (info->loop_iterations)
1038 pool_free (edge_predicate_pool, info->loop_iterations);
1039 info->loop_iterations = NULL;
1041 if (info->loop_stride)
1043 pool_free (edge_predicate_pool, info->loop_stride);
1044 info->loop_stride = NULL;
1046 if (info->array_index)
1048 pool_free (edge_predicate_pool, info->array_index);
1049 info->array_index = NULL;
1051 vec_free (info->conds);
1052 vec_free (info->entry);
1053 for (e = node->callees; e; e = e->next_callee)
1054 reset_inline_edge_summary (e);
1055 for (e = node->indirect_calls; e; e = e->next_callee)
1056 reset_inline_edge_summary (e);
1059 /* Hook that is called by cgraph.c when a node is removed. */
1061 static void
1062 inline_node_removal_hook (struct cgraph_node *node,
1063 void *data ATTRIBUTE_UNUSED)
1065 struct inline_summary *info;
1066 if (vec_safe_length (inline_summary_vec) <= (unsigned) node->uid)
1067 return;
1068 info = inline_summary (node);
1069 reset_inline_summary (node);
1070 memset (info, 0, sizeof (inline_summary_t));
1073 /* Remap predicate P of former function to be predicate of duplicated function.
1074 POSSIBLE_TRUTHS is clause of possible truths in the duplicated node,
1075 INFO is inline summary of the duplicated node. */
1077 static struct predicate
1078 remap_predicate_after_duplication (struct predicate *p,
1079 clause_t possible_truths,
1080 struct inline_summary *info)
1082 struct predicate new_predicate = true_predicate ();
1083 int j;
1084 for (j = 0; p->clause[j]; j++)
1085 if (!(possible_truths & p->clause[j]))
1087 new_predicate = false_predicate ();
1088 break;
1090 else
1091 add_clause (info->conds, &new_predicate,
1092 possible_truths & p->clause[j]);
1093 return new_predicate;
1096 /* Same as remap_predicate_after_duplication but handle hint predicate *P.
1097 Additionally care about allocating new memory slot for updated predicate
1098 and set it to NULL when it becomes true or false (and thus uninteresting).
1101 static void
1102 remap_hint_predicate_after_duplication (struct predicate **p,
1103 clause_t possible_truths,
1104 struct inline_summary *info)
1106 struct predicate new_predicate;
1108 if (!*p)
1109 return;
1111 new_predicate = remap_predicate_after_duplication (*p,
1112 possible_truths, info);
1113 /* We do not want to free previous predicate; it is used by node origin. */
1114 *p = NULL;
1115 set_hint_predicate (p, new_predicate);
1119 /* Hook that is called by cgraph.c when a node is duplicated. */
1121 static void
1122 inline_node_duplication_hook (struct cgraph_node *src,
1123 struct cgraph_node *dst,
1124 ATTRIBUTE_UNUSED void *data)
1126 struct inline_summary *info;
1127 inline_summary_alloc ();
1128 info = inline_summary (dst);
1129 memcpy (info, inline_summary (src), sizeof (struct inline_summary));
1130 /* TODO: as an optimization, we may avoid copying conditions
1131 that are known to be false or true. */
1132 info->conds = vec_safe_copy (info->conds);
1134 /* When there are any replacements in the function body, see if we can figure
1135 out that something was optimized out. */
1136 if (ipa_node_params_vector.exists () && dst->clone.tree_map)
1138 vec<size_time_entry, va_gc> *entry = info->entry;
1139 /* Use SRC parm info since it may not be copied yet. */
1140 struct ipa_node_params *parms_info = IPA_NODE_REF (src);
1141 vec<tree> known_vals = vNULL;
1142 int count = ipa_get_param_count (parms_info);
1143 int i, j;
1144 clause_t possible_truths;
1145 struct predicate true_pred = true_predicate ();
1146 size_time_entry *e;
1147 int optimized_out_size = 0;
1148 bool inlined_to_p = false;
1149 struct cgraph_edge *edge;
1151 info->entry = 0;
1152 known_vals.safe_grow_cleared (count);
1153 for (i = 0; i < count; i++)
1155 struct ipa_replace_map *r;
1157 for (j = 0; vec_safe_iterate (dst->clone.tree_map, j, &r); j++)
1159 if (((!r->old_tree && r->parm_num == i)
1160 || (r->old_tree && r->old_tree == ipa_get_param (parms_info, i)))
1161 && r->replace_p && !r->ref_p)
1163 known_vals[i] = r->new_tree;
1164 break;
1168 possible_truths = evaluate_conditions_for_known_args (dst, false,
1169 known_vals,
1170 vNULL);
1171 known_vals.release ();
1173 account_size_time (info, 0, 0, &true_pred);
1175 /* Remap size_time vectors.
1176 Simplify the predicate by prunning out alternatives that are known
1177 to be false.
1178 TODO: as on optimization, we can also eliminate conditions known
1179 to be true. */
1180 for (i = 0; vec_safe_iterate (entry, i, &e); i++)
1182 struct predicate new_predicate;
1183 new_predicate = remap_predicate_after_duplication (&e->predicate,
1184 possible_truths,
1185 info);
1186 if (false_predicate_p (&new_predicate))
1187 optimized_out_size += e->size;
1188 else
1189 account_size_time (info, e->size, e->time, &new_predicate);
1192 /* Remap edge predicates with the same simplification as above.
1193 Also copy constantness arrays. */
1194 for (edge = dst->callees; edge; edge = edge->next_callee)
1196 struct predicate new_predicate;
1197 struct inline_edge_summary *es = inline_edge_summary (edge);
1199 if (!edge->inline_failed)
1200 inlined_to_p = true;
1201 if (!es->predicate)
1202 continue;
1203 new_predicate = remap_predicate_after_duplication (es->predicate,
1204 possible_truths,
1205 info);
1206 if (false_predicate_p (&new_predicate)
1207 && !false_predicate_p (es->predicate))
1209 optimized_out_size += es->call_stmt_size * INLINE_SIZE_SCALE;
1210 edge->frequency = 0;
1212 edge_set_predicate (edge, &new_predicate);
1215 /* Remap indirect edge predicates with the same simplificaiton as above.
1216 Also copy constantness arrays. */
1217 for (edge = dst->indirect_calls; edge; edge = edge->next_callee)
1219 struct predicate new_predicate;
1220 struct inline_edge_summary *es = inline_edge_summary (edge);
1222 gcc_checking_assert (edge->inline_failed);
1223 if (!es->predicate)
1224 continue;
1225 new_predicate = remap_predicate_after_duplication (es->predicate,
1226 possible_truths,
1227 info);
1228 if (false_predicate_p (&new_predicate)
1229 && !false_predicate_p (es->predicate))
1231 optimized_out_size += es->call_stmt_size * INLINE_SIZE_SCALE;
1232 edge->frequency = 0;
1234 edge_set_predicate (edge, &new_predicate);
1236 remap_hint_predicate_after_duplication (&info->loop_iterations,
1237 possible_truths, info);
1238 remap_hint_predicate_after_duplication (&info->loop_stride,
1239 possible_truths, info);
1240 remap_hint_predicate_after_duplication (&info->array_index,
1241 possible_truths, info);
1243 /* If inliner or someone after inliner will ever start producing
1244 non-trivial clones, we will get trouble with lack of information
1245 about updating self sizes, because size vectors already contains
1246 sizes of the calees. */
1247 gcc_assert (!inlined_to_p || !optimized_out_size);
1249 else
1251 info->entry = vec_safe_copy (info->entry);
1252 if (info->loop_iterations)
1254 predicate p = *info->loop_iterations;
1255 info->loop_iterations = NULL;
1256 set_hint_predicate (&info->loop_iterations, p);
1258 if (info->loop_stride)
1260 predicate p = *info->loop_stride;
1261 info->loop_stride = NULL;
1262 set_hint_predicate (&info->loop_stride, p);
1264 if (info->array_index)
1266 predicate p = *info->array_index;
1267 info->array_index = NULL;
1268 set_hint_predicate (&info->array_index, p);
1271 inline_update_overall_summary (dst);
1275 /* Hook that is called by cgraph.c when a node is duplicated. */
1277 static void
1278 inline_edge_duplication_hook (struct cgraph_edge *src,
1279 struct cgraph_edge *dst,
1280 ATTRIBUTE_UNUSED void *data)
1282 struct inline_edge_summary *info;
1283 struct inline_edge_summary *srcinfo;
1284 inline_summary_alloc ();
1285 info = inline_edge_summary (dst);
1286 srcinfo = inline_edge_summary (src);
1287 memcpy (info, srcinfo, sizeof (struct inline_edge_summary));
1288 info->predicate = NULL;
1289 edge_set_predicate (dst, srcinfo->predicate);
1290 info->param = srcinfo->param.copy ();
1294 /* Keep edge cache consistent across edge removal. */
1296 static void
1297 inline_edge_removal_hook (struct cgraph_edge *edge,
1298 void *data ATTRIBUTE_UNUSED)
1300 if (edge_growth_cache.exists ())
1301 reset_edge_growth_cache (edge);
1302 reset_inline_edge_summary (edge);
1306 /* Initialize growth caches. */
1308 void
1309 initialize_growth_caches (void)
1311 if (symtab->edges_max_uid)
1312 edge_growth_cache.safe_grow_cleared (symtab->edges_max_uid);
1313 if (symtab->cgraph_max_uid)
1314 node_growth_cache.safe_grow_cleared (symtab->cgraph_max_uid);
1318 /* Free growth caches. */
1320 void
1321 free_growth_caches (void)
1323 edge_growth_cache.release ();
1324 node_growth_cache.release ();
1328 /* Dump edge summaries associated to NODE and recursively to all clones.
1329 Indent by INDENT. */
1331 static void
1332 dump_inline_edge_summary (FILE *f, int indent, struct cgraph_node *node,
1333 struct inline_summary *info)
1335 struct cgraph_edge *edge;
1336 for (edge = node->callees; edge; edge = edge->next_callee)
1338 struct inline_edge_summary *es = inline_edge_summary (edge);
1339 struct cgraph_node *callee = edge->callee->ultimate_alias_target ();
1340 int i;
1342 fprintf (f,
1343 "%*s%s/%i %s\n%*s loop depth:%2i freq:%4i size:%2i"
1344 " time: %2i callee size:%2i stack:%2i",
1345 indent, "", callee->name (), callee->order,
1346 !edge->inline_failed
1347 ? "inlined" : cgraph_inline_failed_string (edge-> inline_failed),
1348 indent, "", es->loop_depth, edge->frequency,
1349 es->call_stmt_size, es->call_stmt_time,
1350 (int) inline_summary (callee)->size / INLINE_SIZE_SCALE,
1351 (int) inline_summary (callee)->estimated_stack_size);
1353 if (es->predicate)
1355 fprintf (f, " predicate: ");
1356 dump_predicate (f, info->conds, es->predicate);
1358 else
1359 fprintf (f, "\n");
1360 if (es->param.exists ())
1361 for (i = 0; i < (int) es->param.length (); i++)
1363 int prob = es->param[i].change_prob;
1365 if (!prob)
1366 fprintf (f, "%*s op%i is compile time invariant\n",
1367 indent + 2, "", i);
1368 else if (prob != REG_BR_PROB_BASE)
1369 fprintf (f, "%*s op%i change %f%% of time\n", indent + 2, "", i,
1370 prob * 100.0 / REG_BR_PROB_BASE);
1372 if (!edge->inline_failed)
1374 fprintf (f, "%*sStack frame offset %i, callee self size %i,"
1375 " callee size %i\n",
1376 indent + 2, "",
1377 (int) inline_summary (callee)->stack_frame_offset,
1378 (int) inline_summary (callee)->estimated_self_stack_size,
1379 (int) inline_summary (callee)->estimated_stack_size);
1380 dump_inline_edge_summary (f, indent + 2, callee, info);
1383 for (edge = node->indirect_calls; edge; edge = edge->next_callee)
1385 struct inline_edge_summary *es = inline_edge_summary (edge);
1386 fprintf (f, "%*sindirect call loop depth:%2i freq:%4i size:%2i"
1387 " time: %2i",
1388 indent, "",
1389 es->loop_depth,
1390 edge->frequency, es->call_stmt_size, es->call_stmt_time);
1391 if (es->predicate)
1393 fprintf (f, "predicate: ");
1394 dump_predicate (f, info->conds, es->predicate);
1396 else
1397 fprintf (f, "\n");
1402 void
1403 dump_inline_summary (FILE *f, struct cgraph_node *node)
1405 if (node->definition)
1407 struct inline_summary *s = inline_summary (node);
1408 size_time_entry *e;
1409 int i;
1410 fprintf (f, "Inline summary for %s/%i", node->name (),
1411 node->order);
1412 if (DECL_DISREGARD_INLINE_LIMITS (node->decl))
1413 fprintf (f, " always_inline");
1414 if (s->inlinable)
1415 fprintf (f, " inlinable");
1416 fprintf (f, "\n self time: %i\n", s->self_time);
1417 fprintf (f, " global time: %i\n", s->time);
1418 fprintf (f, " self size: %i\n", s->self_size);
1419 fprintf (f, " global size: %i\n", s->size);
1420 fprintf (f, " min size: %i\n", s->min_size);
1421 fprintf (f, " self stack: %i\n",
1422 (int) s->estimated_self_stack_size);
1423 fprintf (f, " global stack: %i\n", (int) s->estimated_stack_size);
1424 if (s->growth)
1425 fprintf (f, " estimated growth:%i\n", (int) s->growth);
1426 if (s->scc_no)
1427 fprintf (f, " In SCC: %i\n", (int) s->scc_no);
1428 for (i = 0; vec_safe_iterate (s->entry, i, &e); i++)
1430 fprintf (f, " size:%f, time:%f, predicate:",
1431 (double) e->size / INLINE_SIZE_SCALE,
1432 (double) e->time / INLINE_TIME_SCALE);
1433 dump_predicate (f, s->conds, &e->predicate);
1435 if (s->loop_iterations)
1437 fprintf (f, " loop iterations:");
1438 dump_predicate (f, s->conds, s->loop_iterations);
1440 if (s->loop_stride)
1442 fprintf (f, " loop stride:");
1443 dump_predicate (f, s->conds, s->loop_stride);
1445 if (s->array_index)
1447 fprintf (f, " array index:");
1448 dump_predicate (f, s->conds, s->array_index);
1450 fprintf (f, " calls:\n");
1451 dump_inline_edge_summary (f, 4, node, s);
1452 fprintf (f, "\n");
1456 DEBUG_FUNCTION void
1457 debug_inline_summary (struct cgraph_node *node)
1459 dump_inline_summary (stderr, node);
1462 void
1463 dump_inline_summaries (FILE *f)
1465 struct cgraph_node *node;
1467 FOR_EACH_DEFINED_FUNCTION (node)
1468 if (!node->global.inlined_to)
1469 dump_inline_summary (f, node);
1472 /* Give initial reasons why inlining would fail on EDGE. This gets either
1473 nullified or usually overwritten by more precise reasons later. */
1475 void
1476 initialize_inline_failed (struct cgraph_edge *e)
1478 struct cgraph_node *callee = e->callee;
1480 if (e->indirect_unknown_callee)
1481 e->inline_failed = CIF_INDIRECT_UNKNOWN_CALL;
1482 else if (!callee->definition)
1483 e->inline_failed = CIF_BODY_NOT_AVAILABLE;
1484 else if (callee->local.redefined_extern_inline)
1485 e->inline_failed = CIF_REDEFINED_EXTERN_INLINE;
1486 else if (e->call_stmt_cannot_inline_p)
1487 e->inline_failed = CIF_MISMATCHED_ARGUMENTS;
1488 else if (cfun && fn_contains_cilk_spawn_p (cfun))
1489 /* We can't inline if the function is spawing a function. */
1490 e->inline_failed = CIF_FUNCTION_NOT_INLINABLE;
1491 else
1492 e->inline_failed = CIF_FUNCTION_NOT_CONSIDERED;
1495 /* Callback of walk_aliased_vdefs. Flags that it has been invoked to the
1496 boolean variable pointed to by DATA. */
1498 static bool
1499 mark_modified (ao_ref *ao ATTRIBUTE_UNUSED, tree vdef ATTRIBUTE_UNUSED,
1500 void *data)
1502 bool *b = (bool *) data;
1503 *b = true;
1504 return true;
1507 /* If OP refers to value of function parameter, return the corresponding
1508 parameter. */
1510 static tree
1511 unmodified_parm_1 (gimple stmt, tree op)
1513 /* SSA_NAME referring to parm default def? */
1514 if (TREE_CODE (op) == SSA_NAME
1515 && SSA_NAME_IS_DEFAULT_DEF (op)
1516 && TREE_CODE (SSA_NAME_VAR (op)) == PARM_DECL)
1517 return SSA_NAME_VAR (op);
1518 /* Non-SSA parm reference? */
1519 if (TREE_CODE (op) == PARM_DECL)
1521 bool modified = false;
1523 ao_ref refd;
1524 ao_ref_init (&refd, op);
1525 walk_aliased_vdefs (&refd, gimple_vuse (stmt), mark_modified, &modified,
1526 NULL);
1527 if (!modified)
1528 return op;
1530 return NULL_TREE;
1533 /* If OP refers to value of function parameter, return the corresponding
1534 parameter. Also traverse chains of SSA register assignments. */
1536 static tree
1537 unmodified_parm (gimple stmt, tree op)
1539 tree res = unmodified_parm_1 (stmt, op);
1540 if (res)
1541 return res;
1543 if (TREE_CODE (op) == SSA_NAME
1544 && !SSA_NAME_IS_DEFAULT_DEF (op)
1545 && gimple_assign_single_p (SSA_NAME_DEF_STMT (op)))
1546 return unmodified_parm (SSA_NAME_DEF_STMT (op),
1547 gimple_assign_rhs1 (SSA_NAME_DEF_STMT (op)));
1548 return NULL_TREE;
1551 /* If OP refers to a value of a function parameter or value loaded from an
1552 aggregate passed to a parameter (either by value or reference), return TRUE
1553 and store the number of the parameter to *INDEX_P and information whether
1554 and how it has been loaded from an aggregate into *AGGPOS. INFO describes
1555 the function parameters, STMT is the statement in which OP is used or
1556 loaded. */
1558 static bool
1559 unmodified_parm_or_parm_agg_item (struct ipa_node_params *info,
1560 gimple stmt, tree op, int *index_p,
1561 struct agg_position_info *aggpos)
1563 tree res = unmodified_parm_1 (stmt, op);
1565 gcc_checking_assert (aggpos);
1566 if (res)
1568 *index_p = ipa_get_param_decl_index (info, res);
1569 if (*index_p < 0)
1570 return false;
1571 aggpos->agg_contents = false;
1572 aggpos->by_ref = false;
1573 return true;
1576 if (TREE_CODE (op) == SSA_NAME)
1578 if (SSA_NAME_IS_DEFAULT_DEF (op)
1579 || !gimple_assign_single_p (SSA_NAME_DEF_STMT (op)))
1580 return false;
1581 stmt = SSA_NAME_DEF_STMT (op);
1582 op = gimple_assign_rhs1 (stmt);
1583 if (!REFERENCE_CLASS_P (op))
1584 return unmodified_parm_or_parm_agg_item (info, stmt, op, index_p,
1585 aggpos);
1588 aggpos->agg_contents = true;
1589 return ipa_load_from_parm_agg (info, stmt, op, index_p, &aggpos->offset,
1590 &aggpos->by_ref);
1593 /* See if statement might disappear after inlining.
1594 0 - means not eliminated
1595 1 - half of statements goes away
1596 2 - for sure it is eliminated.
1597 We are not terribly sophisticated, basically looking for simple abstraction
1598 penalty wrappers. */
1600 static int
1601 eliminated_by_inlining_prob (gimple stmt)
1603 enum gimple_code code = gimple_code (stmt);
1604 enum tree_code rhs_code;
1606 if (!optimize)
1607 return 0;
1609 switch (code)
1611 case GIMPLE_RETURN:
1612 return 2;
1613 case GIMPLE_ASSIGN:
1614 if (gimple_num_ops (stmt) != 2)
1615 return 0;
1617 rhs_code = gimple_assign_rhs_code (stmt);
1619 /* Casts of parameters, loads from parameters passed by reference
1620 and stores to return value or parameters are often free after
1621 inlining dua to SRA and further combining.
1622 Assume that half of statements goes away. */
1623 if (CONVERT_EXPR_CODE_P (rhs_code)
1624 || rhs_code == VIEW_CONVERT_EXPR
1625 || rhs_code == ADDR_EXPR
1626 || gimple_assign_rhs_class (stmt) == GIMPLE_SINGLE_RHS)
1628 tree rhs = gimple_assign_rhs1 (stmt);
1629 tree lhs = gimple_assign_lhs (stmt);
1630 tree inner_rhs = get_base_address (rhs);
1631 tree inner_lhs = get_base_address (lhs);
1632 bool rhs_free = false;
1633 bool lhs_free = false;
1635 if (!inner_rhs)
1636 inner_rhs = rhs;
1637 if (!inner_lhs)
1638 inner_lhs = lhs;
1640 /* Reads of parameter are expected to be free. */
1641 if (unmodified_parm (stmt, inner_rhs))
1642 rhs_free = true;
1643 /* Match expressions of form &this->field. Those will most likely
1644 combine with something upstream after inlining. */
1645 else if (TREE_CODE (inner_rhs) == ADDR_EXPR)
1647 tree op = get_base_address (TREE_OPERAND (inner_rhs, 0));
1648 if (TREE_CODE (op) == PARM_DECL)
1649 rhs_free = true;
1650 else if (TREE_CODE (op) == MEM_REF
1651 && unmodified_parm (stmt, TREE_OPERAND (op, 0)))
1652 rhs_free = true;
1655 /* When parameter is not SSA register because its address is taken
1656 and it is just copied into one, the statement will be completely
1657 free after inlining (we will copy propagate backward). */
1658 if (rhs_free && is_gimple_reg (lhs))
1659 return 2;
1661 /* Reads of parameters passed by reference
1662 expected to be free (i.e. optimized out after inlining). */
1663 if (TREE_CODE (inner_rhs) == MEM_REF
1664 && unmodified_parm (stmt, TREE_OPERAND (inner_rhs, 0)))
1665 rhs_free = true;
1667 /* Copying parameter passed by reference into gimple register is
1668 probably also going to copy propagate, but we can't be quite
1669 sure. */
1670 if (rhs_free && is_gimple_reg (lhs))
1671 lhs_free = true;
1673 /* Writes to parameters, parameters passed by value and return value
1674 (either dirrectly or passed via invisible reference) are free.
1676 TODO: We ought to handle testcase like
1677 struct a {int a,b;};
1678 struct a
1679 retrurnsturct (void)
1681 struct a a ={1,2};
1682 return a;
1685 This translate into:
1687 retrurnsturct ()
1689 int a$b;
1690 int a$a;
1691 struct a a;
1692 struct a D.2739;
1694 <bb 2>:
1695 D.2739.a = 1;
1696 D.2739.b = 2;
1697 return D.2739;
1700 For that we either need to copy ipa-split logic detecting writes
1701 to return value. */
1702 if (TREE_CODE (inner_lhs) == PARM_DECL
1703 || TREE_CODE (inner_lhs) == RESULT_DECL
1704 || (TREE_CODE (inner_lhs) == MEM_REF
1705 && (unmodified_parm (stmt, TREE_OPERAND (inner_lhs, 0))
1706 || (TREE_CODE (TREE_OPERAND (inner_lhs, 0)) == SSA_NAME
1707 && SSA_NAME_VAR (TREE_OPERAND (inner_lhs, 0))
1708 && TREE_CODE (SSA_NAME_VAR (TREE_OPERAND
1709 (inner_lhs,
1710 0))) == RESULT_DECL))))
1711 lhs_free = true;
1712 if (lhs_free
1713 && (is_gimple_reg (rhs) || is_gimple_min_invariant (rhs)))
1714 rhs_free = true;
1715 if (lhs_free && rhs_free)
1716 return 1;
1718 return 0;
1719 default:
1720 return 0;
1725 /* If BB ends by a conditional we can turn into predicates, attach corresponding
1726 predicates to the CFG edges. */
1728 static void
1729 set_cond_stmt_execution_predicate (struct ipa_node_params *info,
1730 struct inline_summary *summary,
1731 basic_block bb)
1733 gimple last;
1734 tree op;
1735 int index;
1736 struct agg_position_info aggpos;
1737 enum tree_code code, inverted_code;
1738 edge e;
1739 edge_iterator ei;
1740 gimple set_stmt;
1741 tree op2;
1743 last = last_stmt (bb);
1744 if (!last || gimple_code (last) != GIMPLE_COND)
1745 return;
1746 if (!is_gimple_ip_invariant (gimple_cond_rhs (last)))
1747 return;
1748 op = gimple_cond_lhs (last);
1749 /* TODO: handle conditionals like
1750 var = op0 < 4;
1751 if (var != 0). */
1752 if (unmodified_parm_or_parm_agg_item (info, last, op, &index, &aggpos))
1754 code = gimple_cond_code (last);
1755 inverted_code
1756 = invert_tree_comparison (code,
1757 HONOR_NANS (TYPE_MODE (TREE_TYPE (op))));
1759 FOR_EACH_EDGE (e, ei, bb->succs)
1761 enum tree_code this_code = (e->flags & EDGE_TRUE_VALUE
1762 ? code : inverted_code);
1763 /* invert_tree_comparison will return ERROR_MARK on FP
1764 comparsions that are not EQ/NE instead of returning proper
1765 unordered one. Be sure it is not confused with NON_CONSTANT. */
1766 if (this_code != ERROR_MARK)
1768 struct predicate p = add_condition (summary, index, &aggpos,
1769 this_code,
1770 gimple_cond_rhs (last));
1771 e->aux = pool_alloc (edge_predicate_pool);
1772 *(struct predicate *) e->aux = p;
1777 if (TREE_CODE (op) != SSA_NAME)
1778 return;
1779 /* Special case
1780 if (builtin_constant_p (op))
1781 constant_code
1782 else
1783 nonconstant_code.
1784 Here we can predicate nonconstant_code. We can't
1785 really handle constant_code since we have no predicate
1786 for this and also the constant code is not known to be
1787 optimized away when inliner doen't see operand is constant.
1788 Other optimizers might think otherwise. */
1789 if (gimple_cond_code (last) != NE_EXPR
1790 || !integer_zerop (gimple_cond_rhs (last)))
1791 return;
1792 set_stmt = SSA_NAME_DEF_STMT (op);
1793 if (!gimple_call_builtin_p (set_stmt, BUILT_IN_CONSTANT_P)
1794 || gimple_call_num_args (set_stmt) != 1)
1795 return;
1796 op2 = gimple_call_arg (set_stmt, 0);
1797 if (!unmodified_parm_or_parm_agg_item
1798 (info, set_stmt, op2, &index, &aggpos))
1799 return;
1800 FOR_EACH_EDGE (e, ei, bb->succs) if (e->flags & EDGE_FALSE_VALUE)
1802 struct predicate p = add_condition (summary, index, &aggpos,
1803 IS_NOT_CONSTANT, NULL_TREE);
1804 e->aux = pool_alloc (edge_predicate_pool);
1805 *(struct predicate *) e->aux = p;
1810 /* If BB ends by a switch we can turn into predicates, attach corresponding
1811 predicates to the CFG edges. */
1813 static void
1814 set_switch_stmt_execution_predicate (struct ipa_node_params *info,
1815 struct inline_summary *summary,
1816 basic_block bb)
1818 gimple lastg;
1819 tree op;
1820 int index;
1821 struct agg_position_info aggpos;
1822 edge e;
1823 edge_iterator ei;
1824 size_t n;
1825 size_t case_idx;
1827 lastg = last_stmt (bb);
1828 if (!lastg || gimple_code (lastg) != GIMPLE_SWITCH)
1829 return;
1830 gswitch *last = as_a <gswitch *> (lastg);
1831 op = gimple_switch_index (last);
1832 if (!unmodified_parm_or_parm_agg_item (info, last, op, &index, &aggpos))
1833 return;
1835 FOR_EACH_EDGE (e, ei, bb->succs)
1837 e->aux = pool_alloc (edge_predicate_pool);
1838 *(struct predicate *) e->aux = false_predicate ();
1840 n = gimple_switch_num_labels (last);
1841 for (case_idx = 0; case_idx < n; ++case_idx)
1843 tree cl = gimple_switch_label (last, case_idx);
1844 tree min, max;
1845 struct predicate p;
1847 e = find_edge (bb, label_to_block (CASE_LABEL (cl)));
1848 min = CASE_LOW (cl);
1849 max = CASE_HIGH (cl);
1851 /* For default we might want to construct predicate that none
1852 of cases is met, but it is bit hard to do not having negations
1853 of conditionals handy. */
1854 if (!min && !max)
1855 p = true_predicate ();
1856 else if (!max)
1857 p = add_condition (summary, index, &aggpos, EQ_EXPR, min);
1858 else
1860 struct predicate p1, p2;
1861 p1 = add_condition (summary, index, &aggpos, GE_EXPR, min);
1862 p2 = add_condition (summary, index, &aggpos, LE_EXPR, max);
1863 p = and_predicates (summary->conds, &p1, &p2);
1865 *(struct predicate *) e->aux
1866 = or_predicates (summary->conds, &p, (struct predicate *) e->aux);
1871 /* For each BB in NODE attach to its AUX pointer predicate under
1872 which it is executable. */
1874 static void
1875 compute_bb_predicates (struct cgraph_node *node,
1876 struct ipa_node_params *parms_info,
1877 struct inline_summary *summary)
1879 struct function *my_function = DECL_STRUCT_FUNCTION (node->decl);
1880 bool done = false;
1881 basic_block bb;
1883 FOR_EACH_BB_FN (bb, my_function)
1885 set_cond_stmt_execution_predicate (parms_info, summary, bb);
1886 set_switch_stmt_execution_predicate (parms_info, summary, bb);
1889 /* Entry block is always executable. */
1890 ENTRY_BLOCK_PTR_FOR_FN (my_function)->aux
1891 = pool_alloc (edge_predicate_pool);
1892 *(struct predicate *) ENTRY_BLOCK_PTR_FOR_FN (my_function)->aux
1893 = true_predicate ();
1895 /* A simple dataflow propagation of predicates forward in the CFG.
1896 TODO: work in reverse postorder. */
1897 while (!done)
1899 done = true;
1900 FOR_EACH_BB_FN (bb, my_function)
1902 struct predicate p = false_predicate ();
1903 edge e;
1904 edge_iterator ei;
1905 FOR_EACH_EDGE (e, ei, bb->preds)
1907 if (e->src->aux)
1909 struct predicate this_bb_predicate
1910 = *(struct predicate *) e->src->aux;
1911 if (e->aux)
1912 this_bb_predicate
1913 = and_predicates (summary->conds, &this_bb_predicate,
1914 (struct predicate *) e->aux);
1915 p = or_predicates (summary->conds, &p, &this_bb_predicate);
1916 if (true_predicate_p (&p))
1917 break;
1920 if (false_predicate_p (&p))
1921 gcc_assert (!bb->aux);
1922 else
1924 if (!bb->aux)
1926 done = false;
1927 bb->aux = pool_alloc (edge_predicate_pool);
1928 *((struct predicate *) bb->aux) = p;
1930 else if (!predicates_equal_p (&p, (struct predicate *) bb->aux))
1932 /* This OR operation is needed to ensure monotonous data flow
1933 in the case we hit the limit on number of clauses and the
1934 and/or operations above give approximate answers. */
1935 p = or_predicates (summary->conds, &p, (struct predicate *)bb->aux);
1936 if (!predicates_equal_p (&p, (struct predicate *) bb->aux))
1938 done = false;
1939 *((struct predicate *) bb->aux) = p;
1948 /* We keep info about constantness of SSA names. */
1950 typedef struct predicate predicate_t;
1951 /* Return predicate specifying when the STMT might have result that is not
1952 a compile time constant. */
1954 static struct predicate
1955 will_be_nonconstant_expr_predicate (struct ipa_node_params *info,
1956 struct inline_summary *summary,
1957 tree expr,
1958 vec<predicate_t> nonconstant_names)
1960 tree parm;
1961 int index;
1963 while (UNARY_CLASS_P (expr))
1964 expr = TREE_OPERAND (expr, 0);
1966 parm = unmodified_parm (NULL, expr);
1967 if (parm && (index = ipa_get_param_decl_index (info, parm)) >= 0)
1968 return add_condition (summary, index, NULL, CHANGED, NULL_TREE);
1969 if (is_gimple_min_invariant (expr))
1970 return false_predicate ();
1971 if (TREE_CODE (expr) == SSA_NAME)
1972 return nonconstant_names[SSA_NAME_VERSION (expr)];
1973 if (BINARY_CLASS_P (expr) || COMPARISON_CLASS_P (expr))
1975 struct predicate p1 = will_be_nonconstant_expr_predicate
1976 (info, summary, TREE_OPERAND (expr, 0),
1977 nonconstant_names);
1978 struct predicate p2;
1979 if (true_predicate_p (&p1))
1980 return p1;
1981 p2 = will_be_nonconstant_expr_predicate (info, summary,
1982 TREE_OPERAND (expr, 1),
1983 nonconstant_names);
1984 return or_predicates (summary->conds, &p1, &p2);
1986 else if (TREE_CODE (expr) == COND_EXPR)
1988 struct predicate p1 = will_be_nonconstant_expr_predicate
1989 (info, summary, TREE_OPERAND (expr, 0),
1990 nonconstant_names);
1991 struct predicate p2;
1992 if (true_predicate_p (&p1))
1993 return p1;
1994 p2 = will_be_nonconstant_expr_predicate (info, summary,
1995 TREE_OPERAND (expr, 1),
1996 nonconstant_names);
1997 if (true_predicate_p (&p2))
1998 return p2;
1999 p1 = or_predicates (summary->conds, &p1, &p2);
2000 p2 = will_be_nonconstant_expr_predicate (info, summary,
2001 TREE_OPERAND (expr, 2),
2002 nonconstant_names);
2003 return or_predicates (summary->conds, &p1, &p2);
2005 else
2007 debug_tree (expr);
2008 gcc_unreachable ();
2010 return false_predicate ();
2014 /* Return predicate specifying when the STMT might have result that is not
2015 a compile time constant. */
2017 static struct predicate
2018 will_be_nonconstant_predicate (struct ipa_node_params *info,
2019 struct inline_summary *summary,
2020 gimple stmt,
2021 vec<predicate_t> nonconstant_names)
2023 struct predicate p = true_predicate ();
2024 ssa_op_iter iter;
2025 tree use;
2026 struct predicate op_non_const;
2027 bool is_load;
2028 int base_index;
2029 struct agg_position_info aggpos;
2031 /* What statments might be optimized away
2032 when their arguments are constant
2033 TODO: also trivial builtins.
2034 builtin_constant_p is already handled later. */
2035 if (gimple_code (stmt) != GIMPLE_ASSIGN
2036 && gimple_code (stmt) != GIMPLE_COND
2037 && gimple_code (stmt) != GIMPLE_SWITCH)
2038 return p;
2040 /* Stores will stay anyway. */
2041 if (gimple_store_p (stmt))
2042 return p;
2044 is_load = gimple_assign_load_p (stmt);
2046 /* Loads can be optimized when the value is known. */
2047 if (is_load)
2049 tree op;
2050 gcc_assert (gimple_assign_single_p (stmt));
2051 op = gimple_assign_rhs1 (stmt);
2052 if (!unmodified_parm_or_parm_agg_item (info, stmt, op, &base_index,
2053 &aggpos))
2054 return p;
2056 else
2057 base_index = -1;
2059 /* See if we understand all operands before we start
2060 adding conditionals. */
2061 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
2063 tree parm = unmodified_parm (stmt, use);
2064 /* For arguments we can build a condition. */
2065 if (parm && ipa_get_param_decl_index (info, parm) >= 0)
2066 continue;
2067 if (TREE_CODE (use) != SSA_NAME)
2068 return p;
2069 /* If we know when operand is constant,
2070 we still can say something useful. */
2071 if (!true_predicate_p (&nonconstant_names[SSA_NAME_VERSION (use)]))
2072 continue;
2073 return p;
2076 if (is_load)
2077 op_non_const =
2078 add_condition (summary, base_index, &aggpos, CHANGED, NULL);
2079 else
2080 op_non_const = false_predicate ();
2081 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
2083 tree parm = unmodified_parm (stmt, use);
2084 int index;
2086 if (parm && (index = ipa_get_param_decl_index (info, parm)) >= 0)
2088 if (index != base_index)
2089 p = add_condition (summary, index, NULL, CHANGED, NULL_TREE);
2090 else
2091 continue;
2093 else
2094 p = nonconstant_names[SSA_NAME_VERSION (use)];
2095 op_non_const = or_predicates (summary->conds, &p, &op_non_const);
2097 if (gimple_code (stmt) == GIMPLE_ASSIGN
2098 && TREE_CODE (gimple_assign_lhs (stmt)) == SSA_NAME)
2099 nonconstant_names[SSA_NAME_VERSION (gimple_assign_lhs (stmt))]
2100 = op_non_const;
2101 return op_non_const;
2104 struct record_modified_bb_info
2106 bitmap bb_set;
2107 gimple stmt;
2110 /* Callback of walk_aliased_vdefs. Records basic blocks where the value may be
2111 set except for info->stmt. */
2113 static bool
2114 record_modified (ao_ref *ao ATTRIBUTE_UNUSED, tree vdef, void *data)
2116 struct record_modified_bb_info *info =
2117 (struct record_modified_bb_info *) data;
2118 if (SSA_NAME_DEF_STMT (vdef) == info->stmt)
2119 return false;
2120 bitmap_set_bit (info->bb_set,
2121 SSA_NAME_IS_DEFAULT_DEF (vdef)
2122 ? ENTRY_BLOCK_PTR_FOR_FN (cfun)->index
2123 : gimple_bb (SSA_NAME_DEF_STMT (vdef))->index);
2124 return false;
2127 /* Return probability (based on REG_BR_PROB_BASE) that I-th parameter of STMT
2128 will change since last invocation of STMT.
2130 Value 0 is reserved for compile time invariants.
2131 For common parameters it is REG_BR_PROB_BASE. For loop invariants it
2132 ought to be REG_BR_PROB_BASE / estimated_iters. */
2134 static int
2135 param_change_prob (gimple stmt, int i)
2137 tree op = gimple_call_arg (stmt, i);
2138 basic_block bb = gimple_bb (stmt);
2139 tree base;
2141 /* Global invariants neve change. */
2142 if (is_gimple_min_invariant (op))
2143 return 0;
2144 /* We would have to do non-trivial analysis to really work out what
2145 is the probability of value to change (i.e. when init statement
2146 is in a sibling loop of the call).
2148 We do an conservative estimate: when call is executed N times more often
2149 than the statement defining value, we take the frequency 1/N. */
2150 if (TREE_CODE (op) == SSA_NAME)
2152 int init_freq;
2154 if (!bb->frequency)
2155 return REG_BR_PROB_BASE;
2157 if (SSA_NAME_IS_DEFAULT_DEF (op))
2158 init_freq = ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency;
2159 else
2160 init_freq = gimple_bb (SSA_NAME_DEF_STMT (op))->frequency;
2162 if (!init_freq)
2163 init_freq = 1;
2164 if (init_freq < bb->frequency)
2165 return MAX (GCOV_COMPUTE_SCALE (init_freq, bb->frequency), 1);
2166 else
2167 return REG_BR_PROB_BASE;
2170 base = get_base_address (op);
2171 if (base)
2173 ao_ref refd;
2174 int max;
2175 struct record_modified_bb_info info;
2176 bitmap_iterator bi;
2177 unsigned index;
2178 tree init = ctor_for_folding (base);
2180 if (init != error_mark_node)
2181 return 0;
2182 if (!bb->frequency)
2183 return REG_BR_PROB_BASE;
2184 ao_ref_init (&refd, op);
2185 info.stmt = stmt;
2186 info.bb_set = BITMAP_ALLOC (NULL);
2187 walk_aliased_vdefs (&refd, gimple_vuse (stmt), record_modified, &info,
2188 NULL);
2189 if (bitmap_bit_p (info.bb_set, bb->index))
2191 BITMAP_FREE (info.bb_set);
2192 return REG_BR_PROB_BASE;
2195 /* Assume that every memory is initialized at entry.
2196 TODO: Can we easilly determine if value is always defined
2197 and thus we may skip entry block? */
2198 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency)
2199 max = ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency;
2200 else
2201 max = 1;
2203 EXECUTE_IF_SET_IN_BITMAP (info.bb_set, 0, index, bi)
2204 max = MIN (max, BASIC_BLOCK_FOR_FN (cfun, index)->frequency);
2206 BITMAP_FREE (info.bb_set);
2207 if (max < bb->frequency)
2208 return MAX (GCOV_COMPUTE_SCALE (max, bb->frequency), 1);
2209 else
2210 return REG_BR_PROB_BASE;
2212 return REG_BR_PROB_BASE;
2215 /* Find whether a basic block BB is the final block of a (half) diamond CFG
2216 sub-graph and if the predicate the condition depends on is known. If so,
2217 return true and store the pointer the predicate in *P. */
2219 static bool
2220 phi_result_unknown_predicate (struct ipa_node_params *info,
2221 struct inline_summary *summary, basic_block bb,
2222 struct predicate *p,
2223 vec<predicate_t> nonconstant_names)
2225 edge e;
2226 edge_iterator ei;
2227 basic_block first_bb = NULL;
2228 gimple stmt;
2230 if (single_pred_p (bb))
2232 *p = false_predicate ();
2233 return true;
2236 FOR_EACH_EDGE (e, ei, bb->preds)
2238 if (single_succ_p (e->src))
2240 if (!single_pred_p (e->src))
2241 return false;
2242 if (!first_bb)
2243 first_bb = single_pred (e->src);
2244 else if (single_pred (e->src) != first_bb)
2245 return false;
2247 else
2249 if (!first_bb)
2250 first_bb = e->src;
2251 else if (e->src != first_bb)
2252 return false;
2256 if (!first_bb)
2257 return false;
2259 stmt = last_stmt (first_bb);
2260 if (!stmt
2261 || gimple_code (stmt) != GIMPLE_COND
2262 || !is_gimple_ip_invariant (gimple_cond_rhs (stmt)))
2263 return false;
2265 *p = will_be_nonconstant_expr_predicate (info, summary,
2266 gimple_cond_lhs (stmt),
2267 nonconstant_names);
2268 if (true_predicate_p (p))
2269 return false;
2270 else
2271 return true;
2274 /* Given a PHI statement in a function described by inline properties SUMMARY
2275 and *P being the predicate describing whether the selected PHI argument is
2276 known, store a predicate for the result of the PHI statement into
2277 NONCONSTANT_NAMES, if possible. */
2279 static void
2280 predicate_for_phi_result (struct inline_summary *summary, gphi *phi,
2281 struct predicate *p,
2282 vec<predicate_t> nonconstant_names)
2284 unsigned i;
2286 for (i = 0; i < gimple_phi_num_args (phi); i++)
2288 tree arg = gimple_phi_arg (phi, i)->def;
2289 if (!is_gimple_min_invariant (arg))
2291 gcc_assert (TREE_CODE (arg) == SSA_NAME);
2292 *p = or_predicates (summary->conds, p,
2293 &nonconstant_names[SSA_NAME_VERSION (arg)]);
2294 if (true_predicate_p (p))
2295 return;
2299 if (dump_file && (dump_flags & TDF_DETAILS))
2301 fprintf (dump_file, "\t\tphi predicate: ");
2302 dump_predicate (dump_file, summary->conds, p);
2304 nonconstant_names[SSA_NAME_VERSION (gimple_phi_result (phi))] = *p;
2307 /* Return predicate specifying when array index in access OP becomes non-constant. */
2309 static struct predicate
2310 array_index_predicate (struct inline_summary *info,
2311 vec< predicate_t> nonconstant_names, tree op)
2313 struct predicate p = false_predicate ();
2314 while (handled_component_p (op))
2316 if (TREE_CODE (op) == ARRAY_REF || TREE_CODE (op) == ARRAY_RANGE_REF)
2318 if (TREE_CODE (TREE_OPERAND (op, 1)) == SSA_NAME)
2319 p = or_predicates (info->conds, &p,
2320 &nonconstant_names[SSA_NAME_VERSION
2321 (TREE_OPERAND (op, 1))]);
2323 op = TREE_OPERAND (op, 0);
2325 return p;
2328 /* For a typical usage of __builtin_expect (a<b, 1), we
2329 may introduce an extra relation stmt:
2330 With the builtin, we have
2331 t1 = a <= b;
2332 t2 = (long int) t1;
2333 t3 = __builtin_expect (t2, 1);
2334 if (t3 != 0)
2335 goto ...
2336 Without the builtin, we have
2337 if (a<=b)
2338 goto...
2339 This affects the size/time estimation and may have
2340 an impact on the earlier inlining.
2341 Here find this pattern and fix it up later. */
2343 static gimple
2344 find_foldable_builtin_expect (basic_block bb)
2346 gimple_stmt_iterator bsi;
2348 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
2350 gimple stmt = gsi_stmt (bsi);
2351 if (gimple_call_builtin_p (stmt, BUILT_IN_EXPECT)
2352 || (is_gimple_call (stmt)
2353 && gimple_call_internal_p (stmt)
2354 && gimple_call_internal_fn (stmt) == IFN_BUILTIN_EXPECT))
2356 tree var = gimple_call_lhs (stmt);
2357 tree arg = gimple_call_arg (stmt, 0);
2358 use_operand_p use_p;
2359 gimple use_stmt;
2360 bool match = false;
2361 bool done = false;
2363 if (!var || !arg)
2364 continue;
2365 gcc_assert (TREE_CODE (var) == SSA_NAME);
2367 while (TREE_CODE (arg) == SSA_NAME)
2369 gimple stmt_tmp = SSA_NAME_DEF_STMT (arg);
2370 if (!is_gimple_assign (stmt_tmp))
2371 break;
2372 switch (gimple_assign_rhs_code (stmt_tmp))
2374 case LT_EXPR:
2375 case LE_EXPR:
2376 case GT_EXPR:
2377 case GE_EXPR:
2378 case EQ_EXPR:
2379 case NE_EXPR:
2380 match = true;
2381 done = true;
2382 break;
2383 CASE_CONVERT:
2384 break;
2385 default:
2386 done = true;
2387 break;
2389 if (done)
2390 break;
2391 arg = gimple_assign_rhs1 (stmt_tmp);
2394 if (match && single_imm_use (var, &use_p, &use_stmt)
2395 && gimple_code (use_stmt) == GIMPLE_COND)
2396 return use_stmt;
2399 return NULL;
2402 /* Return true when the basic blocks contains only clobbers followed by RESX.
2403 Such BBs are kept around to make removal of dead stores possible with
2404 presence of EH and will be optimized out by optimize_clobbers later in the
2405 game.
2407 NEED_EH is used to recurse in case the clobber has non-EH predecestors
2408 that can be clobber only, too.. When it is false, the RESX is not necessary
2409 on the end of basic block. */
2411 static bool
2412 clobber_only_eh_bb_p (basic_block bb, bool need_eh = true)
2414 gimple_stmt_iterator gsi = gsi_last_bb (bb);
2415 edge_iterator ei;
2416 edge e;
2418 if (need_eh)
2420 if (gsi_end_p (gsi))
2421 return false;
2422 if (gimple_code (gsi_stmt (gsi)) != GIMPLE_RESX)
2423 return false;
2424 gsi_prev (&gsi);
2426 else if (!single_succ_p (bb))
2427 return false;
2429 for (; !gsi_end_p (gsi); gsi_prev (&gsi))
2431 gimple stmt = gsi_stmt (gsi);
2432 if (is_gimple_debug (stmt))
2433 continue;
2434 if (gimple_clobber_p (stmt))
2435 continue;
2436 if (gimple_code (stmt) == GIMPLE_LABEL)
2437 break;
2438 return false;
2441 /* See if all predecestors are either throws or clobber only BBs. */
2442 FOR_EACH_EDGE (e, ei, bb->preds)
2443 if (!(e->flags & EDGE_EH)
2444 && !clobber_only_eh_bb_p (e->src, false))
2445 return false;
2447 return true;
2450 /* Compute function body size parameters for NODE.
2451 When EARLY is true, we compute only simple summaries without
2452 non-trivial predicates to drive the early inliner. */
2454 static void
2455 estimate_function_body_sizes (struct cgraph_node *node, bool early)
2457 gcov_type time = 0;
2458 /* Estimate static overhead for function prologue/epilogue and alignment. */
2459 int size = 2;
2460 /* Benefits are scaled by probability of elimination that is in range
2461 <0,2>. */
2462 basic_block bb;
2463 struct function *my_function = DECL_STRUCT_FUNCTION (node->decl);
2464 int freq;
2465 struct inline_summary *info = inline_summary (node);
2466 struct predicate bb_predicate;
2467 struct ipa_node_params *parms_info = NULL;
2468 vec<predicate_t> nonconstant_names = vNULL;
2469 int nblocks, n;
2470 int *order;
2471 predicate array_index = true_predicate ();
2472 gimple fix_builtin_expect_stmt;
2474 info->conds = NULL;
2475 info->entry = NULL;
2477 if (opt_for_fn (node->decl, optimize) && !early)
2479 calculate_dominance_info (CDI_DOMINATORS);
2480 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
2482 if (ipa_node_params_vector.exists ())
2484 parms_info = IPA_NODE_REF (node);
2485 nonconstant_names.safe_grow_cleared
2486 (SSANAMES (my_function)->length ());
2490 if (dump_file)
2491 fprintf (dump_file, "\nAnalyzing function body size: %s\n",
2492 node->name ());
2494 /* When we run into maximal number of entries, we assign everything to the
2495 constant truth case. Be sure to have it in list. */
2496 bb_predicate = true_predicate ();
2497 account_size_time (info, 0, 0, &bb_predicate);
2499 bb_predicate = not_inlined_predicate ();
2500 account_size_time (info, 2 * INLINE_SIZE_SCALE, 0, &bb_predicate);
2502 gcc_assert (my_function && my_function->cfg);
2503 if (parms_info)
2504 compute_bb_predicates (node, parms_info, info);
2505 gcc_assert (cfun == my_function);
2506 order = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
2507 nblocks = pre_and_rev_post_order_compute (NULL, order, false);
2508 for (n = 0; n < nblocks; n++)
2510 bb = BASIC_BLOCK_FOR_FN (cfun, order[n]);
2511 freq = compute_call_stmt_bb_frequency (node->decl, bb);
2512 if (clobber_only_eh_bb_p (bb))
2514 if (dump_file && (dump_flags & TDF_DETAILS))
2515 fprintf (dump_file, "\n Ignoring BB %i;"
2516 " it will be optimized away by cleanup_clobbers\n",
2517 bb->index);
2518 continue;
2521 /* TODO: Obviously predicates can be propagated down across CFG. */
2522 if (parms_info)
2524 if (bb->aux)
2525 bb_predicate = *(struct predicate *) bb->aux;
2526 else
2527 bb_predicate = false_predicate ();
2529 else
2530 bb_predicate = true_predicate ();
2532 if (dump_file && (dump_flags & TDF_DETAILS))
2534 fprintf (dump_file, "\n BB %i predicate:", bb->index);
2535 dump_predicate (dump_file, info->conds, &bb_predicate);
2538 if (parms_info && nonconstant_names.exists ())
2540 struct predicate phi_predicate;
2541 bool first_phi = true;
2543 for (gphi_iterator bsi = gsi_start_phis (bb); !gsi_end_p (bsi);
2544 gsi_next (&bsi))
2546 if (first_phi
2547 && !phi_result_unknown_predicate (parms_info, info, bb,
2548 &phi_predicate,
2549 nonconstant_names))
2550 break;
2551 first_phi = false;
2552 if (dump_file && (dump_flags & TDF_DETAILS))
2554 fprintf (dump_file, " ");
2555 print_gimple_stmt (dump_file, gsi_stmt (bsi), 0, 0);
2557 predicate_for_phi_result (info, bsi.phi (), &phi_predicate,
2558 nonconstant_names);
2562 fix_builtin_expect_stmt = find_foldable_builtin_expect (bb);
2564 for (gimple_stmt_iterator bsi = gsi_start_bb (bb); !gsi_end_p (bsi);
2565 gsi_next (&bsi))
2567 gimple stmt = gsi_stmt (bsi);
2568 int this_size = estimate_num_insns (stmt, &eni_size_weights);
2569 int this_time = estimate_num_insns (stmt, &eni_time_weights);
2570 int prob;
2571 struct predicate will_be_nonconstant;
2573 /* This relation stmt should be folded after we remove
2574 buildin_expect call. Adjust the cost here. */
2575 if (stmt == fix_builtin_expect_stmt)
2577 this_size--;
2578 this_time--;
2581 if (dump_file && (dump_flags & TDF_DETAILS))
2583 fprintf (dump_file, " ");
2584 print_gimple_stmt (dump_file, stmt, 0, 0);
2585 fprintf (dump_file, "\t\tfreq:%3.2f size:%3i time:%3i\n",
2586 ((double) freq) / CGRAPH_FREQ_BASE, this_size,
2587 this_time);
2590 if (gimple_assign_load_p (stmt) && nonconstant_names.exists ())
2592 struct predicate this_array_index;
2593 this_array_index =
2594 array_index_predicate (info, nonconstant_names,
2595 gimple_assign_rhs1 (stmt));
2596 if (!false_predicate_p (&this_array_index))
2597 array_index =
2598 and_predicates (info->conds, &array_index,
2599 &this_array_index);
2601 if (gimple_store_p (stmt) && nonconstant_names.exists ())
2603 struct predicate this_array_index;
2604 this_array_index =
2605 array_index_predicate (info, nonconstant_names,
2606 gimple_get_lhs (stmt));
2607 if (!false_predicate_p (&this_array_index))
2608 array_index =
2609 and_predicates (info->conds, &array_index,
2610 &this_array_index);
2614 if (is_gimple_call (stmt)
2615 && !gimple_call_internal_p (stmt))
2617 struct cgraph_edge *edge = node->get_edge (stmt);
2618 struct inline_edge_summary *es = inline_edge_summary (edge);
2620 /* Special case: results of BUILT_IN_CONSTANT_P will be always
2621 resolved as constant. We however don't want to optimize
2622 out the cgraph edges. */
2623 if (nonconstant_names.exists ()
2624 && gimple_call_builtin_p (stmt, BUILT_IN_CONSTANT_P)
2625 && gimple_call_lhs (stmt)
2626 && TREE_CODE (gimple_call_lhs (stmt)) == SSA_NAME)
2628 struct predicate false_p = false_predicate ();
2629 nonconstant_names[SSA_NAME_VERSION (gimple_call_lhs (stmt))]
2630 = false_p;
2632 if (ipa_node_params_vector.exists ())
2634 int count = gimple_call_num_args (stmt);
2635 int i;
2637 if (count)
2638 es->param.safe_grow_cleared (count);
2639 for (i = 0; i < count; i++)
2641 int prob = param_change_prob (stmt, i);
2642 gcc_assert (prob >= 0 && prob <= REG_BR_PROB_BASE);
2643 es->param[i].change_prob = prob;
2647 es->call_stmt_size = this_size;
2648 es->call_stmt_time = this_time;
2649 es->loop_depth = bb_loop_depth (bb);
2650 edge_set_predicate (edge, &bb_predicate);
2653 /* TODO: When conditional jump or swithc is known to be constant, but
2654 we did not translate it into the predicates, we really can account
2655 just maximum of the possible paths. */
2656 if (parms_info)
2657 will_be_nonconstant
2658 = will_be_nonconstant_predicate (parms_info, info,
2659 stmt, nonconstant_names);
2660 if (this_time || this_size)
2662 struct predicate p;
2664 this_time *= freq;
2666 prob = eliminated_by_inlining_prob (stmt);
2667 if (prob == 1 && dump_file && (dump_flags & TDF_DETAILS))
2668 fprintf (dump_file,
2669 "\t\t50%% will be eliminated by inlining\n");
2670 if (prob == 2 && dump_file && (dump_flags & TDF_DETAILS))
2671 fprintf (dump_file, "\t\tWill be eliminated by inlining\n");
2673 if (parms_info)
2674 p = and_predicates (info->conds, &bb_predicate,
2675 &will_be_nonconstant);
2676 else
2677 p = true_predicate ();
2679 if (!false_predicate_p (&p))
2681 time += this_time;
2682 size += this_size;
2683 if (time > MAX_TIME * INLINE_TIME_SCALE)
2684 time = MAX_TIME * INLINE_TIME_SCALE;
2687 /* We account everything but the calls. Calls have their own
2688 size/time info attached to cgraph edges. This is necessary
2689 in order to make the cost disappear after inlining. */
2690 if (!is_gimple_call (stmt))
2692 if (prob)
2694 struct predicate ip = not_inlined_predicate ();
2695 ip = and_predicates (info->conds, &ip, &p);
2696 account_size_time (info, this_size * prob,
2697 this_time * prob, &ip);
2699 if (prob != 2)
2700 account_size_time (info, this_size * (2 - prob),
2701 this_time * (2 - prob), &p);
2704 gcc_assert (time >= 0);
2705 gcc_assert (size >= 0);
2709 set_hint_predicate (&inline_summary (node)->array_index, array_index);
2710 time = (time + CGRAPH_FREQ_BASE / 2) / CGRAPH_FREQ_BASE;
2711 if (time > MAX_TIME)
2712 time = MAX_TIME;
2713 free (order);
2715 if (!early && nonconstant_names.exists ())
2717 struct loop *loop;
2718 predicate loop_iterations = true_predicate ();
2719 predicate loop_stride = true_predicate ();
2721 if (dump_file && (dump_flags & TDF_DETAILS))
2722 flow_loops_dump (dump_file, NULL, 0);
2723 scev_initialize ();
2724 FOR_EACH_LOOP (loop, 0)
2726 vec<edge> exits;
2727 edge ex;
2728 unsigned int j, i;
2729 struct tree_niter_desc niter_desc;
2730 basic_block *body = get_loop_body (loop);
2731 bb_predicate = *(struct predicate *) loop->header->aux;
2733 exits = get_loop_exit_edges (loop);
2734 FOR_EACH_VEC_ELT (exits, j, ex)
2735 if (number_of_iterations_exit (loop, ex, &niter_desc, false)
2736 && !is_gimple_min_invariant (niter_desc.niter))
2738 predicate will_be_nonconstant
2739 = will_be_nonconstant_expr_predicate (parms_info, info,
2740 niter_desc.niter,
2741 nonconstant_names);
2742 if (!true_predicate_p (&will_be_nonconstant))
2743 will_be_nonconstant = and_predicates (info->conds,
2744 &bb_predicate,
2745 &will_be_nonconstant);
2746 if (!true_predicate_p (&will_be_nonconstant)
2747 && !false_predicate_p (&will_be_nonconstant))
2748 /* This is slightly inprecise. We may want to represent each
2749 loop with independent predicate. */
2750 loop_iterations =
2751 and_predicates (info->conds, &loop_iterations,
2752 &will_be_nonconstant);
2754 exits.release ();
2756 for (i = 0; i < loop->num_nodes; i++)
2758 gimple_stmt_iterator gsi;
2759 bb_predicate = *(struct predicate *) body[i]->aux;
2760 for (gsi = gsi_start_bb (body[i]); !gsi_end_p (gsi);
2761 gsi_next (&gsi))
2763 gimple stmt = gsi_stmt (gsi);
2764 affine_iv iv;
2765 ssa_op_iter iter;
2766 tree use;
2768 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
2770 predicate will_be_nonconstant;
2772 if (!simple_iv
2773 (loop, loop_containing_stmt (stmt), use, &iv, true)
2774 || is_gimple_min_invariant (iv.step))
2775 continue;
2776 will_be_nonconstant
2777 = will_be_nonconstant_expr_predicate (parms_info, info,
2778 iv.step,
2779 nonconstant_names);
2780 if (!true_predicate_p (&will_be_nonconstant))
2781 will_be_nonconstant
2782 = and_predicates (info->conds,
2783 &bb_predicate,
2784 &will_be_nonconstant);
2785 if (!true_predicate_p (&will_be_nonconstant)
2786 && !false_predicate_p (&will_be_nonconstant))
2787 /* This is slightly inprecise. We may want to represent
2788 each loop with independent predicate. */
2789 loop_stride =
2790 and_predicates (info->conds, &loop_stride,
2791 &will_be_nonconstant);
2795 free (body);
2797 set_hint_predicate (&inline_summary (node)->loop_iterations,
2798 loop_iterations);
2799 set_hint_predicate (&inline_summary (node)->loop_stride, loop_stride);
2800 scev_finalize ();
2802 FOR_ALL_BB_FN (bb, my_function)
2804 edge e;
2805 edge_iterator ei;
2807 if (bb->aux)
2808 pool_free (edge_predicate_pool, bb->aux);
2809 bb->aux = NULL;
2810 FOR_EACH_EDGE (e, ei, bb->succs)
2812 if (e->aux)
2813 pool_free (edge_predicate_pool, e->aux);
2814 e->aux = NULL;
2817 inline_summary (node)->self_time = time;
2818 inline_summary (node)->self_size = size;
2819 nonconstant_names.release ();
2820 if (opt_for_fn (node->decl, optimize) && !early)
2822 loop_optimizer_finalize ();
2823 free_dominance_info (CDI_DOMINATORS);
2825 if (dump_file)
2827 fprintf (dump_file, "\n");
2828 dump_inline_summary (dump_file, node);
2833 /* Compute parameters of functions used by inliner.
2834 EARLY is true when we compute parameters for the early inliner */
2836 void
2837 compute_inline_parameters (struct cgraph_node *node, bool early)
2839 HOST_WIDE_INT self_stack_size;
2840 struct cgraph_edge *e;
2841 struct inline_summary *info;
2843 gcc_assert (!node->global.inlined_to);
2845 inline_summary_alloc ();
2847 info = inline_summary (node);
2848 reset_inline_summary (node);
2850 /* FIXME: Thunks are inlinable, but tree-inline don't know how to do that.
2851 Once this happen, we will need to more curefully predict call
2852 statement size. */
2853 if (node->thunk.thunk_p)
2855 struct inline_edge_summary *es = inline_edge_summary (node->callees);
2856 struct predicate t = true_predicate ();
2858 info->inlinable = 0;
2859 node->callees->call_stmt_cannot_inline_p = true;
2860 node->local.can_change_signature = false;
2861 es->call_stmt_time = 1;
2862 es->call_stmt_size = 1;
2863 account_size_time (info, 0, 0, &t);
2864 return;
2867 /* Even is_gimple_min_invariant rely on current_function_decl. */
2868 push_cfun (DECL_STRUCT_FUNCTION (node->decl));
2870 /* Estimate the stack size for the function if we're optimizing. */
2871 self_stack_size = optimize ? estimated_stack_frame_size (node) : 0;
2872 info->estimated_self_stack_size = self_stack_size;
2873 info->estimated_stack_size = self_stack_size;
2874 info->stack_frame_offset = 0;
2876 /* Can this function be inlined at all? */
2877 if (!opt_for_fn (node->decl, optimize)
2878 && !lookup_attribute ("always_inline",
2879 DECL_ATTRIBUTES (node->decl)))
2880 info->inlinable = false;
2881 else
2882 info->inlinable = tree_inlinable_function_p (node->decl);
2884 /* Type attributes can use parameter indices to describe them. */
2885 if (TYPE_ATTRIBUTES (TREE_TYPE (node->decl)))
2886 node->local.can_change_signature = false;
2887 else
2889 /* Otherwise, inlinable functions always can change signature. */
2890 if (info->inlinable)
2891 node->local.can_change_signature = true;
2892 else
2894 /* Functions calling builtin_apply can not change signature. */
2895 for (e = node->callees; e; e = e->next_callee)
2897 tree cdecl = e->callee->decl;
2898 if (DECL_BUILT_IN (cdecl)
2899 && DECL_BUILT_IN_CLASS (cdecl) == BUILT_IN_NORMAL
2900 && (DECL_FUNCTION_CODE (cdecl) == BUILT_IN_APPLY_ARGS
2901 || DECL_FUNCTION_CODE (cdecl) == BUILT_IN_VA_START))
2902 break;
2904 node->local.can_change_signature = !e;
2907 estimate_function_body_sizes (node, early);
2909 for (e = node->callees; e; e = e->next_callee)
2910 if (e->callee->comdat_local_p ())
2911 break;
2912 node->calls_comdat_local = (e != NULL);
2914 /* Inlining characteristics are maintained by the cgraph_mark_inline. */
2915 info->time = info->self_time;
2916 info->size = info->self_size;
2917 info->stack_frame_offset = 0;
2918 info->estimated_stack_size = info->estimated_self_stack_size;
2919 #ifdef ENABLE_CHECKING
2920 inline_update_overall_summary (node);
2921 gcc_assert (info->time == info->self_time && info->size == info->self_size);
2922 #endif
2924 pop_cfun ();
2928 /* Compute parameters of functions used by inliner using
2929 current_function_decl. */
2931 static unsigned int
2932 compute_inline_parameters_for_current (void)
2934 compute_inline_parameters (cgraph_node::get (current_function_decl), true);
2935 return 0;
2938 namespace {
2940 const pass_data pass_data_inline_parameters =
2942 GIMPLE_PASS, /* type */
2943 "inline_param", /* name */
2944 OPTGROUP_INLINE, /* optinfo_flags */
2945 TV_INLINE_PARAMETERS, /* tv_id */
2946 0, /* properties_required */
2947 0, /* properties_provided */
2948 0, /* properties_destroyed */
2949 0, /* todo_flags_start */
2950 0, /* todo_flags_finish */
2953 class pass_inline_parameters : public gimple_opt_pass
2955 public:
2956 pass_inline_parameters (gcc::context *ctxt)
2957 : gimple_opt_pass (pass_data_inline_parameters, ctxt)
2960 /* opt_pass methods: */
2961 opt_pass * clone () { return new pass_inline_parameters (m_ctxt); }
2962 virtual unsigned int execute (function *)
2964 return compute_inline_parameters_for_current ();
2967 }; // class pass_inline_parameters
2969 } // anon namespace
2971 gimple_opt_pass *
2972 make_pass_inline_parameters (gcc::context *ctxt)
2974 return new pass_inline_parameters (ctxt);
2978 /* Estimate benefit devirtualizing indirect edge IE, provided KNOWN_VALS,
2979 KNOWN_CONTEXTS and KNOWN_AGGS. */
2981 static bool
2982 estimate_edge_devirt_benefit (struct cgraph_edge *ie,
2983 int *size, int *time,
2984 vec<tree> known_vals,
2985 vec<ipa_polymorphic_call_context> known_contexts,
2986 vec<ipa_agg_jump_function_p> known_aggs)
2988 tree target;
2989 struct cgraph_node *callee;
2990 struct inline_summary *isummary;
2991 enum availability avail;
2992 bool speculative;
2994 if (!known_vals.exists () && !known_contexts.exists ())
2995 return false;
2996 if (!opt_for_fn (ie->caller->decl, flag_indirect_inlining))
2997 return false;
2999 target = ipa_get_indirect_edge_target (ie, known_vals, known_contexts,
3000 known_aggs, &speculative);
3001 if (!target || speculative)
3002 return false;
3004 /* Account for difference in cost between indirect and direct calls. */
3005 *size -= (eni_size_weights.indirect_call_cost - eni_size_weights.call_cost);
3006 *time -= (eni_time_weights.indirect_call_cost - eni_time_weights.call_cost);
3007 gcc_checking_assert (*time >= 0);
3008 gcc_checking_assert (*size >= 0);
3010 callee = cgraph_node::get (target);
3011 if (!callee || !callee->definition)
3012 return false;
3013 callee = callee->function_symbol (&avail);
3014 if (avail < AVAIL_AVAILABLE)
3015 return false;
3016 isummary = inline_summary (callee);
3017 return isummary->inlinable;
3020 /* Increase SIZE, MIN_SIZE (if non-NULL) and TIME for size and time needed to
3021 handle edge E with probability PROB.
3022 Set HINTS if edge may be devirtualized.
3023 KNOWN_VALS, KNOWN_AGGS and KNOWN_CONTEXTS describe context of the call
3024 site. */
3026 static inline void
3027 estimate_edge_size_and_time (struct cgraph_edge *e, int *size, int *min_size,
3028 int *time,
3029 int prob,
3030 vec<tree> known_vals,
3031 vec<ipa_polymorphic_call_context> known_contexts,
3032 vec<ipa_agg_jump_function_p> known_aggs,
3033 inline_hints *hints)
3035 struct inline_edge_summary *es = inline_edge_summary (e);
3036 int call_size = es->call_stmt_size;
3037 int call_time = es->call_stmt_time;
3038 int cur_size;
3039 if (!e->callee
3040 && estimate_edge_devirt_benefit (e, &call_size, &call_time,
3041 known_vals, known_contexts, known_aggs)
3042 && hints && e->maybe_hot_p ())
3043 *hints |= INLINE_HINT_indirect_call;
3044 cur_size = call_size * INLINE_SIZE_SCALE;
3045 *size += cur_size;
3046 if (min_size)
3047 *min_size += cur_size;
3048 *time += apply_probability ((gcov_type) call_time, prob)
3049 * e->frequency * (INLINE_TIME_SCALE / CGRAPH_FREQ_BASE);
3050 if (*time > MAX_TIME * INLINE_TIME_SCALE)
3051 *time = MAX_TIME * INLINE_TIME_SCALE;
3056 /* Increase SIZE, MIN_SIZE and TIME for size and time needed to handle all
3057 calls in NODE. POSSIBLE_TRUTHS, KNOWN_VALS, KNOWN_AGGS and KNOWN_CONTEXTS
3058 describe context of the call site. */
3060 static void
3061 estimate_calls_size_and_time (struct cgraph_node *node, int *size,
3062 int *min_size, int *time,
3063 inline_hints *hints,
3064 clause_t possible_truths,
3065 vec<tree> known_vals,
3066 vec<ipa_polymorphic_call_context> known_contexts,
3067 vec<ipa_agg_jump_function_p> known_aggs)
3069 struct cgraph_edge *e;
3070 for (e = node->callees; e; e = e->next_callee)
3072 struct inline_edge_summary *es = inline_edge_summary (e);
3073 if (!es->predicate
3074 || evaluate_predicate (es->predicate, possible_truths))
3076 if (e->inline_failed)
3078 /* Predicates of calls shall not use NOT_CHANGED codes,
3079 sowe do not need to compute probabilities. */
3080 estimate_edge_size_and_time (e, size,
3081 es->predicate ? NULL : min_size,
3082 time, REG_BR_PROB_BASE,
3083 known_vals, known_contexts,
3084 known_aggs, hints);
3086 else
3087 estimate_calls_size_and_time (e->callee, size, min_size, time,
3088 hints,
3089 possible_truths,
3090 known_vals, known_contexts,
3091 known_aggs);
3094 for (e = node->indirect_calls; e; e = e->next_callee)
3096 struct inline_edge_summary *es = inline_edge_summary (e);
3097 if (!es->predicate
3098 || evaluate_predicate (es->predicate, possible_truths))
3099 estimate_edge_size_and_time (e, size,
3100 es->predicate ? NULL : min_size,
3101 time, REG_BR_PROB_BASE,
3102 known_vals, known_contexts, known_aggs,
3103 hints);
3108 /* Estimate size and time needed to execute NODE assuming
3109 POSSIBLE_TRUTHS clause, and KNOWN_VALS, KNOWN_AGGS and KNOWN_CONTEXTS
3110 information about NODE's arguments. If non-NULL use also probability
3111 information present in INLINE_PARAM_SUMMARY vector.
3112 Additionally detemine hints determined by the context. Finally compute
3113 minimal size needed for the call that is independent on the call context and
3114 can be used for fast estimates. Return the values in RET_SIZE,
3115 RET_MIN_SIZE, RET_TIME and RET_HINTS. */
3117 static void
3118 estimate_node_size_and_time (struct cgraph_node *node,
3119 clause_t possible_truths,
3120 vec<tree> known_vals,
3121 vec<ipa_polymorphic_call_context> known_contexts,
3122 vec<ipa_agg_jump_function_p> known_aggs,
3123 int *ret_size, int *ret_min_size, int *ret_time,
3124 inline_hints *ret_hints,
3125 vec<inline_param_summary>
3126 inline_param_summary)
3128 struct inline_summary *info = inline_summary (node);
3129 size_time_entry *e;
3130 int size = 0;
3131 int time = 0;
3132 int min_size = 0;
3133 inline_hints hints = 0;
3134 int i;
3136 if (dump_file && (dump_flags & TDF_DETAILS))
3138 bool found = false;
3139 fprintf (dump_file, " Estimating body: %s/%i\n"
3140 " Known to be false: ", node->name (),
3141 node->order);
3143 for (i = predicate_not_inlined_condition;
3144 i < (predicate_first_dynamic_condition
3145 + (int) vec_safe_length (info->conds)); i++)
3146 if (!(possible_truths & (1 << i)))
3148 if (found)
3149 fprintf (dump_file, ", ");
3150 found = true;
3151 dump_condition (dump_file, info->conds, i);
3155 for (i = 0; vec_safe_iterate (info->entry, i, &e); i++)
3156 if (evaluate_predicate (&e->predicate, possible_truths))
3158 size += e->size;
3159 gcc_checking_assert (e->time >= 0);
3160 gcc_checking_assert (time >= 0);
3161 if (!inline_param_summary.exists ())
3162 time += e->time;
3163 else
3165 int prob = predicate_probability (info->conds,
3166 &e->predicate,
3167 possible_truths,
3168 inline_param_summary);
3169 gcc_checking_assert (prob >= 0);
3170 gcc_checking_assert (prob <= REG_BR_PROB_BASE);
3171 time += apply_probability ((gcov_type) e->time, prob);
3173 if (time > MAX_TIME * INLINE_TIME_SCALE)
3174 time = MAX_TIME * INLINE_TIME_SCALE;
3175 gcc_checking_assert (time >= 0);
3178 gcc_checking_assert (true_predicate_p (&(*info->entry)[0].predicate));
3179 min_size = (*info->entry)[0].size;
3180 gcc_checking_assert (size >= 0);
3181 gcc_checking_assert (time >= 0);
3183 if (info->loop_iterations
3184 && !evaluate_predicate (info->loop_iterations, possible_truths))
3185 hints |= INLINE_HINT_loop_iterations;
3186 if (info->loop_stride
3187 && !evaluate_predicate (info->loop_stride, possible_truths))
3188 hints |= INLINE_HINT_loop_stride;
3189 if (info->array_index
3190 && !evaluate_predicate (info->array_index, possible_truths))
3191 hints |= INLINE_HINT_array_index;
3192 if (info->scc_no)
3193 hints |= INLINE_HINT_in_scc;
3194 if (DECL_DECLARED_INLINE_P (node->decl))
3195 hints |= INLINE_HINT_declared_inline;
3197 estimate_calls_size_and_time (node, &size, &min_size, &time, &hints, possible_truths,
3198 known_vals, known_contexts, known_aggs);
3199 gcc_checking_assert (size >= 0);
3200 gcc_checking_assert (time >= 0);
3201 time = RDIV (time, INLINE_TIME_SCALE);
3202 size = RDIV (size, INLINE_SIZE_SCALE);
3203 min_size = RDIV (min_size, INLINE_SIZE_SCALE);
3205 if (dump_file && (dump_flags & TDF_DETAILS))
3206 fprintf (dump_file, "\n size:%i time:%i\n", (int) size, (int) time);
3207 if (ret_time)
3208 *ret_time = time;
3209 if (ret_size)
3210 *ret_size = size;
3211 if (ret_min_size)
3212 *ret_min_size = min_size;
3213 if (ret_hints)
3214 *ret_hints = hints;
3215 return;
3219 /* Estimate size and time needed to execute callee of EDGE assuming that
3220 parameters known to be constant at caller of EDGE are propagated.
3221 KNOWN_VALS and KNOWN_CONTEXTS are vectors of assumed known constant values
3222 and types for parameters. */
3224 void
3225 estimate_ipcp_clone_size_and_time (struct cgraph_node *node,
3226 vec<tree> known_vals,
3227 vec<ipa_polymorphic_call_context>
3228 known_contexts,
3229 vec<ipa_agg_jump_function_p> known_aggs,
3230 int *ret_size, int *ret_time,
3231 inline_hints *hints)
3233 clause_t clause;
3235 clause = evaluate_conditions_for_known_args (node, false, known_vals,
3236 known_aggs);
3237 estimate_node_size_and_time (node, clause, known_vals, known_contexts,
3238 known_aggs, ret_size, NULL, ret_time, hints, vNULL);
3241 /* Translate all conditions from callee representation into caller
3242 representation and symbolically evaluate predicate P into new predicate.
3244 INFO is inline_summary of function we are adding predicate into, CALLEE_INFO
3245 is summary of function predicate P is from. OPERAND_MAP is array giving
3246 callee formal IDs the caller formal IDs. POSSSIBLE_TRUTHS is clausule of all
3247 callee conditions that may be true in caller context. TOPLEV_PREDICATE is
3248 predicate under which callee is executed. OFFSET_MAP is an array of of
3249 offsets that need to be added to conditions, negative offset means that
3250 conditions relying on values passed by reference have to be discarded
3251 because they might not be preserved (and should be considered offset zero
3252 for other purposes). */
3254 static struct predicate
3255 remap_predicate (struct inline_summary *info,
3256 struct inline_summary *callee_info,
3257 struct predicate *p,
3258 vec<int> operand_map,
3259 vec<int> offset_map,
3260 clause_t possible_truths, struct predicate *toplev_predicate)
3262 int i;
3263 struct predicate out = true_predicate ();
3265 /* True predicate is easy. */
3266 if (true_predicate_p (p))
3267 return *toplev_predicate;
3268 for (i = 0; p->clause[i]; i++)
3270 clause_t clause = p->clause[i];
3271 int cond;
3272 struct predicate clause_predicate = false_predicate ();
3274 gcc_assert (i < MAX_CLAUSES);
3276 for (cond = 0; cond < NUM_CONDITIONS; cond++)
3277 /* Do we have condition we can't disprove? */
3278 if (clause & possible_truths & (1 << cond))
3280 struct predicate cond_predicate;
3281 /* Work out if the condition can translate to predicate in the
3282 inlined function. */
3283 if (cond >= predicate_first_dynamic_condition)
3285 struct condition *c;
3287 c = &(*callee_info->conds)[cond
3289 predicate_first_dynamic_condition];
3290 /* See if we can remap condition operand to caller's operand.
3291 Otherwise give up. */
3292 if (!operand_map.exists ()
3293 || (int) operand_map.length () <= c->operand_num
3294 || operand_map[c->operand_num] == -1
3295 /* TODO: For non-aggregate conditions, adding an offset is
3296 basically an arithmetic jump function processing which
3297 we should support in future. */
3298 || ((!c->agg_contents || !c->by_ref)
3299 && offset_map[c->operand_num] > 0)
3300 || (c->agg_contents && c->by_ref
3301 && offset_map[c->operand_num] < 0))
3302 cond_predicate = true_predicate ();
3303 else
3305 struct agg_position_info ap;
3306 HOST_WIDE_INT offset_delta = offset_map[c->operand_num];
3307 if (offset_delta < 0)
3309 gcc_checking_assert (!c->agg_contents || !c->by_ref);
3310 offset_delta = 0;
3312 gcc_assert (!c->agg_contents
3313 || c->by_ref || offset_delta == 0);
3314 ap.offset = c->offset + offset_delta;
3315 ap.agg_contents = c->agg_contents;
3316 ap.by_ref = c->by_ref;
3317 cond_predicate = add_condition (info,
3318 operand_map[c->operand_num],
3319 &ap, c->code, c->val);
3322 /* Fixed conditions remains same, construct single
3323 condition predicate. */
3324 else
3326 cond_predicate.clause[0] = 1 << cond;
3327 cond_predicate.clause[1] = 0;
3329 clause_predicate = or_predicates (info->conds, &clause_predicate,
3330 &cond_predicate);
3332 out = and_predicates (info->conds, &out, &clause_predicate);
3334 return and_predicates (info->conds, &out, toplev_predicate);
3338 /* Update summary information of inline clones after inlining.
3339 Compute peak stack usage. */
3341 static void
3342 inline_update_callee_summaries (struct cgraph_node *node, int depth)
3344 struct cgraph_edge *e;
3345 struct inline_summary *callee_info = inline_summary (node);
3346 struct inline_summary *caller_info = inline_summary (node->callers->caller);
3347 HOST_WIDE_INT peak;
3349 callee_info->stack_frame_offset
3350 = caller_info->stack_frame_offset
3351 + caller_info->estimated_self_stack_size;
3352 peak = callee_info->stack_frame_offset
3353 + callee_info->estimated_self_stack_size;
3354 if (inline_summary (node->global.inlined_to)->estimated_stack_size < peak)
3355 inline_summary (node->global.inlined_to)->estimated_stack_size = peak;
3356 ipa_propagate_frequency (node);
3357 for (e = node->callees; e; e = e->next_callee)
3359 if (!e->inline_failed)
3360 inline_update_callee_summaries (e->callee, depth);
3361 inline_edge_summary (e)->loop_depth += depth;
3363 for (e = node->indirect_calls; e; e = e->next_callee)
3364 inline_edge_summary (e)->loop_depth += depth;
3367 /* Update change_prob of EDGE after INLINED_EDGE has been inlined.
3368 When functoin A is inlined in B and A calls C with parameter that
3369 changes with probability PROB1 and C is known to be passthroug
3370 of argument if B that change with probability PROB2, the probability
3371 of change is now PROB1*PROB2. */
3373 static void
3374 remap_edge_change_prob (struct cgraph_edge *inlined_edge,
3375 struct cgraph_edge *edge)
3377 if (ipa_node_params_vector.exists ())
3379 int i;
3380 struct ipa_edge_args *args = IPA_EDGE_REF (edge);
3381 struct inline_edge_summary *es = inline_edge_summary (edge);
3382 struct inline_edge_summary *inlined_es
3383 = inline_edge_summary (inlined_edge);
3385 for (i = 0; i < ipa_get_cs_argument_count (args); i++)
3387 struct ipa_jump_func *jfunc = ipa_get_ith_jump_func (args, i);
3388 if (jfunc->type == IPA_JF_PASS_THROUGH
3389 && (ipa_get_jf_pass_through_formal_id (jfunc)
3390 < (int) inlined_es->param.length ()))
3392 int jf_formal_id = ipa_get_jf_pass_through_formal_id (jfunc);
3393 int prob1 = es->param[i].change_prob;
3394 int prob2 = inlined_es->param[jf_formal_id].change_prob;
3395 int prob = combine_probabilities (prob1, prob2);
3397 if (prob1 && prob2 && !prob)
3398 prob = 1;
3400 es->param[i].change_prob = prob;
3406 /* Update edge summaries of NODE after INLINED_EDGE has been inlined.
3408 Remap predicates of callees of NODE. Rest of arguments match
3409 remap_predicate.
3411 Also update change probabilities. */
3413 static void
3414 remap_edge_summaries (struct cgraph_edge *inlined_edge,
3415 struct cgraph_node *node,
3416 struct inline_summary *info,
3417 struct inline_summary *callee_info,
3418 vec<int> operand_map,
3419 vec<int> offset_map,
3420 clause_t possible_truths,
3421 struct predicate *toplev_predicate)
3423 struct cgraph_edge *e;
3424 for (e = node->callees; e; e = e->next_callee)
3426 struct inline_edge_summary *es = inline_edge_summary (e);
3427 struct predicate p;
3429 if (e->inline_failed)
3431 remap_edge_change_prob (inlined_edge, e);
3433 if (es->predicate)
3435 p = remap_predicate (info, callee_info,
3436 es->predicate, operand_map, offset_map,
3437 possible_truths, toplev_predicate);
3438 edge_set_predicate (e, &p);
3439 /* TODO: We should remove the edge for code that will be
3440 optimized out, but we need to keep verifiers and tree-inline
3441 happy. Make it cold for now. */
3442 if (false_predicate_p (&p))
3444 e->count = 0;
3445 e->frequency = 0;
3448 else
3449 edge_set_predicate (e, toplev_predicate);
3451 else
3452 remap_edge_summaries (inlined_edge, e->callee, info, callee_info,
3453 operand_map, offset_map, possible_truths,
3454 toplev_predicate);
3456 for (e = node->indirect_calls; e; e = e->next_callee)
3458 struct inline_edge_summary *es = inline_edge_summary (e);
3459 struct predicate p;
3461 remap_edge_change_prob (inlined_edge, e);
3462 if (es->predicate)
3464 p = remap_predicate (info, callee_info,
3465 es->predicate, operand_map, offset_map,
3466 possible_truths, toplev_predicate);
3467 edge_set_predicate (e, &p);
3468 /* TODO: We should remove the edge for code that will be optimized
3469 out, but we need to keep verifiers and tree-inline happy.
3470 Make it cold for now. */
3471 if (false_predicate_p (&p))
3473 e->count = 0;
3474 e->frequency = 0;
3477 else
3478 edge_set_predicate (e, toplev_predicate);
3482 /* Same as remap_predicate, but set result into hint *HINT. */
3484 static void
3485 remap_hint_predicate (struct inline_summary *info,
3486 struct inline_summary *callee_info,
3487 struct predicate **hint,
3488 vec<int> operand_map,
3489 vec<int> offset_map,
3490 clause_t possible_truths,
3491 struct predicate *toplev_predicate)
3493 predicate p;
3495 if (!*hint)
3496 return;
3497 p = remap_predicate (info, callee_info,
3498 *hint,
3499 operand_map, offset_map,
3500 possible_truths, toplev_predicate);
3501 if (!false_predicate_p (&p) && !true_predicate_p (&p))
3503 if (!*hint)
3504 set_hint_predicate (hint, p);
3505 else
3506 **hint = and_predicates (info->conds, *hint, &p);
3510 /* We inlined EDGE. Update summary of the function we inlined into. */
3512 void
3513 inline_merge_summary (struct cgraph_edge *edge)
3515 struct inline_summary *callee_info = inline_summary (edge->callee);
3516 struct cgraph_node *to = (edge->caller->global.inlined_to
3517 ? edge->caller->global.inlined_to : edge->caller);
3518 struct inline_summary *info = inline_summary (to);
3519 clause_t clause = 0; /* not_inline is known to be false. */
3520 size_time_entry *e;
3521 vec<int> operand_map = vNULL;
3522 vec<int> offset_map = vNULL;
3523 int i;
3524 struct predicate toplev_predicate;
3525 struct predicate true_p = true_predicate ();
3526 struct inline_edge_summary *es = inline_edge_summary (edge);
3528 if (es->predicate)
3529 toplev_predicate = *es->predicate;
3530 else
3531 toplev_predicate = true_predicate ();
3533 if (ipa_node_params_vector.exists () && callee_info->conds)
3535 struct ipa_edge_args *args = IPA_EDGE_REF (edge);
3536 int count = ipa_get_cs_argument_count (args);
3537 int i;
3539 evaluate_properties_for_edge (edge, true, &clause, NULL, NULL, NULL);
3540 if (count)
3542 operand_map.safe_grow_cleared (count);
3543 offset_map.safe_grow_cleared (count);
3545 for (i = 0; i < count; i++)
3547 struct ipa_jump_func *jfunc = ipa_get_ith_jump_func (args, i);
3548 int map = -1;
3550 /* TODO: handle non-NOPs when merging. */
3551 if (jfunc->type == IPA_JF_PASS_THROUGH)
3553 if (ipa_get_jf_pass_through_operation (jfunc) == NOP_EXPR)
3554 map = ipa_get_jf_pass_through_formal_id (jfunc);
3555 if (!ipa_get_jf_pass_through_agg_preserved (jfunc))
3556 offset_map[i] = -1;
3558 else if (jfunc->type == IPA_JF_ANCESTOR)
3560 HOST_WIDE_INT offset = ipa_get_jf_ancestor_offset (jfunc);
3561 if (offset >= 0 && offset < INT_MAX)
3563 map = ipa_get_jf_ancestor_formal_id (jfunc);
3564 if (!ipa_get_jf_ancestor_agg_preserved (jfunc))
3565 offset = -1;
3566 offset_map[i] = offset;
3569 operand_map[i] = map;
3570 gcc_assert (map < ipa_get_param_count (IPA_NODE_REF (to)));
3573 for (i = 0; vec_safe_iterate (callee_info->entry, i, &e); i++)
3575 struct predicate p = remap_predicate (info, callee_info,
3576 &e->predicate, operand_map,
3577 offset_map, clause,
3578 &toplev_predicate);
3579 if (!false_predicate_p (&p))
3581 gcov_type add_time = ((gcov_type) e->time * edge->frequency
3582 + CGRAPH_FREQ_BASE / 2) / CGRAPH_FREQ_BASE;
3583 int prob = predicate_probability (callee_info->conds,
3584 &e->predicate,
3585 clause, es->param);
3586 add_time = apply_probability ((gcov_type) add_time, prob);
3587 if (add_time > MAX_TIME * INLINE_TIME_SCALE)
3588 add_time = MAX_TIME * INLINE_TIME_SCALE;
3589 if (prob != REG_BR_PROB_BASE
3590 && dump_file && (dump_flags & TDF_DETAILS))
3592 fprintf (dump_file, "\t\tScaling time by probability:%f\n",
3593 (double) prob / REG_BR_PROB_BASE);
3595 account_size_time (info, e->size, add_time, &p);
3598 remap_edge_summaries (edge, edge->callee, info, callee_info, operand_map,
3599 offset_map, clause, &toplev_predicate);
3600 remap_hint_predicate (info, callee_info,
3601 &callee_info->loop_iterations,
3602 operand_map, offset_map, clause, &toplev_predicate);
3603 remap_hint_predicate (info, callee_info,
3604 &callee_info->loop_stride,
3605 operand_map, offset_map, clause, &toplev_predicate);
3606 remap_hint_predicate (info, callee_info,
3607 &callee_info->array_index,
3608 operand_map, offset_map, clause, &toplev_predicate);
3610 inline_update_callee_summaries (edge->callee,
3611 inline_edge_summary (edge)->loop_depth);
3613 /* We do not maintain predicates of inlined edges, free it. */
3614 edge_set_predicate (edge, &true_p);
3615 /* Similarly remove param summaries. */
3616 es->param.release ();
3617 operand_map.release ();
3618 offset_map.release ();
3621 /* For performance reasons inline_merge_summary is not updating overall size
3622 and time. Recompute it. */
3624 void
3625 inline_update_overall_summary (struct cgraph_node *node)
3627 struct inline_summary *info = inline_summary (node);
3628 size_time_entry *e;
3629 int i;
3631 info->size = 0;
3632 info->time = 0;
3633 for (i = 0; vec_safe_iterate (info->entry, i, &e); i++)
3635 info->size += e->size, info->time += e->time;
3636 if (info->time > MAX_TIME * INLINE_TIME_SCALE)
3637 info->time = MAX_TIME * INLINE_TIME_SCALE;
3639 estimate_calls_size_and_time (node, &info->size, &info->min_size,
3640 &info->time, NULL,
3641 ~(clause_t) (1 << predicate_false_condition),
3642 vNULL, vNULL, vNULL);
3643 info->time = (info->time + INLINE_TIME_SCALE / 2) / INLINE_TIME_SCALE;
3644 info->size = (info->size + INLINE_SIZE_SCALE / 2) / INLINE_SIZE_SCALE;
3647 /* Return hints derrived from EDGE. */
3649 simple_edge_hints (struct cgraph_edge *edge)
3651 int hints = 0;
3652 struct cgraph_node *to = (edge->caller->global.inlined_to
3653 ? edge->caller->global.inlined_to : edge->caller);
3654 if (inline_summary (to)->scc_no
3655 && inline_summary (to)->scc_no == inline_summary (edge->callee)->scc_no
3656 && !edge->recursive_p ())
3657 hints |= INLINE_HINT_same_scc;
3659 if (to->lto_file_data && edge->callee->lto_file_data
3660 && to->lto_file_data != edge->callee->lto_file_data)
3661 hints |= INLINE_HINT_cross_module;
3663 return hints;
3666 /* Estimate the time cost for the caller when inlining EDGE.
3667 Only to be called via estimate_edge_time, that handles the
3668 caching mechanism.
3670 When caching, also update the cache entry. Compute both time and
3671 size, since we always need both metrics eventually. */
3674 do_estimate_edge_time (struct cgraph_edge *edge)
3676 int time;
3677 int size;
3678 inline_hints hints;
3679 struct cgraph_node *callee;
3680 clause_t clause;
3681 vec<tree> known_vals;
3682 vec<ipa_polymorphic_call_context> known_contexts;
3683 vec<ipa_agg_jump_function_p> known_aggs;
3684 struct inline_edge_summary *es = inline_edge_summary (edge);
3685 int min_size;
3687 callee = edge->callee->ultimate_alias_target ();
3689 gcc_checking_assert (edge->inline_failed);
3690 evaluate_properties_for_edge (edge, true,
3691 &clause, &known_vals, &known_contexts,
3692 &known_aggs);
3693 estimate_node_size_and_time (callee, clause, known_vals, known_contexts,
3694 known_aggs, &size, &min_size, &time, &hints, es->param);
3696 /* When we have profile feedback, we can quite safely identify hot
3697 edges and for those we disable size limits. Don't do that when
3698 probability that caller will call the callee is low however, since it
3699 may hurt optimization of the caller's hot path. */
3700 if (edge->count && edge->maybe_hot_p ()
3701 && (edge->count * 2
3702 > (edge->caller->global.inlined_to
3703 ? edge->caller->global.inlined_to->count : edge->caller->count)))
3704 hints |= INLINE_HINT_known_hot;
3706 known_vals.release ();
3707 known_contexts.release ();
3708 known_aggs.release ();
3709 gcc_checking_assert (size >= 0);
3710 gcc_checking_assert (time >= 0);
3712 /* When caching, update the cache entry. */
3713 if (edge_growth_cache.exists ())
3715 inline_summary (edge->callee)->min_size = min_size;
3716 if ((int) edge_growth_cache.length () <= edge->uid)
3717 edge_growth_cache.safe_grow_cleared (symtab->edges_max_uid);
3718 edge_growth_cache[edge->uid].time = time + (time >= 0);
3720 edge_growth_cache[edge->uid].size = size + (size >= 0);
3721 hints |= simple_edge_hints (edge);
3722 edge_growth_cache[edge->uid].hints = hints + 1;
3724 return time;
3728 /* Return estimated callee growth after inlining EDGE.
3729 Only to be called via estimate_edge_size. */
3732 do_estimate_edge_size (struct cgraph_edge *edge)
3734 int size;
3735 struct cgraph_node *callee;
3736 clause_t clause;
3737 vec<tree> known_vals;
3738 vec<ipa_polymorphic_call_context> known_contexts;
3739 vec<ipa_agg_jump_function_p> known_aggs;
3741 /* When we do caching, use do_estimate_edge_time to populate the entry. */
3743 if (edge_growth_cache.exists ())
3745 do_estimate_edge_time (edge);
3746 size = edge_growth_cache[edge->uid].size;
3747 gcc_checking_assert (size);
3748 return size - (size > 0);
3751 callee = edge->callee->ultimate_alias_target ();
3753 /* Early inliner runs without caching, go ahead and do the dirty work. */
3754 gcc_checking_assert (edge->inline_failed);
3755 evaluate_properties_for_edge (edge, true,
3756 &clause, &known_vals, &known_contexts,
3757 &known_aggs);
3758 estimate_node_size_and_time (callee, clause, known_vals, known_contexts,
3759 known_aggs, &size, NULL, NULL, NULL, vNULL);
3760 known_vals.release ();
3761 known_contexts.release ();
3762 known_aggs.release ();
3763 return size;
3767 /* Estimate the growth of the caller when inlining EDGE.
3768 Only to be called via estimate_edge_size. */
3770 inline_hints
3771 do_estimate_edge_hints (struct cgraph_edge *edge)
3773 inline_hints hints;
3774 struct cgraph_node *callee;
3775 clause_t clause;
3776 vec<tree> known_vals;
3777 vec<ipa_polymorphic_call_context> known_contexts;
3778 vec<ipa_agg_jump_function_p> known_aggs;
3780 /* When we do caching, use do_estimate_edge_time to populate the entry. */
3782 if (edge_growth_cache.exists ())
3784 do_estimate_edge_time (edge);
3785 hints = edge_growth_cache[edge->uid].hints;
3786 gcc_checking_assert (hints);
3787 return hints - 1;
3790 callee = edge->callee->ultimate_alias_target ();
3792 /* Early inliner runs without caching, go ahead and do the dirty work. */
3793 gcc_checking_assert (edge->inline_failed);
3794 evaluate_properties_for_edge (edge, true,
3795 &clause, &known_vals, &known_contexts,
3796 &known_aggs);
3797 estimate_node_size_and_time (callee, clause, known_vals, known_contexts,
3798 known_aggs, NULL, NULL, NULL, &hints, vNULL);
3799 known_vals.release ();
3800 known_contexts.release ();
3801 known_aggs.release ();
3802 hints |= simple_edge_hints (edge);
3803 return hints;
3807 /* Estimate self time of the function NODE after inlining EDGE. */
3810 estimate_time_after_inlining (struct cgraph_node *node,
3811 struct cgraph_edge *edge)
3813 struct inline_edge_summary *es = inline_edge_summary (edge);
3814 if (!es->predicate || !false_predicate_p (es->predicate))
3816 gcov_type time =
3817 inline_summary (node)->time + estimate_edge_time (edge);
3818 if (time < 0)
3819 time = 0;
3820 if (time > MAX_TIME)
3821 time = MAX_TIME;
3822 return time;
3824 return inline_summary (node)->time;
3828 /* Estimate the size of NODE after inlining EDGE which should be an
3829 edge to either NODE or a call inlined into NODE. */
3832 estimate_size_after_inlining (struct cgraph_node *node,
3833 struct cgraph_edge *edge)
3835 struct inline_edge_summary *es = inline_edge_summary (edge);
3836 if (!es->predicate || !false_predicate_p (es->predicate))
3838 int size = inline_summary (node)->size + estimate_edge_growth (edge);
3839 gcc_assert (size >= 0);
3840 return size;
3842 return inline_summary (node)->size;
3846 struct growth_data
3848 struct cgraph_node *node;
3849 bool self_recursive;
3850 int growth;
3854 /* Worker for do_estimate_growth. Collect growth for all callers. */
3856 static bool
3857 do_estimate_growth_1 (struct cgraph_node *node, void *data)
3859 struct cgraph_edge *e;
3860 struct growth_data *d = (struct growth_data *) data;
3862 for (e = node->callers; e; e = e->next_caller)
3864 gcc_checking_assert (e->inline_failed);
3866 if (e->caller == d->node
3867 || (e->caller->global.inlined_to
3868 && e->caller->global.inlined_to == d->node))
3869 d->self_recursive = true;
3870 d->growth += estimate_edge_growth (e);
3872 return false;
3876 /* Estimate the growth caused by inlining NODE into all callees. */
3879 do_estimate_growth (struct cgraph_node *node)
3881 struct growth_data d = { node, 0, false };
3882 struct inline_summary *info = inline_summary (node);
3884 node->call_for_symbol_thunks_and_aliases (do_estimate_growth_1, &d, true);
3886 /* For self recursive functions the growth estimation really should be
3887 infinity. We don't want to return very large values because the growth
3888 plays various roles in badness computation fractions. Be sure to not
3889 return zero or negative growths. */
3890 if (d.self_recursive)
3891 d.growth = d.growth < info->size ? info->size : d.growth;
3892 else if (DECL_EXTERNAL (node->decl))
3894 else
3896 if (node->will_be_removed_from_program_if_no_direct_calls_p ())
3897 d.growth -= info->size;
3898 /* COMDAT functions are very often not shared across multiple units
3899 since they come from various template instantiations.
3900 Take this into account. */
3901 else if (DECL_COMDAT (node->decl)
3902 && node->can_remove_if_no_direct_calls_p ())
3903 d.growth -= (info->size
3904 * (100 - PARAM_VALUE (PARAM_COMDAT_SHARING_PROBABILITY))
3905 + 50) / 100;
3908 if (node_growth_cache.exists ())
3910 if ((int) node_growth_cache.length () <= node->uid)
3911 node_growth_cache.safe_grow_cleared (symtab->cgraph_max_uid);
3912 node_growth_cache[node->uid] = d.growth + (d.growth >= 0);
3914 return d.growth;
3918 /* Make cheap estimation if growth of NODE is likely positive knowing
3919 EDGE_GROWTH of one particular edge.
3920 We assume that most of other edges will have similar growth
3921 and skip computation if there are too many callers. */
3923 bool
3924 growth_likely_positive (struct cgraph_node *node, int edge_growth ATTRIBUTE_UNUSED)
3926 int max_callers;
3927 int ret;
3928 struct cgraph_edge *e;
3929 gcc_checking_assert (edge_growth > 0);
3931 /* Unlike for functions called once, we play unsafe with
3932 COMDATs. We can allow that since we know functions
3933 in consideration are small (and thus risk is small) and
3934 moreover grow estimates already accounts that COMDAT
3935 functions may or may not disappear when eliminated from
3936 current unit. With good probability making aggressive
3937 choice in all units is going to make overall program
3938 smaller.
3940 Consequently we ask cgraph_can_remove_if_no_direct_calls_p
3941 instead of
3942 cgraph_will_be_removed_from_program_if_no_direct_calls */
3943 if (DECL_EXTERNAL (node->decl)
3944 || !node->can_remove_if_no_direct_calls_p ())
3945 return true;
3947 /* If there is cached value, just go ahead. */
3948 if ((int)node_growth_cache.length () > node->uid
3949 && (ret = node_growth_cache[node->uid]))
3950 return ret > 0;
3951 if (!node->will_be_removed_from_program_if_no_direct_calls_p ()
3952 && (!DECL_COMDAT (node->decl)
3953 || !node->can_remove_if_no_direct_calls_p ()))
3954 return true;
3955 max_callers = inline_summary (node)->size * 4 / edge_growth + 2;
3957 for (e = node->callers; e; e = e->next_caller)
3959 max_callers--;
3960 if (!max_callers)
3961 return true;
3963 return estimate_growth (node) > 0;
3967 /* This function performs intraprocedural analysis in NODE that is required to
3968 inline indirect calls. */
3970 static void
3971 inline_indirect_intraprocedural_analysis (struct cgraph_node *node)
3973 ipa_analyze_node (node);
3974 if (dump_file && (dump_flags & TDF_DETAILS))
3976 ipa_print_node_params (dump_file, node);
3977 ipa_print_node_jump_functions (dump_file, node);
3982 /* Note function body size. */
3984 void
3985 inline_analyze_function (struct cgraph_node *node)
3987 push_cfun (DECL_STRUCT_FUNCTION (node->decl));
3989 if (dump_file)
3990 fprintf (dump_file, "\nAnalyzing function: %s/%u\n",
3991 node->name (), node->order);
3992 if (opt_for_fn (node->decl, optimize) && !node->thunk.thunk_p)
3993 inline_indirect_intraprocedural_analysis (node);
3994 compute_inline_parameters (node, false);
3995 if (!optimize)
3997 struct cgraph_edge *e;
3998 for (e = node->callees; e; e = e->next_callee)
4000 if (e->inline_failed == CIF_FUNCTION_NOT_CONSIDERED)
4001 e->inline_failed = CIF_FUNCTION_NOT_OPTIMIZED;
4002 e->call_stmt_cannot_inline_p = true;
4004 for (e = node->indirect_calls; e; e = e->next_callee)
4006 if (e->inline_failed == CIF_FUNCTION_NOT_CONSIDERED)
4007 e->inline_failed = CIF_FUNCTION_NOT_OPTIMIZED;
4008 e->call_stmt_cannot_inline_p = true;
4012 pop_cfun ();
4016 /* Called when new function is inserted to callgraph late. */
4018 static void
4019 add_new_function (struct cgraph_node *node, void *data ATTRIBUTE_UNUSED)
4021 inline_analyze_function (node);
4025 /* Note function body size. */
4027 void
4028 inline_generate_summary (void)
4030 struct cgraph_node *node;
4032 /* When not optimizing, do not bother to analyze. Inlining is still done
4033 because edge redirection needs to happen there. */
4034 if (!optimize && !flag_generate_lto && !flag_wpa)
4035 return;
4037 function_insertion_hook_holder =
4038 symtab->add_cgraph_insertion_hook (&add_new_function, NULL);
4040 ipa_register_cgraph_hooks ();
4041 inline_free_summary ();
4043 FOR_EACH_DEFINED_FUNCTION (node)
4044 if (!node->alias)
4045 inline_analyze_function (node);
4049 /* Read predicate from IB. */
4051 static struct predicate
4052 read_predicate (struct lto_input_block *ib)
4054 struct predicate out;
4055 clause_t clause;
4056 int k = 0;
4060 gcc_assert (k <= MAX_CLAUSES);
4061 clause = out.clause[k++] = streamer_read_uhwi (ib);
4063 while (clause);
4065 /* Zero-initialize the remaining clauses in OUT. */
4066 while (k <= MAX_CLAUSES)
4067 out.clause[k++] = 0;
4069 return out;
4073 /* Write inline summary for edge E to OB. */
4075 static void
4076 read_inline_edge_summary (struct lto_input_block *ib, struct cgraph_edge *e)
4078 struct inline_edge_summary *es = inline_edge_summary (e);
4079 struct predicate p;
4080 int length, i;
4082 es->call_stmt_size = streamer_read_uhwi (ib);
4083 es->call_stmt_time = streamer_read_uhwi (ib);
4084 es->loop_depth = streamer_read_uhwi (ib);
4085 p = read_predicate (ib);
4086 edge_set_predicate (e, &p);
4087 length = streamer_read_uhwi (ib);
4088 if (length)
4090 es->param.safe_grow_cleared (length);
4091 for (i = 0; i < length; i++)
4092 es->param[i].change_prob = streamer_read_uhwi (ib);
4097 /* Stream in inline summaries from the section. */
4099 static void
4100 inline_read_section (struct lto_file_decl_data *file_data, const char *data,
4101 size_t len)
4103 const struct lto_function_header *header =
4104 (const struct lto_function_header *) data;
4105 const int cfg_offset = sizeof (struct lto_function_header);
4106 const int main_offset = cfg_offset + header->cfg_size;
4107 const int string_offset = main_offset + header->main_size;
4108 struct data_in *data_in;
4109 unsigned int i, count2, j;
4110 unsigned int f_count;
4112 lto_input_block ib ((const char *) data + main_offset, header->main_size);
4114 data_in =
4115 lto_data_in_create (file_data, (const char *) data + string_offset,
4116 header->string_size, vNULL);
4117 f_count = streamer_read_uhwi (&ib);
4118 for (i = 0; i < f_count; i++)
4120 unsigned int index;
4121 struct cgraph_node *node;
4122 struct inline_summary *info;
4123 lto_symtab_encoder_t encoder;
4124 struct bitpack_d bp;
4125 struct cgraph_edge *e;
4126 predicate p;
4128 index = streamer_read_uhwi (&ib);
4129 encoder = file_data->symtab_node_encoder;
4130 node = dyn_cast<cgraph_node *> (lto_symtab_encoder_deref (encoder,
4131 index));
4132 info = inline_summary (node);
4134 info->estimated_stack_size
4135 = info->estimated_self_stack_size = streamer_read_uhwi (&ib);
4136 info->size = info->self_size = streamer_read_uhwi (&ib);
4137 info->time = info->self_time = streamer_read_uhwi (&ib);
4139 bp = streamer_read_bitpack (&ib);
4140 info->inlinable = bp_unpack_value (&bp, 1);
4142 count2 = streamer_read_uhwi (&ib);
4143 gcc_assert (!info->conds);
4144 for (j = 0; j < count2; j++)
4146 struct condition c;
4147 c.operand_num = streamer_read_uhwi (&ib);
4148 c.code = (enum tree_code) streamer_read_uhwi (&ib);
4149 c.val = stream_read_tree (&ib, data_in);
4150 bp = streamer_read_bitpack (&ib);
4151 c.agg_contents = bp_unpack_value (&bp, 1);
4152 c.by_ref = bp_unpack_value (&bp, 1);
4153 if (c.agg_contents)
4154 c.offset = streamer_read_uhwi (&ib);
4155 vec_safe_push (info->conds, c);
4157 count2 = streamer_read_uhwi (&ib);
4158 gcc_assert (!info->entry);
4159 for (j = 0; j < count2; j++)
4161 struct size_time_entry e;
4163 e.size = streamer_read_uhwi (&ib);
4164 e.time = streamer_read_uhwi (&ib);
4165 e.predicate = read_predicate (&ib);
4167 vec_safe_push (info->entry, e);
4170 p = read_predicate (&ib);
4171 set_hint_predicate (&info->loop_iterations, p);
4172 p = read_predicate (&ib);
4173 set_hint_predicate (&info->loop_stride, p);
4174 p = read_predicate (&ib);
4175 set_hint_predicate (&info->array_index, p);
4176 for (e = node->callees; e; e = e->next_callee)
4177 read_inline_edge_summary (&ib, e);
4178 for (e = node->indirect_calls; e; e = e->next_callee)
4179 read_inline_edge_summary (&ib, e);
4182 lto_free_section_data (file_data, LTO_section_inline_summary, NULL, data,
4183 len);
4184 lto_data_in_delete (data_in);
4188 /* Read inline summary. Jump functions are shared among ipa-cp
4189 and inliner, so when ipa-cp is active, we don't need to write them
4190 twice. */
4192 void
4193 inline_read_summary (void)
4195 struct lto_file_decl_data **file_data_vec = lto_get_file_decl_data ();
4196 struct lto_file_decl_data *file_data;
4197 unsigned int j = 0;
4199 inline_summary_alloc ();
4201 while ((file_data = file_data_vec[j++]))
4203 size_t len;
4204 const char *data = lto_get_section_data (file_data,
4205 LTO_section_inline_summary,
4206 NULL, &len);
4207 if (data)
4208 inline_read_section (file_data, data, len);
4209 else
4210 /* Fatal error here. We do not want to support compiling ltrans units
4211 with different version of compiler or different flags than the WPA
4212 unit, so this should never happen. */
4213 fatal_error ("ipa inline summary is missing in input file");
4215 if (optimize)
4217 ipa_register_cgraph_hooks ();
4218 if (!flag_ipa_cp)
4219 ipa_prop_read_jump_functions ();
4221 function_insertion_hook_holder =
4222 symtab->add_cgraph_insertion_hook (&add_new_function, NULL);
4226 /* Write predicate P to OB. */
4228 static void
4229 write_predicate (struct output_block *ob, struct predicate *p)
4231 int j;
4232 if (p)
4233 for (j = 0; p->clause[j]; j++)
4235 gcc_assert (j < MAX_CLAUSES);
4236 streamer_write_uhwi (ob, p->clause[j]);
4238 streamer_write_uhwi (ob, 0);
4242 /* Write inline summary for edge E to OB. */
4244 static void
4245 write_inline_edge_summary (struct output_block *ob, struct cgraph_edge *e)
4247 struct inline_edge_summary *es = inline_edge_summary (e);
4248 int i;
4250 streamer_write_uhwi (ob, es->call_stmt_size);
4251 streamer_write_uhwi (ob, es->call_stmt_time);
4252 streamer_write_uhwi (ob, es->loop_depth);
4253 write_predicate (ob, es->predicate);
4254 streamer_write_uhwi (ob, es->param.length ());
4255 for (i = 0; i < (int) es->param.length (); i++)
4256 streamer_write_uhwi (ob, es->param[i].change_prob);
4260 /* Write inline summary for node in SET.
4261 Jump functions are shared among ipa-cp and inliner, so when ipa-cp is
4262 active, we don't need to write them twice. */
4264 void
4265 inline_write_summary (void)
4267 struct cgraph_node *node;
4268 struct output_block *ob = create_output_block (LTO_section_inline_summary);
4269 lto_symtab_encoder_t encoder = ob->decl_state->symtab_node_encoder;
4270 unsigned int count = 0;
4271 int i;
4273 for (i = 0; i < lto_symtab_encoder_size (encoder); i++)
4275 symtab_node *snode = lto_symtab_encoder_deref (encoder, i);
4276 cgraph_node *cnode = dyn_cast <cgraph_node *> (snode);
4277 if (cnode && cnode->definition && !cnode->alias)
4278 count++;
4280 streamer_write_uhwi (ob, count);
4282 for (i = 0; i < lto_symtab_encoder_size (encoder); i++)
4284 symtab_node *snode = lto_symtab_encoder_deref (encoder, i);
4285 cgraph_node *cnode = dyn_cast <cgraph_node *> (snode);
4286 if (cnode && (node = cnode)->definition && !node->alias)
4288 struct inline_summary *info = inline_summary (node);
4289 struct bitpack_d bp;
4290 struct cgraph_edge *edge;
4291 int i;
4292 size_time_entry *e;
4293 struct condition *c;
4295 streamer_write_uhwi (ob,
4296 lto_symtab_encoder_encode (encoder,
4298 node));
4299 streamer_write_hwi (ob, info->estimated_self_stack_size);
4300 streamer_write_hwi (ob, info->self_size);
4301 streamer_write_hwi (ob, info->self_time);
4302 bp = bitpack_create (ob->main_stream);
4303 bp_pack_value (&bp, info->inlinable, 1);
4304 streamer_write_bitpack (&bp);
4305 streamer_write_uhwi (ob, vec_safe_length (info->conds));
4306 for (i = 0; vec_safe_iterate (info->conds, i, &c); i++)
4308 streamer_write_uhwi (ob, c->operand_num);
4309 streamer_write_uhwi (ob, c->code);
4310 stream_write_tree (ob, c->val, true);
4311 bp = bitpack_create (ob->main_stream);
4312 bp_pack_value (&bp, c->agg_contents, 1);
4313 bp_pack_value (&bp, c->by_ref, 1);
4314 streamer_write_bitpack (&bp);
4315 if (c->agg_contents)
4316 streamer_write_uhwi (ob, c->offset);
4318 streamer_write_uhwi (ob, vec_safe_length (info->entry));
4319 for (i = 0; vec_safe_iterate (info->entry, i, &e); i++)
4321 streamer_write_uhwi (ob, e->size);
4322 streamer_write_uhwi (ob, e->time);
4323 write_predicate (ob, &e->predicate);
4325 write_predicate (ob, info->loop_iterations);
4326 write_predicate (ob, info->loop_stride);
4327 write_predicate (ob, info->array_index);
4328 for (edge = node->callees; edge; edge = edge->next_callee)
4329 write_inline_edge_summary (ob, edge);
4330 for (edge = node->indirect_calls; edge; edge = edge->next_callee)
4331 write_inline_edge_summary (ob, edge);
4334 streamer_write_char_stream (ob->main_stream, 0);
4335 produce_asm (ob, NULL);
4336 destroy_output_block (ob);
4338 if (optimize && !flag_ipa_cp)
4339 ipa_prop_write_jump_functions ();
4343 /* Release inline summary. */
4345 void
4346 inline_free_summary (void)
4348 struct cgraph_node *node;
4349 if (function_insertion_hook_holder)
4350 symtab->remove_cgraph_insertion_hook (function_insertion_hook_holder);
4351 function_insertion_hook_holder = NULL;
4352 if (node_removal_hook_holder)
4353 symtab->remove_cgraph_removal_hook (node_removal_hook_holder);
4354 node_removal_hook_holder = NULL;
4355 if (edge_removal_hook_holder)
4356 symtab->remove_edge_removal_hook (edge_removal_hook_holder);
4357 edge_removal_hook_holder = NULL;
4358 if (node_duplication_hook_holder)
4359 symtab->remove_cgraph_duplication_hook (node_duplication_hook_holder);
4360 node_duplication_hook_holder = NULL;
4361 if (edge_duplication_hook_holder)
4362 symtab->remove_edge_duplication_hook (edge_duplication_hook_holder);
4363 edge_duplication_hook_holder = NULL;
4364 if (!inline_edge_summary_vec.exists ())
4365 return;
4366 FOR_EACH_DEFINED_FUNCTION (node)
4367 if (!node->alias)
4368 reset_inline_summary (node);
4369 vec_free (inline_summary_vec);
4370 inline_edge_summary_vec.release ();
4371 if (edge_predicate_pool)
4372 free_alloc_pool (edge_predicate_pool);
4373 edge_predicate_pool = 0;