2018-05-29 Richard Biener <rguenther@suse.de>
[official-gcc.git] / gcc / tree-vect-data-refs.c
blob9255c53189de62c4cd2614021cd1463a48634acc
1 /* Data References Analysis and Manipulation Utilities for Vectorization.
2 Copyright (C) 2003-2018 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
4 and Ira Rosen <irar@il.ibm.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "target.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "gimple.h"
30 #include "predict.h"
31 #include "memmodel.h"
32 #include "tm_p.h"
33 #include "ssa.h"
34 #include "optabs-tree.h"
35 #include "cgraph.h"
36 #include "dumpfile.h"
37 #include "alias.h"
38 #include "fold-const.h"
39 #include "stor-layout.h"
40 #include "tree-eh.h"
41 #include "gimplify.h"
42 #include "gimple-iterator.h"
43 #include "gimplify-me.h"
44 #include "tree-ssa-loop-ivopts.h"
45 #include "tree-ssa-loop-manip.h"
46 #include "tree-ssa-loop.h"
47 #include "cfgloop.h"
48 #include "tree-scalar-evolution.h"
49 #include "tree-vectorizer.h"
50 #include "expr.h"
51 #include "builtins.h"
52 #include "params.h"
53 #include "tree-cfg.h"
54 #include "tree-hash-traits.h"
55 #include "vec-perm-indices.h"
56 #include "internal-fn.h"
58 /* Return true if load- or store-lanes optab OPTAB is implemented for
59 COUNT vectors of type VECTYPE. NAME is the name of OPTAB. */
61 static bool
62 vect_lanes_optab_supported_p (const char *name, convert_optab optab,
63 tree vectype, unsigned HOST_WIDE_INT count)
65 machine_mode mode, array_mode;
66 bool limit_p;
68 mode = TYPE_MODE (vectype);
69 if (!targetm.array_mode (mode, count).exists (&array_mode))
71 poly_uint64 bits = count * GET_MODE_BITSIZE (mode);
72 limit_p = !targetm.array_mode_supported_p (mode, count);
73 if (!int_mode_for_size (bits, limit_p).exists (&array_mode))
75 if (dump_enabled_p ())
76 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
77 "no array mode for %s["
78 HOST_WIDE_INT_PRINT_DEC "]\n",
79 GET_MODE_NAME (mode), count);
80 return false;
84 if (convert_optab_handler (optab, array_mode, mode) == CODE_FOR_nothing)
86 if (dump_enabled_p ())
87 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
88 "cannot use %s<%s><%s>\n", name,
89 GET_MODE_NAME (array_mode), GET_MODE_NAME (mode));
90 return false;
93 if (dump_enabled_p ())
94 dump_printf_loc (MSG_NOTE, vect_location,
95 "can use %s<%s><%s>\n", name, GET_MODE_NAME (array_mode),
96 GET_MODE_NAME (mode));
98 return true;
102 /* Return the smallest scalar part of STMT.
103 This is used to determine the vectype of the stmt. We generally set the
104 vectype according to the type of the result (lhs). For stmts whose
105 result-type is different than the type of the arguments (e.g., demotion,
106 promotion), vectype will be reset appropriately (later). Note that we have
107 to visit the smallest datatype in this function, because that determines the
108 VF. If the smallest datatype in the loop is present only as the rhs of a
109 promotion operation - we'd miss it.
110 Such a case, where a variable of this datatype does not appear in the lhs
111 anywhere in the loop, can only occur if it's an invariant: e.g.:
112 'int_x = (int) short_inv', which we'd expect to have been optimized away by
113 invariant motion. However, we cannot rely on invariant motion to always
114 take invariants out of the loop, and so in the case of promotion we also
115 have to check the rhs.
116 LHS_SIZE_UNIT and RHS_SIZE_UNIT contain the sizes of the corresponding
117 types. */
119 tree
120 vect_get_smallest_scalar_type (gimple *stmt, HOST_WIDE_INT *lhs_size_unit,
121 HOST_WIDE_INT *rhs_size_unit)
123 tree scalar_type = gimple_expr_type (stmt);
124 HOST_WIDE_INT lhs, rhs;
126 /* During the analysis phase, this function is called on arbitrary
127 statements that might not have scalar results. */
128 if (!tree_fits_uhwi_p (TYPE_SIZE_UNIT (scalar_type)))
129 return scalar_type;
131 lhs = rhs = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (scalar_type));
133 if (is_gimple_assign (stmt)
134 && (gimple_assign_cast_p (stmt)
135 || gimple_assign_rhs_code (stmt) == DOT_PROD_EXPR
136 || gimple_assign_rhs_code (stmt) == WIDEN_SUM_EXPR
137 || gimple_assign_rhs_code (stmt) == WIDEN_MULT_EXPR
138 || gimple_assign_rhs_code (stmt) == WIDEN_LSHIFT_EXPR
139 || gimple_assign_rhs_code (stmt) == FLOAT_EXPR))
141 tree rhs_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
143 rhs = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (rhs_type));
144 if (rhs < lhs)
145 scalar_type = rhs_type;
148 *lhs_size_unit = lhs;
149 *rhs_size_unit = rhs;
150 return scalar_type;
154 /* Insert DDR into LOOP_VINFO list of ddrs that may alias and need to be
155 tested at run-time. Return TRUE if DDR was successfully inserted.
156 Return false if versioning is not supported. */
158 static bool
159 vect_mark_for_runtime_alias_test (ddr_p ddr, loop_vec_info loop_vinfo)
161 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
163 if ((unsigned) PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS) == 0)
164 return false;
166 if (!runtime_alias_check_p (ddr, loop,
167 optimize_loop_nest_for_speed_p (loop)))
168 return false;
170 LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo).safe_push (ddr);
171 return true;
174 /* Record that loop LOOP_VINFO needs to check that VALUE is nonzero. */
176 static void
177 vect_check_nonzero_value (loop_vec_info loop_vinfo, tree value)
179 vec<tree> checks = LOOP_VINFO_CHECK_NONZERO (loop_vinfo);
180 for (unsigned int i = 0; i < checks.length(); ++i)
181 if (checks[i] == value)
182 return;
184 if (dump_enabled_p ())
186 dump_printf_loc (MSG_NOTE, vect_location, "need run-time check that ");
187 dump_generic_expr (MSG_NOTE, TDF_SLIM, value);
188 dump_printf (MSG_NOTE, " is nonzero\n");
190 LOOP_VINFO_CHECK_NONZERO (loop_vinfo).safe_push (value);
193 /* Return true if we know that the order of vectorized STMT_A and
194 vectorized STMT_B will be the same as the order of STMT_A and STMT_B.
195 At least one of the statements is a write. */
197 static bool
198 vect_preserves_scalar_order_p (gimple *stmt_a, gimple *stmt_b)
200 stmt_vec_info stmtinfo_a = vinfo_for_stmt (stmt_a);
201 stmt_vec_info stmtinfo_b = vinfo_for_stmt (stmt_b);
203 /* Single statements are always kept in their original order. */
204 if (!STMT_VINFO_GROUPED_ACCESS (stmtinfo_a)
205 && !STMT_VINFO_GROUPED_ACCESS (stmtinfo_b))
206 return true;
208 /* STMT_A and STMT_B belong to overlapping groups. All loads in a
209 group are emitted at the position of the first scalar load and all
210 stores in a group are emitted at the position of the last scalar store.
211 Thus writes will happen no earlier than their current position
212 (but could happen later) while reads will happen no later than their
213 current position (but could happen earlier). Reordering is therefore
214 only possible if the first access is a write. */
215 if (is_pattern_stmt_p (stmtinfo_a))
216 stmt_a = STMT_VINFO_RELATED_STMT (stmtinfo_a);
217 if (is_pattern_stmt_p (stmtinfo_b))
218 stmt_b = STMT_VINFO_RELATED_STMT (stmtinfo_b);
219 gimple *earlier_stmt = get_earlier_stmt (stmt_a, stmt_b);
220 return !DR_IS_WRITE (STMT_VINFO_DATA_REF (vinfo_for_stmt (earlier_stmt)));
223 /* A subroutine of vect_analyze_data_ref_dependence. Handle
224 DDR_COULD_BE_INDEPENDENT_P ddr DDR that has a known set of dependence
225 distances. These distances are conservatively correct but they don't
226 reflect a guaranteed dependence.
228 Return true if this function does all the work necessary to avoid
229 an alias or false if the caller should use the dependence distances
230 to limit the vectorization factor in the usual way. LOOP_DEPTH is
231 the depth of the loop described by LOOP_VINFO and the other arguments
232 are as for vect_analyze_data_ref_dependence. */
234 static bool
235 vect_analyze_possibly_independent_ddr (data_dependence_relation *ddr,
236 loop_vec_info loop_vinfo,
237 int loop_depth, unsigned int *max_vf)
239 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
240 lambda_vector dist_v;
241 unsigned int i;
242 FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
244 int dist = dist_v[loop_depth];
245 if (dist != 0 && !(dist > 0 && DDR_REVERSED_P (ddr)))
247 /* If the user asserted safelen >= DIST consecutive iterations
248 can be executed concurrently, assume independence.
250 ??? An alternative would be to add the alias check even
251 in this case, and vectorize the fallback loop with the
252 maximum VF set to safelen. However, if the user has
253 explicitly given a length, it's less likely that that
254 would be a win. */
255 if (loop->safelen >= 2 && abs_hwi (dist) <= loop->safelen)
257 if ((unsigned int) loop->safelen < *max_vf)
258 *max_vf = loop->safelen;
259 LOOP_VINFO_NO_DATA_DEPENDENCIES (loop_vinfo) = false;
260 continue;
263 /* For dependence distances of 2 or more, we have the option
264 of limiting VF or checking for an alias at runtime.
265 Prefer to check at runtime if we can, to avoid limiting
266 the VF unnecessarily when the bases are in fact independent.
268 Note that the alias checks will be removed if the VF ends up
269 being small enough. */
270 return vect_mark_for_runtime_alias_test (ddr, loop_vinfo);
273 return true;
277 /* Function vect_analyze_data_ref_dependence.
279 Return TRUE if there (might) exist a dependence between a memory-reference
280 DRA and a memory-reference DRB. When versioning for alias may check a
281 dependence at run-time, return FALSE. Adjust *MAX_VF according to
282 the data dependence. */
284 static bool
285 vect_analyze_data_ref_dependence (struct data_dependence_relation *ddr,
286 loop_vec_info loop_vinfo,
287 unsigned int *max_vf)
289 unsigned int i;
290 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
291 struct data_reference *dra = DDR_A (ddr);
292 struct data_reference *drb = DDR_B (ddr);
293 stmt_vec_info stmtinfo_a = vinfo_for_stmt (DR_STMT (dra));
294 stmt_vec_info stmtinfo_b = vinfo_for_stmt (DR_STMT (drb));
295 lambda_vector dist_v;
296 unsigned int loop_depth;
298 /* In loop analysis all data references should be vectorizable. */
299 if (!STMT_VINFO_VECTORIZABLE (stmtinfo_a)
300 || !STMT_VINFO_VECTORIZABLE (stmtinfo_b))
301 gcc_unreachable ();
303 /* Independent data accesses. */
304 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
305 return false;
307 if (dra == drb
308 || (DR_IS_READ (dra) && DR_IS_READ (drb)))
309 return false;
311 /* We do not have to consider dependences between accesses that belong
312 to the same group, unless the stride could be smaller than the
313 group size. */
314 if (DR_GROUP_FIRST_ELEMENT (stmtinfo_a)
315 && (DR_GROUP_FIRST_ELEMENT (stmtinfo_a)
316 == DR_GROUP_FIRST_ELEMENT (stmtinfo_b))
317 && !STMT_VINFO_STRIDED_P (stmtinfo_a))
318 return false;
320 /* Even if we have an anti-dependence then, as the vectorized loop covers at
321 least two scalar iterations, there is always also a true dependence.
322 As the vectorizer does not re-order loads and stores we can ignore
323 the anti-dependence if TBAA can disambiguate both DRs similar to the
324 case with known negative distance anti-dependences (positive
325 distance anti-dependences would violate TBAA constraints). */
326 if (((DR_IS_READ (dra) && DR_IS_WRITE (drb))
327 || (DR_IS_WRITE (dra) && DR_IS_READ (drb)))
328 && !alias_sets_conflict_p (get_alias_set (DR_REF (dra)),
329 get_alias_set (DR_REF (drb))))
330 return false;
332 /* Unknown data dependence. */
333 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
335 /* If user asserted safelen consecutive iterations can be
336 executed concurrently, assume independence. */
337 if (loop->safelen >= 2)
339 if ((unsigned int) loop->safelen < *max_vf)
340 *max_vf = loop->safelen;
341 LOOP_VINFO_NO_DATA_DEPENDENCIES (loop_vinfo) = false;
342 return false;
345 if (STMT_VINFO_GATHER_SCATTER_P (stmtinfo_a)
346 || STMT_VINFO_GATHER_SCATTER_P (stmtinfo_b))
348 if (dump_enabled_p ())
350 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
351 "versioning for alias not supported for: "
352 "can't determine dependence between ");
353 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
354 DR_REF (dra));
355 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
356 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
357 DR_REF (drb));
358 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
360 return true;
363 if (dump_enabled_p ())
365 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
366 "versioning for alias required: "
367 "can't determine dependence between ");
368 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
369 DR_REF (dra));
370 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
371 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
372 DR_REF (drb));
373 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
376 /* Add to list of ddrs that need to be tested at run-time. */
377 return !vect_mark_for_runtime_alias_test (ddr, loop_vinfo);
380 /* Known data dependence. */
381 if (DDR_NUM_DIST_VECTS (ddr) == 0)
383 /* If user asserted safelen consecutive iterations can be
384 executed concurrently, assume independence. */
385 if (loop->safelen >= 2)
387 if ((unsigned int) loop->safelen < *max_vf)
388 *max_vf = loop->safelen;
389 LOOP_VINFO_NO_DATA_DEPENDENCIES (loop_vinfo) = false;
390 return false;
393 if (STMT_VINFO_GATHER_SCATTER_P (stmtinfo_a)
394 || STMT_VINFO_GATHER_SCATTER_P (stmtinfo_b))
396 if (dump_enabled_p ())
398 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
399 "versioning for alias not supported for: "
400 "bad dist vector for ");
401 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
402 DR_REF (dra));
403 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
404 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
405 DR_REF (drb));
406 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
408 return true;
411 if (dump_enabled_p ())
413 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
414 "versioning for alias required: "
415 "bad dist vector for ");
416 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, DR_REF (dra));
417 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
418 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, DR_REF (drb));
419 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
421 /* Add to list of ddrs that need to be tested at run-time. */
422 return !vect_mark_for_runtime_alias_test (ddr, loop_vinfo);
425 loop_depth = index_in_loop_nest (loop->num, DDR_LOOP_NEST (ddr));
427 if (DDR_COULD_BE_INDEPENDENT_P (ddr)
428 && vect_analyze_possibly_independent_ddr (ddr, loop_vinfo,
429 loop_depth, max_vf))
430 return false;
432 FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
434 int dist = dist_v[loop_depth];
436 if (dump_enabled_p ())
437 dump_printf_loc (MSG_NOTE, vect_location,
438 "dependence distance = %d.\n", dist);
440 if (dist == 0)
442 if (dump_enabled_p ())
444 dump_printf_loc (MSG_NOTE, vect_location,
445 "dependence distance == 0 between ");
446 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
447 dump_printf (MSG_NOTE, " and ");
448 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
449 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
452 /* When we perform grouped accesses and perform implicit CSE
453 by detecting equal accesses and doing disambiguation with
454 runtime alias tests like for
455 .. = a[i];
456 .. = a[i+1];
457 a[i] = ..;
458 a[i+1] = ..;
459 *p = ..;
460 .. = a[i];
461 .. = a[i+1];
462 where we will end up loading { a[i], a[i+1] } once, make
463 sure that inserting group loads before the first load and
464 stores after the last store will do the right thing.
465 Similar for groups like
466 a[i] = ...;
467 ... = a[i];
468 a[i+1] = ...;
469 where loads from the group interleave with the store. */
470 if (!vect_preserves_scalar_order_p (DR_STMT (dra), DR_STMT (drb)))
472 if (dump_enabled_p ())
473 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
474 "READ_WRITE dependence in interleaving.\n");
475 return true;
478 if (loop->safelen < 2)
480 tree indicator = dr_zero_step_indicator (dra);
481 if (TREE_CODE (indicator) != INTEGER_CST)
482 vect_check_nonzero_value (loop_vinfo, indicator);
483 else if (integer_zerop (indicator))
485 if (dump_enabled_p ())
486 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
487 "access also has a zero step\n");
488 return true;
491 continue;
494 if (dist > 0 && DDR_REVERSED_P (ddr))
496 /* If DDR_REVERSED_P the order of the data-refs in DDR was
497 reversed (to make distance vector positive), and the actual
498 distance is negative. */
499 if (dump_enabled_p ())
500 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
501 "dependence distance negative.\n");
502 /* Record a negative dependence distance to later limit the
503 amount of stmt copying / unrolling we can perform.
504 Only need to handle read-after-write dependence. */
505 if (DR_IS_READ (drb)
506 && (STMT_VINFO_MIN_NEG_DIST (stmtinfo_b) == 0
507 || STMT_VINFO_MIN_NEG_DIST (stmtinfo_b) > (unsigned)dist))
508 STMT_VINFO_MIN_NEG_DIST (stmtinfo_b) = dist;
509 continue;
512 unsigned int abs_dist = abs (dist);
513 if (abs_dist >= 2 && abs_dist < *max_vf)
515 /* The dependence distance requires reduction of the maximal
516 vectorization factor. */
517 *max_vf = abs (dist);
518 if (dump_enabled_p ())
519 dump_printf_loc (MSG_NOTE, vect_location,
520 "adjusting maximal vectorization factor to %i\n",
521 *max_vf);
524 if (abs_dist >= *max_vf)
526 /* Dependence distance does not create dependence, as far as
527 vectorization is concerned, in this case. */
528 if (dump_enabled_p ())
529 dump_printf_loc (MSG_NOTE, vect_location,
530 "dependence distance >= VF.\n");
531 continue;
534 if (dump_enabled_p ())
536 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
537 "not vectorized, possible dependence "
538 "between data-refs ");
539 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
540 dump_printf (MSG_NOTE, " and ");
541 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
542 dump_printf (MSG_NOTE, "\n");
545 return true;
548 return false;
551 /* Function vect_analyze_data_ref_dependences.
553 Examine all the data references in the loop, and make sure there do not
554 exist any data dependences between them. Set *MAX_VF according to
555 the maximum vectorization factor the data dependences allow. */
557 bool
558 vect_analyze_data_ref_dependences (loop_vec_info loop_vinfo,
559 unsigned int *max_vf)
561 unsigned int i;
562 struct data_dependence_relation *ddr;
564 if (dump_enabled_p ())
565 dump_printf_loc (MSG_NOTE, vect_location,
566 "=== vect_analyze_data_ref_dependences ===\n");
568 LOOP_VINFO_DDRS (loop_vinfo)
569 .create (LOOP_VINFO_DATAREFS (loop_vinfo).length ()
570 * LOOP_VINFO_DATAREFS (loop_vinfo).length ());
571 LOOP_VINFO_NO_DATA_DEPENDENCIES (loop_vinfo) = true;
572 /* We need read-read dependences to compute STMT_VINFO_SAME_ALIGN_REFS. */
573 if (!compute_all_dependences (LOOP_VINFO_DATAREFS (loop_vinfo),
574 &LOOP_VINFO_DDRS (loop_vinfo),
575 LOOP_VINFO_LOOP_NEST (loop_vinfo), true))
576 return false;
578 /* For epilogues we either have no aliases or alias versioning
579 was applied to original loop. Therefore we may just get max_vf
580 using VF of original loop. */
581 if (LOOP_VINFO_EPILOGUE_P (loop_vinfo))
582 *max_vf = LOOP_VINFO_ORIG_MAX_VECT_FACTOR (loop_vinfo);
583 else
584 FOR_EACH_VEC_ELT (LOOP_VINFO_DDRS (loop_vinfo), i, ddr)
585 if (vect_analyze_data_ref_dependence (ddr, loop_vinfo, max_vf))
586 return false;
588 return true;
592 /* Function vect_slp_analyze_data_ref_dependence.
594 Return TRUE if there (might) exist a dependence between a memory-reference
595 DRA and a memory-reference DRB. When versioning for alias may check a
596 dependence at run-time, return FALSE. Adjust *MAX_VF according to
597 the data dependence. */
599 static bool
600 vect_slp_analyze_data_ref_dependence (struct data_dependence_relation *ddr)
602 struct data_reference *dra = DDR_A (ddr);
603 struct data_reference *drb = DDR_B (ddr);
605 /* We need to check dependences of statements marked as unvectorizable
606 as well, they still can prohibit vectorization. */
608 /* Independent data accesses. */
609 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
610 return false;
612 if (dra == drb)
613 return false;
615 /* Read-read is OK. */
616 if (DR_IS_READ (dra) && DR_IS_READ (drb))
617 return false;
619 /* If dra and drb are part of the same interleaving chain consider
620 them independent. */
621 if (STMT_VINFO_GROUPED_ACCESS (vinfo_for_stmt (DR_STMT (dra)))
622 && (DR_GROUP_FIRST_ELEMENT (vinfo_for_stmt (DR_STMT (dra)))
623 == DR_GROUP_FIRST_ELEMENT (vinfo_for_stmt (DR_STMT (drb)))))
624 return false;
626 /* Unknown data dependence. */
627 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
629 if (dump_enabled_p ())
631 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
632 "can't determine dependence between ");
633 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, DR_REF (dra));
634 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
635 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, DR_REF (drb));
636 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
639 else if (dump_enabled_p ())
641 dump_printf_loc (MSG_NOTE, vect_location,
642 "determined dependence between ");
643 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
644 dump_printf (MSG_NOTE, " and ");
645 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
646 dump_printf (MSG_NOTE, "\n");
649 return true;
653 /* Analyze dependences involved in the transform of SLP NODE. STORES
654 contain the vector of scalar stores of this instance if we are
655 disambiguating the loads. */
657 static bool
658 vect_slp_analyze_node_dependences (slp_instance instance, slp_tree node,
659 vec<gimple *> stores, gimple *last_store)
661 /* This walks over all stmts involved in the SLP load/store done
662 in NODE verifying we can sink them up to the last stmt in the
663 group. */
664 gimple *last_access = vect_find_last_scalar_stmt_in_slp (node);
665 for (unsigned k = 0; k < SLP_INSTANCE_GROUP_SIZE (instance); ++k)
667 gimple *access = SLP_TREE_SCALAR_STMTS (node)[k];
668 if (access == last_access)
669 continue;
670 data_reference *dr_a = STMT_VINFO_DATA_REF (vinfo_for_stmt (access));
671 ao_ref ref;
672 bool ref_initialized_p = false;
673 for (gimple_stmt_iterator gsi = gsi_for_stmt (access);
674 gsi_stmt (gsi) != last_access; gsi_next (&gsi))
676 gimple *stmt = gsi_stmt (gsi);
677 if (! gimple_vuse (stmt)
678 || (DR_IS_READ (dr_a) && ! gimple_vdef (stmt)))
679 continue;
681 /* If we couldn't record a (single) data reference for this
682 stmt we have to resort to the alias oracle. */
683 data_reference *dr_b = STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt));
684 if (!dr_b)
686 /* We are moving a store or sinking a load - this means
687 we cannot use TBAA for disambiguation. */
688 if (!ref_initialized_p)
689 ao_ref_init (&ref, DR_REF (dr_a));
690 if (stmt_may_clobber_ref_p_1 (stmt, &ref, false)
691 || ref_maybe_used_by_stmt_p (stmt, &ref, false))
692 return false;
693 continue;
696 bool dependent = false;
697 /* If we run into a store of this same instance (we've just
698 marked those) then delay dependence checking until we run
699 into the last store because this is where it will have
700 been sunk to (and we verify if we can do that as well). */
701 if (gimple_visited_p (stmt))
703 if (stmt != last_store)
704 continue;
705 unsigned i;
706 gimple *store;
707 FOR_EACH_VEC_ELT (stores, i, store)
709 data_reference *store_dr
710 = STMT_VINFO_DATA_REF (vinfo_for_stmt (store));
711 ddr_p ddr = initialize_data_dependence_relation
712 (dr_a, store_dr, vNULL);
713 dependent = vect_slp_analyze_data_ref_dependence (ddr);
714 free_dependence_relation (ddr);
715 if (dependent)
716 break;
719 else
721 ddr_p ddr = initialize_data_dependence_relation (dr_a,
722 dr_b, vNULL);
723 dependent = vect_slp_analyze_data_ref_dependence (ddr);
724 free_dependence_relation (ddr);
726 if (dependent)
727 return false;
730 return true;
734 /* Function vect_analyze_data_ref_dependences.
736 Examine all the data references in the basic-block, and make sure there
737 do not exist any data dependences between them. Set *MAX_VF according to
738 the maximum vectorization factor the data dependences allow. */
740 bool
741 vect_slp_analyze_instance_dependence (slp_instance instance)
743 if (dump_enabled_p ())
744 dump_printf_loc (MSG_NOTE, vect_location,
745 "=== vect_slp_analyze_instance_dependence ===\n");
747 /* The stores of this instance are at the root of the SLP tree. */
748 slp_tree store = SLP_INSTANCE_TREE (instance);
749 if (! STMT_VINFO_DATA_REF (vinfo_for_stmt (SLP_TREE_SCALAR_STMTS (store)[0])))
750 store = NULL;
752 /* Verify we can sink stores to the vectorized stmt insert location. */
753 gimple *last_store = NULL;
754 if (store)
756 if (! vect_slp_analyze_node_dependences (instance, store, vNULL, NULL))
757 return false;
759 /* Mark stores in this instance and remember the last one. */
760 last_store = vect_find_last_scalar_stmt_in_slp (store);
761 for (unsigned k = 0; k < SLP_INSTANCE_GROUP_SIZE (instance); ++k)
762 gimple_set_visited (SLP_TREE_SCALAR_STMTS (store)[k], true);
765 bool res = true;
767 /* Verify we can sink loads to the vectorized stmt insert location,
768 special-casing stores of this instance. */
769 slp_tree load;
770 unsigned int i;
771 FOR_EACH_VEC_ELT (SLP_INSTANCE_LOADS (instance), i, load)
772 if (! vect_slp_analyze_node_dependences (instance, load,
773 store
774 ? SLP_TREE_SCALAR_STMTS (store)
775 : vNULL, last_store))
777 res = false;
778 break;
781 /* Unset the visited flag. */
782 if (store)
783 for (unsigned k = 0; k < SLP_INSTANCE_GROUP_SIZE (instance); ++k)
784 gimple_set_visited (SLP_TREE_SCALAR_STMTS (store)[k], false);
786 return res;
789 /* Record in VINFO the base alignment guarantee given by DRB. STMT is
790 the statement that contains DRB, which is useful for recording in the
791 dump file. */
793 static void
794 vect_record_base_alignment (vec_info *vinfo, gimple *stmt,
795 innermost_loop_behavior *drb)
797 bool existed;
798 innermost_loop_behavior *&entry
799 = vinfo->base_alignments.get_or_insert (drb->base_address, &existed);
800 if (!existed || entry->base_alignment < drb->base_alignment)
802 entry = drb;
803 if (dump_enabled_p ())
805 dump_printf_loc (MSG_NOTE, vect_location,
806 "recording new base alignment for ");
807 dump_generic_expr (MSG_NOTE, TDF_SLIM, drb->base_address);
808 dump_printf (MSG_NOTE, "\n");
809 dump_printf_loc (MSG_NOTE, vect_location,
810 " alignment: %d\n", drb->base_alignment);
811 dump_printf_loc (MSG_NOTE, vect_location,
812 " misalignment: %d\n", drb->base_misalignment);
813 dump_printf_loc (MSG_NOTE, vect_location,
814 " based on: ");
815 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
820 /* If the region we're going to vectorize is reached, all unconditional
821 data references occur at least once. We can therefore pool the base
822 alignment guarantees from each unconditional reference. Do this by
823 going through all the data references in VINFO and checking whether
824 the containing statement makes the reference unconditionally. If so,
825 record the alignment of the base address in VINFO so that it can be
826 used for all other references with the same base. */
828 void
829 vect_record_base_alignments (vec_info *vinfo)
831 loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo);
832 struct loop *loop = loop_vinfo ? LOOP_VINFO_LOOP (loop_vinfo) : NULL;
833 data_reference *dr;
834 unsigned int i;
835 FOR_EACH_VEC_ELT (vinfo->datarefs, i, dr)
837 gimple *stmt = DR_STMT (dr);
838 if (!DR_IS_CONDITIONAL_IN_STMT (dr)
839 && STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (stmt)))
841 gimple *stmt = DR_STMT (dr);
842 vect_record_base_alignment (vinfo, stmt, &DR_INNERMOST (dr));
844 /* If DR is nested in the loop that is being vectorized, we can also
845 record the alignment of the base wrt the outer loop. */
846 if (loop && nested_in_vect_loop_p (loop, stmt))
848 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
849 vect_record_base_alignment
850 (vinfo, stmt, &STMT_VINFO_DR_WRT_VEC_LOOP (stmt_info));
856 /* Return the target alignment for the vectorized form of DR. */
858 static unsigned int
859 vect_calculate_target_alignment (struct data_reference *dr)
861 gimple *stmt = DR_STMT (dr);
862 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
863 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
864 return targetm.vectorize.preferred_vector_alignment (vectype);
867 /* Function vect_compute_data_ref_alignment
869 Compute the misalignment of the data reference DR.
871 Output:
872 1. If during the misalignment computation it is found that the data reference
873 cannot be vectorized then false is returned.
874 2. DR_MISALIGNMENT (DR) is defined.
876 FOR NOW: No analysis is actually performed. Misalignment is calculated
877 only for trivial cases. TODO. */
879 bool
880 vect_compute_data_ref_alignment (struct data_reference *dr)
882 gimple *stmt = DR_STMT (dr);
883 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
884 vec_base_alignments *base_alignments = &stmt_info->vinfo->base_alignments;
885 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
886 struct loop *loop = NULL;
887 tree ref = DR_REF (dr);
888 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
890 if (dump_enabled_p ())
891 dump_printf_loc (MSG_NOTE, vect_location,
892 "vect_compute_data_ref_alignment:\n");
894 if (loop_vinfo)
895 loop = LOOP_VINFO_LOOP (loop_vinfo);
897 /* Initialize misalignment to unknown. */
898 SET_DR_MISALIGNMENT (dr, DR_MISALIGNMENT_UNKNOWN);
900 innermost_loop_behavior *drb = vect_dr_behavior (dr);
901 bool step_preserves_misalignment_p;
903 unsigned HOST_WIDE_INT vector_alignment
904 = vect_calculate_target_alignment (dr) / BITS_PER_UNIT;
905 DR_TARGET_ALIGNMENT (dr) = vector_alignment;
907 /* No step for BB vectorization. */
908 if (!loop)
910 gcc_assert (integer_zerop (drb->step));
911 step_preserves_misalignment_p = true;
914 /* In case the dataref is in an inner-loop of the loop that is being
915 vectorized (LOOP), we use the base and misalignment information
916 relative to the outer-loop (LOOP). This is ok only if the misalignment
917 stays the same throughout the execution of the inner-loop, which is why
918 we have to check that the stride of the dataref in the inner-loop evenly
919 divides by the vector alignment. */
920 else if (nested_in_vect_loop_p (loop, stmt))
922 step_preserves_misalignment_p
923 = (DR_STEP_ALIGNMENT (dr) % vector_alignment) == 0;
925 if (dump_enabled_p ())
927 if (step_preserves_misalignment_p)
928 dump_printf_loc (MSG_NOTE, vect_location,
929 "inner step divides the vector alignment.\n");
930 else
931 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
932 "inner step doesn't divide the vector"
933 " alignment.\n");
937 /* Similarly we can only use base and misalignment information relative to
938 an innermost loop if the misalignment stays the same throughout the
939 execution of the loop. As above, this is the case if the stride of
940 the dataref evenly divides by the alignment. */
941 else
943 poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
944 step_preserves_misalignment_p
945 = multiple_p (DR_STEP_ALIGNMENT (dr) * vf, vector_alignment);
947 if (!step_preserves_misalignment_p && dump_enabled_p ())
948 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
949 "step doesn't divide the vector alignment.\n");
952 unsigned int base_alignment = drb->base_alignment;
953 unsigned int base_misalignment = drb->base_misalignment;
955 /* Calculate the maximum of the pooled base address alignment and the
956 alignment that we can compute for DR itself. */
957 innermost_loop_behavior **entry = base_alignments->get (drb->base_address);
958 if (entry && base_alignment < (*entry)->base_alignment)
960 base_alignment = (*entry)->base_alignment;
961 base_misalignment = (*entry)->base_misalignment;
964 if (drb->offset_alignment < vector_alignment
965 || !step_preserves_misalignment_p
966 /* We need to know whether the step wrt the vectorized loop is
967 negative when computing the starting misalignment below. */
968 || TREE_CODE (drb->step) != INTEGER_CST)
970 if (dump_enabled_p ())
972 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
973 "Unknown alignment for access: ");
974 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, ref);
975 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
977 return true;
980 if (base_alignment < vector_alignment)
982 unsigned int max_alignment;
983 tree base = get_base_for_alignment (drb->base_address, &max_alignment);
984 if (max_alignment < vector_alignment
985 || !vect_can_force_dr_alignment_p (base,
986 vector_alignment * BITS_PER_UNIT))
988 if (dump_enabled_p ())
990 dump_printf_loc (MSG_NOTE, vect_location,
991 "can't force alignment of ref: ");
992 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
993 dump_printf (MSG_NOTE, "\n");
995 return true;
998 /* Force the alignment of the decl.
999 NOTE: This is the only change to the code we make during
1000 the analysis phase, before deciding to vectorize the loop. */
1001 if (dump_enabled_p ())
1003 dump_printf_loc (MSG_NOTE, vect_location, "force alignment of ");
1004 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
1005 dump_printf (MSG_NOTE, "\n");
1008 DR_VECT_AUX (dr)->base_decl = base;
1009 DR_VECT_AUX (dr)->base_misaligned = true;
1010 base_misalignment = 0;
1012 poly_int64 misalignment
1013 = base_misalignment + wi::to_poly_offset (drb->init).force_shwi ();
1015 /* If this is a backward running DR then first access in the larger
1016 vectype actually is N-1 elements before the address in the DR.
1017 Adjust misalign accordingly. */
1018 if (tree_int_cst_sgn (drb->step) < 0)
1019 /* PLUS because STEP is negative. */
1020 misalignment += ((TYPE_VECTOR_SUBPARTS (vectype) - 1)
1021 * TREE_INT_CST_LOW (drb->step));
1023 unsigned int const_misalignment;
1024 if (!known_misalignment (misalignment, vector_alignment,
1025 &const_misalignment))
1027 if (dump_enabled_p ())
1029 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1030 "Non-constant misalignment for access: ");
1031 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, ref);
1032 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
1034 return true;
1037 SET_DR_MISALIGNMENT (dr, const_misalignment);
1039 if (dump_enabled_p ())
1041 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1042 "misalign = %d bytes of ref ", DR_MISALIGNMENT (dr));
1043 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, ref);
1044 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
1047 return true;
1050 /* Function vect_update_misalignment_for_peel.
1051 Sets DR's misalignment
1052 - to 0 if it has the same alignment as DR_PEEL,
1053 - to the misalignment computed using NPEEL if DR's salignment is known,
1054 - to -1 (unknown) otherwise.
1056 DR - the data reference whose misalignment is to be adjusted.
1057 DR_PEEL - the data reference whose misalignment is being made
1058 zero in the vector loop by the peel.
1059 NPEEL - the number of iterations in the peel loop if the misalignment
1060 of DR_PEEL is known at compile time. */
1062 static void
1063 vect_update_misalignment_for_peel (struct data_reference *dr,
1064 struct data_reference *dr_peel, int npeel)
1066 unsigned int i;
1067 vec<dr_p> same_aligned_drs;
1068 struct data_reference *current_dr;
1069 int dr_size = vect_get_scalar_dr_size (dr);
1070 int dr_peel_size = vect_get_scalar_dr_size (dr_peel);
1071 stmt_vec_info stmt_info = vinfo_for_stmt (DR_STMT (dr));
1072 stmt_vec_info peel_stmt_info = vinfo_for_stmt (DR_STMT (dr_peel));
1074 /* For interleaved data accesses the step in the loop must be multiplied by
1075 the size of the interleaving group. */
1076 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
1077 dr_size *= DR_GROUP_SIZE (vinfo_for_stmt (DR_GROUP_FIRST_ELEMENT (stmt_info)));
1078 if (STMT_VINFO_GROUPED_ACCESS (peel_stmt_info))
1079 dr_peel_size *= DR_GROUP_SIZE (peel_stmt_info);
1081 /* It can be assumed that the data refs with the same alignment as dr_peel
1082 are aligned in the vector loop. */
1083 same_aligned_drs
1084 = STMT_VINFO_SAME_ALIGN_REFS (vinfo_for_stmt (DR_STMT (dr_peel)));
1085 FOR_EACH_VEC_ELT (same_aligned_drs, i, current_dr)
1087 if (current_dr != dr)
1088 continue;
1089 gcc_assert (!known_alignment_for_access_p (dr)
1090 || !known_alignment_for_access_p (dr_peel)
1091 || (DR_MISALIGNMENT (dr) / dr_size
1092 == DR_MISALIGNMENT (dr_peel) / dr_peel_size));
1093 SET_DR_MISALIGNMENT (dr, 0);
1094 return;
1097 if (known_alignment_for_access_p (dr)
1098 && known_alignment_for_access_p (dr_peel))
1100 bool negative = tree_int_cst_compare (DR_STEP (dr), size_zero_node) < 0;
1101 int misal = DR_MISALIGNMENT (dr);
1102 misal += negative ? -npeel * dr_size : npeel * dr_size;
1103 misal &= DR_TARGET_ALIGNMENT (dr) - 1;
1104 SET_DR_MISALIGNMENT (dr, misal);
1105 return;
1108 if (dump_enabled_p ())
1109 dump_printf_loc (MSG_NOTE, vect_location, "Setting misalignment " \
1110 "to unknown (-1).\n");
1111 SET_DR_MISALIGNMENT (dr, DR_MISALIGNMENT_UNKNOWN);
1115 /* Function verify_data_ref_alignment
1117 Return TRUE if DR can be handled with respect to alignment. */
1119 static bool
1120 verify_data_ref_alignment (data_reference_p dr)
1122 enum dr_alignment_support supportable_dr_alignment
1123 = vect_supportable_dr_alignment (dr, false);
1124 if (!supportable_dr_alignment)
1126 if (dump_enabled_p ())
1128 if (DR_IS_READ (dr))
1129 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1130 "not vectorized: unsupported unaligned load.");
1131 else
1132 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1133 "not vectorized: unsupported unaligned "
1134 "store.");
1136 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
1137 DR_REF (dr));
1138 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
1140 return false;
1143 if (supportable_dr_alignment != dr_aligned && dump_enabled_p ())
1144 dump_printf_loc (MSG_NOTE, vect_location,
1145 "Vectorizing an unaligned access.\n");
1147 return true;
1150 /* Function vect_verify_datarefs_alignment
1152 Return TRUE if all data references in the loop can be
1153 handled with respect to alignment. */
1155 bool
1156 vect_verify_datarefs_alignment (loop_vec_info vinfo)
1158 vec<data_reference_p> datarefs = vinfo->datarefs;
1159 struct data_reference *dr;
1160 unsigned int i;
1162 FOR_EACH_VEC_ELT (datarefs, i, dr)
1164 gimple *stmt = DR_STMT (dr);
1165 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1167 if (!STMT_VINFO_RELEVANT_P (stmt_info))
1168 continue;
1170 /* For interleaving, only the alignment of the first access matters. */
1171 if (STMT_VINFO_GROUPED_ACCESS (stmt_info)
1172 && DR_GROUP_FIRST_ELEMENT (stmt_info) != stmt)
1173 continue;
1175 /* Strided accesses perform only component accesses, alignment is
1176 irrelevant for them. */
1177 if (STMT_VINFO_STRIDED_P (stmt_info)
1178 && !STMT_VINFO_GROUPED_ACCESS (stmt_info))
1179 continue;
1181 if (! verify_data_ref_alignment (dr))
1182 return false;
1185 return true;
1188 /* Given an memory reference EXP return whether its alignment is less
1189 than its size. */
1191 static bool
1192 not_size_aligned (tree exp)
1194 if (!tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (exp))))
1195 return true;
1197 return (tree_to_uhwi (TYPE_SIZE (TREE_TYPE (exp)))
1198 > get_object_alignment (exp));
1201 /* Function vector_alignment_reachable_p
1203 Return true if vector alignment for DR is reachable by peeling
1204 a few loop iterations. Return false otherwise. */
1206 static bool
1207 vector_alignment_reachable_p (struct data_reference *dr)
1209 gimple *stmt = DR_STMT (dr);
1210 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1211 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
1213 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
1215 /* For interleaved access we peel only if number of iterations in
1216 the prolog loop ({VF - misalignment}), is a multiple of the
1217 number of the interleaved accesses. */
1218 int elem_size, mis_in_elements;
1220 /* FORNOW: handle only known alignment. */
1221 if (!known_alignment_for_access_p (dr))
1222 return false;
1224 poly_uint64 nelements = TYPE_VECTOR_SUBPARTS (vectype);
1225 poly_uint64 vector_size = GET_MODE_SIZE (TYPE_MODE (vectype));
1226 elem_size = vector_element_size (vector_size, nelements);
1227 mis_in_elements = DR_MISALIGNMENT (dr) / elem_size;
1229 if (!multiple_p (nelements - mis_in_elements, DR_GROUP_SIZE (stmt_info)))
1230 return false;
1233 /* If misalignment is known at the compile time then allow peeling
1234 only if natural alignment is reachable through peeling. */
1235 if (known_alignment_for_access_p (dr) && !aligned_access_p (dr))
1237 HOST_WIDE_INT elmsize =
1238 int_cst_value (TYPE_SIZE_UNIT (TREE_TYPE (vectype)));
1239 if (dump_enabled_p ())
1241 dump_printf_loc (MSG_NOTE, vect_location,
1242 "data size =" HOST_WIDE_INT_PRINT_DEC, elmsize);
1243 dump_printf (MSG_NOTE,
1244 ". misalignment = %d.\n", DR_MISALIGNMENT (dr));
1246 if (DR_MISALIGNMENT (dr) % elmsize)
1248 if (dump_enabled_p ())
1249 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1250 "data size does not divide the misalignment.\n");
1251 return false;
1255 if (!known_alignment_for_access_p (dr))
1257 tree type = TREE_TYPE (DR_REF (dr));
1258 bool is_packed = not_size_aligned (DR_REF (dr));
1259 if (dump_enabled_p ())
1260 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1261 "Unknown misalignment, %snaturally aligned\n",
1262 is_packed ? "not " : "");
1263 return targetm.vectorize.vector_alignment_reachable (type, is_packed);
1266 return true;
1270 /* Calculate the cost of the memory access represented by DR. */
1272 static void
1273 vect_get_data_access_cost (struct data_reference *dr,
1274 unsigned int *inside_cost,
1275 unsigned int *outside_cost,
1276 stmt_vector_for_cost *body_cost_vec,
1277 stmt_vector_for_cost *prologue_cost_vec)
1279 gimple *stmt = DR_STMT (dr);
1280 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1281 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
1282 int ncopies;
1284 if (PURE_SLP_STMT (stmt_info))
1285 ncopies = 1;
1286 else
1287 ncopies = vect_get_num_copies (loop_vinfo, STMT_VINFO_VECTYPE (stmt_info));
1289 if (DR_IS_READ (dr))
1290 vect_get_load_cost (dr, ncopies, true, inside_cost, outside_cost,
1291 prologue_cost_vec, body_cost_vec, false);
1292 else
1293 vect_get_store_cost (dr, ncopies, inside_cost, body_cost_vec);
1295 if (dump_enabled_p ())
1296 dump_printf_loc (MSG_NOTE, vect_location,
1297 "vect_get_data_access_cost: inside_cost = %d, "
1298 "outside_cost = %d.\n", *inside_cost, *outside_cost);
1302 typedef struct _vect_peel_info
1304 struct data_reference *dr;
1305 int npeel;
1306 unsigned int count;
1307 } *vect_peel_info;
1309 typedef struct _vect_peel_extended_info
1311 struct _vect_peel_info peel_info;
1312 unsigned int inside_cost;
1313 unsigned int outside_cost;
1314 } *vect_peel_extended_info;
1317 /* Peeling hashtable helpers. */
1319 struct peel_info_hasher : free_ptr_hash <_vect_peel_info>
1321 static inline hashval_t hash (const _vect_peel_info *);
1322 static inline bool equal (const _vect_peel_info *, const _vect_peel_info *);
1325 inline hashval_t
1326 peel_info_hasher::hash (const _vect_peel_info *peel_info)
1328 return (hashval_t) peel_info->npeel;
1331 inline bool
1332 peel_info_hasher::equal (const _vect_peel_info *a, const _vect_peel_info *b)
1334 return (a->npeel == b->npeel);
1338 /* Insert DR into peeling hash table with NPEEL as key. */
1340 static void
1341 vect_peeling_hash_insert (hash_table<peel_info_hasher> *peeling_htab,
1342 loop_vec_info loop_vinfo, struct data_reference *dr,
1343 int npeel)
1345 struct _vect_peel_info elem, *slot;
1346 _vect_peel_info **new_slot;
1347 bool supportable_dr_alignment = vect_supportable_dr_alignment (dr, true);
1349 elem.npeel = npeel;
1350 slot = peeling_htab->find (&elem);
1351 if (slot)
1352 slot->count++;
1353 else
1355 slot = XNEW (struct _vect_peel_info);
1356 slot->npeel = npeel;
1357 slot->dr = dr;
1358 slot->count = 1;
1359 new_slot = peeling_htab->find_slot (slot, INSERT);
1360 *new_slot = slot;
1363 if (!supportable_dr_alignment
1364 && unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
1365 slot->count += VECT_MAX_COST;
1369 /* Traverse peeling hash table to find peeling option that aligns maximum
1370 number of data accesses. */
1373 vect_peeling_hash_get_most_frequent (_vect_peel_info **slot,
1374 _vect_peel_extended_info *max)
1376 vect_peel_info elem = *slot;
1378 if (elem->count > max->peel_info.count
1379 || (elem->count == max->peel_info.count
1380 && max->peel_info.npeel > elem->npeel))
1382 max->peel_info.npeel = elem->npeel;
1383 max->peel_info.count = elem->count;
1384 max->peel_info.dr = elem->dr;
1387 return 1;
1390 /* Get the costs of peeling NPEEL iterations checking data access costs
1391 for all data refs. If UNKNOWN_MISALIGNMENT is true, we assume DR0's
1392 misalignment will be zero after peeling. */
1394 static void
1395 vect_get_peeling_costs_all_drs (vec<data_reference_p> datarefs,
1396 struct data_reference *dr0,
1397 unsigned int *inside_cost,
1398 unsigned int *outside_cost,
1399 stmt_vector_for_cost *body_cost_vec,
1400 stmt_vector_for_cost *prologue_cost_vec,
1401 unsigned int npeel,
1402 bool unknown_misalignment)
1404 unsigned i;
1405 data_reference *dr;
1407 FOR_EACH_VEC_ELT (datarefs, i, dr)
1409 gimple *stmt = DR_STMT (dr);
1410 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1411 if (!STMT_VINFO_RELEVANT_P (stmt_info))
1412 continue;
1414 /* For interleaving, only the alignment of the first access
1415 matters. */
1416 if (STMT_VINFO_GROUPED_ACCESS (stmt_info)
1417 && DR_GROUP_FIRST_ELEMENT (stmt_info) != stmt)
1418 continue;
1420 /* Strided accesses perform only component accesses, alignment is
1421 irrelevant for them. */
1422 if (STMT_VINFO_STRIDED_P (stmt_info)
1423 && !STMT_VINFO_GROUPED_ACCESS (stmt_info))
1424 continue;
1426 int save_misalignment;
1427 save_misalignment = DR_MISALIGNMENT (dr);
1428 if (npeel == 0)
1430 else if (unknown_misalignment && dr == dr0)
1431 SET_DR_MISALIGNMENT (dr, 0);
1432 else
1433 vect_update_misalignment_for_peel (dr, dr0, npeel);
1434 vect_get_data_access_cost (dr, inside_cost, outside_cost,
1435 body_cost_vec, prologue_cost_vec);
1436 SET_DR_MISALIGNMENT (dr, save_misalignment);
1440 /* Traverse peeling hash table and calculate cost for each peeling option.
1441 Find the one with the lowest cost. */
1444 vect_peeling_hash_get_lowest_cost (_vect_peel_info **slot,
1445 _vect_peel_extended_info *min)
1447 vect_peel_info elem = *slot;
1448 int dummy;
1449 unsigned int inside_cost = 0, outside_cost = 0;
1450 gimple *stmt = DR_STMT (elem->dr);
1451 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1452 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
1453 stmt_vector_for_cost prologue_cost_vec, body_cost_vec,
1454 epilogue_cost_vec;
1456 prologue_cost_vec.create (2);
1457 body_cost_vec.create (2);
1458 epilogue_cost_vec.create (2);
1460 vect_get_peeling_costs_all_drs (LOOP_VINFO_DATAREFS (loop_vinfo),
1461 elem->dr, &inside_cost, &outside_cost,
1462 &body_cost_vec, &prologue_cost_vec,
1463 elem->npeel, false);
1465 body_cost_vec.release ();
1467 outside_cost += vect_get_known_peeling_cost
1468 (loop_vinfo, elem->npeel, &dummy,
1469 &LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo),
1470 &prologue_cost_vec, &epilogue_cost_vec);
1472 /* Prologue and epilogue costs are added to the target model later.
1473 These costs depend only on the scalar iteration cost, the
1474 number of peeling iterations finally chosen, and the number of
1475 misaligned statements. So discard the information found here. */
1476 prologue_cost_vec.release ();
1477 epilogue_cost_vec.release ();
1479 if (inside_cost < min->inside_cost
1480 || (inside_cost == min->inside_cost
1481 && outside_cost < min->outside_cost))
1483 min->inside_cost = inside_cost;
1484 min->outside_cost = outside_cost;
1485 min->peel_info.dr = elem->dr;
1486 min->peel_info.npeel = elem->npeel;
1487 min->peel_info.count = elem->count;
1490 return 1;
1494 /* Choose best peeling option by traversing peeling hash table and either
1495 choosing an option with the lowest cost (if cost model is enabled) or the
1496 option that aligns as many accesses as possible. */
1498 static struct _vect_peel_extended_info
1499 vect_peeling_hash_choose_best_peeling (hash_table<peel_info_hasher> *peeling_htab,
1500 loop_vec_info loop_vinfo)
1502 struct _vect_peel_extended_info res;
1504 res.peel_info.dr = NULL;
1506 if (!unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
1508 res.inside_cost = INT_MAX;
1509 res.outside_cost = INT_MAX;
1510 peeling_htab->traverse <_vect_peel_extended_info *,
1511 vect_peeling_hash_get_lowest_cost> (&res);
1513 else
1515 res.peel_info.count = 0;
1516 peeling_htab->traverse <_vect_peel_extended_info *,
1517 vect_peeling_hash_get_most_frequent> (&res);
1518 res.inside_cost = 0;
1519 res.outside_cost = 0;
1522 return res;
1525 /* Return true if the new peeling NPEEL is supported. */
1527 static bool
1528 vect_peeling_supportable (loop_vec_info loop_vinfo, struct data_reference *dr0,
1529 unsigned npeel)
1531 unsigned i;
1532 struct data_reference *dr = NULL;
1533 vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
1534 gimple *stmt;
1535 stmt_vec_info stmt_info;
1536 enum dr_alignment_support supportable_dr_alignment;
1538 /* Ensure that all data refs can be vectorized after the peel. */
1539 FOR_EACH_VEC_ELT (datarefs, i, dr)
1541 int save_misalignment;
1543 if (dr == dr0)
1544 continue;
1546 stmt = DR_STMT (dr);
1547 stmt_info = vinfo_for_stmt (stmt);
1548 /* For interleaving, only the alignment of the first access
1549 matters. */
1550 if (STMT_VINFO_GROUPED_ACCESS (stmt_info)
1551 && DR_GROUP_FIRST_ELEMENT (stmt_info) != stmt)
1552 continue;
1554 /* Strided accesses perform only component accesses, alignment is
1555 irrelevant for them. */
1556 if (STMT_VINFO_STRIDED_P (stmt_info)
1557 && !STMT_VINFO_GROUPED_ACCESS (stmt_info))
1558 continue;
1560 save_misalignment = DR_MISALIGNMENT (dr);
1561 vect_update_misalignment_for_peel (dr, dr0, npeel);
1562 supportable_dr_alignment = vect_supportable_dr_alignment (dr, false);
1563 SET_DR_MISALIGNMENT (dr, save_misalignment);
1565 if (!supportable_dr_alignment)
1566 return false;
1569 return true;
1572 /* Function vect_enhance_data_refs_alignment
1574 This pass will use loop versioning and loop peeling in order to enhance
1575 the alignment of data references in the loop.
1577 FOR NOW: we assume that whatever versioning/peeling takes place, only the
1578 original loop is to be vectorized. Any other loops that are created by
1579 the transformations performed in this pass - are not supposed to be
1580 vectorized. This restriction will be relaxed.
1582 This pass will require a cost model to guide it whether to apply peeling
1583 or versioning or a combination of the two. For example, the scheme that
1584 intel uses when given a loop with several memory accesses, is as follows:
1585 choose one memory access ('p') which alignment you want to force by doing
1586 peeling. Then, either (1) generate a loop in which 'p' is aligned and all
1587 other accesses are not necessarily aligned, or (2) use loop versioning to
1588 generate one loop in which all accesses are aligned, and another loop in
1589 which only 'p' is necessarily aligned.
1591 ("Automatic Intra-Register Vectorization for the Intel Architecture",
1592 Aart J.C. Bik, Milind Girkar, Paul M. Grey and Ximmin Tian, International
1593 Journal of Parallel Programming, Vol. 30, No. 2, April 2002.)
1595 Devising a cost model is the most critical aspect of this work. It will
1596 guide us on which access to peel for, whether to use loop versioning, how
1597 many versions to create, etc. The cost model will probably consist of
1598 generic considerations as well as target specific considerations (on
1599 powerpc for example, misaligned stores are more painful than misaligned
1600 loads).
1602 Here are the general steps involved in alignment enhancements:
1604 -- original loop, before alignment analysis:
1605 for (i=0; i<N; i++){
1606 x = q[i]; # DR_MISALIGNMENT(q) = unknown
1607 p[i] = y; # DR_MISALIGNMENT(p) = unknown
1610 -- After vect_compute_data_refs_alignment:
1611 for (i=0; i<N; i++){
1612 x = q[i]; # DR_MISALIGNMENT(q) = 3
1613 p[i] = y; # DR_MISALIGNMENT(p) = unknown
1616 -- Possibility 1: we do loop versioning:
1617 if (p is aligned) {
1618 for (i=0; i<N; i++){ # loop 1A
1619 x = q[i]; # DR_MISALIGNMENT(q) = 3
1620 p[i] = y; # DR_MISALIGNMENT(p) = 0
1623 else {
1624 for (i=0; i<N; i++){ # loop 1B
1625 x = q[i]; # DR_MISALIGNMENT(q) = 3
1626 p[i] = y; # DR_MISALIGNMENT(p) = unaligned
1630 -- Possibility 2: we do loop peeling:
1631 for (i = 0; i < 3; i++){ # (scalar loop, not to be vectorized).
1632 x = q[i];
1633 p[i] = y;
1635 for (i = 3; i < N; i++){ # loop 2A
1636 x = q[i]; # DR_MISALIGNMENT(q) = 0
1637 p[i] = y; # DR_MISALIGNMENT(p) = unknown
1640 -- Possibility 3: combination of loop peeling and versioning:
1641 for (i = 0; i < 3; i++){ # (scalar loop, not to be vectorized).
1642 x = q[i];
1643 p[i] = y;
1645 if (p is aligned) {
1646 for (i = 3; i<N; i++){ # loop 3A
1647 x = q[i]; # DR_MISALIGNMENT(q) = 0
1648 p[i] = y; # DR_MISALIGNMENT(p) = 0
1651 else {
1652 for (i = 3; i<N; i++){ # loop 3B
1653 x = q[i]; # DR_MISALIGNMENT(q) = 0
1654 p[i] = y; # DR_MISALIGNMENT(p) = unaligned
1658 These loops are later passed to loop_transform to be vectorized. The
1659 vectorizer will use the alignment information to guide the transformation
1660 (whether to generate regular loads/stores, or with special handling for
1661 misalignment). */
1663 bool
1664 vect_enhance_data_refs_alignment (loop_vec_info loop_vinfo)
1666 vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
1667 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1668 enum dr_alignment_support supportable_dr_alignment;
1669 struct data_reference *dr0 = NULL, *first_store = NULL;
1670 struct data_reference *dr;
1671 unsigned int i, j;
1672 bool do_peeling = false;
1673 bool do_versioning = false;
1674 bool stat;
1675 gimple *stmt;
1676 stmt_vec_info stmt_info;
1677 unsigned int npeel = 0;
1678 bool one_misalignment_known = false;
1679 bool one_misalignment_unknown = false;
1680 bool one_dr_unsupportable = false;
1681 struct data_reference *unsupportable_dr = NULL;
1682 poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1683 unsigned possible_npeel_number = 1;
1684 tree vectype;
1685 unsigned int mis, same_align_drs_max = 0;
1686 hash_table<peel_info_hasher> peeling_htab (1);
1688 if (dump_enabled_p ())
1689 dump_printf_loc (MSG_NOTE, vect_location,
1690 "=== vect_enhance_data_refs_alignment ===\n");
1692 /* Reset data so we can safely be called multiple times. */
1693 LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).truncate (0);
1694 LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) = 0;
1696 /* While cost model enhancements are expected in the future, the high level
1697 view of the code at this time is as follows:
1699 A) If there is a misaligned access then see if peeling to align
1700 this access can make all data references satisfy
1701 vect_supportable_dr_alignment. If so, update data structures
1702 as needed and return true.
1704 B) If peeling wasn't possible and there is a data reference with an
1705 unknown misalignment that does not satisfy vect_supportable_dr_alignment
1706 then see if loop versioning checks can be used to make all data
1707 references satisfy vect_supportable_dr_alignment. If so, update
1708 data structures as needed and return true.
1710 C) If neither peeling nor versioning were successful then return false if
1711 any data reference does not satisfy vect_supportable_dr_alignment.
1713 D) Return true (all data references satisfy vect_supportable_dr_alignment).
1715 Note, Possibility 3 above (which is peeling and versioning together) is not
1716 being done at this time. */
1718 /* (1) Peeling to force alignment. */
1720 /* (1.1) Decide whether to perform peeling, and how many iterations to peel:
1721 Considerations:
1722 + How many accesses will become aligned due to the peeling
1723 - How many accesses will become unaligned due to the peeling,
1724 and the cost of misaligned accesses.
1725 - The cost of peeling (the extra runtime checks, the increase
1726 in code size). */
1728 FOR_EACH_VEC_ELT (datarefs, i, dr)
1730 stmt = DR_STMT (dr);
1731 stmt_info = vinfo_for_stmt (stmt);
1733 if (!STMT_VINFO_RELEVANT_P (stmt_info))
1734 continue;
1736 /* For interleaving, only the alignment of the first access
1737 matters. */
1738 if (STMT_VINFO_GROUPED_ACCESS (stmt_info)
1739 && DR_GROUP_FIRST_ELEMENT (stmt_info) != stmt)
1740 continue;
1742 /* For invariant accesses there is nothing to enhance. */
1743 if (integer_zerop (DR_STEP (dr)))
1744 continue;
1746 /* Strided accesses perform only component accesses, alignment is
1747 irrelevant for them. */
1748 if (STMT_VINFO_STRIDED_P (stmt_info)
1749 && !STMT_VINFO_GROUPED_ACCESS (stmt_info))
1750 continue;
1752 supportable_dr_alignment = vect_supportable_dr_alignment (dr, true);
1753 do_peeling = vector_alignment_reachable_p (dr);
1754 if (do_peeling)
1756 if (known_alignment_for_access_p (dr))
1758 unsigned int npeel_tmp = 0;
1759 bool negative = tree_int_cst_compare (DR_STEP (dr),
1760 size_zero_node) < 0;
1762 vectype = STMT_VINFO_VECTYPE (stmt_info);
1763 unsigned int target_align = DR_TARGET_ALIGNMENT (dr);
1764 unsigned int dr_size = vect_get_scalar_dr_size (dr);
1765 mis = (negative ? DR_MISALIGNMENT (dr) : -DR_MISALIGNMENT (dr));
1766 if (DR_MISALIGNMENT (dr) != 0)
1767 npeel_tmp = (mis & (target_align - 1)) / dr_size;
1769 /* For multiple types, it is possible that the bigger type access
1770 will have more than one peeling option. E.g., a loop with two
1771 types: one of size (vector size / 4), and the other one of
1772 size (vector size / 8). Vectorization factor will 8. If both
1773 accesses are misaligned by 3, the first one needs one scalar
1774 iteration to be aligned, and the second one needs 5. But the
1775 first one will be aligned also by peeling 5 scalar
1776 iterations, and in that case both accesses will be aligned.
1777 Hence, except for the immediate peeling amount, we also want
1778 to try to add full vector size, while we don't exceed
1779 vectorization factor.
1780 We do this automatically for cost model, since we calculate
1781 cost for every peeling option. */
1782 if (unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
1784 poly_uint64 nscalars = (STMT_SLP_TYPE (stmt_info)
1785 ? vf * DR_GROUP_SIZE (stmt_info) : vf);
1786 possible_npeel_number
1787 = vect_get_num_vectors (nscalars, vectype);
1789 /* NPEEL_TMP is 0 when there is no misalignment, but also
1790 allow peeling NELEMENTS. */
1791 if (DR_MISALIGNMENT (dr) == 0)
1792 possible_npeel_number++;
1795 /* Save info about DR in the hash table. Also include peeling
1796 amounts according to the explanation above. */
1797 for (j = 0; j < possible_npeel_number; j++)
1799 vect_peeling_hash_insert (&peeling_htab, loop_vinfo,
1800 dr, npeel_tmp);
1801 npeel_tmp += target_align / dr_size;
1804 one_misalignment_known = true;
1806 else
1808 /* If we don't know any misalignment values, we prefer
1809 peeling for data-ref that has the maximum number of data-refs
1810 with the same alignment, unless the target prefers to align
1811 stores over load. */
1812 unsigned same_align_drs
1813 = STMT_VINFO_SAME_ALIGN_REFS (stmt_info).length ();
1814 if (!dr0
1815 || same_align_drs_max < same_align_drs)
1817 same_align_drs_max = same_align_drs;
1818 dr0 = dr;
1820 /* For data-refs with the same number of related
1821 accesses prefer the one where the misalign
1822 computation will be invariant in the outermost loop. */
1823 else if (same_align_drs_max == same_align_drs)
1825 struct loop *ivloop0, *ivloop;
1826 ivloop0 = outermost_invariant_loop_for_expr
1827 (loop, DR_BASE_ADDRESS (dr0));
1828 ivloop = outermost_invariant_loop_for_expr
1829 (loop, DR_BASE_ADDRESS (dr));
1830 if ((ivloop && !ivloop0)
1831 || (ivloop && ivloop0
1832 && flow_loop_nested_p (ivloop, ivloop0)))
1833 dr0 = dr;
1836 one_misalignment_unknown = true;
1838 /* Check for data refs with unsupportable alignment that
1839 can be peeled. */
1840 if (!supportable_dr_alignment)
1842 one_dr_unsupportable = true;
1843 unsupportable_dr = dr;
1846 if (!first_store && DR_IS_WRITE (dr))
1847 first_store = dr;
1850 else
1852 if (!aligned_access_p (dr))
1854 if (dump_enabled_p ())
1855 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1856 "vector alignment may not be reachable\n");
1857 break;
1862 /* Check if we can possibly peel the loop. */
1863 if (!vect_can_advance_ivs_p (loop_vinfo)
1864 || !slpeel_can_duplicate_loop_p (loop, single_exit (loop))
1865 || loop->inner)
1866 do_peeling = false;
1868 struct _vect_peel_extended_info peel_for_known_alignment;
1869 struct _vect_peel_extended_info peel_for_unknown_alignment;
1870 struct _vect_peel_extended_info best_peel;
1872 peel_for_unknown_alignment.inside_cost = INT_MAX;
1873 peel_for_unknown_alignment.outside_cost = INT_MAX;
1874 peel_for_unknown_alignment.peel_info.count = 0;
1876 if (do_peeling
1877 && one_misalignment_unknown)
1879 /* Check if the target requires to prefer stores over loads, i.e., if
1880 misaligned stores are more expensive than misaligned loads (taking
1881 drs with same alignment into account). */
1882 unsigned int load_inside_cost = 0;
1883 unsigned int load_outside_cost = 0;
1884 unsigned int store_inside_cost = 0;
1885 unsigned int store_outside_cost = 0;
1886 unsigned int estimated_npeels = vect_vf_for_cost (loop_vinfo) / 2;
1888 stmt_vector_for_cost dummy;
1889 dummy.create (2);
1890 vect_get_peeling_costs_all_drs (datarefs, dr0,
1891 &load_inside_cost,
1892 &load_outside_cost,
1893 &dummy, &dummy, estimated_npeels, true);
1894 dummy.release ();
1896 if (first_store)
1898 dummy.create (2);
1899 vect_get_peeling_costs_all_drs (datarefs, first_store,
1900 &store_inside_cost,
1901 &store_outside_cost,
1902 &dummy, &dummy,
1903 estimated_npeels, true);
1904 dummy.release ();
1906 else
1908 store_inside_cost = INT_MAX;
1909 store_outside_cost = INT_MAX;
1912 if (load_inside_cost > store_inside_cost
1913 || (load_inside_cost == store_inside_cost
1914 && load_outside_cost > store_outside_cost))
1916 dr0 = first_store;
1917 peel_for_unknown_alignment.inside_cost = store_inside_cost;
1918 peel_for_unknown_alignment.outside_cost = store_outside_cost;
1920 else
1922 peel_for_unknown_alignment.inside_cost = load_inside_cost;
1923 peel_for_unknown_alignment.outside_cost = load_outside_cost;
1926 stmt_vector_for_cost prologue_cost_vec, epilogue_cost_vec;
1927 prologue_cost_vec.create (2);
1928 epilogue_cost_vec.create (2);
1930 int dummy2;
1931 peel_for_unknown_alignment.outside_cost += vect_get_known_peeling_cost
1932 (loop_vinfo, estimated_npeels, &dummy2,
1933 &LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo),
1934 &prologue_cost_vec, &epilogue_cost_vec);
1936 prologue_cost_vec.release ();
1937 epilogue_cost_vec.release ();
1939 peel_for_unknown_alignment.peel_info.count = 1
1940 + STMT_VINFO_SAME_ALIGN_REFS
1941 (vinfo_for_stmt (DR_STMT (dr0))).length ();
1944 peel_for_unknown_alignment.peel_info.npeel = 0;
1945 peel_for_unknown_alignment.peel_info.dr = dr0;
1947 best_peel = peel_for_unknown_alignment;
1949 peel_for_known_alignment.inside_cost = INT_MAX;
1950 peel_for_known_alignment.outside_cost = INT_MAX;
1951 peel_for_known_alignment.peel_info.count = 0;
1952 peel_for_known_alignment.peel_info.dr = NULL;
1954 if (do_peeling && one_misalignment_known)
1956 /* Peeling is possible, but there is no data access that is not supported
1957 unless aligned. So we try to choose the best possible peeling from
1958 the hash table. */
1959 peel_for_known_alignment = vect_peeling_hash_choose_best_peeling
1960 (&peeling_htab, loop_vinfo);
1963 /* Compare costs of peeling for known and unknown alignment. */
1964 if (peel_for_known_alignment.peel_info.dr != NULL
1965 && peel_for_unknown_alignment.inside_cost
1966 >= peel_for_known_alignment.inside_cost)
1968 best_peel = peel_for_known_alignment;
1970 /* If the best peeling for known alignment has NPEEL == 0, perform no
1971 peeling at all except if there is an unsupportable dr that we can
1972 align. */
1973 if (best_peel.peel_info.npeel == 0 && !one_dr_unsupportable)
1974 do_peeling = false;
1977 /* If there is an unsupportable data ref, prefer this over all choices so far
1978 since we'd have to discard a chosen peeling except when it accidentally
1979 aligned the unsupportable data ref. */
1980 if (one_dr_unsupportable)
1981 dr0 = unsupportable_dr;
1982 else if (do_peeling)
1984 /* Calculate the penalty for no peeling, i.e. leaving everything as-is.
1985 TODO: Use nopeel_outside_cost or get rid of it? */
1986 unsigned nopeel_inside_cost = 0;
1987 unsigned nopeel_outside_cost = 0;
1989 stmt_vector_for_cost dummy;
1990 dummy.create (2);
1991 vect_get_peeling_costs_all_drs (datarefs, NULL, &nopeel_inside_cost,
1992 &nopeel_outside_cost, &dummy, &dummy,
1993 0, false);
1994 dummy.release ();
1996 /* Add epilogue costs. As we do not peel for alignment here, no prologue
1997 costs will be recorded. */
1998 stmt_vector_for_cost prologue_cost_vec, epilogue_cost_vec;
1999 prologue_cost_vec.create (2);
2000 epilogue_cost_vec.create (2);
2002 int dummy2;
2003 nopeel_outside_cost += vect_get_known_peeling_cost
2004 (loop_vinfo, 0, &dummy2,
2005 &LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo),
2006 &prologue_cost_vec, &epilogue_cost_vec);
2008 prologue_cost_vec.release ();
2009 epilogue_cost_vec.release ();
2011 npeel = best_peel.peel_info.npeel;
2012 dr0 = best_peel.peel_info.dr;
2014 /* If no peeling is not more expensive than the best peeling we
2015 have so far, don't perform any peeling. */
2016 if (nopeel_inside_cost <= best_peel.inside_cost)
2017 do_peeling = false;
2020 if (do_peeling)
2022 stmt = DR_STMT (dr0);
2023 stmt_info = vinfo_for_stmt (stmt);
2024 vectype = STMT_VINFO_VECTYPE (stmt_info);
2026 if (known_alignment_for_access_p (dr0))
2028 bool negative = tree_int_cst_compare (DR_STEP (dr0),
2029 size_zero_node) < 0;
2030 if (!npeel)
2032 /* Since it's known at compile time, compute the number of
2033 iterations in the peeled loop (the peeling factor) for use in
2034 updating DR_MISALIGNMENT values. The peeling factor is the
2035 vectorization factor minus the misalignment as an element
2036 count. */
2037 mis = negative ? DR_MISALIGNMENT (dr0) : -DR_MISALIGNMENT (dr0);
2038 unsigned int target_align = DR_TARGET_ALIGNMENT (dr0);
2039 npeel = ((mis & (target_align - 1))
2040 / vect_get_scalar_dr_size (dr0));
2043 /* For interleaved data access every iteration accesses all the
2044 members of the group, therefore we divide the number of iterations
2045 by the group size. */
2046 stmt_info = vinfo_for_stmt (DR_STMT (dr0));
2047 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
2048 npeel /= DR_GROUP_SIZE (stmt_info);
2050 if (dump_enabled_p ())
2051 dump_printf_loc (MSG_NOTE, vect_location,
2052 "Try peeling by %d\n", npeel);
2055 /* Ensure that all datarefs can be vectorized after the peel. */
2056 if (!vect_peeling_supportable (loop_vinfo, dr0, npeel))
2057 do_peeling = false;
2059 /* Check if all datarefs are supportable and log. */
2060 if (do_peeling && known_alignment_for_access_p (dr0) && npeel == 0)
2062 stat = vect_verify_datarefs_alignment (loop_vinfo);
2063 if (!stat)
2064 do_peeling = false;
2065 else
2066 return stat;
2069 /* Cost model #1 - honor --param vect-max-peeling-for-alignment. */
2070 if (do_peeling)
2072 unsigned max_allowed_peel
2073 = PARAM_VALUE (PARAM_VECT_MAX_PEELING_FOR_ALIGNMENT);
2074 if (max_allowed_peel != (unsigned)-1)
2076 unsigned max_peel = npeel;
2077 if (max_peel == 0)
2079 unsigned int target_align = DR_TARGET_ALIGNMENT (dr0);
2080 max_peel = target_align / vect_get_scalar_dr_size (dr0) - 1;
2082 if (max_peel > max_allowed_peel)
2084 do_peeling = false;
2085 if (dump_enabled_p ())
2086 dump_printf_loc (MSG_NOTE, vect_location,
2087 "Disable peeling, max peels reached: %d\n", max_peel);
2092 /* Cost model #2 - if peeling may result in a remaining loop not
2093 iterating enough to be vectorized then do not peel. Since this
2094 is a cost heuristic rather than a correctness decision, use the
2095 most likely runtime value for variable vectorization factors. */
2096 if (do_peeling
2097 && LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
2099 unsigned int assumed_vf = vect_vf_for_cost (loop_vinfo);
2100 unsigned int max_peel = npeel == 0 ? assumed_vf - 1 : npeel;
2101 if ((unsigned HOST_WIDE_INT) LOOP_VINFO_INT_NITERS (loop_vinfo)
2102 < assumed_vf + max_peel)
2103 do_peeling = false;
2106 if (do_peeling)
2108 /* (1.2) Update the DR_MISALIGNMENT of each data reference DR_i.
2109 If the misalignment of DR_i is identical to that of dr0 then set
2110 DR_MISALIGNMENT (DR_i) to zero. If the misalignment of DR_i and
2111 dr0 are known at compile time then increment DR_MISALIGNMENT (DR_i)
2112 by the peeling factor times the element size of DR_i (MOD the
2113 vectorization factor times the size). Otherwise, the
2114 misalignment of DR_i must be set to unknown. */
2115 FOR_EACH_VEC_ELT (datarefs, i, dr)
2116 if (dr != dr0)
2118 /* Strided accesses perform only component accesses, alignment
2119 is irrelevant for them. */
2120 stmt_info = vinfo_for_stmt (DR_STMT (dr));
2121 if (STMT_VINFO_STRIDED_P (stmt_info)
2122 && !STMT_VINFO_GROUPED_ACCESS (stmt_info))
2123 continue;
2125 vect_update_misalignment_for_peel (dr, dr0, npeel);
2128 LOOP_VINFO_UNALIGNED_DR (loop_vinfo) = dr0;
2129 if (npeel)
2130 LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) = npeel;
2131 else
2132 LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo)
2133 = DR_MISALIGNMENT (dr0);
2134 SET_DR_MISALIGNMENT (dr0, 0);
2135 if (dump_enabled_p ())
2137 dump_printf_loc (MSG_NOTE, vect_location,
2138 "Alignment of access forced using peeling.\n");
2139 dump_printf_loc (MSG_NOTE, vect_location,
2140 "Peeling for alignment will be applied.\n");
2143 /* The inside-loop cost will be accounted for in vectorizable_load
2144 and vectorizable_store correctly with adjusted alignments.
2145 Drop the body_cst_vec on the floor here. */
2146 stat = vect_verify_datarefs_alignment (loop_vinfo);
2147 gcc_assert (stat);
2148 return stat;
2152 /* (2) Versioning to force alignment. */
2154 /* Try versioning if:
2155 1) optimize loop for speed
2156 2) there is at least one unsupported misaligned data ref with an unknown
2157 misalignment, and
2158 3) all misaligned data refs with a known misalignment are supported, and
2159 4) the number of runtime alignment checks is within reason. */
2161 do_versioning =
2162 optimize_loop_nest_for_speed_p (loop)
2163 && (!loop->inner); /* FORNOW */
2165 if (do_versioning)
2167 FOR_EACH_VEC_ELT (datarefs, i, dr)
2169 stmt = DR_STMT (dr);
2170 stmt_info = vinfo_for_stmt (stmt);
2172 /* For interleaving, only the alignment of the first access
2173 matters. */
2174 if (aligned_access_p (dr)
2175 || (STMT_VINFO_GROUPED_ACCESS (stmt_info)
2176 && DR_GROUP_FIRST_ELEMENT (stmt_info) != stmt))
2177 continue;
2179 if (STMT_VINFO_STRIDED_P (stmt_info))
2181 /* Strided loads perform only component accesses, alignment is
2182 irrelevant for them. */
2183 if (!STMT_VINFO_GROUPED_ACCESS (stmt_info))
2184 continue;
2185 do_versioning = false;
2186 break;
2189 supportable_dr_alignment = vect_supportable_dr_alignment (dr, false);
2191 if (!supportable_dr_alignment)
2193 gimple *stmt;
2194 int mask;
2195 tree vectype;
2197 if (known_alignment_for_access_p (dr)
2198 || LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).length ()
2199 >= (unsigned) PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIGNMENT_CHECKS))
2201 do_versioning = false;
2202 break;
2205 stmt = DR_STMT (dr);
2206 vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
2207 gcc_assert (vectype);
2209 /* At present we don't support versioning for alignment
2210 with variable VF, since there's no guarantee that the
2211 VF is a power of two. We could relax this if we added
2212 a way of enforcing a power-of-two size. */
2213 unsigned HOST_WIDE_INT size;
2214 if (!GET_MODE_SIZE (TYPE_MODE (vectype)).is_constant (&size))
2216 do_versioning = false;
2217 break;
2220 /* The rightmost bits of an aligned address must be zeros.
2221 Construct the mask needed for this test. For example,
2222 GET_MODE_SIZE for the vector mode V4SI is 16 bytes so the
2223 mask must be 15 = 0xf. */
2224 mask = size - 1;
2226 /* FORNOW: use the same mask to test all potentially unaligned
2227 references in the loop. The vectorizer currently supports
2228 a single vector size, see the reference to
2229 GET_MODE_NUNITS (TYPE_MODE (vectype)) where the
2230 vectorization factor is computed. */
2231 gcc_assert (!LOOP_VINFO_PTR_MASK (loop_vinfo)
2232 || LOOP_VINFO_PTR_MASK (loop_vinfo) == mask);
2233 LOOP_VINFO_PTR_MASK (loop_vinfo) = mask;
2234 LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).safe_push (
2235 DR_STMT (dr));
2239 /* Versioning requires at least one misaligned data reference. */
2240 if (!LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
2241 do_versioning = false;
2242 else if (!do_versioning)
2243 LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).truncate (0);
2246 if (do_versioning)
2248 vec<gimple *> may_misalign_stmts
2249 = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo);
2250 gimple *stmt;
2252 /* It can now be assumed that the data references in the statements
2253 in LOOP_VINFO_MAY_MISALIGN_STMTS will be aligned in the version
2254 of the loop being vectorized. */
2255 FOR_EACH_VEC_ELT (may_misalign_stmts, i, stmt)
2257 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2258 dr = STMT_VINFO_DATA_REF (stmt_info);
2259 SET_DR_MISALIGNMENT (dr, 0);
2260 if (dump_enabled_p ())
2261 dump_printf_loc (MSG_NOTE, vect_location,
2262 "Alignment of access forced using versioning.\n");
2265 if (dump_enabled_p ())
2266 dump_printf_loc (MSG_NOTE, vect_location,
2267 "Versioning for alignment will be applied.\n");
2269 /* Peeling and versioning can't be done together at this time. */
2270 gcc_assert (! (do_peeling && do_versioning));
2272 stat = vect_verify_datarefs_alignment (loop_vinfo);
2273 gcc_assert (stat);
2274 return stat;
2277 /* This point is reached if neither peeling nor versioning is being done. */
2278 gcc_assert (! (do_peeling || do_versioning));
2280 stat = vect_verify_datarefs_alignment (loop_vinfo);
2281 return stat;
2285 /* Function vect_find_same_alignment_drs.
2287 Update group and alignment relations according to the chosen
2288 vectorization factor. */
2290 static void
2291 vect_find_same_alignment_drs (struct data_dependence_relation *ddr)
2293 struct data_reference *dra = DDR_A (ddr);
2294 struct data_reference *drb = DDR_B (ddr);
2295 stmt_vec_info stmtinfo_a = vinfo_for_stmt (DR_STMT (dra));
2296 stmt_vec_info stmtinfo_b = vinfo_for_stmt (DR_STMT (drb));
2298 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
2299 return;
2301 if (dra == drb)
2302 return;
2304 if (!operand_equal_p (DR_BASE_ADDRESS (dra), DR_BASE_ADDRESS (drb), 0)
2305 || !operand_equal_p (DR_OFFSET (dra), DR_OFFSET (drb), 0)
2306 || !operand_equal_p (DR_STEP (dra), DR_STEP (drb), 0))
2307 return;
2309 /* Two references with distance zero have the same alignment. */
2310 poly_offset_int diff = (wi::to_poly_offset (DR_INIT (dra))
2311 - wi::to_poly_offset (DR_INIT (drb)));
2312 if (maybe_ne (diff, 0))
2314 /* Get the wider of the two alignments. */
2315 unsigned int align_a = (vect_calculate_target_alignment (dra)
2316 / BITS_PER_UNIT);
2317 unsigned int align_b = (vect_calculate_target_alignment (drb)
2318 / BITS_PER_UNIT);
2319 unsigned int max_align = MAX (align_a, align_b);
2321 /* Require the gap to be a multiple of the larger vector alignment. */
2322 if (!multiple_p (diff, max_align))
2323 return;
2326 STMT_VINFO_SAME_ALIGN_REFS (stmtinfo_a).safe_push (drb);
2327 STMT_VINFO_SAME_ALIGN_REFS (stmtinfo_b).safe_push (dra);
2328 if (dump_enabled_p ())
2330 dump_printf_loc (MSG_NOTE, vect_location,
2331 "accesses have the same alignment: ");
2332 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
2333 dump_printf (MSG_NOTE, " and ");
2334 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
2335 dump_printf (MSG_NOTE, "\n");
2340 /* Function vect_analyze_data_refs_alignment
2342 Analyze the alignment of the data-references in the loop.
2343 Return FALSE if a data reference is found that cannot be vectorized. */
2345 bool
2346 vect_analyze_data_refs_alignment (loop_vec_info vinfo)
2348 if (dump_enabled_p ())
2349 dump_printf_loc (MSG_NOTE, vect_location,
2350 "=== vect_analyze_data_refs_alignment ===\n");
2352 /* Mark groups of data references with same alignment using
2353 data dependence information. */
2354 vec<ddr_p> ddrs = vinfo->ddrs;
2355 struct data_dependence_relation *ddr;
2356 unsigned int i;
2358 FOR_EACH_VEC_ELT (ddrs, i, ddr)
2359 vect_find_same_alignment_drs (ddr);
2361 vec<data_reference_p> datarefs = vinfo->datarefs;
2362 struct data_reference *dr;
2364 vect_record_base_alignments (vinfo);
2365 FOR_EACH_VEC_ELT (datarefs, i, dr)
2367 stmt_vec_info stmt_info = vinfo_for_stmt (DR_STMT (dr));
2368 if (STMT_VINFO_VECTORIZABLE (stmt_info)
2369 && !vect_compute_data_ref_alignment (dr))
2371 /* Strided accesses perform only component accesses, misalignment
2372 information is irrelevant for them. */
2373 if (STMT_VINFO_STRIDED_P (stmt_info)
2374 && !STMT_VINFO_GROUPED_ACCESS (stmt_info))
2375 continue;
2377 if (dump_enabled_p ())
2378 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2379 "not vectorized: can't calculate alignment "
2380 "for data ref.\n");
2382 return false;
2386 return true;
2390 /* Analyze alignment of DRs of stmts in NODE. */
2392 static bool
2393 vect_slp_analyze_and_verify_node_alignment (slp_tree node)
2395 /* We vectorize from the first scalar stmt in the node unless
2396 the node is permuted in which case we start from the first
2397 element in the group. */
2398 gimple *first_stmt = SLP_TREE_SCALAR_STMTS (node)[0];
2399 data_reference_p first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
2400 if (SLP_TREE_LOAD_PERMUTATION (node).exists ())
2401 first_stmt = DR_GROUP_FIRST_ELEMENT (vinfo_for_stmt (first_stmt));
2403 data_reference_p dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
2404 if (! vect_compute_data_ref_alignment (dr)
2405 /* For creating the data-ref pointer we need alignment of the
2406 first element anyway. */
2407 || (dr != first_dr
2408 && ! vect_compute_data_ref_alignment (first_dr))
2409 || ! verify_data_ref_alignment (dr))
2411 if (dump_enabled_p ())
2412 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2413 "not vectorized: bad data alignment in basic "
2414 "block.\n");
2415 return false;
2418 return true;
2421 /* Function vect_slp_analyze_instance_alignment
2423 Analyze the alignment of the data-references in the SLP instance.
2424 Return FALSE if a data reference is found that cannot be vectorized. */
2426 bool
2427 vect_slp_analyze_and_verify_instance_alignment (slp_instance instance)
2429 if (dump_enabled_p ())
2430 dump_printf_loc (MSG_NOTE, vect_location,
2431 "=== vect_slp_analyze_and_verify_instance_alignment ===\n");
2433 slp_tree node;
2434 unsigned i;
2435 FOR_EACH_VEC_ELT (SLP_INSTANCE_LOADS (instance), i, node)
2436 if (! vect_slp_analyze_and_verify_node_alignment (node))
2437 return false;
2439 node = SLP_INSTANCE_TREE (instance);
2440 if (STMT_VINFO_DATA_REF (vinfo_for_stmt (SLP_TREE_SCALAR_STMTS (node)[0]))
2441 && ! vect_slp_analyze_and_verify_node_alignment
2442 (SLP_INSTANCE_TREE (instance)))
2443 return false;
2445 return true;
2449 /* Analyze groups of accesses: check that DR belongs to a group of
2450 accesses of legal size, step, etc. Detect gaps, single element
2451 interleaving, and other special cases. Set grouped access info.
2452 Collect groups of strided stores for further use in SLP analysis.
2453 Worker for vect_analyze_group_access. */
2455 static bool
2456 vect_analyze_group_access_1 (struct data_reference *dr)
2458 tree step = DR_STEP (dr);
2459 tree scalar_type = TREE_TYPE (DR_REF (dr));
2460 HOST_WIDE_INT type_size = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (scalar_type));
2461 gimple *stmt = DR_STMT (dr);
2462 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2463 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
2464 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
2465 HOST_WIDE_INT dr_step = -1;
2466 HOST_WIDE_INT groupsize, last_accessed_element = 1;
2467 bool slp_impossible = false;
2469 /* For interleaving, GROUPSIZE is STEP counted in elements, i.e., the
2470 size of the interleaving group (including gaps). */
2471 if (tree_fits_shwi_p (step))
2473 dr_step = tree_to_shwi (step);
2474 /* Check that STEP is a multiple of type size. Otherwise there is
2475 a non-element-sized gap at the end of the group which we
2476 cannot represent in DR_GROUP_GAP or DR_GROUP_SIZE.
2477 ??? As we can handle non-constant step fine here we should
2478 simply remove uses of DR_GROUP_GAP between the last and first
2479 element and instead rely on DR_STEP. DR_GROUP_SIZE then would
2480 simply not include that gap. */
2481 if ((dr_step % type_size) != 0)
2483 if (dump_enabled_p ())
2485 dump_printf_loc (MSG_NOTE, vect_location,
2486 "Step ");
2487 dump_generic_expr (MSG_NOTE, TDF_SLIM, step);
2488 dump_printf (MSG_NOTE,
2489 " is not a multiple of the element size for ");
2490 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr));
2491 dump_printf (MSG_NOTE, "\n");
2493 return false;
2495 groupsize = absu_hwi (dr_step) / type_size;
2497 else
2498 groupsize = 0;
2500 /* Not consecutive access is possible only if it is a part of interleaving. */
2501 if (!DR_GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
2503 /* Check if it this DR is a part of interleaving, and is a single
2504 element of the group that is accessed in the loop. */
2506 /* Gaps are supported only for loads. STEP must be a multiple of the type
2507 size. */
2508 if (DR_IS_READ (dr)
2509 && (dr_step % type_size) == 0
2510 && groupsize > 0)
2512 DR_GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) = stmt;
2513 DR_GROUP_SIZE (vinfo_for_stmt (stmt)) = groupsize;
2514 DR_GROUP_GAP (stmt_info) = groupsize - 1;
2515 if (dump_enabled_p ())
2517 dump_printf_loc (MSG_NOTE, vect_location,
2518 "Detected single element interleaving ");
2519 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr));
2520 dump_printf (MSG_NOTE, " step ");
2521 dump_generic_expr (MSG_NOTE, TDF_SLIM, step);
2522 dump_printf (MSG_NOTE, "\n");
2525 return true;
2528 if (dump_enabled_p ())
2530 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2531 "not consecutive access ");
2532 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
2535 if (bb_vinfo)
2537 /* Mark the statement as unvectorizable. */
2538 STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr))) = false;
2539 return true;
2542 dump_printf_loc (MSG_NOTE, vect_location, "using strided accesses\n");
2543 STMT_VINFO_STRIDED_P (stmt_info) = true;
2544 return true;
2547 if (DR_GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) == stmt)
2549 /* First stmt in the interleaving chain. Check the chain. */
2550 gimple *next = DR_GROUP_NEXT_ELEMENT (vinfo_for_stmt (stmt));
2551 struct data_reference *data_ref = dr;
2552 unsigned int count = 1;
2553 tree prev_init = DR_INIT (data_ref);
2554 gimple *prev = stmt;
2555 HOST_WIDE_INT diff, gaps = 0;
2557 /* By construction, all group members have INTEGER_CST DR_INITs. */
2558 while (next)
2560 /* Skip same data-refs. In case that two or more stmts share
2561 data-ref (supported only for loads), we vectorize only the first
2562 stmt, and the rest get their vectorized loads from the first
2563 one. */
2564 if (!tree_int_cst_compare (DR_INIT (data_ref),
2565 DR_INIT (STMT_VINFO_DATA_REF (
2566 vinfo_for_stmt (next)))))
2568 if (DR_IS_WRITE (data_ref))
2570 if (dump_enabled_p ())
2571 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2572 "Two store stmts share the same dr.\n");
2573 return false;
2576 if (dump_enabled_p ())
2577 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2578 "Two or more load stmts share the same dr.\n");
2580 /* For load use the same data-ref load. */
2581 DR_GROUP_SAME_DR_STMT (vinfo_for_stmt (next)) = prev;
2583 prev = next;
2584 next = DR_GROUP_NEXT_ELEMENT (vinfo_for_stmt (next));
2585 continue;
2588 prev = next;
2589 data_ref = STMT_VINFO_DATA_REF (vinfo_for_stmt (next));
2591 /* All group members have the same STEP by construction. */
2592 gcc_checking_assert (operand_equal_p (DR_STEP (data_ref), step, 0));
2594 /* Check that the distance between two accesses is equal to the type
2595 size. Otherwise, we have gaps. */
2596 diff = (TREE_INT_CST_LOW (DR_INIT (data_ref))
2597 - TREE_INT_CST_LOW (prev_init)) / type_size;
2598 if (diff != 1)
2600 /* FORNOW: SLP of accesses with gaps is not supported. */
2601 slp_impossible = true;
2602 if (DR_IS_WRITE (data_ref))
2604 if (dump_enabled_p ())
2605 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2606 "interleaved store with gaps\n");
2607 return false;
2610 gaps += diff - 1;
2613 last_accessed_element += diff;
2615 /* Store the gap from the previous member of the group. If there is no
2616 gap in the access, DR_GROUP_GAP is always 1. */
2617 DR_GROUP_GAP (vinfo_for_stmt (next)) = diff;
2619 prev_init = DR_INIT (data_ref);
2620 next = DR_GROUP_NEXT_ELEMENT (vinfo_for_stmt (next));
2621 /* Count the number of data-refs in the chain. */
2622 count++;
2625 if (groupsize == 0)
2626 groupsize = count + gaps;
2628 /* This could be UINT_MAX but as we are generating code in a very
2629 inefficient way we have to cap earlier. See PR78699 for example. */
2630 if (groupsize > 4096)
2632 if (dump_enabled_p ())
2633 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2634 "group is too large\n");
2635 return false;
2638 /* Check that the size of the interleaving is equal to count for stores,
2639 i.e., that there are no gaps. */
2640 if (groupsize != count
2641 && !DR_IS_READ (dr))
2643 if (dump_enabled_p ())
2644 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2645 "interleaved store with gaps\n");
2646 return false;
2649 /* If there is a gap after the last load in the group it is the
2650 difference between the groupsize and the last accessed
2651 element.
2652 When there is no gap, this difference should be 0. */
2653 DR_GROUP_GAP (vinfo_for_stmt (stmt)) = groupsize - last_accessed_element;
2655 DR_GROUP_SIZE (vinfo_for_stmt (stmt)) = groupsize;
2656 if (dump_enabled_p ())
2658 dump_printf_loc (MSG_NOTE, vect_location,
2659 "Detected interleaving ");
2660 if (DR_IS_READ (dr))
2661 dump_printf (MSG_NOTE, "load ");
2662 else
2663 dump_printf (MSG_NOTE, "store ");
2664 dump_printf (MSG_NOTE, "of size %u starting with ",
2665 (unsigned)groupsize);
2666 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
2667 if (DR_GROUP_GAP (vinfo_for_stmt (stmt)) != 0)
2668 dump_printf_loc (MSG_NOTE, vect_location,
2669 "There is a gap of %u elements after the group\n",
2670 DR_GROUP_GAP (vinfo_for_stmt (stmt)));
2673 /* SLP: create an SLP data structure for every interleaving group of
2674 stores for further analysis in vect_analyse_slp. */
2675 if (DR_IS_WRITE (dr) && !slp_impossible)
2677 if (loop_vinfo)
2678 LOOP_VINFO_GROUPED_STORES (loop_vinfo).safe_push (stmt);
2679 if (bb_vinfo)
2680 BB_VINFO_GROUPED_STORES (bb_vinfo).safe_push (stmt);
2684 return true;
2687 /* Analyze groups of accesses: check that DR belongs to a group of
2688 accesses of legal size, step, etc. Detect gaps, single element
2689 interleaving, and other special cases. Set grouped access info.
2690 Collect groups of strided stores for further use in SLP analysis. */
2692 static bool
2693 vect_analyze_group_access (struct data_reference *dr)
2695 if (!vect_analyze_group_access_1 (dr))
2697 /* Dissolve the group if present. */
2698 gimple *next;
2699 gimple *stmt = DR_GROUP_FIRST_ELEMENT (vinfo_for_stmt (DR_STMT (dr)));
2700 while (stmt)
2702 stmt_vec_info vinfo = vinfo_for_stmt (stmt);
2703 next = DR_GROUP_NEXT_ELEMENT (vinfo);
2704 DR_GROUP_FIRST_ELEMENT (vinfo) = NULL;
2705 DR_GROUP_NEXT_ELEMENT (vinfo) = NULL;
2706 stmt = next;
2708 return false;
2710 return true;
2713 /* Analyze the access pattern of the data-reference DR.
2714 In case of non-consecutive accesses call vect_analyze_group_access() to
2715 analyze groups of accesses. */
2717 static bool
2718 vect_analyze_data_ref_access (struct data_reference *dr)
2720 tree step = DR_STEP (dr);
2721 tree scalar_type = TREE_TYPE (DR_REF (dr));
2722 gimple *stmt = DR_STMT (dr);
2723 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2724 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
2725 struct loop *loop = NULL;
2727 if (STMT_VINFO_GATHER_SCATTER_P (stmt_info))
2728 return true;
2730 if (loop_vinfo)
2731 loop = LOOP_VINFO_LOOP (loop_vinfo);
2733 if (loop_vinfo && !step)
2735 if (dump_enabled_p ())
2736 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2737 "bad data-ref access in loop\n");
2738 return false;
2741 /* Allow loads with zero step in inner-loop vectorization. */
2742 if (loop_vinfo && integer_zerop (step))
2744 DR_GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) = NULL;
2745 if (!nested_in_vect_loop_p (loop, stmt))
2746 return DR_IS_READ (dr);
2747 /* Allow references with zero step for outer loops marked
2748 with pragma omp simd only - it guarantees absence of
2749 loop-carried dependencies between inner loop iterations. */
2750 if (loop->safelen < 2)
2752 if (dump_enabled_p ())
2753 dump_printf_loc (MSG_NOTE, vect_location,
2754 "zero step in inner loop of nest\n");
2755 return false;
2759 if (loop && nested_in_vect_loop_p (loop, stmt))
2761 /* Interleaved accesses are not yet supported within outer-loop
2762 vectorization for references in the inner-loop. */
2763 DR_GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) = NULL;
2765 /* For the rest of the analysis we use the outer-loop step. */
2766 step = STMT_VINFO_DR_STEP (stmt_info);
2767 if (integer_zerop (step))
2769 if (dump_enabled_p ())
2770 dump_printf_loc (MSG_NOTE, vect_location,
2771 "zero step in outer loop.\n");
2772 return DR_IS_READ (dr);
2776 /* Consecutive? */
2777 if (TREE_CODE (step) == INTEGER_CST)
2779 HOST_WIDE_INT dr_step = TREE_INT_CST_LOW (step);
2780 if (!tree_int_cst_compare (step, TYPE_SIZE_UNIT (scalar_type))
2781 || (dr_step < 0
2782 && !compare_tree_int (TYPE_SIZE_UNIT (scalar_type), -dr_step)))
2784 /* Mark that it is not interleaving. */
2785 DR_GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) = NULL;
2786 return true;
2790 if (loop && nested_in_vect_loop_p (loop, stmt))
2792 if (dump_enabled_p ())
2793 dump_printf_loc (MSG_NOTE, vect_location,
2794 "grouped access in outer loop.\n");
2795 return false;
2799 /* Assume this is a DR handled by non-constant strided load case. */
2800 if (TREE_CODE (step) != INTEGER_CST)
2801 return (STMT_VINFO_STRIDED_P (stmt_info)
2802 && (!STMT_VINFO_GROUPED_ACCESS (stmt_info)
2803 || vect_analyze_group_access (dr)));
2805 /* Not consecutive access - check if it's a part of interleaving group. */
2806 return vect_analyze_group_access (dr);
2809 /* Compare two data-references DRA and DRB to group them into chunks
2810 suitable for grouping. */
2812 static int
2813 dr_group_sort_cmp (const void *dra_, const void *drb_)
2815 data_reference_p dra = *(data_reference_p *)const_cast<void *>(dra_);
2816 data_reference_p drb = *(data_reference_p *)const_cast<void *>(drb_);
2817 int cmp;
2819 /* Stabilize sort. */
2820 if (dra == drb)
2821 return 0;
2823 /* DRs in different loops never belong to the same group. */
2824 loop_p loopa = gimple_bb (DR_STMT (dra))->loop_father;
2825 loop_p loopb = gimple_bb (DR_STMT (drb))->loop_father;
2826 if (loopa != loopb)
2827 return loopa->num < loopb->num ? -1 : 1;
2829 /* Ordering of DRs according to base. */
2830 cmp = data_ref_compare_tree (DR_BASE_ADDRESS (dra),
2831 DR_BASE_ADDRESS (drb));
2832 if (cmp != 0)
2833 return cmp;
2835 /* And according to DR_OFFSET. */
2836 cmp = data_ref_compare_tree (DR_OFFSET (dra), DR_OFFSET (drb));
2837 if (cmp != 0)
2838 return cmp;
2840 /* Put reads before writes. */
2841 if (DR_IS_READ (dra) != DR_IS_READ (drb))
2842 return DR_IS_READ (dra) ? -1 : 1;
2844 /* Then sort after access size. */
2845 cmp = data_ref_compare_tree (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dra))),
2846 TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (drb))));
2847 if (cmp != 0)
2848 return cmp;
2850 /* And after step. */
2851 cmp = data_ref_compare_tree (DR_STEP (dra), DR_STEP (drb));
2852 if (cmp != 0)
2853 return cmp;
2855 /* Then sort after DR_INIT. In case of identical DRs sort after stmt UID. */
2856 cmp = data_ref_compare_tree (DR_INIT (dra), DR_INIT (drb));
2857 if (cmp == 0)
2858 return gimple_uid (DR_STMT (dra)) < gimple_uid (DR_STMT (drb)) ? -1 : 1;
2859 return cmp;
2862 /* If OP is the result of a conversion, return the unconverted value,
2863 otherwise return null. */
2865 static tree
2866 strip_conversion (tree op)
2868 if (TREE_CODE (op) != SSA_NAME)
2869 return NULL_TREE;
2870 gimple *stmt = SSA_NAME_DEF_STMT (op);
2871 if (!is_gimple_assign (stmt)
2872 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt)))
2873 return NULL_TREE;
2874 return gimple_assign_rhs1 (stmt);
2877 /* Return true if vectorizable_* routines can handle statements STMT1
2878 and STMT2 being in a single group. */
2880 static bool
2881 can_group_stmts_p (gimple *stmt1, gimple *stmt2)
2883 if (gimple_assign_single_p (stmt1))
2884 return gimple_assign_single_p (stmt2);
2886 if (is_gimple_call (stmt1) && gimple_call_internal_p (stmt1))
2888 /* Check for two masked loads or two masked stores. */
2889 if (!is_gimple_call (stmt2) || !gimple_call_internal_p (stmt2))
2890 return false;
2891 internal_fn ifn = gimple_call_internal_fn (stmt1);
2892 if (ifn != IFN_MASK_LOAD && ifn != IFN_MASK_STORE)
2893 return false;
2894 if (ifn != gimple_call_internal_fn (stmt2))
2895 return false;
2897 /* Check that the masks are the same. Cope with casts of masks,
2898 like those created by build_mask_conversion. */
2899 tree mask1 = gimple_call_arg (stmt1, 2);
2900 tree mask2 = gimple_call_arg (stmt2, 2);
2901 if (!operand_equal_p (mask1, mask2, 0))
2903 mask1 = strip_conversion (mask1);
2904 if (!mask1)
2905 return false;
2906 mask2 = strip_conversion (mask2);
2907 if (!mask2)
2908 return false;
2909 if (!operand_equal_p (mask1, mask2, 0))
2910 return false;
2912 return true;
2915 return false;
2918 /* Function vect_analyze_data_ref_accesses.
2920 Analyze the access pattern of all the data references in the loop.
2922 FORNOW: the only access pattern that is considered vectorizable is a
2923 simple step 1 (consecutive) access.
2925 FORNOW: handle only arrays and pointer accesses. */
2927 bool
2928 vect_analyze_data_ref_accesses (vec_info *vinfo)
2930 unsigned int i;
2931 vec<data_reference_p> datarefs = vinfo->datarefs;
2932 struct data_reference *dr;
2934 if (dump_enabled_p ())
2935 dump_printf_loc (MSG_NOTE, vect_location,
2936 "=== vect_analyze_data_ref_accesses ===\n");
2938 if (datarefs.is_empty ())
2939 return true;
2941 /* Sort the array of datarefs to make building the interleaving chains
2942 linear. Don't modify the original vector's order, it is needed for
2943 determining what dependencies are reversed. */
2944 vec<data_reference_p> datarefs_copy = datarefs.copy ();
2945 datarefs_copy.qsort (dr_group_sort_cmp);
2947 /* Build the interleaving chains. */
2948 for (i = 0; i < datarefs_copy.length () - 1;)
2950 data_reference_p dra = datarefs_copy[i];
2951 stmt_vec_info stmtinfo_a = vinfo_for_stmt (DR_STMT (dra));
2952 stmt_vec_info lastinfo = NULL;
2953 if (!STMT_VINFO_VECTORIZABLE (stmtinfo_a)
2954 || STMT_VINFO_GATHER_SCATTER_P (stmtinfo_a))
2956 ++i;
2957 continue;
2959 for (i = i + 1; i < datarefs_copy.length (); ++i)
2961 data_reference_p drb = datarefs_copy[i];
2962 stmt_vec_info stmtinfo_b = vinfo_for_stmt (DR_STMT (drb));
2963 if (!STMT_VINFO_VECTORIZABLE (stmtinfo_b)
2964 || STMT_VINFO_GATHER_SCATTER_P (stmtinfo_b))
2965 break;
2967 /* ??? Imperfect sorting (non-compatible types, non-modulo
2968 accesses, same accesses) can lead to a group to be artificially
2969 split here as we don't just skip over those. If it really
2970 matters we can push those to a worklist and re-iterate
2971 over them. The we can just skip ahead to the next DR here. */
2973 /* DRs in a different loop should not be put into the same
2974 interleaving group. */
2975 if (gimple_bb (DR_STMT (dra))->loop_father
2976 != gimple_bb (DR_STMT (drb))->loop_father)
2977 break;
2979 /* Check that the data-refs have same first location (except init)
2980 and they are both either store or load (not load and store,
2981 not masked loads or stores). */
2982 if (DR_IS_READ (dra) != DR_IS_READ (drb)
2983 || data_ref_compare_tree (DR_BASE_ADDRESS (dra),
2984 DR_BASE_ADDRESS (drb)) != 0
2985 || data_ref_compare_tree (DR_OFFSET (dra), DR_OFFSET (drb)) != 0
2986 || !can_group_stmts_p (DR_STMT (dra), DR_STMT (drb)))
2987 break;
2989 /* Check that the data-refs have the same constant size. */
2990 tree sza = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dra)));
2991 tree szb = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (drb)));
2992 if (!tree_fits_uhwi_p (sza)
2993 || !tree_fits_uhwi_p (szb)
2994 || !tree_int_cst_equal (sza, szb))
2995 break;
2997 /* Check that the data-refs have the same step. */
2998 if (data_ref_compare_tree (DR_STEP (dra), DR_STEP (drb)) != 0)
2999 break;
3001 /* Check the types are compatible.
3002 ??? We don't distinguish this during sorting. */
3003 if (!types_compatible_p (TREE_TYPE (DR_REF (dra)),
3004 TREE_TYPE (DR_REF (drb))))
3005 break;
3007 /* Check that the DR_INITs are compile-time constants. */
3008 if (TREE_CODE (DR_INIT (dra)) != INTEGER_CST
3009 || TREE_CODE (DR_INIT (drb)) != INTEGER_CST)
3010 break;
3012 /* Sorting has ensured that DR_INIT (dra) <= DR_INIT (drb). */
3013 HOST_WIDE_INT init_a = TREE_INT_CST_LOW (DR_INIT (dra));
3014 HOST_WIDE_INT init_b = TREE_INT_CST_LOW (DR_INIT (drb));
3015 HOST_WIDE_INT init_prev
3016 = TREE_INT_CST_LOW (DR_INIT (datarefs_copy[i-1]));
3017 gcc_assert (init_a <= init_b
3018 && init_a <= init_prev
3019 && init_prev <= init_b);
3021 /* Do not place the same access in the interleaving chain twice. */
3022 if (init_b == init_prev)
3024 gcc_assert (gimple_uid (DR_STMT (datarefs_copy[i-1]))
3025 < gimple_uid (DR_STMT (drb)));
3026 /* ??? For now we simply "drop" the later reference which is
3027 otherwise the same rather than finishing off this group.
3028 In the end we'd want to re-process duplicates forming
3029 multiple groups from the refs, likely by just collecting
3030 all candidates (including duplicates and split points
3031 below) in a vector and then process them together. */
3032 continue;
3035 /* If init_b == init_a + the size of the type * k, we have an
3036 interleaving, and DRA is accessed before DRB. */
3037 HOST_WIDE_INT type_size_a = tree_to_uhwi (sza);
3038 if (type_size_a == 0
3039 || (init_b - init_a) % type_size_a != 0)
3040 break;
3042 /* If we have a store, the accesses are adjacent. This splits
3043 groups into chunks we support (we don't support vectorization
3044 of stores with gaps). */
3045 if (!DR_IS_READ (dra) && init_b - init_prev != type_size_a)
3046 break;
3048 /* If the step (if not zero or non-constant) is greater than the
3049 difference between data-refs' inits this splits groups into
3050 suitable sizes. */
3051 if (tree_fits_shwi_p (DR_STEP (dra)))
3053 HOST_WIDE_INT step = tree_to_shwi (DR_STEP (dra));
3054 if (step != 0 && step <= (init_b - init_a))
3055 break;
3058 if (dump_enabled_p ())
3060 dump_printf_loc (MSG_NOTE, vect_location,
3061 "Detected interleaving ");
3062 if (DR_IS_READ (dra))
3063 dump_printf (MSG_NOTE, "load ");
3064 else
3065 dump_printf (MSG_NOTE, "store ");
3066 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
3067 dump_printf (MSG_NOTE, " and ");
3068 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
3069 dump_printf (MSG_NOTE, "\n");
3072 /* Link the found element into the group list. */
3073 if (!DR_GROUP_FIRST_ELEMENT (stmtinfo_a))
3075 DR_GROUP_FIRST_ELEMENT (stmtinfo_a) = DR_STMT (dra);
3076 lastinfo = stmtinfo_a;
3078 DR_GROUP_FIRST_ELEMENT (stmtinfo_b) = DR_STMT (dra);
3079 DR_GROUP_NEXT_ELEMENT (lastinfo) = DR_STMT (drb);
3080 lastinfo = stmtinfo_b;
3084 FOR_EACH_VEC_ELT (datarefs_copy, i, dr)
3085 if (STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr)))
3086 && !vect_analyze_data_ref_access (dr))
3088 if (dump_enabled_p ())
3089 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3090 "not vectorized: complicated access pattern.\n");
3092 if (is_a <bb_vec_info> (vinfo))
3094 /* Mark the statement as not vectorizable. */
3095 STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr))) = false;
3096 continue;
3098 else
3100 datarefs_copy.release ();
3101 return false;
3105 datarefs_copy.release ();
3106 return true;
3109 /* Function vect_vfa_segment_size.
3111 Input:
3112 DR: The data reference.
3113 LENGTH_FACTOR: segment length to consider.
3115 Return a value suitable for the dr_with_seg_len::seg_len field.
3116 This is the "distance travelled" by the pointer from the first
3117 iteration in the segment to the last. Note that it does not include
3118 the size of the access; in effect it only describes the first byte. */
3120 static tree
3121 vect_vfa_segment_size (struct data_reference *dr, tree length_factor)
3123 length_factor = size_binop (MINUS_EXPR,
3124 fold_convert (sizetype, length_factor),
3125 size_one_node);
3126 return size_binop (MULT_EXPR, fold_convert (sizetype, DR_STEP (dr)),
3127 length_factor);
3130 /* Return a value that, when added to abs (vect_vfa_segment_size (dr)),
3131 gives the worst-case number of bytes covered by the segment. */
3133 static unsigned HOST_WIDE_INT
3134 vect_vfa_access_size (data_reference *dr)
3136 stmt_vec_info stmt_vinfo = vinfo_for_stmt (DR_STMT (dr));
3137 tree ref_type = TREE_TYPE (DR_REF (dr));
3138 unsigned HOST_WIDE_INT ref_size = tree_to_uhwi (TYPE_SIZE_UNIT (ref_type));
3139 unsigned HOST_WIDE_INT access_size = ref_size;
3140 if (DR_GROUP_FIRST_ELEMENT (stmt_vinfo))
3142 gcc_assert (DR_GROUP_FIRST_ELEMENT (stmt_vinfo) == DR_STMT (dr));
3143 access_size *= DR_GROUP_SIZE (stmt_vinfo) - DR_GROUP_GAP (stmt_vinfo);
3145 if (STMT_VINFO_VEC_STMT (stmt_vinfo)
3146 && (vect_supportable_dr_alignment (dr, false)
3147 == dr_explicit_realign_optimized))
3149 /* We might access a full vector's worth. */
3150 tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
3151 access_size += tree_to_uhwi (TYPE_SIZE_UNIT (vectype)) - ref_size;
3153 return access_size;
3156 /* Get the minimum alignment for all the scalar accesses that DR describes. */
3158 static unsigned int
3159 vect_vfa_align (const data_reference *dr)
3161 return TYPE_ALIGN_UNIT (TREE_TYPE (DR_REF (dr)));
3164 /* Function vect_no_alias_p.
3166 Given data references A and B with equal base and offset, see whether
3167 the alias relation can be decided at compilation time. Return 1 if
3168 it can and the references alias, 0 if it can and the references do
3169 not alias, and -1 if we cannot decide at compile time. SEGMENT_LENGTH_A,
3170 SEGMENT_LENGTH_B, ACCESS_SIZE_A and ACCESS_SIZE_B are the equivalent
3171 of dr_with_seg_len::{seg_len,access_size} for A and B. */
3173 static int
3174 vect_compile_time_alias (struct data_reference *a, struct data_reference *b,
3175 tree segment_length_a, tree segment_length_b,
3176 unsigned HOST_WIDE_INT access_size_a,
3177 unsigned HOST_WIDE_INT access_size_b)
3179 poly_offset_int offset_a = wi::to_poly_offset (DR_INIT (a));
3180 poly_offset_int offset_b = wi::to_poly_offset (DR_INIT (b));
3181 poly_uint64 const_length_a;
3182 poly_uint64 const_length_b;
3184 /* For negative step, we need to adjust address range by TYPE_SIZE_UNIT
3185 bytes, e.g., int a[3] -> a[1] range is [a+4, a+16) instead of
3186 [a, a+12) */
3187 if (tree_int_cst_compare (DR_STEP (a), size_zero_node) < 0)
3189 const_length_a = (-wi::to_poly_wide (segment_length_a)).force_uhwi ();
3190 offset_a = (offset_a + access_size_a) - const_length_a;
3192 else
3193 const_length_a = tree_to_poly_uint64 (segment_length_a);
3194 if (tree_int_cst_compare (DR_STEP (b), size_zero_node) < 0)
3196 const_length_b = (-wi::to_poly_wide (segment_length_b)).force_uhwi ();
3197 offset_b = (offset_b + access_size_b) - const_length_b;
3199 else
3200 const_length_b = tree_to_poly_uint64 (segment_length_b);
3202 const_length_a += access_size_a;
3203 const_length_b += access_size_b;
3205 if (ranges_known_overlap_p (offset_a, const_length_a,
3206 offset_b, const_length_b))
3207 return 1;
3209 if (!ranges_maybe_overlap_p (offset_a, const_length_a,
3210 offset_b, const_length_b))
3211 return 0;
3213 return -1;
3216 /* Return true if the minimum nonzero dependence distance for loop LOOP_DEPTH
3217 in DDR is >= VF. */
3219 static bool
3220 dependence_distance_ge_vf (data_dependence_relation *ddr,
3221 unsigned int loop_depth, poly_uint64 vf)
3223 if (DDR_ARE_DEPENDENT (ddr) != NULL_TREE
3224 || DDR_NUM_DIST_VECTS (ddr) == 0)
3225 return false;
3227 /* If the dependence is exact, we should have limited the VF instead. */
3228 gcc_checking_assert (DDR_COULD_BE_INDEPENDENT_P (ddr));
3230 unsigned int i;
3231 lambda_vector dist_v;
3232 FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
3234 HOST_WIDE_INT dist = dist_v[loop_depth];
3235 if (dist != 0
3236 && !(dist > 0 && DDR_REVERSED_P (ddr))
3237 && maybe_lt ((unsigned HOST_WIDE_INT) abs_hwi (dist), vf))
3238 return false;
3241 if (dump_enabled_p ())
3243 dump_printf_loc (MSG_NOTE, vect_location,
3244 "dependence distance between ");
3245 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (DDR_A (ddr)));
3246 dump_printf (MSG_NOTE, " and ");
3247 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (DDR_B (ddr)));
3248 dump_printf (MSG_NOTE, " is >= VF\n");
3251 return true;
3254 /* Dump LOWER_BOUND using flags DUMP_KIND. Dumps are known to be enabled. */
3256 static void
3257 dump_lower_bound (int dump_kind, const vec_lower_bound &lower_bound)
3259 dump_printf (dump_kind, "%s (", lower_bound.unsigned_p ? "unsigned" : "abs");
3260 dump_generic_expr (dump_kind, TDF_SLIM, lower_bound.expr);
3261 dump_printf (dump_kind, ") >= ");
3262 dump_dec (dump_kind, lower_bound.min_value);
3265 /* Record that the vectorized loop requires the vec_lower_bound described
3266 by EXPR, UNSIGNED_P and MIN_VALUE. */
3268 static void
3269 vect_check_lower_bound (loop_vec_info loop_vinfo, tree expr, bool unsigned_p,
3270 poly_uint64 min_value)
3272 vec<vec_lower_bound> lower_bounds = LOOP_VINFO_LOWER_BOUNDS (loop_vinfo);
3273 for (unsigned int i = 0; i < lower_bounds.length (); ++i)
3274 if (operand_equal_p (lower_bounds[i].expr, expr, 0))
3276 unsigned_p &= lower_bounds[i].unsigned_p;
3277 min_value = upper_bound (lower_bounds[i].min_value, min_value);
3278 if (lower_bounds[i].unsigned_p != unsigned_p
3279 || maybe_lt (lower_bounds[i].min_value, min_value))
3281 lower_bounds[i].unsigned_p = unsigned_p;
3282 lower_bounds[i].min_value = min_value;
3283 if (dump_enabled_p ())
3285 dump_printf_loc (MSG_NOTE, vect_location,
3286 "updating run-time check to ");
3287 dump_lower_bound (MSG_NOTE, lower_bounds[i]);
3288 dump_printf (MSG_NOTE, "\n");
3291 return;
3294 vec_lower_bound lower_bound (expr, unsigned_p, min_value);
3295 if (dump_enabled_p ())
3297 dump_printf_loc (MSG_NOTE, vect_location, "need a run-time check that ");
3298 dump_lower_bound (MSG_NOTE, lower_bound);
3299 dump_printf (MSG_NOTE, "\n");
3301 LOOP_VINFO_LOWER_BOUNDS (loop_vinfo).safe_push (lower_bound);
3304 /* Return true if it's unlikely that the step of the vectorized form of DR
3305 will span fewer than GAP bytes. */
3307 static bool
3308 vect_small_gap_p (loop_vec_info loop_vinfo, data_reference *dr, poly_int64 gap)
3310 stmt_vec_info stmt_info = vinfo_for_stmt (DR_STMT (dr));
3311 HOST_WIDE_INT count
3312 = estimated_poly_value (LOOP_VINFO_VECT_FACTOR (loop_vinfo));
3313 if (DR_GROUP_FIRST_ELEMENT (stmt_info))
3314 count *= DR_GROUP_SIZE (vinfo_for_stmt (DR_GROUP_FIRST_ELEMENT (stmt_info)));
3315 return estimated_poly_value (gap) <= count * vect_get_scalar_dr_size (dr);
3318 /* Return true if we know that there is no alias between DR_A and DR_B
3319 when abs (DR_STEP (DR_A)) >= N for some N. When returning true, set
3320 *LOWER_BOUND_OUT to this N. */
3322 static bool
3323 vectorizable_with_step_bound_p (data_reference *dr_a, data_reference *dr_b,
3324 poly_uint64 *lower_bound_out)
3326 /* Check that there is a constant gap of known sign between DR_A
3327 and DR_B. */
3328 poly_int64 init_a, init_b;
3329 if (!operand_equal_p (DR_BASE_ADDRESS (dr_a), DR_BASE_ADDRESS (dr_b), 0)
3330 || !operand_equal_p (DR_OFFSET (dr_a), DR_OFFSET (dr_b), 0)
3331 || !operand_equal_p (DR_STEP (dr_a), DR_STEP (dr_b), 0)
3332 || !poly_int_tree_p (DR_INIT (dr_a), &init_a)
3333 || !poly_int_tree_p (DR_INIT (dr_b), &init_b)
3334 || !ordered_p (init_a, init_b))
3335 return false;
3337 /* Sort DR_A and DR_B by the address they access. */
3338 if (maybe_lt (init_b, init_a))
3340 std::swap (init_a, init_b);
3341 std::swap (dr_a, dr_b);
3344 /* If the two accesses could be dependent within a scalar iteration,
3345 make sure that we'd retain their order. */
3346 if (maybe_gt (init_a + vect_get_scalar_dr_size (dr_a), init_b)
3347 && !vect_preserves_scalar_order_p (DR_STMT (dr_a), DR_STMT (dr_b)))
3348 return false;
3350 /* There is no alias if abs (DR_STEP) is greater than or equal to
3351 the bytes spanned by the combination of the two accesses. */
3352 *lower_bound_out = init_b + vect_get_scalar_dr_size (dr_b) - init_a;
3353 return true;
3356 /* Function vect_prune_runtime_alias_test_list.
3358 Prune a list of ddrs to be tested at run-time by versioning for alias.
3359 Merge several alias checks into one if possible.
3360 Return FALSE if resulting list of ddrs is longer then allowed by
3361 PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS, otherwise return TRUE. */
3363 bool
3364 vect_prune_runtime_alias_test_list (loop_vec_info loop_vinfo)
3366 typedef pair_hash <tree_operand_hash, tree_operand_hash> tree_pair_hash;
3367 hash_set <tree_pair_hash> compared_objects;
3369 vec<ddr_p> may_alias_ddrs = LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo);
3370 vec<dr_with_seg_len_pair_t> &comp_alias_ddrs
3371 = LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo);
3372 vec<vec_object_pair> &check_unequal_addrs
3373 = LOOP_VINFO_CHECK_UNEQUAL_ADDRS (loop_vinfo);
3374 poly_uint64 vect_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
3375 tree scalar_loop_iters = LOOP_VINFO_NITERS (loop_vinfo);
3377 ddr_p ddr;
3378 unsigned int i;
3379 tree length_factor;
3381 if (dump_enabled_p ())
3382 dump_printf_loc (MSG_NOTE, vect_location,
3383 "=== vect_prune_runtime_alias_test_list ===\n");
3385 /* Step values are irrelevant for aliasing if the number of vector
3386 iterations is equal to the number of scalar iterations (which can
3387 happen for fully-SLP loops). */
3388 bool ignore_step_p = known_eq (LOOP_VINFO_VECT_FACTOR (loop_vinfo), 1U);
3390 if (!ignore_step_p)
3392 /* Convert the checks for nonzero steps into bound tests. */
3393 tree value;
3394 FOR_EACH_VEC_ELT (LOOP_VINFO_CHECK_NONZERO (loop_vinfo), i, value)
3395 vect_check_lower_bound (loop_vinfo, value, true, 1);
3398 if (may_alias_ddrs.is_empty ())
3399 return true;
3401 comp_alias_ddrs.create (may_alias_ddrs.length ());
3403 unsigned int loop_depth
3404 = index_in_loop_nest (LOOP_VINFO_LOOP (loop_vinfo)->num,
3405 LOOP_VINFO_LOOP_NEST (loop_vinfo));
3407 /* First, we collect all data ref pairs for aliasing checks. */
3408 FOR_EACH_VEC_ELT (may_alias_ddrs, i, ddr)
3410 int comp_res;
3411 poly_uint64 lower_bound;
3412 struct data_reference *dr_a, *dr_b;
3413 gimple *dr_group_first_a, *dr_group_first_b;
3414 tree segment_length_a, segment_length_b;
3415 unsigned HOST_WIDE_INT access_size_a, access_size_b;
3416 unsigned int align_a, align_b;
3417 gimple *stmt_a, *stmt_b;
3419 /* Ignore the alias if the VF we chose ended up being no greater
3420 than the dependence distance. */
3421 if (dependence_distance_ge_vf (ddr, loop_depth, vect_factor))
3422 continue;
3424 if (DDR_OBJECT_A (ddr))
3426 vec_object_pair new_pair (DDR_OBJECT_A (ddr), DDR_OBJECT_B (ddr));
3427 if (!compared_objects.add (new_pair))
3429 if (dump_enabled_p ())
3431 dump_printf_loc (MSG_NOTE, vect_location, "checking that ");
3432 dump_generic_expr (MSG_NOTE, TDF_SLIM, new_pair.first);
3433 dump_printf (MSG_NOTE, " and ");
3434 dump_generic_expr (MSG_NOTE, TDF_SLIM, new_pair.second);
3435 dump_printf (MSG_NOTE, " have different addresses\n");
3437 LOOP_VINFO_CHECK_UNEQUAL_ADDRS (loop_vinfo).safe_push (new_pair);
3439 continue;
3442 dr_a = DDR_A (ddr);
3443 stmt_a = DR_STMT (DDR_A (ddr));
3445 dr_b = DDR_B (ddr);
3446 stmt_b = DR_STMT (DDR_B (ddr));
3448 /* Skip the pair if inter-iteration dependencies are irrelevant
3449 and intra-iteration dependencies are guaranteed to be honored. */
3450 if (ignore_step_p
3451 && (vect_preserves_scalar_order_p (stmt_a, stmt_b)
3452 || vectorizable_with_step_bound_p (dr_a, dr_b, &lower_bound)))
3454 if (dump_enabled_p ())
3456 dump_printf_loc (MSG_NOTE, vect_location,
3457 "no need for alias check between ");
3458 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr_a));
3459 dump_printf (MSG_NOTE, " and ");
3460 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr_b));
3461 dump_printf (MSG_NOTE, " when VF is 1\n");
3463 continue;
3466 /* See whether we can handle the alias using a bounds check on
3467 the step, and whether that's likely to be the best approach.
3468 (It might not be, for example, if the minimum step is much larger
3469 than the number of bytes handled by one vector iteration.) */
3470 if (!ignore_step_p
3471 && TREE_CODE (DR_STEP (dr_a)) != INTEGER_CST
3472 && vectorizable_with_step_bound_p (dr_a, dr_b, &lower_bound)
3473 && (vect_small_gap_p (loop_vinfo, dr_a, lower_bound)
3474 || vect_small_gap_p (loop_vinfo, dr_b, lower_bound)))
3476 bool unsigned_p = dr_known_forward_stride_p (dr_a);
3477 if (dump_enabled_p ())
3479 dump_printf_loc (MSG_NOTE, vect_location, "no alias between ");
3480 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr_a));
3481 dump_printf (MSG_NOTE, " and ");
3482 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr_b));
3483 dump_printf (MSG_NOTE, " when the step ");
3484 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_STEP (dr_a));
3485 dump_printf (MSG_NOTE, " is outside ");
3486 if (unsigned_p)
3487 dump_printf (MSG_NOTE, "[0");
3488 else
3490 dump_printf (MSG_NOTE, "(");
3491 dump_dec (MSG_NOTE, poly_int64 (-lower_bound));
3493 dump_printf (MSG_NOTE, ", ");
3494 dump_dec (MSG_NOTE, lower_bound);
3495 dump_printf (MSG_NOTE, ")\n");
3497 vect_check_lower_bound (loop_vinfo, DR_STEP (dr_a), unsigned_p,
3498 lower_bound);
3499 continue;
3502 dr_group_first_a = DR_GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_a));
3503 if (dr_group_first_a)
3505 stmt_a = dr_group_first_a;
3506 dr_a = STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt_a));
3509 dr_group_first_b = DR_GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_b));
3510 if (dr_group_first_b)
3512 stmt_b = dr_group_first_b;
3513 dr_b = STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt_b));
3516 if (ignore_step_p)
3518 segment_length_a = size_zero_node;
3519 segment_length_b = size_zero_node;
3521 else
3523 if (!operand_equal_p (DR_STEP (dr_a), DR_STEP (dr_b), 0))
3524 length_factor = scalar_loop_iters;
3525 else
3526 length_factor = size_int (vect_factor);
3527 segment_length_a = vect_vfa_segment_size (dr_a, length_factor);
3528 segment_length_b = vect_vfa_segment_size (dr_b, length_factor);
3530 access_size_a = vect_vfa_access_size (dr_a);
3531 access_size_b = vect_vfa_access_size (dr_b);
3532 align_a = vect_vfa_align (dr_a);
3533 align_b = vect_vfa_align (dr_b);
3535 comp_res = data_ref_compare_tree (DR_BASE_ADDRESS (dr_a),
3536 DR_BASE_ADDRESS (dr_b));
3537 if (comp_res == 0)
3538 comp_res = data_ref_compare_tree (DR_OFFSET (dr_a),
3539 DR_OFFSET (dr_b));
3541 /* See whether the alias is known at compilation time. */
3542 if (comp_res == 0
3543 && TREE_CODE (DR_STEP (dr_a)) == INTEGER_CST
3544 && TREE_CODE (DR_STEP (dr_b)) == INTEGER_CST
3545 && poly_int_tree_p (segment_length_a)
3546 && poly_int_tree_p (segment_length_b))
3548 int res = vect_compile_time_alias (dr_a, dr_b,
3549 segment_length_a,
3550 segment_length_b,
3551 access_size_a,
3552 access_size_b);
3553 if (res >= 0 && dump_enabled_p ())
3555 dump_printf_loc (MSG_NOTE, vect_location,
3556 "can tell at compile time that ");
3557 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr_a));
3558 dump_printf (MSG_NOTE, " and ");
3559 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr_b));
3560 if (res == 0)
3561 dump_printf (MSG_NOTE, " do not alias\n");
3562 else
3563 dump_printf (MSG_NOTE, " alias\n");
3566 if (res == 0)
3567 continue;
3569 if (res == 1)
3571 if (dump_enabled_p ())
3572 dump_printf_loc (MSG_NOTE, vect_location,
3573 "not vectorized: compilation time alias.\n");
3574 return false;
3578 dr_with_seg_len_pair_t dr_with_seg_len_pair
3579 (dr_with_seg_len (dr_a, segment_length_a, access_size_a, align_a),
3580 dr_with_seg_len (dr_b, segment_length_b, access_size_b, align_b));
3582 /* Canonicalize pairs by sorting the two DR members. */
3583 if (comp_res > 0)
3584 std::swap (dr_with_seg_len_pair.first, dr_with_seg_len_pair.second);
3586 comp_alias_ddrs.safe_push (dr_with_seg_len_pair);
3589 prune_runtime_alias_test_list (&comp_alias_ddrs, vect_factor);
3591 unsigned int count = (comp_alias_ddrs.length ()
3592 + check_unequal_addrs.length ());
3594 dump_printf_loc (MSG_NOTE, vect_location,
3595 "improved number of alias checks from %d to %d\n",
3596 may_alias_ddrs.length (), count);
3597 if ((int) count > PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS))
3599 if (dump_enabled_p ())
3600 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3601 "number of versioning for alias "
3602 "run-time tests exceeds %d "
3603 "(--param vect-max-version-for-alias-checks)\n",
3604 PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS));
3605 return false;
3608 return true;
3611 /* Check whether we can use an internal function for a gather load
3612 or scatter store. READ_P is true for loads and false for stores.
3613 MASKED_P is true if the load or store is conditional. MEMORY_TYPE is
3614 the type of the memory elements being loaded or stored. OFFSET_BITS
3615 is the number of bits in each scalar offset and OFFSET_SIGN is the
3616 sign of the offset. SCALE is the amount by which the offset should
3617 be multiplied *after* it has been converted to address width.
3619 Return true if the function is supported, storing the function
3620 id in *IFN_OUT and the type of a vector element in *ELEMENT_TYPE_OUT. */
3622 bool
3623 vect_gather_scatter_fn_p (bool read_p, bool masked_p, tree vectype,
3624 tree memory_type, unsigned int offset_bits,
3625 signop offset_sign, int scale,
3626 internal_fn *ifn_out, tree *element_type_out)
3628 unsigned int memory_bits = tree_to_uhwi (TYPE_SIZE (memory_type));
3629 unsigned int element_bits = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (vectype)));
3630 if (offset_bits > element_bits)
3631 /* Internal functions require the offset to be the same width as
3632 the vector elements. We can extend narrower offsets, but it isn't
3633 safe to truncate wider offsets. */
3634 return false;
3636 if (element_bits != memory_bits)
3637 /* For now the vector elements must be the same width as the
3638 memory elements. */
3639 return false;
3641 /* Work out which function we need. */
3642 internal_fn ifn;
3643 if (read_p)
3644 ifn = masked_p ? IFN_MASK_GATHER_LOAD : IFN_GATHER_LOAD;
3645 else
3646 ifn = masked_p ? IFN_MASK_SCATTER_STORE : IFN_SCATTER_STORE;
3648 /* Test whether the target supports this combination. */
3649 if (!internal_gather_scatter_fn_supported_p (ifn, vectype, memory_type,
3650 offset_sign, scale))
3651 return false;
3653 *ifn_out = ifn;
3654 *element_type_out = TREE_TYPE (vectype);
3655 return true;
3658 /* CALL is a call to an internal gather load or scatter store function.
3659 Describe the operation in INFO. */
3661 static void
3662 vect_describe_gather_scatter_call (gcall *call, gather_scatter_info *info)
3664 stmt_vec_info stmt_info = vinfo_for_stmt (call);
3665 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
3666 data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
3668 info->ifn = gimple_call_internal_fn (call);
3669 info->decl = NULL_TREE;
3670 info->base = gimple_call_arg (call, 0);
3671 info->offset = gimple_call_arg (call, 1);
3672 info->offset_dt = vect_unknown_def_type;
3673 info->offset_vectype = NULL_TREE;
3674 info->scale = TREE_INT_CST_LOW (gimple_call_arg (call, 2));
3675 info->element_type = TREE_TYPE (vectype);
3676 info->memory_type = TREE_TYPE (DR_REF (dr));
3679 /* Return true if a non-affine read or write in STMT is suitable for a
3680 gather load or scatter store. Describe the operation in *INFO if so. */
3682 bool
3683 vect_check_gather_scatter (gimple *stmt, loop_vec_info loop_vinfo,
3684 gather_scatter_info *info)
3686 HOST_WIDE_INT scale = 1;
3687 poly_int64 pbitpos, pbitsize;
3688 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
3689 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
3690 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
3691 tree offtype = NULL_TREE;
3692 tree decl = NULL_TREE, base, off;
3693 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
3694 tree memory_type = TREE_TYPE (DR_REF (dr));
3695 machine_mode pmode;
3696 int punsignedp, reversep, pvolatilep = 0;
3697 internal_fn ifn;
3698 tree element_type;
3699 bool masked_p = false;
3701 /* See whether this is already a call to a gather/scatter internal function.
3702 If not, see whether it's a masked load or store. */
3703 gcall *call = dyn_cast <gcall *> (stmt);
3704 if (call && gimple_call_internal_p (call))
3706 ifn = gimple_call_internal_fn (stmt);
3707 if (internal_gather_scatter_fn_p (ifn))
3709 vect_describe_gather_scatter_call (call, info);
3710 return true;
3712 masked_p = (ifn == IFN_MASK_LOAD || ifn == IFN_MASK_STORE);
3715 /* True if we should aim to use internal functions rather than
3716 built-in functions. */
3717 bool use_ifn_p = (DR_IS_READ (dr)
3718 ? supports_vec_gather_load_p ()
3719 : supports_vec_scatter_store_p ());
3721 base = DR_REF (dr);
3722 /* For masked loads/stores, DR_REF (dr) is an artificial MEM_REF,
3723 see if we can use the def stmt of the address. */
3724 if (masked_p
3725 && TREE_CODE (base) == MEM_REF
3726 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME
3727 && integer_zerop (TREE_OPERAND (base, 1))
3728 && !expr_invariant_in_loop_p (loop, TREE_OPERAND (base, 0)))
3730 gimple *def_stmt = SSA_NAME_DEF_STMT (TREE_OPERAND (base, 0));
3731 if (is_gimple_assign (def_stmt)
3732 && gimple_assign_rhs_code (def_stmt) == ADDR_EXPR)
3733 base = TREE_OPERAND (gimple_assign_rhs1 (def_stmt), 0);
3736 /* The gather and scatter builtins need address of the form
3737 loop_invariant + vector * {1, 2, 4, 8}
3739 loop_invariant + sign_extend (vector) * { 1, 2, 4, 8 }.
3740 Unfortunately DR_BASE_ADDRESS/DR_OFFSET can be a mixture
3741 of loop invariants/SSA_NAMEs defined in the loop, with casts,
3742 multiplications and additions in it. To get a vector, we need
3743 a single SSA_NAME that will be defined in the loop and will
3744 contain everything that is not loop invariant and that can be
3745 vectorized. The following code attempts to find such a preexistng
3746 SSA_NAME OFF and put the loop invariants into a tree BASE
3747 that can be gimplified before the loop. */
3748 base = get_inner_reference (base, &pbitsize, &pbitpos, &off, &pmode,
3749 &punsignedp, &reversep, &pvolatilep);
3750 gcc_assert (base && !reversep);
3751 poly_int64 pbytepos = exact_div (pbitpos, BITS_PER_UNIT);
3753 if (TREE_CODE (base) == MEM_REF)
3755 if (!integer_zerop (TREE_OPERAND (base, 1)))
3757 if (off == NULL_TREE)
3758 off = wide_int_to_tree (sizetype, mem_ref_offset (base));
3759 else
3760 off = size_binop (PLUS_EXPR, off,
3761 fold_convert (sizetype, TREE_OPERAND (base, 1)));
3763 base = TREE_OPERAND (base, 0);
3765 else
3766 base = build_fold_addr_expr (base);
3768 if (off == NULL_TREE)
3769 off = size_zero_node;
3771 /* If base is not loop invariant, either off is 0, then we start with just
3772 the constant offset in the loop invariant BASE and continue with base
3773 as OFF, otherwise give up.
3774 We could handle that case by gimplifying the addition of base + off
3775 into some SSA_NAME and use that as off, but for now punt. */
3776 if (!expr_invariant_in_loop_p (loop, base))
3778 if (!integer_zerop (off))
3779 return false;
3780 off = base;
3781 base = size_int (pbytepos);
3783 /* Otherwise put base + constant offset into the loop invariant BASE
3784 and continue with OFF. */
3785 else
3787 base = fold_convert (sizetype, base);
3788 base = size_binop (PLUS_EXPR, base, size_int (pbytepos));
3791 /* OFF at this point may be either a SSA_NAME or some tree expression
3792 from get_inner_reference. Try to peel off loop invariants from it
3793 into BASE as long as possible. */
3794 STRIP_NOPS (off);
3795 while (offtype == NULL_TREE)
3797 enum tree_code code;
3798 tree op0, op1, add = NULL_TREE;
3800 if (TREE_CODE (off) == SSA_NAME)
3802 gimple *def_stmt = SSA_NAME_DEF_STMT (off);
3804 if (expr_invariant_in_loop_p (loop, off))
3805 return false;
3807 if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
3808 break;
3810 op0 = gimple_assign_rhs1 (def_stmt);
3811 code = gimple_assign_rhs_code (def_stmt);
3812 op1 = gimple_assign_rhs2 (def_stmt);
3814 else
3816 if (get_gimple_rhs_class (TREE_CODE (off)) == GIMPLE_TERNARY_RHS)
3817 return false;
3818 code = TREE_CODE (off);
3819 extract_ops_from_tree (off, &code, &op0, &op1);
3821 switch (code)
3823 case POINTER_PLUS_EXPR:
3824 case PLUS_EXPR:
3825 if (expr_invariant_in_loop_p (loop, op0))
3827 add = op0;
3828 off = op1;
3829 do_add:
3830 add = fold_convert (sizetype, add);
3831 if (scale != 1)
3832 add = size_binop (MULT_EXPR, add, size_int (scale));
3833 base = size_binop (PLUS_EXPR, base, add);
3834 continue;
3836 if (expr_invariant_in_loop_p (loop, op1))
3838 add = op1;
3839 off = op0;
3840 goto do_add;
3842 break;
3843 case MINUS_EXPR:
3844 if (expr_invariant_in_loop_p (loop, op1))
3846 add = fold_convert (sizetype, op1);
3847 add = size_binop (MINUS_EXPR, size_zero_node, add);
3848 off = op0;
3849 goto do_add;
3851 break;
3852 case MULT_EXPR:
3853 if (scale == 1 && tree_fits_shwi_p (op1))
3855 int new_scale = tree_to_shwi (op1);
3856 /* Only treat this as a scaling operation if the target
3857 supports it. */
3858 if (use_ifn_p
3859 && !vect_gather_scatter_fn_p (DR_IS_READ (dr), masked_p,
3860 vectype, memory_type, 1,
3861 TYPE_SIGN (TREE_TYPE (op0)),
3862 new_scale, &ifn,
3863 &element_type))
3864 break;
3865 scale = new_scale;
3866 off = op0;
3867 continue;
3869 break;
3870 case SSA_NAME:
3871 off = op0;
3872 continue;
3873 CASE_CONVERT:
3874 if (!POINTER_TYPE_P (TREE_TYPE (op0))
3875 && !INTEGRAL_TYPE_P (TREE_TYPE (op0)))
3876 break;
3877 if (TYPE_PRECISION (TREE_TYPE (op0))
3878 == TYPE_PRECISION (TREE_TYPE (off)))
3880 off = op0;
3881 continue;
3884 /* The internal functions need the offset to be the same width
3885 as the elements of VECTYPE. Don't include operations that
3886 cast the offset from that width to a different width. */
3887 if (use_ifn_p
3888 && (int_size_in_bytes (TREE_TYPE (vectype))
3889 == int_size_in_bytes (TREE_TYPE (off))))
3890 break;
3892 if (TYPE_PRECISION (TREE_TYPE (op0))
3893 < TYPE_PRECISION (TREE_TYPE (off)))
3895 off = op0;
3896 offtype = TREE_TYPE (off);
3897 STRIP_NOPS (off);
3898 continue;
3900 break;
3901 default:
3902 break;
3904 break;
3907 /* If at the end OFF still isn't a SSA_NAME or isn't
3908 defined in the loop, punt. */
3909 if (TREE_CODE (off) != SSA_NAME
3910 || expr_invariant_in_loop_p (loop, off))
3911 return false;
3913 if (offtype == NULL_TREE)
3914 offtype = TREE_TYPE (off);
3916 if (use_ifn_p)
3918 if (!vect_gather_scatter_fn_p (DR_IS_READ (dr), masked_p, vectype,
3919 memory_type, TYPE_PRECISION (offtype),
3920 TYPE_SIGN (offtype), scale, &ifn,
3921 &element_type))
3922 return false;
3924 else
3926 if (DR_IS_READ (dr))
3928 if (targetm.vectorize.builtin_gather)
3929 decl = targetm.vectorize.builtin_gather (vectype, offtype, scale);
3931 else
3933 if (targetm.vectorize.builtin_scatter)
3934 decl = targetm.vectorize.builtin_scatter (vectype, offtype, scale);
3937 if (!decl)
3938 return false;
3940 ifn = IFN_LAST;
3941 element_type = TREE_TYPE (vectype);
3944 info->ifn = ifn;
3945 info->decl = decl;
3946 info->base = base;
3947 info->offset = off;
3948 info->offset_dt = vect_unknown_def_type;
3949 info->offset_vectype = NULL_TREE;
3950 info->scale = scale;
3951 info->element_type = element_type;
3952 info->memory_type = memory_type;
3953 return true;
3956 /* Find the data references in STMT, analyze them with respect to LOOP and
3957 append them to DATAREFS. Return false if datarefs in this stmt cannot
3958 be handled. */
3960 bool
3961 vect_find_stmt_data_reference (loop_p loop, gimple *stmt,
3962 vec<data_reference_p> *datarefs)
3964 /* We can ignore clobbers for dataref analysis - they are removed during
3965 loop vectorization and BB vectorization checks dependences with a
3966 stmt walk. */
3967 if (gimple_clobber_p (stmt))
3968 return true;
3970 if (gimple_has_volatile_ops (stmt))
3972 if (dump_enabled_p ())
3974 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3975 "not vectorized: volatile type ");
3976 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3978 return false;
3981 if (stmt_can_throw_internal (stmt))
3983 if (dump_enabled_p ())
3985 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3986 "not vectorized: statement can throw an "
3987 "exception ");
3988 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3990 return false;
3993 auto_vec<data_reference_p, 2> refs;
3994 if (!find_data_references_in_stmt (loop, stmt, &refs))
3995 return false;
3997 if (refs.is_empty ())
3998 return true;
4000 if (refs.length () > 1)
4002 if (dump_enabled_p ())
4004 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4005 "not vectorized: more than one data ref "
4006 "in stmt: ");
4007 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
4009 return false;
4012 if (gcall *call = dyn_cast <gcall *> (stmt))
4013 if (!gimple_call_internal_p (call)
4014 || (gimple_call_internal_fn (call) != IFN_MASK_LOAD
4015 && gimple_call_internal_fn (call) != IFN_MASK_STORE))
4017 if (dump_enabled_p ())
4019 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4020 "not vectorized: dr in a call ");
4021 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
4023 return false;
4026 data_reference_p dr = refs.pop ();
4027 if (TREE_CODE (DR_REF (dr)) == COMPONENT_REF
4028 && DECL_BIT_FIELD (TREE_OPERAND (DR_REF (dr), 1)))
4030 if (dump_enabled_p ())
4032 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4033 "not vectorized: statement is bitfield "
4034 "access ");
4035 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
4037 return false;
4040 if (DR_BASE_ADDRESS (dr)
4041 && TREE_CODE (DR_BASE_ADDRESS (dr)) == INTEGER_CST)
4043 if (dump_enabled_p ())
4044 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4045 "not vectorized: base addr of dr is a "
4046 "constant\n");
4047 return false;
4050 datarefs->safe_push (dr);
4051 return true;
4054 /* Function vect_analyze_data_refs.
4056 Find all the data references in the loop or basic block.
4058 The general structure of the analysis of data refs in the vectorizer is as
4059 follows:
4060 1- vect_analyze_data_refs(loop/bb): call
4061 compute_data_dependences_for_loop/bb to find and analyze all data-refs
4062 in the loop/bb and their dependences.
4063 2- vect_analyze_dependences(): apply dependence testing using ddrs.
4064 3- vect_analyze_drs_alignment(): check that ref_stmt.alignment is ok.
4065 4- vect_analyze_drs_access(): check that ref_stmt.step is ok.
4069 bool
4070 vect_analyze_data_refs (vec_info *vinfo, poly_uint64 *min_vf)
4072 struct loop *loop = NULL;
4073 unsigned int i;
4074 struct data_reference *dr;
4075 tree scalar_type;
4077 if (dump_enabled_p ())
4078 dump_printf_loc (MSG_NOTE, vect_location,
4079 "=== vect_analyze_data_refs ===\n");
4081 if (loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo))
4082 loop = LOOP_VINFO_LOOP (loop_vinfo);
4084 /* Go through the data-refs, check that the analysis succeeded. Update
4085 pointer from stmt_vec_info struct to DR and vectype. */
4087 vec<data_reference_p> datarefs = vinfo->datarefs;
4088 FOR_EACH_VEC_ELT (datarefs, i, dr)
4090 gimple *stmt;
4091 stmt_vec_info stmt_info;
4092 enum { SG_NONE, GATHER, SCATTER } gatherscatter = SG_NONE;
4093 bool simd_lane_access = false;
4094 poly_uint64 vf;
4096 gcc_assert (DR_REF (dr));
4097 stmt = DR_STMT (dr);
4098 stmt_info = vinfo_for_stmt (stmt);
4100 /* Check that analysis of the data-ref succeeded. */
4101 if (!DR_BASE_ADDRESS (dr) || !DR_OFFSET (dr) || !DR_INIT (dr)
4102 || !DR_STEP (dr))
4104 bool maybe_gather
4105 = DR_IS_READ (dr)
4106 && !TREE_THIS_VOLATILE (DR_REF (dr))
4107 && (targetm.vectorize.builtin_gather != NULL
4108 || supports_vec_gather_load_p ());
4109 bool maybe_scatter
4110 = DR_IS_WRITE (dr)
4111 && !TREE_THIS_VOLATILE (DR_REF (dr))
4112 && (targetm.vectorize.builtin_scatter != NULL
4113 || supports_vec_scatter_store_p ());
4114 bool maybe_simd_lane_access
4115 = is_a <loop_vec_info> (vinfo) && loop->simduid;
4117 /* If target supports vector gather loads or scatter stores, or if
4118 this might be a SIMD lane access, see if they can't be used. */
4119 if (is_a <loop_vec_info> (vinfo)
4120 && (maybe_gather || maybe_scatter || maybe_simd_lane_access)
4121 && !nested_in_vect_loop_p (loop, stmt))
4123 struct data_reference *newdr
4124 = create_data_ref (NULL, loop_containing_stmt (stmt),
4125 DR_REF (dr), stmt, !maybe_scatter,
4126 DR_IS_CONDITIONAL_IN_STMT (dr));
4127 gcc_assert (newdr != NULL && DR_REF (newdr));
4128 if (DR_BASE_ADDRESS (newdr)
4129 && DR_OFFSET (newdr)
4130 && DR_INIT (newdr)
4131 && DR_STEP (newdr)
4132 && integer_zerop (DR_STEP (newdr)))
4134 if (maybe_simd_lane_access)
4136 tree off = DR_OFFSET (newdr);
4137 STRIP_NOPS (off);
4138 if (TREE_CODE (DR_INIT (newdr)) == INTEGER_CST
4139 && TREE_CODE (off) == MULT_EXPR
4140 && tree_fits_uhwi_p (TREE_OPERAND (off, 1)))
4142 tree step = TREE_OPERAND (off, 1);
4143 off = TREE_OPERAND (off, 0);
4144 STRIP_NOPS (off);
4145 if (CONVERT_EXPR_P (off)
4146 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (off,
4147 0)))
4148 < TYPE_PRECISION (TREE_TYPE (off)))
4149 off = TREE_OPERAND (off, 0);
4150 if (TREE_CODE (off) == SSA_NAME)
4152 gimple *def = SSA_NAME_DEF_STMT (off);
4153 tree reft = TREE_TYPE (DR_REF (newdr));
4154 if (is_gimple_call (def)
4155 && gimple_call_internal_p (def)
4156 && (gimple_call_internal_fn (def)
4157 == IFN_GOMP_SIMD_LANE))
4159 tree arg = gimple_call_arg (def, 0);
4160 gcc_assert (TREE_CODE (arg) == SSA_NAME);
4161 arg = SSA_NAME_VAR (arg);
4162 if (arg == loop->simduid
4163 /* For now. */
4164 && tree_int_cst_equal
4165 (TYPE_SIZE_UNIT (reft),
4166 step))
4168 DR_OFFSET (newdr) = ssize_int (0);
4169 DR_STEP (newdr) = step;
4170 DR_OFFSET_ALIGNMENT (newdr)
4171 = BIGGEST_ALIGNMENT;
4172 DR_STEP_ALIGNMENT (newdr)
4173 = highest_pow2_factor (step);
4174 dr = newdr;
4175 simd_lane_access = true;
4181 if (!simd_lane_access && (maybe_gather || maybe_scatter))
4183 dr = newdr;
4184 if (maybe_gather)
4185 gatherscatter = GATHER;
4186 else
4187 gatherscatter = SCATTER;
4190 if (gatherscatter == SG_NONE && !simd_lane_access)
4191 free_data_ref (newdr);
4194 if (gatherscatter == SG_NONE && !simd_lane_access)
4196 if (dump_enabled_p ())
4198 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4199 "not vectorized: data ref analysis "
4200 "failed ");
4201 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
4203 if (is_a <bb_vec_info> (vinfo))
4205 /* In BB vectorization the ref can still participate
4206 in dependence analysis, we just can't vectorize it. */
4207 STMT_VINFO_VECTORIZABLE (stmt_info) = false;
4208 continue;
4210 return false;
4214 if (TREE_CODE (DR_BASE_ADDRESS (dr)) == ADDR_EXPR
4215 && VAR_P (TREE_OPERAND (DR_BASE_ADDRESS (dr), 0))
4216 && DECL_NONALIASED (TREE_OPERAND (DR_BASE_ADDRESS (dr), 0)))
4218 if (dump_enabled_p ())
4220 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4221 "not vectorized: base object not addressable "
4222 "for stmt: ");
4223 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
4225 if (is_a <bb_vec_info> (vinfo))
4227 /* In BB vectorization the ref can still participate
4228 in dependence analysis, we just can't vectorize it. */
4229 STMT_VINFO_VECTORIZABLE (stmt_info) = false;
4230 continue;
4232 return false;
4235 if (is_a <loop_vec_info> (vinfo)
4236 && TREE_CODE (DR_STEP (dr)) != INTEGER_CST)
4238 if (nested_in_vect_loop_p (loop, stmt))
4240 if (dump_enabled_p ())
4242 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4243 "not vectorized: not suitable for strided "
4244 "load ");
4245 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
4247 return false;
4249 STMT_VINFO_STRIDED_P (stmt_info) = true;
4252 /* Update DR field in stmt_vec_info struct. */
4254 /* If the dataref is in an inner-loop of the loop that is considered for
4255 for vectorization, we also want to analyze the access relative to
4256 the outer-loop (DR contains information only relative to the
4257 inner-most enclosing loop). We do that by building a reference to the
4258 first location accessed by the inner-loop, and analyze it relative to
4259 the outer-loop. */
4260 if (loop && nested_in_vect_loop_p (loop, stmt))
4262 /* Build a reference to the first location accessed by the
4263 inner loop: *(BASE + INIT + OFFSET). By construction,
4264 this address must be invariant in the inner loop, so we
4265 can consider it as being used in the outer loop. */
4266 tree base = unshare_expr (DR_BASE_ADDRESS (dr));
4267 tree offset = unshare_expr (DR_OFFSET (dr));
4268 tree init = unshare_expr (DR_INIT (dr));
4269 tree init_offset = fold_build2 (PLUS_EXPR, TREE_TYPE (offset),
4270 init, offset);
4271 tree init_addr = fold_build_pointer_plus (base, init_offset);
4272 tree init_ref = build_fold_indirect_ref (init_addr);
4274 if (dump_enabled_p ())
4276 dump_printf_loc (MSG_NOTE, vect_location,
4277 "analyze in outer loop: ");
4278 dump_generic_expr (MSG_NOTE, TDF_SLIM, init_ref);
4279 dump_printf (MSG_NOTE, "\n");
4282 if (!dr_analyze_innermost (&STMT_VINFO_DR_WRT_VEC_LOOP (stmt_info),
4283 init_ref, loop))
4284 /* dr_analyze_innermost already explained the failure. */
4285 return false;
4287 if (dump_enabled_p ())
4289 dump_printf_loc (MSG_NOTE, vect_location,
4290 "\touter base_address: ");
4291 dump_generic_expr (MSG_NOTE, TDF_SLIM,
4292 STMT_VINFO_DR_BASE_ADDRESS (stmt_info));
4293 dump_printf (MSG_NOTE, "\n\touter offset from base address: ");
4294 dump_generic_expr (MSG_NOTE, TDF_SLIM,
4295 STMT_VINFO_DR_OFFSET (stmt_info));
4296 dump_printf (MSG_NOTE,
4297 "\n\touter constant offset from base address: ");
4298 dump_generic_expr (MSG_NOTE, TDF_SLIM,
4299 STMT_VINFO_DR_INIT (stmt_info));
4300 dump_printf (MSG_NOTE, "\n\touter step: ");
4301 dump_generic_expr (MSG_NOTE, TDF_SLIM,
4302 STMT_VINFO_DR_STEP (stmt_info));
4303 dump_printf (MSG_NOTE, "\n\touter base alignment: %d\n",
4304 STMT_VINFO_DR_BASE_ALIGNMENT (stmt_info));
4305 dump_printf (MSG_NOTE, "\n\touter base misalignment: %d\n",
4306 STMT_VINFO_DR_BASE_MISALIGNMENT (stmt_info));
4307 dump_printf (MSG_NOTE, "\n\touter offset alignment: %d\n",
4308 STMT_VINFO_DR_OFFSET_ALIGNMENT (stmt_info));
4309 dump_printf (MSG_NOTE, "\n\touter step alignment: %d\n",
4310 STMT_VINFO_DR_STEP_ALIGNMENT (stmt_info));
4314 gcc_assert (!STMT_VINFO_DATA_REF (stmt_info));
4315 STMT_VINFO_DATA_REF (stmt_info) = dr;
4316 if (simd_lane_access)
4318 STMT_VINFO_SIMD_LANE_ACCESS_P (stmt_info) = true;
4319 free_data_ref (datarefs[i]);
4320 datarefs[i] = dr;
4323 /* Set vectype for STMT. */
4324 scalar_type = TREE_TYPE (DR_REF (dr));
4325 STMT_VINFO_VECTYPE (stmt_info)
4326 = get_vectype_for_scalar_type (scalar_type);
4327 if (!STMT_VINFO_VECTYPE (stmt_info))
4329 if (dump_enabled_p ())
4331 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4332 "not vectorized: no vectype for stmt: ");
4333 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
4334 dump_printf (MSG_MISSED_OPTIMIZATION, " scalar_type: ");
4335 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_DETAILS,
4336 scalar_type);
4337 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
4340 if (is_a <bb_vec_info> (vinfo))
4342 /* No vector type is fine, the ref can still participate
4343 in dependence analysis, we just can't vectorize it. */
4344 STMT_VINFO_VECTORIZABLE (stmt_info) = false;
4345 continue;
4348 if (gatherscatter != SG_NONE || simd_lane_access)
4350 STMT_VINFO_DATA_REF (stmt_info) = NULL;
4351 if (gatherscatter != SG_NONE)
4352 free_data_ref (dr);
4354 return false;
4356 else
4358 if (dump_enabled_p ())
4360 dump_printf_loc (MSG_NOTE, vect_location,
4361 "got vectype for stmt: ");
4362 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
4363 dump_generic_expr (MSG_NOTE, TDF_SLIM,
4364 STMT_VINFO_VECTYPE (stmt_info));
4365 dump_printf (MSG_NOTE, "\n");
4369 /* Adjust the minimal vectorization factor according to the
4370 vector type. */
4371 vf = TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info));
4372 *min_vf = upper_bound (*min_vf, vf);
4374 if (gatherscatter != SG_NONE)
4376 gather_scatter_info gs_info;
4377 if (!vect_check_gather_scatter (stmt, as_a <loop_vec_info> (vinfo),
4378 &gs_info)
4379 || !get_vectype_for_scalar_type (TREE_TYPE (gs_info.offset)))
4381 STMT_VINFO_DATA_REF (stmt_info) = NULL;
4382 free_data_ref (dr);
4383 if (dump_enabled_p ())
4385 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4386 (gatherscatter == GATHER) ?
4387 "not vectorized: not suitable for gather "
4388 "load " :
4389 "not vectorized: not suitable for scatter "
4390 "store ");
4391 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
4393 return false;
4396 free_data_ref (datarefs[i]);
4397 datarefs[i] = dr;
4398 STMT_VINFO_GATHER_SCATTER_P (stmt_info) = gatherscatter;
4402 /* We used to stop processing and prune the list here. Verify we no
4403 longer need to. */
4404 gcc_assert (i == datarefs.length ());
4406 return true;
4410 /* Function vect_get_new_vect_var.
4412 Returns a name for a new variable. The current naming scheme appends the
4413 prefix "vect_" or "vect_p" (depending on the value of VAR_KIND) to
4414 the name of vectorizer generated variables, and appends that to NAME if
4415 provided. */
4417 tree
4418 vect_get_new_vect_var (tree type, enum vect_var_kind var_kind, const char *name)
4420 const char *prefix;
4421 tree new_vect_var;
4423 switch (var_kind)
4425 case vect_simple_var:
4426 prefix = "vect";
4427 break;
4428 case vect_scalar_var:
4429 prefix = "stmp";
4430 break;
4431 case vect_mask_var:
4432 prefix = "mask";
4433 break;
4434 case vect_pointer_var:
4435 prefix = "vectp";
4436 break;
4437 default:
4438 gcc_unreachable ();
4441 if (name)
4443 char* tmp = concat (prefix, "_", name, NULL);
4444 new_vect_var = create_tmp_reg (type, tmp);
4445 free (tmp);
4447 else
4448 new_vect_var = create_tmp_reg (type, prefix);
4450 return new_vect_var;
4453 /* Like vect_get_new_vect_var but return an SSA name. */
4455 tree
4456 vect_get_new_ssa_name (tree type, enum vect_var_kind var_kind, const char *name)
4458 const char *prefix;
4459 tree new_vect_var;
4461 switch (var_kind)
4463 case vect_simple_var:
4464 prefix = "vect";
4465 break;
4466 case vect_scalar_var:
4467 prefix = "stmp";
4468 break;
4469 case vect_pointer_var:
4470 prefix = "vectp";
4471 break;
4472 default:
4473 gcc_unreachable ();
4476 if (name)
4478 char* tmp = concat (prefix, "_", name, NULL);
4479 new_vect_var = make_temp_ssa_name (type, NULL, tmp);
4480 free (tmp);
4482 else
4483 new_vect_var = make_temp_ssa_name (type, NULL, prefix);
4485 return new_vect_var;
4488 /* Duplicate ptr info and set alignment/misaligment on NAME from DR. */
4490 static void
4491 vect_duplicate_ssa_name_ptr_info (tree name, data_reference *dr)
4493 duplicate_ssa_name_ptr_info (name, DR_PTR_INFO (dr));
4494 int misalign = DR_MISALIGNMENT (dr);
4495 if (misalign == DR_MISALIGNMENT_UNKNOWN)
4496 mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (name));
4497 else
4498 set_ptr_info_alignment (SSA_NAME_PTR_INFO (name),
4499 DR_TARGET_ALIGNMENT (dr), misalign);
4502 /* Function vect_create_addr_base_for_vector_ref.
4504 Create an expression that computes the address of the first memory location
4505 that will be accessed for a data reference.
4507 Input:
4508 STMT: The statement containing the data reference.
4509 NEW_STMT_LIST: Must be initialized to NULL_TREE or a statement list.
4510 OFFSET: Optional. If supplied, it is be added to the initial address.
4511 LOOP: Specify relative to which loop-nest should the address be computed.
4512 For example, when the dataref is in an inner-loop nested in an
4513 outer-loop that is now being vectorized, LOOP can be either the
4514 outer-loop, or the inner-loop. The first memory location accessed
4515 by the following dataref ('in' points to short):
4517 for (i=0; i<N; i++)
4518 for (j=0; j<M; j++)
4519 s += in[i+j]
4521 is as follows:
4522 if LOOP=i_loop: &in (relative to i_loop)
4523 if LOOP=j_loop: &in+i*2B (relative to j_loop)
4524 BYTE_OFFSET: Optional, defaulted to NULL. If supplied, it is added to the
4525 initial address. Unlike OFFSET, which is number of elements to
4526 be added, BYTE_OFFSET is measured in bytes.
4528 Output:
4529 1. Return an SSA_NAME whose value is the address of the memory location of
4530 the first vector of the data reference.
4531 2. If new_stmt_list is not NULL_TREE after return then the caller must insert
4532 these statement(s) which define the returned SSA_NAME.
4534 FORNOW: We are only handling array accesses with step 1. */
4536 tree
4537 vect_create_addr_base_for_vector_ref (gimple *stmt,
4538 gimple_seq *new_stmt_list,
4539 tree offset,
4540 tree byte_offset)
4542 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4543 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
4544 const char *base_name;
4545 tree addr_base;
4546 tree dest;
4547 gimple_seq seq = NULL;
4548 tree vect_ptr_type;
4549 tree step = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr)));
4550 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4551 innermost_loop_behavior *drb = vect_dr_behavior (dr);
4553 tree data_ref_base = unshare_expr (drb->base_address);
4554 tree base_offset = unshare_expr (drb->offset);
4555 tree init = unshare_expr (drb->init);
4557 if (loop_vinfo)
4558 base_name = get_name (data_ref_base);
4559 else
4561 base_offset = ssize_int (0);
4562 init = ssize_int (0);
4563 base_name = get_name (DR_REF (dr));
4566 /* Create base_offset */
4567 base_offset = size_binop (PLUS_EXPR,
4568 fold_convert (sizetype, base_offset),
4569 fold_convert (sizetype, init));
4571 if (offset)
4573 offset = fold_build2 (MULT_EXPR, sizetype,
4574 fold_convert (sizetype, offset), step);
4575 base_offset = fold_build2 (PLUS_EXPR, sizetype,
4576 base_offset, offset);
4578 if (byte_offset)
4580 byte_offset = fold_convert (sizetype, byte_offset);
4581 base_offset = fold_build2 (PLUS_EXPR, sizetype,
4582 base_offset, byte_offset);
4585 /* base + base_offset */
4586 if (loop_vinfo)
4587 addr_base = fold_build_pointer_plus (data_ref_base, base_offset);
4588 else
4590 addr_base = build1 (ADDR_EXPR,
4591 build_pointer_type (TREE_TYPE (DR_REF (dr))),
4592 unshare_expr (DR_REF (dr)));
4595 vect_ptr_type = build_pointer_type (STMT_VINFO_VECTYPE (stmt_info));
4596 dest = vect_get_new_vect_var (vect_ptr_type, vect_pointer_var, base_name);
4597 addr_base = force_gimple_operand (addr_base, &seq, true, dest);
4598 gimple_seq_add_seq (new_stmt_list, seq);
4600 if (DR_PTR_INFO (dr)
4601 && TREE_CODE (addr_base) == SSA_NAME
4602 && !SSA_NAME_PTR_INFO (addr_base))
4604 vect_duplicate_ssa_name_ptr_info (addr_base, dr);
4605 if (offset || byte_offset)
4606 mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (addr_base));
4609 if (dump_enabled_p ())
4611 dump_printf_loc (MSG_NOTE, vect_location, "created ");
4612 dump_generic_expr (MSG_NOTE, TDF_SLIM, addr_base);
4613 dump_printf (MSG_NOTE, "\n");
4616 return addr_base;
4620 /* Function vect_create_data_ref_ptr.
4622 Create a new pointer-to-AGGR_TYPE variable (ap), that points to the first
4623 location accessed in the loop by STMT, along with the def-use update
4624 chain to appropriately advance the pointer through the loop iterations.
4625 Also set aliasing information for the pointer. This pointer is used by
4626 the callers to this function to create a memory reference expression for
4627 vector load/store access.
4629 Input:
4630 1. STMT: a stmt that references memory. Expected to be of the form
4631 GIMPLE_ASSIGN <name, data-ref> or
4632 GIMPLE_ASSIGN <data-ref, name>.
4633 2. AGGR_TYPE: the type of the reference, which should be either a vector
4634 or an array.
4635 3. AT_LOOP: the loop where the vector memref is to be created.
4636 4. OFFSET (optional): an offset to be added to the initial address accessed
4637 by the data-ref in STMT.
4638 5. BSI: location where the new stmts are to be placed if there is no loop
4639 6. ONLY_INIT: indicate if ap is to be updated in the loop, or remain
4640 pointing to the initial address.
4641 7. BYTE_OFFSET (optional, defaults to NULL): a byte offset to be added
4642 to the initial address accessed by the data-ref in STMT. This is
4643 similar to OFFSET, but OFFSET is counted in elements, while BYTE_OFFSET
4644 in bytes.
4645 8. IV_STEP (optional, defaults to NULL): the amount that should be added
4646 to the IV during each iteration of the loop. NULL says to move
4647 by one copy of AGGR_TYPE up or down, depending on the step of the
4648 data reference.
4650 Output:
4651 1. Declare a new ptr to vector_type, and have it point to the base of the
4652 data reference (initial addressed accessed by the data reference).
4653 For example, for vector of type V8HI, the following code is generated:
4655 v8hi *ap;
4656 ap = (v8hi *)initial_address;
4658 if OFFSET is not supplied:
4659 initial_address = &a[init];
4660 if OFFSET is supplied:
4661 initial_address = &a[init + OFFSET];
4662 if BYTE_OFFSET is supplied:
4663 initial_address = &a[init] + BYTE_OFFSET;
4665 Return the initial_address in INITIAL_ADDRESS.
4667 2. If ONLY_INIT is true, just return the initial pointer. Otherwise, also
4668 update the pointer in each iteration of the loop.
4670 Return the increment stmt that updates the pointer in PTR_INCR.
4672 3. Set INV_P to true if the access pattern of the data reference in the
4673 vectorized loop is invariant. Set it to false otherwise.
4675 4. Return the pointer. */
4677 tree
4678 vect_create_data_ref_ptr (gimple *stmt, tree aggr_type, struct loop *at_loop,
4679 tree offset, tree *initial_address,
4680 gimple_stmt_iterator *gsi, gimple **ptr_incr,
4681 bool only_init, bool *inv_p, tree byte_offset,
4682 tree iv_step)
4684 const char *base_name;
4685 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4686 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4687 struct loop *loop = NULL;
4688 bool nested_in_vect_loop = false;
4689 struct loop *containing_loop = NULL;
4690 tree aggr_ptr_type;
4691 tree aggr_ptr;
4692 tree new_temp;
4693 gimple_seq new_stmt_list = NULL;
4694 edge pe = NULL;
4695 basic_block new_bb;
4696 tree aggr_ptr_init;
4697 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
4698 tree aptr;
4699 gimple_stmt_iterator incr_gsi;
4700 bool insert_after;
4701 tree indx_before_incr, indx_after_incr;
4702 gimple *incr;
4703 tree step;
4704 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
4706 gcc_assert (iv_step != NULL_TREE
4707 || TREE_CODE (aggr_type) == ARRAY_TYPE
4708 || TREE_CODE (aggr_type) == VECTOR_TYPE);
4710 if (loop_vinfo)
4712 loop = LOOP_VINFO_LOOP (loop_vinfo);
4713 nested_in_vect_loop = nested_in_vect_loop_p (loop, stmt);
4714 containing_loop = (gimple_bb (stmt))->loop_father;
4715 pe = loop_preheader_edge (loop);
4717 else
4719 gcc_assert (bb_vinfo);
4720 only_init = true;
4721 *ptr_incr = NULL;
4724 /* Check the step (evolution) of the load in LOOP, and record
4725 whether it's invariant. */
4726 step = vect_dr_behavior (dr)->step;
4727 if (integer_zerop (step))
4728 *inv_p = true;
4729 else
4730 *inv_p = false;
4732 /* Create an expression for the first address accessed by this load
4733 in LOOP. */
4734 base_name = get_name (DR_BASE_ADDRESS (dr));
4736 if (dump_enabled_p ())
4738 tree dr_base_type = TREE_TYPE (DR_BASE_OBJECT (dr));
4739 dump_printf_loc (MSG_NOTE, vect_location,
4740 "create %s-pointer variable to type: ",
4741 get_tree_code_name (TREE_CODE (aggr_type)));
4742 dump_generic_expr (MSG_NOTE, TDF_SLIM, aggr_type);
4743 if (TREE_CODE (dr_base_type) == ARRAY_TYPE)
4744 dump_printf (MSG_NOTE, " vectorizing an array ref: ");
4745 else if (TREE_CODE (dr_base_type) == VECTOR_TYPE)
4746 dump_printf (MSG_NOTE, " vectorizing a vector ref: ");
4747 else if (TREE_CODE (dr_base_type) == RECORD_TYPE)
4748 dump_printf (MSG_NOTE, " vectorizing a record based array ref: ");
4749 else
4750 dump_printf (MSG_NOTE, " vectorizing a pointer ref: ");
4751 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_BASE_OBJECT (dr));
4752 dump_printf (MSG_NOTE, "\n");
4755 /* (1) Create the new aggregate-pointer variable.
4756 Vector and array types inherit the alias set of their component
4757 type by default so we need to use a ref-all pointer if the data
4758 reference does not conflict with the created aggregated data
4759 reference because it is not addressable. */
4760 bool need_ref_all = false;
4761 if (!alias_sets_conflict_p (get_alias_set (aggr_type),
4762 get_alias_set (DR_REF (dr))))
4763 need_ref_all = true;
4764 /* Likewise for any of the data references in the stmt group. */
4765 else if (DR_GROUP_SIZE (stmt_info) > 1)
4767 gimple *orig_stmt = DR_GROUP_FIRST_ELEMENT (stmt_info);
4770 stmt_vec_info sinfo = vinfo_for_stmt (orig_stmt);
4771 struct data_reference *sdr = STMT_VINFO_DATA_REF (sinfo);
4772 if (!alias_sets_conflict_p (get_alias_set (aggr_type),
4773 get_alias_set (DR_REF (sdr))))
4775 need_ref_all = true;
4776 break;
4778 orig_stmt = DR_GROUP_NEXT_ELEMENT (sinfo);
4780 while (orig_stmt);
4782 aggr_ptr_type = build_pointer_type_for_mode (aggr_type, ptr_mode,
4783 need_ref_all);
4784 aggr_ptr = vect_get_new_vect_var (aggr_ptr_type, vect_pointer_var, base_name);
4787 /* Note: If the dataref is in an inner-loop nested in LOOP, and we are
4788 vectorizing LOOP (i.e., outer-loop vectorization), we need to create two
4789 def-use update cycles for the pointer: one relative to the outer-loop
4790 (LOOP), which is what steps (3) and (4) below do. The other is relative
4791 to the inner-loop (which is the inner-most loop containing the dataref),
4792 and this is done be step (5) below.
4794 When vectorizing inner-most loops, the vectorized loop (LOOP) is also the
4795 inner-most loop, and so steps (3),(4) work the same, and step (5) is
4796 redundant. Steps (3),(4) create the following:
4798 vp0 = &base_addr;
4799 LOOP: vp1 = phi(vp0,vp2)
4802 vp2 = vp1 + step
4803 goto LOOP
4805 If there is an inner-loop nested in loop, then step (5) will also be
4806 applied, and an additional update in the inner-loop will be created:
4808 vp0 = &base_addr;
4809 LOOP: vp1 = phi(vp0,vp2)
4811 inner: vp3 = phi(vp1,vp4)
4812 vp4 = vp3 + inner_step
4813 if () goto inner
4815 vp2 = vp1 + step
4816 if () goto LOOP */
4818 /* (2) Calculate the initial address of the aggregate-pointer, and set
4819 the aggregate-pointer to point to it before the loop. */
4821 /* Create: (&(base[init_val+offset]+byte_offset) in the loop preheader. */
4823 new_temp = vect_create_addr_base_for_vector_ref (stmt, &new_stmt_list,
4824 offset, byte_offset);
4825 if (new_stmt_list)
4827 if (pe)
4829 new_bb = gsi_insert_seq_on_edge_immediate (pe, new_stmt_list);
4830 gcc_assert (!new_bb);
4832 else
4833 gsi_insert_seq_before (gsi, new_stmt_list, GSI_SAME_STMT);
4836 *initial_address = new_temp;
4837 aggr_ptr_init = new_temp;
4839 /* (3) Handle the updating of the aggregate-pointer inside the loop.
4840 This is needed when ONLY_INIT is false, and also when AT_LOOP is the
4841 inner-loop nested in LOOP (during outer-loop vectorization). */
4843 /* No update in loop is required. */
4844 if (only_init && (!loop_vinfo || at_loop == loop))
4845 aptr = aggr_ptr_init;
4846 else
4848 if (iv_step == NULL_TREE)
4850 /* The step of the aggregate pointer is the type size. */
4851 iv_step = TYPE_SIZE_UNIT (aggr_type);
4852 /* One exception to the above is when the scalar step of the load in
4853 LOOP is zero. In this case the step here is also zero. */
4854 if (*inv_p)
4855 iv_step = size_zero_node;
4856 else if (tree_int_cst_sgn (step) == -1)
4857 iv_step = fold_build1 (NEGATE_EXPR, TREE_TYPE (iv_step), iv_step);
4860 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
4862 create_iv (aggr_ptr_init,
4863 fold_convert (aggr_ptr_type, iv_step),
4864 aggr_ptr, loop, &incr_gsi, insert_after,
4865 &indx_before_incr, &indx_after_incr);
4866 incr = gsi_stmt (incr_gsi);
4867 set_vinfo_for_stmt (incr, new_stmt_vec_info (incr, loop_vinfo));
4869 /* Copy the points-to information if it exists. */
4870 if (DR_PTR_INFO (dr))
4872 vect_duplicate_ssa_name_ptr_info (indx_before_incr, dr);
4873 vect_duplicate_ssa_name_ptr_info (indx_after_incr, dr);
4875 if (ptr_incr)
4876 *ptr_incr = incr;
4878 aptr = indx_before_incr;
4881 if (!nested_in_vect_loop || only_init)
4882 return aptr;
4885 /* (4) Handle the updating of the aggregate-pointer inside the inner-loop
4886 nested in LOOP, if exists. */
4888 gcc_assert (nested_in_vect_loop);
4889 if (!only_init)
4891 standard_iv_increment_position (containing_loop, &incr_gsi,
4892 &insert_after);
4893 create_iv (aptr, fold_convert (aggr_ptr_type, DR_STEP (dr)), aggr_ptr,
4894 containing_loop, &incr_gsi, insert_after, &indx_before_incr,
4895 &indx_after_incr);
4896 incr = gsi_stmt (incr_gsi);
4897 set_vinfo_for_stmt (incr, new_stmt_vec_info (incr, loop_vinfo));
4899 /* Copy the points-to information if it exists. */
4900 if (DR_PTR_INFO (dr))
4902 vect_duplicate_ssa_name_ptr_info (indx_before_incr, dr);
4903 vect_duplicate_ssa_name_ptr_info (indx_after_incr, dr);
4905 if (ptr_incr)
4906 *ptr_incr = incr;
4908 return indx_before_incr;
4910 else
4911 gcc_unreachable ();
4915 /* Function bump_vector_ptr
4917 Increment a pointer (to a vector type) by vector-size. If requested,
4918 i.e. if PTR-INCR is given, then also connect the new increment stmt
4919 to the existing def-use update-chain of the pointer, by modifying
4920 the PTR_INCR as illustrated below:
4922 The pointer def-use update-chain before this function:
4923 DATAREF_PTR = phi (p_0, p_2)
4924 ....
4925 PTR_INCR: p_2 = DATAREF_PTR + step
4927 The pointer def-use update-chain after this function:
4928 DATAREF_PTR = phi (p_0, p_2)
4929 ....
4930 NEW_DATAREF_PTR = DATAREF_PTR + BUMP
4931 ....
4932 PTR_INCR: p_2 = NEW_DATAREF_PTR + step
4934 Input:
4935 DATAREF_PTR - ssa_name of a pointer (to vector type) that is being updated
4936 in the loop.
4937 PTR_INCR - optional. The stmt that updates the pointer in each iteration of
4938 the loop. The increment amount across iterations is expected
4939 to be vector_size.
4940 BSI - location where the new update stmt is to be placed.
4941 STMT - the original scalar memory-access stmt that is being vectorized.
4942 BUMP - optional. The offset by which to bump the pointer. If not given,
4943 the offset is assumed to be vector_size.
4945 Output: Return NEW_DATAREF_PTR as illustrated above.
4949 tree
4950 bump_vector_ptr (tree dataref_ptr, gimple *ptr_incr, gimple_stmt_iterator *gsi,
4951 gimple *stmt, tree bump)
4953 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4954 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
4955 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
4956 tree update = TYPE_SIZE_UNIT (vectype);
4957 gassign *incr_stmt;
4958 ssa_op_iter iter;
4959 use_operand_p use_p;
4960 tree new_dataref_ptr;
4962 if (bump)
4963 update = bump;
4965 if (TREE_CODE (dataref_ptr) == SSA_NAME)
4966 new_dataref_ptr = copy_ssa_name (dataref_ptr);
4967 else
4968 new_dataref_ptr = make_ssa_name (TREE_TYPE (dataref_ptr));
4969 incr_stmt = gimple_build_assign (new_dataref_ptr, POINTER_PLUS_EXPR,
4970 dataref_ptr, update);
4971 vect_finish_stmt_generation (stmt, incr_stmt, gsi);
4973 /* Copy the points-to information if it exists. */
4974 if (DR_PTR_INFO (dr))
4976 duplicate_ssa_name_ptr_info (new_dataref_ptr, DR_PTR_INFO (dr));
4977 mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (new_dataref_ptr));
4980 if (!ptr_incr)
4981 return new_dataref_ptr;
4983 /* Update the vector-pointer's cross-iteration increment. */
4984 FOR_EACH_SSA_USE_OPERAND (use_p, ptr_incr, iter, SSA_OP_USE)
4986 tree use = USE_FROM_PTR (use_p);
4988 if (use == dataref_ptr)
4989 SET_USE (use_p, new_dataref_ptr);
4990 else
4991 gcc_assert (operand_equal_p (use, update, 0));
4994 return new_dataref_ptr;
4998 /* Copy memory reference info such as base/clique from the SRC reference
4999 to the DEST MEM_REF. */
5001 void
5002 vect_copy_ref_info (tree dest, tree src)
5004 if (TREE_CODE (dest) != MEM_REF)
5005 return;
5007 tree src_base = src;
5008 while (handled_component_p (src_base))
5009 src_base = TREE_OPERAND (src_base, 0);
5010 if (TREE_CODE (src_base) != MEM_REF
5011 && TREE_CODE (src_base) != TARGET_MEM_REF)
5012 return;
5014 MR_DEPENDENCE_CLIQUE (dest) = MR_DEPENDENCE_CLIQUE (src_base);
5015 MR_DEPENDENCE_BASE (dest) = MR_DEPENDENCE_BASE (src_base);
5019 /* Function vect_create_destination_var.
5021 Create a new temporary of type VECTYPE. */
5023 tree
5024 vect_create_destination_var (tree scalar_dest, tree vectype)
5026 tree vec_dest;
5027 const char *name;
5028 char *new_name;
5029 tree type;
5030 enum vect_var_kind kind;
5032 kind = vectype
5033 ? VECTOR_BOOLEAN_TYPE_P (vectype)
5034 ? vect_mask_var
5035 : vect_simple_var
5036 : vect_scalar_var;
5037 type = vectype ? vectype : TREE_TYPE (scalar_dest);
5039 gcc_assert (TREE_CODE (scalar_dest) == SSA_NAME);
5041 name = get_name (scalar_dest);
5042 if (name)
5043 new_name = xasprintf ("%s_%u", name, SSA_NAME_VERSION (scalar_dest));
5044 else
5045 new_name = xasprintf ("_%u", SSA_NAME_VERSION (scalar_dest));
5046 vec_dest = vect_get_new_vect_var (type, kind, new_name);
5047 free (new_name);
5049 return vec_dest;
5052 /* Function vect_grouped_store_supported.
5054 Returns TRUE if interleave high and interleave low permutations
5055 are supported, and FALSE otherwise. */
5057 bool
5058 vect_grouped_store_supported (tree vectype, unsigned HOST_WIDE_INT count)
5060 machine_mode mode = TYPE_MODE (vectype);
5062 /* vect_permute_store_chain requires the group size to be equal to 3 or
5063 be a power of two. */
5064 if (count != 3 && exact_log2 (count) == -1)
5066 if (dump_enabled_p ())
5067 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5068 "the size of the group of accesses"
5069 " is not a power of 2 or not eqaul to 3\n");
5070 return false;
5073 /* Check that the permutation is supported. */
5074 if (VECTOR_MODE_P (mode))
5076 unsigned int i;
5077 if (count == 3)
5079 unsigned int j0 = 0, j1 = 0, j2 = 0;
5080 unsigned int i, j;
5082 unsigned int nelt;
5083 if (!GET_MODE_NUNITS (mode).is_constant (&nelt))
5085 if (dump_enabled_p ())
5086 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5087 "cannot handle groups of 3 stores for"
5088 " variable-length vectors\n");
5089 return false;
5092 vec_perm_builder sel (nelt, nelt, 1);
5093 sel.quick_grow (nelt);
5094 vec_perm_indices indices;
5095 for (j = 0; j < 3; j++)
5097 int nelt0 = ((3 - j) * nelt) % 3;
5098 int nelt1 = ((3 - j) * nelt + 1) % 3;
5099 int nelt2 = ((3 - j) * nelt + 2) % 3;
5100 for (i = 0; i < nelt; i++)
5102 if (3 * i + nelt0 < nelt)
5103 sel[3 * i + nelt0] = j0++;
5104 if (3 * i + nelt1 < nelt)
5105 sel[3 * i + nelt1] = nelt + j1++;
5106 if (3 * i + nelt2 < nelt)
5107 sel[3 * i + nelt2] = 0;
5109 indices.new_vector (sel, 2, nelt);
5110 if (!can_vec_perm_const_p (mode, indices))
5112 if (dump_enabled_p ())
5113 dump_printf (MSG_MISSED_OPTIMIZATION,
5114 "permutation op not supported by target.\n");
5115 return false;
5118 for (i = 0; i < nelt; i++)
5120 if (3 * i + nelt0 < nelt)
5121 sel[3 * i + nelt0] = 3 * i + nelt0;
5122 if (3 * i + nelt1 < nelt)
5123 sel[3 * i + nelt1] = 3 * i + nelt1;
5124 if (3 * i + nelt2 < nelt)
5125 sel[3 * i + nelt2] = nelt + j2++;
5127 indices.new_vector (sel, 2, nelt);
5128 if (!can_vec_perm_const_p (mode, indices))
5130 if (dump_enabled_p ())
5131 dump_printf (MSG_MISSED_OPTIMIZATION,
5132 "permutation op not supported by target.\n");
5133 return false;
5136 return true;
5138 else
5140 /* If length is not equal to 3 then only power of 2 is supported. */
5141 gcc_assert (pow2p_hwi (count));
5142 poly_uint64 nelt = GET_MODE_NUNITS (mode);
5144 /* The encoding has 2 interleaved stepped patterns. */
5145 vec_perm_builder sel (nelt, 2, 3);
5146 sel.quick_grow (6);
5147 for (i = 0; i < 3; i++)
5149 sel[i * 2] = i;
5150 sel[i * 2 + 1] = i + nelt;
5152 vec_perm_indices indices (sel, 2, nelt);
5153 if (can_vec_perm_const_p (mode, indices))
5155 for (i = 0; i < 6; i++)
5156 sel[i] += exact_div (nelt, 2);
5157 indices.new_vector (sel, 2, nelt);
5158 if (can_vec_perm_const_p (mode, indices))
5159 return true;
5164 if (dump_enabled_p ())
5165 dump_printf (MSG_MISSED_OPTIMIZATION,
5166 "permutaion op not supported by target.\n");
5167 return false;
5171 /* Return TRUE if vec_{mask_}store_lanes is available for COUNT vectors of
5172 type VECTYPE. MASKED_P says whether the masked form is needed. */
5174 bool
5175 vect_store_lanes_supported (tree vectype, unsigned HOST_WIDE_INT count,
5176 bool masked_p)
5178 if (masked_p)
5179 return vect_lanes_optab_supported_p ("vec_mask_store_lanes",
5180 vec_mask_store_lanes_optab,
5181 vectype, count);
5182 else
5183 return vect_lanes_optab_supported_p ("vec_store_lanes",
5184 vec_store_lanes_optab,
5185 vectype, count);
5189 /* Function vect_permute_store_chain.
5191 Given a chain of interleaved stores in DR_CHAIN of LENGTH that must be
5192 a power of 2 or equal to 3, generate interleave_high/low stmts to reorder
5193 the data correctly for the stores. Return the final references for stores
5194 in RESULT_CHAIN.
5196 E.g., LENGTH is 4 and the scalar type is short, i.e., VF is 8.
5197 The input is 4 vectors each containing 8 elements. We assign a number to
5198 each element, the input sequence is:
5200 1st vec: 0 1 2 3 4 5 6 7
5201 2nd vec: 8 9 10 11 12 13 14 15
5202 3rd vec: 16 17 18 19 20 21 22 23
5203 4th vec: 24 25 26 27 28 29 30 31
5205 The output sequence should be:
5207 1st vec: 0 8 16 24 1 9 17 25
5208 2nd vec: 2 10 18 26 3 11 19 27
5209 3rd vec: 4 12 20 28 5 13 21 30
5210 4th vec: 6 14 22 30 7 15 23 31
5212 i.e., we interleave the contents of the four vectors in their order.
5214 We use interleave_high/low instructions to create such output. The input of
5215 each interleave_high/low operation is two vectors:
5216 1st vec 2nd vec
5217 0 1 2 3 4 5 6 7
5218 the even elements of the result vector are obtained left-to-right from the
5219 high/low elements of the first vector. The odd elements of the result are
5220 obtained left-to-right from the high/low elements of the second vector.
5221 The output of interleave_high will be: 0 4 1 5
5222 and of interleave_low: 2 6 3 7
5225 The permutation is done in log LENGTH stages. In each stage interleave_high
5226 and interleave_low stmts are created for each pair of vectors in DR_CHAIN,
5227 where the first argument is taken from the first half of DR_CHAIN and the
5228 second argument from it's second half.
5229 In our example,
5231 I1: interleave_high (1st vec, 3rd vec)
5232 I2: interleave_low (1st vec, 3rd vec)
5233 I3: interleave_high (2nd vec, 4th vec)
5234 I4: interleave_low (2nd vec, 4th vec)
5236 The output for the first stage is:
5238 I1: 0 16 1 17 2 18 3 19
5239 I2: 4 20 5 21 6 22 7 23
5240 I3: 8 24 9 25 10 26 11 27
5241 I4: 12 28 13 29 14 30 15 31
5243 The output of the second stage, i.e. the final result is:
5245 I1: 0 8 16 24 1 9 17 25
5246 I2: 2 10 18 26 3 11 19 27
5247 I3: 4 12 20 28 5 13 21 30
5248 I4: 6 14 22 30 7 15 23 31. */
5250 void
5251 vect_permute_store_chain (vec<tree> dr_chain,
5252 unsigned int length,
5253 gimple *stmt,
5254 gimple_stmt_iterator *gsi,
5255 vec<tree> *result_chain)
5257 tree vect1, vect2, high, low;
5258 gimple *perm_stmt;
5259 tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
5260 tree perm_mask_low, perm_mask_high;
5261 tree data_ref;
5262 tree perm3_mask_low, perm3_mask_high;
5263 unsigned int i, j, n, log_length = exact_log2 (length);
5265 result_chain->quick_grow (length);
5266 memcpy (result_chain->address (), dr_chain.address (),
5267 length * sizeof (tree));
5269 if (length == 3)
5271 /* vect_grouped_store_supported ensures that this is constant. */
5272 unsigned int nelt = TYPE_VECTOR_SUBPARTS (vectype).to_constant ();
5273 unsigned int j0 = 0, j1 = 0, j2 = 0;
5275 vec_perm_builder sel (nelt, nelt, 1);
5276 sel.quick_grow (nelt);
5277 vec_perm_indices indices;
5278 for (j = 0; j < 3; j++)
5280 int nelt0 = ((3 - j) * nelt) % 3;
5281 int nelt1 = ((3 - j) * nelt + 1) % 3;
5282 int nelt2 = ((3 - j) * nelt + 2) % 3;
5284 for (i = 0; i < nelt; i++)
5286 if (3 * i + nelt0 < nelt)
5287 sel[3 * i + nelt0] = j0++;
5288 if (3 * i + nelt1 < nelt)
5289 sel[3 * i + nelt1] = nelt + j1++;
5290 if (3 * i + nelt2 < nelt)
5291 sel[3 * i + nelt2] = 0;
5293 indices.new_vector (sel, 2, nelt);
5294 perm3_mask_low = vect_gen_perm_mask_checked (vectype, indices);
5296 for (i = 0; i < nelt; i++)
5298 if (3 * i + nelt0 < nelt)
5299 sel[3 * i + nelt0] = 3 * i + nelt0;
5300 if (3 * i + nelt1 < nelt)
5301 sel[3 * i + nelt1] = 3 * i + nelt1;
5302 if (3 * i + nelt2 < nelt)
5303 sel[3 * i + nelt2] = nelt + j2++;
5305 indices.new_vector (sel, 2, nelt);
5306 perm3_mask_high = vect_gen_perm_mask_checked (vectype, indices);
5308 vect1 = dr_chain[0];
5309 vect2 = dr_chain[1];
5311 /* Create interleaving stmt:
5312 low = VEC_PERM_EXPR <vect1, vect2,
5313 {j, nelt, *, j + 1, nelt + j + 1, *,
5314 j + 2, nelt + j + 2, *, ...}> */
5315 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3_low");
5316 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, vect1,
5317 vect2, perm3_mask_low);
5318 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5320 vect1 = data_ref;
5321 vect2 = dr_chain[2];
5322 /* Create interleaving stmt:
5323 low = VEC_PERM_EXPR <vect1, vect2,
5324 {0, 1, nelt + j, 3, 4, nelt + j + 1,
5325 6, 7, nelt + j + 2, ...}> */
5326 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3_high");
5327 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, vect1,
5328 vect2, perm3_mask_high);
5329 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5330 (*result_chain)[j] = data_ref;
5333 else
5335 /* If length is not equal to 3 then only power of 2 is supported. */
5336 gcc_assert (pow2p_hwi (length));
5338 /* The encoding has 2 interleaved stepped patterns. */
5339 poly_uint64 nelt = TYPE_VECTOR_SUBPARTS (vectype);
5340 vec_perm_builder sel (nelt, 2, 3);
5341 sel.quick_grow (6);
5342 for (i = 0; i < 3; i++)
5344 sel[i * 2] = i;
5345 sel[i * 2 + 1] = i + nelt;
5347 vec_perm_indices indices (sel, 2, nelt);
5348 perm_mask_high = vect_gen_perm_mask_checked (vectype, indices);
5350 for (i = 0; i < 6; i++)
5351 sel[i] += exact_div (nelt, 2);
5352 indices.new_vector (sel, 2, nelt);
5353 perm_mask_low = vect_gen_perm_mask_checked (vectype, indices);
5355 for (i = 0, n = log_length; i < n; i++)
5357 for (j = 0; j < length/2; j++)
5359 vect1 = dr_chain[j];
5360 vect2 = dr_chain[j+length/2];
5362 /* Create interleaving stmt:
5363 high = VEC_PERM_EXPR <vect1, vect2, {0, nelt, 1, nelt+1,
5364 ...}> */
5365 high = make_temp_ssa_name (vectype, NULL, "vect_inter_high");
5366 perm_stmt = gimple_build_assign (high, VEC_PERM_EXPR, vect1,
5367 vect2, perm_mask_high);
5368 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5369 (*result_chain)[2*j] = high;
5371 /* Create interleaving stmt:
5372 low = VEC_PERM_EXPR <vect1, vect2,
5373 {nelt/2, nelt*3/2, nelt/2+1, nelt*3/2+1,
5374 ...}> */
5375 low = make_temp_ssa_name (vectype, NULL, "vect_inter_low");
5376 perm_stmt = gimple_build_assign (low, VEC_PERM_EXPR, vect1,
5377 vect2, perm_mask_low);
5378 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5379 (*result_chain)[2*j+1] = low;
5381 memcpy (dr_chain.address (), result_chain->address (),
5382 length * sizeof (tree));
5387 /* Function vect_setup_realignment
5389 This function is called when vectorizing an unaligned load using
5390 the dr_explicit_realign[_optimized] scheme.
5391 This function generates the following code at the loop prolog:
5393 p = initial_addr;
5394 x msq_init = *(floor(p)); # prolog load
5395 realignment_token = call target_builtin;
5396 loop:
5397 x msq = phi (msq_init, ---)
5399 The stmts marked with x are generated only for the case of
5400 dr_explicit_realign_optimized.
5402 The code above sets up a new (vector) pointer, pointing to the first
5403 location accessed by STMT, and a "floor-aligned" load using that pointer.
5404 It also generates code to compute the "realignment-token" (if the relevant
5405 target hook was defined), and creates a phi-node at the loop-header bb
5406 whose arguments are the result of the prolog-load (created by this
5407 function) and the result of a load that takes place in the loop (to be
5408 created by the caller to this function).
5410 For the case of dr_explicit_realign_optimized:
5411 The caller to this function uses the phi-result (msq) to create the
5412 realignment code inside the loop, and sets up the missing phi argument,
5413 as follows:
5414 loop:
5415 msq = phi (msq_init, lsq)
5416 lsq = *(floor(p')); # load in loop
5417 result = realign_load (msq, lsq, realignment_token);
5419 For the case of dr_explicit_realign:
5420 loop:
5421 msq = *(floor(p)); # load in loop
5422 p' = p + (VS-1);
5423 lsq = *(floor(p')); # load in loop
5424 result = realign_load (msq, lsq, realignment_token);
5426 Input:
5427 STMT - (scalar) load stmt to be vectorized. This load accesses
5428 a memory location that may be unaligned.
5429 BSI - place where new code is to be inserted.
5430 ALIGNMENT_SUPPORT_SCHEME - which of the two misalignment handling schemes
5431 is used.
5433 Output:
5434 REALIGNMENT_TOKEN - the result of a call to the builtin_mask_for_load
5435 target hook, if defined.
5436 Return value - the result of the loop-header phi node. */
5438 tree
5439 vect_setup_realignment (gimple *stmt, gimple_stmt_iterator *gsi,
5440 tree *realignment_token,
5441 enum dr_alignment_support alignment_support_scheme,
5442 tree init_addr,
5443 struct loop **at_loop)
5445 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
5446 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
5447 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
5448 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
5449 struct loop *loop = NULL;
5450 edge pe = NULL;
5451 tree scalar_dest = gimple_assign_lhs (stmt);
5452 tree vec_dest;
5453 gimple *inc;
5454 tree ptr;
5455 tree data_ref;
5456 basic_block new_bb;
5457 tree msq_init = NULL_TREE;
5458 tree new_temp;
5459 gphi *phi_stmt;
5460 tree msq = NULL_TREE;
5461 gimple_seq stmts = NULL;
5462 bool inv_p;
5463 bool compute_in_loop = false;
5464 bool nested_in_vect_loop = false;
5465 struct loop *containing_loop = (gimple_bb (stmt))->loop_father;
5466 struct loop *loop_for_initial_load = NULL;
5468 if (loop_vinfo)
5470 loop = LOOP_VINFO_LOOP (loop_vinfo);
5471 nested_in_vect_loop = nested_in_vect_loop_p (loop, stmt);
5474 gcc_assert (alignment_support_scheme == dr_explicit_realign
5475 || alignment_support_scheme == dr_explicit_realign_optimized);
5477 /* We need to generate three things:
5478 1. the misalignment computation
5479 2. the extra vector load (for the optimized realignment scheme).
5480 3. the phi node for the two vectors from which the realignment is
5481 done (for the optimized realignment scheme). */
5483 /* 1. Determine where to generate the misalignment computation.
5485 If INIT_ADDR is NULL_TREE, this indicates that the misalignment
5486 calculation will be generated by this function, outside the loop (in the
5487 preheader). Otherwise, INIT_ADDR had already been computed for us by the
5488 caller, inside the loop.
5490 Background: If the misalignment remains fixed throughout the iterations of
5491 the loop, then both realignment schemes are applicable, and also the
5492 misalignment computation can be done outside LOOP. This is because we are
5493 vectorizing LOOP, and so the memory accesses in LOOP advance in steps that
5494 are a multiple of VS (the Vector Size), and therefore the misalignment in
5495 different vectorized LOOP iterations is always the same.
5496 The problem arises only if the memory access is in an inner-loop nested
5497 inside LOOP, which is now being vectorized using outer-loop vectorization.
5498 This is the only case when the misalignment of the memory access may not
5499 remain fixed throughout the iterations of the inner-loop (as explained in
5500 detail in vect_supportable_dr_alignment). In this case, not only is the
5501 optimized realignment scheme not applicable, but also the misalignment
5502 computation (and generation of the realignment token that is passed to
5503 REALIGN_LOAD) have to be done inside the loop.
5505 In short, INIT_ADDR indicates whether we are in a COMPUTE_IN_LOOP mode
5506 or not, which in turn determines if the misalignment is computed inside
5507 the inner-loop, or outside LOOP. */
5509 if (init_addr != NULL_TREE || !loop_vinfo)
5511 compute_in_loop = true;
5512 gcc_assert (alignment_support_scheme == dr_explicit_realign);
5516 /* 2. Determine where to generate the extra vector load.
5518 For the optimized realignment scheme, instead of generating two vector
5519 loads in each iteration, we generate a single extra vector load in the
5520 preheader of the loop, and in each iteration reuse the result of the
5521 vector load from the previous iteration. In case the memory access is in
5522 an inner-loop nested inside LOOP, which is now being vectorized using
5523 outer-loop vectorization, we need to determine whether this initial vector
5524 load should be generated at the preheader of the inner-loop, or can be
5525 generated at the preheader of LOOP. If the memory access has no evolution
5526 in LOOP, it can be generated in the preheader of LOOP. Otherwise, it has
5527 to be generated inside LOOP (in the preheader of the inner-loop). */
5529 if (nested_in_vect_loop)
5531 tree outerloop_step = STMT_VINFO_DR_STEP (stmt_info);
5532 bool invariant_in_outerloop =
5533 (tree_int_cst_compare (outerloop_step, size_zero_node) == 0);
5534 loop_for_initial_load = (invariant_in_outerloop ? loop : loop->inner);
5536 else
5537 loop_for_initial_load = loop;
5538 if (at_loop)
5539 *at_loop = loop_for_initial_load;
5541 if (loop_for_initial_load)
5542 pe = loop_preheader_edge (loop_for_initial_load);
5544 /* 3. For the case of the optimized realignment, create the first vector
5545 load at the loop preheader. */
5547 if (alignment_support_scheme == dr_explicit_realign_optimized)
5549 /* Create msq_init = *(floor(p1)) in the loop preheader */
5550 gassign *new_stmt;
5552 gcc_assert (!compute_in_loop);
5553 vec_dest = vect_create_destination_var (scalar_dest, vectype);
5554 ptr = vect_create_data_ref_ptr (stmt, vectype, loop_for_initial_load,
5555 NULL_TREE, &init_addr, NULL, &inc,
5556 true, &inv_p);
5557 if (TREE_CODE (ptr) == SSA_NAME)
5558 new_temp = copy_ssa_name (ptr);
5559 else
5560 new_temp = make_ssa_name (TREE_TYPE (ptr));
5561 unsigned int align = DR_TARGET_ALIGNMENT (dr);
5562 new_stmt = gimple_build_assign
5563 (new_temp, BIT_AND_EXPR, ptr,
5564 build_int_cst (TREE_TYPE (ptr), -(HOST_WIDE_INT) align));
5565 new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
5566 gcc_assert (!new_bb);
5567 data_ref
5568 = build2 (MEM_REF, TREE_TYPE (vec_dest), new_temp,
5569 build_int_cst (reference_alias_ptr_type (DR_REF (dr)), 0));
5570 vect_copy_ref_info (data_ref, DR_REF (dr));
5571 new_stmt = gimple_build_assign (vec_dest, data_ref);
5572 new_temp = make_ssa_name (vec_dest, new_stmt);
5573 gimple_assign_set_lhs (new_stmt, new_temp);
5574 if (pe)
5576 new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
5577 gcc_assert (!new_bb);
5579 else
5580 gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
5582 msq_init = gimple_assign_lhs (new_stmt);
5585 /* 4. Create realignment token using a target builtin, if available.
5586 It is done either inside the containing loop, or before LOOP (as
5587 determined above). */
5589 if (targetm.vectorize.builtin_mask_for_load)
5591 gcall *new_stmt;
5592 tree builtin_decl;
5594 /* Compute INIT_ADDR - the initial addressed accessed by this memref. */
5595 if (!init_addr)
5597 /* Generate the INIT_ADDR computation outside LOOP. */
5598 init_addr = vect_create_addr_base_for_vector_ref (stmt, &stmts,
5599 NULL_TREE);
5600 if (loop)
5602 pe = loop_preheader_edge (loop);
5603 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
5604 gcc_assert (!new_bb);
5606 else
5607 gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
5610 builtin_decl = targetm.vectorize.builtin_mask_for_load ();
5611 new_stmt = gimple_build_call (builtin_decl, 1, init_addr);
5612 vec_dest =
5613 vect_create_destination_var (scalar_dest,
5614 gimple_call_return_type (new_stmt));
5615 new_temp = make_ssa_name (vec_dest, new_stmt);
5616 gimple_call_set_lhs (new_stmt, new_temp);
5618 if (compute_in_loop)
5619 gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
5620 else
5622 /* Generate the misalignment computation outside LOOP. */
5623 pe = loop_preheader_edge (loop);
5624 new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
5625 gcc_assert (!new_bb);
5628 *realignment_token = gimple_call_lhs (new_stmt);
5630 /* The result of the CALL_EXPR to this builtin is determined from
5631 the value of the parameter and no global variables are touched
5632 which makes the builtin a "const" function. Requiring the
5633 builtin to have the "const" attribute makes it unnecessary
5634 to call mark_call_clobbered. */
5635 gcc_assert (TREE_READONLY (builtin_decl));
5638 if (alignment_support_scheme == dr_explicit_realign)
5639 return msq;
5641 gcc_assert (!compute_in_loop);
5642 gcc_assert (alignment_support_scheme == dr_explicit_realign_optimized);
5645 /* 5. Create msq = phi <msq_init, lsq> in loop */
5647 pe = loop_preheader_edge (containing_loop);
5648 vec_dest = vect_create_destination_var (scalar_dest, vectype);
5649 msq = make_ssa_name (vec_dest);
5650 phi_stmt = create_phi_node (msq, containing_loop->header);
5651 add_phi_arg (phi_stmt, msq_init, pe, UNKNOWN_LOCATION);
5653 return msq;
5657 /* Function vect_grouped_load_supported.
5659 COUNT is the size of the load group (the number of statements plus the
5660 number of gaps). SINGLE_ELEMENT_P is true if there is actually
5661 only one statement, with a gap of COUNT - 1.
5663 Returns true if a suitable permute exists. */
5665 bool
5666 vect_grouped_load_supported (tree vectype, bool single_element_p,
5667 unsigned HOST_WIDE_INT count)
5669 machine_mode mode = TYPE_MODE (vectype);
5671 /* If this is single-element interleaving with an element distance
5672 that leaves unused vector loads around punt - we at least create
5673 very sub-optimal code in that case (and blow up memory,
5674 see PR65518). */
5675 if (single_element_p && maybe_gt (count, TYPE_VECTOR_SUBPARTS (vectype)))
5677 if (dump_enabled_p ())
5678 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5679 "single-element interleaving not supported "
5680 "for not adjacent vector loads\n");
5681 return false;
5684 /* vect_permute_load_chain requires the group size to be equal to 3 or
5685 be a power of two. */
5686 if (count != 3 && exact_log2 (count) == -1)
5688 if (dump_enabled_p ())
5689 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5690 "the size of the group of accesses"
5691 " is not a power of 2 or not equal to 3\n");
5692 return false;
5695 /* Check that the permutation is supported. */
5696 if (VECTOR_MODE_P (mode))
5698 unsigned int i, j;
5699 if (count == 3)
5701 unsigned int nelt;
5702 if (!GET_MODE_NUNITS (mode).is_constant (&nelt))
5704 if (dump_enabled_p ())
5705 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5706 "cannot handle groups of 3 loads for"
5707 " variable-length vectors\n");
5708 return false;
5711 vec_perm_builder sel (nelt, nelt, 1);
5712 sel.quick_grow (nelt);
5713 vec_perm_indices indices;
5714 unsigned int k;
5715 for (k = 0; k < 3; k++)
5717 for (i = 0; i < nelt; i++)
5718 if (3 * i + k < 2 * nelt)
5719 sel[i] = 3 * i + k;
5720 else
5721 sel[i] = 0;
5722 indices.new_vector (sel, 2, nelt);
5723 if (!can_vec_perm_const_p (mode, indices))
5725 if (dump_enabled_p ())
5726 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5727 "shuffle of 3 loads is not supported by"
5728 " target\n");
5729 return false;
5731 for (i = 0, j = 0; i < nelt; i++)
5732 if (3 * i + k < 2 * nelt)
5733 sel[i] = i;
5734 else
5735 sel[i] = nelt + ((nelt + k) % 3) + 3 * (j++);
5736 indices.new_vector (sel, 2, nelt);
5737 if (!can_vec_perm_const_p (mode, indices))
5739 if (dump_enabled_p ())
5740 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5741 "shuffle of 3 loads is not supported by"
5742 " target\n");
5743 return false;
5746 return true;
5748 else
5750 /* If length is not equal to 3 then only power of 2 is supported. */
5751 gcc_assert (pow2p_hwi (count));
5752 poly_uint64 nelt = GET_MODE_NUNITS (mode);
5754 /* The encoding has a single stepped pattern. */
5755 vec_perm_builder sel (nelt, 1, 3);
5756 sel.quick_grow (3);
5757 for (i = 0; i < 3; i++)
5758 sel[i] = i * 2;
5759 vec_perm_indices indices (sel, 2, nelt);
5760 if (can_vec_perm_const_p (mode, indices))
5762 for (i = 0; i < 3; i++)
5763 sel[i] = i * 2 + 1;
5764 indices.new_vector (sel, 2, nelt);
5765 if (can_vec_perm_const_p (mode, indices))
5766 return true;
5771 if (dump_enabled_p ())
5772 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5773 "extract even/odd not supported by target\n");
5774 return false;
5777 /* Return TRUE if vec_{masked_}load_lanes is available for COUNT vectors of
5778 type VECTYPE. MASKED_P says whether the masked form is needed. */
5780 bool
5781 vect_load_lanes_supported (tree vectype, unsigned HOST_WIDE_INT count,
5782 bool masked_p)
5784 if (masked_p)
5785 return vect_lanes_optab_supported_p ("vec_mask_load_lanes",
5786 vec_mask_load_lanes_optab,
5787 vectype, count);
5788 else
5789 return vect_lanes_optab_supported_p ("vec_load_lanes",
5790 vec_load_lanes_optab,
5791 vectype, count);
5794 /* Function vect_permute_load_chain.
5796 Given a chain of interleaved loads in DR_CHAIN of LENGTH that must be
5797 a power of 2 or equal to 3, generate extract_even/odd stmts to reorder
5798 the input data correctly. Return the final references for loads in
5799 RESULT_CHAIN.
5801 E.g., LENGTH is 4 and the scalar type is short, i.e., VF is 8.
5802 The input is 4 vectors each containing 8 elements. We assign a number to each
5803 element, the input sequence is:
5805 1st vec: 0 1 2 3 4 5 6 7
5806 2nd vec: 8 9 10 11 12 13 14 15
5807 3rd vec: 16 17 18 19 20 21 22 23
5808 4th vec: 24 25 26 27 28 29 30 31
5810 The output sequence should be:
5812 1st vec: 0 4 8 12 16 20 24 28
5813 2nd vec: 1 5 9 13 17 21 25 29
5814 3rd vec: 2 6 10 14 18 22 26 30
5815 4th vec: 3 7 11 15 19 23 27 31
5817 i.e., the first output vector should contain the first elements of each
5818 interleaving group, etc.
5820 We use extract_even/odd instructions to create such output. The input of
5821 each extract_even/odd operation is two vectors
5822 1st vec 2nd vec
5823 0 1 2 3 4 5 6 7
5825 and the output is the vector of extracted even/odd elements. The output of
5826 extract_even will be: 0 2 4 6
5827 and of extract_odd: 1 3 5 7
5830 The permutation is done in log LENGTH stages. In each stage extract_even
5831 and extract_odd stmts are created for each pair of vectors in DR_CHAIN in
5832 their order. In our example,
5834 E1: extract_even (1st vec, 2nd vec)
5835 E2: extract_odd (1st vec, 2nd vec)
5836 E3: extract_even (3rd vec, 4th vec)
5837 E4: extract_odd (3rd vec, 4th vec)
5839 The output for the first stage will be:
5841 E1: 0 2 4 6 8 10 12 14
5842 E2: 1 3 5 7 9 11 13 15
5843 E3: 16 18 20 22 24 26 28 30
5844 E4: 17 19 21 23 25 27 29 31
5846 In order to proceed and create the correct sequence for the next stage (or
5847 for the correct output, if the second stage is the last one, as in our
5848 example), we first put the output of extract_even operation and then the
5849 output of extract_odd in RESULT_CHAIN (which is then copied to DR_CHAIN).
5850 The input for the second stage is:
5852 1st vec (E1): 0 2 4 6 8 10 12 14
5853 2nd vec (E3): 16 18 20 22 24 26 28 30
5854 3rd vec (E2): 1 3 5 7 9 11 13 15
5855 4th vec (E4): 17 19 21 23 25 27 29 31
5857 The output of the second stage:
5859 E1: 0 4 8 12 16 20 24 28
5860 E2: 2 6 10 14 18 22 26 30
5861 E3: 1 5 9 13 17 21 25 29
5862 E4: 3 7 11 15 19 23 27 31
5864 And RESULT_CHAIN after reordering:
5866 1st vec (E1): 0 4 8 12 16 20 24 28
5867 2nd vec (E3): 1 5 9 13 17 21 25 29
5868 3rd vec (E2): 2 6 10 14 18 22 26 30
5869 4th vec (E4): 3 7 11 15 19 23 27 31. */
5871 static void
5872 vect_permute_load_chain (vec<tree> dr_chain,
5873 unsigned int length,
5874 gimple *stmt,
5875 gimple_stmt_iterator *gsi,
5876 vec<tree> *result_chain)
5878 tree data_ref, first_vect, second_vect;
5879 tree perm_mask_even, perm_mask_odd;
5880 tree perm3_mask_low, perm3_mask_high;
5881 gimple *perm_stmt;
5882 tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
5883 unsigned int i, j, log_length = exact_log2 (length);
5885 result_chain->quick_grow (length);
5886 memcpy (result_chain->address (), dr_chain.address (),
5887 length * sizeof (tree));
5889 if (length == 3)
5891 /* vect_grouped_load_supported ensures that this is constant. */
5892 unsigned nelt = TYPE_VECTOR_SUBPARTS (vectype).to_constant ();
5893 unsigned int k;
5895 vec_perm_builder sel (nelt, nelt, 1);
5896 sel.quick_grow (nelt);
5897 vec_perm_indices indices;
5898 for (k = 0; k < 3; k++)
5900 for (i = 0; i < nelt; i++)
5901 if (3 * i + k < 2 * nelt)
5902 sel[i] = 3 * i + k;
5903 else
5904 sel[i] = 0;
5905 indices.new_vector (sel, 2, nelt);
5906 perm3_mask_low = vect_gen_perm_mask_checked (vectype, indices);
5908 for (i = 0, j = 0; i < nelt; i++)
5909 if (3 * i + k < 2 * nelt)
5910 sel[i] = i;
5911 else
5912 sel[i] = nelt + ((nelt + k) % 3) + 3 * (j++);
5913 indices.new_vector (sel, 2, nelt);
5914 perm3_mask_high = vect_gen_perm_mask_checked (vectype, indices);
5916 first_vect = dr_chain[0];
5917 second_vect = dr_chain[1];
5919 /* Create interleaving stmt (low part of):
5920 low = VEC_PERM_EXPR <first_vect, second_vect2, {k, 3 + k, 6 + k,
5921 ...}> */
5922 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3_low");
5923 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, first_vect,
5924 second_vect, perm3_mask_low);
5925 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5927 /* Create interleaving stmt (high part of):
5928 high = VEC_PERM_EXPR <first_vect, second_vect2, {k, 3 + k, 6 + k,
5929 ...}> */
5930 first_vect = data_ref;
5931 second_vect = dr_chain[2];
5932 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3_high");
5933 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, first_vect,
5934 second_vect, perm3_mask_high);
5935 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5936 (*result_chain)[k] = data_ref;
5939 else
5941 /* If length is not equal to 3 then only power of 2 is supported. */
5942 gcc_assert (pow2p_hwi (length));
5944 /* The encoding has a single stepped pattern. */
5945 poly_uint64 nelt = TYPE_VECTOR_SUBPARTS (vectype);
5946 vec_perm_builder sel (nelt, 1, 3);
5947 sel.quick_grow (3);
5948 for (i = 0; i < 3; ++i)
5949 sel[i] = i * 2;
5950 vec_perm_indices indices (sel, 2, nelt);
5951 perm_mask_even = vect_gen_perm_mask_checked (vectype, indices);
5953 for (i = 0; i < 3; ++i)
5954 sel[i] = i * 2 + 1;
5955 indices.new_vector (sel, 2, nelt);
5956 perm_mask_odd = vect_gen_perm_mask_checked (vectype, indices);
5958 for (i = 0; i < log_length; i++)
5960 for (j = 0; j < length; j += 2)
5962 first_vect = dr_chain[j];
5963 second_vect = dr_chain[j+1];
5965 /* data_ref = permute_even (first_data_ref, second_data_ref); */
5966 data_ref = make_temp_ssa_name (vectype, NULL, "vect_perm_even");
5967 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
5968 first_vect, second_vect,
5969 perm_mask_even);
5970 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5971 (*result_chain)[j/2] = data_ref;
5973 /* data_ref = permute_odd (first_data_ref, second_data_ref); */
5974 data_ref = make_temp_ssa_name (vectype, NULL, "vect_perm_odd");
5975 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
5976 first_vect, second_vect,
5977 perm_mask_odd);
5978 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5979 (*result_chain)[j/2+length/2] = data_ref;
5981 memcpy (dr_chain.address (), result_chain->address (),
5982 length * sizeof (tree));
5987 /* Function vect_shift_permute_load_chain.
5989 Given a chain of loads in DR_CHAIN of LENGTH 2 or 3, generate
5990 sequence of stmts to reorder the input data accordingly.
5991 Return the final references for loads in RESULT_CHAIN.
5992 Return true if successed, false otherwise.
5994 E.g., LENGTH is 3 and the scalar type is short, i.e., VF is 8.
5995 The input is 3 vectors each containing 8 elements. We assign a
5996 number to each element, the input sequence is:
5998 1st vec: 0 1 2 3 4 5 6 7
5999 2nd vec: 8 9 10 11 12 13 14 15
6000 3rd vec: 16 17 18 19 20 21 22 23
6002 The output sequence should be:
6004 1st vec: 0 3 6 9 12 15 18 21
6005 2nd vec: 1 4 7 10 13 16 19 22
6006 3rd vec: 2 5 8 11 14 17 20 23
6008 We use 3 shuffle instructions and 3 * 3 - 1 shifts to create such output.
6010 First we shuffle all 3 vectors to get correct elements order:
6012 1st vec: ( 0 3 6) ( 1 4 7) ( 2 5)
6013 2nd vec: ( 8 11 14) ( 9 12 15) (10 13)
6014 3rd vec: (16 19 22) (17 20 23) (18 21)
6016 Next we unite and shift vector 3 times:
6018 1st step:
6019 shift right by 6 the concatenation of:
6020 "1st vec" and "2nd vec"
6021 ( 0 3 6) ( 1 4 7) |( 2 5) _ ( 8 11 14) ( 9 12 15)| (10 13)
6022 "2nd vec" and "3rd vec"
6023 ( 8 11 14) ( 9 12 15) |(10 13) _ (16 19 22) (17 20 23)| (18 21)
6024 "3rd vec" and "1st vec"
6025 (16 19 22) (17 20 23) |(18 21) _ ( 0 3 6) ( 1 4 7)| ( 2 5)
6026 | New vectors |
6028 So that now new vectors are:
6030 1st vec: ( 2 5) ( 8 11 14) ( 9 12 15)
6031 2nd vec: (10 13) (16 19 22) (17 20 23)
6032 3rd vec: (18 21) ( 0 3 6) ( 1 4 7)
6034 2nd step:
6035 shift right by 5 the concatenation of:
6036 "1st vec" and "3rd vec"
6037 ( 2 5) ( 8 11 14) |( 9 12 15) _ (18 21) ( 0 3 6)| ( 1 4 7)
6038 "2nd vec" and "1st vec"
6039 (10 13) (16 19 22) |(17 20 23) _ ( 2 5) ( 8 11 14)| ( 9 12 15)
6040 "3rd vec" and "2nd vec"
6041 (18 21) ( 0 3 6) |( 1 4 7) _ (10 13) (16 19 22)| (17 20 23)
6042 | New vectors |
6044 So that now new vectors are:
6046 1st vec: ( 9 12 15) (18 21) ( 0 3 6)
6047 2nd vec: (17 20 23) ( 2 5) ( 8 11 14)
6048 3rd vec: ( 1 4 7) (10 13) (16 19 22) READY
6050 3rd step:
6051 shift right by 5 the concatenation of:
6052 "1st vec" and "1st vec"
6053 ( 9 12 15) (18 21) |( 0 3 6) _ ( 9 12 15) (18 21)| ( 0 3 6)
6054 shift right by 3 the concatenation of:
6055 "2nd vec" and "2nd vec"
6056 (17 20 23) |( 2 5) ( 8 11 14) _ (17 20 23)| ( 2 5) ( 8 11 14)
6057 | New vectors |
6059 So that now all vectors are READY:
6060 1st vec: ( 0 3 6) ( 9 12 15) (18 21)
6061 2nd vec: ( 2 5) ( 8 11 14) (17 20 23)
6062 3rd vec: ( 1 4 7) (10 13) (16 19 22)
6064 This algorithm is faster than one in vect_permute_load_chain if:
6065 1. "shift of a concatination" is faster than general permutation.
6066 This is usually so.
6067 2. The TARGET machine can't execute vector instructions in parallel.
6068 This is because each step of the algorithm depends on previous.
6069 The algorithm in vect_permute_load_chain is much more parallel.
6071 The algorithm is applicable only for LOAD CHAIN LENGTH less than VF.
6074 static bool
6075 vect_shift_permute_load_chain (vec<tree> dr_chain,
6076 unsigned int length,
6077 gimple *stmt,
6078 gimple_stmt_iterator *gsi,
6079 vec<tree> *result_chain)
6081 tree vect[3], vect_shift[3], data_ref, first_vect, second_vect;
6082 tree perm2_mask1, perm2_mask2, perm3_mask;
6083 tree select_mask, shift1_mask, shift2_mask, shift3_mask, shift4_mask;
6084 gimple *perm_stmt;
6086 tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
6087 unsigned int i;
6088 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
6089 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
6091 unsigned HOST_WIDE_INT nelt, vf;
6092 if (!TYPE_VECTOR_SUBPARTS (vectype).is_constant (&nelt)
6093 || !LOOP_VINFO_VECT_FACTOR (loop_vinfo).is_constant (&vf))
6094 /* Not supported for variable-length vectors. */
6095 return false;
6097 vec_perm_builder sel (nelt, nelt, 1);
6098 sel.quick_grow (nelt);
6100 result_chain->quick_grow (length);
6101 memcpy (result_chain->address (), dr_chain.address (),
6102 length * sizeof (tree));
6104 if (pow2p_hwi (length) && vf > 4)
6106 unsigned int j, log_length = exact_log2 (length);
6107 for (i = 0; i < nelt / 2; ++i)
6108 sel[i] = i * 2;
6109 for (i = 0; i < nelt / 2; ++i)
6110 sel[nelt / 2 + i] = i * 2 + 1;
6111 vec_perm_indices indices (sel, 2, nelt);
6112 if (!can_vec_perm_const_p (TYPE_MODE (vectype), indices))
6114 if (dump_enabled_p ())
6115 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6116 "shuffle of 2 fields structure is not \
6117 supported by target\n");
6118 return false;
6120 perm2_mask1 = vect_gen_perm_mask_checked (vectype, indices);
6122 for (i = 0; i < nelt / 2; ++i)
6123 sel[i] = i * 2 + 1;
6124 for (i = 0; i < nelt / 2; ++i)
6125 sel[nelt / 2 + i] = i * 2;
6126 indices.new_vector (sel, 2, nelt);
6127 if (!can_vec_perm_const_p (TYPE_MODE (vectype), indices))
6129 if (dump_enabled_p ())
6130 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6131 "shuffle of 2 fields structure is not \
6132 supported by target\n");
6133 return false;
6135 perm2_mask2 = vect_gen_perm_mask_checked (vectype, indices);
6137 /* Generating permutation constant to shift all elements.
6138 For vector length 8 it is {4 5 6 7 8 9 10 11}. */
6139 for (i = 0; i < nelt; i++)
6140 sel[i] = nelt / 2 + i;
6141 indices.new_vector (sel, 2, nelt);
6142 if (!can_vec_perm_const_p (TYPE_MODE (vectype), indices))
6144 if (dump_enabled_p ())
6145 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6146 "shift permutation is not supported by target\n");
6147 return false;
6149 shift1_mask = vect_gen_perm_mask_checked (vectype, indices);
6151 /* Generating permutation constant to select vector from 2.
6152 For vector length 8 it is {0 1 2 3 12 13 14 15}. */
6153 for (i = 0; i < nelt / 2; i++)
6154 sel[i] = i;
6155 for (i = nelt / 2; i < nelt; i++)
6156 sel[i] = nelt + i;
6157 indices.new_vector (sel, 2, nelt);
6158 if (!can_vec_perm_const_p (TYPE_MODE (vectype), indices))
6160 if (dump_enabled_p ())
6161 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6162 "select is not supported by target\n");
6163 return false;
6165 select_mask = vect_gen_perm_mask_checked (vectype, indices);
6167 for (i = 0; i < log_length; i++)
6169 for (j = 0; j < length; j += 2)
6171 first_vect = dr_chain[j];
6172 second_vect = dr_chain[j + 1];
6174 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle2");
6175 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
6176 first_vect, first_vect,
6177 perm2_mask1);
6178 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
6179 vect[0] = data_ref;
6181 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle2");
6182 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
6183 second_vect, second_vect,
6184 perm2_mask2);
6185 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
6186 vect[1] = data_ref;
6188 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift");
6189 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
6190 vect[0], vect[1], shift1_mask);
6191 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
6192 (*result_chain)[j/2 + length/2] = data_ref;
6194 data_ref = make_temp_ssa_name (vectype, NULL, "vect_select");
6195 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
6196 vect[0], vect[1], select_mask);
6197 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
6198 (*result_chain)[j/2] = data_ref;
6200 memcpy (dr_chain.address (), result_chain->address (),
6201 length * sizeof (tree));
6203 return true;
6205 if (length == 3 && vf > 2)
6207 unsigned int k = 0, l = 0;
6209 /* Generating permutation constant to get all elements in rigth order.
6210 For vector length 8 it is {0 3 6 1 4 7 2 5}. */
6211 for (i = 0; i < nelt; i++)
6213 if (3 * k + (l % 3) >= nelt)
6215 k = 0;
6216 l += (3 - (nelt % 3));
6218 sel[i] = 3 * k + (l % 3);
6219 k++;
6221 vec_perm_indices indices (sel, 2, nelt);
6222 if (!can_vec_perm_const_p (TYPE_MODE (vectype), indices))
6224 if (dump_enabled_p ())
6225 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6226 "shuffle of 3 fields structure is not \
6227 supported by target\n");
6228 return false;
6230 perm3_mask = vect_gen_perm_mask_checked (vectype, indices);
6232 /* Generating permutation constant to shift all elements.
6233 For vector length 8 it is {6 7 8 9 10 11 12 13}. */
6234 for (i = 0; i < nelt; i++)
6235 sel[i] = 2 * (nelt / 3) + (nelt % 3) + i;
6236 indices.new_vector (sel, 2, nelt);
6237 if (!can_vec_perm_const_p (TYPE_MODE (vectype), indices))
6239 if (dump_enabled_p ())
6240 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6241 "shift permutation is not supported by target\n");
6242 return false;
6244 shift1_mask = vect_gen_perm_mask_checked (vectype, indices);
6246 /* Generating permutation constant to shift all elements.
6247 For vector length 8 it is {5 6 7 8 9 10 11 12}. */
6248 for (i = 0; i < nelt; i++)
6249 sel[i] = 2 * (nelt / 3) + 1 + i;
6250 indices.new_vector (sel, 2, nelt);
6251 if (!can_vec_perm_const_p (TYPE_MODE (vectype), indices))
6253 if (dump_enabled_p ())
6254 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6255 "shift permutation is not supported by target\n");
6256 return false;
6258 shift2_mask = vect_gen_perm_mask_checked (vectype, indices);
6260 /* Generating permutation constant to shift all elements.
6261 For vector length 8 it is {3 4 5 6 7 8 9 10}. */
6262 for (i = 0; i < nelt; i++)
6263 sel[i] = (nelt / 3) + (nelt % 3) / 2 + i;
6264 indices.new_vector (sel, 2, nelt);
6265 if (!can_vec_perm_const_p (TYPE_MODE (vectype), indices))
6267 if (dump_enabled_p ())
6268 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6269 "shift permutation is not supported by target\n");
6270 return false;
6272 shift3_mask = vect_gen_perm_mask_checked (vectype, indices);
6274 /* Generating permutation constant to shift all elements.
6275 For vector length 8 it is {5 6 7 8 9 10 11 12}. */
6276 for (i = 0; i < nelt; i++)
6277 sel[i] = 2 * (nelt / 3) + (nelt % 3) / 2 + i;
6278 indices.new_vector (sel, 2, nelt);
6279 if (!can_vec_perm_const_p (TYPE_MODE (vectype), indices))
6281 if (dump_enabled_p ())
6282 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6283 "shift permutation is not supported by target\n");
6284 return false;
6286 shift4_mask = vect_gen_perm_mask_checked (vectype, indices);
6288 for (k = 0; k < 3; k++)
6290 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3");
6291 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
6292 dr_chain[k], dr_chain[k],
6293 perm3_mask);
6294 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
6295 vect[k] = data_ref;
6298 for (k = 0; k < 3; k++)
6300 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift1");
6301 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
6302 vect[k % 3], vect[(k + 1) % 3],
6303 shift1_mask);
6304 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
6305 vect_shift[k] = data_ref;
6308 for (k = 0; k < 3; k++)
6310 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift2");
6311 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
6312 vect_shift[(4 - k) % 3],
6313 vect_shift[(3 - k) % 3],
6314 shift2_mask);
6315 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
6316 vect[k] = data_ref;
6319 (*result_chain)[3 - (nelt % 3)] = vect[2];
6321 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift3");
6322 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, vect[0],
6323 vect[0], shift3_mask);
6324 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
6325 (*result_chain)[nelt % 3] = data_ref;
6327 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift4");
6328 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, vect[1],
6329 vect[1], shift4_mask);
6330 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
6331 (*result_chain)[0] = data_ref;
6332 return true;
6334 return false;
6337 /* Function vect_transform_grouped_load.
6339 Given a chain of input interleaved data-refs (in DR_CHAIN), build statements
6340 to perform their permutation and ascribe the result vectorized statements to
6341 the scalar statements.
6344 void
6345 vect_transform_grouped_load (gimple *stmt, vec<tree> dr_chain, int size,
6346 gimple_stmt_iterator *gsi)
6348 machine_mode mode;
6349 vec<tree> result_chain = vNULL;
6351 /* DR_CHAIN contains input data-refs that are a part of the interleaving.
6352 RESULT_CHAIN is the output of vect_permute_load_chain, it contains permuted
6353 vectors, that are ready for vector computation. */
6354 result_chain.create (size);
6356 /* If reassociation width for vector type is 2 or greater target machine can
6357 execute 2 or more vector instructions in parallel. Otherwise try to
6358 get chain for loads group using vect_shift_permute_load_chain. */
6359 mode = TYPE_MODE (STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt)));
6360 if (targetm.sched.reassociation_width (VEC_PERM_EXPR, mode) > 1
6361 || pow2p_hwi (size)
6362 || !vect_shift_permute_load_chain (dr_chain, size, stmt,
6363 gsi, &result_chain))
6364 vect_permute_load_chain (dr_chain, size, stmt, gsi, &result_chain);
6365 vect_record_grouped_load_vectors (stmt, result_chain);
6366 result_chain.release ();
6369 /* RESULT_CHAIN contains the output of a group of grouped loads that were
6370 generated as part of the vectorization of STMT. Assign the statement
6371 for each vector to the associated scalar statement. */
6373 void
6374 vect_record_grouped_load_vectors (gimple *stmt, vec<tree> result_chain)
6376 gimple *first_stmt = DR_GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt));
6377 gimple *next_stmt, *new_stmt;
6378 unsigned int i, gap_count;
6379 tree tmp_data_ref;
6381 /* Put a permuted data-ref in the VECTORIZED_STMT field.
6382 Since we scan the chain starting from it's first node, their order
6383 corresponds the order of data-refs in RESULT_CHAIN. */
6384 next_stmt = first_stmt;
6385 gap_count = 1;
6386 FOR_EACH_VEC_ELT (result_chain, i, tmp_data_ref)
6388 if (!next_stmt)
6389 break;
6391 /* Skip the gaps. Loads created for the gaps will be removed by dead
6392 code elimination pass later. No need to check for the first stmt in
6393 the group, since it always exists.
6394 DR_GROUP_GAP is the number of steps in elements from the previous
6395 access (if there is no gap DR_GROUP_GAP is 1). We skip loads that
6396 correspond to the gaps. */
6397 if (next_stmt != first_stmt
6398 && gap_count < DR_GROUP_GAP (vinfo_for_stmt (next_stmt)))
6400 gap_count++;
6401 continue;
6404 while (next_stmt)
6406 new_stmt = SSA_NAME_DEF_STMT (tmp_data_ref);
6407 /* We assume that if VEC_STMT is not NULL, this is a case of multiple
6408 copies, and we put the new vector statement in the first available
6409 RELATED_STMT. */
6410 if (!STMT_VINFO_VEC_STMT (vinfo_for_stmt (next_stmt)))
6411 STMT_VINFO_VEC_STMT (vinfo_for_stmt (next_stmt)) = new_stmt;
6412 else
6414 if (!DR_GROUP_SAME_DR_STMT (vinfo_for_stmt (next_stmt)))
6416 gimple *prev_stmt =
6417 STMT_VINFO_VEC_STMT (vinfo_for_stmt (next_stmt));
6418 gimple *rel_stmt =
6419 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (prev_stmt));
6420 while (rel_stmt)
6422 prev_stmt = rel_stmt;
6423 rel_stmt =
6424 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (rel_stmt));
6427 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (prev_stmt)) =
6428 new_stmt;
6432 next_stmt = DR_GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
6433 gap_count = 1;
6434 /* If NEXT_STMT accesses the same DR as the previous statement,
6435 put the same TMP_DATA_REF as its vectorized statement; otherwise
6436 get the next data-ref from RESULT_CHAIN. */
6437 if (!next_stmt || !DR_GROUP_SAME_DR_STMT (vinfo_for_stmt (next_stmt)))
6438 break;
6443 /* Function vect_force_dr_alignment_p.
6445 Returns whether the alignment of a DECL can be forced to be aligned
6446 on ALIGNMENT bit boundary. */
6448 bool
6449 vect_can_force_dr_alignment_p (const_tree decl, unsigned int alignment)
6451 if (!VAR_P (decl))
6452 return false;
6454 if (decl_in_symtab_p (decl)
6455 && !symtab_node::get (decl)->can_increase_alignment_p ())
6456 return false;
6458 if (TREE_STATIC (decl))
6459 return (alignment <= MAX_OFILE_ALIGNMENT);
6460 else
6461 return (alignment <= MAX_STACK_ALIGNMENT);
6465 /* Return whether the data reference DR is supported with respect to its
6466 alignment.
6467 If CHECK_ALIGNED_ACCESSES is TRUE, check if the access is supported even
6468 it is aligned, i.e., check if it is possible to vectorize it with different
6469 alignment. */
6471 enum dr_alignment_support
6472 vect_supportable_dr_alignment (struct data_reference *dr,
6473 bool check_aligned_accesses)
6475 gimple *stmt = DR_STMT (dr);
6476 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
6477 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
6478 machine_mode mode = TYPE_MODE (vectype);
6479 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
6480 struct loop *vect_loop = NULL;
6481 bool nested_in_vect_loop = false;
6483 if (aligned_access_p (dr) && !check_aligned_accesses)
6484 return dr_aligned;
6486 /* For now assume all conditional loads/stores support unaligned
6487 access without any special code. */
6488 if (is_gimple_call (stmt)
6489 && gimple_call_internal_p (stmt)
6490 && (gimple_call_internal_fn (stmt) == IFN_MASK_LOAD
6491 || gimple_call_internal_fn (stmt) == IFN_MASK_STORE))
6492 return dr_unaligned_supported;
6494 if (loop_vinfo)
6496 vect_loop = LOOP_VINFO_LOOP (loop_vinfo);
6497 nested_in_vect_loop = nested_in_vect_loop_p (vect_loop, stmt);
6500 /* Possibly unaligned access. */
6502 /* We can choose between using the implicit realignment scheme (generating
6503 a misaligned_move stmt) and the explicit realignment scheme (generating
6504 aligned loads with a REALIGN_LOAD). There are two variants to the
6505 explicit realignment scheme: optimized, and unoptimized.
6506 We can optimize the realignment only if the step between consecutive
6507 vector loads is equal to the vector size. Since the vector memory
6508 accesses advance in steps of VS (Vector Size) in the vectorized loop, it
6509 is guaranteed that the misalignment amount remains the same throughout the
6510 execution of the vectorized loop. Therefore, we can create the
6511 "realignment token" (the permutation mask that is passed to REALIGN_LOAD)
6512 at the loop preheader.
6514 However, in the case of outer-loop vectorization, when vectorizing a
6515 memory access in the inner-loop nested within the LOOP that is now being
6516 vectorized, while it is guaranteed that the misalignment of the
6517 vectorized memory access will remain the same in different outer-loop
6518 iterations, it is *not* guaranteed that is will remain the same throughout
6519 the execution of the inner-loop. This is because the inner-loop advances
6520 with the original scalar step (and not in steps of VS). If the inner-loop
6521 step happens to be a multiple of VS, then the misalignment remains fixed
6522 and we can use the optimized realignment scheme. For example:
6524 for (i=0; i<N; i++)
6525 for (j=0; j<M; j++)
6526 s += a[i+j];
6528 When vectorizing the i-loop in the above example, the step between
6529 consecutive vector loads is 1, and so the misalignment does not remain
6530 fixed across the execution of the inner-loop, and the realignment cannot
6531 be optimized (as illustrated in the following pseudo vectorized loop):
6533 for (i=0; i<N; i+=4)
6534 for (j=0; j<M; j++){
6535 vs += vp[i+j]; // misalignment of &vp[i+j] is {0,1,2,3,0,1,2,3,...}
6536 // when j is {0,1,2,3,4,5,6,7,...} respectively.
6537 // (assuming that we start from an aligned address).
6540 We therefore have to use the unoptimized realignment scheme:
6542 for (i=0; i<N; i+=4)
6543 for (j=k; j<M; j+=4)
6544 vs += vp[i+j]; // misalignment of &vp[i+j] is always k (assuming
6545 // that the misalignment of the initial address is
6546 // 0).
6548 The loop can then be vectorized as follows:
6550 for (k=0; k<4; k++){
6551 rt = get_realignment_token (&vp[k]);
6552 for (i=0; i<N; i+=4){
6553 v1 = vp[i+k];
6554 for (j=k; j<M; j+=4){
6555 v2 = vp[i+j+VS-1];
6556 va = REALIGN_LOAD <v1,v2,rt>;
6557 vs += va;
6558 v1 = v2;
6561 } */
6563 if (DR_IS_READ (dr))
6565 bool is_packed = false;
6566 tree type = (TREE_TYPE (DR_REF (dr)));
6568 if (optab_handler (vec_realign_load_optab, mode) != CODE_FOR_nothing
6569 && (!targetm.vectorize.builtin_mask_for_load
6570 || targetm.vectorize.builtin_mask_for_load ()))
6572 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
6574 /* If we are doing SLP then the accesses need not have the
6575 same alignment, instead it depends on the SLP group size. */
6576 if (loop_vinfo
6577 && STMT_SLP_TYPE (stmt_info)
6578 && !multiple_p (LOOP_VINFO_VECT_FACTOR (loop_vinfo)
6579 * DR_GROUP_SIZE (vinfo_for_stmt
6580 (DR_GROUP_FIRST_ELEMENT (stmt_info))),
6581 TYPE_VECTOR_SUBPARTS (vectype)))
6583 else if (!loop_vinfo
6584 || (nested_in_vect_loop
6585 && maybe_ne (TREE_INT_CST_LOW (DR_STEP (dr)),
6586 GET_MODE_SIZE (TYPE_MODE (vectype)))))
6587 return dr_explicit_realign;
6588 else
6589 return dr_explicit_realign_optimized;
6591 if (!known_alignment_for_access_p (dr))
6592 is_packed = not_size_aligned (DR_REF (dr));
6594 if (targetm.vectorize.support_vector_misalignment
6595 (mode, type, DR_MISALIGNMENT (dr), is_packed))
6596 /* Can't software pipeline the loads, but can at least do them. */
6597 return dr_unaligned_supported;
6599 else
6601 bool is_packed = false;
6602 tree type = (TREE_TYPE (DR_REF (dr)));
6604 if (!known_alignment_for_access_p (dr))
6605 is_packed = not_size_aligned (DR_REF (dr));
6607 if (targetm.vectorize.support_vector_misalignment
6608 (mode, type, DR_MISALIGNMENT (dr), is_packed))
6609 return dr_unaligned_supported;
6612 /* Unsupported. */
6613 return dr_unaligned_unsupported;