PR c/19031
[official-gcc.git] / gcc / dwarf2out.c
blob26174ec1c51bd8a2174d77d5077062dd8170bd7a
1 /* Output Dwarf2 format symbol table information from GCC.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004 Free Software Foundation, Inc.
4 Contributed by Gary Funck (gary@intrepid.com).
5 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
6 Extensively modified by Jason Merrill (jason@cygnus.com).
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 2, or (at your option) any later
13 version.
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING. If not, write to the Free
22 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
23 02111-1307, USA. */
25 /* TODO: Emit .debug_line header even when there are no functions, since
26 the file numbers are used by .debug_info. Alternately, leave
27 out locations for types and decls.
28 Avoid talking about ctors and op= for PODs.
29 Factor out common prologue sequences into multiple CIEs. */
31 /* The first part of this file deals with the DWARF 2 frame unwind
32 information, which is also used by the GCC efficient exception handling
33 mechanism. The second part, controlled only by an #ifdef
34 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
35 information. */
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "tree.h"
42 #include "version.h"
43 #include "flags.h"
44 #include "real.h"
45 #include "rtl.h"
46 #include "hard-reg-set.h"
47 #include "regs.h"
48 #include "insn-config.h"
49 #include "reload.h"
50 #include "function.h"
51 #include "output.h"
52 #include "expr.h"
53 #include "libfuncs.h"
54 #include "except.h"
55 #include "dwarf2.h"
56 #include "dwarf2out.h"
57 #include "dwarf2asm.h"
58 #include "toplev.h"
59 #include "varray.h"
60 #include "ggc.h"
61 #include "md5.h"
62 #include "tm_p.h"
63 #include "diagnostic.h"
64 #include "debug.h"
65 #include "target.h"
66 #include "langhooks.h"
67 #include "hashtab.h"
68 #include "cgraph.h"
69 #include "input.h"
71 #ifdef DWARF2_DEBUGGING_INFO
72 static void dwarf2out_source_line (unsigned int, const char *);
73 #endif
75 /* DWARF2 Abbreviation Glossary:
76 CFA = Canonical Frame Address
77 a fixed address on the stack which identifies a call frame.
78 We define it to be the value of SP just before the call insn.
79 The CFA register and offset, which may change during the course
80 of the function, are used to calculate its value at runtime.
81 CFI = Call Frame Instruction
82 an instruction for the DWARF2 abstract machine
83 CIE = Common Information Entry
84 information describing information common to one or more FDEs
85 DIE = Debugging Information Entry
86 FDE = Frame Description Entry
87 information describing the stack call frame, in particular,
88 how to restore registers
90 DW_CFA_... = DWARF2 CFA call frame instruction
91 DW_TAG_... = DWARF2 DIE tag */
93 /* Decide whether we want to emit frame unwind information for the current
94 translation unit. */
96 int
97 dwarf2out_do_frame (void)
99 return (write_symbols == DWARF2_DEBUG
100 || write_symbols == VMS_AND_DWARF2_DEBUG
101 #ifdef DWARF2_FRAME_INFO
102 || DWARF2_FRAME_INFO
103 #endif
104 #ifdef DWARF2_UNWIND_INFO
105 || flag_unwind_tables
106 || (flag_exceptions && ! USING_SJLJ_EXCEPTIONS)
107 #endif
111 /* The size of the target's pointer type. */
112 #ifndef PTR_SIZE
113 #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
114 #endif
116 /* Various versions of targetm.eh_frame_section. Note these must appear
117 outside the DWARF2_DEBUGGING_INFO || DWARF2_UNWIND_INFO macro guards. */
119 /* Version of targetm.eh_frame_section for systems with named sections. */
120 void
121 named_section_eh_frame_section (void)
123 #ifdef EH_FRAME_SECTION_NAME
124 int flags;
126 if (EH_TABLES_CAN_BE_READ_ONLY)
128 int fde_encoding;
129 int per_encoding;
130 int lsda_encoding;
132 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
133 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
134 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
135 flags = (! flag_pic
136 || ((fde_encoding & 0x70) != DW_EH_PE_absptr
137 && (fde_encoding & 0x70) != DW_EH_PE_aligned
138 && (per_encoding & 0x70) != DW_EH_PE_absptr
139 && (per_encoding & 0x70) != DW_EH_PE_aligned
140 && (lsda_encoding & 0x70) != DW_EH_PE_absptr
141 && (lsda_encoding & 0x70) != DW_EH_PE_aligned))
142 ? 0 : SECTION_WRITE;
144 else
145 flags = SECTION_WRITE;
146 named_section_flags (EH_FRAME_SECTION_NAME, flags);
147 #endif
150 /* Version of targetm.eh_frame_section for systems using collect2. */
151 void
152 collect2_eh_frame_section (void)
154 tree label = get_file_function_name ('F');
156 data_section ();
157 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
158 targetm.asm_out.globalize_label (asm_out_file, IDENTIFIER_POINTER (label));
159 ASM_OUTPUT_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
162 /* Default version of targetm.eh_frame_section. */
163 void
164 default_eh_frame_section (void)
166 #ifdef EH_FRAME_SECTION_NAME
167 named_section_eh_frame_section ();
168 #else
169 collect2_eh_frame_section ();
170 #endif
173 /* Array of RTXes referenced by the debugging information, which therefore
174 must be kept around forever. */
175 static GTY(()) varray_type used_rtx_varray;
177 /* A pointer to the base of a list of incomplete types which might be
178 completed at some later time. incomplete_types_list needs to be a VARRAY
179 because we want to tell the garbage collector about it. */
180 static GTY(()) varray_type incomplete_types;
182 /* A pointer to the base of a table of references to declaration
183 scopes. This table is a display which tracks the nesting
184 of declaration scopes at the current scope and containing
185 scopes. This table is used to find the proper place to
186 define type declaration DIE's. */
187 static GTY(()) varray_type decl_scope_table;
189 /* How to start an assembler comment. */
190 #ifndef ASM_COMMENT_START
191 #define ASM_COMMENT_START ";#"
192 #endif
194 typedef struct dw_cfi_struct *dw_cfi_ref;
195 typedef struct dw_fde_struct *dw_fde_ref;
196 typedef union dw_cfi_oprnd_struct *dw_cfi_oprnd_ref;
198 /* Call frames are described using a sequence of Call Frame
199 Information instructions. The register number, offset
200 and address fields are provided as possible operands;
201 their use is selected by the opcode field. */
203 enum dw_cfi_oprnd_type {
204 dw_cfi_oprnd_unused,
205 dw_cfi_oprnd_reg_num,
206 dw_cfi_oprnd_offset,
207 dw_cfi_oprnd_addr,
208 dw_cfi_oprnd_loc
211 typedef union dw_cfi_oprnd_struct GTY(())
213 unsigned long GTY ((tag ("dw_cfi_oprnd_reg_num"))) dw_cfi_reg_num;
214 HOST_WIDE_INT GTY ((tag ("dw_cfi_oprnd_offset"))) dw_cfi_offset;
215 const char * GTY ((tag ("dw_cfi_oprnd_addr"))) dw_cfi_addr;
216 struct dw_loc_descr_struct * GTY ((tag ("dw_cfi_oprnd_loc"))) dw_cfi_loc;
218 dw_cfi_oprnd;
220 typedef struct dw_cfi_struct GTY(())
222 dw_cfi_ref dw_cfi_next;
223 enum dwarf_call_frame_info dw_cfi_opc;
224 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd1_desc (%1.dw_cfi_opc)")))
225 dw_cfi_oprnd1;
226 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd2_desc (%1.dw_cfi_opc)")))
227 dw_cfi_oprnd2;
229 dw_cfi_node;
231 /* This is how we define the location of the CFA. We use to handle it
232 as REG + OFFSET all the time, but now it can be more complex.
233 It can now be either REG + CFA_OFFSET or *(REG + BASE_OFFSET) + CFA_OFFSET.
234 Instead of passing around REG and OFFSET, we pass a copy
235 of this structure. */
236 typedef struct cfa_loc GTY(())
238 unsigned long reg;
239 HOST_WIDE_INT offset;
240 HOST_WIDE_INT base_offset;
241 int indirect; /* 1 if CFA is accessed via a dereference. */
242 } dw_cfa_location;
244 /* All call frame descriptions (FDE's) in the GCC generated DWARF
245 refer to a single Common Information Entry (CIE), defined at
246 the beginning of the .debug_frame section. This use of a single
247 CIE obviates the need to keep track of multiple CIE's
248 in the DWARF generation routines below. */
250 typedef struct dw_fde_struct GTY(())
252 tree decl;
253 const char *dw_fde_begin;
254 const char *dw_fde_current_label;
255 const char *dw_fde_end;
256 dw_cfi_ref dw_fde_cfi;
257 unsigned funcdef_number;
258 unsigned all_throwers_are_sibcalls : 1;
259 unsigned nothrow : 1;
260 unsigned uses_eh_lsda : 1;
262 dw_fde_node;
264 /* Maximum size (in bytes) of an artificially generated label. */
265 #define MAX_ARTIFICIAL_LABEL_BYTES 30
267 /* The size of addresses as they appear in the Dwarf 2 data.
268 Some architectures use word addresses to refer to code locations,
269 but Dwarf 2 info always uses byte addresses. On such machines,
270 Dwarf 2 addresses need to be larger than the architecture's
271 pointers. */
272 #ifndef DWARF2_ADDR_SIZE
273 #define DWARF2_ADDR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
274 #endif
276 /* The size in bytes of a DWARF field indicating an offset or length
277 relative to a debug info section, specified to be 4 bytes in the
278 DWARF-2 specification. The SGI/MIPS ABI defines it to be the same
279 as PTR_SIZE. */
281 #ifndef DWARF_OFFSET_SIZE
282 #define DWARF_OFFSET_SIZE 4
283 #endif
285 /* According to the (draft) DWARF 3 specification, the initial length
286 should either be 4 or 12 bytes. When it's 12 bytes, the first 4
287 bytes are 0xffffffff, followed by the length stored in the next 8
288 bytes.
290 However, the SGI/MIPS ABI uses an initial length which is equal to
291 DWARF_OFFSET_SIZE. It is defined (elsewhere) accordingly. */
293 #ifndef DWARF_INITIAL_LENGTH_SIZE
294 #define DWARF_INITIAL_LENGTH_SIZE (DWARF_OFFSET_SIZE == 4 ? 4 : 12)
295 #endif
297 #define DWARF_VERSION 2
299 /* Round SIZE up to the nearest BOUNDARY. */
300 #define DWARF_ROUND(SIZE,BOUNDARY) \
301 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
303 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
304 #ifndef DWARF_CIE_DATA_ALIGNMENT
305 #ifdef STACK_GROWS_DOWNWARD
306 #define DWARF_CIE_DATA_ALIGNMENT (-((int) UNITS_PER_WORD))
307 #else
308 #define DWARF_CIE_DATA_ALIGNMENT ((int) UNITS_PER_WORD)
309 #endif
310 #endif
312 /* A pointer to the base of a table that contains frame description
313 information for each routine. */
314 static GTY((length ("fde_table_allocated"))) dw_fde_ref fde_table;
316 /* Number of elements currently allocated for fde_table. */
317 static GTY(()) unsigned fde_table_allocated;
319 /* Number of elements in fde_table currently in use. */
320 static GTY(()) unsigned fde_table_in_use;
322 /* Size (in elements) of increments by which we may expand the
323 fde_table. */
324 #define FDE_TABLE_INCREMENT 256
326 /* A list of call frame insns for the CIE. */
327 static GTY(()) dw_cfi_ref cie_cfi_head;
329 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
330 /* Some DWARF extensions (e.g., MIPS/SGI) implement a subprogram
331 attribute that accelerates the lookup of the FDE associated
332 with the subprogram. This variable holds the table index of the FDE
333 associated with the current function (body) definition. */
334 static unsigned current_funcdef_fde;
335 #endif
337 struct indirect_string_node GTY(())
339 const char *str;
340 unsigned int refcount;
341 unsigned int form;
342 char *label;
345 static GTY ((param_is (struct indirect_string_node))) htab_t debug_str_hash;
347 static GTY(()) int dw2_string_counter;
348 static GTY(()) unsigned long dwarf2out_cfi_label_num;
350 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
352 /* Forward declarations for functions defined in this file. */
354 static char *stripattributes (const char *);
355 static const char *dwarf_cfi_name (unsigned);
356 static dw_cfi_ref new_cfi (void);
357 static void add_cfi (dw_cfi_ref *, dw_cfi_ref);
358 static void add_fde_cfi (const char *, dw_cfi_ref);
359 static void lookup_cfa_1 (dw_cfi_ref, dw_cfa_location *);
360 static void lookup_cfa (dw_cfa_location *);
361 static void reg_save (const char *, unsigned, unsigned, HOST_WIDE_INT);
362 static void initial_return_save (rtx);
363 static HOST_WIDE_INT stack_adjust_offset (rtx);
364 static void output_cfi (dw_cfi_ref, dw_fde_ref, int);
365 static void output_call_frame_info (int);
366 static void dwarf2out_stack_adjust (rtx, bool);
367 static void flush_queued_reg_saves (void);
368 static bool clobbers_queued_reg_save (rtx);
369 static void dwarf2out_frame_debug_expr (rtx, const char *);
371 /* Support for complex CFA locations. */
372 static void output_cfa_loc (dw_cfi_ref);
373 static void get_cfa_from_loc_descr (dw_cfa_location *,
374 struct dw_loc_descr_struct *);
375 static struct dw_loc_descr_struct *build_cfa_loc
376 (dw_cfa_location *);
377 static void def_cfa_1 (const char *, dw_cfa_location *);
379 /* How to start an assembler comment. */
380 #ifndef ASM_COMMENT_START
381 #define ASM_COMMENT_START ";#"
382 #endif
384 /* Data and reference forms for relocatable data. */
385 #define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
386 #define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
388 #ifndef DEBUG_FRAME_SECTION
389 #define DEBUG_FRAME_SECTION ".debug_frame"
390 #endif
392 #ifndef FUNC_BEGIN_LABEL
393 #define FUNC_BEGIN_LABEL "LFB"
394 #endif
396 #ifndef FUNC_END_LABEL
397 #define FUNC_END_LABEL "LFE"
398 #endif
400 #ifndef FRAME_BEGIN_LABEL
401 #define FRAME_BEGIN_LABEL "Lframe"
402 #endif
403 #define CIE_AFTER_SIZE_LABEL "LSCIE"
404 #define CIE_END_LABEL "LECIE"
405 #define FDE_LABEL "LSFDE"
406 #define FDE_AFTER_SIZE_LABEL "LASFDE"
407 #define FDE_END_LABEL "LEFDE"
408 #define LINE_NUMBER_BEGIN_LABEL "LSLT"
409 #define LINE_NUMBER_END_LABEL "LELT"
410 #define LN_PROLOG_AS_LABEL "LASLTP"
411 #define LN_PROLOG_END_LABEL "LELTP"
412 #define DIE_LABEL_PREFIX "DW"
414 /* The DWARF 2 CFA column which tracks the return address. Normally this
415 is the column for PC, or the first column after all of the hard
416 registers. */
417 #ifndef DWARF_FRAME_RETURN_COLUMN
418 #ifdef PC_REGNUM
419 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (PC_REGNUM)
420 #else
421 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGISTERS
422 #endif
423 #endif
425 /* The mapping from gcc register number to DWARF 2 CFA column number. By
426 default, we just provide columns for all registers. */
427 #ifndef DWARF_FRAME_REGNUM
428 #define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
429 #endif
431 /* The offset from the incoming value of %sp to the top of the stack frame
432 for the current function. */
433 #ifndef INCOMING_FRAME_SP_OFFSET
434 #define INCOMING_FRAME_SP_OFFSET 0
435 #endif
437 /* Hook used by __throw. */
440 expand_builtin_dwarf_sp_column (void)
442 return GEN_INT (DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM));
445 /* Return a pointer to a copy of the section string name S with all
446 attributes stripped off, and an asterisk prepended (for assemble_name). */
448 static inline char *
449 stripattributes (const char *s)
451 char *stripped = xmalloc (strlen (s) + 2);
452 char *p = stripped;
454 *p++ = '*';
456 while (*s && *s != ',')
457 *p++ = *s++;
459 *p = '\0';
460 return stripped;
463 /* Generate code to initialize the register size table. */
465 void
466 expand_builtin_init_dwarf_reg_sizes (tree address)
468 int i;
469 enum machine_mode mode = TYPE_MODE (char_type_node);
470 rtx addr = expand_expr (address, NULL_RTX, VOIDmode, 0);
471 rtx mem = gen_rtx_MEM (BLKmode, addr);
472 bool wrote_return_column = false;
474 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
475 if (DWARF_FRAME_REGNUM (i) < DWARF_FRAME_REGISTERS)
477 HOST_WIDE_INT offset = DWARF_FRAME_REGNUM (i) * GET_MODE_SIZE (mode);
478 enum machine_mode save_mode = reg_raw_mode[i];
479 HOST_WIDE_INT size;
481 if (HARD_REGNO_CALL_PART_CLOBBERED (i, save_mode))
482 save_mode = choose_hard_reg_mode (i, 1, true);
483 if (DWARF_FRAME_REGNUM (i) == DWARF_FRAME_RETURN_COLUMN)
485 if (save_mode == VOIDmode)
486 continue;
487 wrote_return_column = true;
489 size = GET_MODE_SIZE (save_mode);
490 if (offset < 0)
491 continue;
493 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
496 #ifdef DWARF_ALT_FRAME_RETURN_COLUMN
497 gcc_assert (wrote_return_column);
498 i = DWARF_ALT_FRAME_RETURN_COLUMN;
499 wrote_return_column = false;
500 #else
501 i = DWARF_FRAME_RETURN_COLUMN;
502 #endif
504 if (! wrote_return_column)
506 enum machine_mode save_mode = Pmode;
507 HOST_WIDE_INT offset = i * GET_MODE_SIZE (mode);
508 HOST_WIDE_INT size = GET_MODE_SIZE (save_mode);
509 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
513 /* Convert a DWARF call frame info. operation to its string name */
515 static const char *
516 dwarf_cfi_name (unsigned int cfi_opc)
518 switch (cfi_opc)
520 case DW_CFA_advance_loc:
521 return "DW_CFA_advance_loc";
522 case DW_CFA_offset:
523 return "DW_CFA_offset";
524 case DW_CFA_restore:
525 return "DW_CFA_restore";
526 case DW_CFA_nop:
527 return "DW_CFA_nop";
528 case DW_CFA_set_loc:
529 return "DW_CFA_set_loc";
530 case DW_CFA_advance_loc1:
531 return "DW_CFA_advance_loc1";
532 case DW_CFA_advance_loc2:
533 return "DW_CFA_advance_loc2";
534 case DW_CFA_advance_loc4:
535 return "DW_CFA_advance_loc4";
536 case DW_CFA_offset_extended:
537 return "DW_CFA_offset_extended";
538 case DW_CFA_restore_extended:
539 return "DW_CFA_restore_extended";
540 case DW_CFA_undefined:
541 return "DW_CFA_undefined";
542 case DW_CFA_same_value:
543 return "DW_CFA_same_value";
544 case DW_CFA_register:
545 return "DW_CFA_register";
546 case DW_CFA_remember_state:
547 return "DW_CFA_remember_state";
548 case DW_CFA_restore_state:
549 return "DW_CFA_restore_state";
550 case DW_CFA_def_cfa:
551 return "DW_CFA_def_cfa";
552 case DW_CFA_def_cfa_register:
553 return "DW_CFA_def_cfa_register";
554 case DW_CFA_def_cfa_offset:
555 return "DW_CFA_def_cfa_offset";
557 /* DWARF 3 */
558 case DW_CFA_def_cfa_expression:
559 return "DW_CFA_def_cfa_expression";
560 case DW_CFA_expression:
561 return "DW_CFA_expression";
562 case DW_CFA_offset_extended_sf:
563 return "DW_CFA_offset_extended_sf";
564 case DW_CFA_def_cfa_sf:
565 return "DW_CFA_def_cfa_sf";
566 case DW_CFA_def_cfa_offset_sf:
567 return "DW_CFA_def_cfa_offset_sf";
569 /* SGI/MIPS specific */
570 case DW_CFA_MIPS_advance_loc8:
571 return "DW_CFA_MIPS_advance_loc8";
573 /* GNU extensions */
574 case DW_CFA_GNU_window_save:
575 return "DW_CFA_GNU_window_save";
576 case DW_CFA_GNU_args_size:
577 return "DW_CFA_GNU_args_size";
578 case DW_CFA_GNU_negative_offset_extended:
579 return "DW_CFA_GNU_negative_offset_extended";
581 default:
582 return "DW_CFA_<unknown>";
586 /* Return a pointer to a newly allocated Call Frame Instruction. */
588 static inline dw_cfi_ref
589 new_cfi (void)
591 dw_cfi_ref cfi = ggc_alloc (sizeof (dw_cfi_node));
593 cfi->dw_cfi_next = NULL;
594 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
595 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
597 return cfi;
600 /* Add a Call Frame Instruction to list of instructions. */
602 static inline void
603 add_cfi (dw_cfi_ref *list_head, dw_cfi_ref cfi)
605 dw_cfi_ref *p;
607 /* Find the end of the chain. */
608 for (p = list_head; (*p) != NULL; p = &(*p)->dw_cfi_next)
611 *p = cfi;
614 /* Generate a new label for the CFI info to refer to. */
616 char *
617 dwarf2out_cfi_label (void)
619 static char label[20];
621 ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", dwarf2out_cfi_label_num++);
622 ASM_OUTPUT_LABEL (asm_out_file, label);
623 return label;
626 /* Add CFI to the current fde at the PC value indicated by LABEL if specified,
627 or to the CIE if LABEL is NULL. */
629 static void
630 add_fde_cfi (const char *label, dw_cfi_ref cfi)
632 if (label)
634 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
636 if (*label == 0)
637 label = dwarf2out_cfi_label ();
639 if (fde->dw_fde_current_label == NULL
640 || strcmp (label, fde->dw_fde_current_label) != 0)
642 dw_cfi_ref xcfi;
644 fde->dw_fde_current_label = label = xstrdup (label);
646 /* Set the location counter to the new label. */
647 xcfi = new_cfi ();
648 xcfi->dw_cfi_opc = DW_CFA_advance_loc4;
649 xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
650 add_cfi (&fde->dw_fde_cfi, xcfi);
653 add_cfi (&fde->dw_fde_cfi, cfi);
656 else
657 add_cfi (&cie_cfi_head, cfi);
660 /* Subroutine of lookup_cfa. */
662 static inline void
663 lookup_cfa_1 (dw_cfi_ref cfi, dw_cfa_location *loc)
665 switch (cfi->dw_cfi_opc)
667 case DW_CFA_def_cfa_offset:
668 loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
669 break;
670 case DW_CFA_def_cfa_register:
671 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
672 break;
673 case DW_CFA_def_cfa:
674 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
675 loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
676 break;
677 case DW_CFA_def_cfa_expression:
678 get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
679 break;
680 default:
681 break;
685 /* Find the previous value for the CFA. */
687 static void
688 lookup_cfa (dw_cfa_location *loc)
690 dw_cfi_ref cfi;
692 loc->reg = (unsigned long) -1;
693 loc->offset = 0;
694 loc->indirect = 0;
695 loc->base_offset = 0;
697 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
698 lookup_cfa_1 (cfi, loc);
700 if (fde_table_in_use)
702 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
703 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
704 lookup_cfa_1 (cfi, loc);
708 /* The current rule for calculating the DWARF2 canonical frame address. */
709 static dw_cfa_location cfa;
711 /* The register used for saving registers to the stack, and its offset
712 from the CFA. */
713 static dw_cfa_location cfa_store;
715 /* The running total of the size of arguments pushed onto the stack. */
716 static HOST_WIDE_INT args_size;
718 /* The last args_size we actually output. */
719 static HOST_WIDE_INT old_args_size;
721 /* Entry point to update the canonical frame address (CFA).
722 LABEL is passed to add_fde_cfi. The value of CFA is now to be
723 calculated from REG+OFFSET. */
725 void
726 dwarf2out_def_cfa (const char *label, unsigned int reg, HOST_WIDE_INT offset)
728 dw_cfa_location loc;
729 loc.indirect = 0;
730 loc.base_offset = 0;
731 loc.reg = reg;
732 loc.offset = offset;
733 def_cfa_1 (label, &loc);
736 /* This routine does the actual work. The CFA is now calculated from
737 the dw_cfa_location structure. */
739 static void
740 def_cfa_1 (const char *label, dw_cfa_location *loc_p)
742 dw_cfi_ref cfi;
743 dw_cfa_location old_cfa, loc;
745 cfa = *loc_p;
746 loc = *loc_p;
748 if (cfa_store.reg == loc.reg && loc.indirect == 0)
749 cfa_store.offset = loc.offset;
751 loc.reg = DWARF_FRAME_REGNUM (loc.reg);
752 lookup_cfa (&old_cfa);
754 /* If nothing changed, no need to issue any call frame instructions. */
755 if (loc.reg == old_cfa.reg && loc.offset == old_cfa.offset
756 && loc.indirect == old_cfa.indirect
757 && (loc.indirect == 0 || loc.base_offset == old_cfa.base_offset))
758 return;
760 cfi = new_cfi ();
762 if (loc.reg == old_cfa.reg && !loc.indirect)
764 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction,
765 indicating the CFA register did not change but the offset
766 did. */
767 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
768 cfi->dw_cfi_oprnd1.dw_cfi_offset = loc.offset;
771 #ifndef MIPS_DEBUGGING_INFO /* SGI dbx thinks this means no offset. */
772 else if (loc.offset == old_cfa.offset && old_cfa.reg != (unsigned long) -1
773 && !loc.indirect)
775 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
776 indicating the CFA register has changed to <register> but the
777 offset has not changed. */
778 cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
779 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
781 #endif
783 else if (loc.indirect == 0)
785 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
786 indicating the CFA register has changed to <register> with
787 the specified offset. */
788 cfi->dw_cfi_opc = DW_CFA_def_cfa;
789 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
790 cfi->dw_cfi_oprnd2.dw_cfi_offset = loc.offset;
792 else
794 /* Construct a DW_CFA_def_cfa_expression instruction to
795 calculate the CFA using a full location expression since no
796 register-offset pair is available. */
797 struct dw_loc_descr_struct *loc_list;
799 cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
800 loc_list = build_cfa_loc (&loc);
801 cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
804 add_fde_cfi (label, cfi);
807 /* Add the CFI for saving a register. REG is the CFA column number.
808 LABEL is passed to add_fde_cfi.
809 If SREG is -1, the register is saved at OFFSET from the CFA;
810 otherwise it is saved in SREG. */
812 static void
813 reg_save (const char *label, unsigned int reg, unsigned int sreg, HOST_WIDE_INT offset)
815 dw_cfi_ref cfi = new_cfi ();
817 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
819 if (sreg == INVALID_REGNUM)
821 if (reg & ~0x3f)
822 /* The register number won't fit in 6 bits, so we have to use
823 the long form. */
824 cfi->dw_cfi_opc = DW_CFA_offset_extended;
825 else
826 cfi->dw_cfi_opc = DW_CFA_offset;
828 #ifdef ENABLE_CHECKING
830 /* If we get an offset that is not a multiple of
831 DWARF_CIE_DATA_ALIGNMENT, there is either a bug in the
832 definition of DWARF_CIE_DATA_ALIGNMENT, or a bug in the machine
833 description. */
834 HOST_WIDE_INT check_offset = offset / DWARF_CIE_DATA_ALIGNMENT;
836 gcc_assert (check_offset * DWARF_CIE_DATA_ALIGNMENT == offset);
838 #endif
839 offset /= DWARF_CIE_DATA_ALIGNMENT;
840 if (offset < 0)
841 cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;
843 cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
845 else if (sreg == reg)
846 cfi->dw_cfi_opc = DW_CFA_same_value;
847 else
849 cfi->dw_cfi_opc = DW_CFA_register;
850 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
853 add_fde_cfi (label, cfi);
856 /* Add the CFI for saving a register window. LABEL is passed to reg_save.
857 This CFI tells the unwinder that it needs to restore the window registers
858 from the previous frame's window save area.
860 ??? Perhaps we should note in the CIE where windows are saved (instead of
861 assuming 0(cfa)) and what registers are in the window. */
863 void
864 dwarf2out_window_save (const char *label)
866 dw_cfi_ref cfi = new_cfi ();
868 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
869 add_fde_cfi (label, cfi);
872 /* Add a CFI to update the running total of the size of arguments
873 pushed onto the stack. */
875 void
876 dwarf2out_args_size (const char *label, HOST_WIDE_INT size)
878 dw_cfi_ref cfi;
880 if (size == old_args_size)
881 return;
883 old_args_size = size;
885 cfi = new_cfi ();
886 cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
887 cfi->dw_cfi_oprnd1.dw_cfi_offset = size;
888 add_fde_cfi (label, cfi);
891 /* Entry point for saving a register to the stack. REG is the GCC register
892 number. LABEL and OFFSET are passed to reg_save. */
894 void
895 dwarf2out_reg_save (const char *label, unsigned int reg, HOST_WIDE_INT offset)
897 reg_save (label, DWARF_FRAME_REGNUM (reg), INVALID_REGNUM, offset);
900 /* Entry point for saving the return address in the stack.
901 LABEL and OFFSET are passed to reg_save. */
903 void
904 dwarf2out_return_save (const char *label, HOST_WIDE_INT offset)
906 reg_save (label, DWARF_FRAME_RETURN_COLUMN, INVALID_REGNUM, offset);
909 /* Entry point for saving the return address in a register.
910 LABEL and SREG are passed to reg_save. */
912 void
913 dwarf2out_return_reg (const char *label, unsigned int sreg)
915 reg_save (label, DWARF_FRAME_RETURN_COLUMN, DWARF_FRAME_REGNUM (sreg), 0);
918 /* Record the initial position of the return address. RTL is
919 INCOMING_RETURN_ADDR_RTX. */
921 static void
922 initial_return_save (rtx rtl)
924 unsigned int reg = INVALID_REGNUM;
925 HOST_WIDE_INT offset = 0;
927 switch (GET_CODE (rtl))
929 case REG:
930 /* RA is in a register. */
931 reg = DWARF_FRAME_REGNUM (REGNO (rtl));
932 break;
934 case MEM:
935 /* RA is on the stack. */
936 rtl = XEXP (rtl, 0);
937 switch (GET_CODE (rtl))
939 case REG:
940 gcc_assert (REGNO (rtl) == STACK_POINTER_REGNUM);
941 offset = 0;
942 break;
944 case PLUS:
945 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
946 offset = INTVAL (XEXP (rtl, 1));
947 break;
949 case MINUS:
950 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
951 offset = -INTVAL (XEXP (rtl, 1));
952 break;
954 default:
955 gcc_unreachable ();
958 break;
960 case PLUS:
961 /* The return address is at some offset from any value we can
962 actually load. For instance, on the SPARC it is in %i7+8. Just
963 ignore the offset for now; it doesn't matter for unwinding frames. */
964 gcc_assert (GET_CODE (XEXP (rtl, 1)) == CONST_INT);
965 initial_return_save (XEXP (rtl, 0));
966 return;
968 default:
969 gcc_unreachable ();
972 if (reg != DWARF_FRAME_RETURN_COLUMN)
973 reg_save (NULL, DWARF_FRAME_RETURN_COLUMN, reg, offset - cfa.offset);
976 /* Given a SET, calculate the amount of stack adjustment it
977 contains. */
979 static HOST_WIDE_INT
980 stack_adjust_offset (rtx pattern)
982 rtx src = SET_SRC (pattern);
983 rtx dest = SET_DEST (pattern);
984 HOST_WIDE_INT offset = 0;
985 enum rtx_code code;
987 if (dest == stack_pointer_rtx)
989 /* (set (reg sp) (plus (reg sp) (const_int))) */
990 code = GET_CODE (src);
991 if (! (code == PLUS || code == MINUS)
992 || XEXP (src, 0) != stack_pointer_rtx
993 || GET_CODE (XEXP (src, 1)) != CONST_INT)
994 return 0;
996 offset = INTVAL (XEXP (src, 1));
997 if (code == PLUS)
998 offset = -offset;
1000 else if (MEM_P (dest))
1002 /* (set (mem (pre_dec (reg sp))) (foo)) */
1003 src = XEXP (dest, 0);
1004 code = GET_CODE (src);
1006 switch (code)
1008 case PRE_MODIFY:
1009 case POST_MODIFY:
1010 if (XEXP (src, 0) == stack_pointer_rtx)
1012 rtx val = XEXP (XEXP (src, 1), 1);
1013 /* We handle only adjustments by constant amount. */
1014 gcc_assert (GET_CODE (XEXP (src, 1)) == PLUS
1015 && GET_CODE (val) == CONST_INT);
1016 offset = -INTVAL (val);
1017 break;
1019 return 0;
1021 case PRE_DEC:
1022 case POST_DEC:
1023 if (XEXP (src, 0) == stack_pointer_rtx)
1025 offset = GET_MODE_SIZE (GET_MODE (dest));
1026 break;
1028 return 0;
1030 case PRE_INC:
1031 case POST_INC:
1032 if (XEXP (src, 0) == stack_pointer_rtx)
1034 offset = -GET_MODE_SIZE (GET_MODE (dest));
1035 break;
1037 return 0;
1039 default:
1040 return 0;
1043 else
1044 return 0;
1046 return offset;
1049 /* Check INSN to see if it looks like a push or a stack adjustment, and
1050 make a note of it if it does. EH uses this information to find out how
1051 much extra space it needs to pop off the stack. */
1053 static void
1054 dwarf2out_stack_adjust (rtx insn, bool after_p)
1056 HOST_WIDE_INT offset;
1057 const char *label;
1058 int i;
1060 /* Don't handle epilogues at all. Certainly it would be wrong to do so
1061 with this function. Proper support would require all frame-related
1062 insns to be marked, and to be able to handle saving state around
1063 epilogues textually in the middle of the function. */
1064 if (prologue_epilogue_contains (insn) || sibcall_epilogue_contains (insn))
1065 return;
1067 /* If only calls can throw, and we have a frame pointer,
1068 save up adjustments until we see the CALL_INSN. */
1069 if (!flag_asynchronous_unwind_tables && cfa.reg != STACK_POINTER_REGNUM)
1071 if (CALL_P (insn) && !after_p)
1073 /* Extract the size of the args from the CALL rtx itself. */
1074 insn = PATTERN (insn);
1075 if (GET_CODE (insn) == PARALLEL)
1076 insn = XVECEXP (insn, 0, 0);
1077 if (GET_CODE (insn) == SET)
1078 insn = SET_SRC (insn);
1079 gcc_assert (GET_CODE (insn) == CALL);
1080 dwarf2out_args_size ("", INTVAL (XEXP (insn, 1)));
1082 return;
1085 if (CALL_P (insn) && !after_p)
1087 if (!flag_asynchronous_unwind_tables)
1088 dwarf2out_args_size ("", args_size);
1089 return;
1091 else if (BARRIER_P (insn))
1093 /* When we see a BARRIER, we know to reset args_size to 0. Usually
1094 the compiler will have already emitted a stack adjustment, but
1095 doesn't bother for calls to noreturn functions. */
1096 #ifdef STACK_GROWS_DOWNWARD
1097 offset = -args_size;
1098 #else
1099 offset = args_size;
1100 #endif
1102 else if (GET_CODE (PATTERN (insn)) == SET)
1103 offset = stack_adjust_offset (PATTERN (insn));
1104 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1105 || GET_CODE (PATTERN (insn)) == SEQUENCE)
1107 /* There may be stack adjustments inside compound insns. Search
1108 for them. */
1109 for (offset = 0, i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1110 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1111 offset += stack_adjust_offset (XVECEXP (PATTERN (insn), 0, i));
1113 else
1114 return;
1116 if (offset == 0)
1117 return;
1119 if (cfa.reg == STACK_POINTER_REGNUM)
1120 cfa.offset += offset;
1122 #ifndef STACK_GROWS_DOWNWARD
1123 offset = -offset;
1124 #endif
1126 args_size += offset;
1127 if (args_size < 0)
1128 args_size = 0;
1130 label = dwarf2out_cfi_label ();
1131 def_cfa_1 (label, &cfa);
1132 if (flag_asynchronous_unwind_tables)
1133 dwarf2out_args_size (label, args_size);
1136 #endif
1138 /* We delay emitting a register save until either (a) we reach the end
1139 of the prologue or (b) the register is clobbered. This clusters
1140 register saves so that there are fewer pc advances. */
1142 struct queued_reg_save GTY(())
1144 struct queued_reg_save *next;
1145 rtx reg;
1146 HOST_WIDE_INT cfa_offset;
1147 rtx saved_reg;
1150 static GTY(()) struct queued_reg_save *queued_reg_saves;
1152 /* The caller's ORIG_REG is saved in SAVED_IN_REG. */
1153 struct reg_saved_in_data GTY(()) {
1154 rtx orig_reg;
1155 rtx saved_in_reg;
1158 /* A list of registers saved in other registers.
1159 The list intentionally has a small maximum capacity of 4; if your
1160 port needs more than that, you might consider implementing a
1161 more efficient data structure. */
1162 static GTY(()) struct reg_saved_in_data regs_saved_in_regs[4];
1163 static GTY(()) size_t num_regs_saved_in_regs;
1165 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1166 static const char *last_reg_save_label;
1168 /* Add an entry to QUEUED_REG_SAVES saying that REG is now saved at
1169 SREG, or if SREG is NULL then it is saved at OFFSET to the CFA. */
1171 static void
1172 queue_reg_save (const char *label, rtx reg, rtx sreg, HOST_WIDE_INT offset)
1174 struct queued_reg_save *q;
1176 /* Duplicates waste space, but it's also necessary to remove them
1177 for correctness, since the queue gets output in reverse
1178 order. */
1179 for (q = queued_reg_saves; q != NULL; q = q->next)
1180 if (REGNO (q->reg) == REGNO (reg))
1181 break;
1183 if (q == NULL)
1185 q = ggc_alloc (sizeof (*q));
1186 q->next = queued_reg_saves;
1187 queued_reg_saves = q;
1190 q->reg = reg;
1191 q->cfa_offset = offset;
1192 q->saved_reg = sreg;
1194 last_reg_save_label = label;
1197 /* Output all the entries in QUEUED_REG_SAVES. */
1199 static void
1200 flush_queued_reg_saves (void)
1202 struct queued_reg_save *q;
1204 for (q = queued_reg_saves; q; q = q->next)
1206 size_t i;
1207 unsigned int reg, sreg;
1209 for (i = 0; i < num_regs_saved_in_regs; i++)
1210 if (REGNO (regs_saved_in_regs[i].orig_reg) == REGNO (q->reg))
1211 break;
1212 if (q->saved_reg && i == num_regs_saved_in_regs)
1214 gcc_assert (i != ARRAY_SIZE (regs_saved_in_regs));
1215 num_regs_saved_in_regs++;
1217 if (i != num_regs_saved_in_regs)
1219 regs_saved_in_regs[i].orig_reg = q->reg;
1220 regs_saved_in_regs[i].saved_in_reg = q->saved_reg;
1223 reg = DWARF_FRAME_REGNUM (REGNO (q->reg));
1224 if (q->saved_reg)
1225 sreg = DWARF_FRAME_REGNUM (REGNO (q->saved_reg));
1226 else
1227 sreg = INVALID_REGNUM;
1228 reg_save (last_reg_save_label, reg, sreg, q->cfa_offset);
1231 queued_reg_saves = NULL;
1232 last_reg_save_label = NULL;
1235 /* Does INSN clobber any register which QUEUED_REG_SAVES lists a saved
1236 location for? Or, does it clobber a register which we've previously
1237 said that some other register is saved in, and for which we now
1238 have a new location for? */
1240 static bool
1241 clobbers_queued_reg_save (rtx insn)
1243 struct queued_reg_save *q;
1245 for (q = queued_reg_saves; q; q = q->next)
1247 size_t i;
1248 if (modified_in_p (q->reg, insn))
1249 return true;
1250 for (i = 0; i < num_regs_saved_in_regs; i++)
1251 if (REGNO (q->reg) == REGNO (regs_saved_in_regs[i].orig_reg)
1252 && modified_in_p (regs_saved_in_regs[i].saved_in_reg, insn))
1253 return true;
1256 return false;
1259 /* What register, if any, is currently saved in REG? */
1261 static rtx
1262 reg_saved_in (rtx reg)
1264 unsigned int regn = REGNO (reg);
1265 size_t i;
1266 struct queued_reg_save *q;
1268 for (q = queued_reg_saves; q; q = q->next)
1269 if (q->saved_reg && regn == REGNO (q->saved_reg))
1270 return q->reg;
1272 for (i = 0; i < num_regs_saved_in_regs; i++)
1273 if (regs_saved_in_regs[i].saved_in_reg
1274 && regn == REGNO (regs_saved_in_regs[i].saved_in_reg))
1275 return regs_saved_in_regs[i].orig_reg;
1277 return NULL_RTX;
1281 /* A temporary register holding an integral value used in adjusting SP
1282 or setting up the store_reg. The "offset" field holds the integer
1283 value, not an offset. */
1284 static dw_cfa_location cfa_temp;
1286 /* Record call frame debugging information for an expression EXPR,
1287 which either sets SP or FP (adjusting how we calculate the frame
1288 address) or saves a register to the stack or another register.
1289 LABEL indicates the address of EXPR.
1291 This function encodes a state machine mapping rtxes to actions on
1292 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1293 users need not read the source code.
1295 The High-Level Picture
1297 Changes in the register we use to calculate the CFA: Currently we
1298 assume that if you copy the CFA register into another register, we
1299 should take the other one as the new CFA register; this seems to
1300 work pretty well. If it's wrong for some target, it's simple
1301 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1303 Changes in the register we use for saving registers to the stack:
1304 This is usually SP, but not always. Again, we deduce that if you
1305 copy SP into another register (and SP is not the CFA register),
1306 then the new register is the one we will be using for register
1307 saves. This also seems to work.
1309 Register saves: There's not much guesswork about this one; if
1310 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1311 register save, and the register used to calculate the destination
1312 had better be the one we think we're using for this purpose.
1313 It's also assumed that a copy from a call-saved register to another
1314 register is saving that register if RTX_FRAME_RELATED_P is set on
1315 that instruction. If the copy is from a call-saved register to
1316 the *same* register, that means that the register is now the same
1317 value as in the caller.
1319 Except: If the register being saved is the CFA register, and the
1320 offset is nonzero, we are saving the CFA, so we assume we have to
1321 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1322 the intent is to save the value of SP from the previous frame.
1324 In addition, if a register has previously been saved to a different
1325 register,
1327 Invariants / Summaries of Rules
1329 cfa current rule for calculating the CFA. It usually
1330 consists of a register and an offset.
1331 cfa_store register used by prologue code to save things to the stack
1332 cfa_store.offset is the offset from the value of
1333 cfa_store.reg to the actual CFA
1334 cfa_temp register holding an integral value. cfa_temp.offset
1335 stores the value, which will be used to adjust the
1336 stack pointer. cfa_temp is also used like cfa_store,
1337 to track stores to the stack via fp or a temp reg.
1339 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1340 with cfa.reg as the first operand changes the cfa.reg and its
1341 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1342 cfa_temp.offset.
1344 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1345 expression yielding a constant. This sets cfa_temp.reg
1346 and cfa_temp.offset.
1348 Rule 5: Create a new register cfa_store used to save items to the
1349 stack.
1351 Rules 10-14: Save a register to the stack. Define offset as the
1352 difference of the original location and cfa_store's
1353 location (or cfa_temp's location if cfa_temp is used).
1355 The Rules
1357 "{a,b}" indicates a choice of a xor b.
1358 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1360 Rule 1:
1361 (set <reg1> <reg2>:cfa.reg)
1362 effects: cfa.reg = <reg1>
1363 cfa.offset unchanged
1364 cfa_temp.reg = <reg1>
1365 cfa_temp.offset = cfa.offset
1367 Rule 2:
1368 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1369 {<const_int>,<reg>:cfa_temp.reg}))
1370 effects: cfa.reg = sp if fp used
1371 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1372 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1373 if cfa_store.reg==sp
1375 Rule 3:
1376 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1377 effects: cfa.reg = fp
1378 cfa_offset += +/- <const_int>
1380 Rule 4:
1381 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1382 constraints: <reg1> != fp
1383 <reg1> != sp
1384 effects: cfa.reg = <reg1>
1385 cfa_temp.reg = <reg1>
1386 cfa_temp.offset = cfa.offset
1388 Rule 5:
1389 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1390 constraints: <reg1> != fp
1391 <reg1> != sp
1392 effects: cfa_store.reg = <reg1>
1393 cfa_store.offset = cfa.offset - cfa_temp.offset
1395 Rule 6:
1396 (set <reg> <const_int>)
1397 effects: cfa_temp.reg = <reg>
1398 cfa_temp.offset = <const_int>
1400 Rule 7:
1401 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1402 effects: cfa_temp.reg = <reg1>
1403 cfa_temp.offset |= <const_int>
1405 Rule 8:
1406 (set <reg> (high <exp>))
1407 effects: none
1409 Rule 9:
1410 (set <reg> (lo_sum <exp> <const_int>))
1411 effects: cfa_temp.reg = <reg>
1412 cfa_temp.offset = <const_int>
1414 Rule 10:
1415 (set (mem (pre_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1416 effects: cfa_store.offset -= <const_int>
1417 cfa.offset = cfa_store.offset if cfa.reg == sp
1418 cfa.reg = sp
1419 cfa.base_offset = -cfa_store.offset
1421 Rule 11:
1422 (set (mem ({pre_inc,pre_dec} sp:cfa_store.reg)) <reg>)
1423 effects: cfa_store.offset += -/+ mode_size(mem)
1424 cfa.offset = cfa_store.offset if cfa.reg == sp
1425 cfa.reg = sp
1426 cfa.base_offset = -cfa_store.offset
1428 Rule 12:
1429 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1431 <reg2>)
1432 effects: cfa.reg = <reg1>
1433 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1435 Rule 13:
1436 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1437 effects: cfa.reg = <reg1>
1438 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1440 Rule 14:
1441 (set (mem (postinc <reg1>:cfa_temp <const_int>)) <reg2>)
1442 effects: cfa.reg = <reg1>
1443 cfa.base_offset = -cfa_temp.offset
1444 cfa_temp.offset -= mode_size(mem)
1446   Rule 15:
1447   (set <reg> {unspec, unspec_volatile})
1448   effects: target-dependent */
1450 static void
1451 dwarf2out_frame_debug_expr (rtx expr, const char *label)
1453 rtx src, dest;
1454 HOST_WIDE_INT offset;
1456 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1457 the PARALLEL independently. The first element is always processed if
1458 it is a SET. This is for backward compatibility. Other elements
1459 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1460 flag is set in them. */
1461 if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
1463 int par_index;
1464 int limit = XVECLEN (expr, 0);
1466 for (par_index = 0; par_index < limit; par_index++)
1467 if (GET_CODE (XVECEXP (expr, 0, par_index)) == SET
1468 && (RTX_FRAME_RELATED_P (XVECEXP (expr, 0, par_index))
1469 || par_index == 0))
1470 dwarf2out_frame_debug_expr (XVECEXP (expr, 0, par_index), label);
1472 return;
1475 gcc_assert (GET_CODE (expr) == SET);
1477 src = SET_SRC (expr);
1478 dest = SET_DEST (expr);
1480 if (GET_CODE (src) == REG)
1482 rtx rsi = reg_saved_in (src);
1483 if (rsi)
1484 src = rsi;
1487 switch (GET_CODE (dest))
1489 case REG:
1490 switch (GET_CODE (src))
1492 /* Setting FP from SP. */
1493 case REG:
1494 if (cfa.reg == (unsigned) REGNO (src))
1496 /* Rule 1 */
1497 /* Update the CFA rule wrt SP or FP. Make sure src is
1498 relative to the current CFA register.
1500 We used to require that dest be either SP or FP, but the
1501 ARM copies SP to a temporary register, and from there to
1502 FP. So we just rely on the backends to only set
1503 RTX_FRAME_RELATED_P on appropriate insns. */
1504 cfa.reg = REGNO (dest);
1505 cfa_temp.reg = cfa.reg;
1506 cfa_temp.offset = cfa.offset;
1508 else
1510 /* Saving a register in a register. */
1511 gcc_assert (call_used_regs [REGNO (dest)]
1512 && (!fixed_regs [REGNO (dest)]
1513 /* For the SPARC and its register window. */
1514 || DWARF_FRAME_REGNUM (REGNO (src))
1515 == DWARF_FRAME_RETURN_COLUMN));
1516 queue_reg_save (label, src, dest, 0);
1518 break;
1520 case PLUS:
1521 case MINUS:
1522 case LO_SUM:
1523 if (dest == stack_pointer_rtx)
1525 /* Rule 2 */
1526 /* Adjusting SP. */
1527 switch (GET_CODE (XEXP (src, 1)))
1529 case CONST_INT:
1530 offset = INTVAL (XEXP (src, 1));
1531 break;
1532 case REG:
1533 gcc_assert ((unsigned) REGNO (XEXP (src, 1))
1534 == cfa_temp.reg);
1535 offset = cfa_temp.offset;
1536 break;
1537 default:
1538 gcc_unreachable ();
1541 if (XEXP (src, 0) == hard_frame_pointer_rtx)
1543 /* Restoring SP from FP in the epilogue. */
1544 gcc_assert (cfa.reg == (unsigned) HARD_FRAME_POINTER_REGNUM);
1545 cfa.reg = STACK_POINTER_REGNUM;
1547 else if (GET_CODE (src) == LO_SUM)
1548 /* Assume we've set the source reg of the LO_SUM from sp. */
1550 else
1551 gcc_assert (XEXP (src, 0) == stack_pointer_rtx);
1553 if (GET_CODE (src) != MINUS)
1554 offset = -offset;
1555 if (cfa.reg == STACK_POINTER_REGNUM)
1556 cfa.offset += offset;
1557 if (cfa_store.reg == STACK_POINTER_REGNUM)
1558 cfa_store.offset += offset;
1560 else if (dest == hard_frame_pointer_rtx)
1562 /* Rule 3 */
1563 /* Either setting the FP from an offset of the SP,
1564 or adjusting the FP */
1565 gcc_assert (frame_pointer_needed);
1567 gcc_assert (REG_P (XEXP (src, 0))
1568 && (unsigned) REGNO (XEXP (src, 0)) == cfa.reg
1569 && GET_CODE (XEXP (src, 1)) == CONST_INT);
1570 offset = INTVAL (XEXP (src, 1));
1571 if (GET_CODE (src) != MINUS)
1572 offset = -offset;
1573 cfa.offset += offset;
1574 cfa.reg = HARD_FRAME_POINTER_REGNUM;
1576 else
1578 gcc_assert (GET_CODE (src) != MINUS);
1580 /* Rule 4 */
1581 if (REG_P (XEXP (src, 0))
1582 && REGNO (XEXP (src, 0)) == cfa.reg
1583 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1585 /* Setting a temporary CFA register that will be copied
1586 into the FP later on. */
1587 offset = - INTVAL (XEXP (src, 1));
1588 cfa.offset += offset;
1589 cfa.reg = REGNO (dest);
1590 /* Or used to save regs to the stack. */
1591 cfa_temp.reg = cfa.reg;
1592 cfa_temp.offset = cfa.offset;
1595 /* Rule 5 */
1596 else if (REG_P (XEXP (src, 0))
1597 && REGNO (XEXP (src, 0)) == cfa_temp.reg
1598 && XEXP (src, 1) == stack_pointer_rtx)
1600 /* Setting a scratch register that we will use instead
1601 of SP for saving registers to the stack. */
1602 gcc_assert (cfa.reg == STACK_POINTER_REGNUM);
1603 cfa_store.reg = REGNO (dest);
1604 cfa_store.offset = cfa.offset - cfa_temp.offset;
1607 /* Rule 9 */
1608 else if (GET_CODE (src) == LO_SUM
1609 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1611 cfa_temp.reg = REGNO (dest);
1612 cfa_temp.offset = INTVAL (XEXP (src, 1));
1614 else
1615 gcc_unreachable ();
1617 break;
1619 /* Rule 6 */
1620 case CONST_INT:
1621 cfa_temp.reg = REGNO (dest);
1622 cfa_temp.offset = INTVAL (src);
1623 break;
1625 /* Rule 7 */
1626 case IOR:
1627 gcc_assert (REG_P (XEXP (src, 0))
1628 && (unsigned) REGNO (XEXP (src, 0)) == cfa_temp.reg
1629 && GET_CODE (XEXP (src, 1)) == CONST_INT);
1631 if ((unsigned) REGNO (dest) != cfa_temp.reg)
1632 cfa_temp.reg = REGNO (dest);
1633 cfa_temp.offset |= INTVAL (XEXP (src, 1));
1634 break;
1636 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1637 which will fill in all of the bits. */
1638 /* Rule 8 */
1639 case HIGH:
1640 break;
1642 /* Rule 15 */
1643 case UNSPEC:
1644 case UNSPEC_VOLATILE:
1645 gcc_assert (targetm.dwarf_handle_frame_unspec);
1646 targetm.dwarf_handle_frame_unspec (label, expr, XINT (src, 1));
1647 break;
1649 default:
1650 gcc_unreachable ();
1653 def_cfa_1 (label, &cfa);
1654 break;
1656 case MEM:
1657 gcc_assert (REG_P (src));
1659 /* Saving a register to the stack. Make sure dest is relative to the
1660 CFA register. */
1661 switch (GET_CODE (XEXP (dest, 0)))
1663 /* Rule 10 */
1664 /* With a push. */
1665 case PRE_MODIFY:
1666 /* We can't handle variable size modifications. */
1667 gcc_assert (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1))
1668 == CONST_INT);
1669 offset = -INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1));
1671 gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
1672 && cfa_store.reg == STACK_POINTER_REGNUM);
1674 cfa_store.offset += offset;
1675 if (cfa.reg == STACK_POINTER_REGNUM)
1676 cfa.offset = cfa_store.offset;
1678 offset = -cfa_store.offset;
1679 break;
1681 /* Rule 11 */
1682 case PRE_INC:
1683 case PRE_DEC:
1684 offset = GET_MODE_SIZE (GET_MODE (dest));
1685 if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
1686 offset = -offset;
1688 gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
1689 && cfa_store.reg == STACK_POINTER_REGNUM);
1691 cfa_store.offset += offset;
1692 if (cfa.reg == STACK_POINTER_REGNUM)
1693 cfa.offset = cfa_store.offset;
1695 offset = -cfa_store.offset;
1696 break;
1698 /* Rule 12 */
1699 /* With an offset. */
1700 case PLUS:
1701 case MINUS:
1702 case LO_SUM:
1704 int regno;
1706 gcc_assert (GET_CODE (XEXP (XEXP (dest, 0), 1)) == CONST_INT);
1707 offset = INTVAL (XEXP (XEXP (dest, 0), 1));
1708 if (GET_CODE (XEXP (dest, 0)) == MINUS)
1709 offset = -offset;
1711 regno = REGNO (XEXP (XEXP (dest, 0), 0));
1713 if (cfa_store.reg == (unsigned) regno)
1714 offset -= cfa_store.offset;
1715 else
1717 gcc_assert (cfa_temp.reg == (unsigned) regno);
1718 offset -= cfa_temp.offset;
1721 break;
1723 /* Rule 13 */
1724 /* Without an offset. */
1725 case REG:
1727 int regno = REGNO (XEXP (dest, 0));
1729 if (cfa_store.reg == (unsigned) regno)
1730 offset = -cfa_store.offset;
1731 else
1733 gcc_assert (cfa_temp.reg == (unsigned) regno);
1734 offset = -cfa_temp.offset;
1737 break;
1739 /* Rule 14 */
1740 case POST_INC:
1741 gcc_assert (cfa_temp.reg
1742 == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)));
1743 offset = -cfa_temp.offset;
1744 cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
1745 break;
1747 default:
1748 gcc_unreachable ();
1751 if (REGNO (src) != STACK_POINTER_REGNUM
1752 && REGNO (src) != HARD_FRAME_POINTER_REGNUM
1753 && (unsigned) REGNO (src) == cfa.reg)
1755 /* We're storing the current CFA reg into the stack. */
1757 if (cfa.offset == 0)
1759 /* If the source register is exactly the CFA, assume
1760 we're saving SP like any other register; this happens
1761 on the ARM. */
1762 def_cfa_1 (label, &cfa);
1763 queue_reg_save (label, stack_pointer_rtx, NULL_RTX, offset);
1764 break;
1766 else
1768 /* Otherwise, we'll need to look in the stack to
1769 calculate the CFA. */
1770 rtx x = XEXP (dest, 0);
1772 if (!REG_P (x))
1773 x = XEXP (x, 0);
1774 gcc_assert (REG_P (x));
1776 cfa.reg = REGNO (x);
1777 cfa.base_offset = offset;
1778 cfa.indirect = 1;
1779 def_cfa_1 (label, &cfa);
1780 break;
1784 def_cfa_1 (label, &cfa);
1785 queue_reg_save (label, src, NULL_RTX, offset);
1786 break;
1788 default:
1789 gcc_unreachable ();
1793 /* Record call frame debugging information for INSN, which either
1794 sets SP or FP (adjusting how we calculate the frame address) or saves a
1795 register to the stack. If INSN is NULL_RTX, initialize our state.
1797 If AFTER_P is false, we're being called before the insn is emitted,
1798 otherwise after. Call instructions get invoked twice. */
1800 void
1801 dwarf2out_frame_debug (rtx insn, bool after_p)
1803 const char *label;
1804 rtx src;
1806 if (insn == NULL_RTX)
1808 size_t i;
1810 /* Flush any queued register saves. */
1811 flush_queued_reg_saves ();
1813 /* Set up state for generating call frame debug info. */
1814 lookup_cfa (&cfa);
1815 gcc_assert (cfa.reg
1816 == (unsigned long)DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM));
1818 cfa.reg = STACK_POINTER_REGNUM;
1819 cfa_store = cfa;
1820 cfa_temp.reg = -1;
1821 cfa_temp.offset = 0;
1823 for (i = 0; i < num_regs_saved_in_regs; i++)
1825 regs_saved_in_regs[i].orig_reg = NULL_RTX;
1826 regs_saved_in_regs[i].saved_in_reg = NULL_RTX;
1828 num_regs_saved_in_regs = 0;
1829 return;
1832 if (!NONJUMP_INSN_P (insn) || clobbers_queued_reg_save (insn))
1833 flush_queued_reg_saves ();
1835 if (! RTX_FRAME_RELATED_P (insn))
1837 if (!ACCUMULATE_OUTGOING_ARGS)
1838 dwarf2out_stack_adjust (insn, after_p);
1839 return;
1842 label = dwarf2out_cfi_label ();
1843 src = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
1844 if (src)
1845 insn = XEXP (src, 0);
1846 else
1847 insn = PATTERN (insn);
1849 dwarf2out_frame_debug_expr (insn, label);
1852 #endif
1854 /* Describe for the GTY machinery what parts of dw_cfi_oprnd1 are used. */
1855 static enum dw_cfi_oprnd_type dw_cfi_oprnd1_desc
1856 (enum dwarf_call_frame_info cfi);
1858 static enum dw_cfi_oprnd_type
1859 dw_cfi_oprnd1_desc (enum dwarf_call_frame_info cfi)
1861 switch (cfi)
1863 case DW_CFA_nop:
1864 case DW_CFA_GNU_window_save:
1865 return dw_cfi_oprnd_unused;
1867 case DW_CFA_set_loc:
1868 case DW_CFA_advance_loc1:
1869 case DW_CFA_advance_loc2:
1870 case DW_CFA_advance_loc4:
1871 case DW_CFA_MIPS_advance_loc8:
1872 return dw_cfi_oprnd_addr;
1874 case DW_CFA_offset:
1875 case DW_CFA_offset_extended:
1876 case DW_CFA_def_cfa:
1877 case DW_CFA_offset_extended_sf:
1878 case DW_CFA_def_cfa_sf:
1879 case DW_CFA_restore_extended:
1880 case DW_CFA_undefined:
1881 case DW_CFA_same_value:
1882 case DW_CFA_def_cfa_register:
1883 case DW_CFA_register:
1884 return dw_cfi_oprnd_reg_num;
1886 case DW_CFA_def_cfa_offset:
1887 case DW_CFA_GNU_args_size:
1888 case DW_CFA_def_cfa_offset_sf:
1889 return dw_cfi_oprnd_offset;
1891 case DW_CFA_def_cfa_expression:
1892 case DW_CFA_expression:
1893 return dw_cfi_oprnd_loc;
1895 default:
1896 gcc_unreachable ();
1900 /* Describe for the GTY machinery what parts of dw_cfi_oprnd2 are used. */
1901 static enum dw_cfi_oprnd_type dw_cfi_oprnd2_desc
1902 (enum dwarf_call_frame_info cfi);
1904 static enum dw_cfi_oprnd_type
1905 dw_cfi_oprnd2_desc (enum dwarf_call_frame_info cfi)
1907 switch (cfi)
1909 case DW_CFA_def_cfa:
1910 case DW_CFA_def_cfa_sf:
1911 case DW_CFA_offset:
1912 case DW_CFA_offset_extended_sf:
1913 case DW_CFA_offset_extended:
1914 return dw_cfi_oprnd_offset;
1916 case DW_CFA_register:
1917 return dw_cfi_oprnd_reg_num;
1919 default:
1920 return dw_cfi_oprnd_unused;
1924 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1926 /* Map register numbers held in the call frame info that gcc has
1927 collected using DWARF_FRAME_REGNUM to those that should be output in
1928 .debug_frame and .eh_frame. */
1929 #ifndef DWARF2_FRAME_REG_OUT
1930 #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) (REGNO)
1931 #endif
1933 /* Output a Call Frame Information opcode and its operand(s). */
1935 static void
1936 output_cfi (dw_cfi_ref cfi, dw_fde_ref fde, int for_eh)
1938 unsigned long r;
1939 if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
1940 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1941 | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
1942 "DW_CFA_advance_loc " HOST_WIDE_INT_PRINT_HEX,
1943 cfi->dw_cfi_oprnd1.dw_cfi_offset);
1944 else if (cfi->dw_cfi_opc == DW_CFA_offset)
1946 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1947 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
1948 "DW_CFA_offset, column 0x%lx", r);
1949 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1951 else if (cfi->dw_cfi_opc == DW_CFA_restore)
1953 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1954 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
1955 "DW_CFA_restore, column 0x%lx", r);
1957 else
1959 dw2_asm_output_data (1, cfi->dw_cfi_opc,
1960 "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
1962 switch (cfi->dw_cfi_opc)
1964 case DW_CFA_set_loc:
1965 if (for_eh)
1966 dw2_asm_output_encoded_addr_rtx (
1967 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
1968 gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
1969 NULL);
1970 else
1971 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
1972 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
1973 break;
1975 case DW_CFA_advance_loc1:
1976 dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1977 fde->dw_fde_current_label, NULL);
1978 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1979 break;
1981 case DW_CFA_advance_loc2:
1982 dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1983 fde->dw_fde_current_label, NULL);
1984 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1985 break;
1987 case DW_CFA_advance_loc4:
1988 dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1989 fde->dw_fde_current_label, NULL);
1990 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1991 break;
1993 case DW_CFA_MIPS_advance_loc8:
1994 dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1995 fde->dw_fde_current_label, NULL);
1996 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1997 break;
1999 case DW_CFA_offset_extended:
2000 case DW_CFA_def_cfa:
2001 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2002 dw2_asm_output_data_uleb128 (r, NULL);
2003 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
2004 break;
2006 case DW_CFA_offset_extended_sf:
2007 case DW_CFA_def_cfa_sf:
2008 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2009 dw2_asm_output_data_uleb128 (r, NULL);
2010 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
2011 break;
2013 case DW_CFA_restore_extended:
2014 case DW_CFA_undefined:
2015 case DW_CFA_same_value:
2016 case DW_CFA_def_cfa_register:
2017 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2018 dw2_asm_output_data_uleb128 (r, NULL);
2019 break;
2021 case DW_CFA_register:
2022 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2023 dw2_asm_output_data_uleb128 (r, NULL);
2024 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, for_eh);
2025 dw2_asm_output_data_uleb128 (r, NULL);
2026 break;
2028 case DW_CFA_def_cfa_offset:
2029 case DW_CFA_GNU_args_size:
2030 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
2031 break;
2033 case DW_CFA_def_cfa_offset_sf:
2034 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
2035 break;
2037 case DW_CFA_GNU_window_save:
2038 break;
2040 case DW_CFA_def_cfa_expression:
2041 case DW_CFA_expression:
2042 output_cfa_loc (cfi);
2043 break;
2045 case DW_CFA_GNU_negative_offset_extended:
2046 /* Obsoleted by DW_CFA_offset_extended_sf. */
2047 gcc_unreachable ();
2049 default:
2050 break;
2055 /* Output the call frame information used to record information
2056 that relates to calculating the frame pointer, and records the
2057 location of saved registers. */
2059 static void
2060 output_call_frame_info (int for_eh)
2062 unsigned int i;
2063 dw_fde_ref fde;
2064 dw_cfi_ref cfi;
2065 char l1[20], l2[20], section_start_label[20];
2066 bool any_lsda_needed = false;
2067 char augmentation[6];
2068 int augmentation_size;
2069 int fde_encoding = DW_EH_PE_absptr;
2070 int per_encoding = DW_EH_PE_absptr;
2071 int lsda_encoding = DW_EH_PE_absptr;
2073 /* Don't emit a CIE if there won't be any FDEs. */
2074 if (fde_table_in_use == 0)
2075 return;
2077 /* If we make FDEs linkonce, we may have to emit an empty label for
2078 an FDE that wouldn't otherwise be emitted. We want to avoid
2079 having an FDE kept around when the function it refers to is
2080 discarded. Example where this matters: a primary function
2081 template in C++ requires EH information, but an explicit
2082 specialization doesn't. */
2083 if (TARGET_USES_WEAK_UNWIND_INFO
2084 && ! flag_asynchronous_unwind_tables
2085 && for_eh)
2086 for (i = 0; i < fde_table_in_use; i++)
2087 if ((fde_table[i].nothrow || fde_table[i].all_throwers_are_sibcalls)
2088 && !fde_table[i].uses_eh_lsda
2089 && ! DECL_WEAK (fde_table[i].decl))
2090 targetm.asm_out.unwind_label (asm_out_file, fde_table[i].decl,
2091 for_eh, /* empty */ 1);
2093 /* If we don't have any functions we'll want to unwind out of, don't
2094 emit any EH unwind information. Note that if exceptions aren't
2095 enabled, we won't have collected nothrow information, and if we
2096 asked for asynchronous tables, we always want this info. */
2097 if (for_eh)
2099 bool any_eh_needed = !flag_exceptions || flag_asynchronous_unwind_tables;
2101 for (i = 0; i < fde_table_in_use; i++)
2102 if (fde_table[i].uses_eh_lsda)
2103 any_eh_needed = any_lsda_needed = true;
2104 else if (TARGET_USES_WEAK_UNWIND_INFO && DECL_WEAK (fde_table[i].decl))
2105 any_eh_needed = true;
2106 else if (! fde_table[i].nothrow
2107 && ! fde_table[i].all_throwers_are_sibcalls)
2108 any_eh_needed = true;
2110 if (! any_eh_needed)
2111 return;
2114 /* We're going to be generating comments, so turn on app. */
2115 if (flag_debug_asm)
2116 app_enable ();
2118 if (for_eh)
2119 targetm.asm_out.eh_frame_section ();
2120 else
2121 named_section_flags (DEBUG_FRAME_SECTION, SECTION_DEBUG);
2123 ASM_GENERATE_INTERNAL_LABEL (section_start_label, FRAME_BEGIN_LABEL, for_eh);
2124 ASM_OUTPUT_LABEL (asm_out_file, section_start_label);
2126 /* Output the CIE. */
2127 ASM_GENERATE_INTERNAL_LABEL (l1, CIE_AFTER_SIZE_LABEL, for_eh);
2128 ASM_GENERATE_INTERNAL_LABEL (l2, CIE_END_LABEL, for_eh);
2129 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2130 "Length of Common Information Entry");
2131 ASM_OUTPUT_LABEL (asm_out_file, l1);
2133 /* Now that the CIE pointer is PC-relative for EH,
2134 use 0 to identify the CIE. */
2135 dw2_asm_output_data ((for_eh ? 4 : DWARF_OFFSET_SIZE),
2136 (for_eh ? 0 : DW_CIE_ID),
2137 "CIE Identifier Tag");
2139 dw2_asm_output_data (1, DW_CIE_VERSION, "CIE Version");
2141 augmentation[0] = 0;
2142 augmentation_size = 0;
2143 if (for_eh)
2145 char *p;
2147 /* Augmentation:
2148 z Indicates that a uleb128 is present to size the
2149 augmentation section.
2150 L Indicates the encoding (and thus presence) of
2151 an LSDA pointer in the FDE augmentation.
2152 R Indicates a non-default pointer encoding for
2153 FDE code pointers.
2154 P Indicates the presence of an encoding + language
2155 personality routine in the CIE augmentation. */
2157 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
2158 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
2159 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
2161 p = augmentation + 1;
2162 if (eh_personality_libfunc)
2164 *p++ = 'P';
2165 augmentation_size += 1 + size_of_encoded_value (per_encoding);
2167 if (any_lsda_needed)
2169 *p++ = 'L';
2170 augmentation_size += 1;
2172 if (fde_encoding != DW_EH_PE_absptr)
2174 *p++ = 'R';
2175 augmentation_size += 1;
2177 if (p > augmentation + 1)
2179 augmentation[0] = 'z';
2180 *p = '\0';
2183 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
2184 if (eh_personality_libfunc && per_encoding == DW_EH_PE_aligned)
2186 int offset = ( 4 /* Length */
2187 + 4 /* CIE Id */
2188 + 1 /* CIE version */
2189 + strlen (augmentation) + 1 /* Augmentation */
2190 + size_of_uleb128 (1) /* Code alignment */
2191 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT)
2192 + 1 /* RA column */
2193 + 1 /* Augmentation size */
2194 + 1 /* Personality encoding */ );
2195 int pad = -offset & (PTR_SIZE - 1);
2197 augmentation_size += pad;
2199 /* Augmentations should be small, so there's scarce need to
2200 iterate for a solution. Die if we exceed one uleb128 byte. */
2201 gcc_assert (size_of_uleb128 (augmentation_size) == 1);
2205 dw2_asm_output_nstring (augmentation, -1, "CIE Augmentation");
2206 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
2207 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT,
2208 "CIE Data Alignment Factor");
2210 if (DW_CIE_VERSION == 1)
2211 dw2_asm_output_data (1, DWARF_FRAME_RETURN_COLUMN, "CIE RA Column");
2212 else
2213 dw2_asm_output_data_uleb128 (DWARF_FRAME_RETURN_COLUMN, "CIE RA Column");
2215 if (augmentation[0])
2217 dw2_asm_output_data_uleb128 (augmentation_size, "Augmentation size");
2218 if (eh_personality_libfunc)
2220 dw2_asm_output_data (1, per_encoding, "Personality (%s)",
2221 eh_data_format_name (per_encoding));
2222 dw2_asm_output_encoded_addr_rtx (per_encoding,
2223 eh_personality_libfunc, NULL);
2226 if (any_lsda_needed)
2227 dw2_asm_output_data (1, lsda_encoding, "LSDA Encoding (%s)",
2228 eh_data_format_name (lsda_encoding));
2230 if (fde_encoding != DW_EH_PE_absptr)
2231 dw2_asm_output_data (1, fde_encoding, "FDE Encoding (%s)",
2232 eh_data_format_name (fde_encoding));
2235 for (cfi = cie_cfi_head; cfi != NULL; cfi = cfi->dw_cfi_next)
2236 output_cfi (cfi, NULL, for_eh);
2238 /* Pad the CIE out to an address sized boundary. */
2239 ASM_OUTPUT_ALIGN (asm_out_file,
2240 floor_log2 (for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE));
2241 ASM_OUTPUT_LABEL (asm_out_file, l2);
2243 /* Loop through all of the FDE's. */
2244 for (i = 0; i < fde_table_in_use; i++)
2246 fde = &fde_table[i];
2248 /* Don't emit EH unwind info for leaf functions that don't need it. */
2249 if (for_eh && !flag_asynchronous_unwind_tables && flag_exceptions
2250 && (fde->nothrow || fde->all_throwers_are_sibcalls)
2251 && ! (TARGET_USES_WEAK_UNWIND_INFO && DECL_WEAK (fde_table[i].decl))
2252 && !fde->uses_eh_lsda)
2253 continue;
2255 targetm.asm_out.unwind_label (asm_out_file, fde->decl, for_eh, /* empty */ 0);
2256 targetm.asm_out.internal_label (asm_out_file, FDE_LABEL, for_eh + i * 2);
2257 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_AFTER_SIZE_LABEL, for_eh + i * 2);
2258 ASM_GENERATE_INTERNAL_LABEL (l2, FDE_END_LABEL, for_eh + i * 2);
2259 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2260 "FDE Length");
2261 ASM_OUTPUT_LABEL (asm_out_file, l1);
2263 if (for_eh)
2264 dw2_asm_output_delta (4, l1, section_start_label, "FDE CIE offset");
2265 else
2266 dw2_asm_output_offset (DWARF_OFFSET_SIZE, section_start_label,
2267 "FDE CIE offset");
2269 if (for_eh)
2271 rtx sym_ref = gen_rtx_SYMBOL_REF (Pmode, fde->dw_fde_begin);
2272 SYMBOL_REF_FLAGS (sym_ref) |= SYMBOL_FLAG_LOCAL;
2273 dw2_asm_output_encoded_addr_rtx (fde_encoding,
2274 sym_ref,
2275 "FDE initial location");
2276 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2277 fde->dw_fde_end, fde->dw_fde_begin,
2278 "FDE address range");
2280 else
2282 dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_begin,
2283 "FDE initial location");
2284 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2285 fde->dw_fde_end, fde->dw_fde_begin,
2286 "FDE address range");
2289 if (augmentation[0])
2291 if (any_lsda_needed)
2293 int size = size_of_encoded_value (lsda_encoding);
2295 if (lsda_encoding == DW_EH_PE_aligned)
2297 int offset = ( 4 /* Length */
2298 + 4 /* CIE offset */
2299 + 2 * size_of_encoded_value (fde_encoding)
2300 + 1 /* Augmentation size */ );
2301 int pad = -offset & (PTR_SIZE - 1);
2303 size += pad;
2304 gcc_assert (size_of_uleb128 (size) == 1);
2307 dw2_asm_output_data_uleb128 (size, "Augmentation size");
2309 if (fde->uses_eh_lsda)
2311 ASM_GENERATE_INTERNAL_LABEL (l1, "LLSDA",
2312 fde->funcdef_number);
2313 dw2_asm_output_encoded_addr_rtx (
2314 lsda_encoding, gen_rtx_SYMBOL_REF (Pmode, l1),
2315 "Language Specific Data Area");
2317 else
2319 if (lsda_encoding == DW_EH_PE_aligned)
2320 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2321 dw2_asm_output_data
2322 (size_of_encoded_value (lsda_encoding), 0,
2323 "Language Specific Data Area (none)");
2326 else
2327 dw2_asm_output_data_uleb128 (0, "Augmentation size");
2330 /* Loop through the Call Frame Instructions associated with
2331 this FDE. */
2332 fde->dw_fde_current_label = fde->dw_fde_begin;
2333 for (cfi = fde->dw_fde_cfi; cfi != NULL; cfi = cfi->dw_cfi_next)
2334 output_cfi (cfi, fde, for_eh);
2336 /* Pad the FDE out to an address sized boundary. */
2337 ASM_OUTPUT_ALIGN (asm_out_file,
2338 floor_log2 ((for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE)));
2339 ASM_OUTPUT_LABEL (asm_out_file, l2);
2342 if (for_eh && targetm.terminate_dw2_eh_frame_info)
2343 dw2_asm_output_data (4, 0, "End of Table");
2344 #ifdef MIPS_DEBUGGING_INFO
2345 /* Work around Irix 6 assembler bug whereby labels at the end of a section
2346 get a value of 0. Putting .align 0 after the label fixes it. */
2347 ASM_OUTPUT_ALIGN (asm_out_file, 0);
2348 #endif
2350 /* Turn off app to make assembly quicker. */
2351 if (flag_debug_asm)
2352 app_disable ();
2355 /* Output a marker (i.e. a label) for the beginning of a function, before
2356 the prologue. */
2358 void
2359 dwarf2out_begin_prologue (unsigned int line ATTRIBUTE_UNUSED,
2360 const char *file ATTRIBUTE_UNUSED)
2362 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2363 char * dup_label;
2364 dw_fde_ref fde;
2366 current_function_func_begin_label = NULL;
2368 #ifdef TARGET_UNWIND_INFO
2369 /* ??? current_function_func_begin_label is also used by except.c
2370 for call-site information. We must emit this label if it might
2371 be used. */
2372 if ((! flag_exceptions || USING_SJLJ_EXCEPTIONS)
2373 && ! dwarf2out_do_frame ())
2374 return;
2375 #else
2376 if (! dwarf2out_do_frame ())
2377 return;
2378 #endif
2380 function_section (current_function_decl);
2381 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL,
2382 current_function_funcdef_no);
2383 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, FUNC_BEGIN_LABEL,
2384 current_function_funcdef_no);
2385 dup_label = xstrdup (label);
2386 current_function_func_begin_label = dup_label;
2388 #ifdef TARGET_UNWIND_INFO
2389 /* We can elide the fde allocation if we're not emitting debug info. */
2390 if (! dwarf2out_do_frame ())
2391 return;
2392 #endif
2394 /* Expand the fde table if necessary. */
2395 if (fde_table_in_use == fde_table_allocated)
2397 fde_table_allocated += FDE_TABLE_INCREMENT;
2398 fde_table = ggc_realloc (fde_table,
2399 fde_table_allocated * sizeof (dw_fde_node));
2400 memset (fde_table + fde_table_in_use, 0,
2401 FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2404 /* Record the FDE associated with this function. */
2405 current_funcdef_fde = fde_table_in_use;
2407 /* Add the new FDE at the end of the fde_table. */
2408 fde = &fde_table[fde_table_in_use++];
2409 fde->decl = current_function_decl;
2410 fde->dw_fde_begin = dup_label;
2411 fde->dw_fde_current_label = NULL;
2412 fde->dw_fde_end = NULL;
2413 fde->dw_fde_cfi = NULL;
2414 fde->funcdef_number = current_function_funcdef_no;
2415 fde->nothrow = TREE_NOTHROW (current_function_decl);
2416 fde->uses_eh_lsda = cfun->uses_eh_lsda;
2417 fde->all_throwers_are_sibcalls = cfun->all_throwers_are_sibcalls;
2419 args_size = old_args_size = 0;
2421 /* We only want to output line number information for the genuine dwarf2
2422 prologue case, not the eh frame case. */
2423 #ifdef DWARF2_DEBUGGING_INFO
2424 if (file)
2425 dwarf2out_source_line (line, file);
2426 #endif
2429 /* Output a marker (i.e. a label) for the absolute end of the generated code
2430 for a function definition. This gets called *after* the epilogue code has
2431 been generated. */
2433 void
2434 dwarf2out_end_epilogue (unsigned int line ATTRIBUTE_UNUSED,
2435 const char *file ATTRIBUTE_UNUSED)
2437 dw_fde_ref fde;
2438 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2440 /* Output a label to mark the endpoint of the code generated for this
2441 function. */
2442 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
2443 current_function_funcdef_no);
2444 ASM_OUTPUT_LABEL (asm_out_file, label);
2445 fde = &fde_table[fde_table_in_use - 1];
2446 fde->dw_fde_end = xstrdup (label);
2449 void
2450 dwarf2out_frame_init (void)
2452 /* Allocate the initial hunk of the fde_table. */
2453 fde_table = ggc_alloc_cleared (FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2454 fde_table_allocated = FDE_TABLE_INCREMENT;
2455 fde_table_in_use = 0;
2457 /* Generate the CFA instructions common to all FDE's. Do it now for the
2458 sake of lookup_cfa. */
2460 #ifdef DWARF2_UNWIND_INFO
2461 /* On entry, the Canonical Frame Address is at SP. */
2462 dwarf2out_def_cfa (NULL, STACK_POINTER_REGNUM, INCOMING_FRAME_SP_OFFSET);
2463 initial_return_save (INCOMING_RETURN_ADDR_RTX);
2464 #endif
2467 void
2468 dwarf2out_frame_finish (void)
2470 /* Output call frame information. */
2471 if (write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
2472 output_call_frame_info (0);
2474 #ifndef TARGET_UNWIND_INFO
2475 /* Output another copy for the unwinder. */
2476 if (! USING_SJLJ_EXCEPTIONS && (flag_unwind_tables || flag_exceptions))
2477 output_call_frame_info (1);
2478 #endif
2480 #endif
2482 /* And now, the subset of the debugging information support code necessary
2483 for emitting location expressions. */
2485 /* We need some way to distinguish DW_OP_addr with a direct symbol
2486 relocation from DW_OP_addr with a dtp-relative symbol relocation. */
2487 #define INTERNAL_DW_OP_tls_addr (0x100 + DW_OP_addr)
2490 typedef struct dw_val_struct *dw_val_ref;
2491 typedef struct die_struct *dw_die_ref;
2492 typedef struct dw_loc_descr_struct *dw_loc_descr_ref;
2493 typedef struct dw_loc_list_struct *dw_loc_list_ref;
2495 /* Each DIE may have a series of attribute/value pairs. Values
2496 can take on several forms. The forms that are used in this
2497 implementation are listed below. */
2499 enum dw_val_class
2501 dw_val_class_addr,
2502 dw_val_class_offset,
2503 dw_val_class_loc,
2504 dw_val_class_loc_list,
2505 dw_val_class_range_list,
2506 dw_val_class_const,
2507 dw_val_class_unsigned_const,
2508 dw_val_class_long_long,
2509 dw_val_class_vec,
2510 dw_val_class_flag,
2511 dw_val_class_die_ref,
2512 dw_val_class_fde_ref,
2513 dw_val_class_lbl_id,
2514 dw_val_class_lbl_offset,
2515 dw_val_class_str
2518 /* Describe a double word constant value. */
2519 /* ??? Every instance of long_long in the code really means CONST_DOUBLE. */
2521 typedef struct dw_long_long_struct GTY(())
2523 unsigned long hi;
2524 unsigned long low;
2526 dw_long_long_const;
2528 /* Describe a floating point constant value, or a vector constant value. */
2530 typedef struct dw_vec_struct GTY(())
2532 unsigned char * GTY((length ("%h.length"))) array;
2533 unsigned length;
2534 unsigned elt_size;
2536 dw_vec_const;
2538 /* The dw_val_node describes an attribute's value, as it is
2539 represented internally. */
2541 typedef struct dw_val_struct GTY(())
2543 enum dw_val_class val_class;
2544 union dw_val_struct_union
2546 rtx GTY ((tag ("dw_val_class_addr"))) val_addr;
2547 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_offset"))) val_offset;
2548 dw_loc_list_ref GTY ((tag ("dw_val_class_loc_list"))) val_loc_list;
2549 dw_loc_descr_ref GTY ((tag ("dw_val_class_loc"))) val_loc;
2550 HOST_WIDE_INT GTY ((default)) val_int;
2551 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_unsigned_const"))) val_unsigned;
2552 dw_long_long_const GTY ((tag ("dw_val_class_long_long"))) val_long_long;
2553 dw_vec_const GTY ((tag ("dw_val_class_vec"))) val_vec;
2554 struct dw_val_die_union
2556 dw_die_ref die;
2557 int external;
2558 } GTY ((tag ("dw_val_class_die_ref"))) val_die_ref;
2559 unsigned GTY ((tag ("dw_val_class_fde_ref"))) val_fde_index;
2560 struct indirect_string_node * GTY ((tag ("dw_val_class_str"))) val_str;
2561 char * GTY ((tag ("dw_val_class_lbl_id"))) val_lbl_id;
2562 unsigned char GTY ((tag ("dw_val_class_flag"))) val_flag;
2564 GTY ((desc ("%1.val_class"))) v;
2566 dw_val_node;
2568 /* Locations in memory are described using a sequence of stack machine
2569 operations. */
2571 typedef struct dw_loc_descr_struct GTY(())
2573 dw_loc_descr_ref dw_loc_next;
2574 enum dwarf_location_atom dw_loc_opc;
2575 dw_val_node dw_loc_oprnd1;
2576 dw_val_node dw_loc_oprnd2;
2577 int dw_loc_addr;
2579 dw_loc_descr_node;
2581 /* Location lists are ranges + location descriptions for that range,
2582 so you can track variables that are in different places over
2583 their entire life. */
2584 typedef struct dw_loc_list_struct GTY(())
2586 dw_loc_list_ref dw_loc_next;
2587 const char *begin; /* Label for begin address of range */
2588 const char *end; /* Label for end address of range */
2589 char *ll_symbol; /* Label for beginning of location list.
2590 Only on head of list */
2591 const char *section; /* Section this loclist is relative to */
2592 dw_loc_descr_ref expr;
2593 } dw_loc_list_node;
2595 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
2597 static const char *dwarf_stack_op_name (unsigned);
2598 static dw_loc_descr_ref new_loc_descr (enum dwarf_location_atom,
2599 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT);
2600 static void add_loc_descr (dw_loc_descr_ref *, dw_loc_descr_ref);
2601 static unsigned long size_of_loc_descr (dw_loc_descr_ref);
2602 static unsigned long size_of_locs (dw_loc_descr_ref);
2603 static void output_loc_operands (dw_loc_descr_ref);
2604 static void output_loc_sequence (dw_loc_descr_ref);
2606 /* Convert a DWARF stack opcode into its string name. */
2608 static const char *
2609 dwarf_stack_op_name (unsigned int op)
2611 switch (op)
2613 case DW_OP_addr:
2614 case INTERNAL_DW_OP_tls_addr:
2615 return "DW_OP_addr";
2616 case DW_OP_deref:
2617 return "DW_OP_deref";
2618 case DW_OP_const1u:
2619 return "DW_OP_const1u";
2620 case DW_OP_const1s:
2621 return "DW_OP_const1s";
2622 case DW_OP_const2u:
2623 return "DW_OP_const2u";
2624 case DW_OP_const2s:
2625 return "DW_OP_const2s";
2626 case DW_OP_const4u:
2627 return "DW_OP_const4u";
2628 case DW_OP_const4s:
2629 return "DW_OP_const4s";
2630 case DW_OP_const8u:
2631 return "DW_OP_const8u";
2632 case DW_OP_const8s:
2633 return "DW_OP_const8s";
2634 case DW_OP_constu:
2635 return "DW_OP_constu";
2636 case DW_OP_consts:
2637 return "DW_OP_consts";
2638 case DW_OP_dup:
2639 return "DW_OP_dup";
2640 case DW_OP_drop:
2641 return "DW_OP_drop";
2642 case DW_OP_over:
2643 return "DW_OP_over";
2644 case DW_OP_pick:
2645 return "DW_OP_pick";
2646 case DW_OP_swap:
2647 return "DW_OP_swap";
2648 case DW_OP_rot:
2649 return "DW_OP_rot";
2650 case DW_OP_xderef:
2651 return "DW_OP_xderef";
2652 case DW_OP_abs:
2653 return "DW_OP_abs";
2654 case DW_OP_and:
2655 return "DW_OP_and";
2656 case DW_OP_div:
2657 return "DW_OP_div";
2658 case DW_OP_minus:
2659 return "DW_OP_minus";
2660 case DW_OP_mod:
2661 return "DW_OP_mod";
2662 case DW_OP_mul:
2663 return "DW_OP_mul";
2664 case DW_OP_neg:
2665 return "DW_OP_neg";
2666 case DW_OP_not:
2667 return "DW_OP_not";
2668 case DW_OP_or:
2669 return "DW_OP_or";
2670 case DW_OP_plus:
2671 return "DW_OP_plus";
2672 case DW_OP_plus_uconst:
2673 return "DW_OP_plus_uconst";
2674 case DW_OP_shl:
2675 return "DW_OP_shl";
2676 case DW_OP_shr:
2677 return "DW_OP_shr";
2678 case DW_OP_shra:
2679 return "DW_OP_shra";
2680 case DW_OP_xor:
2681 return "DW_OP_xor";
2682 case DW_OP_bra:
2683 return "DW_OP_bra";
2684 case DW_OP_eq:
2685 return "DW_OP_eq";
2686 case DW_OP_ge:
2687 return "DW_OP_ge";
2688 case DW_OP_gt:
2689 return "DW_OP_gt";
2690 case DW_OP_le:
2691 return "DW_OP_le";
2692 case DW_OP_lt:
2693 return "DW_OP_lt";
2694 case DW_OP_ne:
2695 return "DW_OP_ne";
2696 case DW_OP_skip:
2697 return "DW_OP_skip";
2698 case DW_OP_lit0:
2699 return "DW_OP_lit0";
2700 case DW_OP_lit1:
2701 return "DW_OP_lit1";
2702 case DW_OP_lit2:
2703 return "DW_OP_lit2";
2704 case DW_OP_lit3:
2705 return "DW_OP_lit3";
2706 case DW_OP_lit4:
2707 return "DW_OP_lit4";
2708 case DW_OP_lit5:
2709 return "DW_OP_lit5";
2710 case DW_OP_lit6:
2711 return "DW_OP_lit6";
2712 case DW_OP_lit7:
2713 return "DW_OP_lit7";
2714 case DW_OP_lit8:
2715 return "DW_OP_lit8";
2716 case DW_OP_lit9:
2717 return "DW_OP_lit9";
2718 case DW_OP_lit10:
2719 return "DW_OP_lit10";
2720 case DW_OP_lit11:
2721 return "DW_OP_lit11";
2722 case DW_OP_lit12:
2723 return "DW_OP_lit12";
2724 case DW_OP_lit13:
2725 return "DW_OP_lit13";
2726 case DW_OP_lit14:
2727 return "DW_OP_lit14";
2728 case DW_OP_lit15:
2729 return "DW_OP_lit15";
2730 case DW_OP_lit16:
2731 return "DW_OP_lit16";
2732 case DW_OP_lit17:
2733 return "DW_OP_lit17";
2734 case DW_OP_lit18:
2735 return "DW_OP_lit18";
2736 case DW_OP_lit19:
2737 return "DW_OP_lit19";
2738 case DW_OP_lit20:
2739 return "DW_OP_lit20";
2740 case DW_OP_lit21:
2741 return "DW_OP_lit21";
2742 case DW_OP_lit22:
2743 return "DW_OP_lit22";
2744 case DW_OP_lit23:
2745 return "DW_OP_lit23";
2746 case DW_OP_lit24:
2747 return "DW_OP_lit24";
2748 case DW_OP_lit25:
2749 return "DW_OP_lit25";
2750 case DW_OP_lit26:
2751 return "DW_OP_lit26";
2752 case DW_OP_lit27:
2753 return "DW_OP_lit27";
2754 case DW_OP_lit28:
2755 return "DW_OP_lit28";
2756 case DW_OP_lit29:
2757 return "DW_OP_lit29";
2758 case DW_OP_lit30:
2759 return "DW_OP_lit30";
2760 case DW_OP_lit31:
2761 return "DW_OP_lit31";
2762 case DW_OP_reg0:
2763 return "DW_OP_reg0";
2764 case DW_OP_reg1:
2765 return "DW_OP_reg1";
2766 case DW_OP_reg2:
2767 return "DW_OP_reg2";
2768 case DW_OP_reg3:
2769 return "DW_OP_reg3";
2770 case DW_OP_reg4:
2771 return "DW_OP_reg4";
2772 case DW_OP_reg5:
2773 return "DW_OP_reg5";
2774 case DW_OP_reg6:
2775 return "DW_OP_reg6";
2776 case DW_OP_reg7:
2777 return "DW_OP_reg7";
2778 case DW_OP_reg8:
2779 return "DW_OP_reg8";
2780 case DW_OP_reg9:
2781 return "DW_OP_reg9";
2782 case DW_OP_reg10:
2783 return "DW_OP_reg10";
2784 case DW_OP_reg11:
2785 return "DW_OP_reg11";
2786 case DW_OP_reg12:
2787 return "DW_OP_reg12";
2788 case DW_OP_reg13:
2789 return "DW_OP_reg13";
2790 case DW_OP_reg14:
2791 return "DW_OP_reg14";
2792 case DW_OP_reg15:
2793 return "DW_OP_reg15";
2794 case DW_OP_reg16:
2795 return "DW_OP_reg16";
2796 case DW_OP_reg17:
2797 return "DW_OP_reg17";
2798 case DW_OP_reg18:
2799 return "DW_OP_reg18";
2800 case DW_OP_reg19:
2801 return "DW_OP_reg19";
2802 case DW_OP_reg20:
2803 return "DW_OP_reg20";
2804 case DW_OP_reg21:
2805 return "DW_OP_reg21";
2806 case DW_OP_reg22:
2807 return "DW_OP_reg22";
2808 case DW_OP_reg23:
2809 return "DW_OP_reg23";
2810 case DW_OP_reg24:
2811 return "DW_OP_reg24";
2812 case DW_OP_reg25:
2813 return "DW_OP_reg25";
2814 case DW_OP_reg26:
2815 return "DW_OP_reg26";
2816 case DW_OP_reg27:
2817 return "DW_OP_reg27";
2818 case DW_OP_reg28:
2819 return "DW_OP_reg28";
2820 case DW_OP_reg29:
2821 return "DW_OP_reg29";
2822 case DW_OP_reg30:
2823 return "DW_OP_reg30";
2824 case DW_OP_reg31:
2825 return "DW_OP_reg31";
2826 case DW_OP_breg0:
2827 return "DW_OP_breg0";
2828 case DW_OP_breg1:
2829 return "DW_OP_breg1";
2830 case DW_OP_breg2:
2831 return "DW_OP_breg2";
2832 case DW_OP_breg3:
2833 return "DW_OP_breg3";
2834 case DW_OP_breg4:
2835 return "DW_OP_breg4";
2836 case DW_OP_breg5:
2837 return "DW_OP_breg5";
2838 case DW_OP_breg6:
2839 return "DW_OP_breg6";
2840 case DW_OP_breg7:
2841 return "DW_OP_breg7";
2842 case DW_OP_breg8:
2843 return "DW_OP_breg8";
2844 case DW_OP_breg9:
2845 return "DW_OP_breg9";
2846 case DW_OP_breg10:
2847 return "DW_OP_breg10";
2848 case DW_OP_breg11:
2849 return "DW_OP_breg11";
2850 case DW_OP_breg12:
2851 return "DW_OP_breg12";
2852 case DW_OP_breg13:
2853 return "DW_OP_breg13";
2854 case DW_OP_breg14:
2855 return "DW_OP_breg14";
2856 case DW_OP_breg15:
2857 return "DW_OP_breg15";
2858 case DW_OP_breg16:
2859 return "DW_OP_breg16";
2860 case DW_OP_breg17:
2861 return "DW_OP_breg17";
2862 case DW_OP_breg18:
2863 return "DW_OP_breg18";
2864 case DW_OP_breg19:
2865 return "DW_OP_breg19";
2866 case DW_OP_breg20:
2867 return "DW_OP_breg20";
2868 case DW_OP_breg21:
2869 return "DW_OP_breg21";
2870 case DW_OP_breg22:
2871 return "DW_OP_breg22";
2872 case DW_OP_breg23:
2873 return "DW_OP_breg23";
2874 case DW_OP_breg24:
2875 return "DW_OP_breg24";
2876 case DW_OP_breg25:
2877 return "DW_OP_breg25";
2878 case DW_OP_breg26:
2879 return "DW_OP_breg26";
2880 case DW_OP_breg27:
2881 return "DW_OP_breg27";
2882 case DW_OP_breg28:
2883 return "DW_OP_breg28";
2884 case DW_OP_breg29:
2885 return "DW_OP_breg29";
2886 case DW_OP_breg30:
2887 return "DW_OP_breg30";
2888 case DW_OP_breg31:
2889 return "DW_OP_breg31";
2890 case DW_OP_regx:
2891 return "DW_OP_regx";
2892 case DW_OP_fbreg:
2893 return "DW_OP_fbreg";
2894 case DW_OP_bregx:
2895 return "DW_OP_bregx";
2896 case DW_OP_piece:
2897 return "DW_OP_piece";
2898 case DW_OP_deref_size:
2899 return "DW_OP_deref_size";
2900 case DW_OP_xderef_size:
2901 return "DW_OP_xderef_size";
2902 case DW_OP_nop:
2903 return "DW_OP_nop";
2904 case DW_OP_push_object_address:
2905 return "DW_OP_push_object_address";
2906 case DW_OP_call2:
2907 return "DW_OP_call2";
2908 case DW_OP_call4:
2909 return "DW_OP_call4";
2910 case DW_OP_call_ref:
2911 return "DW_OP_call_ref";
2912 case DW_OP_GNU_push_tls_address:
2913 return "DW_OP_GNU_push_tls_address";
2914 default:
2915 return "OP_<unknown>";
2919 /* Return a pointer to a newly allocated location description. Location
2920 descriptions are simple expression terms that can be strung
2921 together to form more complicated location (address) descriptions. */
2923 static inline dw_loc_descr_ref
2924 new_loc_descr (enum dwarf_location_atom op, unsigned HOST_WIDE_INT oprnd1,
2925 unsigned HOST_WIDE_INT oprnd2)
2927 dw_loc_descr_ref descr = ggc_alloc_cleared (sizeof (dw_loc_descr_node));
2929 descr->dw_loc_opc = op;
2930 descr->dw_loc_oprnd1.val_class = dw_val_class_unsigned_const;
2931 descr->dw_loc_oprnd1.v.val_unsigned = oprnd1;
2932 descr->dw_loc_oprnd2.val_class = dw_val_class_unsigned_const;
2933 descr->dw_loc_oprnd2.v.val_unsigned = oprnd2;
2935 return descr;
2939 /* Add a location description term to a location description expression. */
2941 static inline void
2942 add_loc_descr (dw_loc_descr_ref *list_head, dw_loc_descr_ref descr)
2944 dw_loc_descr_ref *d;
2946 /* Find the end of the chain. */
2947 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
2950 *d = descr;
2953 /* Return the size of a location descriptor. */
2955 static unsigned long
2956 size_of_loc_descr (dw_loc_descr_ref loc)
2958 unsigned long size = 1;
2960 switch (loc->dw_loc_opc)
2962 case DW_OP_addr:
2963 case INTERNAL_DW_OP_tls_addr:
2964 size += DWARF2_ADDR_SIZE;
2965 break;
2966 case DW_OP_const1u:
2967 case DW_OP_const1s:
2968 size += 1;
2969 break;
2970 case DW_OP_const2u:
2971 case DW_OP_const2s:
2972 size += 2;
2973 break;
2974 case DW_OP_const4u:
2975 case DW_OP_const4s:
2976 size += 4;
2977 break;
2978 case DW_OP_const8u:
2979 case DW_OP_const8s:
2980 size += 8;
2981 break;
2982 case DW_OP_constu:
2983 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2984 break;
2985 case DW_OP_consts:
2986 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2987 break;
2988 case DW_OP_pick:
2989 size += 1;
2990 break;
2991 case DW_OP_plus_uconst:
2992 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2993 break;
2994 case DW_OP_skip:
2995 case DW_OP_bra:
2996 size += 2;
2997 break;
2998 case DW_OP_breg0:
2999 case DW_OP_breg1:
3000 case DW_OP_breg2:
3001 case DW_OP_breg3:
3002 case DW_OP_breg4:
3003 case DW_OP_breg5:
3004 case DW_OP_breg6:
3005 case DW_OP_breg7:
3006 case DW_OP_breg8:
3007 case DW_OP_breg9:
3008 case DW_OP_breg10:
3009 case DW_OP_breg11:
3010 case DW_OP_breg12:
3011 case DW_OP_breg13:
3012 case DW_OP_breg14:
3013 case DW_OP_breg15:
3014 case DW_OP_breg16:
3015 case DW_OP_breg17:
3016 case DW_OP_breg18:
3017 case DW_OP_breg19:
3018 case DW_OP_breg20:
3019 case DW_OP_breg21:
3020 case DW_OP_breg22:
3021 case DW_OP_breg23:
3022 case DW_OP_breg24:
3023 case DW_OP_breg25:
3024 case DW_OP_breg26:
3025 case DW_OP_breg27:
3026 case DW_OP_breg28:
3027 case DW_OP_breg29:
3028 case DW_OP_breg30:
3029 case DW_OP_breg31:
3030 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3031 break;
3032 case DW_OP_regx:
3033 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3034 break;
3035 case DW_OP_fbreg:
3036 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3037 break;
3038 case DW_OP_bregx:
3039 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3040 size += size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
3041 break;
3042 case DW_OP_piece:
3043 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3044 break;
3045 case DW_OP_deref_size:
3046 case DW_OP_xderef_size:
3047 size += 1;
3048 break;
3049 case DW_OP_call2:
3050 size += 2;
3051 break;
3052 case DW_OP_call4:
3053 size += 4;
3054 break;
3055 case DW_OP_call_ref:
3056 size += DWARF2_ADDR_SIZE;
3057 break;
3058 default:
3059 break;
3062 return size;
3065 /* Return the size of a series of location descriptors. */
3067 static unsigned long
3068 size_of_locs (dw_loc_descr_ref loc)
3070 unsigned long size;
3072 for (size = 0; loc != NULL; loc = loc->dw_loc_next)
3074 loc->dw_loc_addr = size;
3075 size += size_of_loc_descr (loc);
3078 return size;
3081 /* Output location description stack opcode's operands (if any). */
3083 static void
3084 output_loc_operands (dw_loc_descr_ref loc)
3086 dw_val_ref val1 = &loc->dw_loc_oprnd1;
3087 dw_val_ref val2 = &loc->dw_loc_oprnd2;
3089 switch (loc->dw_loc_opc)
3091 #ifdef DWARF2_DEBUGGING_INFO
3092 case DW_OP_addr:
3093 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val1->v.val_addr, NULL);
3094 break;
3095 case DW_OP_const2u:
3096 case DW_OP_const2s:
3097 dw2_asm_output_data (2, val1->v.val_int, NULL);
3098 break;
3099 case DW_OP_const4u:
3100 case DW_OP_const4s:
3101 dw2_asm_output_data (4, val1->v.val_int, NULL);
3102 break;
3103 case DW_OP_const8u:
3104 case DW_OP_const8s:
3105 gcc_assert (HOST_BITS_PER_LONG >= 64);
3106 dw2_asm_output_data (8, val1->v.val_int, NULL);
3107 break;
3108 case DW_OP_skip:
3109 case DW_OP_bra:
3111 int offset;
3113 gcc_assert (val1->val_class == dw_val_class_loc);
3114 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
3116 dw2_asm_output_data (2, offset, NULL);
3118 break;
3119 #else
3120 case DW_OP_addr:
3121 case DW_OP_const2u:
3122 case DW_OP_const2s:
3123 case DW_OP_const4u:
3124 case DW_OP_const4s:
3125 case DW_OP_const8u:
3126 case DW_OP_const8s:
3127 case DW_OP_skip:
3128 case DW_OP_bra:
3129 /* We currently don't make any attempt to make sure these are
3130 aligned properly like we do for the main unwind info, so
3131 don't support emitting things larger than a byte if we're
3132 only doing unwinding. */
3133 gcc_unreachable ();
3134 #endif
3135 case DW_OP_const1u:
3136 case DW_OP_const1s:
3137 dw2_asm_output_data (1, val1->v.val_int, NULL);
3138 break;
3139 case DW_OP_constu:
3140 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3141 break;
3142 case DW_OP_consts:
3143 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3144 break;
3145 case DW_OP_pick:
3146 dw2_asm_output_data (1, val1->v.val_int, NULL);
3147 break;
3148 case DW_OP_plus_uconst:
3149 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3150 break;
3151 case DW_OP_breg0:
3152 case DW_OP_breg1:
3153 case DW_OP_breg2:
3154 case DW_OP_breg3:
3155 case DW_OP_breg4:
3156 case DW_OP_breg5:
3157 case DW_OP_breg6:
3158 case DW_OP_breg7:
3159 case DW_OP_breg8:
3160 case DW_OP_breg9:
3161 case DW_OP_breg10:
3162 case DW_OP_breg11:
3163 case DW_OP_breg12:
3164 case DW_OP_breg13:
3165 case DW_OP_breg14:
3166 case DW_OP_breg15:
3167 case DW_OP_breg16:
3168 case DW_OP_breg17:
3169 case DW_OP_breg18:
3170 case DW_OP_breg19:
3171 case DW_OP_breg20:
3172 case DW_OP_breg21:
3173 case DW_OP_breg22:
3174 case DW_OP_breg23:
3175 case DW_OP_breg24:
3176 case DW_OP_breg25:
3177 case DW_OP_breg26:
3178 case DW_OP_breg27:
3179 case DW_OP_breg28:
3180 case DW_OP_breg29:
3181 case DW_OP_breg30:
3182 case DW_OP_breg31:
3183 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3184 break;
3185 case DW_OP_regx:
3186 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3187 break;
3188 case DW_OP_fbreg:
3189 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3190 break;
3191 case DW_OP_bregx:
3192 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3193 dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
3194 break;
3195 case DW_OP_piece:
3196 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3197 break;
3198 case DW_OP_deref_size:
3199 case DW_OP_xderef_size:
3200 dw2_asm_output_data (1, val1->v.val_int, NULL);
3201 break;
3203 case INTERNAL_DW_OP_tls_addr:
3204 #ifdef ASM_OUTPUT_DWARF_DTPREL
3205 ASM_OUTPUT_DWARF_DTPREL (asm_out_file, DWARF2_ADDR_SIZE,
3206 val1->v.val_addr);
3207 fputc ('\n', asm_out_file);
3208 #else
3209 gcc_unreachable ();
3210 #endif
3211 break;
3213 default:
3214 /* Other codes have no operands. */
3215 break;
3219 /* Output a sequence of location operations. */
3221 static void
3222 output_loc_sequence (dw_loc_descr_ref loc)
3224 for (; loc != NULL; loc = loc->dw_loc_next)
3226 /* Output the opcode. */
3227 dw2_asm_output_data (1, loc->dw_loc_opc,
3228 "%s", dwarf_stack_op_name (loc->dw_loc_opc));
3230 /* Output the operand(s) (if any). */
3231 output_loc_operands (loc);
3235 /* This routine will generate the correct assembly data for a location
3236 description based on a cfi entry with a complex address. */
3238 static void
3239 output_cfa_loc (dw_cfi_ref cfi)
3241 dw_loc_descr_ref loc;
3242 unsigned long size;
3244 /* Output the size of the block. */
3245 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3246 size = size_of_locs (loc);
3247 dw2_asm_output_data_uleb128 (size, NULL);
3249 /* Now output the operations themselves. */
3250 output_loc_sequence (loc);
3253 /* This function builds a dwarf location descriptor sequence from
3254 a dw_cfa_location. */
3256 static struct dw_loc_descr_struct *
3257 build_cfa_loc (dw_cfa_location *cfa)
3259 struct dw_loc_descr_struct *head, *tmp;
3261 gcc_assert (cfa->indirect);
3263 if (cfa->base_offset)
3265 if (cfa->reg <= 31)
3266 head = new_loc_descr (DW_OP_breg0 + cfa->reg, cfa->base_offset, 0);
3267 else
3268 head = new_loc_descr (DW_OP_bregx, cfa->reg, cfa->base_offset);
3270 else if (cfa->reg <= 31)
3271 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3272 else
3273 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3275 head->dw_loc_oprnd1.val_class = dw_val_class_const;
3276 tmp = new_loc_descr (DW_OP_deref, 0, 0);
3277 add_loc_descr (&head, tmp);
3278 if (cfa->offset != 0)
3280 tmp = new_loc_descr (DW_OP_plus_uconst, cfa->offset, 0);
3281 add_loc_descr (&head, tmp);
3284 return head;
3287 /* This function fills in aa dw_cfa_location structure from a dwarf location
3288 descriptor sequence. */
3290 static void
3291 get_cfa_from_loc_descr (dw_cfa_location *cfa, struct dw_loc_descr_struct *loc)
3293 struct dw_loc_descr_struct *ptr;
3294 cfa->offset = 0;
3295 cfa->base_offset = 0;
3296 cfa->indirect = 0;
3297 cfa->reg = -1;
3299 for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
3301 enum dwarf_location_atom op = ptr->dw_loc_opc;
3303 switch (op)
3305 case DW_OP_reg0:
3306 case DW_OP_reg1:
3307 case DW_OP_reg2:
3308 case DW_OP_reg3:
3309 case DW_OP_reg4:
3310 case DW_OP_reg5:
3311 case DW_OP_reg6:
3312 case DW_OP_reg7:
3313 case DW_OP_reg8:
3314 case DW_OP_reg9:
3315 case DW_OP_reg10:
3316 case DW_OP_reg11:
3317 case DW_OP_reg12:
3318 case DW_OP_reg13:
3319 case DW_OP_reg14:
3320 case DW_OP_reg15:
3321 case DW_OP_reg16:
3322 case DW_OP_reg17:
3323 case DW_OP_reg18:
3324 case DW_OP_reg19:
3325 case DW_OP_reg20:
3326 case DW_OP_reg21:
3327 case DW_OP_reg22:
3328 case DW_OP_reg23:
3329 case DW_OP_reg24:
3330 case DW_OP_reg25:
3331 case DW_OP_reg26:
3332 case DW_OP_reg27:
3333 case DW_OP_reg28:
3334 case DW_OP_reg29:
3335 case DW_OP_reg30:
3336 case DW_OP_reg31:
3337 cfa->reg = op - DW_OP_reg0;
3338 break;
3339 case DW_OP_regx:
3340 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3341 break;
3342 case DW_OP_breg0:
3343 case DW_OP_breg1:
3344 case DW_OP_breg2:
3345 case DW_OP_breg3:
3346 case DW_OP_breg4:
3347 case DW_OP_breg5:
3348 case DW_OP_breg6:
3349 case DW_OP_breg7:
3350 case DW_OP_breg8:
3351 case DW_OP_breg9:
3352 case DW_OP_breg10:
3353 case DW_OP_breg11:
3354 case DW_OP_breg12:
3355 case DW_OP_breg13:
3356 case DW_OP_breg14:
3357 case DW_OP_breg15:
3358 case DW_OP_breg16:
3359 case DW_OP_breg17:
3360 case DW_OP_breg18:
3361 case DW_OP_breg19:
3362 case DW_OP_breg20:
3363 case DW_OP_breg21:
3364 case DW_OP_breg22:
3365 case DW_OP_breg23:
3366 case DW_OP_breg24:
3367 case DW_OP_breg25:
3368 case DW_OP_breg26:
3369 case DW_OP_breg27:
3370 case DW_OP_breg28:
3371 case DW_OP_breg29:
3372 case DW_OP_breg30:
3373 case DW_OP_breg31:
3374 cfa->reg = op - DW_OP_breg0;
3375 cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
3376 break;
3377 case DW_OP_bregx:
3378 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3379 cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
3380 break;
3381 case DW_OP_deref:
3382 cfa->indirect = 1;
3383 break;
3384 case DW_OP_plus_uconst:
3385 cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
3386 break;
3387 default:
3388 internal_error ("DW_LOC_OP %s not implemented\n",
3389 dwarf_stack_op_name (ptr->dw_loc_opc));
3393 #endif /* .debug_frame support */
3395 /* And now, the support for symbolic debugging information. */
3396 #ifdef DWARF2_DEBUGGING_INFO
3398 /* .debug_str support. */
3399 static int output_indirect_string (void **, void *);
3401 static void dwarf2out_init (const char *);
3402 static void dwarf2out_finish (const char *);
3403 static void dwarf2out_define (unsigned int, const char *);
3404 static void dwarf2out_undef (unsigned int, const char *);
3405 static void dwarf2out_start_source_file (unsigned, const char *);
3406 static void dwarf2out_end_source_file (unsigned);
3407 static void dwarf2out_begin_block (unsigned, unsigned);
3408 static void dwarf2out_end_block (unsigned, unsigned);
3409 static bool dwarf2out_ignore_block (tree);
3410 static void dwarf2out_global_decl (tree);
3411 static void dwarf2out_type_decl (tree, int);
3412 static void dwarf2out_imported_module_or_decl (tree, tree);
3413 static void dwarf2out_abstract_function (tree);
3414 static void dwarf2out_var_location (rtx);
3415 static void dwarf2out_begin_function (tree);
3417 /* The debug hooks structure. */
3419 const struct gcc_debug_hooks dwarf2_debug_hooks =
3421 dwarf2out_init,
3422 dwarf2out_finish,
3423 dwarf2out_define,
3424 dwarf2out_undef,
3425 dwarf2out_start_source_file,
3426 dwarf2out_end_source_file,
3427 dwarf2out_begin_block,
3428 dwarf2out_end_block,
3429 dwarf2out_ignore_block,
3430 dwarf2out_source_line,
3431 dwarf2out_begin_prologue,
3432 debug_nothing_int_charstar, /* end_prologue */
3433 dwarf2out_end_epilogue,
3434 dwarf2out_begin_function,
3435 debug_nothing_int, /* end_function */
3436 dwarf2out_decl, /* function_decl */
3437 dwarf2out_global_decl,
3438 dwarf2out_type_decl, /* type_decl */
3439 dwarf2out_imported_module_or_decl,
3440 debug_nothing_tree, /* deferred_inline_function */
3441 /* The DWARF 2 backend tries to reduce debugging bloat by not
3442 emitting the abstract description of inline functions until
3443 something tries to reference them. */
3444 dwarf2out_abstract_function, /* outlining_inline_function */
3445 debug_nothing_rtx, /* label */
3446 debug_nothing_int, /* handle_pch */
3447 dwarf2out_var_location
3449 #endif
3451 /* NOTE: In the comments in this file, many references are made to
3452 "Debugging Information Entries". This term is abbreviated as `DIE'
3453 throughout the remainder of this file. */
3455 /* An internal representation of the DWARF output is built, and then
3456 walked to generate the DWARF debugging info. The walk of the internal
3457 representation is done after the entire program has been compiled.
3458 The types below are used to describe the internal representation. */
3460 /* Various DIE's use offsets relative to the beginning of the
3461 .debug_info section to refer to each other. */
3463 typedef long int dw_offset;
3465 /* Define typedefs here to avoid circular dependencies. */
3467 typedef struct dw_attr_struct *dw_attr_ref;
3468 typedef struct dw_line_info_struct *dw_line_info_ref;
3469 typedef struct dw_separate_line_info_struct *dw_separate_line_info_ref;
3470 typedef struct pubname_struct *pubname_ref;
3471 typedef struct dw_ranges_struct *dw_ranges_ref;
3473 /* Each entry in the line_info_table maintains the file and
3474 line number associated with the label generated for that
3475 entry. The label gives the PC value associated with
3476 the line number entry. */
3478 typedef struct dw_line_info_struct GTY(())
3480 unsigned long dw_file_num;
3481 unsigned long dw_line_num;
3483 dw_line_info_entry;
3485 /* Line information for functions in separate sections; each one gets its
3486 own sequence. */
3487 typedef struct dw_separate_line_info_struct GTY(())
3489 unsigned long dw_file_num;
3490 unsigned long dw_line_num;
3491 unsigned long function;
3493 dw_separate_line_info_entry;
3495 /* Each DIE attribute has a field specifying the attribute kind,
3496 a link to the next attribute in the chain, and an attribute value.
3497 Attributes are typically linked below the DIE they modify. */
3499 typedef struct dw_attr_struct GTY(())
3501 enum dwarf_attribute dw_attr;
3502 dw_attr_ref dw_attr_next;
3503 dw_val_node dw_attr_val;
3505 dw_attr_node;
3507 /* The Debugging Information Entry (DIE) structure */
3509 typedef struct die_struct GTY(())
3511 enum dwarf_tag die_tag;
3512 char *die_symbol;
3513 dw_attr_ref die_attr;
3514 dw_die_ref die_parent;
3515 dw_die_ref die_child;
3516 dw_die_ref die_sib;
3517 dw_die_ref die_definition; /* ref from a specification to its definition */
3518 dw_offset die_offset;
3519 unsigned long die_abbrev;
3520 int die_mark;
3521 unsigned int decl_id;
3523 die_node;
3525 /* The pubname structure */
3527 typedef struct pubname_struct GTY(())
3529 dw_die_ref die;
3530 char *name;
3532 pubname_entry;
3534 struct dw_ranges_struct GTY(())
3536 int block_num;
3539 /* The limbo die list structure. */
3540 typedef struct limbo_die_struct GTY(())
3542 dw_die_ref die;
3543 tree created_for;
3544 struct limbo_die_struct *next;
3546 limbo_die_node;
3548 /* How to start an assembler comment. */
3549 #ifndef ASM_COMMENT_START
3550 #define ASM_COMMENT_START ";#"
3551 #endif
3553 /* Define a macro which returns nonzero for a TYPE_DECL which was
3554 implicitly generated for a tagged type.
3556 Note that unlike the gcc front end (which generates a NULL named
3557 TYPE_DECL node for each complete tagged type, each array type, and
3558 each function type node created) the g++ front end generates a
3559 _named_ TYPE_DECL node for each tagged type node created.
3560 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
3561 generate a DW_TAG_typedef DIE for them. */
3563 #define TYPE_DECL_IS_STUB(decl) \
3564 (DECL_NAME (decl) == NULL_TREE \
3565 || (DECL_ARTIFICIAL (decl) \
3566 && is_tagged_type (TREE_TYPE (decl)) \
3567 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
3568 /* This is necessary for stub decls that \
3569 appear in nested inline functions. */ \
3570 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
3571 && (decl_ultimate_origin (decl) \
3572 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
3574 /* Information concerning the compilation unit's programming
3575 language, and compiler version. */
3577 /* Fixed size portion of the DWARF compilation unit header. */
3578 #define DWARF_COMPILE_UNIT_HEADER_SIZE \
3579 (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 3)
3581 /* Fixed size portion of public names info. */
3582 #define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
3584 /* Fixed size portion of the address range info. */
3585 #define DWARF_ARANGES_HEADER_SIZE \
3586 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3587 DWARF2_ADDR_SIZE * 2) \
3588 - DWARF_INITIAL_LENGTH_SIZE)
3590 /* Size of padding portion in the address range info. It must be
3591 aligned to twice the pointer size. */
3592 #define DWARF_ARANGES_PAD_SIZE \
3593 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3594 DWARF2_ADDR_SIZE * 2) \
3595 - (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4))
3597 /* Use assembler line directives if available. */
3598 #ifndef DWARF2_ASM_LINE_DEBUG_INFO
3599 #ifdef HAVE_AS_DWARF2_DEBUG_LINE
3600 #define DWARF2_ASM_LINE_DEBUG_INFO 1
3601 #else
3602 #define DWARF2_ASM_LINE_DEBUG_INFO 0
3603 #endif
3604 #endif
3606 /* Minimum line offset in a special line info. opcode.
3607 This value was chosen to give a reasonable range of values. */
3608 #define DWARF_LINE_BASE -10
3610 /* First special line opcode - leave room for the standard opcodes. */
3611 #define DWARF_LINE_OPCODE_BASE 10
3613 /* Range of line offsets in a special line info. opcode. */
3614 #define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
3616 /* Flag that indicates the initial value of the is_stmt_start flag.
3617 In the present implementation, we do not mark any lines as
3618 the beginning of a source statement, because that information
3619 is not made available by the GCC front-end. */
3620 #define DWARF_LINE_DEFAULT_IS_STMT_START 1
3622 #ifdef DWARF2_DEBUGGING_INFO
3623 /* This location is used by calc_die_sizes() to keep track
3624 the offset of each DIE within the .debug_info section. */
3625 static unsigned long next_die_offset;
3626 #endif
3628 /* Record the root of the DIE's built for the current compilation unit. */
3629 static GTY(()) dw_die_ref comp_unit_die;
3631 /* A list of DIEs with a NULL parent waiting to be relocated. */
3632 static GTY(()) limbo_die_node *limbo_die_list;
3634 /* Filenames referenced by this compilation unit. */
3635 static GTY(()) varray_type file_table;
3636 static GTY(()) varray_type file_table_emitted;
3637 static GTY(()) size_t file_table_last_lookup_index;
3639 /* A hash table of references to DIE's that describe declarations.
3640 The key is a DECL_UID() which is a unique number identifying each decl. */
3641 static GTY ((param_is (struct die_struct))) htab_t decl_die_table;
3643 /* Node of the variable location list. */
3644 struct var_loc_node GTY ((chain_next ("%h.next")))
3646 rtx GTY (()) var_loc_note;
3647 const char * GTY (()) label;
3648 struct var_loc_node * GTY (()) next;
3651 /* Variable location list. */
3652 struct var_loc_list_def GTY (())
3654 struct var_loc_node * GTY (()) first;
3656 /* Do not mark the last element of the chained list because
3657 it is marked through the chain. */
3658 struct var_loc_node * GTY ((skip ("%h"))) last;
3660 /* DECL_UID of the variable decl. */
3661 unsigned int decl_id;
3663 typedef struct var_loc_list_def var_loc_list;
3666 /* Table of decl location linked lists. */
3667 static GTY ((param_is (var_loc_list))) htab_t decl_loc_table;
3669 /* A pointer to the base of a list of references to DIE's that
3670 are uniquely identified by their tag, presence/absence of
3671 children DIE's, and list of attribute/value pairs. */
3672 static GTY((length ("abbrev_die_table_allocated")))
3673 dw_die_ref *abbrev_die_table;
3675 /* Number of elements currently allocated for abbrev_die_table. */
3676 static GTY(()) unsigned abbrev_die_table_allocated;
3678 /* Number of elements in type_die_table currently in use. */
3679 static GTY(()) unsigned abbrev_die_table_in_use;
3681 /* Size (in elements) of increments by which we may expand the
3682 abbrev_die_table. */
3683 #define ABBREV_DIE_TABLE_INCREMENT 256
3685 /* A pointer to the base of a table that contains line information
3686 for each source code line in .text in the compilation unit. */
3687 static GTY((length ("line_info_table_allocated")))
3688 dw_line_info_ref line_info_table;
3690 /* Number of elements currently allocated for line_info_table. */
3691 static GTY(()) unsigned line_info_table_allocated;
3693 /* Number of elements in line_info_table currently in use. */
3694 static GTY(()) unsigned line_info_table_in_use;
3696 /* A pointer to the base of a table that contains line information
3697 for each source code line outside of .text in the compilation unit. */
3698 static GTY ((length ("separate_line_info_table_allocated")))
3699 dw_separate_line_info_ref separate_line_info_table;
3701 /* Number of elements currently allocated for separate_line_info_table. */
3702 static GTY(()) unsigned separate_line_info_table_allocated;
3704 /* Number of elements in separate_line_info_table currently in use. */
3705 static GTY(()) unsigned separate_line_info_table_in_use;
3707 /* Size (in elements) of increments by which we may expand the
3708 line_info_table. */
3709 #define LINE_INFO_TABLE_INCREMENT 1024
3711 /* A pointer to the base of a table that contains a list of publicly
3712 accessible names. */
3713 static GTY ((length ("pubname_table_allocated"))) pubname_ref pubname_table;
3715 /* Number of elements currently allocated for pubname_table. */
3716 static GTY(()) unsigned pubname_table_allocated;
3718 /* Number of elements in pubname_table currently in use. */
3719 static GTY(()) unsigned pubname_table_in_use;
3721 /* Size (in elements) of increments by which we may expand the
3722 pubname_table. */
3723 #define PUBNAME_TABLE_INCREMENT 64
3725 /* Array of dies for which we should generate .debug_arange info. */
3726 static GTY((length ("arange_table_allocated"))) dw_die_ref *arange_table;
3728 /* Number of elements currently allocated for arange_table. */
3729 static GTY(()) unsigned arange_table_allocated;
3731 /* Number of elements in arange_table currently in use. */
3732 static GTY(()) unsigned arange_table_in_use;
3734 /* Size (in elements) of increments by which we may expand the
3735 arange_table. */
3736 #define ARANGE_TABLE_INCREMENT 64
3738 /* Array of dies for which we should generate .debug_ranges info. */
3739 static GTY ((length ("ranges_table_allocated"))) dw_ranges_ref ranges_table;
3741 /* Number of elements currently allocated for ranges_table. */
3742 static GTY(()) unsigned ranges_table_allocated;
3744 /* Number of elements in ranges_table currently in use. */
3745 static GTY(()) unsigned ranges_table_in_use;
3747 /* Size (in elements) of increments by which we may expand the
3748 ranges_table. */
3749 #define RANGES_TABLE_INCREMENT 64
3751 /* Whether we have location lists that need outputting */
3752 static GTY(()) unsigned have_location_lists;
3754 /* Unique label counter. */
3755 static GTY(()) unsigned int loclabel_num;
3757 #ifdef DWARF2_DEBUGGING_INFO
3758 /* Record whether the function being analyzed contains inlined functions. */
3759 static int current_function_has_inlines;
3760 #endif
3761 #if 0 && defined (MIPS_DEBUGGING_INFO)
3762 static int comp_unit_has_inlines;
3763 #endif
3765 /* Number of file tables emitted in maybe_emit_file(). */
3766 static GTY(()) int emitcount = 0;
3768 /* Number of internal labels generated by gen_internal_sym(). */
3769 static GTY(()) int label_num;
3771 #ifdef DWARF2_DEBUGGING_INFO
3773 /* Forward declarations for functions defined in this file. */
3775 static int is_pseudo_reg (rtx);
3776 static tree type_main_variant (tree);
3777 static int is_tagged_type (tree);
3778 static const char *dwarf_tag_name (unsigned);
3779 static const char *dwarf_attr_name (unsigned);
3780 static const char *dwarf_form_name (unsigned);
3781 #if 0
3782 static const char *dwarf_type_encoding_name (unsigned);
3783 #endif
3784 static tree decl_ultimate_origin (tree);
3785 static tree block_ultimate_origin (tree);
3786 static tree decl_class_context (tree);
3787 static void add_dwarf_attr (dw_die_ref, dw_attr_ref);
3788 static inline enum dw_val_class AT_class (dw_attr_ref);
3789 static void add_AT_flag (dw_die_ref, enum dwarf_attribute, unsigned);
3790 static inline unsigned AT_flag (dw_attr_ref);
3791 static void add_AT_int (dw_die_ref, enum dwarf_attribute, HOST_WIDE_INT);
3792 static inline HOST_WIDE_INT AT_int (dw_attr_ref);
3793 static void add_AT_unsigned (dw_die_ref, enum dwarf_attribute, unsigned HOST_WIDE_INT);
3794 static inline unsigned HOST_WIDE_INT AT_unsigned (dw_attr_ref);
3795 static void add_AT_long_long (dw_die_ref, enum dwarf_attribute, unsigned long,
3796 unsigned long);
3797 static inline void add_AT_vec (dw_die_ref, enum dwarf_attribute, unsigned int,
3798 unsigned int, unsigned char *);
3799 static hashval_t debug_str_do_hash (const void *);
3800 static int debug_str_eq (const void *, const void *);
3801 static void add_AT_string (dw_die_ref, enum dwarf_attribute, const char *);
3802 static inline const char *AT_string (dw_attr_ref);
3803 static int AT_string_form (dw_attr_ref);
3804 static void add_AT_die_ref (dw_die_ref, enum dwarf_attribute, dw_die_ref);
3805 static void add_AT_specification (dw_die_ref, dw_die_ref);
3806 static inline dw_die_ref AT_ref (dw_attr_ref);
3807 static inline int AT_ref_external (dw_attr_ref);
3808 static inline void set_AT_ref_external (dw_attr_ref, int);
3809 static void add_AT_fde_ref (dw_die_ref, enum dwarf_attribute, unsigned);
3810 static void add_AT_loc (dw_die_ref, enum dwarf_attribute, dw_loc_descr_ref);
3811 static inline dw_loc_descr_ref AT_loc (dw_attr_ref);
3812 static void add_AT_loc_list (dw_die_ref, enum dwarf_attribute,
3813 dw_loc_list_ref);
3814 static inline dw_loc_list_ref AT_loc_list (dw_attr_ref);
3815 static void add_AT_addr (dw_die_ref, enum dwarf_attribute, rtx);
3816 static inline rtx AT_addr (dw_attr_ref);
3817 static void add_AT_lbl_id (dw_die_ref, enum dwarf_attribute, const char *);
3818 static void add_AT_lbl_offset (dw_die_ref, enum dwarf_attribute, const char *);
3819 static void add_AT_offset (dw_die_ref, enum dwarf_attribute,
3820 unsigned HOST_WIDE_INT);
3821 static void add_AT_range_list (dw_die_ref, enum dwarf_attribute,
3822 unsigned long);
3823 static inline const char *AT_lbl (dw_attr_ref);
3824 static dw_attr_ref get_AT (dw_die_ref, enum dwarf_attribute);
3825 static const char *get_AT_low_pc (dw_die_ref);
3826 static const char *get_AT_hi_pc (dw_die_ref);
3827 static const char *get_AT_string (dw_die_ref, enum dwarf_attribute);
3828 static int get_AT_flag (dw_die_ref, enum dwarf_attribute);
3829 static unsigned get_AT_unsigned (dw_die_ref, enum dwarf_attribute);
3830 static inline dw_die_ref get_AT_ref (dw_die_ref, enum dwarf_attribute);
3831 static bool is_c_family (void);
3832 static bool is_cxx (void);
3833 static bool is_java (void);
3834 static bool is_fortran (void);
3835 static bool is_ada (void);
3836 static void remove_AT (dw_die_ref, enum dwarf_attribute);
3837 static void remove_child_TAG (dw_die_ref, enum dwarf_tag);
3838 static inline void free_die (dw_die_ref);
3839 static void remove_children (dw_die_ref);
3840 static void add_child_die (dw_die_ref, dw_die_ref);
3841 static dw_die_ref new_die (enum dwarf_tag, dw_die_ref, tree);
3842 static dw_die_ref lookup_type_die (tree);
3843 static void equate_type_number_to_die (tree, dw_die_ref);
3844 static hashval_t decl_die_table_hash (const void *);
3845 static int decl_die_table_eq (const void *, const void *);
3846 static dw_die_ref lookup_decl_die (tree);
3847 static hashval_t decl_loc_table_hash (const void *);
3848 static int decl_loc_table_eq (const void *, const void *);
3849 static var_loc_list *lookup_decl_loc (tree);
3850 static void equate_decl_number_to_die (tree, dw_die_ref);
3851 static void add_var_loc_to_decl (tree, struct var_loc_node *);
3852 static void print_spaces (FILE *);
3853 static void print_die (dw_die_ref, FILE *);
3854 static void print_dwarf_line_table (FILE *);
3855 static void reverse_die_lists (dw_die_ref);
3856 static void reverse_all_dies (dw_die_ref);
3857 static dw_die_ref push_new_compile_unit (dw_die_ref, dw_die_ref);
3858 static dw_die_ref pop_compile_unit (dw_die_ref);
3859 static void loc_checksum (dw_loc_descr_ref, struct md5_ctx *);
3860 static void attr_checksum (dw_attr_ref, struct md5_ctx *, int *);
3861 static void die_checksum (dw_die_ref, struct md5_ctx *, int *);
3862 static int same_loc_p (dw_loc_descr_ref, dw_loc_descr_ref, int *);
3863 static int same_dw_val_p (dw_val_node *, dw_val_node *, int *);
3864 static int same_attr_p (dw_attr_ref, dw_attr_ref, int *);
3865 static int same_die_p (dw_die_ref, dw_die_ref, int *);
3866 static int same_die_p_wrap (dw_die_ref, dw_die_ref);
3867 static void compute_section_prefix (dw_die_ref);
3868 static int is_type_die (dw_die_ref);
3869 static int is_comdat_die (dw_die_ref);
3870 static int is_symbol_die (dw_die_ref);
3871 static void assign_symbol_names (dw_die_ref);
3872 static void break_out_includes (dw_die_ref);
3873 static hashval_t htab_cu_hash (const void *);
3874 static int htab_cu_eq (const void *, const void *);
3875 static void htab_cu_del (void *);
3876 static int check_duplicate_cu (dw_die_ref, htab_t, unsigned *);
3877 static void record_comdat_symbol_number (dw_die_ref, htab_t, unsigned);
3878 static void add_sibling_attributes (dw_die_ref);
3879 static void build_abbrev_table (dw_die_ref);
3880 static void output_location_lists (dw_die_ref);
3881 static int constant_size (long unsigned);
3882 static unsigned long size_of_die (dw_die_ref);
3883 static void calc_die_sizes (dw_die_ref);
3884 static void mark_dies (dw_die_ref);
3885 static void unmark_dies (dw_die_ref);
3886 static void unmark_all_dies (dw_die_ref);
3887 static unsigned long size_of_pubnames (void);
3888 static unsigned long size_of_aranges (void);
3889 static enum dwarf_form value_format (dw_attr_ref);
3890 static void output_value_format (dw_attr_ref);
3891 static void output_abbrev_section (void);
3892 static void output_die_symbol (dw_die_ref);
3893 static void output_die (dw_die_ref);
3894 static void output_compilation_unit_header (void);
3895 static void output_comp_unit (dw_die_ref, int);
3896 static const char *dwarf2_name (tree, int);
3897 static void add_pubname (tree, dw_die_ref);
3898 static void output_pubnames (void);
3899 static void add_arange (tree, dw_die_ref);
3900 static void output_aranges (void);
3901 static unsigned int add_ranges (tree);
3902 static void output_ranges (void);
3903 static void output_line_info (void);
3904 static void output_file_names (void);
3905 static dw_die_ref base_type_die (tree);
3906 static tree root_type (tree);
3907 static int is_base_type (tree);
3908 static bool is_subrange_type (tree);
3909 static dw_die_ref subrange_type_die (tree, dw_die_ref);
3910 static dw_die_ref modified_type_die (tree, int, int, dw_die_ref);
3911 static int type_is_enum (tree);
3912 static unsigned int dbx_reg_number (rtx);
3913 static dw_loc_descr_ref reg_loc_descriptor (rtx);
3914 static dw_loc_descr_ref one_reg_loc_descriptor (unsigned int);
3915 static dw_loc_descr_ref multiple_reg_loc_descriptor (rtx, rtx);
3916 static dw_loc_descr_ref int_loc_descriptor (HOST_WIDE_INT);
3917 static dw_loc_descr_ref based_loc_descr (unsigned, HOST_WIDE_INT, bool);
3918 static int is_based_loc (rtx);
3919 static dw_loc_descr_ref mem_loc_descriptor (rtx, enum machine_mode mode, bool);
3920 static dw_loc_descr_ref concat_loc_descriptor (rtx, rtx);
3921 static dw_loc_descr_ref loc_descriptor (rtx, bool);
3922 static dw_loc_descr_ref loc_descriptor_from_tree_1 (tree, int);
3923 static dw_loc_descr_ref loc_descriptor_from_tree (tree);
3924 static HOST_WIDE_INT ceiling (HOST_WIDE_INT, unsigned int);
3925 static tree field_type (tree);
3926 static unsigned int simple_type_align_in_bits (tree);
3927 static unsigned int simple_decl_align_in_bits (tree);
3928 static unsigned HOST_WIDE_INT simple_type_size_in_bits (tree);
3929 static HOST_WIDE_INT field_byte_offset (tree);
3930 static void add_AT_location_description (dw_die_ref, enum dwarf_attribute,
3931 dw_loc_descr_ref);
3932 static void add_data_member_location_attribute (dw_die_ref, tree);
3933 static void add_const_value_attribute (dw_die_ref, rtx);
3934 static void insert_int (HOST_WIDE_INT, unsigned, unsigned char *);
3935 static HOST_WIDE_INT extract_int (const unsigned char *, unsigned);
3936 static void insert_float (rtx, unsigned char *);
3937 static rtx rtl_for_decl_location (tree);
3938 static void add_location_or_const_value_attribute (dw_die_ref, tree,
3939 enum dwarf_attribute);
3940 static void tree_add_const_value_attribute (dw_die_ref, tree);
3941 static void add_name_attribute (dw_die_ref, const char *);
3942 static void add_comp_dir_attribute (dw_die_ref);
3943 static void add_bound_info (dw_die_ref, enum dwarf_attribute, tree);
3944 static void add_subscript_info (dw_die_ref, tree);
3945 static void add_byte_size_attribute (dw_die_ref, tree);
3946 static void add_bit_offset_attribute (dw_die_ref, tree);
3947 static void add_bit_size_attribute (dw_die_ref, tree);
3948 static void add_prototyped_attribute (dw_die_ref, tree);
3949 static void add_abstract_origin_attribute (dw_die_ref, tree);
3950 static void add_pure_or_virtual_attribute (dw_die_ref, tree);
3951 static void add_src_coords_attributes (dw_die_ref, tree);
3952 static void add_name_and_src_coords_attributes (dw_die_ref, tree);
3953 static void push_decl_scope (tree);
3954 static void pop_decl_scope (void);
3955 static dw_die_ref scope_die_for (tree, dw_die_ref);
3956 static inline int local_scope_p (dw_die_ref);
3957 static inline int class_or_namespace_scope_p (dw_die_ref);
3958 static void add_type_attribute (dw_die_ref, tree, int, int, dw_die_ref);
3959 static void add_calling_convention_attribute (dw_die_ref, tree);
3960 static const char *type_tag (tree);
3961 static tree member_declared_type (tree);
3962 #if 0
3963 static const char *decl_start_label (tree);
3964 #endif
3965 static void gen_array_type_die (tree, dw_die_ref);
3966 #if 0
3967 static void gen_entry_point_die (tree, dw_die_ref);
3968 #endif
3969 static void gen_inlined_enumeration_type_die (tree, dw_die_ref);
3970 static void gen_inlined_structure_type_die (tree, dw_die_ref);
3971 static void gen_inlined_union_type_die (tree, dw_die_ref);
3972 static dw_die_ref gen_enumeration_type_die (tree, dw_die_ref);
3973 static dw_die_ref gen_formal_parameter_die (tree, dw_die_ref);
3974 static void gen_unspecified_parameters_die (tree, dw_die_ref);
3975 static void gen_formal_types_die (tree, dw_die_ref);
3976 static void gen_subprogram_die (tree, dw_die_ref);
3977 static void gen_variable_die (tree, dw_die_ref);
3978 static void gen_label_die (tree, dw_die_ref);
3979 static void gen_lexical_block_die (tree, dw_die_ref, int);
3980 static void gen_inlined_subroutine_die (tree, dw_die_ref, int);
3981 static void gen_field_die (tree, dw_die_ref);
3982 static void gen_ptr_to_mbr_type_die (tree, dw_die_ref);
3983 static dw_die_ref gen_compile_unit_die (const char *);
3984 static void gen_string_type_die (tree, dw_die_ref);
3985 static void gen_inheritance_die (tree, tree, dw_die_ref);
3986 static void gen_member_die (tree, dw_die_ref);
3987 static void gen_struct_or_union_type_die (tree, dw_die_ref);
3988 static void gen_subroutine_type_die (tree, dw_die_ref);
3989 static void gen_typedef_die (tree, dw_die_ref);
3990 static void gen_type_die (tree, dw_die_ref);
3991 static void gen_tagged_type_instantiation_die (tree, dw_die_ref);
3992 static void gen_block_die (tree, dw_die_ref, int);
3993 static void decls_for_scope (tree, dw_die_ref, int);
3994 static int is_redundant_typedef (tree);
3995 static void gen_namespace_die (tree);
3996 static void gen_decl_die (tree, dw_die_ref);
3997 static dw_die_ref force_decl_die (tree);
3998 static dw_die_ref force_type_die (tree);
3999 static dw_die_ref setup_namespace_context (tree, dw_die_ref);
4000 static void declare_in_namespace (tree, dw_die_ref);
4001 static unsigned lookup_filename (const char *);
4002 static void init_file_table (void);
4003 static void retry_incomplete_types (void);
4004 static void gen_type_die_for_member (tree, tree, dw_die_ref);
4005 static void splice_child_die (dw_die_ref, dw_die_ref);
4006 static int file_info_cmp (const void *, const void *);
4007 static dw_loc_list_ref new_loc_list (dw_loc_descr_ref, const char *,
4008 const char *, const char *, unsigned);
4009 static void add_loc_descr_to_loc_list (dw_loc_list_ref *, dw_loc_descr_ref,
4010 const char *, const char *,
4011 const char *);
4012 static void output_loc_list (dw_loc_list_ref);
4013 static char *gen_internal_sym (const char *);
4015 static void prune_unmark_dies (dw_die_ref);
4016 static void prune_unused_types_mark (dw_die_ref, int);
4017 static void prune_unused_types_walk (dw_die_ref);
4018 static void prune_unused_types_walk_attribs (dw_die_ref);
4019 static void prune_unused_types_prune (dw_die_ref);
4020 static void prune_unused_types (void);
4021 static int maybe_emit_file (int);
4023 /* Section names used to hold DWARF debugging information. */
4024 #ifndef DEBUG_INFO_SECTION
4025 #define DEBUG_INFO_SECTION ".debug_info"
4026 #endif
4027 #ifndef DEBUG_ABBREV_SECTION
4028 #define DEBUG_ABBREV_SECTION ".debug_abbrev"
4029 #endif
4030 #ifndef DEBUG_ARANGES_SECTION
4031 #define DEBUG_ARANGES_SECTION ".debug_aranges"
4032 #endif
4033 #ifndef DEBUG_MACINFO_SECTION
4034 #define DEBUG_MACINFO_SECTION ".debug_macinfo"
4035 #endif
4036 #ifndef DEBUG_LINE_SECTION
4037 #define DEBUG_LINE_SECTION ".debug_line"
4038 #endif
4039 #ifndef DEBUG_LOC_SECTION
4040 #define DEBUG_LOC_SECTION ".debug_loc"
4041 #endif
4042 #ifndef DEBUG_PUBNAMES_SECTION
4043 #define DEBUG_PUBNAMES_SECTION ".debug_pubnames"
4044 #endif
4045 #ifndef DEBUG_STR_SECTION
4046 #define DEBUG_STR_SECTION ".debug_str"
4047 #endif
4048 #ifndef DEBUG_RANGES_SECTION
4049 #define DEBUG_RANGES_SECTION ".debug_ranges"
4050 #endif
4052 /* Standard ELF section names for compiled code and data. */
4053 #ifndef TEXT_SECTION_NAME
4054 #define TEXT_SECTION_NAME ".text"
4055 #endif
4057 /* Section flags for .debug_str section. */
4058 #define DEBUG_STR_SECTION_FLAGS \
4059 (HAVE_GAS_SHF_MERGE && flag_merge_constants \
4060 ? SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1 \
4061 : SECTION_DEBUG)
4063 /* Labels we insert at beginning sections we can reference instead of
4064 the section names themselves. */
4066 #ifndef TEXT_SECTION_LABEL
4067 #define TEXT_SECTION_LABEL "Ltext"
4068 #endif
4069 #ifndef DEBUG_LINE_SECTION_LABEL
4070 #define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
4071 #endif
4072 #ifndef DEBUG_INFO_SECTION_LABEL
4073 #define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
4074 #endif
4075 #ifndef DEBUG_ABBREV_SECTION_LABEL
4076 #define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
4077 #endif
4078 #ifndef DEBUG_LOC_SECTION_LABEL
4079 #define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
4080 #endif
4081 #ifndef DEBUG_RANGES_SECTION_LABEL
4082 #define DEBUG_RANGES_SECTION_LABEL "Ldebug_ranges"
4083 #endif
4084 #ifndef DEBUG_MACINFO_SECTION_LABEL
4085 #define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
4086 #endif
4088 /* Definitions of defaults for formats and names of various special
4089 (artificial) labels which may be generated within this file (when the -g
4090 options is used and DWARF2_DEBUGGING_INFO is in effect.
4091 If necessary, these may be overridden from within the tm.h file, but
4092 typically, overriding these defaults is unnecessary. */
4094 static char text_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
4095 static char text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4096 static char abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4097 static char debug_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4098 static char debug_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4099 static char macinfo_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4100 static char loc_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4101 static char ranges_section_label[2 * MAX_ARTIFICIAL_LABEL_BYTES];
4103 #ifndef TEXT_END_LABEL
4104 #define TEXT_END_LABEL "Letext"
4105 #endif
4106 #ifndef BLOCK_BEGIN_LABEL
4107 #define BLOCK_BEGIN_LABEL "LBB"
4108 #endif
4109 #ifndef BLOCK_END_LABEL
4110 #define BLOCK_END_LABEL "LBE"
4111 #endif
4112 #ifndef LINE_CODE_LABEL
4113 #define LINE_CODE_LABEL "LM"
4114 #endif
4115 #ifndef SEPARATE_LINE_CODE_LABEL
4116 #define SEPARATE_LINE_CODE_LABEL "LSM"
4117 #endif
4119 /* We allow a language front-end to designate a function that is to be
4120 called to "demangle" any name before it it put into a DIE. */
4122 static const char *(*demangle_name_func) (const char *);
4124 void
4125 dwarf2out_set_demangle_name_func (const char *(*func) (const char *))
4127 demangle_name_func = func;
4130 /* Test if rtl node points to a pseudo register. */
4132 static inline int
4133 is_pseudo_reg (rtx rtl)
4135 return ((REG_P (rtl) && REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
4136 || (GET_CODE (rtl) == SUBREG
4137 && REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER));
4140 /* Return a reference to a type, with its const and volatile qualifiers
4141 removed. */
4143 static inline tree
4144 type_main_variant (tree type)
4146 type = TYPE_MAIN_VARIANT (type);
4148 /* ??? There really should be only one main variant among any group of
4149 variants of a given type (and all of the MAIN_VARIANT values for all
4150 members of the group should point to that one type) but sometimes the C
4151 front-end messes this up for array types, so we work around that bug
4152 here. */
4153 if (TREE_CODE (type) == ARRAY_TYPE)
4154 while (type != TYPE_MAIN_VARIANT (type))
4155 type = TYPE_MAIN_VARIANT (type);
4157 return type;
4160 /* Return nonzero if the given type node represents a tagged type. */
4162 static inline int
4163 is_tagged_type (tree type)
4165 enum tree_code code = TREE_CODE (type);
4167 return (code == RECORD_TYPE || code == UNION_TYPE
4168 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
4171 /* Convert a DIE tag into its string name. */
4173 static const char *
4174 dwarf_tag_name (unsigned int tag)
4176 switch (tag)
4178 case DW_TAG_padding:
4179 return "DW_TAG_padding";
4180 case DW_TAG_array_type:
4181 return "DW_TAG_array_type";
4182 case DW_TAG_class_type:
4183 return "DW_TAG_class_type";
4184 case DW_TAG_entry_point:
4185 return "DW_TAG_entry_point";
4186 case DW_TAG_enumeration_type:
4187 return "DW_TAG_enumeration_type";
4188 case DW_TAG_formal_parameter:
4189 return "DW_TAG_formal_parameter";
4190 case DW_TAG_imported_declaration:
4191 return "DW_TAG_imported_declaration";
4192 case DW_TAG_label:
4193 return "DW_TAG_label";
4194 case DW_TAG_lexical_block:
4195 return "DW_TAG_lexical_block";
4196 case DW_TAG_member:
4197 return "DW_TAG_member";
4198 case DW_TAG_pointer_type:
4199 return "DW_TAG_pointer_type";
4200 case DW_TAG_reference_type:
4201 return "DW_TAG_reference_type";
4202 case DW_TAG_compile_unit:
4203 return "DW_TAG_compile_unit";
4204 case DW_TAG_string_type:
4205 return "DW_TAG_string_type";
4206 case DW_TAG_structure_type:
4207 return "DW_TAG_structure_type";
4208 case DW_TAG_subroutine_type:
4209 return "DW_TAG_subroutine_type";
4210 case DW_TAG_typedef:
4211 return "DW_TAG_typedef";
4212 case DW_TAG_union_type:
4213 return "DW_TAG_union_type";
4214 case DW_TAG_unspecified_parameters:
4215 return "DW_TAG_unspecified_parameters";
4216 case DW_TAG_variant:
4217 return "DW_TAG_variant";
4218 case DW_TAG_common_block:
4219 return "DW_TAG_common_block";
4220 case DW_TAG_common_inclusion:
4221 return "DW_TAG_common_inclusion";
4222 case DW_TAG_inheritance:
4223 return "DW_TAG_inheritance";
4224 case DW_TAG_inlined_subroutine:
4225 return "DW_TAG_inlined_subroutine";
4226 case DW_TAG_module:
4227 return "DW_TAG_module";
4228 case DW_TAG_ptr_to_member_type:
4229 return "DW_TAG_ptr_to_member_type";
4230 case DW_TAG_set_type:
4231 return "DW_TAG_set_type";
4232 case DW_TAG_subrange_type:
4233 return "DW_TAG_subrange_type";
4234 case DW_TAG_with_stmt:
4235 return "DW_TAG_with_stmt";
4236 case DW_TAG_access_declaration:
4237 return "DW_TAG_access_declaration";
4238 case DW_TAG_base_type:
4239 return "DW_TAG_base_type";
4240 case DW_TAG_catch_block:
4241 return "DW_TAG_catch_block";
4242 case DW_TAG_const_type:
4243 return "DW_TAG_const_type";
4244 case DW_TAG_constant:
4245 return "DW_TAG_constant";
4246 case DW_TAG_enumerator:
4247 return "DW_TAG_enumerator";
4248 case DW_TAG_file_type:
4249 return "DW_TAG_file_type";
4250 case DW_TAG_friend:
4251 return "DW_TAG_friend";
4252 case DW_TAG_namelist:
4253 return "DW_TAG_namelist";
4254 case DW_TAG_namelist_item:
4255 return "DW_TAG_namelist_item";
4256 case DW_TAG_namespace:
4257 return "DW_TAG_namespace";
4258 case DW_TAG_packed_type:
4259 return "DW_TAG_packed_type";
4260 case DW_TAG_subprogram:
4261 return "DW_TAG_subprogram";
4262 case DW_TAG_template_type_param:
4263 return "DW_TAG_template_type_param";
4264 case DW_TAG_template_value_param:
4265 return "DW_TAG_template_value_param";
4266 case DW_TAG_thrown_type:
4267 return "DW_TAG_thrown_type";
4268 case DW_TAG_try_block:
4269 return "DW_TAG_try_block";
4270 case DW_TAG_variant_part:
4271 return "DW_TAG_variant_part";
4272 case DW_TAG_variable:
4273 return "DW_TAG_variable";
4274 case DW_TAG_volatile_type:
4275 return "DW_TAG_volatile_type";
4276 case DW_TAG_imported_module:
4277 return "DW_TAG_imported_module";
4278 case DW_TAG_MIPS_loop:
4279 return "DW_TAG_MIPS_loop";
4280 case DW_TAG_format_label:
4281 return "DW_TAG_format_label";
4282 case DW_TAG_function_template:
4283 return "DW_TAG_function_template";
4284 case DW_TAG_class_template:
4285 return "DW_TAG_class_template";
4286 case DW_TAG_GNU_BINCL:
4287 return "DW_TAG_GNU_BINCL";
4288 case DW_TAG_GNU_EINCL:
4289 return "DW_TAG_GNU_EINCL";
4290 default:
4291 return "DW_TAG_<unknown>";
4295 /* Convert a DWARF attribute code into its string name. */
4297 static const char *
4298 dwarf_attr_name (unsigned int attr)
4300 switch (attr)
4302 case DW_AT_sibling:
4303 return "DW_AT_sibling";
4304 case DW_AT_location:
4305 return "DW_AT_location";
4306 case DW_AT_name:
4307 return "DW_AT_name";
4308 case DW_AT_ordering:
4309 return "DW_AT_ordering";
4310 case DW_AT_subscr_data:
4311 return "DW_AT_subscr_data";
4312 case DW_AT_byte_size:
4313 return "DW_AT_byte_size";
4314 case DW_AT_bit_offset:
4315 return "DW_AT_bit_offset";
4316 case DW_AT_bit_size:
4317 return "DW_AT_bit_size";
4318 case DW_AT_element_list:
4319 return "DW_AT_element_list";
4320 case DW_AT_stmt_list:
4321 return "DW_AT_stmt_list";
4322 case DW_AT_low_pc:
4323 return "DW_AT_low_pc";
4324 case DW_AT_high_pc:
4325 return "DW_AT_high_pc";
4326 case DW_AT_language:
4327 return "DW_AT_language";
4328 case DW_AT_member:
4329 return "DW_AT_member";
4330 case DW_AT_discr:
4331 return "DW_AT_discr";
4332 case DW_AT_discr_value:
4333 return "DW_AT_discr_value";
4334 case DW_AT_visibility:
4335 return "DW_AT_visibility";
4336 case DW_AT_import:
4337 return "DW_AT_import";
4338 case DW_AT_string_length:
4339 return "DW_AT_string_length";
4340 case DW_AT_common_reference:
4341 return "DW_AT_common_reference";
4342 case DW_AT_comp_dir:
4343 return "DW_AT_comp_dir";
4344 case DW_AT_const_value:
4345 return "DW_AT_const_value";
4346 case DW_AT_containing_type:
4347 return "DW_AT_containing_type";
4348 case DW_AT_default_value:
4349 return "DW_AT_default_value";
4350 case DW_AT_inline:
4351 return "DW_AT_inline";
4352 case DW_AT_is_optional:
4353 return "DW_AT_is_optional";
4354 case DW_AT_lower_bound:
4355 return "DW_AT_lower_bound";
4356 case DW_AT_producer:
4357 return "DW_AT_producer";
4358 case DW_AT_prototyped:
4359 return "DW_AT_prototyped";
4360 case DW_AT_return_addr:
4361 return "DW_AT_return_addr";
4362 case DW_AT_start_scope:
4363 return "DW_AT_start_scope";
4364 case DW_AT_stride_size:
4365 return "DW_AT_stride_size";
4366 case DW_AT_upper_bound:
4367 return "DW_AT_upper_bound";
4368 case DW_AT_abstract_origin:
4369 return "DW_AT_abstract_origin";
4370 case DW_AT_accessibility:
4371 return "DW_AT_accessibility";
4372 case DW_AT_address_class:
4373 return "DW_AT_address_class";
4374 case DW_AT_artificial:
4375 return "DW_AT_artificial";
4376 case DW_AT_base_types:
4377 return "DW_AT_base_types";
4378 case DW_AT_calling_convention:
4379 return "DW_AT_calling_convention";
4380 case DW_AT_count:
4381 return "DW_AT_count";
4382 case DW_AT_data_member_location:
4383 return "DW_AT_data_member_location";
4384 case DW_AT_decl_column:
4385 return "DW_AT_decl_column";
4386 case DW_AT_decl_file:
4387 return "DW_AT_decl_file";
4388 case DW_AT_decl_line:
4389 return "DW_AT_decl_line";
4390 case DW_AT_declaration:
4391 return "DW_AT_declaration";
4392 case DW_AT_discr_list:
4393 return "DW_AT_discr_list";
4394 case DW_AT_encoding:
4395 return "DW_AT_encoding";
4396 case DW_AT_external:
4397 return "DW_AT_external";
4398 case DW_AT_frame_base:
4399 return "DW_AT_frame_base";
4400 case DW_AT_friend:
4401 return "DW_AT_friend";
4402 case DW_AT_identifier_case:
4403 return "DW_AT_identifier_case";
4404 case DW_AT_macro_info:
4405 return "DW_AT_macro_info";
4406 case DW_AT_namelist_items:
4407 return "DW_AT_namelist_items";
4408 case DW_AT_priority:
4409 return "DW_AT_priority";
4410 case DW_AT_segment:
4411 return "DW_AT_segment";
4412 case DW_AT_specification:
4413 return "DW_AT_specification";
4414 case DW_AT_static_link:
4415 return "DW_AT_static_link";
4416 case DW_AT_type:
4417 return "DW_AT_type";
4418 case DW_AT_use_location:
4419 return "DW_AT_use_location";
4420 case DW_AT_variable_parameter:
4421 return "DW_AT_variable_parameter";
4422 case DW_AT_virtuality:
4423 return "DW_AT_virtuality";
4424 case DW_AT_vtable_elem_location:
4425 return "DW_AT_vtable_elem_location";
4427 case DW_AT_allocated:
4428 return "DW_AT_allocated";
4429 case DW_AT_associated:
4430 return "DW_AT_associated";
4431 case DW_AT_data_location:
4432 return "DW_AT_data_location";
4433 case DW_AT_stride:
4434 return "DW_AT_stride";
4435 case DW_AT_entry_pc:
4436 return "DW_AT_entry_pc";
4437 case DW_AT_use_UTF8:
4438 return "DW_AT_use_UTF8";
4439 case DW_AT_extension:
4440 return "DW_AT_extension";
4441 case DW_AT_ranges:
4442 return "DW_AT_ranges";
4443 case DW_AT_trampoline:
4444 return "DW_AT_trampoline";
4445 case DW_AT_call_column:
4446 return "DW_AT_call_column";
4447 case DW_AT_call_file:
4448 return "DW_AT_call_file";
4449 case DW_AT_call_line:
4450 return "DW_AT_call_line";
4452 case DW_AT_MIPS_fde:
4453 return "DW_AT_MIPS_fde";
4454 case DW_AT_MIPS_loop_begin:
4455 return "DW_AT_MIPS_loop_begin";
4456 case DW_AT_MIPS_tail_loop_begin:
4457 return "DW_AT_MIPS_tail_loop_begin";
4458 case DW_AT_MIPS_epilog_begin:
4459 return "DW_AT_MIPS_epilog_begin";
4460 case DW_AT_MIPS_loop_unroll_factor:
4461 return "DW_AT_MIPS_loop_unroll_factor";
4462 case DW_AT_MIPS_software_pipeline_depth:
4463 return "DW_AT_MIPS_software_pipeline_depth";
4464 case DW_AT_MIPS_linkage_name:
4465 return "DW_AT_MIPS_linkage_name";
4466 case DW_AT_MIPS_stride:
4467 return "DW_AT_MIPS_stride";
4468 case DW_AT_MIPS_abstract_name:
4469 return "DW_AT_MIPS_abstract_name";
4470 case DW_AT_MIPS_clone_origin:
4471 return "DW_AT_MIPS_clone_origin";
4472 case DW_AT_MIPS_has_inlines:
4473 return "DW_AT_MIPS_has_inlines";
4475 case DW_AT_sf_names:
4476 return "DW_AT_sf_names";
4477 case DW_AT_src_info:
4478 return "DW_AT_src_info";
4479 case DW_AT_mac_info:
4480 return "DW_AT_mac_info";
4481 case DW_AT_src_coords:
4482 return "DW_AT_src_coords";
4483 case DW_AT_body_begin:
4484 return "DW_AT_body_begin";
4485 case DW_AT_body_end:
4486 return "DW_AT_body_end";
4487 case DW_AT_GNU_vector:
4488 return "DW_AT_GNU_vector";
4490 case DW_AT_VMS_rtnbeg_pd_address:
4491 return "DW_AT_VMS_rtnbeg_pd_address";
4493 default:
4494 return "DW_AT_<unknown>";
4498 /* Convert a DWARF value form code into its string name. */
4500 static const char *
4501 dwarf_form_name (unsigned int form)
4503 switch (form)
4505 case DW_FORM_addr:
4506 return "DW_FORM_addr";
4507 case DW_FORM_block2:
4508 return "DW_FORM_block2";
4509 case DW_FORM_block4:
4510 return "DW_FORM_block4";
4511 case DW_FORM_data2:
4512 return "DW_FORM_data2";
4513 case DW_FORM_data4:
4514 return "DW_FORM_data4";
4515 case DW_FORM_data8:
4516 return "DW_FORM_data8";
4517 case DW_FORM_string:
4518 return "DW_FORM_string";
4519 case DW_FORM_block:
4520 return "DW_FORM_block";
4521 case DW_FORM_block1:
4522 return "DW_FORM_block1";
4523 case DW_FORM_data1:
4524 return "DW_FORM_data1";
4525 case DW_FORM_flag:
4526 return "DW_FORM_flag";
4527 case DW_FORM_sdata:
4528 return "DW_FORM_sdata";
4529 case DW_FORM_strp:
4530 return "DW_FORM_strp";
4531 case DW_FORM_udata:
4532 return "DW_FORM_udata";
4533 case DW_FORM_ref_addr:
4534 return "DW_FORM_ref_addr";
4535 case DW_FORM_ref1:
4536 return "DW_FORM_ref1";
4537 case DW_FORM_ref2:
4538 return "DW_FORM_ref2";
4539 case DW_FORM_ref4:
4540 return "DW_FORM_ref4";
4541 case DW_FORM_ref8:
4542 return "DW_FORM_ref8";
4543 case DW_FORM_ref_udata:
4544 return "DW_FORM_ref_udata";
4545 case DW_FORM_indirect:
4546 return "DW_FORM_indirect";
4547 default:
4548 return "DW_FORM_<unknown>";
4552 /* Convert a DWARF type code into its string name. */
4554 #if 0
4555 static const char *
4556 dwarf_type_encoding_name (unsigned enc)
4558 switch (enc)
4560 case DW_ATE_address:
4561 return "DW_ATE_address";
4562 case DW_ATE_boolean:
4563 return "DW_ATE_boolean";
4564 case DW_ATE_complex_float:
4565 return "DW_ATE_complex_float";
4566 case DW_ATE_float:
4567 return "DW_ATE_float";
4568 case DW_ATE_signed:
4569 return "DW_ATE_signed";
4570 case DW_ATE_signed_char:
4571 return "DW_ATE_signed_char";
4572 case DW_ATE_unsigned:
4573 return "DW_ATE_unsigned";
4574 case DW_ATE_unsigned_char:
4575 return "DW_ATE_unsigned_char";
4576 default:
4577 return "DW_ATE_<unknown>";
4580 #endif
4582 /* Determine the "ultimate origin" of a decl. The decl may be an inlined
4583 instance of an inlined instance of a decl which is local to an inline
4584 function, so we have to trace all of the way back through the origin chain
4585 to find out what sort of node actually served as the original seed for the
4586 given block. */
4588 static tree
4589 decl_ultimate_origin (tree decl)
4591 /* output_inline_function sets DECL_ABSTRACT_ORIGIN for all the
4592 nodes in the function to point to themselves; ignore that if
4593 we're trying to output the abstract instance of this function. */
4594 if (DECL_ABSTRACT (decl) && DECL_ABSTRACT_ORIGIN (decl) == decl)
4595 return NULL_TREE;
4597 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
4598 most distant ancestor, this should never happen. */
4599 gcc_assert (!DECL_FROM_INLINE (DECL_ORIGIN (decl)));
4601 return DECL_ABSTRACT_ORIGIN (decl);
4604 /* Determine the "ultimate origin" of a block. The block may be an inlined
4605 instance of an inlined instance of a block which is local to an inline
4606 function, so we have to trace all of the way back through the origin chain
4607 to find out what sort of node actually served as the original seed for the
4608 given block. */
4610 static tree
4611 block_ultimate_origin (tree block)
4613 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
4615 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
4616 nodes in the function to point to themselves; ignore that if
4617 we're trying to output the abstract instance of this function. */
4618 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
4619 return NULL_TREE;
4621 if (immediate_origin == NULL_TREE)
4622 return NULL_TREE;
4623 else
4625 tree ret_val;
4626 tree lookahead = immediate_origin;
4630 ret_val = lookahead;
4631 lookahead = (TREE_CODE (ret_val) == BLOCK
4632 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
4634 while (lookahead != NULL && lookahead != ret_val);
4636 return ret_val;
4640 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
4641 of a virtual function may refer to a base class, so we check the 'this'
4642 parameter. */
4644 static tree
4645 decl_class_context (tree decl)
4647 tree context = NULL_TREE;
4649 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
4650 context = DECL_CONTEXT (decl);
4651 else
4652 context = TYPE_MAIN_VARIANT
4653 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4655 if (context && !TYPE_P (context))
4656 context = NULL_TREE;
4658 return context;
4661 /* Add an attribute/value pair to a DIE. We build the lists up in reverse
4662 addition order, and correct that in reverse_all_dies. */
4664 static inline void
4665 add_dwarf_attr (dw_die_ref die, dw_attr_ref attr)
4667 if (die != NULL && attr != NULL)
4669 attr->dw_attr_next = die->die_attr;
4670 die->die_attr = attr;
4674 static inline enum dw_val_class
4675 AT_class (dw_attr_ref a)
4677 return a->dw_attr_val.val_class;
4680 /* Add a flag value attribute to a DIE. */
4682 static inline void
4683 add_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int flag)
4685 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4687 attr->dw_attr_next = NULL;
4688 attr->dw_attr = attr_kind;
4689 attr->dw_attr_val.val_class = dw_val_class_flag;
4690 attr->dw_attr_val.v.val_flag = flag;
4691 add_dwarf_attr (die, attr);
4694 static inline unsigned
4695 AT_flag (dw_attr_ref a)
4697 gcc_assert (a && AT_class (a) == dw_val_class_flag);
4698 return a->dw_attr_val.v.val_flag;
4701 /* Add a signed integer attribute value to a DIE. */
4703 static inline void
4704 add_AT_int (dw_die_ref die, enum dwarf_attribute attr_kind, HOST_WIDE_INT int_val)
4706 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4708 attr->dw_attr_next = NULL;
4709 attr->dw_attr = attr_kind;
4710 attr->dw_attr_val.val_class = dw_val_class_const;
4711 attr->dw_attr_val.v.val_int = int_val;
4712 add_dwarf_attr (die, attr);
4715 static inline HOST_WIDE_INT
4716 AT_int (dw_attr_ref a)
4718 gcc_assert (a && AT_class (a) == dw_val_class_const);
4719 return a->dw_attr_val.v.val_int;
4722 /* Add an unsigned integer attribute value to a DIE. */
4724 static inline void
4725 add_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind,
4726 unsigned HOST_WIDE_INT unsigned_val)
4728 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4730 attr->dw_attr_next = NULL;
4731 attr->dw_attr = attr_kind;
4732 attr->dw_attr_val.val_class = dw_val_class_unsigned_const;
4733 attr->dw_attr_val.v.val_unsigned = unsigned_val;
4734 add_dwarf_attr (die, attr);
4737 static inline unsigned HOST_WIDE_INT
4738 AT_unsigned (dw_attr_ref a)
4740 gcc_assert (a && AT_class (a) == dw_val_class_unsigned_const);
4741 return a->dw_attr_val.v.val_unsigned;
4744 /* Add an unsigned double integer attribute value to a DIE. */
4746 static inline void
4747 add_AT_long_long (dw_die_ref die, enum dwarf_attribute attr_kind,
4748 long unsigned int val_hi, long unsigned int val_low)
4750 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4752 attr->dw_attr_next = NULL;
4753 attr->dw_attr = attr_kind;
4754 attr->dw_attr_val.val_class = dw_val_class_long_long;
4755 attr->dw_attr_val.v.val_long_long.hi = val_hi;
4756 attr->dw_attr_val.v.val_long_long.low = val_low;
4757 add_dwarf_attr (die, attr);
4760 /* Add a floating point attribute value to a DIE and return it. */
4762 static inline void
4763 add_AT_vec (dw_die_ref die, enum dwarf_attribute attr_kind,
4764 unsigned int length, unsigned int elt_size, unsigned char *array)
4766 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4768 attr->dw_attr_next = NULL;
4769 attr->dw_attr = attr_kind;
4770 attr->dw_attr_val.val_class = dw_val_class_vec;
4771 attr->dw_attr_val.v.val_vec.length = length;
4772 attr->dw_attr_val.v.val_vec.elt_size = elt_size;
4773 attr->dw_attr_val.v.val_vec.array = array;
4774 add_dwarf_attr (die, attr);
4777 /* Hash and equality functions for debug_str_hash. */
4779 static hashval_t
4780 debug_str_do_hash (const void *x)
4782 return htab_hash_string (((const struct indirect_string_node *)x)->str);
4785 static int
4786 debug_str_eq (const void *x1, const void *x2)
4788 return strcmp ((((const struct indirect_string_node *)x1)->str),
4789 (const char *)x2) == 0;
4792 /* Add a string attribute value to a DIE. */
4794 static inline void
4795 add_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind, const char *str)
4797 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4798 struct indirect_string_node *node;
4799 void **slot;
4801 if (! debug_str_hash)
4802 debug_str_hash = htab_create_ggc (10, debug_str_do_hash,
4803 debug_str_eq, NULL);
4805 slot = htab_find_slot_with_hash (debug_str_hash, str,
4806 htab_hash_string (str), INSERT);
4807 if (*slot == NULL)
4808 *slot = ggc_alloc_cleared (sizeof (struct indirect_string_node));
4809 node = (struct indirect_string_node *) *slot;
4810 node->str = ggc_strdup (str);
4811 node->refcount++;
4813 attr->dw_attr_next = NULL;
4814 attr->dw_attr = attr_kind;
4815 attr->dw_attr_val.val_class = dw_val_class_str;
4816 attr->dw_attr_val.v.val_str = node;
4817 add_dwarf_attr (die, attr);
4820 static inline const char *
4821 AT_string (dw_attr_ref a)
4823 gcc_assert (a && AT_class (a) == dw_val_class_str);
4824 return a->dw_attr_val.v.val_str->str;
4827 /* Find out whether a string should be output inline in DIE
4828 or out-of-line in .debug_str section. */
4830 static int
4831 AT_string_form (dw_attr_ref a)
4833 struct indirect_string_node *node;
4834 unsigned int len;
4835 char label[32];
4837 gcc_assert (a && AT_class (a) == dw_val_class_str);
4839 node = a->dw_attr_val.v.val_str;
4840 if (node->form)
4841 return node->form;
4843 len = strlen (node->str) + 1;
4845 /* If the string is shorter or equal to the size of the reference, it is
4846 always better to put it inline. */
4847 if (len <= DWARF_OFFSET_SIZE || node->refcount == 0)
4848 return node->form = DW_FORM_string;
4850 /* If we cannot expect the linker to merge strings in .debug_str
4851 section, only put it into .debug_str if it is worth even in this
4852 single module. */
4853 if ((DEBUG_STR_SECTION_FLAGS & SECTION_MERGE) == 0
4854 && (len - DWARF_OFFSET_SIZE) * node->refcount <= len)
4855 return node->form = DW_FORM_string;
4857 ASM_GENERATE_INTERNAL_LABEL (label, "LASF", dw2_string_counter);
4858 ++dw2_string_counter;
4859 node->label = xstrdup (label);
4861 return node->form = DW_FORM_strp;
4864 /* Add a DIE reference attribute value to a DIE. */
4866 static inline void
4867 add_AT_die_ref (dw_die_ref die, enum dwarf_attribute attr_kind, dw_die_ref targ_die)
4869 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4871 attr->dw_attr_next = NULL;
4872 attr->dw_attr = attr_kind;
4873 attr->dw_attr_val.val_class = dw_val_class_die_ref;
4874 attr->dw_attr_val.v.val_die_ref.die = targ_die;
4875 attr->dw_attr_val.v.val_die_ref.external = 0;
4876 add_dwarf_attr (die, attr);
4879 /* Add an AT_specification attribute to a DIE, and also make the back
4880 pointer from the specification to the definition. */
4882 static inline void
4883 add_AT_specification (dw_die_ref die, dw_die_ref targ_die)
4885 add_AT_die_ref (die, DW_AT_specification, targ_die);
4886 gcc_assert (!targ_die->die_definition);
4887 targ_die->die_definition = die;
4890 static inline dw_die_ref
4891 AT_ref (dw_attr_ref a)
4893 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
4894 return a->dw_attr_val.v.val_die_ref.die;
4897 static inline int
4898 AT_ref_external (dw_attr_ref a)
4900 if (a && AT_class (a) == dw_val_class_die_ref)
4901 return a->dw_attr_val.v.val_die_ref.external;
4903 return 0;
4906 static inline void
4907 set_AT_ref_external (dw_attr_ref a, int i)
4909 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
4910 a->dw_attr_val.v.val_die_ref.external = i;
4913 /* Add an FDE reference attribute value to a DIE. */
4915 static inline void
4916 add_AT_fde_ref (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int targ_fde)
4918 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4920 attr->dw_attr_next = NULL;
4921 attr->dw_attr = attr_kind;
4922 attr->dw_attr_val.val_class = dw_val_class_fde_ref;
4923 attr->dw_attr_val.v.val_fde_index = targ_fde;
4924 add_dwarf_attr (die, attr);
4927 /* Add a location description attribute value to a DIE. */
4929 static inline void
4930 add_AT_loc (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_descr_ref loc)
4932 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4934 attr->dw_attr_next = NULL;
4935 attr->dw_attr = attr_kind;
4936 attr->dw_attr_val.val_class = dw_val_class_loc;
4937 attr->dw_attr_val.v.val_loc = loc;
4938 add_dwarf_attr (die, attr);
4941 static inline dw_loc_descr_ref
4942 AT_loc (dw_attr_ref a)
4944 gcc_assert (a && AT_class (a) == dw_val_class_loc);
4945 return a->dw_attr_val.v.val_loc;
4948 static inline void
4949 add_AT_loc_list (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_list_ref loc_list)
4951 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4953 attr->dw_attr_next = NULL;
4954 attr->dw_attr = attr_kind;
4955 attr->dw_attr_val.val_class = dw_val_class_loc_list;
4956 attr->dw_attr_val.v.val_loc_list = loc_list;
4957 add_dwarf_attr (die, attr);
4958 have_location_lists = 1;
4961 static inline dw_loc_list_ref
4962 AT_loc_list (dw_attr_ref a)
4964 gcc_assert (a && AT_class (a) == dw_val_class_loc_list);
4965 return a->dw_attr_val.v.val_loc_list;
4968 /* Add an address constant attribute value to a DIE. */
4970 static inline void
4971 add_AT_addr (dw_die_ref die, enum dwarf_attribute attr_kind, rtx addr)
4973 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4975 attr->dw_attr_next = NULL;
4976 attr->dw_attr = attr_kind;
4977 attr->dw_attr_val.val_class = dw_val_class_addr;
4978 attr->dw_attr_val.v.val_addr = addr;
4979 add_dwarf_attr (die, attr);
4982 static inline rtx
4983 AT_addr (dw_attr_ref a)
4985 gcc_assert (a && AT_class (a) == dw_val_class_addr);
4986 return a->dw_attr_val.v.val_addr;
4989 /* Add a label identifier attribute value to a DIE. */
4991 static inline void
4992 add_AT_lbl_id (dw_die_ref die, enum dwarf_attribute attr_kind, const char *lbl_id)
4994 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4996 attr->dw_attr_next = NULL;
4997 attr->dw_attr = attr_kind;
4998 attr->dw_attr_val.val_class = dw_val_class_lbl_id;
4999 attr->dw_attr_val.v.val_lbl_id = xstrdup (lbl_id);
5000 add_dwarf_attr (die, attr);
5003 /* Add a section offset attribute value to a DIE. */
5005 static inline void
5006 add_AT_lbl_offset (dw_die_ref die, enum dwarf_attribute attr_kind, const char *label)
5008 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5010 attr->dw_attr_next = NULL;
5011 attr->dw_attr = attr_kind;
5012 attr->dw_attr_val.val_class = dw_val_class_lbl_offset;
5013 attr->dw_attr_val.v.val_lbl_id = xstrdup (label);
5014 add_dwarf_attr (die, attr);
5017 /* Add an offset attribute value to a DIE. */
5019 static inline void
5020 add_AT_offset (dw_die_ref die, enum dwarf_attribute attr_kind,
5021 unsigned HOST_WIDE_INT offset)
5023 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5025 attr->dw_attr_next = NULL;
5026 attr->dw_attr = attr_kind;
5027 attr->dw_attr_val.val_class = dw_val_class_offset;
5028 attr->dw_attr_val.v.val_offset = offset;
5029 add_dwarf_attr (die, attr);
5032 /* Add an range_list attribute value to a DIE. */
5034 static void
5035 add_AT_range_list (dw_die_ref die, enum dwarf_attribute attr_kind,
5036 long unsigned int offset)
5038 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5040 attr->dw_attr_next = NULL;
5041 attr->dw_attr = attr_kind;
5042 attr->dw_attr_val.val_class = dw_val_class_range_list;
5043 attr->dw_attr_val.v.val_offset = offset;
5044 add_dwarf_attr (die, attr);
5047 static inline const char *
5048 AT_lbl (dw_attr_ref a)
5050 gcc_assert (a && (AT_class (a) == dw_val_class_lbl_id
5051 || AT_class (a) == dw_val_class_lbl_offset));
5052 return a->dw_attr_val.v.val_lbl_id;
5055 /* Get the attribute of type attr_kind. */
5057 static dw_attr_ref
5058 get_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5060 dw_attr_ref a;
5061 dw_die_ref spec = NULL;
5063 if (die != NULL)
5065 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
5066 if (a->dw_attr == attr_kind)
5067 return a;
5068 else if (a->dw_attr == DW_AT_specification
5069 || a->dw_attr == DW_AT_abstract_origin)
5070 spec = AT_ref (a);
5072 if (spec)
5073 return get_AT (spec, attr_kind);
5076 return NULL;
5079 /* Return the "low pc" attribute value, typically associated with a subprogram
5080 DIE. Return null if the "low pc" attribute is either not present, or if it
5081 cannot be represented as an assembler label identifier. */
5083 static inline const char *
5084 get_AT_low_pc (dw_die_ref die)
5086 dw_attr_ref a = get_AT (die, DW_AT_low_pc);
5088 return a ? AT_lbl (a) : NULL;
5091 /* Return the "high pc" attribute value, typically associated with a subprogram
5092 DIE. Return null if the "high pc" attribute is either not present, or if it
5093 cannot be represented as an assembler label identifier. */
5095 static inline const char *
5096 get_AT_hi_pc (dw_die_ref die)
5098 dw_attr_ref a = get_AT (die, DW_AT_high_pc);
5100 return a ? AT_lbl (a) : NULL;
5103 /* Return the value of the string attribute designated by ATTR_KIND, or
5104 NULL if it is not present. */
5106 static inline const char *
5107 get_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind)
5109 dw_attr_ref a = get_AT (die, attr_kind);
5111 return a ? AT_string (a) : NULL;
5114 /* Return the value of the flag attribute designated by ATTR_KIND, or -1
5115 if it is not present. */
5117 static inline int
5118 get_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind)
5120 dw_attr_ref a = get_AT (die, attr_kind);
5122 return a ? AT_flag (a) : 0;
5125 /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
5126 if it is not present. */
5128 static inline unsigned
5129 get_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind)
5131 dw_attr_ref a = get_AT (die, attr_kind);
5133 return a ? AT_unsigned (a) : 0;
5136 static inline dw_die_ref
5137 get_AT_ref (dw_die_ref die, enum dwarf_attribute attr_kind)
5139 dw_attr_ref a = get_AT (die, attr_kind);
5141 return a ? AT_ref (a) : NULL;
5144 /* Return TRUE if the language is C or C++. */
5146 static inline bool
5147 is_c_family (void)
5149 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5151 return (lang == DW_LANG_C || lang == DW_LANG_C89
5152 || lang == DW_LANG_C_plus_plus);
5155 /* Return TRUE if the language is C++. */
5157 static inline bool
5158 is_cxx (void)
5160 return (get_AT_unsigned (comp_unit_die, DW_AT_language)
5161 == DW_LANG_C_plus_plus);
5164 /* Return TRUE if the language is Fortran. */
5166 static inline bool
5167 is_fortran (void)
5169 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5171 return (lang == DW_LANG_Fortran77
5172 || lang == DW_LANG_Fortran90
5173 || lang == DW_LANG_Fortran95);
5176 /* Return TRUE if the language is Java. */
5178 static inline bool
5179 is_java (void)
5181 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5183 return lang == DW_LANG_Java;
5186 /* Return TRUE if the language is Ada. */
5188 static inline bool
5189 is_ada (void)
5191 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5193 return lang == DW_LANG_Ada95 || lang == DW_LANG_Ada83;
5196 /* Free up the memory used by A. */
5198 static inline void free_AT (dw_attr_ref);
5199 static inline void
5200 free_AT (dw_attr_ref a)
5202 if (AT_class (a) == dw_val_class_str)
5203 if (a->dw_attr_val.v.val_str->refcount)
5204 a->dw_attr_val.v.val_str->refcount--;
5207 /* Remove the specified attribute if present. */
5209 static void
5210 remove_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5212 dw_attr_ref *p;
5213 dw_attr_ref removed = NULL;
5215 if (die != NULL)
5217 for (p = &(die->die_attr); *p; p = &((*p)->dw_attr_next))
5218 if ((*p)->dw_attr == attr_kind)
5220 removed = *p;
5221 *p = (*p)->dw_attr_next;
5222 break;
5225 if (removed != 0)
5226 free_AT (removed);
5230 /* Remove child die whose die_tag is specified tag. */
5232 static void
5233 remove_child_TAG (dw_die_ref die, enum dwarf_tag tag)
5235 dw_die_ref current, prev, next;
5236 current = die->die_child;
5237 prev = NULL;
5238 while (current != NULL)
5240 if (current->die_tag == tag)
5242 next = current->die_sib;
5243 if (prev == NULL)
5244 die->die_child = next;
5245 else
5246 prev->die_sib = next;
5247 free_die (current);
5248 current = next;
5250 else
5252 prev = current;
5253 current = current->die_sib;
5258 /* Free up the memory used by DIE. */
5260 static inline void
5261 free_die (dw_die_ref die)
5263 remove_children (die);
5266 /* Discard the children of this DIE. */
5268 static void
5269 remove_children (dw_die_ref die)
5271 dw_die_ref child_die = die->die_child;
5273 die->die_child = NULL;
5275 while (child_die != NULL)
5277 dw_die_ref tmp_die = child_die;
5278 dw_attr_ref a;
5280 child_die = child_die->die_sib;
5282 for (a = tmp_die->die_attr; a != NULL;)
5284 dw_attr_ref tmp_a = a;
5286 a = a->dw_attr_next;
5287 free_AT (tmp_a);
5290 free_die (tmp_die);
5294 /* Add a child DIE below its parent. We build the lists up in reverse
5295 addition order, and correct that in reverse_all_dies. */
5297 static inline void
5298 add_child_die (dw_die_ref die, dw_die_ref child_die)
5300 if (die != NULL && child_die != NULL)
5302 gcc_assert (die != child_die);
5304 child_die->die_parent = die;
5305 child_die->die_sib = die->die_child;
5306 die->die_child = child_die;
5310 /* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
5311 is the specification, to the front of PARENT's list of children. */
5313 static void
5314 splice_child_die (dw_die_ref parent, dw_die_ref child)
5316 dw_die_ref *p;
5318 /* We want the declaration DIE from inside the class, not the
5319 specification DIE at toplevel. */
5320 if (child->die_parent != parent)
5322 dw_die_ref tmp = get_AT_ref (child, DW_AT_specification);
5324 if (tmp)
5325 child = tmp;
5328 gcc_assert (child->die_parent == parent
5329 || (child->die_parent
5330 == get_AT_ref (parent, DW_AT_specification)));
5332 for (p = &(child->die_parent->die_child); *p; p = &((*p)->die_sib))
5333 if (*p == child)
5335 *p = child->die_sib;
5336 break;
5339 child->die_parent = parent;
5340 child->die_sib = parent->die_child;
5341 parent->die_child = child;
5344 /* Return a pointer to a newly created DIE node. */
5346 static inline dw_die_ref
5347 new_die (enum dwarf_tag tag_value, dw_die_ref parent_die, tree t)
5349 dw_die_ref die = ggc_alloc_cleared (sizeof (die_node));
5351 die->die_tag = tag_value;
5353 if (parent_die != NULL)
5354 add_child_die (parent_die, die);
5355 else
5357 limbo_die_node *limbo_node;
5359 limbo_node = ggc_alloc_cleared (sizeof (limbo_die_node));
5360 limbo_node->die = die;
5361 limbo_node->created_for = t;
5362 limbo_node->next = limbo_die_list;
5363 limbo_die_list = limbo_node;
5366 return die;
5369 /* Return the DIE associated with the given type specifier. */
5371 static inline dw_die_ref
5372 lookup_type_die (tree type)
5374 return TYPE_SYMTAB_DIE (type);
5377 /* Equate a DIE to a given type specifier. */
5379 static inline void
5380 equate_type_number_to_die (tree type, dw_die_ref type_die)
5382 TYPE_SYMTAB_DIE (type) = type_die;
5385 /* Returns a hash value for X (which really is a die_struct). */
5387 static hashval_t
5388 decl_die_table_hash (const void *x)
5390 return (hashval_t) ((const dw_die_ref) x)->decl_id;
5393 /* Return nonzero if decl_id of die_struct X is the same as UID of decl *Y. */
5395 static int
5396 decl_die_table_eq (const void *x, const void *y)
5398 return (((const dw_die_ref) x)->decl_id == DECL_UID ((const tree) y));
5401 /* Return the DIE associated with a given declaration. */
5403 static inline dw_die_ref
5404 lookup_decl_die (tree decl)
5406 return htab_find_with_hash (decl_die_table, decl, DECL_UID (decl));
5409 /* Returns a hash value for X (which really is a var_loc_list). */
5411 static hashval_t
5412 decl_loc_table_hash (const void *x)
5414 return (hashval_t) ((const var_loc_list *) x)->decl_id;
5417 /* Return nonzero if decl_id of var_loc_list X is the same as
5418 UID of decl *Y. */
5420 static int
5421 decl_loc_table_eq (const void *x, const void *y)
5423 return (((const var_loc_list *) x)->decl_id == DECL_UID ((const tree) y));
5426 /* Return the var_loc list associated with a given declaration. */
5428 static inline var_loc_list *
5429 lookup_decl_loc (tree decl)
5431 return htab_find_with_hash (decl_loc_table, decl, DECL_UID (decl));
5434 /* Equate a DIE to a particular declaration. */
5436 static void
5437 equate_decl_number_to_die (tree decl, dw_die_ref decl_die)
5439 unsigned int decl_id = DECL_UID (decl);
5440 void **slot;
5442 slot = htab_find_slot_with_hash (decl_die_table, decl, decl_id, INSERT);
5443 *slot = decl_die;
5444 decl_die->decl_id = decl_id;
5447 /* Add a variable location node to the linked list for DECL. */
5449 static void
5450 add_var_loc_to_decl (tree decl, struct var_loc_node *loc)
5452 unsigned int decl_id = DECL_UID (decl);
5453 var_loc_list *temp;
5454 void **slot;
5456 slot = htab_find_slot_with_hash (decl_loc_table, decl, decl_id, INSERT);
5457 if (*slot == NULL)
5459 temp = ggc_alloc_cleared (sizeof (var_loc_list));
5460 temp->decl_id = decl_id;
5461 *slot = temp;
5463 else
5464 temp = *slot;
5466 if (temp->last)
5468 /* If the current location is the same as the end of the list,
5469 we have nothing to do. */
5470 if (!rtx_equal_p (NOTE_VAR_LOCATION_LOC (temp->last->var_loc_note),
5471 NOTE_VAR_LOCATION_LOC (loc->var_loc_note)))
5473 /* Add LOC to the end of list and update LAST. */
5474 temp->last->next = loc;
5475 temp->last = loc;
5478 /* Do not add empty location to the beginning of the list. */
5479 else if (NOTE_VAR_LOCATION_LOC (loc->var_loc_note) != NULL_RTX)
5481 temp->first = loc;
5482 temp->last = loc;
5486 /* Keep track of the number of spaces used to indent the
5487 output of the debugging routines that print the structure of
5488 the DIE internal representation. */
5489 static int print_indent;
5491 /* Indent the line the number of spaces given by print_indent. */
5493 static inline void
5494 print_spaces (FILE *outfile)
5496 fprintf (outfile, "%*s", print_indent, "");
5499 /* Print the information associated with a given DIE, and its children.
5500 This routine is a debugging aid only. */
5502 static void
5503 print_die (dw_die_ref die, FILE *outfile)
5505 dw_attr_ref a;
5506 dw_die_ref c;
5508 print_spaces (outfile);
5509 fprintf (outfile, "DIE %4lu: %s\n",
5510 die->die_offset, dwarf_tag_name (die->die_tag));
5511 print_spaces (outfile);
5512 fprintf (outfile, " abbrev id: %lu", die->die_abbrev);
5513 fprintf (outfile, " offset: %lu\n", die->die_offset);
5515 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
5517 print_spaces (outfile);
5518 fprintf (outfile, " %s: ", dwarf_attr_name (a->dw_attr));
5520 switch (AT_class (a))
5522 case dw_val_class_addr:
5523 fprintf (outfile, "address");
5524 break;
5525 case dw_val_class_offset:
5526 fprintf (outfile, "offset");
5527 break;
5528 case dw_val_class_loc:
5529 fprintf (outfile, "location descriptor");
5530 break;
5531 case dw_val_class_loc_list:
5532 fprintf (outfile, "location list -> label:%s",
5533 AT_loc_list (a)->ll_symbol);
5534 break;
5535 case dw_val_class_range_list:
5536 fprintf (outfile, "range list");
5537 break;
5538 case dw_val_class_const:
5539 fprintf (outfile, HOST_WIDE_INT_PRINT_DEC, AT_int (a));
5540 break;
5541 case dw_val_class_unsigned_const:
5542 fprintf (outfile, HOST_WIDE_INT_PRINT_UNSIGNED, AT_unsigned (a));
5543 break;
5544 case dw_val_class_long_long:
5545 fprintf (outfile, "constant (%lu,%lu)",
5546 a->dw_attr_val.v.val_long_long.hi,
5547 a->dw_attr_val.v.val_long_long.low);
5548 break;
5549 case dw_val_class_vec:
5550 fprintf (outfile, "floating-point or vector constant");
5551 break;
5552 case dw_val_class_flag:
5553 fprintf (outfile, "%u", AT_flag (a));
5554 break;
5555 case dw_val_class_die_ref:
5556 if (AT_ref (a) != NULL)
5558 if (AT_ref (a)->die_symbol)
5559 fprintf (outfile, "die -> label: %s", AT_ref (a)->die_symbol);
5560 else
5561 fprintf (outfile, "die -> %lu", AT_ref (a)->die_offset);
5563 else
5564 fprintf (outfile, "die -> <null>");
5565 break;
5566 case dw_val_class_lbl_id:
5567 case dw_val_class_lbl_offset:
5568 fprintf (outfile, "label: %s", AT_lbl (a));
5569 break;
5570 case dw_val_class_str:
5571 if (AT_string (a) != NULL)
5572 fprintf (outfile, "\"%s\"", AT_string (a));
5573 else
5574 fprintf (outfile, "<null>");
5575 break;
5576 default:
5577 break;
5580 fprintf (outfile, "\n");
5583 if (die->die_child != NULL)
5585 print_indent += 4;
5586 for (c = die->die_child; c != NULL; c = c->die_sib)
5587 print_die (c, outfile);
5589 print_indent -= 4;
5591 if (print_indent == 0)
5592 fprintf (outfile, "\n");
5595 /* Print the contents of the source code line number correspondence table.
5596 This routine is a debugging aid only. */
5598 static void
5599 print_dwarf_line_table (FILE *outfile)
5601 unsigned i;
5602 dw_line_info_ref line_info;
5604 fprintf (outfile, "\n\nDWARF source line information\n");
5605 for (i = 1; i < line_info_table_in_use; i++)
5607 line_info = &line_info_table[i];
5608 fprintf (outfile, "%5d: ", i);
5609 fprintf (outfile, "%-20s",
5610 VARRAY_CHAR_PTR (file_table, line_info->dw_file_num));
5611 fprintf (outfile, "%6ld", line_info->dw_line_num);
5612 fprintf (outfile, "\n");
5615 fprintf (outfile, "\n\n");
5618 /* Print the information collected for a given DIE. */
5620 void
5621 debug_dwarf_die (dw_die_ref die)
5623 print_die (die, stderr);
5626 /* Print all DWARF information collected for the compilation unit.
5627 This routine is a debugging aid only. */
5629 void
5630 debug_dwarf (void)
5632 print_indent = 0;
5633 print_die (comp_unit_die, stderr);
5634 if (! DWARF2_ASM_LINE_DEBUG_INFO)
5635 print_dwarf_line_table (stderr);
5638 /* We build up the lists of children and attributes by pushing new ones
5639 onto the beginning of the list. Reverse the lists for DIE so that
5640 they are in order of addition. */
5642 static void
5643 reverse_die_lists (dw_die_ref die)
5645 dw_die_ref c, cp, cn;
5646 dw_attr_ref a, ap, an;
5648 for (a = die->die_attr, ap = 0; a; a = an)
5650 an = a->dw_attr_next;
5651 a->dw_attr_next = ap;
5652 ap = a;
5655 die->die_attr = ap;
5657 for (c = die->die_child, cp = 0; c; c = cn)
5659 cn = c->die_sib;
5660 c->die_sib = cp;
5661 cp = c;
5664 die->die_child = cp;
5667 /* reverse_die_lists only reverses the single die you pass it. Since we used to
5668 reverse all dies in add_sibling_attributes, which runs through all the dies,
5669 it would reverse all the dies. Now, however, since we don't call
5670 reverse_die_lists in add_sibling_attributes, we need a routine to
5671 recursively reverse all the dies. This is that routine. */
5673 static void
5674 reverse_all_dies (dw_die_ref die)
5676 dw_die_ref c;
5678 reverse_die_lists (die);
5680 for (c = die->die_child; c; c = c->die_sib)
5681 reverse_all_dies (c);
5684 /* Start a new compilation unit DIE for an include file. OLD_UNIT is the CU
5685 for the enclosing include file, if any. BINCL_DIE is the DW_TAG_GNU_BINCL
5686 DIE that marks the start of the DIEs for this include file. */
5688 static dw_die_ref
5689 push_new_compile_unit (dw_die_ref old_unit, dw_die_ref bincl_die)
5691 const char *filename = get_AT_string (bincl_die, DW_AT_name);
5692 dw_die_ref new_unit = gen_compile_unit_die (filename);
5694 new_unit->die_sib = old_unit;
5695 return new_unit;
5698 /* Close an include-file CU and reopen the enclosing one. */
5700 static dw_die_ref
5701 pop_compile_unit (dw_die_ref old_unit)
5703 dw_die_ref new_unit = old_unit->die_sib;
5705 old_unit->die_sib = NULL;
5706 return new_unit;
5709 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
5710 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
5712 /* Calculate the checksum of a location expression. */
5714 static inline void
5715 loc_checksum (dw_loc_descr_ref loc, struct md5_ctx *ctx)
5717 CHECKSUM (loc->dw_loc_opc);
5718 CHECKSUM (loc->dw_loc_oprnd1);
5719 CHECKSUM (loc->dw_loc_oprnd2);
5722 /* Calculate the checksum of an attribute. */
5724 static void
5725 attr_checksum (dw_attr_ref at, struct md5_ctx *ctx, int *mark)
5727 dw_loc_descr_ref loc;
5728 rtx r;
5730 CHECKSUM (at->dw_attr);
5732 /* We don't care about differences in file numbering. */
5733 if (at->dw_attr == DW_AT_decl_file
5734 /* Or that this was compiled with a different compiler snapshot; if
5735 the output is the same, that's what matters. */
5736 || at->dw_attr == DW_AT_producer)
5737 return;
5739 switch (AT_class (at))
5741 case dw_val_class_const:
5742 CHECKSUM (at->dw_attr_val.v.val_int);
5743 break;
5744 case dw_val_class_unsigned_const:
5745 CHECKSUM (at->dw_attr_val.v.val_unsigned);
5746 break;
5747 case dw_val_class_long_long:
5748 CHECKSUM (at->dw_attr_val.v.val_long_long);
5749 break;
5750 case dw_val_class_vec:
5751 CHECKSUM (at->dw_attr_val.v.val_vec);
5752 break;
5753 case dw_val_class_flag:
5754 CHECKSUM (at->dw_attr_val.v.val_flag);
5755 break;
5756 case dw_val_class_str:
5757 CHECKSUM_STRING (AT_string (at));
5758 break;
5760 case dw_val_class_addr:
5761 r = AT_addr (at);
5762 gcc_assert (GET_CODE (r) == SYMBOL_REF);
5763 CHECKSUM_STRING (XSTR (r, 0));
5764 break;
5766 case dw_val_class_offset:
5767 CHECKSUM (at->dw_attr_val.v.val_offset);
5768 break;
5770 case dw_val_class_loc:
5771 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
5772 loc_checksum (loc, ctx);
5773 break;
5775 case dw_val_class_die_ref:
5776 die_checksum (AT_ref (at), ctx, mark);
5777 break;
5779 case dw_val_class_fde_ref:
5780 case dw_val_class_lbl_id:
5781 case dw_val_class_lbl_offset:
5782 break;
5784 default:
5785 break;
5789 /* Calculate the checksum of a DIE. */
5791 static void
5792 die_checksum (dw_die_ref die, struct md5_ctx *ctx, int *mark)
5794 dw_die_ref c;
5795 dw_attr_ref a;
5797 /* To avoid infinite recursion. */
5798 if (die->die_mark)
5800 CHECKSUM (die->die_mark);
5801 return;
5803 die->die_mark = ++(*mark);
5805 CHECKSUM (die->die_tag);
5807 for (a = die->die_attr; a; a = a->dw_attr_next)
5808 attr_checksum (a, ctx, mark);
5810 for (c = die->die_child; c; c = c->die_sib)
5811 die_checksum (c, ctx, mark);
5814 #undef CHECKSUM
5815 #undef CHECKSUM_STRING
5817 /* Do the location expressions look same? */
5818 static inline int
5819 same_loc_p (dw_loc_descr_ref loc1, dw_loc_descr_ref loc2, int *mark)
5821 return loc1->dw_loc_opc == loc2->dw_loc_opc
5822 && same_dw_val_p (&loc1->dw_loc_oprnd1, &loc2->dw_loc_oprnd1, mark)
5823 && same_dw_val_p (&loc1->dw_loc_oprnd2, &loc2->dw_loc_oprnd2, mark);
5826 /* Do the values look the same? */
5827 static int
5828 same_dw_val_p (dw_val_node *v1, dw_val_node *v2, int *mark)
5830 dw_loc_descr_ref loc1, loc2;
5831 rtx r1, r2;
5833 if (v1->val_class != v2->val_class)
5834 return 0;
5836 switch (v1->val_class)
5838 case dw_val_class_const:
5839 return v1->v.val_int == v2->v.val_int;
5840 case dw_val_class_unsigned_const:
5841 return v1->v.val_unsigned == v2->v.val_unsigned;
5842 case dw_val_class_long_long:
5843 return v1->v.val_long_long.hi == v2->v.val_long_long.hi
5844 && v1->v.val_long_long.low == v2->v.val_long_long.low;
5845 case dw_val_class_vec:
5846 if (v1->v.val_vec.length != v2->v.val_vec.length
5847 || v1->v.val_vec.elt_size != v2->v.val_vec.elt_size)
5848 return 0;
5849 if (memcmp (v1->v.val_vec.array, v2->v.val_vec.array,
5850 v1->v.val_vec.length * v1->v.val_vec.elt_size))
5851 return 0;
5852 return 1;
5853 case dw_val_class_flag:
5854 return v1->v.val_flag == v2->v.val_flag;
5855 case dw_val_class_str:
5856 return !strcmp(v1->v.val_str->str, v2->v.val_str->str);
5858 case dw_val_class_addr:
5859 r1 = v1->v.val_addr;
5860 r2 = v2->v.val_addr;
5861 if (GET_CODE (r1) != GET_CODE (r2))
5862 return 0;
5863 gcc_assert (GET_CODE (r1) == SYMBOL_REF);
5864 return !strcmp (XSTR (r1, 0), XSTR (r2, 0));
5866 case dw_val_class_offset:
5867 return v1->v.val_offset == v2->v.val_offset;
5869 case dw_val_class_loc:
5870 for (loc1 = v1->v.val_loc, loc2 = v2->v.val_loc;
5871 loc1 && loc2;
5872 loc1 = loc1->dw_loc_next, loc2 = loc2->dw_loc_next)
5873 if (!same_loc_p (loc1, loc2, mark))
5874 return 0;
5875 return !loc1 && !loc2;
5877 case dw_val_class_die_ref:
5878 return same_die_p (v1->v.val_die_ref.die, v2->v.val_die_ref.die, mark);
5880 case dw_val_class_fde_ref:
5881 case dw_val_class_lbl_id:
5882 case dw_val_class_lbl_offset:
5883 return 1;
5885 default:
5886 return 1;
5890 /* Do the attributes look the same? */
5892 static int
5893 same_attr_p (dw_attr_ref at1, dw_attr_ref at2, int *mark)
5895 if (at1->dw_attr != at2->dw_attr)
5896 return 0;
5898 /* We don't care about differences in file numbering. */
5899 if (at1->dw_attr == DW_AT_decl_file
5900 /* Or that this was compiled with a different compiler snapshot; if
5901 the output is the same, that's what matters. */
5902 || at1->dw_attr == DW_AT_producer)
5903 return 1;
5905 return same_dw_val_p (&at1->dw_attr_val, &at2->dw_attr_val, mark);
5908 /* Do the dies look the same? */
5910 static int
5911 same_die_p (dw_die_ref die1, dw_die_ref die2, int *mark)
5913 dw_die_ref c1, c2;
5914 dw_attr_ref a1, a2;
5916 /* To avoid infinite recursion. */
5917 if (die1->die_mark)
5918 return die1->die_mark == die2->die_mark;
5919 die1->die_mark = die2->die_mark = ++(*mark);
5921 if (die1->die_tag != die2->die_tag)
5922 return 0;
5924 for (a1 = die1->die_attr, a2 = die2->die_attr;
5925 a1 && a2;
5926 a1 = a1->dw_attr_next, a2 = a2->dw_attr_next)
5927 if (!same_attr_p (a1, a2, mark))
5928 return 0;
5929 if (a1 || a2)
5930 return 0;
5932 for (c1 = die1->die_child, c2 = die2->die_child;
5933 c1 && c2;
5934 c1 = c1->die_sib, c2 = c2->die_sib)
5935 if (!same_die_p (c1, c2, mark))
5936 return 0;
5937 if (c1 || c2)
5938 return 0;
5940 return 1;
5943 /* Do the dies look the same? Wrapper around same_die_p. */
5945 static int
5946 same_die_p_wrap (dw_die_ref die1, dw_die_ref die2)
5948 int mark = 0;
5949 int ret = same_die_p (die1, die2, &mark);
5951 unmark_all_dies (die1);
5952 unmark_all_dies (die2);
5954 return ret;
5957 /* The prefix to attach to symbols on DIEs in the current comdat debug
5958 info section. */
5959 static char *comdat_symbol_id;
5961 /* The index of the current symbol within the current comdat CU. */
5962 static unsigned int comdat_symbol_number;
5964 /* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
5965 children, and set comdat_symbol_id accordingly. */
5967 static void
5968 compute_section_prefix (dw_die_ref unit_die)
5970 const char *die_name = get_AT_string (unit_die, DW_AT_name);
5971 const char *base = die_name ? lbasename (die_name) : "anonymous";
5972 char *name = alloca (strlen (base) + 64);
5973 char *p;
5974 int i, mark;
5975 unsigned char checksum[16];
5976 struct md5_ctx ctx;
5978 /* Compute the checksum of the DIE, then append part of it as hex digits to
5979 the name filename of the unit. */
5981 md5_init_ctx (&ctx);
5982 mark = 0;
5983 die_checksum (unit_die, &ctx, &mark);
5984 unmark_all_dies (unit_die);
5985 md5_finish_ctx (&ctx, checksum);
5987 sprintf (name, "%s.", base);
5988 clean_symbol_name (name);
5990 p = name + strlen (name);
5991 for (i = 0; i < 4; i++)
5993 sprintf (p, "%.2x", checksum[i]);
5994 p += 2;
5997 comdat_symbol_id = unit_die->die_symbol = xstrdup (name);
5998 comdat_symbol_number = 0;
6001 /* Returns nonzero if DIE represents a type, in the sense of TYPE_P. */
6003 static int
6004 is_type_die (dw_die_ref die)
6006 switch (die->die_tag)
6008 case DW_TAG_array_type:
6009 case DW_TAG_class_type:
6010 case DW_TAG_enumeration_type:
6011 case DW_TAG_pointer_type:
6012 case DW_TAG_reference_type:
6013 case DW_TAG_string_type:
6014 case DW_TAG_structure_type:
6015 case DW_TAG_subroutine_type:
6016 case DW_TAG_union_type:
6017 case DW_TAG_ptr_to_member_type:
6018 case DW_TAG_set_type:
6019 case DW_TAG_subrange_type:
6020 case DW_TAG_base_type:
6021 case DW_TAG_const_type:
6022 case DW_TAG_file_type:
6023 case DW_TAG_packed_type:
6024 case DW_TAG_volatile_type:
6025 case DW_TAG_typedef:
6026 return 1;
6027 default:
6028 return 0;
6032 /* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
6033 Basically, we want to choose the bits that are likely to be shared between
6034 compilations (types) and leave out the bits that are specific to individual
6035 compilations (functions). */
6037 static int
6038 is_comdat_die (dw_die_ref c)
6040 /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
6041 we do for stabs. The advantage is a greater likelihood of sharing between
6042 objects that don't include headers in the same order (and therefore would
6043 put the base types in a different comdat). jason 8/28/00 */
6045 if (c->die_tag == DW_TAG_base_type)
6046 return 0;
6048 if (c->die_tag == DW_TAG_pointer_type
6049 || c->die_tag == DW_TAG_reference_type
6050 || c->die_tag == DW_TAG_const_type
6051 || c->die_tag == DW_TAG_volatile_type)
6053 dw_die_ref t = get_AT_ref (c, DW_AT_type);
6055 return t ? is_comdat_die (t) : 0;
6058 return is_type_die (c);
6061 /* Returns 1 iff C is the sort of DIE that might be referred to from another
6062 compilation unit. */
6064 static int
6065 is_symbol_die (dw_die_ref c)
6067 return (is_type_die (c)
6068 || (get_AT (c, DW_AT_declaration)
6069 && !get_AT (c, DW_AT_specification)));
6072 static char *
6073 gen_internal_sym (const char *prefix)
6075 char buf[256];
6077 ASM_GENERATE_INTERNAL_LABEL (buf, prefix, label_num++);
6078 return xstrdup (buf);
6081 /* Assign symbols to all worthy DIEs under DIE. */
6083 static void
6084 assign_symbol_names (dw_die_ref die)
6086 dw_die_ref c;
6088 if (is_symbol_die (die))
6090 if (comdat_symbol_id)
6092 char *p = alloca (strlen (comdat_symbol_id) + 64);
6094 sprintf (p, "%s.%s.%x", DIE_LABEL_PREFIX,
6095 comdat_symbol_id, comdat_symbol_number++);
6096 die->die_symbol = xstrdup (p);
6098 else
6099 die->die_symbol = gen_internal_sym ("LDIE");
6102 for (c = die->die_child; c != NULL; c = c->die_sib)
6103 assign_symbol_names (c);
6106 struct cu_hash_table_entry
6108 dw_die_ref cu;
6109 unsigned min_comdat_num, max_comdat_num;
6110 struct cu_hash_table_entry *next;
6113 /* Routines to manipulate hash table of CUs. */
6114 static hashval_t
6115 htab_cu_hash (const void *of)
6117 const struct cu_hash_table_entry *entry = of;
6119 return htab_hash_string (entry->cu->die_symbol);
6122 static int
6123 htab_cu_eq (const void *of1, const void *of2)
6125 const struct cu_hash_table_entry *entry1 = of1;
6126 const struct die_struct *entry2 = of2;
6128 return !strcmp (entry1->cu->die_symbol, entry2->die_symbol);
6131 static void
6132 htab_cu_del (void *what)
6134 struct cu_hash_table_entry *next, *entry = what;
6136 while (entry)
6138 next = entry->next;
6139 free (entry);
6140 entry = next;
6144 /* Check whether we have already seen this CU and set up SYM_NUM
6145 accordingly. */
6146 static int
6147 check_duplicate_cu (dw_die_ref cu, htab_t htable, unsigned int *sym_num)
6149 struct cu_hash_table_entry dummy;
6150 struct cu_hash_table_entry **slot, *entry, *last = &dummy;
6152 dummy.max_comdat_num = 0;
6154 slot = (struct cu_hash_table_entry **)
6155 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6156 INSERT);
6157 entry = *slot;
6159 for (; entry; last = entry, entry = entry->next)
6161 if (same_die_p_wrap (cu, entry->cu))
6162 break;
6165 if (entry)
6167 *sym_num = entry->min_comdat_num;
6168 return 1;
6171 entry = xcalloc (1, sizeof (struct cu_hash_table_entry));
6172 entry->cu = cu;
6173 entry->min_comdat_num = *sym_num = last->max_comdat_num;
6174 entry->next = *slot;
6175 *slot = entry;
6177 return 0;
6180 /* Record SYM_NUM to record of CU in HTABLE. */
6181 static void
6182 record_comdat_symbol_number (dw_die_ref cu, htab_t htable, unsigned int sym_num)
6184 struct cu_hash_table_entry **slot, *entry;
6186 slot = (struct cu_hash_table_entry **)
6187 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6188 NO_INSERT);
6189 entry = *slot;
6191 entry->max_comdat_num = sym_num;
6194 /* Traverse the DIE (which is always comp_unit_die), and set up
6195 additional compilation units for each of the include files we see
6196 bracketed by BINCL/EINCL. */
6198 static void
6199 break_out_includes (dw_die_ref die)
6201 dw_die_ref *ptr;
6202 dw_die_ref unit = NULL;
6203 limbo_die_node *node, **pnode;
6204 htab_t cu_hash_table;
6206 for (ptr = &(die->die_child); *ptr;)
6208 dw_die_ref c = *ptr;
6210 if (c->die_tag == DW_TAG_GNU_BINCL || c->die_tag == DW_TAG_GNU_EINCL
6211 || (unit && is_comdat_die (c)))
6213 /* This DIE is for a secondary CU; remove it from the main one. */
6214 *ptr = c->die_sib;
6216 if (c->die_tag == DW_TAG_GNU_BINCL)
6218 unit = push_new_compile_unit (unit, c);
6219 free_die (c);
6221 else if (c->die_tag == DW_TAG_GNU_EINCL)
6223 unit = pop_compile_unit (unit);
6224 free_die (c);
6226 else
6227 add_child_die (unit, c);
6229 else
6231 /* Leave this DIE in the main CU. */
6232 ptr = &(c->die_sib);
6233 continue;
6237 #if 0
6238 /* We can only use this in debugging, since the frontend doesn't check
6239 to make sure that we leave every include file we enter. */
6240 gcc_assert (!unit);
6241 #endif
6243 assign_symbol_names (die);
6244 cu_hash_table = htab_create (10, htab_cu_hash, htab_cu_eq, htab_cu_del);
6245 for (node = limbo_die_list, pnode = &limbo_die_list;
6246 node;
6247 node = node->next)
6249 int is_dupl;
6251 compute_section_prefix (node->die);
6252 is_dupl = check_duplicate_cu (node->die, cu_hash_table,
6253 &comdat_symbol_number);
6254 assign_symbol_names (node->die);
6255 if (is_dupl)
6256 *pnode = node->next;
6257 else
6259 pnode = &node->next;
6260 record_comdat_symbol_number (node->die, cu_hash_table,
6261 comdat_symbol_number);
6264 htab_delete (cu_hash_table);
6267 /* Traverse the DIE and add a sibling attribute if it may have the
6268 effect of speeding up access to siblings. To save some space,
6269 avoid generating sibling attributes for DIE's without children. */
6271 static void
6272 add_sibling_attributes (dw_die_ref die)
6274 dw_die_ref c;
6276 if (die->die_tag != DW_TAG_compile_unit
6277 && die->die_sib && die->die_child != NULL)
6278 /* Add the sibling link to the front of the attribute list. */
6279 add_AT_die_ref (die, DW_AT_sibling, die->die_sib);
6281 for (c = die->die_child; c != NULL; c = c->die_sib)
6282 add_sibling_attributes (c);
6285 /* Output all location lists for the DIE and its children. */
6287 static void
6288 output_location_lists (dw_die_ref die)
6290 dw_die_ref c;
6291 dw_attr_ref d_attr;
6293 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6294 if (AT_class (d_attr) == dw_val_class_loc_list)
6295 output_loc_list (AT_loc_list (d_attr));
6297 for (c = die->die_child; c != NULL; c = c->die_sib)
6298 output_location_lists (c);
6302 /* The format of each DIE (and its attribute value pairs) is encoded in an
6303 abbreviation table. This routine builds the abbreviation table and assigns
6304 a unique abbreviation id for each abbreviation entry. The children of each
6305 die are visited recursively. */
6307 static void
6308 build_abbrev_table (dw_die_ref die)
6310 unsigned long abbrev_id;
6311 unsigned int n_alloc;
6312 dw_die_ref c;
6313 dw_attr_ref d_attr, a_attr;
6315 /* Scan the DIE references, and mark as external any that refer to
6316 DIEs from other CUs (i.e. those which are not marked). */
6317 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6318 if (AT_class (d_attr) == dw_val_class_die_ref
6319 && AT_ref (d_attr)->die_mark == 0)
6321 gcc_assert (AT_ref (d_attr)->die_symbol);
6323 set_AT_ref_external (d_attr, 1);
6326 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6328 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6330 if (abbrev->die_tag == die->die_tag)
6332 if ((abbrev->die_child != NULL) == (die->die_child != NULL))
6334 a_attr = abbrev->die_attr;
6335 d_attr = die->die_attr;
6337 while (a_attr != NULL && d_attr != NULL)
6339 if ((a_attr->dw_attr != d_attr->dw_attr)
6340 || (value_format (a_attr) != value_format (d_attr)))
6341 break;
6343 a_attr = a_attr->dw_attr_next;
6344 d_attr = d_attr->dw_attr_next;
6347 if (a_attr == NULL && d_attr == NULL)
6348 break;
6353 if (abbrev_id >= abbrev_die_table_in_use)
6355 if (abbrev_die_table_in_use >= abbrev_die_table_allocated)
6357 n_alloc = abbrev_die_table_allocated + ABBREV_DIE_TABLE_INCREMENT;
6358 abbrev_die_table = ggc_realloc (abbrev_die_table,
6359 sizeof (dw_die_ref) * n_alloc);
6361 memset (&abbrev_die_table[abbrev_die_table_allocated], 0,
6362 (n_alloc - abbrev_die_table_allocated) * sizeof (dw_die_ref));
6363 abbrev_die_table_allocated = n_alloc;
6366 ++abbrev_die_table_in_use;
6367 abbrev_die_table[abbrev_id] = die;
6370 die->die_abbrev = abbrev_id;
6371 for (c = die->die_child; c != NULL; c = c->die_sib)
6372 build_abbrev_table (c);
6375 /* Return the power-of-two number of bytes necessary to represent VALUE. */
6377 static int
6378 constant_size (long unsigned int value)
6380 int log;
6382 if (value == 0)
6383 log = 0;
6384 else
6385 log = floor_log2 (value);
6387 log = log / 8;
6388 log = 1 << (floor_log2 (log) + 1);
6390 return log;
6393 /* Return the size of a DIE as it is represented in the
6394 .debug_info section. */
6396 static unsigned long
6397 size_of_die (dw_die_ref die)
6399 unsigned long size = 0;
6400 dw_attr_ref a;
6402 size += size_of_uleb128 (die->die_abbrev);
6403 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6405 switch (AT_class (a))
6407 case dw_val_class_addr:
6408 size += DWARF2_ADDR_SIZE;
6409 break;
6410 case dw_val_class_offset:
6411 size += DWARF_OFFSET_SIZE;
6412 break;
6413 case dw_val_class_loc:
6415 unsigned long lsize = size_of_locs (AT_loc (a));
6417 /* Block length. */
6418 size += constant_size (lsize);
6419 size += lsize;
6421 break;
6422 case dw_val_class_loc_list:
6423 size += DWARF_OFFSET_SIZE;
6424 break;
6425 case dw_val_class_range_list:
6426 size += DWARF_OFFSET_SIZE;
6427 break;
6428 case dw_val_class_const:
6429 size += size_of_sleb128 (AT_int (a));
6430 break;
6431 case dw_val_class_unsigned_const:
6432 size += constant_size (AT_unsigned (a));
6433 break;
6434 case dw_val_class_long_long:
6435 size += 1 + 2*HOST_BITS_PER_LONG/HOST_BITS_PER_CHAR; /* block */
6436 break;
6437 case dw_val_class_vec:
6438 size += 1 + (a->dw_attr_val.v.val_vec.length
6439 * a->dw_attr_val.v.val_vec.elt_size); /* block */
6440 break;
6441 case dw_val_class_flag:
6442 size += 1;
6443 break;
6444 case dw_val_class_die_ref:
6445 if (AT_ref_external (a))
6446 size += DWARF2_ADDR_SIZE;
6447 else
6448 size += DWARF_OFFSET_SIZE;
6449 break;
6450 case dw_val_class_fde_ref:
6451 size += DWARF_OFFSET_SIZE;
6452 break;
6453 case dw_val_class_lbl_id:
6454 size += DWARF2_ADDR_SIZE;
6455 break;
6456 case dw_val_class_lbl_offset:
6457 size += DWARF_OFFSET_SIZE;
6458 break;
6459 case dw_val_class_str:
6460 if (AT_string_form (a) == DW_FORM_strp)
6461 size += DWARF_OFFSET_SIZE;
6462 else
6463 size += strlen (a->dw_attr_val.v.val_str->str) + 1;
6464 break;
6465 default:
6466 gcc_unreachable ();
6470 return size;
6473 /* Size the debugging information associated with a given DIE. Visits the
6474 DIE's children recursively. Updates the global variable next_die_offset, on
6475 each time through. Uses the current value of next_die_offset to update the
6476 die_offset field in each DIE. */
6478 static void
6479 calc_die_sizes (dw_die_ref die)
6481 dw_die_ref c;
6483 die->die_offset = next_die_offset;
6484 next_die_offset += size_of_die (die);
6486 for (c = die->die_child; c != NULL; c = c->die_sib)
6487 calc_die_sizes (c);
6489 if (die->die_child != NULL)
6490 /* Count the null byte used to terminate sibling lists. */
6491 next_die_offset += 1;
6494 /* Set the marks for a die and its children. We do this so
6495 that we know whether or not a reference needs to use FORM_ref_addr; only
6496 DIEs in the same CU will be marked. We used to clear out the offset
6497 and use that as the flag, but ran into ordering problems. */
6499 static void
6500 mark_dies (dw_die_ref die)
6502 dw_die_ref c;
6504 gcc_assert (!die->die_mark);
6506 die->die_mark = 1;
6507 for (c = die->die_child; c; c = c->die_sib)
6508 mark_dies (c);
6511 /* Clear the marks for a die and its children. */
6513 static void
6514 unmark_dies (dw_die_ref die)
6516 dw_die_ref c;
6518 gcc_assert (die->die_mark);
6520 die->die_mark = 0;
6521 for (c = die->die_child; c; c = c->die_sib)
6522 unmark_dies (c);
6525 /* Clear the marks for a die, its children and referred dies. */
6527 static void
6528 unmark_all_dies (dw_die_ref die)
6530 dw_die_ref c;
6531 dw_attr_ref a;
6533 if (!die->die_mark)
6534 return;
6535 die->die_mark = 0;
6537 for (c = die->die_child; c; c = c->die_sib)
6538 unmark_all_dies (c);
6540 for (a = die->die_attr; a; a = a->dw_attr_next)
6541 if (AT_class (a) == dw_val_class_die_ref)
6542 unmark_all_dies (AT_ref (a));
6545 /* Return the size of the .debug_pubnames table generated for the
6546 compilation unit. */
6548 static unsigned long
6549 size_of_pubnames (void)
6551 unsigned long size;
6552 unsigned i;
6554 size = DWARF_PUBNAMES_HEADER_SIZE;
6555 for (i = 0; i < pubname_table_in_use; i++)
6557 pubname_ref p = &pubname_table[i];
6558 size += DWARF_OFFSET_SIZE + strlen (p->name) + 1;
6561 size += DWARF_OFFSET_SIZE;
6562 return size;
6565 /* Return the size of the information in the .debug_aranges section. */
6567 static unsigned long
6568 size_of_aranges (void)
6570 unsigned long size;
6572 size = DWARF_ARANGES_HEADER_SIZE;
6574 /* Count the address/length pair for this compilation unit. */
6575 size += 2 * DWARF2_ADDR_SIZE;
6576 size += 2 * DWARF2_ADDR_SIZE * arange_table_in_use;
6578 /* Count the two zero words used to terminated the address range table. */
6579 size += 2 * DWARF2_ADDR_SIZE;
6580 return size;
6583 /* Select the encoding of an attribute value. */
6585 static enum dwarf_form
6586 value_format (dw_attr_ref a)
6588 switch (a->dw_attr_val.val_class)
6590 case dw_val_class_addr:
6591 return DW_FORM_addr;
6592 case dw_val_class_range_list:
6593 case dw_val_class_offset:
6594 switch (DWARF_OFFSET_SIZE)
6596 case 4:
6597 return DW_FORM_data4;
6598 case 8:
6599 return DW_FORM_data8;
6600 default:
6601 gcc_unreachable ();
6603 case dw_val_class_loc_list:
6604 /* FIXME: Could be DW_FORM_data8, with a > 32 bit size
6605 .debug_loc section */
6606 return DW_FORM_data4;
6607 case dw_val_class_loc:
6608 switch (constant_size (size_of_locs (AT_loc (a))))
6610 case 1:
6611 return DW_FORM_block1;
6612 case 2:
6613 return DW_FORM_block2;
6614 default:
6615 gcc_unreachable ();
6617 case dw_val_class_const:
6618 return DW_FORM_sdata;
6619 case dw_val_class_unsigned_const:
6620 switch (constant_size (AT_unsigned (a)))
6622 case 1:
6623 return DW_FORM_data1;
6624 case 2:
6625 return DW_FORM_data2;
6626 case 4:
6627 return DW_FORM_data4;
6628 case 8:
6629 return DW_FORM_data8;
6630 default:
6631 gcc_unreachable ();
6633 case dw_val_class_long_long:
6634 return DW_FORM_block1;
6635 case dw_val_class_vec:
6636 return DW_FORM_block1;
6637 case dw_val_class_flag:
6638 return DW_FORM_flag;
6639 case dw_val_class_die_ref:
6640 if (AT_ref_external (a))
6641 return DW_FORM_ref_addr;
6642 else
6643 return DW_FORM_ref;
6644 case dw_val_class_fde_ref:
6645 return DW_FORM_data;
6646 case dw_val_class_lbl_id:
6647 return DW_FORM_addr;
6648 case dw_val_class_lbl_offset:
6649 return DW_FORM_data;
6650 case dw_val_class_str:
6651 return AT_string_form (a);
6653 default:
6654 gcc_unreachable ();
6658 /* Output the encoding of an attribute value. */
6660 static void
6661 output_value_format (dw_attr_ref a)
6663 enum dwarf_form form = value_format (a);
6665 dw2_asm_output_data_uleb128 (form, "(%s)", dwarf_form_name (form));
6668 /* Output the .debug_abbrev section which defines the DIE abbreviation
6669 table. */
6671 static void
6672 output_abbrev_section (void)
6674 unsigned long abbrev_id;
6676 dw_attr_ref a_attr;
6678 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6680 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6682 dw2_asm_output_data_uleb128 (abbrev_id, "(abbrev code)");
6683 dw2_asm_output_data_uleb128 (abbrev->die_tag, "(TAG: %s)",
6684 dwarf_tag_name (abbrev->die_tag));
6686 if (abbrev->die_child != NULL)
6687 dw2_asm_output_data (1, DW_children_yes, "DW_children_yes");
6688 else
6689 dw2_asm_output_data (1, DW_children_no, "DW_children_no");
6691 for (a_attr = abbrev->die_attr; a_attr != NULL;
6692 a_attr = a_attr->dw_attr_next)
6694 dw2_asm_output_data_uleb128 (a_attr->dw_attr, "(%s)",
6695 dwarf_attr_name (a_attr->dw_attr));
6696 output_value_format (a_attr);
6699 dw2_asm_output_data (1, 0, NULL);
6700 dw2_asm_output_data (1, 0, NULL);
6703 /* Terminate the table. */
6704 dw2_asm_output_data (1, 0, NULL);
6707 /* Output a symbol we can use to refer to this DIE from another CU. */
6709 static inline void
6710 output_die_symbol (dw_die_ref die)
6712 char *sym = die->die_symbol;
6714 if (sym == 0)
6715 return;
6717 if (strncmp (sym, DIE_LABEL_PREFIX, sizeof (DIE_LABEL_PREFIX) - 1) == 0)
6718 /* We make these global, not weak; if the target doesn't support
6719 .linkonce, it doesn't support combining the sections, so debugging
6720 will break. */
6721 targetm.asm_out.globalize_label (asm_out_file, sym);
6723 ASM_OUTPUT_LABEL (asm_out_file, sym);
6726 /* Return a new location list, given the begin and end range, and the
6727 expression. gensym tells us whether to generate a new internal symbol for
6728 this location list node, which is done for the head of the list only. */
6730 static inline dw_loc_list_ref
6731 new_loc_list (dw_loc_descr_ref expr, const char *begin, const char *end,
6732 const char *section, unsigned int gensym)
6734 dw_loc_list_ref retlist = ggc_alloc_cleared (sizeof (dw_loc_list_node));
6736 retlist->begin = begin;
6737 retlist->end = end;
6738 retlist->expr = expr;
6739 retlist->section = section;
6740 if (gensym)
6741 retlist->ll_symbol = gen_internal_sym ("LLST");
6743 return retlist;
6746 /* Add a location description expression to a location list. */
6748 static inline void
6749 add_loc_descr_to_loc_list (dw_loc_list_ref *list_head, dw_loc_descr_ref descr,
6750 const char *begin, const char *end,
6751 const char *section)
6753 dw_loc_list_ref *d;
6755 /* Find the end of the chain. */
6756 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
6759 /* Add a new location list node to the list. */
6760 *d = new_loc_list (descr, begin, end, section, 0);
6763 /* Output the location list given to us. */
6765 static void
6766 output_loc_list (dw_loc_list_ref list_head)
6768 dw_loc_list_ref curr = list_head;
6770 ASM_OUTPUT_LABEL (asm_out_file, list_head->ll_symbol);
6772 /* Walk the location list, and output each range + expression. */
6773 for (curr = list_head; curr != NULL; curr = curr->dw_loc_next)
6775 unsigned long size;
6776 if (separate_line_info_table_in_use == 0)
6778 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->begin, curr->section,
6779 "Location list begin address (%s)",
6780 list_head->ll_symbol);
6781 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->end, curr->section,
6782 "Location list end address (%s)",
6783 list_head->ll_symbol);
6785 else
6787 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->begin,
6788 "Location list begin address (%s)",
6789 list_head->ll_symbol);
6790 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->end,
6791 "Location list end address (%s)",
6792 list_head->ll_symbol);
6794 size = size_of_locs (curr->expr);
6796 /* Output the block length for this list of location operations. */
6797 gcc_assert (size <= 0xffff);
6798 dw2_asm_output_data (2, size, "%s", "Location expression size");
6800 output_loc_sequence (curr->expr);
6803 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
6804 "Location list terminator begin (%s)",
6805 list_head->ll_symbol);
6806 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
6807 "Location list terminator end (%s)",
6808 list_head->ll_symbol);
6811 /* Output the DIE and its attributes. Called recursively to generate
6812 the definitions of each child DIE. */
6814 static void
6815 output_die (dw_die_ref die)
6817 dw_attr_ref a;
6818 dw_die_ref c;
6819 unsigned long size;
6821 /* If someone in another CU might refer to us, set up a symbol for
6822 them to point to. */
6823 if (die->die_symbol)
6824 output_die_symbol (die);
6826 dw2_asm_output_data_uleb128 (die->die_abbrev, "(DIE (0x%lx) %s)",
6827 die->die_offset, dwarf_tag_name (die->die_tag));
6829 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6831 const char *name = dwarf_attr_name (a->dw_attr);
6833 switch (AT_class (a))
6835 case dw_val_class_addr:
6836 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, AT_addr (a), "%s", name);
6837 break;
6839 case dw_val_class_offset:
6840 dw2_asm_output_data (DWARF_OFFSET_SIZE, a->dw_attr_val.v.val_offset,
6841 "%s", name);
6842 break;
6844 case dw_val_class_range_list:
6846 char *p = strchr (ranges_section_label, '\0');
6848 sprintf (p, "+" HOST_WIDE_INT_PRINT_HEX,
6849 a->dw_attr_val.v.val_offset);
6850 dw2_asm_output_offset (DWARF_OFFSET_SIZE, ranges_section_label,
6851 "%s", name);
6852 *p = '\0';
6854 break;
6856 case dw_val_class_loc:
6857 size = size_of_locs (AT_loc (a));
6859 /* Output the block length for this list of location operations. */
6860 dw2_asm_output_data (constant_size (size), size, "%s", name);
6862 output_loc_sequence (AT_loc (a));
6863 break;
6865 case dw_val_class_const:
6866 /* ??? It would be slightly more efficient to use a scheme like is
6867 used for unsigned constants below, but gdb 4.x does not sign
6868 extend. Gdb 5.x does sign extend. */
6869 dw2_asm_output_data_sleb128 (AT_int (a), "%s", name);
6870 break;
6872 case dw_val_class_unsigned_const:
6873 dw2_asm_output_data (constant_size (AT_unsigned (a)),
6874 AT_unsigned (a), "%s", name);
6875 break;
6877 case dw_val_class_long_long:
6879 unsigned HOST_WIDE_INT first, second;
6881 dw2_asm_output_data (1,
6882 2 * HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6883 "%s", name);
6885 if (WORDS_BIG_ENDIAN)
6887 first = a->dw_attr_val.v.val_long_long.hi;
6888 second = a->dw_attr_val.v.val_long_long.low;
6890 else
6892 first = a->dw_attr_val.v.val_long_long.low;
6893 second = a->dw_attr_val.v.val_long_long.hi;
6896 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6897 first, "long long constant");
6898 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6899 second, NULL);
6901 break;
6903 case dw_val_class_vec:
6905 unsigned int elt_size = a->dw_attr_val.v.val_vec.elt_size;
6906 unsigned int len = a->dw_attr_val.v.val_vec.length;
6907 unsigned int i;
6908 unsigned char *p;
6910 dw2_asm_output_data (1, len * elt_size, "%s", name);
6911 if (elt_size > sizeof (HOST_WIDE_INT))
6913 elt_size /= 2;
6914 len *= 2;
6916 for (i = 0, p = a->dw_attr_val.v.val_vec.array;
6917 i < len;
6918 i++, p += elt_size)
6919 dw2_asm_output_data (elt_size, extract_int (p, elt_size),
6920 "fp or vector constant word %u", i);
6921 break;
6924 case dw_val_class_flag:
6925 dw2_asm_output_data (1, AT_flag (a), "%s", name);
6926 break;
6928 case dw_val_class_loc_list:
6930 char *sym = AT_loc_list (a)->ll_symbol;
6932 gcc_assert (sym);
6933 dw2_asm_output_offset (DWARF_OFFSET_SIZE, sym, "%s", name);
6935 break;
6937 case dw_val_class_die_ref:
6938 if (AT_ref_external (a))
6940 char *sym = AT_ref (a)->die_symbol;
6942 gcc_assert (sym);
6943 dw2_asm_output_offset (DWARF2_ADDR_SIZE, sym, "%s", name);
6945 else
6947 gcc_assert (AT_ref (a)->die_offset);
6948 dw2_asm_output_data (DWARF_OFFSET_SIZE, AT_ref (a)->die_offset,
6949 "%s", name);
6951 break;
6953 case dw_val_class_fde_ref:
6955 char l1[20];
6957 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_LABEL,
6958 a->dw_attr_val.v.val_fde_index * 2);
6959 dw2_asm_output_offset (DWARF_OFFSET_SIZE, l1, "%s", name);
6961 break;
6963 case dw_val_class_lbl_id:
6964 dw2_asm_output_addr (DWARF2_ADDR_SIZE, AT_lbl (a), "%s", name);
6965 break;
6967 case dw_val_class_lbl_offset:
6968 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a), "%s", name);
6969 break;
6971 case dw_val_class_str:
6972 if (AT_string_form (a) == DW_FORM_strp)
6973 dw2_asm_output_offset (DWARF_OFFSET_SIZE,
6974 a->dw_attr_val.v.val_str->label,
6975 "%s: \"%s\"", name, AT_string (a));
6976 else
6977 dw2_asm_output_nstring (AT_string (a), -1, "%s", name);
6978 break;
6980 default:
6981 gcc_unreachable ();
6985 for (c = die->die_child; c != NULL; c = c->die_sib)
6986 output_die (c);
6988 /* Add null byte to terminate sibling list. */
6989 if (die->die_child != NULL)
6990 dw2_asm_output_data (1, 0, "end of children of DIE 0x%lx",
6991 die->die_offset);
6994 /* Output the compilation unit that appears at the beginning of the
6995 .debug_info section, and precedes the DIE descriptions. */
6997 static void
6998 output_compilation_unit_header (void)
7000 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7001 dw2_asm_output_data (4, 0xffffffff,
7002 "Initial length escape value indicating 64-bit DWARF extension");
7003 dw2_asm_output_data (DWARF_OFFSET_SIZE,
7004 next_die_offset - DWARF_INITIAL_LENGTH_SIZE,
7005 "Length of Compilation Unit Info");
7006 dw2_asm_output_data (2, DWARF_VERSION, "DWARF version number");
7007 dw2_asm_output_offset (DWARF_OFFSET_SIZE, abbrev_section_label,
7008 "Offset Into Abbrev. Section");
7009 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
7012 /* Output the compilation unit DIE and its children. */
7014 static void
7015 output_comp_unit (dw_die_ref die, int output_if_empty)
7017 const char *secname;
7018 char *oldsym, *tmp;
7020 /* Unless we are outputting main CU, we may throw away empty ones. */
7021 if (!output_if_empty && die->die_child == NULL)
7022 return;
7024 /* Even if there are no children of this DIE, we must output the information
7025 about the compilation unit. Otherwise, on an empty translation unit, we
7026 will generate a present, but empty, .debug_info section. IRIX 6.5 `nm'
7027 will then complain when examining the file. First mark all the DIEs in
7028 this CU so we know which get local refs. */
7029 mark_dies (die);
7031 build_abbrev_table (die);
7033 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
7034 next_die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE;
7035 calc_die_sizes (die);
7037 oldsym = die->die_symbol;
7038 if (oldsym)
7040 tmp = alloca (strlen (oldsym) + 24);
7042 sprintf (tmp, ".gnu.linkonce.wi.%s", oldsym);
7043 secname = tmp;
7044 die->die_symbol = NULL;
7046 else
7047 secname = (const char *) DEBUG_INFO_SECTION;
7049 /* Output debugging information. */
7050 named_section_flags (secname, SECTION_DEBUG);
7051 output_compilation_unit_header ();
7052 output_die (die);
7054 /* Leave the marks on the main CU, so we can check them in
7055 output_pubnames. */
7056 if (oldsym)
7058 unmark_dies (die);
7059 die->die_symbol = oldsym;
7063 /* The DWARF2 pubname for a nested thingy looks like "A::f". The
7064 output of lang_hooks.decl_printable_name for C++ looks like
7065 "A::f(int)". Let's drop the argument list, and maybe the scope. */
7067 static const char *
7068 dwarf2_name (tree decl, int scope)
7070 return lang_hooks.decl_printable_name (decl, scope ? 1 : 0);
7073 /* Add a new entry to .debug_pubnames if appropriate. */
7075 static void
7076 add_pubname (tree decl, dw_die_ref die)
7078 pubname_ref p;
7080 if (! TREE_PUBLIC (decl))
7081 return;
7083 if (pubname_table_in_use == pubname_table_allocated)
7085 pubname_table_allocated += PUBNAME_TABLE_INCREMENT;
7086 pubname_table
7087 = ggc_realloc (pubname_table,
7088 (pubname_table_allocated * sizeof (pubname_entry)));
7089 memset (pubname_table + pubname_table_in_use, 0,
7090 PUBNAME_TABLE_INCREMENT * sizeof (pubname_entry));
7093 p = &pubname_table[pubname_table_in_use++];
7094 p->die = die;
7095 p->name = xstrdup (dwarf2_name (decl, 1));
7098 /* Output the public names table used to speed up access to externally
7099 visible names. For now, only generate entries for externally
7100 visible procedures. */
7102 static void
7103 output_pubnames (void)
7105 unsigned i;
7106 unsigned long pubnames_length = size_of_pubnames ();
7108 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7109 dw2_asm_output_data (4, 0xffffffff,
7110 "Initial length escape value indicating 64-bit DWARF extension");
7111 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
7112 "Length of Public Names Info");
7113 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7114 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7115 "Offset of Compilation Unit Info");
7116 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset,
7117 "Compilation Unit Length");
7119 for (i = 0; i < pubname_table_in_use; i++)
7121 pubname_ref pub = &pubname_table[i];
7123 /* We shouldn't see pubnames for DIEs outside of the main CU. */
7124 gcc_assert (pub->die->die_mark);
7126 dw2_asm_output_data (DWARF_OFFSET_SIZE, pub->die->die_offset,
7127 "DIE offset");
7129 dw2_asm_output_nstring (pub->name, -1, "external name");
7132 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0, NULL);
7135 /* Add a new entry to .debug_aranges if appropriate. */
7137 static void
7138 add_arange (tree decl, dw_die_ref die)
7140 if (! DECL_SECTION_NAME (decl))
7141 return;
7143 if (arange_table_in_use == arange_table_allocated)
7145 arange_table_allocated += ARANGE_TABLE_INCREMENT;
7146 arange_table = ggc_realloc (arange_table,
7147 (arange_table_allocated
7148 * sizeof (dw_die_ref)));
7149 memset (arange_table + arange_table_in_use, 0,
7150 ARANGE_TABLE_INCREMENT * sizeof (dw_die_ref));
7153 arange_table[arange_table_in_use++] = die;
7156 /* Output the information that goes into the .debug_aranges table.
7157 Namely, define the beginning and ending address range of the
7158 text section generated for this compilation unit. */
7160 static void
7161 output_aranges (void)
7163 unsigned i;
7164 unsigned long aranges_length = size_of_aranges ();
7166 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7167 dw2_asm_output_data (4, 0xffffffff,
7168 "Initial length escape value indicating 64-bit DWARF extension");
7169 dw2_asm_output_data (DWARF_OFFSET_SIZE, aranges_length,
7170 "Length of Address Ranges Info");
7171 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7172 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7173 "Offset of Compilation Unit Info");
7174 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Size of Address");
7175 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
7177 /* We need to align to twice the pointer size here. */
7178 if (DWARF_ARANGES_PAD_SIZE)
7180 /* Pad using a 2 byte words so that padding is correct for any
7181 pointer size. */
7182 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
7183 2 * DWARF2_ADDR_SIZE);
7184 for (i = 2; i < (unsigned) DWARF_ARANGES_PAD_SIZE; i += 2)
7185 dw2_asm_output_data (2, 0, NULL);
7188 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_section_label, "Address");
7189 dw2_asm_output_delta (DWARF2_ADDR_SIZE, text_end_label,
7190 text_section_label, "Length");
7192 for (i = 0; i < arange_table_in_use; i++)
7194 dw_die_ref die = arange_table[i];
7196 /* We shouldn't see aranges for DIEs outside of the main CU. */
7197 gcc_assert (die->die_mark);
7199 if (die->die_tag == DW_TAG_subprogram)
7201 dw2_asm_output_addr (DWARF2_ADDR_SIZE, get_AT_low_pc (die),
7202 "Address");
7203 dw2_asm_output_delta (DWARF2_ADDR_SIZE, get_AT_hi_pc (die),
7204 get_AT_low_pc (die), "Length");
7206 else
7208 /* A static variable; extract the symbol from DW_AT_location.
7209 Note that this code isn't currently hit, as we only emit
7210 aranges for functions (jason 9/23/99). */
7211 dw_attr_ref a = get_AT (die, DW_AT_location);
7212 dw_loc_descr_ref loc;
7214 gcc_assert (a && AT_class (a) == dw_val_class_loc);
7216 loc = AT_loc (a);
7217 gcc_assert (loc->dw_loc_opc == DW_OP_addr);
7219 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE,
7220 loc->dw_loc_oprnd1.v.val_addr, "Address");
7221 dw2_asm_output_data (DWARF2_ADDR_SIZE,
7222 get_AT_unsigned (die, DW_AT_byte_size),
7223 "Length");
7227 /* Output the terminator words. */
7228 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7229 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7232 /* Add a new entry to .debug_ranges. Return the offset at which it
7233 was placed. */
7235 static unsigned int
7236 add_ranges (tree block)
7238 unsigned int in_use = ranges_table_in_use;
7240 if (in_use == ranges_table_allocated)
7242 ranges_table_allocated += RANGES_TABLE_INCREMENT;
7243 ranges_table
7244 = ggc_realloc (ranges_table, (ranges_table_allocated
7245 * sizeof (struct dw_ranges_struct)));
7246 memset (ranges_table + ranges_table_in_use, 0,
7247 RANGES_TABLE_INCREMENT * sizeof (struct dw_ranges_struct));
7250 ranges_table[in_use].block_num = (block ? BLOCK_NUMBER (block) : 0);
7251 ranges_table_in_use = in_use + 1;
7253 return in_use * 2 * DWARF2_ADDR_SIZE;
7256 static void
7257 output_ranges (void)
7259 unsigned i;
7260 static const char *const start_fmt = "Offset 0x%x";
7261 const char *fmt = start_fmt;
7263 for (i = 0; i < ranges_table_in_use; i++)
7265 int block_num = ranges_table[i].block_num;
7267 if (block_num)
7269 char blabel[MAX_ARTIFICIAL_LABEL_BYTES];
7270 char elabel[MAX_ARTIFICIAL_LABEL_BYTES];
7272 ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num);
7273 ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num);
7275 /* If all code is in the text section, then the compilation
7276 unit base address defaults to DW_AT_low_pc, which is the
7277 base of the text section. */
7278 if (separate_line_info_table_in_use == 0)
7280 dw2_asm_output_delta (DWARF2_ADDR_SIZE, blabel,
7281 text_section_label,
7282 fmt, i * 2 * DWARF2_ADDR_SIZE);
7283 dw2_asm_output_delta (DWARF2_ADDR_SIZE, elabel,
7284 text_section_label, NULL);
7287 /* Otherwise, we add a DW_AT_entry_pc attribute to force the
7288 compilation unit base address to zero, which allows us to
7289 use absolute addresses, and not worry about whether the
7290 target supports cross-section arithmetic. */
7291 else
7293 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
7294 fmt, i * 2 * DWARF2_ADDR_SIZE);
7295 dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel, NULL);
7298 fmt = NULL;
7300 else
7302 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7303 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7304 fmt = start_fmt;
7309 /* Data structure containing information about input files. */
7310 struct file_info
7312 char *path; /* Complete file name. */
7313 char *fname; /* File name part. */
7314 int length; /* Length of entire string. */
7315 int file_idx; /* Index in input file table. */
7316 int dir_idx; /* Index in directory table. */
7319 /* Data structure containing information about directories with source
7320 files. */
7321 struct dir_info
7323 char *path; /* Path including directory name. */
7324 int length; /* Path length. */
7325 int prefix; /* Index of directory entry which is a prefix. */
7326 int count; /* Number of files in this directory. */
7327 int dir_idx; /* Index of directory used as base. */
7328 int used; /* Used in the end? */
7331 /* Callback function for file_info comparison. We sort by looking at
7332 the directories in the path. */
7334 static int
7335 file_info_cmp (const void *p1, const void *p2)
7337 const struct file_info *s1 = p1;
7338 const struct file_info *s2 = p2;
7339 unsigned char *cp1;
7340 unsigned char *cp2;
7342 /* Take care of file names without directories. We need to make sure that
7343 we return consistent values to qsort since some will get confused if
7344 we return the same value when identical operands are passed in opposite
7345 orders. So if neither has a directory, return 0 and otherwise return
7346 1 or -1 depending on which one has the directory. */
7347 if ((s1->path == s1->fname || s2->path == s2->fname))
7348 return (s2->path == s2->fname) - (s1->path == s1->fname);
7350 cp1 = (unsigned char *) s1->path;
7351 cp2 = (unsigned char *) s2->path;
7353 while (1)
7355 ++cp1;
7356 ++cp2;
7357 /* Reached the end of the first path? If so, handle like above. */
7358 if ((cp1 == (unsigned char *) s1->fname)
7359 || (cp2 == (unsigned char *) s2->fname))
7360 return ((cp2 == (unsigned char *) s2->fname)
7361 - (cp1 == (unsigned char *) s1->fname));
7363 /* Character of current path component the same? */
7364 else if (*cp1 != *cp2)
7365 return *cp1 - *cp2;
7369 /* Output the directory table and the file name table. We try to minimize
7370 the total amount of memory needed. A heuristic is used to avoid large
7371 slowdowns with many input files. */
7373 static void
7374 output_file_names (void)
7376 struct file_info *files;
7377 struct dir_info *dirs;
7378 int *saved;
7379 int *savehere;
7380 int *backmap;
7381 size_t ndirs;
7382 int idx_offset;
7383 size_t i;
7384 int idx;
7386 /* Handle the case where file_table is empty. */
7387 if (VARRAY_ACTIVE_SIZE (file_table) <= 1)
7389 dw2_asm_output_data (1, 0, "End directory table");
7390 dw2_asm_output_data (1, 0, "End file name table");
7391 return;
7394 /* Allocate the various arrays we need. */
7395 files = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (struct file_info));
7396 dirs = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (struct dir_info));
7398 /* Sort the file names. */
7399 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7401 char *f;
7403 /* Skip all leading "./". */
7404 f = VARRAY_CHAR_PTR (file_table, i);
7405 while (f[0] == '.' && f[1] == '/')
7406 f += 2;
7408 /* Create a new array entry. */
7409 files[i].path = f;
7410 files[i].length = strlen (f);
7411 files[i].file_idx = i;
7413 /* Search for the file name part. */
7414 f = strrchr (f, '/');
7415 files[i].fname = f == NULL ? files[i].path : f + 1;
7418 qsort (files + 1, VARRAY_ACTIVE_SIZE (file_table) - 1,
7419 sizeof (files[0]), file_info_cmp);
7421 /* Find all the different directories used. */
7422 dirs[0].path = files[1].path;
7423 dirs[0].length = files[1].fname - files[1].path;
7424 dirs[0].prefix = -1;
7425 dirs[0].count = 1;
7426 dirs[0].dir_idx = 0;
7427 dirs[0].used = 0;
7428 files[1].dir_idx = 0;
7429 ndirs = 1;
7431 for (i = 2; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7432 if (files[i].fname - files[i].path == dirs[ndirs - 1].length
7433 && memcmp (dirs[ndirs - 1].path, files[i].path,
7434 dirs[ndirs - 1].length) == 0)
7436 /* Same directory as last entry. */
7437 files[i].dir_idx = ndirs - 1;
7438 ++dirs[ndirs - 1].count;
7440 else
7442 size_t j;
7444 /* This is a new directory. */
7445 dirs[ndirs].path = files[i].path;
7446 dirs[ndirs].length = files[i].fname - files[i].path;
7447 dirs[ndirs].count = 1;
7448 dirs[ndirs].dir_idx = ndirs;
7449 dirs[ndirs].used = 0;
7450 files[i].dir_idx = ndirs;
7452 /* Search for a prefix. */
7453 dirs[ndirs].prefix = -1;
7454 for (j = 0; j < ndirs; j++)
7455 if (dirs[j].length < dirs[ndirs].length
7456 && dirs[j].length > 1
7457 && (dirs[ndirs].prefix == -1
7458 || dirs[j].length > dirs[dirs[ndirs].prefix].length)
7459 && memcmp (dirs[j].path, dirs[ndirs].path, dirs[j].length) == 0)
7460 dirs[ndirs].prefix = j;
7462 ++ndirs;
7465 /* Now to the actual work. We have to find a subset of the directories which
7466 allow expressing the file name using references to the directory table
7467 with the least amount of characters. We do not do an exhaustive search
7468 where we would have to check out every combination of every single
7469 possible prefix. Instead we use a heuristic which provides nearly optimal
7470 results in most cases and never is much off. */
7471 saved = alloca (ndirs * sizeof (int));
7472 savehere = alloca (ndirs * sizeof (int));
7474 memset (saved, '\0', ndirs * sizeof (saved[0]));
7475 for (i = 0; i < ndirs; i++)
7477 size_t j;
7478 int total;
7480 /* We can always save some space for the current directory. But this
7481 does not mean it will be enough to justify adding the directory. */
7482 savehere[i] = dirs[i].length;
7483 total = (savehere[i] - saved[i]) * dirs[i].count;
7485 for (j = i + 1; j < ndirs; j++)
7487 savehere[j] = 0;
7488 if (saved[j] < dirs[i].length)
7490 /* Determine whether the dirs[i] path is a prefix of the
7491 dirs[j] path. */
7492 int k;
7494 k = dirs[j].prefix;
7495 while (k != -1 && k != (int) i)
7496 k = dirs[k].prefix;
7498 if (k == (int) i)
7500 /* Yes it is. We can possibly safe some memory but
7501 writing the filenames in dirs[j] relative to
7502 dirs[i]. */
7503 savehere[j] = dirs[i].length;
7504 total += (savehere[j] - saved[j]) * dirs[j].count;
7509 /* Check whether we can safe enough to justify adding the dirs[i]
7510 directory. */
7511 if (total > dirs[i].length + 1)
7513 /* It's worthwhile adding. */
7514 for (j = i; j < ndirs; j++)
7515 if (savehere[j] > 0)
7517 /* Remember how much we saved for this directory so far. */
7518 saved[j] = savehere[j];
7520 /* Remember the prefix directory. */
7521 dirs[j].dir_idx = i;
7526 /* We have to emit them in the order they appear in the file_table array
7527 since the index is used in the debug info generation. To do this
7528 efficiently we generate a back-mapping of the indices first. */
7529 backmap = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (int));
7530 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7532 backmap[files[i].file_idx] = i;
7534 /* Mark this directory as used. */
7535 dirs[dirs[files[i].dir_idx].dir_idx].used = 1;
7538 /* That was it. We are ready to emit the information. First emit the
7539 directory name table. We have to make sure the first actually emitted
7540 directory name has index one; zero is reserved for the current working
7541 directory. Make sure we do not confuse these indices with the one for the
7542 constructed table (even though most of the time they are identical). */
7543 idx = 1;
7544 idx_offset = dirs[0].length > 0 ? 1 : 0;
7545 for (i = 1 - idx_offset; i < ndirs; i++)
7546 if (dirs[i].used != 0)
7548 dirs[i].used = idx++;
7549 dw2_asm_output_nstring (dirs[i].path, dirs[i].length - 1,
7550 "Directory Entry: 0x%x", dirs[i].used);
7553 dw2_asm_output_data (1, 0, "End directory table");
7555 /* Correct the index for the current working directory entry if it
7556 exists. */
7557 if (idx_offset == 0)
7558 dirs[0].used = 0;
7560 /* Now write all the file names. */
7561 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7563 int file_idx = backmap[i];
7564 int dir_idx = dirs[files[file_idx].dir_idx].dir_idx;
7566 dw2_asm_output_nstring (files[file_idx].path + dirs[dir_idx].length, -1,
7567 "File Entry: 0x%lx", (unsigned long) i);
7569 /* Include directory index. */
7570 dw2_asm_output_data_uleb128 (dirs[dir_idx].used, NULL);
7572 /* Modification time. */
7573 dw2_asm_output_data_uleb128 (0, NULL);
7575 /* File length in bytes. */
7576 dw2_asm_output_data_uleb128 (0, NULL);
7579 dw2_asm_output_data (1, 0, "End file name table");
7583 /* Output the source line number correspondence information. This
7584 information goes into the .debug_line section. */
7586 static void
7587 output_line_info (void)
7589 char l1[20], l2[20], p1[20], p2[20];
7590 char line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7591 char prev_line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7592 unsigned opc;
7593 unsigned n_op_args;
7594 unsigned long lt_index;
7595 unsigned long current_line;
7596 long line_offset;
7597 long line_delta;
7598 unsigned long current_file;
7599 unsigned long function;
7601 ASM_GENERATE_INTERNAL_LABEL (l1, LINE_NUMBER_BEGIN_LABEL, 0);
7602 ASM_GENERATE_INTERNAL_LABEL (l2, LINE_NUMBER_END_LABEL, 0);
7603 ASM_GENERATE_INTERNAL_LABEL (p1, LN_PROLOG_AS_LABEL, 0);
7604 ASM_GENERATE_INTERNAL_LABEL (p2, LN_PROLOG_END_LABEL, 0);
7606 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7607 dw2_asm_output_data (4, 0xffffffff,
7608 "Initial length escape value indicating 64-bit DWARF extension");
7609 dw2_asm_output_delta (DWARF_OFFSET_SIZE, l2, l1,
7610 "Length of Source Line Info");
7611 ASM_OUTPUT_LABEL (asm_out_file, l1);
7613 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7614 dw2_asm_output_delta (DWARF_OFFSET_SIZE, p2, p1, "Prolog Length");
7615 ASM_OUTPUT_LABEL (asm_out_file, p1);
7617 /* Define the architecture-dependent minimum instruction length (in
7618 bytes). In this implementation of DWARF, this field is used for
7619 information purposes only. Since GCC generates assembly language,
7620 we have no a priori knowledge of how many instruction bytes are
7621 generated for each source line, and therefore can use only the
7622 DW_LNE_set_address and DW_LNS_fixed_advance_pc line information
7623 commands. Accordingly, we fix this as `1', which is "correct
7624 enough" for all architectures, and don't let the target override. */
7625 dw2_asm_output_data (1, 1,
7626 "Minimum Instruction Length");
7628 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START,
7629 "Default is_stmt_start flag");
7630 dw2_asm_output_data (1, DWARF_LINE_BASE,
7631 "Line Base Value (Special Opcodes)");
7632 dw2_asm_output_data (1, DWARF_LINE_RANGE,
7633 "Line Range Value (Special Opcodes)");
7634 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE,
7635 "Special Opcode Base");
7637 for (opc = 1; opc < DWARF_LINE_OPCODE_BASE; opc++)
7639 switch (opc)
7641 case DW_LNS_advance_pc:
7642 case DW_LNS_advance_line:
7643 case DW_LNS_set_file:
7644 case DW_LNS_set_column:
7645 case DW_LNS_fixed_advance_pc:
7646 n_op_args = 1;
7647 break;
7648 default:
7649 n_op_args = 0;
7650 break;
7653 dw2_asm_output_data (1, n_op_args, "opcode: 0x%x has %d args",
7654 opc, n_op_args);
7657 /* Write out the information about the files we use. */
7658 output_file_names ();
7659 ASM_OUTPUT_LABEL (asm_out_file, p2);
7661 /* We used to set the address register to the first location in the text
7662 section here, but that didn't accomplish anything since we already
7663 have a line note for the opening brace of the first function. */
7665 /* Generate the line number to PC correspondence table, encoded as
7666 a series of state machine operations. */
7667 current_file = 1;
7668 current_line = 1;
7669 strcpy (prev_line_label, text_section_label);
7670 for (lt_index = 1; lt_index < line_info_table_in_use; ++lt_index)
7672 dw_line_info_ref line_info = &line_info_table[lt_index];
7674 #if 0
7675 /* Disable this optimization for now; GDB wants to see two line notes
7676 at the beginning of a function so it can find the end of the
7677 prologue. */
7679 /* Don't emit anything for redundant notes. Just updating the
7680 address doesn't accomplish anything, because we already assume
7681 that anything after the last address is this line. */
7682 if (line_info->dw_line_num == current_line
7683 && line_info->dw_file_num == current_file)
7684 continue;
7685 #endif
7687 /* Emit debug info for the address of the current line.
7689 Unfortunately, we have little choice here currently, and must always
7690 use the most general form. GCC does not know the address delta
7691 itself, so we can't use DW_LNS_advance_pc. Many ports do have length
7692 attributes which will give an upper bound on the address range. We
7693 could perhaps use length attributes to determine when it is safe to
7694 use DW_LNS_fixed_advance_pc. */
7696 ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, lt_index);
7697 if (0)
7699 /* This can handle deltas up to 0xffff. This takes 3 bytes. */
7700 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7701 "DW_LNS_fixed_advance_pc");
7702 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7704 else
7706 /* This can handle any delta. This takes
7707 4+DWARF2_ADDR_SIZE bytes. */
7708 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7709 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7710 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7711 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7714 strcpy (prev_line_label, line_label);
7716 /* Emit debug info for the source file of the current line, if
7717 different from the previous line. */
7718 if (line_info->dw_file_num != current_file)
7720 current_file = line_info->dw_file_num;
7721 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7722 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7723 VARRAY_CHAR_PTR (file_table,
7724 current_file));
7727 /* Emit debug info for the current line number, choosing the encoding
7728 that uses the least amount of space. */
7729 if (line_info->dw_line_num != current_line)
7731 line_offset = line_info->dw_line_num - current_line;
7732 line_delta = line_offset - DWARF_LINE_BASE;
7733 current_line = line_info->dw_line_num;
7734 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7735 /* This can handle deltas from -10 to 234, using the current
7736 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE. This
7737 takes 1 byte. */
7738 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7739 "line %lu", current_line);
7740 else
7742 /* This can handle any delta. This takes at least 4 bytes,
7743 depending on the value being encoded. */
7744 dw2_asm_output_data (1, DW_LNS_advance_line,
7745 "advance to line %lu", current_line);
7746 dw2_asm_output_data_sleb128 (line_offset, NULL);
7747 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7750 else
7751 /* We still need to start a new row, so output a copy insn. */
7752 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7755 /* Emit debug info for the address of the end of the function. */
7756 if (0)
7758 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7759 "DW_LNS_fixed_advance_pc");
7760 dw2_asm_output_delta (2, text_end_label, prev_line_label, NULL);
7762 else
7764 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7765 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7766 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7767 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_end_label, NULL);
7770 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7771 dw2_asm_output_data_uleb128 (1, NULL);
7772 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7774 function = 0;
7775 current_file = 1;
7776 current_line = 1;
7777 for (lt_index = 0; lt_index < separate_line_info_table_in_use;)
7779 dw_separate_line_info_ref line_info
7780 = &separate_line_info_table[lt_index];
7782 #if 0
7783 /* Don't emit anything for redundant notes. */
7784 if (line_info->dw_line_num == current_line
7785 && line_info->dw_file_num == current_file
7786 && line_info->function == function)
7787 goto cont;
7788 #endif
7790 /* Emit debug info for the address of the current line. If this is
7791 a new function, or the first line of a function, then we need
7792 to handle it differently. */
7793 ASM_GENERATE_INTERNAL_LABEL (line_label, SEPARATE_LINE_CODE_LABEL,
7794 lt_index);
7795 if (function != line_info->function)
7797 function = line_info->function;
7799 /* Set the address register to the first line in the function. */
7800 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7801 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7802 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7803 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7805 else
7807 /* ??? See the DW_LNS_advance_pc comment above. */
7808 if (0)
7810 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7811 "DW_LNS_fixed_advance_pc");
7812 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7814 else
7816 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7817 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7818 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7819 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7823 strcpy (prev_line_label, line_label);
7825 /* Emit debug info for the source file of the current line, if
7826 different from the previous line. */
7827 if (line_info->dw_file_num != current_file)
7829 current_file = line_info->dw_file_num;
7830 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7831 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7832 VARRAY_CHAR_PTR (file_table,
7833 current_file));
7836 /* Emit debug info for the current line number, choosing the encoding
7837 that uses the least amount of space. */
7838 if (line_info->dw_line_num != current_line)
7840 line_offset = line_info->dw_line_num - current_line;
7841 line_delta = line_offset - DWARF_LINE_BASE;
7842 current_line = line_info->dw_line_num;
7843 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7844 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7845 "line %lu", current_line);
7846 else
7848 dw2_asm_output_data (1, DW_LNS_advance_line,
7849 "advance to line %lu", current_line);
7850 dw2_asm_output_data_sleb128 (line_offset, NULL);
7851 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7854 else
7855 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7857 #if 0
7858 cont:
7859 #endif
7861 lt_index++;
7863 /* If we're done with a function, end its sequence. */
7864 if (lt_index == separate_line_info_table_in_use
7865 || separate_line_info_table[lt_index].function != function)
7867 current_file = 1;
7868 current_line = 1;
7870 /* Emit debug info for the address of the end of the function. */
7871 ASM_GENERATE_INTERNAL_LABEL (line_label, FUNC_END_LABEL, function);
7872 if (0)
7874 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7875 "DW_LNS_fixed_advance_pc");
7876 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7878 else
7880 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7881 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7882 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7883 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7886 /* Output the marker for the end of this sequence. */
7887 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7888 dw2_asm_output_data_uleb128 (1, NULL);
7889 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7893 /* Output the marker for the end of the line number info. */
7894 ASM_OUTPUT_LABEL (asm_out_file, l2);
7897 /* Given a pointer to a tree node for some base type, return a pointer to
7898 a DIE that describes the given type.
7900 This routine must only be called for GCC type nodes that correspond to
7901 Dwarf base (fundamental) types. */
7903 static dw_die_ref
7904 base_type_die (tree type)
7906 dw_die_ref base_type_result;
7907 const char *type_name;
7908 enum dwarf_type encoding;
7909 tree name = TYPE_NAME (type);
7911 if (TREE_CODE (type) == ERROR_MARK || TREE_CODE (type) == VOID_TYPE)
7912 return 0;
7914 if (name)
7916 if (TREE_CODE (name) == TYPE_DECL)
7917 name = DECL_NAME (name);
7919 type_name = IDENTIFIER_POINTER (name);
7921 else
7922 type_name = "__unknown__";
7924 switch (TREE_CODE (type))
7926 case INTEGER_TYPE:
7927 /* Carefully distinguish the C character types, without messing
7928 up if the language is not C. Note that we check only for the names
7929 that contain spaces; other names might occur by coincidence in other
7930 languages. */
7931 if (! (TYPE_PRECISION (type) == CHAR_TYPE_SIZE
7932 && (type == char_type_node
7933 || ! strcmp (type_name, "signed char")
7934 || ! strcmp (type_name, "unsigned char"))))
7936 if (TYPE_UNSIGNED (type))
7937 encoding = DW_ATE_unsigned;
7938 else
7939 encoding = DW_ATE_signed;
7940 break;
7942 /* else fall through. */
7944 case CHAR_TYPE:
7945 /* GNU Pascal/Ada CHAR type. Not used in C. */
7946 if (TYPE_UNSIGNED (type))
7947 encoding = DW_ATE_unsigned_char;
7948 else
7949 encoding = DW_ATE_signed_char;
7950 break;
7952 case REAL_TYPE:
7953 encoding = DW_ATE_float;
7954 break;
7956 /* Dwarf2 doesn't know anything about complex ints, so use
7957 a user defined type for it. */
7958 case COMPLEX_TYPE:
7959 if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
7960 encoding = DW_ATE_complex_float;
7961 else
7962 encoding = DW_ATE_lo_user;
7963 break;
7965 case BOOLEAN_TYPE:
7966 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
7967 encoding = DW_ATE_boolean;
7968 break;
7970 default:
7971 /* No other TREE_CODEs are Dwarf fundamental types. */
7972 gcc_unreachable ();
7975 base_type_result = new_die (DW_TAG_base_type, comp_unit_die, type);
7976 if (demangle_name_func)
7977 type_name = (*demangle_name_func) (type_name);
7979 add_AT_string (base_type_result, DW_AT_name, type_name);
7980 add_AT_unsigned (base_type_result, DW_AT_byte_size,
7981 int_size_in_bytes (type));
7982 add_AT_unsigned (base_type_result, DW_AT_encoding, encoding);
7984 return base_type_result;
7987 /* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
7988 the Dwarf "root" type for the given input type. The Dwarf "root" type of
7989 a given type is generally the same as the given type, except that if the
7990 given type is a pointer or reference type, then the root type of the given
7991 type is the root type of the "basis" type for the pointer or reference
7992 type. (This definition of the "root" type is recursive.) Also, the root
7993 type of a `const' qualified type or a `volatile' qualified type is the
7994 root type of the given type without the qualifiers. */
7996 static tree
7997 root_type (tree type)
7999 if (TREE_CODE (type) == ERROR_MARK)
8000 return error_mark_node;
8002 switch (TREE_CODE (type))
8004 case ERROR_MARK:
8005 return error_mark_node;
8007 case POINTER_TYPE:
8008 case REFERENCE_TYPE:
8009 return type_main_variant (root_type (TREE_TYPE (type)));
8011 default:
8012 return type_main_variant (type);
8016 /* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
8017 given input type is a Dwarf "fundamental" type. Otherwise return null. */
8019 static inline int
8020 is_base_type (tree type)
8022 switch (TREE_CODE (type))
8024 case ERROR_MARK:
8025 case VOID_TYPE:
8026 case INTEGER_TYPE:
8027 case REAL_TYPE:
8028 case COMPLEX_TYPE:
8029 case BOOLEAN_TYPE:
8030 case CHAR_TYPE:
8031 return 1;
8033 case ARRAY_TYPE:
8034 case RECORD_TYPE:
8035 case UNION_TYPE:
8036 case QUAL_UNION_TYPE:
8037 case ENUMERAL_TYPE:
8038 case FUNCTION_TYPE:
8039 case METHOD_TYPE:
8040 case POINTER_TYPE:
8041 case REFERENCE_TYPE:
8042 case FILE_TYPE:
8043 case OFFSET_TYPE:
8044 case LANG_TYPE:
8045 case VECTOR_TYPE:
8046 return 0;
8048 default:
8049 gcc_unreachable ();
8052 return 0;
8055 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
8056 node, return the size in bits for the type if it is a constant, or else
8057 return the alignment for the type if the type's size is not constant, or
8058 else return BITS_PER_WORD if the type actually turns out to be an
8059 ERROR_MARK node. */
8061 static inline unsigned HOST_WIDE_INT
8062 simple_type_size_in_bits (tree type)
8064 if (TREE_CODE (type) == ERROR_MARK)
8065 return BITS_PER_WORD;
8066 else if (TYPE_SIZE (type) == NULL_TREE)
8067 return 0;
8068 else if (host_integerp (TYPE_SIZE (type), 1))
8069 return tree_low_cst (TYPE_SIZE (type), 1);
8070 else
8071 return TYPE_ALIGN (type);
8074 /* Return true if the debug information for the given type should be
8075 emitted as a subrange type. */
8077 static inline bool
8078 is_subrange_type (tree type)
8080 tree subtype = TREE_TYPE (type);
8082 /* Subrange types are identified by the fact that they are integer
8083 types, and that they have a subtype which is either an integer type
8084 or an enumeral type. */
8086 if (TREE_CODE (type) != INTEGER_TYPE
8087 || subtype == NULL_TREE)
8088 return false;
8090 if (TREE_CODE (subtype) != INTEGER_TYPE
8091 && TREE_CODE (subtype) != ENUMERAL_TYPE)
8092 return false;
8094 if (TREE_CODE (type) == TREE_CODE (subtype)
8095 && int_size_in_bytes (type) == int_size_in_bytes (subtype)
8096 && TYPE_MIN_VALUE (type) != NULL
8097 && TYPE_MIN_VALUE (subtype) != NULL
8098 && tree_int_cst_equal (TYPE_MIN_VALUE (type), TYPE_MIN_VALUE (subtype))
8099 && TYPE_MAX_VALUE (type) != NULL
8100 && TYPE_MAX_VALUE (subtype) != NULL
8101 && tree_int_cst_equal (TYPE_MAX_VALUE (type), TYPE_MAX_VALUE (subtype)))
8103 /* The type and its subtype have the same representation. If in
8104 addition the two types also have the same name, then the given
8105 type is not a subrange type, but rather a plain base type. */
8106 /* FIXME: brobecker/2004-03-22:
8107 Sizetype INTEGER_CSTs nodes are canonicalized. It should
8108 therefore be sufficient to check the TYPE_SIZE node pointers
8109 rather than checking the actual size. Unfortunately, we have
8110 found some cases, such as in the Ada "integer" type, where
8111 this is not the case. Until this problem is solved, we need to
8112 keep checking the actual size. */
8113 tree type_name = TYPE_NAME (type);
8114 tree subtype_name = TYPE_NAME (subtype);
8116 if (type_name != NULL && TREE_CODE (type_name) == TYPE_DECL)
8117 type_name = DECL_NAME (type_name);
8119 if (subtype_name != NULL && TREE_CODE (subtype_name) == TYPE_DECL)
8120 subtype_name = DECL_NAME (subtype_name);
8122 if (type_name == subtype_name)
8123 return false;
8126 return true;
8129 /* Given a pointer to a tree node for a subrange type, return a pointer
8130 to a DIE that describes the given type. */
8132 static dw_die_ref
8133 subrange_type_die (tree type, dw_die_ref context_die)
8135 dw_die_ref subtype_die;
8136 dw_die_ref subrange_die;
8137 tree name = TYPE_NAME (type);
8138 const HOST_WIDE_INT size_in_bytes = int_size_in_bytes (type);
8139 tree subtype = TREE_TYPE (type);
8141 if (context_die == NULL)
8142 context_die = comp_unit_die;
8144 if (TREE_CODE (subtype) == ENUMERAL_TYPE)
8145 subtype_die = gen_enumeration_type_die (subtype, context_die);
8146 else
8147 subtype_die = base_type_die (subtype);
8149 subrange_die = new_die (DW_TAG_subrange_type, context_die, type);
8151 if (name != NULL)
8153 if (TREE_CODE (name) == TYPE_DECL)
8154 name = DECL_NAME (name);
8155 add_name_attribute (subrange_die, IDENTIFIER_POINTER (name));
8158 if (int_size_in_bytes (subtype) != size_in_bytes)
8160 /* The size of the subrange type and its base type do not match,
8161 so we need to generate a size attribute for the subrange type. */
8162 add_AT_unsigned (subrange_die, DW_AT_byte_size, size_in_bytes);
8165 if (TYPE_MIN_VALUE (type) != NULL)
8166 add_bound_info (subrange_die, DW_AT_lower_bound,
8167 TYPE_MIN_VALUE (type));
8168 if (TYPE_MAX_VALUE (type) != NULL)
8169 add_bound_info (subrange_die, DW_AT_upper_bound,
8170 TYPE_MAX_VALUE (type));
8171 add_AT_die_ref (subrange_die, DW_AT_type, subtype_die);
8173 return subrange_die;
8176 /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
8177 entry that chains various modifiers in front of the given type. */
8179 static dw_die_ref
8180 modified_type_die (tree type, int is_const_type, int is_volatile_type,
8181 dw_die_ref context_die)
8183 enum tree_code code = TREE_CODE (type);
8184 dw_die_ref mod_type_die = NULL;
8185 dw_die_ref sub_die = NULL;
8186 tree item_type = NULL;
8188 if (code != ERROR_MARK)
8190 tree qualified_type;
8192 /* See if we already have the appropriately qualified variant of
8193 this type. */
8194 qualified_type
8195 = get_qualified_type (type,
8196 ((is_const_type ? TYPE_QUAL_CONST : 0)
8197 | (is_volatile_type
8198 ? TYPE_QUAL_VOLATILE : 0)));
8200 /* If we do, then we can just use its DIE, if it exists. */
8201 if (qualified_type)
8203 mod_type_die = lookup_type_die (qualified_type);
8204 if (mod_type_die)
8205 return mod_type_die;
8208 /* Handle C typedef types. */
8209 if (qualified_type && TYPE_NAME (qualified_type)
8210 && TREE_CODE (TYPE_NAME (qualified_type)) == TYPE_DECL
8211 && DECL_ORIGINAL_TYPE (TYPE_NAME (qualified_type)))
8213 tree type_name = TYPE_NAME (qualified_type);
8214 tree dtype = TREE_TYPE (type_name);
8216 if (qualified_type == dtype)
8218 /* For a named type, use the typedef. */
8219 gen_type_die (qualified_type, context_die);
8220 mod_type_die = lookup_type_die (qualified_type);
8222 else if (is_const_type < TYPE_READONLY (dtype)
8223 || is_volatile_type < TYPE_VOLATILE (dtype))
8224 /* cv-unqualified version of named type. Just use the unnamed
8225 type to which it refers. */
8226 mod_type_die
8227 = modified_type_die (DECL_ORIGINAL_TYPE (type_name),
8228 is_const_type, is_volatile_type,
8229 context_die);
8231 /* Else cv-qualified version of named type; fall through. */
8234 if (mod_type_die)
8235 /* OK. */
8237 else if (is_const_type)
8239 mod_type_die = new_die (DW_TAG_const_type, comp_unit_die, type);
8240 sub_die = modified_type_die (type, 0, is_volatile_type, context_die);
8242 else if (is_volatile_type)
8244 mod_type_die = new_die (DW_TAG_volatile_type, comp_unit_die, type);
8245 sub_die = modified_type_die (type, 0, 0, context_die);
8247 else if (code == POINTER_TYPE)
8249 mod_type_die = new_die (DW_TAG_pointer_type, comp_unit_die, type);
8250 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8251 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8252 #if 0
8253 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
8254 #endif
8255 item_type = TREE_TYPE (type);
8257 else if (code == REFERENCE_TYPE)
8259 mod_type_die = new_die (DW_TAG_reference_type, comp_unit_die, type);
8260 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8261 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8262 #if 0
8263 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
8264 #endif
8265 item_type = TREE_TYPE (type);
8267 else if (is_subrange_type (type))
8268 mod_type_die = subrange_type_die (type, context_die);
8269 else if (is_base_type (type))
8270 mod_type_die = base_type_die (type);
8271 else
8273 gen_type_die (type, context_die);
8275 /* We have to get the type_main_variant here (and pass that to the
8276 `lookup_type_die' routine) because the ..._TYPE node we have
8277 might simply be a *copy* of some original type node (where the
8278 copy was created to help us keep track of typedef names) and
8279 that copy might have a different TYPE_UID from the original
8280 ..._TYPE node. */
8281 if (TREE_CODE (type) != VECTOR_TYPE)
8282 mod_type_die = lookup_type_die (type_main_variant (type));
8283 else
8284 /* Vectors have the debugging information in the type,
8285 not the main variant. */
8286 mod_type_die = lookup_type_die (type);
8287 gcc_assert (mod_type_die);
8290 /* We want to equate the qualified type to the die below. */
8291 type = qualified_type;
8294 if (type)
8295 equate_type_number_to_die (type, mod_type_die);
8296 if (item_type)
8297 /* We must do this after the equate_type_number_to_die call, in case
8298 this is a recursive type. This ensures that the modified_type_die
8299 recursion will terminate even if the type is recursive. Recursive
8300 types are possible in Ada. */
8301 sub_die = modified_type_die (item_type,
8302 TYPE_READONLY (item_type),
8303 TYPE_VOLATILE (item_type),
8304 context_die);
8306 if (sub_die != NULL)
8307 add_AT_die_ref (mod_type_die, DW_AT_type, sub_die);
8309 return mod_type_die;
8312 /* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
8313 an enumerated type. */
8315 static inline int
8316 type_is_enum (tree type)
8318 return TREE_CODE (type) == ENUMERAL_TYPE;
8321 /* Return the DBX register number described by a given RTL node. */
8323 static unsigned int
8324 dbx_reg_number (rtx rtl)
8326 unsigned regno = REGNO (rtl);
8328 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
8330 return DBX_REGISTER_NUMBER (regno);
8333 /* Return a location descriptor that designates a machine register or
8334 zero if there is none. */
8336 static dw_loc_descr_ref
8337 reg_loc_descriptor (rtx rtl)
8339 unsigned reg;
8340 rtx regs;
8342 if (REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
8343 return 0;
8345 reg = dbx_reg_number (rtl);
8346 regs = targetm.dwarf_register_span (rtl);
8348 if (hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)] > 1
8349 || regs)
8350 return multiple_reg_loc_descriptor (rtl, regs);
8351 else
8352 return one_reg_loc_descriptor (reg);
8355 /* Return a location descriptor that designates a machine register for
8356 a given hard register number. */
8358 static dw_loc_descr_ref
8359 one_reg_loc_descriptor (unsigned int regno)
8361 if (regno <= 31)
8362 return new_loc_descr (DW_OP_reg0 + regno, 0, 0);
8363 else
8364 return new_loc_descr (DW_OP_regx, regno, 0);
8367 /* Given an RTL of a register, return a location descriptor that
8368 designates a value that spans more than one register. */
8370 static dw_loc_descr_ref
8371 multiple_reg_loc_descriptor (rtx rtl, rtx regs)
8373 int nregs, size, i;
8374 unsigned reg;
8375 dw_loc_descr_ref loc_result = NULL;
8377 reg = dbx_reg_number (rtl);
8378 nregs = hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)];
8380 /* Simple, contiguous registers. */
8381 if (regs == NULL_RTX)
8383 size = GET_MODE_SIZE (GET_MODE (rtl)) / nregs;
8385 loc_result = NULL;
8386 while (nregs--)
8388 dw_loc_descr_ref t;
8390 t = one_reg_loc_descriptor (reg);
8391 add_loc_descr (&loc_result, t);
8392 add_loc_descr (&loc_result, new_loc_descr (DW_OP_piece, size, 0));
8393 ++reg;
8395 return loc_result;
8398 /* Now onto stupid register sets in non contiguous locations. */
8400 gcc_assert (GET_CODE (regs) == PARALLEL);
8402 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8403 loc_result = NULL;
8405 for (i = 0; i < XVECLEN (regs, 0); ++i)
8407 dw_loc_descr_ref t;
8409 t = one_reg_loc_descriptor (REGNO (XVECEXP (regs, 0, i)));
8410 add_loc_descr (&loc_result, t);
8411 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8412 add_loc_descr (&loc_result, new_loc_descr (DW_OP_piece, size, 0));
8414 return loc_result;
8417 /* Return a location descriptor that designates a constant. */
8419 static dw_loc_descr_ref
8420 int_loc_descriptor (HOST_WIDE_INT i)
8422 enum dwarf_location_atom op;
8424 /* Pick the smallest representation of a constant, rather than just
8425 defaulting to the LEB encoding. */
8426 if (i >= 0)
8428 if (i <= 31)
8429 op = DW_OP_lit0 + i;
8430 else if (i <= 0xff)
8431 op = DW_OP_const1u;
8432 else if (i <= 0xffff)
8433 op = DW_OP_const2u;
8434 else if (HOST_BITS_PER_WIDE_INT == 32
8435 || i <= 0xffffffff)
8436 op = DW_OP_const4u;
8437 else
8438 op = DW_OP_constu;
8440 else
8442 if (i >= -0x80)
8443 op = DW_OP_const1s;
8444 else if (i >= -0x8000)
8445 op = DW_OP_const2s;
8446 else if (HOST_BITS_PER_WIDE_INT == 32
8447 || i >= -0x80000000)
8448 op = DW_OP_const4s;
8449 else
8450 op = DW_OP_consts;
8453 return new_loc_descr (op, i, 0);
8456 /* Return a location descriptor that designates a base+offset location. */
8458 static dw_loc_descr_ref
8459 based_loc_descr (unsigned int reg, HOST_WIDE_INT offset, bool can_use_fbreg)
8461 dw_loc_descr_ref loc_result;
8462 /* For the "frame base", we use the frame pointer or stack pointer
8463 registers, since the RTL for local variables is relative to one of
8464 them. */
8465 unsigned fp_reg = DBX_REGISTER_NUMBER (frame_pointer_needed
8466 ? HARD_FRAME_POINTER_REGNUM
8467 : STACK_POINTER_REGNUM);
8469 if (reg == fp_reg && can_use_fbreg)
8470 loc_result = new_loc_descr (DW_OP_fbreg, offset, 0);
8471 else if (reg <= 31)
8472 loc_result = new_loc_descr (DW_OP_breg0 + reg, offset, 0);
8473 else
8474 loc_result = new_loc_descr (DW_OP_bregx, reg, offset);
8476 return loc_result;
8479 /* Return true if this RTL expression describes a base+offset calculation. */
8481 static inline int
8482 is_based_loc (rtx rtl)
8484 return (GET_CODE (rtl) == PLUS
8485 && ((REG_P (XEXP (rtl, 0))
8486 && REGNO (XEXP (rtl, 0)) < FIRST_PSEUDO_REGISTER
8487 && GET_CODE (XEXP (rtl, 1)) == CONST_INT)));
8490 /* The following routine converts the RTL for a variable or parameter
8491 (resident in memory) into an equivalent Dwarf representation of a
8492 mechanism for getting the address of that same variable onto the top of a
8493 hypothetical "address evaluation" stack.
8495 When creating memory location descriptors, we are effectively transforming
8496 the RTL for a memory-resident object into its Dwarf postfix expression
8497 equivalent. This routine recursively descends an RTL tree, turning
8498 it into Dwarf postfix code as it goes.
8500 MODE is the mode of the memory reference, needed to handle some
8501 autoincrement addressing modes.
8503 CAN_USE_FBREG is a flag whether we can use DW_AT_frame_base in the location
8504 list for RTL. We can't use it when we are emitting location list for
8505 virtual variable frame_base_decl (i.e. a location list for DW_AT_frame_base)
8506 which describes how frame base changes when !frame_pointer_needed.
8508 Return 0 if we can't represent the location. */
8510 static dw_loc_descr_ref
8511 mem_loc_descriptor (rtx rtl, enum machine_mode mode, bool can_use_fbreg)
8513 dw_loc_descr_ref mem_loc_result = NULL;
8514 enum dwarf_location_atom op;
8516 /* Note that for a dynamically sized array, the location we will generate a
8517 description of here will be the lowest numbered location which is
8518 actually within the array. That's *not* necessarily the same as the
8519 zeroth element of the array. */
8521 rtl = targetm.delegitimize_address (rtl);
8523 switch (GET_CODE (rtl))
8525 case POST_INC:
8526 case POST_DEC:
8527 case POST_MODIFY:
8528 /* POST_INC and POST_DEC can be handled just like a SUBREG. So we
8529 just fall into the SUBREG code. */
8531 /* ... fall through ... */
8533 case SUBREG:
8534 /* The case of a subreg may arise when we have a local (register)
8535 variable or a formal (register) parameter which doesn't quite fill
8536 up an entire register. For now, just assume that it is
8537 legitimate to make the Dwarf info refer to the whole register which
8538 contains the given subreg. */
8539 rtl = SUBREG_REG (rtl);
8541 /* ... fall through ... */
8543 case REG:
8544 /* Whenever a register number forms a part of the description of the
8545 method for calculating the (dynamic) address of a memory resident
8546 object, DWARF rules require the register number be referred to as
8547 a "base register". This distinction is not based in any way upon
8548 what category of register the hardware believes the given register
8549 belongs to. This is strictly DWARF terminology we're dealing with
8550 here. Note that in cases where the location of a memory-resident
8551 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
8552 OP_CONST (0)) the actual DWARF location descriptor that we generate
8553 may just be OP_BASEREG (basereg). This may look deceptively like
8554 the object in question was allocated to a register (rather than in
8555 memory) so DWARF consumers need to be aware of the subtle
8556 distinction between OP_REG and OP_BASEREG. */
8557 if (REGNO (rtl) < FIRST_PSEUDO_REGISTER)
8558 mem_loc_result = based_loc_descr (dbx_reg_number (rtl), 0,
8559 can_use_fbreg);
8560 break;
8562 case MEM:
8563 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl),
8564 can_use_fbreg);
8565 if (mem_loc_result != 0)
8566 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_deref, 0, 0));
8567 break;
8569 case LO_SUM:
8570 rtl = XEXP (rtl, 1);
8572 /* ... fall through ... */
8574 case LABEL_REF:
8575 /* Some ports can transform a symbol ref into a label ref, because
8576 the symbol ref is too far away and has to be dumped into a constant
8577 pool. */
8578 case CONST:
8579 case SYMBOL_REF:
8580 /* Alternatively, the symbol in the constant pool might be referenced
8581 by a different symbol. */
8582 if (GET_CODE (rtl) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (rtl))
8584 bool marked;
8585 rtx tmp = get_pool_constant_mark (rtl, &marked);
8587 if (GET_CODE (tmp) == SYMBOL_REF)
8589 rtl = tmp;
8590 if (CONSTANT_POOL_ADDRESS_P (tmp))
8591 get_pool_constant_mark (tmp, &marked);
8592 else
8593 marked = true;
8596 /* If all references to this pool constant were optimized away,
8597 it was not output and thus we can't represent it.
8598 FIXME: might try to use DW_OP_const_value here, though
8599 DW_OP_piece complicates it. */
8600 if (!marked)
8601 return 0;
8604 mem_loc_result = new_loc_descr (DW_OP_addr, 0, 0);
8605 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_addr;
8606 mem_loc_result->dw_loc_oprnd1.v.val_addr = rtl;
8607 VARRAY_PUSH_RTX (used_rtx_varray, rtl);
8608 break;
8610 case PRE_MODIFY:
8611 /* Extract the PLUS expression nested inside and fall into
8612 PLUS code below. */
8613 rtl = XEXP (rtl, 1);
8614 goto plus;
8616 case PRE_INC:
8617 case PRE_DEC:
8618 /* Turn these into a PLUS expression and fall into the PLUS code
8619 below. */
8620 rtl = gen_rtx_PLUS (word_mode, XEXP (rtl, 0),
8621 GEN_INT (GET_CODE (rtl) == PRE_INC
8622 ? GET_MODE_UNIT_SIZE (mode)
8623 : -GET_MODE_UNIT_SIZE (mode)));
8625 /* ... fall through ... */
8627 case PLUS:
8628 plus:
8629 if (is_based_loc (rtl))
8630 mem_loc_result = based_loc_descr (dbx_reg_number (XEXP (rtl, 0)),
8631 INTVAL (XEXP (rtl, 1)),
8632 can_use_fbreg);
8633 else
8635 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), mode,
8636 can_use_fbreg);
8637 if (mem_loc_result == 0)
8638 break;
8640 if (GET_CODE (XEXP (rtl, 1)) == CONST_INT
8641 && INTVAL (XEXP (rtl, 1)) >= 0)
8642 add_loc_descr (&mem_loc_result,
8643 new_loc_descr (DW_OP_plus_uconst,
8644 INTVAL (XEXP (rtl, 1)), 0));
8645 else
8647 add_loc_descr (&mem_loc_result,
8648 mem_loc_descriptor (XEXP (rtl, 1), mode,
8649 can_use_fbreg));
8650 add_loc_descr (&mem_loc_result,
8651 new_loc_descr (DW_OP_plus, 0, 0));
8654 break;
8656 /* If a pseudo-reg is optimized away, it is possible for it to
8657 be replaced with a MEM containing a multiply or shift. */
8658 case MULT:
8659 op = DW_OP_mul;
8660 goto do_binop;
8662 case ASHIFT:
8663 op = DW_OP_shl;
8664 goto do_binop;
8666 case ASHIFTRT:
8667 op = DW_OP_shra;
8668 goto do_binop;
8670 case LSHIFTRT:
8671 op = DW_OP_shr;
8672 goto do_binop;
8674 do_binop:
8676 dw_loc_descr_ref op0 = mem_loc_descriptor (XEXP (rtl, 0), mode,
8677 can_use_fbreg);
8678 dw_loc_descr_ref op1 = mem_loc_descriptor (XEXP (rtl, 1), mode,
8679 can_use_fbreg);
8681 if (op0 == 0 || op1 == 0)
8682 break;
8684 mem_loc_result = op0;
8685 add_loc_descr (&mem_loc_result, op1);
8686 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
8687 break;
8690 case CONST_INT:
8691 mem_loc_result = int_loc_descriptor (INTVAL (rtl));
8692 break;
8694 default:
8695 gcc_unreachable ();
8698 return mem_loc_result;
8701 /* Return a descriptor that describes the concatenation of two locations.
8702 This is typically a complex variable. */
8704 static dw_loc_descr_ref
8705 concat_loc_descriptor (rtx x0, rtx x1)
8707 dw_loc_descr_ref cc_loc_result = NULL;
8708 dw_loc_descr_ref x0_ref = loc_descriptor (x0, true);
8709 dw_loc_descr_ref x1_ref = loc_descriptor (x1, true);
8711 if (x0_ref == 0 || x1_ref == 0)
8712 return 0;
8714 cc_loc_result = x0_ref;
8715 add_loc_descr (&cc_loc_result,
8716 new_loc_descr (DW_OP_piece,
8717 GET_MODE_SIZE (GET_MODE (x0)), 0));
8719 add_loc_descr (&cc_loc_result, x1_ref);
8720 add_loc_descr (&cc_loc_result,
8721 new_loc_descr (DW_OP_piece,
8722 GET_MODE_SIZE (GET_MODE (x1)), 0));
8724 return cc_loc_result;
8727 /* Output a proper Dwarf location descriptor for a variable or parameter
8728 which is either allocated in a register or in a memory location. For a
8729 register, we just generate an OP_REG and the register number. For a
8730 memory location we provide a Dwarf postfix expression describing how to
8731 generate the (dynamic) address of the object onto the address stack.
8733 If we don't know how to describe it, return 0. */
8735 static dw_loc_descr_ref
8736 loc_descriptor (rtx rtl, bool can_use_fbreg)
8738 dw_loc_descr_ref loc_result = NULL;
8740 switch (GET_CODE (rtl))
8742 case SUBREG:
8743 /* The case of a subreg may arise when we have a local (register)
8744 variable or a formal (register) parameter which doesn't quite fill
8745 up an entire register. For now, just assume that it is
8746 legitimate to make the Dwarf info refer to the whole register which
8747 contains the given subreg. */
8748 rtl = SUBREG_REG (rtl);
8750 /* ... fall through ... */
8752 case REG:
8753 loc_result = reg_loc_descriptor (rtl);
8754 break;
8756 case MEM:
8757 loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl),
8758 can_use_fbreg);
8759 break;
8761 case CONCAT:
8762 loc_result = concat_loc_descriptor (XEXP (rtl, 0), XEXP (rtl, 1));
8763 break;
8765 case VAR_LOCATION:
8766 /* Single part. */
8767 if (GET_CODE (XEXP (rtl, 1)) != PARALLEL)
8769 loc_result = loc_descriptor (XEXP (XEXP (rtl, 1), 0), can_use_fbreg);
8770 break;
8773 rtl = XEXP (rtl, 1);
8774 /* FALLTHRU */
8776 case PARALLEL:
8778 rtvec par_elems = XVEC (rtl, 0);
8779 int num_elem = GET_NUM_ELEM (par_elems);
8780 enum machine_mode mode;
8781 int i;
8783 /* Create the first one, so we have something to add to. */
8784 loc_result = loc_descriptor (XEXP (RTVEC_ELT (par_elems, 0), 0),
8785 can_use_fbreg);
8786 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, 0), 0));
8787 add_loc_descr (&loc_result,
8788 new_loc_descr (DW_OP_piece, GET_MODE_SIZE (mode), 0));
8789 for (i = 1; i < num_elem; i++)
8791 dw_loc_descr_ref temp;
8793 temp = loc_descriptor (XEXP (RTVEC_ELT (par_elems, i), 0),
8794 can_use_fbreg);
8795 add_loc_descr (&loc_result, temp);
8796 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, i), 0));
8797 add_loc_descr (&loc_result,
8798 new_loc_descr (DW_OP_piece,
8799 GET_MODE_SIZE (mode), 0));
8802 break;
8804 default:
8805 gcc_unreachable ();
8808 return loc_result;
8811 /* Similar, but generate the descriptor from trees instead of rtl. This comes
8812 up particularly with variable length arrays. WANT_ADDRESS is 2 if this is
8813 a top-level invocation of loc_descriptor_from_tree; is 1 if this is not a
8814 top-level invocation, and we require the address of LOC; is 0 if we require
8815 the value of LOC. */
8817 static dw_loc_descr_ref
8818 loc_descriptor_from_tree_1 (tree loc, int want_address)
8820 dw_loc_descr_ref ret, ret1;
8821 int have_address = 0;
8822 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (loc));
8823 enum dwarf_location_atom op;
8825 /* ??? Most of the time we do not take proper care for sign/zero
8826 extending the values properly. Hopefully this won't be a real
8827 problem... */
8829 switch (TREE_CODE (loc))
8831 case ERROR_MARK:
8832 return 0;
8834 case PLACEHOLDER_EXPR:
8835 /* This case involves extracting fields from an object to determine the
8836 position of other fields. We don't try to encode this here. The
8837 only user of this is Ada, which encodes the needed information using
8838 the names of types. */
8839 return 0;
8841 case CALL_EXPR:
8842 return 0;
8844 case PREINCREMENT_EXPR:
8845 case PREDECREMENT_EXPR:
8846 case POSTINCREMENT_EXPR:
8847 case POSTDECREMENT_EXPR:
8848 /* There are no opcodes for these operations. */
8849 return 0;
8851 case ADDR_EXPR:
8852 /* If we already want an address, there's nothing we can do. */
8853 if (want_address)
8854 return 0;
8856 /* Otherwise, process the argument and look for the address. */
8857 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 1);
8859 case VAR_DECL:
8860 if (DECL_THREAD_LOCAL (loc))
8862 rtx rtl;
8864 #ifndef ASM_OUTPUT_DWARF_DTPREL
8865 /* If this is not defined, we have no way to emit the data. */
8866 return 0;
8867 #endif
8869 /* The way DW_OP_GNU_push_tls_address is specified, we can only
8870 look up addresses of objects in the current module. */
8871 if (DECL_EXTERNAL (loc))
8872 return 0;
8874 rtl = rtl_for_decl_location (loc);
8875 if (rtl == NULL_RTX)
8876 return 0;
8878 if (!MEM_P (rtl))
8879 return 0;
8880 rtl = XEXP (rtl, 0);
8881 if (! CONSTANT_P (rtl))
8882 return 0;
8884 ret = new_loc_descr (INTERNAL_DW_OP_tls_addr, 0, 0);
8885 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
8886 ret->dw_loc_oprnd1.v.val_addr = rtl;
8888 ret1 = new_loc_descr (DW_OP_GNU_push_tls_address, 0, 0);
8889 add_loc_descr (&ret, ret1);
8891 have_address = 1;
8892 break;
8894 /* FALLTHRU */
8896 case PARM_DECL:
8897 if (DECL_VALUE_EXPR (loc))
8898 return loc_descriptor_from_tree_1 (DECL_VALUE_EXPR (loc), want_address);
8899 /* FALLTHRU */
8901 case RESULT_DECL:
8903 rtx rtl = rtl_for_decl_location (loc);
8905 if (rtl == NULL_RTX)
8906 return 0;
8907 else if (GET_CODE (rtl) == CONST_INT)
8909 HOST_WIDE_INT val = INTVAL (rtl);
8910 if (TYPE_UNSIGNED (TREE_TYPE (loc)))
8911 val &= GET_MODE_MASK (DECL_MODE (loc));
8912 ret = int_loc_descriptor (val);
8914 else if (GET_CODE (rtl) == CONST_STRING)
8915 return 0;
8916 else if (CONSTANT_P (rtl))
8918 ret = new_loc_descr (DW_OP_addr, 0, 0);
8919 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
8920 ret->dw_loc_oprnd1.v.val_addr = rtl;
8922 else
8924 enum machine_mode mode;
8926 /* Certain constructs can only be represented at top-level. */
8927 if (want_address == 2)
8928 return loc_descriptor (rtl, true);
8930 mode = GET_MODE (rtl);
8931 if (MEM_P (rtl))
8933 rtl = XEXP (rtl, 0);
8934 have_address = 1;
8936 ret = mem_loc_descriptor (rtl, mode, true);
8939 break;
8941 case INDIRECT_REF:
8942 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
8943 have_address = 1;
8944 break;
8946 case COMPOUND_EXPR:
8947 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), want_address);
8949 case NOP_EXPR:
8950 case CONVERT_EXPR:
8951 case NON_LVALUE_EXPR:
8952 case VIEW_CONVERT_EXPR:
8953 case SAVE_EXPR:
8954 case MODIFY_EXPR:
8955 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), want_address);
8957 case COMPONENT_REF:
8958 case BIT_FIELD_REF:
8959 case ARRAY_REF:
8960 case ARRAY_RANGE_REF:
8962 tree obj, offset;
8963 HOST_WIDE_INT bitsize, bitpos, bytepos;
8964 enum machine_mode mode;
8965 int volatilep;
8967 obj = get_inner_reference (loc, &bitsize, &bitpos, &offset, &mode,
8968 &unsignedp, &volatilep, false);
8970 if (obj == loc)
8971 return 0;
8973 ret = loc_descriptor_from_tree_1 (obj, 1);
8974 if (ret == 0
8975 || bitpos % BITS_PER_UNIT != 0 || bitsize % BITS_PER_UNIT != 0)
8976 return 0;
8978 if (offset != NULL_TREE)
8980 /* Variable offset. */
8981 add_loc_descr (&ret, loc_descriptor_from_tree_1 (offset, 0));
8982 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
8985 bytepos = bitpos / BITS_PER_UNIT;
8986 if (bytepos > 0)
8987 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst, bytepos, 0));
8988 else if (bytepos < 0)
8990 add_loc_descr (&ret, int_loc_descriptor (bytepos));
8991 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
8994 have_address = 1;
8995 break;
8998 case INTEGER_CST:
8999 if (host_integerp (loc, 0))
9000 ret = int_loc_descriptor (tree_low_cst (loc, 0));
9001 else
9002 return 0;
9003 break;
9005 case CONSTRUCTOR:
9007 /* Get an RTL for this, if something has been emitted. */
9008 rtx rtl = lookup_constant_def (loc);
9009 enum machine_mode mode;
9011 if (!rtl || !MEM_P (rtl))
9012 return 0;
9013 mode = GET_MODE (rtl);
9014 rtl = XEXP (rtl, 0);
9015 ret = mem_loc_descriptor (rtl, mode, true);
9016 have_address = 1;
9017 break;
9020 case TRUTH_AND_EXPR:
9021 case TRUTH_ANDIF_EXPR:
9022 case BIT_AND_EXPR:
9023 op = DW_OP_and;
9024 goto do_binop;
9026 case TRUTH_XOR_EXPR:
9027 case BIT_XOR_EXPR:
9028 op = DW_OP_xor;
9029 goto do_binop;
9031 case TRUTH_OR_EXPR:
9032 case TRUTH_ORIF_EXPR:
9033 case BIT_IOR_EXPR:
9034 op = DW_OP_or;
9035 goto do_binop;
9037 case FLOOR_DIV_EXPR:
9038 case CEIL_DIV_EXPR:
9039 case ROUND_DIV_EXPR:
9040 case TRUNC_DIV_EXPR:
9041 op = DW_OP_div;
9042 goto do_binop;
9044 case MINUS_EXPR:
9045 op = DW_OP_minus;
9046 goto do_binop;
9048 case FLOOR_MOD_EXPR:
9049 case CEIL_MOD_EXPR:
9050 case ROUND_MOD_EXPR:
9051 case TRUNC_MOD_EXPR:
9052 op = DW_OP_mod;
9053 goto do_binop;
9055 case MULT_EXPR:
9056 op = DW_OP_mul;
9057 goto do_binop;
9059 case LSHIFT_EXPR:
9060 op = DW_OP_shl;
9061 goto do_binop;
9063 case RSHIFT_EXPR:
9064 op = (unsignedp ? DW_OP_shr : DW_OP_shra);
9065 goto do_binop;
9067 case PLUS_EXPR:
9068 if (TREE_CODE (TREE_OPERAND (loc, 1)) == INTEGER_CST
9069 && host_integerp (TREE_OPERAND (loc, 1), 0))
9071 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9072 if (ret == 0)
9073 return 0;
9075 add_loc_descr (&ret,
9076 new_loc_descr (DW_OP_plus_uconst,
9077 tree_low_cst (TREE_OPERAND (loc, 1),
9079 0));
9080 break;
9083 op = DW_OP_plus;
9084 goto do_binop;
9086 case LE_EXPR:
9087 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9088 return 0;
9090 op = DW_OP_le;
9091 goto do_binop;
9093 case GE_EXPR:
9094 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9095 return 0;
9097 op = DW_OP_ge;
9098 goto do_binop;
9100 case LT_EXPR:
9101 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9102 return 0;
9104 op = DW_OP_lt;
9105 goto do_binop;
9107 case GT_EXPR:
9108 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9109 return 0;
9111 op = DW_OP_gt;
9112 goto do_binop;
9114 case EQ_EXPR:
9115 op = DW_OP_eq;
9116 goto do_binop;
9118 case NE_EXPR:
9119 op = DW_OP_ne;
9120 goto do_binop;
9122 do_binop:
9123 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9124 ret1 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), 0);
9125 if (ret == 0 || ret1 == 0)
9126 return 0;
9128 add_loc_descr (&ret, ret1);
9129 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
9130 break;
9132 case TRUTH_NOT_EXPR:
9133 case BIT_NOT_EXPR:
9134 op = DW_OP_not;
9135 goto do_unop;
9137 case ABS_EXPR:
9138 op = DW_OP_abs;
9139 goto do_unop;
9141 case NEGATE_EXPR:
9142 op = DW_OP_neg;
9143 goto do_unop;
9145 do_unop:
9146 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9147 if (ret == 0)
9148 return 0;
9150 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
9151 break;
9153 case MIN_EXPR:
9154 case MAX_EXPR:
9156 const enum tree_code code =
9157 TREE_CODE (loc) == MIN_EXPR ? GT_EXPR : LT_EXPR;
9159 loc = build3 (COND_EXPR, TREE_TYPE (loc),
9160 build2 (code, integer_type_node,
9161 TREE_OPERAND (loc, 0), TREE_OPERAND (loc, 1)),
9162 TREE_OPERAND (loc, 1), TREE_OPERAND (loc, 0));
9165 /* ... fall through ... */
9167 case COND_EXPR:
9169 dw_loc_descr_ref lhs
9170 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), 0);
9171 dw_loc_descr_ref rhs
9172 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 2), 0);
9173 dw_loc_descr_ref bra_node, jump_node, tmp;
9175 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9176 if (ret == 0 || lhs == 0 || rhs == 0)
9177 return 0;
9179 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
9180 add_loc_descr (&ret, bra_node);
9182 add_loc_descr (&ret, rhs);
9183 jump_node = new_loc_descr (DW_OP_skip, 0, 0);
9184 add_loc_descr (&ret, jump_node);
9186 add_loc_descr (&ret, lhs);
9187 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9188 bra_node->dw_loc_oprnd1.v.val_loc = lhs;
9190 /* ??? Need a node to point the skip at. Use a nop. */
9191 tmp = new_loc_descr (DW_OP_nop, 0, 0);
9192 add_loc_descr (&ret, tmp);
9193 jump_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9194 jump_node->dw_loc_oprnd1.v.val_loc = tmp;
9196 break;
9198 case FIX_TRUNC_EXPR:
9199 case FIX_CEIL_EXPR:
9200 case FIX_FLOOR_EXPR:
9201 case FIX_ROUND_EXPR:
9202 return 0;
9204 default:
9205 /* Leave front-end specific codes as simply unknown. This comes
9206 up, for instance, with the C STMT_EXPR. */
9207 if ((unsigned int) TREE_CODE (loc)
9208 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
9209 return 0;
9211 #ifdef ENABLE_CHECKING
9212 /* Otherwise this is a generic code; we should just lists all of
9213 these explicitly. Aborting means we forgot one. */
9214 gcc_unreachable ();
9215 #else
9216 /* In a release build, we want to degrade gracefully: better to
9217 generate incomplete debugging information than to crash. */
9218 return NULL;
9219 #endif
9222 /* Show if we can't fill the request for an address. */
9223 if (want_address && !have_address)
9224 return 0;
9226 /* If we've got an address and don't want one, dereference. */
9227 if (!want_address && have_address)
9229 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
9231 if (size > DWARF2_ADDR_SIZE || size == -1)
9232 return 0;
9233 else if (size == DWARF2_ADDR_SIZE)
9234 op = DW_OP_deref;
9235 else
9236 op = DW_OP_deref_size;
9238 add_loc_descr (&ret, new_loc_descr (op, size, 0));
9241 return ret;
9244 static inline dw_loc_descr_ref
9245 loc_descriptor_from_tree (tree loc)
9247 return loc_descriptor_from_tree_1 (loc, 2);
9250 /* Given a value, round it up to the lowest multiple of `boundary'
9251 which is not less than the value itself. */
9253 static inline HOST_WIDE_INT
9254 ceiling (HOST_WIDE_INT value, unsigned int boundary)
9256 return (((value + boundary - 1) / boundary) * boundary);
9259 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
9260 pointer to the declared type for the relevant field variable, or return
9261 `integer_type_node' if the given node turns out to be an
9262 ERROR_MARK node. */
9264 static inline tree
9265 field_type (tree decl)
9267 tree type;
9269 if (TREE_CODE (decl) == ERROR_MARK)
9270 return integer_type_node;
9272 type = DECL_BIT_FIELD_TYPE (decl);
9273 if (type == NULL_TREE)
9274 type = TREE_TYPE (decl);
9276 return type;
9279 /* Given a pointer to a tree node, return the alignment in bits for
9280 it, or else return BITS_PER_WORD if the node actually turns out to
9281 be an ERROR_MARK node. */
9283 static inline unsigned
9284 simple_type_align_in_bits (tree type)
9286 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
9289 static inline unsigned
9290 simple_decl_align_in_bits (tree decl)
9292 return (TREE_CODE (decl) != ERROR_MARK) ? DECL_ALIGN (decl) : BITS_PER_WORD;
9295 /* Given a pointer to a FIELD_DECL, compute and return the byte offset of the
9296 lowest addressed byte of the "containing object" for the given FIELD_DECL,
9297 or return 0 if we are unable to determine what that offset is, either
9298 because the argument turns out to be a pointer to an ERROR_MARK node, or
9299 because the offset is actually variable. (We can't handle the latter case
9300 just yet). */
9302 static HOST_WIDE_INT
9303 field_byte_offset (tree decl)
9305 unsigned int type_align_in_bits;
9306 unsigned int decl_align_in_bits;
9307 unsigned HOST_WIDE_INT type_size_in_bits;
9308 HOST_WIDE_INT object_offset_in_bits;
9309 tree type;
9310 tree field_size_tree;
9311 HOST_WIDE_INT bitpos_int;
9312 HOST_WIDE_INT deepest_bitpos;
9313 unsigned HOST_WIDE_INT field_size_in_bits;
9315 if (TREE_CODE (decl) == ERROR_MARK)
9316 return 0;
9318 gcc_assert (TREE_CODE (decl) == FIELD_DECL);
9320 type = field_type (decl);
9321 field_size_tree = DECL_SIZE (decl);
9323 /* The size could be unspecified if there was an error, or for
9324 a flexible array member. */
9325 if (! field_size_tree)
9326 field_size_tree = bitsize_zero_node;
9328 /* We cannot yet cope with fields whose positions are variable, so
9329 for now, when we see such things, we simply return 0. Someday, we may
9330 be able to handle such cases, but it will be damn difficult. */
9331 if (! host_integerp (bit_position (decl), 0))
9332 return 0;
9334 bitpos_int = int_bit_position (decl);
9336 /* If we don't know the size of the field, pretend it's a full word. */
9337 if (host_integerp (field_size_tree, 1))
9338 field_size_in_bits = tree_low_cst (field_size_tree, 1);
9339 else
9340 field_size_in_bits = BITS_PER_WORD;
9342 type_size_in_bits = simple_type_size_in_bits (type);
9343 type_align_in_bits = simple_type_align_in_bits (type);
9344 decl_align_in_bits = simple_decl_align_in_bits (decl);
9346 /* The GCC front-end doesn't make any attempt to keep track of the starting
9347 bit offset (relative to the start of the containing structure type) of the
9348 hypothetical "containing object" for a bit-field. Thus, when computing
9349 the byte offset value for the start of the "containing object" of a
9350 bit-field, we must deduce this information on our own. This can be rather
9351 tricky to do in some cases. For example, handling the following structure
9352 type definition when compiling for an i386/i486 target (which only aligns
9353 long long's to 32-bit boundaries) can be very tricky:
9355 struct S { int field1; long long field2:31; };
9357 Fortunately, there is a simple rule-of-thumb which can be used in such
9358 cases. When compiling for an i386/i486, GCC will allocate 8 bytes for the
9359 structure shown above. It decides to do this based upon one simple rule
9360 for bit-field allocation. GCC allocates each "containing object" for each
9361 bit-field at the first (i.e. lowest addressed) legitimate alignment
9362 boundary (based upon the required minimum alignment for the declared type
9363 of the field) which it can possibly use, subject to the condition that
9364 there is still enough available space remaining in the containing object
9365 (when allocated at the selected point) to fully accommodate all of the
9366 bits of the bit-field itself.
9368 This simple rule makes it obvious why GCC allocates 8 bytes for each
9369 object of the structure type shown above. When looking for a place to
9370 allocate the "containing object" for `field2', the compiler simply tries
9371 to allocate a 64-bit "containing object" at each successive 32-bit
9372 boundary (starting at zero) until it finds a place to allocate that 64-
9373 bit field such that at least 31 contiguous (and previously unallocated)
9374 bits remain within that selected 64 bit field. (As it turns out, for the
9375 example above, the compiler finds it is OK to allocate the "containing
9376 object" 64-bit field at bit-offset zero within the structure type.)
9378 Here we attempt to work backwards from the limited set of facts we're
9379 given, and we try to deduce from those facts, where GCC must have believed
9380 that the containing object started (within the structure type). The value
9381 we deduce is then used (by the callers of this routine) to generate
9382 DW_AT_location and DW_AT_bit_offset attributes for fields (both bit-fields
9383 and, in the case of DW_AT_location, regular fields as well). */
9385 /* Figure out the bit-distance from the start of the structure to the
9386 "deepest" bit of the bit-field. */
9387 deepest_bitpos = bitpos_int + field_size_in_bits;
9389 /* This is the tricky part. Use some fancy footwork to deduce where the
9390 lowest addressed bit of the containing object must be. */
9391 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9393 /* Round up to type_align by default. This works best for bitfields. */
9394 object_offset_in_bits += type_align_in_bits - 1;
9395 object_offset_in_bits /= type_align_in_bits;
9396 object_offset_in_bits *= type_align_in_bits;
9398 if (object_offset_in_bits > bitpos_int)
9400 /* Sigh, the decl must be packed. */
9401 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9403 /* Round up to decl_align instead. */
9404 object_offset_in_bits += decl_align_in_bits - 1;
9405 object_offset_in_bits /= decl_align_in_bits;
9406 object_offset_in_bits *= decl_align_in_bits;
9409 return object_offset_in_bits / BITS_PER_UNIT;
9412 /* The following routines define various Dwarf attributes and any data
9413 associated with them. */
9415 /* Add a location description attribute value to a DIE.
9417 This emits location attributes suitable for whole variables and
9418 whole parameters. Note that the location attributes for struct fields are
9419 generated by the routine `data_member_location_attribute' below. */
9421 static inline void
9422 add_AT_location_description (dw_die_ref die, enum dwarf_attribute attr_kind,
9423 dw_loc_descr_ref descr)
9425 if (descr != 0)
9426 add_AT_loc (die, attr_kind, descr);
9429 /* Attach the specialized form of location attribute used for data members of
9430 struct and union types. In the special case of a FIELD_DECL node which
9431 represents a bit-field, the "offset" part of this special location
9432 descriptor must indicate the distance in bytes from the lowest-addressed
9433 byte of the containing struct or union type to the lowest-addressed byte of
9434 the "containing object" for the bit-field. (See the `field_byte_offset'
9435 function above).
9437 For any given bit-field, the "containing object" is a hypothetical object
9438 (of some integral or enum type) within which the given bit-field lives. The
9439 type of this hypothetical "containing object" is always the same as the
9440 declared type of the individual bit-field itself (for GCC anyway... the
9441 DWARF spec doesn't actually mandate this). Note that it is the size (in
9442 bytes) of the hypothetical "containing object" which will be given in the
9443 DW_AT_byte_size attribute for this bit-field. (See the
9444 `byte_size_attribute' function below.) It is also used when calculating the
9445 value of the DW_AT_bit_offset attribute. (See the `bit_offset_attribute'
9446 function below.) */
9448 static void
9449 add_data_member_location_attribute (dw_die_ref die, tree decl)
9451 HOST_WIDE_INT offset;
9452 dw_loc_descr_ref loc_descr = 0;
9454 if (TREE_CODE (decl) == TREE_BINFO)
9456 /* We're working on the TAG_inheritance for a base class. */
9457 if (BINFO_VIRTUAL_P (decl) && is_cxx ())
9459 /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
9460 aren't at a fixed offset from all (sub)objects of the same
9461 type. We need to extract the appropriate offset from our
9462 vtable. The following dwarf expression means
9464 BaseAddr = ObAddr + *((*ObAddr) - Offset)
9466 This is specific to the V3 ABI, of course. */
9468 dw_loc_descr_ref tmp;
9470 /* Make a copy of the object address. */
9471 tmp = new_loc_descr (DW_OP_dup, 0, 0);
9472 add_loc_descr (&loc_descr, tmp);
9474 /* Extract the vtable address. */
9475 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9476 add_loc_descr (&loc_descr, tmp);
9478 /* Calculate the address of the offset. */
9479 offset = tree_low_cst (BINFO_VPTR_FIELD (decl), 0);
9480 gcc_assert (offset < 0);
9482 tmp = int_loc_descriptor (-offset);
9483 add_loc_descr (&loc_descr, tmp);
9484 tmp = new_loc_descr (DW_OP_minus, 0, 0);
9485 add_loc_descr (&loc_descr, tmp);
9487 /* Extract the offset. */
9488 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9489 add_loc_descr (&loc_descr, tmp);
9491 /* Add it to the object address. */
9492 tmp = new_loc_descr (DW_OP_plus, 0, 0);
9493 add_loc_descr (&loc_descr, tmp);
9495 else
9496 offset = tree_low_cst (BINFO_OFFSET (decl), 0);
9498 else
9499 offset = field_byte_offset (decl);
9501 if (! loc_descr)
9503 enum dwarf_location_atom op;
9505 /* The DWARF2 standard says that we should assume that the structure
9506 address is already on the stack, so we can specify a structure field
9507 address by using DW_OP_plus_uconst. */
9509 #ifdef MIPS_DEBUGGING_INFO
9510 /* ??? The SGI dwarf reader does not handle the DW_OP_plus_uconst
9511 operator correctly. It works only if we leave the offset on the
9512 stack. */
9513 op = DW_OP_constu;
9514 #else
9515 op = DW_OP_plus_uconst;
9516 #endif
9518 loc_descr = new_loc_descr (op, offset, 0);
9521 add_AT_loc (die, DW_AT_data_member_location, loc_descr);
9524 /* Writes integer values to dw_vec_const array. */
9526 static void
9527 insert_int (HOST_WIDE_INT val, unsigned int size, unsigned char *dest)
9529 while (size != 0)
9531 *dest++ = val & 0xff;
9532 val >>= 8;
9533 --size;
9537 /* Reads integers from dw_vec_const array. Inverse of insert_int. */
9539 static HOST_WIDE_INT
9540 extract_int (const unsigned char *src, unsigned int size)
9542 HOST_WIDE_INT val = 0;
9544 src += size;
9545 while (size != 0)
9547 val <<= 8;
9548 val |= *--src & 0xff;
9549 --size;
9551 return val;
9554 /* Writes floating point values to dw_vec_const array. */
9556 static void
9557 insert_float (rtx rtl, unsigned char *array)
9559 REAL_VALUE_TYPE rv;
9560 long val[4];
9561 int i;
9563 REAL_VALUE_FROM_CONST_DOUBLE (rv, rtl);
9564 real_to_target (val, &rv, GET_MODE (rtl));
9566 /* real_to_target puts 32-bit pieces in each long. Pack them. */
9567 for (i = 0; i < GET_MODE_SIZE (GET_MODE (rtl)) / 4; i++)
9569 insert_int (val[i], 4, array);
9570 array += 4;
9574 /* Attach a DW_AT_const_value attribute for a variable or a parameter which
9575 does not have a "location" either in memory or in a register. These
9576 things can arise in GNU C when a constant is passed as an actual parameter
9577 to an inlined function. They can also arise in C++ where declared
9578 constants do not necessarily get memory "homes". */
9580 static void
9581 add_const_value_attribute (dw_die_ref die, rtx rtl)
9583 switch (GET_CODE (rtl))
9585 case CONST_INT:
9587 HOST_WIDE_INT val = INTVAL (rtl);
9589 if (val < 0)
9590 add_AT_int (die, DW_AT_const_value, val);
9591 else
9592 add_AT_unsigned (die, DW_AT_const_value, (unsigned HOST_WIDE_INT) val);
9594 break;
9596 case CONST_DOUBLE:
9597 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
9598 floating-point constant. A CONST_DOUBLE is used whenever the
9599 constant requires more than one word in order to be adequately
9600 represented. We output CONST_DOUBLEs as blocks. */
9602 enum machine_mode mode = GET_MODE (rtl);
9604 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
9606 unsigned int length = GET_MODE_SIZE (mode);
9607 unsigned char *array = ggc_alloc (length);
9609 insert_float (rtl, array);
9610 add_AT_vec (die, DW_AT_const_value, length / 4, 4, array);
9612 else
9614 /* ??? We really should be using HOST_WIDE_INT throughout. */
9615 gcc_assert (HOST_BITS_PER_LONG == HOST_BITS_PER_WIDE_INT);
9617 add_AT_long_long (die, DW_AT_const_value,
9618 CONST_DOUBLE_HIGH (rtl), CONST_DOUBLE_LOW (rtl));
9621 break;
9623 case CONST_VECTOR:
9625 enum machine_mode mode = GET_MODE (rtl);
9626 unsigned int elt_size = GET_MODE_UNIT_SIZE (mode);
9627 unsigned int length = CONST_VECTOR_NUNITS (rtl);
9628 unsigned char *array = ggc_alloc (length * elt_size);
9629 unsigned int i;
9630 unsigned char *p;
9632 switch (GET_MODE_CLASS (mode))
9634 case MODE_VECTOR_INT:
9635 for (i = 0, p = array; i < length; i++, p += elt_size)
9637 rtx elt = CONST_VECTOR_ELT (rtl, i);
9638 HOST_WIDE_INT lo, hi;
9640 switch (GET_CODE (elt))
9642 case CONST_INT:
9643 lo = INTVAL (elt);
9644 hi = -(lo < 0);
9645 break;
9647 case CONST_DOUBLE:
9648 lo = CONST_DOUBLE_LOW (elt);
9649 hi = CONST_DOUBLE_HIGH (elt);
9650 break;
9652 default:
9653 gcc_unreachable ();
9656 if (elt_size <= sizeof (HOST_WIDE_INT))
9657 insert_int (lo, elt_size, p);
9658 else
9660 unsigned char *p0 = p;
9661 unsigned char *p1 = p + sizeof (HOST_WIDE_INT);
9663 gcc_assert (elt_size == 2 * sizeof (HOST_WIDE_INT));
9664 if (WORDS_BIG_ENDIAN)
9666 p0 = p1;
9667 p1 = p;
9669 insert_int (lo, sizeof (HOST_WIDE_INT), p0);
9670 insert_int (hi, sizeof (HOST_WIDE_INT), p1);
9673 break;
9675 case MODE_VECTOR_FLOAT:
9676 for (i = 0, p = array; i < length; i++, p += elt_size)
9678 rtx elt = CONST_VECTOR_ELT (rtl, i);
9679 insert_float (elt, p);
9681 break;
9683 default:
9684 gcc_unreachable ();
9687 add_AT_vec (die, DW_AT_const_value, length, elt_size, array);
9689 break;
9691 case CONST_STRING:
9692 add_AT_string (die, DW_AT_const_value, XSTR (rtl, 0));
9693 break;
9695 case SYMBOL_REF:
9696 case LABEL_REF:
9697 case CONST:
9698 add_AT_addr (die, DW_AT_const_value, rtl);
9699 VARRAY_PUSH_RTX (used_rtx_varray, rtl);
9700 break;
9702 case PLUS:
9703 /* In cases where an inlined instance of an inline function is passed
9704 the address of an `auto' variable (which is local to the caller) we
9705 can get a situation where the DECL_RTL of the artificial local
9706 variable (for the inlining) which acts as a stand-in for the
9707 corresponding formal parameter (of the inline function) will look
9708 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
9709 exactly a compile-time constant expression, but it isn't the address
9710 of the (artificial) local variable either. Rather, it represents the
9711 *value* which the artificial local variable always has during its
9712 lifetime. We currently have no way to represent such quasi-constant
9713 values in Dwarf, so for now we just punt and generate nothing. */
9714 break;
9716 default:
9717 /* No other kinds of rtx should be possible here. */
9718 gcc_unreachable ();
9723 static rtx
9724 rtl_for_decl_location (tree decl)
9726 rtx rtl;
9728 /* Here we have to decide where we are going to say the parameter "lives"
9729 (as far as the debugger is concerned). We only have a couple of
9730 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
9732 DECL_RTL normally indicates where the parameter lives during most of the
9733 activation of the function. If optimization is enabled however, this
9734 could be either NULL or else a pseudo-reg. Both of those cases indicate
9735 that the parameter doesn't really live anywhere (as far as the code
9736 generation parts of GCC are concerned) during most of the function's
9737 activation. That will happen (for example) if the parameter is never
9738 referenced within the function.
9740 We could just generate a location descriptor here for all non-NULL
9741 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
9742 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
9743 where DECL_RTL is NULL or is a pseudo-reg.
9745 Note however that we can only get away with using DECL_INCOMING_RTL as
9746 a backup substitute for DECL_RTL in certain limited cases. In cases
9747 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
9748 we can be sure that the parameter was passed using the same type as it is
9749 declared to have within the function, and that its DECL_INCOMING_RTL
9750 points us to a place where a value of that type is passed.
9752 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
9753 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
9754 because in these cases DECL_INCOMING_RTL points us to a value of some
9755 type which is *different* from the type of the parameter itself. Thus,
9756 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
9757 such cases, the debugger would end up (for example) trying to fetch a
9758 `float' from a place which actually contains the first part of a
9759 `double'. That would lead to really incorrect and confusing
9760 output at debug-time.
9762 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
9763 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
9764 are a couple of exceptions however. On little-endian machines we can
9765 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
9766 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
9767 an integral type that is smaller than TREE_TYPE (decl). These cases arise
9768 when (on a little-endian machine) a non-prototyped function has a
9769 parameter declared to be of type `short' or `char'. In such cases,
9770 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
9771 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
9772 passed `int' value. If the debugger then uses that address to fetch
9773 a `short' or a `char' (on a little-endian machine) the result will be
9774 the correct data, so we allow for such exceptional cases below.
9776 Note that our goal here is to describe the place where the given formal
9777 parameter lives during most of the function's activation (i.e. between the
9778 end of the prologue and the start of the epilogue). We'll do that as best
9779 as we can. Note however that if the given formal parameter is modified
9780 sometime during the execution of the function, then a stack backtrace (at
9781 debug-time) will show the function as having been called with the *new*
9782 value rather than the value which was originally passed in. This happens
9783 rarely enough that it is not a major problem, but it *is* a problem, and
9784 I'd like to fix it.
9786 A future version of dwarf2out.c may generate two additional attributes for
9787 any given DW_TAG_formal_parameter DIE which will describe the "passed
9788 type" and the "passed location" for the given formal parameter in addition
9789 to the attributes we now generate to indicate the "declared type" and the
9790 "active location" for each parameter. This additional set of attributes
9791 could be used by debuggers for stack backtraces. Separately, note that
9792 sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
9793 This happens (for example) for inlined-instances of inline function formal
9794 parameters which are never referenced. This really shouldn't be
9795 happening. All PARM_DECL nodes should get valid non-NULL
9796 DECL_INCOMING_RTL values. FIXME. */
9798 /* Use DECL_RTL as the "location" unless we find something better. */
9799 rtl = DECL_RTL_IF_SET (decl);
9801 /* When generating abstract instances, ignore everything except
9802 constants, symbols living in memory, and symbols living in
9803 fixed registers. */
9804 if (! reload_completed)
9806 if (rtl
9807 && (CONSTANT_P (rtl)
9808 || (MEM_P (rtl)
9809 && CONSTANT_P (XEXP (rtl, 0)))
9810 || (REG_P (rtl)
9811 && TREE_CODE (decl) == VAR_DECL
9812 && TREE_STATIC (decl))))
9814 rtl = targetm.delegitimize_address (rtl);
9815 return rtl;
9817 rtl = NULL_RTX;
9819 else if (TREE_CODE (decl) == PARM_DECL)
9821 if (rtl == NULL_RTX || is_pseudo_reg (rtl))
9823 tree declared_type = TREE_TYPE (decl);
9824 tree passed_type = DECL_ARG_TYPE (decl);
9825 enum machine_mode dmode = TYPE_MODE (declared_type);
9826 enum machine_mode pmode = TYPE_MODE (passed_type);
9828 /* This decl represents a formal parameter which was optimized out.
9829 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
9830 all cases where (rtl == NULL_RTX) just below. */
9831 if (dmode == pmode)
9832 rtl = DECL_INCOMING_RTL (decl);
9833 else if (SCALAR_INT_MODE_P (dmode)
9834 && GET_MODE_SIZE (dmode) <= GET_MODE_SIZE (pmode)
9835 && DECL_INCOMING_RTL (decl))
9837 rtx inc = DECL_INCOMING_RTL (decl);
9838 if (REG_P (inc))
9839 rtl = inc;
9840 else if (MEM_P (inc))
9842 if (BYTES_BIG_ENDIAN)
9843 rtl = adjust_address_nv (inc, dmode,
9844 GET_MODE_SIZE (pmode)
9845 - GET_MODE_SIZE (dmode));
9846 else
9847 rtl = inc;
9852 /* If the parm was passed in registers, but lives on the stack, then
9853 make a big endian correction if the mode of the type of the
9854 parameter is not the same as the mode of the rtl. */
9855 /* ??? This is the same series of checks that are made in dbxout.c before
9856 we reach the big endian correction code there. It isn't clear if all
9857 of these checks are necessary here, but keeping them all is the safe
9858 thing to do. */
9859 else if (MEM_P (rtl)
9860 && XEXP (rtl, 0) != const0_rtx
9861 && ! CONSTANT_P (XEXP (rtl, 0))
9862 /* Not passed in memory. */
9863 && !MEM_P (DECL_INCOMING_RTL (decl))
9864 /* Not passed by invisible reference. */
9865 && (!REG_P (XEXP (rtl, 0))
9866 || REGNO (XEXP (rtl, 0)) == HARD_FRAME_POINTER_REGNUM
9867 || REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM
9868 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
9869 || REGNO (XEXP (rtl, 0)) == ARG_POINTER_REGNUM
9870 #endif
9872 /* Big endian correction check. */
9873 && BYTES_BIG_ENDIAN
9874 && TYPE_MODE (TREE_TYPE (decl)) != GET_MODE (rtl)
9875 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)))
9876 < UNITS_PER_WORD))
9878 int offset = (UNITS_PER_WORD
9879 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl))));
9881 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
9882 plus_constant (XEXP (rtl, 0), offset));
9885 else if (TREE_CODE (decl) == VAR_DECL
9886 && rtl
9887 && MEM_P (rtl)
9888 && GET_MODE (rtl) != TYPE_MODE (TREE_TYPE (decl))
9889 && BYTES_BIG_ENDIAN)
9891 int rsize = GET_MODE_SIZE (GET_MODE (rtl));
9892 int dsize = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)));
9894 /* If a variable is declared "register" yet is smaller than
9895 a register, then if we store the variable to memory, it
9896 looks like we're storing a register-sized value, when in
9897 fact we are not. We need to adjust the offset of the
9898 storage location to reflect the actual value's bytes,
9899 else gdb will not be able to display it. */
9900 if (rsize > dsize)
9901 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
9902 plus_constant (XEXP (rtl, 0), rsize-dsize));
9905 if (rtl != NULL_RTX)
9907 rtl = eliminate_regs (rtl, 0, NULL_RTX);
9908 #ifdef LEAF_REG_REMAP
9909 if (current_function_uses_only_leaf_regs)
9910 leaf_renumber_regs_insn (rtl);
9911 #endif
9914 /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
9915 and will have been substituted directly into all expressions that use it.
9916 C does not have such a concept, but C++ and other languages do. */
9917 else if (TREE_CODE (decl) == VAR_DECL && DECL_INITIAL (decl))
9919 /* If a variable is initialized with a string constant without embedded
9920 zeros, build CONST_STRING. */
9921 if (TREE_CODE (DECL_INITIAL (decl)) == STRING_CST
9922 && TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE)
9924 tree arrtype = TREE_TYPE (decl);
9925 tree enttype = TREE_TYPE (arrtype);
9926 tree domain = TYPE_DOMAIN (arrtype);
9927 tree init = DECL_INITIAL (decl);
9928 enum machine_mode mode = TYPE_MODE (enttype);
9930 if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) == 1
9931 && domain
9932 && integer_zerop (TYPE_MIN_VALUE (domain))
9933 && compare_tree_int (TYPE_MAX_VALUE (domain),
9934 TREE_STRING_LENGTH (init) - 1) == 0
9935 && ((size_t) TREE_STRING_LENGTH (init)
9936 == strlen (TREE_STRING_POINTER (init)) + 1))
9937 rtl = gen_rtx_CONST_STRING (VOIDmode,
9938 ggc_strdup (TREE_STRING_POINTER (init)));
9940 /* If the initializer is something that we know will expand into an
9941 immediate RTL constant, expand it now. Expanding anything else
9942 tends to produce unresolved symbols; see debug/5770 and c++/6381. */
9943 else if (TREE_CODE (DECL_INITIAL (decl)) == INTEGER_CST
9944 || TREE_CODE (DECL_INITIAL (decl)) == REAL_CST)
9946 rtl = expand_expr (DECL_INITIAL (decl), NULL_RTX, VOIDmode,
9947 EXPAND_INITIALIZER);
9948 /* If expand_expr returns a MEM, it wasn't immediate. */
9949 gcc_assert (!rtl || !MEM_P (rtl));
9953 if (rtl)
9954 rtl = targetm.delegitimize_address (rtl);
9956 /* If we don't look past the constant pool, we risk emitting a
9957 reference to a constant pool entry that isn't referenced from
9958 code, and thus is not emitted. */
9959 if (rtl)
9960 rtl = avoid_constant_pool_reference (rtl);
9962 return rtl;
9965 /* Generate *either* a DW_AT_location attribute or else a DW_AT_const_value
9966 data attribute for a variable or a parameter. We generate the
9967 DW_AT_const_value attribute only in those cases where the given variable
9968 or parameter does not have a true "location" either in memory or in a
9969 register. This can happen (for example) when a constant is passed as an
9970 actual argument in a call to an inline function. (It's possible that
9971 these things can crop up in other ways also.) Note that one type of
9972 constant value which can be passed into an inlined function is a constant
9973 pointer. This can happen for example if an actual argument in an inlined
9974 function call evaluates to a compile-time constant address. */
9976 static void
9977 add_location_or_const_value_attribute (dw_die_ref die, tree decl,
9978 enum dwarf_attribute attr)
9980 rtx rtl;
9981 dw_loc_descr_ref descr;
9982 var_loc_list *loc_list;
9984 if (TREE_CODE (decl) == ERROR_MARK)
9985 return;
9987 gcc_assert (TREE_CODE (decl) == VAR_DECL || TREE_CODE (decl) == PARM_DECL
9988 || TREE_CODE (decl) == RESULT_DECL);
9990 /* See if we possibly have multiple locations for this variable. */
9991 loc_list = lookup_decl_loc (decl);
9993 /* If it truly has multiple locations, the first and last node will
9994 differ. */
9995 if (loc_list && loc_list->first != loc_list->last)
9997 const char *secname;
9998 const char *endname;
9999 dw_loc_list_ref list;
10000 rtx varloc;
10001 struct var_loc_node *node;
10003 /* We need to figure out what section we should use as the base
10004 for the address ranges where a given location is valid.
10005 1. If this particular DECL has a section associated with it,
10006 use that.
10007 2. If this function has a section associated with it, use
10008 that.
10009 3. Otherwise, use the text section.
10010 XXX: If you split a variable across multiple sections, this
10011 won't notice. */
10013 if (DECL_SECTION_NAME (decl))
10015 tree sectree = DECL_SECTION_NAME (decl);
10016 secname = TREE_STRING_POINTER (sectree);
10018 else if (current_function_decl
10019 && DECL_SECTION_NAME (current_function_decl))
10021 tree sectree = DECL_SECTION_NAME (current_function_decl);
10022 secname = TREE_STRING_POINTER (sectree);
10024 else
10025 secname = text_section_label;
10027 /* Now that we know what section we are using for a base,
10028 actually construct the list of locations.
10029 The first location information is what is passed to the
10030 function that creates the location list, and the remaining
10031 locations just get added on to that list.
10032 Note that we only know the start address for a location
10033 (IE location changes), so to build the range, we use
10034 the range [current location start, next location start].
10035 This means we have to special case the last node, and generate
10036 a range of [last location start, end of function label]. */
10038 node = loc_list->first;
10039 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10040 list = new_loc_list (loc_descriptor (varloc, attr != DW_AT_frame_base),
10041 node->label, node->next->label, secname, 1);
10042 node = node->next;
10044 for (; node->next; node = node->next)
10045 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
10047 /* The variable has a location between NODE->LABEL and
10048 NODE->NEXT->LABEL. */
10049 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10050 add_loc_descr_to_loc_list (&list,
10051 loc_descriptor (varloc,
10052 attr != DW_AT_frame_base),
10053 node->label, node->next->label, secname);
10056 /* If the variable has a location at the last label
10057 it keeps its location until the end of function. */
10058 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
10060 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
10062 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10063 if (!current_function_decl)
10064 endname = text_end_label;
10065 else
10067 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
10068 current_function_funcdef_no);
10069 endname = ggc_strdup (label_id);
10071 add_loc_descr_to_loc_list (&list,
10072 loc_descriptor (varloc,
10073 attr != DW_AT_frame_base),
10074 node->label, endname, secname);
10077 /* Finally, add the location list to the DIE, and we are done. */
10078 add_AT_loc_list (die, attr, list);
10079 return;
10082 rtl = rtl_for_decl_location (decl);
10083 if (rtl && (CONSTANT_P (rtl) || GET_CODE (rtl) == CONST_STRING))
10085 add_const_value_attribute (die, rtl);
10086 return;
10089 descr = loc_descriptor_from_tree (decl);
10090 if (descr)
10091 add_AT_location_description (die, attr, descr);
10094 /* If we don't have a copy of this variable in memory for some reason (such
10095 as a C++ member constant that doesn't have an out-of-line definition),
10096 we should tell the debugger about the constant value. */
10098 static void
10099 tree_add_const_value_attribute (dw_die_ref var_die, tree decl)
10101 tree init = DECL_INITIAL (decl);
10102 tree type = TREE_TYPE (decl);
10104 if (TREE_READONLY (decl) && ! TREE_THIS_VOLATILE (decl) && init
10105 && initializer_constant_valid_p (init, type) == null_pointer_node)
10106 /* OK */;
10107 else
10108 return;
10110 switch (TREE_CODE (type))
10112 case INTEGER_TYPE:
10113 if (host_integerp (init, 0))
10114 add_AT_unsigned (var_die, DW_AT_const_value,
10115 tree_low_cst (init, 0));
10116 else
10117 add_AT_long_long (var_die, DW_AT_const_value,
10118 TREE_INT_CST_HIGH (init),
10119 TREE_INT_CST_LOW (init));
10120 break;
10122 default:;
10126 /* Generate a DW_AT_name attribute given some string value to be included as
10127 the value of the attribute. */
10129 static void
10130 add_name_attribute (dw_die_ref die, const char *name_string)
10132 if (name_string != NULL && *name_string != 0)
10134 if (demangle_name_func)
10135 name_string = (*demangle_name_func) (name_string);
10137 add_AT_string (die, DW_AT_name, name_string);
10141 /* Generate a DW_AT_comp_dir attribute for DIE. */
10143 static void
10144 add_comp_dir_attribute (dw_die_ref die)
10146 const char *wd = get_src_pwd ();
10147 if (wd != NULL)
10148 add_AT_string (die, DW_AT_comp_dir, wd);
10151 /* Given a tree node describing an array bound (either lower or upper) output
10152 a representation for that bound. */
10154 static void
10155 add_bound_info (dw_die_ref subrange_die, enum dwarf_attribute bound_attr, tree bound)
10157 switch (TREE_CODE (bound))
10159 case ERROR_MARK:
10160 return;
10162 /* All fixed-bounds are represented by INTEGER_CST nodes. */
10163 case INTEGER_CST:
10164 if (! host_integerp (bound, 0)
10165 || (bound_attr == DW_AT_lower_bound
10166 && (((is_c_family () || is_java ()) && integer_zerop (bound))
10167 || (is_fortran () && integer_onep (bound)))))
10168 /* Use the default. */
10170 else
10171 add_AT_unsigned (subrange_die, bound_attr, tree_low_cst (bound, 0));
10172 break;
10174 case CONVERT_EXPR:
10175 case NOP_EXPR:
10176 case NON_LVALUE_EXPR:
10177 case VIEW_CONVERT_EXPR:
10178 add_bound_info (subrange_die, bound_attr, TREE_OPERAND (bound, 0));
10179 break;
10181 case SAVE_EXPR:
10182 break;
10184 case VAR_DECL:
10185 case PARM_DECL:
10186 case RESULT_DECL:
10188 dw_die_ref decl_die = lookup_decl_die (bound);
10190 /* ??? Can this happen, or should the variable have been bound
10191 first? Probably it can, since I imagine that we try to create
10192 the types of parameters in the order in which they exist in
10193 the list, and won't have created a forward reference to a
10194 later parameter. */
10195 if (decl_die != NULL)
10196 add_AT_die_ref (subrange_die, bound_attr, decl_die);
10197 break;
10200 default:
10202 /* Otherwise try to create a stack operation procedure to
10203 evaluate the value of the array bound. */
10205 dw_die_ref ctx, decl_die;
10206 dw_loc_descr_ref loc;
10208 loc = loc_descriptor_from_tree (bound);
10209 if (loc == NULL)
10210 break;
10212 if (current_function_decl == 0)
10213 ctx = comp_unit_die;
10214 else
10215 ctx = lookup_decl_die (current_function_decl);
10217 decl_die = new_die (DW_TAG_variable, ctx, bound);
10218 add_AT_flag (decl_die, DW_AT_artificial, 1);
10219 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
10220 add_AT_loc (decl_die, DW_AT_location, loc);
10222 add_AT_die_ref (subrange_die, bound_attr, decl_die);
10223 break;
10228 /* Note that the block of subscript information for an array type also
10229 includes information about the element type of type given array type. */
10231 static void
10232 add_subscript_info (dw_die_ref type_die, tree type)
10234 #ifndef MIPS_DEBUGGING_INFO
10235 unsigned dimension_number;
10236 #endif
10237 tree lower, upper;
10238 dw_die_ref subrange_die;
10240 /* The GNU compilers represent multidimensional array types as sequences of
10241 one dimensional array types whose element types are themselves array
10242 types. Here we squish that down, so that each multidimensional array
10243 type gets only one array_type DIE in the Dwarf debugging info. The draft
10244 Dwarf specification say that we are allowed to do this kind of
10245 compression in C (because there is no difference between an array or
10246 arrays and a multidimensional array in C) but for other source languages
10247 (e.g. Ada) we probably shouldn't do this. */
10249 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
10250 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
10251 We work around this by disabling this feature. See also
10252 gen_array_type_die. */
10253 #ifndef MIPS_DEBUGGING_INFO
10254 for (dimension_number = 0;
10255 TREE_CODE (type) == ARRAY_TYPE;
10256 type = TREE_TYPE (type), dimension_number++)
10257 #endif
10259 tree domain = TYPE_DOMAIN (type);
10261 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
10262 and (in GNU C only) variable bounds. Handle all three forms
10263 here. */
10264 subrange_die = new_die (DW_TAG_subrange_type, type_die, NULL);
10265 if (domain)
10267 /* We have an array type with specified bounds. */
10268 lower = TYPE_MIN_VALUE (domain);
10269 upper = TYPE_MAX_VALUE (domain);
10271 /* Define the index type. */
10272 if (TREE_TYPE (domain))
10274 /* ??? This is probably an Ada unnamed subrange type. Ignore the
10275 TREE_TYPE field. We can't emit debug info for this
10276 because it is an unnamed integral type. */
10277 if (TREE_CODE (domain) == INTEGER_TYPE
10278 && TYPE_NAME (domain) == NULL_TREE
10279 && TREE_CODE (TREE_TYPE (domain)) == INTEGER_TYPE
10280 && TYPE_NAME (TREE_TYPE (domain)) == NULL_TREE)
10282 else
10283 add_type_attribute (subrange_die, TREE_TYPE (domain), 0, 0,
10284 type_die);
10287 /* ??? If upper is NULL, the array has unspecified length,
10288 but it does have a lower bound. This happens with Fortran
10289 dimension arr(N:*)
10290 Since the debugger is definitely going to need to know N
10291 to produce useful results, go ahead and output the lower
10292 bound solo, and hope the debugger can cope. */
10294 add_bound_info (subrange_die, DW_AT_lower_bound, lower);
10295 if (upper)
10296 add_bound_info (subrange_die, DW_AT_upper_bound, upper);
10299 /* Otherwise we have an array type with an unspecified length. The
10300 DWARF-2 spec does not say how to handle this; let's just leave out the
10301 bounds. */
10305 static void
10306 add_byte_size_attribute (dw_die_ref die, tree tree_node)
10308 unsigned size;
10310 switch (TREE_CODE (tree_node))
10312 case ERROR_MARK:
10313 size = 0;
10314 break;
10315 case ENUMERAL_TYPE:
10316 case RECORD_TYPE:
10317 case UNION_TYPE:
10318 case QUAL_UNION_TYPE:
10319 size = int_size_in_bytes (tree_node);
10320 break;
10321 case FIELD_DECL:
10322 /* For a data member of a struct or union, the DW_AT_byte_size is
10323 generally given as the number of bytes normally allocated for an
10324 object of the *declared* type of the member itself. This is true
10325 even for bit-fields. */
10326 size = simple_type_size_in_bits (field_type (tree_node)) / BITS_PER_UNIT;
10327 break;
10328 default:
10329 gcc_unreachable ();
10332 /* Note that `size' might be -1 when we get to this point. If it is, that
10333 indicates that the byte size of the entity in question is variable. We
10334 have no good way of expressing this fact in Dwarf at the present time,
10335 so just let the -1 pass on through. */
10336 add_AT_unsigned (die, DW_AT_byte_size, size);
10339 /* For a FIELD_DECL node which represents a bit-field, output an attribute
10340 which specifies the distance in bits from the highest order bit of the
10341 "containing object" for the bit-field to the highest order bit of the
10342 bit-field itself.
10344 For any given bit-field, the "containing object" is a hypothetical object
10345 (of some integral or enum type) within which the given bit-field lives. The
10346 type of this hypothetical "containing object" is always the same as the
10347 declared type of the individual bit-field itself. The determination of the
10348 exact location of the "containing object" for a bit-field is rather
10349 complicated. It's handled by the `field_byte_offset' function (above).
10351 Note that it is the size (in bytes) of the hypothetical "containing object"
10352 which will be given in the DW_AT_byte_size attribute for this bit-field.
10353 (See `byte_size_attribute' above). */
10355 static inline void
10356 add_bit_offset_attribute (dw_die_ref die, tree decl)
10358 HOST_WIDE_INT object_offset_in_bytes = field_byte_offset (decl);
10359 tree type = DECL_BIT_FIELD_TYPE (decl);
10360 HOST_WIDE_INT bitpos_int;
10361 HOST_WIDE_INT highest_order_object_bit_offset;
10362 HOST_WIDE_INT highest_order_field_bit_offset;
10363 HOST_WIDE_INT unsigned bit_offset;
10365 /* Must be a field and a bit field. */
10366 gcc_assert (type && TREE_CODE (decl) == FIELD_DECL);
10368 /* We can't yet handle bit-fields whose offsets are variable, so if we
10369 encounter such things, just return without generating any attribute
10370 whatsoever. Likewise for variable or too large size. */
10371 if (! host_integerp (bit_position (decl), 0)
10372 || ! host_integerp (DECL_SIZE (decl), 1))
10373 return;
10375 bitpos_int = int_bit_position (decl);
10377 /* Note that the bit offset is always the distance (in bits) from the
10378 highest-order bit of the "containing object" to the highest-order bit of
10379 the bit-field itself. Since the "high-order end" of any object or field
10380 is different on big-endian and little-endian machines, the computation
10381 below must take account of these differences. */
10382 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
10383 highest_order_field_bit_offset = bitpos_int;
10385 if (! BYTES_BIG_ENDIAN)
10387 highest_order_field_bit_offset += tree_low_cst (DECL_SIZE (decl), 0);
10388 highest_order_object_bit_offset += simple_type_size_in_bits (type);
10391 bit_offset
10392 = (! BYTES_BIG_ENDIAN
10393 ? highest_order_object_bit_offset - highest_order_field_bit_offset
10394 : highest_order_field_bit_offset - highest_order_object_bit_offset);
10396 add_AT_unsigned (die, DW_AT_bit_offset, bit_offset);
10399 /* For a FIELD_DECL node which represents a bit field, output an attribute
10400 which specifies the length in bits of the given field. */
10402 static inline void
10403 add_bit_size_attribute (dw_die_ref die, tree decl)
10405 /* Must be a field and a bit field. */
10406 gcc_assert (TREE_CODE (decl) == FIELD_DECL
10407 && DECL_BIT_FIELD_TYPE (decl));
10409 if (host_integerp (DECL_SIZE (decl), 1))
10410 add_AT_unsigned (die, DW_AT_bit_size, tree_low_cst (DECL_SIZE (decl), 1));
10413 /* If the compiled language is ANSI C, then add a 'prototyped'
10414 attribute, if arg types are given for the parameters of a function. */
10416 static inline void
10417 add_prototyped_attribute (dw_die_ref die, tree func_type)
10419 if (get_AT_unsigned (comp_unit_die, DW_AT_language) == DW_LANG_C89
10420 && TYPE_ARG_TYPES (func_type) != NULL)
10421 add_AT_flag (die, DW_AT_prototyped, 1);
10424 /* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
10425 by looking in either the type declaration or object declaration
10426 equate table. */
10428 static inline void
10429 add_abstract_origin_attribute (dw_die_ref die, tree origin)
10431 dw_die_ref origin_die = NULL;
10433 if (TREE_CODE (origin) != FUNCTION_DECL)
10435 /* We may have gotten separated from the block for the inlined
10436 function, if we're in an exception handler or some such; make
10437 sure that the abstract function has been written out.
10439 Doing this for nested functions is wrong, however; functions are
10440 distinct units, and our context might not even be inline. */
10441 tree fn = origin;
10443 if (TYPE_P (fn))
10444 fn = TYPE_STUB_DECL (fn);
10446 fn = decl_function_context (fn);
10447 if (fn)
10448 dwarf2out_abstract_function (fn);
10451 if (DECL_P (origin))
10452 origin_die = lookup_decl_die (origin);
10453 else if (TYPE_P (origin))
10454 origin_die = lookup_type_die (origin);
10456 gcc_assert (origin_die);
10458 add_AT_die_ref (die, DW_AT_abstract_origin, origin_die);
10461 /* We do not currently support the pure_virtual attribute. */
10463 static inline void
10464 add_pure_or_virtual_attribute (dw_die_ref die, tree func_decl)
10466 if (DECL_VINDEX (func_decl))
10468 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
10470 if (host_integerp (DECL_VINDEX (func_decl), 0))
10471 add_AT_loc (die, DW_AT_vtable_elem_location,
10472 new_loc_descr (DW_OP_constu,
10473 tree_low_cst (DECL_VINDEX (func_decl), 0),
10474 0));
10476 /* GNU extension: Record what type this method came from originally. */
10477 if (debug_info_level > DINFO_LEVEL_TERSE)
10478 add_AT_die_ref (die, DW_AT_containing_type,
10479 lookup_type_die (DECL_CONTEXT (func_decl)));
10483 /* Add source coordinate attributes for the given decl. */
10485 static void
10486 add_src_coords_attributes (dw_die_ref die, tree decl)
10488 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
10489 unsigned file_index = lookup_filename (s.file);
10491 add_AT_unsigned (die, DW_AT_decl_file, file_index);
10492 add_AT_unsigned (die, DW_AT_decl_line, s.line);
10495 /* Add a DW_AT_name attribute and source coordinate attribute for the
10496 given decl, but only if it actually has a name. */
10498 static void
10499 add_name_and_src_coords_attributes (dw_die_ref die, tree decl)
10501 tree decl_name;
10503 decl_name = DECL_NAME (decl);
10504 if (decl_name != NULL && IDENTIFIER_POINTER (decl_name) != NULL)
10506 add_name_attribute (die, dwarf2_name (decl, 0));
10507 if (! DECL_ARTIFICIAL (decl))
10508 add_src_coords_attributes (die, decl);
10510 if ((TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL)
10511 && TREE_PUBLIC (decl)
10512 && DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl)
10513 && !DECL_ABSTRACT (decl))
10514 add_AT_string (die, DW_AT_MIPS_linkage_name,
10515 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
10518 #ifdef VMS_DEBUGGING_INFO
10519 /* Get the function's name, as described by its RTL. This may be different
10520 from the DECL_NAME name used in the source file. */
10521 if (TREE_CODE (decl) == FUNCTION_DECL && TREE_ASM_WRITTEN (decl))
10523 add_AT_addr (die, DW_AT_VMS_rtnbeg_pd_address,
10524 XEXP (DECL_RTL (decl), 0));
10525 VARRAY_PUSH_RTX (used_rtx_varray, XEXP (DECL_RTL (decl), 0));
10527 #endif
10530 /* Push a new declaration scope. */
10532 static void
10533 push_decl_scope (tree scope)
10535 VARRAY_PUSH_TREE (decl_scope_table, scope);
10538 /* Pop a declaration scope. */
10540 static inline void
10541 pop_decl_scope (void)
10543 gcc_assert (VARRAY_ACTIVE_SIZE (decl_scope_table) > 0);
10545 VARRAY_POP (decl_scope_table);
10548 /* Return the DIE for the scope that immediately contains this type.
10549 Non-named types get global scope. Named types nested in other
10550 types get their containing scope if it's open, or global scope
10551 otherwise. All other types (i.e. function-local named types) get
10552 the current active scope. */
10554 static dw_die_ref
10555 scope_die_for (tree t, dw_die_ref context_die)
10557 dw_die_ref scope_die = NULL;
10558 tree containing_scope;
10559 int i;
10561 /* Non-types always go in the current scope. */
10562 gcc_assert (TYPE_P (t));
10564 containing_scope = TYPE_CONTEXT (t);
10566 /* Use the containing namespace if it was passed in (for a declaration). */
10567 if (containing_scope && TREE_CODE (containing_scope) == NAMESPACE_DECL)
10569 if (context_die == lookup_decl_die (containing_scope))
10570 /* OK */;
10571 else
10572 containing_scope = NULL_TREE;
10575 /* Ignore function type "scopes" from the C frontend. They mean that
10576 a tagged type is local to a parmlist of a function declarator, but
10577 that isn't useful to DWARF. */
10578 if (containing_scope && TREE_CODE (containing_scope) == FUNCTION_TYPE)
10579 containing_scope = NULL_TREE;
10581 if (containing_scope == NULL_TREE)
10582 scope_die = comp_unit_die;
10583 else if (TYPE_P (containing_scope))
10585 /* For types, we can just look up the appropriate DIE. But
10586 first we check to see if we're in the middle of emitting it
10587 so we know where the new DIE should go. */
10588 for (i = VARRAY_ACTIVE_SIZE (decl_scope_table) - 1; i >= 0; --i)
10589 if (VARRAY_TREE (decl_scope_table, i) == containing_scope)
10590 break;
10592 if (i < 0)
10594 gcc_assert (debug_info_level <= DINFO_LEVEL_TERSE
10595 || TREE_ASM_WRITTEN (containing_scope));
10597 /* If none of the current dies are suitable, we get file scope. */
10598 scope_die = comp_unit_die;
10600 else
10601 scope_die = lookup_type_die (containing_scope);
10603 else
10604 scope_die = context_die;
10606 return scope_die;
10609 /* Returns nonzero if CONTEXT_DIE is internal to a function. */
10611 static inline int
10612 local_scope_p (dw_die_ref context_die)
10614 for (; context_die; context_die = context_die->die_parent)
10615 if (context_die->die_tag == DW_TAG_inlined_subroutine
10616 || context_die->die_tag == DW_TAG_subprogram)
10617 return 1;
10619 return 0;
10622 /* Returns nonzero if CONTEXT_DIE is a class or namespace, for deciding
10623 whether or not to treat a DIE in this context as a declaration. */
10625 static inline int
10626 class_or_namespace_scope_p (dw_die_ref context_die)
10628 return (context_die
10629 && (context_die->die_tag == DW_TAG_structure_type
10630 || context_die->die_tag == DW_TAG_union_type
10631 || context_die->die_tag == DW_TAG_namespace));
10634 /* Many forms of DIEs require a "type description" attribute. This
10635 routine locates the proper "type descriptor" die for the type given
10636 by 'type', and adds a DW_AT_type attribute below the given die. */
10638 static void
10639 add_type_attribute (dw_die_ref object_die, tree type, int decl_const,
10640 int decl_volatile, dw_die_ref context_die)
10642 enum tree_code code = TREE_CODE (type);
10643 dw_die_ref type_die = NULL;
10645 /* ??? If this type is an unnamed subrange type of an integral or
10646 floating-point type, use the inner type. This is because we have no
10647 support for unnamed types in base_type_die. This can happen if this is
10648 an Ada subrange type. Correct solution is emit a subrange type die. */
10649 if ((code == INTEGER_TYPE || code == REAL_TYPE)
10650 && TREE_TYPE (type) != 0 && TYPE_NAME (type) == 0)
10651 type = TREE_TYPE (type), code = TREE_CODE (type);
10653 if (code == ERROR_MARK
10654 /* Handle a special case. For functions whose return type is void, we
10655 generate *no* type attribute. (Note that no object may have type
10656 `void', so this only applies to function return types). */
10657 || code == VOID_TYPE)
10658 return;
10660 type_die = modified_type_die (type,
10661 decl_const || TYPE_READONLY (type),
10662 decl_volatile || TYPE_VOLATILE (type),
10663 context_die);
10665 if (type_die != NULL)
10666 add_AT_die_ref (object_die, DW_AT_type, type_die);
10669 /* Given an object die, add the calling convention attribute for the
10670 function call type. */
10671 static void
10672 add_calling_convention_attribute (dw_die_ref subr_die, tree type)
10674 enum dwarf_calling_convention value = DW_CC_normal;
10676 value = targetm.dwarf_calling_convention (type);
10678 /* Only add the attribute if the backend requests it, and
10679 is not DW_CC_normal. */
10680 if (value && (value != DW_CC_normal))
10681 add_AT_unsigned (subr_die, DW_AT_calling_convention, value);
10684 /* Given a tree pointer to a struct, class, union, or enum type node, return
10685 a pointer to the (string) tag name for the given type, or zero if the type
10686 was declared without a tag. */
10688 static const char *
10689 type_tag (tree type)
10691 const char *name = 0;
10693 if (TYPE_NAME (type) != 0)
10695 tree t = 0;
10697 /* Find the IDENTIFIER_NODE for the type name. */
10698 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
10699 t = TYPE_NAME (type);
10701 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
10702 a TYPE_DECL node, regardless of whether or not a `typedef' was
10703 involved. */
10704 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
10705 && ! DECL_IGNORED_P (TYPE_NAME (type)))
10706 t = DECL_NAME (TYPE_NAME (type));
10708 /* Now get the name as a string, or invent one. */
10709 if (t != 0)
10710 name = IDENTIFIER_POINTER (t);
10713 return (name == 0 || *name == '\0') ? 0 : name;
10716 /* Return the type associated with a data member, make a special check
10717 for bit field types. */
10719 static inline tree
10720 member_declared_type (tree member)
10722 return (DECL_BIT_FIELD_TYPE (member)
10723 ? DECL_BIT_FIELD_TYPE (member) : TREE_TYPE (member));
10726 /* Get the decl's label, as described by its RTL. This may be different
10727 from the DECL_NAME name used in the source file. */
10729 #if 0
10730 static const char *
10731 decl_start_label (tree decl)
10733 rtx x;
10734 const char *fnname;
10736 x = DECL_RTL (decl);
10737 gcc_assert (MEM_P (x));
10739 x = XEXP (x, 0);
10740 gcc_assert (GET_CODE (x) == SYMBOL_REF);
10742 fnname = XSTR (x, 0);
10743 return fnname;
10745 #endif
10747 /* These routines generate the internal representation of the DIE's for
10748 the compilation unit. Debugging information is collected by walking
10749 the declaration trees passed in from dwarf2out_decl(). */
10751 static void
10752 gen_array_type_die (tree type, dw_die_ref context_die)
10754 dw_die_ref scope_die = scope_die_for (type, context_die);
10755 dw_die_ref array_die;
10756 tree element_type;
10758 /* ??? The SGI dwarf reader fails for array of array of enum types unless
10759 the inner array type comes before the outer array type. Thus we must
10760 call gen_type_die before we call new_die. See below also. */
10761 #ifdef MIPS_DEBUGGING_INFO
10762 gen_type_die (TREE_TYPE (type), context_die);
10763 #endif
10765 array_die = new_die (DW_TAG_array_type, scope_die, type);
10766 add_name_attribute (array_die, type_tag (type));
10767 equate_type_number_to_die (type, array_die);
10769 if (TREE_CODE (type) == VECTOR_TYPE)
10771 /* The frontend feeds us a representation for the vector as a struct
10772 containing an array. Pull out the array type. */
10773 type = TREE_TYPE (TYPE_FIELDS (TYPE_DEBUG_REPRESENTATION_TYPE (type)));
10774 add_AT_flag (array_die, DW_AT_GNU_vector, 1);
10777 #if 0
10778 /* We default the array ordering. SDB will probably do
10779 the right things even if DW_AT_ordering is not present. It's not even
10780 an issue until we start to get into multidimensional arrays anyway. If
10781 SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
10782 then we'll have to put the DW_AT_ordering attribute back in. (But if
10783 and when we find out that we need to put these in, we will only do so
10784 for multidimensional arrays. */
10785 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
10786 #endif
10788 #ifdef MIPS_DEBUGGING_INFO
10789 /* The SGI compilers handle arrays of unknown bound by setting
10790 AT_declaration and not emitting any subrange DIEs. */
10791 if (! TYPE_DOMAIN (type))
10792 add_AT_flag (array_die, DW_AT_declaration, 1);
10793 else
10794 #endif
10795 add_subscript_info (array_die, type);
10797 /* Add representation of the type of the elements of this array type. */
10798 element_type = TREE_TYPE (type);
10800 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
10801 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
10802 We work around this by disabling this feature. See also
10803 add_subscript_info. */
10804 #ifndef MIPS_DEBUGGING_INFO
10805 while (TREE_CODE (element_type) == ARRAY_TYPE)
10806 element_type = TREE_TYPE (element_type);
10808 gen_type_die (element_type, context_die);
10809 #endif
10811 add_type_attribute (array_die, element_type, 0, 0, context_die);
10814 #if 0
10815 static void
10816 gen_entry_point_die (tree decl, dw_die_ref context_die)
10818 tree origin = decl_ultimate_origin (decl);
10819 dw_die_ref decl_die = new_die (DW_TAG_entry_point, context_die, decl);
10821 if (origin != NULL)
10822 add_abstract_origin_attribute (decl_die, origin);
10823 else
10825 add_name_and_src_coords_attributes (decl_die, decl);
10826 add_type_attribute (decl_die, TREE_TYPE (TREE_TYPE (decl)),
10827 0, 0, context_die);
10830 if (DECL_ABSTRACT (decl))
10831 equate_decl_number_to_die (decl, decl_die);
10832 else
10833 add_AT_lbl_id (decl_die, DW_AT_low_pc, decl_start_label (decl));
10835 #endif
10837 /* Walk through the list of incomplete types again, trying once more to
10838 emit full debugging info for them. */
10840 static void
10841 retry_incomplete_types (void)
10843 int i;
10845 for (i = VARRAY_ACTIVE_SIZE (incomplete_types) - 1; i >= 0; i--)
10846 gen_type_die (VARRAY_TREE (incomplete_types, i), comp_unit_die);
10849 /* Generate a DIE to represent an inlined instance of an enumeration type. */
10851 static void
10852 gen_inlined_enumeration_type_die (tree type, dw_die_ref context_die)
10854 dw_die_ref type_die = new_die (DW_TAG_enumeration_type, context_die, type);
10856 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10857 be incomplete and such types are not marked. */
10858 add_abstract_origin_attribute (type_die, type);
10861 /* Generate a DIE to represent an inlined instance of a structure type. */
10863 static void
10864 gen_inlined_structure_type_die (tree type, dw_die_ref context_die)
10866 dw_die_ref type_die = new_die (DW_TAG_structure_type, context_die, type);
10868 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10869 be incomplete and such types are not marked. */
10870 add_abstract_origin_attribute (type_die, type);
10873 /* Generate a DIE to represent an inlined instance of a union type. */
10875 static void
10876 gen_inlined_union_type_die (tree type, dw_die_ref context_die)
10878 dw_die_ref type_die = new_die (DW_TAG_union_type, context_die, type);
10880 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10881 be incomplete and such types are not marked. */
10882 add_abstract_origin_attribute (type_die, type);
10885 /* Generate a DIE to represent an enumeration type. Note that these DIEs
10886 include all of the information about the enumeration values also. Each
10887 enumerated type name/value is listed as a child of the enumerated type
10888 DIE. */
10890 static dw_die_ref
10891 gen_enumeration_type_die (tree type, dw_die_ref context_die)
10893 dw_die_ref type_die = lookup_type_die (type);
10895 if (type_die == NULL)
10897 type_die = new_die (DW_TAG_enumeration_type,
10898 scope_die_for (type, context_die), type);
10899 equate_type_number_to_die (type, type_die);
10900 add_name_attribute (type_die, type_tag (type));
10902 else if (! TYPE_SIZE (type))
10903 return type_die;
10904 else
10905 remove_AT (type_die, DW_AT_declaration);
10907 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
10908 given enum type is incomplete, do not generate the DW_AT_byte_size
10909 attribute or the DW_AT_element_list attribute. */
10910 if (TYPE_SIZE (type))
10912 tree link;
10914 TREE_ASM_WRITTEN (type) = 1;
10915 add_byte_size_attribute (type_die, type);
10916 if (TYPE_STUB_DECL (type) != NULL_TREE)
10917 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
10919 /* If the first reference to this type was as the return type of an
10920 inline function, then it may not have a parent. Fix this now. */
10921 if (type_die->die_parent == NULL)
10922 add_child_die (scope_die_for (type, context_die), type_die);
10924 for (link = TYPE_VALUES (type);
10925 link != NULL; link = TREE_CHAIN (link))
10927 dw_die_ref enum_die = new_die (DW_TAG_enumerator, type_die, link);
10928 tree value = TREE_VALUE (link);
10930 add_name_attribute (enum_die,
10931 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
10933 if (host_integerp (value, TYPE_UNSIGNED (TREE_TYPE (value))))
10934 /* DWARF2 does not provide a way of indicating whether or
10935 not enumeration constants are signed or unsigned. GDB
10936 always assumes the values are signed, so we output all
10937 values as if they were signed. That means that
10938 enumeration constants with very large unsigned values
10939 will appear to have negative values in the debugger. */
10940 add_AT_int (enum_die, DW_AT_const_value,
10941 tree_low_cst (value, tree_int_cst_sgn (value) > 0));
10944 else
10945 add_AT_flag (type_die, DW_AT_declaration, 1);
10947 return type_die;
10950 /* Generate a DIE to represent either a real live formal parameter decl or to
10951 represent just the type of some formal parameter position in some function
10952 type.
10954 Note that this routine is a bit unusual because its argument may be a
10955 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
10956 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
10957 node. If it's the former then this function is being called to output a
10958 DIE to represent a formal parameter object (or some inlining thereof). If
10959 it's the latter, then this function is only being called to output a
10960 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
10961 argument type of some subprogram type. */
10963 static dw_die_ref
10964 gen_formal_parameter_die (tree node, dw_die_ref context_die)
10966 dw_die_ref parm_die
10967 = new_die (DW_TAG_formal_parameter, context_die, node);
10968 tree origin;
10970 switch (TREE_CODE_CLASS (TREE_CODE (node)))
10972 case tcc_declaration:
10973 origin = decl_ultimate_origin (node);
10974 if (origin != NULL)
10975 add_abstract_origin_attribute (parm_die, origin);
10976 else
10978 add_name_and_src_coords_attributes (parm_die, node);
10979 add_type_attribute (parm_die, TREE_TYPE (node),
10980 TREE_READONLY (node),
10981 TREE_THIS_VOLATILE (node),
10982 context_die);
10983 if (DECL_ARTIFICIAL (node))
10984 add_AT_flag (parm_die, DW_AT_artificial, 1);
10987 equate_decl_number_to_die (node, parm_die);
10988 if (! DECL_ABSTRACT (node))
10989 add_location_or_const_value_attribute (parm_die, node, DW_AT_location);
10991 break;
10993 case tcc_type:
10994 /* We were called with some kind of a ..._TYPE node. */
10995 add_type_attribute (parm_die, node, 0, 0, context_die);
10996 break;
10998 default:
10999 gcc_unreachable ();
11002 return parm_die;
11005 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
11006 at the end of an (ANSI prototyped) formal parameters list. */
11008 static void
11009 gen_unspecified_parameters_die (tree decl_or_type, dw_die_ref context_die)
11011 new_die (DW_TAG_unspecified_parameters, context_die, decl_or_type);
11014 /* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
11015 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
11016 parameters as specified in some function type specification (except for
11017 those which appear as part of a function *definition*). */
11019 static void
11020 gen_formal_types_die (tree function_or_method_type, dw_die_ref context_die)
11022 tree link;
11023 tree formal_type = NULL;
11024 tree first_parm_type;
11025 tree arg;
11027 if (TREE_CODE (function_or_method_type) == FUNCTION_DECL)
11029 arg = DECL_ARGUMENTS (function_or_method_type);
11030 function_or_method_type = TREE_TYPE (function_or_method_type);
11032 else
11033 arg = NULL_TREE;
11035 first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
11037 /* Make our first pass over the list of formal parameter types and output a
11038 DW_TAG_formal_parameter DIE for each one. */
11039 for (link = first_parm_type; link; )
11041 dw_die_ref parm_die;
11043 formal_type = TREE_VALUE (link);
11044 if (formal_type == void_type_node)
11045 break;
11047 /* Output a (nameless) DIE to represent the formal parameter itself. */
11048 parm_die = gen_formal_parameter_die (formal_type, context_die);
11049 if ((TREE_CODE (function_or_method_type) == METHOD_TYPE
11050 && link == first_parm_type)
11051 || (arg && DECL_ARTIFICIAL (arg)))
11052 add_AT_flag (parm_die, DW_AT_artificial, 1);
11054 link = TREE_CHAIN (link);
11055 if (arg)
11056 arg = TREE_CHAIN (arg);
11059 /* If this function type has an ellipsis, add a
11060 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
11061 if (formal_type != void_type_node)
11062 gen_unspecified_parameters_die (function_or_method_type, context_die);
11064 /* Make our second (and final) pass over the list of formal parameter types
11065 and output DIEs to represent those types (as necessary). */
11066 for (link = TYPE_ARG_TYPES (function_or_method_type);
11067 link && TREE_VALUE (link);
11068 link = TREE_CHAIN (link))
11069 gen_type_die (TREE_VALUE (link), context_die);
11072 /* We want to generate the DIE for TYPE so that we can generate the
11073 die for MEMBER, which has been defined; we will need to refer back
11074 to the member declaration nested within TYPE. If we're trying to
11075 generate minimal debug info for TYPE, processing TYPE won't do the
11076 trick; we need to attach the member declaration by hand. */
11078 static void
11079 gen_type_die_for_member (tree type, tree member, dw_die_ref context_die)
11081 gen_type_die (type, context_die);
11083 /* If we're trying to avoid duplicate debug info, we may not have
11084 emitted the member decl for this function. Emit it now. */
11085 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))
11086 && ! lookup_decl_die (member))
11088 gcc_assert (!decl_ultimate_origin (member));
11090 push_decl_scope (type);
11091 if (TREE_CODE (member) == FUNCTION_DECL)
11092 gen_subprogram_die (member, lookup_type_die (type));
11093 else
11094 gen_variable_die (member, lookup_type_die (type));
11096 pop_decl_scope ();
11100 /* Generate the DWARF2 info for the "abstract" instance of a function which we
11101 may later generate inlined and/or out-of-line instances of. */
11103 static void
11104 dwarf2out_abstract_function (tree decl)
11106 dw_die_ref old_die;
11107 tree save_fn;
11108 tree context;
11109 int was_abstract = DECL_ABSTRACT (decl);
11111 /* Make sure we have the actual abstract inline, not a clone. */
11112 decl = DECL_ORIGIN (decl);
11114 old_die = lookup_decl_die (decl);
11115 if (old_die && get_AT (old_die, DW_AT_inline))
11116 /* We've already generated the abstract instance. */
11117 return;
11119 /* Be sure we've emitted the in-class declaration DIE (if any) first, so
11120 we don't get confused by DECL_ABSTRACT. */
11121 if (debug_info_level > DINFO_LEVEL_TERSE)
11123 context = decl_class_context (decl);
11124 if (context)
11125 gen_type_die_for_member
11126 (context, decl, decl_function_context (decl) ? NULL : comp_unit_die);
11129 /* Pretend we've just finished compiling this function. */
11130 save_fn = current_function_decl;
11131 current_function_decl = decl;
11133 set_decl_abstract_flags (decl, 1);
11134 dwarf2out_decl (decl);
11135 if (! was_abstract)
11136 set_decl_abstract_flags (decl, 0);
11138 current_function_decl = save_fn;
11141 /* Generate a DIE to represent a declared function (either file-scope or
11142 block-local). */
11144 static void
11145 gen_subprogram_die (tree decl, dw_die_ref context_die)
11147 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
11148 tree origin = decl_ultimate_origin (decl);
11149 dw_die_ref subr_die;
11150 rtx fp_reg;
11151 tree fn_arg_types;
11152 tree outer_scope;
11153 dw_die_ref old_die = lookup_decl_die (decl);
11154 int declaration = (current_function_decl != decl
11155 || class_or_namespace_scope_p (context_die));
11157 /* It is possible to have both DECL_ABSTRACT and DECLARATION be true if we
11158 started to generate the abstract instance of an inline, decided to output
11159 its containing class, and proceeded to emit the declaration of the inline
11160 from the member list for the class. If so, DECLARATION takes priority;
11161 we'll get back to the abstract instance when done with the class. */
11163 /* The class-scope declaration DIE must be the primary DIE. */
11164 if (origin && declaration && class_or_namespace_scope_p (context_die))
11166 origin = NULL;
11167 gcc_assert (!old_die);
11170 if (origin != NULL)
11172 gcc_assert (!declaration || local_scope_p (context_die));
11174 /* Fixup die_parent for the abstract instance of a nested
11175 inline function. */
11176 if (old_die && old_die->die_parent == NULL)
11177 add_child_die (context_die, old_die);
11179 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11180 add_abstract_origin_attribute (subr_die, origin);
11182 else if (old_die)
11184 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
11185 unsigned file_index = lookup_filename (s.file);
11187 if (!get_AT_flag (old_die, DW_AT_declaration)
11188 /* We can have a normal definition following an inline one in the
11189 case of redefinition of GNU C extern inlines.
11190 It seems reasonable to use AT_specification in this case. */
11191 && !get_AT (old_die, DW_AT_inline))
11193 /* ??? This can happen if there is a bug in the program, for
11194 instance, if it has duplicate function definitions. Ideally,
11195 we should detect this case and ignore it. For now, if we have
11196 already reported an error, any error at all, then assume that
11197 we got here because of an input error, not a dwarf2 bug. */
11198 gcc_assert (errorcount);
11199 return;
11202 /* If the definition comes from the same place as the declaration,
11203 maybe use the old DIE. We always want the DIE for this function
11204 that has the *_pc attributes to be under comp_unit_die so the
11205 debugger can find it. We also need to do this for abstract
11206 instances of inlines, since the spec requires the out-of-line copy
11207 to have the same parent. For local class methods, this doesn't
11208 apply; we just use the old DIE. */
11209 if ((old_die->die_parent == comp_unit_die || context_die == NULL)
11210 && (DECL_ARTIFICIAL (decl)
11211 || (get_AT_unsigned (old_die, DW_AT_decl_file) == file_index
11212 && (get_AT_unsigned (old_die, DW_AT_decl_line)
11213 == (unsigned) s.line))))
11215 subr_die = old_die;
11217 /* Clear out the declaration attribute and the formal parameters.
11218 Do not remove all children, because it is possible that this
11219 declaration die was forced using force_decl_die(). In such
11220 cases die that forced declaration die (e.g. TAG_imported_module)
11221 is one of the children that we do not want to remove. */
11222 remove_AT (subr_die, DW_AT_declaration);
11223 remove_child_TAG (subr_die, DW_TAG_formal_parameter);
11225 else
11227 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11228 add_AT_specification (subr_die, old_die);
11229 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
11230 add_AT_unsigned (subr_die, DW_AT_decl_file, file_index);
11231 if (get_AT_unsigned (old_die, DW_AT_decl_line)
11232 != (unsigned) s.line)
11233 add_AT_unsigned
11234 (subr_die, DW_AT_decl_line, s.line);
11237 else
11239 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11241 if (TREE_PUBLIC (decl))
11242 add_AT_flag (subr_die, DW_AT_external, 1);
11244 add_name_and_src_coords_attributes (subr_die, decl);
11245 if (debug_info_level > DINFO_LEVEL_TERSE)
11247 add_prototyped_attribute (subr_die, TREE_TYPE (decl));
11248 add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
11249 0, 0, context_die);
11252 add_pure_or_virtual_attribute (subr_die, decl);
11253 if (DECL_ARTIFICIAL (decl))
11254 add_AT_flag (subr_die, DW_AT_artificial, 1);
11256 if (TREE_PROTECTED (decl))
11257 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_protected);
11258 else if (TREE_PRIVATE (decl))
11259 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_private);
11262 if (declaration)
11264 if (!old_die || !get_AT (old_die, DW_AT_inline))
11266 add_AT_flag (subr_die, DW_AT_declaration, 1);
11268 /* The first time we see a member function, it is in the context of
11269 the class to which it belongs. We make sure of this by emitting
11270 the class first. The next time is the definition, which is
11271 handled above. The two may come from the same source text.
11273 Note that force_decl_die() forces function declaration die. It is
11274 later reused to represent definition. */
11275 equate_decl_number_to_die (decl, subr_die);
11278 else if (DECL_ABSTRACT (decl))
11280 if (DECL_DECLARED_INLINE_P (decl))
11282 if (cgraph_function_possibly_inlined_p (decl))
11283 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_inlined);
11284 else
11285 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_not_inlined);
11287 else
11289 if (cgraph_function_possibly_inlined_p (decl))
11290 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_inlined);
11291 else
11292 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_not_inlined);
11295 equate_decl_number_to_die (decl, subr_die);
11297 else if (!DECL_EXTERNAL (decl))
11299 if (!old_die || !get_AT (old_die, DW_AT_inline))
11300 equate_decl_number_to_die (decl, subr_die);
11302 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_BEGIN_LABEL,
11303 current_function_funcdef_no);
11304 add_AT_lbl_id (subr_die, DW_AT_low_pc, label_id);
11305 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
11306 current_function_funcdef_no);
11307 add_AT_lbl_id (subr_die, DW_AT_high_pc, label_id);
11309 add_pubname (decl, subr_die);
11310 add_arange (decl, subr_die);
11312 #ifdef MIPS_DEBUGGING_INFO
11313 /* Add a reference to the FDE for this routine. */
11314 add_AT_fde_ref (subr_die, DW_AT_MIPS_fde, current_funcdef_fde);
11315 #endif
11317 /* Define the "frame base" location for this routine. We use the
11318 frame pointer or stack pointer registers, since the RTL for local
11319 variables is relative to one of them. */
11320 if (frame_base_decl && lookup_decl_loc (frame_base_decl) != NULL)
11322 add_location_or_const_value_attribute (subr_die, frame_base_decl,
11323 DW_AT_frame_base);
11325 else
11327 fp_reg
11328 = frame_pointer_needed ? hard_frame_pointer_rtx : stack_pointer_rtx;
11329 add_AT_loc (subr_die, DW_AT_frame_base, reg_loc_descriptor (fp_reg));
11332 if (cfun->static_chain_decl)
11333 add_AT_location_description (subr_die, DW_AT_static_link,
11334 loc_descriptor_from_tree (cfun->static_chain_decl));
11337 /* Now output descriptions of the arguments for this function. This gets
11338 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
11339 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
11340 `...' at the end of the formal parameter list. In order to find out if
11341 there was a trailing ellipsis or not, we must instead look at the type
11342 associated with the FUNCTION_DECL. This will be a node of type
11343 FUNCTION_TYPE. If the chain of type nodes hanging off of this
11344 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
11345 an ellipsis at the end. */
11347 /* In the case where we are describing a mere function declaration, all we
11348 need to do here (and all we *can* do here) is to describe the *types* of
11349 its formal parameters. */
11350 if (debug_info_level <= DINFO_LEVEL_TERSE)
11352 else if (declaration)
11353 gen_formal_types_die (decl, subr_die);
11354 else
11356 /* Generate DIEs to represent all known formal parameters. */
11357 tree arg_decls = DECL_ARGUMENTS (decl);
11358 tree parm;
11360 /* When generating DIEs, generate the unspecified_parameters DIE
11361 instead if we come across the arg "__builtin_va_alist" */
11362 for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
11363 if (TREE_CODE (parm) == PARM_DECL)
11365 if (DECL_NAME (parm)
11366 && !strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
11367 "__builtin_va_alist"))
11368 gen_unspecified_parameters_die (parm, subr_die);
11369 else
11370 gen_decl_die (parm, subr_die);
11373 /* Decide whether we need an unspecified_parameters DIE at the end.
11374 There are 2 more cases to do this for: 1) the ansi ... declaration -
11375 this is detectable when the end of the arg list is not a
11376 void_type_node 2) an unprototyped function declaration (not a
11377 definition). This just means that we have no info about the
11378 parameters at all. */
11379 fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
11380 if (fn_arg_types != NULL)
11382 /* This is the prototyped case, check for.... */
11383 if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
11384 gen_unspecified_parameters_die (decl, subr_die);
11386 else if (DECL_INITIAL (decl) == NULL_TREE)
11387 gen_unspecified_parameters_die (decl, subr_die);
11390 /* Output Dwarf info for all of the stuff within the body of the function
11391 (if it has one - it may be just a declaration). */
11392 outer_scope = DECL_INITIAL (decl);
11394 /* OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
11395 a function. This BLOCK actually represents the outermost binding contour
11396 for the function, i.e. the contour in which the function's formal
11397 parameters and labels get declared. Curiously, it appears that the front
11398 end doesn't actually put the PARM_DECL nodes for the current function onto
11399 the BLOCK_VARS list for this outer scope, but are strung off of the
11400 DECL_ARGUMENTS list for the function instead.
11402 The BLOCK_VARS list for the `outer_scope' does provide us with a list of
11403 the LABEL_DECL nodes for the function however, and we output DWARF info
11404 for those in decls_for_scope. Just within the `outer_scope' there will be
11405 a BLOCK node representing the function's outermost pair of curly braces,
11406 and any blocks used for the base and member initializers of a C++
11407 constructor function. */
11408 if (! declaration && TREE_CODE (outer_scope) != ERROR_MARK)
11410 /* Emit a DW_TAG_variable DIE for a named return value. */
11411 if (DECL_NAME (DECL_RESULT (decl)))
11412 gen_decl_die (DECL_RESULT (decl), subr_die);
11414 current_function_has_inlines = 0;
11415 decls_for_scope (outer_scope, subr_die, 0);
11417 #if 0 && defined (MIPS_DEBUGGING_INFO)
11418 if (current_function_has_inlines)
11420 add_AT_flag (subr_die, DW_AT_MIPS_has_inlines, 1);
11421 if (! comp_unit_has_inlines)
11423 add_AT_flag (comp_unit_die, DW_AT_MIPS_has_inlines, 1);
11424 comp_unit_has_inlines = 1;
11427 #endif
11429 /* Add the calling convention attribute if requested. */
11430 add_calling_convention_attribute (subr_die, TREE_TYPE (decl));
11434 /* Generate a DIE to represent a declared data object. */
11436 static void
11437 gen_variable_die (tree decl, dw_die_ref context_die)
11439 tree origin = decl_ultimate_origin (decl);
11440 dw_die_ref var_die = new_die (DW_TAG_variable, context_die, decl);
11442 dw_die_ref old_die = lookup_decl_die (decl);
11443 int declaration = (DECL_EXTERNAL (decl)
11444 || class_or_namespace_scope_p (context_die));
11446 if (origin != NULL)
11447 add_abstract_origin_attribute (var_die, origin);
11449 /* Loop unrolling can create multiple blocks that refer to the same
11450 static variable, so we must test for the DW_AT_declaration flag.
11452 ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
11453 copy decls and set the DECL_ABSTRACT flag on them instead of
11454 sharing them.
11456 ??? Duplicated blocks have been rewritten to use .debug_ranges. */
11457 else if (old_die && TREE_STATIC (decl)
11458 && get_AT_flag (old_die, DW_AT_declaration) == 1)
11460 /* This is a definition of a C++ class level static. */
11461 add_AT_specification (var_die, old_die);
11462 if (DECL_NAME (decl))
11464 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
11465 unsigned file_index = lookup_filename (s.file);
11467 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
11468 add_AT_unsigned (var_die, DW_AT_decl_file, file_index);
11470 if (get_AT_unsigned (old_die, DW_AT_decl_line)
11471 != (unsigned) s.line)
11473 add_AT_unsigned (var_die, DW_AT_decl_line, s.line);
11476 else
11478 add_name_and_src_coords_attributes (var_die, decl);
11479 add_type_attribute (var_die, TREE_TYPE (decl), TREE_READONLY (decl),
11480 TREE_THIS_VOLATILE (decl), context_die);
11482 if (TREE_PUBLIC (decl))
11483 add_AT_flag (var_die, DW_AT_external, 1);
11485 if (DECL_ARTIFICIAL (decl))
11486 add_AT_flag (var_die, DW_AT_artificial, 1);
11488 if (TREE_PROTECTED (decl))
11489 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_protected);
11490 else if (TREE_PRIVATE (decl))
11491 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_private);
11494 if (declaration)
11495 add_AT_flag (var_die, DW_AT_declaration, 1);
11497 if (DECL_ABSTRACT (decl) || declaration)
11498 equate_decl_number_to_die (decl, var_die);
11500 if (! declaration && ! DECL_ABSTRACT (decl))
11502 add_location_or_const_value_attribute (var_die, decl, DW_AT_location);
11503 add_pubname (decl, var_die);
11505 else
11506 tree_add_const_value_attribute (var_die, decl);
11509 /* Generate a DIE to represent a label identifier. */
11511 static void
11512 gen_label_die (tree decl, dw_die_ref context_die)
11514 tree origin = decl_ultimate_origin (decl);
11515 dw_die_ref lbl_die = new_die (DW_TAG_label, context_die, decl);
11516 rtx insn;
11517 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11519 if (origin != NULL)
11520 add_abstract_origin_attribute (lbl_die, origin);
11521 else
11522 add_name_and_src_coords_attributes (lbl_die, decl);
11524 if (DECL_ABSTRACT (decl))
11525 equate_decl_number_to_die (decl, lbl_die);
11526 else
11528 insn = DECL_RTL_IF_SET (decl);
11530 /* Deleted labels are programmer specified labels which have been
11531 eliminated because of various optimizations. We still emit them
11532 here so that it is possible to put breakpoints on them. */
11533 if (insn
11534 && (LABEL_P (insn)
11535 || ((NOTE_P (insn)
11536 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL))))
11538 /* When optimization is enabled (via -O) some parts of the compiler
11539 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
11540 represent source-level labels which were explicitly declared by
11541 the user. This really shouldn't be happening though, so catch
11542 it if it ever does happen. */
11543 gcc_assert (!INSN_DELETED_P (insn));
11545 ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
11546 add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
11551 /* Generate a DIE for a lexical block. */
11553 static void
11554 gen_lexical_block_die (tree stmt, dw_die_ref context_die, int depth)
11556 dw_die_ref stmt_die = new_die (DW_TAG_lexical_block, context_die, stmt);
11557 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11559 if (! BLOCK_ABSTRACT (stmt))
11561 if (BLOCK_FRAGMENT_CHAIN (stmt))
11563 tree chain;
11565 add_AT_range_list (stmt_die, DW_AT_ranges, add_ranges (stmt));
11567 chain = BLOCK_FRAGMENT_CHAIN (stmt);
11570 add_ranges (chain);
11571 chain = BLOCK_FRAGMENT_CHAIN (chain);
11573 while (chain);
11574 add_ranges (NULL);
11576 else
11578 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
11579 BLOCK_NUMBER (stmt));
11580 add_AT_lbl_id (stmt_die, DW_AT_low_pc, label);
11581 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
11582 BLOCK_NUMBER (stmt));
11583 add_AT_lbl_id (stmt_die, DW_AT_high_pc, label);
11587 decls_for_scope (stmt, stmt_die, depth);
11590 /* Generate a DIE for an inlined subprogram. */
11592 static void
11593 gen_inlined_subroutine_die (tree stmt, dw_die_ref context_die, int depth)
11595 tree decl = block_ultimate_origin (stmt);
11597 /* Emit info for the abstract instance first, if we haven't yet. We
11598 must emit this even if the block is abstract, otherwise when we
11599 emit the block below (or elsewhere), we may end up trying to emit
11600 a die whose origin die hasn't been emitted, and crashing. */
11601 dwarf2out_abstract_function (decl);
11603 if (! BLOCK_ABSTRACT (stmt))
11605 dw_die_ref subr_die
11606 = new_die (DW_TAG_inlined_subroutine, context_die, stmt);
11607 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11609 add_abstract_origin_attribute (subr_die, decl);
11610 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
11611 BLOCK_NUMBER (stmt));
11612 add_AT_lbl_id (subr_die, DW_AT_low_pc, label);
11613 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
11614 BLOCK_NUMBER (stmt));
11615 add_AT_lbl_id (subr_die, DW_AT_high_pc, label);
11616 decls_for_scope (stmt, subr_die, depth);
11617 current_function_has_inlines = 1;
11619 else
11620 /* We may get here if we're the outer block of function A that was
11621 inlined into function B that was inlined into function C. When
11622 generating debugging info for C, dwarf2out_abstract_function(B)
11623 would mark all inlined blocks as abstract, including this one.
11624 So, we wouldn't (and shouldn't) expect labels to be generated
11625 for this one. Instead, just emit debugging info for
11626 declarations within the block. This is particularly important
11627 in the case of initializers of arguments passed from B to us:
11628 if they're statement expressions containing declarations, we
11629 wouldn't generate dies for their abstract variables, and then,
11630 when generating dies for the real variables, we'd die (pun
11631 intended :-) */
11632 gen_lexical_block_die (stmt, context_die, depth);
11635 /* Generate a DIE for a field in a record, or structure. */
11637 static void
11638 gen_field_die (tree decl, dw_die_ref context_die)
11640 dw_die_ref decl_die;
11642 if (TREE_TYPE (decl) == error_mark_node)
11643 return;
11645 decl_die = new_die (DW_TAG_member, context_die, decl);
11646 add_name_and_src_coords_attributes (decl_die, decl);
11647 add_type_attribute (decl_die, member_declared_type (decl),
11648 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl),
11649 context_die);
11651 if (DECL_BIT_FIELD_TYPE (decl))
11653 add_byte_size_attribute (decl_die, decl);
11654 add_bit_size_attribute (decl_die, decl);
11655 add_bit_offset_attribute (decl_die, decl);
11658 if (TREE_CODE (DECL_FIELD_CONTEXT (decl)) != UNION_TYPE)
11659 add_data_member_location_attribute (decl_die, decl);
11661 if (DECL_ARTIFICIAL (decl))
11662 add_AT_flag (decl_die, DW_AT_artificial, 1);
11664 if (TREE_PROTECTED (decl))
11665 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_protected);
11666 else if (TREE_PRIVATE (decl))
11667 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_private);
11669 /* Equate decl number to die, so that we can look up this decl later on. */
11670 equate_decl_number_to_die (decl, decl_die);
11673 #if 0
11674 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
11675 Use modified_type_die instead.
11676 We keep this code here just in case these types of DIEs may be needed to
11677 represent certain things in other languages (e.g. Pascal) someday. */
11679 static void
11680 gen_pointer_type_die (tree type, dw_die_ref context_die)
11682 dw_die_ref ptr_die
11683 = new_die (DW_TAG_pointer_type, scope_die_for (type, context_die), type);
11685 equate_type_number_to_die (type, ptr_die);
11686 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
11687 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
11690 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
11691 Use modified_type_die instead.
11692 We keep this code here just in case these types of DIEs may be needed to
11693 represent certain things in other languages (e.g. Pascal) someday. */
11695 static void
11696 gen_reference_type_die (tree type, dw_die_ref context_die)
11698 dw_die_ref ref_die
11699 = new_die (DW_TAG_reference_type, scope_die_for (type, context_die), type);
11701 equate_type_number_to_die (type, ref_die);
11702 add_type_attribute (ref_die, TREE_TYPE (type), 0, 0, context_die);
11703 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
11705 #endif
11707 /* Generate a DIE for a pointer to a member type. */
11709 static void
11710 gen_ptr_to_mbr_type_die (tree type, dw_die_ref context_die)
11712 dw_die_ref ptr_die
11713 = new_die (DW_TAG_ptr_to_member_type,
11714 scope_die_for (type, context_die), type);
11716 equate_type_number_to_die (type, ptr_die);
11717 add_AT_die_ref (ptr_die, DW_AT_containing_type,
11718 lookup_type_die (TYPE_OFFSET_BASETYPE (type)));
11719 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
11722 /* Generate the DIE for the compilation unit. */
11724 static dw_die_ref
11725 gen_compile_unit_die (const char *filename)
11727 dw_die_ref die;
11728 char producer[250];
11729 const char *language_string = lang_hooks.name;
11730 int language;
11732 die = new_die (DW_TAG_compile_unit, NULL, NULL);
11734 if (filename)
11736 add_name_attribute (die, filename);
11737 /* Don't add cwd for <built-in>. */
11738 if (filename[0] != DIR_SEPARATOR && filename[0] != '<')
11739 add_comp_dir_attribute (die);
11742 sprintf (producer, "%s %s", language_string, version_string);
11744 #ifdef MIPS_DEBUGGING_INFO
11745 /* The MIPS/SGI compilers place the 'cc' command line options in the producer
11746 string. The SGI debugger looks for -g, -g1, -g2, or -g3; if they do
11747 not appear in the producer string, the debugger reaches the conclusion
11748 that the object file is stripped and has no debugging information.
11749 To get the MIPS/SGI debugger to believe that there is debugging
11750 information in the object file, we add a -g to the producer string. */
11751 if (debug_info_level > DINFO_LEVEL_TERSE)
11752 strcat (producer, " -g");
11753 #endif
11755 add_AT_string (die, DW_AT_producer, producer);
11757 if (strcmp (language_string, "GNU C++") == 0)
11758 language = DW_LANG_C_plus_plus;
11759 else if (strcmp (language_string, "GNU Ada") == 0)
11760 language = DW_LANG_Ada95;
11761 else if (strcmp (language_string, "GNU F77") == 0)
11762 language = DW_LANG_Fortran77;
11763 else if (strcmp (language_string, "GNU F95") == 0)
11764 language = DW_LANG_Fortran95;
11765 else if (strcmp (language_string, "GNU Pascal") == 0)
11766 language = DW_LANG_Pascal83;
11767 else if (strcmp (language_string, "GNU Java") == 0)
11768 language = DW_LANG_Java;
11769 else
11770 language = DW_LANG_C89;
11772 add_AT_unsigned (die, DW_AT_language, language);
11773 return die;
11776 /* Generate a DIE for a string type. */
11778 static void
11779 gen_string_type_die (tree type, dw_die_ref context_die)
11781 dw_die_ref type_die
11782 = new_die (DW_TAG_string_type, scope_die_for (type, context_die), type);
11784 equate_type_number_to_die (type, type_die);
11786 /* ??? Fudge the string length attribute for now.
11787 TODO: add string length info. */
11788 #if 0
11789 string_length_attribute (TYPE_MAX_VALUE (TYPE_DOMAIN (type)));
11790 bound_representation (upper_bound, 0, 'u');
11791 #endif
11794 /* Generate the DIE for a base class. */
11796 static void
11797 gen_inheritance_die (tree binfo, tree access, dw_die_ref context_die)
11799 dw_die_ref die = new_die (DW_TAG_inheritance, context_die, binfo);
11801 add_type_attribute (die, BINFO_TYPE (binfo), 0, 0, context_die);
11802 add_data_member_location_attribute (die, binfo);
11804 if (BINFO_VIRTUAL_P (binfo))
11805 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
11807 if (access == access_public_node)
11808 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
11809 else if (access == access_protected_node)
11810 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
11813 /* Generate a DIE for a class member. */
11815 static void
11816 gen_member_die (tree type, dw_die_ref context_die)
11818 tree member;
11819 tree binfo = TYPE_BINFO (type);
11820 dw_die_ref child;
11822 /* If this is not an incomplete type, output descriptions of each of its
11823 members. Note that as we output the DIEs necessary to represent the
11824 members of this record or union type, we will also be trying to output
11825 DIEs to represent the *types* of those members. However the `type'
11826 function (above) will specifically avoid generating type DIEs for member
11827 types *within* the list of member DIEs for this (containing) type except
11828 for those types (of members) which are explicitly marked as also being
11829 members of this (containing) type themselves. The g++ front- end can
11830 force any given type to be treated as a member of some other (containing)
11831 type by setting the TYPE_CONTEXT of the given (member) type to point to
11832 the TREE node representing the appropriate (containing) type. */
11834 /* First output info about the base classes. */
11835 if (binfo)
11837 VEC (tree) *accesses = BINFO_BASE_ACCESSES (binfo);
11838 int i;
11839 tree base;
11841 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base); i++)
11842 gen_inheritance_die (base,
11843 (accesses ? VEC_index (tree, accesses, i)
11844 : access_public_node), context_die);
11847 /* Now output info about the data members and type members. */
11848 for (member = TYPE_FIELDS (type); member; member = TREE_CHAIN (member))
11850 /* If we thought we were generating minimal debug info for TYPE
11851 and then changed our minds, some of the member declarations
11852 may have already been defined. Don't define them again, but
11853 do put them in the right order. */
11855 child = lookup_decl_die (member);
11856 if (child)
11857 splice_child_die (context_die, child);
11858 else
11859 gen_decl_die (member, context_die);
11862 /* Now output info about the function members (if any). */
11863 for (member = TYPE_METHODS (type); member; member = TREE_CHAIN (member))
11865 /* Don't include clones in the member list. */
11866 if (DECL_ABSTRACT_ORIGIN (member))
11867 continue;
11869 child = lookup_decl_die (member);
11870 if (child)
11871 splice_child_die (context_die, child);
11872 else
11873 gen_decl_die (member, context_die);
11877 /* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
11878 is set, we pretend that the type was never defined, so we only get the
11879 member DIEs needed by later specification DIEs. */
11881 static void
11882 gen_struct_or_union_type_die (tree type, dw_die_ref context_die)
11884 dw_die_ref type_die = lookup_type_die (type);
11885 dw_die_ref scope_die = 0;
11886 int nested = 0;
11887 int complete = (TYPE_SIZE (type)
11888 && (! TYPE_STUB_DECL (type)
11889 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))));
11890 int ns_decl = (context_die && context_die->die_tag == DW_TAG_namespace);
11892 if (type_die && ! complete)
11893 return;
11895 if (TYPE_CONTEXT (type) != NULL_TREE
11896 && (AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
11897 || TREE_CODE (TYPE_CONTEXT (type)) == NAMESPACE_DECL))
11898 nested = 1;
11900 scope_die = scope_die_for (type, context_die);
11902 if (! type_die || (nested && scope_die == comp_unit_die))
11903 /* First occurrence of type or toplevel definition of nested class. */
11905 dw_die_ref old_die = type_die;
11907 type_die = new_die (TREE_CODE (type) == RECORD_TYPE
11908 ? DW_TAG_structure_type : DW_TAG_union_type,
11909 scope_die, type);
11910 equate_type_number_to_die (type, type_die);
11911 if (old_die)
11912 add_AT_specification (type_die, old_die);
11913 else
11914 add_name_attribute (type_die, type_tag (type));
11916 else
11917 remove_AT (type_die, DW_AT_declaration);
11919 /* If this type has been completed, then give it a byte_size attribute and
11920 then give a list of members. */
11921 if (complete && !ns_decl)
11923 /* Prevent infinite recursion in cases where the type of some member of
11924 this type is expressed in terms of this type itself. */
11925 TREE_ASM_WRITTEN (type) = 1;
11926 add_byte_size_attribute (type_die, type);
11927 if (TYPE_STUB_DECL (type) != NULL_TREE)
11928 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
11930 /* If the first reference to this type was as the return type of an
11931 inline function, then it may not have a parent. Fix this now. */
11932 if (type_die->die_parent == NULL)
11933 add_child_die (scope_die, type_die);
11935 push_decl_scope (type);
11936 gen_member_die (type, type_die);
11937 pop_decl_scope ();
11939 /* GNU extension: Record what type our vtable lives in. */
11940 if (TYPE_VFIELD (type))
11942 tree vtype = DECL_FCONTEXT (TYPE_VFIELD (type));
11944 gen_type_die (vtype, context_die);
11945 add_AT_die_ref (type_die, DW_AT_containing_type,
11946 lookup_type_die (vtype));
11949 else
11951 add_AT_flag (type_die, DW_AT_declaration, 1);
11953 /* We don't need to do this for function-local types. */
11954 if (TYPE_STUB_DECL (type)
11955 && ! decl_function_context (TYPE_STUB_DECL (type)))
11956 VARRAY_PUSH_TREE (incomplete_types, type);
11960 /* Generate a DIE for a subroutine _type_. */
11962 static void
11963 gen_subroutine_type_die (tree type, dw_die_ref context_die)
11965 tree return_type = TREE_TYPE (type);
11966 dw_die_ref subr_die
11967 = new_die (DW_TAG_subroutine_type,
11968 scope_die_for (type, context_die), type);
11970 equate_type_number_to_die (type, subr_die);
11971 add_prototyped_attribute (subr_die, type);
11972 add_type_attribute (subr_die, return_type, 0, 0, context_die);
11973 gen_formal_types_die (type, subr_die);
11976 /* Generate a DIE for a type definition. */
11978 static void
11979 gen_typedef_die (tree decl, dw_die_ref context_die)
11981 dw_die_ref type_die;
11982 tree origin;
11984 if (TREE_ASM_WRITTEN (decl))
11985 return;
11987 TREE_ASM_WRITTEN (decl) = 1;
11988 type_die = new_die (DW_TAG_typedef, context_die, decl);
11989 origin = decl_ultimate_origin (decl);
11990 if (origin != NULL)
11991 add_abstract_origin_attribute (type_die, origin);
11992 else
11994 tree type;
11996 add_name_and_src_coords_attributes (type_die, decl);
11997 if (DECL_ORIGINAL_TYPE (decl))
11999 type = DECL_ORIGINAL_TYPE (decl);
12001 gcc_assert (type != TREE_TYPE (decl));
12002 equate_type_number_to_die (TREE_TYPE (decl), type_die);
12004 else
12005 type = TREE_TYPE (decl);
12007 add_type_attribute (type_die, type, TREE_READONLY (decl),
12008 TREE_THIS_VOLATILE (decl), context_die);
12011 if (DECL_ABSTRACT (decl))
12012 equate_decl_number_to_die (decl, type_die);
12015 /* Generate a type description DIE. */
12017 static void
12018 gen_type_die (tree type, dw_die_ref context_die)
12020 int need_pop;
12022 if (type == NULL_TREE || type == error_mark_node)
12023 return;
12025 if (TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
12026 && DECL_ORIGINAL_TYPE (TYPE_NAME (type)))
12028 if (TREE_ASM_WRITTEN (type))
12029 return;
12031 /* Prevent broken recursion; we can't hand off to the same type. */
12032 gcc_assert (DECL_ORIGINAL_TYPE (TYPE_NAME (type)) != type);
12034 TREE_ASM_WRITTEN (type) = 1;
12035 gen_decl_die (TYPE_NAME (type), context_die);
12036 return;
12039 /* We are going to output a DIE to represent the unqualified version
12040 of this type (i.e. without any const or volatile qualifiers) so
12041 get the main variant (i.e. the unqualified version) of this type
12042 now. (Vectors are special because the debugging info is in the
12043 cloned type itself). */
12044 if (TREE_CODE (type) != VECTOR_TYPE)
12045 type = type_main_variant (type);
12047 if (TREE_ASM_WRITTEN (type))
12048 return;
12050 switch (TREE_CODE (type))
12052 case ERROR_MARK:
12053 break;
12055 case POINTER_TYPE:
12056 case REFERENCE_TYPE:
12057 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
12058 ensures that the gen_type_die recursion will terminate even if the
12059 type is recursive. Recursive types are possible in Ada. */
12060 /* ??? We could perhaps do this for all types before the switch
12061 statement. */
12062 TREE_ASM_WRITTEN (type) = 1;
12064 /* For these types, all that is required is that we output a DIE (or a
12065 set of DIEs) to represent the "basis" type. */
12066 gen_type_die (TREE_TYPE (type), context_die);
12067 break;
12069 case OFFSET_TYPE:
12070 /* This code is used for C++ pointer-to-data-member types.
12071 Output a description of the relevant class type. */
12072 gen_type_die (TYPE_OFFSET_BASETYPE (type), context_die);
12074 /* Output a description of the type of the object pointed to. */
12075 gen_type_die (TREE_TYPE (type), context_die);
12077 /* Now output a DIE to represent this pointer-to-data-member type
12078 itself. */
12079 gen_ptr_to_mbr_type_die (type, context_die);
12080 break;
12082 case FILE_TYPE:
12083 gen_type_die (TREE_TYPE (type), context_die);
12084 /* No way to represent these in Dwarf yet! */
12085 gcc_unreachable ();
12086 break;
12088 case FUNCTION_TYPE:
12089 /* Force out return type (in case it wasn't forced out already). */
12090 gen_type_die (TREE_TYPE (type), context_die);
12091 gen_subroutine_type_die (type, context_die);
12092 break;
12094 case METHOD_TYPE:
12095 /* Force out return type (in case it wasn't forced out already). */
12096 gen_type_die (TREE_TYPE (type), context_die);
12097 gen_subroutine_type_die (type, context_die);
12098 break;
12100 case ARRAY_TYPE:
12101 if (TYPE_STRING_FLAG (type) && TREE_CODE (TREE_TYPE (type)) == CHAR_TYPE)
12103 gen_type_die (TREE_TYPE (type), context_die);
12104 gen_string_type_die (type, context_die);
12106 else
12107 gen_array_type_die (type, context_die);
12108 break;
12110 case VECTOR_TYPE:
12111 gen_array_type_die (type, context_die);
12112 break;
12114 case ENUMERAL_TYPE:
12115 case RECORD_TYPE:
12116 case UNION_TYPE:
12117 case QUAL_UNION_TYPE:
12118 /* If this is a nested type whose containing class hasn't been written
12119 out yet, writing it out will cover this one, too. This does not apply
12120 to instantiations of member class templates; they need to be added to
12121 the containing class as they are generated. FIXME: This hurts the
12122 idea of combining type decls from multiple TUs, since we can't predict
12123 what set of template instantiations we'll get. */
12124 if (TYPE_CONTEXT (type)
12125 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
12126 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
12128 gen_type_die (TYPE_CONTEXT (type), context_die);
12130 if (TREE_ASM_WRITTEN (type))
12131 return;
12133 /* If that failed, attach ourselves to the stub. */
12134 push_decl_scope (TYPE_CONTEXT (type));
12135 context_die = lookup_type_die (TYPE_CONTEXT (type));
12136 need_pop = 1;
12138 else
12140 declare_in_namespace (type, context_die);
12141 need_pop = 0;
12144 if (TREE_CODE (type) == ENUMERAL_TYPE)
12145 gen_enumeration_type_die (type, context_die);
12146 else
12147 gen_struct_or_union_type_die (type, context_die);
12149 if (need_pop)
12150 pop_decl_scope ();
12152 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
12153 it up if it is ever completed. gen_*_type_die will set it for us
12154 when appropriate. */
12155 return;
12157 case VOID_TYPE:
12158 case INTEGER_TYPE:
12159 case REAL_TYPE:
12160 case COMPLEX_TYPE:
12161 case BOOLEAN_TYPE:
12162 case CHAR_TYPE:
12163 /* No DIEs needed for fundamental types. */
12164 break;
12166 case LANG_TYPE:
12167 /* No Dwarf representation currently defined. */
12168 break;
12170 default:
12171 gcc_unreachable ();
12174 TREE_ASM_WRITTEN (type) = 1;
12177 /* Generate a DIE for a tagged type instantiation. */
12179 static void
12180 gen_tagged_type_instantiation_die (tree type, dw_die_ref context_die)
12182 if (type == NULL_TREE || type == error_mark_node)
12183 return;
12185 /* We are going to output a DIE to represent the unqualified version of
12186 this type (i.e. without any const or volatile qualifiers) so make sure
12187 that we have the main variant (i.e. the unqualified version) of this
12188 type now. */
12189 gcc_assert (type == type_main_variant (type));
12191 /* Do not check TREE_ASM_WRITTEN (type) as it may not be set if this is
12192 an instance of an unresolved type. */
12194 switch (TREE_CODE (type))
12196 case ERROR_MARK:
12197 break;
12199 case ENUMERAL_TYPE:
12200 gen_inlined_enumeration_type_die (type, context_die);
12201 break;
12203 case RECORD_TYPE:
12204 gen_inlined_structure_type_die (type, context_die);
12205 break;
12207 case UNION_TYPE:
12208 case QUAL_UNION_TYPE:
12209 gen_inlined_union_type_die (type, context_die);
12210 break;
12212 default:
12213 gcc_unreachable ();
12217 /* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
12218 things which are local to the given block. */
12220 static void
12221 gen_block_die (tree stmt, dw_die_ref context_die, int depth)
12223 int must_output_die = 0;
12224 tree origin;
12225 tree decl;
12226 enum tree_code origin_code;
12228 /* Ignore blocks never really used to make RTL. */
12229 if (stmt == NULL_TREE || !TREE_USED (stmt)
12230 || (!TREE_ASM_WRITTEN (stmt) && !BLOCK_ABSTRACT (stmt)))
12231 return;
12233 /* If the block is one fragment of a non-contiguous block, do not
12234 process the variables, since they will have been done by the
12235 origin block. Do process subblocks. */
12236 if (BLOCK_FRAGMENT_ORIGIN (stmt))
12238 tree sub;
12240 for (sub = BLOCK_SUBBLOCKS (stmt); sub; sub = BLOCK_CHAIN (sub))
12241 gen_block_die (sub, context_die, depth + 1);
12243 return;
12246 /* Determine the "ultimate origin" of this block. This block may be an
12247 inlined instance of an inlined instance of inline function, so we have
12248 to trace all of the way back through the origin chain to find out what
12249 sort of node actually served as the original seed for the creation of
12250 the current block. */
12251 origin = block_ultimate_origin (stmt);
12252 origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
12254 /* Determine if we need to output any Dwarf DIEs at all to represent this
12255 block. */
12256 if (origin_code == FUNCTION_DECL)
12257 /* The outer scopes for inlinings *must* always be represented. We
12258 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
12259 must_output_die = 1;
12260 else
12262 /* In the case where the current block represents an inlining of the
12263 "body block" of an inline function, we must *NOT* output any DIE for
12264 this block because we have already output a DIE to represent the whole
12265 inlined function scope and the "body block" of any function doesn't
12266 really represent a different scope according to ANSI C rules. So we
12267 check here to make sure that this block does not represent a "body
12268 block inlining" before trying to set the MUST_OUTPUT_DIE flag. */
12269 if (! is_body_block (origin ? origin : stmt))
12271 /* Determine if this block directly contains any "significant"
12272 local declarations which we will need to output DIEs for. */
12273 if (debug_info_level > DINFO_LEVEL_TERSE)
12274 /* We are not in terse mode so *any* local declaration counts
12275 as being a "significant" one. */
12276 must_output_die = (BLOCK_VARS (stmt) != NULL);
12277 else
12278 /* We are in terse mode, so only local (nested) function
12279 definitions count as "significant" local declarations. */
12280 for (decl = BLOCK_VARS (stmt);
12281 decl != NULL; decl = TREE_CHAIN (decl))
12282 if (TREE_CODE (decl) == FUNCTION_DECL
12283 && DECL_INITIAL (decl))
12285 must_output_die = 1;
12286 break;
12291 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
12292 DIE for any block which contains no significant local declarations at
12293 all. Rather, in such cases we just call `decls_for_scope' so that any
12294 needed Dwarf info for any sub-blocks will get properly generated. Note
12295 that in terse mode, our definition of what constitutes a "significant"
12296 local declaration gets restricted to include only inlined function
12297 instances and local (nested) function definitions. */
12298 if (must_output_die)
12300 if (origin_code == FUNCTION_DECL)
12301 gen_inlined_subroutine_die (stmt, context_die, depth);
12302 else
12303 gen_lexical_block_die (stmt, context_die, depth);
12305 else
12306 decls_for_scope (stmt, context_die, depth);
12309 /* Generate all of the decls declared within a given scope and (recursively)
12310 all of its sub-blocks. */
12312 static void
12313 decls_for_scope (tree stmt, dw_die_ref context_die, int depth)
12315 tree decl;
12316 tree subblocks;
12318 /* Ignore blocks never really used to make RTL. */
12319 if (stmt == NULL_TREE || ! TREE_USED (stmt))
12320 return;
12322 /* Output the DIEs to represent all of the data objects and typedefs
12323 declared directly within this block but not within any nested
12324 sub-blocks. Also, nested function and tag DIEs have been
12325 generated with a parent of NULL; fix that up now. */
12326 for (decl = BLOCK_VARS (stmt); decl != NULL; decl = TREE_CHAIN (decl))
12328 dw_die_ref die;
12330 if (TREE_CODE (decl) == FUNCTION_DECL)
12331 die = lookup_decl_die (decl);
12332 else if (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl))
12333 die = lookup_type_die (TREE_TYPE (decl));
12334 else
12335 die = NULL;
12337 if (die != NULL && die->die_parent == NULL)
12338 add_child_die (context_die, die);
12339 else
12340 gen_decl_die (decl, context_die);
12343 /* If we're at -g1, we're not interested in subblocks. */
12344 if (debug_info_level <= DINFO_LEVEL_TERSE)
12345 return;
12347 /* Output the DIEs to represent all sub-blocks (and the items declared
12348 therein) of this block. */
12349 for (subblocks = BLOCK_SUBBLOCKS (stmt);
12350 subblocks != NULL;
12351 subblocks = BLOCK_CHAIN (subblocks))
12352 gen_block_die (subblocks, context_die, depth + 1);
12355 /* Is this a typedef we can avoid emitting? */
12357 static inline int
12358 is_redundant_typedef (tree decl)
12360 if (TYPE_DECL_IS_STUB (decl))
12361 return 1;
12363 if (DECL_ARTIFICIAL (decl)
12364 && DECL_CONTEXT (decl)
12365 && is_tagged_type (DECL_CONTEXT (decl))
12366 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
12367 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
12368 /* Also ignore the artificial member typedef for the class name. */
12369 return 1;
12371 return 0;
12374 /* Returns the DIE for decl or aborts. */
12376 static dw_die_ref
12377 force_decl_die (tree decl)
12379 dw_die_ref decl_die;
12380 unsigned saved_external_flag;
12381 tree save_fn = NULL_TREE;
12382 decl_die = lookup_decl_die (decl);
12383 if (!decl_die)
12385 dw_die_ref context_die;
12386 tree decl_context = DECL_CONTEXT (decl);
12387 if (decl_context)
12389 /* Find die that represents this context. */
12390 if (TYPE_P (decl_context))
12391 context_die = force_type_die (decl_context);
12392 else
12393 context_die = force_decl_die (decl_context);
12395 else
12396 context_die = comp_unit_die;
12398 switch (TREE_CODE (decl))
12400 case FUNCTION_DECL:
12401 /* Clear current_function_decl, so that gen_subprogram_die thinks
12402 that this is a declaration. At this point, we just want to force
12403 declaration die. */
12404 save_fn = current_function_decl;
12405 current_function_decl = NULL_TREE;
12406 gen_subprogram_die (decl, context_die);
12407 current_function_decl = save_fn;
12408 break;
12410 case VAR_DECL:
12411 /* Set external flag to force declaration die. Restore it after
12412 gen_decl_die() call. */
12413 saved_external_flag = DECL_EXTERNAL (decl);
12414 DECL_EXTERNAL (decl) = 1;
12415 gen_decl_die (decl, context_die);
12416 DECL_EXTERNAL (decl) = saved_external_flag;
12417 break;
12419 case NAMESPACE_DECL:
12420 dwarf2out_decl (decl);
12421 break;
12423 default:
12424 gcc_unreachable ();
12427 /* See if we can find the die for this deci now.
12428 If not then abort. */
12429 if (!decl_die)
12430 decl_die = lookup_decl_die (decl);
12431 gcc_assert (decl_die);
12434 return decl_die;
12437 /* Returns the DIE for decl or aborts. */
12439 static dw_die_ref
12440 force_type_die (tree type)
12442 dw_die_ref type_die;
12444 type_die = lookup_type_die (type);
12445 if (!type_die)
12447 dw_die_ref context_die;
12448 if (TYPE_CONTEXT (type))
12449 if (TYPE_P (TYPE_CONTEXT (type)))
12450 context_die = force_type_die (TYPE_CONTEXT (type));
12451 else
12452 context_die = force_decl_die (TYPE_CONTEXT (type));
12453 else
12454 context_die = comp_unit_die;
12456 gen_type_die (type, context_die);
12457 type_die = lookup_type_die (type);
12458 gcc_assert (type_die);
12460 return type_die;
12463 /* Force out any required namespaces to be able to output DECL,
12464 and return the new context_die for it, if it's changed. */
12466 static dw_die_ref
12467 setup_namespace_context (tree thing, dw_die_ref context_die)
12469 tree context = (DECL_P (thing)
12470 ? DECL_CONTEXT (thing) : TYPE_CONTEXT (thing));
12471 if (context && TREE_CODE (context) == NAMESPACE_DECL)
12472 /* Force out the namespace. */
12473 context_die = force_decl_die (context);
12475 return context_die;
12478 /* Emit a declaration DIE for THING (which is either a DECL or a tagged
12479 type) within its namespace, if appropriate.
12481 For compatibility with older debuggers, namespace DIEs only contain
12482 declarations; all definitions are emitted at CU scope. */
12484 static void
12485 declare_in_namespace (tree thing, dw_die_ref context_die)
12487 dw_die_ref ns_context;
12489 if (debug_info_level <= DINFO_LEVEL_TERSE)
12490 return;
12492 ns_context = setup_namespace_context (thing, context_die);
12494 if (ns_context != context_die)
12496 if (DECL_P (thing))
12497 gen_decl_die (thing, ns_context);
12498 else
12499 gen_type_die (thing, ns_context);
12503 /* Generate a DIE for a namespace or namespace alias. */
12505 static void
12506 gen_namespace_die (tree decl)
12508 dw_die_ref context_die = setup_namespace_context (decl, comp_unit_die);
12510 /* Namespace aliases have a DECL_ABSTRACT_ORIGIN of the namespace
12511 they are an alias of. */
12512 if (DECL_ABSTRACT_ORIGIN (decl) == NULL)
12514 /* Output a real namespace. */
12515 dw_die_ref namespace_die
12516 = new_die (DW_TAG_namespace, context_die, decl);
12517 add_name_and_src_coords_attributes (namespace_die, decl);
12518 equate_decl_number_to_die (decl, namespace_die);
12520 else
12522 /* Output a namespace alias. */
12524 /* Force out the namespace we are an alias of, if necessary. */
12525 dw_die_ref origin_die
12526 = force_decl_die (DECL_ABSTRACT_ORIGIN (decl));
12528 /* Now create the namespace alias DIE. */
12529 dw_die_ref namespace_die
12530 = new_die (DW_TAG_imported_declaration, context_die, decl);
12531 add_name_and_src_coords_attributes (namespace_die, decl);
12532 add_AT_die_ref (namespace_die, DW_AT_import, origin_die);
12533 equate_decl_number_to_die (decl, namespace_die);
12537 /* Generate Dwarf debug information for a decl described by DECL. */
12539 static void
12540 gen_decl_die (tree decl, dw_die_ref context_die)
12542 tree origin;
12544 if (DECL_P (decl) && DECL_IGNORED_P (decl))
12545 return;
12547 switch (TREE_CODE (decl))
12549 case ERROR_MARK:
12550 break;
12552 case CONST_DECL:
12553 /* The individual enumerators of an enum type get output when we output
12554 the Dwarf representation of the relevant enum type itself. */
12555 break;
12557 case FUNCTION_DECL:
12558 /* Don't output any DIEs to represent mere function declarations,
12559 unless they are class members or explicit block externs. */
12560 if (DECL_INITIAL (decl) == NULL_TREE && DECL_CONTEXT (decl) == NULL_TREE
12561 && (current_function_decl == NULL_TREE || DECL_ARTIFICIAL (decl)))
12562 break;
12564 #if 0
12565 /* FIXME */
12566 /* This doesn't work because the C frontend sets DECL_ABSTRACT_ORIGIN
12567 on local redeclarations of global functions. That seems broken. */
12568 if (current_function_decl != decl)
12569 /* This is only a declaration. */;
12570 #endif
12572 /* If we're emitting a clone, emit info for the abstract instance. */
12573 if (DECL_ORIGIN (decl) != decl)
12574 dwarf2out_abstract_function (DECL_ABSTRACT_ORIGIN (decl));
12576 /* If we're emitting an out-of-line copy of an inline function,
12577 emit info for the abstract instance and set up to refer to it. */
12578 else if (cgraph_function_possibly_inlined_p (decl)
12579 && ! DECL_ABSTRACT (decl)
12580 && ! class_or_namespace_scope_p (context_die)
12581 /* dwarf2out_abstract_function won't emit a die if this is just
12582 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
12583 that case, because that works only if we have a die. */
12584 && DECL_INITIAL (decl) != NULL_TREE)
12586 dwarf2out_abstract_function (decl);
12587 set_decl_origin_self (decl);
12590 /* Otherwise we're emitting the primary DIE for this decl. */
12591 else if (debug_info_level > DINFO_LEVEL_TERSE)
12593 /* Before we describe the FUNCTION_DECL itself, make sure that we
12594 have described its return type. */
12595 gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
12597 /* And its virtual context. */
12598 if (DECL_VINDEX (decl) != NULL_TREE)
12599 gen_type_die (DECL_CONTEXT (decl), context_die);
12601 /* And its containing type. */
12602 origin = decl_class_context (decl);
12603 if (origin != NULL_TREE)
12604 gen_type_die_for_member (origin, decl, context_die);
12606 /* And its containing namespace. */
12607 declare_in_namespace (decl, context_die);
12610 /* Now output a DIE to represent the function itself. */
12611 gen_subprogram_die (decl, context_die);
12612 break;
12614 case TYPE_DECL:
12615 /* If we are in terse mode, don't generate any DIEs to represent any
12616 actual typedefs. */
12617 if (debug_info_level <= DINFO_LEVEL_TERSE)
12618 break;
12620 /* In the special case of a TYPE_DECL node representing the declaration
12621 of some type tag, if the given TYPE_DECL is marked as having been
12622 instantiated from some other (original) TYPE_DECL node (e.g. one which
12623 was generated within the original definition of an inline function) we
12624 have to generate a special (abbreviated) DW_TAG_structure_type,
12625 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here. */
12626 if (TYPE_DECL_IS_STUB (decl) && decl_ultimate_origin (decl) != NULL_TREE)
12628 gen_tagged_type_instantiation_die (TREE_TYPE (decl), context_die);
12629 break;
12632 if (is_redundant_typedef (decl))
12633 gen_type_die (TREE_TYPE (decl), context_die);
12634 else
12635 /* Output a DIE to represent the typedef itself. */
12636 gen_typedef_die (decl, context_die);
12637 break;
12639 case LABEL_DECL:
12640 if (debug_info_level >= DINFO_LEVEL_NORMAL)
12641 gen_label_die (decl, context_die);
12642 break;
12644 case VAR_DECL:
12645 case RESULT_DECL:
12646 /* If we are in terse mode, don't generate any DIEs to represent any
12647 variable declarations or definitions. */
12648 if (debug_info_level <= DINFO_LEVEL_TERSE)
12649 break;
12651 /* Output any DIEs that are needed to specify the type of this data
12652 object. */
12653 gen_type_die (TREE_TYPE (decl), context_die);
12655 /* And its containing type. */
12656 origin = decl_class_context (decl);
12657 if (origin != NULL_TREE)
12658 gen_type_die_for_member (origin, decl, context_die);
12660 /* And its containing namespace. */
12661 declare_in_namespace (decl, context_die);
12663 /* Now output the DIE to represent the data object itself. This gets
12664 complicated because of the possibility that the VAR_DECL really
12665 represents an inlined instance of a formal parameter for an inline
12666 function. */
12667 origin = decl_ultimate_origin (decl);
12668 if (origin != NULL_TREE && TREE_CODE (origin) == PARM_DECL)
12669 gen_formal_parameter_die (decl, context_die);
12670 else
12671 gen_variable_die (decl, context_die);
12672 break;
12674 case FIELD_DECL:
12675 /* Ignore the nameless fields that are used to skip bits but handle C++
12676 anonymous unions and structs. */
12677 if (DECL_NAME (decl) != NULL_TREE
12678 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
12679 || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE)
12681 gen_type_die (member_declared_type (decl), context_die);
12682 gen_field_die (decl, context_die);
12684 break;
12686 case PARM_DECL:
12687 gen_type_die (TREE_TYPE (decl), context_die);
12688 gen_formal_parameter_die (decl, context_die);
12689 break;
12691 case NAMESPACE_DECL:
12692 gen_namespace_die (decl);
12693 break;
12695 default:
12696 /* Probably some frontend-internal decl. Assume we don't care. */
12697 gcc_assert ((int)TREE_CODE (decl) > NUM_TREE_CODES);
12698 break;
12702 /* Add Ada "use" clause information for SGI Workshop debugger. */
12704 void
12705 dwarf2out_add_library_unit_info (const char *filename, const char *context_list)
12707 unsigned int file_index;
12709 if (filename != NULL)
12711 dw_die_ref unit_die = new_die (DW_TAG_module, comp_unit_die, NULL);
12712 tree context_list_decl
12713 = build_decl (LABEL_DECL, get_identifier (context_list),
12714 void_type_node);
12716 TREE_PUBLIC (context_list_decl) = TRUE;
12717 add_name_attribute (unit_die, context_list);
12718 file_index = lookup_filename (filename);
12719 add_AT_unsigned (unit_die, DW_AT_decl_file, file_index);
12720 add_pubname (context_list_decl, unit_die);
12724 /* Output debug information for global decl DECL. Called from toplev.c after
12725 compilation proper has finished. */
12727 static void
12728 dwarf2out_global_decl (tree decl)
12730 /* Output DWARF2 information for file-scope tentative data object
12731 declarations, file-scope (extern) function declarations (which had no
12732 corresponding body) and file-scope tagged type declarations and
12733 definitions which have not yet been forced out. */
12734 if (TREE_CODE (decl) != FUNCTION_DECL || !DECL_INITIAL (decl))
12735 dwarf2out_decl (decl);
12738 /* Output debug information for type decl DECL. Called from toplev.c
12739 and from language front ends (to record built-in types). */
12740 static void
12741 dwarf2out_type_decl (tree decl, int local)
12743 if (!local)
12744 dwarf2out_decl (decl);
12747 /* Output debug information for imported module or decl. */
12749 static void
12750 dwarf2out_imported_module_or_decl (tree decl, tree context)
12752 dw_die_ref imported_die, at_import_die;
12753 dw_die_ref scope_die;
12754 unsigned file_index;
12755 expanded_location xloc;
12757 if (debug_info_level <= DINFO_LEVEL_TERSE)
12758 return;
12760 gcc_assert (decl);
12762 /* To emit DW_TAG_imported_module or DW_TAG_imported_decl, we need two DIEs.
12763 We need decl DIE for reference and scope die. First, get DIE for the decl
12764 itself. */
12766 /* Get the scope die for decl context. Use comp_unit_die for global module
12767 or decl. If die is not found for non globals, force new die. */
12768 if (!context)
12769 scope_die = comp_unit_die;
12770 else if (TYPE_P (context))
12771 scope_die = force_type_die (context);
12772 else
12773 scope_die = force_decl_die (context);
12775 /* For TYPE_DECL or CONST_DECL, lookup TREE_TYPE. */
12776 if (TREE_CODE (decl) == TYPE_DECL || TREE_CODE (decl) == CONST_DECL)
12777 at_import_die = force_type_die (TREE_TYPE (decl));
12778 else
12779 at_import_die = force_decl_die (decl);
12781 /* OK, now we have DIEs for decl as well as scope. Emit imported die. */
12782 if (TREE_CODE (decl) == NAMESPACE_DECL)
12783 imported_die = new_die (DW_TAG_imported_module, scope_die, context);
12784 else
12785 imported_die = new_die (DW_TAG_imported_declaration, scope_die, context);
12787 xloc = expand_location (input_location);
12788 file_index = lookup_filename (xloc.file);
12789 add_AT_unsigned (imported_die, DW_AT_decl_file, file_index);
12790 add_AT_unsigned (imported_die, DW_AT_decl_line, xloc.line);
12791 add_AT_die_ref (imported_die, DW_AT_import, at_import_die);
12794 /* Write the debugging output for DECL. */
12796 void
12797 dwarf2out_decl (tree decl)
12799 dw_die_ref context_die = comp_unit_die;
12801 switch (TREE_CODE (decl))
12803 case ERROR_MARK:
12804 return;
12806 case FUNCTION_DECL:
12807 /* What we would really like to do here is to filter out all mere
12808 file-scope declarations of file-scope functions which are never
12809 referenced later within this translation unit (and keep all of ones
12810 that *are* referenced later on) but we aren't clairvoyant, so we have
12811 no idea which functions will be referenced in the future (i.e. later
12812 on within the current translation unit). So here we just ignore all
12813 file-scope function declarations which are not also definitions. If
12814 and when the debugger needs to know something about these functions,
12815 it will have to hunt around and find the DWARF information associated
12816 with the definition of the function.
12818 We can't just check DECL_EXTERNAL to find out which FUNCTION_DECL
12819 nodes represent definitions and which ones represent mere
12820 declarations. We have to check DECL_INITIAL instead. That's because
12821 the C front-end supports some weird semantics for "extern inline"
12822 function definitions. These can get inlined within the current
12823 translation unit (an thus, we need to generate Dwarf info for their
12824 abstract instances so that the Dwarf info for the concrete inlined
12825 instances can have something to refer to) but the compiler never
12826 generates any out-of-lines instances of such things (despite the fact
12827 that they *are* definitions).
12829 The important point is that the C front-end marks these "extern
12830 inline" functions as DECL_EXTERNAL, but we need to generate DWARF for
12831 them anyway. Note that the C++ front-end also plays some similar games
12832 for inline function definitions appearing within include files which
12833 also contain `#pragma interface' pragmas. */
12834 if (DECL_INITIAL (decl) == NULL_TREE)
12835 return;
12837 /* If we're a nested function, initially use a parent of NULL; if we're
12838 a plain function, this will be fixed up in decls_for_scope. If
12839 we're a method, it will be ignored, since we already have a DIE. */
12840 if (decl_function_context (decl)
12841 /* But if we're in terse mode, we don't care about scope. */
12842 && debug_info_level > DINFO_LEVEL_TERSE)
12843 context_die = NULL;
12844 break;
12846 case VAR_DECL:
12847 /* Ignore this VAR_DECL if it refers to a file-scope extern data object
12848 declaration and if the declaration was never even referenced from
12849 within this entire compilation unit. We suppress these DIEs in
12850 order to save space in the .debug section (by eliminating entries
12851 which are probably useless). Note that we must not suppress
12852 block-local extern declarations (whether used or not) because that
12853 would screw-up the debugger's name lookup mechanism and cause it to
12854 miss things which really ought to be in scope at a given point. */
12855 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
12856 return;
12858 /* If we are in terse mode, don't generate any DIEs to represent any
12859 variable declarations or definitions. */
12860 if (debug_info_level <= DINFO_LEVEL_TERSE)
12861 return;
12862 break;
12864 case NAMESPACE_DECL:
12865 if (debug_info_level <= DINFO_LEVEL_TERSE)
12866 return;
12867 if (lookup_decl_die (decl) != NULL)
12868 return;
12869 break;
12871 case TYPE_DECL:
12872 /* Don't emit stubs for types unless they are needed by other DIEs. */
12873 if (TYPE_DECL_SUPPRESS_DEBUG (decl))
12874 return;
12876 /* Don't bother trying to generate any DIEs to represent any of the
12877 normal built-in types for the language we are compiling. */
12878 if (DECL_IS_BUILTIN (decl))
12880 /* OK, we need to generate one for `bool' so GDB knows what type
12881 comparisons have. */
12882 if ((get_AT_unsigned (comp_unit_die, DW_AT_language)
12883 == DW_LANG_C_plus_plus)
12884 && TREE_CODE (TREE_TYPE (decl)) == BOOLEAN_TYPE
12885 && ! DECL_IGNORED_P (decl))
12886 modified_type_die (TREE_TYPE (decl), 0, 0, NULL);
12888 return;
12891 /* If we are in terse mode, don't generate any DIEs for types. */
12892 if (debug_info_level <= DINFO_LEVEL_TERSE)
12893 return;
12895 /* If we're a function-scope tag, initially use a parent of NULL;
12896 this will be fixed up in decls_for_scope. */
12897 if (decl_function_context (decl))
12898 context_die = NULL;
12900 break;
12902 default:
12903 return;
12906 gen_decl_die (decl, context_die);
12909 /* Output a marker (i.e. a label) for the beginning of the generated code for
12910 a lexical block. */
12912 static void
12913 dwarf2out_begin_block (unsigned int line ATTRIBUTE_UNUSED,
12914 unsigned int blocknum)
12916 function_section (current_function_decl);
12917 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_BEGIN_LABEL, blocknum);
12920 /* Output a marker (i.e. a label) for the end of the generated code for a
12921 lexical block. */
12923 static void
12924 dwarf2out_end_block (unsigned int line ATTRIBUTE_UNUSED, unsigned int blocknum)
12926 function_section (current_function_decl);
12927 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_END_LABEL, blocknum);
12930 /* Returns nonzero if it is appropriate not to emit any debugging
12931 information for BLOCK, because it doesn't contain any instructions.
12933 Don't allow this for blocks with nested functions or local classes
12934 as we would end up with orphans, and in the presence of scheduling
12935 we may end up calling them anyway. */
12937 static bool
12938 dwarf2out_ignore_block (tree block)
12940 tree decl;
12942 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
12943 if (TREE_CODE (decl) == FUNCTION_DECL
12944 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
12945 return 0;
12947 return 1;
12950 /* Lookup FILE_NAME (in the list of filenames that we know about here in
12951 dwarf2out.c) and return its "index". The index of each (known) filename is
12952 just a unique number which is associated with only that one filename. We
12953 need such numbers for the sake of generating labels (in the .debug_sfnames
12954 section) and references to those files numbers (in the .debug_srcinfo
12955 and.debug_macinfo sections). If the filename given as an argument is not
12956 found in our current list, add it to the list and assign it the next
12957 available unique index number. In order to speed up searches, we remember
12958 the index of the filename was looked up last. This handles the majority of
12959 all searches. */
12961 static unsigned
12962 lookup_filename (const char *file_name)
12964 size_t i, n;
12965 char *save_file_name;
12967 /* Check to see if the file name that was searched on the previous
12968 call matches this file name. If so, return the index. */
12969 if (file_table_last_lookup_index != 0)
12971 const char *last
12972 = VARRAY_CHAR_PTR (file_table, file_table_last_lookup_index);
12973 if (strcmp (file_name, last) == 0)
12974 return file_table_last_lookup_index;
12977 /* Didn't match the previous lookup, search the table. */
12978 n = VARRAY_ACTIVE_SIZE (file_table);
12979 for (i = 1; i < n; i++)
12980 if (strcmp (file_name, VARRAY_CHAR_PTR (file_table, i)) == 0)
12982 file_table_last_lookup_index = i;
12983 return i;
12986 /* Add the new entry to the end of the filename table. */
12987 file_table_last_lookup_index = n;
12988 save_file_name = (char *) ggc_strdup (file_name);
12989 VARRAY_PUSH_CHAR_PTR (file_table, save_file_name);
12990 VARRAY_PUSH_UINT (file_table_emitted, 0);
12992 return i;
12995 static int
12996 maybe_emit_file (int fileno)
12998 if (DWARF2_ASM_LINE_DEBUG_INFO && fileno > 0)
13000 if (!VARRAY_UINT (file_table_emitted, fileno))
13002 VARRAY_UINT (file_table_emitted, fileno) = ++emitcount;
13003 fprintf (asm_out_file, "\t.file %u ",
13004 VARRAY_UINT (file_table_emitted, fileno));
13005 output_quoted_string (asm_out_file,
13006 VARRAY_CHAR_PTR (file_table, fileno));
13007 fputc ('\n', asm_out_file);
13009 return VARRAY_UINT (file_table_emitted, fileno);
13011 else
13012 return fileno;
13015 static void
13016 init_file_table (void)
13018 /* Allocate the initial hunk of the file_table. */
13019 VARRAY_CHAR_PTR_INIT (file_table, 64, "file_table");
13020 VARRAY_UINT_INIT (file_table_emitted, 64, "file_table_emitted");
13022 /* Skip the first entry - file numbers begin at 1. */
13023 VARRAY_PUSH_CHAR_PTR (file_table, NULL);
13024 VARRAY_PUSH_UINT (file_table_emitted, 0);
13025 file_table_last_lookup_index = 0;
13028 /* Called by the final INSN scan whenever we see a var location. We
13029 use it to drop labels in the right places, and throw the location in
13030 our lookup table. */
13032 static void
13033 dwarf2out_var_location (rtx loc_note)
13035 char loclabel[MAX_ARTIFICIAL_LABEL_BYTES];
13036 struct var_loc_node *newloc;
13037 rtx prev_insn;
13038 static rtx last_insn;
13039 static const char *last_label;
13040 tree decl;
13042 if (!DECL_P (NOTE_VAR_LOCATION_DECL (loc_note)))
13043 return;
13044 prev_insn = PREV_INSN (loc_note);
13046 newloc = ggc_alloc_cleared (sizeof (struct var_loc_node));
13047 /* If the insn we processed last time is the previous insn
13048 and it is also a var location note, use the label we emitted
13049 last time. */
13050 if (last_insn != NULL_RTX
13051 && last_insn == prev_insn
13052 && NOTE_P (prev_insn)
13053 && NOTE_LINE_NUMBER (prev_insn) == NOTE_INSN_VAR_LOCATION)
13055 newloc->label = last_label;
13057 else
13059 ASM_GENERATE_INTERNAL_LABEL (loclabel, "LVL", loclabel_num);
13060 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LVL", loclabel_num);
13061 loclabel_num++;
13062 newloc->label = ggc_strdup (loclabel);
13064 newloc->var_loc_note = loc_note;
13065 newloc->next = NULL;
13067 last_insn = loc_note;
13068 last_label = newloc->label;
13069 decl = NOTE_VAR_LOCATION_DECL (loc_note);
13070 if (DECL_DEBUG_ALIAS_OF (decl))
13071 decl = DECL_DEBUG_ALIAS_OF (decl);
13072 add_var_loc_to_decl (decl, newloc);
13075 /* We need to reset the locations at the beginning of each
13076 function. We can't do this in the end_function hook, because the
13077 declarations that use the locations won't have been outputted when
13078 that hook is called. */
13080 static void
13081 dwarf2out_begin_function (tree unused ATTRIBUTE_UNUSED)
13083 htab_empty (decl_loc_table);
13086 /* Output a label to mark the beginning of a source code line entry
13087 and record information relating to this source line, in
13088 'line_info_table' for later output of the .debug_line section. */
13090 static void
13091 dwarf2out_source_line (unsigned int line, const char *filename)
13093 if (debug_info_level >= DINFO_LEVEL_NORMAL
13094 && line != 0)
13096 function_section (current_function_decl);
13098 /* If requested, emit something human-readable. */
13099 if (flag_debug_asm)
13100 fprintf (asm_out_file, "\t%s %s:%d\n", ASM_COMMENT_START,
13101 filename, line);
13103 if (DWARF2_ASM_LINE_DEBUG_INFO)
13105 unsigned file_num = lookup_filename (filename);
13107 file_num = maybe_emit_file (file_num);
13109 /* Emit the .loc directive understood by GNU as. */
13110 fprintf (asm_out_file, "\t.loc %d %d 0\n", file_num, line);
13112 /* Indicate that line number info exists. */
13113 line_info_table_in_use++;
13115 /* Indicate that multiple line number tables exist. */
13116 if (DECL_SECTION_NAME (current_function_decl))
13117 separate_line_info_table_in_use++;
13119 else if (DECL_SECTION_NAME (current_function_decl))
13121 dw_separate_line_info_ref line_info;
13122 targetm.asm_out.internal_label (asm_out_file, SEPARATE_LINE_CODE_LABEL,
13123 separate_line_info_table_in_use);
13125 /* Expand the line info table if necessary. */
13126 if (separate_line_info_table_in_use
13127 == separate_line_info_table_allocated)
13129 separate_line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
13130 separate_line_info_table
13131 = ggc_realloc (separate_line_info_table,
13132 separate_line_info_table_allocated
13133 * sizeof (dw_separate_line_info_entry));
13134 memset (separate_line_info_table
13135 + separate_line_info_table_in_use,
13137 (LINE_INFO_TABLE_INCREMENT
13138 * sizeof (dw_separate_line_info_entry)));
13141 /* Add the new entry at the end of the line_info_table. */
13142 line_info
13143 = &separate_line_info_table[separate_line_info_table_in_use++];
13144 line_info->dw_file_num = lookup_filename (filename);
13145 line_info->dw_line_num = line;
13146 line_info->function = current_function_funcdef_no;
13148 else
13150 dw_line_info_ref line_info;
13152 targetm.asm_out.internal_label (asm_out_file, LINE_CODE_LABEL,
13153 line_info_table_in_use);
13155 /* Expand the line info table if necessary. */
13156 if (line_info_table_in_use == line_info_table_allocated)
13158 line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
13159 line_info_table
13160 = ggc_realloc (line_info_table,
13161 (line_info_table_allocated
13162 * sizeof (dw_line_info_entry)));
13163 memset (line_info_table + line_info_table_in_use, 0,
13164 LINE_INFO_TABLE_INCREMENT * sizeof (dw_line_info_entry));
13167 /* Add the new entry at the end of the line_info_table. */
13168 line_info = &line_info_table[line_info_table_in_use++];
13169 line_info->dw_file_num = lookup_filename (filename);
13170 line_info->dw_line_num = line;
13175 /* Record the beginning of a new source file. */
13177 static void
13178 dwarf2out_start_source_file (unsigned int lineno, const char *filename)
13180 if (flag_eliminate_dwarf2_dups)
13182 /* Record the beginning of the file for break_out_includes. */
13183 dw_die_ref bincl_die;
13185 bincl_die = new_die (DW_TAG_GNU_BINCL, comp_unit_die, NULL);
13186 add_AT_string (bincl_die, DW_AT_name, filename);
13189 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13191 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13192 dw2_asm_output_data (1, DW_MACINFO_start_file, "Start new file");
13193 dw2_asm_output_data_uleb128 (lineno, "Included from line number %d",
13194 lineno);
13195 maybe_emit_file (lookup_filename (filename));
13196 dw2_asm_output_data_uleb128 (lookup_filename (filename),
13197 "Filename we just started");
13201 /* Record the end of a source file. */
13203 static void
13204 dwarf2out_end_source_file (unsigned int lineno ATTRIBUTE_UNUSED)
13206 if (flag_eliminate_dwarf2_dups)
13207 /* Record the end of the file for break_out_includes. */
13208 new_die (DW_TAG_GNU_EINCL, comp_unit_die, NULL);
13210 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13212 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13213 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
13217 /* Called from debug_define in toplev.c. The `buffer' parameter contains
13218 the tail part of the directive line, i.e. the part which is past the
13219 initial whitespace, #, whitespace, directive-name, whitespace part. */
13221 static void
13222 dwarf2out_define (unsigned int lineno ATTRIBUTE_UNUSED,
13223 const char *buffer ATTRIBUTE_UNUSED)
13225 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13227 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13228 dw2_asm_output_data (1, DW_MACINFO_define, "Define macro");
13229 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
13230 dw2_asm_output_nstring (buffer, -1, "The macro");
13234 /* Called from debug_undef in toplev.c. The `buffer' parameter contains
13235 the tail part of the directive line, i.e. the part which is past the
13236 initial whitespace, #, whitespace, directive-name, whitespace part. */
13238 static void
13239 dwarf2out_undef (unsigned int lineno ATTRIBUTE_UNUSED,
13240 const char *buffer ATTRIBUTE_UNUSED)
13242 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13244 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13245 dw2_asm_output_data (1, DW_MACINFO_undef, "Undefine macro");
13246 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
13247 dw2_asm_output_nstring (buffer, -1, "The macro");
13251 /* Set up for Dwarf output at the start of compilation. */
13253 static void
13254 dwarf2out_init (const char *filename ATTRIBUTE_UNUSED)
13256 init_file_table ();
13258 /* Allocate the decl_die_table. */
13259 decl_die_table = htab_create_ggc (10, decl_die_table_hash,
13260 decl_die_table_eq, NULL);
13262 /* Allocate the decl_loc_table. */
13263 decl_loc_table = htab_create_ggc (10, decl_loc_table_hash,
13264 decl_loc_table_eq, NULL);
13266 /* Allocate the initial hunk of the decl_scope_table. */
13267 VARRAY_TREE_INIT (decl_scope_table, 256, "decl_scope_table");
13269 /* Allocate the initial hunk of the abbrev_die_table. */
13270 abbrev_die_table = ggc_alloc_cleared (ABBREV_DIE_TABLE_INCREMENT
13271 * sizeof (dw_die_ref));
13272 abbrev_die_table_allocated = ABBREV_DIE_TABLE_INCREMENT;
13273 /* Zero-th entry is allocated, but unused. */
13274 abbrev_die_table_in_use = 1;
13276 /* Allocate the initial hunk of the line_info_table. */
13277 line_info_table = ggc_alloc_cleared (LINE_INFO_TABLE_INCREMENT
13278 * sizeof (dw_line_info_entry));
13279 line_info_table_allocated = LINE_INFO_TABLE_INCREMENT;
13281 /* Zero-th entry is allocated, but unused. */
13282 line_info_table_in_use = 1;
13284 /* Generate the initial DIE for the .debug section. Note that the (string)
13285 value given in the DW_AT_name attribute of the DW_TAG_compile_unit DIE
13286 will (typically) be a relative pathname and that this pathname should be
13287 taken as being relative to the directory from which the compiler was
13288 invoked when the given (base) source file was compiled. We will fill
13289 in this value in dwarf2out_finish. */
13290 comp_unit_die = gen_compile_unit_die (NULL);
13292 VARRAY_TREE_INIT (incomplete_types, 64, "incomplete_types");
13294 VARRAY_RTX_INIT (used_rtx_varray, 32, "used_rtx_varray");
13296 ASM_GENERATE_INTERNAL_LABEL (text_end_label, TEXT_END_LABEL, 0);
13297 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label,
13298 DEBUG_ABBREV_SECTION_LABEL, 0);
13299 ASM_GENERATE_INTERNAL_LABEL (text_section_label, TEXT_SECTION_LABEL, 0);
13301 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label,
13302 DEBUG_INFO_SECTION_LABEL, 0);
13303 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label,
13304 DEBUG_LINE_SECTION_LABEL, 0);
13305 ASM_GENERATE_INTERNAL_LABEL (ranges_section_label,
13306 DEBUG_RANGES_SECTION_LABEL, 0);
13307 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
13308 ASM_OUTPUT_LABEL (asm_out_file, abbrev_section_label);
13309 named_section_flags (DEBUG_INFO_SECTION, SECTION_DEBUG);
13310 ASM_OUTPUT_LABEL (asm_out_file, debug_info_section_label);
13311 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
13312 ASM_OUTPUT_LABEL (asm_out_file, debug_line_section_label);
13314 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13316 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13317 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label,
13318 DEBUG_MACINFO_SECTION_LABEL, 0);
13319 ASM_OUTPUT_LABEL (asm_out_file, macinfo_section_label);
13322 text_section ();
13323 ASM_OUTPUT_LABEL (asm_out_file, text_section_label);
13326 /* A helper function for dwarf2out_finish called through
13327 ht_forall. Emit one queued .debug_str string. */
13329 static int
13330 output_indirect_string (void **h, void *v ATTRIBUTE_UNUSED)
13332 struct indirect_string_node *node = (struct indirect_string_node *) *h;
13334 if (node->form == DW_FORM_strp)
13336 named_section_flags (DEBUG_STR_SECTION, DEBUG_STR_SECTION_FLAGS);
13337 ASM_OUTPUT_LABEL (asm_out_file, node->label);
13338 assemble_string (node->str, strlen (node->str) + 1);
13341 return 1;
13346 /* Clear the marks for a die and its children.
13347 Be cool if the mark isn't set. */
13349 static void
13350 prune_unmark_dies (dw_die_ref die)
13352 dw_die_ref c;
13353 die->die_mark = 0;
13354 for (c = die->die_child; c; c = c->die_sib)
13355 prune_unmark_dies (c);
13359 /* Given DIE that we're marking as used, find any other dies
13360 it references as attributes and mark them as used. */
13362 static void
13363 prune_unused_types_walk_attribs (dw_die_ref die)
13365 dw_attr_ref a;
13367 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
13369 if (a->dw_attr_val.val_class == dw_val_class_die_ref)
13371 /* A reference to another DIE.
13372 Make sure that it will get emitted. */
13373 prune_unused_types_mark (a->dw_attr_val.v.val_die_ref.die, 1);
13375 else if (a->dw_attr == DW_AT_decl_file)
13377 /* A reference to a file. Make sure the file name is emitted. */
13378 a->dw_attr_val.v.val_unsigned =
13379 maybe_emit_file (a->dw_attr_val.v.val_unsigned);
13385 /* Mark DIE as being used. If DOKIDS is true, then walk down
13386 to DIE's children. */
13388 static void
13389 prune_unused_types_mark (dw_die_ref die, int dokids)
13391 dw_die_ref c;
13393 if (die->die_mark == 0)
13395 /* We haven't done this node yet. Mark it as used. */
13396 die->die_mark = 1;
13398 /* We also have to mark its parents as used.
13399 (But we don't want to mark our parents' kids due to this.) */
13400 if (die->die_parent)
13401 prune_unused_types_mark (die->die_parent, 0);
13403 /* Mark any referenced nodes. */
13404 prune_unused_types_walk_attribs (die);
13406 /* If this node is a specification,
13407 also mark the definition, if it exists. */
13408 if (get_AT_flag (die, DW_AT_declaration) && die->die_definition)
13409 prune_unused_types_mark (die->die_definition, 1);
13412 if (dokids && die->die_mark != 2)
13414 /* We need to walk the children, but haven't done so yet.
13415 Remember that we've walked the kids. */
13416 die->die_mark = 2;
13418 /* Walk them. */
13419 for (c = die->die_child; c; c = c->die_sib)
13421 /* If this is an array type, we need to make sure our
13422 kids get marked, even if they're types. */
13423 if (die->die_tag == DW_TAG_array_type)
13424 prune_unused_types_mark (c, 1);
13425 else
13426 prune_unused_types_walk (c);
13432 /* Walk the tree DIE and mark types that we actually use. */
13434 static void
13435 prune_unused_types_walk (dw_die_ref die)
13437 dw_die_ref c;
13439 /* Don't do anything if this node is already marked. */
13440 if (die->die_mark)
13441 return;
13443 switch (die->die_tag) {
13444 case DW_TAG_const_type:
13445 case DW_TAG_packed_type:
13446 case DW_TAG_pointer_type:
13447 case DW_TAG_reference_type:
13448 case DW_TAG_volatile_type:
13449 case DW_TAG_typedef:
13450 case DW_TAG_array_type:
13451 case DW_TAG_structure_type:
13452 case DW_TAG_union_type:
13453 case DW_TAG_class_type:
13454 case DW_TAG_friend:
13455 case DW_TAG_variant_part:
13456 case DW_TAG_enumeration_type:
13457 case DW_TAG_subroutine_type:
13458 case DW_TAG_string_type:
13459 case DW_TAG_set_type:
13460 case DW_TAG_subrange_type:
13461 case DW_TAG_ptr_to_member_type:
13462 case DW_TAG_file_type:
13463 /* It's a type node --- don't mark it. */
13464 return;
13466 default:
13467 /* Mark everything else. */
13468 break;
13471 die->die_mark = 1;
13473 /* Now, mark any dies referenced from here. */
13474 prune_unused_types_walk_attribs (die);
13476 /* Mark children. */
13477 for (c = die->die_child; c; c = c->die_sib)
13478 prune_unused_types_walk (c);
13482 /* Remove from the tree DIE any dies that aren't marked. */
13484 static void
13485 prune_unused_types_prune (dw_die_ref die)
13487 dw_die_ref c, p, n;
13489 gcc_assert (die->die_mark);
13491 p = NULL;
13492 for (c = die->die_child; c; c = n)
13494 n = c->die_sib;
13495 if (c->die_mark)
13497 prune_unused_types_prune (c);
13498 p = c;
13500 else
13502 if (p)
13503 p->die_sib = n;
13504 else
13505 die->die_child = n;
13506 free_die (c);
13512 /* Remove dies representing declarations that we never use. */
13514 static void
13515 prune_unused_types (void)
13517 unsigned int i;
13518 limbo_die_node *node;
13520 /* Clear all the marks. */
13521 prune_unmark_dies (comp_unit_die);
13522 for (node = limbo_die_list; node; node = node->next)
13523 prune_unmark_dies (node->die);
13525 /* Set the mark on nodes that are actually used. */
13526 prune_unused_types_walk (comp_unit_die);
13527 for (node = limbo_die_list; node; node = node->next)
13528 prune_unused_types_walk (node->die);
13530 /* Also set the mark on nodes referenced from the
13531 pubname_table or arange_table. */
13532 for (i = 0; i < pubname_table_in_use; i++)
13533 prune_unused_types_mark (pubname_table[i].die, 1);
13534 for (i = 0; i < arange_table_in_use; i++)
13535 prune_unused_types_mark (arange_table[i], 1);
13537 /* Get rid of nodes that aren't marked. */
13538 prune_unused_types_prune (comp_unit_die);
13539 for (node = limbo_die_list; node; node = node->next)
13540 prune_unused_types_prune (node->die);
13542 /* Leave the marks clear. */
13543 prune_unmark_dies (comp_unit_die);
13544 for (node = limbo_die_list; node; node = node->next)
13545 prune_unmark_dies (node->die);
13548 /* Output stuff that dwarf requires at the end of every file,
13549 and generate the DWARF-2 debugging info. */
13551 static void
13552 dwarf2out_finish (const char *filename)
13554 limbo_die_node *node, *next_node;
13555 dw_die_ref die = 0;
13557 /* Add the name for the main input file now. We delayed this from
13558 dwarf2out_init to avoid complications with PCH. */
13559 add_name_attribute (comp_unit_die, filename);
13560 if (filename[0] != DIR_SEPARATOR)
13561 add_comp_dir_attribute (comp_unit_die);
13562 else if (get_AT (comp_unit_die, DW_AT_comp_dir) == NULL)
13564 size_t i;
13565 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
13566 if (VARRAY_CHAR_PTR (file_table, i)[0] != DIR_SEPARATOR
13567 /* Don't add cwd for <built-in>. */
13568 && VARRAY_CHAR_PTR (file_table, i)[0] != '<')
13570 add_comp_dir_attribute (comp_unit_die);
13571 break;
13575 /* Traverse the limbo die list, and add parent/child links. The only
13576 dies without parents that should be here are concrete instances of
13577 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
13578 For concrete instances, we can get the parent die from the abstract
13579 instance. */
13580 for (node = limbo_die_list; node; node = next_node)
13582 next_node = node->next;
13583 die = node->die;
13585 if (die->die_parent == NULL)
13587 dw_die_ref origin = get_AT_ref (die, DW_AT_abstract_origin);
13589 if (origin)
13590 add_child_die (origin->die_parent, die);
13591 else if (die == comp_unit_die)
13593 else if (errorcount > 0 || sorrycount > 0)
13594 /* It's OK to be confused by errors in the input. */
13595 add_child_die (comp_unit_die, die);
13596 else
13598 /* In certain situations, the lexical block containing a
13599 nested function can be optimized away, which results
13600 in the nested function die being orphaned. Likewise
13601 with the return type of that nested function. Force
13602 this to be a child of the containing function.
13604 It may happen that even the containing function got fully
13605 inlined and optimized out. In that case we are lost and
13606 assign the empty child. This should not be big issue as
13607 the function is likely unreachable too. */
13608 tree context = NULL_TREE;
13610 gcc_assert (node->created_for);
13612 if (DECL_P (node->created_for))
13613 context = DECL_CONTEXT (node->created_for);
13614 else if (TYPE_P (node->created_for))
13615 context = TYPE_CONTEXT (node->created_for);
13617 gcc_assert (context && TREE_CODE (context) == FUNCTION_DECL);
13619 origin = lookup_decl_die (context);
13620 if (origin)
13621 add_child_die (origin, die);
13622 else
13623 add_child_die (comp_unit_die, die);
13628 limbo_die_list = NULL;
13630 /* Walk through the list of incomplete types again, trying once more to
13631 emit full debugging info for them. */
13632 retry_incomplete_types ();
13634 /* We need to reverse all the dies before break_out_includes, or
13635 we'll see the end of an include file before the beginning. */
13636 reverse_all_dies (comp_unit_die);
13638 if (flag_eliminate_unused_debug_types)
13639 prune_unused_types ();
13641 /* Generate separate CUs for each of the include files we've seen.
13642 They will go into limbo_die_list. */
13643 if (flag_eliminate_dwarf2_dups)
13644 break_out_includes (comp_unit_die);
13646 /* Traverse the DIE's and add add sibling attributes to those DIE's
13647 that have children. */
13648 add_sibling_attributes (comp_unit_die);
13649 for (node = limbo_die_list; node; node = node->next)
13650 add_sibling_attributes (node->die);
13652 /* Output a terminator label for the .text section. */
13653 text_section ();
13654 targetm.asm_out.internal_label (asm_out_file, TEXT_END_LABEL, 0);
13656 /* Output the source line correspondence table. We must do this
13657 even if there is no line information. Otherwise, on an empty
13658 translation unit, we will generate a present, but empty,
13659 .debug_info section. IRIX 6.5 `nm' will then complain when
13660 examining the file. */
13661 if (! DWARF2_ASM_LINE_DEBUG_INFO)
13663 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
13664 output_line_info ();
13667 /* Output location list section if necessary. */
13668 if (have_location_lists)
13670 /* Output the location lists info. */
13671 named_section_flags (DEBUG_LOC_SECTION, SECTION_DEBUG);
13672 ASM_GENERATE_INTERNAL_LABEL (loc_section_label,
13673 DEBUG_LOC_SECTION_LABEL, 0);
13674 ASM_OUTPUT_LABEL (asm_out_file, loc_section_label);
13675 output_location_lists (die);
13676 have_location_lists = 0;
13679 /* We can only use the low/high_pc attributes if all of the code was
13680 in .text. */
13681 if (separate_line_info_table_in_use == 0)
13683 add_AT_lbl_id (comp_unit_die, DW_AT_low_pc, text_section_label);
13684 add_AT_lbl_id (comp_unit_die, DW_AT_high_pc, text_end_label);
13687 /* If it wasn't, we need to give .debug_loc and .debug_ranges an appropriate
13688 "base address". Use zero so that these addresses become absolute. */
13689 else if (have_location_lists || ranges_table_in_use)
13690 add_AT_addr (comp_unit_die, DW_AT_entry_pc, const0_rtx);
13692 if (debug_info_level >= DINFO_LEVEL_NORMAL)
13693 add_AT_lbl_offset (comp_unit_die, DW_AT_stmt_list,
13694 debug_line_section_label);
13696 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13697 add_AT_lbl_offset (comp_unit_die, DW_AT_macro_info, macinfo_section_label);
13699 /* Output all of the compilation units. We put the main one last so that
13700 the offsets are available to output_pubnames. */
13701 for (node = limbo_die_list; node; node = node->next)
13702 output_comp_unit (node->die, 0);
13704 output_comp_unit (comp_unit_die, 0);
13706 /* Output the abbreviation table. */
13707 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
13708 output_abbrev_section ();
13710 /* Output public names table if necessary. */
13711 if (pubname_table_in_use)
13713 named_section_flags (DEBUG_PUBNAMES_SECTION, SECTION_DEBUG);
13714 output_pubnames ();
13717 /* Output the address range information. We only put functions in the arange
13718 table, so don't write it out if we don't have any. */
13719 if (fde_table_in_use)
13721 named_section_flags (DEBUG_ARANGES_SECTION, SECTION_DEBUG);
13722 output_aranges ();
13725 /* Output ranges section if necessary. */
13726 if (ranges_table_in_use)
13728 named_section_flags (DEBUG_RANGES_SECTION, SECTION_DEBUG);
13729 ASM_OUTPUT_LABEL (asm_out_file, ranges_section_label);
13730 output_ranges ();
13733 /* Have to end the primary source file. */
13734 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13736 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13737 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
13738 dw2_asm_output_data (1, 0, "End compilation unit");
13741 /* If we emitted any DW_FORM_strp form attribute, output the string
13742 table too. */
13743 if (debug_str_hash)
13744 htab_traverse (debug_str_hash, output_indirect_string, NULL);
13746 #else
13748 /* This should never be used, but its address is needed for comparisons. */
13749 const struct gcc_debug_hooks dwarf2_debug_hooks;
13751 #endif /* DWARF2_DEBUGGING_INFO */
13753 #include "gt-dwarf2out.h"