[Ada] Improve detection of illegal Iterable aspects
[official-gcc.git] / gcc / ada / sem_ch13.adb
blob940379812306f2b96eb9a95381cba74442eff914
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 1 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2022, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Contracts; use Contracts;
30 with Debug; use Debug;
31 with Einfo; use Einfo;
32 with Einfo.Entities; use Einfo.Entities;
33 with Einfo.Utils; use Einfo.Utils;
34 with Elists; use Elists;
35 with Errout; use Errout;
36 with Exp_Ch3; use Exp_Ch3;
37 with Exp_Disp; use Exp_Disp;
38 with Exp_Tss; use Exp_Tss;
39 with Exp_Util; use Exp_Util;
40 with Freeze; use Freeze;
41 with Ghost; use Ghost;
42 with Lib; use Lib;
43 with Lib.Xref; use Lib.Xref;
44 with Namet; use Namet;
45 with Nlists; use Nlists;
46 with Nmake; use Nmake;
47 with Opt; use Opt;
48 with Par_SCO; use Par_SCO;
49 with Restrict; use Restrict;
50 with Rident; use Rident;
51 with Rtsfind; use Rtsfind;
52 with Sem; use Sem;
53 with Sem_Aux; use Sem_Aux;
54 with Sem_Case; use Sem_Case;
55 with Sem_Cat; use Sem_Cat;
56 with Sem_Ch3; use Sem_Ch3;
57 with Sem_Ch6; use Sem_Ch6;
58 with Sem_Ch7; use Sem_Ch7;
59 with Sem_Ch8; use Sem_Ch8;
60 with Sem_Dim; use Sem_Dim;
61 with Sem_Eval; use Sem_Eval;
62 with Sem_Prag; use Sem_Prag;
63 with Sem_Res; use Sem_Res;
64 with Sem_Type; use Sem_Type;
65 with Sem_Util; use Sem_Util;
66 with Sem_Warn; use Sem_Warn;
67 with Sinfo; use Sinfo;
68 with Sinfo.Nodes; use Sinfo.Nodes;
69 with Sinfo.Utils; use Sinfo.Utils;
70 with Sinput; use Sinput;
71 with Snames; use Snames;
72 with Stand; use Stand;
73 with System.Case_Util; use System.Case_Util;
74 with Table;
75 with Targparm; use Targparm;
76 with Ttypes; use Ttypes;
77 with Tbuild; use Tbuild;
78 with Urealp; use Urealp;
79 with Warnsw; use Warnsw;
81 with GNAT.Heap_Sort_G;
83 package body Sem_Ch13 is
85 SSU : constant Pos := System_Storage_Unit;
86 -- Convenient short hand for commonly used constant
88 -----------------------
89 -- Local Subprograms --
90 -----------------------
92 procedure Adjust_Record_For_Reverse_Bit_Order_Ada_95 (R : Entity_Id);
93 -- Helper routine providing the original (pre-AI95-0133) behavior for
94 -- Adjust_Record_For_Reverse_Bit_Order.
96 procedure Alignment_Check_For_Size_Change (Typ : Entity_Id; Size : Uint);
97 -- This routine is called after setting one of the sizes of type entity
98 -- Typ to Size. The purpose is to deal with the situation of a derived
99 -- type whose inherited alignment is no longer appropriate for the new
100 -- size value. In this case, we reset the Alignment to unknown.
102 function All_Static_Choices (L : List_Id) return Boolean;
103 -- Returns true if all elements of the list are OK static choices
104 -- as defined below for Is_Static_Choice. Used for case expression
105 -- alternatives and for the right operand of a membership test. An
106 -- others_choice is static if the corresponding expression is static.
107 -- The staticness of the bounds is checked separately.
109 procedure Build_Discrete_Static_Predicate
110 (Typ : Entity_Id;
111 Expr : Node_Id;
112 Nam : Name_Id);
113 -- Given a predicated type Typ, where Typ is a discrete static subtype,
114 -- whose predicate expression is Expr, tests if Expr is a static predicate,
115 -- and if so, builds the predicate range list. Nam is the name of the one
116 -- argument to the predicate function. Occurrences of the type name in the
117 -- predicate expression have been replaced by identifier references to this
118 -- name, which is unique, so any identifier with Chars matching Nam must be
119 -- a reference to the type. If the predicate is non-static, this procedure
120 -- returns doing nothing. If the predicate is static, then the predicate
121 -- list is stored in Static_Discrete_Predicate (Typ), and the Expr is
122 -- rewritten as a canonicalized membership operation.
124 function Build_Export_Import_Pragma
125 (Asp : Node_Id;
126 Id : Entity_Id) return Node_Id;
127 -- Create the corresponding pragma for aspect Export or Import denoted by
128 -- Asp. Id is the related entity subject to the aspect. Return Empty when
129 -- the expression of aspect Asp evaluates to False or is erroneous.
131 function Build_Predicate_Function_Declaration
132 (Typ : Entity_Id) return Node_Id;
133 -- Build the declaration for a predicate function. The declaration is built
134 -- at the end of the declarative part containing the type definition, which
135 -- may be before the freeze point of the type. The predicate expression is
136 -- preanalyzed at this point, to catch visibility errors.
138 procedure Build_Predicate_Function (Typ : Entity_Id; N : Node_Id);
139 -- If Typ has predicates (indicated by Has_Predicates being set for Typ),
140 -- then either there are pragma Predicate entries on the rep chain for the
141 -- type (note that Predicate aspects are converted to pragma Predicate), or
142 -- there are inherited aspects from a parent type, or ancestor subtypes.
143 -- This procedure builds body for the Predicate function that tests these
144 -- predicates. N is the freeze node for the type. The spec of the function
145 -- is inserted before the freeze node, and the body of the function is
146 -- inserted after the freeze node.
148 procedure Check_Pool_Size_Clash (Ent : Entity_Id; SP, SS : Node_Id);
149 -- Called if both Storage_Pool and Storage_Size attribute definition
150 -- clauses (SP and SS) are present for entity Ent. Issue error message.
152 procedure Freeze_Entity_Checks (N : Node_Id);
153 -- Called from Analyze_Freeze_Entity and Analyze_Generic_Freeze Entity
154 -- to generate appropriate semantic checks that are delayed until this
155 -- point (they had to be delayed this long for cases of delayed aspects,
156 -- e.g. analysis of statically predicated subtypes in choices, for which
157 -- we have to be sure the subtypes in question are frozen before checking).
159 function Get_Alignment_Value (Expr : Node_Id) return Uint;
160 -- Given the expression for an alignment value, returns the corresponding
161 -- Uint value. If the value is inappropriate, then error messages are
162 -- posted as required, and a value of No_Uint is returned.
164 function Is_Operational_Item (N : Node_Id) return Boolean;
165 -- A specification for a stream attribute is allowed before the full type
166 -- is declared, as explained in AI-00137 and the corrigendum. Attributes
167 -- that do not specify a representation characteristic are operational
168 -- attributes.
170 function Is_Static_Choice (N : Node_Id) return Boolean;
171 -- Returns True if N represents a static choice (static subtype, or
172 -- static subtype indication, or static expression, or static range).
174 -- Note that this is a bit more inclusive than we actually need
175 -- (in particular membership tests do not allow the use of subtype
176 -- indications). But that doesn't matter, we have already checked
177 -- that the construct is legal to get this far.
179 function Is_Type_Related_Rep_Item (N : Node_Id) return Boolean;
180 -- Returns True for a representation clause/pragma that specifies a
181 -- type-related representation (as opposed to operational) aspect.
183 function Is_Predicate_Static
184 (Expr : Node_Id;
185 Nam : Name_Id;
186 Warn : Boolean := True) return Boolean;
187 -- Given predicate expression Expr, tests if Expr is predicate-static in
188 -- the sense of the rules in (RM 3.2.4 (15-24)). Occurrences of the type
189 -- name in the predicate expression have been replaced by references to
190 -- an identifier whose Chars field is Nam. This name is unique, so any
191 -- identifier with Chars matching Nam must be a reference to the type.
192 -- Returns True if the expression is predicate-static and False otherwise,
193 -- but is not in the business of setting flags or issuing error messages.
195 -- Only scalar types can have static predicates, so False is always
196 -- returned for non-scalar types.
198 -- Note: the RM seems to suggest that string types can also have static
199 -- predicates. But that really makes little sense as very few useful
200 -- predicates can be constructed for strings. Remember that:
202 -- "ABC" < "DEF"
204 -- is not a static expression. So even though the clearly faulty RM wording
205 -- allows the following:
207 -- subtype S is String with Static_Predicate => S < "DEF"
209 -- We can't allow this, otherwise we have predicate-static applying to a
210 -- larger class than static expressions, which was never intended.
212 -- The Warn parameter is True iff this is not a recursive call. This
213 -- parameter is used to avoid generating warnings for subexpressions and
214 -- for cases where the predicate expression (as originally written by
215 -- the user, before any transformations) is a Boolean literal.
217 procedure New_Put_Image_Subprogram
218 (N : Node_Id;
219 Ent : Entity_Id;
220 Subp : Entity_Id);
221 -- Similar to New_Stream_Subprogram, but for the Put_Image attribute
223 procedure New_Stream_Subprogram
224 (N : Node_Id;
225 Ent : Entity_Id;
226 Subp : Entity_Id;
227 Nam : TSS_Name_Type);
228 -- Create a subprogram renaming of a given stream attribute to the
229 -- designated subprogram and then in the tagged case, provide this as a
230 -- primitive operation, or in the untagged case make an appropriate TSS
231 -- entry. This is more properly an expansion activity than just semantics,
232 -- but the presence of user-defined stream functions for limited types
233 -- is a legality check, which is why this takes place here rather than in
234 -- exp_ch13, where it was previously. Nam indicates the name of the TSS
235 -- function to be generated.
237 -- To avoid elaboration anomalies with freeze nodes, for untagged types
238 -- we generate both a subprogram declaration and a subprogram renaming
239 -- declaration, so that the attribute specification is handled as a
240 -- renaming_as_body. For tagged types, the specification is one of the
241 -- primitive specs.
243 procedure No_Type_Rep_Item (N : Node_Id);
244 -- Output message indicating that no type-related aspects can be
245 -- specified due to some property of the parent type.
247 procedure Register_Address_Clause_Check
248 (N : Node_Id;
249 X : Entity_Id;
250 A : Uint;
251 Y : Entity_Id;
252 Off : Boolean);
253 -- Register a check for the address clause N. The rest of the parameters
254 -- are in keeping with the components of Address_Clause_Check_Record below.
256 procedure Validate_Aspect_Aggregate (N : Node_Id);
257 -- Check legality of operations given in the Ada 2022 Aggregate aspect for
258 -- containers.
260 procedure Resolve_Aspect_Aggregate
261 (Typ : Entity_Id;
262 Expr : Node_Id);
263 -- Resolve each one of the operations specified in the specification of
264 -- Aspect_Aggregate.
266 procedure Validate_Aspect_Stable_Properties
267 (E : Entity_Id; N : Node_Id; Class_Present : Boolean);
268 -- Check legality of functions given in the Ada 2022 Stable_Properties
269 -- (or Stable_Properties'Class) aspect.
271 procedure Validate_Storage_Model_Type_Aspect
272 (Typ : Entity_Id; ASN : Node_Id);
273 -- Check legality and completeness of the aggregate associations given in
274 -- the Storage_Model_Type aspect associated with Typ.
276 procedure Resolve_Storage_Model_Type_Argument
277 (N : Node_Id;
278 Typ : Entity_Id;
279 Addr_Type : in out Entity_Id;
280 Nam : Name_Id);
281 -- Resolve argument N to be of the proper kind (when a type or constant)
282 -- or to have the proper profile (when a subprogram).
284 procedure Resolve_Aspect_Stable_Properties
285 (Typ_Or_Subp : Entity_Id;
286 Expr : Node_Id;
287 Class_Present : Boolean);
288 -- Resolve each one of the functions specified in the specification of
289 -- aspect Stable_Properties (or Stable_Properties'Class).
291 procedure Resolve_Iterable_Operation
292 (N : Node_Id;
293 Cursor : Entity_Id;
294 Typ : Entity_Id;
295 Nam : Name_Id);
296 -- If the name of a primitive operation for an Iterable aspect is
297 -- overloaded, resolve according to required signature.
299 procedure Set_Biased
300 (E : Entity_Id;
301 N : Node_Id;
302 Msg : String;
303 Biased : Boolean := True);
304 -- If Biased is True, sets Has_Biased_Representation flag for E, and
305 -- outputs a warning message at node N if Warn_On_Biased_Representation is
306 -- is True. This warning inserts the string Msg to describe the construct
307 -- causing biasing.
309 -----------------------------------------------------------
310 -- Visibility of Discriminants in Aspect Specifications --
311 -----------------------------------------------------------
313 -- The discriminants of a type are visible when analyzing the aspect
314 -- specifications of a type declaration or protected type declaration,
315 -- but not when analyzing those of a subtype declaration. The following
316 -- routines enforce this distinction.
318 procedure Push_Type (E : Entity_Id);
319 -- Push scope E and make visible the discriminants of type entity E if E
320 -- has discriminants and is not a subtype.
322 procedure Pop_Type (E : Entity_Id);
323 -- Remove visibility to the discriminants of type entity E and pop the
324 -- scope stack if E has discriminants and is not a subtype.
326 ----------------------------------------------
327 -- Table for Validate_Unchecked_Conversions --
328 ----------------------------------------------
330 -- The following table collects unchecked conversions for validation.
331 -- Entries are made by Validate_Unchecked_Conversion and then the call
332 -- to Validate_Unchecked_Conversions does the actual error checking and
333 -- posting of warnings. The reason for this delayed processing is to take
334 -- advantage of back-annotations of size and alignment values performed by
335 -- the back end.
337 -- Note: the reason we store a Source_Ptr value instead of a Node_Id is
338 -- that by the time Validate_Unchecked_Conversions is called, Sprint will
339 -- already have modified all Sloc values if the -gnatD option is set.
341 type UC_Entry is record
342 Eloc : Source_Ptr; -- node used for posting warnings
343 Source : Entity_Id; -- source type for unchecked conversion
344 Target : Entity_Id; -- target type for unchecked conversion
345 Act_Unit : Entity_Id; -- actual function instantiated
346 end record;
348 package Unchecked_Conversions is new Table.Table (
349 Table_Component_Type => UC_Entry,
350 Table_Index_Type => Int,
351 Table_Low_Bound => 1,
352 Table_Initial => 50,
353 Table_Increment => 200,
354 Table_Name => "Unchecked_Conversions");
356 ----------------------------------------
357 -- Table for Validate_Address_Clauses --
358 ----------------------------------------
360 -- If an address clause has the form
362 -- for X'Address use Expr
364 -- where Expr has a value known at compile time or is of the form Y'Address
365 -- or recursively is a reference to a constant initialized with either of
366 -- these forms, and the value of Expr is not a multiple of X's alignment,
367 -- or if Y has a smaller alignment than X, then that merits a warning about
368 -- possible bad alignment. The following table collects address clauses of
369 -- this kind. We put these in a table so that they can be checked after the
370 -- back end has completed annotation of the alignments of objects, since we
371 -- can catch more cases that way.
373 type Address_Clause_Check_Record is record
374 N : Node_Id;
375 -- The address clause
377 X : Entity_Id;
378 -- The entity of the object subject to the address clause
380 A : Uint;
381 -- The value of the address in the first case
383 Y : Entity_Id;
384 -- The entity of the object being overlaid in the second case
386 Off : Boolean;
387 -- Whether the address is offset within Y in the second case
389 Alignment_Checks_Suppressed : Boolean;
390 -- Whether alignment checks are suppressed by an active scope suppress
391 -- setting. We need to save the value in order to be able to reuse it
392 -- after the back end has been run.
393 end record;
395 package Address_Clause_Checks is new Table.Table (
396 Table_Component_Type => Address_Clause_Check_Record,
397 Table_Index_Type => Int,
398 Table_Low_Bound => 1,
399 Table_Initial => 20,
400 Table_Increment => 200,
401 Table_Name => "Address_Clause_Checks");
403 function Alignment_Checks_Suppressed
404 (ACCR : Address_Clause_Check_Record) return Boolean;
405 -- Return whether the alignment check generated for the address clause
406 -- is suppressed.
408 ---------------------------------
409 -- Alignment_Checks_Suppressed --
410 ---------------------------------
412 function Alignment_Checks_Suppressed
413 (ACCR : Address_Clause_Check_Record) return Boolean
415 begin
416 if Checks_May_Be_Suppressed (ACCR.X) then
417 return Is_Check_Suppressed (ACCR.X, Alignment_Check);
418 else
419 return ACCR.Alignment_Checks_Suppressed;
420 end if;
421 end Alignment_Checks_Suppressed;
423 -----------------------------------------
424 -- Adjust_Record_For_Reverse_Bit_Order --
425 -----------------------------------------
427 procedure Adjust_Record_For_Reverse_Bit_Order (R : Entity_Id) is
428 Max_Machine_Scalar_Size : constant Uint :=
429 UI_From_Int (System_Max_Integer_Size);
430 -- We use this as the maximum machine scalar size
432 SSU : constant Uint := UI_From_Int (System_Storage_Unit);
434 CC : Node_Id;
435 Comp : Node_Id;
436 Num_CC : Natural;
438 begin
439 -- The processing done here used to depend on the Ada version, but the
440 -- behavior has been changed by AI95-0133. However this AI is a Binding
441 -- Interpretation, so we now implement it even in Ada 95 mode. But the
442 -- original behavior from unamended Ada 95 is available for the sake of
443 -- compatibility under the debugging switch -gnatd.p in Ada 95 mode.
445 if Ada_Version < Ada_2005 and then Debug_Flag_Dot_P then
446 Adjust_Record_For_Reverse_Bit_Order_Ada_95 (R);
447 return;
448 end if;
450 -- For Ada 2005, we do machine scalar processing, as fully described In
451 -- AI-133. This involves gathering all components which start at the
452 -- same byte offset and processing them together. Same approach is still
453 -- valid in later versions including Ada 2012.
455 -- Note that component clauses found on record types may be inherited,
456 -- in which case the layout of the component with such a clause still
457 -- has to be done at this point. Therefore, the processing done here
458 -- must exclusively rely on the Component_Clause of the component.
460 -- This first loop through components does two things. First it deals
461 -- with the case of components with component clauses whose length is
462 -- greater than the maximum machine scalar size (either accepting them
463 -- or rejecting as needed). Second, it counts the number of components
464 -- with component clauses whose length does not exceed this maximum for
465 -- later processing.
467 Num_CC := 0;
468 Comp := First_Component_Or_Discriminant (R);
469 while Present (Comp) loop
470 CC := Component_Clause (Comp);
472 if Present (CC) then
473 declare
474 Fbit : constant Uint := Static_Integer (First_Bit (CC));
475 Lbit : constant Uint := Static_Integer (Last_Bit (CC));
477 begin
478 -- Case of component with last bit >= max machine scalar
480 if Lbit >= Max_Machine_Scalar_Size then
482 -- This is allowed only if first bit is zero, and last bit
483 -- + 1 is a multiple of storage unit size.
485 if Fbit = 0 and then (Lbit + 1) mod SSU = 0 then
487 -- This is the case to give a warning if enabled
489 if Warn_On_Reverse_Bit_Order then
490 Error_Msg_N
491 ("info: multi-byte field specified with "
492 & "non-standard Bit_Order?.v?", CC);
494 if Bytes_Big_Endian then
495 Error_Msg_N
496 ("\bytes are not reversed "
497 & "(component is big-endian)?.v?", CC);
498 else
499 Error_Msg_N
500 ("\bytes are not reversed "
501 & "(component is little-endian)?.v?", CC);
502 end if;
503 end if;
505 -- Give error message for RM 13.5.1(10) violation
507 else
508 Error_Msg_FE
509 ("machine scalar rules not followed for&",
510 First_Bit (CC), Comp);
512 Error_Msg_Uint_1 := Lbit + 1;
513 Error_Msg_Uint_2 := Max_Machine_Scalar_Size;
514 Error_Msg_F
515 ("\last bit + 1 (^) exceeds maximum machine scalar "
516 & "size (^)", First_Bit (CC));
518 if (Lbit + 1) mod SSU /= 0 then
519 Error_Msg_Uint_1 := SSU;
520 Error_Msg_F
521 ("\and is not a multiple of Storage_Unit (^) "
522 & "(RM 13.5.1(10))", First_Bit (CC));
524 else
525 Error_Msg_Uint_1 := Fbit;
526 Error_Msg_F
527 ("\and first bit (^) is non-zero "
528 & "(RM 13.4.1(10))", First_Bit (CC));
529 end if;
530 end if;
532 -- OK case of machine scalar related component clause. For now,
533 -- just count them.
535 else
536 Num_CC := Num_CC + 1;
537 end if;
538 end;
539 end if;
541 Next_Component_Or_Discriminant (Comp);
542 end loop;
544 -- We need to sort the component clauses on the basis of the Position
545 -- values in the clause, so we can group clauses with the same Position
546 -- together to determine the relevant machine scalar size.
548 Sort_CC : declare
549 Comps : array (0 .. Num_CC) of Entity_Id;
550 -- Array to collect component and discriminant entities. The data
551 -- starts at index 1, the 0'th entry is for the sort routine.
553 function CP_Lt (Op1, Op2 : Natural) return Boolean;
554 -- Compare routine for Sort
556 procedure CP_Move (From : Natural; To : Natural);
557 -- Move routine for Sort
559 package Sorting is new GNAT.Heap_Sort_G (CP_Move, CP_Lt);
561 MaxL : Uint;
562 -- Maximum last bit value of any component in this set
564 MSS : Uint;
565 -- Corresponding machine scalar size
567 Start : Natural;
568 Stop : Natural;
569 -- Start and stop positions in the component list of the set of
570 -- components with the same starting position (that constitute
571 -- components in a single machine scalar).
573 -----------
574 -- CP_Lt --
575 -----------
577 function CP_Lt (Op1, Op2 : Natural) return Boolean is
578 begin
579 return
580 Position (Component_Clause (Comps (Op1))) <
581 Position (Component_Clause (Comps (Op2)));
582 end CP_Lt;
584 -------------
585 -- CP_Move --
586 -------------
588 procedure CP_Move (From : Natural; To : Natural) is
589 begin
590 Comps (To) := Comps (From);
591 end CP_Move;
593 -- Start of processing for Sort_CC
595 begin
596 -- Collect the machine scalar relevant component clauses
598 Num_CC := 0;
599 Comp := First_Component_Or_Discriminant (R);
600 while Present (Comp) loop
601 declare
602 CC : constant Node_Id := Component_Clause (Comp);
604 begin
605 -- Collect only component clauses whose last bit is less than
606 -- machine scalar size. Any component clause whose last bit
607 -- exceeds this value does not take part in machine scalar
608 -- layout considerations. The test for Error_Posted makes sure
609 -- we exclude component clauses for which we already posted an
610 -- error.
612 if Present (CC)
613 and then not Error_Posted (Last_Bit (CC))
614 and then Static_Integer (Last_Bit (CC)) <
615 Max_Machine_Scalar_Size
616 then
617 Num_CC := Num_CC + 1;
618 Comps (Num_CC) := Comp;
619 end if;
620 end;
622 Next_Component_Or_Discriminant (Comp);
623 end loop;
625 -- Sort by ascending position number
627 Sorting.Sort (Num_CC);
629 -- We now have all the components whose size does not exceed the max
630 -- machine scalar value, sorted by starting position. In this loop we
631 -- gather groups of clauses starting at the same position, to process
632 -- them in accordance with AI-133.
634 Stop := 0;
635 while Stop < Num_CC loop
636 Start := Stop + 1;
637 Stop := Start;
638 MaxL :=
639 Static_Integer
640 (Last_Bit (Component_Clause (Comps (Start))));
641 while Stop < Num_CC loop
642 if Static_Integer
643 (Position (Component_Clause (Comps (Stop + 1)))) =
644 Static_Integer
645 (Position (Component_Clause (Comps (Stop))))
646 then
647 Stop := Stop + 1;
648 MaxL :=
649 UI_Max
650 (MaxL,
651 Static_Integer
652 (Last_Bit
653 (Component_Clause (Comps (Stop)))));
654 else
655 exit;
656 end if;
657 end loop;
659 -- Now we have a group of component clauses from Start to Stop
660 -- whose positions are identical, and MaxL is the maximum last
661 -- bit value of any of these components.
663 -- We need to determine the corresponding machine scalar size.
664 -- This loop assumes that machine scalar sizes are even, and that
665 -- each possible machine scalar has twice as many bits as the next
666 -- smaller one.
668 MSS := Max_Machine_Scalar_Size;
669 while MSS mod 2 = 0
670 and then (MSS / 2) >= SSU
671 and then (MSS / 2) > MaxL
672 loop
673 MSS := MSS / 2;
674 end loop;
676 -- Here is where we fix up the Component_Bit_Offset value to
677 -- account for the reverse bit order. Some examples of what needs
678 -- to be done for the case of a machine scalar size of 8 are:
680 -- First_Bit .. Last_Bit Component_Bit_Offset
681 -- old new old new
683 -- 0 .. 0 7 .. 7 0 7
684 -- 0 .. 1 6 .. 7 0 6
685 -- 0 .. 2 5 .. 7 0 5
686 -- 0 .. 7 0 .. 7 0 4
688 -- 1 .. 1 6 .. 6 1 6
689 -- 1 .. 4 3 .. 6 1 3
690 -- 4 .. 7 0 .. 3 4 0
692 -- The rule is that the first bit is obtained by subtracting the
693 -- old ending bit from machine scalar size - 1.
695 for C in Start .. Stop loop
696 declare
697 Comp : constant Entity_Id := Comps (C);
698 CC : constant Node_Id := Component_Clause (Comp);
700 FB : constant Uint := Static_Integer (First_Bit (CC));
701 LB : constant Uint := Static_Integer (Last_Bit (CC));
702 NFB : constant Uint := MSS - 1 - LB;
703 NLB : constant Uint := NFB + LB - FB;
704 Pos : constant Uint := Static_Integer (Position (CC));
706 begin
707 -- Do not warn for the artificial clause built for the tag
708 -- in Check_Record_Representation_Clause if it is inherited.
710 if Warn_On_Reverse_Bit_Order
711 and then Chars (Comp) /= Name_uTag
712 then
713 Error_Msg_Uint_1 := MSS;
714 Error_Msg_N
715 ("info: reverse bit order in machine scalar of "
716 & "length^?.v?", First_Bit (CC));
717 Error_Msg_Uint_1 := NFB;
718 Error_Msg_Uint_2 := NLB;
720 if Bytes_Big_Endian then
721 Error_Msg_NE
722 ("\big-endian range for component & is ^ .. ^?.v?",
723 First_Bit (CC), Comp);
724 else
725 Error_Msg_NE
726 ("\little-endian range for component " &
727 "& is ^ .. ^?.v?",
728 First_Bit (CC), Comp);
729 end if;
730 end if;
732 Set_Component_Bit_Offset (Comp, Pos * SSU + NFB);
733 Set_Esize (Comp, 1 + (NLB - NFB));
734 Set_Normalized_First_Bit (Comp, NFB mod SSU);
735 Set_Normalized_Position (Comp, Pos + NFB / SSU);
736 end;
737 end loop;
738 end loop;
739 end Sort_CC;
740 end Adjust_Record_For_Reverse_Bit_Order;
742 ------------------------------------------------
743 -- Adjust_Record_For_Reverse_Bit_Order_Ada_95 --
744 ------------------------------------------------
746 procedure Adjust_Record_For_Reverse_Bit_Order_Ada_95 (R : Entity_Id) is
747 CC : Node_Id;
748 Comp : Node_Id;
750 begin
751 -- For Ada 95, we just renumber bits within a storage unit. We do the
752 -- same for Ada 83 mode, since we recognize the Bit_Order attribute in
753 -- Ada 83, and are free to add this extension.
755 Comp := First_Component_Or_Discriminant (R);
756 while Present (Comp) loop
757 CC := Component_Clause (Comp);
759 -- If component clause is present, then deal with the non-default
760 -- bit order case for Ada 95 mode.
762 -- We only do this processing for the base type, and in fact that
763 -- is important, since otherwise if there are record subtypes, we
764 -- could reverse the bits once for each subtype, which is wrong.
766 if Present (CC) and then Ekind (R) = E_Record_Type then
767 declare
768 CFB : constant Uint := Component_Bit_Offset (Comp);
769 CSZ : constant Uint := Esize (Comp);
770 CLC : constant Node_Id := Component_Clause (Comp);
771 Pos : constant Node_Id := Position (CLC);
772 FB : constant Node_Id := First_Bit (CLC);
774 Storage_Unit_Offset : constant Uint :=
775 CFB / System_Storage_Unit;
777 Start_Bit : constant Uint :=
778 CFB mod System_Storage_Unit;
780 begin
781 -- Cases where field goes over storage unit boundary
783 if Start_Bit + CSZ > System_Storage_Unit then
785 -- Allow multi-byte field but generate warning
787 if Start_Bit mod System_Storage_Unit = 0
788 and then CSZ mod System_Storage_Unit = 0
789 then
790 Error_Msg_N
791 ("info: multi-byte field specified with non-standard "
792 & "Bit_Order?.v?", CLC);
794 if Bytes_Big_Endian then
795 Error_Msg_N
796 ("\bytes are not reversed "
797 & "(component is big-endian)?.v?", CLC);
798 else
799 Error_Msg_N
800 ("\bytes are not reversed "
801 & "(component is little-endian)?.v?", CLC);
802 end if;
804 -- Do not allow non-contiguous field
806 else
807 Error_Msg_N
808 ("attempt to specify non-contiguous field not "
809 & "permitted", CLC);
810 Error_Msg_N
811 ("\caused by non-standard Bit_Order specified in "
812 & "legacy Ada 95 mode", CLC);
813 end if;
815 -- Case where field fits in one storage unit
817 else
818 -- Give warning if suspicious component clause
820 if Intval (FB) >= System_Storage_Unit
821 and then Warn_On_Reverse_Bit_Order
822 then
823 Error_Msg_N
824 ("info: Bit_Order clause does not affect byte "
825 & "ordering?.v?", Pos);
826 Error_Msg_Uint_1 :=
827 Intval (Pos) + Intval (FB) /
828 System_Storage_Unit;
829 Error_Msg_N
830 ("info: position normalized to ^ before bit order "
831 & "interpreted?.v?", Pos);
832 end if;
834 -- Here is where we fix up the Component_Bit_Offset value
835 -- to account for the reverse bit order. Some examples of
836 -- what needs to be done are:
838 -- First_Bit .. Last_Bit Component_Bit_Offset
839 -- old new old new
841 -- 0 .. 0 7 .. 7 0 7
842 -- 0 .. 1 6 .. 7 0 6
843 -- 0 .. 2 5 .. 7 0 5
844 -- 0 .. 7 0 .. 7 0 4
846 -- 1 .. 1 6 .. 6 1 6
847 -- 1 .. 4 3 .. 6 1 3
848 -- 4 .. 7 0 .. 3 4 0
850 -- The rule is that the first bit is obtained by subtracting
851 -- the old ending bit from storage_unit - 1.
853 Set_Component_Bit_Offset (Comp,
854 (Storage_Unit_Offset * System_Storage_Unit) +
855 (System_Storage_Unit - 1) -
856 (Start_Bit + CSZ - 1));
858 Set_Normalized_Position (Comp,
859 Component_Bit_Offset (Comp) / System_Storage_Unit);
861 Set_Normalized_First_Bit (Comp,
862 Component_Bit_Offset (Comp) mod System_Storage_Unit);
863 end if;
864 end;
865 end if;
867 Next_Component_Or_Discriminant (Comp);
868 end loop;
869 end Adjust_Record_For_Reverse_Bit_Order_Ada_95;
871 -------------------------------------
872 -- Alignment_Check_For_Size_Change --
873 -------------------------------------
875 procedure Alignment_Check_For_Size_Change (Typ : Entity_Id; Size : Uint) is
876 begin
877 -- If the alignment is known, and not set by a rep clause, and is
878 -- inconsistent with the size being set, then reset it to unknown,
879 -- we assume in this case that the size overrides the inherited
880 -- alignment, and that the alignment must be recomputed.
882 if Known_Alignment (Typ)
883 and then not Has_Alignment_Clause (Typ)
884 and then Present (Size)
885 and then Size mod (Alignment (Typ) * SSU) /= 0
886 then
887 Reinit_Alignment (Typ);
888 end if;
889 end Alignment_Check_For_Size_Change;
891 -----------------------------------
892 -- All_Membership_Choices_Static --
893 -----------------------------------
895 function All_Membership_Choices_Static (Expr : Node_Id) return Boolean is
896 pragma Assert (Nkind (Expr) in N_Membership_Test);
897 begin
898 pragma Assert
899 (Present (Right_Opnd (Expr))
901 Present (Alternatives (Expr)));
903 if Present (Right_Opnd (Expr)) then
904 return Is_Static_Choice (Right_Opnd (Expr));
905 else
906 return All_Static_Choices (Alternatives (Expr));
907 end if;
908 end All_Membership_Choices_Static;
910 ------------------------
911 -- All_Static_Choices --
912 ------------------------
914 function All_Static_Choices (L : List_Id) return Boolean is
915 N : Node_Id;
917 begin
918 N := First (L);
919 while Present (N) loop
920 if not Is_Static_Choice (N) then
921 return False;
922 end if;
924 Next (N);
925 end loop;
927 return True;
928 end All_Static_Choices;
930 -------------------------------------
931 -- Analyze_Aspects_At_Freeze_Point --
932 -------------------------------------
934 procedure Analyze_Aspects_At_Freeze_Point (E : Entity_Id) is
935 procedure Analyze_Aspect_Default_Value (ASN : Node_Id);
936 -- This routine analyzes an Aspect_Default_[Component_]Value denoted by
937 -- the aspect specification node ASN.
939 procedure Check_Aspect_Too_Late (N : Node_Id);
940 -- This procedure is similar to Rep_Item_Too_Late for representation
941 -- aspects that apply to type and that do not have a corresponding
942 -- pragma.
943 -- Used to check in particular that the expression associated with
944 -- aspect node N for the given type (entity) of the aspect does not
945 -- appear too late according to the rules in RM 13.1(9) and 13.1(10).
947 procedure Make_Pragma_From_Boolean_Aspect (ASN : Node_Id);
948 -- Given an aspect specification node ASN whose expression is an
949 -- optional Boolean, this routines creates the corresponding pragma
950 -- at the freezing point.
952 ----------------------------------
953 -- Analyze_Aspect_Default_Value --
954 ----------------------------------
956 procedure Analyze_Aspect_Default_Value (ASN : Node_Id) is
957 Ent : constant Entity_Id := Entity (ASN);
958 Expr : constant Node_Id := Expression (ASN);
960 begin
961 Set_Has_Default_Aspect (Base_Type (Ent));
963 if Is_Scalar_Type (Ent) then
964 Set_Default_Aspect_Value (Base_Type (Ent), Expr);
965 else
966 Set_Default_Aspect_Component_Value (Base_Type (Ent), Expr);
967 end if;
969 Check_Aspect_Too_Late (ASN);
970 end Analyze_Aspect_Default_Value;
972 ---------------------------
973 -- Check_Aspect_Too_Late --
974 ---------------------------
976 procedure Check_Aspect_Too_Late (N : Node_Id) is
977 Typ : constant Entity_Id := Entity (N);
978 Expr : constant Node_Id := Expression (N);
980 function Find_Type_Reference
981 (Typ : Entity_Id; Expr : Node_Id) return Boolean;
982 -- Return True if a reference to type Typ is found in the expression
983 -- Expr.
985 -------------------------
986 -- Find_Type_Reference --
987 -------------------------
989 function Find_Type_Reference
990 (Typ : Entity_Id; Expr : Node_Id) return Boolean
992 function Find_Type (N : Node_Id) return Traverse_Result;
993 -- Set Found to True if N refers to Typ
995 ---------------
996 -- Find_Type --
997 ---------------
999 function Find_Type (N : Node_Id) return Traverse_Result is
1000 begin
1001 if N = Typ
1002 or else (Nkind (N) in N_Identifier | N_Expanded_Name
1003 and then Present (Entity (N))
1004 and then Entity (N) = Typ)
1005 then
1006 return Abandon;
1007 else
1008 return OK;
1009 end if;
1010 end Find_Type;
1012 function Search_Type_Reference is new Traverse_Func (Find_Type);
1014 begin
1015 return Search_Type_Reference (Expr) = Abandon;
1016 end Find_Type_Reference;
1018 Parent_Type : Entity_Id;
1020 begin
1021 -- Ensure Expr is analyzed so that e.g. all types are properly
1022 -- resolved for Find_Type_Reference.
1024 Analyze (Expr);
1026 -- A self-referential aspect is illegal if it forces freezing the
1027 -- entity before the corresponding aspect has been analyzed.
1029 if Find_Type_Reference (Typ, Expr) then
1030 Error_Msg_NE
1031 ("aspect specification causes premature freezing of&", N, Typ);
1032 end if;
1034 -- For representation aspects, check for case of untagged derived
1035 -- type whose parent either has primitive operations (pre Ada 2022),
1036 -- or is a by-reference type (RM 13.1(10)).
1037 -- Strictly speaking the check also applies to Ada 2012 but it is
1038 -- really too constraining for existing code already, so relax it.
1039 -- ??? Confirming aspects should be allowed here.
1041 if Is_Representation_Aspect (Get_Aspect_Id (N))
1042 and then Is_Derived_Type (Typ)
1043 and then not Is_Tagged_Type (Typ)
1044 then
1045 Parent_Type := Etype (Base_Type (Typ));
1047 if Ada_Version <= Ada_2012
1048 and then Has_Primitive_Operations (Parent_Type)
1049 then
1050 Error_Msg_N
1051 ("|representation aspect not permitted before Ada 2022: " &
1052 "use -gnat2022!", N);
1053 Error_Msg_NE
1054 ("\parent type & has primitive operations!", N, Parent_Type);
1056 elsif Is_By_Reference_Type (Parent_Type) then
1057 No_Type_Rep_Item (N);
1058 Error_Msg_NE
1059 ("\parent type & is a by-reference type!", N, Parent_Type);
1060 end if;
1061 end if;
1062 end Check_Aspect_Too_Late;
1064 -------------------------------------
1065 -- Make_Pragma_From_Boolean_Aspect --
1066 -------------------------------------
1068 procedure Make_Pragma_From_Boolean_Aspect (ASN : Node_Id) is
1069 Ident : constant Node_Id := Identifier (ASN);
1070 A_Name : constant Name_Id := Chars (Ident);
1071 A_Id : constant Aspect_Id := Get_Aspect_Id (A_Name);
1072 Ent : constant Entity_Id := Entity (ASN);
1073 Expr : constant Node_Id := Expression (ASN);
1074 Loc : constant Source_Ptr := Sloc (ASN);
1076 procedure Check_False_Aspect_For_Derived_Type;
1077 -- This procedure checks for the case of a false aspect for a derived
1078 -- type, which improperly tries to cancel an aspect inherited from
1079 -- the parent.
1081 -----------------------------------------
1082 -- Check_False_Aspect_For_Derived_Type --
1083 -----------------------------------------
1085 procedure Check_False_Aspect_For_Derived_Type is
1086 Par : Node_Id;
1088 begin
1089 -- We are only checking derived types
1091 if not Is_Derived_Type (E) then
1092 return;
1093 end if;
1095 Par := Nearest_Ancestor (E);
1097 case A_Id is
1098 when Aspect_Atomic
1099 | Aspect_Shared
1101 if not Is_Atomic (Par) then
1102 return;
1103 end if;
1105 when Aspect_Atomic_Components =>
1106 if not Has_Atomic_Components (Par) then
1107 return;
1108 end if;
1110 when Aspect_Discard_Names =>
1111 if not Discard_Names (Par) then
1112 return;
1113 end if;
1115 when Aspect_Pack =>
1116 if not Is_Packed (Par) then
1117 return;
1118 end if;
1120 when Aspect_Unchecked_Union =>
1121 if not Is_Unchecked_Union (Par) then
1122 return;
1123 end if;
1125 when Aspect_Volatile =>
1126 if not Is_Volatile (Par) then
1127 return;
1128 end if;
1130 when Aspect_Volatile_Components =>
1131 if not Has_Volatile_Components (Par) then
1132 return;
1133 end if;
1135 when Aspect_Volatile_Full_Access
1136 | Aspect_Full_Access_Only
1138 if not Is_Volatile_Full_Access (Par) then
1139 return;
1140 end if;
1142 when others =>
1143 return;
1144 end case;
1146 -- Fall through means we are canceling an inherited aspect
1148 Error_Msg_Name_1 := A_Name;
1149 Error_Msg_NE
1150 ("derived type& inherits aspect%, cannot cancel", Expr, E);
1151 end Check_False_Aspect_For_Derived_Type;
1153 -- Local variables
1155 Prag : Node_Id;
1156 P_Name : Name_Id;
1158 -- Start of processing for Make_Pragma_From_Boolean_Aspect
1160 begin
1161 if Present (Expr) and then Is_False (Static_Boolean (Expr)) then
1162 Check_False_Aspect_For_Derived_Type;
1164 else
1165 -- There is no Full_Access_Only pragma so use VFA instead
1167 if A_Name = Name_Full_Access_Only then
1168 P_Name := Name_Volatile_Full_Access;
1169 else
1170 P_Name := A_Name;
1171 end if;
1173 Prag :=
1174 Make_Pragma (Loc,
1175 Pragma_Identifier =>
1176 Make_Identifier (Sloc (Ident), P_Name),
1177 Pragma_Argument_Associations => New_List (
1178 Make_Pragma_Argument_Association (Sloc (Ident),
1179 Expression => New_Occurrence_Of (Ent, Sloc (Ident)))));
1181 Set_From_Aspect_Specification (Prag, True);
1182 Set_Corresponding_Aspect (Prag, ASN);
1183 Set_Aspect_Rep_Item (ASN, Prag);
1184 Set_Is_Delayed_Aspect (Prag);
1185 Set_Parent (Prag, ASN);
1186 end if;
1187 end Make_Pragma_From_Boolean_Aspect;
1189 -- Local variables
1191 A_Id : Aspect_Id;
1192 ASN : Node_Id;
1193 Ritem : Node_Id;
1195 -- Start of processing for Analyze_Aspects_At_Freeze_Point
1197 begin
1198 -- Must be visible in current scope, but if this is a type from a nested
1199 -- package it may be frozen from an object declaration in the enclosing
1200 -- scope, so install the package declarations to complete the analysis
1201 -- of the aspects, if any. If the package itself is frozen the type will
1202 -- have been frozen as well.
1204 if not Scope_Within_Or_Same (Current_Scope, Scope (E)) then
1205 if Is_Type (E) and then From_Nested_Package (E) then
1206 declare
1207 Pack : constant Entity_Id := Scope (E);
1209 begin
1210 Push_Scope (Pack);
1211 Install_Visible_Declarations (Pack);
1212 Install_Private_Declarations (Pack);
1213 Analyze_Aspects_At_Freeze_Point (E);
1215 if Is_Private_Type (E)
1216 and then Present (Full_View (E))
1217 then
1218 Analyze_Aspects_At_Freeze_Point (Full_View (E));
1219 end if;
1221 End_Package_Scope (Pack);
1222 return;
1223 end;
1225 -- Aspects from other entities in different contexts are analyzed
1226 -- elsewhere.
1228 else
1229 return;
1230 end if;
1231 end if;
1233 -- Look for aspect specification entries for this entity
1235 ASN := First_Rep_Item (E);
1236 while Present (ASN) loop
1237 if Nkind (ASN) = N_Aspect_Specification then
1238 exit when Entity (ASN) /= E;
1240 if Is_Delayed_Aspect (ASN) then
1241 A_Id := Get_Aspect_Id (ASN);
1243 case A_Id is
1245 -- For aspects whose expression is an optional Boolean, make
1246 -- the corresponding pragma at the freeze point.
1248 when Boolean_Aspects
1249 | Library_Unit_Aspects
1251 -- Aspects Export and Import require special handling.
1252 -- Both are by definition Boolean and may benefit from
1253 -- forward references, however their expressions are
1254 -- treated as static. In addition, the syntax of their
1255 -- corresponding pragmas requires extra "pieces" which
1256 -- may also contain forward references. To account for
1257 -- all of this, the corresponding pragma is created by
1258 -- Analyze_Aspect_Export_Import, but is not analyzed as
1259 -- the complete analysis must happen now.
1261 -- Aspect Full_Access_Only must be analyzed last so that
1262 -- aspects Volatile and Atomic, if any, are analyzed.
1264 -- Skip creation of pragma Preelaborable_Initialization
1265 -- in the case where the aspect has an expression,
1266 -- because the pragma is only needed for setting flag
1267 -- Known_To_Have_Preelab_Init, which is set by other
1268 -- means following resolution of the aspect expression.
1270 if A_Id not in Aspect_Export
1271 | Aspect_Full_Access_Only
1272 | Aspect_Import
1273 and then (A_Id /= Aspect_Preelaborable_Initialization
1274 or else not Present (Expression (ASN)))
1275 then
1276 Make_Pragma_From_Boolean_Aspect (ASN);
1277 end if;
1279 -- Special handling for aspects that don't correspond to
1280 -- pragmas/attributes.
1282 when Aspect_Default_Value
1283 | Aspect_Default_Component_Value
1285 -- Do not inherit aspect for anonymous base type of a
1286 -- scalar or array type, because they apply to the first
1287 -- subtype of the type, and will be processed when that
1288 -- first subtype is frozen.
1290 if Is_Derived_Type (E)
1291 and then not Comes_From_Source (E)
1292 and then E /= First_Subtype (E)
1293 then
1294 null;
1295 else
1296 Analyze_Aspect_Default_Value (ASN);
1297 end if;
1299 -- Ditto for iterator aspects, because the corresponding
1300 -- attributes may not have been analyzed yet.
1302 when Aspect_Constant_Indexing
1303 | Aspect_Default_Iterator
1304 | Aspect_Iterator_Element
1305 | Aspect_Variable_Indexing
1307 Analyze (Expression (ASN));
1309 if Etype (Expression (ASN)) = Any_Type then
1310 Error_Msg_NE
1311 ("\aspect must be fully defined before & is frozen",
1312 ASN, E);
1313 end if;
1315 when Aspect_Integer_Literal
1316 | Aspect_Real_Literal
1317 | Aspect_String_Literal
1319 Validate_Literal_Aspect (E, ASN);
1321 when Aspect_Iterable =>
1322 Validate_Iterable_Aspect (E, ASN);
1324 when Aspect_Designated_Storage_Model =>
1325 Analyze_And_Resolve (Expression (ASN));
1327 if not Is_Entity_Name (Expression (ASN))
1328 or else not Is_Object (Entity (Expression (ASN)))
1329 or else
1330 not Present (Find_Aspect (Etype (Expression (ASN)),
1331 Aspect_Storage_Model_Type))
1332 then
1333 Error_Msg_N
1334 ("must specify name of stand-alone object of type "
1335 & "with aspect Storage_Model_Type",
1336 Expression (ASN));
1338 -- Set access type's Associated_Storage_Pool to denote
1339 -- the Storage_Model_Type object given for the aspect
1340 -- (even though that isn't actually an Ada storage pool).
1342 else
1343 Set_Associated_Storage_Pool
1344 (E, Entity (Expression (ASN)));
1345 end if;
1347 when Aspect_Storage_Model_Type =>
1348 Validate_Storage_Model_Type_Aspect (E, ASN);
1350 when Aspect_Aggregate =>
1351 null;
1353 when others =>
1354 null;
1355 end case;
1357 Ritem := Aspect_Rep_Item (ASN);
1359 if Present (Ritem) then
1360 Analyze (Ritem);
1361 end if;
1362 end if;
1363 end if;
1365 Next_Rep_Item (ASN);
1366 end loop;
1368 -- Make a second pass for a Full_Access_Only entry
1370 ASN := First_Rep_Item (E);
1371 while Present (ASN) loop
1372 if Nkind (ASN) = N_Aspect_Specification then
1373 exit when Entity (ASN) /= E;
1375 if Get_Aspect_Id (ASN) = Aspect_Full_Access_Only then
1376 Make_Pragma_From_Boolean_Aspect (ASN);
1377 Ritem := Aspect_Rep_Item (ASN);
1378 if Present (Ritem) then
1379 Analyze (Ritem);
1380 end if;
1381 end if;
1382 end if;
1384 Next_Rep_Item (ASN);
1385 end loop;
1387 if In_Instance
1388 and then E /= Base_Type (E)
1389 and then Is_First_Subtype (E)
1390 then
1391 Inherit_Rep_Item_Chain (Base_Type (E), E);
1392 end if;
1393 end Analyze_Aspects_At_Freeze_Point;
1395 -----------------------------------
1396 -- Analyze_Aspect_Specifications --
1397 -----------------------------------
1399 procedure Analyze_Aspect_Specifications (N : Node_Id; E : Entity_Id) is
1400 pragma Assert (Present (E));
1402 procedure Decorate (Asp : Node_Id; Prag : Node_Id);
1403 -- Establish linkages between an aspect and its corresponding pragma
1405 procedure Insert_Pragma
1406 (Prag : Node_Id;
1407 Is_Instance : Boolean := False);
1408 -- Subsidiary to the analysis of aspects
1409 -- Abstract_State
1410 -- Attach_Handler
1411 -- Contract_Cases
1412 -- Depends
1413 -- Ghost
1414 -- Global
1415 -- Initial_Condition
1416 -- Initializes
1417 -- Post
1418 -- Pre
1419 -- Refined_Depends
1420 -- Refined_Global
1421 -- Refined_State
1422 -- SPARK_Mode
1423 -- Subprogram_Variant
1424 -- Warnings
1425 -- Insert pragma Prag such that it mimics the placement of a source
1426 -- pragma of the same kind. Flag Is_Generic should be set when the
1427 -- context denotes a generic instance.
1429 function Relocate_Expression (Source : Node_Id) return Node_Id;
1430 -- Outside of a generic this function is equivalent to Relocate_Node.
1431 -- Inside a generic it is an identity function, because Relocate_Node
1432 -- would create a new node that is not associated with the generic
1433 -- template. This association is needed to save references to entities
1434 -- that are global to the generic (and might be not visible from where
1435 -- the generic is instantiated).
1437 -- Inside a generic the original tree is shared between aspect and
1438 -- a corresponding pragma (or an attribute definition clause). This
1439 -- parallels what is done in sem_prag.adb (see Get_Argument).
1441 --------------
1442 -- Decorate --
1443 --------------
1445 procedure Decorate (Asp : Node_Id; Prag : Node_Id) is
1446 begin
1447 Set_Aspect_Rep_Item (Asp, Prag);
1448 Set_Corresponding_Aspect (Prag, Asp);
1449 Set_From_Aspect_Specification (Prag);
1450 Set_Parent (Prag, Asp);
1451 end Decorate;
1453 -------------------
1454 -- Insert_Pragma --
1455 -------------------
1457 procedure Insert_Pragma
1458 (Prag : Node_Id;
1459 Is_Instance : Boolean := False)
1461 Aux : Node_Id;
1462 Decl : Node_Id;
1463 Decls : List_Id;
1464 Def : Node_Id;
1465 Inserted : Boolean := False;
1467 begin
1468 -- When the aspect appears on an entry, package, protected unit,
1469 -- subprogram, or task unit body, insert the generated pragma at the
1470 -- top of the body declarations to emulate the behavior of a source
1471 -- pragma.
1473 -- package body Pack with Aspect is
1475 -- package body Pack is
1476 -- pragma Prag;
1478 if Nkind (N) in N_Entry_Body
1479 | N_Package_Body
1480 | N_Protected_Body
1481 | N_Subprogram_Body
1482 | N_Task_Body
1483 then
1484 Decls := Declarations (N);
1486 if No (Decls) then
1487 Decls := New_List;
1488 Set_Declarations (N, Decls);
1489 end if;
1491 Prepend_To (Decls, Prag);
1493 -- When the aspect is associated with a [generic] package declaration
1494 -- insert the generated pragma at the top of the visible declarations
1495 -- to emulate the behavior of a source pragma.
1497 -- package Pack with Aspect is
1499 -- package Pack is
1500 -- pragma Prag;
1502 elsif Nkind (N) in N_Generic_Package_Declaration
1503 | N_Package_Declaration
1504 then
1505 Decls := Visible_Declarations (Specification (N));
1507 if No (Decls) then
1508 Decls := New_List;
1509 Set_Visible_Declarations (Specification (N), Decls);
1510 end if;
1512 -- The visible declarations of a generic instance have the
1513 -- following structure:
1515 -- <renamings of generic formals>
1516 -- <renamings of internally-generated spec and body>
1517 -- <first source declaration>
1519 -- Insert the pragma before the first source declaration by
1520 -- skipping the instance "header" to ensure proper visibility of
1521 -- all formals.
1523 if Is_Instance then
1524 Decl := First (Decls);
1525 while Present (Decl) loop
1526 if Comes_From_Source (Decl) then
1527 Insert_Before (Decl, Prag);
1528 Inserted := True;
1529 exit;
1530 else
1531 Next (Decl);
1532 end if;
1533 end loop;
1535 -- The pragma is placed after the instance "header"
1537 if not Inserted then
1538 Append_To (Decls, Prag);
1539 end if;
1541 -- Otherwise this is not a generic instance
1543 else
1544 Prepend_To (Decls, Prag);
1545 end if;
1547 -- When the aspect is associated with a protected unit declaration,
1548 -- insert the generated pragma at the top of the visible declarations
1549 -- the emulate the behavior of a source pragma.
1551 -- protected [type] Prot with Aspect is
1553 -- protected [type] Prot is
1554 -- pragma Prag;
1556 elsif Nkind (N) = N_Protected_Type_Declaration then
1557 Def := Protected_Definition (N);
1559 if No (Def) then
1560 Def :=
1561 Make_Protected_Definition (Sloc (N),
1562 Visible_Declarations => New_List,
1563 End_Label => Empty);
1565 Set_Protected_Definition (N, Def);
1566 end if;
1568 Decls := Visible_Declarations (Def);
1570 if No (Decls) then
1571 Decls := New_List;
1572 Set_Visible_Declarations (Def, Decls);
1573 end if;
1575 Prepend_To (Decls, Prag);
1577 -- When the aspect is associated with a task unit declaration, insert
1578 -- insert the generated pragma at the top of the visible declarations
1579 -- the emulate the behavior of a source pragma.
1581 -- task [type] Prot with Aspect is
1583 -- task [type] Prot is
1584 -- pragma Prag;
1586 elsif Nkind (N) = N_Task_Type_Declaration then
1587 Def := Task_Definition (N);
1589 if No (Def) then
1590 Def :=
1591 Make_Task_Definition (Sloc (N),
1592 Visible_Declarations => New_List,
1593 End_Label => Empty);
1595 Set_Task_Definition (N, Def);
1596 end if;
1598 Decls := Visible_Declarations (Def);
1600 if No (Decls) then
1601 Decls := New_List;
1602 Set_Visible_Declarations (Def, Decls);
1603 end if;
1605 Prepend_To (Decls, Prag);
1607 -- When the context is a library unit, the pragma is added to the
1608 -- Pragmas_After list.
1610 elsif Nkind (Parent (N)) = N_Compilation_Unit then
1611 Aux := Aux_Decls_Node (Parent (N));
1613 if No (Pragmas_After (Aux)) then
1614 Set_Pragmas_After (Aux, New_List);
1615 end if;
1617 Prepend (Prag, Pragmas_After (Aux));
1619 -- Default, the pragma is inserted after the context
1621 else
1622 Insert_After (N, Prag);
1623 end if;
1624 end Insert_Pragma;
1626 -------------------------
1627 -- Relocate_Expression --
1628 -------------------------
1630 function Relocate_Expression (Source : Node_Id) return Node_Id is
1631 begin
1632 if Inside_A_Generic then
1633 return Source;
1634 else
1635 return Atree.Relocate_Node (Source);
1636 end if;
1637 end Relocate_Expression;
1639 -- Local variables
1641 Aspect : Node_Id;
1642 Aitem : Node_Id := Empty;
1643 Ent : Node_Id;
1645 L : constant List_Id := Aspect_Specifications (N);
1646 pragma Assert (Present (L));
1648 Ins_Node : Node_Id := N;
1649 -- Insert pragmas/attribute definition clause after this node when no
1650 -- delayed analysis is required.
1652 -- Start of processing for Analyze_Aspect_Specifications
1654 begin
1655 -- The general processing involves building an attribute definition
1656 -- clause or a pragma node that corresponds to the aspect. Then in order
1657 -- to delay the evaluation of this aspect to the freeze point, we attach
1658 -- the corresponding pragma/attribute definition clause to the aspect
1659 -- specification node, which is then placed in the Rep Item chain. In
1660 -- this case we mark the entity by setting the flag Has_Delayed_Aspects
1661 -- and we evaluate the rep item at the freeze point. When the aspect
1662 -- doesn't have a corresponding pragma/attribute definition clause, then
1663 -- its analysis is simply delayed at the freeze point.
1665 -- Some special cases don't require delay analysis, thus the aspect is
1666 -- analyzed right now.
1668 -- Note that there is a special handling for Pre, Post, Test_Case,
1669 -- Contract_Cases and Subprogram_Variant aspects. In these cases, we do
1670 -- not have to worry about delay issues, since the pragmas themselves
1671 -- deal with delay of visibility for the expression analysis. Thus, we
1672 -- just insert the pragma after the node N.
1674 -- Loop through aspects
1676 Aspect := First (L);
1677 Aspect_Loop : while Present (Aspect) loop
1678 Analyze_One_Aspect : declare
1680 Aspect_Exit : exception;
1681 -- This exception is used to exit aspect processing completely. It
1682 -- is used when an error is detected, and no further processing is
1683 -- required. It is also used if an earlier error has left the tree
1684 -- in a state where the aspect should not be processed.
1686 Expr : constant Node_Id := Expression (Aspect);
1687 Id : constant Node_Id := Identifier (Aspect);
1688 Loc : constant Source_Ptr := Sloc (Aspect);
1689 Nam : constant Name_Id := Chars (Id);
1690 A_Id : constant Aspect_Id := Get_Aspect_Id (Nam);
1691 Anod : Node_Id;
1693 Delay_Required : Boolean;
1694 -- Set False if delay is not required
1696 Eloc : Source_Ptr := No_Location;
1697 -- Source location of expression, modified when we split PPC's. It
1698 -- is set below when Expr is present.
1700 procedure Analyze_Aspect_Convention;
1701 -- Perform analysis of aspect Convention
1703 procedure Analyze_Aspect_Disable_Controlled;
1704 -- Perform analysis of aspect Disable_Controlled
1706 procedure Analyze_Aspect_Export_Import;
1707 -- Perform analysis of aspects Export or Import
1709 procedure Analyze_Aspect_External_Link_Name;
1710 -- Perform analysis of aspects External_Name or Link_Name
1712 procedure Analyze_Aspect_Implicit_Dereference;
1713 -- Perform analysis of the Implicit_Dereference aspects
1715 procedure Analyze_Aspect_Relaxed_Initialization;
1716 -- Perform analysis of aspect Relaxed_Initialization
1718 procedure Analyze_Aspect_Yield;
1719 -- Perform analysis of aspect Yield
1721 procedure Analyze_Aspect_Static;
1722 -- Ada 2022 (AI12-0075): Perform analysis of aspect Static
1724 procedure Check_Expr_Is_OK_Static_Expression
1725 (Expr : Node_Id;
1726 Typ : Entity_Id := Empty);
1727 -- Check the specified expression Expr to make sure that it is a
1728 -- static expression of the given type (i.e. it will be analyzed
1729 -- and resolved using this type, which can be any valid argument
1730 -- to Resolve, e.g. Any_Integer is OK). If not, give an error
1731 -- and raise Aspect_Exit. If Typ is left Empty, then any static
1732 -- expression is allowed. Includes checking that the expression
1733 -- does not raise Constraint_Error.
1735 function Directly_Specified
1736 (Id : Entity_Id; A : Aspect_Id) return Boolean;
1737 -- Returns True if the given aspect is directly (as opposed to
1738 -- via any form of inheritance) specified for the given entity.
1740 function Make_Aitem_Pragma
1741 (Pragma_Argument_Associations : List_Id;
1742 Pragma_Name : Name_Id) return Node_Id;
1743 -- This is a wrapper for Make_Pragma used for converting aspects
1744 -- to pragmas. It takes care of Sloc (set from Loc) and building
1745 -- the pragma identifier from the given name. In addition the
1746 -- flags Class_Present and Split_PPC are set from the aspect
1747 -- node, as well as Is_Ignored. This routine also sets the
1748 -- From_Aspect_Specification in the resulting pragma node to
1749 -- True, and sets Corresponding_Aspect to point to the aspect.
1750 -- The resulting pragma is assigned to Aitem.
1752 -------------------------------
1753 -- Analyze_Aspect_Convention --
1754 -------------------------------
1756 procedure Analyze_Aspect_Convention is
1757 Conv : Node_Id;
1758 Dummy_1 : Node_Id;
1759 Dummy_2 : Node_Id;
1760 Dummy_3 : Node_Id;
1761 Expo : Node_Id;
1762 Imp : Node_Id;
1764 begin
1765 -- Obtain all interfacing aspects that apply to the related
1766 -- entity.
1768 Get_Interfacing_Aspects
1769 (Iface_Asp => Aspect,
1770 Conv_Asp => Dummy_1,
1771 EN_Asp => Dummy_2,
1772 Expo_Asp => Expo,
1773 Imp_Asp => Imp,
1774 LN_Asp => Dummy_3,
1775 Do_Checks => True);
1777 -- The related entity is subject to aspect Export or Import.
1778 -- Do not process Convention now because it must be analysed
1779 -- as part of Export or Import.
1781 if Present (Expo) or else Present (Imp) then
1782 return;
1784 -- Otherwise Convention appears by itself
1786 else
1787 -- The aspect specifies a particular convention
1789 if Present (Expr) then
1790 Conv := New_Copy_Tree (Expr);
1792 -- Otherwise assume convention Ada
1794 else
1795 Conv := Make_Identifier (Loc, Name_Ada);
1796 end if;
1798 -- Generate:
1799 -- pragma Convention (<Conv>, <E>);
1801 Aitem := Make_Aitem_Pragma
1802 (Pragma_Name => Name_Convention,
1803 Pragma_Argument_Associations => New_List (
1804 Make_Pragma_Argument_Association (Loc,
1805 Expression => Conv),
1806 Make_Pragma_Argument_Association (Loc,
1807 Expression => New_Occurrence_Of (E, Loc))));
1809 Decorate (Aspect, Aitem);
1810 Insert_Pragma (Aitem);
1811 end if;
1812 end Analyze_Aspect_Convention;
1814 ---------------------------------------
1815 -- Analyze_Aspect_Disable_Controlled --
1816 ---------------------------------------
1818 procedure Analyze_Aspect_Disable_Controlled is
1819 begin
1820 -- The aspect applies only to controlled records
1822 if not (Ekind (E) = E_Record_Type
1823 and then Is_Controlled_Active (E))
1824 then
1825 Error_Msg_N
1826 ("aspect % requires controlled record type", Aspect);
1827 return;
1828 end if;
1830 -- Preanalyze the expression (if any) when the aspect resides
1831 -- in a generic unit.
1833 if Inside_A_Generic then
1834 if Present (Expr) then
1835 Preanalyze_And_Resolve (Expr, Any_Boolean);
1836 end if;
1838 -- Otherwise the aspect resides in a nongeneric context
1840 else
1841 -- A controlled record type loses its controlled semantics
1842 -- when the expression statically evaluates to True.
1844 if Present (Expr) then
1845 Analyze_And_Resolve (Expr, Any_Boolean);
1847 if Is_OK_Static_Expression (Expr) then
1848 if Is_True (Static_Boolean (Expr)) then
1849 Set_Disable_Controlled (E);
1850 end if;
1852 -- Otherwise the expression is not static
1854 else
1855 Error_Msg_N
1856 ("expression of aspect % must be static", Aspect);
1857 end if;
1859 -- Otherwise the aspect appears without an expression and
1860 -- defaults to True.
1862 else
1863 Set_Disable_Controlled (E);
1864 end if;
1865 end if;
1866 end Analyze_Aspect_Disable_Controlled;
1868 ----------------------------------
1869 -- Analyze_Aspect_Export_Import --
1870 ----------------------------------
1872 procedure Analyze_Aspect_Export_Import is
1873 Dummy_1 : Node_Id;
1874 Dummy_2 : Node_Id;
1875 Dummy_3 : Node_Id;
1876 Expo : Node_Id;
1877 Imp : Node_Id;
1879 begin
1880 -- Obtain all interfacing aspects that apply to the related
1881 -- entity.
1883 Get_Interfacing_Aspects
1884 (Iface_Asp => Aspect,
1885 Conv_Asp => Dummy_1,
1886 EN_Asp => Dummy_2,
1887 Expo_Asp => Expo,
1888 Imp_Asp => Imp,
1889 LN_Asp => Dummy_3,
1890 Do_Checks => True);
1892 -- The related entity cannot be subject to both aspects Export
1893 -- and Import.
1895 if Present (Expo) and then Present (Imp) then
1896 Error_Msg_N
1897 ("incompatible interfacing aspects given for &", E);
1898 Error_Msg_Sloc := Sloc (Expo);
1899 Error_Msg_N ("\aspect Export #", E);
1900 Error_Msg_Sloc := Sloc (Imp);
1901 Error_Msg_N ("\aspect Import #", E);
1902 end if;
1904 -- A variable is most likely modified from the outside. Take
1905 -- the optimistic approach to avoid spurious errors.
1907 if Ekind (E) = E_Variable then
1908 Set_Never_Set_In_Source (E, False);
1909 end if;
1911 -- Resolve the expression of an Import or Export here, and
1912 -- require it to be of type Boolean and static. This is not
1913 -- quite right, because in general this should be delayed,
1914 -- but that seems tricky for these, because normally Boolean
1915 -- aspects are replaced with pragmas at the freeze point in
1916 -- Make_Pragma_From_Boolean_Aspect.
1918 if not Present (Expr)
1919 or else Is_True (Static_Boolean (Expr))
1920 then
1921 if A_Id = Aspect_Import then
1922 Set_Has_Completion (E);
1923 Set_Is_Imported (E);
1925 -- An imported object cannot be explicitly initialized
1927 if Nkind (N) = N_Object_Declaration
1928 and then Present (Expression (N))
1929 then
1930 Error_Msg_N
1931 ("imported entities cannot be initialized "
1932 & "(RM B.1(24))", Expression (N));
1933 end if;
1935 else
1936 pragma Assert (A_Id = Aspect_Export);
1937 Set_Is_Exported (E);
1938 end if;
1940 -- Create the proper form of pragma Export or Import taking
1941 -- into account Conversion, External_Name, and Link_Name.
1943 Aitem := Build_Export_Import_Pragma (Aspect, E);
1945 -- Otherwise the expression is either False or erroneous. There
1946 -- is no corresponding pragma.
1948 else
1949 Aitem := Empty;
1950 end if;
1951 end Analyze_Aspect_Export_Import;
1953 ---------------------------------------
1954 -- Analyze_Aspect_External_Link_Name --
1955 ---------------------------------------
1957 procedure Analyze_Aspect_External_Link_Name is
1958 Dummy_1 : Node_Id;
1959 Dummy_2 : Node_Id;
1960 Dummy_3 : Node_Id;
1961 Expo : Node_Id;
1962 Imp : Node_Id;
1964 begin
1965 -- Obtain all interfacing aspects that apply to the related
1966 -- entity.
1968 Get_Interfacing_Aspects
1969 (Iface_Asp => Aspect,
1970 Conv_Asp => Dummy_1,
1971 EN_Asp => Dummy_2,
1972 Expo_Asp => Expo,
1973 Imp_Asp => Imp,
1974 LN_Asp => Dummy_3,
1975 Do_Checks => True);
1977 -- Ensure that aspect External_Name applies to aspect Export or
1978 -- Import.
1980 if A_Id = Aspect_External_Name then
1981 if No (Expo) and then No (Imp) then
1982 Error_Msg_N
1983 ("aspect External_Name requires aspect Import or "
1984 & "Export", Aspect);
1985 end if;
1987 -- Otherwise ensure that aspect Link_Name applies to aspect
1988 -- Export or Import.
1990 else
1991 pragma Assert (A_Id = Aspect_Link_Name);
1992 if No (Expo) and then No (Imp) then
1993 Error_Msg_N
1994 ("aspect Link_Name requires aspect Import or Export",
1995 Aspect);
1996 end if;
1997 end if;
1998 end Analyze_Aspect_External_Link_Name;
2000 -----------------------------------------
2001 -- Analyze_Aspect_Implicit_Dereference --
2002 -----------------------------------------
2004 procedure Analyze_Aspect_Implicit_Dereference is
2005 begin
2006 if not Is_Type (E) or else not Has_Discriminants (E) then
2007 Error_Msg_N
2008 ("aspect must apply to a type with discriminants", Expr);
2010 elsif not Is_Entity_Name (Expr) then
2011 Error_Msg_N
2012 ("aspect must name a discriminant of current type", Expr);
2014 else
2015 -- Discriminant type be an anonymous access type or an
2016 -- anonymous access to subprogram.
2018 -- Missing synchronized types???
2020 declare
2021 Disc : Entity_Id := First_Discriminant (E);
2022 begin
2023 while Present (Disc) loop
2024 if Chars (Expr) = Chars (Disc)
2025 and then Ekind (Etype (Disc)) in
2026 E_Anonymous_Access_Subprogram_Type |
2027 E_Anonymous_Access_Type
2028 then
2029 Set_Has_Implicit_Dereference (E);
2030 Set_Has_Implicit_Dereference (Disc);
2031 exit;
2032 end if;
2034 Next_Discriminant (Disc);
2035 end loop;
2037 -- Error if no proper access discriminant
2039 if Present (Disc) then
2040 -- For a type extension, check whether parent has
2041 -- a reference discriminant, to verify that use is
2042 -- proper.
2044 if Is_Derived_Type (E)
2045 and then Has_Discriminants (Etype (E))
2046 then
2047 declare
2048 Parent_Disc : constant Entity_Id :=
2049 Get_Reference_Discriminant (Etype (E));
2050 begin
2051 if Present (Parent_Disc)
2052 and then Corresponding_Discriminant (Disc) /=
2053 Parent_Disc
2054 then
2055 Error_Msg_N
2056 ("reference discriminant does not match "
2057 & "discriminant of parent type", Expr);
2058 end if;
2059 end;
2060 end if;
2062 else
2063 Error_Msg_NE
2064 ("not an access discriminant of&", Expr, E);
2065 end if;
2066 end;
2067 end if;
2069 end Analyze_Aspect_Implicit_Dereference;
2071 -------------------------------------------
2072 -- Analyze_Aspect_Relaxed_Initialization --
2073 -------------------------------------------
2075 procedure Analyze_Aspect_Relaxed_Initialization is
2076 procedure Analyze_Relaxed_Parameter
2077 (Subp_Id : Entity_Id;
2078 Param : Node_Id;
2079 Seen : in out Elist_Id);
2080 -- Analyze parameter that appears in the expression of the
2081 -- aspect Relaxed_Initialization.
2083 -------------------------------
2084 -- Analyze_Relaxed_Parameter --
2085 -------------------------------
2087 procedure Analyze_Relaxed_Parameter
2088 (Subp_Id : Entity_Id;
2089 Param : Node_Id;
2090 Seen : in out Elist_Id)
2092 begin
2093 -- Set name of the aspect for error messages
2094 Error_Msg_Name_1 := Nam;
2096 -- The relaxed parameter is a formal parameter
2098 if Nkind (Param) in N_Identifier | N_Expanded_Name then
2099 Analyze (Param);
2101 declare
2102 Item : constant Entity_Id := Entity (Param);
2103 begin
2104 -- It must be a formal of the analyzed subprogram
2106 if Scope (Item) = Subp_Id then
2108 pragma Assert (Is_Formal (Item));
2110 -- It must not have scalar or access type
2112 if Is_Elementary_Type (Etype (Item)) then
2113 Error_Msg_N ("illegal aspect % item", Param);
2114 Error_Msg_N
2115 ("\item must not have elementary type", Param);
2116 end if;
2118 -- Detect duplicated items
2120 if Contains (Seen, Item) then
2121 Error_Msg_N ("duplicate aspect % item", Param);
2122 else
2123 Append_New_Elmt (Item, Seen);
2124 end if;
2125 else
2126 Error_Msg_N ("illegal aspect % item", Param);
2127 end if;
2128 end;
2130 -- The relaxed parameter is the function's Result attribute
2132 elsif Is_Attribute_Result (Param) then
2133 Analyze (Param);
2135 declare
2136 Pref : constant Node_Id := Prefix (Param);
2137 begin
2138 if Present (Pref)
2139 and then
2140 Nkind (Pref) in N_Identifier | N_Expanded_Name
2141 and then
2142 Entity (Pref) = Subp_Id
2143 then
2144 -- Function result must not have scalar or access
2145 -- type.
2147 if Is_Elementary_Type (Etype (Pref)) then
2148 Error_Msg_N ("illegal aspect % item", Param);
2149 Error_Msg_N
2150 ("\function result must not have elementary"
2151 & " type", Param);
2152 end if;
2154 -- Detect duplicated items
2156 if Contains (Seen, Subp_Id) then
2157 Error_Msg_N ("duplicate aspect % item", Param);
2158 else
2159 Append_New_Elmt (Entity (Pref), Seen);
2160 end if;
2162 else
2163 Error_Msg_N ("illegal aspect % item", Param);
2164 end if;
2165 end;
2166 else
2167 Error_Msg_N ("illegal aspect % item", Param);
2168 end if;
2169 end Analyze_Relaxed_Parameter;
2171 -- Local variables
2173 Seen : Elist_Id := No_Elist;
2174 -- Items that appear in the relaxed initialization aspect
2175 -- expression of a subprogram; for detecting duplicates.
2177 Restore_Scope : Boolean;
2178 -- Will be set to True if we need to restore the scope table
2179 -- after analyzing the aspect expression.
2181 Prev_Id : Entity_Id;
2183 -- Start of processing for Analyze_Aspect_Relaxed_Initialization
2185 begin
2186 -- Set name of the aspect for error messages
2187 Error_Msg_Name_1 := Nam;
2189 -- Annotation of a type; no aspect expression is allowed.
2190 -- For a private type, the aspect must be attached to the
2191 -- partial view.
2193 -- ??? Once the exact rule for this aspect is ready, we will
2194 -- likely reject concurrent types, etc., so let's keep the code
2195 -- for types and variable separate.
2197 if Is_First_Subtype (E) then
2198 Prev_Id := Incomplete_Or_Partial_View (E);
2199 if Present (Prev_Id) then
2201 -- Aspect may appear on the full view of an incomplete
2202 -- type because the incomplete declaration cannot have
2203 -- any aspects.
2205 if Ekind (Prev_Id) = E_Incomplete_Type then
2206 null;
2207 else
2208 Error_Msg_N ("aspect % must apply to partial view", N);
2209 end if;
2211 elsif Present (Expr) then
2212 Error_Msg_N ("illegal aspect % expression", Expr);
2213 end if;
2215 -- Annotation of a variable; no aspect expression is allowed
2217 elsif Ekind (E) = E_Variable then
2218 if Present (Expr) then
2219 Error_Msg_N ("illegal aspect % expression", Expr);
2220 end if;
2222 -- Annotation of a constant; no aspect expression is allowed.
2223 -- For a deferred constant, the aspect must be attached to the
2224 -- partial view.
2226 elsif Ekind (E) = E_Constant then
2227 if Present (Incomplete_Or_Partial_View (E)) then
2228 Error_Msg_N
2229 ("aspect % must apply to deferred constant", N);
2231 elsif Present (Expr) then
2232 Error_Msg_N ("illegal aspect % expression", Expr);
2233 end if;
2235 -- Annotation of a subprogram; aspect expression is required
2237 elsif Is_Subprogram_Or_Entry (E)
2238 or else Is_Generic_Subprogram (E)
2239 then
2240 if Present (Expr) then
2242 -- If we analyze subprogram body that acts as its own
2243 -- spec, then the subprogram itself and its formals are
2244 -- already installed; otherwise, we need to install them,
2245 -- as they must be visible when analyzing the aspect
2246 -- expression.
2248 if In_Open_Scopes (E) then
2249 Restore_Scope := False;
2250 else
2251 Restore_Scope := True;
2252 Push_Scope (E);
2254 -- Only formals of the subprogram itself can appear
2255 -- in Relaxed_Initialization aspect expression, not
2256 -- formals of the enclosing generic unit. (This is
2257 -- different than in Precondition or Depends aspects,
2258 -- where both kinds of formals are allowed.)
2260 Install_Formals (E);
2261 end if;
2263 -- Aspect expression is either an aggregate with list of
2264 -- parameters (and possibly the Result attribute for a
2265 -- function).
2267 if Nkind (Expr) = N_Aggregate then
2269 -- Component associations in the aggregate must be a
2270 -- parameter name followed by a static boolean
2271 -- expression.
2273 if Present (Component_Associations (Expr)) then
2274 declare
2275 Assoc : Node_Id :=
2276 First (Component_Associations (Expr));
2277 begin
2278 while Present (Assoc) loop
2279 if List_Length (Choices (Assoc)) = 1 then
2280 Analyze_Relaxed_Parameter
2281 (E, First (Choices (Assoc)), Seen);
2283 if Inside_A_Generic then
2284 Preanalyze_And_Resolve
2285 (Expression (Assoc), Any_Boolean);
2286 else
2287 Analyze_And_Resolve
2288 (Expression (Assoc), Any_Boolean);
2289 end if;
2291 if not Is_OK_Static_Expression
2292 (Expression (Assoc))
2293 then
2294 Error_Msg_Name_1 := Nam;
2295 Error_Msg_N
2296 ("expression of aspect %" &
2297 "must be static", Aspect);
2298 end if;
2300 else
2301 Error_Msg_Name_1 := Nam;
2302 Error_Msg_N
2303 ("illegal aspect % expression", Expr);
2304 end if;
2305 Next (Assoc);
2306 end loop;
2307 end;
2308 end if;
2310 -- Expressions of the aggregate are parameter names
2312 if Present (Expressions (Expr)) then
2313 declare
2314 Param : Node_Id := First (Expressions (Expr));
2316 begin
2317 while Present (Param) loop
2318 Analyze_Relaxed_Parameter (E, Param, Seen);
2319 Next (Param);
2320 end loop;
2321 end;
2322 end if;
2324 -- Mark the aggregate expression itself as analyzed;
2325 -- its subexpressions were marked when they themselves
2326 -- were analyzed.
2328 Set_Analyzed (Expr);
2330 -- Otherwise, it is a single name of a subprogram
2331 -- parameter (or possibly the Result attribute for
2332 -- a function).
2334 else
2335 Analyze_Relaxed_Parameter (E, Expr, Seen);
2336 end if;
2338 if Restore_Scope then
2339 End_Scope;
2340 end if;
2341 else
2342 Error_Msg_N ("missing expression for aspect %", N);
2343 end if;
2345 else
2346 Error_Msg_N ("inappropriate entity for aspect %", E);
2347 end if;
2348 end Analyze_Aspect_Relaxed_Initialization;
2350 ---------------------------
2351 -- Analyze_Aspect_Static --
2352 ---------------------------
2354 procedure Analyze_Aspect_Static is
2355 function Has_Convention_Intrinsic (L : List_Id) return Boolean;
2356 -- Return True if L contains a pragma argument association
2357 -- node representing a convention Intrinsic.
2359 ------------------------------
2360 -- Has_Convention_Intrinsic --
2361 ------------------------------
2363 function Has_Convention_Intrinsic
2364 (L : List_Id) return Boolean
2366 Arg : Node_Id := First (L);
2367 begin
2368 while Present (Arg) loop
2369 if Nkind (Arg) = N_Pragma_Argument_Association
2370 and then Chars (Arg) = Name_Convention
2371 and then Chars (Expression (Arg)) = Name_Intrinsic
2372 then
2373 return True;
2374 end if;
2376 Next (Arg);
2377 end loop;
2379 return False;
2380 end Has_Convention_Intrinsic;
2382 Is_Imported_Intrinsic : Boolean;
2384 begin
2385 if Ada_Version < Ada_2022 then
2386 Error_Msg_Ada_2022_Feature ("aspect %", Sloc (Aspect));
2387 return;
2388 end if;
2390 Is_Imported_Intrinsic := Is_Imported (E)
2391 and then
2392 Has_Convention_Intrinsic
2393 (Pragma_Argument_Associations (Import_Pragma (E)));
2395 -- The aspect applies only to expression functions that
2396 -- statisfy the requirements for a static expression function
2397 -- (such as having an expression that is predicate-static) as
2398 -- well as Intrinsic imported functions as a -gnatX extension.
2400 if not Is_Expression_Function (E)
2401 and then
2402 not (Extensions_Allowed and then Is_Imported_Intrinsic)
2403 then
2404 if Extensions_Allowed then
2405 Error_Msg_N
2406 ("aspect % requires intrinsic or expression function",
2407 Aspect);
2409 elsif Is_Imported_Intrinsic then
2410 Error_Msg_GNAT_Extension
2411 ("aspect % on intrinsic function", Sloc (Aspect));
2413 else
2414 Error_Msg_N
2415 ("aspect % requires expression function", Aspect);
2416 end if;
2418 return;
2420 -- Ada 2022 (AI12-0075): Check that the function satisfies
2421 -- several requirements of static functions as specified in
2422 -- RM 6.8(5.1-5.8). Note that some of the requirements given
2423 -- there are checked elsewhere.
2425 else
2426 -- The expression of the expression function must be a
2427 -- potentially static expression (RM 2022 6.8(3.2-3.4)).
2428 -- That's checked in Sem_Ch6.Analyze_Expression_Function.
2430 -- The function must not contain any calls to itself, which
2431 -- is checked in Sem_Res.Resolve_Call.
2433 -- Each formal must be of mode in and have a static subtype
2435 declare
2436 Formal : Entity_Id := First_Formal (E);
2437 begin
2438 while Present (Formal) loop
2439 if Ekind (Formal) /= E_In_Parameter then
2440 Error_Msg_N
2441 ("aspect % requires formals of mode IN",
2442 Aspect);
2444 return;
2445 end if;
2447 if not Is_Static_Subtype (Etype (Formal)) then
2448 Error_Msg_N
2449 ("aspect % requires formals with static subtypes",
2450 Aspect);
2452 return;
2453 end if;
2455 Next_Formal (Formal);
2456 end loop;
2457 end;
2459 -- The function's result subtype must be a static subtype
2461 if not Is_Static_Subtype (Etype (E)) then
2462 Error_Msg_N
2463 ("aspect % requires function with result of "
2464 & "a static subtype",
2465 Aspect);
2467 return;
2468 end if;
2470 -- Check that the function does not have any applicable
2471 -- precondition or postcondition expression.
2473 for Asp in Pre_Post_Aspects loop
2474 if Has_Aspect (E, Asp) then
2475 Error_Msg_Name_1 := Aspect_Names (Asp);
2476 Error_Msg_N
2477 ("aspect % is not allowed for a static "
2478 & "expression function",
2479 Find_Aspect (E, Asp));
2481 return;
2482 end if;
2483 end loop;
2485 -- ??? Must check that "for result type R, if the
2486 -- function is a boundary entity for type R (see 7.3.2),
2487 -- no type invariant applies to type R; if R has a
2488 -- component type C, a similar rule applies to C."
2489 end if;
2491 -- When the expression is present, it must be static. If it
2492 -- evaluates to True, the expression function is treated as
2493 -- a static function. Otherwise the aspect appears without
2494 -- an expression and defaults to True.
2496 if Present (Expr) then
2497 -- Preanalyze the expression when the aspect resides in a
2498 -- generic unit. (Is this generic-related code necessary
2499 -- for this aspect? It's modeled on what's done for aspect
2500 -- Disable_Controlled. ???)
2502 if Inside_A_Generic then
2503 Preanalyze_And_Resolve (Expr, Any_Boolean);
2505 -- Otherwise the aspect resides in a nongeneric context
2507 else
2508 Analyze_And_Resolve (Expr, Any_Boolean);
2510 -- Error if the boolean expression is not static
2512 if not Is_OK_Static_Expression (Expr) then
2513 Error_Msg_N
2514 ("expression of aspect % must be static", Aspect);
2515 end if;
2516 end if;
2517 end if;
2518 end Analyze_Aspect_Static;
2520 --------------------------
2521 -- Analyze_Aspect_Yield --
2522 --------------------------
2524 procedure Analyze_Aspect_Yield is
2525 Expr_Value : Boolean := False;
2527 begin
2528 -- Check valid entity for 'Yield
2530 if (Is_Subprogram (E)
2531 or else Is_Generic_Subprogram (E)
2532 or else Is_Entry (E))
2533 and then not Within_Protected_Type (E)
2534 then
2535 null;
2537 elsif Within_Protected_Type (E) then
2538 Error_Msg_N
2539 ("aspect% not applicable to protected operation", Id);
2540 return;
2542 else
2543 Error_Msg_N
2544 ("aspect% only applicable to subprogram and entry "
2545 & "declarations", Id);
2546 return;
2547 end if;
2549 -- Evaluate its static expression (if available); otherwise it
2550 -- defaults to True.
2552 if No (Expr) then
2553 Expr_Value := True;
2555 -- Otherwise it must have a static boolean expression
2557 else
2558 if Inside_A_Generic then
2559 Preanalyze_And_Resolve (Expr, Any_Boolean);
2560 else
2561 Analyze_And_Resolve (Expr, Any_Boolean);
2562 end if;
2564 if Is_OK_Static_Expression (Expr) then
2565 if Is_True (Static_Boolean (Expr)) then
2566 Expr_Value := True;
2567 end if;
2568 else
2569 Error_Msg_N
2570 ("expression of aspect % must be static", Aspect);
2571 end if;
2572 end if;
2574 if Expr_Value then
2575 Set_Has_Yield_Aspect (E);
2576 end if;
2578 -- If the Yield aspect is specified for a dispatching
2579 -- subprogram that inherits the aspect, the specified
2580 -- value shall be confirming.
2582 if Present (Expr)
2583 and then Is_Dispatching_Operation (E)
2584 and then Present (Overridden_Operation (E))
2585 and then Has_Yield_Aspect (Overridden_Operation (E))
2586 /= Is_True (Static_Boolean (Expr))
2587 then
2588 Error_Msg_N ("specification of inherited aspect% can only " &
2589 "confirm parent value", Id);
2590 end if;
2591 end Analyze_Aspect_Yield;
2593 ----------------------------------------
2594 -- Check_Expr_Is_OK_Static_Expression --
2595 ----------------------------------------
2597 procedure Check_Expr_Is_OK_Static_Expression
2598 (Expr : Node_Id;
2599 Typ : Entity_Id := Empty)
2601 begin
2602 if Present (Typ) then
2603 Analyze_And_Resolve (Expr, Typ);
2604 else
2605 Analyze_And_Resolve (Expr);
2606 end if;
2608 -- An expression cannot be considered static if its resolution
2609 -- failed or if it's erroneous. Stop the analysis of the
2610 -- related aspect.
2612 if Etype (Expr) = Any_Type or else Error_Posted (Expr) then
2613 raise Aspect_Exit;
2615 elsif Is_OK_Static_Expression (Expr) then
2616 return;
2618 -- Finally, we have a real error
2620 else
2621 Error_Msg_Name_1 := Nam;
2622 Flag_Non_Static_Expr
2623 ("entity for aspect% must be a static expression",
2624 Expr);
2625 raise Aspect_Exit;
2626 end if;
2627 end Check_Expr_Is_OK_Static_Expression;
2629 ------------------------
2630 -- Directly_Specified --
2631 ------------------------
2633 function Directly_Specified
2634 (Id : Entity_Id; A : Aspect_Id) return Boolean
2636 Aspect_Spec : constant Node_Id := Find_Aspect (Id, A);
2637 begin
2638 return Present (Aspect_Spec) and then Entity (Aspect_Spec) = Id;
2639 end Directly_Specified;
2641 -----------------------
2642 -- Make_Aitem_Pragma --
2643 -----------------------
2645 function Make_Aitem_Pragma
2646 (Pragma_Argument_Associations : List_Id;
2647 Pragma_Name : Name_Id) return Node_Id
2649 Args : List_Id := Pragma_Argument_Associations;
2650 Aitem : Node_Id;
2652 begin
2653 -- We should never get here if aspect was disabled
2655 pragma Assert (not Is_Disabled (Aspect));
2657 -- Certain aspects allow for an optional name or expression. Do
2658 -- not generate a pragma with empty argument association list.
2660 if No (Args) or else No (Expression (First (Args))) then
2661 Args := No_List;
2662 end if;
2664 -- Build the pragma
2666 Aitem :=
2667 Make_Pragma (Loc,
2668 Pragma_Argument_Associations => Args,
2669 Pragma_Identifier =>
2670 Make_Identifier (Sloc (Id), Pragma_Name),
2671 Class_Present => Class_Present (Aspect),
2672 Split_PPC => Split_PPC (Aspect));
2674 -- Set additional semantic fields
2676 if Is_Ignored (Aspect) then
2677 Set_Is_Ignored (Aitem);
2678 elsif Is_Checked (Aspect) then
2679 Set_Is_Checked (Aitem);
2680 end if;
2682 Set_Corresponding_Aspect (Aitem, Aspect);
2683 Set_From_Aspect_Specification (Aitem);
2685 return Aitem;
2686 end Make_Aitem_Pragma;
2688 -- Start of processing for Analyze_One_Aspect
2690 begin
2691 -- Skip aspect if already analyzed, to avoid looping in some cases
2693 if Analyzed (Aspect) then
2694 goto Continue;
2695 end if;
2697 -- Skip looking at aspect if it is totally disabled. Just mark it
2698 -- as such for later reference in the tree. This also sets the
2699 -- Is_Ignored and Is_Checked flags appropriately.
2701 Check_Applicable_Policy (Aspect);
2703 if Is_Disabled (Aspect) then
2704 goto Continue;
2705 end if;
2707 -- Set the source location of expression, used in the case of
2708 -- a failed precondition/postcondition or invariant. Note that
2709 -- the source location of the expression is not usually the best
2710 -- choice here. For example, it gets located on the last AND
2711 -- keyword in a chain of boolean expressiond AND'ed together.
2712 -- It is best to put the message on the first character of the
2713 -- assertion, which is the effect of the First_Node call here.
2715 if Present (Expr) then
2716 Eloc := Sloc (First_Node (Expr));
2717 end if;
2719 -- Check restriction No_Implementation_Aspect_Specifications
2721 if Implementation_Defined_Aspect (A_Id) then
2722 Check_Restriction
2723 (No_Implementation_Aspect_Specifications, Aspect);
2724 end if;
2726 -- Check restriction No_Specification_Of_Aspect
2728 Check_Restriction_No_Specification_Of_Aspect (Aspect);
2730 -- Mark aspect analyzed (actual analysis is delayed till later)
2732 Set_Analyzed (Aspect);
2733 Set_Entity (Aspect, E);
2735 -- Build the reference to E that will be used in the built pragmas
2737 Ent := New_Occurrence_Of (E, Sloc (Id));
2739 if A_Id in Aspect_Attach_Handler | Aspect_Interrupt_Handler then
2741 -- Treat the specification as a reference to the protected
2742 -- operation, which might otherwise appear unreferenced and
2743 -- generate spurious warnings.
2745 Generate_Reference (E, Id);
2746 end if;
2748 -- Check for duplicate aspect. Note that the Comes_From_Source
2749 -- test allows duplicate Pre/Post's that we generate internally
2750 -- to escape being flagged here.
2752 if No_Duplicates_Allowed (A_Id) then
2753 Anod := First (L);
2754 while Anod /= Aspect loop
2755 if Comes_From_Source (Aspect)
2756 and then Same_Aspect (A_Id, Get_Aspect_Id (Anod))
2757 then
2758 Error_Msg_Name_1 := Nam;
2759 Error_Msg_Sloc := Sloc (Anod);
2761 -- Case of same aspect specified twice
2763 if Class_Present (Anod) = Class_Present (Aspect) then
2764 if not Class_Present (Anod) then
2765 Error_Msg_NE
2766 ("aspect% for & previously given#",
2767 Id, E);
2768 else
2769 Error_Msg_NE
2770 ("aspect `%''Class` for & previously given#",
2771 Id, E);
2772 end if;
2773 end if;
2774 end if;
2776 Next (Anod);
2777 end loop;
2778 end if;
2780 -- Check some general restrictions on language defined aspects
2782 if not Implementation_Defined_Aspect (A_Id)
2783 or else A_Id in Aspect_Async_Readers
2784 | Aspect_Async_Writers
2785 | Aspect_Effective_Reads
2786 | Aspect_Effective_Writes
2787 | Aspect_Preelaborable_Initialization
2788 then
2789 Error_Msg_Name_1 := Nam;
2791 -- Not allowed for renaming declarations. Examine the original
2792 -- node because a subprogram renaming may have been rewritten
2793 -- as a body.
2795 if Nkind (Original_Node (N)) in N_Renaming_Declaration then
2796 Error_Msg_N
2797 ("aspect % not allowed for renaming declaration",
2798 Aspect);
2799 end if;
2801 -- Not allowed for formal type declarations in previous
2802 -- versions of the language. Allowed for them only for
2803 -- shared variable control aspects.
2805 -- Original node is used in case expansion rewrote the node -
2806 -- as is the case with generic derived types.
2808 if Nkind (Original_Node (N)) = N_Formal_Type_Declaration then
2809 if Ada_Version < Ada_2022 then
2810 Error_Msg_N
2811 ("aspect % not allowed for formal type declaration",
2812 Aspect);
2814 elsif A_Id not in Aspect_Atomic
2815 | Aspect_Volatile
2816 | Aspect_Independent
2817 | Aspect_Atomic_Components
2818 | Aspect_Independent_Components
2819 | Aspect_Volatile_Components
2820 | Aspect_Async_Readers
2821 | Aspect_Async_Writers
2822 | Aspect_Effective_Reads
2823 | Aspect_Effective_Writes
2824 | Aspect_Preelaborable_Initialization
2825 then
2826 Error_Msg_N
2827 ("aspect % not allowed for formal type declaration",
2828 Aspect);
2829 end if;
2830 end if;
2831 end if;
2833 -- Copy expression for later processing by the procedures
2834 -- Check_Aspect_At_[Freeze_Point | End_Of_Declarations]
2836 -- The expression may be a subprogram name, and can
2837 -- be an operator name that appears as a string, but
2838 -- requires its own analysis procedure (see sem_ch6).
2840 if Nkind (Expr) = N_Operator_Symbol then
2841 Set_Entity (Id, Expr);
2842 else
2843 Set_Entity (Id, New_Copy_Tree (Expr));
2844 end if;
2846 -- Set Delay_Required as appropriate to aspect
2848 case Aspect_Delay (A_Id) is
2849 when Always_Delay =>
2850 -- For Boolean aspects, do not delay if no expression
2852 if A_Id in Boolean_Aspects | Library_Unit_Aspects then
2853 Delay_Required := Present (Expr);
2854 else
2855 Delay_Required := True;
2856 end if;
2858 when Never_Delay =>
2859 Delay_Required := False;
2861 when Rep_Aspect =>
2863 -- For Boolean aspects, do not delay if no expression except
2864 -- for Full_Access_Only because we need to process it after
2865 -- Volatile and Atomic, which can be independently delayed.
2867 if A_Id in Boolean_Aspects
2868 and then A_Id /= Aspect_Full_Access_Only
2869 and then No (Expr)
2870 then
2871 Delay_Required := False;
2873 -- For non-Boolean aspects, if the expression has the form
2874 -- of an integer literal, then do not delay, since we know
2875 -- the value cannot change. This optimization catches most
2876 -- rep clause cases.
2878 elsif A_Id not in Boolean_Aspects
2879 and then Present (Expr)
2880 and then Nkind (Expr) = N_Integer_Literal
2881 then
2882 Delay_Required := False;
2884 -- For Alignment and various Size aspects, do not delay for
2885 -- an attribute reference whose prefix is Standard, for
2886 -- example Standard'Maximum_Alignment or Standard'Word_Size.
2888 elsif A_Id in Aspect_Alignment
2889 | Aspect_Component_Size
2890 | Aspect_Object_Size
2891 | Aspect_Size
2892 | Aspect_Value_Size
2893 and then Present (Expr)
2894 and then Nkind (Expr) = N_Attribute_Reference
2895 and then Nkind (Prefix (Expr)) = N_Identifier
2896 and then Chars (Prefix (Expr)) = Name_Standard
2897 then
2898 Delay_Required := False;
2900 -- All other cases are delayed
2902 else
2903 Delay_Required := True;
2904 Set_Has_Delayed_Rep_Aspects (E);
2905 end if;
2906 end case;
2908 if Delay_Required
2910 and then (A_Id = Aspect_Stable_Properties
2911 or else A_Id = Aspect_Designated_Storage_Model
2912 or else A_Id = Aspect_Storage_Model_Type)
2913 -- ??? It seems like we should do this for all aspects, not
2914 -- just these, but that causes as-yet-undiagnosed regressions.
2916 then
2917 Set_Has_Delayed_Aspects (E);
2918 Set_Is_Delayed_Aspect (Aspect);
2919 end if;
2921 -- Check 13.1(9.2/5): A representation aspect of a subtype or type
2922 -- shall not be specified (whether by a representation item or an
2923 -- aspect_specification) before the type is completely defined
2924 -- (see 3.11.1).
2926 if Is_Representation_Aspect (A_Id)
2927 and then Rep_Item_Too_Early (E, N)
2928 then
2929 goto Continue;
2930 end if;
2932 -- Processing based on specific aspect
2934 case A_Id is
2935 when Aspect_Unimplemented =>
2936 null; -- ??? temp for now
2938 -- No_Aspect should be impossible
2940 when No_Aspect =>
2941 raise Program_Error;
2943 -- Case 1: Aspects corresponding to attribute definition
2944 -- clauses.
2946 when Aspect_Address
2947 | Aspect_Alignment
2948 | Aspect_Bit_Order
2949 | Aspect_Component_Size
2950 | Aspect_Constant_Indexing
2951 | Aspect_Default_Iterator
2952 | Aspect_Dispatching_Domain
2953 | Aspect_External_Tag
2954 | Aspect_Input
2955 | Aspect_Iterable
2956 | Aspect_Iterator_Element
2957 | Aspect_Machine_Radix
2958 | Aspect_Object_Size
2959 | Aspect_Output
2960 | Aspect_Put_Image
2961 | Aspect_Read
2962 | Aspect_Scalar_Storage_Order
2963 | Aspect_Simple_Storage_Pool
2964 | Aspect_Size
2965 | Aspect_Small
2966 | Aspect_Storage_Pool
2967 | Aspect_Stream_Size
2968 | Aspect_Value_Size
2969 | Aspect_Variable_Indexing
2970 | Aspect_Write
2972 -- Indexing aspects apply only to tagged type
2974 if A_Id in Aspect_Constant_Indexing
2975 | Aspect_Variable_Indexing
2976 and then not (Is_Type (E)
2977 and then Is_Tagged_Type (E))
2978 then
2979 Error_Msg_N
2980 ("indexing aspect can only apply to a tagged type",
2981 Aspect);
2982 goto Continue;
2983 end if;
2985 -- For the case of aspect Address, we don't consider that we
2986 -- know the entity is never set in the source, since it is
2987 -- is likely aliasing is occurring.
2989 -- Note: one might think that the analysis of the resulting
2990 -- attribute definition clause would take care of that, but
2991 -- that's not the case since it won't be from source.
2993 if A_Id = Aspect_Address then
2994 Set_Never_Set_In_Source (E, False);
2995 end if;
2997 -- Correctness of the profile of a stream operation is
2998 -- verified at the freeze point, but we must detect the
2999 -- illegal specification of this aspect for a subtype now,
3000 -- to prevent malformed rep_item chains.
3002 if A_Id in Aspect_Input
3003 | Aspect_Output
3004 | Aspect_Read
3005 | Aspect_Write
3006 then
3007 if not Is_First_Subtype (E) then
3008 Error_Msg_N
3009 ("local name must be a first subtype", Aspect);
3010 goto Continue;
3012 -- If stream aspect applies to the class-wide type,
3013 -- the generated attribute definition applies to the
3014 -- class-wide type as well.
3016 elsif Class_Present (Aspect) then
3017 Ent :=
3018 Make_Attribute_Reference (Loc,
3019 Prefix => Ent,
3020 Attribute_Name => Name_Class);
3021 end if;
3022 end if;
3024 -- Construct the attribute_definition_clause. The expression
3025 -- in the aspect specification is simply shared with the
3026 -- constructed attribute, because it will be fully analyzed
3027 -- when the attribute is processed.
3029 Aitem :=
3030 Make_Attribute_Definition_Clause (Loc,
3031 Name => Ent,
3032 Chars => Nam,
3033 Expression => Relocate_Expression (Expr));
3035 -- If the address is specified, then we treat the entity as
3036 -- referenced, to avoid spurious warnings. This is analogous
3037 -- to what is done with an attribute definition clause, but
3038 -- here we don't want to generate a reference because this
3039 -- is the point of definition of the entity.
3041 if A_Id = Aspect_Address then
3042 Set_Referenced (E);
3043 end if;
3045 -- Case 2: Aspects corresponding to pragmas
3047 -- Case 2a: Aspects corresponding to pragmas with two
3048 -- arguments, where the first argument is a local name
3049 -- referring to the entity, and the second argument is the
3050 -- aspect definition expression.
3052 -- Linker_Section
3054 when Aspect_Linker_Section =>
3055 Aitem := Make_Aitem_Pragma
3056 (Pragma_Argument_Associations => New_List (
3057 Make_Pragma_Argument_Association (Loc,
3058 Expression => New_Occurrence_Of (E, Loc)),
3059 Make_Pragma_Argument_Association (Sloc (Expr),
3060 Expression => Relocate_Node (Expr))),
3061 Pragma_Name => Name_Linker_Section);
3063 -- Linker_Section does not need delaying, as its argument
3064 -- must be a static string. Furthermore, if applied to
3065 -- an object with an explicit initialization, the object
3066 -- must be frozen in order to elaborate the initialization
3067 -- code. (This is already done for types with implicit
3068 -- initialization, such as protected types.)
3070 if Nkind (N) = N_Object_Declaration
3071 and then Has_Init_Expression (N)
3072 then
3073 Delay_Required := False;
3074 end if;
3076 -- Synchronization
3078 -- Corresponds to pragma Implemented, construct the pragma
3080 when Aspect_Synchronization =>
3081 Aitem := Make_Aitem_Pragma
3082 (Pragma_Argument_Associations => New_List (
3083 Make_Pragma_Argument_Association (Loc,
3084 Expression => New_Occurrence_Of (E, Loc)),
3085 Make_Pragma_Argument_Association (Sloc (Expr),
3086 Expression => Relocate_Node (Expr))),
3087 Pragma_Name => Name_Implemented);
3089 -- Attach_Handler
3091 when Aspect_Attach_Handler =>
3092 Aitem := Make_Aitem_Pragma
3093 (Pragma_Argument_Associations => New_List (
3094 Make_Pragma_Argument_Association (Sloc (Ent),
3095 Expression => Ent),
3096 Make_Pragma_Argument_Association (Sloc (Expr),
3097 Expression => Relocate_Expression (Expr))),
3098 Pragma_Name => Name_Attach_Handler);
3100 -- We need to insert this pragma into the tree to get proper
3101 -- processing and to look valid from a placement viewpoint.
3103 Insert_Pragma (Aitem);
3104 goto Continue;
3106 -- Dynamic_Predicate, Predicate, Static_Predicate
3108 when Aspect_Dynamic_Predicate
3109 | Aspect_Predicate
3110 | Aspect_Static_Predicate
3112 -- These aspects apply only to subtypes
3114 if not Is_Type (E) then
3115 Error_Msg_N
3116 ("predicate can only be specified for a subtype",
3117 Aspect);
3118 goto Continue;
3120 elsif Is_Incomplete_Type (E) then
3121 Error_Msg_N
3122 ("predicate cannot apply to incomplete view", Aspect);
3124 elsif Is_Generic_Type (E) then
3125 Error_Msg_N
3126 ("predicate cannot apply to formal type", Aspect);
3127 goto Continue;
3128 end if;
3130 -- Construct the pragma (always a pragma Predicate, with
3131 -- flags recording whether it is static/dynamic). We also
3132 -- set flags recording this in the type itself.
3134 Aitem := Make_Aitem_Pragma
3135 (Pragma_Argument_Associations => New_List (
3136 Make_Pragma_Argument_Association (Sloc (Ent),
3137 Expression => Ent),
3138 Make_Pragma_Argument_Association (Sloc (Expr),
3139 Expression => Relocate_Expression (Expr))),
3140 Pragma_Name => Name_Predicate);
3142 -- Mark type has predicates, and remember what kind of
3143 -- aspect lead to this predicate (we need this to access
3144 -- the right set of check policies later on).
3146 Set_Has_Predicates (E);
3148 if A_Id = Aspect_Dynamic_Predicate then
3149 Set_Has_Dynamic_Predicate_Aspect (E);
3151 -- If the entity has a dynamic predicate, any inherited
3152 -- static predicate becomes dynamic as well, and the
3153 -- predicate function includes the conjunction of both.
3155 Set_Has_Static_Predicate_Aspect (E, False);
3157 elsif A_Id = Aspect_Static_Predicate then
3158 Set_Has_Static_Predicate_Aspect (E);
3159 end if;
3161 -- If the type is private, indicate that its completion
3162 -- has a freeze node, because that is the one that will
3163 -- be visible at freeze time.
3165 if Is_Private_Type (E) and then Present (Full_View (E)) then
3166 Set_Has_Predicates (Full_View (E));
3168 if A_Id = Aspect_Dynamic_Predicate then
3169 Set_Has_Dynamic_Predicate_Aspect (Full_View (E));
3170 elsif A_Id = Aspect_Static_Predicate then
3171 Set_Has_Static_Predicate_Aspect (Full_View (E));
3172 end if;
3174 Set_Has_Delayed_Aspects (Full_View (E));
3175 Ensure_Freeze_Node (Full_View (E));
3177 -- If there is an Underlying_Full_View, also create a
3178 -- freeze node for that one.
3180 if Is_Private_Type (Full_View (E)) then
3181 declare
3182 U_Full : constant Entity_Id :=
3183 Underlying_Full_View (Full_View (E));
3184 begin
3185 if Present (U_Full) then
3186 Set_Has_Delayed_Aspects (U_Full);
3187 Ensure_Freeze_Node (U_Full);
3188 end if;
3189 end;
3190 end if;
3191 end if;
3193 -- Predicate_Failure
3195 when Aspect_Predicate_Failure =>
3197 -- This aspect applies only to subtypes
3199 if not Is_Type (E) then
3200 Error_Msg_N
3201 ("predicate can only be specified for a subtype",
3202 Aspect);
3203 goto Continue;
3205 elsif Is_Incomplete_Type (E) then
3206 Error_Msg_N
3207 ("predicate cannot apply to incomplete view", Aspect);
3208 goto Continue;
3210 elsif not Has_Predicates (E) then
3211 Error_Msg_N
3212 ("Predicate_Failure requires previous predicate" &
3213 " specification", Aspect);
3214 goto Continue;
3216 elsif not (Directly_Specified (E, Aspect_Dynamic_Predicate)
3217 or else Directly_Specified (E, Aspect_Static_Predicate)
3218 or else Directly_Specified (E, Aspect_Predicate))
3219 then
3220 Error_Msg_N
3221 ("Predicate_Failure requires accompanying" &
3222 " noninherited predicate specification", Aspect);
3223 goto Continue;
3224 end if;
3226 -- Construct the pragma
3228 Aitem := Make_Aitem_Pragma
3229 (Pragma_Argument_Associations => New_List (
3230 Make_Pragma_Argument_Association (Sloc (Ent),
3231 Expression => Ent),
3232 Make_Pragma_Argument_Association (Sloc (Expr),
3233 Expression => Relocate_Node (Expr))),
3234 Pragma_Name => Name_Predicate_Failure);
3236 -- Case 2b: Aspects corresponding to pragmas with two
3237 -- arguments, where the second argument is a local name
3238 -- referring to the entity, and the first argument is the
3239 -- aspect definition expression.
3241 -- Convention
3243 when Aspect_Convention =>
3244 Analyze_Aspect_Convention;
3245 goto Continue;
3247 -- External_Name, Link_Name
3249 when Aspect_External_Name
3250 | Aspect_Link_Name
3252 Analyze_Aspect_External_Link_Name;
3253 goto Continue;
3255 -- CPU, Interrupt_Priority, Priority
3257 -- These three aspects can be specified for a subprogram spec
3258 -- or body, in which case we analyze the expression and export
3259 -- the value of the aspect.
3261 -- Previously, we generated an equivalent pragma for bodies
3262 -- (note that the specs cannot contain these pragmas). The
3263 -- pragma was inserted ahead of local declarations, rather than
3264 -- after the body. This leads to a certain duplication between
3265 -- the processing performed for the aspect and the pragma, but
3266 -- given the straightforward handling required it is simpler
3267 -- to duplicate than to translate the aspect in the spec into
3268 -- a pragma in the declarative part of the body.
3270 when Aspect_CPU
3271 | Aspect_Interrupt_Priority
3272 | Aspect_Priority
3274 -- Verify the expression is static when Static_Priorities is
3275 -- enabled.
3277 if not Is_OK_Static_Expression (Expr) then
3278 Check_Restriction (Static_Priorities, Expr);
3279 end if;
3281 if Nkind (N) in N_Subprogram_Body | N_Subprogram_Declaration
3282 then
3283 -- Analyze the aspect expression
3285 Analyze_And_Resolve (Expr, Standard_Integer);
3287 -- Interrupt_Priority aspect not allowed for main
3288 -- subprograms. RM D.1 does not forbid this explicitly,
3289 -- but RM J.15.11(6/3) does not permit pragma
3290 -- Interrupt_Priority for subprograms.
3292 if A_Id = Aspect_Interrupt_Priority then
3293 Error_Msg_N
3294 ("Interrupt_Priority aspect cannot apply to "
3295 & "subprogram", Expr);
3297 -- The expression must be static
3299 elsif not Is_OK_Static_Expression (Expr) then
3300 Flag_Non_Static_Expr
3301 ("aspect requires static expression!", Expr);
3303 -- Check whether this is the main subprogram. Issue a
3304 -- warning only if it is obviously not a main program
3305 -- (when it has parameters or when the subprogram is
3306 -- within a package).
3308 elsif Present (Parameter_Specifications
3309 (Specification (N)))
3310 or else not Is_Compilation_Unit (Defining_Entity (N))
3311 then
3312 -- See RM D.1(14/3) and D.16(12/3)
3314 Error_Msg_N
3315 ("aspect applied to subprogram other than the "
3316 & "main subprogram has no effect??", Expr);
3318 -- Otherwise check in range and export the value
3320 -- For the CPU aspect
3322 elsif A_Id = Aspect_CPU then
3323 if Is_In_Range (Expr, RTE (RE_CPU_Range)) then
3325 -- Value is correct so we export the value to make
3326 -- it available at execution time.
3328 Set_Main_CPU
3329 (Main_Unit, UI_To_Int (Expr_Value (Expr)));
3331 else
3332 Error_Msg_N
3333 ("main subprogram 'C'P'U is out of range", Expr);
3334 end if;
3336 -- For the Priority aspect
3338 elsif A_Id = Aspect_Priority then
3339 if Is_In_Range (Expr, RTE (RE_Priority)) then
3341 -- Value is correct so we export the value to make
3342 -- it available at execution time.
3344 Set_Main_Priority
3345 (Main_Unit, UI_To_Int (Expr_Value (Expr)));
3347 -- Ignore pragma if Relaxed_RM_Semantics to support
3348 -- other targets/non GNAT compilers.
3350 elsif not Relaxed_RM_Semantics then
3351 Error_Msg_N
3352 ("main subprogram priority is out of range",
3353 Expr);
3354 end if;
3355 end if;
3357 -- Load an arbitrary entity from System.Tasking.Stages
3358 -- or System.Tasking.Restricted.Stages (depending on
3359 -- the supported profile) to make sure that one of these
3360 -- packages is implicitly with'ed, since we need to have
3361 -- the tasking run time active for the pragma Priority to
3362 -- have any effect. Previously we with'ed the package
3363 -- System.Tasking, but this package does not trigger the
3364 -- required initialization of the run-time library.
3366 if Restricted_Profile then
3367 Discard_Node (RTE (RE_Activate_Restricted_Tasks));
3368 else
3369 Discard_Node (RTE (RE_Activate_Tasks));
3370 end if;
3372 -- Handling for these aspects in subprograms is complete
3374 goto Continue;
3376 -- For task and protected types pass the aspect as an
3377 -- attribute.
3379 else
3380 Aitem :=
3381 Make_Attribute_Definition_Clause (Loc,
3382 Name => Ent,
3383 Chars => Nam,
3384 Expression => Relocate_Expression (Expr));
3385 end if;
3387 -- Suppress/Unsuppress
3389 when Aspect_Suppress
3390 | Aspect_Unsuppress
3392 Aitem := Make_Aitem_Pragma
3393 (Pragma_Argument_Associations => New_List (
3394 Make_Pragma_Argument_Association (Loc,
3395 Expression => Relocate_Node (Expr)),
3396 Make_Pragma_Argument_Association (Sloc (Expr),
3397 Expression => New_Occurrence_Of (E, Loc))),
3398 Pragma_Name => Nam);
3400 Delay_Required := False;
3402 -- Warnings
3404 when Aspect_Warnings =>
3405 Aitem := Make_Aitem_Pragma
3406 (Pragma_Argument_Associations => New_List (
3407 Make_Pragma_Argument_Association (Sloc (Expr),
3408 Expression => Relocate_Node (Expr)),
3409 Make_Pragma_Argument_Association (Loc,
3410 Expression => New_Occurrence_Of (E, Loc))),
3411 Pragma_Name => Name_Warnings);
3413 Decorate (Aspect, Aitem);
3414 Insert_Pragma (Aitem);
3415 goto Continue;
3417 -- Case 2c: Aspects corresponding to pragmas with three
3418 -- arguments.
3420 -- Invariant aspects have a first argument that references the
3421 -- entity, a second argument that is the expression and a third
3422 -- argument that is an appropriate message.
3424 -- Invariant, Type_Invariant
3426 when Aspect_Invariant
3427 | Aspect_Type_Invariant
3429 -- Analysis of the pragma will verify placement legality:
3430 -- an invariant must apply to a private type, or appear in
3431 -- the private part of a spec and apply to a completion.
3433 Aitem := Make_Aitem_Pragma
3434 (Pragma_Argument_Associations => New_List (
3435 Make_Pragma_Argument_Association (Sloc (Ent),
3436 Expression => Ent),
3437 Make_Pragma_Argument_Association (Sloc (Expr),
3438 Expression => Relocate_Node (Expr))),
3439 Pragma_Name => Name_Invariant);
3441 -- Add message unless exception messages are suppressed
3443 if not Opt.Exception_Locations_Suppressed then
3444 Append_To (Pragma_Argument_Associations (Aitem),
3445 Make_Pragma_Argument_Association (Eloc,
3446 Chars => Name_Message,
3447 Expression =>
3448 Make_String_Literal (Eloc,
3449 Strval => "failed invariant from "
3450 & Build_Location_String (Eloc))));
3451 end if;
3453 -- For Invariant case, insert immediately after the entity
3454 -- declaration. We do not have to worry about delay issues
3455 -- since the pragma processing takes care of this.
3457 Delay_Required := False;
3459 -- Case 2d : Aspects that correspond to a pragma with one
3460 -- argument.
3462 -- Abstract_State
3464 -- Aspect Abstract_State introduces implicit declarations for
3465 -- all state abstraction entities it defines. To emulate this
3466 -- behavior, insert the pragma at the beginning of the visible
3467 -- declarations of the related package so that it is analyzed
3468 -- immediately.
3470 when Aspect_Abstract_State => Abstract_State : declare
3471 Context : Node_Id := N;
3473 begin
3474 -- When aspect Abstract_State appears on a generic package,
3475 -- it is propagated to the package instance. The context in
3476 -- this case is the instance spec.
3478 if Nkind (Context) = N_Package_Instantiation then
3479 Context := Instance_Spec (Context);
3480 end if;
3482 if Nkind (Context) in N_Generic_Package_Declaration
3483 | N_Package_Declaration
3484 then
3485 Aitem := Make_Aitem_Pragma
3486 (Pragma_Argument_Associations => New_List (
3487 Make_Pragma_Argument_Association (Loc,
3488 Expression => Relocate_Node (Expr))),
3489 Pragma_Name => Name_Abstract_State);
3491 Decorate (Aspect, Aitem);
3492 Insert_Pragma
3493 (Prag => Aitem,
3494 Is_Instance =>
3495 Is_Generic_Instance (Defining_Entity (Context)));
3497 else
3498 Error_Msg_NE
3499 ("aspect & must apply to a package declaration",
3500 Aspect, Id);
3501 end if;
3503 goto Continue;
3504 end Abstract_State;
3506 -- Aspect Async_Readers is never delayed because it is
3507 -- equivalent to a source pragma which appears after the
3508 -- related object declaration.
3510 when Aspect_Async_Readers =>
3511 Aitem := Make_Aitem_Pragma
3512 (Pragma_Argument_Associations => New_List (
3513 Make_Pragma_Argument_Association (Loc,
3514 Expression => Relocate_Node (Expr))),
3515 Pragma_Name => Name_Async_Readers);
3517 Decorate (Aspect, Aitem);
3518 Insert_Pragma (Aitem);
3519 goto Continue;
3521 -- Aspect Async_Writers is never delayed because it is
3522 -- equivalent to a source pragma which appears after the
3523 -- related object declaration.
3525 when Aspect_Async_Writers =>
3526 Aitem := Make_Aitem_Pragma
3527 (Pragma_Argument_Associations => New_List (
3528 Make_Pragma_Argument_Association (Loc,
3529 Expression => Relocate_Node (Expr))),
3530 Pragma_Name => Name_Async_Writers);
3532 Decorate (Aspect, Aitem);
3533 Insert_Pragma (Aitem);
3534 goto Continue;
3536 -- Aspect Constant_After_Elaboration is never delayed because
3537 -- it is equivalent to a source pragma which appears after the
3538 -- related object declaration.
3540 when Aspect_Constant_After_Elaboration =>
3541 Aitem := Make_Aitem_Pragma
3542 (Pragma_Argument_Associations => New_List (
3543 Make_Pragma_Argument_Association (Loc,
3544 Expression => Relocate_Node (Expr))),
3545 Pragma_Name =>
3546 Name_Constant_After_Elaboration);
3548 Decorate (Aspect, Aitem);
3549 Insert_Pragma (Aitem);
3550 goto Continue;
3552 -- Aspect Default_Internal_Condition is never delayed because
3553 -- it is equivalent to a source pragma which appears after the
3554 -- related private type. To deal with forward references, the
3555 -- generated pragma is stored in the rep chain of the related
3556 -- private type as types do not carry contracts. The pragma is
3557 -- wrapped inside of a procedure at the freeze point of the
3558 -- private type's full view.
3560 -- A type entity argument is appended to facilitate inheriting
3561 -- the aspect from parent types (see Build_DIC_Procedure_Body),
3562 -- though that extra argument isn't documented for the pragma.
3564 when Aspect_Default_Initial_Condition =>
3565 Aitem := Make_Aitem_Pragma
3566 (Pragma_Argument_Associations => New_List (
3567 Make_Pragma_Argument_Association (Loc,
3568 Expression => Relocate_Node (Expr)),
3569 Make_Pragma_Argument_Association (Sloc (Ent),
3570 Expression => Ent)),
3571 Pragma_Name =>
3572 Name_Default_Initial_Condition);
3574 Decorate (Aspect, Aitem);
3575 Insert_Pragma (Aitem);
3576 goto Continue;
3578 -- Default_Storage_Pool
3580 when Aspect_Default_Storage_Pool =>
3581 Aitem := Make_Aitem_Pragma
3582 (Pragma_Argument_Associations => New_List (
3583 Make_Pragma_Argument_Association (Loc,
3584 Expression => Relocate_Node (Expr))),
3585 Pragma_Name =>
3586 Name_Default_Storage_Pool);
3588 Decorate (Aspect, Aitem);
3589 Insert_Pragma (Aitem);
3590 goto Continue;
3592 -- Depends
3594 -- Aspect Depends is never delayed because it is equivalent to
3595 -- a source pragma which appears after the related subprogram.
3596 -- To deal with forward references, the generated pragma is
3597 -- stored in the contract of the related subprogram and later
3598 -- analyzed at the end of the declarative region. See routine
3599 -- Analyze_Depends_In_Decl_Part for details.
3601 when Aspect_Depends =>
3602 Aitem := Make_Aitem_Pragma
3603 (Pragma_Argument_Associations => New_List (
3604 Make_Pragma_Argument_Association (Loc,
3605 Expression => Relocate_Node (Expr))),
3606 Pragma_Name => Name_Depends);
3608 Decorate (Aspect, Aitem);
3609 Insert_Pragma (Aitem);
3610 goto Continue;
3612 -- Aspect Effective_Reads is never delayed because it is
3613 -- equivalent to a source pragma which appears after the
3614 -- related object declaration.
3616 when Aspect_Effective_Reads =>
3617 Aitem := Make_Aitem_Pragma
3618 (Pragma_Argument_Associations => New_List (
3619 Make_Pragma_Argument_Association (Loc,
3620 Expression => Relocate_Node (Expr))),
3621 Pragma_Name => Name_Effective_Reads);
3623 Decorate (Aspect, Aitem);
3624 Insert_Pragma (Aitem);
3625 goto Continue;
3627 -- Aspect Effective_Writes is never delayed because it is
3628 -- equivalent to a source pragma which appears after the
3629 -- related object declaration.
3631 when Aspect_Effective_Writes =>
3632 Aitem := Make_Aitem_Pragma
3633 (Pragma_Argument_Associations => New_List (
3634 Make_Pragma_Argument_Association (Loc,
3635 Expression => Relocate_Node (Expr))),
3636 Pragma_Name => Name_Effective_Writes);
3638 Decorate (Aspect, Aitem);
3639 Insert_Pragma (Aitem);
3640 goto Continue;
3642 -- Aspect Extensions_Visible is never delayed because it is
3643 -- equivalent to a source pragma which appears after the
3644 -- related subprogram.
3646 when Aspect_Extensions_Visible =>
3647 Aitem := Make_Aitem_Pragma
3648 (Pragma_Argument_Associations => New_List (
3649 Make_Pragma_Argument_Association (Loc,
3650 Expression => Relocate_Node (Expr))),
3651 Pragma_Name => Name_Extensions_Visible);
3653 Decorate (Aspect, Aitem);
3654 Insert_Pragma (Aitem);
3655 goto Continue;
3657 -- Aspect Ghost is never delayed because it is equivalent to a
3658 -- source pragma which appears at the top of [generic] package
3659 -- declarations or after an object, a [generic] subprogram, or
3660 -- a type declaration.
3662 when Aspect_Ghost =>
3663 Aitem := Make_Aitem_Pragma
3664 (Pragma_Argument_Associations => New_List (
3665 Make_Pragma_Argument_Association (Loc,
3666 Expression => Relocate_Node (Expr))),
3667 Pragma_Name => Name_Ghost);
3669 Decorate (Aspect, Aitem);
3670 Insert_Pragma (Aitem);
3671 goto Continue;
3673 -- Global
3675 -- Aspect Global is never delayed because it is equivalent to
3676 -- a source pragma which appears after the related subprogram.
3677 -- To deal with forward references, the generated pragma is
3678 -- stored in the contract of the related subprogram and later
3679 -- analyzed at the end of the declarative region. See routine
3680 -- Analyze_Global_In_Decl_Part for details.
3682 when Aspect_Global =>
3683 Aitem := Make_Aitem_Pragma
3684 (Pragma_Argument_Associations => New_List (
3685 Make_Pragma_Argument_Association (Loc,
3686 Expression => Relocate_Node (Expr))),
3687 Pragma_Name => Name_Global);
3689 Decorate (Aspect, Aitem);
3690 Insert_Pragma (Aitem);
3691 goto Continue;
3693 -- Initial_Condition
3695 -- Aspect Initial_Condition is never delayed because it is
3696 -- equivalent to a source pragma which appears after the
3697 -- related package. To deal with forward references, the
3698 -- generated pragma is stored in the contract of the related
3699 -- package and later analyzed at the end of the declarative
3700 -- region. See routine Analyze_Initial_Condition_In_Decl_Part
3701 -- for details.
3703 when Aspect_Initial_Condition => Initial_Condition : declare
3704 Context : Node_Id := N;
3706 begin
3707 -- When aspect Initial_Condition appears on a generic
3708 -- package, it is propagated to the package instance. The
3709 -- context in this case is the instance spec.
3711 if Nkind (Context) = N_Package_Instantiation then
3712 Context := Instance_Spec (Context);
3713 end if;
3715 if Nkind (Context) in N_Generic_Package_Declaration
3716 | N_Package_Declaration
3717 then
3718 Aitem := Make_Aitem_Pragma
3719 (Pragma_Argument_Associations => New_List (
3720 Make_Pragma_Argument_Association (Loc,
3721 Expression => Relocate_Node (Expr))),
3722 Pragma_Name =>
3723 Name_Initial_Condition);
3725 Decorate (Aspect, Aitem);
3726 Insert_Pragma
3727 (Prag => Aitem,
3728 Is_Instance =>
3729 Is_Generic_Instance (Defining_Entity (Context)));
3731 -- Otherwise the context is illegal
3733 else
3734 Error_Msg_NE
3735 ("aspect & must apply to a package declaration",
3736 Aspect, Id);
3737 end if;
3739 goto Continue;
3740 end Initial_Condition;
3742 -- Initializes
3744 -- Aspect Initializes is never delayed because it is equivalent
3745 -- to a source pragma appearing after the related package. To
3746 -- deal with forward references, the generated pragma is stored
3747 -- in the contract of the related package and later analyzed at
3748 -- the end of the declarative region. For details, see routine
3749 -- Analyze_Initializes_In_Decl_Part.
3751 when Aspect_Initializes => Initializes : declare
3752 Context : Node_Id := N;
3754 begin
3755 -- When aspect Initializes appears on a generic package,
3756 -- it is propagated to the package instance. The context
3757 -- in this case is the instance spec.
3759 if Nkind (Context) = N_Package_Instantiation then
3760 Context := Instance_Spec (Context);
3761 end if;
3763 if Nkind (Context) in N_Generic_Package_Declaration
3764 | N_Package_Declaration
3765 then
3766 Aitem := Make_Aitem_Pragma
3767 (Pragma_Argument_Associations => New_List (
3768 Make_Pragma_Argument_Association (Loc,
3769 Expression => Relocate_Node (Expr))),
3770 Pragma_Name => Name_Initializes);
3772 Decorate (Aspect, Aitem);
3773 Insert_Pragma
3774 (Prag => Aitem,
3775 Is_Instance =>
3776 Is_Generic_Instance (Defining_Entity (Context)));
3778 -- Otherwise the context is illegal
3780 else
3781 Error_Msg_NE
3782 ("aspect & must apply to a package declaration",
3783 Aspect, Id);
3784 end if;
3786 goto Continue;
3787 end Initializes;
3789 -- Max_Entry_Queue_Depth
3791 when Aspect_Max_Entry_Queue_Depth =>
3792 Aitem := Make_Aitem_Pragma
3793 (Pragma_Argument_Associations => New_List (
3794 Make_Pragma_Argument_Association (Loc,
3795 Expression => Relocate_Node (Expr))),
3796 Pragma_Name => Name_Max_Entry_Queue_Depth);
3798 Decorate (Aspect, Aitem);
3799 Insert_Pragma (Aitem);
3800 goto Continue;
3802 -- Max_Entry_Queue_Length
3804 when Aspect_Max_Entry_Queue_Length =>
3805 Aitem := Make_Aitem_Pragma
3806 (Pragma_Argument_Associations => New_List (
3807 Make_Pragma_Argument_Association (Loc,
3808 Expression => Relocate_Node (Expr))),
3809 Pragma_Name => Name_Max_Entry_Queue_Length);
3811 Decorate (Aspect, Aitem);
3812 Insert_Pragma (Aitem);
3813 goto Continue;
3815 -- Max_Queue_Length
3817 when Aspect_Max_Queue_Length =>
3818 Aitem := Make_Aitem_Pragma
3819 (Pragma_Argument_Associations => New_List (
3820 Make_Pragma_Argument_Association (Loc,
3821 Expression => Relocate_Node (Expr))),
3822 Pragma_Name => Name_Max_Queue_Length);
3824 Decorate (Aspect, Aitem);
3825 Insert_Pragma (Aitem);
3826 goto Continue;
3828 -- Aspect No_Caching is never delayed because it is equivalent
3829 -- to a source pragma which appears after the related object
3830 -- declaration.
3832 when Aspect_No_Caching =>
3833 Aitem := Make_Aitem_Pragma
3834 (Pragma_Argument_Associations => New_List (
3835 Make_Pragma_Argument_Association (Loc,
3836 Expression => Relocate_Node (Expr))),
3837 Pragma_Name => Name_No_Caching);
3839 Decorate (Aspect, Aitem);
3840 Insert_Pragma (Aitem);
3841 goto Continue;
3843 -- No_Controlled_Parts, No_Task_Parts
3845 when Aspect_No_Controlled_Parts | Aspect_No_Task_Parts =>
3847 -- Check appropriate type argument
3849 if not Is_Type (E) then
3850 Error_Msg_N
3851 ("aspect % can only be applied to types", E);
3852 end if;
3854 -- Disallow subtypes
3856 if Nkind (Declaration_Node (E)) = N_Subtype_Declaration then
3857 Error_Msg_N
3858 ("aspect % cannot be applied to subtypes", E);
3859 end if;
3861 -- Resolve the expression to a boolean
3863 if Present (Expr) then
3864 Check_Expr_Is_OK_Static_Expression (Expr, Any_Boolean);
3865 end if;
3867 goto Continue;
3869 -- Obsolescent
3871 when Aspect_Obsolescent => declare
3872 Args : List_Id;
3874 begin
3875 if No (Expr) then
3876 Args := No_List;
3877 else
3878 Args := New_List (
3879 Make_Pragma_Argument_Association (Sloc (Expr),
3880 Expression => Relocate_Node (Expr)));
3881 end if;
3883 Aitem := Make_Aitem_Pragma
3884 (Pragma_Argument_Associations => Args,
3885 Pragma_Name => Name_Obsolescent);
3886 end;
3888 -- Part_Of
3890 when Aspect_Part_Of =>
3891 if Nkind (N) in N_Object_Declaration
3892 | N_Package_Instantiation
3893 or else Is_Single_Concurrent_Type_Declaration (N)
3894 then
3895 Aitem := Make_Aitem_Pragma
3896 (Pragma_Argument_Associations => New_List (
3897 Make_Pragma_Argument_Association (Loc,
3898 Expression => Relocate_Node (Expr))),
3899 Pragma_Name => Name_Part_Of);
3901 Decorate (Aspect, Aitem);
3902 Insert_Pragma (Aitem);
3904 else
3905 Error_Msg_NE
3906 ("aspect & must apply to package instantiation, "
3907 & "object, single protected type or single task type",
3908 Aspect, Id);
3909 end if;
3911 goto Continue;
3913 -- SPARK_Mode
3915 when Aspect_SPARK_Mode =>
3916 Aitem := Make_Aitem_Pragma
3917 (Pragma_Argument_Associations => New_List (
3918 Make_Pragma_Argument_Association (Loc,
3919 Expression => Relocate_Node (Expr))),
3920 Pragma_Name => Name_SPARK_Mode);
3922 Decorate (Aspect, Aitem);
3923 Insert_Pragma (Aitem);
3924 goto Continue;
3926 -- Refined_Depends
3928 -- Aspect Refined_Depends is never delayed because it is
3929 -- equivalent to a source pragma which appears in the
3930 -- declarations of the related subprogram body. To deal with
3931 -- forward references, the generated pragma is stored in the
3932 -- contract of the related subprogram body and later analyzed
3933 -- at the end of the declarative region. For details, see
3934 -- routine Analyze_Refined_Depends_In_Decl_Part.
3936 when Aspect_Refined_Depends =>
3937 Aitem := Make_Aitem_Pragma
3938 (Pragma_Argument_Associations => New_List (
3939 Make_Pragma_Argument_Association (Loc,
3940 Expression => Relocate_Node (Expr))),
3941 Pragma_Name => Name_Refined_Depends);
3943 Decorate (Aspect, Aitem);
3944 Insert_Pragma (Aitem);
3945 goto Continue;
3947 -- Refined_Global
3949 -- Aspect Refined_Global is never delayed because it is
3950 -- equivalent to a source pragma which appears in the
3951 -- declarations of the related subprogram body. To deal with
3952 -- forward references, the generated pragma is stored in the
3953 -- contract of the related subprogram body and later analyzed
3954 -- at the end of the declarative region. For details, see
3955 -- routine Analyze_Refined_Global_In_Decl_Part.
3957 when Aspect_Refined_Global =>
3958 Aitem := Make_Aitem_Pragma
3959 (Pragma_Argument_Associations => New_List (
3960 Make_Pragma_Argument_Association (Loc,
3961 Expression => Relocate_Node (Expr))),
3962 Pragma_Name => Name_Refined_Global);
3964 Decorate (Aspect, Aitem);
3965 Insert_Pragma (Aitem);
3966 goto Continue;
3968 -- Refined_Post
3970 when Aspect_Refined_Post =>
3971 Aitem := Make_Aitem_Pragma
3972 (Pragma_Argument_Associations => New_List (
3973 Make_Pragma_Argument_Association (Loc,
3974 Expression => Relocate_Node (Expr))),
3975 Pragma_Name => Name_Refined_Post);
3977 Decorate (Aspect, Aitem);
3978 Insert_Pragma (Aitem);
3979 goto Continue;
3981 -- Refined_State
3983 when Aspect_Refined_State =>
3985 -- The corresponding pragma for Refined_State is inserted in
3986 -- the declarations of the related package body. This action
3987 -- synchronizes both the source and from-aspect versions of
3988 -- the pragma.
3990 if Nkind (N) = N_Package_Body then
3991 Aitem := Make_Aitem_Pragma
3992 (Pragma_Argument_Associations => New_List (
3993 Make_Pragma_Argument_Association (Loc,
3994 Expression => Relocate_Node (Expr))),
3995 Pragma_Name => Name_Refined_State);
3997 Decorate (Aspect, Aitem);
3998 Insert_Pragma (Aitem);
4000 -- Otherwise the context is illegal
4002 else
4003 Error_Msg_NE
4004 ("aspect & must apply to a package body", Aspect, Id);
4005 end if;
4007 goto Continue;
4009 -- Relative_Deadline
4011 when Aspect_Relative_Deadline =>
4012 Aitem := Make_Aitem_Pragma
4013 (Pragma_Argument_Associations => New_List (
4014 Make_Pragma_Argument_Association (Loc,
4015 Expression => Relocate_Node (Expr))),
4016 Pragma_Name => Name_Relative_Deadline);
4018 -- If the aspect applies to a task, the corresponding pragma
4019 -- must appear within its declarations, not after.
4021 if Nkind (N) = N_Task_Type_Declaration then
4022 declare
4023 Def : Node_Id;
4024 V : List_Id;
4026 begin
4027 if No (Task_Definition (N)) then
4028 Set_Task_Definition (N,
4029 Make_Task_Definition (Loc,
4030 Visible_Declarations => New_List,
4031 End_Label => Empty));
4032 end if;
4034 Def := Task_Definition (N);
4035 V := Visible_Declarations (Def);
4036 if not Is_Empty_List (V) then
4037 Insert_Before (First (V), Aitem);
4039 else
4040 Set_Visible_Declarations (Def, New_List (Aitem));
4041 end if;
4043 goto Continue;
4044 end;
4045 end if;
4047 -- Relaxed_Initialization
4049 when Aspect_Relaxed_Initialization =>
4050 Analyze_Aspect_Relaxed_Initialization;
4051 goto Continue;
4053 -- Secondary_Stack_Size
4055 -- Aspect Secondary_Stack_Size needs to be converted into a
4056 -- pragma for two reasons: the attribute is not analyzed until
4057 -- after the expansion of the task type declaration and the
4058 -- attribute does not have visibility on the discriminant.
4060 when Aspect_Secondary_Stack_Size =>
4061 Aitem := Make_Aitem_Pragma
4062 (Pragma_Argument_Associations => New_List (
4063 Make_Pragma_Argument_Association (Loc,
4064 Expression => Relocate_Node (Expr))),
4065 Pragma_Name =>
4066 Name_Secondary_Stack_Size);
4068 Decorate (Aspect, Aitem);
4069 Insert_Pragma (Aitem);
4070 goto Continue;
4072 -- Volatile_Function
4074 -- Aspect Volatile_Function is never delayed because it is
4075 -- equivalent to a source pragma which appears after the
4076 -- related subprogram.
4078 when Aspect_Volatile_Function =>
4079 Aitem := Make_Aitem_Pragma
4080 (Pragma_Argument_Associations => New_List (
4081 Make_Pragma_Argument_Association (Loc,
4082 Expression => Relocate_Node (Expr))),
4083 Pragma_Name => Name_Volatile_Function);
4085 Decorate (Aspect, Aitem);
4086 Insert_Pragma (Aitem);
4087 goto Continue;
4089 -- Case 2e: Annotate aspect
4091 when Aspect_Annotate | Aspect_GNAT_Annotate =>
4092 declare
4093 Args : List_Id;
4094 Pargs : List_Id;
4095 Arg : Node_Id;
4097 begin
4098 -- The argument can be a single identifier
4100 if Nkind (Expr) = N_Identifier then
4102 -- One level of parens is allowed
4104 if Paren_Count (Expr) > 1 then
4105 Error_Msg_F ("extra parentheses ignored", Expr);
4106 end if;
4108 Set_Paren_Count (Expr, 0);
4110 -- Add the single item to the list
4112 Args := New_List (Expr);
4114 -- Otherwise we must have an aggregate
4116 elsif Nkind (Expr) = N_Aggregate then
4118 -- Must be positional
4120 if Present (Component_Associations (Expr)) then
4121 Error_Msg_F
4122 ("purely positional aggregate required", Expr);
4123 goto Continue;
4124 end if;
4126 -- Must not be parenthesized
4128 if Paren_Count (Expr) /= 0 then
4129 Error_Msg_F -- CODEFIX
4130 ("redundant parentheses", Expr);
4131 end if;
4133 -- List of arguments is list of aggregate expressions
4135 Args := Expressions (Expr);
4137 -- Anything else is illegal
4139 else
4140 Error_Msg_F ("wrong form for Annotate aspect", Expr);
4141 goto Continue;
4142 end if;
4144 -- Prepare pragma arguments
4146 Pargs := New_List;
4147 Arg := First (Args);
4148 while Present (Arg) loop
4149 Append_To (Pargs,
4150 Make_Pragma_Argument_Association (Sloc (Arg),
4151 Expression => Relocate_Node (Arg)));
4152 Next (Arg);
4153 end loop;
4155 Append_To (Pargs,
4156 Make_Pragma_Argument_Association (Sloc (Ent),
4157 Chars => Name_Entity,
4158 Expression => Ent));
4160 Aitem := Make_Aitem_Pragma
4161 (Pragma_Argument_Associations => Pargs,
4162 Pragma_Name => Name_Annotate);
4163 end;
4165 -- Case 3 : Aspects that don't correspond to pragma/attribute
4166 -- definition clause.
4168 -- Case 3a: The aspects listed below don't correspond to
4169 -- pragmas/attributes but do require delayed analysis.
4171 when Aspect_Default_Value | Aspect_Default_Component_Value =>
4172 Error_Msg_Name_1 := Nam;
4174 if not Is_Type (E) then
4175 Error_Msg_N ("aspect% can only apply to a type", Id);
4176 goto Continue;
4178 elsif not Is_First_Subtype (E) then
4179 Error_Msg_N ("aspect% cannot apply to subtype", Id);
4180 goto Continue;
4182 elsif A_Id = Aspect_Default_Value
4183 and then not Is_Scalar_Type (E)
4184 then
4185 Error_Msg_N
4186 ("aspect% can only be applied to scalar type", Id);
4187 goto Continue;
4189 elsif A_Id = Aspect_Default_Component_Value then
4190 if not Is_Array_Type (E) then
4191 Error_Msg_N
4192 ("aspect% can only be applied to array type", Id);
4193 goto Continue;
4195 elsif not Is_Scalar_Type (Component_Type (E)) then
4196 Error_Msg_N ("aspect% requires scalar components", Id);
4197 goto Continue;
4198 end if;
4199 end if;
4201 Aitem := Empty;
4203 when Aspect_Aggregate =>
4204 Validate_Aspect_Aggregate (Expr);
4205 Record_Rep_Item (E, Aspect);
4206 goto Continue;
4208 when Aspect_Stable_Properties =>
4209 Validate_Aspect_Stable_Properties
4210 (E, Expr, Class_Present => Class_Present (Aspect));
4211 Record_Rep_Item (E, Aspect);
4212 goto Continue;
4214 when Aspect_Designated_Storage_Model =>
4215 if not Extensions_Allowed then
4216 Error_Msg_GNAT_Extension ("aspect %", Sloc (Aspect));
4218 elsif not Is_Type (E)
4219 or else Ekind (E) /= E_Access_Type
4220 then
4221 Error_Msg_N
4222 ("can only be specified for pool-specific access type",
4223 Aspect);
4224 end if;
4226 Record_Rep_Item (E, Aspect);
4227 goto Continue;
4229 when Aspect_Storage_Model_Type =>
4230 if not Extensions_Allowed then
4231 Error_Msg_GNAT_Extension ("aspect %", Sloc (Aspect));
4233 elsif not Is_Type (E)
4234 or else not Is_Immutably_Limited_Type (E)
4235 then
4236 Error_Msg_N
4237 ("can only be specified for immutably limited type",
4238 Aspect);
4239 end if;
4241 Record_Rep_Item (E, Aspect);
4242 goto Continue;
4244 when Aspect_Integer_Literal
4245 | Aspect_Real_Literal
4246 | Aspect_String_Literal
4249 if not Is_First_Subtype (E) then
4250 Error_Msg_N
4251 ("may only be specified for a first subtype", Aspect);
4252 goto Continue;
4253 end if;
4255 if Ada_Version < Ada_2022 then
4256 Check_Restriction
4257 (No_Implementation_Aspect_Specifications, N);
4258 end if;
4260 Aitem := Empty;
4262 -- Case 3b: The aspects listed below don't correspond to
4263 -- pragmas/attributes and don't need delayed analysis.
4265 -- Implicit_Dereference
4267 -- For Implicit_Dereference, External_Name and Link_Name, only
4268 -- the legality checks are done during the analysis, thus no
4269 -- delay is required.
4271 when Aspect_Implicit_Dereference =>
4272 Analyze_Aspect_Implicit_Dereference;
4273 goto Continue;
4275 -- Dimension
4277 when Aspect_Dimension =>
4278 Analyze_Aspect_Dimension (N, Id, Expr);
4279 goto Continue;
4281 -- Dimension_System
4283 when Aspect_Dimension_System =>
4284 Analyze_Aspect_Dimension_System (N, Id, Expr);
4285 goto Continue;
4287 -- Case 4: Aspects requiring special handling
4289 -- Pre/Post/Test_Case/Contract_Cases/Subprogram_Variant whose
4290 -- corresponding pragmas take care of the delay.
4292 -- Pre/Post
4294 -- Aspects Pre/Post generate Precondition/Postcondition pragmas
4295 -- with a first argument that is the expression, and a second
4296 -- argument that is an informative message if the test fails.
4297 -- This is inserted right after the declaration, to get the
4298 -- required pragma placement. The processing for the pragmas
4299 -- takes care of the required delay.
4301 when Pre_Post_Aspects => Pre_Post : declare
4302 Pname : Name_Id;
4304 begin
4305 if A_Id in Aspect_Pre | Aspect_Precondition then
4306 Pname := Name_Precondition;
4307 else
4308 Pname := Name_Postcondition;
4309 end if;
4311 -- Check that the class-wide predicate cannot be applied to
4312 -- an operation of a synchronized type. AI12-0182 forbids
4313 -- these altogether, while earlier language semantics made
4314 -- them legal on tagged synchronized types.
4316 -- Other legality checks are performed when analyzing the
4317 -- contract of the operation.
4319 if Class_Present (Aspect)
4320 and then Is_Concurrent_Type (Current_Scope)
4321 and then Ekind (E) in E_Entry | E_Function | E_Procedure
4322 then
4323 Error_Msg_Name_1 := Original_Aspect_Pragma_Name (Aspect);
4324 Error_Msg_N
4325 ("aspect % can only be specified for a primitive "
4326 & "operation of a tagged type", Aspect);
4328 goto Continue;
4329 end if;
4331 -- Remember class-wide conditions; they will be merged
4332 -- with inherited conditions.
4334 if Class_Present (Aspect)
4335 and then A_Id in Aspect_Pre | Aspect_Post
4336 and then Is_Subprogram (E)
4337 and then not Is_Ignored_Ghost_Entity (E)
4338 then
4339 if A_Id = Aspect_Pre then
4340 if Is_Ignored (Aspect) then
4341 Set_Ignored_Class_Preconditions (E,
4342 New_Copy_Tree (Expr));
4343 else
4344 Set_Class_Preconditions (E, New_Copy_Tree (Expr));
4345 end if;
4347 -- Postconditions may split into separate aspects, and we
4348 -- remember the expression before such split (i.e. when
4349 -- the first postcondition is processed).
4351 elsif No (Class_Postconditions (E))
4352 and then No (Ignored_Class_Postconditions (E))
4353 then
4354 if Is_Ignored (Aspect) then
4355 Set_Ignored_Class_Postconditions (E,
4356 New_Copy_Tree (Expr));
4357 else
4358 Set_Class_Postconditions (E, New_Copy_Tree (Expr));
4359 end if;
4360 end if;
4361 end if;
4363 -- If the expressions is of the form A and then B, then
4364 -- we generate separate Pre/Post aspects for the separate
4365 -- clauses. Since we allow multiple pragmas, there is no
4366 -- problem in allowing multiple Pre/Post aspects internally.
4367 -- These should be treated in reverse order (B first and
4368 -- A second) since they are later inserted just after N in
4369 -- the order they are treated. This way, the pragma for A
4370 -- ends up preceding the pragma for B, which may have an
4371 -- importance for the error raised (either constraint error
4372 -- or precondition error).
4374 -- We do not do this for Pre'Class, since we have to put
4375 -- these conditions together in a complex OR expression.
4377 -- We don't do this in GNATprove mode, because it brings no
4378 -- benefit for proof and causes annoyance for flow analysis,
4379 -- which prefers to be as close to the original source code
4380 -- as possible. Also we don't do this when analyzing generic
4381 -- units since it causes spurious visibility errors in the
4382 -- preanalysis of instantiations.
4384 if not GNATprove_Mode
4385 and then (Pname = Name_Postcondition
4386 or else not Class_Present (Aspect))
4387 and then not Inside_A_Generic
4388 then
4389 while Nkind (Expr) = N_And_Then loop
4390 Insert_After (Aspect,
4391 Make_Aspect_Specification (Sloc (Left_Opnd (Expr)),
4392 Identifier => Identifier (Aspect),
4393 Expression => Relocate_Node (Left_Opnd (Expr)),
4394 Class_Present => Class_Present (Aspect),
4395 Split_PPC => True));
4396 Rewrite (Expr, Relocate_Node (Right_Opnd (Expr)));
4397 Eloc := Sloc (Expr);
4398 end loop;
4399 end if;
4401 -- Build the precondition/postcondition pragma
4403 Aitem := Make_Aitem_Pragma
4404 (Pragma_Argument_Associations => New_List (
4405 Make_Pragma_Argument_Association (Eloc,
4406 Chars => Name_Check,
4407 Expression => Relocate_Expression (Expr))),
4408 Pragma_Name => Pname);
4410 -- Add message unless exception messages are suppressed
4412 if not Opt.Exception_Locations_Suppressed then
4413 Append_To (Pragma_Argument_Associations (Aitem),
4414 Make_Pragma_Argument_Association (Eloc,
4415 Chars => Name_Message,
4416 Expression =>
4417 Make_String_Literal (Eloc,
4418 Strval => "failed "
4419 & Get_Name_String (Pname)
4420 & " from "
4421 & Build_Location_String (Eloc))));
4422 end if;
4424 Set_Is_Delayed_Aspect (Aspect);
4426 -- For Pre/Post cases, insert immediately after the entity
4427 -- declaration, since that is the required pragma placement.
4428 -- Note that for these aspects, we do not have to worry
4429 -- about delay issues, since the pragmas themselves deal
4430 -- with delay of visibility for the expression analysis.
4432 Insert_Pragma (Aitem);
4434 goto Continue;
4435 end Pre_Post;
4437 -- Test_Case
4439 when Aspect_Test_Case => Test_Case : declare
4440 Args : List_Id;
4441 Comp_Expr : Node_Id;
4442 Comp_Assn : Node_Id;
4444 begin
4445 Args := New_List;
4447 if Nkind (Parent (N)) = N_Compilation_Unit then
4448 Error_Msg_Name_1 := Nam;
4449 Error_Msg_N ("incorrect placement of aspect %", E);
4450 goto Continue;
4451 end if;
4453 if Nkind (Expr) /= N_Aggregate
4454 or else Null_Record_Present (Expr)
4455 then
4456 Error_Msg_Name_1 := Nam;
4457 Error_Msg_NE
4458 ("wrong syntax for aspect % for &", Id, E);
4459 goto Continue;
4460 end if;
4462 -- Check that the expression is a proper aggregate (no
4463 -- parentheses).
4465 if Paren_Count (Expr) /= 0 then
4466 Error_Msg_F -- CODEFIX
4467 ("redundant parentheses", Expr);
4468 goto Continue;
4469 end if;
4471 -- Create the list of arguments for building the Test_Case
4472 -- pragma.
4474 Comp_Expr := First (Expressions (Expr));
4475 while Present (Comp_Expr) loop
4476 Append_To (Args,
4477 Make_Pragma_Argument_Association (Sloc (Comp_Expr),
4478 Expression => Relocate_Node (Comp_Expr)));
4479 Next (Comp_Expr);
4480 end loop;
4482 Comp_Assn := First (Component_Associations (Expr));
4483 while Present (Comp_Assn) loop
4484 if List_Length (Choices (Comp_Assn)) /= 1
4485 or else
4486 Nkind (First (Choices (Comp_Assn))) /= N_Identifier
4487 then
4488 Error_Msg_Name_1 := Nam;
4489 Error_Msg_NE
4490 ("wrong syntax for aspect % for &", Id, E);
4491 goto Continue;
4492 end if;
4494 Append_To (Args,
4495 Make_Pragma_Argument_Association (Sloc (Comp_Assn),
4496 Chars => Chars (First (Choices (Comp_Assn))),
4497 Expression =>
4498 Relocate_Node (Expression (Comp_Assn))));
4499 Next (Comp_Assn);
4500 end loop;
4502 -- Build the test-case pragma
4504 Aitem := Make_Aitem_Pragma
4505 (Pragma_Argument_Associations => Args,
4506 Pragma_Name => Name_Test_Case);
4507 end Test_Case;
4509 -- Contract_Cases
4511 when Aspect_Contract_Cases =>
4512 Aitem := Make_Aitem_Pragma
4513 (Pragma_Argument_Associations => New_List (
4514 Make_Pragma_Argument_Association (Loc,
4515 Expression => Relocate_Node (Expr))),
4516 Pragma_Name => Name_Contract_Cases);
4518 Decorate (Aspect, Aitem);
4519 Insert_Pragma (Aitem);
4520 goto Continue;
4522 -- Subprogram_Variant
4524 when Aspect_Subprogram_Variant =>
4525 Aitem := Make_Aitem_Pragma
4526 (Pragma_Argument_Associations => New_List (
4527 Make_Pragma_Argument_Association (Loc,
4528 Expression => Relocate_Node (Expr))),
4529 Pragma_Name => Name_Subprogram_Variant);
4531 Decorate (Aspect, Aitem);
4532 Insert_Pragma (Aitem);
4533 goto Continue;
4535 -- Case 5: Special handling for aspects with an optional
4536 -- boolean argument.
4538 -- In the delayed case, the corresponding pragma cannot be
4539 -- generated yet because the evaluation of the boolean needs
4540 -- to be delayed till the freeze point.
4542 when Boolean_Aspects
4543 | Library_Unit_Aspects
4545 Set_Is_Boolean_Aspect (Aspect);
4547 -- Lock_Free aspect only apply to protected objects
4549 if A_Id = Aspect_Lock_Free then
4550 if Ekind (E) /= E_Protected_Type then
4551 Error_Msg_Name_1 := Nam;
4552 Error_Msg_N
4553 ("aspect % only applies to a protected type " &
4554 "or object",
4555 Aspect);
4557 else
4558 -- Set the Uses_Lock_Free flag to True if there is no
4559 -- expression or if the expression is True. The
4560 -- evaluation of this aspect should be delayed to the
4561 -- freeze point if we wanted to handle the corner case
4562 -- of "true" or "false" being redefined.
4564 if No (Expr)
4565 or else Is_True (Static_Boolean (Expr))
4566 then
4567 Set_Uses_Lock_Free (E);
4568 end if;
4570 Record_Rep_Item (E, Aspect);
4571 end if;
4573 goto Continue;
4575 elsif A_Id in Aspect_Export | Aspect_Import then
4576 Analyze_Aspect_Export_Import;
4578 -- Disable_Controlled
4580 elsif A_Id = Aspect_Disable_Controlled then
4581 Analyze_Aspect_Disable_Controlled;
4582 goto Continue;
4584 -- Ada 2022 (AI12-0129): Exclusive_Functions
4586 elsif A_Id = Aspect_Exclusive_Functions then
4587 if Ekind (E) /= E_Protected_Type then
4588 Error_Msg_Name_1 := Nam;
4589 Error_Msg_N
4590 ("aspect % only applies to a protected type " &
4591 "or object",
4592 Aspect);
4593 end if;
4595 goto Continue;
4597 -- Ada 2022 (AI12-0363): Full_Access_Only
4599 elsif A_Id = Aspect_Full_Access_Only then
4600 Error_Msg_Ada_2022_Feature ("aspect %", Sloc (Aspect));
4602 -- Ada 2022 (AI12-0075): static expression functions
4604 elsif A_Id = Aspect_Static then
4605 Analyze_Aspect_Static;
4606 goto Continue;
4608 -- Ada 2022 (AI12-0279)
4610 elsif A_Id = Aspect_Yield then
4611 Analyze_Aspect_Yield;
4612 goto Continue;
4613 end if;
4615 -- Library unit aspects require special handling in the case
4616 -- of a package declaration, the pragma needs to be inserted
4617 -- in the list of declarations for the associated package.
4618 -- There is no issue of visibility delay for these aspects.
4620 if A_Id in Library_Unit_Aspects
4621 and then
4622 Nkind (N) in N_Package_Declaration
4623 | N_Generic_Package_Declaration
4624 and then Nkind (Parent (N)) /= N_Compilation_Unit
4626 -- Aspect is legal on a local instantiation of a library-
4627 -- level generic unit.
4629 and then not Is_Generic_Instance (Defining_Entity (N))
4630 then
4631 Error_Msg_N
4632 ("incorrect context for library unit aspect&", Id);
4633 goto Continue;
4634 end if;
4636 -- Cases where we do not delay
4638 if not Delay_Required then
4640 -- Exclude aspects Export and Import because their pragma
4641 -- syntax does not map directly to a Boolean aspect.
4643 if A_Id not in Aspect_Export | Aspect_Import then
4644 Aitem := Make_Aitem_Pragma
4645 (Pragma_Argument_Associations => New_List (
4646 Make_Pragma_Argument_Association (Sloc (Ent),
4647 Expression => Ent)),
4648 Pragma_Name => Nam);
4649 end if;
4651 -- In general cases, the corresponding pragma/attribute
4652 -- definition clause will be inserted later at the freezing
4653 -- point, and we do not need to build it now.
4655 else
4656 Aitem := Empty;
4657 end if;
4659 -- Storage_Size
4661 -- This is special because for access types we need to generate
4662 -- an attribute definition clause. This also works for single
4663 -- task declarations, but it does not work for task type
4664 -- declarations, because we have the case where the expression
4665 -- references a discriminant of the task type. That can't use
4666 -- an attribute definition clause because we would not have
4667 -- visibility on the discriminant. For that case we must
4668 -- generate a pragma in the task definition.
4670 when Aspect_Storage_Size =>
4672 -- Task type case
4674 if Ekind (E) = E_Task_Type then
4675 declare
4676 Decl : constant Node_Id := Declaration_Node (E);
4678 begin
4679 pragma Assert (Nkind (Decl) = N_Task_Type_Declaration);
4681 -- If no task definition, create one
4683 if No (Task_Definition (Decl)) then
4684 Set_Task_Definition (Decl,
4685 Make_Task_Definition (Loc,
4686 Visible_Declarations => Empty_List,
4687 End_Label => Empty));
4688 end if;
4690 -- Create a pragma and put it at the start of the task
4691 -- definition for the task type declaration.
4693 Aitem := Make_Aitem_Pragma
4694 (Pragma_Argument_Associations => New_List (
4695 Make_Pragma_Argument_Association (Loc,
4696 Expression => Relocate_Node (Expr))),
4697 Pragma_Name => Name_Storage_Size);
4699 Prepend
4700 (Aitem,
4701 Visible_Declarations (Task_Definition (Decl)));
4702 goto Continue;
4703 end;
4705 -- All other cases, generate attribute definition
4707 else
4708 Aitem :=
4709 Make_Attribute_Definition_Clause (Loc,
4710 Name => Ent,
4711 Chars => Name_Storage_Size,
4712 Expression => Relocate_Node (Expr));
4713 end if;
4714 end case;
4716 -- Attach the corresponding pragma/attribute definition clause to
4717 -- the aspect specification node.
4719 if Present (Aitem) then
4720 Set_From_Aspect_Specification (Aitem);
4721 end if;
4723 -- For an aspect that applies to a type, indicate whether it
4724 -- appears on a partial view of the type.
4726 if Is_Type (E)
4727 and then Is_Private_Type (E)
4728 then
4729 Set_Aspect_On_Partial_View (Aspect);
4730 end if;
4732 -- In the context of a compilation unit, we directly put the
4733 -- pragma in the Pragmas_After list of the N_Compilation_Unit_Aux
4734 -- node (no delay is required here) except for aspects on a
4735 -- subprogram body (see below) and a generic package, for which we
4736 -- need to introduce the pragma before building the generic copy
4737 -- (see sem_ch12), and for package instantiations, where the
4738 -- library unit pragmas are better handled early.
4740 if Nkind (Parent (N)) = N_Compilation_Unit
4741 and then (Present (Aitem) or else Is_Boolean_Aspect (Aspect))
4742 then
4743 declare
4744 Aux : constant Node_Id := Aux_Decls_Node (Parent (N));
4746 begin
4747 pragma Assert (Nkind (Aux) = N_Compilation_Unit_Aux);
4749 -- For a Boolean aspect, create the corresponding pragma if
4750 -- no expression or if the value is True.
4752 if Is_Boolean_Aspect (Aspect) and then No (Aitem) then
4753 if Is_True (Static_Boolean (Expr)) then
4754 Aitem := Make_Aitem_Pragma
4755 (Pragma_Argument_Associations => New_List (
4756 Make_Pragma_Argument_Association (Sloc (Ent),
4757 Expression => Ent)),
4758 Pragma_Name => Nam);
4760 Set_From_Aspect_Specification (Aitem, True);
4761 Set_Corresponding_Aspect (Aitem, Aspect);
4763 else
4764 goto Continue;
4765 end if;
4766 end if;
4768 -- If the aspect is on a subprogram body (relevant aspect
4769 -- is Inline), add the pragma in front of the declarations.
4771 if Nkind (N) = N_Subprogram_Body then
4772 if No (Declarations (N)) then
4773 Set_Declarations (N, New_List);
4774 end if;
4776 Prepend (Aitem, Declarations (N));
4778 elsif Nkind (N) = N_Generic_Package_Declaration then
4779 if No (Visible_Declarations (Specification (N))) then
4780 Set_Visible_Declarations (Specification (N), New_List);
4781 end if;
4783 Prepend (Aitem,
4784 Visible_Declarations (Specification (N)));
4786 elsif Nkind (N) = N_Package_Instantiation then
4787 declare
4788 Spec : constant Node_Id :=
4789 Specification (Instance_Spec (N));
4790 begin
4791 if No (Visible_Declarations (Spec)) then
4792 Set_Visible_Declarations (Spec, New_List);
4793 end if;
4795 Prepend (Aitem, Visible_Declarations (Spec));
4796 end;
4798 else
4799 if No (Pragmas_After (Aux)) then
4800 Set_Pragmas_After (Aux, New_List);
4801 end if;
4803 Append (Aitem, Pragmas_After (Aux));
4804 end if;
4806 goto Continue;
4807 end;
4808 end if;
4810 -- The evaluation of the aspect is delayed to the freezing point.
4811 -- The pragma or attribute clause if there is one is then attached
4812 -- to the aspect specification which is put in the rep item list.
4814 if Delay_Required then
4815 if Present (Aitem) then
4816 Set_Is_Delayed_Aspect (Aitem);
4817 Set_Aspect_Rep_Item (Aspect, Aitem);
4818 Set_Parent (Aitem, Aspect);
4819 end if;
4821 Set_Is_Delayed_Aspect (Aspect);
4823 -- In the case of Default_Value, link the aspect to base type
4824 -- as well, even though it appears on a first subtype. This is
4825 -- mandated by the semantics of the aspect. Do not establish
4826 -- the link when processing the base type itself as this leads
4827 -- to a rep item circularity.
4829 if A_Id = Aspect_Default_Value and then Base_Type (E) /= E then
4830 Set_Has_Delayed_Aspects (Base_Type (E));
4831 Record_Rep_Item (Base_Type (E), Aspect);
4832 end if;
4834 Set_Has_Delayed_Aspects (E);
4835 Record_Rep_Item (E, Aspect);
4837 -- When delay is not required and the context is a package or a
4838 -- subprogram body, insert the pragma in the body declarations.
4840 elsif Nkind (N) in N_Package_Body | N_Subprogram_Body then
4841 if No (Declarations (N)) then
4842 Set_Declarations (N, New_List);
4843 end if;
4845 -- The pragma is added before source declarations
4847 Prepend_To (Declarations (N), Aitem);
4849 -- When delay is not required and the context is not a compilation
4850 -- unit, we simply insert the pragma/attribute definition clause
4851 -- in sequence.
4853 elsif Present (Aitem) then
4854 Insert_After (Ins_Node, Aitem);
4855 Ins_Node := Aitem;
4856 end if;
4858 <<Continue>>
4860 -- If a nonoverridable aspect is explicitly specified for a
4861 -- derived type, then check consistency with the parent type.
4863 if A_Id in Nonoverridable_Aspect_Id
4864 and then Nkind (N) = N_Full_Type_Declaration
4865 and then Nkind (Type_Definition (N)) = N_Derived_Type_Definition
4866 and then not In_Instance_Body
4867 then
4868 declare
4869 Parent_Type : constant Entity_Id := Etype (E);
4870 Inherited_Aspect : constant Node_Id :=
4871 Find_Aspect (Parent_Type, A_Id);
4872 begin
4873 if Present (Inherited_Aspect)
4874 and then not Is_Confirming
4875 (A_Id, Inherited_Aspect, Aspect)
4876 then
4877 Error_Msg_Name_1 := Aspect_Names (A_Id);
4878 Error_Msg_Sloc := Sloc (Inherited_Aspect);
4880 Error_Msg_N
4881 ("overriding aspect specification for "
4882 & "nonoverridable aspect % does not confirm "
4883 & "aspect specification inherited from #",
4884 Aspect);
4885 end if;
4886 end;
4887 end if;
4888 exception
4889 when Aspect_Exit => null;
4890 end Analyze_One_Aspect;
4892 Next (Aspect);
4893 end loop Aspect_Loop;
4895 if Has_Delayed_Aspects (E) then
4896 Ensure_Freeze_Node (E);
4897 end if;
4898 end Analyze_Aspect_Specifications;
4900 ------------------------------------------------
4901 -- Analyze_Aspects_On_Subprogram_Body_Or_Stub --
4902 ------------------------------------------------
4904 procedure Analyze_Aspects_On_Subprogram_Body_Or_Stub (N : Node_Id) is
4905 Body_Id : constant Entity_Id := Defining_Entity (N);
4907 procedure Diagnose_Misplaced_Aspects (Spec_Id : Entity_Id);
4908 -- Body [stub] N has aspects, but they are not properly placed. Emit an
4909 -- error message depending on the aspects involved. Spec_Id denotes the
4910 -- entity of the corresponding spec.
4912 --------------------------------
4913 -- Diagnose_Misplaced_Aspects --
4914 --------------------------------
4916 procedure Diagnose_Misplaced_Aspects (Spec_Id : Entity_Id) is
4917 procedure Misplaced_Aspect_Error
4918 (Asp : Node_Id;
4919 Ref_Nam : Name_Id);
4920 -- Emit an error message concerning misplaced aspect Asp. Ref_Nam is
4921 -- the name of the refined version of the aspect.
4923 ----------------------------
4924 -- Misplaced_Aspect_Error --
4925 ----------------------------
4927 procedure Misplaced_Aspect_Error
4928 (Asp : Node_Id;
4929 Ref_Nam : Name_Id)
4931 Asp_Nam : constant Name_Id := Chars (Identifier (Asp));
4932 Asp_Id : constant Aspect_Id := Get_Aspect_Id (Asp_Nam);
4934 begin
4935 -- The corresponding spec already contains the aspect in question
4936 -- and the one appearing on the body must be the refined form:
4938 -- procedure P with Global ...;
4939 -- procedure P with Global ... is ... end P;
4940 -- ^
4941 -- Refined_Global
4943 if Has_Aspect (Spec_Id, Asp_Id) then
4944 Error_Msg_Name_1 := Asp_Nam;
4946 -- Subunits cannot carry aspects that apply to a subprogram
4947 -- declaration.
4949 if Nkind (Parent (N)) = N_Subunit then
4950 Error_Msg_N ("aspect % cannot apply to a subunit", Asp);
4952 -- Otherwise suggest the refined form
4954 else
4955 Error_Msg_Name_2 := Ref_Nam;
4956 Error_Msg_N ("aspect % should be %", Asp);
4957 end if;
4959 -- Otherwise the aspect must appear on the spec, not on the body
4961 -- procedure P;
4962 -- procedure P with Global ... is ... end P;
4964 else
4965 Error_Msg_N
4966 ("aspect specification must appear on initial declaration",
4967 Asp);
4968 end if;
4969 end Misplaced_Aspect_Error;
4971 -- Local variables
4973 Asp : Node_Id;
4974 Asp_Nam : Name_Id;
4976 -- Start of processing for Diagnose_Misplaced_Aspects
4978 begin
4979 -- Iterate over the aspect specifications and emit specific errors
4980 -- where applicable.
4982 Asp := First (Aspect_Specifications (N));
4983 while Present (Asp) loop
4984 Asp_Nam := Chars (Identifier (Asp));
4986 -- Do not emit errors on aspects that can appear on a subprogram
4987 -- body. This scenario occurs when the aspect specification list
4988 -- contains both misplaced and properly placed aspects.
4990 if Aspect_On_Body_Or_Stub_OK (Get_Aspect_Id (Asp_Nam)) then
4991 null;
4993 -- Special diagnostics for SPARK aspects
4995 elsif Asp_Nam = Name_Depends then
4996 Misplaced_Aspect_Error (Asp, Name_Refined_Depends);
4998 elsif Asp_Nam = Name_Global then
4999 Misplaced_Aspect_Error (Asp, Name_Refined_Global);
5001 elsif Asp_Nam = Name_Post then
5002 Misplaced_Aspect_Error (Asp, Name_Refined_Post);
5004 -- Otherwise a language-defined aspect is misplaced
5006 else
5007 Error_Msg_N
5008 ("aspect specification must appear on initial declaration",
5009 Asp);
5010 end if;
5012 Next (Asp);
5013 end loop;
5014 end Diagnose_Misplaced_Aspects;
5016 -- Local variables
5018 Spec_Id : constant Entity_Id := Unique_Defining_Entity (N);
5020 -- Start of processing for Analyze_Aspects_On_Subprogram_Body_Or_Stub
5022 begin
5023 -- Language-defined aspects cannot be associated with a subprogram body
5024 -- [stub] if the subprogram has a spec. Certain implementation defined
5025 -- aspects are allowed to break this rule (for all applicable cases, see
5026 -- table Aspects.Aspect_On_Body_Or_Stub_OK).
5028 if Spec_Id /= Body_Id and then not Aspects_On_Body_Or_Stub_OK (N) then
5029 Diagnose_Misplaced_Aspects (Spec_Id);
5030 else
5031 Analyze_Aspect_Specifications (N, Body_Id);
5032 end if;
5033 end Analyze_Aspects_On_Subprogram_Body_Or_Stub;
5035 -----------------------
5036 -- Analyze_At_Clause --
5037 -----------------------
5039 -- An at clause is replaced by the corresponding Address attribute
5040 -- definition clause that is the preferred approach in Ada 95.
5042 procedure Analyze_At_Clause (N : Node_Id) is
5043 CS : constant Boolean := Comes_From_Source (N);
5045 begin
5046 -- This is an obsolescent feature
5048 Check_Restriction (No_Obsolescent_Features, N);
5050 if Warn_On_Obsolescent_Feature then
5051 Error_Msg_N
5052 ("?j?at clause is an obsolescent feature (RM J.7(2))", N);
5053 Error_Msg_N
5054 ("\?j?use address attribute definition clause instead", N);
5055 end if;
5057 -- Rewrite as address clause
5059 Rewrite (N,
5060 Make_Attribute_Definition_Clause (Sloc (N),
5061 Name => Identifier (N),
5062 Chars => Name_Address,
5063 Expression => Expression (N)));
5065 -- We preserve Comes_From_Source, since logically the clause still comes
5066 -- from the source program even though it is changed in form.
5068 Set_Comes_From_Source (N, CS);
5070 -- Analyze rewritten clause
5072 Analyze_Attribute_Definition_Clause (N);
5073 end Analyze_At_Clause;
5075 -----------------------------------------
5076 -- Analyze_Attribute_Definition_Clause --
5077 -----------------------------------------
5079 procedure Analyze_Attribute_Definition_Clause (N : Node_Id) is
5080 Loc : constant Source_Ptr := Sloc (N);
5081 Nam : constant Node_Id := Name (N);
5082 Attr : constant Name_Id := Chars (N);
5083 Expr : constant Node_Id := Expression (N);
5084 Id : constant Attribute_Id := Get_Attribute_Id (Attr);
5086 Ent : Entity_Id;
5087 -- The entity of Nam after it is analyzed. In the case of an incomplete
5088 -- type, this is the underlying type.
5090 U_Ent : Entity_Id;
5091 -- The underlying entity to which the attribute applies. Generally this
5092 -- is the Underlying_Type of Ent, except in the case where the clause
5093 -- applies to the full view of an incomplete or private type, in which
5094 -- case U_Ent is just a copy of Ent.
5096 FOnly : Boolean := False;
5097 -- Reset to True for subtype specific attribute (Alignment, Size)
5098 -- and for stream attributes, i.e. those cases where in the call to
5099 -- Rep_Item_Too_Late, FOnly is set True so that only the freezing rules
5100 -- are checked. Note that the case of stream attributes is not clear
5101 -- from the RM, but see AI95-00137. Also, the RM seems to disallow
5102 -- Storage_Size for derived task types, but that is also clearly
5103 -- unintentional.
5105 procedure Analyze_Put_Image_TSS_Definition;
5107 procedure Analyze_Stream_TSS_Definition (TSS_Nam : TSS_Name_Type);
5108 -- Common processing for 'Read, 'Write, 'Input and 'Output attribute
5109 -- definition clauses.
5111 function Duplicate_Clause return Boolean;
5112 -- This routine checks if the aspect for U_Ent being given by attribute
5113 -- definition clause N is for an aspect that has already been specified,
5114 -- and if so gives an error message. If there is a duplicate, True is
5115 -- returned, otherwise there is no error, and False is returned. Size
5116 -- and Value_Size are considered to conflict, but for compatibility,
5117 -- this is merely a warning.
5119 procedure Check_Indexing_Functions;
5120 -- Check that the function in Constant_Indexing or Variable_Indexing
5121 -- attribute has the proper type structure. If the name is overloaded,
5122 -- check that some interpretation is legal.
5124 procedure Check_Iterator_Functions;
5125 -- Check that there is a single function in Default_Iterator attribute
5126 -- that has the proper type structure.
5128 function Check_Primitive_Function (Subp : Entity_Id) return Boolean;
5129 -- Common legality check for the previous two
5131 -----------------------------------
5132 -- Analyze_Put_Image_TSS_Definition --
5133 -----------------------------------
5135 procedure Analyze_Put_Image_TSS_Definition is
5136 Subp : Entity_Id := Empty;
5137 I : Interp_Index;
5138 It : Interp;
5139 Pnam : Entity_Id;
5141 function Has_Good_Profile
5142 (Subp : Entity_Id;
5143 Report : Boolean := False) return Boolean;
5144 -- Return true if the entity is a subprogram with an appropriate
5145 -- profile for the attribute being defined. If result is False and
5146 -- Report is True, function emits appropriate error.
5148 ----------------------
5149 -- Has_Good_Profile --
5150 ----------------------
5152 function Has_Good_Profile
5153 (Subp : Entity_Id;
5154 Report : Boolean := False) return Boolean
5156 F : Entity_Id;
5157 Typ : Entity_Id;
5159 begin
5160 if Ekind (Subp) /= E_Procedure then
5161 return False;
5162 end if;
5164 F := First_Formal (Subp);
5166 if No (F) then
5167 return False;
5168 end if;
5170 if Base_Type (Etype (F))
5171 /= Class_Wide_Type (RTE (RE_Root_Buffer_Type))
5172 then
5173 if Report then
5174 Error_Msg_N
5175 ("wrong type for Put_Image procedure''s first parameter",
5176 Parameter_Type (Parent (F)));
5177 end if;
5179 return False;
5180 end if;
5182 if Parameter_Mode (F) /= E_In_Out_Parameter then
5183 if Report then
5184 Error_Msg_N
5185 ("wrong mode for Put_Image procedure''s first parameter",
5186 Parent (F));
5187 end if;
5189 return False;
5190 end if;
5192 Next_Formal (F);
5194 Typ := Etype (F);
5196 -- Verify that the prefix of the attribute and the local name for
5197 -- the type of the formal match.
5199 if Base_Type (Typ) /= Base_Type (Ent) then
5200 if Report then
5201 Error_Msg_N
5202 ("wrong type for Put_Image procedure''s second parameter",
5203 Parameter_Type (Parent (F)));
5204 end if;
5206 return False;
5207 end if;
5209 if Parameter_Mode (F) /= E_In_Parameter then
5210 if Report then
5211 Error_Msg_N
5212 ("wrong mode for Put_Image procedure''s second parameter",
5213 Parent (F));
5214 end if;
5216 return False;
5217 end if;
5219 if Present (Next_Formal (F)) then
5220 return False;
5221 end if;
5223 return True;
5224 end Has_Good_Profile;
5226 -- Start of processing for Analyze_Put_Image_TSS_Definition
5228 begin
5229 if not Is_Type (U_Ent) then
5230 Error_Msg_N ("local name must be a subtype", Nam);
5231 return;
5233 elsif not Is_First_Subtype (U_Ent) then
5234 Error_Msg_N ("local name must be a first subtype", Nam);
5235 return;
5236 end if;
5238 Pnam := TSS (Base_Type (U_Ent), TSS_Put_Image);
5240 -- If Pnam is present, it can be either inherited from an ancestor
5241 -- type (in which case it is legal to redefine it for this type), or
5242 -- be a previous definition of the attribute for the same type (in
5243 -- which case it is illegal).
5245 -- In the first case, it will have been analyzed already, and we can
5246 -- check that its profile does not match the expected profile for the
5247 -- Put_Image attribute of U_Ent. In the second case, either Pnam has
5248 -- been analyzed (and has the expected profile), or it has not been
5249 -- analyzed yet (case of a type that has not been frozen yet and for
5250 -- which Put_Image has been set using Set_TSS).
5252 if Present (Pnam)
5253 and then (No (First_Entity (Pnam)) or else Has_Good_Profile (Pnam))
5254 then
5255 Error_Msg_Sloc := Sloc (Pnam);
5256 Error_Msg_Name_1 := Attr;
5257 Error_Msg_N ("% attribute already defined #", Nam);
5258 return;
5259 end if;
5261 Analyze (Expr);
5263 if Is_Entity_Name (Expr) then
5264 if not Is_Overloaded (Expr) then
5265 if Has_Good_Profile (Entity (Expr), Report => True) then
5266 Subp := Entity (Expr);
5267 end if;
5269 else
5270 Get_First_Interp (Expr, I, It);
5271 while Present (It.Nam) loop
5272 if Has_Good_Profile (It.Nam) then
5273 Subp := It.Nam;
5274 exit;
5275 end if;
5277 Get_Next_Interp (I, It);
5278 end loop;
5279 end if;
5280 end if;
5282 if Present (Subp) then
5283 if Is_Abstract_Subprogram (Subp) then
5284 Error_Msg_N ("Put_Image subprogram must not be abstract", Expr);
5285 return;
5286 end if;
5288 Set_Entity (Expr, Subp);
5289 Set_Etype (Expr, Etype (Subp));
5291 New_Put_Image_Subprogram (N, U_Ent, Subp);
5293 else
5294 Error_Msg_Name_1 := Attr;
5295 Error_Msg_N ("incorrect expression for% attribute", Expr);
5296 end if;
5297 end Analyze_Put_Image_TSS_Definition;
5299 -----------------------------------
5300 -- Analyze_Stream_TSS_Definition --
5301 -----------------------------------
5303 procedure Analyze_Stream_TSS_Definition (TSS_Nam : TSS_Name_Type) is
5304 Subp : Entity_Id := Empty;
5305 I : Interp_Index;
5306 It : Interp;
5307 Pnam : Entity_Id;
5309 Is_Read : constant Boolean := (TSS_Nam = TSS_Stream_Read);
5310 -- True for Read attribute, False for other attributes
5312 function Has_Good_Profile
5313 (Subp : Entity_Id;
5314 Report : Boolean := False) return Boolean;
5315 -- Return true if the entity is a subprogram with an appropriate
5316 -- profile for the attribute being defined. If result is False and
5317 -- Report is True, function emits appropriate error.
5319 ----------------------
5320 -- Has_Good_Profile --
5321 ----------------------
5323 function Has_Good_Profile
5324 (Subp : Entity_Id;
5325 Report : Boolean := False) return Boolean
5327 Expected_Ekind : constant array (Boolean) of Entity_Kind :=
5328 (False => E_Procedure, True => E_Function);
5329 Is_Function : constant Boolean := (TSS_Nam = TSS_Stream_Input);
5330 F : Entity_Id;
5331 Typ : Entity_Id;
5333 begin
5334 if Ekind (Subp) /= Expected_Ekind (Is_Function) then
5335 return False;
5336 end if;
5338 F := First_Formal (Subp);
5340 if No (F)
5341 or else Ekind (Etype (F)) /= E_Anonymous_Access_Type
5342 or else Base_Type (Designated_Type (Etype (F))) /=
5343 Class_Wide_Type (RTE (RE_Root_Stream_Type))
5344 then
5345 return False;
5346 end if;
5348 if not Is_Function then
5349 Next_Formal (F);
5351 declare
5352 Expected_Mode : constant array (Boolean) of Entity_Kind :=
5353 (False => E_In_Parameter,
5354 True => E_Out_Parameter);
5355 begin
5356 if Parameter_Mode (F) /= Expected_Mode (Is_Read) then
5357 return False;
5358 end if;
5359 end;
5361 Typ := Etype (F);
5363 else
5364 Typ := Etype (Subp);
5365 end if;
5367 -- Verify that the prefix of the attribute and the local name for
5368 -- the type of the formal match.
5370 if Base_Type (Typ) /= Base_Type (Ent) then
5371 return False;
5372 end if;
5374 if Present (Next_Formal (F)) then
5375 return False;
5377 elsif not Is_Scalar_Type (Typ)
5378 and then not Is_First_Subtype (Typ)
5379 and then not Is_Class_Wide_Type (Typ)
5380 then
5381 if Report and not Is_First_Subtype (Typ) then
5382 Error_Msg_N
5383 ("subtype of formal in stream operation must be a first "
5384 & "subtype", Parameter_Type (Parent (F)));
5385 end if;
5387 return False;
5389 else
5390 return True;
5391 end if;
5392 end Has_Good_Profile;
5394 -- Start of processing for Analyze_Stream_TSS_Definition
5396 begin
5397 FOnly := True;
5399 if not Is_Type (U_Ent) then
5400 Error_Msg_N ("local name must be a subtype", Nam);
5401 return;
5403 elsif not Is_First_Subtype (U_Ent) then
5404 Error_Msg_N ("local name must be a first subtype", Nam);
5405 return;
5406 end if;
5408 Pnam := TSS (Base_Type (U_Ent), TSS_Nam);
5410 -- If Pnam is present, it can be either inherited from an ancestor
5411 -- type (in which case it is legal to redefine it for this type), or
5412 -- be a previous definition of the attribute for the same type (in
5413 -- which case it is illegal).
5415 -- In the first case, it will have been analyzed already, and we
5416 -- can check that its profile does not match the expected profile
5417 -- for a stream attribute of U_Ent. In the second case, either Pnam
5418 -- has been analyzed (and has the expected profile), or it has not
5419 -- been analyzed yet (case of a type that has not been frozen yet
5420 -- and for which the stream attribute has been set using Set_TSS).
5422 if Present (Pnam)
5423 and then (No (First_Entity (Pnam)) or else Has_Good_Profile (Pnam))
5424 then
5425 Error_Msg_Sloc := Sloc (Pnam);
5426 Error_Msg_Name_1 := Attr;
5427 Error_Msg_N ("% attribute already defined #", Nam);
5428 return;
5429 end if;
5431 Analyze (Expr);
5433 if Is_Entity_Name (Expr) then
5434 if not Is_Overloaded (Expr) then
5435 if Has_Good_Profile (Entity (Expr), Report => True) then
5436 Subp := Entity (Expr);
5437 end if;
5439 else
5440 Get_First_Interp (Expr, I, It);
5441 while Present (It.Nam) loop
5442 if Has_Good_Profile (It.Nam) then
5443 Subp := It.Nam;
5444 exit;
5445 end if;
5447 Get_Next_Interp (I, It);
5448 end loop;
5449 end if;
5450 end if;
5452 if Present (Subp) then
5453 if Is_Abstract_Subprogram (Subp) then
5454 Error_Msg_N ("stream subprogram must not be abstract", Expr);
5455 return;
5457 -- A stream subprogram for an interface type must be a null
5458 -- procedure (RM 13.13.2 (38/3)). Note that the class-wide type
5459 -- of an interface is not an interface type (3.9.4 (6.b/2)).
5461 elsif Is_Interface (U_Ent)
5462 and then not Is_Class_Wide_Type (U_Ent)
5463 and then not Inside_A_Generic
5464 and then
5465 (Ekind (Subp) = E_Function
5466 or else
5467 not Null_Present
5468 (Specification
5469 (Unit_Declaration_Node (Ultimate_Alias (Subp)))))
5470 then
5471 Error_Msg_N
5472 ("stream subprogram for interface type must be null "
5473 & "procedure", Expr);
5474 end if;
5476 Set_Entity (Expr, Subp);
5477 Set_Etype (Expr, Etype (Subp));
5479 New_Stream_Subprogram (N, U_Ent, Subp, TSS_Nam);
5481 else
5482 Error_Msg_Name_1 := Attr;
5484 if Is_Class_Wide_Type (Base_Type (Ent)) then
5485 Error_Msg_N
5486 ("incorrect expression for class-wide% attribute", Expr);
5487 else
5488 Error_Msg_N ("incorrect expression for% attribute", Expr);
5489 end if;
5490 end if;
5491 end Analyze_Stream_TSS_Definition;
5493 ------------------------------
5494 -- Check_Indexing_Functions --
5495 ------------------------------
5497 procedure Check_Indexing_Functions is
5498 Indexing_Found : Boolean := False;
5500 procedure Check_Inherited_Indexing;
5501 -- For a derived type, check that for a derived type, a specification
5502 -- of an indexing aspect can only be confirming, i.e. uses the same
5503 -- name as in the parent type.
5504 -- AI12-0160: Verify that an indexing cannot be specified for
5505 -- a derived type unless it is specified for the parent.
5507 procedure Check_One_Function (Subp : Entity_Id);
5508 -- Check one possible interpretation. Sets Indexing_Found True if a
5509 -- legal indexing function is found.
5511 procedure Illegal_Indexing (Msg : String);
5512 -- Diagnose illegal indexing function if not overloaded. In the
5513 -- overloaded case indicate that no legal interpretation exists.
5515 ------------------------------
5516 -- Check_Inherited_Indexing --
5517 ------------------------------
5519 procedure Check_Inherited_Indexing is
5520 Inherited : Node_Id;
5521 Other_Indexing : Node_Id;
5523 begin
5524 if Attr = Name_Constant_Indexing then
5525 Inherited :=
5526 Find_Aspect (Etype (Ent), Aspect_Constant_Indexing);
5527 Other_Indexing :=
5528 Find_Aspect (Etype (Ent), Aspect_Variable_Indexing);
5530 else pragma Assert (Attr = Name_Variable_Indexing);
5531 Inherited :=
5532 Find_Aspect (Etype (Ent), Aspect_Variable_Indexing);
5533 Other_Indexing :=
5534 Find_Aspect (Etype (Ent), Aspect_Constant_Indexing);
5535 end if;
5537 if Present (Inherited) then
5538 if Debug_Flag_Dot_XX then
5539 null;
5541 -- OK if current attribute_definition_clause is expansion of
5542 -- inherited aspect.
5544 elsif Aspect_Rep_Item (Inherited) = N then
5545 null;
5547 -- Check if this is a confirming specification. The name
5548 -- may be overloaded between the parent operation and the
5549 -- inherited one, so we check that the Chars fields match.
5551 elsif Is_Entity_Name (Expression (Inherited))
5552 and then Chars (Entity (Expression (Inherited))) =
5553 Chars (Entity (Expression (N)))
5554 then
5555 Indexing_Found := True;
5557 -- Indicate the operation that must be overridden, rather than
5558 -- redefining the indexing aspect.
5560 else
5561 Illegal_Indexing
5562 ("indexing function already inherited from parent type");
5563 Error_Msg_NE
5564 ("!override & instead",
5565 N, Entity (Expression (Inherited)));
5566 end if;
5568 -- If not inherited and the parent has another indexing function
5569 -- this is illegal, because it leads to inconsistent results in
5570 -- class-wide calls.
5572 elsif Present (Other_Indexing) then
5573 Error_Msg_N
5574 ("cannot specify indexing operation on derived type"
5575 & " if not specified for parent", N);
5576 end if;
5577 end Check_Inherited_Indexing;
5579 ------------------------
5580 -- Check_One_Function --
5581 ------------------------
5583 procedure Check_One_Function (Subp : Entity_Id) is
5584 Default_Element : Node_Id;
5585 Ret_Type : constant Entity_Id := Etype (Subp);
5587 begin
5588 if not Is_Overloadable (Subp) then
5589 Illegal_Indexing ("illegal indexing function for type&");
5590 return;
5592 elsif Scope (Subp) /= Scope (Ent) then
5593 if Nkind (Expr) = N_Expanded_Name then
5595 -- Indexing function can't be declared elsewhere
5597 Illegal_Indexing
5598 ("indexing function must be declared"
5599 & " in scope of type&");
5600 end if;
5602 if Is_Derived_Type (Ent) then
5603 Check_Inherited_Indexing;
5604 end if;
5606 return;
5608 elsif No (First_Formal (Subp)) then
5609 Illegal_Indexing
5610 ("Indexing requires a function that applies to type&");
5611 return;
5613 elsif No (Next_Formal (First_Formal (Subp))) then
5614 Illegal_Indexing
5615 ("indexing function must have at least two parameters");
5616 return;
5618 elsif Is_Derived_Type (Ent) then
5619 Check_Inherited_Indexing;
5620 end if;
5622 if not Check_Primitive_Function (Subp) then
5623 Illegal_Indexing
5624 ("Indexing aspect requires a function that applies to type&");
5625 return;
5626 end if;
5628 -- If partial declaration exists, verify that it is not tagged.
5630 if Ekind (Current_Scope) = E_Package
5631 and then Has_Private_Declaration (Ent)
5632 and then From_Aspect_Specification (N)
5633 and then
5634 List_Containing (Parent (Ent)) =
5635 Private_Declarations
5636 (Specification (Unit_Declaration_Node (Current_Scope)))
5637 and then Nkind (N) = N_Attribute_Definition_Clause
5638 then
5639 declare
5640 Decl : Node_Id;
5642 begin
5643 Decl :=
5644 First (Visible_Declarations
5645 (Specification
5646 (Unit_Declaration_Node (Current_Scope))));
5648 while Present (Decl) loop
5649 if Nkind (Decl) = N_Private_Type_Declaration
5650 and then Ent = Full_View (Defining_Identifier (Decl))
5651 and then Tagged_Present (Decl)
5652 and then No (Aspect_Specifications (Decl))
5653 then
5654 Illegal_Indexing
5655 ("Indexing aspect cannot be specified on full view "
5656 & "if partial view is tagged");
5657 return;
5658 end if;
5660 Next (Decl);
5661 end loop;
5662 end;
5663 end if;
5665 -- An indexing function must return either the default element of
5666 -- the container, or a reference type. For variable indexing it
5667 -- must be the latter.
5669 Default_Element :=
5670 Find_Value_Of_Aspect
5671 (Etype (First_Formal (Subp)), Aspect_Iterator_Element);
5673 if Present (Default_Element) then
5674 Analyze (Default_Element);
5675 end if;
5677 -- For variable_indexing the return type must be a reference type
5679 if Attr = Name_Variable_Indexing then
5680 if not Has_Implicit_Dereference (Ret_Type) then
5681 Illegal_Indexing
5682 ("variable indexing must return a reference type");
5683 return;
5685 elsif Is_Access_Constant
5686 (Etype (First_Discriminant (Ret_Type)))
5687 then
5688 Illegal_Indexing
5689 ("variable indexing must return an access to variable");
5690 return;
5691 end if;
5693 else
5694 if Has_Implicit_Dereference (Ret_Type)
5695 and then not
5696 Is_Access_Constant
5697 (Etype (Get_Reference_Discriminant (Ret_Type)))
5698 then
5699 Illegal_Indexing
5700 ("constant indexing must return an access to constant");
5701 return;
5703 elsif Is_Access_Type (Etype (First_Formal (Subp)))
5704 and then not Is_Access_Constant (Etype (First_Formal (Subp)))
5705 then
5706 Illegal_Indexing
5707 ("constant indexing must apply to an access to constant");
5708 return;
5709 end if;
5710 end if;
5712 -- All checks succeeded
5714 Indexing_Found := True;
5715 end Check_One_Function;
5717 -----------------------
5718 -- Illegal_Indexing --
5719 -----------------------
5721 procedure Illegal_Indexing (Msg : String) is
5722 begin
5723 Error_Msg_NE (Msg, N, Ent);
5724 end Illegal_Indexing;
5726 -- Start of processing for Check_Indexing_Functions
5728 begin
5729 if In_Instance then
5730 Check_Inherited_Indexing;
5731 end if;
5733 Analyze (Expr);
5735 if not Is_Overloaded (Expr) then
5736 Check_One_Function (Entity (Expr));
5738 else
5739 declare
5740 I : Interp_Index;
5741 It : Interp;
5743 begin
5744 Indexing_Found := False;
5745 Get_First_Interp (Expr, I, It);
5746 while Present (It.Nam) loop
5748 -- Note that analysis will have added the interpretation
5749 -- that corresponds to the dereference. We only check the
5750 -- subprogram itself. Ignore homonyms that may come from
5751 -- derived types in the context.
5753 if Is_Overloadable (It.Nam)
5754 and then Comes_From_Source (It.Nam)
5755 then
5756 Check_One_Function (It.Nam);
5757 end if;
5759 Get_Next_Interp (I, It);
5760 end loop;
5761 end;
5762 end if;
5764 if not Indexing_Found and then not Error_Posted (N) then
5765 Error_Msg_NE
5766 ("aspect Indexing requires a local function that applies to "
5767 & "type&", Expr, Ent);
5768 end if;
5769 end Check_Indexing_Functions;
5771 ------------------------------
5772 -- Check_Iterator_Functions --
5773 ------------------------------
5775 procedure Check_Iterator_Functions is
5776 function Valid_Default_Iterator (Subp : Entity_Id) return Boolean;
5777 -- Check one possible interpretation for validity
5779 ----------------------------
5780 -- Valid_Default_Iterator --
5781 ----------------------------
5783 function Valid_Default_Iterator (Subp : Entity_Id) return Boolean is
5784 Root_T : constant Entity_Id := Root_Type (Etype (Etype (Subp)));
5785 Formal : Entity_Id;
5787 begin
5788 if not Check_Primitive_Function (Subp) then
5789 return False;
5791 -- The return type must be derived from a type in an instance
5792 -- of Iterator.Interfaces, and thus its root type must have a
5793 -- predefined name.
5795 elsif Chars (Root_T) /= Name_Forward_Iterator
5796 and then Chars (Root_T) /= Name_Reversible_Iterator
5797 then
5798 return False;
5800 else
5801 Formal := First_Formal (Subp);
5802 end if;
5804 -- False if any subsequent formal has no default expression
5806 Next_Formal (Formal);
5807 while Present (Formal) loop
5808 if No (Expression (Parent (Formal))) then
5809 return False;
5810 end if;
5812 Next_Formal (Formal);
5813 end loop;
5815 -- True if all subsequent formals have default expressions
5817 return True;
5818 end Valid_Default_Iterator;
5820 -- Start of processing for Check_Iterator_Functions
5822 begin
5823 Analyze (Expr);
5825 if not Is_Entity_Name (Expr) then
5826 Error_Msg_N ("aspect Iterator must be a function name", Expr);
5827 end if;
5829 if not Is_Overloaded (Expr) then
5830 if Entity (Expr) /= Any_Id
5831 and then not Check_Primitive_Function (Entity (Expr))
5832 then
5833 Error_Msg_NE
5834 ("aspect Indexing requires a function that applies to type&",
5835 Entity (Expr), Ent);
5836 end if;
5838 -- Flag the default_iterator as well as the denoted function.
5840 if not Valid_Default_Iterator (Entity (Expr)) then
5841 Error_Msg_N ("improper function for default iterator!", Expr);
5842 end if;
5844 else
5845 declare
5846 Default : Entity_Id := Empty;
5847 I : Interp_Index;
5848 It : Interp;
5850 begin
5851 Get_First_Interp (Expr, I, It);
5852 while Present (It.Nam) loop
5853 if not Check_Primitive_Function (It.Nam)
5854 or else not Valid_Default_Iterator (It.Nam)
5855 then
5856 Remove_Interp (I);
5858 elsif Present (Default) then
5860 -- An explicit one should override an implicit one
5862 if Comes_From_Source (Default) =
5863 Comes_From_Source (It.Nam)
5864 then
5865 Error_Msg_N ("default iterator must be unique", Expr);
5866 Error_Msg_Sloc := Sloc (Default);
5867 Error_Msg_N ("\\possible interpretation#", Expr);
5868 Error_Msg_Sloc := Sloc (It.Nam);
5869 Error_Msg_N ("\\possible interpretation#", Expr);
5871 elsif Comes_From_Source (It.Nam) then
5872 Default := It.Nam;
5873 end if;
5874 else
5875 Default := It.Nam;
5876 end if;
5878 Get_Next_Interp (I, It);
5879 end loop;
5881 if Present (Default) then
5882 Set_Entity (Expr, Default);
5883 Set_Is_Overloaded (Expr, False);
5884 else
5885 Error_Msg_N
5886 ("no interpretation is a valid default iterator!", Expr);
5887 end if;
5888 end;
5889 end if;
5890 end Check_Iterator_Functions;
5892 -------------------------------
5893 -- Check_Primitive_Function --
5894 -------------------------------
5896 function Check_Primitive_Function (Subp : Entity_Id) return Boolean is
5897 Ctrl : Entity_Id;
5899 begin
5900 if Ekind (Subp) /= E_Function then
5901 return False;
5902 end if;
5904 if No (First_Formal (Subp)) then
5905 return False;
5906 else
5907 Ctrl := Etype (First_Formal (Subp));
5908 end if;
5910 -- To be a primitive operation subprogram has to be in same scope.
5912 if Scope (Ctrl) /= Scope (Subp) then
5913 return False;
5914 end if;
5916 -- Type of formal may be the class-wide type, an access to such,
5917 -- or an incomplete view.
5919 if Ctrl = Ent
5920 or else Ctrl = Class_Wide_Type (Ent)
5921 or else
5922 (Ekind (Ctrl) = E_Anonymous_Access_Type
5923 and then (Designated_Type (Ctrl) = Ent
5924 or else
5925 Designated_Type (Ctrl) = Class_Wide_Type (Ent)))
5926 or else
5927 (Ekind (Ctrl) = E_Incomplete_Type
5928 and then Full_View (Ctrl) = Ent)
5929 then
5930 null;
5931 else
5932 return False;
5933 end if;
5935 return True;
5936 end Check_Primitive_Function;
5938 ----------------------
5939 -- Duplicate_Clause --
5940 ----------------------
5942 function Duplicate_Clause return Boolean is
5944 function Check_One_Attr (Attr_1, Attr_2 : Name_Id) return Boolean;
5945 -- Check for one attribute; Attr_1 is the attribute_designator we are
5946 -- looking for. Attr_2 is the attribute_designator of the current
5947 -- node. Normally, this is called just once by Duplicate_Clause, with
5948 -- Attr_1 = Attr_2. However, it needs to be called twice for Size and
5949 -- Value_Size, because these mean the same thing. For compatibility,
5950 -- we allow specifying both Size and Value_Size, but only if the two
5951 -- sizes are equal.
5953 --------------------
5954 -- Check_One_Attr --
5955 --------------------
5957 function Check_One_Attr (Attr_1, Attr_2 : Name_Id) return Boolean is
5958 A : constant Node_Id :=
5959 Get_Rep_Item (U_Ent, Attr_1, Check_Parents => False);
5960 begin
5961 if Present (A) then
5962 if Attr_1 = Attr_2 then
5963 Error_Msg_Name_1 := Attr_1;
5964 Error_Msg_Sloc := Sloc (A);
5965 Error_Msg_NE ("aspect% for & previously given#", N, U_Ent);
5967 else
5968 pragma Assert (Attr_1 in Name_Size | Name_Value_Size);
5969 pragma Assert (Attr_2 in Name_Size | Name_Value_Size);
5971 Error_Msg_Name_1 := Attr_2;
5972 Error_Msg_Name_2 := Attr_1;
5973 Error_Msg_Sloc := Sloc (A);
5974 Error_Msg_NE ("?% for & conflicts with % #", N, U_Ent);
5975 end if;
5977 return True;
5978 end if;
5980 return False;
5981 end Check_One_Attr;
5983 -- Start of processing for Duplicate_Clause
5985 begin
5986 -- Nothing to do if this attribute definition clause comes from
5987 -- an aspect specification, since we could not be duplicating an
5988 -- explicit clause, and we dealt with the case of duplicated aspects
5989 -- in Analyze_Aspect_Specifications.
5991 if From_Aspect_Specification (N) then
5992 return False;
5993 end if;
5995 -- Special cases for Size and Value_Size
5997 if (Chars (N) = Name_Size
5998 and then Check_One_Attr (Name_Value_Size, Name_Size))
5999 or else
6000 (Chars (N) = Name_Value_Size
6001 and then Check_One_Attr (Name_Size, Name_Value_Size))
6002 then
6003 return True;
6004 end if;
6006 -- Normal case (including Size and Value_Size)
6008 return Check_One_Attr (Chars (N), Chars (N));
6009 end Duplicate_Clause;
6011 -- Start of processing for Analyze_Attribute_Definition_Clause
6013 begin
6014 -- The following code is a defense against recursion. Not clear that
6015 -- this can happen legitimately, but perhaps some error situations can
6016 -- cause it, and we did see this recursion during testing.
6018 if Analyzed (N) then
6019 return;
6020 else
6021 Set_Analyzed (N, True);
6022 end if;
6024 Check_Restriction_No_Use_Of_Attribute (N);
6026 if Is_Aspect_Id (Chars (N)) then
6027 -- 6.1/3 No_Specification_of_Aspect: Identifies an aspect for which
6028 -- no aspect_specification, attribute_definition_clause, or pragma
6029 -- is given.
6030 Check_Restriction_No_Specification_Of_Aspect (N);
6031 end if;
6033 -- Ignore some selected attributes in CodePeer mode since they are not
6034 -- relevant in this context.
6036 if CodePeer_Mode then
6037 case Id is
6039 -- Ignore Component_Size in CodePeer mode, to avoid changing the
6040 -- internal representation of types by implicitly packing them.
6042 when Attribute_Component_Size =>
6043 Rewrite (N, Make_Null_Statement (Sloc (N)));
6044 return;
6046 when others =>
6047 null;
6048 end case;
6049 end if;
6051 -- Process Ignore_Rep_Clauses option
6053 if Ignore_Rep_Clauses then
6054 case Id is
6056 -- The following should be ignored. They do not affect legality
6057 -- and may be target dependent. The basic idea of -gnatI is to
6058 -- ignore any rep clauses that may be target dependent but do not
6059 -- affect legality (except possibly to be rejected because they
6060 -- are incompatible with the compilation target).
6062 when Attribute_Alignment
6063 | Attribute_Bit_Order
6064 | Attribute_Component_Size
6065 | Attribute_Default_Scalar_Storage_Order
6066 | Attribute_Machine_Radix
6067 | Attribute_Object_Size
6068 | Attribute_Scalar_Storage_Order
6069 | Attribute_Size
6070 | Attribute_Small
6071 | Attribute_Stream_Size
6072 | Attribute_Value_Size
6074 Kill_Rep_Clause (N);
6075 return;
6077 -- The following should not be ignored, because in the first place
6078 -- they are reasonably portable, and should not cause problems
6079 -- in compiling code from another target, and also they do affect
6080 -- legality, e.g. failing to provide a stream attribute for a type
6081 -- may make a program illegal.
6083 when Attribute_External_Tag
6084 | Attribute_Input
6085 | Attribute_Output
6086 | Attribute_Put_Image
6087 | Attribute_Read
6088 | Attribute_Simple_Storage_Pool
6089 | Attribute_Storage_Pool
6090 | Attribute_Storage_Size
6091 | Attribute_Write
6093 null;
6095 -- We do not do anything here with address clauses, they will be
6096 -- removed by Freeze later on, but for now, it works better to
6097 -- keep them in the tree.
6099 when Attribute_Address =>
6100 null;
6102 -- Other cases are errors ("attribute& cannot be set with
6103 -- definition clause"), which will be caught below.
6105 when others =>
6106 null;
6107 end case;
6108 end if;
6110 Analyze (Nam);
6111 Ent := Entity (Nam);
6113 if Rep_Item_Too_Early (Ent, N) then
6114 return;
6115 end if;
6117 -- Rep clause applies to (underlying) full view of private or incomplete
6118 -- type if we have one (if not, this is a premature use of the type).
6119 -- However, some semantic checks need to be done on the specified entity
6120 -- i.e. the private view, so we save it in Ent.
6122 if Is_Private_Type (Ent)
6123 and then Is_Derived_Type (Ent)
6124 and then not Is_Tagged_Type (Ent)
6125 and then No (Full_View (Ent))
6126 and then No (Underlying_Full_View (Ent))
6127 then
6128 U_Ent := Ent;
6130 elsif Ekind (Ent) = E_Incomplete_Type then
6132 -- The attribute applies to the full view, set the entity of the
6133 -- attribute definition accordingly.
6135 Ent := Underlying_Type (Ent);
6136 U_Ent := Ent;
6137 Set_Entity (Nam, Ent);
6139 else
6140 U_Ent := Underlying_Type (Ent);
6141 end if;
6143 -- Avoid cascaded error
6145 if Etype (Nam) = Any_Type then
6146 return;
6148 -- Must be declared in current scope or in case of an aspect
6149 -- specification, must be visible in current scope.
6151 elsif Scope (Ent) /= Current_Scope
6152 and then
6153 not (From_Aspect_Specification (N)
6154 and then Scope_Within_Or_Same (Current_Scope, Scope (Ent)))
6155 then
6156 Error_Msg_N ("entity must be declared in this scope", Nam);
6157 return;
6159 -- Must not be a source renaming (we do have some cases where the
6160 -- expander generates a renaming, and those cases are OK, in such
6161 -- cases any attribute applies to the renamed object as well).
6163 elsif Is_Object (Ent)
6164 and then Present (Renamed_Object (Ent))
6165 then
6166 -- In the case of a renamed object from source, this is an error
6167 -- unless the object is an aggregate and the renaming is created
6168 -- for an object declaration.
6170 if Comes_From_Source (Renamed_Object (Ent))
6171 and then Nkind (Renamed_Object (Ent)) /= N_Aggregate
6172 then
6173 Get_Name_String (Chars (N));
6174 Error_Msg_Strlen := Name_Len;
6175 Error_Msg_String (1 .. Name_Len) := Name_Buffer (1 .. Name_Len);
6176 Error_Msg_N
6177 ("~ clause not allowed for a renaming declaration "
6178 & "(RM 13.1(6))", Nam);
6179 return;
6181 -- For the case of a compiler generated renaming, the attribute
6182 -- definition clause applies to the renamed object created by the
6183 -- expander. The easiest general way to handle this is to create a
6184 -- copy of the attribute definition clause for this object.
6186 elsif Is_Entity_Name (Renamed_Object (Ent)) then
6187 Insert_Action (N,
6188 Make_Attribute_Definition_Clause (Loc,
6189 Name =>
6190 New_Occurrence_Of (Entity (Renamed_Object (Ent)), Loc),
6191 Chars => Chars (N),
6192 Expression => Duplicate_Subexpr (Expression (N))));
6194 -- If the renamed object is not an entity, it must be a dereference
6195 -- of an unconstrained function call, and we must introduce a new
6196 -- declaration to capture the expression. This is needed in the case
6197 -- of 'Alignment, where the original declaration must be rewritten.
6199 else
6200 pragma Assert
6201 (Nkind (Renamed_Object (Ent)) = N_Explicit_Dereference);
6202 null;
6203 end if;
6205 -- If no underlying entity, use entity itself, applies to some
6206 -- previously detected error cases ???
6208 elsif No (U_Ent) then
6209 U_Ent := Ent;
6211 -- Cannot specify for a subtype (exception Object/Value_Size)
6213 elsif Is_Type (U_Ent)
6214 and then not Is_First_Subtype (U_Ent)
6215 and then Id /= Attribute_Object_Size
6216 and then Id /= Attribute_Value_Size
6217 and then not From_At_Mod (N)
6218 then
6219 Error_Msg_N ("cannot specify attribute for subtype", Nam);
6220 return;
6221 end if;
6223 Set_Entity (N, U_Ent);
6225 -- Switch on particular attribute
6227 case Id is
6229 -------------
6230 -- Address --
6231 -------------
6233 -- Address attribute definition clause
6235 when Attribute_Address => Address : begin
6237 -- A little error check, catch for X'Address use X'Address;
6239 if Nkind (Nam) = N_Identifier
6240 and then Nkind (Expr) = N_Attribute_Reference
6241 and then Attribute_Name (Expr) = Name_Address
6242 and then Nkind (Prefix (Expr)) = N_Identifier
6243 and then Chars (Nam) = Chars (Prefix (Expr))
6244 then
6245 Error_Msg_NE
6246 ("address for & is self-referencing", Prefix (Expr), Ent);
6247 return;
6248 end if;
6250 -- Not that special case, carry on with analysis of expression
6252 Analyze_And_Resolve (Expr, RTE (RE_Address));
6254 -- Even when ignoring rep clauses we need to indicate that the
6255 -- entity has an address clause and thus it is legal to declare
6256 -- it imported. Freeze will get rid of the address clause later.
6257 -- Also call Set_Address_Taken to indicate that an address clause
6258 -- was present, even if we are about to remove it.
6260 if Ignore_Rep_Clauses then
6261 Set_Address_Taken (U_Ent);
6263 if Ekind (U_Ent) in E_Variable | E_Constant then
6264 Record_Rep_Item (U_Ent, N);
6265 end if;
6267 return;
6268 end if;
6270 if Duplicate_Clause then
6271 null;
6273 -- Case of address clause for subprogram
6275 elsif Is_Subprogram (U_Ent) then
6276 if Has_Homonym (U_Ent) then
6277 Error_Msg_N
6278 ("address clause cannot be given for overloaded "
6279 & "subprogram", Nam);
6280 return;
6281 end if;
6283 -- For subprograms, all address clauses are permitted, and we
6284 -- mark the subprogram as having a deferred freeze so that Gigi
6285 -- will not elaborate it too soon.
6287 -- Above needs more comments, what is too soon about???
6289 Set_Has_Delayed_Freeze (U_Ent);
6291 -- Case of address clause for entry
6293 elsif Ekind (U_Ent) = E_Entry then
6294 if Nkind (Parent (N)) = N_Task_Body then
6295 Error_Msg_N
6296 ("entry address must be specified in task spec", Nam);
6297 return;
6298 end if;
6300 -- For entries, we require a constant address
6302 Check_Constant_Address_Clause (Expr, U_Ent);
6304 -- Special checks for task types
6306 if Is_Task_Type (Scope (U_Ent))
6307 and then Comes_From_Source (Scope (U_Ent))
6308 then
6309 Error_Msg_N
6310 ("??entry address declared for entry in task type", N);
6311 Error_Msg_N
6312 ("\??only one task can be declared of this type", N);
6313 end if;
6315 -- Entry address clauses are obsolescent
6317 Check_Restriction (No_Obsolescent_Features, N);
6319 if Warn_On_Obsolescent_Feature then
6320 Error_Msg_N
6321 ("?j?attaching interrupt to task entry is an obsolescent "
6322 & "feature (RM J.7.1)", N);
6323 Error_Msg_N
6324 ("\?j?use interrupt procedure instead", N);
6325 end if;
6327 -- Case of address clause for an object
6329 elsif Ekind (U_Ent) in E_Constant | E_Variable then
6331 -- Disallow case of an address clause for an object of an
6332 -- indefinite subtype which takes its bounds/discriminant/tag
6333 -- from its initial value. Without this, we get a Gigi
6334 -- assertion failure for things like
6335 -- X : String := Some_Function (...) with Address => ...;
6336 -- where the result subtype of the function is unconstrained.
6338 -- We want to reject two cases: the class-wide case, and the
6339 -- case where the FE conjures up a renaming declaration and
6340 -- would then otherwise generate an address specification for
6341 -- that renaming (which is a malformed tree, which is why Gigi
6342 -- complains).
6344 if Is_Class_Wide_Type (Etype (U_Ent)) then
6345 Error_Msg_N
6346 ("address specification not supported for class-wide " &
6347 "object declaration", Nam);
6348 return;
6349 elsif Is_Constr_Subt_For_U_Nominal (Etype (U_Ent))
6350 and then
6351 Nkind (Parent (U_Ent)) = N_Object_Renaming_Declaration
6352 then
6353 -- Confirm accuracy of " and dynamic size" message text
6354 -- before including it. We want to include that text when
6355 -- it is correct because it may be useful to the reader.
6356 -- The case where we omit that part of the message text
6357 -- might be dead code, but let's not rely on that.
6359 Error_Msg_N
6360 ("address specification not supported for object " &
6361 "declaration with indefinite nominal subtype" &
6362 (if Size_Known_At_Compile_Time (Etype (U_Ent))
6363 then ""
6364 else " and dynamic size"), Nam);
6365 return;
6366 end if;
6368 declare
6369 Expr : constant Node_Id := Expression (N);
6370 O_Ent : Entity_Id;
6371 Off : Boolean;
6373 begin
6374 -- Exported variables cannot have an address clause, because
6375 -- this cancels the effect of the pragma Export.
6377 if Is_Exported (U_Ent) then
6378 Error_Msg_N
6379 ("cannot export object with address clause", Nam);
6380 return;
6381 end if;
6383 Find_Overlaid_Entity (N, O_Ent, Off);
6385 if Present (O_Ent) then
6387 -- If the object overlays a constant object, mark it so
6389 if Is_Constant_Object (O_Ent) then
6390 Set_Overlays_Constant (U_Ent);
6391 end if;
6393 -- If the address clause is of the form:
6395 -- for X'Address use Y'Address;
6397 -- or
6399 -- C : constant Address := Y'Address;
6400 -- ...
6401 -- for X'Address use C;
6403 -- then we make an entry in the table to check the size
6404 -- and alignment of the overlaying variable. But we defer
6405 -- this check till after code generation to take full
6406 -- advantage of the annotation done by the back end.
6408 -- If the entity has a generic type, the check will be
6409 -- performed in the instance if the actual type justifies
6410 -- it, and we do not insert the clause in the table to
6411 -- prevent spurious warnings.
6413 -- Note: we used to test Comes_From_Source and only give
6414 -- this warning for source entities, but we have removed
6415 -- this test. It really seems bogus to generate overlays
6416 -- that would trigger this warning in generated code.
6417 -- Furthermore, by removing the test, we handle the
6418 -- aspect case properly.
6420 if Is_Object (O_Ent)
6421 and then not Is_Generic_Formal (O_Ent)
6422 and then not Is_Generic_Type (Etype (U_Ent))
6423 and then Address_Clause_Overlay_Warnings
6424 then
6425 Register_Address_Clause_Check
6426 (N, U_Ent, No_Uint, O_Ent, Off);
6427 end if;
6429 -- If the overlay changes the storage order, warn since
6430 -- the construct is not really supported by the back end.
6431 -- Also mark the entity as being volatile to block the
6432 -- optimizer, even if there is no warranty on the result.
6434 if (Is_Record_Type (Etype (U_Ent))
6435 or else Is_Array_Type (Etype (U_Ent)))
6436 and then (Is_Record_Type (Etype (O_Ent))
6437 or else Is_Array_Type (Etype (O_Ent)))
6438 and then Reverse_Storage_Order (Etype (U_Ent)) /=
6439 Reverse_Storage_Order (Etype (O_Ent))
6440 then
6441 Error_Msg_N
6442 ("??overlay changes scalar storage order", Expr);
6443 Set_Treat_As_Volatile (U_Ent);
6444 end if;
6446 else
6447 -- If this is not an overlay, mark a variable as being
6448 -- volatile to prevent unwanted optimizations. It's a
6449 -- conservative interpretation of RM 13.3(19) for the
6450 -- cases where the compiler cannot detect potential
6451 -- aliasing issues easily and it also covers the case
6452 -- of an absolute address where the volatile aspect is
6453 -- kind of implicit.
6455 if Ekind (U_Ent) = E_Variable then
6456 Set_Treat_As_Volatile (U_Ent);
6457 end if;
6459 -- Make an entry in the table for an absolute address as
6460 -- above to check that the value is compatible with the
6461 -- alignment of the object.
6463 declare
6464 Addr : constant Node_Id := Address_Value (Expr);
6465 begin
6466 if Compile_Time_Known_Value (Addr)
6467 and then Address_Clause_Overlay_Warnings
6468 then
6469 Register_Address_Clause_Check
6470 (N, U_Ent, Expr_Value (Addr), Empty, False);
6471 end if;
6472 end;
6473 end if;
6475 -- Issue an unconditional warning for a constant overlaying
6476 -- a variable. For the reverse case, we will issue it only
6477 -- if the variable is modified.
6478 -- Within a generic unit an In_Parameter is a constant.
6479 -- It can be instantiated with a variable, in which case
6480 -- there will be a warning on the instance.
6482 if Ekind (U_Ent) = E_Constant
6483 and then Present (O_Ent)
6484 and then Ekind (O_Ent) /= E_Generic_In_Parameter
6485 and then not Overlays_Constant (U_Ent)
6486 and then Address_Clause_Overlay_Warnings
6487 then
6488 Error_Msg_N ("?o?constant overlays a variable", Expr);
6490 -- Imported variables can have an address clause, but then
6491 -- the import is pretty meaningless except to suppress
6492 -- initializations, so we do not need such variables to
6493 -- be statically allocated (and in fact it causes trouble
6494 -- if the address clause is a local value).
6496 elsif Is_Imported (U_Ent) then
6497 Set_Is_Statically_Allocated (U_Ent, False);
6498 end if;
6500 -- We mark a possible modification of a variable with an
6501 -- address clause, since it is likely aliasing is occurring.
6503 Note_Possible_Modification (Nam, Sure => False);
6505 -- Legality checks on the address clause for initialized
6506 -- objects is deferred until the freeze point, because
6507 -- a subsequent pragma might indicate that the object
6508 -- is imported and thus not initialized. Also, the address
6509 -- clause might involve entities that have yet to be
6510 -- elaborated.
6512 Set_Has_Delayed_Freeze (U_Ent);
6514 -- If an initialization call has been generated for this
6515 -- object, it needs to be deferred to after the freeze node
6516 -- we have just now added, otherwise GIGI will see a
6517 -- reference to the variable (as actual to the IP call)
6518 -- before its definition.
6520 declare
6521 Init_Call : constant Node_Id :=
6522 Remove_Init_Call (U_Ent, N);
6524 begin
6525 if Present (Init_Call) then
6526 Append_Freeze_Action (U_Ent, Init_Call);
6528 -- Reset Initialization_Statements pointer so that
6529 -- if there is a pragma Import further down, it can
6530 -- clear any default initialization.
6532 Set_Initialization_Statements (U_Ent, Init_Call);
6533 end if;
6534 end;
6536 -- Entity has delayed freeze, so we will generate an
6537 -- alignment check at the freeze point unless suppressed.
6539 if not Range_Checks_Suppressed (U_Ent)
6540 and then not Alignment_Checks_Suppressed (U_Ent)
6541 then
6542 Set_Check_Address_Alignment (N);
6543 end if;
6545 -- Kill the size check code, since we are not allocating
6546 -- the variable, it is somewhere else.
6548 Kill_Size_Check_Code (U_Ent);
6549 end;
6551 -- Not a valid entity for an address clause
6553 else
6554 Error_Msg_N ("address cannot be given for &", Nam);
6555 end if;
6556 end Address;
6558 ---------------
6559 -- Alignment --
6560 ---------------
6562 -- Alignment attribute definition clause
6564 when Attribute_Alignment => Alignment : declare
6565 Align : constant Uint := Get_Alignment_Value (Expr);
6566 Max_Align : constant Uint := UI_From_Int (Maximum_Alignment);
6568 begin
6569 FOnly := True;
6571 if not Is_Type (U_Ent)
6572 and then Ekind (U_Ent) /= E_Variable
6573 and then Ekind (U_Ent) /= E_Constant
6574 then
6575 Error_Msg_N ("alignment cannot be given for &", Nam);
6577 elsif Duplicate_Clause then
6578 null;
6580 elsif Present (Align) then
6581 Set_Has_Alignment_Clause (U_Ent);
6583 -- Tagged type case, check for attempt to set alignment to a
6584 -- value greater than Max_Align, and reset if so.
6586 if Is_Tagged_Type (U_Ent) and then Align > Max_Align then
6587 Error_Msg_N
6588 ("alignment for & set to Maximum_Aligment??", Nam);
6589 Set_Alignment (U_Ent, Max_Align);
6591 -- All other cases
6593 else
6594 Set_Alignment (U_Ent, Align);
6595 end if;
6597 -- For an array type, U_Ent is the first subtype. In that case,
6598 -- also set the alignment of the anonymous base type so that
6599 -- other subtypes (such as the itypes for aggregates of the
6600 -- type) also receive the expected alignment.
6602 if Is_Array_Type (U_Ent) then
6603 Set_Alignment (Base_Type (U_Ent), Align);
6604 end if;
6605 end if;
6606 end Alignment;
6608 ---------------
6609 -- Bit_Order --
6610 ---------------
6612 -- Bit_Order attribute definition clause
6614 when Attribute_Bit_Order =>
6615 if not Is_Record_Type (U_Ent) then
6616 Error_Msg_N
6617 ("Bit_Order can only be defined for record type", Nam);
6619 elsif Is_Tagged_Type (U_Ent) and then Is_Derived_Type (U_Ent) then
6620 Error_Msg_N
6621 ("Bit_Order cannot be defined for record extensions", Nam);
6623 elsif Duplicate_Clause then
6624 null;
6626 else
6627 Analyze_And_Resolve (Expr, RTE (RE_Bit_Order));
6629 if Etype (Expr) = Any_Type then
6630 return;
6632 elsif not Is_OK_Static_Expression (Expr) then
6633 Flag_Non_Static_Expr
6634 ("Bit_Order requires static expression!", Expr);
6636 elsif (Expr_Value (Expr) = 0) /= Bytes_Big_Endian then
6637 Set_Reverse_Bit_Order (Base_Type (U_Ent), True);
6638 end if;
6639 end if;
6641 --------------------
6642 -- Component_Size --
6643 --------------------
6645 -- Component_Size attribute definition clause
6647 when Attribute_Component_Size => Component_Size_Case : declare
6648 Csize : constant Uint := Static_Integer (Expr);
6649 Ctyp : Entity_Id;
6650 Btype : Entity_Id;
6651 Biased : Boolean;
6652 New_Ctyp : Entity_Id;
6653 Decl : Node_Id;
6655 begin
6656 if not Is_Array_Type (U_Ent) then
6657 Error_Msg_N ("component size requires array type", Nam);
6658 return;
6659 end if;
6661 Btype := Base_Type (U_Ent);
6662 Ctyp := Component_Type (Btype);
6664 if Duplicate_Clause then
6665 null;
6667 elsif Rep_Item_Too_Early (Btype, N) then
6668 null;
6670 elsif Present (Csize) then
6671 Check_Size (Expr, Ctyp, Csize, Biased);
6673 -- For the biased case, build a declaration for a subtype that
6674 -- will be used to represent the biased subtype that reflects
6675 -- the biased representation of components. We need the subtype
6676 -- to get proper conversions on referencing elements of the
6677 -- array.
6679 if Biased then
6680 New_Ctyp :=
6681 Make_Defining_Identifier (Loc,
6682 Chars =>
6683 New_External_Name (Chars (U_Ent), 'C', 0, 'T'));
6685 Decl :=
6686 Make_Subtype_Declaration (Loc,
6687 Defining_Identifier => New_Ctyp,
6688 Subtype_Indication =>
6689 New_Occurrence_Of (Component_Type (Btype), Loc));
6691 Set_Parent (Decl, N);
6692 Analyze (Decl, Suppress => All_Checks);
6694 Set_Has_Delayed_Freeze (New_Ctyp, False);
6695 Reinit_Esize (New_Ctyp);
6696 Set_RM_Size (New_Ctyp, Csize);
6697 Reinit_Alignment (New_Ctyp);
6698 Set_Is_Itype (New_Ctyp, True);
6699 Set_Associated_Node_For_Itype (New_Ctyp, U_Ent);
6701 Set_Component_Type (Btype, New_Ctyp);
6702 Set_Biased (New_Ctyp, N, "component size clause");
6703 end if;
6705 Set_Component_Size (Btype, Csize);
6707 -- Deal with warning on overridden size
6709 if Warn_On_Overridden_Size
6710 and then Has_Size_Clause (Ctyp)
6711 and then RM_Size (Ctyp) /= Csize
6712 then
6713 Error_Msg_NE
6714 ("component size overrides size clause for&?.s?", N, Ctyp);
6715 end if;
6717 Set_Has_Component_Size_Clause (Btype, True);
6718 Set_Has_Non_Standard_Rep (Btype, True);
6719 end if;
6720 end Component_Size_Case;
6722 -----------------------
6723 -- Constant_Indexing --
6724 -----------------------
6726 when Attribute_Constant_Indexing =>
6727 Check_Indexing_Functions;
6729 ---------
6730 -- CPU --
6731 ---------
6733 when Attribute_CPU =>
6734 pragma Assert (From_Aspect_Specification (N));
6735 -- The parser forbids this clause in source code, so it must have
6736 -- come from an aspect specification.
6738 if not Is_Task_Type (U_Ent) then
6739 Error_Msg_N ("'C'P'U can only be defined for task", Nam);
6741 elsif Duplicate_Clause then
6742 null;
6744 else
6745 -- The expression must be analyzed in the special manner
6746 -- described in "Handling of Default and Per-Object
6747 -- Expressions" in sem.ads.
6749 -- The visibility to the components must be established
6750 -- and restored before and after analysis.
6752 Push_Type (U_Ent);
6753 Preanalyze_Spec_Expression (Expr, RTE (RE_CPU_Range));
6754 Pop_Type (U_Ent);
6756 -- AI12-0117-1, "Restriction No_Tasks_Unassigned_To_CPU":
6757 -- If the expression is static, and its value is
6758 -- System.Multiprocessors.Not_A_Specific_CPU (i.e. zero) then
6759 -- that's a violation of No_Tasks_Unassigned_To_CPU. It might
6760 -- seem better to refer to Not_A_Specific_CPU here, but that
6761 -- involves a lot of horsing around with Rtsfind, and this
6762 -- value is not going to change, so it's better to hardwire
6763 -- Uint_0.
6765 -- AI12-0055-1, "All properties of a usage profile are defined
6766 -- by pragmas": If the expression is nonstatic, that's a
6767 -- violation of No_Dynamic_CPU_Assignment.
6769 if Is_OK_Static_Expression (Expr) then
6770 if Expr_Value (Expr) = Uint_0 then
6771 Check_Restriction (No_Tasks_Unassigned_To_CPU, Expr);
6772 end if;
6773 else
6774 Check_Restriction (No_Dynamic_CPU_Assignment, Expr);
6775 end if;
6776 end if;
6778 ----------------------
6779 -- Default_Iterator --
6780 ----------------------
6782 when Attribute_Default_Iterator => Default_Iterator : declare
6783 Func : Entity_Id;
6784 Typ : Entity_Id;
6786 begin
6787 -- If target type is untagged, further checks are irrelevant
6789 if not Is_Tagged_Type (U_Ent) then
6790 Error_Msg_N
6791 ("aspect Default_Iterator applies to tagged type", Nam);
6792 return;
6793 end if;
6795 Check_Iterator_Functions;
6797 Analyze (Expr);
6799 if not Is_Entity_Name (Expr)
6800 or else Ekind (Entity (Expr)) /= E_Function
6801 then
6802 Error_Msg_N ("aspect Iterator must be a function", Expr);
6803 return;
6804 else
6805 Func := Entity (Expr);
6806 end if;
6808 -- The type of the first parameter must be T, T'class, or a
6809 -- corresponding access type (5.5.1 (8/3). If function is
6810 -- parameterless label type accordingly.
6812 if No (First_Formal (Func)) then
6813 Typ := Any_Type;
6814 else
6815 Typ := Etype (First_Formal (Func));
6816 end if;
6818 if Typ = U_Ent
6819 or else Typ = Class_Wide_Type (U_Ent)
6820 or else (Is_Access_Type (Typ)
6821 and then Designated_Type (Typ) = U_Ent)
6822 or else (Is_Access_Type (Typ)
6823 and then Designated_Type (Typ) =
6824 Class_Wide_Type (U_Ent))
6825 then
6826 null;
6828 else
6829 Error_Msg_NE
6830 ("Default_Iterator must be a primitive of&", Func, U_Ent);
6831 end if;
6832 end Default_Iterator;
6834 ------------------------
6835 -- Dispatching_Domain --
6836 ------------------------
6838 when Attribute_Dispatching_Domain =>
6839 pragma Assert (From_Aspect_Specification (N));
6840 -- The parser forbids this clause in source code, so it must have
6841 -- come from an aspect specification.
6843 if not Is_Task_Type (U_Ent) then
6844 Error_Msg_N
6845 ("Dispatching_Domain can only be defined for task", Nam);
6847 elsif Duplicate_Clause then
6848 null;
6850 else
6851 -- The expression must be analyzed in the special manner
6852 -- described in "Handling of Default and Per-Object
6853 -- Expressions" in sem.ads.
6855 -- The visibility to the components must be restored
6857 Push_Type (U_Ent);
6859 Preanalyze_Spec_Expression
6860 (Expr, RTE (RE_Dispatching_Domain));
6862 Pop_Type (U_Ent);
6863 end if;
6865 ------------------
6866 -- External_Tag --
6867 ------------------
6869 when Attribute_External_Tag =>
6870 if not Is_Tagged_Type (U_Ent) then
6871 Error_Msg_N ("should be a tagged type", Nam);
6872 end if;
6874 if Duplicate_Clause then
6875 null;
6877 else
6878 Analyze_And_Resolve (Expr, Standard_String);
6880 if not Is_OK_Static_Expression (Expr) then
6881 Flag_Non_Static_Expr
6882 ("static string required for tag name!", Nam);
6883 end if;
6885 if not Is_Library_Level_Entity (U_Ent) then
6886 Error_Msg_NE
6887 ("??non-unique external tag supplied for &", N, U_Ent);
6888 Error_Msg_N
6889 ("\??same external tag applies to all subprogram calls",
6891 Error_Msg_N
6892 ("\??corresponding internal tag cannot be obtained", N);
6893 end if;
6894 end if;
6896 --------------------------
6897 -- Implicit_Dereference --
6898 --------------------------
6900 when Attribute_Implicit_Dereference =>
6902 -- Legality checks already performed at the point of the type
6903 -- declaration, aspect is not delayed.
6905 null;
6907 -----------
6908 -- Input --
6909 -----------
6911 when Attribute_Input =>
6912 Analyze_Stream_TSS_Definition (TSS_Stream_Input);
6913 Set_Has_Specified_Stream_Input (Ent);
6915 ------------------------
6916 -- Interrupt_Priority --
6917 ------------------------
6919 when Attribute_Interrupt_Priority =>
6920 pragma Assert (From_Aspect_Specification (N));
6921 -- The parser forbids this clause in source code, so it must have
6922 -- come from an aspect specification.
6924 if not Is_Concurrent_Type (U_Ent) then
6925 Error_Msg_N
6926 ("Interrupt_Priority can only be defined for task and "
6927 & "protected object", Nam);
6929 elsif Duplicate_Clause then
6930 null;
6932 else
6933 -- The expression must be analyzed in the special manner
6934 -- described in "Handling of Default and Per-Object
6935 -- Expressions" in sem.ads.
6937 -- The visibility to the components must be restored
6939 Push_Type (U_Ent);
6941 Preanalyze_Spec_Expression
6942 (Expr, RTE (RE_Interrupt_Priority));
6944 Pop_Type (U_Ent);
6946 -- Check the No_Task_At_Interrupt_Priority restriction
6948 if Is_Task_Type (U_Ent) then
6949 Check_Restriction (No_Task_At_Interrupt_Priority, N);
6950 end if;
6951 end if;
6953 --------------
6954 -- Iterable --
6955 --------------
6957 when Attribute_Iterable =>
6958 Analyze (Expr);
6960 if Nkind (Expr) /= N_Aggregate then
6961 Error_Msg_N ("aspect Iterable must be an aggregate", Expr);
6962 return;
6963 end if;
6965 declare
6966 Assoc : Node_Id;
6968 begin
6969 Assoc := First (Component_Associations (Expr));
6970 while Present (Assoc) loop
6971 Analyze (Expression (Assoc));
6973 if not Is_Entity_Name (Expression (Assoc))
6974 or else Ekind (Entity (Expression (Assoc))) /= E_Function
6975 then
6976 Error_Msg_N ("value must be a function", Assoc);
6977 end if;
6979 Next (Assoc);
6980 end loop;
6981 end;
6983 ----------------------
6984 -- Iterator_Element --
6985 ----------------------
6987 when Attribute_Iterator_Element =>
6988 Analyze (Expr);
6990 if not Is_Entity_Name (Expr)
6991 or else not Is_Type (Entity (Expr))
6992 then
6993 Error_Msg_N ("aspect Iterator_Element must be a type", Expr);
6994 return;
6995 end if;
6997 -------------------
6998 -- Machine_Radix --
6999 -------------------
7001 -- Machine radix attribute definition clause
7003 when Attribute_Machine_Radix => Machine_Radix : declare
7004 Radix : constant Uint := Static_Integer (Expr);
7006 begin
7007 if not Is_Decimal_Fixed_Point_Type (U_Ent) then
7008 Error_Msg_N ("decimal fixed-point type expected for &", Nam);
7010 elsif Duplicate_Clause then
7011 null;
7013 elsif Present (Radix) then
7014 Set_Has_Machine_Radix_Clause (U_Ent);
7015 Set_Has_Non_Standard_Rep (Base_Type (U_Ent));
7017 if Radix = 2 then
7018 null;
7020 elsif Radix = 10 then
7021 Set_Machine_Radix_10 (U_Ent);
7023 else
7024 Error_Msg_N ("machine radix value must be 2 or 10", Expr);
7025 end if;
7026 end if;
7027 end Machine_Radix;
7029 -----------------
7030 -- Object_Size --
7031 -----------------
7033 -- Object_Size attribute definition clause
7035 when Attribute_Object_Size => Object_Size : declare
7036 Size : constant Uint := Static_Integer (Expr);
7038 Biased : Boolean;
7039 pragma Warnings (Off, Biased);
7041 begin
7042 if not Is_Type (U_Ent) then
7043 Error_Msg_N ("Object_Size cannot be given for &", Nam);
7045 elsif Duplicate_Clause then
7046 null;
7048 else
7049 Check_Size (Expr, U_Ent, Size, Biased);
7051 if No (Size) or else Size <= 0 then
7052 Error_Msg_N ("Object_Size must be positive", Expr);
7054 elsif Is_Scalar_Type (U_Ent) then
7055 if Size /= 8 and then Size /= 16 and then Size /= 32
7056 and then UI_Mod (Size, 64) /= 0
7057 then
7058 Error_Msg_N
7059 ("Object_Size must be 8, 16, 32, or multiple of 64",
7060 Expr);
7061 end if;
7063 elsif Size mod 8 /= 0 then
7064 Error_Msg_N ("Object_Size must be a multiple of 8", Expr);
7065 end if;
7067 Set_Esize (U_Ent, Size);
7068 Set_Has_Object_Size_Clause (U_Ent);
7069 Alignment_Check_For_Size_Change (U_Ent, Size);
7070 end if;
7071 end Object_Size;
7073 ------------
7074 -- Output --
7075 ------------
7077 when Attribute_Output =>
7078 Analyze_Stream_TSS_Definition (TSS_Stream_Output);
7079 Set_Has_Specified_Stream_Output (Ent);
7081 --------------
7082 -- Priority --
7083 --------------
7085 when Attribute_Priority =>
7087 -- Priority attribute definition clause not allowed except from
7088 -- aspect specification.
7090 if From_Aspect_Specification (N) then
7091 if not (Is_Concurrent_Type (U_Ent)
7092 or else Ekind (U_Ent) = E_Procedure)
7093 then
7094 Error_Msg_N
7095 ("Priority can only be defined for task and protected "
7096 & "object", Nam);
7098 elsif Duplicate_Clause then
7099 null;
7101 else
7102 -- The expression must be analyzed in the special manner
7103 -- described in "Handling of Default and Per-Object
7104 -- Expressions" in sem.ads.
7106 -- The visibility to the components must be restored
7108 Push_Type (U_Ent);
7109 Preanalyze_Spec_Expression (Expr, Standard_Integer);
7110 Pop_Type (U_Ent);
7112 if not Is_OK_Static_Expression (Expr) then
7113 Check_Restriction (Static_Priorities, Expr);
7114 end if;
7115 end if;
7117 else
7118 Error_Msg_N
7119 ("attribute& cannot be set with definition clause", N);
7120 end if;
7122 ---------------
7123 -- Put_Image --
7124 ---------------
7126 when Attribute_Put_Image =>
7127 Analyze_Put_Image_TSS_Definition;
7129 ----------
7130 -- Read --
7131 ----------
7133 when Attribute_Read =>
7134 Analyze_Stream_TSS_Definition (TSS_Stream_Read);
7135 Set_Has_Specified_Stream_Read (Ent);
7137 --------------------------
7138 -- Scalar_Storage_Order --
7139 --------------------------
7141 -- Scalar_Storage_Order attribute definition clause
7143 when Attribute_Scalar_Storage_Order =>
7144 if not (Is_Record_Type (U_Ent) or else Is_Array_Type (U_Ent)) then
7145 Error_Msg_N
7146 ("Scalar_Storage_Order can only be defined for record or "
7147 & "array type", Nam);
7149 elsif Duplicate_Clause then
7150 null;
7152 else
7153 Analyze_And_Resolve (Expr, RTE (RE_Bit_Order));
7155 if Etype (Expr) = Any_Type then
7156 return;
7158 elsif not Is_OK_Static_Expression (Expr) then
7159 Flag_Non_Static_Expr
7160 ("Scalar_Storage_Order requires static expression!", Expr);
7162 elsif (Expr_Value (Expr) = 0) /= Bytes_Big_Endian then
7164 -- Here for the case of a non-default (i.e. non-confirming)
7165 -- Scalar_Storage_Order attribute definition.
7167 if Support_Nondefault_SSO_On_Target then
7168 Set_Reverse_Storage_Order (Base_Type (U_Ent), True);
7169 else
7170 Error_Msg_N
7171 ("non-default Scalar_Storage_Order not supported on "
7172 & "target", Expr);
7173 end if;
7174 end if;
7176 -- Clear SSO default indications since explicit setting of the
7177 -- order overrides the defaults.
7179 Set_SSO_Set_Low_By_Default (Base_Type (U_Ent), False);
7180 Set_SSO_Set_High_By_Default (Base_Type (U_Ent), False);
7181 end if;
7183 ------------------------
7184 -- Size or Value_Size --
7185 ------------------------
7187 -- Size or Value_Size attribute definition clause. These are treated
7188 -- the same, except that Size is allowed on objects, and Value_Size
7189 -- is allowed on nonfirst subtypes. First subtypes allow both Size
7190 -- and Value_Size; the treatment is the same for both.
7192 when Attribute_Size | Attribute_Value_Size => Size : declare
7193 Size : constant Uint := Static_Integer (Expr);
7195 Attr_Name : constant String :=
7196 (if Id = Attribute_Size then "size"
7197 elsif Id = Attribute_Value_Size then "value size"
7198 else ""); -- can't happen
7199 -- Name of the attribute for printing in messages
7201 OK_Prefix : constant Boolean :=
7202 (if Id = Attribute_Size then
7203 Ekind (U_Ent) in Type_Kind | Constant_Or_Variable_Kind
7204 elsif Id = Attribute_Value_Size then
7205 Ekind (U_Ent) in Type_Kind
7206 else False); -- can't happen
7207 -- For X'Size, X can be a type or object; for X'Value_Size,
7208 -- X can be a type. Note that we already checked that 'Size
7209 -- can be specified only for a first subtype.
7211 begin
7212 FOnly := True;
7214 if not OK_Prefix then
7215 Error_Msg_N (Attr_Name & " cannot be given for &", Nam);
7217 elsif Duplicate_Clause then
7218 null;
7220 elsif Is_Array_Type (U_Ent)
7221 and then not Is_Constrained (U_Ent)
7222 then
7223 Error_Msg_N
7224 (Attr_Name & " cannot be given for unconstrained array", Nam);
7226 elsif Present (Size) then
7227 declare
7228 Etyp : constant Entity_Id :=
7229 (if Is_Type (U_Ent) then U_Ent else Etype (U_Ent));
7231 begin
7232 -- Check size, note that Gigi is in charge of checking that
7233 -- the size of an array or record type is OK. Also we do not
7234 -- check the size in the ordinary fixed-point case, since
7235 -- it is too early to do so (there may be subsequent small
7236 -- clause that affects the size). We can check the size if
7237 -- a small clause has already been given.
7239 if not Is_Ordinary_Fixed_Point_Type (U_Ent)
7240 or else Has_Small_Clause (U_Ent)
7241 then
7242 declare
7243 Biased : Boolean;
7244 begin
7245 Check_Size (Expr, Etyp, Size, Biased);
7246 Set_Biased (U_Ent, N, Attr_Name & " clause", Biased);
7247 end;
7248 end if;
7250 -- For types, set RM_Size and Esize if appropriate
7252 if Is_Type (U_Ent) then
7253 Set_RM_Size (U_Ent, Size);
7255 -- If we are specifying the Size or Value_Size of a
7256 -- first subtype, then for elementary types, increase
7257 -- Object_Size to power of 2, but not less than a storage
7258 -- unit in any case (normally this means it will be byte
7259 -- addressable).
7261 -- For all other types, nothing else to do, we leave
7262 -- Esize (object size) unset; the back end will set it
7263 -- from the size and alignment in an appropriate manner.
7265 -- In both cases, we check whether the alignment must be
7266 -- reset in the wake of the size change.
7268 -- For nonfirst subtypes ('Value_Size only), we do
7269 -- nothing here.
7271 if Is_First_Subtype (U_Ent) then
7272 if Is_Elementary_Type (U_Ent) then
7273 if Size <= System_Storage_Unit then
7274 Set_Esize
7275 (U_Ent, UI_From_Int (System_Storage_Unit));
7276 elsif Size <= 16 then
7277 Set_Esize (U_Ent, Uint_16);
7278 elsif Size <= 32 then
7279 Set_Esize (U_Ent, Uint_32);
7280 else
7281 Set_Esize (U_Ent, (Size + 63) / 64 * 64);
7282 end if;
7284 Alignment_Check_For_Size_Change
7285 (U_Ent, Esize (U_Ent));
7286 else
7287 Alignment_Check_For_Size_Change (U_Ent, Size);
7288 end if;
7289 end if;
7291 -- For Object'Size, set Esize only
7293 else
7294 if Is_Elementary_Type (Etyp)
7295 and then Size /= System_Storage_Unit
7296 and then Size /= 16
7297 and then Size /= 32
7298 and then Size /= 64
7299 and then Size /= System_Max_Integer_Size
7300 then
7301 Error_Msg_Uint_1 := UI_From_Int (System_Storage_Unit);
7302 Error_Msg_Uint_2 :=
7303 UI_From_Int (System_Max_Integer_Size);
7304 Error_Msg_N
7305 ("size for primitive object must be a power of 2 in "
7306 & "the range ^-^", N);
7307 end if;
7309 Set_Esize (U_Ent, Size);
7310 end if;
7312 Set_Has_Size_Clause (U_Ent);
7313 end;
7314 end if;
7315 end Size;
7317 -----------
7318 -- Small --
7319 -----------
7321 -- Small attribute definition clause
7323 when Attribute_Small => Small : declare
7324 Implicit_Base : constant Entity_Id := Base_Type (U_Ent);
7325 Small : Ureal;
7327 begin
7328 Analyze_And_Resolve (Expr, Any_Real);
7330 if Etype (Expr) = Any_Type then
7331 return;
7333 elsif not Is_OK_Static_Expression (Expr) then
7334 Flag_Non_Static_Expr
7335 ("small requires static expression!", Expr);
7336 return;
7338 else
7339 Small := Expr_Value_R (Expr);
7341 if Small <= Ureal_0 then
7342 Error_Msg_N ("small value must be greater than zero", Expr);
7343 return;
7344 end if;
7346 end if;
7348 if not Is_Ordinary_Fixed_Point_Type (U_Ent) then
7349 Error_Msg_N
7350 ("small requires an ordinary fixed point type", Nam);
7352 elsif Has_Small_Clause (U_Ent) then
7353 Error_Msg_N ("small already given for &", Nam);
7355 elsif Small > Delta_Value (U_Ent) then
7356 Error_Msg_N
7357 ("small value must not be greater than delta value", Nam);
7359 else
7360 Set_Small_Value (U_Ent, Small);
7361 Set_Small_Value (Implicit_Base, Small);
7362 Set_Has_Small_Clause (U_Ent);
7363 Set_Has_Small_Clause (Implicit_Base);
7364 Set_Has_Non_Standard_Rep (Implicit_Base);
7365 end if;
7366 end Small;
7368 ------------------
7369 -- Storage_Pool --
7370 ------------------
7372 -- Storage_Pool attribute definition clause
7374 when Attribute_Simple_Storage_Pool
7375 | Attribute_Storage_Pool
7377 Storage_Pool : declare
7378 Pool : Entity_Id;
7379 T : Entity_Id;
7381 procedure Associate_Storage_Pool
7382 (Ent : Entity_Id; Pool : Entity_Id);
7383 -- Associate Pool to Ent and perform legality checks on subpools
7385 ----------------------------
7386 -- Associate_Storage_Pool --
7387 ----------------------------
7389 procedure Associate_Storage_Pool
7390 (Ent : Entity_Id; Pool : Entity_Id)
7392 function Object_From (Pool : Entity_Id) return Entity_Id;
7393 -- Return the entity of which Pool is a part of
7395 -----------------
7396 -- Object_From --
7397 -----------------
7399 function Object_From
7400 (Pool : Entity_Id) return Entity_Id
7402 N : Node_Id := Pool;
7403 begin
7404 if Present (Renamed_Object (Pool)) then
7405 N := Renamed_Object (Pool);
7406 end if;
7408 while Present (N) loop
7409 case Nkind (N) is
7410 when N_Defining_Identifier =>
7411 return N;
7413 when N_Identifier | N_Expanded_Name =>
7414 return Entity (N);
7416 when N_Indexed_Component | N_Selected_Component |
7417 N_Explicit_Dereference
7419 N := Prefix (N);
7421 when N_Type_Conversion =>
7422 N := Expression (N);
7424 when others =>
7425 -- ??? we probably should handle more cases but
7426 -- this is good enough in practice for this check
7427 -- on a corner case.
7429 return Empty;
7430 end case;
7431 end loop;
7433 return Empty;
7434 end Object_From;
7436 Obj : Entity_Id;
7438 begin
7439 Set_Associated_Storage_Pool (Ent, Pool);
7441 -- Check RM 13.11.4(22-23/3): a specification of a storage pool
7442 -- is illegal if the storage pool supports subpools and:
7443 -- (A) The access type is a general access type.
7444 -- (B) The access type is statically deeper than the storage
7445 -- pool object;
7446 -- (C) The storage pool object is a part of a formal parameter;
7447 -- (D) The storage pool object is a part of the dereference of
7448 -- a non-library level general access type;
7450 if Ada_Version >= Ada_2012
7451 and then RTU_Loaded (System_Storage_Pools_Subpools)
7452 and then
7453 Is_Ancestor (RTE (RE_Root_Storage_Pool_With_Subpools),
7454 Etype (Pool))
7455 then
7456 -- check (A)
7458 if Ekind (Etype (Ent)) = E_General_Access_Type then
7459 Error_Msg_N
7460 ("subpool cannot be used on general access type", Ent);
7461 end if;
7463 -- check (B)
7465 if Type_Access_Level (Ent)
7466 > Static_Accessibility_Level
7467 (Pool, Object_Decl_Level)
7468 then
7469 Error_Msg_N
7470 ("subpool access type has deeper accessibility "
7471 & "level than pool", Ent);
7472 return;
7473 end if;
7475 Obj := Object_From (Pool);
7477 -- check (C)
7479 if Present (Obj) and then Is_Formal (Obj) then
7480 Error_Msg_N
7481 ("subpool cannot be part of a parameter", Ent);
7482 return;
7483 end if;
7485 -- check (D)
7487 if Present (Obj)
7488 and then Ekind (Etype (Obj)) = E_General_Access_Type
7489 and then not Is_Library_Level_Entity (Etype (Obj))
7490 then
7491 Error_Msg_N
7492 ("subpool cannot be part of the dereference of a " &
7493 "nested general access type", Ent);
7494 return;
7495 end if;
7496 end if;
7497 end Associate_Storage_Pool;
7499 begin
7500 if Ekind (U_Ent) = E_Access_Subprogram_Type then
7501 Error_Msg_N
7502 ("storage pool cannot be given for access-to-subprogram type",
7503 Nam);
7504 return;
7506 elsif Ekind (U_Ent) not in E_Access_Type | E_General_Access_Type
7507 then
7508 Error_Msg_N
7509 ("storage pool can only be given for access types", Nam);
7510 return;
7512 elsif Is_Derived_Type (U_Ent) then
7513 Error_Msg_N
7514 ("storage pool cannot be given for a derived access type",
7515 Nam);
7517 elsif Duplicate_Clause then
7518 return;
7520 elsif Present (Associated_Storage_Pool (U_Ent)) then
7521 Error_Msg_N ("storage pool already given for &", Nam);
7522 return;
7523 end if;
7525 -- Check for Storage_Size previously given
7527 declare
7528 SS : constant Node_Id :=
7529 Get_Attribute_Definition_Clause
7530 (U_Ent, Attribute_Storage_Size);
7531 begin
7532 if Present (SS) then
7533 Check_Pool_Size_Clash (U_Ent, N, SS);
7534 end if;
7535 end;
7537 -- Storage_Pool case
7539 if Id = Attribute_Storage_Pool then
7540 Analyze_And_Resolve
7541 (Expr, Class_Wide_Type (RTE (RE_Root_Storage_Pool)));
7543 -- In the Simple_Storage_Pool case, we allow a variable of any
7544 -- simple storage pool type, so we Resolve without imposing an
7545 -- expected type.
7547 else
7548 Analyze_And_Resolve (Expr);
7550 if not Present (Get_Rep_Pragma
7551 (Etype (Expr), Name_Simple_Storage_Pool_Type))
7552 then
7553 Error_Msg_N
7554 ("expression must be of a simple storage pool type", Expr);
7555 end if;
7556 end if;
7558 if not Denotes_Variable (Expr) then
7559 Error_Msg_N ("storage pool must be a variable", Expr);
7560 return;
7561 end if;
7563 if Nkind (Expr) = N_Type_Conversion then
7564 T := Etype (Expression (Expr));
7565 else
7566 T := Etype (Expr);
7567 end if;
7569 -- The Stack_Bounded_Pool is used internally for implementing
7570 -- access types with a Storage_Size. Since it only work properly
7571 -- when used on one specific type, we need to check that it is not
7572 -- hijacked improperly:
7574 -- type T is access Integer;
7575 -- for T'Storage_Size use n;
7576 -- type Q is access Float;
7577 -- for Q'Storage_Size use T'Storage_Size; -- incorrect
7579 if Is_RTE (Base_Type (T), RE_Stack_Bounded_Pool) then
7580 Error_Msg_N ("non-shareable internal Pool", Expr);
7581 return;
7582 end if;
7584 -- Validate_Remote_Access_To_Class_Wide_Type for attribute
7585 -- Storage_Pool since this attribute cannot be defined for such
7586 -- types (RM E.2.2(17)).
7588 Validate_Remote_Access_To_Class_Wide_Type (N);
7590 -- If the argument is a name that is not an entity name, then
7591 -- we construct a renaming operation to define an entity of
7592 -- type storage pool.
7594 if not Is_Entity_Name (Expr)
7595 and then Is_Object_Reference (Expr)
7596 then
7597 Pool := Make_Temporary (Loc, 'P', Expr);
7599 declare
7600 Rnode : constant Node_Id :=
7601 Make_Object_Renaming_Declaration (Loc,
7602 Defining_Identifier => Pool,
7603 Subtype_Mark =>
7604 New_Occurrence_Of (Etype (Expr), Loc),
7605 Name => Expr);
7607 begin
7608 -- If the attribute definition clause comes from an aspect
7609 -- clause, then insert the renaming before the associated
7610 -- entity's declaration, since the attribute clause has
7611 -- not yet been appended to the declaration list.
7613 if From_Aspect_Specification (N) then
7614 Insert_Before (Parent (Entity (N)), Rnode);
7615 else
7616 Insert_Before (N, Rnode);
7617 end if;
7619 Analyze (Rnode);
7620 Associate_Storage_Pool (U_Ent, Pool);
7621 end;
7623 elsif Is_Entity_Name (Expr) then
7624 Pool := Entity (Expr);
7626 -- If pool is a renamed object, get original one. This can
7627 -- happen with an explicit renaming, and within instances.
7629 while Present (Renamed_Object (Pool))
7630 and then Is_Entity_Name (Renamed_Object (Pool))
7631 loop
7632 Pool := Entity (Renamed_Object (Pool));
7633 end loop;
7635 if Present (Renamed_Object (Pool))
7636 and then Nkind (Renamed_Object (Pool)) = N_Type_Conversion
7637 and then Is_Entity_Name (Expression (Renamed_Object (Pool)))
7638 then
7639 Pool := Entity (Expression (Renamed_Object (Pool)));
7640 end if;
7642 Associate_Storage_Pool (U_Ent, Pool);
7644 elsif Nkind (Expr) = N_Type_Conversion
7645 and then Is_Entity_Name (Expression (Expr))
7646 and then Nkind (Original_Node (Expr)) = N_Attribute_Reference
7647 then
7648 Pool := Entity (Expression (Expr));
7649 Associate_Storage_Pool (U_Ent, Pool);
7651 else
7652 Error_Msg_N ("incorrect reference to a Storage Pool", Expr);
7653 return;
7654 end if;
7655 end Storage_Pool;
7657 ------------------
7658 -- Storage_Size --
7659 ------------------
7661 -- Storage_Size attribute definition clause
7663 when Attribute_Storage_Size => Storage_Size : declare
7664 Btype : constant Entity_Id := Base_Type (U_Ent);
7666 begin
7667 if Is_Task_Type (U_Ent) then
7669 -- Check obsolescent (but never obsolescent if from aspect)
7671 if not From_Aspect_Specification (N) then
7672 Check_Restriction (No_Obsolescent_Features, N);
7674 if Warn_On_Obsolescent_Feature then
7675 Error_Msg_N
7676 ("?j?storage size clause for task is an obsolescent "
7677 & "feature (RM J.9)", N);
7678 Error_Msg_N ("\?j?use Storage_Size pragma instead", N);
7679 end if;
7680 end if;
7682 FOnly := True;
7683 end if;
7685 if not Is_Access_Type (U_Ent)
7686 and then Ekind (U_Ent) /= E_Task_Type
7687 then
7688 Error_Msg_N ("storage size cannot be given for &", Nam);
7690 elsif Is_Access_Type (U_Ent) and Is_Derived_Type (U_Ent) then
7691 Error_Msg_N
7692 ("storage size cannot be given for a derived access type",
7693 Nam);
7695 elsif Duplicate_Clause then
7696 null;
7698 else
7699 -- Validate_Remote_Access_To_Class_Wide_Type for attribute
7700 -- Storage_Size since this attribute cannot be defined for such
7701 -- types (RM E.2.2(17)).
7703 Validate_Remote_Access_To_Class_Wide_Type (N);
7705 Analyze_And_Resolve (Expr, Any_Integer);
7707 if Is_Access_Type (U_Ent) then
7709 -- Check for Storage_Pool previously given
7711 declare
7712 SP : constant Node_Id :=
7713 Get_Attribute_Definition_Clause
7714 (U_Ent, Attribute_Storage_Pool);
7716 begin
7717 if Present (SP) then
7718 Check_Pool_Size_Clash (U_Ent, SP, N);
7719 end if;
7720 end;
7722 -- Special case of for x'Storage_Size use 0
7724 if Is_OK_Static_Expression (Expr)
7725 and then Expr_Value (Expr) = 0
7726 then
7727 Set_No_Pool_Assigned (Btype);
7728 end if;
7729 end if;
7731 Set_Has_Storage_Size_Clause (Btype);
7732 end if;
7733 end Storage_Size;
7735 -----------------
7736 -- Stream_Size --
7737 -----------------
7739 when Attribute_Stream_Size => Stream_Size : declare
7740 Size : constant Uint := Static_Integer (Expr);
7742 begin
7743 if Ada_Version <= Ada_95 then
7744 Check_Restriction (No_Implementation_Attributes, N);
7745 end if;
7747 if Duplicate_Clause then
7748 null;
7750 elsif Is_Elementary_Type (U_Ent) then
7751 -- Size will be empty if we already detected an error
7752 -- (e.g. Expr is of the wrong type); we might as well
7753 -- give the useful hint below even in that case.
7755 if No (Size) or else
7756 (Size /= System_Storage_Unit
7757 and then Size /= System_Storage_Unit * 2
7758 and then Size /= System_Storage_Unit * 3
7759 and then Size /= System_Storage_Unit * 4
7760 and then Size /= System_Storage_Unit * 8)
7761 then
7762 Error_Msg_N
7763 ("stream size for elementary type must be 8, 16, 24, " &
7764 "32 or 64", N);
7766 elsif Known_RM_Size (U_Ent) and then RM_Size (U_Ent) > Size then
7767 Error_Msg_Uint_1 := RM_Size (U_Ent);
7768 Error_Msg_N
7769 ("stream size for elementary type must be 8, 16, 24, " &
7770 "32 or 64 and at least ^", N);
7771 end if;
7773 Set_Has_Stream_Size_Clause (U_Ent);
7775 else
7776 Error_Msg_N ("Stream_Size cannot be given for &", Nam);
7777 end if;
7778 end Stream_Size;
7780 -----------------------
7781 -- Variable_Indexing --
7782 -----------------------
7784 when Attribute_Variable_Indexing =>
7785 Check_Indexing_Functions;
7787 -----------
7788 -- Write --
7789 -----------
7791 when Attribute_Write =>
7792 Analyze_Stream_TSS_Definition (TSS_Stream_Write);
7793 Set_Has_Specified_Stream_Write (Ent);
7795 -- All other attributes cannot be set
7797 when others =>
7798 Error_Msg_N
7799 ("attribute& cannot be set with definition clause", N);
7800 end case;
7802 -- The test for the type being frozen must be performed after any
7803 -- expression the clause has been analyzed since the expression itself
7804 -- might cause freezing that makes the clause illegal.
7806 if Rep_Item_Too_Late (U_Ent, N, FOnly) then
7807 return;
7808 end if;
7809 end Analyze_Attribute_Definition_Clause;
7811 ----------------------------
7812 -- Analyze_Code_Statement --
7813 ----------------------------
7815 procedure Analyze_Code_Statement (N : Node_Id) is
7816 HSS : constant Node_Id := Parent (N);
7817 SBody : constant Node_Id := Parent (HSS);
7818 Subp : constant Entity_Id := Current_Scope;
7819 Stmt : Node_Id;
7820 Decl : Node_Id;
7821 StmtO : Node_Id;
7822 DeclO : Node_Id;
7824 begin
7825 -- Accept foreign code statements for CodePeer. The analysis is skipped
7826 -- to avoid rejecting unrecognized constructs.
7828 if CodePeer_Mode then
7829 Set_Analyzed (N);
7830 return;
7831 end if;
7833 -- Analyze and check we get right type, note that this implements the
7834 -- requirement (RM 13.8(1)) that Machine_Code be with'ed, since that is
7835 -- the only way that Asm_Insn could possibly be visible.
7837 Analyze_And_Resolve (Expression (N));
7839 if Etype (Expression (N)) = Any_Type then
7840 return;
7841 elsif not Is_RTE (Etype (Expression (N)), RE_Asm_Insn) then
7842 Error_Msg_N ("incorrect type for code statement", N);
7843 return;
7844 end if;
7846 Check_Code_Statement (N);
7848 -- Make sure we appear in the handled statement sequence of a subprogram
7849 -- (RM 13.8(3)).
7851 if Nkind (HSS) /= N_Handled_Sequence_Of_Statements
7852 or else Nkind (SBody) /= N_Subprogram_Body
7853 then
7854 Error_Msg_N
7855 ("code statement can only appear in body of subprogram", N);
7856 return;
7857 end if;
7859 -- Do remaining checks (RM 13.8(3)) if not already done
7861 if not Is_Machine_Code_Subprogram (Subp) then
7862 Set_Is_Machine_Code_Subprogram (Subp);
7864 -- No exception handlers allowed
7866 if Present (Exception_Handlers (HSS)) then
7867 Error_Msg_N
7868 ("exception handlers not permitted in machine code subprogram",
7869 First (Exception_Handlers (HSS)));
7870 end if;
7872 -- No declarations other than use clauses and pragmas (we allow
7873 -- certain internally generated declarations as well).
7875 Decl := First (Declarations (SBody));
7876 while Present (Decl) loop
7877 DeclO := Original_Node (Decl);
7878 if Comes_From_Source (DeclO)
7879 and Nkind (DeclO) not in N_Pragma
7880 | N_Use_Package_Clause
7881 | N_Use_Type_Clause
7882 | N_Implicit_Label_Declaration
7883 then
7884 Error_Msg_N
7885 ("this declaration is not allowed in machine code subprogram",
7886 DeclO);
7887 end if;
7889 Next (Decl);
7890 end loop;
7892 -- No statements other than code statements, pragmas, and labels.
7893 -- Again we allow certain internally generated statements.
7895 -- In Ada 2012, qualified expressions are names, and the code
7896 -- statement is initially parsed as a procedure call.
7898 Stmt := First (Statements (HSS));
7899 while Present (Stmt) loop
7900 StmtO := Original_Node (Stmt);
7902 -- A procedure call transformed into a code statement is OK
7904 if Ada_Version >= Ada_2012
7905 and then Nkind (StmtO) = N_Procedure_Call_Statement
7906 and then Nkind (Name (StmtO)) = N_Qualified_Expression
7907 then
7908 null;
7910 elsif Comes_From_Source (StmtO)
7911 and then Nkind (StmtO) not in
7912 N_Pragma | N_Label | N_Code_Statement
7913 then
7914 Error_Msg_N
7915 ("this statement is not allowed in machine code subprogram",
7916 StmtO);
7917 end if;
7919 Next (Stmt);
7920 end loop;
7921 end if;
7922 end Analyze_Code_Statement;
7924 -----------------------------------------------
7925 -- Analyze_Enumeration_Representation_Clause --
7926 -----------------------------------------------
7928 procedure Analyze_Enumeration_Representation_Clause (N : Node_Id) is
7929 Ident : constant Node_Id := Identifier (N);
7930 Aggr : constant Node_Id := Array_Aggregate (N);
7931 Enumtype : Entity_Id;
7932 Elit : Entity_Id;
7933 Expr : Node_Id;
7934 Assoc : Node_Id;
7935 Choice : Node_Id;
7936 Val : Uint;
7938 Err : Boolean := False;
7939 -- Set True to avoid cascade errors and crashes on incorrect source code
7941 Lo : constant Uint := Expr_Value (Type_Low_Bound (Universal_Integer));
7942 Hi : constant Uint := Expr_Value (Type_High_Bound (Universal_Integer));
7943 -- Allowed range of universal integer (= allowed range of enum lit vals)
7945 Min : Uint;
7946 Max : Uint;
7947 -- Minimum and maximum values of entries
7949 Max_Node : Node_Id := Empty; -- init to avoid warning
7950 -- Pointer to node for literal providing max value
7952 begin
7953 if Ignore_Rep_Clauses then
7954 Kill_Rep_Clause (N);
7955 return;
7956 end if;
7958 -- Ignore enumeration rep clauses by default in CodePeer mode,
7959 -- unless -gnatd.I is specified, as a work around for potential false
7960 -- positive messages.
7962 if CodePeer_Mode and not Debug_Flag_Dot_II then
7963 return;
7964 end if;
7966 -- First some basic error checks
7968 Find_Type (Ident);
7969 Enumtype := Entity (Ident);
7971 if Enumtype = Any_Type
7972 or else Rep_Item_Too_Early (Enumtype, N)
7973 then
7974 return;
7975 else
7976 Enumtype := Underlying_Type (Enumtype);
7977 end if;
7979 if not Is_Enumeration_Type (Enumtype) then
7980 Error_Msg_NE
7981 ("enumeration type required, found}",
7982 Ident, First_Subtype (Enumtype));
7983 return;
7984 end if;
7986 -- Ignore rep clause on generic actual type. This will already have
7987 -- been flagged on the template as an error, and this is the safest
7988 -- way to ensure we don't get a junk cascaded message in the instance.
7990 if Is_Generic_Actual_Type (Enumtype) then
7991 return;
7993 -- Type must be in current scope
7995 elsif Scope (Enumtype) /= Current_Scope then
7996 Error_Msg_N ("type must be declared in this scope", Ident);
7997 return;
7999 -- Type must be a first subtype
8001 elsif not Is_First_Subtype (Enumtype) then
8002 Error_Msg_N ("cannot give enumeration rep clause for subtype", N);
8003 return;
8005 -- Ignore duplicate rep clause
8007 elsif Has_Enumeration_Rep_Clause (Enumtype) then
8008 Error_Msg_N ("duplicate enumeration rep clause ignored", N);
8009 return;
8011 -- Don't allow rep clause for standard [wide_[wide_]]character
8013 elsif Is_Standard_Character_Type (Enumtype) then
8014 Error_Msg_N ("enumeration rep clause not allowed for this type", N);
8015 return;
8017 -- Check that the expression is a proper aggregate (no parentheses)
8019 elsif Paren_Count (Aggr) /= 0 then
8020 Error_Msg_F
8021 ("extra parentheses surrounding aggregate not allowed", Aggr);
8022 return;
8024 -- Reject the mixing of named and positional entries in the aggregate
8026 elsif Present (Expressions (Aggr))
8027 and then Present (Component_Associations (Aggr))
8028 then
8029 Error_Msg_N ("cannot mix positional and named entries in "
8030 & "enumeration rep clause", N);
8031 return;
8033 -- All tests passed, so set rep clause in place
8035 else
8036 Set_Has_Enumeration_Rep_Clause (Enumtype);
8037 Set_Has_Enumeration_Rep_Clause (Base_Type (Enumtype));
8038 end if;
8040 -- Now we process the aggregate. Note that we don't use the normal
8041 -- aggregate code for this purpose, because we don't want any of the
8042 -- normal expansion activities, and a number of special semantic
8043 -- rules apply (including the component type being any integer type)
8045 Elit := First_Literal (Enumtype);
8047 -- Process positional entries
8049 if Present (Expressions (Aggr)) then
8050 Expr := First (Expressions (Aggr));
8051 while Present (Expr) loop
8052 if No (Elit) then
8053 Error_Msg_N ("too many entries in aggregate", Expr);
8054 return;
8055 end if;
8057 Val := Static_Integer (Expr);
8059 -- Err signals that we found some incorrect entries processing
8060 -- the list. The final checks for completeness and ordering are
8061 -- skipped in this case.
8063 if No (Val) then
8064 Err := True;
8066 elsif Val < Lo or else Hi < Val then
8067 Error_Msg_N ("value outside permitted range", Expr);
8068 Err := True;
8070 else
8071 Set_Enumeration_Rep (Elit, Val);
8072 Set_Enumeration_Rep_Expr (Elit, Expr);
8073 end if;
8075 Next (Expr);
8076 Next (Elit);
8077 end loop;
8079 -- Process named entries
8081 elsif Present (Component_Associations (Aggr)) then
8082 Assoc := First (Component_Associations (Aggr));
8083 while Present (Assoc) loop
8084 Choice := First (Choices (Assoc));
8086 if Present (Next (Choice)) then
8087 Error_Msg_N
8088 ("multiple choice not allowed here", Next (Choice));
8089 Err := True;
8090 end if;
8092 if Nkind (Choice) = N_Others_Choice then
8093 Error_Msg_N ("OTHERS choice not allowed here", Choice);
8094 Err := True;
8096 elsif Nkind (Choice) = N_Range then
8098 -- ??? should allow zero/one element range here
8100 Error_Msg_N ("range not allowed here", Choice);
8101 Err := True;
8103 else
8104 Analyze_And_Resolve (Choice, Enumtype);
8106 if Error_Posted (Choice) then
8107 Err := True;
8108 end if;
8110 if not Err then
8111 if Is_Entity_Name (Choice)
8112 and then Is_Type (Entity (Choice))
8113 then
8114 Error_Msg_N ("subtype name not allowed here", Choice);
8115 Err := True;
8117 -- ??? should allow static subtype with zero/one entry
8119 elsif Etype (Choice) = Base_Type (Enumtype) then
8120 if not Is_OK_Static_Expression (Choice) then
8121 Flag_Non_Static_Expr
8122 ("non-static expression used for choice!", Choice);
8123 Err := True;
8125 else
8126 Elit := Expr_Value_E (Choice);
8128 if Present (Enumeration_Rep_Expr (Elit)) then
8129 Error_Msg_Sloc :=
8130 Sloc (Enumeration_Rep_Expr (Elit));
8131 Error_Msg_NE
8132 ("representation for& previously given#",
8133 Choice, Elit);
8134 Err := True;
8135 end if;
8137 Set_Enumeration_Rep_Expr (Elit, Expression (Assoc));
8139 Expr := Expression (Assoc);
8140 Val := Static_Integer (Expr);
8142 if No (Val) then
8143 Err := True;
8145 elsif Val < Lo or else Hi < Val then
8146 Error_Msg_N ("value outside permitted range", Expr);
8147 Err := True;
8149 else
8150 Set_Enumeration_Rep (Elit, Val);
8151 end if;
8152 end if;
8153 end if;
8154 end if;
8155 end if;
8157 Next (Assoc);
8158 end loop;
8159 end if;
8161 -- Aggregate is fully processed. Now we check that a full set of
8162 -- representations was given, and that they are in range and in order.
8163 -- These checks are only done if no other errors occurred.
8165 if not Err then
8166 Min := No_Uint;
8167 Max := No_Uint;
8169 Elit := First_Literal (Enumtype);
8170 while Present (Elit) loop
8171 if No (Enumeration_Rep_Expr (Elit)) then
8172 Error_Msg_NE ("missing representation for&!", N, Elit);
8174 else
8175 Val := Enumeration_Rep (Elit);
8177 if No (Min) then
8178 Min := Val;
8179 end if;
8181 if Present (Val) then
8182 if Present (Max) and then Val <= Max then
8183 Error_Msg_NE
8184 ("enumeration value for& not ordered!",
8185 Enumeration_Rep_Expr (Elit), Elit);
8186 end if;
8188 Max_Node := Enumeration_Rep_Expr (Elit);
8189 Max := Val;
8190 end if;
8192 -- If there is at least one literal whose representation is not
8193 -- equal to the Pos value, then note that this enumeration type
8194 -- has a non-standard representation.
8196 if Val /= Enumeration_Pos (Elit) then
8197 Set_Has_Non_Standard_Rep (Base_Type (Enumtype));
8198 end if;
8199 end if;
8201 Next (Elit);
8202 end loop;
8204 -- Now set proper size information
8206 declare
8207 Minsize : Uint := UI_From_Int (Minimum_Size (Enumtype));
8209 begin
8210 if Has_Size_Clause (Enumtype) then
8212 -- All OK, if size is OK now
8214 if RM_Size (Enumtype) >= Minsize then
8215 null;
8217 else
8218 -- Try if we can get by with biasing
8220 Minsize :=
8221 UI_From_Int (Minimum_Size (Enumtype, Biased => True));
8223 -- Error message if even biasing does not work
8225 if RM_Size (Enumtype) < Minsize then
8226 Error_Msg_Uint_1 := RM_Size (Enumtype);
8227 Error_Msg_Uint_2 := Max;
8228 Error_Msg_N
8229 ("previously given size (^) is too small "
8230 & "for this value (^)", Max_Node);
8232 -- If biasing worked, indicate that we now have biased rep
8234 else
8235 Set_Biased
8236 (Enumtype, Size_Clause (Enumtype), "size clause");
8237 end if;
8238 end if;
8240 else
8241 Set_RM_Size (Enumtype, Minsize);
8242 Set_Enum_Esize (Enumtype);
8243 end if;
8245 Set_RM_Size (Base_Type (Enumtype), RM_Size (Enumtype));
8246 Set_Esize (Base_Type (Enumtype), Esize (Enumtype));
8248 Copy_Alignment (To => Base_Type (Enumtype), From => Enumtype);
8249 end;
8250 end if;
8252 -- We repeat the too late test in case it froze itself
8254 if Rep_Item_Too_Late (Enumtype, N) then
8255 null;
8256 end if;
8257 end Analyze_Enumeration_Representation_Clause;
8259 ----------------------------
8260 -- Analyze_Free_Statement --
8261 ----------------------------
8263 procedure Analyze_Free_Statement (N : Node_Id) is
8264 begin
8265 Analyze (Expression (N));
8266 end Analyze_Free_Statement;
8268 ---------------------------
8269 -- Analyze_Freeze_Entity --
8270 ---------------------------
8272 procedure Analyze_Freeze_Entity (N : Node_Id) is
8273 begin
8274 Freeze_Entity_Checks (N);
8275 end Analyze_Freeze_Entity;
8277 -----------------------------------
8278 -- Analyze_Freeze_Generic_Entity --
8279 -----------------------------------
8281 procedure Analyze_Freeze_Generic_Entity (N : Node_Id) is
8282 E : constant Entity_Id := Entity (N);
8284 begin
8285 if not Is_Frozen (E) and then Has_Delayed_Aspects (E) then
8286 Analyze_Aspects_At_Freeze_Point (E);
8287 end if;
8289 Freeze_Entity_Checks (N);
8290 end Analyze_Freeze_Generic_Entity;
8292 ------------------------------------------
8293 -- Analyze_Record_Representation_Clause --
8294 ------------------------------------------
8296 -- Note: we check as much as we can here, but we can't do any checks
8297 -- based on the position values (e.g. overlap checks) until freeze time
8298 -- because especially in Ada 2005 (machine scalar mode), the processing
8299 -- for non-standard bit order can substantially change the positions.
8300 -- See procedure Check_Record_Representation_Clause (called from Freeze)
8301 -- for the remainder of this processing.
8303 procedure Analyze_Record_Representation_Clause (N : Node_Id) is
8304 Ident : constant Node_Id := Identifier (N);
8305 Biased : Boolean;
8306 CC : Node_Id;
8307 Comp : Entity_Id;
8308 Fbit : Uint;
8309 Lbit : Uint;
8310 Ocomp : Entity_Id;
8311 Posit : Uint;
8312 Rectype : Entity_Id;
8313 Recdef : Node_Id;
8315 function Is_Inherited (Comp : Entity_Id) return Boolean;
8316 -- True if Comp is an inherited component in a record extension
8318 ------------------
8319 -- Is_Inherited --
8320 ------------------
8322 function Is_Inherited (Comp : Entity_Id) return Boolean is
8323 Comp_Base : Entity_Id;
8325 begin
8326 if Ekind (Rectype) = E_Record_Subtype then
8327 Comp_Base := Original_Record_Component (Comp);
8328 else
8329 Comp_Base := Comp;
8330 end if;
8332 return Comp_Base /= Original_Record_Component (Comp_Base);
8333 end Is_Inherited;
8335 -- Local variables
8337 Is_Record_Extension : Boolean;
8338 -- True if Rectype is a record extension
8340 CR_Pragma : Node_Id := Empty;
8341 -- Points to N_Pragma node if Complete_Representation pragma present
8343 -- Start of processing for Analyze_Record_Representation_Clause
8345 begin
8346 if Ignore_Rep_Clauses then
8347 Kill_Rep_Clause (N);
8348 return;
8349 end if;
8351 Find_Type (Ident);
8352 Rectype := Entity (Ident);
8354 if Rectype = Any_Type or else Rep_Item_Too_Early (Rectype, N) then
8355 return;
8356 else
8357 Rectype := Underlying_Type (Rectype);
8358 end if;
8360 -- First some basic error checks
8362 if not Is_Record_Type (Rectype) then
8363 Error_Msg_NE
8364 ("record type required, found}", Ident, First_Subtype (Rectype));
8365 return;
8367 elsif Scope (Rectype) /= Current_Scope then
8368 Error_Msg_N ("type must be declared in this scope", N);
8369 return;
8371 elsif not Is_First_Subtype (Rectype) then
8372 Error_Msg_N ("cannot give record rep clause for subtype", N);
8373 return;
8375 elsif Has_Record_Rep_Clause (Rectype) then
8376 Error_Msg_N ("duplicate record rep clause ignored", N);
8377 return;
8379 elsif Rep_Item_Too_Late (Rectype, N) then
8380 return;
8381 end if;
8383 -- We know we have a first subtype, now possibly go to the anonymous
8384 -- base type to determine whether Rectype is a record extension.
8386 Recdef := Type_Definition (Declaration_Node (Base_Type (Rectype)));
8387 Is_Record_Extension :=
8388 Nkind (Recdef) = N_Derived_Type_Definition
8389 and then Present (Record_Extension_Part (Recdef));
8391 if Present (Mod_Clause (N)) then
8392 declare
8393 M : constant Node_Id := Mod_Clause (N);
8394 P : constant List_Id := Pragmas_Before (M);
8395 Ignore : Uint;
8397 begin
8398 Check_Restriction (No_Obsolescent_Features, Mod_Clause (N));
8400 if Warn_On_Obsolescent_Feature then
8401 Error_Msg_N
8402 ("?j?mod clause is an obsolescent feature (RM J.8)", N);
8403 Error_Msg_N
8404 ("\?j?use alignment attribute definition clause instead", N);
8405 end if;
8407 if Present (P) then
8408 Analyze_List (P);
8409 end if;
8411 -- Get the alignment value to perform error checking
8413 Ignore := Get_Alignment_Value (Expression (M));
8414 end;
8415 end if;
8417 -- For untagged types, clear any existing component clauses for the
8418 -- type. If the type is derived, this is what allows us to override
8419 -- a rep clause for the parent. For type extensions, the representation
8420 -- of the inherited components is inherited, so we want to keep previous
8421 -- component clauses for completeness.
8423 if not Is_Tagged_Type (Rectype) then
8424 Comp := First_Component_Or_Discriminant (Rectype);
8425 while Present (Comp) loop
8426 Set_Component_Clause (Comp, Empty);
8427 Next_Component_Or_Discriminant (Comp);
8428 end loop;
8429 end if;
8431 -- All done if no component clauses
8433 CC := First (Component_Clauses (N));
8435 if No (CC) then
8436 return;
8437 end if;
8439 -- A representation like this applies to the base type
8441 Set_Has_Record_Rep_Clause (Base_Type (Rectype));
8442 Set_Has_Non_Standard_Rep (Base_Type (Rectype));
8443 Set_Has_Specified_Layout (Base_Type (Rectype));
8445 -- Process the component clauses
8447 while Present (CC) loop
8449 -- Pragma
8451 if Nkind (CC) = N_Pragma then
8452 Analyze (CC);
8454 -- The only pragma of interest is Complete_Representation
8456 if Pragma_Name (CC) = Name_Complete_Representation then
8457 CR_Pragma := CC;
8458 end if;
8460 -- Processing for real component clause
8462 else
8463 Posit := Static_Integer (Position (CC));
8464 Fbit := Static_Integer (First_Bit (CC));
8465 Lbit := Static_Integer (Last_Bit (CC));
8467 if Present (Posit)
8468 and then Present (Fbit)
8469 and then Present (Lbit)
8470 then
8471 if Posit < 0 then
8472 Error_Msg_N ("position cannot be negative", Position (CC));
8474 elsif Fbit < 0 then
8475 Error_Msg_N ("first bit cannot be negative", First_Bit (CC));
8477 -- The Last_Bit specified in a component clause must not be
8478 -- less than the First_Bit minus one (RM-13.5.1(10)).
8480 elsif Lbit < Fbit - 1 then
8481 Error_Msg_N
8482 ("last bit cannot be less than first bit minus one",
8483 Last_Bit (CC));
8485 -- Values look OK, so find the corresponding record component
8486 -- Even though the syntax allows an attribute reference for
8487 -- implementation-defined components, GNAT does not allow the
8488 -- tag to get an explicit position.
8490 elsif Nkind (Component_Name (CC)) = N_Attribute_Reference then
8491 if Attribute_Name (Component_Name (CC)) = Name_Tag then
8492 Error_Msg_N ("position of tag cannot be specified", CC);
8493 else
8494 Error_Msg_N ("illegal component name", CC);
8495 end if;
8497 else
8498 Comp := First_Entity (Rectype);
8499 while Present (Comp) loop
8500 exit when Chars (Comp) = Chars (Component_Name (CC));
8501 Next_Entity (Comp);
8502 end loop;
8504 if No (Comp) then
8506 -- Maybe component of base type that is absent from
8507 -- statically constrained first subtype.
8509 Comp := First_Entity (Base_Type (Rectype));
8510 while Present (Comp) loop
8511 exit when Chars (Comp) = Chars (Component_Name (CC));
8512 Next_Entity (Comp);
8513 end loop;
8514 end if;
8516 if No (Comp) then
8517 Error_Msg_N
8518 ("component clause is for non-existent field", CC);
8520 -- Ada 2012 (AI05-0026): Any name that denotes a
8521 -- discriminant of an object of an unchecked union type
8522 -- shall not occur within a record_representation_clause.
8524 -- The general restriction of using record rep clauses on
8525 -- Unchecked_Union types has now been lifted. Since it is
8526 -- possible to introduce a record rep clause which mentions
8527 -- the discriminant of an Unchecked_Union in non-Ada 2012
8528 -- code, this check is applied to all versions of the
8529 -- language.
8531 elsif Ekind (Comp) = E_Discriminant
8532 and then Is_Unchecked_Union (Rectype)
8533 then
8534 Error_Msg_N
8535 ("cannot reference discriminant of unchecked union",
8536 Component_Name (CC));
8538 elsif Is_Record_Extension and then Is_Inherited (Comp) then
8539 Error_Msg_NE
8540 ("component clause not allowed for inherited "
8541 & "component&", CC, Comp);
8543 elsif Present (Component_Clause (Comp)) then
8545 -- Diagnose duplicate rep clause, or check consistency
8546 -- if this is an inherited component. In a double fault,
8547 -- there may be a duplicate inconsistent clause for an
8548 -- inherited component.
8550 if Scope (Original_Record_Component (Comp)) = Rectype
8551 or else Parent (Component_Clause (Comp)) = N
8552 then
8553 Error_Msg_Sloc := Sloc (Component_Clause (Comp));
8554 Error_Msg_N ("component clause previously given#", CC);
8556 else
8557 declare
8558 Rep1 : constant Node_Id := Component_Clause (Comp);
8559 begin
8560 if Intval (Position (Rep1)) /=
8561 Intval (Position (CC))
8562 or else Intval (First_Bit (Rep1)) /=
8563 Intval (First_Bit (CC))
8564 or else Intval (Last_Bit (Rep1)) /=
8565 Intval (Last_Bit (CC))
8566 then
8567 Error_Msg_N
8568 ("component clause inconsistent with "
8569 & "representation of ancestor", CC);
8571 elsif Warn_On_Redundant_Constructs then
8572 Error_Msg_N
8573 ("?r?redundant confirming component clause "
8574 & "for component!", CC);
8575 end if;
8576 end;
8577 end if;
8579 -- Normal case where this is the first component clause we
8580 -- have seen for this entity, so set it up properly.
8582 else
8583 -- Make reference for field in record rep clause and set
8584 -- appropriate entity field in the field identifier.
8586 Generate_Reference
8587 (Comp, Component_Name (CC), Set_Ref => False);
8588 Set_Entity_With_Checks (Component_Name (CC), Comp);
8590 -- Update Fbit and Lbit to the actual bit number
8592 Fbit := Fbit + UI_From_Int (SSU) * Posit;
8593 Lbit := Lbit + UI_From_Int (SSU) * Posit;
8595 if Has_Size_Clause (Rectype)
8596 and then RM_Size (Rectype) <= Lbit
8597 then
8598 Error_Msg_Uint_1 := RM_Size (Rectype);
8599 Error_Msg_Uint_2 := Lbit + 1;
8600 Error_Msg_N ("bit number out of range of specified "
8601 & "size (expected ^, got ^)",
8602 Last_Bit (CC));
8603 else
8604 Set_Component_Clause (Comp, CC);
8605 Set_Component_Bit_Offset (Comp, Fbit);
8606 Set_Esize (Comp, 1 + (Lbit - Fbit));
8607 Set_Normalized_First_Bit (Comp, Fbit mod SSU);
8608 Set_Normalized_Position (Comp, Fbit / SSU);
8610 if Warn_On_Overridden_Size
8611 and then Has_Size_Clause (Etype (Comp))
8612 and then RM_Size (Etype (Comp)) /= Esize (Comp)
8613 then
8614 Error_Msg_NE
8615 ("?.s?component size overrides size clause for&",
8616 Component_Name (CC), Etype (Comp));
8617 end if;
8619 Check_Size
8620 (Component_Name (CC),
8621 Etype (Comp),
8622 Esize (Comp),
8623 Biased);
8625 Set_Biased
8626 (Comp, First_Node (CC), "component clause", Biased);
8628 -- This information is also set in the corresponding
8629 -- component of the base type, found by accessing the
8630 -- Original_Record_Component link if it is present.
8632 Ocomp := Original_Record_Component (Comp);
8634 if Present (Ocomp) and then Ocomp /= Comp then
8635 Set_Component_Clause (Ocomp, CC);
8636 Set_Component_Bit_Offset (Ocomp, Fbit);
8637 Set_Esize (Ocomp, 1 + (Lbit - Fbit));
8638 Set_Normalized_First_Bit (Ocomp, Fbit mod SSU);
8639 Set_Normalized_Position (Ocomp, Fbit / SSU);
8641 -- Note: we don't use Set_Biased here, because we
8642 -- already gave a warning above if needed, and we
8643 -- would get a duplicate for the same name here.
8645 Set_Has_Biased_Representation
8646 (Ocomp, Has_Biased_Representation (Comp));
8647 end if;
8649 if Esize (Comp) < 0 then
8650 Error_Msg_N ("component size is negative", CC);
8651 end if;
8652 end if;
8653 end if;
8654 end if;
8655 end if;
8656 end if;
8658 Next (CC);
8659 end loop;
8661 -- Check missing components if Complete_Representation pragma appeared
8663 if Present (CR_Pragma) then
8664 Comp := First_Component_Or_Discriminant (Rectype);
8665 while Present (Comp) loop
8666 if No (Component_Clause (Comp)) then
8667 Error_Msg_NE
8668 ("missing component clause for &", CR_Pragma, Comp);
8669 end if;
8671 Next_Component_Or_Discriminant (Comp);
8672 end loop;
8674 -- Give missing components warning if required
8676 elsif Warn_On_Unrepped_Components then
8677 declare
8678 Num_Repped_Components : Nat := 0;
8679 Num_Unrepped_Components : Nat := 0;
8681 begin
8682 -- First count number of repped and unrepped components
8684 Comp := First_Component_Or_Discriminant (Rectype);
8685 while Present (Comp) loop
8686 if Present (Component_Clause (Comp)) then
8687 Num_Repped_Components := Num_Repped_Components + 1;
8688 else
8689 Num_Unrepped_Components := Num_Unrepped_Components + 1;
8690 end if;
8692 Next_Component_Or_Discriminant (Comp);
8693 end loop;
8695 -- We are only interested in the case where there is at least one
8696 -- unrepped component, and at least half the components have rep
8697 -- clauses. We figure that if less than half have them, then the
8698 -- partial rep clause is really intentional. If the component
8699 -- type has no underlying type set at this point (as for a generic
8700 -- formal type), we don't know enough to give a warning on the
8701 -- component.
8703 if Num_Unrepped_Components > 0
8704 and then Num_Unrepped_Components < Num_Repped_Components
8705 then
8706 Comp := First_Component_Or_Discriminant (Rectype);
8707 while Present (Comp) loop
8708 if No (Component_Clause (Comp))
8709 and then Comes_From_Source (Comp)
8710 and then Present (Underlying_Type (Etype (Comp)))
8711 and then (Is_Scalar_Type (Underlying_Type (Etype (Comp)))
8712 or else Size_Known_At_Compile_Time
8713 (Underlying_Type (Etype (Comp))))
8714 and then not Has_Warnings_Off (Rectype)
8716 -- Ignore discriminant in unchecked union, since it is
8717 -- not there, and cannot have a component clause.
8719 and then (not Is_Unchecked_Union (Rectype)
8720 or else Ekind (Comp) /= E_Discriminant)
8721 then
8722 Error_Msg_Sloc := Sloc (Comp);
8723 Error_Msg_NE
8724 ("?.c?no component clause given for & declared #",
8725 N, Comp);
8726 end if;
8728 Next_Component_Or_Discriminant (Comp);
8729 end loop;
8730 end if;
8731 end;
8732 end if;
8733 end Analyze_Record_Representation_Clause;
8735 -------------------------------------
8736 -- Build_Discrete_Static_Predicate --
8737 -------------------------------------
8739 procedure Build_Discrete_Static_Predicate
8740 (Typ : Entity_Id;
8741 Expr : Node_Id;
8742 Nam : Name_Id)
8744 Loc : constant Source_Ptr := Sloc (Expr);
8746 Btyp : constant Entity_Id := Base_Type (Typ);
8748 BLo : constant Uint := Expr_Value (Type_Low_Bound (Btyp));
8749 BHi : constant Uint := Expr_Value (Type_High_Bound (Btyp));
8750 -- Low bound and high bound value of base type of Typ
8752 TLo : Uint;
8753 THi : Uint;
8754 -- Bounds for constructing the static predicate. We use the bound of the
8755 -- subtype if it is static, otherwise the corresponding base type bound.
8756 -- Note: a non-static subtype can have a static predicate.
8758 type REnt is record
8759 Lo, Hi : Uint;
8760 end record;
8761 -- One entry in a Rlist value, a single REnt (range entry) value denotes
8762 -- one range from Lo to Hi. To represent a single value range Lo = Hi =
8763 -- value.
8765 type RList is array (Nat range <>) of REnt;
8766 -- A list of ranges. The ranges are sorted in increasing order, and are
8767 -- disjoint (there is a gap of at least one value between each range in
8768 -- the table). A value is in the set of ranges in Rlist if it lies
8769 -- within one of these ranges.
8771 False_Range : constant RList :=
8772 RList'(1 .. 0 => REnt'(No_Uint, No_Uint));
8773 -- An empty set of ranges represents a range list that can never be
8774 -- satisfied, since there are no ranges in which the value could lie,
8775 -- so it does not lie in any of them. False_Range is a canonical value
8776 -- for this empty set, but general processing should test for an Rlist
8777 -- with length zero (see Is_False predicate), since other null ranges
8778 -- may appear which must be treated as False.
8780 True_Range : constant RList := RList'(1 => REnt'(BLo, BHi));
8781 -- Range representing True, value must be in the base range
8783 function "and" (Left : RList; Right : RList) return RList;
8784 -- And's together two range lists, returning a range list. This is a set
8785 -- intersection operation.
8787 function "or" (Left : RList; Right : RList) return RList;
8788 -- Or's together two range lists, returning a range list. This is a set
8789 -- union operation.
8791 function "not" (Right : RList) return RList;
8792 -- Returns complement of a given range list, i.e. a range list
8793 -- representing all the values in TLo .. THi that are not in the input
8794 -- operand Right.
8796 function Build_Val (V : Uint) return Node_Id;
8797 -- Return an analyzed N_Identifier node referencing this value, suitable
8798 -- for use as an entry in the Static_Discrete_Predicate list. This node
8799 -- is typed with the base type.
8801 function Build_Range (Lo : Uint; Hi : Uint) return Node_Id;
8802 -- Return an analyzed N_Range node referencing this range, suitable for
8803 -- use as an entry in the Static_Discrete_Predicate list. This node is
8804 -- typed with the base type.
8806 function Get_RList
8807 (Exp : Node_Id;
8808 Static : access Boolean) return RList;
8809 -- This is a recursive routine that converts the given expression into a
8810 -- list of ranges, suitable for use in building the static predicate.
8811 -- Static.all will be set to False if the expression is found to be non
8812 -- static. Note that Static.all should be set to True by the caller.
8814 function Is_False (R : RList) return Boolean;
8815 pragma Inline (Is_False);
8816 -- Returns True if the given range list is empty, and thus represents a
8817 -- False list of ranges that can never be satisfied.
8819 function Is_True (R : RList) return Boolean;
8820 -- Returns True if R trivially represents the True predicate by having a
8821 -- single range from BLo to BHi.
8823 function Is_Type_Ref (N : Node_Id) return Boolean;
8824 pragma Inline (Is_Type_Ref);
8825 -- Returns if True if N is a reference to the type for the predicate in
8826 -- the expression (i.e. if it is an identifier whose Chars field matches
8827 -- the Nam given in the call). N must not be parenthesized, if the type
8828 -- name appears in parens, this routine will return False.
8830 function Lo_Val (N : Node_Id) return Uint;
8831 -- Given an entry from a Static_Discrete_Predicate list that is either
8832 -- a static expression or static range, gets either the expression value
8833 -- or the low bound of the range.
8835 function Hi_Val (N : Node_Id) return Uint;
8836 -- Given an entry from a Static_Discrete_Predicate list that is either
8837 -- a static expression or static range, gets either the expression value
8838 -- or the high bound of the range.
8840 function Membership_Entry
8841 (N : Node_Id; Static : access Boolean) return RList;
8842 -- Given a single membership entry (range, value, or subtype), returns
8843 -- the corresponding range list. Set Static.all to False if not static.
8845 function Membership_Entries
8846 (N : Node_Id; Static : access Boolean) return RList;
8847 -- Given an element on an alternatives list of a membership operation,
8848 -- returns the range list corresponding to this entry and all following
8849 -- entries (i.e. returns the "or" of this list of values).
8850 -- Set Static.all to False if not static.
8852 function Stat_Pred
8853 (Typ : Entity_Id;
8854 Static : access Boolean) return RList;
8855 -- Given a type, if it has a static predicate, then set Result to the
8856 -- predicate as a range list, otherwise set Static.all to False.
8858 -----------
8859 -- "and" --
8860 -----------
8862 function "and" (Left : RList; Right : RList) return RList is
8863 FEnt : REnt;
8864 -- First range of result
8866 SLeft : Nat := Left'First;
8867 -- Start of rest of left entries
8869 SRight : Nat := Right'First;
8870 -- Start of rest of right entries
8872 begin
8873 -- If either range is True, return the other
8875 if Is_True (Left) then
8876 return Right;
8877 elsif Is_True (Right) then
8878 return Left;
8879 end if;
8881 -- If either range is False, return False
8883 if Is_False (Left) or else Is_False (Right) then
8884 return False_Range;
8885 end if;
8887 -- Loop to remove entries at start that are disjoint, and thus just
8888 -- get discarded from the result entirely.
8890 loop
8891 -- If no operands left in either operand, result is false
8893 if SLeft > Left'Last or else SRight > Right'Last then
8894 return False_Range;
8896 -- Discard first left operand entry if disjoint with right
8898 elsif Left (SLeft).Hi < Right (SRight).Lo then
8899 SLeft := SLeft + 1;
8901 -- Discard first right operand entry if disjoint with left
8903 elsif Right (SRight).Hi < Left (SLeft).Lo then
8904 SRight := SRight + 1;
8906 -- Otherwise we have an overlapping entry
8908 else
8909 exit;
8910 end if;
8911 end loop;
8913 -- Now we have two non-null operands, and first entries overlap. The
8914 -- first entry in the result will be the overlapping part of these
8915 -- two entries.
8917 FEnt := REnt'(Lo => UI_Max (Left (SLeft).Lo, Right (SRight).Lo),
8918 Hi => UI_Min (Left (SLeft).Hi, Right (SRight).Hi));
8920 -- Now we can remove the entry that ended at a lower value, since its
8921 -- contribution is entirely contained in Fent.
8923 if Left (SLeft).Hi <= Right (SRight).Hi then
8924 SLeft := SLeft + 1;
8925 else
8926 SRight := SRight + 1;
8927 end if;
8929 -- Compute result by concatenating this first entry with the "and" of
8930 -- the remaining parts of the left and right operands. Note that if
8931 -- either of these is empty, "and" will yield empty, so that we will
8932 -- end up with just Fent, which is what we want in that case.
8934 return
8935 FEnt & (Left (SLeft .. Left'Last) and Right (SRight .. Right'Last));
8936 end "and";
8938 -----------
8939 -- "not" --
8940 -----------
8942 function "not" (Right : RList) return RList is
8943 begin
8944 -- Return True if False range
8946 if Is_False (Right) then
8947 return True_Range;
8948 end if;
8950 -- Return False if True range
8952 if Is_True (Right) then
8953 return False_Range;
8954 end if;
8956 -- Here if not trivial case
8958 declare
8959 Result : RList (1 .. Right'Length + 1);
8960 -- May need one more entry for gap at beginning and end
8962 Count : Nat := 0;
8963 -- Number of entries stored in Result
8965 begin
8966 -- Gap at start
8968 if Right (Right'First).Lo > TLo then
8969 Count := Count + 1;
8970 Result (Count) := REnt'(TLo, Right (Right'First).Lo - 1);
8971 end if;
8973 -- Gaps between ranges
8975 for J in Right'First .. Right'Last - 1 loop
8976 Count := Count + 1;
8977 Result (Count) := REnt'(Right (J).Hi + 1, Right (J + 1).Lo - 1);
8978 end loop;
8980 -- Gap at end
8982 if Right (Right'Last).Hi < THi then
8983 Count := Count + 1;
8984 Result (Count) := REnt'(Right (Right'Last).Hi + 1, THi);
8985 end if;
8987 return Result (1 .. Count);
8988 end;
8989 end "not";
8991 ----------
8992 -- "or" --
8993 ----------
8995 function "or" (Left : RList; Right : RList) return RList is
8996 FEnt : REnt;
8997 -- First range of result
8999 SLeft : Nat := Left'First;
9000 -- Start of rest of left entries
9002 SRight : Nat := Right'First;
9003 -- Start of rest of right entries
9005 begin
9006 -- If either range is True, return True
9008 if Is_True (Left) or else Is_True (Right) then
9009 return True_Range;
9010 end if;
9012 -- If either range is False (empty), return the other
9014 if Is_False (Left) then
9015 return Right;
9016 elsif Is_False (Right) then
9017 return Left;
9018 end if;
9020 -- Initialize result first entry from left or right operand depending
9021 -- on which starts with the lower range.
9023 if Left (SLeft).Lo < Right (SRight).Lo then
9024 FEnt := Left (SLeft);
9025 SLeft := SLeft + 1;
9026 else
9027 FEnt := Right (SRight);
9028 SRight := SRight + 1;
9029 end if;
9031 -- This loop eats ranges from left and right operands that are
9032 -- contiguous with the first range we are gathering.
9034 loop
9035 -- Eat first entry in left operand if contiguous or overlapped by
9036 -- gathered first operand of result.
9038 if SLeft <= Left'Last
9039 and then Left (SLeft).Lo <= FEnt.Hi + 1
9040 then
9041 FEnt.Hi := UI_Max (FEnt.Hi, Left (SLeft).Hi);
9042 SLeft := SLeft + 1;
9044 -- Eat first entry in right operand if contiguous or overlapped by
9045 -- gathered right operand of result.
9047 elsif SRight <= Right'Last
9048 and then Right (SRight).Lo <= FEnt.Hi + 1
9049 then
9050 FEnt.Hi := UI_Max (FEnt.Hi, Right (SRight).Hi);
9051 SRight := SRight + 1;
9053 -- All done if no more entries to eat
9055 else
9056 exit;
9057 end if;
9058 end loop;
9060 -- Obtain result as the first entry we just computed, concatenated
9061 -- to the "or" of the remaining results (if one operand is empty,
9062 -- this will just concatenate with the other
9064 return
9065 FEnt & (Left (SLeft .. Left'Last) or Right (SRight .. Right'Last));
9066 end "or";
9068 -----------------
9069 -- Build_Range --
9070 -----------------
9072 function Build_Range (Lo : Uint; Hi : Uint) return Node_Id is
9073 Result : Node_Id;
9074 begin
9075 Result :=
9076 Make_Range (Loc,
9077 Low_Bound => Build_Val (Lo),
9078 High_Bound => Build_Val (Hi));
9079 Set_Etype (Result, Btyp);
9080 Set_Analyzed (Result);
9081 return Result;
9082 end Build_Range;
9084 ---------------
9085 -- Build_Val --
9086 ---------------
9088 function Build_Val (V : Uint) return Node_Id is
9089 Result : Node_Id;
9091 begin
9092 if Is_Enumeration_Type (Typ) then
9093 Result := Get_Enum_Lit_From_Pos (Typ, V, Loc);
9094 else
9095 Result := Make_Integer_Literal (Loc, V);
9096 end if;
9098 Set_Etype (Result, Btyp);
9099 Set_Is_Static_Expression (Result);
9100 Set_Analyzed (Result);
9101 return Result;
9102 end Build_Val;
9104 ---------------
9105 -- Get_RList --
9106 ---------------
9108 function Get_RList
9109 (Exp : Node_Id;
9110 Static : access Boolean) return RList
9112 Op : Node_Kind;
9113 Val : Uint;
9115 begin
9116 -- Static expression can only be true or false
9118 if Is_OK_Static_Expression (Exp) then
9119 if Expr_Value (Exp) = 0 then
9120 return False_Range;
9121 else
9122 return True_Range;
9123 end if;
9124 end if;
9126 -- Otherwise test node type
9128 Op := Nkind (Exp);
9130 case Op is
9132 -- And
9134 when N_And_Then
9135 | N_Op_And
9137 return Get_RList (Left_Opnd (Exp), Static)
9139 Get_RList (Right_Opnd (Exp), Static);
9141 -- Or
9143 when N_Op_Or
9144 | N_Or_Else
9146 return Get_RList (Left_Opnd (Exp), Static)
9148 Get_RList (Right_Opnd (Exp), Static);
9150 -- Not
9152 when N_Op_Not =>
9153 return not Get_RList (Right_Opnd (Exp), Static);
9155 -- Comparisons of type with static value
9157 when N_Op_Compare =>
9159 -- Type is left operand
9161 if Is_Type_Ref (Left_Opnd (Exp))
9162 and then Is_OK_Static_Expression (Right_Opnd (Exp))
9163 then
9164 Val := Expr_Value (Right_Opnd (Exp));
9166 -- Typ is right operand
9168 elsif Is_Type_Ref (Right_Opnd (Exp))
9169 and then Is_OK_Static_Expression (Left_Opnd (Exp))
9170 then
9171 Val := Expr_Value (Left_Opnd (Exp));
9173 -- Invert sense of comparison
9175 case Op is
9176 when N_Op_Gt => Op := N_Op_Lt;
9177 when N_Op_Lt => Op := N_Op_Gt;
9178 when N_Op_Ge => Op := N_Op_Le;
9179 when N_Op_Le => Op := N_Op_Ge;
9180 when others => null;
9181 end case;
9183 -- Other cases are non-static
9185 else
9186 Static.all := False;
9187 return False_Range;
9188 end if;
9190 -- Construct range according to comparison operation
9192 case Op is
9193 when N_Op_Eq =>
9194 return RList'(1 => REnt'(Val, Val));
9196 when N_Op_Ge =>
9197 return RList'(1 => REnt'(Val, BHi));
9199 when N_Op_Gt =>
9200 return RList'(1 => REnt'(Val + 1, BHi));
9202 when N_Op_Le =>
9203 return RList'(1 => REnt'(BLo, Val));
9205 when N_Op_Lt =>
9206 return RList'(1 => REnt'(BLo, Val - 1));
9208 when N_Op_Ne =>
9209 return RList'(REnt'(BLo, Val - 1), REnt'(Val + 1, BHi));
9211 when others =>
9212 raise Program_Error;
9213 end case;
9215 -- Membership (IN)
9217 when N_In =>
9218 if not Is_Type_Ref (Left_Opnd (Exp)) then
9219 Static.all := False;
9220 return False_Range;
9221 end if;
9223 if Present (Right_Opnd (Exp)) then
9224 return Membership_Entry (Right_Opnd (Exp), Static);
9225 else
9226 return Membership_Entries
9227 (First (Alternatives (Exp)), Static);
9228 end if;
9230 -- Negative membership (NOT IN)
9232 when N_Not_In =>
9233 if not Is_Type_Ref (Left_Opnd (Exp)) then
9234 Static.all := False;
9235 return False_Range;
9236 end if;
9238 if Present (Right_Opnd (Exp)) then
9239 return not Membership_Entry (Right_Opnd (Exp), Static);
9240 else
9241 return not Membership_Entries
9242 (First (Alternatives (Exp)), Static);
9243 end if;
9245 -- Function call, may be call to static predicate
9247 when N_Function_Call =>
9248 if Is_Entity_Name (Name (Exp)) then
9249 declare
9250 Ent : constant Entity_Id := Entity (Name (Exp));
9251 begin
9252 if Is_Predicate_Function (Ent) then
9253 return Stat_Pred (Etype (First_Formal (Ent)), Static);
9254 end if;
9255 end;
9256 end if;
9258 -- Other function call cases are non-static
9260 Static.all := False;
9261 return False_Range;
9263 -- Qualified expression, dig out the expression
9265 when N_Qualified_Expression =>
9266 return Get_RList (Expression (Exp), Static);
9268 when N_Case_Expression =>
9269 declare
9270 Alt : Node_Id;
9271 Choices : List_Id;
9272 Dep : Node_Id;
9274 begin
9275 if not Is_Entity_Name (Expression (Expr))
9276 or else Etype (Expression (Expr)) /= Typ
9277 then
9278 Error_Msg_N
9279 ("expression must denote subtype", Expression (Expr));
9280 return False_Range;
9281 end if;
9283 -- Collect discrete choices in all True alternatives
9285 Choices := New_List;
9286 Alt := First (Alternatives (Exp));
9287 while Present (Alt) loop
9288 Dep := Expression (Alt);
9290 if not Is_OK_Static_Expression (Dep) then
9291 Static.all := False;
9292 return False_Range;
9294 elsif Is_True (Expr_Value (Dep)) then
9295 Append_List_To (Choices,
9296 New_Copy_List (Discrete_Choices (Alt)));
9297 end if;
9299 Next (Alt);
9300 end loop;
9302 return Membership_Entries (First (Choices), Static);
9303 end;
9305 -- Expression with actions: if no actions, dig out expression
9307 when N_Expression_With_Actions =>
9308 if Is_Empty_List (Actions (Exp)) then
9309 return Get_RList (Expression (Exp), Static);
9310 else
9311 Static.all := False;
9312 return False_Range;
9313 end if;
9315 -- Xor operator
9317 when N_Op_Xor =>
9318 return (Get_RList (Left_Opnd (Exp), Static)
9319 and not Get_RList (Right_Opnd (Exp), Static))
9320 or (Get_RList (Right_Opnd (Exp), Static)
9321 and not Get_RList (Left_Opnd (Exp), Static));
9323 -- Any other node type is non-static
9325 when others =>
9326 Static.all := False;
9327 return False_Range;
9328 end case;
9329 end Get_RList;
9331 ------------
9332 -- Hi_Val --
9333 ------------
9335 function Hi_Val (N : Node_Id) return Uint is
9336 begin
9337 if Is_OK_Static_Expression (N) then
9338 return Expr_Value (N);
9339 else
9340 pragma Assert (Nkind (N) = N_Range);
9341 return Expr_Value (High_Bound (N));
9342 end if;
9343 end Hi_Val;
9345 --------------
9346 -- Is_False --
9347 --------------
9349 function Is_False (R : RList) return Boolean is
9350 begin
9351 return R'Length = 0;
9352 end Is_False;
9354 -------------
9355 -- Is_True --
9356 -------------
9358 function Is_True (R : RList) return Boolean is
9359 begin
9360 return R'Length = 1
9361 and then R (R'First).Lo = BLo
9362 and then R (R'First).Hi = BHi;
9363 end Is_True;
9365 -----------------
9366 -- Is_Type_Ref --
9367 -----------------
9369 function Is_Type_Ref (N : Node_Id) return Boolean is
9370 begin
9371 return Nkind (N) = N_Identifier
9372 and then Chars (N) = Nam
9373 and then Paren_Count (N) = 0;
9374 end Is_Type_Ref;
9376 ------------
9377 -- Lo_Val --
9378 ------------
9380 function Lo_Val (N : Node_Id) return Uint is
9381 begin
9382 if Is_OK_Static_Expression (N) then
9383 return Expr_Value (N);
9384 else
9385 pragma Assert (Nkind (N) = N_Range);
9386 return Expr_Value (Low_Bound (N));
9387 end if;
9388 end Lo_Val;
9390 ------------------------
9391 -- Membership_Entries --
9392 ------------------------
9394 function Membership_Entries
9395 (N : Node_Id; Static : access Boolean) return RList is
9396 begin
9397 if No (Next (N)) then
9398 return Membership_Entry (N, Static);
9399 else
9400 return Membership_Entry (N, Static)
9401 or Membership_Entries (Next (N), Static);
9402 end if;
9403 end Membership_Entries;
9405 ----------------------
9406 -- Membership_Entry --
9407 ----------------------
9409 function Membership_Entry
9410 (N : Node_Id; Static : access Boolean) return RList
9412 Val : Uint;
9413 SLo : Uint;
9414 SHi : Uint;
9416 begin
9417 -- Range case
9419 if Nkind (N) = N_Range then
9420 if not Is_OK_Static_Expression (Low_Bound (N))
9421 or else
9422 not Is_OK_Static_Expression (High_Bound (N))
9423 then
9424 Static.all := False;
9425 return False_Range;
9426 else
9427 SLo := Expr_Value (Low_Bound (N));
9428 SHi := Expr_Value (High_Bound (N));
9429 return RList'(1 => REnt'(SLo, SHi));
9430 end if;
9432 -- Others case
9434 elsif Nkind (N) = N_Others_Choice then
9435 declare
9436 Choices : constant List_Id := Others_Discrete_Choices (N);
9437 Choice : Node_Id;
9438 Range_List : RList (1 .. List_Length (Choices));
9440 begin
9441 Choice := First (Choices);
9443 for J in Range_List'Range loop
9444 Range_List (J) := REnt'(Lo_Val (Choice), Hi_Val (Choice));
9445 Next (Choice);
9446 end loop;
9448 return Range_List;
9449 end;
9451 -- Static expression case
9453 elsif Is_OK_Static_Expression (N) then
9454 Val := Expr_Value (N);
9455 return RList'(1 => REnt'(Val, Val));
9457 -- Identifier (other than static expression) case
9459 else pragma Assert (Nkind (N) in N_Expanded_Name | N_Identifier);
9461 -- Type case
9463 if Is_Type (Entity (N)) then
9465 -- If type has predicates, process them
9467 if Has_Predicates (Entity (N)) then
9468 return Stat_Pred (Entity (N), Static);
9470 -- For static subtype without predicates, get range
9472 elsif Is_OK_Static_Subtype (Entity (N)) then
9473 SLo := Expr_Value (Type_Low_Bound (Entity (N)));
9474 SHi := Expr_Value (Type_High_Bound (Entity (N)));
9475 return RList'(1 => REnt'(SLo, SHi));
9477 -- Any other type makes us non-static
9479 else
9480 Static.all := False;
9481 return False_Range;
9482 end if;
9484 -- Any other kind of identifier in predicate (e.g. a non-static
9485 -- expression value) means this is not a static predicate.
9487 else
9488 Static.all := False;
9489 return False_Range;
9490 end if;
9491 end if;
9492 end Membership_Entry;
9494 ---------------
9495 -- Stat_Pred --
9496 ---------------
9498 function Stat_Pred
9499 (Typ : Entity_Id;
9500 Static : access Boolean) return RList is
9501 begin
9502 -- Not static if type does not have static predicates
9504 if not Has_Static_Predicate (Typ) then
9505 Static.all := False;
9506 return False_Range;
9507 end if;
9509 -- Otherwise we convert the predicate list to a range list
9511 declare
9512 Spred : constant List_Id := Static_Discrete_Predicate (Typ);
9513 Result : RList (1 .. List_Length (Spred));
9514 P : Node_Id;
9516 begin
9517 P := First (Static_Discrete_Predicate (Typ));
9518 for J in Result'Range loop
9519 Result (J) := REnt'(Lo_Val (P), Hi_Val (P));
9520 Next (P);
9521 end loop;
9523 return Result;
9524 end;
9525 end Stat_Pred;
9527 -- Start of processing for Build_Discrete_Static_Predicate
9529 begin
9530 -- Establish bounds for the predicate
9532 if Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
9533 TLo := Expr_Value (Type_Low_Bound (Typ));
9534 else
9535 TLo := BLo;
9536 end if;
9538 if Compile_Time_Known_Value (Type_High_Bound (Typ)) then
9539 THi := Expr_Value (Type_High_Bound (Typ));
9540 else
9541 THi := BHi;
9542 end if;
9544 -- Analyze the expression to see if it is a static predicate
9546 declare
9547 Static : aliased Boolean := True;
9548 Ranges : constant RList := Get_RList (Expr, Static'Access);
9549 -- Range list from expression if it is static
9551 Plist : List_Id;
9553 begin
9554 -- If non-static, return doing nothing
9556 if not Static then
9557 return;
9558 end if;
9560 -- Convert range list into a form for the static predicate. In the
9561 -- Ranges array, we just have raw ranges, these must be converted
9562 -- to properly typed and analyzed static expressions or range nodes.
9564 -- Note: here we limit ranges to the ranges of the subtype, so that
9565 -- a predicate is always false for values outside the subtype. That
9566 -- seems fine, such values are invalid anyway, and considering them
9567 -- to fail the predicate seems allowed and friendly, and furthermore
9568 -- simplifies processing for case statements and loops.
9570 Plist := New_List;
9572 for J in Ranges'Range loop
9573 declare
9574 Lo : Uint := Ranges (J).Lo;
9575 Hi : Uint := Ranges (J).Hi;
9577 begin
9578 -- Ignore completely out of range entry
9580 if Hi < TLo or else Lo > THi then
9581 null;
9583 -- Otherwise process entry
9585 else
9586 -- Adjust out of range value to subtype range
9588 if Lo < TLo then
9589 Lo := TLo;
9590 end if;
9592 if Hi > THi then
9593 Hi := THi;
9594 end if;
9596 -- Convert range into required form
9598 Append_To (Plist, Build_Range (Lo, Hi));
9599 end if;
9600 end;
9601 end loop;
9603 -- Processing was successful and all entries were static, so now we
9604 -- can store the result as the predicate list.
9606 Set_Static_Discrete_Predicate (Typ, Plist);
9608 -- Within a generic the predicate functions themselves need not
9609 -- be constructed.
9611 if Inside_A_Generic then
9612 return;
9613 end if;
9615 -- The processing for static predicates put the expression into
9616 -- canonical form as a series of ranges. It also eliminated
9617 -- duplicates and collapsed and combined ranges. We might as well
9618 -- replace the alternatives list of the right operand of the
9619 -- membership test with the static predicate list, which will
9620 -- usually be more efficient.
9622 declare
9623 New_Alts : constant List_Id := New_List;
9624 Old_Node : Node_Id;
9625 New_Node : Node_Id;
9627 begin
9628 Old_Node := First (Plist);
9629 while Present (Old_Node) loop
9630 New_Node := New_Copy (Old_Node);
9632 if Nkind (New_Node) = N_Range then
9633 Set_Low_Bound (New_Node, New_Copy (Low_Bound (Old_Node)));
9634 Set_High_Bound (New_Node, New_Copy (High_Bound (Old_Node)));
9635 end if;
9637 Append_To (New_Alts, New_Node);
9638 Next (Old_Node);
9639 end loop;
9641 -- If empty list, replace by False
9643 if Is_Empty_List (New_Alts) then
9644 Rewrite (Expr, New_Occurrence_Of (Standard_False, Loc));
9646 -- Else replace by set membership test
9648 else
9649 Rewrite (Expr,
9650 Make_In (Loc,
9651 Left_Opnd => Make_Identifier (Loc, Nam),
9652 Right_Opnd => Empty,
9653 Alternatives => New_Alts));
9655 -- Resolve new expression in function context
9657 Install_Formals (Predicate_Function (Typ));
9658 Push_Scope (Predicate_Function (Typ));
9659 Analyze_And_Resolve (Expr, Standard_Boolean);
9660 Pop_Scope;
9661 end if;
9662 end;
9663 end;
9664 end Build_Discrete_Static_Predicate;
9666 --------------------------------
9667 -- Build_Export_Import_Pragma --
9668 --------------------------------
9670 function Build_Export_Import_Pragma
9671 (Asp : Node_Id;
9672 Id : Entity_Id) return Node_Id
9674 Asp_Id : constant Aspect_Id := Get_Aspect_Id (Asp);
9675 Expr : constant Node_Id := Expression (Asp);
9676 Loc : constant Source_Ptr := Sloc (Asp);
9678 Args : List_Id;
9679 Conv : Node_Id;
9680 Conv_Arg : Node_Id;
9681 Dummy_1 : Node_Id;
9682 Dummy_2 : Node_Id;
9683 EN : Node_Id;
9684 LN : Node_Id;
9685 Prag : Node_Id;
9687 Create_Pragma : Boolean := False;
9688 -- This flag is set when the aspect form is such that it warrants the
9689 -- creation of a corresponding pragma.
9691 begin
9692 if Present (Expr) then
9693 if Error_Posted (Expr) then
9694 null;
9696 elsif Is_True (Expr_Value (Expr)) then
9697 Create_Pragma := True;
9698 end if;
9700 -- Otherwise the aspect defaults to True
9702 else
9703 Create_Pragma := True;
9704 end if;
9706 -- Nothing to do when the expression is False or is erroneous
9708 if not Create_Pragma then
9709 return Empty;
9710 end if;
9712 -- Obtain all interfacing aspects that apply to the related entity
9714 Get_Interfacing_Aspects
9715 (Iface_Asp => Asp,
9716 Conv_Asp => Conv,
9717 EN_Asp => EN,
9718 Expo_Asp => Dummy_1,
9719 Imp_Asp => Dummy_2,
9720 LN_Asp => LN);
9722 Args := New_List;
9724 -- Handle the convention argument
9726 if Present (Conv) then
9727 Conv_Arg := New_Copy_Tree (Expression (Conv));
9729 -- Assume convention "Ada' when aspect Convention is missing
9731 else
9732 Conv_Arg := Make_Identifier (Loc, Name_Ada);
9733 end if;
9735 Append_To (Args,
9736 Make_Pragma_Argument_Association (Loc,
9737 Chars => Name_Convention,
9738 Expression => Conv_Arg));
9740 -- Handle the entity argument
9742 Append_To (Args,
9743 Make_Pragma_Argument_Association (Loc,
9744 Chars => Name_Entity,
9745 Expression => New_Occurrence_Of (Id, Loc)));
9747 -- Handle the External_Name argument
9749 if Present (EN) then
9750 Append_To (Args,
9751 Make_Pragma_Argument_Association (Loc,
9752 Chars => Name_External_Name,
9753 Expression => New_Copy_Tree (Expression (EN))));
9754 end if;
9756 -- Handle the Link_Name argument
9758 if Present (LN) then
9759 Append_To (Args,
9760 Make_Pragma_Argument_Association (Loc,
9761 Chars => Name_Link_Name,
9762 Expression => New_Copy_Tree (Expression (LN))));
9763 end if;
9765 -- Generate:
9766 -- pragma Export/Import
9767 -- (Convention => <Conv>/Ada,
9768 -- Entity => <Id>,
9769 -- [External_Name => <EN>,]
9770 -- [Link_Name => <LN>]);
9772 Prag :=
9773 Make_Pragma (Loc,
9774 Pragma_Identifier =>
9775 Make_Identifier (Loc, Chars (Identifier (Asp))),
9776 Pragma_Argument_Associations => Args);
9778 -- Decorate the relevant aspect and the pragma
9780 Set_Aspect_Rep_Item (Asp, Prag);
9782 Set_Corresponding_Aspect (Prag, Asp);
9783 Set_From_Aspect_Specification (Prag);
9784 Set_Parent (Prag, Asp);
9786 if Asp_Id = Aspect_Import and then Is_Subprogram (Id) then
9787 Set_Import_Pragma (Id, Prag);
9788 end if;
9790 return Prag;
9791 end Build_Export_Import_Pragma;
9793 ------------------------------
9794 -- Build_Predicate_Function --
9795 ------------------------------
9797 -- The function constructed here has the form:
9799 -- function typPredicate (Ixxx : typ) return Boolean is
9800 -- begin
9801 -- return
9802 -- typ1Predicate (typ1 (Ixxx))
9803 -- and then typ2Predicate (typ2 (Ixxx))
9804 -- and then ...
9805 -- and then exp1 and then exp2 and then ...;
9806 -- end typPredicate;
9808 -- If Predicate_Function_Needs_Membership_Parameter is true, then this
9809 -- function takes an additional boolean parameter; the parameter
9810 -- indicates whether the predicate evaluation is part of a membership
9811 -- test. This parameter is used in two cases: 1) It is passed along
9812 -- if another predicate function is called and that predicate function
9813 -- expects to be passed a boolean parameter. 2) If the Predicate_Failure
9814 -- aspect is directly specified for typ, then we replace the return
9815 -- expression described above with
9816 -- (if <expression described above> then True
9817 -- elsif For_Membership_Test then False
9818 -- else (raise Assertion_Error
9819 -- with <Predicate_Failure expression>))
9820 -- Here exp1, and exp2 are expressions from Predicate pragmas. Note that
9821 -- this is the point at which these expressions get analyzed, providing the
9822 -- required delay, and typ1, typ2, are entities from which predicates are
9823 -- inherited. Note that we do NOT generate Check pragmas, that's because we
9824 -- use this function even if checks are off, e.g. for membership tests.
9826 -- Note that the inherited predicates are evaluated first, as required by
9827 -- AI12-0071-1.
9829 -- Note that Sem_Eval.Real_Or_String_Static_Predicate_Matches depends on
9830 -- the form of this return expression.
9832 -- WARNING: This routine manages Ghost regions. Return statements must be
9833 -- replaced by gotos which jump to the end of the routine and restore the
9834 -- Ghost mode.
9836 procedure Build_Predicate_Function (Typ : Entity_Id; N : Node_Id) is
9837 Loc : constant Source_Ptr := Sloc (Typ);
9839 Expr : Node_Id;
9840 -- This is the expression for the result of the function. It is
9841 -- is build by connecting the component predicates with AND THEN.
9843 Object_Name : Name_Id;
9844 -- Name for argument of Predicate procedure. Note that we use the same
9845 -- name for both predicate functions. That way the reference within the
9846 -- predicate expression is the same in both functions.
9848 Object_Entity : Entity_Id;
9849 -- Entity for argument of Predicate procedure
9851 FDecl : Node_Id;
9852 -- The function declaration
9854 SId : Entity_Id;
9855 -- Its entity
9857 Ancestor_Predicate_Function_Called : Boolean := False;
9858 -- Does this predicate function include a call to the
9859 -- predication function of an ancestor subtype?
9861 procedure Add_Condition (Cond : Node_Id);
9862 -- Append Cond to Expr using "and then" (or just copy Cond to Expr if
9863 -- Expr is empty).
9865 procedure Add_Predicates;
9866 -- Appends expressions for any Predicate pragmas in the rep item chain
9867 -- Typ to Expr. Note that we look only at items for this exact entity.
9868 -- Inheritance of predicates for the parent type is done by calling the
9869 -- Predicate_Function of the parent type, using Add_Call above.
9871 procedure Add_Call (T : Entity_Id);
9872 -- Includes a call to the predicate function for type T in Expr if
9873 -- Predicate_Function (T) is non-empty.
9875 procedure Replace_Current_Instance_References
9876 (N : Node_Id; Typ, New_Entity : Entity_Id);
9877 -- Replace all references to Typ in the tree rooted at N with
9878 -- references to Param. [New_Entity will be a formal parameter of a
9879 -- predicate function.]
9881 --------------
9882 -- Add_Call --
9883 --------------
9885 procedure Add_Call (T : Entity_Id) is
9886 Exp : Node_Id;
9888 begin
9889 if Present (Predicate_Function (T)) then
9890 pragma Assert (Has_Predicates (Typ));
9892 -- Build the call to the predicate function of T. The type may be
9893 -- derived, so use an unchecked conversion for the actual.
9895 declare
9896 Dynamic_Mem : Node_Id := Empty;
9897 Second_Formal : constant Entity_Id :=
9898 Next_Entity (Object_Entity);
9899 begin
9900 -- Some predicate functions require a second parameter;
9901 -- If one predicate function calls another and the second
9902 -- requires two parameters, then the first should also
9903 -- take two parameters (so that the first function has
9904 -- something to pass to the second function).
9905 if Predicate_Function_Needs_Membership_Parameter (T) then
9906 pragma Assert (Present (Second_Formal));
9907 Dynamic_Mem := New_Occurrence_Of (Second_Formal, Loc);
9908 end if;
9910 Exp :=
9911 Make_Predicate_Call
9912 (Typ => T,
9913 Expr =>
9914 Unchecked_Convert_To (T,
9915 Make_Identifier (Loc, Object_Name)),
9916 Dynamic_Mem => Dynamic_Mem);
9917 end;
9919 -- "and"-in the call to evolving expression
9921 Add_Condition (Exp);
9922 Ancestor_Predicate_Function_Called := True;
9924 -- Output info message on inheritance if required. Note we do not
9925 -- give this information for generic actual types, since it is
9926 -- unwelcome noise in that case in instantiations. We also
9927 -- generally suppress the message in instantiations, and also
9928 -- if it involves internal names.
9930 if Opt.List_Inherited_Aspects
9931 and then not Is_Generic_Actual_Type (Typ)
9932 and then Instantiation_Depth (Sloc (Typ)) = 0
9933 and then not Is_Internal_Name (Chars (T))
9934 and then not Is_Internal_Name (Chars (Typ))
9935 then
9936 Error_Msg_Sloc := Sloc (Predicate_Function (T));
9937 Error_Msg_Node_2 := T;
9938 Error_Msg_N ("info: & inherits predicate from & #?.l?", Typ);
9939 end if;
9940 end if;
9941 end Add_Call;
9943 -------------------
9944 -- Add_Condition --
9945 -------------------
9947 procedure Add_Condition (Cond : Node_Id) is
9948 begin
9949 -- This is the first predicate expression
9951 if No (Expr) then
9952 Expr := Cond;
9954 -- Otherwise concatenate to the existing predicate expressions by
9955 -- using "and then".
9957 else
9958 Expr :=
9959 Make_And_Then (Loc,
9960 Left_Opnd => Relocate_Node (Expr),
9961 Right_Opnd => Cond);
9962 end if;
9963 end Add_Condition;
9965 --------------------
9966 -- Add_Predicates --
9967 --------------------
9969 procedure Add_Predicates is
9970 procedure Add_Predicate (Prag : Node_Id);
9971 -- Concatenate the expression of predicate pragma Prag to Expr by
9972 -- using a short circuit "and then" operator.
9974 -------------------
9975 -- Add_Predicate --
9976 -------------------
9978 procedure Add_Predicate (Prag : Node_Id) is
9979 -- Local variables
9981 Asp : constant Node_Id := Corresponding_Aspect (Prag);
9982 Arg1 : Node_Id;
9983 Arg2 : Node_Id;
9985 -- Start of processing for Add_Predicate
9987 begin
9988 -- Mark corresponding SCO as enabled
9990 Set_SCO_Pragma_Enabled (Sloc (Prag));
9992 -- Extract the arguments of the pragma
9994 Arg1 := First (Pragma_Argument_Associations (Prag));
9995 Arg2 := Next (Arg1);
9997 Arg1 := Get_Pragma_Arg (Arg1);
9998 Arg2 := Get_Pragma_Arg (Arg2);
10000 -- When the predicate pragma applies to the current type or its
10001 -- full view, replace all occurrences of the subtype name with
10002 -- references to the formal parameter of the predicate function.
10004 if Entity (Arg1) = Typ
10005 or else Full_View (Entity (Arg1)) = Typ
10006 then
10007 declare
10008 Arg2_Copy : constant Node_Id := New_Copy_Tree (Arg2);
10009 begin
10010 Replace_Current_Instance_References
10011 (Arg2_Copy, Typ => Typ, New_Entity => Object_Entity);
10013 -- If the predicate pragma comes from an aspect, replace the
10014 -- saved expression because we need the subtype references
10015 -- replaced for the calls to Preanalyze_Spec_Expression in
10016 -- Check_Aspect_At_xxx routines.
10018 if Present (Asp) then
10019 Set_Entity (Identifier (Asp), New_Copy_Tree (Arg2_Copy));
10020 end if;
10022 -- "and"-in the Arg2 condition to evolving expression
10024 Add_Condition (Arg2_Copy);
10025 end;
10026 end if;
10027 end Add_Predicate;
10029 -- Local variables
10031 Ritem : Node_Id;
10033 -- Start of processing for Add_Predicates
10035 begin
10036 Ritem := First_Rep_Item (Typ);
10038 -- If the type is private, check whether full view has inherited
10039 -- predicates.
10041 if Is_Private_Type (Typ)
10042 and then No (Ritem)
10043 and then Present (Full_View (Typ))
10044 then
10045 Ritem := First_Rep_Item (Full_View (Typ));
10046 end if;
10048 while Present (Ritem) loop
10049 if Nkind (Ritem) = N_Pragma
10050 and then Pragma_Name (Ritem) = Name_Predicate
10051 then
10052 Add_Predicate (Ritem);
10054 -- If the type is declared in an inner package it may be frozen
10055 -- outside of the package, and the generated pragma has not been
10056 -- analyzed yet, so capture the expression for the predicate
10057 -- function at this point.
10059 elsif Nkind (Ritem) = N_Aspect_Specification
10060 and then Present (Aspect_Rep_Item (Ritem))
10061 and then Scope_Depth (Scope (Typ)) > Scope_Depth (Current_Scope)
10062 then
10063 declare
10064 Prag : constant Node_Id := Aspect_Rep_Item (Ritem);
10066 begin
10067 if Nkind (Prag) = N_Pragma
10068 and then Pragma_Name (Prag) = Name_Predicate
10069 then
10070 Add_Predicate (Prag);
10071 end if;
10072 end;
10073 end if;
10075 Next_Rep_Item (Ritem);
10076 end loop;
10077 end Add_Predicates;
10079 -----------------------------------------
10080 -- Replace_Current_Instance_References --
10081 -----------------------------------------
10083 procedure Replace_Current_Instance_References
10084 (N : Node_Id; Typ, New_Entity : Entity_Id)
10086 Root : Node_Id renames N;
10088 procedure Replace_One_Reference (N : Node_Id);
10089 -- Actual parameter for Replace_Type_References_Generic instance
10091 ---------------------------
10092 -- Replace_One_Reference --
10093 ---------------------------
10095 procedure Replace_One_Reference (N : Node_Id) is
10096 pragma Assert (In_Subtree (N, Root => Root));
10097 begin
10098 Rewrite (N, New_Occurrence_Of (New_Entity, Sloc (N)));
10099 -- Use the Sloc of the usage name, not the defining name
10100 end Replace_One_Reference;
10102 procedure Replace_Type_References is
10103 new Replace_Type_References_Generic (Replace_One_Reference);
10104 begin
10105 Replace_Type_References (N, Typ);
10106 end Replace_Current_Instance_References;
10108 -- Local variables
10110 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
10111 Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
10112 -- Save the Ghost-related attributes to restore on exit
10114 -- Start of processing for Build_Predicate_Function
10116 begin
10117 -- Return if already built, if type does not have predicates,
10118 -- or if type is a constructed subtype that will inherit a
10119 -- predicate function from its ancestor. In a generic context
10120 -- the predicated parent may not have a predicate function yet
10121 -- but we don't want to build a new one for the subtype. This can
10122 -- happen in an instance body which is nested within a generic
10123 -- unit, in which case Within_A_Generic may be false, SId is
10124 -- Empty, but uses of Typ will receive a predicate check in a
10125 -- context where expansion and tests are enabled.
10127 SId := Predicate_Function (Typ);
10128 if not Has_Predicates (Typ)
10129 or else (Present (SId) and then Has_Completion (SId))
10130 or else
10131 (Is_Itype (Typ)
10132 and then not Comes_From_Source (Typ)
10133 and then Ekind (Typ) in E_Array_Subtype
10134 | E_Record_Subtype
10135 | E_Record_Subtype_With_Private
10136 and then Present (Predicated_Parent (Typ)))
10137 then
10138 return;
10140 -- Do not generate predicate bodies within a generic unit. The
10141 -- expressions have been analyzed already, and the bodies play no role
10142 -- if not within an executable unit. However, if a static predicate is
10143 -- present it must be processed for legality checks such as case
10144 -- coverage in an expression.
10146 elsif Inside_A_Generic
10147 and then not Has_Static_Predicate_Aspect (Typ)
10148 then
10149 return;
10150 end if;
10152 -- The related type may be subject to pragma Ghost. Set the mode now to
10153 -- ensure that the predicate functions are properly marked as Ghost.
10155 Set_Ghost_Mode (Typ);
10157 -- Prepare to construct predicate expression
10159 Expr := Empty;
10161 if Present (SId) then
10162 FDecl := Unit_Declaration_Node (SId);
10164 else
10165 FDecl := Build_Predicate_Function_Declaration (Typ);
10166 SId := Defining_Entity (FDecl);
10167 end if;
10169 -- Recover name of formal parameter of function that replaces references
10170 -- to the type in predicate expressions.
10172 Object_Entity :=
10173 Defining_Identifier
10174 (First (Parameter_Specifications (Specification (FDecl))));
10176 Object_Name := Chars (Object_Entity);
10178 -- Add predicates for ancestor if present. These must come before the
10179 -- ones for the current type, as required by AI12-0071-1.
10181 -- Looks like predicates aren't added for case of inheriting from
10182 -- multiple progenitors???
10184 declare
10185 Atyp : Entity_Id;
10186 begin
10187 Atyp := Nearest_Ancestor (Typ);
10189 -- The type may be private but the full view may inherit predicates
10191 if No (Atyp) and then Is_Private_Type (Typ) then
10192 Atyp := Nearest_Ancestor (Full_View (Typ));
10193 end if;
10195 if Present (Atyp) then
10196 Add_Call (Atyp);
10197 end if;
10198 end;
10200 -- Add Predicates for the current type
10202 Add_Predicates;
10204 -- Case where predicates are present
10206 if Present (Expr) then
10208 -- Build the main predicate function
10210 declare
10211 SIdB : constant Entity_Id :=
10212 Make_Defining_Identifier (Loc,
10213 Chars => New_External_Name (Chars (Typ), "Predicate"));
10214 -- The entity for the function body
10216 Spec : Node_Id;
10217 FBody : Node_Id;
10219 begin
10220 Mutate_Ekind (SIdB, E_Function);
10221 Set_Is_Predicate_Function (SIdB);
10223 -- Build function body
10225 declare
10226 Param_Specs : constant List_Id := New_List (
10227 Make_Parameter_Specification (Loc,
10228 Defining_Identifier =>
10229 Make_Defining_Identifier (Loc, Object_Name),
10230 Parameter_Type =>
10231 New_Occurrence_Of (Typ, Loc)));
10232 begin
10233 -- if Spec has 2 parameters, then body should too
10234 if Present (Next_Entity (Object_Entity)) then
10235 Append (Make_Parameter_Specification (Loc,
10236 Defining_Identifier =>
10237 Make_Defining_Identifier
10238 (Loc, Chars (Next_Entity (Object_Entity))),
10239 Parameter_Type =>
10240 New_Occurrence_Of (Standard_Boolean, Loc)),
10241 Param_Specs);
10242 end if;
10244 Spec :=
10245 Make_Function_Specification (Loc,
10246 Defining_Unit_Name => SIdB,
10247 Parameter_Specifications => Param_Specs,
10248 Result_Definition =>
10249 New_Occurrence_Of (Standard_Boolean, Loc));
10250 end;
10252 -- The Predicate_Expression attribute is used by SPARK.
10254 -- If Ancestor_Predicate_Function_Called is True, then
10255 -- we try to exclude that call to the ancestor's
10256 -- predicate function by calling Right_Opnd.
10257 -- The call is not excluded in the case where
10258 -- it is not "and"ed with anything else (so we don't have
10259 -- an N_And_Then node). This exclusion is required if the
10260 -- Predicate_Failure aspect is specified for Typ because
10261 -- in that case we are going to drop the N_And_Then node
10262 -- on the floor. Otherwise, it is a question of what is
10263 -- most convenient for SPARK.
10265 Set_Predicate_Expression
10266 (SId, (if Ancestor_Predicate_Function_Called
10267 and then Nkind (Expr) = N_And_Then
10268 then Right_Opnd (Expr)
10269 else Expr));
10271 declare
10272 Result_Expr : Node_Id := Expr;
10273 PF_Expr : Node_Id := Predicate_Failure_Expression
10274 (Typ, Inherited_OK => False);
10275 PF_Expr_Copy : Node_Id;
10276 Second_Formal : constant Entity_Id :=
10277 Next_Entity (Object_Entity);
10278 begin
10279 -- In GNATprove mode we are only interested in the predicate
10280 -- expression itself and don't want a raise expression that
10281 -- comes from the Predicate_Failure. Ditto for CodePeer.
10282 -- And an illegal Predicate_Failure aspect can lead to cases
10283 -- we want to avoid.
10285 if Present (PF_Expr)
10286 and then not GNATprove_Mode
10287 and then not CodePeer_Mode
10288 and then Serious_Errors_Detected = 0
10289 then
10290 pragma Assert (Present (Second_Formal));
10292 -- This is an ugly hack to cope with an ugly situation.
10293 -- PF_Expr may have children whose Parent attribute
10294 -- does not point back to PF_Expr. If we pass such a
10295 -- tree to New_Copy_Tree, then it does not make a deep
10296 -- copy. But we need a deep copy. So we need to find a
10297 -- tree for which New_Copy_Tree *will* make a deep copy.
10299 declare
10300 function Check_Node_Parent (Parent_Node, Node : Node_Id)
10301 return Traverse_Result;
10302 function Check_Node_Parent (Parent_Node, Node : Node_Id)
10303 return Traverse_Result is
10304 begin
10305 if Parent_Node = PF_Expr
10306 and then not Is_List_Member (Node)
10307 then
10308 pragma Assert
10309 (Nkind (PF_Expr) = Nkind (Parent (Node)));
10311 -- We need PF_Expr to be a node for which
10312 -- New_Copy_Tree will make a deep copy.
10313 PF_Expr := Parent (Node);
10314 return Abandon;
10315 end if;
10316 return OK;
10317 end Check_Node_Parent;
10318 procedure Check_Parentage is
10319 new Traverse_Proc_With_Parent (Check_Node_Parent);
10320 begin
10321 Check_Parentage (PF_Expr);
10322 PF_Expr_Copy := New_Copy_Tree (PF_Expr);
10323 end;
10325 -- Current instance uses need to have their Entity
10326 -- fields set so that Replace_Current_Instance_References
10327 -- can find them. So we preanalyze. Just for purposes of
10328 -- calls to Is_Current_Instance during this preanalysis,
10329 -- we set the Parent field.
10330 Set_Parent (PF_Expr_Copy, Parent (PF_Expr));
10331 Preanalyze (PF_Expr_Copy);
10332 Set_Parent (PF_Expr_Copy, Empty);
10334 Replace_Current_Instance_References
10335 (PF_Expr_Copy, Typ => Typ, New_Entity => Object_Entity);
10337 if Ancestor_Predicate_Function_Called then
10338 -- If the call to an ancestor predicate function
10339 -- returns False, we do not want to raise an
10340 -- exception here. Our Predicate_Failure aspect does
10341 -- not apply in that case. So we have to build a
10342 -- more complicated result expression:
10343 -- (if not Ancestor_Predicate_Function (...) then False
10344 -- elsif Noninherited_Predicates (...) then True
10345 -- elsif Is_Membership_Test then False
10346 -- else (raise Assertion_Error with PF text))
10348 declare
10349 Ancestor_Call : constant Node_Id :=
10350 Left_Opnd (Result_Expr);
10351 Local_Preds : constant Node_Id :=
10352 Right_Opnd (Result_Expr);
10353 begin
10354 Result_Expr :=
10355 Make_If_Expression (Loc,
10356 Expressions => New_List (
10357 Make_Op_Not (Loc, Ancestor_Call),
10358 New_Occurrence_Of (Standard_False, Loc),
10359 Make_If_Expression (Loc,
10360 Is_Elsif => True,
10361 Expressions => New_List (
10362 Local_Preds,
10363 New_Occurrence_Of (Standard_True, Loc),
10364 Make_If_Expression (Loc,
10365 Is_Elsif => True,
10366 Expressions => New_List (
10367 New_Occurrence_Of (Second_Formal, Loc),
10368 New_Occurrence_Of (Standard_False, Loc),
10369 Make_Raise_Expression (Loc,
10370 New_Occurrence_Of (RTE
10371 (RE_Assert_Failure), Loc),
10372 PF_Expr_Copy)))))));
10373 end;
10375 else
10376 -- Build a conditional expression:
10377 -- (if <predicate evaluates to True> then True
10378 -- elsif Is_Membership_Test then False
10379 -- else (raise Assertion_Error with PF text))
10381 Result_Expr :=
10382 Make_If_Expression (Loc,
10383 Expressions => New_List (
10384 Result_Expr,
10385 New_Occurrence_Of (Standard_True, Loc),
10386 Make_If_Expression (Loc,
10387 Is_Elsif => True,
10388 Expressions => New_List (
10389 New_Occurrence_Of (Second_Formal, Loc),
10390 New_Occurrence_Of (Standard_False, Loc),
10391 Make_Raise_Expression (Loc,
10392 New_Occurrence_Of (RTE
10393 (RE_Assert_Failure), Loc),
10394 PF_Expr_Copy)))));
10395 end if;
10396 end if;
10398 FBody :=
10399 Make_Subprogram_Body (Loc,
10400 Specification => Spec,
10401 Declarations => Empty_List,
10402 Handled_Statement_Sequence =>
10403 Make_Handled_Sequence_Of_Statements (Loc,
10404 Statements => New_List (
10405 Make_Simple_Return_Statement (Loc,
10406 Expression => Result_Expr))));
10407 end;
10409 -- The declaration has been analyzed when created, and placed
10410 -- after type declaration. Insert body itself after freeze node,
10411 -- unless subprogram declaration is already there, in which case
10412 -- body better be placed afterwards.
10414 if FDecl = Next (N) then
10415 Insert_After_And_Analyze (FDecl, FBody);
10416 else
10417 Insert_After_And_Analyze (N, FBody);
10418 end if;
10420 -- The defining identifier of a quantified expression carries the
10421 -- scope in which the type appears, but when unnesting we need
10422 -- to indicate that its proper scope is the constructed predicate
10423 -- function. The quantified expressions have been converted into
10424 -- loops during analysis and expansion.
10426 declare
10427 function Reset_Quantified_Variable_Scope
10428 (N : Node_Id) return Traverse_Result;
10430 procedure Reset_Quantified_Variables_Scope is
10431 new Traverse_Proc (Reset_Quantified_Variable_Scope);
10433 -------------------------------------
10434 -- Reset_Quantified_Variable_Scope --
10435 -------------------------------------
10437 function Reset_Quantified_Variable_Scope
10438 (N : Node_Id) return Traverse_Result is
10439 begin
10440 if Nkind (N) in N_Iterator_Specification
10441 | N_Loop_Parameter_Specification
10442 then
10443 Set_Scope (Defining_Identifier (N),
10444 Predicate_Function (Typ));
10445 end if;
10447 return OK;
10448 end Reset_Quantified_Variable_Scope;
10450 begin
10451 if Unnest_Subprogram_Mode then
10452 Reset_Quantified_Variables_Scope (Expr);
10453 end if;
10454 end;
10456 -- Within a generic unit, prevent a double analysis of the body
10457 -- which will not be marked analyzed yet. This will happen when
10458 -- the freeze node is created during the preanalysis of an
10459 -- expression function.
10461 if Inside_A_Generic then
10462 Set_Analyzed (FBody);
10463 end if;
10465 -- Static predicate functions are always side-effect free, and
10466 -- in most cases dynamic predicate functions are as well. Mark
10467 -- them as such whenever possible, so redundant predicate checks
10468 -- can be optimized. If there is a variable reference within the
10469 -- expression, the function is not pure.
10471 if Expander_Active then
10472 Set_Is_Pure (SId,
10473 Side_Effect_Free (Expr, Variable_Ref => True));
10474 Set_Is_Inlined (SId);
10475 end if;
10476 end;
10478 -- See if we have a static predicate. Note that the answer may be
10479 -- yes even if we have an explicit Dynamic_Predicate present.
10481 declare
10482 PS : Boolean;
10483 EN : Node_Id;
10485 begin
10486 if not Is_Scalar_Type (Typ) and then not Is_String_Type (Typ) then
10487 PS := False;
10488 else
10489 PS := Is_Predicate_Static (Expr, Object_Name);
10490 end if;
10492 -- Case where we have a predicate-static aspect
10494 if PS then
10496 -- We don't set Has_Static_Predicate_Aspect, since we can have
10497 -- any of the three cases (Predicate, Dynamic_Predicate, or
10498 -- Static_Predicate) generating a predicate with an expression
10499 -- that is predicate-static. We just indicate that we have a
10500 -- predicate that can be treated as static.
10502 Set_Has_Static_Predicate (Typ);
10504 -- For discrete subtype, build the static predicate list
10506 if Is_Discrete_Type (Typ) then
10507 Build_Discrete_Static_Predicate (Typ, Expr, Object_Name);
10509 -- If we don't get a static predicate list, it means that we
10510 -- have a case where this is not possible, most typically in
10511 -- the case where we inherit a dynamic predicate. We do not
10512 -- consider this an error, we just leave the predicate as
10513 -- dynamic. But if we do succeed in building the list, then
10514 -- we mark the predicate as static.
10516 if No (Static_Discrete_Predicate (Typ)) then
10517 Set_Has_Static_Predicate (Typ, False);
10518 end if;
10520 -- For real or string subtype, save predicate expression
10522 elsif Is_Real_Type (Typ) or else Is_String_Type (Typ) then
10523 Set_Static_Real_Or_String_Predicate (Typ, Expr);
10524 end if;
10526 -- Case of dynamic predicate (expression is not predicate-static)
10528 else
10529 -- Again, we don't set Has_Dynamic_Predicate_Aspect, since that
10530 -- is only set if we have an explicit Dynamic_Predicate aspect
10531 -- given. Here we may simply have a Predicate aspect where the
10532 -- expression happens not to be predicate-static.
10534 -- Emit an error when the predicate is categorized as static
10535 -- but its expression is not predicate-static.
10537 -- First a little fiddling to get a nice location for the
10538 -- message. If the expression is of the form (A and then B),
10539 -- where A is an inherited predicate, then use the right
10540 -- operand for the Sloc. This avoids getting confused by a call
10541 -- to an inherited predicate with a less convenient source
10542 -- location.
10544 EN := Expr;
10545 while Nkind (EN) = N_And_Then
10546 and then Nkind (Left_Opnd (EN)) = N_Function_Call
10547 and then Is_Predicate_Function
10548 (Entity (Name (Left_Opnd (EN))))
10549 loop
10550 EN := Right_Opnd (EN);
10551 end loop;
10553 -- Now post appropriate message
10555 if Has_Static_Predicate_Aspect (Typ) then
10556 if Is_Scalar_Type (Typ) or else Is_String_Type (Typ) then
10557 Error_Msg_F
10558 ("expression is not predicate-static (RM 3.2.4(16-22))",
10559 EN);
10560 else
10561 Error_Msg_F
10562 ("static predicate requires scalar or string type", EN);
10563 end if;
10564 end if;
10565 end if;
10566 end;
10567 end if;
10569 Restore_Ghost_Region (Saved_GM, Saved_IGR);
10570 end Build_Predicate_Function;
10572 ------------------------------------------
10573 -- Build_Predicate_Function_Declaration --
10574 ------------------------------------------
10576 -- WARNING: This routine manages Ghost regions. Return statements must be
10577 -- replaced by gotos which jump to the end of the routine and restore the
10578 -- Ghost mode.
10580 function Build_Predicate_Function_Declaration
10581 (Typ : Entity_Id) return Node_Id
10583 Loc : constant Source_Ptr := Sloc (Typ);
10585 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
10586 Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
10587 -- Save the Ghost-related attributes to restore on exit
10589 Func_Decl : Node_Id;
10590 Func_Id : Entity_Id;
10591 Spec : Node_Id;
10593 CRec_Typ : Entity_Id;
10594 -- The corresponding record type of Full_Typ
10596 Full_Typ : Entity_Id;
10597 -- The full view of Typ
10599 Priv_Typ : Entity_Id;
10600 -- The partial view of Typ
10602 UFull_Typ : Entity_Id;
10603 -- The underlying full view of Full_Typ
10605 begin
10606 -- The related type may be subject to pragma Ghost. Set the mode now to
10607 -- ensure that the predicate functions are properly marked as Ghost.
10609 Set_Ghost_Mode (Typ);
10611 Func_Id :=
10612 Make_Defining_Identifier (Loc,
10613 Chars => New_External_Name (Chars (Typ), "Predicate"));
10615 Mutate_Ekind (Func_Id, E_Function);
10616 Set_Etype (Func_Id, Standard_Boolean);
10617 Set_Is_Internal (Func_Id);
10618 Set_Is_Predicate_Function (Func_Id);
10619 Set_Predicate_Function (Typ, Func_Id);
10621 -- The predicate function requires debug info when the predicates are
10622 -- subject to Source Coverage Obligations.
10624 if Opt.Generate_SCO then
10625 Set_Debug_Info_Needed (Func_Id);
10626 end if;
10628 -- Obtain all views of the input type
10630 Get_Views (Typ, Priv_Typ, Full_Typ, UFull_Typ, CRec_Typ);
10632 -- Associate the predicate function and various flags with all views
10634 Propagate_Predicate_Attributes (Priv_Typ, From_Typ => Typ);
10635 Propagate_Predicate_Attributes (Full_Typ, From_Typ => Typ);
10636 Propagate_Predicate_Attributes (UFull_Typ, From_Typ => Typ);
10637 Propagate_Predicate_Attributes (CRec_Typ, From_Typ => Typ);
10639 declare
10640 Param_Specs : constant List_Id := New_List (
10641 Make_Parameter_Specification (Loc,
10642 Defining_Identifier => Make_Temporary (Loc, 'I'),
10643 Parameter_Type => New_Occurrence_Of (Typ, Loc)));
10644 begin
10645 if Predicate_Function_Needs_Membership_Parameter (Typ) then
10646 -- Add Boolean-valued For_Membership_Test param
10647 Append (Make_Parameter_Specification (Loc,
10648 Defining_Identifier => Make_Temporary (Loc, 'M'),
10649 Parameter_Type =>
10650 New_Occurrence_Of (Standard_Boolean, Loc)),
10651 Param_Specs);
10652 end if;
10654 Spec :=
10655 Make_Function_Specification (Loc,
10656 Defining_Unit_Name => Func_Id,
10657 Parameter_Specifications => Param_Specs,
10658 Result_Definition =>
10659 New_Occurrence_Of (Standard_Boolean, Loc));
10660 end;
10662 Func_Decl := Make_Subprogram_Declaration (Loc, Specification => Spec);
10664 Insert_After (Parent (Typ), Func_Decl);
10665 Analyze (Func_Decl);
10667 Restore_Ghost_Region (Saved_GM, Saved_IGR);
10669 return Func_Decl;
10670 end Build_Predicate_Function_Declaration;
10672 -----------------------------------------
10673 -- Check_Aspect_At_End_Of_Declarations --
10674 -----------------------------------------
10676 procedure Check_Aspect_At_End_Of_Declarations (ASN : Node_Id) is
10677 Ent : constant Entity_Id := Entity (ASN);
10678 Ident : constant Node_Id := Identifier (ASN);
10679 A_Id : constant Aspect_Id := Get_Aspect_Id (Chars (Ident));
10681 End_Decl_Expr : constant Node_Id := Entity (Ident);
10682 -- Expression to be analyzed at end of declarations
10684 Freeze_Expr : constant Node_Id := Expression (ASN);
10685 -- Expression from call to Check_Aspect_At_Freeze_Point.
10687 T : constant Entity_Id :=
10688 (if Present (Freeze_Expr) and (A_Id /= Aspect_Stable_Properties)
10689 then Etype (Original_Node (Freeze_Expr))
10690 else Empty);
10691 -- Type required for preanalyze call. We use the original expression to
10692 -- get the proper type, to prevent cascaded errors when the expression
10693 -- is constant-folded. For Stable_Properties, the aspect value is
10694 -- not semantically an expression (although it is syntactically);
10695 -- in particular, it has no type.
10697 Err : Boolean;
10698 -- Set True if error
10700 -- On entry to this procedure, Entity (Ident) contains a copy of the
10701 -- original expression from the aspect, saved for this purpose, and
10702 -- but Expression (Ident) is a preanalyzed copy of the expression,
10703 -- preanalyzed just after the freeze point.
10705 procedure Check_Overloaded_Name;
10706 -- For aspects whose expression is simply a name, this routine checks if
10707 -- the name is overloaded or not. If so, it verifies there is an
10708 -- interpretation that matches the entity obtained at the freeze point,
10709 -- otherwise the compiler complains.
10711 ---------------------------
10712 -- Check_Overloaded_Name --
10713 ---------------------------
10715 procedure Check_Overloaded_Name is
10716 begin
10717 if not Is_Overloaded (End_Decl_Expr) then
10718 Err := not Is_Entity_Name (End_Decl_Expr)
10719 or else Entity (End_Decl_Expr) /= Entity (Freeze_Expr);
10721 else
10722 Err := True;
10724 declare
10725 Index : Interp_Index;
10726 It : Interp;
10728 begin
10729 Get_First_Interp (End_Decl_Expr, Index, It);
10730 while Present (It.Typ) loop
10731 if It.Nam = Entity (Freeze_Expr) then
10732 Err := False;
10733 exit;
10734 end if;
10736 Get_Next_Interp (Index, It);
10737 end loop;
10738 end;
10739 end if;
10740 end Check_Overloaded_Name;
10742 -- Start of processing for Check_Aspect_At_End_Of_Declarations
10744 begin
10745 -- In an instance we do not perform the consistency check between freeze
10746 -- point and end of declarations, because it was done already in the
10747 -- analysis of the generic. Furthermore, the delayed analysis of an
10748 -- aspect of the instance may produce spurious errors when the generic
10749 -- is a child unit that references entities in the parent (which might
10750 -- not be in scope at the freeze point of the instance).
10752 if In_Instance then
10753 return;
10755 -- The enclosing scope may have been rewritten during expansion (.e.g. a
10756 -- task body is rewritten as a procedure) after this conformance check
10757 -- has been performed, so do not perform it again (it may not easily be
10758 -- done if full visibility of local entities is not available).
10760 elsif not Comes_From_Source (Current_Scope) then
10761 return;
10763 -- Case of aspects Dimension, Dimension_System and Synchronization
10765 elsif A_Id = Aspect_Synchronization then
10766 return;
10768 -- Case of stream attributes and Put_Image, just have to compare
10769 -- entities. However, the expression is just a possibly-overloaded
10770 -- name, so we need to verify that one of these interpretations is
10771 -- the one available at at the freeze point.
10773 elsif A_Id in Aspect_Input
10774 | Aspect_Output
10775 | Aspect_Read
10776 | Aspect_Write
10777 | Aspect_Put_Image
10778 then
10779 Analyze (End_Decl_Expr);
10780 Check_Overloaded_Name;
10782 elsif A_Id in Aspect_Variable_Indexing
10783 | Aspect_Constant_Indexing
10784 | Aspect_Default_Iterator
10785 | Aspect_Iterator_Element
10786 | Aspect_Integer_Literal
10787 | Aspect_Real_Literal
10788 | Aspect_String_Literal
10789 then
10790 -- Make type unfrozen before analysis, to prevent spurious errors
10791 -- about late attributes.
10793 Set_Is_Frozen (Ent, False);
10794 Analyze (End_Decl_Expr);
10795 Set_Is_Frozen (Ent, True);
10797 -- If the end of declarations comes before any other freeze point,
10798 -- the Freeze_Expr is not analyzed: no check needed.
10800 if Analyzed (Freeze_Expr) and then not In_Instance then
10801 Check_Overloaded_Name;
10802 else
10803 Err := False;
10804 end if;
10806 -- All other cases
10808 else
10809 -- In a generic context freeze nodes are not always generated, so
10810 -- analyze the expression now. If the aspect is for a type, we must
10811 -- also make its potential components accessible.
10813 if not Analyzed (Freeze_Expr) and then Inside_A_Generic then
10814 if A_Id in Aspect_Dynamic_Predicate | Aspect_Predicate |
10815 Aspect_Static_Predicate
10816 then
10817 Push_Type (Ent);
10818 Preanalyze_Spec_Expression (Freeze_Expr, Standard_Boolean);
10819 Pop_Type (Ent);
10821 elsif A_Id = Aspect_Priority then
10822 Push_Type (Ent);
10823 Preanalyze_Spec_Expression (Freeze_Expr, Any_Integer);
10824 Pop_Type (Ent);
10826 else
10827 Preanalyze (Freeze_Expr);
10828 end if;
10829 end if;
10831 -- Indicate that the expression comes from an aspect specification,
10832 -- which is used in subsequent analysis even if expansion is off.
10834 if Present (End_Decl_Expr) then
10835 Set_Parent (End_Decl_Expr, ASN);
10836 end if;
10838 -- In a generic context the original aspect expressions have not
10839 -- been preanalyzed, so do it now. There are no conformance checks
10840 -- to perform in this case. As before, we have to make components
10841 -- visible for aspects that may reference them.
10843 if Present (Freeze_Expr) and then No (T) then
10844 if A_Id in Aspect_Dynamic_Predicate
10845 | Aspect_Predicate
10846 | Aspect_Priority
10847 | Aspect_Static_Predicate
10848 then
10849 Push_Type (Ent);
10850 Check_Aspect_At_Freeze_Point (ASN);
10851 Pop_Type (Ent);
10853 else
10854 Check_Aspect_At_Freeze_Point (ASN);
10855 end if;
10856 return;
10858 -- The default values attributes may be defined in the private part,
10859 -- and the analysis of the expression may take place when only the
10860 -- partial view is visible. The expression must be scalar, so use
10861 -- the full view to resolve.
10863 elsif A_Id in Aspect_Default_Component_Value | Aspect_Default_Value
10864 and then Is_Private_Type (T)
10865 then
10866 Preanalyze_Spec_Expression (End_Decl_Expr, Full_View (T));
10868 -- The following aspect expressions may contain references to
10869 -- components and discriminants of the type.
10871 elsif A_Id in Aspect_CPU
10872 | Aspect_Dynamic_Predicate
10873 | Aspect_Predicate
10874 | Aspect_Priority
10875 | Aspect_Static_Predicate
10876 then
10877 Push_Type (Ent);
10878 Preanalyze_Spec_Expression (End_Decl_Expr, T);
10879 Pop_Type (Ent);
10881 elsif A_Id = Aspect_Predicate_Failure then
10882 Preanalyze_Spec_Expression (End_Decl_Expr, Standard_String);
10883 elsif Present (End_Decl_Expr) then
10884 Preanalyze_Spec_Expression (End_Decl_Expr, T);
10885 end if;
10887 Err :=
10888 not Fully_Conformant_Expressions
10889 (End_Decl_Expr, Freeze_Expr, Report => True);
10890 end if;
10892 -- Output error message if error. Force error on aspect specification
10893 -- even if there is an error on the expression itself.
10895 if Err then
10896 Error_Msg_NE
10897 ("!visibility of aspect for& changes after freeze point",
10898 ASN, Ent);
10899 Error_Msg_NE
10900 ("info: & is frozen here, (RM 13.1.1 (13/3))??",
10901 Freeze_Node (Ent), Ent);
10902 end if;
10903 end Check_Aspect_At_End_Of_Declarations;
10905 ----------------------------------
10906 -- Check_Aspect_At_Freeze_Point --
10907 ----------------------------------
10909 procedure Check_Aspect_At_Freeze_Point (ASN : Node_Id) is
10910 Ident : constant Node_Id := Identifier (ASN);
10911 -- Identifier (use Entity field to save expression)
10913 Expr : constant Node_Id := Expression (ASN);
10914 -- For cases where using Entity (Identifier) doesn't work
10916 A_Id : constant Aspect_Id := Get_Aspect_Id (Chars (Ident));
10918 T : Entity_Id := Empty;
10919 -- Type required for preanalyze call
10921 begin
10922 -- On entry to this procedure, Entity (Ident) contains a copy of the
10923 -- original expression from the aspect, saved for this purpose.
10925 -- On exit from this procedure Entity (Ident) is unchanged, still
10926 -- containing that copy, but Expression (Ident) is a preanalyzed copy
10927 -- of the expression, preanalyzed just after the freeze point.
10929 -- Make a copy of the expression to be preanalyzed
10931 Set_Expression (ASN, New_Copy_Tree (Entity (Ident)));
10933 -- Find type for preanalyze call
10935 case A_Id is
10937 -- No_Aspect should be impossible
10939 when No_Aspect =>
10940 raise Program_Error;
10942 -- Aspects taking an optional boolean argument
10944 when Boolean_Aspects
10945 | Library_Unit_Aspects
10947 T := Standard_Boolean;
10949 -- Aspects corresponding to attribute definition clauses
10951 when Aspect_Address =>
10952 T := RTE (RE_Address);
10954 when Aspect_Attach_Handler =>
10955 T := RTE (RE_Interrupt_ID);
10957 when Aspect_Bit_Order
10958 | Aspect_Scalar_Storage_Order
10960 T := RTE (RE_Bit_Order);
10962 when Aspect_Convention =>
10963 return;
10965 when Aspect_CPU =>
10966 T := RTE (RE_CPU_Range);
10968 -- Default_Component_Value is resolved with the component type
10970 when Aspect_Default_Component_Value =>
10971 T := Component_Type (Entity (ASN));
10973 when Aspect_Default_Storage_Pool =>
10974 T := Class_Wide_Type (RTE (RE_Root_Storage_Pool));
10976 -- Default_Value is resolved with the type entity in question
10978 when Aspect_Default_Value =>
10979 T := Entity (ASN);
10981 when Aspect_Dispatching_Domain =>
10982 T := RTE (RE_Dispatching_Domain);
10984 when Aspect_External_Tag =>
10985 T := Standard_String;
10987 when Aspect_External_Name =>
10988 T := Standard_String;
10990 when Aspect_Link_Name =>
10991 T := Standard_String;
10993 when Aspect_Interrupt_Priority
10994 | Aspect_Priority
10996 T := Standard_Integer;
10998 when Aspect_Relative_Deadline =>
10999 T := RTE (RE_Time_Span);
11001 when Aspect_Secondary_Stack_Size =>
11002 T := Standard_Integer;
11004 when Aspect_Small =>
11006 -- Note that the expression can be of any real type (not just a
11007 -- real universal literal) as long as it is a static constant.
11009 T := Any_Real;
11011 -- For a simple storage pool, we have to retrieve the type of the
11012 -- pool object associated with the aspect's corresponding attribute
11013 -- definition clause.
11015 when Aspect_Simple_Storage_Pool =>
11016 T := Etype (Expression (Aspect_Rep_Item (ASN)));
11018 when Aspect_Storage_Pool =>
11019 T := Class_Wide_Type (RTE (RE_Root_Storage_Pool));
11021 when Aspect_Alignment
11022 | Aspect_Component_Size
11023 | Aspect_Machine_Radix
11024 | Aspect_Object_Size
11025 | Aspect_Size
11026 | Aspect_Storage_Size
11027 | Aspect_Stream_Size
11028 | Aspect_Value_Size
11030 T := Any_Integer;
11032 when Aspect_Linker_Section =>
11033 T := Standard_String;
11035 when Aspect_Synchronization =>
11036 return;
11038 -- Special case, the expression of these aspects is just an entity
11039 -- that does not need any resolution, so just analyze.
11041 when Aspect_Input
11042 | Aspect_Output
11043 | Aspect_Put_Image
11044 | Aspect_Read
11045 | Aspect_Warnings
11046 | Aspect_Write
11048 Analyze (Expression (ASN));
11049 return;
11051 -- Same for Iterator aspects, where the expression is a function
11052 -- name. Legality rules are checked separately.
11054 when Aspect_Constant_Indexing
11055 | Aspect_Default_Iterator
11056 | Aspect_Iterator_Element
11057 | Aspect_Variable_Indexing
11059 Analyze (Expression (ASN));
11060 return;
11062 -- Same for Literal aspects, where the expression is a function
11063 -- name. Legality rules are checked separately. Use Expr to avoid
11064 -- losing track of the previous resolution of Expression.
11066 when Aspect_Integer_Literal
11067 | Aspect_Real_Literal
11068 | Aspect_String_Literal
11070 Set_Entity (Expression (ASN), Entity (Expr));
11071 Set_Etype (Expression (ASN), Etype (Expr));
11072 Set_Is_Overloaded (Expression (ASN), False);
11073 Analyze (Expression (ASN));
11074 return;
11076 -- Ditto for Iterable, legality checks in Validate_Iterable_Aspect.
11078 when Aspect_Iterable =>
11079 T := Entity (ASN);
11081 declare
11082 Cursor : constant Entity_Id := Get_Cursor_Type (ASN, T);
11083 Assoc : Node_Id;
11084 Expr : Node_Id;
11086 begin
11087 if Cursor = Any_Type then
11088 return;
11089 end if;
11091 Assoc := First (Component_Associations (Expression (ASN)));
11092 while Present (Assoc) loop
11093 Expr := Expression (Assoc);
11094 Analyze (Expr);
11096 if not Error_Posted (Expr) then
11097 Resolve_Iterable_Operation
11098 (Expr, Cursor, T, Chars (First (Choices (Assoc))));
11099 end if;
11101 Next (Assoc);
11102 end loop;
11103 end;
11105 return;
11107 when Aspect_Aggregate =>
11108 Resolve_Aspect_Aggregate (Entity (ASN), Expression (ASN));
11109 return;
11111 when Aspect_Stable_Properties =>
11112 Resolve_Aspect_Stable_Properties
11113 (Entity (ASN), Expression (ASN),
11114 Class_Present => Class_Present (ASN));
11115 return;
11117 -- Invariant/Predicate take boolean expressions
11119 when Aspect_Dynamic_Predicate
11120 | Aspect_Invariant
11121 | Aspect_Predicate
11122 | Aspect_Static_Predicate
11123 | Aspect_Type_Invariant
11125 T := Standard_Boolean;
11127 when Aspect_Predicate_Failure =>
11128 T := Standard_String;
11130 -- As for some other aspects above, the expression of this aspect is
11131 -- just an entity that does not need any resolution, so just analyze.
11133 when Aspect_Designated_Storage_Model =>
11134 Analyze (Expression (ASN));
11135 return;
11137 when Aspect_Storage_Model_Type =>
11139 -- The aggregate argument of Storage_Model_Type is optional, and
11140 -- when not present the aspect defaults to the native storage
11141 -- model (where the address type is System.Address, and other
11142 -- arguments default to corresponding native storage operations).
11144 if No (Expression (ASN)) then
11145 return;
11146 end if;
11148 T := Entity (ASN);
11150 declare
11151 Assoc : Node_Id;
11152 Expr : Node_Id;
11153 Addr_Type : Entity_Id := Empty;
11155 begin
11156 Assoc := First (Component_Associations (Expression (ASN)));
11157 while Present (Assoc) loop
11158 Expr := Expression (Assoc);
11159 Analyze (Expr);
11161 if not Error_Posted (Expr) then
11162 Resolve_Storage_Model_Type_Argument
11163 (Expr, T, Addr_Type, Chars (First (Choices (Assoc))));
11164 end if;
11166 Next (Assoc);
11167 end loop;
11168 end;
11170 return;
11172 -- Here is the list of aspects that don't require delay analysis
11174 when Aspect_Abstract_State
11175 | Aspect_Annotate
11176 | Aspect_Async_Readers
11177 | Aspect_Async_Writers
11178 | Aspect_Constant_After_Elaboration
11179 | Aspect_Contract_Cases
11180 | Aspect_Default_Initial_Condition
11181 | Aspect_Depends
11182 | Aspect_Dimension
11183 | Aspect_Dimension_System
11184 | Aspect_Effective_Reads
11185 | Aspect_Effective_Writes
11186 | Aspect_Extensions_Visible
11187 | Aspect_Ghost
11188 | Aspect_Global
11189 | Aspect_GNAT_Annotate
11190 | Aspect_Implicit_Dereference
11191 | Aspect_Initial_Condition
11192 | Aspect_Initializes
11193 | Aspect_Max_Entry_Queue_Depth
11194 | Aspect_Max_Entry_Queue_Length
11195 | Aspect_Max_Queue_Length
11196 | Aspect_No_Caching
11197 | Aspect_No_Controlled_Parts
11198 | Aspect_No_Task_Parts
11199 | Aspect_Obsolescent
11200 | Aspect_Part_Of
11201 | Aspect_Post
11202 | Aspect_Postcondition
11203 | Aspect_Pre
11204 | Aspect_Precondition
11205 | Aspect_Refined_Depends
11206 | Aspect_Refined_Global
11207 | Aspect_Refined_Post
11208 | Aspect_Refined_State
11209 | Aspect_Relaxed_Initialization
11210 | Aspect_SPARK_Mode
11211 | Aspect_Subprogram_Variant
11212 | Aspect_Suppress
11213 | Aspect_Test_Case
11214 | Aspect_Unimplemented
11215 | Aspect_Unsuppress
11216 | Aspect_Volatile_Function
11218 raise Program_Error;
11220 end case;
11222 -- Do the preanalyze call
11224 if Present (Expression (ASN)) then
11225 Preanalyze_Spec_Expression (Expression (ASN), T);
11226 end if;
11227 end Check_Aspect_At_Freeze_Point;
11229 -----------------------------------
11230 -- Check_Constant_Address_Clause --
11231 -----------------------------------
11233 procedure Check_Constant_Address_Clause
11234 (Expr : Node_Id;
11235 U_Ent : Entity_Id)
11237 procedure Check_At_Constant_Address (Nod : Node_Id);
11238 -- Checks that the given node N represents a name whose 'Address is
11239 -- constant (in the same sense as OK_Constant_Address_Clause, i.e. the
11240 -- address value is the same at the point of declaration of U_Ent and at
11241 -- the time of elaboration of the address clause.
11243 procedure Check_Expr_Constants (Nod : Node_Id);
11244 -- Checks that Nod meets the requirements for a constant address clause
11245 -- in the sense of the enclosing procedure.
11247 procedure Check_List_Constants (Lst : List_Id);
11248 -- Check that all elements of list Lst meet the requirements for a
11249 -- constant address clause in the sense of the enclosing procedure.
11251 -------------------------------
11252 -- Check_At_Constant_Address --
11253 -------------------------------
11255 procedure Check_At_Constant_Address (Nod : Node_Id) is
11256 begin
11257 if Is_Entity_Name (Nod) then
11258 if Present (Address_Clause (Entity ((Nod)))) then
11259 Error_Msg_NE
11260 ("invalid address clause for initialized object &!",
11261 Nod, U_Ent);
11262 Error_Msg_NE
11263 ("address for& cannot depend on another address clause! "
11264 & "(RM 13.1(22))!", Nod, U_Ent);
11266 elsif In_Same_Source_Unit (Entity (Nod), U_Ent)
11267 and then Sloc (U_Ent) < Sloc (Entity (Nod))
11268 then
11269 Error_Msg_NE
11270 ("invalid address clause for initialized object &!",
11271 Nod, U_Ent);
11272 Error_Msg_Node_2 := U_Ent;
11273 Error_Msg_NE
11274 ("\& must be defined before & (RM 13.1(22))!",
11275 Nod, Entity (Nod));
11276 end if;
11278 elsif Nkind (Nod) = N_Selected_Component then
11279 declare
11280 T : constant Entity_Id := Etype (Prefix (Nod));
11282 begin
11283 if (Is_Record_Type (T)
11284 and then Has_Discriminants (T))
11285 or else
11286 (Is_Access_Type (T)
11287 and then Is_Record_Type (Designated_Type (T))
11288 and then Has_Discriminants (Designated_Type (T)))
11289 then
11290 Error_Msg_NE
11291 ("invalid address clause for initialized object &!",
11292 Nod, U_Ent);
11293 Error_Msg_N
11294 ("\address cannot depend on component of discriminated "
11295 & "record (RM 13.1(22))!", Nod);
11296 else
11297 Check_At_Constant_Address (Prefix (Nod));
11298 end if;
11299 end;
11301 elsif Nkind (Nod) = N_Indexed_Component then
11302 Check_At_Constant_Address (Prefix (Nod));
11303 Check_List_Constants (Expressions (Nod));
11305 else
11306 Check_Expr_Constants (Nod);
11307 end if;
11308 end Check_At_Constant_Address;
11310 --------------------------
11311 -- Check_Expr_Constants --
11312 --------------------------
11314 procedure Check_Expr_Constants (Nod : Node_Id) is
11315 Loc_U_Ent : constant Source_Ptr := Sloc (U_Ent);
11316 Ent : Entity_Id := Empty;
11318 begin
11319 if Nkind (Nod) in N_Has_Etype
11320 and then Etype (Nod) = Any_Type
11321 then
11322 return;
11323 end if;
11325 case Nkind (Nod) is
11326 when N_Empty
11327 | N_Error
11329 return;
11331 when N_Expanded_Name
11332 | N_Identifier
11334 Ent := Entity (Nod);
11336 -- We need to look at the original node if it is different
11337 -- from the node, since we may have rewritten things and
11338 -- substituted an identifier representing the rewrite.
11340 if Is_Rewrite_Substitution (Nod) then
11341 Check_Expr_Constants (Original_Node (Nod));
11343 -- If the node is an object declaration without initial
11344 -- value, some code has been expanded, and the expression
11345 -- is not constant, even if the constituents might be
11346 -- acceptable, as in A'Address + offset.
11348 if Ekind (Ent) = E_Variable
11349 and then
11350 Nkind (Declaration_Node (Ent)) = N_Object_Declaration
11351 and then
11352 No (Expression (Declaration_Node (Ent)))
11353 then
11354 Error_Msg_NE
11355 ("invalid address clause for initialized object &!",
11356 Nod, U_Ent);
11358 -- If entity is constant, it may be the result of expanding
11359 -- a check. We must verify that its declaration appears
11360 -- before the object in question, else we also reject the
11361 -- address clause.
11363 elsif Ekind (Ent) = E_Constant
11364 and then In_Same_Source_Unit (Ent, U_Ent)
11365 and then Sloc (Ent) > Loc_U_Ent
11366 then
11367 Error_Msg_NE
11368 ("invalid address clause for initialized object &!",
11369 Nod, U_Ent);
11370 end if;
11372 return;
11373 end if;
11375 -- Otherwise look at the identifier and see if it is OK
11377 if Is_Named_Number (Ent) or else Is_Type (Ent) then
11378 return;
11380 elsif Ekind (Ent) in E_Constant | E_In_Parameter then
11382 -- This is the case where we must have Ent defined before
11383 -- U_Ent. Clearly if they are in different units this
11384 -- requirement is met since the unit containing Ent is
11385 -- already processed.
11387 if not In_Same_Source_Unit (Ent, U_Ent) then
11388 return;
11390 -- Otherwise location of Ent must be before the location
11391 -- of U_Ent, that's what prior defined means.
11393 elsif Sloc (Ent) < Loc_U_Ent then
11394 return;
11396 else
11397 Error_Msg_NE
11398 ("invalid address clause for initialized object &!",
11399 Nod, U_Ent);
11400 Error_Msg_Node_2 := U_Ent;
11401 Error_Msg_NE
11402 ("\& must be defined before & (RM 13.1(22))!",
11403 Nod, Ent);
11404 end if;
11406 elsif Nkind (Original_Node (Nod)) = N_Function_Call then
11407 Check_Expr_Constants (Original_Node (Nod));
11409 else
11410 Error_Msg_NE
11411 ("invalid address clause for initialized object &!",
11412 Nod, U_Ent);
11414 if Comes_From_Source (Ent) then
11415 Error_Msg_NE
11416 ("\reference to variable& not allowed"
11417 & " (RM 13.1(22))!", Nod, Ent);
11418 else
11419 Error_Msg_N
11420 ("non-static expression not allowed"
11421 & " (RM 13.1(22))!", Nod);
11422 end if;
11423 end if;
11425 when N_Integer_Literal =>
11427 -- If this is a rewritten unchecked conversion, in a system
11428 -- where Address is an integer type, always use the base type
11429 -- for a literal value. This is user-friendly and prevents
11430 -- order-of-elaboration issues with instances of unchecked
11431 -- conversion.
11433 if Nkind (Original_Node (Nod)) = N_Function_Call then
11434 Set_Etype (Nod, Base_Type (Etype (Nod)));
11435 end if;
11437 when N_Character_Literal
11438 | N_Real_Literal
11439 | N_String_Literal
11441 return;
11443 when N_Range =>
11444 Check_Expr_Constants (Low_Bound (Nod));
11445 Check_Expr_Constants (High_Bound (Nod));
11447 when N_Explicit_Dereference =>
11448 Check_Expr_Constants (Prefix (Nod));
11450 when N_Indexed_Component =>
11451 Check_Expr_Constants (Prefix (Nod));
11452 Check_List_Constants (Expressions (Nod));
11454 when N_Slice =>
11455 Check_Expr_Constants (Prefix (Nod));
11456 Check_Expr_Constants (Discrete_Range (Nod));
11458 when N_Selected_Component =>
11459 Check_Expr_Constants (Prefix (Nod));
11461 when N_Attribute_Reference =>
11462 if Attribute_Name (Nod) in Name_Address
11463 | Name_Access
11464 | Name_Unchecked_Access
11465 | Name_Unrestricted_Access
11466 then
11467 Check_At_Constant_Address (Prefix (Nod));
11469 -- Normally, System'To_Address will have been transformed into
11470 -- an Unchecked_Conversion, but in -gnatc mode, it will not,
11471 -- and we don't want to give an error, because the whole point
11472 -- of 'To_Address is that it is static.
11474 elsif Attribute_Name (Nod) = Name_To_Address then
11475 pragma Assert (Operating_Mode = Check_Semantics);
11476 null;
11478 else
11479 Check_Expr_Constants (Prefix (Nod));
11480 Check_List_Constants (Expressions (Nod));
11481 end if;
11483 when N_Aggregate =>
11484 Check_List_Constants (Component_Associations (Nod));
11485 Check_List_Constants (Expressions (Nod));
11487 when N_Component_Association =>
11488 Check_Expr_Constants (Expression (Nod));
11490 when N_Extension_Aggregate =>
11491 Check_Expr_Constants (Ancestor_Part (Nod));
11492 Check_List_Constants (Component_Associations (Nod));
11493 Check_List_Constants (Expressions (Nod));
11495 when N_Null =>
11496 return;
11498 when N_Binary_Op
11499 | N_Membership_Test
11500 | N_Short_Circuit
11502 Check_Expr_Constants (Left_Opnd (Nod));
11503 Check_Expr_Constants (Right_Opnd (Nod));
11505 when N_Unary_Op =>
11506 Check_Expr_Constants (Right_Opnd (Nod));
11508 when N_Allocator
11509 | N_Qualified_Expression
11510 | N_Type_Conversion
11511 | N_Unchecked_Type_Conversion
11513 Check_Expr_Constants (Expression (Nod));
11515 when N_Function_Call =>
11516 if not Is_Pure (Entity (Name (Nod))) then
11517 Error_Msg_NE
11518 ("invalid address clause for initialized object &!",
11519 Nod, U_Ent);
11521 Error_Msg_NE
11522 ("\function & is not pure (RM 13.1(22))!",
11523 Nod, Entity (Name (Nod)));
11525 else
11526 Check_List_Constants (Parameter_Associations (Nod));
11527 end if;
11529 when N_Parameter_Association =>
11530 Check_Expr_Constants (Explicit_Actual_Parameter (Nod));
11532 when others =>
11533 Error_Msg_NE
11534 ("invalid address clause for initialized object &!",
11535 Nod, U_Ent);
11536 Error_Msg_NE
11537 ("\must be constant defined before& (RM 13.1(22))!",
11538 Nod, U_Ent);
11539 end case;
11540 end Check_Expr_Constants;
11542 --------------------------
11543 -- Check_List_Constants --
11544 --------------------------
11546 procedure Check_List_Constants (Lst : List_Id) is
11547 Nod1 : Node_Id;
11549 begin
11550 Nod1 := First (Lst);
11551 while Present (Nod1) loop
11552 Check_Expr_Constants (Nod1);
11553 Next (Nod1);
11554 end loop;
11555 end Check_List_Constants;
11557 -- Start of processing for Check_Constant_Address_Clause
11559 begin
11560 -- If rep_clauses are to be ignored, no need for legality checks. In
11561 -- particular, no need to pester user about rep clauses that violate the
11562 -- rule on constant addresses, given that these clauses will be removed
11563 -- by Freeze before they reach the back end. Similarly in CodePeer mode,
11564 -- we want to relax these checks.
11566 if not Ignore_Rep_Clauses and not CodePeer_Mode then
11567 Check_Expr_Constants (Expr);
11568 end if;
11569 end Check_Constant_Address_Clause;
11571 ---------------------------
11572 -- Check_Pool_Size_Clash --
11573 ---------------------------
11575 procedure Check_Pool_Size_Clash (Ent : Entity_Id; SP, SS : Node_Id) is
11576 Post : Node_Id;
11578 begin
11579 -- We need to find out which one came first. Note that in the case of
11580 -- aspects mixed with pragmas there are cases where the processing order
11581 -- is reversed, which is why we do the check here.
11583 if Sloc (SP) < Sloc (SS) then
11584 Error_Msg_Sloc := Sloc (SP);
11585 Post := SS;
11586 Error_Msg_NE ("Storage_Pool previously given for&#", Post, Ent);
11588 else
11589 Error_Msg_Sloc := Sloc (SS);
11590 Post := SP;
11591 Error_Msg_NE ("Storage_Size previously given for&#", Post, Ent);
11592 end if;
11594 Error_Msg_N
11595 ("\cannot have Storage_Size and Storage_Pool (RM 13.11(3))", Post);
11596 end Check_Pool_Size_Clash;
11598 ----------------------------------------
11599 -- Check_Record_Representation_Clause --
11600 ----------------------------------------
11602 procedure Check_Record_Representation_Clause (N : Node_Id) is
11603 Loc : constant Source_Ptr := Sloc (N);
11604 Ident : constant Node_Id := Identifier (N);
11605 Rectype : Entity_Id;
11606 Fent : Entity_Id;
11607 CC : Node_Id;
11608 Fbit : Uint := No_Uint;
11609 Lbit : Uint := No_Uint;
11610 Hbit : Uint := Uint_0;
11611 Comp : Entity_Id;
11612 Pcomp : Entity_Id;
11614 Max_Bit_So_Far : Uint;
11615 -- Records the maximum bit position so far. If all field positions
11616 -- are monotonically increasing, then we can skip the circuit for
11617 -- checking for overlap, since no overlap is possible.
11619 Tagged_Parent : Entity_Id := Empty;
11620 -- This is set in the case of an extension for which we have either a
11621 -- size clause or Is_Fully_Repped_Tagged_Type True (indicating that all
11622 -- components are positioned by record representation clauses) on the
11623 -- parent type. In this case we check for overlap between components of
11624 -- this tagged type and the parent component. Tagged_Parent will point
11625 -- to this parent type. For all other cases, Tagged_Parent is Empty.
11627 Parent_Last_Bit : Uint := No_Uint; -- init to avoid warning
11628 -- Relevant only if Tagged_Parent is set, Parent_Last_Bit indicates the
11629 -- last bit position for any field in the parent type. We only need to
11630 -- check overlap for fields starting below this point.
11632 Overlap_Check_Required : Boolean;
11633 -- Used to keep track of whether or not an overlap check is required
11635 Overlap_Detected : Boolean := False;
11636 -- Set True if an overlap is detected
11638 Ccount : Natural := 0;
11639 -- Number of component clauses in record rep clause
11641 procedure Check_Component_Overlap (C1_Ent, C2_Ent : Entity_Id);
11642 -- Given two entities for record components or discriminants, checks
11643 -- if they have overlapping component clauses and issues errors if so.
11645 procedure Find_Component;
11646 -- Finds component entity corresponding to current component clause (in
11647 -- CC), and sets Comp to the entity, and Fbit/Lbit to the zero origin
11648 -- start/stop bits for the field. If there is no matching component or
11649 -- if the matching component does not have a component clause, then
11650 -- that's an error and Comp is set to Empty, but no error message is
11651 -- issued, since the message was already given. Comp is also set to
11652 -- Empty if the current "component clause" is in fact a pragma.
11654 procedure Record_Hole_Check
11655 (Rectype : Entity_Id; After_Last : out Uint; Warn : Boolean);
11656 -- Checks for gaps in the given Rectype. Compute After_Last, the bit
11657 -- number after the last component. Warn is True on the initial call,
11658 -- and warnings are given for gaps. For a type extension, this is called
11659 -- recursively to compute After_Last for the parent type; in this case
11660 -- Warn is False and the warnings are suppressed.
11662 procedure Component_Order_Check (Rectype : Entity_Id);
11663 -- Check that the order of component clauses agrees with the order of
11664 -- component declarations, and that the component clauses are given in
11665 -- increasing order of bit offset.
11667 -----------------------------
11668 -- Check_Component_Overlap --
11669 -----------------------------
11671 procedure Check_Component_Overlap (C1_Ent, C2_Ent : Entity_Id) is
11672 CC1 : constant Node_Id := Component_Clause (C1_Ent);
11673 CC2 : constant Node_Id := Component_Clause (C2_Ent);
11675 begin
11676 if Present (CC1) and then Present (CC2) then
11678 -- Exclude odd case where we have two tag components in the same
11679 -- record, both at location zero. This seems a bit strange, but
11680 -- it seems to happen in some circumstances, perhaps on an error.
11682 if Chars (C1_Ent) = Name_uTag then
11683 return;
11684 end if;
11686 -- Here we check if the two fields overlap
11688 declare
11689 S1 : constant Uint := Component_Bit_Offset (C1_Ent);
11690 S2 : constant Uint := Component_Bit_Offset (C2_Ent);
11691 E1 : constant Uint := S1 + Esize (C1_Ent);
11692 E2 : constant Uint := S2 + Esize (C2_Ent);
11694 begin
11695 if E2 <= S1 or else E1 <= S2 then
11696 null;
11697 else
11698 Error_Msg_Node_2 := Component_Name (CC2);
11699 Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
11700 Error_Msg_Node_1 := Component_Name (CC1);
11701 Error_Msg_N
11702 ("component& overlaps & #", Component_Name (CC1));
11703 Overlap_Detected := True;
11704 end if;
11705 end;
11706 end if;
11707 end Check_Component_Overlap;
11709 ---------------------------
11710 -- Component_Order_Check --
11711 ---------------------------
11713 procedure Component_Order_Check (Rectype : Entity_Id) is
11714 Comp : Entity_Id := First_Component (Rectype);
11715 Clause : Node_Id := First (Component_Clauses (N));
11716 Prev_Bit_Offset : Uint := Uint_0;
11717 OOO : constant String :=
11718 "?_r?component clause out of order with respect to declaration";
11720 begin
11721 -- Step Comp through components and Clause through component clauses,
11722 -- skipping pragmas. We ignore discriminants and variant parts,
11723 -- because we get most of the benefit from the plain vanilla
11724 -- component cases, without the extra complexity. If we find a Comp
11725 -- and Clause that don't match, give a warning on both and quit. If
11726 -- we find two subsequent clauses out of order by bit layout, give
11727 -- warning and quit. On each iteration, Prev_Bit_Offset is the one
11728 -- from the previous iteration (or 0 to start).
11730 while Present (Comp) and then Present (Clause) loop
11731 if Nkind (Clause) = N_Component_Clause
11732 and then Ekind (Entity (Component_Name (Clause))) = E_Component
11733 then
11734 if Entity (Component_Name (Clause)) /= Comp then
11735 Error_Msg_N (OOO, Comp);
11736 Error_Msg_N (OOO, Clause);
11737 exit;
11738 end if;
11740 if not Reverse_Bit_Order (Rectype)
11741 and then not Reverse_Storage_Order (Rectype)
11742 and then Component_Bit_Offset (Comp) < Prev_Bit_Offset
11743 then
11744 Error_Msg_N ("?_r?memory layout out of order", Clause);
11745 exit;
11746 end if;
11748 Prev_Bit_Offset := Component_Bit_Offset (Comp);
11749 Next_Component (Comp);
11750 end if;
11752 Next (Clause);
11753 end loop;
11754 end Component_Order_Check;
11756 --------------------
11757 -- Find_Component --
11758 --------------------
11760 procedure Find_Component is
11762 procedure Search_Component (R : Entity_Id);
11763 -- Search components of R for a match. If found, Comp is set
11765 ----------------------
11766 -- Search_Component --
11767 ----------------------
11769 procedure Search_Component (R : Entity_Id) is
11770 begin
11771 Comp := First_Component_Or_Discriminant (R);
11772 while Present (Comp) loop
11774 -- Ignore error of attribute name for component name (we
11775 -- already gave an error message for this, so no need to
11776 -- complain here)
11778 if Nkind (Component_Name (CC)) = N_Attribute_Reference then
11779 null;
11780 else
11781 exit when Chars (Comp) = Chars (Component_Name (CC));
11782 end if;
11784 Next_Component_Or_Discriminant (Comp);
11785 end loop;
11786 end Search_Component;
11788 -- Start of processing for Find_Component
11790 begin
11791 -- Return with Comp set to Empty if we have a pragma
11793 if Nkind (CC) = N_Pragma then
11794 Comp := Empty;
11795 return;
11796 end if;
11798 -- Search current record for matching component
11800 Search_Component (Rectype);
11802 -- If not found, maybe component of base type discriminant that is
11803 -- absent from statically constrained first subtype.
11805 if No (Comp) then
11806 Search_Component (Base_Type (Rectype));
11807 end if;
11809 -- If no component, or the component does not reference the component
11810 -- clause in question, then there was some previous error for which
11811 -- we already gave a message, so just return with Comp Empty.
11813 if No (Comp) or else Component_Clause (Comp) /= CC then
11814 Check_Error_Detected;
11815 Comp := Empty;
11817 -- Normal case where we have a component clause
11819 else
11820 Fbit := Component_Bit_Offset (Comp);
11821 Lbit := Fbit + Esize (Comp) - 1;
11822 end if;
11823 end Find_Component;
11825 -----------------------
11826 -- Record_Hole_Check --
11827 -----------------------
11829 procedure Record_Hole_Check
11830 (Rectype : Entity_Id; After_Last : out Uint; Warn : Boolean)
11832 Decl : constant Node_Id := Declaration_Node (Base_Type (Rectype));
11833 -- Full declaration of record type
11835 procedure Check_Component_List
11836 (DS : List_Id;
11837 CL : Node_Id;
11838 Sbit : Uint;
11839 Abit : out Uint);
11840 -- Check component list CL for holes. DS is a list of discriminant
11841 -- specifications to be included in the consideration of components.
11842 -- Sbit is the starting bit, which is zero if there are no preceding
11843 -- components (before a variant part, or a parent type, or a tag
11844 -- field). If there are preceding components, Sbit is the bit just
11845 -- after the last such component. Abit is set to the bit just after
11846 -- the last component of DS and CL.
11848 --------------------------
11849 -- Check_Component_List --
11850 --------------------------
11852 procedure Check_Component_List
11853 (DS : List_Id;
11854 CL : Node_Id;
11855 Sbit : Uint;
11856 Abit : out Uint)
11858 Compl : Integer;
11860 begin
11861 Compl := Integer (List_Length (Component_Items (CL)));
11863 if DS /= No_List then
11864 Compl := Compl + Integer (List_Length (DS));
11865 end if;
11867 declare
11868 Comps : array (Natural range 0 .. Compl) of Entity_Id;
11869 -- Gather components (zero entry is for sort routine)
11871 Ncomps : Natural := 0;
11872 -- Number of entries stored in Comps (starting at Comps (1))
11874 Citem : Node_Id;
11875 -- One component item or discriminant specification
11877 Nbit : Uint;
11878 -- Starting bit for next component
11880 CEnt : Entity_Id;
11881 -- Component entity
11883 Variant : Node_Id;
11884 -- One variant
11886 function Lt (Op1, Op2 : Natural) return Boolean;
11887 -- Compare routine for Sort
11889 procedure Move (From : Natural; To : Natural);
11890 -- Move routine for Sort
11892 package Sorting is new GNAT.Heap_Sort_G (Move, Lt);
11894 --------
11895 -- Lt --
11896 --------
11898 function Lt (Op1, Op2 : Natural) return Boolean is
11899 K1 : constant Boolean :=
11900 Known_Component_Bit_Offset (Comps (Op1));
11901 K2 : constant Boolean :=
11902 Known_Component_Bit_Offset (Comps (Op2));
11903 -- Record representation clauses can be incomplete, so the
11904 -- Component_Bit_Offsets can be unknown.
11905 begin
11906 if K1 then
11907 if K2 then
11908 return Component_Bit_Offset (Comps (Op1))
11909 < Component_Bit_Offset (Comps (Op2));
11910 else
11911 return True;
11912 end if;
11913 else
11914 return K2;
11915 end if;
11916 end Lt;
11918 ----------
11919 -- Move --
11920 ----------
11922 procedure Move (From : Natural; To : Natural) is
11923 begin
11924 Comps (To) := Comps (From);
11925 end Move;
11927 begin
11928 -- Gather discriminants into Comp
11930 Citem := First (DS);
11931 while Present (Citem) loop
11932 if Nkind (Citem) = N_Discriminant_Specification then
11933 declare
11934 Ent : constant Entity_Id :=
11935 Defining_Identifier (Citem);
11936 begin
11937 if Ekind (Ent) = E_Discriminant then
11938 Ncomps := Ncomps + 1;
11939 Comps (Ncomps) := Ent;
11940 end if;
11941 end;
11942 end if;
11944 Next (Citem);
11945 end loop;
11947 -- Gather component entities into Comp
11949 Citem := First (Component_Items (CL));
11950 while Present (Citem) loop
11951 if Nkind (Citem) = N_Component_Declaration then
11952 Ncomps := Ncomps + 1;
11953 Comps (Ncomps) := Defining_Identifier (Citem);
11954 end if;
11956 Next (Citem);
11957 end loop;
11959 -- Now sort the component entities based on the first bit.
11960 -- Note we already know there are no overlapping components.
11962 Sorting.Sort (Ncomps);
11964 -- Loop through entries checking for holes
11966 Nbit := Sbit;
11967 for J in 1 .. Ncomps loop
11968 CEnt := Comps (J);
11969 pragma Annotate (CodePeer, Modified, CEnt);
11971 declare
11972 CBO : constant Uint := Component_Bit_Offset (CEnt);
11974 begin
11975 -- Skip components with unknown offsets
11977 if Present (CBO) and then CBO >= 0 then
11978 Error_Msg_Uint_1 := CBO - Nbit;
11980 if Warn and then Error_Msg_Uint_1 > 0 then
11981 Error_Msg_NE
11982 ("?.h?^-bit gap before component&",
11983 Component_Name (Component_Clause (CEnt)),
11984 CEnt);
11985 end if;
11987 Nbit := CBO + Esize (CEnt);
11988 end if;
11989 end;
11990 end loop;
11992 -- Set Abit to just after the last nonvariant component
11994 Abit := Nbit;
11996 -- Process variant parts recursively if present. Set Abit to
11997 -- the maximum for all variant parts.
11999 if Present (Variant_Part (CL)) then
12000 declare
12001 Var_Start : constant Uint := Nbit;
12002 begin
12003 Variant := First (Variants (Variant_Part (CL)));
12004 while Present (Variant) loop
12005 Check_Component_List
12006 (No_List, Component_List (Variant), Var_Start, Nbit);
12007 Next (Variant);
12008 if Nbit > Abit then
12009 Abit := Nbit;
12010 end if;
12011 end loop;
12012 end;
12013 end if;
12014 end;
12015 end Check_Component_List;
12017 -- Local variables
12019 Sbit : Uint;
12020 -- Starting bit for call to Check_Component_List. Zero for an
12021 -- untagged type. The size of the Tag for a nonderived tagged
12022 -- type. Parent size for a type extension.
12024 Record_Definition : Node_Id;
12025 -- Record_Definition containing Component_List to pass to
12026 -- Check_Component_List.
12028 -- Start of processing for Record_Hole_Check
12030 begin
12031 if Is_Tagged_Type (Rectype) then
12032 Sbit := UI_From_Int (System_Address_Size);
12033 else
12034 Sbit := Uint_0;
12035 end if;
12037 After_Last := Uint_0;
12039 if Nkind (Decl) = N_Full_Type_Declaration then
12040 Record_Definition := Type_Definition (Decl);
12042 -- If we have a record extension, set Sbit to point after the last
12043 -- component of the parent type, by calling Record_Hole_Check
12044 -- recursively.
12046 if Nkind (Record_Definition) = N_Derived_Type_Definition then
12047 Record_Definition := Record_Extension_Part (Record_Definition);
12048 Record_Hole_Check (Underlying_Type (Parent_Subtype (Rectype)),
12049 After_Last => Sbit, Warn => False);
12050 end if;
12052 if Nkind (Record_Definition) = N_Record_Definition then
12053 Check_Component_List
12054 (Discriminant_Specifications (Decl),
12055 Component_List (Record_Definition),
12056 Sbit, After_Last);
12057 end if;
12058 end if;
12059 end Record_Hole_Check;
12061 -- Start of processing for Check_Record_Representation_Clause
12063 begin
12064 Find_Type (Ident);
12065 Rectype := Entity (Ident);
12067 if Rectype = Any_Type then
12068 return;
12069 end if;
12071 Rectype := Underlying_Type (Rectype);
12073 -- See if we have a fully repped derived tagged type
12075 declare
12076 PS : constant Entity_Id := Parent_Subtype (Rectype);
12078 begin
12079 if Present (PS) and then Known_Static_RM_Size (PS) then
12080 Tagged_Parent := PS;
12081 Parent_Last_Bit := RM_Size (PS) - 1;
12083 elsif Present (PS) and then Is_Fully_Repped_Tagged_Type (PS) then
12084 Tagged_Parent := PS;
12086 -- Find maximum bit of any component of the parent type
12088 Parent_Last_Bit := UI_From_Int (System_Address_Size - 1);
12089 Pcomp := First_Component_Or_Discriminant (Tagged_Parent);
12090 while Present (Pcomp) loop
12091 if Present (Component_Bit_Offset (Pcomp))
12092 and then Known_Static_Esize (Pcomp)
12093 then
12094 Parent_Last_Bit :=
12095 UI_Max
12096 (Parent_Last_Bit,
12097 Component_Bit_Offset (Pcomp) + Esize (Pcomp) - 1);
12098 end if;
12100 Next_Component_Or_Discriminant (Pcomp);
12101 end loop;
12102 end if;
12103 end;
12105 -- All done if no component clauses
12107 CC := First (Component_Clauses (N));
12109 if No (CC) then
12110 return;
12111 end if;
12113 -- If a tag is present, then create a component clause that places it
12114 -- at the start of the record (otherwise gigi may place it after other
12115 -- fields that have rep clauses).
12117 Fent := First_Entity (Rectype);
12119 if Nkind (Fent) = N_Defining_Identifier
12120 and then Chars (Fent) = Name_uTag
12121 then
12122 Set_Component_Bit_Offset (Fent, Uint_0);
12123 Set_Normalized_Position (Fent, Uint_0);
12124 Set_Normalized_First_Bit (Fent, Uint_0);
12125 Set_Esize (Fent, UI_From_Int (System_Address_Size));
12127 Set_Component_Clause (Fent,
12128 Make_Component_Clause (Loc,
12129 Component_Name => Make_Identifier (Loc, Name_uTag),
12131 Position => Make_Integer_Literal (Loc, Uint_0),
12132 First_Bit => Make_Integer_Literal (Loc, Uint_0),
12133 Last_Bit =>
12134 Make_Integer_Literal (Loc,
12135 UI_From_Int (System_Address_Size - 1))));
12137 Ccount := Ccount + 1;
12138 end if;
12140 Max_Bit_So_Far := Uint_Minus_1;
12141 Overlap_Check_Required := False;
12143 -- Process the component clauses
12145 while Present (CC) loop
12146 Find_Component;
12148 if Present (Comp) then
12149 Ccount := Ccount + 1;
12151 -- We need a full overlap check if record positions non-monotonic
12153 if Fbit <= Max_Bit_So_Far then
12154 Overlap_Check_Required := True;
12155 end if;
12157 Max_Bit_So_Far := Lbit;
12159 -- Check bit position out of range of specified size
12161 if Has_Size_Clause (Rectype)
12162 and then RM_Size (Rectype) <= Lbit
12163 then
12164 Error_Msg_Uint_1 := RM_Size (Rectype);
12165 Error_Msg_Uint_2 := Lbit + 1;
12166 Error_Msg_N ("bit number out of range of specified "
12167 & "size (expected ^, got ^)",
12168 Last_Bit (CC));
12170 -- Check for overlap with tag or parent component
12172 else
12173 if Is_Tagged_Type (Rectype)
12174 and then Fbit < System_Address_Size
12175 then
12176 Error_Msg_NE
12177 ("component overlaps tag field of&",
12178 Component_Name (CC), Rectype);
12179 Overlap_Detected := True;
12181 elsif Present (Tagged_Parent)
12182 and then Fbit <= Parent_Last_Bit
12183 then
12184 Error_Msg_NE
12185 ("component overlaps parent field of&",
12186 Component_Name (CC), Rectype);
12187 Overlap_Detected := True;
12188 end if;
12190 if Hbit < Lbit then
12191 Hbit := Lbit;
12192 end if;
12193 end if;
12194 end if;
12196 Next (CC);
12197 end loop;
12199 -- Now that we have processed all the component clauses, check for
12200 -- overlap. We have to leave this till last, since the components can
12201 -- appear in any arbitrary order in the representation clause.
12203 -- We do not need this check if all specified ranges were monotonic,
12204 -- as recorded by Overlap_Check_Required being False at this stage.
12206 -- This first section checks if there are any overlapping entries at
12207 -- all. It does this by sorting all entries and then seeing if there are
12208 -- any overlaps. If there are none, then that is decisive, but if there
12209 -- are overlaps, they may still be OK (they may result from fields in
12210 -- different variants).
12212 if Overlap_Check_Required then
12213 Overlap_Check1 : declare
12215 OC_Fbit : array (0 .. Ccount) of Uint;
12216 -- First-bit values for component clauses, the value is the offset
12217 -- of the first bit of the field from start of record. The zero
12218 -- entry is for use in sorting.
12220 OC_Lbit : array (0 .. Ccount) of Uint;
12221 -- Last-bit values for component clauses, the value is the offset
12222 -- of the last bit of the field from start of record. The zero
12223 -- entry is for use in sorting.
12225 OC_Count : Natural := 0;
12226 -- Count of entries in OC_Fbit and OC_Lbit
12228 function OC_Lt (Op1, Op2 : Natural) return Boolean;
12229 -- Compare routine for Sort
12231 procedure OC_Move (From : Natural; To : Natural);
12232 -- Move routine for Sort
12234 package Sorting is new GNAT.Heap_Sort_G (OC_Move, OC_Lt);
12236 -----------
12237 -- OC_Lt --
12238 -----------
12240 function OC_Lt (Op1, Op2 : Natural) return Boolean is
12241 begin
12242 return OC_Fbit (Op1) < OC_Fbit (Op2);
12243 end OC_Lt;
12245 -------------
12246 -- OC_Move --
12247 -------------
12249 procedure OC_Move (From : Natural; To : Natural) is
12250 begin
12251 OC_Fbit (To) := OC_Fbit (From);
12252 OC_Lbit (To) := OC_Lbit (From);
12253 end OC_Move;
12255 -- Start of processing for Overlap_Check
12257 begin
12258 CC := First (Component_Clauses (N));
12259 while Present (CC) loop
12261 -- Exclude component clause already marked in error
12263 if not Error_Posted (CC) then
12264 Find_Component;
12266 if Present (Comp) then
12267 OC_Count := OC_Count + 1;
12268 OC_Fbit (OC_Count) := Fbit;
12269 OC_Lbit (OC_Count) := Lbit;
12270 end if;
12271 end if;
12273 Next (CC);
12274 end loop;
12276 Sorting.Sort (OC_Count);
12278 Overlap_Check_Required := False;
12279 for J in 1 .. OC_Count - 1 loop
12280 if OC_Lbit (J) >= OC_Fbit (J + 1) then
12281 Overlap_Check_Required := True;
12282 exit;
12283 end if;
12284 end loop;
12285 end Overlap_Check1;
12286 end if;
12288 -- If Overlap_Check_Required is still True, then we have to do the full
12289 -- scale overlap check, since we have at least two fields that do
12290 -- overlap, and we need to know if that is OK since they are in
12291 -- different variant, or whether we have a definite problem.
12293 if Overlap_Check_Required then
12294 Overlap_Check2 : declare
12295 C1_Ent, C2_Ent : Entity_Id;
12296 -- Entities of components being checked for overlap
12298 Clist : Node_Id;
12299 -- Component_List node whose Component_Items are being checked
12301 Citem : Node_Id;
12302 -- Component declaration for component being checked
12304 begin
12305 C1_Ent := First_Entity (Base_Type (Rectype));
12307 -- Loop through all components in record. For each component check
12308 -- for overlap with any of the preceding elements on the component
12309 -- list containing the component and also, if the component is in
12310 -- a variant, check against components outside the case structure.
12311 -- This latter test is repeated recursively up the variant tree.
12313 Main_Component_Loop : while Present (C1_Ent) loop
12314 if Ekind (C1_Ent) not in E_Component | E_Discriminant then
12315 goto Continue_Main_Component_Loop;
12316 end if;
12318 -- Skip overlap check if entity has no declaration node. This
12319 -- happens with discriminants in constrained derived types.
12320 -- Possibly we are missing some checks as a result, but that
12321 -- does not seem terribly serious.
12323 if No (Declaration_Node (C1_Ent)) then
12324 goto Continue_Main_Component_Loop;
12325 end if;
12327 Clist := Parent (List_Containing (Declaration_Node (C1_Ent)));
12329 -- Loop through component lists that need checking. Check the
12330 -- current component list and all lists in variants above us.
12332 Component_List_Loop : loop
12334 -- If derived type definition, go to full declaration
12335 -- If at outer level, check discriminants if there are any.
12337 if Nkind (Clist) = N_Derived_Type_Definition then
12338 Clist := Parent (Clist);
12339 end if;
12341 -- Outer level of record definition, check discriminants
12342 -- but be careful not to flag a non-stored discriminant
12343 -- and the stored discriminant it renames as overlapping.
12345 if Nkind (Clist) in N_Full_Type_Declaration
12346 | N_Private_Type_Declaration
12347 then
12348 if Has_Discriminants (Defining_Identifier (Clist)) then
12349 C2_Ent :=
12350 First_Discriminant (Defining_Identifier (Clist));
12351 while Present (C2_Ent) loop
12352 exit when
12353 Original_Record_Component (C1_Ent) =
12354 Original_Record_Component (C2_Ent);
12355 Check_Component_Overlap (C1_Ent, C2_Ent);
12356 Next_Discriminant (C2_Ent);
12357 end loop;
12358 end if;
12360 -- Record extension case
12362 elsif Nkind (Clist) = N_Derived_Type_Definition then
12363 Clist := Empty;
12365 -- Otherwise check one component list
12367 else
12368 Citem := First (Component_Items (Clist));
12369 while Present (Citem) loop
12370 if Nkind (Citem) = N_Component_Declaration then
12371 C2_Ent := Defining_Identifier (Citem);
12372 exit when C1_Ent = C2_Ent;
12373 Check_Component_Overlap (C1_Ent, C2_Ent);
12374 end if;
12376 Next (Citem);
12377 end loop;
12378 end if;
12380 -- Check for variants above us (the parent of the Clist can
12381 -- be a variant, in which case its parent is a variant part,
12382 -- and the parent of the variant part is a component list
12383 -- whose components must all be checked against the current
12384 -- component for overlap).
12386 if Nkind (Parent (Clist)) = N_Variant then
12387 Clist := Parent (Parent (Parent (Clist)));
12389 -- Check for possible discriminant part in record, this
12390 -- is treated essentially as another level in the
12391 -- recursion. For this case the parent of the component
12392 -- list is the record definition, and its parent is the
12393 -- full type declaration containing the discriminant
12394 -- specifications.
12396 elsif Nkind (Parent (Clist)) = N_Record_Definition then
12397 Clist := Parent (Parent ((Clist)));
12399 -- If neither of these two cases, we are at the top of
12400 -- the tree.
12402 else
12403 exit Component_List_Loop;
12404 end if;
12405 end loop Component_List_Loop;
12407 <<Continue_Main_Component_Loop>>
12408 Next_Entity (C1_Ent);
12410 end loop Main_Component_Loop;
12411 end Overlap_Check2;
12412 end if;
12414 -- Skip the following warnings if overlap was detected; programmer
12415 -- should fix the errors first. Also skip the warnings for types in
12416 -- generics, because their representation information is not fully
12417 -- computed.
12419 if not Overlap_Detected and then not In_Generic_Scope (Rectype) then
12420 -- Check for record holes (gaps)
12422 if Warn_On_Record_Holes then
12423 declare
12424 Ignore : Uint;
12425 begin
12426 Record_Hole_Check (Rectype, After_Last => Ignore, Warn => True);
12427 end;
12428 end if;
12430 -- Check for out-of-order component clauses
12432 if Warn_On_Component_Order then
12433 Component_Order_Check (Rectype);
12434 end if;
12435 end if;
12437 -- For records that have component clauses for all components, and whose
12438 -- size is less than or equal to 32, and which can be fully packed, we
12439 -- need to know the size in the front end to activate possible packed
12440 -- array processing where the component type is a record.
12442 -- At this stage Hbit + 1 represents the first unused bit from all the
12443 -- component clauses processed, so if the component clauses are
12444 -- complete, then this is the length of the record.
12446 -- For records longer than System.Storage_Unit, and for those where not
12447 -- all components have component clauses, the back end determines the
12448 -- length (it may for example be appropriate to round up the size
12449 -- to some convenient boundary, based on alignment considerations, etc).
12451 if not Known_RM_Size (Rectype)
12452 and then Hbit + 1 <= 32
12453 and then not Strict_Alignment (Rectype)
12454 then
12456 -- Nothing to do if at least one component has no component clause
12458 Comp := First_Component_Or_Discriminant (Rectype);
12459 while Present (Comp) loop
12460 exit when No (Component_Clause (Comp));
12461 Next_Component_Or_Discriminant (Comp);
12462 end loop;
12464 -- If we fall out of loop, all components have component clauses
12465 -- and so we can set the size to the maximum value.
12467 if No (Comp) then
12468 Set_RM_Size (Rectype, Hbit + 1);
12469 end if;
12470 end if;
12471 end Check_Record_Representation_Clause;
12473 ----------------
12474 -- Check_Size --
12475 ----------------
12477 procedure Check_Size
12478 (N : Node_Id;
12479 T : Entity_Id;
12480 Siz : Uint;
12481 Biased : out Boolean)
12483 procedure Size_Too_Small_Error (Min_Siz : Uint);
12484 -- Emit an error concerning illegal size Siz. Min_Siz denotes the
12485 -- minimum size.
12487 --------------------------
12488 -- Size_Too_Small_Error --
12489 --------------------------
12491 procedure Size_Too_Small_Error (Min_Siz : Uint) is
12492 begin
12493 Error_Msg_Uint_1 := Min_Siz;
12494 Error_Msg_NE (Size_Too_Small_Message, N, T);
12495 end Size_Too_Small_Error;
12497 -- Local variables
12499 UT : constant Entity_Id := Underlying_Type (T);
12500 M : Uint;
12502 -- Start of processing for Check_Size
12504 begin
12505 Biased := False;
12507 -- Reject patently improper size values
12509 if Is_Elementary_Type (T)
12510 and then Siz > Int'Last
12511 then
12512 Error_Msg_N ("Size value too large for elementary type", N);
12514 if Nkind (Original_Node (N)) = N_Op_Expon then
12515 Error_Msg_N
12516 ("\maybe '* was meant, rather than '*'*", Original_Node (N));
12517 end if;
12518 end if;
12520 -- Dismiss generic types
12522 if Is_Generic_Type (T)
12523 or else
12524 Is_Generic_Type (UT)
12525 or else
12526 Is_Generic_Type (Root_Type (UT))
12527 then
12528 return;
12530 -- Guard against previous errors
12532 elsif No (UT) or else UT = Any_Type then
12533 Check_Error_Detected;
12534 return;
12536 -- Check case of bit packed array
12538 elsif Is_Array_Type (UT)
12539 and then Known_Static_Component_Size (UT)
12540 and then Is_Bit_Packed_Array (UT)
12541 then
12542 declare
12543 Asiz : Uint;
12544 Indx : Node_Id;
12545 Ityp : Entity_Id;
12547 begin
12548 Asiz := Component_Size (UT);
12549 Indx := First_Index (UT);
12550 loop
12551 Ityp := Etype (Indx);
12553 -- If non-static bound, then we are not in the business of
12554 -- trying to check the length, and indeed an error will be
12555 -- issued elsewhere, since sizes of non-static array types
12556 -- cannot be set implicitly or explicitly.
12558 if not Is_OK_Static_Subtype (Ityp) then
12559 return;
12560 end if;
12562 -- Otherwise accumulate next dimension
12564 Asiz := Asiz * (Expr_Value (Type_High_Bound (Ityp)) -
12565 Expr_Value (Type_Low_Bound (Ityp)) +
12566 Uint_1);
12568 Next_Index (Indx);
12569 exit when No (Indx);
12570 end loop;
12572 if Asiz <= Siz then
12573 return;
12575 else
12576 Size_Too_Small_Error (Asiz);
12577 end if;
12578 end;
12580 -- All other composite types are ignored
12582 elsif Is_Composite_Type (UT) then
12583 return;
12585 -- For fixed-point types, don't check minimum if type is not frozen,
12586 -- since we don't know all the characteristics of the type that can
12587 -- affect the size (e.g. a specified small) till freeze time.
12589 elsif Is_Fixed_Point_Type (UT) and then not Is_Frozen (UT) then
12590 null;
12592 -- Cases for which a minimum check is required
12594 else
12595 -- Ignore if specified size is correct for the type
12597 if Known_Esize (UT) and then Siz = Esize (UT) then
12598 return;
12599 end if;
12601 -- Otherwise get minimum size
12603 M := UI_From_Int (Minimum_Size (UT));
12605 if Siz < M then
12607 -- Size is less than minimum size, but one possibility remains
12608 -- that we can manage with the new size if we bias the type.
12610 M := UI_From_Int (Minimum_Size (UT, Biased => True));
12612 if Siz < M then
12613 Size_Too_Small_Error (M);
12614 else
12615 Biased := True;
12616 end if;
12617 end if;
12618 end if;
12619 end Check_Size;
12621 --------------------------
12622 -- Freeze_Entity_Checks --
12623 --------------------------
12625 procedure Freeze_Entity_Checks (N : Node_Id) is
12626 procedure Hide_Non_Overridden_Subprograms (Typ : Entity_Id);
12627 -- Inspect the primitive operations of type Typ and hide all pairs of
12628 -- implicitly declared non-overridden non-fully conformant homographs
12629 -- (Ada RM 8.3 12.3/2).
12631 -------------------------------------
12632 -- Hide_Non_Overridden_Subprograms --
12633 -------------------------------------
12635 procedure Hide_Non_Overridden_Subprograms (Typ : Entity_Id) is
12636 procedure Hide_Matching_Homographs
12637 (Subp_Id : Entity_Id;
12638 Start_Elmt : Elmt_Id);
12639 -- Inspect a list of primitive operations starting with Start_Elmt
12640 -- and find matching implicitly declared non-overridden non-fully
12641 -- conformant homographs of Subp_Id. If found, all matches along
12642 -- with Subp_Id are hidden from all visibility.
12644 function Is_Non_Overridden_Or_Null_Procedure
12645 (Subp_Id : Entity_Id) return Boolean;
12646 -- Determine whether subprogram Subp_Id is implicitly declared non-
12647 -- overridden subprogram or an implicitly declared null procedure.
12649 ------------------------------
12650 -- Hide_Matching_Homographs --
12651 ------------------------------
12653 procedure Hide_Matching_Homographs
12654 (Subp_Id : Entity_Id;
12655 Start_Elmt : Elmt_Id)
12657 Prim : Entity_Id;
12658 Prim_Elmt : Elmt_Id;
12660 begin
12661 Prim_Elmt := Start_Elmt;
12662 while Present (Prim_Elmt) loop
12663 Prim := Node (Prim_Elmt);
12665 -- The current primitive is implicitly declared non-overridden
12666 -- non-fully conformant homograph of Subp_Id. Both subprograms
12667 -- must be hidden from visibility.
12669 if Chars (Prim) = Chars (Subp_Id)
12670 and then Is_Non_Overridden_Or_Null_Procedure (Prim)
12671 and then not Fully_Conformant (Prim, Subp_Id)
12672 then
12673 Set_Is_Hidden_Non_Overridden_Subpgm (Prim);
12674 Set_Is_Immediately_Visible (Prim, False);
12675 Set_Is_Potentially_Use_Visible (Prim, False);
12677 Set_Is_Hidden_Non_Overridden_Subpgm (Subp_Id);
12678 Set_Is_Immediately_Visible (Subp_Id, False);
12679 Set_Is_Potentially_Use_Visible (Subp_Id, False);
12680 end if;
12682 Next_Elmt (Prim_Elmt);
12683 end loop;
12684 end Hide_Matching_Homographs;
12686 -----------------------------------------
12687 -- Is_Non_Overridden_Or_Null_Procedure --
12688 -----------------------------------------
12690 function Is_Non_Overridden_Or_Null_Procedure
12691 (Subp_Id : Entity_Id) return Boolean
12693 Alias_Id : Entity_Id;
12695 begin
12696 -- The subprogram is inherited (implicitly declared), it does not
12697 -- override and does not cover a primitive of an interface.
12699 if Ekind (Subp_Id) in E_Function | E_Procedure
12700 and then Present (Alias (Subp_Id))
12701 and then No (Interface_Alias (Subp_Id))
12702 and then No (Overridden_Operation (Subp_Id))
12703 then
12704 Alias_Id := Alias (Subp_Id);
12706 if Requires_Overriding (Alias_Id) then
12707 return True;
12709 elsif Nkind (Parent (Alias_Id)) = N_Procedure_Specification
12710 and then Null_Present (Parent (Alias_Id))
12711 then
12712 return True;
12713 end if;
12714 end if;
12716 return False;
12717 end Is_Non_Overridden_Or_Null_Procedure;
12719 -- Local variables
12721 Prim_Ops : constant Elist_Id := Direct_Primitive_Operations (Typ);
12722 Prim : Entity_Id;
12723 Prim_Elmt : Elmt_Id;
12725 -- Start of processing for Hide_Non_Overridden_Subprograms
12727 begin
12728 -- Inspect the list of primitives looking for non-overridden
12729 -- subprograms.
12731 if Present (Prim_Ops) then
12732 Prim_Elmt := First_Elmt (Prim_Ops);
12733 while Present (Prim_Elmt) loop
12734 Prim := Node (Prim_Elmt);
12735 Next_Elmt (Prim_Elmt);
12737 if Is_Non_Overridden_Or_Null_Procedure (Prim) then
12738 Hide_Matching_Homographs
12739 (Subp_Id => Prim,
12740 Start_Elmt => Prim_Elmt);
12741 end if;
12742 end loop;
12743 end if;
12744 end Hide_Non_Overridden_Subprograms;
12746 -- Local variables
12748 E : constant Entity_Id := Entity (N);
12750 Nongeneric_Case : constant Boolean := Nkind (N) = N_Freeze_Entity;
12751 -- True in nongeneric case. Some of the processing here is skipped
12752 -- for the generic case since it is not needed. Basically in the
12753 -- generic case, we only need to do stuff that might generate error
12754 -- messages or warnings.
12756 -- Start of processing for Freeze_Entity_Checks
12758 begin
12759 -- Remember that we are processing a freezing entity. Required to
12760 -- ensure correct decoration of internal entities associated with
12761 -- interfaces (see New_Overloaded_Entity).
12763 Inside_Freezing_Actions := Inside_Freezing_Actions + 1;
12765 -- For tagged types covering interfaces add internal entities that link
12766 -- the primitives of the interfaces with the primitives that cover them.
12767 -- Note: These entities were originally generated only when generating
12768 -- code because their main purpose was to provide support to initialize
12769 -- the secondary dispatch tables. They are also used to locate
12770 -- primitives covering interfaces when processing generics (see
12771 -- Derive_Subprograms).
12773 -- This is not needed in the generic case
12775 if Ada_Version >= Ada_2005
12776 and then Nongeneric_Case
12777 and then Ekind (E) = E_Record_Type
12778 and then Is_Tagged_Type (E)
12779 and then not Is_Interface (E)
12780 and then Has_Interfaces (E)
12781 then
12782 -- This would be a good common place to call the routine that checks
12783 -- overriding of interface primitives (and thus factorize calls to
12784 -- Check_Abstract_Overriding located at different contexts in the
12785 -- compiler). However, this is not possible because it causes
12786 -- spurious errors in case of late overriding.
12788 Add_Internal_Interface_Entities (E);
12789 end if;
12791 -- After all forms of overriding have been resolved, a tagged type may
12792 -- be left with a set of implicitly declared and possibly erroneous
12793 -- abstract subprograms, null procedures and subprograms that require
12794 -- overriding. If this set contains fully conformant homographs, then
12795 -- one is chosen arbitrarily (already done during resolution), otherwise
12796 -- all remaining non-fully conformant homographs are hidden from
12797 -- visibility (Ada RM 8.3 12.3/2).
12799 if Is_Tagged_Type (E) then
12800 Hide_Non_Overridden_Subprograms (E);
12801 end if;
12803 -- Check CPP types
12805 if Ekind (E) = E_Record_Type
12806 and then Is_CPP_Class (E)
12807 and then Is_Tagged_Type (E)
12808 and then Tagged_Type_Expansion
12809 then
12810 if CPP_Num_Prims (E) = 0 then
12812 -- If the CPP type has user defined components then it must import
12813 -- primitives from C++. This is required because if the C++ class
12814 -- has no primitives then the C++ compiler does not added the _tag
12815 -- component to the type.
12817 if First_Entity (E) /= Last_Entity (E) then
12818 Error_Msg_N
12819 ("'C'P'P type must import at least one primitive from C++??",
12821 end if;
12822 end if;
12824 -- Check that all its primitives are abstract or imported from C++.
12825 -- Check also availability of the C++ constructor.
12827 declare
12828 Has_Constructors : constant Boolean := Has_CPP_Constructors (E);
12829 Elmt : Elmt_Id;
12830 Error_Reported : Boolean := False;
12831 Prim : Node_Id;
12833 begin
12834 Elmt := First_Elmt (Primitive_Operations (E));
12835 while Present (Elmt) loop
12836 Prim := Node (Elmt);
12838 if Comes_From_Source (Prim) then
12839 if Is_Abstract_Subprogram (Prim) then
12840 null;
12842 elsif not Is_Imported (Prim)
12843 or else Convention (Prim) /= Convention_CPP
12844 then
12845 Error_Msg_N
12846 ("primitives of 'C'P'P types must be imported from C++ "
12847 & "or abstract??", Prim);
12849 elsif not Has_Constructors
12850 and then not Error_Reported
12851 then
12852 Error_Msg_Name_1 := Chars (E);
12853 Error_Msg_N
12854 ("??'C'P'P constructor required for type %", Prim);
12855 Error_Reported := True;
12856 end if;
12857 end if;
12859 Next_Elmt (Elmt);
12860 end loop;
12861 end;
12862 end if;
12864 -- Check Ada derivation of CPP type
12866 if Expander_Active -- why? losing errors in -gnatc mode???
12867 and then Present (Etype (E)) -- defend against errors
12868 and then Tagged_Type_Expansion
12869 and then Ekind (E) = E_Record_Type
12870 and then Etype (E) /= E
12871 and then Is_CPP_Class (Etype (E))
12872 and then CPP_Num_Prims (Etype (E)) > 0
12873 and then not Is_CPP_Class (E)
12874 and then not Has_CPP_Constructors (Etype (E))
12875 then
12876 -- If the parent has C++ primitives but it has no constructor then
12877 -- check that all the primitives are overridden in this derivation;
12878 -- otherwise the constructor of the parent is needed to build the
12879 -- dispatch table.
12881 declare
12882 Elmt : Elmt_Id;
12883 Prim : Node_Id;
12885 begin
12886 Elmt := First_Elmt (Primitive_Operations (E));
12887 while Present (Elmt) loop
12888 Prim := Node (Elmt);
12890 if not Is_Abstract_Subprogram (Prim)
12891 and then No (Interface_Alias (Prim))
12892 and then Find_Dispatching_Type (Ultimate_Alias (Prim)) /= E
12893 then
12894 Error_Msg_Name_1 := Chars (Etype (E));
12895 Error_Msg_N
12896 ("'C'P'P constructor required for parent type %", E);
12897 exit;
12898 end if;
12900 Next_Elmt (Elmt);
12901 end loop;
12902 end;
12903 end if;
12905 Inside_Freezing_Actions := Inside_Freezing_Actions - 1;
12907 -- For a record type, deal with variant parts. This has to be delayed to
12908 -- this point, because of the issue of statically predicated subtypes,
12909 -- which we have to ensure are frozen before checking choices, since we
12910 -- need to have the static choice list set.
12912 if Is_Record_Type (E) then
12913 Check_Variant_Part : declare
12914 D : constant Node_Id := Declaration_Node (E);
12915 T : Node_Id;
12916 C : Node_Id;
12917 VP : Node_Id;
12919 Others_Present : Boolean;
12920 pragma Warnings (Off, Others_Present);
12921 -- Indicates others present, not used in this case
12923 procedure Non_Static_Choice_Error (Choice : Node_Id);
12924 -- Error routine invoked by the generic instantiation below when
12925 -- the variant part has a non static choice.
12927 procedure Process_Declarations (Variant : Node_Id);
12928 -- Processes declarations associated with a variant. We analyzed
12929 -- the declarations earlier (in Sem_Ch3.Analyze_Variant_Part),
12930 -- but we still need the recursive call to Check_Choices for any
12931 -- nested variant to get its choices properly processed. This is
12932 -- also where we expand out the choices if expansion is active.
12934 package Variant_Choices_Processing is new
12935 Generic_Check_Choices
12936 (Process_Empty_Choice => No_OP,
12937 Process_Non_Static_Choice => Non_Static_Choice_Error,
12938 Process_Associated_Node => Process_Declarations);
12939 use Variant_Choices_Processing;
12941 -----------------------------
12942 -- Non_Static_Choice_Error --
12943 -----------------------------
12945 procedure Non_Static_Choice_Error (Choice : Node_Id) is
12946 begin
12947 Flag_Non_Static_Expr
12948 ("choice given in variant part is not static!", Choice);
12949 end Non_Static_Choice_Error;
12951 --------------------------
12952 -- Process_Declarations --
12953 --------------------------
12955 procedure Process_Declarations (Variant : Node_Id) is
12956 CL : constant Node_Id := Component_List (Variant);
12957 VP : Node_Id;
12959 begin
12960 -- Check for static predicate present in this variant
12962 if Has_SP_Choice (Variant) then
12964 -- Here we expand. You might expect to find this call in
12965 -- Expand_N_Variant_Part, but that is called when we first
12966 -- see the variant part, and we cannot do this expansion
12967 -- earlier than the freeze point, since for statically
12968 -- predicated subtypes, the predicate is not known till
12969 -- the freeze point.
12971 -- Furthermore, we do this expansion even if the expander
12972 -- is not active, because other semantic processing, e.g.
12973 -- for aggregates, requires the expanded list of choices.
12975 -- If the expander is not active, then we can't just clobber
12976 -- the list since it would invalidate the tree.
12977 -- So we have to rewrite the variant part with a Rewrite
12978 -- call that replaces it with a copy and clobber the copy.
12980 if not Expander_Active then
12981 declare
12982 NewV : constant Node_Id := New_Copy (Variant);
12983 begin
12984 Set_Discrete_Choices
12985 (NewV, New_Copy_List (Discrete_Choices (Variant)));
12986 Rewrite (Variant, NewV);
12987 end;
12988 end if;
12990 Expand_Static_Predicates_In_Choices (Variant);
12991 end if;
12993 -- We don't need to worry about the declarations in the variant
12994 -- (since they were analyzed by Analyze_Choices when we first
12995 -- encountered the variant), but we do need to take care of
12996 -- expansion of any nested variants.
12998 if not Null_Present (CL) then
12999 VP := Variant_Part (CL);
13001 if Present (VP) then
13002 Check_Choices
13003 (VP, Variants (VP), Etype (Name (VP)), Others_Present);
13004 end if;
13005 end if;
13006 end Process_Declarations;
13008 -- Start of processing for Check_Variant_Part
13010 begin
13011 -- Find component list
13013 C := Empty;
13015 if Nkind (D) = N_Full_Type_Declaration then
13016 T := Type_Definition (D);
13018 if Nkind (T) = N_Record_Definition then
13019 C := Component_List (T);
13021 elsif Nkind (T) = N_Derived_Type_Definition
13022 and then Present (Record_Extension_Part (T))
13023 then
13024 C := Component_List (Record_Extension_Part (T));
13025 end if;
13026 end if;
13028 -- Case of variant part present
13030 if Present (C) and then Present (Variant_Part (C)) then
13031 VP := Variant_Part (C);
13033 -- Check choices
13035 Check_Choices
13036 (VP, Variants (VP), Etype (Name (VP)), Others_Present);
13038 -- If the last variant does not contain the Others choice,
13039 -- replace it with an N_Others_Choice node since Gigi always
13040 -- wants an Others. Note that we do not bother to call Analyze
13041 -- on the modified variant part, since its only effect would be
13042 -- to compute the Others_Discrete_Choices node laboriously, and
13043 -- of course we already know the list of choices corresponding
13044 -- to the others choice (it's the list we're replacing).
13046 -- We only want to do this if the expander is active, since
13047 -- we do not want to clobber the tree.
13049 if Expander_Active then
13050 declare
13051 Last_Var : constant Node_Id :=
13052 Last_Non_Pragma (Variants (VP));
13054 Others_Node : Node_Id;
13056 begin
13057 if Nkind (First (Discrete_Choices (Last_Var))) /=
13058 N_Others_Choice
13059 then
13060 Others_Node := Make_Others_Choice (Sloc (Last_Var));
13061 Set_Others_Discrete_Choices
13062 (Others_Node, Discrete_Choices (Last_Var));
13063 Set_Discrete_Choices
13064 (Last_Var, New_List (Others_Node));
13065 end if;
13066 end;
13067 end if;
13068 end if;
13069 end Check_Variant_Part;
13070 end if;
13072 -- If we have a type with predicates, build predicate function. This is
13073 -- not needed in the generic case, nor within e.g. TSS subprograms and
13074 -- other predefined primitives. For a derived type, ensure that the
13075 -- parent type is already frozen so that its predicate function has been
13076 -- constructed already. This is necessary if the parent is declared
13077 -- in a nested package and its own freeze point has not been reached.
13079 if Is_Type (E)
13080 and then Nongeneric_Case
13081 and then Has_Predicates (E)
13082 and then Predicate_Check_In_Scope (N)
13083 then
13084 declare
13085 Atyp : constant Entity_Id := Nearest_Ancestor (E);
13087 begin
13088 if Present (Atyp)
13089 and then Has_Predicates (Atyp)
13090 and then not Is_Frozen (Atyp)
13091 then
13092 Freeze_Before (N, Atyp);
13093 end if;
13094 end;
13096 -- Before we build a predicate function, ensure that discriminant
13097 -- checking functions are available. The predicate function might
13098 -- need to call these functions if the predicate references any
13099 -- components declared in a variant part.
13101 if Ekind (E) = E_Record_Type and then Has_Discriminants (E) then
13102 Build_Or_Copy_Discr_Checking_Funcs (Parent (E));
13103 end if;
13105 Build_Predicate_Function (E, N);
13106 end if;
13108 -- If type has delayed aspects, this is where we do the preanalysis at
13109 -- the freeze point, as part of the consistent visibility check. Note
13110 -- that this must be done after calling Build_Predicate_Function or
13111 -- Build_Invariant_Procedure since these subprograms fix occurrences of
13112 -- the subtype name in the saved expression so that they will not cause
13113 -- trouble in the preanalysis.
13115 -- This is also not needed in the generic case
13117 if Nongeneric_Case
13118 and then Has_Delayed_Aspects (E)
13119 and then Scope (E) = Current_Scope
13120 then
13121 declare
13122 Ritem : Node_Id;
13124 begin
13125 -- Look for aspect specification entries for this entity
13127 Ritem := First_Rep_Item (E);
13128 while Present (Ritem) loop
13129 if Nkind (Ritem) = N_Aspect_Specification
13130 and then Entity (Ritem) = E
13131 and then Is_Delayed_Aspect (Ritem)
13132 then
13133 if Get_Aspect_Id (Ritem) in Aspect_CPU
13134 | Aspect_Dynamic_Predicate
13135 | Aspect_Predicate
13136 | Aspect_Static_Predicate
13137 | Aspect_Priority
13138 then
13139 -- Retrieve the visibility to components and discriminants
13140 -- in order to properly analyze the aspects.
13142 Push_Type (E);
13143 Check_Aspect_At_Freeze_Point (Ritem);
13145 -- In the case of predicate aspects, there will be
13146 -- a corresponding Predicate pragma associated with
13147 -- the aspect, and the expression of the pragma also
13148 -- needs to be analyzed at this point, to ensure that
13149 -- Save_Global_References will capture global refs in
13150 -- expressions that occur in generic bodies, for proper
13151 -- later resolution of the pragma in instantiations.
13153 if Is_Type (E)
13154 and then Inside_A_Generic
13155 and then Has_Predicates (E)
13156 and then Present (Aspect_Rep_Item (Ritem))
13157 then
13158 declare
13159 Pragma_Args : constant List_Id :=
13160 Pragma_Argument_Associations
13161 (Aspect_Rep_Item (Ritem));
13162 Pragma_Expr : constant Node_Id :=
13163 Expression (Next (First (Pragma_Args)));
13164 begin
13165 if Present (Pragma_Expr) then
13166 Analyze_And_Resolve
13167 (Pragma_Expr, Standard_Boolean);
13168 end if;
13169 end;
13170 end if;
13172 Pop_Type (E);
13174 else
13175 Check_Aspect_At_Freeze_Point (Ritem);
13176 end if;
13178 -- A pragma Predicate should be checked like one of the
13179 -- corresponding aspects, wrt possible misuse of ghost
13180 -- entities.
13182 elsif Nkind (Ritem) = N_Pragma
13183 and then No (Corresponding_Aspect (Ritem))
13184 and then
13185 Get_Pragma_Id (Pragma_Name (Ritem)) = Pragma_Predicate
13186 then
13187 -- Retrieve the visibility to components and discriminants
13188 -- in order to properly analyze the pragma.
13190 declare
13191 Arg : constant Node_Id :=
13192 Next (First (Pragma_Argument_Associations (Ritem)));
13193 begin
13194 Push_Type (E);
13195 Preanalyze_Spec_Expression
13196 (Expression (Arg), Standard_Boolean);
13197 Pop_Type (E);
13198 end;
13199 end if;
13201 Next_Rep_Item (Ritem);
13202 end loop;
13203 end;
13204 end if;
13206 if not In_Generic_Scope (E)
13207 and then Ekind (E) = E_Record_Type
13208 and then Is_Tagged_Type (E)
13209 then
13210 Process_Class_Conditions_At_Freeze_Point (E);
13211 end if;
13212 end Freeze_Entity_Checks;
13214 -------------------------
13215 -- Get_Alignment_Value --
13216 -------------------------
13218 function Get_Alignment_Value (Expr : Node_Id) return Uint is
13219 Align : constant Uint := Static_Integer (Expr);
13221 begin
13222 if No (Align) then
13223 return No_Uint;
13225 elsif Align < 0 then
13226 Error_Msg_N ("alignment value must be positive", Expr);
13227 return No_Uint;
13229 -- If Alignment is specified to be 0, we treat it the same as 1
13231 elsif Align = 0 then
13232 return Uint_1;
13234 else
13235 for J in Int range 0 .. 64 loop
13236 declare
13237 M : constant Uint := Uint_2 ** J;
13239 begin
13240 exit when M = Align;
13242 if M > Align then
13243 Error_Msg_N ("alignment value must be power of 2", Expr);
13244 return No_Uint;
13245 end if;
13246 end;
13247 end loop;
13249 return Align;
13250 end if;
13251 end Get_Alignment_Value;
13253 -----------------------------------
13254 -- Has_Compatible_Representation --
13255 -----------------------------------
13257 function Has_Compatible_Representation
13258 (Target_Typ, Operand_Typ : Entity_Id) return Boolean
13260 -- The subtype-specific representation attributes (Size and Alignment)
13261 -- do not affect representation from the point of view of this function.
13263 T1 : constant Entity_Id := Implementation_Base_Type (Target_Typ);
13264 T2 : constant Entity_Id := Implementation_Base_Type (Operand_Typ);
13266 begin
13267 -- Return true immediately for the same base type
13269 if T1 = T2 then
13270 return True;
13272 -- Tagged types always have the same representation, because it is not
13273 -- possible to specify different representations for common fields.
13275 elsif Is_Tagged_Type (T1) then
13276 return True;
13278 -- Representations are definitely different if conventions differ
13280 elsif Convention (T1) /= Convention (T2) then
13281 return False;
13283 -- Representations are different if component alignments or scalar
13284 -- storage orders differ.
13286 elsif (Is_Record_Type (T1) or else Is_Array_Type (T1))
13287 and then
13288 (Is_Record_Type (T2) or else Is_Array_Type (T2))
13289 and then (Component_Alignment (T1) /= Component_Alignment (T2)
13290 or else
13291 Reverse_Storage_Order (T1) /= Reverse_Storage_Order (T2))
13292 then
13293 return False;
13294 end if;
13296 -- For arrays, the only real issue is component size. If we know the
13297 -- component size for both arrays, and it is the same, then that's
13298 -- good enough to know we don't have a change of representation.
13300 if Is_Array_Type (T1) then
13302 -- In a view conversion, if the target type is an array type having
13303 -- aliased components and the operand type is an array type having
13304 -- unaliased components, then a new object is created (4.6(58.3/4)).
13306 if Has_Aliased_Components (T1)
13307 and then not Has_Aliased_Components (T2)
13308 then
13309 return False;
13310 end if;
13312 if Known_Component_Size (T1)
13313 and then Known_Component_Size (T2)
13314 and then Component_Size (T1) = Component_Size (T2)
13315 then
13316 return True;
13317 end if;
13319 -- For records, representations are different if reordering differs
13321 elsif Is_Record_Type (T1)
13322 and then Is_Record_Type (T2)
13323 and then No_Reordering (T1) /= No_Reordering (T2)
13324 then
13325 return False;
13326 end if;
13328 -- Types definitely have same representation if neither has non-standard
13329 -- representation since default representations are always consistent.
13330 -- If only one has non-standard representation, and the other does not,
13331 -- then we consider that they do not have the same representation. They
13332 -- might, but there is no way of telling early enough.
13334 if Has_Non_Standard_Rep (T1) then
13335 if not Has_Non_Standard_Rep (T2) then
13336 return False;
13337 end if;
13338 else
13339 return not Has_Non_Standard_Rep (T2);
13340 end if;
13342 -- Here the two types both have non-standard representation, and we need
13343 -- to determine if they have the same non-standard representation.
13345 -- For arrays, we simply need to test if the component sizes are the
13346 -- same. Pragma Pack is reflected in modified component sizes, so this
13347 -- check also deals with pragma Pack.
13349 if Is_Array_Type (T1) then
13350 return Component_Size (T1) = Component_Size (T2);
13352 -- Case of record types
13354 elsif Is_Record_Type (T1) then
13356 -- Packed status must conform
13358 if Is_Packed (T1) /= Is_Packed (T2) then
13359 return False;
13361 -- If the operand type is derived from the target type and no clause
13362 -- has been given after the derivation, then the representations are
13363 -- the same since the derived type inherits that of the parent type.
13365 elsif Is_Derived_Type (T2)
13366 and then Etype (T2) = T1
13367 and then not Has_Record_Rep_Clause (T2)
13368 then
13369 return True;
13371 -- Otherwise we must check components. Typ2 maybe a constrained
13372 -- subtype with fewer components, so we compare the components
13373 -- of the base types.
13375 else
13376 Record_Case : declare
13377 CD1, CD2 : Entity_Id;
13379 function Same_Rep return Boolean;
13380 -- CD1 and CD2 are either components or discriminants. This
13381 -- function tests whether they have the same representation.
13383 --------------
13384 -- Same_Rep --
13385 --------------
13387 function Same_Rep return Boolean is
13388 begin
13389 if No (Component_Clause (CD1)) then
13390 return No (Component_Clause (CD2));
13391 else
13392 -- Note: at this point, component clauses have been
13393 -- normalized to the default bit order, so that the
13394 -- comparison of Component_Bit_Offsets is meaningful.
13396 return
13397 Present (Component_Clause (CD2))
13398 and then
13399 Component_Bit_Offset (CD1) = Component_Bit_Offset (CD2)
13400 and then
13401 Esize (CD1) = Esize (CD2);
13402 end if;
13403 end Same_Rep;
13405 -- Start of processing for Record_Case
13407 begin
13408 if Has_Discriminants (T1) then
13410 -- The number of discriminants may be different if the
13411 -- derived type has fewer (constrained by values). The
13412 -- invisible discriminants retain the representation of
13413 -- the original, so the discrepancy does not per se
13414 -- indicate a different representation.
13416 CD1 := First_Discriminant (T1);
13417 CD2 := First_Discriminant (T2);
13418 while Present (CD1) and then Present (CD2) loop
13419 if not Same_Rep then
13420 return False;
13421 else
13422 Next_Discriminant (CD1);
13423 Next_Discriminant (CD2);
13424 end if;
13425 end loop;
13426 end if;
13428 CD1 := First_Component (Underlying_Type (Base_Type (T1)));
13429 CD2 := First_Component (Underlying_Type (Base_Type (T2)));
13430 while Present (CD1) loop
13431 if not Same_Rep then
13432 return False;
13433 else
13434 Next_Component (CD1);
13435 Next_Component (CD2);
13436 end if;
13437 end loop;
13439 return True;
13440 end Record_Case;
13441 end if;
13443 -- For enumeration types, we must check each literal to see if the
13444 -- representation is the same. Note that we do not permit enumeration
13445 -- representation clauses for Character and Wide_Character, so these
13446 -- cases were already dealt with.
13448 elsif Is_Enumeration_Type (T1) then
13449 Enumeration_Case : declare
13450 L1, L2 : Entity_Id;
13452 begin
13453 L1 := First_Literal (T1);
13454 L2 := First_Literal (T2);
13455 while Present (L1) loop
13456 if Enumeration_Rep (L1) /= Enumeration_Rep (L2) then
13457 return False;
13458 else
13459 Next_Literal (L1);
13460 Next_Literal (L2);
13461 end if;
13462 end loop;
13464 return True;
13465 end Enumeration_Case;
13467 -- Any other types have the same representation for these purposes
13469 else
13470 return True;
13471 end if;
13472 end Has_Compatible_Representation;
13474 -------------------------------------
13475 -- Inherit_Aspects_At_Freeze_Point --
13476 -------------------------------------
13478 procedure Inherit_Aspects_At_Freeze_Point (Typ : Entity_Id) is
13479 function Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
13480 (Rep_Item : Node_Id) return Boolean;
13481 -- This routine checks if Rep_Item is either a pragma or an aspect
13482 -- specification node whose corresponding pragma (if any) is present in
13483 -- the Rep Item chain of the entity it has been specified to.
13485 --------------------------------------------------
13486 -- Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item --
13487 --------------------------------------------------
13489 function Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
13490 (Rep_Item : Node_Id) return Boolean
13492 begin
13493 return
13494 Nkind (Rep_Item) = N_Pragma
13495 or else
13496 Present_In_Rep_Item (Entity (Rep_Item), Aspect_Rep_Item (Rep_Item));
13497 end Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item;
13499 -- Start of processing for Inherit_Aspects_At_Freeze_Point
13501 begin
13502 -- A representation item is either subtype-specific (Size and Alignment
13503 -- clauses) or type-related (all others). Subtype-specific aspects may
13504 -- differ for different subtypes of the same type (RM 13.1.8).
13506 -- A derived type inherits each type-related representation aspect of
13507 -- its parent type that was directly specified before the declaration of
13508 -- the derived type (RM 13.1.15).
13510 -- A derived subtype inherits each subtype-specific representation
13511 -- aspect of its parent subtype that was directly specified before the
13512 -- declaration of the derived type (RM 13.1.15).
13514 -- The general processing involves inheriting a representation aspect
13515 -- from a parent type whenever the first rep item (aspect specification,
13516 -- attribute definition clause, pragma) corresponding to the given
13517 -- representation aspect in the rep item chain of Typ, if any, isn't
13518 -- directly specified to Typ but to one of its parents.
13520 -- In addition, Convention must be propagated from base type to subtype,
13521 -- because the subtype may have been declared on an incomplete view.
13523 if Nkind (Parent (Typ)) = N_Private_Extension_Declaration then
13524 return;
13525 end if;
13527 -- Ada_05/Ada_2005
13529 if not Has_Rep_Item (Typ, Name_Ada_05, Name_Ada_2005, False)
13530 and then Has_Rep_Item (Typ, Name_Ada_05, Name_Ada_2005)
13531 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
13532 (Get_Rep_Item (Typ, Name_Ada_05, Name_Ada_2005))
13533 then
13534 Set_Is_Ada_2005_Only (Typ);
13535 end if;
13537 -- Ada_12/Ada_2012
13539 if not Has_Rep_Item (Typ, Name_Ada_12, Name_Ada_2012, False)
13540 and then Has_Rep_Item (Typ, Name_Ada_12, Name_Ada_2012)
13541 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
13542 (Get_Rep_Item (Typ, Name_Ada_12, Name_Ada_2012))
13543 then
13544 Set_Is_Ada_2012_Only (Typ);
13545 end if;
13547 -- Ada_2022
13549 if not Has_Rep_Item (Typ, Name_Ada_2022, False)
13550 and then Has_Rep_Item (Typ, Name_Ada_2022)
13551 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
13552 (Get_Rep_Item (Typ, Name_Ada_2022))
13553 then
13554 Set_Is_Ada_2022_Only (Typ);
13555 end if;
13557 -- Atomic/Shared
13559 if not Has_Rep_Item (Typ, Name_Atomic, Name_Shared, False)
13560 and then Has_Rep_Pragma (Typ, Name_Atomic, Name_Shared)
13561 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
13562 (Get_Rep_Item (Typ, Name_Atomic, Name_Shared))
13563 then
13564 Set_Is_Atomic (Typ);
13565 Set_Is_Volatile (Typ);
13566 Set_Treat_As_Volatile (Typ);
13567 end if;
13569 -- Convention
13571 if Is_Record_Type (Typ)
13572 and then Typ /= Base_Type (Typ) and then Is_Frozen (Base_Type (Typ))
13573 then
13574 Set_Convention (Typ, Convention (Base_Type (Typ)));
13575 end if;
13577 -- Default_Component_Value
13579 -- Verify that there is no rep_item declared for the type, and there
13580 -- is one coming from an ancestor.
13582 if Is_Array_Type (Typ)
13583 and then Is_Base_Type (Typ)
13584 and then not Has_Rep_Item (Typ, Name_Default_Component_Value, False)
13585 and then Has_Rep_Item (Typ, Name_Default_Component_Value)
13586 then
13587 declare
13588 E : Entity_Id;
13590 begin
13591 E := Entity (Get_Rep_Item (Typ, Name_Default_Component_Value));
13593 -- Deal with private types
13595 if Is_Private_Type (E) then
13596 E := Full_View (E);
13597 end if;
13599 Set_Default_Aspect_Component_Value (Typ,
13600 Default_Aspect_Component_Value (E));
13601 end;
13602 end if;
13604 -- Default_Value
13606 if Is_Scalar_Type (Typ)
13607 and then Is_Base_Type (Typ)
13608 and then not Has_Rep_Item (Typ, Name_Default_Value, False)
13609 and then Has_Rep_Item (Typ, Name_Default_Value)
13610 then
13611 Set_Has_Default_Aspect (Typ);
13613 declare
13614 E : Entity_Id;
13616 begin
13617 E := Entity (Get_Rep_Item (Typ, Name_Default_Value));
13619 -- Deal with private types
13621 if Is_Private_Type (E) then
13622 E := Full_View (E);
13623 end if;
13625 Set_Default_Aspect_Value (Typ, Default_Aspect_Value (E));
13626 end;
13627 end if;
13629 -- Discard_Names
13631 if not Has_Rep_Item (Typ, Name_Discard_Names, False)
13632 and then Has_Rep_Item (Typ, Name_Discard_Names)
13633 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
13634 (Get_Rep_Item (Typ, Name_Discard_Names))
13635 then
13636 Set_Discard_Names (Typ);
13637 end if;
13639 -- Volatile
13641 if not Has_Rep_Item (Typ, Name_Volatile, False)
13642 and then Has_Rep_Item (Typ, Name_Volatile)
13643 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
13644 (Get_Rep_Item (Typ, Name_Volatile))
13645 then
13646 Set_Is_Volatile (Typ);
13647 Set_Treat_As_Volatile (Typ);
13648 end if;
13650 -- Volatile_Full_Access and Full_Access_Only
13652 if not Has_Rep_Item (Typ, Name_Volatile_Full_Access, False)
13653 and then not Has_Rep_Item (Typ, Name_Full_Access_Only, False)
13654 and then (Has_Rep_Item (Typ, Name_Volatile_Full_Access)
13655 or else Has_Rep_Item (Typ, Name_Full_Access_Only))
13656 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
13657 (Get_Rep_Item (Typ, Name_Volatile_Full_Access))
13658 then
13659 Set_Is_Volatile_Full_Access (Typ);
13660 Set_Is_Volatile (Typ);
13661 Set_Treat_As_Volatile (Typ);
13662 end if;
13664 -- Inheritance for derived types only
13666 if Is_Derived_Type (Typ) then
13667 declare
13668 Bas_Typ : constant Entity_Id := Base_Type (Typ);
13669 Imp_Bas_Typ : constant Entity_Id := Implementation_Base_Type (Typ);
13671 begin
13672 -- Atomic_Components
13674 if not Has_Rep_Item (Typ, Name_Atomic_Components, False)
13675 and then Has_Rep_Item (Typ, Name_Atomic_Components)
13676 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
13677 (Get_Rep_Item (Typ, Name_Atomic_Components))
13678 then
13679 Set_Has_Atomic_Components (Imp_Bas_Typ);
13680 end if;
13682 -- Volatile_Components
13684 if not Has_Rep_Item (Typ, Name_Volatile_Components, False)
13685 and then Has_Rep_Item (Typ, Name_Volatile_Components)
13686 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
13687 (Get_Rep_Item (Typ, Name_Volatile_Components))
13688 then
13689 Set_Has_Volatile_Components (Imp_Bas_Typ);
13690 end if;
13692 -- Finalize_Storage_Only
13694 if not Has_Rep_Pragma (Typ, Name_Finalize_Storage_Only, False)
13695 and then Has_Rep_Pragma (Typ, Name_Finalize_Storage_Only)
13696 then
13697 Set_Finalize_Storage_Only (Bas_Typ);
13698 end if;
13700 -- Universal_Aliasing
13702 if not Has_Rep_Item (Typ, Name_Universal_Aliasing, False)
13703 and then Has_Rep_Item (Typ, Name_Universal_Aliasing)
13704 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
13705 (Get_Rep_Item (Typ, Name_Universal_Aliasing))
13706 then
13707 Set_Universal_Aliasing (Imp_Bas_Typ);
13708 end if;
13710 -- Bit_Order
13712 if Is_Record_Type (Typ) and then Typ = Bas_Typ then
13713 if not Has_Rep_Item (Typ, Name_Bit_Order, False)
13714 and then Has_Rep_Item (Typ, Name_Bit_Order)
13715 then
13716 Set_Reverse_Bit_Order (Bas_Typ,
13717 Reverse_Bit_Order
13718 (Implementation_Base_Type (Etype (Bas_Typ))));
13719 end if;
13720 end if;
13722 -- Scalar_Storage_Order
13724 if (Is_Record_Type (Typ) or else Is_Array_Type (Typ))
13725 and then Typ = Bas_Typ
13726 then
13727 -- For a type extension, always inherit from parent; otherwise
13728 -- inherit if no default applies. Note: we do not check for
13729 -- an explicit rep item on the parent type when inheriting,
13730 -- because the parent SSO may itself have been set by default.
13732 if not Has_Rep_Item (First_Subtype (Typ),
13733 Name_Scalar_Storage_Order, False)
13734 and then (Is_Tagged_Type (Bas_Typ)
13735 or else not (SSO_Set_Low_By_Default (Bas_Typ)
13736 or else
13737 SSO_Set_High_By_Default (Bas_Typ)))
13738 then
13739 Set_Reverse_Storage_Order (Bas_Typ,
13740 Reverse_Storage_Order
13741 (Implementation_Base_Type (Etype (Bas_Typ))));
13743 -- Clear default SSO indications, since the inherited aspect
13744 -- which was set explicitly overrides the default.
13746 Set_SSO_Set_Low_By_Default (Bas_Typ, False);
13747 Set_SSO_Set_High_By_Default (Bas_Typ, False);
13748 end if;
13749 end if;
13750 end;
13751 end if;
13752 end Inherit_Aspects_At_Freeze_Point;
13754 ---------------------------------
13755 -- Inherit_Delayed_Rep_Aspects --
13756 ---------------------------------
13758 procedure Inherit_Delayed_Rep_Aspects (Typ : Entity_Id) is
13759 A : Aspect_Id;
13760 N : Node_Id;
13761 P : Entity_Id;
13763 begin
13764 -- Find the first aspect that has been inherited
13766 N := First_Rep_Item (Typ);
13767 while Present (N) loop
13768 if Nkind (N) = N_Aspect_Specification then
13769 exit when Entity (N) /= Typ;
13770 end if;
13772 Next_Rep_Item (N);
13773 end loop;
13775 -- There must be one if we reach here
13777 pragma Assert (Present (N));
13778 P := Entity (N);
13780 -- Loop through delayed aspects for the parent type
13782 while Present (N) loop
13783 if Nkind (N) = N_Aspect_Specification then
13784 exit when Entity (N) /= P;
13786 if Is_Delayed_Aspect (N) then
13787 A := Get_Aspect_Id (N);
13789 -- Process delayed rep aspect. For Boolean attributes it is
13790 -- not possible to cancel an attribute once set (the attempt
13791 -- to use an aspect with xxx => False is an error) for a
13792 -- derived type. So for those cases, we do not have to check
13793 -- if a clause has been given for the derived type, since it
13794 -- is harmless to set it again if it is already set.
13796 case A is
13798 -- Alignment
13800 when Aspect_Alignment =>
13801 if not Has_Alignment_Clause (Typ) then
13802 Set_Alignment (Typ, Alignment (P));
13803 end if;
13805 -- Atomic
13807 when Aspect_Atomic =>
13808 if Is_Atomic (P) then
13809 Set_Is_Atomic (Typ);
13810 end if;
13812 -- Atomic_Components
13814 when Aspect_Atomic_Components =>
13815 if Has_Atomic_Components (P) then
13816 Set_Has_Atomic_Components (Base_Type (Typ));
13817 end if;
13819 -- Bit_Order
13821 when Aspect_Bit_Order =>
13822 if Is_Record_Type (Typ)
13823 and then No (Get_Attribute_Definition_Clause
13824 (Typ, Attribute_Bit_Order))
13825 and then Reverse_Bit_Order (P)
13826 then
13827 Set_Reverse_Bit_Order (Base_Type (Typ));
13828 end if;
13830 -- Component_Size
13832 when Aspect_Component_Size =>
13833 if Is_Array_Type (Typ)
13834 and then not Has_Component_Size_Clause (Typ)
13835 then
13836 Set_Component_Size
13837 (Base_Type (Typ), Component_Size (P));
13838 end if;
13840 -- Machine_Radix
13842 when Aspect_Machine_Radix =>
13843 if Is_Decimal_Fixed_Point_Type (Typ)
13844 and then not Has_Machine_Radix_Clause (Typ)
13845 then
13846 Set_Machine_Radix_10 (Typ, Machine_Radix_10 (P));
13847 end if;
13849 -- Object_Size (also Size which also sets Object_Size)
13851 when Aspect_Object_Size
13852 | Aspect_Size
13854 if not Has_Size_Clause (Typ)
13855 and then
13856 No (Get_Attribute_Definition_Clause
13857 (Typ, Attribute_Object_Size))
13858 then
13859 Set_Esize (Typ, Esize (P));
13860 end if;
13862 -- Pack
13864 when Aspect_Pack =>
13865 if not Is_Packed (Typ) then
13866 Set_Is_Packed (Base_Type (Typ));
13868 if Is_Bit_Packed_Array (P) then
13869 Set_Is_Bit_Packed_Array (Base_Type (Typ));
13870 Set_Packed_Array_Impl_Type
13871 (Typ, Packed_Array_Impl_Type (P));
13872 end if;
13873 end if;
13875 -- Scalar_Storage_Order
13877 when Aspect_Scalar_Storage_Order =>
13878 if (Is_Record_Type (Typ) or else Is_Array_Type (Typ))
13879 and then No (Get_Attribute_Definition_Clause
13880 (Typ, Attribute_Scalar_Storage_Order))
13881 and then Reverse_Storage_Order (P)
13882 then
13883 Set_Reverse_Storage_Order (Base_Type (Typ));
13885 -- Clear default SSO indications, since the aspect
13886 -- overrides the default.
13888 Set_SSO_Set_Low_By_Default (Base_Type (Typ), False);
13889 Set_SSO_Set_High_By_Default (Base_Type (Typ), False);
13890 end if;
13892 -- Small
13894 when Aspect_Small =>
13895 if Is_Fixed_Point_Type (Typ)
13896 and then not Has_Small_Clause (Typ)
13897 then
13898 Set_Small_Value (Typ, Small_Value (P));
13899 end if;
13901 -- Storage_Size
13903 when Aspect_Storage_Size =>
13904 if (Is_Access_Type (Typ) or else Is_Task_Type (Typ))
13905 and then not Has_Storage_Size_Clause (Typ)
13906 then
13907 Set_Storage_Size_Variable
13908 (Base_Type (Typ), Storage_Size_Variable (P));
13909 end if;
13911 -- Value_Size
13913 when Aspect_Value_Size =>
13915 -- Value_Size is never inherited, it is either set by
13916 -- default, or it is explicitly set for the derived
13917 -- type. So nothing to do here.
13919 null;
13921 -- Volatile
13923 when Aspect_Volatile =>
13924 if Is_Volatile (P) then
13925 Set_Is_Volatile (Typ);
13926 end if;
13928 -- Volatile_Full_Access (also Full_Access_Only)
13930 when Aspect_Volatile_Full_Access
13931 | Aspect_Full_Access_Only
13933 if Is_Volatile_Full_Access (P) then
13934 Set_Is_Volatile_Full_Access (Typ);
13935 end if;
13937 -- Volatile_Components
13939 when Aspect_Volatile_Components =>
13940 if Has_Volatile_Components (P) then
13941 Set_Has_Volatile_Components (Base_Type (Typ));
13942 end if;
13944 -- That should be all the Rep Aspects
13946 when others =>
13947 pragma Assert (Aspect_Delay (A) /= Rep_Aspect);
13948 null;
13949 end case;
13950 end if;
13951 end if;
13953 Next_Rep_Item (N);
13954 end loop;
13955 end Inherit_Delayed_Rep_Aspects;
13957 ----------------
13958 -- Initialize --
13959 ----------------
13961 procedure Initialize is
13962 begin
13963 Address_Clause_Checks.Init;
13964 Unchecked_Conversions.Init;
13966 -- The following might be needed in the future for some non-GCC back
13967 -- ends:
13968 -- if AAMP_On_Target then
13969 -- Independence_Checks.Init;
13970 -- end if;
13971 end Initialize;
13973 ---------------------------
13974 -- Install_Discriminants --
13975 ---------------------------
13977 procedure Install_Discriminants (E : Entity_Id) is
13978 Disc : Entity_Id;
13979 Prev : Entity_Id;
13980 begin
13981 Disc := First_Discriminant (E);
13982 while Present (Disc) loop
13983 Prev := Current_Entity (Disc);
13984 Set_Current_Entity (Disc);
13985 Set_Is_Immediately_Visible (Disc);
13986 Set_Homonym (Disc, Prev);
13987 Next_Discriminant (Disc);
13988 end loop;
13989 end Install_Discriminants;
13991 -------------------------
13992 -- Is_Operational_Item --
13993 -------------------------
13995 function Is_Operational_Item (N : Node_Id) return Boolean is
13996 begin
13997 -- List of operational items is given in AARM 13.1(8.mm/1). It is
13998 -- clearly incomplete, as it does not include iterator aspects, among
13999 -- others.
14001 return Nkind (N) = N_Attribute_Definition_Clause
14002 and then
14003 Get_Attribute_Id (Chars (N)) in Attribute_Constant_Indexing
14004 | Attribute_External_Tag
14005 | Attribute_Default_Iterator
14006 | Attribute_Implicit_Dereference
14007 | Attribute_Input
14008 | Attribute_Iterable
14009 | Attribute_Iterator_Element
14010 | Attribute_Output
14011 | Attribute_Put_Image
14012 | Attribute_Read
14013 | Attribute_Variable_Indexing
14014 | Attribute_Write;
14015 end Is_Operational_Item;
14017 -------------------------
14018 -- Is_Predicate_Static --
14019 -------------------------
14021 -- Note: the basic legality of the expression has already been checked, so
14022 -- we don't need to worry about cases or ranges on strings for example.
14024 function Is_Predicate_Static
14025 (Expr : Node_Id;
14026 Nam : Name_Id;
14027 Warn : Boolean := True) return Boolean
14029 function All_Static_Case_Alternatives (L : List_Id) return Boolean;
14030 -- Given a list of case expression alternatives, returns True if all
14031 -- the alternatives are static (have all static choices, and a static
14032 -- expression).
14034 function Is_Type_Ref (N : Node_Id) return Boolean;
14035 pragma Inline (Is_Type_Ref);
14036 -- Returns True if N is a reference to the type for the predicate in the
14037 -- expression (i.e. if it is an identifier whose Chars field matches the
14038 -- Nam given in the call). N must not be parenthesized, if the type name
14039 -- appears in parens, this routine will return False.
14041 -- The routine also returns True for function calls generated during the
14042 -- expansion of comparison operators on strings, which are intended to
14043 -- be legal in static predicates, and are converted into calls to array
14044 -- comparison routines in the body of the corresponding predicate
14045 -- function.
14047 ----------------------------------
14048 -- All_Static_Case_Alternatives --
14049 ----------------------------------
14051 function All_Static_Case_Alternatives (L : List_Id) return Boolean is
14052 N : Node_Id;
14054 begin
14055 N := First (L);
14056 while Present (N) loop
14057 if not (All_Static_Choices (Discrete_Choices (N))
14058 and then Is_OK_Static_Expression (Expression (N)))
14059 then
14060 return False;
14061 end if;
14063 Next (N);
14064 end loop;
14066 return True;
14067 end All_Static_Case_Alternatives;
14069 -----------------
14070 -- Is_Type_Ref --
14071 -----------------
14073 function Is_Type_Ref (N : Node_Id) return Boolean is
14074 begin
14075 return (Nkind (N) = N_Identifier
14076 and then Chars (N) = Nam
14077 and then Paren_Count (N) = 0);
14078 end Is_Type_Ref;
14080 -- helper function for recursive calls
14081 function Is_Predicate_Static_Aux (Expr : Node_Id) return Boolean is
14082 (Is_Predicate_Static (Expr, Nam, Warn => False));
14084 -- Start of processing for Is_Predicate_Static
14086 begin
14087 -- Handle cases like
14088 -- subtype S is Integer with Static_Predicate =>
14089 -- (Some_Integer_Variable in Integer) and then (S /= 0);
14090 -- where the predicate (which should be rejected) might have been
14091 -- transformed into just "(S /= 0)", which would appear to be
14092 -- a predicate-static expression (and therefore legal).
14094 if Original_Node (Expr) /= Expr then
14096 -- Emit warnings for predicates that are always True or always False
14097 -- and were not originally expressed as Boolean literals.
14099 return Result : constant Boolean :=
14100 Is_Predicate_Static_Aux (Original_Node (Expr))
14102 if Result and then Warn and then Is_Entity_Name (Expr) then
14103 if Entity (Expr) = Standard_True then
14104 Error_Msg_N ("predicate is redundant (always True)?", Expr);
14105 elsif Entity (Expr) = Standard_False then
14106 Error_Msg_N
14107 ("predicate is unsatisfiable (always False)?", Expr);
14108 end if;
14109 end if;
14110 end return;
14111 end if;
14113 -- Predicate_Static means one of the following holds. Numbers are the
14114 -- corresponding paragraph numbers in (RM 3.2.4(16-22)).
14116 -- 16: A static expression
14118 if Is_OK_Static_Expression (Expr) then
14119 return True;
14121 -- 17: A membership test whose simple_expression is the current
14122 -- instance, and whose membership_choice_list meets the requirements
14123 -- for a static membership test.
14125 elsif Nkind (Expr) in N_Membership_Test
14126 and then Is_Type_Ref (Left_Opnd (Expr))
14127 and then All_Membership_Choices_Static (Expr)
14128 then
14129 return True;
14131 -- 18. A case_expression whose selecting_expression is the current
14132 -- instance, and whose dependent expressions are static expressions.
14134 elsif Nkind (Expr) = N_Case_Expression
14135 and then Is_Type_Ref (Expression (Expr))
14136 and then All_Static_Case_Alternatives (Alternatives (Expr))
14137 then
14138 return True;
14140 -- 19. A call to a predefined equality or ordering operator, where one
14141 -- operand is the current instance, and the other is a static
14142 -- expression.
14144 -- Note: the RM is clearly wrong here in not excluding string types.
14145 -- Without this exclusion, we would allow expressions like X > "ABC"
14146 -- to be considered as predicate-static, which is clearly not intended,
14147 -- since the idea is for predicate-static to be a subset of normal
14148 -- static expressions (and "DEF" > "ABC" is not a static expression).
14150 -- However, we do allow internally generated (not from source) equality
14151 -- and inequality operations to be valid on strings (this helps deal
14152 -- with cases where we transform A in "ABC" to A = "ABC).
14154 -- In fact, it appears that the intent of the ARG is to extend static
14155 -- predicates to strings, and that the extension should probably apply
14156 -- to static expressions themselves. The code below accepts comparison
14157 -- operators that apply to static strings.
14159 elsif Nkind (Expr) in N_Op_Compare
14160 and then ((Is_Type_Ref (Left_Opnd (Expr))
14161 and then Is_OK_Static_Expression (Right_Opnd (Expr)))
14162 or else
14163 (Is_Type_Ref (Right_Opnd (Expr))
14164 and then Is_OK_Static_Expression (Left_Opnd (Expr))))
14165 then
14166 return True;
14168 -- 20. A call to a predefined boolean logical operator, where each
14169 -- operand is predicate-static.
14171 elsif (Nkind (Expr) in N_Op_And | N_Op_Or | N_Op_Xor
14172 and then Is_Predicate_Static_Aux (Left_Opnd (Expr))
14173 and then Is_Predicate_Static_Aux (Right_Opnd (Expr)))
14174 or else
14175 (Nkind (Expr) = N_Op_Not
14176 and then Is_Predicate_Static_Aux (Right_Opnd (Expr)))
14177 then
14178 return True;
14180 -- 21. A short-circuit control form where both operands are
14181 -- predicate-static.
14183 elsif Nkind (Expr) in N_Short_Circuit
14184 and then Is_Predicate_Static_Aux (Left_Opnd (Expr))
14185 and then Is_Predicate_Static_Aux (Right_Opnd (Expr))
14186 then
14187 return True;
14189 -- 22. A parenthesized predicate-static expression. This does not
14190 -- require any special test, since we just ignore paren levels in
14191 -- all the cases above.
14193 -- One more test that is an implementation artifact caused by the fact
14194 -- that we are analyzing not the original expression, but the generated
14195 -- expression in the body of the predicate function. This can include
14196 -- references to inherited predicates, so that the expression we are
14197 -- processing looks like:
14199 -- xxPredicate (typ (Inns)) and then expression
14201 -- Where the call is to a Predicate function for an inherited predicate.
14202 -- We simply ignore such a call, which could be to either a dynamic or
14203 -- a static predicate. Note that if the parent predicate is dynamic then
14204 -- eventually this type will be marked as dynamic, but you are allowed
14205 -- to specify a static predicate for a subtype which is inheriting a
14206 -- dynamic predicate, so the static predicate validation here ignores
14207 -- the inherited predicate even if it is dynamic.
14208 -- In all cases, a static predicate can only apply to a scalar type.
14210 elsif Nkind (Expr) = N_Function_Call
14211 and then Is_Predicate_Function (Entity (Name (Expr)))
14212 and then Is_Scalar_Type (Etype (First_Entity (Entity (Name (Expr)))))
14213 then
14214 return True;
14216 -- That's an exhaustive list of tests, all other cases are not
14217 -- predicate-static, so we return False.
14219 else
14220 return False;
14221 end if;
14222 end Is_Predicate_Static;
14224 ----------------------
14225 -- Is_Static_Choice --
14226 ----------------------
14228 function Is_Static_Choice (N : Node_Id) return Boolean is
14229 begin
14230 return Nkind (N) = N_Others_Choice
14231 or else Is_OK_Static_Expression (N)
14232 or else (Is_Entity_Name (N) and then Is_Type (Entity (N))
14233 and then Is_OK_Static_Subtype (Entity (N)))
14234 or else (Nkind (N) = N_Subtype_Indication
14235 and then Is_OK_Static_Subtype (Entity (N)))
14236 or else (Nkind (N) = N_Range and then Is_OK_Static_Range (N));
14237 end Is_Static_Choice;
14239 ------------------------------
14240 -- Is_Type_Related_Rep_Item --
14241 ------------------------------
14243 function Is_Type_Related_Rep_Item (N : Node_Id) return Boolean is
14244 begin
14245 case Nkind (N) is
14246 when N_Attribute_Definition_Clause =>
14247 -- See AARM 13.1(8.f-8.x) list items that end in "clause"
14248 -- ???: include any GNAT-defined attributes here?
14249 return Get_Attribute_Id (Chars (N)) in Attribute_Bit_Order
14250 | Attribute_Component_Size
14251 | Attribute_Machine_Radix
14252 | Attribute_Storage_Pool
14253 | Attribute_Stream_Size;
14255 when N_Pragma =>
14256 case Get_Pragma_Id (N) is
14257 -- See AARM 13.1(8.f-8.x) list items that start with "pragma"
14258 -- ???: include any GNAT-defined pragmas here?
14259 when Pragma_Pack
14260 | Pragma_Import
14261 | Pragma_Export
14262 | Pragma_Convention
14263 | Pragma_Atomic
14264 | Pragma_Independent
14265 | Pragma_Volatile
14266 | Pragma_Atomic_Components
14267 | Pragma_Independent_Components
14268 | Pragma_Volatile_Components
14269 | Pragma_Discard_Names
14271 return True;
14272 when others =>
14273 null;
14274 end case;
14276 when N_Enumeration_Representation_Clause
14277 | N_Record_Representation_Clause
14279 return True;
14281 when others =>
14282 null;
14283 end case;
14285 return False;
14286 end Is_Type_Related_Rep_Item;
14288 ---------------------
14289 -- Kill_Rep_Clause --
14290 ---------------------
14292 procedure Kill_Rep_Clause (N : Node_Id) is
14293 begin
14294 pragma Assert (Ignore_Rep_Clauses);
14296 -- Note: we use Replace rather than Rewrite, because we don't want
14297 -- tools to be able to use Original_Node to dig out the (undecorated)
14298 -- rep clause that is being replaced.
14300 Replace (N, Make_Null_Statement (Sloc (N)));
14302 -- The null statement must be marked as not coming from source. This is
14303 -- so that tools ignore it, and also the back end does not expect bogus
14304 -- "from source" null statements in weird places (e.g. in declarative
14305 -- regions where such null statements are not allowed).
14307 Set_Comes_From_Source (N, False);
14308 end Kill_Rep_Clause;
14310 ------------------
14311 -- Minimum_Size --
14312 ------------------
14314 function Minimum_Size
14315 (T : Entity_Id;
14316 Biased : Boolean := False) return Int
14318 Lo : Uint := No_Uint;
14319 Hi : Uint := No_Uint;
14320 LoR : Ureal := No_Ureal;
14321 HiR : Ureal := No_Ureal;
14322 LoSet : Boolean := False;
14323 HiSet : Boolean := False;
14324 B : Uint;
14325 S : Nat;
14326 Ancest : Entity_Id;
14327 R_Typ : constant Entity_Id := Root_Type (T);
14329 begin
14330 -- Bad type
14332 if T = Any_Type then
14333 return Unknown_Minimum_Size;
14335 -- For generic types, just return unknown. There cannot be any
14336 -- legitimate need to know such a size, but this routine may be
14337 -- called with a generic type as part of normal processing.
14339 elsif Is_Generic_Type (R_Typ) or else R_Typ = Any_Type then
14340 return Unknown_Minimum_Size;
14342 -- Access types (cannot have size smaller than System.Address)
14344 elsif Is_Access_Type (T) then
14345 return System_Address_Size;
14347 -- Floating-point types
14349 elsif Is_Floating_Point_Type (T) then
14350 return UI_To_Int (Esize (R_Typ));
14352 -- Discrete types
14354 elsif Is_Discrete_Type (T) then
14356 -- The following loop is looking for the nearest compile time known
14357 -- bounds following the ancestor subtype chain. The idea is to find
14358 -- the most restrictive known bounds information.
14360 Ancest := T;
14361 loop
14362 if Ancest = Any_Type or else Etype (Ancest) = Any_Type then
14363 return Unknown_Minimum_Size;
14364 end if;
14366 if not LoSet then
14367 if Compile_Time_Known_Value (Type_Low_Bound (Ancest)) then
14368 Lo := Expr_Rep_Value (Type_Low_Bound (Ancest));
14369 LoSet := True;
14370 exit when HiSet;
14371 end if;
14372 end if;
14374 if not HiSet then
14375 if Compile_Time_Known_Value (Type_High_Bound (Ancest)) then
14376 Hi := Expr_Rep_Value (Type_High_Bound (Ancest));
14377 HiSet := True;
14378 exit when LoSet;
14379 end if;
14380 end if;
14382 Ancest := Ancestor_Subtype (Ancest);
14384 if No (Ancest) then
14385 Ancest := Base_Type (T);
14387 if Is_Generic_Type (Ancest) then
14388 return Unknown_Minimum_Size;
14389 end if;
14390 end if;
14391 end loop;
14393 -- Fixed-point types. We can't simply use Expr_Value to get the
14394 -- Corresponding_Integer_Value values of the bounds, since these do not
14395 -- get set till the type is frozen, and this routine can be called
14396 -- before the type is frozen. Similarly the test for bounds being static
14397 -- needs to include the case where we have unanalyzed real literals for
14398 -- the same reason.
14400 elsif Is_Fixed_Point_Type (T) then
14402 -- The following loop is looking for the nearest compile time known
14403 -- bounds following the ancestor subtype chain. The idea is to find
14404 -- the most restrictive known bounds information.
14406 Ancest := T;
14407 loop
14408 if Ancest = Any_Type or else Etype (Ancest) = Any_Type then
14409 return Unknown_Minimum_Size;
14410 end if;
14412 -- Note: In the following two tests for LoSet and HiSet, it may
14413 -- seem redundant to test for N_Real_Literal here since normally
14414 -- one would assume that the test for the value being known at
14415 -- compile time includes this case. However, there is a glitch.
14416 -- If the real literal comes from folding a non-static expression,
14417 -- then we don't consider any non- static expression to be known
14418 -- at compile time if we are in configurable run time mode (needed
14419 -- in some cases to give a clearer definition of what is and what
14420 -- is not accepted). So the test is indeed needed. Without it, we
14421 -- would set neither Lo_Set nor Hi_Set and get an infinite loop.
14423 if not LoSet then
14424 if Nkind (Type_Low_Bound (Ancest)) = N_Real_Literal
14425 or else Compile_Time_Known_Value (Type_Low_Bound (Ancest))
14426 then
14427 LoR := Expr_Value_R (Type_Low_Bound (Ancest));
14428 LoSet := True;
14429 exit when HiSet;
14430 end if;
14431 end if;
14433 if not HiSet then
14434 if Nkind (Type_High_Bound (Ancest)) = N_Real_Literal
14435 or else Compile_Time_Known_Value (Type_High_Bound (Ancest))
14436 then
14437 HiR := Expr_Value_R (Type_High_Bound (Ancest));
14438 HiSet := True;
14439 exit when LoSet;
14440 end if;
14441 end if;
14443 Ancest := Ancestor_Subtype (Ancest);
14445 if No (Ancest) then
14446 Ancest := Base_Type (T);
14448 if Is_Generic_Type (Ancest) then
14449 return Unknown_Minimum_Size;
14450 end if;
14451 end if;
14452 end loop;
14454 Lo := UR_To_Uint (LoR / Small_Value (T));
14455 Hi := UR_To_Uint (HiR / Small_Value (T));
14457 -- No other types allowed
14459 else
14460 raise Program_Error;
14461 end if;
14463 -- Fall through with Hi and Lo set. Deal with biased case
14465 if (Biased
14466 and then not Is_Fixed_Point_Type (T)
14467 and then not (Is_Enumeration_Type (T)
14468 and then Has_Non_Standard_Rep (T)))
14469 or else Has_Biased_Representation (T)
14470 then
14471 Hi := Hi - Lo;
14472 Lo := Uint_0;
14473 end if;
14475 -- Null range case, size is always zero. We only do this in the discrete
14476 -- type case, since that's the odd case that came up. Probably we should
14477 -- also do this in the fixed-point case, but doing so causes peculiar
14478 -- gigi failures, and it is not worth worrying about this incredibly
14479 -- marginal case (explicit null-range fixed-point type declarations).
14481 if Lo > Hi and then Is_Discrete_Type (T) then
14482 S := 0;
14484 -- Signed case. Note that we consider types like range 1 .. -1 to be
14485 -- signed for the purpose of computing the size, since the bounds have
14486 -- to be accommodated in the base type.
14488 elsif Lo < 0 or else Hi < 0 then
14489 S := 1;
14490 B := Uint_1;
14492 -- S = size, B = 2 ** (size - 1) (can accommodate -B .. +(B - 1))
14493 -- Note that we accommodate the case where the bounds cross. This
14494 -- can happen either because of the way the bounds are declared
14495 -- or because of the algorithm in Freeze_Fixed_Point_Type.
14497 while Lo < -B
14498 or else Hi < -B
14499 or else Lo >= B
14500 or else Hi >= B
14501 loop
14502 B := Uint_2 ** S;
14503 S := S + 1;
14504 end loop;
14506 -- Unsigned case
14508 else
14509 -- If both bounds are positive, make sure that both are represen-
14510 -- table in the case where the bounds are crossed. This can happen
14511 -- either because of the way the bounds are declared, or because of
14512 -- the algorithm in Freeze_Fixed_Point_Type.
14514 if Lo > Hi then
14515 Hi := Lo;
14516 end if;
14518 -- S = size, (can accommodate 0 .. (2**size - 1))
14520 S := 0;
14521 while Hi >= Uint_2 ** S loop
14522 S := S + 1;
14523 end loop;
14524 end if;
14526 return S;
14527 end Minimum_Size;
14529 ------------------------------
14530 -- New_Put_Image_Subprogram --
14531 ------------------------------
14533 procedure New_Put_Image_Subprogram
14534 (N : Node_Id;
14535 Ent : Entity_Id;
14536 Subp : Entity_Id)
14538 Loc : constant Source_Ptr := Sloc (N);
14539 Sname : constant Name_Id :=
14540 Make_TSS_Name (Base_Type (Ent), TSS_Put_Image);
14541 Subp_Id : Entity_Id;
14542 Subp_Decl : Node_Id;
14543 F : Entity_Id;
14544 Etyp : Entity_Id;
14546 Defer_Declaration : constant Boolean :=
14547 Is_Tagged_Type (Ent) or else Is_Private_Type (Ent);
14548 -- For a tagged type, there is a declaration at the freeze point, and
14549 -- we must generate only a completion of this declaration. We do the
14550 -- same for private types, because the full view might be tagged.
14551 -- Otherwise we generate a declaration at the point of the attribute
14552 -- definition clause. If the attribute definition comes from an aspect
14553 -- specification the declaration is part of the freeze actions of the
14554 -- type.
14556 function Build_Spec return Node_Id;
14557 -- Used for declaration and renaming declaration, so that this is
14558 -- treated as a renaming_as_body.
14560 ----------------
14561 -- Build_Spec --
14562 ----------------
14564 function Build_Spec return Node_Id is
14565 Formals : List_Id;
14566 Spec : Node_Id;
14567 T_Ref : constant Node_Id := New_Occurrence_Of (Etyp, Loc);
14569 begin
14570 Subp_Id := Make_Defining_Identifier (Loc, Sname);
14572 -- S : Root_Buffer_Type'Class
14574 Formals := New_List (
14575 Make_Parameter_Specification (Loc,
14576 Defining_Identifier =>
14577 Make_Defining_Identifier (Loc, Name_S),
14578 In_Present => True,
14579 Out_Present => True,
14580 Parameter_Type =>
14581 New_Occurrence_Of (Etype (F), Loc)));
14583 -- V : T
14585 Append_To (Formals,
14586 Make_Parameter_Specification (Loc,
14587 Defining_Identifier => Make_Defining_Identifier (Loc, Name_V),
14588 Parameter_Type => T_Ref));
14590 Spec :=
14591 Make_Procedure_Specification (Loc,
14592 Defining_Unit_Name => Subp_Id,
14593 Parameter_Specifications => Formals);
14595 return Spec;
14596 end Build_Spec;
14598 -- Start of processing for New_Put_Image_Subprogram
14600 begin
14601 F := First_Formal (Subp);
14603 Etyp := Etype (Next_Formal (F));
14605 -- Prepare subprogram declaration and insert it as an action on the
14606 -- clause node. The visibility for this entity is used to test for
14607 -- visibility of the attribute definition clause (in the sense of
14608 -- 8.3(23) as amended by AI-195).
14610 if not Defer_Declaration then
14611 Subp_Decl :=
14612 Make_Subprogram_Declaration (Loc,
14613 Specification => Build_Spec);
14615 -- For a tagged type, there is always a visible declaration for the
14616 -- Put_Image TSS (it is a predefined primitive operation), and the
14617 -- completion of this declaration occurs at the freeze point, which is
14618 -- not always visible at places where the attribute definition clause is
14619 -- visible. So, we create a dummy entity here for the purpose of
14620 -- tracking the visibility of the attribute definition clause itself.
14622 else
14623 Subp_Id :=
14624 Make_Defining_Identifier (Loc, New_External_Name (Sname, 'V'));
14625 Subp_Decl :=
14626 Make_Object_Declaration (Loc,
14627 Defining_Identifier => Subp_Id,
14628 Object_Definition => New_Occurrence_Of (Standard_Boolean, Loc));
14629 end if;
14631 if not Defer_Declaration
14632 and then From_Aspect_Specification (N)
14633 and then Has_Delayed_Freeze (Ent)
14634 then
14635 Append_Freeze_Action (Ent, Subp_Decl);
14637 else
14638 Insert_Action (N, Subp_Decl);
14639 Set_Entity (N, Subp_Id);
14640 end if;
14642 Subp_Decl :=
14643 Make_Subprogram_Renaming_Declaration (Loc,
14644 Specification => Build_Spec,
14645 Name => New_Occurrence_Of (Subp, Loc));
14647 if Defer_Declaration then
14648 Set_TSS (Base_Type (Ent), Subp_Id);
14650 else
14651 if From_Aspect_Specification (N) then
14652 Append_Freeze_Action (Ent, Subp_Decl);
14653 else
14654 Insert_Action (N, Subp_Decl);
14655 end if;
14657 Copy_TSS (Subp_Id, Base_Type (Ent));
14658 end if;
14659 end New_Put_Image_Subprogram;
14661 ---------------------------
14662 -- New_Stream_Subprogram --
14663 ---------------------------
14665 procedure New_Stream_Subprogram
14666 (N : Node_Id;
14667 Ent : Entity_Id;
14668 Subp : Entity_Id;
14669 Nam : TSS_Name_Type)
14671 Loc : constant Source_Ptr := Sloc (N);
14672 Sname : constant Name_Id := Make_TSS_Name (Base_Type (Ent), Nam);
14673 Subp_Id : Entity_Id;
14674 Subp_Decl : Node_Id;
14675 F : Entity_Id;
14676 Etyp : Entity_Id;
14678 Defer_Declaration : constant Boolean :=
14679 Is_Tagged_Type (Ent) or else Is_Private_Type (Ent);
14680 -- For a tagged type, there is a declaration for each stream attribute
14681 -- at the freeze point, and we must generate only a completion of this
14682 -- declaration. We do the same for private types, because the full view
14683 -- might be tagged. Otherwise we generate a declaration at the point of
14684 -- the attribute definition clause. If the attribute definition comes
14685 -- from an aspect specification the declaration is part of the freeze
14686 -- actions of the type.
14688 function Build_Spec return Node_Id;
14689 -- Used for declaration and renaming declaration, so that this is
14690 -- treated as a renaming_as_body.
14692 ----------------
14693 -- Build_Spec --
14694 ----------------
14696 function Build_Spec return Node_Id is
14697 Out_P : constant Boolean := (Nam = TSS_Stream_Read);
14698 Formals : List_Id;
14699 Spec : Node_Id;
14700 T_Ref : constant Node_Id := New_Occurrence_Of (Etyp, Loc);
14702 begin
14703 Subp_Id := Make_Defining_Identifier (Loc, Sname);
14705 -- S : access Root_Stream_Type'Class
14707 Formals := New_List (
14708 Make_Parameter_Specification (Loc,
14709 Defining_Identifier =>
14710 Make_Defining_Identifier (Loc, Name_S),
14711 Parameter_Type =>
14712 Make_Access_Definition (Loc,
14713 Subtype_Mark =>
14714 New_Occurrence_Of (
14715 Designated_Type (Etype (F)), Loc))));
14717 if Nam = TSS_Stream_Input then
14718 Spec :=
14719 Make_Function_Specification (Loc,
14720 Defining_Unit_Name => Subp_Id,
14721 Parameter_Specifications => Formals,
14722 Result_Definition => T_Ref);
14723 else
14724 -- V : [out] T
14726 Append_To (Formals,
14727 Make_Parameter_Specification (Loc,
14728 Defining_Identifier => Make_Defining_Identifier (Loc, Name_V),
14729 Out_Present => Out_P,
14730 Parameter_Type => T_Ref));
14732 Spec :=
14733 Make_Procedure_Specification (Loc,
14734 Defining_Unit_Name => Subp_Id,
14735 Parameter_Specifications => Formals);
14736 end if;
14738 return Spec;
14739 end Build_Spec;
14741 -- Start of processing for New_Stream_Subprogram
14743 begin
14744 F := First_Formal (Subp);
14746 if Ekind (Subp) = E_Procedure then
14747 Etyp := Etype (Next_Formal (F));
14748 else
14749 Etyp := Etype (Subp);
14750 end if;
14752 -- Prepare subprogram declaration and insert it as an action on the
14753 -- clause node. The visibility for this entity is used to test for
14754 -- visibility of the attribute definition clause (in the sense of
14755 -- 8.3(23) as amended by AI-195).
14757 if not Defer_Declaration then
14758 Subp_Decl :=
14759 Make_Subprogram_Declaration (Loc,
14760 Specification => Build_Spec);
14762 -- For a tagged type, there is always a visible declaration for each
14763 -- stream TSS (it is a predefined primitive operation), and the
14764 -- completion of this declaration occurs at the freeze point, which is
14765 -- not always visible at places where the attribute definition clause is
14766 -- visible. So, we create a dummy entity here for the purpose of
14767 -- tracking the visibility of the attribute definition clause itself.
14769 else
14770 Subp_Id :=
14771 Make_Defining_Identifier (Loc, New_External_Name (Sname, 'V'));
14772 Subp_Decl :=
14773 Make_Object_Declaration (Loc,
14774 Defining_Identifier => Subp_Id,
14775 Object_Definition => New_Occurrence_Of (Standard_Boolean, Loc));
14776 end if;
14778 if not Defer_Declaration
14779 and then From_Aspect_Specification (N)
14780 and then Has_Delayed_Freeze (Ent)
14781 then
14782 Append_Freeze_Action (Ent, Subp_Decl);
14784 else
14785 Insert_Action (N, Subp_Decl);
14786 Set_Entity (N, Subp_Id);
14787 end if;
14789 Subp_Decl :=
14790 Make_Subprogram_Renaming_Declaration (Loc,
14791 Specification => Build_Spec,
14792 Name => New_Occurrence_Of (Subp, Loc));
14794 if Defer_Declaration then
14795 Set_TSS (Base_Type (Ent), Subp_Id);
14797 else
14798 if From_Aspect_Specification (N) then
14799 Append_Freeze_Action (Ent, Subp_Decl);
14800 else
14801 Insert_Action (N, Subp_Decl);
14802 end if;
14804 Copy_TSS (Subp_Id, Base_Type (Ent));
14805 end if;
14806 end New_Stream_Subprogram;
14808 ----------------------
14809 -- No_Type_Rep_Item --
14810 ----------------------
14812 procedure No_Type_Rep_Item (N : Node_Id) is
14813 begin
14814 Error_Msg_N ("|type-related representation item not permitted!", N);
14815 end No_Type_Rep_Item;
14817 --------------
14818 -- Pop_Type --
14819 --------------
14821 procedure Pop_Type (E : Entity_Id) is
14822 begin
14823 if Ekind (E) = E_Record_Type and then E = Current_Scope then
14824 End_Scope;
14826 elsif Is_Type (E)
14827 and then Has_Discriminants (E)
14828 and then Nkind (Parent (E)) /= N_Subtype_Declaration
14829 then
14830 Uninstall_Discriminants (E);
14831 Pop_Scope;
14832 end if;
14833 end Pop_Type;
14835 ---------------
14836 -- Push_Type --
14837 ---------------
14839 procedure Push_Type (E : Entity_Id) is
14840 Comp : Entity_Id;
14842 begin
14843 if Ekind (E) = E_Record_Type then
14844 Push_Scope (E);
14846 Comp := First_Component (E);
14847 while Present (Comp) loop
14848 Install_Entity (Comp);
14849 Next_Component (Comp);
14850 end loop;
14852 if Has_Discriminants (E) then
14853 Install_Discriminants (E);
14854 end if;
14856 elsif Is_Type (E)
14857 and then Has_Discriminants (E)
14858 and then Nkind (Parent (E)) /= N_Subtype_Declaration
14859 then
14860 Push_Scope (E);
14861 Install_Discriminants (E);
14862 end if;
14863 end Push_Type;
14865 -----------------------------------
14866 -- Register_Address_Clause_Check --
14867 -----------------------------------
14869 procedure Register_Address_Clause_Check
14870 (N : Node_Id;
14871 X : Entity_Id;
14872 A : Uint;
14873 Y : Entity_Id;
14874 Off : Boolean)
14876 ACS : constant Boolean := Scope_Suppress.Suppress (Alignment_Check);
14877 begin
14878 Address_Clause_Checks.Append ((N, X, A, Y, Off, ACS));
14879 end Register_Address_Clause_Check;
14881 ------------------------
14882 -- Rep_Item_Too_Early --
14883 ------------------------
14885 function Rep_Item_Too_Early (T : Entity_Id; N : Node_Id) return Boolean is
14886 function Has_Generic_Parent (E : Entity_Id) return Boolean;
14887 -- Return True if R or any ancestor is a generic type
14889 ------------------------
14890 -- Has_Generic_Parent --
14891 ------------------------
14893 function Has_Generic_Parent (E : Entity_Id) return Boolean is
14894 Ancestor_Type : Entity_Id := Etype (E);
14896 begin
14897 if Is_Generic_Type (E) then
14898 return True;
14899 end if;
14901 while Present (Ancestor_Type)
14902 and then not Is_Generic_Type (Ancestor_Type)
14903 and then Etype (Ancestor_Type) /= Ancestor_Type
14904 loop
14905 Ancestor_Type := Etype (Ancestor_Type);
14906 end loop;
14908 return
14909 Present (Ancestor_Type) and then Is_Generic_Type (Ancestor_Type);
14910 end Has_Generic_Parent;
14912 -- Start of processing for Rep_Item_Too_Early
14914 begin
14915 -- Cannot apply non-operational rep items to generic types
14917 if Is_Operational_Item (N) then
14918 return False;
14920 elsif Is_Type (T)
14921 and then Has_Generic_Parent (T)
14922 and then (Nkind (N) /= N_Pragma
14923 or else Get_Pragma_Id (N) /= Pragma_Convention)
14924 then
14925 if Ada_Version < Ada_2022 then
14926 Error_Msg_N
14927 ("representation item not allowed for generic type", N);
14928 return True;
14929 else
14930 return False;
14931 end if;
14932 end if;
14934 -- Otherwise check for incomplete type
14936 if Is_Incomplete_Or_Private_Type (T)
14937 and then No (Underlying_Type (T))
14938 and then
14939 (Nkind (N) /= N_Pragma
14940 or else Get_Pragma_Id (N) /= Pragma_Import)
14941 then
14942 Error_Msg_N
14943 ("representation item must be after full type declaration", N);
14944 return True;
14946 -- If the type has incomplete components, a representation clause is
14947 -- illegal but stream attributes and Convention pragmas are correct.
14949 elsif Has_Private_Component (T) then
14950 if Nkind (N) = N_Pragma then
14951 return False;
14953 else
14954 Error_Msg_N
14955 ("representation item must appear after type is fully defined",
14957 return True;
14958 end if;
14959 else
14960 return False;
14961 end if;
14962 end Rep_Item_Too_Early;
14964 -----------------------
14965 -- Rep_Item_Too_Late --
14966 -----------------------
14968 function Rep_Item_Too_Late
14969 (T : Entity_Id;
14970 N : Node_Id;
14971 FOnly : Boolean := False) return Boolean
14973 procedure Too_Late;
14974 -- Output message for an aspect being specified too late
14976 -- Note that neither of the above errors is considered a serious one,
14977 -- since the effect is simply that we ignore the representation clause
14978 -- in these cases.
14979 -- Is this really true? In any case if we make this change we must
14980 -- document the requirement in the spec of Rep_Item_Too_Late that
14981 -- if True is returned, then the rep item must be completely ignored???
14983 --------------
14984 -- Too_Late --
14985 --------------
14987 procedure Too_Late is
14988 begin
14989 -- Other compilers seem more relaxed about rep items appearing too
14990 -- late. Since analysis tools typically don't care about rep items
14991 -- anyway, no reason to be too strict about this.
14993 if not Relaxed_RM_Semantics then
14994 Error_Msg_N ("|representation item appears too late!", N);
14995 end if;
14996 end Too_Late;
14998 -- Local variables
15000 Parent_Type : Entity_Id;
15001 S : Entity_Id;
15003 -- Start of processing for Rep_Item_Too_Late
15005 begin
15006 -- First make sure entity is not frozen (RM 13.1(9))
15008 if Is_Frozen (T)
15010 -- Exclude imported types, which may be frozen if they appear in a
15011 -- representation clause for a local type.
15013 and then not From_Limited_With (T)
15015 -- Exclude generated entities (not coming from source). The common
15016 -- case is when we generate a renaming which prematurely freezes the
15017 -- renamed internal entity, but we still want to be able to set copies
15018 -- of attribute values such as Size/Alignment.
15020 and then Comes_From_Source (T)
15021 then
15022 -- A self-referential aspect is illegal if it forces freezing the
15023 -- entity before the corresponding pragma has been analyzed.
15025 if Nkind (N) in N_Attribute_Definition_Clause | N_Pragma
15026 and then From_Aspect_Specification (N)
15027 then
15028 Error_Msg_NE
15029 ("aspect specification causes premature freezing of&", N, T);
15030 Set_Has_Delayed_Freeze (T, False);
15031 return True;
15032 end if;
15034 Too_Late;
15035 S := First_Subtype (T);
15037 if Present (Freeze_Node (S)) then
15038 if not Relaxed_RM_Semantics then
15039 Error_Msg_NE
15040 ("??no more representation items for }", Freeze_Node (S), S);
15041 end if;
15042 end if;
15044 return True;
15046 -- Check for case of untagged derived type whose parent either has
15047 -- primitive operations (pre Ada 2022), or is a by-reference type (RM
15048 -- 13.1(10)). In this case we do not output a Too_Late message, since
15049 -- there is no earlier point where the rep item could be placed to make
15050 -- it legal.
15051 -- ??? Confirming representation clauses should be allowed here.
15053 elsif Is_Type (T)
15054 and then not FOnly
15055 and then Is_Derived_Type (T)
15056 and then not Is_Tagged_Type (T)
15057 then
15058 Parent_Type := Etype (Base_Type (T));
15060 if Relaxed_RM_Semantics then
15061 null;
15063 elsif Ada_Version <= Ada_2012
15064 and then Has_Primitive_Operations (Parent_Type)
15065 then
15066 Error_Msg_N
15067 ("|representation item not permitted before Ada 2022!", N);
15068 Error_Msg_NE
15069 ("\parent type & has primitive operations!", N, Parent_Type);
15070 return True;
15072 elsif Is_By_Reference_Type (Parent_Type) then
15073 No_Type_Rep_Item (N);
15074 Error_Msg_NE
15075 ("\parent type & is a by-reference type!", N, Parent_Type);
15076 return True;
15077 end if;
15078 end if;
15080 -- No error, but one more warning to consider. The RM (surprisingly)
15081 -- allows this pattern in some cases:
15083 -- type S is ...
15084 -- primitive operations for S
15085 -- type R is new S;
15086 -- rep clause for S
15088 -- Meaning that calls on the primitive operations of S for values of
15089 -- type R may require possibly expensive implicit conversion operations.
15090 -- So even when this is not an error, it is still worth a warning.
15092 if not Relaxed_RM_Semantics and then Is_Type (T) then
15093 declare
15094 DTL : constant Entity_Id := Derived_Type_Link (Base_Type (T));
15096 begin
15097 if Present (DTL)
15099 -- For now, do not generate this warning for the case of
15100 -- aspect specification using Ada 2012 syntax, since we get
15101 -- wrong messages we do not understand. The whole business
15102 -- of derived types and rep items seems a bit confused when
15103 -- aspects are used, since the aspects are not evaluated
15104 -- till freeze time. However, AI12-0109 confirms (in an AARM
15105 -- ramification) that inheritance in this case is required
15106 -- to work.
15108 and then not From_Aspect_Specification (N)
15109 then
15110 if Is_By_Reference_Type (T)
15111 and then not Is_Tagged_Type (T)
15112 and then Is_Type_Related_Rep_Item (N)
15113 and then (Ada_Version >= Ada_2012
15114 or else Has_Primitive_Operations (Base_Type (T)))
15115 then
15116 -- Treat as hard error (AI12-0109, binding interpretation).
15117 -- Implementing a change of representation is not really
15118 -- an option in the case of a by-reference type, so we
15119 -- take this path for all Ada dialects if primitive
15120 -- operations are present.
15121 Error_Msg_Sloc := Sloc (DTL);
15122 Error_Msg_N
15123 ("representation item for& appears after derived type "
15124 & "declaration#", N);
15126 elsif Has_Primitive_Operations (Base_Type (T)) then
15127 Error_Msg_Sloc := Sloc (DTL);
15129 Error_Msg_N
15130 ("representation item for& appears after derived type "
15131 & "declaration#??", N);
15132 Error_Msg_NE
15133 ("\may result in implicit conversions for primitive "
15134 & "operations of&??", N, T);
15135 Error_Msg_NE
15136 ("\to change representations when called with arguments "
15137 & "of type&??", N, DTL);
15138 end if;
15139 end if;
15140 end;
15141 end if;
15143 -- No error, link item into head of chain of rep items for the entity,
15144 -- but avoid chaining if we have an overloadable entity, and the pragma
15145 -- is one that can apply to multiple overloaded entities.
15147 if Is_Overloadable (T) and then Nkind (N) = N_Pragma then
15148 declare
15149 Pname : constant Name_Id := Pragma_Name (N);
15150 begin
15151 if Pname in Name_Convention | Name_Import | Name_Export
15152 | Name_External | Name_Interface
15153 then
15154 return False;
15155 end if;
15156 end;
15157 end if;
15159 Record_Rep_Item (T, N);
15160 return False;
15161 end Rep_Item_Too_Late;
15163 -------------------------------------
15164 -- Replace_Type_References_Generic --
15165 -------------------------------------
15167 procedure Replace_Type_References_Generic (N : Node_Id; T : Entity_Id) is
15168 TName : constant Name_Id := Chars (T);
15170 function Replace_Type_Ref (N : Node_Id) return Traverse_Result;
15171 -- Processes a single node in the traversal procedure below, checking
15172 -- if node N should be replaced, and if so, doing the replacement.
15174 function Visible_Component (Comp : Name_Id) return Entity_Id;
15175 -- Given an identifier in the expression, check whether there is a
15176 -- discriminant, component, protected procedure, or entry of the type
15177 -- that is directy visible, and rewrite it as the corresponding selected
15178 -- component of the formal of the subprogram.
15180 ----------------------
15181 -- Replace_Type_Ref --
15182 ----------------------
15184 function Replace_Type_Ref (N : Node_Id) return Traverse_Result is
15185 Loc : constant Source_Ptr := Sloc (N);
15187 procedure Add_Prefix (Ref : Node_Id; Comp : Entity_Id);
15188 -- Add the proper prefix to a reference to a component of the type
15189 -- when it is not already a selected component.
15191 ----------------
15192 -- Add_Prefix --
15193 ----------------
15195 procedure Add_Prefix (Ref : Node_Id; Comp : Entity_Id) is
15196 begin
15197 Rewrite (Ref,
15198 Make_Selected_Component (Loc,
15199 Prefix => New_Occurrence_Of (T, Loc),
15200 Selector_Name => New_Occurrence_Of (Comp, Loc)));
15201 Replace_Type_Reference (Prefix (Ref));
15202 end Add_Prefix;
15204 -- Local variables
15206 Comp : Entity_Id;
15207 Pref : Node_Id;
15208 Scop : Entity_Id;
15210 -- Start of processing for Replace_Type_Ref
15212 begin
15213 if Nkind (N) = N_Identifier then
15215 -- If not the type name, check whether it is a reference to some
15216 -- other type, which must be frozen before the predicate function
15217 -- is analyzed, i.e. before the freeze node of the type to which
15218 -- the predicate applies.
15220 if Chars (N) /= TName then
15221 if Present (Current_Entity (N))
15222 and then Is_Type (Current_Entity (N))
15223 then
15224 Freeze_Before (Freeze_Node (T), Current_Entity (N));
15225 end if;
15227 -- The components of the type are directly visible and can
15228 -- be referenced in the source code without a prefix.
15229 -- If a name denoting a component doesn't already have a
15230 -- prefix, then normalize it by adding a reference to the
15231 -- current instance of the type as a prefix.
15233 -- This isn't right in the pathological corner case of an
15234 -- object-declaring expression (e.g., a quantified expression
15235 -- or a declare expression) that declares an object with the
15236 -- same name as a visible component declaration, thereby hiding
15237 -- the component within that expression. For example, given a
15238 -- record with a Boolean component "C" and a dynamic predicate
15239 -- "C = (for some C in Character => Some_Function (C))", only
15240 -- the first of the two uses of C should have a prefix added
15241 -- here; instead, both will get prefixes.
15243 if Nkind (Parent (N)) /= N_Selected_Component
15244 or else N /= Selector_Name (Parent (N))
15245 then
15246 Comp := Visible_Component (Chars (N));
15248 if Present (Comp) then
15249 Add_Prefix (N, Comp);
15250 end if;
15251 end if;
15253 return Skip;
15255 -- Otherwise do the replacement if this is not a qualified
15256 -- reference to a homograph of the type itself. Note that the
15257 -- current instance could not appear in such a context, e.g.
15258 -- the prefix of a type conversion.
15260 else
15261 if Nkind (Parent (N)) /= N_Selected_Component
15262 or else N /= Selector_Name (Parent (N))
15263 then
15264 Replace_Type_Reference (N);
15265 end if;
15267 return Skip;
15268 end if;
15270 -- Case of selected component, which may be a subcomponent of the
15271 -- current instance, or an expanded name which is still unanalyzed.
15273 elsif Nkind (N) = N_Selected_Component then
15275 -- If selector name is not our type, keep going (we might still
15276 -- have an occurrence of the type in the prefix). If it is a
15277 -- subcomponent of the current entity, add prefix.
15279 if Nkind (Selector_Name (N)) /= N_Identifier
15280 or else Chars (Selector_Name (N)) /= TName
15281 then
15282 if Nkind (Prefix (N)) = N_Identifier then
15283 Comp := Visible_Component (Chars (Prefix (N)));
15285 if Present (Comp) then
15286 Add_Prefix (Prefix (N), Comp);
15287 end if;
15288 end if;
15290 return OK;
15292 -- Selector name is our type, check qualification
15294 else
15295 -- Loop through scopes and prefixes, doing comparison
15297 Scop := Current_Scope;
15298 Pref := Prefix (N);
15299 loop
15300 -- Continue if no more scopes or scope with no name
15302 if No (Scop) or else Nkind (Scop) not in N_Has_Chars then
15303 return OK;
15304 end if;
15306 -- Do replace if prefix is an identifier matching the scope
15307 -- that we are currently looking at.
15309 if Nkind (Pref) = N_Identifier
15310 and then Chars (Pref) = Chars (Scop)
15311 then
15312 Replace_Type_Reference (N);
15313 return Skip;
15314 end if;
15316 -- Go check scope above us if prefix is itself of the form
15317 -- of a selected component, whose selector matches the scope
15318 -- we are currently looking at.
15320 if Nkind (Pref) = N_Selected_Component
15321 and then Nkind (Selector_Name (Pref)) = N_Identifier
15322 and then Chars (Selector_Name (Pref)) = Chars (Scop)
15323 then
15324 Scop := Scope (Scop);
15325 Pref := Prefix (Pref);
15327 -- For anything else, we don't have a match, so keep on
15328 -- going, there are still some weird cases where we may
15329 -- still have a replacement within the prefix.
15331 else
15332 return OK;
15333 end if;
15334 end loop;
15335 end if;
15337 -- Continue for any other node kind
15339 else
15340 return OK;
15341 end if;
15342 end Replace_Type_Ref;
15344 procedure Replace_Type_Refs is new Traverse_Proc (Replace_Type_Ref);
15346 -----------------------
15347 -- Visible_Component --
15348 -----------------------
15350 function Visible_Component (Comp : Name_Id) return Entity_Id is
15351 E : Entity_Id;
15352 begin
15353 -- Types with nameable components are record, task, and protected
15354 -- types, and discriminated private types.
15356 if Ekind (T) in E_Record_Type
15357 | E_Task_Type
15358 | E_Protected_Type
15359 or else (Is_Private_Type (T) and then Has_Discriminants (T))
15360 then
15361 -- This is a sequential search, which seems acceptable
15362 -- efficiency-wise, given the typical size of component
15363 -- lists, protected operation lists, task item lists, and
15364 -- check expressions.
15366 E := First_Entity (T);
15367 while Present (E) loop
15368 if Comes_From_Source (E) and then Chars (E) = Comp then
15369 return E;
15370 end if;
15372 Next_Entity (E);
15373 end loop;
15374 end if;
15376 -- Nothing by that name
15378 return Empty;
15379 end Visible_Component;
15381 -- Start of processing for Replace_Type_References_Generic
15383 begin
15384 Replace_Type_Refs (N);
15385 end Replace_Type_References_Generic;
15387 --------------------------------
15388 -- Resolve_Aspect_Expressions --
15389 --------------------------------
15391 procedure Resolve_Aspect_Expressions (E : Entity_Id) is
15392 function Resolve_Name (N : Node_Id) return Traverse_Result;
15393 -- Verify that all identifiers in the expression, with the exception
15394 -- of references to the current entity, denote visible entities. This
15395 -- is done only to detect visibility errors, as the expression will be
15396 -- properly analyzed/expanded during analysis of the predicate function
15397 -- body. We omit quantified expressions from this test, given that they
15398 -- introduce a local identifier that would require proper expansion to
15399 -- handle properly.
15401 ------------------
15402 -- Resolve_Name --
15403 ------------------
15405 function Resolve_Name (N : Node_Id) return Traverse_Result is
15406 Dummy : Traverse_Result;
15408 begin
15409 if Nkind (N) = N_Selected_Component then
15410 if Nkind (Prefix (N)) = N_Identifier
15411 and then Chars (Prefix (N)) /= Chars (E)
15412 then
15413 Find_Selected_Component (N);
15414 end if;
15416 return Skip;
15418 -- Resolve identifiers that are not selectors in parameter
15419 -- associations (these are never resolved by visibility).
15421 elsif Nkind (N) = N_Identifier
15422 and then Chars (N) /= Chars (E)
15423 and then (Nkind (Parent (N)) /= N_Parameter_Association
15424 or else N /= Selector_Name (Parent (N)))
15425 then
15426 Find_Direct_Name (N);
15428 -- Reset the Entity if N is overloaded since the entity may not
15429 -- be the correct one.
15431 if Is_Overloaded (N) then
15432 Set_Entity (N, Empty);
15433 end if;
15435 -- The name in a component association needs no resolution
15437 elsif Nkind (N) = N_Component_Association then
15438 Dummy := Resolve_Name (Expression (N));
15439 return Skip;
15441 elsif Nkind (N) = N_Quantified_Expression then
15442 return Skip;
15443 end if;
15445 return OK;
15446 end Resolve_Name;
15448 procedure Resolve_Aspect_Expression is new Traverse_Proc (Resolve_Name);
15450 -- Local variables
15452 ASN : Node_Id := First_Rep_Item (E);
15454 -- Start of processing for Resolve_Aspect_Expressions
15456 begin
15457 while Present (ASN) loop
15458 if Nkind (ASN) = N_Aspect_Specification and then Entity (ASN) = E then
15459 declare
15460 A_Id : constant Aspect_Id := Get_Aspect_Id (ASN);
15461 Expr : constant Node_Id := Expression (ASN);
15463 begin
15464 case A_Id is
15466 when Aspect_Aggregate =>
15467 Resolve_Aspect_Aggregate (Entity (ASN), Expr);
15469 when Aspect_Stable_Properties =>
15470 Resolve_Aspect_Stable_Properties
15471 (Entity (ASN), Expr, Class_Present (ASN));
15473 -- For now we only deal with aspects that do not generate
15474 -- subprograms, or that may mention current instances of
15475 -- types. These will require special handling???.
15477 when Aspect_Invariant
15478 | Aspect_Predicate_Failure
15480 null;
15482 when Aspect_Dynamic_Predicate
15483 | Aspect_Static_Predicate
15484 | Aspect_Predicate
15486 -- Preanalyze expression after type replacement to catch
15487 -- name resolution errors if the predicate function has
15488 -- not been built yet.
15489 -- Note that we cannot use Preanalyze_Spec_Expression
15490 -- because of the special handling required for
15491 -- quantifiers, see comments on Resolve_Aspect_Expression
15492 -- above.
15494 if No (Predicate_Function (E)) then
15495 Push_Type (E);
15496 Resolve_Aspect_Expression (Expr);
15497 Pop_Type (E);
15498 end if;
15500 when Pre_Post_Aspects =>
15501 null;
15503 when Aspect_Iterable =>
15504 if Nkind (Expr) = N_Aggregate then
15505 declare
15506 Assoc : Node_Id;
15508 begin
15509 Assoc := First (Component_Associations (Expr));
15510 while Present (Assoc) loop
15511 if Nkind (Expression (Assoc)) in N_Has_Entity
15512 then
15513 Find_Direct_Name (Expression (Assoc));
15514 end if;
15516 Next (Assoc);
15517 end loop;
15518 end;
15519 end if;
15521 -- The expression for Default_Value is a static expression
15522 -- of the type, but this expression does not freeze the
15523 -- type, so it can still appear in a representation clause
15524 -- before the actual freeze point.
15526 when Aspect_Default_Value =>
15527 Set_Must_Not_Freeze (Expr);
15528 Preanalyze_Spec_Expression (Expr, E);
15530 when Aspect_Priority =>
15531 Push_Type (E);
15532 Preanalyze_Spec_Expression (Expr, Any_Integer);
15533 Pop_Type (E);
15535 -- Ditto for Storage_Size. Any other aspects that carry
15536 -- expressions that should not freeze ??? This is only
15537 -- relevant to the misuse of deferred constants.
15539 when Aspect_Storage_Size =>
15540 Set_Must_Not_Freeze (Expr);
15541 Preanalyze_Spec_Expression (Expr, Any_Integer);
15543 when others =>
15544 if Present (Expr) then
15545 case Aspect_Argument (A_Id) is
15546 when Expression
15547 | Optional_Expression
15549 Analyze_And_Resolve (Expr);
15551 when Name
15552 | Optional_Name
15554 if Nkind (Expr) = N_Identifier then
15555 Find_Direct_Name (Expr);
15557 elsif Nkind (Expr) = N_Selected_Component then
15558 Find_Selected_Component (Expr);
15559 end if;
15560 end case;
15561 end if;
15562 end case;
15563 end;
15564 end if;
15566 Next_Rep_Item (ASN);
15567 end loop;
15568 end Resolve_Aspect_Expressions;
15570 ----------------------------
15571 -- Parse_Aspect_Aggregate --
15572 ----------------------------
15574 procedure Parse_Aspect_Aggregate
15575 (N : Node_Id;
15576 Empty_Subp : in out Node_Id;
15577 Add_Named_Subp : in out Node_Id;
15578 Add_Unnamed_Subp : in out Node_Id;
15579 New_Indexed_Subp : in out Node_Id;
15580 Assign_Indexed_Subp : in out Node_Id)
15582 Assoc : Node_Id := First (Component_Associations (N));
15583 Op_Name : Name_Id;
15584 Subp : Node_Id;
15586 begin
15587 while Present (Assoc) loop
15588 Subp := Expression (Assoc);
15589 Op_Name := Chars (First (Choices (Assoc)));
15590 if Op_Name = Name_Empty then
15591 Empty_Subp := Subp;
15593 elsif Op_Name = Name_Add_Named then
15594 Add_Named_Subp := Subp;
15596 elsif Op_Name = Name_Add_Unnamed then
15597 Add_Unnamed_Subp := Subp;
15599 elsif Op_Name = Name_New_Indexed then
15600 New_Indexed_Subp := Subp;
15602 elsif Op_Name = Name_Assign_Indexed then
15603 Assign_Indexed_Subp := Subp;
15604 end if;
15606 Next (Assoc);
15607 end loop;
15608 end Parse_Aspect_Aggregate;
15610 ------------------------------------
15611 -- Parse_Aspect_Stable_Properties --
15612 ------------------------------------
15614 function Parse_Aspect_Stable_Properties
15615 (Aspect_Spec : Node_Id; Negated : out Boolean) return Subprogram_List
15617 function Extract_Entity (Expr : Node_Id) return Entity_Id;
15618 -- Given an element of a Stable_Properties aspect spec, return the
15619 -- associated entity.
15620 -- This function updates the Negated flag as a side-effect.
15622 --------------------
15623 -- Extract_Entity --
15624 --------------------
15626 function Extract_Entity (Expr : Node_Id) return Entity_Id is
15627 Name : Node_Id;
15628 begin
15629 if Nkind (Expr) = N_Op_Not then
15630 Negated := True;
15631 Name := Right_Opnd (Expr);
15632 else
15633 Name := Expr;
15634 end if;
15636 if Nkind (Name) in N_Has_Entity then
15637 return Entity (Name);
15638 else
15639 return Empty;
15640 end if;
15641 end Extract_Entity;
15643 -- Local variables
15645 L : List_Id;
15646 Id : Node_Id;
15648 -- Start of processing for Parse_Aspect_Stable_Properties
15650 begin
15651 Negated := False;
15653 if Nkind (Aspect_Spec) /= N_Aggregate then
15654 return (1 => Extract_Entity (Aspect_Spec));
15655 else
15656 L := Expressions (Aspect_Spec);
15657 Id := First (L);
15659 return Result : Subprogram_List (1 .. List_Length (L)) do
15660 for I in Result'Range loop
15661 Result (I) := Extract_Entity (Id);
15663 if No (Result (I)) then
15664 pragma Assert (Serious_Errors_Detected > 0);
15665 goto Ignore_Aspect;
15666 end if;
15668 Next (Id);
15669 end loop;
15670 end return;
15671 end if;
15673 <<Ignore_Aspect>> return (1 .. 0 => <>);
15674 end Parse_Aspect_Stable_Properties;
15676 -------------------------------
15677 -- Validate_Aspect_Aggregate --
15678 -------------------------------
15680 procedure Validate_Aspect_Aggregate (N : Node_Id) is
15681 Empty_Subp : Node_Id := Empty;
15682 Add_Named_Subp : Node_Id := Empty;
15683 Add_Unnamed_Subp : Node_Id := Empty;
15684 New_Indexed_Subp : Node_Id := Empty;
15685 Assign_Indexed_Subp : Node_Id := Empty;
15687 begin
15688 Error_Msg_Ada_2022_Feature ("aspect Aggregate", Sloc (N));
15690 if Nkind (N) /= N_Aggregate
15691 or else Present (Expressions (N))
15692 or else No (Component_Associations (N))
15693 then
15694 Error_Msg_N ("aspect Aggregate requires an aggregate "
15695 & "with component associations", N);
15696 return;
15697 end if;
15699 Parse_Aspect_Aggregate (N,
15700 Empty_Subp, Add_Named_Subp, Add_Unnamed_Subp,
15701 New_Indexed_Subp, Assign_Indexed_Subp);
15703 if No (Empty_Subp) then
15704 Error_Msg_N ("missing specification for Empty in aggregate", N);
15705 end if;
15707 if Present (Add_Named_Subp) then
15708 if Present (Add_Unnamed_Subp)
15709 or else Present (Assign_Indexed_Subp)
15710 then
15711 Error_Msg_N
15712 ("conflicting operations for aggregate (RM 4.3.5)", N);
15713 return;
15714 end if;
15716 elsif Present (New_Indexed_Subp) /= Present (Assign_Indexed_Subp) then
15717 Error_Msg_N ("incomplete specification for indexed aggregate", N);
15718 end if;
15719 end Validate_Aspect_Aggregate;
15721 -------------------------------
15722 -- Validate_Aspect_Stable_Properties --
15723 -------------------------------
15725 procedure Validate_Aspect_Stable_Properties
15726 (E : Entity_Id; N : Node_Id; Class_Present : Boolean)
15728 Is_Aspect_Of_Type : constant Boolean := Is_Type (E);
15730 type Permission is (Forbidden, Optional, Required);
15731 Modifier_Permission : Permission :=
15732 (if Is_Aspect_Of_Type then Forbidden else Optional);
15733 Modifier_Error_Called : Boolean := False;
15735 procedure Check_Property_Function_Arg (PF_Arg : Node_Id);
15736 -- Check syntax of a property function argument
15738 ----------------------------------
15739 -- Check_Property_Function_Arg --
15740 ----------------------------------
15742 procedure Check_Property_Function_Arg (PF_Arg : Node_Id) is
15743 procedure Modifier_Error;
15744 -- Generate message about bad "not" modifier if no message already
15745 -- generated. Errors include specifying "not" for an aspect of
15746 -- of a type and specifying "not" for some but not all of the
15747 -- names in a list.
15749 --------------------
15750 -- Modifier_Error --
15751 --------------------
15753 procedure Modifier_Error is
15754 begin
15755 if Modifier_Error_Called then
15756 return; -- error message already generated
15757 end if;
15759 Modifier_Error_Called := True;
15761 if Is_Aspect_Of_Type then
15762 Error_Msg_N
15763 ("NOT modifier not allowed for Stable_Properties aspect"
15764 & " of a type", PF_Arg);
15765 else
15766 Error_Msg_N ("mixed use of NOT modifiers", PF_Arg);
15767 end if;
15768 end Modifier_Error;
15770 PF_Name : Node_Id := PF_Arg;
15772 -- Start of processing for Check_Property_Function_Arg
15774 begin
15775 if Nkind (PF_Arg) = N_Op_Not then
15776 PF_Name := Right_Opnd (PF_Arg);
15778 case Modifier_Permission is
15779 when Forbidden =>
15780 Modifier_Error;
15781 when Optional =>
15782 Modifier_Permission := Required;
15783 when Required =>
15784 null;
15785 end case;
15786 else
15787 case Modifier_Permission is
15788 when Forbidden =>
15789 null;
15790 when Optional =>
15791 Modifier_Permission := Forbidden;
15792 when Required =>
15793 Modifier_Error;
15794 end case;
15795 end if;
15797 if Nkind (PF_Name) not in
15798 N_Identifier | N_Operator_Symbol | N_Selected_Component
15799 then
15800 Error_Msg_N ("bad property function name", PF_Name);
15801 end if;
15802 end Check_Property_Function_Arg;
15804 -- Start of processing for Validate_Aspect_Stable_Properties
15806 begin
15807 Error_Msg_Ada_2022_Feature ("aspect Stable_Properties", Sloc (N));
15809 if (not Is_Aspect_Of_Type) and then (not Is_Subprogram (E)) then
15810 Error_Msg_N ("Stable_Properties aspect can only be specified for "
15811 & "a type or a subprogram", N);
15812 elsif Class_Present then
15813 if Is_Aspect_Of_Type then
15814 if not Is_Tagged_Type (E) then
15815 Error_Msg_N
15816 ("Stable_Properties''Class aspect cannot be specified for "
15817 & "an untagged type", N);
15818 end if;
15819 else
15820 if not Is_Dispatching_Operation (E) then
15821 Error_Msg_N
15822 ("Stable_Properties''Class aspect cannot be specified for "
15823 & "a subprogram that is not a primitive subprogram "
15824 & "of a tagged type", N);
15825 end if;
15826 end if;
15827 end if;
15829 if Nkind (N) = N_Aggregate then
15830 if Present (Component_Associations (N))
15831 or else Null_Record_Present (N)
15832 or else not Present (Expressions (N))
15833 then
15834 Error_Msg_N ("bad Stable_Properties aspect specification", N);
15835 return;
15836 end if;
15838 declare
15839 PF_Arg : Node_Id := First (Expressions (N));
15840 begin
15841 while Present (PF_Arg) loop
15842 Check_Property_Function_Arg (PF_Arg);
15843 Next (PF_Arg);
15844 end loop;
15845 end;
15846 else
15847 Check_Property_Function_Arg (N);
15848 end if;
15849 end Validate_Aspect_Stable_Properties;
15851 --------------------------------
15852 -- Resolve_Iterable_Operation --
15853 --------------------------------
15855 procedure Resolve_Iterable_Operation
15856 (N : Node_Id;
15857 Cursor : Entity_Id;
15858 Typ : Entity_Id;
15859 Nam : Name_Id)
15861 Ent : Entity_Id;
15862 F1 : Entity_Id;
15863 F2 : Entity_Id;
15865 begin
15866 if not Is_Overloaded (N) then
15867 if not Is_Entity_Name (N)
15868 or else Ekind (Entity (N)) /= E_Function
15869 or else Scope (Entity (N)) /= Scope (Typ)
15870 or else No (First_Formal (Entity (N)))
15871 or else Etype (First_Formal (Entity (N))) /= Typ
15872 then
15873 Error_Msg_N
15874 ("iterable primitive must be local function name whose first "
15875 & "formal is an iterable type", N);
15876 return;
15877 end if;
15879 Ent := Entity (N);
15880 F1 := First_Formal (Ent);
15881 F2 := Next_Formal (F1);
15883 if Nam = Name_First then
15885 -- First (Container) => Cursor
15887 if Etype (Ent) /= Cursor then
15888 Error_Msg_N ("primitive for First must yield a cursor", N);
15889 elsif Present (F2) then
15890 Error_Msg_N ("no match for First iterable primitive", N);
15891 end if;
15893 elsif Nam = Name_Last then
15895 -- Last (Container) => Cursor
15897 if Etype (Ent) /= Cursor then
15898 Error_Msg_N ("primitive for Last must yield a cursor", N);
15899 elsif Present (F2) then
15900 Error_Msg_N ("no match for Last iterable primitive", N);
15901 end if;
15903 elsif Nam = Name_Next then
15905 -- Next (Container, Cursor) => Cursor
15907 if No (F2)
15908 or else Etype (F2) /= Cursor
15909 or else Etype (Ent) /= Cursor
15910 or else Present (Next_Formal (F2))
15911 then
15912 Error_Msg_N ("no match for Next iterable primitive", N);
15913 end if;
15915 elsif Nam = Name_Previous then
15917 -- Previous (Container, Cursor) => Cursor
15919 if No (F2)
15920 or else Etype (F2) /= Cursor
15921 or else Etype (Ent) /= Cursor
15922 or else Present (Next_Formal (F2))
15923 then
15924 Error_Msg_N ("no match for Previous iterable primitive", N);
15925 end if;
15927 elsif Nam = Name_Has_Element then
15929 -- Has_Element (Container, Cursor) => Boolean
15931 if No (F2)
15932 or else Etype (F2) /= Cursor
15933 or else Etype (Ent) /= Standard_Boolean
15934 or else Present (Next_Formal (F2))
15935 then
15936 Error_Msg_N ("no match for Has_Element iterable primitive", N);
15937 end if;
15939 elsif Nam = Name_Element then
15941 -- Element (Container, Cursor) => Element_Type;
15943 if No (F2)
15944 or else Etype (F2) /= Cursor
15945 or else Present (Next_Formal (F2))
15946 then
15947 Error_Msg_N ("no match for Element iterable primitive", N);
15948 end if;
15950 else
15951 raise Program_Error;
15952 end if;
15954 else
15955 -- Overloaded case: find subprogram with proper signature. Caller
15956 -- will report error if no match is found.
15958 declare
15959 I : Interp_Index;
15960 It : Interp;
15962 begin
15963 Get_First_Interp (N, I, It);
15964 while Present (It.Typ) loop
15965 if Ekind (It.Nam) = E_Function
15966 and then Scope (It.Nam) = Scope (Typ)
15967 and then Present (First_Formal (It.Nam))
15968 and then Etype (First_Formal (It.Nam)) = Typ
15969 then
15970 F1 := First_Formal (It.Nam);
15972 if Nam = Name_First then
15973 if Etype (It.Nam) = Cursor
15974 and then No (Next_Formal (F1))
15975 then
15976 Set_Entity (N, It.Nam);
15977 exit;
15978 end if;
15980 elsif Nam = Name_Next then
15981 F2 := Next_Formal (F1);
15983 if Present (F2)
15984 and then No (Next_Formal (F2))
15985 and then Etype (F2) = Cursor
15986 and then Etype (It.Nam) = Cursor
15987 then
15988 Set_Entity (N, It.Nam);
15989 exit;
15990 end if;
15992 elsif Nam = Name_Has_Element then
15993 F2 := Next_Formal (F1);
15995 if Present (F2)
15996 and then No (Next_Formal (F2))
15997 and then Etype (F2) = Cursor
15998 and then Etype (It.Nam) = Standard_Boolean
15999 then
16000 Set_Entity (N, It.Nam);
16001 F2 := Next_Formal (F1);
16002 exit;
16003 end if;
16005 elsif Nam = Name_Element then
16006 F2 := Next_Formal (F1);
16008 if Present (F2)
16009 and then No (Next_Formal (F2))
16010 and then Etype (F2) = Cursor
16011 then
16012 Set_Entity (N, It.Nam);
16013 exit;
16014 end if;
16015 end if;
16016 end if;
16018 Get_Next_Interp (I, It);
16019 end loop;
16020 end;
16021 end if;
16022 end Resolve_Iterable_Operation;
16024 ------------------------------
16025 -- Resolve_Aspect_Aggregate --
16026 ------------------------------
16028 procedure Resolve_Aspect_Aggregate
16029 (Typ : Entity_Id;
16030 Expr : Node_Id)
16032 function Valid_Empty (E : Entity_Id) return Boolean;
16033 function Valid_Add_Named (E : Entity_Id) return Boolean;
16034 function Valid_Add_Unnamed (E : Entity_Id) return Boolean;
16035 function Valid_New_Indexed (E : Entity_Id) return Boolean;
16036 function Valid_Assign_Indexed (E : Entity_Id) return Boolean;
16037 -- Predicates that establish the legality of each possible operation in
16038 -- an Aggregate aspect.
16040 generic
16041 with function Pred (Id : Node_Id) return Boolean;
16042 procedure Resolve_Operation (Subp_Id : Node_Id);
16043 -- Common processing to resolve each aggregate operation.
16045 ------------------------
16046 -- Valid_Assign_Index --
16047 ------------------------
16049 function Valid_Assign_Indexed (E : Entity_Id) return Boolean is
16050 begin
16051 -- The profile must be the same as for Add_Named, with the added
16052 -- requirement that the key_type be a discrete type.
16054 if Valid_Add_Named (E) then
16055 return Is_Discrete_Type (Etype (Next_Formal (First_Formal (E))));
16056 else
16057 return False;
16058 end if;
16059 end Valid_Assign_Indexed;
16061 -----------------
16062 -- Valid_Empty --
16063 -----------------
16065 function Valid_Empty (E : Entity_Id) return Boolean is
16066 begin
16067 if Etype (E) /= Typ or else Scope (E) /= Scope (Typ) then
16068 return False;
16070 elsif Ekind (E) = E_Constant then
16071 return True;
16073 elsif Ekind (E) = E_Function then
16074 return No (First_Formal (E))
16075 or else
16076 (Is_Integer_Type (Etype (First_Formal (E)))
16077 and then No (Next_Formal (First_Formal (E))));
16078 else
16079 return False;
16080 end if;
16081 end Valid_Empty;
16083 ---------------------
16084 -- Valid_Add_Named --
16085 ---------------------
16087 function Valid_Add_Named (E : Entity_Id) return Boolean is
16088 F2, F3 : Entity_Id;
16089 begin
16090 if Ekind (E) = E_Procedure
16091 and then Scope (E) = Scope (Typ)
16092 and then Number_Formals (E) = 3
16093 and then Etype (First_Formal (E)) = Typ
16094 and then Ekind (First_Formal (E)) = E_In_Out_Parameter
16095 then
16096 F2 := Next_Formal (First_Formal (E));
16097 F3 := Next_Formal (F2);
16098 return Ekind (F2) = E_In_Parameter
16099 and then Ekind (F3) = E_In_Parameter
16100 and then not Is_Limited_Type (Etype (F2))
16101 and then not Is_Limited_Type (Etype (F3));
16102 else
16103 return False;
16104 end if;
16105 end Valid_Add_Named;
16107 -----------------------
16108 -- Valid_Add_Unnamed --
16109 -----------------------
16111 function Valid_Add_Unnamed (E : Entity_Id) return Boolean is
16112 begin
16113 return Ekind (E) = E_Procedure
16114 and then Scope (E) = Scope (Typ)
16115 and then Number_Formals (E) = 2
16116 and then Etype (First_Formal (E)) = Typ
16117 and then Ekind (First_Formal (E)) = E_In_Out_Parameter
16118 and then
16119 not Is_Limited_Type (Etype (Next_Formal (First_Formal (E))));
16120 end Valid_Add_Unnamed;
16122 -----------------------
16123 -- Valid_Nmw_Indexed --
16124 -----------------------
16126 function Valid_New_Indexed (E : Entity_Id) return Boolean is
16127 begin
16128 return Ekind (E) = E_Function
16129 and then Scope (E) = Scope (Typ)
16130 and then Etype (E) = Typ
16131 and then Number_Formals (E) = 2
16132 and then Is_Discrete_Type (Etype (First_Formal (E)))
16133 and then Etype (First_Formal (E)) =
16134 Etype (Next_Formal (First_Formal (E)));
16135 end Valid_New_Indexed;
16137 -----------------------
16138 -- Resolve_Operation --
16139 -----------------------
16141 procedure Resolve_Operation (Subp_Id : Node_Id) is
16142 Subp : Entity_Id;
16144 I : Interp_Index;
16145 It : Interp;
16147 begin
16148 if not Is_Overloaded (Subp_Id) then
16149 Subp := Entity (Subp_Id);
16150 if not Pred (Subp) then
16151 Error_Msg_NE
16152 ("improper aggregate operation for&", Subp_Id, Typ);
16153 end if;
16155 else
16156 Set_Entity (Subp_Id, Empty);
16157 Get_First_Interp (Subp_Id, I, It);
16158 while Present (It.Nam) loop
16159 if Pred (It.Nam) then
16160 Set_Is_Overloaded (Subp_Id, False);
16161 Set_Entity (Subp_Id, It.Nam);
16162 exit;
16163 end if;
16165 Get_Next_Interp (I, It);
16166 end loop;
16168 if No (Entity (Subp_Id)) then
16169 Error_Msg_NE
16170 ("improper aggregate operation for&", Subp_Id, Typ);
16171 end if;
16172 end if;
16173 end Resolve_Operation;
16175 Assoc : Node_Id;
16176 Op_Name : Name_Id;
16177 Subp_Id : Node_Id;
16179 procedure Resolve_Empty is new Resolve_Operation (Valid_Empty);
16180 procedure Resolve_Unnamed is new Resolve_Operation (Valid_Add_Unnamed);
16181 procedure Resolve_Named is new Resolve_Operation (Valid_Add_Named);
16182 procedure Resolve_Indexed is new Resolve_Operation (Valid_New_Indexed);
16183 procedure Resolve_Assign_Indexed
16184 is new Resolve_Operation
16185 (Valid_Assign_Indexed);
16187 -- Start of processing for Resolve_Aspect_Aggregate
16189 begin
16190 Assoc := First (Component_Associations (Expr));
16192 while Present (Assoc) loop
16193 Op_Name := Chars (First (Choices (Assoc)));
16195 -- When verifying the consistency of aspects between the freeze point
16196 -- and the end of declarqtions, we use a copy which is not analyzed
16197 -- yet, so do it now.
16199 Subp_Id := Expression (Assoc);
16200 if No (Etype (Subp_Id)) then
16201 Analyze (Subp_Id);
16202 end if;
16204 if Op_Name = Name_Empty then
16205 Resolve_Empty (Subp_Id);
16207 elsif Op_Name = Name_Add_Named then
16208 Resolve_Named (Subp_Id);
16210 elsif Op_Name = Name_Add_Unnamed then
16211 Resolve_Unnamed (Subp_Id);
16213 elsif Op_Name = Name_New_Indexed then
16214 Resolve_Indexed (Subp_Id);
16216 elsif Op_Name = Name_Assign_Indexed then
16217 Resolve_Assign_Indexed (Subp_Id);
16218 end if;
16220 Next (Assoc);
16221 end loop;
16222 end Resolve_Aspect_Aggregate;
16224 --------------------------------------
16225 -- Resolve_Aspect_Stable_Properties --
16226 --------------------------------------
16228 procedure Resolve_Aspect_Stable_Properties
16229 (Typ_Or_Subp : Entity_Id; Expr : Node_Id; Class_Present : Boolean)
16231 Is_Aspect_Of_Type : constant Boolean := Is_Type (Typ_Or_Subp);
16233 Singleton : constant Boolean := Nkind (Expr) /= N_Aggregate;
16234 Subp_Name : Node_Id := (if Singleton
16235 then Expr
16236 else First (Expressions (Expr)));
16237 Has_Not : Boolean;
16238 begin
16239 if Is_Aspect_Of_Type
16240 and then Has_Private_Declaration (Typ_Or_Subp)
16241 and then not Is_Private_Type (Typ_Or_Subp)
16242 then
16243 Error_Msg_N
16244 ("Stable_Properties aspect cannot be specified " &
16245 "for the completion of a private type", Typ_Or_Subp);
16246 end if;
16248 -- Analogous checks that the aspect is not specified for a completion
16249 -- in the subprogram case are not performed here because they are not
16250 -- specific to this particular aspect. Right ???
16252 loop
16253 Has_Not := Nkind (Subp_Name) = N_Op_Not;
16254 if Has_Not then
16255 Set_Analyzed (Subp_Name); -- ???
16256 Subp_Name := Right_Opnd (Subp_Name);
16257 end if;
16259 if No (Etype (Subp_Name)) then
16260 Analyze (Subp_Name);
16261 end if;
16263 declare
16264 Subp : Entity_Id := Empty;
16266 I : Interp_Index;
16267 It : Interp;
16269 function Is_Property_Function (E : Entity_Id) return Boolean;
16270 -- Implements RM 7.3.4 definition of "property function".
16272 function Is_Property_Function (E : Entity_Id) return Boolean is
16273 begin
16274 if Ekind (E) not in E_Function | E_Operator
16275 or else Number_Formals (E) /= 1
16276 then
16277 return False;
16278 end if;
16280 declare
16281 Param_Type : constant Entity_Id :=
16282 Base_Type (Etype (First_Formal (E)));
16284 function Matches_Param_Type (Typ : Entity_Id)
16285 return Boolean is
16286 ((Base_Type (Typ) = Param_Type)
16287 or else
16288 (Is_Class_Wide_Type (Param_Type)
16289 and then Is_Ancestor (Root_Type (Param_Type),
16290 Base_Type (Typ))));
16291 begin
16292 if Is_Aspect_Of_Type then
16293 if Matches_Param_Type (Typ_Or_Subp) then
16294 return True;
16295 end if;
16296 elsif Is_Primitive (Typ_Or_Subp) then
16297 declare
16298 Formal : Entity_Id := First_Formal (Typ_Or_Subp);
16299 begin
16300 while Present (Formal) loop
16301 if Matches_Param_Type (Etype (Formal)) then
16303 -- Test whether Typ_Or_Subp (which is a subp
16304 -- in this case) is primitive op of the type
16305 -- of this parameter.
16306 if Scope (Typ_Or_Subp) = Scope (Param_Type) then
16307 return True;
16308 end if;
16309 end if;
16310 Next_Formal (Formal);
16311 end loop;
16312 end;
16313 end if;
16314 end;
16316 return False;
16317 end Is_Property_Function;
16318 begin
16319 if not Is_Overloaded (Subp_Name) then
16320 Subp := Entity (Subp_Name);
16321 if not Is_Property_Function (Subp) then
16322 Error_Msg_NE ("improper property function for&",
16323 Subp_Name, Typ_Or_Subp);
16324 return;
16325 end if;
16326 else
16327 Set_Entity (Subp_Name, Empty);
16328 Get_First_Interp (Subp_Name, I, It);
16329 while Present (It.Nam) loop
16330 if Is_Property_Function (It.Nam) then
16331 if Present (Subp) then
16332 Error_Msg_NE
16333 ("ambiguous property function name for&",
16334 Subp_Name, Typ_Or_Subp);
16335 return;
16336 end if;
16338 Subp := It.Nam;
16339 Set_Is_Overloaded (Subp_Name, False);
16340 Set_Entity (Subp_Name, Subp);
16341 end if;
16343 Get_Next_Interp (I, It);
16344 end loop;
16346 if No (Subp) then
16347 Error_Msg_NE ("improper property function for&",
16348 Subp_Name, Typ_Or_Subp);
16349 return;
16350 end if;
16351 end if;
16353 -- perform legality (as opposed to name resolution) Subp checks
16355 if Is_Limited_Type (Etype (Subp)) then
16356 Error_Msg_NE
16357 ("result type of property function for& is limited",
16358 Subp_Name, Typ_Or_Subp);
16359 end if;
16361 if Ekind (First_Formal (Subp)) /= E_In_Parameter then
16362 Error_Msg_NE
16363 ("mode of parameter of property function for& is not IN",
16364 Subp_Name, Typ_Or_Subp);
16365 end if;
16367 if Is_Class_Wide_Type (Etype (First_Formal (Subp))) then
16368 if not Covers (Etype (First_Formal (Subp)), Typ_Or_Subp) then
16369 Error_Msg_NE
16370 ("class-wide parameter type of property function " &
16371 "for& does not cover the type",
16372 Subp_Name, Typ_Or_Subp);
16374 -- ??? This test is slightly stricter than 7.3.4(12/5);
16375 -- some legal corner cases may be incorrectly rejected.
16376 elsif Scope (Subp) /= Scope (Etype (First_Formal (Subp)))
16377 then
16378 Error_Msg_NE
16379 ("property function for& not declared in same scope " &
16380 "as parameter type",
16381 Subp_Name, Typ_Or_Subp);
16382 end if;
16383 elsif Is_Aspect_Of_Type and then
16384 Scope (Subp) /= Scope (Typ_Or_Subp) and then
16385 Scope (Subp) /= Standard_Standard -- e.g., derived type's "abs"
16386 then
16387 Error_Msg_NE
16388 ("property function for& " &
16389 "not a primitive function of the type",
16390 Subp_Name, Typ_Or_Subp);
16391 end if;
16393 if Has_Not then
16394 -- check that Subp was mentioned in param type's aspect spec
16395 declare
16396 Param_Type : constant Entity_Id :=
16397 Base_Type (Etype (First_Formal (Subp)));
16398 Aspect_Spec : constant Node_Id :=
16399 Find_Value_Of_Aspect
16400 (Param_Type, Aspect_Stable_Properties,
16401 Class_Present => Class_Present);
16402 Found : Boolean := False;
16403 begin
16404 if Present (Aspect_Spec) then
16405 declare
16406 Ignored : Boolean;
16407 SPF_List : constant Subprogram_List :=
16408 Parse_Aspect_Stable_Properties
16409 (Aspect_Spec, Negated => Ignored);
16410 begin
16411 Found := (for some E of SPF_List => E = Subp);
16412 -- look through renamings ???
16413 end;
16414 end if;
16415 if not Found then
16416 declare
16417 CW_Modifier : constant String :=
16418 (if Class_Present then "class-wide " else "");
16419 begin
16420 Error_Msg_NE
16421 (CW_Modifier
16422 & "property function for& mentioned after NOT "
16423 & "but not a "
16424 & CW_Modifier
16425 & "stable property function of its parameter type",
16426 Subp_Name, Typ_Or_Subp);
16427 end;
16428 end if;
16429 end;
16430 end if;
16431 end;
16433 exit when Singleton;
16434 Subp_Name :=
16435 Next ((if Has_Not then Parent (Subp_Name) else Subp_Name));
16436 exit when No (Subp_Name);
16437 end loop;
16439 Set_Analyzed (Expr);
16440 end Resolve_Aspect_Stable_Properties;
16442 -----------------------------------------
16443 -- Resolve_Storage_Model_Type_Argument --
16444 -----------------------------------------
16446 procedure Resolve_Storage_Model_Type_Argument
16447 (N : Node_Id;
16448 Typ : Entity_Id;
16449 Addr_Type : in out Entity_Id;
16450 Nam : Name_Id)
16453 type Formal_Profile is record
16454 Subt : Entity_Id;
16455 Mode : Formal_Kind;
16456 end record;
16458 type Formal_Profiles is array (Positive range <>) of Formal_Profile;
16460 function Aspect_Argument_Profile_Matches
16461 (Subp : Entity_Id;
16462 Profiles : Formal_Profiles;
16463 Result_Subt : Entity_Id;
16464 Err_On_Mismatch : Boolean) return Boolean;
16465 -- Checks that the formal parameters of subprogram Subp conform to the
16466 -- subtypes and modes specified by Profiles, as well as to the result
16467 -- subtype Result_Subt when that is nonempty.
16469 function Aspect_Argument_Profile_Matches
16470 (Subp : Entity_Id;
16471 Profiles : Formal_Profiles;
16472 Result_Subt : Entity_Id;
16473 Err_On_Mismatch : Boolean) return Boolean
16476 procedure Report_Argument_Error
16477 (Msg : String;
16478 Formal : Entity_Id := Empty;
16479 Subt : Entity_Id := Empty);
16480 -- If Err_On_Mismatch is True, reports an argument error given by Msg
16481 -- associated with Formal and/or Subt.
16483 procedure Report_Argument_Error
16484 (Msg : String;
16485 Formal : Entity_Id := Empty;
16486 Subt : Entity_Id := Empty)
16488 begin
16489 if Err_On_Mismatch then
16490 if Present (Formal) then
16491 if Present (Subt) then
16492 Error_Msg_Node_2 := Subt;
16493 end if;
16494 Error_Msg_NE (Msg, N, Formal);
16496 elsif Present (Subt) then
16497 Error_Msg_NE (Msg, N, Subt);
16499 else
16500 Error_Msg_N (Msg, N);
16501 end if;
16502 end if;
16503 end Report_Argument_Error;
16505 -- Local variables
16507 Formal : Entity_Id := First_Formal (Subp);
16508 Is_Error : Boolean := False;
16510 -- Start of processing for Aspect_Argument_Profile_Matches
16512 begin
16513 for FP of Profiles loop
16514 if not Present (Formal) then
16515 Is_Error := True;
16516 Report_Argument_Error ("missing formal of }", Subt => FP.Subt);
16517 exit;
16519 elsif not Subtypes_Statically_Match
16520 (Etype (Formal), FP.Subt)
16521 then
16522 Is_Error := True;
16523 Report_Argument_Error
16524 ("formal& must be of subtype&",
16525 Formal => Formal, Subt => FP.Subt);
16526 exit;
16528 elsif Ekind (Formal) /= FP.Mode then
16529 Is_Error := True;
16530 Report_Argument_Error
16531 ("formal& has wrong mode", Formal => Formal);
16532 exit;
16533 end if;
16535 Formal := Next_Formal (Formal);
16536 end loop;
16538 if not Is_Error
16539 and then Present (Formal)
16540 then
16541 Is_Error := True;
16542 Report_Argument_Error
16543 ("too many formals for subprogram in aspect");
16544 end if;
16546 if not Is_Error
16547 and then Present (Result_Subt)
16548 and then not Subtypes_Statically_Match (Etype (Subp), Result_Subt)
16549 then
16550 Is_Error := True;
16551 Report_Argument_Error
16552 ("subprogram must have result}", Subt => Result_Subt);
16553 end if;
16555 return not Is_Error;
16556 end Aspect_Argument_Profile_Matches;
16558 -- Local variables
16560 Ent : Entity_Id;
16562 Storage_Count_Type : constant Entity_Id := RTE (RE_Storage_Count);
16563 System_Address_Type : constant Entity_Id := RTE (RE_Address);
16565 -- Start of processing for Resolve_Storage_Model_Type_Argument
16567 begin
16568 if Nam = Name_Address_Type then
16569 if not Is_Entity_Name (N)
16570 or else not Is_Type (Entity (N))
16571 or else (Root_Type (Entity (N)) /= System_Address_Type
16572 and then not Is_Integer_Type (Entity (N)))
16573 then
16574 Error_Msg_N ("named entity must be a descendant of System.Address "
16575 & "or an integer type", N);
16576 end if;
16578 Addr_Type := Entity (N);
16580 return;
16582 -- If Addr_Type is not present as the first association, then we default
16583 -- it to System.Address.
16585 elsif not Present (Addr_Type) then
16586 Addr_Type := RTE (RE_Address);
16587 end if;
16589 if Nam = Name_Null_Address then
16590 if not Is_Entity_Name (N)
16591 or else not Is_Constant_Object (Entity (N))
16592 or else
16593 not Subtypes_Statically_Match (Etype (Entity (N)), Addr_Type)
16594 then
16595 Error_Msg_NE
16596 ("named entity must be constant of subtype}", N, Addr_Type);
16597 end if;
16599 return;
16601 elsif not Is_Overloaded (N) then
16602 if not Is_Entity_Name (N)
16603 or else Ekind (Entity (N)) not in E_Function | E_Procedure
16604 or else Scope (Entity (N)) /= Scope (Typ)
16605 then
16606 Error_Msg_N ("argument must be local subprogram name", N);
16607 return;
16608 end if;
16610 Ent := Entity (N);
16612 if Nam = Name_Allocate then
16613 if not Aspect_Argument_Profile_Matches
16614 (Ent,
16615 Profiles =>
16616 ((Typ, E_In_Out_Parameter),
16617 (Addr_Type, E_Out_Parameter),
16618 (Storage_Count_Type, E_In_Parameter),
16619 (Storage_Count_Type, E_In_Parameter)),
16620 Result_Subt => Empty,
16621 Err_On_Mismatch => True)
16622 then
16623 Error_Msg_N ("no match for Allocate operation", N);
16624 end if;
16626 elsif Nam = Name_Deallocate then
16627 if not Aspect_Argument_Profile_Matches
16628 (Ent,
16629 Profiles =>
16630 ((Typ, E_In_Out_Parameter),
16631 (Addr_Type, E_In_Parameter),
16632 (Storage_Count_Type, E_In_Parameter),
16633 (Storage_Count_Type, E_In_Parameter)),
16634 Result_Subt => Empty,
16635 Err_On_Mismatch => True)
16636 then
16637 Error_Msg_N ("no match for Deallocate operation", N);
16638 end if;
16640 elsif Nam = Name_Copy_From then
16641 if not Aspect_Argument_Profile_Matches
16642 (Ent,
16643 Profiles =>
16644 ((Typ, E_In_Out_Parameter),
16645 (System_Address_Type, E_In_Parameter),
16646 (Addr_Type, E_In_Parameter),
16647 (Storage_Count_Type, E_In_Parameter)),
16648 Result_Subt => Empty,
16649 Err_On_Mismatch => True)
16650 then
16651 Error_Msg_N ("no match for Copy_From operation", N);
16652 end if;
16654 elsif Nam = Name_Copy_To then
16655 if not Aspect_Argument_Profile_Matches
16656 (Ent,
16657 Profiles =>
16658 ((Typ, E_In_Out_Parameter),
16659 (Addr_Type, E_In_Parameter),
16660 (System_Address_Type, E_In_Parameter),
16661 (Storage_Count_Type, E_In_Parameter)),
16662 Result_Subt => Empty,
16663 Err_On_Mismatch => True)
16664 then
16665 Error_Msg_N ("no match for Copy_To operation", N);
16666 end if;
16668 elsif Nam = Name_Storage_Size then
16669 if not Aspect_Argument_Profile_Matches
16670 (Ent,
16671 Profiles => (1 => (Typ, E_In_Parameter)),
16672 Result_Subt => Storage_Count_Type,
16673 Err_On_Mismatch => True)
16674 then
16675 Error_Msg_N ("no match for Storage_Size operation", N);
16676 end if;
16678 else
16679 null; -- Error will be caught in Validate_Storage_Model_Type_Aspect
16680 end if;
16682 else
16683 -- Overloaded case: find subprogram with proper signature
16685 declare
16686 I : Interp_Index;
16687 It : Interp;
16688 Found_Match : Boolean := False;
16690 begin
16691 Get_First_Interp (N, I, It);
16692 while Present (It.Typ) loop
16693 if Ekind (It.Nam) in E_Function | E_Procedure
16694 and then Scope (It.Nam) = Scope (Typ)
16695 then
16696 if Nam = Name_Allocate then
16697 Found_Match :=
16698 Aspect_Argument_Profile_Matches
16699 (It.Nam,
16700 Profiles =>
16701 ((Typ, E_In_Out_Parameter),
16702 (Addr_Type, E_Out_Parameter),
16703 (Storage_Count_Type, E_In_Parameter),
16704 (Storage_Count_Type, E_In_Parameter)),
16705 Result_Subt => Empty,
16706 Err_On_Mismatch => False);
16708 elsif Nam = Name_Deallocate then
16709 Found_Match :=
16710 Aspect_Argument_Profile_Matches
16711 (It.Nam,
16712 Profiles =>
16713 ((Typ, E_In_Out_Parameter),
16714 (Addr_Type, E_In_Parameter),
16715 (Storage_Count_Type, E_In_Parameter),
16716 (Storage_Count_Type, E_In_Parameter)),
16717 Result_Subt => Empty,
16718 Err_On_Mismatch => False);
16720 elsif Nam = Name_Copy_From then
16721 Found_Match :=
16722 Aspect_Argument_Profile_Matches
16723 (It.Nam,
16724 Profiles =>
16725 ((Typ, E_In_Out_Parameter),
16726 (System_Address_Type, E_In_Parameter),
16727 (Addr_Type, E_In_Parameter),
16728 (Storage_Count_Type, E_In_Parameter),
16729 (Storage_Count_Type, E_In_Parameter)),
16730 Result_Subt => Empty,
16731 Err_On_Mismatch => False);
16733 elsif Nam = Name_Copy_To then
16734 Found_Match :=
16735 Aspect_Argument_Profile_Matches
16736 (It.Nam,
16737 Profiles =>
16738 ((Typ, E_In_Out_Parameter),
16739 (Addr_Type, E_In_Parameter),
16740 (Storage_Count_Type, E_In_Parameter),
16741 (System_Address_Type, E_In_Parameter),
16742 (Storage_Count_Type, E_In_Parameter)),
16743 Result_Subt => Empty,
16744 Err_On_Mismatch => False);
16746 elsif Nam = Name_Storage_Size then
16747 Found_Match :=
16748 Aspect_Argument_Profile_Matches
16749 (It.Nam,
16750 Profiles => (1 => (Typ, E_In_Parameter)),
16751 Result_Subt => Storage_Count_Type,
16752 Err_On_Mismatch => False);
16753 end if;
16755 if Found_Match then
16756 Set_Entity (N, It.Nam);
16757 exit;
16758 end if;
16759 end if;
16761 Get_Next_Interp (I, It);
16762 end loop;
16764 if not Found_Match then
16765 Error_Msg_N
16766 ("no match found for Storage_Model_Type operation", N);
16767 end if;
16768 end;
16769 end if;
16770 end Resolve_Storage_Model_Type_Argument;
16772 ----------------
16773 -- Set_Biased --
16774 ----------------
16776 procedure Set_Biased
16777 (E : Entity_Id;
16778 N : Node_Id;
16779 Msg : String;
16780 Biased : Boolean := True)
16782 begin
16783 if Biased then
16784 Set_Has_Biased_Representation (E);
16786 if Warn_On_Biased_Representation then
16787 Error_Msg_NE
16788 ("?.b?" & Msg & " forces biased representation for&", N, E);
16789 end if;
16790 end if;
16791 end Set_Biased;
16793 --------------------
16794 -- Set_Enum_Esize --
16795 --------------------
16797 procedure Set_Enum_Esize (T : Entity_Id) is
16798 Lo : Uint;
16799 Hi : Uint;
16800 Sz : Unat;
16802 begin
16803 Reinit_Alignment (T);
16805 -- Find the minimum standard size (8,16,32,64,128) that fits
16807 Lo := Enumeration_Rep (Entity (Type_Low_Bound (T)));
16808 Hi := Enumeration_Rep (Entity (Type_High_Bound (T)));
16810 if Lo < 0 then
16811 if Lo >= -Uint_2**7 and then Hi < Uint_2**7 then
16812 Sz := UI_From_Int (Standard_Character_Size);
16813 -- Might be > 8 on some targets
16815 elsif Lo >= -Uint_2**15 and then Hi < Uint_2**15 then
16816 Sz := Uint_16;
16818 elsif Lo >= -Uint_2**31 and then Hi < Uint_2**31 then
16819 Sz := Uint_32;
16821 elsif Lo >= -Uint_2**63 and then Hi < Uint_2**63 then
16822 Sz := Uint_64;
16824 else pragma Assert (Lo >= -Uint_2**127 and then Hi < Uint_2**127);
16825 Sz := Uint_128;
16826 end if;
16828 else
16829 if Hi < Uint_2**8 then
16830 Sz := UI_From_Int (Standard_Character_Size);
16832 elsif Hi < Uint_2**16 then
16833 Sz := Uint_16;
16835 elsif Hi < Uint_2**32 then
16836 Sz := Uint_32;
16838 elsif Hi < Uint_2**64 then
16839 Sz := Uint_64;
16841 else pragma Assert (Hi < Uint_2**128);
16842 Sz := Uint_128;
16843 end if;
16844 end if;
16846 -- That minimum is the proper size unless we have a foreign convention
16847 -- and the size required is 32 or less, in which case we bump the size
16848 -- up to 32. This is required for C and C++ and seems reasonable for
16849 -- all other foreign conventions.
16851 if Has_Foreign_Convention (T)
16852 and then Esize (T) < Standard_Integer_Size
16854 -- Don't do this if Short_Enums on target
16856 and then not Target_Short_Enums
16857 then
16858 Set_Esize (T, UI_From_Int (Standard_Integer_Size));
16859 else
16860 Set_Esize (T, Sz);
16861 end if;
16862 end Set_Enum_Esize;
16864 -----------------------------
16865 -- Uninstall_Discriminants --
16866 -----------------------------
16868 procedure Uninstall_Discriminants (E : Entity_Id) is
16869 Disc : Entity_Id;
16870 Prev : Entity_Id;
16871 Outer : Entity_Id;
16873 begin
16874 -- Discriminants have been made visible for type declarations and
16875 -- protected type declarations, not for subtype declarations.
16877 if Nkind (Parent (E)) /= N_Subtype_Declaration then
16878 Disc := First_Discriminant (E);
16879 while Present (Disc) loop
16880 if Disc /= Current_Entity (Disc) then
16881 Prev := Current_Entity (Disc);
16882 while Present (Prev)
16883 and then Present (Homonym (Prev))
16884 and then Homonym (Prev) /= Disc
16885 loop
16886 Prev := Homonym (Prev);
16887 end loop;
16888 else
16889 Prev := Empty;
16890 end if;
16892 Set_Is_Immediately_Visible (Disc, False);
16894 Outer := Homonym (Disc);
16895 while Present (Outer) and then Scope (Outer) = E loop
16896 Outer := Homonym (Outer);
16897 end loop;
16899 -- Reset homonym link of other entities, but do not modify link
16900 -- between entities in current scope, so that the back end can
16901 -- have a proper count of local overloadings.
16903 if No (Prev) then
16904 Set_Name_Entity_Id (Chars (Disc), Outer);
16906 elsif Scope (Prev) /= Scope (Disc) then
16907 Set_Homonym (Prev, Outer);
16908 end if;
16910 Next_Discriminant (Disc);
16911 end loop;
16912 end if;
16913 end Uninstall_Discriminants;
16915 ------------------------------
16916 -- Validate_Address_Clauses --
16917 ------------------------------
16919 procedure Validate_Address_Clauses is
16920 function Offset_Value (Expr : Node_Id) return Uint;
16921 -- Given an Address attribute reference, return the value in bits of its
16922 -- offset from the first bit of the underlying entity, or 0 if it is not
16923 -- known at compile time.
16925 ------------------
16926 -- Offset_Value --
16927 ------------------
16929 function Offset_Value (Expr : Node_Id) return Uint is
16930 N : Node_Id := Prefix (Expr);
16931 Off : Uint;
16932 Val : Uint := Uint_0;
16934 begin
16935 -- Climb the prefix chain and compute the cumulative offset
16937 loop
16938 if Is_Entity_Name (N) then
16939 return Val;
16941 elsif Nkind (N) = N_Selected_Component then
16942 Off := Component_Bit_Offset (Entity (Selector_Name (N)));
16943 if Present (Off) and then Off >= Uint_0 then
16944 Val := Val + Off;
16945 N := Prefix (N);
16946 else
16947 return Uint_0;
16948 end if;
16950 elsif Nkind (N) = N_Indexed_Component then
16951 Off := Indexed_Component_Bit_Offset (N);
16952 if Present (Off) then
16953 Val := Val + Off;
16954 N := Prefix (N);
16955 else
16956 return Uint_0;
16957 end if;
16959 else
16960 return Uint_0;
16961 end if;
16962 end loop;
16963 end Offset_Value;
16965 -- Start of processing for Validate_Address_Clauses
16967 begin
16968 for J in Address_Clause_Checks.First .. Address_Clause_Checks.Last loop
16969 declare
16970 ACCR : Address_Clause_Check_Record
16971 renames Address_Clause_Checks.Table (J);
16973 Expr : Node_Id;
16975 X_Alignment : Uint;
16976 Y_Alignment : Uint := Uint_0;
16978 X_Size : Uint;
16979 Y_Size : Uint := Uint_0;
16981 X_Offs : Uint;
16983 begin
16984 -- Skip processing of this entry if warning already posted, or if
16985 -- alignments are not set.
16987 if not Address_Warning_Posted (ACCR.N)
16988 and then Known_Alignment (ACCR.X)
16989 and then Known_Alignment (ACCR.Y)
16990 then
16991 Expr := Original_Node (Expression (ACCR.N));
16993 -- Get alignments, sizes and offset, if any
16995 X_Alignment := Alignment (ACCR.X);
16996 X_Size := Esize (ACCR.X);
16998 if Present (ACCR.Y) then
16999 Y_Alignment := Alignment (ACCR.Y);
17000 Y_Size :=
17001 (if Known_Esize (ACCR.Y) then Esize (ACCR.Y) else Uint_0);
17002 end if;
17004 if ACCR.Off
17005 and then Nkind (Expr) = N_Attribute_Reference
17006 and then Attribute_Name (Expr) = Name_Address
17007 then
17008 X_Offs := Offset_Value (Expr);
17009 else
17010 X_Offs := Uint_0;
17011 end if;
17013 -- Check for known value not multiple of alignment
17015 if No (ACCR.Y) then
17016 if not Alignment_Checks_Suppressed (ACCR)
17017 and then X_Alignment /= 0
17018 and then ACCR.A mod X_Alignment /= 0
17019 then
17020 Error_Msg_NE
17021 ("??specified address for& is inconsistent with "
17022 & "alignment", ACCR.N, ACCR.X);
17023 Error_Msg_N
17024 ("\??program execution may be erroneous (RM 13.3(27))",
17025 ACCR.N);
17027 Error_Msg_Uint_1 := X_Alignment;
17028 Error_Msg_NE ("\??alignment of & is ^", ACCR.N, ACCR.X);
17029 end if;
17031 -- Check for large object overlaying smaller one
17033 elsif Y_Size > Uint_0
17034 and then X_Size > Uint_0
17035 and then X_Offs + X_Size > Y_Size
17036 then
17037 Error_Msg_NE ("??& overlays smaller object", ACCR.N, ACCR.X);
17038 Error_Msg_N
17039 ("\??program execution may be erroneous", ACCR.N);
17041 Error_Msg_Uint_1 := X_Size;
17042 Error_Msg_NE ("\??size of & is ^", ACCR.N, ACCR.X);
17044 Error_Msg_Uint_1 := Y_Size;
17045 Error_Msg_NE ("\??size of & is ^", ACCR.N, ACCR.Y);
17047 if Y_Size >= X_Size then
17048 Error_Msg_Uint_1 := X_Offs;
17049 Error_Msg_NE ("\??but offset of & is ^", ACCR.N, ACCR.X);
17050 end if;
17052 -- Check for inadequate alignment, both of the base object
17053 -- and of the offset, if any. We only do this check if the
17054 -- run-time Alignment_Check is active. No point in warning
17055 -- if this check has been suppressed (or is suppressed by
17056 -- default in the non-strict alignment machine case).
17058 -- Note: we do not check the alignment if we gave a size
17059 -- warning, since it would likely be redundant.
17061 elsif not Alignment_Checks_Suppressed (ACCR)
17062 and then Y_Alignment /= Uint_0
17063 and then
17064 (Y_Alignment < X_Alignment
17065 or else
17066 (ACCR.Off
17067 and then Nkind (Expr) = N_Attribute_Reference
17068 and then Attribute_Name (Expr) = Name_Address
17069 and then Has_Compatible_Alignment
17070 (ACCR.X, Prefix (Expr), True) /=
17071 Known_Compatible))
17072 then
17073 Error_Msg_NE
17074 ("??specified address for& may be inconsistent with "
17075 & "alignment", ACCR.N, ACCR.X);
17076 Error_Msg_N
17077 ("\??program execution may be erroneous (RM 13.3(27))",
17078 ACCR.N);
17080 Error_Msg_Uint_1 := X_Alignment;
17081 Error_Msg_NE ("\??alignment of & is ^", ACCR.N, ACCR.X);
17083 Error_Msg_Uint_1 := Y_Alignment;
17084 Error_Msg_NE ("\??alignment of & is ^", ACCR.N, ACCR.Y);
17086 if Y_Alignment >= X_Alignment then
17087 Error_Msg_N
17088 ("\??but offset is not multiple of alignment", ACCR.N);
17089 end if;
17090 end if;
17091 end if;
17092 end;
17093 end loop;
17094 end Validate_Address_Clauses;
17096 ------------------------------
17097 -- Validate_Iterable_Aspect --
17098 ------------------------------
17100 procedure Validate_Iterable_Aspect (Typ : Entity_Id; ASN : Node_Id) is
17101 Aggr : constant Node_Id := Expression (ASN);
17102 Assoc : Node_Id;
17103 Expr : Node_Id;
17105 Prim : Node_Id;
17106 Cursor : Entity_Id;
17108 First_Id : Entity_Id := Empty;
17109 Last_Id : Entity_Id := Empty;
17110 Next_Id : Entity_Id := Empty;
17111 Has_Element_Id : Entity_Id := Empty;
17112 Element_Id : Entity_Id := Empty;
17114 begin
17115 if Nkind (Aggr) /= N_Aggregate then
17116 Error_Msg_N ("aspect Iterable must be an aggregate", Aggr);
17117 return;
17118 end if;
17120 Cursor := Get_Cursor_Type (ASN, Typ);
17122 -- If previous error aspect is unusable
17124 if Cursor = Any_Type then
17125 return;
17126 end if;
17128 if not Is_Empty_List (Expressions (Aggr)) then
17129 Error_Msg_N
17130 ("illegal positional association", First (Expressions (Aggr)));
17131 end if;
17133 -- Each expression must resolve to a function with the proper signature
17135 Assoc := First (Component_Associations (Aggr));
17136 while Present (Assoc) loop
17137 Expr := Expression (Assoc);
17138 Analyze (Expr);
17140 Prim := First (Choices (Assoc));
17142 if Nkind (Prim) /= N_Identifier or else Present (Next (Prim)) then
17143 Error_Msg_N ("illegal name in association", Prim);
17145 elsif Chars (Prim) = Name_First then
17146 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_First);
17147 First_Id := Entity (Expr);
17149 elsif Chars (Prim) = Name_Last then
17150 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Last);
17151 Last_Id := Entity (Expr);
17153 elsif Chars (Prim) = Name_Previous then
17154 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Previous);
17155 Last_Id := Entity (Expr);
17157 elsif Chars (Prim) = Name_Next then
17158 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Next);
17159 Next_Id := Entity (Expr);
17161 elsif Chars (Prim) = Name_Has_Element then
17162 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Has_Element);
17163 Has_Element_Id := Entity (Expr);
17165 elsif Chars (Prim) = Name_Element then
17166 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Element);
17167 Element_Id := Entity (Expr);
17169 else
17170 Error_Msg_N ("invalid name for iterable function", Prim);
17171 end if;
17173 Next (Assoc);
17174 end loop;
17176 if No (First_Id) then
17177 Error_Msg_N ("match for First primitive not found", ASN);
17179 elsif No (Next_Id) then
17180 Error_Msg_N ("match for Next primitive not found", ASN);
17182 elsif No (Has_Element_Id) then
17183 Error_Msg_N ("match for Has_Element primitive not found", ASN);
17185 elsif No (Element_Id) or else No (Last_Id) then
17186 null; -- optional
17187 end if;
17188 end Validate_Iterable_Aspect;
17190 ------------------------------
17191 -- Validate_Literal_Aspect --
17192 ------------------------------
17194 procedure Validate_Literal_Aspect (Typ : Entity_Id; ASN : Node_Id) is
17195 A_Id : constant Aspect_Id := Get_Aspect_Id (ASN);
17196 pragma Assert (A_Id in Aspect_Integer_Literal |
17197 Aspect_Real_Literal | Aspect_String_Literal);
17198 Func_Name : constant Node_Id := Expression (ASN);
17199 Overloaded : Boolean := Is_Overloaded (Func_Name);
17201 I : Interp_Index := 0;
17202 It : Interp;
17203 Param_Type : Entity_Id;
17204 Match_Found : Boolean := False;
17205 Match2_Found : Boolean := False;
17206 Is_Match : Boolean;
17207 Match : Interp;
17208 Match2 : Entity_Id := Empty;
17210 function Matching
17211 (Param_Id : Entity_Id; Param_Type : Entity_Id) return Boolean;
17212 -- Return True if Param_Id is a non aliased in parameter whose base type
17213 -- is Param_Type.
17215 --------------
17216 -- Matching --
17217 --------------
17219 function Matching
17220 (Param_Id : Entity_Id; Param_Type : Entity_Id) return Boolean is
17221 begin
17222 return Base_Type (Etype (Param_Id)) = Param_Type
17223 and then Ekind (Param_Id) = E_In_Parameter
17224 and then not Is_Aliased (Param_Id);
17225 end Matching;
17227 begin
17228 if not Is_Type (Typ) then
17229 Error_Msg_N ("aspect can only be specified for a type", ASN);
17230 return;
17232 elsif not Is_First_Subtype (Typ) then
17233 Error_Msg_N ("aspect cannot be specified for a subtype", ASN);
17234 return;
17235 end if;
17237 if A_Id = Aspect_String_Literal then
17238 if Is_String_Type (Typ) then
17239 Error_Msg_N ("aspect cannot be specified for a string type", ASN);
17240 return;
17241 end if;
17243 Param_Type := Standard_Wide_Wide_String;
17245 else
17246 if Is_Numeric_Type (Typ) then
17247 Error_Msg_N ("aspect cannot be specified for a numeric type", ASN);
17248 return;
17249 end if;
17251 Param_Type := Standard_String;
17252 end if;
17254 if not Overloaded and then not Present (Entity (Func_Name)) then
17255 -- The aspect is specified by a subprogram name, which
17256 -- may be an operator name given originally by a string.
17258 if Is_Operator_Name (Chars (Func_Name)) then
17259 Analyze_Operator_Symbol (Func_Name);
17260 else
17261 Analyze (Func_Name);
17262 end if;
17264 Overloaded := Is_Overloaded (Func_Name);
17265 end if;
17267 if Overloaded then
17268 Get_First_Interp (Func_Name, I => I, It => It);
17269 else
17270 -- only one possible interpretation
17271 It.Nam := Entity (Func_Name);
17272 pragma Assert (Present (It.Nam));
17273 end if;
17275 while It.Nam /= Empty loop
17276 Is_Match := False;
17278 if Ekind (It.Nam) = E_Function
17279 and then Base_Type (Etype (It.Nam)) = Base_Type (Typ)
17280 then
17281 declare
17282 Params : constant List_Id :=
17283 Parameter_Specifications (Parent (It.Nam));
17284 Param_Spec : Node_Id;
17286 begin
17287 if List_Length (Params) = 1 then
17288 Param_Spec := First (Params);
17289 Is_Match :=
17290 Matching (Defining_Identifier (Param_Spec), Param_Type);
17292 -- Look for the optional overloaded 2-param Real_Literal
17294 elsif List_Length (Params) = 2
17295 and then A_Id = Aspect_Real_Literal
17296 then
17297 Param_Spec := First (Params);
17299 if Matching (Defining_Identifier (Param_Spec), Param_Type)
17300 then
17301 Param_Spec := Next (Param_Spec);
17303 if Matching (Defining_Identifier (Param_Spec), Param_Type)
17304 then
17305 if No (Match2) then
17306 Match2 := It.Nam;
17307 Match2_Found := True;
17308 else
17309 -- If we find more than one possible match then
17310 -- do not take any into account here: since the
17311 -- 2-parameter version of Real_Literal is optional
17312 -- we cannot generate an error here, so let
17313 -- standard resolution fail later if we do need to
17314 -- call this variant.
17316 Match2_Found := False;
17317 end if;
17318 end if;
17319 end if;
17320 end if;
17321 end;
17322 end if;
17324 if Is_Match then
17325 if Match_Found then
17326 Error_Msg_N ("aspect specification is ambiguous", ASN);
17327 return;
17328 end if;
17330 Match_Found := True;
17331 Match := It;
17332 end if;
17334 exit when not Overloaded;
17336 if not Is_Match then
17337 Remove_Interp (I => I);
17338 end if;
17340 Get_Next_Interp (I => I, It => It);
17341 end loop;
17343 if not Match_Found then
17344 Error_Msg_N
17345 ("function name in aspect specification cannot be resolved", ASN);
17346 return;
17347 end if;
17349 Set_Entity (Func_Name, Match.Nam);
17350 Set_Etype (Func_Name, Etype (Match.Nam));
17351 Set_Is_Overloaded (Func_Name, False);
17353 -- Record the match for 2-parameter function if found
17355 if Match2_Found then
17356 Set_Related_Expression (Match.Nam, Match2);
17357 end if;
17358 end Validate_Literal_Aspect;
17360 ----------------------------------------
17361 -- Validate_Storage_Model_Type_Aspect --
17362 ----------------------------------------
17364 procedure Validate_Storage_Model_Type_Aspect
17365 (Typ : Entity_Id; ASN : Node_Id)
17367 Assoc : Node_Id;
17368 Choice : Entity_Id;
17369 Choice_Name : Name_Id;
17370 Expr : Node_Id;
17372 Address_Type_Id : Entity_Id := Empty;
17373 Null_Address_Id : Entity_Id := Empty;
17374 Allocate_Id : Entity_Id := Empty;
17375 Deallocate_Id : Entity_Id := Empty;
17376 Copy_From_Id : Entity_Id := Empty;
17377 Copy_To_Id : Entity_Id := Empty;
17378 Storage_Size_Id : Entity_Id := Empty;
17380 procedure Check_And_Resolve_Storage_Model_Type_Argument
17381 (Expr : Node_Id;
17382 Typ : Entity_Id;
17383 Argument_Id : in out Entity_Id;
17384 Nam : Name_Id);
17385 -- Checks that the subaspect for Nam has not already been specified for
17386 -- Typ's Storage_Model_Type aspect (i.e., checks Argument_Id = Empty),
17387 -- resolves Expr, and sets Argument_Id to the entity resolved for Expr.
17389 procedure Check_And_Resolve_Storage_Model_Type_Argument
17390 (Expr : Node_Id;
17391 Typ : Entity_Id;
17392 Argument_Id : in out Entity_Id;
17393 Nam : Name_Id)
17395 Name_String : String := Get_Name_String (Nam);
17397 begin
17398 To_Mixed (Name_String);
17400 if Present (Argument_Id) then
17401 Error_Msg_String (1 .. Name_String'Length) := Name_String;
17402 Error_Msg_Strlen := Name_String'Length;
17404 Error_Msg_N ("~ already specified", Expr);
17405 end if;
17407 Resolve_Storage_Model_Type_Argument (Expr, Typ, Address_Type_Id, Nam);
17408 Argument_Id := Entity (Expr);
17409 end Check_And_Resolve_Storage_Model_Type_Argument;
17411 -- Start of processing for Validate_Storage_Model_Type_Aspect
17413 begin
17414 -- The aggregate argument of Storage_Model_Type is optional, and when
17415 -- not present the aspect defaults to the native storage model (where
17416 -- the address type is System.Address, and other arguments default to
17417 -- the corresponding native storage operations).
17419 if No (Expression (ASN)) then
17420 return;
17421 end if;
17423 -- Each expression must resolve to an entity of the right kind or proper
17424 -- profile.
17426 Assoc := First (Component_Associations (Expression (ASN)));
17427 while Present (Assoc) loop
17428 Expr := Expression (Assoc);
17429 Analyze (Expr);
17431 Choice := First (Choices (Assoc));
17433 Choice_Name := Chars (Choice);
17435 if Nkind (Choice) /= N_Identifier or else Present (Next (Choice)) then
17436 Error_Msg_N ("illegal name in association", Choice);
17438 elsif Choice_Name = Name_Address_Type then
17439 if Assoc /= First (Component_Associations (Expression (ASN))) then
17440 Error_Msg_N ("Address_Type must be first association", Choice);
17441 end if;
17443 Check_And_Resolve_Storage_Model_Type_Argument
17444 (Expr, Typ, Address_Type_Id, Name_Address_Type);
17446 else
17447 -- It's allowed to leave out the Address_Type argument, in which
17448 -- case the address type is defined to default to System.Address.
17450 if No (Address_Type_Id) then
17451 Address_Type_Id := RTE (RE_Address);
17452 end if;
17454 if Choice_Name = Name_Null_Address then
17455 Check_And_Resolve_Storage_Model_Type_Argument
17456 (Expr, Typ, Null_Address_Id, Name_Null_Address);
17458 elsif Choice_Name = Name_Allocate then
17459 Check_And_Resolve_Storage_Model_Type_Argument
17460 (Expr, Typ, Allocate_Id, Name_Allocate);
17462 elsif Choice_Name = Name_Deallocate then
17463 Check_And_Resolve_Storage_Model_Type_Argument
17464 (Expr, Typ, Deallocate_Id, Name_Deallocate);
17466 elsif Choice_Name = Name_Copy_From then
17467 Check_And_Resolve_Storage_Model_Type_Argument
17468 (Expr, Typ, Copy_From_Id, Name_Copy_From);
17470 elsif Choice_Name = Name_Copy_To then
17471 Check_And_Resolve_Storage_Model_Type_Argument
17472 (Expr, Typ, Copy_To_Id, Name_Copy_To);
17474 elsif Choice_Name = Name_Storage_Size then
17475 Check_And_Resolve_Storage_Model_Type_Argument
17476 (Expr, Typ, Storage_Size_Id, Name_Storage_Size);
17478 else
17479 Error_Msg_N
17480 ("invalid name for Storage_Model_Type argument", Choice);
17481 end if;
17482 end if;
17484 Next (Assoc);
17485 end loop;
17487 -- If Address_Type has been specified as or defaults to System.Address,
17488 -- then other "subaspect" arguments can be specified, but are optional.
17489 -- Otherwise, all other arguments are required and an error is flagged
17490 -- about any that are missing.
17492 if Address_Type_Id = RTE (RE_Address) then
17493 return;
17495 elsif No (Null_Address_Id) then
17496 Error_Msg_N ("match for Null_Address primitive not found", ASN);
17498 elsif No (Allocate_Id) then
17499 Error_Msg_N ("match for Allocate primitive not found", ASN);
17501 elsif No (Deallocate_Id) then
17502 Error_Msg_N ("match for Deallocate primitive not found", ASN);
17504 elsif No (Copy_From_Id) then
17505 Error_Msg_N ("match for Copy_From primitive not found", ASN);
17507 elsif No (Copy_To_Id) then
17508 Error_Msg_N ("match for Copy_To primitive not found", ASN);
17510 elsif No (Storage_Size_Id) then
17511 Error_Msg_N ("match for Storage_Size primitive not found", ASN);
17512 end if;
17513 end Validate_Storage_Model_Type_Aspect;
17515 -----------------------------------
17516 -- Validate_Unchecked_Conversion --
17517 -----------------------------------
17519 procedure Validate_Unchecked_Conversion
17520 (N : Node_Id;
17521 Act_Unit : Entity_Id)
17523 Source : Entity_Id;
17524 Target : Entity_Id;
17526 procedure Warn_Nonportable (RE : RE_Id);
17527 -- Warn if either source or target of the conversion is a predefined
17528 -- private type, whose representation might differ between releases and
17529 -- targets of the compiler.
17531 ----------------------
17532 -- Warn_Nonportable --
17533 ----------------------
17535 procedure Warn_Nonportable (RE : RE_Id) is
17536 begin
17537 if Is_RTE (Source, RE) or else Is_RTE (Target, RE) then
17538 pragma Assert (Is_Private_Type (RTE (RE)));
17539 Error_Msg_NE
17540 ("?z?representation of & values may change between "
17541 & "'G'N'A'T versions", N, RTE (RE));
17542 end if;
17543 end Warn_Nonportable;
17545 -- Local variables
17547 Vnode : Node_Id;
17549 -- Start of processing for Validate_Unchecked_Conversion
17551 begin
17552 -- Obtain source and target types. Note that we call Ancestor_Subtype
17553 -- here because the processing for generic instantiation always makes
17554 -- subtypes, and we want the original frozen actual types.
17556 Source := Ancestor_Subtype (Etype (First_Formal (Act_Unit)));
17557 Target := Ancestor_Subtype (Etype (Act_Unit));
17559 -- If either type is generic, the instantiation happens within a generic
17560 -- unit, and there is nothing to check. The proper check will happen
17561 -- when the enclosing generic is instantiated.
17563 if Is_Generic_Type (Source) or else Is_Generic_Type (Target) then
17564 return;
17565 end if;
17567 -- Warn if one of the operands is a private type declared in
17568 -- Ada.Calendar or Ada.Real_Time. Do not emit a warning when compiling
17569 -- GNAT-related sources.
17571 if Warn_On_Unchecked_Conversion
17572 and then not In_Predefined_Unit (N)
17573 then
17574 Warn_Nonportable (RO_CA_Time);
17575 Warn_Nonportable (RO_RT_Time);
17576 Warn_Nonportable (RE_Time_Span);
17577 end if;
17579 -- If we are dealing with private types, then do the check on their
17580 -- fully declared counterparts if the full declarations have been
17581 -- encountered (they don't have to be visible, but they must exist).
17583 if Is_Private_Type (Source)
17584 and then Present (Underlying_Type (Source))
17585 then
17586 Source := Underlying_Type (Source);
17587 end if;
17589 if Is_Private_Type (Target)
17590 and then Present (Underlying_Type (Target))
17591 then
17592 Target := Underlying_Type (Target);
17593 end if;
17595 -- Source may be unconstrained array, but not target, except in relaxed
17596 -- semantics mode.
17598 if Is_Array_Type (Target)
17599 and then not Is_Constrained (Target)
17600 and then not Relaxed_RM_Semantics
17601 then
17602 Error_Msg_N
17603 ("unchecked conversion to unconstrained array not allowed", N);
17604 return;
17605 end if;
17607 -- Warn if conversion between two different convention pointers
17609 if Is_Access_Type (Target)
17610 and then Is_Access_Type (Source)
17611 and then Convention (Target) /= Convention (Source)
17612 and then Warn_On_Unchecked_Conversion
17613 then
17614 -- Give warnings for subprogram pointers only on most targets
17616 if Is_Access_Subprogram_Type (Target)
17617 or else Is_Access_Subprogram_Type (Source)
17618 then
17619 Error_Msg_N
17620 ("?z?conversion between pointers with different conventions!",
17622 end if;
17623 end if;
17625 -- Make entry in unchecked conversion table for later processing by
17626 -- Validate_Unchecked_Conversions, which will check sizes and alignments
17627 -- (using values set by the back end where possible). This is only done
17628 -- if the appropriate warning is active.
17630 if Warn_On_Unchecked_Conversion then
17631 Unchecked_Conversions.Append
17632 (New_Val => UC_Entry'(Eloc => Sloc (N),
17633 Source => Source,
17634 Target => Target,
17635 Act_Unit => Act_Unit));
17637 -- If both sizes are known statically now, then back-end annotation
17638 -- is not required to do a proper check but if either size is not
17639 -- known statically, then we need the annotation.
17641 if Known_Static_RM_Size (Source)
17642 and then
17643 Known_Static_RM_Size (Target)
17644 then
17645 null;
17646 else
17647 Back_Annotate_Rep_Info := True;
17648 end if;
17649 end if;
17651 -- If unchecked conversion to access type, and access type is declared
17652 -- in the same unit as the unchecked conversion, then set the flag
17653 -- No_Strict_Aliasing (no strict aliasing is implicit here)
17655 if Is_Access_Type (Target)
17656 and then In_Same_Source_Unit (Target, N)
17657 then
17658 Set_No_Strict_Aliasing (Implementation_Base_Type (Target));
17659 end if;
17661 -- If the unchecked conversion is between Address and an access
17662 -- subprogram type, show that we shouldn't use an internal
17663 -- representation for the access subprogram type.
17665 if Is_Access_Subprogram_Type (Target)
17666 and then Is_Descendant_Of_Address (Source)
17667 and then In_Same_Source_Unit (Target, N)
17668 then
17669 Set_Can_Use_Internal_Rep (Target, False);
17670 elsif Is_Access_Subprogram_Type (Source)
17671 and then Is_Descendant_Of_Address (Target)
17672 and then In_Same_Source_Unit (Source, N)
17673 then
17674 Set_Can_Use_Internal_Rep (Source, False);
17675 end if;
17677 -- Generate N_Validate_Unchecked_Conversion node for back end in case
17678 -- the back end needs to perform special validation checks.
17680 -- Shouldn't this be in Exp_Ch13, since the check only gets done if we
17681 -- have full expansion and the back end is called ???
17683 Vnode :=
17684 Make_Validate_Unchecked_Conversion (Sloc (N));
17685 Set_Source_Type (Vnode, Source);
17686 Set_Target_Type (Vnode, Target);
17688 -- If the unchecked conversion node is in a list, just insert before it.
17689 -- If not we have some strange case, not worth bothering about.
17691 if Is_List_Member (N) then
17692 Insert_After (N, Vnode);
17693 end if;
17694 end Validate_Unchecked_Conversion;
17696 ------------------------------------
17697 -- Validate_Unchecked_Conversions --
17698 ------------------------------------
17700 procedure Validate_Unchecked_Conversions is
17701 function Is_Null_Array (T : Entity_Id) return Boolean;
17702 -- We want to warn in the case of converting to a wrong-sized array of
17703 -- bytes, including the zero-size case. This returns True in that case,
17704 -- which is necessary because a size of 0 is used to indicate both an
17705 -- unknown size and a size of 0. It's OK for this to return True in
17706 -- other zero-size cases, but we don't go out of our way; for example,
17707 -- we don't bother with multidimensional arrays.
17709 function Is_Null_Array (T : Entity_Id) return Boolean is
17710 begin
17711 if Is_Array_Type (T) and then Is_Constrained (T) then
17712 declare
17713 Index : constant Node_Id := First_Index (T);
17714 R : Node_Id; -- N_Range
17715 begin
17716 case Nkind (Index) is
17717 when N_Range =>
17718 R := Index;
17719 when N_Subtype_Indication =>
17720 R := Range_Expression (Constraint (Index));
17721 when N_Identifier | N_Expanded_Name =>
17722 R := Scalar_Range (Entity (Index));
17723 when others =>
17724 raise Program_Error;
17725 end case;
17727 return Is_Null_Range (Low_Bound (R), High_Bound (R));
17728 end;
17729 end if;
17731 return False;
17732 end Is_Null_Array;
17734 begin
17735 for N in Unchecked_Conversions.First .. Unchecked_Conversions.Last loop
17736 declare
17737 T : UC_Entry renames Unchecked_Conversions.Table (N);
17739 Act_Unit : constant Entity_Id := T.Act_Unit;
17740 Eloc : constant Source_Ptr := T.Eloc;
17741 Source : constant Entity_Id := T.Source;
17742 Target : constant Entity_Id := T.Target;
17744 Source_Siz : Uint;
17745 Target_Siz : Uint;
17747 begin
17748 -- Skip if function marked as warnings off
17750 if Has_Warnings_Off (Act_Unit)
17751 or else Serious_Errors_Detected > 0
17752 then
17753 goto Continue;
17754 end if;
17756 -- Don't do the check if warnings off for either type, note the
17757 -- deliberate use of OR here instead of OR ELSE to get the flag
17758 -- Warnings_Off_Used set for both types if appropriate.
17760 if Has_Warnings_Off (Source) or Has_Warnings_Off (Target) then
17761 goto Continue;
17762 end if;
17764 if (Known_Static_RM_Size (Source)
17765 and then Known_Static_RM_Size (Target))
17766 or else Is_Null_Array (Target)
17767 then
17768 -- This validation check, which warns if we have unequal sizes
17769 -- for unchecked conversion, and thus implementation dependent
17770 -- semantics, is one of the few occasions on which we use the
17771 -- official RM size instead of Esize. See description in Einfo
17772 -- "Handling of Type'Size Values" for details.
17774 Source_Siz := RM_Size (Source);
17775 Target_Siz := RM_Size (Target);
17777 if Present (Source_Siz) and then Present (Target_Siz)
17778 and then Source_Siz /= Target_Siz
17779 then
17780 Error_Msg
17781 ("?z?types for unchecked conversion have different sizes!",
17782 Eloc, Act_Unit);
17784 if All_Errors_Mode then
17785 Error_Msg_Name_1 := Chars (Source);
17786 Error_Msg_Uint_1 := Source_Siz;
17787 Error_Msg_Name_2 := Chars (Target);
17788 Error_Msg_Uint_2 := Target_Siz;
17789 Error_Msg ("\size of % is ^, size of % is ^?z?", Eloc);
17791 Error_Msg_Uint_1 := UI_Abs (Source_Siz - Target_Siz);
17793 if Is_Discrete_Type (Source)
17794 and then
17795 Is_Discrete_Type (Target)
17796 then
17797 if Source_Siz > Target_Siz then
17798 Error_Msg
17799 ("\?z?^ high order bits of source will "
17800 & "be ignored!", Eloc);
17802 elsif Is_Unsigned_Type (Source) then
17803 Error_Msg
17804 ("\?z?source will be extended with ^ high order "
17805 & "zero bits!", Eloc);
17807 else
17808 Error_Msg
17809 ("\?z?source will be extended with ^ high order "
17810 & "sign bits!", Eloc);
17811 end if;
17813 elsif Source_Siz < Target_Siz then
17814 if Is_Discrete_Type (Target) then
17815 if Bytes_Big_Endian then
17816 Error_Msg
17817 ("\?z?target value will include ^ undefined "
17818 & "low order bits!", Eloc, Act_Unit);
17819 else
17820 Error_Msg
17821 ("\?z?target value will include ^ undefined "
17822 & "high order bits!", Eloc, Act_Unit);
17823 end if;
17825 else
17826 Error_Msg
17827 ("\?z?^ trailing bits of target value will be "
17828 & "undefined!", Eloc, Act_Unit);
17829 end if;
17831 else pragma Assert (Source_Siz > Target_Siz);
17832 if Is_Discrete_Type (Source) then
17833 if Bytes_Big_Endian then
17834 Error_Msg
17835 ("\?z?^ low order bits of source will be "
17836 & "ignored!", Eloc, Act_Unit);
17837 else
17838 Error_Msg
17839 ("\?z?^ high order bits of source will be "
17840 & "ignored!", Eloc, Act_Unit);
17841 end if;
17843 else
17844 Error_Msg
17845 ("\?z?^ trailing bits of source will be "
17846 & "ignored!", Eloc, Act_Unit);
17847 end if;
17848 end if;
17849 end if;
17850 end if;
17851 end if;
17853 -- If both types are access types, we need to check the alignment.
17854 -- If the alignment of both is specified, we can do it here.
17856 if Serious_Errors_Detected = 0
17857 and then Is_Access_Type (Source)
17858 and then Is_Access_Type (Target)
17859 and then Target_Strict_Alignment
17860 and then Present (Designated_Type (Source))
17861 and then Present (Designated_Type (Target))
17862 then
17863 declare
17864 D_Source : constant Entity_Id := Designated_Type (Source);
17865 D_Target : constant Entity_Id := Designated_Type (Target);
17867 begin
17868 if Known_Alignment (D_Source)
17869 and then
17870 Known_Alignment (D_Target)
17871 then
17872 declare
17873 Source_Align : constant Uint := Alignment (D_Source);
17874 Target_Align : constant Uint := Alignment (D_Target);
17876 begin
17877 if Source_Align < Target_Align
17878 and then not Is_Tagged_Type (D_Source)
17880 -- Suppress warning if warnings suppressed on either
17881 -- type or either designated type. Note the use of
17882 -- OR here instead of OR ELSE. That is intentional,
17883 -- we would like to set flag Warnings_Off_Used in
17884 -- all types for which warnings are suppressed.
17886 and then not (Has_Warnings_Off (D_Source)
17888 Has_Warnings_Off (D_Target)
17890 Has_Warnings_Off (Source)
17892 Has_Warnings_Off (Target))
17893 then
17894 Error_Msg_Uint_1 := Target_Align;
17895 Error_Msg_Uint_2 := Source_Align;
17896 Error_Msg_Node_1 := D_Target;
17897 Error_Msg_Node_2 := D_Source;
17898 Error_Msg
17899 ("?z?alignment of & (^) is stricter than "
17900 & "alignment of & (^)!", Eloc, Act_Unit);
17901 Error_Msg
17902 ("\?z?resulting access value may have invalid "
17903 & "alignment!", Eloc, Act_Unit);
17904 end if;
17905 end;
17906 end if;
17907 end;
17908 end if;
17909 end;
17911 <<Continue>>
17912 null;
17913 end loop;
17914 end Validate_Unchecked_Conversions;
17916 end Sem_Ch13;