2016-04-27 Arnaud Charlet <charlet@adacore.com>
[official-gcc.git] / gcc / ada / sem_ch13.adb
blobc6d0dba7a4a2157b37122722325a0c6caefe638d
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 1 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2016, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Debug; use Debug;
30 with Einfo; use Einfo;
31 with Elists; use Elists;
32 with Errout; use Errout;
33 with Exp_Disp; use Exp_Disp;
34 with Exp_Tss; use Exp_Tss;
35 with Exp_Util; use Exp_Util;
36 with Freeze; use Freeze;
37 with Ghost; use Ghost;
38 with Lib; use Lib;
39 with Lib.Xref; use Lib.Xref;
40 with Namet; use Namet;
41 with Nlists; use Nlists;
42 with Nmake; use Nmake;
43 with Opt; use Opt;
44 with Restrict; use Restrict;
45 with Rident; use Rident;
46 with Rtsfind; use Rtsfind;
47 with Sem; use Sem;
48 with Sem_Aux; use Sem_Aux;
49 with Sem_Case; use Sem_Case;
50 with Sem_Ch3; use Sem_Ch3;
51 with Sem_Ch6; use Sem_Ch6;
52 with Sem_Ch8; use Sem_Ch8;
53 with Sem_Dim; use Sem_Dim;
54 with Sem_Disp; use Sem_Disp;
55 with Sem_Eval; use Sem_Eval;
56 with Sem_Prag; use Sem_Prag;
57 with Sem_Res; use Sem_Res;
58 with Sem_Type; use Sem_Type;
59 with Sem_Util; use Sem_Util;
60 with Sem_Warn; use Sem_Warn;
61 with Sinput; use Sinput;
62 with Snames; use Snames;
63 with Stand; use Stand;
64 with Sinfo; use Sinfo;
65 with Stringt; use Stringt;
66 with Targparm; use Targparm;
67 with Ttypes; use Ttypes;
68 with Tbuild; use Tbuild;
69 with Urealp; use Urealp;
70 with Warnsw; use Warnsw;
72 with GNAT.Heap_Sort_G;
74 package body Sem_Ch13 is
76 SSU : constant Pos := System_Storage_Unit;
77 -- Convenient short hand for commonly used constant
79 -----------------------
80 -- Local Subprograms --
81 -----------------------
83 procedure Alignment_Check_For_Size_Change (Typ : Entity_Id; Size : Uint);
84 -- This routine is called after setting one of the sizes of type entity
85 -- Typ to Size. The purpose is to deal with the situation of a derived
86 -- type whose inherited alignment is no longer appropriate for the new
87 -- size value. In this case, we reset the Alignment to unknown.
89 procedure Build_Discrete_Static_Predicate
90 (Typ : Entity_Id;
91 Expr : Node_Id;
92 Nam : Name_Id);
93 -- Given a predicated type Typ, where Typ is a discrete static subtype,
94 -- whose predicate expression is Expr, tests if Expr is a static predicate,
95 -- and if so, builds the predicate range list. Nam is the name of the one
96 -- argument to the predicate function. Occurrences of the type name in the
97 -- predicate expression have been replaced by identifier references to this
98 -- name, which is unique, so any identifier with Chars matching Nam must be
99 -- a reference to the type. If the predicate is non-static, this procedure
100 -- returns doing nothing. If the predicate is static, then the predicate
101 -- list is stored in Static_Discrete_Predicate (Typ), and the Expr is
102 -- rewritten as a canonicalized membership operation.
104 function Build_Export_Import_Pragma
105 (Asp : Node_Id;
106 Id : Entity_Id) return Node_Id;
107 -- Create the corresponding pragma for aspect Export or Import denoted by
108 -- Asp. Id is the related entity subject to the aspect. Return Empty when
109 -- the expression of aspect Asp evaluates to False or is erroneous.
111 function Build_Predicate_Function_Declaration
112 (Typ : Entity_Id) return Node_Id;
113 -- Build the declaration for a predicate function. The declaration is built
114 -- at the end of the declarative part containing the type definition, which
115 -- may be before the freeze point of the type. The predicate expression is
116 -- pre-analyzed at this point, to catch visibility errors.
118 procedure Build_Predicate_Functions (Typ : Entity_Id; N : Node_Id);
119 -- If Typ has predicates (indicated by Has_Predicates being set for Typ),
120 -- then either there are pragma Predicate entries on the rep chain for the
121 -- type (note that Predicate aspects are converted to pragma Predicate), or
122 -- there are inherited aspects from a parent type, or ancestor subtypes.
123 -- This procedure builds body for the Predicate function that tests these
124 -- predicates. N is the freeze node for the type. The spec of the function
125 -- is inserted before the freeze node, and the body of the function is
126 -- inserted after the freeze node. If the predicate expression has a least
127 -- one Raise_Expression, then this procedure also builds the M version of
128 -- the predicate function for use in membership tests.
130 procedure Check_Pool_Size_Clash (Ent : Entity_Id; SP, SS : Node_Id);
131 -- Called if both Storage_Pool and Storage_Size attribute definition
132 -- clauses (SP and SS) are present for entity Ent. Issue error message.
134 procedure Freeze_Entity_Checks (N : Node_Id);
135 -- Called from Analyze_Freeze_Entity and Analyze_Generic_Freeze Entity
136 -- to generate appropriate semantic checks that are delayed until this
137 -- point (they had to be delayed this long for cases of delayed aspects,
138 -- e.g. analysis of statically predicated subtypes in choices, for which
139 -- we have to be sure the subtypes in question are frozen before checking).
141 function Get_Alignment_Value (Expr : Node_Id) return Uint;
142 -- Given the expression for an alignment value, returns the corresponding
143 -- Uint value. If the value is inappropriate, then error messages are
144 -- posted as required, and a value of No_Uint is returned.
146 procedure Get_Interfacing_Aspects
147 (Iface_Asp : Node_Id;
148 Conv_Asp : out Node_Id;
149 EN_Asp : out Node_Id;
150 Expo_Asp : out Node_Id;
151 Imp_Asp : out Node_Id;
152 LN_Asp : out Node_Id;
153 Do_Checks : Boolean := False);
154 -- Given a single interfacing aspect Iface_Asp, retrieve other interfacing
155 -- aspects that apply to the same related entity. The aspects considered by
156 -- this routine are as follows:
158 -- Conv_Asp - aspect Convention
159 -- EN_Asp - aspect External_Name
160 -- Expo_Asp - aspect Export
161 -- Imp_Asp - aspect Import
162 -- LN_Asp - aspect Link_Name
164 -- When flag Do_Checks is set, this routine will flag duplicate uses of
165 -- aspects.
167 function Is_Operational_Item (N : Node_Id) return Boolean;
168 -- A specification for a stream attribute is allowed before the full type
169 -- is declared, as explained in AI-00137 and the corrigendum. Attributes
170 -- that do not specify a representation characteristic are operational
171 -- attributes.
173 function Is_Predicate_Static
174 (Expr : Node_Id;
175 Nam : Name_Id) return Boolean;
176 -- Given predicate expression Expr, tests if Expr is predicate-static in
177 -- the sense of the rules in (RM 3.2.4 (15-24)). Occurrences of the type
178 -- name in the predicate expression have been replaced by references to
179 -- an identifier whose Chars field is Nam. This name is unique, so any
180 -- identifier with Chars matching Nam must be a reference to the type.
181 -- Returns True if the expression is predicate-static and False otherwise,
182 -- but is not in the business of setting flags or issuing error messages.
184 -- Only scalar types can have static predicates, so False is always
185 -- returned for non-scalar types.
187 -- Note: the RM seems to suggest that string types can also have static
188 -- predicates. But that really makes lttle sense as very few useful
189 -- predicates can be constructed for strings. Remember that:
191 -- "ABC" < "DEF"
193 -- is not a static expression. So even though the clearly faulty RM wording
194 -- allows the following:
196 -- subtype S is String with Static_Predicate => S < "DEF"
198 -- We can't allow this, otherwise we have predicate-static applying to a
199 -- larger class than static expressions, which was never intended.
201 procedure New_Stream_Subprogram
202 (N : Node_Id;
203 Ent : Entity_Id;
204 Subp : Entity_Id;
205 Nam : TSS_Name_Type);
206 -- Create a subprogram renaming of a given stream attribute to the
207 -- designated subprogram and then in the tagged case, provide this as a
208 -- primitive operation, or in the untagged case make an appropriate TSS
209 -- entry. This is more properly an expansion activity than just semantics,
210 -- but the presence of user-defined stream functions for limited types
211 -- is a legality check, which is why this takes place here rather than in
212 -- exp_ch13, where it was previously. Nam indicates the name of the TSS
213 -- function to be generated.
215 -- To avoid elaboration anomalies with freeze nodes, for untagged types
216 -- we generate both a subprogram declaration and a subprogram renaming
217 -- declaration, so that the attribute specification is handled as a
218 -- renaming_as_body. For tagged types, the specification is one of the
219 -- primitive specs.
221 procedure Resolve_Iterable_Operation
222 (N : Node_Id;
223 Cursor : Entity_Id;
224 Typ : Entity_Id;
225 Nam : Name_Id);
226 -- If the name of a primitive operation for an Iterable aspect is
227 -- overloaded, resolve according to required signature.
229 procedure Set_Biased
230 (E : Entity_Id;
231 N : Node_Id;
232 Msg : String;
233 Biased : Boolean := True);
234 -- If Biased is True, sets Has_Biased_Representation flag for E, and
235 -- outputs a warning message at node N if Warn_On_Biased_Representation is
236 -- is True. This warning inserts the string Msg to describe the construct
237 -- causing biasing.
239 ----------------------------------------------
240 -- Table for Validate_Unchecked_Conversions --
241 ----------------------------------------------
243 -- The following table collects unchecked conversions for validation.
244 -- Entries are made by Validate_Unchecked_Conversion and then the call
245 -- to Validate_Unchecked_Conversions does the actual error checking and
246 -- posting of warnings. The reason for this delayed processing is to take
247 -- advantage of back-annotations of size and alignment values performed by
248 -- the back end.
250 -- Note: the reason we store a Source_Ptr value instead of a Node_Id is
251 -- that by the time Validate_Unchecked_Conversions is called, Sprint will
252 -- already have modified all Sloc values if the -gnatD option is set.
254 type UC_Entry is record
255 Eloc : Source_Ptr; -- node used for posting warnings
256 Source : Entity_Id; -- source type for unchecked conversion
257 Target : Entity_Id; -- target type for unchecked conversion
258 Act_Unit : Entity_Id; -- actual function instantiated
259 end record;
261 package Unchecked_Conversions is new Table.Table (
262 Table_Component_Type => UC_Entry,
263 Table_Index_Type => Int,
264 Table_Low_Bound => 1,
265 Table_Initial => 50,
266 Table_Increment => 200,
267 Table_Name => "Unchecked_Conversions");
269 ----------------------------------------
270 -- Table for Validate_Address_Clauses --
271 ----------------------------------------
273 -- If an address clause has the form
275 -- for X'Address use Expr
277 -- where Expr is of the form Y'Address or recursively is a reference to a
278 -- constant of either of these forms, and X and Y are entities of objects,
279 -- then if Y has a smaller alignment than X, that merits a warning about
280 -- possible bad alignment. The following table collects address clauses of
281 -- this kind. We put these in a table so that they can be checked after the
282 -- back end has completed annotation of the alignments of objects, since we
283 -- can catch more cases that way.
285 type Address_Clause_Check_Record is record
286 N : Node_Id;
287 -- The address clause
289 X : Entity_Id;
290 -- The entity of the object overlaying Y
292 Y : Entity_Id;
293 -- The entity of the object being overlaid
295 Off : Boolean;
296 -- Whether the address is offset within Y
297 end record;
299 package Address_Clause_Checks is new Table.Table (
300 Table_Component_Type => Address_Clause_Check_Record,
301 Table_Index_Type => Int,
302 Table_Low_Bound => 1,
303 Table_Initial => 20,
304 Table_Increment => 200,
305 Table_Name => "Address_Clause_Checks");
307 -----------------------------------------
308 -- Adjust_Record_For_Reverse_Bit_Order --
309 -----------------------------------------
311 procedure Adjust_Record_For_Reverse_Bit_Order (R : Entity_Id) is
312 Comp : Node_Id;
313 CC : Node_Id;
315 begin
316 -- Processing depends on version of Ada
318 -- For Ada 95, we just renumber bits within a storage unit. We do the
319 -- same for Ada 83 mode, since we recognize the Bit_Order attribute in
320 -- Ada 83, and are free to add this extension.
322 if Ada_Version < Ada_2005 then
323 Comp := First_Component_Or_Discriminant (R);
324 while Present (Comp) loop
325 CC := Component_Clause (Comp);
327 -- If component clause is present, then deal with the non-default
328 -- bit order case for Ada 95 mode.
330 -- We only do this processing for the base type, and in fact that
331 -- is important, since otherwise if there are record subtypes, we
332 -- could reverse the bits once for each subtype, which is wrong.
334 if Present (CC) and then Ekind (R) = E_Record_Type then
335 declare
336 CFB : constant Uint := Component_Bit_Offset (Comp);
337 CSZ : constant Uint := Esize (Comp);
338 CLC : constant Node_Id := Component_Clause (Comp);
339 Pos : constant Node_Id := Position (CLC);
340 FB : constant Node_Id := First_Bit (CLC);
342 Storage_Unit_Offset : constant Uint :=
343 CFB / System_Storage_Unit;
345 Start_Bit : constant Uint :=
346 CFB mod System_Storage_Unit;
348 begin
349 -- Cases where field goes over storage unit boundary
351 if Start_Bit + CSZ > System_Storage_Unit then
353 -- Allow multi-byte field but generate warning
355 if Start_Bit mod System_Storage_Unit = 0
356 and then CSZ mod System_Storage_Unit = 0
357 then
358 Error_Msg_N
359 ("info: multi-byte field specified with "
360 & "non-standard Bit_Order?V?", CLC);
362 if Bytes_Big_Endian then
363 Error_Msg_N
364 ("\bytes are not reversed "
365 & "(component is big-endian)?V?", CLC);
366 else
367 Error_Msg_N
368 ("\bytes are not reversed "
369 & "(component is little-endian)?V?", CLC);
370 end if;
372 -- Do not allow non-contiguous field
374 else
375 Error_Msg_N
376 ("attempt to specify non-contiguous field "
377 & "not permitted", CLC);
378 Error_Msg_N
379 ("\caused by non-standard Bit_Order "
380 & "specified", CLC);
381 Error_Msg_N
382 ("\consider possibility of using "
383 & "Ada 2005 mode here", CLC);
384 end if;
386 -- Case where field fits in one storage unit
388 else
389 -- Give warning if suspicious component clause
391 if Intval (FB) >= System_Storage_Unit
392 and then Warn_On_Reverse_Bit_Order
393 then
394 Error_Msg_N
395 ("info: Bit_Order clause does not affect " &
396 "byte ordering?V?", Pos);
397 Error_Msg_Uint_1 :=
398 Intval (Pos) + Intval (FB) /
399 System_Storage_Unit;
400 Error_Msg_N
401 ("info: position normalized to ^ before bit " &
402 "order interpreted?V?", Pos);
403 end if;
405 -- Here is where we fix up the Component_Bit_Offset value
406 -- to account for the reverse bit order. Some examples of
407 -- what needs to be done are:
409 -- First_Bit .. Last_Bit Component_Bit_Offset
410 -- old new old new
412 -- 0 .. 0 7 .. 7 0 7
413 -- 0 .. 1 6 .. 7 0 6
414 -- 0 .. 2 5 .. 7 0 5
415 -- 0 .. 7 0 .. 7 0 4
417 -- 1 .. 1 6 .. 6 1 6
418 -- 1 .. 4 3 .. 6 1 3
419 -- 4 .. 7 0 .. 3 4 0
421 -- The rule is that the first bit is is obtained by
422 -- subtracting the old ending bit from storage_unit - 1.
424 Set_Component_Bit_Offset
425 (Comp,
426 (Storage_Unit_Offset * System_Storage_Unit) +
427 (System_Storage_Unit - 1) -
428 (Start_Bit + CSZ - 1));
430 Set_Normalized_First_Bit
431 (Comp,
432 Component_Bit_Offset (Comp) mod
433 System_Storage_Unit);
434 end if;
435 end;
436 end if;
438 Next_Component_Or_Discriminant (Comp);
439 end loop;
441 -- For Ada 2005, we do machine scalar processing, as fully described In
442 -- AI-133. This involves gathering all components which start at the
443 -- same byte offset and processing them together. Same approach is still
444 -- valid in later versions including Ada 2012.
446 else
447 declare
448 Max_Machine_Scalar_Size : constant Uint :=
449 UI_From_Int
450 (Standard_Long_Long_Integer_Size);
451 -- We use this as the maximum machine scalar size
453 Num_CC : Natural;
454 SSU : constant Uint := UI_From_Int (System_Storage_Unit);
456 begin
457 -- This first loop through components does two things. First it
458 -- deals with the case of components with component clauses whose
459 -- length is greater than the maximum machine scalar size (either
460 -- accepting them or rejecting as needed). Second, it counts the
461 -- number of components with component clauses whose length does
462 -- not exceed this maximum for later processing.
464 Num_CC := 0;
465 Comp := First_Component_Or_Discriminant (R);
466 while Present (Comp) loop
467 CC := Component_Clause (Comp);
469 if Present (CC) then
470 declare
471 Fbit : constant Uint := Static_Integer (First_Bit (CC));
472 Lbit : constant Uint := Static_Integer (Last_Bit (CC));
474 begin
475 -- Case of component with last bit >= max machine scalar
477 if Lbit >= Max_Machine_Scalar_Size then
479 -- This is allowed only if first bit is zero, and
480 -- last bit + 1 is a multiple of storage unit size.
482 if Fbit = 0 and then (Lbit + 1) mod SSU = 0 then
484 -- This is the case to give a warning if enabled
486 if Warn_On_Reverse_Bit_Order then
487 Error_Msg_N
488 ("info: multi-byte field specified with "
489 & "non-standard Bit_Order?V?", CC);
491 if Bytes_Big_Endian then
492 Error_Msg_N
493 ("\bytes are not reversed "
494 & "(component is big-endian)?V?", CC);
495 else
496 Error_Msg_N
497 ("\bytes are not reversed "
498 & "(component is little-endian)?V?", CC);
499 end if;
500 end if;
502 -- Give error message for RM 13.5.1(10) violation
504 else
505 Error_Msg_FE
506 ("machine scalar rules not followed for&",
507 First_Bit (CC), Comp);
509 Error_Msg_Uint_1 := Lbit + 1;
510 Error_Msg_Uint_2 := Max_Machine_Scalar_Size;
511 Error_Msg_F
512 ("\last bit + 1 (^) exceeds maximum machine "
513 & "scalar size (^)",
514 First_Bit (CC));
516 if (Lbit + 1) mod SSU /= 0 then
517 Error_Msg_Uint_1 := SSU;
518 Error_Msg_F
519 ("\and is not a multiple of Storage_Unit (^) "
520 & "(RM 13.5.1(10))",
521 First_Bit (CC));
523 else
524 Error_Msg_Uint_1 := Fbit;
525 Error_Msg_F
526 ("\and first bit (^) is non-zero "
527 & "(RM 13.4.1(10))",
528 First_Bit (CC));
529 end if;
530 end if;
532 -- OK case of machine scalar related component clause,
533 -- For now, just count them.
535 else
536 Num_CC := Num_CC + 1;
537 end if;
538 end;
539 end if;
541 Next_Component_Or_Discriminant (Comp);
542 end loop;
544 -- We need to sort the component clauses on the basis of the
545 -- Position values in the clause, so we can group clauses with
546 -- the same Position together to determine the relevant machine
547 -- scalar size.
549 Sort_CC : declare
550 Comps : array (0 .. Num_CC) of Entity_Id;
551 -- Array to collect component and discriminant entities. The
552 -- data starts at index 1, the 0'th entry is for the sort
553 -- routine.
555 function CP_Lt (Op1, Op2 : Natural) return Boolean;
556 -- Compare routine for Sort
558 procedure CP_Move (From : Natural; To : Natural);
559 -- Move routine for Sort
561 package Sorting is new GNAT.Heap_Sort_G (CP_Move, CP_Lt);
563 Start : Natural;
564 Stop : Natural;
565 -- Start and stop positions in the component list of the set of
566 -- components with the same starting position (that constitute
567 -- components in a single machine scalar).
569 MaxL : Uint;
570 -- Maximum last bit value of any component in this set
572 MSS : Uint;
573 -- Corresponding machine scalar size
575 -----------
576 -- CP_Lt --
577 -----------
579 function CP_Lt (Op1, Op2 : Natural) return Boolean is
580 begin
581 return Position (Component_Clause (Comps (Op1))) <
582 Position (Component_Clause (Comps (Op2)));
583 end CP_Lt;
585 -------------
586 -- CP_Move --
587 -------------
589 procedure CP_Move (From : Natural; To : Natural) is
590 begin
591 Comps (To) := Comps (From);
592 end CP_Move;
594 -- Start of processing for Sort_CC
596 begin
597 -- Collect the machine scalar relevant component clauses
599 Num_CC := 0;
600 Comp := First_Component_Or_Discriminant (R);
601 while Present (Comp) loop
602 declare
603 CC : constant Node_Id := Component_Clause (Comp);
605 begin
606 -- Collect only component clauses whose last bit is less
607 -- than machine scalar size. Any component clause whose
608 -- last bit exceeds this value does not take part in
609 -- machine scalar layout considerations. The test for
610 -- Error_Posted makes sure we exclude component clauses
611 -- for which we already posted an error.
613 if Present (CC)
614 and then not Error_Posted (Last_Bit (CC))
615 and then Static_Integer (Last_Bit (CC)) <
616 Max_Machine_Scalar_Size
617 then
618 Num_CC := Num_CC + 1;
619 Comps (Num_CC) := Comp;
620 end if;
621 end;
623 Next_Component_Or_Discriminant (Comp);
624 end loop;
626 -- Sort by ascending position number
628 Sorting.Sort (Num_CC);
630 -- We now have all the components whose size does not exceed
631 -- the max machine scalar value, sorted by starting position.
632 -- In this loop we gather groups of clauses starting at the
633 -- same position, to process them in accordance with AI-133.
635 Stop := 0;
636 while Stop < Num_CC loop
637 Start := Stop + 1;
638 Stop := Start;
639 MaxL :=
640 Static_Integer
641 (Last_Bit (Component_Clause (Comps (Start))));
642 while Stop < Num_CC loop
643 if Static_Integer
644 (Position (Component_Clause (Comps (Stop + 1)))) =
645 Static_Integer
646 (Position (Component_Clause (Comps (Stop))))
647 then
648 Stop := Stop + 1;
649 MaxL :=
650 UI_Max
651 (MaxL,
652 Static_Integer
653 (Last_Bit
654 (Component_Clause (Comps (Stop)))));
655 else
656 exit;
657 end if;
658 end loop;
660 -- Now we have a group of component clauses from Start to
661 -- Stop whose positions are identical, and MaxL is the
662 -- maximum last bit value of any of these components.
664 -- We need to determine the corresponding machine scalar
665 -- size. This loop assumes that machine scalar sizes are
666 -- even, and that each possible machine scalar has twice
667 -- as many bits as the next smaller one.
669 MSS := Max_Machine_Scalar_Size;
670 while MSS mod 2 = 0
671 and then (MSS / 2) >= SSU
672 and then (MSS / 2) > MaxL
673 loop
674 MSS := MSS / 2;
675 end loop;
677 -- Here is where we fix up the Component_Bit_Offset value
678 -- to account for the reverse bit order. Some examples of
679 -- what needs to be done for the case of a machine scalar
680 -- size of 8 are:
682 -- First_Bit .. Last_Bit Component_Bit_Offset
683 -- old new old new
685 -- 0 .. 0 7 .. 7 0 7
686 -- 0 .. 1 6 .. 7 0 6
687 -- 0 .. 2 5 .. 7 0 5
688 -- 0 .. 7 0 .. 7 0 4
690 -- 1 .. 1 6 .. 6 1 6
691 -- 1 .. 4 3 .. 6 1 3
692 -- 4 .. 7 0 .. 3 4 0
694 -- The rule is that the first bit is obtained by subtracting
695 -- the old ending bit from machine scalar size - 1.
697 for C in Start .. Stop loop
698 declare
699 Comp : constant Entity_Id := Comps (C);
700 CC : constant Node_Id := Component_Clause (Comp);
702 LB : constant Uint := Static_Integer (Last_Bit (CC));
703 NFB : constant Uint := MSS - Uint_1 - LB;
704 NLB : constant Uint := NFB + Esize (Comp) - 1;
705 Pos : constant Uint := Static_Integer (Position (CC));
707 begin
708 if Warn_On_Reverse_Bit_Order then
709 Error_Msg_Uint_1 := MSS;
710 Error_Msg_N
711 ("info: reverse bit order in machine " &
712 "scalar of length^?V?", First_Bit (CC));
713 Error_Msg_Uint_1 := NFB;
714 Error_Msg_Uint_2 := NLB;
716 if Bytes_Big_Endian then
717 Error_Msg_NE
718 ("\big-endian range for component "
719 & "& is ^ .. ^?V?", First_Bit (CC), Comp);
720 else
721 Error_Msg_NE
722 ("\little-endian range for component"
723 & "& is ^ .. ^?V?", First_Bit (CC), Comp);
724 end if;
725 end if;
727 Set_Component_Bit_Offset (Comp, Pos * SSU + NFB);
728 Set_Normalized_First_Bit (Comp, NFB mod SSU);
729 end;
730 end loop;
731 end loop;
732 end Sort_CC;
733 end;
734 end if;
735 end Adjust_Record_For_Reverse_Bit_Order;
737 -------------------------------------
738 -- Alignment_Check_For_Size_Change --
739 -------------------------------------
741 procedure Alignment_Check_For_Size_Change (Typ : Entity_Id; Size : Uint) is
742 begin
743 -- If the alignment is known, and not set by a rep clause, and is
744 -- inconsistent with the size being set, then reset it to unknown,
745 -- we assume in this case that the size overrides the inherited
746 -- alignment, and that the alignment must be recomputed.
748 if Known_Alignment (Typ)
749 and then not Has_Alignment_Clause (Typ)
750 and then Size mod (Alignment (Typ) * SSU) /= 0
751 then
752 Init_Alignment (Typ);
753 end if;
754 end Alignment_Check_For_Size_Change;
756 -------------------------------------
757 -- Analyze_Aspects_At_Freeze_Point --
758 -------------------------------------
760 procedure Analyze_Aspects_At_Freeze_Point (E : Entity_Id) is
761 procedure Analyze_Aspect_Default_Value (ASN : Node_Id);
762 -- This routine analyzes an Aspect_Default_[Component_]Value denoted by
763 -- the aspect specification node ASN.
765 procedure Inherit_Delayed_Rep_Aspects (ASN : Node_Id);
766 -- As discussed in the spec of Aspects (see Aspect_Delay declaration),
767 -- a derived type can inherit aspects from its parent which have been
768 -- specified at the time of the derivation using an aspect, as in:
770 -- type A is range 1 .. 10
771 -- with Size => Not_Defined_Yet;
772 -- ..
773 -- type B is new A;
774 -- ..
775 -- Not_Defined_Yet : constant := 64;
777 -- In this example, the Size of A is considered to be specified prior
778 -- to the derivation, and thus inherited, even though the value is not
779 -- known at the time of derivation. To deal with this, we use two entity
780 -- flags. The flag Has_Derived_Rep_Aspects is set in the parent type (A
781 -- here), and then the flag May_Inherit_Delayed_Rep_Aspects is set in
782 -- the derived type (B here). If this flag is set when the derived type
783 -- is frozen, then this procedure is called to ensure proper inheritance
784 -- of all delayed aspects from the parent type. The derived type is E,
785 -- the argument to Analyze_Aspects_At_Freeze_Point. ASN is the first
786 -- aspect specification node in the Rep_Item chain for the parent type.
788 procedure Make_Pragma_From_Boolean_Aspect (ASN : Node_Id);
789 -- Given an aspect specification node ASN whose expression is an
790 -- optional Boolean, this routines creates the corresponding pragma
791 -- at the freezing point.
793 ----------------------------------
794 -- Analyze_Aspect_Default_Value --
795 ----------------------------------
797 procedure Analyze_Aspect_Default_Value (ASN : Node_Id) is
798 A_Id : constant Aspect_Id := Get_Aspect_Id (ASN);
799 Ent : constant Entity_Id := Entity (ASN);
800 Expr : constant Node_Id := Expression (ASN);
801 Id : constant Node_Id := Identifier (ASN);
803 begin
804 Error_Msg_Name_1 := Chars (Id);
806 if not Is_Type (Ent) then
807 Error_Msg_N ("aspect% can only apply to a type", Id);
808 return;
810 elsif not Is_First_Subtype (Ent) then
811 Error_Msg_N ("aspect% cannot apply to subtype", Id);
812 return;
814 elsif A_Id = Aspect_Default_Value
815 and then not Is_Scalar_Type (Ent)
816 then
817 Error_Msg_N ("aspect% can only be applied to scalar type", Id);
818 return;
820 elsif A_Id = Aspect_Default_Component_Value then
821 if not Is_Array_Type (Ent) then
822 Error_Msg_N ("aspect% can only be applied to array type", Id);
823 return;
825 elsif not Is_Scalar_Type (Component_Type (Ent)) then
826 Error_Msg_N ("aspect% requires scalar components", Id);
827 return;
828 end if;
829 end if;
831 Set_Has_Default_Aspect (Base_Type (Ent));
833 if Is_Scalar_Type (Ent) then
834 Set_Default_Aspect_Value (Base_Type (Ent), Expr);
835 else
836 Set_Default_Aspect_Component_Value (Base_Type (Ent), Expr);
837 end if;
838 end Analyze_Aspect_Default_Value;
840 ---------------------------------
841 -- Inherit_Delayed_Rep_Aspects --
842 ---------------------------------
844 procedure Inherit_Delayed_Rep_Aspects (ASN : Node_Id) is
845 A_Id : constant Aspect_Id := Get_Aspect_Id (ASN);
846 P : constant Entity_Id := Entity (ASN);
847 -- Entithy for parent type
849 N : Node_Id;
850 -- Item from Rep_Item chain
852 A : Aspect_Id;
854 begin
855 -- Loop through delayed aspects for the parent type
857 N := ASN;
858 while Present (N) loop
859 if Nkind (N) = N_Aspect_Specification then
860 exit when Entity (N) /= P;
862 if Is_Delayed_Aspect (N) then
863 A := Get_Aspect_Id (Chars (Identifier (N)));
865 -- Process delayed rep aspect. For Boolean attributes it is
866 -- not possible to cancel an attribute once set (the attempt
867 -- to use an aspect with xxx => False is an error) for a
868 -- derived type. So for those cases, we do not have to check
869 -- if a clause has been given for the derived type, since it
870 -- is harmless to set it again if it is already set.
872 case A is
874 -- Alignment
876 when Aspect_Alignment =>
877 if not Has_Alignment_Clause (E) then
878 Set_Alignment (E, Alignment (P));
879 end if;
881 -- Atomic
883 when Aspect_Atomic =>
884 if Is_Atomic (P) then
885 Set_Is_Atomic (E);
886 end if;
888 -- Atomic_Components
890 when Aspect_Atomic_Components =>
891 if Has_Atomic_Components (P) then
892 Set_Has_Atomic_Components (Base_Type (E));
893 end if;
895 -- Bit_Order
897 when Aspect_Bit_Order =>
898 if Is_Record_Type (E)
899 and then No (Get_Attribute_Definition_Clause
900 (E, Attribute_Bit_Order))
901 and then Reverse_Bit_Order (P)
902 then
903 Set_Reverse_Bit_Order (Base_Type (E));
904 end if;
906 -- Component_Size
908 when Aspect_Component_Size =>
909 if Is_Array_Type (E)
910 and then not Has_Component_Size_Clause (E)
911 then
912 Set_Component_Size
913 (Base_Type (E), Component_Size (P));
914 end if;
916 -- Machine_Radix
918 when Aspect_Machine_Radix =>
919 if Is_Decimal_Fixed_Point_Type (E)
920 and then not Has_Machine_Radix_Clause (E)
921 then
922 Set_Machine_Radix_10 (E, Machine_Radix_10 (P));
923 end if;
925 -- Object_Size (also Size which also sets Object_Size)
927 when Aspect_Object_Size | Aspect_Size =>
928 if not Has_Size_Clause (E)
929 and then
930 No (Get_Attribute_Definition_Clause
931 (E, Attribute_Object_Size))
932 then
933 Set_Esize (E, Esize (P));
934 end if;
936 -- Pack
938 when Aspect_Pack =>
939 if not Is_Packed (E) then
940 Set_Is_Packed (Base_Type (E));
942 if Is_Bit_Packed_Array (P) then
943 Set_Is_Bit_Packed_Array (Base_Type (E));
944 Set_Packed_Array_Impl_Type
945 (E, Packed_Array_Impl_Type (P));
946 end if;
947 end if;
949 -- Scalar_Storage_Order
951 when Aspect_Scalar_Storage_Order =>
952 if (Is_Record_Type (E) or else Is_Array_Type (E))
953 and then No (Get_Attribute_Definition_Clause
954 (E, Attribute_Scalar_Storage_Order))
955 and then Reverse_Storage_Order (P)
956 then
957 Set_Reverse_Storage_Order (Base_Type (E));
959 -- Clear default SSO indications, since the aspect
960 -- overrides the default.
962 Set_SSO_Set_Low_By_Default (Base_Type (E), False);
963 Set_SSO_Set_High_By_Default (Base_Type (E), False);
964 end if;
966 -- Small
968 when Aspect_Small =>
969 if Is_Fixed_Point_Type (E)
970 and then not Has_Small_Clause (E)
971 then
972 Set_Small_Value (E, Small_Value (P));
973 end if;
975 -- Storage_Size
977 when Aspect_Storage_Size =>
978 if (Is_Access_Type (E) or else Is_Task_Type (E))
979 and then not Has_Storage_Size_Clause (E)
980 then
981 Set_Storage_Size_Variable
982 (Base_Type (E), Storage_Size_Variable (P));
983 end if;
985 -- Value_Size
987 when Aspect_Value_Size =>
989 -- Value_Size is never inherited, it is either set by
990 -- default, or it is explicitly set for the derived
991 -- type. So nothing to do here.
993 null;
995 -- Volatile
997 when Aspect_Volatile =>
998 if Is_Volatile (P) then
999 Set_Is_Volatile (E);
1000 end if;
1002 -- Volatile_Full_Access
1004 when Aspect_Volatile_Full_Access =>
1005 if Is_Volatile_Full_Access (P) then
1006 Set_Is_Volatile_Full_Access (E);
1007 end if;
1009 -- Volatile_Components
1011 when Aspect_Volatile_Components =>
1012 if Has_Volatile_Components (P) then
1013 Set_Has_Volatile_Components (Base_Type (E));
1014 end if;
1016 -- That should be all the Rep Aspects
1018 when others =>
1019 pragma Assert (Aspect_Delay (A_Id) /= Rep_Aspect);
1020 null;
1022 end case;
1023 end if;
1024 end if;
1026 N := Next_Rep_Item (N);
1027 end loop;
1028 end Inherit_Delayed_Rep_Aspects;
1030 -------------------------------------
1031 -- Make_Pragma_From_Boolean_Aspect --
1032 -------------------------------------
1034 procedure Make_Pragma_From_Boolean_Aspect (ASN : Node_Id) is
1035 Ident : constant Node_Id := Identifier (ASN);
1036 A_Name : constant Name_Id := Chars (Ident);
1037 A_Id : constant Aspect_Id := Get_Aspect_Id (A_Name);
1038 Ent : constant Entity_Id := Entity (ASN);
1039 Expr : constant Node_Id := Expression (ASN);
1040 Loc : constant Source_Ptr := Sloc (ASN);
1042 procedure Check_False_Aspect_For_Derived_Type;
1043 -- This procedure checks for the case of a false aspect for a derived
1044 -- type, which improperly tries to cancel an aspect inherited from
1045 -- the parent.
1047 -----------------------------------------
1048 -- Check_False_Aspect_For_Derived_Type --
1049 -----------------------------------------
1051 procedure Check_False_Aspect_For_Derived_Type is
1052 Par : Node_Id;
1054 begin
1055 -- We are only checking derived types
1057 if not Is_Derived_Type (E) then
1058 return;
1059 end if;
1061 Par := Nearest_Ancestor (E);
1063 case A_Id is
1064 when Aspect_Atomic | Aspect_Shared =>
1065 if not Is_Atomic (Par) then
1066 return;
1067 end if;
1069 when Aspect_Atomic_Components =>
1070 if not Has_Atomic_Components (Par) then
1071 return;
1072 end if;
1074 when Aspect_Discard_Names =>
1075 if not Discard_Names (Par) then
1076 return;
1077 end if;
1079 when Aspect_Pack =>
1080 if not Is_Packed (Par) then
1081 return;
1082 end if;
1084 when Aspect_Unchecked_Union =>
1085 if not Is_Unchecked_Union (Par) then
1086 return;
1087 end if;
1089 when Aspect_Volatile =>
1090 if not Is_Volatile (Par) then
1091 return;
1092 end if;
1094 when Aspect_Volatile_Components =>
1095 if not Has_Volatile_Components (Par) then
1096 return;
1097 end if;
1099 when Aspect_Volatile_Full_Access =>
1100 if not Is_Volatile_Full_Access (Par) then
1101 return;
1102 end if;
1104 when others =>
1105 return;
1106 end case;
1108 -- Fall through means we are canceling an inherited aspect
1110 Error_Msg_Name_1 := A_Name;
1111 Error_Msg_NE
1112 ("derived type& inherits aspect%, cannot cancel", Expr, E);
1113 end Check_False_Aspect_For_Derived_Type;
1115 -- Local variables
1117 Prag : Node_Id;
1119 -- Start of processing for Make_Pragma_From_Boolean_Aspect
1121 begin
1122 -- Note that we know Expr is present, because for a missing Expr
1123 -- argument, we knew it was True and did not need to delay the
1124 -- evaluation to the freeze point.
1126 if Is_False (Static_Boolean (Expr)) then
1127 Check_False_Aspect_For_Derived_Type;
1129 else
1130 Prag :=
1131 Make_Pragma (Loc,
1132 Pragma_Identifier =>
1133 Make_Identifier (Sloc (Ident), Chars (Ident)),
1134 Pragma_Argument_Associations => New_List (
1135 Make_Pragma_Argument_Association (Sloc (Ident),
1136 Expression => New_Occurrence_Of (Ent, Sloc (Ident)))));
1138 Set_From_Aspect_Specification (Prag, True);
1139 Set_Corresponding_Aspect (Prag, ASN);
1140 Set_Aspect_Rep_Item (ASN, Prag);
1141 Set_Is_Delayed_Aspect (Prag);
1142 Set_Parent (Prag, ASN);
1143 end if;
1144 end Make_Pragma_From_Boolean_Aspect;
1146 -- Local variables
1148 A_Id : Aspect_Id;
1149 ASN : Node_Id;
1150 Ritem : Node_Id;
1152 -- Start of processing for Analyze_Aspects_At_Freeze_Point
1154 begin
1155 -- Must be visible in current scope
1157 if not Scope_Within_Or_Same (Current_Scope, Scope (E)) then
1158 return;
1159 end if;
1161 -- Look for aspect specification entries for this entity
1163 ASN := First_Rep_Item (E);
1164 while Present (ASN) loop
1165 if Nkind (ASN) = N_Aspect_Specification then
1166 exit when Entity (ASN) /= E;
1168 if Is_Delayed_Aspect (ASN) then
1169 A_Id := Get_Aspect_Id (ASN);
1171 case A_Id is
1173 -- For aspects whose expression is an optional Boolean, make
1174 -- the corresponding pragma at the freeze point.
1176 when Boolean_Aspects |
1177 Library_Unit_Aspects =>
1179 -- Aspects Export and Import require special handling.
1180 -- Both are by definition Boolean and may benefit from
1181 -- forward references, however their expressions are
1182 -- treated as static. In addition, the syntax of their
1183 -- corresponding pragmas requires extra "pieces" which
1184 -- may also contain forward references. To account for
1185 -- all of this, the corresponding pragma is created by
1186 -- Analyze_Aspect_Export_Import, but is not analyzed as
1187 -- the complete analysis must happen now.
1189 if A_Id = Aspect_Export or else A_Id = Aspect_Import then
1190 null;
1192 -- Otherwise create a corresponding pragma
1194 else
1195 Make_Pragma_From_Boolean_Aspect (ASN);
1196 end if;
1198 -- Special handling for aspects that don't correspond to
1199 -- pragmas/attributes.
1201 when Aspect_Default_Value |
1202 Aspect_Default_Component_Value =>
1204 -- Do not inherit aspect for anonymous base type of a
1205 -- scalar or array type, because they apply to the first
1206 -- subtype of the type, and will be processed when that
1207 -- first subtype is frozen.
1209 if Is_Derived_Type (E)
1210 and then not Comes_From_Source (E)
1211 and then E /= First_Subtype (E)
1212 then
1213 null;
1214 else
1215 Analyze_Aspect_Default_Value (ASN);
1216 end if;
1218 -- Ditto for iterator aspects, because the corresponding
1219 -- attributes may not have been analyzed yet.
1221 when Aspect_Constant_Indexing |
1222 Aspect_Variable_Indexing |
1223 Aspect_Default_Iterator |
1224 Aspect_Iterator_Element =>
1225 Analyze (Expression (ASN));
1227 if Etype (Expression (ASN)) = Any_Type then
1228 Error_Msg_NE
1229 ("\aspect must be fully defined before & is frozen",
1230 ASN, E);
1231 end if;
1233 when Aspect_Iterable =>
1234 Validate_Iterable_Aspect (E, ASN);
1236 when others =>
1237 null;
1238 end case;
1240 Ritem := Aspect_Rep_Item (ASN);
1242 if Present (Ritem) then
1243 Analyze (Ritem);
1244 end if;
1245 end if;
1246 end if;
1248 Next_Rep_Item (ASN);
1249 end loop;
1251 -- This is where we inherit delayed rep aspects from our parent. Note
1252 -- that if we fell out of the above loop with ASN non-empty, it means
1253 -- we hit an aspect for an entity other than E, and it must be the
1254 -- type from which we were derived.
1256 if May_Inherit_Delayed_Rep_Aspects (E) then
1257 Inherit_Delayed_Rep_Aspects (ASN);
1258 end if;
1259 end Analyze_Aspects_At_Freeze_Point;
1261 -----------------------------------
1262 -- Analyze_Aspect_Specifications --
1263 -----------------------------------
1265 procedure Analyze_Aspect_Specifications (N : Node_Id; E : Entity_Id) is
1266 procedure Decorate (Asp : Node_Id; Prag : Node_Id);
1267 -- Establish linkages between an aspect and its corresponding pragma
1269 procedure Insert_Pragma
1270 (Prag : Node_Id;
1271 Is_Instance : Boolean := False);
1272 -- Subsidiary to the analysis of aspects
1273 -- Abstract_State
1274 -- Attach_Handler
1275 -- Contract_Cases
1276 -- Depends
1277 -- Ghost
1278 -- Global
1279 -- Initial_Condition
1280 -- Initializes
1281 -- Post
1282 -- Pre
1283 -- Refined_Depends
1284 -- Refined_Global
1285 -- Refined_State
1286 -- SPARK_Mode
1287 -- Warnings
1288 -- Insert pragma Prag such that it mimics the placement of a source
1289 -- pragma of the same kind. Flag Is_Generic should be set when the
1290 -- context denotes a generic instance.
1292 --------------
1293 -- Decorate --
1294 --------------
1296 procedure Decorate (Asp : Node_Id; Prag : Node_Id) is
1297 begin
1298 Set_Aspect_Rep_Item (Asp, Prag);
1299 Set_Corresponding_Aspect (Prag, Asp);
1300 Set_From_Aspect_Specification (Prag);
1301 Set_Parent (Prag, Asp);
1302 end Decorate;
1304 -------------------
1305 -- Insert_Pragma --
1306 -------------------
1308 procedure Insert_Pragma
1309 (Prag : Node_Id;
1310 Is_Instance : Boolean := False)
1312 Aux : Node_Id;
1313 Decl : Node_Id;
1314 Decls : List_Id;
1315 Def : Node_Id;
1316 Inserted : Boolean := False;
1318 begin
1319 -- When the aspect appears on an entry, package, protected unit,
1320 -- subprogram, or task unit body, insert the generated pragma at the
1321 -- top of the body declarations to emulate the behavior of a source
1322 -- pragma.
1324 -- package body Pack with Aspect is
1326 -- package body Pack is
1327 -- pragma Prag;
1329 if Nkind_In (N, N_Entry_Body,
1330 N_Package_Body,
1331 N_Protected_Body,
1332 N_Subprogram_Body,
1333 N_Task_Body)
1334 then
1335 Decls := Declarations (N);
1337 if No (Decls) then
1338 Decls := New_List;
1339 Set_Declarations (N, Decls);
1340 end if;
1342 Prepend_To (Decls, Prag);
1344 -- When the aspect is associated with a [generic] package declaration
1345 -- insert the generated pragma at the top of the visible declarations
1346 -- to emulate the behavior of a source pragma.
1348 -- package Pack with Aspect is
1350 -- package Pack is
1351 -- pragma Prag;
1353 elsif Nkind_In (N, N_Generic_Package_Declaration,
1354 N_Package_Declaration)
1355 then
1356 Decls := Visible_Declarations (Specification (N));
1358 if No (Decls) then
1359 Decls := New_List;
1360 Set_Visible_Declarations (Specification (N), Decls);
1361 end if;
1363 -- The visible declarations of a generic instance have the
1364 -- following structure:
1366 -- <renamings of generic formals>
1367 -- <renamings of internally-generated spec and body>
1368 -- <first source declaration>
1370 -- Insert the pragma before the first source declaration by
1371 -- skipping the instance "header" to ensure proper visibility of
1372 -- all formals.
1374 if Is_Instance then
1375 Decl := First (Decls);
1376 while Present (Decl) loop
1377 if Comes_From_Source (Decl) then
1378 Insert_Before (Decl, Prag);
1379 Inserted := True;
1380 exit;
1381 else
1382 Next (Decl);
1383 end if;
1384 end loop;
1386 -- The pragma is placed after the instance "header"
1388 if not Inserted then
1389 Append_To (Decls, Prag);
1390 end if;
1392 -- Otherwise this is not a generic instance
1394 else
1395 Prepend_To (Decls, Prag);
1396 end if;
1398 -- When the aspect is associated with a protected unit declaration,
1399 -- insert the generated pragma at the top of the visible declarations
1400 -- the emulate the behavior of a source pragma.
1402 -- protected [type] Prot with Aspect is
1404 -- protected [type] Prot is
1405 -- pragma Prag;
1407 elsif Nkind (N) = N_Protected_Type_Declaration then
1408 Def := Protected_Definition (N);
1410 if No (Def) then
1411 Def :=
1412 Make_Protected_Definition (Sloc (N),
1413 Visible_Declarations => New_List,
1414 End_Label => Empty);
1416 Set_Protected_Definition (N, Def);
1417 end if;
1419 Decls := Visible_Declarations (Def);
1421 if No (Decls) then
1422 Decls := New_List;
1423 Set_Visible_Declarations (Def, Decls);
1424 end if;
1426 Prepend_To (Decls, Prag);
1428 -- When the aspect is associated with a task unit declaration, insert
1429 -- insert the generated pragma at the top of the visible declarations
1430 -- the emulate the behavior of a source pragma.
1432 -- task [type] Prot with Aspect is
1434 -- task [type] Prot is
1435 -- pragma Prag;
1437 elsif Nkind (N) = N_Task_Type_Declaration then
1438 Def := Task_Definition (N);
1440 if No (Def) then
1441 Def :=
1442 Make_Task_Definition (Sloc (N),
1443 Visible_Declarations => New_List,
1444 End_Label => Empty);
1446 Set_Task_Definition (N, Def);
1447 end if;
1449 Decls := Visible_Declarations (Def);
1451 if No (Decls) then
1452 Decls := New_List;
1453 Set_Visible_Declarations (Def, Decls);
1454 end if;
1456 Prepend_To (Decls, Prag);
1458 -- When the context is a library unit, the pragma is added to the
1459 -- Pragmas_After list.
1461 elsif Nkind (Parent (N)) = N_Compilation_Unit then
1462 Aux := Aux_Decls_Node (Parent (N));
1464 if No (Pragmas_After (Aux)) then
1465 Set_Pragmas_After (Aux, New_List);
1466 end if;
1468 Prepend (Prag, Pragmas_After (Aux));
1470 -- Default, the pragma is inserted after the context
1472 else
1473 Insert_After (N, Prag);
1474 end if;
1475 end Insert_Pragma;
1477 -- Local variables
1479 Aspect : Node_Id;
1480 Aitem : Node_Id;
1481 Ent : Node_Id;
1483 L : constant List_Id := Aspect_Specifications (N);
1485 Ins_Node : Node_Id := N;
1486 -- Insert pragmas/attribute definition clause after this node when no
1487 -- delayed analysis is required.
1489 -- Start of processing for Analyze_Aspect_Specifications
1491 begin
1492 -- The general processing involves building an attribute definition
1493 -- clause or a pragma node that corresponds to the aspect. Then in order
1494 -- to delay the evaluation of this aspect to the freeze point, we attach
1495 -- the corresponding pragma/attribute definition clause to the aspect
1496 -- specification node, which is then placed in the Rep Item chain. In
1497 -- this case we mark the entity by setting the flag Has_Delayed_Aspects
1498 -- and we evaluate the rep item at the freeze point. When the aspect
1499 -- doesn't have a corresponding pragma/attribute definition clause, then
1500 -- its analysis is simply delayed at the freeze point.
1502 -- Some special cases don't require delay analysis, thus the aspect is
1503 -- analyzed right now.
1505 -- Note that there is a special handling for Pre, Post, Test_Case,
1506 -- Contract_Cases aspects. In these cases, we do not have to worry
1507 -- about delay issues, since the pragmas themselves deal with delay
1508 -- of visibility for the expression analysis. Thus, we just insert
1509 -- the pragma after the node N.
1511 pragma Assert (Present (L));
1513 -- Loop through aspects
1515 Aspect := First (L);
1516 Aspect_Loop : while Present (Aspect) loop
1517 Analyze_One_Aspect : declare
1518 Expr : constant Node_Id := Expression (Aspect);
1519 Id : constant Node_Id := Identifier (Aspect);
1520 Loc : constant Source_Ptr := Sloc (Aspect);
1521 Nam : constant Name_Id := Chars (Id);
1522 A_Id : constant Aspect_Id := Get_Aspect_Id (Nam);
1523 Anod : Node_Id;
1525 Delay_Required : Boolean;
1526 -- Set False if delay is not required
1528 Eloc : Source_Ptr := No_Location;
1529 -- Source location of expression, modified when we split PPC's. It
1530 -- is set below when Expr is present.
1532 procedure Analyze_Aspect_Convention;
1533 -- Perform analysis of aspect Convention
1535 procedure Analyze_Aspect_Export_Import;
1536 -- Perform analysis of aspects Export or Import
1538 procedure Analyze_Aspect_External_Link_Name;
1539 -- Perform analysis of aspects External_Name or Link_Name
1541 procedure Analyze_Aspect_Implicit_Dereference;
1542 -- Perform analysis of the Implicit_Dereference aspects
1544 procedure Make_Aitem_Pragma
1545 (Pragma_Argument_Associations : List_Id;
1546 Pragma_Name : Name_Id);
1547 -- This is a wrapper for Make_Pragma used for converting aspects
1548 -- to pragmas. It takes care of Sloc (set from Loc) and building
1549 -- the pragma identifier from the given name. In addition the
1550 -- flags Class_Present and Split_PPC are set from the aspect
1551 -- node, as well as Is_Ignored. This routine also sets the
1552 -- From_Aspect_Specification in the resulting pragma node to
1553 -- True, and sets Corresponding_Aspect to point to the aspect.
1554 -- The resulting pragma is assigned to Aitem.
1556 -------------------------------
1557 -- Analyze_Aspect_Convention --
1558 -------------------------------
1560 procedure Analyze_Aspect_Convention is
1561 Conv : Node_Id;
1562 Dummy_1 : Node_Id;
1563 Dummy_2 : Node_Id;
1564 Dummy_3 : Node_Id;
1565 Expo : Node_Id;
1566 Imp : Node_Id;
1568 begin
1569 -- Obtain all interfacing aspects that apply to the related
1570 -- entity.
1572 Get_Interfacing_Aspects
1573 (Iface_Asp => Aspect,
1574 Conv_Asp => Dummy_1,
1575 EN_Asp => Dummy_2,
1576 Expo_Asp => Expo,
1577 Imp_Asp => Imp,
1578 LN_Asp => Dummy_3,
1579 Do_Checks => True);
1581 -- The related entity is subject to aspect Export or Import.
1582 -- Do not process Convention now because it must be analysed
1583 -- as part of Export or Import.
1585 if Present (Expo) or else Present (Imp) then
1586 return;
1588 -- Otherwise Convention appears by itself
1590 else
1591 -- The aspect specifies a particular convention
1593 if Present (Expr) then
1594 Conv := New_Copy_Tree (Expr);
1596 -- Otherwise assume convention Ada
1598 else
1599 Conv := Make_Identifier (Loc, Name_Ada);
1600 end if;
1602 -- Generate:
1603 -- pragma Convention (<Conv>, <E>);
1605 Make_Aitem_Pragma
1606 (Pragma_Name => Name_Convention,
1607 Pragma_Argument_Associations => New_List (
1608 Make_Pragma_Argument_Association (Loc,
1609 Expression => Conv),
1610 Make_Pragma_Argument_Association (Loc,
1611 Expression => New_Occurrence_Of (E, Loc))));
1613 Decorate (Aspect, Aitem);
1614 Insert_Pragma (Aitem);
1615 end if;
1616 end Analyze_Aspect_Convention;
1618 ----------------------------------
1619 -- Analyze_Aspect_Export_Import --
1620 ----------------------------------
1622 procedure Analyze_Aspect_Export_Import is
1623 Dummy_1 : Node_Id;
1624 Dummy_2 : Node_Id;
1625 Dummy_3 : Node_Id;
1626 Expo : Node_Id;
1627 Imp : Node_Id;
1629 begin
1630 -- Obtain all interfacing aspects that apply to the related
1631 -- entity.
1633 Get_Interfacing_Aspects
1634 (Iface_Asp => Aspect,
1635 Conv_Asp => Dummy_1,
1636 EN_Asp => Dummy_2,
1637 Expo_Asp => Expo,
1638 Imp_Asp => Imp,
1639 LN_Asp => Dummy_3,
1640 Do_Checks => True);
1642 -- The related entity cannot be subject to both aspects Export
1643 -- and Import.
1645 if Present (Expo) and then Present (Imp) then
1646 Error_Msg_N
1647 ("incompatible interfacing aspects given for &", E);
1648 Error_Msg_Sloc := Sloc (Expo);
1649 Error_Msg_N ("\aspect `Export` #", E);
1650 Error_Msg_Sloc := Sloc (Imp);
1651 Error_Msg_N ("\aspect `Import` #", E);
1652 end if;
1654 -- A variable is most likely modified from the outside. Take
1655 -- Take the optimistic approach to avoid spurious errors.
1657 if Ekind (E) = E_Variable then
1658 Set_Never_Set_In_Source (E, False);
1659 end if;
1661 -- Resolve the expression of an Import or Export here, and
1662 -- require it to be of type Boolean and static. This is not
1663 -- quite right, because in general this should be delayed,
1664 -- but that seems tricky for these, because normally Boolean
1665 -- aspects are replaced with pragmas at the freeze point in
1666 -- Make_Pragma_From_Boolean_Aspect.
1668 if not Present (Expr)
1669 or else Is_True (Static_Boolean (Expr))
1670 then
1671 if A_Id = Aspect_Import then
1672 Set_Has_Completion (E);
1673 Set_Is_Imported (E);
1675 -- An imported object cannot be explicitly initialized
1677 if Nkind (N) = N_Object_Declaration
1678 and then Present (Expression (N))
1679 then
1680 Error_Msg_N
1681 ("imported entities cannot be initialized "
1682 & "(RM B.1(24))", Expression (N));
1683 end if;
1685 else
1686 pragma Assert (A_Id = Aspect_Export);
1687 Set_Is_Exported (E);
1688 end if;
1690 -- Create the proper form of pragma Export or Import taking
1691 -- into account Conversion, External_Name, and Link_Name.
1693 Aitem := Build_Export_Import_Pragma (Aspect, E);
1695 -- Otherwise the expression is either False or erroneous. There
1696 -- is no corresponding pragma.
1698 else
1699 Aitem := Empty;
1700 end if;
1701 end Analyze_Aspect_Export_Import;
1703 ---------------------------------------
1704 -- Analyze_Aspect_External_Link_Name --
1705 ---------------------------------------
1707 procedure Analyze_Aspect_External_Link_Name is
1708 Dummy_1 : Node_Id;
1709 Dummy_2 : Node_Id;
1710 Dummy_3 : Node_Id;
1711 Expo : Node_Id;
1712 Imp : Node_Id;
1714 begin
1715 -- Obtain all interfacing aspects that apply to the related
1716 -- entity.
1718 Get_Interfacing_Aspects
1719 (Iface_Asp => Aspect,
1720 Conv_Asp => Dummy_1,
1721 EN_Asp => Dummy_2,
1722 Expo_Asp => Expo,
1723 Imp_Asp => Imp,
1724 LN_Asp => Dummy_3,
1725 Do_Checks => True);
1727 -- Ensure that aspect External_Name applies to aspect Export or
1728 -- Import.
1730 if A_Id = Aspect_External_Name then
1731 if No (Expo) and then No (Imp) then
1732 Error_Msg_N
1733 ("aspect `External_Name` requires aspect `Import` or "
1734 & "`Export`", Aspect);
1735 end if;
1737 -- Otherwise ensure that aspect Link_Name applies to aspect
1738 -- Export or Import.
1740 else
1741 pragma Assert (A_Id = Aspect_Link_Name);
1742 if No (Expo) and then No (Imp) then
1743 Error_Msg_N
1744 ("aspect `Link_Name` requires aspect `Import` or "
1745 & "`Export`", Aspect);
1746 end if;
1747 end if;
1748 end Analyze_Aspect_External_Link_Name;
1750 -----------------------------------------
1751 -- Analyze_Aspect_Implicit_Dereference --
1752 -----------------------------------------
1754 procedure Analyze_Aspect_Implicit_Dereference is
1755 Disc : Entity_Id;
1756 Parent_Disc : Entity_Id;
1758 begin
1759 if not Is_Type (E) or else not Has_Discriminants (E) then
1760 Error_Msg_N
1761 ("aspect must apply to a type with discriminants", Expr);
1763 elsif not Is_Entity_Name (Expr) then
1764 Error_Msg_N
1765 ("aspect must name a discriminant of current type", Expr);
1767 else
1768 Disc := First_Discriminant (E);
1769 while Present (Disc) loop
1770 if Chars (Expr) = Chars (Disc)
1771 and then Ekind (Etype (Disc)) =
1772 E_Anonymous_Access_Type
1773 then
1774 Set_Has_Implicit_Dereference (E);
1775 Set_Has_Implicit_Dereference (Disc);
1776 exit;
1777 end if;
1779 Next_Discriminant (Disc);
1780 end loop;
1782 -- Error if no proper access discriminant
1784 if No (Disc) then
1785 Error_Msg_NE ("not an access discriminant of&", Expr, E);
1786 return;
1787 end if;
1788 end if;
1790 -- For a type extension, check whether parent has a
1791 -- reference discriminant, to verify that use is proper.
1793 if Is_Derived_Type (E)
1794 and then Has_Discriminants (Etype (E))
1795 then
1796 Parent_Disc := Get_Reference_Discriminant (Etype (E));
1798 if Present (Parent_Disc)
1799 and then Corresponding_Discriminant (Disc) /= Parent_Disc
1800 then
1801 Error_Msg_N
1802 ("reference discriminant does not match discriminant "
1803 & "of parent type", Expr);
1804 end if;
1805 end if;
1806 end Analyze_Aspect_Implicit_Dereference;
1808 -----------------------
1809 -- Make_Aitem_Pragma --
1810 -----------------------
1812 procedure Make_Aitem_Pragma
1813 (Pragma_Argument_Associations : List_Id;
1814 Pragma_Name : Name_Id)
1816 Args : List_Id := Pragma_Argument_Associations;
1818 begin
1819 -- We should never get here if aspect was disabled
1821 pragma Assert (not Is_Disabled (Aspect));
1823 -- Certain aspects allow for an optional name or expression. Do
1824 -- not generate a pragma with empty argument association list.
1826 if No (Args) or else No (Expression (First (Args))) then
1827 Args := No_List;
1828 end if;
1830 -- Build the pragma
1832 Aitem :=
1833 Make_Pragma (Loc,
1834 Pragma_Argument_Associations => Args,
1835 Pragma_Identifier =>
1836 Make_Identifier (Sloc (Id), Pragma_Name),
1837 Class_Present => Class_Present (Aspect),
1838 Split_PPC => Split_PPC (Aspect));
1840 -- Set additional semantic fields
1842 if Is_Ignored (Aspect) then
1843 Set_Is_Ignored (Aitem);
1844 elsif Is_Checked (Aspect) then
1845 Set_Is_Checked (Aitem);
1846 end if;
1848 Set_Corresponding_Aspect (Aitem, Aspect);
1849 Set_From_Aspect_Specification (Aitem);
1850 end Make_Aitem_Pragma;
1852 -- Start of processing for Analyze_One_Aspect
1854 begin
1855 -- Skip aspect if already analyzed, to avoid looping in some cases
1857 if Analyzed (Aspect) then
1858 goto Continue;
1859 end if;
1861 -- Skip looking at aspect if it is totally disabled. Just mark it
1862 -- as such for later reference in the tree. This also sets the
1863 -- Is_Ignored and Is_Checked flags appropriately.
1865 Check_Applicable_Policy (Aspect);
1867 if Is_Disabled (Aspect) then
1868 goto Continue;
1869 end if;
1871 -- Set the source location of expression, used in the case of
1872 -- a failed precondition/postcondition or invariant. Note that
1873 -- the source location of the expression is not usually the best
1874 -- choice here. For example, it gets located on the last AND
1875 -- keyword in a chain of boolean expressiond AND'ed together.
1876 -- It is best to put the message on the first character of the
1877 -- assertion, which is the effect of the First_Node call here.
1879 if Present (Expr) then
1880 Eloc := Sloc (First_Node (Expr));
1881 end if;
1883 -- Check restriction No_Implementation_Aspect_Specifications
1885 if Implementation_Defined_Aspect (A_Id) then
1886 Check_Restriction
1887 (No_Implementation_Aspect_Specifications, Aspect);
1888 end if;
1890 -- Check restriction No_Specification_Of_Aspect
1892 Check_Restriction_No_Specification_Of_Aspect (Aspect);
1894 -- Mark aspect analyzed (actual analysis is delayed till later)
1896 Set_Analyzed (Aspect);
1897 Set_Entity (Aspect, E);
1898 Ent := New_Occurrence_Of (E, Sloc (Id));
1900 -- Check for duplicate aspect. Note that the Comes_From_Source
1901 -- test allows duplicate Pre/Post's that we generate internally
1902 -- to escape being flagged here.
1904 if No_Duplicates_Allowed (A_Id) then
1905 Anod := First (L);
1906 while Anod /= Aspect loop
1907 if Comes_From_Source (Aspect)
1908 and then Same_Aspect (A_Id, Get_Aspect_Id (Anod))
1909 then
1910 Error_Msg_Name_1 := Nam;
1911 Error_Msg_Sloc := Sloc (Anod);
1913 -- Case of same aspect specified twice
1915 if Class_Present (Anod) = Class_Present (Aspect) then
1916 if not Class_Present (Anod) then
1917 Error_Msg_NE
1918 ("aspect% for & previously given#",
1919 Id, E);
1920 else
1921 Error_Msg_NE
1922 ("aspect `%''Class` for & previously given#",
1923 Id, E);
1924 end if;
1925 end if;
1926 end if;
1928 Next (Anod);
1929 end loop;
1930 end if;
1932 -- Check some general restrictions on language defined aspects
1934 if not Implementation_Defined_Aspect (A_Id) then
1935 Error_Msg_Name_1 := Nam;
1937 -- Not allowed for renaming declarations
1939 if Nkind (N) in N_Renaming_Declaration then
1940 Error_Msg_N
1941 ("aspect % not allowed for renaming declaration",
1942 Aspect);
1943 end if;
1945 -- Not allowed for formal type declarations
1947 if Nkind (N) = N_Formal_Type_Declaration then
1948 Error_Msg_N
1949 ("aspect % not allowed for formal type declaration",
1950 Aspect);
1951 end if;
1952 end if;
1954 -- Copy expression for later processing by the procedures
1955 -- Check_Aspect_At_[Freeze_Point | End_Of_Declarations]
1957 Set_Entity (Id, New_Copy_Tree (Expr));
1959 -- Set Delay_Required as appropriate to aspect
1961 case Aspect_Delay (A_Id) is
1962 when Always_Delay =>
1963 Delay_Required := True;
1965 when Never_Delay =>
1966 Delay_Required := False;
1968 when Rep_Aspect =>
1970 -- If expression has the form of an integer literal, then
1971 -- do not delay, since we know the value cannot change.
1972 -- This optimization catches most rep clause cases.
1974 -- For Boolean aspects, don't delay if no expression
1976 if A_Id in Boolean_Aspects and then No (Expr) then
1977 Delay_Required := False;
1979 -- For non-Boolean aspects, don't delay if integer literal
1981 elsif A_Id not in Boolean_Aspects
1982 and then Present (Expr)
1983 and then Nkind (Expr) = N_Integer_Literal
1984 then
1985 Delay_Required := False;
1987 -- All other cases are delayed
1989 else
1990 Delay_Required := True;
1991 Set_Has_Delayed_Rep_Aspects (E);
1992 end if;
1993 end case;
1995 -- Processing based on specific aspect
1997 case A_Id is
1998 when Aspect_Unimplemented =>
1999 null; -- ??? temp for now
2001 -- No_Aspect should be impossible
2003 when No_Aspect =>
2004 raise Program_Error;
2006 -- Case 1: Aspects corresponding to attribute definition
2007 -- clauses.
2009 when Aspect_Address |
2010 Aspect_Alignment |
2011 Aspect_Bit_Order |
2012 Aspect_Component_Size |
2013 Aspect_Constant_Indexing |
2014 Aspect_Default_Iterator |
2015 Aspect_Dispatching_Domain |
2016 Aspect_External_Tag |
2017 Aspect_Input |
2018 Aspect_Iterable |
2019 Aspect_Iterator_Element |
2020 Aspect_Machine_Radix |
2021 Aspect_Object_Size |
2022 Aspect_Output |
2023 Aspect_Read |
2024 Aspect_Scalar_Storage_Order |
2025 Aspect_Size |
2026 Aspect_Small |
2027 Aspect_Simple_Storage_Pool |
2028 Aspect_Storage_Pool |
2029 Aspect_Stream_Size |
2030 Aspect_Value_Size |
2031 Aspect_Variable_Indexing |
2032 Aspect_Write =>
2034 -- Indexing aspects apply only to tagged type
2036 if (A_Id = Aspect_Constant_Indexing
2037 or else
2038 A_Id = Aspect_Variable_Indexing)
2039 and then not (Is_Type (E)
2040 and then Is_Tagged_Type (E))
2041 then
2042 Error_Msg_N
2043 ("indexing aspect can only apply to a tagged type",
2044 Aspect);
2045 goto Continue;
2046 end if;
2048 -- For the case of aspect Address, we don't consider that we
2049 -- know the entity is never set in the source, since it is
2050 -- is likely aliasing is occurring.
2052 -- Note: one might think that the analysis of the resulting
2053 -- attribute definition clause would take care of that, but
2054 -- that's not the case since it won't be from source.
2056 if A_Id = Aspect_Address then
2057 Set_Never_Set_In_Source (E, False);
2058 end if;
2060 -- Correctness of the profile of a stream operation is
2061 -- verified at the freeze point, but we must detect the
2062 -- illegal specification of this aspect for a subtype now,
2063 -- to prevent malformed rep_item chains.
2065 if A_Id = Aspect_Input or else
2066 A_Id = Aspect_Output or else
2067 A_Id = Aspect_Read or else
2068 A_Id = Aspect_Write
2069 then
2070 if not Is_First_Subtype (E) then
2071 Error_Msg_N
2072 ("local name must be a first subtype", Aspect);
2073 goto Continue;
2075 -- If stream aspect applies to the class-wide type,
2076 -- the generated attribute definition applies to the
2077 -- class-wide type as well.
2079 elsif Class_Present (Aspect) then
2080 Ent :=
2081 Make_Attribute_Reference (Loc,
2082 Prefix => Ent,
2083 Attribute_Name => Name_Class);
2084 end if;
2085 end if;
2087 -- Construct the attribute definition clause
2089 Aitem :=
2090 Make_Attribute_Definition_Clause (Loc,
2091 Name => Ent,
2092 Chars => Chars (Id),
2093 Expression => Relocate_Node (Expr));
2095 -- If the address is specified, then we treat the entity as
2096 -- referenced, to avoid spurious warnings. This is analogous
2097 -- to what is done with an attribute definition clause, but
2098 -- here we don't want to generate a reference because this
2099 -- is the point of definition of the entity.
2101 if A_Id = Aspect_Address then
2102 Set_Referenced (E);
2103 end if;
2105 -- Case 2: Aspects corresponding to pragmas
2107 -- Case 2a: Aspects corresponding to pragmas with two
2108 -- arguments, where the first argument is a local name
2109 -- referring to the entity, and the second argument is the
2110 -- aspect definition expression.
2112 -- Linker_Section/Suppress/Unsuppress
2114 when Aspect_Linker_Section |
2115 Aspect_Suppress |
2116 Aspect_Unsuppress =>
2118 Make_Aitem_Pragma
2119 (Pragma_Argument_Associations => New_List (
2120 Make_Pragma_Argument_Association (Loc,
2121 Expression => New_Occurrence_Of (E, Loc)),
2122 Make_Pragma_Argument_Association (Sloc (Expr),
2123 Expression => Relocate_Node (Expr))),
2124 Pragma_Name => Chars (Id));
2126 -- Synchronization
2128 -- Corresponds to pragma Implemented, construct the pragma
2130 when Aspect_Synchronization =>
2131 Make_Aitem_Pragma
2132 (Pragma_Argument_Associations => New_List (
2133 Make_Pragma_Argument_Association (Loc,
2134 Expression => New_Occurrence_Of (E, Loc)),
2135 Make_Pragma_Argument_Association (Sloc (Expr),
2136 Expression => Relocate_Node (Expr))),
2137 Pragma_Name => Name_Implemented);
2139 -- Attach_Handler
2141 when Aspect_Attach_Handler =>
2142 Make_Aitem_Pragma
2143 (Pragma_Argument_Associations => New_List (
2144 Make_Pragma_Argument_Association (Sloc (Ent),
2145 Expression => Ent),
2146 Make_Pragma_Argument_Association (Sloc (Expr),
2147 Expression => Relocate_Node (Expr))),
2148 Pragma_Name => Name_Attach_Handler);
2150 -- We need to insert this pragma into the tree to get proper
2151 -- processing and to look valid from a placement viewpoint.
2153 Insert_Pragma (Aitem);
2154 goto Continue;
2156 -- Dynamic_Predicate, Predicate, Static_Predicate
2158 when Aspect_Dynamic_Predicate |
2159 Aspect_Predicate |
2160 Aspect_Static_Predicate =>
2162 -- These aspects apply only to subtypes
2164 if not Is_Type (E) then
2165 Error_Msg_N
2166 ("predicate can only be specified for a subtype",
2167 Aspect);
2168 goto Continue;
2170 elsif Is_Incomplete_Type (E) then
2171 Error_Msg_N
2172 ("predicate cannot apply to incomplete view", Aspect);
2173 goto Continue;
2174 end if;
2176 -- Construct the pragma (always a pragma Predicate, with
2177 -- flags recording whether it is static/dynamic). We also
2178 -- set flags recording this in the type itself.
2180 Make_Aitem_Pragma
2181 (Pragma_Argument_Associations => New_List (
2182 Make_Pragma_Argument_Association (Sloc (Ent),
2183 Expression => Ent),
2184 Make_Pragma_Argument_Association (Sloc (Expr),
2185 Expression => Relocate_Node (Expr))),
2186 Pragma_Name => Name_Predicate);
2188 -- Mark type has predicates, and remember what kind of
2189 -- aspect lead to this predicate (we need this to access
2190 -- the right set of check policies later on).
2192 Set_Has_Predicates (E);
2194 if A_Id = Aspect_Dynamic_Predicate then
2195 Set_Has_Dynamic_Predicate_Aspect (E);
2196 elsif A_Id = Aspect_Static_Predicate then
2197 Set_Has_Static_Predicate_Aspect (E);
2198 end if;
2200 -- If the type is private, indicate that its completion
2201 -- has a freeze node, because that is the one that will
2202 -- be visible at freeze time.
2204 if Is_Private_Type (E) and then Present (Full_View (E)) then
2205 Set_Has_Predicates (Full_View (E));
2207 if A_Id = Aspect_Dynamic_Predicate then
2208 Set_Has_Dynamic_Predicate_Aspect (Full_View (E));
2209 elsif A_Id = Aspect_Static_Predicate then
2210 Set_Has_Static_Predicate_Aspect (Full_View (E));
2211 end if;
2213 Set_Has_Delayed_Aspects (Full_View (E));
2214 Ensure_Freeze_Node (Full_View (E));
2215 end if;
2217 -- Predicate_Failure
2219 when Aspect_Predicate_Failure =>
2221 -- This aspect applies only to subtypes
2223 if not Is_Type (E) then
2224 Error_Msg_N
2225 ("predicate can only be specified for a subtype",
2226 Aspect);
2227 goto Continue;
2229 elsif Is_Incomplete_Type (E) then
2230 Error_Msg_N
2231 ("predicate cannot apply to incomplete view", Aspect);
2232 goto Continue;
2233 end if;
2235 -- Construct the pragma
2237 Make_Aitem_Pragma
2238 (Pragma_Argument_Associations => New_List (
2239 Make_Pragma_Argument_Association (Sloc (Ent),
2240 Expression => Ent),
2241 Make_Pragma_Argument_Association (Sloc (Expr),
2242 Expression => Relocate_Node (Expr))),
2243 Pragma_Name => Name_Predicate_Failure);
2245 Set_Has_Predicates (E);
2247 -- If the type is private, indicate that its completion
2248 -- has a freeze node, because that is the one that will
2249 -- be visible at freeze time.
2251 if Is_Private_Type (E) and then Present (Full_View (E)) then
2252 Set_Has_Predicates (Full_View (E));
2253 Set_Has_Delayed_Aspects (Full_View (E));
2254 Ensure_Freeze_Node (Full_View (E));
2255 end if;
2257 -- Case 2b: Aspects corresponding to pragmas with two
2258 -- arguments, where the second argument is a local name
2259 -- referring to the entity, and the first argument is the
2260 -- aspect definition expression.
2262 -- Convention
2264 when Aspect_Convention =>
2265 Analyze_Aspect_Convention;
2266 goto Continue;
2268 -- External_Name, Link_Name
2270 when Aspect_External_Name |
2271 Aspect_Link_Name =>
2272 Analyze_Aspect_External_Link_Name;
2273 goto Continue;
2275 -- CPU, Interrupt_Priority, Priority
2277 -- These three aspects can be specified for a subprogram spec
2278 -- or body, in which case we analyze the expression and export
2279 -- the value of the aspect.
2281 -- Previously, we generated an equivalent pragma for bodies
2282 -- (note that the specs cannot contain these pragmas). The
2283 -- pragma was inserted ahead of local declarations, rather than
2284 -- after the body. This leads to a certain duplication between
2285 -- the processing performed for the aspect and the pragma, but
2286 -- given the straightforward handling required it is simpler
2287 -- to duplicate than to translate the aspect in the spec into
2288 -- a pragma in the declarative part of the body.
2290 when Aspect_CPU |
2291 Aspect_Interrupt_Priority |
2292 Aspect_Priority =>
2294 if Nkind_In (N, N_Subprogram_Body,
2295 N_Subprogram_Declaration)
2296 then
2297 -- Analyze the aspect expression
2299 Analyze_And_Resolve (Expr, Standard_Integer);
2301 -- Interrupt_Priority aspect not allowed for main
2302 -- subprograms. RM D.1 does not forbid this explicitly,
2303 -- but RM J.15.11(6/3) does not permit pragma
2304 -- Interrupt_Priority for subprograms.
2306 if A_Id = Aspect_Interrupt_Priority then
2307 Error_Msg_N
2308 ("Interrupt_Priority aspect cannot apply to "
2309 & "subprogram", Expr);
2311 -- The expression must be static
2313 elsif not Is_OK_Static_Expression (Expr) then
2314 Flag_Non_Static_Expr
2315 ("aspect requires static expression!", Expr);
2317 -- Check whether this is the main subprogram. Issue a
2318 -- warning only if it is obviously not a main program
2319 -- (when it has parameters or when the subprogram is
2320 -- within a package).
2322 elsif Present (Parameter_Specifications
2323 (Specification (N)))
2324 or else not Is_Compilation_Unit (Defining_Entity (N))
2325 then
2326 -- See RM D.1(14/3) and D.16(12/3)
2328 Error_Msg_N
2329 ("aspect applied to subprogram other than the "
2330 & "main subprogram has no effect??", Expr);
2332 -- Otherwise check in range and export the value
2334 -- For the CPU aspect
2336 elsif A_Id = Aspect_CPU then
2337 if Is_In_Range (Expr, RTE (RE_CPU_Range)) then
2339 -- Value is correct so we export the value to make
2340 -- it available at execution time.
2342 Set_Main_CPU
2343 (Main_Unit, UI_To_Int (Expr_Value (Expr)));
2345 else
2346 Error_Msg_N
2347 ("main subprogram CPU is out of range", Expr);
2348 end if;
2350 -- For the Priority aspect
2352 elsif A_Id = Aspect_Priority then
2353 if Is_In_Range (Expr, RTE (RE_Priority)) then
2355 -- Value is correct so we export the value to make
2356 -- it available at execution time.
2358 Set_Main_Priority
2359 (Main_Unit, UI_To_Int (Expr_Value (Expr)));
2361 -- Ignore pragma if Relaxed_RM_Semantics to support
2362 -- other targets/non GNAT compilers.
2364 elsif not Relaxed_RM_Semantics then
2365 Error_Msg_N
2366 ("main subprogram priority is out of range",
2367 Expr);
2368 end if;
2369 end if;
2371 -- Load an arbitrary entity from System.Tasking.Stages
2372 -- or System.Tasking.Restricted.Stages (depending on
2373 -- the supported profile) to make sure that one of these
2374 -- packages is implicitly with'ed, since we need to have
2375 -- the tasking run time active for the pragma Priority to
2376 -- have any effect. Previously we with'ed the package
2377 -- System.Tasking, but this package does not trigger the
2378 -- required initialization of the run-time library.
2380 declare
2381 Discard : Entity_Id;
2382 begin
2383 if Restricted_Profile then
2384 Discard := RTE (RE_Activate_Restricted_Tasks);
2385 else
2386 Discard := RTE (RE_Activate_Tasks);
2387 end if;
2388 end;
2390 -- Handling for these Aspects in subprograms is complete
2392 goto Continue;
2394 -- For tasks pass the aspect as an attribute
2396 else
2397 Aitem :=
2398 Make_Attribute_Definition_Clause (Loc,
2399 Name => Ent,
2400 Chars => Chars (Id),
2401 Expression => Relocate_Node (Expr));
2402 end if;
2404 -- Warnings
2406 when Aspect_Warnings =>
2407 Make_Aitem_Pragma
2408 (Pragma_Argument_Associations => New_List (
2409 Make_Pragma_Argument_Association (Sloc (Expr),
2410 Expression => Relocate_Node (Expr)),
2411 Make_Pragma_Argument_Association (Loc,
2412 Expression => New_Occurrence_Of (E, Loc))),
2413 Pragma_Name => Chars (Id));
2415 Decorate (Aspect, Aitem);
2416 Insert_Pragma (Aitem);
2417 goto Continue;
2419 -- Case 2c: Aspects corresponding to pragmas with three
2420 -- arguments.
2422 -- Invariant aspects have a first argument that references the
2423 -- entity, a second argument that is the expression and a third
2424 -- argument that is an appropriate message.
2426 -- Invariant, Type_Invariant
2428 when Aspect_Invariant |
2429 Aspect_Type_Invariant =>
2431 -- Analysis of the pragma will verify placement legality:
2432 -- an invariant must apply to a private type, or appear in
2433 -- the private part of a spec and apply to a completion.
2435 Make_Aitem_Pragma
2436 (Pragma_Argument_Associations => New_List (
2437 Make_Pragma_Argument_Association (Sloc (Ent),
2438 Expression => Ent),
2439 Make_Pragma_Argument_Association (Sloc (Expr),
2440 Expression => Relocate_Node (Expr))),
2441 Pragma_Name => Name_Invariant);
2443 -- Add message unless exception messages are suppressed
2445 if not Opt.Exception_Locations_Suppressed then
2446 Append_To (Pragma_Argument_Associations (Aitem),
2447 Make_Pragma_Argument_Association (Eloc,
2448 Chars => Name_Message,
2449 Expression =>
2450 Make_String_Literal (Eloc,
2451 Strval => "failed invariant from "
2452 & Build_Location_String (Eloc))));
2453 end if;
2455 -- For Invariant case, insert immediately after the entity
2456 -- declaration. We do not have to worry about delay issues
2457 -- since the pragma processing takes care of this.
2459 Delay_Required := False;
2461 -- Case 2d : Aspects that correspond to a pragma with one
2462 -- argument.
2464 -- Abstract_State
2466 -- Aspect Abstract_State introduces implicit declarations for
2467 -- all state abstraction entities it defines. To emulate this
2468 -- behavior, insert the pragma at the beginning of the visible
2469 -- declarations of the related package so that it is analyzed
2470 -- immediately.
2472 when Aspect_Abstract_State => Abstract_State : declare
2473 Context : Node_Id := N;
2475 begin
2476 -- When aspect Abstract_State appears on a generic package,
2477 -- it is propageted to the package instance. The context in
2478 -- this case is the instance spec.
2480 if Nkind (Context) = N_Package_Instantiation then
2481 Context := Instance_Spec (Context);
2482 end if;
2484 if Nkind_In (Context, N_Generic_Package_Declaration,
2485 N_Package_Declaration)
2486 then
2487 Make_Aitem_Pragma
2488 (Pragma_Argument_Associations => New_List (
2489 Make_Pragma_Argument_Association (Loc,
2490 Expression => Relocate_Node (Expr))),
2491 Pragma_Name => Name_Abstract_State);
2493 Decorate (Aspect, Aitem);
2494 Insert_Pragma
2495 (Prag => Aitem,
2496 Is_Instance =>
2497 Is_Generic_Instance (Defining_Entity (Context)));
2499 else
2500 Error_Msg_NE
2501 ("aspect & must apply to a package declaration",
2502 Aspect, Id);
2503 end if;
2505 goto Continue;
2506 end Abstract_State;
2508 -- Aspect Async_Readers is never delayed because it is
2509 -- equivalent to a source pragma which appears after the
2510 -- related object declaration.
2512 when Aspect_Async_Readers =>
2513 Make_Aitem_Pragma
2514 (Pragma_Argument_Associations => New_List (
2515 Make_Pragma_Argument_Association (Loc,
2516 Expression => Relocate_Node (Expr))),
2517 Pragma_Name => Name_Async_Readers);
2519 Decorate (Aspect, Aitem);
2520 Insert_Pragma (Aitem);
2521 goto Continue;
2523 -- Aspect Async_Writers is never delayed because it is
2524 -- equivalent to a source pragma which appears after the
2525 -- related object declaration.
2527 when Aspect_Async_Writers =>
2528 Make_Aitem_Pragma
2529 (Pragma_Argument_Associations => New_List (
2530 Make_Pragma_Argument_Association (Loc,
2531 Expression => Relocate_Node (Expr))),
2532 Pragma_Name => Name_Async_Writers);
2534 Decorate (Aspect, Aitem);
2535 Insert_Pragma (Aitem);
2536 goto Continue;
2538 -- Aspect Constant_After_Elaboration is never delayed because
2539 -- it is equivalent to a source pragma which appears after the
2540 -- related object declaration.
2542 when Aspect_Constant_After_Elaboration =>
2543 Make_Aitem_Pragma
2544 (Pragma_Argument_Associations => New_List (
2545 Make_Pragma_Argument_Association (Loc,
2546 Expression => Relocate_Node (Expr))),
2547 Pragma_Name =>
2548 Name_Constant_After_Elaboration);
2550 Decorate (Aspect, Aitem);
2551 Insert_Pragma (Aitem);
2552 goto Continue;
2554 -- Aspect Default_Internal_Condition is never delayed because
2555 -- it is equivalent to a source pragma which appears after the
2556 -- related private type. To deal with forward references, the
2557 -- generated pragma is stored in the rep chain of the related
2558 -- private type as types do not carry contracts. The pragma is
2559 -- wrapped inside of a procedure at the freeze point of the
2560 -- private type's full view.
2562 when Aspect_Default_Initial_Condition =>
2563 Make_Aitem_Pragma
2564 (Pragma_Argument_Associations => New_List (
2565 Make_Pragma_Argument_Association (Loc,
2566 Expression => Relocate_Node (Expr))),
2567 Pragma_Name =>
2568 Name_Default_Initial_Condition);
2570 Decorate (Aspect, Aitem);
2571 Insert_Pragma (Aitem);
2572 goto Continue;
2574 -- Default_Storage_Pool
2576 when Aspect_Default_Storage_Pool =>
2577 Make_Aitem_Pragma
2578 (Pragma_Argument_Associations => New_List (
2579 Make_Pragma_Argument_Association (Loc,
2580 Expression => Relocate_Node (Expr))),
2581 Pragma_Name =>
2582 Name_Default_Storage_Pool);
2584 Decorate (Aspect, Aitem);
2585 Insert_Pragma (Aitem);
2586 goto Continue;
2588 -- Depends
2590 -- Aspect Depends is never delayed because it is equivalent to
2591 -- a source pragma which appears after the related subprogram.
2592 -- To deal with forward references, the generated pragma is
2593 -- stored in the contract of the related subprogram and later
2594 -- analyzed at the end of the declarative region. See routine
2595 -- Analyze_Depends_In_Decl_Part for details.
2597 when Aspect_Depends =>
2598 Make_Aitem_Pragma
2599 (Pragma_Argument_Associations => New_List (
2600 Make_Pragma_Argument_Association (Loc,
2601 Expression => Relocate_Node (Expr))),
2602 Pragma_Name => Name_Depends);
2604 Decorate (Aspect, Aitem);
2605 Insert_Pragma (Aitem);
2606 goto Continue;
2608 -- Aspect Effecitve_Reads is never delayed because it is
2609 -- equivalent to a source pragma which appears after the
2610 -- related object declaration.
2612 when Aspect_Effective_Reads =>
2613 Make_Aitem_Pragma
2614 (Pragma_Argument_Associations => New_List (
2615 Make_Pragma_Argument_Association (Loc,
2616 Expression => Relocate_Node (Expr))),
2617 Pragma_Name => Name_Effective_Reads);
2619 Decorate (Aspect, Aitem);
2620 Insert_Pragma (Aitem);
2621 goto Continue;
2623 -- Aspect Effective_Writes is never delayed because it is
2624 -- equivalent to a source pragma which appears after the
2625 -- related object declaration.
2627 when Aspect_Effective_Writes =>
2628 Make_Aitem_Pragma
2629 (Pragma_Argument_Associations => New_List (
2630 Make_Pragma_Argument_Association (Loc,
2631 Expression => Relocate_Node (Expr))),
2632 Pragma_Name => Name_Effective_Writes);
2634 Decorate (Aspect, Aitem);
2635 Insert_Pragma (Aitem);
2636 goto Continue;
2638 -- Aspect Extensions_Visible is never delayed because it is
2639 -- equivalent to a source pragma which appears after the
2640 -- related subprogram.
2642 when Aspect_Extensions_Visible =>
2643 Make_Aitem_Pragma
2644 (Pragma_Argument_Associations => New_List (
2645 Make_Pragma_Argument_Association (Loc,
2646 Expression => Relocate_Node (Expr))),
2647 Pragma_Name => Name_Extensions_Visible);
2649 Decorate (Aspect, Aitem);
2650 Insert_Pragma (Aitem);
2651 goto Continue;
2653 -- Aspect Ghost is never delayed because it is equivalent to a
2654 -- source pragma which appears at the top of [generic] package
2655 -- declarations or after an object, a [generic] subprogram, or
2656 -- a type declaration.
2658 when Aspect_Ghost =>
2659 Make_Aitem_Pragma
2660 (Pragma_Argument_Associations => New_List (
2661 Make_Pragma_Argument_Association (Loc,
2662 Expression => Relocate_Node (Expr))),
2663 Pragma_Name => Name_Ghost);
2665 Decorate (Aspect, Aitem);
2666 Insert_Pragma (Aitem);
2667 goto Continue;
2669 -- Global
2671 -- Aspect Global is never delayed because it is equivalent to
2672 -- a source pragma which appears after the related subprogram.
2673 -- To deal with forward references, the generated pragma is
2674 -- stored in the contract of the related subprogram and later
2675 -- analyzed at the end of the declarative region. See routine
2676 -- Analyze_Global_In_Decl_Part for details.
2678 when Aspect_Global =>
2679 Make_Aitem_Pragma
2680 (Pragma_Argument_Associations => New_List (
2681 Make_Pragma_Argument_Association (Loc,
2682 Expression => Relocate_Node (Expr))),
2683 Pragma_Name => Name_Global);
2685 Decorate (Aspect, Aitem);
2686 Insert_Pragma (Aitem);
2687 goto Continue;
2689 -- Initial_Condition
2691 -- Aspect Initial_Condition is never delayed because it is
2692 -- equivalent to a source pragma which appears after the
2693 -- related package. To deal with forward references, the
2694 -- generated pragma is stored in the contract of the related
2695 -- package and later analyzed at the end of the declarative
2696 -- region. See routine Analyze_Initial_Condition_In_Decl_Part
2697 -- for details.
2699 when Aspect_Initial_Condition => Initial_Condition : declare
2700 Context : Node_Id := N;
2702 begin
2703 -- When aspect Initial_Condition appears on a generic
2704 -- package, it is propageted to the package instance. The
2705 -- context in this case is the instance spec.
2707 if Nkind (Context) = N_Package_Instantiation then
2708 Context := Instance_Spec (Context);
2709 end if;
2711 if Nkind_In (Context, N_Generic_Package_Declaration,
2712 N_Package_Declaration)
2713 then
2714 Make_Aitem_Pragma
2715 (Pragma_Argument_Associations => New_List (
2716 Make_Pragma_Argument_Association (Loc,
2717 Expression => Relocate_Node (Expr))),
2718 Pragma_Name =>
2719 Name_Initial_Condition);
2721 Decorate (Aspect, Aitem);
2722 Insert_Pragma
2723 (Prag => Aitem,
2724 Is_Instance =>
2725 Is_Generic_Instance (Defining_Entity (Context)));
2727 -- Otherwise the context is illegal
2729 else
2730 Error_Msg_NE
2731 ("aspect & must apply to a package declaration",
2732 Aspect, Id);
2733 end if;
2735 goto Continue;
2736 end Initial_Condition;
2738 -- Initializes
2740 -- Aspect Initializes is never delayed because it is equivalent
2741 -- to a source pragma appearing after the related package. To
2742 -- deal with forward references, the generated pragma is stored
2743 -- in the contract of the related package and later analyzed at
2744 -- the end of the declarative region. For details, see routine
2745 -- Analyze_Initializes_In_Decl_Part.
2747 when Aspect_Initializes => Initializes : declare
2748 Context : Node_Id := N;
2750 begin
2751 -- When aspect Initializes appears on a generic package,
2752 -- it is propageted to the package instance. The context
2753 -- in this case is the instance spec.
2755 if Nkind (Context) = N_Package_Instantiation then
2756 Context := Instance_Spec (Context);
2757 end if;
2759 if Nkind_In (Context, N_Generic_Package_Declaration,
2760 N_Package_Declaration)
2761 then
2762 Make_Aitem_Pragma
2763 (Pragma_Argument_Associations => New_List (
2764 Make_Pragma_Argument_Association (Loc,
2765 Expression => Relocate_Node (Expr))),
2766 Pragma_Name => Name_Initializes);
2768 Decorate (Aspect, Aitem);
2769 Insert_Pragma
2770 (Prag => Aitem,
2771 Is_Instance =>
2772 Is_Generic_Instance (Defining_Entity (Context)));
2774 -- Otherwise the context is illegal
2776 else
2777 Error_Msg_NE
2778 ("aspect & must apply to a package declaration",
2779 Aspect, Id);
2780 end if;
2782 goto Continue;
2783 end Initializes;
2785 -- Obsolescent
2787 when Aspect_Obsolescent => declare
2788 Args : List_Id;
2790 begin
2791 if No (Expr) then
2792 Args := No_List;
2793 else
2794 Args := New_List (
2795 Make_Pragma_Argument_Association (Sloc (Expr),
2796 Expression => Relocate_Node (Expr)));
2797 end if;
2799 Make_Aitem_Pragma
2800 (Pragma_Argument_Associations => Args,
2801 Pragma_Name => Chars (Id));
2802 end;
2804 -- Part_Of
2806 when Aspect_Part_Of =>
2807 if Nkind_In (N, N_Object_Declaration,
2808 N_Package_Instantiation)
2809 or else Is_Single_Concurrent_Type_Declaration (N)
2810 then
2811 Make_Aitem_Pragma
2812 (Pragma_Argument_Associations => New_List (
2813 Make_Pragma_Argument_Association (Loc,
2814 Expression => Relocate_Node (Expr))),
2815 Pragma_Name => Name_Part_Of);
2817 Decorate (Aspect, Aitem);
2818 Insert_Pragma (Aitem);
2820 else
2821 Error_Msg_NE
2822 ("aspect & must apply to package instantiation, "
2823 & "object, single protected type or single task type",
2824 Aspect, Id);
2825 end if;
2827 goto Continue;
2829 -- SPARK_Mode
2831 when Aspect_SPARK_Mode =>
2832 Make_Aitem_Pragma
2833 (Pragma_Argument_Associations => New_List (
2834 Make_Pragma_Argument_Association (Loc,
2835 Expression => Relocate_Node (Expr))),
2836 Pragma_Name => Name_SPARK_Mode);
2838 Decorate (Aspect, Aitem);
2839 Insert_Pragma (Aitem);
2840 goto Continue;
2842 -- Refined_Depends
2844 -- Aspect Refined_Depends is never delayed because it is
2845 -- equivalent to a source pragma which appears in the
2846 -- declarations of the related subprogram body. To deal with
2847 -- forward references, the generated pragma is stored in the
2848 -- contract of the related subprogram body and later analyzed
2849 -- at the end of the declarative region. For details, see
2850 -- routine Analyze_Refined_Depends_In_Decl_Part.
2852 when Aspect_Refined_Depends =>
2853 Make_Aitem_Pragma
2854 (Pragma_Argument_Associations => New_List (
2855 Make_Pragma_Argument_Association (Loc,
2856 Expression => Relocate_Node (Expr))),
2857 Pragma_Name => Name_Refined_Depends);
2859 Decorate (Aspect, Aitem);
2860 Insert_Pragma (Aitem);
2861 goto Continue;
2863 -- Refined_Global
2865 -- Aspect Refined_Global is never delayed because it is
2866 -- equivalent to a source pragma which appears in the
2867 -- declarations of the related subprogram body. To deal with
2868 -- forward references, the generated pragma is stored in the
2869 -- contract of the related subprogram body and later analyzed
2870 -- at the end of the declarative region. For details, see
2871 -- routine Analyze_Refined_Global_In_Decl_Part.
2873 when Aspect_Refined_Global =>
2874 Make_Aitem_Pragma
2875 (Pragma_Argument_Associations => New_List (
2876 Make_Pragma_Argument_Association (Loc,
2877 Expression => Relocate_Node (Expr))),
2878 Pragma_Name => Name_Refined_Global);
2880 Decorate (Aspect, Aitem);
2881 Insert_Pragma (Aitem);
2882 goto Continue;
2884 -- Refined_Post
2886 when Aspect_Refined_Post =>
2887 Make_Aitem_Pragma
2888 (Pragma_Argument_Associations => New_List (
2889 Make_Pragma_Argument_Association (Loc,
2890 Expression => Relocate_Node (Expr))),
2891 Pragma_Name => Name_Refined_Post);
2893 Decorate (Aspect, Aitem);
2894 Insert_Pragma (Aitem);
2895 goto Continue;
2897 -- Refined_State
2899 when Aspect_Refined_State =>
2901 -- The corresponding pragma for Refined_State is inserted in
2902 -- the declarations of the related package body. This action
2903 -- synchronizes both the source and from-aspect versions of
2904 -- the pragma.
2906 if Nkind (N) = N_Package_Body then
2907 Make_Aitem_Pragma
2908 (Pragma_Argument_Associations => New_List (
2909 Make_Pragma_Argument_Association (Loc,
2910 Expression => Relocate_Node (Expr))),
2911 Pragma_Name => Name_Refined_State);
2913 Decorate (Aspect, Aitem);
2914 Insert_Pragma (Aitem);
2916 -- Otherwise the context is illegal
2918 else
2919 Error_Msg_NE
2920 ("aspect & must apply to a package body", Aspect, Id);
2921 end if;
2923 goto Continue;
2925 -- Relative_Deadline
2927 when Aspect_Relative_Deadline =>
2928 Make_Aitem_Pragma
2929 (Pragma_Argument_Associations => New_List (
2930 Make_Pragma_Argument_Association (Loc,
2931 Expression => Relocate_Node (Expr))),
2932 Pragma_Name => Name_Relative_Deadline);
2934 -- If the aspect applies to a task, the corresponding pragma
2935 -- must appear within its declarations, not after.
2937 if Nkind (N) = N_Task_Type_Declaration then
2938 declare
2939 Def : Node_Id;
2940 V : List_Id;
2942 begin
2943 if No (Task_Definition (N)) then
2944 Set_Task_Definition (N,
2945 Make_Task_Definition (Loc,
2946 Visible_Declarations => New_List,
2947 End_Label => Empty));
2948 end if;
2950 Def := Task_Definition (N);
2951 V := Visible_Declarations (Def);
2952 if not Is_Empty_List (V) then
2953 Insert_Before (First (V), Aitem);
2955 else
2956 Set_Visible_Declarations (Def, New_List (Aitem));
2957 end if;
2959 goto Continue;
2960 end;
2961 end if;
2963 -- Aspect Volatile_Function is never delayed because it is
2964 -- equivalent to a source pragma which appears after the
2965 -- related subprogram.
2967 when Aspect_Volatile_Function =>
2968 Make_Aitem_Pragma
2969 (Pragma_Argument_Associations => New_List (
2970 Make_Pragma_Argument_Association (Loc,
2971 Expression => Relocate_Node (Expr))),
2972 Pragma_Name => Name_Volatile_Function);
2974 Decorate (Aspect, Aitem);
2975 Insert_Pragma (Aitem);
2976 goto Continue;
2978 -- Case 2e: Annotate aspect
2980 when Aspect_Annotate =>
2981 declare
2982 Args : List_Id;
2983 Pargs : List_Id;
2984 Arg : Node_Id;
2986 begin
2987 -- The argument can be a single identifier
2989 if Nkind (Expr) = N_Identifier then
2991 -- One level of parens is allowed
2993 if Paren_Count (Expr) > 1 then
2994 Error_Msg_F ("extra parentheses ignored", Expr);
2995 end if;
2997 Set_Paren_Count (Expr, 0);
2999 -- Add the single item to the list
3001 Args := New_List (Expr);
3003 -- Otherwise we must have an aggregate
3005 elsif Nkind (Expr) = N_Aggregate then
3007 -- Must be positional
3009 if Present (Component_Associations (Expr)) then
3010 Error_Msg_F
3011 ("purely positional aggregate required", Expr);
3012 goto Continue;
3013 end if;
3015 -- Must not be parenthesized
3017 if Paren_Count (Expr) /= 0 then
3018 Error_Msg_F ("extra parentheses ignored", Expr);
3019 end if;
3021 -- List of arguments is list of aggregate expressions
3023 Args := Expressions (Expr);
3025 -- Anything else is illegal
3027 else
3028 Error_Msg_F ("wrong form for Annotate aspect", Expr);
3029 goto Continue;
3030 end if;
3032 -- Prepare pragma arguments
3034 Pargs := New_List;
3035 Arg := First (Args);
3036 while Present (Arg) loop
3037 Append_To (Pargs,
3038 Make_Pragma_Argument_Association (Sloc (Arg),
3039 Expression => Relocate_Node (Arg)));
3040 Next (Arg);
3041 end loop;
3043 Append_To (Pargs,
3044 Make_Pragma_Argument_Association (Sloc (Ent),
3045 Chars => Name_Entity,
3046 Expression => Ent));
3048 Make_Aitem_Pragma
3049 (Pragma_Argument_Associations => Pargs,
3050 Pragma_Name => Name_Annotate);
3051 end;
3053 -- Case 3 : Aspects that don't correspond to pragma/attribute
3054 -- definition clause.
3056 -- Case 3a: The aspects listed below don't correspond to
3057 -- pragmas/attributes but do require delayed analysis.
3059 -- Default_Value can only apply to a scalar type
3061 when Aspect_Default_Value =>
3062 if not Is_Scalar_Type (E) then
3063 Error_Msg_N
3064 ("aspect Default_Value must apply to a scalar type", N);
3065 end if;
3067 Aitem := Empty;
3069 -- Default_Component_Value can only apply to an array type
3070 -- with scalar components.
3072 when Aspect_Default_Component_Value =>
3073 if not (Is_Array_Type (E)
3074 and then Is_Scalar_Type (Component_Type (E)))
3075 then
3076 Error_Msg_N
3077 ("aspect Default_Component_Value can only apply to an "
3078 & "array of scalar components", N);
3079 end if;
3081 Aitem := Empty;
3083 -- Case 3b: The aspects listed below don't correspond to
3084 -- pragmas/attributes and don't need delayed analysis.
3086 -- Implicit_Dereference
3088 -- For Implicit_Dereference, External_Name and Link_Name, only
3089 -- the legality checks are done during the analysis, thus no
3090 -- delay is required.
3092 when Aspect_Implicit_Dereference =>
3093 Analyze_Aspect_Implicit_Dereference;
3094 goto Continue;
3096 -- Dimension
3098 when Aspect_Dimension =>
3099 Analyze_Aspect_Dimension (N, Id, Expr);
3100 goto Continue;
3102 -- Dimension_System
3104 when Aspect_Dimension_System =>
3105 Analyze_Aspect_Dimension_System (N, Id, Expr);
3106 goto Continue;
3108 -- Case 4: Aspects requiring special handling
3110 -- Pre/Post/Test_Case/Contract_Cases whose corresponding
3111 -- pragmas take care of the delay.
3113 -- Pre/Post
3115 -- Aspects Pre/Post generate Precondition/Postcondition pragmas
3116 -- with a first argument that is the expression, and a second
3117 -- argument that is an informative message if the test fails.
3118 -- This is inserted right after the declaration, to get the
3119 -- required pragma placement. The processing for the pragmas
3120 -- takes care of the required delay.
3122 when Pre_Post_Aspects => Pre_Post : declare
3123 Pname : Name_Id;
3125 begin
3126 if A_Id = Aspect_Pre or else A_Id = Aspect_Precondition then
3127 Pname := Name_Precondition;
3128 else
3129 Pname := Name_Postcondition;
3130 end if;
3132 -- Check that the class-wide predicate cannot be applied to
3133 -- an operation of a synchronized type that is not a tagged
3134 -- type. Other legality checks are performed when analyzing
3135 -- the contract of the operation.
3137 if Class_Present (Aspect)
3138 and then Is_Concurrent_Type (Current_Scope)
3139 and then not Is_Tagged_Type (Current_Scope)
3140 and then Ekind_In (E, E_Entry, E_Function, E_Procedure)
3141 then
3142 Error_Msg_Name_1 := Original_Aspect_Pragma_Name (Aspect);
3143 Error_Msg_N
3144 ("aspect % can only be specified for a primitive "
3145 & "operation of a tagged type", Aspect);
3147 goto Continue;
3148 end if;
3150 -- If the expressions is of the form A and then B, then
3151 -- we generate separate Pre/Post aspects for the separate
3152 -- clauses. Since we allow multiple pragmas, there is no
3153 -- problem in allowing multiple Pre/Post aspects internally.
3154 -- These should be treated in reverse order (B first and
3155 -- A second) since they are later inserted just after N in
3156 -- the order they are treated. This way, the pragma for A
3157 -- ends up preceding the pragma for B, which may have an
3158 -- importance for the error raised (either constraint error
3159 -- or precondition error).
3161 -- We do not do this for Pre'Class, since we have to put
3162 -- these conditions together in a complex OR expression.
3164 -- We do not do this in ASIS mode, as ASIS relies on the
3165 -- original node representing the complete expression, when
3166 -- retrieving it through the source aspect table.
3168 if not ASIS_Mode
3169 and then (Pname = Name_Postcondition
3170 or else not Class_Present (Aspect))
3171 then
3172 while Nkind (Expr) = N_And_Then loop
3173 Insert_After (Aspect,
3174 Make_Aspect_Specification (Sloc (Left_Opnd (Expr)),
3175 Identifier => Identifier (Aspect),
3176 Expression => Relocate_Node (Left_Opnd (Expr)),
3177 Class_Present => Class_Present (Aspect),
3178 Split_PPC => True));
3179 Rewrite (Expr, Relocate_Node (Right_Opnd (Expr)));
3180 Eloc := Sloc (Expr);
3181 end loop;
3182 end if;
3184 -- Build the precondition/postcondition pragma
3186 -- Add note about why we do NOT need Copy_Tree here???
3188 Make_Aitem_Pragma
3189 (Pragma_Argument_Associations => New_List (
3190 Make_Pragma_Argument_Association (Eloc,
3191 Chars => Name_Check,
3192 Expression => Relocate_Node (Expr))),
3193 Pragma_Name => Pname);
3195 -- Add message unless exception messages are suppressed
3197 if not Opt.Exception_Locations_Suppressed then
3198 Append_To (Pragma_Argument_Associations (Aitem),
3199 Make_Pragma_Argument_Association (Eloc,
3200 Chars => Name_Message,
3201 Expression =>
3202 Make_String_Literal (Eloc,
3203 Strval => "failed "
3204 & Get_Name_String (Pname)
3205 & " from "
3206 & Build_Location_String (Eloc))));
3207 end if;
3209 Set_Is_Delayed_Aspect (Aspect);
3211 -- For Pre/Post cases, insert immediately after the entity
3212 -- declaration, since that is the required pragma placement.
3213 -- Note that for these aspects, we do not have to worry
3214 -- about delay issues, since the pragmas themselves deal
3215 -- with delay of visibility for the expression analysis.
3217 Insert_Pragma (Aitem);
3219 goto Continue;
3220 end Pre_Post;
3222 -- Test_Case
3224 when Aspect_Test_Case => Test_Case : declare
3225 Args : List_Id;
3226 Comp_Expr : Node_Id;
3227 Comp_Assn : Node_Id;
3228 New_Expr : Node_Id;
3230 begin
3231 Args := New_List;
3233 if Nkind (Parent (N)) = N_Compilation_Unit then
3234 Error_Msg_Name_1 := Nam;
3235 Error_Msg_N ("incorrect placement of aspect `%`", E);
3236 goto Continue;
3237 end if;
3239 if Nkind (Expr) /= N_Aggregate then
3240 Error_Msg_Name_1 := Nam;
3241 Error_Msg_NE
3242 ("wrong syntax for aspect `%` for &", Id, E);
3243 goto Continue;
3244 end if;
3246 -- Make pragma expressions refer to the original aspect
3247 -- expressions through the Original_Node link. This is used
3248 -- in semantic analysis for ASIS mode, so that the original
3249 -- expression also gets analyzed.
3251 Comp_Expr := First (Expressions (Expr));
3252 while Present (Comp_Expr) loop
3253 New_Expr := Relocate_Node (Comp_Expr);
3254 Append_To (Args,
3255 Make_Pragma_Argument_Association (Sloc (Comp_Expr),
3256 Expression => New_Expr));
3257 Next (Comp_Expr);
3258 end loop;
3260 Comp_Assn := First (Component_Associations (Expr));
3261 while Present (Comp_Assn) loop
3262 if List_Length (Choices (Comp_Assn)) /= 1
3263 or else
3264 Nkind (First (Choices (Comp_Assn))) /= N_Identifier
3265 then
3266 Error_Msg_Name_1 := Nam;
3267 Error_Msg_NE
3268 ("wrong syntax for aspect `%` for &", Id, E);
3269 goto Continue;
3270 end if;
3272 Append_To (Args,
3273 Make_Pragma_Argument_Association (Sloc (Comp_Assn),
3274 Chars => Chars (First (Choices (Comp_Assn))),
3275 Expression =>
3276 Relocate_Node (Expression (Comp_Assn))));
3277 Next (Comp_Assn);
3278 end loop;
3280 -- Build the test-case pragma
3282 Make_Aitem_Pragma
3283 (Pragma_Argument_Associations => Args,
3284 Pragma_Name => Nam);
3285 end Test_Case;
3287 -- Contract_Cases
3289 when Aspect_Contract_Cases =>
3290 Make_Aitem_Pragma
3291 (Pragma_Argument_Associations => New_List (
3292 Make_Pragma_Argument_Association (Loc,
3293 Expression => Relocate_Node (Expr))),
3294 Pragma_Name => Nam);
3296 Decorate (Aspect, Aitem);
3297 Insert_Pragma (Aitem);
3298 goto Continue;
3300 -- Case 5: Special handling for aspects with an optional
3301 -- boolean argument.
3303 -- In the delayed case, the corresponding pragma cannot be
3304 -- generated yet because the evaluation of the boolean needs
3305 -- to be delayed till the freeze point.
3307 when Boolean_Aspects |
3308 Library_Unit_Aspects =>
3310 Set_Is_Boolean_Aspect (Aspect);
3312 -- Lock_Free aspect only apply to protected objects
3314 if A_Id = Aspect_Lock_Free then
3315 if Ekind (E) /= E_Protected_Type then
3316 Error_Msg_Name_1 := Nam;
3317 Error_Msg_N
3318 ("aspect % only applies to a protected object",
3319 Aspect);
3321 else
3322 -- Set the Uses_Lock_Free flag to True if there is no
3323 -- expression or if the expression is True. The
3324 -- evaluation of this aspect should be delayed to the
3325 -- freeze point (why???)
3327 if No (Expr)
3328 or else Is_True (Static_Boolean (Expr))
3329 then
3330 Set_Uses_Lock_Free (E);
3331 end if;
3333 Record_Rep_Item (E, Aspect);
3334 end if;
3336 goto Continue;
3338 elsif A_Id = Aspect_Export or else A_Id = Aspect_Import then
3339 Analyze_Aspect_Export_Import;
3341 -- Disable_Controlled
3343 elsif A_Id = Aspect_Disable_Controlled then
3344 if Ekind (E) /= E_Record_Type
3345 or else not Is_Controlled (E)
3346 then
3347 Error_Msg_N
3348 ("aspect % requires controlled record type", Aspect);
3349 goto Continue;
3350 end if;
3352 -- If we're in a generic template, we don't want to try
3353 -- to disable controlled types, because typical usage is
3354 -- "Disable_Controlled => not <some_check>'Enabled", and
3355 -- the value of Enabled is not known until we see a
3356 -- particular instance. In such a context, we just need
3357 -- to preanalyze the expression for legality.
3359 if Expander_Active then
3360 Analyze_And_Resolve (Expr, Standard_Boolean);
3362 if not Present (Expr)
3363 or else Is_True (Static_Boolean (Expr))
3364 then
3365 Set_Disable_Controlled (E);
3366 end if;
3368 elsif Serious_Errors_Detected = 0 then
3369 Preanalyze_And_Resolve (Expr, Standard_Boolean);
3370 end if;
3372 goto Continue;
3373 end if;
3375 -- Library unit aspects require special handling in the case
3376 -- of a package declaration, the pragma needs to be inserted
3377 -- in the list of declarations for the associated package.
3378 -- There is no issue of visibility delay for these aspects.
3380 if A_Id in Library_Unit_Aspects
3381 and then
3382 Nkind_In (N, N_Package_Declaration,
3383 N_Generic_Package_Declaration)
3384 and then Nkind (Parent (N)) /= N_Compilation_Unit
3386 -- Aspect is legal on a local instantiation of a library-
3387 -- level generic unit.
3389 and then not Is_Generic_Instance (Defining_Entity (N))
3390 then
3391 Error_Msg_N
3392 ("incorrect context for library unit aspect&", Id);
3393 goto Continue;
3394 end if;
3396 -- Cases where we do not delay, includes all cases where the
3397 -- expression is missing other than the above cases.
3399 if not Delay_Required or else No (Expr) then
3401 -- Exclude aspects Export and Import because their pragma
3402 -- syntax does not map directly to a Boolean aspect.
3404 if A_Id /= Aspect_Export
3405 and then A_Id /= Aspect_Import
3406 then
3407 Make_Aitem_Pragma
3408 (Pragma_Argument_Associations => New_List (
3409 Make_Pragma_Argument_Association (Sloc (Ent),
3410 Expression => Ent)),
3411 Pragma_Name => Chars (Id));
3412 end if;
3414 Delay_Required := False;
3416 -- In general cases, the corresponding pragma/attribute
3417 -- definition clause will be inserted later at the freezing
3418 -- point, and we do not need to build it now.
3420 else
3421 Aitem := Empty;
3422 end if;
3424 -- Storage_Size
3426 -- This is special because for access types we need to generate
3427 -- an attribute definition clause. This also works for single
3428 -- task declarations, but it does not work for task type
3429 -- declarations, because we have the case where the expression
3430 -- references a discriminant of the task type. That can't use
3431 -- an attribute definition clause because we would not have
3432 -- visibility on the discriminant. For that case we must
3433 -- generate a pragma in the task definition.
3435 when Aspect_Storage_Size =>
3437 -- Task type case
3439 if Ekind (E) = E_Task_Type then
3440 declare
3441 Decl : constant Node_Id := Declaration_Node (E);
3443 begin
3444 pragma Assert (Nkind (Decl) = N_Task_Type_Declaration);
3446 -- If no task definition, create one
3448 if No (Task_Definition (Decl)) then
3449 Set_Task_Definition (Decl,
3450 Make_Task_Definition (Loc,
3451 Visible_Declarations => Empty_List,
3452 End_Label => Empty));
3453 end if;
3455 -- Create a pragma and put it at the start of the task
3456 -- definition for the task type declaration.
3458 Make_Aitem_Pragma
3459 (Pragma_Argument_Associations => New_List (
3460 Make_Pragma_Argument_Association (Loc,
3461 Expression => Relocate_Node (Expr))),
3462 Pragma_Name => Name_Storage_Size);
3464 Prepend
3465 (Aitem,
3466 Visible_Declarations (Task_Definition (Decl)));
3467 goto Continue;
3468 end;
3470 -- All other cases, generate attribute definition
3472 else
3473 Aitem :=
3474 Make_Attribute_Definition_Clause (Loc,
3475 Name => Ent,
3476 Chars => Chars (Id),
3477 Expression => Relocate_Node (Expr));
3478 end if;
3479 end case;
3481 -- Attach the corresponding pragma/attribute definition clause to
3482 -- the aspect specification node.
3484 if Present (Aitem) then
3485 Set_From_Aspect_Specification (Aitem);
3486 end if;
3488 -- In the context of a compilation unit, we directly put the
3489 -- pragma in the Pragmas_After list of the N_Compilation_Unit_Aux
3490 -- node (no delay is required here) except for aspects on a
3491 -- subprogram body (see below) and a generic package, for which we
3492 -- need to introduce the pragma before building the generic copy
3493 -- (see sem_ch12), and for package instantiations, where the
3494 -- library unit pragmas are better handled early.
3496 if Nkind (Parent (N)) = N_Compilation_Unit
3497 and then (Present (Aitem) or else Is_Boolean_Aspect (Aspect))
3498 then
3499 declare
3500 Aux : constant Node_Id := Aux_Decls_Node (Parent (N));
3502 begin
3503 pragma Assert (Nkind (Aux) = N_Compilation_Unit_Aux);
3505 -- For a Boolean aspect, create the corresponding pragma if
3506 -- no expression or if the value is True.
3508 if Is_Boolean_Aspect (Aspect) and then No (Aitem) then
3509 if Is_True (Static_Boolean (Expr)) then
3510 Make_Aitem_Pragma
3511 (Pragma_Argument_Associations => New_List (
3512 Make_Pragma_Argument_Association (Sloc (Ent),
3513 Expression => Ent)),
3514 Pragma_Name => Chars (Id));
3516 Set_From_Aspect_Specification (Aitem, True);
3517 Set_Corresponding_Aspect (Aitem, Aspect);
3519 else
3520 goto Continue;
3521 end if;
3522 end if;
3524 -- If the aspect is on a subprogram body (relevant aspect
3525 -- is Inline), add the pragma in front of the declarations.
3527 if Nkind (N) = N_Subprogram_Body then
3528 if No (Declarations (N)) then
3529 Set_Declarations (N, New_List);
3530 end if;
3532 Prepend (Aitem, Declarations (N));
3534 elsif Nkind (N) = N_Generic_Package_Declaration then
3535 if No (Visible_Declarations (Specification (N))) then
3536 Set_Visible_Declarations (Specification (N), New_List);
3537 end if;
3539 Prepend (Aitem,
3540 Visible_Declarations (Specification (N)));
3542 elsif Nkind (N) = N_Package_Instantiation then
3543 declare
3544 Spec : constant Node_Id :=
3545 Specification (Instance_Spec (N));
3546 begin
3547 if No (Visible_Declarations (Spec)) then
3548 Set_Visible_Declarations (Spec, New_List);
3549 end if;
3551 Prepend (Aitem, Visible_Declarations (Spec));
3552 end;
3554 else
3555 if No (Pragmas_After (Aux)) then
3556 Set_Pragmas_After (Aux, New_List);
3557 end if;
3559 Append (Aitem, Pragmas_After (Aux));
3560 end if;
3562 goto Continue;
3563 end;
3564 end if;
3566 -- The evaluation of the aspect is delayed to the freezing point.
3567 -- The pragma or attribute clause if there is one is then attached
3568 -- to the aspect specification which is put in the rep item list.
3570 if Delay_Required then
3571 if Present (Aitem) then
3572 Set_Is_Delayed_Aspect (Aitem);
3573 Set_Aspect_Rep_Item (Aspect, Aitem);
3574 Set_Parent (Aitem, Aspect);
3575 end if;
3577 Set_Is_Delayed_Aspect (Aspect);
3579 -- In the case of Default_Value, link the aspect to base type
3580 -- as well, even though it appears on a first subtype. This is
3581 -- mandated by the semantics of the aspect. Do not establish
3582 -- the link when processing the base type itself as this leads
3583 -- to a rep item circularity. Verify that we are dealing with
3584 -- a scalar type to prevent cascaded errors.
3586 if A_Id = Aspect_Default_Value
3587 and then Is_Scalar_Type (E)
3588 and then Base_Type (E) /= E
3589 then
3590 Set_Has_Delayed_Aspects (Base_Type (E));
3591 Record_Rep_Item (Base_Type (E), Aspect);
3592 end if;
3594 Set_Has_Delayed_Aspects (E);
3595 Record_Rep_Item (E, Aspect);
3597 -- When delay is not required and the context is a package or a
3598 -- subprogram body, insert the pragma in the body declarations.
3600 elsif Nkind_In (N, N_Package_Body, N_Subprogram_Body) then
3601 if No (Declarations (N)) then
3602 Set_Declarations (N, New_List);
3603 end if;
3605 -- The pragma is added before source declarations
3607 Prepend_To (Declarations (N), Aitem);
3609 -- When delay is not required and the context is not a compilation
3610 -- unit, we simply insert the pragma/attribute definition clause
3611 -- in sequence.
3613 elsif Present (Aitem) then
3614 Insert_After (Ins_Node, Aitem);
3615 Ins_Node := Aitem;
3616 end if;
3617 end Analyze_One_Aspect;
3619 <<Continue>>
3620 Next (Aspect);
3621 end loop Aspect_Loop;
3623 if Has_Delayed_Aspects (E) then
3624 Ensure_Freeze_Node (E);
3625 end if;
3626 end Analyze_Aspect_Specifications;
3628 ---------------------------------------------------
3629 -- Analyze_Aspect_Specifications_On_Body_Or_Stub --
3630 ---------------------------------------------------
3632 procedure Analyze_Aspect_Specifications_On_Body_Or_Stub (N : Node_Id) is
3633 Body_Id : constant Entity_Id := Defining_Entity (N);
3635 procedure Diagnose_Misplaced_Aspects (Spec_Id : Entity_Id);
3636 -- Body [stub] N has aspects, but they are not properly placed. Emit an
3637 -- error message depending on the aspects involved. Spec_Id denotes the
3638 -- entity of the corresponding spec.
3640 --------------------------------
3641 -- Diagnose_Misplaced_Aspects --
3642 --------------------------------
3644 procedure Diagnose_Misplaced_Aspects (Spec_Id : Entity_Id) is
3645 procedure Misplaced_Aspect_Error
3646 (Asp : Node_Id;
3647 Ref_Nam : Name_Id);
3648 -- Emit an error message concerning misplaced aspect Asp. Ref_Nam is
3649 -- the name of the refined version of the aspect.
3651 ----------------------------
3652 -- Misplaced_Aspect_Error --
3653 ----------------------------
3655 procedure Misplaced_Aspect_Error
3656 (Asp : Node_Id;
3657 Ref_Nam : Name_Id)
3659 Asp_Nam : constant Name_Id := Chars (Identifier (Asp));
3660 Asp_Id : constant Aspect_Id := Get_Aspect_Id (Asp_Nam);
3662 begin
3663 -- The corresponding spec already contains the aspect in question
3664 -- and the one appearing on the body must be the refined form:
3666 -- procedure P with Global ...;
3667 -- procedure P with Global ... is ... end P;
3668 -- ^
3669 -- Refined_Global
3671 if Has_Aspect (Spec_Id, Asp_Id) then
3672 Error_Msg_Name_1 := Asp_Nam;
3674 -- Subunits cannot carry aspects that apply to a subprogram
3675 -- declaration.
3677 if Nkind (Parent (N)) = N_Subunit then
3678 Error_Msg_N ("aspect % cannot apply to a subunit", Asp);
3680 -- Otherwise suggest the refined form
3682 else
3683 Error_Msg_Name_2 := Ref_Nam;
3684 Error_Msg_N ("aspect % should be %", Asp);
3685 end if;
3687 -- Otherwise the aspect must appear on the spec, not on the body
3689 -- procedure P;
3690 -- procedure P with Global ... is ... end P;
3692 else
3693 Error_Msg_N
3694 ("aspect specification must appear on initial declaration",
3695 Asp);
3696 end if;
3697 end Misplaced_Aspect_Error;
3699 -- Local variables
3701 Asp : Node_Id;
3702 Asp_Nam : Name_Id;
3704 -- Start of processing for Diagnose_Misplaced_Aspects
3706 begin
3707 -- Iterate over the aspect specifications and emit specific errors
3708 -- where applicable.
3710 Asp := First (Aspect_Specifications (N));
3711 while Present (Asp) loop
3712 Asp_Nam := Chars (Identifier (Asp));
3714 -- Do not emit errors on aspects that can appear on a subprogram
3715 -- body. This scenario occurs when the aspect specification list
3716 -- contains both misplaced and properly placed aspects.
3718 if Aspect_On_Body_Or_Stub_OK (Get_Aspect_Id (Asp_Nam)) then
3719 null;
3721 -- Special diagnostics for SPARK aspects
3723 elsif Asp_Nam = Name_Depends then
3724 Misplaced_Aspect_Error (Asp, Name_Refined_Depends);
3726 elsif Asp_Nam = Name_Global then
3727 Misplaced_Aspect_Error (Asp, Name_Refined_Global);
3729 elsif Asp_Nam = Name_Post then
3730 Misplaced_Aspect_Error (Asp, Name_Refined_Post);
3732 -- Otherwise a language-defined aspect is misplaced
3734 else
3735 Error_Msg_N
3736 ("aspect specification must appear on initial declaration",
3737 Asp);
3738 end if;
3740 Next (Asp);
3741 end loop;
3742 end Diagnose_Misplaced_Aspects;
3744 -- Local variables
3746 Spec_Id : constant Entity_Id := Unique_Defining_Entity (N);
3748 -- Start of processing for Analyze_Aspects_On_Body_Or_Stub
3750 begin
3751 -- Language-defined aspects cannot be associated with a subprogram body
3752 -- [stub] if the subprogram has a spec. Certain implementation defined
3753 -- aspects are allowed to break this rule (for all applicable cases, see
3754 -- table Aspects.Aspect_On_Body_Or_Stub_OK).
3756 if Spec_Id /= Body_Id and then not Aspects_On_Body_Or_Stub_OK (N) then
3757 Diagnose_Misplaced_Aspects (Spec_Id);
3758 else
3759 Analyze_Aspect_Specifications (N, Body_Id);
3760 end if;
3761 end Analyze_Aspect_Specifications_On_Body_Or_Stub;
3763 -----------------------
3764 -- Analyze_At_Clause --
3765 -----------------------
3767 -- An at clause is replaced by the corresponding Address attribute
3768 -- definition clause that is the preferred approach in Ada 95.
3770 procedure Analyze_At_Clause (N : Node_Id) is
3771 CS : constant Boolean := Comes_From_Source (N);
3773 begin
3774 -- This is an obsolescent feature
3776 Check_Restriction (No_Obsolescent_Features, N);
3778 if Warn_On_Obsolescent_Feature then
3779 Error_Msg_N
3780 ("?j?at clause is an obsolescent feature (RM J.7(2))", N);
3781 Error_Msg_N
3782 ("\?j?use address attribute definition clause instead", N);
3783 end if;
3785 -- Rewrite as address clause
3787 Rewrite (N,
3788 Make_Attribute_Definition_Clause (Sloc (N),
3789 Name => Identifier (N),
3790 Chars => Name_Address,
3791 Expression => Expression (N)));
3793 -- We preserve Comes_From_Source, since logically the clause still comes
3794 -- from the source program even though it is changed in form.
3796 Set_Comes_From_Source (N, CS);
3798 -- Analyze rewritten clause
3800 Analyze_Attribute_Definition_Clause (N);
3801 end Analyze_At_Clause;
3803 -----------------------------------------
3804 -- Analyze_Attribute_Definition_Clause --
3805 -----------------------------------------
3807 procedure Analyze_Attribute_Definition_Clause (N : Node_Id) is
3808 Loc : constant Source_Ptr := Sloc (N);
3809 Nam : constant Node_Id := Name (N);
3810 Attr : constant Name_Id := Chars (N);
3811 Expr : constant Node_Id := Expression (N);
3812 Id : constant Attribute_Id := Get_Attribute_Id (Attr);
3814 Ent : Entity_Id;
3815 -- The entity of Nam after it is analyzed. In the case of an incomplete
3816 -- type, this is the underlying type.
3818 U_Ent : Entity_Id;
3819 -- The underlying entity to which the attribute applies. Generally this
3820 -- is the Underlying_Type of Ent, except in the case where the clause
3821 -- applies to full view of incomplete type or private type in which case
3822 -- U_Ent is just a copy of Ent.
3824 FOnly : Boolean := False;
3825 -- Reset to True for subtype specific attribute (Alignment, Size)
3826 -- and for stream attributes, i.e. those cases where in the call to
3827 -- Rep_Item_Too_Late, FOnly is set True so that only the freezing rules
3828 -- are checked. Note that the case of stream attributes is not clear
3829 -- from the RM, but see AI95-00137. Also, the RM seems to disallow
3830 -- Storage_Size for derived task types, but that is also clearly
3831 -- unintentional.
3833 procedure Analyze_Stream_TSS_Definition (TSS_Nam : TSS_Name_Type);
3834 -- Common processing for 'Read, 'Write, 'Input and 'Output attribute
3835 -- definition clauses.
3837 function Duplicate_Clause return Boolean;
3838 -- This routine checks if the aspect for U_Ent being given by attribute
3839 -- definition clause N is for an aspect that has already been specified,
3840 -- and if so gives an error message. If there is a duplicate, True is
3841 -- returned, otherwise if there is no error, False is returned.
3843 procedure Check_Indexing_Functions;
3844 -- Check that the function in Constant_Indexing or Variable_Indexing
3845 -- attribute has the proper type structure. If the name is overloaded,
3846 -- check that some interpretation is legal.
3848 procedure Check_Iterator_Functions;
3849 -- Check that there is a single function in Default_Iterator attribute
3850 -- has the proper type structure.
3852 function Check_Primitive_Function (Subp : Entity_Id) return Boolean;
3853 -- Common legality check for the previous two
3855 -----------------------------------
3856 -- Analyze_Stream_TSS_Definition --
3857 -----------------------------------
3859 procedure Analyze_Stream_TSS_Definition (TSS_Nam : TSS_Name_Type) is
3860 Subp : Entity_Id := Empty;
3861 I : Interp_Index;
3862 It : Interp;
3863 Pnam : Entity_Id;
3865 Is_Read : constant Boolean := (TSS_Nam = TSS_Stream_Read);
3866 -- True for Read attribute, False for other attributes
3868 function Has_Good_Profile
3869 (Subp : Entity_Id;
3870 Report : Boolean := False) return Boolean;
3871 -- Return true if the entity is a subprogram with an appropriate
3872 -- profile for the attribute being defined. If result is False and
3873 -- Report is True, function emits appropriate error.
3875 ----------------------
3876 -- Has_Good_Profile --
3877 ----------------------
3879 function Has_Good_Profile
3880 (Subp : Entity_Id;
3881 Report : Boolean := False) return Boolean
3883 Expected_Ekind : constant array (Boolean) of Entity_Kind :=
3884 (False => E_Procedure, True => E_Function);
3885 Is_Function : constant Boolean := (TSS_Nam = TSS_Stream_Input);
3886 F : Entity_Id;
3887 Typ : Entity_Id;
3889 begin
3890 if Ekind (Subp) /= Expected_Ekind (Is_Function) then
3891 return False;
3892 end if;
3894 F := First_Formal (Subp);
3896 if No (F)
3897 or else Ekind (Etype (F)) /= E_Anonymous_Access_Type
3898 or else Designated_Type (Etype (F)) /=
3899 Class_Wide_Type (RTE (RE_Root_Stream_Type))
3900 then
3901 return False;
3902 end if;
3904 if not Is_Function then
3905 Next_Formal (F);
3907 declare
3908 Expected_Mode : constant array (Boolean) of Entity_Kind :=
3909 (False => E_In_Parameter,
3910 True => E_Out_Parameter);
3911 begin
3912 if Parameter_Mode (F) /= Expected_Mode (Is_Read) then
3913 return False;
3914 end if;
3915 end;
3917 Typ := Etype (F);
3919 -- If the attribute specification comes from an aspect
3920 -- specification for a class-wide stream, the parameter must be
3921 -- a class-wide type of the entity to which the aspect applies.
3923 if From_Aspect_Specification (N)
3924 and then Class_Present (Parent (N))
3925 and then Is_Class_Wide_Type (Typ)
3926 then
3927 Typ := Etype (Typ);
3928 end if;
3930 else
3931 Typ := Etype (Subp);
3932 end if;
3934 -- Verify that the prefix of the attribute and the local name for
3935 -- the type of the formal match, or one is the class-wide of the
3936 -- other, in the case of a class-wide stream operation.
3938 if Base_Type (Typ) = Base_Type (Ent)
3939 or else (Is_Class_Wide_Type (Typ)
3940 and then Typ = Class_Wide_Type (Base_Type (Ent)))
3941 or else (Is_Class_Wide_Type (Ent)
3942 and then Ent = Class_Wide_Type (Base_Type (Typ)))
3943 then
3944 null;
3945 else
3946 return False;
3947 end if;
3949 if Present (Next_Formal (F)) then
3950 return False;
3952 elsif not Is_Scalar_Type (Typ)
3953 and then not Is_First_Subtype (Typ)
3954 and then not Is_Class_Wide_Type (Typ)
3955 then
3956 if Report and not Is_First_Subtype (Typ) then
3957 Error_Msg_N
3958 ("subtype of formal in stream operation must be a first "
3959 & "subtype", Parameter_Type (Parent (F)));
3960 end if;
3962 return False;
3964 else
3965 return True;
3966 end if;
3967 end Has_Good_Profile;
3969 -- Start of processing for Analyze_Stream_TSS_Definition
3971 begin
3972 FOnly := True;
3974 if not Is_Type (U_Ent) then
3975 Error_Msg_N ("local name must be a subtype", Nam);
3976 return;
3978 elsif not Is_First_Subtype (U_Ent) then
3979 Error_Msg_N ("local name must be a first subtype", Nam);
3980 return;
3981 end if;
3983 Pnam := TSS (Base_Type (U_Ent), TSS_Nam);
3985 -- If Pnam is present, it can be either inherited from an ancestor
3986 -- type (in which case it is legal to redefine it for this type), or
3987 -- be a previous definition of the attribute for the same type (in
3988 -- which case it is illegal).
3990 -- In the first case, it will have been analyzed already, and we
3991 -- can check that its profile does not match the expected profile
3992 -- for a stream attribute of U_Ent. In the second case, either Pnam
3993 -- has been analyzed (and has the expected profile), or it has not
3994 -- been analyzed yet (case of a type that has not been frozen yet
3995 -- and for which the stream attribute has been set using Set_TSS).
3997 if Present (Pnam)
3998 and then (No (First_Entity (Pnam)) or else Has_Good_Profile (Pnam))
3999 then
4000 Error_Msg_Sloc := Sloc (Pnam);
4001 Error_Msg_Name_1 := Attr;
4002 Error_Msg_N ("% attribute already defined #", Nam);
4003 return;
4004 end if;
4006 Analyze (Expr);
4008 if Is_Entity_Name (Expr) then
4009 if not Is_Overloaded (Expr) then
4010 if Has_Good_Profile (Entity (Expr), Report => True) then
4011 Subp := Entity (Expr);
4012 end if;
4014 else
4015 Get_First_Interp (Expr, I, It);
4016 while Present (It.Nam) loop
4017 if Has_Good_Profile (It.Nam) then
4018 Subp := It.Nam;
4019 exit;
4020 end if;
4022 Get_Next_Interp (I, It);
4023 end loop;
4024 end if;
4025 end if;
4027 if Present (Subp) then
4028 if Is_Abstract_Subprogram (Subp) then
4029 Error_Msg_N ("stream subprogram must not be abstract", Expr);
4030 return;
4032 -- A stream subprogram for an interface type must be a null
4033 -- procedure (RM 13.13.2 (38/3)). Note that the class-wide type
4034 -- of an interface is not an interface type (3.9.4 (6.b/2)).
4036 elsif Is_Interface (U_Ent)
4037 and then not Is_Class_Wide_Type (U_Ent)
4038 and then not Inside_A_Generic
4039 and then
4040 (Ekind (Subp) = E_Function
4041 or else
4042 not Null_Present
4043 (Specification
4044 (Unit_Declaration_Node (Ultimate_Alias (Subp)))))
4045 then
4046 Error_Msg_N
4047 ("stream subprogram for interface type must be null "
4048 & "procedure", Expr);
4049 end if;
4051 Set_Entity (Expr, Subp);
4052 Set_Etype (Expr, Etype (Subp));
4054 New_Stream_Subprogram (N, U_Ent, Subp, TSS_Nam);
4056 else
4057 Error_Msg_Name_1 := Attr;
4058 Error_Msg_N ("incorrect expression for% attribute", Expr);
4059 end if;
4060 end Analyze_Stream_TSS_Definition;
4062 ------------------------------
4063 -- Check_Indexing_Functions --
4064 ------------------------------
4066 procedure Check_Indexing_Functions is
4067 Indexing_Found : Boolean := False;
4069 procedure Check_Inherited_Indexing;
4070 -- For a derived type, check that no indexing aspect is specified
4071 -- for the type if it is also inherited
4073 procedure Check_One_Function (Subp : Entity_Id);
4074 -- Check one possible interpretation. Sets Indexing_Found True if a
4075 -- legal indexing function is found.
4077 procedure Illegal_Indexing (Msg : String);
4078 -- Diagnose illegal indexing function if not overloaded. In the
4079 -- overloaded case indicate that no legal interpretation exists.
4081 ------------------------------
4082 -- Check_Inherited_Indexing --
4083 ------------------------------
4085 procedure Check_Inherited_Indexing is
4086 Inherited : Node_Id;
4088 begin
4089 if Attr = Name_Constant_Indexing then
4090 Inherited :=
4091 Find_Aspect (Etype (Ent), Aspect_Constant_Indexing);
4092 else pragma Assert (Attr = Name_Variable_Indexing);
4093 Inherited :=
4094 Find_Aspect (Etype (Ent), Aspect_Variable_Indexing);
4095 end if;
4097 if Present (Inherited) then
4098 if Debug_Flag_Dot_XX then
4099 null;
4101 -- OK if current attribute_definition_clause is expansion of
4102 -- inherited aspect.
4104 elsif Aspect_Rep_Item (Inherited) = N then
4105 null;
4107 -- Indicate the operation that must be overridden, rather than
4108 -- redefining the indexing aspect.
4110 else
4111 Illegal_Indexing
4112 ("indexing function already inherited from parent type");
4113 Error_Msg_NE
4114 ("!override & instead",
4115 N, Entity (Expression (Inherited)));
4116 end if;
4117 end if;
4118 end Check_Inherited_Indexing;
4120 ------------------------
4121 -- Check_One_Function --
4122 ------------------------
4124 procedure Check_One_Function (Subp : Entity_Id) is
4125 Default_Element : Node_Id;
4126 Ret_Type : constant Entity_Id := Etype (Subp);
4128 begin
4129 if not Is_Overloadable (Subp) then
4130 Illegal_Indexing ("illegal indexing function for type&");
4131 return;
4133 elsif Scope (Subp) /= Scope (Ent) then
4134 if Nkind (Expr) = N_Expanded_Name then
4136 -- Indexing function can't be declared elsewhere
4138 Illegal_Indexing
4139 ("indexing function must be declared in scope of type&");
4140 end if;
4142 return;
4144 elsif No (First_Formal (Subp)) then
4145 Illegal_Indexing
4146 ("Indexing requires a function that applies to type&");
4147 return;
4149 elsif No (Next_Formal (First_Formal (Subp))) then
4150 Illegal_Indexing
4151 ("indexing function must have at least two parameters");
4152 return;
4154 elsif Is_Derived_Type (Ent) then
4155 Check_Inherited_Indexing;
4156 end if;
4158 if not Check_Primitive_Function (Subp) then
4159 Illegal_Indexing
4160 ("Indexing aspect requires a function that applies to type&");
4161 return;
4162 end if;
4164 -- If partial declaration exists, verify that it is not tagged.
4166 if Ekind (Current_Scope) = E_Package
4167 and then Has_Private_Declaration (Ent)
4168 and then From_Aspect_Specification (N)
4169 and then
4170 List_Containing (Parent (Ent)) =
4171 Private_Declarations
4172 (Specification (Unit_Declaration_Node (Current_Scope)))
4173 and then Nkind (N) = N_Attribute_Definition_Clause
4174 then
4175 declare
4176 Decl : Node_Id;
4178 begin
4179 Decl :=
4180 First (Visible_Declarations
4181 (Specification
4182 (Unit_Declaration_Node (Current_Scope))));
4184 while Present (Decl) loop
4185 if Nkind (Decl) = N_Private_Type_Declaration
4186 and then Ent = Full_View (Defining_Identifier (Decl))
4187 and then Tagged_Present (Decl)
4188 and then No (Aspect_Specifications (Decl))
4189 then
4190 Illegal_Indexing
4191 ("Indexing aspect cannot be specified on full view "
4192 & "if partial view is tagged");
4193 return;
4194 end if;
4196 Next (Decl);
4197 end loop;
4198 end;
4199 end if;
4201 -- An indexing function must return either the default element of
4202 -- the container, or a reference type. For variable indexing it
4203 -- must be the latter.
4205 Default_Element :=
4206 Find_Value_Of_Aspect
4207 (Etype (First_Formal (Subp)), Aspect_Iterator_Element);
4209 if Present (Default_Element) then
4210 Analyze (Default_Element);
4212 if Is_Entity_Name (Default_Element)
4213 and then not Covers (Entity (Default_Element), Ret_Type)
4214 and then False
4215 then
4216 Illegal_Indexing
4217 ("wrong return type for indexing function");
4218 return;
4219 end if;
4220 end if;
4222 -- For variable_indexing the return type must be a reference type
4224 if Attr = Name_Variable_Indexing then
4225 if not Has_Implicit_Dereference (Ret_Type) then
4226 Illegal_Indexing
4227 ("variable indexing must return a reference type");
4228 return;
4230 elsif Is_Access_Constant
4231 (Etype (First_Discriminant (Ret_Type)))
4232 then
4233 Illegal_Indexing
4234 ("variable indexing must return an access to variable");
4235 return;
4236 end if;
4238 else
4239 if Has_Implicit_Dereference (Ret_Type)
4240 and then not
4241 Is_Access_Constant (Etype (First_Discriminant (Ret_Type)))
4242 then
4243 Illegal_Indexing
4244 ("constant indexing must return an access to constant");
4245 return;
4247 elsif Is_Access_Type (Etype (First_Formal (Subp)))
4248 and then not Is_Access_Constant (Etype (First_Formal (Subp)))
4249 then
4250 Illegal_Indexing
4251 ("constant indexing must apply to an access to constant");
4252 return;
4253 end if;
4254 end if;
4256 -- All checks succeeded.
4258 Indexing_Found := True;
4259 end Check_One_Function;
4261 -----------------------
4262 -- Illegal_Indexing --
4263 -----------------------
4265 procedure Illegal_Indexing (Msg : String) is
4266 begin
4267 Error_Msg_NE (Msg, N, Ent);
4268 end Illegal_Indexing;
4270 -- Start of processing for Check_Indexing_Functions
4272 begin
4273 if In_Instance then
4274 Check_Inherited_Indexing;
4275 end if;
4277 Analyze (Expr);
4279 if not Is_Overloaded (Expr) then
4280 Check_One_Function (Entity (Expr));
4282 else
4283 declare
4284 I : Interp_Index;
4285 It : Interp;
4287 begin
4288 Indexing_Found := False;
4289 Get_First_Interp (Expr, I, It);
4290 while Present (It.Nam) loop
4292 -- Note that analysis will have added the interpretation
4293 -- that corresponds to the dereference. We only check the
4294 -- subprogram itself.
4296 if Is_Overloadable (It.Nam) then
4297 Check_One_Function (It.Nam);
4298 end if;
4300 Get_Next_Interp (I, It);
4301 end loop;
4302 end;
4303 end if;
4305 if not Indexing_Found and then not Error_Posted (N) then
4306 Error_Msg_NE
4307 ("aspect Indexing requires a local function that "
4308 & "applies to type&", Expr, Ent);
4309 end if;
4310 end Check_Indexing_Functions;
4312 ------------------------------
4313 -- Check_Iterator_Functions --
4314 ------------------------------
4316 procedure Check_Iterator_Functions is
4317 function Valid_Default_Iterator (Subp : Entity_Id) return Boolean;
4318 -- Check one possible interpretation for validity
4320 ----------------------------
4321 -- Valid_Default_Iterator --
4322 ----------------------------
4324 function Valid_Default_Iterator (Subp : Entity_Id) return Boolean is
4325 Formal : Entity_Id;
4326 Root_T : constant Entity_Id := Root_Type (Etype (Etype (Subp)));
4328 begin
4329 if not Check_Primitive_Function (Subp) then
4330 return False;
4332 -- The return type must be derived from a type in an instance
4333 -- of Iterator.Interfaces, and thus its root type must have a
4334 -- predefined name.
4336 elsif Chars (Root_T) /= Name_Forward_Iterator
4337 and then Chars (Root_T) /= Name_Reversible_Iterator
4338 then
4339 return False;
4341 else
4342 Formal := First_Formal (Subp);
4343 end if;
4345 -- False if any subsequent formal has no default expression
4347 Formal := Next_Formal (Formal);
4348 while Present (Formal) loop
4349 if No (Expression (Parent (Formal))) then
4350 return False;
4351 end if;
4353 Next_Formal (Formal);
4354 end loop;
4356 -- True if all subsequent formals have default expressions
4358 return True;
4359 end Valid_Default_Iterator;
4361 -- Start of processing for Check_Iterator_Functions
4363 begin
4364 Analyze (Expr);
4366 if not Is_Entity_Name (Expr) then
4367 Error_Msg_N ("aspect Iterator must be a function name", Expr);
4368 end if;
4370 if not Is_Overloaded (Expr) then
4371 if not Check_Primitive_Function (Entity (Expr)) then
4372 Error_Msg_NE
4373 ("aspect Indexing requires a function that applies to type&",
4374 Entity (Expr), Ent);
4375 end if;
4377 -- Flag the default_iterator as well as the denoted function.
4379 if not Valid_Default_Iterator (Entity (Expr)) then
4380 Error_Msg_N ("improper function for default iterator!", Expr);
4381 end if;
4383 else
4384 declare
4385 Default : Entity_Id := Empty;
4386 I : Interp_Index;
4387 It : Interp;
4389 begin
4390 Get_First_Interp (Expr, I, It);
4391 while Present (It.Nam) loop
4392 if not Check_Primitive_Function (It.Nam)
4393 or else not Valid_Default_Iterator (It.Nam)
4394 then
4395 Remove_Interp (I);
4397 elsif Present (Default) then
4399 -- An explicit one should override an implicit one
4401 if Comes_From_Source (Default) =
4402 Comes_From_Source (It.Nam)
4403 then
4404 Error_Msg_N ("default iterator must be unique", Expr);
4405 Error_Msg_Sloc := Sloc (Default);
4406 Error_Msg_N ("\\possible interpretation#", Expr);
4407 Error_Msg_Sloc := Sloc (It.Nam);
4408 Error_Msg_N ("\\possible interpretation#", Expr);
4410 elsif Comes_From_Source (It.Nam) then
4411 Default := It.Nam;
4412 end if;
4413 else
4414 Default := It.Nam;
4415 end if;
4417 Get_Next_Interp (I, It);
4418 end loop;
4420 if Present (Default) then
4421 Set_Entity (Expr, Default);
4422 Set_Is_Overloaded (Expr, False);
4423 else
4424 Error_Msg_N
4425 ("No interpretation is a valid default iterator!", Expr);
4426 end if;
4427 end;
4428 end if;
4429 end Check_Iterator_Functions;
4431 -------------------------------
4432 -- Check_Primitive_Function --
4433 -------------------------------
4435 function Check_Primitive_Function (Subp : Entity_Id) return Boolean is
4436 Ctrl : Entity_Id;
4438 begin
4439 if Ekind (Subp) /= E_Function then
4440 return False;
4441 end if;
4443 if No (First_Formal (Subp)) then
4444 return False;
4445 else
4446 Ctrl := Etype (First_Formal (Subp));
4447 end if;
4449 -- To be a primitive operation subprogram has to be in same scope.
4451 if Scope (Ctrl) /= Scope (Subp) then
4452 return False;
4453 end if;
4455 -- Type of formal may be the class-wide type, an access to such,
4456 -- or an incomplete view.
4458 if Ctrl = Ent
4459 or else Ctrl = Class_Wide_Type (Ent)
4460 or else
4461 (Ekind (Ctrl) = E_Anonymous_Access_Type
4462 and then (Designated_Type (Ctrl) = Ent
4463 or else
4464 Designated_Type (Ctrl) = Class_Wide_Type (Ent)))
4465 or else
4466 (Ekind (Ctrl) = E_Incomplete_Type
4467 and then Full_View (Ctrl) = Ent)
4468 then
4469 null;
4470 else
4471 return False;
4472 end if;
4474 return True;
4475 end Check_Primitive_Function;
4477 ----------------------
4478 -- Duplicate_Clause --
4479 ----------------------
4481 function Duplicate_Clause return Boolean is
4482 A : Node_Id;
4484 begin
4485 -- Nothing to do if this attribute definition clause comes from
4486 -- an aspect specification, since we could not be duplicating an
4487 -- explicit clause, and we dealt with the case of duplicated aspects
4488 -- in Analyze_Aspect_Specifications.
4490 if From_Aspect_Specification (N) then
4491 return False;
4492 end if;
4494 -- Otherwise current clause may duplicate previous clause, or a
4495 -- previously given pragma or aspect specification for the same
4496 -- aspect.
4498 A := Get_Rep_Item (U_Ent, Chars (N), Check_Parents => False);
4500 if Present (A) then
4501 Error_Msg_Name_1 := Chars (N);
4502 Error_Msg_Sloc := Sloc (A);
4504 Error_Msg_NE ("aspect% for & previously given#", N, U_Ent);
4505 return True;
4506 end if;
4508 return False;
4509 end Duplicate_Clause;
4511 -- Start of processing for Analyze_Attribute_Definition_Clause
4513 begin
4514 -- The following code is a defense against recursion. Not clear that
4515 -- this can happen legitimately, but perhaps some error situations can
4516 -- cause it, and we did see this recursion during testing.
4518 if Analyzed (N) then
4519 return;
4520 else
4521 Set_Analyzed (N, True);
4522 end if;
4524 Check_Restriction_No_Use_Of_Attribute (N);
4526 -- Ignore some selected attributes in CodePeer mode since they are not
4527 -- relevant in this context.
4529 if CodePeer_Mode then
4530 case Id is
4532 -- Ignore Component_Size in CodePeer mode, to avoid changing the
4533 -- internal representation of types by implicitly packing them.
4535 when Attribute_Component_Size =>
4536 Rewrite (N, Make_Null_Statement (Sloc (N)));
4537 return;
4539 when others =>
4540 null;
4541 end case;
4542 end if;
4544 -- Process Ignore_Rep_Clauses option
4546 if Ignore_Rep_Clauses then
4547 case Id is
4549 -- The following should be ignored. They do not affect legality
4550 -- and may be target dependent. The basic idea of -gnatI is to
4551 -- ignore any rep clauses that may be target dependent but do not
4552 -- affect legality (except possibly to be rejected because they
4553 -- are incompatible with the compilation target).
4555 when Attribute_Alignment |
4556 Attribute_Bit_Order |
4557 Attribute_Component_Size |
4558 Attribute_Machine_Radix |
4559 Attribute_Object_Size |
4560 Attribute_Size |
4561 Attribute_Small |
4562 Attribute_Stream_Size |
4563 Attribute_Value_Size =>
4564 Kill_Rep_Clause (N);
4565 return;
4567 -- The following should not be ignored, because in the first place
4568 -- they are reasonably portable, and should not cause problems
4569 -- in compiling code from another target, and also they do affect
4570 -- legality, e.g. failing to provide a stream attribute for a type
4571 -- may make a program illegal.
4573 when Attribute_External_Tag |
4574 Attribute_Input |
4575 Attribute_Output |
4576 Attribute_Read |
4577 Attribute_Simple_Storage_Pool |
4578 Attribute_Storage_Pool |
4579 Attribute_Storage_Size |
4580 Attribute_Write =>
4581 null;
4583 -- We do not do anything here with address clauses, they will be
4584 -- removed by Freeze later on, but for now, it works better to
4585 -- keep then in the tree.
4587 when Attribute_Address =>
4588 null;
4590 -- Other cases are errors ("attribute& cannot be set with
4591 -- definition clause"), which will be caught below.
4593 when others =>
4594 null;
4595 end case;
4596 end if;
4598 Analyze (Nam);
4599 Ent := Entity (Nam);
4601 if Rep_Item_Too_Early (Ent, N) then
4602 return;
4603 end if;
4605 -- Rep clause applies to full view of incomplete type or private type if
4606 -- we have one (if not, this is a premature use of the type). However,
4607 -- certain semantic checks need to be done on the specified entity (i.e.
4608 -- the private view), so we save it in Ent.
4610 if Is_Private_Type (Ent)
4611 and then Is_Derived_Type (Ent)
4612 and then not Is_Tagged_Type (Ent)
4613 and then No (Full_View (Ent))
4614 then
4615 -- If this is a private type whose completion is a derivation from
4616 -- another private type, there is no full view, and the attribute
4617 -- belongs to the type itself, not its underlying parent.
4619 U_Ent := Ent;
4621 elsif Ekind (Ent) = E_Incomplete_Type then
4623 -- The attribute applies to the full view, set the entity of the
4624 -- attribute definition accordingly.
4626 Ent := Underlying_Type (Ent);
4627 U_Ent := Ent;
4628 Set_Entity (Nam, Ent);
4630 else
4631 U_Ent := Underlying_Type (Ent);
4632 end if;
4634 -- Avoid cascaded error
4636 if Etype (Nam) = Any_Type then
4637 return;
4639 -- Must be declared in current scope or in case of an aspect
4640 -- specification, must be visible in current scope.
4642 elsif Scope (Ent) /= Current_Scope
4643 and then
4644 not (From_Aspect_Specification (N)
4645 and then Scope_Within_Or_Same (Current_Scope, Scope (Ent)))
4646 then
4647 Error_Msg_N ("entity must be declared in this scope", Nam);
4648 return;
4650 -- Must not be a source renaming (we do have some cases where the
4651 -- expander generates a renaming, and those cases are OK, in such
4652 -- cases any attribute applies to the renamed object as well).
4654 elsif Is_Object (Ent)
4655 and then Present (Renamed_Object (Ent))
4656 then
4657 -- Case of renamed object from source, this is an error
4659 if Comes_From_Source (Renamed_Object (Ent)) then
4660 Get_Name_String (Chars (N));
4661 Error_Msg_Strlen := Name_Len;
4662 Error_Msg_String (1 .. Name_Len) := Name_Buffer (1 .. Name_Len);
4663 Error_Msg_N
4664 ("~ clause not allowed for a renaming declaration "
4665 & "(RM 13.1(6))", Nam);
4666 return;
4668 -- For the case of a compiler generated renaming, the attribute
4669 -- definition clause applies to the renamed object created by the
4670 -- expander. The easiest general way to handle this is to create a
4671 -- copy of the attribute definition clause for this object.
4673 elsif Is_Entity_Name (Renamed_Object (Ent)) then
4674 Insert_Action (N,
4675 Make_Attribute_Definition_Clause (Loc,
4676 Name =>
4677 New_Occurrence_Of (Entity (Renamed_Object (Ent)), Loc),
4678 Chars => Chars (N),
4679 Expression => Duplicate_Subexpr (Expression (N))));
4681 -- If the renamed object is not an entity, it must be a dereference
4682 -- of an unconstrained function call, and we must introduce a new
4683 -- declaration to capture the expression. This is needed in the case
4684 -- of 'Alignment, where the original declaration must be rewritten.
4686 else
4687 pragma Assert
4688 (Nkind (Renamed_Object (Ent)) = N_Explicit_Dereference);
4689 null;
4690 end if;
4692 -- If no underlying entity, use entity itself, applies to some
4693 -- previously detected error cases ???
4695 elsif No (U_Ent) then
4696 U_Ent := Ent;
4698 -- Cannot specify for a subtype (exception Object/Value_Size)
4700 elsif Is_Type (U_Ent)
4701 and then not Is_First_Subtype (U_Ent)
4702 and then Id /= Attribute_Object_Size
4703 and then Id /= Attribute_Value_Size
4704 and then not From_At_Mod (N)
4705 then
4706 Error_Msg_N ("cannot specify attribute for subtype", Nam);
4707 return;
4708 end if;
4710 Set_Entity (N, U_Ent);
4712 -- Switch on particular attribute
4714 case Id is
4716 -------------
4717 -- Address --
4718 -------------
4720 -- Address attribute definition clause
4722 when Attribute_Address => Address : begin
4724 -- A little error check, catch for X'Address use X'Address;
4726 if Nkind (Nam) = N_Identifier
4727 and then Nkind (Expr) = N_Attribute_Reference
4728 and then Attribute_Name (Expr) = Name_Address
4729 and then Nkind (Prefix (Expr)) = N_Identifier
4730 and then Chars (Nam) = Chars (Prefix (Expr))
4731 then
4732 Error_Msg_NE
4733 ("address for & is self-referencing", Prefix (Expr), Ent);
4734 return;
4735 end if;
4737 -- Not that special case, carry on with analysis of expression
4739 Analyze_And_Resolve (Expr, RTE (RE_Address));
4741 -- Even when ignoring rep clauses we need to indicate that the
4742 -- entity has an address clause and thus it is legal to declare
4743 -- it imported. Freeze will get rid of the address clause later.
4745 if Ignore_Rep_Clauses then
4746 if Ekind_In (U_Ent, E_Variable, E_Constant) then
4747 Record_Rep_Item (U_Ent, N);
4748 end if;
4750 return;
4751 end if;
4753 if Duplicate_Clause then
4754 null;
4756 -- Case of address clause for subprogram
4758 elsif Is_Subprogram (U_Ent) then
4759 if Has_Homonym (U_Ent) then
4760 Error_Msg_N
4761 ("address clause cannot be given " &
4762 "for overloaded subprogram",
4763 Nam);
4764 return;
4765 end if;
4767 -- For subprograms, all address clauses are permitted, and we
4768 -- mark the subprogram as having a deferred freeze so that Gigi
4769 -- will not elaborate it too soon.
4771 -- Above needs more comments, what is too soon about???
4773 Set_Has_Delayed_Freeze (U_Ent);
4775 -- Case of address clause for entry
4777 elsif Ekind (U_Ent) = E_Entry then
4778 if Nkind (Parent (N)) = N_Task_Body then
4779 Error_Msg_N
4780 ("entry address must be specified in task spec", Nam);
4781 return;
4782 end if;
4784 -- For entries, we require a constant address
4786 Check_Constant_Address_Clause (Expr, U_Ent);
4788 -- Special checks for task types
4790 if Is_Task_Type (Scope (U_Ent))
4791 and then Comes_From_Source (Scope (U_Ent))
4792 then
4793 Error_Msg_N
4794 ("??entry address declared for entry in task type", N);
4795 Error_Msg_N
4796 ("\??only one task can be declared of this type", N);
4797 end if;
4799 -- Entry address clauses are obsolescent
4801 Check_Restriction (No_Obsolescent_Features, N);
4803 if Warn_On_Obsolescent_Feature then
4804 Error_Msg_N
4805 ("?j?attaching interrupt to task entry is an " &
4806 "obsolescent feature (RM J.7.1)", N);
4807 Error_Msg_N
4808 ("\?j?use interrupt procedure instead", N);
4809 end if;
4811 -- Case of an address clause for a controlled object which we
4812 -- consider to be erroneous.
4814 elsif Is_Controlled (Etype (U_Ent))
4815 or else Has_Controlled_Component (Etype (U_Ent))
4816 then
4817 Error_Msg_NE
4818 ("??controlled object& must not be overlaid", Nam, U_Ent);
4819 Error_Msg_N
4820 ("\??Program_Error will be raised at run time", Nam);
4821 Insert_Action (Declaration_Node (U_Ent),
4822 Make_Raise_Program_Error (Loc,
4823 Reason => PE_Overlaid_Controlled_Object));
4824 return;
4826 -- Case of address clause for a (non-controlled) object
4828 elsif Ekind_In (U_Ent, E_Variable, E_Constant) then
4829 declare
4830 Expr : constant Node_Id := Expression (N);
4831 O_Ent : Entity_Id;
4832 Off : Boolean;
4834 begin
4835 -- Exported variables cannot have an address clause, because
4836 -- this cancels the effect of the pragma Export.
4838 if Is_Exported (U_Ent) then
4839 Error_Msg_N
4840 ("cannot export object with address clause", Nam);
4841 return;
4842 end if;
4844 Find_Overlaid_Entity (N, O_Ent, Off);
4846 if Present (O_Ent) then
4848 -- If the object overlays a constant object, mark it so
4850 if Is_Constant_Object (O_Ent) then
4851 Set_Overlays_Constant (U_Ent);
4852 end if;
4854 else
4855 -- If this is not an overlay, mark a variable as being
4856 -- volatile to prevent unwanted optimizations. It's a
4857 -- conservative interpretation of RM 13.3(19) for the
4858 -- cases where the compiler cannot detect potential
4859 -- aliasing issues easily and it also covers the case
4860 -- of an absolute address where the volatile aspect is
4861 -- kind of implicit.
4863 if Ekind (U_Ent) = E_Variable then
4864 Set_Treat_As_Volatile (U_Ent);
4865 end if;
4866 end if;
4868 -- Overlaying controlled objects is erroneous. Emit warning
4869 -- but continue analysis because program is itself legal,
4870 -- and back end must see address clause.
4872 if Present (O_Ent)
4873 and then (Has_Controlled_Component (Etype (O_Ent))
4874 or else Is_Controlled (Etype (O_Ent)))
4875 and then not Inside_A_Generic
4876 then
4877 Error_Msg_N
4878 ("??cannot use overlays with controlled objects", Expr);
4879 Error_Msg_N
4880 ("\??Program_Error will be raised at run time", Expr);
4881 Insert_Action (Declaration_Node (U_Ent),
4882 Make_Raise_Program_Error (Loc,
4883 Reason => PE_Overlaid_Controlled_Object));
4885 -- Issue an unconditional warning for a constant overlaying
4886 -- a variable. For the reverse case, we will issue it only
4887 -- if the variable is modified.
4889 elsif Ekind (U_Ent) = E_Constant
4890 and then Present (O_Ent)
4891 and then not Overlays_Constant (U_Ent)
4892 and then Address_Clause_Overlay_Warnings
4893 then
4894 Error_Msg_N ("??constant overlays a variable", Expr);
4896 -- Imported variables can have an address clause, but then
4897 -- the import is pretty meaningless except to suppress
4898 -- initializations, so we do not need such variables to
4899 -- be statically allocated (and in fact it causes trouble
4900 -- if the address clause is a local value).
4902 elsif Is_Imported (U_Ent) then
4903 Set_Is_Statically_Allocated (U_Ent, False);
4904 end if;
4906 -- We mark a possible modification of a variable with an
4907 -- address clause, since it is likely aliasing is occurring.
4909 Note_Possible_Modification (Nam, Sure => False);
4911 -- Legality checks on the address clause for initialized
4912 -- objects is deferred until the freeze point, because
4913 -- a subsequent pragma might indicate that the object
4914 -- is imported and thus not initialized. Also, the address
4915 -- clause might involve entities that have yet to be
4916 -- elaborated.
4918 Set_Has_Delayed_Freeze (U_Ent);
4920 -- If an initialization call has been generated for this
4921 -- object, it needs to be deferred to after the freeze node
4922 -- we have just now added, otherwise GIGI will see a
4923 -- reference to the variable (as actual to the IP call)
4924 -- before its definition.
4926 declare
4927 Init_Call : constant Node_Id :=
4928 Remove_Init_Call (U_Ent, N);
4930 begin
4931 if Present (Init_Call) then
4932 Append_Freeze_Action (U_Ent, Init_Call);
4934 -- Reset Initialization_Statements pointer so that
4935 -- if there is a pragma Import further down, it can
4936 -- clear any default initialization.
4938 Set_Initialization_Statements (U_Ent, Init_Call);
4939 end if;
4940 end;
4942 -- Entity has delayed freeze, so we will generate an
4943 -- alignment check at the freeze point unless suppressed.
4945 if not Range_Checks_Suppressed (U_Ent)
4946 and then not Alignment_Checks_Suppressed (U_Ent)
4947 then
4948 Set_Check_Address_Alignment (N);
4949 end if;
4951 -- Kill the size check code, since we are not allocating
4952 -- the variable, it is somewhere else.
4954 Kill_Size_Check_Code (U_Ent);
4956 -- If the address clause is of the form:
4958 -- for Y'Address use X'Address
4960 -- or
4962 -- Const : constant Address := X'Address;
4963 -- ...
4964 -- for Y'Address use Const;
4966 -- then we make an entry in the table for checking the size
4967 -- and alignment of the overlaying variable. We defer this
4968 -- check till after code generation to take full advantage
4969 -- of the annotation done by the back end.
4971 -- If the entity has a generic type, the check will be
4972 -- performed in the instance if the actual type justifies
4973 -- it, and we do not insert the clause in the table to
4974 -- prevent spurious warnings.
4976 -- Note: we used to test Comes_From_Source and only give
4977 -- this warning for source entities, but we have removed
4978 -- this test. It really seems bogus to generate overlays
4979 -- that would trigger this warning in generated code.
4980 -- Furthermore, by removing the test, we handle the
4981 -- aspect case properly.
4983 if Present (O_Ent)
4984 and then Is_Object (O_Ent)
4985 and then not Is_Generic_Type (Etype (U_Ent))
4986 and then Address_Clause_Overlay_Warnings
4987 then
4988 Address_Clause_Checks.Append ((N, U_Ent, O_Ent, Off));
4989 end if;
4990 end;
4992 -- Not a valid entity for an address clause
4994 else
4995 Error_Msg_N ("address cannot be given for &", Nam);
4996 end if;
4997 end Address;
4999 ---------------
5000 -- Alignment --
5001 ---------------
5003 -- Alignment attribute definition clause
5005 when Attribute_Alignment => Alignment : declare
5006 Align : constant Uint := Get_Alignment_Value (Expr);
5007 Max_Align : constant Uint := UI_From_Int (Maximum_Alignment);
5009 begin
5010 FOnly := True;
5012 if not Is_Type (U_Ent)
5013 and then Ekind (U_Ent) /= E_Variable
5014 and then Ekind (U_Ent) /= E_Constant
5015 then
5016 Error_Msg_N ("alignment cannot be given for &", Nam);
5018 elsif Duplicate_Clause then
5019 null;
5021 elsif Align /= No_Uint then
5022 Set_Has_Alignment_Clause (U_Ent);
5024 -- Tagged type case, check for attempt to set alignment to a
5025 -- value greater than Max_Align, and reset if so.
5027 if Is_Tagged_Type (U_Ent) and then Align > Max_Align then
5028 Error_Msg_N
5029 ("alignment for & set to Maximum_Aligment??", Nam);
5030 Set_Alignment (U_Ent, Max_Align);
5032 -- All other cases
5034 else
5035 Set_Alignment (U_Ent, Align);
5036 end if;
5038 -- For an array type, U_Ent is the first subtype. In that case,
5039 -- also set the alignment of the anonymous base type so that
5040 -- other subtypes (such as the itypes for aggregates of the
5041 -- type) also receive the expected alignment.
5043 if Is_Array_Type (U_Ent) then
5044 Set_Alignment (Base_Type (U_Ent), Align);
5045 end if;
5046 end if;
5047 end Alignment;
5049 ---------------
5050 -- Bit_Order --
5051 ---------------
5053 -- Bit_Order attribute definition clause
5055 when Attribute_Bit_Order => Bit_Order : declare
5056 begin
5057 if not Is_Record_Type (U_Ent) then
5058 Error_Msg_N
5059 ("Bit_Order can only be defined for record type", Nam);
5061 elsif Duplicate_Clause then
5062 null;
5064 else
5065 Analyze_And_Resolve (Expr, RTE (RE_Bit_Order));
5067 if Etype (Expr) = Any_Type then
5068 return;
5070 elsif not Is_OK_Static_Expression (Expr) then
5071 Flag_Non_Static_Expr
5072 ("Bit_Order requires static expression!", Expr);
5074 else
5075 if (Expr_Value (Expr) = 0) /= Bytes_Big_Endian then
5076 Set_Reverse_Bit_Order (Base_Type (U_Ent), True);
5077 end if;
5078 end if;
5079 end if;
5080 end Bit_Order;
5082 --------------------
5083 -- Component_Size --
5084 --------------------
5086 -- Component_Size attribute definition clause
5088 when Attribute_Component_Size => Component_Size_Case : declare
5089 Csize : constant Uint := Static_Integer (Expr);
5090 Ctyp : Entity_Id;
5091 Btype : Entity_Id;
5092 Biased : Boolean;
5093 New_Ctyp : Entity_Id;
5094 Decl : Node_Id;
5096 begin
5097 if not Is_Array_Type (U_Ent) then
5098 Error_Msg_N ("component size requires array type", Nam);
5099 return;
5100 end if;
5102 Btype := Base_Type (U_Ent);
5103 Ctyp := Component_Type (Btype);
5105 if Duplicate_Clause then
5106 null;
5108 elsif Rep_Item_Too_Early (Btype, N) then
5109 null;
5111 elsif Csize /= No_Uint then
5112 Check_Size (Expr, Ctyp, Csize, Biased);
5114 -- For the biased case, build a declaration for a subtype that
5115 -- will be used to represent the biased subtype that reflects
5116 -- the biased representation of components. We need the subtype
5117 -- to get proper conversions on referencing elements of the
5118 -- array.
5120 if Biased then
5121 New_Ctyp :=
5122 Make_Defining_Identifier (Loc,
5123 Chars =>
5124 New_External_Name (Chars (U_Ent), 'C', 0, 'T'));
5126 Decl :=
5127 Make_Subtype_Declaration (Loc,
5128 Defining_Identifier => New_Ctyp,
5129 Subtype_Indication =>
5130 New_Occurrence_Of (Component_Type (Btype), Loc));
5132 Set_Parent (Decl, N);
5133 Analyze (Decl, Suppress => All_Checks);
5135 Set_Has_Delayed_Freeze (New_Ctyp, False);
5136 Set_Esize (New_Ctyp, Csize);
5137 Set_RM_Size (New_Ctyp, Csize);
5138 Init_Alignment (New_Ctyp);
5139 Set_Is_Itype (New_Ctyp, True);
5140 Set_Associated_Node_For_Itype (New_Ctyp, U_Ent);
5142 Set_Component_Type (Btype, New_Ctyp);
5143 Set_Biased (New_Ctyp, N, "component size clause");
5144 end if;
5146 Set_Component_Size (Btype, Csize);
5148 -- Deal with warning on overridden size
5150 if Warn_On_Overridden_Size
5151 and then Has_Size_Clause (Ctyp)
5152 and then RM_Size (Ctyp) /= Csize
5153 then
5154 Error_Msg_NE
5155 ("component size overrides size clause for&?S?", N, Ctyp);
5156 end if;
5158 Set_Has_Component_Size_Clause (Btype, True);
5159 Set_Has_Non_Standard_Rep (Btype, True);
5160 end if;
5161 end Component_Size_Case;
5163 -----------------------
5164 -- Constant_Indexing --
5165 -----------------------
5167 when Attribute_Constant_Indexing =>
5168 Check_Indexing_Functions;
5170 ---------
5171 -- CPU --
5172 ---------
5174 when Attribute_CPU => CPU :
5175 begin
5176 -- CPU attribute definition clause not allowed except from aspect
5177 -- specification.
5179 if From_Aspect_Specification (N) then
5180 if not Is_Task_Type (U_Ent) then
5181 Error_Msg_N ("CPU can only be defined for task", Nam);
5183 elsif Duplicate_Clause then
5184 null;
5186 else
5187 -- The expression must be analyzed in the special manner
5188 -- described in "Handling of Default and Per-Object
5189 -- Expressions" in sem.ads.
5191 -- The visibility to the discriminants must be restored
5193 Push_Scope_And_Install_Discriminants (U_Ent);
5194 Preanalyze_Spec_Expression (Expr, RTE (RE_CPU_Range));
5195 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
5197 if not Is_OK_Static_Expression (Expr) then
5198 Check_Restriction (Static_Priorities, Expr);
5199 end if;
5200 end if;
5202 else
5203 Error_Msg_N
5204 ("attribute& cannot be set with definition clause", N);
5205 end if;
5206 end CPU;
5208 ----------------------
5209 -- Default_Iterator --
5210 ----------------------
5212 when Attribute_Default_Iterator => Default_Iterator : declare
5213 Func : Entity_Id;
5214 Typ : Entity_Id;
5216 begin
5217 -- If target type is untagged, further checks are irrelevant
5219 if not Is_Tagged_Type (U_Ent) then
5220 Error_Msg_N
5221 ("aspect Default_Iterator applies to tagged type", Nam);
5222 return;
5223 end if;
5225 Check_Iterator_Functions;
5227 Analyze (Expr);
5229 if not Is_Entity_Name (Expr)
5230 or else Ekind (Entity (Expr)) /= E_Function
5231 then
5232 Error_Msg_N ("aspect Iterator must be a function", Expr);
5233 return;
5234 else
5235 Func := Entity (Expr);
5236 end if;
5238 -- The type of the first parameter must be T, T'class, or a
5239 -- corresponding access type (5.5.1 (8/3). If function is
5240 -- parameterless label type accordingly.
5242 if No (First_Formal (Func)) then
5243 Typ := Any_Type;
5244 else
5245 Typ := Etype (First_Formal (Func));
5246 end if;
5248 if Typ = U_Ent
5249 or else Typ = Class_Wide_Type (U_Ent)
5250 or else (Is_Access_Type (Typ)
5251 and then Designated_Type (Typ) = U_Ent)
5252 or else (Is_Access_Type (Typ)
5253 and then Designated_Type (Typ) =
5254 Class_Wide_Type (U_Ent))
5255 then
5256 null;
5258 else
5259 Error_Msg_NE
5260 ("Default Iterator must be a primitive of&", Func, U_Ent);
5261 end if;
5262 end Default_Iterator;
5264 ------------------------
5265 -- Dispatching_Domain --
5266 ------------------------
5268 when Attribute_Dispatching_Domain => Dispatching_Domain :
5269 begin
5270 -- Dispatching_Domain attribute definition clause not allowed
5271 -- except from aspect specification.
5273 if From_Aspect_Specification (N) then
5274 if not Is_Task_Type (U_Ent) then
5275 Error_Msg_N
5276 ("Dispatching_Domain can only be defined for task", Nam);
5278 elsif Duplicate_Clause then
5279 null;
5281 else
5282 -- The expression must be analyzed in the special manner
5283 -- described in "Handling of Default and Per-Object
5284 -- Expressions" in sem.ads.
5286 -- The visibility to the discriminants must be restored
5288 Push_Scope_And_Install_Discriminants (U_Ent);
5290 Preanalyze_Spec_Expression
5291 (Expr, RTE (RE_Dispatching_Domain));
5293 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
5294 end if;
5296 else
5297 Error_Msg_N
5298 ("attribute& cannot be set with definition clause", N);
5299 end if;
5300 end Dispatching_Domain;
5302 ------------------
5303 -- External_Tag --
5304 ------------------
5306 when Attribute_External_Tag => External_Tag :
5307 begin
5308 if not Is_Tagged_Type (U_Ent) then
5309 Error_Msg_N ("should be a tagged type", Nam);
5310 end if;
5312 if Duplicate_Clause then
5313 null;
5315 else
5316 Analyze_And_Resolve (Expr, Standard_String);
5318 if not Is_OK_Static_Expression (Expr) then
5319 Flag_Non_Static_Expr
5320 ("static string required for tag name!", Nam);
5321 end if;
5323 if not Is_Library_Level_Entity (U_Ent) then
5324 Error_Msg_NE
5325 ("??non-unique external tag supplied for &", N, U_Ent);
5326 Error_Msg_N
5327 ("\??same external tag applies to all "
5328 & "subprogram calls", N);
5329 Error_Msg_N
5330 ("\??corresponding internal tag cannot be obtained", N);
5331 end if;
5332 end if;
5333 end External_Tag;
5335 --------------------------
5336 -- Implicit_Dereference --
5337 --------------------------
5339 when Attribute_Implicit_Dereference =>
5341 -- Legality checks already performed at the point of the type
5342 -- declaration, aspect is not delayed.
5344 null;
5346 -----------
5347 -- Input --
5348 -----------
5350 when Attribute_Input =>
5351 Analyze_Stream_TSS_Definition (TSS_Stream_Input);
5352 Set_Has_Specified_Stream_Input (Ent);
5354 ------------------------
5355 -- Interrupt_Priority --
5356 ------------------------
5358 when Attribute_Interrupt_Priority => Interrupt_Priority :
5359 begin
5360 -- Interrupt_Priority attribute definition clause not allowed
5361 -- except from aspect specification.
5363 if From_Aspect_Specification (N) then
5364 if not Is_Concurrent_Type (U_Ent) then
5365 Error_Msg_N
5366 ("Interrupt_Priority can only be defined for task "
5367 & "and protected object", Nam);
5369 elsif Duplicate_Clause then
5370 null;
5372 else
5373 -- The expression must be analyzed in the special manner
5374 -- described in "Handling of Default and Per-Object
5375 -- Expressions" in sem.ads.
5377 -- The visibility to the discriminants must be restored
5379 Push_Scope_And_Install_Discriminants (U_Ent);
5381 Preanalyze_Spec_Expression
5382 (Expr, RTE (RE_Interrupt_Priority));
5384 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
5386 -- Check the No_Task_At_Interrupt_Priority restriction
5388 if Is_Task_Type (U_Ent) then
5389 Check_Restriction (No_Task_At_Interrupt_Priority, N);
5390 end if;
5391 end if;
5393 else
5394 Error_Msg_N
5395 ("attribute& cannot be set with definition clause", N);
5396 end if;
5397 end Interrupt_Priority;
5399 --------------
5400 -- Iterable --
5401 --------------
5403 when Attribute_Iterable =>
5404 Analyze (Expr);
5406 if Nkind (Expr) /= N_Aggregate then
5407 Error_Msg_N ("aspect Iterable must be an aggregate", Expr);
5408 end if;
5410 declare
5411 Assoc : Node_Id;
5413 begin
5414 Assoc := First (Component_Associations (Expr));
5415 while Present (Assoc) loop
5416 if not Is_Entity_Name (Expression (Assoc)) then
5417 Error_Msg_N ("value must be a function", Assoc);
5418 end if;
5420 Next (Assoc);
5421 end loop;
5422 end;
5424 ----------------------
5425 -- Iterator_Element --
5426 ----------------------
5428 when Attribute_Iterator_Element =>
5429 Analyze (Expr);
5431 if not Is_Entity_Name (Expr)
5432 or else not Is_Type (Entity (Expr))
5433 then
5434 Error_Msg_N ("aspect Iterator_Element must be a type", Expr);
5435 end if;
5437 -------------------
5438 -- Machine_Radix --
5439 -------------------
5441 -- Machine radix attribute definition clause
5443 when Attribute_Machine_Radix => Machine_Radix : declare
5444 Radix : constant Uint := Static_Integer (Expr);
5446 begin
5447 if not Is_Decimal_Fixed_Point_Type (U_Ent) then
5448 Error_Msg_N ("decimal fixed-point type expected for &", Nam);
5450 elsif Duplicate_Clause then
5451 null;
5453 elsif Radix /= No_Uint then
5454 Set_Has_Machine_Radix_Clause (U_Ent);
5455 Set_Has_Non_Standard_Rep (Base_Type (U_Ent));
5457 if Radix = 2 then
5458 null;
5459 elsif Radix = 10 then
5460 Set_Machine_Radix_10 (U_Ent);
5461 else
5462 Error_Msg_N ("machine radix value must be 2 or 10", Expr);
5463 end if;
5464 end if;
5465 end Machine_Radix;
5467 -----------------
5468 -- Object_Size --
5469 -----------------
5471 -- Object_Size attribute definition clause
5473 when Attribute_Object_Size => Object_Size : declare
5474 Size : constant Uint := Static_Integer (Expr);
5476 Biased : Boolean;
5477 pragma Warnings (Off, Biased);
5479 begin
5480 if not Is_Type (U_Ent) then
5481 Error_Msg_N ("Object_Size cannot be given for &", Nam);
5483 elsif Duplicate_Clause then
5484 null;
5486 else
5487 Check_Size (Expr, U_Ent, Size, Biased);
5489 if Is_Scalar_Type (U_Ent) then
5490 if Size /= 8 and then Size /= 16 and then Size /= 32
5491 and then UI_Mod (Size, 64) /= 0
5492 then
5493 Error_Msg_N
5494 ("Object_Size must be 8, 16, 32, or multiple of 64",
5495 Expr);
5496 end if;
5498 elsif Size mod 8 /= 0 then
5499 Error_Msg_N ("Object_Size must be a multiple of 8", Expr);
5500 end if;
5502 Set_Esize (U_Ent, Size);
5503 Set_Has_Object_Size_Clause (U_Ent);
5504 Alignment_Check_For_Size_Change (U_Ent, Size);
5505 end if;
5506 end Object_Size;
5508 ------------
5509 -- Output --
5510 ------------
5512 when Attribute_Output =>
5513 Analyze_Stream_TSS_Definition (TSS_Stream_Output);
5514 Set_Has_Specified_Stream_Output (Ent);
5516 --------------
5517 -- Priority --
5518 --------------
5520 when Attribute_Priority => Priority :
5521 begin
5522 -- Priority attribute definition clause not allowed except from
5523 -- aspect specification.
5525 if From_Aspect_Specification (N) then
5526 if not (Is_Concurrent_Type (U_Ent)
5527 or else Ekind (U_Ent) = E_Procedure)
5528 then
5529 Error_Msg_N
5530 ("Priority can only be defined for task and protected "
5531 & "object", Nam);
5533 elsif Duplicate_Clause then
5534 null;
5536 else
5537 -- The expression must be analyzed in the special manner
5538 -- described in "Handling of Default and Per-Object
5539 -- Expressions" in sem.ads.
5541 -- The visibility to the discriminants must be restored
5543 Push_Scope_And_Install_Discriminants (U_Ent);
5544 Preanalyze_Spec_Expression (Expr, Standard_Integer);
5545 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
5547 if not Is_OK_Static_Expression (Expr) then
5548 Check_Restriction (Static_Priorities, Expr);
5549 end if;
5550 end if;
5552 else
5553 Error_Msg_N
5554 ("attribute& cannot be set with definition clause", N);
5555 end if;
5556 end Priority;
5558 ----------
5559 -- Read --
5560 ----------
5562 when Attribute_Read =>
5563 Analyze_Stream_TSS_Definition (TSS_Stream_Read);
5564 Set_Has_Specified_Stream_Read (Ent);
5566 --------------------------
5567 -- Scalar_Storage_Order --
5568 --------------------------
5570 -- Scalar_Storage_Order attribute definition clause
5572 when Attribute_Scalar_Storage_Order => Scalar_Storage_Order : declare
5573 begin
5574 if not (Is_Record_Type (U_Ent) or else Is_Array_Type (U_Ent)) then
5575 Error_Msg_N
5576 ("Scalar_Storage_Order can only be defined for "
5577 & "record or array type", Nam);
5579 elsif Duplicate_Clause then
5580 null;
5582 else
5583 Analyze_And_Resolve (Expr, RTE (RE_Bit_Order));
5585 if Etype (Expr) = Any_Type then
5586 return;
5588 elsif not Is_OK_Static_Expression (Expr) then
5589 Flag_Non_Static_Expr
5590 ("Scalar_Storage_Order requires static expression!", Expr);
5592 elsif (Expr_Value (Expr) = 0) /= Bytes_Big_Endian then
5594 -- Here for the case of a non-default (i.e. non-confirming)
5595 -- Scalar_Storage_Order attribute definition.
5597 if Support_Nondefault_SSO_On_Target then
5598 Set_Reverse_Storage_Order (Base_Type (U_Ent), True);
5599 else
5600 Error_Msg_N
5601 ("non-default Scalar_Storage_Order "
5602 & "not supported on target", Expr);
5603 end if;
5604 end if;
5606 -- Clear SSO default indications since explicit setting of the
5607 -- order overrides the defaults.
5609 Set_SSO_Set_Low_By_Default (Base_Type (U_Ent), False);
5610 Set_SSO_Set_High_By_Default (Base_Type (U_Ent), False);
5611 end if;
5612 end Scalar_Storage_Order;
5614 ----------
5615 -- Size --
5616 ----------
5618 -- Size attribute definition clause
5620 when Attribute_Size => Size : declare
5621 Size : constant Uint := Static_Integer (Expr);
5622 Etyp : Entity_Id;
5623 Biased : Boolean;
5625 begin
5626 FOnly := True;
5628 if Duplicate_Clause then
5629 null;
5631 elsif not Is_Type (U_Ent)
5632 and then Ekind (U_Ent) /= E_Variable
5633 and then Ekind (U_Ent) /= E_Constant
5634 then
5635 Error_Msg_N ("size cannot be given for &", Nam);
5637 elsif Is_Array_Type (U_Ent)
5638 and then not Is_Constrained (U_Ent)
5639 then
5640 Error_Msg_N
5641 ("size cannot be given for unconstrained array", Nam);
5643 elsif Size /= No_Uint then
5644 if Is_Type (U_Ent) then
5645 Etyp := U_Ent;
5646 else
5647 Etyp := Etype (U_Ent);
5648 end if;
5650 -- Check size, note that Gigi is in charge of checking that the
5651 -- size of an array or record type is OK. Also we do not check
5652 -- the size in the ordinary fixed-point case, since it is too
5653 -- early to do so (there may be subsequent small clause that
5654 -- affects the size). We can check the size if a small clause
5655 -- has already been given.
5657 if not Is_Ordinary_Fixed_Point_Type (U_Ent)
5658 or else Has_Small_Clause (U_Ent)
5659 then
5660 Check_Size (Expr, Etyp, Size, Biased);
5661 Set_Biased (U_Ent, N, "size clause", Biased);
5662 end if;
5664 -- For types set RM_Size and Esize if possible
5666 if Is_Type (U_Ent) then
5667 Set_RM_Size (U_Ent, Size);
5669 -- For elementary types, increase Object_Size to power of 2,
5670 -- but not less than a storage unit in any case (normally
5671 -- this means it will be byte addressable).
5673 -- For all other types, nothing else to do, we leave Esize
5674 -- (object size) unset, the back end will set it from the
5675 -- size and alignment in an appropriate manner.
5677 -- In both cases, we check whether the alignment must be
5678 -- reset in the wake of the size change.
5680 if Is_Elementary_Type (U_Ent) then
5681 if Size <= System_Storage_Unit then
5682 Init_Esize (U_Ent, System_Storage_Unit);
5683 elsif Size <= 16 then
5684 Init_Esize (U_Ent, 16);
5685 elsif Size <= 32 then
5686 Init_Esize (U_Ent, 32);
5687 else
5688 Set_Esize (U_Ent, (Size + 63) / 64 * 64);
5689 end if;
5691 Alignment_Check_For_Size_Change (U_Ent, Esize (U_Ent));
5692 else
5693 Alignment_Check_For_Size_Change (U_Ent, Size);
5694 end if;
5696 -- For objects, set Esize only
5698 else
5699 if Is_Elementary_Type (Etyp) then
5700 if Size /= System_Storage_Unit
5701 and then
5702 Size /= System_Storage_Unit * 2
5703 and then
5704 Size /= System_Storage_Unit * 4
5705 and then
5706 Size /= System_Storage_Unit * 8
5707 then
5708 Error_Msg_Uint_1 := UI_From_Int (System_Storage_Unit);
5709 Error_Msg_Uint_2 := Error_Msg_Uint_1 * 8;
5710 Error_Msg_N
5711 ("size for primitive object must be a power of 2"
5712 & " in the range ^-^", N);
5713 end if;
5714 end if;
5716 Set_Esize (U_Ent, Size);
5717 end if;
5719 Set_Has_Size_Clause (U_Ent);
5720 end if;
5721 end Size;
5723 -----------
5724 -- Small --
5725 -----------
5727 -- Small attribute definition clause
5729 when Attribute_Small => Small : declare
5730 Implicit_Base : constant Entity_Id := Base_Type (U_Ent);
5731 Small : Ureal;
5733 begin
5734 Analyze_And_Resolve (Expr, Any_Real);
5736 if Etype (Expr) = Any_Type then
5737 return;
5739 elsif not Is_OK_Static_Expression (Expr) then
5740 Flag_Non_Static_Expr
5741 ("small requires static expression!", Expr);
5742 return;
5744 else
5745 Small := Expr_Value_R (Expr);
5747 if Small <= Ureal_0 then
5748 Error_Msg_N ("small value must be greater than zero", Expr);
5749 return;
5750 end if;
5752 end if;
5754 if not Is_Ordinary_Fixed_Point_Type (U_Ent) then
5755 Error_Msg_N
5756 ("small requires an ordinary fixed point type", Nam);
5758 elsif Has_Small_Clause (U_Ent) then
5759 Error_Msg_N ("small already given for &", Nam);
5761 elsif Small > Delta_Value (U_Ent) then
5762 Error_Msg_N
5763 ("small value must not be greater than delta value", Nam);
5765 else
5766 Set_Small_Value (U_Ent, Small);
5767 Set_Small_Value (Implicit_Base, Small);
5768 Set_Has_Small_Clause (U_Ent);
5769 Set_Has_Small_Clause (Implicit_Base);
5770 Set_Has_Non_Standard_Rep (Implicit_Base);
5771 end if;
5772 end Small;
5774 ------------------
5775 -- Storage_Pool --
5776 ------------------
5778 -- Storage_Pool attribute definition clause
5780 when Attribute_Storage_Pool | Attribute_Simple_Storage_Pool => declare
5781 Pool : Entity_Id;
5782 T : Entity_Id;
5784 begin
5785 if Ekind (U_Ent) = E_Access_Subprogram_Type then
5786 Error_Msg_N
5787 ("storage pool cannot be given for access-to-subprogram type",
5788 Nam);
5789 return;
5791 elsif not
5792 Ekind_In (U_Ent, E_Access_Type, E_General_Access_Type)
5793 then
5794 Error_Msg_N
5795 ("storage pool can only be given for access types", Nam);
5796 return;
5798 elsif Is_Derived_Type (U_Ent) then
5799 Error_Msg_N
5800 ("storage pool cannot be given for a derived access type",
5801 Nam);
5803 elsif Duplicate_Clause then
5804 return;
5806 elsif Present (Associated_Storage_Pool (U_Ent)) then
5807 Error_Msg_N ("storage pool already given for &", Nam);
5808 return;
5809 end if;
5811 -- Check for Storage_Size previously given
5813 declare
5814 SS : constant Node_Id :=
5815 Get_Attribute_Definition_Clause
5816 (U_Ent, Attribute_Storage_Size);
5817 begin
5818 if Present (SS) then
5819 Check_Pool_Size_Clash (U_Ent, N, SS);
5820 end if;
5821 end;
5823 -- Storage_Pool case
5825 if Id = Attribute_Storage_Pool then
5826 Analyze_And_Resolve
5827 (Expr, Class_Wide_Type (RTE (RE_Root_Storage_Pool)));
5829 -- In the Simple_Storage_Pool case, we allow a variable of any
5830 -- simple storage pool type, so we Resolve without imposing an
5831 -- expected type.
5833 else
5834 Analyze_And_Resolve (Expr);
5836 if not Present (Get_Rep_Pragma
5837 (Etype (Expr), Name_Simple_Storage_Pool_Type))
5838 then
5839 Error_Msg_N
5840 ("expression must be of a simple storage pool type", Expr);
5841 end if;
5842 end if;
5844 if not Denotes_Variable (Expr) then
5845 Error_Msg_N ("storage pool must be a variable", Expr);
5846 return;
5847 end if;
5849 if Nkind (Expr) = N_Type_Conversion then
5850 T := Etype (Expression (Expr));
5851 else
5852 T := Etype (Expr);
5853 end if;
5855 -- The Stack_Bounded_Pool is used internally for implementing
5856 -- access types with a Storage_Size. Since it only work properly
5857 -- when used on one specific type, we need to check that it is not
5858 -- hijacked improperly:
5860 -- type T is access Integer;
5861 -- for T'Storage_Size use n;
5862 -- type Q is access Float;
5863 -- for Q'Storage_Size use T'Storage_Size; -- incorrect
5865 if RTE_Available (RE_Stack_Bounded_Pool)
5866 and then Base_Type (T) = RTE (RE_Stack_Bounded_Pool)
5867 then
5868 Error_Msg_N ("non-shareable internal Pool", Expr);
5869 return;
5870 end if;
5872 -- If the argument is a name that is not an entity name, then
5873 -- we construct a renaming operation to define an entity of
5874 -- type storage pool.
5876 if not Is_Entity_Name (Expr)
5877 and then Is_Object_Reference (Expr)
5878 then
5879 Pool := Make_Temporary (Loc, 'P', Expr);
5881 declare
5882 Rnode : constant Node_Id :=
5883 Make_Object_Renaming_Declaration (Loc,
5884 Defining_Identifier => Pool,
5885 Subtype_Mark =>
5886 New_Occurrence_Of (Etype (Expr), Loc),
5887 Name => Expr);
5889 begin
5890 -- If the attribute definition clause comes from an aspect
5891 -- clause, then insert the renaming before the associated
5892 -- entity's declaration, since the attribute clause has
5893 -- not yet been appended to the declaration list.
5895 if From_Aspect_Specification (N) then
5896 Insert_Before (Parent (Entity (N)), Rnode);
5897 else
5898 Insert_Before (N, Rnode);
5899 end if;
5901 Analyze (Rnode);
5902 Set_Associated_Storage_Pool (U_Ent, Pool);
5903 end;
5905 elsif Is_Entity_Name (Expr) then
5906 Pool := Entity (Expr);
5908 -- If pool is a renamed object, get original one. This can
5909 -- happen with an explicit renaming, and within instances.
5911 while Present (Renamed_Object (Pool))
5912 and then Is_Entity_Name (Renamed_Object (Pool))
5913 loop
5914 Pool := Entity (Renamed_Object (Pool));
5915 end loop;
5917 if Present (Renamed_Object (Pool))
5918 and then Nkind (Renamed_Object (Pool)) = N_Type_Conversion
5919 and then Is_Entity_Name (Expression (Renamed_Object (Pool)))
5920 then
5921 Pool := Entity (Expression (Renamed_Object (Pool)));
5922 end if;
5924 Set_Associated_Storage_Pool (U_Ent, Pool);
5926 elsif Nkind (Expr) = N_Type_Conversion
5927 and then Is_Entity_Name (Expression (Expr))
5928 and then Nkind (Original_Node (Expr)) = N_Attribute_Reference
5929 then
5930 Pool := Entity (Expression (Expr));
5931 Set_Associated_Storage_Pool (U_Ent, Pool);
5933 else
5934 Error_Msg_N ("incorrect reference to a Storage Pool", Expr);
5935 return;
5936 end if;
5937 end;
5939 ------------------
5940 -- Storage_Size --
5941 ------------------
5943 -- Storage_Size attribute definition clause
5945 when Attribute_Storage_Size => Storage_Size : declare
5946 Btype : constant Entity_Id := Base_Type (U_Ent);
5948 begin
5949 if Is_Task_Type (U_Ent) then
5951 -- Check obsolescent (but never obsolescent if from aspect)
5953 if not From_Aspect_Specification (N) then
5954 Check_Restriction (No_Obsolescent_Features, N);
5956 if Warn_On_Obsolescent_Feature then
5957 Error_Msg_N
5958 ("?j?storage size clause for task is an " &
5959 "obsolescent feature (RM J.9)", N);
5960 Error_Msg_N ("\?j?use Storage_Size pragma instead", N);
5961 end if;
5962 end if;
5964 FOnly := True;
5965 end if;
5967 if not Is_Access_Type (U_Ent)
5968 and then Ekind (U_Ent) /= E_Task_Type
5969 then
5970 Error_Msg_N ("storage size cannot be given for &", Nam);
5972 elsif Is_Access_Type (U_Ent) and Is_Derived_Type (U_Ent) then
5973 Error_Msg_N
5974 ("storage size cannot be given for a derived access type",
5975 Nam);
5977 elsif Duplicate_Clause then
5978 null;
5980 else
5981 Analyze_And_Resolve (Expr, Any_Integer);
5983 if Is_Access_Type (U_Ent) then
5985 -- Check for Storage_Pool previously given
5987 declare
5988 SP : constant Node_Id :=
5989 Get_Attribute_Definition_Clause
5990 (U_Ent, Attribute_Storage_Pool);
5992 begin
5993 if Present (SP) then
5994 Check_Pool_Size_Clash (U_Ent, SP, N);
5995 end if;
5996 end;
5998 -- Special case of for x'Storage_Size use 0
6000 if Is_OK_Static_Expression (Expr)
6001 and then Expr_Value (Expr) = 0
6002 then
6003 Set_No_Pool_Assigned (Btype);
6004 end if;
6005 end if;
6007 Set_Has_Storage_Size_Clause (Btype);
6008 end if;
6009 end Storage_Size;
6011 -----------------
6012 -- Stream_Size --
6013 -----------------
6015 when Attribute_Stream_Size => Stream_Size : declare
6016 Size : constant Uint := Static_Integer (Expr);
6018 begin
6019 if Ada_Version <= Ada_95 then
6020 Check_Restriction (No_Implementation_Attributes, N);
6021 end if;
6023 if Duplicate_Clause then
6024 null;
6026 elsif Is_Elementary_Type (U_Ent) then
6027 if Size /= System_Storage_Unit
6028 and then
6029 Size /= System_Storage_Unit * 2
6030 and then
6031 Size /= System_Storage_Unit * 4
6032 and then
6033 Size /= System_Storage_Unit * 8
6034 then
6035 Error_Msg_Uint_1 := UI_From_Int (System_Storage_Unit);
6036 Error_Msg_N
6037 ("stream size for elementary type must be a"
6038 & " power of 2 and at least ^", N);
6040 elsif RM_Size (U_Ent) > Size then
6041 Error_Msg_Uint_1 := RM_Size (U_Ent);
6042 Error_Msg_N
6043 ("stream size for elementary type must be a"
6044 & " power of 2 and at least ^", N);
6045 end if;
6047 Set_Has_Stream_Size_Clause (U_Ent);
6049 else
6050 Error_Msg_N ("Stream_Size cannot be given for &", Nam);
6051 end if;
6052 end Stream_Size;
6054 ----------------
6055 -- Value_Size --
6056 ----------------
6058 -- Value_Size attribute definition clause
6060 when Attribute_Value_Size => Value_Size : declare
6061 Size : constant Uint := Static_Integer (Expr);
6062 Biased : Boolean;
6064 begin
6065 if not Is_Type (U_Ent) then
6066 Error_Msg_N ("Value_Size cannot be given for &", Nam);
6068 elsif Duplicate_Clause then
6069 null;
6071 elsif Is_Array_Type (U_Ent)
6072 and then not Is_Constrained (U_Ent)
6073 then
6074 Error_Msg_N
6075 ("Value_Size cannot be given for unconstrained array", Nam);
6077 else
6078 if Is_Elementary_Type (U_Ent) then
6079 Check_Size (Expr, U_Ent, Size, Biased);
6080 Set_Biased (U_Ent, N, "value size clause", Biased);
6081 end if;
6083 Set_RM_Size (U_Ent, Size);
6084 end if;
6085 end Value_Size;
6087 -----------------------
6088 -- Variable_Indexing --
6089 -----------------------
6091 when Attribute_Variable_Indexing =>
6092 Check_Indexing_Functions;
6094 -----------
6095 -- Write --
6096 -----------
6098 when Attribute_Write =>
6099 Analyze_Stream_TSS_Definition (TSS_Stream_Write);
6100 Set_Has_Specified_Stream_Write (Ent);
6102 -- All other attributes cannot be set
6104 when others =>
6105 Error_Msg_N
6106 ("attribute& cannot be set with definition clause", N);
6107 end case;
6109 -- The test for the type being frozen must be performed after any
6110 -- expression the clause has been analyzed since the expression itself
6111 -- might cause freezing that makes the clause illegal.
6113 if Rep_Item_Too_Late (U_Ent, N, FOnly) then
6114 return;
6115 end if;
6116 end Analyze_Attribute_Definition_Clause;
6118 ----------------------------
6119 -- Analyze_Code_Statement --
6120 ----------------------------
6122 procedure Analyze_Code_Statement (N : Node_Id) is
6123 HSS : constant Node_Id := Parent (N);
6124 SBody : constant Node_Id := Parent (HSS);
6125 Subp : constant Entity_Id := Current_Scope;
6126 Stmt : Node_Id;
6127 Decl : Node_Id;
6128 StmtO : Node_Id;
6129 DeclO : Node_Id;
6131 begin
6132 -- Accept foreign code statements for CodePeer. The analysis is skipped
6133 -- to avoid rejecting unrecognized constructs.
6135 if CodePeer_Mode then
6136 Set_Analyzed (N);
6137 return;
6138 end if;
6140 -- Analyze and check we get right type, note that this implements the
6141 -- requirement (RM 13.8(1)) that Machine_Code be with'ed, since that is
6142 -- the only way that Asm_Insn could possibly be visible.
6144 Analyze_And_Resolve (Expression (N));
6146 if Etype (Expression (N)) = Any_Type then
6147 return;
6148 elsif Etype (Expression (N)) /= RTE (RE_Asm_Insn) then
6149 Error_Msg_N ("incorrect type for code statement", N);
6150 return;
6151 end if;
6153 Check_Code_Statement (N);
6155 -- Make sure we appear in the handled statement sequence of a subprogram
6156 -- (RM 13.8(3)).
6158 if Nkind (HSS) /= N_Handled_Sequence_Of_Statements
6159 or else Nkind (SBody) /= N_Subprogram_Body
6160 then
6161 Error_Msg_N
6162 ("code statement can only appear in body of subprogram", N);
6163 return;
6164 end if;
6166 -- Do remaining checks (RM 13.8(3)) if not already done
6168 if not Is_Machine_Code_Subprogram (Subp) then
6169 Set_Is_Machine_Code_Subprogram (Subp);
6171 -- No exception handlers allowed
6173 if Present (Exception_Handlers (HSS)) then
6174 Error_Msg_N
6175 ("exception handlers not permitted in machine code subprogram",
6176 First (Exception_Handlers (HSS)));
6177 end if;
6179 -- No declarations other than use clauses and pragmas (we allow
6180 -- certain internally generated declarations as well).
6182 Decl := First (Declarations (SBody));
6183 while Present (Decl) loop
6184 DeclO := Original_Node (Decl);
6185 if Comes_From_Source (DeclO)
6186 and not Nkind_In (DeclO, N_Pragma,
6187 N_Use_Package_Clause,
6188 N_Use_Type_Clause,
6189 N_Implicit_Label_Declaration)
6190 then
6191 Error_Msg_N
6192 ("this declaration not allowed in machine code subprogram",
6193 DeclO);
6194 end if;
6196 Next (Decl);
6197 end loop;
6199 -- No statements other than code statements, pragmas, and labels.
6200 -- Again we allow certain internally generated statements.
6202 -- In Ada 2012, qualified expressions are names, and the code
6203 -- statement is initially parsed as a procedure call.
6205 Stmt := First (Statements (HSS));
6206 while Present (Stmt) loop
6207 StmtO := Original_Node (Stmt);
6209 -- A procedure call transformed into a code statement is OK
6211 if Ada_Version >= Ada_2012
6212 and then Nkind (StmtO) = N_Procedure_Call_Statement
6213 and then Nkind (Name (StmtO)) = N_Qualified_Expression
6214 then
6215 null;
6217 elsif Comes_From_Source (StmtO)
6218 and then not Nkind_In (StmtO, N_Pragma,
6219 N_Label,
6220 N_Code_Statement)
6221 then
6222 Error_Msg_N
6223 ("this statement is not allowed in machine code subprogram",
6224 StmtO);
6225 end if;
6227 Next (Stmt);
6228 end loop;
6229 end if;
6230 end Analyze_Code_Statement;
6232 -----------------------------------------------
6233 -- Analyze_Enumeration_Representation_Clause --
6234 -----------------------------------------------
6236 procedure Analyze_Enumeration_Representation_Clause (N : Node_Id) is
6237 Ident : constant Node_Id := Identifier (N);
6238 Aggr : constant Node_Id := Array_Aggregate (N);
6239 Enumtype : Entity_Id;
6240 Elit : Entity_Id;
6241 Expr : Node_Id;
6242 Assoc : Node_Id;
6243 Choice : Node_Id;
6244 Val : Uint;
6246 Err : Boolean := False;
6247 -- Set True to avoid cascade errors and crashes on incorrect source code
6249 Lo : constant Uint := Expr_Value (Type_Low_Bound (Universal_Integer));
6250 Hi : constant Uint := Expr_Value (Type_High_Bound (Universal_Integer));
6251 -- Allowed range of universal integer (= allowed range of enum lit vals)
6253 Min : Uint;
6254 Max : Uint;
6255 -- Minimum and maximum values of entries
6257 Max_Node : Node_Id;
6258 -- Pointer to node for literal providing max value
6260 begin
6261 if Ignore_Rep_Clauses then
6262 Kill_Rep_Clause (N);
6263 return;
6264 end if;
6266 -- Ignore enumeration rep clauses by default in CodePeer mode,
6267 -- unless -gnatd.I is specified, as a work around for potential false
6268 -- positive messages.
6270 if CodePeer_Mode and not Debug_Flag_Dot_II then
6271 return;
6272 end if;
6274 -- First some basic error checks
6276 Find_Type (Ident);
6277 Enumtype := Entity (Ident);
6279 if Enumtype = Any_Type
6280 or else Rep_Item_Too_Early (Enumtype, N)
6281 then
6282 return;
6283 else
6284 Enumtype := Underlying_Type (Enumtype);
6285 end if;
6287 if not Is_Enumeration_Type (Enumtype) then
6288 Error_Msg_NE
6289 ("enumeration type required, found}",
6290 Ident, First_Subtype (Enumtype));
6291 return;
6292 end if;
6294 -- Ignore rep clause on generic actual type. This will already have
6295 -- been flagged on the template as an error, and this is the safest
6296 -- way to ensure we don't get a junk cascaded message in the instance.
6298 if Is_Generic_Actual_Type (Enumtype) then
6299 return;
6301 -- Type must be in current scope
6303 elsif Scope (Enumtype) /= Current_Scope then
6304 Error_Msg_N ("type must be declared in this scope", Ident);
6305 return;
6307 -- Type must be a first subtype
6309 elsif not Is_First_Subtype (Enumtype) then
6310 Error_Msg_N ("cannot give enumeration rep clause for subtype", N);
6311 return;
6313 -- Ignore duplicate rep clause
6315 elsif Has_Enumeration_Rep_Clause (Enumtype) then
6316 Error_Msg_N ("duplicate enumeration rep clause ignored", N);
6317 return;
6319 -- Don't allow rep clause for standard [wide_[wide_]]character
6321 elsif Is_Standard_Character_Type (Enumtype) then
6322 Error_Msg_N ("enumeration rep clause not allowed for this type", N);
6323 return;
6325 -- Check that the expression is a proper aggregate (no parentheses)
6327 elsif Paren_Count (Aggr) /= 0 then
6328 Error_Msg
6329 ("extra parentheses surrounding aggregate not allowed",
6330 First_Sloc (Aggr));
6331 return;
6333 -- All tests passed, so set rep clause in place
6335 else
6336 Set_Has_Enumeration_Rep_Clause (Enumtype);
6337 Set_Has_Enumeration_Rep_Clause (Base_Type (Enumtype));
6338 end if;
6340 -- Now we process the aggregate. Note that we don't use the normal
6341 -- aggregate code for this purpose, because we don't want any of the
6342 -- normal expansion activities, and a number of special semantic
6343 -- rules apply (including the component type being any integer type)
6345 Elit := First_Literal (Enumtype);
6347 -- First the positional entries if any
6349 if Present (Expressions (Aggr)) then
6350 Expr := First (Expressions (Aggr));
6351 while Present (Expr) loop
6352 if No (Elit) then
6353 Error_Msg_N ("too many entries in aggregate", Expr);
6354 return;
6355 end if;
6357 Val := Static_Integer (Expr);
6359 -- Err signals that we found some incorrect entries processing
6360 -- the list. The final checks for completeness and ordering are
6361 -- skipped in this case.
6363 if Val = No_Uint then
6364 Err := True;
6366 elsif Val < Lo or else Hi < Val then
6367 Error_Msg_N ("value outside permitted range", Expr);
6368 Err := True;
6369 end if;
6371 Set_Enumeration_Rep (Elit, Val);
6372 Set_Enumeration_Rep_Expr (Elit, Expr);
6373 Next (Expr);
6374 Next (Elit);
6375 end loop;
6376 end if;
6378 -- Now process the named entries if present
6380 if Present (Component_Associations (Aggr)) then
6381 Assoc := First (Component_Associations (Aggr));
6382 while Present (Assoc) loop
6383 Choice := First (Choices (Assoc));
6385 if Present (Next (Choice)) then
6386 Error_Msg_N
6387 ("multiple choice not allowed here", Next (Choice));
6388 Err := True;
6389 end if;
6391 if Nkind (Choice) = N_Others_Choice then
6392 Error_Msg_N ("others choice not allowed here", Choice);
6393 Err := True;
6395 elsif Nkind (Choice) = N_Range then
6397 -- ??? should allow zero/one element range here
6399 Error_Msg_N ("range not allowed here", Choice);
6400 Err := True;
6402 else
6403 Analyze_And_Resolve (Choice, Enumtype);
6405 if Error_Posted (Choice) then
6406 Err := True;
6407 end if;
6409 if not Err then
6410 if Is_Entity_Name (Choice)
6411 and then Is_Type (Entity (Choice))
6412 then
6413 Error_Msg_N ("subtype name not allowed here", Choice);
6414 Err := True;
6416 -- ??? should allow static subtype with zero/one entry
6418 elsif Etype (Choice) = Base_Type (Enumtype) then
6419 if not Is_OK_Static_Expression (Choice) then
6420 Flag_Non_Static_Expr
6421 ("non-static expression used for choice!", Choice);
6422 Err := True;
6424 else
6425 Elit := Expr_Value_E (Choice);
6427 if Present (Enumeration_Rep_Expr (Elit)) then
6428 Error_Msg_Sloc :=
6429 Sloc (Enumeration_Rep_Expr (Elit));
6430 Error_Msg_NE
6431 ("representation for& previously given#",
6432 Choice, Elit);
6433 Err := True;
6434 end if;
6436 Set_Enumeration_Rep_Expr (Elit, Expression (Assoc));
6438 Expr := Expression (Assoc);
6439 Val := Static_Integer (Expr);
6441 if Val = No_Uint then
6442 Err := True;
6444 elsif Val < Lo or else Hi < Val then
6445 Error_Msg_N ("value outside permitted range", Expr);
6446 Err := True;
6447 end if;
6449 Set_Enumeration_Rep (Elit, Val);
6450 end if;
6451 end if;
6452 end if;
6453 end if;
6455 Next (Assoc);
6456 end loop;
6457 end if;
6459 -- Aggregate is fully processed. Now we check that a full set of
6460 -- representations was given, and that they are in range and in order.
6461 -- These checks are only done if no other errors occurred.
6463 if not Err then
6464 Min := No_Uint;
6465 Max := No_Uint;
6467 Elit := First_Literal (Enumtype);
6468 while Present (Elit) loop
6469 if No (Enumeration_Rep_Expr (Elit)) then
6470 Error_Msg_NE ("missing representation for&!", N, Elit);
6472 else
6473 Val := Enumeration_Rep (Elit);
6475 if Min = No_Uint then
6476 Min := Val;
6477 end if;
6479 if Val /= No_Uint then
6480 if Max /= No_Uint and then Val <= Max then
6481 Error_Msg_NE
6482 ("enumeration value for& not ordered!",
6483 Enumeration_Rep_Expr (Elit), Elit);
6484 end if;
6486 Max_Node := Enumeration_Rep_Expr (Elit);
6487 Max := Val;
6488 end if;
6490 -- If there is at least one literal whose representation is not
6491 -- equal to the Pos value, then note that this enumeration type
6492 -- has a non-standard representation.
6494 if Val /= Enumeration_Pos (Elit) then
6495 Set_Has_Non_Standard_Rep (Base_Type (Enumtype));
6496 end if;
6497 end if;
6499 Next (Elit);
6500 end loop;
6502 -- Now set proper size information
6504 declare
6505 Minsize : Uint := UI_From_Int (Minimum_Size (Enumtype));
6507 begin
6508 if Has_Size_Clause (Enumtype) then
6510 -- All OK, if size is OK now
6512 if RM_Size (Enumtype) >= Minsize then
6513 null;
6515 else
6516 -- Try if we can get by with biasing
6518 Minsize :=
6519 UI_From_Int (Minimum_Size (Enumtype, Biased => True));
6521 -- Error message if even biasing does not work
6523 if RM_Size (Enumtype) < Minsize then
6524 Error_Msg_Uint_1 := RM_Size (Enumtype);
6525 Error_Msg_Uint_2 := Max;
6526 Error_Msg_N
6527 ("previously given size (^) is too small "
6528 & "for this value (^)", Max_Node);
6530 -- If biasing worked, indicate that we now have biased rep
6532 else
6533 Set_Biased
6534 (Enumtype, Size_Clause (Enumtype), "size clause");
6535 end if;
6536 end if;
6538 else
6539 Set_RM_Size (Enumtype, Minsize);
6540 Set_Enum_Esize (Enumtype);
6541 end if;
6543 Set_RM_Size (Base_Type (Enumtype), RM_Size (Enumtype));
6544 Set_Esize (Base_Type (Enumtype), Esize (Enumtype));
6545 Set_Alignment (Base_Type (Enumtype), Alignment (Enumtype));
6546 end;
6547 end if;
6549 -- We repeat the too late test in case it froze itself
6551 if Rep_Item_Too_Late (Enumtype, N) then
6552 null;
6553 end if;
6554 end Analyze_Enumeration_Representation_Clause;
6556 ----------------------------
6557 -- Analyze_Free_Statement --
6558 ----------------------------
6560 procedure Analyze_Free_Statement (N : Node_Id) is
6561 begin
6562 Analyze (Expression (N));
6563 end Analyze_Free_Statement;
6565 ---------------------------
6566 -- Analyze_Freeze_Entity --
6567 ---------------------------
6569 procedure Analyze_Freeze_Entity (N : Node_Id) is
6570 begin
6571 Freeze_Entity_Checks (N);
6572 end Analyze_Freeze_Entity;
6574 -----------------------------------
6575 -- Analyze_Freeze_Generic_Entity --
6576 -----------------------------------
6578 procedure Analyze_Freeze_Generic_Entity (N : Node_Id) is
6579 begin
6580 Freeze_Entity_Checks (N);
6581 end Analyze_Freeze_Generic_Entity;
6583 ------------------------------------------
6584 -- Analyze_Record_Representation_Clause --
6585 ------------------------------------------
6587 -- Note: we check as much as we can here, but we can't do any checks
6588 -- based on the position values (e.g. overlap checks) until freeze time
6589 -- because especially in Ada 2005 (machine scalar mode), the processing
6590 -- for non-standard bit order can substantially change the positions.
6591 -- See procedure Check_Record_Representation_Clause (called from Freeze)
6592 -- for the remainder of this processing.
6594 procedure Analyze_Record_Representation_Clause (N : Node_Id) is
6595 Ident : constant Node_Id := Identifier (N);
6596 Biased : Boolean;
6597 CC : Node_Id;
6598 Comp : Entity_Id;
6599 Fbit : Uint;
6600 Hbit : Uint := Uint_0;
6601 Lbit : Uint;
6602 Ocomp : Entity_Id;
6603 Posit : Uint;
6604 Rectype : Entity_Id;
6605 Recdef : Node_Id;
6607 function Is_Inherited (Comp : Entity_Id) return Boolean;
6608 -- True if Comp is an inherited component in a record extension
6610 ------------------
6611 -- Is_Inherited --
6612 ------------------
6614 function Is_Inherited (Comp : Entity_Id) return Boolean is
6615 Comp_Base : Entity_Id;
6617 begin
6618 if Ekind (Rectype) = E_Record_Subtype then
6619 Comp_Base := Original_Record_Component (Comp);
6620 else
6621 Comp_Base := Comp;
6622 end if;
6624 return Comp_Base /= Original_Record_Component (Comp_Base);
6625 end Is_Inherited;
6627 -- Local variables
6629 Is_Record_Extension : Boolean;
6630 -- True if Rectype is a record extension
6632 CR_Pragma : Node_Id := Empty;
6633 -- Points to N_Pragma node if Complete_Representation pragma present
6635 -- Start of processing for Analyze_Record_Representation_Clause
6637 begin
6638 if Ignore_Rep_Clauses then
6639 Kill_Rep_Clause (N);
6640 return;
6641 end if;
6643 Find_Type (Ident);
6644 Rectype := Entity (Ident);
6646 if Rectype = Any_Type or else Rep_Item_Too_Early (Rectype, N) then
6647 return;
6648 else
6649 Rectype := Underlying_Type (Rectype);
6650 end if;
6652 -- First some basic error checks
6654 if not Is_Record_Type (Rectype) then
6655 Error_Msg_NE
6656 ("record type required, found}", Ident, First_Subtype (Rectype));
6657 return;
6659 elsif Scope (Rectype) /= Current_Scope then
6660 Error_Msg_N ("type must be declared in this scope", N);
6661 return;
6663 elsif not Is_First_Subtype (Rectype) then
6664 Error_Msg_N ("cannot give record rep clause for subtype", N);
6665 return;
6667 elsif Has_Record_Rep_Clause (Rectype) then
6668 Error_Msg_N ("duplicate record rep clause ignored", N);
6669 return;
6671 elsif Rep_Item_Too_Late (Rectype, N) then
6672 return;
6673 end if;
6675 -- We know we have a first subtype, now possibly go to the anonymous
6676 -- base type to determine whether Rectype is a record extension.
6678 Recdef := Type_Definition (Declaration_Node (Base_Type (Rectype)));
6679 Is_Record_Extension :=
6680 Nkind (Recdef) = N_Derived_Type_Definition
6681 and then Present (Record_Extension_Part (Recdef));
6683 if Present (Mod_Clause (N)) then
6684 declare
6685 Loc : constant Source_Ptr := Sloc (N);
6686 M : constant Node_Id := Mod_Clause (N);
6687 P : constant List_Id := Pragmas_Before (M);
6688 AtM_Nod : Node_Id;
6690 Mod_Val : Uint;
6691 pragma Warnings (Off, Mod_Val);
6693 begin
6694 Check_Restriction (No_Obsolescent_Features, Mod_Clause (N));
6696 if Warn_On_Obsolescent_Feature then
6697 Error_Msg_N
6698 ("?j?mod clause is an obsolescent feature (RM J.8)", N);
6699 Error_Msg_N
6700 ("\?j?use alignment attribute definition clause instead", N);
6701 end if;
6703 if Present (P) then
6704 Analyze_List (P);
6705 end if;
6707 -- In ASIS_Mode mode, expansion is disabled, but we must convert
6708 -- the Mod clause into an alignment clause anyway, so that the
6709 -- back end can compute and back-annotate properly the size and
6710 -- alignment of types that may include this record.
6712 -- This seems dubious, this destroys the source tree in a manner
6713 -- not detectable by ASIS ???
6715 if Operating_Mode = Check_Semantics and then ASIS_Mode then
6716 AtM_Nod :=
6717 Make_Attribute_Definition_Clause (Loc,
6718 Name => New_Occurrence_Of (Base_Type (Rectype), Loc),
6719 Chars => Name_Alignment,
6720 Expression => Relocate_Node (Expression (M)));
6722 Set_From_At_Mod (AtM_Nod);
6723 Insert_After (N, AtM_Nod);
6724 Mod_Val := Get_Alignment_Value (Expression (AtM_Nod));
6725 Set_Mod_Clause (N, Empty);
6727 else
6728 -- Get the alignment value to perform error checking
6730 Mod_Val := Get_Alignment_Value (Expression (M));
6731 end if;
6732 end;
6733 end if;
6735 -- For untagged types, clear any existing component clauses for the
6736 -- type. If the type is derived, this is what allows us to override
6737 -- a rep clause for the parent. For type extensions, the representation
6738 -- of the inherited components is inherited, so we want to keep previous
6739 -- component clauses for completeness.
6741 if not Is_Tagged_Type (Rectype) then
6742 Comp := First_Component_Or_Discriminant (Rectype);
6743 while Present (Comp) loop
6744 Set_Component_Clause (Comp, Empty);
6745 Next_Component_Or_Discriminant (Comp);
6746 end loop;
6747 end if;
6749 -- All done if no component clauses
6751 CC := First (Component_Clauses (N));
6753 if No (CC) then
6754 return;
6755 end if;
6757 -- A representation like this applies to the base type
6759 Set_Has_Record_Rep_Clause (Base_Type (Rectype));
6760 Set_Has_Non_Standard_Rep (Base_Type (Rectype));
6761 Set_Has_Specified_Layout (Base_Type (Rectype));
6763 -- Process the component clauses
6765 while Present (CC) loop
6767 -- Pragma
6769 if Nkind (CC) = N_Pragma then
6770 Analyze (CC);
6772 -- The only pragma of interest is Complete_Representation
6774 if Pragma_Name (CC) = Name_Complete_Representation then
6775 CR_Pragma := CC;
6776 end if;
6778 -- Processing for real component clause
6780 else
6781 Posit := Static_Integer (Position (CC));
6782 Fbit := Static_Integer (First_Bit (CC));
6783 Lbit := Static_Integer (Last_Bit (CC));
6785 if Posit /= No_Uint
6786 and then Fbit /= No_Uint
6787 and then Lbit /= No_Uint
6788 then
6789 if Posit < 0 then
6790 Error_Msg_N
6791 ("position cannot be negative", Position (CC));
6793 elsif Fbit < 0 then
6794 Error_Msg_N
6795 ("first bit cannot be negative", First_Bit (CC));
6797 -- The Last_Bit specified in a component clause must not be
6798 -- less than the First_Bit minus one (RM-13.5.1(10)).
6800 elsif Lbit < Fbit - 1 then
6801 Error_Msg_N
6802 ("last bit cannot be less than first bit minus one",
6803 Last_Bit (CC));
6805 -- Values look OK, so find the corresponding record component
6806 -- Even though the syntax allows an attribute reference for
6807 -- implementation-defined components, GNAT does not allow the
6808 -- tag to get an explicit position.
6810 elsif Nkind (Component_Name (CC)) = N_Attribute_Reference then
6811 if Attribute_Name (Component_Name (CC)) = Name_Tag then
6812 Error_Msg_N ("position of tag cannot be specified", CC);
6813 else
6814 Error_Msg_N ("illegal component name", CC);
6815 end if;
6817 else
6818 Comp := First_Entity (Rectype);
6819 while Present (Comp) loop
6820 exit when Chars (Comp) = Chars (Component_Name (CC));
6821 Next_Entity (Comp);
6822 end loop;
6824 if No (Comp) then
6826 -- Maybe component of base type that is absent from
6827 -- statically constrained first subtype.
6829 Comp := First_Entity (Base_Type (Rectype));
6830 while Present (Comp) loop
6831 exit when Chars (Comp) = Chars (Component_Name (CC));
6832 Next_Entity (Comp);
6833 end loop;
6834 end if;
6836 if No (Comp) then
6837 Error_Msg_N
6838 ("component clause is for non-existent field", CC);
6840 -- Ada 2012 (AI05-0026): Any name that denotes a
6841 -- discriminant of an object of an unchecked union type
6842 -- shall not occur within a record_representation_clause.
6844 -- The general restriction of using record rep clauses on
6845 -- Unchecked_Union types has now been lifted. Since it is
6846 -- possible to introduce a record rep clause which mentions
6847 -- the discriminant of an Unchecked_Union in non-Ada 2012
6848 -- code, this check is applied to all versions of the
6849 -- language.
6851 elsif Ekind (Comp) = E_Discriminant
6852 and then Is_Unchecked_Union (Rectype)
6853 then
6854 Error_Msg_N
6855 ("cannot reference discriminant of unchecked union",
6856 Component_Name (CC));
6858 elsif Is_Record_Extension and then Is_Inherited (Comp) then
6859 Error_Msg_NE
6860 ("component clause not allowed for inherited "
6861 & "component&", CC, Comp);
6863 elsif Present (Component_Clause (Comp)) then
6865 -- Diagnose duplicate rep clause, or check consistency
6866 -- if this is an inherited component. In a double fault,
6867 -- there may be a duplicate inconsistent clause for an
6868 -- inherited component.
6870 if Scope (Original_Record_Component (Comp)) = Rectype
6871 or else Parent (Component_Clause (Comp)) = N
6872 then
6873 Error_Msg_Sloc := Sloc (Component_Clause (Comp));
6874 Error_Msg_N ("component clause previously given#", CC);
6876 else
6877 declare
6878 Rep1 : constant Node_Id := Component_Clause (Comp);
6879 begin
6880 if Intval (Position (Rep1)) /=
6881 Intval (Position (CC))
6882 or else Intval (First_Bit (Rep1)) /=
6883 Intval (First_Bit (CC))
6884 or else Intval (Last_Bit (Rep1)) /=
6885 Intval (Last_Bit (CC))
6886 then
6887 Error_Msg_N
6888 ("component clause inconsistent "
6889 & "with representation of ancestor", CC);
6891 elsif Warn_On_Redundant_Constructs then
6892 Error_Msg_N
6893 ("?r?redundant confirming component clause "
6894 & "for component!", CC);
6895 end if;
6896 end;
6897 end if;
6899 -- Normal case where this is the first component clause we
6900 -- have seen for this entity, so set it up properly.
6902 else
6903 -- Make reference for field in record rep clause and set
6904 -- appropriate entity field in the field identifier.
6906 Generate_Reference
6907 (Comp, Component_Name (CC), Set_Ref => False);
6908 Set_Entity (Component_Name (CC), Comp);
6910 -- Update Fbit and Lbit to the actual bit number
6912 Fbit := Fbit + UI_From_Int (SSU) * Posit;
6913 Lbit := Lbit + UI_From_Int (SSU) * Posit;
6915 if Has_Size_Clause (Rectype)
6916 and then RM_Size (Rectype) <= Lbit
6917 then
6918 Error_Msg_N
6919 ("bit number out of range of specified size",
6920 Last_Bit (CC));
6921 else
6922 Set_Component_Clause (Comp, CC);
6923 Set_Component_Bit_Offset (Comp, Fbit);
6924 Set_Esize (Comp, 1 + (Lbit - Fbit));
6925 Set_Normalized_First_Bit (Comp, Fbit mod SSU);
6926 Set_Normalized_Position (Comp, Fbit / SSU);
6928 if Warn_On_Overridden_Size
6929 and then Has_Size_Clause (Etype (Comp))
6930 and then RM_Size (Etype (Comp)) /= Esize (Comp)
6931 then
6932 Error_Msg_NE
6933 ("?S?component size overrides size clause for&",
6934 Component_Name (CC), Etype (Comp));
6935 end if;
6937 -- This information is also set in the corresponding
6938 -- component of the base type, found by accessing the
6939 -- Original_Record_Component link if it is present.
6941 Ocomp := Original_Record_Component (Comp);
6943 if Hbit < Lbit then
6944 Hbit := Lbit;
6945 end if;
6947 Check_Size
6948 (Component_Name (CC),
6949 Etype (Comp),
6950 Esize (Comp),
6951 Biased);
6953 Set_Biased
6954 (Comp, First_Node (CC), "component clause", Biased);
6956 if Present (Ocomp) then
6957 Set_Component_Clause (Ocomp, CC);
6958 Set_Component_Bit_Offset (Ocomp, Fbit);
6959 Set_Normalized_First_Bit (Ocomp, Fbit mod SSU);
6960 Set_Normalized_Position (Ocomp, Fbit / SSU);
6961 Set_Esize (Ocomp, 1 + (Lbit - Fbit));
6963 Set_Normalized_Position_Max
6964 (Ocomp, Normalized_Position (Ocomp));
6966 -- Note: we don't use Set_Biased here, because we
6967 -- already gave a warning above if needed, and we
6968 -- would get a duplicate for the same name here.
6970 Set_Has_Biased_Representation
6971 (Ocomp, Has_Biased_Representation (Comp));
6972 end if;
6974 if Esize (Comp) < 0 then
6975 Error_Msg_N ("component size is negative", CC);
6976 end if;
6977 end if;
6978 end if;
6979 end if;
6980 end if;
6981 end if;
6983 Next (CC);
6984 end loop;
6986 -- Check missing components if Complete_Representation pragma appeared
6988 if Present (CR_Pragma) then
6989 Comp := First_Component_Or_Discriminant (Rectype);
6990 while Present (Comp) loop
6991 if No (Component_Clause (Comp)) then
6992 Error_Msg_NE
6993 ("missing component clause for &", CR_Pragma, Comp);
6994 end if;
6996 Next_Component_Or_Discriminant (Comp);
6997 end loop;
6999 -- Give missing components warning if required
7001 elsif Warn_On_Unrepped_Components then
7002 declare
7003 Num_Repped_Components : Nat := 0;
7004 Num_Unrepped_Components : Nat := 0;
7006 begin
7007 -- First count number of repped and unrepped components
7009 Comp := First_Component_Or_Discriminant (Rectype);
7010 while Present (Comp) loop
7011 if Present (Component_Clause (Comp)) then
7012 Num_Repped_Components := Num_Repped_Components + 1;
7013 else
7014 Num_Unrepped_Components := Num_Unrepped_Components + 1;
7015 end if;
7017 Next_Component_Or_Discriminant (Comp);
7018 end loop;
7020 -- We are only interested in the case where there is at least one
7021 -- unrepped component, and at least half the components have rep
7022 -- clauses. We figure that if less than half have them, then the
7023 -- partial rep clause is really intentional. If the component
7024 -- type has no underlying type set at this point (as for a generic
7025 -- formal type), we don't know enough to give a warning on the
7026 -- component.
7028 if Num_Unrepped_Components > 0
7029 and then Num_Unrepped_Components < Num_Repped_Components
7030 then
7031 Comp := First_Component_Or_Discriminant (Rectype);
7032 while Present (Comp) loop
7033 if No (Component_Clause (Comp))
7034 and then Comes_From_Source (Comp)
7035 and then Present (Underlying_Type (Etype (Comp)))
7036 and then (Is_Scalar_Type (Underlying_Type (Etype (Comp)))
7037 or else Size_Known_At_Compile_Time
7038 (Underlying_Type (Etype (Comp))))
7039 and then not Has_Warnings_Off (Rectype)
7041 -- Ignore discriminant in unchecked union, since it is
7042 -- not there, and cannot have a component clause.
7044 and then (not Is_Unchecked_Union (Rectype)
7045 or else Ekind (Comp) /= E_Discriminant)
7046 then
7047 Error_Msg_Sloc := Sloc (Comp);
7048 Error_Msg_NE
7049 ("?C?no component clause given for & declared #",
7050 N, Comp);
7051 end if;
7053 Next_Component_Or_Discriminant (Comp);
7054 end loop;
7055 end if;
7056 end;
7057 end if;
7058 end Analyze_Record_Representation_Clause;
7060 -------------------------------------
7061 -- Build_Discrete_Static_Predicate --
7062 -------------------------------------
7064 procedure Build_Discrete_Static_Predicate
7065 (Typ : Entity_Id;
7066 Expr : Node_Id;
7067 Nam : Name_Id)
7069 Loc : constant Source_Ptr := Sloc (Expr);
7071 Non_Static : exception;
7072 -- Raised if something non-static is found
7074 Btyp : constant Entity_Id := Base_Type (Typ);
7076 BLo : constant Uint := Expr_Value (Type_Low_Bound (Btyp));
7077 BHi : constant Uint := Expr_Value (Type_High_Bound (Btyp));
7078 -- Low bound and high bound value of base type of Typ
7080 TLo : Uint;
7081 THi : Uint;
7082 -- Bounds for constructing the static predicate. We use the bound of the
7083 -- subtype if it is static, otherwise the corresponding base type bound.
7084 -- Note: a non-static subtype can have a static predicate.
7086 type REnt is record
7087 Lo, Hi : Uint;
7088 end record;
7089 -- One entry in a Rlist value, a single REnt (range entry) value denotes
7090 -- one range from Lo to Hi. To represent a single value range Lo = Hi =
7091 -- value.
7093 type RList is array (Nat range <>) of REnt;
7094 -- A list of ranges. The ranges are sorted in increasing order, and are
7095 -- disjoint (there is a gap of at least one value between each range in
7096 -- the table). A value is in the set of ranges in Rlist if it lies
7097 -- within one of these ranges.
7099 False_Range : constant RList :=
7100 RList'(1 .. 0 => REnt'(No_Uint, No_Uint));
7101 -- An empty set of ranges represents a range list that can never be
7102 -- satisfied, since there are no ranges in which the value could lie,
7103 -- so it does not lie in any of them. False_Range is a canonical value
7104 -- for this empty set, but general processing should test for an Rlist
7105 -- with length zero (see Is_False predicate), since other null ranges
7106 -- may appear which must be treated as False.
7108 True_Range : constant RList := RList'(1 => REnt'(BLo, BHi));
7109 -- Range representing True, value must be in the base range
7111 function "and" (Left : RList; Right : RList) return RList;
7112 -- And's together two range lists, returning a range list. This is a set
7113 -- intersection operation.
7115 function "or" (Left : RList; Right : RList) return RList;
7116 -- Or's together two range lists, returning a range list. This is a set
7117 -- union operation.
7119 function "not" (Right : RList) return RList;
7120 -- Returns complement of a given range list, i.e. a range list
7121 -- representing all the values in TLo .. THi that are not in the input
7122 -- operand Right.
7124 function Build_Val (V : Uint) return Node_Id;
7125 -- Return an analyzed N_Identifier node referencing this value, suitable
7126 -- for use as an entry in the Static_Discrte_Predicate list. This node
7127 -- is typed with the base type.
7129 function Build_Range (Lo : Uint; Hi : Uint) return Node_Id;
7130 -- Return an analyzed N_Range node referencing this range, suitable for
7131 -- use as an entry in the Static_Discrete_Predicate list. This node is
7132 -- typed with the base type.
7134 function Get_RList (Exp : Node_Id) return RList;
7135 -- This is a recursive routine that converts the given expression into a
7136 -- list of ranges, suitable for use in building the static predicate.
7138 function Is_False (R : RList) return Boolean;
7139 pragma Inline (Is_False);
7140 -- Returns True if the given range list is empty, and thus represents a
7141 -- False list of ranges that can never be satisfied.
7143 function Is_True (R : RList) return Boolean;
7144 -- Returns True if R trivially represents the True predicate by having a
7145 -- single range from BLo to BHi.
7147 function Is_Type_Ref (N : Node_Id) return Boolean;
7148 pragma Inline (Is_Type_Ref);
7149 -- Returns if True if N is a reference to the type for the predicate in
7150 -- the expression (i.e. if it is an identifier whose Chars field matches
7151 -- the Nam given in the call). N must not be parenthesized, if the type
7152 -- name appears in parens, this routine will return False.
7154 function Lo_Val (N : Node_Id) return Uint;
7155 -- Given an entry from a Static_Discrete_Predicate list that is either
7156 -- a static expression or static range, gets either the expression value
7157 -- or the low bound of the range.
7159 function Hi_Val (N : Node_Id) return Uint;
7160 -- Given an entry from a Static_Discrete_Predicate list that is either
7161 -- a static expression or static range, gets either the expression value
7162 -- or the high bound of the range.
7164 function Membership_Entry (N : Node_Id) return RList;
7165 -- Given a single membership entry (range, value, or subtype), returns
7166 -- the corresponding range list. Raises Static_Error if not static.
7168 function Membership_Entries (N : Node_Id) return RList;
7169 -- Given an element on an alternatives list of a membership operation,
7170 -- returns the range list corresponding to this entry and all following
7171 -- entries (i.e. returns the "or" of this list of values).
7173 function Stat_Pred (Typ : Entity_Id) return RList;
7174 -- Given a type, if it has a static predicate, then return the predicate
7175 -- as a range list, otherwise raise Non_Static.
7177 -----------
7178 -- "and" --
7179 -----------
7181 function "and" (Left : RList; Right : RList) return RList is
7182 FEnt : REnt;
7183 -- First range of result
7185 SLeft : Nat := Left'First;
7186 -- Start of rest of left entries
7188 SRight : Nat := Right'First;
7189 -- Start of rest of right entries
7191 begin
7192 -- If either range is True, return the other
7194 if Is_True (Left) then
7195 return Right;
7196 elsif Is_True (Right) then
7197 return Left;
7198 end if;
7200 -- If either range is False, return False
7202 if Is_False (Left) or else Is_False (Right) then
7203 return False_Range;
7204 end if;
7206 -- Loop to remove entries at start that are disjoint, and thus just
7207 -- get discarded from the result entirely.
7209 loop
7210 -- If no operands left in either operand, result is false
7212 if SLeft > Left'Last or else SRight > Right'Last then
7213 return False_Range;
7215 -- Discard first left operand entry if disjoint with right
7217 elsif Left (SLeft).Hi < Right (SRight).Lo then
7218 SLeft := SLeft + 1;
7220 -- Discard first right operand entry if disjoint with left
7222 elsif Right (SRight).Hi < Left (SLeft).Lo then
7223 SRight := SRight + 1;
7225 -- Otherwise we have an overlapping entry
7227 else
7228 exit;
7229 end if;
7230 end loop;
7232 -- Now we have two non-null operands, and first entries overlap. The
7233 -- first entry in the result will be the overlapping part of these
7234 -- two entries.
7236 FEnt := REnt'(Lo => UI_Max (Left (SLeft).Lo, Right (SRight).Lo),
7237 Hi => UI_Min (Left (SLeft).Hi, Right (SRight).Hi));
7239 -- Now we can remove the entry that ended at a lower value, since its
7240 -- contribution is entirely contained in Fent.
7242 if Left (SLeft).Hi <= Right (SRight).Hi then
7243 SLeft := SLeft + 1;
7244 else
7245 SRight := SRight + 1;
7246 end if;
7248 -- Compute result by concatenating this first entry with the "and" of
7249 -- the remaining parts of the left and right operands. Note that if
7250 -- either of these is empty, "and" will yield empty, so that we will
7251 -- end up with just Fent, which is what we want in that case.
7253 return
7254 FEnt & (Left (SLeft .. Left'Last) and Right (SRight .. Right'Last));
7255 end "and";
7257 -----------
7258 -- "not" --
7259 -----------
7261 function "not" (Right : RList) return RList is
7262 begin
7263 -- Return True if False range
7265 if Is_False (Right) then
7266 return True_Range;
7267 end if;
7269 -- Return False if True range
7271 if Is_True (Right) then
7272 return False_Range;
7273 end if;
7275 -- Here if not trivial case
7277 declare
7278 Result : RList (1 .. Right'Length + 1);
7279 -- May need one more entry for gap at beginning and end
7281 Count : Nat := 0;
7282 -- Number of entries stored in Result
7284 begin
7285 -- Gap at start
7287 if Right (Right'First).Lo > TLo then
7288 Count := Count + 1;
7289 Result (Count) := REnt'(TLo, Right (Right'First).Lo - 1);
7290 end if;
7292 -- Gaps between ranges
7294 for J in Right'First .. Right'Last - 1 loop
7295 Count := Count + 1;
7296 Result (Count) := REnt'(Right (J).Hi + 1, Right (J + 1).Lo - 1);
7297 end loop;
7299 -- Gap at end
7301 if Right (Right'Last).Hi < THi then
7302 Count := Count + 1;
7303 Result (Count) := REnt'(Right (Right'Last).Hi + 1, THi);
7304 end if;
7306 return Result (1 .. Count);
7307 end;
7308 end "not";
7310 ----------
7311 -- "or" --
7312 ----------
7314 function "or" (Left : RList; Right : RList) return RList is
7315 FEnt : REnt;
7316 -- First range of result
7318 SLeft : Nat := Left'First;
7319 -- Start of rest of left entries
7321 SRight : Nat := Right'First;
7322 -- Start of rest of right entries
7324 begin
7325 -- If either range is True, return True
7327 if Is_True (Left) or else Is_True (Right) then
7328 return True_Range;
7329 end if;
7331 -- If either range is False (empty), return the other
7333 if Is_False (Left) then
7334 return Right;
7335 elsif Is_False (Right) then
7336 return Left;
7337 end if;
7339 -- Initialize result first entry from left or right operand depending
7340 -- on which starts with the lower range.
7342 if Left (SLeft).Lo < Right (SRight).Lo then
7343 FEnt := Left (SLeft);
7344 SLeft := SLeft + 1;
7345 else
7346 FEnt := Right (SRight);
7347 SRight := SRight + 1;
7348 end if;
7350 -- This loop eats ranges from left and right operands that are
7351 -- contiguous with the first range we are gathering.
7353 loop
7354 -- Eat first entry in left operand if contiguous or overlapped by
7355 -- gathered first operand of result.
7357 if SLeft <= Left'Last
7358 and then Left (SLeft).Lo <= FEnt.Hi + 1
7359 then
7360 FEnt.Hi := UI_Max (FEnt.Hi, Left (SLeft).Hi);
7361 SLeft := SLeft + 1;
7363 -- Eat first entry in right operand if contiguous or overlapped by
7364 -- gathered right operand of result.
7366 elsif SRight <= Right'Last
7367 and then Right (SRight).Lo <= FEnt.Hi + 1
7368 then
7369 FEnt.Hi := UI_Max (FEnt.Hi, Right (SRight).Hi);
7370 SRight := SRight + 1;
7372 -- All done if no more entries to eat
7374 else
7375 exit;
7376 end if;
7377 end loop;
7379 -- Obtain result as the first entry we just computed, concatenated
7380 -- to the "or" of the remaining results (if one operand is empty,
7381 -- this will just concatenate with the other
7383 return
7384 FEnt & (Left (SLeft .. Left'Last) or Right (SRight .. Right'Last));
7385 end "or";
7387 -----------------
7388 -- Build_Range --
7389 -----------------
7391 function Build_Range (Lo : Uint; Hi : Uint) return Node_Id is
7392 Result : Node_Id;
7393 begin
7394 Result :=
7395 Make_Range (Loc,
7396 Low_Bound => Build_Val (Lo),
7397 High_Bound => Build_Val (Hi));
7398 Set_Etype (Result, Btyp);
7399 Set_Analyzed (Result);
7400 return Result;
7401 end Build_Range;
7403 ---------------
7404 -- Build_Val --
7405 ---------------
7407 function Build_Val (V : Uint) return Node_Id is
7408 Result : Node_Id;
7410 begin
7411 if Is_Enumeration_Type (Typ) then
7412 Result := Get_Enum_Lit_From_Pos (Typ, V, Loc);
7413 else
7414 Result := Make_Integer_Literal (Loc, V);
7415 end if;
7417 Set_Etype (Result, Btyp);
7418 Set_Is_Static_Expression (Result);
7419 Set_Analyzed (Result);
7420 return Result;
7421 end Build_Val;
7423 ---------------
7424 -- Get_RList --
7425 ---------------
7427 function Get_RList (Exp : Node_Id) return RList is
7428 Op : Node_Kind;
7429 Val : Uint;
7431 begin
7432 -- Static expression can only be true or false
7434 if Is_OK_Static_Expression (Exp) then
7435 if Expr_Value (Exp) = 0 then
7436 return False_Range;
7437 else
7438 return True_Range;
7439 end if;
7440 end if;
7442 -- Otherwise test node type
7444 Op := Nkind (Exp);
7446 case Op is
7448 -- And
7450 when N_Op_And | N_And_Then =>
7451 return Get_RList (Left_Opnd (Exp))
7453 Get_RList (Right_Opnd (Exp));
7455 -- Or
7457 when N_Op_Or | N_Or_Else =>
7458 return Get_RList (Left_Opnd (Exp))
7460 Get_RList (Right_Opnd (Exp));
7462 -- Not
7464 when N_Op_Not =>
7465 return not Get_RList (Right_Opnd (Exp));
7467 -- Comparisons of type with static value
7469 when N_Op_Compare =>
7471 -- Type is left operand
7473 if Is_Type_Ref (Left_Opnd (Exp))
7474 and then Is_OK_Static_Expression (Right_Opnd (Exp))
7475 then
7476 Val := Expr_Value (Right_Opnd (Exp));
7478 -- Typ is right operand
7480 elsif Is_Type_Ref (Right_Opnd (Exp))
7481 and then Is_OK_Static_Expression (Left_Opnd (Exp))
7482 then
7483 Val := Expr_Value (Left_Opnd (Exp));
7485 -- Invert sense of comparison
7487 case Op is
7488 when N_Op_Gt => Op := N_Op_Lt;
7489 when N_Op_Lt => Op := N_Op_Gt;
7490 when N_Op_Ge => Op := N_Op_Le;
7491 when N_Op_Le => Op := N_Op_Ge;
7492 when others => null;
7493 end case;
7495 -- Other cases are non-static
7497 else
7498 raise Non_Static;
7499 end if;
7501 -- Construct range according to comparison operation
7503 case Op is
7504 when N_Op_Eq =>
7505 return RList'(1 => REnt'(Val, Val));
7507 when N_Op_Ge =>
7508 return RList'(1 => REnt'(Val, BHi));
7510 when N_Op_Gt =>
7511 return RList'(1 => REnt'(Val + 1, BHi));
7513 when N_Op_Le =>
7514 return RList'(1 => REnt'(BLo, Val));
7516 when N_Op_Lt =>
7517 return RList'(1 => REnt'(BLo, Val - 1));
7519 when N_Op_Ne =>
7520 return RList'(REnt'(BLo, Val - 1), REnt'(Val + 1, BHi));
7522 when others =>
7523 raise Program_Error;
7524 end case;
7526 -- Membership (IN)
7528 when N_In =>
7529 if not Is_Type_Ref (Left_Opnd (Exp)) then
7530 raise Non_Static;
7531 end if;
7533 if Present (Right_Opnd (Exp)) then
7534 return Membership_Entry (Right_Opnd (Exp));
7535 else
7536 return Membership_Entries (First (Alternatives (Exp)));
7537 end if;
7539 -- Negative membership (NOT IN)
7541 when N_Not_In =>
7542 if not Is_Type_Ref (Left_Opnd (Exp)) then
7543 raise Non_Static;
7544 end if;
7546 if Present (Right_Opnd (Exp)) then
7547 return not Membership_Entry (Right_Opnd (Exp));
7548 else
7549 return not Membership_Entries (First (Alternatives (Exp)));
7550 end if;
7552 -- Function call, may be call to static predicate
7554 when N_Function_Call =>
7555 if Is_Entity_Name (Name (Exp)) then
7556 declare
7557 Ent : constant Entity_Id := Entity (Name (Exp));
7558 begin
7559 if Is_Predicate_Function (Ent)
7560 or else
7561 Is_Predicate_Function_M (Ent)
7562 then
7563 return Stat_Pred (Etype (First_Formal (Ent)));
7564 end if;
7565 end;
7566 end if;
7568 -- Other function call cases are non-static
7570 raise Non_Static;
7572 -- Qualified expression, dig out the expression
7574 when N_Qualified_Expression =>
7575 return Get_RList (Expression (Exp));
7577 when N_Case_Expression =>
7578 declare
7579 Alt : Node_Id;
7580 Choices : List_Id;
7581 Dep : Node_Id;
7583 begin
7584 if not Is_Entity_Name (Expression (Expr))
7585 or else Etype (Expression (Expr)) /= Typ
7586 then
7587 Error_Msg_N
7588 ("expression must denaote subtype", Expression (Expr));
7589 return False_Range;
7590 end if;
7592 -- Collect discrete choices in all True alternatives
7594 Choices := New_List;
7595 Alt := First (Alternatives (Exp));
7596 while Present (Alt) loop
7597 Dep := Expression (Alt);
7599 if not Is_OK_Static_Expression (Dep) then
7600 raise Non_Static;
7602 elsif Is_True (Expr_Value (Dep)) then
7603 Append_List_To (Choices,
7604 New_Copy_List (Discrete_Choices (Alt)));
7605 end if;
7607 Next (Alt);
7608 end loop;
7610 return Membership_Entries (First (Choices));
7611 end;
7613 -- Expression with actions: if no actions, dig out expression
7615 when N_Expression_With_Actions =>
7616 if Is_Empty_List (Actions (Exp)) then
7617 return Get_RList (Expression (Exp));
7618 else
7619 raise Non_Static;
7620 end if;
7622 -- Xor operator
7624 when N_Op_Xor =>
7625 return (Get_RList (Left_Opnd (Exp))
7626 and not Get_RList (Right_Opnd (Exp)))
7627 or (Get_RList (Right_Opnd (Exp))
7628 and not Get_RList (Left_Opnd (Exp)));
7630 -- Any other node type is non-static
7632 when others =>
7633 raise Non_Static;
7634 end case;
7635 end Get_RList;
7637 ------------
7638 -- Hi_Val --
7639 ------------
7641 function Hi_Val (N : Node_Id) return Uint is
7642 begin
7643 if Is_OK_Static_Expression (N) then
7644 return Expr_Value (N);
7645 else
7646 pragma Assert (Nkind (N) = N_Range);
7647 return Expr_Value (High_Bound (N));
7648 end if;
7649 end Hi_Val;
7651 --------------
7652 -- Is_False --
7653 --------------
7655 function Is_False (R : RList) return Boolean is
7656 begin
7657 return R'Length = 0;
7658 end Is_False;
7660 -------------
7661 -- Is_True --
7662 -------------
7664 function Is_True (R : RList) return Boolean is
7665 begin
7666 return R'Length = 1
7667 and then R (R'First).Lo = BLo
7668 and then R (R'First).Hi = BHi;
7669 end Is_True;
7671 -----------------
7672 -- Is_Type_Ref --
7673 -----------------
7675 function Is_Type_Ref (N : Node_Id) return Boolean is
7676 begin
7677 return Nkind (N) = N_Identifier
7678 and then Chars (N) = Nam
7679 and then Paren_Count (N) = 0;
7680 end Is_Type_Ref;
7682 ------------
7683 -- Lo_Val --
7684 ------------
7686 function Lo_Val (N : Node_Id) return Uint is
7687 begin
7688 if Is_OK_Static_Expression (N) then
7689 return Expr_Value (N);
7690 else
7691 pragma Assert (Nkind (N) = N_Range);
7692 return Expr_Value (Low_Bound (N));
7693 end if;
7694 end Lo_Val;
7696 ------------------------
7697 -- Membership_Entries --
7698 ------------------------
7700 function Membership_Entries (N : Node_Id) return RList is
7701 begin
7702 if No (Next (N)) then
7703 return Membership_Entry (N);
7704 else
7705 return Membership_Entry (N) or Membership_Entries (Next (N));
7706 end if;
7707 end Membership_Entries;
7709 ----------------------
7710 -- Membership_Entry --
7711 ----------------------
7713 function Membership_Entry (N : Node_Id) return RList is
7714 Val : Uint;
7715 SLo : Uint;
7716 SHi : Uint;
7718 begin
7719 -- Range case
7721 if Nkind (N) = N_Range then
7722 if not Is_OK_Static_Expression (Low_Bound (N))
7723 or else
7724 not Is_OK_Static_Expression (High_Bound (N))
7725 then
7726 raise Non_Static;
7727 else
7728 SLo := Expr_Value (Low_Bound (N));
7729 SHi := Expr_Value (High_Bound (N));
7730 return RList'(1 => REnt'(SLo, SHi));
7731 end if;
7733 -- Static expression case
7735 elsif Is_OK_Static_Expression (N) then
7736 Val := Expr_Value (N);
7737 return RList'(1 => REnt'(Val, Val));
7739 -- Identifier (other than static expression) case
7741 else pragma Assert (Nkind (N) = N_Identifier);
7743 -- Type case
7745 if Is_Type (Entity (N)) then
7747 -- If type has predicates, process them
7749 if Has_Predicates (Entity (N)) then
7750 return Stat_Pred (Entity (N));
7752 -- For static subtype without predicates, get range
7754 elsif Is_OK_Static_Subtype (Entity (N)) then
7755 SLo := Expr_Value (Type_Low_Bound (Entity (N)));
7756 SHi := Expr_Value (Type_High_Bound (Entity (N)));
7757 return RList'(1 => REnt'(SLo, SHi));
7759 -- Any other type makes us non-static
7761 else
7762 raise Non_Static;
7763 end if;
7765 -- Any other kind of identifier in predicate (e.g. a non-static
7766 -- expression value) means this is not a static predicate.
7768 else
7769 raise Non_Static;
7770 end if;
7771 end if;
7772 end Membership_Entry;
7774 ---------------
7775 -- Stat_Pred --
7776 ---------------
7778 function Stat_Pred (Typ : Entity_Id) return RList is
7779 begin
7780 -- Not static if type does not have static predicates
7782 if not Has_Static_Predicate (Typ) then
7783 raise Non_Static;
7784 end if;
7786 -- Otherwise we convert the predicate list to a range list
7788 declare
7789 Spred : constant List_Id := Static_Discrete_Predicate (Typ);
7790 Result : RList (1 .. List_Length (Spred));
7791 P : Node_Id;
7793 begin
7794 P := First (Static_Discrete_Predicate (Typ));
7795 for J in Result'Range loop
7796 Result (J) := REnt'(Lo_Val (P), Hi_Val (P));
7797 Next (P);
7798 end loop;
7800 return Result;
7801 end;
7802 end Stat_Pred;
7804 -- Start of processing for Build_Discrete_Static_Predicate
7806 begin
7807 -- Establish bounds for the predicate
7809 if Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
7810 TLo := Expr_Value (Type_Low_Bound (Typ));
7811 else
7812 TLo := BLo;
7813 end if;
7815 if Compile_Time_Known_Value (Type_High_Bound (Typ)) then
7816 THi := Expr_Value (Type_High_Bound (Typ));
7817 else
7818 THi := BHi;
7819 end if;
7821 -- Analyze the expression to see if it is a static predicate
7823 declare
7824 Ranges : constant RList := Get_RList (Expr);
7825 -- Range list from expression if it is static
7827 Plist : List_Id;
7829 begin
7830 -- Convert range list into a form for the static predicate. In the
7831 -- Ranges array, we just have raw ranges, these must be converted
7832 -- to properly typed and analyzed static expressions or range nodes.
7834 -- Note: here we limit ranges to the ranges of the subtype, so that
7835 -- a predicate is always false for values outside the subtype. That
7836 -- seems fine, such values are invalid anyway, and considering them
7837 -- to fail the predicate seems allowed and friendly, and furthermore
7838 -- simplifies processing for case statements and loops.
7840 Plist := New_List;
7842 for J in Ranges'Range loop
7843 declare
7844 Lo : Uint := Ranges (J).Lo;
7845 Hi : Uint := Ranges (J).Hi;
7847 begin
7848 -- Ignore completely out of range entry
7850 if Hi < TLo or else Lo > THi then
7851 null;
7853 -- Otherwise process entry
7855 else
7856 -- Adjust out of range value to subtype range
7858 if Lo < TLo then
7859 Lo := TLo;
7860 end if;
7862 if Hi > THi then
7863 Hi := THi;
7864 end if;
7866 -- Convert range into required form
7868 Append_To (Plist, Build_Range (Lo, Hi));
7869 end if;
7870 end;
7871 end loop;
7873 -- Processing was successful and all entries were static, so now we
7874 -- can store the result as the predicate list.
7876 Set_Static_Discrete_Predicate (Typ, Plist);
7878 -- The processing for static predicates put the expression into
7879 -- canonical form as a series of ranges. It also eliminated
7880 -- duplicates and collapsed and combined ranges. We might as well
7881 -- replace the alternatives list of the right operand of the
7882 -- membership test with the static predicate list, which will
7883 -- usually be more efficient.
7885 declare
7886 New_Alts : constant List_Id := New_List;
7887 Old_Node : Node_Id;
7888 New_Node : Node_Id;
7890 begin
7891 Old_Node := First (Plist);
7892 while Present (Old_Node) loop
7893 New_Node := New_Copy (Old_Node);
7895 if Nkind (New_Node) = N_Range then
7896 Set_Low_Bound (New_Node, New_Copy (Low_Bound (Old_Node)));
7897 Set_High_Bound (New_Node, New_Copy (High_Bound (Old_Node)));
7898 end if;
7900 Append_To (New_Alts, New_Node);
7901 Next (Old_Node);
7902 end loop;
7904 -- If empty list, replace by False
7906 if Is_Empty_List (New_Alts) then
7907 Rewrite (Expr, New_Occurrence_Of (Standard_False, Loc));
7909 -- Else replace by set membership test
7911 else
7912 Rewrite (Expr,
7913 Make_In (Loc,
7914 Left_Opnd => Make_Identifier (Loc, Nam),
7915 Right_Opnd => Empty,
7916 Alternatives => New_Alts));
7918 -- Resolve new expression in function context
7920 Install_Formals (Predicate_Function (Typ));
7921 Push_Scope (Predicate_Function (Typ));
7922 Analyze_And_Resolve (Expr, Standard_Boolean);
7923 Pop_Scope;
7924 end if;
7925 end;
7926 end;
7928 -- If non-static, return doing nothing
7930 exception
7931 when Non_Static =>
7932 return;
7933 end Build_Discrete_Static_Predicate;
7935 --------------------------------
7936 -- Build_Export_Import_Pragma --
7937 --------------------------------
7939 function Build_Export_Import_Pragma
7940 (Asp : Node_Id;
7941 Id : Entity_Id) return Node_Id
7943 Asp_Id : constant Aspect_Id := Get_Aspect_Id (Asp);
7944 Expr : constant Node_Id := Expression (Asp);
7945 Loc : constant Source_Ptr := Sloc (Asp);
7947 Args : List_Id;
7948 Conv : Node_Id;
7949 Conv_Arg : Node_Id;
7950 Dummy_1 : Node_Id;
7951 Dummy_2 : Node_Id;
7952 EN : Node_Id;
7953 LN : Node_Id;
7954 Prag : Node_Id;
7956 Create_Pragma : Boolean := False;
7957 -- This flag is set when the aspect form is such that it warrants the
7958 -- creation of a corresponding pragma.
7960 begin
7961 if Present (Expr) then
7962 if Error_Posted (Expr) then
7963 null;
7965 elsif Is_True (Expr_Value (Expr)) then
7966 Create_Pragma := True;
7967 end if;
7969 -- Otherwise the aspect defaults to True
7971 else
7972 Create_Pragma := True;
7973 end if;
7975 -- Nothing to do when the expression is False or is erroneous
7977 if not Create_Pragma then
7978 return Empty;
7979 end if;
7981 -- Obtain all interfacing aspects that apply to the related entity
7983 Get_Interfacing_Aspects
7984 (Iface_Asp => Asp,
7985 Conv_Asp => Conv,
7986 EN_Asp => EN,
7987 Expo_Asp => Dummy_1,
7988 Imp_Asp => Dummy_2,
7989 LN_Asp => LN);
7991 Args := New_List;
7993 -- Handle the convention argument
7995 if Present (Conv) then
7996 Conv_Arg := New_Copy_Tree (Expression (Conv));
7998 -- Assume convention "Ada' when aspect Convention is missing
8000 else
8001 Conv_Arg := Make_Identifier (Loc, Name_Ada);
8002 end if;
8004 Append_To (Args,
8005 Make_Pragma_Argument_Association (Loc,
8006 Chars => Name_Convention,
8007 Expression => Conv_Arg));
8009 -- Handle the entity argument
8011 Append_To (Args,
8012 Make_Pragma_Argument_Association (Loc,
8013 Chars => Name_Entity,
8014 Expression => New_Occurrence_Of (Id, Loc)));
8016 -- Handle the External_Name argument
8018 if Present (EN) then
8019 Append_To (Args,
8020 Make_Pragma_Argument_Association (Loc,
8021 Chars => Name_External_Name,
8022 Expression => New_Copy_Tree (Expression (EN))));
8023 end if;
8025 -- Handle the Link_Name argument
8027 if Present (LN) then
8028 Append_To (Args,
8029 Make_Pragma_Argument_Association (Loc,
8030 Chars => Name_Link_Name,
8031 Expression => New_Copy_Tree (Expression (LN))));
8032 end if;
8034 -- Generate:
8035 -- pragma Export/Import
8036 -- (Convention => <Conv>/Ada,
8037 -- Entity => <Id>,
8038 -- [External_Name => <EN>,]
8039 -- [Link_Name => <LN>]);
8041 Prag :=
8042 Make_Pragma (Loc,
8043 Pragma_Identifier =>
8044 Make_Identifier (Loc, Chars (Identifier (Asp))),
8045 Pragma_Argument_Associations => Args);
8047 -- Decorate the relevant aspect and the pragma
8049 Set_Aspect_Rep_Item (Asp, Prag);
8051 Set_Corresponding_Aspect (Prag, Asp);
8052 Set_From_Aspect_Specification (Prag);
8053 Set_Parent (Prag, Asp);
8055 if Asp_Id = Aspect_Import and then Is_Subprogram (Id) then
8056 Set_Import_Pragma (Id, Prag);
8057 end if;
8059 return Prag;
8060 end Build_Export_Import_Pragma;
8062 -------------------------------------------
8063 -- Build_Invariant_Procedure_Declaration --
8064 -------------------------------------------
8066 function Build_Invariant_Procedure_Declaration
8067 (Typ : Entity_Id) return Node_Id
8069 Loc : constant Source_Ptr := Sloc (Typ);
8070 Decl : Node_Id;
8071 Obj_Id : Entity_Id;
8072 SId : Entity_Id;
8074 Save_Ghost_Mode : constant Ghost_Mode_Type := Ghost_Mode;
8076 begin
8077 -- Check for duplicate definitions
8079 if Has_Invariants (Typ) and then Present (Invariant_Procedure (Typ)) then
8080 return Empty;
8081 end if;
8083 -- The related type may be subject to pragma Ghost. Set the mode now to
8084 -- ensure that the invariant procedure is properly marked as Ghost.
8086 Set_Ghost_Mode_From_Entity (Typ);
8088 SId :=
8089 Make_Defining_Identifier (Loc,
8090 Chars => New_External_Name (Chars (Typ), "Invariant"));
8091 Set_Has_Invariants (Typ);
8092 Set_Ekind (SId, E_Procedure);
8093 Set_Etype (SId, Standard_Void_Type);
8094 Set_Is_Invariant_Procedure (SId);
8095 Set_Invariant_Procedure (Typ, SId);
8097 -- Source Coverage Obligations might be attached to the invariant
8098 -- expression this procedure evaluates, and we need debug info to be
8099 -- able to assess the coverage achieved by evaluations.
8101 if Opt.Generate_SCO then
8102 Set_Needs_Debug_Info (SId);
8103 end if;
8105 -- Mark the invariant procedure explicitly as Ghost because it does not
8106 -- come from source.
8108 if Ghost_Mode > None then
8109 Set_Is_Ghost_Entity (SId);
8110 end if;
8112 Obj_Id := Make_Defining_Identifier (Loc, New_Internal_Name ('I'));
8113 Set_Etype (Obj_Id, Typ);
8115 Decl :=
8116 Make_Subprogram_Declaration (Loc,
8117 Make_Procedure_Specification (Loc,
8118 Defining_Unit_Name => SId,
8119 Parameter_Specifications => New_List (
8120 Make_Parameter_Specification (Loc,
8121 Defining_Identifier => Obj_Id,
8122 Parameter_Type => New_Occurrence_Of (Typ, Loc)))));
8124 Ghost_Mode := Save_Ghost_Mode;
8126 return Decl;
8127 end Build_Invariant_Procedure_Declaration;
8129 -------------------------------
8130 -- Build_Invariant_Procedure --
8131 -------------------------------
8133 -- The procedure that is constructed here has the form
8135 -- procedure typInvariant (Ixxx : typ) is
8136 -- begin
8137 -- pragma Check (Invariant, exp, "failed invariant from xxx");
8138 -- pragma Check (Invariant, exp, "failed invariant from xxx");
8139 -- ...
8140 -- pragma Check (Invariant, exp, "failed inherited invariant from xxx");
8141 -- ...
8142 -- end typInvariant;
8144 procedure Build_Invariant_Procedure (Typ : Entity_Id; N : Node_Id) is
8145 procedure Add_Invariants
8146 (T : Entity_Id;
8147 Obj_Id : Entity_Id;
8148 Stmts : in out List_Id;
8149 Inherit : Boolean);
8150 -- Appends statements to Stmts for any invariants in the rep item chain
8151 -- of the given type. If Inherit is False, then we only process entries
8152 -- on the chain for the type Typ. If Inherit is True, then we ignore any
8153 -- Invariant aspects, but we process all Invariant'Class aspects, adding
8154 -- "inherited" to the exception message and generating an informational
8155 -- message about the inheritance of an invariant.
8157 --------------------
8158 -- Add_Invariants --
8159 --------------------
8161 procedure Add_Invariants
8162 (T : Entity_Id;
8163 Obj_Id : Entity_Id;
8164 Stmts : in out List_Id;
8165 Inherit : Boolean)
8167 procedure Add_Invariant (Prag : Node_Id);
8168 -- Create a runtime check to verify the exression of invariant pragma
8169 -- Prag. All generated code is added to list Stmts.
8171 -------------------
8172 -- Add_Invariant --
8173 -------------------
8175 procedure Add_Invariant (Prag : Node_Id) is
8176 procedure Replace_Type_Reference (N : Node_Id);
8177 -- Replace a single occurrence N of the subtype name with a
8178 -- reference to the formal of the predicate function. N can be an
8179 -- identifier referencing the subtype, or a selected component,
8180 -- representing an appropriately qualified occurrence of the
8181 -- subtype name.
8183 procedure Replace_Type_References is
8184 new Replace_Type_References_Generic (Replace_Type_Reference);
8185 -- Traverse an expression replacing all occurrences of the subtype
8186 -- name with appropriate references to the formal of the predicate
8187 -- function. Note that we must ensure that the type and entity
8188 -- information is properly set in the replacement node, since we
8189 -- will do a Preanalyze call of this expression without proper
8190 -- visibility of the procedure argument.
8192 ----------------------------
8193 -- Replace_Type_Reference --
8194 ----------------------------
8196 -- Note: See comments in Add_Predicates.Replace_Type_Reference
8197 -- regarding handling of Sloc and Comes_From_Source.
8199 procedure Replace_Type_Reference (N : Node_Id) is
8200 Nloc : constant Source_Ptr := Sloc (N);
8202 begin
8203 -- Add semantic information to node to be rewritten, for ASIS
8204 -- navigation needs.
8206 if Nkind (N) = N_Identifier then
8207 Set_Entity (N, T);
8208 Set_Etype (N, T);
8210 elsif Nkind (N) = N_Selected_Component then
8211 Analyze (Prefix (N));
8212 Set_Entity (Selector_Name (N), T);
8213 Set_Etype (Selector_Name (N), T);
8214 end if;
8216 -- Invariant'Class, replace with T'Class (obj)
8218 if Class_Present (Prag) then
8220 -- In ASIS mode, an inherited item is already analyzed,
8221 -- and the replacement has been done, so do not repeat
8222 -- the transformation to prevent a malformed tree.
8224 if ASIS_Mode
8225 and then Nkind (Parent (N)) = N_Attribute_Reference
8226 and then Attribute_Name (Parent (N)) = Name_Class
8227 then
8228 null;
8230 else
8231 Rewrite (N,
8232 Make_Type_Conversion (Nloc,
8233 Subtype_Mark =>
8234 Make_Attribute_Reference (Nloc,
8235 Prefix => New_Occurrence_Of (T, Nloc),
8236 Attribute_Name => Name_Class),
8237 Expression =>
8238 Make_Identifier (Nloc, Chars (Obj_Id))));
8240 Set_Entity (Expression (N), Obj_Id);
8241 Set_Etype (Expression (N), Typ);
8242 end if;
8244 -- Invariant, replace with obj
8246 else
8247 Rewrite (N, Make_Identifier (Nloc, Chars (Obj_Id)));
8248 Set_Entity (N, Obj_Id);
8249 Set_Etype (N, Typ);
8250 end if;
8252 Set_Comes_From_Source (N, True);
8253 end Replace_Type_Reference;
8255 -- Local variables
8257 Asp : constant Node_Id := Corresponding_Aspect (Prag);
8258 Nam : constant Name_Id := Original_Aspect_Pragma_Name (Prag);
8259 Ploc : constant Source_Ptr := Sloc (Prag);
8260 Arg1 : Node_Id;
8261 Arg2 : Node_Id;
8262 Arg3 : Node_Id;
8263 Assoc : List_Id;
8264 Expr : Node_Id;
8265 Str : String_Id;
8267 -- Start of processing for Add_Invariant
8269 begin
8270 -- Extract the arguments of the invariant pragma
8272 Arg1 := First (Pragma_Argument_Associations (Prag));
8273 Arg2 := Next (Arg1);
8274 Arg3 := Next (Arg2);
8276 Arg1 := Get_Pragma_Arg (Arg1);
8277 Arg2 := Get_Pragma_Arg (Arg2);
8279 -- The caller requests processing of all Invariant'Class pragmas,
8280 -- but the current pragma does not fall in this category. Return
8281 -- as there is nothing left to do.
8283 if Inherit then
8284 if not Class_Present (Prag) then
8285 return;
8286 end if;
8288 -- Otherwise the pragma must apply to the current type
8290 elsif Entity (Arg1) /= T then
8291 return;
8292 end if;
8294 Expr := New_Copy_Tree (Arg2);
8296 -- Replace all occurrences of the type's name with references to
8297 -- the formal parameter of the invariant procedure.
8299 Replace_Type_References (Expr, T);
8301 -- If the invariant pragma comes from an aspect, replace the saved
8302 -- expression because we need the subtype references replaced for
8303 -- the calls to Preanalyze_Spec_Expression in Check_Aspect_At_xxx
8304 -- routines. This is not done for interited class-wide invariants
8305 -- because the original pragma of the parent type must remain
8306 -- unchanged.
8308 if not Inherit and then Present (Asp) then
8309 Set_Entity (Identifier (Asp), New_Copy_Tree (Expr));
8310 end if;
8312 -- Preanalyze the invariant expression to capture the visibility
8313 -- of the proper package part. In general the expression is not
8314 -- fully analyzed until the body of the invariant procedure is
8315 -- analyzed at the end of the private part, but that yields the
8316 -- wrong visibility.
8318 -- Historical note: we used to set N as the parent, but a package
8319 -- specification as the parent of an expression is bizarre.
8321 Set_Parent (Expr, Parent (Arg2));
8322 Preanalyze_Assert_Expression (Expr, Any_Boolean);
8324 -- Both modifications performed below are not done for inherited
8325 -- class-wide invariants because the origial aspect/pragma of the
8326 -- parent type must remain unchanged.
8328 if not Inherit then
8330 -- A class-wide invariant may be inherited in a separate unit,
8331 -- where the corresponding expression cannot be resolved by
8332 -- visibility, because it refers to a local function. Propagate
8333 -- semantic information to the original representation item, to
8334 -- be used when an invariant procedure for a derived type is
8335 -- constructed.
8337 -- ??? Unclear how to handle class-wide invariants that are not
8338 -- function calls.
8340 if Class_Present (Prag)
8341 and then Nkind (Expr) = N_Function_Call
8342 and then Nkind (Arg2) = N_Indexed_Component
8343 then
8344 Rewrite (Arg2,
8345 Make_Function_Call (Ploc,
8346 Name =>
8347 New_Occurrence_Of (Entity (Name (Expr)), Ploc),
8348 Parameter_Associations => Expressions (Arg2)));
8349 end if;
8351 -- In ASIS mode, even if assertions are not enabled, we must
8352 -- analyze the original expression in the aspect specification
8353 -- because it is part of the original tree.
8355 if ASIS_Mode and then Present (Asp) then
8356 declare
8357 Asp_Expr : constant Node_Id := Expression (Asp);
8359 begin
8360 Replace_Type_References (Asp_Expr, T);
8361 Preanalyze_Assert_Expression (Asp_Expr, Any_Boolean);
8362 end;
8363 end if;
8364 end if;
8366 -- An ignored invariant must not generate a runtime check. Add a
8367 -- null statement to ensure that the invariant procedure does get
8368 -- a completing body.
8370 if No (Stmts) then
8371 Stmts := Empty_List;
8372 end if;
8374 if Is_Ignored (Prag) then
8375 Append_To (Stmts, Make_Null_Statement (Ploc));
8377 -- Otherwise the invariant is checked. Build a Check pragma to
8378 -- verify the expression at runtime.
8380 else
8381 Assoc := New_List (
8382 Make_Pragma_Argument_Association (Ploc,
8383 Expression => Make_Identifier (Ploc, Nam)),
8384 Make_Pragma_Argument_Association (Ploc,
8385 Expression => Expr));
8387 -- Handle the String argument (if any)
8389 if Present (Arg3) then
8390 Str := Strval (Get_Pragma_Arg (Arg3));
8392 -- When inheriting an invariant, modify the message from
8393 -- "failed invariant" to "failed inherited invariant".
8395 if Inherit then
8396 String_To_Name_Buffer (Str);
8398 if Name_Buffer (1 .. 16) = "failed invariant" then
8399 Insert_Str_In_Name_Buffer ("inherited ", 8);
8400 Str := String_From_Name_Buffer;
8401 end if;
8402 end if;
8404 Append_To (Assoc,
8405 Make_Pragma_Argument_Association (Ploc,
8406 Expression => Make_String_Literal (Ploc, Str)));
8407 end if;
8409 -- Generate:
8410 -- pragma Check (Nam, Expr, Str);
8412 Append_To (Stmts,
8413 Make_Pragma (Ploc,
8414 Pragma_Identifier =>
8415 Make_Identifier (Ploc, Name_Check),
8416 Pragma_Argument_Associations => Assoc));
8417 end if;
8419 -- Output an info message when inheriting an invariant and the
8420 -- listing option is enabled.
8422 if Inherit and Opt.List_Inherited_Aspects then
8423 Error_Msg_Sloc := Sloc (Prag);
8424 Error_Msg_N
8425 ("info: & inherits `Invariant''Class` aspect from #?L?", Typ);
8426 end if;
8427 end Add_Invariant;
8429 -- Local variables
8431 Ritem : Node_Id;
8433 -- Start of processing for Add_Invariants
8435 begin
8436 Ritem := First_Rep_Item (T);
8437 while Present (Ritem) loop
8438 if Nkind (Ritem) = N_Pragma
8439 and then Pragma_Name (Ritem) = Name_Invariant
8440 then
8441 Add_Invariant (Ritem);
8442 end if;
8444 Next_Rep_Item (Ritem);
8445 end loop;
8446 end Add_Invariants;
8448 -- Local variables
8450 Loc : constant Source_Ptr := Sloc (Typ);
8451 Priv_Decls : constant List_Id := Private_Declarations (N);
8452 Vis_Decls : constant List_Id := Visible_Declarations (N);
8454 Save_Ghost_Mode : constant Ghost_Mode_Type := Ghost_Mode;
8456 PBody : Node_Id;
8457 PDecl : Node_Id;
8458 SId : Entity_Id;
8459 Spec : Node_Id;
8460 Stmts : List_Id;
8462 Obj_Id : Node_Id;
8463 -- The entity of the formal for the procedure
8465 -- Start of processing for Build_Invariant_Procedure
8467 begin
8468 -- The related type may be subject to pragma Ghost. Set the mode now to
8469 -- ensure that the invariant procedure is properly marked as Ghost.
8471 Set_Ghost_Mode_From_Entity (Typ);
8473 Stmts := No_List;
8474 PDecl := Empty;
8475 PBody := Empty;
8476 SId := Empty;
8478 -- If the aspect specification exists for some view of the type, the
8479 -- declaration for the procedure has been created.
8481 if Has_Invariants (Typ) then
8482 SId := Invariant_Procedure (Typ);
8483 end if;
8485 -- If the body is already present, nothing to do. This will occur when
8486 -- the type is already frozen, which is the case when the invariant
8487 -- appears in a private part, and the freezing takes place before the
8488 -- final pass over full declarations.
8490 -- See Exp_Ch3.Insert_Component_Invariant_Checks for details.
8492 if Present (SId) then
8493 PDecl := Unit_Declaration_Node (SId);
8495 if Present (PDecl)
8496 and then Nkind (PDecl) = N_Subprogram_Declaration
8497 and then Present (Corresponding_Body (PDecl))
8498 then
8499 Ghost_Mode := Save_Ghost_Mode;
8500 return;
8501 end if;
8503 else
8504 PDecl := Build_Invariant_Procedure_Declaration (Typ);
8505 end if;
8507 -- Recover formal of procedure, for use in the calls to invariant
8508 -- functions (including inherited ones).
8510 Obj_Id :=
8511 Defining_Identifier
8512 (First (Parameter_Specifications (Specification (PDecl))));
8514 -- Add invariants for the current type
8516 Add_Invariants
8517 (T => Typ,
8518 Obj_Id => Obj_Id,
8519 Stmts => Stmts,
8520 Inherit => False);
8522 -- Add invariants for parent types
8524 declare
8525 Current_Typ : Entity_Id;
8526 Parent_Typ : Entity_Id;
8528 begin
8529 Current_Typ := Typ;
8530 loop
8531 Parent_Typ := Etype (Current_Typ);
8533 if Is_Private_Type (Parent_Typ)
8534 and then Present (Full_View (Base_Type (Parent_Typ)))
8535 then
8536 Parent_Typ := Full_View (Base_Type (Parent_Typ));
8537 end if;
8539 exit when Parent_Typ = Current_Typ;
8541 Current_Typ := Parent_Typ;
8542 Add_Invariants
8543 (T => Current_Typ,
8544 Obj_Id => Obj_Id,
8545 Stmts => Stmts,
8546 Inherit => True);
8547 end loop;
8548 end;
8550 -- Add invariants of progenitors
8552 if Is_Tagged_Type (Typ) and then not Is_Interface (Typ) then
8553 declare
8554 Ifaces_List : Elist_Id;
8555 AI : Elmt_Id;
8556 Iface : Entity_Id;
8558 begin
8559 Collect_Interfaces (Typ, Ifaces_List);
8561 AI := First_Elmt (Ifaces_List);
8562 while Present (AI) loop
8563 Iface := Node (AI);
8565 if not Is_Ancestor (Iface, Typ, Use_Full_View => True) then
8566 Add_Invariants
8567 (T => Iface,
8568 Obj_Id => Obj_Id,
8569 Stmts => Stmts,
8570 Inherit => True);
8571 end if;
8573 Next_Elmt (AI);
8574 end loop;
8575 end;
8576 end if;
8578 -- Build the procedure if we generated at least one Check pragma
8580 if Stmts /= No_List then
8581 Spec := Copy_Separate_Tree (Specification (PDecl));
8583 PBody :=
8584 Make_Subprogram_Body (Loc,
8585 Specification => Spec,
8586 Declarations => Empty_List,
8587 Handled_Statement_Sequence =>
8588 Make_Handled_Sequence_Of_Statements (Loc,
8589 Statements => Stmts));
8591 -- The processing of an invariant pragma immediately generates the
8592 -- invariant procedure spec, inserts it into the tree, and analyzes
8593 -- it. If the spec has not been analyzed, then the invariant pragma
8594 -- is being inherited and requires manual insertion and analysis.
8596 if not Analyzed (PDecl) then
8597 Append_To (Vis_Decls, PDecl);
8598 Analyze (PDecl);
8599 end if;
8601 -- The invariant procedure body is inserted at the end of the private
8602 -- declarations.
8604 if Present (Priv_Decls) then
8605 Append_To (Priv_Decls, PBody);
8607 -- If the invariant appears on the full view of a private type,
8608 -- then the analysis of the private part is already completed.
8609 -- Manually analyze the new body in this case, otherwise wait
8610 -- for the analysis of the private declarations to process the
8611 -- body.
8613 if In_Private_Part (Current_Scope) then
8614 Analyze (PBody);
8615 end if;
8617 -- Otherwise there are no private declarations. This is either an
8618 -- error or the related type is a private extension, in which case
8619 -- it does not need a completion in a private part. Insert the body
8620 -- at the end of the visible declarations and analyze immediately
8621 -- because the related type is about to be frozen.
8623 else
8624 Append_To (Vis_Decls, PBody);
8625 Analyze (PBody);
8626 end if;
8627 end if;
8629 Ghost_Mode := Save_Ghost_Mode;
8630 end Build_Invariant_Procedure;
8632 -------------------------------
8633 -- Build_Predicate_Functions --
8634 -------------------------------
8636 -- The procedures that are constructed here have the form:
8638 -- function typPredicate (Ixxx : typ) return Boolean is
8639 -- begin
8640 -- return
8641 -- typ1Predicate (typ1 (Ixxx))
8642 -- and then typ2Predicate (typ2 (Ixxx))
8643 -- and then ...;
8644 -- exp1 and then exp2 and then ...
8645 -- end typPredicate;
8647 -- Here exp1, and exp2 are expressions from Predicate pragmas. Note that
8648 -- this is the point at which these expressions get analyzed, providing the
8649 -- required delay, and typ1, typ2, are entities from which predicates are
8650 -- inherited. Note that we do NOT generate Check pragmas, that's because we
8651 -- use this function even if checks are off, e.g. for membership tests.
8653 -- Note that the inherited predicates are evaluated first, as required by
8654 -- AI12-0071-1.
8656 -- Note that Sem_Eval.Real_Or_String_Static_Predicate_Matches depends on
8657 -- the form of this return expression.
8659 -- If the expression has at least one Raise_Expression, then we also build
8660 -- the typPredicateM version of the function, in which any occurrence of a
8661 -- Raise_Expression is converted to "return False".
8663 procedure Build_Predicate_Functions (Typ : Entity_Id; N : Node_Id) is
8664 Loc : constant Source_Ptr := Sloc (Typ);
8666 Expr : Node_Id;
8667 -- This is the expression for the result of the function. It is
8668 -- is build by connecting the component predicates with AND THEN.
8670 Expr_M : Node_Id;
8671 -- This is the corresponding return expression for the Predicate_M
8672 -- function. It differs in that raise expressions are marked for
8673 -- special expansion (see Process_REs).
8675 Object_Name : Name_Id;
8676 -- Name for argument of Predicate procedure. Note that we use the same
8677 -- name for both predicate functions. That way the reference within the
8678 -- predicate expression is the same in both functions.
8680 Object_Entity : Entity_Id;
8681 -- Entity for argument of Predicate procedure
8683 Object_Entity_M : Entity_Id;
8684 -- Entity for argument of separate Predicate procedure when exceptions
8685 -- are present in expression.
8687 FDecl : Node_Id;
8688 -- The function declaration
8690 SId : Entity_Id;
8691 -- Its entity
8693 Raise_Expression_Present : Boolean := False;
8694 -- Set True if Expr has at least one Raise_Expression
8696 procedure Add_Condition (Cond : Node_Id);
8697 -- Append Cond to Expr using "and then" (or just copy Cond to Expr if
8698 -- Expr is empty).
8700 procedure Add_Predicates;
8701 -- Appends expressions for any Predicate pragmas in the rep item chain
8702 -- Typ to Expr. Note that we look only at items for this exact entity.
8703 -- Inheritance of predicates for the parent type is done by calling the
8704 -- Predicate_Function of the parent type, using Add_Call above.
8706 procedure Add_Call (T : Entity_Id);
8707 -- Includes a call to the predicate function for type T in Expr if T
8708 -- has predicates and Predicate_Function (T) is non-empty.
8710 function Process_RE (N : Node_Id) return Traverse_Result;
8711 -- Used in Process REs, tests if node N is a raise expression, and if
8712 -- so, marks it to be converted to return False.
8714 procedure Process_REs is new Traverse_Proc (Process_RE);
8715 -- Marks any raise expressions in Expr_M to return False
8717 function Test_RE (N : Node_Id) return Traverse_Result;
8718 -- Used in Test_REs, tests one node for being a raise expression, and if
8719 -- so sets Raise_Expression_Present True.
8721 procedure Test_REs is new Traverse_Proc (Test_RE);
8722 -- Tests to see if Expr contains any raise expressions
8724 --------------
8725 -- Add_Call --
8726 --------------
8728 procedure Add_Call (T : Entity_Id) is
8729 Exp : Node_Id;
8731 begin
8732 if Present (T) and then Present (Predicate_Function (T)) then
8733 Set_Has_Predicates (Typ);
8735 -- Build the call to the predicate function of T
8737 Exp :=
8738 Make_Predicate_Call
8739 (T, Convert_To (T, Make_Identifier (Loc, Object_Name)));
8741 -- "and"-in the call to evolving expression
8743 Add_Condition (Exp);
8745 -- Output info message on inheritance if required. Note we do not
8746 -- give this information for generic actual types, since it is
8747 -- unwelcome noise in that case in instantiations. We also
8748 -- generally suppress the message in instantiations, and also
8749 -- if it involves internal names.
8751 if Opt.List_Inherited_Aspects
8752 and then not Is_Generic_Actual_Type (Typ)
8753 and then Instantiation_Depth (Sloc (Typ)) = 0
8754 and then not Is_Internal_Name (Chars (T))
8755 and then not Is_Internal_Name (Chars (Typ))
8756 then
8757 Error_Msg_Sloc := Sloc (Predicate_Function (T));
8758 Error_Msg_Node_2 := T;
8759 Error_Msg_N ("info: & inherits predicate from & #?L?", Typ);
8760 end if;
8761 end if;
8762 end Add_Call;
8764 -------------------
8765 -- Add_Condition --
8766 -------------------
8768 procedure Add_Condition (Cond : Node_Id) is
8769 begin
8770 -- This is the first predicate expression
8772 if No (Expr) then
8773 Expr := Cond;
8775 -- Otherwise concatenate to the existing predicate expressions by
8776 -- using "and then".
8778 else
8779 Expr :=
8780 Make_And_Then (Loc,
8781 Left_Opnd => Relocate_Node (Expr),
8782 Right_Opnd => Cond);
8783 end if;
8784 end Add_Condition;
8786 --------------------
8787 -- Add_Predicates --
8788 --------------------
8790 procedure Add_Predicates is
8791 procedure Add_Predicate (Prag : Node_Id);
8792 -- Concatenate the expression of predicate pragma Prag to Expr by
8793 -- using a short circuit "and then" operator.
8795 -------------------
8796 -- Add_Predicate --
8797 -------------------
8799 procedure Add_Predicate (Prag : Node_Id) is
8800 procedure Replace_Type_Reference (N : Node_Id);
8801 -- Replace a single occurrence N of the subtype name with a
8802 -- reference to the formal of the predicate function. N can be an
8803 -- identifier referencing the subtype, or a selected component,
8804 -- representing an appropriately qualified occurrence of the
8805 -- subtype name.
8807 procedure Replace_Type_References is
8808 new Replace_Type_References_Generic (Replace_Type_Reference);
8809 -- Traverse an expression changing every occurrence of an
8810 -- identifier whose name matches the name of the subtype with a
8811 -- reference to the formal parameter of the predicate function.
8813 ----------------------------
8814 -- Replace_Type_Reference --
8815 ----------------------------
8817 procedure Replace_Type_Reference (N : Node_Id) is
8818 begin
8819 Rewrite (N, Make_Identifier (Sloc (N), Object_Name));
8820 -- Use the Sloc of the usage name, not the defining name
8822 Set_Etype (N, Typ);
8823 Set_Entity (N, Object_Entity);
8825 -- We want to treat the node as if it comes from source, so
8826 -- that ASIS will not ignore it.
8828 Set_Comes_From_Source (N, True);
8829 end Replace_Type_Reference;
8831 -- Local variables
8833 Asp : constant Node_Id := Corresponding_Aspect (Prag);
8834 Arg1 : Node_Id;
8835 Arg2 : Node_Id;
8837 -- Start of processing for Add_Predicate
8839 begin
8840 -- Extract the arguments of the pragma. The expression itself
8841 -- is copied for use in the predicate function, to preserve the
8842 -- original version for ASIS use.
8844 Arg1 := First (Pragma_Argument_Associations (Prag));
8845 Arg2 := Next (Arg1);
8847 Arg1 := Get_Pragma_Arg (Arg1);
8848 Arg2 := New_Copy_Tree (Get_Pragma_Arg (Arg2));
8850 -- When the predicate pragma applies to the current type or its
8851 -- full view, replace all occurrences of the subtype name with
8852 -- references to the formal parameter of the predicate function.
8854 if Entity (Arg1) = Typ
8855 or else Full_View (Entity (Arg1)) = Typ
8856 then
8857 Replace_Type_References (Arg2, Typ);
8859 -- If the predicate pragma comes from an aspect, replace the
8860 -- saved expression because we need the subtype references
8861 -- replaced for the calls to Preanalyze_Spec_Expression in
8862 -- Check_Aspect_At_xxx routines.
8864 if Present (Asp) then
8865 Set_Entity (Identifier (Asp), New_Copy_Tree (Arg2));
8866 end if;
8868 -- "and"-in the Arg2 condition to evolving expression
8870 Add_Condition (Relocate_Node (Arg2));
8871 end if;
8872 end Add_Predicate;
8874 -- Local variables
8876 Ritem : Node_Id;
8878 -- Start of processing for Add_Predicates
8880 begin
8881 Ritem := First_Rep_Item (Typ);
8882 while Present (Ritem) loop
8883 if Nkind (Ritem) = N_Pragma
8884 and then Pragma_Name (Ritem) = Name_Predicate
8885 then
8886 Add_Predicate (Ritem);
8888 -- If the type is declared in an inner package it may be frozen
8889 -- outside of the package, and the generated pragma has not been
8890 -- analyzed yet, so capture the expression for the predicate
8891 -- function at this point.
8893 elsif Nkind (Ritem) = N_Aspect_Specification
8894 and then Present (Aspect_Rep_Item (Ritem))
8895 and then Scope (Typ) /= Current_Scope
8896 then
8897 declare
8898 Prag : constant Node_Id := Aspect_Rep_Item (Ritem);
8900 begin
8901 if Nkind (Prag) = N_Pragma
8902 and then Pragma_Name (Prag) = Name_Predicate
8903 then
8904 Add_Predicate (Prag);
8905 end if;
8906 end;
8907 end if;
8909 Next_Rep_Item (Ritem);
8910 end loop;
8911 end Add_Predicates;
8913 ----------------
8914 -- Process_RE --
8915 ----------------
8917 function Process_RE (N : Node_Id) return Traverse_Result is
8918 begin
8919 if Nkind (N) = N_Raise_Expression then
8920 Set_Convert_To_Return_False (N);
8921 return Skip;
8922 else
8923 return OK;
8924 end if;
8925 end Process_RE;
8927 -------------
8928 -- Test_RE --
8929 -------------
8931 function Test_RE (N : Node_Id) return Traverse_Result is
8932 begin
8933 if Nkind (N) = N_Raise_Expression then
8934 Raise_Expression_Present := True;
8935 return Abandon;
8936 else
8937 return OK;
8938 end if;
8939 end Test_RE;
8941 -- Local variables
8943 Save_Ghost_Mode : constant Ghost_Mode_Type := Ghost_Mode;
8945 -- Start of processing for Build_Predicate_Functions
8947 begin
8948 -- Return if already built or if type does not have predicates
8950 SId := Predicate_Function (Typ);
8951 if not Has_Predicates (Typ)
8952 or else (Present (SId) and then Has_Completion (SId))
8953 then
8954 return;
8955 end if;
8957 -- The related type may be subject to pragma Ghost. Set the mode now to
8958 -- ensure that the predicate functions are properly marked as Ghost.
8960 Set_Ghost_Mode_From_Entity (Typ);
8962 -- Prepare to construct predicate expression
8964 Expr := Empty;
8966 if Present (SId) then
8967 FDecl := Unit_Declaration_Node (SId);
8969 else
8970 FDecl := Build_Predicate_Function_Declaration (Typ);
8971 SId := Defining_Entity (FDecl);
8972 end if;
8974 -- Recover name of formal parameter of function that replaces references
8975 -- to the type in predicate expressions.
8977 Object_Entity :=
8978 Defining_Identifier
8979 (First (Parameter_Specifications (Specification (FDecl))));
8981 Object_Name := Chars (Object_Entity);
8982 Object_Entity_M := Make_Defining_Identifier (Loc, Chars => Object_Name);
8984 -- Add predicates for ancestor if present. These must come before the
8985 -- ones for the current type, as required by AI12-0071-1.
8987 declare
8988 Atyp : constant Entity_Id := Nearest_Ancestor (Typ);
8989 begin
8990 if Present (Atyp) then
8991 Add_Call (Atyp);
8992 end if;
8993 end;
8995 -- Add Predicates for the current type
8997 Add_Predicates;
8999 -- Case where predicates are present
9001 if Present (Expr) then
9003 -- Test for raise expression present
9005 Test_REs (Expr);
9007 -- If raise expression is present, capture a copy of Expr for use
9008 -- in building the predicateM function version later on. For this
9009 -- copy we replace references to Object_Entity by Object_Entity_M.
9011 if Raise_Expression_Present then
9012 declare
9013 Map : constant Elist_Id := New_Elmt_List;
9014 New_V : Entity_Id := Empty;
9016 -- The unanalyzed expression will be copied and appear in
9017 -- both functions. Normally expressions do not declare new
9018 -- entities, but quantified expressions do, so we need to
9019 -- create new entities for their bound variables, to prevent
9020 -- multiple definitions in gigi.
9022 function Reset_Loop_Variable (N : Node_Id)
9023 return Traverse_Result;
9025 procedure Collect_Loop_Variables is
9026 new Traverse_Proc (Reset_Loop_Variable);
9028 ------------------------
9029 -- Reset_Loop_Variable --
9030 ------------------------
9032 function Reset_Loop_Variable (N : Node_Id)
9033 return Traverse_Result
9035 begin
9036 if Nkind (N) = N_Iterator_Specification then
9037 New_V := Make_Defining_Identifier
9038 (Sloc (N), Chars (Defining_Identifier (N)));
9040 Set_Defining_Identifier (N, New_V);
9041 end if;
9043 return OK;
9044 end Reset_Loop_Variable;
9046 begin
9047 Append_Elmt (Object_Entity, Map);
9048 Append_Elmt (Object_Entity_M, Map);
9049 Expr_M := New_Copy_Tree (Expr, Map => Map);
9050 Collect_Loop_Variables (Expr_M);
9051 end;
9052 end if;
9054 -- Build the main predicate function
9056 declare
9057 SIdB : constant Entity_Id :=
9058 Make_Defining_Identifier (Loc,
9059 Chars => New_External_Name (Chars (Typ), "Predicate"));
9060 -- The entity for the function body
9062 Spec : Node_Id;
9063 FBody : Node_Id;
9065 begin
9067 -- The predicate function is shared between views of a type
9069 if Is_Private_Type (Typ) and then Present (Full_View (Typ)) then
9070 Set_Predicate_Function (Full_View (Typ), SId);
9071 end if;
9073 -- Mark the predicate function explicitly as Ghost because it does
9074 -- not come from source.
9076 if Ghost_Mode > None then
9077 Set_Is_Ghost_Entity (SId);
9078 end if;
9080 -- Build function body
9082 Spec :=
9083 Make_Function_Specification (Loc,
9084 Defining_Unit_Name => SIdB,
9085 Parameter_Specifications => New_List (
9086 Make_Parameter_Specification (Loc,
9087 Defining_Identifier =>
9088 Make_Defining_Identifier (Loc, Object_Name),
9089 Parameter_Type =>
9090 New_Occurrence_Of (Typ, Loc))),
9091 Result_Definition =>
9092 New_Occurrence_Of (Standard_Boolean, Loc));
9094 FBody :=
9095 Make_Subprogram_Body (Loc,
9096 Specification => Spec,
9097 Declarations => Empty_List,
9098 Handled_Statement_Sequence =>
9099 Make_Handled_Sequence_Of_Statements (Loc,
9100 Statements => New_List (
9101 Make_Simple_Return_Statement (Loc,
9102 Expression => Expr))));
9104 -- If declaration has not been analyzed yet, Insert declaration
9105 -- before freeze node.
9106 -- Insert body after freeze node.
9108 if not Analyzed (FDecl) then
9109 Insert_Before_And_Analyze (N, FDecl);
9110 end if;
9112 Insert_After_And_Analyze (N, FBody);
9114 -- Static predicate functions are always side-effect free, and
9115 -- in most cases dynamic predicate functions are as well. Mark
9116 -- them as such whenever possible, so redundant predicate checks
9117 -- can be optimized. If there is a variable reference within the
9118 -- expression, the function is not pure.
9120 if Expander_Active then
9121 Set_Is_Pure (SId,
9122 Side_Effect_Free (Expr, Variable_Ref => True));
9123 Set_Is_Inlined (SId);
9124 end if;
9125 end;
9127 -- Test for raise expressions present and if so build M version
9129 if Raise_Expression_Present then
9130 declare
9131 SId : constant Entity_Id :=
9132 Make_Defining_Identifier (Loc,
9133 Chars => New_External_Name (Chars (Typ), "PredicateM"));
9134 -- The entity for the function spec
9136 SIdB : constant Entity_Id :=
9137 Make_Defining_Identifier (Loc,
9138 Chars => New_External_Name (Chars (Typ), "PredicateM"));
9139 -- The entity for the function body
9141 Spec : Node_Id;
9142 FBody : Node_Id;
9143 FDecl : Node_Id;
9144 BTemp : Entity_Id;
9146 begin
9147 -- Mark any raise expressions for special expansion
9149 Process_REs (Expr_M);
9151 -- Build function declaration
9153 Set_Ekind (SId, E_Function);
9154 Set_Is_Predicate_Function_M (SId);
9155 Set_Predicate_Function_M (Typ, SId);
9157 -- The predicate function is shared between views of a type
9159 if Is_Private_Type (Typ) and then Present (Full_View (Typ)) then
9160 Set_Predicate_Function_M (Full_View (Typ), SId);
9161 end if;
9163 -- Mark the predicate function explicitly as Ghost because it
9164 -- does not come from source.
9166 if Ghost_Mode > None then
9167 Set_Is_Ghost_Entity (SId);
9168 end if;
9170 Spec :=
9171 Make_Function_Specification (Loc,
9172 Defining_Unit_Name => SId,
9173 Parameter_Specifications => New_List (
9174 Make_Parameter_Specification (Loc,
9175 Defining_Identifier => Object_Entity_M,
9176 Parameter_Type => New_Occurrence_Of (Typ, Loc))),
9177 Result_Definition =>
9178 New_Occurrence_Of (Standard_Boolean, Loc));
9180 FDecl :=
9181 Make_Subprogram_Declaration (Loc,
9182 Specification => Spec);
9184 -- Build function body
9186 Spec :=
9187 Make_Function_Specification (Loc,
9188 Defining_Unit_Name => SIdB,
9189 Parameter_Specifications => New_List (
9190 Make_Parameter_Specification (Loc,
9191 Defining_Identifier =>
9192 Make_Defining_Identifier (Loc, Object_Name),
9193 Parameter_Type =>
9194 New_Occurrence_Of (Typ, Loc))),
9195 Result_Definition =>
9196 New_Occurrence_Of (Standard_Boolean, Loc));
9198 -- Build the body, we declare the boolean expression before
9199 -- doing the return, because we are not really confident of
9200 -- what happens if a return appears within a return.
9202 BTemp :=
9203 Make_Defining_Identifier (Loc,
9204 Chars => New_Internal_Name ('B'));
9206 FBody :=
9207 Make_Subprogram_Body (Loc,
9208 Specification => Spec,
9210 Declarations => New_List (
9211 Make_Object_Declaration (Loc,
9212 Defining_Identifier => BTemp,
9213 Constant_Present => True,
9214 Object_Definition =>
9215 New_Occurrence_Of (Standard_Boolean, Loc),
9216 Expression => Expr_M)),
9218 Handled_Statement_Sequence =>
9219 Make_Handled_Sequence_Of_Statements (Loc,
9220 Statements => New_List (
9221 Make_Simple_Return_Statement (Loc,
9222 Expression => New_Occurrence_Of (BTemp, Loc)))));
9224 -- Insert declaration before freeze node and body after
9226 Insert_Before_And_Analyze (N, FDecl);
9227 Insert_After_And_Analyze (N, FBody);
9228 end;
9229 end if;
9231 -- See if we have a static predicate. Note that the answer may be
9232 -- yes even if we have an explicit Dynamic_Predicate present.
9234 declare
9235 PS : Boolean;
9236 EN : Node_Id;
9238 begin
9239 if not Is_Scalar_Type (Typ) and then not Is_String_Type (Typ) then
9240 PS := False;
9241 else
9242 PS := Is_Predicate_Static (Expr, Object_Name);
9243 end if;
9245 -- Case where we have a predicate-static aspect
9247 if PS then
9249 -- We don't set Has_Static_Predicate_Aspect, since we can have
9250 -- any of the three cases (Predicate, Dynamic_Predicate, or
9251 -- Static_Predicate) generating a predicate with an expression
9252 -- that is predicate-static. We just indicate that we have a
9253 -- predicate that can be treated as static.
9255 Set_Has_Static_Predicate (Typ);
9257 -- For discrete subtype, build the static predicate list
9259 if Is_Discrete_Type (Typ) then
9260 Build_Discrete_Static_Predicate (Typ, Expr, Object_Name);
9262 -- If we don't get a static predicate list, it means that we
9263 -- have a case where this is not possible, most typically in
9264 -- the case where we inherit a dynamic predicate. We do not
9265 -- consider this an error, we just leave the predicate as
9266 -- dynamic. But if we do succeed in building the list, then
9267 -- we mark the predicate as static.
9269 if No (Static_Discrete_Predicate (Typ)) then
9270 Set_Has_Static_Predicate (Typ, False);
9271 end if;
9273 -- For real or string subtype, save predicate expression
9275 elsif Is_Real_Type (Typ) or else Is_String_Type (Typ) then
9276 Set_Static_Real_Or_String_Predicate (Typ, Expr);
9277 end if;
9279 -- Case of dynamic predicate (expression is not predicate-static)
9281 else
9282 -- Again, we don't set Has_Dynamic_Predicate_Aspect, since that
9283 -- is only set if we have an explicit Dynamic_Predicate aspect
9284 -- given. Here we may simply have a Predicate aspect where the
9285 -- expression happens not to be predicate-static.
9287 -- Emit an error when the predicate is categorized as static
9288 -- but its expression is not predicate-static.
9290 -- First a little fiddling to get a nice location for the
9291 -- message. If the expression is of the form (A and then B),
9292 -- where A is an inherited predicate, then use the right
9293 -- operand for the Sloc. This avoids getting confused by a call
9294 -- to an inherited predicate with a less convenient source
9295 -- location.
9297 EN := Expr;
9298 while Nkind (EN) = N_And_Then
9299 and then Nkind (Left_Opnd (EN)) = N_Function_Call
9300 and then Is_Predicate_Function
9301 (Entity (Name (Left_Opnd (EN))))
9302 loop
9303 EN := Right_Opnd (EN);
9304 end loop;
9306 -- Now post appropriate message
9308 if Has_Static_Predicate_Aspect (Typ) then
9309 if Is_Scalar_Type (Typ) or else Is_String_Type (Typ) then
9310 Error_Msg_F
9311 ("expression is not predicate-static (RM 3.2.4(16-22))",
9312 EN);
9313 else
9314 Error_Msg_F
9315 ("static predicate requires scalar or string type", EN);
9316 end if;
9317 end if;
9318 end if;
9319 end;
9320 end if;
9322 Ghost_Mode := Save_Ghost_Mode;
9323 end Build_Predicate_Functions;
9325 ------------------------------------------
9326 -- Build_Predicate_Function_Declaration --
9327 ------------------------------------------
9329 function Build_Predicate_Function_Declaration
9330 (Typ : Entity_Id) return Node_Id
9332 Loc : constant Source_Ptr := Sloc (Typ);
9334 Object_Entity : constant Entity_Id :=
9335 Make_Defining_Identifier (Loc,
9336 Chars => New_Internal_Name ('I'));
9338 -- The formal parameter of the function
9340 SId : constant Entity_Id :=
9341 Make_Defining_Identifier (Loc,
9342 Chars => New_External_Name (Chars (Typ), "Predicate"));
9344 -- The entity for the function spec
9346 FDecl : Node_Id;
9347 Spec : Node_Id;
9349 begin
9350 Spec :=
9351 Make_Function_Specification (Loc,
9352 Defining_Unit_Name => SId,
9353 Parameter_Specifications => New_List (
9354 Make_Parameter_Specification (Loc,
9355 Defining_Identifier => Object_Entity,
9356 Parameter_Type => New_Occurrence_Of (Typ, Loc))),
9357 Result_Definition =>
9358 New_Occurrence_Of (Standard_Boolean, Loc));
9360 FDecl := Make_Subprogram_Declaration (Loc, Specification => Spec);
9362 Set_Ekind (SId, E_Function);
9363 Set_Etype (SId, Standard_Boolean);
9364 Set_Is_Internal (SId);
9365 Set_Is_Predicate_Function (SId);
9366 Set_Predicate_Function (Typ, SId);
9368 if Comes_From_Source (Typ) then
9369 Insert_After (Parent (Typ), FDecl);
9370 else
9371 Insert_After (Parent (Base_Type (Typ)), FDecl);
9372 end if;
9374 Analyze (FDecl);
9376 return FDecl;
9377 end Build_Predicate_Function_Declaration;
9379 -----------------------------------------
9380 -- Check_Aspect_At_End_Of_Declarations --
9381 -----------------------------------------
9383 procedure Check_Aspect_At_End_Of_Declarations (ASN : Node_Id) is
9384 Ent : constant Entity_Id := Entity (ASN);
9385 Ident : constant Node_Id := Identifier (ASN);
9386 A_Id : constant Aspect_Id := Get_Aspect_Id (Chars (Ident));
9388 End_Decl_Expr : constant Node_Id := Entity (Ident);
9389 -- Expression to be analyzed at end of declarations
9391 Freeze_Expr : constant Node_Id := Expression (ASN);
9392 -- Expression from call to Check_Aspect_At_Freeze_Point
9394 T : constant Entity_Id := Etype (Freeze_Expr);
9395 -- Type required for preanalyze call
9397 Err : Boolean;
9398 -- Set False if error
9400 -- On entry to this procedure, Entity (Ident) contains a copy of the
9401 -- original expression from the aspect, saved for this purpose, and
9402 -- but Expression (Ident) is a preanalyzed copy of the expression,
9403 -- preanalyzed just after the freeze point.
9405 procedure Check_Overloaded_Name;
9406 -- For aspects whose expression is simply a name, this routine checks if
9407 -- the name is overloaded or not. If so, it verifies there is an
9408 -- interpretation that matches the entity obtained at the freeze point,
9409 -- otherwise the compiler complains.
9411 ---------------------------
9412 -- Check_Overloaded_Name --
9413 ---------------------------
9415 procedure Check_Overloaded_Name is
9416 begin
9417 if not Is_Overloaded (End_Decl_Expr) then
9418 Err := not Is_Entity_Name (End_Decl_Expr)
9419 or else Entity (End_Decl_Expr) /= Entity (Freeze_Expr);
9421 else
9422 Err := True;
9424 declare
9425 Index : Interp_Index;
9426 It : Interp;
9428 begin
9429 Get_First_Interp (End_Decl_Expr, Index, It);
9430 while Present (It.Typ) loop
9431 if It.Nam = Entity (Freeze_Expr) then
9432 Err := False;
9433 exit;
9434 end if;
9436 Get_Next_Interp (Index, It);
9437 end loop;
9438 end;
9439 end if;
9440 end Check_Overloaded_Name;
9442 -- Start of processing for Check_Aspect_At_End_Of_Declarations
9444 begin
9445 -- In an instance we do not perform the consistency check between freeze
9446 -- point and end of declarations, because it was done already in the
9447 -- analysis of the generic. Furthermore, the delayed analysis of an
9448 -- aspect of the instance may produce spurious errors when the generic
9449 -- is a child unit that references entities in the parent (which might
9450 -- not be in scope at the freeze point of the instance).
9452 if In_Instance then
9453 return;
9455 -- Case of aspects Dimension, Dimension_System and Synchronization
9457 elsif A_Id = Aspect_Synchronization then
9458 return;
9460 -- Case of stream attributes, just have to compare entities. However,
9461 -- the expression is just a name (possibly overloaded), and there may
9462 -- be stream operations declared for unrelated types, so we just need
9463 -- to verify that one of these interpretations is the one available at
9464 -- at the freeze point.
9466 elsif A_Id = Aspect_Input or else
9467 A_Id = Aspect_Output or else
9468 A_Id = Aspect_Read or else
9469 A_Id = Aspect_Write
9470 then
9471 Analyze (End_Decl_Expr);
9472 Check_Overloaded_Name;
9474 elsif A_Id = Aspect_Variable_Indexing or else
9475 A_Id = Aspect_Constant_Indexing or else
9476 A_Id = Aspect_Default_Iterator or else
9477 A_Id = Aspect_Iterator_Element
9478 then
9479 -- Make type unfrozen before analysis, to prevent spurious errors
9480 -- about late attributes.
9482 Set_Is_Frozen (Ent, False);
9483 Analyze (End_Decl_Expr);
9484 Set_Is_Frozen (Ent, True);
9486 -- If the end of declarations comes before any other freeze
9487 -- point, the Freeze_Expr is not analyzed: no check needed.
9489 if Analyzed (Freeze_Expr) and then not In_Instance then
9490 Check_Overloaded_Name;
9491 else
9492 Err := False;
9493 end if;
9495 -- All other cases
9497 else
9498 -- Indicate that the expression comes from an aspect specification,
9499 -- which is used in subsequent analysis even if expansion is off.
9501 Set_Parent (End_Decl_Expr, ASN);
9503 -- In a generic context the aspect expressions have not been
9504 -- preanalyzed, so do it now. There are no conformance checks
9505 -- to perform in this case.
9507 if No (T) then
9508 Check_Aspect_At_Freeze_Point (ASN);
9509 return;
9511 -- The default values attributes may be defined in the private part,
9512 -- and the analysis of the expression may take place when only the
9513 -- partial view is visible. The expression must be scalar, so use
9514 -- the full view to resolve.
9516 elsif (A_Id = Aspect_Default_Value
9517 or else
9518 A_Id = Aspect_Default_Component_Value)
9519 and then Is_Private_Type (T)
9520 then
9521 Preanalyze_Spec_Expression (End_Decl_Expr, Full_View (T));
9523 else
9524 Preanalyze_Spec_Expression (End_Decl_Expr, T);
9525 end if;
9527 Err := not Fully_Conformant_Expressions (End_Decl_Expr, Freeze_Expr);
9528 end if;
9530 -- Output error message if error. Force error on aspect specification
9531 -- even if there is an error on the expression itself.
9533 if Err then
9534 Error_Msg_NE
9535 ("!visibility of aspect for& changes after freeze point",
9536 ASN, Ent);
9537 Error_Msg_NE
9538 ("info: & is frozen here, aspects evaluated at this point??",
9539 Freeze_Node (Ent), Ent);
9540 end if;
9541 end Check_Aspect_At_End_Of_Declarations;
9543 ----------------------------------
9544 -- Check_Aspect_At_Freeze_Point --
9545 ----------------------------------
9547 procedure Check_Aspect_At_Freeze_Point (ASN : Node_Id) is
9548 Ident : constant Node_Id := Identifier (ASN);
9549 -- Identifier (use Entity field to save expression)
9551 A_Id : constant Aspect_Id := Get_Aspect_Id (Chars (Ident));
9553 T : Entity_Id := Empty;
9554 -- Type required for preanalyze call
9556 begin
9557 -- On entry to this procedure, Entity (Ident) contains a copy of the
9558 -- original expression from the aspect, saved for this purpose.
9560 -- On exit from this procedure Entity (Ident) is unchanged, still
9561 -- containing that copy, but Expression (Ident) is a preanalyzed copy
9562 -- of the expression, preanalyzed just after the freeze point.
9564 -- Make a copy of the expression to be preanalyzed
9566 Set_Expression (ASN, New_Copy_Tree (Entity (Ident)));
9568 -- Find type for preanalyze call
9570 case A_Id is
9572 -- No_Aspect should be impossible
9574 when No_Aspect =>
9575 raise Program_Error;
9577 -- Aspects taking an optional boolean argument
9579 when Boolean_Aspects |
9580 Library_Unit_Aspects =>
9582 T := Standard_Boolean;
9584 -- Aspects corresponding to attribute definition clauses
9586 when Aspect_Address =>
9587 T := RTE (RE_Address);
9589 when Aspect_Attach_Handler =>
9590 T := RTE (RE_Interrupt_ID);
9592 when Aspect_Bit_Order | Aspect_Scalar_Storage_Order =>
9593 T := RTE (RE_Bit_Order);
9595 when Aspect_Convention =>
9596 return;
9598 when Aspect_CPU =>
9599 T := RTE (RE_CPU_Range);
9601 -- Default_Component_Value is resolved with the component type
9603 when Aspect_Default_Component_Value =>
9604 T := Component_Type (Entity (ASN));
9606 when Aspect_Default_Storage_Pool =>
9607 T := Class_Wide_Type (RTE (RE_Root_Storage_Pool));
9609 -- Default_Value is resolved with the type entity in question
9611 when Aspect_Default_Value =>
9612 T := Entity (ASN);
9614 when Aspect_Dispatching_Domain =>
9615 T := RTE (RE_Dispatching_Domain);
9617 when Aspect_External_Tag =>
9618 T := Standard_String;
9620 when Aspect_External_Name =>
9621 T := Standard_String;
9623 when Aspect_Link_Name =>
9624 T := Standard_String;
9626 when Aspect_Priority | Aspect_Interrupt_Priority =>
9627 T := Standard_Integer;
9629 when Aspect_Relative_Deadline =>
9630 T := RTE (RE_Time_Span);
9632 when Aspect_Small =>
9633 T := Universal_Real;
9635 -- For a simple storage pool, we have to retrieve the type of the
9636 -- pool object associated with the aspect's corresponding attribute
9637 -- definition clause.
9639 when Aspect_Simple_Storage_Pool =>
9640 T := Etype (Expression (Aspect_Rep_Item (ASN)));
9642 when Aspect_Storage_Pool =>
9643 T := Class_Wide_Type (RTE (RE_Root_Storage_Pool));
9645 when Aspect_Alignment |
9646 Aspect_Component_Size |
9647 Aspect_Machine_Radix |
9648 Aspect_Object_Size |
9649 Aspect_Size |
9650 Aspect_Storage_Size |
9651 Aspect_Stream_Size |
9652 Aspect_Value_Size =>
9653 T := Any_Integer;
9655 when Aspect_Linker_Section =>
9656 T := Standard_String;
9658 when Aspect_Synchronization =>
9659 return;
9661 -- Special case, the expression of these aspects is just an entity
9662 -- that does not need any resolution, so just analyze.
9664 when Aspect_Input |
9665 Aspect_Output |
9666 Aspect_Read |
9667 Aspect_Suppress |
9668 Aspect_Unsuppress |
9669 Aspect_Warnings |
9670 Aspect_Write =>
9671 Analyze (Expression (ASN));
9672 return;
9674 -- Same for Iterator aspects, where the expression is a function
9675 -- name. Legality rules are checked separately.
9677 when Aspect_Constant_Indexing |
9678 Aspect_Default_Iterator |
9679 Aspect_Iterator_Element |
9680 Aspect_Variable_Indexing =>
9681 Analyze (Expression (ASN));
9682 return;
9684 -- Ditto for Iterable, legality checks in Validate_Iterable_Aspect.
9686 when Aspect_Iterable =>
9687 T := Entity (ASN);
9689 declare
9690 Cursor : constant Entity_Id := Get_Cursor_Type (ASN, T);
9691 Assoc : Node_Id;
9692 Expr : Node_Id;
9694 begin
9695 if Cursor = Any_Type then
9696 return;
9697 end if;
9699 Assoc := First (Component_Associations (Expression (ASN)));
9700 while Present (Assoc) loop
9701 Expr := Expression (Assoc);
9702 Analyze (Expr);
9704 if not Error_Posted (Expr) then
9705 Resolve_Iterable_Operation
9706 (Expr, Cursor, T, Chars (First (Choices (Assoc))));
9707 end if;
9709 Next (Assoc);
9710 end loop;
9711 end;
9713 return;
9715 -- Invariant/Predicate take boolean expressions
9717 when Aspect_Dynamic_Predicate |
9718 Aspect_Invariant |
9719 Aspect_Predicate |
9720 Aspect_Static_Predicate |
9721 Aspect_Type_Invariant =>
9722 T := Standard_Boolean;
9724 when Aspect_Predicate_Failure =>
9725 T := Standard_String;
9727 -- Here is the list of aspects that don't require delay analysis
9729 when Aspect_Abstract_State |
9730 Aspect_Annotate |
9731 Aspect_Async_Readers |
9732 Aspect_Async_Writers |
9733 Aspect_Constant_After_Elaboration |
9734 Aspect_Contract_Cases |
9735 Aspect_Default_Initial_Condition |
9736 Aspect_Depends |
9737 Aspect_Dimension |
9738 Aspect_Dimension_System |
9739 Aspect_Effective_Reads |
9740 Aspect_Effective_Writes |
9741 Aspect_Extensions_Visible |
9742 Aspect_Ghost |
9743 Aspect_Global |
9744 Aspect_Implicit_Dereference |
9745 Aspect_Initial_Condition |
9746 Aspect_Initializes |
9747 Aspect_Obsolescent |
9748 Aspect_Part_Of |
9749 Aspect_Post |
9750 Aspect_Postcondition |
9751 Aspect_Pre |
9752 Aspect_Precondition |
9753 Aspect_Refined_Depends |
9754 Aspect_Refined_Global |
9755 Aspect_Refined_Post |
9756 Aspect_Refined_State |
9757 Aspect_SPARK_Mode |
9758 Aspect_Test_Case |
9759 Aspect_Unimplemented |
9760 Aspect_Volatile_Function =>
9761 raise Program_Error;
9763 end case;
9765 -- Do the preanalyze call
9767 Preanalyze_Spec_Expression (Expression (ASN), T);
9768 end Check_Aspect_At_Freeze_Point;
9770 -----------------------------------
9771 -- Check_Constant_Address_Clause --
9772 -----------------------------------
9774 procedure Check_Constant_Address_Clause
9775 (Expr : Node_Id;
9776 U_Ent : Entity_Id)
9778 procedure Check_At_Constant_Address (Nod : Node_Id);
9779 -- Checks that the given node N represents a name whose 'Address is
9780 -- constant (in the same sense as OK_Constant_Address_Clause, i.e. the
9781 -- address value is the same at the point of declaration of U_Ent and at
9782 -- the time of elaboration of the address clause.
9784 procedure Check_Expr_Constants (Nod : Node_Id);
9785 -- Checks that Nod meets the requirements for a constant address clause
9786 -- in the sense of the enclosing procedure.
9788 procedure Check_List_Constants (Lst : List_Id);
9789 -- Check that all elements of list Lst meet the requirements for a
9790 -- constant address clause in the sense of the enclosing procedure.
9792 -------------------------------
9793 -- Check_At_Constant_Address --
9794 -------------------------------
9796 procedure Check_At_Constant_Address (Nod : Node_Id) is
9797 begin
9798 if Is_Entity_Name (Nod) then
9799 if Present (Address_Clause (Entity ((Nod)))) then
9800 Error_Msg_NE
9801 ("invalid address clause for initialized object &!",
9802 Nod, U_Ent);
9803 Error_Msg_NE
9804 ("address for& cannot" &
9805 " depend on another address clause! (RM 13.1(22))!",
9806 Nod, U_Ent);
9808 elsif In_Same_Source_Unit (Entity (Nod), U_Ent)
9809 and then Sloc (U_Ent) < Sloc (Entity (Nod))
9810 then
9811 Error_Msg_NE
9812 ("invalid address clause for initialized object &!",
9813 Nod, U_Ent);
9814 Error_Msg_Node_2 := U_Ent;
9815 Error_Msg_NE
9816 ("\& must be defined before & (RM 13.1(22))!",
9817 Nod, Entity (Nod));
9818 end if;
9820 elsif Nkind (Nod) = N_Selected_Component then
9821 declare
9822 T : constant Entity_Id := Etype (Prefix (Nod));
9824 begin
9825 if (Is_Record_Type (T)
9826 and then Has_Discriminants (T))
9827 or else
9828 (Is_Access_Type (T)
9829 and then Is_Record_Type (Designated_Type (T))
9830 and then Has_Discriminants (Designated_Type (T)))
9831 then
9832 Error_Msg_NE
9833 ("invalid address clause for initialized object &!",
9834 Nod, U_Ent);
9835 Error_Msg_N
9836 ("\address cannot depend on component" &
9837 " of discriminated record (RM 13.1(22))!",
9838 Nod);
9839 else
9840 Check_At_Constant_Address (Prefix (Nod));
9841 end if;
9842 end;
9844 elsif Nkind (Nod) = N_Indexed_Component then
9845 Check_At_Constant_Address (Prefix (Nod));
9846 Check_List_Constants (Expressions (Nod));
9848 else
9849 Check_Expr_Constants (Nod);
9850 end if;
9851 end Check_At_Constant_Address;
9853 --------------------------
9854 -- Check_Expr_Constants --
9855 --------------------------
9857 procedure Check_Expr_Constants (Nod : Node_Id) is
9858 Loc_U_Ent : constant Source_Ptr := Sloc (U_Ent);
9859 Ent : Entity_Id := Empty;
9861 begin
9862 if Nkind (Nod) in N_Has_Etype
9863 and then Etype (Nod) = Any_Type
9864 then
9865 return;
9866 end if;
9868 case Nkind (Nod) is
9869 when N_Empty | N_Error =>
9870 return;
9872 when N_Identifier | N_Expanded_Name =>
9873 Ent := Entity (Nod);
9875 -- We need to look at the original node if it is different
9876 -- from the node, since we may have rewritten things and
9877 -- substituted an identifier representing the rewrite.
9879 if Original_Node (Nod) /= Nod then
9880 Check_Expr_Constants (Original_Node (Nod));
9882 -- If the node is an object declaration without initial
9883 -- value, some code has been expanded, and the expression
9884 -- is not constant, even if the constituents might be
9885 -- acceptable, as in A'Address + offset.
9887 if Ekind (Ent) = E_Variable
9888 and then
9889 Nkind (Declaration_Node (Ent)) = N_Object_Declaration
9890 and then
9891 No (Expression (Declaration_Node (Ent)))
9892 then
9893 Error_Msg_NE
9894 ("invalid address clause for initialized object &!",
9895 Nod, U_Ent);
9897 -- If entity is constant, it may be the result of expanding
9898 -- a check. We must verify that its declaration appears
9899 -- before the object in question, else we also reject the
9900 -- address clause.
9902 elsif Ekind (Ent) = E_Constant
9903 and then In_Same_Source_Unit (Ent, U_Ent)
9904 and then Sloc (Ent) > Loc_U_Ent
9905 then
9906 Error_Msg_NE
9907 ("invalid address clause for initialized object &!",
9908 Nod, U_Ent);
9909 end if;
9911 return;
9912 end if;
9914 -- Otherwise look at the identifier and see if it is OK
9916 if Ekind_In (Ent, E_Named_Integer, E_Named_Real)
9917 or else Is_Type (Ent)
9918 then
9919 return;
9921 elsif Ekind_In (Ent, E_Constant, E_In_Parameter) then
9923 -- This is the case where we must have Ent defined before
9924 -- U_Ent. Clearly if they are in different units this
9925 -- requirement is met since the unit containing Ent is
9926 -- already processed.
9928 if not In_Same_Source_Unit (Ent, U_Ent) then
9929 return;
9931 -- Otherwise location of Ent must be before the location
9932 -- of U_Ent, that's what prior defined means.
9934 elsif Sloc (Ent) < Loc_U_Ent then
9935 return;
9937 else
9938 Error_Msg_NE
9939 ("invalid address clause for initialized object &!",
9940 Nod, U_Ent);
9941 Error_Msg_Node_2 := U_Ent;
9942 Error_Msg_NE
9943 ("\& must be defined before & (RM 13.1(22))!",
9944 Nod, Ent);
9945 end if;
9947 elsif Nkind (Original_Node (Nod)) = N_Function_Call then
9948 Check_Expr_Constants (Original_Node (Nod));
9950 else
9951 Error_Msg_NE
9952 ("invalid address clause for initialized object &!",
9953 Nod, U_Ent);
9955 if Comes_From_Source (Ent) then
9956 Error_Msg_NE
9957 ("\reference to variable& not allowed"
9958 & " (RM 13.1(22))!", Nod, Ent);
9959 else
9960 Error_Msg_N
9961 ("non-static expression not allowed"
9962 & " (RM 13.1(22))!", Nod);
9963 end if;
9964 end if;
9966 when N_Integer_Literal =>
9968 -- If this is a rewritten unchecked conversion, in a system
9969 -- where Address is an integer type, always use the base type
9970 -- for a literal value. This is user-friendly and prevents
9971 -- order-of-elaboration issues with instances of unchecked
9972 -- conversion.
9974 if Nkind (Original_Node (Nod)) = N_Function_Call then
9975 Set_Etype (Nod, Base_Type (Etype (Nod)));
9976 end if;
9978 when N_Real_Literal |
9979 N_String_Literal |
9980 N_Character_Literal =>
9981 return;
9983 when N_Range =>
9984 Check_Expr_Constants (Low_Bound (Nod));
9985 Check_Expr_Constants (High_Bound (Nod));
9987 when N_Explicit_Dereference =>
9988 Check_Expr_Constants (Prefix (Nod));
9990 when N_Indexed_Component =>
9991 Check_Expr_Constants (Prefix (Nod));
9992 Check_List_Constants (Expressions (Nod));
9994 when N_Slice =>
9995 Check_Expr_Constants (Prefix (Nod));
9996 Check_Expr_Constants (Discrete_Range (Nod));
9998 when N_Selected_Component =>
9999 Check_Expr_Constants (Prefix (Nod));
10001 when N_Attribute_Reference =>
10002 if Nam_In (Attribute_Name (Nod), Name_Address,
10003 Name_Access,
10004 Name_Unchecked_Access,
10005 Name_Unrestricted_Access)
10006 then
10007 Check_At_Constant_Address (Prefix (Nod));
10009 else
10010 Check_Expr_Constants (Prefix (Nod));
10011 Check_List_Constants (Expressions (Nod));
10012 end if;
10014 when N_Aggregate =>
10015 Check_List_Constants (Component_Associations (Nod));
10016 Check_List_Constants (Expressions (Nod));
10018 when N_Component_Association =>
10019 Check_Expr_Constants (Expression (Nod));
10021 when N_Extension_Aggregate =>
10022 Check_Expr_Constants (Ancestor_Part (Nod));
10023 Check_List_Constants (Component_Associations (Nod));
10024 Check_List_Constants (Expressions (Nod));
10026 when N_Null =>
10027 return;
10029 when N_Binary_Op | N_Short_Circuit | N_Membership_Test =>
10030 Check_Expr_Constants (Left_Opnd (Nod));
10031 Check_Expr_Constants (Right_Opnd (Nod));
10033 when N_Unary_Op =>
10034 Check_Expr_Constants (Right_Opnd (Nod));
10036 when N_Type_Conversion |
10037 N_Qualified_Expression |
10038 N_Allocator |
10039 N_Unchecked_Type_Conversion =>
10040 Check_Expr_Constants (Expression (Nod));
10042 when N_Function_Call =>
10043 if not Is_Pure (Entity (Name (Nod))) then
10044 Error_Msg_NE
10045 ("invalid address clause for initialized object &!",
10046 Nod, U_Ent);
10048 Error_Msg_NE
10049 ("\function & is not pure (RM 13.1(22))!",
10050 Nod, Entity (Name (Nod)));
10052 else
10053 Check_List_Constants (Parameter_Associations (Nod));
10054 end if;
10056 when N_Parameter_Association =>
10057 Check_Expr_Constants (Explicit_Actual_Parameter (Nod));
10059 when others =>
10060 Error_Msg_NE
10061 ("invalid address clause for initialized object &!",
10062 Nod, U_Ent);
10063 Error_Msg_NE
10064 ("\must be constant defined before& (RM 13.1(22))!",
10065 Nod, U_Ent);
10066 end case;
10067 end Check_Expr_Constants;
10069 --------------------------
10070 -- Check_List_Constants --
10071 --------------------------
10073 procedure Check_List_Constants (Lst : List_Id) is
10074 Nod1 : Node_Id;
10076 begin
10077 if Present (Lst) then
10078 Nod1 := First (Lst);
10079 while Present (Nod1) loop
10080 Check_Expr_Constants (Nod1);
10081 Next (Nod1);
10082 end loop;
10083 end if;
10084 end Check_List_Constants;
10086 -- Start of processing for Check_Constant_Address_Clause
10088 begin
10089 -- If rep_clauses are to be ignored, no need for legality checks. In
10090 -- particular, no need to pester user about rep clauses that violate the
10091 -- rule on constant addresses, given that these clauses will be removed
10092 -- by Freeze before they reach the back end. Similarly in CodePeer mode,
10093 -- we want to relax these checks.
10095 if not Ignore_Rep_Clauses and not CodePeer_Mode then
10096 Check_Expr_Constants (Expr);
10097 end if;
10098 end Check_Constant_Address_Clause;
10100 ---------------------------
10101 -- Check_Pool_Size_Clash --
10102 ---------------------------
10104 procedure Check_Pool_Size_Clash (Ent : Entity_Id; SP, SS : Node_Id) is
10105 Post : Node_Id;
10107 begin
10108 -- We need to find out which one came first. Note that in the case of
10109 -- aspects mixed with pragmas there are cases where the processing order
10110 -- is reversed, which is why we do the check here.
10112 if Sloc (SP) < Sloc (SS) then
10113 Error_Msg_Sloc := Sloc (SP);
10114 Post := SS;
10115 Error_Msg_NE ("Storage_Pool previously given for&#", Post, Ent);
10117 else
10118 Error_Msg_Sloc := Sloc (SS);
10119 Post := SP;
10120 Error_Msg_NE ("Storage_Size previously given for&#", Post, Ent);
10121 end if;
10123 Error_Msg_N
10124 ("\cannot have Storage_Size and Storage_Pool (RM 13.11(3))", Post);
10125 end Check_Pool_Size_Clash;
10127 ----------------------------------------
10128 -- Check_Record_Representation_Clause --
10129 ----------------------------------------
10131 procedure Check_Record_Representation_Clause (N : Node_Id) is
10132 Loc : constant Source_Ptr := Sloc (N);
10133 Ident : constant Node_Id := Identifier (N);
10134 Rectype : Entity_Id;
10135 Fent : Entity_Id;
10136 CC : Node_Id;
10137 Fbit : Uint;
10138 Lbit : Uint;
10139 Hbit : Uint := Uint_0;
10140 Comp : Entity_Id;
10141 Pcomp : Entity_Id;
10143 Max_Bit_So_Far : Uint;
10144 -- Records the maximum bit position so far. If all field positions
10145 -- are monotonically increasing, then we can skip the circuit for
10146 -- checking for overlap, since no overlap is possible.
10148 Tagged_Parent : Entity_Id := Empty;
10149 -- This is set in the case of a derived tagged type for which we have
10150 -- Is_Fully_Repped_Tagged_Type True (indicating that all components are
10151 -- positioned by record representation clauses). In this case we must
10152 -- check for overlap between components of this tagged type, and the
10153 -- components of its parent. Tagged_Parent will point to this parent
10154 -- type. For all other cases Tagged_Parent is left set to Empty.
10156 Parent_Last_Bit : Uint;
10157 -- Relevant only if Tagged_Parent is set, Parent_Last_Bit indicates the
10158 -- last bit position for any field in the parent type. We only need to
10159 -- check overlap for fields starting below this point.
10161 Overlap_Check_Required : Boolean;
10162 -- Used to keep track of whether or not an overlap check is required
10164 Overlap_Detected : Boolean := False;
10165 -- Set True if an overlap is detected
10167 Ccount : Natural := 0;
10168 -- Number of component clauses in record rep clause
10170 procedure Check_Component_Overlap (C1_Ent, C2_Ent : Entity_Id);
10171 -- Given two entities for record components or discriminants, checks
10172 -- if they have overlapping component clauses and issues errors if so.
10174 procedure Find_Component;
10175 -- Finds component entity corresponding to current component clause (in
10176 -- CC), and sets Comp to the entity, and Fbit/Lbit to the zero origin
10177 -- start/stop bits for the field. If there is no matching component or
10178 -- if the matching component does not have a component clause, then
10179 -- that's an error and Comp is set to Empty, but no error message is
10180 -- issued, since the message was already given. Comp is also set to
10181 -- Empty if the current "component clause" is in fact a pragma.
10183 -----------------------------
10184 -- Check_Component_Overlap --
10185 -----------------------------
10187 procedure Check_Component_Overlap (C1_Ent, C2_Ent : Entity_Id) is
10188 CC1 : constant Node_Id := Component_Clause (C1_Ent);
10189 CC2 : constant Node_Id := Component_Clause (C2_Ent);
10191 begin
10192 if Present (CC1) and then Present (CC2) then
10194 -- Exclude odd case where we have two tag components in the same
10195 -- record, both at location zero. This seems a bit strange, but
10196 -- it seems to happen in some circumstances, perhaps on an error.
10198 if Nam_In (Chars (C1_Ent), Name_uTag, Name_uTag) then
10199 return;
10200 end if;
10202 -- Here we check if the two fields overlap
10204 declare
10205 S1 : constant Uint := Component_Bit_Offset (C1_Ent);
10206 S2 : constant Uint := Component_Bit_Offset (C2_Ent);
10207 E1 : constant Uint := S1 + Esize (C1_Ent);
10208 E2 : constant Uint := S2 + Esize (C2_Ent);
10210 begin
10211 if E2 <= S1 or else E1 <= S2 then
10212 null;
10213 else
10214 Error_Msg_Node_2 := Component_Name (CC2);
10215 Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
10216 Error_Msg_Node_1 := Component_Name (CC1);
10217 Error_Msg_N
10218 ("component& overlaps & #", Component_Name (CC1));
10219 Overlap_Detected := True;
10220 end if;
10221 end;
10222 end if;
10223 end Check_Component_Overlap;
10225 --------------------
10226 -- Find_Component --
10227 --------------------
10229 procedure Find_Component is
10231 procedure Search_Component (R : Entity_Id);
10232 -- Search components of R for a match. If found, Comp is set
10234 ----------------------
10235 -- Search_Component --
10236 ----------------------
10238 procedure Search_Component (R : Entity_Id) is
10239 begin
10240 Comp := First_Component_Or_Discriminant (R);
10241 while Present (Comp) loop
10243 -- Ignore error of attribute name for component name (we
10244 -- already gave an error message for this, so no need to
10245 -- complain here)
10247 if Nkind (Component_Name (CC)) = N_Attribute_Reference then
10248 null;
10249 else
10250 exit when Chars (Comp) = Chars (Component_Name (CC));
10251 end if;
10253 Next_Component_Or_Discriminant (Comp);
10254 end loop;
10255 end Search_Component;
10257 -- Start of processing for Find_Component
10259 begin
10260 -- Return with Comp set to Empty if we have a pragma
10262 if Nkind (CC) = N_Pragma then
10263 Comp := Empty;
10264 return;
10265 end if;
10267 -- Search current record for matching component
10269 Search_Component (Rectype);
10271 -- If not found, maybe component of base type discriminant that is
10272 -- absent from statically constrained first subtype.
10274 if No (Comp) then
10275 Search_Component (Base_Type (Rectype));
10276 end if;
10278 -- If no component, or the component does not reference the component
10279 -- clause in question, then there was some previous error for which
10280 -- we already gave a message, so just return with Comp Empty.
10282 if No (Comp) or else Component_Clause (Comp) /= CC then
10283 Check_Error_Detected;
10284 Comp := Empty;
10286 -- Normal case where we have a component clause
10288 else
10289 Fbit := Component_Bit_Offset (Comp);
10290 Lbit := Fbit + Esize (Comp) - 1;
10291 end if;
10292 end Find_Component;
10294 -- Start of processing for Check_Record_Representation_Clause
10296 begin
10297 Find_Type (Ident);
10298 Rectype := Entity (Ident);
10300 if Rectype = Any_Type then
10301 return;
10302 else
10303 Rectype := Underlying_Type (Rectype);
10304 end if;
10306 -- See if we have a fully repped derived tagged type
10308 declare
10309 PS : constant Entity_Id := Parent_Subtype (Rectype);
10311 begin
10312 if Present (PS) and then Is_Fully_Repped_Tagged_Type (PS) then
10313 Tagged_Parent := PS;
10315 -- Find maximum bit of any component of the parent type
10317 Parent_Last_Bit := UI_From_Int (System_Address_Size - 1);
10318 Pcomp := First_Entity (Tagged_Parent);
10319 while Present (Pcomp) loop
10320 if Ekind_In (Pcomp, E_Discriminant, E_Component) then
10321 if Component_Bit_Offset (Pcomp) /= No_Uint
10322 and then Known_Static_Esize (Pcomp)
10323 then
10324 Parent_Last_Bit :=
10325 UI_Max
10326 (Parent_Last_Bit,
10327 Component_Bit_Offset (Pcomp) + Esize (Pcomp) - 1);
10328 end if;
10329 else
10331 -- Skip anonymous types generated for constrained array
10332 -- or record components.
10334 null;
10335 end if;
10337 Next_Entity (Pcomp);
10338 end loop;
10339 end if;
10340 end;
10342 -- All done if no component clauses
10344 CC := First (Component_Clauses (N));
10346 if No (CC) then
10347 return;
10348 end if;
10350 -- If a tag is present, then create a component clause that places it
10351 -- at the start of the record (otherwise gigi may place it after other
10352 -- fields that have rep clauses).
10354 Fent := First_Entity (Rectype);
10356 if Nkind (Fent) = N_Defining_Identifier
10357 and then Chars (Fent) = Name_uTag
10358 then
10359 Set_Component_Bit_Offset (Fent, Uint_0);
10360 Set_Normalized_Position (Fent, Uint_0);
10361 Set_Normalized_First_Bit (Fent, Uint_0);
10362 Set_Normalized_Position_Max (Fent, Uint_0);
10363 Init_Esize (Fent, System_Address_Size);
10365 Set_Component_Clause (Fent,
10366 Make_Component_Clause (Loc,
10367 Component_Name => Make_Identifier (Loc, Name_uTag),
10369 Position => Make_Integer_Literal (Loc, Uint_0),
10370 First_Bit => Make_Integer_Literal (Loc, Uint_0),
10371 Last_Bit =>
10372 Make_Integer_Literal (Loc,
10373 UI_From_Int (System_Address_Size))));
10375 Ccount := Ccount + 1;
10376 end if;
10378 Max_Bit_So_Far := Uint_Minus_1;
10379 Overlap_Check_Required := False;
10381 -- Process the component clauses
10383 while Present (CC) loop
10384 Find_Component;
10386 if Present (Comp) then
10387 Ccount := Ccount + 1;
10389 -- We need a full overlap check if record positions non-monotonic
10391 if Fbit <= Max_Bit_So_Far then
10392 Overlap_Check_Required := True;
10393 end if;
10395 Max_Bit_So_Far := Lbit;
10397 -- Check bit position out of range of specified size
10399 if Has_Size_Clause (Rectype)
10400 and then RM_Size (Rectype) <= Lbit
10401 then
10402 Error_Msg_N
10403 ("bit number out of range of specified size",
10404 Last_Bit (CC));
10406 -- Check for overlap with tag component
10408 else
10409 if Is_Tagged_Type (Rectype)
10410 and then Fbit < System_Address_Size
10411 then
10412 Error_Msg_NE
10413 ("component overlaps tag field of&",
10414 Component_Name (CC), Rectype);
10415 Overlap_Detected := True;
10416 end if;
10418 if Hbit < Lbit then
10419 Hbit := Lbit;
10420 end if;
10421 end if;
10423 -- Check parent overlap if component might overlap parent field
10425 if Present (Tagged_Parent) and then Fbit <= Parent_Last_Bit then
10426 Pcomp := First_Component_Or_Discriminant (Tagged_Parent);
10427 while Present (Pcomp) loop
10428 if not Is_Tag (Pcomp)
10429 and then Chars (Pcomp) /= Name_uParent
10430 then
10431 Check_Component_Overlap (Comp, Pcomp);
10432 end if;
10434 Next_Component_Or_Discriminant (Pcomp);
10435 end loop;
10436 end if;
10437 end if;
10439 Next (CC);
10440 end loop;
10442 -- Now that we have processed all the component clauses, check for
10443 -- overlap. We have to leave this till last, since the components can
10444 -- appear in any arbitrary order in the representation clause.
10446 -- We do not need this check if all specified ranges were monotonic,
10447 -- as recorded by Overlap_Check_Required being False at this stage.
10449 -- This first section checks if there are any overlapping entries at
10450 -- all. It does this by sorting all entries and then seeing if there are
10451 -- any overlaps. If there are none, then that is decisive, but if there
10452 -- are overlaps, they may still be OK (they may result from fields in
10453 -- different variants).
10455 if Overlap_Check_Required then
10456 Overlap_Check1 : declare
10458 OC_Fbit : array (0 .. Ccount) of Uint;
10459 -- First-bit values for component clauses, the value is the offset
10460 -- of the first bit of the field from start of record. The zero
10461 -- entry is for use in sorting.
10463 OC_Lbit : array (0 .. Ccount) of Uint;
10464 -- Last-bit values for component clauses, the value is the offset
10465 -- of the last bit of the field from start of record. The zero
10466 -- entry is for use in sorting.
10468 OC_Count : Natural := 0;
10469 -- Count of entries in OC_Fbit and OC_Lbit
10471 function OC_Lt (Op1, Op2 : Natural) return Boolean;
10472 -- Compare routine for Sort
10474 procedure OC_Move (From : Natural; To : Natural);
10475 -- Move routine for Sort
10477 package Sorting is new GNAT.Heap_Sort_G (OC_Move, OC_Lt);
10479 -----------
10480 -- OC_Lt --
10481 -----------
10483 function OC_Lt (Op1, Op2 : Natural) return Boolean is
10484 begin
10485 return OC_Fbit (Op1) < OC_Fbit (Op2);
10486 end OC_Lt;
10488 -------------
10489 -- OC_Move --
10490 -------------
10492 procedure OC_Move (From : Natural; To : Natural) is
10493 begin
10494 OC_Fbit (To) := OC_Fbit (From);
10495 OC_Lbit (To) := OC_Lbit (From);
10496 end OC_Move;
10498 -- Start of processing for Overlap_Check
10500 begin
10501 CC := First (Component_Clauses (N));
10502 while Present (CC) loop
10504 -- Exclude component clause already marked in error
10506 if not Error_Posted (CC) then
10507 Find_Component;
10509 if Present (Comp) then
10510 OC_Count := OC_Count + 1;
10511 OC_Fbit (OC_Count) := Fbit;
10512 OC_Lbit (OC_Count) := Lbit;
10513 end if;
10514 end if;
10516 Next (CC);
10517 end loop;
10519 Sorting.Sort (OC_Count);
10521 Overlap_Check_Required := False;
10522 for J in 1 .. OC_Count - 1 loop
10523 if OC_Lbit (J) >= OC_Fbit (J + 1) then
10524 Overlap_Check_Required := True;
10525 exit;
10526 end if;
10527 end loop;
10528 end Overlap_Check1;
10529 end if;
10531 -- If Overlap_Check_Required is still True, then we have to do the full
10532 -- scale overlap check, since we have at least two fields that do
10533 -- overlap, and we need to know if that is OK since they are in
10534 -- different variant, or whether we have a definite problem.
10536 if Overlap_Check_Required then
10537 Overlap_Check2 : declare
10538 C1_Ent, C2_Ent : Entity_Id;
10539 -- Entities of components being checked for overlap
10541 Clist : Node_Id;
10542 -- Component_List node whose Component_Items are being checked
10544 Citem : Node_Id;
10545 -- Component declaration for component being checked
10547 begin
10548 C1_Ent := First_Entity (Base_Type (Rectype));
10550 -- Loop through all components in record. For each component check
10551 -- for overlap with any of the preceding elements on the component
10552 -- list containing the component and also, if the component is in
10553 -- a variant, check against components outside the case structure.
10554 -- This latter test is repeated recursively up the variant tree.
10556 Main_Component_Loop : while Present (C1_Ent) loop
10557 if not Ekind_In (C1_Ent, E_Component, E_Discriminant) then
10558 goto Continue_Main_Component_Loop;
10559 end if;
10561 -- Skip overlap check if entity has no declaration node. This
10562 -- happens with discriminants in constrained derived types.
10563 -- Possibly we are missing some checks as a result, but that
10564 -- does not seem terribly serious.
10566 if No (Declaration_Node (C1_Ent)) then
10567 goto Continue_Main_Component_Loop;
10568 end if;
10570 Clist := Parent (List_Containing (Declaration_Node (C1_Ent)));
10572 -- Loop through component lists that need checking. Check the
10573 -- current component list and all lists in variants above us.
10575 Component_List_Loop : loop
10577 -- If derived type definition, go to full declaration
10578 -- If at outer level, check discriminants if there are any.
10580 if Nkind (Clist) = N_Derived_Type_Definition then
10581 Clist := Parent (Clist);
10582 end if;
10584 -- Outer level of record definition, check discriminants
10586 if Nkind_In (Clist, N_Full_Type_Declaration,
10587 N_Private_Type_Declaration)
10588 then
10589 if Has_Discriminants (Defining_Identifier (Clist)) then
10590 C2_Ent :=
10591 First_Discriminant (Defining_Identifier (Clist));
10592 while Present (C2_Ent) loop
10593 exit when C1_Ent = C2_Ent;
10594 Check_Component_Overlap (C1_Ent, C2_Ent);
10595 Next_Discriminant (C2_Ent);
10596 end loop;
10597 end if;
10599 -- Record extension case
10601 elsif Nkind (Clist) = N_Derived_Type_Definition then
10602 Clist := Empty;
10604 -- Otherwise check one component list
10606 else
10607 Citem := First (Component_Items (Clist));
10608 while Present (Citem) loop
10609 if Nkind (Citem) = N_Component_Declaration then
10610 C2_Ent := Defining_Identifier (Citem);
10611 exit when C1_Ent = C2_Ent;
10612 Check_Component_Overlap (C1_Ent, C2_Ent);
10613 end if;
10615 Next (Citem);
10616 end loop;
10617 end if;
10619 -- Check for variants above us (the parent of the Clist can
10620 -- be a variant, in which case its parent is a variant part,
10621 -- and the parent of the variant part is a component list
10622 -- whose components must all be checked against the current
10623 -- component for overlap).
10625 if Nkind (Parent (Clist)) = N_Variant then
10626 Clist := Parent (Parent (Parent (Clist)));
10628 -- Check for possible discriminant part in record, this
10629 -- is treated essentially as another level in the
10630 -- recursion. For this case the parent of the component
10631 -- list is the record definition, and its parent is the
10632 -- full type declaration containing the discriminant
10633 -- specifications.
10635 elsif Nkind (Parent (Clist)) = N_Record_Definition then
10636 Clist := Parent (Parent ((Clist)));
10638 -- If neither of these two cases, we are at the top of
10639 -- the tree.
10641 else
10642 exit Component_List_Loop;
10643 end if;
10644 end loop Component_List_Loop;
10646 <<Continue_Main_Component_Loop>>
10647 Next_Entity (C1_Ent);
10649 end loop Main_Component_Loop;
10650 end Overlap_Check2;
10651 end if;
10653 -- The following circuit deals with warning on record holes (gaps). We
10654 -- skip this check if overlap was detected, since it makes sense for the
10655 -- programmer to fix this illegality before worrying about warnings.
10657 if not Overlap_Detected and Warn_On_Record_Holes then
10658 Record_Hole_Check : declare
10659 Decl : constant Node_Id := Declaration_Node (Base_Type (Rectype));
10660 -- Full declaration of record type
10662 procedure Check_Component_List
10663 (CL : Node_Id;
10664 Sbit : Uint;
10665 DS : List_Id);
10666 -- Check component list CL for holes. The starting bit should be
10667 -- Sbit. which is zero for the main record component list and set
10668 -- appropriately for recursive calls for variants. DS is set to
10669 -- a list of discriminant specifications to be included in the
10670 -- consideration of components. It is No_List if none to consider.
10672 --------------------------
10673 -- Check_Component_List --
10674 --------------------------
10676 procedure Check_Component_List
10677 (CL : Node_Id;
10678 Sbit : Uint;
10679 DS : List_Id)
10681 Compl : Integer;
10683 begin
10684 Compl := Integer (List_Length (Component_Items (CL)));
10686 if DS /= No_List then
10687 Compl := Compl + Integer (List_Length (DS));
10688 end if;
10690 declare
10691 Comps : array (Natural range 0 .. Compl) of Entity_Id;
10692 -- Gather components (zero entry is for sort routine)
10694 Ncomps : Natural := 0;
10695 -- Number of entries stored in Comps (starting at Comps (1))
10697 Citem : Node_Id;
10698 -- One component item or discriminant specification
10700 Nbit : Uint;
10701 -- Starting bit for next component
10703 CEnt : Entity_Id;
10704 -- Component entity
10706 Variant : Node_Id;
10707 -- One variant
10709 function Lt (Op1, Op2 : Natural) return Boolean;
10710 -- Compare routine for Sort
10712 procedure Move (From : Natural; To : Natural);
10713 -- Move routine for Sort
10715 package Sorting is new GNAT.Heap_Sort_G (Move, Lt);
10717 --------
10718 -- Lt --
10719 --------
10721 function Lt (Op1, Op2 : Natural) return Boolean is
10722 begin
10723 return Component_Bit_Offset (Comps (Op1))
10725 Component_Bit_Offset (Comps (Op2));
10726 end Lt;
10728 ----------
10729 -- Move --
10730 ----------
10732 procedure Move (From : Natural; To : Natural) is
10733 begin
10734 Comps (To) := Comps (From);
10735 end Move;
10737 begin
10738 -- Gather discriminants into Comp
10740 if DS /= No_List then
10741 Citem := First (DS);
10742 while Present (Citem) loop
10743 if Nkind (Citem) = N_Discriminant_Specification then
10744 declare
10745 Ent : constant Entity_Id :=
10746 Defining_Identifier (Citem);
10747 begin
10748 if Ekind (Ent) = E_Discriminant then
10749 Ncomps := Ncomps + 1;
10750 Comps (Ncomps) := Ent;
10751 end if;
10752 end;
10753 end if;
10755 Next (Citem);
10756 end loop;
10757 end if;
10759 -- Gather component entities into Comp
10761 Citem := First (Component_Items (CL));
10762 while Present (Citem) loop
10763 if Nkind (Citem) = N_Component_Declaration then
10764 Ncomps := Ncomps + 1;
10765 Comps (Ncomps) := Defining_Identifier (Citem);
10766 end if;
10768 Next (Citem);
10769 end loop;
10771 -- Now sort the component entities based on the first bit.
10772 -- Note we already know there are no overlapping components.
10774 Sorting.Sort (Ncomps);
10776 -- Loop through entries checking for holes
10778 Nbit := Sbit;
10779 for J in 1 .. Ncomps loop
10780 CEnt := Comps (J);
10781 Error_Msg_Uint_1 := Component_Bit_Offset (CEnt) - Nbit;
10783 if Error_Msg_Uint_1 > 0 then
10784 Error_Msg_NE
10785 ("?H?^-bit gap before component&",
10786 Component_Name (Component_Clause (CEnt)), CEnt);
10787 end if;
10789 Nbit := Component_Bit_Offset (CEnt) + Esize (CEnt);
10790 end loop;
10792 -- Process variant parts recursively if present
10794 if Present (Variant_Part (CL)) then
10795 Variant := First (Variants (Variant_Part (CL)));
10796 while Present (Variant) loop
10797 Check_Component_List
10798 (Component_List (Variant), Nbit, No_List);
10799 Next (Variant);
10800 end loop;
10801 end if;
10802 end;
10803 end Check_Component_List;
10805 -- Start of processing for Record_Hole_Check
10807 begin
10808 declare
10809 Sbit : Uint;
10811 begin
10812 if Is_Tagged_Type (Rectype) then
10813 Sbit := UI_From_Int (System_Address_Size);
10814 else
10815 Sbit := Uint_0;
10816 end if;
10818 if Nkind (Decl) = N_Full_Type_Declaration
10819 and then Nkind (Type_Definition (Decl)) = N_Record_Definition
10820 then
10821 Check_Component_List
10822 (Component_List (Type_Definition (Decl)),
10823 Sbit,
10824 Discriminant_Specifications (Decl));
10825 end if;
10826 end;
10827 end Record_Hole_Check;
10828 end if;
10830 -- For records that have component clauses for all components, and whose
10831 -- size is less than or equal to 32, we need to know the size in the
10832 -- front end to activate possible packed array processing where the
10833 -- component type is a record.
10835 -- At this stage Hbit + 1 represents the first unused bit from all the
10836 -- component clauses processed, so if the component clauses are
10837 -- complete, then this is the length of the record.
10839 -- For records longer than System.Storage_Unit, and for those where not
10840 -- all components have component clauses, the back end determines the
10841 -- length (it may for example be appropriate to round up the size
10842 -- to some convenient boundary, based on alignment considerations, etc).
10844 if Unknown_RM_Size (Rectype) and then Hbit + 1 <= 32 then
10846 -- Nothing to do if at least one component has no component clause
10848 Comp := First_Component_Or_Discriminant (Rectype);
10849 while Present (Comp) loop
10850 exit when No (Component_Clause (Comp));
10851 Next_Component_Or_Discriminant (Comp);
10852 end loop;
10854 -- If we fall out of loop, all components have component clauses
10855 -- and so we can set the size to the maximum value.
10857 if No (Comp) then
10858 Set_RM_Size (Rectype, Hbit + 1);
10859 end if;
10860 end if;
10861 end Check_Record_Representation_Clause;
10863 ----------------
10864 -- Check_Size --
10865 ----------------
10867 procedure Check_Size
10868 (N : Node_Id;
10869 T : Entity_Id;
10870 Siz : Uint;
10871 Biased : out Boolean)
10873 UT : constant Entity_Id := Underlying_Type (T);
10874 M : Uint;
10876 begin
10877 Biased := False;
10879 -- Reject patently improper size values.
10881 if Is_Elementary_Type (T)
10882 and then Siz > UI_From_Int (Int'Last)
10883 then
10884 Error_Msg_N ("Size value too large for elementary type", N);
10886 if Nkind (Original_Node (N)) = N_Op_Expon then
10887 Error_Msg_N
10888 ("\maybe '* was meant, rather than '*'*", Original_Node (N));
10889 end if;
10890 end if;
10892 -- Dismiss generic types
10894 if Is_Generic_Type (T)
10895 or else
10896 Is_Generic_Type (UT)
10897 or else
10898 Is_Generic_Type (Root_Type (UT))
10899 then
10900 return;
10902 -- Guard against previous errors
10904 elsif No (UT) or else UT = Any_Type then
10905 Check_Error_Detected;
10906 return;
10908 -- Check case of bit packed array
10910 elsif Is_Array_Type (UT)
10911 and then Known_Static_Component_Size (UT)
10912 and then Is_Bit_Packed_Array (UT)
10913 then
10914 declare
10915 Asiz : Uint;
10916 Indx : Node_Id;
10917 Ityp : Entity_Id;
10919 begin
10920 Asiz := Component_Size (UT);
10921 Indx := First_Index (UT);
10922 loop
10923 Ityp := Etype (Indx);
10925 -- If non-static bound, then we are not in the business of
10926 -- trying to check the length, and indeed an error will be
10927 -- issued elsewhere, since sizes of non-static array types
10928 -- cannot be set implicitly or explicitly.
10930 if not Is_OK_Static_Subtype (Ityp) then
10931 return;
10932 end if;
10934 -- Otherwise accumulate next dimension
10936 Asiz := Asiz * (Expr_Value (Type_High_Bound (Ityp)) -
10937 Expr_Value (Type_Low_Bound (Ityp)) +
10938 Uint_1);
10940 Next_Index (Indx);
10941 exit when No (Indx);
10942 end loop;
10944 if Asiz <= Siz then
10945 return;
10947 else
10948 Error_Msg_Uint_1 := Asiz;
10949 Error_Msg_NE
10950 ("size for& too small, minimum allowed is ^", N, T);
10951 Set_Esize (T, Asiz);
10952 Set_RM_Size (T, Asiz);
10953 end if;
10954 end;
10956 -- All other composite types are ignored
10958 elsif Is_Composite_Type (UT) then
10959 return;
10961 -- For fixed-point types, don't check minimum if type is not frozen,
10962 -- since we don't know all the characteristics of the type that can
10963 -- affect the size (e.g. a specified small) till freeze time.
10965 elsif Is_Fixed_Point_Type (UT)
10966 and then not Is_Frozen (UT)
10967 then
10968 null;
10970 -- Cases for which a minimum check is required
10972 else
10973 -- Ignore if specified size is correct for the type
10975 if Known_Esize (UT) and then Siz = Esize (UT) then
10976 return;
10977 end if;
10979 -- Otherwise get minimum size
10981 M := UI_From_Int (Minimum_Size (UT));
10983 if Siz < M then
10985 -- Size is less than minimum size, but one possibility remains
10986 -- that we can manage with the new size if we bias the type.
10988 M := UI_From_Int (Minimum_Size (UT, Biased => True));
10990 if Siz < M then
10991 Error_Msg_Uint_1 := M;
10992 Error_Msg_NE
10993 ("size for& too small, minimum allowed is ^", N, T);
10994 Set_Esize (T, M);
10995 Set_RM_Size (T, M);
10996 else
10997 Biased := True;
10998 end if;
10999 end if;
11000 end if;
11001 end Check_Size;
11003 --------------------------
11004 -- Freeze_Entity_Checks --
11005 --------------------------
11007 procedure Freeze_Entity_Checks (N : Node_Id) is
11008 procedure Hide_Non_Overridden_Subprograms (Typ : Entity_Id);
11009 -- Inspect the primitive operations of type Typ and hide all pairs of
11010 -- implicitly declared non-overridden non-fully conformant homographs
11011 -- (Ada RM 8.3 12.3/2).
11013 -------------------------------------
11014 -- Hide_Non_Overridden_Subprograms --
11015 -------------------------------------
11017 procedure Hide_Non_Overridden_Subprograms (Typ : Entity_Id) is
11018 procedure Hide_Matching_Homographs
11019 (Subp_Id : Entity_Id;
11020 Start_Elmt : Elmt_Id);
11021 -- Inspect a list of primitive operations starting with Start_Elmt
11022 -- and find matching implicitly declared non-overridden non-fully
11023 -- conformant homographs of Subp_Id. If found, all matches along
11024 -- with Subp_Id are hidden from all visibility.
11026 function Is_Non_Overridden_Or_Null_Procedure
11027 (Subp_Id : Entity_Id) return Boolean;
11028 -- Determine whether subprogram Subp_Id is implicitly declared non-
11029 -- overridden subprogram or an implicitly declared null procedure.
11031 ------------------------------
11032 -- Hide_Matching_Homographs --
11033 ------------------------------
11035 procedure Hide_Matching_Homographs
11036 (Subp_Id : Entity_Id;
11037 Start_Elmt : Elmt_Id)
11039 Prim : Entity_Id;
11040 Prim_Elmt : Elmt_Id;
11042 begin
11043 Prim_Elmt := Start_Elmt;
11044 while Present (Prim_Elmt) loop
11045 Prim := Node (Prim_Elmt);
11047 -- The current primitive is implicitly declared non-overridden
11048 -- non-fully conformant homograph of Subp_Id. Both subprograms
11049 -- must be hidden from visibility.
11051 if Chars (Prim) = Chars (Subp_Id)
11052 and then Is_Non_Overridden_Or_Null_Procedure (Prim)
11053 and then not Fully_Conformant (Prim, Subp_Id)
11054 then
11055 Set_Is_Hidden_Non_Overridden_Subpgm (Prim);
11056 Set_Is_Immediately_Visible (Prim, False);
11057 Set_Is_Potentially_Use_Visible (Prim, False);
11059 Set_Is_Hidden_Non_Overridden_Subpgm (Subp_Id);
11060 Set_Is_Immediately_Visible (Subp_Id, False);
11061 Set_Is_Potentially_Use_Visible (Subp_Id, False);
11062 end if;
11064 Next_Elmt (Prim_Elmt);
11065 end loop;
11066 end Hide_Matching_Homographs;
11068 -----------------------------------------
11069 -- Is_Non_Overridden_Or_Null_Procedure --
11070 -----------------------------------------
11072 function Is_Non_Overridden_Or_Null_Procedure
11073 (Subp_Id : Entity_Id) return Boolean
11075 Alias_Id : Entity_Id;
11077 begin
11078 -- The subprogram is inherited (implicitly declared), it does not
11079 -- override and does not cover a primitive of an interface.
11081 if Ekind_In (Subp_Id, E_Function, E_Procedure)
11082 and then Present (Alias (Subp_Id))
11083 and then No (Interface_Alias (Subp_Id))
11084 and then No (Overridden_Operation (Subp_Id))
11085 then
11086 Alias_Id := Alias (Subp_Id);
11088 if Requires_Overriding (Alias_Id) then
11089 return True;
11091 elsif Nkind (Parent (Alias_Id)) = N_Procedure_Specification
11092 and then Null_Present (Parent (Alias_Id))
11093 then
11094 return True;
11095 end if;
11096 end if;
11098 return False;
11099 end Is_Non_Overridden_Or_Null_Procedure;
11101 -- Local variables
11103 Prim_Ops : constant Elist_Id := Direct_Primitive_Operations (Typ);
11104 Prim : Entity_Id;
11105 Prim_Elmt : Elmt_Id;
11107 -- Start of processing for Hide_Non_Overridden_Subprograms
11109 begin
11110 -- Inspect the list of primitives looking for non-overridden
11111 -- subprograms.
11113 if Present (Prim_Ops) then
11114 Prim_Elmt := First_Elmt (Prim_Ops);
11115 while Present (Prim_Elmt) loop
11116 Prim := Node (Prim_Elmt);
11117 Next_Elmt (Prim_Elmt);
11119 if Is_Non_Overridden_Or_Null_Procedure (Prim) then
11120 Hide_Matching_Homographs
11121 (Subp_Id => Prim,
11122 Start_Elmt => Prim_Elmt);
11123 end if;
11124 end loop;
11125 end if;
11126 end Hide_Non_Overridden_Subprograms;
11128 ---------------------
11129 -- Local variables --
11130 ---------------------
11132 E : constant Entity_Id := Entity (N);
11134 Non_Generic_Case : constant Boolean := Nkind (N) = N_Freeze_Entity;
11135 -- True in non-generic case. Some of the processing here is skipped
11136 -- for the generic case since it is not needed. Basically in the
11137 -- generic case, we only need to do stuff that might generate error
11138 -- messages or warnings.
11140 -- Start of processing for Freeze_Entity_Checks
11142 begin
11143 -- Remember that we are processing a freezing entity. Required to
11144 -- ensure correct decoration of internal entities associated with
11145 -- interfaces (see New_Overloaded_Entity).
11147 Inside_Freezing_Actions := Inside_Freezing_Actions + 1;
11149 -- For tagged types covering interfaces add internal entities that link
11150 -- the primitives of the interfaces with the primitives that cover them.
11151 -- Note: These entities were originally generated only when generating
11152 -- code because their main purpose was to provide support to initialize
11153 -- the secondary dispatch tables. They are now generated also when
11154 -- compiling with no code generation to provide ASIS the relationship
11155 -- between interface primitives and tagged type primitives. They are
11156 -- also used to locate primitives covering interfaces when processing
11157 -- generics (see Derive_Subprograms).
11159 -- This is not needed in the generic case
11161 if Ada_Version >= Ada_2005
11162 and then Non_Generic_Case
11163 and then Ekind (E) = E_Record_Type
11164 and then Is_Tagged_Type (E)
11165 and then not Is_Interface (E)
11166 and then Has_Interfaces (E)
11167 then
11168 -- This would be a good common place to call the routine that checks
11169 -- overriding of interface primitives (and thus factorize calls to
11170 -- Check_Abstract_Overriding located at different contexts in the
11171 -- compiler). However, this is not possible because it causes
11172 -- spurious errors in case of late overriding.
11174 Add_Internal_Interface_Entities (E);
11175 end if;
11177 -- After all forms of overriding have been resolved, a tagged type may
11178 -- be left with a set of implicitly declared and possibly erroneous
11179 -- abstract subprograms, null procedures and subprograms that require
11180 -- overriding. If this set contains fully conformant homographs, then
11181 -- one is chosen arbitrarily (already done during resolution), otherwise
11182 -- all remaining non-fully conformant homographs are hidden from
11183 -- visibility (Ada RM 8.3 12.3/2).
11185 if Is_Tagged_Type (E) then
11186 Hide_Non_Overridden_Subprograms (E);
11187 end if;
11189 -- Check CPP types
11191 if Ekind (E) = E_Record_Type
11192 and then Is_CPP_Class (E)
11193 and then Is_Tagged_Type (E)
11194 and then Tagged_Type_Expansion
11195 then
11196 if CPP_Num_Prims (E) = 0 then
11198 -- If the CPP type has user defined components then it must import
11199 -- primitives from C++. This is required because if the C++ class
11200 -- has no primitives then the C++ compiler does not added the _tag
11201 -- component to the type.
11203 if First_Entity (E) /= Last_Entity (E) then
11204 Error_Msg_N
11205 ("'C'P'P type must import at least one primitive from C++??",
11207 end if;
11208 end if;
11210 -- Check that all its primitives are abstract or imported from C++.
11211 -- Check also availability of the C++ constructor.
11213 declare
11214 Has_Constructors : constant Boolean := Has_CPP_Constructors (E);
11215 Elmt : Elmt_Id;
11216 Error_Reported : Boolean := False;
11217 Prim : Node_Id;
11219 begin
11220 Elmt := First_Elmt (Primitive_Operations (E));
11221 while Present (Elmt) loop
11222 Prim := Node (Elmt);
11224 if Comes_From_Source (Prim) then
11225 if Is_Abstract_Subprogram (Prim) then
11226 null;
11228 elsif not Is_Imported (Prim)
11229 or else Convention (Prim) /= Convention_CPP
11230 then
11231 Error_Msg_N
11232 ("primitives of 'C'P'P types must be imported from C++ "
11233 & "or abstract??", Prim);
11235 elsif not Has_Constructors
11236 and then not Error_Reported
11237 then
11238 Error_Msg_Name_1 := Chars (E);
11239 Error_Msg_N
11240 ("??'C'P'P constructor required for type %", Prim);
11241 Error_Reported := True;
11242 end if;
11243 end if;
11245 Next_Elmt (Elmt);
11246 end loop;
11247 end;
11248 end if;
11250 -- Check Ada derivation of CPP type
11252 if Expander_Active -- why? losing errors in -gnatc mode???
11253 and then Present (Etype (E)) -- defend against errors
11254 and then Tagged_Type_Expansion
11255 and then Ekind (E) = E_Record_Type
11256 and then Etype (E) /= E
11257 and then Is_CPP_Class (Etype (E))
11258 and then CPP_Num_Prims (Etype (E)) > 0
11259 and then not Is_CPP_Class (E)
11260 and then not Has_CPP_Constructors (Etype (E))
11261 then
11262 -- If the parent has C++ primitives but it has no constructor then
11263 -- check that all the primitives are overridden in this derivation;
11264 -- otherwise the constructor of the parent is needed to build the
11265 -- dispatch table.
11267 declare
11268 Elmt : Elmt_Id;
11269 Prim : Node_Id;
11271 begin
11272 Elmt := First_Elmt (Primitive_Operations (E));
11273 while Present (Elmt) loop
11274 Prim := Node (Elmt);
11276 if not Is_Abstract_Subprogram (Prim)
11277 and then No (Interface_Alias (Prim))
11278 and then Find_Dispatching_Type (Ultimate_Alias (Prim)) /= E
11279 then
11280 Error_Msg_Name_1 := Chars (Etype (E));
11281 Error_Msg_N
11282 ("'C'P'P constructor required for parent type %", E);
11283 exit;
11284 end if;
11286 Next_Elmt (Elmt);
11287 end loop;
11288 end;
11289 end if;
11291 Inside_Freezing_Actions := Inside_Freezing_Actions - 1;
11293 -- If we have a type with predicates, build predicate function. This
11294 -- is not needed in the generic case, and is not needed within TSS
11295 -- subprograms and other predefined primitives.
11297 if Non_Generic_Case
11298 and then Is_Type (E)
11299 and then Has_Predicates (E)
11300 and then not Within_Internal_Subprogram
11301 then
11302 Build_Predicate_Functions (E, N);
11303 end if;
11305 -- If type has delayed aspects, this is where we do the preanalysis at
11306 -- the freeze point, as part of the consistent visibility check. Note
11307 -- that this must be done after calling Build_Predicate_Functions or
11308 -- Build_Invariant_Procedure since these subprograms fix occurrences of
11309 -- the subtype name in the saved expression so that they will not cause
11310 -- trouble in the preanalysis.
11312 -- This is also not needed in the generic case
11314 if Non_Generic_Case
11315 and then Has_Delayed_Aspects (E)
11316 and then Scope (E) = Current_Scope
11317 then
11318 -- Retrieve the visibility to the discriminants in order to properly
11319 -- analyze the aspects.
11321 Push_Scope_And_Install_Discriminants (E);
11323 declare
11324 Ritem : Node_Id;
11326 begin
11327 -- Look for aspect specification entries for this entity
11329 Ritem := First_Rep_Item (E);
11330 while Present (Ritem) loop
11331 if Nkind (Ritem) = N_Aspect_Specification
11332 and then Entity (Ritem) = E
11333 and then Is_Delayed_Aspect (Ritem)
11334 then
11335 Check_Aspect_At_Freeze_Point (Ritem);
11336 end if;
11338 Next_Rep_Item (Ritem);
11339 end loop;
11340 end;
11342 Uninstall_Discriminants_And_Pop_Scope (E);
11343 end if;
11345 -- For a record type, deal with variant parts. This has to be delayed
11346 -- to this point, because of the issue of statically predicated
11347 -- subtypes, which we have to ensure are frozen before checking
11348 -- choices, since we need to have the static choice list set.
11350 if Is_Record_Type (E) then
11351 Check_Variant_Part : declare
11352 D : constant Node_Id := Declaration_Node (E);
11353 T : Node_Id;
11354 C : Node_Id;
11355 VP : Node_Id;
11357 Others_Present : Boolean;
11358 pragma Warnings (Off, Others_Present);
11359 -- Indicates others present, not used in this case
11361 procedure Non_Static_Choice_Error (Choice : Node_Id);
11362 -- Error routine invoked by the generic instantiation below when
11363 -- the variant part has a non static choice.
11365 procedure Process_Declarations (Variant : Node_Id);
11366 -- Processes declarations associated with a variant. We analyzed
11367 -- the declarations earlier (in Sem_Ch3.Analyze_Variant_Part),
11368 -- but we still need the recursive call to Check_Choices for any
11369 -- nested variant to get its choices properly processed. This is
11370 -- also where we expand out the choices if expansion is active.
11372 package Variant_Choices_Processing is new
11373 Generic_Check_Choices
11374 (Process_Empty_Choice => No_OP,
11375 Process_Non_Static_Choice => Non_Static_Choice_Error,
11376 Process_Associated_Node => Process_Declarations);
11377 use Variant_Choices_Processing;
11379 -----------------------------
11380 -- Non_Static_Choice_Error --
11381 -----------------------------
11383 procedure Non_Static_Choice_Error (Choice : Node_Id) is
11384 begin
11385 Flag_Non_Static_Expr
11386 ("choice given in variant part is not static!", Choice);
11387 end Non_Static_Choice_Error;
11389 --------------------------
11390 -- Process_Declarations --
11391 --------------------------
11393 procedure Process_Declarations (Variant : Node_Id) is
11394 CL : constant Node_Id := Component_List (Variant);
11395 VP : Node_Id;
11397 begin
11398 -- Check for static predicate present in this variant
11400 if Has_SP_Choice (Variant) then
11402 -- Here we expand. You might expect to find this call in
11403 -- Expand_N_Variant_Part, but that is called when we first
11404 -- see the variant part, and we cannot do this expansion
11405 -- earlier than the freeze point, since for statically
11406 -- predicated subtypes, the predicate is not known till
11407 -- the freeze point.
11409 -- Furthermore, we do this expansion even if the expander
11410 -- is not active, because other semantic processing, e.g.
11411 -- for aggregates, requires the expanded list of choices.
11413 -- If the expander is not active, then we can't just clobber
11414 -- the list since it would invalidate the ASIS -gnatct tree.
11415 -- So we have to rewrite the variant part with a Rewrite
11416 -- call that replaces it with a copy and clobber the copy.
11418 if not Expander_Active then
11419 declare
11420 NewV : constant Node_Id := New_Copy (Variant);
11421 begin
11422 Set_Discrete_Choices
11423 (NewV, New_Copy_List (Discrete_Choices (Variant)));
11424 Rewrite (Variant, NewV);
11425 end;
11426 end if;
11428 Expand_Static_Predicates_In_Choices (Variant);
11429 end if;
11431 -- We don't need to worry about the declarations in the variant
11432 -- (since they were analyzed by Analyze_Choices when we first
11433 -- encountered the variant), but we do need to take care of
11434 -- expansion of any nested variants.
11436 if not Null_Present (CL) then
11437 VP := Variant_Part (CL);
11439 if Present (VP) then
11440 Check_Choices
11441 (VP, Variants (VP), Etype (Name (VP)), Others_Present);
11442 end if;
11443 end if;
11444 end Process_Declarations;
11446 -- Start of processing for Check_Variant_Part
11448 begin
11449 -- Find component list
11451 C := Empty;
11453 if Nkind (D) = N_Full_Type_Declaration then
11454 T := Type_Definition (D);
11456 if Nkind (T) = N_Record_Definition then
11457 C := Component_List (T);
11459 elsif Nkind (T) = N_Derived_Type_Definition
11460 and then Present (Record_Extension_Part (T))
11461 then
11462 C := Component_List (Record_Extension_Part (T));
11463 end if;
11464 end if;
11466 -- Case of variant part present
11468 if Present (C) and then Present (Variant_Part (C)) then
11469 VP := Variant_Part (C);
11471 -- Check choices
11473 Check_Choices
11474 (VP, Variants (VP), Etype (Name (VP)), Others_Present);
11476 -- If the last variant does not contain the Others choice,
11477 -- replace it with an N_Others_Choice node since Gigi always
11478 -- wants an Others. Note that we do not bother to call Analyze
11479 -- on the modified variant part, since its only effect would be
11480 -- to compute the Others_Discrete_Choices node laboriously, and
11481 -- of course we already know the list of choices corresponding
11482 -- to the others choice (it's the list we're replacing).
11484 -- We only want to do this if the expander is active, since
11485 -- we do not want to clobber the ASIS tree.
11487 if Expander_Active then
11488 declare
11489 Last_Var : constant Node_Id :=
11490 Last_Non_Pragma (Variants (VP));
11492 Others_Node : Node_Id;
11494 begin
11495 if Nkind (First (Discrete_Choices (Last_Var))) /=
11496 N_Others_Choice
11497 then
11498 Others_Node := Make_Others_Choice (Sloc (Last_Var));
11499 Set_Others_Discrete_Choices
11500 (Others_Node, Discrete_Choices (Last_Var));
11501 Set_Discrete_Choices
11502 (Last_Var, New_List (Others_Node));
11503 end if;
11504 end;
11505 end if;
11506 end if;
11507 end Check_Variant_Part;
11508 end if;
11509 end Freeze_Entity_Checks;
11511 -------------------------
11512 -- Get_Alignment_Value --
11513 -------------------------
11515 function Get_Alignment_Value (Expr : Node_Id) return Uint is
11516 Align : constant Uint := Static_Integer (Expr);
11518 begin
11519 if Align = No_Uint then
11520 return No_Uint;
11522 elsif Align <= 0 then
11523 Error_Msg_N ("alignment value must be positive", Expr);
11524 return No_Uint;
11526 else
11527 for J in Int range 0 .. 64 loop
11528 declare
11529 M : constant Uint := Uint_2 ** J;
11531 begin
11532 exit when M = Align;
11534 if M > Align then
11535 Error_Msg_N
11536 ("alignment value must be power of 2", Expr);
11537 return No_Uint;
11538 end if;
11539 end;
11540 end loop;
11542 return Align;
11543 end if;
11544 end Get_Alignment_Value;
11546 -----------------------------
11547 -- Get_Interfacing_Aspects --
11548 -----------------------------
11550 procedure Get_Interfacing_Aspects
11551 (Iface_Asp : Node_Id;
11552 Conv_Asp : out Node_Id;
11553 EN_Asp : out Node_Id;
11554 Expo_Asp : out Node_Id;
11555 Imp_Asp : out Node_Id;
11556 LN_Asp : out Node_Id;
11557 Do_Checks : Boolean := False)
11559 procedure Save_Or_Duplication_Error
11560 (Asp : Node_Id;
11561 To : in out Node_Id);
11562 -- Save the value of aspect Asp in node To. If To already has a value,
11563 -- then this is considered a duplicate use of aspect. Emit an error if
11564 -- flag Do_Checks is set.
11566 -------------------------------
11567 -- Save_Or_Duplication_Error --
11568 -------------------------------
11570 procedure Save_Or_Duplication_Error
11571 (Asp : Node_Id;
11572 To : in out Node_Id)
11574 begin
11575 -- Detect an extra aspect and issue an error
11577 if Present (To) then
11578 if Do_Checks then
11579 Error_Msg_Name_1 := Chars (Identifier (Asp));
11580 Error_Msg_Sloc := Sloc (To);
11581 Error_Msg_N ("aspect % previously given #", Asp);
11582 end if;
11584 -- Otherwise capture the aspect
11586 else
11587 To := Asp;
11588 end if;
11589 end Save_Or_Duplication_Error;
11591 -- Local variables
11593 Asp : Node_Id;
11594 Asp_Id : Aspect_Id;
11596 -- The following variables capture each individual aspect
11598 Conv : Node_Id := Empty;
11599 EN : Node_Id := Empty;
11600 Expo : Node_Id := Empty;
11601 Imp : Node_Id := Empty;
11602 LN : Node_Id := Empty;
11604 -- Start of processing for Get_Interfacing_Aspects
11606 begin
11607 -- The input interfacing aspect should reside in an aspect specification
11608 -- list.
11610 pragma Assert (Is_List_Member (Iface_Asp));
11612 -- Examine the aspect specifications of the related entity. Find and
11613 -- capture all interfacing aspects. Detect duplicates and emit errors
11614 -- if applicable.
11616 Asp := First (List_Containing (Iface_Asp));
11617 while Present (Asp) loop
11618 Asp_Id := Get_Aspect_Id (Asp);
11620 if Asp_Id = Aspect_Convention then
11621 Save_Or_Duplication_Error (Asp, Conv);
11623 elsif Asp_Id = Aspect_External_Name then
11624 Save_Or_Duplication_Error (Asp, EN);
11626 elsif Asp_Id = Aspect_Export then
11627 Save_Or_Duplication_Error (Asp, Expo);
11629 elsif Asp_Id = Aspect_Import then
11630 Save_Or_Duplication_Error (Asp, Imp);
11632 elsif Asp_Id = Aspect_Link_Name then
11633 Save_Or_Duplication_Error (Asp, LN);
11634 end if;
11636 Next (Asp);
11637 end loop;
11639 Conv_Asp := Conv;
11640 EN_Asp := EN;
11641 Expo_Asp := Expo;
11642 Imp_Asp := Imp;
11643 LN_Asp := LN;
11644 end Get_Interfacing_Aspects;
11646 -------------------------------------
11647 -- Inherit_Aspects_At_Freeze_Point --
11648 -------------------------------------
11650 procedure Inherit_Aspects_At_Freeze_Point (Typ : Entity_Id) is
11651 function Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11652 (Rep_Item : Node_Id) return Boolean;
11653 -- This routine checks if Rep_Item is either a pragma or an aspect
11654 -- specification node whose correponding pragma (if any) is present in
11655 -- the Rep Item chain of the entity it has been specified to.
11657 --------------------------------------------------
11658 -- Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item --
11659 --------------------------------------------------
11661 function Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11662 (Rep_Item : Node_Id) return Boolean
11664 begin
11665 return
11666 Nkind (Rep_Item) = N_Pragma
11667 or else Present_In_Rep_Item
11668 (Entity (Rep_Item), Aspect_Rep_Item (Rep_Item));
11669 end Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item;
11671 -- Start of processing for Inherit_Aspects_At_Freeze_Point
11673 begin
11674 -- A representation item is either subtype-specific (Size and Alignment
11675 -- clauses) or type-related (all others). Subtype-specific aspects may
11676 -- differ for different subtypes of the same type (RM 13.1.8).
11678 -- A derived type inherits each type-related representation aspect of
11679 -- its parent type that was directly specified before the declaration of
11680 -- the derived type (RM 13.1.15).
11682 -- A derived subtype inherits each subtype-specific representation
11683 -- aspect of its parent subtype that was directly specified before the
11684 -- declaration of the derived type (RM 13.1.15).
11686 -- The general processing involves inheriting a representation aspect
11687 -- from a parent type whenever the first rep item (aspect specification,
11688 -- attribute definition clause, pragma) corresponding to the given
11689 -- representation aspect in the rep item chain of Typ, if any, isn't
11690 -- directly specified to Typ but to one of its parents.
11692 -- ??? Note that, for now, just a limited number of representation
11693 -- aspects have been inherited here so far. Many of them are
11694 -- still inherited in Sem_Ch3. This will be fixed soon. Here is
11695 -- a non- exhaustive list of aspects that likely also need to
11696 -- be moved to this routine: Alignment, Component_Alignment,
11697 -- Component_Size, Machine_Radix, Object_Size, Pack, Predicates,
11698 -- Preelaborable_Initialization, RM_Size and Small.
11700 -- In addition, Convention must be propagated from base type to subtype,
11701 -- because the subtype may have been declared on an incomplete view.
11703 if Nkind (Parent (Typ)) = N_Private_Extension_Declaration then
11704 return;
11705 end if;
11707 -- Ada_05/Ada_2005
11709 if not Has_Rep_Item (Typ, Name_Ada_05, Name_Ada_2005, False)
11710 and then Has_Rep_Item (Typ, Name_Ada_05, Name_Ada_2005)
11711 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11712 (Get_Rep_Item (Typ, Name_Ada_05, Name_Ada_2005))
11713 then
11714 Set_Is_Ada_2005_Only (Typ);
11715 end if;
11717 -- Ada_12/Ada_2012
11719 if not Has_Rep_Item (Typ, Name_Ada_12, Name_Ada_2012, False)
11720 and then Has_Rep_Item (Typ, Name_Ada_12, Name_Ada_2012)
11721 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11722 (Get_Rep_Item (Typ, Name_Ada_12, Name_Ada_2012))
11723 then
11724 Set_Is_Ada_2012_Only (Typ);
11725 end if;
11727 -- Atomic/Shared
11729 if not Has_Rep_Item (Typ, Name_Atomic, Name_Shared, False)
11730 and then Has_Rep_Pragma (Typ, Name_Atomic, Name_Shared)
11731 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11732 (Get_Rep_Item (Typ, Name_Atomic, Name_Shared))
11733 then
11734 Set_Is_Atomic (Typ);
11735 Set_Is_Volatile (Typ);
11736 Set_Treat_As_Volatile (Typ);
11737 end if;
11739 -- Convention
11741 if Is_Record_Type (Typ)
11742 and then Typ /= Base_Type (Typ) and then Is_Frozen (Base_Type (Typ))
11743 then
11744 Set_Convention (Typ, Convention (Base_Type (Typ)));
11745 end if;
11747 -- Default_Component_Value
11749 -- Verify that there is no rep_item declared for the type, and there
11750 -- is one coming from an ancestor.
11752 if Is_Array_Type (Typ)
11753 and then Is_Base_Type (Typ)
11754 and then not Has_Rep_Item (Typ, Name_Default_Component_Value, False)
11755 and then Has_Rep_Item (Typ, Name_Default_Component_Value)
11756 then
11757 Set_Default_Aspect_Component_Value (Typ,
11758 Default_Aspect_Component_Value
11759 (Entity (Get_Rep_Item (Typ, Name_Default_Component_Value))));
11760 end if;
11762 -- Default_Value
11764 if Is_Scalar_Type (Typ)
11765 and then Is_Base_Type (Typ)
11766 and then not Has_Rep_Item (Typ, Name_Default_Value, False)
11767 and then Has_Rep_Item (Typ, Name_Default_Value)
11768 then
11769 Set_Has_Default_Aspect (Typ);
11770 Set_Default_Aspect_Value (Typ,
11771 Default_Aspect_Value
11772 (Entity (Get_Rep_Item (Typ, Name_Default_Value))));
11773 end if;
11775 -- Discard_Names
11777 if not Has_Rep_Item (Typ, Name_Discard_Names, False)
11778 and then Has_Rep_Item (Typ, Name_Discard_Names)
11779 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11780 (Get_Rep_Item (Typ, Name_Discard_Names))
11781 then
11782 Set_Discard_Names (Typ);
11783 end if;
11785 -- Invariants
11787 if not Has_Rep_Item (Typ, Name_Invariant, False)
11788 and then Has_Rep_Item (Typ, Name_Invariant)
11789 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11790 (Get_Rep_Item (Typ, Name_Invariant))
11791 then
11792 Set_Has_Invariants (Typ);
11794 if Class_Present (Get_Rep_Item (Typ, Name_Invariant)) then
11795 Set_Has_Inheritable_Invariants (Typ);
11796 end if;
11798 -- If we have a subtype with invariants, whose base type does not have
11799 -- invariants, copy these invariants to the base type. This happens for
11800 -- the case of implicit base types created for scalar and array types.
11802 elsif Has_Invariants (Typ)
11803 and then not Has_Invariants (Base_Type (Typ))
11804 then
11805 Set_Has_Invariants (Base_Type (Typ));
11806 Set_Invariant_Procedure (Base_Type (Typ), Invariant_Procedure (Typ));
11807 end if;
11809 -- Volatile
11811 if not Has_Rep_Item (Typ, Name_Volatile, False)
11812 and then Has_Rep_Item (Typ, Name_Volatile)
11813 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11814 (Get_Rep_Item (Typ, Name_Volatile))
11815 then
11816 Set_Is_Volatile (Typ);
11817 Set_Treat_As_Volatile (Typ);
11818 end if;
11820 -- Volatile_Full_Access
11822 if not Has_Rep_Item (Typ, Name_Volatile_Full_Access, False)
11823 and then Has_Rep_Pragma (Typ, Name_Volatile_Full_Access)
11824 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11825 (Get_Rep_Item (Typ, Name_Volatile_Full_Access))
11826 then
11827 Set_Is_Volatile_Full_Access (Typ);
11828 Set_Is_Volatile (Typ);
11829 Set_Treat_As_Volatile (Typ);
11830 end if;
11832 -- Inheritance for derived types only
11834 if Is_Derived_Type (Typ) then
11835 declare
11836 Bas_Typ : constant Entity_Id := Base_Type (Typ);
11837 Imp_Bas_Typ : constant Entity_Id := Implementation_Base_Type (Typ);
11839 begin
11840 -- Atomic_Components
11842 if not Has_Rep_Item (Typ, Name_Atomic_Components, False)
11843 and then Has_Rep_Item (Typ, Name_Atomic_Components)
11844 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11845 (Get_Rep_Item (Typ, Name_Atomic_Components))
11846 then
11847 Set_Has_Atomic_Components (Imp_Bas_Typ);
11848 end if;
11850 -- Volatile_Components
11852 if not Has_Rep_Item (Typ, Name_Volatile_Components, False)
11853 and then Has_Rep_Item (Typ, Name_Volatile_Components)
11854 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11855 (Get_Rep_Item (Typ, Name_Volatile_Components))
11856 then
11857 Set_Has_Volatile_Components (Imp_Bas_Typ);
11858 end if;
11860 -- Finalize_Storage_Only
11862 if not Has_Rep_Pragma (Typ, Name_Finalize_Storage_Only, False)
11863 and then Has_Rep_Pragma (Typ, Name_Finalize_Storage_Only)
11864 then
11865 Set_Finalize_Storage_Only (Bas_Typ);
11866 end if;
11868 -- Universal_Aliasing
11870 if not Has_Rep_Item (Typ, Name_Universal_Aliasing, False)
11871 and then Has_Rep_Item (Typ, Name_Universal_Aliasing)
11872 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11873 (Get_Rep_Item (Typ, Name_Universal_Aliasing))
11874 then
11875 Set_Universal_Aliasing (Imp_Bas_Typ);
11876 end if;
11878 -- Bit_Order
11880 if Is_Record_Type (Typ) then
11881 if not Has_Rep_Item (Typ, Name_Bit_Order, False)
11882 and then Has_Rep_Item (Typ, Name_Bit_Order)
11883 then
11884 Set_Reverse_Bit_Order (Bas_Typ,
11885 Reverse_Bit_Order (Entity (Name
11886 (Get_Rep_Item (Typ, Name_Bit_Order)))));
11887 end if;
11888 end if;
11890 -- Scalar_Storage_Order
11892 -- Note: the aspect is specified on a first subtype, but recorded
11893 -- in a flag of the base type!
11895 if (Is_Record_Type (Typ) or else Is_Array_Type (Typ))
11896 and then Typ = Bas_Typ
11897 then
11898 -- For a type extension, always inherit from parent; otherwise
11899 -- inherit if no default applies. Note: we do not check for
11900 -- an explicit rep item on the parent type when inheriting,
11901 -- because the parent SSO may itself have been set by default.
11903 if not Has_Rep_Item (First_Subtype (Typ),
11904 Name_Scalar_Storage_Order, False)
11905 and then (Is_Tagged_Type (Bas_Typ)
11906 or else not (SSO_Set_Low_By_Default (Bas_Typ)
11907 or else
11908 SSO_Set_High_By_Default (Bas_Typ)))
11909 then
11910 Set_Reverse_Storage_Order (Bas_Typ,
11911 Reverse_Storage_Order
11912 (Implementation_Base_Type (Etype (Bas_Typ))));
11914 -- Clear default SSO indications, since the inherited aspect
11915 -- which was set explicitly overrides the default.
11917 Set_SSO_Set_Low_By_Default (Bas_Typ, False);
11918 Set_SSO_Set_High_By_Default (Bas_Typ, False);
11919 end if;
11920 end if;
11921 end;
11922 end if;
11923 end Inherit_Aspects_At_Freeze_Point;
11925 ----------------
11926 -- Initialize --
11927 ----------------
11929 procedure Initialize is
11930 begin
11931 Address_Clause_Checks.Init;
11932 Unchecked_Conversions.Init;
11934 if AAMP_On_Target then
11935 Independence_Checks.Init;
11936 end if;
11937 end Initialize;
11939 ---------------------------
11940 -- Install_Discriminants --
11941 ---------------------------
11943 procedure Install_Discriminants (E : Entity_Id) is
11944 Disc : Entity_Id;
11945 Prev : Entity_Id;
11946 begin
11947 Disc := First_Discriminant (E);
11948 while Present (Disc) loop
11949 Prev := Current_Entity (Disc);
11950 Set_Current_Entity (Disc);
11951 Set_Is_Immediately_Visible (Disc);
11952 Set_Homonym (Disc, Prev);
11953 Next_Discriminant (Disc);
11954 end loop;
11955 end Install_Discriminants;
11957 -------------------------
11958 -- Is_Operational_Item --
11959 -------------------------
11961 function Is_Operational_Item (N : Node_Id) return Boolean is
11962 begin
11963 if Nkind (N) /= N_Attribute_Definition_Clause then
11964 return False;
11966 else
11967 declare
11968 Id : constant Attribute_Id := Get_Attribute_Id (Chars (N));
11969 begin
11971 -- List of operational items is given in AARM 13.1(8.mm/1).
11972 -- It is clearly incomplete, as it does not include iterator
11973 -- aspects, among others.
11975 return Id = Attribute_Constant_Indexing
11976 or else Id = Attribute_Default_Iterator
11977 or else Id = Attribute_Implicit_Dereference
11978 or else Id = Attribute_Input
11979 or else Id = Attribute_Iterator_Element
11980 or else Id = Attribute_Iterable
11981 or else Id = Attribute_Output
11982 or else Id = Attribute_Read
11983 or else Id = Attribute_Variable_Indexing
11984 or else Id = Attribute_Write
11985 or else Id = Attribute_External_Tag;
11986 end;
11987 end if;
11988 end Is_Operational_Item;
11990 -------------------------
11991 -- Is_Predicate_Static --
11992 -------------------------
11994 -- Note: the basic legality of the expression has already been checked, so
11995 -- we don't need to worry about cases or ranges on strings for example.
11997 function Is_Predicate_Static
11998 (Expr : Node_Id;
11999 Nam : Name_Id) return Boolean
12001 function All_Static_Case_Alternatives (L : List_Id) return Boolean;
12002 -- Given a list of case expression alternatives, returns True if all
12003 -- the alternatives are static (have all static choices, and a static
12004 -- expression).
12006 function All_Static_Choices (L : List_Id) return Boolean;
12007 -- Returns true if all elements of the list are OK static choices
12008 -- as defined below for Is_Static_Choice. Used for case expression
12009 -- alternatives and for the right operand of a membership test. An
12010 -- others_choice is static if the corresponding expression is static.
12011 -- The staticness of the bounds is checked separately.
12013 function Is_Static_Choice (N : Node_Id) return Boolean;
12014 -- Returns True if N represents a static choice (static subtype, or
12015 -- static subtype indication, or static expression, or static range).
12017 -- Note that this is a bit more inclusive than we actually need
12018 -- (in particular membership tests do not allow the use of subtype
12019 -- indications). But that doesn't matter, we have already checked
12020 -- that the construct is legal to get this far.
12022 function Is_Type_Ref (N : Node_Id) return Boolean;
12023 pragma Inline (Is_Type_Ref);
12024 -- Returns True if N is a reference to the type for the predicate in the
12025 -- expression (i.e. if it is an identifier whose Chars field matches the
12026 -- Nam given in the call). N must not be parenthesized, if the type name
12027 -- appears in parens, this routine will return False.
12029 ----------------------------------
12030 -- All_Static_Case_Alternatives --
12031 ----------------------------------
12033 function All_Static_Case_Alternatives (L : List_Id) return Boolean is
12034 N : Node_Id;
12036 begin
12037 N := First (L);
12038 while Present (N) loop
12039 if not (All_Static_Choices (Discrete_Choices (N))
12040 and then Is_OK_Static_Expression (Expression (N)))
12041 then
12042 return False;
12043 end if;
12045 Next (N);
12046 end loop;
12048 return True;
12049 end All_Static_Case_Alternatives;
12051 ------------------------
12052 -- All_Static_Choices --
12053 ------------------------
12055 function All_Static_Choices (L : List_Id) return Boolean is
12056 N : Node_Id;
12058 begin
12059 N := First (L);
12060 while Present (N) loop
12061 if not Is_Static_Choice (N) then
12062 return False;
12063 end if;
12065 Next (N);
12066 end loop;
12068 return True;
12069 end All_Static_Choices;
12071 ----------------------
12072 -- Is_Static_Choice --
12073 ----------------------
12075 function Is_Static_Choice (N : Node_Id) return Boolean is
12076 begin
12077 return Nkind (N) = N_Others_Choice
12078 or else Is_OK_Static_Expression (N)
12079 or else (Is_Entity_Name (N) and then Is_Type (Entity (N))
12080 and then Is_OK_Static_Subtype (Entity (N)))
12081 or else (Nkind (N) = N_Subtype_Indication
12082 and then Is_OK_Static_Subtype (Entity (N)))
12083 or else (Nkind (N) = N_Range and then Is_OK_Static_Range (N));
12084 end Is_Static_Choice;
12086 -----------------
12087 -- Is_Type_Ref --
12088 -----------------
12090 function Is_Type_Ref (N : Node_Id) return Boolean is
12091 begin
12092 return Nkind (N) = N_Identifier
12093 and then Chars (N) = Nam
12094 and then Paren_Count (N) = 0;
12095 end Is_Type_Ref;
12097 -- Start of processing for Is_Predicate_Static
12099 begin
12100 -- Predicate_Static means one of the following holds. Numbers are the
12101 -- corresponding paragraph numbers in (RM 3.2.4(16-22)).
12103 -- 16: A static expression
12105 if Is_OK_Static_Expression (Expr) then
12106 return True;
12108 -- 17: A membership test whose simple_expression is the current
12109 -- instance, and whose membership_choice_list meets the requirements
12110 -- for a static membership test.
12112 elsif Nkind (Expr) in N_Membership_Test
12113 and then ((Present (Right_Opnd (Expr))
12114 and then Is_Static_Choice (Right_Opnd (Expr)))
12115 or else
12116 (Present (Alternatives (Expr))
12117 and then All_Static_Choices (Alternatives (Expr))))
12118 then
12119 return True;
12121 -- 18. A case_expression whose selecting_expression is the current
12122 -- instance, and whose dependent expressions are static expressions.
12124 elsif Nkind (Expr) = N_Case_Expression
12125 and then Is_Type_Ref (Expression (Expr))
12126 and then All_Static_Case_Alternatives (Alternatives (Expr))
12127 then
12128 return True;
12130 -- 19. A call to a predefined equality or ordering operator, where one
12131 -- operand is the current instance, and the other is a static
12132 -- expression.
12134 -- Note: the RM is clearly wrong here in not excluding string types.
12135 -- Without this exclusion, we would allow expressions like X > "ABC"
12136 -- to be considered as predicate-static, which is clearly not intended,
12137 -- since the idea is for predicate-static to be a subset of normal
12138 -- static expressions (and "DEF" > "ABC" is not a static expression).
12140 -- However, we do allow internally generated (not from source) equality
12141 -- and inequality operations to be valid on strings (this helps deal
12142 -- with cases where we transform A in "ABC" to A = "ABC).
12144 elsif Nkind (Expr) in N_Op_Compare
12145 and then ((not Is_String_Type (Etype (Left_Opnd (Expr))))
12146 or else (Nkind_In (Expr, N_Op_Eq, N_Op_Ne)
12147 and then not Comes_From_Source (Expr)))
12148 and then ((Is_Type_Ref (Left_Opnd (Expr))
12149 and then Is_OK_Static_Expression (Right_Opnd (Expr)))
12150 or else
12151 (Is_Type_Ref (Right_Opnd (Expr))
12152 and then Is_OK_Static_Expression (Left_Opnd (Expr))))
12153 then
12154 return True;
12156 -- 20. A call to a predefined boolean logical operator, where each
12157 -- operand is predicate-static.
12159 elsif (Nkind_In (Expr, N_Op_And, N_Op_Or, N_Op_Xor)
12160 and then Is_Predicate_Static (Left_Opnd (Expr), Nam)
12161 and then Is_Predicate_Static (Right_Opnd (Expr), Nam))
12162 or else
12163 (Nkind (Expr) = N_Op_Not
12164 and then Is_Predicate_Static (Right_Opnd (Expr), Nam))
12165 then
12166 return True;
12168 -- 21. A short-circuit control form where both operands are
12169 -- predicate-static.
12171 elsif Nkind (Expr) in N_Short_Circuit
12172 and then Is_Predicate_Static (Left_Opnd (Expr), Nam)
12173 and then Is_Predicate_Static (Right_Opnd (Expr), Nam)
12174 then
12175 return True;
12177 -- 22. A parenthesized predicate-static expression. This does not
12178 -- require any special test, since we just ignore paren levels in
12179 -- all the cases above.
12181 -- One more test that is an implementation artifact caused by the fact
12182 -- that we are analyzing not the original expression, but the generated
12183 -- expression in the body of the predicate function. This can include
12184 -- references to inherited predicates, so that the expression we are
12185 -- processing looks like:
12187 -- xxPredicate (typ (Inns)) and then expression
12189 -- Where the call is to a Predicate function for an inherited predicate.
12190 -- We simply ignore such a call, which could be to either a dynamic or
12191 -- a static predicate. Note that if the parent predicate is dynamic then
12192 -- eventually this type will be marked as dynamic, but you are allowed
12193 -- to specify a static predicate for a subtype which is inheriting a
12194 -- dynamic predicate, so the static predicate validation here ignores
12195 -- the inherited predicate even if it is dynamic.
12197 elsif Nkind (Expr) = N_Function_Call
12198 and then Is_Predicate_Function (Entity (Name (Expr)))
12199 then
12200 return True;
12202 -- That's an exhaustive list of tests, all other cases are not
12203 -- predicate-static, so we return False.
12205 else
12206 return False;
12207 end if;
12208 end Is_Predicate_Static;
12210 ---------------------
12211 -- Kill_Rep_Clause --
12212 ---------------------
12214 procedure Kill_Rep_Clause (N : Node_Id) is
12215 begin
12216 pragma Assert (Ignore_Rep_Clauses);
12218 -- Note: we use Replace rather than Rewrite, because we don't want
12219 -- ASIS to be able to use Original_Node to dig out the (undecorated)
12220 -- rep clause that is being replaced.
12222 Replace (N, Make_Null_Statement (Sloc (N)));
12224 -- The null statement must be marked as not coming from source. This is
12225 -- so that ASIS ignores it, and also the back end does not expect bogus
12226 -- "from source" null statements in weird places (e.g. in declarative
12227 -- regions where such null statements are not allowed).
12229 Set_Comes_From_Source (N, False);
12230 end Kill_Rep_Clause;
12232 ------------------
12233 -- Minimum_Size --
12234 ------------------
12236 function Minimum_Size
12237 (T : Entity_Id;
12238 Biased : Boolean := False) return Nat
12240 Lo : Uint := No_Uint;
12241 Hi : Uint := No_Uint;
12242 LoR : Ureal := No_Ureal;
12243 HiR : Ureal := No_Ureal;
12244 LoSet : Boolean := False;
12245 HiSet : Boolean := False;
12246 B : Uint;
12247 S : Nat;
12248 Ancest : Entity_Id;
12249 R_Typ : constant Entity_Id := Root_Type (T);
12251 begin
12252 -- If bad type, return 0
12254 if T = Any_Type then
12255 return 0;
12257 -- For generic types, just return zero. There cannot be any legitimate
12258 -- need to know such a size, but this routine may be called with a
12259 -- generic type as part of normal processing.
12261 elsif Is_Generic_Type (R_Typ) or else R_Typ = Any_Type then
12262 return 0;
12264 -- Access types (cannot have size smaller than System.Address)
12266 elsif Is_Access_Type (T) then
12267 return System_Address_Size;
12269 -- Floating-point types
12271 elsif Is_Floating_Point_Type (T) then
12272 return UI_To_Int (Esize (R_Typ));
12274 -- Discrete types
12276 elsif Is_Discrete_Type (T) then
12278 -- The following loop is looking for the nearest compile time known
12279 -- bounds following the ancestor subtype chain. The idea is to find
12280 -- the most restrictive known bounds information.
12282 Ancest := T;
12283 loop
12284 if Ancest = Any_Type or else Etype (Ancest) = Any_Type then
12285 return 0;
12286 end if;
12288 if not LoSet then
12289 if Compile_Time_Known_Value (Type_Low_Bound (Ancest)) then
12290 Lo := Expr_Rep_Value (Type_Low_Bound (Ancest));
12291 LoSet := True;
12292 exit when HiSet;
12293 end if;
12294 end if;
12296 if not HiSet then
12297 if Compile_Time_Known_Value (Type_High_Bound (Ancest)) then
12298 Hi := Expr_Rep_Value (Type_High_Bound (Ancest));
12299 HiSet := True;
12300 exit when LoSet;
12301 end if;
12302 end if;
12304 Ancest := Ancestor_Subtype (Ancest);
12306 if No (Ancest) then
12307 Ancest := Base_Type (T);
12309 if Is_Generic_Type (Ancest) then
12310 return 0;
12311 end if;
12312 end if;
12313 end loop;
12315 -- Fixed-point types. We can't simply use Expr_Value to get the
12316 -- Corresponding_Integer_Value values of the bounds, since these do not
12317 -- get set till the type is frozen, and this routine can be called
12318 -- before the type is frozen. Similarly the test for bounds being static
12319 -- needs to include the case where we have unanalyzed real literals for
12320 -- the same reason.
12322 elsif Is_Fixed_Point_Type (T) then
12324 -- The following loop is looking for the nearest compile time known
12325 -- bounds following the ancestor subtype chain. The idea is to find
12326 -- the most restrictive known bounds information.
12328 Ancest := T;
12329 loop
12330 if Ancest = Any_Type or else Etype (Ancest) = Any_Type then
12331 return 0;
12332 end if;
12334 -- Note: In the following two tests for LoSet and HiSet, it may
12335 -- seem redundant to test for N_Real_Literal here since normally
12336 -- one would assume that the test for the value being known at
12337 -- compile time includes this case. However, there is a glitch.
12338 -- If the real literal comes from folding a non-static expression,
12339 -- then we don't consider any non- static expression to be known
12340 -- at compile time if we are in configurable run time mode (needed
12341 -- in some cases to give a clearer definition of what is and what
12342 -- is not accepted). So the test is indeed needed. Without it, we
12343 -- would set neither Lo_Set nor Hi_Set and get an infinite loop.
12345 if not LoSet then
12346 if Nkind (Type_Low_Bound (Ancest)) = N_Real_Literal
12347 or else Compile_Time_Known_Value (Type_Low_Bound (Ancest))
12348 then
12349 LoR := Expr_Value_R (Type_Low_Bound (Ancest));
12350 LoSet := True;
12351 exit when HiSet;
12352 end if;
12353 end if;
12355 if not HiSet then
12356 if Nkind (Type_High_Bound (Ancest)) = N_Real_Literal
12357 or else Compile_Time_Known_Value (Type_High_Bound (Ancest))
12358 then
12359 HiR := Expr_Value_R (Type_High_Bound (Ancest));
12360 HiSet := True;
12361 exit when LoSet;
12362 end if;
12363 end if;
12365 Ancest := Ancestor_Subtype (Ancest);
12367 if No (Ancest) then
12368 Ancest := Base_Type (T);
12370 if Is_Generic_Type (Ancest) then
12371 return 0;
12372 end if;
12373 end if;
12374 end loop;
12376 Lo := UR_To_Uint (LoR / Small_Value (T));
12377 Hi := UR_To_Uint (HiR / Small_Value (T));
12379 -- No other types allowed
12381 else
12382 raise Program_Error;
12383 end if;
12385 -- Fall through with Hi and Lo set. Deal with biased case
12387 if (Biased
12388 and then not Is_Fixed_Point_Type (T)
12389 and then not (Is_Enumeration_Type (T)
12390 and then Has_Non_Standard_Rep (T)))
12391 or else Has_Biased_Representation (T)
12392 then
12393 Hi := Hi - Lo;
12394 Lo := Uint_0;
12395 end if;
12397 -- Null range case, size is always zero. We only do this in the discrete
12398 -- type case, since that's the odd case that came up. Probably we should
12399 -- also do this in the fixed-point case, but doing so causes peculiar
12400 -- gigi failures, and it is not worth worrying about this incredibly
12401 -- marginal case (explicit null-range fixed-point type declarations)???
12403 if Lo > Hi and then Is_Discrete_Type (T) then
12404 S := 0;
12406 -- Signed case. Note that we consider types like range 1 .. -1 to be
12407 -- signed for the purpose of computing the size, since the bounds have
12408 -- to be accommodated in the base type.
12410 elsif Lo < 0 or else Hi < 0 then
12411 S := 1;
12412 B := Uint_1;
12414 -- S = size, B = 2 ** (size - 1) (can accommodate -B .. +(B - 1))
12415 -- Note that we accommodate the case where the bounds cross. This
12416 -- can happen either because of the way the bounds are declared
12417 -- or because of the algorithm in Freeze_Fixed_Point_Type.
12419 while Lo < -B
12420 or else Hi < -B
12421 or else Lo >= B
12422 or else Hi >= B
12423 loop
12424 B := Uint_2 ** S;
12425 S := S + 1;
12426 end loop;
12428 -- Unsigned case
12430 else
12431 -- If both bounds are positive, make sure that both are represen-
12432 -- table in the case where the bounds are crossed. This can happen
12433 -- either because of the way the bounds are declared, or because of
12434 -- the algorithm in Freeze_Fixed_Point_Type.
12436 if Lo > Hi then
12437 Hi := Lo;
12438 end if;
12440 -- S = size, (can accommodate 0 .. (2**size - 1))
12442 S := 0;
12443 while Hi >= Uint_2 ** S loop
12444 S := S + 1;
12445 end loop;
12446 end if;
12448 return S;
12449 end Minimum_Size;
12451 ---------------------------
12452 -- New_Stream_Subprogram --
12453 ---------------------------
12455 procedure New_Stream_Subprogram
12456 (N : Node_Id;
12457 Ent : Entity_Id;
12458 Subp : Entity_Id;
12459 Nam : TSS_Name_Type)
12461 Loc : constant Source_Ptr := Sloc (N);
12462 Sname : constant Name_Id := Make_TSS_Name (Base_Type (Ent), Nam);
12463 Subp_Id : Entity_Id;
12464 Subp_Decl : Node_Id;
12465 F : Entity_Id;
12466 Etyp : Entity_Id;
12468 Defer_Declaration : constant Boolean :=
12469 Is_Tagged_Type (Ent) or else Is_Private_Type (Ent);
12470 -- For a tagged type, there is a declaration for each stream attribute
12471 -- at the freeze point, and we must generate only a completion of this
12472 -- declaration. We do the same for private types, because the full view
12473 -- might be tagged. Otherwise we generate a declaration at the point of
12474 -- the attribute definition clause.
12476 function Build_Spec return Node_Id;
12477 -- Used for declaration and renaming declaration, so that this is
12478 -- treated as a renaming_as_body.
12480 ----------------
12481 -- Build_Spec --
12482 ----------------
12484 function Build_Spec return Node_Id is
12485 Out_P : constant Boolean := (Nam = TSS_Stream_Read);
12486 Formals : List_Id;
12487 Spec : Node_Id;
12488 T_Ref : constant Node_Id := New_Occurrence_Of (Etyp, Loc);
12490 begin
12491 Subp_Id := Make_Defining_Identifier (Loc, Sname);
12493 -- S : access Root_Stream_Type'Class
12495 Formals := New_List (
12496 Make_Parameter_Specification (Loc,
12497 Defining_Identifier =>
12498 Make_Defining_Identifier (Loc, Name_S),
12499 Parameter_Type =>
12500 Make_Access_Definition (Loc,
12501 Subtype_Mark =>
12502 New_Occurrence_Of (
12503 Designated_Type (Etype (F)), Loc))));
12505 if Nam = TSS_Stream_Input then
12506 Spec :=
12507 Make_Function_Specification (Loc,
12508 Defining_Unit_Name => Subp_Id,
12509 Parameter_Specifications => Formals,
12510 Result_Definition => T_Ref);
12511 else
12512 -- V : [out] T
12514 Append_To (Formals,
12515 Make_Parameter_Specification (Loc,
12516 Defining_Identifier => Make_Defining_Identifier (Loc, Name_V),
12517 Out_Present => Out_P,
12518 Parameter_Type => T_Ref));
12520 Spec :=
12521 Make_Procedure_Specification (Loc,
12522 Defining_Unit_Name => Subp_Id,
12523 Parameter_Specifications => Formals);
12524 end if;
12526 return Spec;
12527 end Build_Spec;
12529 -- Start of processing for New_Stream_Subprogram
12531 begin
12532 F := First_Formal (Subp);
12534 if Ekind (Subp) = E_Procedure then
12535 Etyp := Etype (Next_Formal (F));
12536 else
12537 Etyp := Etype (Subp);
12538 end if;
12540 -- Prepare subprogram declaration and insert it as an action on the
12541 -- clause node. The visibility for this entity is used to test for
12542 -- visibility of the attribute definition clause (in the sense of
12543 -- 8.3(23) as amended by AI-195).
12545 if not Defer_Declaration then
12546 Subp_Decl :=
12547 Make_Subprogram_Declaration (Loc,
12548 Specification => Build_Spec);
12550 -- For a tagged type, there is always a visible declaration for each
12551 -- stream TSS (it is a predefined primitive operation), and the
12552 -- completion of this declaration occurs at the freeze point, which is
12553 -- not always visible at places where the attribute definition clause is
12554 -- visible. So, we create a dummy entity here for the purpose of
12555 -- tracking the visibility of the attribute definition clause itself.
12557 else
12558 Subp_Id :=
12559 Make_Defining_Identifier (Loc, New_External_Name (Sname, 'V'));
12560 Subp_Decl :=
12561 Make_Object_Declaration (Loc,
12562 Defining_Identifier => Subp_Id,
12563 Object_Definition => New_Occurrence_Of (Standard_Boolean, Loc));
12564 end if;
12566 Insert_Action (N, Subp_Decl);
12567 Set_Entity (N, Subp_Id);
12569 Subp_Decl :=
12570 Make_Subprogram_Renaming_Declaration (Loc,
12571 Specification => Build_Spec,
12572 Name => New_Occurrence_Of (Subp, Loc));
12574 if Defer_Declaration then
12575 Set_TSS (Base_Type (Ent), Subp_Id);
12576 else
12577 Insert_Action (N, Subp_Decl);
12578 Copy_TSS (Subp_Id, Base_Type (Ent));
12579 end if;
12580 end New_Stream_Subprogram;
12582 ------------------------------------------
12583 -- Push_Scope_And_Install_Discriminants --
12584 ------------------------------------------
12586 procedure Push_Scope_And_Install_Discriminants (E : Entity_Id) is
12587 begin
12588 if Has_Discriminants (E) then
12589 Push_Scope (E);
12591 -- Make discriminants visible for type declarations and protected
12592 -- type declarations, not for subtype declarations (RM 13.1.1 (12/3))
12594 if Nkind (Parent (E)) /= N_Subtype_Declaration then
12595 Install_Discriminants (E);
12596 end if;
12597 end if;
12598 end Push_Scope_And_Install_Discriminants;
12600 ------------------------
12601 -- Rep_Item_Too_Early --
12602 ------------------------
12604 function Rep_Item_Too_Early (T : Entity_Id; N : Node_Id) return Boolean is
12605 begin
12606 -- Cannot apply non-operational rep items to generic types
12608 if Is_Operational_Item (N) then
12609 return False;
12611 elsif Is_Type (T)
12612 and then Is_Generic_Type (Root_Type (T))
12613 and then (Nkind (N) /= N_Pragma
12614 or else Get_Pragma_Id (N) /= Pragma_Convention)
12615 then
12616 Error_Msg_N ("representation item not allowed for generic type", N);
12617 return True;
12618 end if;
12620 -- Otherwise check for incomplete type
12622 if Is_Incomplete_Or_Private_Type (T)
12623 and then No (Underlying_Type (T))
12624 and then
12625 (Nkind (N) /= N_Pragma
12626 or else Get_Pragma_Id (N) /= Pragma_Import)
12627 then
12628 Error_Msg_N
12629 ("representation item must be after full type declaration", N);
12630 return True;
12632 -- If the type has incomplete components, a representation clause is
12633 -- illegal but stream attributes and Convention pragmas are correct.
12635 elsif Has_Private_Component (T) then
12636 if Nkind (N) = N_Pragma then
12637 return False;
12639 else
12640 Error_Msg_N
12641 ("representation item must appear after type is fully defined",
12643 return True;
12644 end if;
12645 else
12646 return False;
12647 end if;
12648 end Rep_Item_Too_Early;
12650 -----------------------
12651 -- Rep_Item_Too_Late --
12652 -----------------------
12654 function Rep_Item_Too_Late
12655 (T : Entity_Id;
12656 N : Node_Id;
12657 FOnly : Boolean := False) return Boolean
12659 S : Entity_Id;
12660 Parent_Type : Entity_Id;
12662 procedure No_Type_Rep_Item;
12663 -- Output message indicating that no type-related aspects can be
12664 -- specified due to some property of the parent type.
12666 procedure Too_Late;
12667 -- Output message for an aspect being specified too late
12669 -- Note that neither of the above errors is considered a serious one,
12670 -- since the effect is simply that we ignore the representation clause
12671 -- in these cases.
12672 -- Is this really true? In any case if we make this change we must
12673 -- document the requirement in the spec of Rep_Item_Too_Late that
12674 -- if True is returned, then the rep item must be completely ignored???
12676 ----------------------
12677 -- No_Type_Rep_Item --
12678 ----------------------
12680 procedure No_Type_Rep_Item is
12681 begin
12682 Error_Msg_N ("|type-related representation item not permitted!", N);
12683 end No_Type_Rep_Item;
12685 --------------
12686 -- Too_Late --
12687 --------------
12689 procedure Too_Late is
12690 begin
12691 -- Other compilers seem more relaxed about rep items appearing too
12692 -- late. Since analysis tools typically don't care about rep items
12693 -- anyway, no reason to be too strict about this.
12695 if not Relaxed_RM_Semantics then
12696 Error_Msg_N ("|representation item appears too late!", N);
12697 end if;
12698 end Too_Late;
12700 -- Start of processing for Rep_Item_Too_Late
12702 begin
12703 -- First make sure entity is not frozen (RM 13.1(9))
12705 if Is_Frozen (T)
12707 -- Exclude imported types, which may be frozen if they appear in a
12708 -- representation clause for a local type.
12710 and then not From_Limited_With (T)
12712 -- Exclude generated entities (not coming from source). The common
12713 -- case is when we generate a renaming which prematurely freezes the
12714 -- renamed internal entity, but we still want to be able to set copies
12715 -- of attribute values such as Size/Alignment.
12717 and then Comes_From_Source (T)
12718 then
12719 -- A self-referential aspect is illegal if it forces freezing the
12720 -- entity before the corresponding pragma has been analyzed.
12722 if Nkind_In (N, N_Attribute_Definition_Clause, N_Pragma)
12723 and then From_Aspect_Specification (N)
12724 then
12725 Error_Msg_NE
12726 ("aspect specification causes premature freezing of&", T, N);
12727 Set_Has_Delayed_Freeze (T, False);
12728 return True;
12729 end if;
12731 Too_Late;
12732 S := First_Subtype (T);
12734 if Present (Freeze_Node (S)) then
12735 if not Relaxed_RM_Semantics then
12736 Error_Msg_NE
12737 ("??no more representation items for }", Freeze_Node (S), S);
12738 end if;
12739 end if;
12741 return True;
12743 -- Check for case of untagged derived type whose parent either has
12744 -- primitive operations, or is a by reference type (RM 13.1(10)). In
12745 -- this case we do not output a Too_Late message, since there is no
12746 -- earlier point where the rep item could be placed to make it legal.
12748 elsif Is_Type (T)
12749 and then not FOnly
12750 and then Is_Derived_Type (T)
12751 and then not Is_Tagged_Type (T)
12752 then
12753 Parent_Type := Etype (Base_Type (T));
12755 if Has_Primitive_Operations (Parent_Type) then
12756 No_Type_Rep_Item;
12758 if not Relaxed_RM_Semantics then
12759 Error_Msg_NE
12760 ("\parent type & has primitive operations!", N, Parent_Type);
12761 end if;
12763 return True;
12765 elsif Is_By_Reference_Type (Parent_Type) then
12766 No_Type_Rep_Item;
12768 if not Relaxed_RM_Semantics then
12769 Error_Msg_NE
12770 ("\parent type & is a by reference type!", N, Parent_Type);
12771 end if;
12773 return True;
12774 end if;
12775 end if;
12777 -- No error, but one more warning to consider. The RM (surprisingly)
12778 -- allows this pattern:
12780 -- type S is ...
12781 -- primitive operations for S
12782 -- type R is new S;
12783 -- rep clause for S
12785 -- Meaning that calls on the primitive operations of S for values of
12786 -- type R may require possibly expensive implicit conversion operations.
12787 -- This is not an error, but is worth a warning.
12789 if not Relaxed_RM_Semantics and then Is_Type (T) then
12790 declare
12791 DTL : constant Entity_Id := Derived_Type_Link (Base_Type (T));
12793 begin
12794 if Present (DTL)
12795 and then Has_Primitive_Operations (Base_Type (T))
12797 -- For now, do not generate this warning for the case of aspect
12798 -- specification using Ada 2012 syntax, since we get wrong
12799 -- messages we do not understand. The whole business of derived
12800 -- types and rep items seems a bit confused when aspects are
12801 -- used, since the aspects are not evaluated till freeze time.
12803 and then not From_Aspect_Specification (N)
12804 then
12805 Error_Msg_Sloc := Sloc (DTL);
12806 Error_Msg_N
12807 ("representation item for& appears after derived type "
12808 & "declaration#??", N);
12809 Error_Msg_NE
12810 ("\may result in implicit conversions for primitive "
12811 & "operations of&??", N, T);
12812 Error_Msg_NE
12813 ("\to change representations when called with arguments "
12814 & "of type&??", N, DTL);
12815 end if;
12816 end;
12817 end if;
12819 -- No error, link item into head of chain of rep items for the entity,
12820 -- but avoid chaining if we have an overloadable entity, and the pragma
12821 -- is one that can apply to multiple overloaded entities.
12823 if Is_Overloadable (T) and then Nkind (N) = N_Pragma then
12824 declare
12825 Pname : constant Name_Id := Pragma_Name (N);
12826 begin
12827 if Nam_In (Pname, Name_Convention, Name_Import, Name_Export,
12828 Name_External, Name_Interface)
12829 then
12830 return False;
12831 end if;
12832 end;
12833 end if;
12835 Record_Rep_Item (T, N);
12836 return False;
12837 end Rep_Item_Too_Late;
12839 -------------------------------------
12840 -- Replace_Type_References_Generic --
12841 -------------------------------------
12843 procedure Replace_Type_References_Generic (N : Node_Id; T : Entity_Id) is
12844 TName : constant Name_Id := Chars (T);
12846 function Replace_Node (N : Node_Id) return Traverse_Result;
12847 -- Processes a single node in the traversal procedure below, checking
12848 -- if node N should be replaced, and if so, doing the replacement.
12850 procedure Replace_Type_Refs is new Traverse_Proc (Replace_Node);
12851 -- This instantiation provides the body of Replace_Type_References
12853 ------------------
12854 -- Replace_Node --
12855 ------------------
12857 function Replace_Node (N : Node_Id) return Traverse_Result is
12858 S : Entity_Id;
12859 P : Node_Id;
12861 begin
12862 -- Case of identifier
12864 if Nkind (N) = N_Identifier then
12866 -- If not the type name, check whether it is a reference to
12867 -- some other type, which must be frozen before the predicate
12868 -- function is analyzed, i.e. before the freeze node of the
12869 -- type to which the predicate applies.
12871 if Chars (N) /= TName then
12872 if Present (Current_Entity (N))
12873 and then Is_Type (Current_Entity (N))
12874 then
12875 Freeze_Before (Freeze_Node (T), Current_Entity (N));
12876 end if;
12878 return Skip;
12880 -- Otherwise do the replacement and we are done with this node
12882 else
12883 Replace_Type_Reference (N);
12884 return Skip;
12885 end if;
12887 -- Case of selected component (which is what a qualification
12888 -- looks like in the unanalyzed tree, which is what we have.
12890 elsif Nkind (N) = N_Selected_Component then
12892 -- If selector name is not our type, keeping going (we might
12893 -- still have an occurrence of the type in the prefix).
12895 if Nkind (Selector_Name (N)) /= N_Identifier
12896 or else Chars (Selector_Name (N)) /= TName
12897 then
12898 return OK;
12900 -- Selector name is our type, check qualification
12902 else
12903 -- Loop through scopes and prefixes, doing comparison
12905 S := Current_Scope;
12906 P := Prefix (N);
12907 loop
12908 -- Continue if no more scopes or scope with no name
12910 if No (S) or else Nkind (S) not in N_Has_Chars then
12911 return OK;
12912 end if;
12914 -- Do replace if prefix is an identifier matching the
12915 -- scope that we are currently looking at.
12917 if Nkind (P) = N_Identifier
12918 and then Chars (P) = Chars (S)
12919 then
12920 Replace_Type_Reference (N);
12921 return Skip;
12922 end if;
12924 -- Go check scope above us if prefix is itself of the
12925 -- form of a selected component, whose selector matches
12926 -- the scope we are currently looking at.
12928 if Nkind (P) = N_Selected_Component
12929 and then Nkind (Selector_Name (P)) = N_Identifier
12930 and then Chars (Selector_Name (P)) = Chars (S)
12931 then
12932 S := Scope (S);
12933 P := Prefix (P);
12935 -- For anything else, we don't have a match, so keep on
12936 -- going, there are still some weird cases where we may
12937 -- still have a replacement within the prefix.
12939 else
12940 return OK;
12941 end if;
12942 end loop;
12943 end if;
12945 -- Continue for any other node kind
12947 else
12948 return OK;
12949 end if;
12950 end Replace_Node;
12952 begin
12953 Replace_Type_Refs (N);
12954 end Replace_Type_References_Generic;
12956 --------------------------------
12957 -- Resolve_Aspect_Expressions --
12958 --------------------------------
12960 procedure Resolve_Aspect_Expressions (E : Entity_Id) is
12961 ASN : Node_Id;
12962 A_Id : Aspect_Id;
12963 Expr : Node_Id;
12965 function Resolve_Name (N : Node_Id) return Traverse_Result;
12966 -- Verify that all identifiers in the expression, with the exception
12967 -- of references to the current entity, denote visible entities. This
12968 -- is done only to detect visibility errors, as the expression will be
12969 -- properly analyzed/expanded during analysis of the predicate function
12970 -- body. We omit quantified expressions from this test, given that they
12971 -- introduce a local identifier that would require proper expansion to
12972 -- handle properly.
12974 ------------------
12975 -- Resolve_Name --
12976 ------------------
12978 function Resolve_Name (N : Node_Id) return Traverse_Result is
12979 begin
12980 if Nkind (N) = N_Selected_Component then
12981 if Nkind (Prefix (N)) = N_Identifier
12982 and then Chars (Prefix (N)) /= Chars (E)
12983 then
12984 Find_Selected_Component (N);
12985 end if;
12987 return Skip;
12989 elsif Nkind (N) = N_Identifier and then Chars (N) /= Chars (E) then
12990 Find_Direct_Name (N);
12991 Set_Entity (N, Empty);
12993 elsif Nkind (N) = N_Quantified_Expression then
12994 return Skip;
12995 end if;
12997 return OK;
12998 end Resolve_Name;
13000 procedure Resolve_Aspect_Expression is new Traverse_Proc (Resolve_Name);
13002 -- Start of processing for Resolve_Aspect_Expressions
13004 begin
13005 ASN := First_Rep_Item (E);
13006 while Present (ASN) loop
13007 if Nkind (ASN) = N_Aspect_Specification and then Entity (ASN) = E then
13008 A_Id := Get_Aspect_Id (ASN);
13009 Expr := Expression (ASN);
13011 case A_Id is
13012 -- For now we only deal with aspects that do not generate
13013 -- subprograms, or that may mention current instances of
13014 -- types. These will require special handling (???TBD).
13016 when Aspect_Predicate |
13017 Aspect_Predicate_Failure |
13018 Aspect_Invariant =>
13019 null;
13021 when Aspect_Static_Predicate |
13022 Aspect_Dynamic_Predicate =>
13024 -- Build predicate function specification and preanalyze
13025 -- expression after type replacement.
13027 if No (Predicate_Function (E)) then
13028 declare
13029 FDecl : constant Node_Id :=
13030 Build_Predicate_Function_Declaration (E);
13031 pragma Unreferenced (FDecl);
13032 begin
13033 Resolve_Aspect_Expression (Expr);
13034 end;
13035 end if;
13037 when Pre_Post_Aspects =>
13038 null;
13040 when Aspect_Iterable =>
13041 if Nkind (Expr) = N_Aggregate then
13042 declare
13043 Assoc : Node_Id;
13045 begin
13046 Assoc := First (Component_Associations (Expr));
13047 while Present (Assoc) loop
13048 Find_Direct_Name (Expression (Assoc));
13049 Next (Assoc);
13050 end loop;
13051 end;
13052 end if;
13054 when others =>
13055 if Present (Expr) then
13056 case Aspect_Argument (A_Id) is
13057 when Expression | Optional_Expression =>
13058 Analyze_And_Resolve (Expression (ASN));
13060 when Name | Optional_Name =>
13061 if Nkind (Expr) = N_Identifier then
13062 Find_Direct_Name (Expr);
13064 elsif Nkind (Expr) = N_Selected_Component then
13065 Find_Selected_Component (Expr);
13067 else
13068 null;
13069 end if;
13070 end case;
13071 end if;
13072 end case;
13073 end if;
13075 ASN := Next_Rep_Item (ASN);
13076 end loop;
13077 end Resolve_Aspect_Expressions;
13079 -------------------------
13080 -- Same_Representation --
13081 -------------------------
13083 function Same_Representation (Typ1, Typ2 : Entity_Id) return Boolean is
13084 T1 : constant Entity_Id := Underlying_Type (Typ1);
13085 T2 : constant Entity_Id := Underlying_Type (Typ2);
13087 begin
13088 -- A quick check, if base types are the same, then we definitely have
13089 -- the same representation, because the subtype specific representation
13090 -- attributes (Size and Alignment) do not affect representation from
13091 -- the point of view of this test.
13093 if Base_Type (T1) = Base_Type (T2) then
13094 return True;
13096 elsif Is_Private_Type (Base_Type (T2))
13097 and then Base_Type (T1) = Full_View (Base_Type (T2))
13098 then
13099 return True;
13100 end if;
13102 -- Tagged types never have differing representations
13104 if Is_Tagged_Type (T1) then
13105 return True;
13106 end if;
13108 -- Representations are definitely different if conventions differ
13110 if Convention (T1) /= Convention (T2) then
13111 return False;
13112 end if;
13114 -- Representations are different if component alignments or scalar
13115 -- storage orders differ.
13117 if (Is_Record_Type (T1) or else Is_Array_Type (T1))
13118 and then
13119 (Is_Record_Type (T2) or else Is_Array_Type (T2))
13120 and then
13121 (Component_Alignment (T1) /= Component_Alignment (T2)
13122 or else Reverse_Storage_Order (T1) /= Reverse_Storage_Order (T2))
13123 then
13124 return False;
13125 end if;
13127 -- For arrays, the only real issue is component size. If we know the
13128 -- component size for both arrays, and it is the same, then that's
13129 -- good enough to know we don't have a change of representation.
13131 if Is_Array_Type (T1) then
13132 if Known_Component_Size (T1)
13133 and then Known_Component_Size (T2)
13134 and then Component_Size (T1) = Component_Size (T2)
13135 then
13136 return True;
13137 end if;
13138 end if;
13140 -- Types definitely have same representation if neither has non-standard
13141 -- representation since default representations are always consistent.
13142 -- If only one has non-standard representation, and the other does not,
13143 -- then we consider that they do not have the same representation. They
13144 -- might, but there is no way of telling early enough.
13146 if Has_Non_Standard_Rep (T1) then
13147 if not Has_Non_Standard_Rep (T2) then
13148 return False;
13149 end if;
13150 else
13151 return not Has_Non_Standard_Rep (T2);
13152 end if;
13154 -- Here the two types both have non-standard representation, and we need
13155 -- to determine if they have the same non-standard representation.
13157 -- For arrays, we simply need to test if the component sizes are the
13158 -- same. Pragma Pack is reflected in modified component sizes, so this
13159 -- check also deals with pragma Pack.
13161 if Is_Array_Type (T1) then
13162 return Component_Size (T1) = Component_Size (T2);
13164 -- Tagged types always have the same representation, because it is not
13165 -- possible to specify different representations for common fields.
13167 elsif Is_Tagged_Type (T1) then
13168 return True;
13170 -- Case of record types
13172 elsif Is_Record_Type (T1) then
13174 -- Packed status must conform
13176 if Is_Packed (T1) /= Is_Packed (T2) then
13177 return False;
13179 -- Otherwise we must check components. Typ2 maybe a constrained
13180 -- subtype with fewer components, so we compare the components
13181 -- of the base types.
13183 else
13184 Record_Case : declare
13185 CD1, CD2 : Entity_Id;
13187 function Same_Rep return Boolean;
13188 -- CD1 and CD2 are either components or discriminants. This
13189 -- function tests whether they have the same representation.
13191 --------------
13192 -- Same_Rep --
13193 --------------
13195 function Same_Rep return Boolean is
13196 begin
13197 if No (Component_Clause (CD1)) then
13198 return No (Component_Clause (CD2));
13199 else
13200 -- Note: at this point, component clauses have been
13201 -- normalized to the default bit order, so that the
13202 -- comparison of Component_Bit_Offsets is meaningful.
13204 return
13205 Present (Component_Clause (CD2))
13206 and then
13207 Component_Bit_Offset (CD1) = Component_Bit_Offset (CD2)
13208 and then
13209 Esize (CD1) = Esize (CD2);
13210 end if;
13211 end Same_Rep;
13213 -- Start of processing for Record_Case
13215 begin
13216 if Has_Discriminants (T1) then
13218 -- The number of discriminants may be different if the
13219 -- derived type has fewer (constrained by values). The
13220 -- invisible discriminants retain the representation of
13221 -- the original, so the discrepancy does not per se
13222 -- indicate a different representation.
13224 CD1 := First_Discriminant (T1);
13225 CD2 := First_Discriminant (T2);
13226 while Present (CD1) and then Present (CD2) loop
13227 if not Same_Rep then
13228 return False;
13229 else
13230 Next_Discriminant (CD1);
13231 Next_Discriminant (CD2);
13232 end if;
13233 end loop;
13234 end if;
13236 CD1 := First_Component (Underlying_Type (Base_Type (T1)));
13237 CD2 := First_Component (Underlying_Type (Base_Type (T2)));
13238 while Present (CD1) loop
13239 if not Same_Rep then
13240 return False;
13241 else
13242 Next_Component (CD1);
13243 Next_Component (CD2);
13244 end if;
13245 end loop;
13247 return True;
13248 end Record_Case;
13249 end if;
13251 -- For enumeration types, we must check each literal to see if the
13252 -- representation is the same. Note that we do not permit enumeration
13253 -- representation clauses for Character and Wide_Character, so these
13254 -- cases were already dealt with.
13256 elsif Is_Enumeration_Type (T1) then
13257 Enumeration_Case : declare
13258 L1, L2 : Entity_Id;
13260 begin
13261 L1 := First_Literal (T1);
13262 L2 := First_Literal (T2);
13263 while Present (L1) loop
13264 if Enumeration_Rep (L1) /= Enumeration_Rep (L2) then
13265 return False;
13266 else
13267 Next_Literal (L1);
13268 Next_Literal (L2);
13269 end if;
13270 end loop;
13272 return True;
13273 end Enumeration_Case;
13275 -- Any other types have the same representation for these purposes
13277 else
13278 return True;
13279 end if;
13280 end Same_Representation;
13282 --------------------------------
13283 -- Resolve_Iterable_Operation --
13284 --------------------------------
13286 procedure Resolve_Iterable_Operation
13287 (N : Node_Id;
13288 Cursor : Entity_Id;
13289 Typ : Entity_Id;
13290 Nam : Name_Id)
13292 Ent : Entity_Id;
13293 F1 : Entity_Id;
13294 F2 : Entity_Id;
13296 begin
13297 if not Is_Overloaded (N) then
13298 if not Is_Entity_Name (N)
13299 or else Ekind (Entity (N)) /= E_Function
13300 or else Scope (Entity (N)) /= Scope (Typ)
13301 or else No (First_Formal (Entity (N)))
13302 or else Etype (First_Formal (Entity (N))) /= Typ
13303 then
13304 Error_Msg_N ("iterable primitive must be local function name "
13305 & "whose first formal is an iterable type", N);
13306 return;
13307 end if;
13309 Ent := Entity (N);
13310 F1 := First_Formal (Ent);
13311 if Nam = Name_First then
13313 -- First (Container) => Cursor
13315 if Etype (Ent) /= Cursor then
13316 Error_Msg_N ("primitive for First must yield a curosr", N);
13317 end if;
13319 elsif Nam = Name_Next then
13321 -- Next (Container, Cursor) => Cursor
13323 F2 := Next_Formal (F1);
13325 if Etype (F2) /= Cursor
13326 or else Etype (Ent) /= Cursor
13327 or else Present (Next_Formal (F2))
13328 then
13329 Error_Msg_N ("no match for Next iterable primitive", N);
13330 end if;
13332 elsif Nam = Name_Has_Element then
13334 -- Has_Element (Container, Cursor) => Boolean
13336 F2 := Next_Formal (F1);
13337 if Etype (F2) /= Cursor
13338 or else Etype (Ent) /= Standard_Boolean
13339 or else Present (Next_Formal (F2))
13340 then
13341 Error_Msg_N ("no match for Has_Element iterable primitive", N);
13342 end if;
13344 elsif Nam = Name_Element then
13345 F2 := Next_Formal (F1);
13347 if No (F2)
13348 or else Etype (F2) /= Cursor
13349 or else Present (Next_Formal (F2))
13350 then
13351 Error_Msg_N ("no match for Element iterable primitive", N);
13352 end if;
13353 null;
13355 else
13356 raise Program_Error;
13357 end if;
13359 else
13360 -- Overloaded case: find subprogram with proper signature.
13361 -- Caller will report error if no match is found.
13363 declare
13364 I : Interp_Index;
13365 It : Interp;
13367 begin
13368 Get_First_Interp (N, I, It);
13369 while Present (It.Typ) loop
13370 if Ekind (It.Nam) = E_Function
13371 and then Scope (It.Nam) = Scope (Typ)
13372 and then Etype (First_Formal (It.Nam)) = Typ
13373 then
13374 F1 := First_Formal (It.Nam);
13376 if Nam = Name_First then
13377 if Etype (It.Nam) = Cursor
13378 and then No (Next_Formal (F1))
13379 then
13380 Set_Entity (N, It.Nam);
13381 exit;
13382 end if;
13384 elsif Nam = Name_Next then
13385 F2 := Next_Formal (F1);
13387 if Present (F2)
13388 and then No (Next_Formal (F2))
13389 and then Etype (F2) = Cursor
13390 and then Etype (It.Nam) = Cursor
13391 then
13392 Set_Entity (N, It.Nam);
13393 exit;
13394 end if;
13396 elsif Nam = Name_Has_Element then
13397 F2 := Next_Formal (F1);
13399 if Present (F2)
13400 and then No (Next_Formal (F2))
13401 and then Etype (F2) = Cursor
13402 and then Etype (It.Nam) = Standard_Boolean
13403 then
13404 Set_Entity (N, It.Nam);
13405 F2 := Next_Formal (F1);
13406 exit;
13407 end if;
13409 elsif Nam = Name_Element then
13410 F2 := Next_Formal (F1);
13412 if Present (F2)
13413 and then No (Next_Formal (F2))
13414 and then Etype (F2) = Cursor
13415 then
13416 Set_Entity (N, It.Nam);
13417 exit;
13418 end if;
13419 end if;
13420 end if;
13422 Get_Next_Interp (I, It);
13423 end loop;
13424 end;
13425 end if;
13426 end Resolve_Iterable_Operation;
13428 ----------------
13429 -- Set_Biased --
13430 ----------------
13432 procedure Set_Biased
13433 (E : Entity_Id;
13434 N : Node_Id;
13435 Msg : String;
13436 Biased : Boolean := True)
13438 begin
13439 if Biased then
13440 Set_Has_Biased_Representation (E);
13442 if Warn_On_Biased_Representation then
13443 Error_Msg_NE
13444 ("?B?" & Msg & " forces biased representation for&", N, E);
13445 end if;
13446 end if;
13447 end Set_Biased;
13449 --------------------
13450 -- Set_Enum_Esize --
13451 --------------------
13453 procedure Set_Enum_Esize (T : Entity_Id) is
13454 Lo : Uint;
13455 Hi : Uint;
13456 Sz : Nat;
13458 begin
13459 Init_Alignment (T);
13461 -- Find the minimum standard size (8,16,32,64) that fits
13463 Lo := Enumeration_Rep (Entity (Type_Low_Bound (T)));
13464 Hi := Enumeration_Rep (Entity (Type_High_Bound (T)));
13466 if Lo < 0 then
13467 if Lo >= -Uint_2**07 and then Hi < Uint_2**07 then
13468 Sz := Standard_Character_Size; -- May be > 8 on some targets
13470 elsif Lo >= -Uint_2**15 and then Hi < Uint_2**15 then
13471 Sz := 16;
13473 elsif Lo >= -Uint_2**31 and then Hi < Uint_2**31 then
13474 Sz := 32;
13476 else pragma Assert (Lo >= -Uint_2**63 and then Hi < Uint_2**63);
13477 Sz := 64;
13478 end if;
13480 else
13481 if Hi < Uint_2**08 then
13482 Sz := Standard_Character_Size; -- May be > 8 on some targets
13484 elsif Hi < Uint_2**16 then
13485 Sz := 16;
13487 elsif Hi < Uint_2**32 then
13488 Sz := 32;
13490 else pragma Assert (Hi < Uint_2**63);
13491 Sz := 64;
13492 end if;
13493 end if;
13495 -- That minimum is the proper size unless we have a foreign convention
13496 -- and the size required is 32 or less, in which case we bump the size
13497 -- up to 32. This is required for C and C++ and seems reasonable for
13498 -- all other foreign conventions.
13500 if Has_Foreign_Convention (T)
13501 and then Esize (T) < Standard_Integer_Size
13503 -- Don't do this if Short_Enums on target
13505 and then not Target_Short_Enums
13506 then
13507 Init_Esize (T, Standard_Integer_Size);
13508 else
13509 Init_Esize (T, Sz);
13510 end if;
13511 end Set_Enum_Esize;
13513 -----------------------------
13514 -- Uninstall_Discriminants --
13515 -----------------------------
13517 procedure Uninstall_Discriminants (E : Entity_Id) is
13518 Disc : Entity_Id;
13519 Prev : Entity_Id;
13520 Outer : Entity_Id;
13522 begin
13523 -- Discriminants have been made visible for type declarations and
13524 -- protected type declarations, not for subtype declarations.
13526 if Nkind (Parent (E)) /= N_Subtype_Declaration then
13527 Disc := First_Discriminant (E);
13528 while Present (Disc) loop
13529 if Disc /= Current_Entity (Disc) then
13530 Prev := Current_Entity (Disc);
13531 while Present (Prev)
13532 and then Present (Homonym (Prev))
13533 and then Homonym (Prev) /= Disc
13534 loop
13535 Prev := Homonym (Prev);
13536 end loop;
13537 else
13538 Prev := Empty;
13539 end if;
13541 Set_Is_Immediately_Visible (Disc, False);
13543 Outer := Homonym (Disc);
13544 while Present (Outer) and then Scope (Outer) = E loop
13545 Outer := Homonym (Outer);
13546 end loop;
13548 -- Reset homonym link of other entities, but do not modify link
13549 -- between entities in current scope, so that the back end can
13550 -- have a proper count of local overloadings.
13552 if No (Prev) then
13553 Set_Name_Entity_Id (Chars (Disc), Outer);
13555 elsif Scope (Prev) /= Scope (Disc) then
13556 Set_Homonym (Prev, Outer);
13557 end if;
13559 Next_Discriminant (Disc);
13560 end loop;
13561 end if;
13562 end Uninstall_Discriminants;
13564 -------------------------------------------
13565 -- Uninstall_Discriminants_And_Pop_Scope --
13566 -------------------------------------------
13568 procedure Uninstall_Discriminants_And_Pop_Scope (E : Entity_Id) is
13569 begin
13570 if Has_Discriminants (E) then
13571 Uninstall_Discriminants (E);
13572 Pop_Scope;
13573 end if;
13574 end Uninstall_Discriminants_And_Pop_Scope;
13576 ------------------------------
13577 -- Validate_Address_Clauses --
13578 ------------------------------
13580 procedure Validate_Address_Clauses is
13581 begin
13582 for J in Address_Clause_Checks.First .. Address_Clause_Checks.Last loop
13583 declare
13584 ACCR : Address_Clause_Check_Record
13585 renames Address_Clause_Checks.Table (J);
13587 Expr : Node_Id;
13589 X_Alignment : Uint;
13590 Y_Alignment : Uint;
13592 X_Size : Uint;
13593 Y_Size : Uint;
13595 begin
13596 -- Skip processing of this entry if warning already posted
13598 if not Address_Warning_Posted (ACCR.N) then
13599 Expr := Original_Node (Expression (ACCR.N));
13601 -- Get alignments
13603 X_Alignment := Alignment (ACCR.X);
13604 Y_Alignment := Alignment (ACCR.Y);
13606 -- Similarly obtain sizes
13608 X_Size := Esize (ACCR.X);
13609 Y_Size := Esize (ACCR.Y);
13611 -- Check for large object overlaying smaller one
13613 if Y_Size > Uint_0
13614 and then X_Size > Uint_0
13615 and then X_Size > Y_Size
13616 then
13617 Error_Msg_NE ("??& overlays smaller object", ACCR.N, ACCR.X);
13618 Error_Msg_N
13619 ("\??program execution may be erroneous", ACCR.N);
13621 Error_Msg_Uint_1 := X_Size;
13622 Error_Msg_NE ("\??size of & is ^", ACCR.N, ACCR.X);
13624 Error_Msg_Uint_1 := Y_Size;
13625 Error_Msg_NE ("\??size of & is ^", ACCR.N, ACCR.Y);
13627 -- Check for inadequate alignment, both of the base object
13628 -- and of the offset, if any. We only do this check if the
13629 -- run-time Alignment_Check is active. No point in warning
13630 -- if this check has been suppressed (or is suppressed by
13631 -- default in the non-strict alignment machine case).
13633 -- Note: we do not check the alignment if we gave a size
13634 -- warning, since it would likely be redundant.
13636 elsif not Alignment_Checks_Suppressed (ACCR.Y)
13637 and then Y_Alignment /= Uint_0
13638 and then
13639 (Y_Alignment < X_Alignment
13640 or else
13641 (ACCR.Off
13642 and then Nkind (Expr) = N_Attribute_Reference
13643 and then Attribute_Name (Expr) = Name_Address
13644 and then Has_Compatible_Alignment
13645 (ACCR.X, Prefix (Expr), True) /=
13646 Known_Compatible))
13647 then
13648 Error_Msg_NE
13649 ("??specified address for& may be inconsistent with "
13650 & "alignment", ACCR.N, ACCR.X);
13651 Error_Msg_N
13652 ("\??program execution may be erroneous (RM 13.3(27))",
13653 ACCR.N);
13655 Error_Msg_Uint_1 := X_Alignment;
13656 Error_Msg_NE ("\??alignment of & is ^", ACCR.N, ACCR.X);
13658 Error_Msg_Uint_1 := Y_Alignment;
13659 Error_Msg_NE ("\??alignment of & is ^", ACCR.N, ACCR.Y);
13661 if Y_Alignment >= X_Alignment then
13662 Error_Msg_N
13663 ("\??but offset is not multiple of alignment", ACCR.N);
13664 end if;
13665 end if;
13666 end if;
13667 end;
13668 end loop;
13669 end Validate_Address_Clauses;
13671 ---------------------------
13672 -- Validate_Independence --
13673 ---------------------------
13675 procedure Validate_Independence is
13676 SU : constant Uint := UI_From_Int (System_Storage_Unit);
13677 N : Node_Id;
13678 E : Entity_Id;
13679 IC : Boolean;
13680 Comp : Entity_Id;
13681 Addr : Node_Id;
13682 P : Node_Id;
13684 procedure Check_Array_Type (Atyp : Entity_Id);
13685 -- Checks if the array type Atyp has independent components, and
13686 -- if not, outputs an appropriate set of error messages.
13688 procedure No_Independence;
13689 -- Output message that independence cannot be guaranteed
13691 function OK_Component (C : Entity_Id) return Boolean;
13692 -- Checks one component to see if it is independently accessible, and
13693 -- if so yields True, otherwise yields False if independent access
13694 -- cannot be guaranteed. This is a conservative routine, it only
13695 -- returns True if it knows for sure, it returns False if it knows
13696 -- there is a problem, or it cannot be sure there is no problem.
13698 procedure Reason_Bad_Component (C : Entity_Id);
13699 -- Outputs continuation message if a reason can be determined for
13700 -- the component C being bad.
13702 ----------------------
13703 -- Check_Array_Type --
13704 ----------------------
13706 procedure Check_Array_Type (Atyp : Entity_Id) is
13707 Ctyp : constant Entity_Id := Component_Type (Atyp);
13709 begin
13710 -- OK if no alignment clause, no pack, and no component size
13712 if not Has_Component_Size_Clause (Atyp)
13713 and then not Has_Alignment_Clause (Atyp)
13714 and then not Is_Packed (Atyp)
13715 then
13716 return;
13717 end if;
13719 -- Case of component size is greater than or equal to 64 and the
13720 -- alignment of the array is at least as large as the alignment
13721 -- of the component. We are definitely OK in this situation.
13723 if Known_Component_Size (Atyp)
13724 and then Component_Size (Atyp) >= 64
13725 and then Known_Alignment (Atyp)
13726 and then Known_Alignment (Ctyp)
13727 and then Alignment (Atyp) >= Alignment (Ctyp)
13728 then
13729 return;
13730 end if;
13732 -- Check actual component size
13734 if not Known_Component_Size (Atyp)
13735 or else not (Addressable (Component_Size (Atyp))
13736 and then Component_Size (Atyp) < 64)
13737 or else Component_Size (Atyp) mod Esize (Ctyp) /= 0
13738 then
13739 No_Independence;
13741 -- Bad component size, check reason
13743 if Has_Component_Size_Clause (Atyp) then
13744 P := Get_Attribute_Definition_Clause
13745 (Atyp, Attribute_Component_Size);
13747 if Present (P) then
13748 Error_Msg_Sloc := Sloc (P);
13749 Error_Msg_N ("\because of Component_Size clause#", N);
13750 return;
13751 end if;
13752 end if;
13754 if Is_Packed (Atyp) then
13755 P := Get_Rep_Pragma (Atyp, Name_Pack);
13757 if Present (P) then
13758 Error_Msg_Sloc := Sloc (P);
13759 Error_Msg_N ("\because of pragma Pack#", N);
13760 return;
13761 end if;
13762 end if;
13764 -- No reason found, just return
13766 return;
13767 end if;
13769 -- Array type is OK independence-wise
13771 return;
13772 end Check_Array_Type;
13774 ---------------------
13775 -- No_Independence --
13776 ---------------------
13778 procedure No_Independence is
13779 begin
13780 if Pragma_Name (N) = Name_Independent then
13781 Error_Msg_NE ("independence cannot be guaranteed for&", N, E);
13782 else
13783 Error_Msg_NE
13784 ("independent components cannot be guaranteed for&", N, E);
13785 end if;
13786 end No_Independence;
13788 ------------------
13789 -- OK_Component --
13790 ------------------
13792 function OK_Component (C : Entity_Id) return Boolean is
13793 Rec : constant Entity_Id := Scope (C);
13794 Ctyp : constant Entity_Id := Etype (C);
13796 begin
13797 -- OK if no component clause, no Pack, and no alignment clause
13799 if No (Component_Clause (C))
13800 and then not Is_Packed (Rec)
13801 and then not Has_Alignment_Clause (Rec)
13802 then
13803 return True;
13804 end if;
13806 -- Here we look at the actual component layout. A component is
13807 -- addressable if its size is a multiple of the Esize of the
13808 -- component type, and its starting position in the record has
13809 -- appropriate alignment, and the record itself has appropriate
13810 -- alignment to guarantee the component alignment.
13812 -- Make sure sizes are static, always assume the worst for any
13813 -- cases where we cannot check static values.
13815 if not (Known_Static_Esize (C)
13816 and then
13817 Known_Static_Esize (Ctyp))
13818 then
13819 return False;
13820 end if;
13822 -- Size of component must be addressable or greater than 64 bits
13823 -- and a multiple of bytes.
13825 if not Addressable (Esize (C)) and then Esize (C) < Uint_64 then
13826 return False;
13827 end if;
13829 -- Check size is proper multiple
13831 if Esize (C) mod Esize (Ctyp) /= 0 then
13832 return False;
13833 end if;
13835 -- Check alignment of component is OK
13837 if not Known_Component_Bit_Offset (C)
13838 or else Component_Bit_Offset (C) < Uint_0
13839 or else Component_Bit_Offset (C) mod Esize (Ctyp) /= 0
13840 then
13841 return False;
13842 end if;
13844 -- Check alignment of record type is OK
13846 if not Known_Alignment (Rec)
13847 or else (Alignment (Rec) * SU) mod Esize (Ctyp) /= 0
13848 then
13849 return False;
13850 end if;
13852 -- All tests passed, component is addressable
13854 return True;
13855 end OK_Component;
13857 --------------------------
13858 -- Reason_Bad_Component --
13859 --------------------------
13861 procedure Reason_Bad_Component (C : Entity_Id) is
13862 Rec : constant Entity_Id := Scope (C);
13863 Ctyp : constant Entity_Id := Etype (C);
13865 begin
13866 -- If component clause present assume that's the problem
13868 if Present (Component_Clause (C)) then
13869 Error_Msg_Sloc := Sloc (Component_Clause (C));
13870 Error_Msg_N ("\because of Component_Clause#", N);
13871 return;
13872 end if;
13874 -- If pragma Pack clause present, assume that's the problem
13876 if Is_Packed (Rec) then
13877 P := Get_Rep_Pragma (Rec, Name_Pack);
13879 if Present (P) then
13880 Error_Msg_Sloc := Sloc (P);
13881 Error_Msg_N ("\because of pragma Pack#", N);
13882 return;
13883 end if;
13884 end if;
13886 -- See if record has bad alignment clause
13888 if Has_Alignment_Clause (Rec)
13889 and then Known_Alignment (Rec)
13890 and then (Alignment (Rec) * SU) mod Esize (Ctyp) /= 0
13891 then
13892 P := Get_Attribute_Definition_Clause (Rec, Attribute_Alignment);
13894 if Present (P) then
13895 Error_Msg_Sloc := Sloc (P);
13896 Error_Msg_N ("\because of Alignment clause#", N);
13897 end if;
13898 end if;
13900 -- Couldn't find a reason, so return without a message
13902 return;
13903 end Reason_Bad_Component;
13905 -- Start of processing for Validate_Independence
13907 begin
13908 for J in Independence_Checks.First .. Independence_Checks.Last loop
13909 N := Independence_Checks.Table (J).N;
13910 E := Independence_Checks.Table (J).E;
13911 IC := Pragma_Name (N) = Name_Independent_Components;
13913 -- Deal with component case
13915 if Ekind (E) = E_Discriminant or else Ekind (E) = E_Component then
13916 if not OK_Component (E) then
13917 No_Independence;
13918 Reason_Bad_Component (E);
13919 goto Continue;
13920 end if;
13921 end if;
13923 -- Deal with record with Independent_Components
13925 if IC and then Is_Record_Type (E) then
13926 Comp := First_Component_Or_Discriminant (E);
13927 while Present (Comp) loop
13928 if not OK_Component (Comp) then
13929 No_Independence;
13930 Reason_Bad_Component (Comp);
13931 goto Continue;
13932 end if;
13934 Next_Component_Or_Discriminant (Comp);
13935 end loop;
13936 end if;
13938 -- Deal with address clause case
13940 if Is_Object (E) then
13941 Addr := Address_Clause (E);
13943 if Present (Addr) then
13944 No_Independence;
13945 Error_Msg_Sloc := Sloc (Addr);
13946 Error_Msg_N ("\because of Address clause#", N);
13947 goto Continue;
13948 end if;
13949 end if;
13951 -- Deal with independent components for array type
13953 if IC and then Is_Array_Type (E) then
13954 Check_Array_Type (E);
13955 end if;
13957 -- Deal with independent components for array object
13959 if IC and then Is_Object (E) and then Is_Array_Type (Etype (E)) then
13960 Check_Array_Type (Etype (E));
13961 end if;
13963 <<Continue>> null;
13964 end loop;
13965 end Validate_Independence;
13967 ------------------------------
13968 -- Validate_Iterable_Aspect --
13969 ------------------------------
13971 procedure Validate_Iterable_Aspect (Typ : Entity_Id; ASN : Node_Id) is
13972 Assoc : Node_Id;
13973 Expr : Node_Id;
13975 Prim : Node_Id;
13976 Cursor : constant Entity_Id := Get_Cursor_Type (ASN, Typ);
13978 First_Id : Entity_Id;
13979 Next_Id : Entity_Id;
13980 Has_Element_Id : Entity_Id;
13981 Element_Id : Entity_Id;
13983 begin
13984 -- If previous error aspect is unusable
13986 if Cursor = Any_Type then
13987 return;
13988 end if;
13990 First_Id := Empty;
13991 Next_Id := Empty;
13992 Has_Element_Id := Empty;
13993 Element_Id := Empty;
13995 -- Each expression must resolve to a function with the proper signature
13997 Assoc := First (Component_Associations (Expression (ASN)));
13998 while Present (Assoc) loop
13999 Expr := Expression (Assoc);
14000 Analyze (Expr);
14002 Prim := First (Choices (Assoc));
14004 if Nkind (Prim) /= N_Identifier or else Present (Next (Prim)) then
14005 Error_Msg_N ("illegal name in association", Prim);
14007 elsif Chars (Prim) = Name_First then
14008 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_First);
14009 First_Id := Entity (Expr);
14011 elsif Chars (Prim) = Name_Next then
14012 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Next);
14013 Next_Id := Entity (Expr);
14015 elsif Chars (Prim) = Name_Has_Element then
14016 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Has_Element);
14017 Has_Element_Id := Entity (Expr);
14019 elsif Chars (Prim) = Name_Element then
14020 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Element);
14021 Element_Id := Entity (Expr);
14023 else
14024 Error_Msg_N ("invalid name for iterable function", Prim);
14025 end if;
14027 Next (Assoc);
14028 end loop;
14030 if No (First_Id) then
14031 Error_Msg_N ("match for First primitive not found", ASN);
14033 elsif No (Next_Id) then
14034 Error_Msg_N ("match for Next primitive not found", ASN);
14036 elsif No (Has_Element_Id) then
14037 Error_Msg_N ("match for Has_Element primitive not found", ASN);
14039 elsif No (Element_Id) then
14040 null; -- Optional.
14041 end if;
14042 end Validate_Iterable_Aspect;
14044 -----------------------------------
14045 -- Validate_Unchecked_Conversion --
14046 -----------------------------------
14048 procedure Validate_Unchecked_Conversion
14049 (N : Node_Id;
14050 Act_Unit : Entity_Id)
14052 Source : Entity_Id;
14053 Target : Entity_Id;
14054 Vnode : Node_Id;
14056 begin
14057 -- Obtain source and target types. Note that we call Ancestor_Subtype
14058 -- here because the processing for generic instantiation always makes
14059 -- subtypes, and we want the original frozen actual types.
14061 -- If we are dealing with private types, then do the check on their
14062 -- fully declared counterparts if the full declarations have been
14063 -- encountered (they don't have to be visible, but they must exist).
14065 Source := Ancestor_Subtype (Etype (First_Formal (Act_Unit)));
14067 if Is_Private_Type (Source)
14068 and then Present (Underlying_Type (Source))
14069 then
14070 Source := Underlying_Type (Source);
14071 end if;
14073 Target := Ancestor_Subtype (Etype (Act_Unit));
14075 -- If either type is generic, the instantiation happens within a generic
14076 -- unit, and there is nothing to check. The proper check will happen
14077 -- when the enclosing generic is instantiated.
14079 if Is_Generic_Type (Source) or else Is_Generic_Type (Target) then
14080 return;
14081 end if;
14083 if Is_Private_Type (Target)
14084 and then Present (Underlying_Type (Target))
14085 then
14086 Target := Underlying_Type (Target);
14087 end if;
14089 -- Source may be unconstrained array, but not target, except in relaxed
14090 -- semantics mode.
14092 if Is_Array_Type (Target)
14093 and then not Is_Constrained (Target)
14094 and then not Relaxed_RM_Semantics
14095 then
14096 Error_Msg_N
14097 ("unchecked conversion to unconstrained array not allowed", N);
14098 return;
14099 end if;
14101 -- Warn if conversion between two different convention pointers
14103 if Is_Access_Type (Target)
14104 and then Is_Access_Type (Source)
14105 and then Convention (Target) /= Convention (Source)
14106 and then Warn_On_Unchecked_Conversion
14107 then
14108 -- Give warnings for subprogram pointers only on most targets
14110 if Is_Access_Subprogram_Type (Target)
14111 or else Is_Access_Subprogram_Type (Source)
14112 then
14113 Error_Msg_N
14114 ("?z?conversion between pointers with different conventions!",
14116 end if;
14117 end if;
14119 -- Warn if one of the operands is Ada.Calendar.Time. Do not emit a
14120 -- warning when compiling GNAT-related sources.
14122 if Warn_On_Unchecked_Conversion
14123 and then not In_Predefined_Unit (N)
14124 and then RTU_Loaded (Ada_Calendar)
14125 and then (Chars (Source) = Name_Time
14126 or else
14127 Chars (Target) = Name_Time)
14128 then
14129 -- If Ada.Calendar is loaded and the name of one of the operands is
14130 -- Time, there is a good chance that this is Ada.Calendar.Time.
14132 declare
14133 Calendar_Time : constant Entity_Id := Full_View (RTE (RO_CA_Time));
14134 begin
14135 pragma Assert (Present (Calendar_Time));
14137 if Source = Calendar_Time or else Target = Calendar_Time then
14138 Error_Msg_N
14139 ("?z?representation of 'Time values may change between "
14140 & "'G'N'A'T versions", N);
14141 end if;
14142 end;
14143 end if;
14145 -- Make entry in unchecked conversion table for later processing by
14146 -- Validate_Unchecked_Conversions, which will check sizes and alignments
14147 -- (using values set by the back end where possible). This is only done
14148 -- if the appropriate warning is active.
14150 if Warn_On_Unchecked_Conversion then
14151 Unchecked_Conversions.Append
14152 (New_Val => UC_Entry'(Eloc => Sloc (N),
14153 Source => Source,
14154 Target => Target,
14155 Act_Unit => Act_Unit));
14157 -- If both sizes are known statically now, then back end annotation
14158 -- is not required to do a proper check but if either size is not
14159 -- known statically, then we need the annotation.
14161 if Known_Static_RM_Size (Source)
14162 and then
14163 Known_Static_RM_Size (Target)
14164 then
14165 null;
14166 else
14167 Back_Annotate_Rep_Info := True;
14168 end if;
14169 end if;
14171 -- If unchecked conversion to access type, and access type is declared
14172 -- in the same unit as the unchecked conversion, then set the flag
14173 -- No_Strict_Aliasing (no strict aliasing is implicit here)
14175 if Is_Access_Type (Target) and then
14176 In_Same_Source_Unit (Target, N)
14177 then
14178 Set_No_Strict_Aliasing (Implementation_Base_Type (Target));
14179 end if;
14181 -- Generate N_Validate_Unchecked_Conversion node for back end in case
14182 -- the back end needs to perform special validation checks.
14184 -- Shouldn't this be in Exp_Ch13, since the check only gets done if we
14185 -- have full expansion and the back end is called ???
14187 Vnode :=
14188 Make_Validate_Unchecked_Conversion (Sloc (N));
14189 Set_Source_Type (Vnode, Source);
14190 Set_Target_Type (Vnode, Target);
14192 -- If the unchecked conversion node is in a list, just insert before it.
14193 -- If not we have some strange case, not worth bothering about.
14195 if Is_List_Member (N) then
14196 Insert_After (N, Vnode);
14197 end if;
14198 end Validate_Unchecked_Conversion;
14200 ------------------------------------
14201 -- Validate_Unchecked_Conversions --
14202 ------------------------------------
14204 procedure Validate_Unchecked_Conversions is
14205 begin
14206 for N in Unchecked_Conversions.First .. Unchecked_Conversions.Last loop
14207 declare
14208 T : UC_Entry renames Unchecked_Conversions.Table (N);
14210 Eloc : constant Source_Ptr := T.Eloc;
14211 Source : constant Entity_Id := T.Source;
14212 Target : constant Entity_Id := T.Target;
14213 Act_Unit : constant Entity_Id := T.Act_Unit;
14215 Source_Siz : Uint;
14216 Target_Siz : Uint;
14218 begin
14219 -- Skip if function marked as warnings off
14221 if Warnings_Off (Act_Unit) then
14222 goto Continue;
14223 end if;
14225 -- This validation check, which warns if we have unequal sizes for
14226 -- unchecked conversion, and thus potentially implementation
14227 -- dependent semantics, is one of the few occasions on which we
14228 -- use the official RM size instead of Esize. See description in
14229 -- Einfo "Handling of Type'Size Values" for details.
14231 if Serious_Errors_Detected = 0
14232 and then Known_Static_RM_Size (Source)
14233 and then Known_Static_RM_Size (Target)
14235 -- Don't do the check if warnings off for either type, note the
14236 -- deliberate use of OR here instead of OR ELSE to get the flag
14237 -- Warnings_Off_Used set for both types if appropriate.
14239 and then not (Has_Warnings_Off (Source)
14241 Has_Warnings_Off (Target))
14242 then
14243 Source_Siz := RM_Size (Source);
14244 Target_Siz := RM_Size (Target);
14246 if Source_Siz /= Target_Siz then
14247 Error_Msg
14248 ("?z?types for unchecked conversion have different sizes!",
14249 Eloc);
14251 if All_Errors_Mode then
14252 Error_Msg_Name_1 := Chars (Source);
14253 Error_Msg_Uint_1 := Source_Siz;
14254 Error_Msg_Name_2 := Chars (Target);
14255 Error_Msg_Uint_2 := Target_Siz;
14256 Error_Msg ("\size of % is ^, size of % is ^?z?", Eloc);
14258 Error_Msg_Uint_1 := UI_Abs (Source_Siz - Target_Siz);
14260 if Is_Discrete_Type (Source)
14261 and then
14262 Is_Discrete_Type (Target)
14263 then
14264 if Source_Siz > Target_Siz then
14265 Error_Msg
14266 ("\?z?^ high order bits of source will "
14267 & "be ignored!", Eloc);
14269 elsif Is_Unsigned_Type (Source) then
14270 Error_Msg
14271 ("\?z?source will be extended with ^ high order "
14272 & "zero bits!", Eloc);
14274 else
14275 Error_Msg
14276 ("\?z?source will be extended with ^ high order "
14277 & "sign bits!", Eloc);
14278 end if;
14280 elsif Source_Siz < Target_Siz then
14281 if Is_Discrete_Type (Target) then
14282 if Bytes_Big_Endian then
14283 Error_Msg
14284 ("\?z?target value will include ^ undefined "
14285 & "low order bits!", Eloc);
14286 else
14287 Error_Msg
14288 ("\?z?target value will include ^ undefined "
14289 & "high order bits!", Eloc);
14290 end if;
14292 else
14293 Error_Msg
14294 ("\?z?^ trailing bits of target value will be "
14295 & "undefined!", Eloc);
14296 end if;
14298 else pragma Assert (Source_Siz > Target_Siz);
14299 if Is_Discrete_Type (Source) then
14300 if Bytes_Big_Endian then
14301 Error_Msg
14302 ("\?z?^ low order bits of source will be "
14303 & "ignored!", Eloc);
14304 else
14305 Error_Msg
14306 ("\?z?^ high order bits of source will be "
14307 & "ignored!", Eloc);
14308 end if;
14310 else
14311 Error_Msg
14312 ("\?z?^ trailing bits of source will be "
14313 & "ignored!", Eloc);
14314 end if;
14315 end if;
14316 end if;
14317 end if;
14318 end if;
14320 -- If both types are access types, we need to check the alignment.
14321 -- If the alignment of both is specified, we can do it here.
14323 if Serious_Errors_Detected = 0
14324 and then Is_Access_Type (Source)
14325 and then Is_Access_Type (Target)
14326 and then Target_Strict_Alignment
14327 and then Present (Designated_Type (Source))
14328 and then Present (Designated_Type (Target))
14329 then
14330 declare
14331 D_Source : constant Entity_Id := Designated_Type (Source);
14332 D_Target : constant Entity_Id := Designated_Type (Target);
14334 begin
14335 if Known_Alignment (D_Source)
14336 and then
14337 Known_Alignment (D_Target)
14338 then
14339 declare
14340 Source_Align : constant Uint := Alignment (D_Source);
14341 Target_Align : constant Uint := Alignment (D_Target);
14343 begin
14344 if Source_Align < Target_Align
14345 and then not Is_Tagged_Type (D_Source)
14347 -- Suppress warning if warnings suppressed on either
14348 -- type or either designated type. Note the use of
14349 -- OR here instead of OR ELSE. That is intentional,
14350 -- we would like to set flag Warnings_Off_Used in
14351 -- all types for which warnings are suppressed.
14353 and then not (Has_Warnings_Off (D_Source)
14355 Has_Warnings_Off (D_Target)
14357 Has_Warnings_Off (Source)
14359 Has_Warnings_Off (Target))
14360 then
14361 Error_Msg_Uint_1 := Target_Align;
14362 Error_Msg_Uint_2 := Source_Align;
14363 Error_Msg_Node_1 := D_Target;
14364 Error_Msg_Node_2 := D_Source;
14365 Error_Msg
14366 ("?z?alignment of & (^) is stricter than "
14367 & "alignment of & (^)!", Eloc);
14368 Error_Msg
14369 ("\?z?resulting access value may have invalid "
14370 & "alignment!", Eloc);
14371 end if;
14372 end;
14373 end if;
14374 end;
14375 end if;
14376 end;
14378 <<Continue>>
14379 null;
14380 end loop;
14381 end Validate_Unchecked_Conversions;
14383 end Sem_Ch13;