[20/77] Replace MODE_INT checks with is_int_mode
[official-gcc.git] / gcc / combine.c
blob39c26feb24aacaa3447d3e0dbe4432562068d14e
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This module is essentially the "combiner" phase of the U. of Arizona
21 Portable Optimizer, but redone to work on our list-structured
22 representation for RTL instead of their string representation.
24 The LOG_LINKS of each insn identify the most recent assignment
25 to each REG used in the insn. It is a list of previous insns,
26 each of which contains a SET for a REG that is used in this insn
27 and not used or set in between. LOG_LINKs never cross basic blocks.
28 They were set up by the preceding pass (lifetime analysis).
30 We try to combine each pair of insns joined by a logical link.
31 We also try to combine triplets of insns A, B and C when C has
32 a link back to B and B has a link back to A. Likewise for a
33 small number of quadruplets of insns A, B, C and D for which
34 there's high likelihood of success.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "backend.h"
82 #include "target.h"
83 #include "rtl.h"
84 #include "tree.h"
85 #include "cfghooks.h"
86 #include "predict.h"
87 #include "df.h"
88 #include "memmodel.h"
89 #include "tm_p.h"
90 #include "optabs.h"
91 #include "regs.h"
92 #include "emit-rtl.h"
93 #include "recog.h"
94 #include "cgraph.h"
95 #include "stor-layout.h"
96 #include "cfgrtl.h"
97 #include "cfgcleanup.h"
98 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
99 #include "explow.h"
100 #include "insn-attr.h"
101 #include "rtlhooks-def.h"
102 #include "params.h"
103 #include "tree-pass.h"
104 #include "valtrack.h"
105 #include "rtl-iter.h"
106 #include "print-rtl.h"
108 /* Number of attempts to combine instructions in this function. */
110 static int combine_attempts;
112 /* Number of attempts that got as far as substitution in this function. */
114 static int combine_merges;
116 /* Number of instructions combined with added SETs in this function. */
118 static int combine_extras;
120 /* Number of instructions combined in this function. */
122 static int combine_successes;
124 /* Totals over entire compilation. */
126 static int total_attempts, total_merges, total_extras, total_successes;
128 /* combine_instructions may try to replace the right hand side of the
129 second instruction with the value of an associated REG_EQUAL note
130 before throwing it at try_combine. That is problematic when there
131 is a REG_DEAD note for a register used in the old right hand side
132 and can cause distribute_notes to do wrong things. This is the
133 second instruction if it has been so modified, null otherwise. */
135 static rtx_insn *i2mod;
137 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
139 static rtx i2mod_old_rhs;
141 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
143 static rtx i2mod_new_rhs;
145 struct reg_stat_type {
146 /* Record last point of death of (hard or pseudo) register n. */
147 rtx_insn *last_death;
149 /* Record last point of modification of (hard or pseudo) register n. */
150 rtx_insn *last_set;
152 /* The next group of fields allows the recording of the last value assigned
153 to (hard or pseudo) register n. We use this information to see if an
154 operation being processed is redundant given a prior operation performed
155 on the register. For example, an `and' with a constant is redundant if
156 all the zero bits are already known to be turned off.
158 We use an approach similar to that used by cse, but change it in the
159 following ways:
161 (1) We do not want to reinitialize at each label.
162 (2) It is useful, but not critical, to know the actual value assigned
163 to a register. Often just its form is helpful.
165 Therefore, we maintain the following fields:
167 last_set_value the last value assigned
168 last_set_label records the value of label_tick when the
169 register was assigned
170 last_set_table_tick records the value of label_tick when a
171 value using the register is assigned
172 last_set_invalid set to nonzero when it is not valid
173 to use the value of this register in some
174 register's value
176 To understand the usage of these tables, it is important to understand
177 the distinction between the value in last_set_value being valid and
178 the register being validly contained in some other expression in the
179 table.
181 (The next two parameters are out of date).
183 reg_stat[i].last_set_value is valid if it is nonzero, and either
184 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
186 Register I may validly appear in any expression returned for the value
187 of another register if reg_n_sets[i] is 1. It may also appear in the
188 value for register J if reg_stat[j].last_set_invalid is zero, or
189 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
191 If an expression is found in the table containing a register which may
192 not validly appear in an expression, the register is replaced by
193 something that won't match, (clobber (const_int 0)). */
195 /* Record last value assigned to (hard or pseudo) register n. */
197 rtx last_set_value;
199 /* Record the value of label_tick when an expression involving register n
200 is placed in last_set_value. */
202 int last_set_table_tick;
204 /* Record the value of label_tick when the value for register n is placed in
205 last_set_value. */
207 int last_set_label;
209 /* These fields are maintained in parallel with last_set_value and are
210 used to store the mode in which the register was last set, the bits
211 that were known to be zero when it was last set, and the number of
212 sign bits copies it was known to have when it was last set. */
214 unsigned HOST_WIDE_INT last_set_nonzero_bits;
215 char last_set_sign_bit_copies;
216 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
218 /* Set nonzero if references to register n in expressions should not be
219 used. last_set_invalid is set nonzero when this register is being
220 assigned to and last_set_table_tick == label_tick. */
222 char last_set_invalid;
224 /* Some registers that are set more than once and used in more than one
225 basic block are nevertheless always set in similar ways. For example,
226 a QImode register may be loaded from memory in two places on a machine
227 where byte loads zero extend.
229 We record in the following fields if a register has some leading bits
230 that are always equal to the sign bit, and what we know about the
231 nonzero bits of a register, specifically which bits are known to be
232 zero.
234 If an entry is zero, it means that we don't know anything special. */
236 unsigned char sign_bit_copies;
238 unsigned HOST_WIDE_INT nonzero_bits;
240 /* Record the value of the label_tick when the last truncation
241 happened. The field truncated_to_mode is only valid if
242 truncation_label == label_tick. */
244 int truncation_label;
246 /* Record the last truncation seen for this register. If truncation
247 is not a nop to this mode we might be able to save an explicit
248 truncation if we know that value already contains a truncated
249 value. */
251 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
255 static vec<reg_stat_type> reg_stat;
257 /* One plus the highest pseudo for which we track REG_N_SETS.
258 regstat_init_n_sets_and_refs allocates the array for REG_N_SETS just once,
259 but during combine_split_insns new pseudos can be created. As we don't have
260 updated DF information in that case, it is hard to initialize the array
261 after growing. The combiner only cares about REG_N_SETS (regno) == 1,
262 so instead of growing the arrays, just assume all newly created pseudos
263 during combine might be set multiple times. */
265 static unsigned int reg_n_sets_max;
267 /* Record the luid of the last insn that invalidated memory
268 (anything that writes memory, and subroutine calls, but not pushes). */
270 static int mem_last_set;
272 /* Record the luid of the last CALL_INSN
273 so we can tell whether a potential combination crosses any calls. */
275 static int last_call_luid;
277 /* When `subst' is called, this is the insn that is being modified
278 (by combining in a previous insn). The PATTERN of this insn
279 is still the old pattern partially modified and it should not be
280 looked at, but this may be used to examine the successors of the insn
281 to judge whether a simplification is valid. */
283 static rtx_insn *subst_insn;
285 /* This is the lowest LUID that `subst' is currently dealing with.
286 get_last_value will not return a value if the register was set at or
287 after this LUID. If not for this mechanism, we could get confused if
288 I2 or I1 in try_combine were an insn that used the old value of a register
289 to obtain a new value. In that case, we might erroneously get the
290 new value of the register when we wanted the old one. */
292 static int subst_low_luid;
294 /* This contains any hard registers that are used in newpat; reg_dead_at_p
295 must consider all these registers to be always live. */
297 static HARD_REG_SET newpat_used_regs;
299 /* This is an insn to which a LOG_LINKS entry has been added. If this
300 insn is the earlier than I2 or I3, combine should rescan starting at
301 that location. */
303 static rtx_insn *added_links_insn;
305 /* Basic block in which we are performing combines. */
306 static basic_block this_basic_block;
307 static bool optimize_this_for_speed_p;
310 /* Length of the currently allocated uid_insn_cost array. */
312 static int max_uid_known;
314 /* The following array records the insn_rtx_cost for every insn
315 in the instruction stream. */
317 static int *uid_insn_cost;
319 /* The following array records the LOG_LINKS for every insn in the
320 instruction stream as struct insn_link pointers. */
322 struct insn_link {
323 rtx_insn *insn;
324 unsigned int regno;
325 struct insn_link *next;
328 static struct insn_link **uid_log_links;
330 static inline int
331 insn_uid_check (const_rtx insn)
333 int uid = INSN_UID (insn);
334 gcc_checking_assert (uid <= max_uid_known);
335 return uid;
338 #define INSN_COST(INSN) (uid_insn_cost[insn_uid_check (INSN)])
339 #define LOG_LINKS(INSN) (uid_log_links[insn_uid_check (INSN)])
341 #define FOR_EACH_LOG_LINK(L, INSN) \
342 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
344 /* Links for LOG_LINKS are allocated from this obstack. */
346 static struct obstack insn_link_obstack;
348 /* Allocate a link. */
350 static inline struct insn_link *
351 alloc_insn_link (rtx_insn *insn, unsigned int regno, struct insn_link *next)
353 struct insn_link *l
354 = (struct insn_link *) obstack_alloc (&insn_link_obstack,
355 sizeof (struct insn_link));
356 l->insn = insn;
357 l->regno = regno;
358 l->next = next;
359 return l;
362 /* Incremented for each basic block. */
364 static int label_tick;
366 /* Reset to label_tick for each extended basic block in scanning order. */
368 static int label_tick_ebb_start;
370 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
371 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
373 static machine_mode nonzero_bits_mode;
375 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
376 be safely used. It is zero while computing them and after combine has
377 completed. This former test prevents propagating values based on
378 previously set values, which can be incorrect if a variable is modified
379 in a loop. */
381 static int nonzero_sign_valid;
384 /* Record one modification to rtl structure
385 to be undone by storing old_contents into *where. */
387 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE, UNDO_LINKS };
389 struct undo
391 struct undo *next;
392 enum undo_kind kind;
393 union { rtx r; int i; machine_mode m; struct insn_link *l; } old_contents;
394 union { rtx *r; int *i; struct insn_link **l; } where;
397 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
398 num_undo says how many are currently recorded.
400 other_insn is nonzero if we have modified some other insn in the process
401 of working on subst_insn. It must be verified too. */
403 struct undobuf
405 struct undo *undos;
406 struct undo *frees;
407 rtx_insn *other_insn;
410 static struct undobuf undobuf;
412 /* Number of times the pseudo being substituted for
413 was found and replaced. */
415 static int n_occurrences;
417 static rtx reg_nonzero_bits_for_combine (const_rtx, machine_mode, const_rtx,
418 machine_mode,
419 unsigned HOST_WIDE_INT,
420 unsigned HOST_WIDE_INT *);
421 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, machine_mode, const_rtx,
422 machine_mode,
423 unsigned int, unsigned int *);
424 static void do_SUBST (rtx *, rtx);
425 static void do_SUBST_INT (int *, int);
426 static void init_reg_last (void);
427 static void setup_incoming_promotions (rtx_insn *);
428 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
429 static int cant_combine_insn_p (rtx_insn *);
430 static int can_combine_p (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
431 rtx_insn *, rtx_insn *, rtx *, rtx *);
432 static int combinable_i3pat (rtx_insn *, rtx *, rtx, rtx, rtx, int, int, rtx *);
433 static int contains_muldiv (rtx);
434 static rtx_insn *try_combine (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
435 int *, rtx_insn *);
436 static void undo_all (void);
437 static void undo_commit (void);
438 static rtx *find_split_point (rtx *, rtx_insn *, bool);
439 static rtx subst (rtx, rtx, rtx, int, int, int);
440 static rtx combine_simplify_rtx (rtx, machine_mode, int, int);
441 static rtx simplify_if_then_else (rtx);
442 static rtx simplify_set (rtx);
443 static rtx simplify_logical (rtx);
444 static rtx expand_compound_operation (rtx);
445 static const_rtx expand_field_assignment (const_rtx);
446 static rtx make_extraction (machine_mode, rtx, HOST_WIDE_INT,
447 rtx, unsigned HOST_WIDE_INT, int, int, int);
448 static rtx extract_left_shift (rtx, int);
449 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
450 unsigned HOST_WIDE_INT *);
451 static rtx canon_reg_for_combine (rtx, rtx);
452 static rtx force_to_mode (rtx, machine_mode,
453 unsigned HOST_WIDE_INT, int);
454 static rtx if_then_else_cond (rtx, rtx *, rtx *);
455 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
456 static int rtx_equal_for_field_assignment_p (rtx, rtx, bool = false);
457 static rtx make_field_assignment (rtx);
458 static rtx apply_distributive_law (rtx);
459 static rtx distribute_and_simplify_rtx (rtx, int);
460 static rtx simplify_and_const_int_1 (machine_mode, rtx,
461 unsigned HOST_WIDE_INT);
462 static rtx simplify_and_const_int (rtx, machine_mode, rtx,
463 unsigned HOST_WIDE_INT);
464 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
465 HOST_WIDE_INT, machine_mode, int *);
466 static rtx simplify_shift_const_1 (enum rtx_code, machine_mode, rtx, int);
467 static rtx simplify_shift_const (rtx, enum rtx_code, machine_mode, rtx,
468 int);
469 static int recog_for_combine (rtx *, rtx_insn *, rtx *);
470 static rtx gen_lowpart_for_combine (machine_mode, rtx);
471 static enum rtx_code simplify_compare_const (enum rtx_code, machine_mode,
472 rtx, rtx *);
473 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
474 static void update_table_tick (rtx);
475 static void record_value_for_reg (rtx, rtx_insn *, rtx);
476 static void check_promoted_subreg (rtx_insn *, rtx);
477 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
478 static void record_dead_and_set_regs (rtx_insn *);
479 static int get_last_value_validate (rtx *, rtx_insn *, int, int);
480 static rtx get_last_value (const_rtx);
481 static int use_crosses_set_p (const_rtx, int);
482 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
483 static int reg_dead_at_p (rtx, rtx_insn *);
484 static void move_deaths (rtx, rtx, int, rtx_insn *, rtx *);
485 static int reg_bitfield_target_p (rtx, rtx);
486 static void distribute_notes (rtx, rtx_insn *, rtx_insn *, rtx_insn *, rtx, rtx, rtx);
487 static void distribute_links (struct insn_link *);
488 static void mark_used_regs_combine (rtx);
489 static void record_promoted_value (rtx_insn *, rtx);
490 static bool unmentioned_reg_p (rtx, rtx);
491 static void record_truncated_values (rtx *, void *);
492 static bool reg_truncated_to_mode (machine_mode, const_rtx);
493 static rtx gen_lowpart_or_truncate (machine_mode, rtx);
496 /* It is not safe to use ordinary gen_lowpart in combine.
497 See comments in gen_lowpart_for_combine. */
498 #undef RTL_HOOKS_GEN_LOWPART
499 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
501 /* Our implementation of gen_lowpart never emits a new pseudo. */
502 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
503 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
505 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
506 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
508 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
509 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
511 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
512 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
514 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
517 /* Convenience wrapper for the canonicalize_comparison target hook.
518 Target hooks cannot use enum rtx_code. */
519 static inline void
520 target_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1,
521 bool op0_preserve_value)
523 int code_int = (int)*code;
524 targetm.canonicalize_comparison (&code_int, op0, op1, op0_preserve_value);
525 *code = (enum rtx_code)code_int;
528 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
529 PATTERN can not be split. Otherwise, it returns an insn sequence.
530 This is a wrapper around split_insns which ensures that the
531 reg_stat vector is made larger if the splitter creates a new
532 register. */
534 static rtx_insn *
535 combine_split_insns (rtx pattern, rtx_insn *insn)
537 rtx_insn *ret;
538 unsigned int nregs;
540 ret = split_insns (pattern, insn);
541 nregs = max_reg_num ();
542 if (nregs > reg_stat.length ())
543 reg_stat.safe_grow_cleared (nregs);
544 return ret;
547 /* This is used by find_single_use to locate an rtx in LOC that
548 contains exactly one use of DEST, which is typically either a REG
549 or CC0. It returns a pointer to the innermost rtx expression
550 containing DEST. Appearances of DEST that are being used to
551 totally replace it are not counted. */
553 static rtx *
554 find_single_use_1 (rtx dest, rtx *loc)
556 rtx x = *loc;
557 enum rtx_code code = GET_CODE (x);
558 rtx *result = NULL;
559 rtx *this_result;
560 int i;
561 const char *fmt;
563 switch (code)
565 case CONST:
566 case LABEL_REF:
567 case SYMBOL_REF:
568 CASE_CONST_ANY:
569 case CLOBBER:
570 return 0;
572 case SET:
573 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
574 of a REG that occupies all of the REG, the insn uses DEST if
575 it is mentioned in the destination or the source. Otherwise, we
576 need just check the source. */
577 if (GET_CODE (SET_DEST (x)) != CC0
578 && GET_CODE (SET_DEST (x)) != PC
579 && !REG_P (SET_DEST (x))
580 && ! (GET_CODE (SET_DEST (x)) == SUBREG
581 && REG_P (SUBREG_REG (SET_DEST (x)))
582 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
583 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
584 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
585 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
586 break;
588 return find_single_use_1 (dest, &SET_SRC (x));
590 case MEM:
591 case SUBREG:
592 return find_single_use_1 (dest, &XEXP (x, 0));
594 default:
595 break;
598 /* If it wasn't one of the common cases above, check each expression and
599 vector of this code. Look for a unique usage of DEST. */
601 fmt = GET_RTX_FORMAT (code);
602 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
604 if (fmt[i] == 'e')
606 if (dest == XEXP (x, i)
607 || (REG_P (dest) && REG_P (XEXP (x, i))
608 && REGNO (dest) == REGNO (XEXP (x, i))))
609 this_result = loc;
610 else
611 this_result = find_single_use_1 (dest, &XEXP (x, i));
613 if (result == NULL)
614 result = this_result;
615 else if (this_result)
616 /* Duplicate usage. */
617 return NULL;
619 else if (fmt[i] == 'E')
621 int j;
623 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
625 if (XVECEXP (x, i, j) == dest
626 || (REG_P (dest)
627 && REG_P (XVECEXP (x, i, j))
628 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
629 this_result = loc;
630 else
631 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
633 if (result == NULL)
634 result = this_result;
635 else if (this_result)
636 return NULL;
641 return result;
645 /* See if DEST, produced in INSN, is used only a single time in the
646 sequel. If so, return a pointer to the innermost rtx expression in which
647 it is used.
649 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
651 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
652 care about REG_DEAD notes or LOG_LINKS.
654 Otherwise, we find the single use by finding an insn that has a
655 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
656 only referenced once in that insn, we know that it must be the first
657 and last insn referencing DEST. */
659 static rtx *
660 find_single_use (rtx dest, rtx_insn *insn, rtx_insn **ploc)
662 basic_block bb;
663 rtx_insn *next;
664 rtx *result;
665 struct insn_link *link;
667 if (dest == cc0_rtx)
669 next = NEXT_INSN (insn);
670 if (next == 0
671 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
672 return 0;
674 result = find_single_use_1 (dest, &PATTERN (next));
675 if (result && ploc)
676 *ploc = next;
677 return result;
680 if (!REG_P (dest))
681 return 0;
683 bb = BLOCK_FOR_INSN (insn);
684 for (next = NEXT_INSN (insn);
685 next && BLOCK_FOR_INSN (next) == bb;
686 next = NEXT_INSN (next))
687 if (NONDEBUG_INSN_P (next) && dead_or_set_p (next, dest))
689 FOR_EACH_LOG_LINK (link, next)
690 if (link->insn == insn && link->regno == REGNO (dest))
691 break;
693 if (link)
695 result = find_single_use_1 (dest, &PATTERN (next));
696 if (ploc)
697 *ploc = next;
698 return result;
702 return 0;
705 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
706 insn. The substitution can be undone by undo_all. If INTO is already
707 set to NEWVAL, do not record this change. Because computing NEWVAL might
708 also call SUBST, we have to compute it before we put anything into
709 the undo table. */
711 static void
712 do_SUBST (rtx *into, rtx newval)
714 struct undo *buf;
715 rtx oldval = *into;
717 if (oldval == newval)
718 return;
720 /* We'd like to catch as many invalid transformations here as
721 possible. Unfortunately, there are way too many mode changes
722 that are perfectly valid, so we'd waste too much effort for
723 little gain doing the checks here. Focus on catching invalid
724 transformations involving integer constants. */
725 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
726 && CONST_INT_P (newval))
728 /* Sanity check that we're replacing oldval with a CONST_INT
729 that is a valid sign-extension for the original mode. */
730 gcc_assert (INTVAL (newval)
731 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
733 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
734 CONST_INT is not valid, because after the replacement, the
735 original mode would be gone. Unfortunately, we can't tell
736 when do_SUBST is called to replace the operand thereof, so we
737 perform this test on oldval instead, checking whether an
738 invalid replacement took place before we got here. */
739 gcc_assert (!(GET_CODE (oldval) == SUBREG
740 && CONST_INT_P (SUBREG_REG (oldval))));
741 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
742 && CONST_INT_P (XEXP (oldval, 0))));
745 if (undobuf.frees)
746 buf = undobuf.frees, undobuf.frees = buf->next;
747 else
748 buf = XNEW (struct undo);
750 buf->kind = UNDO_RTX;
751 buf->where.r = into;
752 buf->old_contents.r = oldval;
753 *into = newval;
755 buf->next = undobuf.undos, undobuf.undos = buf;
758 #define SUBST(INTO, NEWVAL) do_SUBST (&(INTO), (NEWVAL))
760 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
761 for the value of a HOST_WIDE_INT value (including CONST_INT) is
762 not safe. */
764 static void
765 do_SUBST_INT (int *into, int newval)
767 struct undo *buf;
768 int oldval = *into;
770 if (oldval == newval)
771 return;
773 if (undobuf.frees)
774 buf = undobuf.frees, undobuf.frees = buf->next;
775 else
776 buf = XNEW (struct undo);
778 buf->kind = UNDO_INT;
779 buf->where.i = into;
780 buf->old_contents.i = oldval;
781 *into = newval;
783 buf->next = undobuf.undos, undobuf.undos = buf;
786 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT (&(INTO), (NEWVAL))
788 /* Similar to SUBST, but just substitute the mode. This is used when
789 changing the mode of a pseudo-register, so that any other
790 references to the entry in the regno_reg_rtx array will change as
791 well. */
793 static void
794 do_SUBST_MODE (rtx *into, machine_mode newval)
796 struct undo *buf;
797 machine_mode oldval = GET_MODE (*into);
799 if (oldval == newval)
800 return;
802 if (undobuf.frees)
803 buf = undobuf.frees, undobuf.frees = buf->next;
804 else
805 buf = XNEW (struct undo);
807 buf->kind = UNDO_MODE;
808 buf->where.r = into;
809 buf->old_contents.m = oldval;
810 adjust_reg_mode (*into, newval);
812 buf->next = undobuf.undos, undobuf.undos = buf;
815 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE (&(INTO), (NEWVAL))
817 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */
819 static void
820 do_SUBST_LINK (struct insn_link **into, struct insn_link *newval)
822 struct undo *buf;
823 struct insn_link * oldval = *into;
825 if (oldval == newval)
826 return;
828 if (undobuf.frees)
829 buf = undobuf.frees, undobuf.frees = buf->next;
830 else
831 buf = XNEW (struct undo);
833 buf->kind = UNDO_LINKS;
834 buf->where.l = into;
835 buf->old_contents.l = oldval;
836 *into = newval;
838 buf->next = undobuf.undos, undobuf.undos = buf;
841 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
843 /* Subroutine of try_combine. Determine whether the replacement patterns
844 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_rtx_cost
845 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
846 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
847 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
848 of all the instructions can be estimated and the replacements are more
849 expensive than the original sequence. */
851 static bool
852 combine_validate_cost (rtx_insn *i0, rtx_insn *i1, rtx_insn *i2, rtx_insn *i3,
853 rtx newpat, rtx newi2pat, rtx newotherpat)
855 int i0_cost, i1_cost, i2_cost, i3_cost;
856 int new_i2_cost, new_i3_cost;
857 int old_cost, new_cost;
859 /* Lookup the original insn_rtx_costs. */
860 i2_cost = INSN_COST (i2);
861 i3_cost = INSN_COST (i3);
863 if (i1)
865 i1_cost = INSN_COST (i1);
866 if (i0)
868 i0_cost = INSN_COST (i0);
869 old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
870 ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
872 else
874 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
875 ? i1_cost + i2_cost + i3_cost : 0);
876 i0_cost = 0;
879 else
881 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
882 i1_cost = i0_cost = 0;
885 /* If we have split a PARALLEL I2 to I1,I2, we have counted its cost twice;
886 correct that. */
887 if (old_cost && i1 && INSN_UID (i1) == INSN_UID (i2))
888 old_cost -= i1_cost;
891 /* Calculate the replacement insn_rtx_costs. */
892 new_i3_cost = insn_rtx_cost (newpat, optimize_this_for_speed_p);
893 if (newi2pat)
895 new_i2_cost = insn_rtx_cost (newi2pat, optimize_this_for_speed_p);
896 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
897 ? new_i2_cost + new_i3_cost : 0;
899 else
901 new_cost = new_i3_cost;
902 new_i2_cost = 0;
905 if (undobuf.other_insn)
907 int old_other_cost, new_other_cost;
909 old_other_cost = INSN_COST (undobuf.other_insn);
910 new_other_cost = insn_rtx_cost (newotherpat, optimize_this_for_speed_p);
911 if (old_other_cost > 0 && new_other_cost > 0)
913 old_cost += old_other_cost;
914 new_cost += new_other_cost;
916 else
917 old_cost = 0;
920 /* Disallow this combination if both new_cost and old_cost are greater than
921 zero, and new_cost is greater than old cost. */
922 int reject = old_cost > 0 && new_cost > old_cost;
924 if (dump_file)
926 fprintf (dump_file, "%s combination of insns ",
927 reject ? "rejecting" : "allowing");
928 if (i0)
929 fprintf (dump_file, "%d, ", INSN_UID (i0));
930 if (i1 && INSN_UID (i1) != INSN_UID (i2))
931 fprintf (dump_file, "%d, ", INSN_UID (i1));
932 fprintf (dump_file, "%d and %d\n", INSN_UID (i2), INSN_UID (i3));
934 fprintf (dump_file, "original costs ");
935 if (i0)
936 fprintf (dump_file, "%d + ", i0_cost);
937 if (i1 && INSN_UID (i1) != INSN_UID (i2))
938 fprintf (dump_file, "%d + ", i1_cost);
939 fprintf (dump_file, "%d + %d = %d\n", i2_cost, i3_cost, old_cost);
941 if (newi2pat)
942 fprintf (dump_file, "replacement costs %d + %d = %d\n",
943 new_i2_cost, new_i3_cost, new_cost);
944 else
945 fprintf (dump_file, "replacement cost %d\n", new_cost);
948 if (reject)
949 return false;
951 /* Update the uid_insn_cost array with the replacement costs. */
952 INSN_COST (i2) = new_i2_cost;
953 INSN_COST (i3) = new_i3_cost;
954 if (i1)
956 INSN_COST (i1) = 0;
957 if (i0)
958 INSN_COST (i0) = 0;
961 return true;
965 /* Delete any insns that copy a register to itself. */
967 static void
968 delete_noop_moves (void)
970 rtx_insn *insn, *next;
971 basic_block bb;
973 FOR_EACH_BB_FN (bb, cfun)
975 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
977 next = NEXT_INSN (insn);
978 if (INSN_P (insn) && noop_move_p (insn))
980 if (dump_file)
981 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
983 delete_insn_and_edges (insn);
990 /* Return false if we do not want to (or cannot) combine DEF. */
991 static bool
992 can_combine_def_p (df_ref def)
994 /* Do not consider if it is pre/post modification in MEM. */
995 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
996 return false;
998 unsigned int regno = DF_REF_REGNO (def);
1000 /* Do not combine frame pointer adjustments. */
1001 if ((regno == FRAME_POINTER_REGNUM
1002 && (!reload_completed || frame_pointer_needed))
1003 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
1004 && regno == HARD_FRAME_POINTER_REGNUM
1005 && (!reload_completed || frame_pointer_needed))
1006 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1007 && regno == ARG_POINTER_REGNUM && fixed_regs[regno]))
1008 return false;
1010 return true;
1013 /* Return false if we do not want to (or cannot) combine USE. */
1014 static bool
1015 can_combine_use_p (df_ref use)
1017 /* Do not consider the usage of the stack pointer by function call. */
1018 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1019 return false;
1021 return true;
1024 /* Fill in log links field for all insns. */
1026 static void
1027 create_log_links (void)
1029 basic_block bb;
1030 rtx_insn **next_use;
1031 rtx_insn *insn;
1032 df_ref def, use;
1034 next_use = XCNEWVEC (rtx_insn *, max_reg_num ());
1036 /* Pass through each block from the end, recording the uses of each
1037 register and establishing log links when def is encountered.
1038 Note that we do not clear next_use array in order to save time,
1039 so we have to test whether the use is in the same basic block as def.
1041 There are a few cases below when we do not consider the definition or
1042 usage -- these are taken from original flow.c did. Don't ask me why it is
1043 done this way; I don't know and if it works, I don't want to know. */
1045 FOR_EACH_BB_FN (bb, cfun)
1047 FOR_BB_INSNS_REVERSE (bb, insn)
1049 if (!NONDEBUG_INSN_P (insn))
1050 continue;
1052 /* Log links are created only once. */
1053 gcc_assert (!LOG_LINKS (insn));
1055 FOR_EACH_INSN_DEF (def, insn)
1057 unsigned int regno = DF_REF_REGNO (def);
1058 rtx_insn *use_insn;
1060 if (!next_use[regno])
1061 continue;
1063 if (!can_combine_def_p (def))
1064 continue;
1066 use_insn = next_use[regno];
1067 next_use[regno] = NULL;
1069 if (BLOCK_FOR_INSN (use_insn) != bb)
1070 continue;
1072 /* flow.c claimed:
1074 We don't build a LOG_LINK for hard registers contained
1075 in ASM_OPERANDs. If these registers get replaced,
1076 we might wind up changing the semantics of the insn,
1077 even if reload can make what appear to be valid
1078 assignments later. */
1079 if (regno < FIRST_PSEUDO_REGISTER
1080 && asm_noperands (PATTERN (use_insn)) >= 0)
1081 continue;
1083 /* Don't add duplicate links between instructions. */
1084 struct insn_link *links;
1085 FOR_EACH_LOG_LINK (links, use_insn)
1086 if (insn == links->insn && regno == links->regno)
1087 break;
1089 if (!links)
1090 LOG_LINKS (use_insn)
1091 = alloc_insn_link (insn, regno, LOG_LINKS (use_insn));
1094 FOR_EACH_INSN_USE (use, insn)
1095 if (can_combine_use_p (use))
1096 next_use[DF_REF_REGNO (use)] = insn;
1100 free (next_use);
1103 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1104 true if we found a LOG_LINK that proves that A feeds B. This only works
1105 if there are no instructions between A and B which could have a link
1106 depending on A, since in that case we would not record a link for B.
1107 We also check the implicit dependency created by a cc0 setter/user
1108 pair. */
1110 static bool
1111 insn_a_feeds_b (rtx_insn *a, rtx_insn *b)
1113 struct insn_link *links;
1114 FOR_EACH_LOG_LINK (links, b)
1115 if (links->insn == a)
1116 return true;
1117 if (HAVE_cc0 && sets_cc0_p (a))
1118 return true;
1119 return false;
1122 /* Main entry point for combiner. F is the first insn of the function.
1123 NREGS is the first unused pseudo-reg number.
1125 Return nonzero if the combiner has turned an indirect jump
1126 instruction into a direct jump. */
1127 static int
1128 combine_instructions (rtx_insn *f, unsigned int nregs)
1130 rtx_insn *insn, *next;
1131 rtx_insn *prev;
1132 struct insn_link *links, *nextlinks;
1133 rtx_insn *first;
1134 basic_block last_bb;
1136 int new_direct_jump_p = 0;
1138 for (first = f; first && !NONDEBUG_INSN_P (first); )
1139 first = NEXT_INSN (first);
1140 if (!first)
1141 return 0;
1143 combine_attempts = 0;
1144 combine_merges = 0;
1145 combine_extras = 0;
1146 combine_successes = 0;
1148 rtl_hooks = combine_rtl_hooks;
1150 reg_stat.safe_grow_cleared (nregs);
1152 init_recog_no_volatile ();
1154 /* Allocate array for insn info. */
1155 max_uid_known = get_max_uid ();
1156 uid_log_links = XCNEWVEC (struct insn_link *, max_uid_known + 1);
1157 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1158 gcc_obstack_init (&insn_link_obstack);
1160 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1162 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1163 problems when, for example, we have j <<= 1 in a loop. */
1165 nonzero_sign_valid = 0;
1166 label_tick = label_tick_ebb_start = 1;
1168 /* Scan all SETs and see if we can deduce anything about what
1169 bits are known to be zero for some registers and how many copies
1170 of the sign bit are known to exist for those registers.
1172 Also set any known values so that we can use it while searching
1173 for what bits are known to be set. */
1175 setup_incoming_promotions (first);
1176 /* Allow the entry block and the first block to fall into the same EBB.
1177 Conceptually the incoming promotions are assigned to the entry block. */
1178 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1180 create_log_links ();
1181 FOR_EACH_BB_FN (this_basic_block, cfun)
1183 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1184 last_call_luid = 0;
1185 mem_last_set = -1;
1187 label_tick++;
1188 if (!single_pred_p (this_basic_block)
1189 || single_pred (this_basic_block) != last_bb)
1190 label_tick_ebb_start = label_tick;
1191 last_bb = this_basic_block;
1193 FOR_BB_INSNS (this_basic_block, insn)
1194 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1196 rtx links;
1198 subst_low_luid = DF_INSN_LUID (insn);
1199 subst_insn = insn;
1201 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1202 insn);
1203 record_dead_and_set_regs (insn);
1205 if (AUTO_INC_DEC)
1206 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1207 if (REG_NOTE_KIND (links) == REG_INC)
1208 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1209 insn);
1211 /* Record the current insn_rtx_cost of this instruction. */
1212 if (NONJUMP_INSN_P (insn))
1213 INSN_COST (insn) = insn_rtx_cost (PATTERN (insn),
1214 optimize_this_for_speed_p);
1215 if (dump_file)
1217 fprintf (dump_file, "insn_cost %d for ", INSN_COST (insn));
1218 dump_insn_slim (dump_file, insn);
1223 nonzero_sign_valid = 1;
1225 /* Now scan all the insns in forward order. */
1226 label_tick = label_tick_ebb_start = 1;
1227 init_reg_last ();
1228 setup_incoming_promotions (first);
1229 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1230 int max_combine = PARAM_VALUE (PARAM_MAX_COMBINE_INSNS);
1232 FOR_EACH_BB_FN (this_basic_block, cfun)
1234 rtx_insn *last_combined_insn = NULL;
1235 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1236 last_call_luid = 0;
1237 mem_last_set = -1;
1239 label_tick++;
1240 if (!single_pred_p (this_basic_block)
1241 || single_pred (this_basic_block) != last_bb)
1242 label_tick_ebb_start = label_tick;
1243 last_bb = this_basic_block;
1245 rtl_profile_for_bb (this_basic_block);
1246 for (insn = BB_HEAD (this_basic_block);
1247 insn != NEXT_INSN (BB_END (this_basic_block));
1248 insn = next ? next : NEXT_INSN (insn))
1250 next = 0;
1251 if (!NONDEBUG_INSN_P (insn))
1252 continue;
1254 while (last_combined_insn
1255 && (!NONDEBUG_INSN_P (last_combined_insn)
1256 || last_combined_insn->deleted ()))
1257 last_combined_insn = PREV_INSN (last_combined_insn);
1258 if (last_combined_insn == NULL_RTX
1259 || BLOCK_FOR_INSN (last_combined_insn) != this_basic_block
1260 || DF_INSN_LUID (last_combined_insn) <= DF_INSN_LUID (insn))
1261 last_combined_insn = insn;
1263 /* See if we know about function return values before this
1264 insn based upon SUBREG flags. */
1265 check_promoted_subreg (insn, PATTERN (insn));
1267 /* See if we can find hardregs and subreg of pseudos in
1268 narrower modes. This could help turning TRUNCATEs
1269 into SUBREGs. */
1270 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1272 /* Try this insn with each insn it links back to. */
1274 FOR_EACH_LOG_LINK (links, insn)
1275 if ((next = try_combine (insn, links->insn, NULL,
1276 NULL, &new_direct_jump_p,
1277 last_combined_insn)) != 0)
1279 statistics_counter_event (cfun, "two-insn combine", 1);
1280 goto retry;
1283 /* Try each sequence of three linked insns ending with this one. */
1285 if (max_combine >= 3)
1286 FOR_EACH_LOG_LINK (links, insn)
1288 rtx_insn *link = links->insn;
1290 /* If the linked insn has been replaced by a note, then there
1291 is no point in pursuing this chain any further. */
1292 if (NOTE_P (link))
1293 continue;
1295 FOR_EACH_LOG_LINK (nextlinks, link)
1296 if ((next = try_combine (insn, link, nextlinks->insn,
1297 NULL, &new_direct_jump_p,
1298 last_combined_insn)) != 0)
1300 statistics_counter_event (cfun, "three-insn combine", 1);
1301 goto retry;
1305 /* Try to combine a jump insn that uses CC0
1306 with a preceding insn that sets CC0, and maybe with its
1307 logical predecessor as well.
1308 This is how we make decrement-and-branch insns.
1309 We need this special code because data flow connections
1310 via CC0 do not get entered in LOG_LINKS. */
1312 if (HAVE_cc0
1313 && JUMP_P (insn)
1314 && (prev = prev_nonnote_insn (insn)) != 0
1315 && NONJUMP_INSN_P (prev)
1316 && sets_cc0_p (PATTERN (prev)))
1318 if ((next = try_combine (insn, prev, NULL, NULL,
1319 &new_direct_jump_p,
1320 last_combined_insn)) != 0)
1321 goto retry;
1323 FOR_EACH_LOG_LINK (nextlinks, prev)
1324 if ((next = try_combine (insn, prev, nextlinks->insn,
1325 NULL, &new_direct_jump_p,
1326 last_combined_insn)) != 0)
1327 goto retry;
1330 /* Do the same for an insn that explicitly references CC0. */
1331 if (HAVE_cc0 && NONJUMP_INSN_P (insn)
1332 && (prev = prev_nonnote_insn (insn)) != 0
1333 && NONJUMP_INSN_P (prev)
1334 && sets_cc0_p (PATTERN (prev))
1335 && GET_CODE (PATTERN (insn)) == SET
1336 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1338 if ((next = try_combine (insn, prev, NULL, NULL,
1339 &new_direct_jump_p,
1340 last_combined_insn)) != 0)
1341 goto retry;
1343 FOR_EACH_LOG_LINK (nextlinks, prev)
1344 if ((next = try_combine (insn, prev, nextlinks->insn,
1345 NULL, &new_direct_jump_p,
1346 last_combined_insn)) != 0)
1347 goto retry;
1350 /* Finally, see if any of the insns that this insn links to
1351 explicitly references CC0. If so, try this insn, that insn,
1352 and its predecessor if it sets CC0. */
1353 if (HAVE_cc0)
1355 FOR_EACH_LOG_LINK (links, insn)
1356 if (NONJUMP_INSN_P (links->insn)
1357 && GET_CODE (PATTERN (links->insn)) == SET
1358 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (links->insn)))
1359 && (prev = prev_nonnote_insn (links->insn)) != 0
1360 && NONJUMP_INSN_P (prev)
1361 && sets_cc0_p (PATTERN (prev))
1362 && (next = try_combine (insn, links->insn,
1363 prev, NULL, &new_direct_jump_p,
1364 last_combined_insn)) != 0)
1365 goto retry;
1368 /* Try combining an insn with two different insns whose results it
1369 uses. */
1370 if (max_combine >= 3)
1371 FOR_EACH_LOG_LINK (links, insn)
1372 for (nextlinks = links->next; nextlinks;
1373 nextlinks = nextlinks->next)
1374 if ((next = try_combine (insn, links->insn,
1375 nextlinks->insn, NULL,
1376 &new_direct_jump_p,
1377 last_combined_insn)) != 0)
1380 statistics_counter_event (cfun, "three-insn combine", 1);
1381 goto retry;
1384 /* Try four-instruction combinations. */
1385 if (max_combine >= 4)
1386 FOR_EACH_LOG_LINK (links, insn)
1388 struct insn_link *next1;
1389 rtx_insn *link = links->insn;
1391 /* If the linked insn has been replaced by a note, then there
1392 is no point in pursuing this chain any further. */
1393 if (NOTE_P (link))
1394 continue;
1396 FOR_EACH_LOG_LINK (next1, link)
1398 rtx_insn *link1 = next1->insn;
1399 if (NOTE_P (link1))
1400 continue;
1401 /* I0 -> I1 -> I2 -> I3. */
1402 FOR_EACH_LOG_LINK (nextlinks, link1)
1403 if ((next = try_combine (insn, link, link1,
1404 nextlinks->insn,
1405 &new_direct_jump_p,
1406 last_combined_insn)) != 0)
1408 statistics_counter_event (cfun, "four-insn combine", 1);
1409 goto retry;
1411 /* I0, I1 -> I2, I2 -> I3. */
1412 for (nextlinks = next1->next; nextlinks;
1413 nextlinks = nextlinks->next)
1414 if ((next = try_combine (insn, link, link1,
1415 nextlinks->insn,
1416 &new_direct_jump_p,
1417 last_combined_insn)) != 0)
1419 statistics_counter_event (cfun, "four-insn combine", 1);
1420 goto retry;
1424 for (next1 = links->next; next1; next1 = next1->next)
1426 rtx_insn *link1 = next1->insn;
1427 if (NOTE_P (link1))
1428 continue;
1429 /* I0 -> I2; I1, I2 -> I3. */
1430 FOR_EACH_LOG_LINK (nextlinks, link)
1431 if ((next = try_combine (insn, link, link1,
1432 nextlinks->insn,
1433 &new_direct_jump_p,
1434 last_combined_insn)) != 0)
1436 statistics_counter_event (cfun, "four-insn combine", 1);
1437 goto retry;
1439 /* I0 -> I1; I1, I2 -> I3. */
1440 FOR_EACH_LOG_LINK (nextlinks, link1)
1441 if ((next = try_combine (insn, link, link1,
1442 nextlinks->insn,
1443 &new_direct_jump_p,
1444 last_combined_insn)) != 0)
1446 statistics_counter_event (cfun, "four-insn combine", 1);
1447 goto retry;
1452 /* Try this insn with each REG_EQUAL note it links back to. */
1453 FOR_EACH_LOG_LINK (links, insn)
1455 rtx set, note;
1456 rtx_insn *temp = links->insn;
1457 if ((set = single_set (temp)) != 0
1458 && (note = find_reg_equal_equiv_note (temp)) != 0
1459 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1460 /* Avoid using a register that may already been marked
1461 dead by an earlier instruction. */
1462 && ! unmentioned_reg_p (note, SET_SRC (set))
1463 && (GET_MODE (note) == VOIDmode
1464 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1465 : (GET_MODE (SET_DEST (set)) == GET_MODE (note)
1466 && (GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
1467 || (GET_MODE (XEXP (SET_DEST (set), 0))
1468 == GET_MODE (note))))))
1470 /* Temporarily replace the set's source with the
1471 contents of the REG_EQUAL note. The insn will
1472 be deleted or recognized by try_combine. */
1473 rtx orig_src = SET_SRC (set);
1474 rtx orig_dest = SET_DEST (set);
1475 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT)
1476 SET_DEST (set) = XEXP (SET_DEST (set), 0);
1477 SET_SRC (set) = note;
1478 i2mod = temp;
1479 i2mod_old_rhs = copy_rtx (orig_src);
1480 i2mod_new_rhs = copy_rtx (note);
1481 next = try_combine (insn, i2mod, NULL, NULL,
1482 &new_direct_jump_p,
1483 last_combined_insn);
1484 i2mod = NULL;
1485 if (next)
1487 statistics_counter_event (cfun, "insn-with-note combine", 1);
1488 goto retry;
1490 SET_SRC (set) = orig_src;
1491 SET_DEST (set) = orig_dest;
1495 if (!NOTE_P (insn))
1496 record_dead_and_set_regs (insn);
1498 retry:
1503 default_rtl_profile ();
1504 clear_bb_flags ();
1505 new_direct_jump_p |= purge_all_dead_edges ();
1506 delete_noop_moves ();
1508 /* Clean up. */
1509 obstack_free (&insn_link_obstack, NULL);
1510 free (uid_log_links);
1511 free (uid_insn_cost);
1512 reg_stat.release ();
1515 struct undo *undo, *next;
1516 for (undo = undobuf.frees; undo; undo = next)
1518 next = undo->next;
1519 free (undo);
1521 undobuf.frees = 0;
1524 total_attempts += combine_attempts;
1525 total_merges += combine_merges;
1526 total_extras += combine_extras;
1527 total_successes += combine_successes;
1529 nonzero_sign_valid = 0;
1530 rtl_hooks = general_rtl_hooks;
1532 /* Make recognizer allow volatile MEMs again. */
1533 init_recog ();
1535 return new_direct_jump_p;
1538 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1540 static void
1541 init_reg_last (void)
1543 unsigned int i;
1544 reg_stat_type *p;
1546 FOR_EACH_VEC_ELT (reg_stat, i, p)
1547 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1550 /* Set up any promoted values for incoming argument registers. */
1552 static void
1553 setup_incoming_promotions (rtx_insn *first)
1555 tree arg;
1556 bool strictly_local = false;
1558 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1559 arg = DECL_CHAIN (arg))
1561 rtx x, reg = DECL_INCOMING_RTL (arg);
1562 int uns1, uns3;
1563 machine_mode mode1, mode2, mode3, mode4;
1565 /* Only continue if the incoming argument is in a register. */
1566 if (!REG_P (reg))
1567 continue;
1569 /* Determine, if possible, whether all call sites of the current
1570 function lie within the current compilation unit. (This does
1571 take into account the exporting of a function via taking its
1572 address, and so forth.) */
1573 strictly_local = cgraph_node::local_info (current_function_decl)->local;
1575 /* The mode and signedness of the argument before any promotions happen
1576 (equal to the mode of the pseudo holding it at that stage). */
1577 mode1 = TYPE_MODE (TREE_TYPE (arg));
1578 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1580 /* The mode and signedness of the argument after any source language and
1581 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1582 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1583 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1585 /* The mode and signedness of the argument as it is actually passed,
1586 see assign_parm_setup_reg in function.c. */
1587 mode3 = promote_function_mode (TREE_TYPE (arg), mode1, &uns3,
1588 TREE_TYPE (cfun->decl), 0);
1590 /* The mode of the register in which the argument is being passed. */
1591 mode4 = GET_MODE (reg);
1593 /* Eliminate sign extensions in the callee when:
1594 (a) A mode promotion has occurred; */
1595 if (mode1 == mode3)
1596 continue;
1597 /* (b) The mode of the register is the same as the mode of
1598 the argument as it is passed; */
1599 if (mode3 != mode4)
1600 continue;
1601 /* (c) There's no language level extension; */
1602 if (mode1 == mode2)
1604 /* (c.1) All callers are from the current compilation unit. If that's
1605 the case we don't have to rely on an ABI, we only have to know
1606 what we're generating right now, and we know that we will do the
1607 mode1 to mode2 promotion with the given sign. */
1608 else if (!strictly_local)
1609 continue;
1610 /* (c.2) The combination of the two promotions is useful. This is
1611 true when the signs match, or if the first promotion is unsigned.
1612 In the later case, (sign_extend (zero_extend x)) is the same as
1613 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1614 else if (uns1)
1615 uns3 = true;
1616 else if (uns3)
1617 continue;
1619 /* Record that the value was promoted from mode1 to mode3,
1620 so that any sign extension at the head of the current
1621 function may be eliminated. */
1622 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1623 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1624 record_value_for_reg (reg, first, x);
1628 /* If MODE has a precision lower than PREC and SRC is a non-negative constant
1629 that would appear negative in MODE, sign-extend SRC for use in nonzero_bits
1630 because some machines (maybe most) will actually do the sign-extension and
1631 this is the conservative approach.
1633 ??? For 2.5, try to tighten up the MD files in this regard instead of this
1634 kludge. */
1636 static rtx
1637 sign_extend_short_imm (rtx src, machine_mode mode, unsigned int prec)
1639 if (GET_MODE_PRECISION (mode) < prec
1640 && CONST_INT_P (src)
1641 && INTVAL (src) > 0
1642 && val_signbit_known_set_p (mode, INTVAL (src)))
1643 src = GEN_INT (INTVAL (src) | ~GET_MODE_MASK (mode));
1645 return src;
1648 /* Update RSP for pseudo-register X from INSN's REG_EQUAL note (if one exists)
1649 and SET. */
1651 static void
1652 update_rsp_from_reg_equal (reg_stat_type *rsp, rtx_insn *insn, const_rtx set,
1653 rtx x)
1655 rtx reg_equal_note = insn ? find_reg_equal_equiv_note (insn) : NULL_RTX;
1656 unsigned HOST_WIDE_INT bits = 0;
1657 rtx reg_equal = NULL, src = SET_SRC (set);
1658 unsigned int num = 0;
1660 if (reg_equal_note)
1661 reg_equal = XEXP (reg_equal_note, 0);
1663 if (SHORT_IMMEDIATES_SIGN_EXTEND)
1665 src = sign_extend_short_imm (src, GET_MODE (x), BITS_PER_WORD);
1666 if (reg_equal)
1667 reg_equal = sign_extend_short_imm (reg_equal, GET_MODE (x), BITS_PER_WORD);
1670 /* Don't call nonzero_bits if it cannot change anything. */
1671 if (rsp->nonzero_bits != HOST_WIDE_INT_M1U)
1673 bits = nonzero_bits (src, nonzero_bits_mode);
1674 if (reg_equal && bits)
1675 bits &= nonzero_bits (reg_equal, nonzero_bits_mode);
1676 rsp->nonzero_bits |= bits;
1679 /* Don't call num_sign_bit_copies if it cannot change anything. */
1680 if (rsp->sign_bit_copies != 1)
1682 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1683 if (reg_equal && num != GET_MODE_PRECISION (GET_MODE (x)))
1685 unsigned int numeq = num_sign_bit_copies (reg_equal, GET_MODE (x));
1686 if (num == 0 || numeq > num)
1687 num = numeq;
1689 if (rsp->sign_bit_copies == 0 || num < rsp->sign_bit_copies)
1690 rsp->sign_bit_copies = num;
1694 /* Called via note_stores. If X is a pseudo that is narrower than
1695 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1697 If we are setting only a portion of X and we can't figure out what
1698 portion, assume all bits will be used since we don't know what will
1699 be happening.
1701 Similarly, set how many bits of X are known to be copies of the sign bit
1702 at all locations in the function. This is the smallest number implied
1703 by any set of X. */
1705 static void
1706 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1708 rtx_insn *insn = (rtx_insn *) data;
1710 if (REG_P (x)
1711 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1712 /* If this register is undefined at the start of the file, we can't
1713 say what its contents were. */
1714 && ! REGNO_REG_SET_P
1715 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), REGNO (x))
1716 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
1718 reg_stat_type *rsp = &reg_stat[REGNO (x)];
1720 if (set == 0 || GET_CODE (set) == CLOBBER)
1722 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1723 rsp->sign_bit_copies = 1;
1724 return;
1727 /* If this register is being initialized using itself, and the
1728 register is uninitialized in this basic block, and there are
1729 no LOG_LINKS which set the register, then part of the
1730 register is uninitialized. In that case we can't assume
1731 anything about the number of nonzero bits.
1733 ??? We could do better if we checked this in
1734 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1735 could avoid making assumptions about the insn which initially
1736 sets the register, while still using the information in other
1737 insns. We would have to be careful to check every insn
1738 involved in the combination. */
1740 if (insn
1741 && reg_referenced_p (x, PATTERN (insn))
1742 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1743 REGNO (x)))
1745 struct insn_link *link;
1747 FOR_EACH_LOG_LINK (link, insn)
1748 if (dead_or_set_p (link->insn, x))
1749 break;
1750 if (!link)
1752 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1753 rsp->sign_bit_copies = 1;
1754 return;
1758 /* If this is a complex assignment, see if we can convert it into a
1759 simple assignment. */
1760 set = expand_field_assignment (set);
1762 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1763 set what we know about X. */
1765 if (SET_DEST (set) == x
1766 || (paradoxical_subreg_p (SET_DEST (set))
1767 && SUBREG_REG (SET_DEST (set)) == x))
1768 update_rsp_from_reg_equal (rsp, insn, set, x);
1769 else
1771 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1772 rsp->sign_bit_copies = 1;
1777 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1778 optionally insns that were previously combined into I3 or that will be
1779 combined into the merger of INSN and I3. The order is PRED, PRED2,
1780 INSN, SUCC, SUCC2, I3.
1782 Return 0 if the combination is not allowed for any reason.
1784 If the combination is allowed, *PDEST will be set to the single
1785 destination of INSN and *PSRC to the single source, and this function
1786 will return 1. */
1788 static int
1789 can_combine_p (rtx_insn *insn, rtx_insn *i3, rtx_insn *pred ATTRIBUTE_UNUSED,
1790 rtx_insn *pred2 ATTRIBUTE_UNUSED, rtx_insn *succ, rtx_insn *succ2,
1791 rtx *pdest, rtx *psrc)
1793 int i;
1794 const_rtx set = 0;
1795 rtx src, dest;
1796 rtx_insn *p;
1797 rtx link;
1798 bool all_adjacent = true;
1799 int (*is_volatile_p) (const_rtx);
1801 if (succ)
1803 if (succ2)
1805 if (next_active_insn (succ2) != i3)
1806 all_adjacent = false;
1807 if (next_active_insn (succ) != succ2)
1808 all_adjacent = false;
1810 else if (next_active_insn (succ) != i3)
1811 all_adjacent = false;
1812 if (next_active_insn (insn) != succ)
1813 all_adjacent = false;
1815 else if (next_active_insn (insn) != i3)
1816 all_adjacent = false;
1818 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1819 or a PARALLEL consisting of such a SET and CLOBBERs.
1821 If INSN has CLOBBER parallel parts, ignore them for our processing.
1822 By definition, these happen during the execution of the insn. When it
1823 is merged with another insn, all bets are off. If they are, in fact,
1824 needed and aren't also supplied in I3, they may be added by
1825 recog_for_combine. Otherwise, it won't match.
1827 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1828 note.
1830 Get the source and destination of INSN. If more than one, can't
1831 combine. */
1833 if (GET_CODE (PATTERN (insn)) == SET)
1834 set = PATTERN (insn);
1835 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1836 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1838 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1840 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1842 switch (GET_CODE (elt))
1844 /* This is important to combine floating point insns
1845 for the SH4 port. */
1846 case USE:
1847 /* Combining an isolated USE doesn't make sense.
1848 We depend here on combinable_i3pat to reject them. */
1849 /* The code below this loop only verifies that the inputs of
1850 the SET in INSN do not change. We call reg_set_between_p
1851 to verify that the REG in the USE does not change between
1852 I3 and INSN.
1853 If the USE in INSN was for a pseudo register, the matching
1854 insn pattern will likely match any register; combining this
1855 with any other USE would only be safe if we knew that the
1856 used registers have identical values, or if there was
1857 something to tell them apart, e.g. different modes. For
1858 now, we forgo such complicated tests and simply disallow
1859 combining of USES of pseudo registers with any other USE. */
1860 if (REG_P (XEXP (elt, 0))
1861 && GET_CODE (PATTERN (i3)) == PARALLEL)
1863 rtx i3pat = PATTERN (i3);
1864 int i = XVECLEN (i3pat, 0) - 1;
1865 unsigned int regno = REGNO (XEXP (elt, 0));
1869 rtx i3elt = XVECEXP (i3pat, 0, i);
1871 if (GET_CODE (i3elt) == USE
1872 && REG_P (XEXP (i3elt, 0))
1873 && (REGNO (XEXP (i3elt, 0)) == regno
1874 ? reg_set_between_p (XEXP (elt, 0),
1875 PREV_INSN (insn), i3)
1876 : regno >= FIRST_PSEUDO_REGISTER))
1877 return 0;
1879 while (--i >= 0);
1881 break;
1883 /* We can ignore CLOBBERs. */
1884 case CLOBBER:
1885 break;
1887 case SET:
1888 /* Ignore SETs whose result isn't used but not those that
1889 have side-effects. */
1890 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1891 && insn_nothrow_p (insn)
1892 && !side_effects_p (elt))
1893 break;
1895 /* If we have already found a SET, this is a second one and
1896 so we cannot combine with this insn. */
1897 if (set)
1898 return 0;
1900 set = elt;
1901 break;
1903 default:
1904 /* Anything else means we can't combine. */
1905 return 0;
1909 if (set == 0
1910 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1911 so don't do anything with it. */
1912 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1913 return 0;
1915 else
1916 return 0;
1918 if (set == 0)
1919 return 0;
1921 /* The simplification in expand_field_assignment may call back to
1922 get_last_value, so set safe guard here. */
1923 subst_low_luid = DF_INSN_LUID (insn);
1925 set = expand_field_assignment (set);
1926 src = SET_SRC (set), dest = SET_DEST (set);
1928 /* Do not eliminate user-specified register if it is in an
1929 asm input because we may break the register asm usage defined
1930 in GCC manual if allow to do so.
1931 Be aware that this may cover more cases than we expect but this
1932 should be harmless. */
1933 if (REG_P (dest) && REG_USERVAR_P (dest) && HARD_REGISTER_P (dest)
1934 && extract_asm_operands (PATTERN (i3)))
1935 return 0;
1937 /* Don't eliminate a store in the stack pointer. */
1938 if (dest == stack_pointer_rtx
1939 /* Don't combine with an insn that sets a register to itself if it has
1940 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1941 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1942 /* Can't merge an ASM_OPERANDS. */
1943 || GET_CODE (src) == ASM_OPERANDS
1944 /* Can't merge a function call. */
1945 || GET_CODE (src) == CALL
1946 /* Don't eliminate a function call argument. */
1947 || (CALL_P (i3)
1948 && (find_reg_fusage (i3, USE, dest)
1949 || (REG_P (dest)
1950 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1951 && global_regs[REGNO (dest)])))
1952 /* Don't substitute into an incremented register. */
1953 || FIND_REG_INC_NOTE (i3, dest)
1954 || (succ && FIND_REG_INC_NOTE (succ, dest))
1955 || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1956 /* Don't substitute into a non-local goto, this confuses CFG. */
1957 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1958 /* Make sure that DEST is not used after INSN but before SUCC, or
1959 after SUCC and before SUCC2, or after SUCC2 but before I3. */
1960 || (!all_adjacent
1961 && ((succ2
1962 && (reg_used_between_p (dest, succ2, i3)
1963 || reg_used_between_p (dest, succ, succ2)))
1964 || (!succ2 && succ && reg_used_between_p (dest, succ, i3))
1965 || (succ
1966 /* SUCC and SUCC2 can be split halves from a PARALLEL; in
1967 that case SUCC is not in the insn stream, so use SUCC2
1968 instead for this test. */
1969 && reg_used_between_p (dest, insn,
1970 succ2
1971 && INSN_UID (succ) == INSN_UID (succ2)
1972 ? succ2 : succ))))
1973 /* Make sure that the value that is to be substituted for the register
1974 does not use any registers whose values alter in between. However,
1975 If the insns are adjacent, a use can't cross a set even though we
1976 think it might (this can happen for a sequence of insns each setting
1977 the same destination; last_set of that register might point to
1978 a NOTE). If INSN has a REG_EQUIV note, the register is always
1979 equivalent to the memory so the substitution is valid even if there
1980 are intervening stores. Also, don't move a volatile asm or
1981 UNSPEC_VOLATILE across any other insns. */
1982 || (! all_adjacent
1983 && (((!MEM_P (src)
1984 || ! find_reg_note (insn, REG_EQUIV, src))
1985 && use_crosses_set_p (src, DF_INSN_LUID (insn)))
1986 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1987 || GET_CODE (src) == UNSPEC_VOLATILE))
1988 /* Don't combine across a CALL_INSN, because that would possibly
1989 change whether the life span of some REGs crosses calls or not,
1990 and it is a pain to update that information.
1991 Exception: if source is a constant, moving it later can't hurt.
1992 Accept that as a special case. */
1993 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
1994 return 0;
1996 /* DEST must either be a REG or CC0. */
1997 if (REG_P (dest))
1999 /* If register alignment is being enforced for multi-word items in all
2000 cases except for parameters, it is possible to have a register copy
2001 insn referencing a hard register that is not allowed to contain the
2002 mode being copied and which would not be valid as an operand of most
2003 insns. Eliminate this problem by not combining with such an insn.
2005 Also, on some machines we don't want to extend the life of a hard
2006 register. */
2008 if (REG_P (src)
2009 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
2010 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
2011 /* Don't extend the life of a hard register unless it is
2012 user variable (if we have few registers) or it can't
2013 fit into the desired register (meaning something special
2014 is going on).
2015 Also avoid substituting a return register into I3, because
2016 reload can't handle a conflict with constraints of other
2017 inputs. */
2018 || (REGNO (src) < FIRST_PSEUDO_REGISTER
2019 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
2020 return 0;
2022 else if (GET_CODE (dest) != CC0)
2023 return 0;
2026 if (GET_CODE (PATTERN (i3)) == PARALLEL)
2027 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
2028 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
2030 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
2032 /* If the clobber represents an earlyclobber operand, we must not
2033 substitute an expression containing the clobbered register.
2034 As we do not analyze the constraint strings here, we have to
2035 make the conservative assumption. However, if the register is
2036 a fixed hard reg, the clobber cannot represent any operand;
2037 we leave it up to the machine description to either accept or
2038 reject use-and-clobber patterns. */
2039 if (!REG_P (reg)
2040 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
2041 || !fixed_regs[REGNO (reg)])
2042 if (reg_overlap_mentioned_p (reg, src))
2043 return 0;
2046 /* If INSN contains anything volatile, or is an `asm' (whether volatile
2047 or not), reject, unless nothing volatile comes between it and I3 */
2049 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
2051 /* Make sure neither succ nor succ2 contains a volatile reference. */
2052 if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
2053 return 0;
2054 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
2055 return 0;
2056 /* We'll check insns between INSN and I3 below. */
2059 /* If INSN is an asm, and DEST is a hard register, reject, since it has
2060 to be an explicit register variable, and was chosen for a reason. */
2062 if (GET_CODE (src) == ASM_OPERANDS
2063 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
2064 return 0;
2066 /* If INSN contains volatile references (specifically volatile MEMs),
2067 we cannot combine across any other volatile references.
2068 Even if INSN doesn't contain volatile references, any intervening
2069 volatile insn might affect machine state. */
2071 is_volatile_p = volatile_refs_p (PATTERN (insn))
2072 ? volatile_refs_p
2073 : volatile_insn_p;
2075 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
2076 if (INSN_P (p) && p != succ && p != succ2 && is_volatile_p (PATTERN (p)))
2077 return 0;
2079 /* If INSN contains an autoincrement or autodecrement, make sure that
2080 register is not used between there and I3, and not already used in
2081 I3 either. Neither must it be used in PRED or SUCC, if they exist.
2082 Also insist that I3 not be a jump; if it were one
2083 and the incremented register were spilled, we would lose. */
2085 if (AUTO_INC_DEC)
2086 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2087 if (REG_NOTE_KIND (link) == REG_INC
2088 && (JUMP_P (i3)
2089 || reg_used_between_p (XEXP (link, 0), insn, i3)
2090 || (pred != NULL_RTX
2091 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
2092 || (pred2 != NULL_RTX
2093 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
2094 || (succ != NULL_RTX
2095 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
2096 || (succ2 != NULL_RTX
2097 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
2098 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
2099 return 0;
2101 /* Don't combine an insn that follows a CC0-setting insn.
2102 An insn that uses CC0 must not be separated from the one that sets it.
2103 We do, however, allow I2 to follow a CC0-setting insn if that insn
2104 is passed as I1; in that case it will be deleted also.
2105 We also allow combining in this case if all the insns are adjacent
2106 because that would leave the two CC0 insns adjacent as well.
2107 It would be more logical to test whether CC0 occurs inside I1 or I2,
2108 but that would be much slower, and this ought to be equivalent. */
2110 if (HAVE_cc0)
2112 p = prev_nonnote_insn (insn);
2113 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
2114 && ! all_adjacent)
2115 return 0;
2118 /* If we get here, we have passed all the tests and the combination is
2119 to be allowed. */
2121 *pdest = dest;
2122 *psrc = src;
2124 return 1;
2127 /* LOC is the location within I3 that contains its pattern or the component
2128 of a PARALLEL of the pattern. We validate that it is valid for combining.
2130 One problem is if I3 modifies its output, as opposed to replacing it
2131 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2132 doing so would produce an insn that is not equivalent to the original insns.
2134 Consider:
2136 (set (reg:DI 101) (reg:DI 100))
2137 (set (subreg:SI (reg:DI 101) 0) <foo>)
2139 This is NOT equivalent to:
2141 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2142 (set (reg:DI 101) (reg:DI 100))])
2144 Not only does this modify 100 (in which case it might still be valid
2145 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2147 We can also run into a problem if I2 sets a register that I1
2148 uses and I1 gets directly substituted into I3 (not via I2). In that
2149 case, we would be getting the wrong value of I2DEST into I3, so we
2150 must reject the combination. This case occurs when I2 and I1 both
2151 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2152 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2153 of a SET must prevent combination from occurring. The same situation
2154 can occur for I0, in which case I0_NOT_IN_SRC is set.
2156 Before doing the above check, we first try to expand a field assignment
2157 into a set of logical operations.
2159 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2160 we place a register that is both set and used within I3. If more than one
2161 such register is detected, we fail.
2163 Return 1 if the combination is valid, zero otherwise. */
2165 static int
2166 combinable_i3pat (rtx_insn *i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
2167 int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
2169 rtx x = *loc;
2171 if (GET_CODE (x) == SET)
2173 rtx set = x ;
2174 rtx dest = SET_DEST (set);
2175 rtx src = SET_SRC (set);
2176 rtx inner_dest = dest;
2177 rtx subdest;
2179 while (GET_CODE (inner_dest) == STRICT_LOW_PART
2180 || GET_CODE (inner_dest) == SUBREG
2181 || GET_CODE (inner_dest) == ZERO_EXTRACT)
2182 inner_dest = XEXP (inner_dest, 0);
2184 /* Check for the case where I3 modifies its output, as discussed
2185 above. We don't want to prevent pseudos from being combined
2186 into the address of a MEM, so only prevent the combination if
2187 i1 or i2 set the same MEM. */
2188 if ((inner_dest != dest &&
2189 (!MEM_P (inner_dest)
2190 || rtx_equal_p (i2dest, inner_dest)
2191 || (i1dest && rtx_equal_p (i1dest, inner_dest))
2192 || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2193 && (reg_overlap_mentioned_p (i2dest, inner_dest)
2194 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2195 || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2197 /* This is the same test done in can_combine_p except we can't test
2198 all_adjacent; we don't have to, since this instruction will stay
2199 in place, thus we are not considering increasing the lifetime of
2200 INNER_DEST.
2202 Also, if this insn sets a function argument, combining it with
2203 something that might need a spill could clobber a previous
2204 function argument; the all_adjacent test in can_combine_p also
2205 checks this; here, we do a more specific test for this case. */
2207 || (REG_P (inner_dest)
2208 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2209 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
2210 GET_MODE (inner_dest))))
2211 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2212 || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2213 return 0;
2215 /* If DEST is used in I3, it is being killed in this insn, so
2216 record that for later. We have to consider paradoxical
2217 subregs here, since they kill the whole register, but we
2218 ignore partial subregs, STRICT_LOW_PART, etc.
2219 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2220 STACK_POINTER_REGNUM, since these are always considered to be
2221 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2222 subdest = dest;
2223 if (GET_CODE (subdest) == SUBREG
2224 && (GET_MODE_SIZE (GET_MODE (subdest))
2225 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
2226 subdest = SUBREG_REG (subdest);
2227 if (pi3dest_killed
2228 && REG_P (subdest)
2229 && reg_referenced_p (subdest, PATTERN (i3))
2230 && REGNO (subdest) != FRAME_POINTER_REGNUM
2231 && (HARD_FRAME_POINTER_IS_FRAME_POINTER
2232 || REGNO (subdest) != HARD_FRAME_POINTER_REGNUM)
2233 && (FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
2234 || (REGNO (subdest) != ARG_POINTER_REGNUM
2235 || ! fixed_regs [REGNO (subdest)]))
2236 && REGNO (subdest) != STACK_POINTER_REGNUM)
2238 if (*pi3dest_killed)
2239 return 0;
2241 *pi3dest_killed = subdest;
2245 else if (GET_CODE (x) == PARALLEL)
2247 int i;
2249 for (i = 0; i < XVECLEN (x, 0); i++)
2250 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2251 i1_not_in_src, i0_not_in_src, pi3dest_killed))
2252 return 0;
2255 return 1;
2258 /* Return 1 if X is an arithmetic expression that contains a multiplication
2259 and division. We don't count multiplications by powers of two here. */
2261 static int
2262 contains_muldiv (rtx x)
2264 switch (GET_CODE (x))
2266 case MOD: case DIV: case UMOD: case UDIV:
2267 return 1;
2269 case MULT:
2270 return ! (CONST_INT_P (XEXP (x, 1))
2271 && pow2p_hwi (UINTVAL (XEXP (x, 1))));
2272 default:
2273 if (BINARY_P (x))
2274 return contains_muldiv (XEXP (x, 0))
2275 || contains_muldiv (XEXP (x, 1));
2277 if (UNARY_P (x))
2278 return contains_muldiv (XEXP (x, 0));
2280 return 0;
2284 /* Determine whether INSN can be used in a combination. Return nonzero if
2285 not. This is used in try_combine to detect early some cases where we
2286 can't perform combinations. */
2288 static int
2289 cant_combine_insn_p (rtx_insn *insn)
2291 rtx set;
2292 rtx src, dest;
2294 /* If this isn't really an insn, we can't do anything.
2295 This can occur when flow deletes an insn that it has merged into an
2296 auto-increment address. */
2297 if (!NONDEBUG_INSN_P (insn))
2298 return 1;
2300 /* Never combine loads and stores involving hard regs that are likely
2301 to be spilled. The register allocator can usually handle such
2302 reg-reg moves by tying. If we allow the combiner to make
2303 substitutions of likely-spilled regs, reload might die.
2304 As an exception, we allow combinations involving fixed regs; these are
2305 not available to the register allocator so there's no risk involved. */
2307 set = single_set (insn);
2308 if (! set)
2309 return 0;
2310 src = SET_SRC (set);
2311 dest = SET_DEST (set);
2312 if (GET_CODE (src) == SUBREG)
2313 src = SUBREG_REG (src);
2314 if (GET_CODE (dest) == SUBREG)
2315 dest = SUBREG_REG (dest);
2316 if (REG_P (src) && REG_P (dest)
2317 && ((HARD_REGISTER_P (src)
2318 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2319 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (src))))
2320 || (HARD_REGISTER_P (dest)
2321 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2322 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2323 return 1;
2325 return 0;
2328 struct likely_spilled_retval_info
2330 unsigned regno, nregs;
2331 unsigned mask;
2334 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2335 hard registers that are known to be written to / clobbered in full. */
2336 static void
2337 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2339 struct likely_spilled_retval_info *const info =
2340 (struct likely_spilled_retval_info *) data;
2341 unsigned regno, nregs;
2342 unsigned new_mask;
2344 if (!REG_P (XEXP (set, 0)))
2345 return;
2346 regno = REGNO (x);
2347 if (regno >= info->regno + info->nregs)
2348 return;
2349 nregs = REG_NREGS (x);
2350 if (regno + nregs <= info->regno)
2351 return;
2352 new_mask = (2U << (nregs - 1)) - 1;
2353 if (regno < info->regno)
2354 new_mask >>= info->regno - regno;
2355 else
2356 new_mask <<= regno - info->regno;
2357 info->mask &= ~new_mask;
2360 /* Return nonzero iff part of the return value is live during INSN, and
2361 it is likely spilled. This can happen when more than one insn is needed
2362 to copy the return value, e.g. when we consider to combine into the
2363 second copy insn for a complex value. */
2365 static int
2366 likely_spilled_retval_p (rtx_insn *insn)
2368 rtx_insn *use = BB_END (this_basic_block);
2369 rtx reg;
2370 rtx_insn *p;
2371 unsigned regno, nregs;
2372 /* We assume here that no machine mode needs more than
2373 32 hard registers when the value overlaps with a register
2374 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2375 unsigned mask;
2376 struct likely_spilled_retval_info info;
2378 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2379 return 0;
2380 reg = XEXP (PATTERN (use), 0);
2381 if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2382 return 0;
2383 regno = REGNO (reg);
2384 nregs = REG_NREGS (reg);
2385 if (nregs == 1)
2386 return 0;
2387 mask = (2U << (nregs - 1)) - 1;
2389 /* Disregard parts of the return value that are set later. */
2390 info.regno = regno;
2391 info.nregs = nregs;
2392 info.mask = mask;
2393 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2394 if (INSN_P (p))
2395 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2396 mask = info.mask;
2398 /* Check if any of the (probably) live return value registers is
2399 likely spilled. */
2400 nregs --;
2403 if ((mask & 1 << nregs)
2404 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2405 return 1;
2406 } while (nregs--);
2407 return 0;
2410 /* Adjust INSN after we made a change to its destination.
2412 Changing the destination can invalidate notes that say something about
2413 the results of the insn and a LOG_LINK pointing to the insn. */
2415 static void
2416 adjust_for_new_dest (rtx_insn *insn)
2418 /* For notes, be conservative and simply remove them. */
2419 remove_reg_equal_equiv_notes (insn);
2421 /* The new insn will have a destination that was previously the destination
2422 of an insn just above it. Call distribute_links to make a LOG_LINK from
2423 the next use of that destination. */
2425 rtx set = single_set (insn);
2426 gcc_assert (set);
2428 rtx reg = SET_DEST (set);
2430 while (GET_CODE (reg) == ZERO_EXTRACT
2431 || GET_CODE (reg) == STRICT_LOW_PART
2432 || GET_CODE (reg) == SUBREG)
2433 reg = XEXP (reg, 0);
2434 gcc_assert (REG_P (reg));
2436 distribute_links (alloc_insn_link (insn, REGNO (reg), NULL));
2438 df_insn_rescan (insn);
2441 /* Return TRUE if combine can reuse reg X in mode MODE.
2442 ADDED_SETS is nonzero if the original set is still required. */
2443 static bool
2444 can_change_dest_mode (rtx x, int added_sets, machine_mode mode)
2446 unsigned int regno;
2448 if (!REG_P (x))
2449 return false;
2451 regno = REGNO (x);
2452 /* Allow hard registers if the new mode is legal, and occupies no more
2453 registers than the old mode. */
2454 if (regno < FIRST_PSEUDO_REGISTER)
2455 return (HARD_REGNO_MODE_OK (regno, mode)
2456 && REG_NREGS (x) >= hard_regno_nregs[regno][mode]);
2458 /* Or a pseudo that is only used once. */
2459 return (regno < reg_n_sets_max
2460 && REG_N_SETS (regno) == 1
2461 && !added_sets
2462 && !REG_USERVAR_P (x));
2466 /* Check whether X, the destination of a set, refers to part of
2467 the register specified by REG. */
2469 static bool
2470 reg_subword_p (rtx x, rtx reg)
2472 /* Check that reg is an integer mode register. */
2473 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2474 return false;
2476 if (GET_CODE (x) == STRICT_LOW_PART
2477 || GET_CODE (x) == ZERO_EXTRACT)
2478 x = XEXP (x, 0);
2480 return GET_CODE (x) == SUBREG
2481 && SUBREG_REG (x) == reg
2482 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2485 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2486 Note that the INSN should be deleted *after* removing dead edges, so
2487 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2488 but not for a (set (pc) (label_ref FOO)). */
2490 static void
2491 update_cfg_for_uncondjump (rtx_insn *insn)
2493 basic_block bb = BLOCK_FOR_INSN (insn);
2494 gcc_assert (BB_END (bb) == insn);
2496 purge_dead_edges (bb);
2498 delete_insn (insn);
2499 if (EDGE_COUNT (bb->succs) == 1)
2501 rtx_insn *insn;
2503 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2505 /* Remove barriers from the footer if there are any. */
2506 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
2507 if (BARRIER_P (insn))
2509 if (PREV_INSN (insn))
2510 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2511 else
2512 BB_FOOTER (bb) = NEXT_INSN (insn);
2513 if (NEXT_INSN (insn))
2514 SET_PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2516 else if (LABEL_P (insn))
2517 break;
2521 /* Return whether PAT is a PARALLEL of exactly N register SETs followed
2522 by an arbitrary number of CLOBBERs. */
2523 static bool
2524 is_parallel_of_n_reg_sets (rtx pat, int n)
2526 if (GET_CODE (pat) != PARALLEL)
2527 return false;
2529 int len = XVECLEN (pat, 0);
2530 if (len < n)
2531 return false;
2533 int i;
2534 for (i = 0; i < n; i++)
2535 if (GET_CODE (XVECEXP (pat, 0, i)) != SET
2536 || !REG_P (SET_DEST (XVECEXP (pat, 0, i))))
2537 return false;
2538 for ( ; i < len; i++)
2539 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER
2540 || XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
2541 return false;
2543 return true;
2546 /* Return whether INSN, a PARALLEL of N register SETs (and maybe some
2547 CLOBBERs), can be split into individual SETs in that order, without
2548 changing semantics. */
2549 static bool
2550 can_split_parallel_of_n_reg_sets (rtx_insn *insn, int n)
2552 if (!insn_nothrow_p (insn))
2553 return false;
2555 rtx pat = PATTERN (insn);
2557 int i, j;
2558 for (i = 0; i < n; i++)
2560 if (side_effects_p (SET_SRC (XVECEXP (pat, 0, i))))
2561 return false;
2563 rtx reg = SET_DEST (XVECEXP (pat, 0, i));
2565 for (j = i + 1; j < n; j++)
2566 if (reg_referenced_p (reg, XVECEXP (pat, 0, j)))
2567 return false;
2570 return true;
2573 /* Try to combine the insns I0, I1 and I2 into I3.
2574 Here I0, I1 and I2 appear earlier than I3.
2575 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2578 If we are combining more than two insns and the resulting insn is not
2579 recognized, try splitting it into two insns. If that happens, I2 and I3
2580 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2581 Otherwise, I0, I1 and I2 are pseudo-deleted.
2583 Return 0 if the combination does not work. Then nothing is changed.
2584 If we did the combination, return the insn at which combine should
2585 resume scanning.
2587 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2588 new direct jump instruction.
2590 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2591 been I3 passed to an earlier try_combine within the same basic
2592 block. */
2594 static rtx_insn *
2595 try_combine (rtx_insn *i3, rtx_insn *i2, rtx_insn *i1, rtx_insn *i0,
2596 int *new_direct_jump_p, rtx_insn *last_combined_insn)
2598 /* New patterns for I3 and I2, respectively. */
2599 rtx newpat, newi2pat = 0;
2600 rtvec newpat_vec_with_clobbers = 0;
2601 int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2602 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2603 dead. */
2604 int added_sets_0, added_sets_1, added_sets_2;
2605 /* Total number of SETs to put into I3. */
2606 int total_sets;
2607 /* Nonzero if I2's or I1's body now appears in I3. */
2608 int i2_is_used = 0, i1_is_used = 0;
2609 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2610 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2611 /* Contains I3 if the destination of I3 is used in its source, which means
2612 that the old life of I3 is being killed. If that usage is placed into
2613 I2 and not in I3, a REG_DEAD note must be made. */
2614 rtx i3dest_killed = 0;
2615 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2616 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2617 /* Copy of SET_SRC of I1 and I0, if needed. */
2618 rtx i1src_copy = 0, i0src_copy = 0, i0src_copy2 = 0;
2619 /* Set if I2DEST was reused as a scratch register. */
2620 bool i2scratch = false;
2621 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2622 rtx i0pat = 0, i1pat = 0, i2pat = 0;
2623 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2624 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2625 int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2626 int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2627 int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2628 /* Notes that must be added to REG_NOTES in I3 and I2. */
2629 rtx new_i3_notes, new_i2_notes;
2630 /* Notes that we substituted I3 into I2 instead of the normal case. */
2631 int i3_subst_into_i2 = 0;
2632 /* Notes that I1, I2 or I3 is a MULT operation. */
2633 int have_mult = 0;
2634 int swap_i2i3 = 0;
2635 int changed_i3_dest = 0;
2637 int maxreg;
2638 rtx_insn *temp_insn;
2639 rtx temp_expr;
2640 struct insn_link *link;
2641 rtx other_pat = 0;
2642 rtx new_other_notes;
2643 int i;
2645 /* Immediately return if any of I0,I1,I2 are the same insn (I3 can
2646 never be). */
2647 if (i1 == i2 || i0 == i2 || (i0 && i0 == i1))
2648 return 0;
2650 /* Only try four-insn combinations when there's high likelihood of
2651 success. Look for simple insns, such as loads of constants or
2652 binary operations involving a constant. */
2653 if (i0)
2655 int i;
2656 int ngood = 0;
2657 int nshift = 0;
2658 rtx set0, set3;
2660 if (!flag_expensive_optimizations)
2661 return 0;
2663 for (i = 0; i < 4; i++)
2665 rtx_insn *insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2666 rtx set = single_set (insn);
2667 rtx src;
2668 if (!set)
2669 continue;
2670 src = SET_SRC (set);
2671 if (CONSTANT_P (src))
2673 ngood += 2;
2674 break;
2676 else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2677 ngood++;
2678 else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2679 || GET_CODE (src) == LSHIFTRT)
2680 nshift++;
2683 /* If I0 loads a memory and I3 sets the same memory, then I1 and I2
2684 are likely manipulating its value. Ideally we'll be able to combine
2685 all four insns into a bitfield insertion of some kind.
2687 Note the source in I0 might be inside a sign/zero extension and the
2688 memory modes in I0 and I3 might be different. So extract the address
2689 from the destination of I3 and search for it in the source of I0.
2691 In the event that there's a match but the source/dest do not actually
2692 refer to the same memory, the worst that happens is we try some
2693 combinations that we wouldn't have otherwise. */
2694 if ((set0 = single_set (i0))
2695 /* Ensure the source of SET0 is a MEM, possibly buried inside
2696 an extension. */
2697 && (GET_CODE (SET_SRC (set0)) == MEM
2698 || ((GET_CODE (SET_SRC (set0)) == ZERO_EXTEND
2699 || GET_CODE (SET_SRC (set0)) == SIGN_EXTEND)
2700 && GET_CODE (XEXP (SET_SRC (set0), 0)) == MEM))
2701 && (set3 = single_set (i3))
2702 /* Ensure the destination of SET3 is a MEM. */
2703 && GET_CODE (SET_DEST (set3)) == MEM
2704 /* Would it be better to extract the base address for the MEM
2705 in SET3 and look for that? I don't have cases where it matters
2706 but I could envision such cases. */
2707 && rtx_referenced_p (XEXP (SET_DEST (set3), 0), SET_SRC (set0)))
2708 ngood += 2;
2710 if (ngood < 2 && nshift < 2)
2711 return 0;
2714 /* Exit early if one of the insns involved can't be used for
2715 combinations. */
2716 if (CALL_P (i2)
2717 || (i1 && CALL_P (i1))
2718 || (i0 && CALL_P (i0))
2719 || cant_combine_insn_p (i3)
2720 || cant_combine_insn_p (i2)
2721 || (i1 && cant_combine_insn_p (i1))
2722 || (i0 && cant_combine_insn_p (i0))
2723 || likely_spilled_retval_p (i3))
2724 return 0;
2726 combine_attempts++;
2727 undobuf.other_insn = 0;
2729 /* Reset the hard register usage information. */
2730 CLEAR_HARD_REG_SET (newpat_used_regs);
2732 if (dump_file && (dump_flags & TDF_DETAILS))
2734 if (i0)
2735 fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2736 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2737 else if (i1)
2738 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2739 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2740 else
2741 fprintf (dump_file, "\nTrying %d -> %d:\n",
2742 INSN_UID (i2), INSN_UID (i3));
2745 /* If multiple insns feed into one of I2 or I3, they can be in any
2746 order. To simplify the code below, reorder them in sequence. */
2747 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2748 std::swap (i0, i2);
2749 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2750 std::swap (i0, i1);
2751 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2752 std::swap (i1, i2);
2754 added_links_insn = 0;
2756 /* First check for one important special case that the code below will
2757 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2758 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2759 we may be able to replace that destination with the destination of I3.
2760 This occurs in the common code where we compute both a quotient and
2761 remainder into a structure, in which case we want to do the computation
2762 directly into the structure to avoid register-register copies.
2764 Note that this case handles both multiple sets in I2 and also cases
2765 where I2 has a number of CLOBBERs inside the PARALLEL.
2767 We make very conservative checks below and only try to handle the
2768 most common cases of this. For example, we only handle the case
2769 where I2 and I3 are adjacent to avoid making difficult register
2770 usage tests. */
2772 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2773 && REG_P (SET_SRC (PATTERN (i3)))
2774 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2775 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2776 && GET_CODE (PATTERN (i2)) == PARALLEL
2777 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2778 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2779 below would need to check what is inside (and reg_overlap_mentioned_p
2780 doesn't support those codes anyway). Don't allow those destinations;
2781 the resulting insn isn't likely to be recognized anyway. */
2782 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2783 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2784 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2785 SET_DEST (PATTERN (i3)))
2786 && next_active_insn (i2) == i3)
2788 rtx p2 = PATTERN (i2);
2790 /* Make sure that the destination of I3,
2791 which we are going to substitute into one output of I2,
2792 is not used within another output of I2. We must avoid making this:
2793 (parallel [(set (mem (reg 69)) ...)
2794 (set (reg 69) ...)])
2795 which is not well-defined as to order of actions.
2796 (Besides, reload can't handle output reloads for this.)
2798 The problem can also happen if the dest of I3 is a memory ref,
2799 if another dest in I2 is an indirect memory ref.
2801 Neither can this PARALLEL be an asm. We do not allow combining
2802 that usually (see can_combine_p), so do not here either. */
2803 bool ok = true;
2804 for (i = 0; ok && i < XVECLEN (p2, 0); i++)
2806 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2807 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2808 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2809 SET_DEST (XVECEXP (p2, 0, i))))
2810 ok = false;
2811 else if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2812 && GET_CODE (SET_SRC (XVECEXP (p2, 0, i))) == ASM_OPERANDS)
2813 ok = false;
2816 if (ok)
2817 for (i = 0; i < XVECLEN (p2, 0); i++)
2818 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2819 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2821 combine_merges++;
2823 subst_insn = i3;
2824 subst_low_luid = DF_INSN_LUID (i2);
2826 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2827 i2src = SET_SRC (XVECEXP (p2, 0, i));
2828 i2dest = SET_DEST (XVECEXP (p2, 0, i));
2829 i2dest_killed = dead_or_set_p (i2, i2dest);
2831 /* Replace the dest in I2 with our dest and make the resulting
2832 insn the new pattern for I3. Then skip to where we validate
2833 the pattern. Everything was set up above. */
2834 SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2835 newpat = p2;
2836 i3_subst_into_i2 = 1;
2837 goto validate_replacement;
2841 /* If I2 is setting a pseudo to a constant and I3 is setting some
2842 sub-part of it to another constant, merge them by making a new
2843 constant. */
2844 if (i1 == 0
2845 && (temp_expr = single_set (i2)) != 0
2846 && CONST_SCALAR_INT_P (SET_SRC (temp_expr))
2847 && GET_CODE (PATTERN (i3)) == SET
2848 && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3)))
2849 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp_expr)))
2851 rtx dest = SET_DEST (PATTERN (i3));
2852 int offset = -1;
2853 int width = 0;
2855 if (GET_CODE (dest) == ZERO_EXTRACT)
2857 if (CONST_INT_P (XEXP (dest, 1))
2858 && CONST_INT_P (XEXP (dest, 2)))
2860 width = INTVAL (XEXP (dest, 1));
2861 offset = INTVAL (XEXP (dest, 2));
2862 dest = XEXP (dest, 0);
2863 if (BITS_BIG_ENDIAN)
2864 offset = GET_MODE_PRECISION (GET_MODE (dest)) - width - offset;
2867 else
2869 if (GET_CODE (dest) == STRICT_LOW_PART)
2870 dest = XEXP (dest, 0);
2871 width = GET_MODE_PRECISION (GET_MODE (dest));
2872 offset = 0;
2875 if (offset >= 0)
2877 /* If this is the low part, we're done. */
2878 if (subreg_lowpart_p (dest))
2880 /* Handle the case where inner is twice the size of outer. */
2881 else if (GET_MODE_PRECISION (GET_MODE (SET_DEST (temp_expr)))
2882 == 2 * GET_MODE_PRECISION (GET_MODE (dest)))
2883 offset += GET_MODE_PRECISION (GET_MODE (dest));
2884 /* Otherwise give up for now. */
2885 else
2886 offset = -1;
2889 if (offset >= 0)
2891 rtx inner = SET_SRC (PATTERN (i3));
2892 rtx outer = SET_SRC (temp_expr);
2894 wide_int o
2895 = wi::insert (rtx_mode_t (outer, GET_MODE (SET_DEST (temp_expr))),
2896 rtx_mode_t (inner, GET_MODE (dest)),
2897 offset, width);
2899 combine_merges++;
2900 subst_insn = i3;
2901 subst_low_luid = DF_INSN_LUID (i2);
2902 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2903 i2dest = SET_DEST (temp_expr);
2904 i2dest_killed = dead_or_set_p (i2, i2dest);
2906 /* Replace the source in I2 with the new constant and make the
2907 resulting insn the new pattern for I3. Then skip to where we
2908 validate the pattern. Everything was set up above. */
2909 SUBST (SET_SRC (temp_expr),
2910 immed_wide_int_const (o, GET_MODE (SET_DEST (temp_expr))));
2912 newpat = PATTERN (i2);
2914 /* The dest of I3 has been replaced with the dest of I2. */
2915 changed_i3_dest = 1;
2916 goto validate_replacement;
2920 /* If we have no I1 and I2 looks like:
2921 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2922 (set Y OP)])
2923 make up a dummy I1 that is
2924 (set Y OP)
2925 and change I2 to be
2926 (set (reg:CC X) (compare:CC Y (const_int 0)))
2928 (We can ignore any trailing CLOBBERs.)
2930 This undoes a previous combination and allows us to match a branch-and-
2931 decrement insn. */
2933 if (!HAVE_cc0 && i1 == 0
2934 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
2935 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2936 == MODE_CC)
2937 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2938 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2939 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2940 SET_SRC (XVECEXP (PATTERN (i2), 0, 1)))
2941 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2942 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
2944 /* We make I1 with the same INSN_UID as I2. This gives it
2945 the same DF_INSN_LUID for value tracking. Our fake I1 will
2946 never appear in the insn stream so giving it the same INSN_UID
2947 as I2 will not cause a problem. */
2949 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
2950 XVECEXP (PATTERN (i2), 0, 1), INSN_LOCATION (i2),
2951 -1, NULL_RTX);
2952 INSN_UID (i1) = INSN_UID (i2);
2954 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2955 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2956 SET_DEST (PATTERN (i1)));
2957 unsigned int regno = REGNO (SET_DEST (PATTERN (i1)));
2958 SUBST_LINK (LOG_LINKS (i2),
2959 alloc_insn_link (i1, regno, LOG_LINKS (i2)));
2962 /* If I2 is a PARALLEL of two SETs of REGs (and perhaps some CLOBBERs),
2963 make those two SETs separate I1 and I2 insns, and make an I0 that is
2964 the original I1. */
2965 if (!HAVE_cc0 && i0 == 0
2966 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
2967 && can_split_parallel_of_n_reg_sets (i2, 2)
2968 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2969 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
2971 /* If there is no I1, there is no I0 either. */
2972 i0 = i1;
2974 /* We make I1 with the same INSN_UID as I2. This gives it
2975 the same DF_INSN_LUID for value tracking. Our fake I1 will
2976 never appear in the insn stream so giving it the same INSN_UID
2977 as I2 will not cause a problem. */
2979 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
2980 XVECEXP (PATTERN (i2), 0, 0), INSN_LOCATION (i2),
2981 -1, NULL_RTX);
2982 INSN_UID (i1) = INSN_UID (i2);
2984 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 1));
2987 /* Verify that I2 and I1 are valid for combining. */
2988 if (! can_combine_p (i2, i3, i0, i1, NULL, NULL, &i2dest, &i2src)
2989 || (i1 && ! can_combine_p (i1, i3, i0, NULL, i2, NULL,
2990 &i1dest, &i1src))
2991 || (i0 && ! can_combine_p (i0, i3, NULL, NULL, i1, i2,
2992 &i0dest, &i0src)))
2994 undo_all ();
2995 return 0;
2998 /* Record whether I2DEST is used in I2SRC and similarly for the other
2999 cases. Knowing this will help in register status updating below. */
3000 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
3001 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
3002 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
3003 i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
3004 i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
3005 i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
3006 i2dest_killed = dead_or_set_p (i2, i2dest);
3007 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
3008 i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
3010 /* For the earlier insns, determine which of the subsequent ones they
3011 feed. */
3012 i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
3013 i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
3014 i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
3015 : (!reg_overlap_mentioned_p (i1dest, i0dest)
3016 && reg_overlap_mentioned_p (i0dest, i2src))));
3018 /* Ensure that I3's pattern can be the destination of combines. */
3019 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
3020 i1 && i2dest_in_i1src && !i1_feeds_i2_n,
3021 i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
3022 || (i1dest_in_i0src && !i0_feeds_i1_n)),
3023 &i3dest_killed))
3025 undo_all ();
3026 return 0;
3029 /* See if any of the insns is a MULT operation. Unless one is, we will
3030 reject a combination that is, since it must be slower. Be conservative
3031 here. */
3032 if (GET_CODE (i2src) == MULT
3033 || (i1 != 0 && GET_CODE (i1src) == MULT)
3034 || (i0 != 0 && GET_CODE (i0src) == MULT)
3035 || (GET_CODE (PATTERN (i3)) == SET
3036 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
3037 have_mult = 1;
3039 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
3040 We used to do this EXCEPT in one case: I3 has a post-inc in an
3041 output operand. However, that exception can give rise to insns like
3042 mov r3,(r3)+
3043 which is a famous insn on the PDP-11 where the value of r3 used as the
3044 source was model-dependent. Avoid this sort of thing. */
3046 #if 0
3047 if (!(GET_CODE (PATTERN (i3)) == SET
3048 && REG_P (SET_SRC (PATTERN (i3)))
3049 && MEM_P (SET_DEST (PATTERN (i3)))
3050 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
3051 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
3052 /* It's not the exception. */
3053 #endif
3054 if (AUTO_INC_DEC)
3056 rtx link;
3057 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
3058 if (REG_NOTE_KIND (link) == REG_INC
3059 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
3060 || (i1 != 0
3061 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
3063 undo_all ();
3064 return 0;
3068 /* See if the SETs in I1 or I2 need to be kept around in the merged
3069 instruction: whenever the value set there is still needed past I3.
3070 For the SET in I2, this is easy: we see if I2DEST dies or is set in I3.
3072 For the SET in I1, we have two cases: if I1 and I2 independently feed
3073 into I3, the set in I1 needs to be kept around unless I1DEST dies
3074 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
3075 in I1 needs to be kept around unless I1DEST dies or is set in either
3076 I2 or I3. The same considerations apply to I0. */
3078 added_sets_2 = !dead_or_set_p (i3, i2dest);
3080 if (i1)
3081 added_sets_1 = !(dead_or_set_p (i3, i1dest)
3082 || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
3083 else
3084 added_sets_1 = 0;
3086 if (i0)
3087 added_sets_0 = !(dead_or_set_p (i3, i0dest)
3088 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest))
3089 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3090 && dead_or_set_p (i2, i0dest)));
3091 else
3092 added_sets_0 = 0;
3094 /* We are about to copy insns for the case where they need to be kept
3095 around. Check that they can be copied in the merged instruction. */
3097 if (targetm.cannot_copy_insn_p
3098 && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
3099 || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
3100 || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
3102 undo_all ();
3103 return 0;
3106 /* If the set in I2 needs to be kept around, we must make a copy of
3107 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
3108 PATTERN (I2), we are only substituting for the original I1DEST, not into
3109 an already-substituted copy. This also prevents making self-referential
3110 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
3111 I2DEST. */
3113 if (added_sets_2)
3115 if (GET_CODE (PATTERN (i2)) == PARALLEL)
3116 i2pat = gen_rtx_SET (i2dest, copy_rtx (i2src));
3117 else
3118 i2pat = copy_rtx (PATTERN (i2));
3121 if (added_sets_1)
3123 if (GET_CODE (PATTERN (i1)) == PARALLEL)
3124 i1pat = gen_rtx_SET (i1dest, copy_rtx (i1src));
3125 else
3126 i1pat = copy_rtx (PATTERN (i1));
3129 if (added_sets_0)
3131 if (GET_CODE (PATTERN (i0)) == PARALLEL)
3132 i0pat = gen_rtx_SET (i0dest, copy_rtx (i0src));
3133 else
3134 i0pat = copy_rtx (PATTERN (i0));
3137 combine_merges++;
3139 /* Substitute in the latest insn for the regs set by the earlier ones. */
3141 maxreg = max_reg_num ();
3143 subst_insn = i3;
3145 /* Many machines that don't use CC0 have insns that can both perform an
3146 arithmetic operation and set the condition code. These operations will
3147 be represented as a PARALLEL with the first element of the vector
3148 being a COMPARE of an arithmetic operation with the constant zero.
3149 The second element of the vector will set some pseudo to the result
3150 of the same arithmetic operation. If we simplify the COMPARE, we won't
3151 match such a pattern and so will generate an extra insn. Here we test
3152 for this case, where both the comparison and the operation result are
3153 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
3154 I2SRC. Later we will make the PARALLEL that contains I2. */
3156 if (!HAVE_cc0 && i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
3157 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
3158 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3)), 1))
3159 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
3161 rtx newpat_dest;
3162 rtx *cc_use_loc = NULL;
3163 rtx_insn *cc_use_insn = NULL;
3164 rtx op0 = i2src, op1 = XEXP (SET_SRC (PATTERN (i3)), 1);
3165 machine_mode compare_mode, orig_compare_mode;
3166 enum rtx_code compare_code = UNKNOWN, orig_compare_code = UNKNOWN;
3168 newpat = PATTERN (i3);
3169 newpat_dest = SET_DEST (newpat);
3170 compare_mode = orig_compare_mode = GET_MODE (newpat_dest);
3172 if (undobuf.other_insn == 0
3173 && (cc_use_loc = find_single_use (SET_DEST (newpat), i3,
3174 &cc_use_insn)))
3176 compare_code = orig_compare_code = GET_CODE (*cc_use_loc);
3177 compare_code = simplify_compare_const (compare_code,
3178 GET_MODE (i2dest), op0, &op1);
3179 target_canonicalize_comparison (&compare_code, &op0, &op1, 1);
3182 /* Do the rest only if op1 is const0_rtx, which may be the
3183 result of simplification. */
3184 if (op1 == const0_rtx)
3186 /* If a single use of the CC is found, prepare to modify it
3187 when SELECT_CC_MODE returns a new CC-class mode, or when
3188 the above simplify_compare_const() returned a new comparison
3189 operator. undobuf.other_insn is assigned the CC use insn
3190 when modifying it. */
3191 if (cc_use_loc)
3193 #ifdef SELECT_CC_MODE
3194 machine_mode new_mode
3195 = SELECT_CC_MODE (compare_code, op0, op1);
3196 if (new_mode != orig_compare_mode
3197 && can_change_dest_mode (SET_DEST (newpat),
3198 added_sets_2, new_mode))
3200 unsigned int regno = REGNO (newpat_dest);
3201 compare_mode = new_mode;
3202 if (regno < FIRST_PSEUDO_REGISTER)
3203 newpat_dest = gen_rtx_REG (compare_mode, regno);
3204 else
3206 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
3207 newpat_dest = regno_reg_rtx[regno];
3210 #endif
3211 /* Cases for modifying the CC-using comparison. */
3212 if (compare_code != orig_compare_code
3213 /* ??? Do we need to verify the zero rtx? */
3214 && XEXP (*cc_use_loc, 1) == const0_rtx)
3216 /* Replace cc_use_loc with entire new RTX. */
3217 SUBST (*cc_use_loc,
3218 gen_rtx_fmt_ee (compare_code, compare_mode,
3219 newpat_dest, const0_rtx));
3220 undobuf.other_insn = cc_use_insn;
3222 else if (compare_mode != orig_compare_mode)
3224 /* Just replace the CC reg with a new mode. */
3225 SUBST (XEXP (*cc_use_loc, 0), newpat_dest);
3226 undobuf.other_insn = cc_use_insn;
3230 /* Now we modify the current newpat:
3231 First, SET_DEST(newpat) is updated if the CC mode has been
3232 altered. For targets without SELECT_CC_MODE, this should be
3233 optimized away. */
3234 if (compare_mode != orig_compare_mode)
3235 SUBST (SET_DEST (newpat), newpat_dest);
3236 /* This is always done to propagate i2src into newpat. */
3237 SUBST (SET_SRC (newpat),
3238 gen_rtx_COMPARE (compare_mode, op0, op1));
3239 /* Create new version of i2pat if needed; the below PARALLEL
3240 creation needs this to work correctly. */
3241 if (! rtx_equal_p (i2src, op0))
3242 i2pat = gen_rtx_SET (i2dest, op0);
3243 i2_is_used = 1;
3247 if (i2_is_used == 0)
3249 /* It is possible that the source of I2 or I1 may be performing
3250 an unneeded operation, such as a ZERO_EXTEND of something
3251 that is known to have the high part zero. Handle that case
3252 by letting subst look at the inner insns.
3254 Another way to do this would be to have a function that tries
3255 to simplify a single insn instead of merging two or more
3256 insns. We don't do this because of the potential of infinite
3257 loops and because of the potential extra memory required.
3258 However, doing it the way we are is a bit of a kludge and
3259 doesn't catch all cases.
3261 But only do this if -fexpensive-optimizations since it slows
3262 things down and doesn't usually win.
3264 This is not done in the COMPARE case above because the
3265 unmodified I2PAT is used in the PARALLEL and so a pattern
3266 with a modified I2SRC would not match. */
3268 if (flag_expensive_optimizations)
3270 /* Pass pc_rtx so no substitutions are done, just
3271 simplifications. */
3272 if (i1)
3274 subst_low_luid = DF_INSN_LUID (i1);
3275 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0, 0);
3278 subst_low_luid = DF_INSN_LUID (i2);
3279 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0, 0);
3282 n_occurrences = 0; /* `subst' counts here */
3283 subst_low_luid = DF_INSN_LUID (i2);
3285 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3286 copy of I2SRC each time we substitute it, in order to avoid creating
3287 self-referential RTL when we will be substituting I1SRC for I1DEST
3288 later. Likewise if I0 feeds into I2, either directly or indirectly
3289 through I1, and I0DEST is in I0SRC. */
3290 newpat = subst (PATTERN (i3), i2dest, i2src, 0, 0,
3291 (i1_feeds_i2_n && i1dest_in_i1src)
3292 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3293 && i0dest_in_i0src));
3294 substed_i2 = 1;
3296 /* Record whether I2's body now appears within I3's body. */
3297 i2_is_used = n_occurrences;
3300 /* If we already got a failure, don't try to do more. Otherwise, try to
3301 substitute I1 if we have it. */
3303 if (i1 && GET_CODE (newpat) != CLOBBER)
3305 /* Check that an autoincrement side-effect on I1 has not been lost.
3306 This happens if I1DEST is mentioned in I2 and dies there, and
3307 has disappeared from the new pattern. */
3308 if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3309 && i1_feeds_i2_n
3310 && dead_or_set_p (i2, i1dest)
3311 && !reg_overlap_mentioned_p (i1dest, newpat))
3312 /* Before we can do this substitution, we must redo the test done
3313 above (see detailed comments there) that ensures I1DEST isn't
3314 mentioned in any SETs in NEWPAT that are field assignments. */
3315 || !combinable_i3pat (NULL, &newpat, i1dest, NULL_RTX, NULL_RTX,
3316 0, 0, 0))
3318 undo_all ();
3319 return 0;
3322 n_occurrences = 0;
3323 subst_low_luid = DF_INSN_LUID (i1);
3325 /* If the following substitution will modify I1SRC, make a copy of it
3326 for the case where it is substituted for I1DEST in I2PAT later. */
3327 if (added_sets_2 && i1_feeds_i2_n)
3328 i1src_copy = copy_rtx (i1src);
3330 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3331 copy of I1SRC each time we substitute it, in order to avoid creating
3332 self-referential RTL when we will be substituting I0SRC for I0DEST
3333 later. */
3334 newpat = subst (newpat, i1dest, i1src, 0, 0,
3335 i0_feeds_i1_n && i0dest_in_i0src);
3336 substed_i1 = 1;
3338 /* Record whether I1's body now appears within I3's body. */
3339 i1_is_used = n_occurrences;
3342 /* Likewise for I0 if we have it. */
3344 if (i0 && GET_CODE (newpat) != CLOBBER)
3346 if ((FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3347 && ((i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
3348 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)))
3349 && !reg_overlap_mentioned_p (i0dest, newpat))
3350 || !combinable_i3pat (NULL, &newpat, i0dest, NULL_RTX, NULL_RTX,
3351 0, 0, 0))
3353 undo_all ();
3354 return 0;
3357 /* If the following substitution will modify I0SRC, make a copy of it
3358 for the case where it is substituted for I0DEST in I1PAT later. */
3359 if (added_sets_1 && i0_feeds_i1_n)
3360 i0src_copy = copy_rtx (i0src);
3361 /* And a copy for I0DEST in I2PAT substitution. */
3362 if (added_sets_2 && ((i0_feeds_i1_n && i1_feeds_i2_n)
3363 || (i0_feeds_i2_n)))
3364 i0src_copy2 = copy_rtx (i0src);
3366 n_occurrences = 0;
3367 subst_low_luid = DF_INSN_LUID (i0);
3368 newpat = subst (newpat, i0dest, i0src, 0, 0, 0);
3369 substed_i0 = 1;
3372 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3373 to count all the ways that I2SRC and I1SRC can be used. */
3374 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3375 && i2_is_used + added_sets_2 > 1)
3376 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3377 && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3378 > 1))
3379 || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3380 && (n_occurrences + added_sets_0
3381 + (added_sets_1 && i0_feeds_i1_n)
3382 + (added_sets_2 && i0_feeds_i2_n)
3383 > 1))
3384 /* Fail if we tried to make a new register. */
3385 || max_reg_num () != maxreg
3386 /* Fail if we couldn't do something and have a CLOBBER. */
3387 || GET_CODE (newpat) == CLOBBER
3388 /* Fail if this new pattern is a MULT and we didn't have one before
3389 at the outer level. */
3390 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3391 && ! have_mult))
3393 undo_all ();
3394 return 0;
3397 /* If the actions of the earlier insns must be kept
3398 in addition to substituting them into the latest one,
3399 we must make a new PARALLEL for the latest insn
3400 to hold additional the SETs. */
3402 if (added_sets_0 || added_sets_1 || added_sets_2)
3404 int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3405 combine_extras++;
3407 if (GET_CODE (newpat) == PARALLEL)
3409 rtvec old = XVEC (newpat, 0);
3410 total_sets = XVECLEN (newpat, 0) + extra_sets;
3411 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3412 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3413 sizeof (old->elem[0]) * old->num_elem);
3415 else
3417 rtx old = newpat;
3418 total_sets = 1 + extra_sets;
3419 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3420 XVECEXP (newpat, 0, 0) = old;
3423 if (added_sets_0)
3424 XVECEXP (newpat, 0, --total_sets) = i0pat;
3426 if (added_sets_1)
3428 rtx t = i1pat;
3429 if (i0_feeds_i1_n)
3430 t = subst (t, i0dest, i0src_copy ? i0src_copy : i0src, 0, 0, 0);
3432 XVECEXP (newpat, 0, --total_sets) = t;
3434 if (added_sets_2)
3436 rtx t = i2pat;
3437 if (i1_feeds_i2_n)
3438 t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, 0, 0,
3439 i0_feeds_i1_n && i0dest_in_i0src);
3440 if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3441 t = subst (t, i0dest, i0src_copy2 ? i0src_copy2 : i0src, 0, 0, 0);
3443 XVECEXP (newpat, 0, --total_sets) = t;
3447 validate_replacement:
3449 /* Note which hard regs this insn has as inputs. */
3450 mark_used_regs_combine (newpat);
3452 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3453 consider splitting this pattern, we might need these clobbers. */
3454 if (i1 && GET_CODE (newpat) == PARALLEL
3455 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3457 int len = XVECLEN (newpat, 0);
3459 newpat_vec_with_clobbers = rtvec_alloc (len);
3460 for (i = 0; i < len; i++)
3461 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3464 /* We have recognized nothing yet. */
3465 insn_code_number = -1;
3467 /* See if this is a PARALLEL of two SETs where one SET's destination is
3468 a register that is unused and this isn't marked as an instruction that
3469 might trap in an EH region. In that case, we just need the other SET.
3470 We prefer this over the PARALLEL.
3472 This can occur when simplifying a divmod insn. We *must* test for this
3473 case here because the code below that splits two independent SETs doesn't
3474 handle this case correctly when it updates the register status.
3476 It's pointless doing this if we originally had two sets, one from
3477 i3, and one from i2. Combining then splitting the parallel results
3478 in the original i2 again plus an invalid insn (which we delete).
3479 The net effect is only to move instructions around, which makes
3480 debug info less accurate. */
3482 if (!(added_sets_2 && i1 == 0)
3483 && is_parallel_of_n_reg_sets (newpat, 2)
3484 && asm_noperands (newpat) < 0)
3486 rtx set0 = XVECEXP (newpat, 0, 0);
3487 rtx set1 = XVECEXP (newpat, 0, 1);
3488 rtx oldpat = newpat;
3490 if (((REG_P (SET_DEST (set1))
3491 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3492 || (GET_CODE (SET_DEST (set1)) == SUBREG
3493 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3494 && insn_nothrow_p (i3)
3495 && !side_effects_p (SET_SRC (set1)))
3497 newpat = set0;
3498 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3501 else if (((REG_P (SET_DEST (set0))
3502 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3503 || (GET_CODE (SET_DEST (set0)) == SUBREG
3504 && find_reg_note (i3, REG_UNUSED,
3505 SUBREG_REG (SET_DEST (set0)))))
3506 && insn_nothrow_p (i3)
3507 && !side_effects_p (SET_SRC (set0)))
3509 newpat = set1;
3510 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3512 if (insn_code_number >= 0)
3513 changed_i3_dest = 1;
3516 if (insn_code_number < 0)
3517 newpat = oldpat;
3520 /* Is the result of combination a valid instruction? */
3521 if (insn_code_number < 0)
3522 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3524 /* If we were combining three insns and the result is a simple SET
3525 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3526 insns. There are two ways to do this. It can be split using a
3527 machine-specific method (like when you have an addition of a large
3528 constant) or by combine in the function find_split_point. */
3530 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3531 && asm_noperands (newpat) < 0)
3533 rtx parallel, *split;
3534 rtx_insn *m_split_insn;
3536 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3537 use I2DEST as a scratch register will help. In the latter case,
3538 convert I2DEST to the mode of the source of NEWPAT if we can. */
3540 m_split_insn = combine_split_insns (newpat, i3);
3542 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3543 inputs of NEWPAT. */
3545 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3546 possible to try that as a scratch reg. This would require adding
3547 more code to make it work though. */
3549 if (m_split_insn == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3551 machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3553 /* ??? Reusing i2dest without resetting the reg_stat entry for it
3554 (temporarily, until we are committed to this instruction
3555 combination) does not work: for example, any call to nonzero_bits
3556 on the register (from a splitter in the MD file, for example)
3557 will get the old information, which is invalid.
3559 Since nowadays we can create registers during combine just fine,
3560 we should just create a new one here, not reuse i2dest. */
3562 /* First try to split using the original register as a
3563 scratch register. */
3564 parallel = gen_rtx_PARALLEL (VOIDmode,
3565 gen_rtvec (2, newpat,
3566 gen_rtx_CLOBBER (VOIDmode,
3567 i2dest)));
3568 m_split_insn = combine_split_insns (parallel, i3);
3570 /* If that didn't work, try changing the mode of I2DEST if
3571 we can. */
3572 if (m_split_insn == 0
3573 && new_mode != GET_MODE (i2dest)
3574 && new_mode != VOIDmode
3575 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3577 machine_mode old_mode = GET_MODE (i2dest);
3578 rtx ni2dest;
3580 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3581 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3582 else
3584 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3585 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3588 parallel = (gen_rtx_PARALLEL
3589 (VOIDmode,
3590 gen_rtvec (2, newpat,
3591 gen_rtx_CLOBBER (VOIDmode,
3592 ni2dest))));
3593 m_split_insn = combine_split_insns (parallel, i3);
3595 if (m_split_insn == 0
3596 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3598 struct undo *buf;
3600 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3601 buf = undobuf.undos;
3602 undobuf.undos = buf->next;
3603 buf->next = undobuf.frees;
3604 undobuf.frees = buf;
3608 i2scratch = m_split_insn != 0;
3611 /* If recog_for_combine has discarded clobbers, try to use them
3612 again for the split. */
3613 if (m_split_insn == 0 && newpat_vec_with_clobbers)
3615 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3616 m_split_insn = combine_split_insns (parallel, i3);
3619 if (m_split_insn && NEXT_INSN (m_split_insn) == NULL_RTX)
3621 rtx m_split_pat = PATTERN (m_split_insn);
3622 insn_code_number = recog_for_combine (&m_split_pat, i3, &new_i3_notes);
3623 if (insn_code_number >= 0)
3624 newpat = m_split_pat;
3626 else if (m_split_insn && NEXT_INSN (NEXT_INSN (m_split_insn)) == NULL_RTX
3627 && (next_nonnote_nondebug_insn (i2) == i3
3628 || ! use_crosses_set_p (PATTERN (m_split_insn), DF_INSN_LUID (i2))))
3630 rtx i2set, i3set;
3631 rtx newi3pat = PATTERN (NEXT_INSN (m_split_insn));
3632 newi2pat = PATTERN (m_split_insn);
3634 i3set = single_set (NEXT_INSN (m_split_insn));
3635 i2set = single_set (m_split_insn);
3637 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3639 /* If I2 or I3 has multiple SETs, we won't know how to track
3640 register status, so don't use these insns. If I2's destination
3641 is used between I2 and I3, we also can't use these insns. */
3643 if (i2_code_number >= 0 && i2set && i3set
3644 && (next_nonnote_nondebug_insn (i2) == i3
3645 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3646 insn_code_number = recog_for_combine (&newi3pat, i3,
3647 &new_i3_notes);
3648 if (insn_code_number >= 0)
3649 newpat = newi3pat;
3651 /* It is possible that both insns now set the destination of I3.
3652 If so, we must show an extra use of it. */
3654 if (insn_code_number >= 0)
3656 rtx new_i3_dest = SET_DEST (i3set);
3657 rtx new_i2_dest = SET_DEST (i2set);
3659 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3660 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3661 || GET_CODE (new_i3_dest) == SUBREG)
3662 new_i3_dest = XEXP (new_i3_dest, 0);
3664 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3665 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3666 || GET_CODE (new_i2_dest) == SUBREG)
3667 new_i2_dest = XEXP (new_i2_dest, 0);
3669 if (REG_P (new_i3_dest)
3670 && REG_P (new_i2_dest)
3671 && REGNO (new_i3_dest) == REGNO (new_i2_dest)
3672 && REGNO (new_i2_dest) < reg_n_sets_max)
3673 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3677 /* If we can split it and use I2DEST, go ahead and see if that
3678 helps things be recognized. Verify that none of the registers
3679 are set between I2 and I3. */
3680 if (insn_code_number < 0
3681 && (split = find_split_point (&newpat, i3, false)) != 0
3682 && (!HAVE_cc0 || REG_P (i2dest))
3683 /* We need I2DEST in the proper mode. If it is a hard register
3684 or the only use of a pseudo, we can change its mode.
3685 Make sure we don't change a hard register to have a mode that
3686 isn't valid for it, or change the number of registers. */
3687 && (GET_MODE (*split) == GET_MODE (i2dest)
3688 || GET_MODE (*split) == VOIDmode
3689 || can_change_dest_mode (i2dest, added_sets_2,
3690 GET_MODE (*split)))
3691 && (next_nonnote_nondebug_insn (i2) == i3
3692 || ! use_crosses_set_p (*split, DF_INSN_LUID (i2)))
3693 /* We can't overwrite I2DEST if its value is still used by
3694 NEWPAT. */
3695 && ! reg_referenced_p (i2dest, newpat))
3697 rtx newdest = i2dest;
3698 enum rtx_code split_code = GET_CODE (*split);
3699 machine_mode split_mode = GET_MODE (*split);
3700 bool subst_done = false;
3701 newi2pat = NULL_RTX;
3703 i2scratch = true;
3705 /* *SPLIT may be part of I2SRC, so make sure we have the
3706 original expression around for later debug processing.
3707 We should not need I2SRC any more in other cases. */
3708 if (MAY_HAVE_DEBUG_INSNS)
3709 i2src = copy_rtx (i2src);
3710 else
3711 i2src = NULL;
3713 /* Get NEWDEST as a register in the proper mode. We have already
3714 validated that we can do this. */
3715 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3717 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3718 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3719 else
3721 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3722 newdest = regno_reg_rtx[REGNO (i2dest)];
3726 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3727 an ASHIFT. This can occur if it was inside a PLUS and hence
3728 appeared to be a memory address. This is a kludge. */
3729 if (split_code == MULT
3730 && CONST_INT_P (XEXP (*split, 1))
3731 && INTVAL (XEXP (*split, 1)) > 0
3732 && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3734 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3735 XEXP (*split, 0), GEN_INT (i)));
3736 /* Update split_code because we may not have a multiply
3737 anymore. */
3738 split_code = GET_CODE (*split);
3741 /* Similarly for (plus (mult FOO (const_int pow2))). */
3742 if (split_code == PLUS
3743 && GET_CODE (XEXP (*split, 0)) == MULT
3744 && CONST_INT_P (XEXP (XEXP (*split, 0), 1))
3745 && INTVAL (XEXP (XEXP (*split, 0), 1)) > 0
3746 && (i = exact_log2 (UINTVAL (XEXP (XEXP (*split, 0), 1)))) >= 0)
3748 rtx nsplit = XEXP (*split, 0);
3749 SUBST (XEXP (*split, 0), gen_rtx_ASHIFT (GET_MODE (nsplit),
3750 XEXP (nsplit, 0), GEN_INT (i)));
3751 /* Update split_code because we may not have a multiply
3752 anymore. */
3753 split_code = GET_CODE (*split);
3756 #ifdef INSN_SCHEDULING
3757 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3758 be written as a ZERO_EXTEND. */
3759 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3761 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3762 what it really is. */
3763 if (load_extend_op (GET_MODE (SUBREG_REG (*split)))
3764 == SIGN_EXTEND)
3765 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3766 SUBREG_REG (*split)));
3767 else
3768 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3769 SUBREG_REG (*split)));
3771 #endif
3773 /* Attempt to split binary operators using arithmetic identities. */
3774 if (BINARY_P (SET_SRC (newpat))
3775 && split_mode == GET_MODE (SET_SRC (newpat))
3776 && ! side_effects_p (SET_SRC (newpat)))
3778 rtx setsrc = SET_SRC (newpat);
3779 machine_mode mode = GET_MODE (setsrc);
3780 enum rtx_code code = GET_CODE (setsrc);
3781 rtx src_op0 = XEXP (setsrc, 0);
3782 rtx src_op1 = XEXP (setsrc, 1);
3784 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3785 if (rtx_equal_p (src_op0, src_op1))
3787 newi2pat = gen_rtx_SET (newdest, src_op0);
3788 SUBST (XEXP (setsrc, 0), newdest);
3789 SUBST (XEXP (setsrc, 1), newdest);
3790 subst_done = true;
3792 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3793 else if ((code == PLUS || code == MULT)
3794 && GET_CODE (src_op0) == code
3795 && GET_CODE (XEXP (src_op0, 0)) == code
3796 && (INTEGRAL_MODE_P (mode)
3797 || (FLOAT_MODE_P (mode)
3798 && flag_unsafe_math_optimizations)))
3800 rtx p = XEXP (XEXP (src_op0, 0), 0);
3801 rtx q = XEXP (XEXP (src_op0, 0), 1);
3802 rtx r = XEXP (src_op0, 1);
3803 rtx s = src_op1;
3805 /* Split both "((X op Y) op X) op Y" and
3806 "((X op Y) op Y) op X" as "T op T" where T is
3807 "X op Y". */
3808 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3809 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3811 newi2pat = gen_rtx_SET (newdest, XEXP (src_op0, 0));
3812 SUBST (XEXP (setsrc, 0), newdest);
3813 SUBST (XEXP (setsrc, 1), newdest);
3814 subst_done = true;
3816 /* Split "((X op X) op Y) op Y)" as "T op T" where
3817 T is "X op Y". */
3818 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3820 rtx tmp = simplify_gen_binary (code, mode, p, r);
3821 newi2pat = gen_rtx_SET (newdest, tmp);
3822 SUBST (XEXP (setsrc, 0), newdest);
3823 SUBST (XEXP (setsrc, 1), newdest);
3824 subst_done = true;
3829 if (!subst_done)
3831 newi2pat = gen_rtx_SET (newdest, *split);
3832 SUBST (*split, newdest);
3835 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3837 /* recog_for_combine might have added CLOBBERs to newi2pat.
3838 Make sure NEWPAT does not depend on the clobbered regs. */
3839 if (GET_CODE (newi2pat) == PARALLEL)
3840 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3841 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3843 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3844 if (reg_overlap_mentioned_p (reg, newpat))
3846 undo_all ();
3847 return 0;
3851 /* If the split point was a MULT and we didn't have one before,
3852 don't use one now. */
3853 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3854 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3858 /* Check for a case where we loaded from memory in a narrow mode and
3859 then sign extended it, but we need both registers. In that case,
3860 we have a PARALLEL with both loads from the same memory location.
3861 We can split this into a load from memory followed by a register-register
3862 copy. This saves at least one insn, more if register allocation can
3863 eliminate the copy.
3865 We cannot do this if the destination of the first assignment is a
3866 condition code register or cc0. We eliminate this case by making sure
3867 the SET_DEST and SET_SRC have the same mode.
3869 We cannot do this if the destination of the second assignment is
3870 a register that we have already assumed is zero-extended. Similarly
3871 for a SUBREG of such a register. */
3873 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3874 && GET_CODE (newpat) == PARALLEL
3875 && XVECLEN (newpat, 0) == 2
3876 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3877 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3878 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3879 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3880 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3881 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3882 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3883 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3884 DF_INSN_LUID (i2))
3885 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3886 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3887 && ! (temp_expr = SET_DEST (XVECEXP (newpat, 0, 1)),
3888 (REG_P (temp_expr)
3889 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3890 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < BITS_PER_WORD
3891 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < HOST_BITS_PER_INT
3892 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3893 != GET_MODE_MASK (word_mode))))
3894 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3895 && (temp_expr = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3896 (REG_P (temp_expr)
3897 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3898 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < BITS_PER_WORD
3899 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < HOST_BITS_PER_INT
3900 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3901 != GET_MODE_MASK (word_mode)))))
3902 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3903 SET_SRC (XVECEXP (newpat, 0, 1)))
3904 && ! find_reg_note (i3, REG_UNUSED,
3905 SET_DEST (XVECEXP (newpat, 0, 0))))
3907 rtx ni2dest;
3909 newi2pat = XVECEXP (newpat, 0, 0);
3910 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3911 newpat = XVECEXP (newpat, 0, 1);
3912 SUBST (SET_SRC (newpat),
3913 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3914 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3916 if (i2_code_number >= 0)
3917 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3919 if (insn_code_number >= 0)
3920 swap_i2i3 = 1;
3923 /* Similarly, check for a case where we have a PARALLEL of two independent
3924 SETs but we started with three insns. In this case, we can do the sets
3925 as two separate insns. This case occurs when some SET allows two
3926 other insns to combine, but the destination of that SET is still live.
3928 Also do this if we started with two insns and (at least) one of the
3929 resulting sets is a noop; this noop will be deleted later. */
3931 else if (insn_code_number < 0 && asm_noperands (newpat) < 0
3932 && GET_CODE (newpat) == PARALLEL
3933 && XVECLEN (newpat, 0) == 2
3934 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3935 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3936 && (i1 || set_noop_p (XVECEXP (newpat, 0, 0))
3937 || set_noop_p (XVECEXP (newpat, 0, 1)))
3938 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
3939 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
3940 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3941 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3942 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3943 XVECEXP (newpat, 0, 0))
3944 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
3945 XVECEXP (newpat, 0, 1))
3946 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
3947 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
3949 rtx set0 = XVECEXP (newpat, 0, 0);
3950 rtx set1 = XVECEXP (newpat, 0, 1);
3952 /* Normally, it doesn't matter which of the two is done first,
3953 but the one that references cc0 can't be the second, and
3954 one which uses any regs/memory set in between i2 and i3 can't
3955 be first. The PARALLEL might also have been pre-existing in i3,
3956 so we need to make sure that we won't wrongly hoist a SET to i2
3957 that would conflict with a death note present in there. */
3958 if (!use_crosses_set_p (SET_SRC (set1), DF_INSN_LUID (i2))
3959 && !(REG_P (SET_DEST (set1))
3960 && find_reg_note (i2, REG_DEAD, SET_DEST (set1)))
3961 && !(GET_CODE (SET_DEST (set1)) == SUBREG
3962 && find_reg_note (i2, REG_DEAD,
3963 SUBREG_REG (SET_DEST (set1))))
3964 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set0))
3965 /* If I3 is a jump, ensure that set0 is a jump so that
3966 we do not create invalid RTL. */
3967 && (!JUMP_P (i3) || SET_DEST (set0) == pc_rtx)
3970 newi2pat = set1;
3971 newpat = set0;
3973 else if (!use_crosses_set_p (SET_SRC (set0), DF_INSN_LUID (i2))
3974 && !(REG_P (SET_DEST (set0))
3975 && find_reg_note (i2, REG_DEAD, SET_DEST (set0)))
3976 && !(GET_CODE (SET_DEST (set0)) == SUBREG
3977 && find_reg_note (i2, REG_DEAD,
3978 SUBREG_REG (SET_DEST (set0))))
3979 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set1))
3980 /* If I3 is a jump, ensure that set1 is a jump so that
3981 we do not create invalid RTL. */
3982 && (!JUMP_P (i3) || SET_DEST (set1) == pc_rtx)
3985 newi2pat = set0;
3986 newpat = set1;
3988 else
3990 undo_all ();
3991 return 0;
3994 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3996 if (i2_code_number >= 0)
3998 /* recog_for_combine might have added CLOBBERs to newi2pat.
3999 Make sure NEWPAT does not depend on the clobbered regs. */
4000 if (GET_CODE (newi2pat) == PARALLEL)
4002 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
4003 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
4005 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
4006 if (reg_overlap_mentioned_p (reg, newpat))
4008 undo_all ();
4009 return 0;
4014 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
4018 /* If it still isn't recognized, fail and change things back the way they
4019 were. */
4020 if ((insn_code_number < 0
4021 /* Is the result a reasonable ASM_OPERANDS? */
4022 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
4024 undo_all ();
4025 return 0;
4028 /* If we had to change another insn, make sure it is valid also. */
4029 if (undobuf.other_insn)
4031 CLEAR_HARD_REG_SET (newpat_used_regs);
4033 other_pat = PATTERN (undobuf.other_insn);
4034 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
4035 &new_other_notes);
4037 if (other_code_number < 0 && ! check_asm_operands (other_pat))
4039 undo_all ();
4040 return 0;
4044 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
4045 they are adjacent to each other or not. */
4046 if (HAVE_cc0)
4048 rtx_insn *p = prev_nonnote_insn (i3);
4049 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
4050 && sets_cc0_p (newi2pat))
4052 undo_all ();
4053 return 0;
4057 /* Only allow this combination if insn_rtx_costs reports that the
4058 replacement instructions are cheaper than the originals. */
4059 if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
4061 undo_all ();
4062 return 0;
4065 if (MAY_HAVE_DEBUG_INSNS)
4067 struct undo *undo;
4069 for (undo = undobuf.undos; undo; undo = undo->next)
4070 if (undo->kind == UNDO_MODE)
4072 rtx reg = *undo->where.r;
4073 machine_mode new_mode = GET_MODE (reg);
4074 machine_mode old_mode = undo->old_contents.m;
4076 /* Temporarily revert mode back. */
4077 adjust_reg_mode (reg, old_mode);
4079 if (reg == i2dest && i2scratch)
4081 /* If we used i2dest as a scratch register with a
4082 different mode, substitute it for the original
4083 i2src while its original mode is temporarily
4084 restored, and then clear i2scratch so that we don't
4085 do it again later. */
4086 propagate_for_debug (i2, last_combined_insn, reg, i2src,
4087 this_basic_block);
4088 i2scratch = false;
4089 /* Put back the new mode. */
4090 adjust_reg_mode (reg, new_mode);
4092 else
4094 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
4095 rtx_insn *first, *last;
4097 if (reg == i2dest)
4099 first = i2;
4100 last = last_combined_insn;
4102 else
4104 first = i3;
4105 last = undobuf.other_insn;
4106 gcc_assert (last);
4107 if (DF_INSN_LUID (last)
4108 < DF_INSN_LUID (last_combined_insn))
4109 last = last_combined_insn;
4112 /* We're dealing with a reg that changed mode but not
4113 meaning, so we want to turn it into a subreg for
4114 the new mode. However, because of REG sharing and
4115 because its mode had already changed, we have to do
4116 it in two steps. First, replace any debug uses of
4117 reg, with its original mode temporarily restored,
4118 with this copy we have created; then, replace the
4119 copy with the SUBREG of the original shared reg,
4120 once again changed to the new mode. */
4121 propagate_for_debug (first, last, reg, tempreg,
4122 this_basic_block);
4123 adjust_reg_mode (reg, new_mode);
4124 propagate_for_debug (first, last, tempreg,
4125 lowpart_subreg (old_mode, reg, new_mode),
4126 this_basic_block);
4131 /* If we will be able to accept this, we have made a
4132 change to the destination of I3. This requires us to
4133 do a few adjustments. */
4135 if (changed_i3_dest)
4137 PATTERN (i3) = newpat;
4138 adjust_for_new_dest (i3);
4141 /* We now know that we can do this combination. Merge the insns and
4142 update the status of registers and LOG_LINKS. */
4144 if (undobuf.other_insn)
4146 rtx note, next;
4148 PATTERN (undobuf.other_insn) = other_pat;
4150 /* If any of the notes in OTHER_INSN were REG_DEAD or REG_UNUSED,
4151 ensure that they are still valid. Then add any non-duplicate
4152 notes added by recog_for_combine. */
4153 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
4155 next = XEXP (note, 1);
4157 if ((REG_NOTE_KIND (note) == REG_DEAD
4158 && !reg_referenced_p (XEXP (note, 0),
4159 PATTERN (undobuf.other_insn)))
4160 ||(REG_NOTE_KIND (note) == REG_UNUSED
4161 && !reg_set_p (XEXP (note, 0),
4162 PATTERN (undobuf.other_insn)))
4163 /* Simply drop equal note since it may be no longer valid
4164 for other_insn. It may be possible to record that CC
4165 register is changed and only discard those notes, but
4166 in practice it's unnecessary complication and doesn't
4167 give any meaningful improvement.
4169 See PR78559. */
4170 || REG_NOTE_KIND (note) == REG_EQUAL
4171 || REG_NOTE_KIND (note) == REG_EQUIV)
4172 remove_note (undobuf.other_insn, note);
4175 distribute_notes (new_other_notes, undobuf.other_insn,
4176 undobuf.other_insn, NULL, NULL_RTX, NULL_RTX,
4177 NULL_RTX);
4180 if (swap_i2i3)
4182 rtx_insn *insn;
4183 struct insn_link *link;
4184 rtx ni2dest;
4186 /* I3 now uses what used to be its destination and which is now
4187 I2's destination. This requires us to do a few adjustments. */
4188 PATTERN (i3) = newpat;
4189 adjust_for_new_dest (i3);
4191 /* We need a LOG_LINK from I3 to I2. But we used to have one,
4192 so we still will.
4194 However, some later insn might be using I2's dest and have
4195 a LOG_LINK pointing at I3. We must remove this link.
4196 The simplest way to remove the link is to point it at I1,
4197 which we know will be a NOTE. */
4199 /* newi2pat is usually a SET here; however, recog_for_combine might
4200 have added some clobbers. */
4201 if (GET_CODE (newi2pat) == PARALLEL)
4202 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
4203 else
4204 ni2dest = SET_DEST (newi2pat);
4206 for (insn = NEXT_INSN (i3);
4207 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4208 || insn != BB_HEAD (this_basic_block->next_bb));
4209 insn = NEXT_INSN (insn))
4211 if (NONDEBUG_INSN_P (insn)
4212 && reg_referenced_p (ni2dest, PATTERN (insn)))
4214 FOR_EACH_LOG_LINK (link, insn)
4215 if (link->insn == i3)
4216 link->insn = i1;
4218 break;
4224 rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
4225 struct insn_link *i3links, *i2links, *i1links = 0, *i0links = 0;
4226 rtx midnotes = 0;
4227 int from_luid;
4228 /* Compute which registers we expect to eliminate. newi2pat may be setting
4229 either i3dest or i2dest, so we must check it. */
4230 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
4231 || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
4232 || !i2dest_killed
4233 ? 0 : i2dest);
4234 /* For i1, we need to compute both local elimination and global
4235 elimination information with respect to newi2pat because i1dest
4236 may be the same as i3dest, in which case newi2pat may be setting
4237 i1dest. Global information is used when distributing REG_DEAD
4238 note for i2 and i3, in which case it does matter if newi2pat sets
4239 i1dest or not.
4241 Local information is used when distributing REG_DEAD note for i1,
4242 in which case it doesn't matter if newi2pat sets i1dest or not.
4243 See PR62151, if we have four insns combination:
4244 i0: r0 <- i0src
4245 i1: r1 <- i1src (using r0)
4246 REG_DEAD (r0)
4247 i2: r0 <- i2src (using r1)
4248 i3: r3 <- i3src (using r0)
4249 ix: using r0
4250 From i1's point of view, r0 is eliminated, no matter if it is set
4251 by newi2pat or not. In other words, REG_DEAD info for r0 in i1
4252 should be discarded.
4254 Note local information only affects cases in forms like "I1->I2->I3",
4255 "I0->I1->I2->I3" or "I0&I1->I2, I2->I3". For other cases like
4256 "I0->I1, I1&I2->I3" or "I1&I2->I3", newi2pat won't set i1dest or
4257 i0dest anyway. */
4258 rtx local_elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
4259 || !i1dest_killed
4260 ? 0 : i1dest);
4261 rtx elim_i1 = (local_elim_i1 == 0
4262 || (newi2pat && reg_set_p (i1dest, newi2pat))
4263 ? 0 : i1dest);
4264 /* Same case as i1. */
4265 rtx local_elim_i0 = (i0 == 0 || i0dest_in_i0src || !i0dest_killed
4266 ? 0 : i0dest);
4267 rtx elim_i0 = (local_elim_i0 == 0
4268 || (newi2pat && reg_set_p (i0dest, newi2pat))
4269 ? 0 : i0dest);
4271 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
4272 clear them. */
4273 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
4274 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
4275 if (i1)
4276 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
4277 if (i0)
4278 i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
4280 /* Ensure that we do not have something that should not be shared but
4281 occurs multiple times in the new insns. Check this by first
4282 resetting all the `used' flags and then copying anything is shared. */
4284 reset_used_flags (i3notes);
4285 reset_used_flags (i2notes);
4286 reset_used_flags (i1notes);
4287 reset_used_flags (i0notes);
4288 reset_used_flags (newpat);
4289 reset_used_flags (newi2pat);
4290 if (undobuf.other_insn)
4291 reset_used_flags (PATTERN (undobuf.other_insn));
4293 i3notes = copy_rtx_if_shared (i3notes);
4294 i2notes = copy_rtx_if_shared (i2notes);
4295 i1notes = copy_rtx_if_shared (i1notes);
4296 i0notes = copy_rtx_if_shared (i0notes);
4297 newpat = copy_rtx_if_shared (newpat);
4298 newi2pat = copy_rtx_if_shared (newi2pat);
4299 if (undobuf.other_insn)
4300 reset_used_flags (PATTERN (undobuf.other_insn));
4302 INSN_CODE (i3) = insn_code_number;
4303 PATTERN (i3) = newpat;
4305 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
4307 for (rtx link = CALL_INSN_FUNCTION_USAGE (i3); link;
4308 link = XEXP (link, 1))
4310 if (substed_i2)
4312 /* I2SRC must still be meaningful at this point. Some
4313 splitting operations can invalidate I2SRC, but those
4314 operations do not apply to calls. */
4315 gcc_assert (i2src);
4316 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4317 i2dest, i2src);
4319 if (substed_i1)
4320 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4321 i1dest, i1src);
4322 if (substed_i0)
4323 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4324 i0dest, i0src);
4328 if (undobuf.other_insn)
4329 INSN_CODE (undobuf.other_insn) = other_code_number;
4331 /* We had one special case above where I2 had more than one set and
4332 we replaced a destination of one of those sets with the destination
4333 of I3. In that case, we have to update LOG_LINKS of insns later
4334 in this basic block. Note that this (expensive) case is rare.
4336 Also, in this case, we must pretend that all REG_NOTEs for I2
4337 actually came from I3, so that REG_UNUSED notes from I2 will be
4338 properly handled. */
4340 if (i3_subst_into_i2)
4342 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4343 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4344 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4345 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4346 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4347 && ! find_reg_note (i2, REG_UNUSED,
4348 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4349 for (temp_insn = NEXT_INSN (i2);
4350 temp_insn
4351 && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4352 || BB_HEAD (this_basic_block) != temp_insn);
4353 temp_insn = NEXT_INSN (temp_insn))
4354 if (temp_insn != i3 && NONDEBUG_INSN_P (temp_insn))
4355 FOR_EACH_LOG_LINK (link, temp_insn)
4356 if (link->insn == i2)
4357 link->insn = i3;
4359 if (i3notes)
4361 rtx link = i3notes;
4362 while (XEXP (link, 1))
4363 link = XEXP (link, 1);
4364 XEXP (link, 1) = i2notes;
4366 else
4367 i3notes = i2notes;
4368 i2notes = 0;
4371 LOG_LINKS (i3) = NULL;
4372 REG_NOTES (i3) = 0;
4373 LOG_LINKS (i2) = NULL;
4374 REG_NOTES (i2) = 0;
4376 if (newi2pat)
4378 if (MAY_HAVE_DEBUG_INSNS && i2scratch)
4379 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4380 this_basic_block);
4381 INSN_CODE (i2) = i2_code_number;
4382 PATTERN (i2) = newi2pat;
4384 else
4386 if (MAY_HAVE_DEBUG_INSNS && i2src)
4387 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4388 this_basic_block);
4389 SET_INSN_DELETED (i2);
4392 if (i1)
4394 LOG_LINKS (i1) = NULL;
4395 REG_NOTES (i1) = 0;
4396 if (MAY_HAVE_DEBUG_INSNS)
4397 propagate_for_debug (i1, last_combined_insn, i1dest, i1src,
4398 this_basic_block);
4399 SET_INSN_DELETED (i1);
4402 if (i0)
4404 LOG_LINKS (i0) = NULL;
4405 REG_NOTES (i0) = 0;
4406 if (MAY_HAVE_DEBUG_INSNS)
4407 propagate_for_debug (i0, last_combined_insn, i0dest, i0src,
4408 this_basic_block);
4409 SET_INSN_DELETED (i0);
4412 /* Get death notes for everything that is now used in either I3 or
4413 I2 and used to die in a previous insn. If we built two new
4414 patterns, move from I1 to I2 then I2 to I3 so that we get the
4415 proper movement on registers that I2 modifies. */
4417 if (i0)
4418 from_luid = DF_INSN_LUID (i0);
4419 else if (i1)
4420 from_luid = DF_INSN_LUID (i1);
4421 else
4422 from_luid = DF_INSN_LUID (i2);
4423 if (newi2pat)
4424 move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4425 move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4427 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4428 if (i3notes)
4429 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL,
4430 elim_i2, elim_i1, elim_i0);
4431 if (i2notes)
4432 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL,
4433 elim_i2, elim_i1, elim_i0);
4434 if (i1notes)
4435 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL,
4436 elim_i2, local_elim_i1, local_elim_i0);
4437 if (i0notes)
4438 distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL,
4439 elim_i2, elim_i1, local_elim_i0);
4440 if (midnotes)
4441 distribute_notes (midnotes, NULL, i3, newi2pat ? i2 : NULL,
4442 elim_i2, elim_i1, elim_i0);
4444 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4445 know these are REG_UNUSED and want them to go to the desired insn,
4446 so we always pass it as i3. */
4448 if (newi2pat && new_i2_notes)
4449 distribute_notes (new_i2_notes, i2, i2, NULL, NULL_RTX, NULL_RTX,
4450 NULL_RTX);
4452 if (new_i3_notes)
4453 distribute_notes (new_i3_notes, i3, i3, NULL, NULL_RTX, NULL_RTX,
4454 NULL_RTX);
4456 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4457 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4458 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4459 in that case, it might delete I2. Similarly for I2 and I1.
4460 Show an additional death due to the REG_DEAD note we make here. If
4461 we discard it in distribute_notes, we will decrement it again. */
4463 if (i3dest_killed)
4465 rtx new_note = alloc_reg_note (REG_DEAD, i3dest_killed, NULL_RTX);
4466 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4467 distribute_notes (new_note, NULL, i2, NULL, elim_i2,
4468 elim_i1, elim_i0);
4469 else
4470 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4471 elim_i2, elim_i1, elim_i0);
4474 if (i2dest_in_i2src)
4476 rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4477 if (newi2pat && reg_set_p (i2dest, newi2pat))
4478 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4479 NULL_RTX, NULL_RTX);
4480 else
4481 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4482 NULL_RTX, NULL_RTX, NULL_RTX);
4485 if (i1dest_in_i1src)
4487 rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4488 if (newi2pat && reg_set_p (i1dest, newi2pat))
4489 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4490 NULL_RTX, NULL_RTX);
4491 else
4492 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4493 NULL_RTX, NULL_RTX, NULL_RTX);
4496 if (i0dest_in_i0src)
4498 rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4499 if (newi2pat && reg_set_p (i0dest, newi2pat))
4500 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4501 NULL_RTX, NULL_RTX);
4502 else
4503 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4504 NULL_RTX, NULL_RTX, NULL_RTX);
4507 distribute_links (i3links);
4508 distribute_links (i2links);
4509 distribute_links (i1links);
4510 distribute_links (i0links);
4512 if (REG_P (i2dest))
4514 struct insn_link *link;
4515 rtx_insn *i2_insn = 0;
4516 rtx i2_val = 0, set;
4518 /* The insn that used to set this register doesn't exist, and
4519 this life of the register may not exist either. See if one of
4520 I3's links points to an insn that sets I2DEST. If it does,
4521 that is now the last known value for I2DEST. If we don't update
4522 this and I2 set the register to a value that depended on its old
4523 contents, we will get confused. If this insn is used, thing
4524 will be set correctly in combine_instructions. */
4525 FOR_EACH_LOG_LINK (link, i3)
4526 if ((set = single_set (link->insn)) != 0
4527 && rtx_equal_p (i2dest, SET_DEST (set)))
4528 i2_insn = link->insn, i2_val = SET_SRC (set);
4530 record_value_for_reg (i2dest, i2_insn, i2_val);
4532 /* If the reg formerly set in I2 died only once and that was in I3,
4533 zero its use count so it won't make `reload' do any work. */
4534 if (! added_sets_2
4535 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4536 && ! i2dest_in_i2src
4537 && REGNO (i2dest) < reg_n_sets_max)
4538 INC_REG_N_SETS (REGNO (i2dest), -1);
4541 if (i1 && REG_P (i1dest))
4543 struct insn_link *link;
4544 rtx_insn *i1_insn = 0;
4545 rtx i1_val = 0, set;
4547 FOR_EACH_LOG_LINK (link, i3)
4548 if ((set = single_set (link->insn)) != 0
4549 && rtx_equal_p (i1dest, SET_DEST (set)))
4550 i1_insn = link->insn, i1_val = SET_SRC (set);
4552 record_value_for_reg (i1dest, i1_insn, i1_val);
4554 if (! added_sets_1
4555 && ! i1dest_in_i1src
4556 && REGNO (i1dest) < reg_n_sets_max)
4557 INC_REG_N_SETS (REGNO (i1dest), -1);
4560 if (i0 && REG_P (i0dest))
4562 struct insn_link *link;
4563 rtx_insn *i0_insn = 0;
4564 rtx i0_val = 0, set;
4566 FOR_EACH_LOG_LINK (link, i3)
4567 if ((set = single_set (link->insn)) != 0
4568 && rtx_equal_p (i0dest, SET_DEST (set)))
4569 i0_insn = link->insn, i0_val = SET_SRC (set);
4571 record_value_for_reg (i0dest, i0_insn, i0_val);
4573 if (! added_sets_0
4574 && ! i0dest_in_i0src
4575 && REGNO (i0dest) < reg_n_sets_max)
4576 INC_REG_N_SETS (REGNO (i0dest), -1);
4579 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4580 been made to this insn. The order is important, because newi2pat
4581 can affect nonzero_bits of newpat. */
4582 if (newi2pat)
4583 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4584 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4587 if (undobuf.other_insn != NULL_RTX)
4589 if (dump_file)
4591 fprintf (dump_file, "modifying other_insn ");
4592 dump_insn_slim (dump_file, undobuf.other_insn);
4594 df_insn_rescan (undobuf.other_insn);
4597 if (i0 && !(NOTE_P (i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4599 if (dump_file)
4601 fprintf (dump_file, "modifying insn i0 ");
4602 dump_insn_slim (dump_file, i0);
4604 df_insn_rescan (i0);
4607 if (i1 && !(NOTE_P (i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4609 if (dump_file)
4611 fprintf (dump_file, "modifying insn i1 ");
4612 dump_insn_slim (dump_file, i1);
4614 df_insn_rescan (i1);
4617 if (i2 && !(NOTE_P (i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4619 if (dump_file)
4621 fprintf (dump_file, "modifying insn i2 ");
4622 dump_insn_slim (dump_file, i2);
4624 df_insn_rescan (i2);
4627 if (i3 && !(NOTE_P (i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4629 if (dump_file)
4631 fprintf (dump_file, "modifying insn i3 ");
4632 dump_insn_slim (dump_file, i3);
4634 df_insn_rescan (i3);
4637 /* Set new_direct_jump_p if a new return or simple jump instruction
4638 has been created. Adjust the CFG accordingly. */
4639 if (returnjump_p (i3) || any_uncondjump_p (i3))
4641 *new_direct_jump_p = 1;
4642 mark_jump_label (PATTERN (i3), i3, 0);
4643 update_cfg_for_uncondjump (i3);
4646 if (undobuf.other_insn != NULL_RTX
4647 && (returnjump_p (undobuf.other_insn)
4648 || any_uncondjump_p (undobuf.other_insn)))
4650 *new_direct_jump_p = 1;
4651 update_cfg_for_uncondjump (undobuf.other_insn);
4654 if (GET_CODE (PATTERN (i3)) == TRAP_IF
4655 && XEXP (PATTERN (i3), 0) == const1_rtx)
4657 basic_block bb = BLOCK_FOR_INSN (i3);
4658 gcc_assert (bb);
4659 remove_edge (split_block (bb, i3));
4660 emit_barrier_after_bb (bb);
4661 *new_direct_jump_p = 1;
4664 if (undobuf.other_insn
4665 && GET_CODE (PATTERN (undobuf.other_insn)) == TRAP_IF
4666 && XEXP (PATTERN (undobuf.other_insn), 0) == const1_rtx)
4668 basic_block bb = BLOCK_FOR_INSN (undobuf.other_insn);
4669 gcc_assert (bb);
4670 remove_edge (split_block (bb, undobuf.other_insn));
4671 emit_barrier_after_bb (bb);
4672 *new_direct_jump_p = 1;
4675 /* A noop might also need cleaning up of CFG, if it comes from the
4676 simplification of a jump. */
4677 if (JUMP_P (i3)
4678 && GET_CODE (newpat) == SET
4679 && SET_SRC (newpat) == pc_rtx
4680 && SET_DEST (newpat) == pc_rtx)
4682 *new_direct_jump_p = 1;
4683 update_cfg_for_uncondjump (i3);
4686 if (undobuf.other_insn != NULL_RTX
4687 && JUMP_P (undobuf.other_insn)
4688 && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4689 && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4690 && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4692 *new_direct_jump_p = 1;
4693 update_cfg_for_uncondjump (undobuf.other_insn);
4696 combine_successes++;
4697 undo_commit ();
4699 if (added_links_insn
4700 && (newi2pat == 0 || DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i2))
4701 && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i3))
4702 return added_links_insn;
4703 else
4704 return newi2pat ? i2 : i3;
4707 /* Get a marker for undoing to the current state. */
4709 static void *
4710 get_undo_marker (void)
4712 return undobuf.undos;
4715 /* Undo the modifications up to the marker. */
4717 static void
4718 undo_to_marker (void *marker)
4720 struct undo *undo, *next;
4722 for (undo = undobuf.undos; undo != marker; undo = next)
4724 gcc_assert (undo);
4726 next = undo->next;
4727 switch (undo->kind)
4729 case UNDO_RTX:
4730 *undo->where.r = undo->old_contents.r;
4731 break;
4732 case UNDO_INT:
4733 *undo->where.i = undo->old_contents.i;
4734 break;
4735 case UNDO_MODE:
4736 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4737 break;
4738 case UNDO_LINKS:
4739 *undo->where.l = undo->old_contents.l;
4740 break;
4741 default:
4742 gcc_unreachable ();
4745 undo->next = undobuf.frees;
4746 undobuf.frees = undo;
4749 undobuf.undos = (struct undo *) marker;
4752 /* Undo all the modifications recorded in undobuf. */
4754 static void
4755 undo_all (void)
4757 undo_to_marker (0);
4760 /* We've committed to accepting the changes we made. Move all
4761 of the undos to the free list. */
4763 static void
4764 undo_commit (void)
4766 struct undo *undo, *next;
4768 for (undo = undobuf.undos; undo; undo = next)
4770 next = undo->next;
4771 undo->next = undobuf.frees;
4772 undobuf.frees = undo;
4774 undobuf.undos = 0;
4777 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4778 where we have an arithmetic expression and return that point. LOC will
4779 be inside INSN.
4781 try_combine will call this function to see if an insn can be split into
4782 two insns. */
4784 static rtx *
4785 find_split_point (rtx *loc, rtx_insn *insn, bool set_src)
4787 rtx x = *loc;
4788 enum rtx_code code = GET_CODE (x);
4789 rtx *split;
4790 unsigned HOST_WIDE_INT len = 0;
4791 HOST_WIDE_INT pos = 0;
4792 int unsignedp = 0;
4793 rtx inner = NULL_RTX;
4794 scalar_int_mode inner_mode;
4796 /* First special-case some codes. */
4797 switch (code)
4799 case SUBREG:
4800 #ifdef INSN_SCHEDULING
4801 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4802 point. */
4803 if (MEM_P (SUBREG_REG (x)))
4804 return loc;
4805 #endif
4806 return find_split_point (&SUBREG_REG (x), insn, false);
4808 case MEM:
4809 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4810 using LO_SUM and HIGH. */
4811 if (HAVE_lo_sum && (GET_CODE (XEXP (x, 0)) == CONST
4812 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF))
4814 machine_mode address_mode = get_address_mode (x);
4816 SUBST (XEXP (x, 0),
4817 gen_rtx_LO_SUM (address_mode,
4818 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4819 XEXP (x, 0)));
4820 return &XEXP (XEXP (x, 0), 0);
4823 /* If we have a PLUS whose second operand is a constant and the
4824 address is not valid, perhaps will can split it up using
4825 the machine-specific way to split large constants. We use
4826 the first pseudo-reg (one of the virtual regs) as a placeholder;
4827 it will not remain in the result. */
4828 if (GET_CODE (XEXP (x, 0)) == PLUS
4829 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4830 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4831 MEM_ADDR_SPACE (x)))
4833 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4834 rtx_insn *seq = combine_split_insns (gen_rtx_SET (reg, XEXP (x, 0)),
4835 subst_insn);
4837 /* This should have produced two insns, each of which sets our
4838 placeholder. If the source of the second is a valid address,
4839 we can make put both sources together and make a split point
4840 in the middle. */
4842 if (seq
4843 && NEXT_INSN (seq) != NULL_RTX
4844 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4845 && NONJUMP_INSN_P (seq)
4846 && GET_CODE (PATTERN (seq)) == SET
4847 && SET_DEST (PATTERN (seq)) == reg
4848 && ! reg_mentioned_p (reg,
4849 SET_SRC (PATTERN (seq)))
4850 && NONJUMP_INSN_P (NEXT_INSN (seq))
4851 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4852 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4853 && memory_address_addr_space_p
4854 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4855 MEM_ADDR_SPACE (x)))
4857 rtx src1 = SET_SRC (PATTERN (seq));
4858 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4860 /* Replace the placeholder in SRC2 with SRC1. If we can
4861 find where in SRC2 it was placed, that can become our
4862 split point and we can replace this address with SRC2.
4863 Just try two obvious places. */
4865 src2 = replace_rtx (src2, reg, src1);
4866 split = 0;
4867 if (XEXP (src2, 0) == src1)
4868 split = &XEXP (src2, 0);
4869 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
4870 && XEXP (XEXP (src2, 0), 0) == src1)
4871 split = &XEXP (XEXP (src2, 0), 0);
4873 if (split)
4875 SUBST (XEXP (x, 0), src2);
4876 return split;
4880 /* If that didn't work, perhaps the first operand is complex and
4881 needs to be computed separately, so make a split point there.
4882 This will occur on machines that just support REG + CONST
4883 and have a constant moved through some previous computation. */
4885 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
4886 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4887 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4888 return &XEXP (XEXP (x, 0), 0);
4891 /* If we have a PLUS whose first operand is complex, try computing it
4892 separately by making a split there. */
4893 if (GET_CODE (XEXP (x, 0)) == PLUS
4894 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4895 MEM_ADDR_SPACE (x))
4896 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
4897 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4898 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4899 return &XEXP (XEXP (x, 0), 0);
4900 break;
4902 case SET:
4903 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
4904 ZERO_EXTRACT, the most likely reason why this doesn't match is that
4905 we need to put the operand into a register. So split at that
4906 point. */
4908 if (SET_DEST (x) == cc0_rtx
4909 && GET_CODE (SET_SRC (x)) != COMPARE
4910 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
4911 && !OBJECT_P (SET_SRC (x))
4912 && ! (GET_CODE (SET_SRC (x)) == SUBREG
4913 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
4914 return &SET_SRC (x);
4916 /* See if we can split SET_SRC as it stands. */
4917 split = find_split_point (&SET_SRC (x), insn, true);
4918 if (split && split != &SET_SRC (x))
4919 return split;
4921 /* See if we can split SET_DEST as it stands. */
4922 split = find_split_point (&SET_DEST (x), insn, false);
4923 if (split && split != &SET_DEST (x))
4924 return split;
4926 /* See if this is a bitfield assignment with everything constant. If
4927 so, this is an IOR of an AND, so split it into that. */
4928 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
4929 && HWI_COMPUTABLE_MODE_P (GET_MODE (XEXP (SET_DEST (x), 0)))
4930 && CONST_INT_P (XEXP (SET_DEST (x), 1))
4931 && CONST_INT_P (XEXP (SET_DEST (x), 2))
4932 && CONST_INT_P (SET_SRC (x))
4933 && ((INTVAL (XEXP (SET_DEST (x), 1))
4934 + INTVAL (XEXP (SET_DEST (x), 2)))
4935 <= GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0))))
4936 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
4938 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
4939 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
4940 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
4941 rtx dest = XEXP (SET_DEST (x), 0);
4942 machine_mode mode = GET_MODE (dest);
4943 unsigned HOST_WIDE_INT mask
4944 = (HOST_WIDE_INT_1U << len) - 1;
4945 rtx or_mask;
4947 if (BITS_BIG_ENDIAN)
4948 pos = GET_MODE_PRECISION (mode) - len - pos;
4950 or_mask = gen_int_mode (src << pos, mode);
4951 if (src == mask)
4952 SUBST (SET_SRC (x),
4953 simplify_gen_binary (IOR, mode, dest, or_mask));
4954 else
4956 rtx negmask = gen_int_mode (~(mask << pos), mode);
4957 SUBST (SET_SRC (x),
4958 simplify_gen_binary (IOR, mode,
4959 simplify_gen_binary (AND, mode,
4960 dest, negmask),
4961 or_mask));
4964 SUBST (SET_DEST (x), dest);
4966 split = find_split_point (&SET_SRC (x), insn, true);
4967 if (split && split != &SET_SRC (x))
4968 return split;
4971 /* Otherwise, see if this is an operation that we can split into two.
4972 If so, try to split that. */
4973 code = GET_CODE (SET_SRC (x));
4975 switch (code)
4977 case AND:
4978 /* If we are AND'ing with a large constant that is only a single
4979 bit and the result is only being used in a context where we
4980 need to know if it is zero or nonzero, replace it with a bit
4981 extraction. This will avoid the large constant, which might
4982 have taken more than one insn to make. If the constant were
4983 not a valid argument to the AND but took only one insn to make,
4984 this is no worse, but if it took more than one insn, it will
4985 be better. */
4987 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4988 && REG_P (XEXP (SET_SRC (x), 0))
4989 && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
4990 && REG_P (SET_DEST (x))
4991 && (split = find_single_use (SET_DEST (x), insn, NULL)) != 0
4992 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
4993 && XEXP (*split, 0) == SET_DEST (x)
4994 && XEXP (*split, 1) == const0_rtx)
4996 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
4997 XEXP (SET_SRC (x), 0),
4998 pos, NULL_RTX, 1, 1, 0, 0);
4999 if (extraction != 0)
5001 SUBST (SET_SRC (x), extraction);
5002 return find_split_point (loc, insn, false);
5005 break;
5007 case NE:
5008 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
5009 is known to be on, this can be converted into a NEG of a shift. */
5010 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
5011 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
5012 && 1 <= (pos = exact_log2
5013 (nonzero_bits (XEXP (SET_SRC (x), 0),
5014 GET_MODE (XEXP (SET_SRC (x), 0))))))
5016 machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
5018 SUBST (SET_SRC (x),
5019 gen_rtx_NEG (mode,
5020 gen_rtx_LSHIFTRT (mode,
5021 XEXP (SET_SRC (x), 0),
5022 GEN_INT (pos))));
5024 split = find_split_point (&SET_SRC (x), insn, true);
5025 if (split && split != &SET_SRC (x))
5026 return split;
5028 break;
5030 case SIGN_EXTEND:
5031 inner = XEXP (SET_SRC (x), 0);
5033 /* We can't optimize if either mode is a partial integer
5034 mode as we don't know how many bits are significant
5035 in those modes. */
5036 if (!is_int_mode (GET_MODE (inner), &inner_mode)
5037 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
5038 break;
5040 pos = 0;
5041 len = GET_MODE_PRECISION (inner_mode);
5042 unsignedp = 0;
5043 break;
5045 case SIGN_EXTRACT:
5046 case ZERO_EXTRACT:
5047 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
5048 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
5050 inner = XEXP (SET_SRC (x), 0);
5051 len = INTVAL (XEXP (SET_SRC (x), 1));
5052 pos = INTVAL (XEXP (SET_SRC (x), 2));
5054 if (BITS_BIG_ENDIAN)
5055 pos = GET_MODE_PRECISION (GET_MODE (inner)) - len - pos;
5056 unsignedp = (code == ZERO_EXTRACT);
5058 break;
5060 default:
5061 break;
5064 if (len && pos >= 0
5065 && pos + len <= GET_MODE_PRECISION (GET_MODE (inner)))
5067 machine_mode mode = GET_MODE (SET_SRC (x));
5069 /* For unsigned, we have a choice of a shift followed by an
5070 AND or two shifts. Use two shifts for field sizes where the
5071 constant might be too large. We assume here that we can
5072 always at least get 8-bit constants in an AND insn, which is
5073 true for every current RISC. */
5075 if (unsignedp && len <= 8)
5077 unsigned HOST_WIDE_INT mask
5078 = (HOST_WIDE_INT_1U << len) - 1;
5079 SUBST (SET_SRC (x),
5080 gen_rtx_AND (mode,
5081 gen_rtx_LSHIFTRT
5082 (mode, gen_lowpart (mode, inner),
5083 GEN_INT (pos)),
5084 gen_int_mode (mask, mode)));
5086 split = find_split_point (&SET_SRC (x), insn, true);
5087 if (split && split != &SET_SRC (x))
5088 return split;
5090 else
5092 SUBST (SET_SRC (x),
5093 gen_rtx_fmt_ee
5094 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
5095 gen_rtx_ASHIFT (mode,
5096 gen_lowpart (mode, inner),
5097 GEN_INT (GET_MODE_PRECISION (mode)
5098 - len - pos)),
5099 GEN_INT (GET_MODE_PRECISION (mode) - len)));
5101 split = find_split_point (&SET_SRC (x), insn, true);
5102 if (split && split != &SET_SRC (x))
5103 return split;
5107 /* See if this is a simple operation with a constant as the second
5108 operand. It might be that this constant is out of range and hence
5109 could be used as a split point. */
5110 if (BINARY_P (SET_SRC (x))
5111 && CONSTANT_P (XEXP (SET_SRC (x), 1))
5112 && (OBJECT_P (XEXP (SET_SRC (x), 0))
5113 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
5114 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
5115 return &XEXP (SET_SRC (x), 1);
5117 /* Finally, see if this is a simple operation with its first operand
5118 not in a register. The operation might require this operand in a
5119 register, so return it as a split point. We can always do this
5120 because if the first operand were another operation, we would have
5121 already found it as a split point. */
5122 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
5123 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
5124 return &XEXP (SET_SRC (x), 0);
5126 return 0;
5128 case AND:
5129 case IOR:
5130 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
5131 it is better to write this as (not (ior A B)) so we can split it.
5132 Similarly for IOR. */
5133 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
5135 SUBST (*loc,
5136 gen_rtx_NOT (GET_MODE (x),
5137 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
5138 GET_MODE (x),
5139 XEXP (XEXP (x, 0), 0),
5140 XEXP (XEXP (x, 1), 0))));
5141 return find_split_point (loc, insn, set_src);
5144 /* Many RISC machines have a large set of logical insns. If the
5145 second operand is a NOT, put it first so we will try to split the
5146 other operand first. */
5147 if (GET_CODE (XEXP (x, 1)) == NOT)
5149 rtx tem = XEXP (x, 0);
5150 SUBST (XEXP (x, 0), XEXP (x, 1));
5151 SUBST (XEXP (x, 1), tem);
5153 break;
5155 case PLUS:
5156 case MINUS:
5157 /* Canonicalization can produce (minus A (mult B C)), where C is a
5158 constant. It may be better to try splitting (plus (mult B -C) A)
5159 instead if this isn't a multiply by a power of two. */
5160 if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
5161 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
5162 && !pow2p_hwi (INTVAL (XEXP (XEXP (x, 1), 1))))
5164 machine_mode mode = GET_MODE (x);
5165 unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
5166 HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
5167 SUBST (*loc, gen_rtx_PLUS (mode,
5168 gen_rtx_MULT (mode,
5169 XEXP (XEXP (x, 1), 0),
5170 gen_int_mode (other_int,
5171 mode)),
5172 XEXP (x, 0)));
5173 return find_split_point (loc, insn, set_src);
5176 /* Split at a multiply-accumulate instruction. However if this is
5177 the SET_SRC, we likely do not have such an instruction and it's
5178 worthless to try this split. */
5179 if (!set_src
5180 && (GET_CODE (XEXP (x, 0)) == MULT
5181 || (GET_CODE (XEXP (x, 0)) == ASHIFT
5182 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)))
5183 return loc;
5185 default:
5186 break;
5189 /* Otherwise, select our actions depending on our rtx class. */
5190 switch (GET_RTX_CLASS (code))
5192 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
5193 case RTX_TERNARY:
5194 split = find_split_point (&XEXP (x, 2), insn, false);
5195 if (split)
5196 return split;
5197 /* fall through */
5198 case RTX_BIN_ARITH:
5199 case RTX_COMM_ARITH:
5200 case RTX_COMPARE:
5201 case RTX_COMM_COMPARE:
5202 split = find_split_point (&XEXP (x, 1), insn, false);
5203 if (split)
5204 return split;
5205 /* fall through */
5206 case RTX_UNARY:
5207 /* Some machines have (and (shift ...) ...) insns. If X is not
5208 an AND, but XEXP (X, 0) is, use it as our split point. */
5209 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
5210 return &XEXP (x, 0);
5212 split = find_split_point (&XEXP (x, 0), insn, false);
5213 if (split)
5214 return split;
5215 return loc;
5217 default:
5218 /* Otherwise, we don't have a split point. */
5219 return 0;
5223 /* Throughout X, replace FROM with TO, and return the result.
5224 The result is TO if X is FROM;
5225 otherwise the result is X, but its contents may have been modified.
5226 If they were modified, a record was made in undobuf so that
5227 undo_all will (among other things) return X to its original state.
5229 If the number of changes necessary is too much to record to undo,
5230 the excess changes are not made, so the result is invalid.
5231 The changes already made can still be undone.
5232 undobuf.num_undo is incremented for such changes, so by testing that
5233 the caller can tell whether the result is valid.
5235 `n_occurrences' is incremented each time FROM is replaced.
5237 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
5239 IN_COND is nonzero if we are at the top level of a condition.
5241 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
5242 by copying if `n_occurrences' is nonzero. */
5244 static rtx
5245 subst (rtx x, rtx from, rtx to, int in_dest, int in_cond, int unique_copy)
5247 enum rtx_code code = GET_CODE (x);
5248 machine_mode op0_mode = VOIDmode;
5249 const char *fmt;
5250 int len, i;
5251 rtx new_rtx;
5253 /* Two expressions are equal if they are identical copies of a shared
5254 RTX or if they are both registers with the same register number
5255 and mode. */
5257 #define COMBINE_RTX_EQUAL_P(X,Y) \
5258 ((X) == (Y) \
5259 || (REG_P (X) && REG_P (Y) \
5260 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
5262 /* Do not substitute into clobbers of regs -- this will never result in
5263 valid RTL. */
5264 if (GET_CODE (x) == CLOBBER && REG_P (XEXP (x, 0)))
5265 return x;
5267 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
5269 n_occurrences++;
5270 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
5273 /* If X and FROM are the same register but different modes, they
5274 will not have been seen as equal above. However, the log links code
5275 will make a LOG_LINKS entry for that case. If we do nothing, we
5276 will try to rerecognize our original insn and, when it succeeds,
5277 we will delete the feeding insn, which is incorrect.
5279 So force this insn not to match in this (rare) case. */
5280 if (! in_dest && code == REG && REG_P (from)
5281 && reg_overlap_mentioned_p (x, from))
5282 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
5284 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
5285 of which may contain things that can be combined. */
5286 if (code != MEM && code != LO_SUM && OBJECT_P (x))
5287 return x;
5289 /* It is possible to have a subexpression appear twice in the insn.
5290 Suppose that FROM is a register that appears within TO.
5291 Then, after that subexpression has been scanned once by `subst',
5292 the second time it is scanned, TO may be found. If we were
5293 to scan TO here, we would find FROM within it and create a
5294 self-referent rtl structure which is completely wrong. */
5295 if (COMBINE_RTX_EQUAL_P (x, to))
5296 return to;
5298 /* Parallel asm_operands need special attention because all of the
5299 inputs are shared across the arms. Furthermore, unsharing the
5300 rtl results in recognition failures. Failure to handle this case
5301 specially can result in circular rtl.
5303 Solve this by doing a normal pass across the first entry of the
5304 parallel, and only processing the SET_DESTs of the subsequent
5305 entries. Ug. */
5307 if (code == PARALLEL
5308 && GET_CODE (XVECEXP (x, 0, 0)) == SET
5309 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
5311 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, 0, unique_copy);
5313 /* If this substitution failed, this whole thing fails. */
5314 if (GET_CODE (new_rtx) == CLOBBER
5315 && XEXP (new_rtx, 0) == const0_rtx)
5316 return new_rtx;
5318 SUBST (XVECEXP (x, 0, 0), new_rtx);
5320 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
5322 rtx dest = SET_DEST (XVECEXP (x, 0, i));
5324 if (!REG_P (dest)
5325 && GET_CODE (dest) != CC0
5326 && GET_CODE (dest) != PC)
5328 new_rtx = subst (dest, from, to, 0, 0, unique_copy);
5330 /* If this substitution failed, this whole thing fails. */
5331 if (GET_CODE (new_rtx) == CLOBBER
5332 && XEXP (new_rtx, 0) == const0_rtx)
5333 return new_rtx;
5335 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
5339 else
5341 len = GET_RTX_LENGTH (code);
5342 fmt = GET_RTX_FORMAT (code);
5344 /* We don't need to process a SET_DEST that is a register, CC0,
5345 or PC, so set up to skip this common case. All other cases
5346 where we want to suppress replacing something inside a
5347 SET_SRC are handled via the IN_DEST operand. */
5348 if (code == SET
5349 && (REG_P (SET_DEST (x))
5350 || GET_CODE (SET_DEST (x)) == CC0
5351 || GET_CODE (SET_DEST (x)) == PC))
5352 fmt = "ie";
5354 /* Trying to simplify the operands of a widening MULT is not likely
5355 to create RTL matching a machine insn. */
5356 if (code == MULT
5357 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
5358 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
5359 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
5360 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
5361 && REG_P (XEXP (XEXP (x, 0), 0))
5362 && REG_P (XEXP (XEXP (x, 1), 0))
5363 && from == to)
5364 return x;
5367 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5368 constant. */
5369 if (fmt[0] == 'e')
5370 op0_mode = GET_MODE (XEXP (x, 0));
5372 for (i = 0; i < len; i++)
5374 if (fmt[i] == 'E')
5376 int j;
5377 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5379 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5381 new_rtx = (unique_copy && n_occurrences
5382 ? copy_rtx (to) : to);
5383 n_occurrences++;
5385 else
5387 new_rtx = subst (XVECEXP (x, i, j), from, to, 0, 0,
5388 unique_copy);
5390 /* If this substitution failed, this whole thing
5391 fails. */
5392 if (GET_CODE (new_rtx) == CLOBBER
5393 && XEXP (new_rtx, 0) == const0_rtx)
5394 return new_rtx;
5397 SUBST (XVECEXP (x, i, j), new_rtx);
5400 else if (fmt[i] == 'e')
5402 /* If this is a register being set, ignore it. */
5403 new_rtx = XEXP (x, i);
5404 if (in_dest
5405 && i == 0
5406 && (((code == SUBREG || code == ZERO_EXTRACT)
5407 && REG_P (new_rtx))
5408 || code == STRICT_LOW_PART))
5411 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5413 /* In general, don't install a subreg involving two
5414 modes not tieable. It can worsen register
5415 allocation, and can even make invalid reload
5416 insns, since the reg inside may need to be copied
5417 from in the outside mode, and that may be invalid
5418 if it is an fp reg copied in integer mode.
5420 We allow two exceptions to this: It is valid if
5421 it is inside another SUBREG and the mode of that
5422 SUBREG and the mode of the inside of TO is
5423 tieable and it is valid if X is a SET that copies
5424 FROM to CC0. */
5426 if (GET_CODE (to) == SUBREG
5427 && ! MODES_TIEABLE_P (GET_MODE (to),
5428 GET_MODE (SUBREG_REG (to)))
5429 && ! (code == SUBREG
5430 && MODES_TIEABLE_P (GET_MODE (x),
5431 GET_MODE (SUBREG_REG (to))))
5432 && (!HAVE_cc0
5433 || (! (code == SET
5434 && i == 1
5435 && XEXP (x, 0) == cc0_rtx))))
5436 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5438 if (code == SUBREG
5439 && REG_P (to)
5440 && REGNO (to) < FIRST_PSEUDO_REGISTER
5441 && simplify_subreg_regno (REGNO (to), GET_MODE (to),
5442 SUBREG_BYTE (x),
5443 GET_MODE (x)) < 0)
5444 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5446 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5447 n_occurrences++;
5449 else
5450 /* If we are in a SET_DEST, suppress most cases unless we
5451 have gone inside a MEM, in which case we want to
5452 simplify the address. We assume here that things that
5453 are actually part of the destination have their inner
5454 parts in the first expression. This is true for SUBREG,
5455 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5456 things aside from REG and MEM that should appear in a
5457 SET_DEST. */
5458 new_rtx = subst (XEXP (x, i), from, to,
5459 (((in_dest
5460 && (code == SUBREG || code == STRICT_LOW_PART
5461 || code == ZERO_EXTRACT))
5462 || code == SET)
5463 && i == 0),
5464 code == IF_THEN_ELSE && i == 0,
5465 unique_copy);
5467 /* If we found that we will have to reject this combination,
5468 indicate that by returning the CLOBBER ourselves, rather than
5469 an expression containing it. This will speed things up as
5470 well as prevent accidents where two CLOBBERs are considered
5471 to be equal, thus producing an incorrect simplification. */
5473 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5474 return new_rtx;
5476 if (GET_CODE (x) == SUBREG && CONST_SCALAR_INT_P (new_rtx))
5478 machine_mode mode = GET_MODE (x);
5480 x = simplify_subreg (GET_MODE (x), new_rtx,
5481 GET_MODE (SUBREG_REG (x)),
5482 SUBREG_BYTE (x));
5483 if (! x)
5484 x = gen_rtx_CLOBBER (mode, const0_rtx);
5486 else if (CONST_SCALAR_INT_P (new_rtx)
5487 && GET_CODE (x) == ZERO_EXTEND)
5489 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
5490 new_rtx, GET_MODE (XEXP (x, 0)));
5491 gcc_assert (x);
5493 else
5494 SUBST (XEXP (x, i), new_rtx);
5499 /* Check if we are loading something from the constant pool via float
5500 extension; in this case we would undo compress_float_constant
5501 optimization and degenerate constant load to an immediate value. */
5502 if (GET_CODE (x) == FLOAT_EXTEND
5503 && MEM_P (XEXP (x, 0))
5504 && MEM_READONLY_P (XEXP (x, 0)))
5506 rtx tmp = avoid_constant_pool_reference (x);
5507 if (x != tmp)
5508 return x;
5511 /* Try to simplify X. If the simplification changed the code, it is likely
5512 that further simplification will help, so loop, but limit the number
5513 of repetitions that will be performed. */
5515 for (i = 0; i < 4; i++)
5517 /* If X is sufficiently simple, don't bother trying to do anything
5518 with it. */
5519 if (code != CONST_INT && code != REG && code != CLOBBER)
5520 x = combine_simplify_rtx (x, op0_mode, in_dest, in_cond);
5522 if (GET_CODE (x) == code)
5523 break;
5525 code = GET_CODE (x);
5527 /* We no longer know the original mode of operand 0 since we
5528 have changed the form of X) */
5529 op0_mode = VOIDmode;
5532 return x;
5535 /* If X is a commutative operation whose operands are not in the canonical
5536 order, use substitutions to swap them. */
5538 static void
5539 maybe_swap_commutative_operands (rtx x)
5541 if (COMMUTATIVE_ARITH_P (x)
5542 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5544 rtx temp = XEXP (x, 0);
5545 SUBST (XEXP (x, 0), XEXP (x, 1));
5546 SUBST (XEXP (x, 1), temp);
5550 /* Simplify X, a piece of RTL. We just operate on the expression at the
5551 outer level; call `subst' to simplify recursively. Return the new
5552 expression.
5554 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5555 if we are inside a SET_DEST. IN_COND is nonzero if we are at the top level
5556 of a condition. */
5558 static rtx
5559 combine_simplify_rtx (rtx x, machine_mode op0_mode, int in_dest,
5560 int in_cond)
5562 enum rtx_code code = GET_CODE (x);
5563 machine_mode mode = GET_MODE (x);
5564 scalar_int_mode int_mode;
5565 rtx temp;
5566 int i;
5568 /* If this is a commutative operation, put a constant last and a complex
5569 expression first. We don't need to do this for comparisons here. */
5570 maybe_swap_commutative_operands (x);
5572 /* Try to fold this expression in case we have constants that weren't
5573 present before. */
5574 temp = 0;
5575 switch (GET_RTX_CLASS (code))
5577 case RTX_UNARY:
5578 if (op0_mode == VOIDmode)
5579 op0_mode = GET_MODE (XEXP (x, 0));
5580 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5581 break;
5582 case RTX_COMPARE:
5583 case RTX_COMM_COMPARE:
5585 machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5586 if (cmp_mode == VOIDmode)
5588 cmp_mode = GET_MODE (XEXP (x, 1));
5589 if (cmp_mode == VOIDmode)
5590 cmp_mode = op0_mode;
5592 temp = simplify_relational_operation (code, mode, cmp_mode,
5593 XEXP (x, 0), XEXP (x, 1));
5595 break;
5596 case RTX_COMM_ARITH:
5597 case RTX_BIN_ARITH:
5598 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5599 break;
5600 case RTX_BITFIELD_OPS:
5601 case RTX_TERNARY:
5602 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5603 XEXP (x, 1), XEXP (x, 2));
5604 break;
5605 default:
5606 break;
5609 if (temp)
5611 x = temp;
5612 code = GET_CODE (temp);
5613 op0_mode = VOIDmode;
5614 mode = GET_MODE (temp);
5617 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5618 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5619 things. Check for cases where both arms are testing the same
5620 condition.
5622 Don't do anything if all operands are very simple. */
5624 if ((BINARY_P (x)
5625 && ((!OBJECT_P (XEXP (x, 0))
5626 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5627 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5628 || (!OBJECT_P (XEXP (x, 1))
5629 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5630 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5631 || (UNARY_P (x)
5632 && (!OBJECT_P (XEXP (x, 0))
5633 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5634 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5636 rtx cond, true_rtx, false_rtx;
5638 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5639 if (cond != 0
5640 /* If everything is a comparison, what we have is highly unlikely
5641 to be simpler, so don't use it. */
5642 && ! (COMPARISON_P (x)
5643 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
5645 rtx cop1 = const0_rtx;
5646 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5648 if (cond_code == NE && COMPARISON_P (cond))
5649 return x;
5651 /* Simplify the alternative arms; this may collapse the true and
5652 false arms to store-flag values. Be careful to use copy_rtx
5653 here since true_rtx or false_rtx might share RTL with x as a
5654 result of the if_then_else_cond call above. */
5655 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5656 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5658 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5659 is unlikely to be simpler. */
5660 if (general_operand (true_rtx, VOIDmode)
5661 && general_operand (false_rtx, VOIDmode))
5663 enum rtx_code reversed;
5665 /* Restarting if we generate a store-flag expression will cause
5666 us to loop. Just drop through in this case. */
5668 /* If the result values are STORE_FLAG_VALUE and zero, we can
5669 just make the comparison operation. */
5670 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5671 x = simplify_gen_relational (cond_code, mode, VOIDmode,
5672 cond, cop1);
5673 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5674 && ((reversed = reversed_comparison_code_parts
5675 (cond_code, cond, cop1, NULL))
5676 != UNKNOWN))
5677 x = simplify_gen_relational (reversed, mode, VOIDmode,
5678 cond, cop1);
5680 /* Likewise, we can make the negate of a comparison operation
5681 if the result values are - STORE_FLAG_VALUE and zero. */
5682 else if (CONST_INT_P (true_rtx)
5683 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5684 && false_rtx == const0_rtx)
5685 x = simplify_gen_unary (NEG, mode,
5686 simplify_gen_relational (cond_code,
5687 mode, VOIDmode,
5688 cond, cop1),
5689 mode);
5690 else if (CONST_INT_P (false_rtx)
5691 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5692 && true_rtx == const0_rtx
5693 && ((reversed = reversed_comparison_code_parts
5694 (cond_code, cond, cop1, NULL))
5695 != UNKNOWN))
5696 x = simplify_gen_unary (NEG, mode,
5697 simplify_gen_relational (reversed,
5698 mode, VOIDmode,
5699 cond, cop1),
5700 mode);
5701 else
5702 return gen_rtx_IF_THEN_ELSE (mode,
5703 simplify_gen_relational (cond_code,
5704 mode,
5705 VOIDmode,
5706 cond,
5707 cop1),
5708 true_rtx, false_rtx);
5710 code = GET_CODE (x);
5711 op0_mode = VOIDmode;
5716 /* First see if we can apply the inverse distributive law. */
5717 if (code == PLUS || code == MINUS
5718 || code == AND || code == IOR || code == XOR)
5720 x = apply_distributive_law (x);
5721 code = GET_CODE (x);
5722 op0_mode = VOIDmode;
5725 /* If CODE is an associative operation not otherwise handled, see if we
5726 can associate some operands. This can win if they are constants or
5727 if they are logically related (i.e. (a & b) & a). */
5728 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5729 || code == AND || code == IOR || code == XOR
5730 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5731 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5732 || (flag_associative_math && FLOAT_MODE_P (mode))))
5734 if (GET_CODE (XEXP (x, 0)) == code)
5736 rtx other = XEXP (XEXP (x, 0), 0);
5737 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5738 rtx inner_op1 = XEXP (x, 1);
5739 rtx inner;
5741 /* Make sure we pass the constant operand if any as the second
5742 one if this is a commutative operation. */
5743 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5744 std::swap (inner_op0, inner_op1);
5745 inner = simplify_binary_operation (code == MINUS ? PLUS
5746 : code == DIV ? MULT
5747 : code,
5748 mode, inner_op0, inner_op1);
5750 /* For commutative operations, try the other pair if that one
5751 didn't simplify. */
5752 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5754 other = XEXP (XEXP (x, 0), 1);
5755 inner = simplify_binary_operation (code, mode,
5756 XEXP (XEXP (x, 0), 0),
5757 XEXP (x, 1));
5760 if (inner)
5761 return simplify_gen_binary (code, mode, other, inner);
5765 /* A little bit of algebraic simplification here. */
5766 switch (code)
5768 case MEM:
5769 /* Ensure that our address has any ASHIFTs converted to MULT in case
5770 address-recognizing predicates are called later. */
5771 temp = make_compound_operation (XEXP (x, 0), MEM);
5772 SUBST (XEXP (x, 0), temp);
5773 break;
5775 case SUBREG:
5776 if (op0_mode == VOIDmode)
5777 op0_mode = GET_MODE (SUBREG_REG (x));
5779 /* See if this can be moved to simplify_subreg. */
5780 if (CONSTANT_P (SUBREG_REG (x))
5781 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5782 /* Don't call gen_lowpart if the inner mode
5783 is VOIDmode and we cannot simplify it, as SUBREG without
5784 inner mode is invalid. */
5785 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5786 || gen_lowpart_common (mode, SUBREG_REG (x))))
5787 return gen_lowpart (mode, SUBREG_REG (x));
5789 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5790 break;
5792 rtx temp;
5793 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5794 SUBREG_BYTE (x));
5795 if (temp)
5796 return temp;
5798 /* If op is known to have all lower bits zero, the result is zero. */
5799 if (!in_dest
5800 && SCALAR_INT_MODE_P (mode)
5801 && SCALAR_INT_MODE_P (op0_mode)
5802 && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (op0_mode)
5803 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5804 && HWI_COMPUTABLE_MODE_P (op0_mode)
5805 && (nonzero_bits (SUBREG_REG (x), op0_mode)
5806 & GET_MODE_MASK (mode)) == 0)
5807 return CONST0_RTX (mode);
5810 /* Don't change the mode of the MEM if that would change the meaning
5811 of the address. */
5812 if (MEM_P (SUBREG_REG (x))
5813 && (MEM_VOLATILE_P (SUBREG_REG (x))
5814 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0),
5815 MEM_ADDR_SPACE (SUBREG_REG (x)))))
5816 return gen_rtx_CLOBBER (mode, const0_rtx);
5818 /* Note that we cannot do any narrowing for non-constants since
5819 we might have been counting on using the fact that some bits were
5820 zero. We now do this in the SET. */
5822 break;
5824 case NEG:
5825 temp = expand_compound_operation (XEXP (x, 0));
5827 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5828 replaced by (lshiftrt X C). This will convert
5829 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5831 if (GET_CODE (temp) == ASHIFTRT
5832 && CONST_INT_P (XEXP (temp, 1))
5833 && INTVAL (XEXP (temp, 1)) == GET_MODE_PRECISION (mode) - 1)
5834 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
5835 INTVAL (XEXP (temp, 1)));
5837 /* If X has only a single bit that might be nonzero, say, bit I, convert
5838 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5839 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5840 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5841 or a SUBREG of one since we'd be making the expression more
5842 complex if it was just a register. */
5844 if (!REG_P (temp)
5845 && ! (GET_CODE (temp) == SUBREG
5846 && REG_P (SUBREG_REG (temp)))
5847 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
5849 rtx temp1 = simplify_shift_const
5850 (NULL_RTX, ASHIFTRT, mode,
5851 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
5852 GET_MODE_PRECISION (mode) - 1 - i),
5853 GET_MODE_PRECISION (mode) - 1 - i);
5855 /* If all we did was surround TEMP with the two shifts, we
5856 haven't improved anything, so don't use it. Otherwise,
5857 we are better off with TEMP1. */
5858 if (GET_CODE (temp1) != ASHIFTRT
5859 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
5860 || XEXP (XEXP (temp1, 0), 0) != temp)
5861 return temp1;
5863 break;
5865 case TRUNCATE:
5866 /* We can't handle truncation to a partial integer mode here
5867 because we don't know the real bitsize of the partial
5868 integer mode. */
5869 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
5870 break;
5872 if (HWI_COMPUTABLE_MODE_P (mode))
5873 SUBST (XEXP (x, 0),
5874 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5875 GET_MODE_MASK (mode), 0));
5877 /* We can truncate a constant value and return it. */
5878 if (CONST_INT_P (XEXP (x, 0)))
5879 return gen_int_mode (INTVAL (XEXP (x, 0)), mode);
5881 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
5882 whose value is a comparison can be replaced with a subreg if
5883 STORE_FLAG_VALUE permits. */
5884 if (HWI_COMPUTABLE_MODE_P (mode)
5885 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
5886 && (temp = get_last_value (XEXP (x, 0)))
5887 && COMPARISON_P (temp))
5888 return gen_lowpart (mode, XEXP (x, 0));
5889 break;
5891 case CONST:
5892 /* (const (const X)) can become (const X). Do it this way rather than
5893 returning the inner CONST since CONST can be shared with a
5894 REG_EQUAL note. */
5895 if (GET_CODE (XEXP (x, 0)) == CONST)
5896 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
5897 break;
5899 case LO_SUM:
5900 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
5901 can add in an offset. find_split_point will split this address up
5902 again if it doesn't match. */
5903 if (HAVE_lo_sum && GET_CODE (XEXP (x, 0)) == HIGH
5904 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
5905 return XEXP (x, 1);
5906 break;
5908 case PLUS:
5909 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
5910 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
5911 bit-field and can be replaced by either a sign_extend or a
5912 sign_extract. The `and' may be a zero_extend and the two
5913 <c>, -<c> constants may be reversed. */
5914 if (GET_CODE (XEXP (x, 0)) == XOR
5915 && CONST_INT_P (XEXP (x, 1))
5916 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
5917 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
5918 && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
5919 || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
5920 && HWI_COMPUTABLE_MODE_P (mode)
5921 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
5922 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5923 && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
5924 == (HOST_WIDE_INT_1U << (i + 1)) - 1))
5925 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
5926 && (GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
5927 == (unsigned int) i + 1))))
5928 return simplify_shift_const
5929 (NULL_RTX, ASHIFTRT, mode,
5930 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5931 XEXP (XEXP (XEXP (x, 0), 0), 0),
5932 GET_MODE_PRECISION (mode) - (i + 1)),
5933 GET_MODE_PRECISION (mode) - (i + 1));
5935 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
5936 can become (ashiftrt (ashift (xor x 1) C) C) where C is
5937 the bitsize of the mode - 1. This allows simplification of
5938 "a = (b & 8) == 0;" */
5939 if (XEXP (x, 1) == constm1_rtx
5940 && !REG_P (XEXP (x, 0))
5941 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5942 && REG_P (SUBREG_REG (XEXP (x, 0))))
5943 && nonzero_bits (XEXP (x, 0), mode) == 1)
5944 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
5945 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5946 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
5947 GET_MODE_PRECISION (mode) - 1),
5948 GET_MODE_PRECISION (mode) - 1);
5950 /* If we are adding two things that have no bits in common, convert
5951 the addition into an IOR. This will often be further simplified,
5952 for example in cases like ((a & 1) + (a & 2)), which can
5953 become a & 3. */
5955 if (HWI_COMPUTABLE_MODE_P (mode)
5956 && (nonzero_bits (XEXP (x, 0), mode)
5957 & nonzero_bits (XEXP (x, 1), mode)) == 0)
5959 /* Try to simplify the expression further. */
5960 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
5961 temp = combine_simplify_rtx (tor, VOIDmode, in_dest, 0);
5963 /* If we could, great. If not, do not go ahead with the IOR
5964 replacement, since PLUS appears in many special purpose
5965 address arithmetic instructions. */
5966 if (GET_CODE (temp) != CLOBBER
5967 && (GET_CODE (temp) != IOR
5968 || ((XEXP (temp, 0) != XEXP (x, 0)
5969 || XEXP (temp, 1) != XEXP (x, 1))
5970 && (XEXP (temp, 0) != XEXP (x, 1)
5971 || XEXP (temp, 1) != XEXP (x, 0)))))
5972 return temp;
5975 /* Canonicalize x + x into x << 1. */
5976 if (GET_MODE_CLASS (mode) == MODE_INT
5977 && rtx_equal_p (XEXP (x, 0), XEXP (x, 1))
5978 && !side_effects_p (XEXP (x, 0)))
5979 return simplify_gen_binary (ASHIFT, mode, XEXP (x, 0), const1_rtx);
5981 break;
5983 case MINUS:
5984 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
5985 (and <foo> (const_int pow2-1)) */
5986 if (GET_CODE (XEXP (x, 1)) == AND
5987 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
5988 && pow2p_hwi (-UINTVAL (XEXP (XEXP (x, 1), 1)))
5989 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
5990 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
5991 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
5992 break;
5994 case MULT:
5995 /* If we have (mult (plus A B) C), apply the distributive law and then
5996 the inverse distributive law to see if things simplify. This
5997 occurs mostly in addresses, often when unrolling loops. */
5999 if (GET_CODE (XEXP (x, 0)) == PLUS)
6001 rtx result = distribute_and_simplify_rtx (x, 0);
6002 if (result)
6003 return result;
6006 /* Try simplify a*(b/c) as (a*b)/c. */
6007 if (FLOAT_MODE_P (mode) && flag_associative_math
6008 && GET_CODE (XEXP (x, 0)) == DIV)
6010 rtx tem = simplify_binary_operation (MULT, mode,
6011 XEXP (XEXP (x, 0), 0),
6012 XEXP (x, 1));
6013 if (tem)
6014 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
6016 break;
6018 case UDIV:
6019 /* If this is a divide by a power of two, treat it as a shift if
6020 its first operand is a shift. */
6021 if (CONST_INT_P (XEXP (x, 1))
6022 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
6023 && (GET_CODE (XEXP (x, 0)) == ASHIFT
6024 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
6025 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
6026 || GET_CODE (XEXP (x, 0)) == ROTATE
6027 || GET_CODE (XEXP (x, 0)) == ROTATERT))
6028 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
6029 break;
6031 case EQ: case NE:
6032 case GT: case GTU: case GE: case GEU:
6033 case LT: case LTU: case LE: case LEU:
6034 case UNEQ: case LTGT:
6035 case UNGT: case UNGE:
6036 case UNLT: case UNLE:
6037 case UNORDERED: case ORDERED:
6038 /* If the first operand is a condition code, we can't do anything
6039 with it. */
6040 if (GET_CODE (XEXP (x, 0)) == COMPARE
6041 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
6042 && ! CC0_P (XEXP (x, 0))))
6044 rtx op0 = XEXP (x, 0);
6045 rtx op1 = XEXP (x, 1);
6046 enum rtx_code new_code;
6048 if (GET_CODE (op0) == COMPARE)
6049 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
6051 /* Simplify our comparison, if possible. */
6052 new_code = simplify_comparison (code, &op0, &op1);
6054 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
6055 if only the low-order bit is possibly nonzero in X (such as when
6056 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
6057 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
6058 known to be either 0 or -1, NE becomes a NEG and EQ becomes
6059 (plus X 1).
6061 Remove any ZERO_EXTRACT we made when thinking this was a
6062 comparison. It may now be simpler to use, e.g., an AND. If a
6063 ZERO_EXTRACT is indeed appropriate, it will be placed back by
6064 the call to make_compound_operation in the SET case.
6066 Don't apply these optimizations if the caller would
6067 prefer a comparison rather than a value.
6068 E.g., for the condition in an IF_THEN_ELSE most targets need
6069 an explicit comparison. */
6071 if (in_cond)
6074 else if (STORE_FLAG_VALUE == 1
6075 && new_code == NE
6076 && is_int_mode (mode, &int_mode)
6077 && op1 == const0_rtx
6078 && int_mode == GET_MODE (op0)
6079 && nonzero_bits (op0, int_mode) == 1)
6080 return gen_lowpart (int_mode,
6081 expand_compound_operation (op0));
6083 else if (STORE_FLAG_VALUE == 1
6084 && new_code == NE
6085 && is_int_mode (mode, &int_mode)
6086 && op1 == const0_rtx
6087 && int_mode == GET_MODE (op0)
6088 && (num_sign_bit_copies (op0, int_mode)
6089 == GET_MODE_PRECISION (int_mode)))
6091 op0 = expand_compound_operation (op0);
6092 return simplify_gen_unary (NEG, int_mode,
6093 gen_lowpart (int_mode, op0),
6094 int_mode);
6097 else if (STORE_FLAG_VALUE == 1
6098 && new_code == EQ
6099 && is_int_mode (mode, &int_mode)
6100 && op1 == const0_rtx
6101 && int_mode == GET_MODE (op0)
6102 && nonzero_bits (op0, int_mode) == 1)
6104 op0 = expand_compound_operation (op0);
6105 return simplify_gen_binary (XOR, int_mode,
6106 gen_lowpart (int_mode, op0),
6107 const1_rtx);
6110 else if (STORE_FLAG_VALUE == 1
6111 && new_code == EQ
6112 && is_int_mode (mode, &int_mode)
6113 && op1 == const0_rtx
6114 && int_mode == GET_MODE (op0)
6115 && (num_sign_bit_copies (op0, int_mode)
6116 == GET_MODE_PRECISION (int_mode)))
6118 op0 = expand_compound_operation (op0);
6119 return plus_constant (int_mode, gen_lowpart (int_mode, op0), 1);
6122 /* If STORE_FLAG_VALUE is -1, we have cases similar to
6123 those above. */
6124 if (in_cond)
6127 else if (STORE_FLAG_VALUE == -1
6128 && new_code == NE
6129 && is_int_mode (mode, &int_mode)
6130 && op1 == const0_rtx
6131 && int_mode == GET_MODE (op0)
6132 && (num_sign_bit_copies (op0, int_mode)
6133 == GET_MODE_PRECISION (int_mode)))
6134 return gen_lowpart (int_mode, expand_compound_operation (op0));
6136 else if (STORE_FLAG_VALUE == -1
6137 && new_code == NE
6138 && is_int_mode (mode, &int_mode)
6139 && op1 == const0_rtx
6140 && int_mode == GET_MODE (op0)
6141 && nonzero_bits (op0, int_mode) == 1)
6143 op0 = expand_compound_operation (op0);
6144 return simplify_gen_unary (NEG, int_mode,
6145 gen_lowpart (int_mode, op0),
6146 int_mode);
6149 else if (STORE_FLAG_VALUE == -1
6150 && new_code == EQ
6151 && is_int_mode (mode, &int_mode)
6152 && op1 == const0_rtx
6153 && int_mode == GET_MODE (op0)
6154 && (num_sign_bit_copies (op0, int_mode)
6155 == GET_MODE_PRECISION (int_mode)))
6157 op0 = expand_compound_operation (op0);
6158 return simplify_gen_unary (NOT, int_mode,
6159 gen_lowpart (int_mode, op0),
6160 int_mode);
6163 /* If X is 0/1, (eq X 0) is X-1. */
6164 else if (STORE_FLAG_VALUE == -1
6165 && new_code == EQ
6166 && is_int_mode (mode, &int_mode)
6167 && op1 == const0_rtx
6168 && int_mode == GET_MODE (op0)
6169 && nonzero_bits (op0, int_mode) == 1)
6171 op0 = expand_compound_operation (op0);
6172 return plus_constant (int_mode, gen_lowpart (int_mode, op0), -1);
6175 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
6176 one bit that might be nonzero, we can convert (ne x 0) to
6177 (ashift x c) where C puts the bit in the sign bit. Remove any
6178 AND with STORE_FLAG_VALUE when we are done, since we are only
6179 going to test the sign bit. */
6180 if (new_code == NE
6181 && is_int_mode (mode, &int_mode)
6182 && HWI_COMPUTABLE_MODE_P (int_mode)
6183 && val_signbit_p (int_mode, STORE_FLAG_VALUE)
6184 && op1 == const0_rtx
6185 && int_mode == GET_MODE (op0)
6186 && (i = exact_log2 (nonzero_bits (op0, int_mode))) >= 0)
6188 x = simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6189 expand_compound_operation (op0),
6190 GET_MODE_PRECISION (int_mode) - 1 - i);
6191 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
6192 return XEXP (x, 0);
6193 else
6194 return x;
6197 /* If the code changed, return a whole new comparison.
6198 We also need to avoid using SUBST in cases where
6199 simplify_comparison has widened a comparison with a CONST_INT,
6200 since in that case the wider CONST_INT may fail the sanity
6201 checks in do_SUBST. */
6202 if (new_code != code
6203 || (CONST_INT_P (op1)
6204 && GET_MODE (op0) != GET_MODE (XEXP (x, 0))
6205 && GET_MODE (op0) != GET_MODE (XEXP (x, 1))))
6206 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
6208 /* Otherwise, keep this operation, but maybe change its operands.
6209 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
6210 SUBST (XEXP (x, 0), op0);
6211 SUBST (XEXP (x, 1), op1);
6213 break;
6215 case IF_THEN_ELSE:
6216 return simplify_if_then_else (x);
6218 case ZERO_EXTRACT:
6219 case SIGN_EXTRACT:
6220 case ZERO_EXTEND:
6221 case SIGN_EXTEND:
6222 /* If we are processing SET_DEST, we are done. */
6223 if (in_dest)
6224 return x;
6226 return expand_compound_operation (x);
6228 case SET:
6229 return simplify_set (x);
6231 case AND:
6232 case IOR:
6233 return simplify_logical (x);
6235 case ASHIFT:
6236 case LSHIFTRT:
6237 case ASHIFTRT:
6238 case ROTATE:
6239 case ROTATERT:
6240 /* If this is a shift by a constant amount, simplify it. */
6241 if (CONST_INT_P (XEXP (x, 1)))
6242 return simplify_shift_const (x, code, mode, XEXP (x, 0),
6243 INTVAL (XEXP (x, 1)));
6245 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
6246 SUBST (XEXP (x, 1),
6247 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
6248 (HOST_WIDE_INT_1U
6249 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
6250 - 1,
6251 0));
6252 break;
6254 default:
6255 break;
6258 return x;
6261 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
6263 static rtx
6264 simplify_if_then_else (rtx x)
6266 machine_mode mode = GET_MODE (x);
6267 rtx cond = XEXP (x, 0);
6268 rtx true_rtx = XEXP (x, 1);
6269 rtx false_rtx = XEXP (x, 2);
6270 enum rtx_code true_code = GET_CODE (cond);
6271 int comparison_p = COMPARISON_P (cond);
6272 rtx temp;
6273 int i;
6274 enum rtx_code false_code;
6275 rtx reversed;
6276 scalar_int_mode int_mode;
6278 /* Simplify storing of the truth value. */
6279 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
6280 return simplify_gen_relational (true_code, mode, VOIDmode,
6281 XEXP (cond, 0), XEXP (cond, 1));
6283 /* Also when the truth value has to be reversed. */
6284 if (comparison_p
6285 && true_rtx == const0_rtx && false_rtx == const_true_rtx
6286 && (reversed = reversed_comparison (cond, mode)))
6287 return reversed;
6289 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
6290 in it is being compared against certain values. Get the true and false
6291 comparisons and see if that says anything about the value of each arm. */
6293 if (comparison_p
6294 && ((false_code = reversed_comparison_code (cond, NULL))
6295 != UNKNOWN)
6296 && REG_P (XEXP (cond, 0)))
6298 HOST_WIDE_INT nzb;
6299 rtx from = XEXP (cond, 0);
6300 rtx true_val = XEXP (cond, 1);
6301 rtx false_val = true_val;
6302 int swapped = 0;
6304 /* If FALSE_CODE is EQ, swap the codes and arms. */
6306 if (false_code == EQ)
6308 swapped = 1, true_code = EQ, false_code = NE;
6309 std::swap (true_rtx, false_rtx);
6312 /* If we are comparing against zero and the expression being tested has
6313 only a single bit that might be nonzero, that is its value when it is
6314 not equal to zero. Similarly if it is known to be -1 or 0. */
6316 if (true_code == EQ && true_val == const0_rtx
6317 && pow2p_hwi (nzb = nonzero_bits (from, GET_MODE (from))))
6319 false_code = EQ;
6320 false_val = gen_int_mode (nzb, GET_MODE (from));
6322 else if (true_code == EQ && true_val == const0_rtx
6323 && (num_sign_bit_copies (from, GET_MODE (from))
6324 == GET_MODE_PRECISION (GET_MODE (from))))
6326 false_code = EQ;
6327 false_val = constm1_rtx;
6330 /* Now simplify an arm if we know the value of the register in the
6331 branch and it is used in the arm. Be careful due to the potential
6332 of locally-shared RTL. */
6334 if (reg_mentioned_p (from, true_rtx))
6335 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
6336 from, true_val),
6337 pc_rtx, pc_rtx, 0, 0, 0);
6338 if (reg_mentioned_p (from, false_rtx))
6339 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
6340 from, false_val),
6341 pc_rtx, pc_rtx, 0, 0, 0);
6343 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
6344 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
6346 true_rtx = XEXP (x, 1);
6347 false_rtx = XEXP (x, 2);
6348 true_code = GET_CODE (cond);
6351 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
6352 reversed, do so to avoid needing two sets of patterns for
6353 subtract-and-branch insns. Similarly if we have a constant in the true
6354 arm, the false arm is the same as the first operand of the comparison, or
6355 the false arm is more complicated than the true arm. */
6357 if (comparison_p
6358 && reversed_comparison_code (cond, NULL) != UNKNOWN
6359 && (true_rtx == pc_rtx
6360 || (CONSTANT_P (true_rtx)
6361 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
6362 || true_rtx == const0_rtx
6363 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
6364 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
6365 && !OBJECT_P (false_rtx))
6366 || reg_mentioned_p (true_rtx, false_rtx)
6367 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
6369 true_code = reversed_comparison_code (cond, NULL);
6370 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
6371 SUBST (XEXP (x, 1), false_rtx);
6372 SUBST (XEXP (x, 2), true_rtx);
6374 std::swap (true_rtx, false_rtx);
6375 cond = XEXP (x, 0);
6377 /* It is possible that the conditional has been simplified out. */
6378 true_code = GET_CODE (cond);
6379 comparison_p = COMPARISON_P (cond);
6382 /* If the two arms are identical, we don't need the comparison. */
6384 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
6385 return true_rtx;
6387 /* Convert a == b ? b : a to "a". */
6388 if (true_code == EQ && ! side_effects_p (cond)
6389 && !HONOR_NANS (mode)
6390 && rtx_equal_p (XEXP (cond, 0), false_rtx)
6391 && rtx_equal_p (XEXP (cond, 1), true_rtx))
6392 return false_rtx;
6393 else if (true_code == NE && ! side_effects_p (cond)
6394 && !HONOR_NANS (mode)
6395 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6396 && rtx_equal_p (XEXP (cond, 1), false_rtx))
6397 return true_rtx;
6399 /* Look for cases where we have (abs x) or (neg (abs X)). */
6401 if (GET_MODE_CLASS (mode) == MODE_INT
6402 && comparison_p
6403 && XEXP (cond, 1) == const0_rtx
6404 && GET_CODE (false_rtx) == NEG
6405 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
6406 && rtx_equal_p (true_rtx, XEXP (cond, 0))
6407 && ! side_effects_p (true_rtx))
6408 switch (true_code)
6410 case GT:
6411 case GE:
6412 return simplify_gen_unary (ABS, mode, true_rtx, mode);
6413 case LT:
6414 case LE:
6415 return
6416 simplify_gen_unary (NEG, mode,
6417 simplify_gen_unary (ABS, mode, true_rtx, mode),
6418 mode);
6419 default:
6420 break;
6423 /* Look for MIN or MAX. */
6425 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
6426 && comparison_p
6427 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6428 && rtx_equal_p (XEXP (cond, 1), false_rtx)
6429 && ! side_effects_p (cond))
6430 switch (true_code)
6432 case GE:
6433 case GT:
6434 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6435 case LE:
6436 case LT:
6437 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6438 case GEU:
6439 case GTU:
6440 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6441 case LEU:
6442 case LTU:
6443 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6444 default:
6445 break;
6448 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6449 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6450 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6451 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6452 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6453 neither 1 or -1, but it isn't worth checking for. */
6455 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6456 && comparison_p
6457 && is_int_mode (mode, &int_mode)
6458 && ! side_effects_p (x))
6460 rtx t = make_compound_operation (true_rtx, SET);
6461 rtx f = make_compound_operation (false_rtx, SET);
6462 rtx cond_op0 = XEXP (cond, 0);
6463 rtx cond_op1 = XEXP (cond, 1);
6464 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6465 machine_mode m = int_mode;
6466 rtx z = 0, c1 = NULL_RTX;
6468 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6469 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6470 || GET_CODE (t) == ASHIFT
6471 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6472 && rtx_equal_p (XEXP (t, 0), f))
6473 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6475 /* If an identity-zero op is commutative, check whether there
6476 would be a match if we swapped the operands. */
6477 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6478 || GET_CODE (t) == XOR)
6479 && rtx_equal_p (XEXP (t, 1), f))
6480 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6481 else if (GET_CODE (t) == SIGN_EXTEND
6482 && (GET_CODE (XEXP (t, 0)) == PLUS
6483 || GET_CODE (XEXP (t, 0)) == MINUS
6484 || GET_CODE (XEXP (t, 0)) == IOR
6485 || GET_CODE (XEXP (t, 0)) == XOR
6486 || GET_CODE (XEXP (t, 0)) == ASHIFT
6487 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6488 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6489 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6490 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6491 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6492 && (num_sign_bit_copies (f, GET_MODE (f))
6493 > (unsigned int)
6494 (GET_MODE_PRECISION (int_mode)
6495 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 0))))))
6497 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6498 extend_op = SIGN_EXTEND;
6499 m = GET_MODE (XEXP (t, 0));
6501 else if (GET_CODE (t) == SIGN_EXTEND
6502 && (GET_CODE (XEXP (t, 0)) == PLUS
6503 || GET_CODE (XEXP (t, 0)) == IOR
6504 || GET_CODE (XEXP (t, 0)) == XOR)
6505 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6506 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6507 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6508 && (num_sign_bit_copies (f, GET_MODE (f))
6509 > (unsigned int)
6510 (GET_MODE_PRECISION (int_mode)
6511 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 1))))))
6513 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6514 extend_op = SIGN_EXTEND;
6515 m = GET_MODE (XEXP (t, 0));
6517 else if (GET_CODE (t) == ZERO_EXTEND
6518 && (GET_CODE (XEXP (t, 0)) == PLUS
6519 || GET_CODE (XEXP (t, 0)) == MINUS
6520 || GET_CODE (XEXP (t, 0)) == IOR
6521 || GET_CODE (XEXP (t, 0)) == XOR
6522 || GET_CODE (XEXP (t, 0)) == ASHIFT
6523 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6524 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6525 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6526 && HWI_COMPUTABLE_MODE_P (int_mode)
6527 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6528 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6529 && ((nonzero_bits (f, GET_MODE (f))
6530 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
6531 == 0))
6533 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6534 extend_op = ZERO_EXTEND;
6535 m = GET_MODE (XEXP (t, 0));
6537 else if (GET_CODE (t) == ZERO_EXTEND
6538 && (GET_CODE (XEXP (t, 0)) == PLUS
6539 || GET_CODE (XEXP (t, 0)) == IOR
6540 || GET_CODE (XEXP (t, 0)) == XOR)
6541 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6542 && HWI_COMPUTABLE_MODE_P (int_mode)
6543 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6544 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6545 && ((nonzero_bits (f, GET_MODE (f))
6546 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
6547 == 0))
6549 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6550 extend_op = ZERO_EXTEND;
6551 m = GET_MODE (XEXP (t, 0));
6554 if (z)
6556 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
6557 cond_op0, cond_op1),
6558 pc_rtx, pc_rtx, 0, 0, 0);
6559 temp = simplify_gen_binary (MULT, m, temp,
6560 simplify_gen_binary (MULT, m, c1,
6561 const_true_rtx));
6562 temp = subst (temp, pc_rtx, pc_rtx, 0, 0, 0);
6563 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6565 if (extend_op != UNKNOWN)
6566 temp = simplify_gen_unary (extend_op, int_mode, temp, m);
6568 return temp;
6572 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6573 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6574 negation of a single bit, we can convert this operation to a shift. We
6575 can actually do this more generally, but it doesn't seem worth it. */
6577 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6578 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6579 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
6580 && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6581 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
6582 == GET_MODE_PRECISION (mode))
6583 && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
6584 return
6585 simplify_shift_const (NULL_RTX, ASHIFT, mode,
6586 gen_lowpart (mode, XEXP (cond, 0)), i);
6588 /* (IF_THEN_ELSE (NE A 0) C1 0) is A or a zero-extend of A if the only
6589 non-zero bit in A is C1. */
6590 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6591 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6592 && INTEGRAL_MODE_P (GET_MODE (XEXP (cond, 0)))
6593 && (UINTVAL (true_rtx) & GET_MODE_MASK (mode))
6594 == nonzero_bits (XEXP (cond, 0), GET_MODE (XEXP (cond, 0)))
6595 && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
6597 rtx val = XEXP (cond, 0);
6598 machine_mode val_mode = GET_MODE (val);
6599 if (val_mode == mode)
6600 return val;
6601 else if (GET_MODE_PRECISION (val_mode) < GET_MODE_PRECISION (mode))
6602 return simplify_gen_unary (ZERO_EXTEND, mode, val, val_mode);
6605 return x;
6608 /* Simplify X, a SET expression. Return the new expression. */
6610 static rtx
6611 simplify_set (rtx x)
6613 rtx src = SET_SRC (x);
6614 rtx dest = SET_DEST (x);
6615 machine_mode mode
6616 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6617 rtx_insn *other_insn;
6618 rtx *cc_use;
6619 scalar_int_mode int_mode;
6621 /* (set (pc) (return)) gets written as (return). */
6622 if (GET_CODE (dest) == PC && ANY_RETURN_P (src))
6623 return src;
6625 /* Now that we know for sure which bits of SRC we are using, see if we can
6626 simplify the expression for the object knowing that we only need the
6627 low-order bits. */
6629 if (GET_MODE_CLASS (mode) == MODE_INT && HWI_COMPUTABLE_MODE_P (mode))
6631 src = force_to_mode (src, mode, HOST_WIDE_INT_M1U, 0);
6632 SUBST (SET_SRC (x), src);
6635 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6636 the comparison result and try to simplify it unless we already have used
6637 undobuf.other_insn. */
6638 if ((GET_MODE_CLASS (mode) == MODE_CC
6639 || GET_CODE (src) == COMPARE
6640 || CC0_P (dest))
6641 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6642 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6643 && COMPARISON_P (*cc_use)
6644 && rtx_equal_p (XEXP (*cc_use, 0), dest))
6646 enum rtx_code old_code = GET_CODE (*cc_use);
6647 enum rtx_code new_code;
6648 rtx op0, op1, tmp;
6649 int other_changed = 0;
6650 rtx inner_compare = NULL_RTX;
6651 machine_mode compare_mode = GET_MODE (dest);
6653 if (GET_CODE (src) == COMPARE)
6655 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6656 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
6658 inner_compare = op0;
6659 op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1);
6662 else
6663 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6665 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6666 op0, op1);
6667 if (!tmp)
6668 new_code = old_code;
6669 else if (!CONSTANT_P (tmp))
6671 new_code = GET_CODE (tmp);
6672 op0 = XEXP (tmp, 0);
6673 op1 = XEXP (tmp, 1);
6675 else
6677 rtx pat = PATTERN (other_insn);
6678 undobuf.other_insn = other_insn;
6679 SUBST (*cc_use, tmp);
6681 /* Attempt to simplify CC user. */
6682 if (GET_CODE (pat) == SET)
6684 rtx new_rtx = simplify_rtx (SET_SRC (pat));
6685 if (new_rtx != NULL_RTX)
6686 SUBST (SET_SRC (pat), new_rtx);
6689 /* Convert X into a no-op move. */
6690 SUBST (SET_DEST (x), pc_rtx);
6691 SUBST (SET_SRC (x), pc_rtx);
6692 return x;
6695 /* Simplify our comparison, if possible. */
6696 new_code = simplify_comparison (new_code, &op0, &op1);
6698 #ifdef SELECT_CC_MODE
6699 /* If this machine has CC modes other than CCmode, check to see if we
6700 need to use a different CC mode here. */
6701 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6702 compare_mode = GET_MODE (op0);
6703 else if (inner_compare
6704 && GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC
6705 && new_code == old_code
6706 && op0 == XEXP (inner_compare, 0)
6707 && op1 == XEXP (inner_compare, 1))
6708 compare_mode = GET_MODE (inner_compare);
6709 else
6710 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6712 /* If the mode changed, we have to change SET_DEST, the mode in the
6713 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6714 a hard register, just build new versions with the proper mode. If it
6715 is a pseudo, we lose unless it is only time we set the pseudo, in
6716 which case we can safely change its mode. */
6717 if (!HAVE_cc0 && compare_mode != GET_MODE (dest))
6719 if (can_change_dest_mode (dest, 0, compare_mode))
6721 unsigned int regno = REGNO (dest);
6722 rtx new_dest;
6724 if (regno < FIRST_PSEUDO_REGISTER)
6725 new_dest = gen_rtx_REG (compare_mode, regno);
6726 else
6728 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
6729 new_dest = regno_reg_rtx[regno];
6732 SUBST (SET_DEST (x), new_dest);
6733 SUBST (XEXP (*cc_use, 0), new_dest);
6734 other_changed = 1;
6736 dest = new_dest;
6739 #endif /* SELECT_CC_MODE */
6741 /* If the code changed, we have to build a new comparison in
6742 undobuf.other_insn. */
6743 if (new_code != old_code)
6745 int other_changed_previously = other_changed;
6746 unsigned HOST_WIDE_INT mask;
6747 rtx old_cc_use = *cc_use;
6749 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6750 dest, const0_rtx));
6751 other_changed = 1;
6753 /* If the only change we made was to change an EQ into an NE or
6754 vice versa, OP0 has only one bit that might be nonzero, and OP1
6755 is zero, check if changing the user of the condition code will
6756 produce a valid insn. If it won't, we can keep the original code
6757 in that insn by surrounding our operation with an XOR. */
6759 if (((old_code == NE && new_code == EQ)
6760 || (old_code == EQ && new_code == NE))
6761 && ! other_changed_previously && op1 == const0_rtx
6762 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
6763 && pow2p_hwi (mask = nonzero_bits (op0, GET_MODE (op0))))
6765 rtx pat = PATTERN (other_insn), note = 0;
6767 if ((recog_for_combine (&pat, other_insn, &note) < 0
6768 && ! check_asm_operands (pat)))
6770 *cc_use = old_cc_use;
6771 other_changed = 0;
6773 op0 = simplify_gen_binary (XOR, GET_MODE (op0), op0,
6774 gen_int_mode (mask,
6775 GET_MODE (op0)));
6780 if (other_changed)
6781 undobuf.other_insn = other_insn;
6783 /* Don't generate a compare of a CC with 0, just use that CC. */
6784 if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
6786 SUBST (SET_SRC (x), op0);
6787 src = SET_SRC (x);
6789 /* Otherwise, if we didn't previously have the same COMPARE we
6790 want, create it from scratch. */
6791 else if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode
6792 || XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
6794 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6795 src = SET_SRC (x);
6798 else
6800 /* Get SET_SRC in a form where we have placed back any
6801 compound expressions. Then do the checks below. */
6802 src = make_compound_operation (src, SET);
6803 SUBST (SET_SRC (x), src);
6806 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6807 and X being a REG or (subreg (reg)), we may be able to convert this to
6808 (set (subreg:m2 x) (op)).
6810 We can always do this if M1 is narrower than M2 because that means that
6811 we only care about the low bits of the result.
6813 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6814 perform a narrower operation than requested since the high-order bits will
6815 be undefined. On machine where it is defined, this transformation is safe
6816 as long as M1 and M2 have the same number of words. */
6818 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6819 && !OBJECT_P (SUBREG_REG (src))
6820 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
6821 / UNITS_PER_WORD)
6822 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
6823 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
6824 && (WORD_REGISTER_OPERATIONS || !paradoxical_subreg_p (src))
6825 #ifdef CANNOT_CHANGE_MODE_CLASS
6826 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
6827 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
6828 GET_MODE (SUBREG_REG (src)),
6829 GET_MODE (src)))
6830 #endif
6831 && (REG_P (dest)
6832 || (GET_CODE (dest) == SUBREG
6833 && REG_P (SUBREG_REG (dest)))))
6835 SUBST (SET_DEST (x),
6836 gen_lowpart (GET_MODE (SUBREG_REG (src)),
6837 dest));
6838 SUBST (SET_SRC (x), SUBREG_REG (src));
6840 src = SET_SRC (x), dest = SET_DEST (x);
6843 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
6844 in SRC. */
6845 if (dest == cc0_rtx
6846 && GET_CODE (src) == SUBREG
6847 && subreg_lowpart_p (src)
6848 && (GET_MODE_PRECISION (GET_MODE (src))
6849 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (src)))))
6851 rtx inner = SUBREG_REG (src);
6852 machine_mode inner_mode = GET_MODE (inner);
6854 /* Here we make sure that we don't have a sign bit on. */
6855 if (val_signbit_known_clear_p (GET_MODE (src),
6856 nonzero_bits (inner, inner_mode)))
6858 SUBST (SET_SRC (x), inner);
6859 src = SET_SRC (x);
6863 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6864 would require a paradoxical subreg. Replace the subreg with a
6865 zero_extend to avoid the reload that would otherwise be required. */
6867 enum rtx_code extend_op;
6868 if (paradoxical_subreg_p (src)
6869 && MEM_P (SUBREG_REG (src))
6870 && (extend_op = load_extend_op (GET_MODE (SUBREG_REG (src)))) != UNKNOWN)
6872 SUBST (SET_SRC (x),
6873 gen_rtx_fmt_e (extend_op, GET_MODE (src), SUBREG_REG (src)));
6875 src = SET_SRC (x);
6878 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
6879 are comparing an item known to be 0 or -1 against 0, use a logical
6880 operation instead. Check for one of the arms being an IOR of the other
6881 arm with some value. We compute three terms to be IOR'ed together. In
6882 practice, at most two will be nonzero. Then we do the IOR's. */
6884 if (GET_CODE (dest) != PC
6885 && GET_CODE (src) == IF_THEN_ELSE
6886 && is_int_mode (GET_MODE (src), &int_mode)
6887 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
6888 && XEXP (XEXP (src, 0), 1) == const0_rtx
6889 && int_mode == GET_MODE (XEXP (XEXP (src, 0), 0))
6890 && (!HAVE_conditional_move
6891 || ! can_conditionally_move_p (int_mode))
6892 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0), int_mode)
6893 == GET_MODE_PRECISION (int_mode))
6894 && ! side_effects_p (src))
6896 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
6897 ? XEXP (src, 1) : XEXP (src, 2));
6898 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
6899 ? XEXP (src, 2) : XEXP (src, 1));
6900 rtx term1 = const0_rtx, term2, term3;
6902 if (GET_CODE (true_rtx) == IOR
6903 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
6904 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
6905 else if (GET_CODE (true_rtx) == IOR
6906 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
6907 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
6908 else if (GET_CODE (false_rtx) == IOR
6909 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
6910 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
6911 else if (GET_CODE (false_rtx) == IOR
6912 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
6913 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
6915 term2 = simplify_gen_binary (AND, int_mode,
6916 XEXP (XEXP (src, 0), 0), true_rtx);
6917 term3 = simplify_gen_binary (AND, int_mode,
6918 simplify_gen_unary (NOT, int_mode,
6919 XEXP (XEXP (src, 0), 0),
6920 int_mode),
6921 false_rtx);
6923 SUBST (SET_SRC (x),
6924 simplify_gen_binary (IOR, int_mode,
6925 simplify_gen_binary (IOR, int_mode,
6926 term1, term2),
6927 term3));
6929 src = SET_SRC (x);
6932 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
6933 whole thing fail. */
6934 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
6935 return src;
6936 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
6937 return dest;
6938 else
6939 /* Convert this into a field assignment operation, if possible. */
6940 return make_field_assignment (x);
6943 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
6944 result. */
6946 static rtx
6947 simplify_logical (rtx x)
6949 machine_mode mode = GET_MODE (x);
6950 rtx op0 = XEXP (x, 0);
6951 rtx op1 = XEXP (x, 1);
6953 switch (GET_CODE (x))
6955 case AND:
6956 /* We can call simplify_and_const_int only if we don't lose
6957 any (sign) bits when converting INTVAL (op1) to
6958 "unsigned HOST_WIDE_INT". */
6959 if (CONST_INT_P (op1)
6960 && (HWI_COMPUTABLE_MODE_P (mode)
6961 || INTVAL (op1) > 0))
6963 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
6964 if (GET_CODE (x) != AND)
6965 return x;
6967 op0 = XEXP (x, 0);
6968 op1 = XEXP (x, 1);
6971 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
6972 apply the distributive law and then the inverse distributive
6973 law to see if things simplify. */
6974 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
6976 rtx result = distribute_and_simplify_rtx (x, 0);
6977 if (result)
6978 return result;
6980 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
6982 rtx result = distribute_and_simplify_rtx (x, 1);
6983 if (result)
6984 return result;
6986 break;
6988 case IOR:
6989 /* If we have (ior (and A B) C), apply the distributive law and then
6990 the inverse distributive law to see if things simplify. */
6992 if (GET_CODE (op0) == AND)
6994 rtx result = distribute_and_simplify_rtx (x, 0);
6995 if (result)
6996 return result;
6999 if (GET_CODE (op1) == AND)
7001 rtx result = distribute_and_simplify_rtx (x, 1);
7002 if (result)
7003 return result;
7005 break;
7007 default:
7008 gcc_unreachable ();
7011 return x;
7014 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
7015 operations" because they can be replaced with two more basic operations.
7016 ZERO_EXTEND is also considered "compound" because it can be replaced with
7017 an AND operation, which is simpler, though only one operation.
7019 The function expand_compound_operation is called with an rtx expression
7020 and will convert it to the appropriate shifts and AND operations,
7021 simplifying at each stage.
7023 The function make_compound_operation is called to convert an expression
7024 consisting of shifts and ANDs into the equivalent compound expression.
7025 It is the inverse of this function, loosely speaking. */
7027 static rtx
7028 expand_compound_operation (rtx x)
7030 unsigned HOST_WIDE_INT pos = 0, len;
7031 int unsignedp = 0;
7032 unsigned int modewidth;
7033 rtx tem;
7035 switch (GET_CODE (x))
7037 case ZERO_EXTEND:
7038 unsignedp = 1;
7039 /* FALLTHRU */
7040 case SIGN_EXTEND:
7041 /* We can't necessarily use a const_int for a multiword mode;
7042 it depends on implicitly extending the value.
7043 Since we don't know the right way to extend it,
7044 we can't tell whether the implicit way is right.
7046 Even for a mode that is no wider than a const_int,
7047 we can't win, because we need to sign extend one of its bits through
7048 the rest of it, and we don't know which bit. */
7049 if (CONST_INT_P (XEXP (x, 0)))
7050 return x;
7052 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
7053 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
7054 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
7055 reloaded. If not for that, MEM's would very rarely be safe.
7057 Reject MODEs bigger than a word, because we might not be able
7058 to reference a two-register group starting with an arbitrary register
7059 (and currently gen_lowpart might crash for a SUBREG). */
7061 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
7062 return x;
7064 /* Reject MODEs that aren't scalar integers because turning vector
7065 or complex modes into shifts causes problems. */
7067 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
7068 return x;
7070 len = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
7071 /* If the inner object has VOIDmode (the only way this can happen
7072 is if it is an ASM_OPERANDS), we can't do anything since we don't
7073 know how much masking to do. */
7074 if (len == 0)
7075 return x;
7077 break;
7079 case ZERO_EXTRACT:
7080 unsignedp = 1;
7082 /* fall through */
7084 case SIGN_EXTRACT:
7085 /* If the operand is a CLOBBER, just return it. */
7086 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
7087 return XEXP (x, 0);
7089 if (!CONST_INT_P (XEXP (x, 1))
7090 || !CONST_INT_P (XEXP (x, 2))
7091 || GET_MODE (XEXP (x, 0)) == VOIDmode)
7092 return x;
7094 /* Reject MODEs that aren't scalar integers because turning vector
7095 or complex modes into shifts causes problems. */
7097 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
7098 return x;
7100 len = INTVAL (XEXP (x, 1));
7101 pos = INTVAL (XEXP (x, 2));
7103 /* This should stay within the object being extracted, fail otherwise. */
7104 if (len + pos > GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))))
7105 return x;
7107 if (BITS_BIG_ENDIAN)
7108 pos = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))) - len - pos;
7110 break;
7112 default:
7113 return x;
7115 /* Convert sign extension to zero extension, if we know that the high
7116 bit is not set, as this is easier to optimize. It will be converted
7117 back to cheaper alternative in make_extraction. */
7118 if (GET_CODE (x) == SIGN_EXTEND
7119 && (HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7120 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7121 & ~(((unsigned HOST_WIDE_INT)
7122 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
7123 >> 1))
7124 == 0)))
7126 machine_mode mode = GET_MODE (x);
7127 rtx temp = gen_rtx_ZERO_EXTEND (mode, XEXP (x, 0));
7128 rtx temp2 = expand_compound_operation (temp);
7130 /* Make sure this is a profitable operation. */
7131 if (set_src_cost (x, mode, optimize_this_for_speed_p)
7132 > set_src_cost (temp2, mode, optimize_this_for_speed_p))
7133 return temp2;
7134 else if (set_src_cost (x, mode, optimize_this_for_speed_p)
7135 > set_src_cost (temp, mode, optimize_this_for_speed_p))
7136 return temp;
7137 else
7138 return x;
7141 /* We can optimize some special cases of ZERO_EXTEND. */
7142 if (GET_CODE (x) == ZERO_EXTEND)
7144 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
7145 know that the last value didn't have any inappropriate bits
7146 set. */
7147 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7148 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
7149 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7150 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
7151 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7152 return XEXP (XEXP (x, 0), 0);
7154 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7155 if (GET_CODE (XEXP (x, 0)) == SUBREG
7156 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
7157 && subreg_lowpart_p (XEXP (x, 0))
7158 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7159 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
7160 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7161 return SUBREG_REG (XEXP (x, 0));
7163 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
7164 is a comparison and STORE_FLAG_VALUE permits. This is like
7165 the first case, but it works even when GET_MODE (x) is larger
7166 than HOST_WIDE_INT. */
7167 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7168 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
7169 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
7170 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
7171 <= HOST_BITS_PER_WIDE_INT)
7172 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7173 return XEXP (XEXP (x, 0), 0);
7175 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7176 if (GET_CODE (XEXP (x, 0)) == SUBREG
7177 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
7178 && subreg_lowpart_p (XEXP (x, 0))
7179 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
7180 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
7181 <= HOST_BITS_PER_WIDE_INT)
7182 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7183 return SUBREG_REG (XEXP (x, 0));
7187 /* If we reach here, we want to return a pair of shifts. The inner
7188 shift is a left shift of BITSIZE - POS - LEN bits. The outer
7189 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
7190 logical depending on the value of UNSIGNEDP.
7192 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
7193 converted into an AND of a shift.
7195 We must check for the case where the left shift would have a negative
7196 count. This can happen in a case like (x >> 31) & 255 on machines
7197 that can't shift by a constant. On those machines, we would first
7198 combine the shift with the AND to produce a variable-position
7199 extraction. Then the constant of 31 would be substituted in
7200 to produce such a position. */
7202 modewidth = GET_MODE_PRECISION (GET_MODE (x));
7203 if (modewidth >= pos + len)
7205 machine_mode mode = GET_MODE (x);
7206 tem = gen_lowpart (mode, XEXP (x, 0));
7207 if (!tem || GET_CODE (tem) == CLOBBER)
7208 return x;
7209 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
7210 tem, modewidth - pos - len);
7211 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
7212 mode, tem, modewidth - len);
7214 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
7215 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
7216 simplify_shift_const (NULL_RTX, LSHIFTRT,
7217 GET_MODE (x),
7218 XEXP (x, 0), pos),
7219 (HOST_WIDE_INT_1U << len) - 1);
7220 else
7221 /* Any other cases we can't handle. */
7222 return x;
7224 /* If we couldn't do this for some reason, return the original
7225 expression. */
7226 if (GET_CODE (tem) == CLOBBER)
7227 return x;
7229 return tem;
7232 /* X is a SET which contains an assignment of one object into
7233 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
7234 or certain SUBREGS). If possible, convert it into a series of
7235 logical operations.
7237 We half-heartedly support variable positions, but do not at all
7238 support variable lengths. */
7240 static const_rtx
7241 expand_field_assignment (const_rtx x)
7243 rtx inner;
7244 rtx pos; /* Always counts from low bit. */
7245 int len;
7246 rtx mask, cleared, masked;
7247 machine_mode compute_mode;
7249 /* Loop until we find something we can't simplify. */
7250 while (1)
7252 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
7253 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
7255 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
7256 len = GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0)));
7257 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
7259 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
7260 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
7262 inner = XEXP (SET_DEST (x), 0);
7263 len = INTVAL (XEXP (SET_DEST (x), 1));
7264 pos = XEXP (SET_DEST (x), 2);
7266 /* A constant position should stay within the width of INNER. */
7267 if (CONST_INT_P (pos)
7268 && INTVAL (pos) + len > GET_MODE_PRECISION (GET_MODE (inner)))
7269 break;
7271 if (BITS_BIG_ENDIAN)
7273 if (CONST_INT_P (pos))
7274 pos = GEN_INT (GET_MODE_PRECISION (GET_MODE (inner)) - len
7275 - INTVAL (pos));
7276 else if (GET_CODE (pos) == MINUS
7277 && CONST_INT_P (XEXP (pos, 1))
7278 && (INTVAL (XEXP (pos, 1))
7279 == GET_MODE_PRECISION (GET_MODE (inner)) - len))
7280 /* If position is ADJUST - X, new position is X. */
7281 pos = XEXP (pos, 0);
7282 else
7284 HOST_WIDE_INT prec = GET_MODE_PRECISION (GET_MODE (inner));
7285 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
7286 gen_int_mode (prec - len,
7287 GET_MODE (pos)),
7288 pos);
7293 /* A SUBREG between two modes that occupy the same numbers of words
7294 can be done by moving the SUBREG to the source. */
7295 else if (GET_CODE (SET_DEST (x)) == SUBREG
7296 /* We need SUBREGs to compute nonzero_bits properly. */
7297 && nonzero_sign_valid
7298 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
7299 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
7300 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
7301 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
7303 x = gen_rtx_SET (SUBREG_REG (SET_DEST (x)),
7304 gen_lowpart
7305 (GET_MODE (SUBREG_REG (SET_DEST (x))),
7306 SET_SRC (x)));
7307 continue;
7309 else
7310 break;
7312 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7313 inner = SUBREG_REG (inner);
7315 compute_mode = GET_MODE (inner);
7317 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
7318 if (! SCALAR_INT_MODE_P (compute_mode))
7320 /* Don't do anything for vector or complex integral types. */
7321 if (! FLOAT_MODE_P (compute_mode))
7322 break;
7324 /* Try to find an integral mode to pun with. */
7325 if (!int_mode_for_size (GET_MODE_BITSIZE (compute_mode), 0)
7326 .exists (&compute_mode))
7327 break;
7329 inner = gen_lowpart (compute_mode, inner);
7332 /* Compute a mask of LEN bits, if we can do this on the host machine. */
7333 if (len >= HOST_BITS_PER_WIDE_INT)
7334 break;
7336 /* Don't try to compute in too wide unsupported modes. */
7337 if (!targetm.scalar_mode_supported_p (compute_mode))
7338 break;
7340 /* Now compute the equivalent expression. Make a copy of INNER
7341 for the SET_DEST in case it is a MEM into which we will substitute;
7342 we don't want shared RTL in that case. */
7343 mask = gen_int_mode ((HOST_WIDE_INT_1U << len) - 1,
7344 compute_mode);
7345 cleared = simplify_gen_binary (AND, compute_mode,
7346 simplify_gen_unary (NOT, compute_mode,
7347 simplify_gen_binary (ASHIFT,
7348 compute_mode,
7349 mask, pos),
7350 compute_mode),
7351 inner);
7352 masked = simplify_gen_binary (ASHIFT, compute_mode,
7353 simplify_gen_binary (
7354 AND, compute_mode,
7355 gen_lowpart (compute_mode, SET_SRC (x)),
7356 mask),
7357 pos);
7359 x = gen_rtx_SET (copy_rtx (inner),
7360 simplify_gen_binary (IOR, compute_mode,
7361 cleared, masked));
7364 return x;
7367 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
7368 it is an RTX that represents the (variable) starting position; otherwise,
7369 POS is the (constant) starting bit position. Both are counted from the LSB.
7371 UNSIGNEDP is nonzero for an unsigned reference and zero for a signed one.
7373 IN_DEST is nonzero if this is a reference in the destination of a SET.
7374 This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
7375 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7376 be used.
7378 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
7379 ZERO_EXTRACT should be built even for bits starting at bit 0.
7381 MODE is the desired mode of the result (if IN_DEST == 0).
7383 The result is an RTX for the extraction or NULL_RTX if the target
7384 can't handle it. */
7386 static rtx
7387 make_extraction (machine_mode mode, rtx inner, HOST_WIDE_INT pos,
7388 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
7389 int in_dest, int in_compare)
7391 /* This mode describes the size of the storage area
7392 to fetch the overall value from. Within that, we
7393 ignore the POS lowest bits, etc. */
7394 machine_mode is_mode = GET_MODE (inner);
7395 machine_mode inner_mode;
7396 machine_mode wanted_inner_mode;
7397 machine_mode wanted_inner_reg_mode = word_mode;
7398 machine_mode pos_mode = word_mode;
7399 machine_mode extraction_mode = word_mode;
7400 rtx new_rtx = 0;
7401 rtx orig_pos_rtx = pos_rtx;
7402 HOST_WIDE_INT orig_pos;
7404 if (pos_rtx && CONST_INT_P (pos_rtx))
7405 pos = INTVAL (pos_rtx), pos_rtx = 0;
7407 if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7409 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7410 consider just the QI as the memory to extract from.
7411 The subreg adds or removes high bits; its mode is
7412 irrelevant to the meaning of this extraction,
7413 since POS and LEN count from the lsb. */
7414 if (MEM_P (SUBREG_REG (inner)))
7415 is_mode = GET_MODE (SUBREG_REG (inner));
7416 inner = SUBREG_REG (inner);
7418 else if (GET_CODE (inner) == ASHIFT
7419 && CONST_INT_P (XEXP (inner, 1))
7420 && pos_rtx == 0 && pos == 0
7421 && len > UINTVAL (XEXP (inner, 1)))
7423 /* We're extracting the least significant bits of an rtx
7424 (ashift X (const_int C)), where LEN > C. Extract the
7425 least significant (LEN - C) bits of X, giving an rtx
7426 whose mode is MODE, then shift it left C times. */
7427 new_rtx = make_extraction (mode, XEXP (inner, 0),
7428 0, 0, len - INTVAL (XEXP (inner, 1)),
7429 unsignedp, in_dest, in_compare);
7430 if (new_rtx != 0)
7431 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7433 else if (GET_CODE (inner) == TRUNCATE)
7434 inner = XEXP (inner, 0);
7436 inner_mode = GET_MODE (inner);
7438 /* See if this can be done without an extraction. We never can if the
7439 width of the field is not the same as that of some integer mode. For
7440 registers, we can only avoid the extraction if the position is at the
7441 low-order bit and this is either not in the destination or we have the
7442 appropriate STRICT_LOW_PART operation available.
7444 For MEM, we can avoid an extract if the field starts on an appropriate
7445 boundary and we can change the mode of the memory reference. */
7447 scalar_int_mode tmode;
7448 if (int_mode_for_size (len, 1).exists (&tmode)
7449 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7450 && !MEM_P (inner)
7451 && (pos == 0 || REG_P (inner))
7452 && (inner_mode == tmode
7453 || !REG_P (inner)
7454 || TRULY_NOOP_TRUNCATION_MODES_P (tmode, inner_mode)
7455 || reg_truncated_to_mode (tmode, inner))
7456 && (! in_dest
7457 || (REG_P (inner)
7458 && have_insn_for (STRICT_LOW_PART, tmode))))
7459 || (MEM_P (inner) && pos_rtx == 0
7460 && (pos
7461 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7462 : BITS_PER_UNIT)) == 0
7463 /* We can't do this if we are widening INNER_MODE (it
7464 may not be aligned, for one thing). */
7465 && !paradoxical_subreg_p (tmode, inner_mode)
7466 && (inner_mode == tmode
7467 || (! mode_dependent_address_p (XEXP (inner, 0),
7468 MEM_ADDR_SPACE (inner))
7469 && ! MEM_VOLATILE_P (inner))))))
7471 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7472 field. If the original and current mode are the same, we need not
7473 adjust the offset. Otherwise, we do if bytes big endian.
7475 If INNER is not a MEM, get a piece consisting of just the field
7476 of interest (in this case POS % BITS_PER_WORD must be 0). */
7478 if (MEM_P (inner))
7480 HOST_WIDE_INT offset;
7482 /* POS counts from lsb, but make OFFSET count in memory order. */
7483 if (BYTES_BIG_ENDIAN)
7484 offset = (GET_MODE_PRECISION (is_mode) - len - pos) / BITS_PER_UNIT;
7485 else
7486 offset = pos / BITS_PER_UNIT;
7488 new_rtx = adjust_address_nv (inner, tmode, offset);
7490 else if (REG_P (inner))
7492 if (tmode != inner_mode)
7494 /* We can't call gen_lowpart in a DEST since we
7495 always want a SUBREG (see below) and it would sometimes
7496 return a new hard register. */
7497 if (pos || in_dest)
7499 unsigned int offset
7500 = subreg_offset_from_lsb (tmode, inner_mode, pos);
7502 /* Avoid creating invalid subregs, for example when
7503 simplifying (x>>32)&255. */
7504 if (!validate_subreg (tmode, inner_mode, inner, offset))
7505 return NULL_RTX;
7507 new_rtx = gen_rtx_SUBREG (tmode, inner, offset);
7509 else
7510 new_rtx = gen_lowpart (tmode, inner);
7512 else
7513 new_rtx = inner;
7515 else
7516 new_rtx = force_to_mode (inner, tmode,
7517 len >= HOST_BITS_PER_WIDE_INT
7518 ? HOST_WIDE_INT_M1U
7519 : (HOST_WIDE_INT_1U << len) - 1, 0);
7521 /* If this extraction is going into the destination of a SET,
7522 make a STRICT_LOW_PART unless we made a MEM. */
7524 if (in_dest)
7525 return (MEM_P (new_rtx) ? new_rtx
7526 : (GET_CODE (new_rtx) != SUBREG
7527 ? gen_rtx_CLOBBER (tmode, const0_rtx)
7528 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7530 if (mode == tmode)
7531 return new_rtx;
7533 if (CONST_SCALAR_INT_P (new_rtx))
7534 return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7535 mode, new_rtx, tmode);
7537 /* If we know that no extraneous bits are set, and that the high
7538 bit is not set, convert the extraction to the cheaper of
7539 sign and zero extension, that are equivalent in these cases. */
7540 if (flag_expensive_optimizations
7541 && (HWI_COMPUTABLE_MODE_P (tmode)
7542 && ((nonzero_bits (new_rtx, tmode)
7543 & ~(((unsigned HOST_WIDE_INT)GET_MODE_MASK (tmode)) >> 1))
7544 == 0)))
7546 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7547 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7549 /* Prefer ZERO_EXTENSION, since it gives more information to
7550 backends. */
7551 if (set_src_cost (temp, mode, optimize_this_for_speed_p)
7552 <= set_src_cost (temp1, mode, optimize_this_for_speed_p))
7553 return temp;
7554 return temp1;
7557 /* Otherwise, sign- or zero-extend unless we already are in the
7558 proper mode. */
7560 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7561 mode, new_rtx));
7564 /* Unless this is a COMPARE or we have a funny memory reference,
7565 don't do anything with zero-extending field extracts starting at
7566 the low-order bit since they are simple AND operations. */
7567 if (pos_rtx == 0 && pos == 0 && ! in_dest
7568 && ! in_compare && unsignedp)
7569 return 0;
7571 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7572 if the position is not a constant and the length is not 1. In all
7573 other cases, we would only be going outside our object in cases when
7574 an original shift would have been undefined. */
7575 if (MEM_P (inner)
7576 && ((pos_rtx == 0 && pos + len > GET_MODE_PRECISION (is_mode))
7577 || (pos_rtx != 0 && len != 1)))
7578 return 0;
7580 enum extraction_pattern pattern = (in_dest ? EP_insv
7581 : unsignedp ? EP_extzv : EP_extv);
7583 /* If INNER is not from memory, we want it to have the mode of a register
7584 extraction pattern's structure operand, or word_mode if there is no
7585 such pattern. The same applies to extraction_mode and pos_mode
7586 and their respective operands.
7588 For memory, assume that the desired extraction_mode and pos_mode
7589 are the same as for a register operation, since at present we don't
7590 have named patterns for aligned memory structures. */
7591 struct extraction_insn insn;
7592 if (get_best_reg_extraction_insn (&insn, pattern,
7593 GET_MODE_BITSIZE (inner_mode), mode))
7595 wanted_inner_reg_mode = insn.struct_mode;
7596 pos_mode = insn.pos_mode;
7597 extraction_mode = insn.field_mode;
7600 /* Never narrow an object, since that might not be safe. */
7602 if (mode != VOIDmode
7603 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
7604 extraction_mode = mode;
7606 if (!MEM_P (inner))
7607 wanted_inner_mode = wanted_inner_reg_mode;
7608 else
7610 /* Be careful not to go beyond the extracted object and maintain the
7611 natural alignment of the memory. */
7612 wanted_inner_mode = smallest_int_mode_for_size (len);
7613 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7614 > GET_MODE_BITSIZE (wanted_inner_mode))
7615 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode).require ();
7618 orig_pos = pos;
7620 if (BITS_BIG_ENDIAN)
7622 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7623 BITS_BIG_ENDIAN style. If position is constant, compute new
7624 position. Otherwise, build subtraction.
7625 Note that POS is relative to the mode of the original argument.
7626 If it's a MEM we need to recompute POS relative to that.
7627 However, if we're extracting from (or inserting into) a register,
7628 we want to recompute POS relative to wanted_inner_mode. */
7629 int width = (MEM_P (inner)
7630 ? GET_MODE_BITSIZE (is_mode)
7631 : GET_MODE_BITSIZE (wanted_inner_mode));
7633 if (pos_rtx == 0)
7634 pos = width - len - pos;
7635 else
7636 pos_rtx
7637 = gen_rtx_MINUS (GET_MODE (pos_rtx),
7638 gen_int_mode (width - len, GET_MODE (pos_rtx)),
7639 pos_rtx);
7640 /* POS may be less than 0 now, but we check for that below.
7641 Note that it can only be less than 0 if !MEM_P (inner). */
7644 /* If INNER has a wider mode, and this is a constant extraction, try to
7645 make it smaller and adjust the byte to point to the byte containing
7646 the value. */
7647 if (wanted_inner_mode != VOIDmode
7648 && inner_mode != wanted_inner_mode
7649 && ! pos_rtx
7650 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
7651 && MEM_P (inner)
7652 && ! mode_dependent_address_p (XEXP (inner, 0), MEM_ADDR_SPACE (inner))
7653 && ! MEM_VOLATILE_P (inner))
7655 int offset = 0;
7657 /* The computations below will be correct if the machine is big
7658 endian in both bits and bytes or little endian in bits and bytes.
7659 If it is mixed, we must adjust. */
7661 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7662 adjust OFFSET to compensate. */
7663 if (BYTES_BIG_ENDIAN
7664 && paradoxical_subreg_p (is_mode, inner_mode))
7665 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7667 /* We can now move to the desired byte. */
7668 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7669 * GET_MODE_SIZE (wanted_inner_mode);
7670 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7672 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7673 && is_mode != wanted_inner_mode)
7674 offset = (GET_MODE_SIZE (is_mode)
7675 - GET_MODE_SIZE (wanted_inner_mode) - offset);
7677 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7680 /* If INNER is not memory, get it into the proper mode. If we are changing
7681 its mode, POS must be a constant and smaller than the size of the new
7682 mode. */
7683 else if (!MEM_P (inner))
7685 /* On the LHS, don't create paradoxical subregs implicitely truncating
7686 the register unless TRULY_NOOP_TRUNCATION. */
7687 if (in_dest
7688 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner),
7689 wanted_inner_mode))
7690 return NULL_RTX;
7692 if (GET_MODE (inner) != wanted_inner_mode
7693 && (pos_rtx != 0
7694 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7695 return NULL_RTX;
7697 if (orig_pos < 0)
7698 return NULL_RTX;
7700 inner = force_to_mode (inner, wanted_inner_mode,
7701 pos_rtx
7702 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7703 ? HOST_WIDE_INT_M1U
7704 : (((HOST_WIDE_INT_1U << len) - 1)
7705 << orig_pos),
7709 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7710 have to zero extend. Otherwise, we can just use a SUBREG. */
7711 if (pos_rtx != 0
7712 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
7714 rtx temp = simplify_gen_unary (ZERO_EXTEND, pos_mode, pos_rtx,
7715 GET_MODE (pos_rtx));
7717 /* If we know that no extraneous bits are set, and that the high
7718 bit is not set, convert extraction to cheaper one - either
7719 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7720 cases. */
7721 if (flag_expensive_optimizations
7722 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx))
7723 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7724 & ~(((unsigned HOST_WIDE_INT)
7725 GET_MODE_MASK (GET_MODE (pos_rtx)))
7726 >> 1))
7727 == 0)))
7729 rtx temp1 = simplify_gen_unary (SIGN_EXTEND, pos_mode, pos_rtx,
7730 GET_MODE (pos_rtx));
7732 /* Prefer ZERO_EXTENSION, since it gives more information to
7733 backends. */
7734 if (set_src_cost (temp1, pos_mode, optimize_this_for_speed_p)
7735 < set_src_cost (temp, pos_mode, optimize_this_for_speed_p))
7736 temp = temp1;
7738 pos_rtx = temp;
7741 /* Make POS_RTX unless we already have it and it is correct. If we don't
7742 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7743 be a CONST_INT. */
7744 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7745 pos_rtx = orig_pos_rtx;
7747 else if (pos_rtx == 0)
7748 pos_rtx = GEN_INT (pos);
7750 /* Make the required operation. See if we can use existing rtx. */
7751 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7752 extraction_mode, inner, GEN_INT (len), pos_rtx);
7753 if (! in_dest)
7754 new_rtx = gen_lowpart (mode, new_rtx);
7756 return new_rtx;
7759 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
7760 with any other operations in X. Return X without that shift if so. */
7762 static rtx
7763 extract_left_shift (rtx x, int count)
7765 enum rtx_code code = GET_CODE (x);
7766 machine_mode mode = GET_MODE (x);
7767 rtx tem;
7769 switch (code)
7771 case ASHIFT:
7772 /* This is the shift itself. If it is wide enough, we will return
7773 either the value being shifted if the shift count is equal to
7774 COUNT or a shift for the difference. */
7775 if (CONST_INT_P (XEXP (x, 1))
7776 && INTVAL (XEXP (x, 1)) >= count)
7777 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
7778 INTVAL (XEXP (x, 1)) - count);
7779 break;
7781 case NEG: case NOT:
7782 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7783 return simplify_gen_unary (code, mode, tem, mode);
7785 break;
7787 case PLUS: case IOR: case XOR: case AND:
7788 /* If we can safely shift this constant and we find the inner shift,
7789 make a new operation. */
7790 if (CONST_INT_P (XEXP (x, 1))
7791 && (UINTVAL (XEXP (x, 1))
7792 & (((HOST_WIDE_INT_1U << count)) - 1)) == 0
7793 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7795 HOST_WIDE_INT val = INTVAL (XEXP (x, 1)) >> count;
7796 return simplify_gen_binary (code, mode, tem,
7797 gen_int_mode (val, mode));
7799 break;
7801 default:
7802 break;
7805 return 0;
7808 /* Subroutine of make_compound_operation. *X_PTR is the rtx at the current
7809 level of the expression and MODE is its mode. IN_CODE is as for
7810 make_compound_operation. *NEXT_CODE_PTR is the value of IN_CODE
7811 that should be used when recursing on operands of *X_PTR.
7813 There are two possible actions:
7815 - Return null. This tells the caller to recurse on *X_PTR with IN_CODE
7816 equal to *NEXT_CODE_PTR, after which *X_PTR holds the final value.
7818 - Return a new rtx, which the caller returns directly. */
7820 static rtx
7821 make_compound_operation_int (machine_mode mode, rtx *x_ptr,
7822 enum rtx_code in_code,
7823 enum rtx_code *next_code_ptr)
7825 rtx x = *x_ptr;
7826 enum rtx_code next_code = *next_code_ptr;
7827 enum rtx_code code = GET_CODE (x);
7828 int mode_width = GET_MODE_PRECISION (mode);
7829 rtx rhs, lhs;
7830 rtx new_rtx = 0;
7831 int i;
7832 rtx tem;
7833 bool equality_comparison = false;
7835 if (in_code == EQ)
7837 equality_comparison = true;
7838 in_code = COMPARE;
7841 /* Process depending on the code of this operation. If NEW is set
7842 nonzero, it will be returned. */
7844 switch (code)
7846 case ASHIFT:
7847 /* Convert shifts by constants into multiplications if inside
7848 an address. */
7849 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
7850 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7851 && INTVAL (XEXP (x, 1)) >= 0)
7853 HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
7854 HOST_WIDE_INT multval = HOST_WIDE_INT_1 << count;
7856 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7857 if (GET_CODE (new_rtx) == NEG)
7859 new_rtx = XEXP (new_rtx, 0);
7860 multval = -multval;
7862 multval = trunc_int_for_mode (multval, mode);
7863 new_rtx = gen_rtx_MULT (mode, new_rtx, gen_int_mode (multval, mode));
7865 break;
7867 case PLUS:
7868 lhs = XEXP (x, 0);
7869 rhs = XEXP (x, 1);
7870 lhs = make_compound_operation (lhs, next_code);
7871 rhs = make_compound_operation (rhs, next_code);
7872 if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG)
7874 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
7875 XEXP (lhs, 1));
7876 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7878 else if (GET_CODE (lhs) == MULT
7879 && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
7881 tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
7882 simplify_gen_unary (NEG, mode,
7883 XEXP (lhs, 1),
7884 mode));
7885 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7887 else
7889 SUBST (XEXP (x, 0), lhs);
7890 SUBST (XEXP (x, 1), rhs);
7892 maybe_swap_commutative_operands (x);
7893 return x;
7895 case MINUS:
7896 lhs = XEXP (x, 0);
7897 rhs = XEXP (x, 1);
7898 lhs = make_compound_operation (lhs, next_code);
7899 rhs = make_compound_operation (rhs, next_code);
7900 if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG)
7902 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
7903 XEXP (rhs, 1));
7904 return simplify_gen_binary (PLUS, mode, tem, lhs);
7906 else if (GET_CODE (rhs) == MULT
7907 && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
7909 tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
7910 simplify_gen_unary (NEG, mode,
7911 XEXP (rhs, 1),
7912 mode));
7913 return simplify_gen_binary (PLUS, mode, tem, lhs);
7915 else
7917 SUBST (XEXP (x, 0), lhs);
7918 SUBST (XEXP (x, 1), rhs);
7919 return x;
7922 case AND:
7923 /* If the second operand is not a constant, we can't do anything
7924 with it. */
7925 if (!CONST_INT_P (XEXP (x, 1)))
7926 break;
7928 /* If the constant is a power of two minus one and the first operand
7929 is a logical right shift, make an extraction. */
7930 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7931 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7933 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7934 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1), i, 1,
7935 0, in_code == COMPARE);
7938 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
7939 else if (GET_CODE (XEXP (x, 0)) == SUBREG
7940 && subreg_lowpart_p (XEXP (x, 0))
7941 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
7942 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7944 rtx inner_x0 = SUBREG_REG (XEXP (x, 0));
7945 machine_mode inner_mode = GET_MODE (inner_x0);
7946 new_rtx = make_compound_operation (XEXP (inner_x0, 0), next_code);
7947 new_rtx = make_extraction (inner_mode, new_rtx, 0,
7948 XEXP (inner_x0, 1),
7949 i, 1, 0, in_code == COMPARE);
7951 /* If we narrowed the mode when dropping the subreg, then we lose. */
7952 if (GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (mode))
7953 new_rtx = NULL;
7955 /* If that didn't give anything, see if the AND simplifies on
7956 its own. */
7957 if (!new_rtx && i >= 0)
7959 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7960 new_rtx = make_extraction (mode, new_rtx, 0, NULL_RTX, i, 1,
7961 0, in_code == COMPARE);
7964 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
7965 else if ((GET_CODE (XEXP (x, 0)) == XOR
7966 || GET_CODE (XEXP (x, 0)) == IOR)
7967 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
7968 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
7969 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7971 /* Apply the distributive law, and then try to make extractions. */
7972 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
7973 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
7974 XEXP (x, 1)),
7975 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
7976 XEXP (x, 1)));
7977 new_rtx = make_compound_operation (new_rtx, in_code);
7980 /* If we are have (and (rotate X C) M) and C is larger than the number
7981 of bits in M, this is an extraction. */
7983 else if (GET_CODE (XEXP (x, 0)) == ROTATE
7984 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7985 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
7986 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
7988 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7989 new_rtx = make_extraction (mode, new_rtx,
7990 (GET_MODE_PRECISION (mode)
7991 - INTVAL (XEXP (XEXP (x, 0), 1))),
7992 NULL_RTX, i, 1, 0, in_code == COMPARE);
7995 /* On machines without logical shifts, if the operand of the AND is
7996 a logical shift and our mask turns off all the propagated sign
7997 bits, we can replace the logical shift with an arithmetic shift. */
7998 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7999 && !have_insn_for (LSHIFTRT, mode)
8000 && have_insn_for (ASHIFTRT, mode)
8001 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8002 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8003 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8004 && mode_width <= HOST_BITS_PER_WIDE_INT)
8006 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
8008 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
8009 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
8010 SUBST (XEXP (x, 0),
8011 gen_rtx_ASHIFTRT (mode,
8012 make_compound_operation
8013 (XEXP (XEXP (x, 0), 0), next_code),
8014 XEXP (XEXP (x, 0), 1)));
8017 /* If the constant is one less than a power of two, this might be
8018 representable by an extraction even if no shift is present.
8019 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
8020 we are in a COMPARE. */
8021 else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8022 new_rtx = make_extraction (mode,
8023 make_compound_operation (XEXP (x, 0),
8024 next_code),
8025 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
8027 /* If we are in a comparison and this is an AND with a power of two,
8028 convert this into the appropriate bit extract. */
8029 else if (in_code == COMPARE
8030 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
8031 && (equality_comparison || i < GET_MODE_PRECISION (mode) - 1))
8032 new_rtx = make_extraction (mode,
8033 make_compound_operation (XEXP (x, 0),
8034 next_code),
8035 i, NULL_RTX, 1, 1, 0, 1);
8037 /* If the one operand is a paradoxical subreg of a register or memory and
8038 the constant (limited to the smaller mode) has only zero bits where
8039 the sub expression has known zero bits, this can be expressed as
8040 a zero_extend. */
8041 else if (GET_CODE (XEXP (x, 0)) == SUBREG)
8043 rtx sub;
8045 sub = XEXP (XEXP (x, 0), 0);
8046 machine_mode sub_mode = GET_MODE (sub);
8047 if ((REG_P (sub) || MEM_P (sub))
8048 && GET_MODE_PRECISION (sub_mode) < mode_width)
8050 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (sub_mode);
8051 unsigned HOST_WIDE_INT mask;
8053 /* original AND constant with all the known zero bits set */
8054 mask = UINTVAL (XEXP (x, 1)) | (~nonzero_bits (sub, sub_mode));
8055 if ((mask & mode_mask) == mode_mask)
8057 new_rtx = make_compound_operation (sub, next_code);
8058 new_rtx = make_extraction (mode, new_rtx, 0, 0,
8059 GET_MODE_PRECISION (sub_mode),
8060 1, 0, in_code == COMPARE);
8065 break;
8067 case LSHIFTRT:
8068 /* If the sign bit is known to be zero, replace this with an
8069 arithmetic shift. */
8070 if (have_insn_for (ASHIFTRT, mode)
8071 && ! have_insn_for (LSHIFTRT, mode)
8072 && mode_width <= HOST_BITS_PER_WIDE_INT
8073 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
8075 new_rtx = gen_rtx_ASHIFTRT (mode,
8076 make_compound_operation (XEXP (x, 0),
8077 next_code),
8078 XEXP (x, 1));
8079 break;
8082 /* fall through */
8084 case ASHIFTRT:
8085 lhs = XEXP (x, 0);
8086 rhs = XEXP (x, 1);
8088 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
8089 this is a SIGN_EXTRACT. */
8090 if (CONST_INT_P (rhs)
8091 && GET_CODE (lhs) == ASHIFT
8092 && CONST_INT_P (XEXP (lhs, 1))
8093 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
8094 && INTVAL (XEXP (lhs, 1)) >= 0
8095 && INTVAL (rhs) < mode_width)
8097 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
8098 new_rtx = make_extraction (mode, new_rtx,
8099 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
8100 NULL_RTX, mode_width - INTVAL (rhs),
8101 code == LSHIFTRT, 0, in_code == COMPARE);
8102 break;
8105 /* See if we have operations between an ASHIFTRT and an ASHIFT.
8106 If so, try to merge the shifts into a SIGN_EXTEND. We could
8107 also do this for some cases of SIGN_EXTRACT, but it doesn't
8108 seem worth the effort; the case checked for occurs on Alpha. */
8110 if (!OBJECT_P (lhs)
8111 && ! (GET_CODE (lhs) == SUBREG
8112 && (OBJECT_P (SUBREG_REG (lhs))))
8113 && CONST_INT_P (rhs)
8114 && INTVAL (rhs) >= 0
8115 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
8116 && INTVAL (rhs) < mode_width
8117 && (new_rtx = extract_left_shift (lhs, INTVAL (rhs))) != 0)
8118 new_rtx = make_extraction (mode, make_compound_operation (new_rtx, next_code),
8119 0, NULL_RTX, mode_width - INTVAL (rhs),
8120 code == LSHIFTRT, 0, in_code == COMPARE);
8122 break;
8124 case SUBREG:
8125 /* Call ourselves recursively on the inner expression. If we are
8126 narrowing the object and it has a different RTL code from
8127 what it originally did, do this SUBREG as a force_to_mode. */
8129 rtx inner = SUBREG_REG (x), simplified;
8130 enum rtx_code subreg_code = in_code;
8132 /* If the SUBREG is masking of a logical right shift,
8133 make an extraction. */
8134 if (GET_CODE (inner) == LSHIFTRT
8135 && CONST_INT_P (XEXP (inner, 1))
8136 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
8137 && (UINTVAL (XEXP (inner, 1))
8138 < GET_MODE_PRECISION (GET_MODE (inner)))
8139 && subreg_lowpart_p (x))
8141 new_rtx = make_compound_operation (XEXP (inner, 0), next_code);
8142 int width = GET_MODE_PRECISION (GET_MODE (inner))
8143 - INTVAL (XEXP (inner, 1));
8144 if (width > mode_width)
8145 width = mode_width;
8146 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (inner, 1),
8147 width, 1, 0, in_code == COMPARE);
8148 break;
8151 /* If in_code is COMPARE, it isn't always safe to pass it through
8152 to the recursive make_compound_operation call. */
8153 if (subreg_code == COMPARE
8154 && (!subreg_lowpart_p (x)
8155 || GET_CODE (inner) == SUBREG
8156 /* (subreg:SI (and:DI (reg:DI) (const_int 0x800000000)) 0)
8157 is (const_int 0), rather than
8158 (subreg:SI (lshiftrt:DI (reg:DI) (const_int 35)) 0).
8159 Similarly (subreg:QI (and:SI (reg:SI) (const_int 0x80)) 0)
8160 for non-equality comparisons against 0 is not equivalent
8161 to (subreg:QI (lshiftrt:SI (reg:SI) (const_int 7)) 0). */
8162 || (GET_CODE (inner) == AND
8163 && CONST_INT_P (XEXP (inner, 1))
8164 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
8165 && exact_log2 (UINTVAL (XEXP (inner, 1)))
8166 >= GET_MODE_BITSIZE (mode) - 1)))
8167 subreg_code = SET;
8169 tem = make_compound_operation (inner, subreg_code);
8171 simplified
8172 = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
8173 if (simplified)
8174 tem = simplified;
8176 if (GET_CODE (tem) != GET_CODE (inner)
8177 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
8178 && subreg_lowpart_p (x))
8180 rtx newer
8181 = force_to_mode (tem, mode, HOST_WIDE_INT_M1U, 0);
8183 /* If we have something other than a SUBREG, we might have
8184 done an expansion, so rerun ourselves. */
8185 if (GET_CODE (newer) != SUBREG)
8186 newer = make_compound_operation (newer, in_code);
8188 /* force_to_mode can expand compounds. If it just re-expanded the
8189 compound, use gen_lowpart to convert to the desired mode. */
8190 if (rtx_equal_p (newer, x)
8191 /* Likewise if it re-expanded the compound only partially.
8192 This happens for SUBREG of ZERO_EXTRACT if they extract
8193 the same number of bits. */
8194 || (GET_CODE (newer) == SUBREG
8195 && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
8196 || GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
8197 && GET_CODE (inner) == AND
8198 && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
8199 return gen_lowpart (GET_MODE (x), tem);
8201 return newer;
8204 if (simplified)
8205 return tem;
8207 break;
8209 default:
8210 break;
8213 if (new_rtx)
8214 *x_ptr = gen_lowpart (mode, new_rtx);
8215 *next_code_ptr = next_code;
8216 return NULL_RTX;
8219 /* Look at the expression rooted at X. Look for expressions
8220 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
8221 Form these expressions.
8223 Return the new rtx, usually just X.
8225 Also, for machines like the VAX that don't have logical shift insns,
8226 try to convert logical to arithmetic shift operations in cases where
8227 they are equivalent. This undoes the canonicalizations to logical
8228 shifts done elsewhere.
8230 We try, as much as possible, to re-use rtl expressions to save memory.
8232 IN_CODE says what kind of expression we are processing. Normally, it is
8233 SET. In a memory address it is MEM. When processing the arguments of
8234 a comparison or a COMPARE against zero, it is COMPARE, or EQ if more
8235 precisely it is an equality comparison against zero. */
8238 make_compound_operation (rtx x, enum rtx_code in_code)
8240 enum rtx_code code = GET_CODE (x);
8241 const char *fmt;
8242 int i, j;
8243 enum rtx_code next_code;
8244 rtx new_rtx, tem;
8246 /* Select the code to be used in recursive calls. Once we are inside an
8247 address, we stay there. If we have a comparison, set to COMPARE,
8248 but once inside, go back to our default of SET. */
8250 next_code = (code == MEM ? MEM
8251 : ((code == COMPARE || COMPARISON_P (x))
8252 && XEXP (x, 1) == const0_rtx) ? COMPARE
8253 : in_code == COMPARE || in_code == EQ ? SET : in_code);
8255 if (SCALAR_INT_MODE_P (GET_MODE (x)))
8257 rtx new_rtx = make_compound_operation_int (GET_MODE (x), &x,
8258 in_code, &next_code);
8259 if (new_rtx)
8260 return new_rtx;
8261 code = GET_CODE (x);
8264 /* Now recursively process each operand of this operation. We need to
8265 handle ZERO_EXTEND specially so that we don't lose track of the
8266 inner mode. */
8267 if (code == ZERO_EXTEND)
8269 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8270 tem = simplify_const_unary_operation (ZERO_EXTEND, GET_MODE (x),
8271 new_rtx, GET_MODE (XEXP (x, 0)));
8272 if (tem)
8273 return tem;
8274 SUBST (XEXP (x, 0), new_rtx);
8275 return x;
8278 fmt = GET_RTX_FORMAT (code);
8279 for (i = 0; i < GET_RTX_LENGTH (code); i++)
8280 if (fmt[i] == 'e')
8282 new_rtx = make_compound_operation (XEXP (x, i), next_code);
8283 SUBST (XEXP (x, i), new_rtx);
8285 else if (fmt[i] == 'E')
8286 for (j = 0; j < XVECLEN (x, i); j++)
8288 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
8289 SUBST (XVECEXP (x, i, j), new_rtx);
8292 maybe_swap_commutative_operands (x);
8293 return x;
8296 /* Given M see if it is a value that would select a field of bits
8297 within an item, but not the entire word. Return -1 if not.
8298 Otherwise, return the starting position of the field, where 0 is the
8299 low-order bit.
8301 *PLEN is set to the length of the field. */
8303 static int
8304 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
8306 /* Get the bit number of the first 1 bit from the right, -1 if none. */
8307 int pos = m ? ctz_hwi (m) : -1;
8308 int len = 0;
8310 if (pos >= 0)
8311 /* Now shift off the low-order zero bits and see if we have a
8312 power of two minus 1. */
8313 len = exact_log2 ((m >> pos) + 1);
8315 if (len <= 0)
8316 pos = -1;
8318 *plen = len;
8319 return pos;
8322 /* If X refers to a register that equals REG in value, replace these
8323 references with REG. */
8324 static rtx
8325 canon_reg_for_combine (rtx x, rtx reg)
8327 rtx op0, op1, op2;
8328 const char *fmt;
8329 int i;
8330 bool copied;
8332 enum rtx_code code = GET_CODE (x);
8333 switch (GET_RTX_CLASS (code))
8335 case RTX_UNARY:
8336 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8337 if (op0 != XEXP (x, 0))
8338 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
8339 GET_MODE (reg));
8340 break;
8342 case RTX_BIN_ARITH:
8343 case RTX_COMM_ARITH:
8344 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8345 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8346 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8347 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
8348 break;
8350 case RTX_COMPARE:
8351 case RTX_COMM_COMPARE:
8352 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8353 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8354 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8355 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
8356 GET_MODE (op0), op0, op1);
8357 break;
8359 case RTX_TERNARY:
8360 case RTX_BITFIELD_OPS:
8361 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8362 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8363 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
8364 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
8365 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
8366 GET_MODE (op0), op0, op1, op2);
8367 /* FALLTHRU */
8369 case RTX_OBJ:
8370 if (REG_P (x))
8372 if (rtx_equal_p (get_last_value (reg), x)
8373 || rtx_equal_p (reg, get_last_value (x)))
8374 return reg;
8375 else
8376 break;
8379 /* fall through */
8381 default:
8382 fmt = GET_RTX_FORMAT (code);
8383 copied = false;
8384 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8385 if (fmt[i] == 'e')
8387 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
8388 if (op != XEXP (x, i))
8390 if (!copied)
8392 copied = true;
8393 x = copy_rtx (x);
8395 XEXP (x, i) = op;
8398 else if (fmt[i] == 'E')
8400 int j;
8401 for (j = 0; j < XVECLEN (x, i); j++)
8403 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
8404 if (op != XVECEXP (x, i, j))
8406 if (!copied)
8408 copied = true;
8409 x = copy_rtx (x);
8411 XVECEXP (x, i, j) = op;
8416 break;
8419 return x;
8422 /* Return X converted to MODE. If the value is already truncated to
8423 MODE we can just return a subreg even though in the general case we
8424 would need an explicit truncation. */
8426 static rtx
8427 gen_lowpart_or_truncate (machine_mode mode, rtx x)
8429 if (!CONST_INT_P (x)
8430 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x))
8431 && !TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x))
8432 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
8434 /* Bit-cast X into an integer mode. */
8435 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
8436 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)).require (), x);
8437 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode).require (),
8438 x, GET_MODE (x));
8441 return gen_lowpart (mode, x);
8444 /* See if X can be simplified knowing that we will only refer to it in
8445 MODE and will only refer to those bits that are nonzero in MASK.
8446 If other bits are being computed or if masking operations are done
8447 that select a superset of the bits in MASK, they can sometimes be
8448 ignored.
8450 Return a possibly simplified expression, but always convert X to
8451 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
8453 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
8454 are all off in X. This is used when X will be complemented, by either
8455 NOT, NEG, or XOR. */
8457 static rtx
8458 force_to_mode (rtx x, machine_mode mode, unsigned HOST_WIDE_INT mask,
8459 int just_select)
8461 enum rtx_code code = GET_CODE (x);
8462 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8463 machine_mode op_mode;
8464 unsigned HOST_WIDE_INT fuller_mask, nonzero;
8465 rtx op0, op1, temp;
8467 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
8468 code below will do the wrong thing since the mode of such an
8469 expression is VOIDmode.
8471 Also do nothing if X is a CLOBBER; this can happen if X was
8472 the return value from a call to gen_lowpart. */
8473 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
8474 return x;
8476 /* We want to perform the operation in its present mode unless we know
8477 that the operation is valid in MODE, in which case we do the operation
8478 in MODE. */
8479 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
8480 && have_insn_for (code, mode))
8481 ? mode : GET_MODE (x));
8483 /* It is not valid to do a right-shift in a narrower mode
8484 than the one it came in with. */
8485 if ((code == LSHIFTRT || code == ASHIFTRT)
8486 && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (GET_MODE (x)))
8487 op_mode = GET_MODE (x);
8489 /* Truncate MASK to fit OP_MODE. */
8490 if (op_mode)
8491 mask &= GET_MODE_MASK (op_mode);
8493 /* When we have an arithmetic operation, or a shift whose count we
8494 do not know, we need to assume that all bits up to the highest-order
8495 bit in MASK will be needed. This is how we form such a mask. */
8496 if (mask & (HOST_WIDE_INT_1U << (HOST_BITS_PER_WIDE_INT - 1)))
8497 fuller_mask = HOST_WIDE_INT_M1U;
8498 else
8499 fuller_mask = ((HOST_WIDE_INT_1U << (floor_log2 (mask) + 1))
8500 - 1);
8502 /* Determine what bits of X are guaranteed to be (non)zero. */
8503 nonzero = nonzero_bits (x, mode);
8505 /* If none of the bits in X are needed, return a zero. */
8506 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8507 x = const0_rtx;
8509 /* If X is a CONST_INT, return a new one. Do this here since the
8510 test below will fail. */
8511 if (CONST_INT_P (x))
8513 if (SCALAR_INT_MODE_P (mode))
8514 return gen_int_mode (INTVAL (x) & mask, mode);
8515 else
8517 x = GEN_INT (INTVAL (x) & mask);
8518 return gen_lowpart_common (mode, x);
8522 /* If X is narrower than MODE and we want all the bits in X's mode, just
8523 get X in the proper mode. */
8524 if (paradoxical_subreg_p (mode, GET_MODE (x))
8525 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8526 return gen_lowpart (mode, x);
8528 /* We can ignore the effect of a SUBREG if it narrows the mode or
8529 if the constant masks to zero all the bits the mode doesn't have. */
8530 if (GET_CODE (x) == SUBREG
8531 && subreg_lowpart_p (x)
8532 && ((GET_MODE_SIZE (GET_MODE (x))
8533 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8534 || (0 == (mask
8535 & GET_MODE_MASK (GET_MODE (x))
8536 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
8537 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8539 /* The arithmetic simplifications here only work for scalar integer modes. */
8540 if (!SCALAR_INT_MODE_P (mode) || !SCALAR_INT_MODE_P (GET_MODE (x)))
8541 return gen_lowpart_or_truncate (mode, x);
8543 switch (code)
8545 case CLOBBER:
8546 /* If X is a (clobber (const_int)), return it since we know we are
8547 generating something that won't match. */
8548 return x;
8550 case SIGN_EXTEND:
8551 case ZERO_EXTEND:
8552 case ZERO_EXTRACT:
8553 case SIGN_EXTRACT:
8554 x = expand_compound_operation (x);
8555 if (GET_CODE (x) != code)
8556 return force_to_mode (x, mode, mask, next_select);
8557 break;
8559 case TRUNCATE:
8560 /* Similarly for a truncate. */
8561 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8563 case AND:
8564 /* If this is an AND with a constant, convert it into an AND
8565 whose constant is the AND of that constant with MASK. If it
8566 remains an AND of MASK, delete it since it is redundant. */
8568 if (CONST_INT_P (XEXP (x, 1)))
8570 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8571 mask & INTVAL (XEXP (x, 1)));
8573 /* If X is still an AND, see if it is an AND with a mask that
8574 is just some low-order bits. If so, and it is MASK, we don't
8575 need it. */
8577 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8578 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
8579 == mask))
8580 x = XEXP (x, 0);
8582 /* If it remains an AND, try making another AND with the bits
8583 in the mode mask that aren't in MASK turned on. If the
8584 constant in the AND is wide enough, this might make a
8585 cheaper constant. */
8587 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8588 && GET_MODE_MASK (GET_MODE (x)) != mask
8589 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
8591 unsigned HOST_WIDE_INT cval
8592 = UINTVAL (XEXP (x, 1))
8593 | (GET_MODE_MASK (GET_MODE (x)) & ~mask);
8594 rtx y;
8596 y = simplify_gen_binary (AND, GET_MODE (x), XEXP (x, 0),
8597 gen_int_mode (cval, GET_MODE (x)));
8598 if (set_src_cost (y, GET_MODE (x), optimize_this_for_speed_p)
8599 < set_src_cost (x, GET_MODE (x), optimize_this_for_speed_p))
8600 x = y;
8603 break;
8606 goto binop;
8608 case PLUS:
8609 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8610 low-order bits (as in an alignment operation) and FOO is already
8611 aligned to that boundary, mask C1 to that boundary as well.
8612 This may eliminate that PLUS and, later, the AND. */
8615 unsigned int width = GET_MODE_PRECISION (mode);
8616 unsigned HOST_WIDE_INT smask = mask;
8618 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8619 number, sign extend it. */
8621 if (width < HOST_BITS_PER_WIDE_INT
8622 && (smask & (HOST_WIDE_INT_1U << (width - 1))) != 0)
8623 smask |= HOST_WIDE_INT_M1U << width;
8625 if (CONST_INT_P (XEXP (x, 1))
8626 && pow2p_hwi (- smask)
8627 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8628 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8629 return force_to_mode (plus_constant (GET_MODE (x), XEXP (x, 0),
8630 (INTVAL (XEXP (x, 1)) & smask)),
8631 mode, smask, next_select);
8634 /* fall through */
8636 case MULT:
8637 /* Substituting into the operands of a widening MULT is not likely to
8638 create RTL matching a machine insn. */
8639 if (code == MULT
8640 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
8641 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
8642 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
8643 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
8644 && REG_P (XEXP (XEXP (x, 0), 0))
8645 && REG_P (XEXP (XEXP (x, 1), 0)))
8646 return gen_lowpart_or_truncate (mode, x);
8648 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8649 most significant bit in MASK since carries from those bits will
8650 affect the bits we are interested in. */
8651 mask = fuller_mask;
8652 goto binop;
8654 case MINUS:
8655 /* If X is (minus C Y) where C's least set bit is larger than any bit
8656 in the mask, then we may replace with (neg Y). */
8657 if (CONST_INT_P (XEXP (x, 0))
8658 && least_bit_hwi (UINTVAL (XEXP (x, 0))) > mask)
8660 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
8661 GET_MODE (x));
8662 return force_to_mode (x, mode, mask, next_select);
8665 /* Similarly, if C contains every bit in the fuller_mask, then we may
8666 replace with (not Y). */
8667 if (CONST_INT_P (XEXP (x, 0))
8668 && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8670 x = simplify_gen_unary (NOT, GET_MODE (x),
8671 XEXP (x, 1), GET_MODE (x));
8672 return force_to_mode (x, mode, mask, next_select);
8675 mask = fuller_mask;
8676 goto binop;
8678 case IOR:
8679 case XOR:
8680 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8681 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8682 operation which may be a bitfield extraction. Ensure that the
8683 constant we form is not wider than the mode of X. */
8685 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8686 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8687 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8688 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8689 && CONST_INT_P (XEXP (x, 1))
8690 && ((INTVAL (XEXP (XEXP (x, 0), 1))
8691 + floor_log2 (INTVAL (XEXP (x, 1))))
8692 < GET_MODE_PRECISION (GET_MODE (x)))
8693 && (UINTVAL (XEXP (x, 1))
8694 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
8696 temp = gen_int_mode ((INTVAL (XEXP (x, 1)) & mask)
8697 << INTVAL (XEXP (XEXP (x, 0), 1)),
8698 GET_MODE (x));
8699 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
8700 XEXP (XEXP (x, 0), 0), temp);
8701 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
8702 XEXP (XEXP (x, 0), 1));
8703 return force_to_mode (x, mode, mask, next_select);
8706 binop:
8707 /* For most binary operations, just propagate into the operation and
8708 change the mode if we have an operation of that mode. */
8710 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8711 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8713 /* If we ended up truncating both operands, truncate the result of the
8714 operation instead. */
8715 if (GET_CODE (op0) == TRUNCATE
8716 && GET_CODE (op1) == TRUNCATE)
8718 op0 = XEXP (op0, 0);
8719 op1 = XEXP (op1, 0);
8722 op0 = gen_lowpart_or_truncate (op_mode, op0);
8723 op1 = gen_lowpart_or_truncate (op_mode, op1);
8725 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8726 x = simplify_gen_binary (code, op_mode, op0, op1);
8727 break;
8729 case ASHIFT:
8730 /* For left shifts, do the same, but just for the first operand.
8731 However, we cannot do anything with shifts where we cannot
8732 guarantee that the counts are smaller than the size of the mode
8733 because such a count will have a different meaning in a
8734 wider mode. */
8736 if (! (CONST_INT_P (XEXP (x, 1))
8737 && INTVAL (XEXP (x, 1)) >= 0
8738 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode))
8739 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
8740 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
8741 < (unsigned HOST_WIDE_INT) GET_MODE_PRECISION (mode))))
8742 break;
8744 /* If the shift count is a constant and we can do arithmetic in
8745 the mode of the shift, refine which bits we need. Otherwise, use the
8746 conservative form of the mask. */
8747 if (CONST_INT_P (XEXP (x, 1))
8748 && INTVAL (XEXP (x, 1)) >= 0
8749 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (op_mode)
8750 && HWI_COMPUTABLE_MODE_P (op_mode))
8751 mask >>= INTVAL (XEXP (x, 1));
8752 else
8753 mask = fuller_mask;
8755 op0 = gen_lowpart_or_truncate (op_mode,
8756 force_to_mode (XEXP (x, 0), op_mode,
8757 mask, next_select));
8759 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8760 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
8761 break;
8763 case LSHIFTRT:
8764 /* Here we can only do something if the shift count is a constant,
8765 this shift constant is valid for the host, and we can do arithmetic
8766 in OP_MODE. */
8768 if (CONST_INT_P (XEXP (x, 1))
8769 && INTVAL (XEXP (x, 1)) >= 0
8770 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8771 && HWI_COMPUTABLE_MODE_P (op_mode))
8773 rtx inner = XEXP (x, 0);
8774 unsigned HOST_WIDE_INT inner_mask;
8776 /* Select the mask of the bits we need for the shift operand. */
8777 inner_mask = mask << INTVAL (XEXP (x, 1));
8779 /* We can only change the mode of the shift if we can do arithmetic
8780 in the mode of the shift and INNER_MASK is no wider than the
8781 width of X's mode. */
8782 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
8783 op_mode = GET_MODE (x);
8785 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
8787 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
8788 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
8791 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
8792 shift and AND produces only copies of the sign bit (C2 is one less
8793 than a power of two), we can do this with just a shift. */
8795 if (GET_CODE (x) == LSHIFTRT
8796 && CONST_INT_P (XEXP (x, 1))
8797 /* The shift puts one of the sign bit copies in the least significant
8798 bit. */
8799 && ((INTVAL (XEXP (x, 1))
8800 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
8801 >= GET_MODE_PRECISION (GET_MODE (x)))
8802 && pow2p_hwi (mask + 1)
8803 /* Number of bits left after the shift must be more than the mask
8804 needs. */
8805 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
8806 <= GET_MODE_PRECISION (GET_MODE (x)))
8807 /* Must be more sign bit copies than the mask needs. */
8808 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
8809 >= exact_log2 (mask + 1)))
8810 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8811 GEN_INT (GET_MODE_PRECISION (GET_MODE (x))
8812 - exact_log2 (mask + 1)));
8814 goto shiftrt;
8816 case ASHIFTRT:
8817 /* If we are just looking for the sign bit, we don't need this shift at
8818 all, even if it has a variable count. */
8819 if (val_signbit_p (GET_MODE (x), mask))
8820 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8822 /* If this is a shift by a constant, get a mask that contains those bits
8823 that are not copies of the sign bit. We then have two cases: If
8824 MASK only includes those bits, this can be a logical shift, which may
8825 allow simplifications. If MASK is a single-bit field not within
8826 those bits, we are requesting a copy of the sign bit and hence can
8827 shift the sign bit to the appropriate location. */
8829 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
8830 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8832 int i;
8834 /* If the considered data is wider than HOST_WIDE_INT, we can't
8835 represent a mask for all its bits in a single scalar.
8836 But we only care about the lower bits, so calculate these. */
8838 if (GET_MODE_PRECISION (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
8840 nonzero = HOST_WIDE_INT_M1U;
8842 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8843 is the number of bits a full-width mask would have set.
8844 We need only shift if these are fewer than nonzero can
8845 hold. If not, we must keep all bits set in nonzero. */
8847 if (GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8848 < HOST_BITS_PER_WIDE_INT)
8849 nonzero >>= INTVAL (XEXP (x, 1))
8850 + HOST_BITS_PER_WIDE_INT
8851 - GET_MODE_PRECISION (GET_MODE (x)) ;
8853 else
8855 nonzero = GET_MODE_MASK (GET_MODE (x));
8856 nonzero >>= INTVAL (XEXP (x, 1));
8859 if ((mask & ~nonzero) == 0)
8861 x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
8862 XEXP (x, 0), INTVAL (XEXP (x, 1)));
8863 if (GET_CODE (x) != ASHIFTRT)
8864 return force_to_mode (x, mode, mask, next_select);
8867 else if ((i = exact_log2 (mask)) >= 0)
8869 x = simplify_shift_const
8870 (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8871 GET_MODE_PRECISION (GET_MODE (x)) - 1 - i);
8873 if (GET_CODE (x) != ASHIFTRT)
8874 return force_to_mode (x, mode, mask, next_select);
8878 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
8879 even if the shift count isn't a constant. */
8880 if (mask == 1)
8881 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8882 XEXP (x, 0), XEXP (x, 1));
8884 shiftrt:
8886 /* If this is a zero- or sign-extension operation that just affects bits
8887 we don't care about, remove it. Be sure the call above returned
8888 something that is still a shift. */
8890 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
8891 && CONST_INT_P (XEXP (x, 1))
8892 && INTVAL (XEXP (x, 1)) >= 0
8893 && (INTVAL (XEXP (x, 1))
8894 <= GET_MODE_PRECISION (GET_MODE (x)) - (floor_log2 (mask) + 1))
8895 && GET_CODE (XEXP (x, 0)) == ASHIFT
8896 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
8897 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
8898 next_select);
8900 break;
8902 case ROTATE:
8903 case ROTATERT:
8904 /* If the shift count is constant and we can do computations
8905 in the mode of X, compute where the bits we care about are.
8906 Otherwise, we can't do anything. Don't change the mode of
8907 the shift or propagate MODE into the shift, though. */
8908 if (CONST_INT_P (XEXP (x, 1))
8909 && INTVAL (XEXP (x, 1)) >= 0)
8911 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
8912 GET_MODE (x),
8913 gen_int_mode (mask, GET_MODE (x)),
8914 XEXP (x, 1));
8915 if (temp && CONST_INT_P (temp))
8916 x = simplify_gen_binary (code, GET_MODE (x),
8917 force_to_mode (XEXP (x, 0), GET_MODE (x),
8918 INTVAL (temp), next_select),
8919 XEXP (x, 1));
8921 break;
8923 case NEG:
8924 /* If we just want the low-order bit, the NEG isn't needed since it
8925 won't change the low-order bit. */
8926 if (mask == 1)
8927 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
8929 /* We need any bits less significant than the most significant bit in
8930 MASK since carries from those bits will affect the bits we are
8931 interested in. */
8932 mask = fuller_mask;
8933 goto unop;
8935 case NOT:
8936 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
8937 same as the XOR case above. Ensure that the constant we form is not
8938 wider than the mode of X. */
8940 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8941 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8942 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8943 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
8944 < GET_MODE_PRECISION (GET_MODE (x)))
8945 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
8947 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
8948 GET_MODE (x));
8949 temp = simplify_gen_binary (XOR, GET_MODE (x),
8950 XEXP (XEXP (x, 0), 0), temp);
8951 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8952 temp, XEXP (XEXP (x, 0), 1));
8954 return force_to_mode (x, mode, mask, next_select);
8957 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
8958 use the full mask inside the NOT. */
8959 mask = fuller_mask;
8961 unop:
8962 op0 = gen_lowpart_or_truncate (op_mode,
8963 force_to_mode (XEXP (x, 0), mode, mask,
8964 next_select));
8965 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8966 x = simplify_gen_unary (code, op_mode, op0, op_mode);
8967 break;
8969 case NE:
8970 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
8971 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
8972 which is equal to STORE_FLAG_VALUE. */
8973 if ((mask & ~STORE_FLAG_VALUE) == 0
8974 && XEXP (x, 1) == const0_rtx
8975 && GET_MODE (XEXP (x, 0)) == mode
8976 && pow2p_hwi (nonzero_bits (XEXP (x, 0), mode))
8977 && (nonzero_bits (XEXP (x, 0), mode)
8978 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
8979 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8981 break;
8983 case IF_THEN_ELSE:
8984 /* We have no way of knowing if the IF_THEN_ELSE can itself be
8985 written in a narrower mode. We play it safe and do not do so. */
8987 op0 = gen_lowpart_or_truncate (GET_MODE (x),
8988 force_to_mode (XEXP (x, 1), mode,
8989 mask, next_select));
8990 op1 = gen_lowpart_or_truncate (GET_MODE (x),
8991 force_to_mode (XEXP (x, 2), mode,
8992 mask, next_select));
8993 if (op0 != XEXP (x, 1) || op1 != XEXP (x, 2))
8994 x = simplify_gen_ternary (IF_THEN_ELSE, GET_MODE (x),
8995 GET_MODE (XEXP (x, 0)), XEXP (x, 0),
8996 op0, op1);
8997 break;
8999 default:
9000 break;
9003 /* Ensure we return a value of the proper mode. */
9004 return gen_lowpart_or_truncate (mode, x);
9007 /* Return nonzero if X is an expression that has one of two values depending on
9008 whether some other value is zero or nonzero. In that case, we return the
9009 value that is being tested, *PTRUE is set to the value if the rtx being
9010 returned has a nonzero value, and *PFALSE is set to the other alternative.
9012 If we return zero, we set *PTRUE and *PFALSE to X. */
9014 static rtx
9015 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
9017 machine_mode mode = GET_MODE (x);
9018 enum rtx_code code = GET_CODE (x);
9019 rtx cond0, cond1, true0, true1, false0, false1;
9020 unsigned HOST_WIDE_INT nz;
9022 /* If we are comparing a value against zero, we are done. */
9023 if ((code == NE || code == EQ)
9024 && XEXP (x, 1) == const0_rtx)
9026 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
9027 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
9028 return XEXP (x, 0);
9031 /* If this is a unary operation whose operand has one of two values, apply
9032 our opcode to compute those values. */
9033 else if (UNARY_P (x)
9034 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
9036 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
9037 *pfalse = simplify_gen_unary (code, mode, false0,
9038 GET_MODE (XEXP (x, 0)));
9039 return cond0;
9042 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
9043 make can't possibly match and would suppress other optimizations. */
9044 else if (code == COMPARE)
9047 /* If this is a binary operation, see if either side has only one of two
9048 values. If either one does or if both do and they are conditional on
9049 the same value, compute the new true and false values. */
9050 else if (BINARY_P (x))
9052 rtx op0 = XEXP (x, 0);
9053 rtx op1 = XEXP (x, 1);
9054 cond0 = if_then_else_cond (op0, &true0, &false0);
9055 cond1 = if_then_else_cond (op1, &true1, &false1);
9057 if ((cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1))
9058 && (REG_P (op0) || REG_P (op1)))
9060 /* Try to enable a simplification by undoing work done by
9061 if_then_else_cond if it converted a REG into something more
9062 complex. */
9063 if (REG_P (op0))
9065 cond0 = 0;
9066 true0 = false0 = op0;
9068 else
9070 cond1 = 0;
9071 true1 = false1 = op1;
9075 if ((cond0 != 0 || cond1 != 0)
9076 && ! (cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1)))
9078 /* If if_then_else_cond returned zero, then true/false are the
9079 same rtl. We must copy one of them to prevent invalid rtl
9080 sharing. */
9081 if (cond0 == 0)
9082 true0 = copy_rtx (true0);
9083 else if (cond1 == 0)
9084 true1 = copy_rtx (true1);
9086 if (COMPARISON_P (x))
9088 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
9089 true0, true1);
9090 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
9091 false0, false1);
9093 else
9095 *ptrue = simplify_gen_binary (code, mode, true0, true1);
9096 *pfalse = simplify_gen_binary (code, mode, false0, false1);
9099 return cond0 ? cond0 : cond1;
9102 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
9103 operands is zero when the other is nonzero, and vice-versa,
9104 and STORE_FLAG_VALUE is 1 or -1. */
9106 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9107 && (code == PLUS || code == IOR || code == XOR || code == MINUS
9108 || code == UMAX)
9109 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9111 rtx op0 = XEXP (XEXP (x, 0), 1);
9112 rtx op1 = XEXP (XEXP (x, 1), 1);
9114 cond0 = XEXP (XEXP (x, 0), 0);
9115 cond1 = XEXP (XEXP (x, 1), 0);
9117 if (COMPARISON_P (cond0)
9118 && COMPARISON_P (cond1)
9119 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9120 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9121 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9122 || ((swap_condition (GET_CODE (cond0))
9123 == reversed_comparison_code (cond1, NULL))
9124 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9125 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9126 && ! side_effects_p (x))
9128 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
9129 *pfalse = simplify_gen_binary (MULT, mode,
9130 (code == MINUS
9131 ? simplify_gen_unary (NEG, mode,
9132 op1, mode)
9133 : op1),
9134 const_true_rtx);
9135 return cond0;
9139 /* Similarly for MULT, AND and UMIN, except that for these the result
9140 is always zero. */
9141 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9142 && (code == MULT || code == AND || code == UMIN)
9143 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9145 cond0 = XEXP (XEXP (x, 0), 0);
9146 cond1 = XEXP (XEXP (x, 1), 0);
9148 if (COMPARISON_P (cond0)
9149 && COMPARISON_P (cond1)
9150 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9151 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9152 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9153 || ((swap_condition (GET_CODE (cond0))
9154 == reversed_comparison_code (cond1, NULL))
9155 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9156 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9157 && ! side_effects_p (x))
9159 *ptrue = *pfalse = const0_rtx;
9160 return cond0;
9165 else if (code == IF_THEN_ELSE)
9167 /* If we have IF_THEN_ELSE already, extract the condition and
9168 canonicalize it if it is NE or EQ. */
9169 cond0 = XEXP (x, 0);
9170 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
9171 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
9172 return XEXP (cond0, 0);
9173 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
9175 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
9176 return XEXP (cond0, 0);
9178 else
9179 return cond0;
9182 /* If X is a SUBREG, we can narrow both the true and false values
9183 if the inner expression, if there is a condition. */
9184 else if (code == SUBREG
9185 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
9186 &true0, &false0)))
9188 true0 = simplify_gen_subreg (mode, true0,
9189 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9190 false0 = simplify_gen_subreg (mode, false0,
9191 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9192 if (true0 && false0)
9194 *ptrue = true0;
9195 *pfalse = false0;
9196 return cond0;
9200 /* If X is a constant, this isn't special and will cause confusions
9201 if we treat it as such. Likewise if it is equivalent to a constant. */
9202 else if (CONSTANT_P (x)
9203 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
9206 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
9207 will be least confusing to the rest of the compiler. */
9208 else if (mode == BImode)
9210 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
9211 return x;
9214 /* If X is known to be either 0 or -1, those are the true and
9215 false values when testing X. */
9216 else if (x == constm1_rtx || x == const0_rtx
9217 || (mode != VOIDmode && mode != BLKmode
9218 && num_sign_bit_copies (x, mode) == GET_MODE_PRECISION (mode)))
9220 *ptrue = constm1_rtx, *pfalse = const0_rtx;
9221 return x;
9224 /* Likewise for 0 or a single bit. */
9225 else if (HWI_COMPUTABLE_MODE_P (mode)
9226 && pow2p_hwi (nz = nonzero_bits (x, mode)))
9228 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
9229 return x;
9232 /* Otherwise fail; show no condition with true and false values the same. */
9233 *ptrue = *pfalse = x;
9234 return 0;
9237 /* Return the value of expression X given the fact that condition COND
9238 is known to be true when applied to REG as its first operand and VAL
9239 as its second. X is known to not be shared and so can be modified in
9240 place.
9242 We only handle the simplest cases, and specifically those cases that
9243 arise with IF_THEN_ELSE expressions. */
9245 static rtx
9246 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
9248 enum rtx_code code = GET_CODE (x);
9249 const char *fmt;
9250 int i, j;
9252 if (side_effects_p (x))
9253 return x;
9255 /* If either operand of the condition is a floating point value,
9256 then we have to avoid collapsing an EQ comparison. */
9257 if (cond == EQ
9258 && rtx_equal_p (x, reg)
9259 && ! FLOAT_MODE_P (GET_MODE (x))
9260 && ! FLOAT_MODE_P (GET_MODE (val)))
9261 return val;
9263 if (cond == UNEQ && rtx_equal_p (x, reg))
9264 return val;
9266 /* If X is (abs REG) and we know something about REG's relationship
9267 with zero, we may be able to simplify this. */
9269 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
9270 switch (cond)
9272 case GE: case GT: case EQ:
9273 return XEXP (x, 0);
9274 case LT: case LE:
9275 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
9276 XEXP (x, 0),
9277 GET_MODE (XEXP (x, 0)));
9278 default:
9279 break;
9282 /* The only other cases we handle are MIN, MAX, and comparisons if the
9283 operands are the same as REG and VAL. */
9285 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
9287 if (rtx_equal_p (XEXP (x, 0), val))
9289 std::swap (val, reg);
9290 cond = swap_condition (cond);
9293 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
9295 if (COMPARISON_P (x))
9297 if (comparison_dominates_p (cond, code))
9298 return const_true_rtx;
9300 code = reversed_comparison_code (x, NULL);
9301 if (code != UNKNOWN
9302 && comparison_dominates_p (cond, code))
9303 return const0_rtx;
9304 else
9305 return x;
9307 else if (code == SMAX || code == SMIN
9308 || code == UMIN || code == UMAX)
9310 int unsignedp = (code == UMIN || code == UMAX);
9312 /* Do not reverse the condition when it is NE or EQ.
9313 This is because we cannot conclude anything about
9314 the value of 'SMAX (x, y)' when x is not equal to y,
9315 but we can when x equals y. */
9316 if ((code == SMAX || code == UMAX)
9317 && ! (cond == EQ || cond == NE))
9318 cond = reverse_condition (cond);
9320 switch (cond)
9322 case GE: case GT:
9323 return unsignedp ? x : XEXP (x, 1);
9324 case LE: case LT:
9325 return unsignedp ? x : XEXP (x, 0);
9326 case GEU: case GTU:
9327 return unsignedp ? XEXP (x, 1) : x;
9328 case LEU: case LTU:
9329 return unsignedp ? XEXP (x, 0) : x;
9330 default:
9331 break;
9336 else if (code == SUBREG)
9338 machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
9339 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
9341 if (SUBREG_REG (x) != r)
9343 /* We must simplify subreg here, before we lose track of the
9344 original inner_mode. */
9345 new_rtx = simplify_subreg (GET_MODE (x), r,
9346 inner_mode, SUBREG_BYTE (x));
9347 if (new_rtx)
9348 return new_rtx;
9349 else
9350 SUBST (SUBREG_REG (x), r);
9353 return x;
9355 /* We don't have to handle SIGN_EXTEND here, because even in the
9356 case of replacing something with a modeless CONST_INT, a
9357 CONST_INT is already (supposed to be) a valid sign extension for
9358 its narrower mode, which implies it's already properly
9359 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
9360 story is different. */
9361 else if (code == ZERO_EXTEND)
9363 machine_mode inner_mode = GET_MODE (XEXP (x, 0));
9364 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
9366 if (XEXP (x, 0) != r)
9368 /* We must simplify the zero_extend here, before we lose
9369 track of the original inner_mode. */
9370 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
9371 r, inner_mode);
9372 if (new_rtx)
9373 return new_rtx;
9374 else
9375 SUBST (XEXP (x, 0), r);
9378 return x;
9381 fmt = GET_RTX_FORMAT (code);
9382 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9384 if (fmt[i] == 'e')
9385 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
9386 else if (fmt[i] == 'E')
9387 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9388 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
9389 cond, reg, val));
9392 return x;
9395 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
9396 assignment as a field assignment. */
9398 static int
9399 rtx_equal_for_field_assignment_p (rtx x, rtx y, bool widen_x)
9401 if (widen_x && GET_MODE (x) != GET_MODE (y))
9403 if (paradoxical_subreg_p (GET_MODE (x), GET_MODE (y)))
9404 return 0;
9405 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
9406 return 0;
9407 /* For big endian, adjust the memory offset. */
9408 if (BYTES_BIG_ENDIAN)
9409 x = adjust_address_nv (x, GET_MODE (y),
9410 -subreg_lowpart_offset (GET_MODE (x),
9411 GET_MODE (y)));
9412 else
9413 x = adjust_address_nv (x, GET_MODE (y), 0);
9416 if (x == y || rtx_equal_p (x, y))
9417 return 1;
9419 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
9420 return 0;
9422 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
9423 Note that all SUBREGs of MEM are paradoxical; otherwise they
9424 would have been rewritten. */
9425 if (MEM_P (x) && GET_CODE (y) == SUBREG
9426 && MEM_P (SUBREG_REG (y))
9427 && rtx_equal_p (SUBREG_REG (y),
9428 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
9429 return 1;
9431 if (MEM_P (y) && GET_CODE (x) == SUBREG
9432 && MEM_P (SUBREG_REG (x))
9433 && rtx_equal_p (SUBREG_REG (x),
9434 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
9435 return 1;
9437 /* We used to see if get_last_value of X and Y were the same but that's
9438 not correct. In one direction, we'll cause the assignment to have
9439 the wrong destination and in the case, we'll import a register into this
9440 insn that might have already have been dead. So fail if none of the
9441 above cases are true. */
9442 return 0;
9445 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
9446 Return that assignment if so.
9448 We only handle the most common cases. */
9450 static rtx
9451 make_field_assignment (rtx x)
9453 rtx dest = SET_DEST (x);
9454 rtx src = SET_SRC (x);
9455 rtx assign;
9456 rtx rhs, lhs;
9457 HOST_WIDE_INT c1;
9458 HOST_WIDE_INT pos;
9459 unsigned HOST_WIDE_INT len;
9460 rtx other;
9461 machine_mode mode;
9463 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
9464 a clear of a one-bit field. We will have changed it to
9465 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
9466 for a SUBREG. */
9468 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
9469 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
9470 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
9471 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9473 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9474 1, 1, 1, 0);
9475 if (assign != 0)
9476 return gen_rtx_SET (assign, const0_rtx);
9477 return x;
9480 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
9481 && subreg_lowpart_p (XEXP (src, 0))
9482 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
9483 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
9484 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
9485 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
9486 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
9487 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9489 assign = make_extraction (VOIDmode, dest, 0,
9490 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
9491 1, 1, 1, 0);
9492 if (assign != 0)
9493 return gen_rtx_SET (assign, const0_rtx);
9494 return x;
9497 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9498 one-bit field. */
9499 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
9500 && XEXP (XEXP (src, 0), 0) == const1_rtx
9501 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9503 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9504 1, 1, 1, 0);
9505 if (assign != 0)
9506 return gen_rtx_SET (assign, const1_rtx);
9507 return x;
9510 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9511 SRC is an AND with all bits of that field set, then we can discard
9512 the AND. */
9513 if (GET_CODE (dest) == ZERO_EXTRACT
9514 && CONST_INT_P (XEXP (dest, 1))
9515 && GET_CODE (src) == AND
9516 && CONST_INT_P (XEXP (src, 1)))
9518 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
9519 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
9520 unsigned HOST_WIDE_INT ze_mask;
9522 if (width >= HOST_BITS_PER_WIDE_INT)
9523 ze_mask = -1;
9524 else
9525 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
9527 /* Complete overlap. We can remove the source AND. */
9528 if ((and_mask & ze_mask) == ze_mask)
9529 return gen_rtx_SET (dest, XEXP (src, 0));
9531 /* Partial overlap. We can reduce the source AND. */
9532 if ((and_mask & ze_mask) != and_mask)
9534 mode = GET_MODE (src);
9535 src = gen_rtx_AND (mode, XEXP (src, 0),
9536 gen_int_mode (and_mask & ze_mask, mode));
9537 return gen_rtx_SET (dest, src);
9541 /* The other case we handle is assignments into a constant-position
9542 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9543 a mask that has all one bits except for a group of zero bits and
9544 OTHER is known to have zeros where C1 has ones, this is such an
9545 assignment. Compute the position and length from C1. Shift OTHER
9546 to the appropriate position, force it to the required mode, and
9547 make the extraction. Check for the AND in both operands. */
9549 /* One or more SUBREGs might obscure the constant-position field
9550 assignment. The first one we are likely to encounter is an outer
9551 narrowing SUBREG, which we can just strip for the purposes of
9552 identifying the constant-field assignment. */
9553 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src))
9554 src = SUBREG_REG (src);
9556 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9557 return x;
9559 rhs = expand_compound_operation (XEXP (src, 0));
9560 lhs = expand_compound_operation (XEXP (src, 1));
9562 if (GET_CODE (rhs) == AND
9563 && CONST_INT_P (XEXP (rhs, 1))
9564 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9565 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9566 /* The second SUBREG that might get in the way is a paradoxical
9567 SUBREG around the first operand of the AND. We want to
9568 pretend the operand is as wide as the destination here. We
9569 do this by adjusting the MEM to wider mode for the sole
9570 purpose of the call to rtx_equal_for_field_assignment_p. Also
9571 note this trick only works for MEMs. */
9572 else if (GET_CODE (rhs) == AND
9573 && paradoxical_subreg_p (XEXP (rhs, 0))
9574 && MEM_P (SUBREG_REG (XEXP (rhs, 0)))
9575 && CONST_INT_P (XEXP (rhs, 1))
9576 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (rhs, 0)),
9577 dest, true))
9578 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9579 else if (GET_CODE (lhs) == AND
9580 && CONST_INT_P (XEXP (lhs, 1))
9581 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9582 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9583 /* The second SUBREG that might get in the way is a paradoxical
9584 SUBREG around the first operand of the AND. We want to
9585 pretend the operand is as wide as the destination here. We
9586 do this by adjusting the MEM to wider mode for the sole
9587 purpose of the call to rtx_equal_for_field_assignment_p. Also
9588 note this trick only works for MEMs. */
9589 else if (GET_CODE (lhs) == AND
9590 && paradoxical_subreg_p (XEXP (lhs, 0))
9591 && MEM_P (SUBREG_REG (XEXP (lhs, 0)))
9592 && CONST_INT_P (XEXP (lhs, 1))
9593 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (lhs, 0)),
9594 dest, true))
9595 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9596 else
9597 return x;
9599 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
9600 if (pos < 0 || pos + len > GET_MODE_PRECISION (GET_MODE (dest))
9601 || GET_MODE_PRECISION (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
9602 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
9603 return x;
9605 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
9606 if (assign == 0)
9607 return x;
9609 /* The mode to use for the source is the mode of the assignment, or of
9610 what is inside a possible STRICT_LOW_PART. */
9611 mode = (GET_CODE (assign) == STRICT_LOW_PART
9612 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9614 /* Shift OTHER right POS places and make it the source, restricting it
9615 to the proper length and mode. */
9617 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9618 GET_MODE (src),
9619 other, pos),
9620 dest);
9621 src = force_to_mode (src, mode,
9622 len >= HOST_BITS_PER_WIDE_INT
9623 ? HOST_WIDE_INT_M1U
9624 : (HOST_WIDE_INT_1U << len) - 1,
9627 /* If SRC is masked by an AND that does not make a difference in
9628 the value being stored, strip it. */
9629 if (GET_CODE (assign) == ZERO_EXTRACT
9630 && CONST_INT_P (XEXP (assign, 1))
9631 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9632 && GET_CODE (src) == AND
9633 && CONST_INT_P (XEXP (src, 1))
9634 && UINTVAL (XEXP (src, 1))
9635 == (HOST_WIDE_INT_1U << INTVAL (XEXP (assign, 1))) - 1)
9636 src = XEXP (src, 0);
9638 return gen_rtx_SET (assign, src);
9641 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9642 if so. */
9644 static rtx
9645 apply_distributive_law (rtx x)
9647 enum rtx_code code = GET_CODE (x);
9648 enum rtx_code inner_code;
9649 rtx lhs, rhs, other;
9650 rtx tem;
9652 /* Distributivity is not true for floating point as it can change the
9653 value. So we don't do it unless -funsafe-math-optimizations. */
9654 if (FLOAT_MODE_P (GET_MODE (x))
9655 && ! flag_unsafe_math_optimizations)
9656 return x;
9658 /* The outer operation can only be one of the following: */
9659 if (code != IOR && code != AND && code != XOR
9660 && code != PLUS && code != MINUS)
9661 return x;
9663 lhs = XEXP (x, 0);
9664 rhs = XEXP (x, 1);
9666 /* If either operand is a primitive we can't do anything, so get out
9667 fast. */
9668 if (OBJECT_P (lhs) || OBJECT_P (rhs))
9669 return x;
9671 lhs = expand_compound_operation (lhs);
9672 rhs = expand_compound_operation (rhs);
9673 inner_code = GET_CODE (lhs);
9674 if (inner_code != GET_CODE (rhs))
9675 return x;
9677 /* See if the inner and outer operations distribute. */
9678 switch (inner_code)
9680 case LSHIFTRT:
9681 case ASHIFTRT:
9682 case AND:
9683 case IOR:
9684 /* These all distribute except over PLUS. */
9685 if (code == PLUS || code == MINUS)
9686 return x;
9687 break;
9689 case MULT:
9690 if (code != PLUS && code != MINUS)
9691 return x;
9692 break;
9694 case ASHIFT:
9695 /* This is also a multiply, so it distributes over everything. */
9696 break;
9698 /* This used to handle SUBREG, but this turned out to be counter-
9699 productive, since (subreg (op ...)) usually is not handled by
9700 insn patterns, and this "optimization" therefore transformed
9701 recognizable patterns into unrecognizable ones. Therefore the
9702 SUBREG case was removed from here.
9704 It is possible that distributing SUBREG over arithmetic operations
9705 leads to an intermediate result than can then be optimized further,
9706 e.g. by moving the outer SUBREG to the other side of a SET as done
9707 in simplify_set. This seems to have been the original intent of
9708 handling SUBREGs here.
9710 However, with current GCC this does not appear to actually happen,
9711 at least on major platforms. If some case is found where removing
9712 the SUBREG case here prevents follow-on optimizations, distributing
9713 SUBREGs ought to be re-added at that place, e.g. in simplify_set. */
9715 default:
9716 return x;
9719 /* Set LHS and RHS to the inner operands (A and B in the example
9720 above) and set OTHER to the common operand (C in the example).
9721 There is only one way to do this unless the inner operation is
9722 commutative. */
9723 if (COMMUTATIVE_ARITH_P (lhs)
9724 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
9725 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
9726 else if (COMMUTATIVE_ARITH_P (lhs)
9727 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
9728 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
9729 else if (COMMUTATIVE_ARITH_P (lhs)
9730 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
9731 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
9732 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
9733 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
9734 else
9735 return x;
9737 /* Form the new inner operation, seeing if it simplifies first. */
9738 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
9740 /* There is one exception to the general way of distributing:
9741 (a | c) ^ (b | c) -> (a ^ b) & ~c */
9742 if (code == XOR && inner_code == IOR)
9744 inner_code = AND;
9745 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
9748 /* We may be able to continuing distributing the result, so call
9749 ourselves recursively on the inner operation before forming the
9750 outer operation, which we return. */
9751 return simplify_gen_binary (inner_code, GET_MODE (x),
9752 apply_distributive_law (tem), other);
9755 /* See if X is of the form (* (+ A B) C), and if so convert to
9756 (+ (* A C) (* B C)) and try to simplify.
9758 Most of the time, this results in no change. However, if some of
9759 the operands are the same or inverses of each other, simplifications
9760 will result.
9762 For example, (and (ior A B) (not B)) can occur as the result of
9763 expanding a bit field assignment. When we apply the distributive
9764 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9765 which then simplifies to (and (A (not B))).
9767 Note that no checks happen on the validity of applying the inverse
9768 distributive law. This is pointless since we can do it in the
9769 few places where this routine is called.
9771 N is the index of the term that is decomposed (the arithmetic operation,
9772 i.e. (+ A B) in the first example above). !N is the index of the term that
9773 is distributed, i.e. of C in the first example above. */
9774 static rtx
9775 distribute_and_simplify_rtx (rtx x, int n)
9777 machine_mode mode;
9778 enum rtx_code outer_code, inner_code;
9779 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
9781 /* Distributivity is not true for floating point as it can change the
9782 value. So we don't do it unless -funsafe-math-optimizations. */
9783 if (FLOAT_MODE_P (GET_MODE (x))
9784 && ! flag_unsafe_math_optimizations)
9785 return NULL_RTX;
9787 decomposed = XEXP (x, n);
9788 if (!ARITHMETIC_P (decomposed))
9789 return NULL_RTX;
9791 mode = GET_MODE (x);
9792 outer_code = GET_CODE (x);
9793 distributed = XEXP (x, !n);
9795 inner_code = GET_CODE (decomposed);
9796 inner_op0 = XEXP (decomposed, 0);
9797 inner_op1 = XEXP (decomposed, 1);
9799 /* Special case (and (xor B C) (not A)), which is equivalent to
9800 (xor (ior A B) (ior A C)) */
9801 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
9803 distributed = XEXP (distributed, 0);
9804 outer_code = IOR;
9807 if (n == 0)
9809 /* Distribute the second term. */
9810 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
9811 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
9813 else
9815 /* Distribute the first term. */
9816 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
9817 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
9820 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
9821 new_op0, new_op1));
9822 if (GET_CODE (tmp) != outer_code
9823 && (set_src_cost (tmp, mode, optimize_this_for_speed_p)
9824 < set_src_cost (x, mode, optimize_this_for_speed_p)))
9825 return tmp;
9827 return NULL_RTX;
9830 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
9831 in MODE. Return an equivalent form, if different from (and VAROP
9832 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
9834 static rtx
9835 simplify_and_const_int_1 (machine_mode mode, rtx varop,
9836 unsigned HOST_WIDE_INT constop)
9838 unsigned HOST_WIDE_INT nonzero;
9839 unsigned HOST_WIDE_INT orig_constop;
9840 rtx orig_varop;
9841 int i;
9843 orig_varop = varop;
9844 orig_constop = constop;
9845 if (GET_CODE (varop) == CLOBBER)
9846 return NULL_RTX;
9848 /* Simplify VAROP knowing that we will be only looking at some of the
9849 bits in it.
9851 Note by passing in CONSTOP, we guarantee that the bits not set in
9852 CONSTOP are not significant and will never be examined. We must
9853 ensure that is the case by explicitly masking out those bits
9854 before returning. */
9855 varop = force_to_mode (varop, mode, constop, 0);
9857 /* If VAROP is a CLOBBER, we will fail so return it. */
9858 if (GET_CODE (varop) == CLOBBER)
9859 return varop;
9861 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
9862 to VAROP and return the new constant. */
9863 if (CONST_INT_P (varop))
9864 return gen_int_mode (INTVAL (varop) & constop, mode);
9866 /* See what bits may be nonzero in VAROP. Unlike the general case of
9867 a call to nonzero_bits, here we don't care about bits outside
9868 MODE. */
9870 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
9872 /* Turn off all bits in the constant that are known to already be zero.
9873 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
9874 which is tested below. */
9876 constop &= nonzero;
9878 /* If we don't have any bits left, return zero. */
9879 if (constop == 0)
9880 return const0_rtx;
9882 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
9883 a power of two, we can replace this with an ASHIFT. */
9884 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
9885 && (i = exact_log2 (constop)) >= 0)
9886 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
9888 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
9889 or XOR, then try to apply the distributive law. This may eliminate
9890 operations if either branch can be simplified because of the AND.
9891 It may also make some cases more complex, but those cases probably
9892 won't match a pattern either with or without this. */
9894 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
9895 return
9896 gen_lowpart
9897 (mode,
9898 apply_distributive_law
9899 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
9900 simplify_and_const_int (NULL_RTX,
9901 GET_MODE (varop),
9902 XEXP (varop, 0),
9903 constop),
9904 simplify_and_const_int (NULL_RTX,
9905 GET_MODE (varop),
9906 XEXP (varop, 1),
9907 constop))));
9909 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
9910 the AND and see if one of the operands simplifies to zero. If so, we
9911 may eliminate it. */
9913 if (GET_CODE (varop) == PLUS
9914 && pow2p_hwi (constop + 1))
9916 rtx o0, o1;
9918 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
9919 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
9920 if (o0 == const0_rtx)
9921 return o1;
9922 if (o1 == const0_rtx)
9923 return o0;
9926 /* Make a SUBREG if necessary. If we can't make it, fail. */
9927 varop = gen_lowpart (mode, varop);
9928 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
9929 return NULL_RTX;
9931 /* If we are only masking insignificant bits, return VAROP. */
9932 if (constop == nonzero)
9933 return varop;
9935 if (varop == orig_varop && constop == orig_constop)
9936 return NULL_RTX;
9938 /* Otherwise, return an AND. */
9939 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
9943 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
9944 in MODE.
9946 Return an equivalent form, if different from X. Otherwise, return X. If
9947 X is zero, we are to always construct the equivalent form. */
9949 static rtx
9950 simplify_and_const_int (rtx x, machine_mode mode, rtx varop,
9951 unsigned HOST_WIDE_INT constop)
9953 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
9954 if (tem)
9955 return tem;
9957 if (!x)
9958 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
9959 gen_int_mode (constop, mode));
9960 if (GET_MODE (x) != mode)
9961 x = gen_lowpart (mode, x);
9962 return x;
9965 /* Given a REG, X, compute which bits in X can be nonzero.
9966 We don't care about bits outside of those defined in MODE.
9968 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
9969 a shift, AND, or zero_extract, we can do better. */
9971 static rtx
9972 reg_nonzero_bits_for_combine (const_rtx x, machine_mode mode,
9973 const_rtx known_x ATTRIBUTE_UNUSED,
9974 machine_mode known_mode ATTRIBUTE_UNUSED,
9975 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
9976 unsigned HOST_WIDE_INT *nonzero)
9978 rtx tem;
9979 reg_stat_type *rsp;
9981 /* If X is a register whose nonzero bits value is current, use it.
9982 Otherwise, if X is a register whose value we can find, use that
9983 value. Otherwise, use the previously-computed global nonzero bits
9984 for this register. */
9986 rsp = &reg_stat[REGNO (x)];
9987 if (rsp->last_set_value != 0
9988 && (rsp->last_set_mode == mode
9989 || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
9990 && GET_MODE_CLASS (mode) == MODE_INT))
9991 && ((rsp->last_set_label >= label_tick_ebb_start
9992 && rsp->last_set_label < label_tick)
9993 || (rsp->last_set_label == label_tick
9994 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9995 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9996 && REGNO (x) < reg_n_sets_max
9997 && REG_N_SETS (REGNO (x)) == 1
9998 && !REGNO_REG_SET_P
9999 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10000 REGNO (x)))))
10002 /* Note that, even if the precision of last_set_mode is lower than that
10003 of mode, record_value_for_reg invoked nonzero_bits on the register
10004 with nonzero_bits_mode (because last_set_mode is necessarily integral
10005 and HWI_COMPUTABLE_MODE_P in this case) so bits in nonzero_bits_mode
10006 are all valid, hence in mode too since nonzero_bits_mode is defined
10007 to the largest HWI_COMPUTABLE_MODE_P mode. */
10008 *nonzero &= rsp->last_set_nonzero_bits;
10009 return NULL;
10012 tem = get_last_value (x);
10013 if (tem)
10015 if (SHORT_IMMEDIATES_SIGN_EXTEND)
10016 tem = sign_extend_short_imm (tem, GET_MODE (x),
10017 GET_MODE_PRECISION (mode));
10019 return tem;
10022 if (nonzero_sign_valid && rsp->nonzero_bits)
10024 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
10026 if (GET_MODE_PRECISION (GET_MODE (x)) < GET_MODE_PRECISION (mode))
10027 /* We don't know anything about the upper bits. */
10028 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
10030 *nonzero &= mask;
10033 return NULL;
10036 /* Return the number of bits at the high-order end of X that are known to
10037 be equal to the sign bit. X will be used in mode MODE; if MODE is
10038 VOIDmode, X will be used in its own mode. The returned value will always
10039 be between 1 and the number of bits in MODE. */
10041 static rtx
10042 reg_num_sign_bit_copies_for_combine (const_rtx x, machine_mode mode,
10043 const_rtx known_x ATTRIBUTE_UNUSED,
10044 machine_mode known_mode
10045 ATTRIBUTE_UNUSED,
10046 unsigned int known_ret ATTRIBUTE_UNUSED,
10047 unsigned int *result)
10049 rtx tem;
10050 reg_stat_type *rsp;
10052 rsp = &reg_stat[REGNO (x)];
10053 if (rsp->last_set_value != 0
10054 && rsp->last_set_mode == mode
10055 && ((rsp->last_set_label >= label_tick_ebb_start
10056 && rsp->last_set_label < label_tick)
10057 || (rsp->last_set_label == label_tick
10058 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
10059 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10060 && REGNO (x) < reg_n_sets_max
10061 && REG_N_SETS (REGNO (x)) == 1
10062 && !REGNO_REG_SET_P
10063 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10064 REGNO (x)))))
10066 *result = rsp->last_set_sign_bit_copies;
10067 return NULL;
10070 tem = get_last_value (x);
10071 if (tem != 0)
10072 return tem;
10074 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
10075 && GET_MODE_PRECISION (GET_MODE (x)) == GET_MODE_PRECISION (mode))
10076 *result = rsp->sign_bit_copies;
10078 return NULL;
10081 /* Return the number of "extended" bits there are in X, when interpreted
10082 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
10083 unsigned quantities, this is the number of high-order zero bits.
10084 For signed quantities, this is the number of copies of the sign bit
10085 minus 1. In both case, this function returns the number of "spare"
10086 bits. For example, if two quantities for which this function returns
10087 at least 1 are added, the addition is known not to overflow.
10089 This function will always return 0 unless called during combine, which
10090 implies that it must be called from a define_split. */
10092 unsigned int
10093 extended_count (const_rtx x, machine_mode mode, int unsignedp)
10095 if (nonzero_sign_valid == 0)
10096 return 0;
10098 return (unsignedp
10099 ? (HWI_COMPUTABLE_MODE_P (mode)
10100 ? (unsigned int) (GET_MODE_PRECISION (mode) - 1
10101 - floor_log2 (nonzero_bits (x, mode)))
10102 : 0)
10103 : num_sign_bit_copies (x, mode) - 1);
10106 /* This function is called from `simplify_shift_const' to merge two
10107 outer operations. Specifically, we have already found that we need
10108 to perform operation *POP0 with constant *PCONST0 at the outermost
10109 position. We would now like to also perform OP1 with constant CONST1
10110 (with *POP0 being done last).
10112 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
10113 the resulting operation. *PCOMP_P is set to 1 if we would need to
10114 complement the innermost operand, otherwise it is unchanged.
10116 MODE is the mode in which the operation will be done. No bits outside
10117 the width of this mode matter. It is assumed that the width of this mode
10118 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
10120 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
10121 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
10122 result is simply *PCONST0.
10124 If the resulting operation cannot be expressed as one operation, we
10125 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
10127 static int
10128 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, machine_mode mode, int *pcomp_p)
10130 enum rtx_code op0 = *pop0;
10131 HOST_WIDE_INT const0 = *pconst0;
10133 const0 &= GET_MODE_MASK (mode);
10134 const1 &= GET_MODE_MASK (mode);
10136 /* If OP0 is an AND, clear unimportant bits in CONST1. */
10137 if (op0 == AND)
10138 const1 &= const0;
10140 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
10141 if OP0 is SET. */
10143 if (op1 == UNKNOWN || op0 == SET)
10144 return 1;
10146 else if (op0 == UNKNOWN)
10147 op0 = op1, const0 = const1;
10149 else if (op0 == op1)
10151 switch (op0)
10153 case AND:
10154 const0 &= const1;
10155 break;
10156 case IOR:
10157 const0 |= const1;
10158 break;
10159 case XOR:
10160 const0 ^= const1;
10161 break;
10162 case PLUS:
10163 const0 += const1;
10164 break;
10165 case NEG:
10166 op0 = UNKNOWN;
10167 break;
10168 default:
10169 break;
10173 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
10174 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
10175 return 0;
10177 /* If the two constants aren't the same, we can't do anything. The
10178 remaining six cases can all be done. */
10179 else if (const0 != const1)
10180 return 0;
10182 else
10183 switch (op0)
10185 case IOR:
10186 if (op1 == AND)
10187 /* (a & b) | b == b */
10188 op0 = SET;
10189 else /* op1 == XOR */
10190 /* (a ^ b) | b == a | b */
10192 break;
10194 case XOR:
10195 if (op1 == AND)
10196 /* (a & b) ^ b == (~a) & b */
10197 op0 = AND, *pcomp_p = 1;
10198 else /* op1 == IOR */
10199 /* (a | b) ^ b == a & ~b */
10200 op0 = AND, const0 = ~const0;
10201 break;
10203 case AND:
10204 if (op1 == IOR)
10205 /* (a | b) & b == b */
10206 op0 = SET;
10207 else /* op1 == XOR */
10208 /* (a ^ b) & b) == (~a) & b */
10209 *pcomp_p = 1;
10210 break;
10211 default:
10212 break;
10215 /* Check for NO-OP cases. */
10216 const0 &= GET_MODE_MASK (mode);
10217 if (const0 == 0
10218 && (op0 == IOR || op0 == XOR || op0 == PLUS))
10219 op0 = UNKNOWN;
10220 else if (const0 == 0 && op0 == AND)
10221 op0 = SET;
10222 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
10223 && op0 == AND)
10224 op0 = UNKNOWN;
10226 *pop0 = op0;
10228 /* ??? Slightly redundant with the above mask, but not entirely.
10229 Moving this above means we'd have to sign-extend the mode mask
10230 for the final test. */
10231 if (op0 != UNKNOWN && op0 != NEG)
10232 *pconst0 = trunc_int_for_mode (const0, mode);
10234 return 1;
10237 /* A helper to simplify_shift_const_1 to determine the mode we can perform
10238 the shift in. The original shift operation CODE is performed on OP in
10239 ORIG_MODE. Return the wider mode MODE if we can perform the operation
10240 in that mode. Return ORIG_MODE otherwise. We can also assume that the
10241 result of the shift is subject to operation OUTER_CODE with operand
10242 OUTER_CONST. */
10244 static machine_mode
10245 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
10246 machine_mode orig_mode, machine_mode mode,
10247 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
10249 if (orig_mode == mode)
10250 return mode;
10251 gcc_assert (GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (orig_mode));
10253 /* In general we can't perform in wider mode for right shift and rotate. */
10254 switch (code)
10256 case ASHIFTRT:
10257 /* We can still widen if the bits brought in from the left are identical
10258 to the sign bit of ORIG_MODE. */
10259 if (num_sign_bit_copies (op, mode)
10260 > (unsigned) (GET_MODE_PRECISION (mode)
10261 - GET_MODE_PRECISION (orig_mode)))
10262 return mode;
10263 return orig_mode;
10265 case LSHIFTRT:
10266 /* Similarly here but with zero bits. */
10267 if (HWI_COMPUTABLE_MODE_P (mode)
10268 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
10269 return mode;
10271 /* We can also widen if the bits brought in will be masked off. This
10272 operation is performed in ORIG_MODE. */
10273 if (outer_code == AND)
10275 int care_bits = low_bitmask_len (orig_mode, outer_const);
10277 if (care_bits >= 0
10278 && GET_MODE_PRECISION (orig_mode) - care_bits >= count)
10279 return mode;
10281 /* fall through */
10283 case ROTATE:
10284 return orig_mode;
10286 case ROTATERT:
10287 gcc_unreachable ();
10289 default:
10290 return mode;
10294 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
10295 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
10296 if we cannot simplify it. Otherwise, return a simplified value.
10298 The shift is normally computed in the widest mode we find in VAROP, as
10299 long as it isn't a different number of words than RESULT_MODE. Exceptions
10300 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10302 static rtx
10303 simplify_shift_const_1 (enum rtx_code code, machine_mode result_mode,
10304 rtx varop, int orig_count)
10306 enum rtx_code orig_code = code;
10307 rtx orig_varop = varop;
10308 int count;
10309 machine_mode mode = result_mode;
10310 machine_mode shift_mode;
10311 scalar_int_mode tmode, inner_mode;
10312 unsigned int mode_words
10313 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
10314 /* We form (outer_op (code varop count) (outer_const)). */
10315 enum rtx_code outer_op = UNKNOWN;
10316 HOST_WIDE_INT outer_const = 0;
10317 int complement_p = 0;
10318 rtx new_rtx, x;
10320 /* Make sure and truncate the "natural" shift on the way in. We don't
10321 want to do this inside the loop as it makes it more difficult to
10322 combine shifts. */
10323 if (SHIFT_COUNT_TRUNCATED)
10324 orig_count &= GET_MODE_UNIT_BITSIZE (mode) - 1;
10326 /* If we were given an invalid count, don't do anything except exactly
10327 what was requested. */
10329 if (orig_count < 0 || orig_count >= (int) GET_MODE_UNIT_PRECISION (mode))
10330 return NULL_RTX;
10332 count = orig_count;
10334 /* Unless one of the branches of the `if' in this loop does a `continue',
10335 we will `break' the loop after the `if'. */
10337 while (count != 0)
10339 /* If we have an operand of (clobber (const_int 0)), fail. */
10340 if (GET_CODE (varop) == CLOBBER)
10341 return NULL_RTX;
10343 /* Convert ROTATERT to ROTATE. */
10344 if (code == ROTATERT)
10346 unsigned int bitsize = GET_MODE_UNIT_PRECISION (result_mode);
10347 code = ROTATE;
10348 count = bitsize - count;
10351 shift_mode = try_widen_shift_mode (code, varop, count, result_mode,
10352 mode, outer_op, outer_const);
10353 machine_mode shift_unit_mode = GET_MODE_INNER (shift_mode);
10355 /* Handle cases where the count is greater than the size of the mode
10356 minus 1. For ASHIFT, use the size minus one as the count (this can
10357 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
10358 take the count modulo the size. For other shifts, the result is
10359 zero.
10361 Since these shifts are being produced by the compiler by combining
10362 multiple operations, each of which are defined, we know what the
10363 result is supposed to be. */
10365 if (count > (GET_MODE_PRECISION (shift_unit_mode) - 1))
10367 if (code == ASHIFTRT)
10368 count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10369 else if (code == ROTATE || code == ROTATERT)
10370 count %= GET_MODE_PRECISION (shift_unit_mode);
10371 else
10373 /* We can't simply return zero because there may be an
10374 outer op. */
10375 varop = const0_rtx;
10376 count = 0;
10377 break;
10381 /* If we discovered we had to complement VAROP, leave. Making a NOT
10382 here would cause an infinite loop. */
10383 if (complement_p)
10384 break;
10386 if (shift_mode == shift_unit_mode)
10388 /* An arithmetic right shift of a quantity known to be -1 or 0
10389 is a no-op. */
10390 if (code == ASHIFTRT
10391 && (num_sign_bit_copies (varop, shift_unit_mode)
10392 == GET_MODE_PRECISION (shift_unit_mode)))
10394 count = 0;
10395 break;
10398 /* If we are doing an arithmetic right shift and discarding all but
10399 the sign bit copies, this is equivalent to doing a shift by the
10400 bitsize minus one. Convert it into that shift because it will
10401 often allow other simplifications. */
10403 if (code == ASHIFTRT
10404 && (count + num_sign_bit_copies (varop, shift_unit_mode)
10405 >= GET_MODE_PRECISION (shift_unit_mode)))
10406 count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10408 /* We simplify the tests below and elsewhere by converting
10409 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
10410 `make_compound_operation' will convert it to an ASHIFTRT for
10411 those machines (such as VAX) that don't have an LSHIFTRT. */
10412 if (code == ASHIFTRT
10413 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10414 && val_signbit_known_clear_p (shift_unit_mode,
10415 nonzero_bits (varop,
10416 shift_unit_mode)))
10417 code = LSHIFTRT;
10419 if (((code == LSHIFTRT
10420 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10421 && !(nonzero_bits (varop, shift_unit_mode) >> count))
10422 || (code == ASHIFT
10423 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10424 && !((nonzero_bits (varop, shift_unit_mode) << count)
10425 & GET_MODE_MASK (shift_unit_mode))))
10426 && !side_effects_p (varop))
10427 varop = const0_rtx;
10430 switch (GET_CODE (varop))
10432 case SIGN_EXTEND:
10433 case ZERO_EXTEND:
10434 case SIGN_EXTRACT:
10435 case ZERO_EXTRACT:
10436 new_rtx = expand_compound_operation (varop);
10437 if (new_rtx != varop)
10439 varop = new_rtx;
10440 continue;
10442 break;
10444 case MEM:
10445 /* The following rules apply only to scalars. */
10446 if (shift_mode != shift_unit_mode)
10447 break;
10449 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
10450 minus the width of a smaller mode, we can do this with a
10451 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
10452 if ((code == ASHIFTRT || code == LSHIFTRT)
10453 && ! mode_dependent_address_p (XEXP (varop, 0),
10454 MEM_ADDR_SPACE (varop))
10455 && ! MEM_VOLATILE_P (varop)
10456 && (int_mode_for_size (GET_MODE_BITSIZE (mode) - count, 1)
10457 .exists (&tmode)))
10459 new_rtx = adjust_address_nv (varop, tmode,
10460 BYTES_BIG_ENDIAN ? 0
10461 : count / BITS_PER_UNIT);
10463 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
10464 : ZERO_EXTEND, mode, new_rtx);
10465 count = 0;
10466 continue;
10468 break;
10470 case SUBREG:
10471 /* The following rules apply only to scalars. */
10472 if (shift_mode != shift_unit_mode)
10473 break;
10475 /* If VAROP is a SUBREG, strip it as long as the inner operand has
10476 the same number of words as what we've seen so far. Then store
10477 the widest mode in MODE. */
10478 if (subreg_lowpart_p (varop)
10479 && is_int_mode (GET_MODE (SUBREG_REG (varop)), &inner_mode)
10480 && GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (GET_MODE (varop))
10481 && (unsigned int) ((GET_MODE_SIZE (inner_mode)
10482 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
10483 == mode_words
10484 && GET_MODE_CLASS (GET_MODE (varop)) == MODE_INT)
10486 varop = SUBREG_REG (varop);
10487 if (GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (mode))
10488 mode = inner_mode;
10489 continue;
10491 break;
10493 case MULT:
10494 /* Some machines use MULT instead of ASHIFT because MULT
10495 is cheaper. But it is still better on those machines to
10496 merge two shifts into one. */
10497 if (CONST_INT_P (XEXP (varop, 1))
10498 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10500 varop
10501 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
10502 XEXP (varop, 0),
10503 GEN_INT (exact_log2 (
10504 UINTVAL (XEXP (varop, 1)))));
10505 continue;
10507 break;
10509 case UDIV:
10510 /* Similar, for when divides are cheaper. */
10511 if (CONST_INT_P (XEXP (varop, 1))
10512 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10514 varop
10515 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
10516 XEXP (varop, 0),
10517 GEN_INT (exact_log2 (
10518 UINTVAL (XEXP (varop, 1)))));
10519 continue;
10521 break;
10523 case ASHIFTRT:
10524 /* If we are extracting just the sign bit of an arithmetic
10525 right shift, that shift is not needed. However, the sign
10526 bit of a wider mode may be different from what would be
10527 interpreted as the sign bit in a narrower mode, so, if
10528 the result is narrower, don't discard the shift. */
10529 if (code == LSHIFTRT
10530 && count == (GET_MODE_UNIT_BITSIZE (result_mode) - 1)
10531 && (GET_MODE_UNIT_BITSIZE (result_mode)
10532 >= GET_MODE_UNIT_BITSIZE (GET_MODE (varop))))
10534 varop = XEXP (varop, 0);
10535 continue;
10538 /* fall through */
10540 case LSHIFTRT:
10541 case ASHIFT:
10542 case ROTATE:
10543 /* The following rules apply only to scalars. */
10544 if (shift_mode != shift_unit_mode)
10545 break;
10547 /* Here we have two nested shifts. The result is usually the
10548 AND of a new shift with a mask. We compute the result below. */
10549 if (CONST_INT_P (XEXP (varop, 1))
10550 && INTVAL (XEXP (varop, 1)) >= 0
10551 && INTVAL (XEXP (varop, 1)) < GET_MODE_PRECISION (GET_MODE (varop))
10552 && HWI_COMPUTABLE_MODE_P (result_mode)
10553 && HWI_COMPUTABLE_MODE_P (mode))
10555 enum rtx_code first_code = GET_CODE (varop);
10556 unsigned int first_count = INTVAL (XEXP (varop, 1));
10557 unsigned HOST_WIDE_INT mask;
10558 rtx mask_rtx;
10560 /* We have one common special case. We can't do any merging if
10561 the inner code is an ASHIFTRT of a smaller mode. However, if
10562 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10563 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10564 we can convert it to
10565 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10566 This simplifies certain SIGN_EXTEND operations. */
10567 if (code == ASHIFT && first_code == ASHIFTRT
10568 && count == (GET_MODE_PRECISION (result_mode)
10569 - GET_MODE_PRECISION (GET_MODE (varop))))
10571 /* C3 has the low-order C1 bits zero. */
10573 mask = GET_MODE_MASK (mode)
10574 & ~((HOST_WIDE_INT_1U << first_count) - 1);
10576 varop = simplify_and_const_int (NULL_RTX, result_mode,
10577 XEXP (varop, 0), mask);
10578 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
10579 varop, count);
10580 count = first_count;
10581 code = ASHIFTRT;
10582 continue;
10585 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10586 than C1 high-order bits equal to the sign bit, we can convert
10587 this to either an ASHIFT or an ASHIFTRT depending on the
10588 two counts.
10590 We cannot do this if VAROP's mode is not SHIFT_MODE. */
10592 if (code == ASHIFTRT && first_code == ASHIFT
10593 && GET_MODE (varop) == shift_mode
10594 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
10595 > first_count))
10597 varop = XEXP (varop, 0);
10598 count -= first_count;
10599 if (count < 0)
10601 count = -count;
10602 code = ASHIFT;
10605 continue;
10608 /* There are some cases we can't do. If CODE is ASHIFTRT,
10609 we can only do this if FIRST_CODE is also ASHIFTRT.
10611 We can't do the case when CODE is ROTATE and FIRST_CODE is
10612 ASHIFTRT.
10614 If the mode of this shift is not the mode of the outer shift,
10615 we can't do this if either shift is a right shift or ROTATE.
10617 Finally, we can't do any of these if the mode is too wide
10618 unless the codes are the same.
10620 Handle the case where the shift codes are the same
10621 first. */
10623 if (code == first_code)
10625 if (GET_MODE (varop) != result_mode
10626 && (code == ASHIFTRT || code == LSHIFTRT
10627 || code == ROTATE))
10628 break;
10630 count += first_count;
10631 varop = XEXP (varop, 0);
10632 continue;
10635 if (code == ASHIFTRT
10636 || (code == ROTATE && first_code == ASHIFTRT)
10637 || GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT
10638 || (GET_MODE (varop) != result_mode
10639 && (first_code == ASHIFTRT || first_code == LSHIFTRT
10640 || first_code == ROTATE
10641 || code == ROTATE)))
10642 break;
10644 /* To compute the mask to apply after the shift, shift the
10645 nonzero bits of the inner shift the same way the
10646 outer shift will. */
10648 mask_rtx = gen_int_mode (nonzero_bits (varop, GET_MODE (varop)),
10649 result_mode);
10651 mask_rtx
10652 = simplify_const_binary_operation (code, result_mode, mask_rtx,
10653 GEN_INT (count));
10655 /* Give up if we can't compute an outer operation to use. */
10656 if (mask_rtx == 0
10657 || !CONST_INT_P (mask_rtx)
10658 || ! merge_outer_ops (&outer_op, &outer_const, AND,
10659 INTVAL (mask_rtx),
10660 result_mode, &complement_p))
10661 break;
10663 /* If the shifts are in the same direction, we add the
10664 counts. Otherwise, we subtract them. */
10665 if ((code == ASHIFTRT || code == LSHIFTRT)
10666 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10667 count += first_count;
10668 else
10669 count -= first_count;
10671 /* If COUNT is positive, the new shift is usually CODE,
10672 except for the two exceptions below, in which case it is
10673 FIRST_CODE. If the count is negative, FIRST_CODE should
10674 always be used */
10675 if (count > 0
10676 && ((first_code == ROTATE && code == ASHIFT)
10677 || (first_code == ASHIFTRT && code == LSHIFTRT)))
10678 code = first_code;
10679 else if (count < 0)
10680 code = first_code, count = -count;
10682 varop = XEXP (varop, 0);
10683 continue;
10686 /* If we have (A << B << C) for any shift, we can convert this to
10687 (A << C << B). This wins if A is a constant. Only try this if
10688 B is not a constant. */
10690 else if (GET_CODE (varop) == code
10691 && CONST_INT_P (XEXP (varop, 0))
10692 && !CONST_INT_P (XEXP (varop, 1)))
10694 /* For ((unsigned) (cstULL >> count)) >> cst2 we have to make
10695 sure the result will be masked. See PR70222. */
10696 if (code == LSHIFTRT
10697 && mode != result_mode
10698 && !merge_outer_ops (&outer_op, &outer_const, AND,
10699 GET_MODE_MASK (result_mode)
10700 >> orig_count, result_mode,
10701 &complement_p))
10702 break;
10703 /* For ((int) (cstLL >> count)) >> cst2 just give up. Queuing
10704 up outer sign extension (often left and right shift) is
10705 hardly more efficient than the original. See PR70429. */
10706 if (code == ASHIFTRT && mode != result_mode)
10707 break;
10709 rtx new_rtx = simplify_const_binary_operation (code, mode,
10710 XEXP (varop, 0),
10711 GEN_INT (count));
10712 varop = gen_rtx_fmt_ee (code, mode, new_rtx, XEXP (varop, 1));
10713 count = 0;
10714 continue;
10716 break;
10718 case NOT:
10719 /* The following rules apply only to scalars. */
10720 if (shift_mode != shift_unit_mode)
10721 break;
10723 /* Make this fit the case below. */
10724 varop = gen_rtx_XOR (mode, XEXP (varop, 0), constm1_rtx);
10725 continue;
10727 case IOR:
10728 case AND:
10729 case XOR:
10730 /* The following rules apply only to scalars. */
10731 if (shift_mode != shift_unit_mode)
10732 break;
10734 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10735 with C the size of VAROP - 1 and the shift is logical if
10736 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10737 we have an (le X 0) operation. If we have an arithmetic shift
10738 and STORE_FLAG_VALUE is 1 or we have a logical shift with
10739 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
10741 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
10742 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
10743 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10744 && (code == LSHIFTRT || code == ASHIFTRT)
10745 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10746 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10748 count = 0;
10749 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
10750 const0_rtx);
10752 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10753 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10755 continue;
10758 /* If we have (shift (logical)), move the logical to the outside
10759 to allow it to possibly combine with another logical and the
10760 shift to combine with another shift. This also canonicalizes to
10761 what a ZERO_EXTRACT looks like. Also, some machines have
10762 (and (shift)) insns. */
10764 if (CONST_INT_P (XEXP (varop, 1))
10765 /* We can't do this if we have (ashiftrt (xor)) and the
10766 constant has its sign bit set in shift_mode with shift_mode
10767 wider than result_mode. */
10768 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10769 && result_mode != shift_mode
10770 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10771 shift_mode))
10772 && (new_rtx = simplify_const_binary_operation
10773 (code, result_mode,
10774 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10775 GEN_INT (count))) != 0
10776 && CONST_INT_P (new_rtx)
10777 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
10778 INTVAL (new_rtx), result_mode, &complement_p))
10780 varop = XEXP (varop, 0);
10781 continue;
10784 /* If we can't do that, try to simplify the shift in each arm of the
10785 logical expression, make a new logical expression, and apply
10786 the inverse distributive law. This also can't be done for
10787 (ashiftrt (xor)) where we've widened the shift and the constant
10788 changes the sign bit. */
10789 if (CONST_INT_P (XEXP (varop, 1))
10790 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10791 && result_mode != shift_mode
10792 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10793 shift_mode)))
10795 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10796 XEXP (varop, 0), count);
10797 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10798 XEXP (varop, 1), count);
10800 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
10801 lhs, rhs);
10802 varop = apply_distributive_law (varop);
10804 count = 0;
10805 continue;
10807 break;
10809 case EQ:
10810 /* The following rules apply only to scalars. */
10811 if (shift_mode != shift_unit_mode)
10812 break;
10814 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
10815 says that the sign bit can be tested, FOO has mode MODE, C is
10816 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
10817 that may be nonzero. */
10818 if (code == LSHIFTRT
10819 && XEXP (varop, 1) == const0_rtx
10820 && GET_MODE (XEXP (varop, 0)) == result_mode
10821 && count == (GET_MODE_PRECISION (result_mode) - 1)
10822 && HWI_COMPUTABLE_MODE_P (result_mode)
10823 && STORE_FLAG_VALUE == -1
10824 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10825 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10826 &complement_p))
10828 varop = XEXP (varop, 0);
10829 count = 0;
10830 continue;
10832 break;
10834 case NEG:
10835 /* The following rules apply only to scalars. */
10836 if (shift_mode != shift_unit_mode)
10837 break;
10839 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
10840 than the number of bits in the mode is equivalent to A. */
10841 if (code == LSHIFTRT
10842 && count == (GET_MODE_PRECISION (result_mode) - 1)
10843 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
10845 varop = XEXP (varop, 0);
10846 count = 0;
10847 continue;
10850 /* NEG commutes with ASHIFT since it is multiplication. Move the
10851 NEG outside to allow shifts to combine. */
10852 if (code == ASHIFT
10853 && merge_outer_ops (&outer_op, &outer_const, NEG, 0, result_mode,
10854 &complement_p))
10856 varop = XEXP (varop, 0);
10857 continue;
10859 break;
10861 case PLUS:
10862 /* The following rules apply only to scalars. */
10863 if (shift_mode != shift_unit_mode)
10864 break;
10866 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
10867 is one less than the number of bits in the mode is
10868 equivalent to (xor A 1). */
10869 if (code == LSHIFTRT
10870 && count == (GET_MODE_PRECISION (result_mode) - 1)
10871 && XEXP (varop, 1) == constm1_rtx
10872 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10873 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10874 &complement_p))
10876 count = 0;
10877 varop = XEXP (varop, 0);
10878 continue;
10881 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
10882 that might be nonzero in BAR are those being shifted out and those
10883 bits are known zero in FOO, we can replace the PLUS with FOO.
10884 Similarly in the other operand order. This code occurs when
10885 we are computing the size of a variable-size array. */
10887 if ((code == ASHIFTRT || code == LSHIFTRT)
10888 && count < HOST_BITS_PER_WIDE_INT
10889 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
10890 && (nonzero_bits (XEXP (varop, 1), result_mode)
10891 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
10893 varop = XEXP (varop, 0);
10894 continue;
10896 else if ((code == ASHIFTRT || code == LSHIFTRT)
10897 && count < HOST_BITS_PER_WIDE_INT
10898 && HWI_COMPUTABLE_MODE_P (result_mode)
10899 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10900 >> count)
10901 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10902 & nonzero_bits (XEXP (varop, 1),
10903 result_mode)))
10905 varop = XEXP (varop, 1);
10906 continue;
10909 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
10910 if (code == ASHIFT
10911 && CONST_INT_P (XEXP (varop, 1))
10912 && (new_rtx = simplify_const_binary_operation
10913 (ASHIFT, result_mode,
10914 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10915 GEN_INT (count))) != 0
10916 && CONST_INT_P (new_rtx)
10917 && merge_outer_ops (&outer_op, &outer_const, PLUS,
10918 INTVAL (new_rtx), result_mode, &complement_p))
10920 varop = XEXP (varop, 0);
10921 continue;
10924 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
10925 signbit', and attempt to change the PLUS to an XOR and move it to
10926 the outer operation as is done above in the AND/IOR/XOR case
10927 leg for shift(logical). See details in logical handling above
10928 for reasoning in doing so. */
10929 if (code == LSHIFTRT
10930 && CONST_INT_P (XEXP (varop, 1))
10931 && mode_signbit_p (result_mode, XEXP (varop, 1))
10932 && (new_rtx = simplify_const_binary_operation
10933 (code, result_mode,
10934 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10935 GEN_INT (count))) != 0
10936 && CONST_INT_P (new_rtx)
10937 && merge_outer_ops (&outer_op, &outer_const, XOR,
10938 INTVAL (new_rtx), result_mode, &complement_p))
10940 varop = XEXP (varop, 0);
10941 continue;
10944 break;
10946 case MINUS:
10947 /* The following rules apply only to scalars. */
10948 if (shift_mode != shift_unit_mode)
10949 break;
10951 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
10952 with C the size of VAROP - 1 and the shift is logical if
10953 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10954 we have a (gt X 0) operation. If the shift is arithmetic with
10955 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
10956 we have a (neg (gt X 0)) operation. */
10958 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10959 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
10960 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10961 && (code == LSHIFTRT || code == ASHIFTRT)
10962 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10963 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
10964 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10966 count = 0;
10967 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
10968 const0_rtx);
10970 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10971 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10973 continue;
10975 break;
10977 case TRUNCATE:
10978 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
10979 if the truncate does not affect the value. */
10980 if (code == LSHIFTRT
10981 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
10982 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10983 && (INTVAL (XEXP (XEXP (varop, 0), 1))
10984 >= (GET_MODE_UNIT_PRECISION (GET_MODE (XEXP (varop, 0)))
10985 - GET_MODE_UNIT_PRECISION (GET_MODE (varop)))))
10987 rtx varop_inner = XEXP (varop, 0);
10989 varop_inner
10990 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
10991 XEXP (varop_inner, 0),
10992 GEN_INT
10993 (count + INTVAL (XEXP (varop_inner, 1))));
10994 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
10995 count = 0;
10996 continue;
10998 break;
11000 default:
11001 break;
11004 break;
11007 shift_mode = try_widen_shift_mode (code, varop, count, result_mode, mode,
11008 outer_op, outer_const);
11010 /* We have now finished analyzing the shift. The result should be
11011 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
11012 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
11013 to the result of the shift. OUTER_CONST is the relevant constant,
11014 but we must turn off all bits turned off in the shift. */
11016 if (outer_op == UNKNOWN
11017 && orig_code == code && orig_count == count
11018 && varop == orig_varop
11019 && shift_mode == GET_MODE (varop))
11020 return NULL_RTX;
11022 /* Make a SUBREG if necessary. If we can't make it, fail. */
11023 varop = gen_lowpart (shift_mode, varop);
11024 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
11025 return NULL_RTX;
11027 /* If we have an outer operation and we just made a shift, it is
11028 possible that we could have simplified the shift were it not
11029 for the outer operation. So try to do the simplification
11030 recursively. */
11032 if (outer_op != UNKNOWN)
11033 x = simplify_shift_const_1 (code, shift_mode, varop, count);
11034 else
11035 x = NULL_RTX;
11037 if (x == NULL_RTX)
11038 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
11040 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
11041 turn off all the bits that the shift would have turned off. */
11042 if (orig_code == LSHIFTRT && result_mode != shift_mode)
11043 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
11044 GET_MODE_MASK (result_mode) >> orig_count);
11046 /* Do the remainder of the processing in RESULT_MODE. */
11047 x = gen_lowpart_or_truncate (result_mode, x);
11049 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
11050 operation. */
11051 if (complement_p)
11052 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
11054 if (outer_op != UNKNOWN)
11056 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
11057 && GET_MODE_PRECISION (result_mode) < HOST_BITS_PER_WIDE_INT)
11058 outer_const = trunc_int_for_mode (outer_const, result_mode);
11060 if (outer_op == AND)
11061 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
11062 else if (outer_op == SET)
11064 /* This means that we have determined that the result is
11065 equivalent to a constant. This should be rare. */
11066 if (!side_effects_p (x))
11067 x = GEN_INT (outer_const);
11069 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
11070 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
11071 else
11072 x = simplify_gen_binary (outer_op, result_mode, x,
11073 GEN_INT (outer_const));
11076 return x;
11079 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
11080 The result of the shift is RESULT_MODE. If we cannot simplify it,
11081 return X or, if it is NULL, synthesize the expression with
11082 simplify_gen_binary. Otherwise, return a simplified value.
11084 The shift is normally computed in the widest mode we find in VAROP, as
11085 long as it isn't a different number of words than RESULT_MODE. Exceptions
11086 are ASHIFTRT and ROTATE, which are always done in their original mode. */
11088 static rtx
11089 simplify_shift_const (rtx x, enum rtx_code code, machine_mode result_mode,
11090 rtx varop, int count)
11092 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
11093 if (tem)
11094 return tem;
11096 if (!x)
11097 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
11098 if (GET_MODE (x) != result_mode)
11099 x = gen_lowpart (result_mode, x);
11100 return x;
11104 /* A subroutine of recog_for_combine. See there for arguments and
11105 return value. */
11107 static int
11108 recog_for_combine_1 (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11110 rtx pat = *pnewpat;
11111 rtx pat_without_clobbers;
11112 int insn_code_number;
11113 int num_clobbers_to_add = 0;
11114 int i;
11115 rtx notes = NULL_RTX;
11116 rtx old_notes, old_pat;
11117 int old_icode;
11119 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
11120 we use to indicate that something didn't match. If we find such a
11121 thing, force rejection. */
11122 if (GET_CODE (pat) == PARALLEL)
11123 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
11124 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
11125 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
11126 return -1;
11128 old_pat = PATTERN (insn);
11129 old_notes = REG_NOTES (insn);
11130 PATTERN (insn) = pat;
11131 REG_NOTES (insn) = NULL_RTX;
11133 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11134 if (dump_file && (dump_flags & TDF_DETAILS))
11136 if (insn_code_number < 0)
11137 fputs ("Failed to match this instruction:\n", dump_file);
11138 else
11139 fputs ("Successfully matched this instruction:\n", dump_file);
11140 print_rtl_single (dump_file, pat);
11143 /* If it isn't, there is the possibility that we previously had an insn
11144 that clobbered some register as a side effect, but the combined
11145 insn doesn't need to do that. So try once more without the clobbers
11146 unless this represents an ASM insn. */
11148 if (insn_code_number < 0 && ! check_asm_operands (pat)
11149 && GET_CODE (pat) == PARALLEL)
11151 int pos;
11153 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
11154 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
11156 if (i != pos)
11157 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
11158 pos++;
11161 SUBST_INT (XVECLEN (pat, 0), pos);
11163 if (pos == 1)
11164 pat = XVECEXP (pat, 0, 0);
11166 PATTERN (insn) = pat;
11167 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11168 if (dump_file && (dump_flags & TDF_DETAILS))
11170 if (insn_code_number < 0)
11171 fputs ("Failed to match this instruction:\n", dump_file);
11172 else
11173 fputs ("Successfully matched this instruction:\n", dump_file);
11174 print_rtl_single (dump_file, pat);
11178 pat_without_clobbers = pat;
11180 PATTERN (insn) = old_pat;
11181 REG_NOTES (insn) = old_notes;
11183 /* Recognize all noop sets, these will be killed by followup pass. */
11184 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
11185 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
11187 /* If we had any clobbers to add, make a new pattern than contains
11188 them. Then check to make sure that all of them are dead. */
11189 if (num_clobbers_to_add)
11191 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
11192 rtvec_alloc (GET_CODE (pat) == PARALLEL
11193 ? (XVECLEN (pat, 0)
11194 + num_clobbers_to_add)
11195 : num_clobbers_to_add + 1));
11197 if (GET_CODE (pat) == PARALLEL)
11198 for (i = 0; i < XVECLEN (pat, 0); i++)
11199 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
11200 else
11201 XVECEXP (newpat, 0, 0) = pat;
11203 add_clobbers (newpat, insn_code_number);
11205 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
11206 i < XVECLEN (newpat, 0); i++)
11208 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
11209 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
11210 return -1;
11211 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
11213 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
11214 notes = alloc_reg_note (REG_UNUSED,
11215 XEXP (XVECEXP (newpat, 0, i), 0), notes);
11218 pat = newpat;
11221 if (insn_code_number >= 0
11222 && insn_code_number != NOOP_MOVE_INSN_CODE)
11224 old_pat = PATTERN (insn);
11225 old_notes = REG_NOTES (insn);
11226 old_icode = INSN_CODE (insn);
11227 PATTERN (insn) = pat;
11228 REG_NOTES (insn) = notes;
11229 INSN_CODE (insn) = insn_code_number;
11231 /* Allow targets to reject combined insn. */
11232 if (!targetm.legitimate_combined_insn (insn))
11234 if (dump_file && (dump_flags & TDF_DETAILS))
11235 fputs ("Instruction not appropriate for target.",
11236 dump_file);
11238 /* Callers expect recog_for_combine to strip
11239 clobbers from the pattern on failure. */
11240 pat = pat_without_clobbers;
11241 notes = NULL_RTX;
11243 insn_code_number = -1;
11246 PATTERN (insn) = old_pat;
11247 REG_NOTES (insn) = old_notes;
11248 INSN_CODE (insn) = old_icode;
11251 *pnewpat = pat;
11252 *pnotes = notes;
11254 return insn_code_number;
11257 /* Change every ZERO_EXTRACT and ZERO_EXTEND of a SUBREG that can be
11258 expressed as an AND and maybe an LSHIFTRT, to that formulation.
11259 Return whether anything was so changed. */
11261 static bool
11262 change_zero_ext (rtx pat)
11264 bool changed = false;
11265 rtx *src = &SET_SRC (pat);
11267 subrtx_ptr_iterator::array_type array;
11268 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11270 rtx x = **iter;
11271 machine_mode mode = GET_MODE (x);
11272 int size;
11274 if (GET_CODE (x) == ZERO_EXTRACT
11275 && CONST_INT_P (XEXP (x, 1))
11276 && CONST_INT_P (XEXP (x, 2))
11277 && GET_MODE (XEXP (x, 0)) != VOIDmode
11278 && GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
11279 <= GET_MODE_PRECISION (mode))
11281 machine_mode inner_mode = GET_MODE (XEXP (x, 0));
11283 size = INTVAL (XEXP (x, 1));
11285 int start = INTVAL (XEXP (x, 2));
11286 if (BITS_BIG_ENDIAN)
11287 start = GET_MODE_PRECISION (inner_mode) - size - start;
11289 if (start)
11290 x = gen_rtx_LSHIFTRT (inner_mode, XEXP (x, 0), GEN_INT (start));
11291 else
11292 x = XEXP (x, 0);
11293 if (mode != inner_mode)
11294 x = gen_lowpart_SUBREG (mode, x);
11296 else if (GET_CODE (x) == ZERO_EXTEND
11297 && SCALAR_INT_MODE_P (mode)
11298 && GET_CODE (XEXP (x, 0)) == SUBREG
11299 && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (XEXP (x, 0))))
11300 && !paradoxical_subreg_p (XEXP (x, 0))
11301 && subreg_lowpart_p (XEXP (x, 0)))
11303 size = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
11304 x = SUBREG_REG (XEXP (x, 0));
11305 if (GET_MODE (x) != mode)
11306 x = gen_lowpart_SUBREG (mode, x);
11308 else if (GET_CODE (x) == ZERO_EXTEND
11309 && SCALAR_INT_MODE_P (mode)
11310 && REG_P (XEXP (x, 0))
11311 && HARD_REGISTER_P (XEXP (x, 0))
11312 && can_change_dest_mode (XEXP (x, 0), 0, mode))
11314 size = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
11315 x = gen_rtx_REG (mode, REGNO (XEXP (x, 0)));
11317 else
11318 continue;
11320 if (!(GET_CODE (x) == LSHIFTRT
11321 && CONST_INT_P (XEXP (x, 1))
11322 && size + INTVAL (XEXP (x, 1)) == GET_MODE_PRECISION (mode)))
11324 wide_int mask = wi::mask (size, false, GET_MODE_PRECISION (mode));
11325 x = gen_rtx_AND (mode, x, immed_wide_int_const (mask, mode));
11328 SUBST (**iter, x);
11329 changed = true;
11332 if (changed)
11333 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11334 maybe_swap_commutative_operands (**iter);
11336 rtx *dst = &SET_DEST (pat);
11337 if (GET_CODE (*dst) == ZERO_EXTRACT
11338 && REG_P (XEXP (*dst, 0))
11339 && CONST_INT_P (XEXP (*dst, 1))
11340 && CONST_INT_P (XEXP (*dst, 2)))
11342 rtx reg = XEXP (*dst, 0);
11343 int width = INTVAL (XEXP (*dst, 1));
11344 int offset = INTVAL (XEXP (*dst, 2));
11345 machine_mode mode = GET_MODE (reg);
11346 int reg_width = GET_MODE_PRECISION (mode);
11347 if (BITS_BIG_ENDIAN)
11348 offset = reg_width - width - offset;
11350 rtx x, y, z, w;
11351 wide_int mask = wi::shifted_mask (offset, width, true, reg_width);
11352 wide_int mask2 = wi::shifted_mask (offset, width, false, reg_width);
11353 x = gen_rtx_AND (mode, reg, immed_wide_int_const (mask, mode));
11354 if (offset)
11355 y = gen_rtx_ASHIFT (mode, SET_SRC (pat), GEN_INT (offset));
11356 else
11357 y = SET_SRC (pat);
11358 z = gen_rtx_AND (mode, y, immed_wide_int_const (mask2, mode));
11359 w = gen_rtx_IOR (mode, x, z);
11360 SUBST (SET_DEST (pat), reg);
11361 SUBST (SET_SRC (pat), w);
11363 changed = true;
11366 return changed;
11369 /* Like recog, but we receive the address of a pointer to a new pattern.
11370 We try to match the rtx that the pointer points to.
11371 If that fails, we may try to modify or replace the pattern,
11372 storing the replacement into the same pointer object.
11374 Modifications include deletion or addition of CLOBBERs. If the
11375 instruction will still not match, we change ZERO_EXTEND and ZERO_EXTRACT
11376 to the equivalent AND and perhaps LSHIFTRT patterns, and try with that
11377 (and undo if that fails).
11379 PNOTES is a pointer to a location where any REG_UNUSED notes added for
11380 the CLOBBERs are placed.
11382 The value is the final insn code from the pattern ultimately matched,
11383 or -1. */
11385 static int
11386 recog_for_combine (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11388 rtx pat = *pnewpat;
11389 int insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11390 if (insn_code_number >= 0 || check_asm_operands (pat))
11391 return insn_code_number;
11393 void *marker = get_undo_marker ();
11394 bool changed = false;
11396 if (GET_CODE (pat) == SET)
11397 changed = change_zero_ext (pat);
11398 else if (GET_CODE (pat) == PARALLEL)
11400 int i;
11401 for (i = 0; i < XVECLEN (pat, 0); i++)
11403 rtx set = XVECEXP (pat, 0, i);
11404 if (GET_CODE (set) == SET)
11405 changed |= change_zero_ext (set);
11409 if (changed)
11411 insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11413 if (insn_code_number < 0)
11414 undo_to_marker (marker);
11417 return insn_code_number;
11420 /* Like gen_lowpart_general but for use by combine. In combine it
11421 is not possible to create any new pseudoregs. However, it is
11422 safe to create invalid memory addresses, because combine will
11423 try to recognize them and all they will do is make the combine
11424 attempt fail.
11426 If for some reason this cannot do its job, an rtx
11427 (clobber (const_int 0)) is returned.
11428 An insn containing that will not be recognized. */
11430 static rtx
11431 gen_lowpart_for_combine (machine_mode omode, rtx x)
11433 machine_mode imode = GET_MODE (x);
11434 unsigned int osize = GET_MODE_SIZE (omode);
11435 unsigned int isize = GET_MODE_SIZE (imode);
11436 rtx result;
11438 if (omode == imode)
11439 return x;
11441 /* We can only support MODE being wider than a word if X is a
11442 constant integer or has a mode the same size. */
11443 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
11444 && ! (CONST_SCALAR_INT_P (x) || isize == osize))
11445 goto fail;
11447 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
11448 won't know what to do. So we will strip off the SUBREG here and
11449 process normally. */
11450 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
11452 x = SUBREG_REG (x);
11454 /* For use in case we fall down into the address adjustments
11455 further below, we need to adjust the known mode and size of
11456 x; imode and isize, since we just adjusted x. */
11457 imode = GET_MODE (x);
11459 if (imode == omode)
11460 return x;
11462 isize = GET_MODE_SIZE (imode);
11465 result = gen_lowpart_common (omode, x);
11467 if (result)
11468 return result;
11470 if (MEM_P (x))
11472 int offset = 0;
11474 /* Refuse to work on a volatile memory ref or one with a mode-dependent
11475 address. */
11476 if (MEM_VOLATILE_P (x)
11477 || mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x)))
11478 goto fail;
11480 /* If we want to refer to something bigger than the original memref,
11481 generate a paradoxical subreg instead. That will force a reload
11482 of the original memref X. */
11483 if (paradoxical_subreg_p (omode, imode))
11484 return gen_rtx_SUBREG (omode, x, 0);
11486 if (WORDS_BIG_ENDIAN)
11487 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
11489 /* Adjust the address so that the address-after-the-data is
11490 unchanged. */
11491 if (BYTES_BIG_ENDIAN)
11492 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
11494 return adjust_address_nv (x, omode, offset);
11497 /* If X is a comparison operator, rewrite it in a new mode. This
11498 probably won't match, but may allow further simplifications. */
11499 else if (COMPARISON_P (x))
11500 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
11502 /* If we couldn't simplify X any other way, just enclose it in a
11503 SUBREG. Normally, this SUBREG won't match, but some patterns may
11504 include an explicit SUBREG or we may simplify it further in combine. */
11505 else
11507 rtx res;
11509 if (imode == VOIDmode)
11511 imode = int_mode_for_mode (omode).require ();
11512 x = gen_lowpart_common (imode, x);
11513 if (x == NULL)
11514 goto fail;
11516 res = lowpart_subreg (omode, x, imode);
11517 if (res)
11518 return res;
11521 fail:
11522 return gen_rtx_CLOBBER (omode, const0_rtx);
11525 /* Try to simplify a comparison between OP0 and a constant OP1,
11526 where CODE is the comparison code that will be tested, into a
11527 (CODE OP0 const0_rtx) form.
11529 The result is a possibly different comparison code to use.
11530 *POP1 may be updated. */
11532 static enum rtx_code
11533 simplify_compare_const (enum rtx_code code, machine_mode mode,
11534 rtx op0, rtx *pop1)
11536 unsigned int mode_width = GET_MODE_PRECISION (mode);
11537 HOST_WIDE_INT const_op = INTVAL (*pop1);
11539 /* Get the constant we are comparing against and turn off all bits
11540 not on in our mode. */
11541 if (mode != VOIDmode)
11542 const_op = trunc_int_for_mode (const_op, mode);
11544 /* If we are comparing against a constant power of two and the value
11545 being compared can only have that single bit nonzero (e.g., it was
11546 `and'ed with that bit), we can replace this with a comparison
11547 with zero. */
11548 if (const_op
11549 && (code == EQ || code == NE || code == GE || code == GEU
11550 || code == LT || code == LTU)
11551 && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11552 && pow2p_hwi (const_op & GET_MODE_MASK (mode))
11553 && (nonzero_bits (op0, mode)
11554 == (unsigned HOST_WIDE_INT) (const_op & GET_MODE_MASK (mode))))
11556 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
11557 const_op = 0;
11560 /* Similarly, if we are comparing a value known to be either -1 or
11561 0 with -1, change it to the opposite comparison against zero. */
11562 if (const_op == -1
11563 && (code == EQ || code == NE || code == GT || code == LE
11564 || code == GEU || code == LTU)
11565 && num_sign_bit_copies (op0, mode) == mode_width)
11567 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
11568 const_op = 0;
11571 /* Do some canonicalizations based on the comparison code. We prefer
11572 comparisons against zero and then prefer equality comparisons.
11573 If we can reduce the size of a constant, we will do that too. */
11574 switch (code)
11576 case LT:
11577 /* < C is equivalent to <= (C - 1) */
11578 if (const_op > 0)
11580 const_op -= 1;
11581 code = LE;
11582 /* ... fall through to LE case below. */
11583 gcc_fallthrough ();
11585 else
11586 break;
11588 case LE:
11589 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
11590 if (const_op < 0)
11592 const_op += 1;
11593 code = LT;
11596 /* If we are doing a <= 0 comparison on a value known to have
11597 a zero sign bit, we can replace this with == 0. */
11598 else if (const_op == 0
11599 && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11600 && (nonzero_bits (op0, mode)
11601 & (HOST_WIDE_INT_1U << (mode_width - 1)))
11602 == 0)
11603 code = EQ;
11604 break;
11606 case GE:
11607 /* >= C is equivalent to > (C - 1). */
11608 if (const_op > 0)
11610 const_op -= 1;
11611 code = GT;
11612 /* ... fall through to GT below. */
11613 gcc_fallthrough ();
11615 else
11616 break;
11618 case GT:
11619 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
11620 if (const_op < 0)
11622 const_op += 1;
11623 code = GE;
11626 /* If we are doing a > 0 comparison on a value known to have
11627 a zero sign bit, we can replace this with != 0. */
11628 else if (const_op == 0
11629 && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11630 && (nonzero_bits (op0, mode)
11631 & (HOST_WIDE_INT_1U << (mode_width - 1)))
11632 == 0)
11633 code = NE;
11634 break;
11636 case LTU:
11637 /* < C is equivalent to <= (C - 1). */
11638 if (const_op > 0)
11640 const_op -= 1;
11641 code = LEU;
11642 /* ... fall through ... */
11644 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
11645 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11646 && (unsigned HOST_WIDE_INT) const_op
11647 == HOST_WIDE_INT_1U << (mode_width - 1))
11649 const_op = 0;
11650 code = GE;
11651 break;
11653 else
11654 break;
11656 case LEU:
11657 /* unsigned <= 0 is equivalent to == 0 */
11658 if (const_op == 0)
11659 code = EQ;
11660 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
11661 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11662 && (unsigned HOST_WIDE_INT) const_op
11663 == (HOST_WIDE_INT_1U << (mode_width - 1)) - 1)
11665 const_op = 0;
11666 code = GE;
11668 break;
11670 case GEU:
11671 /* >= C is equivalent to > (C - 1). */
11672 if (const_op > 1)
11674 const_op -= 1;
11675 code = GTU;
11676 /* ... fall through ... */
11679 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
11680 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11681 && (unsigned HOST_WIDE_INT) const_op
11682 == HOST_WIDE_INT_1U << (mode_width - 1))
11684 const_op = 0;
11685 code = LT;
11686 break;
11688 else
11689 break;
11691 case GTU:
11692 /* unsigned > 0 is equivalent to != 0 */
11693 if (const_op == 0)
11694 code = NE;
11695 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
11696 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11697 && (unsigned HOST_WIDE_INT) const_op
11698 == (HOST_WIDE_INT_1U << (mode_width - 1)) - 1)
11700 const_op = 0;
11701 code = LT;
11703 break;
11705 default:
11706 break;
11709 *pop1 = GEN_INT (const_op);
11710 return code;
11713 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
11714 comparison code that will be tested.
11716 The result is a possibly different comparison code to use. *POP0 and
11717 *POP1 may be updated.
11719 It is possible that we might detect that a comparison is either always
11720 true or always false. However, we do not perform general constant
11721 folding in combine, so this knowledge isn't useful. Such tautologies
11722 should have been detected earlier. Hence we ignore all such cases. */
11724 static enum rtx_code
11725 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
11727 rtx op0 = *pop0;
11728 rtx op1 = *pop1;
11729 rtx tem, tem1;
11730 int i;
11731 scalar_int_mode mode, inner_mode;
11732 machine_mode tmode;
11734 /* Try a few ways of applying the same transformation to both operands. */
11735 while (1)
11737 /* The test below this one won't handle SIGN_EXTENDs on these machines,
11738 so check specially. */
11739 if (!WORD_REGISTER_OPERATIONS
11740 && code != GTU && code != GEU && code != LTU && code != LEU
11741 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
11742 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11743 && GET_CODE (XEXP (op1, 0)) == ASHIFT
11744 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
11745 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
11746 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
11747 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
11748 && CONST_INT_P (XEXP (op0, 1))
11749 && XEXP (op0, 1) == XEXP (op1, 1)
11750 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11751 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
11752 && (INTVAL (XEXP (op0, 1))
11753 == (GET_MODE_PRECISION (GET_MODE (op0))
11754 - (GET_MODE_PRECISION
11755 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
11757 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
11758 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
11761 /* If both operands are the same constant shift, see if we can ignore the
11762 shift. We can if the shift is a rotate or if the bits shifted out of
11763 this shift are known to be zero for both inputs and if the type of
11764 comparison is compatible with the shift. */
11765 if (GET_CODE (op0) == GET_CODE (op1)
11766 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
11767 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
11768 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
11769 && (code != GT && code != LT && code != GE && code != LE))
11770 || (GET_CODE (op0) == ASHIFTRT
11771 && (code != GTU && code != LTU
11772 && code != GEU && code != LEU)))
11773 && CONST_INT_P (XEXP (op0, 1))
11774 && INTVAL (XEXP (op0, 1)) >= 0
11775 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11776 && XEXP (op0, 1) == XEXP (op1, 1))
11778 machine_mode mode = GET_MODE (op0);
11779 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11780 int shift_count = INTVAL (XEXP (op0, 1));
11782 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
11783 mask &= (mask >> shift_count) << shift_count;
11784 else if (GET_CODE (op0) == ASHIFT)
11785 mask = (mask & (mask << shift_count)) >> shift_count;
11787 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
11788 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
11789 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
11790 else
11791 break;
11794 /* If both operands are AND's of a paradoxical SUBREG by constant, the
11795 SUBREGs are of the same mode, and, in both cases, the AND would
11796 be redundant if the comparison was done in the narrower mode,
11797 do the comparison in the narrower mode (e.g., we are AND'ing with 1
11798 and the operand's possibly nonzero bits are 0xffffff01; in that case
11799 if we only care about QImode, we don't need the AND). This case
11800 occurs if the output mode of an scc insn is not SImode and
11801 STORE_FLAG_VALUE == 1 (e.g., the 386).
11803 Similarly, check for a case where the AND's are ZERO_EXTEND
11804 operations from some narrower mode even though a SUBREG is not
11805 present. */
11807 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
11808 && CONST_INT_P (XEXP (op0, 1))
11809 && CONST_INT_P (XEXP (op1, 1)))
11811 rtx inner_op0 = XEXP (op0, 0);
11812 rtx inner_op1 = XEXP (op1, 0);
11813 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
11814 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
11815 int changed = 0;
11817 if (paradoxical_subreg_p (inner_op0)
11818 && GET_CODE (inner_op1) == SUBREG
11819 && (GET_MODE (SUBREG_REG (inner_op0))
11820 == GET_MODE (SUBREG_REG (inner_op1)))
11821 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (inner_op0)))
11822 <= HOST_BITS_PER_WIDE_INT)
11823 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
11824 GET_MODE (SUBREG_REG (inner_op0)))))
11825 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
11826 GET_MODE (SUBREG_REG (inner_op1))))))
11828 op0 = SUBREG_REG (inner_op0);
11829 op1 = SUBREG_REG (inner_op1);
11831 /* The resulting comparison is always unsigned since we masked
11832 off the original sign bit. */
11833 code = unsigned_condition (code);
11835 changed = 1;
11838 else if (c0 == c1)
11839 FOR_EACH_MODE_UNTIL (tmode, GET_MODE (op0))
11840 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
11842 op0 = gen_lowpart_or_truncate (tmode, inner_op0);
11843 op1 = gen_lowpart_or_truncate (tmode, inner_op1);
11844 code = unsigned_condition (code);
11845 changed = 1;
11846 break;
11849 if (! changed)
11850 break;
11853 /* If both operands are NOT, we can strip off the outer operation
11854 and adjust the comparison code for swapped operands; similarly for
11855 NEG, except that this must be an equality comparison. */
11856 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
11857 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
11858 && (code == EQ || code == NE)))
11859 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
11861 else
11862 break;
11865 /* If the first operand is a constant, swap the operands and adjust the
11866 comparison code appropriately, but don't do this if the second operand
11867 is already a constant integer. */
11868 if (swap_commutative_operands_p (op0, op1))
11870 std::swap (op0, op1);
11871 code = swap_condition (code);
11874 /* We now enter a loop during which we will try to simplify the comparison.
11875 For the most part, we only are concerned with comparisons with zero,
11876 but some things may really be comparisons with zero but not start
11877 out looking that way. */
11879 while (CONST_INT_P (op1))
11881 machine_mode mode = GET_MODE (op0);
11882 unsigned int mode_width = GET_MODE_PRECISION (mode);
11883 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11884 int equality_comparison_p;
11885 int sign_bit_comparison_p;
11886 int unsigned_comparison_p;
11887 HOST_WIDE_INT const_op;
11889 /* We only want to handle integral modes. This catches VOIDmode,
11890 CCmode, and the floating-point modes. An exception is that we
11891 can handle VOIDmode if OP0 is a COMPARE or a comparison
11892 operation. */
11894 if (GET_MODE_CLASS (mode) != MODE_INT
11895 && ! (mode == VOIDmode
11896 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
11897 break;
11899 /* Try to simplify the compare to constant, possibly changing the
11900 comparison op, and/or changing op1 to zero. */
11901 code = simplify_compare_const (code, mode, op0, &op1);
11902 const_op = INTVAL (op1);
11904 /* Compute some predicates to simplify code below. */
11906 equality_comparison_p = (code == EQ || code == NE);
11907 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
11908 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
11909 || code == GEU);
11911 /* If this is a sign bit comparison and we can do arithmetic in
11912 MODE, say that we will only be needing the sign bit of OP0. */
11913 if (sign_bit_comparison_p && HWI_COMPUTABLE_MODE_P (mode))
11914 op0 = force_to_mode (op0, mode,
11915 HOST_WIDE_INT_1U
11916 << (GET_MODE_PRECISION (mode) - 1),
11919 /* Now try cases based on the opcode of OP0. If none of the cases
11920 does a "continue", we exit this loop immediately after the
11921 switch. */
11923 switch (GET_CODE (op0))
11925 case ZERO_EXTRACT:
11926 /* If we are extracting a single bit from a variable position in
11927 a constant that has only a single bit set and are comparing it
11928 with zero, we can convert this into an equality comparison
11929 between the position and the location of the single bit. */
11930 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
11931 have already reduced the shift count modulo the word size. */
11932 if (!SHIFT_COUNT_TRUNCATED
11933 && CONST_INT_P (XEXP (op0, 0))
11934 && XEXP (op0, 1) == const1_rtx
11935 && equality_comparison_p && const_op == 0
11936 && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
11938 if (BITS_BIG_ENDIAN)
11939 i = BITS_PER_WORD - 1 - i;
11941 op0 = XEXP (op0, 2);
11942 op1 = GEN_INT (i);
11943 const_op = i;
11945 /* Result is nonzero iff shift count is equal to I. */
11946 code = reverse_condition (code);
11947 continue;
11950 /* fall through */
11952 case SIGN_EXTRACT:
11953 tem = expand_compound_operation (op0);
11954 if (tem != op0)
11956 op0 = tem;
11957 continue;
11959 break;
11961 case NOT:
11962 /* If testing for equality, we can take the NOT of the constant. */
11963 if (equality_comparison_p
11964 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
11966 op0 = XEXP (op0, 0);
11967 op1 = tem;
11968 continue;
11971 /* If just looking at the sign bit, reverse the sense of the
11972 comparison. */
11973 if (sign_bit_comparison_p)
11975 op0 = XEXP (op0, 0);
11976 code = (code == GE ? LT : GE);
11977 continue;
11979 break;
11981 case NEG:
11982 /* If testing for equality, we can take the NEG of the constant. */
11983 if (equality_comparison_p
11984 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
11986 op0 = XEXP (op0, 0);
11987 op1 = tem;
11988 continue;
11991 /* The remaining cases only apply to comparisons with zero. */
11992 if (const_op != 0)
11993 break;
11995 /* When X is ABS or is known positive,
11996 (neg X) is < 0 if and only if X != 0. */
11998 if (sign_bit_comparison_p
11999 && (GET_CODE (XEXP (op0, 0)) == ABS
12000 || (mode_width <= HOST_BITS_PER_WIDE_INT
12001 && (nonzero_bits (XEXP (op0, 0), mode)
12002 & (HOST_WIDE_INT_1U << (mode_width - 1)))
12003 == 0)))
12005 op0 = XEXP (op0, 0);
12006 code = (code == LT ? NE : EQ);
12007 continue;
12010 /* If we have NEG of something whose two high-order bits are the
12011 same, we know that "(-a) < 0" is equivalent to "a > 0". */
12012 if (num_sign_bit_copies (op0, mode) >= 2)
12014 op0 = XEXP (op0, 0);
12015 code = swap_condition (code);
12016 continue;
12018 break;
12020 case ROTATE:
12021 /* If we are testing equality and our count is a constant, we
12022 can perform the inverse operation on our RHS. */
12023 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
12024 && (tem = simplify_binary_operation (ROTATERT, mode,
12025 op1, XEXP (op0, 1))) != 0)
12027 op0 = XEXP (op0, 0);
12028 op1 = tem;
12029 continue;
12032 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
12033 a particular bit. Convert it to an AND of a constant of that
12034 bit. This will be converted into a ZERO_EXTRACT. */
12035 if (const_op == 0 && sign_bit_comparison_p
12036 && CONST_INT_P (XEXP (op0, 1))
12037 && mode_width <= HOST_BITS_PER_WIDE_INT)
12039 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12040 (HOST_WIDE_INT_1U
12041 << (mode_width - 1
12042 - INTVAL (XEXP (op0, 1)))));
12043 code = (code == LT ? NE : EQ);
12044 continue;
12047 /* Fall through. */
12049 case ABS:
12050 /* ABS is ignorable inside an equality comparison with zero. */
12051 if (const_op == 0 && equality_comparison_p)
12053 op0 = XEXP (op0, 0);
12054 continue;
12056 break;
12058 case SIGN_EXTEND:
12059 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
12060 (compare FOO CONST) if CONST fits in FOO's mode and we
12061 are either testing inequality or have an unsigned
12062 comparison with ZERO_EXTEND or a signed comparison with
12063 SIGN_EXTEND. But don't do it if we don't have a compare
12064 insn of the given mode, since we'd have to revert it
12065 later on, and then we wouldn't know whether to sign- or
12066 zero-extend. */
12067 mode = GET_MODE (XEXP (op0, 0));
12068 if (GET_MODE_CLASS (mode) == MODE_INT
12069 && ! unsigned_comparison_p
12070 && HWI_COMPUTABLE_MODE_P (mode)
12071 && trunc_int_for_mode (const_op, mode) == const_op
12072 && have_insn_for (COMPARE, mode))
12074 op0 = XEXP (op0, 0);
12075 continue;
12077 break;
12079 case SUBREG:
12080 /* Check for the case where we are comparing A - C1 with C2, that is
12082 (subreg:MODE (plus (A) (-C1))) op (C2)
12084 with C1 a constant, and try to lift the SUBREG, i.e. to do the
12085 comparison in the wider mode. One of the following two conditions
12086 must be true in order for this to be valid:
12088 1. The mode extension results in the same bit pattern being added
12089 on both sides and the comparison is equality or unsigned. As
12090 C2 has been truncated to fit in MODE, the pattern can only be
12091 all 0s or all 1s.
12093 2. The mode extension results in the sign bit being copied on
12094 each side.
12096 The difficulty here is that we have predicates for A but not for
12097 (A - C1) so we need to check that C1 is within proper bounds so
12098 as to perturbate A as little as possible. */
12100 if (mode_width <= HOST_BITS_PER_WIDE_INT
12101 && subreg_lowpart_p (op0)
12102 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) > mode_width
12103 && GET_CODE (SUBREG_REG (op0)) == PLUS
12104 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
12106 machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
12107 rtx a = XEXP (SUBREG_REG (op0), 0);
12108 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
12110 if ((c1 > 0
12111 && (unsigned HOST_WIDE_INT) c1
12112 < HOST_WIDE_INT_1U << (mode_width - 1)
12113 && (equality_comparison_p || unsigned_comparison_p)
12114 /* (A - C1) zero-extends if it is positive and sign-extends
12115 if it is negative, C2 both zero- and sign-extends. */
12116 && ((0 == (nonzero_bits (a, inner_mode)
12117 & ~GET_MODE_MASK (mode))
12118 && const_op >= 0)
12119 /* (A - C1) sign-extends if it is positive and 1-extends
12120 if it is negative, C2 both sign- and 1-extends. */
12121 || (num_sign_bit_copies (a, inner_mode)
12122 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12123 - mode_width)
12124 && const_op < 0)))
12125 || ((unsigned HOST_WIDE_INT) c1
12126 < HOST_WIDE_INT_1U << (mode_width - 2)
12127 /* (A - C1) always sign-extends, like C2. */
12128 && num_sign_bit_copies (a, inner_mode)
12129 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12130 - (mode_width - 1))))
12132 op0 = SUBREG_REG (op0);
12133 continue;
12137 /* If the inner mode is narrower and we are extracting the low part,
12138 we can treat the SUBREG as if it were a ZERO_EXTEND. */
12139 if (paradoxical_subreg_p (op0))
12141 else if (subreg_lowpart_p (op0)
12142 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
12143 && is_int_mode (GET_MODE (SUBREG_REG (op0)), &inner_mode)
12144 && (code == NE || code == EQ)
12145 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
12146 && !paradoxical_subreg_p (op0)
12147 && (nonzero_bits (SUBREG_REG (op0), inner_mode)
12148 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12150 /* Remove outer subregs that don't do anything. */
12151 tem = gen_lowpart (inner_mode, op1);
12153 if ((nonzero_bits (tem, inner_mode)
12154 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12156 op0 = SUBREG_REG (op0);
12157 op1 = tem;
12158 continue;
12160 break;
12162 else
12163 break;
12165 /* FALLTHROUGH */
12167 case ZERO_EXTEND:
12168 mode = GET_MODE (XEXP (op0, 0));
12169 if (GET_MODE_CLASS (mode) == MODE_INT
12170 && (unsigned_comparison_p || equality_comparison_p)
12171 && HWI_COMPUTABLE_MODE_P (mode)
12172 && (unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (mode)
12173 && const_op >= 0
12174 && have_insn_for (COMPARE, mode))
12176 op0 = XEXP (op0, 0);
12177 continue;
12179 break;
12181 case PLUS:
12182 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
12183 this for equality comparisons due to pathological cases involving
12184 overflows. */
12185 if (equality_comparison_p
12186 && 0 != (tem = simplify_binary_operation (MINUS, mode,
12187 op1, XEXP (op0, 1))))
12189 op0 = XEXP (op0, 0);
12190 op1 = tem;
12191 continue;
12194 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
12195 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
12196 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
12198 op0 = XEXP (XEXP (op0, 0), 0);
12199 code = (code == LT ? EQ : NE);
12200 continue;
12202 break;
12204 case MINUS:
12205 /* We used to optimize signed comparisons against zero, but that
12206 was incorrect. Unsigned comparisons against zero (GTU, LEU)
12207 arrive here as equality comparisons, or (GEU, LTU) are
12208 optimized away. No need to special-case them. */
12210 /* (eq (minus A B) C) -> (eq A (plus B C)) or
12211 (eq B (minus A C)), whichever simplifies. We can only do
12212 this for equality comparisons due to pathological cases involving
12213 overflows. */
12214 if (equality_comparison_p
12215 && 0 != (tem = simplify_binary_operation (PLUS, mode,
12216 XEXP (op0, 1), op1)))
12218 op0 = XEXP (op0, 0);
12219 op1 = tem;
12220 continue;
12223 if (equality_comparison_p
12224 && 0 != (tem = simplify_binary_operation (MINUS, mode,
12225 XEXP (op0, 0), op1)))
12227 op0 = XEXP (op0, 1);
12228 op1 = tem;
12229 continue;
12232 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
12233 of bits in X minus 1, is one iff X > 0. */
12234 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
12235 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12236 && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
12237 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12239 op0 = XEXP (op0, 1);
12240 code = (code == GE ? LE : GT);
12241 continue;
12243 break;
12245 case XOR:
12246 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
12247 if C is zero or B is a constant. */
12248 if (equality_comparison_p
12249 && 0 != (tem = simplify_binary_operation (XOR, mode,
12250 XEXP (op0, 1), op1)))
12252 op0 = XEXP (op0, 0);
12253 op1 = tem;
12254 continue;
12256 break;
12258 case EQ: case NE:
12259 case UNEQ: case LTGT:
12260 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
12261 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
12262 case UNORDERED: case ORDERED:
12263 /* We can't do anything if OP0 is a condition code value, rather
12264 than an actual data value. */
12265 if (const_op != 0
12266 || CC0_P (XEXP (op0, 0))
12267 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
12268 break;
12270 /* Get the two operands being compared. */
12271 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
12272 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
12273 else
12274 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
12276 /* Check for the cases where we simply want the result of the
12277 earlier test or the opposite of that result. */
12278 if (code == NE || code == EQ
12279 || (val_signbit_known_set_p (GET_MODE (op0), STORE_FLAG_VALUE)
12280 && (code == LT || code == GE)))
12282 enum rtx_code new_code;
12283 if (code == LT || code == NE)
12284 new_code = GET_CODE (op0);
12285 else
12286 new_code = reversed_comparison_code (op0, NULL);
12288 if (new_code != UNKNOWN)
12290 code = new_code;
12291 op0 = tem;
12292 op1 = tem1;
12293 continue;
12296 break;
12298 case IOR:
12299 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
12300 iff X <= 0. */
12301 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
12302 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
12303 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12305 op0 = XEXP (op0, 1);
12306 code = (code == GE ? GT : LE);
12307 continue;
12309 break;
12311 case AND:
12312 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
12313 will be converted to a ZERO_EXTRACT later. */
12314 if (const_op == 0 && equality_comparison_p
12315 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12316 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
12318 op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
12319 XEXP (XEXP (op0, 0), 1));
12320 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12321 continue;
12324 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
12325 zero and X is a comparison and C1 and C2 describe only bits set
12326 in STORE_FLAG_VALUE, we can compare with X. */
12327 if (const_op == 0 && equality_comparison_p
12328 && mode_width <= HOST_BITS_PER_WIDE_INT
12329 && CONST_INT_P (XEXP (op0, 1))
12330 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
12331 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12332 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
12333 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
12335 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12336 << INTVAL (XEXP (XEXP (op0, 0), 1)));
12337 if ((~STORE_FLAG_VALUE & mask) == 0
12338 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
12339 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
12340 && COMPARISON_P (tem))))
12342 op0 = XEXP (XEXP (op0, 0), 0);
12343 continue;
12347 /* If we are doing an equality comparison of an AND of a bit equal
12348 to the sign bit, replace this with a LT or GE comparison of
12349 the underlying value. */
12350 if (equality_comparison_p
12351 && const_op == 0
12352 && CONST_INT_P (XEXP (op0, 1))
12353 && mode_width <= HOST_BITS_PER_WIDE_INT
12354 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12355 == HOST_WIDE_INT_1U << (mode_width - 1)))
12357 op0 = XEXP (op0, 0);
12358 code = (code == EQ ? GE : LT);
12359 continue;
12362 /* If this AND operation is really a ZERO_EXTEND from a narrower
12363 mode, the constant fits within that mode, and this is either an
12364 equality or unsigned comparison, try to do this comparison in
12365 the narrower mode.
12367 Note that in:
12369 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
12370 -> (ne:DI (reg:SI 4) (const_int 0))
12372 unless TRULY_NOOP_TRUNCATION allows it or the register is
12373 known to hold a value of the required mode the
12374 transformation is invalid. */
12375 if ((equality_comparison_p || unsigned_comparison_p)
12376 && CONST_INT_P (XEXP (op0, 1))
12377 && (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
12378 & GET_MODE_MASK (mode))
12379 + 1)) >= 0
12380 && const_op >> i == 0
12381 && int_mode_for_size (i, 1).exists (&tmode))
12383 op0 = gen_lowpart_or_truncate (tmode, XEXP (op0, 0));
12384 continue;
12387 /* If this is (and:M1 (subreg:M1 X:M2 0) (const_int C1)) where C1
12388 fits in both M1 and M2 and the SUBREG is either paradoxical
12389 or represents the low part, permute the SUBREG and the AND
12390 and try again. */
12391 if (GET_CODE (XEXP (op0, 0)) == SUBREG
12392 && CONST_INT_P (XEXP (op0, 1)))
12394 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
12395 unsigned HOST_WIDE_INT c1 = INTVAL (XEXP (op0, 1));
12396 /* Require an integral mode, to avoid creating something like
12397 (AND:SF ...). */
12398 if (SCALAR_INT_MODE_P (tmode)
12399 /* It is unsafe to commute the AND into the SUBREG if the
12400 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
12401 not defined. As originally written the upper bits
12402 have a defined value due to the AND operation.
12403 However, if we commute the AND inside the SUBREG then
12404 they no longer have defined values and the meaning of
12405 the code has been changed.
12406 Also C1 should not change value in the smaller mode,
12407 see PR67028 (a positive C1 can become negative in the
12408 smaller mode, so that the AND does no longer mask the
12409 upper bits). */
12410 && ((WORD_REGISTER_OPERATIONS
12411 && mode_width > GET_MODE_PRECISION (tmode)
12412 && mode_width <= BITS_PER_WORD
12413 && trunc_int_for_mode (c1, tmode) == (HOST_WIDE_INT) c1)
12414 || (mode_width <= GET_MODE_PRECISION (tmode)
12415 && subreg_lowpart_p (XEXP (op0, 0))))
12416 && mode_width <= HOST_BITS_PER_WIDE_INT
12417 && HWI_COMPUTABLE_MODE_P (tmode)
12418 && (c1 & ~mask) == 0
12419 && (c1 & ~GET_MODE_MASK (tmode)) == 0
12420 && c1 != mask
12421 && c1 != GET_MODE_MASK (tmode))
12423 op0 = simplify_gen_binary (AND, tmode,
12424 SUBREG_REG (XEXP (op0, 0)),
12425 gen_int_mode (c1, tmode));
12426 op0 = gen_lowpart (mode, op0);
12427 continue;
12431 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
12432 if (const_op == 0 && equality_comparison_p
12433 && XEXP (op0, 1) == const1_rtx
12434 && GET_CODE (XEXP (op0, 0)) == NOT)
12436 op0 = simplify_and_const_int (NULL_RTX, mode,
12437 XEXP (XEXP (op0, 0), 0), 1);
12438 code = (code == NE ? EQ : NE);
12439 continue;
12442 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
12443 (eq (and (lshiftrt X) 1) 0).
12444 Also handle the case where (not X) is expressed using xor. */
12445 if (const_op == 0 && equality_comparison_p
12446 && XEXP (op0, 1) == const1_rtx
12447 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
12449 rtx shift_op = XEXP (XEXP (op0, 0), 0);
12450 rtx shift_count = XEXP (XEXP (op0, 0), 1);
12452 if (GET_CODE (shift_op) == NOT
12453 || (GET_CODE (shift_op) == XOR
12454 && CONST_INT_P (XEXP (shift_op, 1))
12455 && CONST_INT_P (shift_count)
12456 && HWI_COMPUTABLE_MODE_P (mode)
12457 && (UINTVAL (XEXP (shift_op, 1))
12458 == HOST_WIDE_INT_1U
12459 << INTVAL (shift_count))))
12462 = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
12463 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12464 code = (code == NE ? EQ : NE);
12465 continue;
12468 break;
12470 case ASHIFT:
12471 /* If we have (compare (ashift FOO N) (const_int C)) and
12472 the high order N bits of FOO (N+1 if an inequality comparison)
12473 are known to be zero, we can do this by comparing FOO with C
12474 shifted right N bits so long as the low-order N bits of C are
12475 zero. */
12476 if (CONST_INT_P (XEXP (op0, 1))
12477 && INTVAL (XEXP (op0, 1)) >= 0
12478 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
12479 < HOST_BITS_PER_WIDE_INT)
12480 && (((unsigned HOST_WIDE_INT) const_op
12481 & ((HOST_WIDE_INT_1U << INTVAL (XEXP (op0, 1)))
12482 - 1)) == 0)
12483 && mode_width <= HOST_BITS_PER_WIDE_INT
12484 && (nonzero_bits (XEXP (op0, 0), mode)
12485 & ~(mask >> (INTVAL (XEXP (op0, 1))
12486 + ! equality_comparison_p))) == 0)
12488 /* We must perform a logical shift, not an arithmetic one,
12489 as we want the top N bits of C to be zero. */
12490 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
12492 temp >>= INTVAL (XEXP (op0, 1));
12493 op1 = gen_int_mode (temp, mode);
12494 op0 = XEXP (op0, 0);
12495 continue;
12498 /* If we are doing a sign bit comparison, it means we are testing
12499 a particular bit. Convert it to the appropriate AND. */
12500 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
12501 && mode_width <= HOST_BITS_PER_WIDE_INT)
12503 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12504 (HOST_WIDE_INT_1U
12505 << (mode_width - 1
12506 - INTVAL (XEXP (op0, 1)))));
12507 code = (code == LT ? NE : EQ);
12508 continue;
12511 /* If this an equality comparison with zero and we are shifting
12512 the low bit to the sign bit, we can convert this to an AND of the
12513 low-order bit. */
12514 if (const_op == 0 && equality_comparison_p
12515 && CONST_INT_P (XEXP (op0, 1))
12516 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12518 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
12519 continue;
12521 break;
12523 case ASHIFTRT:
12524 /* If this is an equality comparison with zero, we can do this
12525 as a logical shift, which might be much simpler. */
12526 if (equality_comparison_p && const_op == 0
12527 && CONST_INT_P (XEXP (op0, 1)))
12529 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
12530 XEXP (op0, 0),
12531 INTVAL (XEXP (op0, 1)));
12532 continue;
12535 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
12536 do the comparison in a narrower mode. */
12537 if (! unsigned_comparison_p
12538 && CONST_INT_P (XEXP (op0, 1))
12539 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12540 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
12541 && (int_mode_for_size (mode_width - INTVAL (XEXP (op0, 1)), 1)
12542 .exists (&tmode))
12543 && (((unsigned HOST_WIDE_INT) const_op
12544 + (GET_MODE_MASK (tmode) >> 1) + 1)
12545 <= GET_MODE_MASK (tmode)))
12547 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
12548 continue;
12551 /* Likewise if OP0 is a PLUS of a sign extension with a
12552 constant, which is usually represented with the PLUS
12553 between the shifts. */
12554 if (! unsigned_comparison_p
12555 && CONST_INT_P (XEXP (op0, 1))
12556 && GET_CODE (XEXP (op0, 0)) == PLUS
12557 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12558 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
12559 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
12560 && (int_mode_for_size (mode_width - INTVAL (XEXP (op0, 1)), 1)
12561 .exists (&tmode))
12562 && (((unsigned HOST_WIDE_INT) const_op
12563 + (GET_MODE_MASK (tmode) >> 1) + 1)
12564 <= GET_MODE_MASK (tmode)))
12566 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
12567 rtx add_const = XEXP (XEXP (op0, 0), 1);
12568 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
12569 add_const, XEXP (op0, 1));
12571 op0 = simplify_gen_binary (PLUS, tmode,
12572 gen_lowpart (tmode, inner),
12573 new_const);
12574 continue;
12577 /* FALLTHROUGH */
12578 case LSHIFTRT:
12579 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
12580 the low order N bits of FOO are known to be zero, we can do this
12581 by comparing FOO with C shifted left N bits so long as no
12582 overflow occurs. Even if the low order N bits of FOO aren't known
12583 to be zero, if the comparison is >= or < we can use the same
12584 optimization and for > or <= by setting all the low
12585 order N bits in the comparison constant. */
12586 if (CONST_INT_P (XEXP (op0, 1))
12587 && INTVAL (XEXP (op0, 1)) > 0
12588 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12589 && mode_width <= HOST_BITS_PER_WIDE_INT
12590 && (((unsigned HOST_WIDE_INT) const_op
12591 + (GET_CODE (op0) != LSHIFTRT
12592 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
12593 + 1)
12594 : 0))
12595 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
12597 unsigned HOST_WIDE_INT low_bits
12598 = (nonzero_bits (XEXP (op0, 0), mode)
12599 & ((HOST_WIDE_INT_1U
12600 << INTVAL (XEXP (op0, 1))) - 1));
12601 if (low_bits == 0 || !equality_comparison_p)
12603 /* If the shift was logical, then we must make the condition
12604 unsigned. */
12605 if (GET_CODE (op0) == LSHIFTRT)
12606 code = unsigned_condition (code);
12608 const_op = (unsigned HOST_WIDE_INT) const_op
12609 << INTVAL (XEXP (op0, 1));
12610 if (low_bits != 0
12611 && (code == GT || code == GTU
12612 || code == LE || code == LEU))
12613 const_op
12614 |= ((HOST_WIDE_INT_1 << INTVAL (XEXP (op0, 1))) - 1);
12615 op1 = GEN_INT (const_op);
12616 op0 = XEXP (op0, 0);
12617 continue;
12621 /* If we are using this shift to extract just the sign bit, we
12622 can replace this with an LT or GE comparison. */
12623 if (const_op == 0
12624 && (equality_comparison_p || sign_bit_comparison_p)
12625 && CONST_INT_P (XEXP (op0, 1))
12626 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12628 op0 = XEXP (op0, 0);
12629 code = (code == NE || code == GT ? LT : GE);
12630 continue;
12632 break;
12634 default:
12635 break;
12638 break;
12641 /* Now make any compound operations involved in this comparison. Then,
12642 check for an outmost SUBREG on OP0 that is not doing anything or is
12643 paradoxical. The latter transformation must only be performed when
12644 it is known that the "extra" bits will be the same in op0 and op1 or
12645 that they don't matter. There are three cases to consider:
12647 1. SUBREG_REG (op0) is a register. In this case the bits are don't
12648 care bits and we can assume they have any convenient value. So
12649 making the transformation is safe.
12651 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is UNKNOWN.
12652 In this case the upper bits of op0 are undefined. We should not make
12653 the simplification in that case as we do not know the contents of
12654 those bits.
12656 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not UNKNOWN.
12657 In that case we know those bits are zeros or ones. We must also be
12658 sure that they are the same as the upper bits of op1.
12660 We can never remove a SUBREG for a non-equality comparison because
12661 the sign bit is in a different place in the underlying object. */
12663 rtx_code op0_mco_code = SET;
12664 if (op1 == const0_rtx)
12665 op0_mco_code = code == NE || code == EQ ? EQ : COMPARE;
12667 op0 = make_compound_operation (op0, op0_mco_code);
12668 op1 = make_compound_operation (op1, SET);
12670 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
12671 && is_int_mode (GET_MODE (op0), &mode)
12672 && is_int_mode (GET_MODE (SUBREG_REG (op0)), &inner_mode)
12673 && (code == NE || code == EQ))
12675 if (paradoxical_subreg_p (op0))
12677 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
12678 implemented. */
12679 if (REG_P (SUBREG_REG (op0)))
12681 op0 = SUBREG_REG (op0);
12682 op1 = gen_lowpart (inner_mode, op1);
12685 else if (GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
12686 && (nonzero_bits (SUBREG_REG (op0), inner_mode)
12687 & ~GET_MODE_MASK (mode)) == 0)
12689 tem = gen_lowpart (inner_mode, op1);
12691 if ((nonzero_bits (tem, inner_mode) & ~GET_MODE_MASK (mode)) == 0)
12692 op0 = SUBREG_REG (op0), op1 = tem;
12696 /* We now do the opposite procedure: Some machines don't have compare
12697 insns in all modes. If OP0's mode is an integer mode smaller than a
12698 word and we can't do a compare in that mode, see if there is a larger
12699 mode for which we can do the compare. There are a number of cases in
12700 which we can use the wider mode. */
12702 if (is_int_mode (GET_MODE (op0), &mode)
12703 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
12704 && ! have_insn_for (COMPARE, mode))
12705 FOR_EACH_WIDER_MODE (tmode, mode)
12707 if (!HWI_COMPUTABLE_MODE_P (tmode))
12708 break;
12709 if (have_insn_for (COMPARE, tmode))
12711 int zero_extended;
12713 /* If this is a test for negative, we can make an explicit
12714 test of the sign bit. Test this first so we can use
12715 a paradoxical subreg to extend OP0. */
12717 if (op1 == const0_rtx && (code == LT || code == GE)
12718 && HWI_COMPUTABLE_MODE_P (mode))
12720 unsigned HOST_WIDE_INT sign
12721 = HOST_WIDE_INT_1U << (GET_MODE_BITSIZE (mode) - 1);
12722 op0 = simplify_gen_binary (AND, tmode,
12723 gen_lowpart (tmode, op0),
12724 gen_int_mode (sign, tmode));
12725 code = (code == LT) ? NE : EQ;
12726 break;
12729 /* If the only nonzero bits in OP0 and OP1 are those in the
12730 narrower mode and this is an equality or unsigned comparison,
12731 we can use the wider mode. Similarly for sign-extended
12732 values, in which case it is true for all comparisons. */
12733 zero_extended = ((code == EQ || code == NE
12734 || code == GEU || code == GTU
12735 || code == LEU || code == LTU)
12736 && (nonzero_bits (op0, tmode)
12737 & ~GET_MODE_MASK (mode)) == 0
12738 && ((CONST_INT_P (op1)
12739 || (nonzero_bits (op1, tmode)
12740 & ~GET_MODE_MASK (mode)) == 0)));
12742 if (zero_extended
12743 || ((num_sign_bit_copies (op0, tmode)
12744 > (unsigned int) (GET_MODE_PRECISION (tmode)
12745 - GET_MODE_PRECISION (mode)))
12746 && (num_sign_bit_copies (op1, tmode)
12747 > (unsigned int) (GET_MODE_PRECISION (tmode)
12748 - GET_MODE_PRECISION (mode)))))
12750 /* If OP0 is an AND and we don't have an AND in MODE either,
12751 make a new AND in the proper mode. */
12752 if (GET_CODE (op0) == AND
12753 && !have_insn_for (AND, mode))
12754 op0 = simplify_gen_binary (AND, tmode,
12755 gen_lowpart (tmode,
12756 XEXP (op0, 0)),
12757 gen_lowpart (tmode,
12758 XEXP (op0, 1)));
12759 else
12761 if (zero_extended)
12763 op0 = simplify_gen_unary (ZERO_EXTEND, tmode,
12764 op0, mode);
12765 op1 = simplify_gen_unary (ZERO_EXTEND, tmode,
12766 op1, mode);
12768 else
12770 op0 = simplify_gen_unary (SIGN_EXTEND, tmode,
12771 op0, mode);
12772 op1 = simplify_gen_unary (SIGN_EXTEND, tmode,
12773 op1, mode);
12775 break;
12781 /* We may have changed the comparison operands. Re-canonicalize. */
12782 if (swap_commutative_operands_p (op0, op1))
12784 std::swap (op0, op1);
12785 code = swap_condition (code);
12788 /* If this machine only supports a subset of valid comparisons, see if we
12789 can convert an unsupported one into a supported one. */
12790 target_canonicalize_comparison (&code, &op0, &op1, 0);
12792 *pop0 = op0;
12793 *pop1 = op1;
12795 return code;
12798 /* Utility function for record_value_for_reg. Count number of
12799 rtxs in X. */
12800 static int
12801 count_rtxs (rtx x)
12803 enum rtx_code code = GET_CODE (x);
12804 const char *fmt;
12805 int i, j, ret = 1;
12807 if (GET_RTX_CLASS (code) == RTX_BIN_ARITH
12808 || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
12810 rtx x0 = XEXP (x, 0);
12811 rtx x1 = XEXP (x, 1);
12813 if (x0 == x1)
12814 return 1 + 2 * count_rtxs (x0);
12816 if ((GET_RTX_CLASS (GET_CODE (x1)) == RTX_BIN_ARITH
12817 || GET_RTX_CLASS (GET_CODE (x1)) == RTX_COMM_ARITH)
12818 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12819 return 2 + 2 * count_rtxs (x0)
12820 + count_rtxs (x == XEXP (x1, 0)
12821 ? XEXP (x1, 1) : XEXP (x1, 0));
12823 if ((GET_RTX_CLASS (GET_CODE (x0)) == RTX_BIN_ARITH
12824 || GET_RTX_CLASS (GET_CODE (x0)) == RTX_COMM_ARITH)
12825 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12826 return 2 + 2 * count_rtxs (x1)
12827 + count_rtxs (x == XEXP (x0, 0)
12828 ? XEXP (x0, 1) : XEXP (x0, 0));
12831 fmt = GET_RTX_FORMAT (code);
12832 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12833 if (fmt[i] == 'e')
12834 ret += count_rtxs (XEXP (x, i));
12835 else if (fmt[i] == 'E')
12836 for (j = 0; j < XVECLEN (x, i); j++)
12837 ret += count_rtxs (XVECEXP (x, i, j));
12839 return ret;
12842 /* Utility function for following routine. Called when X is part of a value
12843 being stored into last_set_value. Sets last_set_table_tick
12844 for each register mentioned. Similar to mention_regs in cse.c */
12846 static void
12847 update_table_tick (rtx x)
12849 enum rtx_code code = GET_CODE (x);
12850 const char *fmt = GET_RTX_FORMAT (code);
12851 int i, j;
12853 if (code == REG)
12855 unsigned int regno = REGNO (x);
12856 unsigned int endregno = END_REGNO (x);
12857 unsigned int r;
12859 for (r = regno; r < endregno; r++)
12861 reg_stat_type *rsp = &reg_stat[r];
12862 rsp->last_set_table_tick = label_tick;
12865 return;
12868 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12869 if (fmt[i] == 'e')
12871 /* Check for identical subexpressions. If x contains
12872 identical subexpression we only have to traverse one of
12873 them. */
12874 if (i == 0 && ARITHMETIC_P (x))
12876 /* Note that at this point x1 has already been
12877 processed. */
12878 rtx x0 = XEXP (x, 0);
12879 rtx x1 = XEXP (x, 1);
12881 /* If x0 and x1 are identical then there is no need to
12882 process x0. */
12883 if (x0 == x1)
12884 break;
12886 /* If x0 is identical to a subexpression of x1 then while
12887 processing x1, x0 has already been processed. Thus we
12888 are done with x. */
12889 if (ARITHMETIC_P (x1)
12890 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12891 break;
12893 /* If x1 is identical to a subexpression of x0 then we
12894 still have to process the rest of x0. */
12895 if (ARITHMETIC_P (x0)
12896 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12898 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
12899 break;
12903 update_table_tick (XEXP (x, i));
12905 else if (fmt[i] == 'E')
12906 for (j = 0; j < XVECLEN (x, i); j++)
12907 update_table_tick (XVECEXP (x, i, j));
12910 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
12911 are saying that the register is clobbered and we no longer know its
12912 value. If INSN is zero, don't update reg_stat[].last_set; this is
12913 only permitted with VALUE also zero and is used to invalidate the
12914 register. */
12916 static void
12917 record_value_for_reg (rtx reg, rtx_insn *insn, rtx value)
12919 unsigned int regno = REGNO (reg);
12920 unsigned int endregno = END_REGNO (reg);
12921 unsigned int i;
12922 reg_stat_type *rsp;
12924 /* If VALUE contains REG and we have a previous value for REG, substitute
12925 the previous value. */
12926 if (value && insn && reg_overlap_mentioned_p (reg, value))
12928 rtx tem;
12930 /* Set things up so get_last_value is allowed to see anything set up to
12931 our insn. */
12932 subst_low_luid = DF_INSN_LUID (insn);
12933 tem = get_last_value (reg);
12935 /* If TEM is simply a binary operation with two CLOBBERs as operands,
12936 it isn't going to be useful and will take a lot of time to process,
12937 so just use the CLOBBER. */
12939 if (tem)
12941 if (ARITHMETIC_P (tem)
12942 && GET_CODE (XEXP (tem, 0)) == CLOBBER
12943 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
12944 tem = XEXP (tem, 0);
12945 else if (count_occurrences (value, reg, 1) >= 2)
12947 /* If there are two or more occurrences of REG in VALUE,
12948 prevent the value from growing too much. */
12949 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
12950 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
12953 value = replace_rtx (copy_rtx (value), reg, tem);
12957 /* For each register modified, show we don't know its value, that
12958 we don't know about its bitwise content, that its value has been
12959 updated, and that we don't know the location of the death of the
12960 register. */
12961 for (i = regno; i < endregno; i++)
12963 rsp = &reg_stat[i];
12965 if (insn)
12966 rsp->last_set = insn;
12968 rsp->last_set_value = 0;
12969 rsp->last_set_mode = VOIDmode;
12970 rsp->last_set_nonzero_bits = 0;
12971 rsp->last_set_sign_bit_copies = 0;
12972 rsp->last_death = 0;
12973 rsp->truncated_to_mode = VOIDmode;
12976 /* Mark registers that are being referenced in this value. */
12977 if (value)
12978 update_table_tick (value);
12980 /* Now update the status of each register being set.
12981 If someone is using this register in this block, set this register
12982 to invalid since we will get confused between the two lives in this
12983 basic block. This makes using this register always invalid. In cse, we
12984 scan the table to invalidate all entries using this register, but this
12985 is too much work for us. */
12987 for (i = regno; i < endregno; i++)
12989 rsp = &reg_stat[i];
12990 rsp->last_set_label = label_tick;
12991 if (!insn
12992 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
12993 rsp->last_set_invalid = 1;
12994 else
12995 rsp->last_set_invalid = 0;
12998 /* The value being assigned might refer to X (like in "x++;"). In that
12999 case, we must replace it with (clobber (const_int 0)) to prevent
13000 infinite loops. */
13001 rsp = &reg_stat[regno];
13002 if (value && !get_last_value_validate (&value, insn, label_tick, 0))
13004 value = copy_rtx (value);
13005 if (!get_last_value_validate (&value, insn, label_tick, 1))
13006 value = 0;
13009 /* For the main register being modified, update the value, the mode, the
13010 nonzero bits, and the number of sign bit copies. */
13012 rsp->last_set_value = value;
13014 if (value)
13016 machine_mode mode = GET_MODE (reg);
13017 subst_low_luid = DF_INSN_LUID (insn);
13018 rsp->last_set_mode = mode;
13019 if (GET_MODE_CLASS (mode) == MODE_INT
13020 && HWI_COMPUTABLE_MODE_P (mode))
13021 mode = nonzero_bits_mode;
13022 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
13023 rsp->last_set_sign_bit_copies
13024 = num_sign_bit_copies (value, GET_MODE (reg));
13028 /* Called via note_stores from record_dead_and_set_regs to handle one
13029 SET or CLOBBER in an insn. DATA is the instruction in which the
13030 set is occurring. */
13032 static void
13033 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
13035 rtx_insn *record_dead_insn = (rtx_insn *) data;
13037 if (GET_CODE (dest) == SUBREG)
13038 dest = SUBREG_REG (dest);
13040 if (!record_dead_insn)
13042 if (REG_P (dest))
13043 record_value_for_reg (dest, NULL, NULL_RTX);
13044 return;
13047 if (REG_P (dest))
13049 /* If we are setting the whole register, we know its value. Otherwise
13050 show that we don't know the value. We can handle SUBREG in
13051 some cases. */
13052 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
13053 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
13054 else if (GET_CODE (setter) == SET
13055 && GET_CODE (SET_DEST (setter)) == SUBREG
13056 && SUBREG_REG (SET_DEST (setter)) == dest
13057 && GET_MODE_PRECISION (GET_MODE (dest)) <= BITS_PER_WORD
13058 && subreg_lowpart_p (SET_DEST (setter)))
13059 record_value_for_reg (dest, record_dead_insn,
13060 gen_lowpart (GET_MODE (dest),
13061 SET_SRC (setter)));
13062 else
13063 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
13065 else if (MEM_P (dest)
13066 /* Ignore pushes, they clobber nothing. */
13067 && ! push_operand (dest, GET_MODE (dest)))
13068 mem_last_set = DF_INSN_LUID (record_dead_insn);
13071 /* Update the records of when each REG was most recently set or killed
13072 for the things done by INSN. This is the last thing done in processing
13073 INSN in the combiner loop.
13075 We update reg_stat[], in particular fields last_set, last_set_value,
13076 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
13077 last_death, and also the similar information mem_last_set (which insn
13078 most recently modified memory) and last_call_luid (which insn was the
13079 most recent subroutine call). */
13081 static void
13082 record_dead_and_set_regs (rtx_insn *insn)
13084 rtx link;
13085 unsigned int i;
13087 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
13089 if (REG_NOTE_KIND (link) == REG_DEAD
13090 && REG_P (XEXP (link, 0)))
13092 unsigned int regno = REGNO (XEXP (link, 0));
13093 unsigned int endregno = END_REGNO (XEXP (link, 0));
13095 for (i = regno; i < endregno; i++)
13097 reg_stat_type *rsp;
13099 rsp = &reg_stat[i];
13100 rsp->last_death = insn;
13103 else if (REG_NOTE_KIND (link) == REG_INC)
13104 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
13107 if (CALL_P (insn))
13109 hard_reg_set_iterator hrsi;
13110 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, i, hrsi)
13112 reg_stat_type *rsp;
13114 rsp = &reg_stat[i];
13115 rsp->last_set_invalid = 1;
13116 rsp->last_set = insn;
13117 rsp->last_set_value = 0;
13118 rsp->last_set_mode = VOIDmode;
13119 rsp->last_set_nonzero_bits = 0;
13120 rsp->last_set_sign_bit_copies = 0;
13121 rsp->last_death = 0;
13122 rsp->truncated_to_mode = VOIDmode;
13125 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
13127 /* We can't combine into a call pattern. Remember, though, that
13128 the return value register is set at this LUID. We could
13129 still replace a register with the return value from the
13130 wrong subroutine call! */
13131 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
13133 else
13134 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
13137 /* If a SUBREG has the promoted bit set, it is in fact a property of the
13138 register present in the SUBREG, so for each such SUBREG go back and
13139 adjust nonzero and sign bit information of the registers that are
13140 known to have some zero/sign bits set.
13142 This is needed because when combine blows the SUBREGs away, the
13143 information on zero/sign bits is lost and further combines can be
13144 missed because of that. */
13146 static void
13147 record_promoted_value (rtx_insn *insn, rtx subreg)
13149 struct insn_link *links;
13150 rtx set;
13151 unsigned int regno = REGNO (SUBREG_REG (subreg));
13152 machine_mode mode = GET_MODE (subreg);
13154 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
13155 return;
13157 for (links = LOG_LINKS (insn); links;)
13159 reg_stat_type *rsp;
13161 insn = links->insn;
13162 set = single_set (insn);
13164 if (! set || !REG_P (SET_DEST (set))
13165 || REGNO (SET_DEST (set)) != regno
13166 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
13168 links = links->next;
13169 continue;
13172 rsp = &reg_stat[regno];
13173 if (rsp->last_set == insn)
13175 if (SUBREG_PROMOTED_UNSIGNED_P (subreg))
13176 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
13179 if (REG_P (SET_SRC (set)))
13181 regno = REGNO (SET_SRC (set));
13182 links = LOG_LINKS (insn);
13184 else
13185 break;
13189 /* Check if X, a register, is known to contain a value already
13190 truncated to MODE. In this case we can use a subreg to refer to
13191 the truncated value even though in the generic case we would need
13192 an explicit truncation. */
13194 static bool
13195 reg_truncated_to_mode (machine_mode mode, const_rtx x)
13197 reg_stat_type *rsp = &reg_stat[REGNO (x)];
13198 machine_mode truncated = rsp->truncated_to_mode;
13200 if (truncated == 0
13201 || rsp->truncation_label < label_tick_ebb_start)
13202 return false;
13203 if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
13204 return true;
13205 if (TRULY_NOOP_TRUNCATION_MODES_P (mode, truncated))
13206 return true;
13207 return false;
13210 /* If X is a hard reg or a subreg record the mode that the register is
13211 accessed in. For non-TRULY_NOOP_TRUNCATION targets we might be able
13212 to turn a truncate into a subreg using this information. Return true
13213 if traversing X is complete. */
13215 static bool
13216 record_truncated_value (rtx x)
13218 machine_mode truncated_mode;
13219 reg_stat_type *rsp;
13221 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
13223 machine_mode original_mode = GET_MODE (SUBREG_REG (x));
13224 truncated_mode = GET_MODE (x);
13226 if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
13227 return true;
13229 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode, original_mode))
13230 return true;
13232 x = SUBREG_REG (x);
13234 /* ??? For hard-regs we now record everything. We might be able to
13235 optimize this using last_set_mode. */
13236 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
13237 truncated_mode = GET_MODE (x);
13238 else
13239 return false;
13241 rsp = &reg_stat[REGNO (x)];
13242 if (rsp->truncated_to_mode == 0
13243 || rsp->truncation_label < label_tick_ebb_start
13244 || (GET_MODE_SIZE (truncated_mode)
13245 < GET_MODE_SIZE (rsp->truncated_to_mode)))
13247 rsp->truncated_to_mode = truncated_mode;
13248 rsp->truncation_label = label_tick;
13251 return true;
13254 /* Callback for note_uses. Find hardregs and subregs of pseudos and
13255 the modes they are used in. This can help truning TRUNCATEs into
13256 SUBREGs. */
13258 static void
13259 record_truncated_values (rtx *loc, void *data ATTRIBUTE_UNUSED)
13261 subrtx_var_iterator::array_type array;
13262 FOR_EACH_SUBRTX_VAR (iter, array, *loc, NONCONST)
13263 if (record_truncated_value (*iter))
13264 iter.skip_subrtxes ();
13267 /* Scan X for promoted SUBREGs. For each one found,
13268 note what it implies to the registers used in it. */
13270 static void
13271 check_promoted_subreg (rtx_insn *insn, rtx x)
13273 if (GET_CODE (x) == SUBREG
13274 && SUBREG_PROMOTED_VAR_P (x)
13275 && REG_P (SUBREG_REG (x)))
13276 record_promoted_value (insn, x);
13277 else
13279 const char *format = GET_RTX_FORMAT (GET_CODE (x));
13280 int i, j;
13282 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
13283 switch (format[i])
13285 case 'e':
13286 check_promoted_subreg (insn, XEXP (x, i));
13287 break;
13288 case 'V':
13289 case 'E':
13290 if (XVEC (x, i) != 0)
13291 for (j = 0; j < XVECLEN (x, i); j++)
13292 check_promoted_subreg (insn, XVECEXP (x, i, j));
13293 break;
13298 /* Verify that all the registers and memory references mentioned in *LOC are
13299 still valid. *LOC was part of a value set in INSN when label_tick was
13300 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
13301 the invalid references with (clobber (const_int 0)) and return 1. This
13302 replacement is useful because we often can get useful information about
13303 the form of a value (e.g., if it was produced by a shift that always
13304 produces -1 or 0) even though we don't know exactly what registers it
13305 was produced from. */
13307 static int
13308 get_last_value_validate (rtx *loc, rtx_insn *insn, int tick, int replace)
13310 rtx x = *loc;
13311 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
13312 int len = GET_RTX_LENGTH (GET_CODE (x));
13313 int i, j;
13315 if (REG_P (x))
13317 unsigned int regno = REGNO (x);
13318 unsigned int endregno = END_REGNO (x);
13319 unsigned int j;
13321 for (j = regno; j < endregno; j++)
13323 reg_stat_type *rsp = &reg_stat[j];
13324 if (rsp->last_set_invalid
13325 /* If this is a pseudo-register that was only set once and not
13326 live at the beginning of the function, it is always valid. */
13327 || (! (regno >= FIRST_PSEUDO_REGISTER
13328 && regno < reg_n_sets_max
13329 && REG_N_SETS (regno) == 1
13330 && (!REGNO_REG_SET_P
13331 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
13332 regno)))
13333 && rsp->last_set_label > tick))
13335 if (replace)
13336 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13337 return replace;
13341 return 1;
13343 /* If this is a memory reference, make sure that there were no stores after
13344 it that might have clobbered the value. We don't have alias info, so we
13345 assume any store invalidates it. Moreover, we only have local UIDs, so
13346 we also assume that there were stores in the intervening basic blocks. */
13347 else if (MEM_P (x) && !MEM_READONLY_P (x)
13348 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
13350 if (replace)
13351 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13352 return replace;
13355 for (i = 0; i < len; i++)
13357 if (fmt[i] == 'e')
13359 /* Check for identical subexpressions. If x contains
13360 identical subexpression we only have to traverse one of
13361 them. */
13362 if (i == 1 && ARITHMETIC_P (x))
13364 /* Note that at this point x0 has already been checked
13365 and found valid. */
13366 rtx x0 = XEXP (x, 0);
13367 rtx x1 = XEXP (x, 1);
13369 /* If x0 and x1 are identical then x is also valid. */
13370 if (x0 == x1)
13371 return 1;
13373 /* If x1 is identical to a subexpression of x0 then
13374 while checking x0, x1 has already been checked. Thus
13375 it is valid and so as x. */
13376 if (ARITHMETIC_P (x0)
13377 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13378 return 1;
13380 /* If x0 is identical to a subexpression of x1 then x is
13381 valid iff the rest of x1 is valid. */
13382 if (ARITHMETIC_P (x1)
13383 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13384 return
13385 get_last_value_validate (&XEXP (x1,
13386 x0 == XEXP (x1, 0) ? 1 : 0),
13387 insn, tick, replace);
13390 if (get_last_value_validate (&XEXP (x, i), insn, tick,
13391 replace) == 0)
13392 return 0;
13394 else if (fmt[i] == 'E')
13395 for (j = 0; j < XVECLEN (x, i); j++)
13396 if (get_last_value_validate (&XVECEXP (x, i, j),
13397 insn, tick, replace) == 0)
13398 return 0;
13401 /* If we haven't found a reason for it to be invalid, it is valid. */
13402 return 1;
13405 /* Get the last value assigned to X, if known. Some registers
13406 in the value may be replaced with (clobber (const_int 0)) if their value
13407 is known longer known reliably. */
13409 static rtx
13410 get_last_value (const_rtx x)
13412 unsigned int regno;
13413 rtx value;
13414 reg_stat_type *rsp;
13416 /* If this is a non-paradoxical SUBREG, get the value of its operand and
13417 then convert it to the desired mode. If this is a paradoxical SUBREG,
13418 we cannot predict what values the "extra" bits might have. */
13419 if (GET_CODE (x) == SUBREG
13420 && subreg_lowpart_p (x)
13421 && !paradoxical_subreg_p (x)
13422 && (value = get_last_value (SUBREG_REG (x))) != 0)
13423 return gen_lowpart (GET_MODE (x), value);
13425 if (!REG_P (x))
13426 return 0;
13428 regno = REGNO (x);
13429 rsp = &reg_stat[regno];
13430 value = rsp->last_set_value;
13432 /* If we don't have a value, or if it isn't for this basic block and
13433 it's either a hard register, set more than once, or it's a live
13434 at the beginning of the function, return 0.
13436 Because if it's not live at the beginning of the function then the reg
13437 is always set before being used (is never used without being set).
13438 And, if it's set only once, and it's always set before use, then all
13439 uses must have the same last value, even if it's not from this basic
13440 block. */
13442 if (value == 0
13443 || (rsp->last_set_label < label_tick_ebb_start
13444 && (regno < FIRST_PSEUDO_REGISTER
13445 || regno >= reg_n_sets_max
13446 || REG_N_SETS (regno) != 1
13447 || REGNO_REG_SET_P
13448 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), regno))))
13449 return 0;
13451 /* If the value was set in a later insn than the ones we are processing,
13452 we can't use it even if the register was only set once. */
13453 if (rsp->last_set_label == label_tick
13454 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
13455 return 0;
13457 /* If fewer bits were set than what we are asked for now, we cannot use
13458 the value. */
13459 if (GET_MODE_PRECISION (rsp->last_set_mode)
13460 < GET_MODE_PRECISION (GET_MODE (x)))
13461 return 0;
13463 /* If the value has all its registers valid, return it. */
13464 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
13465 return value;
13467 /* Otherwise, make a copy and replace any invalid register with
13468 (clobber (const_int 0)). If that fails for some reason, return 0. */
13470 value = copy_rtx (value);
13471 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
13472 return value;
13474 return 0;
13477 /* Return nonzero if expression X refers to a REG or to memory
13478 that is set in an instruction more recent than FROM_LUID. */
13480 static int
13481 use_crosses_set_p (const_rtx x, int from_luid)
13483 const char *fmt;
13484 int i;
13485 enum rtx_code code = GET_CODE (x);
13487 if (code == REG)
13489 unsigned int regno = REGNO (x);
13490 unsigned endreg = END_REGNO (x);
13492 #ifdef PUSH_ROUNDING
13493 /* Don't allow uses of the stack pointer to be moved,
13494 because we don't know whether the move crosses a push insn. */
13495 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
13496 return 1;
13497 #endif
13498 for (; regno < endreg; regno++)
13500 reg_stat_type *rsp = &reg_stat[regno];
13501 if (rsp->last_set
13502 && rsp->last_set_label == label_tick
13503 && DF_INSN_LUID (rsp->last_set) > from_luid)
13504 return 1;
13506 return 0;
13509 if (code == MEM && mem_last_set > from_luid)
13510 return 1;
13512 fmt = GET_RTX_FORMAT (code);
13514 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13516 if (fmt[i] == 'E')
13518 int j;
13519 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13520 if (use_crosses_set_p (XVECEXP (x, i, j), from_luid))
13521 return 1;
13523 else if (fmt[i] == 'e'
13524 && use_crosses_set_p (XEXP (x, i), from_luid))
13525 return 1;
13527 return 0;
13530 /* Define three variables used for communication between the following
13531 routines. */
13533 static unsigned int reg_dead_regno, reg_dead_endregno;
13534 static int reg_dead_flag;
13536 /* Function called via note_stores from reg_dead_at_p.
13538 If DEST is within [reg_dead_regno, reg_dead_endregno), set
13539 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
13541 static void
13542 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
13544 unsigned int regno, endregno;
13546 if (!REG_P (dest))
13547 return;
13549 regno = REGNO (dest);
13550 endregno = END_REGNO (dest);
13551 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
13552 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
13555 /* Return nonzero if REG is known to be dead at INSN.
13557 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
13558 referencing REG, it is dead. If we hit a SET referencing REG, it is
13559 live. Otherwise, see if it is live or dead at the start of the basic
13560 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
13561 must be assumed to be always live. */
13563 static int
13564 reg_dead_at_p (rtx reg, rtx_insn *insn)
13566 basic_block block;
13567 unsigned int i;
13569 /* Set variables for reg_dead_at_p_1. */
13570 reg_dead_regno = REGNO (reg);
13571 reg_dead_endregno = END_REGNO (reg);
13573 reg_dead_flag = 0;
13575 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
13576 we allow the machine description to decide whether use-and-clobber
13577 patterns are OK. */
13578 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
13580 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13581 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
13582 return 0;
13585 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
13586 beginning of basic block. */
13587 block = BLOCK_FOR_INSN (insn);
13588 for (;;)
13590 if (INSN_P (insn))
13592 if (find_regno_note (insn, REG_UNUSED, reg_dead_regno))
13593 return 1;
13595 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
13596 if (reg_dead_flag)
13597 return reg_dead_flag == 1 ? 1 : 0;
13599 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
13600 return 1;
13603 if (insn == BB_HEAD (block))
13604 break;
13606 insn = PREV_INSN (insn);
13609 /* Look at live-in sets for the basic block that we were in. */
13610 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13611 if (REGNO_REG_SET_P (df_get_live_in (block), i))
13612 return 0;
13614 return 1;
13617 /* Note hard registers in X that are used. */
13619 static void
13620 mark_used_regs_combine (rtx x)
13622 RTX_CODE code = GET_CODE (x);
13623 unsigned int regno;
13624 int i;
13626 switch (code)
13628 case LABEL_REF:
13629 case SYMBOL_REF:
13630 case CONST:
13631 CASE_CONST_ANY:
13632 case PC:
13633 case ADDR_VEC:
13634 case ADDR_DIFF_VEC:
13635 case ASM_INPUT:
13636 /* CC0 must die in the insn after it is set, so we don't need to take
13637 special note of it here. */
13638 case CC0:
13639 return;
13641 case CLOBBER:
13642 /* If we are clobbering a MEM, mark any hard registers inside the
13643 address as used. */
13644 if (MEM_P (XEXP (x, 0)))
13645 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
13646 return;
13648 case REG:
13649 regno = REGNO (x);
13650 /* A hard reg in a wide mode may really be multiple registers.
13651 If so, mark all of them just like the first. */
13652 if (regno < FIRST_PSEUDO_REGISTER)
13654 /* None of this applies to the stack, frame or arg pointers. */
13655 if (regno == STACK_POINTER_REGNUM
13656 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
13657 && regno == HARD_FRAME_POINTER_REGNUM)
13658 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
13659 && regno == ARG_POINTER_REGNUM && fixed_regs[regno])
13660 || regno == FRAME_POINTER_REGNUM)
13661 return;
13663 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
13665 return;
13667 case SET:
13669 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
13670 the address. */
13671 rtx testreg = SET_DEST (x);
13673 while (GET_CODE (testreg) == SUBREG
13674 || GET_CODE (testreg) == ZERO_EXTRACT
13675 || GET_CODE (testreg) == STRICT_LOW_PART)
13676 testreg = XEXP (testreg, 0);
13678 if (MEM_P (testreg))
13679 mark_used_regs_combine (XEXP (testreg, 0));
13681 mark_used_regs_combine (SET_SRC (x));
13683 return;
13685 default:
13686 break;
13689 /* Recursively scan the operands of this expression. */
13692 const char *fmt = GET_RTX_FORMAT (code);
13694 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13696 if (fmt[i] == 'e')
13697 mark_used_regs_combine (XEXP (x, i));
13698 else if (fmt[i] == 'E')
13700 int j;
13702 for (j = 0; j < XVECLEN (x, i); j++)
13703 mark_used_regs_combine (XVECEXP (x, i, j));
13709 /* Remove register number REGNO from the dead registers list of INSN.
13711 Return the note used to record the death, if there was one. */
13714 remove_death (unsigned int regno, rtx_insn *insn)
13716 rtx note = find_regno_note (insn, REG_DEAD, regno);
13718 if (note)
13719 remove_note (insn, note);
13721 return note;
13724 /* For each register (hardware or pseudo) used within expression X, if its
13725 death is in an instruction with luid between FROM_LUID (inclusive) and
13726 TO_INSN (exclusive), put a REG_DEAD note for that register in the
13727 list headed by PNOTES.
13729 That said, don't move registers killed by maybe_kill_insn.
13731 This is done when X is being merged by combination into TO_INSN. These
13732 notes will then be distributed as needed. */
13734 static void
13735 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx_insn *to_insn,
13736 rtx *pnotes)
13738 const char *fmt;
13739 int len, i;
13740 enum rtx_code code = GET_CODE (x);
13742 if (code == REG)
13744 unsigned int regno = REGNO (x);
13745 rtx_insn *where_dead = reg_stat[regno].last_death;
13747 /* Don't move the register if it gets killed in between from and to. */
13748 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
13749 && ! reg_referenced_p (x, maybe_kill_insn))
13750 return;
13752 if (where_dead
13753 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
13754 && DF_INSN_LUID (where_dead) >= from_luid
13755 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
13757 rtx note = remove_death (regno, where_dead);
13759 /* It is possible for the call above to return 0. This can occur
13760 when last_death points to I2 or I1 that we combined with.
13761 In that case make a new note.
13763 We must also check for the case where X is a hard register
13764 and NOTE is a death note for a range of hard registers
13765 including X. In that case, we must put REG_DEAD notes for
13766 the remaining registers in place of NOTE. */
13768 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
13769 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13770 > GET_MODE_SIZE (GET_MODE (x))))
13772 unsigned int deadregno = REGNO (XEXP (note, 0));
13773 unsigned int deadend = END_REGNO (XEXP (note, 0));
13774 unsigned int ourend = END_REGNO (x);
13775 unsigned int i;
13777 for (i = deadregno; i < deadend; i++)
13778 if (i < regno || i >= ourend)
13779 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
13782 /* If we didn't find any note, or if we found a REG_DEAD note that
13783 covers only part of the given reg, and we have a multi-reg hard
13784 register, then to be safe we must check for REG_DEAD notes
13785 for each register other than the first. They could have
13786 their own REG_DEAD notes lying around. */
13787 else if ((note == 0
13788 || (note != 0
13789 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13790 < GET_MODE_SIZE (GET_MODE (x)))))
13791 && regno < FIRST_PSEUDO_REGISTER
13792 && REG_NREGS (x) > 1)
13794 unsigned int ourend = END_REGNO (x);
13795 unsigned int i, offset;
13796 rtx oldnotes = 0;
13798 if (note)
13799 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
13800 else
13801 offset = 1;
13803 for (i = regno + offset; i < ourend; i++)
13804 move_deaths (regno_reg_rtx[i],
13805 maybe_kill_insn, from_luid, to_insn, &oldnotes);
13808 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
13810 XEXP (note, 1) = *pnotes;
13811 *pnotes = note;
13813 else
13814 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
13817 return;
13820 else if (GET_CODE (x) == SET)
13822 rtx dest = SET_DEST (x);
13824 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
13826 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
13827 that accesses one word of a multi-word item, some
13828 piece of everything register in the expression is used by
13829 this insn, so remove any old death. */
13830 /* ??? So why do we test for equality of the sizes? */
13832 if (GET_CODE (dest) == ZERO_EXTRACT
13833 || GET_CODE (dest) == STRICT_LOW_PART
13834 || (GET_CODE (dest) == SUBREG
13835 && (((GET_MODE_SIZE (GET_MODE (dest))
13836 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
13837 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
13838 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
13840 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
13841 return;
13844 /* If this is some other SUBREG, we know it replaces the entire
13845 value, so use that as the destination. */
13846 if (GET_CODE (dest) == SUBREG)
13847 dest = SUBREG_REG (dest);
13849 /* If this is a MEM, adjust deaths of anything used in the address.
13850 For a REG (the only other possibility), the entire value is
13851 being replaced so the old value is not used in this insn. */
13853 if (MEM_P (dest))
13854 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
13855 to_insn, pnotes);
13856 return;
13859 else if (GET_CODE (x) == CLOBBER)
13860 return;
13862 len = GET_RTX_LENGTH (code);
13863 fmt = GET_RTX_FORMAT (code);
13865 for (i = 0; i < len; i++)
13867 if (fmt[i] == 'E')
13869 int j;
13870 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13871 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
13872 to_insn, pnotes);
13874 else if (fmt[i] == 'e')
13875 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
13879 /* Return 1 if X is the target of a bit-field assignment in BODY, the
13880 pattern of an insn. X must be a REG. */
13882 static int
13883 reg_bitfield_target_p (rtx x, rtx body)
13885 int i;
13887 if (GET_CODE (body) == SET)
13889 rtx dest = SET_DEST (body);
13890 rtx target;
13891 unsigned int regno, tregno, endregno, endtregno;
13893 if (GET_CODE (dest) == ZERO_EXTRACT)
13894 target = XEXP (dest, 0);
13895 else if (GET_CODE (dest) == STRICT_LOW_PART)
13896 target = SUBREG_REG (XEXP (dest, 0));
13897 else
13898 return 0;
13900 if (GET_CODE (target) == SUBREG)
13901 target = SUBREG_REG (target);
13903 if (!REG_P (target))
13904 return 0;
13906 tregno = REGNO (target), regno = REGNO (x);
13907 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
13908 return target == x;
13910 endtregno = end_hard_regno (GET_MODE (target), tregno);
13911 endregno = end_hard_regno (GET_MODE (x), regno);
13913 return endregno > tregno && regno < endtregno;
13916 else if (GET_CODE (body) == PARALLEL)
13917 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
13918 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
13919 return 1;
13921 return 0;
13924 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
13925 as appropriate. I3 and I2 are the insns resulting from the combination
13926 insns including FROM (I2 may be zero).
13928 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
13929 not need REG_DEAD notes because they are being substituted for. This
13930 saves searching in the most common cases.
13932 Each note in the list is either ignored or placed on some insns, depending
13933 on the type of note. */
13935 static void
13936 distribute_notes (rtx notes, rtx_insn *from_insn, rtx_insn *i3, rtx_insn *i2,
13937 rtx elim_i2, rtx elim_i1, rtx elim_i0)
13939 rtx note, next_note;
13940 rtx tem_note;
13941 rtx_insn *tem_insn;
13943 for (note = notes; note; note = next_note)
13945 rtx_insn *place = 0, *place2 = 0;
13947 next_note = XEXP (note, 1);
13948 switch (REG_NOTE_KIND (note))
13950 case REG_BR_PROB:
13951 case REG_BR_PRED:
13952 /* Doesn't matter much where we put this, as long as it's somewhere.
13953 It is preferable to keep these notes on branches, which is most
13954 likely to be i3. */
13955 place = i3;
13956 break;
13958 case REG_NON_LOCAL_GOTO:
13959 if (JUMP_P (i3))
13960 place = i3;
13961 else
13963 gcc_assert (i2 && JUMP_P (i2));
13964 place = i2;
13966 break;
13968 case REG_EH_REGION:
13969 /* These notes must remain with the call or trapping instruction. */
13970 if (CALL_P (i3))
13971 place = i3;
13972 else if (i2 && CALL_P (i2))
13973 place = i2;
13974 else
13976 gcc_assert (cfun->can_throw_non_call_exceptions);
13977 if (may_trap_p (i3))
13978 place = i3;
13979 else if (i2 && may_trap_p (i2))
13980 place = i2;
13981 /* ??? Otherwise assume we've combined things such that we
13982 can now prove that the instructions can't trap. Drop the
13983 note in this case. */
13985 break;
13987 case REG_ARGS_SIZE:
13988 /* ??? How to distribute between i3-i1. Assume i3 contains the
13989 entire adjustment. Assert i3 contains at least some adjust. */
13990 if (!noop_move_p (i3))
13992 int old_size, args_size = INTVAL (XEXP (note, 0));
13993 /* fixup_args_size_notes looks at REG_NORETURN note,
13994 so ensure the note is placed there first. */
13995 if (CALL_P (i3))
13997 rtx *np;
13998 for (np = &next_note; *np; np = &XEXP (*np, 1))
13999 if (REG_NOTE_KIND (*np) == REG_NORETURN)
14001 rtx n = *np;
14002 *np = XEXP (n, 1);
14003 XEXP (n, 1) = REG_NOTES (i3);
14004 REG_NOTES (i3) = n;
14005 break;
14008 old_size = fixup_args_size_notes (PREV_INSN (i3), i3, args_size);
14009 /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
14010 REG_ARGS_SIZE note to all noreturn calls, allow that here. */
14011 gcc_assert (old_size != args_size
14012 || (CALL_P (i3)
14013 && !ACCUMULATE_OUTGOING_ARGS
14014 && find_reg_note (i3, REG_NORETURN, NULL_RTX)));
14016 break;
14018 case REG_NORETURN:
14019 case REG_SETJMP:
14020 case REG_TM:
14021 case REG_CALL_DECL:
14022 /* These notes must remain with the call. It should not be
14023 possible for both I2 and I3 to be a call. */
14024 if (CALL_P (i3))
14025 place = i3;
14026 else
14028 gcc_assert (i2 && CALL_P (i2));
14029 place = i2;
14031 break;
14033 case REG_UNUSED:
14034 /* Any clobbers for i3 may still exist, and so we must process
14035 REG_UNUSED notes from that insn.
14037 Any clobbers from i2 or i1 can only exist if they were added by
14038 recog_for_combine. In that case, recog_for_combine created the
14039 necessary REG_UNUSED notes. Trying to keep any original
14040 REG_UNUSED notes from these insns can cause incorrect output
14041 if it is for the same register as the original i3 dest.
14042 In that case, we will notice that the register is set in i3,
14043 and then add a REG_UNUSED note for the destination of i3, which
14044 is wrong. However, it is possible to have REG_UNUSED notes from
14045 i2 or i1 for register which were both used and clobbered, so
14046 we keep notes from i2 or i1 if they will turn into REG_DEAD
14047 notes. */
14049 /* If this register is set or clobbered in I3, put the note there
14050 unless there is one already. */
14051 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
14053 if (from_insn != i3)
14054 break;
14056 if (! (REG_P (XEXP (note, 0))
14057 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
14058 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
14059 place = i3;
14061 /* Otherwise, if this register is used by I3, then this register
14062 now dies here, so we must put a REG_DEAD note here unless there
14063 is one already. */
14064 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
14065 && ! (REG_P (XEXP (note, 0))
14066 ? find_regno_note (i3, REG_DEAD,
14067 REGNO (XEXP (note, 0)))
14068 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
14070 PUT_REG_NOTE_KIND (note, REG_DEAD);
14071 place = i3;
14073 break;
14075 case REG_EQUAL:
14076 case REG_EQUIV:
14077 case REG_NOALIAS:
14078 /* These notes say something about results of an insn. We can
14079 only support them if they used to be on I3 in which case they
14080 remain on I3. Otherwise they are ignored.
14082 If the note refers to an expression that is not a constant, we
14083 must also ignore the note since we cannot tell whether the
14084 equivalence is still true. It might be possible to do
14085 slightly better than this (we only have a problem if I2DEST
14086 or I1DEST is present in the expression), but it doesn't
14087 seem worth the trouble. */
14089 if (from_insn == i3
14090 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
14091 place = i3;
14092 break;
14094 case REG_INC:
14095 /* These notes say something about how a register is used. They must
14096 be present on any use of the register in I2 or I3. */
14097 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
14098 place = i3;
14100 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
14102 if (place)
14103 place2 = i2;
14104 else
14105 place = i2;
14107 break;
14109 case REG_LABEL_TARGET:
14110 case REG_LABEL_OPERAND:
14111 /* This can show up in several ways -- either directly in the
14112 pattern, or hidden off in the constant pool with (or without?)
14113 a REG_EQUAL note. */
14114 /* ??? Ignore the without-reg_equal-note problem for now. */
14115 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
14116 || ((tem_note = find_reg_note (i3, REG_EQUAL, NULL_RTX))
14117 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14118 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0)))
14119 place = i3;
14121 if (i2
14122 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
14123 || ((tem_note = find_reg_note (i2, REG_EQUAL, NULL_RTX))
14124 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14125 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0))))
14127 if (place)
14128 place2 = i2;
14129 else
14130 place = i2;
14133 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
14134 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
14135 there. */
14136 if (place && JUMP_P (place)
14137 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14138 && (JUMP_LABEL (place) == NULL
14139 || JUMP_LABEL (place) == XEXP (note, 0)))
14141 rtx label = JUMP_LABEL (place);
14143 if (!label)
14144 JUMP_LABEL (place) = XEXP (note, 0);
14145 else if (LABEL_P (label))
14146 LABEL_NUSES (label)--;
14149 if (place2 && JUMP_P (place2)
14150 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14151 && (JUMP_LABEL (place2) == NULL
14152 || JUMP_LABEL (place2) == XEXP (note, 0)))
14154 rtx label = JUMP_LABEL (place2);
14156 if (!label)
14157 JUMP_LABEL (place2) = XEXP (note, 0);
14158 else if (LABEL_P (label))
14159 LABEL_NUSES (label)--;
14160 place2 = 0;
14162 break;
14164 case REG_NONNEG:
14165 /* This note says something about the value of a register prior
14166 to the execution of an insn. It is too much trouble to see
14167 if the note is still correct in all situations. It is better
14168 to simply delete it. */
14169 break;
14171 case REG_DEAD:
14172 /* If we replaced the right hand side of FROM_INSN with a
14173 REG_EQUAL note, the original use of the dying register
14174 will not have been combined into I3 and I2. In such cases,
14175 FROM_INSN is guaranteed to be the first of the combined
14176 instructions, so we simply need to search back before
14177 FROM_INSN for the previous use or set of this register,
14178 then alter the notes there appropriately.
14180 If the register is used as an input in I3, it dies there.
14181 Similarly for I2, if it is nonzero and adjacent to I3.
14183 If the register is not used as an input in either I3 or I2
14184 and it is not one of the registers we were supposed to eliminate,
14185 there are two possibilities. We might have a non-adjacent I2
14186 or we might have somehow eliminated an additional register
14187 from a computation. For example, we might have had A & B where
14188 we discover that B will always be zero. In this case we will
14189 eliminate the reference to A.
14191 In both cases, we must search to see if we can find a previous
14192 use of A and put the death note there. */
14194 if (from_insn
14195 && from_insn == i2mod
14196 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
14197 tem_insn = from_insn;
14198 else
14200 if (from_insn
14201 && CALL_P (from_insn)
14202 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
14203 place = from_insn;
14204 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
14205 place = i3;
14206 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
14207 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14208 place = i2;
14209 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
14210 && !(i2mod
14211 && reg_overlap_mentioned_p (XEXP (note, 0),
14212 i2mod_old_rhs)))
14213 || rtx_equal_p (XEXP (note, 0), elim_i1)
14214 || rtx_equal_p (XEXP (note, 0), elim_i0))
14215 break;
14216 tem_insn = i3;
14217 /* If the new I2 sets the same register that is marked dead
14218 in the note, we do not know where to put the note.
14219 Give up. */
14220 if (i2 != 0 && reg_set_p (XEXP (note, 0), PATTERN (i2)))
14221 break;
14224 if (place == 0)
14226 basic_block bb = this_basic_block;
14228 for (tem_insn = PREV_INSN (tem_insn); place == 0; tem_insn = PREV_INSN (tem_insn))
14230 if (!NONDEBUG_INSN_P (tem_insn))
14232 if (tem_insn == BB_HEAD (bb))
14233 break;
14234 continue;
14237 /* If the register is being set at TEM_INSN, see if that is all
14238 TEM_INSN is doing. If so, delete TEM_INSN. Otherwise, make this
14239 into a REG_UNUSED note instead. Don't delete sets to
14240 global register vars. */
14241 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
14242 || !global_regs[REGNO (XEXP (note, 0))])
14243 && reg_set_p (XEXP (note, 0), PATTERN (tem_insn)))
14245 rtx set = single_set (tem_insn);
14246 rtx inner_dest = 0;
14247 rtx_insn *cc0_setter = NULL;
14249 if (set != 0)
14250 for (inner_dest = SET_DEST (set);
14251 (GET_CODE (inner_dest) == STRICT_LOW_PART
14252 || GET_CODE (inner_dest) == SUBREG
14253 || GET_CODE (inner_dest) == ZERO_EXTRACT);
14254 inner_dest = XEXP (inner_dest, 0))
14257 /* Verify that it was the set, and not a clobber that
14258 modified the register.
14260 CC0 targets must be careful to maintain setter/user
14261 pairs. If we cannot delete the setter due to side
14262 effects, mark the user with an UNUSED note instead
14263 of deleting it. */
14265 if (set != 0 && ! side_effects_p (SET_SRC (set))
14266 && rtx_equal_p (XEXP (note, 0), inner_dest)
14267 && (!HAVE_cc0
14268 || (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
14269 || ((cc0_setter = prev_cc0_setter (tem_insn)) != NULL
14270 && sets_cc0_p (PATTERN (cc0_setter)) > 0))))
14272 /* Move the notes and links of TEM_INSN elsewhere.
14273 This might delete other dead insns recursively.
14274 First set the pattern to something that won't use
14275 any register. */
14276 rtx old_notes = REG_NOTES (tem_insn);
14278 PATTERN (tem_insn) = pc_rtx;
14279 REG_NOTES (tem_insn) = NULL;
14281 distribute_notes (old_notes, tem_insn, tem_insn, NULL,
14282 NULL_RTX, NULL_RTX, NULL_RTX);
14283 distribute_links (LOG_LINKS (tem_insn));
14285 unsigned int regno = REGNO (XEXP (note, 0));
14286 reg_stat_type *rsp = &reg_stat[regno];
14287 if (rsp->last_set == tem_insn)
14288 record_value_for_reg (XEXP (note, 0), NULL, NULL_RTX);
14290 SET_INSN_DELETED (tem_insn);
14291 if (tem_insn == i2)
14292 i2 = NULL;
14294 /* Delete the setter too. */
14295 if (cc0_setter)
14297 PATTERN (cc0_setter) = pc_rtx;
14298 old_notes = REG_NOTES (cc0_setter);
14299 REG_NOTES (cc0_setter) = NULL;
14301 distribute_notes (old_notes, cc0_setter,
14302 cc0_setter, NULL,
14303 NULL_RTX, NULL_RTX, NULL_RTX);
14304 distribute_links (LOG_LINKS (cc0_setter));
14306 SET_INSN_DELETED (cc0_setter);
14307 if (cc0_setter == i2)
14308 i2 = NULL;
14311 else
14313 PUT_REG_NOTE_KIND (note, REG_UNUSED);
14315 /* If there isn't already a REG_UNUSED note, put one
14316 here. Do not place a REG_DEAD note, even if
14317 the register is also used here; that would not
14318 match the algorithm used in lifetime analysis
14319 and can cause the consistency check in the
14320 scheduler to fail. */
14321 if (! find_regno_note (tem_insn, REG_UNUSED,
14322 REGNO (XEXP (note, 0))))
14323 place = tem_insn;
14324 break;
14327 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem_insn))
14328 || (CALL_P (tem_insn)
14329 && find_reg_fusage (tem_insn, USE, XEXP (note, 0))))
14331 place = tem_insn;
14333 /* If we are doing a 3->2 combination, and we have a
14334 register which formerly died in i3 and was not used
14335 by i2, which now no longer dies in i3 and is used in
14336 i2 but does not die in i2, and place is between i2
14337 and i3, then we may need to move a link from place to
14338 i2. */
14339 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
14340 && from_insn
14341 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
14342 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14344 struct insn_link *links = LOG_LINKS (place);
14345 LOG_LINKS (place) = NULL;
14346 distribute_links (links);
14348 break;
14351 if (tem_insn == BB_HEAD (bb))
14352 break;
14357 /* If the register is set or already dead at PLACE, we needn't do
14358 anything with this note if it is still a REG_DEAD note.
14359 We check here if it is set at all, not if is it totally replaced,
14360 which is what `dead_or_set_p' checks, so also check for it being
14361 set partially. */
14363 if (place && REG_NOTE_KIND (note) == REG_DEAD)
14365 unsigned int regno = REGNO (XEXP (note, 0));
14366 reg_stat_type *rsp = &reg_stat[regno];
14368 if (dead_or_set_p (place, XEXP (note, 0))
14369 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
14371 /* Unless the register previously died in PLACE, clear
14372 last_death. [I no longer understand why this is
14373 being done.] */
14374 if (rsp->last_death != place)
14375 rsp->last_death = 0;
14376 place = 0;
14378 else
14379 rsp->last_death = place;
14381 /* If this is a death note for a hard reg that is occupying
14382 multiple registers, ensure that we are still using all
14383 parts of the object. If we find a piece of the object
14384 that is unused, we must arrange for an appropriate REG_DEAD
14385 note to be added for it. However, we can't just emit a USE
14386 and tag the note to it, since the register might actually
14387 be dead; so we recourse, and the recursive call then finds
14388 the previous insn that used this register. */
14390 if (place && REG_NREGS (XEXP (note, 0)) > 1)
14392 unsigned int endregno = END_REGNO (XEXP (note, 0));
14393 bool all_used = true;
14394 unsigned int i;
14396 for (i = regno; i < endregno; i++)
14397 if ((! refers_to_regno_p (i, PATTERN (place))
14398 && ! find_regno_fusage (place, USE, i))
14399 || dead_or_set_regno_p (place, i))
14401 all_used = false;
14402 break;
14405 if (! all_used)
14407 /* Put only REG_DEAD notes for pieces that are
14408 not already dead or set. */
14410 for (i = regno; i < endregno;
14411 i += hard_regno_nregs[i][reg_raw_mode[i]])
14413 rtx piece = regno_reg_rtx[i];
14414 basic_block bb = this_basic_block;
14416 if (! dead_or_set_p (place, piece)
14417 && ! reg_bitfield_target_p (piece,
14418 PATTERN (place)))
14420 rtx new_note = alloc_reg_note (REG_DEAD, piece,
14421 NULL_RTX);
14423 distribute_notes (new_note, place, place,
14424 NULL, NULL_RTX, NULL_RTX,
14425 NULL_RTX);
14427 else if (! refers_to_regno_p (i, PATTERN (place))
14428 && ! find_regno_fusage (place, USE, i))
14429 for (tem_insn = PREV_INSN (place); ;
14430 tem_insn = PREV_INSN (tem_insn))
14432 if (!NONDEBUG_INSN_P (tem_insn))
14434 if (tem_insn == BB_HEAD (bb))
14435 break;
14436 continue;
14438 if (dead_or_set_p (tem_insn, piece)
14439 || reg_bitfield_target_p (piece,
14440 PATTERN (tem_insn)))
14442 add_reg_note (tem_insn, REG_UNUSED, piece);
14443 break;
14448 place = 0;
14452 break;
14454 default:
14455 /* Any other notes should not be present at this point in the
14456 compilation. */
14457 gcc_unreachable ();
14460 if (place)
14462 XEXP (note, 1) = REG_NOTES (place);
14463 REG_NOTES (place) = note;
14466 if (place2)
14467 add_shallow_copy_of_reg_note (place2, note);
14471 /* Similarly to above, distribute the LOG_LINKS that used to be present on
14472 I3, I2, and I1 to new locations. This is also called to add a link
14473 pointing at I3 when I3's destination is changed. */
14475 static void
14476 distribute_links (struct insn_link *links)
14478 struct insn_link *link, *next_link;
14480 for (link = links; link; link = next_link)
14482 rtx_insn *place = 0;
14483 rtx_insn *insn;
14484 rtx set, reg;
14486 next_link = link->next;
14488 /* If the insn that this link points to is a NOTE, ignore it. */
14489 if (NOTE_P (link->insn))
14490 continue;
14492 set = 0;
14493 rtx pat = PATTERN (link->insn);
14494 if (GET_CODE (pat) == SET)
14495 set = pat;
14496 else if (GET_CODE (pat) == PARALLEL)
14498 int i;
14499 for (i = 0; i < XVECLEN (pat, 0); i++)
14501 set = XVECEXP (pat, 0, i);
14502 if (GET_CODE (set) != SET)
14503 continue;
14505 reg = SET_DEST (set);
14506 while (GET_CODE (reg) == ZERO_EXTRACT
14507 || GET_CODE (reg) == STRICT_LOW_PART
14508 || GET_CODE (reg) == SUBREG)
14509 reg = XEXP (reg, 0);
14511 if (!REG_P (reg))
14512 continue;
14514 if (REGNO (reg) == link->regno)
14515 break;
14517 if (i == XVECLEN (pat, 0))
14518 continue;
14520 else
14521 continue;
14523 reg = SET_DEST (set);
14525 while (GET_CODE (reg) == ZERO_EXTRACT
14526 || GET_CODE (reg) == STRICT_LOW_PART
14527 || GET_CODE (reg) == SUBREG)
14528 reg = XEXP (reg, 0);
14530 /* A LOG_LINK is defined as being placed on the first insn that uses
14531 a register and points to the insn that sets the register. Start
14532 searching at the next insn after the target of the link and stop
14533 when we reach a set of the register or the end of the basic block.
14535 Note that this correctly handles the link that used to point from
14536 I3 to I2. Also note that not much searching is typically done here
14537 since most links don't point very far away. */
14539 for (insn = NEXT_INSN (link->insn);
14540 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
14541 || BB_HEAD (this_basic_block->next_bb) != insn));
14542 insn = NEXT_INSN (insn))
14543 if (DEBUG_INSN_P (insn))
14544 continue;
14545 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
14547 if (reg_referenced_p (reg, PATTERN (insn)))
14548 place = insn;
14549 break;
14551 else if (CALL_P (insn)
14552 && find_reg_fusage (insn, USE, reg))
14554 place = insn;
14555 break;
14557 else if (INSN_P (insn) && reg_set_p (reg, insn))
14558 break;
14560 /* If we found a place to put the link, place it there unless there
14561 is already a link to the same insn as LINK at that point. */
14563 if (place)
14565 struct insn_link *link2;
14567 FOR_EACH_LOG_LINK (link2, place)
14568 if (link2->insn == link->insn && link2->regno == link->regno)
14569 break;
14571 if (link2 == NULL)
14573 link->next = LOG_LINKS (place);
14574 LOG_LINKS (place) = link;
14576 /* Set added_links_insn to the earliest insn we added a
14577 link to. */
14578 if (added_links_insn == 0
14579 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
14580 added_links_insn = place;
14586 /* Check for any register or memory mentioned in EQUIV that is not
14587 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
14588 of EXPR where some registers may have been replaced by constants. */
14590 static bool
14591 unmentioned_reg_p (rtx equiv, rtx expr)
14593 subrtx_iterator::array_type array;
14594 FOR_EACH_SUBRTX (iter, array, equiv, NONCONST)
14596 const_rtx x = *iter;
14597 if ((REG_P (x) || MEM_P (x))
14598 && !reg_mentioned_p (x, expr))
14599 return true;
14601 return false;
14604 DEBUG_FUNCTION void
14605 dump_combine_stats (FILE *file)
14607 fprintf
14608 (file,
14609 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
14610 combine_attempts, combine_merges, combine_extras, combine_successes);
14613 void
14614 dump_combine_total_stats (FILE *file)
14616 fprintf
14617 (file,
14618 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
14619 total_attempts, total_merges, total_extras, total_successes);
14622 /* Try combining insns through substitution. */
14623 static unsigned int
14624 rest_of_handle_combine (void)
14626 int rebuild_jump_labels_after_combine;
14628 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
14629 df_note_add_problem ();
14630 df_analyze ();
14632 regstat_init_n_sets_and_refs ();
14633 reg_n_sets_max = max_reg_num ();
14635 rebuild_jump_labels_after_combine
14636 = combine_instructions (get_insns (), max_reg_num ());
14638 /* Combining insns may have turned an indirect jump into a
14639 direct jump. Rebuild the JUMP_LABEL fields of jumping
14640 instructions. */
14641 if (rebuild_jump_labels_after_combine)
14643 if (dom_info_available_p (CDI_DOMINATORS))
14644 free_dominance_info (CDI_DOMINATORS);
14645 timevar_push (TV_JUMP);
14646 rebuild_jump_labels (get_insns ());
14647 cleanup_cfg (0);
14648 timevar_pop (TV_JUMP);
14651 regstat_free_n_sets_and_refs ();
14652 return 0;
14655 namespace {
14657 const pass_data pass_data_combine =
14659 RTL_PASS, /* type */
14660 "combine", /* name */
14661 OPTGROUP_NONE, /* optinfo_flags */
14662 TV_COMBINE, /* tv_id */
14663 PROP_cfglayout, /* properties_required */
14664 0, /* properties_provided */
14665 0, /* properties_destroyed */
14666 0, /* todo_flags_start */
14667 TODO_df_finish, /* todo_flags_finish */
14670 class pass_combine : public rtl_opt_pass
14672 public:
14673 pass_combine (gcc::context *ctxt)
14674 : rtl_opt_pass (pass_data_combine, ctxt)
14677 /* opt_pass methods: */
14678 virtual bool gate (function *) { return (optimize > 0); }
14679 virtual unsigned int execute (function *)
14681 return rest_of_handle_combine ();
14684 }; // class pass_combine
14686 } // anon namespace
14688 rtl_opt_pass *
14689 make_pass_combine (gcc::context *ctxt)
14691 return new pass_combine (ctxt);