1 /* Perform instruction reorganizations for delay slot filling.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu).
6 Hacked by Michael Tiemann (tiemann@cygnus.com).
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 3, or (at your option) any later
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
24 /* Instruction reorganization pass.
26 This pass runs after register allocation and final jump
27 optimization. It should be the last pass to run before peephole.
28 It serves primarily to fill delay slots of insns, typically branch
29 and call insns. Other insns typically involve more complicated
30 interactions of data dependencies and resource constraints, and
31 are better handled by scheduling before register allocation (by the
32 function `schedule_insns').
34 The Branch Penalty is the number of extra cycles that are needed to
35 execute a branch insn. On an ideal machine, branches take a single
36 cycle, and the Branch Penalty is 0. Several RISC machines approach
37 branch delays differently:
39 The MIPS has a single branch delay slot. Most insns
40 (except other branches) can be used to fill this slot. When the
41 slot is filled, two insns execute in two cycles, reducing the
42 branch penalty to zero.
44 The SPARC always has a branch delay slot, but its effects can be
45 annulled when the branch is not taken. This means that failing to
46 find other sources of insns, we can hoist an insn from the branch
47 target that would only be safe to execute knowing that the branch
50 The HP-PA always has a branch delay slot. For unconditional branches
51 its effects can be annulled when the branch is taken. The effects
52 of the delay slot in a conditional branch can be nullified for forward
53 taken branches, or for untaken backward branches. This means
54 we can hoist insns from the fall-through path for forward branches or
55 steal insns from the target of backward branches.
57 The TMS320C3x and C4x have three branch delay slots. When the three
58 slots are filled, the branch penalty is zero. Most insns can fill the
59 delay slots except jump insns.
61 Three techniques for filling delay slots have been implemented so far:
63 (1) `fill_simple_delay_slots' is the simplest, most efficient way
64 to fill delay slots. This pass first looks for insns which come
65 from before the branch and which are safe to execute after the
66 branch. Then it searches after the insn requiring delay slots or,
67 in the case of a branch, for insns that are after the point at
68 which the branch merges into the fallthrough code, if such a point
69 exists. When such insns are found, the branch penalty decreases
70 and no code expansion takes place.
72 (2) `fill_eager_delay_slots' is more complicated: it is used for
73 scheduling conditional jumps, or for scheduling jumps which cannot
74 be filled using (1). A machine need not have annulled jumps to use
75 this strategy, but it helps (by keeping more options open).
76 `fill_eager_delay_slots' tries to guess the direction the branch
77 will go; if it guesses right 100% of the time, it can reduce the
78 branch penalty as much as `fill_simple_delay_slots' does. If it
79 guesses wrong 100% of the time, it might as well schedule nops. When
80 `fill_eager_delay_slots' takes insns from the fall-through path of
81 the jump, usually there is no code expansion; when it takes insns
82 from the branch target, there is code expansion if it is not the
83 only way to reach that target.
85 (3) `relax_delay_slots' uses a set of rules to simplify code that
86 has been reorganized by (1) and (2). It finds cases where
87 conditional test can be eliminated, jumps can be threaded, extra
88 insns can be eliminated, etc. It is the job of (1) and (2) to do a
89 good job of scheduling locally; `relax_delay_slots' takes care of
90 making the various individual schedules work well together. It is
91 especially tuned to handle the control flow interactions of branch
92 insns. It does nothing for insns with delay slots that do not
95 On machines that use CC0, we are very conservative. We will not make
96 a copy of an insn involving CC0 since we want to maintain a 1-1
97 correspondence between the insn that sets and uses CC0. The insns are
98 allowed to be separated by placing an insn that sets CC0 (but not an insn
99 that uses CC0; we could do this, but it doesn't seem worthwhile) in a
100 delay slot. In that case, we point each insn at the other with REG_CC_USER
101 and REG_CC_SETTER notes. Note that these restrictions affect very few
102 machines because most RISC machines with delay slots will not use CC0
103 (the RT is the only known exception at this point).
107 The Acorn Risc Machine can conditionally execute most insns, so
108 it is profitable to move single insns into a position to execute
109 based on the condition code of the previous insn.
111 The HP-PA can conditionally nullify insns, providing a similar
112 effect to the ARM, differing mostly in which insn is "in charge". */
116 #include "coretypes.h"
118 #include "diagnostic-core.h"
122 #include "function.h"
123 #include "insn-config.h"
124 #include "conditions.h"
125 #include "hard-reg-set.h"
126 #include "basic-block.h"
132 #include "insn-attr.h"
133 #include "resource.h"
138 #include "tree-pass.h"
142 #ifndef ANNUL_IFTRUE_SLOTS
143 #define eligible_for_annul_true(INSN, SLOTS, TRIAL, FLAGS) 0
145 #ifndef ANNUL_IFFALSE_SLOTS
146 #define eligible_for_annul_false(INSN, SLOTS, TRIAL, FLAGS) 0
149 /* Insns which have delay slots that have not yet been filled. */
151 static struct obstack unfilled_slots_obstack
;
152 static rtx
*unfilled_firstobj
;
154 /* Define macros to refer to the first and last slot containing unfilled
155 insns. These are used because the list may move and its address
156 should be recomputed at each use. */
158 #define unfilled_slots_base \
159 ((rtx *) obstack_base (&unfilled_slots_obstack))
161 #define unfilled_slots_next \
162 ((rtx *) obstack_next_free (&unfilled_slots_obstack))
164 /* Points to the label before the end of the function, or before a
166 static rtx function_return_label
;
167 /* Likewise for a simple_return. */
168 static rtx function_simple_return_label
;
170 /* Mapping between INSN_UID's and position in the code since INSN_UID's do
171 not always monotonically increase. */
172 static int *uid_to_ruid
;
174 /* Highest valid index in `uid_to_ruid'. */
177 static int stop_search_p (rtx
, int);
178 static int resource_conflicts_p (struct resources
*, struct resources
*);
179 static int insn_references_resource_p (rtx
, struct resources
*, bool);
180 static int insn_sets_resource_p (rtx
, struct resources
*, bool);
181 static rtx
find_end_label (rtx
);
182 static rtx
emit_delay_sequence (rtx
, rtx
, int);
183 static rtx
add_to_delay_list (rtx
, rtx
);
184 static rtx
delete_from_delay_slot (rtx
);
185 static void delete_scheduled_jump (rtx
);
186 static void note_delay_statistics (int, int);
187 #if defined(ANNUL_IFFALSE_SLOTS) || defined(ANNUL_IFTRUE_SLOTS)
188 static rtx
optimize_skip (rtx
);
190 static int get_jump_flags (rtx
, rtx
);
191 static int rare_destination (rtx
);
192 static int mostly_true_jump (rtx
, rtx
);
193 static rtx
get_branch_condition (rtx
, rtx
);
194 static int condition_dominates_p (rtx
, rtx
);
195 static int redirect_with_delay_slots_safe_p (rtx
, rtx
, rtx
);
196 static int redirect_with_delay_list_safe_p (rtx
, rtx
, rtx
);
197 static int check_annul_list_true_false (int, rtx
);
198 static rtx
steal_delay_list_from_target (rtx
, rtx
, rtx
, rtx
,
202 int, int *, int *, rtx
*);
203 static rtx
steal_delay_list_from_fallthrough (rtx
, rtx
, rtx
, rtx
,
208 static void try_merge_delay_insns (rtx
, rtx
);
209 static rtx
redundant_insn (rtx
, rtx
, rtx
);
210 static int own_thread_p (rtx
, rtx
, int);
211 static void update_block (rtx
, rtx
);
212 static int reorg_redirect_jump (rtx
, rtx
);
213 static void update_reg_dead_notes (rtx
, rtx
);
214 static void fix_reg_dead_note (rtx
, rtx
);
215 static void update_reg_unused_notes (rtx
, rtx
);
216 static void fill_simple_delay_slots (int);
217 static rtx
fill_slots_from_thread (rtx
, rtx
, rtx
, rtx
,
220 static void fill_eager_delay_slots (void);
221 static void relax_delay_slots (rtx
);
222 static void make_return_insns (rtx
);
224 /* A wrapper around next_active_insn which takes care to return ret_rtx
228 first_active_target_insn (rtx insn
)
230 if (ANY_RETURN_P (insn
))
232 return next_active_insn (insn
);
235 /* Return true iff INSN is a simplejump, or any kind of return insn. */
238 simplejump_or_return_p (rtx insn
)
240 return (JUMP_P (insn
)
241 && (simplejump_p (insn
) || ANY_RETURN_P (PATTERN (insn
))));
244 /* Return TRUE if this insn should stop the search for insn to fill delay
245 slots. LABELS_P indicates that labels should terminate the search.
246 In all cases, jumps terminate the search. */
249 stop_search_p (rtx insn
, int labels_p
)
254 /* If the insn can throw an exception that is caught within the function,
255 it may effectively perform a jump from the viewpoint of the function.
256 Therefore act like for a jump. */
257 if (can_throw_internal (insn
))
260 switch (GET_CODE (insn
))
274 /* OK unless it contains a delay slot or is an `asm' insn of some type.
275 We don't know anything about these. */
276 return (GET_CODE (PATTERN (insn
)) == SEQUENCE
277 || GET_CODE (PATTERN (insn
)) == ASM_INPUT
278 || asm_noperands (PATTERN (insn
)) >= 0);
285 /* Return TRUE if any resources are marked in both RES1 and RES2 or if either
286 resource set contains a volatile memory reference. Otherwise, return FALSE. */
289 resource_conflicts_p (struct resources
*res1
, struct resources
*res2
)
291 if ((res1
->cc
&& res2
->cc
) || (res1
->memory
&& res2
->memory
)
292 || (res1
->unch_memory
&& res2
->unch_memory
)
293 || res1
->volatil
|| res2
->volatil
)
297 return (res1
->regs
& res2
->regs
) != HARD_CONST (0);
302 for (i
= 0; i
< HARD_REG_SET_LONGS
; i
++)
303 if ((res1
->regs
[i
] & res2
->regs
[i
]) != 0)
310 /* Return TRUE if any resource marked in RES, a `struct resources', is
311 referenced by INSN. If INCLUDE_DELAYED_EFFECTS is set, return if the called
312 routine is using those resources.
314 We compute this by computing all the resources referenced by INSN and
315 seeing if this conflicts with RES. It might be faster to directly check
316 ourselves, and this is the way it used to work, but it means duplicating
317 a large block of complex code. */
320 insn_references_resource_p (rtx insn
, struct resources
*res
,
321 bool include_delayed_effects
)
323 struct resources insn_res
;
325 CLEAR_RESOURCE (&insn_res
);
326 mark_referenced_resources (insn
, &insn_res
, include_delayed_effects
);
327 return resource_conflicts_p (&insn_res
, res
);
330 /* Return TRUE if INSN modifies resources that are marked in RES.
331 INCLUDE_DELAYED_EFFECTS is set if the actions of that routine should be
332 included. CC0 is only modified if it is explicitly set; see comments
333 in front of mark_set_resources for details. */
336 insn_sets_resource_p (rtx insn
, struct resources
*res
,
337 bool include_delayed_effects
)
339 struct resources insn_sets
;
341 CLEAR_RESOURCE (&insn_sets
);
342 mark_set_resources (insn
, &insn_sets
, 0,
343 (include_delayed_effects
346 return resource_conflicts_p (&insn_sets
, res
);
349 /* Find a label at the end of the function or before a RETURN. If there
350 is none, try to make one. If that fails, returns 0.
352 The property of such a label is that it is placed just before the
353 epilogue or a bare RETURN insn, so that another bare RETURN can be
354 turned into a jump to the label unconditionally. In particular, the
355 label cannot be placed before a RETURN insn with a filled delay slot.
357 ??? There may be a problem with the current implementation. Suppose
358 we start with a bare RETURN insn and call find_end_label. It may set
359 function_return_label just before the RETURN. Suppose the machinery
360 is able to fill the delay slot of the RETURN insn afterwards. Then
361 function_return_label is no longer valid according to the property
362 described above and find_end_label will still return it unmodified.
363 Note that this is probably mitigated by the following observation:
364 once function_return_label is made, it is very likely the target of
365 a jump, so filling the delay slot of the RETURN will be much more
367 KIND is either simple_return_rtx or ret_rtx, indicating which type of
368 return we're looking for. */
371 find_end_label (rtx kind
)
377 plabel
= &function_return_label
;
380 gcc_assert (kind
== simple_return_rtx
);
381 plabel
= &function_simple_return_label
;
384 /* If we found one previously, return it. */
388 /* Otherwise, see if there is a label at the end of the function. If there
389 is, it must be that RETURN insns aren't needed, so that is our return
390 label and we don't have to do anything else. */
392 insn
= get_last_insn ();
394 || (NONJUMP_INSN_P (insn
)
395 && (GET_CODE (PATTERN (insn
)) == USE
396 || GET_CODE (PATTERN (insn
)) == CLOBBER
)))
397 insn
= PREV_INSN (insn
);
399 /* When a target threads its epilogue we might already have a
400 suitable return insn. If so put a label before it for the
401 function_return_label. */
403 && JUMP_P (PREV_INSN (insn
))
404 && PATTERN (PREV_INSN (insn
)) == kind
)
406 rtx temp
= PREV_INSN (PREV_INSN (insn
));
407 rtx label
= gen_label_rtx ();
408 LABEL_NUSES (label
) = 0;
410 /* Put the label before any USE insns that may precede the RETURN
412 while (GET_CODE (temp
) == USE
)
413 temp
= PREV_INSN (temp
);
415 emit_label_after (label
, temp
);
419 else if (LABEL_P (insn
))
423 rtx label
= gen_label_rtx ();
424 LABEL_NUSES (label
) = 0;
425 /* If the basic block reorder pass moves the return insn to
426 some other place try to locate it again and put our
427 function_return_label there. */
428 while (insn
&& ! (JUMP_P (insn
) && (PATTERN (insn
) == kind
)))
429 insn
= PREV_INSN (insn
);
432 insn
= PREV_INSN (insn
);
434 /* Put the label before any USE insns that may precede the
436 while (GET_CODE (insn
) == USE
)
437 insn
= PREV_INSN (insn
);
439 emit_label_after (label
, insn
);
449 /* The RETURN insn has its delay slot filled so we cannot
450 emit the label just before it. Since we already have
451 an epilogue and cannot emit a new RETURN, we cannot
452 emit the label at all. */
454 #endif /* HAVE_epilogue */
456 /* Otherwise, make a new label and emit a RETURN and BARRIER,
460 /* We don't bother trying to create a return insn if the
461 epilogue has filled delay-slots; we would have to try and
462 move the delay-slot fillers to the delay-slots for the new
463 return insn or in front of the new return insn. */
464 if (crtl
->epilogue_delay_list
== NULL
467 /* The return we make may have delay slots too. */
468 rtx insn
= gen_return ();
469 insn
= emit_jump_insn (insn
);
470 JUMP_LABEL (insn
) = ret_rtx
;
472 if (num_delay_slots (insn
) > 0)
473 obstack_ptr_grow (&unfilled_slots_obstack
, insn
);
480 /* Show one additional use for this label so it won't go away until
482 ++LABEL_NUSES (*plabel
);
487 /* Put INSN and LIST together in a SEQUENCE rtx of LENGTH, and replace
488 the pattern of INSN with the SEQUENCE.
490 Chain the insns so that NEXT_INSN of each insn in the sequence points to
491 the next and NEXT_INSN of the last insn in the sequence points to
492 the first insn after the sequence. Similarly for PREV_INSN. This makes
493 it easier to scan all insns.
495 Returns the SEQUENCE that replaces INSN. */
498 emit_delay_sequence (rtx insn
, rtx list
, int length
)
504 /* Allocate the rtvec to hold the insns and the SEQUENCE. */
505 rtvec seqv
= rtvec_alloc (length
+ 1);
506 rtx seq
= gen_rtx_SEQUENCE (VOIDmode
, seqv
);
507 rtx seq_insn
= make_insn_raw (seq
);
508 rtx first
= get_insns ();
509 rtx last
= get_last_insn ();
511 /* Make a copy of the insn having delay slots. */
512 rtx delay_insn
= copy_rtx (insn
);
514 /* If INSN is followed by a BARRIER, delete the BARRIER since it will only
515 confuse further processing. Update LAST in case it was the last insn.
516 We will put the BARRIER back in later. */
517 if (NEXT_INSN (insn
) && BARRIER_P (NEXT_INSN (insn
)))
519 delete_related_insns (NEXT_INSN (insn
));
520 last
= get_last_insn ();
524 /* Splice our SEQUENCE into the insn stream where INSN used to be. */
525 NEXT_INSN (seq_insn
) = NEXT_INSN (insn
);
526 PREV_INSN (seq_insn
) = PREV_INSN (insn
);
529 PREV_INSN (NEXT_INSN (seq_insn
)) = seq_insn
;
532 NEXT_INSN (PREV_INSN (seq_insn
)) = seq_insn
;
534 /* Note the calls to set_new_first_and_last_insn must occur after
535 SEQ_INSN has been completely spliced into the insn stream.
537 Otherwise CUR_INSN_UID will get set to an incorrect value because
538 set_new_first_and_last_insn will not find SEQ_INSN in the chain. */
540 set_new_first_and_last_insn (first
, seq_insn
);
543 set_new_first_and_last_insn (seq_insn
, last
);
545 /* Build our SEQUENCE and rebuild the insn chain. */
546 XVECEXP (seq
, 0, 0) = delay_insn
;
547 INSN_DELETED_P (delay_insn
) = 0;
548 PREV_INSN (delay_insn
) = PREV_INSN (seq_insn
);
550 INSN_LOCATOR (seq_insn
) = INSN_LOCATOR (delay_insn
);
552 for (li
= list
; li
; li
= XEXP (li
, 1), i
++)
554 rtx tem
= XEXP (li
, 0);
557 /* Show that this copy of the insn isn't deleted. */
558 INSN_DELETED_P (tem
) = 0;
560 XVECEXP (seq
, 0, i
) = tem
;
561 PREV_INSN (tem
) = XVECEXP (seq
, 0, i
- 1);
562 NEXT_INSN (XVECEXP (seq
, 0, i
- 1)) = tem
;
564 /* SPARC assembler, for instance, emit warning when debug info is output
565 into the delay slot. */
566 if (INSN_LOCATOR (tem
) && !INSN_LOCATOR (seq_insn
))
567 INSN_LOCATOR (seq_insn
) = INSN_LOCATOR (tem
);
568 INSN_LOCATOR (tem
) = 0;
570 for (note
= REG_NOTES (tem
); note
; note
= next
)
572 next
= XEXP (note
, 1);
573 switch (REG_NOTE_KIND (note
))
576 /* Remove any REG_DEAD notes because we can't rely on them now
577 that the insn has been moved. */
578 remove_note (tem
, note
);
581 case REG_LABEL_OPERAND
:
582 case REG_LABEL_TARGET
:
583 /* Keep the label reference count up to date. */
584 if (LABEL_P (XEXP (note
, 0)))
585 LABEL_NUSES (XEXP (note
, 0)) ++;
594 NEXT_INSN (XVECEXP (seq
, 0, length
)) = NEXT_INSN (seq_insn
);
596 /* If the previous insn is a SEQUENCE, update the NEXT_INSN pointer on the
597 last insn in that SEQUENCE to point to us. Similarly for the first
598 insn in the following insn if it is a SEQUENCE. */
600 if (PREV_INSN (seq_insn
) && NONJUMP_INSN_P (PREV_INSN (seq_insn
))
601 && GET_CODE (PATTERN (PREV_INSN (seq_insn
))) == SEQUENCE
)
602 NEXT_INSN (XVECEXP (PATTERN (PREV_INSN (seq_insn
)), 0,
603 XVECLEN (PATTERN (PREV_INSN (seq_insn
)), 0) - 1))
606 if (NEXT_INSN (seq_insn
) && NONJUMP_INSN_P (NEXT_INSN (seq_insn
))
607 && GET_CODE (PATTERN (NEXT_INSN (seq_insn
))) == SEQUENCE
)
608 PREV_INSN (XVECEXP (PATTERN (NEXT_INSN (seq_insn
)), 0, 0)) = seq_insn
;
610 /* If there used to be a BARRIER, put it back. */
612 emit_barrier_after (seq_insn
);
614 gcc_assert (i
== length
+ 1);
619 /* Add INSN to DELAY_LIST and return the head of the new list. The list must
620 be in the order in which the insns are to be executed. */
623 add_to_delay_list (rtx insn
, rtx delay_list
)
625 /* If we have an empty list, just make a new list element. If
626 INSN has its block number recorded, clear it since we may
627 be moving the insn to a new block. */
631 clear_hashed_info_for_insn (insn
);
632 return gen_rtx_INSN_LIST (VOIDmode
, insn
, NULL_RTX
);
635 /* Otherwise this must be an INSN_LIST. Add INSN to the end of the
637 XEXP (delay_list
, 1) = add_to_delay_list (insn
, XEXP (delay_list
, 1));
642 /* Delete INSN from the delay slot of the insn that it is in, which may
643 produce an insn with no delay slots. Return the new insn. */
646 delete_from_delay_slot (rtx insn
)
648 rtx trial
, seq_insn
, seq
, prev
;
653 /* We first must find the insn containing the SEQUENCE with INSN in its
654 delay slot. Do this by finding an insn, TRIAL, where
655 PREV_INSN (NEXT_INSN (TRIAL)) != TRIAL. */
658 PREV_INSN (NEXT_INSN (trial
)) == trial
;
659 trial
= NEXT_INSN (trial
))
662 seq_insn
= PREV_INSN (NEXT_INSN (trial
));
663 seq
= PATTERN (seq_insn
);
665 if (NEXT_INSN (seq_insn
) && BARRIER_P (NEXT_INSN (seq_insn
)))
668 /* Create a delay list consisting of all the insns other than the one
669 we are deleting (unless we were the only one). */
670 if (XVECLEN (seq
, 0) > 2)
671 for (i
= 1; i
< XVECLEN (seq
, 0); i
++)
672 if (XVECEXP (seq
, 0, i
) != insn
)
673 delay_list
= add_to_delay_list (XVECEXP (seq
, 0, i
), delay_list
);
675 /* Delete the old SEQUENCE, re-emit the insn that used to have the delay
676 list, and rebuild the delay list if non-empty. */
677 prev
= PREV_INSN (seq_insn
);
678 trial
= XVECEXP (seq
, 0, 0);
679 delete_related_insns (seq_insn
);
680 add_insn_after (trial
, prev
, NULL
);
682 /* If there was a barrier after the old SEQUENCE, remit it. */
684 emit_barrier_after (trial
);
686 /* If there are any delay insns, remit them. Otherwise clear the
689 trial
= emit_delay_sequence (trial
, delay_list
, XVECLEN (seq
, 0) - 2);
690 else if (JUMP_P (trial
))
691 INSN_ANNULLED_BRANCH_P (trial
) = 0;
693 INSN_FROM_TARGET_P (insn
) = 0;
695 /* Show we need to fill this insn again. */
696 obstack_ptr_grow (&unfilled_slots_obstack
, trial
);
701 /* Delete INSN, a JUMP_INSN. If it is a conditional jump, we must track down
702 the insn that sets CC0 for it and delete it too. */
705 delete_scheduled_jump (rtx insn
)
707 /* Delete the insn that sets cc0 for us. On machines without cc0, we could
708 delete the insn that sets the condition code, but it is hard to find it.
709 Since this case is rare anyway, don't bother trying; there would likely
710 be other insns that became dead anyway, which we wouldn't know to
714 if (reg_mentioned_p (cc0_rtx
, insn
))
716 rtx note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
718 /* If a reg-note was found, it points to an insn to set CC0. This
719 insn is in the delay list of some other insn. So delete it from
720 the delay list it was in. */
723 if (! FIND_REG_INC_NOTE (XEXP (note
, 0), NULL_RTX
)
724 && sets_cc0_p (PATTERN (XEXP (note
, 0))) == 1)
725 delete_from_delay_slot (XEXP (note
, 0));
729 /* The insn setting CC0 is our previous insn, but it may be in
730 a delay slot. It will be the last insn in the delay slot, if
732 rtx trial
= previous_insn (insn
);
734 trial
= prev_nonnote_insn (trial
);
735 if (sets_cc0_p (PATTERN (trial
)) != 1
736 || FIND_REG_INC_NOTE (trial
, NULL_RTX
))
738 if (PREV_INSN (NEXT_INSN (trial
)) == trial
)
739 delete_related_insns (trial
);
741 delete_from_delay_slot (trial
);
746 delete_related_insns (insn
);
749 /* Counters for delay-slot filling. */
751 #define NUM_REORG_FUNCTIONS 2
752 #define MAX_DELAY_HISTOGRAM 3
753 #define MAX_REORG_PASSES 2
755 static int num_insns_needing_delays
[NUM_REORG_FUNCTIONS
][MAX_REORG_PASSES
];
757 static int num_filled_delays
[NUM_REORG_FUNCTIONS
][MAX_DELAY_HISTOGRAM
+1][MAX_REORG_PASSES
];
759 static int reorg_pass_number
;
762 note_delay_statistics (int slots_filled
, int index
)
764 num_insns_needing_delays
[index
][reorg_pass_number
]++;
765 if (slots_filled
> MAX_DELAY_HISTOGRAM
)
766 slots_filled
= MAX_DELAY_HISTOGRAM
;
767 num_filled_delays
[index
][slots_filled
][reorg_pass_number
]++;
770 #if defined(ANNUL_IFFALSE_SLOTS) || defined(ANNUL_IFTRUE_SLOTS)
772 /* Optimize the following cases:
774 1. When a conditional branch skips over only one instruction,
775 use an annulling branch and put that insn in the delay slot.
776 Use either a branch that annuls when the condition if true or
777 invert the test with a branch that annuls when the condition is
778 false. This saves insns, since otherwise we must copy an insn
781 (orig) (skip) (otherwise)
782 Bcc.n L1 Bcc',a L1 Bcc,a L1'
789 2. When a conditional branch skips over only one instruction,
790 and after that, it unconditionally branches somewhere else,
791 perform the similar optimization. This saves executing the
792 second branch in the case where the inverted condition is true.
801 This should be expanded to skip over N insns, where N is the number
802 of delay slots required. */
805 optimize_skip (rtx insn
)
807 rtx trial
= next_nonnote_insn (insn
);
808 rtx next_trial
= next_active_insn (trial
);
812 flags
= get_jump_flags (insn
, JUMP_LABEL (insn
));
815 || !NONJUMP_INSN_P (trial
)
816 || GET_CODE (PATTERN (trial
)) == SEQUENCE
817 || recog_memoized (trial
) < 0
818 || (! eligible_for_annul_false (insn
, 0, trial
, flags
)
819 && ! eligible_for_annul_true (insn
, 0, trial
, flags
))
820 || can_throw_internal (trial
))
823 /* There are two cases where we are just executing one insn (we assume
824 here that a branch requires only one insn; this should be generalized
825 at some point): Where the branch goes around a single insn or where
826 we have one insn followed by a branch to the same label we branch to.
827 In both of these cases, inverting the jump and annulling the delay
828 slot give the same effect in fewer insns. */
829 if ((next_trial
== next_active_insn (JUMP_LABEL (insn
))
830 && ! (next_trial
== 0 && crtl
->epilogue_delay_list
!= 0))
832 && simplejump_or_return_p (next_trial
)
833 && JUMP_LABEL (insn
) == JUMP_LABEL (next_trial
)))
835 if (eligible_for_annul_false (insn
, 0, trial
, flags
))
837 if (invert_jump (insn
, JUMP_LABEL (insn
), 1))
838 INSN_FROM_TARGET_P (trial
) = 1;
839 else if (! eligible_for_annul_true (insn
, 0, trial
, flags
))
843 delay_list
= add_to_delay_list (trial
, NULL_RTX
);
844 next_trial
= next_active_insn (trial
);
845 update_block (trial
, trial
);
846 delete_related_insns (trial
);
848 /* Also, if we are targeting an unconditional
849 branch, thread our jump to the target of that branch. Don't
850 change this into a RETURN here, because it may not accept what
851 we have in the delay slot. We'll fix this up later. */
852 if (next_trial
&& simplejump_or_return_p (next_trial
))
854 rtx target_label
= JUMP_LABEL (next_trial
);
855 if (ANY_RETURN_P (target_label
))
856 target_label
= find_end_label (target_label
);
860 /* Recompute the flags based on TARGET_LABEL since threading
861 the jump to TARGET_LABEL may change the direction of the
862 jump (which may change the circumstances in which the
863 delay slot is nullified). */
864 flags
= get_jump_flags (insn
, target_label
);
865 if (eligible_for_annul_true (insn
, 0, trial
, flags
))
866 reorg_redirect_jump (insn
, target_label
);
870 INSN_ANNULLED_BRANCH_P (insn
) = 1;
877 /* Encode and return branch direction and prediction information for
878 INSN assuming it will jump to LABEL.
880 Non conditional branches return no direction information and
881 are predicted as very likely taken. */
884 get_jump_flags (rtx insn
, rtx label
)
888 /* get_jump_flags can be passed any insn with delay slots, these may
889 be INSNs, CALL_INSNs, or JUMP_INSNs. Only JUMP_INSNs have branch
890 direction information, and only if they are conditional jumps.
892 If LABEL is a return, then there is no way to determine the branch
895 && (condjump_p (insn
) || condjump_in_parallel_p (insn
))
896 && !ANY_RETURN_P (label
)
897 && INSN_UID (insn
) <= max_uid
898 && INSN_UID (label
) <= max_uid
)
900 = (uid_to_ruid
[INSN_UID (label
)] > uid_to_ruid
[INSN_UID (insn
)])
901 ? ATTR_FLAG_forward
: ATTR_FLAG_backward
;
902 /* No valid direction information. */
906 /* If insn is a conditional branch call mostly_true_jump to get
907 determine the branch prediction.
909 Non conditional branches are predicted as very likely taken. */
911 && (condjump_p (insn
) || condjump_in_parallel_p (insn
)))
915 prediction
= mostly_true_jump (insn
, get_branch_condition (insn
, label
));
919 flags
|= (ATTR_FLAG_very_likely
| ATTR_FLAG_likely
);
922 flags
|= ATTR_FLAG_likely
;
925 flags
|= ATTR_FLAG_unlikely
;
928 flags
|= (ATTR_FLAG_very_unlikely
| ATTR_FLAG_unlikely
);
936 flags
|= (ATTR_FLAG_very_likely
| ATTR_FLAG_likely
);
941 /* Return 1 if INSN is a destination that will be branched to rarely (the
942 return point of a function); return 2 if DEST will be branched to very
943 rarely (a call to a function that doesn't return). Otherwise,
947 rare_destination (rtx insn
)
952 for (; insn
&& !ANY_RETURN_P (insn
); insn
= next
)
954 if (NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
955 insn
= XVECEXP (PATTERN (insn
), 0, 0);
957 next
= NEXT_INSN (insn
);
959 switch (GET_CODE (insn
))
964 /* A BARRIER can either be after a JUMP_INSN or a CALL_INSN. We
965 don't scan past JUMP_INSNs, so any barrier we find here must
966 have been after a CALL_INSN and hence mean the call doesn't
970 if (ANY_RETURN_P (PATTERN (insn
)))
972 else if (simplejump_p (insn
)
973 && jump_count
++ < 10)
974 next
= JUMP_LABEL (insn
);
983 /* If we got here it means we hit the end of the function. So this
984 is an unlikely destination. */
989 /* Return truth value of the statement that this branch
990 is mostly taken. If we think that the branch is extremely likely
991 to be taken, we return 2. If the branch is slightly more likely to be
992 taken, return 1. If the branch is slightly less likely to be taken,
993 return 0 and if the branch is highly unlikely to be taken, return -1.
995 CONDITION, if nonzero, is the condition that JUMP_INSN is testing. */
998 mostly_true_jump (rtx jump_insn
, rtx condition
)
1000 rtx target_label
= JUMP_LABEL (jump_insn
);
1002 int rare_dest
, rare_fallthrough
;
1004 /* If branch probabilities are available, then use that number since it
1005 always gives a correct answer. */
1006 note
= find_reg_note (jump_insn
, REG_BR_PROB
, 0);
1009 int prob
= INTVAL (XEXP (note
, 0));
1011 if (prob
>= REG_BR_PROB_BASE
* 9 / 10)
1013 else if (prob
>= REG_BR_PROB_BASE
/ 2)
1015 else if (prob
>= REG_BR_PROB_BASE
/ 10)
1021 /* Look at the relative rarities of the fallthrough and destination. If
1022 they differ, we can predict the branch that way. */
1023 rare_dest
= rare_destination (target_label
);
1024 rare_fallthrough
= rare_destination (NEXT_INSN (jump_insn
));
1026 switch (rare_fallthrough
- rare_dest
)
1040 /* If we couldn't figure out what this jump was, assume it won't be
1041 taken. This should be rare. */
1045 /* Predict backward branches usually take, forward branches usually not. If
1046 we don't know whether this is forward or backward, assume the branch
1047 will be taken, since most are. */
1048 return (ANY_RETURN_P (target_label
) || INSN_UID (jump_insn
) > max_uid
1049 || INSN_UID (target_label
) > max_uid
1050 || (uid_to_ruid
[INSN_UID (jump_insn
)]
1051 > uid_to_ruid
[INSN_UID (target_label
)]));
1054 /* Return the condition under which INSN will branch to TARGET. If TARGET
1055 is zero, return the condition under which INSN will return. If INSN is
1056 an unconditional branch, return const_true_rtx. If INSN isn't a simple
1057 type of jump, or it doesn't go to TARGET, return 0. */
1060 get_branch_condition (rtx insn
, rtx target
)
1062 rtx pat
= PATTERN (insn
);
1065 if (condjump_in_parallel_p (insn
))
1066 pat
= XVECEXP (pat
, 0, 0);
1068 if (ANY_RETURN_P (pat
))
1069 return pat
== target
? const_true_rtx
: 0;
1071 if (GET_CODE (pat
) != SET
|| SET_DEST (pat
) != pc_rtx
)
1074 src
= SET_SRC (pat
);
1075 if (GET_CODE (src
) == LABEL_REF
&& XEXP (src
, 0) == target
)
1076 return const_true_rtx
;
1078 else if (GET_CODE (src
) == IF_THEN_ELSE
1079 && XEXP (src
, 2) == pc_rtx
1080 && GET_CODE (XEXP (src
, 1)) == LABEL_REF
1081 && XEXP (XEXP (src
, 1), 0) == target
)
1082 return XEXP (src
, 0);
1084 else if (GET_CODE (src
) == IF_THEN_ELSE
1085 && XEXP (src
, 1) == pc_rtx
1086 && GET_CODE (XEXP (src
, 2)) == LABEL_REF
1087 && XEXP (XEXP (src
, 2), 0) == target
)
1090 rev
= reversed_comparison_code (XEXP (src
, 0), insn
);
1092 return gen_rtx_fmt_ee (rev
, GET_MODE (XEXP (src
, 0)),
1093 XEXP (XEXP (src
, 0), 0),
1094 XEXP (XEXP (src
, 0), 1));
1100 /* Return nonzero if CONDITION is more strict than the condition of
1101 INSN, i.e., if INSN will always branch if CONDITION is true. */
1104 condition_dominates_p (rtx condition
, rtx insn
)
1106 rtx other_condition
= get_branch_condition (insn
, JUMP_LABEL (insn
));
1107 enum rtx_code code
= GET_CODE (condition
);
1108 enum rtx_code other_code
;
1110 if (rtx_equal_p (condition
, other_condition
)
1111 || other_condition
== const_true_rtx
)
1114 else if (condition
== const_true_rtx
|| other_condition
== 0)
1117 other_code
= GET_CODE (other_condition
);
1118 if (GET_RTX_LENGTH (code
) != 2 || GET_RTX_LENGTH (other_code
) != 2
1119 || ! rtx_equal_p (XEXP (condition
, 0), XEXP (other_condition
, 0))
1120 || ! rtx_equal_p (XEXP (condition
, 1), XEXP (other_condition
, 1)))
1123 return comparison_dominates_p (code
, other_code
);
1126 /* Return nonzero if redirecting JUMP to NEWLABEL does not invalidate
1127 any insns already in the delay slot of JUMP. */
1130 redirect_with_delay_slots_safe_p (rtx jump
, rtx newlabel
, rtx seq
)
1133 rtx pat
= PATTERN (seq
);
1135 /* Make sure all the delay slots of this jump would still
1136 be valid after threading the jump. If they are still
1137 valid, then return nonzero. */
1139 flags
= get_jump_flags (jump
, newlabel
);
1140 for (i
= 1; i
< XVECLEN (pat
, 0); i
++)
1142 #ifdef ANNUL_IFFALSE_SLOTS
1143 (INSN_ANNULLED_BRANCH_P (jump
)
1144 && INSN_FROM_TARGET_P (XVECEXP (pat
, 0, i
)))
1145 ? eligible_for_annul_false (jump
, i
- 1,
1146 XVECEXP (pat
, 0, i
), flags
) :
1148 #ifdef ANNUL_IFTRUE_SLOTS
1149 (INSN_ANNULLED_BRANCH_P (jump
)
1150 && ! INSN_FROM_TARGET_P (XVECEXP (pat
, 0, i
)))
1151 ? eligible_for_annul_true (jump
, i
- 1,
1152 XVECEXP (pat
, 0, i
), flags
) :
1154 eligible_for_delay (jump
, i
- 1, XVECEXP (pat
, 0, i
), flags
)))
1157 return (i
== XVECLEN (pat
, 0));
1160 /* Return nonzero if redirecting JUMP to NEWLABEL does not invalidate
1161 any insns we wish to place in the delay slot of JUMP. */
1164 redirect_with_delay_list_safe_p (rtx jump
, rtx newlabel
, rtx delay_list
)
1169 /* Make sure all the insns in DELAY_LIST would still be
1170 valid after threading the jump. If they are still
1171 valid, then return nonzero. */
1173 flags
= get_jump_flags (jump
, newlabel
);
1174 for (li
= delay_list
, i
= 0; li
; li
= XEXP (li
, 1), i
++)
1176 #ifdef ANNUL_IFFALSE_SLOTS
1177 (INSN_ANNULLED_BRANCH_P (jump
)
1178 && INSN_FROM_TARGET_P (XEXP (li
, 0)))
1179 ? eligible_for_annul_false (jump
, i
, XEXP (li
, 0), flags
) :
1181 #ifdef ANNUL_IFTRUE_SLOTS
1182 (INSN_ANNULLED_BRANCH_P (jump
)
1183 && ! INSN_FROM_TARGET_P (XEXP (li
, 0)))
1184 ? eligible_for_annul_true (jump
, i
, XEXP (li
, 0), flags
) :
1186 eligible_for_delay (jump
, i
, XEXP (li
, 0), flags
)))
1189 return (li
== NULL
);
1192 /* DELAY_LIST is a list of insns that have already been placed into delay
1193 slots. See if all of them have the same annulling status as ANNUL_TRUE_P.
1194 If not, return 0; otherwise return 1. */
1197 check_annul_list_true_false (int annul_true_p
, rtx delay_list
)
1203 for (temp
= delay_list
; temp
; temp
= XEXP (temp
, 1))
1205 rtx trial
= XEXP (temp
, 0);
1207 if ((annul_true_p
&& INSN_FROM_TARGET_P (trial
))
1208 || (!annul_true_p
&& !INSN_FROM_TARGET_P (trial
)))
1216 /* INSN branches to an insn whose pattern SEQ is a SEQUENCE. Given that
1217 the condition tested by INSN is CONDITION and the resources shown in
1218 OTHER_NEEDED are needed after INSN, see whether INSN can take all the insns
1219 from SEQ's delay list, in addition to whatever insns it may execute
1220 (in DELAY_LIST). SETS and NEEDED are denote resources already set and
1221 needed while searching for delay slot insns. Return the concatenated
1222 delay list if possible, otherwise, return 0.
1224 SLOTS_TO_FILL is the total number of slots required by INSN, and
1225 PSLOTS_FILLED points to the number filled so far (also the number of
1226 insns in DELAY_LIST). It is updated with the number that have been
1227 filled from the SEQUENCE, if any.
1229 PANNUL_P points to a nonzero value if we already know that we need
1230 to annul INSN. If this routine determines that annulling is needed,
1231 it may set that value nonzero.
1233 PNEW_THREAD points to a location that is to receive the place at which
1234 execution should continue. */
1237 steal_delay_list_from_target (rtx insn
, rtx condition
, rtx seq
,
1238 rtx delay_list
, struct resources
*sets
,
1239 struct resources
*needed
,
1240 struct resources
*other_needed
,
1241 int slots_to_fill
, int *pslots_filled
,
1242 int *pannul_p
, rtx
*pnew_thread
)
1245 int slots_remaining
= slots_to_fill
- *pslots_filled
;
1246 int total_slots_filled
= *pslots_filled
;
1247 rtx new_delay_list
= 0;
1248 int must_annul
= *pannul_p
;
1251 struct resources cc_set
;
1253 /* We can't do anything if there are more delay slots in SEQ than we
1254 can handle, or if we don't know that it will be a taken branch.
1255 We know that it will be a taken branch if it is either an unconditional
1256 branch or a conditional branch with a stricter branch condition.
1258 Also, exit if the branch has more than one set, since then it is computing
1259 other results that can't be ignored, e.g. the HPPA mov&branch instruction.
1260 ??? It may be possible to move other sets into INSN in addition to
1261 moving the instructions in the delay slots.
1263 We can not steal the delay list if one of the instructions in the
1264 current delay_list modifies the condition codes and the jump in the
1265 sequence is a conditional jump. We can not do this because we can
1266 not change the direction of the jump because the condition codes
1267 will effect the direction of the jump in the sequence. */
1269 CLEAR_RESOURCE (&cc_set
);
1270 for (temp
= delay_list
; temp
; temp
= XEXP (temp
, 1))
1272 rtx trial
= XEXP (temp
, 0);
1274 mark_set_resources (trial
, &cc_set
, 0, MARK_SRC_DEST_CALL
);
1275 if (insn_references_resource_p (XVECEXP (seq
, 0, 0), &cc_set
, false))
1279 if (XVECLEN (seq
, 0) - 1 > slots_remaining
1280 || ! condition_dominates_p (condition
, XVECEXP (seq
, 0, 0))
1281 || ! single_set (XVECEXP (seq
, 0, 0)))
1284 #ifdef MD_CAN_REDIRECT_BRANCH
1285 /* On some targets, branches with delay slots can have a limited
1286 displacement. Give the back end a chance to tell us we can't do
1288 if (! MD_CAN_REDIRECT_BRANCH (insn
, XVECEXP (seq
, 0, 0)))
1292 for (i
= 1; i
< XVECLEN (seq
, 0); i
++)
1294 rtx trial
= XVECEXP (seq
, 0, i
);
1297 if (insn_references_resource_p (trial
, sets
, false)
1298 || insn_sets_resource_p (trial
, needed
, false)
1299 || insn_sets_resource_p (trial
, sets
, false)
1301 /* If TRIAL sets CC0, we can't copy it, so we can't steal this
1303 || find_reg_note (trial
, REG_CC_USER
, NULL_RTX
)
1305 /* If TRIAL is from the fallthrough code of an annulled branch insn
1306 in SEQ, we cannot use it. */
1307 || (INSN_ANNULLED_BRANCH_P (XVECEXP (seq
, 0, 0))
1308 && ! INSN_FROM_TARGET_P (trial
)))
1311 /* If this insn was already done (usually in a previous delay slot),
1312 pretend we put it in our delay slot. */
1313 if (redundant_insn (trial
, insn
, new_delay_list
))
1316 /* We will end up re-vectoring this branch, so compute flags
1317 based on jumping to the new label. */
1318 flags
= get_jump_flags (insn
, JUMP_LABEL (XVECEXP (seq
, 0, 0)));
1321 && ((condition
== const_true_rtx
1322 || (! insn_sets_resource_p (trial
, other_needed
, false)
1323 && ! may_trap_or_fault_p (PATTERN (trial
)))))
1324 ? eligible_for_delay (insn
, total_slots_filled
, trial
, flags
)
1325 : (must_annul
|| (delay_list
== NULL
&& new_delay_list
== NULL
))
1327 check_annul_list_true_false (0, delay_list
)
1328 && check_annul_list_true_false (0, new_delay_list
)
1329 && eligible_for_annul_false (insn
, total_slots_filled
,
1334 temp
= copy_rtx (trial
);
1335 INSN_FROM_TARGET_P (temp
) = 1;
1336 new_delay_list
= add_to_delay_list (temp
, new_delay_list
);
1337 total_slots_filled
++;
1339 if (--slots_remaining
== 0)
1346 /* Show the place to which we will be branching. */
1347 *pnew_thread
= first_active_target_insn (JUMP_LABEL (XVECEXP (seq
, 0, 0)));
1349 /* Add any new insns to the delay list and update the count of the
1350 number of slots filled. */
1351 *pslots_filled
= total_slots_filled
;
1355 if (delay_list
== 0)
1356 return new_delay_list
;
1358 for (temp
= new_delay_list
; temp
; temp
= XEXP (temp
, 1))
1359 delay_list
= add_to_delay_list (XEXP (temp
, 0), delay_list
);
1364 /* Similar to steal_delay_list_from_target except that SEQ is on the
1365 fallthrough path of INSN. Here we only do something if the delay insn
1366 of SEQ is an unconditional branch. In that case we steal its delay slot
1367 for INSN since unconditional branches are much easier to fill. */
1370 steal_delay_list_from_fallthrough (rtx insn
, rtx condition
, rtx seq
,
1371 rtx delay_list
, struct resources
*sets
,
1372 struct resources
*needed
,
1373 struct resources
*other_needed
,
1374 int slots_to_fill
, int *pslots_filled
,
1379 int must_annul
= *pannul_p
;
1382 flags
= get_jump_flags (insn
, JUMP_LABEL (insn
));
1384 /* We can't do anything if SEQ's delay insn isn't an
1385 unconditional branch. */
1387 if (! simplejump_or_return_p (XVECEXP (seq
, 0, 0)))
1390 for (i
= 1; i
< XVECLEN (seq
, 0); i
++)
1392 rtx trial
= XVECEXP (seq
, 0, i
);
1394 /* If TRIAL sets CC0, stealing it will move it too far from the use
1396 if (insn_references_resource_p (trial
, sets
, false)
1397 || insn_sets_resource_p (trial
, needed
, false)
1398 || insn_sets_resource_p (trial
, sets
, false)
1400 || sets_cc0_p (PATTERN (trial
))
1406 /* If this insn was already done, we don't need it. */
1407 if (redundant_insn (trial
, insn
, delay_list
))
1409 delete_from_delay_slot (trial
);
1414 && ((condition
== const_true_rtx
1415 || (! insn_sets_resource_p (trial
, other_needed
, false)
1416 && ! may_trap_or_fault_p (PATTERN (trial
)))))
1417 ? eligible_for_delay (insn
, *pslots_filled
, trial
, flags
)
1418 : (must_annul
|| delay_list
== NULL
) && (must_annul
= 1,
1419 check_annul_list_true_false (1, delay_list
)
1420 && eligible_for_annul_true (insn
, *pslots_filled
, trial
, flags
)))
1424 delete_from_delay_slot (trial
);
1425 delay_list
= add_to_delay_list (trial
, delay_list
);
1427 if (++(*pslots_filled
) == slots_to_fill
)
1439 /* Try merging insns starting at THREAD which match exactly the insns in
1442 If all insns were matched and the insn was previously annulling, the
1443 annul bit will be cleared.
1445 For each insn that is merged, if the branch is or will be non-annulling,
1446 we delete the merged insn. */
1449 try_merge_delay_insns (rtx insn
, rtx thread
)
1451 rtx trial
, next_trial
;
1452 rtx delay_insn
= XVECEXP (PATTERN (insn
), 0, 0);
1453 int annul_p
= JUMP_P (delay_insn
) && INSN_ANNULLED_BRANCH_P (delay_insn
);
1454 int slot_number
= 1;
1455 int num_slots
= XVECLEN (PATTERN (insn
), 0);
1456 rtx next_to_match
= XVECEXP (PATTERN (insn
), 0, slot_number
);
1457 struct resources set
, needed
;
1458 rtx merged_insns
= 0;
1462 flags
= get_jump_flags (delay_insn
, JUMP_LABEL (delay_insn
));
1464 CLEAR_RESOURCE (&needed
);
1465 CLEAR_RESOURCE (&set
);
1467 /* If this is not an annulling branch, take into account anything needed in
1468 INSN's delay slot. This prevents two increments from being incorrectly
1469 folded into one. If we are annulling, this would be the correct
1470 thing to do. (The alternative, looking at things set in NEXT_TO_MATCH
1471 will essentially disable this optimization. This method is somewhat of
1472 a kludge, but I don't see a better way.) */
1474 for (i
= 1 ; i
< num_slots
; i
++)
1475 if (XVECEXP (PATTERN (insn
), 0, i
))
1476 mark_referenced_resources (XVECEXP (PATTERN (insn
), 0, i
), &needed
,
1479 for (trial
= thread
; !stop_search_p (trial
, 1); trial
= next_trial
)
1481 rtx pat
= PATTERN (trial
);
1482 rtx oldtrial
= trial
;
1484 next_trial
= next_nonnote_insn (trial
);
1486 /* TRIAL must be a CALL_INSN or INSN. Skip USE and CLOBBER. */
1487 if (NONJUMP_INSN_P (trial
)
1488 && (GET_CODE (pat
) == USE
|| GET_CODE (pat
) == CLOBBER
))
1491 if (GET_CODE (next_to_match
) == GET_CODE (trial
)
1493 /* We can't share an insn that sets cc0. */
1494 && ! sets_cc0_p (pat
)
1496 && ! insn_references_resource_p (trial
, &set
, true)
1497 && ! insn_sets_resource_p (trial
, &set
, true)
1498 && ! insn_sets_resource_p (trial
, &needed
, true)
1499 && (trial
= try_split (pat
, trial
, 0)) != 0
1500 /* Update next_trial, in case try_split succeeded. */
1501 && (next_trial
= next_nonnote_insn (trial
))
1502 /* Likewise THREAD. */
1503 && (thread
= oldtrial
== thread
? trial
: thread
)
1504 && rtx_equal_p (PATTERN (next_to_match
), PATTERN (trial
))
1505 /* Have to test this condition if annul condition is different
1506 from (and less restrictive than) non-annulling one. */
1507 && eligible_for_delay (delay_insn
, slot_number
- 1, trial
, flags
))
1512 update_block (trial
, thread
);
1513 if (trial
== thread
)
1514 thread
= next_active_insn (thread
);
1516 delete_related_insns (trial
);
1517 INSN_FROM_TARGET_P (next_to_match
) = 0;
1520 merged_insns
= gen_rtx_INSN_LIST (VOIDmode
, trial
, merged_insns
);
1522 if (++slot_number
== num_slots
)
1525 next_to_match
= XVECEXP (PATTERN (insn
), 0, slot_number
);
1528 mark_set_resources (trial
, &set
, 0, MARK_SRC_DEST_CALL
);
1529 mark_referenced_resources (trial
, &needed
, true);
1532 /* See if we stopped on a filled insn. If we did, try to see if its
1533 delay slots match. */
1534 if (slot_number
!= num_slots
1535 && trial
&& NONJUMP_INSN_P (trial
)
1536 && GET_CODE (PATTERN (trial
)) == SEQUENCE
1537 && !(JUMP_P (XVECEXP (PATTERN (trial
), 0, 0))
1538 && INSN_ANNULLED_BRANCH_P (XVECEXP (PATTERN (trial
), 0, 0))))
1540 rtx pat
= PATTERN (trial
);
1541 rtx filled_insn
= XVECEXP (pat
, 0, 0);
1543 /* Account for resources set/needed by the filled insn. */
1544 mark_set_resources (filled_insn
, &set
, 0, MARK_SRC_DEST_CALL
);
1545 mark_referenced_resources (filled_insn
, &needed
, true);
1547 for (i
= 1; i
< XVECLEN (pat
, 0); i
++)
1549 rtx dtrial
= XVECEXP (pat
, 0, i
);
1551 if (! insn_references_resource_p (dtrial
, &set
, true)
1552 && ! insn_sets_resource_p (dtrial
, &set
, true)
1553 && ! insn_sets_resource_p (dtrial
, &needed
, true)
1555 && ! sets_cc0_p (PATTERN (dtrial
))
1557 && rtx_equal_p (PATTERN (next_to_match
), PATTERN (dtrial
))
1558 && eligible_for_delay (delay_insn
, slot_number
- 1, dtrial
, flags
))
1564 update_block (dtrial
, thread
);
1565 new_rtx
= delete_from_delay_slot (dtrial
);
1566 if (INSN_DELETED_P (thread
))
1568 INSN_FROM_TARGET_P (next_to_match
) = 0;
1571 merged_insns
= gen_rtx_INSN_LIST (SImode
, dtrial
,
1574 if (++slot_number
== num_slots
)
1577 next_to_match
= XVECEXP (PATTERN (insn
), 0, slot_number
);
1581 /* Keep track of the set/referenced resources for the delay
1582 slots of any trial insns we encounter. */
1583 mark_set_resources (dtrial
, &set
, 0, MARK_SRC_DEST_CALL
);
1584 mark_referenced_resources (dtrial
, &needed
, true);
1589 /* If all insns in the delay slot have been matched and we were previously
1590 annulling the branch, we need not any more. In that case delete all the
1591 merged insns. Also clear the INSN_FROM_TARGET_P bit of each insn in
1592 the delay list so that we know that it isn't only being used at the
1594 if (slot_number
== num_slots
&& annul_p
)
1596 for (; merged_insns
; merged_insns
= XEXP (merged_insns
, 1))
1598 if (GET_MODE (merged_insns
) == SImode
)
1602 update_block (XEXP (merged_insns
, 0), thread
);
1603 new_rtx
= delete_from_delay_slot (XEXP (merged_insns
, 0));
1604 if (INSN_DELETED_P (thread
))
1609 update_block (XEXP (merged_insns
, 0), thread
);
1610 delete_related_insns (XEXP (merged_insns
, 0));
1614 INSN_ANNULLED_BRANCH_P (delay_insn
) = 0;
1616 for (i
= 0; i
< XVECLEN (PATTERN (insn
), 0); i
++)
1617 INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn
), 0, i
)) = 0;
1621 /* See if INSN is redundant with an insn in front of TARGET. Often this
1622 is called when INSN is a candidate for a delay slot of TARGET.
1623 DELAY_LIST are insns that will be placed in delay slots of TARGET in front
1624 of INSN. Often INSN will be redundant with an insn in a delay slot of
1625 some previous insn. This happens when we have a series of branches to the
1626 same label; in that case the first insn at the target might want to go
1627 into each of the delay slots.
1629 If we are not careful, this routine can take up a significant fraction
1630 of the total compilation time (4%), but only wins rarely. Hence we
1631 speed this routine up by making two passes. The first pass goes back
1632 until it hits a label and sees if it finds an insn with an identical
1633 pattern. Only in this (relatively rare) event does it check for
1636 We do not split insns we encounter. This could cause us not to find a
1637 redundant insn, but the cost of splitting seems greater than the possible
1638 gain in rare cases. */
1641 redundant_insn (rtx insn
, rtx target
, rtx delay_list
)
1643 rtx target_main
= target
;
1644 rtx ipat
= PATTERN (insn
);
1646 struct resources needed
, set
;
1648 unsigned insns_to_search
;
1650 /* If INSN has any REG_UNUSED notes, it can't match anything since we
1651 are allowed to not actually assign to such a register. */
1652 if (find_reg_note (insn
, REG_UNUSED
, NULL_RTX
) != 0)
1655 /* Scan backwards looking for a match. */
1656 for (trial
= PREV_INSN (target
),
1657 insns_to_search
= MAX_DELAY_SLOT_INSN_SEARCH
;
1658 trial
&& insns_to_search
> 0;
1659 trial
= PREV_INSN (trial
))
1661 if (LABEL_P (trial
))
1664 if (!NONDEBUG_INSN_P (trial
))
1668 pat
= PATTERN (trial
);
1669 if (GET_CODE (pat
) == USE
|| GET_CODE (pat
) == CLOBBER
)
1672 if (GET_CODE (pat
) == SEQUENCE
)
1674 /* Stop for a CALL and its delay slots because it is difficult to
1675 track its resource needs correctly. */
1676 if (CALL_P (XVECEXP (pat
, 0, 0)))
1679 /* Stop for an INSN or JUMP_INSN with delayed effects and its delay
1680 slots because it is difficult to track its resource needs
1683 #ifdef INSN_SETS_ARE_DELAYED
1684 if (INSN_SETS_ARE_DELAYED (XVECEXP (pat
, 0, 0)))
1688 #ifdef INSN_REFERENCES_ARE_DELAYED
1689 if (INSN_REFERENCES_ARE_DELAYED (XVECEXP (pat
, 0, 0)))
1693 /* See if any of the insns in the delay slot match, updating
1694 resource requirements as we go. */
1695 for (i
= XVECLEN (pat
, 0) - 1; i
> 0; i
--)
1696 if (GET_CODE (XVECEXP (pat
, 0, i
)) == GET_CODE (insn
)
1697 && rtx_equal_p (PATTERN (XVECEXP (pat
, 0, i
)), ipat
)
1698 && ! find_reg_note (XVECEXP (pat
, 0, i
), REG_UNUSED
, NULL_RTX
))
1701 /* If found a match, exit this loop early. */
1706 else if (GET_CODE (trial
) == GET_CODE (insn
) && rtx_equal_p (pat
, ipat
)
1707 && ! find_reg_note (trial
, REG_UNUSED
, NULL_RTX
))
1711 /* If we didn't find an insn that matches, return 0. */
1715 /* See what resources this insn sets and needs. If they overlap, or
1716 if this insn references CC0, it can't be redundant. */
1718 CLEAR_RESOURCE (&needed
);
1719 CLEAR_RESOURCE (&set
);
1720 mark_set_resources (insn
, &set
, 0, MARK_SRC_DEST_CALL
);
1721 mark_referenced_resources (insn
, &needed
, true);
1723 /* If TARGET is a SEQUENCE, get the main insn. */
1724 if (NONJUMP_INSN_P (target
) && GET_CODE (PATTERN (target
)) == SEQUENCE
)
1725 target_main
= XVECEXP (PATTERN (target
), 0, 0);
1727 if (resource_conflicts_p (&needed
, &set
)
1729 || reg_mentioned_p (cc0_rtx
, ipat
)
1731 /* The insn requiring the delay may not set anything needed or set by
1733 || insn_sets_resource_p (target_main
, &needed
, true)
1734 || insn_sets_resource_p (target_main
, &set
, true))
1737 /* Insns we pass may not set either NEEDED or SET, so merge them for
1739 needed
.memory
|= set
.memory
;
1740 needed
.unch_memory
|= set
.unch_memory
;
1741 IOR_HARD_REG_SET (needed
.regs
, set
.regs
);
1743 /* This insn isn't redundant if it conflicts with an insn that either is
1744 or will be in a delay slot of TARGET. */
1748 if (insn_sets_resource_p (XEXP (delay_list
, 0), &needed
, true))
1750 delay_list
= XEXP (delay_list
, 1);
1753 if (NONJUMP_INSN_P (target
) && GET_CODE (PATTERN (target
)) == SEQUENCE
)
1754 for (i
= 1; i
< XVECLEN (PATTERN (target
), 0); i
++)
1755 if (insn_sets_resource_p (XVECEXP (PATTERN (target
), 0, i
), &needed
,
1759 /* Scan backwards until we reach a label or an insn that uses something
1760 INSN sets or sets something insn uses or sets. */
1762 for (trial
= PREV_INSN (target
),
1763 insns_to_search
= MAX_DELAY_SLOT_INSN_SEARCH
;
1764 trial
&& !LABEL_P (trial
) && insns_to_search
> 0;
1765 trial
= PREV_INSN (trial
))
1767 if (!NONDEBUG_INSN_P (trial
))
1771 pat
= PATTERN (trial
);
1772 if (GET_CODE (pat
) == USE
|| GET_CODE (pat
) == CLOBBER
)
1775 if (GET_CODE (pat
) == SEQUENCE
)
1777 bool annul_p
= false;
1778 rtx control
= XVECEXP (pat
, 0, 0);
1780 /* If this is a CALL_INSN and its delay slots, it is hard to track
1781 the resource needs properly, so give up. */
1782 if (CALL_P (control
))
1785 /* If this is an INSN or JUMP_INSN with delayed effects, it
1786 is hard to track the resource needs properly, so give up. */
1788 #ifdef INSN_SETS_ARE_DELAYED
1789 if (INSN_SETS_ARE_DELAYED (control
))
1793 #ifdef INSN_REFERENCES_ARE_DELAYED
1794 if (INSN_REFERENCES_ARE_DELAYED (control
))
1798 if (JUMP_P (control
))
1799 annul_p
= INSN_ANNULLED_BRANCH_P (control
);
1801 /* See if any of the insns in the delay slot match, updating
1802 resource requirements as we go. */
1803 for (i
= XVECLEN (pat
, 0) - 1; i
> 0; i
--)
1805 rtx candidate
= XVECEXP (pat
, 0, i
);
1807 /* If an insn will be annulled if the branch is false, it isn't
1808 considered as a possible duplicate insn. */
1809 if (rtx_equal_p (PATTERN (candidate
), ipat
)
1810 && ! (annul_p
&& INSN_FROM_TARGET_P (candidate
)))
1812 /* Show that this insn will be used in the sequel. */
1813 INSN_FROM_TARGET_P (candidate
) = 0;
1817 /* Unless this is an annulled insn from the target of a branch,
1818 we must stop if it sets anything needed or set by INSN. */
1819 if ((!annul_p
|| !INSN_FROM_TARGET_P (candidate
))
1820 && insn_sets_resource_p (candidate
, &needed
, true))
1824 /* If the insn requiring the delay slot conflicts with INSN, we
1826 if (insn_sets_resource_p (control
, &needed
, true))
1831 /* See if TRIAL is the same as INSN. */
1832 pat
= PATTERN (trial
);
1833 if (rtx_equal_p (pat
, ipat
))
1836 /* Can't go any further if TRIAL conflicts with INSN. */
1837 if (insn_sets_resource_p (trial
, &needed
, true))
1845 /* Return 1 if THREAD can only be executed in one way. If LABEL is nonzero,
1846 it is the target of the branch insn being scanned. If ALLOW_FALLTHROUGH
1847 is nonzero, we are allowed to fall into this thread; otherwise, we are
1850 If LABEL is used more than one or we pass a label other than LABEL before
1851 finding an active insn, we do not own this thread. */
1854 own_thread_p (rtx thread
, rtx label
, int allow_fallthrough
)
1859 /* We don't own the function end. */
1860 if (thread
== 0 || ANY_RETURN_P (thread
))
1863 /* Get the first active insn, or THREAD, if it is an active insn. */
1864 active_insn
= next_active_insn (PREV_INSN (thread
));
1866 for (insn
= thread
; insn
!= active_insn
; insn
= NEXT_INSN (insn
))
1868 && (insn
!= label
|| LABEL_NUSES (insn
) != 1))
1871 if (allow_fallthrough
)
1874 /* Ensure that we reach a BARRIER before any insn or label. */
1875 for (insn
= prev_nonnote_insn (thread
);
1876 insn
== 0 || !BARRIER_P (insn
);
1877 insn
= prev_nonnote_insn (insn
))
1880 || (NONJUMP_INSN_P (insn
)
1881 && GET_CODE (PATTERN (insn
)) != USE
1882 && GET_CODE (PATTERN (insn
)) != CLOBBER
))
1888 /* Called when INSN is being moved from a location near the target of a jump.
1889 We leave a marker of the form (use (INSN)) immediately in front
1890 of WHERE for mark_target_live_regs. These markers will be deleted when
1893 We used to try to update the live status of registers if WHERE is at
1894 the start of a basic block, but that can't work since we may remove a
1895 BARRIER in relax_delay_slots. */
1898 update_block (rtx insn
, rtx where
)
1900 /* Ignore if this was in a delay slot and it came from the target of
1902 if (INSN_FROM_TARGET_P (insn
))
1905 emit_insn_before (gen_rtx_USE (VOIDmode
, insn
), where
);
1907 /* INSN might be making a value live in a block where it didn't use to
1908 be. So recompute liveness information for this block. */
1910 incr_ticks_for_insn (insn
);
1913 /* Similar to REDIRECT_JUMP except that we update the BB_TICKS entry for
1914 the basic block containing the jump. */
1917 reorg_redirect_jump (rtx jump
, rtx nlabel
)
1919 incr_ticks_for_insn (jump
);
1920 return redirect_jump (jump
, nlabel
, 1);
1923 /* Called when INSN is being moved forward into a delay slot of DELAYED_INSN.
1924 We check every instruction between INSN and DELAYED_INSN for REG_DEAD notes
1925 that reference values used in INSN. If we find one, then we move the
1926 REG_DEAD note to INSN.
1928 This is needed to handle the case where a later insn (after INSN) has a
1929 REG_DEAD note for a register used by INSN, and this later insn subsequently
1930 gets moved before a CODE_LABEL because it is a redundant insn. In this
1931 case, mark_target_live_regs may be confused into thinking the register
1932 is dead because it sees a REG_DEAD note immediately before a CODE_LABEL. */
1935 update_reg_dead_notes (rtx insn
, rtx delayed_insn
)
1939 for (p
= next_nonnote_insn (insn
); p
!= delayed_insn
;
1940 p
= next_nonnote_insn (p
))
1941 for (link
= REG_NOTES (p
); link
; link
= next
)
1943 next
= XEXP (link
, 1);
1945 if (REG_NOTE_KIND (link
) != REG_DEAD
1946 || !REG_P (XEXP (link
, 0)))
1949 if (reg_referenced_p (XEXP (link
, 0), PATTERN (insn
)))
1951 /* Move the REG_DEAD note from P to INSN. */
1952 remove_note (p
, link
);
1953 XEXP (link
, 1) = REG_NOTES (insn
);
1954 REG_NOTES (insn
) = link
;
1959 /* Called when an insn redundant with start_insn is deleted. If there
1960 is a REG_DEAD note for the target of start_insn between start_insn
1961 and stop_insn, then the REG_DEAD note needs to be deleted since the
1962 value no longer dies there.
1964 If the REG_DEAD note isn't deleted, then mark_target_live_regs may be
1965 confused into thinking the register is dead. */
1968 fix_reg_dead_note (rtx start_insn
, rtx stop_insn
)
1972 for (p
= next_nonnote_insn (start_insn
); p
!= stop_insn
;
1973 p
= next_nonnote_insn (p
))
1974 for (link
= REG_NOTES (p
); link
; link
= next
)
1976 next
= XEXP (link
, 1);
1978 if (REG_NOTE_KIND (link
) != REG_DEAD
1979 || !REG_P (XEXP (link
, 0)))
1982 if (reg_set_p (XEXP (link
, 0), PATTERN (start_insn
)))
1984 remove_note (p
, link
);
1990 /* Delete any REG_UNUSED notes that exist on INSN but not on REDUNDANT_INSN.
1992 This handles the case of udivmodXi4 instructions which optimize their
1993 output depending on whether any REG_UNUSED notes are present.
1994 we must make sure that INSN calculates as many results as REDUNDANT_INSN
1998 update_reg_unused_notes (rtx insn
, rtx redundant_insn
)
2002 for (link
= REG_NOTES (insn
); link
; link
= next
)
2004 next
= XEXP (link
, 1);
2006 if (REG_NOTE_KIND (link
) != REG_UNUSED
2007 || !REG_P (XEXP (link
, 0)))
2010 if (! find_regno_note (redundant_insn
, REG_UNUSED
,
2011 REGNO (XEXP (link
, 0))))
2012 remove_note (insn
, link
);
2016 /* Return the label before INSN, or put a new label there. */
2019 get_label_before (rtx insn
)
2023 /* Find an existing label at this point
2024 or make a new one if there is none. */
2025 label
= prev_nonnote_insn (insn
);
2027 if (label
== 0 || !LABEL_P (label
))
2029 rtx prev
= PREV_INSN (insn
);
2031 label
= gen_label_rtx ();
2032 emit_label_after (label
, prev
);
2033 LABEL_NUSES (label
) = 0;
2038 /* Scan a function looking for insns that need a delay slot and find insns to
2039 put into the delay slot.
2041 NON_JUMPS_P is nonzero if we are to only try to fill non-jump insns (such
2042 as calls). We do these first since we don't want jump insns (that are
2043 easier to fill) to get the only insns that could be used for non-jump insns.
2044 When it is zero, only try to fill JUMP_INSNs.
2046 When slots are filled in this manner, the insns (including the
2047 delay_insn) are put together in a SEQUENCE rtx. In this fashion,
2048 it is possible to tell whether a delay slot has really been filled
2049 or not. `final' knows how to deal with this, by communicating
2050 through FINAL_SEQUENCE. */
2053 fill_simple_delay_slots (int non_jumps_p
)
2055 rtx insn
, pat
, trial
, next_trial
;
2057 int num_unfilled_slots
= unfilled_slots_next
- unfilled_slots_base
;
2058 struct resources needed
, set
;
2059 int slots_to_fill
, slots_filled
;
2062 for (i
= 0; i
< num_unfilled_slots
; i
++)
2065 /* Get the next insn to fill. If it has already had any slots assigned,
2066 we can't do anything with it. Maybe we'll improve this later. */
2068 insn
= unfilled_slots_base
[i
];
2070 || INSN_DELETED_P (insn
)
2071 || (NONJUMP_INSN_P (insn
)
2072 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
2073 || (JUMP_P (insn
) && non_jumps_p
)
2074 || (!JUMP_P (insn
) && ! non_jumps_p
))
2077 /* It may have been that this insn used to need delay slots, but
2078 now doesn't; ignore in that case. This can happen, for example,
2079 on the HP PA RISC, where the number of delay slots depends on
2080 what insns are nearby. */
2081 slots_to_fill
= num_delay_slots (insn
);
2083 /* Some machine description have defined instructions to have
2084 delay slots only in certain circumstances which may depend on
2085 nearby insns (which change due to reorg's actions).
2087 For example, the PA port normally has delay slots for unconditional
2090 However, the PA port claims such jumps do not have a delay slot
2091 if they are immediate successors of certain CALL_INSNs. This
2092 allows the port to favor filling the delay slot of the call with
2093 the unconditional jump. */
2094 if (slots_to_fill
== 0)
2097 /* This insn needs, or can use, some delay slots. SLOTS_TO_FILL
2098 says how many. After initialization, first try optimizing
2101 nop add %o7,.-L1,%o7
2105 If this case applies, the delay slot of the call is filled with
2106 the unconditional jump. This is done first to avoid having the
2107 delay slot of the call filled in the backward scan. Also, since
2108 the unconditional jump is likely to also have a delay slot, that
2109 insn must exist when it is subsequently scanned.
2111 This is tried on each insn with delay slots as some machines
2112 have insns which perform calls, but are not represented as
2119 flags
= get_jump_flags (insn
, JUMP_LABEL (insn
));
2121 flags
= get_jump_flags (insn
, NULL_RTX
);
2123 if ((trial
= next_active_insn (insn
))
2125 && simplejump_p (trial
)
2126 && eligible_for_delay (insn
, slots_filled
, trial
, flags
)
2127 && no_labels_between_p (insn
, trial
)
2128 && ! can_throw_internal (trial
))
2132 delay_list
= add_to_delay_list (trial
, delay_list
);
2134 /* TRIAL may have had its delay slot filled, then unfilled. When
2135 the delay slot is unfilled, TRIAL is placed back on the unfilled
2136 slots obstack. Unfortunately, it is placed on the end of the
2137 obstack, not in its original location. Therefore, we must search
2138 from entry i + 1 to the end of the unfilled slots obstack to
2139 try and find TRIAL. */
2140 tmp
= &unfilled_slots_base
[i
+ 1];
2141 while (*tmp
!= trial
&& tmp
!= unfilled_slots_next
)
2144 /* Remove the unconditional jump from consideration for delay slot
2145 filling and unthread it. */
2149 rtx next
= NEXT_INSN (trial
);
2150 rtx prev
= PREV_INSN (trial
);
2152 NEXT_INSN (prev
) = next
;
2154 PREV_INSN (next
) = prev
;
2158 /* Now, scan backwards from the insn to search for a potential
2159 delay-slot candidate. Stop searching when a label or jump is hit.
2161 For each candidate, if it is to go into the delay slot (moved
2162 forward in execution sequence), it must not need or set any resources
2163 that were set by later insns and must not set any resources that
2164 are needed for those insns.
2166 The delay slot insn itself sets resources unless it is a call
2167 (in which case the called routine, not the insn itself, is doing
2170 if (slots_filled
< slots_to_fill
)
2172 CLEAR_RESOURCE (&needed
);
2173 CLEAR_RESOURCE (&set
);
2174 mark_set_resources (insn
, &set
, 0, MARK_SRC_DEST
);
2175 mark_referenced_resources (insn
, &needed
, false);
2177 for (trial
= prev_nonnote_insn (insn
); ! stop_search_p (trial
, 1);
2180 next_trial
= prev_nonnote_insn (trial
);
2182 /* This must be an INSN or CALL_INSN. */
2183 pat
= PATTERN (trial
);
2185 /* Stand-alone USE and CLOBBER are just for flow. */
2186 if (GET_CODE (pat
) == USE
|| GET_CODE (pat
) == CLOBBER
)
2189 /* Check for resource conflict first, to avoid unnecessary
2191 if (! insn_references_resource_p (trial
, &set
, true)
2192 && ! insn_sets_resource_p (trial
, &set
, true)
2193 && ! insn_sets_resource_p (trial
, &needed
, true)
2195 /* Can't separate set of cc0 from its use. */
2196 && ! (reg_mentioned_p (cc0_rtx
, pat
) && ! sets_cc0_p (pat
))
2198 && ! can_throw_internal (trial
))
2200 trial
= try_split (pat
, trial
, 1);
2201 next_trial
= prev_nonnote_insn (trial
);
2202 if (eligible_for_delay (insn
, slots_filled
, trial
, flags
))
2204 /* In this case, we are searching backward, so if we
2205 find insns to put on the delay list, we want
2206 to put them at the head, rather than the
2207 tail, of the list. */
2209 update_reg_dead_notes (trial
, insn
);
2210 delay_list
= gen_rtx_INSN_LIST (VOIDmode
,
2212 update_block (trial
, trial
);
2213 delete_related_insns (trial
);
2214 if (slots_to_fill
== ++slots_filled
)
2220 mark_set_resources (trial
, &set
, 0, MARK_SRC_DEST_CALL
);
2221 mark_referenced_resources (trial
, &needed
, true);
2225 /* If all needed slots haven't been filled, we come here. */
2227 /* Try to optimize case of jumping around a single insn. */
2228 #if defined(ANNUL_IFFALSE_SLOTS) || defined(ANNUL_IFTRUE_SLOTS)
2229 if (slots_filled
!= slots_to_fill
2232 && (condjump_p (insn
) || condjump_in_parallel_p (insn
)))
2234 delay_list
= optimize_skip (insn
);
2240 /* Try to get insns from beyond the insn needing the delay slot.
2241 These insns can neither set or reference resources set in insns being
2242 skipped, cannot set resources in the insn being skipped, and, if this
2243 is a CALL_INSN (or a CALL_INSN is passed), cannot trap (because the
2244 call might not return).
2246 There used to be code which continued past the target label if
2247 we saw all uses of the target label. This code did not work,
2248 because it failed to account for some instructions which were
2249 both annulled and marked as from the target. This can happen as a
2250 result of optimize_skip. Since this code was redundant with
2251 fill_eager_delay_slots anyways, it was just deleted. */
2253 if (slots_filled
!= slots_to_fill
2254 /* If this instruction could throw an exception which is
2255 caught in the same function, then it's not safe to fill
2256 the delay slot with an instruction from beyond this
2257 point. For example, consider:
2268 Even though `i' is a local variable, we must be sure not
2269 to put `i = 3' in the delay slot if `f' might throw an
2272 Presumably, we should also check to see if we could get
2273 back to this function via `setjmp'. */
2274 && ! can_throw_internal (insn
)
2276 || ((condjump_p (insn
) || condjump_in_parallel_p (insn
))
2277 && ! simplejump_p (insn
)
2278 && !ANY_RETURN_P (JUMP_LABEL (insn
)))))
2280 /* Invariant: If insn is a JUMP_INSN, the insn's jump
2281 label. Otherwise, zero. */
2283 int maybe_never
= 0;
2284 rtx pat
, trial_delay
;
2286 CLEAR_RESOURCE (&needed
);
2287 CLEAR_RESOURCE (&set
);
2291 mark_set_resources (insn
, &set
, 0, MARK_SRC_DEST_CALL
);
2292 mark_referenced_resources (insn
, &needed
, true);
2297 mark_set_resources (insn
, &set
, 0, MARK_SRC_DEST_CALL
);
2298 mark_referenced_resources (insn
, &needed
, true);
2300 target
= JUMP_LABEL (insn
);
2303 if (target
== 0 || ANY_RETURN_P (target
))
2304 for (trial
= next_nonnote_insn (insn
); !stop_search_p (trial
, 1);
2307 next_trial
= next_nonnote_insn (trial
);
2309 /* This must be an INSN or CALL_INSN. */
2310 pat
= PATTERN (trial
);
2312 /* Stand-alone USE and CLOBBER are just for flow. */
2313 if (GET_CODE (pat
) == USE
|| GET_CODE (pat
) == CLOBBER
)
2316 /* If this already has filled delay slots, get the insn needing
2318 if (GET_CODE (pat
) == SEQUENCE
)
2319 trial_delay
= XVECEXP (pat
, 0, 0);
2321 trial_delay
= trial
;
2323 /* Stop our search when seeing a jump. */
2324 if (JUMP_P (trial_delay
))
2327 /* See if we have a resource problem before we try to
2329 if (GET_CODE (pat
) != SEQUENCE
2330 && ! insn_references_resource_p (trial
, &set
, true)
2331 && ! insn_sets_resource_p (trial
, &set
, true)
2332 && ! insn_sets_resource_p (trial
, &needed
, true)
2334 && ! (reg_mentioned_p (cc0_rtx
, pat
) && ! sets_cc0_p (pat
))
2336 && ! (maybe_never
&& may_trap_or_fault_p (pat
))
2337 && (trial
= try_split (pat
, trial
, 0))
2338 && eligible_for_delay (insn
, slots_filled
, trial
, flags
)
2339 && ! can_throw_internal(trial
))
2341 next_trial
= next_nonnote_insn (trial
);
2342 delay_list
= add_to_delay_list (trial
, delay_list
);
2345 if (reg_mentioned_p (cc0_rtx
, pat
))
2346 link_cc0_insns (trial
);
2349 delete_related_insns (trial
);
2350 if (slots_to_fill
== ++slots_filled
)
2355 mark_set_resources (trial
, &set
, 0, MARK_SRC_DEST_CALL
);
2356 mark_referenced_resources (trial
, &needed
, true);
2358 /* Ensure we don't put insns between the setting of cc and the
2359 comparison by moving a setting of cc into an earlier delay
2360 slot since these insns could clobber the condition code. */
2363 /* If this is a call or jump, we might not get here. */
2364 if (CALL_P (trial_delay
)
2365 || JUMP_P (trial_delay
))
2369 /* If there are slots left to fill and our search was stopped by an
2370 unconditional branch, try the insn at the branch target. We can
2371 redirect the branch if it works.
2373 Don't do this if the insn at the branch target is a branch. */
2374 if (slots_to_fill
!= slots_filled
2376 && jump_to_label_p (trial
)
2377 && simplejump_p (trial
)
2378 && (target
== 0 || JUMP_LABEL (trial
) == target
)
2379 && (next_trial
= next_active_insn (JUMP_LABEL (trial
))) != 0
2380 && ! (NONJUMP_INSN_P (next_trial
)
2381 && GET_CODE (PATTERN (next_trial
)) == SEQUENCE
)
2382 && !JUMP_P (next_trial
)
2383 && ! insn_references_resource_p (next_trial
, &set
, true)
2384 && ! insn_sets_resource_p (next_trial
, &set
, true)
2385 && ! insn_sets_resource_p (next_trial
, &needed
, true)
2387 && ! reg_mentioned_p (cc0_rtx
, PATTERN (next_trial
))
2389 && ! (maybe_never
&& may_trap_or_fault_p (PATTERN (next_trial
)))
2390 && (next_trial
= try_split (PATTERN (next_trial
), next_trial
, 0))
2391 && eligible_for_delay (insn
, slots_filled
, next_trial
, flags
)
2392 && ! can_throw_internal (trial
))
2394 /* See comment in relax_delay_slots about necessity of using
2395 next_real_insn here. */
2396 rtx new_label
= next_real_insn (next_trial
);
2399 new_label
= get_label_before (new_label
);
2401 new_label
= find_end_label (simple_return_rtx
);
2406 = add_to_delay_list (copy_rtx (next_trial
), delay_list
);
2408 reorg_redirect_jump (trial
, new_label
);
2410 /* If we merged because we both jumped to the same place,
2411 redirect the original insn also. */
2413 reorg_redirect_jump (insn
, new_label
);
2418 /* If this is an unconditional jump, then try to get insns from the
2419 target of the jump. */
2421 && simplejump_p (insn
)
2422 && slots_filled
!= slots_to_fill
)
2424 = fill_slots_from_thread (insn
, const_true_rtx
,
2425 next_active_insn (JUMP_LABEL (insn
)),
2427 own_thread_p (JUMP_LABEL (insn
),
2428 JUMP_LABEL (insn
), 0),
2429 slots_to_fill
, &slots_filled
,
2433 unfilled_slots_base
[i
]
2434 = emit_delay_sequence (insn
, delay_list
, slots_filled
);
2436 if (slots_to_fill
== slots_filled
)
2437 unfilled_slots_base
[i
] = 0;
2439 note_delay_statistics (slots_filled
, 0);
2442 #ifdef DELAY_SLOTS_FOR_EPILOGUE
2443 /* See if the epilogue needs any delay slots. Try to fill them if so.
2444 The only thing we can do is scan backwards from the end of the
2445 function. If we did this in a previous pass, it is incorrect to do it
2447 if (crtl
->epilogue_delay_list
)
2450 slots_to_fill
= DELAY_SLOTS_FOR_EPILOGUE
;
2451 if (slots_to_fill
== 0)
2455 CLEAR_RESOURCE (&set
);
2457 /* The frame pointer and stack pointer are needed at the beginning of
2458 the epilogue, so instructions setting them can not be put in the
2459 epilogue delay slot. However, everything else needed at function
2460 end is safe, so we don't want to use end_of_function_needs here. */
2461 CLEAR_RESOURCE (&needed
);
2462 if (frame_pointer_needed
)
2464 SET_HARD_REG_BIT (needed
.regs
, FRAME_POINTER_REGNUM
);
2465 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2466 SET_HARD_REG_BIT (needed
.regs
, HARD_FRAME_POINTER_REGNUM
);
2468 if (! EXIT_IGNORE_STACK
2469 || current_function_sp_is_unchanging
)
2470 SET_HARD_REG_BIT (needed
.regs
, STACK_POINTER_REGNUM
);
2473 SET_HARD_REG_BIT (needed
.regs
, STACK_POINTER_REGNUM
);
2475 #ifdef EPILOGUE_USES
2476 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
2478 if (EPILOGUE_USES (i
))
2479 SET_HARD_REG_BIT (needed
.regs
, i
);
2483 for (trial
= get_last_insn (); ! stop_search_p (trial
, 1);
2484 trial
= PREV_INSN (trial
))
2488 pat
= PATTERN (trial
);
2489 if (GET_CODE (pat
) == USE
|| GET_CODE (pat
) == CLOBBER
)
2492 if (! insn_references_resource_p (trial
, &set
, true)
2493 && ! insn_sets_resource_p (trial
, &needed
, true)
2494 && ! insn_sets_resource_p (trial
, &set
, true)
2496 /* Don't want to mess with cc0 here. */
2497 && ! reg_mentioned_p (cc0_rtx
, pat
)
2499 && ! can_throw_internal (trial
))
2501 trial
= try_split (pat
, trial
, 1);
2502 if (ELIGIBLE_FOR_EPILOGUE_DELAY (trial
, slots_filled
))
2504 /* Here as well we are searching backward, so put the
2505 insns we find on the head of the list. */
2507 crtl
->epilogue_delay_list
2508 = gen_rtx_INSN_LIST (VOIDmode
, trial
,
2509 crtl
->epilogue_delay_list
);
2510 mark_end_of_function_resources (trial
, true);
2511 update_block (trial
, trial
);
2512 delete_related_insns (trial
);
2514 /* Clear deleted bit so final.c will output the insn. */
2515 INSN_DELETED_P (trial
) = 0;
2517 if (slots_to_fill
== ++slots_filled
)
2523 mark_set_resources (trial
, &set
, 0, MARK_SRC_DEST_CALL
);
2524 mark_referenced_resources (trial
, &needed
, true);
2527 note_delay_statistics (slots_filled
, 0);
2531 /* Follow any unconditional jump at LABEL;
2532 return the ultimate label reached by any such chain of jumps.
2533 Return a suitable return rtx if the chain ultimately leads to a
2535 If LABEL is not followed by a jump, return LABEL.
2536 If the chain loops or we can't find end, return LABEL,
2537 since that tells caller to avoid changing the insn. */
2540 follow_jumps (rtx label
)
2547 if (ANY_RETURN_P (label
))
2551 && (insn
= next_active_insn (value
)) != 0
2553 && JUMP_LABEL (insn
) != NULL_RTX
2554 && ((any_uncondjump_p (insn
) && onlyjump_p (insn
))
2555 || ANY_RETURN_P (PATTERN (insn
)))
2556 && (next
= NEXT_INSN (insn
))
2557 && BARRIER_P (next
));
2560 rtx this_label
= JUMP_LABEL (insn
);
2563 /* If we have found a cycle, make the insn jump to itself. */
2564 if (this_label
== label
)
2566 if (ANY_RETURN_P (this_label
))
2568 tem
= next_active_insn (this_label
);
2570 && (GET_CODE (PATTERN (tem
)) == ADDR_VEC
2571 || GET_CODE (PATTERN (tem
)) == ADDR_DIFF_VEC
))
2581 /* Try to find insns to place in delay slots.
2583 INSN is the jump needing SLOTS_TO_FILL delay slots. It tests CONDITION
2584 or is an unconditional branch if CONDITION is const_true_rtx.
2585 *PSLOTS_FILLED is updated with the number of slots that we have filled.
2587 THREAD is a flow-of-control, either the insns to be executed if the
2588 branch is true or if the branch is false, THREAD_IF_TRUE says which.
2590 OPPOSITE_THREAD is the thread in the opposite direction. It is used
2591 to see if any potential delay slot insns set things needed there.
2593 LIKELY is nonzero if it is extremely likely that the branch will be
2594 taken and THREAD_IF_TRUE is set. This is used for the branch at the
2595 end of a loop back up to the top.
2597 OWN_THREAD and OWN_OPPOSITE_THREAD are true if we are the only user of the
2598 thread. I.e., it is the fallthrough code of our jump or the target of the
2599 jump when we are the only jump going there.
2601 If OWN_THREAD is false, it must be the "true" thread of a jump. In that
2602 case, we can only take insns from the head of the thread for our delay
2603 slot. We then adjust the jump to point after the insns we have taken. */
2606 fill_slots_from_thread (rtx insn
, rtx condition
, rtx thread
,
2607 rtx opposite_thread
, int likely
, int thread_if_true
,
2608 int own_thread
, int slots_to_fill
,
2609 int *pslots_filled
, rtx delay_list
)
2612 struct resources opposite_needed
, set
, needed
;
2618 /* Validate our arguments. */
2619 gcc_assert(condition
!= const_true_rtx
|| thread_if_true
);
2620 gcc_assert(own_thread
|| thread_if_true
);
2622 flags
= get_jump_flags (insn
, JUMP_LABEL (insn
));
2624 /* If our thread is the end of subroutine, we can't get any delay
2626 if (thread
== NULL_RTX
|| ANY_RETURN_P (thread
))
2629 /* If this is an unconditional branch, nothing is needed at the
2630 opposite thread. Otherwise, compute what is needed there. */
2631 if (condition
== const_true_rtx
)
2632 CLEAR_RESOURCE (&opposite_needed
);
2634 mark_target_live_regs (get_insns (), opposite_thread
, &opposite_needed
);
2636 /* If the insn at THREAD can be split, do it here to avoid having to
2637 update THREAD and NEW_THREAD if it is done in the loop below. Also
2638 initialize NEW_THREAD. */
2640 new_thread
= thread
= try_split (PATTERN (thread
), thread
, 0);
2642 /* Scan insns at THREAD. We are looking for an insn that can be removed
2643 from THREAD (it neither sets nor references resources that were set
2644 ahead of it and it doesn't set anything needs by the insns ahead of
2645 it) and that either can be placed in an annulling insn or aren't
2646 needed at OPPOSITE_THREAD. */
2648 CLEAR_RESOURCE (&needed
);
2649 CLEAR_RESOURCE (&set
);
2651 /* If we do not own this thread, we must stop as soon as we find
2652 something that we can't put in a delay slot, since all we can do
2653 is branch into THREAD at a later point. Therefore, labels stop
2654 the search if this is not the `true' thread. */
2656 for (trial
= thread
;
2657 ! stop_search_p (trial
, ! thread_if_true
) && (! lose
|| own_thread
);
2658 trial
= next_nonnote_insn (trial
))
2662 /* If we have passed a label, we no longer own this thread. */
2663 if (LABEL_P (trial
))
2669 pat
= PATTERN (trial
);
2670 if (GET_CODE (pat
) == USE
|| GET_CODE (pat
) == CLOBBER
)
2673 /* If TRIAL conflicts with the insns ahead of it, we lose. Also,
2674 don't separate or copy insns that set and use CC0. */
2675 if (! insn_references_resource_p (trial
, &set
, true)
2676 && ! insn_sets_resource_p (trial
, &set
, true)
2677 && ! insn_sets_resource_p (trial
, &needed
, true)
2679 && ! (reg_mentioned_p (cc0_rtx
, pat
)
2680 && (! own_thread
|| ! sets_cc0_p (pat
)))
2682 && ! can_throw_internal (trial
))
2686 /* If TRIAL is redundant with some insn before INSN, we don't
2687 actually need to add it to the delay list; we can merely pretend
2689 if ((prior_insn
= redundant_insn (trial
, insn
, delay_list
)))
2691 fix_reg_dead_note (prior_insn
, insn
);
2694 update_block (trial
, thread
);
2695 if (trial
== thread
)
2697 thread
= next_active_insn (thread
);
2698 if (new_thread
== trial
)
2699 new_thread
= thread
;
2702 delete_related_insns (trial
);
2706 update_reg_unused_notes (prior_insn
, trial
);
2707 new_thread
= next_active_insn (trial
);
2713 /* There are two ways we can win: If TRIAL doesn't set anything
2714 needed at the opposite thread and can't trap, or if it can
2715 go into an annulled delay slot. */
2717 && (condition
== const_true_rtx
2718 || (! insn_sets_resource_p (trial
, &opposite_needed
, true)
2719 && ! may_trap_or_fault_p (pat
))))
2722 trial
= try_split (pat
, trial
, 0);
2723 if (new_thread
== old_trial
)
2725 if (thread
== old_trial
)
2727 pat
= PATTERN (trial
);
2728 if (eligible_for_delay (insn
, *pslots_filled
, trial
, flags
))
2732 #ifdef ANNUL_IFTRUE_SLOTS
2735 #ifdef ANNUL_IFFALSE_SLOTS
2741 trial
= try_split (pat
, trial
, 0);
2742 if (new_thread
== old_trial
)
2744 if (thread
== old_trial
)
2746 pat
= PATTERN (trial
);
2747 if ((must_annul
|| delay_list
== NULL
) && (thread_if_true
2748 ? check_annul_list_true_false (0, delay_list
)
2749 && eligible_for_annul_false (insn
, *pslots_filled
, trial
, flags
)
2750 : check_annul_list_true_false (1, delay_list
)
2751 && eligible_for_annul_true (insn
, *pslots_filled
, trial
, flags
)))
2759 if (reg_mentioned_p (cc0_rtx
, pat
))
2760 link_cc0_insns (trial
);
2763 /* If we own this thread, delete the insn. If this is the
2764 destination of a branch, show that a basic block status
2765 may have been updated. In any case, mark the new
2766 starting point of this thread. */
2771 update_block (trial
, thread
);
2772 if (trial
== thread
)
2774 thread
= next_active_insn (thread
);
2775 if (new_thread
== trial
)
2776 new_thread
= thread
;
2779 /* We are moving this insn, not deleting it. We must
2780 temporarily increment the use count on any referenced
2781 label lest it be deleted by delete_related_insns. */
2782 for (note
= REG_NOTES (trial
);
2784 note
= XEXP (note
, 1))
2785 if (REG_NOTE_KIND (note
) == REG_LABEL_OPERAND
2786 || REG_NOTE_KIND (note
) == REG_LABEL_TARGET
)
2788 /* REG_LABEL_OPERAND could be
2789 NOTE_INSN_DELETED_LABEL too. */
2790 if (LABEL_P (XEXP (note
, 0)))
2791 LABEL_NUSES (XEXP (note
, 0))++;
2793 gcc_assert (REG_NOTE_KIND (note
)
2794 == REG_LABEL_OPERAND
);
2796 if (jump_to_label_p (trial
))
2797 LABEL_NUSES (JUMP_LABEL (trial
))++;
2799 delete_related_insns (trial
);
2801 for (note
= REG_NOTES (trial
);
2803 note
= XEXP (note
, 1))
2804 if (REG_NOTE_KIND (note
) == REG_LABEL_OPERAND
2805 || REG_NOTE_KIND (note
) == REG_LABEL_TARGET
)
2807 /* REG_LABEL_OPERAND could be
2808 NOTE_INSN_DELETED_LABEL too. */
2809 if (LABEL_P (XEXP (note
, 0)))
2810 LABEL_NUSES (XEXP (note
, 0))--;
2812 gcc_assert (REG_NOTE_KIND (note
)
2813 == REG_LABEL_OPERAND
);
2815 if (jump_to_label_p (trial
))
2816 LABEL_NUSES (JUMP_LABEL (trial
))--;
2819 new_thread
= next_active_insn (trial
);
2821 temp
= own_thread
? trial
: copy_rtx (trial
);
2823 INSN_FROM_TARGET_P (temp
) = 1;
2825 delay_list
= add_to_delay_list (temp
, delay_list
);
2827 if (slots_to_fill
== ++(*pslots_filled
))
2829 /* Even though we have filled all the slots, we
2830 may be branching to a location that has a
2831 redundant insn. Skip any if so. */
2832 while (new_thread
&& ! own_thread
2833 && ! insn_sets_resource_p (new_thread
, &set
, true)
2834 && ! insn_sets_resource_p (new_thread
, &needed
,
2836 && ! insn_references_resource_p (new_thread
,
2839 = redundant_insn (new_thread
, insn
,
2842 /* We know we do not own the thread, so no need
2843 to call update_block and delete_insn. */
2844 fix_reg_dead_note (prior_insn
, insn
);
2845 update_reg_unused_notes (prior_insn
, new_thread
);
2846 new_thread
= next_active_insn (new_thread
);
2856 /* This insn can't go into a delay slot. */
2858 mark_set_resources (trial
, &set
, 0, MARK_SRC_DEST_CALL
);
2859 mark_referenced_resources (trial
, &needed
, true);
2861 /* Ensure we don't put insns between the setting of cc and the comparison
2862 by moving a setting of cc into an earlier delay slot since these insns
2863 could clobber the condition code. */
2866 /* If this insn is a register-register copy and the next insn has
2867 a use of our destination, change it to use our source. That way,
2868 it will become a candidate for our delay slot the next time
2869 through this loop. This case occurs commonly in loops that
2872 We could check for more complex cases than those tested below,
2873 but it doesn't seem worth it. It might also be a good idea to try
2874 to swap the two insns. That might do better.
2876 We can't do this if the next insn modifies our destination, because
2877 that would make the replacement into the insn invalid. We also can't
2878 do this if it modifies our source, because it might be an earlyclobber
2879 operand. This latter test also prevents updating the contents of
2880 a PRE_INC. We also can't do this if there's overlap of source and
2881 destination. Overlap may happen for larger-than-register-size modes. */
2883 if (NONJUMP_INSN_P (trial
) && GET_CODE (pat
) == SET
2884 && REG_P (SET_SRC (pat
))
2885 && REG_P (SET_DEST (pat
))
2886 && !reg_overlap_mentioned_p (SET_DEST (pat
), SET_SRC (pat
)))
2888 rtx next
= next_nonnote_insn (trial
);
2890 if (next
&& NONJUMP_INSN_P (next
)
2891 && GET_CODE (PATTERN (next
)) != USE
2892 && ! reg_set_p (SET_DEST (pat
), next
)
2893 && ! reg_set_p (SET_SRC (pat
), next
)
2894 && reg_referenced_p (SET_DEST (pat
), PATTERN (next
))
2895 && ! modified_in_p (SET_DEST (pat
), next
))
2896 validate_replace_rtx (SET_DEST (pat
), SET_SRC (pat
), next
);
2900 /* If we stopped on a branch insn that has delay slots, see if we can
2901 steal some of the insns in those slots. */
2902 if (trial
&& NONJUMP_INSN_P (trial
)
2903 && GET_CODE (PATTERN (trial
)) == SEQUENCE
2904 && JUMP_P (XVECEXP (PATTERN (trial
), 0, 0)))
2906 /* If this is the `true' thread, we will want to follow the jump,
2907 so we can only do this if we have taken everything up to here. */
2908 if (thread_if_true
&& trial
== new_thread
)
2911 = steal_delay_list_from_target (insn
, condition
, PATTERN (trial
),
2912 delay_list
, &set
, &needed
,
2913 &opposite_needed
, slots_to_fill
,
2914 pslots_filled
, &must_annul
,
2916 /* If we owned the thread and are told that it branched
2917 elsewhere, make sure we own the thread at the new location. */
2918 if (own_thread
&& trial
!= new_thread
)
2919 own_thread
= own_thread_p (new_thread
, new_thread
, 0);
2921 else if (! thread_if_true
)
2923 = steal_delay_list_from_fallthrough (insn
, condition
,
2925 delay_list
, &set
, &needed
,
2926 &opposite_needed
, slots_to_fill
,
2927 pslots_filled
, &must_annul
);
2930 /* If we haven't found anything for this delay slot and it is very
2931 likely that the branch will be taken, see if the insn at our target
2932 increments or decrements a register with an increment that does not
2933 depend on the destination register. If so, try to place the opposite
2934 arithmetic insn after the jump insn and put the arithmetic insn in the
2935 delay slot. If we can't do this, return. */
2936 if (delay_list
== 0 && likely
2937 && new_thread
&& !ANY_RETURN_P (new_thread
)
2938 && NONJUMP_INSN_P (new_thread
)
2939 && GET_CODE (PATTERN (new_thread
)) != ASM_INPUT
2940 && asm_noperands (PATTERN (new_thread
)) < 0)
2942 rtx pat
= PATTERN (new_thread
);
2947 pat
= PATTERN (trial
);
2949 if (!NONJUMP_INSN_P (trial
)
2950 || GET_CODE (pat
) != SET
2951 || ! eligible_for_delay (insn
, 0, trial
, flags
)
2952 || can_throw_internal (trial
))
2955 dest
= SET_DEST (pat
), src
= SET_SRC (pat
);
2956 if ((GET_CODE (src
) == PLUS
|| GET_CODE (src
) == MINUS
)
2957 && rtx_equal_p (XEXP (src
, 0), dest
)
2958 && (!FLOAT_MODE_P (GET_MODE (src
))
2959 || flag_unsafe_math_optimizations
)
2960 && ! reg_overlap_mentioned_p (dest
, XEXP (src
, 1))
2961 && ! side_effects_p (pat
))
2963 rtx other
= XEXP (src
, 1);
2967 /* If this is a constant adjustment, use the same code with
2968 the negated constant. Otherwise, reverse the sense of the
2970 if (CONST_INT_P (other
))
2971 new_arith
= gen_rtx_fmt_ee (GET_CODE (src
), GET_MODE (src
), dest
,
2972 negate_rtx (GET_MODE (src
), other
));
2974 new_arith
= gen_rtx_fmt_ee (GET_CODE (src
) == PLUS
? MINUS
: PLUS
,
2975 GET_MODE (src
), dest
, other
);
2977 ninsn
= emit_insn_after (gen_rtx_SET (VOIDmode
, dest
, new_arith
),
2980 if (recog_memoized (ninsn
) < 0
2981 || (extract_insn (ninsn
), ! constrain_operands (1)))
2983 delete_related_insns (ninsn
);
2989 update_block (trial
, thread
);
2990 if (trial
== thread
)
2992 thread
= next_active_insn (thread
);
2993 if (new_thread
== trial
)
2994 new_thread
= thread
;
2996 delete_related_insns (trial
);
2999 new_thread
= next_active_insn (trial
);
3001 ninsn
= own_thread
? trial
: copy_rtx (trial
);
3003 INSN_FROM_TARGET_P (ninsn
) = 1;
3005 delay_list
= add_to_delay_list (ninsn
, NULL_RTX
);
3010 if (delay_list
&& must_annul
)
3011 INSN_ANNULLED_BRANCH_P (insn
) = 1;
3013 /* If we are to branch into the middle of this thread, find an appropriate
3014 label or make a new one if none, and redirect INSN to it. If we hit the
3015 end of the function, use the end-of-function label. */
3016 if (new_thread
!= thread
)
3020 gcc_assert (thread_if_true
);
3022 if (new_thread
&& simplejump_or_return_p (new_thread
)
3023 && redirect_with_delay_list_safe_p (insn
,
3024 JUMP_LABEL (new_thread
),
3026 new_thread
= follow_jumps (JUMP_LABEL (new_thread
));
3028 if (ANY_RETURN_P (new_thread
))
3029 label
= find_end_label (new_thread
);
3030 else if (LABEL_P (new_thread
))
3033 label
= get_label_before (new_thread
);
3036 reorg_redirect_jump (insn
, label
);
3042 /* Make another attempt to find insns to place in delay slots.
3044 We previously looked for insns located in front of the delay insn
3045 and, for non-jump delay insns, located behind the delay insn.
3047 Here only try to schedule jump insns and try to move insns from either
3048 the target or the following insns into the delay slot. If annulling is
3049 supported, we will be likely to do this. Otherwise, we can do this only
3053 fill_eager_delay_slots (void)
3057 int num_unfilled_slots
= unfilled_slots_next
- unfilled_slots_base
;
3059 for (i
= 0; i
< num_unfilled_slots
; i
++)
3062 rtx target_label
, insn_at_target
, fallthrough_insn
;
3065 int own_fallthrough
;
3066 int prediction
, slots_to_fill
, slots_filled
;
3068 insn
= unfilled_slots_base
[i
];
3070 || INSN_DELETED_P (insn
)
3072 || ! (condjump_p (insn
) || condjump_in_parallel_p (insn
)))
3075 slots_to_fill
= num_delay_slots (insn
);
3076 /* Some machine description have defined instructions to have
3077 delay slots only in certain circumstances which may depend on
3078 nearby insns (which change due to reorg's actions).
3080 For example, the PA port normally has delay slots for unconditional
3083 However, the PA port claims such jumps do not have a delay slot
3084 if they are immediate successors of certain CALL_INSNs. This
3085 allows the port to favor filling the delay slot of the call with
3086 the unconditional jump. */
3087 if (slots_to_fill
== 0)
3091 target_label
= JUMP_LABEL (insn
);
3092 condition
= get_branch_condition (insn
, target_label
);
3097 /* Get the next active fallthrough and target insns and see if we own
3098 them. Then see whether the branch is likely true. We don't need
3099 to do a lot of this for unconditional branches. */
3101 insn_at_target
= first_active_target_insn (target_label
);
3102 own_target
= own_thread_p (target_label
, target_label
, 0);
3104 if (condition
== const_true_rtx
)
3106 own_fallthrough
= 0;
3107 fallthrough_insn
= 0;
3112 fallthrough_insn
= next_active_insn (insn
);
3113 own_fallthrough
= own_thread_p (NEXT_INSN (insn
), NULL_RTX
, 1);
3114 prediction
= mostly_true_jump (insn
, condition
);
3117 /* If this insn is expected to branch, first try to get insns from our
3118 target, then our fallthrough insns. If it is not expected to branch,
3119 try the other order. */
3124 = fill_slots_from_thread (insn
, condition
, insn_at_target
,
3125 fallthrough_insn
, prediction
== 2, 1,
3127 slots_to_fill
, &slots_filled
, delay_list
);
3129 if (delay_list
== 0 && own_fallthrough
)
3131 /* Even though we didn't find anything for delay slots,
3132 we might have found a redundant insn which we deleted
3133 from the thread that was filled. So we have to recompute
3134 the next insn at the target. */
3135 target_label
= JUMP_LABEL (insn
);
3136 insn_at_target
= first_active_target_insn (target_label
);
3139 = fill_slots_from_thread (insn
, condition
, fallthrough_insn
,
3140 insn_at_target
, 0, 0,
3142 slots_to_fill
, &slots_filled
,
3148 if (own_fallthrough
)
3150 = fill_slots_from_thread (insn
, condition
, fallthrough_insn
,
3151 insn_at_target
, 0, 0,
3153 slots_to_fill
, &slots_filled
,
3156 if (delay_list
== 0)
3158 = fill_slots_from_thread (insn
, condition
, insn_at_target
,
3159 next_active_insn (insn
), 0, 1,
3161 slots_to_fill
, &slots_filled
,
3166 unfilled_slots_base
[i
]
3167 = emit_delay_sequence (insn
, delay_list
, slots_filled
);
3169 if (slots_to_fill
== slots_filled
)
3170 unfilled_slots_base
[i
] = 0;
3172 note_delay_statistics (slots_filled
, 1);
3176 static void delete_computation (rtx insn
);
3178 /* Recursively delete prior insns that compute the value (used only by INSN
3179 which the caller is deleting) stored in the register mentioned by NOTE
3180 which is a REG_DEAD note associated with INSN. */
3183 delete_prior_computation (rtx note
, rtx insn
)
3186 rtx reg
= XEXP (note
, 0);
3188 for (our_prev
= prev_nonnote_insn (insn
);
3189 our_prev
&& (NONJUMP_INSN_P (our_prev
)
3190 || CALL_P (our_prev
));
3191 our_prev
= prev_nonnote_insn (our_prev
))
3193 rtx pat
= PATTERN (our_prev
);
3195 /* If we reach a CALL which is not calling a const function
3196 or the callee pops the arguments, then give up. */
3197 if (CALL_P (our_prev
)
3198 && (! RTL_CONST_CALL_P (our_prev
)
3199 || GET_CODE (pat
) != SET
|| GET_CODE (SET_SRC (pat
)) != CALL
))
3202 /* If we reach a SEQUENCE, it is too complex to try to
3203 do anything with it, so give up. We can be run during
3204 and after reorg, so SEQUENCE rtl can legitimately show
3206 if (GET_CODE (pat
) == SEQUENCE
)
3209 if (GET_CODE (pat
) == USE
3210 && NONJUMP_INSN_P (XEXP (pat
, 0)))
3211 /* reorg creates USEs that look like this. We leave them
3212 alone because reorg needs them for its own purposes. */
3215 if (reg_set_p (reg
, pat
))
3217 if (side_effects_p (pat
) && !CALL_P (our_prev
))
3220 if (GET_CODE (pat
) == PARALLEL
)
3222 /* If we find a SET of something else, we can't
3227 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
3229 rtx part
= XVECEXP (pat
, 0, i
);
3231 if (GET_CODE (part
) == SET
3232 && SET_DEST (part
) != reg
)
3236 if (i
== XVECLEN (pat
, 0))
3237 delete_computation (our_prev
);
3239 else if (GET_CODE (pat
) == SET
3240 && REG_P (SET_DEST (pat
)))
3242 int dest_regno
= REGNO (SET_DEST (pat
));
3243 int dest_endregno
= END_REGNO (SET_DEST (pat
));
3244 int regno
= REGNO (reg
);
3245 int endregno
= END_REGNO (reg
);
3247 if (dest_regno
>= regno
3248 && dest_endregno
<= endregno
)
3249 delete_computation (our_prev
);
3251 /* We may have a multi-word hard register and some, but not
3252 all, of the words of the register are needed in subsequent
3253 insns. Write REG_UNUSED notes for those parts that were not
3255 else if (dest_regno
<= regno
3256 && dest_endregno
>= endregno
)
3260 add_reg_note (our_prev
, REG_UNUSED
, reg
);
3262 for (i
= dest_regno
; i
< dest_endregno
; i
++)
3263 if (! find_regno_note (our_prev
, REG_UNUSED
, i
))
3266 if (i
== dest_endregno
)
3267 delete_computation (our_prev
);
3274 /* If PAT references the register that dies here, it is an
3275 additional use. Hence any prior SET isn't dead. However, this
3276 insn becomes the new place for the REG_DEAD note. */
3277 if (reg_overlap_mentioned_p (reg
, pat
))
3279 XEXP (note
, 1) = REG_NOTES (our_prev
);
3280 REG_NOTES (our_prev
) = note
;
3286 /* Delete INSN and recursively delete insns that compute values used only
3287 by INSN. This uses the REG_DEAD notes computed during flow analysis.
3289 Look at all our REG_DEAD notes. If a previous insn does nothing other
3290 than set a register that dies in this insn, we can delete that insn
3293 On machines with CC0, if CC0 is used in this insn, we may be able to
3294 delete the insn that set it. */
3297 delete_computation (rtx insn
)
3302 if (reg_referenced_p (cc0_rtx
, PATTERN (insn
)))
3304 rtx prev
= prev_nonnote_insn (insn
);
3305 /* We assume that at this stage
3306 CC's are always set explicitly
3307 and always immediately before the jump that
3308 will use them. So if the previous insn
3309 exists to set the CC's, delete it
3310 (unless it performs auto-increments, etc.). */
3311 if (prev
&& NONJUMP_INSN_P (prev
)
3312 && sets_cc0_p (PATTERN (prev
)))
3314 if (sets_cc0_p (PATTERN (prev
)) > 0
3315 && ! side_effects_p (PATTERN (prev
)))
3316 delete_computation (prev
);
3318 /* Otherwise, show that cc0 won't be used. */
3319 add_reg_note (prev
, REG_UNUSED
, cc0_rtx
);
3324 for (note
= REG_NOTES (insn
); note
; note
= next
)
3326 next
= XEXP (note
, 1);
3328 if (REG_NOTE_KIND (note
) != REG_DEAD
3329 /* Verify that the REG_NOTE is legitimate. */
3330 || !REG_P (XEXP (note
, 0)))
3333 delete_prior_computation (note
, insn
);
3336 delete_related_insns (insn
);
3339 /* If all INSN does is set the pc, delete it,
3340 and delete the insn that set the condition codes for it
3341 if that's what the previous thing was. */
3344 delete_jump (rtx insn
)
3346 rtx set
= single_set (insn
);
3348 if (set
&& GET_CODE (SET_DEST (set
)) == PC
)
3349 delete_computation (insn
);
3353 /* Once we have tried two ways to fill a delay slot, make a pass over the
3354 code to try to improve the results and to do such things as more jump
3358 relax_delay_slots (rtx first
)
3360 rtx insn
, next
, pat
;
3361 rtx trial
, delay_insn
, target_label
;
3363 /* Look at every JUMP_INSN and see if we can improve it. */
3364 for (insn
= first
; insn
; insn
= next
)
3368 next
= next_active_insn (insn
);
3370 /* If this is a jump insn, see if it now jumps to a jump, jumps to
3371 the next insn, or jumps to a label that is not the last of a
3372 group of consecutive labels. */
3374 && (condjump_p (insn
) || condjump_in_parallel_p (insn
))
3375 && !ANY_RETURN_P (target_label
= JUMP_LABEL (insn
)))
3377 target_label
= skip_consecutive_labels (follow_jumps (target_label
));
3378 if (ANY_RETURN_P (target_label
))
3379 target_label
= find_end_label (target_label
);
3381 if (target_label
&& next_active_insn (target_label
) == next
3382 && ! condjump_in_parallel_p (insn
))
3388 if (target_label
&& target_label
!= JUMP_LABEL (insn
))
3389 reorg_redirect_jump (insn
, target_label
);
3391 /* See if this jump conditionally branches around an unconditional
3392 jump. If so, invert this jump and point it to the target of the
3394 if (next
&& simplejump_or_return_p (next
)
3395 && any_condjump_p (insn
)
3397 && next_active_insn (target_label
) == next_active_insn (next
)
3398 && no_labels_between_p (insn
, next
))
3400 rtx label
= JUMP_LABEL (next
);
3402 /* Be careful how we do this to avoid deleting code or
3403 labels that are momentarily dead. See similar optimization
3406 We also need to ensure we properly handle the case when
3407 invert_jump fails. */
3409 ++LABEL_NUSES (target_label
);
3410 if (!ANY_RETURN_P (label
))
3411 ++LABEL_NUSES (label
);
3413 if (invert_jump (insn
, label
, 1))
3415 delete_related_insns (next
);
3419 if (!ANY_RETURN_P (label
))
3420 --LABEL_NUSES (label
);
3422 if (--LABEL_NUSES (target_label
) == 0)
3423 delete_related_insns (target_label
);
3429 /* If this is an unconditional jump and the previous insn is a
3430 conditional jump, try reversing the condition of the previous
3431 insn and swapping our targets. The next pass might be able to
3434 Don't do this if we expect the conditional branch to be true, because
3435 we would then be making the more common case longer. */
3437 if (simplejump_or_return_p (insn
)
3438 && (other
= prev_active_insn (insn
)) != 0
3439 && any_condjump_p (other
)
3440 && no_labels_between_p (other
, insn
)
3441 && 0 > mostly_true_jump (other
,
3442 get_branch_condition (other
,
3443 JUMP_LABEL (other
))))
3445 rtx other_target
= JUMP_LABEL (other
);
3446 target_label
= JUMP_LABEL (insn
);
3448 if (invert_jump (other
, target_label
, 0))
3449 reorg_redirect_jump (insn
, other_target
);
3452 /* Now look only at cases where we have filled a delay slot. */
3453 if (!NONJUMP_INSN_P (insn
)
3454 || GET_CODE (PATTERN (insn
)) != SEQUENCE
)
3457 pat
= PATTERN (insn
);
3458 delay_insn
= XVECEXP (pat
, 0, 0);
3460 /* See if the first insn in the delay slot is redundant with some
3461 previous insn. Remove it from the delay slot if so; then set up
3462 to reprocess this insn. */
3463 if (redundant_insn (XVECEXP (pat
, 0, 1), delay_insn
, 0))
3465 delete_from_delay_slot (XVECEXP (pat
, 0, 1));
3466 next
= prev_active_insn (next
);
3470 /* See if we have a RETURN insn with a filled delay slot followed
3471 by a RETURN insn with an unfilled a delay slot. If so, we can delete
3472 the first RETURN (but not its delay insn). This gives the same
3473 effect in fewer instructions.
3475 Only do so if optimizing for size since this results in slower, but
3477 if (optimize_function_for_size_p (cfun
)
3478 && ANY_RETURN_P (PATTERN (delay_insn
))
3481 && PATTERN (next
) == PATTERN (delay_insn
))
3486 /* Delete the RETURN and just execute the delay list insns.
3488 We do this by deleting the INSN containing the SEQUENCE, then
3489 re-emitting the insns separately, and then deleting the RETURN.
3490 This allows the count of the jump target to be properly
3493 Note that we need to change the INSN_UID of the re-emitted insns
3494 since it is used to hash the insns for mark_target_live_regs and
3495 the re-emitted insns will no longer be wrapped up in a SEQUENCE.
3497 Clear the from target bit, since these insns are no longer
3499 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
3500 INSN_FROM_TARGET_P (XVECEXP (pat
, 0, i
)) = 0;
3502 trial
= PREV_INSN (insn
);
3503 delete_related_insns (insn
);
3504 gcc_assert (GET_CODE (pat
) == SEQUENCE
);
3505 add_insn_after (delay_insn
, trial
, NULL
);
3507 for (i
= 1; i
< XVECLEN (pat
, 0); i
++)
3508 after
= emit_copy_of_insn_after (XVECEXP (pat
, 0, i
), after
);
3509 delete_scheduled_jump (delay_insn
);
3513 /* Now look only at the cases where we have a filled JUMP_INSN. */
3514 if (!JUMP_P (XVECEXP (PATTERN (insn
), 0, 0))
3515 || ! (condjump_p (XVECEXP (PATTERN (insn
), 0, 0))
3516 || condjump_in_parallel_p (XVECEXP (PATTERN (insn
), 0, 0))))
3519 target_label
= JUMP_LABEL (delay_insn
);
3520 if (target_label
&& ANY_RETURN_P (target_label
))
3523 /* If this jump goes to another unconditional jump, thread it, but
3524 don't convert a jump into a RETURN here. */
3525 trial
= skip_consecutive_labels (follow_jumps (target_label
));
3526 if (ANY_RETURN_P (trial
))
3527 trial
= find_end_label (trial
);
3529 if (trial
&& trial
!= target_label
3530 && redirect_with_delay_slots_safe_p (delay_insn
, trial
, insn
))
3532 reorg_redirect_jump (delay_insn
, trial
);
3533 target_label
= trial
;
3536 /* If the first insn at TARGET_LABEL is redundant with a previous
3537 insn, redirect the jump to the following insn and process again.
3538 We use next_real_insn instead of next_active_insn so we
3539 don't skip USE-markers, or we'll end up with incorrect
3541 trial
= next_real_insn (target_label
);
3542 if (trial
&& GET_CODE (PATTERN (trial
)) != SEQUENCE
3543 && redundant_insn (trial
, insn
, 0)
3544 && ! can_throw_internal (trial
))
3546 /* Figure out where to emit the special USE insn so we don't
3547 later incorrectly compute register live/death info. */
3548 rtx tmp
= next_active_insn (trial
);
3550 tmp
= find_end_label (simple_return_rtx
);
3554 /* Insert the special USE insn and update dataflow info. */
3555 update_block (trial
, tmp
);
3557 /* Now emit a label before the special USE insn, and
3558 redirect our jump to the new label. */
3559 target_label
= get_label_before (PREV_INSN (tmp
));
3560 reorg_redirect_jump (delay_insn
, target_label
);
3566 /* Similarly, if it is an unconditional jump with one insn in its
3567 delay list and that insn is redundant, thread the jump. */
3568 if (trial
&& GET_CODE (PATTERN (trial
)) == SEQUENCE
3569 && XVECLEN (PATTERN (trial
), 0) == 2
3570 && JUMP_P (XVECEXP (PATTERN (trial
), 0, 0))
3571 && simplejump_or_return_p (XVECEXP (PATTERN (trial
), 0, 0))
3572 && redundant_insn (XVECEXP (PATTERN (trial
), 0, 1), insn
, 0))
3574 target_label
= JUMP_LABEL (XVECEXP (PATTERN (trial
), 0, 0));
3575 if (ANY_RETURN_P (target_label
))
3576 target_label
= find_end_label (target_label
);
3579 && redirect_with_delay_slots_safe_p (delay_insn
, target_label
,
3582 reorg_redirect_jump (delay_insn
, target_label
);
3588 if (! INSN_ANNULLED_BRANCH_P (delay_insn
)
3589 && prev_active_insn (target_label
) == insn
3590 && ! condjump_in_parallel_p (delay_insn
)
3592 /* If the last insn in the delay slot sets CC0 for some insn,
3593 various code assumes that it is in a delay slot. We could
3594 put it back where it belonged and delete the register notes,
3595 but it doesn't seem worthwhile in this uncommon case. */
3596 && ! find_reg_note (XVECEXP (pat
, 0, XVECLEN (pat
, 0) - 1),
3597 REG_CC_USER
, NULL_RTX
)
3604 /* All this insn does is execute its delay list and jump to the
3605 following insn. So delete the jump and just execute the delay
3608 We do this by deleting the INSN containing the SEQUENCE, then
3609 re-emitting the insns separately, and then deleting the jump.
3610 This allows the count of the jump target to be properly
3613 Note that we need to change the INSN_UID of the re-emitted insns
3614 since it is used to hash the insns for mark_target_live_regs and
3615 the re-emitted insns will no longer be wrapped up in a SEQUENCE.
3617 Clear the from target bit, since these insns are no longer
3619 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
3620 INSN_FROM_TARGET_P (XVECEXP (pat
, 0, i
)) = 0;
3622 trial
= PREV_INSN (insn
);
3623 delete_related_insns (insn
);
3624 gcc_assert (GET_CODE (pat
) == SEQUENCE
);
3625 add_insn_after (delay_insn
, trial
, NULL
);
3627 for (i
= 1; i
< XVECLEN (pat
, 0); i
++)
3628 after
= emit_copy_of_insn_after (XVECEXP (pat
, 0, i
), after
);
3629 delete_scheduled_jump (delay_insn
);
3633 /* See if this is an unconditional jump around a single insn which is
3634 identical to the one in its delay slot. In this case, we can just
3635 delete the branch and the insn in its delay slot. */
3636 if (next
&& NONJUMP_INSN_P (next
)
3637 && prev_label (next_active_insn (next
)) == target_label
3638 && simplejump_p (insn
)
3639 && XVECLEN (pat
, 0) == 2
3640 && rtx_equal_p (PATTERN (next
), PATTERN (XVECEXP (pat
, 0, 1))))
3642 delete_related_insns (insn
);
3646 /* See if this jump (with its delay slots) conditionally branches
3647 around an unconditional jump (without delay slots). If so, invert
3648 this jump and point it to the target of the second jump. We cannot
3649 do this for annulled jumps, though. Again, don't convert a jump to
3651 if (! INSN_ANNULLED_BRANCH_P (delay_insn
)
3652 && any_condjump_p (delay_insn
)
3653 && next
&& simplejump_or_return_p (next
)
3654 && next_active_insn (target_label
) == next_active_insn (next
)
3655 && no_labels_between_p (insn
, next
))
3657 rtx label
= JUMP_LABEL (next
);
3658 rtx old_label
= JUMP_LABEL (delay_insn
);
3660 if (ANY_RETURN_P (label
))
3661 label
= find_end_label (label
);
3663 /* find_end_label can generate a new label. Check this first. */
3665 && no_labels_between_p (insn
, next
)
3666 && redirect_with_delay_slots_safe_p (delay_insn
, label
, insn
))
3668 /* Be careful how we do this to avoid deleting code or labels
3669 that are momentarily dead. See similar optimization in
3672 ++LABEL_NUSES (old_label
);
3674 if (invert_jump (delay_insn
, label
, 1))
3678 /* Must update the INSN_FROM_TARGET_P bits now that
3679 the branch is reversed, so that mark_target_live_regs
3680 will handle the delay slot insn correctly. */
3681 for (i
= 1; i
< XVECLEN (PATTERN (insn
), 0); i
++)
3683 rtx slot
= XVECEXP (PATTERN (insn
), 0, i
);
3684 INSN_FROM_TARGET_P (slot
) = ! INSN_FROM_TARGET_P (slot
);
3687 delete_related_insns (next
);
3691 if (old_label
&& --LABEL_NUSES (old_label
) == 0)
3692 delete_related_insns (old_label
);
3697 /* If we own the thread opposite the way this insn branches, see if we
3698 can merge its delay slots with following insns. */
3699 if (INSN_FROM_TARGET_P (XVECEXP (pat
, 0, 1))
3700 && own_thread_p (NEXT_INSN (insn
), 0, 1))
3701 try_merge_delay_insns (insn
, next
);
3702 else if (! INSN_FROM_TARGET_P (XVECEXP (pat
, 0, 1))
3703 && own_thread_p (target_label
, target_label
, 0))
3704 try_merge_delay_insns (insn
, next_active_insn (target_label
));
3706 /* If we get here, we haven't deleted INSN. But we may have deleted
3707 NEXT, so recompute it. */
3708 next
= next_active_insn (insn
);
3713 /* Look for filled jumps to the end of function label. We can try to convert
3714 them into RETURN insns if the insns in the delay slot are valid for the
3718 make_return_insns (rtx first
)
3720 rtx insn
, jump_insn
, pat
;
3721 rtx real_return_label
= function_return_label
;
3722 rtx real_simple_return_label
= function_simple_return_label
;
3725 #ifdef DELAY_SLOTS_FOR_EPILOGUE
3726 /* If a previous pass filled delay slots in the epilogue, things get a
3727 bit more complicated, as those filler insns would generally (without
3728 data flow analysis) have to be executed after any existing branch
3729 delay slot filler insns. It is also unknown whether such a
3730 transformation would actually be profitable. Note that the existing
3731 code only cares for branches with (some) filled delay slots. */
3732 if (crtl
->epilogue_delay_list
!= NULL
)
3736 /* See if there is a RETURN insn in the function other than the one we
3737 made for END_OF_FUNCTION_LABEL. If so, set up anything we can't change
3738 into a RETURN to jump to it. */
3739 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
3740 if (JUMP_P (insn
) && ANY_RETURN_P (PATTERN (insn
)))
3742 rtx t
= get_label_before (insn
);
3743 if (PATTERN (insn
) == ret_rtx
)
3744 real_return_label
= t
;
3746 real_simple_return_label
= t
;
3750 /* Show an extra usage of REAL_RETURN_LABEL so it won't go away if it
3751 was equal to END_OF_FUNCTION_LABEL. */
3752 if (real_return_label
)
3753 LABEL_NUSES (real_return_label
)++;
3754 if (real_simple_return_label
)
3755 LABEL_NUSES (real_simple_return_label
)++;
3757 /* Clear the list of insns to fill so we can use it. */
3758 obstack_free (&unfilled_slots_obstack
, unfilled_firstobj
);
3760 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
3763 rtx kind
, real_label
;
3765 /* Only look at filled JUMP_INSNs that go to the end of function
3767 if (!NONJUMP_INSN_P (insn
)
3768 || GET_CODE (PATTERN (insn
)) != SEQUENCE
3769 || !jump_to_label_p (XVECEXP (PATTERN (insn
), 0, 0)))
3772 if (JUMP_LABEL (XVECEXP (PATTERN (insn
), 0, 0)) == function_return_label
)
3775 real_label
= real_return_label
;
3777 else if (JUMP_LABEL (XVECEXP (PATTERN (insn
), 0, 0))
3778 == function_simple_return_label
)
3780 kind
= simple_return_rtx
;
3781 real_label
= real_simple_return_label
;
3786 pat
= PATTERN (insn
);
3787 jump_insn
= XVECEXP (pat
, 0, 0);
3789 /* If we can't make the jump into a RETURN, try to redirect it to the best
3790 RETURN and go on to the next insn. */
3791 if (!reorg_redirect_jump (jump_insn
, kind
))
3793 /* Make sure redirecting the jump will not invalidate the delay
3795 if (redirect_with_delay_slots_safe_p (jump_insn
, real_label
, insn
))
3796 reorg_redirect_jump (jump_insn
, real_label
);
3800 /* See if this RETURN can accept the insns current in its delay slot.
3801 It can if it has more or an equal number of slots and the contents
3802 of each is valid. */
3804 flags
= get_jump_flags (jump_insn
, JUMP_LABEL (jump_insn
));
3805 slots
= num_delay_slots (jump_insn
);
3806 if (slots
>= XVECLEN (pat
, 0) - 1)
3808 for (i
= 1; i
< XVECLEN (pat
, 0); i
++)
3810 #ifdef ANNUL_IFFALSE_SLOTS
3811 (INSN_ANNULLED_BRANCH_P (jump_insn
)
3812 && INSN_FROM_TARGET_P (XVECEXP (pat
, 0, i
)))
3813 ? eligible_for_annul_false (jump_insn
, i
- 1,
3814 XVECEXP (pat
, 0, i
), flags
) :
3816 #ifdef ANNUL_IFTRUE_SLOTS
3817 (INSN_ANNULLED_BRANCH_P (jump_insn
)
3818 && ! INSN_FROM_TARGET_P (XVECEXP (pat
, 0, i
)))
3819 ? eligible_for_annul_true (jump_insn
, i
- 1,
3820 XVECEXP (pat
, 0, i
), flags
) :
3822 eligible_for_delay (jump_insn
, i
- 1,
3823 XVECEXP (pat
, 0, i
), flags
)))
3829 if (i
== XVECLEN (pat
, 0))
3832 /* We have to do something with this insn. If it is an unconditional
3833 RETURN, delete the SEQUENCE and output the individual insns,
3834 followed by the RETURN. Then set things up so we try to find
3835 insns for its delay slots, if it needs some. */
3836 if (ANY_RETURN_P (PATTERN (jump_insn
)))
3838 rtx prev
= PREV_INSN (insn
);
3840 delete_related_insns (insn
);
3841 for (i
= 1; i
< XVECLEN (pat
, 0); i
++)
3842 prev
= emit_insn_after (PATTERN (XVECEXP (pat
, 0, i
)), prev
);
3844 insn
= emit_jump_insn_after (PATTERN (jump_insn
), prev
);
3845 emit_barrier_after (insn
);
3848 obstack_ptr_grow (&unfilled_slots_obstack
, insn
);
3851 /* It is probably more efficient to keep this with its current
3852 delay slot as a branch to a RETURN. */
3853 reorg_redirect_jump (jump_insn
, real_label
);
3856 /* Now delete REAL_RETURN_LABEL if we never used it. Then try to fill any
3857 new delay slots we have created. */
3858 if (real_return_label
!= NULL_RTX
&& --LABEL_NUSES (real_return_label
) == 0)
3859 delete_related_insns (real_return_label
);
3860 if (real_simple_return_label
!= NULL_RTX
3861 && --LABEL_NUSES (real_simple_return_label
) == 0)
3862 delete_related_insns (real_simple_return_label
);
3864 fill_simple_delay_slots (1);
3865 fill_simple_delay_slots (0);
3868 /* Try to find insns to place in delay slots. */
3871 dbr_schedule (rtx first
)
3873 rtx insn
, next
, epilogue_insn
= 0;
3875 bool need_return_insns
;
3877 /* If the current function has no insns other than the prologue and
3878 epilogue, then do not try to fill any delay slots. */
3879 if (n_basic_blocks
== NUM_FIXED_BLOCKS
)
3882 /* Find the highest INSN_UID and allocate and initialize our map from
3883 INSN_UID's to position in code. */
3884 for (max_uid
= 0, insn
= first
; insn
; insn
= NEXT_INSN (insn
))
3886 if (INSN_UID (insn
) > max_uid
)
3887 max_uid
= INSN_UID (insn
);
3889 && NOTE_KIND (insn
) == NOTE_INSN_EPILOGUE_BEG
)
3890 epilogue_insn
= insn
;
3893 uid_to_ruid
= XNEWVEC (int, max_uid
+ 1);
3894 for (i
= 0, insn
= first
; insn
; i
++, insn
= NEXT_INSN (insn
))
3895 uid_to_ruid
[INSN_UID (insn
)] = i
;
3897 /* Initialize the list of insns that need filling. */
3898 if (unfilled_firstobj
== 0)
3900 gcc_obstack_init (&unfilled_slots_obstack
);
3901 unfilled_firstobj
= XOBNEWVAR (&unfilled_slots_obstack
, rtx
, 0);
3904 for (insn
= next_active_insn (first
); insn
; insn
= next_active_insn (insn
))
3909 INSN_ANNULLED_BRANCH_P (insn
) = 0;
3910 INSN_FROM_TARGET_P (insn
) = 0;
3912 /* Skip vector tables. We can't get attributes for them. */
3913 if (JUMP_TABLE_DATA_P (insn
))
3916 if (num_delay_slots (insn
) > 0)
3917 obstack_ptr_grow (&unfilled_slots_obstack
, insn
);
3919 /* Ensure all jumps go to the last of a set of consecutive labels. */
3921 && (condjump_p (insn
) || condjump_in_parallel_p (insn
))
3922 && !ANY_RETURN_P (JUMP_LABEL (insn
))
3923 && ((target
= skip_consecutive_labels (JUMP_LABEL (insn
)))
3924 != JUMP_LABEL (insn
)))
3925 redirect_jump (insn
, target
, 1);
3928 init_resource_info (epilogue_insn
);
3930 /* Show we haven't computed an end-of-function label yet. */
3931 function_return_label
= function_simple_return_label
= NULL_RTX
;
3933 /* Initialize the statistics for this function. */
3934 memset (num_insns_needing_delays
, 0, sizeof num_insns_needing_delays
);
3935 memset (num_filled_delays
, 0, sizeof num_filled_delays
);
3937 /* Now do the delay slot filling. Try everything twice in case earlier
3938 changes make more slots fillable. */
3940 for (reorg_pass_number
= 0;
3941 reorg_pass_number
< MAX_REORG_PASSES
;
3942 reorg_pass_number
++)
3944 fill_simple_delay_slots (1);
3945 fill_simple_delay_slots (0);
3946 fill_eager_delay_slots ();
3947 relax_delay_slots (first
);
3950 /* If we made an end of function label, indicate that it is now
3951 safe to delete it by undoing our prior adjustment to LABEL_NUSES.
3952 If it is now unused, delete it. */
3953 if (function_return_label
&& --LABEL_NUSES (function_return_label
) == 0)
3954 delete_related_insns (function_return_label
);
3955 if (function_simple_return_label
3956 && --LABEL_NUSES (function_simple_return_label
) == 0)
3957 delete_related_insns (function_simple_return_label
);
3959 need_return_insns
= false;
3961 need_return_insns
|= HAVE_return
&& function_return_label
!= 0;
3963 #ifdef HAVE_simple_return
3964 need_return_insns
|= HAVE_simple_return
&& function_simple_return_label
!= 0;
3966 if (need_return_insns
)
3967 make_return_insns (first
);
3969 /* Delete any USE insns made by update_block; subsequent passes don't need
3970 them or know how to deal with them. */
3971 for (insn
= first
; insn
; insn
= next
)
3973 next
= NEXT_INSN (insn
);
3975 if (NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == USE
3976 && INSN_P (XEXP (PATTERN (insn
), 0)))
3977 next
= delete_related_insns (insn
);
3980 obstack_free (&unfilled_slots_obstack
, unfilled_firstobj
);
3982 /* It is not clear why the line below is needed, but it does seem to be. */
3983 unfilled_firstobj
= XOBNEWVAR (&unfilled_slots_obstack
, rtx
, 0);
3987 int i
, j
, need_comma
;
3988 int total_delay_slots
[MAX_DELAY_HISTOGRAM
+ 1];
3989 int total_annul_slots
[MAX_DELAY_HISTOGRAM
+ 1];
3991 for (reorg_pass_number
= 0;
3992 reorg_pass_number
< MAX_REORG_PASSES
;
3993 reorg_pass_number
++)
3995 fprintf (dump_file
, ";; Reorg pass #%d:\n", reorg_pass_number
+ 1);
3996 for (i
= 0; i
< NUM_REORG_FUNCTIONS
; i
++)
3999 fprintf (dump_file
, ";; Reorg function #%d\n", i
);
4001 fprintf (dump_file
, ";; %d insns needing delay slots\n;; ",
4002 num_insns_needing_delays
[i
][reorg_pass_number
]);
4004 for (j
= 0; j
< MAX_DELAY_HISTOGRAM
+ 1; j
++)
4005 if (num_filled_delays
[i
][j
][reorg_pass_number
])
4008 fprintf (dump_file
, ", ");
4010 fprintf (dump_file
, "%d got %d delays",
4011 num_filled_delays
[i
][j
][reorg_pass_number
], j
);
4013 fprintf (dump_file
, "\n");
4016 memset (total_delay_slots
, 0, sizeof total_delay_slots
);
4017 memset (total_annul_slots
, 0, sizeof total_annul_slots
);
4018 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
4020 if (! INSN_DELETED_P (insn
)
4021 && NONJUMP_INSN_P (insn
)
4022 && GET_CODE (PATTERN (insn
)) != USE
4023 && GET_CODE (PATTERN (insn
)) != CLOBBER
)
4025 if (GET_CODE (PATTERN (insn
)) == SEQUENCE
)
4028 j
= XVECLEN (PATTERN (insn
), 0) - 1;
4029 if (j
> MAX_DELAY_HISTOGRAM
)
4030 j
= MAX_DELAY_HISTOGRAM
;
4031 control
= XVECEXP (PATTERN (insn
), 0, 0);
4032 if (JUMP_P (control
) && INSN_ANNULLED_BRANCH_P (control
))
4033 total_annul_slots
[j
]++;
4035 total_delay_slots
[j
]++;
4037 else if (num_delay_slots (insn
) > 0)
4038 total_delay_slots
[0]++;
4041 fprintf (dump_file
, ";; Reorg totals: ");
4043 for (j
= 0; j
< MAX_DELAY_HISTOGRAM
+ 1; j
++)
4045 if (total_delay_slots
[j
])
4048 fprintf (dump_file
, ", ");
4050 fprintf (dump_file
, "%d got %d delays", total_delay_slots
[j
], j
);
4053 fprintf (dump_file
, "\n");
4054 #if defined (ANNUL_IFTRUE_SLOTS) || defined (ANNUL_IFFALSE_SLOTS)
4055 fprintf (dump_file
, ";; Reorg annuls: ");
4057 for (j
= 0; j
< MAX_DELAY_HISTOGRAM
+ 1; j
++)
4059 if (total_annul_slots
[j
])
4062 fprintf (dump_file
, ", ");
4064 fprintf (dump_file
, "%d got %d delays", total_annul_slots
[j
], j
);
4067 fprintf (dump_file
, "\n");
4069 fprintf (dump_file
, "\n");
4072 /* For all JUMP insns, fill in branch prediction notes, so that during
4073 assembler output a target can set branch prediction bits in the code.
4074 We have to do this now, as up until this point the destinations of
4075 JUMPS can be moved around and changed, but past right here that cannot
4077 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
4081 if (NONJUMP_INSN_P (insn
))
4083 rtx pat
= PATTERN (insn
);
4085 if (GET_CODE (pat
) == SEQUENCE
)
4086 insn
= XVECEXP (pat
, 0, 0);
4091 pred_flags
= get_jump_flags (insn
, JUMP_LABEL (insn
));
4092 add_reg_note (insn
, REG_BR_PRED
, GEN_INT (pred_flags
));
4094 free_resource_info ();
4096 #ifdef DELAY_SLOTS_FOR_EPILOGUE
4097 /* SPARC assembler, for instance, emit warning when debug info is output
4098 into the delay slot. */
4102 for (link
= crtl
->epilogue_delay_list
;
4104 link
= XEXP (link
, 1))
4105 INSN_LOCATOR (XEXP (link
, 0)) = 0;
4109 crtl
->dbr_scheduled_p
= true;
4111 #endif /* DELAY_SLOTS */
4114 gate_handle_delay_slots (void)
4117 /* At -O0 dataflow info isn't updated after RA. */
4118 return optimize
> 0 && flag_delayed_branch
&& !crtl
->dbr_scheduled_p
;
4124 /* Run delay slot optimization. */
4126 rest_of_handle_delay_slots (void)
4129 dbr_schedule (get_insns ());
4134 struct rtl_opt_pass pass_delay_slots
=
4139 gate_handle_delay_slots
, /* gate */
4140 rest_of_handle_delay_slots
, /* execute */
4143 0, /* static_pass_number */
4144 TV_DBR_SCHED
, /* tv_id */
4145 0, /* properties_required */
4146 0, /* properties_provided */
4147 0, /* properties_destroyed */
4148 0, /* todo_flags_start */
4149 TODO_ggc_collect
/* todo_flags_finish */
4153 /* Machine dependent reorg pass. */
4155 gate_handle_machine_reorg (void)
4157 return targetm
.machine_dependent_reorg
!= 0;
4162 rest_of_handle_machine_reorg (void)
4164 targetm
.machine_dependent_reorg ();
4168 struct rtl_opt_pass pass_machine_reorg
=
4173 gate_handle_machine_reorg
, /* gate */
4174 rest_of_handle_machine_reorg
, /* execute */
4177 0, /* static_pass_number */
4178 TV_MACH_DEP
, /* tv_id */
4179 0, /* properties_required */
4180 0, /* properties_provided */
4181 0, /* properties_destroyed */
4182 0, /* todo_flags_start */
4183 TODO_ggc_collect
/* todo_flags_finish */