PR c++/65942
[official-gcc.git] / gcc / stmt.c
bloba04f69bc660f81fa7aa434199bcb1cef26a46987
1 /* Expands front end tree to back end RTL for GCC
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file handles the generation of rtl code from tree structure
21 above the level of expressions, using subroutines in exp*.c and emit-rtl.c.
22 The functions whose names start with `expand_' are called by the
23 expander to generate RTL instructions for various kinds of constructs. */
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "tm.h"
30 #include "rtl.h"
31 #include "hard-reg-set.h"
32 #include "hash-set.h"
33 #include "machmode.h"
34 #include "vec.h"
35 #include "double-int.h"
36 #include "input.h"
37 #include "alias.h"
38 #include "symtab.h"
39 #include "wide-int.h"
40 #include "inchash.h"
41 #include "tree.h"
42 #include "fold-const.h"
43 #include "varasm.h"
44 #include "stor-layout.h"
45 #include "tm_p.h"
46 #include "flags.h"
47 #include "except.h"
48 #include "function.h"
49 #include "insn-config.h"
50 #include "hashtab.h"
51 #include "statistics.h"
52 #include "real.h"
53 #include "fixed-value.h"
54 #include "expmed.h"
55 #include "dojump.h"
56 #include "explow.h"
57 #include "calls.h"
58 #include "emit-rtl.h"
59 #include "stmt.h"
60 #include "expr.h"
61 #include "libfuncs.h"
62 #include "recog.h"
63 #include "diagnostic-core.h"
64 #include "output.h"
65 #include "langhooks.h"
66 #include "predict.h"
67 #include "insn-codes.h"
68 #include "optabs.h"
69 #include "target.h"
70 #include "cfganal.h"
71 #include "basic-block.h"
72 #include "tree-ssa-alias.h"
73 #include "internal-fn.h"
74 #include "gimple-expr.h"
75 #include "is-a.h"
76 #include "gimple.h"
77 #include "regs.h"
78 #include "alloc-pool.h"
79 #include "pretty-print.h"
80 #include "params.h"
81 #include "dumpfile.h"
82 #include "builtins.h"
85 /* Functions and data structures for expanding case statements. */
87 /* Case label structure, used to hold info on labels within case
88 statements. We handle "range" labels; for a single-value label
89 as in C, the high and low limits are the same.
91 We start with a vector of case nodes sorted in ascending order, and
92 the default label as the last element in the vector. Before expanding
93 to RTL, we transform this vector into a list linked via the RIGHT
94 fields in the case_node struct. Nodes with higher case values are
95 later in the list.
97 Switch statements can be output in three forms. A branch table is
98 used if there are more than a few labels and the labels are dense
99 within the range between the smallest and largest case value. If a
100 branch table is used, no further manipulations are done with the case
101 node chain.
103 The alternative to the use of a branch table is to generate a series
104 of compare and jump insns. When that is done, we use the LEFT, RIGHT,
105 and PARENT fields to hold a binary tree. Initially the tree is
106 totally unbalanced, with everything on the right. We balance the tree
107 with nodes on the left having lower case values than the parent
108 and nodes on the right having higher values. We then output the tree
109 in order.
111 For very small, suitable switch statements, we can generate a series
112 of simple bit test and branches instead. */
114 struct case_node
116 struct case_node *left; /* Left son in binary tree */
117 struct case_node *right; /* Right son in binary tree; also node chain */
118 struct case_node *parent; /* Parent of node in binary tree */
119 tree low; /* Lowest index value for this label */
120 tree high; /* Highest index value for this label */
121 tree code_label; /* Label to jump to when node matches */
122 int prob; /* Probability of taking this case. */
123 /* Probability of reaching subtree rooted at this node */
124 int subtree_prob;
127 typedef struct case_node case_node;
128 typedef struct case_node *case_node_ptr;
130 extern basic_block label_to_block_fn (struct function *, tree);
132 static bool check_unique_operand_names (tree, tree, tree);
133 static char *resolve_operand_name_1 (char *, tree, tree, tree);
134 static void balance_case_nodes (case_node_ptr *, case_node_ptr);
135 static int node_has_low_bound (case_node_ptr, tree);
136 static int node_has_high_bound (case_node_ptr, tree);
137 static int node_is_bounded (case_node_ptr, tree);
138 static void emit_case_nodes (rtx, case_node_ptr, rtx_code_label *, int, tree);
140 /* Return the rtx-label that corresponds to a LABEL_DECL,
141 creating it if necessary. */
143 rtx_insn *
144 label_rtx (tree label)
146 gcc_assert (TREE_CODE (label) == LABEL_DECL);
148 if (!DECL_RTL_SET_P (label))
150 rtx_code_label *r = gen_label_rtx ();
151 SET_DECL_RTL (label, r);
152 if (FORCED_LABEL (label) || DECL_NONLOCAL (label))
153 LABEL_PRESERVE_P (r) = 1;
156 return as_a <rtx_insn *> (DECL_RTL (label));
159 /* As above, but also put it on the forced-reference list of the
160 function that contains it. */
161 rtx_insn *
162 force_label_rtx (tree label)
164 rtx_insn *ref = label_rtx (label);
165 tree function = decl_function_context (label);
167 gcc_assert (function);
169 forced_labels = gen_rtx_INSN_LIST (VOIDmode, ref, forced_labels);
170 return ref;
173 /* As label_rtx, but ensures (in check build), that returned value is
174 an existing label (i.e. rtx with code CODE_LABEL). */
175 rtx_code_label *
176 jump_target_rtx (tree label)
178 return as_a <rtx_code_label *> (label_rtx (label));
181 /* Add an unconditional jump to LABEL as the next sequential instruction. */
183 void
184 emit_jump (rtx label)
186 do_pending_stack_adjust ();
187 emit_jump_insn (gen_jump (label));
188 emit_barrier ();
191 /* Handle goto statements and the labels that they can go to. */
193 /* Specify the location in the RTL code of a label LABEL,
194 which is a LABEL_DECL tree node.
196 This is used for the kind of label that the user can jump to with a
197 goto statement, and for alternatives of a switch or case statement.
198 RTL labels generated for loops and conditionals don't go through here;
199 they are generated directly at the RTL level, by other functions below.
201 Note that this has nothing to do with defining label *names*.
202 Languages vary in how they do that and what that even means. */
204 void
205 expand_label (tree label)
207 rtx_code_label *label_r = jump_target_rtx (label);
209 do_pending_stack_adjust ();
210 emit_label (label_r);
211 if (DECL_NAME (label))
212 LABEL_NAME (DECL_RTL (label)) = IDENTIFIER_POINTER (DECL_NAME (label));
214 if (DECL_NONLOCAL (label))
216 expand_builtin_setjmp_receiver (NULL);
217 nonlocal_goto_handler_labels
218 = gen_rtx_INSN_LIST (VOIDmode, label_r,
219 nonlocal_goto_handler_labels);
222 if (FORCED_LABEL (label))
223 forced_labels = gen_rtx_INSN_LIST (VOIDmode, label_r, forced_labels);
225 if (DECL_NONLOCAL (label) || FORCED_LABEL (label))
226 maybe_set_first_label_num (label_r);
229 /* Parse the output constraint pointed to by *CONSTRAINT_P. It is the
230 OPERAND_NUMth output operand, indexed from zero. There are NINPUTS
231 inputs and NOUTPUTS outputs to this extended-asm. Upon return,
232 *ALLOWS_MEM will be TRUE iff the constraint allows the use of a
233 memory operand. Similarly, *ALLOWS_REG will be TRUE iff the
234 constraint allows the use of a register operand. And, *IS_INOUT
235 will be true if the operand is read-write, i.e., if it is used as
236 an input as well as an output. If *CONSTRAINT_P is not in
237 canonical form, it will be made canonical. (Note that `+' will be
238 replaced with `=' as part of this process.)
240 Returns TRUE if all went well; FALSE if an error occurred. */
242 bool
243 parse_output_constraint (const char **constraint_p, int operand_num,
244 int ninputs, int noutputs, bool *allows_mem,
245 bool *allows_reg, bool *is_inout)
247 const char *constraint = *constraint_p;
248 const char *p;
250 /* Assume the constraint doesn't allow the use of either a register
251 or memory. */
252 *allows_mem = false;
253 *allows_reg = false;
255 /* Allow the `=' or `+' to not be at the beginning of the string,
256 since it wasn't explicitly documented that way, and there is a
257 large body of code that puts it last. Swap the character to
258 the front, so as not to uglify any place else. */
259 p = strchr (constraint, '=');
260 if (!p)
261 p = strchr (constraint, '+');
263 /* If the string doesn't contain an `=', issue an error
264 message. */
265 if (!p)
267 error ("output operand constraint lacks %<=%>");
268 return false;
271 /* If the constraint begins with `+', then the operand is both read
272 from and written to. */
273 *is_inout = (*p == '+');
275 /* Canonicalize the output constraint so that it begins with `='. */
276 if (p != constraint || *is_inout)
278 char *buf;
279 size_t c_len = strlen (constraint);
281 if (p != constraint)
282 warning (0, "output constraint %qc for operand %d "
283 "is not at the beginning",
284 *p, operand_num);
286 /* Make a copy of the constraint. */
287 buf = XALLOCAVEC (char, c_len + 1);
288 strcpy (buf, constraint);
289 /* Swap the first character and the `=' or `+'. */
290 buf[p - constraint] = buf[0];
291 /* Make sure the first character is an `='. (Until we do this,
292 it might be a `+'.) */
293 buf[0] = '=';
294 /* Replace the constraint with the canonicalized string. */
295 *constraint_p = ggc_alloc_string (buf, c_len);
296 constraint = *constraint_p;
299 /* Loop through the constraint string. */
300 for (p = constraint + 1; *p; p += CONSTRAINT_LEN (*p, p))
301 switch (*p)
303 case '+':
304 case '=':
305 error ("operand constraint contains incorrectly positioned "
306 "%<+%> or %<=%>");
307 return false;
309 case '%':
310 if (operand_num + 1 == ninputs + noutputs)
312 error ("%<%%%> constraint used with last operand");
313 return false;
315 break;
317 case '?': case '!': case '*': case '&': case '#':
318 case '$': case '^':
319 case 'E': case 'F': case 'G': case 'H':
320 case 's': case 'i': case 'n':
321 case 'I': case 'J': case 'K': case 'L': case 'M':
322 case 'N': case 'O': case 'P': case ',':
323 break;
325 case '0': case '1': case '2': case '3': case '4':
326 case '5': case '6': case '7': case '8': case '9':
327 case '[':
328 error ("matching constraint not valid in output operand");
329 return false;
331 case '<': case '>':
332 /* ??? Before flow, auto inc/dec insns are not supposed to exist,
333 excepting those that expand_call created. So match memory
334 and hope. */
335 *allows_mem = true;
336 break;
338 case 'g': case 'X':
339 *allows_reg = true;
340 *allows_mem = true;
341 break;
343 default:
344 if (!ISALPHA (*p))
345 break;
346 enum constraint_num cn = lookup_constraint (p);
347 if (reg_class_for_constraint (cn) != NO_REGS
348 || insn_extra_address_constraint (cn))
349 *allows_reg = true;
350 else if (insn_extra_memory_constraint (cn))
351 *allows_mem = true;
352 else
353 insn_extra_constraint_allows_reg_mem (cn, allows_reg, allows_mem);
354 break;
357 return true;
360 /* Similar, but for input constraints. */
362 bool
363 parse_input_constraint (const char **constraint_p, int input_num,
364 int ninputs, int noutputs, int ninout,
365 const char * const * constraints,
366 bool *allows_mem, bool *allows_reg)
368 const char *constraint = *constraint_p;
369 const char *orig_constraint = constraint;
370 size_t c_len = strlen (constraint);
371 size_t j;
372 bool saw_match = false;
374 /* Assume the constraint doesn't allow the use of either
375 a register or memory. */
376 *allows_mem = false;
377 *allows_reg = false;
379 /* Make sure constraint has neither `=', `+', nor '&'. */
381 for (j = 0; j < c_len; j += CONSTRAINT_LEN (constraint[j], constraint+j))
382 switch (constraint[j])
384 case '+': case '=': case '&':
385 if (constraint == orig_constraint)
387 error ("input operand constraint contains %qc", constraint[j]);
388 return false;
390 break;
392 case '%':
393 if (constraint == orig_constraint
394 && input_num + 1 == ninputs - ninout)
396 error ("%<%%%> constraint used with last operand");
397 return false;
399 break;
401 case '<': case '>':
402 case '?': case '!': case '*': case '#':
403 case '$': case '^':
404 case 'E': case 'F': case 'G': case 'H':
405 case 's': case 'i': case 'n':
406 case 'I': case 'J': case 'K': case 'L': case 'M':
407 case 'N': case 'O': case 'P': case ',':
408 break;
410 /* Whether or not a numeric constraint allows a register is
411 decided by the matching constraint, and so there is no need
412 to do anything special with them. We must handle them in
413 the default case, so that we don't unnecessarily force
414 operands to memory. */
415 case '0': case '1': case '2': case '3': case '4':
416 case '5': case '6': case '7': case '8': case '9':
418 char *end;
419 unsigned long match;
421 saw_match = true;
423 match = strtoul (constraint + j, &end, 10);
424 if (match >= (unsigned long) noutputs)
426 error ("matching constraint references invalid operand number");
427 return false;
430 /* Try and find the real constraint for this dup. Only do this
431 if the matching constraint is the only alternative. */
432 if (*end == '\0'
433 && (j == 0 || (j == 1 && constraint[0] == '%')))
435 constraint = constraints[match];
436 *constraint_p = constraint;
437 c_len = strlen (constraint);
438 j = 0;
439 /* ??? At the end of the loop, we will skip the first part of
440 the matched constraint. This assumes not only that the
441 other constraint is an output constraint, but also that
442 the '=' or '+' come first. */
443 break;
445 else
446 j = end - constraint;
447 /* Anticipate increment at end of loop. */
448 j--;
450 /* Fall through. */
452 case 'g': case 'X':
453 *allows_reg = true;
454 *allows_mem = true;
455 break;
457 default:
458 if (! ISALPHA (constraint[j]))
460 error ("invalid punctuation %qc in constraint", constraint[j]);
461 return false;
463 enum constraint_num cn = lookup_constraint (constraint + j);
464 if (reg_class_for_constraint (cn) != NO_REGS
465 || insn_extra_address_constraint (cn))
466 *allows_reg = true;
467 else if (insn_extra_memory_constraint (cn))
468 *allows_mem = true;
469 else
470 insn_extra_constraint_allows_reg_mem (cn, allows_reg, allows_mem);
471 break;
474 if (saw_match && !*allows_reg)
475 warning (0, "matching constraint does not allow a register");
477 return true;
480 /* Return DECL iff there's an overlap between *REGS and DECL, where DECL
481 can be an asm-declared register. Called via walk_tree. */
483 static tree
484 decl_overlaps_hard_reg_set_p (tree *declp, int *walk_subtrees ATTRIBUTE_UNUSED,
485 void *data)
487 tree decl = *declp;
488 const HARD_REG_SET *const regs = (const HARD_REG_SET *) data;
490 if (TREE_CODE (decl) == VAR_DECL)
492 if (DECL_HARD_REGISTER (decl)
493 && REG_P (DECL_RTL (decl))
494 && REGNO (DECL_RTL (decl)) < FIRST_PSEUDO_REGISTER)
496 rtx reg = DECL_RTL (decl);
498 if (overlaps_hard_reg_set_p (*regs, GET_MODE (reg), REGNO (reg)))
499 return decl;
501 walk_subtrees = 0;
503 else if (TYPE_P (decl) || TREE_CODE (decl) == PARM_DECL)
504 walk_subtrees = 0;
505 return NULL_TREE;
508 /* If there is an overlap between *REGS and DECL, return the first overlap
509 found. */
510 tree
511 tree_overlaps_hard_reg_set (tree decl, HARD_REG_SET *regs)
513 return walk_tree (&decl, decl_overlaps_hard_reg_set_p, regs, NULL);
517 /* A subroutine of expand_asm_operands. Check that all operand names
518 are unique. Return true if so. We rely on the fact that these names
519 are identifiers, and so have been canonicalized by get_identifier,
520 so all we need are pointer comparisons. */
522 static bool
523 check_unique_operand_names (tree outputs, tree inputs, tree labels)
525 tree i, j, i_name = NULL_TREE;
527 for (i = outputs; i ; i = TREE_CHAIN (i))
529 i_name = TREE_PURPOSE (TREE_PURPOSE (i));
530 if (! i_name)
531 continue;
533 for (j = TREE_CHAIN (i); j ; j = TREE_CHAIN (j))
534 if (simple_cst_equal (i_name, TREE_PURPOSE (TREE_PURPOSE (j))))
535 goto failure;
538 for (i = inputs; i ; i = TREE_CHAIN (i))
540 i_name = TREE_PURPOSE (TREE_PURPOSE (i));
541 if (! i_name)
542 continue;
544 for (j = TREE_CHAIN (i); j ; j = TREE_CHAIN (j))
545 if (simple_cst_equal (i_name, TREE_PURPOSE (TREE_PURPOSE (j))))
546 goto failure;
547 for (j = outputs; j ; j = TREE_CHAIN (j))
548 if (simple_cst_equal (i_name, TREE_PURPOSE (TREE_PURPOSE (j))))
549 goto failure;
552 for (i = labels; i ; i = TREE_CHAIN (i))
554 i_name = TREE_PURPOSE (i);
555 if (! i_name)
556 continue;
558 for (j = TREE_CHAIN (i); j ; j = TREE_CHAIN (j))
559 if (simple_cst_equal (i_name, TREE_PURPOSE (j)))
560 goto failure;
561 for (j = inputs; j ; j = TREE_CHAIN (j))
562 if (simple_cst_equal (i_name, TREE_PURPOSE (TREE_PURPOSE (j))))
563 goto failure;
566 return true;
568 failure:
569 error ("duplicate asm operand name %qs", TREE_STRING_POINTER (i_name));
570 return false;
573 /* Resolve the names of the operands in *POUTPUTS and *PINPUTS to numbers,
574 and replace the name expansions in STRING and in the constraints to
575 those numbers. This is generally done in the front end while creating
576 the ASM_EXPR generic tree that eventually becomes the GIMPLE_ASM. */
578 tree
579 resolve_asm_operand_names (tree string, tree outputs, tree inputs, tree labels)
581 char *buffer;
582 char *p;
583 const char *c;
584 tree t;
586 check_unique_operand_names (outputs, inputs, labels);
588 /* Substitute [<name>] in input constraint strings. There should be no
589 named operands in output constraints. */
590 for (t = inputs; t ; t = TREE_CHAIN (t))
592 c = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (t)));
593 if (strchr (c, '[') != NULL)
595 p = buffer = xstrdup (c);
596 while ((p = strchr (p, '[')) != NULL)
597 p = resolve_operand_name_1 (p, outputs, inputs, NULL);
598 TREE_VALUE (TREE_PURPOSE (t))
599 = build_string (strlen (buffer), buffer);
600 free (buffer);
604 /* Now check for any needed substitutions in the template. */
605 c = TREE_STRING_POINTER (string);
606 while ((c = strchr (c, '%')) != NULL)
608 if (c[1] == '[')
609 break;
610 else if (ISALPHA (c[1]) && c[2] == '[')
611 break;
612 else
614 c += 1 + (c[1] == '%');
615 continue;
619 if (c)
621 /* OK, we need to make a copy so we can perform the substitutions.
622 Assume that we will not need extra space--we get to remove '['
623 and ']', which means we cannot have a problem until we have more
624 than 999 operands. */
625 buffer = xstrdup (TREE_STRING_POINTER (string));
626 p = buffer + (c - TREE_STRING_POINTER (string));
628 while ((p = strchr (p, '%')) != NULL)
630 if (p[1] == '[')
631 p += 1;
632 else if (ISALPHA (p[1]) && p[2] == '[')
633 p += 2;
634 else
636 p += 1 + (p[1] == '%');
637 continue;
640 p = resolve_operand_name_1 (p, outputs, inputs, labels);
643 string = build_string (strlen (buffer), buffer);
644 free (buffer);
647 return string;
650 /* A subroutine of resolve_operand_names. P points to the '[' for a
651 potential named operand of the form [<name>]. In place, replace
652 the name and brackets with a number. Return a pointer to the
653 balance of the string after substitution. */
655 static char *
656 resolve_operand_name_1 (char *p, tree outputs, tree inputs, tree labels)
658 char *q;
659 int op;
660 tree t;
662 /* Collect the operand name. */
663 q = strchr (++p, ']');
664 if (!q)
666 error ("missing close brace for named operand");
667 return strchr (p, '\0');
669 *q = '\0';
671 /* Resolve the name to a number. */
672 for (op = 0, t = outputs; t ; t = TREE_CHAIN (t), op++)
674 tree name = TREE_PURPOSE (TREE_PURPOSE (t));
675 if (name && strcmp (TREE_STRING_POINTER (name), p) == 0)
676 goto found;
678 for (t = inputs; t ; t = TREE_CHAIN (t), op++)
680 tree name = TREE_PURPOSE (TREE_PURPOSE (t));
681 if (name && strcmp (TREE_STRING_POINTER (name), p) == 0)
682 goto found;
684 for (t = labels; t ; t = TREE_CHAIN (t), op++)
686 tree name = TREE_PURPOSE (t);
687 if (name && strcmp (TREE_STRING_POINTER (name), p) == 0)
688 goto found;
691 error ("undefined named operand %qs", identifier_to_locale (p));
692 op = 0;
694 found:
695 /* Replace the name with the number. Unfortunately, not all libraries
696 get the return value of sprintf correct, so search for the end of the
697 generated string by hand. */
698 sprintf (--p, "%d", op);
699 p = strchr (p, '\0');
701 /* Verify the no extra buffer space assumption. */
702 gcc_assert (p <= q);
704 /* Shift the rest of the buffer down to fill the gap. */
705 memmove (p, q + 1, strlen (q + 1) + 1);
707 return p;
711 /* Generate RTL to return directly from the current function.
712 (That is, we bypass any return value.) */
714 void
715 expand_naked_return (void)
717 rtx_code_label *end_label;
719 clear_pending_stack_adjust ();
720 do_pending_stack_adjust ();
722 end_label = naked_return_label;
723 if (end_label == 0)
724 end_label = naked_return_label = gen_label_rtx ();
726 emit_jump (end_label);
729 /* Generate code to jump to LABEL if OP0 and OP1 are equal in mode MODE. PROB
730 is the probability of jumping to LABEL. */
731 static void
732 do_jump_if_equal (machine_mode mode, rtx op0, rtx op1, rtx_code_label *label,
733 int unsignedp, int prob)
735 gcc_assert (prob <= REG_BR_PROB_BASE);
736 do_compare_rtx_and_jump (op0, op1, EQ, unsignedp, mode,
737 NULL_RTX, NULL, label, prob);
740 /* Do the insertion of a case label into case_list. The labels are
741 fed to us in descending order from the sorted vector of case labels used
742 in the tree part of the middle end. So the list we construct is
743 sorted in ascending order.
745 LABEL is the case label to be inserted. LOW and HIGH are the bounds
746 against which the index is compared to jump to LABEL and PROB is the
747 estimated probability LABEL is reached from the switch statement. */
749 static struct case_node *
750 add_case_node (struct case_node *head, tree low, tree high,
751 tree label, int prob, pool_allocator<case_node> &case_node_pool)
753 struct case_node *r;
755 gcc_checking_assert (low);
756 gcc_checking_assert (high && (TREE_TYPE (low) == TREE_TYPE (high)));
758 /* Add this label to the chain. */
759 r = case_node_pool.allocate ();
760 r->low = low;
761 r->high = high;
762 r->code_label = label;
763 r->parent = r->left = NULL;
764 r->prob = prob;
765 r->subtree_prob = prob;
766 r->right = head;
767 return r;
770 /* Dump ROOT, a list or tree of case nodes, to file. */
772 static void
773 dump_case_nodes (FILE *f, struct case_node *root,
774 int indent_step, int indent_level)
776 if (root == 0)
777 return;
778 indent_level++;
780 dump_case_nodes (f, root->left, indent_step, indent_level);
782 fputs (";; ", f);
783 fprintf (f, "%*s", indent_step * indent_level, "");
784 print_dec (root->low, f, TYPE_SIGN (TREE_TYPE (root->low)));
785 if (!tree_int_cst_equal (root->low, root->high))
787 fprintf (f, " ... ");
788 print_dec (root->high, f, TYPE_SIGN (TREE_TYPE (root->high)));
790 fputs ("\n", f);
792 dump_case_nodes (f, root->right, indent_step, indent_level);
795 #ifndef HAVE_casesi
796 #define HAVE_casesi 0
797 #endif
799 /* Return the smallest number of different values for which it is best to use a
800 jump-table instead of a tree of conditional branches. */
802 static unsigned int
803 case_values_threshold (void)
805 unsigned int threshold = PARAM_VALUE (PARAM_CASE_VALUES_THRESHOLD);
807 if (threshold == 0)
808 threshold = targetm.case_values_threshold ();
810 return threshold;
813 /* Return true if a switch should be expanded as a decision tree.
814 RANGE is the difference between highest and lowest case.
815 UNIQ is number of unique case node targets, not counting the default case.
816 COUNT is the number of comparisons needed, not counting the default case. */
818 static bool
819 expand_switch_as_decision_tree_p (tree range,
820 unsigned int uniq ATTRIBUTE_UNUSED,
821 unsigned int count)
823 int max_ratio;
825 /* If neither casesi or tablejump is available, or flag_jump_tables
826 over-ruled us, we really have no choice. */
827 if (!HAVE_casesi && !HAVE_tablejump)
828 return true;
829 if (!flag_jump_tables)
830 return true;
831 #ifndef ASM_OUTPUT_ADDR_DIFF_ELT
832 if (flag_pic)
833 return true;
834 #endif
836 /* If the switch is relatively small such that the cost of one
837 indirect jump on the target are higher than the cost of a
838 decision tree, go with the decision tree.
840 If range of values is much bigger than number of values,
841 or if it is too large to represent in a HOST_WIDE_INT,
842 make a sequence of conditional branches instead of a dispatch.
844 The definition of "much bigger" depends on whether we are
845 optimizing for size or for speed. If the former, the maximum
846 ratio range/count = 3, because this was found to be the optimal
847 ratio for size on i686-pc-linux-gnu, see PR11823. The ratio
848 10 is much older, and was probably selected after an extensive
849 benchmarking investigation on numerous platforms. Or maybe it
850 just made sense to someone at some point in the history of GCC,
851 who knows... */
852 max_ratio = optimize_insn_for_size_p () ? 3 : 10;
853 if (count < case_values_threshold ()
854 || ! tree_fits_uhwi_p (range)
855 || compare_tree_int (range, max_ratio * count) > 0)
856 return true;
858 return false;
861 /* Generate a decision tree, switching on INDEX_EXPR and jumping to
862 one of the labels in CASE_LIST or to the DEFAULT_LABEL.
863 DEFAULT_PROB is the estimated probability that it jumps to
864 DEFAULT_LABEL.
866 We generate a binary decision tree to select the appropriate target
867 code. This is done as follows:
869 If the index is a short or char that we do not have
870 an insn to handle comparisons directly, convert it to
871 a full integer now, rather than letting each comparison
872 generate the conversion.
874 Load the index into a register.
876 The list of cases is rearranged into a binary tree,
877 nearly optimal assuming equal probability for each case.
879 The tree is transformed into RTL, eliminating redundant
880 test conditions at the same time.
882 If program flow could reach the end of the decision tree
883 an unconditional jump to the default code is emitted.
885 The above process is unaware of the CFG. The caller has to fix up
886 the CFG itself. This is done in cfgexpand.c. */
888 static void
889 emit_case_decision_tree (tree index_expr, tree index_type,
890 case_node_ptr case_list, rtx_code_label *default_label,
891 int default_prob)
893 rtx index = expand_normal (index_expr);
895 if (GET_MODE_CLASS (GET_MODE (index)) == MODE_INT
896 && ! have_insn_for (COMPARE, GET_MODE (index)))
898 int unsignedp = TYPE_UNSIGNED (index_type);
899 machine_mode wider_mode;
900 for (wider_mode = GET_MODE (index); wider_mode != VOIDmode;
901 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
902 if (have_insn_for (COMPARE, wider_mode))
904 index = convert_to_mode (wider_mode, index, unsignedp);
905 break;
909 do_pending_stack_adjust ();
911 if (MEM_P (index))
913 index = copy_to_reg (index);
914 if (TREE_CODE (index_expr) == SSA_NAME)
915 set_reg_attrs_for_decl_rtl (SSA_NAME_VAR (index_expr), index);
918 balance_case_nodes (&case_list, NULL);
920 if (dump_file && (dump_flags & TDF_DETAILS))
922 int indent_step = ceil_log2 (TYPE_PRECISION (index_type)) + 2;
923 fprintf (dump_file, ";; Expanding GIMPLE switch as decision tree:\n");
924 dump_case_nodes (dump_file, case_list, indent_step, 0);
927 emit_case_nodes (index, case_list, default_label, default_prob, index_type);
928 if (default_label)
929 emit_jump (default_label);
932 /* Return the sum of probabilities of outgoing edges of basic block BB. */
934 static int
935 get_outgoing_edge_probs (basic_block bb)
937 edge e;
938 edge_iterator ei;
939 int prob_sum = 0;
940 if (!bb)
941 return 0;
942 FOR_EACH_EDGE (e, ei, bb->succs)
943 prob_sum += e->probability;
944 return prob_sum;
947 /* Computes the conditional probability of jumping to a target if the branch
948 instruction is executed.
949 TARGET_PROB is the estimated probability of jumping to a target relative
950 to some basic block BB.
951 BASE_PROB is the probability of reaching the branch instruction relative
952 to the same basic block BB. */
954 static inline int
955 conditional_probability (int target_prob, int base_prob)
957 if (base_prob > 0)
959 gcc_assert (target_prob >= 0);
960 gcc_assert (target_prob <= base_prob);
961 return GCOV_COMPUTE_SCALE (target_prob, base_prob);
963 return -1;
966 /* Generate a dispatch tabler, switching on INDEX_EXPR and jumping to
967 one of the labels in CASE_LIST or to the DEFAULT_LABEL.
968 MINVAL, MAXVAL, and RANGE are the extrema and range of the case
969 labels in CASE_LIST. STMT_BB is the basic block containing the statement.
971 First, a jump insn is emitted. First we try "casesi". If that
972 fails, try "tablejump". A target *must* have one of them (or both).
974 Then, a table with the target labels is emitted.
976 The process is unaware of the CFG. The caller has to fix up
977 the CFG itself. This is done in cfgexpand.c. */
979 static void
980 emit_case_dispatch_table (tree index_expr, tree index_type,
981 struct case_node *case_list, rtx default_label,
982 tree minval, tree maxval, tree range,
983 basic_block stmt_bb)
985 int i, ncases;
986 struct case_node *n;
987 rtx *labelvec;
988 rtx fallback_label = label_rtx (case_list->code_label);
989 rtx_code_label *table_label = gen_label_rtx ();
990 bool has_gaps = false;
991 edge default_edge = stmt_bb ? EDGE_SUCC (stmt_bb, 0) : NULL;
992 int default_prob = default_edge ? default_edge->probability : 0;
993 int base = get_outgoing_edge_probs (stmt_bb);
994 bool try_with_tablejump = false;
996 int new_default_prob = conditional_probability (default_prob,
997 base);
999 if (! try_casesi (index_type, index_expr, minval, range,
1000 table_label, default_label, fallback_label,
1001 new_default_prob))
1003 /* Index jumptables from zero for suitable values of minval to avoid
1004 a subtraction. For the rationale see:
1005 "http://gcc.gnu.org/ml/gcc-patches/2001-10/msg01234.html". */
1006 if (optimize_insn_for_speed_p ()
1007 && compare_tree_int (minval, 0) > 0
1008 && compare_tree_int (minval, 3) < 0)
1010 minval = build_int_cst (index_type, 0);
1011 range = maxval;
1012 has_gaps = true;
1014 try_with_tablejump = true;
1017 /* Get table of labels to jump to, in order of case index. */
1019 ncases = tree_to_shwi (range) + 1;
1020 labelvec = XALLOCAVEC (rtx, ncases);
1021 memset (labelvec, 0, ncases * sizeof (rtx));
1023 for (n = case_list; n; n = n->right)
1025 /* Compute the low and high bounds relative to the minimum
1026 value since that should fit in a HOST_WIDE_INT while the
1027 actual values may not. */
1028 HOST_WIDE_INT i_low
1029 = tree_to_uhwi (fold_build2 (MINUS_EXPR, index_type,
1030 n->low, minval));
1031 HOST_WIDE_INT i_high
1032 = tree_to_uhwi (fold_build2 (MINUS_EXPR, index_type,
1033 n->high, minval));
1034 HOST_WIDE_INT i;
1036 for (i = i_low; i <= i_high; i ++)
1037 labelvec[i]
1038 = gen_rtx_LABEL_REF (Pmode, label_rtx (n->code_label));
1041 /* Fill in the gaps with the default. We may have gaps at
1042 the beginning if we tried to avoid the minval subtraction,
1043 so substitute some label even if the default label was
1044 deemed unreachable. */
1045 if (!default_label)
1046 default_label = fallback_label;
1047 for (i = 0; i < ncases; i++)
1048 if (labelvec[i] == 0)
1050 has_gaps = true;
1051 labelvec[i] = gen_rtx_LABEL_REF (Pmode, default_label);
1054 if (has_gaps)
1056 /* There is at least one entry in the jump table that jumps
1057 to default label. The default label can either be reached
1058 through the indirect jump or the direct conditional jump
1059 before that. Split the probability of reaching the
1060 default label among these two jumps. */
1061 new_default_prob = conditional_probability (default_prob/2,
1062 base);
1063 default_prob /= 2;
1064 base -= default_prob;
1066 else
1068 base -= default_prob;
1069 default_prob = 0;
1072 if (default_edge)
1073 default_edge->probability = default_prob;
1075 /* We have altered the probability of the default edge. So the probabilities
1076 of all other edges need to be adjusted so that it sums up to
1077 REG_BR_PROB_BASE. */
1078 if (base)
1080 edge e;
1081 edge_iterator ei;
1082 FOR_EACH_EDGE (e, ei, stmt_bb->succs)
1083 e->probability = GCOV_COMPUTE_SCALE (e->probability, base);
1086 if (try_with_tablejump)
1088 bool ok = try_tablejump (index_type, index_expr, minval, range,
1089 table_label, default_label, new_default_prob);
1090 gcc_assert (ok);
1092 /* Output the table. */
1093 emit_label (table_label);
1095 if (CASE_VECTOR_PC_RELATIVE || flag_pic)
1096 emit_jump_table_data (gen_rtx_ADDR_DIFF_VEC (CASE_VECTOR_MODE,
1097 gen_rtx_LABEL_REF (Pmode,
1098 table_label),
1099 gen_rtvec_v (ncases, labelvec),
1100 const0_rtx, const0_rtx));
1101 else
1102 emit_jump_table_data (gen_rtx_ADDR_VEC (CASE_VECTOR_MODE,
1103 gen_rtvec_v (ncases, labelvec)));
1105 /* Record no drop-through after the table. */
1106 emit_barrier ();
1109 /* Reset the aux field of all outgoing edges of basic block BB. */
1111 static inline void
1112 reset_out_edges_aux (basic_block bb)
1114 edge e;
1115 edge_iterator ei;
1116 FOR_EACH_EDGE (e, ei, bb->succs)
1117 e->aux = (void *)0;
1120 /* Compute the number of case labels that correspond to each outgoing edge of
1121 STMT. Record this information in the aux field of the edge. */
1123 static inline void
1124 compute_cases_per_edge (gswitch *stmt)
1126 basic_block bb = gimple_bb (stmt);
1127 reset_out_edges_aux (bb);
1128 int ncases = gimple_switch_num_labels (stmt);
1129 for (int i = ncases - 1; i >= 1; --i)
1131 tree elt = gimple_switch_label (stmt, i);
1132 tree lab = CASE_LABEL (elt);
1133 basic_block case_bb = label_to_block_fn (cfun, lab);
1134 edge case_edge = find_edge (bb, case_bb);
1135 case_edge->aux = (void *)((intptr_t)(case_edge->aux) + 1);
1139 /* Terminate a case (Pascal/Ada) or switch (C) statement
1140 in which ORIG_INDEX is the expression to be tested.
1141 If ORIG_TYPE is not NULL, it is the original ORIG_INDEX
1142 type as given in the source before any compiler conversions.
1143 Generate the code to test it and jump to the right place. */
1145 void
1146 expand_case (gswitch *stmt)
1148 tree minval = NULL_TREE, maxval = NULL_TREE, range = NULL_TREE;
1149 rtx_code_label *default_label = NULL;
1150 unsigned int count, uniq;
1151 int i;
1152 int ncases = gimple_switch_num_labels (stmt);
1153 tree index_expr = gimple_switch_index (stmt);
1154 tree index_type = TREE_TYPE (index_expr);
1155 tree elt;
1156 basic_block bb = gimple_bb (stmt);
1158 /* A list of case labels; it is first built as a list and it may then
1159 be rearranged into a nearly balanced binary tree. */
1160 struct case_node *case_list = 0;
1162 /* A pool for case nodes. */
1163 pool_allocator<case_node> case_node_pool ("struct case_node pool", 100);
1165 /* An ERROR_MARK occurs for various reasons including invalid data type.
1166 ??? Can this still happen, with GIMPLE and all? */
1167 if (index_type == error_mark_node)
1168 return;
1170 /* cleanup_tree_cfg removes all SWITCH_EXPR with their index
1171 expressions being INTEGER_CST. */
1172 gcc_assert (TREE_CODE (index_expr) != INTEGER_CST);
1175 do_pending_stack_adjust ();
1177 /* Find the default case target label. */
1178 default_label = jump_target_rtx
1179 (CASE_LABEL (gimple_switch_default_label (stmt)));
1180 edge default_edge = EDGE_SUCC (bb, 0);
1181 int default_prob = default_edge->probability;
1183 /* Get upper and lower bounds of case values. */
1184 elt = gimple_switch_label (stmt, 1);
1185 minval = fold_convert (index_type, CASE_LOW (elt));
1186 elt = gimple_switch_label (stmt, ncases - 1);
1187 if (CASE_HIGH (elt))
1188 maxval = fold_convert (index_type, CASE_HIGH (elt));
1189 else
1190 maxval = fold_convert (index_type, CASE_LOW (elt));
1192 /* Compute span of values. */
1193 range = fold_build2 (MINUS_EXPR, index_type, maxval, minval);
1195 /* Listify the labels queue and gather some numbers to decide
1196 how to expand this switch(). */
1197 uniq = 0;
1198 count = 0;
1199 hash_set<tree> seen_labels;
1200 compute_cases_per_edge (stmt);
1202 for (i = ncases - 1; i >= 1; --i)
1204 elt = gimple_switch_label (stmt, i);
1205 tree low = CASE_LOW (elt);
1206 gcc_assert (low);
1207 tree high = CASE_HIGH (elt);
1208 gcc_assert (! high || tree_int_cst_lt (low, high));
1209 tree lab = CASE_LABEL (elt);
1211 /* Count the elements.
1212 A range counts double, since it requires two compares. */
1213 count++;
1214 if (high)
1215 count++;
1217 /* If we have not seen this label yet, then increase the
1218 number of unique case node targets seen. */
1219 if (!seen_labels.add (lab))
1220 uniq++;
1222 /* The bounds on the case range, LOW and HIGH, have to be converted
1223 to case's index type TYPE. Note that the original type of the
1224 case index in the source code is usually "lost" during
1225 gimplification due to type promotion, but the case labels retain the
1226 original type. Make sure to drop overflow flags. */
1227 low = fold_convert (index_type, low);
1228 if (TREE_OVERFLOW (low))
1229 low = wide_int_to_tree (index_type, low);
1231 /* The canonical from of a case label in GIMPLE is that a simple case
1232 has an empty CASE_HIGH. For the casesi and tablejump expanders,
1233 the back ends want simple cases to have high == low. */
1234 if (! high)
1235 high = low;
1236 high = fold_convert (index_type, high);
1237 if (TREE_OVERFLOW (high))
1238 high = wide_int_to_tree (index_type, high);
1240 basic_block case_bb = label_to_block_fn (cfun, lab);
1241 edge case_edge = find_edge (bb, case_bb);
1242 case_list = add_case_node (
1243 case_list, low, high, lab,
1244 case_edge->probability / (intptr_t)(case_edge->aux),
1245 case_node_pool);
1247 reset_out_edges_aux (bb);
1249 /* cleanup_tree_cfg removes all SWITCH_EXPR with a single
1250 destination, such as one with a default case only.
1251 It also removes cases that are out of range for the switch
1252 type, so we should never get a zero here. */
1253 gcc_assert (count > 0);
1255 rtx_insn *before_case = get_last_insn ();
1257 /* Decide how to expand this switch.
1258 The two options at this point are a dispatch table (casesi or
1259 tablejump) or a decision tree. */
1261 if (expand_switch_as_decision_tree_p (range, uniq, count))
1262 emit_case_decision_tree (index_expr, index_type,
1263 case_list, default_label,
1264 default_prob);
1265 else
1266 emit_case_dispatch_table (index_expr, index_type,
1267 case_list, default_label,
1268 minval, maxval, range, bb);
1270 reorder_insns (NEXT_INSN (before_case), get_last_insn (), before_case);
1272 free_temp_slots ();
1275 /* Expand the dispatch to a short decrement chain if there are few cases
1276 to dispatch to. Likewise if neither casesi nor tablejump is available,
1277 or if flag_jump_tables is set. Otherwise, expand as a casesi or a
1278 tablejump. The index mode is always the mode of integer_type_node.
1279 Trap if no case matches the index.
1281 DISPATCH_INDEX is the index expression to switch on. It should be a
1282 memory or register operand.
1284 DISPATCH_TABLE is a set of case labels. The set should be sorted in
1285 ascending order, be contiguous, starting with value 0, and contain only
1286 single-valued case labels. */
1288 void
1289 expand_sjlj_dispatch_table (rtx dispatch_index,
1290 vec<tree> dispatch_table)
1292 tree index_type = integer_type_node;
1293 machine_mode index_mode = TYPE_MODE (index_type);
1295 int ncases = dispatch_table.length ();
1297 do_pending_stack_adjust ();
1298 rtx_insn *before_case = get_last_insn ();
1300 /* Expand as a decrement-chain if there are 5 or fewer dispatch
1301 labels. This covers more than 98% of the cases in libjava,
1302 and seems to be a reasonable compromise between the "old way"
1303 of expanding as a decision tree or dispatch table vs. the "new
1304 way" with decrement chain or dispatch table. */
1305 if (dispatch_table.length () <= 5
1306 || (!HAVE_casesi && !HAVE_tablejump)
1307 || !flag_jump_tables)
1309 /* Expand the dispatch as a decrement chain:
1311 "switch(index) {case 0: do_0; case 1: do_1; ...; case N: do_N;}"
1315 if (index == 0) do_0; else index--;
1316 if (index == 0) do_1; else index--;
1318 if (index == 0) do_N; else index--;
1320 This is more efficient than a dispatch table on most machines.
1321 The last "index--" is redundant but the code is trivially dead
1322 and will be cleaned up by later passes. */
1323 rtx index = copy_to_mode_reg (index_mode, dispatch_index);
1324 rtx zero = CONST0_RTX (index_mode);
1325 for (int i = 0; i < ncases; i++)
1327 tree elt = dispatch_table[i];
1328 rtx_code_label *lab = jump_target_rtx (CASE_LABEL (elt));
1329 do_jump_if_equal (index_mode, index, zero, lab, 0, -1);
1330 force_expand_binop (index_mode, sub_optab,
1331 index, CONST1_RTX (index_mode),
1332 index, 0, OPTAB_DIRECT);
1335 else
1337 /* Similar to expand_case, but much simpler. */
1338 struct case_node *case_list = 0;
1339 pool_allocator<case_node> case_node_pool ("struct sjlj_case pool",
1340 ncases);
1341 tree index_expr = make_tree (index_type, dispatch_index);
1342 tree minval = build_int_cst (index_type, 0);
1343 tree maxval = CASE_LOW (dispatch_table.last ());
1344 tree range = maxval;
1345 rtx_code_label *default_label = gen_label_rtx ();
1347 for (int i = ncases - 1; i >= 0; --i)
1349 tree elt = dispatch_table[i];
1350 tree low = CASE_LOW (elt);
1351 tree lab = CASE_LABEL (elt);
1352 case_list = add_case_node (case_list, low, low, lab, 0, case_node_pool);
1355 emit_case_dispatch_table (index_expr, index_type,
1356 case_list, default_label,
1357 minval, maxval, range,
1358 BLOCK_FOR_INSN (before_case));
1359 emit_label (default_label);
1362 /* Dispatching something not handled? Trap! */
1363 expand_builtin_trap ();
1365 reorder_insns (NEXT_INSN (before_case), get_last_insn (), before_case);
1367 free_temp_slots ();
1371 /* Take an ordered list of case nodes
1372 and transform them into a near optimal binary tree,
1373 on the assumption that any target code selection value is as
1374 likely as any other.
1376 The transformation is performed by splitting the ordered
1377 list into two equal sections plus a pivot. The parts are
1378 then attached to the pivot as left and right branches. Each
1379 branch is then transformed recursively. */
1381 static void
1382 balance_case_nodes (case_node_ptr *head, case_node_ptr parent)
1384 case_node_ptr np;
1386 np = *head;
1387 if (np)
1389 int i = 0;
1390 int ranges = 0;
1391 case_node_ptr *npp;
1392 case_node_ptr left;
1394 /* Count the number of entries on branch. Also count the ranges. */
1396 while (np)
1398 if (!tree_int_cst_equal (np->low, np->high))
1399 ranges++;
1401 i++;
1402 np = np->right;
1405 if (i > 2)
1407 /* Split this list if it is long enough for that to help. */
1408 npp = head;
1409 left = *npp;
1411 /* If there are just three nodes, split at the middle one. */
1412 if (i == 3)
1413 npp = &(*npp)->right;
1414 else
1416 /* Find the place in the list that bisects the list's total cost,
1417 where ranges count as 2.
1418 Here I gets half the total cost. */
1419 i = (i + ranges + 1) / 2;
1420 while (1)
1422 /* Skip nodes while their cost does not reach that amount. */
1423 if (!tree_int_cst_equal ((*npp)->low, (*npp)->high))
1424 i--;
1425 i--;
1426 if (i <= 0)
1427 break;
1428 npp = &(*npp)->right;
1431 *head = np = *npp;
1432 *npp = 0;
1433 np->parent = parent;
1434 np->left = left;
1436 /* Optimize each of the two split parts. */
1437 balance_case_nodes (&np->left, np);
1438 balance_case_nodes (&np->right, np);
1439 np->subtree_prob = np->prob;
1440 np->subtree_prob += np->left->subtree_prob;
1441 np->subtree_prob += np->right->subtree_prob;
1443 else
1445 /* Else leave this branch as one level,
1446 but fill in `parent' fields. */
1447 np = *head;
1448 np->parent = parent;
1449 np->subtree_prob = np->prob;
1450 for (; np->right; np = np->right)
1452 np->right->parent = np;
1453 (*head)->subtree_prob += np->right->subtree_prob;
1459 /* Search the parent sections of the case node tree
1460 to see if a test for the lower bound of NODE would be redundant.
1461 INDEX_TYPE is the type of the index expression.
1463 The instructions to generate the case decision tree are
1464 output in the same order as nodes are processed so it is
1465 known that if a parent node checks the range of the current
1466 node minus one that the current node is bounded at its lower
1467 span. Thus the test would be redundant. */
1469 static int
1470 node_has_low_bound (case_node_ptr node, tree index_type)
1472 tree low_minus_one;
1473 case_node_ptr pnode;
1475 /* If the lower bound of this node is the lowest value in the index type,
1476 we need not test it. */
1478 if (tree_int_cst_equal (node->low, TYPE_MIN_VALUE (index_type)))
1479 return 1;
1481 /* If this node has a left branch, the value at the left must be less
1482 than that at this node, so it cannot be bounded at the bottom and
1483 we need not bother testing any further. */
1485 if (node->left)
1486 return 0;
1488 low_minus_one = fold_build2 (MINUS_EXPR, TREE_TYPE (node->low),
1489 node->low,
1490 build_int_cst (TREE_TYPE (node->low), 1));
1492 /* If the subtraction above overflowed, we can't verify anything.
1493 Otherwise, look for a parent that tests our value - 1. */
1495 if (! tree_int_cst_lt (low_minus_one, node->low))
1496 return 0;
1498 for (pnode = node->parent; pnode; pnode = pnode->parent)
1499 if (tree_int_cst_equal (low_minus_one, pnode->high))
1500 return 1;
1502 return 0;
1505 /* Search the parent sections of the case node tree
1506 to see if a test for the upper bound of NODE would be redundant.
1507 INDEX_TYPE is the type of the index expression.
1509 The instructions to generate the case decision tree are
1510 output in the same order as nodes are processed so it is
1511 known that if a parent node checks the range of the current
1512 node plus one that the current node is bounded at its upper
1513 span. Thus the test would be redundant. */
1515 static int
1516 node_has_high_bound (case_node_ptr node, tree index_type)
1518 tree high_plus_one;
1519 case_node_ptr pnode;
1521 /* If there is no upper bound, obviously no test is needed. */
1523 if (TYPE_MAX_VALUE (index_type) == NULL)
1524 return 1;
1526 /* If the upper bound of this node is the highest value in the type
1527 of the index expression, we need not test against it. */
1529 if (tree_int_cst_equal (node->high, TYPE_MAX_VALUE (index_type)))
1530 return 1;
1532 /* If this node has a right branch, the value at the right must be greater
1533 than that at this node, so it cannot be bounded at the top and
1534 we need not bother testing any further. */
1536 if (node->right)
1537 return 0;
1539 high_plus_one = fold_build2 (PLUS_EXPR, TREE_TYPE (node->high),
1540 node->high,
1541 build_int_cst (TREE_TYPE (node->high), 1));
1543 /* If the addition above overflowed, we can't verify anything.
1544 Otherwise, look for a parent that tests our value + 1. */
1546 if (! tree_int_cst_lt (node->high, high_plus_one))
1547 return 0;
1549 for (pnode = node->parent; pnode; pnode = pnode->parent)
1550 if (tree_int_cst_equal (high_plus_one, pnode->low))
1551 return 1;
1553 return 0;
1556 /* Search the parent sections of the
1557 case node tree to see if both tests for the upper and lower
1558 bounds of NODE would be redundant. */
1560 static int
1561 node_is_bounded (case_node_ptr node, tree index_type)
1563 return (node_has_low_bound (node, index_type)
1564 && node_has_high_bound (node, index_type));
1568 /* Emit step-by-step code to select a case for the value of INDEX.
1569 The thus generated decision tree follows the form of the
1570 case-node binary tree NODE, whose nodes represent test conditions.
1571 INDEX_TYPE is the type of the index of the switch.
1573 Care is taken to prune redundant tests from the decision tree
1574 by detecting any boundary conditions already checked by
1575 emitted rtx. (See node_has_high_bound, node_has_low_bound
1576 and node_is_bounded, above.)
1578 Where the test conditions can be shown to be redundant we emit
1579 an unconditional jump to the target code. As a further
1580 optimization, the subordinates of a tree node are examined to
1581 check for bounded nodes. In this case conditional and/or
1582 unconditional jumps as a result of the boundary check for the
1583 current node are arranged to target the subordinates associated
1584 code for out of bound conditions on the current node.
1586 We can assume that when control reaches the code generated here,
1587 the index value has already been compared with the parents
1588 of this node, and determined to be on the same side of each parent
1589 as this node is. Thus, if this node tests for the value 51,
1590 and a parent tested for 52, we don't need to consider
1591 the possibility of a value greater than 51. If another parent
1592 tests for the value 50, then this node need not test anything. */
1594 static void
1595 emit_case_nodes (rtx index, case_node_ptr node, rtx_code_label *default_label,
1596 int default_prob, tree index_type)
1598 /* If INDEX has an unsigned type, we must make unsigned branches. */
1599 int unsignedp = TYPE_UNSIGNED (index_type);
1600 int probability;
1601 int prob = node->prob, subtree_prob = node->subtree_prob;
1602 machine_mode mode = GET_MODE (index);
1603 machine_mode imode = TYPE_MODE (index_type);
1605 /* Handle indices detected as constant during RTL expansion. */
1606 if (mode == VOIDmode)
1607 mode = imode;
1609 /* See if our parents have already tested everything for us.
1610 If they have, emit an unconditional jump for this node. */
1611 if (node_is_bounded (node, index_type))
1612 emit_jump (label_rtx (node->code_label));
1614 else if (tree_int_cst_equal (node->low, node->high))
1616 probability = conditional_probability (prob, subtree_prob + default_prob);
1617 /* Node is single valued. First see if the index expression matches
1618 this node and then check our children, if any. */
1619 do_jump_if_equal (mode, index,
1620 convert_modes (mode, imode,
1621 expand_normal (node->low),
1622 unsignedp),
1623 jump_target_rtx (node->code_label),
1624 unsignedp, probability);
1625 /* Since this case is taken at this point, reduce its weight from
1626 subtree_weight. */
1627 subtree_prob -= prob;
1628 if (node->right != 0 && node->left != 0)
1630 /* This node has children on both sides.
1631 Dispatch to one side or the other
1632 by comparing the index value with this node's value.
1633 If one subtree is bounded, check that one first,
1634 so we can avoid real branches in the tree. */
1636 if (node_is_bounded (node->right, index_type))
1638 probability = conditional_probability (
1639 node->right->prob,
1640 subtree_prob + default_prob);
1641 emit_cmp_and_jump_insns (index,
1642 convert_modes
1643 (mode, imode,
1644 expand_normal (node->high),
1645 unsignedp),
1646 GT, NULL_RTX, mode, unsignedp,
1647 label_rtx (node->right->code_label),
1648 probability);
1649 emit_case_nodes (index, node->left, default_label, default_prob,
1650 index_type);
1653 else if (node_is_bounded (node->left, index_type))
1655 probability = conditional_probability (
1656 node->left->prob,
1657 subtree_prob + default_prob);
1658 emit_cmp_and_jump_insns (index,
1659 convert_modes
1660 (mode, imode,
1661 expand_normal (node->high),
1662 unsignedp),
1663 LT, NULL_RTX, mode, unsignedp,
1664 label_rtx (node->left->code_label),
1665 probability);
1666 emit_case_nodes (index, node->right, default_label, default_prob,
1667 index_type);
1670 /* If both children are single-valued cases with no
1671 children, finish up all the work. This way, we can save
1672 one ordered comparison. */
1673 else if (tree_int_cst_equal (node->right->low, node->right->high)
1674 && node->right->left == 0
1675 && node->right->right == 0
1676 && tree_int_cst_equal (node->left->low, node->left->high)
1677 && node->left->left == 0
1678 && node->left->right == 0)
1680 /* Neither node is bounded. First distinguish the two sides;
1681 then emit the code for one side at a time. */
1683 /* See if the value matches what the right hand side
1684 wants. */
1685 probability = conditional_probability (
1686 node->right->prob,
1687 subtree_prob + default_prob);
1688 do_jump_if_equal (mode, index,
1689 convert_modes (mode, imode,
1690 expand_normal (node->right->low),
1691 unsignedp),
1692 jump_target_rtx (node->right->code_label),
1693 unsignedp, probability);
1695 /* See if the value matches what the left hand side
1696 wants. */
1697 probability = conditional_probability (
1698 node->left->prob,
1699 subtree_prob + default_prob);
1700 do_jump_if_equal (mode, index,
1701 convert_modes (mode, imode,
1702 expand_normal (node->left->low),
1703 unsignedp),
1704 jump_target_rtx (node->left->code_label),
1705 unsignedp, probability);
1708 else
1710 /* Neither node is bounded. First distinguish the two sides;
1711 then emit the code for one side at a time. */
1713 tree test_label
1714 = build_decl (curr_insn_location (),
1715 LABEL_DECL, NULL_TREE, void_type_node);
1717 /* The default label could be reached either through the right
1718 subtree or the left subtree. Divide the probability
1719 equally. */
1720 probability = conditional_probability (
1721 node->right->subtree_prob + default_prob/2,
1722 subtree_prob + default_prob);
1723 /* See if the value is on the right. */
1724 emit_cmp_and_jump_insns (index,
1725 convert_modes
1726 (mode, imode,
1727 expand_normal (node->high),
1728 unsignedp),
1729 GT, NULL_RTX, mode, unsignedp,
1730 label_rtx (test_label),
1731 probability);
1732 default_prob /= 2;
1734 /* Value must be on the left.
1735 Handle the left-hand subtree. */
1736 emit_case_nodes (index, node->left, default_label, default_prob, index_type);
1737 /* If left-hand subtree does nothing,
1738 go to default. */
1739 if (default_label)
1740 emit_jump (default_label);
1742 /* Code branches here for the right-hand subtree. */
1743 expand_label (test_label);
1744 emit_case_nodes (index, node->right, default_label, default_prob, index_type);
1748 else if (node->right != 0 && node->left == 0)
1750 /* Here we have a right child but no left so we issue a conditional
1751 branch to default and process the right child.
1753 Omit the conditional branch to default if the right child
1754 does not have any children and is single valued; it would
1755 cost too much space to save so little time. */
1757 if (node->right->right || node->right->left
1758 || !tree_int_cst_equal (node->right->low, node->right->high))
1760 if (!node_has_low_bound (node, index_type))
1762 probability = conditional_probability (
1763 default_prob/2,
1764 subtree_prob + default_prob);
1765 emit_cmp_and_jump_insns (index,
1766 convert_modes
1767 (mode, imode,
1768 expand_normal (node->high),
1769 unsignedp),
1770 LT, NULL_RTX, mode, unsignedp,
1771 default_label,
1772 probability);
1773 default_prob /= 2;
1776 emit_case_nodes (index, node->right, default_label, default_prob, index_type);
1778 else
1780 probability = conditional_probability (
1781 node->right->subtree_prob,
1782 subtree_prob + default_prob);
1783 /* We cannot process node->right normally
1784 since we haven't ruled out the numbers less than
1785 this node's value. So handle node->right explicitly. */
1786 do_jump_if_equal (mode, index,
1787 convert_modes
1788 (mode, imode,
1789 expand_normal (node->right->low),
1790 unsignedp),
1791 jump_target_rtx (node->right->code_label),
1792 unsignedp, probability);
1796 else if (node->right == 0 && node->left != 0)
1798 /* Just one subtree, on the left. */
1799 if (node->left->left || node->left->right
1800 || !tree_int_cst_equal (node->left->low, node->left->high))
1802 if (!node_has_high_bound (node, index_type))
1804 probability = conditional_probability (
1805 default_prob/2,
1806 subtree_prob + default_prob);
1807 emit_cmp_and_jump_insns (index,
1808 convert_modes
1809 (mode, imode,
1810 expand_normal (node->high),
1811 unsignedp),
1812 GT, NULL_RTX, mode, unsignedp,
1813 default_label,
1814 probability);
1815 default_prob /= 2;
1818 emit_case_nodes (index, node->left, default_label,
1819 default_prob, index_type);
1821 else
1823 probability = conditional_probability (
1824 node->left->subtree_prob,
1825 subtree_prob + default_prob);
1826 /* We cannot process node->left normally
1827 since we haven't ruled out the numbers less than
1828 this node's value. So handle node->left explicitly. */
1829 do_jump_if_equal (mode, index,
1830 convert_modes
1831 (mode, imode,
1832 expand_normal (node->left->low),
1833 unsignedp),
1834 jump_target_rtx (node->left->code_label),
1835 unsignedp, probability);
1839 else
1841 /* Node is a range. These cases are very similar to those for a single
1842 value, except that we do not start by testing whether this node
1843 is the one to branch to. */
1845 if (node->right != 0 && node->left != 0)
1847 /* Node has subtrees on both sides.
1848 If the right-hand subtree is bounded,
1849 test for it first, since we can go straight there.
1850 Otherwise, we need to make a branch in the control structure,
1851 then handle the two subtrees. */
1852 tree test_label = 0;
1854 if (node_is_bounded (node->right, index_type))
1856 /* Right hand node is fully bounded so we can eliminate any
1857 testing and branch directly to the target code. */
1858 probability = conditional_probability (
1859 node->right->subtree_prob,
1860 subtree_prob + default_prob);
1861 emit_cmp_and_jump_insns (index,
1862 convert_modes
1863 (mode, imode,
1864 expand_normal (node->high),
1865 unsignedp),
1866 GT, NULL_RTX, mode, unsignedp,
1867 label_rtx (node->right->code_label),
1868 probability);
1870 else
1872 /* Right hand node requires testing.
1873 Branch to a label where we will handle it later. */
1875 test_label = build_decl (curr_insn_location (),
1876 LABEL_DECL, NULL_TREE, void_type_node);
1877 probability = conditional_probability (
1878 node->right->subtree_prob + default_prob/2,
1879 subtree_prob + default_prob);
1880 emit_cmp_and_jump_insns (index,
1881 convert_modes
1882 (mode, imode,
1883 expand_normal (node->high),
1884 unsignedp),
1885 GT, NULL_RTX, mode, unsignedp,
1886 label_rtx (test_label),
1887 probability);
1888 default_prob /= 2;
1891 /* Value belongs to this node or to the left-hand subtree. */
1893 probability = conditional_probability (
1894 prob,
1895 subtree_prob + default_prob);
1896 emit_cmp_and_jump_insns (index,
1897 convert_modes
1898 (mode, imode,
1899 expand_normal (node->low),
1900 unsignedp),
1901 GE, NULL_RTX, mode, unsignedp,
1902 label_rtx (node->code_label),
1903 probability);
1905 /* Handle the left-hand subtree. */
1906 emit_case_nodes (index, node->left, default_label, default_prob, index_type);
1908 /* If right node had to be handled later, do that now. */
1910 if (test_label)
1912 /* If the left-hand subtree fell through,
1913 don't let it fall into the right-hand subtree. */
1914 if (default_label)
1915 emit_jump (default_label);
1917 expand_label (test_label);
1918 emit_case_nodes (index, node->right, default_label, default_prob, index_type);
1922 else if (node->right != 0 && node->left == 0)
1924 /* Deal with values to the left of this node,
1925 if they are possible. */
1926 if (!node_has_low_bound (node, index_type))
1928 probability = conditional_probability (
1929 default_prob/2,
1930 subtree_prob + default_prob);
1931 emit_cmp_and_jump_insns (index,
1932 convert_modes
1933 (mode, imode,
1934 expand_normal (node->low),
1935 unsignedp),
1936 LT, NULL_RTX, mode, unsignedp,
1937 default_label,
1938 probability);
1939 default_prob /= 2;
1942 /* Value belongs to this node or to the right-hand subtree. */
1944 probability = conditional_probability (
1945 prob,
1946 subtree_prob + default_prob);
1947 emit_cmp_and_jump_insns (index,
1948 convert_modes
1949 (mode, imode,
1950 expand_normal (node->high),
1951 unsignedp),
1952 LE, NULL_RTX, mode, unsignedp,
1953 label_rtx (node->code_label),
1954 probability);
1956 emit_case_nodes (index, node->right, default_label, default_prob, index_type);
1959 else if (node->right == 0 && node->left != 0)
1961 /* Deal with values to the right of this node,
1962 if they are possible. */
1963 if (!node_has_high_bound (node, index_type))
1965 probability = conditional_probability (
1966 default_prob/2,
1967 subtree_prob + default_prob);
1968 emit_cmp_and_jump_insns (index,
1969 convert_modes
1970 (mode, imode,
1971 expand_normal (node->high),
1972 unsignedp),
1973 GT, NULL_RTX, mode, unsignedp,
1974 default_label,
1975 probability);
1976 default_prob /= 2;
1979 /* Value belongs to this node or to the left-hand subtree. */
1981 probability = conditional_probability (
1982 prob,
1983 subtree_prob + default_prob);
1984 emit_cmp_and_jump_insns (index,
1985 convert_modes
1986 (mode, imode,
1987 expand_normal (node->low),
1988 unsignedp),
1989 GE, NULL_RTX, mode, unsignedp,
1990 label_rtx (node->code_label),
1991 probability);
1993 emit_case_nodes (index, node->left, default_label, default_prob, index_type);
1996 else
1998 /* Node has no children so we check low and high bounds to remove
1999 redundant tests. Only one of the bounds can exist,
2000 since otherwise this node is bounded--a case tested already. */
2001 int high_bound = node_has_high_bound (node, index_type);
2002 int low_bound = node_has_low_bound (node, index_type);
2004 if (!high_bound && low_bound)
2006 probability = conditional_probability (
2007 default_prob,
2008 subtree_prob + default_prob);
2009 emit_cmp_and_jump_insns (index,
2010 convert_modes
2011 (mode, imode,
2012 expand_normal (node->high),
2013 unsignedp),
2014 GT, NULL_RTX, mode, unsignedp,
2015 default_label,
2016 probability);
2019 else if (!low_bound && high_bound)
2021 probability = conditional_probability (
2022 default_prob,
2023 subtree_prob + default_prob);
2024 emit_cmp_and_jump_insns (index,
2025 convert_modes
2026 (mode, imode,
2027 expand_normal (node->low),
2028 unsignedp),
2029 LT, NULL_RTX, mode, unsignedp,
2030 default_label,
2031 probability);
2033 else if (!low_bound && !high_bound)
2035 /* Widen LOW and HIGH to the same width as INDEX. */
2036 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
2037 tree low = build1 (CONVERT_EXPR, type, node->low);
2038 tree high = build1 (CONVERT_EXPR, type, node->high);
2039 rtx low_rtx, new_index, new_bound;
2041 /* Instead of doing two branches, emit one unsigned branch for
2042 (index-low) > (high-low). */
2043 low_rtx = expand_expr (low, NULL_RTX, mode, EXPAND_NORMAL);
2044 new_index = expand_simple_binop (mode, MINUS, index, low_rtx,
2045 NULL_RTX, unsignedp,
2046 OPTAB_WIDEN);
2047 new_bound = expand_expr (fold_build2 (MINUS_EXPR, type,
2048 high, low),
2049 NULL_RTX, mode, EXPAND_NORMAL);
2051 probability = conditional_probability (
2052 default_prob,
2053 subtree_prob + default_prob);
2054 emit_cmp_and_jump_insns (new_index, new_bound, GT, NULL_RTX,
2055 mode, 1, default_label, probability);
2058 emit_jump (jump_target_rtx (node->code_label));