PR tree-optimization/45830
[official-gcc.git] / gcc / sched-deps.c
blobaf2892d002c96796e7ba663130ff6ebbca64f615
1 /* Instruction scheduling pass. This file computes dependencies between
2 instructions.
3 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
5 2011
6 Free Software Foundation, Inc.
7 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
8 and currently maintained by, Jim Wilson (wilson@cygnus.com)
10 This file is part of GCC.
12 GCC is free software; you can redistribute it and/or modify it under
13 the terms of the GNU General Public License as published by the Free
14 Software Foundation; either version 3, or (at your option) any later
15 version.
17 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
18 WARRANTY; without even the implied warranty of MERCHANTABILITY or
19 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
20 for more details.
22 You should have received a copy of the GNU General Public License
23 along with GCC; see the file COPYING3. If not see
24 <http://www.gnu.org/licenses/>. */
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tm.h"
30 #include "diagnostic-core.h"
31 #include "rtl.h"
32 #include "tm_p.h"
33 #include "hard-reg-set.h"
34 #include "regs.h"
35 #include "function.h"
36 #include "flags.h"
37 #include "insn-config.h"
38 #include "insn-attr.h"
39 #include "except.h"
40 #include "recog.h"
41 #include "sched-int.h"
42 #include "params.h"
43 #include "cselib.h"
44 #include "ira.h"
45 #include "target.h"
47 #ifdef INSN_SCHEDULING
49 #ifdef ENABLE_CHECKING
50 #define CHECK (true)
51 #else
52 #define CHECK (false)
53 #endif
55 /* Holds current parameters for the dependency analyzer. */
56 struct sched_deps_info_def *sched_deps_info;
58 /* The data is specific to the Haifa scheduler. */
59 VEC(haifa_deps_insn_data_def, heap) *h_d_i_d = NULL;
61 /* Return the major type present in the DS. */
62 enum reg_note
63 ds_to_dk (ds_t ds)
65 if (ds & DEP_TRUE)
66 return REG_DEP_TRUE;
68 if (ds & DEP_OUTPUT)
69 return REG_DEP_OUTPUT;
71 if (ds & DEP_CONTROL)
72 return REG_DEP_CONTROL;
74 gcc_assert (ds & DEP_ANTI);
76 return REG_DEP_ANTI;
79 /* Return equivalent dep_status. */
80 ds_t
81 dk_to_ds (enum reg_note dk)
83 switch (dk)
85 case REG_DEP_TRUE:
86 return DEP_TRUE;
88 case REG_DEP_OUTPUT:
89 return DEP_OUTPUT;
91 case REG_DEP_CONTROL:
92 return DEP_CONTROL;
94 default:
95 gcc_assert (dk == REG_DEP_ANTI);
96 return DEP_ANTI;
100 /* Functions to operate with dependence information container - dep_t. */
102 /* Init DEP with the arguments. */
103 void
104 init_dep_1 (dep_t dep, rtx pro, rtx con, enum reg_note type, ds_t ds)
106 DEP_PRO (dep) = pro;
107 DEP_CON (dep) = con;
108 DEP_TYPE (dep) = type;
109 DEP_STATUS (dep) = ds;
110 DEP_COST (dep) = UNKNOWN_DEP_COST;
113 /* Init DEP with the arguments.
114 While most of the scheduler (including targets) only need the major type
115 of the dependency, it is convenient to hide full dep_status from them. */
116 void
117 init_dep (dep_t dep, rtx pro, rtx con, enum reg_note kind)
119 ds_t ds;
121 if ((current_sched_info->flags & USE_DEPS_LIST))
122 ds = dk_to_ds (kind);
123 else
124 ds = 0;
126 init_dep_1 (dep, pro, con, kind, ds);
129 /* Make a copy of FROM in TO. */
130 static void
131 copy_dep (dep_t to, dep_t from)
133 memcpy (to, from, sizeof (*to));
136 static void dump_ds (FILE *, ds_t);
138 /* Define flags for dump_dep (). */
140 /* Dump producer of the dependence. */
141 #define DUMP_DEP_PRO (2)
143 /* Dump consumer of the dependence. */
144 #define DUMP_DEP_CON (4)
146 /* Dump type of the dependence. */
147 #define DUMP_DEP_TYPE (8)
149 /* Dump status of the dependence. */
150 #define DUMP_DEP_STATUS (16)
152 /* Dump all information about the dependence. */
153 #define DUMP_DEP_ALL (DUMP_DEP_PRO | DUMP_DEP_CON | DUMP_DEP_TYPE \
154 |DUMP_DEP_STATUS)
156 /* Dump DEP to DUMP.
157 FLAGS is a bit mask specifying what information about DEP needs
158 to be printed.
159 If FLAGS has the very first bit set, then dump all information about DEP
160 and propagate this bit into the callee dump functions. */
161 static void
162 dump_dep (FILE *dump, dep_t dep, int flags)
164 if (flags & 1)
165 flags |= DUMP_DEP_ALL;
167 fprintf (dump, "<");
169 if (flags & DUMP_DEP_PRO)
170 fprintf (dump, "%d; ", INSN_UID (DEP_PRO (dep)));
172 if (flags & DUMP_DEP_CON)
173 fprintf (dump, "%d; ", INSN_UID (DEP_CON (dep)));
175 if (flags & DUMP_DEP_TYPE)
177 char t;
178 enum reg_note type = DEP_TYPE (dep);
180 switch (type)
182 case REG_DEP_TRUE:
183 t = 't';
184 break;
186 case REG_DEP_OUTPUT:
187 t = 'o';
188 break;
190 case REG_DEP_CONTROL:
191 t = 'c';
192 break;
194 case REG_DEP_ANTI:
195 t = 'a';
196 break;
198 default:
199 gcc_unreachable ();
200 break;
203 fprintf (dump, "%c; ", t);
206 if (flags & DUMP_DEP_STATUS)
208 if (current_sched_info->flags & USE_DEPS_LIST)
209 dump_ds (dump, DEP_STATUS (dep));
212 fprintf (dump, ">");
215 /* Default flags for dump_dep (). */
216 static int dump_dep_flags = (DUMP_DEP_PRO | DUMP_DEP_CON);
218 /* Dump all fields of DEP to STDERR. */
219 void
220 sd_debug_dep (dep_t dep)
222 dump_dep (stderr, dep, 1);
223 fprintf (stderr, "\n");
226 /* Determine whether DEP is a dependency link of a non-debug insn on a
227 debug insn. */
229 static inline bool
230 depl_on_debug_p (dep_link_t dep)
232 return (DEBUG_INSN_P (DEP_LINK_PRO (dep))
233 && !DEBUG_INSN_P (DEP_LINK_CON (dep)));
236 /* Functions to operate with a single link from the dependencies lists -
237 dep_link_t. */
239 /* Attach L to appear after link X whose &DEP_LINK_NEXT (X) is given by
240 PREV_NEXT_P. */
241 static void
242 attach_dep_link (dep_link_t l, dep_link_t *prev_nextp)
244 dep_link_t next = *prev_nextp;
246 gcc_assert (DEP_LINK_PREV_NEXTP (l) == NULL
247 && DEP_LINK_NEXT (l) == NULL);
249 /* Init node being inserted. */
250 DEP_LINK_PREV_NEXTP (l) = prev_nextp;
251 DEP_LINK_NEXT (l) = next;
253 /* Fix next node. */
254 if (next != NULL)
256 gcc_assert (DEP_LINK_PREV_NEXTP (next) == prev_nextp);
258 DEP_LINK_PREV_NEXTP (next) = &DEP_LINK_NEXT (l);
261 /* Fix prev node. */
262 *prev_nextp = l;
265 /* Add dep_link LINK to deps_list L. */
266 static void
267 add_to_deps_list (dep_link_t link, deps_list_t l)
269 attach_dep_link (link, &DEPS_LIST_FIRST (l));
271 /* Don't count debug deps. */
272 if (!depl_on_debug_p (link))
273 ++DEPS_LIST_N_LINKS (l);
276 /* Detach dep_link L from the list. */
277 static void
278 detach_dep_link (dep_link_t l)
280 dep_link_t *prev_nextp = DEP_LINK_PREV_NEXTP (l);
281 dep_link_t next = DEP_LINK_NEXT (l);
283 *prev_nextp = next;
285 if (next != NULL)
286 DEP_LINK_PREV_NEXTP (next) = prev_nextp;
288 DEP_LINK_PREV_NEXTP (l) = NULL;
289 DEP_LINK_NEXT (l) = NULL;
292 /* Remove link LINK from list LIST. */
293 static void
294 remove_from_deps_list (dep_link_t link, deps_list_t list)
296 detach_dep_link (link);
298 /* Don't count debug deps. */
299 if (!depl_on_debug_p (link))
300 --DEPS_LIST_N_LINKS (list);
303 /* Move link LINK from list FROM to list TO. */
304 static void
305 move_dep_link (dep_link_t link, deps_list_t from, deps_list_t to)
307 remove_from_deps_list (link, from);
308 add_to_deps_list (link, to);
311 /* Return true of LINK is not attached to any list. */
312 static bool
313 dep_link_is_detached_p (dep_link_t link)
315 return DEP_LINK_PREV_NEXTP (link) == NULL;
318 /* Pool to hold all dependency nodes (dep_node_t). */
319 static alloc_pool dn_pool;
321 /* Number of dep_nodes out there. */
322 static int dn_pool_diff = 0;
324 /* Create a dep_node. */
325 static dep_node_t
326 create_dep_node (void)
328 dep_node_t n = (dep_node_t) pool_alloc (dn_pool);
329 dep_link_t back = DEP_NODE_BACK (n);
330 dep_link_t forw = DEP_NODE_FORW (n);
332 DEP_LINK_NODE (back) = n;
333 DEP_LINK_NEXT (back) = NULL;
334 DEP_LINK_PREV_NEXTP (back) = NULL;
336 DEP_LINK_NODE (forw) = n;
337 DEP_LINK_NEXT (forw) = NULL;
338 DEP_LINK_PREV_NEXTP (forw) = NULL;
340 ++dn_pool_diff;
342 return n;
345 /* Delete dep_node N. N must not be connected to any deps_list. */
346 static void
347 delete_dep_node (dep_node_t n)
349 gcc_assert (dep_link_is_detached_p (DEP_NODE_BACK (n))
350 && dep_link_is_detached_p (DEP_NODE_FORW (n)));
352 --dn_pool_diff;
354 pool_free (dn_pool, n);
357 /* Pool to hold dependencies lists (deps_list_t). */
358 static alloc_pool dl_pool;
360 /* Number of deps_lists out there. */
361 static int dl_pool_diff = 0;
363 /* Functions to operate with dependences lists - deps_list_t. */
365 /* Return true if list L is empty. */
366 static bool
367 deps_list_empty_p (deps_list_t l)
369 return DEPS_LIST_N_LINKS (l) == 0;
372 /* Create a new deps_list. */
373 static deps_list_t
374 create_deps_list (void)
376 deps_list_t l = (deps_list_t) pool_alloc (dl_pool);
378 DEPS_LIST_FIRST (l) = NULL;
379 DEPS_LIST_N_LINKS (l) = 0;
381 ++dl_pool_diff;
382 return l;
385 /* Free deps_list L. */
386 static void
387 free_deps_list (deps_list_t l)
389 gcc_assert (deps_list_empty_p (l));
391 --dl_pool_diff;
393 pool_free (dl_pool, l);
396 /* Return true if there is no dep_nodes and deps_lists out there.
397 After the region is scheduled all the dependency nodes and lists
398 should [generally] be returned to pool. */
399 bool
400 deps_pools_are_empty_p (void)
402 return dn_pool_diff == 0 && dl_pool_diff == 0;
405 /* Remove all elements from L. */
406 static void
407 clear_deps_list (deps_list_t l)
411 dep_link_t link = DEPS_LIST_FIRST (l);
413 if (link == NULL)
414 break;
416 remove_from_deps_list (link, l);
418 while (1);
421 /* Decide whether a dependency should be treated as a hard or a speculative
422 dependency. */
423 static bool
424 dep_spec_p (dep_t dep)
426 if (current_sched_info->flags & DO_SPECULATION)
428 if (DEP_STATUS (dep) & SPECULATIVE)
429 return true;
431 if (current_sched_info->flags & DO_PREDICATION)
433 if (DEP_TYPE (dep) == REG_DEP_CONTROL)
434 return true;
436 return false;
439 static regset reg_pending_sets;
440 static regset reg_pending_clobbers;
441 static regset reg_pending_uses;
442 static regset reg_pending_control_uses;
443 static enum reg_pending_barrier_mode reg_pending_barrier;
445 /* Hard registers implicitly clobbered or used (or may be implicitly
446 clobbered or used) by the currently analyzed insn. For example,
447 insn in its constraint has one register class. Even if there is
448 currently no hard register in the insn, the particular hard
449 register will be in the insn after reload pass because the
450 constraint requires it. */
451 static HARD_REG_SET implicit_reg_pending_clobbers;
452 static HARD_REG_SET implicit_reg_pending_uses;
454 /* To speed up the test for duplicate dependency links we keep a
455 record of dependencies created by add_dependence when the average
456 number of instructions in a basic block is very large.
458 Studies have shown that there is typically around 5 instructions between
459 branches for typical C code. So we can make a guess that the average
460 basic block is approximately 5 instructions long; we will choose 100X
461 the average size as a very large basic block.
463 Each insn has associated bitmaps for its dependencies. Each bitmap
464 has enough entries to represent a dependency on any other insn in
465 the insn chain. All bitmap for true dependencies cache is
466 allocated then the rest two ones are also allocated. */
467 static bitmap_head *true_dependency_cache = NULL;
468 static bitmap_head *output_dependency_cache = NULL;
469 static bitmap_head *anti_dependency_cache = NULL;
470 static bitmap_head *control_dependency_cache = NULL;
471 static bitmap_head *spec_dependency_cache = NULL;
472 static int cache_size;
474 static int deps_may_trap_p (const_rtx);
475 static void add_dependence_1 (rtx, rtx, enum reg_note);
476 static void add_dependence_list (rtx, rtx, int, enum reg_note);
477 static void add_dependence_list_and_free (struct deps_desc *, rtx,
478 rtx *, int, enum reg_note);
479 static void delete_all_dependences (rtx);
480 static void fixup_sched_groups (rtx);
482 static void flush_pending_lists (struct deps_desc *, rtx, int, int);
483 static void sched_analyze_1 (struct deps_desc *, rtx, rtx);
484 static void sched_analyze_2 (struct deps_desc *, rtx, rtx);
485 static void sched_analyze_insn (struct deps_desc *, rtx, rtx);
487 static bool sched_has_condition_p (const_rtx);
488 static int conditions_mutex_p (const_rtx, const_rtx, bool, bool);
490 static enum DEPS_ADJUST_RESULT maybe_add_or_update_dep_1 (dep_t, bool,
491 rtx, rtx);
492 static enum DEPS_ADJUST_RESULT add_or_update_dep_1 (dep_t, bool, rtx, rtx);
494 #ifdef ENABLE_CHECKING
495 static void check_dep (dep_t, bool);
496 #endif
498 /* Return nonzero if a load of the memory reference MEM can cause a trap. */
500 static int
501 deps_may_trap_p (const_rtx mem)
503 const_rtx addr = XEXP (mem, 0);
505 if (REG_P (addr) && REGNO (addr) >= FIRST_PSEUDO_REGISTER)
507 const_rtx t = get_reg_known_value (REGNO (addr));
508 if (t)
509 addr = t;
511 return rtx_addr_can_trap_p (addr);
515 /* Find the condition under which INSN is executed. If REV is not NULL,
516 it is set to TRUE when the returned comparison should be reversed
517 to get the actual condition. */
518 static rtx
519 sched_get_condition_with_rev_uncached (const_rtx insn, bool *rev)
521 rtx pat = PATTERN (insn);
522 rtx src;
524 if (pat == 0)
525 return 0;
527 if (rev)
528 *rev = false;
530 if (GET_CODE (pat) == COND_EXEC)
531 return COND_EXEC_TEST (pat);
533 if (!any_condjump_p (insn) || !onlyjump_p (insn))
534 return 0;
536 src = SET_SRC (pc_set (insn));
538 if (XEXP (src, 2) == pc_rtx)
539 return XEXP (src, 0);
540 else if (XEXP (src, 1) == pc_rtx)
542 rtx cond = XEXP (src, 0);
543 enum rtx_code revcode = reversed_comparison_code (cond, insn);
545 if (revcode == UNKNOWN)
546 return 0;
548 if (rev)
549 *rev = true;
550 return cond;
553 return 0;
556 /* Return the condition under which INSN does not execute (i.e. the
557 not-taken condition for a conditional branch), or NULL if we cannot
558 find such a condition. The caller should make a copy of the condition
559 before using it. */
561 sched_get_reverse_condition_uncached (const_rtx insn)
563 bool rev;
564 rtx cond = sched_get_condition_with_rev_uncached (insn, &rev);
565 if (cond == NULL_RTX)
566 return cond;
567 if (!rev)
569 enum rtx_code revcode = reversed_comparison_code (cond, insn);
570 cond = gen_rtx_fmt_ee (revcode, GET_MODE (cond),
571 XEXP (cond, 0),
572 XEXP (cond, 1));
574 return cond;
577 /* Caching variant of sched_get_condition_with_rev_uncached.
578 We only do actual work the first time we come here for an insn; the
579 results are cached in INSN_CACHED_COND and INSN_REVERSE_COND. */
580 static rtx
581 sched_get_condition_with_rev (const_rtx insn, bool *rev)
583 bool tmp;
585 if (INSN_LUID (insn) == 0)
586 return sched_get_condition_with_rev_uncached (insn, rev);
588 if (INSN_CACHED_COND (insn) == const_true_rtx)
589 return NULL_RTX;
591 if (INSN_CACHED_COND (insn) != NULL_RTX)
593 if (rev)
594 *rev = INSN_REVERSE_COND (insn);
595 return INSN_CACHED_COND (insn);
598 INSN_CACHED_COND (insn) = sched_get_condition_with_rev_uncached (insn, &tmp);
599 INSN_REVERSE_COND (insn) = tmp;
601 if (INSN_CACHED_COND (insn) == NULL_RTX)
603 INSN_CACHED_COND (insn) = const_true_rtx;
604 return NULL_RTX;
607 if (rev)
608 *rev = INSN_REVERSE_COND (insn);
609 return INSN_CACHED_COND (insn);
612 /* True when we can find a condition under which INSN is executed. */
613 static bool
614 sched_has_condition_p (const_rtx insn)
616 return !! sched_get_condition_with_rev (insn, NULL);
621 /* Return nonzero if conditions COND1 and COND2 can never be both true. */
622 static int
623 conditions_mutex_p (const_rtx cond1, const_rtx cond2, bool rev1, bool rev2)
625 if (COMPARISON_P (cond1)
626 && COMPARISON_P (cond2)
627 && GET_CODE (cond1) ==
628 (rev1==rev2
629 ? reversed_comparison_code (cond2, NULL)
630 : GET_CODE (cond2))
631 && rtx_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
632 && XEXP (cond1, 1) == XEXP (cond2, 1))
633 return 1;
634 return 0;
637 /* Return true if insn1 and insn2 can never depend on one another because
638 the conditions under which they are executed are mutually exclusive. */
639 bool
640 sched_insns_conditions_mutex_p (const_rtx insn1, const_rtx insn2)
642 rtx cond1, cond2;
643 bool rev1 = false, rev2 = false;
645 /* df doesn't handle conditional lifetimes entirely correctly;
646 calls mess up the conditional lifetimes. */
647 if (!CALL_P (insn1) && !CALL_P (insn2))
649 cond1 = sched_get_condition_with_rev (insn1, &rev1);
650 cond2 = sched_get_condition_with_rev (insn2, &rev2);
651 if (cond1 && cond2
652 && conditions_mutex_p (cond1, cond2, rev1, rev2)
653 /* Make sure first instruction doesn't affect condition of second
654 instruction if switched. */
655 && !modified_in_p (cond1, insn2)
656 /* Make sure second instruction doesn't affect condition of first
657 instruction if switched. */
658 && !modified_in_p (cond2, insn1))
659 return true;
661 return false;
665 /* Return true if INSN can potentially be speculated with type DS. */
666 bool
667 sched_insn_is_legitimate_for_speculation_p (const_rtx insn, ds_t ds)
669 if (HAS_INTERNAL_DEP (insn))
670 return false;
672 if (!NONJUMP_INSN_P (insn))
673 return false;
675 if (SCHED_GROUP_P (insn))
676 return false;
678 if (IS_SPECULATION_CHECK_P (CONST_CAST_RTX (insn)))
679 return false;
681 if (side_effects_p (PATTERN (insn)))
682 return false;
684 if (ds & BE_IN_SPEC)
685 /* The following instructions, which depend on a speculatively scheduled
686 instruction, cannot be speculatively scheduled along. */
688 if (may_trap_or_fault_p (PATTERN (insn)))
689 /* If instruction might fault, it cannot be speculatively scheduled.
690 For control speculation it's obvious why and for data speculation
691 it's because the insn might get wrong input if speculation
692 wasn't successful. */
693 return false;
695 if ((ds & BE_IN_DATA)
696 && sched_has_condition_p (insn))
697 /* If this is a predicated instruction, then it cannot be
698 speculatively scheduled. See PR35659. */
699 return false;
702 return true;
705 /* Initialize LIST_PTR to point to one of the lists present in TYPES_PTR,
706 initialize RESOLVED_P_PTR with true if that list consists of resolved deps,
707 and remove the type of returned [through LIST_PTR] list from TYPES_PTR.
708 This function is used to switch sd_iterator to the next list.
709 !!! For internal use only. Might consider moving it to sched-int.h. */
710 void
711 sd_next_list (const_rtx insn, sd_list_types_def *types_ptr,
712 deps_list_t *list_ptr, bool *resolved_p_ptr)
714 sd_list_types_def types = *types_ptr;
716 if (types & SD_LIST_HARD_BACK)
718 *list_ptr = INSN_HARD_BACK_DEPS (insn);
719 *resolved_p_ptr = false;
720 *types_ptr = types & ~SD_LIST_HARD_BACK;
722 else if (types & SD_LIST_SPEC_BACK)
724 *list_ptr = INSN_SPEC_BACK_DEPS (insn);
725 *resolved_p_ptr = false;
726 *types_ptr = types & ~SD_LIST_SPEC_BACK;
728 else if (types & SD_LIST_FORW)
730 *list_ptr = INSN_FORW_DEPS (insn);
731 *resolved_p_ptr = false;
732 *types_ptr = types & ~SD_LIST_FORW;
734 else if (types & SD_LIST_RES_BACK)
736 *list_ptr = INSN_RESOLVED_BACK_DEPS (insn);
737 *resolved_p_ptr = true;
738 *types_ptr = types & ~SD_LIST_RES_BACK;
740 else if (types & SD_LIST_RES_FORW)
742 *list_ptr = INSN_RESOLVED_FORW_DEPS (insn);
743 *resolved_p_ptr = true;
744 *types_ptr = types & ~SD_LIST_RES_FORW;
746 else
748 *list_ptr = NULL;
749 *resolved_p_ptr = false;
750 *types_ptr = SD_LIST_NONE;
754 /* Return the summary size of INSN's lists defined by LIST_TYPES. */
756 sd_lists_size (const_rtx insn, sd_list_types_def list_types)
758 int size = 0;
760 while (list_types != SD_LIST_NONE)
762 deps_list_t list;
763 bool resolved_p;
765 sd_next_list (insn, &list_types, &list, &resolved_p);
766 if (list)
767 size += DEPS_LIST_N_LINKS (list);
770 return size;
773 /* Return true if INSN's lists defined by LIST_TYPES are all empty. */
775 bool
776 sd_lists_empty_p (const_rtx insn, sd_list_types_def list_types)
778 while (list_types != SD_LIST_NONE)
780 deps_list_t list;
781 bool resolved_p;
783 sd_next_list (insn, &list_types, &list, &resolved_p);
784 if (!deps_list_empty_p (list))
785 return false;
788 return true;
791 /* Initialize data for INSN. */
792 void
793 sd_init_insn (rtx insn)
795 INSN_HARD_BACK_DEPS (insn) = create_deps_list ();
796 INSN_SPEC_BACK_DEPS (insn) = create_deps_list ();
797 INSN_RESOLVED_BACK_DEPS (insn) = create_deps_list ();
798 INSN_FORW_DEPS (insn) = create_deps_list ();
799 INSN_RESOLVED_FORW_DEPS (insn) = create_deps_list ();
801 /* ??? It would be nice to allocate dependency caches here. */
804 /* Free data for INSN. */
805 void
806 sd_finish_insn (rtx insn)
808 /* ??? It would be nice to deallocate dependency caches here. */
810 free_deps_list (INSN_HARD_BACK_DEPS (insn));
811 INSN_HARD_BACK_DEPS (insn) = NULL;
813 free_deps_list (INSN_SPEC_BACK_DEPS (insn));
814 INSN_SPEC_BACK_DEPS (insn) = NULL;
816 free_deps_list (INSN_RESOLVED_BACK_DEPS (insn));
817 INSN_RESOLVED_BACK_DEPS (insn) = NULL;
819 free_deps_list (INSN_FORW_DEPS (insn));
820 INSN_FORW_DEPS (insn) = NULL;
822 free_deps_list (INSN_RESOLVED_FORW_DEPS (insn));
823 INSN_RESOLVED_FORW_DEPS (insn) = NULL;
826 /* Find a dependency between producer PRO and consumer CON.
827 Search through resolved dependency lists if RESOLVED_P is true.
828 If no such dependency is found return NULL,
829 otherwise return the dependency and initialize SD_IT_PTR [if it is nonnull]
830 with an iterator pointing to it. */
831 static dep_t
832 sd_find_dep_between_no_cache (rtx pro, rtx con, bool resolved_p,
833 sd_iterator_def *sd_it_ptr)
835 sd_list_types_def pro_list_type;
836 sd_list_types_def con_list_type;
837 sd_iterator_def sd_it;
838 dep_t dep;
839 bool found_p = false;
841 if (resolved_p)
843 pro_list_type = SD_LIST_RES_FORW;
844 con_list_type = SD_LIST_RES_BACK;
846 else
848 pro_list_type = SD_LIST_FORW;
849 con_list_type = SD_LIST_BACK;
852 /* Walk through either back list of INSN or forw list of ELEM
853 depending on which one is shorter. */
854 if (sd_lists_size (con, con_list_type) < sd_lists_size (pro, pro_list_type))
856 /* Find the dep_link with producer PRO in consumer's back_deps. */
857 FOR_EACH_DEP (con, con_list_type, sd_it, dep)
858 if (DEP_PRO (dep) == pro)
860 found_p = true;
861 break;
864 else
866 /* Find the dep_link with consumer CON in producer's forw_deps. */
867 FOR_EACH_DEP (pro, pro_list_type, sd_it, dep)
868 if (DEP_CON (dep) == con)
870 found_p = true;
871 break;
875 if (found_p)
877 if (sd_it_ptr != NULL)
878 *sd_it_ptr = sd_it;
880 return dep;
883 return NULL;
886 /* Find a dependency between producer PRO and consumer CON.
887 Use dependency [if available] to check if dependency is present at all.
888 Search through resolved dependency lists if RESOLVED_P is true.
889 If the dependency or NULL if none found. */
890 dep_t
891 sd_find_dep_between (rtx pro, rtx con, bool resolved_p)
893 if (true_dependency_cache != NULL)
894 /* Avoiding the list walk below can cut compile times dramatically
895 for some code. */
897 int elem_luid = INSN_LUID (pro);
898 int insn_luid = INSN_LUID (con);
900 if (!bitmap_bit_p (&true_dependency_cache[insn_luid], elem_luid)
901 && !bitmap_bit_p (&output_dependency_cache[insn_luid], elem_luid)
902 && !bitmap_bit_p (&anti_dependency_cache[insn_luid], elem_luid)
903 && !bitmap_bit_p (&control_dependency_cache[insn_luid], elem_luid))
904 return NULL;
907 return sd_find_dep_between_no_cache (pro, con, resolved_p, NULL);
910 /* Add or update a dependence described by DEP.
911 MEM1 and MEM2, if non-null, correspond to memory locations in case of
912 data speculation.
914 The function returns a value indicating if an old entry has been changed
915 or a new entry has been added to insn's backward deps.
917 This function merely checks if producer and consumer is the same insn
918 and doesn't create a dep in this case. Actual manipulation of
919 dependence data structures is performed in add_or_update_dep_1. */
920 static enum DEPS_ADJUST_RESULT
921 maybe_add_or_update_dep_1 (dep_t dep, bool resolved_p, rtx mem1, rtx mem2)
923 rtx elem = DEP_PRO (dep);
924 rtx insn = DEP_CON (dep);
926 gcc_assert (INSN_P (insn) && INSN_P (elem));
928 /* Don't depend an insn on itself. */
929 if (insn == elem)
931 if (sched_deps_info->generate_spec_deps)
932 /* INSN has an internal dependence, which we can't overcome. */
933 HAS_INTERNAL_DEP (insn) = 1;
935 return DEP_NODEP;
938 return add_or_update_dep_1 (dep, resolved_p, mem1, mem2);
941 /* Ask dependency caches what needs to be done for dependence DEP.
942 Return DEP_CREATED if new dependence should be created and there is no
943 need to try to find one searching the dependencies lists.
944 Return DEP_PRESENT if there already is a dependence described by DEP and
945 hence nothing is to be done.
946 Return DEP_CHANGED if there already is a dependence, but it should be
947 updated to incorporate additional information from DEP. */
948 static enum DEPS_ADJUST_RESULT
949 ask_dependency_caches (dep_t dep)
951 int elem_luid = INSN_LUID (DEP_PRO (dep));
952 int insn_luid = INSN_LUID (DEP_CON (dep));
954 gcc_assert (true_dependency_cache != NULL
955 && output_dependency_cache != NULL
956 && anti_dependency_cache != NULL
957 && control_dependency_cache != NULL);
959 if (!(current_sched_info->flags & USE_DEPS_LIST))
961 enum reg_note present_dep_type;
963 if (bitmap_bit_p (&true_dependency_cache[insn_luid], elem_luid))
964 present_dep_type = REG_DEP_TRUE;
965 else if (bitmap_bit_p (&output_dependency_cache[insn_luid], elem_luid))
966 present_dep_type = REG_DEP_OUTPUT;
967 else if (bitmap_bit_p (&anti_dependency_cache[insn_luid], elem_luid))
968 present_dep_type = REG_DEP_ANTI;
969 else if (bitmap_bit_p (&control_dependency_cache[insn_luid], elem_luid))
970 present_dep_type = REG_DEP_CONTROL;
971 else
972 /* There is no existing dep so it should be created. */
973 return DEP_CREATED;
975 if ((int) DEP_TYPE (dep) >= (int) present_dep_type)
976 /* DEP does not add anything to the existing dependence. */
977 return DEP_PRESENT;
979 else
981 ds_t present_dep_types = 0;
983 if (bitmap_bit_p (&true_dependency_cache[insn_luid], elem_luid))
984 present_dep_types |= DEP_TRUE;
985 if (bitmap_bit_p (&output_dependency_cache[insn_luid], elem_luid))
986 present_dep_types |= DEP_OUTPUT;
987 if (bitmap_bit_p (&anti_dependency_cache[insn_luid], elem_luid))
988 present_dep_types |= DEP_ANTI;
989 if (bitmap_bit_p (&control_dependency_cache[insn_luid], elem_luid))
990 present_dep_types |= DEP_CONTROL;
992 if (present_dep_types == 0)
993 /* There is no existing dep so it should be created. */
994 return DEP_CREATED;
996 if (!(current_sched_info->flags & DO_SPECULATION)
997 || !bitmap_bit_p (&spec_dependency_cache[insn_luid], elem_luid))
999 if ((present_dep_types | (DEP_STATUS (dep) & DEP_TYPES))
1000 == present_dep_types)
1001 /* DEP does not add anything to the existing dependence. */
1002 return DEP_PRESENT;
1004 else
1006 /* Only true dependencies can be data speculative and
1007 only anti dependencies can be control speculative. */
1008 gcc_assert ((present_dep_types & (DEP_TRUE | DEP_ANTI))
1009 == present_dep_types);
1011 /* if (DEP is SPECULATIVE) then
1012 ..we should update DEP_STATUS
1013 else
1014 ..we should reset existing dep to non-speculative. */
1018 return DEP_CHANGED;
1021 /* Set dependency caches according to DEP. */
1022 static void
1023 set_dependency_caches (dep_t dep)
1025 int elem_luid = INSN_LUID (DEP_PRO (dep));
1026 int insn_luid = INSN_LUID (DEP_CON (dep));
1028 if (!(current_sched_info->flags & USE_DEPS_LIST))
1030 switch (DEP_TYPE (dep))
1032 case REG_DEP_TRUE:
1033 bitmap_set_bit (&true_dependency_cache[insn_luid], elem_luid);
1034 break;
1036 case REG_DEP_OUTPUT:
1037 bitmap_set_bit (&output_dependency_cache[insn_luid], elem_luid);
1038 break;
1040 case REG_DEP_ANTI:
1041 bitmap_set_bit (&anti_dependency_cache[insn_luid], elem_luid);
1042 break;
1044 case REG_DEP_CONTROL:
1045 bitmap_set_bit (&control_dependency_cache[insn_luid], elem_luid);
1046 break;
1048 default:
1049 gcc_unreachable ();
1052 else
1054 ds_t ds = DEP_STATUS (dep);
1056 if (ds & DEP_TRUE)
1057 bitmap_set_bit (&true_dependency_cache[insn_luid], elem_luid);
1058 if (ds & DEP_OUTPUT)
1059 bitmap_set_bit (&output_dependency_cache[insn_luid], elem_luid);
1060 if (ds & DEP_ANTI)
1061 bitmap_set_bit (&anti_dependency_cache[insn_luid], elem_luid);
1062 if (ds & DEP_CONTROL)
1063 bitmap_set_bit (&control_dependency_cache[insn_luid], elem_luid);
1065 if (ds & SPECULATIVE)
1067 gcc_assert (current_sched_info->flags & DO_SPECULATION);
1068 bitmap_set_bit (&spec_dependency_cache[insn_luid], elem_luid);
1073 /* Type of dependence DEP have changed from OLD_TYPE. Update dependency
1074 caches accordingly. */
1075 static void
1076 update_dependency_caches (dep_t dep, enum reg_note old_type)
1078 int elem_luid = INSN_LUID (DEP_PRO (dep));
1079 int insn_luid = INSN_LUID (DEP_CON (dep));
1081 /* Clear corresponding cache entry because type of the link
1082 may have changed. Keep them if we use_deps_list. */
1083 if (!(current_sched_info->flags & USE_DEPS_LIST))
1085 switch (old_type)
1087 case REG_DEP_OUTPUT:
1088 bitmap_clear_bit (&output_dependency_cache[insn_luid], elem_luid);
1089 break;
1091 case REG_DEP_ANTI:
1092 bitmap_clear_bit (&anti_dependency_cache[insn_luid], elem_luid);
1093 break;
1095 case REG_DEP_CONTROL:
1096 bitmap_clear_bit (&control_dependency_cache[insn_luid], elem_luid);
1097 break;
1099 default:
1100 gcc_unreachable ();
1104 set_dependency_caches (dep);
1107 /* Convert a dependence pointed to by SD_IT to be non-speculative. */
1108 static void
1109 change_spec_dep_to_hard (sd_iterator_def sd_it)
1111 dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
1112 dep_link_t link = DEP_NODE_BACK (node);
1113 dep_t dep = DEP_NODE_DEP (node);
1114 rtx elem = DEP_PRO (dep);
1115 rtx insn = DEP_CON (dep);
1117 move_dep_link (link, INSN_SPEC_BACK_DEPS (insn), INSN_HARD_BACK_DEPS (insn));
1119 DEP_STATUS (dep) &= ~SPECULATIVE;
1121 if (true_dependency_cache != NULL)
1122 /* Clear the cache entry. */
1123 bitmap_clear_bit (&spec_dependency_cache[INSN_LUID (insn)],
1124 INSN_LUID (elem));
1127 /* Update DEP to incorporate information from NEW_DEP.
1128 SD_IT points to DEP in case it should be moved to another list.
1129 MEM1 and MEM2, if nonnull, correspond to memory locations in case if
1130 data-speculative dependence should be updated. */
1131 static enum DEPS_ADJUST_RESULT
1132 update_dep (dep_t dep, dep_t new_dep,
1133 sd_iterator_def sd_it ATTRIBUTE_UNUSED,
1134 rtx mem1 ATTRIBUTE_UNUSED,
1135 rtx mem2 ATTRIBUTE_UNUSED)
1137 enum DEPS_ADJUST_RESULT res = DEP_PRESENT;
1138 enum reg_note old_type = DEP_TYPE (dep);
1139 bool was_spec = dep_spec_p (dep);
1141 /* If this is a more restrictive type of dependence than the
1142 existing one, then change the existing dependence to this
1143 type. */
1144 if ((int) DEP_TYPE (new_dep) < (int) old_type)
1146 DEP_TYPE (dep) = DEP_TYPE (new_dep);
1147 res = DEP_CHANGED;
1150 if (current_sched_info->flags & USE_DEPS_LIST)
1151 /* Update DEP_STATUS. */
1153 ds_t dep_status = DEP_STATUS (dep);
1154 ds_t ds = DEP_STATUS (new_dep);
1155 ds_t new_status = ds | dep_status;
1157 if (new_status & SPECULATIVE)
1159 /* Either existing dep or a dep we're adding or both are
1160 speculative. */
1161 if (!(ds & SPECULATIVE)
1162 || !(dep_status & SPECULATIVE))
1163 /* The new dep can't be speculative. */
1164 new_status &= ~SPECULATIVE;
1165 else
1167 /* Both are speculative. Merge probabilities. */
1168 if (mem1 != NULL)
1170 dw_t dw;
1172 dw = estimate_dep_weak (mem1, mem2);
1173 ds = set_dep_weak (ds, BEGIN_DATA, dw);
1176 new_status = ds_merge (dep_status, ds);
1180 ds = new_status;
1182 if (dep_status != ds)
1184 DEP_STATUS (dep) = ds;
1185 res = DEP_CHANGED;
1189 if (was_spec && !dep_spec_p (dep))
1190 /* The old dep was speculative, but now it isn't. */
1191 change_spec_dep_to_hard (sd_it);
1193 if (true_dependency_cache != NULL
1194 && res == DEP_CHANGED)
1195 update_dependency_caches (dep, old_type);
1197 return res;
1200 /* Add or update a dependence described by DEP.
1201 MEM1 and MEM2, if non-null, correspond to memory locations in case of
1202 data speculation.
1204 The function returns a value indicating if an old entry has been changed
1205 or a new entry has been added to insn's backward deps or nothing has
1206 been updated at all. */
1207 static enum DEPS_ADJUST_RESULT
1208 add_or_update_dep_1 (dep_t new_dep, bool resolved_p,
1209 rtx mem1 ATTRIBUTE_UNUSED, rtx mem2 ATTRIBUTE_UNUSED)
1211 bool maybe_present_p = true;
1212 bool present_p = false;
1214 gcc_assert (INSN_P (DEP_PRO (new_dep)) && INSN_P (DEP_CON (new_dep))
1215 && DEP_PRO (new_dep) != DEP_CON (new_dep));
1217 #ifdef ENABLE_CHECKING
1218 check_dep (new_dep, mem1 != NULL);
1219 #endif
1221 if (true_dependency_cache != NULL)
1223 switch (ask_dependency_caches (new_dep))
1225 case DEP_PRESENT:
1226 return DEP_PRESENT;
1228 case DEP_CHANGED:
1229 maybe_present_p = true;
1230 present_p = true;
1231 break;
1233 case DEP_CREATED:
1234 maybe_present_p = false;
1235 present_p = false;
1236 break;
1238 default:
1239 gcc_unreachable ();
1240 break;
1244 /* Check that we don't already have this dependence. */
1245 if (maybe_present_p)
1247 dep_t present_dep;
1248 sd_iterator_def sd_it;
1250 gcc_assert (true_dependency_cache == NULL || present_p);
1252 present_dep = sd_find_dep_between_no_cache (DEP_PRO (new_dep),
1253 DEP_CON (new_dep),
1254 resolved_p, &sd_it);
1256 if (present_dep != NULL)
1257 /* We found an existing dependency between ELEM and INSN. */
1258 return update_dep (present_dep, new_dep, sd_it, mem1, mem2);
1259 else
1260 /* We didn't find a dep, it shouldn't present in the cache. */
1261 gcc_assert (!present_p);
1264 /* Might want to check one level of transitivity to save conses.
1265 This check should be done in maybe_add_or_update_dep_1.
1266 Since we made it to add_or_update_dep_1, we must create
1267 (or update) a link. */
1269 if (mem1 != NULL_RTX)
1271 gcc_assert (sched_deps_info->generate_spec_deps);
1272 DEP_STATUS (new_dep) = set_dep_weak (DEP_STATUS (new_dep), BEGIN_DATA,
1273 estimate_dep_weak (mem1, mem2));
1276 sd_add_dep (new_dep, resolved_p);
1278 return DEP_CREATED;
1281 /* Initialize BACK_LIST_PTR with consumer's backward list and
1282 FORW_LIST_PTR with producer's forward list. If RESOLVED_P is true
1283 initialize with lists that hold resolved deps. */
1284 static void
1285 get_back_and_forw_lists (dep_t dep, bool resolved_p,
1286 deps_list_t *back_list_ptr,
1287 deps_list_t *forw_list_ptr)
1289 rtx con = DEP_CON (dep);
1291 if (!resolved_p)
1293 if (dep_spec_p (dep))
1294 *back_list_ptr = INSN_SPEC_BACK_DEPS (con);
1295 else
1296 *back_list_ptr = INSN_HARD_BACK_DEPS (con);
1298 *forw_list_ptr = INSN_FORW_DEPS (DEP_PRO (dep));
1300 else
1302 *back_list_ptr = INSN_RESOLVED_BACK_DEPS (con);
1303 *forw_list_ptr = INSN_RESOLVED_FORW_DEPS (DEP_PRO (dep));
1307 /* Add dependence described by DEP.
1308 If RESOLVED_P is true treat the dependence as a resolved one. */
1309 void
1310 sd_add_dep (dep_t dep, bool resolved_p)
1312 dep_node_t n = create_dep_node ();
1313 deps_list_t con_back_deps;
1314 deps_list_t pro_forw_deps;
1315 rtx elem = DEP_PRO (dep);
1316 rtx insn = DEP_CON (dep);
1318 gcc_assert (INSN_P (insn) && INSN_P (elem) && insn != elem);
1320 if ((current_sched_info->flags & DO_SPECULATION) == 0
1321 || !sched_insn_is_legitimate_for_speculation_p (insn, DEP_STATUS (dep)))
1322 DEP_STATUS (dep) &= ~SPECULATIVE;
1324 copy_dep (DEP_NODE_DEP (n), dep);
1326 get_back_and_forw_lists (dep, resolved_p, &con_back_deps, &pro_forw_deps);
1328 add_to_deps_list (DEP_NODE_BACK (n), con_back_deps);
1330 #ifdef ENABLE_CHECKING
1331 check_dep (dep, false);
1332 #endif
1334 add_to_deps_list (DEP_NODE_FORW (n), pro_forw_deps);
1336 /* If we are adding a dependency to INSN's LOG_LINKs, then note that
1337 in the bitmap caches of dependency information. */
1338 if (true_dependency_cache != NULL)
1339 set_dependency_caches (dep);
1342 /* Add or update backward dependence between INSN and ELEM
1343 with given type DEP_TYPE and dep_status DS.
1344 This function is a convenience wrapper. */
1345 enum DEPS_ADJUST_RESULT
1346 sd_add_or_update_dep (dep_t dep, bool resolved_p)
1348 return add_or_update_dep_1 (dep, resolved_p, NULL_RTX, NULL_RTX);
1351 /* Resolved dependence pointed to by SD_IT.
1352 SD_IT will advance to the next element. */
1353 void
1354 sd_resolve_dep (sd_iterator_def sd_it)
1356 dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
1357 dep_t dep = DEP_NODE_DEP (node);
1358 rtx pro = DEP_PRO (dep);
1359 rtx con = DEP_CON (dep);
1361 if (dep_spec_p (dep))
1362 move_dep_link (DEP_NODE_BACK (node), INSN_SPEC_BACK_DEPS (con),
1363 INSN_RESOLVED_BACK_DEPS (con));
1364 else
1365 move_dep_link (DEP_NODE_BACK (node), INSN_HARD_BACK_DEPS (con),
1366 INSN_RESOLVED_BACK_DEPS (con));
1368 move_dep_link (DEP_NODE_FORW (node), INSN_FORW_DEPS (pro),
1369 INSN_RESOLVED_FORW_DEPS (pro));
1372 /* Perform the inverse operation of sd_resolve_dep. Restore the dependence
1373 pointed to by SD_IT to unresolved state. */
1374 void
1375 sd_unresolve_dep (sd_iterator_def sd_it)
1377 dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
1378 dep_t dep = DEP_NODE_DEP (node);
1379 rtx pro = DEP_PRO (dep);
1380 rtx con = DEP_CON (dep);
1382 if (dep_spec_p (dep))
1383 move_dep_link (DEP_NODE_BACK (node), INSN_RESOLVED_BACK_DEPS (con),
1384 INSN_SPEC_BACK_DEPS (con));
1385 else
1386 move_dep_link (DEP_NODE_BACK (node), INSN_RESOLVED_BACK_DEPS (con),
1387 INSN_HARD_BACK_DEPS (con));
1389 move_dep_link (DEP_NODE_FORW (node), INSN_RESOLVED_FORW_DEPS (pro),
1390 INSN_FORW_DEPS (pro));
1393 /* Make TO depend on all the FROM's producers.
1394 If RESOLVED_P is true add dependencies to the resolved lists. */
1395 void
1396 sd_copy_back_deps (rtx to, rtx from, bool resolved_p)
1398 sd_list_types_def list_type;
1399 sd_iterator_def sd_it;
1400 dep_t dep;
1402 list_type = resolved_p ? SD_LIST_RES_BACK : SD_LIST_BACK;
1404 FOR_EACH_DEP (from, list_type, sd_it, dep)
1406 dep_def _new_dep, *new_dep = &_new_dep;
1408 copy_dep (new_dep, dep);
1409 DEP_CON (new_dep) = to;
1410 sd_add_dep (new_dep, resolved_p);
1414 /* Remove a dependency referred to by SD_IT.
1415 SD_IT will point to the next dependence after removal. */
1416 void
1417 sd_delete_dep (sd_iterator_def sd_it)
1419 dep_node_t n = DEP_LINK_NODE (*sd_it.linkp);
1420 dep_t dep = DEP_NODE_DEP (n);
1421 rtx pro = DEP_PRO (dep);
1422 rtx con = DEP_CON (dep);
1423 deps_list_t con_back_deps;
1424 deps_list_t pro_forw_deps;
1426 if (true_dependency_cache != NULL)
1428 int elem_luid = INSN_LUID (pro);
1429 int insn_luid = INSN_LUID (con);
1431 bitmap_clear_bit (&true_dependency_cache[insn_luid], elem_luid);
1432 bitmap_clear_bit (&anti_dependency_cache[insn_luid], elem_luid);
1433 bitmap_clear_bit (&control_dependency_cache[insn_luid], elem_luid);
1434 bitmap_clear_bit (&output_dependency_cache[insn_luid], elem_luid);
1436 if (current_sched_info->flags & DO_SPECULATION)
1437 bitmap_clear_bit (&spec_dependency_cache[insn_luid], elem_luid);
1440 get_back_and_forw_lists (dep, sd_it.resolved_p,
1441 &con_back_deps, &pro_forw_deps);
1443 remove_from_deps_list (DEP_NODE_BACK (n), con_back_deps);
1444 remove_from_deps_list (DEP_NODE_FORW (n), pro_forw_deps);
1446 delete_dep_node (n);
1449 /* Dump size of the lists. */
1450 #define DUMP_LISTS_SIZE (2)
1452 /* Dump dependencies of the lists. */
1453 #define DUMP_LISTS_DEPS (4)
1455 /* Dump all information about the lists. */
1456 #define DUMP_LISTS_ALL (DUMP_LISTS_SIZE | DUMP_LISTS_DEPS)
1458 /* Dump deps_lists of INSN specified by TYPES to DUMP.
1459 FLAGS is a bit mask specifying what information about the lists needs
1460 to be printed.
1461 If FLAGS has the very first bit set, then dump all information about
1462 the lists and propagate this bit into the callee dump functions. */
1463 static void
1464 dump_lists (FILE *dump, rtx insn, sd_list_types_def types, int flags)
1466 sd_iterator_def sd_it;
1467 dep_t dep;
1468 int all;
1470 all = (flags & 1);
1472 if (all)
1473 flags |= DUMP_LISTS_ALL;
1475 fprintf (dump, "[");
1477 if (flags & DUMP_LISTS_SIZE)
1478 fprintf (dump, "%d; ", sd_lists_size (insn, types));
1480 if (flags & DUMP_LISTS_DEPS)
1482 FOR_EACH_DEP (insn, types, sd_it, dep)
1484 dump_dep (dump, dep, dump_dep_flags | all);
1485 fprintf (dump, " ");
1490 /* Dump all information about deps_lists of INSN specified by TYPES
1491 to STDERR. */
1492 void
1493 sd_debug_lists (rtx insn, sd_list_types_def types)
1495 dump_lists (stderr, insn, types, 1);
1496 fprintf (stderr, "\n");
1499 /* A wrapper around add_dependence_1, to add a dependence of CON on
1500 PRO, with type DEP_TYPE. This function implements special handling
1501 for REG_DEP_CONTROL dependencies. For these, we optionally promote
1502 the type to REG_DEP_ANTI if we can determine that predication is
1503 impossible; otherwise we add additional true dependencies on the
1504 INSN_COND_DEPS list of the jump (which PRO must be). */
1505 void
1506 add_dependence (rtx con, rtx pro, enum reg_note dep_type)
1508 if (dep_type == REG_DEP_CONTROL
1509 && !(current_sched_info->flags & DO_PREDICATION))
1510 dep_type = REG_DEP_ANTI;
1512 /* A REG_DEP_CONTROL dependence may be eliminated through predication,
1513 so we must also make the insn dependent on the setter of the
1514 condition. */
1515 if (dep_type == REG_DEP_CONTROL)
1517 rtx real_pro = pro;
1518 rtx other = real_insn_for_shadow (real_pro);
1519 rtx cond;
1521 if (other != NULL_RTX)
1522 real_pro = other;
1523 cond = sched_get_reverse_condition_uncached (real_pro);
1524 /* Verify that the insn does not use a different value in
1525 the condition register than the one that was present at
1526 the jump. */
1527 if (cond == NULL_RTX)
1528 dep_type = REG_DEP_ANTI;
1529 else if (INSN_CACHED_COND (real_pro) == const_true_rtx)
1531 HARD_REG_SET uses;
1532 CLEAR_HARD_REG_SET (uses);
1533 note_uses (&PATTERN (con), record_hard_reg_uses, &uses);
1534 if (TEST_HARD_REG_BIT (uses, REGNO (XEXP (cond, 0))))
1535 dep_type = REG_DEP_ANTI;
1537 if (dep_type == REG_DEP_CONTROL)
1539 if (sched_verbose >= 5)
1540 fprintf (sched_dump, "making DEP_CONTROL for %d\n",
1541 INSN_UID (real_pro));
1542 add_dependence_list (con, INSN_COND_DEPS (real_pro), 0,
1543 REG_DEP_TRUE);
1547 add_dependence_1 (con, pro, dep_type);
1550 /* A convenience wrapper to operate on an entire list. */
1552 static void
1553 add_dependence_list (rtx insn, rtx list, int uncond, enum reg_note dep_type)
1555 for (; list; list = XEXP (list, 1))
1557 if (uncond || ! sched_insns_conditions_mutex_p (insn, XEXP (list, 0)))
1558 add_dependence (insn, XEXP (list, 0), dep_type);
1562 /* Similar, but free *LISTP at the same time, when the context
1563 is not readonly. */
1565 static void
1566 add_dependence_list_and_free (struct deps_desc *deps, rtx insn, rtx *listp,
1567 int uncond, enum reg_note dep_type)
1569 rtx list, next;
1571 /* We don't want to short-circuit dependencies involving debug
1572 insns, because they may cause actual dependencies to be
1573 disregarded. */
1574 if (deps->readonly || DEBUG_INSN_P (insn))
1576 add_dependence_list (insn, *listp, uncond, dep_type);
1577 return;
1580 for (list = *listp, *listp = NULL; list ; list = next)
1582 next = XEXP (list, 1);
1583 if (uncond || ! sched_insns_conditions_mutex_p (insn, XEXP (list, 0)))
1584 add_dependence (insn, XEXP (list, 0), dep_type);
1585 free_INSN_LIST_node (list);
1589 /* Remove all occurences of INSN from LIST. Return the number of
1590 occurences removed. */
1592 static int
1593 remove_from_dependence_list (rtx insn, rtx* listp)
1595 int removed = 0;
1597 while (*listp)
1599 if (XEXP (*listp, 0) == insn)
1601 remove_free_INSN_LIST_node (listp);
1602 removed++;
1603 continue;
1606 listp = &XEXP (*listp, 1);
1609 return removed;
1612 /* Same as above, but process two lists at once. */
1613 static int
1614 remove_from_both_dependence_lists (rtx insn, rtx *listp, rtx *exprp)
1616 int removed = 0;
1618 while (*listp)
1620 if (XEXP (*listp, 0) == insn)
1622 remove_free_INSN_LIST_node (listp);
1623 remove_free_EXPR_LIST_node (exprp);
1624 removed++;
1625 continue;
1628 listp = &XEXP (*listp, 1);
1629 exprp = &XEXP (*exprp, 1);
1632 return removed;
1635 /* Clear all dependencies for an insn. */
1636 static void
1637 delete_all_dependences (rtx insn)
1639 sd_iterator_def sd_it;
1640 dep_t dep;
1642 /* The below cycle can be optimized to clear the caches and back_deps
1643 in one call but that would provoke duplication of code from
1644 delete_dep (). */
1646 for (sd_it = sd_iterator_start (insn, SD_LIST_BACK);
1647 sd_iterator_cond (&sd_it, &dep);)
1648 sd_delete_dep (sd_it);
1651 /* All insns in a scheduling group except the first should only have
1652 dependencies on the previous insn in the group. So we find the
1653 first instruction in the scheduling group by walking the dependence
1654 chains backwards. Then we add the dependencies for the group to
1655 the previous nonnote insn. */
1657 static void
1658 fixup_sched_groups (rtx insn)
1660 sd_iterator_def sd_it;
1661 dep_t dep;
1662 rtx prev_nonnote;
1664 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
1666 rtx i = insn;
1667 rtx pro = DEP_PRO (dep);
1671 i = prev_nonnote_insn (i);
1673 if (pro == i)
1674 goto next_link;
1675 } while (SCHED_GROUP_P (i) || DEBUG_INSN_P (i));
1677 if (! sched_insns_conditions_mutex_p (i, pro))
1678 add_dependence (i, pro, DEP_TYPE (dep));
1679 next_link:;
1682 delete_all_dependences (insn);
1684 prev_nonnote = prev_nonnote_nondebug_insn (insn);
1685 if (BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (prev_nonnote)
1686 && ! sched_insns_conditions_mutex_p (insn, prev_nonnote))
1687 add_dependence (insn, prev_nonnote, REG_DEP_ANTI);
1690 /* Process an insn's memory dependencies. There are four kinds of
1691 dependencies:
1693 (0) read dependence: read follows read
1694 (1) true dependence: read follows write
1695 (2) output dependence: write follows write
1696 (3) anti dependence: write follows read
1698 We are careful to build only dependencies which actually exist, and
1699 use transitivity to avoid building too many links. */
1701 /* Add an INSN and MEM reference pair to a pending INSN_LIST and MEM_LIST.
1702 The MEM is a memory reference contained within INSN, which we are saving
1703 so that we can do memory aliasing on it. */
1705 static void
1706 add_insn_mem_dependence (struct deps_desc *deps, bool read_p,
1707 rtx insn, rtx mem)
1709 rtx *insn_list;
1710 rtx *mem_list;
1711 rtx link;
1713 gcc_assert (!deps->readonly);
1714 if (read_p)
1716 insn_list = &deps->pending_read_insns;
1717 mem_list = &deps->pending_read_mems;
1718 if (!DEBUG_INSN_P (insn))
1719 deps->pending_read_list_length++;
1721 else
1723 insn_list = &deps->pending_write_insns;
1724 mem_list = &deps->pending_write_mems;
1725 deps->pending_write_list_length++;
1728 link = alloc_INSN_LIST (insn, *insn_list);
1729 *insn_list = link;
1731 if (sched_deps_info->use_cselib)
1733 mem = shallow_copy_rtx (mem);
1734 XEXP (mem, 0) = cselib_subst_to_values (XEXP (mem, 0), GET_MODE (mem));
1736 link = alloc_EXPR_LIST (VOIDmode, canon_rtx (mem), *mem_list);
1737 *mem_list = link;
1740 /* Make a dependency between every memory reference on the pending lists
1741 and INSN, thus flushing the pending lists. FOR_READ is true if emitting
1742 dependencies for a read operation, similarly with FOR_WRITE. */
1744 static void
1745 flush_pending_lists (struct deps_desc *deps, rtx insn, int for_read,
1746 int for_write)
1748 if (for_write)
1750 add_dependence_list_and_free (deps, insn, &deps->pending_read_insns,
1751 1, REG_DEP_ANTI);
1752 if (!deps->readonly)
1754 free_EXPR_LIST_list (&deps->pending_read_mems);
1755 deps->pending_read_list_length = 0;
1759 add_dependence_list_and_free (deps, insn, &deps->pending_write_insns, 1,
1760 for_read ? REG_DEP_ANTI : REG_DEP_OUTPUT);
1762 add_dependence_list_and_free (deps, insn,
1763 &deps->last_pending_memory_flush, 1,
1764 for_read ? REG_DEP_ANTI : REG_DEP_OUTPUT);
1766 add_dependence_list_and_free (deps, insn, &deps->pending_jump_insns, 1,
1767 REG_DEP_ANTI);
1769 if (!deps->readonly)
1771 free_EXPR_LIST_list (&deps->pending_write_mems);
1772 deps->pending_write_list_length = 0;
1774 deps->last_pending_memory_flush = alloc_INSN_LIST (insn, NULL_RTX);
1775 deps->pending_flush_length = 1;
1779 /* Instruction which dependencies we are analyzing. */
1780 static rtx cur_insn = NULL_RTX;
1782 /* Implement hooks for haifa scheduler. */
1784 static void
1785 haifa_start_insn (rtx insn)
1787 gcc_assert (insn && !cur_insn);
1789 cur_insn = insn;
1792 static void
1793 haifa_finish_insn (void)
1795 cur_insn = NULL;
1798 void
1799 haifa_note_reg_set (int regno)
1801 SET_REGNO_REG_SET (reg_pending_sets, regno);
1804 void
1805 haifa_note_reg_clobber (int regno)
1807 SET_REGNO_REG_SET (reg_pending_clobbers, regno);
1810 void
1811 haifa_note_reg_use (int regno)
1813 SET_REGNO_REG_SET (reg_pending_uses, regno);
1816 static void
1817 haifa_note_mem_dep (rtx mem, rtx pending_mem, rtx pending_insn, ds_t ds)
1819 if (!(ds & SPECULATIVE))
1821 mem = NULL_RTX;
1822 pending_mem = NULL_RTX;
1824 else
1825 gcc_assert (ds & BEGIN_DATA);
1828 dep_def _dep, *dep = &_dep;
1830 init_dep_1 (dep, pending_insn, cur_insn, ds_to_dt (ds),
1831 current_sched_info->flags & USE_DEPS_LIST ? ds : 0);
1832 maybe_add_or_update_dep_1 (dep, false, pending_mem, mem);
1837 static void
1838 haifa_note_dep (rtx elem, ds_t ds)
1840 dep_def _dep;
1841 dep_t dep = &_dep;
1843 init_dep (dep, elem, cur_insn, ds_to_dt (ds));
1844 maybe_add_or_update_dep_1 (dep, false, NULL_RTX, NULL_RTX);
1847 static void
1848 note_reg_use (int r)
1850 if (sched_deps_info->note_reg_use)
1851 sched_deps_info->note_reg_use (r);
1854 static void
1855 note_reg_set (int r)
1857 if (sched_deps_info->note_reg_set)
1858 sched_deps_info->note_reg_set (r);
1861 static void
1862 note_reg_clobber (int r)
1864 if (sched_deps_info->note_reg_clobber)
1865 sched_deps_info->note_reg_clobber (r);
1868 static void
1869 note_mem_dep (rtx m1, rtx m2, rtx e, ds_t ds)
1871 if (sched_deps_info->note_mem_dep)
1872 sched_deps_info->note_mem_dep (m1, m2, e, ds);
1875 static void
1876 note_dep (rtx e, ds_t ds)
1878 if (sched_deps_info->note_dep)
1879 sched_deps_info->note_dep (e, ds);
1882 /* Return corresponding to DS reg_note. */
1883 enum reg_note
1884 ds_to_dt (ds_t ds)
1886 if (ds & DEP_TRUE)
1887 return REG_DEP_TRUE;
1888 else if (ds & DEP_OUTPUT)
1889 return REG_DEP_OUTPUT;
1890 else if (ds & DEP_ANTI)
1891 return REG_DEP_ANTI;
1892 else
1894 gcc_assert (ds & DEP_CONTROL);
1895 return REG_DEP_CONTROL;
1901 /* Functions for computation of info needed for register pressure
1902 sensitive insn scheduling. */
1905 /* Allocate and return reg_use_data structure for REGNO and INSN. */
1906 static struct reg_use_data *
1907 create_insn_reg_use (int regno, rtx insn)
1909 struct reg_use_data *use;
1911 use = (struct reg_use_data *) xmalloc (sizeof (struct reg_use_data));
1912 use->regno = regno;
1913 use->insn = insn;
1914 use->next_insn_use = INSN_REG_USE_LIST (insn);
1915 INSN_REG_USE_LIST (insn) = use;
1916 return use;
1919 /* Allocate and return reg_set_data structure for REGNO and INSN. */
1920 static struct reg_set_data *
1921 create_insn_reg_set (int regno, rtx insn)
1923 struct reg_set_data *set;
1925 set = (struct reg_set_data *) xmalloc (sizeof (struct reg_set_data));
1926 set->regno = regno;
1927 set->insn = insn;
1928 set->next_insn_set = INSN_REG_SET_LIST (insn);
1929 INSN_REG_SET_LIST (insn) = set;
1930 return set;
1933 /* Set up insn register uses for INSN and dependency context DEPS. */
1934 static void
1935 setup_insn_reg_uses (struct deps_desc *deps, rtx insn)
1937 unsigned i;
1938 reg_set_iterator rsi;
1939 rtx list;
1940 struct reg_use_data *use, *use2, *next;
1941 struct deps_reg *reg_last;
1943 EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses, 0, i, rsi)
1945 if (i < FIRST_PSEUDO_REGISTER
1946 && TEST_HARD_REG_BIT (ira_no_alloc_regs, i))
1947 continue;
1949 if (find_regno_note (insn, REG_DEAD, i) == NULL_RTX
1950 && ! REGNO_REG_SET_P (reg_pending_sets, i)
1951 && ! REGNO_REG_SET_P (reg_pending_clobbers, i))
1952 /* Ignore use which is not dying. */
1953 continue;
1955 use = create_insn_reg_use (i, insn);
1956 use->next_regno_use = use;
1957 reg_last = &deps->reg_last[i];
1959 /* Create the cycle list of uses. */
1960 for (list = reg_last->uses; list; list = XEXP (list, 1))
1962 use2 = create_insn_reg_use (i, XEXP (list, 0));
1963 next = use->next_regno_use;
1964 use->next_regno_use = use2;
1965 use2->next_regno_use = next;
1970 /* Register pressure info for the currently processed insn. */
1971 static struct reg_pressure_data reg_pressure_info[N_REG_CLASSES];
1973 /* Return TRUE if INSN has the use structure for REGNO. */
1974 static bool
1975 insn_use_p (rtx insn, int regno)
1977 struct reg_use_data *use;
1979 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
1980 if (use->regno == regno)
1981 return true;
1982 return false;
1985 /* Update the register pressure info after birth of pseudo register REGNO
1986 in INSN. Arguments CLOBBER_P and UNUSED_P say correspondingly that
1987 the register is in clobber or unused after the insn. */
1988 static void
1989 mark_insn_pseudo_birth (rtx insn, int regno, bool clobber_p, bool unused_p)
1991 int incr, new_incr;
1992 enum reg_class cl;
1994 gcc_assert (regno >= FIRST_PSEUDO_REGISTER);
1995 cl = sched_regno_pressure_class[regno];
1996 if (cl != NO_REGS)
1998 incr = ira_reg_class_max_nregs[cl][PSEUDO_REGNO_MODE (regno)];
1999 if (clobber_p)
2001 new_incr = reg_pressure_info[cl].clobber_increase + incr;
2002 reg_pressure_info[cl].clobber_increase = new_incr;
2004 else if (unused_p)
2006 new_incr = reg_pressure_info[cl].unused_set_increase + incr;
2007 reg_pressure_info[cl].unused_set_increase = new_incr;
2009 else
2011 new_incr = reg_pressure_info[cl].set_increase + incr;
2012 reg_pressure_info[cl].set_increase = new_incr;
2013 if (! insn_use_p (insn, regno))
2014 reg_pressure_info[cl].change += incr;
2015 create_insn_reg_set (regno, insn);
2017 gcc_assert (new_incr < (1 << INCREASE_BITS));
2021 /* Like mark_insn_pseudo_regno_birth except that NREGS saying how many
2022 hard registers involved in the birth. */
2023 static void
2024 mark_insn_hard_regno_birth (rtx insn, int regno, int nregs,
2025 bool clobber_p, bool unused_p)
2027 enum reg_class cl;
2028 int new_incr, last = regno + nregs;
2030 while (regno < last)
2032 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
2033 if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
2035 cl = sched_regno_pressure_class[regno];
2036 if (cl != NO_REGS)
2038 if (clobber_p)
2040 new_incr = reg_pressure_info[cl].clobber_increase + 1;
2041 reg_pressure_info[cl].clobber_increase = new_incr;
2043 else if (unused_p)
2045 new_incr = reg_pressure_info[cl].unused_set_increase + 1;
2046 reg_pressure_info[cl].unused_set_increase = new_incr;
2048 else
2050 new_incr = reg_pressure_info[cl].set_increase + 1;
2051 reg_pressure_info[cl].set_increase = new_incr;
2052 if (! insn_use_p (insn, regno))
2053 reg_pressure_info[cl].change += 1;
2054 create_insn_reg_set (regno, insn);
2056 gcc_assert (new_incr < (1 << INCREASE_BITS));
2059 regno++;
2063 /* Update the register pressure info after birth of pseudo or hard
2064 register REG in INSN. Arguments CLOBBER_P and UNUSED_P say
2065 correspondingly that the register is in clobber or unused after the
2066 insn. */
2067 static void
2068 mark_insn_reg_birth (rtx insn, rtx reg, bool clobber_p, bool unused_p)
2070 int regno;
2072 if (GET_CODE (reg) == SUBREG)
2073 reg = SUBREG_REG (reg);
2075 if (! REG_P (reg))
2076 return;
2078 regno = REGNO (reg);
2079 if (regno < FIRST_PSEUDO_REGISTER)
2080 mark_insn_hard_regno_birth (insn, regno,
2081 hard_regno_nregs[regno][GET_MODE (reg)],
2082 clobber_p, unused_p);
2083 else
2084 mark_insn_pseudo_birth (insn, regno, clobber_p, unused_p);
2087 /* Update the register pressure info after death of pseudo register
2088 REGNO. */
2089 static void
2090 mark_pseudo_death (int regno)
2092 int incr;
2093 enum reg_class cl;
2095 gcc_assert (regno >= FIRST_PSEUDO_REGISTER);
2096 cl = sched_regno_pressure_class[regno];
2097 if (cl != NO_REGS)
2099 incr = ira_reg_class_max_nregs[cl][PSEUDO_REGNO_MODE (regno)];
2100 reg_pressure_info[cl].change -= incr;
2104 /* Like mark_pseudo_death except that NREGS saying how many hard
2105 registers involved in the death. */
2106 static void
2107 mark_hard_regno_death (int regno, int nregs)
2109 enum reg_class cl;
2110 int last = regno + nregs;
2112 while (regno < last)
2114 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
2115 if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
2117 cl = sched_regno_pressure_class[regno];
2118 if (cl != NO_REGS)
2119 reg_pressure_info[cl].change -= 1;
2121 regno++;
2125 /* Update the register pressure info after death of pseudo or hard
2126 register REG. */
2127 static void
2128 mark_reg_death (rtx reg)
2130 int regno;
2132 if (GET_CODE (reg) == SUBREG)
2133 reg = SUBREG_REG (reg);
2135 if (! REG_P (reg))
2136 return;
2138 regno = REGNO (reg);
2139 if (regno < FIRST_PSEUDO_REGISTER)
2140 mark_hard_regno_death (regno, hard_regno_nregs[regno][GET_MODE (reg)]);
2141 else
2142 mark_pseudo_death (regno);
2145 /* Process SETTER of REG. DATA is an insn containing the setter. */
2146 static void
2147 mark_insn_reg_store (rtx reg, const_rtx setter, void *data)
2149 if (setter != NULL_RTX && GET_CODE (setter) != SET)
2150 return;
2151 mark_insn_reg_birth
2152 ((rtx) data, reg, false,
2153 find_reg_note ((const_rtx) data, REG_UNUSED, reg) != NULL_RTX);
2156 /* Like mark_insn_reg_store except notice just CLOBBERs; ignore SETs. */
2157 static void
2158 mark_insn_reg_clobber (rtx reg, const_rtx setter, void *data)
2160 if (GET_CODE (setter) == CLOBBER)
2161 mark_insn_reg_birth ((rtx) data, reg, true, false);
2164 /* Set up reg pressure info related to INSN. */
2165 void
2166 init_insn_reg_pressure_info (rtx insn)
2168 int i, len;
2169 enum reg_class cl;
2170 static struct reg_pressure_data *pressure_info;
2171 rtx link;
2173 gcc_assert (sched_pressure_p);
2175 if (! INSN_P (insn))
2176 return;
2178 for (i = 0; i < ira_pressure_classes_num; i++)
2180 cl = ira_pressure_classes[i];
2181 reg_pressure_info[cl].clobber_increase = 0;
2182 reg_pressure_info[cl].set_increase = 0;
2183 reg_pressure_info[cl].unused_set_increase = 0;
2184 reg_pressure_info[cl].change = 0;
2187 note_stores (PATTERN (insn), mark_insn_reg_clobber, insn);
2189 note_stores (PATTERN (insn), mark_insn_reg_store, insn);
2191 #ifdef AUTO_INC_DEC
2192 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2193 if (REG_NOTE_KIND (link) == REG_INC)
2194 mark_insn_reg_store (XEXP (link, 0), NULL_RTX, insn);
2195 #endif
2197 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2198 if (REG_NOTE_KIND (link) == REG_DEAD)
2199 mark_reg_death (XEXP (link, 0));
2201 len = sizeof (struct reg_pressure_data) * ira_pressure_classes_num;
2202 pressure_info
2203 = INSN_REG_PRESSURE (insn) = (struct reg_pressure_data *) xmalloc (len);
2204 INSN_MAX_REG_PRESSURE (insn) = (int *) xcalloc (ira_pressure_classes_num
2205 * sizeof (int), 1);
2206 for (i = 0; i < ira_pressure_classes_num; i++)
2208 cl = ira_pressure_classes[i];
2209 pressure_info[i].clobber_increase
2210 = reg_pressure_info[cl].clobber_increase;
2211 pressure_info[i].set_increase = reg_pressure_info[cl].set_increase;
2212 pressure_info[i].unused_set_increase
2213 = reg_pressure_info[cl].unused_set_increase;
2214 pressure_info[i].change = reg_pressure_info[cl].change;
2221 /* Internal variable for sched_analyze_[12] () functions.
2222 If it is nonzero, this means that sched_analyze_[12] looks
2223 at the most toplevel SET. */
2224 static bool can_start_lhs_rhs_p;
2226 /* Extend reg info for the deps context DEPS given that
2227 we have just generated a register numbered REGNO. */
2228 static void
2229 extend_deps_reg_info (struct deps_desc *deps, int regno)
2231 int max_regno = regno + 1;
2233 gcc_assert (!reload_completed);
2235 /* In a readonly context, it would not hurt to extend info,
2236 but it should not be needed. */
2237 if (reload_completed && deps->readonly)
2239 deps->max_reg = max_regno;
2240 return;
2243 if (max_regno > deps->max_reg)
2245 deps->reg_last = XRESIZEVEC (struct deps_reg, deps->reg_last,
2246 max_regno);
2247 memset (&deps->reg_last[deps->max_reg],
2248 0, (max_regno - deps->max_reg)
2249 * sizeof (struct deps_reg));
2250 deps->max_reg = max_regno;
2254 /* Extends REG_INFO_P if needed. */
2255 void
2256 maybe_extend_reg_info_p (void)
2258 /* Extend REG_INFO_P, if needed. */
2259 if ((unsigned int)max_regno - 1 >= reg_info_p_size)
2261 size_t new_reg_info_p_size = max_regno + 128;
2263 gcc_assert (!reload_completed && sel_sched_p ());
2265 reg_info_p = (struct reg_info_t *) xrecalloc (reg_info_p,
2266 new_reg_info_p_size,
2267 reg_info_p_size,
2268 sizeof (*reg_info_p));
2269 reg_info_p_size = new_reg_info_p_size;
2273 /* Analyze a single reference to register (reg:MODE REGNO) in INSN.
2274 The type of the reference is specified by REF and can be SET,
2275 CLOBBER, PRE_DEC, POST_DEC, PRE_INC, POST_INC or USE. */
2277 static void
2278 sched_analyze_reg (struct deps_desc *deps, int regno, enum machine_mode mode,
2279 enum rtx_code ref, rtx insn)
2281 /* We could emit new pseudos in renaming. Extend the reg structures. */
2282 if (!reload_completed && sel_sched_p ()
2283 && (regno >= max_reg_num () - 1 || regno >= deps->max_reg))
2284 extend_deps_reg_info (deps, regno);
2286 maybe_extend_reg_info_p ();
2288 /* A hard reg in a wide mode may really be multiple registers.
2289 If so, mark all of them just like the first. */
2290 if (regno < FIRST_PSEUDO_REGISTER)
2292 int i = hard_regno_nregs[regno][mode];
2293 if (ref == SET)
2295 while (--i >= 0)
2296 note_reg_set (regno + i);
2298 else if (ref == USE)
2300 while (--i >= 0)
2301 note_reg_use (regno + i);
2303 else
2305 while (--i >= 0)
2306 note_reg_clobber (regno + i);
2310 /* ??? Reload sometimes emits USEs and CLOBBERs of pseudos that
2311 it does not reload. Ignore these as they have served their
2312 purpose already. */
2313 else if (regno >= deps->max_reg)
2315 enum rtx_code code = GET_CODE (PATTERN (insn));
2316 gcc_assert (code == USE || code == CLOBBER);
2319 else
2321 if (ref == SET)
2322 note_reg_set (regno);
2323 else if (ref == USE)
2324 note_reg_use (regno);
2325 else
2326 note_reg_clobber (regno);
2328 /* Pseudos that are REG_EQUIV to something may be replaced
2329 by that during reloading. We need only add dependencies for
2330 the address in the REG_EQUIV note. */
2331 if (!reload_completed && get_reg_known_equiv_p (regno))
2333 rtx t = get_reg_known_value (regno);
2334 if (MEM_P (t))
2335 sched_analyze_2 (deps, XEXP (t, 0), insn);
2338 /* Don't let it cross a call after scheduling if it doesn't
2339 already cross one. */
2340 if (REG_N_CALLS_CROSSED (regno) == 0)
2342 if (!deps->readonly && ref == USE && !DEBUG_INSN_P (insn))
2343 deps->sched_before_next_call
2344 = alloc_INSN_LIST (insn, deps->sched_before_next_call);
2345 else
2346 add_dependence_list (insn, deps->last_function_call, 1,
2347 REG_DEP_ANTI);
2352 /* Analyze a single SET, CLOBBER, PRE_DEC, POST_DEC, PRE_INC or POST_INC
2353 rtx, X, creating all dependencies generated by the write to the
2354 destination of X, and reads of everything mentioned. */
2356 static void
2357 sched_analyze_1 (struct deps_desc *deps, rtx x, rtx insn)
2359 rtx dest = XEXP (x, 0);
2360 enum rtx_code code = GET_CODE (x);
2361 bool cslr_p = can_start_lhs_rhs_p;
2363 can_start_lhs_rhs_p = false;
2365 gcc_assert (dest);
2366 if (dest == 0)
2367 return;
2369 if (cslr_p && sched_deps_info->start_lhs)
2370 sched_deps_info->start_lhs (dest);
2372 if (GET_CODE (dest) == PARALLEL)
2374 int i;
2376 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
2377 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
2378 sched_analyze_1 (deps,
2379 gen_rtx_CLOBBER (VOIDmode,
2380 XEXP (XVECEXP (dest, 0, i), 0)),
2381 insn);
2383 if (cslr_p && sched_deps_info->finish_lhs)
2384 sched_deps_info->finish_lhs ();
2386 if (code == SET)
2388 can_start_lhs_rhs_p = cslr_p;
2390 sched_analyze_2 (deps, SET_SRC (x), insn);
2392 can_start_lhs_rhs_p = false;
2395 return;
2398 while (GET_CODE (dest) == STRICT_LOW_PART || GET_CODE (dest) == SUBREG
2399 || GET_CODE (dest) == ZERO_EXTRACT)
2401 if (GET_CODE (dest) == STRICT_LOW_PART
2402 || GET_CODE (dest) == ZERO_EXTRACT
2403 || df_read_modify_subreg_p (dest))
2405 /* These both read and modify the result. We must handle
2406 them as writes to get proper dependencies for following
2407 instructions. We must handle them as reads to get proper
2408 dependencies from this to previous instructions.
2409 Thus we need to call sched_analyze_2. */
2411 sched_analyze_2 (deps, XEXP (dest, 0), insn);
2413 if (GET_CODE (dest) == ZERO_EXTRACT)
2415 /* The second and third arguments are values read by this insn. */
2416 sched_analyze_2 (deps, XEXP (dest, 1), insn);
2417 sched_analyze_2 (deps, XEXP (dest, 2), insn);
2419 dest = XEXP (dest, 0);
2422 if (REG_P (dest))
2424 int regno = REGNO (dest);
2425 enum machine_mode mode = GET_MODE (dest);
2427 sched_analyze_reg (deps, regno, mode, code, insn);
2429 #ifdef STACK_REGS
2430 /* Treat all writes to a stack register as modifying the TOS. */
2431 if (regno >= FIRST_STACK_REG && regno <= LAST_STACK_REG)
2433 /* Avoid analyzing the same register twice. */
2434 if (regno != FIRST_STACK_REG)
2435 sched_analyze_reg (deps, FIRST_STACK_REG, mode, code, insn);
2437 add_to_hard_reg_set (&implicit_reg_pending_uses, mode,
2438 FIRST_STACK_REG);
2440 #endif
2442 else if (MEM_P (dest))
2444 /* Writing memory. */
2445 rtx t = dest;
2447 if (sched_deps_info->use_cselib)
2449 enum machine_mode address_mode
2450 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (dest));
2452 t = shallow_copy_rtx (dest);
2453 cselib_lookup_from_insn (XEXP (t, 0), address_mode, 1,
2454 GET_MODE (t), insn);
2455 XEXP (t, 0) = cselib_subst_to_values (XEXP (t, 0), GET_MODE (t));
2457 t = canon_rtx (t);
2459 /* Pending lists can't get larger with a readonly context. */
2460 if (!deps->readonly
2461 && ((deps->pending_read_list_length + deps->pending_write_list_length)
2462 > MAX_PENDING_LIST_LENGTH))
2464 /* Flush all pending reads and writes to prevent the pending lists
2465 from getting any larger. Insn scheduling runs too slowly when
2466 these lists get long. When compiling GCC with itself,
2467 this flush occurs 8 times for sparc, and 10 times for m88k using
2468 the default value of 32. */
2469 flush_pending_lists (deps, insn, false, true);
2471 else
2473 rtx pending, pending_mem;
2475 pending = deps->pending_read_insns;
2476 pending_mem = deps->pending_read_mems;
2477 while (pending)
2479 if (anti_dependence (XEXP (pending_mem, 0), t)
2480 && ! sched_insns_conditions_mutex_p (insn, XEXP (pending, 0)))
2481 note_mem_dep (t, XEXP (pending_mem, 0), XEXP (pending, 0),
2482 DEP_ANTI);
2484 pending = XEXP (pending, 1);
2485 pending_mem = XEXP (pending_mem, 1);
2488 pending = deps->pending_write_insns;
2489 pending_mem = deps->pending_write_mems;
2490 while (pending)
2492 if (output_dependence (XEXP (pending_mem, 0), t)
2493 && ! sched_insns_conditions_mutex_p (insn, XEXP (pending, 0)))
2494 note_mem_dep (t, XEXP (pending_mem, 0), XEXP (pending, 0),
2495 DEP_OUTPUT);
2497 pending = XEXP (pending, 1);
2498 pending_mem = XEXP (pending_mem, 1);
2501 add_dependence_list (insn, deps->last_pending_memory_flush, 1,
2502 REG_DEP_ANTI);
2503 add_dependence_list (insn, deps->pending_jump_insns, 1,
2504 REG_DEP_CONTROL);
2506 if (!deps->readonly)
2507 add_insn_mem_dependence (deps, false, insn, dest);
2509 sched_analyze_2 (deps, XEXP (dest, 0), insn);
2512 if (cslr_p && sched_deps_info->finish_lhs)
2513 sched_deps_info->finish_lhs ();
2515 /* Analyze reads. */
2516 if (GET_CODE (x) == SET)
2518 can_start_lhs_rhs_p = cslr_p;
2520 sched_analyze_2 (deps, SET_SRC (x), insn);
2522 can_start_lhs_rhs_p = false;
2526 /* Analyze the uses of memory and registers in rtx X in INSN. */
2527 static void
2528 sched_analyze_2 (struct deps_desc *deps, rtx x, rtx insn)
2530 int i;
2531 int j;
2532 enum rtx_code code;
2533 const char *fmt;
2534 bool cslr_p = can_start_lhs_rhs_p;
2536 can_start_lhs_rhs_p = false;
2538 gcc_assert (x);
2539 if (x == 0)
2540 return;
2542 if (cslr_p && sched_deps_info->start_rhs)
2543 sched_deps_info->start_rhs (x);
2545 code = GET_CODE (x);
2547 switch (code)
2549 case CONST_INT:
2550 case CONST_DOUBLE:
2551 case CONST_FIXED:
2552 case CONST_VECTOR:
2553 case SYMBOL_REF:
2554 case CONST:
2555 case LABEL_REF:
2556 /* Ignore constants. */
2557 if (cslr_p && sched_deps_info->finish_rhs)
2558 sched_deps_info->finish_rhs ();
2560 return;
2562 #ifdef HAVE_cc0
2563 case CC0:
2564 /* User of CC0 depends on immediately preceding insn. */
2565 SCHED_GROUP_P (insn) = 1;
2566 /* Don't move CC0 setter to another block (it can set up the
2567 same flag for previous CC0 users which is safe). */
2568 CANT_MOVE (prev_nonnote_insn (insn)) = 1;
2570 if (cslr_p && sched_deps_info->finish_rhs)
2571 sched_deps_info->finish_rhs ();
2573 return;
2574 #endif
2576 case REG:
2578 int regno = REGNO (x);
2579 enum machine_mode mode = GET_MODE (x);
2581 sched_analyze_reg (deps, regno, mode, USE, insn);
2583 #ifdef STACK_REGS
2584 /* Treat all reads of a stack register as modifying the TOS. */
2585 if (regno >= FIRST_STACK_REG && regno <= LAST_STACK_REG)
2587 /* Avoid analyzing the same register twice. */
2588 if (regno != FIRST_STACK_REG)
2589 sched_analyze_reg (deps, FIRST_STACK_REG, mode, USE, insn);
2590 sched_analyze_reg (deps, FIRST_STACK_REG, mode, SET, insn);
2592 #endif
2594 if (cslr_p && sched_deps_info->finish_rhs)
2595 sched_deps_info->finish_rhs ();
2597 return;
2600 case MEM:
2602 /* Reading memory. */
2603 rtx u;
2604 rtx pending, pending_mem;
2605 rtx t = x;
2607 if (sched_deps_info->use_cselib)
2609 enum machine_mode address_mode
2610 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (t));
2612 t = shallow_copy_rtx (t);
2613 cselib_lookup_from_insn (XEXP (t, 0), address_mode, 1,
2614 GET_MODE (t), insn);
2615 XEXP (t, 0) = cselib_subst_to_values (XEXP (t, 0), GET_MODE (t));
2618 if (!DEBUG_INSN_P (insn))
2620 t = canon_rtx (t);
2621 pending = deps->pending_read_insns;
2622 pending_mem = deps->pending_read_mems;
2623 while (pending)
2625 if (read_dependence (XEXP (pending_mem, 0), t)
2626 && ! sched_insns_conditions_mutex_p (insn,
2627 XEXP (pending, 0)))
2628 note_mem_dep (t, XEXP (pending_mem, 0), XEXP (pending, 0),
2629 DEP_ANTI);
2631 pending = XEXP (pending, 1);
2632 pending_mem = XEXP (pending_mem, 1);
2635 pending = deps->pending_write_insns;
2636 pending_mem = deps->pending_write_mems;
2637 while (pending)
2639 if (true_dependence (XEXP (pending_mem, 0), VOIDmode,
2640 t, rtx_varies_p)
2641 && ! sched_insns_conditions_mutex_p (insn,
2642 XEXP (pending, 0)))
2643 note_mem_dep (t, XEXP (pending_mem, 0), XEXP (pending, 0),
2644 sched_deps_info->generate_spec_deps
2645 ? BEGIN_DATA | DEP_TRUE : DEP_TRUE);
2647 pending = XEXP (pending, 1);
2648 pending_mem = XEXP (pending_mem, 1);
2651 for (u = deps->last_pending_memory_flush; u; u = XEXP (u, 1))
2652 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
2654 for (u = deps->pending_jump_insns; u; u = XEXP (u, 1))
2655 if (deps_may_trap_p (x))
2657 if ((sched_deps_info->generate_spec_deps)
2658 && sel_sched_p () && (spec_info->mask & BEGIN_CONTROL))
2660 ds_t ds = set_dep_weak (DEP_ANTI, BEGIN_CONTROL,
2661 MAX_DEP_WEAK);
2663 note_dep (XEXP (u, 0), ds);
2665 else
2666 add_dependence (insn, XEXP (u, 0), REG_DEP_CONTROL);
2670 /* Always add these dependencies to pending_reads, since
2671 this insn may be followed by a write. */
2672 if (!deps->readonly)
2673 add_insn_mem_dependence (deps, true, insn, x);
2675 sched_analyze_2 (deps, XEXP (x, 0), insn);
2677 if (cslr_p && sched_deps_info->finish_rhs)
2678 sched_deps_info->finish_rhs ();
2680 return;
2683 /* Force pending stores to memory in case a trap handler needs them. */
2684 case TRAP_IF:
2685 flush_pending_lists (deps, insn, true, false);
2686 break;
2688 case PREFETCH:
2689 if (PREFETCH_SCHEDULE_BARRIER_P (x))
2690 reg_pending_barrier = TRUE_BARRIER;
2691 break;
2693 case UNSPEC_VOLATILE:
2694 flush_pending_lists (deps, insn, true, true);
2695 /* FALLTHRU */
2697 case ASM_OPERANDS:
2698 case ASM_INPUT:
2700 /* Traditional and volatile asm instructions must be considered to use
2701 and clobber all hard registers, all pseudo-registers and all of
2702 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
2704 Consider for instance a volatile asm that changes the fpu rounding
2705 mode. An insn should not be moved across this even if it only uses
2706 pseudo-regs because it might give an incorrectly rounded result. */
2707 if (code != ASM_OPERANDS || MEM_VOLATILE_P (x))
2708 reg_pending_barrier = TRUE_BARRIER;
2710 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
2711 We can not just fall through here since then we would be confused
2712 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
2713 traditional asms unlike their normal usage. */
2715 if (code == ASM_OPERANDS)
2717 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
2718 sched_analyze_2 (deps, ASM_OPERANDS_INPUT (x, j), insn);
2720 if (cslr_p && sched_deps_info->finish_rhs)
2721 sched_deps_info->finish_rhs ();
2723 return;
2725 break;
2728 case PRE_DEC:
2729 case POST_DEC:
2730 case PRE_INC:
2731 case POST_INC:
2732 /* These both read and modify the result. We must handle them as writes
2733 to get proper dependencies for following instructions. We must handle
2734 them as reads to get proper dependencies from this to previous
2735 instructions. Thus we need to pass them to both sched_analyze_1
2736 and sched_analyze_2. We must call sched_analyze_2 first in order
2737 to get the proper antecedent for the read. */
2738 sched_analyze_2 (deps, XEXP (x, 0), insn);
2739 sched_analyze_1 (deps, x, insn);
2741 if (cslr_p && sched_deps_info->finish_rhs)
2742 sched_deps_info->finish_rhs ();
2744 return;
2746 case POST_MODIFY:
2747 case PRE_MODIFY:
2748 /* op0 = op0 + op1 */
2749 sched_analyze_2 (deps, XEXP (x, 0), insn);
2750 sched_analyze_2 (deps, XEXP (x, 1), insn);
2751 sched_analyze_1 (deps, x, insn);
2753 if (cslr_p && sched_deps_info->finish_rhs)
2754 sched_deps_info->finish_rhs ();
2756 return;
2758 default:
2759 break;
2762 /* Other cases: walk the insn. */
2763 fmt = GET_RTX_FORMAT (code);
2764 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2766 if (fmt[i] == 'e')
2767 sched_analyze_2 (deps, XEXP (x, i), insn);
2768 else if (fmt[i] == 'E')
2769 for (j = 0; j < XVECLEN (x, i); j++)
2770 sched_analyze_2 (deps, XVECEXP (x, i, j), insn);
2773 if (cslr_p && sched_deps_info->finish_rhs)
2774 sched_deps_info->finish_rhs ();
2777 /* Analyze an INSN with pattern X to find all dependencies. */
2778 static void
2779 sched_analyze_insn (struct deps_desc *deps, rtx x, rtx insn)
2781 RTX_CODE code = GET_CODE (x);
2782 rtx link;
2783 unsigned i;
2784 reg_set_iterator rsi;
2786 if (! reload_completed)
2788 HARD_REG_SET temp;
2790 extract_insn (insn);
2791 preprocess_constraints ();
2792 ira_implicitly_set_insn_hard_regs (&temp);
2793 AND_COMPL_HARD_REG_SET (temp, ira_no_alloc_regs);
2794 IOR_HARD_REG_SET (implicit_reg_pending_clobbers, temp);
2797 can_start_lhs_rhs_p = (NONJUMP_INSN_P (insn)
2798 && code == SET);
2800 if (may_trap_p (x))
2801 /* Avoid moving trapping instructions accross function calls that might
2802 not always return. */
2803 add_dependence_list (insn, deps->last_function_call_may_noreturn,
2804 1, REG_DEP_ANTI);
2806 /* We must avoid creating a situation in which two successors of the
2807 current block have different unwind info after scheduling. If at any
2808 point the two paths re-join this leads to incorrect unwind info. */
2809 /* ??? There are certain situations involving a forced frame pointer in
2810 which, with extra effort, we could fix up the unwind info at a later
2811 CFG join. However, it seems better to notice these cases earlier
2812 during prologue generation and avoid marking the frame pointer setup
2813 as frame-related at all. */
2814 if (RTX_FRAME_RELATED_P (insn))
2816 /* Make sure prologue insn is scheduled before next jump. */
2817 deps->sched_before_next_jump
2818 = alloc_INSN_LIST (insn, deps->sched_before_next_jump);
2820 /* Make sure epilogue insn is scheduled after preceding jumps. */
2821 add_dependence_list (insn, deps->pending_jump_insns, 1, REG_DEP_ANTI);
2824 if (code == COND_EXEC)
2826 sched_analyze_2 (deps, COND_EXEC_TEST (x), insn);
2828 /* ??? Should be recording conditions so we reduce the number of
2829 false dependencies. */
2830 x = COND_EXEC_CODE (x);
2831 code = GET_CODE (x);
2833 if (code == SET || code == CLOBBER)
2835 sched_analyze_1 (deps, x, insn);
2837 /* Bare clobber insns are used for letting life analysis, reg-stack
2838 and others know that a value is dead. Depend on the last call
2839 instruction so that reg-stack won't get confused. */
2840 if (code == CLOBBER)
2841 add_dependence_list (insn, deps->last_function_call, 1,
2842 REG_DEP_OUTPUT);
2844 else if (code == PARALLEL)
2846 for (i = XVECLEN (x, 0); i--;)
2848 rtx sub = XVECEXP (x, 0, i);
2849 code = GET_CODE (sub);
2851 if (code == COND_EXEC)
2853 sched_analyze_2 (deps, COND_EXEC_TEST (sub), insn);
2854 sub = COND_EXEC_CODE (sub);
2855 code = GET_CODE (sub);
2857 if (code == SET || code == CLOBBER)
2858 sched_analyze_1 (deps, sub, insn);
2859 else
2860 sched_analyze_2 (deps, sub, insn);
2863 else
2864 sched_analyze_2 (deps, x, insn);
2866 /* Mark registers CLOBBERED or used by called function. */
2867 if (CALL_P (insn))
2869 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
2871 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
2872 sched_analyze_1 (deps, XEXP (link, 0), insn);
2873 else
2874 sched_analyze_2 (deps, XEXP (link, 0), insn);
2876 /* Don't schedule anything after a tail call, tail call needs
2877 to use at least all call-saved registers. */
2878 if (SIBLING_CALL_P (insn))
2879 reg_pending_barrier = TRUE_BARRIER;
2880 else if (find_reg_note (insn, REG_SETJMP, NULL))
2881 reg_pending_barrier = MOVE_BARRIER;
2884 if (JUMP_P (insn))
2886 rtx next;
2887 next = next_nonnote_nondebug_insn (insn);
2888 if (next && BARRIER_P (next))
2889 reg_pending_barrier = MOVE_BARRIER;
2890 else
2892 rtx pending, pending_mem;
2894 if (sched_deps_info->compute_jump_reg_dependencies)
2896 (*sched_deps_info->compute_jump_reg_dependencies)
2897 (insn, reg_pending_control_uses);
2899 /* Make latency of jump equal to 0 by using anti-dependence. */
2900 EXECUTE_IF_SET_IN_REG_SET (reg_pending_control_uses, 0, i, rsi)
2902 struct deps_reg *reg_last = &deps->reg_last[i];
2903 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_ANTI);
2904 add_dependence_list (insn, reg_last->implicit_sets,
2905 0, REG_DEP_ANTI);
2906 add_dependence_list (insn, reg_last->clobbers, 0,
2907 REG_DEP_ANTI);
2911 /* All memory writes and volatile reads must happen before the
2912 jump. Non-volatile reads must happen before the jump iff
2913 the result is needed by the above register used mask. */
2915 pending = deps->pending_write_insns;
2916 pending_mem = deps->pending_write_mems;
2917 while (pending)
2919 if (! sched_insns_conditions_mutex_p (insn, XEXP (pending, 0)))
2920 add_dependence (insn, XEXP (pending, 0), REG_DEP_OUTPUT);
2921 pending = XEXP (pending, 1);
2922 pending_mem = XEXP (pending_mem, 1);
2925 pending = deps->pending_read_insns;
2926 pending_mem = deps->pending_read_mems;
2927 while (pending)
2929 if (MEM_VOLATILE_P (XEXP (pending_mem, 0))
2930 && ! sched_insns_conditions_mutex_p (insn, XEXP (pending, 0)))
2931 add_dependence (insn, XEXP (pending, 0), REG_DEP_OUTPUT);
2932 pending = XEXP (pending, 1);
2933 pending_mem = XEXP (pending_mem, 1);
2936 add_dependence_list (insn, deps->last_pending_memory_flush, 1,
2937 REG_DEP_ANTI);
2938 add_dependence_list (insn, deps->pending_jump_insns, 1,
2939 REG_DEP_ANTI);
2943 /* If this instruction can throw an exception, then moving it changes
2944 where block boundaries fall. This is mighty confusing elsewhere.
2945 Therefore, prevent such an instruction from being moved. Same for
2946 non-jump instructions that define block boundaries.
2947 ??? Unclear whether this is still necessary in EBB mode. If not,
2948 add_branch_dependences should be adjusted for RGN mode instead. */
2949 if (((CALL_P (insn) || JUMP_P (insn)) && can_throw_internal (insn))
2950 || (NONJUMP_INSN_P (insn) && control_flow_insn_p (insn)))
2951 reg_pending_barrier = MOVE_BARRIER;
2953 if (sched_pressure_p)
2955 setup_insn_reg_uses (deps, insn);
2956 init_insn_reg_pressure_info (insn);
2959 /* Add register dependencies for insn. */
2960 if (DEBUG_INSN_P (insn))
2962 rtx prev = deps->last_debug_insn;
2963 rtx u;
2965 if (!deps->readonly)
2966 deps->last_debug_insn = insn;
2968 if (prev)
2969 add_dependence (insn, prev, REG_DEP_ANTI);
2971 add_dependence_list (insn, deps->last_function_call, 1,
2972 REG_DEP_ANTI);
2974 for (u = deps->last_pending_memory_flush; u; u = XEXP (u, 1))
2975 if (!sel_sched_p ())
2976 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
2978 EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses, 0, i, rsi)
2980 struct deps_reg *reg_last = &deps->reg_last[i];
2981 add_dependence_list (insn, reg_last->sets, 1, REG_DEP_ANTI);
2982 /* There's no point in making REG_DEP_CONTROL dependencies for
2983 debug insns. */
2984 add_dependence_list (insn, reg_last->clobbers, 1, REG_DEP_ANTI);
2986 if (!deps->readonly)
2987 reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
2989 CLEAR_REG_SET (reg_pending_uses);
2991 /* Quite often, a debug insn will refer to stuff in the
2992 previous instruction, but the reason we want this
2993 dependency here is to make sure the scheduler doesn't
2994 gratuitously move a debug insn ahead. This could dirty
2995 DF flags and cause additional analysis that wouldn't have
2996 occurred in compilation without debug insns, and such
2997 additional analysis can modify the generated code. */
2998 prev = PREV_INSN (insn);
3000 if (prev && NONDEBUG_INSN_P (prev))
3001 add_dependence (insn, prev, REG_DEP_ANTI);
3003 else
3005 regset_head set_or_clobbered;
3007 EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses, 0, i, rsi)
3009 struct deps_reg *reg_last = &deps->reg_last[i];
3010 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_TRUE);
3011 add_dependence_list (insn, reg_last->implicit_sets, 0, REG_DEP_ANTI);
3012 add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_TRUE);
3014 if (!deps->readonly)
3016 reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
3017 reg_last->uses_length++;
3021 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3022 if (TEST_HARD_REG_BIT (implicit_reg_pending_uses, i))
3024 struct deps_reg *reg_last = &deps->reg_last[i];
3025 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_TRUE);
3026 add_dependence_list (insn, reg_last->implicit_sets, 0,
3027 REG_DEP_ANTI);
3028 add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_TRUE);
3030 if (!deps->readonly)
3032 reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
3033 reg_last->uses_length++;
3037 if (targetm.sched.exposed_pipeline)
3039 INIT_REG_SET (&set_or_clobbered);
3040 bitmap_ior (&set_or_clobbered, reg_pending_clobbers,
3041 reg_pending_sets);
3042 EXECUTE_IF_SET_IN_REG_SET (&set_or_clobbered, 0, i, rsi)
3044 struct deps_reg *reg_last = &deps->reg_last[i];
3045 rtx list;
3046 for (list = reg_last->uses; list; list = XEXP (list, 1))
3048 rtx other = XEXP (list, 0);
3049 if (INSN_CACHED_COND (other) != const_true_rtx
3050 && refers_to_regno_p (i, i + 1, INSN_CACHED_COND (other), NULL))
3051 INSN_CACHED_COND (other) = const_true_rtx;
3056 /* If the current insn is conditional, we can't free any
3057 of the lists. */
3058 if (sched_has_condition_p (insn))
3060 EXECUTE_IF_SET_IN_REG_SET (reg_pending_clobbers, 0, i, rsi)
3062 struct deps_reg *reg_last = &deps->reg_last[i];
3063 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_OUTPUT);
3064 add_dependence_list (insn, reg_last->implicit_sets, 0,
3065 REG_DEP_ANTI);
3066 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI);
3067 add_dependence_list (insn, reg_last->control_uses, 0,
3068 REG_DEP_CONTROL);
3070 if (!deps->readonly)
3072 reg_last->clobbers
3073 = alloc_INSN_LIST (insn, reg_last->clobbers);
3074 reg_last->clobbers_length++;
3077 EXECUTE_IF_SET_IN_REG_SET (reg_pending_sets, 0, i, rsi)
3079 struct deps_reg *reg_last = &deps->reg_last[i];
3080 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_OUTPUT);
3081 add_dependence_list (insn, reg_last->implicit_sets, 0,
3082 REG_DEP_ANTI);
3083 add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_OUTPUT);
3084 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI);
3085 add_dependence_list (insn, reg_last->control_uses, 0,
3086 REG_DEP_CONTROL);
3088 if (!deps->readonly)
3089 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
3092 else
3094 EXECUTE_IF_SET_IN_REG_SET (reg_pending_clobbers, 0, i, rsi)
3096 struct deps_reg *reg_last = &deps->reg_last[i];
3097 if (reg_last->uses_length > MAX_PENDING_LIST_LENGTH
3098 || reg_last->clobbers_length > MAX_PENDING_LIST_LENGTH)
3100 add_dependence_list_and_free (deps, insn, &reg_last->sets, 0,
3101 REG_DEP_OUTPUT);
3102 add_dependence_list_and_free (deps, insn,
3103 &reg_last->implicit_sets, 0,
3104 REG_DEP_ANTI);
3105 add_dependence_list_and_free (deps, insn, &reg_last->uses, 0,
3106 REG_DEP_ANTI);
3107 add_dependence_list_and_free (deps, insn,
3108 &reg_last->control_uses, 0,
3109 REG_DEP_ANTI);
3110 add_dependence_list_and_free
3111 (deps, insn, &reg_last->clobbers, 0, REG_DEP_OUTPUT);
3113 if (!deps->readonly)
3115 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
3116 reg_last->clobbers_length = 0;
3117 reg_last->uses_length = 0;
3120 else
3122 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_OUTPUT);
3123 add_dependence_list (insn, reg_last->implicit_sets, 0,
3124 REG_DEP_ANTI);
3125 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI);
3126 add_dependence_list (insn, reg_last->control_uses, 0,
3127 REG_DEP_CONTROL);
3130 if (!deps->readonly)
3132 reg_last->clobbers_length++;
3133 reg_last->clobbers
3134 = alloc_INSN_LIST (insn, reg_last->clobbers);
3137 EXECUTE_IF_SET_IN_REG_SET (reg_pending_sets, 0, i, rsi)
3139 struct deps_reg *reg_last = &deps->reg_last[i];
3141 add_dependence_list_and_free (deps, insn, &reg_last->sets, 0,
3142 REG_DEP_OUTPUT);
3143 add_dependence_list_and_free (deps, insn,
3144 &reg_last->implicit_sets,
3145 0, REG_DEP_ANTI);
3146 add_dependence_list_and_free (deps, insn, &reg_last->clobbers, 0,
3147 REG_DEP_OUTPUT);
3148 add_dependence_list_and_free (deps, insn, &reg_last->uses, 0,
3149 REG_DEP_ANTI);
3150 add_dependence_list (insn, reg_last->control_uses, 0,
3151 REG_DEP_CONTROL);
3153 if (!deps->readonly)
3155 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
3156 reg_last->uses_length = 0;
3157 reg_last->clobbers_length = 0;
3161 if (!deps->readonly)
3163 EXECUTE_IF_SET_IN_REG_SET (reg_pending_control_uses, 0, i, rsi)
3165 struct deps_reg *reg_last = &deps->reg_last[i];
3166 reg_last->control_uses
3167 = alloc_INSN_LIST (insn, reg_last->control_uses);
3172 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3173 if (TEST_HARD_REG_BIT (implicit_reg_pending_clobbers, i))
3175 struct deps_reg *reg_last = &deps->reg_last[i];
3176 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_ANTI);
3177 add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_ANTI);
3178 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI);
3179 add_dependence_list (insn, reg_last->control_uses, 0, REG_DEP_ANTI);
3181 if (!deps->readonly)
3182 reg_last->implicit_sets
3183 = alloc_INSN_LIST (insn, reg_last->implicit_sets);
3186 if (!deps->readonly)
3188 IOR_REG_SET (&deps->reg_last_in_use, reg_pending_uses);
3189 IOR_REG_SET (&deps->reg_last_in_use, reg_pending_clobbers);
3190 IOR_REG_SET (&deps->reg_last_in_use, reg_pending_sets);
3191 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3192 if (TEST_HARD_REG_BIT (implicit_reg_pending_uses, i)
3193 || TEST_HARD_REG_BIT (implicit_reg_pending_clobbers, i))
3194 SET_REGNO_REG_SET (&deps->reg_last_in_use, i);
3196 /* Set up the pending barrier found. */
3197 deps->last_reg_pending_barrier = reg_pending_barrier;
3200 CLEAR_REG_SET (reg_pending_uses);
3201 CLEAR_REG_SET (reg_pending_clobbers);
3202 CLEAR_REG_SET (reg_pending_sets);
3203 CLEAR_REG_SET (reg_pending_control_uses);
3204 CLEAR_HARD_REG_SET (implicit_reg_pending_clobbers);
3205 CLEAR_HARD_REG_SET (implicit_reg_pending_uses);
3207 /* Add dependencies if a scheduling barrier was found. */
3208 if (reg_pending_barrier)
3210 /* In the case of barrier the most added dependencies are not
3211 real, so we use anti-dependence here. */
3212 if (sched_has_condition_p (insn))
3214 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
3216 struct deps_reg *reg_last = &deps->reg_last[i];
3217 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI);
3218 add_dependence_list (insn, reg_last->sets, 0,
3219 reg_pending_barrier == TRUE_BARRIER
3220 ? REG_DEP_TRUE : REG_DEP_ANTI);
3221 add_dependence_list (insn, reg_last->implicit_sets, 0,
3222 REG_DEP_ANTI);
3223 add_dependence_list (insn, reg_last->clobbers, 0,
3224 reg_pending_barrier == TRUE_BARRIER
3225 ? REG_DEP_TRUE : REG_DEP_ANTI);
3228 else
3230 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
3232 struct deps_reg *reg_last = &deps->reg_last[i];
3233 add_dependence_list_and_free (deps, insn, &reg_last->uses, 0,
3234 REG_DEP_ANTI);
3235 add_dependence_list_and_free (deps, insn,
3236 &reg_last->control_uses, 0,
3237 REG_DEP_CONTROL);
3238 add_dependence_list_and_free (deps, insn, &reg_last->sets, 0,
3239 reg_pending_barrier == TRUE_BARRIER
3240 ? REG_DEP_TRUE : REG_DEP_ANTI);
3241 add_dependence_list_and_free (deps, insn,
3242 &reg_last->implicit_sets, 0,
3243 REG_DEP_ANTI);
3244 add_dependence_list_and_free (deps, insn, &reg_last->clobbers, 0,
3245 reg_pending_barrier == TRUE_BARRIER
3246 ? REG_DEP_TRUE : REG_DEP_ANTI);
3248 if (!deps->readonly)
3250 reg_last->uses_length = 0;
3251 reg_last->clobbers_length = 0;
3256 if (!deps->readonly)
3257 for (i = 0; i < (unsigned)deps->max_reg; i++)
3259 struct deps_reg *reg_last = &deps->reg_last[i];
3260 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
3261 SET_REGNO_REG_SET (&deps->reg_last_in_use, i);
3264 /* Flush pending lists on jumps, but not on speculative checks. */
3265 if (JUMP_P (insn) && !(sel_sched_p ()
3266 && sel_insn_is_speculation_check (insn)))
3267 flush_pending_lists (deps, insn, true, true);
3269 reg_pending_barrier = NOT_A_BARRIER;
3272 /* If a post-call group is still open, see if it should remain so.
3273 This insn must be a simple move of a hard reg to a pseudo or
3274 vice-versa.
3276 We must avoid moving these insns for correctness on targets
3277 with small register classes, and for special registers like
3278 PIC_OFFSET_TABLE_REGNUM. For simplicity, extend this to all
3279 hard regs for all targets. */
3281 if (deps->in_post_call_group_p)
3283 rtx tmp, set = single_set (insn);
3284 int src_regno, dest_regno;
3286 if (set == NULL)
3288 if (DEBUG_INSN_P (insn))
3289 /* We don't want to mark debug insns as part of the same
3290 sched group. We know they really aren't, but if we use
3291 debug insns to tell that a call group is over, we'll
3292 get different code if debug insns are not there and
3293 instructions that follow seem like they should be part
3294 of the call group.
3296 Also, if we did, fixup_sched_groups() would move the
3297 deps of the debug insn to the call insn, modifying
3298 non-debug post-dependency counts of the debug insn
3299 dependencies and otherwise messing with the scheduling
3300 order.
3302 Instead, let such debug insns be scheduled freely, but
3303 keep the call group open in case there are insns that
3304 should be part of it afterwards. Since we grant debug
3305 insns higher priority than even sched group insns, it
3306 will all turn out all right. */
3307 goto debug_dont_end_call_group;
3308 else
3309 goto end_call_group;
3312 tmp = SET_DEST (set);
3313 if (GET_CODE (tmp) == SUBREG)
3314 tmp = SUBREG_REG (tmp);
3315 if (REG_P (tmp))
3316 dest_regno = REGNO (tmp);
3317 else
3318 goto end_call_group;
3320 tmp = SET_SRC (set);
3321 if (GET_CODE (tmp) == SUBREG)
3322 tmp = SUBREG_REG (tmp);
3323 if ((GET_CODE (tmp) == PLUS
3324 || GET_CODE (tmp) == MINUS)
3325 && REG_P (XEXP (tmp, 0))
3326 && REGNO (XEXP (tmp, 0)) == STACK_POINTER_REGNUM
3327 && dest_regno == STACK_POINTER_REGNUM)
3328 src_regno = STACK_POINTER_REGNUM;
3329 else if (REG_P (tmp))
3330 src_regno = REGNO (tmp);
3331 else
3332 goto end_call_group;
3334 if (src_regno < FIRST_PSEUDO_REGISTER
3335 || dest_regno < FIRST_PSEUDO_REGISTER)
3337 if (!deps->readonly
3338 && deps->in_post_call_group_p == post_call_initial)
3339 deps->in_post_call_group_p = post_call;
3341 if (!sel_sched_p () || sched_emulate_haifa_p)
3343 SCHED_GROUP_P (insn) = 1;
3344 CANT_MOVE (insn) = 1;
3347 else
3349 end_call_group:
3350 if (!deps->readonly)
3351 deps->in_post_call_group_p = not_post_call;
3355 debug_dont_end_call_group:
3356 if ((current_sched_info->flags & DO_SPECULATION)
3357 && !sched_insn_is_legitimate_for_speculation_p (insn, 0))
3358 /* INSN has an internal dependency (e.g. r14 = [r14]) and thus cannot
3359 be speculated. */
3361 if (sel_sched_p ())
3362 sel_mark_hard_insn (insn);
3363 else
3365 sd_iterator_def sd_it;
3366 dep_t dep;
3368 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
3369 sd_iterator_cond (&sd_it, &dep);)
3370 change_spec_dep_to_hard (sd_it);
3375 /* Return TRUE if INSN might not always return normally (e.g. call exit,
3376 longjmp, loop forever, ...). */
3377 static bool
3378 call_may_noreturn_p (rtx insn)
3380 rtx call;
3382 /* const or pure calls that aren't looping will always return. */
3383 if (RTL_CONST_OR_PURE_CALL_P (insn)
3384 && !RTL_LOOPING_CONST_OR_PURE_CALL_P (insn))
3385 return false;
3387 call = PATTERN (insn);
3388 if (GET_CODE (call) == PARALLEL)
3389 call = XVECEXP (call, 0, 0);
3390 if (GET_CODE (call) == SET)
3391 call = SET_SRC (call);
3392 if (GET_CODE (call) == CALL
3393 && MEM_P (XEXP (call, 0))
3394 && GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
3396 rtx symbol = XEXP (XEXP (call, 0), 0);
3397 if (SYMBOL_REF_DECL (symbol)
3398 && TREE_CODE (SYMBOL_REF_DECL (symbol)) == FUNCTION_DECL)
3400 if (DECL_BUILT_IN_CLASS (SYMBOL_REF_DECL (symbol))
3401 == BUILT_IN_NORMAL)
3402 switch (DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol)))
3404 case BUILT_IN_BCMP:
3405 case BUILT_IN_BCOPY:
3406 case BUILT_IN_BZERO:
3407 case BUILT_IN_INDEX:
3408 case BUILT_IN_MEMCHR:
3409 case BUILT_IN_MEMCMP:
3410 case BUILT_IN_MEMCPY:
3411 case BUILT_IN_MEMMOVE:
3412 case BUILT_IN_MEMPCPY:
3413 case BUILT_IN_MEMSET:
3414 case BUILT_IN_RINDEX:
3415 case BUILT_IN_STPCPY:
3416 case BUILT_IN_STPNCPY:
3417 case BUILT_IN_STRCAT:
3418 case BUILT_IN_STRCHR:
3419 case BUILT_IN_STRCMP:
3420 case BUILT_IN_STRCPY:
3421 case BUILT_IN_STRCSPN:
3422 case BUILT_IN_STRLEN:
3423 case BUILT_IN_STRNCAT:
3424 case BUILT_IN_STRNCMP:
3425 case BUILT_IN_STRNCPY:
3426 case BUILT_IN_STRPBRK:
3427 case BUILT_IN_STRRCHR:
3428 case BUILT_IN_STRSPN:
3429 case BUILT_IN_STRSTR:
3430 /* Assume certain string/memory builtins always return. */
3431 return false;
3432 default:
3433 break;
3438 /* For all other calls assume that they might not always return. */
3439 return true;
3442 /* Analyze INSN with DEPS as a context. */
3443 void
3444 deps_analyze_insn (struct deps_desc *deps, rtx insn)
3446 if (sched_deps_info->start_insn)
3447 sched_deps_info->start_insn (insn);
3449 /* Record the condition for this insn. */
3450 if (NONDEBUG_INSN_P (insn))
3452 rtx t;
3453 sched_get_condition_with_rev (insn, NULL);
3454 t = INSN_CACHED_COND (insn);
3455 INSN_COND_DEPS (insn) = NULL_RTX;
3456 if (reload_completed
3457 && (current_sched_info->flags & DO_PREDICATION)
3458 && COMPARISON_P (t)
3459 && REG_P (XEXP (t, 0))
3460 && CONSTANT_P (XEXP (t, 1)))
3462 unsigned int regno;
3463 int nregs;
3464 t = XEXP (t, 0);
3465 regno = REGNO (t);
3466 nregs = hard_regno_nregs[regno][GET_MODE (t)];
3467 t = NULL_RTX;
3468 while (nregs-- > 0)
3470 struct deps_reg *reg_last = &deps->reg_last[regno + nregs];
3471 t = concat_INSN_LIST (reg_last->sets, t);
3472 t = concat_INSN_LIST (reg_last->clobbers, t);
3473 t = concat_INSN_LIST (reg_last->implicit_sets, t);
3475 INSN_COND_DEPS (insn) = t;
3479 if (JUMP_P (insn))
3481 /* Make each JUMP_INSN (but not a speculative check)
3482 a scheduling barrier for memory references. */
3483 if (!deps->readonly
3484 && !(sel_sched_p ()
3485 && sel_insn_is_speculation_check (insn)))
3487 /* Keep the list a reasonable size. */
3488 if (deps->pending_flush_length++ > MAX_PENDING_LIST_LENGTH)
3489 flush_pending_lists (deps, insn, true, true);
3490 else
3491 deps->pending_jump_insns
3492 = alloc_INSN_LIST (insn, deps->pending_jump_insns);
3495 /* For each insn which shouldn't cross a jump, add a dependence. */
3496 add_dependence_list_and_free (deps, insn,
3497 &deps->sched_before_next_jump, 1,
3498 REG_DEP_ANTI);
3500 sched_analyze_insn (deps, PATTERN (insn), insn);
3502 else if (NONJUMP_INSN_P (insn) || DEBUG_INSN_P (insn))
3504 sched_analyze_insn (deps, PATTERN (insn), insn);
3506 else if (CALL_P (insn))
3508 int i;
3510 CANT_MOVE (insn) = 1;
3512 if (find_reg_note (insn, REG_SETJMP, NULL))
3514 /* This is setjmp. Assume that all registers, not just
3515 hard registers, may be clobbered by this call. */
3516 reg_pending_barrier = MOVE_BARRIER;
3518 else
3520 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3521 /* A call may read and modify global register variables. */
3522 if (global_regs[i])
3524 SET_REGNO_REG_SET (reg_pending_sets, i);
3525 SET_HARD_REG_BIT (implicit_reg_pending_uses, i);
3527 /* Other call-clobbered hard regs may be clobbered.
3528 Since we only have a choice between 'might be clobbered'
3529 and 'definitely not clobbered', we must include all
3530 partly call-clobbered registers here. */
3531 else if (HARD_REGNO_CALL_PART_CLOBBERED (i, reg_raw_mode[i])
3532 || TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
3533 SET_REGNO_REG_SET (reg_pending_clobbers, i);
3534 /* We don't know what set of fixed registers might be used
3535 by the function, but it is certain that the stack pointer
3536 is among them, but be conservative. */
3537 else if (fixed_regs[i])
3538 SET_HARD_REG_BIT (implicit_reg_pending_uses, i);
3539 /* The frame pointer is normally not used by the function
3540 itself, but by the debugger. */
3541 /* ??? MIPS o32 is an exception. It uses the frame pointer
3542 in the macro expansion of jal but does not represent this
3543 fact in the call_insn rtl. */
3544 else if (i == FRAME_POINTER_REGNUM
3545 || (i == HARD_FRAME_POINTER_REGNUM
3546 && (! reload_completed || frame_pointer_needed)))
3547 SET_HARD_REG_BIT (implicit_reg_pending_uses, i);
3550 /* For each insn which shouldn't cross a call, add a dependence
3551 between that insn and this call insn. */
3552 add_dependence_list_and_free (deps, insn,
3553 &deps->sched_before_next_call, 1,
3554 REG_DEP_ANTI);
3556 sched_analyze_insn (deps, PATTERN (insn), insn);
3558 /* If CALL would be in a sched group, then this will violate
3559 convention that sched group insns have dependencies only on the
3560 previous instruction.
3562 Of course one can say: "Hey! What about head of the sched group?"
3563 And I will answer: "Basic principles (one dep per insn) are always
3564 the same." */
3565 gcc_assert (!SCHED_GROUP_P (insn));
3567 /* In the absence of interprocedural alias analysis, we must flush
3568 all pending reads and writes, and start new dependencies starting
3569 from here. But only flush writes for constant calls (which may
3570 be passed a pointer to something we haven't written yet). */
3571 flush_pending_lists (deps, insn, true, ! RTL_CONST_OR_PURE_CALL_P (insn));
3573 if (!deps->readonly)
3575 /* Remember the last function call for limiting lifetimes. */
3576 free_INSN_LIST_list (&deps->last_function_call);
3577 deps->last_function_call = alloc_INSN_LIST (insn, NULL_RTX);
3579 if (call_may_noreturn_p (insn))
3581 /* Remember the last function call that might not always return
3582 normally for limiting moves of trapping insns. */
3583 free_INSN_LIST_list (&deps->last_function_call_may_noreturn);
3584 deps->last_function_call_may_noreturn
3585 = alloc_INSN_LIST (insn, NULL_RTX);
3588 /* Before reload, begin a post-call group, so as to keep the
3589 lifetimes of hard registers correct. */
3590 if (! reload_completed)
3591 deps->in_post_call_group_p = post_call;
3595 if (sched_deps_info->use_cselib)
3596 cselib_process_insn (insn);
3598 /* EH_REGION insn notes can not appear until well after we complete
3599 scheduling. */
3600 if (NOTE_P (insn))
3601 gcc_assert (NOTE_KIND (insn) != NOTE_INSN_EH_REGION_BEG
3602 && NOTE_KIND (insn) != NOTE_INSN_EH_REGION_END);
3604 if (sched_deps_info->finish_insn)
3605 sched_deps_info->finish_insn ();
3607 /* Fixup the dependencies in the sched group. */
3608 if ((NONJUMP_INSN_P (insn) || JUMP_P (insn))
3609 && SCHED_GROUP_P (insn) && !sel_sched_p ())
3610 fixup_sched_groups (insn);
3613 /* Initialize DEPS for the new block beginning with HEAD. */
3614 void
3615 deps_start_bb (struct deps_desc *deps, rtx head)
3617 gcc_assert (!deps->readonly);
3619 /* Before reload, if the previous block ended in a call, show that
3620 we are inside a post-call group, so as to keep the lifetimes of
3621 hard registers correct. */
3622 if (! reload_completed && !LABEL_P (head))
3624 rtx insn = prev_nonnote_nondebug_insn (head);
3626 if (insn && CALL_P (insn))
3627 deps->in_post_call_group_p = post_call_initial;
3631 /* Analyze every insn between HEAD and TAIL inclusive, creating backward
3632 dependencies for each insn. */
3633 void
3634 sched_analyze (struct deps_desc *deps, rtx head, rtx tail)
3636 rtx insn;
3638 if (sched_deps_info->use_cselib)
3639 cselib_init (CSELIB_RECORD_MEMORY);
3641 deps_start_bb (deps, head);
3643 for (insn = head;; insn = NEXT_INSN (insn))
3646 if (INSN_P (insn))
3648 /* And initialize deps_lists. */
3649 sd_init_insn (insn);
3652 deps_analyze_insn (deps, insn);
3654 if (insn == tail)
3656 if (sched_deps_info->use_cselib)
3657 cselib_finish ();
3658 return;
3661 gcc_unreachable ();
3664 /* Helper for sched_free_deps ().
3665 Delete INSN's (RESOLVED_P) backward dependencies. */
3666 static void
3667 delete_dep_nodes_in_back_deps (rtx insn, bool resolved_p)
3669 sd_iterator_def sd_it;
3670 dep_t dep;
3671 sd_list_types_def types;
3673 if (resolved_p)
3674 types = SD_LIST_RES_BACK;
3675 else
3676 types = SD_LIST_BACK;
3678 for (sd_it = sd_iterator_start (insn, types);
3679 sd_iterator_cond (&sd_it, &dep);)
3681 dep_link_t link = *sd_it.linkp;
3682 dep_node_t node = DEP_LINK_NODE (link);
3683 deps_list_t back_list;
3684 deps_list_t forw_list;
3686 get_back_and_forw_lists (dep, resolved_p, &back_list, &forw_list);
3687 remove_from_deps_list (link, back_list);
3688 delete_dep_node (node);
3692 /* Delete (RESOLVED_P) dependencies between HEAD and TAIL together with
3693 deps_lists. */
3694 void
3695 sched_free_deps (rtx head, rtx tail, bool resolved_p)
3697 rtx insn;
3698 rtx next_tail = NEXT_INSN (tail);
3700 /* We make two passes since some insns may be scheduled before their
3701 dependencies are resolved. */
3702 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
3703 if (INSN_P (insn) && INSN_LUID (insn) > 0)
3705 /* Clear forward deps and leave the dep_nodes to the
3706 corresponding back_deps list. */
3707 if (resolved_p)
3708 clear_deps_list (INSN_RESOLVED_FORW_DEPS (insn));
3709 else
3710 clear_deps_list (INSN_FORW_DEPS (insn));
3712 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
3713 if (INSN_P (insn) && INSN_LUID (insn) > 0)
3715 /* Clear resolved back deps together with its dep_nodes. */
3716 delete_dep_nodes_in_back_deps (insn, resolved_p);
3718 sd_finish_insn (insn);
3722 /* Initialize variables for region data dependence analysis.
3723 When LAZY_REG_LAST is true, do not allocate reg_last array
3724 of struct deps_desc immediately. */
3726 void
3727 init_deps (struct deps_desc *deps, bool lazy_reg_last)
3729 int max_reg = (reload_completed ? FIRST_PSEUDO_REGISTER : max_reg_num ());
3731 deps->max_reg = max_reg;
3732 if (lazy_reg_last)
3733 deps->reg_last = NULL;
3734 else
3735 deps->reg_last = XCNEWVEC (struct deps_reg, max_reg);
3736 INIT_REG_SET (&deps->reg_last_in_use);
3738 deps->pending_read_insns = 0;
3739 deps->pending_read_mems = 0;
3740 deps->pending_write_insns = 0;
3741 deps->pending_write_mems = 0;
3742 deps->pending_jump_insns = 0;
3743 deps->pending_read_list_length = 0;
3744 deps->pending_write_list_length = 0;
3745 deps->pending_flush_length = 0;
3746 deps->last_pending_memory_flush = 0;
3747 deps->last_function_call = 0;
3748 deps->last_function_call_may_noreturn = 0;
3749 deps->sched_before_next_call = 0;
3750 deps->sched_before_next_jump = 0;
3751 deps->in_post_call_group_p = not_post_call;
3752 deps->last_debug_insn = 0;
3753 deps->last_reg_pending_barrier = NOT_A_BARRIER;
3754 deps->readonly = 0;
3757 /* Init only reg_last field of DEPS, which was not allocated before as
3758 we inited DEPS lazily. */
3759 void
3760 init_deps_reg_last (struct deps_desc *deps)
3762 gcc_assert (deps && deps->max_reg > 0);
3763 gcc_assert (deps->reg_last == NULL);
3765 deps->reg_last = XCNEWVEC (struct deps_reg, deps->max_reg);
3769 /* Free insn lists found in DEPS. */
3771 void
3772 free_deps (struct deps_desc *deps)
3774 unsigned i;
3775 reg_set_iterator rsi;
3777 /* We set max_reg to 0 when this context was already freed. */
3778 if (deps->max_reg == 0)
3780 gcc_assert (deps->reg_last == NULL);
3781 return;
3783 deps->max_reg = 0;
3785 free_INSN_LIST_list (&deps->pending_read_insns);
3786 free_EXPR_LIST_list (&deps->pending_read_mems);
3787 free_INSN_LIST_list (&deps->pending_write_insns);
3788 free_EXPR_LIST_list (&deps->pending_write_mems);
3789 free_INSN_LIST_list (&deps->last_pending_memory_flush);
3791 /* Without the EXECUTE_IF_SET, this loop is executed max_reg * nr_regions
3792 times. For a testcase with 42000 regs and 8000 small basic blocks,
3793 this loop accounted for nearly 60% (84 sec) of the total -O2 runtime. */
3794 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
3796 struct deps_reg *reg_last = &deps->reg_last[i];
3797 if (reg_last->uses)
3798 free_INSN_LIST_list (&reg_last->uses);
3799 if (reg_last->sets)
3800 free_INSN_LIST_list (&reg_last->sets);
3801 if (reg_last->implicit_sets)
3802 free_INSN_LIST_list (&reg_last->implicit_sets);
3803 if (reg_last->control_uses)
3804 free_INSN_LIST_list (&reg_last->control_uses);
3805 if (reg_last->clobbers)
3806 free_INSN_LIST_list (&reg_last->clobbers);
3808 CLEAR_REG_SET (&deps->reg_last_in_use);
3810 /* As we initialize reg_last lazily, it is possible that we didn't allocate
3811 it at all. */
3812 free (deps->reg_last);
3813 deps->reg_last = NULL;
3815 deps = NULL;
3818 /* Remove INSN from dependence contexts DEPS. */
3819 void
3820 remove_from_deps (struct deps_desc *deps, rtx insn)
3822 int removed;
3823 unsigned i;
3824 reg_set_iterator rsi;
3826 removed = remove_from_both_dependence_lists (insn, &deps->pending_read_insns,
3827 &deps->pending_read_mems);
3828 if (!DEBUG_INSN_P (insn))
3829 deps->pending_read_list_length -= removed;
3830 removed = remove_from_both_dependence_lists (insn, &deps->pending_write_insns,
3831 &deps->pending_write_mems);
3832 deps->pending_write_list_length -= removed;
3834 removed = remove_from_dependence_list (insn, &deps->pending_jump_insns);
3835 deps->pending_flush_length -= removed;
3836 removed = remove_from_dependence_list (insn, &deps->last_pending_memory_flush);
3837 deps->pending_flush_length -= removed;
3839 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
3841 struct deps_reg *reg_last = &deps->reg_last[i];
3842 if (reg_last->uses)
3843 remove_from_dependence_list (insn, &reg_last->uses);
3844 if (reg_last->sets)
3845 remove_from_dependence_list (insn, &reg_last->sets);
3846 if (reg_last->implicit_sets)
3847 remove_from_dependence_list (insn, &reg_last->implicit_sets);
3848 if (reg_last->clobbers)
3849 remove_from_dependence_list (insn, &reg_last->clobbers);
3850 if (!reg_last->uses && !reg_last->sets && !reg_last->implicit_sets
3851 && !reg_last->clobbers)
3852 CLEAR_REGNO_REG_SET (&deps->reg_last_in_use, i);
3855 if (CALL_P (insn))
3857 remove_from_dependence_list (insn, &deps->last_function_call);
3858 remove_from_dependence_list (insn,
3859 &deps->last_function_call_may_noreturn);
3861 remove_from_dependence_list (insn, &deps->sched_before_next_call);
3864 /* Init deps data vector. */
3865 static void
3866 init_deps_data_vector (void)
3868 int reserve = (sched_max_luid + 1
3869 - VEC_length (haifa_deps_insn_data_def, h_d_i_d));
3870 if (reserve > 0
3871 && ! VEC_space (haifa_deps_insn_data_def, h_d_i_d, reserve))
3872 VEC_safe_grow_cleared (haifa_deps_insn_data_def, heap, h_d_i_d,
3873 3 * sched_max_luid / 2);
3876 /* If it is profitable to use them, initialize or extend (depending on
3877 GLOBAL_P) dependency data. */
3878 void
3879 sched_deps_init (bool global_p)
3881 /* Average number of insns in the basic block.
3882 '+ 1' is used to make it nonzero. */
3883 int insns_in_block = sched_max_luid / n_basic_blocks + 1;
3885 init_deps_data_vector ();
3887 /* We use another caching mechanism for selective scheduling, so
3888 we don't use this one. */
3889 if (!sel_sched_p () && global_p && insns_in_block > 100 * 5)
3891 /* ?!? We could save some memory by computing a per-region luid mapping
3892 which could reduce both the number of vectors in the cache and the
3893 size of each vector. Instead we just avoid the cache entirely unless
3894 the average number of instructions in a basic block is very high. See
3895 the comment before the declaration of true_dependency_cache for
3896 what we consider "very high". */
3897 cache_size = 0;
3898 extend_dependency_caches (sched_max_luid, true);
3901 if (global_p)
3903 dl_pool = create_alloc_pool ("deps_list", sizeof (struct _deps_list),
3904 /* Allocate lists for one block at a time. */
3905 insns_in_block);
3906 dn_pool = create_alloc_pool ("dep_node", sizeof (struct _dep_node),
3907 /* Allocate nodes for one block at a time.
3908 We assume that average insn has
3909 5 producers. */
3910 5 * insns_in_block);
3915 /* Create or extend (depending on CREATE_P) dependency caches to
3916 size N. */
3917 void
3918 extend_dependency_caches (int n, bool create_p)
3920 if (create_p || true_dependency_cache)
3922 int i, luid = cache_size + n;
3924 true_dependency_cache = XRESIZEVEC (bitmap_head, true_dependency_cache,
3925 luid);
3926 output_dependency_cache = XRESIZEVEC (bitmap_head,
3927 output_dependency_cache, luid);
3928 anti_dependency_cache = XRESIZEVEC (bitmap_head, anti_dependency_cache,
3929 luid);
3930 control_dependency_cache = XRESIZEVEC (bitmap_head, control_dependency_cache,
3931 luid);
3933 if (current_sched_info->flags & DO_SPECULATION)
3934 spec_dependency_cache = XRESIZEVEC (bitmap_head, spec_dependency_cache,
3935 luid);
3937 for (i = cache_size; i < luid; i++)
3939 bitmap_initialize (&true_dependency_cache[i], 0);
3940 bitmap_initialize (&output_dependency_cache[i], 0);
3941 bitmap_initialize (&anti_dependency_cache[i], 0);
3942 bitmap_initialize (&control_dependency_cache[i], 0);
3944 if (current_sched_info->flags & DO_SPECULATION)
3945 bitmap_initialize (&spec_dependency_cache[i], 0);
3947 cache_size = luid;
3951 /* Finalize dependency information for the whole function. */
3952 void
3953 sched_deps_finish (void)
3955 gcc_assert (deps_pools_are_empty_p ());
3956 free_alloc_pool_if_empty (&dn_pool);
3957 free_alloc_pool_if_empty (&dl_pool);
3958 gcc_assert (dn_pool == NULL && dl_pool == NULL);
3960 VEC_free (haifa_deps_insn_data_def, heap, h_d_i_d);
3961 cache_size = 0;
3963 if (true_dependency_cache)
3965 int i;
3967 for (i = 0; i < cache_size; i++)
3969 bitmap_clear (&true_dependency_cache[i]);
3970 bitmap_clear (&output_dependency_cache[i]);
3971 bitmap_clear (&anti_dependency_cache[i]);
3972 bitmap_clear (&control_dependency_cache[i]);
3974 if (sched_deps_info->generate_spec_deps)
3975 bitmap_clear (&spec_dependency_cache[i]);
3977 free (true_dependency_cache);
3978 true_dependency_cache = NULL;
3979 free (output_dependency_cache);
3980 output_dependency_cache = NULL;
3981 free (anti_dependency_cache);
3982 anti_dependency_cache = NULL;
3983 free (control_dependency_cache);
3984 control_dependency_cache = NULL;
3986 if (sched_deps_info->generate_spec_deps)
3988 free (spec_dependency_cache);
3989 spec_dependency_cache = NULL;
3995 /* Initialize some global variables needed by the dependency analysis
3996 code. */
3998 void
3999 init_deps_global (void)
4001 CLEAR_HARD_REG_SET (implicit_reg_pending_clobbers);
4002 CLEAR_HARD_REG_SET (implicit_reg_pending_uses);
4003 reg_pending_sets = ALLOC_REG_SET (&reg_obstack);
4004 reg_pending_clobbers = ALLOC_REG_SET (&reg_obstack);
4005 reg_pending_uses = ALLOC_REG_SET (&reg_obstack);
4006 reg_pending_control_uses = ALLOC_REG_SET (&reg_obstack);
4007 reg_pending_barrier = NOT_A_BARRIER;
4009 if (!sel_sched_p () || sched_emulate_haifa_p)
4011 sched_deps_info->start_insn = haifa_start_insn;
4012 sched_deps_info->finish_insn = haifa_finish_insn;
4014 sched_deps_info->note_reg_set = haifa_note_reg_set;
4015 sched_deps_info->note_reg_clobber = haifa_note_reg_clobber;
4016 sched_deps_info->note_reg_use = haifa_note_reg_use;
4018 sched_deps_info->note_mem_dep = haifa_note_mem_dep;
4019 sched_deps_info->note_dep = haifa_note_dep;
4023 /* Free everything used by the dependency analysis code. */
4025 void
4026 finish_deps_global (void)
4028 FREE_REG_SET (reg_pending_sets);
4029 FREE_REG_SET (reg_pending_clobbers);
4030 FREE_REG_SET (reg_pending_uses);
4031 FREE_REG_SET (reg_pending_control_uses);
4034 /* Estimate the weakness of dependence between MEM1 and MEM2. */
4035 dw_t
4036 estimate_dep_weak (rtx mem1, rtx mem2)
4038 rtx r1, r2;
4040 if (mem1 == mem2)
4041 /* MEMs are the same - don't speculate. */
4042 return MIN_DEP_WEAK;
4044 r1 = XEXP (mem1, 0);
4045 r2 = XEXP (mem2, 0);
4047 if (r1 == r2
4048 || (REG_P (r1) && REG_P (r2)
4049 && REGNO (r1) == REGNO (r2)))
4050 /* Again, MEMs are the same. */
4051 return MIN_DEP_WEAK;
4052 else if ((REG_P (r1) && !REG_P (r2))
4053 || (!REG_P (r1) && REG_P (r2)))
4054 /* Different addressing modes - reason to be more speculative,
4055 than usual. */
4056 return NO_DEP_WEAK - (NO_DEP_WEAK - UNCERTAIN_DEP_WEAK) / 2;
4057 else
4058 /* We can't say anything about the dependence. */
4059 return UNCERTAIN_DEP_WEAK;
4062 /* Add or update backward dependence between INSN and ELEM with type DEP_TYPE.
4063 This function can handle same INSN and ELEM (INSN == ELEM).
4064 It is a convenience wrapper. */
4065 static void
4066 add_dependence_1 (rtx insn, rtx elem, enum reg_note dep_type)
4068 ds_t ds;
4069 bool internal;
4071 if (dep_type == REG_DEP_TRUE)
4072 ds = DEP_TRUE;
4073 else if (dep_type == REG_DEP_OUTPUT)
4074 ds = DEP_OUTPUT;
4075 else if (dep_type == REG_DEP_CONTROL)
4076 ds = DEP_CONTROL;
4077 else
4079 gcc_assert (dep_type == REG_DEP_ANTI);
4080 ds = DEP_ANTI;
4083 /* When add_dependence is called from inside sched-deps.c, we expect
4084 cur_insn to be non-null. */
4085 internal = cur_insn != NULL;
4086 if (internal)
4087 gcc_assert (insn == cur_insn);
4088 else
4089 cur_insn = insn;
4091 note_dep (elem, ds);
4092 if (!internal)
4093 cur_insn = NULL;
4096 /* Return weakness of speculative type TYPE in the dep_status DS. */
4097 dw_t
4098 get_dep_weak_1 (ds_t ds, ds_t type)
4100 ds = ds & type;
4102 switch (type)
4104 case BEGIN_DATA: ds >>= BEGIN_DATA_BITS_OFFSET; break;
4105 case BE_IN_DATA: ds >>= BE_IN_DATA_BITS_OFFSET; break;
4106 case BEGIN_CONTROL: ds >>= BEGIN_CONTROL_BITS_OFFSET; break;
4107 case BE_IN_CONTROL: ds >>= BE_IN_CONTROL_BITS_OFFSET; break;
4108 default: gcc_unreachable ();
4111 return (dw_t) ds;
4114 dw_t
4115 get_dep_weak (ds_t ds, ds_t type)
4117 dw_t dw = get_dep_weak_1 (ds, type);
4119 gcc_assert (MIN_DEP_WEAK <= dw && dw <= MAX_DEP_WEAK);
4120 return dw;
4123 /* Return the dep_status, which has the same parameters as DS, except for
4124 speculative type TYPE, that will have weakness DW. */
4125 ds_t
4126 set_dep_weak (ds_t ds, ds_t type, dw_t dw)
4128 gcc_assert (MIN_DEP_WEAK <= dw && dw <= MAX_DEP_WEAK);
4130 ds &= ~type;
4131 switch (type)
4133 case BEGIN_DATA: ds |= ((ds_t) dw) << BEGIN_DATA_BITS_OFFSET; break;
4134 case BE_IN_DATA: ds |= ((ds_t) dw) << BE_IN_DATA_BITS_OFFSET; break;
4135 case BEGIN_CONTROL: ds |= ((ds_t) dw) << BEGIN_CONTROL_BITS_OFFSET; break;
4136 case BE_IN_CONTROL: ds |= ((ds_t) dw) << BE_IN_CONTROL_BITS_OFFSET; break;
4137 default: gcc_unreachable ();
4139 return ds;
4142 /* Return the join of two dep_statuses DS1 and DS2.
4143 If MAX_P is true then choose the greater probability,
4144 otherwise multiply probabilities.
4145 This function assumes that both DS1 and DS2 contain speculative bits. */
4146 static ds_t
4147 ds_merge_1 (ds_t ds1, ds_t ds2, bool max_p)
4149 ds_t ds, t;
4151 gcc_assert ((ds1 & SPECULATIVE) && (ds2 & SPECULATIVE));
4153 ds = (ds1 & DEP_TYPES) | (ds2 & DEP_TYPES);
4155 t = FIRST_SPEC_TYPE;
4158 if ((ds1 & t) && !(ds2 & t))
4159 ds |= ds1 & t;
4160 else if (!(ds1 & t) && (ds2 & t))
4161 ds |= ds2 & t;
4162 else if ((ds1 & t) && (ds2 & t))
4164 dw_t dw1 = get_dep_weak (ds1, t);
4165 dw_t dw2 = get_dep_weak (ds2, t);
4166 ds_t dw;
4168 if (!max_p)
4170 dw = ((ds_t) dw1) * ((ds_t) dw2);
4171 dw /= MAX_DEP_WEAK;
4172 if (dw < MIN_DEP_WEAK)
4173 dw = MIN_DEP_WEAK;
4175 else
4177 if (dw1 >= dw2)
4178 dw = dw1;
4179 else
4180 dw = dw2;
4183 ds = set_dep_weak (ds, t, (dw_t) dw);
4186 if (t == LAST_SPEC_TYPE)
4187 break;
4188 t <<= SPEC_TYPE_SHIFT;
4190 while (1);
4192 return ds;
4195 /* Return the join of two dep_statuses DS1 and DS2.
4196 This function assumes that both DS1 and DS2 contain speculative bits. */
4197 ds_t
4198 ds_merge (ds_t ds1, ds_t ds2)
4200 return ds_merge_1 (ds1, ds2, false);
4203 /* Return the join of two dep_statuses DS1 and DS2. */
4204 ds_t
4205 ds_full_merge (ds_t ds, ds_t ds2, rtx mem1, rtx mem2)
4207 ds_t new_status = ds | ds2;
4209 if (new_status & SPECULATIVE)
4211 if ((ds && !(ds & SPECULATIVE))
4212 || (ds2 && !(ds2 & SPECULATIVE)))
4213 /* Then this dep can't be speculative. */
4214 new_status &= ~SPECULATIVE;
4215 else
4217 /* Both are speculative. Merging probabilities. */
4218 if (mem1)
4220 dw_t dw;
4222 dw = estimate_dep_weak (mem1, mem2);
4223 ds = set_dep_weak (ds, BEGIN_DATA, dw);
4226 if (!ds)
4227 new_status = ds2;
4228 else if (!ds2)
4229 new_status = ds;
4230 else
4231 new_status = ds_merge (ds2, ds);
4235 return new_status;
4238 /* Return the join of DS1 and DS2. Use maximum instead of multiplying
4239 probabilities. */
4240 ds_t
4241 ds_max_merge (ds_t ds1, ds_t ds2)
4243 if (ds1 == 0 && ds2 == 0)
4244 return 0;
4246 if (ds1 == 0 && ds2 != 0)
4247 return ds2;
4249 if (ds1 != 0 && ds2 == 0)
4250 return ds1;
4252 return ds_merge_1 (ds1, ds2, true);
4255 /* Return the probability of speculation success for the speculation
4256 status DS. */
4257 dw_t
4258 ds_weak (ds_t ds)
4260 ds_t res = 1, dt;
4261 int n = 0;
4263 dt = FIRST_SPEC_TYPE;
4266 if (ds & dt)
4268 res *= (ds_t) get_dep_weak (ds, dt);
4269 n++;
4272 if (dt == LAST_SPEC_TYPE)
4273 break;
4274 dt <<= SPEC_TYPE_SHIFT;
4276 while (1);
4278 gcc_assert (n);
4279 while (--n)
4280 res /= MAX_DEP_WEAK;
4282 if (res < MIN_DEP_WEAK)
4283 res = MIN_DEP_WEAK;
4285 gcc_assert (res <= MAX_DEP_WEAK);
4287 return (dw_t) res;
4290 /* Return a dep status that contains all speculation types of DS. */
4291 ds_t
4292 ds_get_speculation_types (ds_t ds)
4294 if (ds & BEGIN_DATA)
4295 ds |= BEGIN_DATA;
4296 if (ds & BE_IN_DATA)
4297 ds |= BE_IN_DATA;
4298 if (ds & BEGIN_CONTROL)
4299 ds |= BEGIN_CONTROL;
4300 if (ds & BE_IN_CONTROL)
4301 ds |= BE_IN_CONTROL;
4303 return ds & SPECULATIVE;
4306 /* Return a dep status that contains maximal weakness for each speculation
4307 type present in DS. */
4308 ds_t
4309 ds_get_max_dep_weak (ds_t ds)
4311 if (ds & BEGIN_DATA)
4312 ds = set_dep_weak (ds, BEGIN_DATA, MAX_DEP_WEAK);
4313 if (ds & BE_IN_DATA)
4314 ds = set_dep_weak (ds, BE_IN_DATA, MAX_DEP_WEAK);
4315 if (ds & BEGIN_CONTROL)
4316 ds = set_dep_weak (ds, BEGIN_CONTROL, MAX_DEP_WEAK);
4317 if (ds & BE_IN_CONTROL)
4318 ds = set_dep_weak (ds, BE_IN_CONTROL, MAX_DEP_WEAK);
4320 return ds;
4323 /* Dump information about the dependence status S. */
4324 static void
4325 dump_ds (FILE *f, ds_t s)
4327 fprintf (f, "{");
4329 if (s & BEGIN_DATA)
4330 fprintf (f, "BEGIN_DATA: %d; ", get_dep_weak_1 (s, BEGIN_DATA));
4331 if (s & BE_IN_DATA)
4332 fprintf (f, "BE_IN_DATA: %d; ", get_dep_weak_1 (s, BE_IN_DATA));
4333 if (s & BEGIN_CONTROL)
4334 fprintf (f, "BEGIN_CONTROL: %d; ", get_dep_weak_1 (s, BEGIN_CONTROL));
4335 if (s & BE_IN_CONTROL)
4336 fprintf (f, "BE_IN_CONTROL: %d; ", get_dep_weak_1 (s, BE_IN_CONTROL));
4338 if (s & HARD_DEP)
4339 fprintf (f, "HARD_DEP; ");
4341 if (s & DEP_TRUE)
4342 fprintf (f, "DEP_TRUE; ");
4343 if (s & DEP_OUTPUT)
4344 fprintf (f, "DEP_OUTPUT; ");
4345 if (s & DEP_ANTI)
4346 fprintf (f, "DEP_ANTI; ");
4347 if (s & DEP_CONTROL)
4348 fprintf (f, "DEP_CONTROL; ");
4350 fprintf (f, "}");
4353 DEBUG_FUNCTION void
4354 debug_ds (ds_t s)
4356 dump_ds (stderr, s);
4357 fprintf (stderr, "\n");
4360 #ifdef ENABLE_CHECKING
4361 /* Verify that dependence type and status are consistent.
4362 If RELAXED_P is true, then skip dep_weakness checks. */
4363 static void
4364 check_dep (dep_t dep, bool relaxed_p)
4366 enum reg_note dt = DEP_TYPE (dep);
4367 ds_t ds = DEP_STATUS (dep);
4369 gcc_assert (DEP_PRO (dep) != DEP_CON (dep));
4371 if (!(current_sched_info->flags & USE_DEPS_LIST))
4373 gcc_assert (ds == 0);
4374 return;
4377 /* Check that dependence type contains the same bits as the status. */
4378 if (dt == REG_DEP_TRUE)
4379 gcc_assert (ds & DEP_TRUE);
4380 else if (dt == REG_DEP_OUTPUT)
4381 gcc_assert ((ds & DEP_OUTPUT)
4382 && !(ds & DEP_TRUE));
4383 else if (dt == REG_DEP_ANTI)
4384 gcc_assert ((ds & DEP_ANTI)
4385 && !(ds & (DEP_OUTPUT | DEP_TRUE)));
4386 else
4387 gcc_assert (dt == REG_DEP_CONTROL
4388 && (ds & DEP_CONTROL)
4389 && !(ds & (DEP_OUTPUT | DEP_ANTI | DEP_TRUE)));
4391 /* HARD_DEP can not appear in dep_status of a link. */
4392 gcc_assert (!(ds & HARD_DEP));
4394 /* Check that dependence status is set correctly when speculation is not
4395 supported. */
4396 if (!sched_deps_info->generate_spec_deps)
4397 gcc_assert (!(ds & SPECULATIVE));
4398 else if (ds & SPECULATIVE)
4400 if (!relaxed_p)
4402 ds_t type = FIRST_SPEC_TYPE;
4404 /* Check that dependence weakness is in proper range. */
4407 if (ds & type)
4408 get_dep_weak (ds, type);
4410 if (type == LAST_SPEC_TYPE)
4411 break;
4412 type <<= SPEC_TYPE_SHIFT;
4414 while (1);
4417 if (ds & BEGIN_SPEC)
4419 /* Only true dependence can be data speculative. */
4420 if (ds & BEGIN_DATA)
4421 gcc_assert (ds & DEP_TRUE);
4423 /* Control dependencies in the insn scheduler are represented by
4424 anti-dependencies, therefore only anti dependence can be
4425 control speculative. */
4426 if (ds & BEGIN_CONTROL)
4427 gcc_assert (ds & DEP_ANTI);
4429 else
4431 /* Subsequent speculations should resolve true dependencies. */
4432 gcc_assert ((ds & DEP_TYPES) == DEP_TRUE);
4435 /* Check that true and anti dependencies can't have other speculative
4436 statuses. */
4437 if (ds & DEP_TRUE)
4438 gcc_assert (ds & (BEGIN_DATA | BE_IN_SPEC));
4439 /* An output dependence can't be speculative at all. */
4440 gcc_assert (!(ds & DEP_OUTPUT));
4441 if (ds & DEP_ANTI)
4442 gcc_assert (ds & BEGIN_CONTROL);
4445 #endif /* ENABLE_CHECKING */
4447 #endif /* INSN_SCHEDULING */