PR tree-optimization/45830
[official-gcc.git] / gcc / reg-stack.c
blobda7fe729be9df83073fec9316572e9d345d88e06
1 /* Register to Stack convert for GNU compiler.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2010
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
16 License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This pass converts stack-like registers from the "flat register
23 file" model that gcc uses, to a stack convention that the 387 uses.
25 * The form of the input:
27 On input, the function consists of insn that have had their
28 registers fully allocated to a set of "virtual" registers. Note that
29 the word "virtual" is used differently here than elsewhere in gcc: for
30 each virtual stack reg, there is a hard reg, but the mapping between
31 them is not known until this pass is run. On output, hard register
32 numbers have been substituted, and various pop and exchange insns have
33 been emitted. The hard register numbers and the virtual register
34 numbers completely overlap - before this pass, all stack register
35 numbers are virtual, and afterward they are all hard.
37 The virtual registers can be manipulated normally by gcc, and their
38 semantics are the same as for normal registers. After the hard
39 register numbers are substituted, the semantics of an insn containing
40 stack-like regs are not the same as for an insn with normal regs: for
41 instance, it is not safe to delete an insn that appears to be a no-op
42 move. In general, no insn containing hard regs should be changed
43 after this pass is done.
45 * The form of the output:
47 After this pass, hard register numbers represent the distance from
48 the current top of stack to the desired register. A reference to
49 FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
50 represents the register just below that, and so forth. Also, REG_DEAD
51 notes indicate whether or not a stack register should be popped.
53 A "swap" insn looks like a parallel of two patterns, where each
54 pattern is a SET: one sets A to B, the other B to A.
56 A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
57 and whose SET_DEST is REG or MEM. Any other SET_DEST, such as PLUS,
58 will replace the existing stack top, not push a new value.
60 A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
61 SET_SRC is REG or MEM.
63 The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
64 appears ambiguous. As a special case, the presence of a REG_DEAD note
65 for FIRST_STACK_REG differentiates between a load insn and a pop.
67 If a REG_DEAD is present, the insn represents a "pop" that discards
68 the top of the register stack. If there is no REG_DEAD note, then the
69 insn represents a "dup" or a push of the current top of stack onto the
70 stack.
72 * Methodology:
74 Existing REG_DEAD and REG_UNUSED notes for stack registers are
75 deleted and recreated from scratch. REG_DEAD is never created for a
76 SET_DEST, only REG_UNUSED.
78 * asm_operands:
80 There are several rules on the usage of stack-like regs in
81 asm_operands insns. These rules apply only to the operands that are
82 stack-like regs:
84 1. Given a set of input regs that die in an asm_operands, it is
85 necessary to know which are implicitly popped by the asm, and
86 which must be explicitly popped by gcc.
88 An input reg that is implicitly popped by the asm must be
89 explicitly clobbered, unless it is constrained to match an
90 output operand.
92 2. For any input reg that is implicitly popped by an asm, it is
93 necessary to know how to adjust the stack to compensate for the pop.
94 If any non-popped input is closer to the top of the reg-stack than
95 the implicitly popped reg, it would not be possible to know what the
96 stack looked like - it's not clear how the rest of the stack "slides
97 up".
99 All implicitly popped input regs must be closer to the top of
100 the reg-stack than any input that is not implicitly popped.
102 3. It is possible that if an input dies in an insn, reload might
103 use the input reg for an output reload. Consider this example:
105 asm ("foo" : "=t" (a) : "f" (b));
107 This asm says that input B is not popped by the asm, and that
108 the asm pushes a result onto the reg-stack, i.e., the stack is one
109 deeper after the asm than it was before. But, it is possible that
110 reload will think that it can use the same reg for both the input and
111 the output, if input B dies in this insn.
113 If any input operand uses the "f" constraint, all output reg
114 constraints must use the "&" earlyclobber.
116 The asm above would be written as
118 asm ("foo" : "=&t" (a) : "f" (b));
120 4. Some operands need to be in particular places on the stack. All
121 output operands fall in this category - there is no other way to
122 know which regs the outputs appear in unless the user indicates
123 this in the constraints.
125 Output operands must specifically indicate which reg an output
126 appears in after an asm. "=f" is not allowed: the operand
127 constraints must select a class with a single reg.
129 5. Output operands may not be "inserted" between existing stack regs.
130 Since no 387 opcode uses a read/write operand, all output operands
131 are dead before the asm_operands, and are pushed by the asm_operands.
132 It makes no sense to push anywhere but the top of the reg-stack.
134 Output operands must start at the top of the reg-stack: output
135 operands may not "skip" a reg.
137 6. Some asm statements may need extra stack space for internal
138 calculations. This can be guaranteed by clobbering stack registers
139 unrelated to the inputs and outputs.
141 Here are a couple of reasonable asms to want to write. This asm
142 takes one input, which is internally popped, and produces two outputs.
144 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
146 This asm takes two inputs, which are popped by the fyl2xp1 opcode,
147 and replaces them with one output. The user must code the "st(1)"
148 clobber for reg-stack.c to know that fyl2xp1 pops both inputs.
150 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
154 #include "config.h"
155 #include "system.h"
156 #include "coretypes.h"
157 #include "tm.h"
158 #include "tree.h"
159 #include "rtl-error.h"
160 #include "tm_p.h"
161 #include "function.h"
162 #include "insn-config.h"
163 #include "regs.h"
164 #include "hard-reg-set.h"
165 #include "flags.h"
166 #include "recog.h"
167 #include "output.h"
168 #include "basic-block.h"
169 #include "cfglayout.h"
170 #include "reload.h"
171 #include "ggc.h"
172 #include "timevar.h"
173 #include "tree-pass.h"
174 #include "target.h"
175 #include "df.h"
176 #include "vecprim.h"
177 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
179 #ifdef STACK_REGS
181 /* We use this array to cache info about insns, because otherwise we
182 spend too much time in stack_regs_mentioned_p.
184 Indexed by insn UIDs. A value of zero is uninitialized, one indicates
185 the insn uses stack registers, two indicates the insn does not use
186 stack registers. */
187 static VEC(char,heap) *stack_regs_mentioned_data;
189 #define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
191 int regstack_completed = 0;
193 /* This is the basic stack record. TOP is an index into REG[] such
194 that REG[TOP] is the top of stack. If TOP is -1 the stack is empty.
196 If TOP is -2, REG[] is not yet initialized. Stack initialization
197 consists of placing each live reg in array `reg' and setting `top'
198 appropriately.
200 REG_SET indicates which registers are live. */
202 typedef struct stack_def
204 int top; /* index to top stack element */
205 HARD_REG_SET reg_set; /* set of live registers */
206 unsigned char reg[REG_STACK_SIZE];/* register - stack mapping */
207 } *stack;
209 /* This is used to carry information about basic blocks. It is
210 attached to the AUX field of the standard CFG block. */
212 typedef struct block_info_def
214 struct stack_def stack_in; /* Input stack configuration. */
215 struct stack_def stack_out; /* Output stack configuration. */
216 HARD_REG_SET out_reg_set; /* Stack regs live on output. */
217 int done; /* True if block already converted. */
218 int predecessors; /* Number of predecessors that need
219 to be visited. */
220 } *block_info;
222 #define BLOCK_INFO(B) ((block_info) (B)->aux)
224 /* Passed to change_stack to indicate where to emit insns. */
225 enum emit_where
227 EMIT_AFTER,
228 EMIT_BEFORE
231 /* The block we're currently working on. */
232 static basic_block current_block;
234 /* In the current_block, whether we're processing the first register
235 stack or call instruction, i.e. the regstack is currently the
236 same as BLOCK_INFO(current_block)->stack_in. */
237 static bool starting_stack_p;
239 /* This is the register file for all register after conversion. */
240 static rtx
241 FP_mode_reg[LAST_STACK_REG+1-FIRST_STACK_REG][(int) MAX_MACHINE_MODE];
243 #define FP_MODE_REG(regno,mode) \
244 (FP_mode_reg[(regno)-FIRST_STACK_REG][(int) (mode)])
246 /* Used to initialize uninitialized registers. */
247 static rtx not_a_num;
249 /* Forward declarations */
251 static int stack_regs_mentioned_p (const_rtx pat);
252 static void pop_stack (stack, int);
253 static rtx *get_true_reg (rtx *);
255 static int check_asm_stack_operands (rtx);
256 static void get_asm_operands_in_out (rtx, int *, int *);
257 static rtx stack_result (tree);
258 static void replace_reg (rtx *, int);
259 static void remove_regno_note (rtx, enum reg_note, unsigned int);
260 static int get_hard_regnum (stack, rtx);
261 static rtx emit_pop_insn (rtx, stack, rtx, enum emit_where);
262 static void swap_to_top(rtx, stack, rtx, rtx);
263 static bool move_for_stack_reg (rtx, stack, rtx);
264 static bool move_nan_for_stack_reg (rtx, stack, rtx);
265 static int swap_rtx_condition_1 (rtx);
266 static int swap_rtx_condition (rtx);
267 static void compare_for_stack_reg (rtx, stack, rtx);
268 static bool subst_stack_regs_pat (rtx, stack, rtx);
269 static void subst_asm_stack_regs (rtx, stack);
270 static bool subst_stack_regs (rtx, stack);
271 static void change_stack (rtx, stack, stack, enum emit_where);
272 static void print_stack (FILE *, stack);
273 static rtx next_flags_user (rtx);
275 /* Return nonzero if any stack register is mentioned somewhere within PAT. */
277 static int
278 stack_regs_mentioned_p (const_rtx pat)
280 const char *fmt;
281 int i;
283 if (STACK_REG_P (pat))
284 return 1;
286 fmt = GET_RTX_FORMAT (GET_CODE (pat));
287 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
289 if (fmt[i] == 'E')
291 int j;
293 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
294 if (stack_regs_mentioned_p (XVECEXP (pat, i, j)))
295 return 1;
297 else if (fmt[i] == 'e' && stack_regs_mentioned_p (XEXP (pat, i)))
298 return 1;
301 return 0;
304 /* Return nonzero if INSN mentions stacked registers, else return zero. */
307 stack_regs_mentioned (const_rtx insn)
309 unsigned int uid, max;
310 int test;
312 if (! INSN_P (insn) || !stack_regs_mentioned_data)
313 return 0;
315 uid = INSN_UID (insn);
316 max = VEC_length (char, stack_regs_mentioned_data);
317 if (uid >= max)
319 /* Allocate some extra size to avoid too many reallocs, but
320 do not grow too quickly. */
321 max = uid + uid / 20 + 1;
322 VEC_safe_grow_cleared (char, heap, stack_regs_mentioned_data, max);
325 test = VEC_index (char, stack_regs_mentioned_data, uid);
326 if (test == 0)
328 /* This insn has yet to be examined. Do so now. */
329 test = stack_regs_mentioned_p (PATTERN (insn)) ? 1 : 2;
330 VEC_replace (char, stack_regs_mentioned_data, uid, test);
333 return test == 1;
336 static rtx ix86_flags_rtx;
338 static rtx
339 next_flags_user (rtx insn)
341 /* Search forward looking for the first use of this value.
342 Stop at block boundaries. */
344 while (insn != BB_END (current_block))
346 insn = NEXT_INSN (insn);
348 if (INSN_P (insn) && reg_mentioned_p (ix86_flags_rtx, PATTERN (insn)))
349 return insn;
351 if (CALL_P (insn))
352 return NULL_RTX;
354 return NULL_RTX;
357 /* Reorganize the stack into ascending numbers, before this insn. */
359 static void
360 straighten_stack (rtx insn, stack regstack)
362 struct stack_def temp_stack;
363 int top;
365 /* If there is only a single register on the stack, then the stack is
366 already in increasing order and no reorganization is needed.
368 Similarly if the stack is empty. */
369 if (regstack->top <= 0)
370 return;
372 COPY_HARD_REG_SET (temp_stack.reg_set, regstack->reg_set);
374 for (top = temp_stack.top = regstack->top; top >= 0; top--)
375 temp_stack.reg[top] = FIRST_STACK_REG + temp_stack.top - top;
377 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
380 /* Pop a register from the stack. */
382 static void
383 pop_stack (stack regstack, int regno)
385 int top = regstack->top;
387 CLEAR_HARD_REG_BIT (regstack->reg_set, regno);
388 regstack->top--;
389 /* If regno was not at the top of stack then adjust stack. */
390 if (regstack->reg [top] != regno)
392 int i;
393 for (i = regstack->top; i >= 0; i--)
394 if (regstack->reg [i] == regno)
396 int j;
397 for (j = i; j < top; j++)
398 regstack->reg [j] = regstack->reg [j + 1];
399 break;
404 /* Return a pointer to the REG expression within PAT. If PAT is not a
405 REG, possible enclosed by a conversion rtx, return the inner part of
406 PAT that stopped the search. */
408 static rtx *
409 get_true_reg (rtx *pat)
411 for (;;)
412 switch (GET_CODE (*pat))
414 case SUBREG:
415 /* Eliminate FP subregister accesses in favor of the
416 actual FP register in use. */
418 rtx subreg;
419 if (FP_REG_P (subreg = SUBREG_REG (*pat)))
421 int regno_off = subreg_regno_offset (REGNO (subreg),
422 GET_MODE (subreg),
423 SUBREG_BYTE (*pat),
424 GET_MODE (*pat));
425 *pat = FP_MODE_REG (REGNO (subreg) + regno_off,
426 GET_MODE (subreg));
427 return pat;
430 case FLOAT:
431 case FIX:
432 case FLOAT_EXTEND:
433 pat = & XEXP (*pat, 0);
434 break;
436 case UNSPEC:
437 if (XINT (*pat, 1) == UNSPEC_TRUNC_NOOP
438 || XINT (*pat, 1) == UNSPEC_LDA)
439 pat = & XVECEXP (*pat, 0, 0);
440 return pat;
442 case FLOAT_TRUNCATE:
443 if (!flag_unsafe_math_optimizations)
444 return pat;
445 pat = & XEXP (*pat, 0);
446 break;
448 default:
449 return pat;
453 /* Set if we find any malformed asms in a block. */
454 static bool any_malformed_asm;
456 /* There are many rules that an asm statement for stack-like regs must
457 follow. Those rules are explained at the top of this file: the rule
458 numbers below refer to that explanation. */
460 static int
461 check_asm_stack_operands (rtx insn)
463 int i;
464 int n_clobbers;
465 int malformed_asm = 0;
466 rtx body = PATTERN (insn);
468 char reg_used_as_output[FIRST_PSEUDO_REGISTER];
469 char implicitly_dies[FIRST_PSEUDO_REGISTER];
470 int alt;
472 rtx *clobber_reg = 0;
473 int n_inputs, n_outputs;
475 /* Find out what the constraints require. If no constraint
476 alternative matches, this asm is malformed. */
477 extract_insn (insn);
478 constrain_operands (1);
479 alt = which_alternative;
481 preprocess_constraints ();
483 get_asm_operands_in_out (body, &n_outputs, &n_inputs);
485 if (alt < 0)
487 malformed_asm = 1;
488 /* Avoid further trouble with this insn. */
489 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
490 return 0;
493 /* Strip SUBREGs here to make the following code simpler. */
494 for (i = 0; i < recog_data.n_operands; i++)
495 if (GET_CODE (recog_data.operand[i]) == SUBREG
496 && REG_P (SUBREG_REG (recog_data.operand[i])))
497 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
499 /* Set up CLOBBER_REG. */
501 n_clobbers = 0;
503 if (GET_CODE (body) == PARALLEL)
505 clobber_reg = XALLOCAVEC (rtx, XVECLEN (body, 0));
507 for (i = 0; i < XVECLEN (body, 0); i++)
508 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
510 rtx clobber = XVECEXP (body, 0, i);
511 rtx reg = XEXP (clobber, 0);
513 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
514 reg = SUBREG_REG (reg);
516 if (STACK_REG_P (reg))
518 clobber_reg[n_clobbers] = reg;
519 n_clobbers++;
524 /* Enforce rule #4: Output operands must specifically indicate which
525 reg an output appears in after an asm. "=f" is not allowed: the
526 operand constraints must select a class with a single reg.
528 Also enforce rule #5: Output operands must start at the top of
529 the reg-stack: output operands may not "skip" a reg. */
531 memset (reg_used_as_output, 0, sizeof (reg_used_as_output));
532 for (i = 0; i < n_outputs; i++)
533 if (STACK_REG_P (recog_data.operand[i]))
535 if (reg_class_size[(int) recog_op_alt[i][alt].cl] != 1)
537 error_for_asm (insn, "output constraint %d must specify a single register", i);
538 malformed_asm = 1;
540 else
542 int j;
544 for (j = 0; j < n_clobbers; j++)
545 if (REGNO (recog_data.operand[i]) == REGNO (clobber_reg[j]))
547 error_for_asm (insn, "output constraint %d cannot be specified together with \"%s\" clobber",
548 i, reg_names [REGNO (clobber_reg[j])]);
549 malformed_asm = 1;
550 break;
552 if (j == n_clobbers)
553 reg_used_as_output[REGNO (recog_data.operand[i])] = 1;
558 /* Search for first non-popped reg. */
559 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
560 if (! reg_used_as_output[i])
561 break;
563 /* If there are any other popped regs, that's an error. */
564 for (; i < LAST_STACK_REG + 1; i++)
565 if (reg_used_as_output[i])
566 break;
568 if (i != LAST_STACK_REG + 1)
570 error_for_asm (insn, "output regs must be grouped at top of stack");
571 malformed_asm = 1;
574 /* Enforce rule #2: All implicitly popped input regs must be closer
575 to the top of the reg-stack than any input that is not implicitly
576 popped. */
578 memset (implicitly_dies, 0, sizeof (implicitly_dies));
579 for (i = n_outputs; i < n_outputs + n_inputs; i++)
580 if (STACK_REG_P (recog_data.operand[i]))
582 /* An input reg is implicitly popped if it is tied to an
583 output, or if there is a CLOBBER for it. */
584 int j;
586 for (j = 0; j < n_clobbers; j++)
587 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
588 break;
590 if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
591 implicitly_dies[REGNO (recog_data.operand[i])] = 1;
594 /* Search for first non-popped reg. */
595 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
596 if (! implicitly_dies[i])
597 break;
599 /* If there are any other popped regs, that's an error. */
600 for (; i < LAST_STACK_REG + 1; i++)
601 if (implicitly_dies[i])
602 break;
604 if (i != LAST_STACK_REG + 1)
606 error_for_asm (insn,
607 "implicitly popped regs must be grouped at top of stack");
608 malformed_asm = 1;
611 /* Enforce rule #3: If any input operand uses the "f" constraint, all
612 output constraints must use the "&" earlyclobber.
614 ??? Detect this more deterministically by having constrain_asm_operands
615 record any earlyclobber. */
617 for (i = n_outputs; i < n_outputs + n_inputs; i++)
618 if (recog_op_alt[i][alt].matches == -1)
620 int j;
622 for (j = 0; j < n_outputs; j++)
623 if (operands_match_p (recog_data.operand[j], recog_data.operand[i]))
625 error_for_asm (insn,
626 "output operand %d must use %<&%> constraint", j);
627 malformed_asm = 1;
631 if (malformed_asm)
633 /* Avoid further trouble with this insn. */
634 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
635 any_malformed_asm = true;
636 return 0;
639 return 1;
642 /* Calculate the number of inputs and outputs in BODY, an
643 asm_operands. N_OPERANDS is the total number of operands, and
644 N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
645 placed. */
647 static void
648 get_asm_operands_in_out (rtx body, int *pout, int *pin)
650 rtx asmop = extract_asm_operands (body);
652 *pin = ASM_OPERANDS_INPUT_LENGTH (asmop);
653 *pout = (recog_data.n_operands
654 - ASM_OPERANDS_INPUT_LENGTH (asmop)
655 - ASM_OPERANDS_LABEL_LENGTH (asmop));
658 /* If current function returns its result in an fp stack register,
659 return the REG. Otherwise, return 0. */
661 static rtx
662 stack_result (tree decl)
664 rtx result;
666 /* If the value is supposed to be returned in memory, then clearly
667 it is not returned in a stack register. */
668 if (aggregate_value_p (DECL_RESULT (decl), decl))
669 return 0;
671 result = DECL_RTL_IF_SET (DECL_RESULT (decl));
672 if (result != 0)
673 result = targetm.calls.function_value (TREE_TYPE (DECL_RESULT (decl)),
674 decl, true);
676 return result != 0 && STACK_REG_P (result) ? result : 0;
681 * This section deals with stack register substitution, and forms the second
682 * pass over the RTL.
685 /* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
686 the desired hard REGNO. */
688 static void
689 replace_reg (rtx *reg, int regno)
691 gcc_assert (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG));
692 gcc_assert (STACK_REG_P (*reg));
694 gcc_assert (SCALAR_FLOAT_MODE_P (GET_MODE (*reg))
695 || GET_MODE_CLASS (GET_MODE (*reg)) == MODE_COMPLEX_FLOAT);
697 *reg = FP_MODE_REG (regno, GET_MODE (*reg));
700 /* Remove a note of type NOTE, which must be found, for register
701 number REGNO from INSN. Remove only one such note. */
703 static void
704 remove_regno_note (rtx insn, enum reg_note note, unsigned int regno)
706 rtx *note_link, this_rtx;
708 note_link = &REG_NOTES (insn);
709 for (this_rtx = *note_link; this_rtx; this_rtx = XEXP (this_rtx, 1))
710 if (REG_NOTE_KIND (this_rtx) == note
711 && REG_P (XEXP (this_rtx, 0)) && REGNO (XEXP (this_rtx, 0)) == regno)
713 *note_link = XEXP (this_rtx, 1);
714 return;
716 else
717 note_link = &XEXP (this_rtx, 1);
719 gcc_unreachable ();
722 /* Find the hard register number of virtual register REG in REGSTACK.
723 The hard register number is relative to the top of the stack. -1 is
724 returned if the register is not found. */
726 static int
727 get_hard_regnum (stack regstack, rtx reg)
729 int i;
731 gcc_assert (STACK_REG_P (reg));
733 for (i = regstack->top; i >= 0; i--)
734 if (regstack->reg[i] == REGNO (reg))
735 break;
737 return i >= 0 ? (FIRST_STACK_REG + regstack->top - i) : -1;
740 /* Emit an insn to pop virtual register REG before or after INSN.
741 REGSTACK is the stack state after INSN and is updated to reflect this
742 pop. WHEN is either emit_insn_before or emit_insn_after. A pop insn
743 is represented as a SET whose destination is the register to be popped
744 and source is the top of stack. A death note for the top of stack
745 cases the movdf pattern to pop. */
747 static rtx
748 emit_pop_insn (rtx insn, stack regstack, rtx reg, enum emit_where where)
750 rtx pop_insn, pop_rtx;
751 int hard_regno;
753 /* For complex types take care to pop both halves. These may survive in
754 CLOBBER and USE expressions. */
755 if (COMPLEX_MODE_P (GET_MODE (reg)))
757 rtx reg1 = FP_MODE_REG (REGNO (reg), DFmode);
758 rtx reg2 = FP_MODE_REG (REGNO (reg) + 1, DFmode);
760 pop_insn = NULL_RTX;
761 if (get_hard_regnum (regstack, reg1) >= 0)
762 pop_insn = emit_pop_insn (insn, regstack, reg1, where);
763 if (get_hard_regnum (regstack, reg2) >= 0)
764 pop_insn = emit_pop_insn (insn, regstack, reg2, where);
765 gcc_assert (pop_insn);
766 return pop_insn;
769 hard_regno = get_hard_regnum (regstack, reg);
771 gcc_assert (hard_regno >= FIRST_STACK_REG);
773 pop_rtx = gen_rtx_SET (VOIDmode, FP_MODE_REG (hard_regno, DFmode),
774 FP_MODE_REG (FIRST_STACK_REG, DFmode));
776 if (where == EMIT_AFTER)
777 pop_insn = emit_insn_after (pop_rtx, insn);
778 else
779 pop_insn = emit_insn_before (pop_rtx, insn);
781 add_reg_note (pop_insn, REG_DEAD, FP_MODE_REG (FIRST_STACK_REG, DFmode));
783 regstack->reg[regstack->top - (hard_regno - FIRST_STACK_REG)]
784 = regstack->reg[regstack->top];
785 regstack->top -= 1;
786 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (reg));
788 return pop_insn;
791 /* Emit an insn before or after INSN to swap virtual register REG with
792 the top of stack. REGSTACK is the stack state before the swap, and
793 is updated to reflect the swap. A swap insn is represented as a
794 PARALLEL of two patterns: each pattern moves one reg to the other.
796 If REG is already at the top of the stack, no insn is emitted. */
798 static void
799 emit_swap_insn (rtx insn, stack regstack, rtx reg)
801 int hard_regno;
802 rtx swap_rtx;
803 int tmp, other_reg; /* swap regno temps */
804 rtx i1; /* the stack-reg insn prior to INSN */
805 rtx i1set = NULL_RTX; /* the SET rtx within I1 */
807 hard_regno = get_hard_regnum (regstack, reg);
809 if (hard_regno == FIRST_STACK_REG)
810 return;
811 if (hard_regno == -1)
813 /* Something failed if the register wasn't on the stack. If we had
814 malformed asms, we zapped the instruction itself, but that didn't
815 produce the same pattern of register sets as before. To prevent
816 further failure, adjust REGSTACK to include REG at TOP. */
817 gcc_assert (any_malformed_asm);
818 regstack->reg[++regstack->top] = REGNO (reg);
819 return;
821 gcc_assert (hard_regno >= FIRST_STACK_REG);
823 other_reg = regstack->top - (hard_regno - FIRST_STACK_REG);
825 tmp = regstack->reg[other_reg];
826 regstack->reg[other_reg] = regstack->reg[regstack->top];
827 regstack->reg[regstack->top] = tmp;
829 /* Find the previous insn involving stack regs, but don't pass a
830 block boundary. */
831 i1 = NULL;
832 if (current_block && insn != BB_HEAD (current_block))
834 rtx tmp = PREV_INSN (insn);
835 rtx limit = PREV_INSN (BB_HEAD (current_block));
836 while (tmp != limit)
838 if (LABEL_P (tmp)
839 || CALL_P (tmp)
840 || NOTE_INSN_BASIC_BLOCK_P (tmp)
841 || (NONJUMP_INSN_P (tmp)
842 && stack_regs_mentioned (tmp)))
844 i1 = tmp;
845 break;
847 tmp = PREV_INSN (tmp);
851 if (i1 != NULL_RTX
852 && (i1set = single_set (i1)) != NULL_RTX)
854 rtx i1src = *get_true_reg (&SET_SRC (i1set));
855 rtx i1dest = *get_true_reg (&SET_DEST (i1set));
857 /* If the previous register stack push was from the reg we are to
858 swap with, omit the swap. */
860 if (REG_P (i1dest) && REGNO (i1dest) == FIRST_STACK_REG
861 && REG_P (i1src)
862 && REGNO (i1src) == (unsigned) hard_regno - 1
863 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
864 return;
866 /* If the previous insn wrote to the reg we are to swap with,
867 omit the swap. */
869 if (REG_P (i1dest) && REGNO (i1dest) == (unsigned) hard_regno
870 && REG_P (i1src) && REGNO (i1src) == FIRST_STACK_REG
871 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
872 return;
875 /* Avoid emitting the swap if this is the first register stack insn
876 of the current_block. Instead update the current_block's stack_in
877 and let compensate edges take care of this for us. */
878 if (current_block && starting_stack_p)
880 BLOCK_INFO (current_block)->stack_in = *regstack;
881 starting_stack_p = false;
882 return;
885 swap_rtx = gen_swapxf (FP_MODE_REG (hard_regno, XFmode),
886 FP_MODE_REG (FIRST_STACK_REG, XFmode));
888 if (i1)
889 emit_insn_after (swap_rtx, i1);
890 else if (current_block)
891 emit_insn_before (swap_rtx, BB_HEAD (current_block));
892 else
893 emit_insn_before (swap_rtx, insn);
896 /* Emit an insns before INSN to swap virtual register SRC1 with
897 the top of stack and virtual register SRC2 with second stack
898 slot. REGSTACK is the stack state before the swaps, and
899 is updated to reflect the swaps. A swap insn is represented as a
900 PARALLEL of two patterns: each pattern moves one reg to the other.
902 If SRC1 and/or SRC2 are already at the right place, no swap insn
903 is emitted. */
905 static void
906 swap_to_top (rtx insn, stack regstack, rtx src1, rtx src2)
908 struct stack_def temp_stack;
909 int regno, j, k, temp;
911 temp_stack = *regstack;
913 /* Place operand 1 at the top of stack. */
914 regno = get_hard_regnum (&temp_stack, src1);
915 gcc_assert (regno >= 0);
916 if (regno != FIRST_STACK_REG)
918 k = temp_stack.top - (regno - FIRST_STACK_REG);
919 j = temp_stack.top;
921 temp = temp_stack.reg[k];
922 temp_stack.reg[k] = temp_stack.reg[j];
923 temp_stack.reg[j] = temp;
926 /* Place operand 2 next on the stack. */
927 regno = get_hard_regnum (&temp_stack, src2);
928 gcc_assert (regno >= 0);
929 if (regno != FIRST_STACK_REG + 1)
931 k = temp_stack.top - (regno - FIRST_STACK_REG);
932 j = temp_stack.top - 1;
934 temp = temp_stack.reg[k];
935 temp_stack.reg[k] = temp_stack.reg[j];
936 temp_stack.reg[j] = temp;
939 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
942 /* Handle a move to or from a stack register in PAT, which is in INSN.
943 REGSTACK is the current stack. Return whether a control flow insn
944 was deleted in the process. */
946 static bool
947 move_for_stack_reg (rtx insn, stack regstack, rtx pat)
949 rtx *psrc = get_true_reg (&SET_SRC (pat));
950 rtx *pdest = get_true_reg (&SET_DEST (pat));
951 rtx src, dest;
952 rtx note;
953 bool control_flow_insn_deleted = false;
955 src = *psrc; dest = *pdest;
957 if (STACK_REG_P (src) && STACK_REG_P (dest))
959 /* Write from one stack reg to another. If SRC dies here, then
960 just change the register mapping and delete the insn. */
962 note = find_regno_note (insn, REG_DEAD, REGNO (src));
963 if (note)
965 int i;
967 /* If this is a no-op move, there must not be a REG_DEAD note. */
968 gcc_assert (REGNO (src) != REGNO (dest));
970 for (i = regstack->top; i >= 0; i--)
971 if (regstack->reg[i] == REGNO (src))
972 break;
974 /* The destination must be dead, or life analysis is borked. */
975 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
977 /* If the source is not live, this is yet another case of
978 uninitialized variables. Load up a NaN instead. */
979 if (i < 0)
980 return move_nan_for_stack_reg (insn, regstack, dest);
982 /* It is possible that the dest is unused after this insn.
983 If so, just pop the src. */
985 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
986 emit_pop_insn (insn, regstack, src, EMIT_AFTER);
987 else
989 regstack->reg[i] = REGNO (dest);
990 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
991 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
994 control_flow_insn_deleted |= control_flow_insn_p (insn);
995 delete_insn (insn);
996 return control_flow_insn_deleted;
999 /* The source reg does not die. */
1001 /* If this appears to be a no-op move, delete it, or else it
1002 will confuse the machine description output patterns. But if
1003 it is REG_UNUSED, we must pop the reg now, as per-insn processing
1004 for REG_UNUSED will not work for deleted insns. */
1006 if (REGNO (src) == REGNO (dest))
1008 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1009 emit_pop_insn (insn, regstack, dest, EMIT_AFTER);
1011 control_flow_insn_deleted |= control_flow_insn_p (insn);
1012 delete_insn (insn);
1013 return control_flow_insn_deleted;
1016 /* The destination ought to be dead. */
1017 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1019 replace_reg (psrc, get_hard_regnum (regstack, src));
1021 regstack->reg[++regstack->top] = REGNO (dest);
1022 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1023 replace_reg (pdest, FIRST_STACK_REG);
1025 else if (STACK_REG_P (src))
1027 /* Save from a stack reg to MEM, or possibly integer reg. Since
1028 only top of stack may be saved, emit an exchange first if
1029 needs be. */
1031 emit_swap_insn (insn, regstack, src);
1033 note = find_regno_note (insn, REG_DEAD, REGNO (src));
1034 if (note)
1036 replace_reg (&XEXP (note, 0), FIRST_STACK_REG);
1037 regstack->top--;
1038 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1040 else if ((GET_MODE (src) == XFmode)
1041 && regstack->top < REG_STACK_SIZE - 1)
1043 /* A 387 cannot write an XFmode value to a MEM without
1044 clobbering the source reg. The output code can handle
1045 this by reading back the value from the MEM.
1046 But it is more efficient to use a temp register if one is
1047 available. Push the source value here if the register
1048 stack is not full, and then write the value to memory via
1049 a pop. */
1050 rtx push_rtx;
1051 rtx top_stack_reg = FP_MODE_REG (FIRST_STACK_REG, GET_MODE (src));
1053 push_rtx = gen_movxf (top_stack_reg, top_stack_reg);
1054 emit_insn_before (push_rtx, insn);
1055 add_reg_note (insn, REG_DEAD, top_stack_reg);
1058 replace_reg (psrc, FIRST_STACK_REG);
1060 else
1062 rtx pat = PATTERN (insn);
1064 gcc_assert (STACK_REG_P (dest));
1066 /* Load from MEM, or possibly integer REG or constant, into the
1067 stack regs. The actual target is always the top of the
1068 stack. The stack mapping is changed to reflect that DEST is
1069 now at top of stack. */
1071 /* The destination ought to be dead. However, there is a
1072 special case with i387 UNSPEC_TAN, where destination is live
1073 (an argument to fptan) but inherent load of 1.0 is modelled
1074 as a load from a constant. */
1075 if (GET_CODE (pat) == PARALLEL
1076 && XVECLEN (pat, 0) == 2
1077 && GET_CODE (XVECEXP (pat, 0, 1)) == SET
1078 && GET_CODE (SET_SRC (XVECEXP (pat, 0, 1))) == UNSPEC
1079 && XINT (SET_SRC (XVECEXP (pat, 0, 1)), 1) == UNSPEC_TAN)
1080 emit_swap_insn (insn, regstack, dest);
1081 else
1082 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1084 gcc_assert (regstack->top < REG_STACK_SIZE);
1086 regstack->reg[++regstack->top] = REGNO (dest);
1087 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1088 replace_reg (pdest, FIRST_STACK_REG);
1091 return control_flow_insn_deleted;
1094 /* A helper function which replaces INSN with a pattern that loads up
1095 a NaN into DEST, then invokes move_for_stack_reg. */
1097 static bool
1098 move_nan_for_stack_reg (rtx insn, stack regstack, rtx dest)
1100 rtx pat;
1102 dest = FP_MODE_REG (REGNO (dest), SFmode);
1103 pat = gen_rtx_SET (VOIDmode, dest, not_a_num);
1104 PATTERN (insn) = pat;
1105 INSN_CODE (insn) = -1;
1107 return move_for_stack_reg (insn, regstack, pat);
1110 /* Swap the condition on a branch, if there is one. Return true if we
1111 found a condition to swap. False if the condition was not used as
1112 such. */
1114 static int
1115 swap_rtx_condition_1 (rtx pat)
1117 const char *fmt;
1118 int i, r = 0;
1120 if (COMPARISON_P (pat))
1122 PUT_CODE (pat, swap_condition (GET_CODE (pat)));
1123 r = 1;
1125 else
1127 fmt = GET_RTX_FORMAT (GET_CODE (pat));
1128 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
1130 if (fmt[i] == 'E')
1132 int j;
1134 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
1135 r |= swap_rtx_condition_1 (XVECEXP (pat, i, j));
1137 else if (fmt[i] == 'e')
1138 r |= swap_rtx_condition_1 (XEXP (pat, i));
1142 return r;
1145 static int
1146 swap_rtx_condition (rtx insn)
1148 rtx pat = PATTERN (insn);
1150 /* We're looking for a single set to cc0 or an HImode temporary. */
1152 if (GET_CODE (pat) == SET
1153 && REG_P (SET_DEST (pat))
1154 && REGNO (SET_DEST (pat)) == FLAGS_REG)
1156 insn = next_flags_user (insn);
1157 if (insn == NULL_RTX)
1158 return 0;
1159 pat = PATTERN (insn);
1162 /* See if this is, or ends in, a fnstsw. If so, we're not doing anything
1163 with the cc value right now. We may be able to search for one
1164 though. */
1166 if (GET_CODE (pat) == SET
1167 && GET_CODE (SET_SRC (pat)) == UNSPEC
1168 && XINT (SET_SRC (pat), 1) == UNSPEC_FNSTSW)
1170 rtx dest = SET_DEST (pat);
1172 /* Search forward looking for the first use of this value.
1173 Stop at block boundaries. */
1174 while (insn != BB_END (current_block))
1176 insn = NEXT_INSN (insn);
1177 if (INSN_P (insn) && reg_mentioned_p (dest, insn))
1178 break;
1179 if (CALL_P (insn))
1180 return 0;
1183 /* We haven't found it. */
1184 if (insn == BB_END (current_block))
1185 return 0;
1187 /* So we've found the insn using this value. If it is anything
1188 other than sahf or the value does not die (meaning we'd have
1189 to search further), then we must give up. */
1190 pat = PATTERN (insn);
1191 if (GET_CODE (pat) != SET
1192 || GET_CODE (SET_SRC (pat)) != UNSPEC
1193 || XINT (SET_SRC (pat), 1) != UNSPEC_SAHF
1194 || ! dead_or_set_p (insn, dest))
1195 return 0;
1197 /* Now we are prepared to handle this as a normal cc0 setter. */
1198 insn = next_flags_user (insn);
1199 if (insn == NULL_RTX)
1200 return 0;
1201 pat = PATTERN (insn);
1204 if (swap_rtx_condition_1 (pat))
1206 int fail = 0;
1207 INSN_CODE (insn) = -1;
1208 if (recog_memoized (insn) == -1)
1209 fail = 1;
1210 /* In case the flags don't die here, recurse to try fix
1211 following user too. */
1212 else if (! dead_or_set_p (insn, ix86_flags_rtx))
1214 insn = next_flags_user (insn);
1215 if (!insn || !swap_rtx_condition (insn))
1216 fail = 1;
1218 if (fail)
1220 swap_rtx_condition_1 (pat);
1221 return 0;
1223 return 1;
1225 return 0;
1228 /* Handle a comparison. Special care needs to be taken to avoid
1229 causing comparisons that a 387 cannot do correctly, such as EQ.
1231 Also, a pop insn may need to be emitted. The 387 does have an
1232 `fcompp' insn that can pop two regs, but it is sometimes too expensive
1233 to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
1234 set up. */
1236 static void
1237 compare_for_stack_reg (rtx insn, stack regstack, rtx pat_src)
1239 rtx *src1, *src2;
1240 rtx src1_note, src2_note;
1242 src1 = get_true_reg (&XEXP (pat_src, 0));
1243 src2 = get_true_reg (&XEXP (pat_src, 1));
1245 /* ??? If fxch turns out to be cheaper than fstp, give priority to
1246 registers that die in this insn - move those to stack top first. */
1247 if ((! STACK_REG_P (*src1)
1248 || (STACK_REG_P (*src2)
1249 && get_hard_regnum (regstack, *src2) == FIRST_STACK_REG))
1250 && swap_rtx_condition (insn))
1252 rtx temp;
1253 temp = XEXP (pat_src, 0);
1254 XEXP (pat_src, 0) = XEXP (pat_src, 1);
1255 XEXP (pat_src, 1) = temp;
1257 src1 = get_true_reg (&XEXP (pat_src, 0));
1258 src2 = get_true_reg (&XEXP (pat_src, 1));
1260 INSN_CODE (insn) = -1;
1263 /* We will fix any death note later. */
1265 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1267 if (STACK_REG_P (*src2))
1268 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1269 else
1270 src2_note = NULL_RTX;
1272 emit_swap_insn (insn, regstack, *src1);
1274 replace_reg (src1, FIRST_STACK_REG);
1276 if (STACK_REG_P (*src2))
1277 replace_reg (src2, get_hard_regnum (regstack, *src2));
1279 if (src1_note)
1281 pop_stack (regstack, REGNO (XEXP (src1_note, 0)));
1282 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1285 /* If the second operand dies, handle that. But if the operands are
1286 the same stack register, don't bother, because only one death is
1287 needed, and it was just handled. */
1289 if (src2_note
1290 && ! (STACK_REG_P (*src1) && STACK_REG_P (*src2)
1291 && REGNO (*src1) == REGNO (*src2)))
1293 /* As a special case, two regs may die in this insn if src2 is
1294 next to top of stack and the top of stack also dies. Since
1295 we have already popped src1, "next to top of stack" is really
1296 at top (FIRST_STACK_REG) now. */
1298 if (get_hard_regnum (regstack, XEXP (src2_note, 0)) == FIRST_STACK_REG
1299 && src1_note)
1301 pop_stack (regstack, REGNO (XEXP (src2_note, 0)));
1302 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1304 else
1306 /* The 386 can only represent death of the first operand in
1307 the case handled above. In all other cases, emit a separate
1308 pop and remove the death note from here. */
1310 /* link_cc0_insns (insn); */
1312 remove_regno_note (insn, REG_DEAD, REGNO (XEXP (src2_note, 0)));
1314 emit_pop_insn (insn, regstack, XEXP (src2_note, 0),
1315 EMIT_AFTER);
1320 /* Substitute new registers in LOC, which is part of a debug insn.
1321 REGSTACK is the current register layout. */
1323 static int
1324 subst_stack_regs_in_debug_insn (rtx *loc, void *data)
1326 rtx *tloc = get_true_reg (loc);
1327 stack regstack = (stack)data;
1328 int hard_regno;
1330 if (!STACK_REG_P (*tloc))
1331 return 0;
1333 if (tloc != loc)
1334 return 0;
1336 hard_regno = get_hard_regnum (regstack, *loc);
1338 /* If we can't find an active register, reset this debug insn. */
1339 if (hard_regno == -1)
1340 return 1;
1342 gcc_assert (hard_regno >= FIRST_STACK_REG);
1344 replace_reg (loc, hard_regno);
1346 return -1;
1349 /* Substitute hardware stack regs in debug insn INSN, using stack
1350 layout REGSTACK. If we can't find a hardware stack reg for any of
1351 the REGs in it, reset the debug insn. */
1353 static void
1354 subst_all_stack_regs_in_debug_insn (rtx insn, struct stack_def *regstack)
1356 int ret = for_each_rtx (&INSN_VAR_LOCATION_LOC (insn),
1357 subst_stack_regs_in_debug_insn,
1358 regstack);
1360 if (ret == 1)
1361 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
1362 else
1363 gcc_checking_assert (ret == 0);
1366 /* Substitute new registers in PAT, which is part of INSN. REGSTACK
1367 is the current register layout. Return whether a control flow insn
1368 was deleted in the process. */
1370 static bool
1371 subst_stack_regs_pat (rtx insn, stack regstack, rtx pat)
1373 rtx *dest, *src;
1374 bool control_flow_insn_deleted = false;
1376 switch (GET_CODE (pat))
1378 case USE:
1379 /* Deaths in USE insns can happen in non optimizing compilation.
1380 Handle them by popping the dying register. */
1381 src = get_true_reg (&XEXP (pat, 0));
1382 if (STACK_REG_P (*src)
1383 && find_regno_note (insn, REG_DEAD, REGNO (*src)))
1385 /* USEs are ignored for liveness information so USEs of dead
1386 register might happen. */
1387 if (TEST_HARD_REG_BIT (regstack->reg_set, REGNO (*src)))
1388 emit_pop_insn (insn, regstack, *src, EMIT_AFTER);
1389 return control_flow_insn_deleted;
1391 /* Uninitialized USE might happen for functions returning uninitialized
1392 value. We will properly initialize the USE on the edge to EXIT_BLOCK,
1393 so it is safe to ignore the use here. This is consistent with behavior
1394 of dataflow analyzer that ignores USE too. (This also imply that
1395 forcibly initializing the register to NaN here would lead to ICE later,
1396 since the REG_DEAD notes are not issued.) */
1397 break;
1399 case VAR_LOCATION:
1400 gcc_unreachable ();
1402 case CLOBBER:
1404 rtx note;
1406 dest = get_true_reg (&XEXP (pat, 0));
1407 if (STACK_REG_P (*dest))
1409 note = find_reg_note (insn, REG_DEAD, *dest);
1411 if (pat != PATTERN (insn))
1413 /* The fix_truncdi_1 pattern wants to be able to
1414 allocate its own scratch register. It does this by
1415 clobbering an fp reg so that it is assured of an
1416 empty reg-stack register. If the register is live,
1417 kill it now. Remove the DEAD/UNUSED note so we
1418 don't try to kill it later too.
1420 In reality the UNUSED note can be absent in some
1421 complicated cases when the register is reused for
1422 partially set variable. */
1424 if (note)
1425 emit_pop_insn (insn, regstack, *dest, EMIT_BEFORE);
1426 else
1427 note = find_reg_note (insn, REG_UNUSED, *dest);
1428 if (note)
1429 remove_note (insn, note);
1430 replace_reg (dest, FIRST_STACK_REG + 1);
1432 else
1434 /* A top-level clobber with no REG_DEAD, and no hard-regnum
1435 indicates an uninitialized value. Because reload removed
1436 all other clobbers, this must be due to a function
1437 returning without a value. Load up a NaN. */
1439 if (!note)
1441 rtx t = *dest;
1442 if (COMPLEX_MODE_P (GET_MODE (t)))
1444 rtx u = FP_MODE_REG (REGNO (t) + 1, SFmode);
1445 if (get_hard_regnum (regstack, u) == -1)
1447 rtx pat2 = gen_rtx_CLOBBER (VOIDmode, u);
1448 rtx insn2 = emit_insn_before (pat2, insn);
1449 control_flow_insn_deleted
1450 |= move_nan_for_stack_reg (insn2, regstack, u);
1453 if (get_hard_regnum (regstack, t) == -1)
1454 control_flow_insn_deleted
1455 |= move_nan_for_stack_reg (insn, regstack, t);
1459 break;
1462 case SET:
1464 rtx *src1 = (rtx *) 0, *src2;
1465 rtx src1_note, src2_note;
1466 rtx pat_src;
1468 dest = get_true_reg (&SET_DEST (pat));
1469 src = get_true_reg (&SET_SRC (pat));
1470 pat_src = SET_SRC (pat);
1472 /* See if this is a `movM' pattern, and handle elsewhere if so. */
1473 if (STACK_REG_P (*src)
1474 || (STACK_REG_P (*dest)
1475 && (REG_P (*src) || MEM_P (*src)
1476 || GET_CODE (*src) == CONST_DOUBLE)))
1478 control_flow_insn_deleted |= move_for_stack_reg (insn, regstack, pat);
1479 break;
1482 switch (GET_CODE (pat_src))
1484 case COMPARE:
1485 compare_for_stack_reg (insn, regstack, pat_src);
1486 break;
1488 case CALL:
1490 int count;
1491 for (count = hard_regno_nregs[REGNO (*dest)][GET_MODE (*dest)];
1492 --count >= 0;)
1494 regstack->reg[++regstack->top] = REGNO (*dest) + count;
1495 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest) + count);
1498 replace_reg (dest, FIRST_STACK_REG);
1499 break;
1501 case REG:
1502 /* This is a `tstM2' case. */
1503 gcc_assert (*dest == cc0_rtx);
1504 src1 = src;
1506 /* Fall through. */
1508 case FLOAT_TRUNCATE:
1509 case SQRT:
1510 case ABS:
1511 case NEG:
1512 /* These insns only operate on the top of the stack. DEST might
1513 be cc0_rtx if we're processing a tstM pattern. Also, it's
1514 possible that the tstM case results in a REG_DEAD note on the
1515 source. */
1517 if (src1 == 0)
1518 src1 = get_true_reg (&XEXP (pat_src, 0));
1520 emit_swap_insn (insn, regstack, *src1);
1522 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1524 if (STACK_REG_P (*dest))
1525 replace_reg (dest, FIRST_STACK_REG);
1527 if (src1_note)
1529 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1530 regstack->top--;
1531 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1534 replace_reg (src1, FIRST_STACK_REG);
1535 break;
1537 case MINUS:
1538 case DIV:
1539 /* On i386, reversed forms of subM3 and divM3 exist for
1540 MODE_FLOAT, so the same code that works for addM3 and mulM3
1541 can be used. */
1542 case MULT:
1543 case PLUS:
1544 /* These insns can accept the top of stack as a destination
1545 from a stack reg or mem, or can use the top of stack as a
1546 source and some other stack register (possibly top of stack)
1547 as a destination. */
1549 src1 = get_true_reg (&XEXP (pat_src, 0));
1550 src2 = get_true_reg (&XEXP (pat_src, 1));
1552 /* We will fix any death note later. */
1554 if (STACK_REG_P (*src1))
1555 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1556 else
1557 src1_note = NULL_RTX;
1558 if (STACK_REG_P (*src2))
1559 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1560 else
1561 src2_note = NULL_RTX;
1563 /* If either operand is not a stack register, then the dest
1564 must be top of stack. */
1566 if (! STACK_REG_P (*src1) || ! STACK_REG_P (*src2))
1567 emit_swap_insn (insn, regstack, *dest);
1568 else
1570 /* Both operands are REG. If neither operand is already
1571 at the top of stack, choose to make the one that is the
1572 dest the new top of stack. */
1574 int src1_hard_regnum, src2_hard_regnum;
1576 src1_hard_regnum = get_hard_regnum (regstack, *src1);
1577 src2_hard_regnum = get_hard_regnum (regstack, *src2);
1579 /* If the source is not live, this is yet another case of
1580 uninitialized variables. Load up a NaN instead. */
1581 if (src1_hard_regnum == -1)
1583 rtx pat2 = gen_rtx_CLOBBER (VOIDmode, *src1);
1584 rtx insn2 = emit_insn_before (pat2, insn);
1585 control_flow_insn_deleted
1586 |= move_nan_for_stack_reg (insn2, regstack, *src1);
1588 if (src2_hard_regnum == -1)
1590 rtx pat2 = gen_rtx_CLOBBER (VOIDmode, *src2);
1591 rtx insn2 = emit_insn_before (pat2, insn);
1592 control_flow_insn_deleted
1593 |= move_nan_for_stack_reg (insn2, regstack, *src2);
1596 if (src1_hard_regnum != FIRST_STACK_REG
1597 && src2_hard_regnum != FIRST_STACK_REG)
1598 emit_swap_insn (insn, regstack, *dest);
1601 if (STACK_REG_P (*src1))
1602 replace_reg (src1, get_hard_regnum (regstack, *src1));
1603 if (STACK_REG_P (*src2))
1604 replace_reg (src2, get_hard_regnum (regstack, *src2));
1606 if (src1_note)
1608 rtx src1_reg = XEXP (src1_note, 0);
1610 /* If the register that dies is at the top of stack, then
1611 the destination is somewhere else - merely substitute it.
1612 But if the reg that dies is not at top of stack, then
1613 move the top of stack to the dead reg, as though we had
1614 done the insn and then a store-with-pop. */
1616 if (REGNO (src1_reg) == regstack->reg[regstack->top])
1618 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1619 replace_reg (dest, get_hard_regnum (regstack, *dest));
1621 else
1623 int regno = get_hard_regnum (regstack, src1_reg);
1625 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1626 replace_reg (dest, regno);
1628 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1629 = regstack->reg[regstack->top];
1632 CLEAR_HARD_REG_BIT (regstack->reg_set,
1633 REGNO (XEXP (src1_note, 0)));
1634 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1635 regstack->top--;
1637 else if (src2_note)
1639 rtx src2_reg = XEXP (src2_note, 0);
1640 if (REGNO (src2_reg) == regstack->reg[regstack->top])
1642 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1643 replace_reg (dest, get_hard_regnum (regstack, *dest));
1645 else
1647 int regno = get_hard_regnum (regstack, src2_reg);
1649 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1650 replace_reg (dest, regno);
1652 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1653 = regstack->reg[regstack->top];
1656 CLEAR_HARD_REG_BIT (regstack->reg_set,
1657 REGNO (XEXP (src2_note, 0)));
1658 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG);
1659 regstack->top--;
1661 else
1663 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1664 replace_reg (dest, get_hard_regnum (regstack, *dest));
1667 /* Keep operand 1 matching with destination. */
1668 if (COMMUTATIVE_ARITH_P (pat_src)
1669 && REG_P (*src1) && REG_P (*src2)
1670 && REGNO (*src1) != REGNO (*dest))
1672 int tmp = REGNO (*src1);
1673 replace_reg (src1, REGNO (*src2));
1674 replace_reg (src2, tmp);
1676 break;
1678 case UNSPEC:
1679 switch (XINT (pat_src, 1))
1681 case UNSPEC_STA:
1682 case UNSPEC_FIST:
1684 case UNSPEC_FIST_FLOOR:
1685 case UNSPEC_FIST_CEIL:
1687 /* These insns only operate on the top of the stack. */
1689 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1690 emit_swap_insn (insn, regstack, *src1);
1692 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1694 if (STACK_REG_P (*dest))
1695 replace_reg (dest, FIRST_STACK_REG);
1697 if (src1_note)
1699 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1700 regstack->top--;
1701 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1704 replace_reg (src1, FIRST_STACK_REG);
1705 break;
1707 case UNSPEC_FXAM:
1709 /* This insn only operate on the top of the stack. */
1711 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1712 emit_swap_insn (insn, regstack, *src1);
1714 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1716 replace_reg (src1, FIRST_STACK_REG);
1718 if (src1_note)
1720 remove_regno_note (insn, REG_DEAD,
1721 REGNO (XEXP (src1_note, 0)));
1722 emit_pop_insn (insn, regstack, XEXP (src1_note, 0),
1723 EMIT_AFTER);
1726 break;
1728 case UNSPEC_SIN:
1729 case UNSPEC_COS:
1730 case UNSPEC_FRNDINT:
1731 case UNSPEC_F2XM1:
1733 case UNSPEC_FRNDINT_FLOOR:
1734 case UNSPEC_FRNDINT_CEIL:
1735 case UNSPEC_FRNDINT_TRUNC:
1736 case UNSPEC_FRNDINT_MASK_PM:
1738 /* Above insns operate on the top of the stack. */
1740 case UNSPEC_SINCOS_COS:
1741 case UNSPEC_XTRACT_FRACT:
1743 /* Above insns operate on the top two stack slots,
1744 first part of one input, double output insn. */
1746 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1748 emit_swap_insn (insn, regstack, *src1);
1750 /* Input should never die, it is replaced with output. */
1751 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1752 gcc_assert (!src1_note);
1754 if (STACK_REG_P (*dest))
1755 replace_reg (dest, FIRST_STACK_REG);
1757 replace_reg (src1, FIRST_STACK_REG);
1758 break;
1760 case UNSPEC_SINCOS_SIN:
1761 case UNSPEC_XTRACT_EXP:
1763 /* These insns operate on the top two stack slots,
1764 second part of one input, double output insn. */
1766 regstack->top++;
1767 /* FALLTHRU */
1769 case UNSPEC_TAN:
1771 /* For UNSPEC_TAN, regstack->top is already increased
1772 by inherent load of constant 1.0. */
1774 /* Output value is generated in the second stack slot.
1775 Move current value from second slot to the top. */
1776 regstack->reg[regstack->top]
1777 = regstack->reg[regstack->top - 1];
1779 gcc_assert (STACK_REG_P (*dest));
1781 regstack->reg[regstack->top - 1] = REGNO (*dest);
1782 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1783 replace_reg (dest, FIRST_STACK_REG + 1);
1785 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1787 replace_reg (src1, FIRST_STACK_REG);
1788 break;
1790 case UNSPEC_FPATAN:
1791 case UNSPEC_FYL2X:
1792 case UNSPEC_FYL2XP1:
1793 /* These insns operate on the top two stack slots. */
1795 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1796 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1798 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1799 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1801 swap_to_top (insn, regstack, *src1, *src2);
1803 replace_reg (src1, FIRST_STACK_REG);
1804 replace_reg (src2, FIRST_STACK_REG + 1);
1806 if (src1_note)
1807 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1808 if (src2_note)
1809 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1811 /* Pop both input operands from the stack. */
1812 CLEAR_HARD_REG_BIT (regstack->reg_set,
1813 regstack->reg[regstack->top]);
1814 CLEAR_HARD_REG_BIT (regstack->reg_set,
1815 regstack->reg[regstack->top - 1]);
1816 regstack->top -= 2;
1818 /* Push the result back onto the stack. */
1819 regstack->reg[++regstack->top] = REGNO (*dest);
1820 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1821 replace_reg (dest, FIRST_STACK_REG);
1822 break;
1824 case UNSPEC_FSCALE_FRACT:
1825 case UNSPEC_FPREM_F:
1826 case UNSPEC_FPREM1_F:
1827 /* These insns operate on the top two stack slots,
1828 first part of double input, double output insn. */
1830 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1831 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1833 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1834 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1836 /* Inputs should never die, they are
1837 replaced with outputs. */
1838 gcc_assert (!src1_note);
1839 gcc_assert (!src2_note);
1841 swap_to_top (insn, regstack, *src1, *src2);
1843 /* Push the result back onto stack. Empty stack slot
1844 will be filled in second part of insn. */
1845 if (STACK_REG_P (*dest))
1847 regstack->reg[regstack->top] = REGNO (*dest);
1848 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1849 replace_reg (dest, FIRST_STACK_REG);
1852 replace_reg (src1, FIRST_STACK_REG);
1853 replace_reg (src2, FIRST_STACK_REG + 1);
1854 break;
1856 case UNSPEC_FSCALE_EXP:
1857 case UNSPEC_FPREM_U:
1858 case UNSPEC_FPREM1_U:
1859 /* These insns operate on the top two stack slots,
1860 second part of double input, double output insn. */
1862 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1863 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1865 /* Push the result back onto stack. Fill empty slot from
1866 first part of insn and fix top of stack pointer. */
1867 if (STACK_REG_P (*dest))
1869 regstack->reg[regstack->top - 1] = REGNO (*dest);
1870 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1871 replace_reg (dest, FIRST_STACK_REG + 1);
1874 replace_reg (src1, FIRST_STACK_REG);
1875 replace_reg (src2, FIRST_STACK_REG + 1);
1876 break;
1878 case UNSPEC_C2_FLAG:
1879 /* This insn operates on the top two stack slots,
1880 third part of C2 setting double input insn. */
1882 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1883 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1885 replace_reg (src1, FIRST_STACK_REG);
1886 replace_reg (src2, FIRST_STACK_REG + 1);
1887 break;
1889 case UNSPEC_SAHF:
1890 /* (unspec [(unspec [(compare)] UNSPEC_FNSTSW)] UNSPEC_SAHF)
1891 The combination matches the PPRO fcomi instruction. */
1893 pat_src = XVECEXP (pat_src, 0, 0);
1894 gcc_assert (GET_CODE (pat_src) == UNSPEC);
1895 gcc_assert (XINT (pat_src, 1) == UNSPEC_FNSTSW);
1896 /* Fall through. */
1898 case UNSPEC_FNSTSW:
1899 /* Combined fcomp+fnstsw generated for doing well with
1900 CSE. When optimizing this would have been broken
1901 up before now. */
1903 pat_src = XVECEXP (pat_src, 0, 0);
1904 gcc_assert (GET_CODE (pat_src) == COMPARE);
1906 compare_for_stack_reg (insn, regstack, pat_src);
1907 break;
1909 default:
1910 gcc_unreachable ();
1912 break;
1914 case IF_THEN_ELSE:
1915 /* This insn requires the top of stack to be the destination. */
1917 src1 = get_true_reg (&XEXP (pat_src, 1));
1918 src2 = get_true_reg (&XEXP (pat_src, 2));
1920 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1921 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1923 /* If the comparison operator is an FP comparison operator,
1924 it is handled correctly by compare_for_stack_reg () who
1925 will move the destination to the top of stack. But if the
1926 comparison operator is not an FP comparison operator, we
1927 have to handle it here. */
1928 if (get_hard_regnum (regstack, *dest) >= FIRST_STACK_REG
1929 && REGNO (*dest) != regstack->reg[regstack->top])
1931 /* In case one of operands is the top of stack and the operands
1932 dies, it is safe to make it the destination operand by
1933 reversing the direction of cmove and avoid fxch. */
1934 if ((REGNO (*src1) == regstack->reg[regstack->top]
1935 && src1_note)
1936 || (REGNO (*src2) == regstack->reg[regstack->top]
1937 && src2_note))
1939 int idx1 = (get_hard_regnum (regstack, *src1)
1940 - FIRST_STACK_REG);
1941 int idx2 = (get_hard_regnum (regstack, *src2)
1942 - FIRST_STACK_REG);
1944 /* Make reg-stack believe that the operands are already
1945 swapped on the stack */
1946 regstack->reg[regstack->top - idx1] = REGNO (*src2);
1947 regstack->reg[regstack->top - idx2] = REGNO (*src1);
1949 /* Reverse condition to compensate the operand swap.
1950 i386 do have comparison always reversible. */
1951 PUT_CODE (XEXP (pat_src, 0),
1952 reversed_comparison_code (XEXP (pat_src, 0), insn));
1954 else
1955 emit_swap_insn (insn, regstack, *dest);
1959 rtx src_note [3];
1960 int i;
1962 src_note[0] = 0;
1963 src_note[1] = src1_note;
1964 src_note[2] = src2_note;
1966 if (STACK_REG_P (*src1))
1967 replace_reg (src1, get_hard_regnum (regstack, *src1));
1968 if (STACK_REG_P (*src2))
1969 replace_reg (src2, get_hard_regnum (regstack, *src2));
1971 for (i = 1; i <= 2; i++)
1972 if (src_note [i])
1974 int regno = REGNO (XEXP (src_note[i], 0));
1976 /* If the register that dies is not at the top of
1977 stack, then move the top of stack to the dead reg.
1978 Top of stack should never die, as it is the
1979 destination. */
1980 gcc_assert (regno != regstack->reg[regstack->top]);
1981 remove_regno_note (insn, REG_DEAD, regno);
1982 emit_pop_insn (insn, regstack, XEXP (src_note[i], 0),
1983 EMIT_AFTER);
1987 /* Make dest the top of stack. Add dest to regstack if
1988 not present. */
1989 if (get_hard_regnum (regstack, *dest) < FIRST_STACK_REG)
1990 regstack->reg[++regstack->top] = REGNO (*dest);
1991 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1992 replace_reg (dest, FIRST_STACK_REG);
1993 break;
1995 default:
1996 gcc_unreachable ();
1998 break;
2001 default:
2002 break;
2005 return control_flow_insn_deleted;
2008 /* Substitute hard regnums for any stack regs in INSN, which has
2009 N_INPUTS inputs and N_OUTPUTS outputs. REGSTACK is the stack info
2010 before the insn, and is updated with changes made here.
2012 There are several requirements and assumptions about the use of
2013 stack-like regs in asm statements. These rules are enforced by
2014 record_asm_stack_regs; see comments there for details. Any
2015 asm_operands left in the RTL at this point may be assume to meet the
2016 requirements, since record_asm_stack_regs removes any problem asm. */
2018 static void
2019 subst_asm_stack_regs (rtx insn, stack regstack)
2021 rtx body = PATTERN (insn);
2022 int alt;
2024 rtx *note_reg; /* Array of note contents */
2025 rtx **note_loc; /* Address of REG field of each note */
2026 enum reg_note *note_kind; /* The type of each note */
2028 rtx *clobber_reg = 0;
2029 rtx **clobber_loc = 0;
2031 struct stack_def temp_stack;
2032 int n_notes;
2033 int n_clobbers;
2034 rtx note;
2035 int i;
2036 int n_inputs, n_outputs;
2038 if (! check_asm_stack_operands (insn))
2039 return;
2041 /* Find out what the constraints required. If no constraint
2042 alternative matches, that is a compiler bug: we should have caught
2043 such an insn in check_asm_stack_operands. */
2044 extract_insn (insn);
2045 constrain_operands (1);
2046 alt = which_alternative;
2048 preprocess_constraints ();
2050 get_asm_operands_in_out (body, &n_outputs, &n_inputs);
2052 gcc_assert (alt >= 0);
2054 /* Strip SUBREGs here to make the following code simpler. */
2055 for (i = 0; i < recog_data.n_operands; i++)
2056 if (GET_CODE (recog_data.operand[i]) == SUBREG
2057 && REG_P (SUBREG_REG (recog_data.operand[i])))
2059 recog_data.operand_loc[i] = & SUBREG_REG (recog_data.operand[i]);
2060 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
2063 /* Set up NOTE_REG, NOTE_LOC and NOTE_KIND. */
2065 for (i = 0, note = REG_NOTES (insn); note; note = XEXP (note, 1))
2066 i++;
2068 note_reg = XALLOCAVEC (rtx, i);
2069 note_loc = XALLOCAVEC (rtx *, i);
2070 note_kind = XALLOCAVEC (enum reg_note, i);
2072 n_notes = 0;
2073 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2075 rtx reg = XEXP (note, 0);
2076 rtx *loc = & XEXP (note, 0);
2078 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2080 loc = & SUBREG_REG (reg);
2081 reg = SUBREG_REG (reg);
2084 if (STACK_REG_P (reg)
2085 && (REG_NOTE_KIND (note) == REG_DEAD
2086 || REG_NOTE_KIND (note) == REG_UNUSED))
2088 note_reg[n_notes] = reg;
2089 note_loc[n_notes] = loc;
2090 note_kind[n_notes] = REG_NOTE_KIND (note);
2091 n_notes++;
2095 /* Set up CLOBBER_REG and CLOBBER_LOC. */
2097 n_clobbers = 0;
2099 if (GET_CODE (body) == PARALLEL)
2101 clobber_reg = XALLOCAVEC (rtx, XVECLEN (body, 0));
2102 clobber_loc = XALLOCAVEC (rtx *, XVECLEN (body, 0));
2104 for (i = 0; i < XVECLEN (body, 0); i++)
2105 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
2107 rtx clobber = XVECEXP (body, 0, i);
2108 rtx reg = XEXP (clobber, 0);
2109 rtx *loc = & XEXP (clobber, 0);
2111 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2113 loc = & SUBREG_REG (reg);
2114 reg = SUBREG_REG (reg);
2117 if (STACK_REG_P (reg))
2119 clobber_reg[n_clobbers] = reg;
2120 clobber_loc[n_clobbers] = loc;
2121 n_clobbers++;
2126 temp_stack = *regstack;
2128 /* Put the input regs into the desired place in TEMP_STACK. */
2130 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2131 if (STACK_REG_P (recog_data.operand[i])
2132 && reg_class_subset_p (recog_op_alt[i][alt].cl,
2133 FLOAT_REGS)
2134 && recog_op_alt[i][alt].cl != FLOAT_REGS)
2136 /* If an operand needs to be in a particular reg in
2137 FLOAT_REGS, the constraint was either 't' or 'u'. Since
2138 these constraints are for single register classes, and
2139 reload guaranteed that operand[i] is already in that class,
2140 we can just use REGNO (recog_data.operand[i]) to know which
2141 actual reg this operand needs to be in. */
2143 int regno = get_hard_regnum (&temp_stack, recog_data.operand[i]);
2145 gcc_assert (regno >= 0);
2147 if ((unsigned int) regno != REGNO (recog_data.operand[i]))
2149 /* recog_data.operand[i] is not in the right place. Find
2150 it and swap it with whatever is already in I's place.
2151 K is where recog_data.operand[i] is now. J is where it
2152 should be. */
2153 int j, k, temp;
2155 k = temp_stack.top - (regno - FIRST_STACK_REG);
2156 j = (temp_stack.top
2157 - (REGNO (recog_data.operand[i]) - FIRST_STACK_REG));
2159 temp = temp_stack.reg[k];
2160 temp_stack.reg[k] = temp_stack.reg[j];
2161 temp_stack.reg[j] = temp;
2165 /* Emit insns before INSN to make sure the reg-stack is in the right
2166 order. */
2168 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
2170 /* Make the needed input register substitutions. Do death notes and
2171 clobbers too, because these are for inputs, not outputs. */
2173 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2174 if (STACK_REG_P (recog_data.operand[i]))
2176 int regnum = get_hard_regnum (regstack, recog_data.operand[i]);
2178 gcc_assert (regnum >= 0);
2180 replace_reg (recog_data.operand_loc[i], regnum);
2183 for (i = 0; i < n_notes; i++)
2184 if (note_kind[i] == REG_DEAD)
2186 int regnum = get_hard_regnum (regstack, note_reg[i]);
2188 gcc_assert (regnum >= 0);
2190 replace_reg (note_loc[i], regnum);
2193 for (i = 0; i < n_clobbers; i++)
2195 /* It's OK for a CLOBBER to reference a reg that is not live.
2196 Don't try to replace it in that case. */
2197 int regnum = get_hard_regnum (regstack, clobber_reg[i]);
2199 if (regnum >= 0)
2201 /* Sigh - clobbers always have QImode. But replace_reg knows
2202 that these regs can't be MODE_INT and will assert. Just put
2203 the right reg there without calling replace_reg. */
2205 *clobber_loc[i] = FP_MODE_REG (regnum, DFmode);
2209 /* Now remove from REGSTACK any inputs that the asm implicitly popped. */
2211 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2212 if (STACK_REG_P (recog_data.operand[i]))
2214 /* An input reg is implicitly popped if it is tied to an
2215 output, or if there is a CLOBBER for it. */
2216 int j;
2218 for (j = 0; j < n_clobbers; j++)
2219 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
2220 break;
2222 if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
2224 /* recog_data.operand[i] might not be at the top of stack.
2225 But that's OK, because all we need to do is pop the
2226 right number of regs off of the top of the reg-stack.
2227 record_asm_stack_regs guaranteed that all implicitly
2228 popped regs were grouped at the top of the reg-stack. */
2230 CLEAR_HARD_REG_BIT (regstack->reg_set,
2231 regstack->reg[regstack->top]);
2232 regstack->top--;
2236 /* Now add to REGSTACK any outputs that the asm implicitly pushed.
2237 Note that there isn't any need to substitute register numbers.
2238 ??? Explain why this is true. */
2240 for (i = LAST_STACK_REG; i >= FIRST_STACK_REG; i--)
2242 /* See if there is an output for this hard reg. */
2243 int j;
2245 for (j = 0; j < n_outputs; j++)
2246 if (STACK_REG_P (recog_data.operand[j])
2247 && REGNO (recog_data.operand[j]) == (unsigned) i)
2249 regstack->reg[++regstack->top] = i;
2250 SET_HARD_REG_BIT (regstack->reg_set, i);
2251 break;
2255 /* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
2256 input that the asm didn't implicitly pop. If the asm didn't
2257 implicitly pop an input reg, that reg will still be live.
2259 Note that we can't use find_regno_note here: the register numbers
2260 in the death notes have already been substituted. */
2262 for (i = 0; i < n_outputs; i++)
2263 if (STACK_REG_P (recog_data.operand[i]))
2265 int j;
2267 for (j = 0; j < n_notes; j++)
2268 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2269 && note_kind[j] == REG_UNUSED)
2271 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2272 EMIT_AFTER);
2273 break;
2277 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2278 if (STACK_REG_P (recog_data.operand[i]))
2280 int j;
2282 for (j = 0; j < n_notes; j++)
2283 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2284 && note_kind[j] == REG_DEAD
2285 && TEST_HARD_REG_BIT (regstack->reg_set,
2286 REGNO (recog_data.operand[i])))
2288 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2289 EMIT_AFTER);
2290 break;
2295 /* Substitute stack hard reg numbers for stack virtual registers in
2296 INSN. Non-stack register numbers are not changed. REGSTACK is the
2297 current stack content. Insns may be emitted as needed to arrange the
2298 stack for the 387 based on the contents of the insn. Return whether
2299 a control flow insn was deleted in the process. */
2301 static bool
2302 subst_stack_regs (rtx insn, stack regstack)
2304 rtx *note_link, note;
2305 bool control_flow_insn_deleted = false;
2306 int i;
2308 if (CALL_P (insn))
2310 int top = regstack->top;
2312 /* If there are any floating point parameters to be passed in
2313 registers for this call, make sure they are in the right
2314 order. */
2316 if (top >= 0)
2318 straighten_stack (insn, regstack);
2320 /* Now mark the arguments as dead after the call. */
2322 while (regstack->top >= 0)
2324 CLEAR_HARD_REG_BIT (regstack->reg_set, FIRST_STACK_REG + regstack->top);
2325 regstack->top--;
2330 /* Do the actual substitution if any stack regs are mentioned.
2331 Since we only record whether entire insn mentions stack regs, and
2332 subst_stack_regs_pat only works for patterns that contain stack regs,
2333 we must check each pattern in a parallel here. A call_value_pop could
2334 fail otherwise. */
2336 if (stack_regs_mentioned (insn))
2338 int n_operands = asm_noperands (PATTERN (insn));
2339 if (n_operands >= 0)
2341 /* This insn is an `asm' with operands. Decode the operands,
2342 decide how many are inputs, and do register substitution.
2343 Any REG_UNUSED notes will be handled by subst_asm_stack_regs. */
2345 subst_asm_stack_regs (insn, regstack);
2346 return control_flow_insn_deleted;
2349 if (GET_CODE (PATTERN (insn)) == PARALLEL)
2350 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
2352 if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn), 0, i)))
2354 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == CLOBBER)
2355 XVECEXP (PATTERN (insn), 0, i)
2356 = shallow_copy_rtx (XVECEXP (PATTERN (insn), 0, i));
2357 control_flow_insn_deleted
2358 |= subst_stack_regs_pat (insn, regstack,
2359 XVECEXP (PATTERN (insn), 0, i));
2362 else
2363 control_flow_insn_deleted
2364 |= subst_stack_regs_pat (insn, regstack, PATTERN (insn));
2367 /* subst_stack_regs_pat may have deleted a no-op insn. If so, any
2368 REG_UNUSED will already have been dealt with, so just return. */
2370 if (NOTE_P (insn) || INSN_DELETED_P (insn))
2371 return control_flow_insn_deleted;
2373 /* If this a noreturn call, we can't insert pop insns after it.
2374 Instead, reset the stack state to empty. */
2375 if (CALL_P (insn)
2376 && find_reg_note (insn, REG_NORETURN, NULL))
2378 regstack->top = -1;
2379 CLEAR_HARD_REG_SET (regstack->reg_set);
2380 return control_flow_insn_deleted;
2383 /* If there is a REG_UNUSED note on a stack register on this insn,
2384 the indicated reg must be popped. The REG_UNUSED note is removed,
2385 since the form of the newly emitted pop insn references the reg,
2386 making it no longer `unset'. */
2388 note_link = &REG_NOTES (insn);
2389 for (note = *note_link; note; note = XEXP (note, 1))
2390 if (REG_NOTE_KIND (note) == REG_UNUSED && STACK_REG_P (XEXP (note, 0)))
2392 *note_link = XEXP (note, 1);
2393 insn = emit_pop_insn (insn, regstack, XEXP (note, 0), EMIT_AFTER);
2395 else
2396 note_link = &XEXP (note, 1);
2398 return control_flow_insn_deleted;
2401 /* Change the organization of the stack so that it fits a new basic
2402 block. Some registers might have to be popped, but there can never be
2403 a register live in the new block that is not now live.
2405 Insert any needed insns before or after INSN, as indicated by
2406 WHERE. OLD is the original stack layout, and NEW is the desired
2407 form. OLD is updated to reflect the code emitted, i.e., it will be
2408 the same as NEW upon return.
2410 This function will not preserve block_end[]. But that information
2411 is no longer needed once this has executed. */
2413 static void
2414 change_stack (rtx insn, stack old, stack new_stack, enum emit_where where)
2416 int reg;
2417 int update_end = 0;
2418 int i;
2420 /* Stack adjustments for the first insn in a block update the
2421 current_block's stack_in instead of inserting insns directly.
2422 compensate_edges will add the necessary code later. */
2423 if (current_block
2424 && starting_stack_p
2425 && where == EMIT_BEFORE)
2427 BLOCK_INFO (current_block)->stack_in = *new_stack;
2428 starting_stack_p = false;
2429 *old = *new_stack;
2430 return;
2433 /* We will be inserting new insns "backwards". If we are to insert
2434 after INSN, find the next insn, and insert before it. */
2436 if (where == EMIT_AFTER)
2438 if (current_block && BB_END (current_block) == insn)
2439 update_end = 1;
2440 insn = NEXT_INSN (insn);
2443 /* Initialize partially dead variables. */
2444 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
2445 if (TEST_HARD_REG_BIT (new_stack->reg_set, i)
2446 && !TEST_HARD_REG_BIT (old->reg_set, i))
2448 old->reg[++old->top] = i;
2449 SET_HARD_REG_BIT (old->reg_set, i);
2450 emit_insn_before (gen_rtx_SET (VOIDmode,
2451 FP_MODE_REG (i, SFmode), not_a_num), insn);
2454 /* Pop any registers that are not needed in the new block. */
2456 /* If the destination block's stack already has a specified layout
2457 and contains two or more registers, use a more intelligent algorithm
2458 to pop registers that minimizes the number number of fxchs below. */
2459 if (new_stack->top > 0)
2461 bool slots[REG_STACK_SIZE];
2462 int pops[REG_STACK_SIZE];
2463 int next, dest, topsrc;
2465 /* First pass to determine the free slots. */
2466 for (reg = 0; reg <= new_stack->top; reg++)
2467 slots[reg] = TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]);
2469 /* Second pass to allocate preferred slots. */
2470 topsrc = -1;
2471 for (reg = old->top; reg > new_stack->top; reg--)
2472 if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]))
2474 dest = -1;
2475 for (next = 0; next <= new_stack->top; next++)
2476 if (!slots[next] && new_stack->reg[next] == old->reg[reg])
2478 /* If this is a preference for the new top of stack, record
2479 the fact by remembering it's old->reg in topsrc. */
2480 if (next == new_stack->top)
2481 topsrc = reg;
2482 slots[next] = true;
2483 dest = next;
2484 break;
2486 pops[reg] = dest;
2488 else
2489 pops[reg] = reg;
2491 /* Intentionally, avoid placing the top of stack in it's correct
2492 location, if we still need to permute the stack below and we
2493 can usefully place it somewhere else. This is the case if any
2494 slot is still unallocated, in which case we should place the
2495 top of stack there. */
2496 if (topsrc != -1)
2497 for (reg = 0; reg < new_stack->top; reg++)
2498 if (!slots[reg])
2500 pops[topsrc] = reg;
2501 slots[new_stack->top] = false;
2502 slots[reg] = true;
2503 break;
2506 /* Third pass allocates remaining slots and emits pop insns. */
2507 next = new_stack->top;
2508 for (reg = old->top; reg > new_stack->top; reg--)
2510 dest = pops[reg];
2511 if (dest == -1)
2513 /* Find next free slot. */
2514 while (slots[next])
2515 next--;
2516 dest = next--;
2518 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[dest], DFmode),
2519 EMIT_BEFORE);
2522 else
2524 /* The following loop attempts to maximize the number of times we
2525 pop the top of the stack, as this permits the use of the faster
2526 ffreep instruction on platforms that support it. */
2527 int live, next;
2529 live = 0;
2530 for (reg = 0; reg <= old->top; reg++)
2531 if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]))
2532 live++;
2534 next = live;
2535 while (old->top >= live)
2536 if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[old->top]))
2538 while (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[next]))
2539 next--;
2540 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[next], DFmode),
2541 EMIT_BEFORE);
2543 else
2544 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[old->top], DFmode),
2545 EMIT_BEFORE);
2548 if (new_stack->top == -2)
2550 /* If the new block has never been processed, then it can inherit
2551 the old stack order. */
2553 new_stack->top = old->top;
2554 memcpy (new_stack->reg, old->reg, sizeof (new_stack->reg));
2556 else
2558 /* This block has been entered before, and we must match the
2559 previously selected stack order. */
2561 /* By now, the only difference should be the order of the stack,
2562 not their depth or liveliness. */
2564 gcc_assert (hard_reg_set_equal_p (old->reg_set, new_stack->reg_set));
2565 gcc_assert (old->top == new_stack->top);
2567 /* If the stack is not empty (new_stack->top != -1), loop here emitting
2568 swaps until the stack is correct.
2570 The worst case number of swaps emitted is N + 2, where N is the
2571 depth of the stack. In some cases, the reg at the top of
2572 stack may be correct, but swapped anyway in order to fix
2573 other regs. But since we never swap any other reg away from
2574 its correct slot, this algorithm will converge. */
2576 if (new_stack->top != -1)
2579 /* Swap the reg at top of stack into the position it is
2580 supposed to be in, until the correct top of stack appears. */
2582 while (old->reg[old->top] != new_stack->reg[new_stack->top])
2584 for (reg = new_stack->top; reg >= 0; reg--)
2585 if (new_stack->reg[reg] == old->reg[old->top])
2586 break;
2588 gcc_assert (reg != -1);
2590 emit_swap_insn (insn, old,
2591 FP_MODE_REG (old->reg[reg], DFmode));
2594 /* See if any regs remain incorrect. If so, bring an
2595 incorrect reg to the top of stack, and let the while loop
2596 above fix it. */
2598 for (reg = new_stack->top; reg >= 0; reg--)
2599 if (new_stack->reg[reg] != old->reg[reg])
2601 emit_swap_insn (insn, old,
2602 FP_MODE_REG (old->reg[reg], DFmode));
2603 break;
2605 } while (reg >= 0);
2607 /* At this point there must be no differences. */
2609 for (reg = old->top; reg >= 0; reg--)
2610 gcc_assert (old->reg[reg] == new_stack->reg[reg]);
2613 if (update_end)
2614 BB_END (current_block) = PREV_INSN (insn);
2617 /* Print stack configuration. */
2619 static void
2620 print_stack (FILE *file, stack s)
2622 if (! file)
2623 return;
2625 if (s->top == -2)
2626 fprintf (file, "uninitialized\n");
2627 else if (s->top == -1)
2628 fprintf (file, "empty\n");
2629 else
2631 int i;
2632 fputs ("[ ", file);
2633 for (i = 0; i <= s->top; ++i)
2634 fprintf (file, "%d ", s->reg[i]);
2635 fputs ("]\n", file);
2639 /* This function was doing life analysis. We now let the regular live
2640 code do it's job, so we only need to check some extra invariants
2641 that reg-stack expects. Primary among these being that all registers
2642 are initialized before use.
2644 The function returns true when code was emitted to CFG edges and
2645 commit_edge_insertions needs to be called. */
2647 static int
2648 convert_regs_entry (void)
2650 int inserted = 0;
2651 edge e;
2652 edge_iterator ei;
2654 /* Load something into each stack register live at function entry.
2655 Such live registers can be caused by uninitialized variables or
2656 functions not returning values on all paths. In order to keep
2657 the push/pop code happy, and to not scrog the register stack, we
2658 must put something in these registers. Use a QNaN.
2660 Note that we are inserting converted code here. This code is
2661 never seen by the convert_regs pass. */
2663 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2665 basic_block block = e->dest;
2666 block_info bi = BLOCK_INFO (block);
2667 int reg, top = -1;
2669 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2670 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2672 rtx init;
2674 bi->stack_in.reg[++top] = reg;
2676 init = gen_rtx_SET (VOIDmode,
2677 FP_MODE_REG (FIRST_STACK_REG, SFmode),
2678 not_a_num);
2679 insert_insn_on_edge (init, e);
2680 inserted = 1;
2683 bi->stack_in.top = top;
2686 return inserted;
2689 /* Construct the desired stack for function exit. This will either
2690 be `empty', or the function return value at top-of-stack. */
2692 static void
2693 convert_regs_exit (void)
2695 int value_reg_low, value_reg_high;
2696 stack output_stack;
2697 rtx retvalue;
2699 retvalue = stack_result (current_function_decl);
2700 value_reg_low = value_reg_high = -1;
2701 if (retvalue)
2703 value_reg_low = REGNO (retvalue);
2704 value_reg_high = END_HARD_REGNO (retvalue) - 1;
2707 output_stack = &BLOCK_INFO (EXIT_BLOCK_PTR)->stack_in;
2708 if (value_reg_low == -1)
2709 output_stack->top = -1;
2710 else
2712 int reg;
2714 output_stack->top = value_reg_high - value_reg_low;
2715 for (reg = value_reg_low; reg <= value_reg_high; ++reg)
2717 output_stack->reg[value_reg_high - reg] = reg;
2718 SET_HARD_REG_BIT (output_stack->reg_set, reg);
2723 /* Copy the stack info from the end of edge E's source block to the
2724 start of E's destination block. */
2726 static void
2727 propagate_stack (edge e)
2729 stack src_stack = &BLOCK_INFO (e->src)->stack_out;
2730 stack dest_stack = &BLOCK_INFO (e->dest)->stack_in;
2731 int reg;
2733 /* Preserve the order of the original stack, but check whether
2734 any pops are needed. */
2735 dest_stack->top = -1;
2736 for (reg = 0; reg <= src_stack->top; ++reg)
2737 if (TEST_HARD_REG_BIT (dest_stack->reg_set, src_stack->reg[reg]))
2738 dest_stack->reg[++dest_stack->top] = src_stack->reg[reg];
2740 /* Push in any partially dead values. */
2741 for (reg = FIRST_STACK_REG; reg < LAST_STACK_REG + 1; reg++)
2742 if (TEST_HARD_REG_BIT (dest_stack->reg_set, reg)
2743 && !TEST_HARD_REG_BIT (src_stack->reg_set, reg))
2744 dest_stack->reg[++dest_stack->top] = reg;
2748 /* Adjust the stack of edge E's source block on exit to match the stack
2749 of it's target block upon input. The stack layouts of both blocks
2750 should have been defined by now. */
2752 static bool
2753 compensate_edge (edge e)
2755 basic_block source = e->src, target = e->dest;
2756 stack target_stack = &BLOCK_INFO (target)->stack_in;
2757 stack source_stack = &BLOCK_INFO (source)->stack_out;
2758 struct stack_def regstack;
2759 int reg;
2761 if (dump_file)
2762 fprintf (dump_file, "Edge %d->%d: ", source->index, target->index);
2764 gcc_assert (target_stack->top != -2);
2766 /* Check whether stacks are identical. */
2767 if (target_stack->top == source_stack->top)
2769 for (reg = target_stack->top; reg >= 0; --reg)
2770 if (target_stack->reg[reg] != source_stack->reg[reg])
2771 break;
2773 if (reg == -1)
2775 if (dump_file)
2776 fprintf (dump_file, "no changes needed\n");
2777 return false;
2781 if (dump_file)
2783 fprintf (dump_file, "correcting stack to ");
2784 print_stack (dump_file, target_stack);
2787 /* Abnormal calls may appear to have values live in st(0), but the
2788 abnormal return path will not have actually loaded the values. */
2789 if (e->flags & EDGE_ABNORMAL_CALL)
2791 /* Assert that the lifetimes are as we expect -- one value
2792 live at st(0) on the end of the source block, and no
2793 values live at the beginning of the destination block.
2794 For complex return values, we may have st(1) live as well. */
2795 gcc_assert (source_stack->top == 0 || source_stack->top == 1);
2796 gcc_assert (target_stack->top == -1);
2797 return false;
2800 /* Handle non-call EH edges specially. The normal return path have
2801 values in registers. These will be popped en masse by the unwind
2802 library. */
2803 if (e->flags & EDGE_EH)
2805 gcc_assert (target_stack->top == -1);
2806 return false;
2809 /* We don't support abnormal edges. Global takes care to
2810 avoid any live register across them, so we should never
2811 have to insert instructions on such edges. */
2812 gcc_assert (! (e->flags & EDGE_ABNORMAL));
2814 /* Make a copy of source_stack as change_stack is destructive. */
2815 regstack = *source_stack;
2817 /* It is better to output directly to the end of the block
2818 instead of to the edge, because emit_swap can do minimal
2819 insn scheduling. We can do this when there is only one
2820 edge out, and it is not abnormal. */
2821 if (EDGE_COUNT (source->succs) == 1)
2823 current_block = source;
2824 change_stack (BB_END (source), &regstack, target_stack,
2825 (JUMP_P (BB_END (source)) ? EMIT_BEFORE : EMIT_AFTER));
2827 else
2829 rtx seq, after;
2831 current_block = NULL;
2832 start_sequence ();
2834 /* ??? change_stack needs some point to emit insns after. */
2835 after = emit_note (NOTE_INSN_DELETED);
2837 change_stack (after, &regstack, target_stack, EMIT_BEFORE);
2839 seq = get_insns ();
2840 end_sequence ();
2842 insert_insn_on_edge (seq, e);
2843 return true;
2845 return false;
2848 /* Traverse all non-entry edges in the CFG, and emit the necessary
2849 edge compensation code to change the stack from stack_out of the
2850 source block to the stack_in of the destination block. */
2852 static bool
2853 compensate_edges (void)
2855 bool inserted = false;
2856 basic_block bb;
2858 starting_stack_p = false;
2860 FOR_EACH_BB (bb)
2861 if (bb != ENTRY_BLOCK_PTR)
2863 edge e;
2864 edge_iterator ei;
2866 FOR_EACH_EDGE (e, ei, bb->succs)
2867 inserted |= compensate_edge (e);
2869 return inserted;
2872 /* Select the better of two edges E1 and E2 to use to determine the
2873 stack layout for their shared destination basic block. This is
2874 typically the more frequently executed. The edge E1 may be NULL
2875 (in which case E2 is returned), but E2 is always non-NULL. */
2877 static edge
2878 better_edge (edge e1, edge e2)
2880 if (!e1)
2881 return e2;
2883 if (EDGE_FREQUENCY (e1) > EDGE_FREQUENCY (e2))
2884 return e1;
2885 if (EDGE_FREQUENCY (e1) < EDGE_FREQUENCY (e2))
2886 return e2;
2888 if (e1->count > e2->count)
2889 return e1;
2890 if (e1->count < e2->count)
2891 return e2;
2893 /* Prefer critical edges to minimize inserting compensation code on
2894 critical edges. */
2896 if (EDGE_CRITICAL_P (e1) != EDGE_CRITICAL_P (e2))
2897 return EDGE_CRITICAL_P (e1) ? e1 : e2;
2899 /* Avoid non-deterministic behavior. */
2900 return (e1->src->index < e2->src->index) ? e1 : e2;
2903 /* Convert stack register references in one block. Return true if the CFG
2904 has been modified in the process. */
2906 static bool
2907 convert_regs_1 (basic_block block)
2909 struct stack_def regstack;
2910 block_info bi = BLOCK_INFO (block);
2911 int reg;
2912 rtx insn, next;
2913 bool control_flow_insn_deleted = false;
2914 bool cfg_altered = false;
2915 int debug_insns_with_starting_stack = 0;
2917 any_malformed_asm = false;
2919 /* Choose an initial stack layout, if one hasn't already been chosen. */
2920 if (bi->stack_in.top == -2)
2922 edge e, beste = NULL;
2923 edge_iterator ei;
2925 /* Select the best incoming edge (typically the most frequent) to
2926 use as a template for this basic block. */
2927 FOR_EACH_EDGE (e, ei, block->preds)
2928 if (BLOCK_INFO (e->src)->done)
2929 beste = better_edge (beste, e);
2931 if (beste)
2932 propagate_stack (beste);
2933 else
2935 /* No predecessors. Create an arbitrary input stack. */
2936 bi->stack_in.top = -1;
2937 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2938 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2939 bi->stack_in.reg[++bi->stack_in.top] = reg;
2943 if (dump_file)
2945 fprintf (dump_file, "\nBasic block %d\nInput stack: ", block->index);
2946 print_stack (dump_file, &bi->stack_in);
2949 /* Process all insns in this block. Keep track of NEXT so that we
2950 don't process insns emitted while substituting in INSN. */
2951 current_block = block;
2952 next = BB_HEAD (block);
2953 regstack = bi->stack_in;
2954 starting_stack_p = true;
2958 insn = next;
2959 next = NEXT_INSN (insn);
2961 /* Ensure we have not missed a block boundary. */
2962 gcc_assert (next);
2963 if (insn == BB_END (block))
2964 next = NULL;
2966 /* Don't bother processing unless there is a stack reg
2967 mentioned or if it's a CALL_INSN. */
2968 if (DEBUG_INSN_P (insn))
2970 if (starting_stack_p)
2971 debug_insns_with_starting_stack++;
2972 else
2974 subst_all_stack_regs_in_debug_insn (insn, &regstack);
2976 /* Nothing must ever die at a debug insn. If something
2977 is referenced in it that becomes dead, it should have
2978 died before and the reference in the debug insn
2979 should have been removed so as to avoid changing code
2980 generation. */
2981 gcc_assert (!find_reg_note (insn, REG_DEAD, NULL));
2984 else if (stack_regs_mentioned (insn)
2985 || CALL_P (insn))
2987 if (dump_file)
2989 fprintf (dump_file, " insn %d input stack: ",
2990 INSN_UID (insn));
2991 print_stack (dump_file, &regstack);
2993 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
2994 starting_stack_p = false;
2997 while (next);
2999 if (debug_insns_with_starting_stack)
3001 /* Since it's the first non-debug instruction that determines
3002 the stack requirements of the current basic block, we refrain
3003 from updating debug insns before it in the loop above, and
3004 fix them up here. */
3005 for (insn = BB_HEAD (block); debug_insns_with_starting_stack;
3006 insn = NEXT_INSN (insn))
3008 if (!DEBUG_INSN_P (insn))
3009 continue;
3011 debug_insns_with_starting_stack--;
3012 subst_all_stack_regs_in_debug_insn (insn, &bi->stack_in);
3016 if (dump_file)
3018 fprintf (dump_file, "Expected live registers [");
3019 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
3020 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg))
3021 fprintf (dump_file, " %d", reg);
3022 fprintf (dump_file, " ]\nOutput stack: ");
3023 print_stack (dump_file, &regstack);
3026 insn = BB_END (block);
3027 if (JUMP_P (insn))
3028 insn = PREV_INSN (insn);
3030 /* If the function is declared to return a value, but it returns one
3031 in only some cases, some registers might come live here. Emit
3032 necessary moves for them. */
3034 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
3036 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg)
3037 && ! TEST_HARD_REG_BIT (regstack.reg_set, reg))
3039 rtx set;
3041 if (dump_file)
3042 fprintf (dump_file, "Emitting insn initializing reg %d\n", reg);
3044 set = gen_rtx_SET (VOIDmode, FP_MODE_REG (reg, SFmode), not_a_num);
3045 insn = emit_insn_after (set, insn);
3046 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
3050 /* Amongst the insns possibly deleted during the substitution process above,
3051 might have been the only trapping insn in the block. We purge the now
3052 possibly dead EH edges here to avoid an ICE from fixup_abnormal_edges,
3053 called at the end of convert_regs. The order in which we process the
3054 blocks ensures that we never delete an already processed edge.
3056 Note that, at this point, the CFG may have been damaged by the emission
3057 of instructions after an abnormal call, which moves the basic block end
3058 (and is the reason why we call fixup_abnormal_edges later). So we must
3059 be sure that the trapping insn has been deleted before trying to purge
3060 dead edges, otherwise we risk purging valid edges.
3062 ??? We are normally supposed not to delete trapping insns, so we pretend
3063 that the insns deleted above don't actually trap. It would have been
3064 better to detect this earlier and avoid creating the EH edge in the first
3065 place, still, but we don't have enough information at that time. */
3067 if (control_flow_insn_deleted)
3068 cfg_altered |= purge_dead_edges (block);
3070 /* Something failed if the stack lives don't match. If we had malformed
3071 asms, we zapped the instruction itself, but that didn't produce the
3072 same pattern of register kills as before. */
3074 gcc_assert (hard_reg_set_equal_p (regstack.reg_set, bi->out_reg_set)
3075 || any_malformed_asm);
3076 bi->stack_out = regstack;
3077 bi->done = true;
3079 return cfg_altered;
3082 /* Convert registers in all blocks reachable from BLOCK. Return true if the
3083 CFG has been modified in the process. */
3085 static bool
3086 convert_regs_2 (basic_block block)
3088 basic_block *stack, *sp;
3089 bool cfg_altered = false;
3091 /* We process the blocks in a top-down manner, in a way such that one block
3092 is only processed after all its predecessors. The number of predecessors
3093 of every block has already been computed. */
3095 stack = XNEWVEC (basic_block, n_basic_blocks);
3096 sp = stack;
3098 *sp++ = block;
3102 edge e;
3103 edge_iterator ei;
3105 block = *--sp;
3107 /* Processing BLOCK is achieved by convert_regs_1, which may purge
3108 some dead EH outgoing edge after the deletion of the trapping
3109 insn inside the block. Since the number of predecessors of
3110 BLOCK's successors was computed based on the initial edge set,
3111 we check the necessity to process some of these successors
3112 before such an edge deletion may happen. However, there is
3113 a pitfall: if BLOCK is the only predecessor of a successor and
3114 the edge between them happens to be deleted, the successor
3115 becomes unreachable and should not be processed. The problem
3116 is that there is no way to preventively detect this case so we
3117 stack the successor in all cases and hand over the task of
3118 fixing up the discrepancy to convert_regs_1. */
3120 FOR_EACH_EDGE (e, ei, block->succs)
3121 if (! (e->flags & EDGE_DFS_BACK))
3123 BLOCK_INFO (e->dest)->predecessors--;
3124 if (!BLOCK_INFO (e->dest)->predecessors)
3125 *sp++ = e->dest;
3128 cfg_altered |= convert_regs_1 (block);
3130 while (sp != stack);
3132 free (stack);
3134 return cfg_altered;
3137 /* Traverse all basic blocks in a function, converting the register
3138 references in each insn from the "flat" register file that gcc uses,
3139 to the stack-like registers the 387 uses. */
3141 static void
3142 convert_regs (void)
3144 bool cfg_altered = false;
3145 int inserted;
3146 basic_block b;
3147 edge e;
3148 edge_iterator ei;
3150 /* Initialize uninitialized registers on function entry. */
3151 inserted = convert_regs_entry ();
3153 /* Construct the desired stack for function exit. */
3154 convert_regs_exit ();
3155 BLOCK_INFO (EXIT_BLOCK_PTR)->done = 1;
3157 /* ??? Future: process inner loops first, and give them arbitrary
3158 initial stacks which emit_swap_insn can modify. This ought to
3159 prevent double fxch that often appears at the head of a loop. */
3161 /* Process all blocks reachable from all entry points. */
3162 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
3163 cfg_altered |= convert_regs_2 (e->dest);
3165 /* ??? Process all unreachable blocks. Though there's no excuse
3166 for keeping these even when not optimizing. */
3167 FOR_EACH_BB (b)
3169 block_info bi = BLOCK_INFO (b);
3171 if (! bi->done)
3172 cfg_altered |= convert_regs_2 (b);
3175 /* We must fix up abnormal edges before inserting compensation code
3176 because both mechanisms insert insns on edges. */
3177 inserted |= fixup_abnormal_edges ();
3179 inserted |= compensate_edges ();
3181 clear_aux_for_blocks ();
3183 if (inserted)
3184 commit_edge_insertions ();
3186 if (cfg_altered)
3187 cleanup_cfg (0);
3189 if (dump_file)
3190 fputc ('\n', dump_file);
3193 /* Convert register usage from "flat" register file usage to a "stack
3194 register file. FILE is the dump file, if used.
3196 Construct a CFG and run life analysis. Then convert each insn one
3197 by one. Run a last cleanup_cfg pass, if optimizing, to eliminate
3198 code duplication created when the converter inserts pop insns on
3199 the edges. */
3201 static bool
3202 reg_to_stack (void)
3204 basic_block bb;
3205 int i;
3206 int max_uid;
3208 /* Clean up previous run. */
3209 if (stack_regs_mentioned_data != NULL)
3210 VEC_free (char, heap, stack_regs_mentioned_data);
3212 /* See if there is something to do. Flow analysis is quite
3213 expensive so we might save some compilation time. */
3214 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3215 if (df_regs_ever_live_p (i))
3216 break;
3217 if (i > LAST_STACK_REG)
3218 return false;
3220 df_note_add_problem ();
3221 df_analyze ();
3223 mark_dfs_back_edges ();
3225 /* Set up block info for each basic block. */
3226 alloc_aux_for_blocks (sizeof (struct block_info_def));
3227 FOR_EACH_BB (bb)
3229 block_info bi = BLOCK_INFO (bb);
3230 edge_iterator ei;
3231 edge e;
3232 int reg;
3234 FOR_EACH_EDGE (e, ei, bb->preds)
3235 if (!(e->flags & EDGE_DFS_BACK)
3236 && e->src != ENTRY_BLOCK_PTR)
3237 bi->predecessors++;
3239 /* Set current register status at last instruction `uninitialized'. */
3240 bi->stack_in.top = -2;
3242 /* Copy live_at_end and live_at_start into temporaries. */
3243 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; reg++)
3245 if (REGNO_REG_SET_P (DF_LR_OUT (bb), reg))
3246 SET_HARD_REG_BIT (bi->out_reg_set, reg);
3247 if (REGNO_REG_SET_P (DF_LR_IN (bb), reg))
3248 SET_HARD_REG_BIT (bi->stack_in.reg_set, reg);
3252 /* Create the replacement registers up front. */
3253 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3255 enum machine_mode mode;
3256 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
3257 mode != VOIDmode;
3258 mode = GET_MODE_WIDER_MODE (mode))
3259 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3260 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
3261 mode != VOIDmode;
3262 mode = GET_MODE_WIDER_MODE (mode))
3263 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3266 ix86_flags_rtx = gen_rtx_REG (CCmode, FLAGS_REG);
3268 /* A QNaN for initializing uninitialized variables.
3270 ??? We can't load from constant memory in PIC mode, because
3271 we're inserting these instructions before the prologue and
3272 the PIC register hasn't been set up. In that case, fall back
3273 on zero, which we can get from `fldz'. */
3275 if ((flag_pic && !TARGET_64BIT)
3276 || ix86_cmodel == CM_LARGE || ix86_cmodel == CM_LARGE_PIC)
3277 not_a_num = CONST0_RTX (SFmode);
3278 else
3280 REAL_VALUE_TYPE r;
3282 real_nan (&r, "", 1, SFmode);
3283 not_a_num = CONST_DOUBLE_FROM_REAL_VALUE (r, SFmode);
3284 not_a_num = force_const_mem (SFmode, not_a_num);
3287 /* Allocate a cache for stack_regs_mentioned. */
3288 max_uid = get_max_uid ();
3289 stack_regs_mentioned_data = VEC_alloc (char, heap, max_uid + 1);
3290 memset (VEC_address (char, stack_regs_mentioned_data),
3291 0, sizeof (char) * (max_uid + 1));
3293 convert_regs ();
3295 free_aux_for_blocks ();
3296 return true;
3298 #endif /* STACK_REGS */
3300 static bool
3301 gate_handle_stack_regs (void)
3303 #ifdef STACK_REGS
3304 return 1;
3305 #else
3306 return 0;
3307 #endif
3310 struct rtl_opt_pass pass_stack_regs =
3313 RTL_PASS,
3314 "*stack_regs", /* name */
3315 gate_handle_stack_regs, /* gate */
3316 NULL, /* execute */
3317 NULL, /* sub */
3318 NULL, /* next */
3319 0, /* static_pass_number */
3320 TV_REG_STACK, /* tv_id */
3321 0, /* properties_required */
3322 0, /* properties_provided */
3323 0, /* properties_destroyed */
3324 0, /* todo_flags_start */
3325 0 /* todo_flags_finish */
3329 /* Convert register usage from flat register file usage to a stack
3330 register file. */
3331 static unsigned int
3332 rest_of_handle_stack_regs (void)
3334 #ifdef STACK_REGS
3335 reg_to_stack ();
3336 regstack_completed = 1;
3337 #endif
3338 return 0;
3341 struct rtl_opt_pass pass_stack_regs_run =
3344 RTL_PASS,
3345 "stack", /* name */
3346 NULL, /* gate */
3347 rest_of_handle_stack_regs, /* execute */
3348 NULL, /* sub */
3349 NULL, /* next */
3350 0, /* static_pass_number */
3351 TV_REG_STACK, /* tv_id */
3352 0, /* properties_required */
3353 0, /* properties_provided */
3354 0, /* properties_destroyed */
3355 0, /* todo_flags_start */
3356 TODO_df_finish | TODO_verify_rtl_sharing |
3357 TODO_ggc_collect /* todo_flags_finish */