1 /* Interprocedural constant propagation
2 Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
5 Contributed by Razya Ladelsky <RAZYA@il.ibm.com> and Martin Jambor
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 3, or (at your option) any later
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
24 /* Interprocedural constant propagation (IPA-CP).
26 The goal of this transformation is to
28 1) discover functions which are always invoked with some arguments with the
29 same known constant values and modify the functions so that the
30 subsequent optimizations can take advantage of the knowledge, and
32 2) partial specialization - create specialized versions of functions
33 transformed in this way if some parameters are known constants only in
34 certain contexts but the estimated tradeoff between speedup and cost size
37 The algorithm also propagates types and attempts to perform type based
38 devirtualization. Types are propagated much like constants.
40 The algorithm basically consists of three stages. In the first, functions
41 are analyzed one at a time and jump functions are constructed for all known
42 call-sites. In the second phase, the pass propagates information from the
43 jump functions across the call to reveal what values are available at what
44 call sites, performs estimations of effects of known values on functions and
45 their callees, and finally decides what specialized extra versions should be
46 created. In the third, the special versions materialize and appropriate
49 The algorithm used is to a certain extent based on "Interprocedural Constant
50 Propagation", by David Callahan, Keith D Cooper, Ken Kennedy, Linda Torczon,
51 Comp86, pg 152-161 and "A Methodology for Procedure Cloning" by Keith D
52 Cooper, Mary W. Hall, and Ken Kennedy.
55 First stage - intraprocedural analysis
56 =======================================
58 This phase computes jump_function and modification flags.
60 A jump function for a call-site represents the values passed as an actual
61 arguments of a given call-site. In principle, there are three types of
64 Pass through - the caller's formal parameter is passed as an actual
65 argument, plus an operation on it can be performed.
66 Constant - a constant is passed as an actual argument.
67 Unknown - neither of the above.
69 All jump function types are described in detail in ipa-prop.h, together with
70 the data structures that represent them and methods of accessing them.
72 ipcp_generate_summary() is the main function of the first stage.
74 Second stage - interprocedural analysis
75 ========================================
77 This stage is itself divided into two phases. In the first, we propagate
78 known values over the call graph, in the second, we make cloning decisions.
79 It uses a different algorithm than the original Callahan's paper.
81 First, we traverse the functions topologically from callers to callees and,
82 for each strongly connected component (SCC), we propagate constants
83 according to previously computed jump functions. We also record what known
84 values depend on other known values and estimate local effects. Finally, we
85 propagate cumulative information about these effects from dependant values
86 to those on which they depend.
88 Second, we again traverse the call graph in the same topological order and
89 make clones for functions which we know are called with the same values in
90 all contexts and decide about extra specialized clones of functions just for
91 some contexts - these decisions are based on both local estimates and
92 cumulative estimates propagated from callees.
94 ipcp_propagate_stage() and ipcp_decision_stage() together constitute the
97 Third phase - materialization of clones, call statement updates.
98 ============================================
100 This stage is currently performed by call graph code (mainly in cgraphunit.c
101 and tree-inline.c) according to instructions inserted to the call graph by
106 #include "coretypes.h"
111 #include "ipa-prop.h"
112 #include "tree-flow.h"
113 #include "tree-pass.h"
116 #include "diagnostic.h"
117 #include "tree-pretty-print.h"
118 #include "tree-dump.h"
119 #include "tree-inline.h"
122 #include "ipa-inline.h"
123 #include "ipa-utils.h"
127 /* Describes a particular source for an IPA-CP value. */
129 struct ipcp_value_source
131 /* The incoming edge that brought the value. */
132 struct cgraph_edge
*cs
;
133 /* If the jump function that resulted into his value was a pass-through or an
134 ancestor, this is the ipcp_value of the caller from which the described
135 value has been derived. Otherwise it is NULL. */
136 struct ipcp_value
*val
;
137 /* Next pointer in a linked list of sources of a value. */
138 struct ipcp_value_source
*next
;
139 /* If the jump function that resulted into his value was a pass-through or an
140 ancestor, this is the index of the parameter of the caller the jump
141 function references. */
145 /* Describes one particular value stored in struct ipcp_lattice. */
149 /* The actual value for the given parameter. This is either an IPA invariant
150 or a TREE_BINFO describing a type that can be used for
153 /* The list of sources from which this value originates. */
154 struct ipcp_value_source
*sources
;
155 /* Next pointers in a linked list of all values in a lattice. */
156 struct ipcp_value
*next
;
157 /* Next pointers in a linked list of values in a strongly connected component
159 struct ipcp_value
*scc_next
;
160 /* Next pointers in a linked list of SCCs of values sorted topologically
161 according their sources. */
162 struct ipcp_value
*topo_next
;
163 /* A specialized node created for this value, NULL if none has been (so far)
165 struct cgraph_node
*spec_node
;
166 /* Depth first search number and low link for topological sorting of
169 /* Time benefit and size cost that specializing the function for this value
170 would bring about in this function alone. */
171 int local_time_benefit
, local_size_cost
;
172 /* Time benefit and size cost that specializing the function for this value
173 can bring about in it's callees (transitively). */
174 int prop_time_benefit
, prop_size_cost
;
175 /* True if this valye is currently on the topo-sort stack. */
179 /* Allocation pools for values and their sources in ipa-cp. */
181 alloc_pool ipcp_values_pool
;
182 alloc_pool ipcp_sources_pool
;
184 /* Lattice describing potential values of a formal parameter of a function and
185 some of their other properties. TOP is represented by a lattice with zero
186 values and with contains_variable and bottom flags cleared. BOTTOM is
187 represented by a lattice with the bottom flag set. In that case, values and
188 contains_variable flag should be disregarded. */
192 /* The list of known values and types in this lattice. Note that values are
193 not deallocated if a lattice is set to bottom because there may be value
194 sources referencing them. */
195 struct ipcp_value
*values
;
196 /* Number of known values and types in this lattice. */
198 /* The lattice contains a variable component (in addition to values). */
199 bool contains_variable
;
200 /* The value of the lattice is bottom (i.e. variable and unusable for any
203 /* There is a virtual call based on this parameter. */
207 /* Maximal count found in program. */
209 static gcov_type max_count
;
211 /* Original overall size of the program. */
213 static long overall_size
, max_new_size
;
215 /* Head of the linked list of topologically sorted values. */
217 static struct ipcp_value
*values_topo
;
219 /* Return the lattice corresponding to the Ith formal parameter of the function
220 described by INFO. */
221 static inline struct ipcp_lattice
*
222 ipa_get_lattice (struct ipa_node_params
*info
, int i
)
224 gcc_assert (i
>= 0 && i
< ipa_get_param_count (info
));
225 gcc_checking_assert (!info
->ipcp_orig_node
);
226 gcc_checking_assert (info
->lattices
);
227 return &(info
->lattices
[i
]);
230 /* Return whether LAT is a lattice with a single constant and without an
234 ipa_lat_is_single_const (struct ipcp_lattice
*lat
)
237 || lat
->contains_variable
238 || lat
->values_count
!= 1)
244 /* Return true iff the CS is an edge within a strongly connected component as
245 computed by ipa_reduced_postorder. */
248 edge_within_scc (struct cgraph_edge
*cs
)
250 struct ipa_dfs_info
*caller_dfs
= (struct ipa_dfs_info
*) cs
->caller
->aux
;
251 struct ipa_dfs_info
*callee_dfs
;
252 struct cgraph_node
*callee
= cgraph_function_node (cs
->callee
, NULL
);
254 callee_dfs
= (struct ipa_dfs_info
*) callee
->aux
;
257 && caller_dfs
->scc_no
== callee_dfs
->scc_no
);
260 /* Print V which is extracted from a value in a lattice to F. */
263 print_ipcp_constant_value (FILE * f
, tree v
)
265 if (TREE_CODE (v
) == TREE_BINFO
)
267 fprintf (f
, "BINFO ");
268 print_generic_expr (f
, BINFO_TYPE (v
), 0);
270 else if (TREE_CODE (v
) == ADDR_EXPR
271 && TREE_CODE (TREE_OPERAND (v
, 0)) == CONST_DECL
)
274 print_generic_expr (f
, DECL_INITIAL (TREE_OPERAND (v
, 0)), 0);
277 print_generic_expr (f
, v
, 0);
280 /* Print all ipcp_lattices of all functions to F. */
283 print_all_lattices (FILE * f
, bool dump_sources
, bool dump_benefits
)
285 struct cgraph_node
*node
;
288 fprintf (f
, "\nLattices:\n");
289 FOR_EACH_FUNCTION_WITH_GIMPLE_BODY (node
)
291 struct ipa_node_params
*info
;
293 info
= IPA_NODE_REF (node
);
294 fprintf (f
, " Node: %s/%i:\n", cgraph_node_name (node
), node
->uid
);
295 count
= ipa_get_param_count (info
);
296 for (i
= 0; i
< count
; i
++)
298 struct ipcp_lattice
*lat
= ipa_get_lattice (info
, i
);
299 struct ipcp_value
*val
;
302 fprintf (f
, " param [%d]: ", i
);
305 fprintf (f
, "BOTTOM\n");
309 if (!lat
->values_count
&& !lat
->contains_variable
)
311 fprintf (f
, "TOP\n");
315 if (lat
->contains_variable
)
317 fprintf (f
, "VARIABLE");
323 for (val
= lat
->values
; val
; val
= val
->next
)
325 if (dump_benefits
&& prev
)
327 else if (!dump_benefits
&& prev
)
332 print_ipcp_constant_value (f
, val
->value
);
336 struct ipcp_value_source
*s
;
338 fprintf (f
, " [from:");
339 for (s
= val
->sources
; s
; s
= s
->next
)
340 fprintf (f
, " %i(%i)", s
->cs
->caller
->uid
,s
->cs
->frequency
);
345 fprintf (f
, " [loc_time: %i, loc_size: %i, "
346 "prop_time: %i, prop_size: %i]\n",
347 val
->local_time_benefit
, val
->local_size_cost
,
348 val
->prop_time_benefit
, val
->prop_size_cost
);
356 /* Determine whether it is at all technically possible to create clones of NODE
357 and store this information in the ipa_node_params structure associated
361 determine_versionability (struct cgraph_node
*node
)
363 const char *reason
= NULL
;
365 /* There are a number of generic reasons functions cannot be versioned. We
366 also cannot remove parameters if there are type attributes such as fnspec
368 if (node
->alias
|| node
->thunk
.thunk_p
)
369 reason
= "alias or thunk";
370 else if (!node
->local
.versionable
)
371 reason
= "not a tree_versionable_function";
372 else if (cgraph_function_body_availability (node
) <= AVAIL_OVERWRITABLE
)
373 reason
= "insufficient body availability";
375 if (reason
&& dump_file
&& !node
->alias
&& !node
->thunk
.thunk_p
)
376 fprintf (dump_file
, "Function %s/%i is not versionable, reason: %s.\n",
377 cgraph_node_name (node
), node
->uid
, reason
);
379 node
->local
.versionable
= (reason
== NULL
);
382 /* Return true if it is at all technically possible to create clones of a
386 ipcp_versionable_function_p (struct cgraph_node
*node
)
388 return node
->local
.versionable
;
391 /* Structure holding accumulated information about callers of a node. */
393 struct caller_statistics
396 int n_calls
, n_hot_calls
, freq_sum
;
399 /* Initialize fields of STAT to zeroes. */
402 init_caller_stats (struct caller_statistics
*stats
)
404 stats
->count_sum
= 0;
406 stats
->n_hot_calls
= 0;
410 /* Worker callback of cgraph_for_node_and_aliases accumulating statistics of
411 non-thunk incoming edges to NODE. */
414 gather_caller_stats (struct cgraph_node
*node
, void *data
)
416 struct caller_statistics
*stats
= (struct caller_statistics
*) data
;
417 struct cgraph_edge
*cs
;
419 for (cs
= node
->callers
; cs
; cs
= cs
->next_caller
)
420 if (cs
->caller
->thunk
.thunk_p
)
421 cgraph_for_node_and_aliases (cs
->caller
, gather_caller_stats
,
425 stats
->count_sum
+= cs
->count
;
426 stats
->freq_sum
+= cs
->frequency
;
428 if (cgraph_maybe_hot_edge_p (cs
))
429 stats
->n_hot_calls
++;
435 /* Return true if this NODE is viable candidate for cloning. */
438 ipcp_cloning_candidate_p (struct cgraph_node
*node
)
440 struct caller_statistics stats
;
442 gcc_checking_assert (cgraph_function_with_gimple_body_p (node
));
444 if (!flag_ipa_cp_clone
)
447 fprintf (dump_file
, "Not considering %s for cloning; "
448 "-fipa-cp-clone disabled.\n",
449 cgraph_node_name (node
));
453 if (!optimize_function_for_speed_p (DECL_STRUCT_FUNCTION (node
->decl
)))
456 fprintf (dump_file
, "Not considering %s for cloning; "
457 "optimizing it for size.\n",
458 cgraph_node_name (node
));
462 init_caller_stats (&stats
);
463 cgraph_for_node_and_aliases (node
, gather_caller_stats
, &stats
, false);
465 if (inline_summary (node
)->self_size
< stats
.n_calls
)
468 fprintf (dump_file
, "Considering %s for cloning; code might shrink.\n",
469 cgraph_node_name (node
));
473 /* When profile is available and function is hot, propagate into it even if
474 calls seems cold; constant propagation can improve function's speed
478 if (stats
.count_sum
> node
->count
* 90 / 100)
481 fprintf (dump_file
, "Considering %s for cloning; "
482 "usually called directly.\n",
483 cgraph_node_name (node
));
487 if (!stats
.n_hot_calls
)
490 fprintf (dump_file
, "Not considering %s for cloning; no hot calls.\n",
491 cgraph_node_name (node
));
495 fprintf (dump_file
, "Considering %s for cloning.\n",
496 cgraph_node_name (node
));
500 /* Arrays representing a topological ordering of call graph nodes and a stack
501 of noes used during constant propagation. */
505 struct cgraph_node
**order
;
506 struct cgraph_node
**stack
;
507 int nnodes
, stack_top
;
510 /* Allocate the arrays in TOPO and topologically sort the nodes into order. */
513 build_toporder_info (struct topo_info
*topo
)
515 topo
->order
= XCNEWVEC (struct cgraph_node
*, cgraph_n_nodes
);
516 topo
->stack
= XCNEWVEC (struct cgraph_node
*, cgraph_n_nodes
);
518 topo
->nnodes
= ipa_reduced_postorder (topo
->order
, true, true, NULL
);
521 /* Free information about strongly connected components and the arrays in
525 free_toporder_info (struct topo_info
*topo
)
527 ipa_free_postorder_info ();
532 /* Add NODE to the stack in TOPO, unless it is already there. */
535 push_node_to_stack (struct topo_info
*topo
, struct cgraph_node
*node
)
537 struct ipa_node_params
*info
= IPA_NODE_REF (node
);
538 if (info
->node_enqueued
)
540 info
->node_enqueued
= 1;
541 topo
->stack
[topo
->stack_top
++] = node
;
544 /* Pop a node from the stack in TOPO and return it or return NULL if the stack
547 static struct cgraph_node
*
548 pop_node_from_stack (struct topo_info
*topo
)
552 struct cgraph_node
*node
;
554 node
= topo
->stack
[topo
->stack_top
];
555 IPA_NODE_REF (node
)->node_enqueued
= 0;
562 /* Set lattice LAT to bottom and return true if it previously was not set as
566 set_lattice_to_bottom (struct ipcp_lattice
*lat
)
568 bool ret
= !lat
->bottom
;
573 /* Mark lattice as containing an unknown value and return true if it previously
574 was not marked as such. */
577 set_lattice_contains_variable (struct ipcp_lattice
*lat
)
579 bool ret
= !lat
->contains_variable
;
580 lat
->contains_variable
= true;
584 /* Initialize ipcp_lattices. */
587 initialize_node_lattices (struct cgraph_node
*node
)
589 struct ipa_node_params
*info
= IPA_NODE_REF (node
);
590 struct cgraph_edge
*ie
;
591 bool disable
= false, variable
= false;
594 gcc_checking_assert (cgraph_function_with_gimple_body_p (node
));
595 if (!node
->local
.local
)
597 /* When cloning is allowed, we can assume that externally visible
598 functions are not called. We will compensate this by cloning
600 if (ipcp_versionable_function_p (node
)
601 && ipcp_cloning_candidate_p (node
))
607 if (disable
|| variable
)
609 for (i
= 0; i
< ipa_get_param_count (info
) ; i
++)
611 struct ipcp_lattice
*lat
= ipa_get_lattice (info
, i
);
613 set_lattice_to_bottom (lat
);
615 set_lattice_contains_variable (lat
);
617 if (dump_file
&& (dump_flags
& TDF_DETAILS
)
618 && node
->alias
&& node
->thunk
.thunk_p
)
619 fprintf (dump_file
, "Marking all lattices of %s/%i as %s\n",
620 cgraph_node_name (node
), node
->uid
,
621 disable
? "BOTTOM" : "VARIABLE");
624 for (ie
= node
->indirect_calls
; ie
; ie
= ie
->next_callee
)
625 if (ie
->indirect_info
->polymorphic
)
627 gcc_checking_assert (ie
->indirect_info
->param_index
>= 0);
628 ipa_get_lattice (info
, ie
->indirect_info
->param_index
)->virt_call
= 1;
632 /* Return the result of a (possibly arithmetic) pass through jump function
633 JFUNC on the constant value INPUT. Return NULL_TREE if that cannot be
634 determined or itself is considered an interprocedural invariant. */
637 ipa_get_jf_pass_through_result (struct ipa_jump_func
*jfunc
, tree input
)
641 gcc_checking_assert (is_gimple_ip_invariant (input
));
642 if (jfunc
->value
.pass_through
.operation
== NOP_EXPR
)
645 if (TREE_CODE_CLASS (jfunc
->value
.pass_through
.operation
)
647 restype
= boolean_type_node
;
649 restype
= TREE_TYPE (input
);
650 res
= fold_binary (jfunc
->value
.pass_through
.operation
, restype
,
651 input
, jfunc
->value
.pass_through
.operand
);
653 if (res
&& !is_gimple_ip_invariant (res
))
659 /* Return the result of an ancestor jump function JFUNC on the constant value
660 INPUT. Return NULL_TREE if that cannot be determined. */
663 ipa_get_jf_ancestor_result (struct ipa_jump_func
*jfunc
, tree input
)
665 if (TREE_CODE (input
) == ADDR_EXPR
)
667 tree t
= TREE_OPERAND (input
, 0);
668 t
= build_ref_for_offset (EXPR_LOCATION (t
), t
,
669 jfunc
->value
.ancestor
.offset
,
670 jfunc
->value
.ancestor
.type
, NULL
, false);
671 return build_fold_addr_expr (t
);
677 /* Extract the acual BINFO being described by JFUNC which must be a known type
681 ipa_value_from_known_type_jfunc (struct ipa_jump_func
*jfunc
)
683 tree base_binfo
= TYPE_BINFO (jfunc
->value
.known_type
.base_type
);
686 return get_binfo_at_offset (base_binfo
,
687 jfunc
->value
.known_type
.offset
,
688 jfunc
->value
.known_type
.component_type
);
691 /* Determine whether JFUNC evaluates to a known value (that is either a
692 constant or a binfo) and if so, return it. Otherwise return NULL. INFO
693 describes the caller node so that pass-through jump functions can be
697 ipa_value_from_jfunc (struct ipa_node_params
*info
, struct ipa_jump_func
*jfunc
)
699 if (jfunc
->type
== IPA_JF_CONST
)
700 return jfunc
->value
.constant
;
701 else if (jfunc
->type
== IPA_JF_KNOWN_TYPE
)
702 return ipa_value_from_known_type_jfunc (jfunc
);
703 else if (jfunc
->type
== IPA_JF_PASS_THROUGH
704 || jfunc
->type
== IPA_JF_ANCESTOR
)
709 if (jfunc
->type
== IPA_JF_PASS_THROUGH
)
710 idx
= jfunc
->value
.pass_through
.formal_id
;
712 idx
= jfunc
->value
.ancestor
.formal_id
;
714 if (info
->ipcp_orig_node
)
715 input
= VEC_index (tree
, info
->known_vals
, idx
);
718 struct ipcp_lattice
*lat
;
722 gcc_checking_assert (!flag_ipa_cp
);
725 lat
= ipa_get_lattice (info
, idx
);
726 if (!ipa_lat_is_single_const (lat
))
728 input
= lat
->values
->value
;
734 if (jfunc
->type
== IPA_JF_PASS_THROUGH
)
736 if (jfunc
->value
.pass_through
.operation
== NOP_EXPR
)
738 else if (TREE_CODE (input
) == TREE_BINFO
)
741 return ipa_get_jf_pass_through_result (jfunc
, input
);
745 if (TREE_CODE (input
) == TREE_BINFO
)
746 return get_binfo_at_offset (input
, jfunc
->value
.ancestor
.offset
,
747 jfunc
->value
.ancestor
.type
);
749 return ipa_get_jf_ancestor_result (jfunc
, input
);
757 /* If checking is enabled, verify that no lattice is in the TOP state, i.e. not
758 bottom, not containing a variable component and without any known value at
762 ipcp_verify_propagated_values (void)
764 struct cgraph_node
*node
;
766 FOR_EACH_FUNCTION_WITH_GIMPLE_BODY (node
)
768 struct ipa_node_params
*info
= IPA_NODE_REF (node
);
769 int i
, count
= ipa_get_param_count (info
);
771 for (i
= 0; i
< count
; i
++)
773 struct ipcp_lattice
*lat
= ipa_get_lattice (info
, i
);
776 && !lat
->contains_variable
777 && lat
->values_count
== 0)
781 fprintf (dump_file
, "\nIPA lattices after constant "
783 print_all_lattices (dump_file
, true, false);
792 /* Return true iff X and Y should be considered equal values by IPA-CP. */
795 values_equal_for_ipcp_p (tree x
, tree y
)
797 gcc_checking_assert (x
!= NULL_TREE
&& y
!= NULL_TREE
);
802 if (TREE_CODE (x
) == TREE_BINFO
|| TREE_CODE (y
) == TREE_BINFO
)
805 if (TREE_CODE (x
) == ADDR_EXPR
806 && TREE_CODE (y
) == ADDR_EXPR
807 && TREE_CODE (TREE_OPERAND (x
, 0)) == CONST_DECL
808 && TREE_CODE (TREE_OPERAND (y
, 0)) == CONST_DECL
)
809 return operand_equal_p (DECL_INITIAL (TREE_OPERAND (x
, 0)),
810 DECL_INITIAL (TREE_OPERAND (y
, 0)), 0);
812 return operand_equal_p (x
, y
, 0);
815 /* Add a new value source to VAL, marking that a value comes from edge CS and
816 (if the underlying jump function is a pass-through or an ancestor one) from
817 a caller value SRC_VAL of a caller parameter described by SRC_INDEX. */
820 add_value_source (struct ipcp_value
*val
, struct cgraph_edge
*cs
,
821 struct ipcp_value
*src_val
, int src_idx
)
823 struct ipcp_value_source
*src
;
825 src
= (struct ipcp_value_source
*) pool_alloc (ipcp_sources_pool
);
828 src
->index
= src_idx
;
830 src
->next
= val
->sources
;
835 /* Try to add NEWVAL to LAT, potentially creating a new struct ipcp_value for
836 it. CS, SRC_VAL and SRC_INDEX are meant for add_value_source and have the
840 add_value_to_lattice (struct ipcp_lattice
*lat
, tree newval
,
841 struct cgraph_edge
*cs
, struct ipcp_value
*src_val
,
844 struct ipcp_value
*val
;
850 for (val
= lat
->values
; val
; val
= val
->next
)
851 if (values_equal_for_ipcp_p (val
->value
, newval
))
853 if (edge_within_scc (cs
))
855 struct ipcp_value_source
*s
;
856 for (s
= val
->sources
; s
; s
= s
->next
)
863 add_value_source (val
, cs
, src_val
, src_idx
);
867 if (lat
->values_count
== PARAM_VALUE (PARAM_IPA_CP_VALUE_LIST_SIZE
))
869 /* We can only free sources, not the values themselves, because sources
870 of other values in this this SCC might point to them. */
871 for (val
= lat
->values
; val
; val
= val
->next
)
875 struct ipcp_value_source
*src
= val
->sources
;
876 val
->sources
= src
->next
;
877 pool_free (ipcp_sources_pool
, src
);
882 return set_lattice_to_bottom (lat
);
886 val
= (struct ipcp_value
*) pool_alloc (ipcp_values_pool
);
887 memset (val
, 0, sizeof (*val
));
889 add_value_source (val
, cs
, src_val
, src_idx
);
891 val
->next
= lat
->values
;
896 /* Propagate values through a pass-through jump function JFUNC associated with
897 edge CS, taking values from SRC_LAT and putting them into DEST_LAT. SRC_IDX
898 is the index of the source parameter. */
901 propagate_vals_accross_pass_through (struct cgraph_edge
*cs
,
902 struct ipa_jump_func
*jfunc
,
903 struct ipcp_lattice
*src_lat
,
904 struct ipcp_lattice
*dest_lat
,
907 struct ipcp_value
*src_val
;
910 if (jfunc
->value
.pass_through
.operation
== NOP_EXPR
)
911 for (src_val
= src_lat
->values
; src_val
; src_val
= src_val
->next
)
912 ret
|= add_value_to_lattice (dest_lat
, src_val
->value
, cs
,
914 /* Do not create new values when propagating within an SCC because if there
915 arithmetic functions with circular dependencies, there is infinite number
916 of them and we would just make lattices bottom. */
917 else if (edge_within_scc (cs
))
918 ret
= set_lattice_contains_variable (dest_lat
);
920 for (src_val
= src_lat
->values
; src_val
; src_val
= src_val
->next
)
922 tree cstval
= src_val
->value
;
924 if (TREE_CODE (cstval
) == TREE_BINFO
)
926 ret
|= set_lattice_contains_variable (dest_lat
);
929 cstval
= ipa_get_jf_pass_through_result (jfunc
, cstval
);
932 ret
|= add_value_to_lattice (dest_lat
, cstval
, cs
, src_val
, src_idx
);
934 ret
|= set_lattice_contains_variable (dest_lat
);
940 /* Propagate values through an ancestor jump function JFUNC associated with
941 edge CS, taking values from SRC_LAT and putting them into DEST_LAT. SRC_IDX
942 is the index of the source parameter. */
945 propagate_vals_accross_ancestor (struct cgraph_edge
*cs
,
946 struct ipa_jump_func
*jfunc
,
947 struct ipcp_lattice
*src_lat
,
948 struct ipcp_lattice
*dest_lat
,
951 struct ipcp_value
*src_val
;
954 if (edge_within_scc (cs
))
955 return set_lattice_contains_variable (dest_lat
);
957 for (src_val
= src_lat
->values
; src_val
; src_val
= src_val
->next
)
959 tree t
= src_val
->value
;
961 if (TREE_CODE (t
) == TREE_BINFO
)
962 t
= get_binfo_at_offset (t
, jfunc
->value
.ancestor
.offset
,
963 jfunc
->value
.ancestor
.type
);
965 t
= ipa_get_jf_ancestor_result (jfunc
, t
);
968 ret
|= add_value_to_lattice (dest_lat
, t
, cs
, src_val
, src_idx
);
970 ret
|= set_lattice_contains_variable (dest_lat
);
976 /* Propagate values across jump function JFUNC that is associated with edge CS
977 and put the values into DEST_LAT. */
980 propagate_accross_jump_function (struct cgraph_edge
*cs
,
981 struct ipa_jump_func
*jfunc
,
982 struct ipcp_lattice
*dest_lat
)
984 if (dest_lat
->bottom
)
987 if (jfunc
->type
== IPA_JF_CONST
988 || jfunc
->type
== IPA_JF_KNOWN_TYPE
)
992 if (jfunc
->type
== IPA_JF_KNOWN_TYPE
)
994 val
= ipa_value_from_known_type_jfunc (jfunc
);
996 return set_lattice_contains_variable (dest_lat
);
999 val
= jfunc
->value
.constant
;
1000 return add_value_to_lattice (dest_lat
, val
, cs
, NULL
, 0);
1002 else if (jfunc
->type
== IPA_JF_PASS_THROUGH
1003 || jfunc
->type
== IPA_JF_ANCESTOR
)
1005 struct ipa_node_params
*caller_info
= IPA_NODE_REF (cs
->caller
);
1006 struct ipcp_lattice
*src_lat
;
1010 if (jfunc
->type
== IPA_JF_PASS_THROUGH
)
1011 src_idx
= jfunc
->value
.pass_through
.formal_id
;
1013 src_idx
= jfunc
->value
.ancestor
.formal_id
;
1015 src_lat
= ipa_get_lattice (caller_info
, src_idx
);
1016 if (src_lat
->bottom
)
1017 return set_lattice_contains_variable (dest_lat
);
1019 /* If we would need to clone the caller and cannot, do not propagate. */
1020 if (!ipcp_versionable_function_p (cs
->caller
)
1021 && (src_lat
->contains_variable
1022 || (src_lat
->values_count
> 1)))
1023 return set_lattice_contains_variable (dest_lat
);
1025 if (jfunc
->type
== IPA_JF_PASS_THROUGH
)
1026 ret
= propagate_vals_accross_pass_through (cs
, jfunc
, src_lat
,
1029 ret
= propagate_vals_accross_ancestor (cs
, jfunc
, src_lat
, dest_lat
,
1032 if (src_lat
->contains_variable
)
1033 ret
|= set_lattice_contains_variable (dest_lat
);
1038 /* TODO: We currently do not handle member method pointers in IPA-CP (we only
1039 use it for indirect inlining), we should propagate them too. */
1040 return set_lattice_contains_variable (dest_lat
);
1043 /* Propagate constants from the caller to the callee of CS. INFO describes the
1047 propagate_constants_accross_call (struct cgraph_edge
*cs
)
1049 struct ipa_node_params
*callee_info
;
1050 enum availability availability
;
1051 struct cgraph_node
*callee
, *alias_or_thunk
;
1052 struct ipa_edge_args
*args
;
1054 int i
, args_count
, parms_count
;
1056 callee
= cgraph_function_node (cs
->callee
, &availability
);
1057 if (!callee
->analyzed
)
1059 gcc_checking_assert (cgraph_function_with_gimple_body_p (callee
));
1060 callee_info
= IPA_NODE_REF (callee
);
1062 args
= IPA_EDGE_REF (cs
);
1063 args_count
= ipa_get_cs_argument_count (args
);
1064 parms_count
= ipa_get_param_count (callee_info
);
1066 /* If this call goes through a thunk we must not propagate to the first (0th)
1067 parameter. However, we might need to uncover a thunk from below a series
1068 of aliases first. */
1069 alias_or_thunk
= cs
->callee
;
1070 while (alias_or_thunk
->alias
)
1071 alias_or_thunk
= cgraph_alias_aliased_node (alias_or_thunk
);
1072 if (alias_or_thunk
->thunk
.thunk_p
)
1074 ret
|= set_lattice_contains_variable (ipa_get_lattice (callee_info
, 0));
1080 for (; (i
< args_count
) && (i
< parms_count
); i
++)
1082 struct ipa_jump_func
*jump_func
= ipa_get_ith_jump_func (args
, i
);
1083 struct ipcp_lattice
*dest_lat
= ipa_get_lattice (callee_info
, i
);
1085 if (availability
== AVAIL_OVERWRITABLE
)
1086 ret
|= set_lattice_contains_variable (dest_lat
);
1088 ret
|= propagate_accross_jump_function (cs
, jump_func
, dest_lat
);
1090 for (; i
< parms_count
; i
++)
1091 ret
|= set_lattice_contains_variable (ipa_get_lattice (callee_info
, i
));
1096 /* If an indirect edge IE can be turned into a direct one based on KNOWN_VALS
1097 (which can contain both constants and binfos) or KNOWN_BINFOS (which can be
1098 NULL) return the destination. */
1101 ipa_get_indirect_edge_target (struct cgraph_edge
*ie
,
1102 VEC (tree
, heap
) *known_vals
,
1103 VEC (tree
, heap
) *known_binfos
)
1105 int param_index
= ie
->indirect_info
->param_index
;
1106 HOST_WIDE_INT token
, anc_offset
;
1110 if (param_index
== -1)
1113 if (!ie
->indirect_info
->polymorphic
)
1115 tree t
= VEC_index (tree
, known_vals
, param_index
);
1117 TREE_CODE (t
) == ADDR_EXPR
1118 && TREE_CODE (TREE_OPERAND (t
, 0)) == FUNCTION_DECL
)
1119 return TREE_OPERAND (t
, 0);
1124 token
= ie
->indirect_info
->otr_token
;
1125 anc_offset
= ie
->indirect_info
->anc_offset
;
1126 otr_type
= ie
->indirect_info
->otr_type
;
1128 t
= VEC_index (tree
, known_vals
, param_index
);
1129 if (!t
&& known_binfos
)
1130 t
= VEC_index (tree
, known_binfos
, param_index
);
1134 if (TREE_CODE (t
) != TREE_BINFO
)
1137 binfo
= gimple_extract_devirt_binfo_from_cst (t
);
1140 binfo
= get_binfo_at_offset (binfo
, anc_offset
, otr_type
);
1143 return gimple_get_virt_method_for_binfo (token
, binfo
);
1149 binfo
= get_binfo_at_offset (t
, anc_offset
, otr_type
);
1152 return gimple_get_virt_method_for_binfo (token
, binfo
);
1156 /* Calculate devirtualization time bonus for NODE, assuming we know KNOWN_CSTS
1157 and KNOWN_BINFOS. */
1160 devirtualization_time_bonus (struct cgraph_node
*node
,
1161 VEC (tree
, heap
) *known_csts
,
1162 VEC (tree
, heap
) *known_binfos
)
1164 struct cgraph_edge
*ie
;
1167 for (ie
= node
->indirect_calls
; ie
; ie
= ie
->next_callee
)
1169 struct cgraph_node
*callee
;
1170 struct inline_summary
*isummary
;
1173 target
= ipa_get_indirect_edge_target (ie
, known_csts
, known_binfos
);
1177 /* Only bare minimum benefit for clearly un-inlineable targets. */
1179 callee
= cgraph_get_node (target
);
1180 if (!callee
|| !callee
->analyzed
)
1182 isummary
= inline_summary (callee
);
1183 if (!isummary
->inlinable
)
1186 /* FIXME: The values below need re-considering and perhaps also
1187 integrating into the cost metrics, at lest in some very basic way. */
1188 if (isummary
->size
<= MAX_INLINE_INSNS_AUTO
/ 4)
1190 else if (isummary
->size
<= MAX_INLINE_INSNS_AUTO
/ 2)
1192 else if (isummary
->size
<= MAX_INLINE_INSNS_AUTO
1193 || DECL_DECLARED_INLINE_P (callee
->decl
))
1200 /* Return true if cloning NODE is a good idea, given the estimated TIME_BENEFIT
1201 and SIZE_COST and with the sum of frequencies of incoming edges to the
1202 potential new clone in FREQUENCIES. */
1205 good_cloning_opportunity_p (struct cgraph_node
*node
, int time_benefit
,
1206 int freq_sum
, gcov_type count_sum
, int size_cost
)
1208 if (time_benefit
== 0
1209 || !flag_ipa_cp_clone
1210 || !optimize_function_for_speed_p (DECL_STRUCT_FUNCTION (node
->decl
)))
1213 gcc_assert (size_cost
> 0);
1217 int factor
= (count_sum
* 1000) / max_count
;
1218 HOST_WIDEST_INT evaluation
= (((HOST_WIDEST_INT
) time_benefit
* factor
)
1221 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1222 fprintf (dump_file
, " good_cloning_opportunity_p (time: %i, "
1223 "size: %i, count_sum: " HOST_WIDE_INT_PRINT_DEC
1224 ") -> evaluation: " HOST_WIDEST_INT_PRINT_DEC
1225 ", threshold: %i\n",
1226 time_benefit
, size_cost
, (HOST_WIDE_INT
) count_sum
,
1229 return evaluation
>= PARAM_VALUE (PARAM_IPA_CP_EVAL_THRESHOLD
);
1233 HOST_WIDEST_INT evaluation
= (((HOST_WIDEST_INT
) time_benefit
* freq_sum
)
1236 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1237 fprintf (dump_file
, " good_cloning_opportunity_p (time: %i, "
1238 "size: %i, freq_sum: %i) -> evaluation: "
1239 HOST_WIDEST_INT_PRINT_DEC
", threshold: %i\n",
1240 time_benefit
, size_cost
, freq_sum
, evaluation
,
1241 CGRAPH_FREQ_BASE
/2);
1243 return evaluation
>= PARAM_VALUE (PARAM_IPA_CP_EVAL_THRESHOLD
);
1248 /* Allocate KNOWN_CSTS and KNOWN_BINFOS and populate them with values of
1249 parameters that are known independent of the context. INFO describes the
1250 function. If REMOVABLE_PARAMS_COST is non-NULL, the movement cost of all
1251 removable parameters will be stored in it. */
1254 gather_context_independent_values (struct ipa_node_params
*info
,
1255 VEC (tree
, heap
) **known_csts
,
1256 VEC (tree
, heap
) **known_binfos
,
1257 int *removable_params_cost
)
1259 int i
, count
= ipa_get_param_count (info
);
1263 *known_binfos
= NULL
;
1264 VEC_safe_grow_cleared (tree
, heap
, *known_csts
, count
);
1265 VEC_safe_grow_cleared (tree
, heap
, *known_binfos
, count
);
1267 if (removable_params_cost
)
1268 *removable_params_cost
= 0;
1270 for (i
= 0; i
< count
; i
++)
1272 struct ipcp_lattice
*lat
= ipa_get_lattice (info
, i
);
1274 if (ipa_lat_is_single_const (lat
))
1276 struct ipcp_value
*val
= lat
->values
;
1277 if (TREE_CODE (val
->value
) != TREE_BINFO
)
1279 VEC_replace (tree
, *known_csts
, i
, val
->value
);
1280 if (removable_params_cost
)
1281 *removable_params_cost
1282 += estimate_move_cost (TREE_TYPE (val
->value
));
1285 else if (lat
->virt_call
)
1287 VEC_replace (tree
, *known_binfos
, i
, val
->value
);
1290 else if (removable_params_cost
1291 && !ipa_is_param_used (info
, i
))
1292 *removable_params_cost
1293 += estimate_move_cost (TREE_TYPE (ipa_get_param (info
, i
)));
1295 else if (removable_params_cost
1296 && !ipa_is_param_used (info
, i
))
1297 *removable_params_cost
1298 += estimate_move_cost (TREE_TYPE (ipa_get_param (info
, i
)));
1304 /* Iterate over known values of parameters of NODE and estimate the local
1305 effects in terms of time and size they have. */
1308 estimate_local_effects (struct cgraph_node
*node
)
1310 struct ipa_node_params
*info
= IPA_NODE_REF (node
);
1311 int i
, count
= ipa_get_param_count (info
);
1312 VEC (tree
, heap
) *known_csts
, *known_binfos
;
1314 int base_time
= inline_summary (node
)->time
;
1315 int removable_params_cost
;
1317 if (!count
|| !ipcp_versionable_function_p (node
))
1320 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1321 fprintf (dump_file
, "\nEstimating effects for %s/%i, base_time: %i.\n",
1322 cgraph_node_name (node
), node
->uid
, base_time
);
1324 always_const
= gather_context_independent_values (info
, &known_csts
,
1326 &removable_params_cost
);
1329 struct caller_statistics stats
;
1332 init_caller_stats (&stats
);
1333 cgraph_for_node_and_aliases (node
, gather_caller_stats
, &stats
, false);
1334 estimate_ipcp_clone_size_and_time (node
, known_csts
, known_binfos
,
1336 time
-= devirtualization_time_bonus (node
, known_csts
, known_binfos
);
1337 time
-= removable_params_cost
;
1338 size
-= stats
.n_calls
* removable_params_cost
;
1341 fprintf (dump_file
, " - context independent values, size: %i, "
1342 "time_benefit: %i\n", size
, base_time
- time
);
1345 || cgraph_will_be_removed_from_program_if_no_direct_calls (node
))
1347 info
->clone_for_all_contexts
= true;
1351 fprintf (dump_file
, " Decided to specialize for all "
1352 "known contexts, code not going to grow.\n");
1354 else if (good_cloning_opportunity_p (node
, base_time
- time
,
1355 stats
.freq_sum
, stats
.count_sum
,
1358 if (size
+ overall_size
<= max_new_size
)
1360 info
->clone_for_all_contexts
= true;
1362 overall_size
+= size
;
1365 fprintf (dump_file
, " Decided to specialize for all "
1366 "known contexts, growth deemed beneficial.\n");
1368 else if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1369 fprintf (dump_file
, " Not cloning for all contexts because "
1370 "max_new_size would be reached with %li.\n",
1371 size
+ overall_size
);
1375 for (i
= 0; i
< count
; i
++)
1377 struct ipcp_lattice
*lat
= ipa_get_lattice (info
, i
);
1378 struct ipcp_value
*val
;
1383 || VEC_index (tree
, known_csts
, i
)
1384 || VEC_index (tree
, known_binfos
, i
))
1387 for (val
= lat
->values
; val
; val
= val
->next
)
1389 int time
, size
, time_benefit
;
1391 if (TREE_CODE (val
->value
) != TREE_BINFO
)
1393 VEC_replace (tree
, known_csts
, i
, val
->value
);
1394 VEC_replace (tree
, known_binfos
, i
, NULL_TREE
);
1395 emc
= estimate_move_cost (TREE_TYPE (val
->value
));
1397 else if (lat
->virt_call
)
1399 VEC_replace (tree
, known_csts
, i
, NULL_TREE
);
1400 VEC_replace (tree
, known_binfos
, i
, val
->value
);
1406 estimate_ipcp_clone_size_and_time (node
, known_csts
, known_binfos
,
1408 time_benefit
= base_time
- time
1409 + devirtualization_time_bonus (node
, known_csts
, known_binfos
)
1410 + removable_params_cost
+ emc
;
1412 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1414 fprintf (dump_file
, " - estimates for value ");
1415 print_ipcp_constant_value (dump_file
, val
->value
);
1416 fprintf (dump_file
, " for parameter ");
1417 print_generic_expr (dump_file
, ipa_get_param (info
, i
), 0);
1418 fprintf (dump_file
, ": time_benefit: %i, size: %i\n",
1419 time_benefit
, size
);
1422 val
->local_time_benefit
= time_benefit
;
1423 val
->local_size_cost
= size
;
1427 VEC_free (tree
, heap
, known_csts
);
1428 VEC_free (tree
, heap
, known_binfos
);
1432 /* Add value CUR_VAL and all yet-unsorted values it is dependent on to the
1433 topological sort of values. */
1436 add_val_to_toposort (struct ipcp_value
*cur_val
)
1438 static int dfs_counter
= 0;
1439 static struct ipcp_value
*stack
;
1440 struct ipcp_value_source
*src
;
1446 cur_val
->dfs
= dfs_counter
;
1447 cur_val
->low_link
= dfs_counter
;
1449 cur_val
->topo_next
= stack
;
1451 cur_val
->on_stack
= true;
1453 for (src
= cur_val
->sources
; src
; src
= src
->next
)
1456 if (src
->val
->dfs
== 0)
1458 add_val_to_toposort (src
->val
);
1459 if (src
->val
->low_link
< cur_val
->low_link
)
1460 cur_val
->low_link
= src
->val
->low_link
;
1462 else if (src
->val
->on_stack
1463 && src
->val
->dfs
< cur_val
->low_link
)
1464 cur_val
->low_link
= src
->val
->dfs
;
1467 if (cur_val
->dfs
== cur_val
->low_link
)
1469 struct ipcp_value
*v
, *scc_list
= NULL
;
1474 stack
= v
->topo_next
;
1475 v
->on_stack
= false;
1477 v
->scc_next
= scc_list
;
1480 while (v
!= cur_val
);
1482 cur_val
->topo_next
= values_topo
;
1483 values_topo
= cur_val
;
1487 /* Add all values in lattices associated with NODE to the topological sort if
1488 they are not there yet. */
1491 add_all_node_vals_to_toposort (struct cgraph_node
*node
)
1493 struct ipa_node_params
*info
= IPA_NODE_REF (node
);
1494 int i
, count
= ipa_get_param_count (info
);
1496 for (i
= 0; i
< count
; i
++)
1498 struct ipcp_lattice
*lat
= ipa_get_lattice (info
, i
);
1499 struct ipcp_value
*val
;
1501 if (lat
->bottom
|| !lat
->values
)
1503 for (val
= lat
->values
; val
; val
= val
->next
)
1504 add_val_to_toposort (val
);
1508 /* One pass of constants propagation along the call graph edges, from callers
1509 to callees (requires topological ordering in TOPO), iterate over strongly
1510 connected components. */
1513 propagate_constants_topo (struct topo_info
*topo
)
1517 for (i
= topo
->nnodes
- 1; i
>= 0; i
--)
1519 struct cgraph_node
*v
, *node
= topo
->order
[i
];
1520 struct ipa_dfs_info
*node_dfs_info
;
1522 if (!cgraph_function_with_gimple_body_p (node
))
1525 node_dfs_info
= (struct ipa_dfs_info
*) node
->aux
;
1526 /* First, iteratively propagate within the strongly connected component
1527 until all lattices stabilize. */
1528 v
= node_dfs_info
->next_cycle
;
1531 push_node_to_stack (topo
, v
);
1532 v
= ((struct ipa_dfs_info
*) v
->aux
)->next_cycle
;
1538 struct cgraph_edge
*cs
;
1540 for (cs
= v
->callees
; cs
; cs
= cs
->next_callee
)
1541 if (edge_within_scc (cs
)
1542 && propagate_constants_accross_call (cs
))
1543 push_node_to_stack (topo
, cs
->callee
);
1544 v
= pop_node_from_stack (topo
);
1547 /* Afterwards, propagate along edges leading out of the SCC, calculates
1548 the local effects of the discovered constants and all valid values to
1549 their topological sort. */
1553 struct cgraph_edge
*cs
;
1555 estimate_local_effects (v
);
1556 add_all_node_vals_to_toposort (v
);
1557 for (cs
= v
->callees
; cs
; cs
= cs
->next_callee
)
1558 if (!edge_within_scc (cs
))
1559 propagate_constants_accross_call (cs
);
1561 v
= ((struct ipa_dfs_info
*) v
->aux
)->next_cycle
;
1567 /* Return the sum of A and B if none of them is bigger than INT_MAX/2, return
1568 the bigger one if otherwise. */
1571 safe_add (int a
, int b
)
1573 if (a
> INT_MAX
/2 || b
> INT_MAX
/2)
1574 return a
> b
? a
: b
;
1580 /* Propagate the estimated effects of individual values along the topological
1581 from the dependant values to those they depend on. */
1584 propagate_effects (void)
1586 struct ipcp_value
*base
;
1588 for (base
= values_topo
; base
; base
= base
->topo_next
)
1590 struct ipcp_value_source
*src
;
1591 struct ipcp_value
*val
;
1592 int time
= 0, size
= 0;
1594 for (val
= base
; val
; val
= val
->scc_next
)
1596 time
= safe_add (time
,
1597 val
->local_time_benefit
+ val
->prop_time_benefit
);
1598 size
= safe_add (size
, val
->local_size_cost
+ val
->prop_size_cost
);
1601 for (val
= base
; val
; val
= val
->scc_next
)
1602 for (src
= val
->sources
; src
; src
= src
->next
)
1604 && cgraph_maybe_hot_edge_p (src
->cs
))
1606 src
->val
->prop_time_benefit
= safe_add (time
,
1607 src
->val
->prop_time_benefit
);
1608 src
->val
->prop_size_cost
= safe_add (size
,
1609 src
->val
->prop_size_cost
);
1615 /* Propagate constants, binfos and their effects from the summaries
1616 interprocedurally. */
1619 ipcp_propagate_stage (struct topo_info
*topo
)
1621 struct cgraph_node
*node
;
1624 fprintf (dump_file
, "\n Propagating constants:\n\n");
1627 ipa_update_after_lto_read ();
1630 FOR_EACH_DEFINED_FUNCTION (node
)
1632 struct ipa_node_params
*info
= IPA_NODE_REF (node
);
1634 determine_versionability (node
);
1635 if (cgraph_function_with_gimple_body_p (node
))
1637 info
->lattices
= XCNEWVEC (struct ipcp_lattice
,
1638 ipa_get_param_count (info
));
1639 initialize_node_lattices (node
);
1641 if (node
->count
> max_count
)
1642 max_count
= node
->count
;
1643 overall_size
+= inline_summary (node
)->self_size
;
1646 max_new_size
= overall_size
;
1647 if (max_new_size
< PARAM_VALUE (PARAM_LARGE_UNIT_INSNS
))
1648 max_new_size
= PARAM_VALUE (PARAM_LARGE_UNIT_INSNS
);
1649 max_new_size
+= max_new_size
* PARAM_VALUE (PARAM_IPCP_UNIT_GROWTH
) / 100 + 1;
1652 fprintf (dump_file
, "\noverall_size: %li, max_new_size: %li\n",
1653 overall_size
, max_new_size
);
1655 propagate_constants_topo (topo
);
1656 #ifdef ENABLE_CHECKING
1657 ipcp_verify_propagated_values ();
1659 propagate_effects ();
1663 fprintf (dump_file
, "\nIPA lattices after all propagation:\n");
1664 print_all_lattices (dump_file
, (dump_flags
& TDF_DETAILS
), true);
1668 /* Discover newly direct outgoing edges from NODE which is a new clone with
1669 known KNOWN_VALS and make them direct. */
1672 ipcp_discover_new_direct_edges (struct cgraph_node
*node
,
1673 VEC (tree
, heap
) *known_vals
)
1675 struct cgraph_edge
*ie
, *next_ie
;
1677 for (ie
= node
->indirect_calls
; ie
; ie
= next_ie
)
1681 next_ie
= ie
->next_callee
;
1682 target
= ipa_get_indirect_edge_target (ie
, known_vals
, NULL
);
1684 ipa_make_edge_direct_to_target (ie
, target
);
1688 /* Vector of pointers which for linked lists of clones of an original crgaph
1691 static VEC (cgraph_edge_p
, heap
) *next_edge_clone
;
1694 grow_next_edge_clone_vector (void)
1696 if (VEC_length (cgraph_edge_p
, next_edge_clone
)
1697 <= (unsigned) cgraph_edge_max_uid
)
1698 VEC_safe_grow_cleared (cgraph_edge_p
, heap
, next_edge_clone
,
1699 cgraph_edge_max_uid
+ 1);
1702 /* Edge duplication hook to grow the appropriate linked list in
1706 ipcp_edge_duplication_hook (struct cgraph_edge
*src
, struct cgraph_edge
*dst
,
1707 __attribute__((unused
)) void *data
)
1709 grow_next_edge_clone_vector ();
1710 VEC_replace (cgraph_edge_p
, next_edge_clone
, dst
->uid
,
1711 VEC_index (cgraph_edge_p
, next_edge_clone
, src
->uid
));
1712 VEC_replace (cgraph_edge_p
, next_edge_clone
, src
->uid
, dst
);
1715 /* Get the next clone in the linked list of clones of an edge. */
1717 static inline struct cgraph_edge
*
1718 get_next_cgraph_edge_clone (struct cgraph_edge
*cs
)
1720 return VEC_index (cgraph_edge_p
, next_edge_clone
, cs
->uid
);
1723 /* Return true if edge CS does bring about the value described by SRC. */
1726 cgraph_edge_brings_value_p (struct cgraph_edge
*cs
,
1727 struct ipcp_value_source
*src
)
1729 struct ipa_node_params
*caller_info
= IPA_NODE_REF (cs
->caller
);
1731 if (IPA_NODE_REF (cs
->callee
)->ipcp_orig_node
1732 || caller_info
->node_dead
)
1737 if (caller_info
->ipcp_orig_node
)
1739 tree t
= VEC_index (tree
, caller_info
->known_vals
, src
->index
);
1740 return (t
!= NULL_TREE
1741 && values_equal_for_ipcp_p (src
->val
->value
, t
));
1745 struct ipcp_lattice
*lat
= ipa_get_lattice (caller_info
, src
->index
);
1746 if (ipa_lat_is_single_const (lat
)
1747 && values_equal_for_ipcp_p (src
->val
->value
, lat
->values
->value
))
1754 /* Given VAL, iterate over all its sources and if they still hold, add their
1755 edge frequency and their number into *FREQUENCY and *CALLER_COUNT
1759 get_info_about_necessary_edges (struct ipcp_value
*val
, int *freq_sum
,
1760 gcov_type
*count_sum
, int *caller_count
)
1762 struct ipcp_value_source
*src
;
1763 int freq
= 0, count
= 0;
1767 for (src
= val
->sources
; src
; src
= src
->next
)
1769 struct cgraph_edge
*cs
= src
->cs
;
1772 if (cgraph_edge_brings_value_p (cs
, src
))
1775 freq
+= cs
->frequency
;
1777 hot
|= cgraph_maybe_hot_edge_p (cs
);
1779 cs
= get_next_cgraph_edge_clone (cs
);
1785 *caller_count
= count
;
1789 /* Return a vector of incoming edges that do bring value VAL. It is assumed
1790 their number is known and equal to CALLER_COUNT. */
1792 static VEC (cgraph_edge_p
,heap
) *
1793 gather_edges_for_value (struct ipcp_value
*val
, int caller_count
)
1795 struct ipcp_value_source
*src
;
1796 VEC (cgraph_edge_p
,heap
) *ret
;
1798 ret
= VEC_alloc (cgraph_edge_p
, heap
, caller_count
);
1799 for (src
= val
->sources
; src
; src
= src
->next
)
1801 struct cgraph_edge
*cs
= src
->cs
;
1804 if (cgraph_edge_brings_value_p (cs
, src
))
1805 VEC_quick_push (cgraph_edge_p
, ret
, cs
);
1806 cs
= get_next_cgraph_edge_clone (cs
);
1813 /* Construct a replacement map for a know VALUE for a formal parameter PARAM.
1814 Return it or NULL if for some reason it cannot be created. */
1816 static struct ipa_replace_map
*
1817 get_replacement_map (tree value
, tree parm
)
1819 tree req_type
= TREE_TYPE (parm
);
1820 struct ipa_replace_map
*replace_map
;
1822 if (!useless_type_conversion_p (req_type
, TREE_TYPE (value
)))
1824 if (fold_convertible_p (req_type
, value
))
1825 value
= fold_build1 (NOP_EXPR
, req_type
, value
);
1826 else if (TYPE_SIZE (req_type
) == TYPE_SIZE (TREE_TYPE (value
)))
1827 value
= fold_build1 (VIEW_CONVERT_EXPR
, req_type
, value
);
1832 fprintf (dump_file
, " const ");
1833 print_generic_expr (dump_file
, value
, 0);
1834 fprintf (dump_file
, " can't be converted to param ");
1835 print_generic_expr (dump_file
, parm
, 0);
1836 fprintf (dump_file
, "\n");
1842 replace_map
= ggc_alloc_ipa_replace_map ();
1845 fprintf (dump_file
, " replacing param ");
1846 print_generic_expr (dump_file
, parm
, 0);
1847 fprintf (dump_file
, " with const ");
1848 print_generic_expr (dump_file
, value
, 0);
1849 fprintf (dump_file
, "\n");
1851 replace_map
->old_tree
= parm
;
1852 replace_map
->new_tree
= value
;
1853 replace_map
->replace_p
= true;
1854 replace_map
->ref_p
= false;
1859 /* Dump new profiling counts */
1862 dump_profile_updates (struct cgraph_node
*orig_node
,
1863 struct cgraph_node
*new_node
)
1865 struct cgraph_edge
*cs
;
1867 fprintf (dump_file
, " setting count of the specialized node to "
1868 HOST_WIDE_INT_PRINT_DEC
"\n", (HOST_WIDE_INT
) new_node
->count
);
1869 for (cs
= new_node
->callees
; cs
; cs
= cs
->next_callee
)
1870 fprintf (dump_file
, " edge to %s has count "
1871 HOST_WIDE_INT_PRINT_DEC
"\n",
1872 cgraph_node_name (cs
->callee
), (HOST_WIDE_INT
) cs
->count
);
1874 fprintf (dump_file
, " setting count of the original node to "
1875 HOST_WIDE_INT_PRINT_DEC
"\n", (HOST_WIDE_INT
) orig_node
->count
);
1876 for (cs
= orig_node
->callees
; cs
; cs
= cs
->next_callee
)
1877 fprintf (dump_file
, " edge to %s is left with "
1878 HOST_WIDE_INT_PRINT_DEC
"\n",
1879 cgraph_node_name (cs
->callee
), (HOST_WIDE_INT
) cs
->count
);
1882 /* After a specialized NEW_NODE version of ORIG_NODE has been created, update
1883 their profile information to reflect this. */
1886 update_profiling_info (struct cgraph_node
*orig_node
,
1887 struct cgraph_node
*new_node
)
1889 struct cgraph_edge
*cs
;
1890 struct caller_statistics stats
;
1891 gcov_type new_sum
, orig_sum
;
1892 gcov_type remainder
, orig_node_count
= orig_node
->count
;
1894 if (orig_node_count
== 0)
1897 init_caller_stats (&stats
);
1898 cgraph_for_node_and_aliases (orig_node
, gather_caller_stats
, &stats
, false);
1899 orig_sum
= stats
.count_sum
;
1900 init_caller_stats (&stats
);
1901 cgraph_for_node_and_aliases (new_node
, gather_caller_stats
, &stats
, false);
1902 new_sum
= stats
.count_sum
;
1904 if (orig_node_count
< orig_sum
+ new_sum
)
1907 fprintf (dump_file
, " Problem: node %s/%i has too low count "
1908 HOST_WIDE_INT_PRINT_DEC
" while the sum of incoming "
1909 "counts is " HOST_WIDE_INT_PRINT_DEC
"\n",
1910 cgraph_node_name (orig_node
), orig_node
->uid
,
1911 (HOST_WIDE_INT
) orig_node_count
,
1912 (HOST_WIDE_INT
) (orig_sum
+ new_sum
));
1914 orig_node_count
= (orig_sum
+ new_sum
) * 12 / 10;
1916 fprintf (dump_file
, " proceeding by pretending it was "
1917 HOST_WIDE_INT_PRINT_DEC
"\n",
1918 (HOST_WIDE_INT
) orig_node_count
);
1921 new_node
->count
= new_sum
;
1922 remainder
= orig_node_count
- new_sum
;
1923 orig_node
->count
= remainder
;
1925 for (cs
= new_node
->callees
; cs
; cs
= cs
->next_callee
)
1927 cs
->count
= cs
->count
* (new_sum
* REG_BR_PROB_BASE
1928 / orig_node_count
) / REG_BR_PROB_BASE
;
1932 for (cs
= orig_node
->callees
; cs
; cs
= cs
->next_callee
)
1933 cs
->count
= cs
->count
* (remainder
* REG_BR_PROB_BASE
1934 / orig_node_count
) / REG_BR_PROB_BASE
;
1937 dump_profile_updates (orig_node
, new_node
);
1940 /* Update the respective profile of specialized NEW_NODE and the original
1941 ORIG_NODE after additional edges with cumulative count sum REDIRECTED_SUM
1942 have been redirected to the specialized version. */
1945 update_specialized_profile (struct cgraph_node
*new_node
,
1946 struct cgraph_node
*orig_node
,
1947 gcov_type redirected_sum
)
1949 struct cgraph_edge
*cs
;
1950 gcov_type new_node_count
, orig_node_count
= orig_node
->count
;
1953 fprintf (dump_file
, " the sum of counts of redirected edges is "
1954 HOST_WIDE_INT_PRINT_DEC
"\n", (HOST_WIDE_INT
) redirected_sum
);
1955 if (orig_node_count
== 0)
1958 gcc_assert (orig_node_count
>= redirected_sum
);
1960 new_node_count
= new_node
->count
;
1961 new_node
->count
+= redirected_sum
;
1962 orig_node
->count
-= redirected_sum
;
1964 for (cs
= new_node
->callees
; cs
; cs
= cs
->next_callee
)
1966 cs
->count
+= cs
->count
* redirected_sum
/ new_node_count
;
1970 for (cs
= orig_node
->callees
; cs
; cs
= cs
->next_callee
)
1972 gcov_type dec
= cs
->count
* (redirected_sum
* REG_BR_PROB_BASE
1973 / orig_node_count
) / REG_BR_PROB_BASE
;
1974 if (dec
< cs
->count
)
1981 dump_profile_updates (orig_node
, new_node
);
1984 /* Create a specialized version of NODE with known constants and types of
1985 parameters in KNOWN_VALS and redirect all edges in CALLERS to it. */
1987 static struct cgraph_node
*
1988 create_specialized_node (struct cgraph_node
*node
,
1989 VEC (tree
, heap
) *known_vals
,
1990 VEC (cgraph_edge_p
,heap
) *callers
)
1992 struct ipa_node_params
*new_info
, *info
= IPA_NODE_REF (node
);
1993 VEC (ipa_replace_map_p
,gc
)* replace_trees
= NULL
;
1994 struct cgraph_node
*new_node
;
1995 int i
, count
= ipa_get_param_count (info
);
1996 bitmap args_to_skip
;
1998 gcc_assert (!info
->ipcp_orig_node
);
2000 if (node
->local
.can_change_signature
)
2002 args_to_skip
= BITMAP_GGC_ALLOC ();
2003 for (i
= 0; i
< count
; i
++)
2005 tree t
= VEC_index (tree
, known_vals
, i
);
2007 if ((t
&& TREE_CODE (t
) != TREE_BINFO
)
2008 || !ipa_is_param_used (info
, i
))
2009 bitmap_set_bit (args_to_skip
, i
);
2014 args_to_skip
= NULL
;
2015 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2016 fprintf (dump_file
, " cannot change function signature\n");
2019 for (i
= 0; i
< count
; i
++)
2021 tree t
= VEC_index (tree
, known_vals
, i
);
2022 if (t
&& TREE_CODE (t
) != TREE_BINFO
)
2024 struct ipa_replace_map
*replace_map
;
2026 replace_map
= get_replacement_map (t
, ipa_get_param (info
, i
));
2028 VEC_safe_push (ipa_replace_map_p
, gc
, replace_trees
, replace_map
);
2032 new_node
= cgraph_create_virtual_clone (node
, callers
, replace_trees
,
2033 args_to_skip
, "constprop");
2034 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2035 fprintf (dump_file
, " the new node is %s/%i.\n",
2036 cgraph_node_name (new_node
), new_node
->uid
);
2037 gcc_checking_assert (ipa_node_params_vector
2038 && (VEC_length (ipa_node_params_t
,
2039 ipa_node_params_vector
)
2040 > (unsigned) cgraph_max_uid
));
2041 update_profiling_info (node
, new_node
);
2042 new_info
= IPA_NODE_REF (new_node
);
2043 new_info
->ipcp_orig_node
= node
;
2044 new_info
->known_vals
= known_vals
;
2046 ipcp_discover_new_direct_edges (new_node
, known_vals
);
2048 VEC_free (cgraph_edge_p
, heap
, callers
);
2052 /* Given a NODE, and a subset of its CALLERS, try to populate blanks slots in
2053 KNOWN_VALS with constants and types that are also known for all of the
2057 find_more_values_for_callers_subset (struct cgraph_node
*node
,
2058 VEC (tree
, heap
) *known_vals
,
2059 VEC (cgraph_edge_p
,heap
) *callers
)
2061 struct ipa_node_params
*info
= IPA_NODE_REF (node
);
2062 int i
, count
= ipa_get_param_count (info
);
2064 for (i
= 0; i
< count
; i
++)
2066 struct cgraph_edge
*cs
;
2067 tree newval
= NULL_TREE
;
2070 if (ipa_get_lattice (info
, i
)->bottom
2071 || VEC_index (tree
, known_vals
, i
))
2074 FOR_EACH_VEC_ELT (cgraph_edge_p
, callers
, j
, cs
)
2076 struct ipa_jump_func
*jump_func
;
2079 if (i
>= ipa_get_cs_argument_count (IPA_EDGE_REF (cs
)))
2084 jump_func
= ipa_get_ith_jump_func (IPA_EDGE_REF (cs
), i
);
2085 t
= ipa_value_from_jfunc (IPA_NODE_REF (cs
->caller
), jump_func
);
2088 && !values_equal_for_ipcp_p (t
, newval
)))
2099 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2101 fprintf (dump_file
, " adding an extra known value ");
2102 print_ipcp_constant_value (dump_file
, newval
);
2103 fprintf (dump_file
, " for parameter ");
2104 print_generic_expr (dump_file
, ipa_get_param (info
, i
), 0);
2105 fprintf (dump_file
, "\n");
2108 VEC_replace (tree
, known_vals
, i
, newval
);
2113 /* Given an original NODE and a VAL for which we have already created a
2114 specialized clone, look whether there are incoming edges that still lead
2115 into the old node but now also bring the requested value and also conform to
2116 all other criteria such that they can be redirected the the special node.
2117 This function can therefore redirect the final edge in a SCC. */
2120 perhaps_add_new_callers (struct cgraph_node
*node
, struct ipcp_value
*val
)
2122 struct ipa_node_params
*dest_info
= IPA_NODE_REF (val
->spec_node
);
2123 struct ipcp_value_source
*src
;
2124 int count
= ipa_get_param_count (dest_info
);
2125 gcov_type redirected_sum
= 0;
2127 for (src
= val
->sources
; src
; src
= src
->next
)
2129 struct cgraph_edge
*cs
= src
->cs
;
2132 enum availability availability
;
2133 bool insufficient
= false;
2135 if (cgraph_function_node (cs
->callee
, &availability
) == node
2136 && availability
> AVAIL_OVERWRITABLE
2137 && cgraph_edge_brings_value_p (cs
, src
))
2139 struct ipa_node_params
*caller_info
;
2140 struct ipa_edge_args
*args
;
2143 caller_info
= IPA_NODE_REF (cs
->caller
);
2144 args
= IPA_EDGE_REF (cs
);
2145 for (i
= 0; i
< count
; i
++)
2147 struct ipa_jump_func
*jump_func
;
2150 val
= VEC_index (tree
, dest_info
->known_vals
, i
);
2154 if (i
>= ipa_get_cs_argument_count (args
))
2156 insufficient
= true;
2159 jump_func
= ipa_get_ith_jump_func (args
, i
);
2160 t
= ipa_value_from_jfunc (caller_info
, jump_func
);
2161 if (!t
|| !values_equal_for_ipcp_p (val
, t
))
2163 insufficient
= true;
2171 fprintf (dump_file
, " - adding an extra caller %s/%i"
2173 cgraph_node_name (cs
->caller
), cs
->caller
->uid
,
2174 cgraph_node_name (val
->spec_node
),
2175 val
->spec_node
->uid
);
2177 cgraph_redirect_edge_callee (cs
, val
->spec_node
);
2178 redirected_sum
+= cs
->count
;
2181 cs
= get_next_cgraph_edge_clone (cs
);
2186 update_specialized_profile (val
->spec_node
, node
, redirected_sum
);
2190 /* Copy KNOWN_BINFOS to KNOWN_VALS. */
2193 move_binfos_to_values (VEC (tree
, heap
) *known_vals
,
2194 VEC (tree
, heap
) *known_binfos
)
2199 for (i
= 0; VEC_iterate (tree
, known_binfos
, i
, t
); i
++)
2201 VEC_replace (tree
, known_vals
, i
, t
);
2205 /* Decide whether and what specialized clones of NODE should be created. */
2208 decide_whether_version_node (struct cgraph_node
*node
)
2210 struct ipa_node_params
*info
= IPA_NODE_REF (node
);
2211 int i
, count
= ipa_get_param_count (info
);
2212 VEC (tree
, heap
) *known_csts
, *known_binfos
;
2218 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2219 fprintf (dump_file
, "\nEvaluating opportunities for %s/%i.\n",
2220 cgraph_node_name (node
), node
->uid
);
2222 gather_context_independent_values (info
, &known_csts
, &known_binfos
,
2225 for (i
= 0; i
< count
; i
++)
2227 struct ipcp_lattice
*lat
= ipa_get_lattice (info
, i
);
2228 struct ipcp_value
*val
;
2231 || VEC_index (tree
, known_csts
, i
)
2232 || VEC_index (tree
, known_binfos
, i
))
2235 for (val
= lat
->values
; val
; val
= val
->next
)
2237 int freq_sum
, caller_count
;
2238 gcov_type count_sum
;
2239 VEC (cgraph_edge_p
, heap
) *callers
;
2240 VEC (tree
, heap
) *kv
;
2244 perhaps_add_new_callers (node
, val
);
2247 else if (val
->local_size_cost
+ overall_size
> max_new_size
)
2249 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2250 fprintf (dump_file
, " Ignoring candidate value because "
2251 "max_new_size would be reached with %li.\n",
2252 val
->local_size_cost
+ overall_size
);
2255 else if (!get_info_about_necessary_edges (val
, &freq_sum
, &count_sum
,
2259 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2261 fprintf (dump_file
, " - considering value ");
2262 print_ipcp_constant_value (dump_file
, val
->value
);
2263 fprintf (dump_file
, " for parameter ");
2264 print_generic_expr (dump_file
, ipa_get_param (info
, i
), 0);
2265 fprintf (dump_file
, " (caller_count: %i)\n", caller_count
);
2269 if (!good_cloning_opportunity_p (node
, val
->local_time_benefit
,
2270 freq_sum
, count_sum
,
2271 val
->local_size_cost
)
2272 && !good_cloning_opportunity_p (node
,
2273 val
->local_time_benefit
2274 + val
->prop_time_benefit
,
2275 freq_sum
, count_sum
,
2276 val
->local_size_cost
2277 + val
->prop_size_cost
))
2281 fprintf (dump_file
, " Creating a specialized node of %s/%i.\n",
2282 cgraph_node_name (node
), node
->uid
);
2284 callers
= gather_edges_for_value (val
, caller_count
);
2285 kv
= VEC_copy (tree
, heap
, known_csts
);
2286 move_binfos_to_values (kv
, known_binfos
);
2287 VEC_replace (tree
, kv
, i
, val
->value
);
2288 find_more_values_for_callers_subset (node
, kv
, callers
);
2289 val
->spec_node
= create_specialized_node (node
, kv
, callers
);
2290 overall_size
+= val
->local_size_cost
;
2291 info
= IPA_NODE_REF (node
);
2293 /* TODO: If for some lattice there is only one other known value
2294 left, make a special node for it too. */
2297 VEC_replace (tree
, kv
, i
, val
->value
);
2301 if (info
->clone_for_all_contexts
)
2303 VEC (cgraph_edge_p
, heap
) *callers
;
2306 fprintf (dump_file
, " - Creating a specialized node of %s/%i "
2307 "for all known contexts.\n", cgraph_node_name (node
),
2310 callers
= collect_callers_of_node (node
);
2311 move_binfos_to_values (known_csts
, known_binfos
);
2312 create_specialized_node (node
, known_csts
, callers
);
2313 info
= IPA_NODE_REF (node
);
2314 info
->clone_for_all_contexts
= false;
2318 VEC_free (tree
, heap
, known_csts
);
2320 VEC_free (tree
, heap
, known_binfos
);
2324 /* Transitively mark all callees of NODE within the same SCC as not dead. */
2327 spread_undeadness (struct cgraph_node
*node
)
2329 struct cgraph_edge
*cs
;
2331 for (cs
= node
->callees
; cs
; cs
= cs
->next_callee
)
2332 if (edge_within_scc (cs
))
2334 struct cgraph_node
*callee
;
2335 struct ipa_node_params
*info
;
2337 callee
= cgraph_function_node (cs
->callee
, NULL
);
2338 info
= IPA_NODE_REF (callee
);
2340 if (info
->node_dead
)
2342 info
->node_dead
= 0;
2343 spread_undeadness (callee
);
2348 /* Return true if NODE has a caller from outside of its SCC that is not
2349 dead. Worker callback for cgraph_for_node_and_aliases. */
2352 has_undead_caller_from_outside_scc_p (struct cgraph_node
*node
,
2353 void *data ATTRIBUTE_UNUSED
)
2355 struct cgraph_edge
*cs
;
2357 for (cs
= node
->callers
; cs
; cs
= cs
->next_caller
)
2358 if (cs
->caller
->thunk
.thunk_p
2359 && cgraph_for_node_and_aliases (cs
->caller
,
2360 has_undead_caller_from_outside_scc_p
,
2363 else if (!edge_within_scc (cs
)
2364 && !IPA_NODE_REF (cs
->caller
)->node_dead
)
2370 /* Identify nodes within the same SCC as NODE which are no longer needed
2371 because of new clones and will be removed as unreachable. */
2374 identify_dead_nodes (struct cgraph_node
*node
)
2376 struct cgraph_node
*v
;
2377 for (v
= node
; v
; v
= ((struct ipa_dfs_info
*) v
->aux
)->next_cycle
)
2378 if (cgraph_will_be_removed_from_program_if_no_direct_calls (v
)
2379 && !cgraph_for_node_and_aliases (v
,
2380 has_undead_caller_from_outside_scc_p
,
2382 IPA_NODE_REF (v
)->node_dead
= 1;
2384 for (v
= node
; v
; v
= ((struct ipa_dfs_info
*) v
->aux
)->next_cycle
)
2385 if (!IPA_NODE_REF (v
)->node_dead
)
2386 spread_undeadness (v
);
2388 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2390 for (v
= node
; v
; v
= ((struct ipa_dfs_info
*) v
->aux
)->next_cycle
)
2391 if (IPA_NODE_REF (v
)->node_dead
)
2392 fprintf (dump_file
, " Marking node as dead: %s/%i.\n",
2393 cgraph_node_name (v
), v
->uid
);
2397 /* The decision stage. Iterate over the topological order of call graph nodes
2398 TOPO and make specialized clones if deemed beneficial. */
2401 ipcp_decision_stage (struct topo_info
*topo
)
2406 fprintf (dump_file
, "\nIPA decision stage:\n\n");
2408 for (i
= topo
->nnodes
- 1; i
>= 0; i
--)
2410 struct cgraph_node
*node
= topo
->order
[i
];
2411 bool change
= false, iterate
= true;
2415 struct cgraph_node
*v
;
2417 for (v
= node
; v
; v
= ((struct ipa_dfs_info
*) v
->aux
)->next_cycle
)
2418 if (cgraph_function_with_gimple_body_p (v
)
2419 && ipcp_versionable_function_p (v
))
2420 iterate
|= decide_whether_version_node (v
);
2425 identify_dead_nodes (node
);
2429 /* The IPCP driver. */
2434 struct cgraph_2edge_hook_list
*edge_duplication_hook_holder
;
2435 struct topo_info topo
;
2437 cgraph_remove_unreachable_nodes (true,dump_file
);
2438 ipa_check_create_node_params ();
2439 ipa_check_create_edge_args ();
2440 grow_next_edge_clone_vector ();
2441 edge_duplication_hook_holder
=
2442 cgraph_add_edge_duplication_hook (&ipcp_edge_duplication_hook
, NULL
);
2443 ipcp_values_pool
= create_alloc_pool ("IPA-CP values",
2444 sizeof (struct ipcp_value
), 32);
2445 ipcp_sources_pool
= create_alloc_pool ("IPA-CP value sources",
2446 sizeof (struct ipcp_value_source
), 64);
2449 fprintf (dump_file
, "\nIPA structures before propagation:\n");
2450 if (dump_flags
& TDF_DETAILS
)
2451 ipa_print_all_params (dump_file
);
2452 ipa_print_all_jump_functions (dump_file
);
2455 /* Topological sort. */
2456 build_toporder_info (&topo
);
2457 /* Do the interprocedural propagation. */
2458 ipcp_propagate_stage (&topo
);
2459 /* Decide what constant propagation and cloning should be performed. */
2460 ipcp_decision_stage (&topo
);
2462 /* Free all IPCP structures. */
2463 free_toporder_info (&topo
);
2464 VEC_free (cgraph_edge_p
, heap
, next_edge_clone
);
2465 cgraph_remove_edge_duplication_hook (edge_duplication_hook_holder
);
2466 ipa_free_all_structures_after_ipa_cp ();
2468 fprintf (dump_file
, "\nIPA constant propagation end\n");
2472 /* Initialization and computation of IPCP data structures. This is the initial
2473 intraprocedural analysis of functions, which gathers information to be
2474 propagated later on. */
2477 ipcp_generate_summary (void)
2479 struct cgraph_node
*node
;
2482 fprintf (dump_file
, "\nIPA constant propagation start:\n");
2483 ipa_register_cgraph_hooks ();
2485 FOR_EACH_FUNCTION_WITH_GIMPLE_BODY (node
)
2487 /* Unreachable nodes should have been eliminated before ipcp. */
2488 gcc_assert (node
->needed
|| node
->reachable
);
2489 node
->local
.versionable
= tree_versionable_function_p (node
->decl
);
2490 ipa_analyze_node (node
);
2494 /* Write ipcp summary for nodes in SET. */
2497 ipcp_write_summary (cgraph_node_set set
,
2498 varpool_node_set vset ATTRIBUTE_UNUSED
)
2500 ipa_prop_write_jump_functions (set
);
2503 /* Read ipcp summary. */
2506 ipcp_read_summary (void)
2508 ipa_prop_read_jump_functions ();
2511 /* Gate for IPCP optimization. */
2514 cgraph_gate_cp (void)
2516 /* FIXME: We should remove the optimize check after we ensure we never run
2517 IPA passes when not optimizing. */
2518 return flag_ipa_cp
&& optimize
;
2521 struct ipa_opt_pass_d pass_ipa_cp
=
2526 cgraph_gate_cp
, /* gate */
2527 ipcp_driver
, /* execute */
2530 0, /* static_pass_number */
2531 TV_IPA_CONSTANT_PROP
, /* tv_id */
2532 0, /* properties_required */
2533 0, /* properties_provided */
2534 0, /* properties_destroyed */
2535 0, /* todo_flags_start */
2537 TODO_remove_functions
| TODO_ggc_collect
/* todo_flags_finish */
2539 ipcp_generate_summary
, /* generate_summary */
2540 ipcp_write_summary
, /* write_summary */
2541 ipcp_read_summary
, /* read_summary */
2542 NULL
, /* write_optimization_summary */
2543 NULL
, /* read_optimization_summary */
2544 NULL
, /* stmt_fixup */
2546 NULL
, /* function_transform */
2547 NULL
, /* variable_transform */