PR tree-optimization/45830
[official-gcc.git] / gcc / function.c
bloba081b270ec05e3e6ef461e7f9f12ad0d04922ca5
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
4 2010, 2011 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register. */
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl-error.h"
41 #include "tree.h"
42 #include "flags.h"
43 #include "except.h"
44 #include "function.h"
45 #include "expr.h"
46 #include "optabs.h"
47 #include "libfuncs.h"
48 #include "regs.h"
49 #include "hard-reg-set.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "output.h"
53 #include "basic-block.h"
54 #include "hashtab.h"
55 #include "ggc.h"
56 #include "tm_p.h"
57 #include "integrate.h"
58 #include "langhooks.h"
59 #include "target.h"
60 #include "common/common-target.h"
61 #include "cfglayout.h"
62 #include "gimple.h"
63 #include "tree-pass.h"
64 #include "predict.h"
65 #include "df.h"
66 #include "timevar.h"
67 #include "vecprim.h"
68 #include "params.h"
69 #include "bb-reorder.h"
71 /* So we can assign to cfun in this file. */
72 #undef cfun
74 #ifndef STACK_ALIGNMENT_NEEDED
75 #define STACK_ALIGNMENT_NEEDED 1
76 #endif
78 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
80 /* Some systems use __main in a way incompatible with its use in gcc, in these
81 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
82 give the same symbol without quotes for an alternative entry point. You
83 must define both, or neither. */
84 #ifndef NAME__MAIN
85 #define NAME__MAIN "__main"
86 #endif
88 /* Round a value to the lowest integer less than it that is a multiple of
89 the required alignment. Avoid using division in case the value is
90 negative. Assume the alignment is a power of two. */
91 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
93 /* Similar, but round to the next highest integer that meets the
94 alignment. */
95 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
97 /* Nonzero if function being compiled doesn't contain any calls
98 (ignoring the prologue and epilogue). This is set prior to
99 local register allocation and is valid for the remaining
100 compiler passes. */
101 int current_function_is_leaf;
103 /* Nonzero if function being compiled doesn't modify the stack pointer
104 (ignoring the prologue and epilogue). This is only valid after
105 pass_stack_ptr_mod has run. */
106 int current_function_sp_is_unchanging;
108 /* Nonzero if the function being compiled is a leaf function which only
109 uses leaf registers. This is valid after reload (specifically after
110 sched2) and is useful only if the port defines LEAF_REGISTERS. */
111 int current_function_uses_only_leaf_regs;
113 /* Nonzero once virtual register instantiation has been done.
114 assign_stack_local uses frame_pointer_rtx when this is nonzero.
115 calls.c:emit_library_call_value_1 uses it to set up
116 post-instantiation libcalls. */
117 int virtuals_instantiated;
119 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
120 static GTY(()) int funcdef_no;
122 /* These variables hold pointers to functions to create and destroy
123 target specific, per-function data structures. */
124 struct machine_function * (*init_machine_status) (void);
126 /* The currently compiled function. */
127 struct function *cfun = 0;
129 /* These hashes record the prologue and epilogue insns. */
130 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
131 htab_t prologue_insn_hash;
132 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
133 htab_t epilogue_insn_hash;
136 htab_t types_used_by_vars_hash = NULL;
137 VEC(tree,gc) *types_used_by_cur_var_decl;
139 /* Forward declarations. */
141 static struct temp_slot *find_temp_slot_from_address (rtx);
142 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
143 static void pad_below (struct args_size *, enum machine_mode, tree);
144 static void reorder_blocks_1 (rtx, tree, VEC(tree,heap) **);
145 static int all_blocks (tree, tree *);
146 static tree *get_block_vector (tree, int *);
147 extern tree debug_find_var_in_block_tree (tree, tree);
148 /* We always define `record_insns' even if it's not used so that we
149 can always export `prologue_epilogue_contains'. */
150 static void record_insns (rtx, rtx, htab_t *) ATTRIBUTE_UNUSED;
151 static bool contains (const_rtx, htab_t);
152 static void prepare_function_start (void);
153 static void do_clobber_return_reg (rtx, void *);
154 static void do_use_return_reg (rtx, void *);
155 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
157 /* Stack of nested functions. */
158 /* Keep track of the cfun stack. */
160 typedef struct function *function_p;
162 DEF_VEC_P(function_p);
163 DEF_VEC_ALLOC_P(function_p,heap);
164 static VEC(function_p,heap) *function_context_stack;
166 /* Save the current context for compilation of a nested function.
167 This is called from language-specific code. */
169 void
170 push_function_context (void)
172 if (cfun == 0)
173 allocate_struct_function (NULL, false);
175 VEC_safe_push (function_p, heap, function_context_stack, cfun);
176 set_cfun (NULL);
179 /* Restore the last saved context, at the end of a nested function.
180 This function is called from language-specific code. */
182 void
183 pop_function_context (void)
185 struct function *p = VEC_pop (function_p, function_context_stack);
186 set_cfun (p);
187 current_function_decl = p->decl;
189 /* Reset variables that have known state during rtx generation. */
190 virtuals_instantiated = 0;
191 generating_concat_p = 1;
194 /* Clear out all parts of the state in F that can safely be discarded
195 after the function has been parsed, but not compiled, to let
196 garbage collection reclaim the memory. */
198 void
199 free_after_parsing (struct function *f)
201 f->language = 0;
204 /* Clear out all parts of the state in F that can safely be discarded
205 after the function has been compiled, to let garbage collection
206 reclaim the memory. */
208 void
209 free_after_compilation (struct function *f)
211 prologue_insn_hash = NULL;
212 epilogue_insn_hash = NULL;
214 free (crtl->emit.regno_pointer_align);
216 memset (crtl, 0, sizeof (struct rtl_data));
217 f->eh = NULL;
218 f->machine = NULL;
219 f->cfg = NULL;
221 regno_reg_rtx = NULL;
222 insn_locators_free ();
225 /* Return size needed for stack frame based on slots so far allocated.
226 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
227 the caller may have to do that. */
229 HOST_WIDE_INT
230 get_frame_size (void)
232 if (FRAME_GROWS_DOWNWARD)
233 return -frame_offset;
234 else
235 return frame_offset;
238 /* Issue an error message and return TRUE if frame OFFSET overflows in
239 the signed target pointer arithmetics for function FUNC. Otherwise
240 return FALSE. */
242 bool
243 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
245 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
247 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
248 /* Leave room for the fixed part of the frame. */
249 - 64 * UNITS_PER_WORD)
251 error_at (DECL_SOURCE_LOCATION (func),
252 "total size of local objects too large");
253 return TRUE;
256 return FALSE;
259 /* Return stack slot alignment in bits for TYPE and MODE. */
261 static unsigned int
262 get_stack_local_alignment (tree type, enum machine_mode mode)
264 unsigned int alignment;
266 if (mode == BLKmode)
267 alignment = BIGGEST_ALIGNMENT;
268 else
269 alignment = GET_MODE_ALIGNMENT (mode);
271 /* Allow the frond-end to (possibly) increase the alignment of this
272 stack slot. */
273 if (! type)
274 type = lang_hooks.types.type_for_mode (mode, 0);
276 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
279 /* Determine whether it is possible to fit a stack slot of size SIZE and
280 alignment ALIGNMENT into an area in the stack frame that starts at
281 frame offset START and has a length of LENGTH. If so, store the frame
282 offset to be used for the stack slot in *POFFSET and return true;
283 return false otherwise. This function will extend the frame size when
284 given a start/length pair that lies at the end of the frame. */
286 static bool
287 try_fit_stack_local (HOST_WIDE_INT start, HOST_WIDE_INT length,
288 HOST_WIDE_INT size, unsigned int alignment,
289 HOST_WIDE_INT *poffset)
291 HOST_WIDE_INT this_frame_offset;
292 int frame_off, frame_alignment, frame_phase;
294 /* Calculate how many bytes the start of local variables is off from
295 stack alignment. */
296 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
297 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
298 frame_phase = frame_off ? frame_alignment - frame_off : 0;
300 /* Round the frame offset to the specified alignment. */
302 /* We must be careful here, since FRAME_OFFSET might be negative and
303 division with a negative dividend isn't as well defined as we might
304 like. So we instead assume that ALIGNMENT is a power of two and
305 use logical operations which are unambiguous. */
306 if (FRAME_GROWS_DOWNWARD)
307 this_frame_offset
308 = (FLOOR_ROUND (start + length - size - frame_phase,
309 (unsigned HOST_WIDE_INT) alignment)
310 + frame_phase);
311 else
312 this_frame_offset
313 = (CEIL_ROUND (start - frame_phase,
314 (unsigned HOST_WIDE_INT) alignment)
315 + frame_phase);
317 /* See if it fits. If this space is at the edge of the frame,
318 consider extending the frame to make it fit. Our caller relies on
319 this when allocating a new slot. */
320 if (frame_offset == start && this_frame_offset < frame_offset)
321 frame_offset = this_frame_offset;
322 else if (this_frame_offset < start)
323 return false;
324 else if (start + length == frame_offset
325 && this_frame_offset + size > start + length)
326 frame_offset = this_frame_offset + size;
327 else if (this_frame_offset + size > start + length)
328 return false;
330 *poffset = this_frame_offset;
331 return true;
334 /* Create a new frame_space structure describing free space in the stack
335 frame beginning at START and ending at END, and chain it into the
336 function's frame_space_list. */
338 static void
339 add_frame_space (HOST_WIDE_INT start, HOST_WIDE_INT end)
341 struct frame_space *space = ggc_alloc_frame_space ();
342 space->next = crtl->frame_space_list;
343 crtl->frame_space_list = space;
344 space->start = start;
345 space->length = end - start;
348 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
349 with machine mode MODE.
351 ALIGN controls the amount of alignment for the address of the slot:
352 0 means according to MODE,
353 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
354 -2 means use BITS_PER_UNIT,
355 positive specifies alignment boundary in bits.
357 KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce
358 alignment and ASLK_RECORD_PAD bit set if we should remember
359 extra space we allocated for alignment purposes. When we are
360 called from assign_stack_temp_for_type, it is not set so we don't
361 track the same stack slot in two independent lists.
363 We do not round to stack_boundary here. */
366 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size,
367 int align, int kind)
369 rtx x, addr;
370 int bigend_correction = 0;
371 HOST_WIDE_INT slot_offset = 0, old_frame_offset;
372 unsigned int alignment, alignment_in_bits;
374 if (align == 0)
376 alignment = get_stack_local_alignment (NULL, mode);
377 alignment /= BITS_PER_UNIT;
379 else if (align == -1)
381 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
382 size = CEIL_ROUND (size, alignment);
384 else if (align == -2)
385 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
386 else
387 alignment = align / BITS_PER_UNIT;
389 alignment_in_bits = alignment * BITS_PER_UNIT;
391 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
392 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
394 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
395 alignment = alignment_in_bits / BITS_PER_UNIT;
398 if (SUPPORTS_STACK_ALIGNMENT)
400 if (crtl->stack_alignment_estimated < alignment_in_bits)
402 if (!crtl->stack_realign_processed)
403 crtl->stack_alignment_estimated = alignment_in_bits;
404 else
406 /* If stack is realigned and stack alignment value
407 hasn't been finalized, it is OK not to increase
408 stack_alignment_estimated. The bigger alignment
409 requirement is recorded in stack_alignment_needed
410 below. */
411 gcc_assert (!crtl->stack_realign_finalized);
412 if (!crtl->stack_realign_needed)
414 /* It is OK to reduce the alignment as long as the
415 requested size is 0 or the estimated stack
416 alignment >= mode alignment. */
417 gcc_assert ((kind & ASLK_REDUCE_ALIGN)
418 || size == 0
419 || (crtl->stack_alignment_estimated
420 >= GET_MODE_ALIGNMENT (mode)));
421 alignment_in_bits = crtl->stack_alignment_estimated;
422 alignment = alignment_in_bits / BITS_PER_UNIT;
428 if (crtl->stack_alignment_needed < alignment_in_bits)
429 crtl->stack_alignment_needed = alignment_in_bits;
430 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
431 crtl->max_used_stack_slot_alignment = alignment_in_bits;
433 if (mode != BLKmode || size != 0)
435 if (kind & ASLK_RECORD_PAD)
437 struct frame_space **psp;
439 for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next)
441 struct frame_space *space = *psp;
442 if (!try_fit_stack_local (space->start, space->length, size,
443 alignment, &slot_offset))
444 continue;
445 *psp = space->next;
446 if (slot_offset > space->start)
447 add_frame_space (space->start, slot_offset);
448 if (slot_offset + size < space->start + space->length)
449 add_frame_space (slot_offset + size,
450 space->start + space->length);
451 goto found_space;
455 else if (!STACK_ALIGNMENT_NEEDED)
457 slot_offset = frame_offset;
458 goto found_space;
461 old_frame_offset = frame_offset;
463 if (FRAME_GROWS_DOWNWARD)
465 frame_offset -= size;
466 try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset);
468 if (kind & ASLK_RECORD_PAD)
470 if (slot_offset > frame_offset)
471 add_frame_space (frame_offset, slot_offset);
472 if (slot_offset + size < old_frame_offset)
473 add_frame_space (slot_offset + size, old_frame_offset);
476 else
478 frame_offset += size;
479 try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset);
481 if (kind & ASLK_RECORD_PAD)
483 if (slot_offset > old_frame_offset)
484 add_frame_space (old_frame_offset, slot_offset);
485 if (slot_offset + size < frame_offset)
486 add_frame_space (slot_offset + size, frame_offset);
490 found_space:
491 /* On a big-endian machine, if we are allocating more space than we will use,
492 use the least significant bytes of those that are allocated. */
493 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
494 bigend_correction = size - GET_MODE_SIZE (mode);
496 /* If we have already instantiated virtual registers, return the actual
497 address relative to the frame pointer. */
498 if (virtuals_instantiated)
499 addr = plus_constant (frame_pointer_rtx,
500 trunc_int_for_mode
501 (slot_offset + bigend_correction
502 + STARTING_FRAME_OFFSET, Pmode));
503 else
504 addr = plus_constant (virtual_stack_vars_rtx,
505 trunc_int_for_mode
506 (slot_offset + bigend_correction,
507 Pmode));
509 x = gen_rtx_MEM (mode, addr);
510 set_mem_align (x, alignment_in_bits);
511 MEM_NOTRAP_P (x) = 1;
513 stack_slot_list
514 = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
516 if (frame_offset_overflow (frame_offset, current_function_decl))
517 frame_offset = 0;
519 return x;
522 /* Wrap up assign_stack_local_1 with last parameter as false. */
525 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
527 return assign_stack_local_1 (mode, size, align, ASLK_RECORD_PAD);
531 /* In order to evaluate some expressions, such as function calls returning
532 structures in memory, we need to temporarily allocate stack locations.
533 We record each allocated temporary in the following structure.
535 Associated with each temporary slot is a nesting level. When we pop up
536 one level, all temporaries associated with the previous level are freed.
537 Normally, all temporaries are freed after the execution of the statement
538 in which they were created. However, if we are inside a ({...}) grouping,
539 the result may be in a temporary and hence must be preserved. If the
540 result could be in a temporary, we preserve it if we can determine which
541 one it is in. If we cannot determine which temporary may contain the
542 result, all temporaries are preserved. A temporary is preserved by
543 pretending it was allocated at the previous nesting level.
545 Automatic variables are also assigned temporary slots, at the nesting
546 level where they are defined. They are marked a "kept" so that
547 free_temp_slots will not free them. */
549 struct GTY(()) temp_slot {
550 /* Points to next temporary slot. */
551 struct temp_slot *next;
552 /* Points to previous temporary slot. */
553 struct temp_slot *prev;
554 /* The rtx to used to reference the slot. */
555 rtx slot;
556 /* The size, in units, of the slot. */
557 HOST_WIDE_INT size;
558 /* The type of the object in the slot, or zero if it doesn't correspond
559 to a type. We use this to determine whether a slot can be reused.
560 It can be reused if objects of the type of the new slot will always
561 conflict with objects of the type of the old slot. */
562 tree type;
563 /* The alignment (in bits) of the slot. */
564 unsigned int align;
565 /* Nonzero if this temporary is currently in use. */
566 char in_use;
567 /* Nonzero if this temporary has its address taken. */
568 char addr_taken;
569 /* Nesting level at which this slot is being used. */
570 int level;
571 /* Nonzero if this should survive a call to free_temp_slots. */
572 int keep;
573 /* The offset of the slot from the frame_pointer, including extra space
574 for alignment. This info is for combine_temp_slots. */
575 HOST_WIDE_INT base_offset;
576 /* The size of the slot, including extra space for alignment. This
577 info is for combine_temp_slots. */
578 HOST_WIDE_INT full_size;
581 /* A table of addresses that represent a stack slot. The table is a mapping
582 from address RTXen to a temp slot. */
583 static GTY((param_is(struct temp_slot_address_entry))) htab_t temp_slot_address_table;
585 /* Entry for the above hash table. */
586 struct GTY(()) temp_slot_address_entry {
587 hashval_t hash;
588 rtx address;
589 struct temp_slot *temp_slot;
592 /* Removes temporary slot TEMP from LIST. */
594 static void
595 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
597 if (temp->next)
598 temp->next->prev = temp->prev;
599 if (temp->prev)
600 temp->prev->next = temp->next;
601 else
602 *list = temp->next;
604 temp->prev = temp->next = NULL;
607 /* Inserts temporary slot TEMP to LIST. */
609 static void
610 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
612 temp->next = *list;
613 if (*list)
614 (*list)->prev = temp;
615 temp->prev = NULL;
616 *list = temp;
619 /* Returns the list of used temp slots at LEVEL. */
621 static struct temp_slot **
622 temp_slots_at_level (int level)
624 if (level >= (int) VEC_length (temp_slot_p, used_temp_slots))
625 VEC_safe_grow_cleared (temp_slot_p, gc, used_temp_slots, level + 1);
627 return &(VEC_address (temp_slot_p, used_temp_slots)[level]);
630 /* Returns the maximal temporary slot level. */
632 static int
633 max_slot_level (void)
635 if (!used_temp_slots)
636 return -1;
638 return VEC_length (temp_slot_p, used_temp_slots) - 1;
641 /* Moves temporary slot TEMP to LEVEL. */
643 static void
644 move_slot_to_level (struct temp_slot *temp, int level)
646 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
647 insert_slot_to_list (temp, temp_slots_at_level (level));
648 temp->level = level;
651 /* Make temporary slot TEMP available. */
653 static void
654 make_slot_available (struct temp_slot *temp)
656 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
657 insert_slot_to_list (temp, &avail_temp_slots);
658 temp->in_use = 0;
659 temp->level = -1;
662 /* Compute the hash value for an address -> temp slot mapping.
663 The value is cached on the mapping entry. */
664 static hashval_t
665 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
667 int do_not_record = 0;
668 return hash_rtx (t->address, GET_MODE (t->address),
669 &do_not_record, NULL, false);
672 /* Return the hash value for an address -> temp slot mapping. */
673 static hashval_t
674 temp_slot_address_hash (const void *p)
676 const struct temp_slot_address_entry *t;
677 t = (const struct temp_slot_address_entry *) p;
678 return t->hash;
681 /* Compare two address -> temp slot mapping entries. */
682 static int
683 temp_slot_address_eq (const void *p1, const void *p2)
685 const struct temp_slot_address_entry *t1, *t2;
686 t1 = (const struct temp_slot_address_entry *) p1;
687 t2 = (const struct temp_slot_address_entry *) p2;
688 return exp_equiv_p (t1->address, t2->address, 0, true);
691 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
692 static void
693 insert_temp_slot_address (rtx address, struct temp_slot *temp_slot)
695 void **slot;
696 struct temp_slot_address_entry *t = ggc_alloc_temp_slot_address_entry ();
697 t->address = address;
698 t->temp_slot = temp_slot;
699 t->hash = temp_slot_address_compute_hash (t);
700 slot = htab_find_slot_with_hash (temp_slot_address_table, t, t->hash, INSERT);
701 *slot = t;
704 /* Remove an address -> temp slot mapping entry if the temp slot is
705 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
706 static int
707 remove_unused_temp_slot_addresses_1 (void **slot, void *data ATTRIBUTE_UNUSED)
709 const struct temp_slot_address_entry *t;
710 t = (const struct temp_slot_address_entry *) *slot;
711 if (! t->temp_slot->in_use)
712 *slot = NULL;
713 return 1;
716 /* Remove all mappings of addresses to unused temp slots. */
717 static void
718 remove_unused_temp_slot_addresses (void)
720 htab_traverse (temp_slot_address_table,
721 remove_unused_temp_slot_addresses_1,
722 NULL);
725 /* Find the temp slot corresponding to the object at address X. */
727 static struct temp_slot *
728 find_temp_slot_from_address (rtx x)
730 struct temp_slot *p;
731 struct temp_slot_address_entry tmp, *t;
733 /* First try the easy way:
734 See if X exists in the address -> temp slot mapping. */
735 tmp.address = x;
736 tmp.temp_slot = NULL;
737 tmp.hash = temp_slot_address_compute_hash (&tmp);
738 t = (struct temp_slot_address_entry *)
739 htab_find_with_hash (temp_slot_address_table, &tmp, tmp.hash);
740 if (t)
741 return t->temp_slot;
743 /* If we have a sum involving a register, see if it points to a temp
744 slot. */
745 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
746 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
747 return p;
748 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
749 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
750 return p;
752 /* Last resort: Address is a virtual stack var address. */
753 if (GET_CODE (x) == PLUS
754 && XEXP (x, 0) == virtual_stack_vars_rtx
755 && CONST_INT_P (XEXP (x, 1)))
757 int i;
758 for (i = max_slot_level (); i >= 0; i--)
759 for (p = *temp_slots_at_level (i); p; p = p->next)
761 if (INTVAL (XEXP (x, 1)) >= p->base_offset
762 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size)
763 return p;
767 return NULL;
770 /* Allocate a temporary stack slot and record it for possible later
771 reuse.
773 MODE is the machine mode to be given to the returned rtx.
775 SIZE is the size in units of the space required. We do no rounding here
776 since assign_stack_local will do any required rounding.
778 KEEP is 1 if this slot is to be retained after a call to
779 free_temp_slots. Automatic variables for a block are allocated
780 with this flag. KEEP values of 2 or 3 were needed respectively
781 for variables whose lifetime is controlled by CLEANUP_POINT_EXPRs
782 or for SAVE_EXPRs, but they are now unused.
784 TYPE is the type that will be used for the stack slot. */
787 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
788 int keep, tree type)
790 unsigned int align;
791 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
792 rtx slot;
794 /* If SIZE is -1 it means that somebody tried to allocate a temporary
795 of a variable size. */
796 gcc_assert (size != -1);
798 /* These are now unused. */
799 gcc_assert (keep <= 1);
801 align = get_stack_local_alignment (type, mode);
803 /* Try to find an available, already-allocated temporary of the proper
804 mode which meets the size and alignment requirements. Choose the
805 smallest one with the closest alignment.
807 If assign_stack_temp is called outside of the tree->rtl expansion,
808 we cannot reuse the stack slots (that may still refer to
809 VIRTUAL_STACK_VARS_REGNUM). */
810 if (!virtuals_instantiated)
812 for (p = avail_temp_slots; p; p = p->next)
814 if (p->align >= align && p->size >= size
815 && GET_MODE (p->slot) == mode
816 && objects_must_conflict_p (p->type, type)
817 && (best_p == 0 || best_p->size > p->size
818 || (best_p->size == p->size && best_p->align > p->align)))
820 if (p->align == align && p->size == size)
822 selected = p;
823 cut_slot_from_list (selected, &avail_temp_slots);
824 best_p = 0;
825 break;
827 best_p = p;
832 /* Make our best, if any, the one to use. */
833 if (best_p)
835 selected = best_p;
836 cut_slot_from_list (selected, &avail_temp_slots);
838 /* If there are enough aligned bytes left over, make them into a new
839 temp_slot so that the extra bytes don't get wasted. Do this only
840 for BLKmode slots, so that we can be sure of the alignment. */
841 if (GET_MODE (best_p->slot) == BLKmode)
843 int alignment = best_p->align / BITS_PER_UNIT;
844 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
846 if (best_p->size - rounded_size >= alignment)
848 p = ggc_alloc_temp_slot ();
849 p->in_use = p->addr_taken = 0;
850 p->size = best_p->size - rounded_size;
851 p->base_offset = best_p->base_offset + rounded_size;
852 p->full_size = best_p->full_size - rounded_size;
853 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
854 p->align = best_p->align;
855 p->type = best_p->type;
856 insert_slot_to_list (p, &avail_temp_slots);
858 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
859 stack_slot_list);
861 best_p->size = rounded_size;
862 best_p->full_size = rounded_size;
867 /* If we still didn't find one, make a new temporary. */
868 if (selected == 0)
870 HOST_WIDE_INT frame_offset_old = frame_offset;
872 p = ggc_alloc_temp_slot ();
874 /* We are passing an explicit alignment request to assign_stack_local.
875 One side effect of that is assign_stack_local will not round SIZE
876 to ensure the frame offset remains suitably aligned.
878 So for requests which depended on the rounding of SIZE, we go ahead
879 and round it now. We also make sure ALIGNMENT is at least
880 BIGGEST_ALIGNMENT. */
881 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
882 p->slot = assign_stack_local_1 (mode,
883 (mode == BLKmode
884 ? CEIL_ROUND (size,
885 (int) align
886 / BITS_PER_UNIT)
887 : size),
888 align, 0);
890 p->align = align;
892 /* The following slot size computation is necessary because we don't
893 know the actual size of the temporary slot until assign_stack_local
894 has performed all the frame alignment and size rounding for the
895 requested temporary. Note that extra space added for alignment
896 can be either above or below this stack slot depending on which
897 way the frame grows. We include the extra space if and only if it
898 is above this slot. */
899 if (FRAME_GROWS_DOWNWARD)
900 p->size = frame_offset_old - frame_offset;
901 else
902 p->size = size;
904 /* Now define the fields used by combine_temp_slots. */
905 if (FRAME_GROWS_DOWNWARD)
907 p->base_offset = frame_offset;
908 p->full_size = frame_offset_old - frame_offset;
910 else
912 p->base_offset = frame_offset_old;
913 p->full_size = frame_offset - frame_offset_old;
916 selected = p;
919 p = selected;
920 p->in_use = 1;
921 p->addr_taken = 0;
922 p->type = type;
923 p->level = temp_slot_level;
924 p->keep = keep;
926 pp = temp_slots_at_level (p->level);
927 insert_slot_to_list (p, pp);
928 insert_temp_slot_address (XEXP (p->slot, 0), p);
930 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
931 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
932 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
934 /* If we know the alias set for the memory that will be used, use
935 it. If there's no TYPE, then we don't know anything about the
936 alias set for the memory. */
937 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
938 set_mem_align (slot, align);
940 /* If a type is specified, set the relevant flags. */
941 if (type != 0)
943 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
944 gcc_checking_assert (!MEM_SCALAR_P (slot) && !MEM_IN_STRUCT_P (slot));
945 if (AGGREGATE_TYPE_P (type) || TREE_CODE (type) == COMPLEX_TYPE)
946 MEM_IN_STRUCT_P (slot) = 1;
947 else
948 MEM_SCALAR_P (slot) = 1;
950 MEM_NOTRAP_P (slot) = 1;
952 return slot;
955 /* Allocate a temporary stack slot and record it for possible later
956 reuse. First three arguments are same as in preceding function. */
959 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
961 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
964 /* Assign a temporary.
965 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
966 and so that should be used in error messages. In either case, we
967 allocate of the given type.
968 KEEP is as for assign_stack_temp.
969 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
970 it is 0 if a register is OK.
971 DONT_PROMOTE is 1 if we should not promote values in register
972 to wider modes. */
975 assign_temp (tree type_or_decl, int keep, int memory_required,
976 int dont_promote ATTRIBUTE_UNUSED)
978 tree type, decl;
979 enum machine_mode mode;
980 #ifdef PROMOTE_MODE
981 int unsignedp;
982 #endif
984 if (DECL_P (type_or_decl))
985 decl = type_or_decl, type = TREE_TYPE (decl);
986 else
987 decl = NULL, type = type_or_decl;
989 mode = TYPE_MODE (type);
990 #ifdef PROMOTE_MODE
991 unsignedp = TYPE_UNSIGNED (type);
992 #endif
994 if (mode == BLKmode || memory_required)
996 HOST_WIDE_INT size = int_size_in_bytes (type);
997 rtx tmp;
999 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
1000 problems with allocating the stack space. */
1001 if (size == 0)
1002 size = 1;
1004 /* Unfortunately, we don't yet know how to allocate variable-sized
1005 temporaries. However, sometimes we can find a fixed upper limit on
1006 the size, so try that instead. */
1007 else if (size == -1)
1008 size = max_int_size_in_bytes (type);
1010 /* The size of the temporary may be too large to fit into an integer. */
1011 /* ??? Not sure this should happen except for user silliness, so limit
1012 this to things that aren't compiler-generated temporaries. The
1013 rest of the time we'll die in assign_stack_temp_for_type. */
1014 if (decl && size == -1
1015 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
1017 error ("size of variable %q+D is too large", decl);
1018 size = 1;
1021 tmp = assign_stack_temp_for_type (mode, size, keep, type);
1022 return tmp;
1025 #ifdef PROMOTE_MODE
1026 if (! dont_promote)
1027 mode = promote_mode (type, mode, &unsignedp);
1028 #endif
1030 return gen_reg_rtx (mode);
1033 /* Combine temporary stack slots which are adjacent on the stack.
1035 This allows for better use of already allocated stack space. This is only
1036 done for BLKmode slots because we can be sure that we won't have alignment
1037 problems in this case. */
1039 static void
1040 combine_temp_slots (void)
1042 struct temp_slot *p, *q, *next, *next_q;
1043 int num_slots;
1045 /* We can't combine slots, because the information about which slot
1046 is in which alias set will be lost. */
1047 if (flag_strict_aliasing)
1048 return;
1050 /* If there are a lot of temp slots, don't do anything unless
1051 high levels of optimization. */
1052 if (! flag_expensive_optimizations)
1053 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
1054 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
1055 return;
1057 for (p = avail_temp_slots; p; p = next)
1059 int delete_p = 0;
1061 next = p->next;
1063 if (GET_MODE (p->slot) != BLKmode)
1064 continue;
1066 for (q = p->next; q; q = next_q)
1068 int delete_q = 0;
1070 next_q = q->next;
1072 if (GET_MODE (q->slot) != BLKmode)
1073 continue;
1075 if (p->base_offset + p->full_size == q->base_offset)
1077 /* Q comes after P; combine Q into P. */
1078 p->size += q->size;
1079 p->full_size += q->full_size;
1080 delete_q = 1;
1082 else if (q->base_offset + q->full_size == p->base_offset)
1084 /* P comes after Q; combine P into Q. */
1085 q->size += p->size;
1086 q->full_size += p->full_size;
1087 delete_p = 1;
1088 break;
1090 if (delete_q)
1091 cut_slot_from_list (q, &avail_temp_slots);
1094 /* Either delete P or advance past it. */
1095 if (delete_p)
1096 cut_slot_from_list (p, &avail_temp_slots);
1100 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1101 slot that previously was known by OLD_RTX. */
1103 void
1104 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1106 struct temp_slot *p;
1108 if (rtx_equal_p (old_rtx, new_rtx))
1109 return;
1111 p = find_temp_slot_from_address (old_rtx);
1113 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1114 NEW_RTX is a register, see if one operand of the PLUS is a
1115 temporary location. If so, NEW_RTX points into it. Otherwise,
1116 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1117 in common between them. If so, try a recursive call on those
1118 values. */
1119 if (p == 0)
1121 if (GET_CODE (old_rtx) != PLUS)
1122 return;
1124 if (REG_P (new_rtx))
1126 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1127 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1128 return;
1130 else if (GET_CODE (new_rtx) != PLUS)
1131 return;
1133 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1134 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1135 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1136 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1137 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1138 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1139 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1140 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1142 return;
1145 /* Otherwise add an alias for the temp's address. */
1146 insert_temp_slot_address (new_rtx, p);
1149 /* If X could be a reference to a temporary slot, mark the fact that its
1150 address was taken. */
1152 void
1153 mark_temp_addr_taken (rtx x)
1155 struct temp_slot *p;
1157 if (x == 0)
1158 return;
1160 /* If X is not in memory or is at a constant address, it cannot be in
1161 a temporary slot. */
1162 if (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))
1163 return;
1165 p = find_temp_slot_from_address (XEXP (x, 0));
1166 if (p != 0)
1167 p->addr_taken = 1;
1170 /* If X could be a reference to a temporary slot, mark that slot as
1171 belonging to the to one level higher than the current level. If X
1172 matched one of our slots, just mark that one. Otherwise, we can't
1173 easily predict which it is, so upgrade all of them. Kept slots
1174 need not be touched.
1176 This is called when an ({...}) construct occurs and a statement
1177 returns a value in memory. */
1179 void
1180 preserve_temp_slots (rtx x)
1182 struct temp_slot *p = 0, *next;
1184 /* If there is no result, we still might have some objects whose address
1185 were taken, so we need to make sure they stay around. */
1186 if (x == 0)
1188 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1190 next = p->next;
1192 if (p->addr_taken)
1193 move_slot_to_level (p, temp_slot_level - 1);
1196 return;
1199 /* If X is a register that is being used as a pointer, see if we have
1200 a temporary slot we know it points to. To be consistent with
1201 the code below, we really should preserve all non-kept slots
1202 if we can't find a match, but that seems to be much too costly. */
1203 if (REG_P (x) && REG_POINTER (x))
1204 p = find_temp_slot_from_address (x);
1206 /* If X is not in memory or is at a constant address, it cannot be in
1207 a temporary slot, but it can contain something whose address was
1208 taken. */
1209 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1211 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1213 next = p->next;
1215 if (p->addr_taken)
1216 move_slot_to_level (p, temp_slot_level - 1);
1219 return;
1222 /* First see if we can find a match. */
1223 if (p == 0)
1224 p = find_temp_slot_from_address (XEXP (x, 0));
1226 if (p != 0)
1228 /* Move everything at our level whose address was taken to our new
1229 level in case we used its address. */
1230 struct temp_slot *q;
1232 if (p->level == temp_slot_level)
1234 for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
1236 next = q->next;
1238 if (p != q && q->addr_taken)
1239 move_slot_to_level (q, temp_slot_level - 1);
1242 move_slot_to_level (p, temp_slot_level - 1);
1243 p->addr_taken = 0;
1245 return;
1248 /* Otherwise, preserve all non-kept slots at this level. */
1249 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1251 next = p->next;
1253 if (!p->keep)
1254 move_slot_to_level (p, temp_slot_level - 1);
1258 /* Free all temporaries used so far. This is normally called at the
1259 end of generating code for a statement. */
1261 void
1262 free_temp_slots (void)
1264 struct temp_slot *p, *next;
1265 bool some_available = false;
1267 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1269 next = p->next;
1271 if (!p->keep)
1273 make_slot_available (p);
1274 some_available = true;
1278 if (some_available)
1280 remove_unused_temp_slot_addresses ();
1281 combine_temp_slots ();
1285 /* Push deeper into the nesting level for stack temporaries. */
1287 void
1288 push_temp_slots (void)
1290 temp_slot_level++;
1293 /* Pop a temporary nesting level. All slots in use in the current level
1294 are freed. */
1296 void
1297 pop_temp_slots (void)
1299 struct temp_slot *p, *next;
1300 bool some_available = false;
1302 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1304 next = p->next;
1305 make_slot_available (p);
1306 some_available = true;
1309 if (some_available)
1311 remove_unused_temp_slot_addresses ();
1312 combine_temp_slots ();
1315 temp_slot_level--;
1318 /* Initialize temporary slots. */
1320 void
1321 init_temp_slots (void)
1323 /* We have not allocated any temporaries yet. */
1324 avail_temp_slots = 0;
1325 used_temp_slots = 0;
1326 temp_slot_level = 0;
1328 /* Set up the table to map addresses to temp slots. */
1329 if (! temp_slot_address_table)
1330 temp_slot_address_table = htab_create_ggc (32,
1331 temp_slot_address_hash,
1332 temp_slot_address_eq,
1333 NULL);
1334 else
1335 htab_empty (temp_slot_address_table);
1338 /* These routines are responsible for converting virtual register references
1339 to the actual hard register references once RTL generation is complete.
1341 The following four variables are used for communication between the
1342 routines. They contain the offsets of the virtual registers from their
1343 respective hard registers. */
1345 static int in_arg_offset;
1346 static int var_offset;
1347 static int dynamic_offset;
1348 static int out_arg_offset;
1349 static int cfa_offset;
1351 /* In most machines, the stack pointer register is equivalent to the bottom
1352 of the stack. */
1354 #ifndef STACK_POINTER_OFFSET
1355 #define STACK_POINTER_OFFSET 0
1356 #endif
1358 /* If not defined, pick an appropriate default for the offset of dynamically
1359 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1360 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1362 #ifndef STACK_DYNAMIC_OFFSET
1364 /* The bottom of the stack points to the actual arguments. If
1365 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1366 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1367 stack space for register parameters is not pushed by the caller, but
1368 rather part of the fixed stack areas and hence not included in
1369 `crtl->outgoing_args_size'. Nevertheless, we must allow
1370 for it when allocating stack dynamic objects. */
1372 #if defined(REG_PARM_STACK_SPACE)
1373 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1374 ((ACCUMULATE_OUTGOING_ARGS \
1375 ? (crtl->outgoing_args_size \
1376 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1377 : REG_PARM_STACK_SPACE (FNDECL))) \
1378 : 0) + (STACK_POINTER_OFFSET))
1379 #else
1380 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1381 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
1382 + (STACK_POINTER_OFFSET))
1383 #endif
1384 #endif
1387 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1388 is a virtual register, return the equivalent hard register and set the
1389 offset indirectly through the pointer. Otherwise, return 0. */
1391 static rtx
1392 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1394 rtx new_rtx;
1395 HOST_WIDE_INT offset;
1397 if (x == virtual_incoming_args_rtx)
1399 if (stack_realign_drap)
1401 /* Replace virtual_incoming_args_rtx with internal arg
1402 pointer if DRAP is used to realign stack. */
1403 new_rtx = crtl->args.internal_arg_pointer;
1404 offset = 0;
1406 else
1407 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1409 else if (x == virtual_stack_vars_rtx)
1410 new_rtx = frame_pointer_rtx, offset = var_offset;
1411 else if (x == virtual_stack_dynamic_rtx)
1412 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1413 else if (x == virtual_outgoing_args_rtx)
1414 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1415 else if (x == virtual_cfa_rtx)
1417 #ifdef FRAME_POINTER_CFA_OFFSET
1418 new_rtx = frame_pointer_rtx;
1419 #else
1420 new_rtx = arg_pointer_rtx;
1421 #endif
1422 offset = cfa_offset;
1424 else if (x == virtual_preferred_stack_boundary_rtx)
1426 new_rtx = GEN_INT (crtl->preferred_stack_boundary / BITS_PER_UNIT);
1427 offset = 0;
1429 else
1430 return NULL_RTX;
1432 *poffset = offset;
1433 return new_rtx;
1436 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1437 Instantiate any virtual registers present inside of *LOC. The expression
1438 is simplified, as much as possible, but is not to be considered "valid"
1439 in any sense implied by the target. If any change is made, set CHANGED
1440 to true. */
1442 static int
1443 instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
1445 HOST_WIDE_INT offset;
1446 bool *changed = (bool *) data;
1447 rtx x, new_rtx;
1449 x = *loc;
1450 if (x == 0)
1451 return 0;
1453 switch (GET_CODE (x))
1455 case REG:
1456 new_rtx = instantiate_new_reg (x, &offset);
1457 if (new_rtx)
1459 *loc = plus_constant (new_rtx, offset);
1460 if (changed)
1461 *changed = true;
1463 return -1;
1465 case PLUS:
1466 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1467 if (new_rtx)
1469 new_rtx = plus_constant (new_rtx, offset);
1470 *loc = simplify_gen_binary (PLUS, GET_MODE (x), new_rtx, XEXP (x, 1));
1471 if (changed)
1472 *changed = true;
1473 return -1;
1476 /* FIXME -- from old code */
1477 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1478 we can commute the PLUS and SUBREG because pointers into the
1479 frame are well-behaved. */
1480 break;
1482 default:
1483 break;
1486 return 0;
1489 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1490 matches the predicate for insn CODE operand OPERAND. */
1492 static int
1493 safe_insn_predicate (int code, int operand, rtx x)
1495 return code < 0 || insn_operand_matches ((enum insn_code) code, operand, x);
1498 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1499 registers present inside of insn. The result will be a valid insn. */
1501 static void
1502 instantiate_virtual_regs_in_insn (rtx insn)
1504 HOST_WIDE_INT offset;
1505 int insn_code, i;
1506 bool any_change = false;
1507 rtx set, new_rtx, x, seq;
1509 /* There are some special cases to be handled first. */
1510 set = single_set (insn);
1511 if (set)
1513 /* We're allowed to assign to a virtual register. This is interpreted
1514 to mean that the underlying register gets assigned the inverse
1515 transformation. This is used, for example, in the handling of
1516 non-local gotos. */
1517 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1518 if (new_rtx)
1520 start_sequence ();
1522 for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
1523 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1524 GEN_INT (-offset));
1525 x = force_operand (x, new_rtx);
1526 if (x != new_rtx)
1527 emit_move_insn (new_rtx, x);
1529 seq = get_insns ();
1530 end_sequence ();
1532 emit_insn_before (seq, insn);
1533 delete_insn (insn);
1534 return;
1537 /* Handle a straight copy from a virtual register by generating a
1538 new add insn. The difference between this and falling through
1539 to the generic case is avoiding a new pseudo and eliminating a
1540 move insn in the initial rtl stream. */
1541 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1542 if (new_rtx && offset != 0
1543 && REG_P (SET_DEST (set))
1544 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1546 start_sequence ();
1548 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS,
1549 new_rtx, GEN_INT (offset), SET_DEST (set),
1550 1, OPTAB_LIB_WIDEN);
1551 if (x != SET_DEST (set))
1552 emit_move_insn (SET_DEST (set), x);
1554 seq = get_insns ();
1555 end_sequence ();
1557 emit_insn_before (seq, insn);
1558 delete_insn (insn);
1559 return;
1562 extract_insn (insn);
1563 insn_code = INSN_CODE (insn);
1565 /* Handle a plus involving a virtual register by determining if the
1566 operands remain valid if they're modified in place. */
1567 if (GET_CODE (SET_SRC (set)) == PLUS
1568 && recog_data.n_operands >= 3
1569 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1570 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1571 && CONST_INT_P (recog_data.operand[2])
1572 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1574 offset += INTVAL (recog_data.operand[2]);
1576 /* If the sum is zero, then replace with a plain move. */
1577 if (offset == 0
1578 && REG_P (SET_DEST (set))
1579 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1581 start_sequence ();
1582 emit_move_insn (SET_DEST (set), new_rtx);
1583 seq = get_insns ();
1584 end_sequence ();
1586 emit_insn_before (seq, insn);
1587 delete_insn (insn);
1588 return;
1591 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1593 /* Using validate_change and apply_change_group here leaves
1594 recog_data in an invalid state. Since we know exactly what
1595 we want to check, do those two by hand. */
1596 if (safe_insn_predicate (insn_code, 1, new_rtx)
1597 && safe_insn_predicate (insn_code, 2, x))
1599 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1600 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1601 any_change = true;
1603 /* Fall through into the regular operand fixup loop in
1604 order to take care of operands other than 1 and 2. */
1608 else
1610 extract_insn (insn);
1611 insn_code = INSN_CODE (insn);
1614 /* In the general case, we expect virtual registers to appear only in
1615 operands, and then only as either bare registers or inside memories. */
1616 for (i = 0; i < recog_data.n_operands; ++i)
1618 x = recog_data.operand[i];
1619 switch (GET_CODE (x))
1621 case MEM:
1623 rtx addr = XEXP (x, 0);
1624 bool changed = false;
1626 for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
1627 if (!changed)
1628 continue;
1630 start_sequence ();
1631 x = replace_equiv_address (x, addr);
1632 /* It may happen that the address with the virtual reg
1633 was valid (e.g. based on the virtual stack reg, which might
1634 be acceptable to the predicates with all offsets), whereas
1635 the address now isn't anymore, for instance when the address
1636 is still offsetted, but the base reg isn't virtual-stack-reg
1637 anymore. Below we would do a force_reg on the whole operand,
1638 but this insn might actually only accept memory. Hence,
1639 before doing that last resort, try to reload the address into
1640 a register, so this operand stays a MEM. */
1641 if (!safe_insn_predicate (insn_code, i, x))
1643 addr = force_reg (GET_MODE (addr), addr);
1644 x = replace_equiv_address (x, addr);
1646 seq = get_insns ();
1647 end_sequence ();
1648 if (seq)
1649 emit_insn_before (seq, insn);
1651 break;
1653 case REG:
1654 new_rtx = instantiate_new_reg (x, &offset);
1655 if (new_rtx == NULL)
1656 continue;
1657 if (offset == 0)
1658 x = new_rtx;
1659 else
1661 start_sequence ();
1663 /* Careful, special mode predicates may have stuff in
1664 insn_data[insn_code].operand[i].mode that isn't useful
1665 to us for computing a new value. */
1666 /* ??? Recognize address_operand and/or "p" constraints
1667 to see if (plus new offset) is a valid before we put
1668 this through expand_simple_binop. */
1669 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1670 GEN_INT (offset), NULL_RTX,
1671 1, OPTAB_LIB_WIDEN);
1672 seq = get_insns ();
1673 end_sequence ();
1674 emit_insn_before (seq, insn);
1676 break;
1678 case SUBREG:
1679 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1680 if (new_rtx == NULL)
1681 continue;
1682 if (offset != 0)
1684 start_sequence ();
1685 new_rtx = expand_simple_binop (GET_MODE (new_rtx), PLUS, new_rtx,
1686 GEN_INT (offset), NULL_RTX,
1687 1, OPTAB_LIB_WIDEN);
1688 seq = get_insns ();
1689 end_sequence ();
1690 emit_insn_before (seq, insn);
1692 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1693 GET_MODE (new_rtx), SUBREG_BYTE (x));
1694 gcc_assert (x);
1695 break;
1697 default:
1698 continue;
1701 /* At this point, X contains the new value for the operand.
1702 Validate the new value vs the insn predicate. Note that
1703 asm insns will have insn_code -1 here. */
1704 if (!safe_insn_predicate (insn_code, i, x))
1706 start_sequence ();
1707 if (REG_P (x))
1709 gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
1710 x = copy_to_reg (x);
1712 else
1713 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1714 seq = get_insns ();
1715 end_sequence ();
1716 if (seq)
1717 emit_insn_before (seq, insn);
1720 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1721 any_change = true;
1724 if (any_change)
1726 /* Propagate operand changes into the duplicates. */
1727 for (i = 0; i < recog_data.n_dups; ++i)
1728 *recog_data.dup_loc[i]
1729 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1731 /* Force re-recognition of the instruction for validation. */
1732 INSN_CODE (insn) = -1;
1735 if (asm_noperands (PATTERN (insn)) >= 0)
1737 if (!check_asm_operands (PATTERN (insn)))
1739 error_for_asm (insn, "impossible constraint in %<asm%>");
1740 delete_insn (insn);
1743 else
1745 if (recog_memoized (insn) < 0)
1746 fatal_insn_not_found (insn);
1750 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1751 do any instantiation required. */
1753 void
1754 instantiate_decl_rtl (rtx x)
1756 rtx addr;
1758 if (x == 0)
1759 return;
1761 /* If this is a CONCAT, recurse for the pieces. */
1762 if (GET_CODE (x) == CONCAT)
1764 instantiate_decl_rtl (XEXP (x, 0));
1765 instantiate_decl_rtl (XEXP (x, 1));
1766 return;
1769 /* If this is not a MEM, no need to do anything. Similarly if the
1770 address is a constant or a register that is not a virtual register. */
1771 if (!MEM_P (x))
1772 return;
1774 addr = XEXP (x, 0);
1775 if (CONSTANT_P (addr)
1776 || (REG_P (addr)
1777 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1778 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1779 return;
1781 for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
1784 /* Helper for instantiate_decls called via walk_tree: Process all decls
1785 in the given DECL_VALUE_EXPR. */
1787 static tree
1788 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1790 tree t = *tp;
1791 if (! EXPR_P (t))
1793 *walk_subtrees = 0;
1794 if (DECL_P (t))
1796 if (DECL_RTL_SET_P (t))
1797 instantiate_decl_rtl (DECL_RTL (t));
1798 if (TREE_CODE (t) == PARM_DECL && DECL_NAMELESS (t)
1799 && DECL_INCOMING_RTL (t))
1800 instantiate_decl_rtl (DECL_INCOMING_RTL (t));
1801 if ((TREE_CODE (t) == VAR_DECL
1802 || TREE_CODE (t) == RESULT_DECL)
1803 && DECL_HAS_VALUE_EXPR_P (t))
1805 tree v = DECL_VALUE_EXPR (t);
1806 walk_tree (&v, instantiate_expr, NULL, NULL);
1810 return NULL;
1813 /* Subroutine of instantiate_decls: Process all decls in the given
1814 BLOCK node and all its subblocks. */
1816 static void
1817 instantiate_decls_1 (tree let)
1819 tree t;
1821 for (t = BLOCK_VARS (let); t; t = DECL_CHAIN (t))
1823 if (DECL_RTL_SET_P (t))
1824 instantiate_decl_rtl (DECL_RTL (t));
1825 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1827 tree v = DECL_VALUE_EXPR (t);
1828 walk_tree (&v, instantiate_expr, NULL, NULL);
1832 /* Process all subblocks. */
1833 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1834 instantiate_decls_1 (t);
1837 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1838 all virtual registers in their DECL_RTL's. */
1840 static void
1841 instantiate_decls (tree fndecl)
1843 tree decl;
1844 unsigned ix;
1846 /* Process all parameters of the function. */
1847 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = DECL_CHAIN (decl))
1849 instantiate_decl_rtl (DECL_RTL (decl));
1850 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1851 if (DECL_HAS_VALUE_EXPR_P (decl))
1853 tree v = DECL_VALUE_EXPR (decl);
1854 walk_tree (&v, instantiate_expr, NULL, NULL);
1858 if ((decl = DECL_RESULT (fndecl))
1859 && TREE_CODE (decl) == RESULT_DECL)
1861 if (DECL_RTL_SET_P (decl))
1862 instantiate_decl_rtl (DECL_RTL (decl));
1863 if (DECL_HAS_VALUE_EXPR_P (decl))
1865 tree v = DECL_VALUE_EXPR (decl);
1866 walk_tree (&v, instantiate_expr, NULL, NULL);
1870 /* Now process all variables defined in the function or its subblocks. */
1871 instantiate_decls_1 (DECL_INITIAL (fndecl));
1873 FOR_EACH_LOCAL_DECL (cfun, ix, decl)
1874 if (DECL_RTL_SET_P (decl))
1875 instantiate_decl_rtl (DECL_RTL (decl));
1876 VEC_free (tree, gc, cfun->local_decls);
1879 /* Pass through the INSNS of function FNDECL and convert virtual register
1880 references to hard register references. */
1882 static unsigned int
1883 instantiate_virtual_regs (void)
1885 rtx insn;
1887 /* Compute the offsets to use for this function. */
1888 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1889 var_offset = STARTING_FRAME_OFFSET;
1890 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1891 out_arg_offset = STACK_POINTER_OFFSET;
1892 #ifdef FRAME_POINTER_CFA_OFFSET
1893 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1894 #else
1895 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1896 #endif
1898 /* Initialize recognition, indicating that volatile is OK. */
1899 init_recog ();
1901 /* Scan through all the insns, instantiating every virtual register still
1902 present. */
1903 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1904 if (INSN_P (insn))
1906 /* These patterns in the instruction stream can never be recognized.
1907 Fortunately, they shouldn't contain virtual registers either. */
1908 if (GET_CODE (PATTERN (insn)) == USE
1909 || GET_CODE (PATTERN (insn)) == CLOBBER
1910 || GET_CODE (PATTERN (insn)) == ADDR_VEC
1911 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
1912 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1913 continue;
1914 else if (DEBUG_INSN_P (insn))
1915 for_each_rtx (&INSN_VAR_LOCATION (insn),
1916 instantiate_virtual_regs_in_rtx, NULL);
1917 else
1918 instantiate_virtual_regs_in_insn (insn);
1920 if (INSN_DELETED_P (insn))
1921 continue;
1923 for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
1925 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1926 if (CALL_P (insn))
1927 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
1928 instantiate_virtual_regs_in_rtx, NULL);
1931 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1932 instantiate_decls (current_function_decl);
1934 targetm.instantiate_decls ();
1936 /* Indicate that, from now on, assign_stack_local should use
1937 frame_pointer_rtx. */
1938 virtuals_instantiated = 1;
1940 return 0;
1943 struct rtl_opt_pass pass_instantiate_virtual_regs =
1946 RTL_PASS,
1947 "vregs", /* name */
1948 NULL, /* gate */
1949 instantiate_virtual_regs, /* execute */
1950 NULL, /* sub */
1951 NULL, /* next */
1952 0, /* static_pass_number */
1953 TV_NONE, /* tv_id */
1954 0, /* properties_required */
1955 0, /* properties_provided */
1956 0, /* properties_destroyed */
1957 0, /* todo_flags_start */
1958 0 /* todo_flags_finish */
1963 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1964 This means a type for which function calls must pass an address to the
1965 function or get an address back from the function.
1966 EXP may be a type node or an expression (whose type is tested). */
1969 aggregate_value_p (const_tree exp, const_tree fntype)
1971 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1972 int i, regno, nregs;
1973 rtx reg;
1975 if (fntype)
1976 switch (TREE_CODE (fntype))
1978 case CALL_EXPR:
1980 tree fndecl = get_callee_fndecl (fntype);
1981 fntype = (fndecl
1982 ? TREE_TYPE (fndecl)
1983 : TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype))));
1985 break;
1986 case FUNCTION_DECL:
1987 fntype = TREE_TYPE (fntype);
1988 break;
1989 case FUNCTION_TYPE:
1990 case METHOD_TYPE:
1991 break;
1992 case IDENTIFIER_NODE:
1993 fntype = NULL_TREE;
1994 break;
1995 default:
1996 /* We don't expect other tree types here. */
1997 gcc_unreachable ();
2000 if (VOID_TYPE_P (type))
2001 return 0;
2003 /* If a record should be passed the same as its first (and only) member
2004 don't pass it as an aggregate. */
2005 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2006 return aggregate_value_p (first_field (type), fntype);
2008 /* If the front end has decided that this needs to be passed by
2009 reference, do so. */
2010 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
2011 && DECL_BY_REFERENCE (exp))
2012 return 1;
2014 /* Function types that are TREE_ADDRESSABLE force return in memory. */
2015 if (fntype && TREE_ADDRESSABLE (fntype))
2016 return 1;
2018 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
2019 and thus can't be returned in registers. */
2020 if (TREE_ADDRESSABLE (type))
2021 return 1;
2023 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
2024 return 1;
2026 if (targetm.calls.return_in_memory (type, fntype))
2027 return 1;
2029 /* Make sure we have suitable call-clobbered regs to return
2030 the value in; if not, we must return it in memory. */
2031 reg = hard_function_value (type, 0, fntype, 0);
2033 /* If we have something other than a REG (e.g. a PARALLEL), then assume
2034 it is OK. */
2035 if (!REG_P (reg))
2036 return 0;
2038 regno = REGNO (reg);
2039 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
2040 for (i = 0; i < nregs; i++)
2041 if (! call_used_regs[regno + i])
2042 return 1;
2044 return 0;
2047 /* Return true if we should assign DECL a pseudo register; false if it
2048 should live on the local stack. */
2050 bool
2051 use_register_for_decl (const_tree decl)
2053 if (!targetm.calls.allocate_stack_slots_for_args())
2054 return true;
2056 /* Honor volatile. */
2057 if (TREE_SIDE_EFFECTS (decl))
2058 return false;
2060 /* Honor addressability. */
2061 if (TREE_ADDRESSABLE (decl))
2062 return false;
2064 /* Only register-like things go in registers. */
2065 if (DECL_MODE (decl) == BLKmode)
2066 return false;
2068 /* If -ffloat-store specified, don't put explicit float variables
2069 into registers. */
2070 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2071 propagates values across these stores, and it probably shouldn't. */
2072 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
2073 return false;
2075 /* If we're not interested in tracking debugging information for
2076 this decl, then we can certainly put it in a register. */
2077 if (DECL_IGNORED_P (decl))
2078 return true;
2080 if (optimize)
2081 return true;
2083 if (!DECL_REGISTER (decl))
2084 return false;
2086 switch (TREE_CODE (TREE_TYPE (decl)))
2088 case RECORD_TYPE:
2089 case UNION_TYPE:
2090 case QUAL_UNION_TYPE:
2091 /* When not optimizing, disregard register keyword for variables with
2092 types containing methods, otherwise the methods won't be callable
2093 from the debugger. */
2094 if (TYPE_METHODS (TREE_TYPE (decl)))
2095 return false;
2096 break;
2097 default:
2098 break;
2101 return true;
2104 /* Return true if TYPE should be passed by invisible reference. */
2106 bool
2107 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2108 tree type, bool named_arg)
2110 if (type)
2112 /* If this type contains non-trivial constructors, then it is
2113 forbidden for the middle-end to create any new copies. */
2114 if (TREE_ADDRESSABLE (type))
2115 return true;
2117 /* GCC post 3.4 passes *all* variable sized types by reference. */
2118 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
2119 return true;
2121 /* If a record type should be passed the same as its first (and only)
2122 member, use the type and mode of that member. */
2123 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2125 type = TREE_TYPE (first_field (type));
2126 mode = TYPE_MODE (type);
2130 return targetm.calls.pass_by_reference (pack_cumulative_args (ca), mode,
2131 type, named_arg);
2134 /* Return true if TYPE, which is passed by reference, should be callee
2135 copied instead of caller copied. */
2137 bool
2138 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2139 tree type, bool named_arg)
2141 if (type && TREE_ADDRESSABLE (type))
2142 return false;
2143 return targetm.calls.callee_copies (pack_cumulative_args (ca), mode, type,
2144 named_arg);
2147 /* Structures to communicate between the subroutines of assign_parms.
2148 The first holds data persistent across all parameters, the second
2149 is cleared out for each parameter. */
2151 struct assign_parm_data_all
2153 /* When INIT_CUMULATIVE_ARGS gets revamped, allocating CUMULATIVE_ARGS
2154 should become a job of the target or otherwise encapsulated. */
2155 CUMULATIVE_ARGS args_so_far_v;
2156 cumulative_args_t args_so_far;
2157 struct args_size stack_args_size;
2158 tree function_result_decl;
2159 tree orig_fnargs;
2160 rtx first_conversion_insn;
2161 rtx last_conversion_insn;
2162 HOST_WIDE_INT pretend_args_size;
2163 HOST_WIDE_INT extra_pretend_bytes;
2164 int reg_parm_stack_space;
2167 struct assign_parm_data_one
2169 tree nominal_type;
2170 tree passed_type;
2171 rtx entry_parm;
2172 rtx stack_parm;
2173 enum machine_mode nominal_mode;
2174 enum machine_mode passed_mode;
2175 enum machine_mode promoted_mode;
2176 struct locate_and_pad_arg_data locate;
2177 int partial;
2178 BOOL_BITFIELD named_arg : 1;
2179 BOOL_BITFIELD passed_pointer : 1;
2180 BOOL_BITFIELD on_stack : 1;
2181 BOOL_BITFIELD loaded_in_reg : 1;
2184 /* A subroutine of assign_parms. Initialize ALL. */
2186 static void
2187 assign_parms_initialize_all (struct assign_parm_data_all *all)
2189 tree fntype ATTRIBUTE_UNUSED;
2191 memset (all, 0, sizeof (*all));
2193 fntype = TREE_TYPE (current_function_decl);
2195 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2196 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far_v, fntype, NULL_RTX);
2197 #else
2198 INIT_CUMULATIVE_ARGS (all->args_so_far_v, fntype, NULL_RTX,
2199 current_function_decl, -1);
2200 #endif
2201 all->args_so_far = pack_cumulative_args (&all->args_so_far_v);
2203 #ifdef REG_PARM_STACK_SPACE
2204 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
2205 #endif
2208 /* If ARGS contains entries with complex types, split the entry into two
2209 entries of the component type. Return a new list of substitutions are
2210 needed, else the old list. */
2212 static void
2213 split_complex_args (VEC(tree, heap) **args)
2215 unsigned i;
2216 tree p;
2218 FOR_EACH_VEC_ELT (tree, *args, i, p)
2220 tree type = TREE_TYPE (p);
2221 if (TREE_CODE (type) == COMPLEX_TYPE
2222 && targetm.calls.split_complex_arg (type))
2224 tree decl;
2225 tree subtype = TREE_TYPE (type);
2226 bool addressable = TREE_ADDRESSABLE (p);
2228 /* Rewrite the PARM_DECL's type with its component. */
2229 p = copy_node (p);
2230 TREE_TYPE (p) = subtype;
2231 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2232 DECL_MODE (p) = VOIDmode;
2233 DECL_SIZE (p) = NULL;
2234 DECL_SIZE_UNIT (p) = NULL;
2235 /* If this arg must go in memory, put it in a pseudo here.
2236 We can't allow it to go in memory as per normal parms,
2237 because the usual place might not have the imag part
2238 adjacent to the real part. */
2239 DECL_ARTIFICIAL (p) = addressable;
2240 DECL_IGNORED_P (p) = addressable;
2241 TREE_ADDRESSABLE (p) = 0;
2242 layout_decl (p, 0);
2243 VEC_replace (tree, *args, i, p);
2245 /* Build a second synthetic decl. */
2246 decl = build_decl (EXPR_LOCATION (p),
2247 PARM_DECL, NULL_TREE, subtype);
2248 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2249 DECL_ARTIFICIAL (decl) = addressable;
2250 DECL_IGNORED_P (decl) = addressable;
2251 layout_decl (decl, 0);
2252 VEC_safe_insert (tree, heap, *args, ++i, decl);
2257 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2258 the hidden struct return argument, and (abi willing) complex args.
2259 Return the new parameter list. */
2261 static VEC(tree, heap) *
2262 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2264 tree fndecl = current_function_decl;
2265 tree fntype = TREE_TYPE (fndecl);
2266 VEC(tree, heap) *fnargs = NULL;
2267 tree arg;
2269 for (arg = DECL_ARGUMENTS (fndecl); arg; arg = DECL_CHAIN (arg))
2270 VEC_safe_push (tree, heap, fnargs, arg);
2272 all->orig_fnargs = DECL_ARGUMENTS (fndecl);
2274 /* If struct value address is treated as the first argument, make it so. */
2275 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2276 && ! cfun->returns_pcc_struct
2277 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2279 tree type = build_pointer_type (TREE_TYPE (fntype));
2280 tree decl;
2282 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2283 PARM_DECL, get_identifier (".result_ptr"), type);
2284 DECL_ARG_TYPE (decl) = type;
2285 DECL_ARTIFICIAL (decl) = 1;
2286 DECL_NAMELESS (decl) = 1;
2287 TREE_CONSTANT (decl) = 1;
2289 DECL_CHAIN (decl) = all->orig_fnargs;
2290 all->orig_fnargs = decl;
2291 VEC_safe_insert (tree, heap, fnargs, 0, decl);
2293 all->function_result_decl = decl;
2296 /* If the target wants to split complex arguments into scalars, do so. */
2297 if (targetm.calls.split_complex_arg)
2298 split_complex_args (&fnargs);
2300 return fnargs;
2303 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2304 data for the parameter. Incorporate ABI specifics such as pass-by-
2305 reference and type promotion. */
2307 static void
2308 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2309 struct assign_parm_data_one *data)
2311 tree nominal_type, passed_type;
2312 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2313 int unsignedp;
2315 memset (data, 0, sizeof (*data));
2317 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2318 if (!cfun->stdarg)
2319 data->named_arg = 1; /* No variadic parms. */
2320 else if (DECL_CHAIN (parm))
2321 data->named_arg = 1; /* Not the last non-variadic parm. */
2322 else if (targetm.calls.strict_argument_naming (all->args_so_far))
2323 data->named_arg = 1; /* Only variadic ones are unnamed. */
2324 else
2325 data->named_arg = 0; /* Treat as variadic. */
2327 nominal_type = TREE_TYPE (parm);
2328 passed_type = DECL_ARG_TYPE (parm);
2330 /* Look out for errors propagating this far. Also, if the parameter's
2331 type is void then its value doesn't matter. */
2332 if (TREE_TYPE (parm) == error_mark_node
2333 /* This can happen after weird syntax errors
2334 or if an enum type is defined among the parms. */
2335 || TREE_CODE (parm) != PARM_DECL
2336 || passed_type == NULL
2337 || VOID_TYPE_P (nominal_type))
2339 nominal_type = passed_type = void_type_node;
2340 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2341 goto egress;
2344 /* Find mode of arg as it is passed, and mode of arg as it should be
2345 during execution of this function. */
2346 passed_mode = TYPE_MODE (passed_type);
2347 nominal_mode = TYPE_MODE (nominal_type);
2349 /* If the parm is to be passed as a transparent union or record, use the
2350 type of the first field for the tests below. We have already verified
2351 that the modes are the same. */
2352 if ((TREE_CODE (passed_type) == UNION_TYPE
2353 || TREE_CODE (passed_type) == RECORD_TYPE)
2354 && TYPE_TRANSPARENT_AGGR (passed_type))
2355 passed_type = TREE_TYPE (first_field (passed_type));
2357 /* See if this arg was passed by invisible reference. */
2358 if (pass_by_reference (&all->args_so_far_v, passed_mode,
2359 passed_type, data->named_arg))
2361 passed_type = nominal_type = build_pointer_type (passed_type);
2362 data->passed_pointer = true;
2363 passed_mode = nominal_mode = Pmode;
2366 /* Find mode as it is passed by the ABI. */
2367 unsignedp = TYPE_UNSIGNED (passed_type);
2368 promoted_mode = promote_function_mode (passed_type, passed_mode, &unsignedp,
2369 TREE_TYPE (current_function_decl), 0);
2371 egress:
2372 data->nominal_type = nominal_type;
2373 data->passed_type = passed_type;
2374 data->nominal_mode = nominal_mode;
2375 data->passed_mode = passed_mode;
2376 data->promoted_mode = promoted_mode;
2379 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2381 static void
2382 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2383 struct assign_parm_data_one *data, bool no_rtl)
2385 int varargs_pretend_bytes = 0;
2387 targetm.calls.setup_incoming_varargs (all->args_so_far,
2388 data->promoted_mode,
2389 data->passed_type,
2390 &varargs_pretend_bytes, no_rtl);
2392 /* If the back-end has requested extra stack space, record how much is
2393 needed. Do not change pretend_args_size otherwise since it may be
2394 nonzero from an earlier partial argument. */
2395 if (varargs_pretend_bytes > 0)
2396 all->pretend_args_size = varargs_pretend_bytes;
2399 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2400 the incoming location of the current parameter. */
2402 static void
2403 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2404 struct assign_parm_data_one *data)
2406 HOST_WIDE_INT pretend_bytes = 0;
2407 rtx entry_parm;
2408 bool in_regs;
2410 if (data->promoted_mode == VOIDmode)
2412 data->entry_parm = data->stack_parm = const0_rtx;
2413 return;
2416 entry_parm = targetm.calls.function_incoming_arg (all->args_so_far,
2417 data->promoted_mode,
2418 data->passed_type,
2419 data->named_arg);
2421 if (entry_parm == 0)
2422 data->promoted_mode = data->passed_mode;
2424 /* Determine parm's home in the stack, in case it arrives in the stack
2425 or we should pretend it did. Compute the stack position and rtx where
2426 the argument arrives and its size.
2428 There is one complexity here: If this was a parameter that would
2429 have been passed in registers, but wasn't only because it is
2430 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2431 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2432 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2433 as it was the previous time. */
2434 in_regs = entry_parm != 0;
2435 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2436 in_regs = true;
2437 #endif
2438 if (!in_regs && !data->named_arg)
2440 if (targetm.calls.pretend_outgoing_varargs_named (all->args_so_far))
2442 rtx tem;
2443 tem = targetm.calls.function_incoming_arg (all->args_so_far,
2444 data->promoted_mode,
2445 data->passed_type, true);
2446 in_regs = tem != NULL;
2450 /* If this parameter was passed both in registers and in the stack, use
2451 the copy on the stack. */
2452 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2453 data->passed_type))
2454 entry_parm = 0;
2456 if (entry_parm)
2458 int partial;
2460 partial = targetm.calls.arg_partial_bytes (all->args_so_far,
2461 data->promoted_mode,
2462 data->passed_type,
2463 data->named_arg);
2464 data->partial = partial;
2466 /* The caller might already have allocated stack space for the
2467 register parameters. */
2468 if (partial != 0 && all->reg_parm_stack_space == 0)
2470 /* Part of this argument is passed in registers and part
2471 is passed on the stack. Ask the prologue code to extend
2472 the stack part so that we can recreate the full value.
2474 PRETEND_BYTES is the size of the registers we need to store.
2475 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2476 stack space that the prologue should allocate.
2478 Internally, gcc assumes that the argument pointer is aligned
2479 to STACK_BOUNDARY bits. This is used both for alignment
2480 optimizations (see init_emit) and to locate arguments that are
2481 aligned to more than PARM_BOUNDARY bits. We must preserve this
2482 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2483 a stack boundary. */
2485 /* We assume at most one partial arg, and it must be the first
2486 argument on the stack. */
2487 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2489 pretend_bytes = partial;
2490 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2492 /* We want to align relative to the actual stack pointer, so
2493 don't include this in the stack size until later. */
2494 all->extra_pretend_bytes = all->pretend_args_size;
2498 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2499 entry_parm ? data->partial : 0, current_function_decl,
2500 &all->stack_args_size, &data->locate);
2502 /* Update parm_stack_boundary if this parameter is passed in the
2503 stack. */
2504 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2505 crtl->parm_stack_boundary = data->locate.boundary;
2507 /* Adjust offsets to include the pretend args. */
2508 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2509 data->locate.slot_offset.constant += pretend_bytes;
2510 data->locate.offset.constant += pretend_bytes;
2512 data->entry_parm = entry_parm;
2515 /* A subroutine of assign_parms. If there is actually space on the stack
2516 for this parm, count it in stack_args_size and return true. */
2518 static bool
2519 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2520 struct assign_parm_data_one *data)
2522 /* Trivially true if we've no incoming register. */
2523 if (data->entry_parm == NULL)
2525 /* Also true if we're partially in registers and partially not,
2526 since we've arranged to drop the entire argument on the stack. */
2527 else if (data->partial != 0)
2529 /* Also true if the target says that it's passed in both registers
2530 and on the stack. */
2531 else if (GET_CODE (data->entry_parm) == PARALLEL
2532 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2534 /* Also true if the target says that there's stack allocated for
2535 all register parameters. */
2536 else if (all->reg_parm_stack_space > 0)
2538 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2539 else
2540 return false;
2542 all->stack_args_size.constant += data->locate.size.constant;
2543 if (data->locate.size.var)
2544 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2546 return true;
2549 /* A subroutine of assign_parms. Given that this parameter is allocated
2550 stack space by the ABI, find it. */
2552 static void
2553 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2555 rtx offset_rtx, stack_parm;
2556 unsigned int align, boundary;
2558 /* If we're passing this arg using a reg, make its stack home the
2559 aligned stack slot. */
2560 if (data->entry_parm)
2561 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2562 else
2563 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2565 stack_parm = crtl->args.internal_arg_pointer;
2566 if (offset_rtx != const0_rtx)
2567 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2568 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2570 if (!data->passed_pointer)
2572 set_mem_attributes (stack_parm, parm, 1);
2573 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2574 while promoted mode's size is needed. */
2575 if (data->promoted_mode != BLKmode
2576 && data->promoted_mode != DECL_MODE (parm))
2578 set_mem_size (stack_parm, GET_MODE_SIZE (data->promoted_mode));
2579 if (MEM_EXPR (stack_parm) && MEM_OFFSET_KNOWN_P (stack_parm))
2581 int offset = subreg_lowpart_offset (DECL_MODE (parm),
2582 data->promoted_mode);
2583 if (offset)
2584 set_mem_offset (stack_parm, MEM_OFFSET (stack_parm) - offset);
2589 boundary = data->locate.boundary;
2590 align = BITS_PER_UNIT;
2592 /* If we're padding upward, we know that the alignment of the slot
2593 is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2594 intentionally forcing upward padding. Otherwise we have to come
2595 up with a guess at the alignment based on OFFSET_RTX. */
2596 if (data->locate.where_pad != downward || data->entry_parm)
2597 align = boundary;
2598 else if (CONST_INT_P (offset_rtx))
2600 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2601 align = align & -align;
2603 set_mem_align (stack_parm, align);
2605 if (data->entry_parm)
2606 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2608 data->stack_parm = stack_parm;
2611 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2612 always valid and contiguous. */
2614 static void
2615 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2617 rtx entry_parm = data->entry_parm;
2618 rtx stack_parm = data->stack_parm;
2620 /* If this parm was passed part in regs and part in memory, pretend it
2621 arrived entirely in memory by pushing the register-part onto the stack.
2622 In the special case of a DImode or DFmode that is split, we could put
2623 it together in a pseudoreg directly, but for now that's not worth
2624 bothering with. */
2625 if (data->partial != 0)
2627 /* Handle calls that pass values in multiple non-contiguous
2628 locations. The Irix 6 ABI has examples of this. */
2629 if (GET_CODE (entry_parm) == PARALLEL)
2630 emit_group_store (validize_mem (stack_parm), entry_parm,
2631 data->passed_type,
2632 int_size_in_bytes (data->passed_type));
2633 else
2635 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2636 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2637 data->partial / UNITS_PER_WORD);
2640 entry_parm = stack_parm;
2643 /* If we didn't decide this parm came in a register, by default it came
2644 on the stack. */
2645 else if (entry_parm == NULL)
2646 entry_parm = stack_parm;
2648 /* When an argument is passed in multiple locations, we can't make use
2649 of this information, but we can save some copying if the whole argument
2650 is passed in a single register. */
2651 else if (GET_CODE (entry_parm) == PARALLEL
2652 && data->nominal_mode != BLKmode
2653 && data->passed_mode != BLKmode)
2655 size_t i, len = XVECLEN (entry_parm, 0);
2657 for (i = 0; i < len; i++)
2658 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2659 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2660 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2661 == data->passed_mode)
2662 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2664 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2665 break;
2669 data->entry_parm = entry_parm;
2672 /* A subroutine of assign_parms. Reconstitute any values which were
2673 passed in multiple registers and would fit in a single register. */
2675 static void
2676 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2678 rtx entry_parm = data->entry_parm;
2680 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2681 This can be done with register operations rather than on the
2682 stack, even if we will store the reconstituted parameter on the
2683 stack later. */
2684 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2686 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2687 emit_group_store (parmreg, entry_parm, data->passed_type,
2688 GET_MODE_SIZE (GET_MODE (entry_parm)));
2689 entry_parm = parmreg;
2692 data->entry_parm = entry_parm;
2695 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2696 always valid and properly aligned. */
2698 static void
2699 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2701 rtx stack_parm = data->stack_parm;
2703 /* If we can't trust the parm stack slot to be aligned enough for its
2704 ultimate type, don't use that slot after entry. We'll make another
2705 stack slot, if we need one. */
2706 if (stack_parm
2707 && ((STRICT_ALIGNMENT
2708 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2709 || (data->nominal_type
2710 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2711 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2712 stack_parm = NULL;
2714 /* If parm was passed in memory, and we need to convert it on entry,
2715 don't store it back in that same slot. */
2716 else if (data->entry_parm == stack_parm
2717 && data->nominal_mode != BLKmode
2718 && data->nominal_mode != data->passed_mode)
2719 stack_parm = NULL;
2721 /* If stack protection is in effect for this function, don't leave any
2722 pointers in their passed stack slots. */
2723 else if (crtl->stack_protect_guard
2724 && (flag_stack_protect == 2
2725 || data->passed_pointer
2726 || POINTER_TYPE_P (data->nominal_type)))
2727 stack_parm = NULL;
2729 data->stack_parm = stack_parm;
2732 /* A subroutine of assign_parms. Return true if the current parameter
2733 should be stored as a BLKmode in the current frame. */
2735 static bool
2736 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2738 if (data->nominal_mode == BLKmode)
2739 return true;
2740 if (GET_MODE (data->entry_parm) == BLKmode)
2741 return true;
2743 #ifdef BLOCK_REG_PADDING
2744 /* Only assign_parm_setup_block knows how to deal with register arguments
2745 that are padded at the least significant end. */
2746 if (REG_P (data->entry_parm)
2747 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2748 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2749 == (BYTES_BIG_ENDIAN ? upward : downward)))
2750 return true;
2751 #endif
2753 return false;
2756 /* A subroutine of assign_parms. Arrange for the parameter to be
2757 present and valid in DATA->STACK_RTL. */
2759 static void
2760 assign_parm_setup_block (struct assign_parm_data_all *all,
2761 tree parm, struct assign_parm_data_one *data)
2763 rtx entry_parm = data->entry_parm;
2764 rtx stack_parm = data->stack_parm;
2765 HOST_WIDE_INT size;
2766 HOST_WIDE_INT size_stored;
2768 if (GET_CODE (entry_parm) == PARALLEL)
2769 entry_parm = emit_group_move_into_temps (entry_parm);
2771 size = int_size_in_bytes (data->passed_type);
2772 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2773 if (stack_parm == 0)
2775 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2776 stack_parm = assign_stack_local (BLKmode, size_stored,
2777 DECL_ALIGN (parm));
2778 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2779 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2780 set_mem_attributes (stack_parm, parm, 1);
2783 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2784 calls that pass values in multiple non-contiguous locations. */
2785 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2787 rtx mem;
2789 /* Note that we will be storing an integral number of words.
2790 So we have to be careful to ensure that we allocate an
2791 integral number of words. We do this above when we call
2792 assign_stack_local if space was not allocated in the argument
2793 list. If it was, this will not work if PARM_BOUNDARY is not
2794 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2795 if it becomes a problem. Exception is when BLKmode arrives
2796 with arguments not conforming to word_mode. */
2798 if (data->stack_parm == 0)
2800 else if (GET_CODE (entry_parm) == PARALLEL)
2802 else
2803 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2805 mem = validize_mem (stack_parm);
2807 /* Handle values in multiple non-contiguous locations. */
2808 if (GET_CODE (entry_parm) == PARALLEL)
2810 push_to_sequence2 (all->first_conversion_insn,
2811 all->last_conversion_insn);
2812 emit_group_store (mem, entry_parm, data->passed_type, size);
2813 all->first_conversion_insn = get_insns ();
2814 all->last_conversion_insn = get_last_insn ();
2815 end_sequence ();
2818 else if (size == 0)
2821 /* If SIZE is that of a mode no bigger than a word, just use
2822 that mode's store operation. */
2823 else if (size <= UNITS_PER_WORD)
2825 enum machine_mode mode
2826 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2828 if (mode != BLKmode
2829 #ifdef BLOCK_REG_PADDING
2830 && (size == UNITS_PER_WORD
2831 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2832 != (BYTES_BIG_ENDIAN ? upward : downward)))
2833 #endif
2836 rtx reg;
2838 /* We are really truncating a word_mode value containing
2839 SIZE bytes into a value of mode MODE. If such an
2840 operation requires no actual instructions, we can refer
2841 to the value directly in mode MODE, otherwise we must
2842 start with the register in word_mode and explicitly
2843 convert it. */
2844 if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
2845 reg = gen_rtx_REG (mode, REGNO (entry_parm));
2846 else
2848 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2849 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
2851 emit_move_insn (change_address (mem, mode, 0), reg);
2854 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2855 machine must be aligned to the left before storing
2856 to memory. Note that the previous test doesn't
2857 handle all cases (e.g. SIZE == 3). */
2858 else if (size != UNITS_PER_WORD
2859 #ifdef BLOCK_REG_PADDING
2860 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2861 == downward)
2862 #else
2863 && BYTES_BIG_ENDIAN
2864 #endif
2867 rtx tem, x;
2868 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2869 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2871 x = expand_shift (LSHIFT_EXPR, word_mode, reg, by, NULL_RTX, 1);
2872 tem = change_address (mem, word_mode, 0);
2873 emit_move_insn (tem, x);
2875 else
2876 move_block_from_reg (REGNO (entry_parm), mem,
2877 size_stored / UNITS_PER_WORD);
2879 else
2880 move_block_from_reg (REGNO (entry_parm), mem,
2881 size_stored / UNITS_PER_WORD);
2883 else if (data->stack_parm == 0)
2885 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2886 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2887 BLOCK_OP_NORMAL);
2888 all->first_conversion_insn = get_insns ();
2889 all->last_conversion_insn = get_last_insn ();
2890 end_sequence ();
2893 data->stack_parm = stack_parm;
2894 SET_DECL_RTL (parm, stack_parm);
2897 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2898 parameter. Get it there. Perform all ABI specified conversions. */
2900 static void
2901 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2902 struct assign_parm_data_one *data)
2904 rtx parmreg, validated_mem;
2905 rtx equiv_stack_parm;
2906 enum machine_mode promoted_nominal_mode;
2907 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2908 bool did_conversion = false;
2909 bool need_conversion, moved;
2911 /* Store the parm in a pseudoregister during the function, but we may
2912 need to do it in a wider mode. Using 2 here makes the result
2913 consistent with promote_decl_mode and thus expand_expr_real_1. */
2914 promoted_nominal_mode
2915 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
2916 TREE_TYPE (current_function_decl), 2);
2918 parmreg = gen_reg_rtx (promoted_nominal_mode);
2920 if (!DECL_ARTIFICIAL (parm))
2921 mark_user_reg (parmreg);
2923 /* If this was an item that we received a pointer to,
2924 set DECL_RTL appropriately. */
2925 if (data->passed_pointer)
2927 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2928 set_mem_attributes (x, parm, 1);
2929 SET_DECL_RTL (parm, x);
2931 else
2932 SET_DECL_RTL (parm, parmreg);
2934 assign_parm_remove_parallels (data);
2936 /* Copy the value into the register, thus bridging between
2937 assign_parm_find_data_types and expand_expr_real_1. */
2939 equiv_stack_parm = data->stack_parm;
2940 validated_mem = validize_mem (data->entry_parm);
2942 need_conversion = (data->nominal_mode != data->passed_mode
2943 || promoted_nominal_mode != data->promoted_mode);
2944 moved = false;
2946 if (need_conversion
2947 && GET_MODE_CLASS (data->nominal_mode) == MODE_INT
2948 && data->nominal_mode == data->passed_mode
2949 && data->nominal_mode == GET_MODE (data->entry_parm))
2951 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2952 mode, by the caller. We now have to convert it to
2953 NOMINAL_MODE, if different. However, PARMREG may be in
2954 a different mode than NOMINAL_MODE if it is being stored
2955 promoted.
2957 If ENTRY_PARM is a hard register, it might be in a register
2958 not valid for operating in its mode (e.g., an odd-numbered
2959 register for a DFmode). In that case, moves are the only
2960 thing valid, so we can't do a convert from there. This
2961 occurs when the calling sequence allow such misaligned
2962 usages.
2964 In addition, the conversion may involve a call, which could
2965 clobber parameters which haven't been copied to pseudo
2966 registers yet.
2968 First, we try to emit an insn which performs the necessary
2969 conversion. We verify that this insn does not clobber any
2970 hard registers. */
2972 enum insn_code icode;
2973 rtx op0, op1;
2975 icode = can_extend_p (promoted_nominal_mode, data->passed_mode,
2976 unsignedp);
2978 op0 = parmreg;
2979 op1 = validated_mem;
2980 if (icode != CODE_FOR_nothing
2981 && insn_operand_matches (icode, 0, op0)
2982 && insn_operand_matches (icode, 1, op1))
2984 enum rtx_code code = unsignedp ? ZERO_EXTEND : SIGN_EXTEND;
2985 rtx insn, insns;
2986 HARD_REG_SET hardregs;
2988 start_sequence ();
2989 insn = gen_extend_insn (op0, op1, promoted_nominal_mode,
2990 data->passed_mode, unsignedp);
2991 emit_insn (insn);
2992 insns = get_insns ();
2994 moved = true;
2995 CLEAR_HARD_REG_SET (hardregs);
2996 for (insn = insns; insn && moved; insn = NEXT_INSN (insn))
2998 if (INSN_P (insn))
2999 note_stores (PATTERN (insn), record_hard_reg_sets,
3000 &hardregs);
3001 if (!hard_reg_set_empty_p (hardregs))
3002 moved = false;
3005 end_sequence ();
3007 if (moved)
3009 emit_insn (insns);
3010 if (equiv_stack_parm != NULL_RTX)
3011 equiv_stack_parm = gen_rtx_fmt_e (code, GET_MODE (parmreg),
3012 equiv_stack_parm);
3017 if (moved)
3018 /* Nothing to do. */
3020 else if (need_conversion)
3022 /* We did not have an insn to convert directly, or the sequence
3023 generated appeared unsafe. We must first copy the parm to a
3024 pseudo reg, and save the conversion until after all
3025 parameters have been moved. */
3027 int save_tree_used;
3028 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3030 emit_move_insn (tempreg, validated_mem);
3032 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3033 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
3035 if (GET_CODE (tempreg) == SUBREG
3036 && GET_MODE (tempreg) == data->nominal_mode
3037 && REG_P (SUBREG_REG (tempreg))
3038 && data->nominal_mode == data->passed_mode
3039 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
3040 && GET_MODE_SIZE (GET_MODE (tempreg))
3041 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
3043 /* The argument is already sign/zero extended, so note it
3044 into the subreg. */
3045 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
3046 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
3049 /* TREE_USED gets set erroneously during expand_assignment. */
3050 save_tree_used = TREE_USED (parm);
3051 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
3052 TREE_USED (parm) = save_tree_used;
3053 all->first_conversion_insn = get_insns ();
3054 all->last_conversion_insn = get_last_insn ();
3055 end_sequence ();
3057 did_conversion = true;
3059 else
3060 emit_move_insn (parmreg, validated_mem);
3062 /* If we were passed a pointer but the actual value can safely live
3063 in a register, put it in one. */
3064 if (data->passed_pointer
3065 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
3066 /* If by-reference argument was promoted, demote it. */
3067 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
3068 || use_register_for_decl (parm)))
3070 /* We can't use nominal_mode, because it will have been set to
3071 Pmode above. We must use the actual mode of the parm. */
3072 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
3073 mark_user_reg (parmreg);
3075 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
3077 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
3078 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
3080 push_to_sequence2 (all->first_conversion_insn,
3081 all->last_conversion_insn);
3082 emit_move_insn (tempreg, DECL_RTL (parm));
3083 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
3084 emit_move_insn (parmreg, tempreg);
3085 all->first_conversion_insn = get_insns ();
3086 all->last_conversion_insn = get_last_insn ();
3087 end_sequence ();
3089 did_conversion = true;
3091 else
3092 emit_move_insn (parmreg, DECL_RTL (parm));
3094 SET_DECL_RTL (parm, parmreg);
3096 /* STACK_PARM is the pointer, not the parm, and PARMREG is
3097 now the parm. */
3098 data->stack_parm = NULL;
3101 /* Mark the register as eliminable if we did no conversion and it was
3102 copied from memory at a fixed offset, and the arg pointer was not
3103 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
3104 offset formed an invalid address, such memory-equivalences as we
3105 make here would screw up life analysis for it. */
3106 if (data->nominal_mode == data->passed_mode
3107 && !did_conversion
3108 && data->stack_parm != 0
3109 && MEM_P (data->stack_parm)
3110 && data->locate.offset.var == 0
3111 && reg_mentioned_p (virtual_incoming_args_rtx,
3112 XEXP (data->stack_parm, 0)))
3114 rtx linsn = get_last_insn ();
3115 rtx sinsn, set;
3117 /* Mark complex types separately. */
3118 if (GET_CODE (parmreg) == CONCAT)
3120 enum machine_mode submode
3121 = GET_MODE_INNER (GET_MODE (parmreg));
3122 int regnor = REGNO (XEXP (parmreg, 0));
3123 int regnoi = REGNO (XEXP (parmreg, 1));
3124 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
3125 rtx stacki = adjust_address_nv (data->stack_parm, submode,
3126 GET_MODE_SIZE (submode));
3128 /* Scan backwards for the set of the real and
3129 imaginary parts. */
3130 for (sinsn = linsn; sinsn != 0;
3131 sinsn = prev_nonnote_insn (sinsn))
3133 set = single_set (sinsn);
3134 if (set == 0)
3135 continue;
3137 if (SET_DEST (set) == regno_reg_rtx [regnoi])
3138 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
3139 else if (SET_DEST (set) == regno_reg_rtx [regnor])
3140 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
3143 else
3144 set_dst_reg_note (linsn, REG_EQUIV, equiv_stack_parm, parmreg);
3147 /* For pointer data type, suggest pointer register. */
3148 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3149 mark_reg_pointer (parmreg,
3150 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
3153 /* A subroutine of assign_parms. Allocate stack space to hold the current
3154 parameter. Get it there. Perform all ABI specified conversions. */
3156 static void
3157 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
3158 struct assign_parm_data_one *data)
3160 /* Value must be stored in the stack slot STACK_PARM during function
3161 execution. */
3162 bool to_conversion = false;
3164 assign_parm_remove_parallels (data);
3166 if (data->promoted_mode != data->nominal_mode)
3168 /* Conversion is required. */
3169 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3171 emit_move_insn (tempreg, validize_mem (data->entry_parm));
3173 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3174 to_conversion = true;
3176 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
3177 TYPE_UNSIGNED (TREE_TYPE (parm)));
3179 if (data->stack_parm)
3181 int offset = subreg_lowpart_offset (data->nominal_mode,
3182 GET_MODE (data->stack_parm));
3183 /* ??? This may need a big-endian conversion on sparc64. */
3184 data->stack_parm
3185 = adjust_address (data->stack_parm, data->nominal_mode, 0);
3186 if (offset && MEM_OFFSET_KNOWN_P (data->stack_parm))
3187 set_mem_offset (data->stack_parm,
3188 MEM_OFFSET (data->stack_parm) + offset);
3192 if (data->entry_parm != data->stack_parm)
3194 rtx src, dest;
3196 if (data->stack_parm == 0)
3198 int align = STACK_SLOT_ALIGNMENT (data->passed_type,
3199 GET_MODE (data->entry_parm),
3200 TYPE_ALIGN (data->passed_type));
3201 data->stack_parm
3202 = assign_stack_local (GET_MODE (data->entry_parm),
3203 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3204 align);
3205 set_mem_attributes (data->stack_parm, parm, 1);
3208 dest = validize_mem (data->stack_parm);
3209 src = validize_mem (data->entry_parm);
3211 if (MEM_P (src))
3213 /* Use a block move to handle potentially misaligned entry_parm. */
3214 if (!to_conversion)
3215 push_to_sequence2 (all->first_conversion_insn,
3216 all->last_conversion_insn);
3217 to_conversion = true;
3219 emit_block_move (dest, src,
3220 GEN_INT (int_size_in_bytes (data->passed_type)),
3221 BLOCK_OP_NORMAL);
3223 else
3224 emit_move_insn (dest, src);
3227 if (to_conversion)
3229 all->first_conversion_insn = get_insns ();
3230 all->last_conversion_insn = get_last_insn ();
3231 end_sequence ();
3234 SET_DECL_RTL (parm, data->stack_parm);
3237 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3238 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3240 static void
3241 assign_parms_unsplit_complex (struct assign_parm_data_all *all,
3242 VEC(tree, heap) *fnargs)
3244 tree parm;
3245 tree orig_fnargs = all->orig_fnargs;
3246 unsigned i = 0;
3248 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i)
3250 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3251 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3253 rtx tmp, real, imag;
3254 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3256 real = DECL_RTL (VEC_index (tree, fnargs, i));
3257 imag = DECL_RTL (VEC_index (tree, fnargs, i + 1));
3258 if (inner != GET_MODE (real))
3260 real = gen_lowpart_SUBREG (inner, real);
3261 imag = gen_lowpart_SUBREG (inner, imag);
3264 if (TREE_ADDRESSABLE (parm))
3266 rtx rmem, imem;
3267 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3268 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3269 DECL_MODE (parm),
3270 TYPE_ALIGN (TREE_TYPE (parm)));
3272 /* split_complex_arg put the real and imag parts in
3273 pseudos. Move them to memory. */
3274 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3275 set_mem_attributes (tmp, parm, 1);
3276 rmem = adjust_address_nv (tmp, inner, 0);
3277 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3278 push_to_sequence2 (all->first_conversion_insn,
3279 all->last_conversion_insn);
3280 emit_move_insn (rmem, real);
3281 emit_move_insn (imem, imag);
3282 all->first_conversion_insn = get_insns ();
3283 all->last_conversion_insn = get_last_insn ();
3284 end_sequence ();
3286 else
3287 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3288 SET_DECL_RTL (parm, tmp);
3290 real = DECL_INCOMING_RTL (VEC_index (tree, fnargs, i));
3291 imag = DECL_INCOMING_RTL (VEC_index (tree, fnargs, i + 1));
3292 if (inner != GET_MODE (real))
3294 real = gen_lowpart_SUBREG (inner, real);
3295 imag = gen_lowpart_SUBREG (inner, imag);
3297 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3298 set_decl_incoming_rtl (parm, tmp, false);
3299 i++;
3304 /* Assign RTL expressions to the function's parameters. This may involve
3305 copying them into registers and using those registers as the DECL_RTL. */
3307 static void
3308 assign_parms (tree fndecl)
3310 struct assign_parm_data_all all;
3311 tree parm;
3312 VEC(tree, heap) *fnargs;
3313 unsigned i;
3315 crtl->args.internal_arg_pointer
3316 = targetm.calls.internal_arg_pointer ();
3318 assign_parms_initialize_all (&all);
3319 fnargs = assign_parms_augmented_arg_list (&all);
3321 FOR_EACH_VEC_ELT (tree, fnargs, i, parm)
3323 struct assign_parm_data_one data;
3325 /* Extract the type of PARM; adjust it according to ABI. */
3326 assign_parm_find_data_types (&all, parm, &data);
3328 /* Early out for errors and void parameters. */
3329 if (data.passed_mode == VOIDmode)
3331 SET_DECL_RTL (parm, const0_rtx);
3332 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3333 continue;
3336 /* Estimate stack alignment from parameter alignment. */
3337 if (SUPPORTS_STACK_ALIGNMENT)
3339 unsigned int align
3340 = targetm.calls.function_arg_boundary (data.promoted_mode,
3341 data.passed_type);
3342 align = MINIMUM_ALIGNMENT (data.passed_type, data.promoted_mode,
3343 align);
3344 if (TYPE_ALIGN (data.nominal_type) > align)
3345 align = MINIMUM_ALIGNMENT (data.nominal_type,
3346 TYPE_MODE (data.nominal_type),
3347 TYPE_ALIGN (data.nominal_type));
3348 if (crtl->stack_alignment_estimated < align)
3350 gcc_assert (!crtl->stack_realign_processed);
3351 crtl->stack_alignment_estimated = align;
3355 if (cfun->stdarg && !DECL_CHAIN (parm))
3356 assign_parms_setup_varargs (&all, &data, false);
3358 /* Find out where the parameter arrives in this function. */
3359 assign_parm_find_entry_rtl (&all, &data);
3361 /* Find out where stack space for this parameter might be. */
3362 if (assign_parm_is_stack_parm (&all, &data))
3364 assign_parm_find_stack_rtl (parm, &data);
3365 assign_parm_adjust_entry_rtl (&data);
3368 /* Record permanently how this parm was passed. */
3369 if (data.passed_pointer)
3371 rtx incoming_rtl
3372 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data.passed_type)),
3373 data.entry_parm);
3374 set_decl_incoming_rtl (parm, incoming_rtl, true);
3376 else
3377 set_decl_incoming_rtl (parm, data.entry_parm, false);
3379 /* Update info on where next arg arrives in registers. */
3380 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3381 data.passed_type, data.named_arg);
3383 assign_parm_adjust_stack_rtl (&data);
3385 if (assign_parm_setup_block_p (&data))
3386 assign_parm_setup_block (&all, parm, &data);
3387 else if (data.passed_pointer || use_register_for_decl (parm))
3388 assign_parm_setup_reg (&all, parm, &data);
3389 else
3390 assign_parm_setup_stack (&all, parm, &data);
3393 if (targetm.calls.split_complex_arg)
3394 assign_parms_unsplit_complex (&all, fnargs);
3396 VEC_free (tree, heap, fnargs);
3398 /* Output all parameter conversion instructions (possibly including calls)
3399 now that all parameters have been copied out of hard registers. */
3400 emit_insn (all.first_conversion_insn);
3402 /* Estimate reload stack alignment from scalar return mode. */
3403 if (SUPPORTS_STACK_ALIGNMENT)
3405 if (DECL_RESULT (fndecl))
3407 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3408 enum machine_mode mode = TYPE_MODE (type);
3410 if (mode != BLKmode
3411 && mode != VOIDmode
3412 && !AGGREGATE_TYPE_P (type))
3414 unsigned int align = GET_MODE_ALIGNMENT (mode);
3415 if (crtl->stack_alignment_estimated < align)
3417 gcc_assert (!crtl->stack_realign_processed);
3418 crtl->stack_alignment_estimated = align;
3424 /* If we are receiving a struct value address as the first argument, set up
3425 the RTL for the function result. As this might require code to convert
3426 the transmitted address to Pmode, we do this here to ensure that possible
3427 preliminary conversions of the address have been emitted already. */
3428 if (all.function_result_decl)
3430 tree result = DECL_RESULT (current_function_decl);
3431 rtx addr = DECL_RTL (all.function_result_decl);
3432 rtx x;
3434 if (DECL_BY_REFERENCE (result))
3436 SET_DECL_VALUE_EXPR (result, all.function_result_decl);
3437 x = addr;
3439 else
3441 SET_DECL_VALUE_EXPR (result,
3442 build1 (INDIRECT_REF, TREE_TYPE (result),
3443 all.function_result_decl));
3444 addr = convert_memory_address (Pmode, addr);
3445 x = gen_rtx_MEM (DECL_MODE (result), addr);
3446 set_mem_attributes (x, result, 1);
3449 DECL_HAS_VALUE_EXPR_P (result) = 1;
3451 SET_DECL_RTL (result, x);
3454 /* We have aligned all the args, so add space for the pretend args. */
3455 crtl->args.pretend_args_size = all.pretend_args_size;
3456 all.stack_args_size.constant += all.extra_pretend_bytes;
3457 crtl->args.size = all.stack_args_size.constant;
3459 /* Adjust function incoming argument size for alignment and
3460 minimum length. */
3462 #ifdef REG_PARM_STACK_SPACE
3463 crtl->args.size = MAX (crtl->args.size,
3464 REG_PARM_STACK_SPACE (fndecl));
3465 #endif
3467 crtl->args.size = CEIL_ROUND (crtl->args.size,
3468 PARM_BOUNDARY / BITS_PER_UNIT);
3470 #ifdef ARGS_GROW_DOWNWARD
3471 crtl->args.arg_offset_rtx
3472 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3473 : expand_expr (size_diffop (all.stack_args_size.var,
3474 size_int (-all.stack_args_size.constant)),
3475 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3476 #else
3477 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3478 #endif
3480 /* See how many bytes, if any, of its args a function should try to pop
3481 on return. */
3483 crtl->args.pops_args = targetm.calls.return_pops_args (fndecl,
3484 TREE_TYPE (fndecl),
3485 crtl->args.size);
3487 /* For stdarg.h function, save info about
3488 regs and stack space used by the named args. */
3490 crtl->args.info = all.args_so_far_v;
3492 /* Set the rtx used for the function return value. Put this in its
3493 own variable so any optimizers that need this information don't have
3494 to include tree.h. Do this here so it gets done when an inlined
3495 function gets output. */
3497 crtl->return_rtx
3498 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3499 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3501 /* If scalar return value was computed in a pseudo-reg, or was a named
3502 return value that got dumped to the stack, copy that to the hard
3503 return register. */
3504 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3506 tree decl_result = DECL_RESULT (fndecl);
3507 rtx decl_rtl = DECL_RTL (decl_result);
3509 if (REG_P (decl_rtl)
3510 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3511 : DECL_REGISTER (decl_result))
3513 rtx real_decl_rtl;
3515 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3516 fndecl, true);
3517 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3518 /* The delay slot scheduler assumes that crtl->return_rtx
3519 holds the hard register containing the return value, not a
3520 temporary pseudo. */
3521 crtl->return_rtx = real_decl_rtl;
3526 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3527 For all seen types, gimplify their sizes. */
3529 static tree
3530 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3532 tree t = *tp;
3534 *walk_subtrees = 0;
3535 if (TYPE_P (t))
3537 if (POINTER_TYPE_P (t))
3538 *walk_subtrees = 1;
3539 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3540 && !TYPE_SIZES_GIMPLIFIED (t))
3542 gimplify_type_sizes (t, (gimple_seq *) data);
3543 *walk_subtrees = 1;
3547 return NULL;
3550 /* Gimplify the parameter list for current_function_decl. This involves
3551 evaluating SAVE_EXPRs of variable sized parameters and generating code
3552 to implement callee-copies reference parameters. Returns a sequence of
3553 statements to add to the beginning of the function. */
3555 gimple_seq
3556 gimplify_parameters (void)
3558 struct assign_parm_data_all all;
3559 tree parm;
3560 gimple_seq stmts = NULL;
3561 VEC(tree, heap) *fnargs;
3562 unsigned i;
3564 assign_parms_initialize_all (&all);
3565 fnargs = assign_parms_augmented_arg_list (&all);
3567 FOR_EACH_VEC_ELT (tree, fnargs, i, parm)
3569 struct assign_parm_data_one data;
3571 /* Extract the type of PARM; adjust it according to ABI. */
3572 assign_parm_find_data_types (&all, parm, &data);
3574 /* Early out for errors and void parameters. */
3575 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3576 continue;
3578 /* Update info on where next arg arrives in registers. */
3579 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3580 data.passed_type, data.named_arg);
3582 /* ??? Once upon a time variable_size stuffed parameter list
3583 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3584 turned out to be less than manageable in the gimple world.
3585 Now we have to hunt them down ourselves. */
3586 walk_tree_without_duplicates (&data.passed_type,
3587 gimplify_parm_type, &stmts);
3589 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
3591 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3592 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3595 if (data.passed_pointer)
3597 tree type = TREE_TYPE (data.passed_type);
3598 if (reference_callee_copied (&all.args_so_far_v, TYPE_MODE (type),
3599 type, data.named_arg))
3601 tree local, t;
3603 /* For constant-sized objects, this is trivial; for
3604 variable-sized objects, we have to play games. */
3605 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3606 && !(flag_stack_check == GENERIC_STACK_CHECK
3607 && compare_tree_int (DECL_SIZE_UNIT (parm),
3608 STACK_CHECK_MAX_VAR_SIZE) > 0))
3610 local = create_tmp_var (type, get_name (parm));
3611 DECL_IGNORED_P (local) = 0;
3612 /* If PARM was addressable, move that flag over
3613 to the local copy, as its address will be taken,
3614 not the PARMs. Keep the parms address taken
3615 as we'll query that flag during gimplification. */
3616 if (TREE_ADDRESSABLE (parm))
3617 TREE_ADDRESSABLE (local) = 1;
3618 else if (TREE_CODE (type) == COMPLEX_TYPE
3619 || TREE_CODE (type) == VECTOR_TYPE)
3620 DECL_GIMPLE_REG_P (local) = 1;
3622 else
3624 tree ptr_type, addr;
3626 ptr_type = build_pointer_type (type);
3627 addr = create_tmp_reg (ptr_type, get_name (parm));
3628 DECL_IGNORED_P (addr) = 0;
3629 local = build_fold_indirect_ref (addr);
3631 t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN);
3632 t = build_call_expr (t, 2, DECL_SIZE_UNIT (parm),
3633 size_int (DECL_ALIGN (parm)));
3635 /* The call has been built for a variable-sized object. */
3636 CALL_ALLOCA_FOR_VAR_P (t) = 1;
3637 t = fold_convert (ptr_type, t);
3638 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
3639 gimplify_and_add (t, &stmts);
3642 gimplify_assign (local, parm, &stmts);
3644 SET_DECL_VALUE_EXPR (parm, local);
3645 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3650 VEC_free (tree, heap, fnargs);
3652 return stmts;
3655 /* Compute the size and offset from the start of the stacked arguments for a
3656 parm passed in mode PASSED_MODE and with type TYPE.
3658 INITIAL_OFFSET_PTR points to the current offset into the stacked
3659 arguments.
3661 The starting offset and size for this parm are returned in
3662 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3663 nonzero, the offset is that of stack slot, which is returned in
3664 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3665 padding required from the initial offset ptr to the stack slot.
3667 IN_REGS is nonzero if the argument will be passed in registers. It will
3668 never be set if REG_PARM_STACK_SPACE is not defined.
3670 FNDECL is the function in which the argument was defined.
3672 There are two types of rounding that are done. The first, controlled by
3673 TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the
3674 argument list to be aligned to the specific boundary (in bits). This
3675 rounding affects the initial and starting offsets, but not the argument
3676 size.
3678 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3679 optionally rounds the size of the parm to PARM_BOUNDARY. The
3680 initial offset is not affected by this rounding, while the size always
3681 is and the starting offset may be. */
3683 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3684 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3685 callers pass in the total size of args so far as
3686 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3688 void
3689 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3690 int partial, tree fndecl ATTRIBUTE_UNUSED,
3691 struct args_size *initial_offset_ptr,
3692 struct locate_and_pad_arg_data *locate)
3694 tree sizetree;
3695 enum direction where_pad;
3696 unsigned int boundary, round_boundary;
3697 int reg_parm_stack_space = 0;
3698 int part_size_in_regs;
3700 #ifdef REG_PARM_STACK_SPACE
3701 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3703 /* If we have found a stack parm before we reach the end of the
3704 area reserved for registers, skip that area. */
3705 if (! in_regs)
3707 if (reg_parm_stack_space > 0)
3709 if (initial_offset_ptr->var)
3711 initial_offset_ptr->var
3712 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3713 ssize_int (reg_parm_stack_space));
3714 initial_offset_ptr->constant = 0;
3716 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3717 initial_offset_ptr->constant = reg_parm_stack_space;
3720 #endif /* REG_PARM_STACK_SPACE */
3722 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3724 sizetree
3725 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3726 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3727 boundary = targetm.calls.function_arg_boundary (passed_mode, type);
3728 round_boundary = targetm.calls.function_arg_round_boundary (passed_mode,
3729 type);
3730 locate->where_pad = where_pad;
3732 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
3733 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
3734 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
3736 locate->boundary = boundary;
3738 if (SUPPORTS_STACK_ALIGNMENT)
3740 /* stack_alignment_estimated can't change after stack has been
3741 realigned. */
3742 if (crtl->stack_alignment_estimated < boundary)
3744 if (!crtl->stack_realign_processed)
3745 crtl->stack_alignment_estimated = boundary;
3746 else
3748 /* If stack is realigned and stack alignment value
3749 hasn't been finalized, it is OK not to increase
3750 stack_alignment_estimated. The bigger alignment
3751 requirement is recorded in stack_alignment_needed
3752 below. */
3753 gcc_assert (!crtl->stack_realign_finalized
3754 && crtl->stack_realign_needed);
3759 /* Remember if the outgoing parameter requires extra alignment on the
3760 calling function side. */
3761 if (crtl->stack_alignment_needed < boundary)
3762 crtl->stack_alignment_needed = boundary;
3763 if (crtl->preferred_stack_boundary < boundary)
3764 crtl->preferred_stack_boundary = boundary;
3766 #ifdef ARGS_GROW_DOWNWARD
3767 locate->slot_offset.constant = -initial_offset_ptr->constant;
3768 if (initial_offset_ptr->var)
3769 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3770 initial_offset_ptr->var);
3773 tree s2 = sizetree;
3774 if (where_pad != none
3775 && (!host_integerp (sizetree, 1)
3776 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % round_boundary))
3777 s2 = round_up (s2, round_boundary / BITS_PER_UNIT);
3778 SUB_PARM_SIZE (locate->slot_offset, s2);
3781 locate->slot_offset.constant += part_size_in_regs;
3783 if (!in_regs
3784 #ifdef REG_PARM_STACK_SPACE
3785 || REG_PARM_STACK_SPACE (fndecl) > 0
3786 #endif
3788 pad_to_arg_alignment (&locate->slot_offset, boundary,
3789 &locate->alignment_pad);
3791 locate->size.constant = (-initial_offset_ptr->constant
3792 - locate->slot_offset.constant);
3793 if (initial_offset_ptr->var)
3794 locate->size.var = size_binop (MINUS_EXPR,
3795 size_binop (MINUS_EXPR,
3796 ssize_int (0),
3797 initial_offset_ptr->var),
3798 locate->slot_offset.var);
3800 /* Pad_below needs the pre-rounded size to know how much to pad
3801 below. */
3802 locate->offset = locate->slot_offset;
3803 if (where_pad == downward)
3804 pad_below (&locate->offset, passed_mode, sizetree);
3806 #else /* !ARGS_GROW_DOWNWARD */
3807 if (!in_regs
3808 #ifdef REG_PARM_STACK_SPACE
3809 || REG_PARM_STACK_SPACE (fndecl) > 0
3810 #endif
3812 pad_to_arg_alignment (initial_offset_ptr, boundary,
3813 &locate->alignment_pad);
3814 locate->slot_offset = *initial_offset_ptr;
3816 #ifdef PUSH_ROUNDING
3817 if (passed_mode != BLKmode)
3818 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3819 #endif
3821 /* Pad_below needs the pre-rounded size to know how much to pad below
3822 so this must be done before rounding up. */
3823 locate->offset = locate->slot_offset;
3824 if (where_pad == downward)
3825 pad_below (&locate->offset, passed_mode, sizetree);
3827 if (where_pad != none
3828 && (!host_integerp (sizetree, 1)
3829 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % round_boundary))
3830 sizetree = round_up (sizetree, round_boundary / BITS_PER_UNIT);
3832 ADD_PARM_SIZE (locate->size, sizetree);
3834 locate->size.constant -= part_size_in_regs;
3835 #endif /* ARGS_GROW_DOWNWARD */
3837 #ifdef FUNCTION_ARG_OFFSET
3838 locate->offset.constant += FUNCTION_ARG_OFFSET (passed_mode, type);
3839 #endif
3842 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3843 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3845 static void
3846 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3847 struct args_size *alignment_pad)
3849 tree save_var = NULL_TREE;
3850 HOST_WIDE_INT save_constant = 0;
3851 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3852 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3854 #ifdef SPARC_STACK_BOUNDARY_HACK
3855 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3856 the real alignment of %sp. However, when it does this, the
3857 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
3858 if (SPARC_STACK_BOUNDARY_HACK)
3859 sp_offset = 0;
3860 #endif
3862 if (boundary > PARM_BOUNDARY)
3864 save_var = offset_ptr->var;
3865 save_constant = offset_ptr->constant;
3868 alignment_pad->var = NULL_TREE;
3869 alignment_pad->constant = 0;
3871 if (boundary > BITS_PER_UNIT)
3873 if (offset_ptr->var)
3875 tree sp_offset_tree = ssize_int (sp_offset);
3876 tree offset = size_binop (PLUS_EXPR,
3877 ARGS_SIZE_TREE (*offset_ptr),
3878 sp_offset_tree);
3879 #ifdef ARGS_GROW_DOWNWARD
3880 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3881 #else
3882 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3883 #endif
3885 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3886 /* ARGS_SIZE_TREE includes constant term. */
3887 offset_ptr->constant = 0;
3888 if (boundary > PARM_BOUNDARY)
3889 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3890 save_var);
3892 else
3894 offset_ptr->constant = -sp_offset +
3895 #ifdef ARGS_GROW_DOWNWARD
3896 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3897 #else
3898 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3899 #endif
3900 if (boundary > PARM_BOUNDARY)
3901 alignment_pad->constant = offset_ptr->constant - save_constant;
3906 static void
3907 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3909 if (passed_mode != BLKmode)
3911 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3912 offset_ptr->constant
3913 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3914 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3915 - GET_MODE_SIZE (passed_mode));
3917 else
3919 if (TREE_CODE (sizetree) != INTEGER_CST
3920 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3922 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3923 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3924 /* Add it in. */
3925 ADD_PARM_SIZE (*offset_ptr, s2);
3926 SUB_PARM_SIZE (*offset_ptr, sizetree);
3932 /* True if register REGNO was alive at a place where `setjmp' was
3933 called and was set more than once or is an argument. Such regs may
3934 be clobbered by `longjmp'. */
3936 static bool
3937 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
3939 /* There appear to be cases where some local vars never reach the
3940 backend but have bogus regnos. */
3941 if (regno >= max_reg_num ())
3942 return false;
3944 return ((REG_N_SETS (regno) > 1
3945 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR), regno))
3946 && REGNO_REG_SET_P (setjmp_crosses, regno));
3949 /* Walk the tree of blocks describing the binding levels within a
3950 function and warn about variables the might be killed by setjmp or
3951 vfork. This is done after calling flow_analysis before register
3952 allocation since that will clobber the pseudo-regs to hard
3953 regs. */
3955 static void
3956 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
3958 tree decl, sub;
3960 for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
3962 if (TREE_CODE (decl) == VAR_DECL
3963 && DECL_RTL_SET_P (decl)
3964 && REG_P (DECL_RTL (decl))
3965 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3966 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
3967 " %<longjmp%> or %<vfork%>", decl);
3970 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
3971 setjmp_vars_warning (setjmp_crosses, sub);
3974 /* Do the appropriate part of setjmp_vars_warning
3975 but for arguments instead of local variables. */
3977 static void
3978 setjmp_args_warning (bitmap setjmp_crosses)
3980 tree decl;
3981 for (decl = DECL_ARGUMENTS (current_function_decl);
3982 decl; decl = DECL_CHAIN (decl))
3983 if (DECL_RTL (decl) != 0
3984 && REG_P (DECL_RTL (decl))
3985 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3986 warning (OPT_Wclobbered,
3987 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
3988 decl);
3991 /* Generate warning messages for variables live across setjmp. */
3993 void
3994 generate_setjmp_warnings (void)
3996 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
3998 if (n_basic_blocks == NUM_FIXED_BLOCKS
3999 || bitmap_empty_p (setjmp_crosses))
4000 return;
4002 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
4003 setjmp_args_warning (setjmp_crosses);
4007 /* Reverse the order of elements in the fragment chain T of blocks,
4008 and return the new head of the chain (old last element). */
4010 static tree
4011 block_fragments_nreverse (tree t)
4013 tree prev = 0, block, next;
4014 for (block = t; block; block = next)
4016 next = BLOCK_FRAGMENT_CHAIN (block);
4017 BLOCK_FRAGMENT_CHAIN (block) = prev;
4018 prev = block;
4020 return prev;
4023 /* Reverse the order of elements in the chain T of blocks,
4024 and return the new head of the chain (old last element).
4025 Also do the same on subblocks and reverse the order of elements
4026 in BLOCK_FRAGMENT_CHAIN as well. */
4028 static tree
4029 blocks_nreverse_all (tree t)
4031 tree prev = 0, block, next;
4032 for (block = t; block; block = next)
4034 next = BLOCK_CHAIN (block);
4035 BLOCK_CHAIN (block) = prev;
4036 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4037 if (BLOCK_FRAGMENT_CHAIN (block)
4038 && BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE)
4039 BLOCK_FRAGMENT_CHAIN (block)
4040 = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block));
4041 prev = block;
4043 return prev;
4047 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
4048 and create duplicate blocks. */
4049 /* ??? Need an option to either create block fragments or to create
4050 abstract origin duplicates of a source block. It really depends
4051 on what optimization has been performed. */
4053 void
4054 reorder_blocks (void)
4056 tree block = DECL_INITIAL (current_function_decl);
4057 VEC(tree,heap) *block_stack;
4059 if (block == NULL_TREE)
4060 return;
4062 block_stack = VEC_alloc (tree, heap, 10);
4064 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
4065 clear_block_marks (block);
4067 /* Prune the old trees away, so that they don't get in the way. */
4068 BLOCK_SUBBLOCKS (block) = NULL_TREE;
4069 BLOCK_CHAIN (block) = NULL_TREE;
4071 /* Recreate the block tree from the note nesting. */
4072 reorder_blocks_1 (get_insns (), block, &block_stack);
4073 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4075 VEC_free (tree, heap, block_stack);
4078 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
4080 void
4081 clear_block_marks (tree block)
4083 while (block)
4085 TREE_ASM_WRITTEN (block) = 0;
4086 clear_block_marks (BLOCK_SUBBLOCKS (block));
4087 block = BLOCK_CHAIN (block);
4091 static void
4092 reorder_blocks_1 (rtx insns, tree current_block, VEC(tree,heap) **p_block_stack)
4094 rtx insn;
4096 for (insn = insns; insn; insn = NEXT_INSN (insn))
4098 if (NOTE_P (insn))
4100 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
4102 tree block = NOTE_BLOCK (insn);
4103 tree origin;
4105 gcc_assert (BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE);
4106 origin = block;
4108 /* If we have seen this block before, that means it now
4109 spans multiple address regions. Create a new fragment. */
4110 if (TREE_ASM_WRITTEN (block))
4112 tree new_block = copy_node (block);
4114 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
4115 BLOCK_FRAGMENT_CHAIN (new_block)
4116 = BLOCK_FRAGMENT_CHAIN (origin);
4117 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
4119 NOTE_BLOCK (insn) = new_block;
4120 block = new_block;
4123 BLOCK_SUBBLOCKS (block) = 0;
4124 TREE_ASM_WRITTEN (block) = 1;
4125 /* When there's only one block for the entire function,
4126 current_block == block and we mustn't do this, it
4127 will cause infinite recursion. */
4128 if (block != current_block)
4130 if (block != origin)
4131 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block);
4133 BLOCK_SUPERCONTEXT (block) = current_block;
4134 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
4135 BLOCK_SUBBLOCKS (current_block) = block;
4136 current_block = origin;
4138 VEC_safe_push (tree, heap, *p_block_stack, block);
4140 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
4142 NOTE_BLOCK (insn) = VEC_pop (tree, *p_block_stack);
4143 current_block = BLOCK_SUPERCONTEXT (current_block);
4149 /* Reverse the order of elements in the chain T of blocks,
4150 and return the new head of the chain (old last element). */
4152 tree
4153 blocks_nreverse (tree t)
4155 tree prev = 0, block, next;
4156 for (block = t; block; block = next)
4158 next = BLOCK_CHAIN (block);
4159 BLOCK_CHAIN (block) = prev;
4160 prev = block;
4162 return prev;
4165 /* Concatenate two chains of blocks (chained through BLOCK_CHAIN)
4166 by modifying the last node in chain 1 to point to chain 2. */
4168 tree
4169 block_chainon (tree op1, tree op2)
4171 tree t1;
4173 if (!op1)
4174 return op2;
4175 if (!op2)
4176 return op1;
4178 for (t1 = op1; BLOCK_CHAIN (t1); t1 = BLOCK_CHAIN (t1))
4179 continue;
4180 BLOCK_CHAIN (t1) = op2;
4182 #ifdef ENABLE_TREE_CHECKING
4184 tree t2;
4185 for (t2 = op2; t2; t2 = BLOCK_CHAIN (t2))
4186 gcc_assert (t2 != t1);
4188 #endif
4190 return op1;
4193 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
4194 non-NULL, list them all into VECTOR, in a depth-first preorder
4195 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
4196 blocks. */
4198 static int
4199 all_blocks (tree block, tree *vector)
4201 int n_blocks = 0;
4203 while (block)
4205 TREE_ASM_WRITTEN (block) = 0;
4207 /* Record this block. */
4208 if (vector)
4209 vector[n_blocks] = block;
4211 ++n_blocks;
4213 /* Record the subblocks, and their subblocks... */
4214 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
4215 vector ? vector + n_blocks : 0);
4216 block = BLOCK_CHAIN (block);
4219 return n_blocks;
4222 /* Return a vector containing all the blocks rooted at BLOCK. The
4223 number of elements in the vector is stored in N_BLOCKS_P. The
4224 vector is dynamically allocated; it is the caller's responsibility
4225 to call `free' on the pointer returned. */
4227 static tree *
4228 get_block_vector (tree block, int *n_blocks_p)
4230 tree *block_vector;
4232 *n_blocks_p = all_blocks (block, NULL);
4233 block_vector = XNEWVEC (tree, *n_blocks_p);
4234 all_blocks (block, block_vector);
4236 return block_vector;
4239 static GTY(()) int next_block_index = 2;
4241 /* Set BLOCK_NUMBER for all the blocks in FN. */
4243 void
4244 number_blocks (tree fn)
4246 int i;
4247 int n_blocks;
4248 tree *block_vector;
4250 /* For SDB and XCOFF debugging output, we start numbering the blocks
4251 from 1 within each function, rather than keeping a running
4252 count. */
4253 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
4254 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
4255 next_block_index = 1;
4256 #endif
4258 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
4260 /* The top-level BLOCK isn't numbered at all. */
4261 for (i = 1; i < n_blocks; ++i)
4262 /* We number the blocks from two. */
4263 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
4265 free (block_vector);
4267 return;
4270 /* If VAR is present in a subblock of BLOCK, return the subblock. */
4272 DEBUG_FUNCTION tree
4273 debug_find_var_in_block_tree (tree var, tree block)
4275 tree t;
4277 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
4278 if (t == var)
4279 return block;
4281 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
4283 tree ret = debug_find_var_in_block_tree (var, t);
4284 if (ret)
4285 return ret;
4288 return NULL_TREE;
4291 /* Keep track of whether we're in a dummy function context. If we are,
4292 we don't want to invoke the set_current_function hook, because we'll
4293 get into trouble if the hook calls target_reinit () recursively or
4294 when the initial initialization is not yet complete. */
4296 static bool in_dummy_function;
4298 /* Invoke the target hook when setting cfun. Update the optimization options
4299 if the function uses different options than the default. */
4301 static void
4302 invoke_set_current_function_hook (tree fndecl)
4304 if (!in_dummy_function)
4306 tree opts = ((fndecl)
4307 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4308 : optimization_default_node);
4310 if (!opts)
4311 opts = optimization_default_node;
4313 /* Change optimization options if needed. */
4314 if (optimization_current_node != opts)
4316 optimization_current_node = opts;
4317 cl_optimization_restore (&global_options, TREE_OPTIMIZATION (opts));
4320 targetm.set_current_function (fndecl);
4324 /* cfun should never be set directly; use this function. */
4326 void
4327 set_cfun (struct function *new_cfun)
4329 if (cfun != new_cfun)
4331 cfun = new_cfun;
4332 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4336 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4338 static VEC(function_p,heap) *cfun_stack;
4340 /* Push the current cfun onto the stack, and set cfun to new_cfun. */
4342 void
4343 push_cfun (struct function *new_cfun)
4345 VEC_safe_push (function_p, heap, cfun_stack, cfun);
4346 set_cfun (new_cfun);
4349 /* Pop cfun from the stack. */
4351 void
4352 pop_cfun (void)
4354 struct function *new_cfun = VEC_pop (function_p, cfun_stack);
4355 set_cfun (new_cfun);
4358 /* Return value of funcdef and increase it. */
4360 get_next_funcdef_no (void)
4362 return funcdef_no++;
4365 /* Return value of funcdef. */
4367 get_last_funcdef_no (void)
4369 return funcdef_no;
4372 /* Allocate a function structure for FNDECL and set its contents
4373 to the defaults. Set cfun to the newly-allocated object.
4374 Some of the helper functions invoked during initialization assume
4375 that cfun has already been set. Therefore, assign the new object
4376 directly into cfun and invoke the back end hook explicitly at the
4377 very end, rather than initializing a temporary and calling set_cfun
4378 on it.
4380 ABSTRACT_P is true if this is a function that will never be seen by
4381 the middle-end. Such functions are front-end concepts (like C++
4382 function templates) that do not correspond directly to functions
4383 placed in object files. */
4385 void
4386 allocate_struct_function (tree fndecl, bool abstract_p)
4388 tree result;
4389 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4391 cfun = ggc_alloc_cleared_function ();
4393 init_eh_for_function ();
4395 if (init_machine_status)
4396 cfun->machine = (*init_machine_status) ();
4398 #ifdef OVERRIDE_ABI_FORMAT
4399 OVERRIDE_ABI_FORMAT (fndecl);
4400 #endif
4402 invoke_set_current_function_hook (fndecl);
4404 if (fndecl != NULL_TREE)
4406 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4407 cfun->decl = fndecl;
4408 current_function_funcdef_no = get_next_funcdef_no ();
4410 result = DECL_RESULT (fndecl);
4411 if (!abstract_p && aggregate_value_p (result, fndecl))
4413 #ifdef PCC_STATIC_STRUCT_RETURN
4414 cfun->returns_pcc_struct = 1;
4415 #endif
4416 cfun->returns_struct = 1;
4419 cfun->stdarg = stdarg_p (fntype);
4421 /* Assume all registers in stdarg functions need to be saved. */
4422 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4423 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4425 /* ??? This could be set on a per-function basis by the front-end
4426 but is this worth the hassle? */
4427 cfun->can_throw_non_call_exceptions = flag_non_call_exceptions;
4431 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4432 instead of just setting it. */
4434 void
4435 push_struct_function (tree fndecl)
4437 VEC_safe_push (function_p, heap, cfun_stack, cfun);
4438 allocate_struct_function (fndecl, false);
4441 /* Reset crtl and other non-struct-function variables to defaults as
4442 appropriate for emitting rtl at the start of a function. */
4444 static void
4445 prepare_function_start (void)
4447 gcc_assert (!crtl->emit.x_last_insn);
4448 init_temp_slots ();
4449 init_emit ();
4450 init_varasm_status ();
4451 init_expr ();
4452 default_rtl_profile ();
4454 if (flag_stack_usage_info)
4456 cfun->su = ggc_alloc_cleared_stack_usage ();
4457 cfun->su->static_stack_size = -1;
4460 cse_not_expected = ! optimize;
4462 /* Caller save not needed yet. */
4463 caller_save_needed = 0;
4465 /* We haven't done register allocation yet. */
4466 reg_renumber = 0;
4468 /* Indicate that we have not instantiated virtual registers yet. */
4469 virtuals_instantiated = 0;
4471 /* Indicate that we want CONCATs now. */
4472 generating_concat_p = 1;
4474 /* Indicate we have no need of a frame pointer yet. */
4475 frame_pointer_needed = 0;
4478 /* Initialize the rtl expansion mechanism so that we can do simple things
4479 like generate sequences. This is used to provide a context during global
4480 initialization of some passes. You must call expand_dummy_function_end
4481 to exit this context. */
4483 void
4484 init_dummy_function_start (void)
4486 gcc_assert (!in_dummy_function);
4487 in_dummy_function = true;
4488 push_struct_function (NULL_TREE);
4489 prepare_function_start ();
4492 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4493 and initialize static variables for generating RTL for the statements
4494 of the function. */
4496 void
4497 init_function_start (tree subr)
4499 if (subr && DECL_STRUCT_FUNCTION (subr))
4500 set_cfun (DECL_STRUCT_FUNCTION (subr));
4501 else
4502 allocate_struct_function (subr, false);
4503 prepare_function_start ();
4504 decide_function_section (subr);
4506 /* Warn if this value is an aggregate type,
4507 regardless of which calling convention we are using for it. */
4508 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4509 warning (OPT_Waggregate_return, "function returns an aggregate");
4512 /* Make sure all values used by the optimization passes have sane defaults. */
4513 unsigned int
4514 init_function_for_compilation (void)
4516 reg_renumber = 0;
4517 return 0;
4520 struct rtl_opt_pass pass_init_function =
4523 RTL_PASS,
4524 "*init_function", /* name */
4525 NULL, /* gate */
4526 init_function_for_compilation, /* execute */
4527 NULL, /* sub */
4528 NULL, /* next */
4529 0, /* static_pass_number */
4530 TV_NONE, /* tv_id */
4531 0, /* properties_required */
4532 0, /* properties_provided */
4533 0, /* properties_destroyed */
4534 0, /* todo_flags_start */
4535 0 /* todo_flags_finish */
4540 void
4541 expand_main_function (void)
4543 #if (defined(INVOKE__main) \
4544 || (!defined(HAS_INIT_SECTION) \
4545 && !defined(INIT_SECTION_ASM_OP) \
4546 && !defined(INIT_ARRAY_SECTION_ASM_OP)))
4547 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
4548 #endif
4551 /* Expand code to initialize the stack_protect_guard. This is invoked at
4552 the beginning of a function to be protected. */
4554 #ifndef HAVE_stack_protect_set
4555 # define HAVE_stack_protect_set 0
4556 # define gen_stack_protect_set(x,y) (gcc_unreachable (), NULL_RTX)
4557 #endif
4559 void
4560 stack_protect_prologue (void)
4562 tree guard_decl = targetm.stack_protect_guard ();
4563 rtx x, y;
4565 x = expand_normal (crtl->stack_protect_guard);
4566 y = expand_normal (guard_decl);
4568 /* Allow the target to copy from Y to X without leaking Y into a
4569 register. */
4570 if (HAVE_stack_protect_set)
4572 rtx insn = gen_stack_protect_set (x, y);
4573 if (insn)
4575 emit_insn (insn);
4576 return;
4580 /* Otherwise do a straight move. */
4581 emit_move_insn (x, y);
4584 /* Expand code to verify the stack_protect_guard. This is invoked at
4585 the end of a function to be protected. */
4587 #ifndef HAVE_stack_protect_test
4588 # define HAVE_stack_protect_test 0
4589 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
4590 #endif
4592 void
4593 stack_protect_epilogue (void)
4595 tree guard_decl = targetm.stack_protect_guard ();
4596 rtx label = gen_label_rtx ();
4597 rtx x, y, tmp;
4599 x = expand_normal (crtl->stack_protect_guard);
4600 y = expand_normal (guard_decl);
4602 /* Allow the target to compare Y with X without leaking either into
4603 a register. */
4604 switch (HAVE_stack_protect_test != 0)
4606 case 1:
4607 tmp = gen_stack_protect_test (x, y, label);
4608 if (tmp)
4610 emit_insn (tmp);
4611 break;
4613 /* FALLTHRU */
4615 default:
4616 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4617 break;
4620 /* The noreturn predictor has been moved to the tree level. The rtl-level
4621 predictors estimate this branch about 20%, which isn't enough to get
4622 things moved out of line. Since this is the only extant case of adding
4623 a noreturn function at the rtl level, it doesn't seem worth doing ought
4624 except adding the prediction by hand. */
4625 tmp = get_last_insn ();
4626 if (JUMP_P (tmp))
4627 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
4629 expand_expr_stmt (targetm.stack_protect_fail ());
4630 emit_label (label);
4633 /* Start the RTL for a new function, and set variables used for
4634 emitting RTL.
4635 SUBR is the FUNCTION_DECL node.
4636 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4637 the function's parameters, which must be run at any return statement. */
4639 void
4640 expand_function_start (tree subr)
4642 /* Make sure volatile mem refs aren't considered
4643 valid operands of arithmetic insns. */
4644 init_recog_no_volatile ();
4646 crtl->profile
4647 = (profile_flag
4648 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4650 crtl->limit_stack
4651 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4653 /* Make the label for return statements to jump to. Do not special
4654 case machines with special return instructions -- they will be
4655 handled later during jump, ifcvt, or epilogue creation. */
4656 return_label = gen_label_rtx ();
4658 /* Initialize rtx used to return the value. */
4659 /* Do this before assign_parms so that we copy the struct value address
4660 before any library calls that assign parms might generate. */
4662 /* Decide whether to return the value in memory or in a register. */
4663 if (aggregate_value_p (DECL_RESULT (subr), subr))
4665 /* Returning something that won't go in a register. */
4666 rtx value_address = 0;
4668 #ifdef PCC_STATIC_STRUCT_RETURN
4669 if (cfun->returns_pcc_struct)
4671 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4672 value_address = assemble_static_space (size);
4674 else
4675 #endif
4677 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
4678 /* Expect to be passed the address of a place to store the value.
4679 If it is passed as an argument, assign_parms will take care of
4680 it. */
4681 if (sv)
4683 value_address = gen_reg_rtx (Pmode);
4684 emit_move_insn (value_address, sv);
4687 if (value_address)
4689 rtx x = value_address;
4690 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4692 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4693 set_mem_attributes (x, DECL_RESULT (subr), 1);
4695 SET_DECL_RTL (DECL_RESULT (subr), x);
4698 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4699 /* If return mode is void, this decl rtl should not be used. */
4700 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4701 else
4703 /* Compute the return values into a pseudo reg, which we will copy
4704 into the true return register after the cleanups are done. */
4705 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4706 if (TYPE_MODE (return_type) != BLKmode
4707 && targetm.calls.return_in_msb (return_type))
4708 /* expand_function_end will insert the appropriate padding in
4709 this case. Use the return value's natural (unpadded) mode
4710 within the function proper. */
4711 SET_DECL_RTL (DECL_RESULT (subr),
4712 gen_reg_rtx (TYPE_MODE (return_type)));
4713 else
4715 /* In order to figure out what mode to use for the pseudo, we
4716 figure out what the mode of the eventual return register will
4717 actually be, and use that. */
4718 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4720 /* Structures that are returned in registers are not
4721 aggregate_value_p, so we may see a PARALLEL or a REG. */
4722 if (REG_P (hard_reg))
4723 SET_DECL_RTL (DECL_RESULT (subr),
4724 gen_reg_rtx (GET_MODE (hard_reg)));
4725 else
4727 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4728 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4732 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4733 result to the real return register(s). */
4734 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4737 /* Initialize rtx for parameters and local variables.
4738 In some cases this requires emitting insns. */
4739 assign_parms (subr);
4741 /* If function gets a static chain arg, store it. */
4742 if (cfun->static_chain_decl)
4744 tree parm = cfun->static_chain_decl;
4745 rtx local, chain, insn;
4747 local = gen_reg_rtx (Pmode);
4748 chain = targetm.calls.static_chain (current_function_decl, true);
4750 set_decl_incoming_rtl (parm, chain, false);
4751 SET_DECL_RTL (parm, local);
4752 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4754 insn = emit_move_insn (local, chain);
4756 /* Mark the register as eliminable, similar to parameters. */
4757 if (MEM_P (chain)
4758 && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
4759 set_dst_reg_note (insn, REG_EQUIV, chain, local);
4762 /* If the function receives a non-local goto, then store the
4763 bits we need to restore the frame pointer. */
4764 if (cfun->nonlocal_goto_save_area)
4766 tree t_save;
4767 rtx r_save;
4769 /* ??? We need to do this save early. Unfortunately here is
4770 before the frame variable gets declared. Help out... */
4771 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
4772 if (!DECL_RTL_SET_P (var))
4773 expand_decl (var);
4775 t_save = build4 (ARRAY_REF,
4776 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
4777 cfun->nonlocal_goto_save_area,
4778 integer_zero_node, NULL_TREE, NULL_TREE);
4779 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4780 gcc_assert (GET_MODE (r_save) == Pmode);
4782 emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
4783 update_nonlocal_goto_save_area ();
4786 /* The following was moved from init_function_start.
4787 The move is supposed to make sdb output more accurate. */
4788 /* Indicate the beginning of the function body,
4789 as opposed to parm setup. */
4790 emit_note (NOTE_INSN_FUNCTION_BEG);
4792 gcc_assert (NOTE_P (get_last_insn ()));
4794 parm_birth_insn = get_last_insn ();
4796 if (crtl->profile)
4798 #ifdef PROFILE_HOOK
4799 PROFILE_HOOK (current_function_funcdef_no);
4800 #endif
4803 /* If we are doing generic stack checking, the probe should go here. */
4804 if (flag_stack_check == GENERIC_STACK_CHECK)
4805 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
4807 /* Make sure there is a line number after the function entry setup code. */
4808 force_next_line_note ();
4811 /* Undo the effects of init_dummy_function_start. */
4812 void
4813 expand_dummy_function_end (void)
4815 gcc_assert (in_dummy_function);
4817 /* End any sequences that failed to be closed due to syntax errors. */
4818 while (in_sequence_p ())
4819 end_sequence ();
4821 /* Outside function body, can't compute type's actual size
4822 until next function's body starts. */
4824 free_after_parsing (cfun);
4825 free_after_compilation (cfun);
4826 pop_cfun ();
4827 in_dummy_function = false;
4830 /* Call DOIT for each hard register used as a return value from
4831 the current function. */
4833 void
4834 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4836 rtx outgoing = crtl->return_rtx;
4838 if (! outgoing)
4839 return;
4841 if (REG_P (outgoing))
4842 (*doit) (outgoing, arg);
4843 else if (GET_CODE (outgoing) == PARALLEL)
4845 int i;
4847 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4849 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4851 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4852 (*doit) (x, arg);
4857 static void
4858 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4860 emit_clobber (reg);
4863 void
4864 clobber_return_register (void)
4866 diddle_return_value (do_clobber_return_reg, NULL);
4868 /* In case we do use pseudo to return value, clobber it too. */
4869 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4871 tree decl_result = DECL_RESULT (current_function_decl);
4872 rtx decl_rtl = DECL_RTL (decl_result);
4873 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4875 do_clobber_return_reg (decl_rtl, NULL);
4880 static void
4881 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4883 emit_use (reg);
4886 static void
4887 use_return_register (void)
4889 diddle_return_value (do_use_return_reg, NULL);
4892 /* Possibly warn about unused parameters. */
4893 void
4894 do_warn_unused_parameter (tree fn)
4896 tree decl;
4898 for (decl = DECL_ARGUMENTS (fn);
4899 decl; decl = DECL_CHAIN (decl))
4900 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4901 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)
4902 && !TREE_NO_WARNING (decl))
4903 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
4906 static GTY(()) rtx initial_trampoline;
4908 /* Generate RTL for the end of the current function. */
4910 void
4911 expand_function_end (void)
4913 rtx clobber_after;
4915 /* If arg_pointer_save_area was referenced only from a nested
4916 function, we will not have initialized it yet. Do that now. */
4917 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
4918 get_arg_pointer_save_area ();
4920 /* If we are doing generic stack checking and this function makes calls,
4921 do a stack probe at the start of the function to ensure we have enough
4922 space for another stack frame. */
4923 if (flag_stack_check == GENERIC_STACK_CHECK)
4925 rtx insn, seq;
4927 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4928 if (CALL_P (insn))
4930 rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
4931 start_sequence ();
4932 if (STACK_CHECK_MOVING_SP)
4933 anti_adjust_stack_and_probe (max_frame_size, true);
4934 else
4935 probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
4936 seq = get_insns ();
4937 end_sequence ();
4938 set_insn_locators (seq, prologue_locator);
4939 emit_insn_before (seq, stack_check_probe_note);
4940 break;
4944 /* End any sequences that failed to be closed due to syntax errors. */
4945 while (in_sequence_p ())
4946 end_sequence ();
4948 clear_pending_stack_adjust ();
4949 do_pending_stack_adjust ();
4951 /* Output a linenumber for the end of the function.
4952 SDB depends on this. */
4953 force_next_line_note ();
4954 set_curr_insn_source_location (input_location);
4956 /* Before the return label (if any), clobber the return
4957 registers so that they are not propagated live to the rest of
4958 the function. This can only happen with functions that drop
4959 through; if there had been a return statement, there would
4960 have either been a return rtx, or a jump to the return label.
4962 We delay actual code generation after the current_function_value_rtx
4963 is computed. */
4964 clobber_after = get_last_insn ();
4966 /* Output the label for the actual return from the function. */
4967 emit_label (return_label);
4969 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
4971 /* Let except.c know where it should emit the call to unregister
4972 the function context for sjlj exceptions. */
4973 if (flag_exceptions)
4974 sjlj_emit_function_exit_after (get_last_insn ());
4976 else
4978 /* We want to ensure that instructions that may trap are not
4979 moved into the epilogue by scheduling, because we don't
4980 always emit unwind information for the epilogue. */
4981 if (cfun->can_throw_non_call_exceptions)
4982 emit_insn (gen_blockage ());
4985 /* If this is an implementation of throw, do what's necessary to
4986 communicate between __builtin_eh_return and the epilogue. */
4987 expand_eh_return ();
4989 /* If scalar return value was computed in a pseudo-reg, or was a named
4990 return value that got dumped to the stack, copy that to the hard
4991 return register. */
4992 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4994 tree decl_result = DECL_RESULT (current_function_decl);
4995 rtx decl_rtl = DECL_RTL (decl_result);
4997 if (REG_P (decl_rtl)
4998 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
4999 : DECL_REGISTER (decl_result))
5001 rtx real_decl_rtl = crtl->return_rtx;
5003 /* This should be set in assign_parms. */
5004 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
5006 /* If this is a BLKmode structure being returned in registers,
5007 then use the mode computed in expand_return. Note that if
5008 decl_rtl is memory, then its mode may have been changed,
5009 but that crtl->return_rtx has not. */
5010 if (GET_MODE (real_decl_rtl) == BLKmode)
5011 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
5013 /* If a non-BLKmode return value should be padded at the least
5014 significant end of the register, shift it left by the appropriate
5015 amount. BLKmode results are handled using the group load/store
5016 machinery. */
5017 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
5018 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
5020 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
5021 REGNO (real_decl_rtl)),
5022 decl_rtl);
5023 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
5025 /* If a named return value dumped decl_return to memory, then
5026 we may need to re-do the PROMOTE_MODE signed/unsigned
5027 extension. */
5028 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
5030 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
5031 promote_function_mode (TREE_TYPE (decl_result),
5032 GET_MODE (decl_rtl), &unsignedp,
5033 TREE_TYPE (current_function_decl), 1);
5035 convert_move (real_decl_rtl, decl_rtl, unsignedp);
5037 else if (GET_CODE (real_decl_rtl) == PARALLEL)
5039 /* If expand_function_start has created a PARALLEL for decl_rtl,
5040 move the result to the real return registers. Otherwise, do
5041 a group load from decl_rtl for a named return. */
5042 if (GET_CODE (decl_rtl) == PARALLEL)
5043 emit_group_move (real_decl_rtl, decl_rtl);
5044 else
5045 emit_group_load (real_decl_rtl, decl_rtl,
5046 TREE_TYPE (decl_result),
5047 int_size_in_bytes (TREE_TYPE (decl_result)));
5049 /* In the case of complex integer modes smaller than a word, we'll
5050 need to generate some non-trivial bitfield insertions. Do that
5051 on a pseudo and not the hard register. */
5052 else if (GET_CODE (decl_rtl) == CONCAT
5053 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
5054 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
5056 int old_generating_concat_p;
5057 rtx tmp;
5059 old_generating_concat_p = generating_concat_p;
5060 generating_concat_p = 0;
5061 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
5062 generating_concat_p = old_generating_concat_p;
5064 emit_move_insn (tmp, decl_rtl);
5065 emit_move_insn (real_decl_rtl, tmp);
5067 else
5068 emit_move_insn (real_decl_rtl, decl_rtl);
5072 /* If returning a structure, arrange to return the address of the value
5073 in a place where debuggers expect to find it.
5075 If returning a structure PCC style,
5076 the caller also depends on this value.
5077 And cfun->returns_pcc_struct is not necessarily set. */
5078 if (cfun->returns_struct
5079 || cfun->returns_pcc_struct)
5081 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
5082 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
5083 rtx outgoing;
5085 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
5086 type = TREE_TYPE (type);
5087 else
5088 value_address = XEXP (value_address, 0);
5090 outgoing = targetm.calls.function_value (build_pointer_type (type),
5091 current_function_decl, true);
5093 /* Mark this as a function return value so integrate will delete the
5094 assignment and USE below when inlining this function. */
5095 REG_FUNCTION_VALUE_P (outgoing) = 1;
5097 /* The address may be ptr_mode and OUTGOING may be Pmode. */
5098 value_address = convert_memory_address (GET_MODE (outgoing),
5099 value_address);
5101 emit_move_insn (outgoing, value_address);
5103 /* Show return register used to hold result (in this case the address
5104 of the result. */
5105 crtl->return_rtx = outgoing;
5108 /* Emit the actual code to clobber return register. */
5110 rtx seq;
5112 start_sequence ();
5113 clobber_return_register ();
5114 seq = get_insns ();
5115 end_sequence ();
5117 emit_insn_after (seq, clobber_after);
5120 /* Output the label for the naked return from the function. */
5121 if (naked_return_label)
5122 emit_label (naked_return_label);
5124 /* @@@ This is a kludge. We want to ensure that instructions that
5125 may trap are not moved into the epilogue by scheduling, because
5126 we don't always emit unwind information for the epilogue. */
5127 if (cfun->can_throw_non_call_exceptions
5128 && targetm_common.except_unwind_info (&global_options) != UI_SJLJ)
5129 emit_insn (gen_blockage ());
5131 /* If stack protection is enabled for this function, check the guard. */
5132 if (crtl->stack_protect_guard)
5133 stack_protect_epilogue ();
5135 /* If we had calls to alloca, and this machine needs
5136 an accurate stack pointer to exit the function,
5137 insert some code to save and restore the stack pointer. */
5138 if (! EXIT_IGNORE_STACK
5139 && cfun->calls_alloca)
5141 rtx tem = 0, seq;
5143 start_sequence ();
5144 emit_stack_save (SAVE_FUNCTION, &tem);
5145 seq = get_insns ();
5146 end_sequence ();
5147 emit_insn_before (seq, parm_birth_insn);
5149 emit_stack_restore (SAVE_FUNCTION, tem);
5152 /* ??? This should no longer be necessary since stupid is no longer with
5153 us, but there are some parts of the compiler (eg reload_combine, and
5154 sh mach_dep_reorg) that still try and compute their own lifetime info
5155 instead of using the general framework. */
5156 use_return_register ();
5160 get_arg_pointer_save_area (void)
5162 rtx ret = arg_pointer_save_area;
5164 if (! ret)
5166 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5167 arg_pointer_save_area = ret;
5170 if (! crtl->arg_pointer_save_area_init)
5172 rtx seq;
5174 /* Save the arg pointer at the beginning of the function. The
5175 generated stack slot may not be a valid memory address, so we
5176 have to check it and fix it if necessary. */
5177 start_sequence ();
5178 emit_move_insn (validize_mem (ret),
5179 crtl->args.internal_arg_pointer);
5180 seq = get_insns ();
5181 end_sequence ();
5183 push_topmost_sequence ();
5184 emit_insn_after (seq, entry_of_function ());
5185 pop_topmost_sequence ();
5187 crtl->arg_pointer_save_area_init = true;
5190 return ret;
5193 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
5194 for the first time. */
5196 static void
5197 record_insns (rtx insns, rtx end, htab_t *hashp)
5199 rtx tmp;
5200 htab_t hash = *hashp;
5202 if (hash == NULL)
5203 *hashp = hash
5204 = htab_create_ggc (17, htab_hash_pointer, htab_eq_pointer, NULL);
5206 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
5208 void **slot = htab_find_slot (hash, tmp, INSERT);
5209 gcc_assert (*slot == NULL);
5210 *slot = tmp;
5214 /* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a
5215 basic block, splitting or peepholes. If INSN is a prologue or epilogue
5216 insn, then record COPY as well. */
5218 void
5219 maybe_copy_prologue_epilogue_insn (rtx insn, rtx copy)
5221 htab_t hash;
5222 void **slot;
5224 hash = epilogue_insn_hash;
5225 if (!hash || !htab_find (hash, insn))
5227 hash = prologue_insn_hash;
5228 if (!hash || !htab_find (hash, insn))
5229 return;
5232 slot = htab_find_slot (hash, copy, INSERT);
5233 gcc_assert (*slot == NULL);
5234 *slot = copy;
5237 /* Set the locator of the insn chain starting at INSN to LOC. */
5238 static void
5239 set_insn_locators (rtx insn, int loc)
5241 while (insn != NULL_RTX)
5243 if (INSN_P (insn))
5244 INSN_LOCATOR (insn) = loc;
5245 insn = NEXT_INSN (insn);
5249 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
5250 we can be running after reorg, SEQUENCE rtl is possible. */
5252 static bool
5253 contains (const_rtx insn, htab_t hash)
5255 if (hash == NULL)
5256 return false;
5258 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
5260 int i;
5261 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
5262 if (htab_find (hash, XVECEXP (PATTERN (insn), 0, i)))
5263 return true;
5264 return false;
5267 return htab_find (hash, insn) != NULL;
5271 prologue_epilogue_contains (const_rtx insn)
5273 if (contains (insn, prologue_insn_hash))
5274 return 1;
5275 if (contains (insn, epilogue_insn_hash))
5276 return 1;
5277 return 0;
5280 #ifdef HAVE_simple_return
5282 /* Return true if INSN requires the stack frame to be set up.
5283 PROLOGUE_USED contains the hard registers used in the function
5284 prologue. SET_UP_BY_PROLOGUE is the set of registers we expect the
5285 prologue to set up for the function. */
5286 bool
5287 requires_stack_frame_p (rtx insn, HARD_REG_SET prologue_used,
5288 HARD_REG_SET set_up_by_prologue)
5290 df_ref *df_rec;
5291 HARD_REG_SET hardregs;
5292 unsigned regno;
5294 if (CALL_P (insn))
5295 return !SIBLING_CALL_P (insn);
5297 CLEAR_HARD_REG_SET (hardregs);
5298 for (df_rec = DF_INSN_DEFS (insn); *df_rec; df_rec++)
5300 rtx dreg = DF_REF_REG (*df_rec);
5302 if (!REG_P (dreg))
5303 continue;
5305 add_to_hard_reg_set (&hardregs, GET_MODE (dreg),
5306 REGNO (dreg));
5308 if (hard_reg_set_intersect_p (hardregs, prologue_used))
5309 return true;
5310 AND_COMPL_HARD_REG_SET (hardregs, call_used_reg_set);
5311 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5312 if (TEST_HARD_REG_BIT (hardregs, regno)
5313 && df_regs_ever_live_p (regno))
5314 return true;
5316 for (df_rec = DF_INSN_USES (insn); *df_rec; df_rec++)
5318 rtx reg = DF_REF_REG (*df_rec);
5320 if (!REG_P (reg))
5321 continue;
5323 add_to_hard_reg_set (&hardregs, GET_MODE (reg),
5324 REGNO (reg));
5326 if (hard_reg_set_intersect_p (hardregs, set_up_by_prologue))
5327 return true;
5329 return false;
5332 /* Look for sets of call-saved registers in the first block of the
5333 function, and move them down into successor blocks if the register
5334 is used only on one path. This exposes more opportunities for
5335 shrink-wrapping.
5336 These kinds of sets often occur when incoming argument registers are
5337 moved to call-saved registers because their values are live across
5338 one or more calls during the function. */
5340 static void
5341 prepare_shrink_wrap (basic_block entry_block)
5343 rtx insn, curr;
5344 FOR_BB_INSNS_SAFE (entry_block, insn, curr)
5346 basic_block next_bb;
5347 edge e, live_edge;
5348 edge_iterator ei;
5349 rtx set, scan;
5350 unsigned destreg, srcreg;
5352 if (!NONDEBUG_INSN_P (insn))
5353 continue;
5354 set = single_set (insn);
5355 if (!set)
5356 continue;
5358 if (!REG_P (SET_SRC (set)) || !REG_P (SET_DEST (set)))
5359 continue;
5360 srcreg = REGNO (SET_SRC (set));
5361 destreg = REGNO (SET_DEST (set));
5362 if (hard_regno_nregs[srcreg][GET_MODE (SET_SRC (set))] > 1
5363 || hard_regno_nregs[destreg][GET_MODE (SET_DEST (set))] > 1)
5364 continue;
5366 next_bb = entry_block;
5367 scan = insn;
5369 for (;;)
5371 live_edge = NULL;
5372 /* Try to find a single edge across which the register is live.
5373 If we find one, we'll try to move the set across this edge. */
5374 FOR_EACH_EDGE (e, ei, next_bb->succs)
5376 if (REGNO_REG_SET_P (df_get_live_in (e->dest), destreg))
5378 if (live_edge)
5380 live_edge = NULL;
5381 break;
5383 live_edge = e;
5386 if (!live_edge)
5387 break;
5388 /* We can sometimes encounter dead code. Don't try to move it
5389 into the exit block. */
5390 if (live_edge->dest == EXIT_BLOCK_PTR)
5391 break;
5392 if (EDGE_COUNT (live_edge->dest->preds) > 1)
5393 break;
5394 while (scan != BB_END (next_bb))
5396 scan = NEXT_INSN (scan);
5397 if (NONDEBUG_INSN_P (scan))
5399 rtx link;
5400 HARD_REG_SET set_regs;
5402 CLEAR_HARD_REG_SET (set_regs);
5403 note_stores (PATTERN (scan), record_hard_reg_sets,
5404 &set_regs);
5405 if (CALL_P (scan))
5406 IOR_HARD_REG_SET (set_regs, call_used_reg_set);
5407 for (link = REG_NOTES (scan); link; link = XEXP (link, 1))
5408 if (REG_NOTE_KIND (link) == REG_INC)
5409 record_hard_reg_sets (XEXP (link, 0), NULL, &set_regs);
5411 if (TEST_HARD_REG_BIT (set_regs, srcreg)
5412 || reg_referenced_p (SET_DEST (set),
5413 PATTERN (scan)))
5415 scan = NULL_RTX;
5416 break;
5418 if (CALL_P (scan))
5420 rtx link = CALL_INSN_FUNCTION_USAGE (scan);
5421 while (link)
5423 rtx tmp = XEXP (link, 0);
5424 if (GET_CODE (tmp) == USE
5425 && reg_referenced_p (SET_DEST (set), tmp))
5426 break;
5427 link = XEXP (link, 1);
5429 if (link)
5431 scan = NULL_RTX;
5432 break;
5437 if (!scan)
5438 break;
5439 next_bb = live_edge->dest;
5442 if (next_bb != entry_block)
5444 rtx after = BB_HEAD (next_bb);
5445 while (!NOTE_P (after)
5446 || NOTE_KIND (after) != NOTE_INSN_BASIC_BLOCK)
5447 after = NEXT_INSN (after);
5448 emit_insn_after (PATTERN (insn), after);
5449 delete_insn (insn);
5454 #endif
5456 #ifdef HAVE_return
5457 /* Insert use of return register before the end of BB. */
5459 static void
5460 emit_use_return_register_into_block (basic_block bb)
5462 rtx seq;
5463 start_sequence ();
5464 use_return_register ();
5465 seq = get_insns ();
5466 end_sequence ();
5467 emit_insn_before (seq, BB_END (bb));
5471 /* Create a return pattern, either simple_return or return, depending on
5472 simple_p. */
5474 static rtx
5475 gen_return_pattern (bool simple_p)
5477 #ifdef HAVE_simple_return
5478 return simple_p ? gen_simple_return () : gen_return ();
5479 #else
5480 gcc_assert (!simple_p);
5481 return gen_return ();
5482 #endif
5485 /* Insert an appropriate return pattern at the end of block BB. This
5486 also means updating block_for_insn appropriately. SIMPLE_P is
5487 the same as in gen_return_pattern and passed to it. */
5489 static void
5490 emit_return_into_block (bool simple_p, basic_block bb)
5492 rtx jump, pat;
5493 jump = emit_jump_insn_after (gen_return_pattern (simple_p), BB_END (bb));
5494 pat = PATTERN (jump);
5495 if (GET_CODE (pat) == PARALLEL)
5496 pat = XVECEXP (pat, 0, 0);
5497 gcc_assert (ANY_RETURN_P (pat));
5498 JUMP_LABEL (jump) = pat;
5500 #endif
5502 /* Set JUMP_LABEL for a return insn. */
5504 void
5505 set_return_jump_label (rtx returnjump)
5507 rtx pat = PATTERN (returnjump);
5508 if (GET_CODE (pat) == PARALLEL)
5509 pat = XVECEXP (pat, 0, 0);
5510 if (ANY_RETURN_P (pat))
5511 JUMP_LABEL (returnjump) = pat;
5512 else
5513 JUMP_LABEL (returnjump) = ret_rtx;
5516 #ifdef HAVE_simple_return
5517 /* Create a copy of BB instructions and insert at BEFORE. Redirect
5518 preds of BB to COPY_BB if they don't appear in NEED_PROLOGUE. */
5519 static void
5520 dup_block_and_redirect (basic_block bb, basic_block copy_bb, rtx before,
5521 bitmap_head *need_prologue)
5523 edge_iterator ei;
5524 edge e;
5525 rtx insn = BB_END (bb);
5527 /* We know BB has a single successor, so there is no need to copy a
5528 simple jump at the end of BB. */
5529 if (simplejump_p (insn))
5530 insn = PREV_INSN (insn);
5532 start_sequence ();
5533 duplicate_insn_chain (BB_HEAD (bb), insn);
5534 if (dump_file)
5536 unsigned count = 0;
5537 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5538 if (active_insn_p (insn))
5539 ++count;
5540 fprintf (dump_file, "Duplicating bb %d to bb %d, %u active insns.\n",
5541 bb->index, copy_bb->index, count);
5543 insn = get_insns ();
5544 end_sequence ();
5545 emit_insn_before (insn, before);
5547 /* Redirect all the paths that need no prologue into copy_bb. */
5548 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
5549 if (!bitmap_bit_p (need_prologue, e->src->index))
5551 redirect_edge_and_branch_force (e, copy_bb);
5552 continue;
5554 else
5555 ei_next (&ei);
5557 #endif
5559 #if defined (HAVE_return) || defined (HAVE_simple_return)
5560 /* Return true if there are any active insns between HEAD and TAIL. */
5561 static bool
5562 active_insn_between (rtx head, rtx tail)
5564 while (tail)
5566 if (active_insn_p (tail))
5567 return true;
5568 if (tail == head)
5569 return false;
5570 tail = PREV_INSN (tail);
5572 return false;
5575 /* LAST_BB is a block that exits, and empty of active instructions.
5576 Examine its predecessors for jumps that can be converted to
5577 (conditional) returns. */
5578 static VEC (edge, heap) *
5579 convert_jumps_to_returns (basic_block last_bb, bool simple_p,
5580 VEC (edge, heap) *unconverted ATTRIBUTE_UNUSED)
5582 int i;
5583 basic_block bb;
5584 rtx label;
5585 edge_iterator ei;
5586 edge e;
5587 VEC(basic_block,heap) *src_bbs;
5589 src_bbs = VEC_alloc (basic_block, heap, EDGE_COUNT (last_bb->preds));
5590 FOR_EACH_EDGE (e, ei, last_bb->preds)
5591 if (e->src != ENTRY_BLOCK_PTR)
5592 VEC_quick_push (basic_block, src_bbs, e->src);
5594 label = BB_HEAD (last_bb);
5596 FOR_EACH_VEC_ELT (basic_block, src_bbs, i, bb)
5598 rtx jump = BB_END (bb);
5600 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5601 continue;
5603 e = find_edge (bb, last_bb);
5605 /* If we have an unconditional jump, we can replace that
5606 with a simple return instruction. */
5607 if (simplejump_p (jump))
5609 /* The use of the return register might be present in the exit
5610 fallthru block. Either:
5611 - removing the use is safe, and we should remove the use in
5612 the exit fallthru block, or
5613 - removing the use is not safe, and we should add it here.
5614 For now, we conservatively choose the latter. Either of the
5615 2 helps in crossjumping. */
5616 emit_use_return_register_into_block (bb);
5618 emit_return_into_block (simple_p, bb);
5619 delete_insn (jump);
5622 /* If we have a conditional jump branching to the last
5623 block, we can try to replace that with a conditional
5624 return instruction. */
5625 else if (condjump_p (jump))
5627 rtx dest;
5629 if (simple_p)
5630 dest = simple_return_rtx;
5631 else
5632 dest = ret_rtx;
5633 if (!redirect_jump (jump, dest, 0))
5635 #ifdef HAVE_simple_return
5636 if (simple_p)
5638 if (dump_file)
5639 fprintf (dump_file,
5640 "Failed to redirect bb %d branch.\n", bb->index);
5641 VEC_safe_push (edge, heap, unconverted, e);
5643 #endif
5644 continue;
5647 /* See comment in simplejump_p case above. */
5648 emit_use_return_register_into_block (bb);
5650 /* If this block has only one successor, it both jumps
5651 and falls through to the fallthru block, so we can't
5652 delete the edge. */
5653 if (single_succ_p (bb))
5654 continue;
5656 else
5658 #ifdef HAVE_simple_return
5659 if (simple_p)
5661 if (dump_file)
5662 fprintf (dump_file,
5663 "Failed to redirect bb %d branch.\n", bb->index);
5664 VEC_safe_push (edge, heap, unconverted, e);
5666 #endif
5667 continue;
5670 /* Fix up the CFG for the successful change we just made. */
5671 redirect_edge_succ (e, EXIT_BLOCK_PTR);
5672 e->flags &= ~EDGE_CROSSING;
5674 VEC_free (basic_block, heap, src_bbs);
5675 return unconverted;
5678 /* Emit a return insn for the exit fallthru block. */
5679 static basic_block
5680 emit_return_for_exit (edge exit_fallthru_edge, bool simple_p)
5682 basic_block last_bb = exit_fallthru_edge->src;
5684 if (JUMP_P (BB_END (last_bb)))
5686 last_bb = split_edge (exit_fallthru_edge);
5687 exit_fallthru_edge = single_succ_edge (last_bb);
5689 emit_barrier_after (BB_END (last_bb));
5690 emit_return_into_block (simple_p, last_bb);
5691 exit_fallthru_edge->flags &= ~EDGE_FALLTHRU;
5692 return last_bb;
5694 #endif
5697 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5698 this into place with notes indicating where the prologue ends and where
5699 the epilogue begins. Update the basic block information when possible.
5701 Notes on epilogue placement:
5702 There are several kinds of edges to the exit block:
5703 * a single fallthru edge from LAST_BB
5704 * possibly, edges from blocks containing sibcalls
5705 * possibly, fake edges from infinite loops
5707 The epilogue is always emitted on the fallthru edge from the last basic
5708 block in the function, LAST_BB, into the exit block.
5710 If LAST_BB is empty except for a label, it is the target of every
5711 other basic block in the function that ends in a return. If a
5712 target has a return or simple_return pattern (possibly with
5713 conditional variants), these basic blocks can be changed so that a
5714 return insn is emitted into them, and their target is adjusted to
5715 the real exit block.
5717 Notes on shrink wrapping: We implement a fairly conservative
5718 version of shrink-wrapping rather than the textbook one. We only
5719 generate a single prologue and a single epilogue. This is
5720 sufficient to catch a number of interesting cases involving early
5721 exits.
5723 First, we identify the blocks that require the prologue to occur before
5724 them. These are the ones that modify a call-saved register, or reference
5725 any of the stack or frame pointer registers. To simplify things, we then
5726 mark everything reachable from these blocks as also requiring a prologue.
5727 This takes care of loops automatically, and avoids the need to examine
5728 whether MEMs reference the frame, since it is sufficient to check for
5729 occurrences of the stack or frame pointer.
5731 We then compute the set of blocks for which the need for a prologue
5732 is anticipatable (borrowing terminology from the shrink-wrapping
5733 description in Muchnick's book). These are the blocks which either
5734 require a prologue themselves, or those that have only successors
5735 where the prologue is anticipatable. The prologue needs to be
5736 inserted on all edges from BB1->BB2 where BB2 is in ANTIC and BB1
5737 is not. For the moment, we ensure that only one such edge exists.
5739 The epilogue is placed as described above, but we make a
5740 distinction between inserting return and simple_return patterns
5741 when modifying other blocks that end in a return. Blocks that end
5742 in a sibcall omit the sibcall_epilogue if the block is not in
5743 ANTIC. */
5745 static void
5746 thread_prologue_and_epilogue_insns (void)
5748 bool inserted;
5749 #ifdef HAVE_simple_return
5750 VEC (edge, heap) *unconverted_simple_returns = NULL;
5751 bool nonempty_prologue;
5752 bitmap_head bb_flags;
5753 unsigned max_grow_size;
5754 #endif
5755 rtx returnjump;
5756 rtx seq ATTRIBUTE_UNUSED, epilogue_end ATTRIBUTE_UNUSED;
5757 rtx prologue_seq ATTRIBUTE_UNUSED, split_prologue_seq ATTRIBUTE_UNUSED;
5758 edge e, entry_edge, orig_entry_edge, exit_fallthru_edge;
5759 edge_iterator ei;
5761 df_analyze ();
5763 rtl_profile_for_bb (ENTRY_BLOCK_PTR);
5765 inserted = false;
5766 seq = NULL_RTX;
5767 epilogue_end = NULL_RTX;
5768 returnjump = NULL_RTX;
5770 /* Can't deal with multiple successors of the entry block at the
5771 moment. Function should always have at least one entry
5772 point. */
5773 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR));
5774 entry_edge = single_succ_edge (ENTRY_BLOCK_PTR);
5775 orig_entry_edge = entry_edge;
5777 split_prologue_seq = NULL_RTX;
5778 if (flag_split_stack
5779 && (lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun->decl))
5780 == NULL))
5782 #ifndef HAVE_split_stack_prologue
5783 gcc_unreachable ();
5784 #else
5785 gcc_assert (HAVE_split_stack_prologue);
5787 start_sequence ();
5788 emit_insn (gen_split_stack_prologue ());
5789 split_prologue_seq = get_insns ();
5790 end_sequence ();
5792 record_insns (split_prologue_seq, NULL, &prologue_insn_hash);
5793 set_insn_locators (split_prologue_seq, prologue_locator);
5794 #endif
5797 prologue_seq = NULL_RTX;
5798 #ifdef HAVE_prologue
5799 if (HAVE_prologue)
5801 start_sequence ();
5802 seq = gen_prologue ();
5803 emit_insn (seq);
5805 /* Insert an explicit USE for the frame pointer
5806 if the profiling is on and the frame pointer is required. */
5807 if (crtl->profile && frame_pointer_needed)
5808 emit_use (hard_frame_pointer_rtx);
5810 /* Retain a map of the prologue insns. */
5811 record_insns (seq, NULL, &prologue_insn_hash);
5812 emit_note (NOTE_INSN_PROLOGUE_END);
5814 /* Ensure that instructions are not moved into the prologue when
5815 profiling is on. The call to the profiling routine can be
5816 emitted within the live range of a call-clobbered register. */
5817 if (!targetm.profile_before_prologue () && crtl->profile)
5818 emit_insn (gen_blockage ());
5820 prologue_seq = get_insns ();
5821 end_sequence ();
5822 set_insn_locators (prologue_seq, prologue_locator);
5824 #endif
5826 #ifdef HAVE_simple_return
5827 bitmap_initialize (&bb_flags, &bitmap_default_obstack);
5829 /* Try to perform a kind of shrink-wrapping, making sure the
5830 prologue/epilogue is emitted only around those parts of the
5831 function that require it. */
5833 nonempty_prologue = false;
5834 for (seq = prologue_seq; seq; seq = NEXT_INSN (seq))
5835 if (!NOTE_P (seq) || NOTE_KIND (seq) != NOTE_INSN_PROLOGUE_END)
5837 nonempty_prologue = true;
5838 break;
5841 if (flag_shrink_wrap && HAVE_simple_return
5842 && (targetm.profile_before_prologue () || !crtl->profile)
5843 && nonempty_prologue && !crtl->calls_eh_return)
5845 HARD_REG_SET prologue_clobbered, prologue_used, live_on_edge;
5846 HARD_REG_SET set_up_by_prologue;
5847 rtx p_insn;
5848 VEC(basic_block, heap) *vec;
5849 basic_block bb;
5850 bitmap_head bb_antic_flags;
5851 bitmap_head bb_on_list;
5852 bitmap_head bb_tail;
5854 if (dump_file)
5855 fprintf (dump_file, "Attempting shrink-wrapping optimization.\n");
5857 /* Compute the registers set and used in the prologue. */
5858 CLEAR_HARD_REG_SET (prologue_clobbered);
5859 CLEAR_HARD_REG_SET (prologue_used);
5860 for (p_insn = prologue_seq; p_insn; p_insn = NEXT_INSN (p_insn))
5862 HARD_REG_SET this_used;
5863 if (!NONDEBUG_INSN_P (p_insn))
5864 continue;
5866 CLEAR_HARD_REG_SET (this_used);
5867 note_uses (&PATTERN (p_insn), record_hard_reg_uses,
5868 &this_used);
5869 AND_COMPL_HARD_REG_SET (this_used, prologue_clobbered);
5870 IOR_HARD_REG_SET (prologue_used, this_used);
5871 note_stores (PATTERN (p_insn), record_hard_reg_sets,
5872 &prologue_clobbered);
5875 prepare_shrink_wrap (entry_edge->dest);
5877 bitmap_initialize (&bb_antic_flags, &bitmap_default_obstack);
5878 bitmap_initialize (&bb_on_list, &bitmap_default_obstack);
5879 bitmap_initialize (&bb_tail, &bitmap_default_obstack);
5881 /* Find the set of basic blocks that require a stack frame,
5882 and blocks that are too big to be duplicated. */
5884 vec = VEC_alloc (basic_block, heap, n_basic_blocks);
5886 CLEAR_HARD_REG_SET (set_up_by_prologue);
5887 add_to_hard_reg_set (&set_up_by_prologue, Pmode, STACK_POINTER_REGNUM);
5888 add_to_hard_reg_set (&set_up_by_prologue, Pmode, ARG_POINTER_REGNUM);
5889 if (frame_pointer_needed)
5890 add_to_hard_reg_set (&set_up_by_prologue, Pmode,
5891 HARD_FRAME_POINTER_REGNUM);
5892 if (pic_offset_table_rtx)
5893 add_to_hard_reg_set (&set_up_by_prologue, Pmode,
5894 PIC_OFFSET_TABLE_REGNUM);
5895 if (stack_realign_drap && crtl->drap_reg)
5896 add_to_hard_reg_set (&set_up_by_prologue, GET_MODE (crtl->drap_reg),
5897 REGNO (crtl->drap_reg));
5899 /* We don't use a different max size depending on
5900 optimize_bb_for_speed_p because increasing shrink-wrapping
5901 opportunities by duplicating tail blocks can actually result
5902 in an overall decrease in code size. */
5903 max_grow_size = get_uncond_jump_length ();
5904 max_grow_size *= PARAM_VALUE (PARAM_MAX_GROW_COPY_BB_INSNS);
5906 FOR_EACH_BB (bb)
5908 rtx insn;
5909 unsigned size = 0;
5911 FOR_BB_INSNS (bb, insn)
5912 if (NONDEBUG_INSN_P (insn))
5914 if (requires_stack_frame_p (insn, prologue_used,
5915 set_up_by_prologue))
5917 if (bb == entry_edge->dest)
5918 goto fail_shrinkwrap;
5919 bitmap_set_bit (&bb_flags, bb->index);
5920 VEC_quick_push (basic_block, vec, bb);
5921 break;
5923 else if (size <= max_grow_size)
5925 size += get_attr_min_length (insn);
5926 if (size > max_grow_size)
5927 bitmap_set_bit (&bb_on_list, bb->index);
5932 /* Blocks that really need a prologue, or are too big for tails. */
5933 bitmap_ior_into (&bb_on_list, &bb_flags);
5935 /* For every basic block that needs a prologue, mark all blocks
5936 reachable from it, so as to ensure they are also seen as
5937 requiring a prologue. */
5938 while (!VEC_empty (basic_block, vec))
5940 basic_block tmp_bb = VEC_pop (basic_block, vec);
5942 FOR_EACH_EDGE (e, ei, tmp_bb->succs)
5943 if (e->dest != EXIT_BLOCK_PTR
5944 && bitmap_set_bit (&bb_flags, e->dest->index))
5945 VEC_quick_push (basic_block, vec, e->dest);
5948 /* Find the set of basic blocks that need no prologue, have a
5949 single successor, can be duplicated, meet a max size
5950 requirement, and go to the exit via like blocks. */
5951 VEC_quick_push (basic_block, vec, EXIT_BLOCK_PTR);
5952 while (!VEC_empty (basic_block, vec))
5954 basic_block tmp_bb = VEC_pop (basic_block, vec);
5956 FOR_EACH_EDGE (e, ei, tmp_bb->preds)
5957 if (single_succ_p (e->src)
5958 && !bitmap_bit_p (&bb_on_list, e->src->index)
5959 && can_duplicate_block_p (e->src)
5960 && bitmap_set_bit (&bb_tail, e->src->index))
5961 VEC_quick_push (basic_block, vec, e->src);
5964 /* Now walk backwards from every block that is marked as needing
5965 a prologue to compute the bb_antic_flags bitmap. Exclude
5966 tail blocks; They can be duplicated to be used on paths not
5967 needing a prologue. */
5968 bitmap_clear (&bb_on_list);
5969 bitmap_and_compl (&bb_antic_flags, &bb_flags, &bb_tail);
5970 FOR_EACH_BB (bb)
5972 if (!bitmap_bit_p (&bb_antic_flags, bb->index))
5973 continue;
5974 FOR_EACH_EDGE (e, ei, bb->preds)
5975 if (!bitmap_bit_p (&bb_antic_flags, e->src->index)
5976 && bitmap_set_bit (&bb_on_list, e->src->index))
5977 VEC_quick_push (basic_block, vec, e->src);
5979 while (!VEC_empty (basic_block, vec))
5981 basic_block tmp_bb = VEC_pop (basic_block, vec);
5982 bool all_set = true;
5984 bitmap_clear_bit (&bb_on_list, tmp_bb->index);
5985 FOR_EACH_EDGE (e, ei, tmp_bb->succs)
5986 if (!bitmap_bit_p (&bb_antic_flags, e->dest->index))
5988 all_set = false;
5989 break;
5992 if (all_set)
5994 bitmap_set_bit (&bb_antic_flags, tmp_bb->index);
5995 FOR_EACH_EDGE (e, ei, tmp_bb->preds)
5996 if (!bitmap_bit_p (&bb_antic_flags, e->src->index)
5997 && bitmap_set_bit (&bb_on_list, e->src->index))
5998 VEC_quick_push (basic_block, vec, e->src);
6001 /* Find exactly one edge that leads to a block in ANTIC from
6002 a block that isn't. */
6003 if (!bitmap_bit_p (&bb_antic_flags, entry_edge->dest->index))
6004 FOR_EACH_BB (bb)
6006 if (!bitmap_bit_p (&bb_antic_flags, bb->index))
6007 continue;
6008 FOR_EACH_EDGE (e, ei, bb->preds)
6009 if (!bitmap_bit_p (&bb_antic_flags, e->src->index))
6011 if (entry_edge != orig_entry_edge)
6013 entry_edge = orig_entry_edge;
6014 if (dump_file)
6015 fprintf (dump_file, "More than one candidate edge.\n");
6016 goto fail_shrinkwrap;
6018 if (dump_file)
6019 fprintf (dump_file, "Found candidate edge for "
6020 "shrink-wrapping, %d->%d.\n", e->src->index,
6021 e->dest->index);
6022 entry_edge = e;
6026 if (entry_edge != orig_entry_edge)
6028 /* Test whether the prologue is known to clobber any register
6029 (other than FP or SP) which are live on the edge. */
6030 CLEAR_HARD_REG_BIT (prologue_clobbered, STACK_POINTER_REGNUM);
6031 if (frame_pointer_needed)
6032 CLEAR_HARD_REG_BIT (prologue_clobbered, HARD_FRAME_POINTER_REGNUM);
6033 CLEAR_HARD_REG_SET (live_on_edge);
6034 reg_set_to_hard_reg_set (&live_on_edge,
6035 df_get_live_in (entry_edge->dest));
6036 if (hard_reg_set_intersect_p (live_on_edge, prologue_clobbered))
6038 entry_edge = orig_entry_edge;
6039 if (dump_file)
6040 fprintf (dump_file,
6041 "Shrink-wrapping aborted due to clobber.\n");
6044 if (entry_edge != orig_entry_edge)
6046 crtl->shrink_wrapped = true;
6047 if (dump_file)
6048 fprintf (dump_file, "Performing shrink-wrapping.\n");
6050 /* Find tail blocks reachable from both blocks needing a
6051 prologue and blocks not needing a prologue. */
6052 if (!bitmap_empty_p (&bb_tail))
6053 FOR_EACH_BB (bb)
6055 bool some_pro, some_no_pro;
6056 if (!bitmap_bit_p (&bb_tail, bb->index))
6057 continue;
6058 some_pro = some_no_pro = false;
6059 FOR_EACH_EDGE (e, ei, bb->preds)
6061 if (bitmap_bit_p (&bb_flags, e->src->index))
6062 some_pro = true;
6063 else
6064 some_no_pro = true;
6066 if (some_pro && some_no_pro)
6067 VEC_quick_push (basic_block, vec, bb);
6068 else
6069 bitmap_clear_bit (&bb_tail, bb->index);
6071 /* Find the head of each tail. */
6072 while (!VEC_empty (basic_block, vec))
6074 basic_block tbb = VEC_pop (basic_block, vec);
6076 if (!bitmap_bit_p (&bb_tail, tbb->index))
6077 continue;
6079 while (single_succ_p (tbb))
6081 tbb = single_succ (tbb);
6082 bitmap_clear_bit (&bb_tail, tbb->index);
6085 /* Now duplicate the tails. */
6086 if (!bitmap_empty_p (&bb_tail))
6087 FOR_EACH_BB_REVERSE (bb)
6089 basic_block copy_bb, tbb;
6090 rtx insert_point;
6091 int eflags;
6093 if (!bitmap_clear_bit (&bb_tail, bb->index))
6094 continue;
6096 /* Create a copy of BB, instructions and all, for
6097 use on paths that don't need a prologue.
6098 Ideal placement of the copy is on a fall-thru edge
6099 or after a block that would jump to the copy. */
6100 FOR_EACH_EDGE (e, ei, bb->preds)
6101 if (!bitmap_bit_p (&bb_flags, e->src->index)
6102 && single_succ_p (e->src))
6103 break;
6104 if (e)
6106 copy_bb = create_basic_block (NEXT_INSN (BB_END (e->src)),
6107 NULL_RTX, e->src);
6108 BB_COPY_PARTITION (copy_bb, e->src);
6110 else
6112 /* Otherwise put the copy at the end of the function. */
6113 copy_bb = create_basic_block (NULL_RTX, NULL_RTX,
6114 EXIT_BLOCK_PTR->prev_bb);
6115 BB_COPY_PARTITION (copy_bb, bb);
6118 insert_point = emit_note_after (NOTE_INSN_DELETED,
6119 BB_END (copy_bb));
6120 emit_barrier_after (BB_END (copy_bb));
6122 tbb = bb;
6123 while (1)
6125 dup_block_and_redirect (tbb, copy_bb, insert_point,
6126 &bb_flags);
6127 tbb = single_succ (tbb);
6128 if (tbb == EXIT_BLOCK_PTR)
6129 break;
6130 e = split_block (copy_bb, PREV_INSN (insert_point));
6131 copy_bb = e->dest;
6134 /* Quiet verify_flow_info by (ab)using EDGE_FAKE.
6135 We have yet to add a simple_return to the tails,
6136 as we'd like to first convert_jumps_to_returns in
6137 case the block is no longer used after that. */
6138 eflags = EDGE_FAKE;
6139 if (CALL_P (PREV_INSN (insert_point))
6140 && SIBLING_CALL_P (PREV_INSN (insert_point)))
6141 eflags = EDGE_SIBCALL | EDGE_ABNORMAL;
6142 make_single_succ_edge (copy_bb, EXIT_BLOCK_PTR, eflags);
6144 /* verify_flow_info doesn't like a note after a
6145 sibling call. */
6146 delete_insn (insert_point);
6147 if (bitmap_empty_p (&bb_tail))
6148 break;
6152 fail_shrinkwrap:
6153 bitmap_clear (&bb_tail);
6154 bitmap_clear (&bb_antic_flags);
6155 bitmap_clear (&bb_on_list);
6156 VEC_free (basic_block, heap, vec);
6158 #endif
6160 if (split_prologue_seq != NULL_RTX)
6162 insert_insn_on_edge (split_prologue_seq, orig_entry_edge);
6163 inserted = true;
6165 if (prologue_seq != NULL_RTX)
6167 insert_insn_on_edge (prologue_seq, entry_edge);
6168 inserted = true;
6171 /* If the exit block has no non-fake predecessors, we don't need
6172 an epilogue. */
6173 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6174 if ((e->flags & EDGE_FAKE) == 0)
6175 break;
6176 if (e == NULL)
6177 goto epilogue_done;
6179 rtl_profile_for_bb (EXIT_BLOCK_PTR);
6181 exit_fallthru_edge = find_fallthru_edge (EXIT_BLOCK_PTR->preds);
6183 /* If we're allowed to generate a simple return instruction, then by
6184 definition we don't need a full epilogue. If the last basic
6185 block before the exit block does not contain active instructions,
6186 examine its predecessors and try to emit (conditional) return
6187 instructions. */
6188 #ifdef HAVE_simple_return
6189 if (entry_edge != orig_entry_edge)
6191 if (optimize)
6193 unsigned i, last;
6195 /* convert_jumps_to_returns may add to EXIT_BLOCK_PTR->preds
6196 (but won't remove). Stop at end of current preds. */
6197 last = EDGE_COUNT (EXIT_BLOCK_PTR->preds);
6198 for (i = 0; i < last; i++)
6200 e = EDGE_I (EXIT_BLOCK_PTR->preds, i);
6201 if (LABEL_P (BB_HEAD (e->src))
6202 && !bitmap_bit_p (&bb_flags, e->src->index)
6203 && !active_insn_between (BB_HEAD (e->src), BB_END (e->src)))
6204 unconverted_simple_returns
6205 = convert_jumps_to_returns (e->src, true,
6206 unconverted_simple_returns);
6210 if (exit_fallthru_edge != NULL
6211 && EDGE_COUNT (exit_fallthru_edge->src->preds) != 0
6212 && !bitmap_bit_p (&bb_flags, exit_fallthru_edge->src->index))
6214 basic_block last_bb;
6216 last_bb = emit_return_for_exit (exit_fallthru_edge, true);
6217 returnjump = BB_END (last_bb);
6218 exit_fallthru_edge = NULL;
6221 #endif
6222 #ifdef HAVE_return
6223 if (HAVE_return)
6225 if (exit_fallthru_edge == NULL)
6226 goto epilogue_done;
6228 if (optimize)
6230 basic_block last_bb = exit_fallthru_edge->src;
6232 if (LABEL_P (BB_HEAD (last_bb))
6233 && !active_insn_between (BB_HEAD (last_bb), BB_END (last_bb)))
6234 convert_jumps_to_returns (last_bb, false, NULL);
6236 if (EDGE_COUNT (last_bb->preds) != 0
6237 && single_succ_p (last_bb))
6239 last_bb = emit_return_for_exit (exit_fallthru_edge, false);
6240 epilogue_end = returnjump = BB_END (last_bb);
6241 #ifdef HAVE_simple_return
6242 /* Emitting the return may add a basic block.
6243 Fix bb_flags for the added block. */
6244 if (last_bb != exit_fallthru_edge->src)
6245 bitmap_set_bit (&bb_flags, last_bb->index);
6246 #endif
6247 goto epilogue_done;
6251 #endif
6253 /* A small fib -- epilogue is not yet completed, but we wish to re-use
6254 this marker for the splits of EH_RETURN patterns, and nothing else
6255 uses the flag in the meantime. */
6256 epilogue_completed = 1;
6258 #ifdef HAVE_eh_return
6259 /* Find non-fallthru edges that end with EH_RETURN instructions. On
6260 some targets, these get split to a special version of the epilogue
6261 code. In order to be able to properly annotate these with unwind
6262 info, try to split them now. If we get a valid split, drop an
6263 EPILOGUE_BEG note and mark the insns as epilogue insns. */
6264 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6266 rtx prev, last, trial;
6268 if (e->flags & EDGE_FALLTHRU)
6269 continue;
6270 last = BB_END (e->src);
6271 if (!eh_returnjump_p (last))
6272 continue;
6274 prev = PREV_INSN (last);
6275 trial = try_split (PATTERN (last), last, 1);
6276 if (trial == last)
6277 continue;
6279 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
6280 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
6282 #endif
6284 /* If nothing falls through into the exit block, we don't need an
6285 epilogue. */
6287 if (exit_fallthru_edge == NULL)
6288 goto epilogue_done;
6290 #ifdef HAVE_epilogue
6291 if (HAVE_epilogue)
6293 start_sequence ();
6294 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
6295 seq = gen_epilogue ();
6296 if (seq)
6297 emit_jump_insn (seq);
6299 /* Retain a map of the epilogue insns. */
6300 record_insns (seq, NULL, &epilogue_insn_hash);
6301 set_insn_locators (seq, epilogue_locator);
6303 seq = get_insns ();
6304 returnjump = get_last_insn ();
6305 end_sequence ();
6307 insert_insn_on_edge (seq, exit_fallthru_edge);
6308 inserted = true;
6310 if (JUMP_P (returnjump))
6311 set_return_jump_label (returnjump);
6313 else
6314 #endif
6316 basic_block cur_bb;
6318 if (! next_active_insn (BB_END (exit_fallthru_edge->src)))
6319 goto epilogue_done;
6320 /* We have a fall-through edge to the exit block, the source is not
6321 at the end of the function, and there will be an assembler epilogue
6322 at the end of the function.
6323 We can't use force_nonfallthru here, because that would try to
6324 use return. Inserting a jump 'by hand' is extremely messy, so
6325 we take advantage of cfg_layout_finalize using
6326 fixup_fallthru_exit_predecessor. */
6327 cfg_layout_initialize (0);
6328 FOR_EACH_BB (cur_bb)
6329 if (cur_bb->index >= NUM_FIXED_BLOCKS
6330 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
6331 cur_bb->aux = cur_bb->next_bb;
6332 cfg_layout_finalize ();
6335 epilogue_done:
6337 default_rtl_profile ();
6339 if (inserted)
6341 sbitmap blocks;
6343 commit_edge_insertions ();
6345 /* Look for basic blocks within the prologue insns. */
6346 blocks = sbitmap_alloc (last_basic_block);
6347 sbitmap_zero (blocks);
6348 SET_BIT (blocks, entry_edge->dest->index);
6349 SET_BIT (blocks, orig_entry_edge->dest->index);
6350 find_many_sub_basic_blocks (blocks);
6351 sbitmap_free (blocks);
6353 /* The epilogue insns we inserted may cause the exit edge to no longer
6354 be fallthru. */
6355 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6357 if (((e->flags & EDGE_FALLTHRU) != 0)
6358 && returnjump_p (BB_END (e->src)))
6359 e->flags &= ~EDGE_FALLTHRU;
6363 #ifdef HAVE_simple_return
6364 /* If there were branches to an empty LAST_BB which we tried to
6365 convert to conditional simple_returns, but couldn't for some
6366 reason, create a block to hold a simple_return insn and redirect
6367 those remaining edges. */
6368 if (!VEC_empty (edge, unconverted_simple_returns))
6370 basic_block simple_return_block_hot = NULL;
6371 basic_block simple_return_block_cold = NULL;
6372 edge pending_edge_hot = NULL;
6373 edge pending_edge_cold = NULL;
6374 basic_block exit_pred = EXIT_BLOCK_PTR->prev_bb;
6375 int i;
6377 gcc_assert (entry_edge != orig_entry_edge);
6379 /* See if we can reuse the last insn that was emitted for the
6380 epilogue. */
6381 if (returnjump != NULL_RTX
6382 && JUMP_LABEL (returnjump) == simple_return_rtx)
6384 e = split_block (BLOCK_FOR_INSN (returnjump), PREV_INSN (returnjump));
6385 if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
6386 simple_return_block_hot = e->dest;
6387 else
6388 simple_return_block_cold = e->dest;
6391 /* Also check returns we might need to add to tail blocks. */
6392 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6393 if (EDGE_COUNT (e->src->preds) != 0
6394 && (e->flags & EDGE_FAKE) != 0
6395 && !bitmap_bit_p (&bb_flags, e->src->index))
6397 if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
6398 pending_edge_hot = e;
6399 else
6400 pending_edge_cold = e;
6403 FOR_EACH_VEC_ELT (edge, unconverted_simple_returns, i, e)
6405 basic_block *pdest_bb;
6406 edge pending;
6408 if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
6410 pdest_bb = &simple_return_block_hot;
6411 pending = pending_edge_hot;
6413 else
6415 pdest_bb = &simple_return_block_cold;
6416 pending = pending_edge_cold;
6419 if (*pdest_bb == NULL && pending != NULL)
6421 emit_return_into_block (true, pending->src);
6422 pending->flags &= ~(EDGE_FALLTHRU | EDGE_FAKE);
6423 *pdest_bb = pending->src;
6425 else if (*pdest_bb == NULL)
6427 basic_block bb;
6428 rtx start;
6430 bb = create_basic_block (NULL, NULL, exit_pred);
6431 BB_COPY_PARTITION (bb, e->src);
6432 start = emit_jump_insn_after (gen_simple_return (),
6433 BB_END (bb));
6434 JUMP_LABEL (start) = simple_return_rtx;
6435 emit_barrier_after (start);
6437 *pdest_bb = bb;
6438 make_edge (bb, EXIT_BLOCK_PTR, 0);
6440 redirect_edge_and_branch_force (e, *pdest_bb);
6442 VEC_free (edge, heap, unconverted_simple_returns);
6445 if (entry_edge != orig_entry_edge)
6447 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6448 if (EDGE_COUNT (e->src->preds) != 0
6449 && (e->flags & EDGE_FAKE) != 0
6450 && !bitmap_bit_p (&bb_flags, e->src->index))
6452 emit_return_into_block (true, e->src);
6453 e->flags &= ~(EDGE_FALLTHRU | EDGE_FAKE);
6456 #endif
6458 #ifdef HAVE_sibcall_epilogue
6459 /* Emit sibling epilogues before any sibling call sites. */
6460 for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
6462 basic_block bb = e->src;
6463 rtx insn = BB_END (bb);
6464 rtx ep_seq;
6466 if (!CALL_P (insn)
6467 || ! SIBLING_CALL_P (insn)
6468 #ifdef HAVE_simple_return
6469 || (entry_edge != orig_entry_edge
6470 && !bitmap_bit_p (&bb_flags, bb->index))
6471 #endif
6474 ei_next (&ei);
6475 continue;
6478 ep_seq = gen_sibcall_epilogue ();
6479 if (ep_seq)
6481 start_sequence ();
6482 emit_note (NOTE_INSN_EPILOGUE_BEG);
6483 emit_insn (ep_seq);
6484 seq = get_insns ();
6485 end_sequence ();
6487 /* Retain a map of the epilogue insns. Used in life analysis to
6488 avoid getting rid of sibcall epilogue insns. Do this before we
6489 actually emit the sequence. */
6490 record_insns (seq, NULL, &epilogue_insn_hash);
6491 set_insn_locators (seq, epilogue_locator);
6493 emit_insn_before (seq, insn);
6495 ei_next (&ei);
6497 #endif
6499 #ifdef HAVE_epilogue
6500 if (epilogue_end)
6502 rtx insn, next;
6504 /* Similarly, move any line notes that appear after the epilogue.
6505 There is no need, however, to be quite so anal about the existence
6506 of such a note. Also possibly move
6507 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
6508 info generation. */
6509 for (insn = epilogue_end; insn; insn = next)
6511 next = NEXT_INSN (insn);
6512 if (NOTE_P (insn)
6513 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
6514 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
6517 #endif
6519 #ifdef HAVE_simple_return
6520 bitmap_clear (&bb_flags);
6521 #endif
6523 /* Threading the prologue and epilogue changes the artificial refs
6524 in the entry and exit blocks. */
6525 epilogue_completed = 1;
6526 df_update_entry_exit_and_calls ();
6529 /* Reposition the prologue-end and epilogue-begin notes after
6530 instruction scheduling. */
6532 void
6533 reposition_prologue_and_epilogue_notes (void)
6535 #if defined (HAVE_prologue) || defined (HAVE_epilogue) \
6536 || defined (HAVE_sibcall_epilogue)
6537 /* Since the hash table is created on demand, the fact that it is
6538 non-null is a signal that it is non-empty. */
6539 if (prologue_insn_hash != NULL)
6541 size_t len = htab_elements (prologue_insn_hash);
6542 rtx insn, last = NULL, note = NULL;
6544 /* Scan from the beginning until we reach the last prologue insn. */
6545 /* ??? While we do have the CFG intact, there are two problems:
6546 (1) The prologue can contain loops (typically probing the stack),
6547 which means that the end of the prologue isn't in the first bb.
6548 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
6549 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6551 if (NOTE_P (insn))
6553 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
6554 note = insn;
6556 else if (contains (insn, prologue_insn_hash))
6558 last = insn;
6559 if (--len == 0)
6560 break;
6564 if (last)
6566 if (note == NULL)
6568 /* Scan forward looking for the PROLOGUE_END note. It should
6569 be right at the beginning of the block, possibly with other
6570 insn notes that got moved there. */
6571 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
6573 if (NOTE_P (note)
6574 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
6575 break;
6579 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
6580 if (LABEL_P (last))
6581 last = NEXT_INSN (last);
6582 reorder_insns (note, note, last);
6586 if (epilogue_insn_hash != NULL)
6588 edge_iterator ei;
6589 edge e;
6591 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6593 rtx insn, first = NULL, note = NULL;
6594 basic_block bb = e->src;
6596 /* Scan from the beginning until we reach the first epilogue insn. */
6597 FOR_BB_INSNS (bb, insn)
6599 if (NOTE_P (insn))
6601 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
6603 note = insn;
6604 if (first != NULL)
6605 break;
6608 else if (first == NULL && contains (insn, epilogue_insn_hash))
6610 first = insn;
6611 if (note != NULL)
6612 break;
6616 if (note)
6618 /* If the function has a single basic block, and no real
6619 epilogue insns (e.g. sibcall with no cleanup), the
6620 epilogue note can get scheduled before the prologue
6621 note. If we have frame related prologue insns, having
6622 them scanned during the epilogue will result in a crash.
6623 In this case re-order the epilogue note to just before
6624 the last insn in the block. */
6625 if (first == NULL)
6626 first = BB_END (bb);
6628 if (PREV_INSN (first) != note)
6629 reorder_insns (note, note, PREV_INSN (first));
6633 #endif /* HAVE_prologue or HAVE_epilogue */
6636 /* Returns the name of the current function. */
6637 const char *
6638 current_function_name (void)
6640 if (cfun == NULL)
6641 return "<none>";
6642 return lang_hooks.decl_printable_name (cfun->decl, 2);
6646 static unsigned int
6647 rest_of_handle_check_leaf_regs (void)
6649 #ifdef LEAF_REGISTERS
6650 current_function_uses_only_leaf_regs
6651 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
6652 #endif
6653 return 0;
6656 /* Insert a TYPE into the used types hash table of CFUN. */
6658 static void
6659 used_types_insert_helper (tree type, struct function *func)
6661 if (type != NULL && func != NULL)
6663 void **slot;
6665 if (func->used_types_hash == NULL)
6666 func->used_types_hash = htab_create_ggc (37, htab_hash_pointer,
6667 htab_eq_pointer, NULL);
6668 slot = htab_find_slot (func->used_types_hash, type, INSERT);
6669 if (*slot == NULL)
6670 *slot = type;
6674 /* Given a type, insert it into the used hash table in cfun. */
6675 void
6676 used_types_insert (tree t)
6678 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
6679 if (TYPE_NAME (t))
6680 break;
6681 else
6682 t = TREE_TYPE (t);
6683 if (TREE_CODE (t) == ERROR_MARK)
6684 return;
6685 if (TYPE_NAME (t) == NULL_TREE
6686 || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t)))
6687 t = TYPE_MAIN_VARIANT (t);
6688 if (debug_info_level > DINFO_LEVEL_NONE)
6690 if (cfun)
6691 used_types_insert_helper (t, cfun);
6692 else
6693 /* So this might be a type referenced by a global variable.
6694 Record that type so that we can later decide to emit its debug
6695 information. */
6696 VEC_safe_push (tree, gc, types_used_by_cur_var_decl, t);
6700 /* Helper to Hash a struct types_used_by_vars_entry. */
6702 static hashval_t
6703 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
6705 gcc_assert (entry && entry->var_decl && entry->type);
6707 return iterative_hash_object (entry->type,
6708 iterative_hash_object (entry->var_decl, 0));
6711 /* Hash function of the types_used_by_vars_entry hash table. */
6713 hashval_t
6714 types_used_by_vars_do_hash (const void *x)
6716 const struct types_used_by_vars_entry *entry =
6717 (const struct types_used_by_vars_entry *) x;
6719 return hash_types_used_by_vars_entry (entry);
6722 /*Equality function of the types_used_by_vars_entry hash table. */
6725 types_used_by_vars_eq (const void *x1, const void *x2)
6727 const struct types_used_by_vars_entry *e1 =
6728 (const struct types_used_by_vars_entry *) x1;
6729 const struct types_used_by_vars_entry *e2 =
6730 (const struct types_used_by_vars_entry *)x2;
6732 return (e1->var_decl == e2->var_decl && e1->type == e2->type);
6735 /* Inserts an entry into the types_used_by_vars_hash hash table. */
6737 void
6738 types_used_by_var_decl_insert (tree type, tree var_decl)
6740 if (type != NULL && var_decl != NULL)
6742 void **slot;
6743 struct types_used_by_vars_entry e;
6744 e.var_decl = var_decl;
6745 e.type = type;
6746 if (types_used_by_vars_hash == NULL)
6747 types_used_by_vars_hash =
6748 htab_create_ggc (37, types_used_by_vars_do_hash,
6749 types_used_by_vars_eq, NULL);
6750 slot = htab_find_slot_with_hash (types_used_by_vars_hash, &e,
6751 hash_types_used_by_vars_entry (&e), INSERT);
6752 if (*slot == NULL)
6754 struct types_used_by_vars_entry *entry;
6755 entry = ggc_alloc_types_used_by_vars_entry ();
6756 entry->type = type;
6757 entry->var_decl = var_decl;
6758 *slot = entry;
6763 struct rtl_opt_pass pass_leaf_regs =
6766 RTL_PASS,
6767 "*leaf_regs", /* name */
6768 NULL, /* gate */
6769 rest_of_handle_check_leaf_regs, /* execute */
6770 NULL, /* sub */
6771 NULL, /* next */
6772 0, /* static_pass_number */
6773 TV_NONE, /* tv_id */
6774 0, /* properties_required */
6775 0, /* properties_provided */
6776 0, /* properties_destroyed */
6777 0, /* todo_flags_start */
6778 0 /* todo_flags_finish */
6782 static unsigned int
6783 rest_of_handle_thread_prologue_and_epilogue (void)
6785 if (optimize)
6786 cleanup_cfg (CLEANUP_EXPENSIVE);
6788 /* On some machines, the prologue and epilogue code, or parts thereof,
6789 can be represented as RTL. Doing so lets us schedule insns between
6790 it and the rest of the code and also allows delayed branch
6791 scheduling to operate in the epilogue. */
6792 thread_prologue_and_epilogue_insns ();
6794 /* The stack usage info is finalized during prologue expansion. */
6795 if (flag_stack_usage_info)
6796 output_stack_usage ();
6798 return 0;
6801 struct rtl_opt_pass pass_thread_prologue_and_epilogue =
6804 RTL_PASS,
6805 "pro_and_epilogue", /* name */
6806 NULL, /* gate */
6807 rest_of_handle_thread_prologue_and_epilogue, /* execute */
6808 NULL, /* sub */
6809 NULL, /* next */
6810 0, /* static_pass_number */
6811 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
6812 0, /* properties_required */
6813 0, /* properties_provided */
6814 0, /* properties_destroyed */
6815 TODO_verify_flow, /* todo_flags_start */
6816 TODO_df_verify |
6817 TODO_df_finish | TODO_verify_rtl_sharing |
6818 TODO_ggc_collect /* todo_flags_finish */
6823 /* This mini-pass fixes fall-out from SSA in asm statements that have
6824 in-out constraints. Say you start with
6826 orig = inout;
6827 asm ("": "+mr" (inout));
6828 use (orig);
6830 which is transformed very early to use explicit output and match operands:
6832 orig = inout;
6833 asm ("": "=mr" (inout) : "0" (inout));
6834 use (orig);
6836 Or, after SSA and copyprop,
6838 asm ("": "=mr" (inout_2) : "0" (inout_1));
6839 use (inout_1);
6841 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
6842 they represent two separate values, so they will get different pseudo
6843 registers during expansion. Then, since the two operands need to match
6844 per the constraints, but use different pseudo registers, reload can
6845 only register a reload for these operands. But reloads can only be
6846 satisfied by hardregs, not by memory, so we need a register for this
6847 reload, just because we are presented with non-matching operands.
6848 So, even though we allow memory for this operand, no memory can be
6849 used for it, just because the two operands don't match. This can
6850 cause reload failures on register-starved targets.
6852 So it's a symptom of reload not being able to use memory for reloads
6853 or, alternatively it's also a symptom of both operands not coming into
6854 reload as matching (in which case the pseudo could go to memory just
6855 fine, as the alternative allows it, and no reload would be necessary).
6856 We fix the latter problem here, by transforming
6858 asm ("": "=mr" (inout_2) : "0" (inout_1));
6860 back to
6862 inout_2 = inout_1;
6863 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
6865 static void
6866 match_asm_constraints_1 (rtx insn, rtx *p_sets, int noutputs)
6868 int i;
6869 bool changed = false;
6870 rtx op = SET_SRC (p_sets[0]);
6871 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
6872 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
6873 bool *output_matched = XALLOCAVEC (bool, noutputs);
6875 memset (output_matched, 0, noutputs * sizeof (bool));
6876 for (i = 0; i < ninputs; i++)
6878 rtx input, output, insns;
6879 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
6880 char *end;
6881 int match, j;
6883 if (*constraint == '%')
6884 constraint++;
6886 match = strtoul (constraint, &end, 10);
6887 if (end == constraint)
6888 continue;
6890 gcc_assert (match < noutputs);
6891 output = SET_DEST (p_sets[match]);
6892 input = RTVEC_ELT (inputs, i);
6893 /* Only do the transformation for pseudos. */
6894 if (! REG_P (output)
6895 || rtx_equal_p (output, input)
6896 || (GET_MODE (input) != VOIDmode
6897 && GET_MODE (input) != GET_MODE (output)))
6898 continue;
6900 /* We can't do anything if the output is also used as input,
6901 as we're going to overwrite it. */
6902 for (j = 0; j < ninputs; j++)
6903 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
6904 break;
6905 if (j != ninputs)
6906 continue;
6908 /* Avoid changing the same input several times. For
6909 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
6910 only change in once (to out1), rather than changing it
6911 first to out1 and afterwards to out2. */
6912 if (i > 0)
6914 for (j = 0; j < noutputs; j++)
6915 if (output_matched[j] && input == SET_DEST (p_sets[j]))
6916 break;
6917 if (j != noutputs)
6918 continue;
6920 output_matched[match] = true;
6922 start_sequence ();
6923 emit_move_insn (output, input);
6924 insns = get_insns ();
6925 end_sequence ();
6926 emit_insn_before (insns, insn);
6928 /* Now replace all mentions of the input with output. We can't
6929 just replace the occurrence in inputs[i], as the register might
6930 also be used in some other input (or even in an address of an
6931 output), which would mean possibly increasing the number of
6932 inputs by one (namely 'output' in addition), which might pose
6933 a too complicated problem for reload to solve. E.g. this situation:
6935 asm ("" : "=r" (output), "=m" (input) : "0" (input))
6937 Here 'input' is used in two occurrences as input (once for the
6938 input operand, once for the address in the second output operand).
6939 If we would replace only the occurrence of the input operand (to
6940 make the matching) we would be left with this:
6942 output = input
6943 asm ("" : "=r" (output), "=m" (input) : "0" (output))
6945 Now we suddenly have two different input values (containing the same
6946 value, but different pseudos) where we formerly had only one.
6947 With more complicated asms this might lead to reload failures
6948 which wouldn't have happen without this pass. So, iterate over
6949 all operands and replace all occurrences of the register used. */
6950 for (j = 0; j < noutputs; j++)
6951 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
6952 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
6953 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
6954 input, output);
6955 for (j = 0; j < ninputs; j++)
6956 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
6957 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
6958 input, output);
6960 changed = true;
6963 if (changed)
6964 df_insn_rescan (insn);
6967 static unsigned
6968 rest_of_match_asm_constraints (void)
6970 basic_block bb;
6971 rtx insn, pat, *p_sets;
6972 int noutputs;
6974 if (!crtl->has_asm_statement)
6975 return 0;
6977 df_set_flags (DF_DEFER_INSN_RESCAN);
6978 FOR_EACH_BB (bb)
6980 FOR_BB_INSNS (bb, insn)
6982 if (!INSN_P (insn))
6983 continue;
6985 pat = PATTERN (insn);
6986 if (GET_CODE (pat) == PARALLEL)
6987 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
6988 else if (GET_CODE (pat) == SET)
6989 p_sets = &PATTERN (insn), noutputs = 1;
6990 else
6991 continue;
6993 if (GET_CODE (*p_sets) == SET
6994 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
6995 match_asm_constraints_1 (insn, p_sets, noutputs);
6999 return TODO_df_finish;
7002 struct rtl_opt_pass pass_match_asm_constraints =
7005 RTL_PASS,
7006 "asmcons", /* name */
7007 NULL, /* gate */
7008 rest_of_match_asm_constraints, /* execute */
7009 NULL, /* sub */
7010 NULL, /* next */
7011 0, /* static_pass_number */
7012 TV_NONE, /* tv_id */
7013 0, /* properties_required */
7014 0, /* properties_provided */
7015 0, /* properties_destroyed */
7016 0, /* todo_flags_start */
7017 0 /* todo_flags_finish */
7022 #include "gt-function.h"