PR tree-optimization/45830
[official-gcc.git] / gcc / alias.c
blobef624a1bfe44ca7ee49dc859550e27f1e8ecd832
1 /* Alias analysis for GNU C
2 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
3 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 Contributed by John Carr (jfc@mit.edu).
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "tm_p.h"
29 #include "function.h"
30 #include "alias.h"
31 #include "emit-rtl.h"
32 #include "regs.h"
33 #include "hard-reg-set.h"
34 #include "basic-block.h"
35 #include "flags.h"
36 #include "output.h"
37 #include "diagnostic-core.h"
38 #include "cselib.h"
39 #include "splay-tree.h"
40 #include "ggc.h"
41 #include "langhooks.h"
42 #include "timevar.h"
43 #include "target.h"
44 #include "cgraph.h"
45 #include "tree-pass.h"
46 #include "df.h"
47 #include "tree-ssa-alias.h"
48 #include "pointer-set.h"
49 #include "tree-flow.h"
51 /* The aliasing API provided here solves related but different problems:
53 Say there exists (in c)
55 struct X {
56 struct Y y1;
57 struct Z z2;
58 } x1, *px1, *px2;
60 struct Y y2, *py;
61 struct Z z2, *pz;
64 py = &px1.y1;
65 px2 = &x1;
67 Consider the four questions:
69 Can a store to x1 interfere with px2->y1?
70 Can a store to x1 interfere with px2->z2?
71 (*px2).z2
72 Can a store to x1 change the value pointed to by with py?
73 Can a store to x1 change the value pointed to by with pz?
75 The answer to these questions can be yes, yes, yes, and maybe.
77 The first two questions can be answered with a simple examination
78 of the type system. If structure X contains a field of type Y then
79 a store thru a pointer to an X can overwrite any field that is
80 contained (recursively) in an X (unless we know that px1 != px2).
82 The last two of the questions can be solved in the same way as the
83 first two questions but this is too conservative. The observation
84 is that in some cases analysis we can know if which (if any) fields
85 are addressed and if those addresses are used in bad ways. This
86 analysis may be language specific. In C, arbitrary operations may
87 be applied to pointers. However, there is some indication that
88 this may be too conservative for some C++ types.
90 The pass ipa-type-escape does this analysis for the types whose
91 instances do not escape across the compilation boundary.
93 Historically in GCC, these two problems were combined and a single
94 data structure was used to represent the solution to these
95 problems. We now have two similar but different data structures,
96 The data structure to solve the last two question is similar to the
97 first, but does not contain have the fields in it whose address are
98 never taken. For types that do escape the compilation unit, the
99 data structures will have identical information.
102 /* The alias sets assigned to MEMs assist the back-end in determining
103 which MEMs can alias which other MEMs. In general, two MEMs in
104 different alias sets cannot alias each other, with one important
105 exception. Consider something like:
107 struct S { int i; double d; };
109 a store to an `S' can alias something of either type `int' or type
110 `double'. (However, a store to an `int' cannot alias a `double'
111 and vice versa.) We indicate this via a tree structure that looks
112 like:
113 struct S
116 |/_ _\|
117 int double
119 (The arrows are directed and point downwards.)
120 In this situation we say the alias set for `struct S' is the
121 `superset' and that those for `int' and `double' are `subsets'.
123 To see whether two alias sets can point to the same memory, we must
124 see if either alias set is a subset of the other. We need not trace
125 past immediate descendants, however, since we propagate all
126 grandchildren up one level.
128 Alias set zero is implicitly a superset of all other alias sets.
129 However, this is no actual entry for alias set zero. It is an
130 error to attempt to explicitly construct a subset of zero. */
132 struct GTY(()) alias_set_entry_d {
133 /* The alias set number, as stored in MEM_ALIAS_SET. */
134 alias_set_type alias_set;
136 /* Nonzero if would have a child of zero: this effectively makes this
137 alias set the same as alias set zero. */
138 int has_zero_child;
140 /* The children of the alias set. These are not just the immediate
141 children, but, in fact, all descendants. So, if we have:
143 struct T { struct S s; float f; }
145 continuing our example above, the children here will be all of
146 `int', `double', `float', and `struct S'. */
147 splay_tree GTY((param1_is (int), param2_is (int))) children;
149 typedef struct alias_set_entry_d *alias_set_entry;
151 static int rtx_equal_for_memref_p (const_rtx, const_rtx);
152 static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT);
153 static void record_set (rtx, const_rtx, void *);
154 static int base_alias_check (rtx, rtx, enum machine_mode,
155 enum machine_mode);
156 static rtx find_base_value (rtx);
157 static int mems_in_disjoint_alias_sets_p (const_rtx, const_rtx);
158 static int insert_subset_children (splay_tree_node, void*);
159 static alias_set_entry get_alias_set_entry (alias_set_type);
160 static const_rtx fixed_scalar_and_varying_struct_p (const_rtx, const_rtx, rtx, rtx,
161 bool (*) (const_rtx, bool));
162 static int aliases_everything_p (const_rtx);
163 static bool nonoverlapping_component_refs_p (const_tree, const_tree);
164 static tree decl_for_component_ref (tree);
165 static int write_dependence_p (const_rtx, const_rtx, int);
167 static void memory_modified_1 (rtx, const_rtx, void *);
169 /* Set up all info needed to perform alias analysis on memory references. */
171 /* Returns the size in bytes of the mode of X. */
172 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
174 /* Returns nonzero if MEM1 and MEM2 do not alias because they are in
175 different alias sets. We ignore alias sets in functions making use
176 of variable arguments because the va_arg macros on some systems are
177 not legal ANSI C. */
178 #define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2) \
179 mems_in_disjoint_alias_sets_p (MEM1, MEM2)
181 /* Cap the number of passes we make over the insns propagating alias
182 information through set chains. 10 is a completely arbitrary choice. */
183 #define MAX_ALIAS_LOOP_PASSES 10
185 /* reg_base_value[N] gives an address to which register N is related.
186 If all sets after the first add or subtract to the current value
187 or otherwise modify it so it does not point to a different top level
188 object, reg_base_value[N] is equal to the address part of the source
189 of the first set.
191 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
192 expressions represent certain special values: function arguments and
193 the stack, frame, and argument pointers.
195 The contents of an ADDRESS is not normally used, the mode of the
196 ADDRESS determines whether the ADDRESS is a function argument or some
197 other special value. Pointer equality, not rtx_equal_p, determines whether
198 two ADDRESS expressions refer to the same base address.
200 The only use of the contents of an ADDRESS is for determining if the
201 current function performs nonlocal memory memory references for the
202 purposes of marking the function as a constant function. */
204 static GTY(()) VEC(rtx,gc) *reg_base_value;
205 static rtx *new_reg_base_value;
207 /* We preserve the copy of old array around to avoid amount of garbage
208 produced. About 8% of garbage produced were attributed to this
209 array. */
210 static GTY((deletable)) VEC(rtx,gc) *old_reg_base_value;
212 #define static_reg_base_value \
213 (this_target_rtl->x_static_reg_base_value)
215 #define REG_BASE_VALUE(X) \
216 (REGNO (X) < VEC_length (rtx, reg_base_value) \
217 ? VEC_index (rtx, reg_base_value, REGNO (X)) : 0)
219 /* Vector indexed by N giving the initial (unchanging) value known for
220 pseudo-register N. This array is initialized in init_alias_analysis,
221 and does not change until end_alias_analysis is called. */
222 static GTY((length("reg_known_value_size"))) rtx *reg_known_value;
224 /* Indicates number of valid entries in reg_known_value. */
225 static GTY(()) unsigned int reg_known_value_size;
227 /* Vector recording for each reg_known_value whether it is due to a
228 REG_EQUIV note. Future passes (viz., reload) may replace the
229 pseudo with the equivalent expression and so we account for the
230 dependences that would be introduced if that happens.
232 The REG_EQUIV notes created in assign_parms may mention the arg
233 pointer, and there are explicit insns in the RTL that modify the
234 arg pointer. Thus we must ensure that such insns don't get
235 scheduled across each other because that would invalidate the
236 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
237 wrong, but solving the problem in the scheduler will likely give
238 better code, so we do it here. */
239 static bool *reg_known_equiv_p;
241 /* True when scanning insns from the start of the rtl to the
242 NOTE_INSN_FUNCTION_BEG note. */
243 static bool copying_arguments;
245 DEF_VEC_P(alias_set_entry);
246 DEF_VEC_ALLOC_P(alias_set_entry,gc);
248 /* The splay-tree used to store the various alias set entries. */
249 static GTY (()) VEC(alias_set_entry,gc) *alias_sets;
251 /* Build a decomposed reference object for querying the alias-oracle
252 from the MEM rtx and store it in *REF.
253 Returns false if MEM is not suitable for the alias-oracle. */
255 static bool
256 ao_ref_from_mem (ao_ref *ref, const_rtx mem)
258 tree expr = MEM_EXPR (mem);
259 tree base;
261 if (!expr)
262 return false;
264 ao_ref_init (ref, expr);
266 /* Get the base of the reference and see if we have to reject or
267 adjust it. */
268 base = ao_ref_base (ref);
269 if (base == NULL_TREE)
270 return false;
272 /* The tree oracle doesn't like to have these. */
273 if (TREE_CODE (base) == FUNCTION_DECL
274 || TREE_CODE (base) == LABEL_DECL)
275 return false;
277 /* If this is a pointer dereference of a non-SSA_NAME punt.
278 ??? We could replace it with a pointer to anything. */
279 if ((INDIRECT_REF_P (base)
280 || TREE_CODE (base) == MEM_REF)
281 && TREE_CODE (TREE_OPERAND (base, 0)) != SSA_NAME)
282 return false;
283 if (TREE_CODE (base) == TARGET_MEM_REF
284 && TMR_BASE (base)
285 && TREE_CODE (TMR_BASE (base)) != SSA_NAME)
286 return false;
288 /* If this is a reference based on a partitioned decl replace the
289 base with an INDIRECT_REF of the pointer representative we
290 created during stack slot partitioning. */
291 if (TREE_CODE (base) == VAR_DECL
292 && ! TREE_STATIC (base)
293 && cfun->gimple_df->decls_to_pointers != NULL)
295 void *namep;
296 namep = pointer_map_contains (cfun->gimple_df->decls_to_pointers, base);
297 if (namep)
298 ref->base = build_simple_mem_ref (*(tree *)namep);
300 else if (TREE_CODE (base) == TARGET_MEM_REF
301 && TREE_CODE (TMR_BASE (base)) == ADDR_EXPR
302 && TREE_CODE (TREE_OPERAND (TMR_BASE (base), 0)) == VAR_DECL
303 && ! TREE_STATIC (TREE_OPERAND (TMR_BASE (base), 0))
304 && cfun->gimple_df->decls_to_pointers != NULL)
306 void *namep;
307 namep = pointer_map_contains (cfun->gimple_df->decls_to_pointers,
308 TREE_OPERAND (TMR_BASE (base), 0));
309 if (namep)
310 ref->base = build_simple_mem_ref (*(tree *)namep);
313 ref->ref_alias_set = MEM_ALIAS_SET (mem);
315 /* If MEM_OFFSET or MEM_SIZE are unknown we have to punt.
316 Keep points-to related information though. */
317 if (!MEM_OFFSET_KNOWN_P (mem)
318 || !MEM_SIZE_KNOWN_P (mem))
320 ref->ref = NULL_TREE;
321 ref->offset = 0;
322 ref->size = -1;
323 ref->max_size = -1;
324 return true;
327 /* If the base decl is a parameter we can have negative MEM_OFFSET in
328 case of promoted subregs on bigendian targets. Trust the MEM_EXPR
329 here. */
330 if (MEM_OFFSET (mem) < 0
331 && (MEM_SIZE (mem) + MEM_OFFSET (mem)) * BITS_PER_UNIT == ref->size)
332 return true;
334 ref->offset += MEM_OFFSET (mem) * BITS_PER_UNIT;
335 ref->size = MEM_SIZE (mem) * BITS_PER_UNIT;
337 /* The MEM may extend into adjacent fields, so adjust max_size if
338 necessary. */
339 if (ref->max_size != -1
340 && ref->size > ref->max_size)
341 ref->max_size = ref->size;
343 /* If MEM_OFFSET and MEM_SIZE get us outside of the base object of
344 the MEM_EXPR punt. This happens for STRICT_ALIGNMENT targets a lot. */
345 if (MEM_EXPR (mem) != get_spill_slot_decl (false)
346 && (ref->offset < 0
347 || (DECL_P (ref->base)
348 && (!host_integerp (DECL_SIZE (ref->base), 1)
349 || (TREE_INT_CST_LOW (DECL_SIZE ((ref->base)))
350 < (unsigned HOST_WIDE_INT)(ref->offset + ref->size))))))
351 return false;
353 return true;
356 /* Query the alias-oracle on whether the two memory rtx X and MEM may
357 alias. If TBAA_P is set also apply TBAA. Returns true if the
358 two rtxen may alias, false otherwise. */
360 static bool
361 rtx_refs_may_alias_p (const_rtx x, const_rtx mem, bool tbaa_p)
363 ao_ref ref1, ref2;
365 if (!ao_ref_from_mem (&ref1, x)
366 || !ao_ref_from_mem (&ref2, mem))
367 return true;
369 return refs_may_alias_p_1 (&ref1, &ref2,
370 tbaa_p
371 && MEM_ALIAS_SET (x) != 0
372 && MEM_ALIAS_SET (mem) != 0);
375 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
376 such an entry, or NULL otherwise. */
378 static inline alias_set_entry
379 get_alias_set_entry (alias_set_type alias_set)
381 return VEC_index (alias_set_entry, alias_sets, alias_set);
384 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
385 the two MEMs cannot alias each other. */
387 static inline int
388 mems_in_disjoint_alias_sets_p (const_rtx mem1, const_rtx mem2)
390 /* Perform a basic sanity check. Namely, that there are no alias sets
391 if we're not using strict aliasing. This helps to catch bugs
392 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
393 where a MEM is allocated in some way other than by the use of
394 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
395 use alias sets to indicate that spilled registers cannot alias each
396 other, we might need to remove this check. */
397 gcc_assert (flag_strict_aliasing
398 || (!MEM_ALIAS_SET (mem1) && !MEM_ALIAS_SET (mem2)));
400 return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1), MEM_ALIAS_SET (mem2));
403 /* Insert the NODE into the splay tree given by DATA. Used by
404 record_alias_subset via splay_tree_foreach. */
406 static int
407 insert_subset_children (splay_tree_node node, void *data)
409 splay_tree_insert ((splay_tree) data, node->key, node->value);
411 return 0;
414 /* Return true if the first alias set is a subset of the second. */
416 bool
417 alias_set_subset_of (alias_set_type set1, alias_set_type set2)
419 alias_set_entry ase;
421 /* Everything is a subset of the "aliases everything" set. */
422 if (set2 == 0)
423 return true;
425 /* Otherwise, check if set1 is a subset of set2. */
426 ase = get_alias_set_entry (set2);
427 if (ase != 0
428 && (ase->has_zero_child
429 || splay_tree_lookup (ase->children,
430 (splay_tree_key) set1)))
431 return true;
432 return false;
435 /* Return 1 if the two specified alias sets may conflict. */
438 alias_sets_conflict_p (alias_set_type set1, alias_set_type set2)
440 alias_set_entry ase;
442 /* The easy case. */
443 if (alias_sets_must_conflict_p (set1, set2))
444 return 1;
446 /* See if the first alias set is a subset of the second. */
447 ase = get_alias_set_entry (set1);
448 if (ase != 0
449 && (ase->has_zero_child
450 || splay_tree_lookup (ase->children,
451 (splay_tree_key) set2)))
452 return 1;
454 /* Now do the same, but with the alias sets reversed. */
455 ase = get_alias_set_entry (set2);
456 if (ase != 0
457 && (ase->has_zero_child
458 || splay_tree_lookup (ase->children,
459 (splay_tree_key) set1)))
460 return 1;
462 /* The two alias sets are distinct and neither one is the
463 child of the other. Therefore, they cannot conflict. */
464 return 0;
467 /* Return 1 if the two specified alias sets will always conflict. */
470 alias_sets_must_conflict_p (alias_set_type set1, alias_set_type set2)
472 if (set1 == 0 || set2 == 0 || set1 == set2)
473 return 1;
475 return 0;
478 /* Return 1 if any MEM object of type T1 will always conflict (using the
479 dependency routines in this file) with any MEM object of type T2.
480 This is used when allocating temporary storage. If T1 and/or T2 are
481 NULL_TREE, it means we know nothing about the storage. */
484 objects_must_conflict_p (tree t1, tree t2)
486 alias_set_type set1, set2;
488 /* If neither has a type specified, we don't know if they'll conflict
489 because we may be using them to store objects of various types, for
490 example the argument and local variables areas of inlined functions. */
491 if (t1 == 0 && t2 == 0)
492 return 0;
494 /* If they are the same type, they must conflict. */
495 if (t1 == t2
496 /* Likewise if both are volatile. */
497 || (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2)))
498 return 1;
500 set1 = t1 ? get_alias_set (t1) : 0;
501 set2 = t2 ? get_alias_set (t2) : 0;
503 /* We can't use alias_sets_conflict_p because we must make sure
504 that every subtype of t1 will conflict with every subtype of
505 t2 for which a pair of subobjects of these respective subtypes
506 overlaps on the stack. */
507 return alias_sets_must_conflict_p (set1, set2);
510 /* Return true if all nested component references handled by
511 get_inner_reference in T are such that we should use the alias set
512 provided by the object at the heart of T.
514 This is true for non-addressable components (which don't have their
515 own alias set), as well as components of objects in alias set zero.
516 This later point is a special case wherein we wish to override the
517 alias set used by the component, but we don't have per-FIELD_DECL
518 assignable alias sets. */
520 bool
521 component_uses_parent_alias_set (const_tree t)
523 while (1)
525 /* If we're at the end, it vacuously uses its own alias set. */
526 if (!handled_component_p (t))
527 return false;
529 switch (TREE_CODE (t))
531 case COMPONENT_REF:
532 if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
533 return true;
534 break;
536 case ARRAY_REF:
537 case ARRAY_RANGE_REF:
538 if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
539 return true;
540 break;
542 case REALPART_EXPR:
543 case IMAGPART_EXPR:
544 break;
546 default:
547 /* Bitfields and casts are never addressable. */
548 return true;
551 t = TREE_OPERAND (t, 0);
552 if (get_alias_set (TREE_TYPE (t)) == 0)
553 return true;
557 /* Return the alias set for the memory pointed to by T, which may be
558 either a type or an expression. Return -1 if there is nothing
559 special about dereferencing T. */
561 static alias_set_type
562 get_deref_alias_set_1 (tree t)
564 /* If we're not doing any alias analysis, just assume everything
565 aliases everything else. */
566 if (!flag_strict_aliasing)
567 return 0;
569 /* All we care about is the type. */
570 if (! TYPE_P (t))
571 t = TREE_TYPE (t);
573 /* If we have an INDIRECT_REF via a void pointer, we don't
574 know anything about what that might alias. Likewise if the
575 pointer is marked that way. */
576 if (TREE_CODE (TREE_TYPE (t)) == VOID_TYPE
577 || TYPE_REF_CAN_ALIAS_ALL (t))
578 return 0;
580 return -1;
583 /* Return the alias set for the memory pointed to by T, which may be
584 either a type or an expression. */
586 alias_set_type
587 get_deref_alias_set (tree t)
589 alias_set_type set = get_deref_alias_set_1 (t);
591 /* Fall back to the alias-set of the pointed-to type. */
592 if (set == -1)
594 if (! TYPE_P (t))
595 t = TREE_TYPE (t);
596 set = get_alias_set (TREE_TYPE (t));
599 return set;
602 /* Return the alias set for T, which may be either a type or an
603 expression. Call language-specific routine for help, if needed. */
605 alias_set_type
606 get_alias_set (tree t)
608 alias_set_type set;
610 /* If we're not doing any alias analysis, just assume everything
611 aliases everything else. Also return 0 if this or its type is
612 an error. */
613 if (! flag_strict_aliasing || t == error_mark_node
614 || (! TYPE_P (t)
615 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
616 return 0;
618 /* We can be passed either an expression or a type. This and the
619 language-specific routine may make mutually-recursive calls to each other
620 to figure out what to do. At each juncture, we see if this is a tree
621 that the language may need to handle specially. First handle things that
622 aren't types. */
623 if (! TYPE_P (t))
625 tree inner;
627 /* Give the language a chance to do something with this tree
628 before we look at it. */
629 STRIP_NOPS (t);
630 set = lang_hooks.get_alias_set (t);
631 if (set != -1)
632 return set;
634 /* Get the base object of the reference. */
635 inner = t;
636 while (handled_component_p (inner))
638 /* If there is a VIEW_CONVERT_EXPR in the chain we cannot use
639 the type of any component references that wrap it to
640 determine the alias-set. */
641 if (TREE_CODE (inner) == VIEW_CONVERT_EXPR)
642 t = TREE_OPERAND (inner, 0);
643 inner = TREE_OPERAND (inner, 0);
646 /* Handle pointer dereferences here, they can override the
647 alias-set. */
648 if (INDIRECT_REF_P (inner))
650 set = get_deref_alias_set_1 (TREE_OPERAND (inner, 0));
651 if (set != -1)
652 return set;
654 else if (TREE_CODE (inner) == TARGET_MEM_REF)
655 return get_deref_alias_set (TMR_OFFSET (inner));
656 else if (TREE_CODE (inner) == MEM_REF)
658 set = get_deref_alias_set_1 (TREE_OPERAND (inner, 1));
659 if (set != -1)
660 return set;
663 /* If the innermost reference is a MEM_REF that has a
664 conversion embedded treat it like a VIEW_CONVERT_EXPR above,
665 using the memory access type for determining the alias-set. */
666 if (TREE_CODE (inner) == MEM_REF
667 && TYPE_MAIN_VARIANT (TREE_TYPE (inner))
668 != TYPE_MAIN_VARIANT
669 (TREE_TYPE (TREE_TYPE (TREE_OPERAND (inner, 1)))))
670 return get_deref_alias_set (TREE_OPERAND (inner, 1));
672 /* Otherwise, pick up the outermost object that we could have a pointer
673 to, processing conversions as above. */
674 while (component_uses_parent_alias_set (t))
676 t = TREE_OPERAND (t, 0);
677 STRIP_NOPS (t);
680 /* If we've already determined the alias set for a decl, just return
681 it. This is necessary for C++ anonymous unions, whose component
682 variables don't look like union members (boo!). */
683 if (TREE_CODE (t) == VAR_DECL
684 && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
685 return MEM_ALIAS_SET (DECL_RTL (t));
687 /* Now all we care about is the type. */
688 t = TREE_TYPE (t);
691 /* Variant qualifiers don't affect the alias set, so get the main
692 variant. */
693 t = TYPE_MAIN_VARIANT (t);
695 /* Always use the canonical type as well. If this is a type that
696 requires structural comparisons to identify compatible types
697 use alias set zero. */
698 if (TYPE_STRUCTURAL_EQUALITY_P (t))
700 /* Allow the language to specify another alias set for this
701 type. */
702 set = lang_hooks.get_alias_set (t);
703 if (set != -1)
704 return set;
705 return 0;
708 t = TYPE_CANONICAL (t);
710 /* The canonical type should not require structural equality checks. */
711 gcc_checking_assert (!TYPE_STRUCTURAL_EQUALITY_P (t));
713 /* If this is a type with a known alias set, return it. */
714 if (TYPE_ALIAS_SET_KNOWN_P (t))
715 return TYPE_ALIAS_SET (t);
717 /* We don't want to set TYPE_ALIAS_SET for incomplete types. */
718 if (!COMPLETE_TYPE_P (t))
720 /* For arrays with unknown size the conservative answer is the
721 alias set of the element type. */
722 if (TREE_CODE (t) == ARRAY_TYPE)
723 return get_alias_set (TREE_TYPE (t));
725 /* But return zero as a conservative answer for incomplete types. */
726 return 0;
729 /* See if the language has special handling for this type. */
730 set = lang_hooks.get_alias_set (t);
731 if (set != -1)
732 return set;
734 /* There are no objects of FUNCTION_TYPE, so there's no point in
735 using up an alias set for them. (There are, of course, pointers
736 and references to functions, but that's different.) */
737 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
738 set = 0;
740 /* Unless the language specifies otherwise, let vector types alias
741 their components. This avoids some nasty type punning issues in
742 normal usage. And indeed lets vectors be treated more like an
743 array slice. */
744 else if (TREE_CODE (t) == VECTOR_TYPE)
745 set = get_alias_set (TREE_TYPE (t));
747 /* Unless the language specifies otherwise, treat array types the
748 same as their components. This avoids the asymmetry we get
749 through recording the components. Consider accessing a
750 character(kind=1) through a reference to a character(kind=1)[1:1].
751 Or consider if we want to assign integer(kind=4)[0:D.1387] and
752 integer(kind=4)[4] the same alias set or not.
753 Just be pragmatic here and make sure the array and its element
754 type get the same alias set assigned. */
755 else if (TREE_CODE (t) == ARRAY_TYPE && !TYPE_NONALIASED_COMPONENT (t))
756 set = get_alias_set (TREE_TYPE (t));
758 /* From the former common C and C++ langhook implementation:
760 Unfortunately, there is no canonical form of a pointer type.
761 In particular, if we have `typedef int I', then `int *', and
762 `I *' are different types. So, we have to pick a canonical
763 representative. We do this below.
765 Technically, this approach is actually more conservative that
766 it needs to be. In particular, `const int *' and `int *'
767 should be in different alias sets, according to the C and C++
768 standard, since their types are not the same, and so,
769 technically, an `int **' and `const int **' cannot point at
770 the same thing.
772 But, the standard is wrong. In particular, this code is
773 legal C++:
775 int *ip;
776 int **ipp = &ip;
777 const int* const* cipp = ipp;
778 And, it doesn't make sense for that to be legal unless you
779 can dereference IPP and CIPP. So, we ignore cv-qualifiers on
780 the pointed-to types. This issue has been reported to the
781 C++ committee.
783 In addition to the above canonicalization issue, with LTO
784 we should also canonicalize `T (*)[]' to `T *' avoiding
785 alias issues with pointer-to element types and pointer-to
786 array types.
788 Likewise we need to deal with the situation of incomplete
789 pointed-to types and make `*(struct X **)&a' and
790 `*(struct X {} **)&a' alias. Otherwise we will have to
791 guarantee that all pointer-to incomplete type variants
792 will be replaced by pointer-to complete type variants if
793 they are available.
795 With LTO the convenient situation of using `void *' to
796 access and store any pointer type will also become
797 more apparent (and `void *' is just another pointer-to
798 incomplete type). Assigning alias-set zero to `void *'
799 and all pointer-to incomplete types is a not appealing
800 solution. Assigning an effective alias-set zero only
801 affecting pointers might be - by recording proper subset
802 relationships of all pointer alias-sets.
804 Pointer-to function types are another grey area which
805 needs caution. Globbing them all into one alias-set
806 or the above effective zero set would work.
808 For now just assign the same alias-set to all pointers.
809 That's simple and avoids all the above problems. */
810 else if (POINTER_TYPE_P (t)
811 && t != ptr_type_node)
812 set = get_alias_set (ptr_type_node);
814 /* Otherwise make a new alias set for this type. */
815 else
817 /* Each canonical type gets its own alias set, so canonical types
818 shouldn't form a tree. It doesn't really matter for types
819 we handle specially above, so only check it where it possibly
820 would result in a bogus alias set. */
821 gcc_checking_assert (TYPE_CANONICAL (t) == t);
823 set = new_alias_set ();
826 TYPE_ALIAS_SET (t) = set;
828 /* If this is an aggregate type or a complex type, we must record any
829 component aliasing information. */
830 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
831 record_component_aliases (t);
833 return set;
836 /* Return a brand-new alias set. */
838 alias_set_type
839 new_alias_set (void)
841 if (flag_strict_aliasing)
843 if (alias_sets == 0)
844 VEC_safe_push (alias_set_entry, gc, alias_sets, 0);
845 VEC_safe_push (alias_set_entry, gc, alias_sets, 0);
846 return VEC_length (alias_set_entry, alias_sets) - 1;
848 else
849 return 0;
852 /* Indicate that things in SUBSET can alias things in SUPERSET, but that
853 not everything that aliases SUPERSET also aliases SUBSET. For example,
854 in C, a store to an `int' can alias a load of a structure containing an
855 `int', and vice versa. But it can't alias a load of a 'double' member
856 of the same structure. Here, the structure would be the SUPERSET and
857 `int' the SUBSET. This relationship is also described in the comment at
858 the beginning of this file.
860 This function should be called only once per SUPERSET/SUBSET pair.
862 It is illegal for SUPERSET to be zero; everything is implicitly a
863 subset of alias set zero. */
865 void
866 record_alias_subset (alias_set_type superset, alias_set_type subset)
868 alias_set_entry superset_entry;
869 alias_set_entry subset_entry;
871 /* It is possible in complex type situations for both sets to be the same,
872 in which case we can ignore this operation. */
873 if (superset == subset)
874 return;
876 gcc_assert (superset);
878 superset_entry = get_alias_set_entry (superset);
879 if (superset_entry == 0)
881 /* Create an entry for the SUPERSET, so that we have a place to
882 attach the SUBSET. */
883 superset_entry = ggc_alloc_cleared_alias_set_entry_d ();
884 superset_entry->alias_set = superset;
885 superset_entry->children
886 = splay_tree_new_ggc (splay_tree_compare_ints,
887 ggc_alloc_splay_tree_scalar_scalar_splay_tree_s,
888 ggc_alloc_splay_tree_scalar_scalar_splay_tree_node_s);
889 superset_entry->has_zero_child = 0;
890 VEC_replace (alias_set_entry, alias_sets, superset, superset_entry);
893 if (subset == 0)
894 superset_entry->has_zero_child = 1;
895 else
897 subset_entry = get_alias_set_entry (subset);
898 /* If there is an entry for the subset, enter all of its children
899 (if they are not already present) as children of the SUPERSET. */
900 if (subset_entry)
902 if (subset_entry->has_zero_child)
903 superset_entry->has_zero_child = 1;
905 splay_tree_foreach (subset_entry->children, insert_subset_children,
906 superset_entry->children);
909 /* Enter the SUBSET itself as a child of the SUPERSET. */
910 splay_tree_insert (superset_entry->children,
911 (splay_tree_key) subset, 0);
915 /* Record that component types of TYPE, if any, are part of that type for
916 aliasing purposes. For record types, we only record component types
917 for fields that are not marked non-addressable. For array types, we
918 only record the component type if it is not marked non-aliased. */
920 void
921 record_component_aliases (tree type)
923 alias_set_type superset = get_alias_set (type);
924 tree field;
926 if (superset == 0)
927 return;
929 switch (TREE_CODE (type))
931 case RECORD_TYPE:
932 case UNION_TYPE:
933 case QUAL_UNION_TYPE:
934 /* Recursively record aliases for the base classes, if there are any. */
935 if (TYPE_BINFO (type))
937 int i;
938 tree binfo, base_binfo;
940 for (binfo = TYPE_BINFO (type), i = 0;
941 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
942 record_alias_subset (superset,
943 get_alias_set (BINFO_TYPE (base_binfo)));
945 for (field = TYPE_FIELDS (type); field != 0; field = DECL_CHAIN (field))
946 if (TREE_CODE (field) == FIELD_DECL && !DECL_NONADDRESSABLE_P (field))
947 record_alias_subset (superset, get_alias_set (TREE_TYPE (field)));
948 break;
950 case COMPLEX_TYPE:
951 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
952 break;
954 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
955 element type. */
957 default:
958 break;
962 /* Allocate an alias set for use in storing and reading from the varargs
963 spill area. */
965 static GTY(()) alias_set_type varargs_set = -1;
967 alias_set_type
968 get_varargs_alias_set (void)
970 #if 1
971 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
972 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
973 consistently use the varargs alias set for loads from the varargs
974 area. So don't use it anywhere. */
975 return 0;
976 #else
977 if (varargs_set == -1)
978 varargs_set = new_alias_set ();
980 return varargs_set;
981 #endif
984 /* Likewise, but used for the fixed portions of the frame, e.g., register
985 save areas. */
987 static GTY(()) alias_set_type frame_set = -1;
989 alias_set_type
990 get_frame_alias_set (void)
992 if (frame_set == -1)
993 frame_set = new_alias_set ();
995 return frame_set;
998 /* Inside SRC, the source of a SET, find a base address. */
1000 static rtx
1001 find_base_value (rtx src)
1003 unsigned int regno;
1005 #if defined (FIND_BASE_TERM)
1006 /* Try machine-dependent ways to find the base term. */
1007 src = FIND_BASE_TERM (src);
1008 #endif
1010 switch (GET_CODE (src))
1012 case SYMBOL_REF:
1013 case LABEL_REF:
1014 return src;
1016 case REG:
1017 regno = REGNO (src);
1018 /* At the start of a function, argument registers have known base
1019 values which may be lost later. Returning an ADDRESS
1020 expression here allows optimization based on argument values
1021 even when the argument registers are used for other purposes. */
1022 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
1023 return new_reg_base_value[regno];
1025 /* If a pseudo has a known base value, return it. Do not do this
1026 for non-fixed hard regs since it can result in a circular
1027 dependency chain for registers which have values at function entry.
1029 The test above is not sufficient because the scheduler may move
1030 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
1031 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
1032 && regno < VEC_length (rtx, reg_base_value))
1034 /* If we're inside init_alias_analysis, use new_reg_base_value
1035 to reduce the number of relaxation iterations. */
1036 if (new_reg_base_value && new_reg_base_value[regno]
1037 && DF_REG_DEF_COUNT (regno) == 1)
1038 return new_reg_base_value[regno];
1040 if (VEC_index (rtx, reg_base_value, regno))
1041 return VEC_index (rtx, reg_base_value, regno);
1044 return 0;
1046 case MEM:
1047 /* Check for an argument passed in memory. Only record in the
1048 copying-arguments block; it is too hard to track changes
1049 otherwise. */
1050 if (copying_arguments
1051 && (XEXP (src, 0) == arg_pointer_rtx
1052 || (GET_CODE (XEXP (src, 0)) == PLUS
1053 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
1054 return gen_rtx_ADDRESS (VOIDmode, src);
1055 return 0;
1057 case CONST:
1058 src = XEXP (src, 0);
1059 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
1060 break;
1062 /* ... fall through ... */
1064 case PLUS:
1065 case MINUS:
1067 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
1069 /* If either operand is a REG that is a known pointer, then it
1070 is the base. */
1071 if (REG_P (src_0) && REG_POINTER (src_0))
1072 return find_base_value (src_0);
1073 if (REG_P (src_1) && REG_POINTER (src_1))
1074 return find_base_value (src_1);
1076 /* If either operand is a REG, then see if we already have
1077 a known value for it. */
1078 if (REG_P (src_0))
1080 temp = find_base_value (src_0);
1081 if (temp != 0)
1082 src_0 = temp;
1085 if (REG_P (src_1))
1087 temp = find_base_value (src_1);
1088 if (temp!= 0)
1089 src_1 = temp;
1092 /* If either base is named object or a special address
1093 (like an argument or stack reference), then use it for the
1094 base term. */
1095 if (src_0 != 0
1096 && (GET_CODE (src_0) == SYMBOL_REF
1097 || GET_CODE (src_0) == LABEL_REF
1098 || (GET_CODE (src_0) == ADDRESS
1099 && GET_MODE (src_0) != VOIDmode)))
1100 return src_0;
1102 if (src_1 != 0
1103 && (GET_CODE (src_1) == SYMBOL_REF
1104 || GET_CODE (src_1) == LABEL_REF
1105 || (GET_CODE (src_1) == ADDRESS
1106 && GET_MODE (src_1) != VOIDmode)))
1107 return src_1;
1109 /* Guess which operand is the base address:
1110 If either operand is a symbol, then it is the base. If
1111 either operand is a CONST_INT, then the other is the base. */
1112 if (CONST_INT_P (src_1) || CONSTANT_P (src_0))
1113 return find_base_value (src_0);
1114 else if (CONST_INT_P (src_0) || CONSTANT_P (src_1))
1115 return find_base_value (src_1);
1117 return 0;
1120 case LO_SUM:
1121 /* The standard form is (lo_sum reg sym) so look only at the
1122 second operand. */
1123 return find_base_value (XEXP (src, 1));
1125 case AND:
1126 /* If the second operand is constant set the base
1127 address to the first operand. */
1128 if (CONST_INT_P (XEXP (src, 1)) && INTVAL (XEXP (src, 1)) != 0)
1129 return find_base_value (XEXP (src, 0));
1130 return 0;
1132 case TRUNCATE:
1133 /* As we do not know which address space the pointer is refering to, we can
1134 handle this only if the target does not support different pointer or
1135 address modes depending on the address space. */
1136 if (!target_default_pointer_address_modes_p ())
1137 break;
1138 if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
1139 break;
1140 /* Fall through. */
1141 case HIGH:
1142 case PRE_INC:
1143 case PRE_DEC:
1144 case POST_INC:
1145 case POST_DEC:
1146 case PRE_MODIFY:
1147 case POST_MODIFY:
1148 return find_base_value (XEXP (src, 0));
1150 case ZERO_EXTEND:
1151 case SIGN_EXTEND: /* used for NT/Alpha pointers */
1152 /* As we do not know which address space the pointer is refering to, we can
1153 handle this only if the target does not support different pointer or
1154 address modes depending on the address space. */
1155 if (!target_default_pointer_address_modes_p ())
1156 break;
1159 rtx temp = find_base_value (XEXP (src, 0));
1161 if (temp != 0 && CONSTANT_P (temp))
1162 temp = convert_memory_address (Pmode, temp);
1164 return temp;
1167 default:
1168 break;
1171 return 0;
1174 /* Called from init_alias_analysis indirectly through note_stores. */
1176 /* While scanning insns to find base values, reg_seen[N] is nonzero if
1177 register N has been set in this function. */
1178 static char *reg_seen;
1180 /* Addresses which are known not to alias anything else are identified
1181 by a unique integer. */
1182 static int unique_id;
1184 static void
1185 record_set (rtx dest, const_rtx set, void *data ATTRIBUTE_UNUSED)
1187 unsigned regno;
1188 rtx src;
1189 int n;
1191 if (!REG_P (dest))
1192 return;
1194 regno = REGNO (dest);
1196 gcc_checking_assert (regno < VEC_length (rtx, reg_base_value));
1198 /* If this spans multiple hard registers, then we must indicate that every
1199 register has an unusable value. */
1200 if (regno < FIRST_PSEUDO_REGISTER)
1201 n = hard_regno_nregs[regno][GET_MODE (dest)];
1202 else
1203 n = 1;
1204 if (n != 1)
1206 while (--n >= 0)
1208 reg_seen[regno + n] = 1;
1209 new_reg_base_value[regno + n] = 0;
1211 return;
1214 if (set)
1216 /* A CLOBBER wipes out any old value but does not prevent a previously
1217 unset register from acquiring a base address (i.e. reg_seen is not
1218 set). */
1219 if (GET_CODE (set) == CLOBBER)
1221 new_reg_base_value[regno] = 0;
1222 return;
1224 src = SET_SRC (set);
1226 else
1228 if (reg_seen[regno])
1230 new_reg_base_value[regno] = 0;
1231 return;
1233 reg_seen[regno] = 1;
1234 new_reg_base_value[regno] = gen_rtx_ADDRESS (Pmode,
1235 GEN_INT (unique_id++));
1236 return;
1239 /* If this is not the first set of REGNO, see whether the new value
1240 is related to the old one. There are two cases of interest:
1242 (1) The register might be assigned an entirely new value
1243 that has the same base term as the original set.
1245 (2) The set might be a simple self-modification that
1246 cannot change REGNO's base value.
1248 If neither case holds, reject the original base value as invalid.
1249 Note that the following situation is not detected:
1251 extern int x, y; int *p = &x; p += (&y-&x);
1253 ANSI C does not allow computing the difference of addresses
1254 of distinct top level objects. */
1255 if (new_reg_base_value[regno] != 0
1256 && find_base_value (src) != new_reg_base_value[regno])
1257 switch (GET_CODE (src))
1259 case LO_SUM:
1260 case MINUS:
1261 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
1262 new_reg_base_value[regno] = 0;
1263 break;
1264 case PLUS:
1265 /* If the value we add in the PLUS is also a valid base value,
1266 this might be the actual base value, and the original value
1267 an index. */
1269 rtx other = NULL_RTX;
1271 if (XEXP (src, 0) == dest)
1272 other = XEXP (src, 1);
1273 else if (XEXP (src, 1) == dest)
1274 other = XEXP (src, 0);
1276 if (! other || find_base_value (other))
1277 new_reg_base_value[regno] = 0;
1278 break;
1280 case AND:
1281 if (XEXP (src, 0) != dest || !CONST_INT_P (XEXP (src, 1)))
1282 new_reg_base_value[regno] = 0;
1283 break;
1284 default:
1285 new_reg_base_value[regno] = 0;
1286 break;
1288 /* If this is the first set of a register, record the value. */
1289 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
1290 && ! reg_seen[regno] && new_reg_base_value[regno] == 0)
1291 new_reg_base_value[regno] = find_base_value (src);
1293 reg_seen[regno] = 1;
1296 /* Return REG_BASE_VALUE for REGNO. Selective scheduler uses this to avoid
1297 using hard registers with non-null REG_BASE_VALUE for renaming. */
1299 get_reg_base_value (unsigned int regno)
1301 return VEC_index (rtx, reg_base_value, regno);
1304 /* If a value is known for REGNO, return it. */
1307 get_reg_known_value (unsigned int regno)
1309 if (regno >= FIRST_PSEUDO_REGISTER)
1311 regno -= FIRST_PSEUDO_REGISTER;
1312 if (regno < reg_known_value_size)
1313 return reg_known_value[regno];
1315 return NULL;
1318 /* Set it. */
1320 static void
1321 set_reg_known_value (unsigned int regno, rtx val)
1323 if (regno >= FIRST_PSEUDO_REGISTER)
1325 regno -= FIRST_PSEUDO_REGISTER;
1326 if (regno < reg_known_value_size)
1327 reg_known_value[regno] = val;
1331 /* Similarly for reg_known_equiv_p. */
1333 bool
1334 get_reg_known_equiv_p (unsigned int regno)
1336 if (regno >= FIRST_PSEUDO_REGISTER)
1338 regno -= FIRST_PSEUDO_REGISTER;
1339 if (regno < reg_known_value_size)
1340 return reg_known_equiv_p[regno];
1342 return false;
1345 static void
1346 set_reg_known_equiv_p (unsigned int regno, bool val)
1348 if (regno >= FIRST_PSEUDO_REGISTER)
1350 regno -= FIRST_PSEUDO_REGISTER;
1351 if (regno < reg_known_value_size)
1352 reg_known_equiv_p[regno] = val;
1357 /* Returns a canonical version of X, from the point of view alias
1358 analysis. (For example, if X is a MEM whose address is a register,
1359 and the register has a known value (say a SYMBOL_REF), then a MEM
1360 whose address is the SYMBOL_REF is returned.) */
1363 canon_rtx (rtx x)
1365 /* Recursively look for equivalences. */
1366 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
1368 rtx t = get_reg_known_value (REGNO (x));
1369 if (t == x)
1370 return x;
1371 if (t)
1372 return canon_rtx (t);
1375 if (GET_CODE (x) == PLUS)
1377 rtx x0 = canon_rtx (XEXP (x, 0));
1378 rtx x1 = canon_rtx (XEXP (x, 1));
1380 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1382 if (CONST_INT_P (x0))
1383 return plus_constant (x1, INTVAL (x0));
1384 else if (CONST_INT_P (x1))
1385 return plus_constant (x0, INTVAL (x1));
1386 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
1390 /* This gives us much better alias analysis when called from
1391 the loop optimizer. Note we want to leave the original
1392 MEM alone, but need to return the canonicalized MEM with
1393 all the flags with their original values. */
1394 else if (MEM_P (x))
1395 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
1397 return x;
1400 /* Return 1 if X and Y are identical-looking rtx's.
1401 Expect that X and Y has been already canonicalized.
1403 We use the data in reg_known_value above to see if two registers with
1404 different numbers are, in fact, equivalent. */
1406 static int
1407 rtx_equal_for_memref_p (const_rtx x, const_rtx y)
1409 int i;
1410 int j;
1411 enum rtx_code code;
1412 const char *fmt;
1414 if (x == 0 && y == 0)
1415 return 1;
1416 if (x == 0 || y == 0)
1417 return 0;
1419 if (x == y)
1420 return 1;
1422 code = GET_CODE (x);
1423 /* Rtx's of different codes cannot be equal. */
1424 if (code != GET_CODE (y))
1425 return 0;
1427 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1428 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1430 if (GET_MODE (x) != GET_MODE (y))
1431 return 0;
1433 /* Some RTL can be compared without a recursive examination. */
1434 switch (code)
1436 case REG:
1437 return REGNO (x) == REGNO (y);
1439 case LABEL_REF:
1440 return XEXP (x, 0) == XEXP (y, 0);
1442 case SYMBOL_REF:
1443 return XSTR (x, 0) == XSTR (y, 0);
1445 case VALUE:
1446 case CONST_INT:
1447 case CONST_DOUBLE:
1448 case CONST_FIXED:
1449 /* There's no need to compare the contents of CONST_DOUBLEs or
1450 CONST_INTs because pointer equality is a good enough
1451 comparison for these nodes. */
1452 return 0;
1454 default:
1455 break;
1458 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1459 if (code == PLUS)
1460 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1461 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1462 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1463 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
1464 /* For commutative operations, the RTX match if the operand match in any
1465 order. Also handle the simple binary and unary cases without a loop. */
1466 if (COMMUTATIVE_P (x))
1468 rtx xop0 = canon_rtx (XEXP (x, 0));
1469 rtx yop0 = canon_rtx (XEXP (y, 0));
1470 rtx yop1 = canon_rtx (XEXP (y, 1));
1472 return ((rtx_equal_for_memref_p (xop0, yop0)
1473 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1474 || (rtx_equal_for_memref_p (xop0, yop1)
1475 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1477 else if (NON_COMMUTATIVE_P (x))
1479 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1480 canon_rtx (XEXP (y, 0)))
1481 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1482 canon_rtx (XEXP (y, 1))));
1484 else if (UNARY_P (x))
1485 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1486 canon_rtx (XEXP (y, 0)));
1488 /* Compare the elements. If any pair of corresponding elements
1489 fail to match, return 0 for the whole things.
1491 Limit cases to types which actually appear in addresses. */
1493 fmt = GET_RTX_FORMAT (code);
1494 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1496 switch (fmt[i])
1498 case 'i':
1499 if (XINT (x, i) != XINT (y, i))
1500 return 0;
1501 break;
1503 case 'E':
1504 /* Two vectors must have the same length. */
1505 if (XVECLEN (x, i) != XVECLEN (y, i))
1506 return 0;
1508 /* And the corresponding elements must match. */
1509 for (j = 0; j < XVECLEN (x, i); j++)
1510 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1511 canon_rtx (XVECEXP (y, i, j))) == 0)
1512 return 0;
1513 break;
1515 case 'e':
1516 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1517 canon_rtx (XEXP (y, i))) == 0)
1518 return 0;
1519 break;
1521 /* This can happen for asm operands. */
1522 case 's':
1523 if (strcmp (XSTR (x, i), XSTR (y, i)))
1524 return 0;
1525 break;
1527 /* This can happen for an asm which clobbers memory. */
1528 case '0':
1529 break;
1531 /* It is believed that rtx's at this level will never
1532 contain anything but integers and other rtx's,
1533 except for within LABEL_REFs and SYMBOL_REFs. */
1534 default:
1535 gcc_unreachable ();
1538 return 1;
1542 find_base_term (rtx x)
1544 cselib_val *val;
1545 struct elt_loc_list *l;
1547 #if defined (FIND_BASE_TERM)
1548 /* Try machine-dependent ways to find the base term. */
1549 x = FIND_BASE_TERM (x);
1550 #endif
1552 switch (GET_CODE (x))
1554 case REG:
1555 return REG_BASE_VALUE (x);
1557 case TRUNCATE:
1558 /* As we do not know which address space the pointer is refering to, we can
1559 handle this only if the target does not support different pointer or
1560 address modes depending on the address space. */
1561 if (!target_default_pointer_address_modes_p ())
1562 return 0;
1563 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
1564 return 0;
1565 /* Fall through. */
1566 case HIGH:
1567 case PRE_INC:
1568 case PRE_DEC:
1569 case POST_INC:
1570 case POST_DEC:
1571 case PRE_MODIFY:
1572 case POST_MODIFY:
1573 return find_base_term (XEXP (x, 0));
1575 case ZERO_EXTEND:
1576 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1577 /* As we do not know which address space the pointer is refering to, we can
1578 handle this only if the target does not support different pointer or
1579 address modes depending on the address space. */
1580 if (!target_default_pointer_address_modes_p ())
1581 return 0;
1584 rtx temp = find_base_term (XEXP (x, 0));
1586 if (temp != 0 && CONSTANT_P (temp))
1587 temp = convert_memory_address (Pmode, temp);
1589 return temp;
1592 case VALUE:
1593 val = CSELIB_VAL_PTR (x);
1594 if (!val)
1595 return 0;
1596 for (l = val->locs; l; l = l->next)
1597 if ((x = find_base_term (l->loc)) != 0)
1598 return x;
1599 return 0;
1601 case LO_SUM:
1602 /* The standard form is (lo_sum reg sym) so look only at the
1603 second operand. */
1604 return find_base_term (XEXP (x, 1));
1606 case CONST:
1607 x = XEXP (x, 0);
1608 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1609 return 0;
1610 /* Fall through. */
1611 case PLUS:
1612 case MINUS:
1614 rtx tmp1 = XEXP (x, 0);
1615 rtx tmp2 = XEXP (x, 1);
1617 /* This is a little bit tricky since we have to determine which of
1618 the two operands represents the real base address. Otherwise this
1619 routine may return the index register instead of the base register.
1621 That may cause us to believe no aliasing was possible, when in
1622 fact aliasing is possible.
1624 We use a few simple tests to guess the base register. Additional
1625 tests can certainly be added. For example, if one of the operands
1626 is a shift or multiply, then it must be the index register and the
1627 other operand is the base register. */
1629 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1630 return find_base_term (tmp2);
1632 /* If either operand is known to be a pointer, then use it
1633 to determine the base term. */
1634 if (REG_P (tmp1) && REG_POINTER (tmp1))
1636 rtx base = find_base_term (tmp1);
1637 if (base)
1638 return base;
1641 if (REG_P (tmp2) && REG_POINTER (tmp2))
1643 rtx base = find_base_term (tmp2);
1644 if (base)
1645 return base;
1648 /* Neither operand was known to be a pointer. Go ahead and find the
1649 base term for both operands. */
1650 tmp1 = find_base_term (tmp1);
1651 tmp2 = find_base_term (tmp2);
1653 /* If either base term is named object or a special address
1654 (like an argument or stack reference), then use it for the
1655 base term. */
1656 if (tmp1 != 0
1657 && (GET_CODE (tmp1) == SYMBOL_REF
1658 || GET_CODE (tmp1) == LABEL_REF
1659 || (GET_CODE (tmp1) == ADDRESS
1660 && GET_MODE (tmp1) != VOIDmode)))
1661 return tmp1;
1663 if (tmp2 != 0
1664 && (GET_CODE (tmp2) == SYMBOL_REF
1665 || GET_CODE (tmp2) == LABEL_REF
1666 || (GET_CODE (tmp2) == ADDRESS
1667 && GET_MODE (tmp2) != VOIDmode)))
1668 return tmp2;
1670 /* We could not determine which of the two operands was the
1671 base register and which was the index. So we can determine
1672 nothing from the base alias check. */
1673 return 0;
1676 case AND:
1677 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) != 0)
1678 return find_base_term (XEXP (x, 0));
1679 return 0;
1681 case SYMBOL_REF:
1682 case LABEL_REF:
1683 return x;
1685 default:
1686 return 0;
1690 /* Return 0 if the addresses X and Y are known to point to different
1691 objects, 1 if they might be pointers to the same object. */
1693 static int
1694 base_alias_check (rtx x, rtx y, enum machine_mode x_mode,
1695 enum machine_mode y_mode)
1697 rtx x_base = find_base_term (x);
1698 rtx y_base = find_base_term (y);
1700 /* If the address itself has no known base see if a known equivalent
1701 value has one. If either address still has no known base, nothing
1702 is known about aliasing. */
1703 if (x_base == 0)
1705 rtx x_c;
1707 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
1708 return 1;
1710 x_base = find_base_term (x_c);
1711 if (x_base == 0)
1712 return 1;
1715 if (y_base == 0)
1717 rtx y_c;
1718 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
1719 return 1;
1721 y_base = find_base_term (y_c);
1722 if (y_base == 0)
1723 return 1;
1726 /* If the base addresses are equal nothing is known about aliasing. */
1727 if (rtx_equal_p (x_base, y_base))
1728 return 1;
1730 /* The base addresses are different expressions. If they are not accessed
1731 via AND, there is no conflict. We can bring knowledge of object
1732 alignment into play here. For example, on alpha, "char a, b;" can
1733 alias one another, though "char a; long b;" cannot. AND addesses may
1734 implicitly alias surrounding objects; i.e. unaligned access in DImode
1735 via AND address can alias all surrounding object types except those
1736 with aligment 8 or higher. */
1737 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
1738 return 1;
1739 if (GET_CODE (x) == AND
1740 && (!CONST_INT_P (XEXP (x, 1))
1741 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
1742 return 1;
1743 if (GET_CODE (y) == AND
1744 && (!CONST_INT_P (XEXP (y, 1))
1745 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
1746 return 1;
1748 /* Differing symbols not accessed via AND never alias. */
1749 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
1750 return 0;
1752 /* If one address is a stack reference there can be no alias:
1753 stack references using different base registers do not alias,
1754 a stack reference can not alias a parameter, and a stack reference
1755 can not alias a global. */
1756 if ((GET_CODE (x_base) == ADDRESS && GET_MODE (x_base) == Pmode)
1757 || (GET_CODE (y_base) == ADDRESS && GET_MODE (y_base) == Pmode))
1758 return 0;
1760 return 1;
1763 /* Convert the address X into something we can use. This is done by returning
1764 it unchanged unless it is a value; in the latter case we call cselib to get
1765 a more useful rtx. */
1768 get_addr (rtx x)
1770 cselib_val *v;
1771 struct elt_loc_list *l;
1773 if (GET_CODE (x) != VALUE)
1774 return x;
1775 v = CSELIB_VAL_PTR (x);
1776 if (v)
1778 for (l = v->locs; l; l = l->next)
1779 if (CONSTANT_P (l->loc))
1780 return l->loc;
1781 for (l = v->locs; l; l = l->next)
1782 if (!REG_P (l->loc) && !MEM_P (l->loc))
1783 return l->loc;
1784 if (v->locs)
1785 return v->locs->loc;
1787 return x;
1790 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
1791 where SIZE is the size in bytes of the memory reference. If ADDR
1792 is not modified by the memory reference then ADDR is returned. */
1794 static rtx
1795 addr_side_effect_eval (rtx addr, int size, int n_refs)
1797 int offset = 0;
1799 switch (GET_CODE (addr))
1801 case PRE_INC:
1802 offset = (n_refs + 1) * size;
1803 break;
1804 case PRE_DEC:
1805 offset = -(n_refs + 1) * size;
1806 break;
1807 case POST_INC:
1808 offset = n_refs * size;
1809 break;
1810 case POST_DEC:
1811 offset = -n_refs * size;
1812 break;
1814 default:
1815 return addr;
1818 if (offset)
1819 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0),
1820 GEN_INT (offset));
1821 else
1822 addr = XEXP (addr, 0);
1823 addr = canon_rtx (addr);
1825 return addr;
1828 /* Return one if X and Y (memory addresses) reference the
1829 same location in memory or if the references overlap.
1830 Return zero if they do not overlap, else return
1831 minus one in which case they still might reference the same location.
1833 C is an offset accumulator. When
1834 C is nonzero, we are testing aliases between X and Y + C.
1835 XSIZE is the size in bytes of the X reference,
1836 similarly YSIZE is the size in bytes for Y.
1837 Expect that canon_rtx has been already called for X and Y.
1839 If XSIZE or YSIZE is zero, we do not know the amount of memory being
1840 referenced (the reference was BLKmode), so make the most pessimistic
1841 assumptions.
1843 If XSIZE or YSIZE is negative, we may access memory outside the object
1844 being referenced as a side effect. This can happen when using AND to
1845 align memory references, as is done on the Alpha.
1847 Nice to notice that varying addresses cannot conflict with fp if no
1848 local variables had their addresses taken, but that's too hard now.
1850 ??? Contrary to the tree alias oracle this does not return
1851 one for X + non-constant and Y + non-constant when X and Y are equal.
1852 If that is fixed the TBAA hack for union type-punning can be removed. */
1854 static int
1855 memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c)
1857 if (GET_CODE (x) == VALUE)
1859 if (REG_P (y))
1861 struct elt_loc_list *l = NULL;
1862 if (CSELIB_VAL_PTR (x))
1863 for (l = CSELIB_VAL_PTR (x)->locs; l; l = l->next)
1864 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, y))
1865 break;
1866 if (l)
1867 x = y;
1868 else
1869 x = get_addr (x);
1871 /* Don't call get_addr if y is the same VALUE. */
1872 else if (x != y)
1873 x = get_addr (x);
1875 if (GET_CODE (y) == VALUE)
1877 if (REG_P (x))
1879 struct elt_loc_list *l = NULL;
1880 if (CSELIB_VAL_PTR (y))
1881 for (l = CSELIB_VAL_PTR (y)->locs; l; l = l->next)
1882 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, x))
1883 break;
1884 if (l)
1885 y = x;
1886 else
1887 y = get_addr (y);
1889 /* Don't call get_addr if x is the same VALUE. */
1890 else if (y != x)
1891 y = get_addr (y);
1893 if (GET_CODE (x) == HIGH)
1894 x = XEXP (x, 0);
1895 else if (GET_CODE (x) == LO_SUM)
1896 x = XEXP (x, 1);
1897 else
1898 x = addr_side_effect_eval (x, xsize, 0);
1899 if (GET_CODE (y) == HIGH)
1900 y = XEXP (y, 0);
1901 else if (GET_CODE (y) == LO_SUM)
1902 y = XEXP (y, 1);
1903 else
1904 y = addr_side_effect_eval (y, ysize, 0);
1906 if (rtx_equal_for_memref_p (x, y))
1908 if (xsize <= 0 || ysize <= 0)
1909 return 1;
1910 if (c >= 0 && xsize > c)
1911 return 1;
1912 if (c < 0 && ysize+c > 0)
1913 return 1;
1914 return 0;
1917 /* This code used to check for conflicts involving stack references and
1918 globals but the base address alias code now handles these cases. */
1920 if (GET_CODE (x) == PLUS)
1922 /* The fact that X is canonicalized means that this
1923 PLUS rtx is canonicalized. */
1924 rtx x0 = XEXP (x, 0);
1925 rtx x1 = XEXP (x, 1);
1927 if (GET_CODE (y) == PLUS)
1929 /* The fact that Y is canonicalized means that this
1930 PLUS rtx is canonicalized. */
1931 rtx y0 = XEXP (y, 0);
1932 rtx y1 = XEXP (y, 1);
1934 if (rtx_equal_for_memref_p (x1, y1))
1935 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1936 if (rtx_equal_for_memref_p (x0, y0))
1937 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
1938 if (CONST_INT_P (x1))
1940 if (CONST_INT_P (y1))
1941 return memrefs_conflict_p (xsize, x0, ysize, y0,
1942 c - INTVAL (x1) + INTVAL (y1));
1943 else
1944 return memrefs_conflict_p (xsize, x0, ysize, y,
1945 c - INTVAL (x1));
1947 else if (CONST_INT_P (y1))
1948 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1950 return -1;
1952 else if (CONST_INT_P (x1))
1953 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
1955 else if (GET_CODE (y) == PLUS)
1957 /* The fact that Y is canonicalized means that this
1958 PLUS rtx is canonicalized. */
1959 rtx y0 = XEXP (y, 0);
1960 rtx y1 = XEXP (y, 1);
1962 if (CONST_INT_P (y1))
1963 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1964 else
1965 return -1;
1968 if (GET_CODE (x) == GET_CODE (y))
1969 switch (GET_CODE (x))
1971 case MULT:
1973 /* Handle cases where we expect the second operands to be the
1974 same, and check only whether the first operand would conflict
1975 or not. */
1976 rtx x0, y0;
1977 rtx x1 = canon_rtx (XEXP (x, 1));
1978 rtx y1 = canon_rtx (XEXP (y, 1));
1979 if (! rtx_equal_for_memref_p (x1, y1))
1980 return -1;
1981 x0 = canon_rtx (XEXP (x, 0));
1982 y0 = canon_rtx (XEXP (y, 0));
1983 if (rtx_equal_for_memref_p (x0, y0))
1984 return (xsize == 0 || ysize == 0
1985 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1987 /* Can't properly adjust our sizes. */
1988 if (!CONST_INT_P (x1))
1989 return -1;
1990 xsize /= INTVAL (x1);
1991 ysize /= INTVAL (x1);
1992 c /= INTVAL (x1);
1993 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1996 default:
1997 break;
2000 /* Treat an access through an AND (e.g. a subword access on an Alpha)
2001 as an access with indeterminate size. Assume that references
2002 besides AND are aligned, so if the size of the other reference is
2003 at least as large as the alignment, assume no other overlap. */
2004 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1)))
2006 if (GET_CODE (y) == AND || ysize < -INTVAL (XEXP (x, 1)))
2007 xsize = -1;
2008 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)), ysize, y, c);
2010 if (GET_CODE (y) == AND && CONST_INT_P (XEXP (y, 1)))
2012 /* ??? If we are indexing far enough into the array/structure, we
2013 may yet be able to determine that we can not overlap. But we
2014 also need to that we are far enough from the end not to overlap
2015 a following reference, so we do nothing with that for now. */
2016 if (GET_CODE (x) == AND || xsize < -INTVAL (XEXP (y, 1)))
2017 ysize = -1;
2018 return memrefs_conflict_p (xsize, x, ysize, canon_rtx (XEXP (y, 0)), c);
2021 if (CONSTANT_P (x))
2023 if (CONST_INT_P (x) && CONST_INT_P (y))
2025 c += (INTVAL (y) - INTVAL (x));
2026 return (xsize <= 0 || ysize <= 0
2027 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
2030 if (GET_CODE (x) == CONST)
2032 if (GET_CODE (y) == CONST)
2033 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2034 ysize, canon_rtx (XEXP (y, 0)), c);
2035 else
2036 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2037 ysize, y, c);
2039 if (GET_CODE (y) == CONST)
2040 return memrefs_conflict_p (xsize, x, ysize,
2041 canon_rtx (XEXP (y, 0)), c);
2043 if (CONSTANT_P (y))
2044 return (xsize <= 0 || ysize <= 0
2045 || (rtx_equal_for_memref_p (x, y)
2046 && ((c >= 0 && xsize > c) || (c < 0 && ysize+c > 0))));
2048 return -1;
2051 return -1;
2054 /* Functions to compute memory dependencies.
2056 Since we process the insns in execution order, we can build tables
2057 to keep track of what registers are fixed (and not aliased), what registers
2058 are varying in known ways, and what registers are varying in unknown
2059 ways.
2061 If both memory references are volatile, then there must always be a
2062 dependence between the two references, since their order can not be
2063 changed. A volatile and non-volatile reference can be interchanged
2064 though.
2066 A MEM_IN_STRUCT reference at a non-AND varying address can never
2067 conflict with a non-MEM_IN_STRUCT reference at a fixed address. We
2068 also must allow AND addresses, because they may generate accesses
2069 outside the object being referenced. This is used to generate
2070 aligned addresses from unaligned addresses, for instance, the alpha
2071 storeqi_unaligned pattern. */
2073 /* Read dependence: X is read after read in MEM takes place. There can
2074 only be a dependence here if both reads are volatile. */
2077 read_dependence (const_rtx mem, const_rtx x)
2079 return MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem);
2082 /* Returns MEM1 if and only if MEM1 is a scalar at a fixed address and
2083 MEM2 is a reference to a structure at a varying address, or returns
2084 MEM2 if vice versa. Otherwise, returns NULL_RTX. If a non-NULL
2085 value is returned MEM1 and MEM2 can never alias. VARIES_P is used
2086 to decide whether or not an address may vary; it should return
2087 nonzero whenever variation is possible.
2088 MEM1_ADDR and MEM2_ADDR are the addresses of MEM1 and MEM2. */
2090 static const_rtx
2091 fixed_scalar_and_varying_struct_p (const_rtx mem1, const_rtx mem2, rtx mem1_addr,
2092 rtx mem2_addr,
2093 bool (*varies_p) (const_rtx, bool))
2095 if (! flag_strict_aliasing)
2096 return NULL_RTX;
2098 if (MEM_ALIAS_SET (mem2)
2099 && MEM_SCALAR_P (mem1) && MEM_IN_STRUCT_P (mem2)
2100 && !varies_p (mem1_addr, 1) && varies_p (mem2_addr, 1))
2101 /* MEM1 is a scalar at a fixed address; MEM2 is a struct at a
2102 varying address. */
2103 return mem1;
2105 if (MEM_ALIAS_SET (mem1)
2106 && MEM_IN_STRUCT_P (mem1) && MEM_SCALAR_P (mem2)
2107 && varies_p (mem1_addr, 1) && !varies_p (mem2_addr, 1))
2108 /* MEM2 is a scalar at a fixed address; MEM1 is a struct at a
2109 varying address. */
2110 return mem2;
2112 return NULL_RTX;
2115 /* Returns nonzero if something about the mode or address format MEM1
2116 indicates that it might well alias *anything*. */
2118 static int
2119 aliases_everything_p (const_rtx mem)
2121 if (GET_CODE (XEXP (mem, 0)) == AND)
2122 /* If the address is an AND, it's very hard to know at what it is
2123 actually pointing. */
2124 return 1;
2126 return 0;
2129 /* Return true if we can determine that the fields referenced cannot
2130 overlap for any pair of objects. */
2132 static bool
2133 nonoverlapping_component_refs_p (const_tree x, const_tree y)
2135 const_tree fieldx, fieldy, typex, typey, orig_y;
2137 if (!flag_strict_aliasing)
2138 return false;
2142 /* The comparison has to be done at a common type, since we don't
2143 know how the inheritance hierarchy works. */
2144 orig_y = y;
2147 fieldx = TREE_OPERAND (x, 1);
2148 typex = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldx));
2150 y = orig_y;
2153 fieldy = TREE_OPERAND (y, 1);
2154 typey = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldy));
2156 if (typex == typey)
2157 goto found;
2159 y = TREE_OPERAND (y, 0);
2161 while (y && TREE_CODE (y) == COMPONENT_REF);
2163 x = TREE_OPERAND (x, 0);
2165 while (x && TREE_CODE (x) == COMPONENT_REF);
2166 /* Never found a common type. */
2167 return false;
2169 found:
2170 /* If we're left with accessing different fields of a structure,
2171 then no overlap. */
2172 if (TREE_CODE (typex) == RECORD_TYPE
2173 && fieldx != fieldy)
2174 return true;
2176 /* The comparison on the current field failed. If we're accessing
2177 a very nested structure, look at the next outer level. */
2178 x = TREE_OPERAND (x, 0);
2179 y = TREE_OPERAND (y, 0);
2181 while (x && y
2182 && TREE_CODE (x) == COMPONENT_REF
2183 && TREE_CODE (y) == COMPONENT_REF);
2185 return false;
2188 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
2190 static tree
2191 decl_for_component_ref (tree x)
2195 x = TREE_OPERAND (x, 0);
2197 while (x && TREE_CODE (x) == COMPONENT_REF);
2199 return x && DECL_P (x) ? x : NULL_TREE;
2202 /* Walk up the COMPONENT_REF list in X and adjust *OFFSET to compensate
2203 for the offset of the field reference. *KNOWN_P says whether the
2204 offset is known. */
2206 static void
2207 adjust_offset_for_component_ref (tree x, bool *known_p,
2208 HOST_WIDE_INT *offset)
2210 if (!*known_p)
2211 return;
2214 tree xoffset = component_ref_field_offset (x);
2215 tree field = TREE_OPERAND (x, 1);
2217 if (! host_integerp (xoffset, 1))
2219 *known_p = false;
2220 return;
2222 *offset += (tree_low_cst (xoffset, 1)
2223 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2224 / BITS_PER_UNIT));
2226 x = TREE_OPERAND (x, 0);
2228 while (x && TREE_CODE (x) == COMPONENT_REF);
2231 /* Return nonzero if we can determine the exprs corresponding to memrefs
2232 X and Y and they do not overlap.
2233 If LOOP_VARIANT is set, skip offset-based disambiguation */
2236 nonoverlapping_memrefs_p (const_rtx x, const_rtx y, bool loop_invariant)
2238 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
2239 rtx rtlx, rtly;
2240 rtx basex, basey;
2241 bool moffsetx_known_p, moffsety_known_p;
2242 HOST_WIDE_INT moffsetx = 0, moffsety = 0;
2243 HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey, tem;
2245 /* Unless both have exprs, we can't tell anything. */
2246 if (exprx == 0 || expry == 0)
2247 return 0;
2249 /* For spill-slot accesses make sure we have valid offsets. */
2250 if ((exprx == get_spill_slot_decl (false)
2251 && ! MEM_OFFSET_KNOWN_P (x))
2252 || (expry == get_spill_slot_decl (false)
2253 && ! MEM_OFFSET_KNOWN_P (y)))
2254 return 0;
2256 /* If both are field references, we may be able to determine something. */
2257 if (TREE_CODE (exprx) == COMPONENT_REF
2258 && TREE_CODE (expry) == COMPONENT_REF
2259 && nonoverlapping_component_refs_p (exprx, expry))
2260 return 1;
2263 /* If the field reference test failed, look at the DECLs involved. */
2264 moffsetx_known_p = MEM_OFFSET_KNOWN_P (x);
2265 if (moffsetx_known_p)
2266 moffsetx = MEM_OFFSET (x);
2267 if (TREE_CODE (exprx) == COMPONENT_REF)
2269 tree t = decl_for_component_ref (exprx);
2270 if (! t)
2271 return 0;
2272 adjust_offset_for_component_ref (exprx, &moffsetx_known_p, &moffsetx);
2273 exprx = t;
2276 moffsety_known_p = MEM_OFFSET_KNOWN_P (y);
2277 if (moffsety_known_p)
2278 moffsety = MEM_OFFSET (y);
2279 if (TREE_CODE (expry) == COMPONENT_REF)
2281 tree t = decl_for_component_ref (expry);
2282 if (! t)
2283 return 0;
2284 adjust_offset_for_component_ref (expry, &moffsety_known_p, &moffsety);
2285 expry = t;
2288 if (! DECL_P (exprx) || ! DECL_P (expry))
2289 return 0;
2291 /* With invalid code we can end up storing into the constant pool.
2292 Bail out to avoid ICEing when creating RTL for this.
2293 See gfortran.dg/lto/20091028-2_0.f90. */
2294 if (TREE_CODE (exprx) == CONST_DECL
2295 || TREE_CODE (expry) == CONST_DECL)
2296 return 1;
2298 rtlx = DECL_RTL (exprx);
2299 rtly = DECL_RTL (expry);
2301 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2302 can't overlap unless they are the same because we never reuse that part
2303 of the stack frame used for locals for spilled pseudos. */
2304 if ((!MEM_P (rtlx) || !MEM_P (rtly))
2305 && ! rtx_equal_p (rtlx, rtly))
2306 return 1;
2308 /* If we have MEMs refering to different address spaces (which can
2309 potentially overlap), we cannot easily tell from the addresses
2310 whether the references overlap. */
2311 if (MEM_P (rtlx) && MEM_P (rtly)
2312 && MEM_ADDR_SPACE (rtlx) != MEM_ADDR_SPACE (rtly))
2313 return 0;
2315 /* Get the base and offsets of both decls. If either is a register, we
2316 know both are and are the same, so use that as the base. The only
2317 we can avoid overlap is if we can deduce that they are nonoverlapping
2318 pieces of that decl, which is very rare. */
2319 basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
2320 if (GET_CODE (basex) == PLUS && CONST_INT_P (XEXP (basex, 1)))
2321 offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
2323 basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
2324 if (GET_CODE (basey) == PLUS && CONST_INT_P (XEXP (basey, 1)))
2325 offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
2327 /* If the bases are different, we know they do not overlap if both
2328 are constants or if one is a constant and the other a pointer into the
2329 stack frame. Otherwise a different base means we can't tell if they
2330 overlap or not. */
2331 if (! rtx_equal_p (basex, basey))
2332 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2333 || (CONSTANT_P (basex) && REG_P (basey)
2334 && REGNO_PTR_FRAME_P (REGNO (basey)))
2335 || (CONSTANT_P (basey) && REG_P (basex)
2336 && REGNO_PTR_FRAME_P (REGNO (basex))));
2338 /* Offset based disambiguation not appropriate for loop invariant */
2339 if (loop_invariant)
2340 return 0;
2342 sizex = (!MEM_P (rtlx) ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
2343 : MEM_SIZE_KNOWN_P (rtlx) ? MEM_SIZE (rtlx)
2344 : -1);
2345 sizey = (!MEM_P (rtly) ? (int) GET_MODE_SIZE (GET_MODE (rtly))
2346 : MEM_SIZE_KNOWN_P (rtly) ? MEM_SIZE (rtly)
2347 : -1);
2349 /* If we have an offset for either memref, it can update the values computed
2350 above. */
2351 if (moffsetx_known_p)
2352 offsetx += moffsetx, sizex -= moffsetx;
2353 if (moffsety_known_p)
2354 offsety += moffsety, sizey -= moffsety;
2356 /* If a memref has both a size and an offset, we can use the smaller size.
2357 We can't do this if the offset isn't known because we must view this
2358 memref as being anywhere inside the DECL's MEM. */
2359 if (MEM_SIZE_KNOWN_P (x) && moffsetx_known_p)
2360 sizex = MEM_SIZE (x);
2361 if (MEM_SIZE_KNOWN_P (y) && moffsety_known_p)
2362 sizey = MEM_SIZE (y);
2364 /* Put the values of the memref with the lower offset in X's values. */
2365 if (offsetx > offsety)
2367 tem = offsetx, offsetx = offsety, offsety = tem;
2368 tem = sizex, sizex = sizey, sizey = tem;
2371 /* If we don't know the size of the lower-offset value, we can't tell
2372 if they conflict. Otherwise, we do the test. */
2373 return sizex >= 0 && offsety >= offsetx + sizex;
2376 /* Helper for true_dependence and canon_true_dependence.
2377 Checks for true dependence: X is read after store in MEM takes place.
2379 VARIES is the function that should be used as rtx_varies function.
2381 If MEM_CANONICALIZED is FALSE, then X_ADDR and MEM_ADDR should be
2382 NULL_RTX, and the canonical addresses of MEM and X are both computed
2383 here. If MEM_CANONICALIZED, then MEM must be already canonicalized.
2385 If X_ADDR is non-NULL, it is used in preference of XEXP (x, 0).
2387 Returns 1 if there is a true dependence, 0 otherwise. */
2389 static int
2390 true_dependence_1 (const_rtx mem, enum machine_mode mem_mode, rtx mem_addr,
2391 const_rtx x, rtx x_addr, bool (*varies) (const_rtx, bool),
2392 bool mem_canonicalized)
2394 rtx base;
2395 int ret;
2397 gcc_checking_assert (mem_canonicalized ? (mem_addr != NULL_RTX)
2398 : (mem_addr == NULL_RTX && x_addr == NULL_RTX));
2400 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2401 return 1;
2403 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2404 This is used in epilogue deallocation functions, and in cselib. */
2405 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2406 return 1;
2407 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2408 return 1;
2409 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2410 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2411 return 1;
2413 /* Read-only memory is by definition never modified, and therefore can't
2414 conflict with anything. We don't expect to find read-only set on MEM,
2415 but stupid user tricks can produce them, so don't die. */
2416 if (MEM_READONLY_P (x))
2417 return 0;
2419 /* If we have MEMs refering to different address spaces (which can
2420 potentially overlap), we cannot easily tell from the addresses
2421 whether the references overlap. */
2422 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2423 return 1;
2425 if (! mem_addr)
2427 mem_addr = XEXP (mem, 0);
2428 if (mem_mode == VOIDmode)
2429 mem_mode = GET_MODE (mem);
2432 if (! x_addr)
2434 x_addr = XEXP (x, 0);
2435 if (!((GET_CODE (x_addr) == VALUE
2436 && GET_CODE (mem_addr) != VALUE
2437 && reg_mentioned_p (x_addr, mem_addr))
2438 || (GET_CODE (x_addr) != VALUE
2439 && GET_CODE (mem_addr) == VALUE
2440 && reg_mentioned_p (mem_addr, x_addr))))
2442 x_addr = get_addr (x_addr);
2443 if (! mem_canonicalized)
2444 mem_addr = get_addr (mem_addr);
2448 base = find_base_term (x_addr);
2449 if (base && (GET_CODE (base) == LABEL_REF
2450 || (GET_CODE (base) == SYMBOL_REF
2451 && CONSTANT_POOL_ADDRESS_P (base))))
2452 return 0;
2454 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2455 return 0;
2457 x_addr = canon_rtx (x_addr);
2458 if (!mem_canonicalized)
2459 mem_addr = canon_rtx (mem_addr);
2461 if ((ret = memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2462 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
2463 return ret;
2465 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2466 return 0;
2468 if (nonoverlapping_memrefs_p (mem, x, false))
2469 return 0;
2471 if (aliases_everything_p (x))
2472 return 1;
2474 /* We cannot use aliases_everything_p to test MEM, since we must look
2475 at MEM_ADDR, rather than XEXP (mem, 0). */
2476 if (GET_CODE (mem_addr) == AND)
2477 return 1;
2479 /* ??? In true_dependence we also allow BLKmode to alias anything. Why
2480 don't we do this in anti_dependence and output_dependence? */
2481 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2482 return 1;
2484 if (fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr, varies))
2485 return 0;
2487 return rtx_refs_may_alias_p (x, mem, true);
2490 /* True dependence: X is read after store in MEM takes place. */
2493 true_dependence (const_rtx mem, enum machine_mode mem_mode, const_rtx x,
2494 bool (*varies) (const_rtx, bool))
2496 return true_dependence_1 (mem, mem_mode, NULL_RTX,
2497 x, NULL_RTX, varies,
2498 /*mem_canonicalized=*/false);
2501 /* Canonical true dependence: X is read after store in MEM takes place.
2502 Variant of true_dependence which assumes MEM has already been
2503 canonicalized (hence we no longer do that here).
2504 The mem_addr argument has been added, since true_dependence_1 computed
2505 this value prior to canonicalizing. */
2508 canon_true_dependence (const_rtx mem, enum machine_mode mem_mode, rtx mem_addr,
2509 const_rtx x, rtx x_addr, bool (*varies) (const_rtx, bool))
2511 return true_dependence_1 (mem, mem_mode, mem_addr,
2512 x, x_addr, varies,
2513 /*mem_canonicalized=*/true);
2516 /* Returns nonzero if a write to X might alias a previous read from
2517 (or, if WRITEP is nonzero, a write to) MEM. */
2519 static int
2520 write_dependence_p (const_rtx mem, const_rtx x, int writep)
2522 rtx x_addr, mem_addr;
2523 const_rtx fixed_scalar;
2524 rtx base;
2525 int ret;
2527 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2528 return 1;
2530 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2531 This is used in epilogue deallocation functions. */
2532 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2533 return 1;
2534 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2535 return 1;
2536 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2537 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2538 return 1;
2540 /* A read from read-only memory can't conflict with read-write memory. */
2541 if (!writep && MEM_READONLY_P (mem))
2542 return 0;
2544 /* If we have MEMs refering to different address spaces (which can
2545 potentially overlap), we cannot easily tell from the addresses
2546 whether the references overlap. */
2547 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2548 return 1;
2550 x_addr = XEXP (x, 0);
2551 mem_addr = XEXP (mem, 0);
2552 if (!((GET_CODE (x_addr) == VALUE
2553 && GET_CODE (mem_addr) != VALUE
2554 && reg_mentioned_p (x_addr, mem_addr))
2555 || (GET_CODE (x_addr) != VALUE
2556 && GET_CODE (mem_addr) == VALUE
2557 && reg_mentioned_p (mem_addr, x_addr))))
2559 x_addr = get_addr (x_addr);
2560 mem_addr = get_addr (mem_addr);
2563 if (! writep)
2565 base = find_base_term (mem_addr);
2566 if (base && (GET_CODE (base) == LABEL_REF
2567 || (GET_CODE (base) == SYMBOL_REF
2568 && CONSTANT_POOL_ADDRESS_P (base))))
2569 return 0;
2572 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x),
2573 GET_MODE (mem)))
2574 return 0;
2576 x_addr = canon_rtx (x_addr);
2577 mem_addr = canon_rtx (mem_addr);
2579 if ((ret = memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
2580 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
2581 return ret;
2583 if (nonoverlapping_memrefs_p (x, mem, false))
2584 return 0;
2586 fixed_scalar
2587 = fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2588 rtx_addr_varies_p);
2590 if ((fixed_scalar == mem && !aliases_everything_p (x))
2591 || (fixed_scalar == x && !aliases_everything_p (mem)))
2592 return 0;
2594 return rtx_refs_may_alias_p (x, mem, false);
2597 /* Anti dependence: X is written after read in MEM takes place. */
2600 anti_dependence (const_rtx mem, const_rtx x)
2602 return write_dependence_p (mem, x, /*writep=*/0);
2605 /* Output dependence: X is written after store in MEM takes place. */
2608 output_dependence (const_rtx mem, const_rtx x)
2610 return write_dependence_p (mem, x, /*writep=*/1);
2615 /* Check whether X may be aliased with MEM. Don't do offset-based
2616 memory disambiguation & TBAA. */
2618 may_alias_p (const_rtx mem, const_rtx x)
2620 rtx x_addr, mem_addr;
2622 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2623 return 1;
2625 /* ??? In true_dependence we also allow BLKmode to alias anything. */
2626 if (GET_MODE (mem) == BLKmode || GET_MODE (x) == BLKmode)
2627 return 1;
2629 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2630 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2631 return 1;
2633 /* Read-only memory is by definition never modified, and therefore can't
2634 conflict with anything. We don't expect to find read-only set on MEM,
2635 but stupid user tricks can produce them, so don't die. */
2636 if (MEM_READONLY_P (x))
2637 return 0;
2639 /* If we have MEMs refering to different address spaces (which can
2640 potentially overlap), we cannot easily tell from the addresses
2641 whether the references overlap. */
2642 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2643 return 1;
2645 x_addr = XEXP (x, 0);
2646 mem_addr = XEXP (mem, 0);
2647 if (!((GET_CODE (x_addr) == VALUE
2648 && GET_CODE (mem_addr) != VALUE
2649 && reg_mentioned_p (x_addr, mem_addr))
2650 || (GET_CODE (x_addr) != VALUE
2651 && GET_CODE (mem_addr) == VALUE
2652 && reg_mentioned_p (mem_addr, x_addr))))
2654 x_addr = get_addr (x_addr);
2655 mem_addr = get_addr (mem_addr);
2658 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), GET_MODE (mem_addr)))
2659 return 0;
2661 x_addr = canon_rtx (x_addr);
2662 mem_addr = canon_rtx (mem_addr);
2664 if (nonoverlapping_memrefs_p (mem, x, true))
2665 return 0;
2667 if (aliases_everything_p (x))
2668 return 1;
2670 /* We cannot use aliases_everything_p to test MEM, since we must look
2671 at MEM_ADDR, rather than XEXP (mem, 0). */
2672 if (GET_CODE (mem_addr) == AND)
2673 return 1;
2675 if (fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2676 rtx_addr_varies_p))
2677 return 0;
2679 /* TBAA not valid for loop_invarint */
2680 return rtx_refs_may_alias_p (x, mem, false);
2683 void
2684 init_alias_target (void)
2686 int i;
2688 memset (static_reg_base_value, 0, sizeof static_reg_base_value);
2690 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2691 /* Check whether this register can hold an incoming pointer
2692 argument. FUNCTION_ARG_REGNO_P tests outgoing register
2693 numbers, so translate if necessary due to register windows. */
2694 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
2695 && HARD_REGNO_MODE_OK (i, Pmode))
2696 static_reg_base_value[i]
2697 = gen_rtx_ADDRESS (VOIDmode, gen_rtx_REG (Pmode, i));
2699 static_reg_base_value[STACK_POINTER_REGNUM]
2700 = gen_rtx_ADDRESS (Pmode, stack_pointer_rtx);
2701 static_reg_base_value[ARG_POINTER_REGNUM]
2702 = gen_rtx_ADDRESS (Pmode, arg_pointer_rtx);
2703 static_reg_base_value[FRAME_POINTER_REGNUM]
2704 = gen_rtx_ADDRESS (Pmode, frame_pointer_rtx);
2705 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
2706 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
2707 = gen_rtx_ADDRESS (Pmode, hard_frame_pointer_rtx);
2708 #endif
2711 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
2712 to be memory reference. */
2713 static bool memory_modified;
2714 static void
2715 memory_modified_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
2717 if (MEM_P (x))
2719 if (anti_dependence (x, (const_rtx)data) || output_dependence (x, (const_rtx)data))
2720 memory_modified = true;
2725 /* Return true when INSN possibly modify memory contents of MEM
2726 (i.e. address can be modified). */
2727 bool
2728 memory_modified_in_insn_p (const_rtx mem, const_rtx insn)
2730 if (!INSN_P (insn))
2731 return false;
2732 memory_modified = false;
2733 note_stores (PATTERN (insn), memory_modified_1, CONST_CAST_RTX(mem));
2734 return memory_modified;
2737 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2738 array. */
2740 void
2741 init_alias_analysis (void)
2743 unsigned int maxreg = max_reg_num ();
2744 int changed, pass;
2745 int i;
2746 unsigned int ui;
2747 rtx insn;
2749 timevar_push (TV_ALIAS_ANALYSIS);
2751 reg_known_value_size = maxreg - FIRST_PSEUDO_REGISTER;
2752 reg_known_value = ggc_alloc_cleared_vec_rtx (reg_known_value_size);
2753 reg_known_equiv_p = XCNEWVEC (bool, reg_known_value_size);
2755 /* If we have memory allocated from the previous run, use it. */
2756 if (old_reg_base_value)
2757 reg_base_value = old_reg_base_value;
2759 if (reg_base_value)
2760 VEC_truncate (rtx, reg_base_value, 0);
2762 VEC_safe_grow_cleared (rtx, gc, reg_base_value, maxreg);
2764 new_reg_base_value = XNEWVEC (rtx, maxreg);
2765 reg_seen = XNEWVEC (char, maxreg);
2767 /* The basic idea is that each pass through this loop will use the
2768 "constant" information from the previous pass to propagate alias
2769 information through another level of assignments.
2771 This could get expensive if the assignment chains are long. Maybe
2772 we should throttle the number of iterations, possibly based on
2773 the optimization level or flag_expensive_optimizations.
2775 We could propagate more information in the first pass by making use
2776 of DF_REG_DEF_COUNT to determine immediately that the alias information
2777 for a pseudo is "constant".
2779 A program with an uninitialized variable can cause an infinite loop
2780 here. Instead of doing a full dataflow analysis to detect such problems
2781 we just cap the number of iterations for the loop.
2783 The state of the arrays for the set chain in question does not matter
2784 since the program has undefined behavior. */
2786 pass = 0;
2789 /* Assume nothing will change this iteration of the loop. */
2790 changed = 0;
2792 /* We want to assign the same IDs each iteration of this loop, so
2793 start counting from zero each iteration of the loop. */
2794 unique_id = 0;
2796 /* We're at the start of the function each iteration through the
2797 loop, so we're copying arguments. */
2798 copying_arguments = true;
2800 /* Wipe the potential alias information clean for this pass. */
2801 memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
2803 /* Wipe the reg_seen array clean. */
2804 memset (reg_seen, 0, maxreg);
2806 /* Mark all hard registers which may contain an address.
2807 The stack, frame and argument pointers may contain an address.
2808 An argument register which can hold a Pmode value may contain
2809 an address even if it is not in BASE_REGS.
2811 The address expression is VOIDmode for an argument and
2812 Pmode for other registers. */
2814 memcpy (new_reg_base_value, static_reg_base_value,
2815 FIRST_PSEUDO_REGISTER * sizeof (rtx));
2817 /* Walk the insns adding values to the new_reg_base_value array. */
2818 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2820 if (INSN_P (insn))
2822 rtx note, set;
2824 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
2825 /* The prologue/epilogue insns are not threaded onto the
2826 insn chain until after reload has completed. Thus,
2827 there is no sense wasting time checking if INSN is in
2828 the prologue/epilogue until after reload has completed. */
2829 if (reload_completed
2830 && prologue_epilogue_contains (insn))
2831 continue;
2832 #endif
2834 /* If this insn has a noalias note, process it, Otherwise,
2835 scan for sets. A simple set will have no side effects
2836 which could change the base value of any other register. */
2838 if (GET_CODE (PATTERN (insn)) == SET
2839 && REG_NOTES (insn) != 0
2840 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
2841 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
2842 else
2843 note_stores (PATTERN (insn), record_set, NULL);
2845 set = single_set (insn);
2847 if (set != 0
2848 && REG_P (SET_DEST (set))
2849 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
2851 unsigned int regno = REGNO (SET_DEST (set));
2852 rtx src = SET_SRC (set);
2853 rtx t;
2855 note = find_reg_equal_equiv_note (insn);
2856 if (note && REG_NOTE_KIND (note) == REG_EQUAL
2857 && DF_REG_DEF_COUNT (regno) != 1)
2858 note = NULL_RTX;
2860 if (note != NULL_RTX
2861 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
2862 && ! rtx_varies_p (XEXP (note, 0), 1)
2863 && ! reg_overlap_mentioned_p (SET_DEST (set),
2864 XEXP (note, 0)))
2866 set_reg_known_value (regno, XEXP (note, 0));
2867 set_reg_known_equiv_p (regno,
2868 REG_NOTE_KIND (note) == REG_EQUIV);
2870 else if (DF_REG_DEF_COUNT (regno) == 1
2871 && GET_CODE (src) == PLUS
2872 && REG_P (XEXP (src, 0))
2873 && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
2874 && CONST_INT_P (XEXP (src, 1)))
2876 t = plus_constant (t, INTVAL (XEXP (src, 1)));
2877 set_reg_known_value (regno, t);
2878 set_reg_known_equiv_p (regno, 0);
2880 else if (DF_REG_DEF_COUNT (regno) == 1
2881 && ! rtx_varies_p (src, 1))
2883 set_reg_known_value (regno, src);
2884 set_reg_known_equiv_p (regno, 0);
2888 else if (NOTE_P (insn)
2889 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
2890 copying_arguments = false;
2893 /* Now propagate values from new_reg_base_value to reg_base_value. */
2894 gcc_assert (maxreg == (unsigned int) max_reg_num ());
2896 for (ui = 0; ui < maxreg; ui++)
2898 if (new_reg_base_value[ui]
2899 && new_reg_base_value[ui] != VEC_index (rtx, reg_base_value, ui)
2900 && ! rtx_equal_p (new_reg_base_value[ui],
2901 VEC_index (rtx, reg_base_value, ui)))
2903 VEC_replace (rtx, reg_base_value, ui, new_reg_base_value[ui]);
2904 changed = 1;
2908 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
2910 /* Fill in the remaining entries. */
2911 for (i = 0; i < (int)reg_known_value_size; i++)
2912 if (reg_known_value[i] == 0)
2913 reg_known_value[i] = regno_reg_rtx[i + FIRST_PSEUDO_REGISTER];
2915 /* Clean up. */
2916 free (new_reg_base_value);
2917 new_reg_base_value = 0;
2918 free (reg_seen);
2919 reg_seen = 0;
2920 timevar_pop (TV_ALIAS_ANALYSIS);
2923 /* Equate REG_BASE_VALUE (reg1) to REG_BASE_VALUE (reg2).
2924 Special API for var-tracking pass purposes. */
2926 void
2927 vt_equate_reg_base_value (const_rtx reg1, const_rtx reg2)
2929 VEC_replace (rtx, reg_base_value, REGNO (reg1), REG_BASE_VALUE (reg2));
2932 void
2933 end_alias_analysis (void)
2935 old_reg_base_value = reg_base_value;
2936 ggc_free (reg_known_value);
2937 reg_known_value = 0;
2938 reg_known_value_size = 0;
2939 free (reg_known_equiv_p);
2940 reg_known_equiv_p = 0;
2943 #include "gt-alias.h"