2008-01-07 Jack Howarth <howarth@bromo.med.uc.edu>
[official-gcc.git] / gcc / explow.c
bloba5ed65b2e566512e3b1fc117619e6c71e22f5317
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987, 1991, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "toplev.h"
28 #include "rtl.h"
29 #include "tree.h"
30 #include "tm_p.h"
31 #include "flags.h"
32 #include "function.h"
33 #include "expr.h"
34 #include "optabs.h"
35 #include "hard-reg-set.h"
36 #include "insn-config.h"
37 #include "ggc.h"
38 #include "recog.h"
39 #include "langhooks.h"
40 #include "target.h"
41 #include "output.h"
43 static rtx break_out_memory_refs (rtx);
44 static void emit_stack_probe (rtx);
47 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
49 HOST_WIDE_INT
50 trunc_int_for_mode (HOST_WIDE_INT c, enum machine_mode mode)
52 int width = GET_MODE_BITSIZE (mode);
54 /* You want to truncate to a _what_? */
55 gcc_assert (SCALAR_INT_MODE_P (mode));
57 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
58 if (mode == BImode)
59 return c & 1 ? STORE_FLAG_VALUE : 0;
61 /* Sign-extend for the requested mode. */
63 if (width < HOST_BITS_PER_WIDE_INT)
65 HOST_WIDE_INT sign = 1;
66 sign <<= width - 1;
67 c &= (sign << 1) - 1;
68 c ^= sign;
69 c -= sign;
72 return c;
75 /* Return an rtx for the sum of X and the integer C. */
77 rtx
78 plus_constant (rtx x, HOST_WIDE_INT c)
80 RTX_CODE code;
81 rtx y;
82 enum machine_mode mode;
83 rtx tem;
84 int all_constant = 0;
86 if (c == 0)
87 return x;
89 restart:
91 code = GET_CODE (x);
92 mode = GET_MODE (x);
93 y = x;
95 switch (code)
97 case CONST_INT:
98 return GEN_INT (INTVAL (x) + c);
100 case CONST_DOUBLE:
102 unsigned HOST_WIDE_INT l1 = CONST_DOUBLE_LOW (x);
103 HOST_WIDE_INT h1 = CONST_DOUBLE_HIGH (x);
104 unsigned HOST_WIDE_INT l2 = c;
105 HOST_WIDE_INT h2 = c < 0 ? ~0 : 0;
106 unsigned HOST_WIDE_INT lv;
107 HOST_WIDE_INT hv;
109 add_double (l1, h1, l2, h2, &lv, &hv);
111 return immed_double_const (lv, hv, VOIDmode);
114 case MEM:
115 /* If this is a reference to the constant pool, try replacing it with
116 a reference to a new constant. If the resulting address isn't
117 valid, don't return it because we have no way to validize it. */
118 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
119 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
122 = force_const_mem (GET_MODE (x),
123 plus_constant (get_pool_constant (XEXP (x, 0)),
124 c));
125 if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
126 return tem;
128 break;
130 case CONST:
131 /* If adding to something entirely constant, set a flag
132 so that we can add a CONST around the result. */
133 x = XEXP (x, 0);
134 all_constant = 1;
135 goto restart;
137 case SYMBOL_REF:
138 case LABEL_REF:
139 all_constant = 1;
140 break;
142 case PLUS:
143 /* The interesting case is adding the integer to a sum.
144 Look for constant term in the sum and combine
145 with C. For an integer constant term, we make a combined
146 integer. For a constant term that is not an explicit integer,
147 we cannot really combine, but group them together anyway.
149 Restart or use a recursive call in case the remaining operand is
150 something that we handle specially, such as a SYMBOL_REF.
152 We may not immediately return from the recursive call here, lest
153 all_constant gets lost. */
155 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
157 c += INTVAL (XEXP (x, 1));
159 if (GET_MODE (x) != VOIDmode)
160 c = trunc_int_for_mode (c, GET_MODE (x));
162 x = XEXP (x, 0);
163 goto restart;
165 else if (CONSTANT_P (XEXP (x, 1)))
167 x = gen_rtx_PLUS (mode, XEXP (x, 0), plus_constant (XEXP (x, 1), c));
168 c = 0;
170 else if (find_constant_term_loc (&y))
172 /* We need to be careful since X may be shared and we can't
173 modify it in place. */
174 rtx copy = copy_rtx (x);
175 rtx *const_loc = find_constant_term_loc (&copy);
177 *const_loc = plus_constant (*const_loc, c);
178 x = copy;
179 c = 0;
181 break;
183 default:
184 break;
187 if (c != 0)
188 x = gen_rtx_PLUS (mode, x, GEN_INT (c));
190 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
191 return x;
192 else if (all_constant)
193 return gen_rtx_CONST (mode, x);
194 else
195 return x;
198 /* If X is a sum, return a new sum like X but lacking any constant terms.
199 Add all the removed constant terms into *CONSTPTR.
200 X itself is not altered. The result != X if and only if
201 it is not isomorphic to X. */
204 eliminate_constant_term (rtx x, rtx *constptr)
206 rtx x0, x1;
207 rtx tem;
209 if (GET_CODE (x) != PLUS)
210 return x;
212 /* First handle constants appearing at this level explicitly. */
213 if (GET_CODE (XEXP (x, 1)) == CONST_INT
214 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
215 XEXP (x, 1)))
216 && GET_CODE (tem) == CONST_INT)
218 *constptr = tem;
219 return eliminate_constant_term (XEXP (x, 0), constptr);
222 tem = const0_rtx;
223 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
224 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
225 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
226 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
227 *constptr, tem))
228 && GET_CODE (tem) == CONST_INT)
230 *constptr = tem;
231 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
234 return x;
237 /* Return an rtx for the size in bytes of the value of EXP. */
240 expr_size (tree exp)
242 tree size;
244 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
245 size = TREE_OPERAND (exp, 1);
246 else
248 size = lang_hooks.expr_size (exp);
249 gcc_assert (size);
250 size = SUBSTITUTE_PLACEHOLDER_IN_EXPR (size, exp);
253 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), EXPAND_NORMAL);
256 /* Return a wide integer for the size in bytes of the value of EXP, or -1
257 if the size can vary or is larger than an integer. */
259 HOST_WIDE_INT
260 int_expr_size (tree exp)
262 tree size;
264 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
265 size = TREE_OPERAND (exp, 1);
266 else
268 size = lang_hooks.expr_size (exp);
269 gcc_assert (size);
272 if (size == 0 || !host_integerp (size, 0))
273 return -1;
275 return tree_low_cst (size, 0);
278 /* Return a copy of X in which all memory references
279 and all constants that involve symbol refs
280 have been replaced with new temporary registers.
281 Also emit code to load the memory locations and constants
282 into those registers.
284 If X contains no such constants or memory references,
285 X itself (not a copy) is returned.
287 If a constant is found in the address that is not a legitimate constant
288 in an insn, it is left alone in the hope that it might be valid in the
289 address.
291 X may contain no arithmetic except addition, subtraction and multiplication.
292 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
294 static rtx
295 break_out_memory_refs (rtx x)
297 if (MEM_P (x)
298 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
299 && GET_MODE (x) != VOIDmode))
300 x = force_reg (GET_MODE (x), x);
301 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
302 || GET_CODE (x) == MULT)
304 rtx op0 = break_out_memory_refs (XEXP (x, 0));
305 rtx op1 = break_out_memory_refs (XEXP (x, 1));
307 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
308 x = gen_rtx_fmt_ee (GET_CODE (x), Pmode, op0, op1);
311 return x;
314 /* Given X, a memory address in ptr_mode, convert it to an address
315 in Pmode, or vice versa (TO_MODE says which way). We take advantage of
316 the fact that pointers are not allowed to overflow by commuting arithmetic
317 operations over conversions so that address arithmetic insns can be
318 used. */
321 convert_memory_address (enum machine_mode to_mode ATTRIBUTE_UNUSED,
322 rtx x)
324 #ifndef POINTERS_EXTEND_UNSIGNED
325 gcc_assert (GET_MODE (x) == to_mode || GET_MODE (x) == VOIDmode);
326 return x;
327 #else /* defined(POINTERS_EXTEND_UNSIGNED) */
328 enum machine_mode from_mode;
329 rtx temp;
330 enum rtx_code code;
332 /* If X already has the right mode, just return it. */
333 if (GET_MODE (x) == to_mode)
334 return x;
336 from_mode = to_mode == ptr_mode ? Pmode : ptr_mode;
338 /* Here we handle some special cases. If none of them apply, fall through
339 to the default case. */
340 switch (GET_CODE (x))
342 case CONST_INT:
343 case CONST_DOUBLE:
344 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
345 code = TRUNCATE;
346 else if (POINTERS_EXTEND_UNSIGNED < 0)
347 break;
348 else if (POINTERS_EXTEND_UNSIGNED > 0)
349 code = ZERO_EXTEND;
350 else
351 code = SIGN_EXTEND;
352 temp = simplify_unary_operation (code, to_mode, x, from_mode);
353 if (temp)
354 return temp;
355 break;
357 case SUBREG:
358 if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
359 && GET_MODE (SUBREG_REG (x)) == to_mode)
360 return SUBREG_REG (x);
361 break;
363 case LABEL_REF:
364 temp = gen_rtx_LABEL_REF (to_mode, XEXP (x, 0));
365 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
366 return temp;
367 break;
369 case SYMBOL_REF:
370 temp = shallow_copy_rtx (x);
371 PUT_MODE (temp, to_mode);
372 return temp;
373 break;
375 case CONST:
376 return gen_rtx_CONST (to_mode,
377 convert_memory_address (to_mode, XEXP (x, 0)));
378 break;
380 case PLUS:
381 case MULT:
382 /* For addition we can safely permute the conversion and addition
383 operation if one operand is a constant and converting the constant
384 does not change it or if one operand is a constant and we are
385 using a ptr_extend instruction (POINTERS_EXTEND_UNSIGNED < 0).
386 We can always safely permute them if we are making the address
387 narrower. */
388 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
389 || (GET_CODE (x) == PLUS
390 && GET_CODE (XEXP (x, 1)) == CONST_INT
391 && (XEXP (x, 1) == convert_memory_address (to_mode, XEXP (x, 1))
392 || POINTERS_EXTEND_UNSIGNED < 0)))
393 return gen_rtx_fmt_ee (GET_CODE (x), to_mode,
394 convert_memory_address (to_mode, XEXP (x, 0)),
395 XEXP (x, 1));
396 break;
398 default:
399 break;
402 return convert_modes (to_mode, from_mode,
403 x, POINTERS_EXTEND_UNSIGNED);
404 #endif /* defined(POINTERS_EXTEND_UNSIGNED) */
407 /* Return something equivalent to X but valid as a memory address
408 for something of mode MODE. When X is not itself valid, this
409 works by copying X or subexpressions of it into registers. */
412 memory_address (enum machine_mode mode, rtx x)
414 rtx oldx = x;
416 x = convert_memory_address (Pmode, x);
418 /* By passing constant addresses through registers
419 we get a chance to cse them. */
420 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
421 x = force_reg (Pmode, x);
423 /* We get better cse by rejecting indirect addressing at this stage.
424 Let the combiner create indirect addresses where appropriate.
425 For now, generate the code so that the subexpressions useful to share
426 are visible. But not if cse won't be done! */
427 else
429 if (! cse_not_expected && !REG_P (x))
430 x = break_out_memory_refs (x);
432 /* At this point, any valid address is accepted. */
433 if (memory_address_p (mode, x))
434 goto done;
436 /* If it was valid before but breaking out memory refs invalidated it,
437 use it the old way. */
438 if (memory_address_p (mode, oldx))
440 x = oldx;
441 goto done;
444 /* Perform machine-dependent transformations on X
445 in certain cases. This is not necessary since the code
446 below can handle all possible cases, but machine-dependent
447 transformations can make better code. */
448 LEGITIMIZE_ADDRESS (x, oldx, mode, done);
450 /* PLUS and MULT can appear in special ways
451 as the result of attempts to make an address usable for indexing.
452 Usually they are dealt with by calling force_operand, below.
453 But a sum containing constant terms is special
454 if removing them makes the sum a valid address:
455 then we generate that address in a register
456 and index off of it. We do this because it often makes
457 shorter code, and because the addresses thus generated
458 in registers often become common subexpressions. */
459 if (GET_CODE (x) == PLUS)
461 rtx constant_term = const0_rtx;
462 rtx y = eliminate_constant_term (x, &constant_term);
463 if (constant_term == const0_rtx
464 || ! memory_address_p (mode, y))
465 x = force_operand (x, NULL_RTX);
466 else
468 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
469 if (! memory_address_p (mode, y))
470 x = force_operand (x, NULL_RTX);
471 else
472 x = y;
476 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
477 x = force_operand (x, NULL_RTX);
479 /* If we have a register that's an invalid address,
480 it must be a hard reg of the wrong class. Copy it to a pseudo. */
481 else if (REG_P (x))
482 x = copy_to_reg (x);
484 /* Last resort: copy the value to a register, since
485 the register is a valid address. */
486 else
487 x = force_reg (Pmode, x);
490 done:
492 /* If we didn't change the address, we are done. Otherwise, mark
493 a reg as a pointer if we have REG or REG + CONST_INT. */
494 if (oldx == x)
495 return x;
496 else if (REG_P (x))
497 mark_reg_pointer (x, BITS_PER_UNIT);
498 else if (GET_CODE (x) == PLUS
499 && REG_P (XEXP (x, 0))
500 && GET_CODE (XEXP (x, 1)) == CONST_INT)
501 mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
503 /* OLDX may have been the address on a temporary. Update the address
504 to indicate that X is now used. */
505 update_temp_slot_address (oldx, x);
507 return x;
510 /* Convert a mem ref into one with a valid memory address.
511 Pass through anything else unchanged. */
514 validize_mem (rtx ref)
516 if (!MEM_P (ref))
517 return ref;
518 ref = use_anchored_address (ref);
519 if (memory_address_p (GET_MODE (ref), XEXP (ref, 0)))
520 return ref;
522 /* Don't alter REF itself, since that is probably a stack slot. */
523 return replace_equiv_address (ref, XEXP (ref, 0));
526 /* If X is a memory reference to a member of an object block, try rewriting
527 it to use an anchor instead. Return the new memory reference on success
528 and the old one on failure. */
531 use_anchored_address (rtx x)
533 rtx base;
534 HOST_WIDE_INT offset;
536 if (!flag_section_anchors)
537 return x;
539 if (!MEM_P (x))
540 return x;
542 /* Split the address into a base and offset. */
543 base = XEXP (x, 0);
544 offset = 0;
545 if (GET_CODE (base) == CONST
546 && GET_CODE (XEXP (base, 0)) == PLUS
547 && GET_CODE (XEXP (XEXP (base, 0), 1)) == CONST_INT)
549 offset += INTVAL (XEXP (XEXP (base, 0), 1));
550 base = XEXP (XEXP (base, 0), 0);
553 /* Check whether BASE is suitable for anchors. */
554 if (GET_CODE (base) != SYMBOL_REF
555 || !SYMBOL_REF_HAS_BLOCK_INFO_P (base)
556 || SYMBOL_REF_ANCHOR_P (base)
557 || SYMBOL_REF_BLOCK (base) == NULL
558 || !targetm.use_anchors_for_symbol_p (base))
559 return x;
561 /* Decide where BASE is going to be. */
562 place_block_symbol (base);
564 /* Get the anchor we need to use. */
565 offset += SYMBOL_REF_BLOCK_OFFSET (base);
566 base = get_section_anchor (SYMBOL_REF_BLOCK (base), offset,
567 SYMBOL_REF_TLS_MODEL (base));
569 /* Work out the offset from the anchor. */
570 offset -= SYMBOL_REF_BLOCK_OFFSET (base);
572 /* If we're going to run a CSE pass, force the anchor into a register.
573 We will then be able to reuse registers for several accesses, if the
574 target costs say that that's worthwhile. */
575 if (!cse_not_expected)
576 base = force_reg (GET_MODE (base), base);
578 return replace_equiv_address (x, plus_constant (base, offset));
581 /* Copy the value or contents of X to a new temp reg and return that reg. */
584 copy_to_reg (rtx x)
586 rtx temp = gen_reg_rtx (GET_MODE (x));
588 /* If not an operand, must be an address with PLUS and MULT so
589 do the computation. */
590 if (! general_operand (x, VOIDmode))
591 x = force_operand (x, temp);
593 if (x != temp)
594 emit_move_insn (temp, x);
596 return temp;
599 /* Like copy_to_reg but always give the new register mode Pmode
600 in case X is a constant. */
603 copy_addr_to_reg (rtx x)
605 return copy_to_mode_reg (Pmode, x);
608 /* Like copy_to_reg but always give the new register mode MODE
609 in case X is a constant. */
612 copy_to_mode_reg (enum machine_mode mode, rtx x)
614 rtx temp = gen_reg_rtx (mode);
616 /* If not an operand, must be an address with PLUS and MULT so
617 do the computation. */
618 if (! general_operand (x, VOIDmode))
619 x = force_operand (x, temp);
621 gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
622 if (x != temp)
623 emit_move_insn (temp, x);
624 return temp;
627 /* Load X into a register if it is not already one.
628 Use mode MODE for the register.
629 X should be valid for mode MODE, but it may be a constant which
630 is valid for all integer modes; that's why caller must specify MODE.
632 The caller must not alter the value in the register we return,
633 since we mark it as a "constant" register. */
636 force_reg (enum machine_mode mode, rtx x)
638 rtx temp, insn, set;
640 if (REG_P (x))
641 return x;
643 if (general_operand (x, mode))
645 temp = gen_reg_rtx (mode);
646 insn = emit_move_insn (temp, x);
648 else
650 temp = force_operand (x, NULL_RTX);
651 if (REG_P (temp))
652 insn = get_last_insn ();
653 else
655 rtx temp2 = gen_reg_rtx (mode);
656 insn = emit_move_insn (temp2, temp);
657 temp = temp2;
661 /* Let optimizers know that TEMP's value never changes
662 and that X can be substituted for it. Don't get confused
663 if INSN set something else (such as a SUBREG of TEMP). */
664 if (CONSTANT_P (x)
665 && (set = single_set (insn)) != 0
666 && SET_DEST (set) == temp
667 && ! rtx_equal_p (x, SET_SRC (set)))
668 set_unique_reg_note (insn, REG_EQUAL, x);
670 /* Let optimizers know that TEMP is a pointer, and if so, the
671 known alignment of that pointer. */
673 unsigned align = 0;
674 if (GET_CODE (x) == SYMBOL_REF)
676 align = BITS_PER_UNIT;
677 if (SYMBOL_REF_DECL (x) && DECL_P (SYMBOL_REF_DECL (x)))
678 align = DECL_ALIGN (SYMBOL_REF_DECL (x));
680 else if (GET_CODE (x) == LABEL_REF)
681 align = BITS_PER_UNIT;
682 else if (GET_CODE (x) == CONST
683 && GET_CODE (XEXP (x, 0)) == PLUS
684 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
685 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
687 rtx s = XEXP (XEXP (x, 0), 0);
688 rtx c = XEXP (XEXP (x, 0), 1);
689 unsigned sa, ca;
691 sa = BITS_PER_UNIT;
692 if (SYMBOL_REF_DECL (s) && DECL_P (SYMBOL_REF_DECL (s)))
693 sa = DECL_ALIGN (SYMBOL_REF_DECL (s));
695 ca = exact_log2 (INTVAL (c) & -INTVAL (c)) * BITS_PER_UNIT;
697 align = MIN (sa, ca);
699 else if (MEM_P (x) && MEM_POINTER (x))
700 align = MEM_ALIGN (x);
702 if (align)
703 mark_reg_pointer (temp, align);
706 return temp;
709 /* If X is a memory ref, copy its contents to a new temp reg and return
710 that reg. Otherwise, return X. */
713 force_not_mem (rtx x)
715 rtx temp;
717 if (!MEM_P (x) || GET_MODE (x) == BLKmode)
718 return x;
720 temp = gen_reg_rtx (GET_MODE (x));
722 if (MEM_POINTER (x))
723 REG_POINTER (temp) = 1;
725 emit_move_insn (temp, x);
726 return temp;
729 /* Copy X to TARGET (if it's nonzero and a reg)
730 or to a new temp reg and return that reg.
731 MODE is the mode to use for X in case it is a constant. */
734 copy_to_suggested_reg (rtx x, rtx target, enum machine_mode mode)
736 rtx temp;
738 if (target && REG_P (target))
739 temp = target;
740 else
741 temp = gen_reg_rtx (mode);
743 emit_move_insn (temp, x);
744 return temp;
747 /* Return the mode to use to store a scalar of TYPE and MODE.
748 PUNSIGNEDP points to the signedness of the type and may be adjusted
749 to show what signedness to use on extension operations.
751 FOR_CALL is nonzero if this call is promoting args for a call. */
753 #if defined(PROMOTE_MODE) && !defined(PROMOTE_FUNCTION_MODE)
754 #define PROMOTE_FUNCTION_MODE PROMOTE_MODE
755 #endif
757 enum machine_mode
758 promote_mode (const_tree type, enum machine_mode mode, int *punsignedp,
759 int for_call ATTRIBUTE_UNUSED)
761 const enum tree_code code = TREE_CODE (type);
762 int unsignedp = *punsignedp;
764 #ifndef PROMOTE_MODE
765 if (! for_call)
766 return mode;
767 #endif
769 switch (code)
771 #ifdef PROMOTE_FUNCTION_MODE
772 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
773 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE:
774 #ifdef PROMOTE_MODE
775 if (for_call)
777 #endif
778 PROMOTE_FUNCTION_MODE (mode, unsignedp, type);
779 #ifdef PROMOTE_MODE
781 else
783 PROMOTE_MODE (mode, unsignedp, type);
785 #endif
786 break;
787 #endif
789 #ifdef POINTERS_EXTEND_UNSIGNED
790 case REFERENCE_TYPE:
791 case POINTER_TYPE:
792 mode = Pmode;
793 unsignedp = POINTERS_EXTEND_UNSIGNED;
794 break;
795 #endif
797 default:
798 break;
801 *punsignedp = unsignedp;
802 return mode;
805 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
806 This pops when ADJUST is positive. ADJUST need not be constant. */
808 void
809 adjust_stack (rtx adjust)
811 rtx temp;
813 if (adjust == const0_rtx)
814 return;
816 /* We expect all variable sized adjustments to be multiple of
817 PREFERRED_STACK_BOUNDARY. */
818 if (GET_CODE (adjust) == CONST_INT)
819 stack_pointer_delta -= INTVAL (adjust);
821 temp = expand_binop (Pmode,
822 #ifdef STACK_GROWS_DOWNWARD
823 add_optab,
824 #else
825 sub_optab,
826 #endif
827 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
828 OPTAB_LIB_WIDEN);
830 if (temp != stack_pointer_rtx)
831 emit_move_insn (stack_pointer_rtx, temp);
834 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
835 This pushes when ADJUST is positive. ADJUST need not be constant. */
837 void
838 anti_adjust_stack (rtx adjust)
840 rtx temp;
842 if (adjust == const0_rtx)
843 return;
845 /* We expect all variable sized adjustments to be multiple of
846 PREFERRED_STACK_BOUNDARY. */
847 if (GET_CODE (adjust) == CONST_INT)
848 stack_pointer_delta += INTVAL (adjust);
850 temp = expand_binop (Pmode,
851 #ifdef STACK_GROWS_DOWNWARD
852 sub_optab,
853 #else
854 add_optab,
855 #endif
856 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
857 OPTAB_LIB_WIDEN);
859 if (temp != stack_pointer_rtx)
860 emit_move_insn (stack_pointer_rtx, temp);
863 /* Round the size of a block to be pushed up to the boundary required
864 by this machine. SIZE is the desired size, which need not be constant. */
866 static rtx
867 round_push (rtx size)
869 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
871 if (align == 1)
872 return size;
874 if (GET_CODE (size) == CONST_INT)
876 HOST_WIDE_INT new = (INTVAL (size) + align - 1) / align * align;
878 if (INTVAL (size) != new)
879 size = GEN_INT (new);
881 else
883 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
884 but we know it can't. So add ourselves and then do
885 TRUNC_DIV_EXPR. */
886 size = expand_binop (Pmode, add_optab, size, GEN_INT (align - 1),
887 NULL_RTX, 1, OPTAB_LIB_WIDEN);
888 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, GEN_INT (align),
889 NULL_RTX, 1);
890 size = expand_mult (Pmode, size, GEN_INT (align), NULL_RTX, 1);
893 return size;
896 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
897 to a previously-created save area. If no save area has been allocated,
898 this function will allocate one. If a save area is specified, it
899 must be of the proper mode.
901 The insns are emitted after insn AFTER, if nonzero, otherwise the insns
902 are emitted at the current position. */
904 void
905 emit_stack_save (enum save_level save_level, rtx *psave, rtx after)
907 rtx sa = *psave;
908 /* The default is that we use a move insn and save in a Pmode object. */
909 rtx (*fcn) (rtx, rtx) = gen_move_insn;
910 enum machine_mode mode = STACK_SAVEAREA_MODE (save_level);
912 /* See if this machine has anything special to do for this kind of save. */
913 switch (save_level)
915 #ifdef HAVE_save_stack_block
916 case SAVE_BLOCK:
917 if (HAVE_save_stack_block)
918 fcn = gen_save_stack_block;
919 break;
920 #endif
921 #ifdef HAVE_save_stack_function
922 case SAVE_FUNCTION:
923 if (HAVE_save_stack_function)
924 fcn = gen_save_stack_function;
925 break;
926 #endif
927 #ifdef HAVE_save_stack_nonlocal
928 case SAVE_NONLOCAL:
929 if (HAVE_save_stack_nonlocal)
930 fcn = gen_save_stack_nonlocal;
931 break;
932 #endif
933 default:
934 break;
937 /* If there is no save area and we have to allocate one, do so. Otherwise
938 verify the save area is the proper mode. */
940 if (sa == 0)
942 if (mode != VOIDmode)
944 if (save_level == SAVE_NONLOCAL)
945 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
946 else
947 *psave = sa = gen_reg_rtx (mode);
951 if (after)
953 rtx seq;
955 start_sequence ();
956 do_pending_stack_adjust ();
957 /* We must validize inside the sequence, to ensure that any instructions
958 created by the validize call also get moved to the right place. */
959 if (sa != 0)
960 sa = validize_mem (sa);
961 emit_insn (fcn (sa, stack_pointer_rtx));
962 seq = get_insns ();
963 end_sequence ();
964 emit_insn_after (seq, after);
966 else
968 do_pending_stack_adjust ();
969 if (sa != 0)
970 sa = validize_mem (sa);
971 emit_insn (fcn (sa, stack_pointer_rtx));
975 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
976 area made by emit_stack_save. If it is zero, we have nothing to do.
978 Put any emitted insns after insn AFTER, if nonzero, otherwise at
979 current position. */
981 void
982 emit_stack_restore (enum save_level save_level, rtx sa, rtx after)
984 /* The default is that we use a move insn. */
985 rtx (*fcn) (rtx, rtx) = gen_move_insn;
987 /* See if this machine has anything special to do for this kind of save. */
988 switch (save_level)
990 #ifdef HAVE_restore_stack_block
991 case SAVE_BLOCK:
992 if (HAVE_restore_stack_block)
993 fcn = gen_restore_stack_block;
994 break;
995 #endif
996 #ifdef HAVE_restore_stack_function
997 case SAVE_FUNCTION:
998 if (HAVE_restore_stack_function)
999 fcn = gen_restore_stack_function;
1000 break;
1001 #endif
1002 #ifdef HAVE_restore_stack_nonlocal
1003 case SAVE_NONLOCAL:
1004 if (HAVE_restore_stack_nonlocal)
1005 fcn = gen_restore_stack_nonlocal;
1006 break;
1007 #endif
1008 default:
1009 break;
1012 if (sa != 0)
1014 sa = validize_mem (sa);
1015 /* These clobbers prevent the scheduler from moving
1016 references to variable arrays below the code
1017 that deletes (pops) the arrays. */
1018 emit_insn (gen_rtx_CLOBBER (VOIDmode,
1019 gen_rtx_MEM (BLKmode,
1020 gen_rtx_SCRATCH (VOIDmode))));
1021 emit_insn (gen_rtx_CLOBBER (VOIDmode,
1022 gen_rtx_MEM (BLKmode, stack_pointer_rtx)));
1025 discard_pending_stack_adjust ();
1027 if (after)
1029 rtx seq;
1031 start_sequence ();
1032 emit_insn (fcn (stack_pointer_rtx, sa));
1033 seq = get_insns ();
1034 end_sequence ();
1035 emit_insn_after (seq, after);
1037 else
1038 emit_insn (fcn (stack_pointer_rtx, sa));
1041 /* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
1042 function. This function should be called whenever we allocate or
1043 deallocate dynamic stack space. */
1045 void
1046 update_nonlocal_goto_save_area (void)
1048 tree t_save;
1049 rtx r_save;
1051 /* The nonlocal_goto_save_area object is an array of N pointers. The
1052 first one is used for the frame pointer save; the rest are sized by
1053 STACK_SAVEAREA_MODE. Create a reference to array index 1, the first
1054 of the stack save area slots. */
1055 t_save = build4 (ARRAY_REF, ptr_type_node, cfun->nonlocal_goto_save_area,
1056 integer_one_node, NULL_TREE, NULL_TREE);
1057 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
1059 emit_stack_save (SAVE_NONLOCAL, &r_save, NULL_RTX);
1062 /* Return an rtx representing the address of an area of memory dynamically
1063 pushed on the stack. This region of memory is always aligned to
1064 a multiple of BIGGEST_ALIGNMENT.
1066 Any required stack pointer alignment is preserved.
1068 SIZE is an rtx representing the size of the area.
1069 TARGET is a place in which the address can be placed.
1071 KNOWN_ALIGN is the alignment (in bits) that we know SIZE has. */
1074 allocate_dynamic_stack_space (rtx size, rtx target, int known_align)
1076 /* If we're asking for zero bytes, it doesn't matter what we point
1077 to since we can't dereference it. But return a reasonable
1078 address anyway. */
1079 if (size == const0_rtx)
1080 return virtual_stack_dynamic_rtx;
1082 /* Otherwise, show we're calling alloca or equivalent. */
1083 current_function_calls_alloca = 1;
1085 /* Ensure the size is in the proper mode. */
1086 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1087 size = convert_to_mode (Pmode, size, 1);
1089 /* We can't attempt to minimize alignment necessary, because we don't
1090 know the final value of preferred_stack_boundary yet while executing
1091 this code. */
1092 cfun->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1094 /* We will need to ensure that the address we return is aligned to
1095 BIGGEST_ALIGNMENT. If STACK_DYNAMIC_OFFSET is defined, we don't
1096 always know its final value at this point in the compilation (it
1097 might depend on the size of the outgoing parameter lists, for
1098 example), so we must align the value to be returned in that case.
1099 (Note that STACK_DYNAMIC_OFFSET will have a default nonzero value if
1100 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1101 We must also do an alignment operation on the returned value if
1102 the stack pointer alignment is less strict that BIGGEST_ALIGNMENT.
1104 If we have to align, we must leave space in SIZE for the hole
1105 that might result from the alignment operation. */
1107 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
1108 #define MUST_ALIGN 1
1109 #else
1110 #define MUST_ALIGN (PREFERRED_STACK_BOUNDARY < BIGGEST_ALIGNMENT)
1111 #endif
1113 if (MUST_ALIGN)
1114 size
1115 = force_operand (plus_constant (size,
1116 BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1117 NULL_RTX);
1119 #ifdef SETJMP_VIA_SAVE_AREA
1120 /* If setjmp restores regs from a save area in the stack frame,
1121 avoid clobbering the reg save area. Note that the offset of
1122 virtual_incoming_args_rtx includes the preallocated stack args space.
1123 It would be no problem to clobber that, but it's on the wrong side
1124 of the old save area.
1126 What used to happen is that, since we did not know for sure
1127 whether setjmp() was invoked until after RTL generation, we
1128 would use reg notes to store the "optimized" size and fix things
1129 up later. These days we know this information before we ever
1130 start building RTL so the reg notes are unnecessary. */
1131 if (!current_function_calls_setjmp)
1133 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
1135 /* ??? Code below assumes that the save area needs maximal
1136 alignment. This constraint may be too strong. */
1137 gcc_assert (PREFERRED_STACK_BOUNDARY == BIGGEST_ALIGNMENT);
1139 if (GET_CODE (size) == CONST_INT)
1141 HOST_WIDE_INT new = INTVAL (size) / align * align;
1143 if (INTVAL (size) != new)
1144 size = GEN_INT (new);
1146 else
1148 /* Since we know overflow is not possible, we avoid using
1149 CEIL_DIV_EXPR and use TRUNC_DIV_EXPR instead. */
1150 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size,
1151 GEN_INT (align), NULL_RTX, 1);
1152 size = expand_mult (Pmode, size,
1153 GEN_INT (align), NULL_RTX, 1);
1156 else
1158 rtx dynamic_offset
1159 = expand_binop (Pmode, sub_optab, virtual_stack_dynamic_rtx,
1160 stack_pointer_rtx, NULL_RTX, 1, OPTAB_LIB_WIDEN);
1162 size = expand_binop (Pmode, add_optab, size, dynamic_offset,
1163 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1165 #endif /* SETJMP_VIA_SAVE_AREA */
1167 /* Round the size to a multiple of the required stack alignment.
1168 Since the stack if presumed to be rounded before this allocation,
1169 this will maintain the required alignment.
1171 If the stack grows downward, we could save an insn by subtracting
1172 SIZE from the stack pointer and then aligning the stack pointer.
1173 The problem with this is that the stack pointer may be unaligned
1174 between the execution of the subtraction and alignment insns and
1175 some machines do not allow this. Even on those that do, some
1176 signal handlers malfunction if a signal should occur between those
1177 insns. Since this is an extremely rare event, we have no reliable
1178 way of knowing which systems have this problem. So we avoid even
1179 momentarily mis-aligning the stack. */
1181 /* If we added a variable amount to SIZE,
1182 we can no longer assume it is aligned. */
1183 #if !defined (SETJMP_VIA_SAVE_AREA)
1184 if (MUST_ALIGN || known_align % PREFERRED_STACK_BOUNDARY != 0)
1185 #endif
1186 size = round_push (size);
1188 do_pending_stack_adjust ();
1190 /* We ought to be called always on the toplevel and stack ought to be aligned
1191 properly. */
1192 gcc_assert (!(stack_pointer_delta
1193 % (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)));
1195 /* If needed, check that we have the required amount of stack. Take into
1196 account what has already been checked. */
1197 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1198 probe_stack_range (STACK_CHECK_MAX_FRAME_SIZE + STACK_CHECK_PROTECT, size);
1200 /* Don't use a TARGET that isn't a pseudo or is the wrong mode. */
1201 if (target == 0 || !REG_P (target)
1202 || REGNO (target) < FIRST_PSEUDO_REGISTER
1203 || GET_MODE (target) != Pmode)
1204 target = gen_reg_rtx (Pmode);
1206 mark_reg_pointer (target, known_align);
1208 /* Perform the required allocation from the stack. Some systems do
1209 this differently than simply incrementing/decrementing from the
1210 stack pointer, such as acquiring the space by calling malloc(). */
1211 #ifdef HAVE_allocate_stack
1212 if (HAVE_allocate_stack)
1214 enum machine_mode mode = STACK_SIZE_MODE;
1215 insn_operand_predicate_fn pred;
1217 /* We don't have to check against the predicate for operand 0 since
1218 TARGET is known to be a pseudo of the proper mode, which must
1219 be valid for the operand. For operand 1, convert to the
1220 proper mode and validate. */
1221 if (mode == VOIDmode)
1222 mode = insn_data[(int) CODE_FOR_allocate_stack].operand[1].mode;
1224 pred = insn_data[(int) CODE_FOR_allocate_stack].operand[1].predicate;
1225 if (pred && ! ((*pred) (size, mode)))
1226 size = copy_to_mode_reg (mode, convert_to_mode (mode, size, 1));
1228 emit_insn (gen_allocate_stack (target, size));
1230 else
1231 #endif
1233 #ifndef STACK_GROWS_DOWNWARD
1234 emit_move_insn (target, virtual_stack_dynamic_rtx);
1235 #endif
1237 /* Check stack bounds if necessary. */
1238 if (current_function_limit_stack)
1240 rtx available;
1241 rtx space_available = gen_label_rtx ();
1242 #ifdef STACK_GROWS_DOWNWARD
1243 available = expand_binop (Pmode, sub_optab,
1244 stack_pointer_rtx, stack_limit_rtx,
1245 NULL_RTX, 1, OPTAB_WIDEN);
1246 #else
1247 available = expand_binop (Pmode, sub_optab,
1248 stack_limit_rtx, stack_pointer_rtx,
1249 NULL_RTX, 1, OPTAB_WIDEN);
1250 #endif
1251 emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1252 space_available);
1253 #ifdef HAVE_trap
1254 if (HAVE_trap)
1255 emit_insn (gen_trap ());
1256 else
1257 #endif
1258 error ("stack limits not supported on this target");
1259 emit_barrier ();
1260 emit_label (space_available);
1263 anti_adjust_stack (size);
1265 #ifdef STACK_GROWS_DOWNWARD
1266 emit_move_insn (target, virtual_stack_dynamic_rtx);
1267 #endif
1270 if (MUST_ALIGN)
1272 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1273 but we know it can't. So add ourselves and then do
1274 TRUNC_DIV_EXPR. */
1275 target = expand_binop (Pmode, add_optab, target,
1276 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1277 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1278 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1279 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1280 NULL_RTX, 1);
1281 target = expand_mult (Pmode, target,
1282 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1283 NULL_RTX, 1);
1286 /* Record the new stack level for nonlocal gotos. */
1287 if (cfun->nonlocal_goto_save_area != 0)
1288 update_nonlocal_goto_save_area ();
1290 return target;
1293 /* A front end may want to override GCC's stack checking by providing a
1294 run-time routine to call to check the stack, so provide a mechanism for
1295 calling that routine. */
1297 static GTY(()) rtx stack_check_libfunc;
1299 void
1300 set_stack_check_libfunc (rtx libfunc)
1302 stack_check_libfunc = libfunc;
1305 /* Emit one stack probe at ADDRESS, an address within the stack. */
1307 static void
1308 emit_stack_probe (rtx address)
1310 rtx memref = gen_rtx_MEM (word_mode, address);
1312 MEM_VOLATILE_P (memref) = 1;
1314 if (STACK_CHECK_PROBE_LOAD)
1315 emit_move_insn (gen_reg_rtx (word_mode), memref);
1316 else
1317 emit_move_insn (memref, const0_rtx);
1320 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1321 FIRST is a constant and size is a Pmode RTX. These are offsets from the
1322 current stack pointer. STACK_GROWS_DOWNWARD says whether to add or
1323 subtract from the stack. If SIZE is constant, this is done
1324 with a fixed number of probes. Otherwise, we must make a loop. */
1326 #ifdef STACK_GROWS_DOWNWARD
1327 #define STACK_GROW_OP MINUS
1328 #else
1329 #define STACK_GROW_OP PLUS
1330 #endif
1332 void
1333 probe_stack_range (HOST_WIDE_INT first, rtx size)
1335 /* First ensure SIZE is Pmode. */
1336 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1337 size = convert_to_mode (Pmode, size, 1);
1339 /* Next see if the front end has set up a function for us to call to
1340 check the stack. */
1341 if (stack_check_libfunc != 0)
1343 rtx addr = memory_address (QImode,
1344 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1345 stack_pointer_rtx,
1346 plus_constant (size, first)));
1348 addr = convert_memory_address (ptr_mode, addr);
1349 emit_library_call (stack_check_libfunc, LCT_NORMAL, VOIDmode, 1, addr,
1350 ptr_mode);
1353 /* Next see if we have an insn to check the stack. Use it if so. */
1354 #ifdef HAVE_check_stack
1355 else if (HAVE_check_stack)
1357 insn_operand_predicate_fn pred;
1358 rtx last_addr
1359 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1360 stack_pointer_rtx,
1361 plus_constant (size, first)),
1362 NULL_RTX);
1364 pred = insn_data[(int) CODE_FOR_check_stack].operand[0].predicate;
1365 if (pred && ! ((*pred) (last_addr, Pmode)))
1366 last_addr = copy_to_mode_reg (Pmode, last_addr);
1368 emit_insn (gen_check_stack (last_addr));
1370 #endif
1372 /* If we have to generate explicit probes, see if we have a constant
1373 small number of them to generate. If so, that's the easy case. */
1374 else if (GET_CODE (size) == CONST_INT
1375 && INTVAL (size) < 10 * STACK_CHECK_PROBE_INTERVAL)
1377 HOST_WIDE_INT offset;
1379 /* Start probing at FIRST + N * STACK_CHECK_PROBE_INTERVAL
1380 for values of N from 1 until it exceeds LAST. If only one
1381 probe is needed, this will not generate any code. Then probe
1382 at LAST. */
1383 for (offset = first + STACK_CHECK_PROBE_INTERVAL;
1384 offset < INTVAL (size);
1385 offset = offset + STACK_CHECK_PROBE_INTERVAL)
1386 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1387 stack_pointer_rtx,
1388 GEN_INT (offset)));
1390 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1391 stack_pointer_rtx,
1392 plus_constant (size, first)));
1395 /* In the variable case, do the same as above, but in a loop. We emit loop
1396 notes so that loop optimization can be done. */
1397 else
1399 rtx test_addr
1400 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1401 stack_pointer_rtx,
1402 GEN_INT (first + STACK_CHECK_PROBE_INTERVAL)),
1403 NULL_RTX);
1404 rtx last_addr
1405 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1406 stack_pointer_rtx,
1407 plus_constant (size, first)),
1408 NULL_RTX);
1409 rtx incr = GEN_INT (STACK_CHECK_PROBE_INTERVAL);
1410 rtx loop_lab = gen_label_rtx ();
1411 rtx test_lab = gen_label_rtx ();
1412 rtx end_lab = gen_label_rtx ();
1413 rtx temp;
1415 if (!REG_P (test_addr)
1416 || REGNO (test_addr) < FIRST_PSEUDO_REGISTER)
1417 test_addr = force_reg (Pmode, test_addr);
1419 emit_jump (test_lab);
1421 emit_label (loop_lab);
1422 emit_stack_probe (test_addr);
1424 #ifdef STACK_GROWS_DOWNWARD
1425 #define CMP_OPCODE GTU
1426 temp = expand_binop (Pmode, sub_optab, test_addr, incr, test_addr,
1427 1, OPTAB_WIDEN);
1428 #else
1429 #define CMP_OPCODE LTU
1430 temp = expand_binop (Pmode, add_optab, test_addr, incr, test_addr,
1431 1, OPTAB_WIDEN);
1432 #endif
1434 gcc_assert (temp == test_addr);
1436 emit_label (test_lab);
1437 emit_cmp_and_jump_insns (test_addr, last_addr, CMP_OPCODE,
1438 NULL_RTX, Pmode, 1, loop_lab);
1439 emit_jump (end_lab);
1440 emit_label (end_lab);
1442 emit_stack_probe (last_addr);
1446 /* Return an rtx representing the register or memory location
1447 in which a scalar value of data type VALTYPE
1448 was returned by a function call to function FUNC.
1449 FUNC is a FUNCTION_DECL, FNTYPE a FUNCTION_TYPE node if the precise
1450 function is known, otherwise 0.
1451 OUTGOING is 1 if on a machine with register windows this function
1452 should return the register in which the function will put its result
1453 and 0 otherwise. */
1456 hard_function_value (const_tree valtype, const_tree func, const_tree fntype,
1457 int outgoing ATTRIBUTE_UNUSED)
1459 rtx val;
1461 val = targetm.calls.function_value (valtype, func ? func : fntype, outgoing);
1463 if (REG_P (val)
1464 && GET_MODE (val) == BLKmode)
1466 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
1467 enum machine_mode tmpmode;
1469 /* int_size_in_bytes can return -1. We don't need a check here
1470 since the value of bytes will then be large enough that no
1471 mode will match anyway. */
1473 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1474 tmpmode != VOIDmode;
1475 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1477 /* Have we found a large enough mode? */
1478 if (GET_MODE_SIZE (tmpmode) >= bytes)
1479 break;
1482 /* No suitable mode found. */
1483 gcc_assert (tmpmode != VOIDmode);
1485 PUT_MODE (val, tmpmode);
1487 return val;
1490 /* Return an rtx representing the register or memory location
1491 in which a scalar value of mode MODE was returned by a library call. */
1494 hard_libcall_value (enum machine_mode mode)
1496 return LIBCALL_VALUE (mode);
1499 /* Look up the tree code for a given rtx code
1500 to provide the arithmetic operation for REAL_ARITHMETIC.
1501 The function returns an int because the caller may not know
1502 what `enum tree_code' means. */
1505 rtx_to_tree_code (enum rtx_code code)
1507 enum tree_code tcode;
1509 switch (code)
1511 case PLUS:
1512 tcode = PLUS_EXPR;
1513 break;
1514 case MINUS:
1515 tcode = MINUS_EXPR;
1516 break;
1517 case MULT:
1518 tcode = MULT_EXPR;
1519 break;
1520 case DIV:
1521 tcode = RDIV_EXPR;
1522 break;
1523 case SMIN:
1524 tcode = MIN_EXPR;
1525 break;
1526 case SMAX:
1527 tcode = MAX_EXPR;
1528 break;
1529 default:
1530 tcode = LAST_AND_UNUSED_TREE_CODE;
1531 break;
1533 return ((int) tcode);
1536 #include "gt-explow.h"