1 /* Medium-level subroutines: convert bit-field store and extract
2 and shifts, multiplies and divides to rtl instructions.
3 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
5 Free Software Foundation, Inc.
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
26 #include "coretypes.h"
33 #include "insn-config.h"
38 #include "langhooks.h"
42 static void store_fixed_bit_field (rtx
, unsigned HOST_WIDE_INT
,
43 unsigned HOST_WIDE_INT
,
44 unsigned HOST_WIDE_INT
, rtx
);
45 static void store_split_bit_field (rtx
, unsigned HOST_WIDE_INT
,
46 unsigned HOST_WIDE_INT
, rtx
);
47 static rtx
extract_fixed_bit_field (enum machine_mode
, rtx
,
48 unsigned HOST_WIDE_INT
,
49 unsigned HOST_WIDE_INT
,
50 unsigned HOST_WIDE_INT
, rtx
, int);
51 static rtx
mask_rtx (enum machine_mode
, int, int, int);
52 static rtx
lshift_value (enum machine_mode
, rtx
, int, int);
53 static rtx
extract_split_bit_field (rtx
, unsigned HOST_WIDE_INT
,
54 unsigned HOST_WIDE_INT
, int);
55 static void do_cmp_and_jump (rtx
, rtx
, enum rtx_code
, enum machine_mode
, rtx
);
56 static rtx
expand_smod_pow2 (enum machine_mode
, rtx
, HOST_WIDE_INT
);
57 static rtx
expand_sdiv_pow2 (enum machine_mode
, rtx
, HOST_WIDE_INT
);
59 /* Test whether a value is zero of a power of two. */
60 #define EXACT_POWER_OF_2_OR_ZERO_P(x) (((x) & ((x) - 1)) == 0)
62 /* Nonzero means divides or modulus operations are relatively cheap for
63 powers of two, so don't use branches; emit the operation instead.
64 Usually, this will mean that the MD file will emit non-branch
67 static bool sdiv_pow2_cheap
[2][NUM_MACHINE_MODES
];
68 static bool smod_pow2_cheap
[2][NUM_MACHINE_MODES
];
70 #ifndef SLOW_UNALIGNED_ACCESS
71 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
74 /* For compilers that support multiple targets with different word sizes,
75 MAX_BITS_PER_WORD contains the biggest value of BITS_PER_WORD. An example
76 is the H8/300(H) compiler. */
78 #ifndef MAX_BITS_PER_WORD
79 #define MAX_BITS_PER_WORD BITS_PER_WORD
82 /* Reduce conditional compilation elsewhere. */
85 #define CODE_FOR_insv CODE_FOR_nothing
86 #define gen_insv(a,b,c,d) NULL_RTX
90 #define CODE_FOR_extv CODE_FOR_nothing
91 #define gen_extv(a,b,c,d) NULL_RTX
95 #define CODE_FOR_extzv CODE_FOR_nothing
96 #define gen_extzv(a,b,c,d) NULL_RTX
99 /* Cost of various pieces of RTL. Note that some of these are indexed by
100 shift count and some by mode. */
101 static int zero_cost
[2];
102 static int add_cost
[2][NUM_MACHINE_MODES
];
103 static int neg_cost
[2][NUM_MACHINE_MODES
];
104 static int shift_cost
[2][NUM_MACHINE_MODES
][MAX_BITS_PER_WORD
];
105 static int shiftadd_cost
[2][NUM_MACHINE_MODES
][MAX_BITS_PER_WORD
];
106 static int shiftsub_cost
[2][NUM_MACHINE_MODES
][MAX_BITS_PER_WORD
];
107 static int mul_cost
[2][NUM_MACHINE_MODES
];
108 static int sdiv_cost
[2][NUM_MACHINE_MODES
];
109 static int udiv_cost
[2][NUM_MACHINE_MODES
];
110 static int mul_widen_cost
[2][NUM_MACHINE_MODES
];
111 static int mul_highpart_cost
[2][NUM_MACHINE_MODES
];
118 struct rtx_def reg
; rtunion reg_fld
[2];
119 struct rtx_def plus
; rtunion plus_fld1
;
121 struct rtx_def mult
; rtunion mult_fld1
;
122 struct rtx_def sdiv
; rtunion sdiv_fld1
;
123 struct rtx_def udiv
; rtunion udiv_fld1
;
125 struct rtx_def sdiv_32
; rtunion sdiv_32_fld1
;
126 struct rtx_def smod_32
; rtunion smod_32_fld1
;
127 struct rtx_def wide_mult
; rtunion wide_mult_fld1
;
128 struct rtx_def wide_lshr
; rtunion wide_lshr_fld1
;
129 struct rtx_def wide_trunc
;
130 struct rtx_def shift
; rtunion shift_fld1
;
131 struct rtx_def shift_mult
; rtunion shift_mult_fld1
;
132 struct rtx_def shift_add
; rtunion shift_add_fld1
;
133 struct rtx_def shift_sub
; rtunion shift_sub_fld1
;
136 rtx pow2
[MAX_BITS_PER_WORD
];
137 rtx cint
[MAX_BITS_PER_WORD
];
139 enum machine_mode mode
, wider_mode
;
143 for (m
= 1; m
< MAX_BITS_PER_WORD
; m
++)
145 pow2
[m
] = GEN_INT ((HOST_WIDE_INT
) 1 << m
);
146 cint
[m
] = GEN_INT (m
);
148 memset (&all
, 0, sizeof all
);
150 PUT_CODE (&all
.reg
, REG
);
151 /* Avoid using hard regs in ways which may be unsupported. */
152 SET_REGNO (&all
.reg
, LAST_VIRTUAL_REGISTER
+ 1);
154 PUT_CODE (&all
.plus
, PLUS
);
155 XEXP (&all
.plus
, 0) = &all
.reg
;
156 XEXP (&all
.plus
, 1) = &all
.reg
;
158 PUT_CODE (&all
.neg
, NEG
);
159 XEXP (&all
.neg
, 0) = &all
.reg
;
161 PUT_CODE (&all
.mult
, MULT
);
162 XEXP (&all
.mult
, 0) = &all
.reg
;
163 XEXP (&all
.mult
, 1) = &all
.reg
;
165 PUT_CODE (&all
.sdiv
, DIV
);
166 XEXP (&all
.sdiv
, 0) = &all
.reg
;
167 XEXP (&all
.sdiv
, 1) = &all
.reg
;
169 PUT_CODE (&all
.udiv
, UDIV
);
170 XEXP (&all
.udiv
, 0) = &all
.reg
;
171 XEXP (&all
.udiv
, 1) = &all
.reg
;
173 PUT_CODE (&all
.sdiv_32
, DIV
);
174 XEXP (&all
.sdiv_32
, 0) = &all
.reg
;
175 XEXP (&all
.sdiv_32
, 1) = 32 < MAX_BITS_PER_WORD
? cint
[32] : GEN_INT (32);
177 PUT_CODE (&all
.smod_32
, MOD
);
178 XEXP (&all
.smod_32
, 0) = &all
.reg
;
179 XEXP (&all
.smod_32
, 1) = XEXP (&all
.sdiv_32
, 1);
181 PUT_CODE (&all
.zext
, ZERO_EXTEND
);
182 XEXP (&all
.zext
, 0) = &all
.reg
;
184 PUT_CODE (&all
.wide_mult
, MULT
);
185 XEXP (&all
.wide_mult
, 0) = &all
.zext
;
186 XEXP (&all
.wide_mult
, 1) = &all
.zext
;
188 PUT_CODE (&all
.wide_lshr
, LSHIFTRT
);
189 XEXP (&all
.wide_lshr
, 0) = &all
.wide_mult
;
191 PUT_CODE (&all
.wide_trunc
, TRUNCATE
);
192 XEXP (&all
.wide_trunc
, 0) = &all
.wide_lshr
;
194 PUT_CODE (&all
.shift
, ASHIFT
);
195 XEXP (&all
.shift
, 0) = &all
.reg
;
197 PUT_CODE (&all
.shift_mult
, MULT
);
198 XEXP (&all
.shift_mult
, 0) = &all
.reg
;
200 PUT_CODE (&all
.shift_add
, PLUS
);
201 XEXP (&all
.shift_add
, 0) = &all
.shift_mult
;
202 XEXP (&all
.shift_add
, 1) = &all
.reg
;
204 PUT_CODE (&all
.shift_sub
, MINUS
);
205 XEXP (&all
.shift_sub
, 0) = &all
.shift_mult
;
206 XEXP (&all
.shift_sub
, 1) = &all
.reg
;
208 for (speed
= 0; speed
< 2; speed
++)
210 crtl
->maybe_hot_insn_p
= speed
;
211 zero_cost
[speed
] = rtx_cost (const0_rtx
, 0, speed
);
213 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
215 mode
= GET_MODE_WIDER_MODE (mode
))
217 PUT_MODE (&all
.reg
, mode
);
218 PUT_MODE (&all
.plus
, mode
);
219 PUT_MODE (&all
.neg
, mode
);
220 PUT_MODE (&all
.mult
, mode
);
221 PUT_MODE (&all
.sdiv
, mode
);
222 PUT_MODE (&all
.udiv
, mode
);
223 PUT_MODE (&all
.sdiv_32
, mode
);
224 PUT_MODE (&all
.smod_32
, mode
);
225 PUT_MODE (&all
.wide_trunc
, mode
);
226 PUT_MODE (&all
.shift
, mode
);
227 PUT_MODE (&all
.shift_mult
, mode
);
228 PUT_MODE (&all
.shift_add
, mode
);
229 PUT_MODE (&all
.shift_sub
, mode
);
231 add_cost
[speed
][mode
] = rtx_cost (&all
.plus
, SET
, speed
);
232 neg_cost
[speed
][mode
] = rtx_cost (&all
.neg
, SET
, speed
);
233 mul_cost
[speed
][mode
] = rtx_cost (&all
.mult
, SET
, speed
);
234 sdiv_cost
[speed
][mode
] = rtx_cost (&all
.sdiv
, SET
, speed
);
235 udiv_cost
[speed
][mode
] = rtx_cost (&all
.udiv
, SET
, speed
);
237 sdiv_pow2_cheap
[speed
][mode
] = (rtx_cost (&all
.sdiv_32
, SET
, speed
)
238 <= 2 * add_cost
[speed
][mode
]);
239 smod_pow2_cheap
[speed
][mode
] = (rtx_cost (&all
.smod_32
, SET
, speed
)
240 <= 4 * add_cost
[speed
][mode
]);
242 wider_mode
= GET_MODE_WIDER_MODE (mode
);
243 if (wider_mode
!= VOIDmode
)
245 PUT_MODE (&all
.zext
, wider_mode
);
246 PUT_MODE (&all
.wide_mult
, wider_mode
);
247 PUT_MODE (&all
.wide_lshr
, wider_mode
);
248 XEXP (&all
.wide_lshr
, 1) = GEN_INT (GET_MODE_BITSIZE (mode
));
250 mul_widen_cost
[speed
][wider_mode
]
251 = rtx_cost (&all
.wide_mult
, SET
, speed
);
252 mul_highpart_cost
[speed
][mode
]
253 = rtx_cost (&all
.wide_trunc
, SET
, speed
);
256 shift_cost
[speed
][mode
][0] = 0;
257 shiftadd_cost
[speed
][mode
][0] = shiftsub_cost
[speed
][mode
][0]
258 = add_cost
[speed
][mode
];
260 n
= MIN (MAX_BITS_PER_WORD
, GET_MODE_BITSIZE (mode
));
261 for (m
= 1; m
< n
; m
++)
263 XEXP (&all
.shift
, 1) = cint
[m
];
264 XEXP (&all
.shift_mult
, 1) = pow2
[m
];
266 shift_cost
[speed
][mode
][m
] = rtx_cost (&all
.shift
, SET
, speed
);
267 shiftadd_cost
[speed
][mode
][m
] = rtx_cost (&all
.shift_add
, SET
, speed
);
268 shiftsub_cost
[speed
][mode
][m
] = rtx_cost (&all
.shift_sub
, SET
, speed
);
272 default_rtl_profile ();
275 /* Return an rtx representing minus the value of X.
276 MODE is the intended mode of the result,
277 useful if X is a CONST_INT. */
280 negate_rtx (enum machine_mode mode
, rtx x
)
282 rtx result
= simplify_unary_operation (NEG
, mode
, x
, mode
);
285 result
= expand_unop (mode
, neg_optab
, x
, NULL_RTX
, 0);
290 /* Report on the availability of insv/extv/extzv and the desired mode
291 of each of their operands. Returns MAX_MACHINE_MODE if HAVE_foo
292 is false; else the mode of the specified operand. If OPNO is -1,
293 all the caller cares about is whether the insn is available. */
295 mode_for_extraction (enum extraction_pattern pattern
, int opno
)
297 const struct insn_data
*data
;
304 data
= &insn_data
[CODE_FOR_insv
];
307 return MAX_MACHINE_MODE
;
312 data
= &insn_data
[CODE_FOR_extv
];
315 return MAX_MACHINE_MODE
;
320 data
= &insn_data
[CODE_FOR_extzv
];
323 return MAX_MACHINE_MODE
;
332 /* Everyone who uses this function used to follow it with
333 if (result == VOIDmode) result = word_mode; */
334 if (data
->operand
[opno
].mode
== VOIDmode
)
336 return data
->operand
[opno
].mode
;
339 /* Return true if X, of mode MODE, matches the predicate for operand
340 OPNO of instruction ICODE. Allow volatile memories, regardless of
341 the ambient volatile_ok setting. */
344 check_predicate_volatile_ok (enum insn_code icode
, int opno
,
345 rtx x
, enum machine_mode mode
)
347 bool save_volatile_ok
, result
;
349 save_volatile_ok
= volatile_ok
;
350 result
= insn_data
[(int) icode
].operand
[opno
].predicate (x
, mode
);
351 volatile_ok
= save_volatile_ok
;
355 /* A subroutine of store_bit_field, with the same arguments. Return true
356 if the operation could be implemented.
358 If FALLBACK_P is true, fall back to store_fixed_bit_field if we have
359 no other way of implementing the operation. If FALLBACK_P is false,
360 return false instead. */
363 store_bit_field_1 (rtx str_rtx
, unsigned HOST_WIDE_INT bitsize
,
364 unsigned HOST_WIDE_INT bitnum
, enum machine_mode fieldmode
,
365 rtx value
, bool fallback_p
)
368 = (MEM_P (str_rtx
)) ? BITS_PER_UNIT
: BITS_PER_WORD
;
369 unsigned HOST_WIDE_INT offset
, bitpos
;
374 enum machine_mode op_mode
= mode_for_extraction (EP_insv
, 3);
376 while (GET_CODE (op0
) == SUBREG
)
378 /* The following line once was done only if WORDS_BIG_ENDIAN,
379 but I think that is a mistake. WORDS_BIG_ENDIAN is
380 meaningful at a much higher level; when structures are copied
381 between memory and regs, the higher-numbered regs
382 always get higher addresses. */
383 int inner_mode_size
= GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0
)));
384 int outer_mode_size
= GET_MODE_SIZE (GET_MODE (op0
));
388 /* Paradoxical subregs need special handling on big endian machines. */
389 if (SUBREG_BYTE (op0
) == 0 && inner_mode_size
< outer_mode_size
)
391 int difference
= inner_mode_size
- outer_mode_size
;
393 if (WORDS_BIG_ENDIAN
)
394 byte_offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
395 if (BYTES_BIG_ENDIAN
)
396 byte_offset
+= difference
% UNITS_PER_WORD
;
399 byte_offset
= SUBREG_BYTE (op0
);
401 bitnum
+= byte_offset
* BITS_PER_UNIT
;
402 op0
= SUBREG_REG (op0
);
405 /* No action is needed if the target is a register and if the field
406 lies completely outside that register. This can occur if the source
407 code contains an out-of-bounds access to a small array. */
408 if (REG_P (op0
) && bitnum
>= GET_MODE_BITSIZE (GET_MODE (op0
)))
411 /* Use vec_set patterns for inserting parts of vectors whenever
413 if (VECTOR_MODE_P (GET_MODE (op0
))
415 && (optab_handler (vec_set_optab
, GET_MODE (op0
))->insn_code
417 && fieldmode
== GET_MODE_INNER (GET_MODE (op0
))
418 && bitsize
== GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0
)))
419 && !(bitnum
% GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0
)))))
421 enum machine_mode outermode
= GET_MODE (op0
);
422 enum machine_mode innermode
= GET_MODE_INNER (outermode
);
423 int icode
= (int) optab_handler (vec_set_optab
, outermode
)->insn_code
;
424 int pos
= bitnum
/ GET_MODE_BITSIZE (innermode
);
425 rtx rtxpos
= GEN_INT (pos
);
429 enum machine_mode mode0
= insn_data
[icode
].operand
[0].mode
;
430 enum machine_mode mode1
= insn_data
[icode
].operand
[1].mode
;
431 enum machine_mode mode2
= insn_data
[icode
].operand
[2].mode
;
435 if (! (*insn_data
[icode
].operand
[1].predicate
) (src
, mode1
))
436 src
= copy_to_mode_reg (mode1
, src
);
438 if (! (*insn_data
[icode
].operand
[2].predicate
) (rtxpos
, mode2
))
439 rtxpos
= copy_to_mode_reg (mode1
, rtxpos
);
441 /* We could handle this, but we should always be called with a pseudo
442 for our targets and all insns should take them as outputs. */
443 gcc_assert ((*insn_data
[icode
].operand
[0].predicate
) (dest
, mode0
)
444 && (*insn_data
[icode
].operand
[1].predicate
) (src
, mode1
)
445 && (*insn_data
[icode
].operand
[2].predicate
) (rtxpos
, mode2
));
446 pat
= GEN_FCN (icode
) (dest
, src
, rtxpos
);
457 /* If the target is a register, overwriting the entire object, or storing
458 a full-word or multi-word field can be done with just a SUBREG.
460 If the target is memory, storing any naturally aligned field can be
461 done with a simple store. For targets that support fast unaligned
462 memory, any naturally sized, unit aligned field can be done directly. */
464 offset
= bitnum
/ unit
;
465 bitpos
= bitnum
% unit
;
466 byte_offset
= (bitnum
% BITS_PER_WORD
) / BITS_PER_UNIT
467 + (offset
* UNITS_PER_WORD
);
470 && bitsize
== GET_MODE_BITSIZE (fieldmode
)
472 ? ((GET_MODE_SIZE (fieldmode
) >= UNITS_PER_WORD
473 || GET_MODE_SIZE (GET_MODE (op0
)) == GET_MODE_SIZE (fieldmode
))
474 && byte_offset
% GET_MODE_SIZE (fieldmode
) == 0)
475 : (! SLOW_UNALIGNED_ACCESS (fieldmode
, MEM_ALIGN (op0
))
476 || (offset
* BITS_PER_UNIT
% bitsize
== 0
477 && MEM_ALIGN (op0
) % GET_MODE_BITSIZE (fieldmode
) == 0))))
480 op0
= adjust_address (op0
, fieldmode
, offset
);
481 else if (GET_MODE (op0
) != fieldmode
)
482 op0
= simplify_gen_subreg (fieldmode
, op0
, GET_MODE (op0
),
484 emit_move_insn (op0
, value
);
488 /* Make sure we are playing with integral modes. Pun with subregs
489 if we aren't. This must come after the entire register case above,
490 since that case is valid for any mode. The following cases are only
491 valid for integral modes. */
493 enum machine_mode imode
= int_mode_for_mode (GET_MODE (op0
));
494 if (imode
!= GET_MODE (op0
))
497 op0
= adjust_address (op0
, imode
, 0);
500 gcc_assert (imode
!= BLKmode
);
501 op0
= gen_lowpart (imode
, op0
);
506 /* We may be accessing data outside the field, which means
507 we can alias adjacent data. */
510 op0
= shallow_copy_rtx (op0
);
511 set_mem_alias_set (op0
, 0);
512 set_mem_expr (op0
, 0);
515 /* If OP0 is a register, BITPOS must count within a word.
516 But as we have it, it counts within whatever size OP0 now has.
517 On a bigendian machine, these are not the same, so convert. */
520 && unit
> GET_MODE_BITSIZE (GET_MODE (op0
)))
521 bitpos
+= unit
- GET_MODE_BITSIZE (GET_MODE (op0
));
523 /* Storing an lsb-aligned field in a register
524 can be done with a movestrict instruction. */
527 && (BYTES_BIG_ENDIAN
? bitpos
+ bitsize
== unit
: bitpos
== 0)
528 && bitsize
== GET_MODE_BITSIZE (fieldmode
)
529 && (optab_handler (movstrict_optab
, fieldmode
)->insn_code
530 != CODE_FOR_nothing
))
532 int icode
= optab_handler (movstrict_optab
, fieldmode
)->insn_code
;
534 rtx start
= get_last_insn ();
537 /* Get appropriate low part of the value being stored. */
538 if (GET_CODE (value
) == CONST_INT
|| REG_P (value
))
539 value
= gen_lowpart (fieldmode
, value
);
540 else if (!(GET_CODE (value
) == SYMBOL_REF
541 || GET_CODE (value
) == LABEL_REF
542 || GET_CODE (value
) == CONST
))
543 value
= convert_to_mode (fieldmode
, value
, 0);
545 if (! (*insn_data
[icode
].operand
[1].predicate
) (value
, fieldmode
))
546 value
= copy_to_mode_reg (fieldmode
, value
);
548 if (GET_CODE (op0
) == SUBREG
)
550 /* Else we've got some float mode source being extracted into
551 a different float mode destination -- this combination of
552 subregs results in Severe Tire Damage. */
553 gcc_assert (GET_MODE (SUBREG_REG (op0
)) == fieldmode
554 || GET_MODE_CLASS (fieldmode
) == MODE_INT
555 || GET_MODE_CLASS (fieldmode
) == MODE_PARTIAL_INT
);
556 arg0
= SUBREG_REG (op0
);
559 insn
= (GEN_FCN (icode
)
560 (gen_rtx_SUBREG (fieldmode
, arg0
,
561 (bitnum
% BITS_PER_WORD
) / BITS_PER_UNIT
562 + (offset
* UNITS_PER_WORD
)),
569 delete_insns_since (start
);
572 /* Handle fields bigger than a word. */
574 if (bitsize
> BITS_PER_WORD
)
576 /* Here we transfer the words of the field
577 in the order least significant first.
578 This is because the most significant word is the one which may
580 However, only do that if the value is not BLKmode. */
582 unsigned int backwards
= WORDS_BIG_ENDIAN
&& fieldmode
!= BLKmode
;
583 unsigned int nwords
= (bitsize
+ (BITS_PER_WORD
- 1)) / BITS_PER_WORD
;
587 /* This is the mode we must force value to, so that there will be enough
588 subwords to extract. Note that fieldmode will often (always?) be
589 VOIDmode, because that is what store_field uses to indicate that this
590 is a bit field, but passing VOIDmode to operand_subword_force
592 fieldmode
= GET_MODE (value
);
593 if (fieldmode
== VOIDmode
)
594 fieldmode
= smallest_mode_for_size (nwords
* BITS_PER_WORD
, MODE_INT
);
596 last
= get_last_insn ();
597 for (i
= 0; i
< nwords
; i
++)
599 /* If I is 0, use the low-order word in both field and target;
600 if I is 1, use the next to lowest word; and so on. */
601 unsigned int wordnum
= (backwards
? nwords
- i
- 1 : i
);
602 unsigned int bit_offset
= (backwards
603 ? MAX ((int) bitsize
- ((int) i
+ 1)
606 : (int) i
* BITS_PER_WORD
);
607 rtx value_word
= operand_subword_force (value
, wordnum
, fieldmode
);
609 if (!store_bit_field_1 (op0
, MIN (BITS_PER_WORD
,
610 bitsize
- i
* BITS_PER_WORD
),
611 bitnum
+ bit_offset
, word_mode
,
612 value_word
, fallback_p
))
614 delete_insns_since (last
);
621 /* From here on we can assume that the field to be stored in is
622 a full-word (whatever type that is), since it is shorter than a word. */
624 /* OFFSET is the number of words or bytes (UNIT says which)
625 from STR_RTX to the first word or byte containing part of the field. */
630 || GET_MODE_SIZE (GET_MODE (op0
)) > UNITS_PER_WORD
)
634 /* Since this is a destination (lvalue), we can't copy
635 it to a pseudo. We can remove a SUBREG that does not
636 change the size of the operand. Such a SUBREG may
637 have been added above. */
638 gcc_assert (GET_CODE (op0
) == SUBREG
639 && (GET_MODE_SIZE (GET_MODE (op0
))
640 == GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0
)))));
641 op0
= SUBREG_REG (op0
);
643 op0
= gen_rtx_SUBREG (mode_for_size (BITS_PER_WORD
, MODE_INT
, 0),
644 op0
, (offset
* UNITS_PER_WORD
));
649 /* If VALUE has a floating-point or complex mode, access it as an
650 integer of the corresponding size. This can occur on a machine
651 with 64 bit registers that uses SFmode for float. It can also
652 occur for unaligned float or complex fields. */
654 if (GET_MODE (value
) != VOIDmode
655 && GET_MODE_CLASS (GET_MODE (value
)) != MODE_INT
656 && GET_MODE_CLASS (GET_MODE (value
)) != MODE_PARTIAL_INT
)
658 value
= gen_reg_rtx (int_mode_for_mode (GET_MODE (value
)));
659 emit_move_insn (gen_lowpart (GET_MODE (orig_value
), value
), orig_value
);
662 /* Now OFFSET is nonzero only if OP0 is memory
663 and is therefore always measured in bytes. */
666 && GET_MODE (value
) != BLKmode
668 && GET_MODE_BITSIZE (op_mode
) >= bitsize
669 && ! ((REG_P (op0
) || GET_CODE (op0
) == SUBREG
)
670 && (bitsize
+ bitpos
> GET_MODE_BITSIZE (op_mode
)))
671 && insn_data
[CODE_FOR_insv
].operand
[1].predicate (GEN_INT (bitsize
),
673 && check_predicate_volatile_ok (CODE_FOR_insv
, 0, op0
, VOIDmode
))
675 int xbitpos
= bitpos
;
678 rtx last
= get_last_insn ();
681 /* Add OFFSET into OP0's address. */
683 xop0
= adjust_address (xop0
, byte_mode
, offset
);
685 /* If xop0 is a register, we need it in OP_MODE
686 to make it acceptable to the format of insv. */
687 if (GET_CODE (xop0
) == SUBREG
)
688 /* We can't just change the mode, because this might clobber op0,
689 and we will need the original value of op0 if insv fails. */
690 xop0
= gen_rtx_SUBREG (op_mode
, SUBREG_REG (xop0
), SUBREG_BYTE (xop0
));
691 if (REG_P (xop0
) && GET_MODE (xop0
) != op_mode
)
692 xop0
= gen_rtx_SUBREG (op_mode
, xop0
, 0);
694 /* On big-endian machines, we count bits from the most significant.
695 If the bit field insn does not, we must invert. */
697 if (BITS_BIG_ENDIAN
!= BYTES_BIG_ENDIAN
)
698 xbitpos
= unit
- bitsize
- xbitpos
;
700 /* We have been counting XBITPOS within UNIT.
701 Count instead within the size of the register. */
702 if (BITS_BIG_ENDIAN
&& !MEM_P (xop0
))
703 xbitpos
+= GET_MODE_BITSIZE (op_mode
) - unit
;
705 unit
= GET_MODE_BITSIZE (op_mode
);
707 /* Convert VALUE to op_mode (which insv insn wants) in VALUE1. */
709 if (GET_MODE (value
) != op_mode
)
711 if (GET_MODE_BITSIZE (GET_MODE (value
)) >= bitsize
)
713 /* Optimization: Don't bother really extending VALUE
714 if it has all the bits we will actually use. However,
715 if we must narrow it, be sure we do it correctly. */
717 if (GET_MODE_SIZE (GET_MODE (value
)) < GET_MODE_SIZE (op_mode
))
721 tmp
= simplify_subreg (op_mode
, value1
, GET_MODE (value
), 0);
723 tmp
= simplify_gen_subreg (op_mode
,
724 force_reg (GET_MODE (value
),
726 GET_MODE (value
), 0);
730 value1
= gen_lowpart (op_mode
, value1
);
732 else if (GET_CODE (value
) == CONST_INT
)
733 value1
= gen_int_mode (INTVAL (value
), op_mode
);
735 /* Parse phase is supposed to make VALUE's data type
736 match that of the component reference, which is a type
737 at least as wide as the field; so VALUE should have
738 a mode that corresponds to that type. */
739 gcc_assert (CONSTANT_P (value
));
742 /* If this machine's insv insists on a register,
743 get VALUE1 into a register. */
744 if (! ((*insn_data
[(int) CODE_FOR_insv
].operand
[3].predicate
)
746 value1
= force_reg (op_mode
, value1
);
748 pat
= gen_insv (xop0
, GEN_INT (bitsize
), GEN_INT (xbitpos
), value1
);
753 /* If the mode of the insertion is wider than the mode of the
754 target register we created a paradoxical subreg for the
755 target. Truncate the paradoxical subreg of the target to
757 if (!TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (op0
)),
758 GET_MODE_BITSIZE (op_mode
))
760 || GET_CODE (xop0
) == SUBREG
))
761 convert_move (op0
, xop0
, true);
764 delete_insns_since (last
);
767 /* If OP0 is a memory, try copying it to a register and seeing if a
768 cheap register alternative is available. */
769 if (HAVE_insv
&& MEM_P (op0
))
771 enum machine_mode bestmode
;
773 /* Get the mode to use for inserting into this field. If OP0 is
774 BLKmode, get the smallest mode consistent with the alignment. If
775 OP0 is a non-BLKmode object that is no wider than OP_MODE, use its
776 mode. Otherwise, use the smallest mode containing the field. */
778 if (GET_MODE (op0
) == BLKmode
779 || (op_mode
!= MAX_MACHINE_MODE
780 && GET_MODE_SIZE (GET_MODE (op0
)) > GET_MODE_SIZE (op_mode
)))
781 bestmode
= get_best_mode (bitsize
, bitnum
, MEM_ALIGN (op0
),
782 (op_mode
== MAX_MACHINE_MODE
783 ? VOIDmode
: op_mode
),
784 MEM_VOLATILE_P (op0
));
786 bestmode
= GET_MODE (op0
);
788 if (bestmode
!= VOIDmode
789 && GET_MODE_SIZE (bestmode
) >= GET_MODE_SIZE (fieldmode
)
790 && !(SLOW_UNALIGNED_ACCESS (bestmode
, MEM_ALIGN (op0
))
791 && GET_MODE_BITSIZE (bestmode
) > MEM_ALIGN (op0
)))
793 rtx last
, tempreg
, xop0
;
794 unsigned HOST_WIDE_INT xoffset
, xbitpos
;
796 last
= get_last_insn ();
798 /* Adjust address to point to the containing unit of
799 that mode. Compute the offset as a multiple of this unit,
800 counting in bytes. */
801 unit
= GET_MODE_BITSIZE (bestmode
);
802 xoffset
= (bitnum
/ unit
) * GET_MODE_SIZE (bestmode
);
803 xbitpos
= bitnum
% unit
;
804 xop0
= adjust_address (op0
, bestmode
, xoffset
);
806 /* Fetch that unit, store the bitfield in it, then store
808 tempreg
= copy_to_reg (xop0
);
809 if (store_bit_field_1 (tempreg
, bitsize
, xbitpos
,
810 fieldmode
, orig_value
, false))
812 emit_move_insn (xop0
, tempreg
);
815 delete_insns_since (last
);
822 store_fixed_bit_field (op0
, offset
, bitsize
, bitpos
, value
);
826 /* Generate code to store value from rtx VALUE
827 into a bit-field within structure STR_RTX
828 containing BITSIZE bits starting at bit BITNUM.
829 FIELDMODE is the machine-mode of the FIELD_DECL node for this field. */
832 store_bit_field (rtx str_rtx
, unsigned HOST_WIDE_INT bitsize
,
833 unsigned HOST_WIDE_INT bitnum
, enum machine_mode fieldmode
,
836 if (!store_bit_field_1 (str_rtx
, bitsize
, bitnum
, fieldmode
, value
, true))
840 /* Use shifts and boolean operations to store VALUE
841 into a bit field of width BITSIZE
842 in a memory location specified by OP0 except offset by OFFSET bytes.
843 (OFFSET must be 0 if OP0 is a register.)
844 The field starts at position BITPOS within the byte.
845 (If OP0 is a register, it may be a full word or a narrower mode,
846 but BITPOS still counts within a full word,
847 which is significant on bigendian machines.) */
850 store_fixed_bit_field (rtx op0
, unsigned HOST_WIDE_INT offset
,
851 unsigned HOST_WIDE_INT bitsize
,
852 unsigned HOST_WIDE_INT bitpos
, rtx value
)
854 enum machine_mode mode
;
855 unsigned int total_bits
= BITS_PER_WORD
;
860 /* There is a case not handled here:
861 a structure with a known alignment of just a halfword
862 and a field split across two aligned halfwords within the structure.
863 Or likewise a structure with a known alignment of just a byte
864 and a field split across two bytes.
865 Such cases are not supposed to be able to occur. */
867 if (REG_P (op0
) || GET_CODE (op0
) == SUBREG
)
869 gcc_assert (!offset
);
870 /* Special treatment for a bit field split across two registers. */
871 if (bitsize
+ bitpos
> BITS_PER_WORD
)
873 store_split_bit_field (op0
, bitsize
, bitpos
, value
);
879 /* Get the proper mode to use for this field. We want a mode that
880 includes the entire field. If such a mode would be larger than
881 a word, we won't be doing the extraction the normal way.
882 We don't want a mode bigger than the destination. */
884 mode
= GET_MODE (op0
);
885 if (GET_MODE_BITSIZE (mode
) == 0
886 || GET_MODE_BITSIZE (mode
) > GET_MODE_BITSIZE (word_mode
))
888 mode
= get_best_mode (bitsize
, bitpos
+ offset
* BITS_PER_UNIT
,
889 MEM_ALIGN (op0
), mode
, MEM_VOLATILE_P (op0
));
891 if (mode
== VOIDmode
)
893 /* The only way this should occur is if the field spans word
895 store_split_bit_field (op0
, bitsize
, bitpos
+ offset
* BITS_PER_UNIT
,
900 total_bits
= GET_MODE_BITSIZE (mode
);
902 /* Make sure bitpos is valid for the chosen mode. Adjust BITPOS to
903 be in the range 0 to total_bits-1, and put any excess bytes in
905 if (bitpos
>= total_bits
)
907 offset
+= (bitpos
/ total_bits
) * (total_bits
/ BITS_PER_UNIT
);
908 bitpos
-= ((bitpos
/ total_bits
) * (total_bits
/ BITS_PER_UNIT
)
912 /* Get ref to an aligned byte, halfword, or word containing the field.
913 Adjust BITPOS to be position within a word,
914 and OFFSET to be the offset of that word.
915 Then alter OP0 to refer to that word. */
916 bitpos
+= (offset
% (total_bits
/ BITS_PER_UNIT
)) * BITS_PER_UNIT
;
917 offset
-= (offset
% (total_bits
/ BITS_PER_UNIT
));
918 op0
= adjust_address (op0
, mode
, offset
);
921 mode
= GET_MODE (op0
);
923 /* Now MODE is either some integral mode for a MEM as OP0,
924 or is a full-word for a REG as OP0. TOTAL_BITS corresponds.
925 The bit field is contained entirely within OP0.
926 BITPOS is the starting bit number within OP0.
927 (OP0's mode may actually be narrower than MODE.) */
929 if (BYTES_BIG_ENDIAN
)
930 /* BITPOS is the distance between our msb
931 and that of the containing datum.
932 Convert it to the distance from the lsb. */
933 bitpos
= total_bits
- bitsize
- bitpos
;
935 /* Now BITPOS is always the distance between our lsb
938 /* Shift VALUE left by BITPOS bits. If VALUE is not constant,
939 we must first convert its mode to MODE. */
941 if (GET_CODE (value
) == CONST_INT
)
943 HOST_WIDE_INT v
= INTVAL (value
);
945 if (bitsize
< HOST_BITS_PER_WIDE_INT
)
946 v
&= ((HOST_WIDE_INT
) 1 << bitsize
) - 1;
950 else if ((bitsize
< HOST_BITS_PER_WIDE_INT
951 && v
== ((HOST_WIDE_INT
) 1 << bitsize
) - 1)
952 || (bitsize
== HOST_BITS_PER_WIDE_INT
&& v
== -1))
955 value
= lshift_value (mode
, value
, bitpos
, bitsize
);
959 int must_and
= (GET_MODE_BITSIZE (GET_MODE (value
)) != bitsize
960 && bitpos
+ bitsize
!= GET_MODE_BITSIZE (mode
));
962 if (GET_MODE (value
) != mode
)
963 value
= convert_to_mode (mode
, value
, 1);
966 value
= expand_binop (mode
, and_optab
, value
,
967 mask_rtx (mode
, 0, bitsize
, 0),
968 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
970 value
= expand_shift (LSHIFT_EXPR
, mode
, value
,
971 build_int_cst (NULL_TREE
, bitpos
), NULL_RTX
, 1);
974 /* Now clear the chosen bits in OP0,
975 except that if VALUE is -1 we need not bother. */
976 /* We keep the intermediates in registers to allow CSE to combine
977 consecutive bitfield assignments. */
979 temp
= force_reg (mode
, op0
);
983 temp
= expand_binop (mode
, and_optab
, temp
,
984 mask_rtx (mode
, bitpos
, bitsize
, 1),
985 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
986 temp
= force_reg (mode
, temp
);
989 /* Now logical-or VALUE into OP0, unless it is zero. */
993 temp
= expand_binop (mode
, ior_optab
, temp
, value
,
994 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
995 temp
= force_reg (mode
, temp
);
1000 op0
= copy_rtx (op0
);
1001 emit_move_insn (op0
, temp
);
1005 /* Store a bit field that is split across multiple accessible memory objects.
1007 OP0 is the REG, SUBREG or MEM rtx for the first of the objects.
1008 BITSIZE is the field width; BITPOS the position of its first bit
1010 VALUE is the value to store.
1012 This does not yet handle fields wider than BITS_PER_WORD. */
1015 store_split_bit_field (rtx op0
, unsigned HOST_WIDE_INT bitsize
,
1016 unsigned HOST_WIDE_INT bitpos
, rtx value
)
1019 unsigned int bitsdone
= 0;
1021 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
1023 if (REG_P (op0
) || GET_CODE (op0
) == SUBREG
)
1024 unit
= BITS_PER_WORD
;
1026 unit
= MIN (MEM_ALIGN (op0
), BITS_PER_WORD
);
1028 /* If VALUE is a constant other than a CONST_INT, get it into a register in
1029 WORD_MODE. If we can do this using gen_lowpart_common, do so. Note
1030 that VALUE might be a floating-point constant. */
1031 if (CONSTANT_P (value
) && GET_CODE (value
) != CONST_INT
)
1033 rtx word
= gen_lowpart_common (word_mode
, value
);
1035 if (word
&& (value
!= word
))
1038 value
= gen_lowpart_common (word_mode
,
1039 force_reg (GET_MODE (value
) != VOIDmode
1041 : word_mode
, value
));
1044 while (bitsdone
< bitsize
)
1046 unsigned HOST_WIDE_INT thissize
;
1048 unsigned HOST_WIDE_INT thispos
;
1049 unsigned HOST_WIDE_INT offset
;
1051 offset
= (bitpos
+ bitsdone
) / unit
;
1052 thispos
= (bitpos
+ bitsdone
) % unit
;
1054 /* THISSIZE must not overrun a word boundary. Otherwise,
1055 store_fixed_bit_field will call us again, and we will mutually
1057 thissize
= MIN (bitsize
- bitsdone
, BITS_PER_WORD
);
1058 thissize
= MIN (thissize
, unit
- thispos
);
1060 if (BYTES_BIG_ENDIAN
)
1064 /* We must do an endian conversion exactly the same way as it is
1065 done in extract_bit_field, so that the two calls to
1066 extract_fixed_bit_field will have comparable arguments. */
1067 if (!MEM_P (value
) || GET_MODE (value
) == BLKmode
)
1068 total_bits
= BITS_PER_WORD
;
1070 total_bits
= GET_MODE_BITSIZE (GET_MODE (value
));
1072 /* Fetch successively less significant portions. */
1073 if (GET_CODE (value
) == CONST_INT
)
1074 part
= GEN_INT (((unsigned HOST_WIDE_INT
) (INTVAL (value
))
1075 >> (bitsize
- bitsdone
- thissize
))
1076 & (((HOST_WIDE_INT
) 1 << thissize
) - 1));
1078 /* The args are chosen so that the last part includes the
1079 lsb. Give extract_bit_field the value it needs (with
1080 endianness compensation) to fetch the piece we want. */
1081 part
= extract_fixed_bit_field (word_mode
, value
, 0, thissize
,
1082 total_bits
- bitsize
+ bitsdone
,
1087 /* Fetch successively more significant portions. */
1088 if (GET_CODE (value
) == CONST_INT
)
1089 part
= GEN_INT (((unsigned HOST_WIDE_INT
) (INTVAL (value
))
1091 & (((HOST_WIDE_INT
) 1 << thissize
) - 1));
1093 part
= extract_fixed_bit_field (word_mode
, value
, 0, thissize
,
1094 bitsdone
, NULL_RTX
, 1);
1097 /* If OP0 is a register, then handle OFFSET here.
1099 When handling multiword bitfields, extract_bit_field may pass
1100 down a word_mode SUBREG of a larger REG for a bitfield that actually
1101 crosses a word boundary. Thus, for a SUBREG, we must find
1102 the current word starting from the base register. */
1103 if (GET_CODE (op0
) == SUBREG
)
1105 int word_offset
= (SUBREG_BYTE (op0
) / UNITS_PER_WORD
) + offset
;
1106 word
= operand_subword_force (SUBREG_REG (op0
), word_offset
,
1107 GET_MODE (SUBREG_REG (op0
)));
1110 else if (REG_P (op0
))
1112 word
= operand_subword_force (op0
, offset
, GET_MODE (op0
));
1118 /* OFFSET is in UNITs, and UNIT is in bits.
1119 store_fixed_bit_field wants offset in bytes. */
1120 store_fixed_bit_field (word
, offset
* unit
/ BITS_PER_UNIT
, thissize
,
1122 bitsdone
+= thissize
;
1126 /* A subroutine of extract_bit_field_1 that converts return value X
1127 to either MODE or TMODE. MODE, TMODE and UNSIGNEDP are arguments
1128 to extract_bit_field. */
1131 convert_extracted_bit_field (rtx x
, enum machine_mode mode
,
1132 enum machine_mode tmode
, bool unsignedp
)
1134 if (GET_MODE (x
) == tmode
|| GET_MODE (x
) == mode
)
1137 /* If the x mode is not a scalar integral, first convert to the
1138 integer mode of that size and then access it as a floating-point
1139 value via a SUBREG. */
1140 if (!SCALAR_INT_MODE_P (tmode
))
1142 enum machine_mode smode
;
1144 smode
= mode_for_size (GET_MODE_BITSIZE (tmode
), MODE_INT
, 0);
1145 x
= convert_to_mode (smode
, x
, unsignedp
);
1146 x
= force_reg (smode
, x
);
1147 return gen_lowpart (tmode
, x
);
1150 return convert_to_mode (tmode
, x
, unsignedp
);
1153 /* A subroutine of extract_bit_field, with the same arguments.
1154 If FALLBACK_P is true, fall back to extract_fixed_bit_field
1155 if we can find no other means of implementing the operation.
1156 if FALLBACK_P is false, return NULL instead. */
1159 extract_bit_field_1 (rtx str_rtx
, unsigned HOST_WIDE_INT bitsize
,
1160 unsigned HOST_WIDE_INT bitnum
, int unsignedp
, rtx target
,
1161 enum machine_mode mode
, enum machine_mode tmode
,
1165 = (MEM_P (str_rtx
)) ? BITS_PER_UNIT
: BITS_PER_WORD
;
1166 unsigned HOST_WIDE_INT offset
, bitpos
;
1168 enum machine_mode int_mode
;
1169 enum machine_mode ext_mode
;
1170 enum machine_mode mode1
;
1171 enum insn_code icode
;
1174 if (tmode
== VOIDmode
)
1177 while (GET_CODE (op0
) == SUBREG
)
1179 bitnum
+= SUBREG_BYTE (op0
) * BITS_PER_UNIT
;
1180 op0
= SUBREG_REG (op0
);
1183 /* If we have an out-of-bounds access to a register, just return an
1184 uninitialized register of the required mode. This can occur if the
1185 source code contains an out-of-bounds access to a small array. */
1186 if (REG_P (op0
) && bitnum
>= GET_MODE_BITSIZE (GET_MODE (op0
)))
1187 return gen_reg_rtx (tmode
);
1190 && mode
== GET_MODE (op0
)
1192 && bitsize
== GET_MODE_BITSIZE (GET_MODE (op0
)))
1194 /* We're trying to extract a full register from itself. */
1198 /* See if we can get a better vector mode before extracting. */
1199 if (VECTOR_MODE_P (GET_MODE (op0
))
1201 && GET_MODE_INNER (GET_MODE (op0
)) != tmode
)
1203 enum machine_mode new_mode
;
1204 int nunits
= GET_MODE_NUNITS (GET_MODE (op0
));
1206 if (GET_MODE_CLASS (tmode
) == MODE_FLOAT
)
1207 new_mode
= MIN_MODE_VECTOR_FLOAT
;
1208 else if (GET_MODE_CLASS (tmode
) == MODE_FRACT
)
1209 new_mode
= MIN_MODE_VECTOR_FRACT
;
1210 else if (GET_MODE_CLASS (tmode
) == MODE_UFRACT
)
1211 new_mode
= MIN_MODE_VECTOR_UFRACT
;
1212 else if (GET_MODE_CLASS (tmode
) == MODE_ACCUM
)
1213 new_mode
= MIN_MODE_VECTOR_ACCUM
;
1214 else if (GET_MODE_CLASS (tmode
) == MODE_UACCUM
)
1215 new_mode
= MIN_MODE_VECTOR_UACCUM
;
1217 new_mode
= MIN_MODE_VECTOR_INT
;
1219 for (; new_mode
!= VOIDmode
; new_mode
= GET_MODE_WIDER_MODE (new_mode
))
1220 if (GET_MODE_NUNITS (new_mode
) == nunits
1221 && GET_MODE_SIZE (new_mode
) == GET_MODE_SIZE (GET_MODE (op0
))
1222 && targetm
.vector_mode_supported_p (new_mode
))
1224 if (new_mode
!= VOIDmode
)
1225 op0
= gen_lowpart (new_mode
, op0
);
1228 /* Use vec_extract patterns for extracting parts of vectors whenever
1230 if (VECTOR_MODE_P (GET_MODE (op0
))
1232 && (optab_handler (vec_extract_optab
, GET_MODE (op0
))->insn_code
1233 != CODE_FOR_nothing
)
1234 && ((bitnum
+ bitsize
- 1) / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0
)))
1235 == bitnum
/ GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0
)))))
1237 enum machine_mode outermode
= GET_MODE (op0
);
1238 enum machine_mode innermode
= GET_MODE_INNER (outermode
);
1239 int icode
= (int) optab_handler (vec_extract_optab
, outermode
)->insn_code
;
1240 unsigned HOST_WIDE_INT pos
= bitnum
/ GET_MODE_BITSIZE (innermode
);
1241 rtx rtxpos
= GEN_INT (pos
);
1243 rtx dest
= NULL
, pat
, seq
;
1244 enum machine_mode mode0
= insn_data
[icode
].operand
[0].mode
;
1245 enum machine_mode mode1
= insn_data
[icode
].operand
[1].mode
;
1246 enum machine_mode mode2
= insn_data
[icode
].operand
[2].mode
;
1248 if (innermode
== tmode
|| innermode
== mode
)
1252 dest
= gen_reg_rtx (innermode
);
1256 if (! (*insn_data
[icode
].operand
[0].predicate
) (dest
, mode0
))
1257 dest
= copy_to_mode_reg (mode0
, dest
);
1259 if (! (*insn_data
[icode
].operand
[1].predicate
) (src
, mode1
))
1260 src
= copy_to_mode_reg (mode1
, src
);
1262 if (! (*insn_data
[icode
].operand
[2].predicate
) (rtxpos
, mode2
))
1263 rtxpos
= copy_to_mode_reg (mode1
, rtxpos
);
1265 /* We could handle this, but we should always be called with a pseudo
1266 for our targets and all insns should take them as outputs. */
1267 gcc_assert ((*insn_data
[icode
].operand
[0].predicate
) (dest
, mode0
)
1268 && (*insn_data
[icode
].operand
[1].predicate
) (src
, mode1
)
1269 && (*insn_data
[icode
].operand
[2].predicate
) (rtxpos
, mode2
));
1271 pat
= GEN_FCN (icode
) (dest
, src
, rtxpos
);
1279 return gen_lowpart (tmode
, dest
);
1284 /* Make sure we are playing with integral modes. Pun with subregs
1287 enum machine_mode imode
= int_mode_for_mode (GET_MODE (op0
));
1288 if (imode
!= GET_MODE (op0
))
1291 op0
= adjust_address (op0
, imode
, 0);
1292 else if (imode
!= BLKmode
)
1294 op0
= gen_lowpart (imode
, op0
);
1296 /* If we got a SUBREG, force it into a register since we
1297 aren't going to be able to do another SUBREG on it. */
1298 if (GET_CODE (op0
) == SUBREG
)
1299 op0
= force_reg (imode
, op0
);
1301 else if (REG_P (op0
))
1304 imode
= smallest_mode_for_size (GET_MODE_BITSIZE (GET_MODE (op0
)),
1306 reg
= gen_reg_rtx (imode
);
1307 subreg
= gen_lowpart_SUBREG (GET_MODE (op0
), reg
);
1308 emit_move_insn (subreg
, op0
);
1310 bitnum
+= SUBREG_BYTE (subreg
) * BITS_PER_UNIT
;
1314 rtx mem
= assign_stack_temp (GET_MODE (op0
),
1315 GET_MODE_SIZE (GET_MODE (op0
)), 0);
1316 emit_move_insn (mem
, op0
);
1317 op0
= adjust_address (mem
, BLKmode
, 0);
1322 /* We may be accessing data outside the field, which means
1323 we can alias adjacent data. */
1326 op0
= shallow_copy_rtx (op0
);
1327 set_mem_alias_set (op0
, 0);
1328 set_mem_expr (op0
, 0);
1331 /* Extraction of a full-word or multi-word value from a structure
1332 in a register or aligned memory can be done with just a SUBREG.
1333 A subword value in the least significant part of a register
1334 can also be extracted with a SUBREG. For this, we need the
1335 byte offset of the value in op0. */
1337 bitpos
= bitnum
% unit
;
1338 offset
= bitnum
/ unit
;
1339 byte_offset
= bitpos
/ BITS_PER_UNIT
+ offset
* UNITS_PER_WORD
;
1341 /* If OP0 is a register, BITPOS must count within a word.
1342 But as we have it, it counts within whatever size OP0 now has.
1343 On a bigendian machine, these are not the same, so convert. */
1344 if (BYTES_BIG_ENDIAN
1346 && unit
> GET_MODE_BITSIZE (GET_MODE (op0
)))
1347 bitpos
+= unit
- GET_MODE_BITSIZE (GET_MODE (op0
));
1349 /* ??? We currently assume TARGET is at least as big as BITSIZE.
1350 If that's wrong, the solution is to test for it and set TARGET to 0
1353 /* Only scalar integer modes can be converted via subregs. There is an
1354 additional problem for FP modes here in that they can have a precision
1355 which is different from the size. mode_for_size uses precision, but
1356 we want a mode based on the size, so we must avoid calling it for FP
1358 mode1
= (SCALAR_INT_MODE_P (tmode
)
1359 ? mode_for_size (bitsize
, GET_MODE_CLASS (tmode
), 0)
1362 if (((bitsize
>= BITS_PER_WORD
&& bitsize
== GET_MODE_BITSIZE (mode
)
1363 && bitpos
% BITS_PER_WORD
== 0)
1364 || (mode1
!= BLKmode
1365 /* ??? The big endian test here is wrong. This is correct
1366 if the value is in a register, and if mode_for_size is not
1367 the same mode as op0. This causes us to get unnecessarily
1368 inefficient code from the Thumb port when -mbig-endian. */
1369 && (BYTES_BIG_ENDIAN
1370 ? bitpos
+ bitsize
== BITS_PER_WORD
1373 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode1
),
1374 GET_MODE_BITSIZE (GET_MODE (op0
)))
1375 && GET_MODE_SIZE (mode1
) != 0
1376 && byte_offset
% GET_MODE_SIZE (mode1
) == 0)
1378 && (! SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (op0
))
1379 || (offset
* BITS_PER_UNIT
% bitsize
== 0
1380 && MEM_ALIGN (op0
) % bitsize
== 0)))))
1383 op0
= adjust_address (op0
, mode1
, offset
);
1384 else if (mode1
!= GET_MODE (op0
))
1386 rtx sub
= simplify_gen_subreg (mode1
, op0
, GET_MODE (op0
),
1389 goto no_subreg_mode_swap
;
1393 return convert_to_mode (tmode
, op0
, unsignedp
);
1396 no_subreg_mode_swap
:
1398 /* Handle fields bigger than a word. */
1400 if (bitsize
> BITS_PER_WORD
)
1402 /* Here we transfer the words of the field
1403 in the order least significant first.
1404 This is because the most significant word is the one which may
1405 be less than full. */
1407 unsigned int nwords
= (bitsize
+ (BITS_PER_WORD
- 1)) / BITS_PER_WORD
;
1410 if (target
== 0 || !REG_P (target
))
1411 target
= gen_reg_rtx (mode
);
1413 /* Indicate for flow that the entire target reg is being set. */
1414 emit_clobber (target
);
1416 for (i
= 0; i
< nwords
; i
++)
1418 /* If I is 0, use the low-order word in both field and target;
1419 if I is 1, use the next to lowest word; and so on. */
1420 /* Word number in TARGET to use. */
1421 unsigned int wordnum
1423 ? GET_MODE_SIZE (GET_MODE (target
)) / UNITS_PER_WORD
- i
- 1
1425 /* Offset from start of field in OP0. */
1426 unsigned int bit_offset
= (WORDS_BIG_ENDIAN
1427 ? MAX (0, ((int) bitsize
- ((int) i
+ 1)
1428 * (int) BITS_PER_WORD
))
1429 : (int) i
* BITS_PER_WORD
);
1430 rtx target_part
= operand_subword (target
, wordnum
, 1, VOIDmode
);
1432 = extract_bit_field (op0
, MIN (BITS_PER_WORD
,
1433 bitsize
- i
* BITS_PER_WORD
),
1434 bitnum
+ bit_offset
, 1, target_part
, mode
,
1437 gcc_assert (target_part
);
1439 if (result_part
!= target_part
)
1440 emit_move_insn (target_part
, result_part
);
1445 /* Unless we've filled TARGET, the upper regs in a multi-reg value
1446 need to be zero'd out. */
1447 if (GET_MODE_SIZE (GET_MODE (target
)) > nwords
* UNITS_PER_WORD
)
1449 unsigned int i
, total_words
;
1451 total_words
= GET_MODE_SIZE (GET_MODE (target
)) / UNITS_PER_WORD
;
1452 for (i
= nwords
; i
< total_words
; i
++)
1454 (operand_subword (target
,
1455 WORDS_BIG_ENDIAN
? total_words
- i
- 1 : i
,
1462 /* Signed bit field: sign-extend with two arithmetic shifts. */
1463 target
= expand_shift (LSHIFT_EXPR
, mode
, target
,
1464 build_int_cst (NULL_TREE
,
1465 GET_MODE_BITSIZE (mode
) - bitsize
),
1467 return expand_shift (RSHIFT_EXPR
, mode
, target
,
1468 build_int_cst (NULL_TREE
,
1469 GET_MODE_BITSIZE (mode
) - bitsize
),
1473 /* From here on we know the desired field is smaller than a word. */
1475 /* Check if there is a correspondingly-sized integer field, so we can
1476 safely extract it as one size of integer, if necessary; then
1477 truncate or extend to the size that is wanted; then use SUBREGs or
1478 convert_to_mode to get one of the modes we really wanted. */
1480 int_mode
= int_mode_for_mode (tmode
);
1481 if (int_mode
== BLKmode
)
1482 int_mode
= int_mode_for_mode (mode
);
1483 /* Should probably push op0 out to memory and then do a load. */
1484 gcc_assert (int_mode
!= BLKmode
);
1486 /* OFFSET is the number of words or bytes (UNIT says which)
1487 from STR_RTX to the first word or byte containing part of the field. */
1491 || GET_MODE_SIZE (GET_MODE (op0
)) > UNITS_PER_WORD
)
1494 op0
= copy_to_reg (op0
);
1495 op0
= gen_rtx_SUBREG (mode_for_size (BITS_PER_WORD
, MODE_INT
, 0),
1496 op0
, (offset
* UNITS_PER_WORD
));
1501 /* Now OFFSET is nonzero only for memory operands. */
1502 ext_mode
= mode_for_extraction (unsignedp
? EP_extzv
: EP_extv
, 0);
1503 icode
= unsignedp
? CODE_FOR_extzv
: CODE_FOR_extv
;
1504 if (ext_mode
!= MAX_MACHINE_MODE
1506 && GET_MODE_BITSIZE (ext_mode
) >= bitsize
1507 /* If op0 is a register, we need it in EXT_MODE to make it
1508 acceptable to the format of ext(z)v. */
1509 && !(GET_CODE (op0
) == SUBREG
&& GET_MODE (op0
) != ext_mode
)
1510 && !((REG_P (op0
) || GET_CODE (op0
) == SUBREG
)
1511 && (bitsize
+ bitpos
> GET_MODE_BITSIZE (ext_mode
)))
1512 && check_predicate_volatile_ok (icode
, 1, op0
, GET_MODE (op0
)))
1514 unsigned HOST_WIDE_INT xbitpos
= bitpos
, xoffset
= offset
;
1515 rtx bitsize_rtx
, bitpos_rtx
;
1516 rtx last
= get_last_insn ();
1518 rtx xtarget
= target
;
1519 rtx xspec_target
= target
;
1520 rtx xspec_target_subreg
= 0;
1523 /* If op0 is a register, we need it in EXT_MODE to make it
1524 acceptable to the format of ext(z)v. */
1525 if (REG_P (xop0
) && GET_MODE (xop0
) != ext_mode
)
1526 xop0
= gen_rtx_SUBREG (ext_mode
, xop0
, 0);
1528 /* Get ref to first byte containing part of the field. */
1529 xop0
= adjust_address (xop0
, byte_mode
, xoffset
);
1531 /* On big-endian machines, we count bits from the most significant.
1532 If the bit field insn does not, we must invert. */
1533 if (BITS_BIG_ENDIAN
!= BYTES_BIG_ENDIAN
)
1534 xbitpos
= unit
- bitsize
- xbitpos
;
1536 /* Now convert from counting within UNIT to counting in EXT_MODE. */
1537 if (BITS_BIG_ENDIAN
&& !MEM_P (xop0
))
1538 xbitpos
+= GET_MODE_BITSIZE (ext_mode
) - unit
;
1540 unit
= GET_MODE_BITSIZE (ext_mode
);
1543 xtarget
= xspec_target
= gen_reg_rtx (tmode
);
1545 if (GET_MODE (xtarget
) != ext_mode
)
1547 /* Don't use LHS paradoxical subreg if explicit truncation is needed
1548 between the mode of the extraction (word_mode) and the target
1549 mode. Instead, create a temporary and use convert_move to set
1552 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (xtarget
)),
1553 GET_MODE_BITSIZE (ext_mode
)))
1555 xtarget
= gen_lowpart (ext_mode
, xtarget
);
1556 if (GET_MODE_SIZE (ext_mode
)
1557 > GET_MODE_SIZE (GET_MODE (xspec_target
)))
1558 xspec_target_subreg
= xtarget
;
1561 xtarget
= gen_reg_rtx (ext_mode
);
1564 /* If this machine's ext(z)v insists on a register target,
1565 make sure we have one. */
1566 if (!insn_data
[(int) icode
].operand
[0].predicate (xtarget
, ext_mode
))
1567 xtarget
= gen_reg_rtx (ext_mode
);
1569 bitsize_rtx
= GEN_INT (bitsize
);
1570 bitpos_rtx
= GEN_INT (xbitpos
);
1573 ? gen_extzv (xtarget
, xop0
, bitsize_rtx
, bitpos_rtx
)
1574 : gen_extv (xtarget
, xop0
, bitsize_rtx
, bitpos_rtx
));
1578 if (xtarget
== xspec_target
)
1580 if (xtarget
== xspec_target_subreg
)
1581 return xspec_target
;
1582 return convert_extracted_bit_field (xtarget
, mode
, tmode
, unsignedp
);
1584 delete_insns_since (last
);
1587 /* If OP0 is a memory, try copying it to a register and seeing if a
1588 cheap register alternative is available. */
1589 if (ext_mode
!= MAX_MACHINE_MODE
&& MEM_P (op0
))
1591 enum machine_mode bestmode
;
1593 /* Get the mode to use for inserting into this field. If
1594 OP0 is BLKmode, get the smallest mode consistent with the
1595 alignment. If OP0 is a non-BLKmode object that is no
1596 wider than EXT_MODE, use its mode. Otherwise, use the
1597 smallest mode containing the field. */
1599 if (GET_MODE (op0
) == BLKmode
1600 || (ext_mode
!= MAX_MACHINE_MODE
1601 && GET_MODE_SIZE (GET_MODE (op0
)) > GET_MODE_SIZE (ext_mode
)))
1602 bestmode
= get_best_mode (bitsize
, bitnum
, MEM_ALIGN (op0
),
1603 (ext_mode
== MAX_MACHINE_MODE
1604 ? VOIDmode
: ext_mode
),
1605 MEM_VOLATILE_P (op0
));
1607 bestmode
= GET_MODE (op0
);
1609 if (bestmode
!= VOIDmode
1610 && !(SLOW_UNALIGNED_ACCESS (bestmode
, MEM_ALIGN (op0
))
1611 && GET_MODE_BITSIZE (bestmode
) > MEM_ALIGN (op0
)))
1613 unsigned HOST_WIDE_INT xoffset
, xbitpos
;
1615 /* Compute the offset as a multiple of this unit,
1616 counting in bytes. */
1617 unit
= GET_MODE_BITSIZE (bestmode
);
1618 xoffset
= (bitnum
/ unit
) * GET_MODE_SIZE (bestmode
);
1619 xbitpos
= bitnum
% unit
;
1621 /* Make sure the register is big enough for the whole field. */
1622 if (xoffset
* BITS_PER_UNIT
+ unit
1623 >= offset
* BITS_PER_UNIT
+ bitsize
)
1625 rtx last
, result
, xop0
;
1627 last
= get_last_insn ();
1629 /* Fetch it to a register in that size. */
1630 xop0
= adjust_address (op0
, bestmode
, xoffset
);
1631 xop0
= force_reg (bestmode
, xop0
);
1632 result
= extract_bit_field_1 (xop0
, bitsize
, xbitpos
,
1634 mode
, tmode
, false);
1638 delete_insns_since (last
);
1646 target
= extract_fixed_bit_field (int_mode
, op0
, offset
, bitsize
,
1647 bitpos
, target
, unsignedp
);
1648 return convert_extracted_bit_field (target
, mode
, tmode
, unsignedp
);
1651 /* Generate code to extract a byte-field from STR_RTX
1652 containing BITSIZE bits, starting at BITNUM,
1653 and put it in TARGET if possible (if TARGET is nonzero).
1654 Regardless of TARGET, we return the rtx for where the value is placed.
1656 STR_RTX is the structure containing the byte (a REG or MEM).
1657 UNSIGNEDP is nonzero if this is an unsigned bit field.
1658 MODE is the natural mode of the field value once extracted.
1659 TMODE is the mode the caller would like the value to have;
1660 but the value may be returned with type MODE instead.
1662 If a TARGET is specified and we can store in it at no extra cost,
1663 we do so, and return TARGET.
1664 Otherwise, we return a REG of mode TMODE or MODE, with TMODE preferred
1665 if they are equally easy. */
1668 extract_bit_field (rtx str_rtx
, unsigned HOST_WIDE_INT bitsize
,
1669 unsigned HOST_WIDE_INT bitnum
, int unsignedp
, rtx target
,
1670 enum machine_mode mode
, enum machine_mode tmode
)
1672 return extract_bit_field_1 (str_rtx
, bitsize
, bitnum
, unsignedp
,
1673 target
, mode
, tmode
, true);
1676 /* Extract a bit field using shifts and boolean operations
1677 Returns an rtx to represent the value.
1678 OP0 addresses a register (word) or memory (byte).
1679 BITPOS says which bit within the word or byte the bit field starts in.
1680 OFFSET says how many bytes farther the bit field starts;
1681 it is 0 if OP0 is a register.
1682 BITSIZE says how many bits long the bit field is.
1683 (If OP0 is a register, it may be narrower than a full word,
1684 but BITPOS still counts within a full word,
1685 which is significant on bigendian machines.)
1687 UNSIGNEDP is nonzero for an unsigned bit field (don't sign-extend value).
1688 If TARGET is nonzero, attempts to store the value there
1689 and return TARGET, but this is not guaranteed.
1690 If TARGET is not used, create a pseudo-reg of mode TMODE for the value. */
1693 extract_fixed_bit_field (enum machine_mode tmode
, rtx op0
,
1694 unsigned HOST_WIDE_INT offset
,
1695 unsigned HOST_WIDE_INT bitsize
,
1696 unsigned HOST_WIDE_INT bitpos
, rtx target
,
1699 unsigned int total_bits
= BITS_PER_WORD
;
1700 enum machine_mode mode
;
1702 if (GET_CODE (op0
) == SUBREG
|| REG_P (op0
))
1704 /* Special treatment for a bit field split across two registers. */
1705 if (bitsize
+ bitpos
> BITS_PER_WORD
)
1706 return extract_split_bit_field (op0
, bitsize
, bitpos
, unsignedp
);
1710 /* Get the proper mode to use for this field. We want a mode that
1711 includes the entire field. If such a mode would be larger than
1712 a word, we won't be doing the extraction the normal way. */
1714 mode
= get_best_mode (bitsize
, bitpos
+ offset
* BITS_PER_UNIT
,
1715 MEM_ALIGN (op0
), word_mode
, MEM_VOLATILE_P (op0
));
1717 if (mode
== VOIDmode
)
1718 /* The only way this should occur is if the field spans word
1720 return extract_split_bit_field (op0
, bitsize
,
1721 bitpos
+ offset
* BITS_PER_UNIT
,
1724 total_bits
= GET_MODE_BITSIZE (mode
);
1726 /* Make sure bitpos is valid for the chosen mode. Adjust BITPOS to
1727 be in the range 0 to total_bits-1, and put any excess bytes in
1729 if (bitpos
>= total_bits
)
1731 offset
+= (bitpos
/ total_bits
) * (total_bits
/ BITS_PER_UNIT
);
1732 bitpos
-= ((bitpos
/ total_bits
) * (total_bits
/ BITS_PER_UNIT
)
1736 /* Get ref to an aligned byte, halfword, or word containing the field.
1737 Adjust BITPOS to be position within a word,
1738 and OFFSET to be the offset of that word.
1739 Then alter OP0 to refer to that word. */
1740 bitpos
+= (offset
% (total_bits
/ BITS_PER_UNIT
)) * BITS_PER_UNIT
;
1741 offset
-= (offset
% (total_bits
/ BITS_PER_UNIT
));
1742 op0
= adjust_address (op0
, mode
, offset
);
1745 mode
= GET_MODE (op0
);
1747 if (BYTES_BIG_ENDIAN
)
1748 /* BITPOS is the distance between our msb and that of OP0.
1749 Convert it to the distance from the lsb. */
1750 bitpos
= total_bits
- bitsize
- bitpos
;
1752 /* Now BITPOS is always the distance between the field's lsb and that of OP0.
1753 We have reduced the big-endian case to the little-endian case. */
1759 /* If the field does not already start at the lsb,
1760 shift it so it does. */
1761 tree amount
= build_int_cst (NULL_TREE
, bitpos
);
1762 /* Maybe propagate the target for the shift. */
1763 /* But not if we will return it--could confuse integrate.c. */
1764 rtx subtarget
= (target
!= 0 && REG_P (target
) ? target
: 0);
1765 if (tmode
!= mode
) subtarget
= 0;
1766 op0
= expand_shift (RSHIFT_EXPR
, mode
, op0
, amount
, subtarget
, 1);
1768 /* Convert the value to the desired mode. */
1770 op0
= convert_to_mode (tmode
, op0
, 1);
1772 /* Unless the msb of the field used to be the msb when we shifted,
1773 mask out the upper bits. */
1775 if (GET_MODE_BITSIZE (mode
) != bitpos
+ bitsize
)
1776 return expand_binop (GET_MODE (op0
), and_optab
, op0
,
1777 mask_rtx (GET_MODE (op0
), 0, bitsize
, 0),
1778 target
, 1, OPTAB_LIB_WIDEN
);
1782 /* To extract a signed bit-field, first shift its msb to the msb of the word,
1783 then arithmetic-shift its lsb to the lsb of the word. */
1784 op0
= force_reg (mode
, op0
);
1788 /* Find the narrowest integer mode that contains the field. */
1790 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
1791 mode
= GET_MODE_WIDER_MODE (mode
))
1792 if (GET_MODE_BITSIZE (mode
) >= bitsize
+ bitpos
)
1794 op0
= convert_to_mode (mode
, op0
, 0);
1798 if (GET_MODE_BITSIZE (mode
) != (bitsize
+ bitpos
))
1801 = build_int_cst (NULL_TREE
,
1802 GET_MODE_BITSIZE (mode
) - (bitsize
+ bitpos
));
1803 /* Maybe propagate the target for the shift. */
1804 rtx subtarget
= (target
!= 0 && REG_P (target
) ? target
: 0);
1805 op0
= expand_shift (LSHIFT_EXPR
, mode
, op0
, amount
, subtarget
, 1);
1808 return expand_shift (RSHIFT_EXPR
, mode
, op0
,
1809 build_int_cst (NULL_TREE
,
1810 GET_MODE_BITSIZE (mode
) - bitsize
),
1814 /* Return a constant integer (CONST_INT or CONST_DOUBLE) mask value
1815 of mode MODE with BITSIZE ones followed by BITPOS zeros, or the
1816 complement of that if COMPLEMENT. The mask is truncated if
1817 necessary to the width of mode MODE. The mask is zero-extended if
1818 BITSIZE+BITPOS is too small for MODE. */
1821 mask_rtx (enum machine_mode mode
, int bitpos
, int bitsize
, int complement
)
1823 HOST_WIDE_INT masklow
, maskhigh
;
1827 else if (bitpos
< HOST_BITS_PER_WIDE_INT
)
1828 masklow
= (HOST_WIDE_INT
) -1 << bitpos
;
1832 if (bitpos
+ bitsize
< HOST_BITS_PER_WIDE_INT
)
1833 masklow
&= ((unsigned HOST_WIDE_INT
) -1
1834 >> (HOST_BITS_PER_WIDE_INT
- bitpos
- bitsize
));
1836 if (bitpos
<= HOST_BITS_PER_WIDE_INT
)
1839 maskhigh
= (HOST_WIDE_INT
) -1 << (bitpos
- HOST_BITS_PER_WIDE_INT
);
1843 else if (bitpos
+ bitsize
> HOST_BITS_PER_WIDE_INT
)
1844 maskhigh
&= ((unsigned HOST_WIDE_INT
) -1
1845 >> (2 * HOST_BITS_PER_WIDE_INT
- bitpos
- bitsize
));
1851 maskhigh
= ~maskhigh
;
1855 return immed_double_const (masklow
, maskhigh
, mode
);
1858 /* Return a constant integer (CONST_INT or CONST_DOUBLE) rtx with the value
1859 VALUE truncated to BITSIZE bits and then shifted left BITPOS bits. */
1862 lshift_value (enum machine_mode mode
, rtx value
, int bitpos
, int bitsize
)
1864 unsigned HOST_WIDE_INT v
= INTVAL (value
);
1865 HOST_WIDE_INT low
, high
;
1867 if (bitsize
< HOST_BITS_PER_WIDE_INT
)
1868 v
&= ~((HOST_WIDE_INT
) -1 << bitsize
);
1870 if (bitpos
< HOST_BITS_PER_WIDE_INT
)
1873 high
= (bitpos
> 0 ? (v
>> (HOST_BITS_PER_WIDE_INT
- bitpos
)) : 0);
1878 high
= v
<< (bitpos
- HOST_BITS_PER_WIDE_INT
);
1881 return immed_double_const (low
, high
, mode
);
1884 /* Extract a bit field that is split across two words
1885 and return an RTX for the result.
1887 OP0 is the REG, SUBREG or MEM rtx for the first of the two words.
1888 BITSIZE is the field width; BITPOS, position of its first bit, in the word.
1889 UNSIGNEDP is 1 if should zero-extend the contents; else sign-extend. */
1892 extract_split_bit_field (rtx op0
, unsigned HOST_WIDE_INT bitsize
,
1893 unsigned HOST_WIDE_INT bitpos
, int unsignedp
)
1896 unsigned int bitsdone
= 0;
1897 rtx result
= NULL_RTX
;
1900 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
1902 if (REG_P (op0
) || GET_CODE (op0
) == SUBREG
)
1903 unit
= BITS_PER_WORD
;
1905 unit
= MIN (MEM_ALIGN (op0
), BITS_PER_WORD
);
1907 while (bitsdone
< bitsize
)
1909 unsigned HOST_WIDE_INT thissize
;
1911 unsigned HOST_WIDE_INT thispos
;
1912 unsigned HOST_WIDE_INT offset
;
1914 offset
= (bitpos
+ bitsdone
) / unit
;
1915 thispos
= (bitpos
+ bitsdone
) % unit
;
1917 /* THISSIZE must not overrun a word boundary. Otherwise,
1918 extract_fixed_bit_field will call us again, and we will mutually
1920 thissize
= MIN (bitsize
- bitsdone
, BITS_PER_WORD
);
1921 thissize
= MIN (thissize
, unit
- thispos
);
1923 /* If OP0 is a register, then handle OFFSET here.
1925 When handling multiword bitfields, extract_bit_field may pass
1926 down a word_mode SUBREG of a larger REG for a bitfield that actually
1927 crosses a word boundary. Thus, for a SUBREG, we must find
1928 the current word starting from the base register. */
1929 if (GET_CODE (op0
) == SUBREG
)
1931 int word_offset
= (SUBREG_BYTE (op0
) / UNITS_PER_WORD
) + offset
;
1932 word
= operand_subword_force (SUBREG_REG (op0
), word_offset
,
1933 GET_MODE (SUBREG_REG (op0
)));
1936 else if (REG_P (op0
))
1938 word
= operand_subword_force (op0
, offset
, GET_MODE (op0
));
1944 /* Extract the parts in bit-counting order,
1945 whose meaning is determined by BYTES_PER_UNIT.
1946 OFFSET is in UNITs, and UNIT is in bits.
1947 extract_fixed_bit_field wants offset in bytes. */
1948 part
= extract_fixed_bit_field (word_mode
, word
,
1949 offset
* unit
/ BITS_PER_UNIT
,
1950 thissize
, thispos
, 0, 1);
1951 bitsdone
+= thissize
;
1953 /* Shift this part into place for the result. */
1954 if (BYTES_BIG_ENDIAN
)
1956 if (bitsize
!= bitsdone
)
1957 part
= expand_shift (LSHIFT_EXPR
, word_mode
, part
,
1958 build_int_cst (NULL_TREE
, bitsize
- bitsdone
),
1963 if (bitsdone
!= thissize
)
1964 part
= expand_shift (LSHIFT_EXPR
, word_mode
, part
,
1965 build_int_cst (NULL_TREE
,
1966 bitsdone
- thissize
), 0, 1);
1972 /* Combine the parts with bitwise or. This works
1973 because we extracted each part as an unsigned bit field. */
1974 result
= expand_binop (word_mode
, ior_optab
, part
, result
, NULL_RTX
, 1,
1980 /* Unsigned bit field: we are done. */
1983 /* Signed bit field: sign-extend with two arithmetic shifts. */
1984 result
= expand_shift (LSHIFT_EXPR
, word_mode
, result
,
1985 build_int_cst (NULL_TREE
, BITS_PER_WORD
- bitsize
),
1987 return expand_shift (RSHIFT_EXPR
, word_mode
, result
,
1988 build_int_cst (NULL_TREE
, BITS_PER_WORD
- bitsize
),
1992 /* Try to read the low bits of SRC as an rvalue of mode MODE, preserving
1993 the bit pattern. SRC_MODE is the mode of SRC; if this is smaller than
1994 MODE, fill the upper bits with zeros. Fail if the layout of either
1995 mode is unknown (as for CC modes) or if the extraction would involve
1996 unprofitable mode punning. Return the value on success, otherwise
1999 This is different from gen_lowpart* in these respects:
2001 - the returned value must always be considered an rvalue
2003 - when MODE is wider than SRC_MODE, the extraction involves
2006 - when MODE is smaller than SRC_MODE, the extraction involves
2007 a truncation (and is thus subject to TRULY_NOOP_TRUNCATION).
2009 In other words, this routine performs a computation, whereas the
2010 gen_lowpart* routines are conceptually lvalue or rvalue subreg
2014 extract_low_bits (enum machine_mode mode
, enum machine_mode src_mode
, rtx src
)
2016 enum machine_mode int_mode
, src_int_mode
;
2018 if (mode
== src_mode
)
2021 if (CONSTANT_P (src
))
2023 /* simplify_gen_subreg can't be used here, as if simplify_subreg
2024 fails, it will happily create (subreg (symbol_ref)) or similar
2026 unsigned int byte
= subreg_lowpart_offset (mode
, src_mode
);
2027 rtx ret
= simplify_subreg (mode
, src
, src_mode
, byte
);
2031 if (GET_MODE (src
) == VOIDmode
2032 || !validate_subreg (mode
, src_mode
, src
, byte
))
2035 src
= force_reg (GET_MODE (src
), src
);
2036 return gen_rtx_SUBREG (mode
, src
, byte
);
2039 if (GET_MODE_CLASS (mode
) == MODE_CC
|| GET_MODE_CLASS (src_mode
) == MODE_CC
)
2042 if (GET_MODE_BITSIZE (mode
) == GET_MODE_BITSIZE (src_mode
)
2043 && MODES_TIEABLE_P (mode
, src_mode
))
2045 rtx x
= gen_lowpart_common (mode
, src
);
2050 src_int_mode
= int_mode_for_mode (src_mode
);
2051 int_mode
= int_mode_for_mode (mode
);
2052 if (src_int_mode
== BLKmode
|| int_mode
== BLKmode
)
2055 if (!MODES_TIEABLE_P (src_int_mode
, src_mode
))
2057 if (!MODES_TIEABLE_P (int_mode
, mode
))
2060 src
= gen_lowpart (src_int_mode
, src
);
2061 src
= convert_modes (int_mode
, src_int_mode
, src
, true);
2062 src
= gen_lowpart (mode
, src
);
2066 /* Add INC into TARGET. */
2069 expand_inc (rtx target
, rtx inc
)
2071 rtx value
= expand_binop (GET_MODE (target
), add_optab
,
2073 target
, 0, OPTAB_LIB_WIDEN
);
2074 if (value
!= target
)
2075 emit_move_insn (target
, value
);
2078 /* Subtract DEC from TARGET. */
2081 expand_dec (rtx target
, rtx dec
)
2083 rtx value
= expand_binop (GET_MODE (target
), sub_optab
,
2085 target
, 0, OPTAB_LIB_WIDEN
);
2086 if (value
!= target
)
2087 emit_move_insn (target
, value
);
2090 /* Output a shift instruction for expression code CODE,
2091 with SHIFTED being the rtx for the value to shift,
2092 and AMOUNT the tree for the amount to shift by.
2093 Store the result in the rtx TARGET, if that is convenient.
2094 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2095 Return the rtx for where the value is. */
2098 expand_shift (enum tree_code code
, enum machine_mode mode
, rtx shifted
,
2099 tree amount
, rtx target
, int unsignedp
)
2102 int left
= (code
== LSHIFT_EXPR
|| code
== LROTATE_EXPR
);
2103 int rotate
= (code
== LROTATE_EXPR
|| code
== RROTATE_EXPR
);
2104 optab lshift_optab
= ashl_optab
;
2105 optab rshift_arith_optab
= ashr_optab
;
2106 optab rshift_uns_optab
= lshr_optab
;
2107 optab lrotate_optab
= rotl_optab
;
2108 optab rrotate_optab
= rotr_optab
;
2109 enum machine_mode op1_mode
;
2111 bool speed
= optimize_insn_for_speed_p ();
2113 op1
= expand_normal (amount
);
2114 op1_mode
= GET_MODE (op1
);
2116 /* Determine whether the shift/rotate amount is a vector, or scalar. If the
2117 shift amount is a vector, use the vector/vector shift patterns. */
2118 if (VECTOR_MODE_P (mode
) && VECTOR_MODE_P (op1_mode
))
2120 lshift_optab
= vashl_optab
;
2121 rshift_arith_optab
= vashr_optab
;
2122 rshift_uns_optab
= vlshr_optab
;
2123 lrotate_optab
= vrotl_optab
;
2124 rrotate_optab
= vrotr_optab
;
2127 /* Previously detected shift-counts computed by NEGATE_EXPR
2128 and shifted in the other direction; but that does not work
2131 if (SHIFT_COUNT_TRUNCATED
)
2133 if (GET_CODE (op1
) == CONST_INT
2134 && ((unsigned HOST_WIDE_INT
) INTVAL (op1
) >=
2135 (unsigned HOST_WIDE_INT
) GET_MODE_BITSIZE (mode
)))
2136 op1
= GEN_INT ((unsigned HOST_WIDE_INT
) INTVAL (op1
)
2137 % GET_MODE_BITSIZE (mode
));
2138 else if (GET_CODE (op1
) == SUBREG
2139 && subreg_lowpart_p (op1
)
2140 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (op1
))))
2141 op1
= SUBREG_REG (op1
);
2144 if (op1
== const0_rtx
)
2147 /* Check whether its cheaper to implement a left shift by a constant
2148 bit count by a sequence of additions. */
2149 if (code
== LSHIFT_EXPR
2150 && GET_CODE (op1
) == CONST_INT
2152 && INTVAL (op1
) < GET_MODE_BITSIZE (mode
)
2153 && INTVAL (op1
) < MAX_BITS_PER_WORD
2154 && shift_cost
[speed
][mode
][INTVAL (op1
)] > INTVAL (op1
) * add_cost
[speed
][mode
]
2155 && shift_cost
[speed
][mode
][INTVAL (op1
)] != MAX_COST
)
2158 for (i
= 0; i
< INTVAL (op1
); i
++)
2160 temp
= force_reg (mode
, shifted
);
2161 shifted
= expand_binop (mode
, add_optab
, temp
, temp
, NULL_RTX
,
2162 unsignedp
, OPTAB_LIB_WIDEN
);
2167 for (attempt
= 0; temp
== 0 && attempt
< 3; attempt
++)
2169 enum optab_methods methods
;
2172 methods
= OPTAB_DIRECT
;
2173 else if (attempt
== 1)
2174 methods
= OPTAB_WIDEN
;
2176 methods
= OPTAB_LIB_WIDEN
;
2180 /* Widening does not work for rotation. */
2181 if (methods
== OPTAB_WIDEN
)
2183 else if (methods
== OPTAB_LIB_WIDEN
)
2185 /* If we have been unable to open-code this by a rotation,
2186 do it as the IOR of two shifts. I.e., to rotate A
2187 by N bits, compute (A << N) | ((unsigned) A >> (C - N))
2188 where C is the bitsize of A.
2190 It is theoretically possible that the target machine might
2191 not be able to perform either shift and hence we would
2192 be making two libcalls rather than just the one for the
2193 shift (similarly if IOR could not be done). We will allow
2194 this extremely unlikely lossage to avoid complicating the
2197 rtx subtarget
= target
== shifted
? 0 : target
;
2198 tree new_amount
, other_amount
;
2200 tree type
= TREE_TYPE (amount
);
2201 if (GET_MODE (op1
) != TYPE_MODE (type
)
2202 && GET_MODE (op1
) != VOIDmode
)
2203 op1
= convert_to_mode (TYPE_MODE (type
), op1
, 1);
2204 new_amount
= make_tree (type
, op1
);
2206 = fold_build2 (MINUS_EXPR
, type
,
2207 build_int_cst (type
, GET_MODE_BITSIZE (mode
)),
2210 shifted
= force_reg (mode
, shifted
);
2212 temp
= expand_shift (left
? LSHIFT_EXPR
: RSHIFT_EXPR
,
2213 mode
, shifted
, new_amount
, 0, 1);
2214 temp1
= expand_shift (left
? RSHIFT_EXPR
: LSHIFT_EXPR
,
2215 mode
, shifted
, other_amount
, subtarget
, 1);
2216 return expand_binop (mode
, ior_optab
, temp
, temp1
, target
,
2217 unsignedp
, methods
);
2220 temp
= expand_binop (mode
,
2221 left
? lrotate_optab
: rrotate_optab
,
2222 shifted
, op1
, target
, unsignedp
, methods
);
2225 temp
= expand_binop (mode
,
2226 left
? lshift_optab
: rshift_uns_optab
,
2227 shifted
, op1
, target
, unsignedp
, methods
);
2229 /* Do arithmetic shifts.
2230 Also, if we are going to widen the operand, we can just as well
2231 use an arithmetic right-shift instead of a logical one. */
2232 if (temp
== 0 && ! rotate
2233 && (! unsignedp
|| (! left
&& methods
== OPTAB_WIDEN
)))
2235 enum optab_methods methods1
= methods
;
2237 /* If trying to widen a log shift to an arithmetic shift,
2238 don't accept an arithmetic shift of the same size. */
2240 methods1
= OPTAB_MUST_WIDEN
;
2242 /* Arithmetic shift */
2244 temp
= expand_binop (mode
,
2245 left
? lshift_optab
: rshift_arith_optab
,
2246 shifted
, op1
, target
, unsignedp
, methods1
);
2249 /* We used to try extzv here for logical right shifts, but that was
2250 only useful for one machine, the VAX, and caused poor code
2251 generation there for lshrdi3, so the code was deleted and a
2252 define_expand for lshrsi3 was added to vax.md. */
2272 /* This structure holds the "cost" of a multiply sequence. The
2273 "cost" field holds the total rtx_cost of every operator in the
2274 synthetic multiplication sequence, hence cost(a op b) is defined
2275 as rtx_cost(op) + cost(a) + cost(b), where cost(leaf) is zero.
2276 The "latency" field holds the minimum possible latency of the
2277 synthetic multiply, on a hypothetical infinitely parallel CPU.
2278 This is the critical path, or the maximum height, of the expression
2279 tree which is the sum of rtx_costs on the most expensive path from
2280 any leaf to the root. Hence latency(a op b) is defined as zero for
2281 leaves and rtx_cost(op) + max(latency(a), latency(b)) otherwise. */
2284 short cost
; /* Total rtx_cost of the multiplication sequence. */
2285 short latency
; /* The latency of the multiplication sequence. */
2288 /* This macro is used to compare a pointer to a mult_cost against an
2289 single integer "rtx_cost" value. This is equivalent to the macro
2290 CHEAPER_MULT_COST(X,Z) where Z = {Y,Y}. */
2291 #define MULT_COST_LESS(X,Y) ((X)->cost < (Y) \
2292 || ((X)->cost == (Y) && (X)->latency < (Y)))
2294 /* This macro is used to compare two pointers to mult_costs against
2295 each other. The macro returns true if X is cheaper than Y.
2296 Currently, the cheaper of two mult_costs is the one with the
2297 lower "cost". If "cost"s are tied, the lower latency is cheaper. */
2298 #define CHEAPER_MULT_COST(X,Y) ((X)->cost < (Y)->cost \
2299 || ((X)->cost == (Y)->cost \
2300 && (X)->latency < (Y)->latency))
2302 /* This structure records a sequence of operations.
2303 `ops' is the number of operations recorded.
2304 `cost' is their total cost.
2305 The operations are stored in `op' and the corresponding
2306 logarithms of the integer coefficients in `log'.
2308 These are the operations:
2309 alg_zero total := 0;
2310 alg_m total := multiplicand;
2311 alg_shift total := total * coeff
2312 alg_add_t_m2 total := total + multiplicand * coeff;
2313 alg_sub_t_m2 total := total - multiplicand * coeff;
2314 alg_add_factor total := total * coeff + total;
2315 alg_sub_factor total := total * coeff - total;
2316 alg_add_t2_m total := total * coeff + multiplicand;
2317 alg_sub_t2_m total := total * coeff - multiplicand;
2319 The first operand must be either alg_zero or alg_m. */
2323 struct mult_cost cost
;
2325 /* The size of the OP and LOG fields are not directly related to the
2326 word size, but the worst-case algorithms will be if we have few
2327 consecutive ones or zeros, i.e., a multiplicand like 10101010101...
2328 In that case we will generate shift-by-2, add, shift-by-2, add,...,
2329 in total wordsize operations. */
2330 enum alg_code op
[MAX_BITS_PER_WORD
];
2331 char log
[MAX_BITS_PER_WORD
];
2334 /* The entry for our multiplication cache/hash table. */
2335 struct alg_hash_entry
{
2336 /* The number we are multiplying by. */
2337 unsigned HOST_WIDE_INT t
;
2339 /* The mode in which we are multiplying something by T. */
2340 enum machine_mode mode
;
2342 /* The best multiplication algorithm for t. */
2345 /* The cost of multiplication if ALG_CODE is not alg_impossible.
2346 Otherwise, the cost within which multiplication by T is
2348 struct mult_cost cost
;
2350 /* OPtimized for speed? */
2354 /* The number of cache/hash entries. */
2355 #if HOST_BITS_PER_WIDE_INT == 64
2356 #define NUM_ALG_HASH_ENTRIES 1031
2358 #define NUM_ALG_HASH_ENTRIES 307
2361 /* Each entry of ALG_HASH caches alg_code for some integer. This is
2362 actually a hash table. If we have a collision, that the older
2363 entry is kicked out. */
2364 static struct alg_hash_entry alg_hash
[NUM_ALG_HASH_ENTRIES
];
2366 /* Indicates the type of fixup needed after a constant multiplication.
2367 BASIC_VARIANT means no fixup is needed, NEGATE_VARIANT means that
2368 the result should be negated, and ADD_VARIANT means that the
2369 multiplicand should be added to the result. */
2370 enum mult_variant
{basic_variant
, negate_variant
, add_variant
};
2372 static void synth_mult (struct algorithm
*, unsigned HOST_WIDE_INT
,
2373 const struct mult_cost
*, enum machine_mode mode
);
2374 static bool choose_mult_variant (enum machine_mode
, HOST_WIDE_INT
,
2375 struct algorithm
*, enum mult_variant
*, int);
2376 static rtx
expand_mult_const (enum machine_mode
, rtx
, HOST_WIDE_INT
, rtx
,
2377 const struct algorithm
*, enum mult_variant
);
2378 static unsigned HOST_WIDE_INT
choose_multiplier (unsigned HOST_WIDE_INT
, int,
2379 int, rtx
*, int *, int *);
2380 static unsigned HOST_WIDE_INT
invert_mod2n (unsigned HOST_WIDE_INT
, int);
2381 static rtx
extract_high_half (enum machine_mode
, rtx
);
2382 static rtx
expand_mult_highpart (enum machine_mode
, rtx
, rtx
, rtx
, int, int);
2383 static rtx
expand_mult_highpart_optab (enum machine_mode
, rtx
, rtx
, rtx
,
2385 /* Compute and return the best algorithm for multiplying by T.
2386 The algorithm must cost less than cost_limit
2387 If retval.cost >= COST_LIMIT, no algorithm was found and all
2388 other field of the returned struct are undefined.
2389 MODE is the machine mode of the multiplication. */
2392 synth_mult (struct algorithm
*alg_out
, unsigned HOST_WIDE_INT t
,
2393 const struct mult_cost
*cost_limit
, enum machine_mode mode
)
2396 struct algorithm
*alg_in
, *best_alg
;
2397 struct mult_cost best_cost
;
2398 struct mult_cost new_limit
;
2399 int op_cost
, op_latency
;
2400 unsigned HOST_WIDE_INT q
;
2401 int maxm
= MIN (BITS_PER_WORD
, GET_MODE_BITSIZE (mode
));
2403 bool cache_hit
= false;
2404 enum alg_code cache_alg
= alg_zero
;
2405 bool speed
= optimize_insn_for_speed_p ();
2407 /* Indicate that no algorithm is yet found. If no algorithm
2408 is found, this value will be returned and indicate failure. */
2409 alg_out
->cost
.cost
= cost_limit
->cost
+ 1;
2410 alg_out
->cost
.latency
= cost_limit
->latency
+ 1;
2412 if (cost_limit
->cost
< 0
2413 || (cost_limit
->cost
== 0 && cost_limit
->latency
<= 0))
2416 /* Restrict the bits of "t" to the multiplication's mode. */
2417 t
&= GET_MODE_MASK (mode
);
2419 /* t == 1 can be done in zero cost. */
2423 alg_out
->cost
.cost
= 0;
2424 alg_out
->cost
.latency
= 0;
2425 alg_out
->op
[0] = alg_m
;
2429 /* t == 0 sometimes has a cost. If it does and it exceeds our limit,
2433 if (MULT_COST_LESS (cost_limit
, zero_cost
[speed
]))
2438 alg_out
->cost
.cost
= zero_cost
[speed
];
2439 alg_out
->cost
.latency
= zero_cost
[speed
];
2440 alg_out
->op
[0] = alg_zero
;
2445 /* We'll be needing a couple extra algorithm structures now. */
2447 alg_in
= XALLOCA (struct algorithm
);
2448 best_alg
= XALLOCA (struct algorithm
);
2449 best_cost
= *cost_limit
;
2451 /* Compute the hash index. */
2452 hash_index
= (t
^ (unsigned int) mode
^ (speed
* 256)) % NUM_ALG_HASH_ENTRIES
;
2454 /* See if we already know what to do for T. */
2455 if (alg_hash
[hash_index
].t
== t
2456 && alg_hash
[hash_index
].mode
== mode
2457 && alg_hash
[hash_index
].mode
== mode
2458 && alg_hash
[hash_index
].speed
== speed
2459 && alg_hash
[hash_index
].alg
!= alg_unknown
)
2461 cache_alg
= alg_hash
[hash_index
].alg
;
2463 if (cache_alg
== alg_impossible
)
2465 /* The cache tells us that it's impossible to synthesize
2466 multiplication by T within alg_hash[hash_index].cost. */
2467 if (!CHEAPER_MULT_COST (&alg_hash
[hash_index
].cost
, cost_limit
))
2468 /* COST_LIMIT is at least as restrictive as the one
2469 recorded in the hash table, in which case we have no
2470 hope of synthesizing a multiplication. Just
2474 /* If we get here, COST_LIMIT is less restrictive than the
2475 one recorded in the hash table, so we may be able to
2476 synthesize a multiplication. Proceed as if we didn't
2477 have the cache entry. */
2481 if (CHEAPER_MULT_COST (cost_limit
, &alg_hash
[hash_index
].cost
))
2482 /* The cached algorithm shows that this multiplication
2483 requires more cost than COST_LIMIT. Just return. This
2484 way, we don't clobber this cache entry with
2485 alg_impossible but retain useful information. */
2497 goto do_alg_addsub_t_m2
;
2499 case alg_add_factor
:
2500 case alg_sub_factor
:
2501 goto do_alg_addsub_factor
;
2504 goto do_alg_add_t2_m
;
2507 goto do_alg_sub_t2_m
;
2515 /* If we have a group of zero bits at the low-order part of T, try
2516 multiplying by the remaining bits and then doing a shift. */
2521 m
= floor_log2 (t
& -t
); /* m = number of low zero bits */
2525 /* The function expand_shift will choose between a shift and
2526 a sequence of additions, so the observed cost is given as
2527 MIN (m * add_cost[speed][mode], shift_cost[speed][mode][m]). */
2528 op_cost
= m
* add_cost
[speed
][mode
];
2529 if (shift_cost
[speed
][mode
][m
] < op_cost
)
2530 op_cost
= shift_cost
[speed
][mode
][m
];
2531 new_limit
.cost
= best_cost
.cost
- op_cost
;
2532 new_limit
.latency
= best_cost
.latency
- op_cost
;
2533 synth_mult (alg_in
, q
, &new_limit
, mode
);
2535 alg_in
->cost
.cost
+= op_cost
;
2536 alg_in
->cost
.latency
+= op_cost
;
2537 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2539 struct algorithm
*x
;
2540 best_cost
= alg_in
->cost
;
2541 x
= alg_in
, alg_in
= best_alg
, best_alg
= x
;
2542 best_alg
->log
[best_alg
->ops
] = m
;
2543 best_alg
->op
[best_alg
->ops
] = alg_shift
;
2550 /* If we have an odd number, add or subtract one. */
2553 unsigned HOST_WIDE_INT w
;
2556 for (w
= 1; (w
& t
) != 0; w
<<= 1)
2558 /* If T was -1, then W will be zero after the loop. This is another
2559 case where T ends with ...111. Handling this with (T + 1) and
2560 subtract 1 produces slightly better code and results in algorithm
2561 selection much faster than treating it like the ...0111 case
2565 /* Reject the case where t is 3.
2566 Thus we prefer addition in that case. */
2569 /* T ends with ...111. Multiply by (T + 1) and subtract 1. */
2571 op_cost
= add_cost
[speed
][mode
];
2572 new_limit
.cost
= best_cost
.cost
- op_cost
;
2573 new_limit
.latency
= best_cost
.latency
- op_cost
;
2574 synth_mult (alg_in
, t
+ 1, &new_limit
, mode
);
2576 alg_in
->cost
.cost
+= op_cost
;
2577 alg_in
->cost
.latency
+= op_cost
;
2578 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2580 struct algorithm
*x
;
2581 best_cost
= alg_in
->cost
;
2582 x
= alg_in
, alg_in
= best_alg
, best_alg
= x
;
2583 best_alg
->log
[best_alg
->ops
] = 0;
2584 best_alg
->op
[best_alg
->ops
] = alg_sub_t_m2
;
2589 /* T ends with ...01 or ...011. Multiply by (T - 1) and add 1. */
2591 op_cost
= add_cost
[speed
][mode
];
2592 new_limit
.cost
= best_cost
.cost
- op_cost
;
2593 new_limit
.latency
= best_cost
.latency
- op_cost
;
2594 synth_mult (alg_in
, t
- 1, &new_limit
, mode
);
2596 alg_in
->cost
.cost
+= op_cost
;
2597 alg_in
->cost
.latency
+= op_cost
;
2598 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2600 struct algorithm
*x
;
2601 best_cost
= alg_in
->cost
;
2602 x
= alg_in
, alg_in
= best_alg
, best_alg
= x
;
2603 best_alg
->log
[best_alg
->ops
] = 0;
2604 best_alg
->op
[best_alg
->ops
] = alg_add_t_m2
;
2611 /* Look for factors of t of the form
2612 t = q(2**m +- 1), 2 <= m <= floor(log2(t - 1)).
2613 If we find such a factor, we can multiply by t using an algorithm that
2614 multiplies by q, shift the result by m and add/subtract it to itself.
2616 We search for large factors first and loop down, even if large factors
2617 are less probable than small; if we find a large factor we will find a
2618 good sequence quickly, and therefore be able to prune (by decreasing
2619 COST_LIMIT) the search. */
2621 do_alg_addsub_factor
:
2622 for (m
= floor_log2 (t
- 1); m
>= 2; m
--)
2624 unsigned HOST_WIDE_INT d
;
2626 d
= ((unsigned HOST_WIDE_INT
) 1 << m
) + 1;
2627 if (t
% d
== 0 && t
> d
&& m
< maxm
2628 && (!cache_hit
|| cache_alg
== alg_add_factor
))
2630 /* If the target has a cheap shift-and-add instruction use
2631 that in preference to a shift insn followed by an add insn.
2632 Assume that the shift-and-add is "atomic" with a latency
2633 equal to its cost, otherwise assume that on superscalar
2634 hardware the shift may be executed concurrently with the
2635 earlier steps in the algorithm. */
2636 op_cost
= add_cost
[speed
][mode
] + shift_cost
[speed
][mode
][m
];
2637 if (shiftadd_cost
[speed
][mode
][m
] < op_cost
)
2639 op_cost
= shiftadd_cost
[speed
][mode
][m
];
2640 op_latency
= op_cost
;
2643 op_latency
= add_cost
[speed
][mode
];
2645 new_limit
.cost
= best_cost
.cost
- op_cost
;
2646 new_limit
.latency
= best_cost
.latency
- op_latency
;
2647 synth_mult (alg_in
, t
/ d
, &new_limit
, mode
);
2649 alg_in
->cost
.cost
+= op_cost
;
2650 alg_in
->cost
.latency
+= op_latency
;
2651 if (alg_in
->cost
.latency
< op_cost
)
2652 alg_in
->cost
.latency
= op_cost
;
2653 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2655 struct algorithm
*x
;
2656 best_cost
= alg_in
->cost
;
2657 x
= alg_in
, alg_in
= best_alg
, best_alg
= x
;
2658 best_alg
->log
[best_alg
->ops
] = m
;
2659 best_alg
->op
[best_alg
->ops
] = alg_add_factor
;
2661 /* Other factors will have been taken care of in the recursion. */
2665 d
= ((unsigned HOST_WIDE_INT
) 1 << m
) - 1;
2666 if (t
% d
== 0 && t
> d
&& m
< maxm
2667 && (!cache_hit
|| cache_alg
== alg_sub_factor
))
2669 /* If the target has a cheap shift-and-subtract insn use
2670 that in preference to a shift insn followed by a sub insn.
2671 Assume that the shift-and-sub is "atomic" with a latency
2672 equal to it's cost, otherwise assume that on superscalar
2673 hardware the shift may be executed concurrently with the
2674 earlier steps in the algorithm. */
2675 op_cost
= add_cost
[speed
][mode
] + shift_cost
[speed
][mode
][m
];
2676 if (shiftsub_cost
[speed
][mode
][m
] < op_cost
)
2678 op_cost
= shiftsub_cost
[speed
][mode
][m
];
2679 op_latency
= op_cost
;
2682 op_latency
= add_cost
[speed
][mode
];
2684 new_limit
.cost
= best_cost
.cost
- op_cost
;
2685 new_limit
.latency
= best_cost
.latency
- op_latency
;
2686 synth_mult (alg_in
, t
/ d
, &new_limit
, mode
);
2688 alg_in
->cost
.cost
+= op_cost
;
2689 alg_in
->cost
.latency
+= op_latency
;
2690 if (alg_in
->cost
.latency
< op_cost
)
2691 alg_in
->cost
.latency
= op_cost
;
2692 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2694 struct algorithm
*x
;
2695 best_cost
= alg_in
->cost
;
2696 x
= alg_in
, alg_in
= best_alg
, best_alg
= x
;
2697 best_alg
->log
[best_alg
->ops
] = m
;
2698 best_alg
->op
[best_alg
->ops
] = alg_sub_factor
;
2706 /* Try shift-and-add (load effective address) instructions,
2707 i.e. do a*3, a*5, a*9. */
2714 if (m
>= 0 && m
< maxm
)
2716 op_cost
= shiftadd_cost
[speed
][mode
][m
];
2717 new_limit
.cost
= best_cost
.cost
- op_cost
;
2718 new_limit
.latency
= best_cost
.latency
- op_cost
;
2719 synth_mult (alg_in
, (t
- 1) >> m
, &new_limit
, mode
);
2721 alg_in
->cost
.cost
+= op_cost
;
2722 alg_in
->cost
.latency
+= op_cost
;
2723 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2725 struct algorithm
*x
;
2726 best_cost
= alg_in
->cost
;
2727 x
= alg_in
, alg_in
= best_alg
, best_alg
= x
;
2728 best_alg
->log
[best_alg
->ops
] = m
;
2729 best_alg
->op
[best_alg
->ops
] = alg_add_t2_m
;
2739 if (m
>= 0 && m
< maxm
)
2741 op_cost
= shiftsub_cost
[speed
][mode
][m
];
2742 new_limit
.cost
= best_cost
.cost
- op_cost
;
2743 new_limit
.latency
= best_cost
.latency
- op_cost
;
2744 synth_mult (alg_in
, (t
+ 1) >> m
, &new_limit
, mode
);
2746 alg_in
->cost
.cost
+= op_cost
;
2747 alg_in
->cost
.latency
+= op_cost
;
2748 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2750 struct algorithm
*x
;
2751 best_cost
= alg_in
->cost
;
2752 x
= alg_in
, alg_in
= best_alg
, best_alg
= x
;
2753 best_alg
->log
[best_alg
->ops
] = m
;
2754 best_alg
->op
[best_alg
->ops
] = alg_sub_t2_m
;
2762 /* If best_cost has not decreased, we have not found any algorithm. */
2763 if (!CHEAPER_MULT_COST (&best_cost
, cost_limit
))
2765 /* We failed to find an algorithm. Record alg_impossible for
2766 this case (that is, <T, MODE, COST_LIMIT>) so that next time
2767 we are asked to find an algorithm for T within the same or
2768 lower COST_LIMIT, we can immediately return to the
2770 alg_hash
[hash_index
].t
= t
;
2771 alg_hash
[hash_index
].mode
= mode
;
2772 alg_hash
[hash_index
].speed
= speed
;
2773 alg_hash
[hash_index
].alg
= alg_impossible
;
2774 alg_hash
[hash_index
].cost
= *cost_limit
;
2778 /* Cache the result. */
2781 alg_hash
[hash_index
].t
= t
;
2782 alg_hash
[hash_index
].mode
= mode
;
2783 alg_hash
[hash_index
].speed
= speed
;
2784 alg_hash
[hash_index
].alg
= best_alg
->op
[best_alg
->ops
];
2785 alg_hash
[hash_index
].cost
.cost
= best_cost
.cost
;
2786 alg_hash
[hash_index
].cost
.latency
= best_cost
.latency
;
2789 /* If we are getting a too long sequence for `struct algorithm'
2790 to record, make this search fail. */
2791 if (best_alg
->ops
== MAX_BITS_PER_WORD
)
2794 /* Copy the algorithm from temporary space to the space at alg_out.
2795 We avoid using structure assignment because the majority of
2796 best_alg is normally undefined, and this is a critical function. */
2797 alg_out
->ops
= best_alg
->ops
+ 1;
2798 alg_out
->cost
= best_cost
;
2799 memcpy (alg_out
->op
, best_alg
->op
,
2800 alg_out
->ops
* sizeof *alg_out
->op
);
2801 memcpy (alg_out
->log
, best_alg
->log
,
2802 alg_out
->ops
* sizeof *alg_out
->log
);
2805 /* Find the cheapest way of multiplying a value of mode MODE by VAL.
2806 Try three variations:
2808 - a shift/add sequence based on VAL itself
2809 - a shift/add sequence based on -VAL, followed by a negation
2810 - a shift/add sequence based on VAL - 1, followed by an addition.
2812 Return true if the cheapest of these cost less than MULT_COST,
2813 describing the algorithm in *ALG and final fixup in *VARIANT. */
2816 choose_mult_variant (enum machine_mode mode
, HOST_WIDE_INT val
,
2817 struct algorithm
*alg
, enum mult_variant
*variant
,
2820 struct algorithm alg2
;
2821 struct mult_cost limit
;
2823 bool speed
= optimize_insn_for_speed_p ();
2825 /* Fail quickly for impossible bounds. */
2829 /* Ensure that mult_cost provides a reasonable upper bound.
2830 Any constant multiplication can be performed with less
2831 than 2 * bits additions. */
2832 op_cost
= 2 * GET_MODE_BITSIZE (mode
) * add_cost
[speed
][mode
];
2833 if (mult_cost
> op_cost
)
2834 mult_cost
= op_cost
;
2836 *variant
= basic_variant
;
2837 limit
.cost
= mult_cost
;
2838 limit
.latency
= mult_cost
;
2839 synth_mult (alg
, val
, &limit
, mode
);
2841 /* This works only if the inverted value actually fits in an
2843 if (HOST_BITS_PER_INT
>= GET_MODE_BITSIZE (mode
))
2845 op_cost
= neg_cost
[speed
][mode
];
2846 if (MULT_COST_LESS (&alg
->cost
, mult_cost
))
2848 limit
.cost
= alg
->cost
.cost
- op_cost
;
2849 limit
.latency
= alg
->cost
.latency
- op_cost
;
2853 limit
.cost
= mult_cost
- op_cost
;
2854 limit
.latency
= mult_cost
- op_cost
;
2857 synth_mult (&alg2
, -val
, &limit
, mode
);
2858 alg2
.cost
.cost
+= op_cost
;
2859 alg2
.cost
.latency
+= op_cost
;
2860 if (CHEAPER_MULT_COST (&alg2
.cost
, &alg
->cost
))
2861 *alg
= alg2
, *variant
= negate_variant
;
2864 /* This proves very useful for division-by-constant. */
2865 op_cost
= add_cost
[speed
][mode
];
2866 if (MULT_COST_LESS (&alg
->cost
, mult_cost
))
2868 limit
.cost
= alg
->cost
.cost
- op_cost
;
2869 limit
.latency
= alg
->cost
.latency
- op_cost
;
2873 limit
.cost
= mult_cost
- op_cost
;
2874 limit
.latency
= mult_cost
- op_cost
;
2877 synth_mult (&alg2
, val
- 1, &limit
, mode
);
2878 alg2
.cost
.cost
+= op_cost
;
2879 alg2
.cost
.latency
+= op_cost
;
2880 if (CHEAPER_MULT_COST (&alg2
.cost
, &alg
->cost
))
2881 *alg
= alg2
, *variant
= add_variant
;
2883 return MULT_COST_LESS (&alg
->cost
, mult_cost
);
2886 /* A subroutine of expand_mult, used for constant multiplications.
2887 Multiply OP0 by VAL in mode MODE, storing the result in TARGET if
2888 convenient. Use the shift/add sequence described by ALG and apply
2889 the final fixup specified by VARIANT. */
2892 expand_mult_const (enum machine_mode mode
, rtx op0
, HOST_WIDE_INT val
,
2893 rtx target
, const struct algorithm
*alg
,
2894 enum mult_variant variant
)
2896 HOST_WIDE_INT val_so_far
;
2897 rtx insn
, accum
, tem
;
2899 enum machine_mode nmode
;
2901 /* Avoid referencing memory over and over and invalid sharing
2903 op0
= force_reg (mode
, op0
);
2905 /* ACCUM starts out either as OP0 or as a zero, depending on
2906 the first operation. */
2908 if (alg
->op
[0] == alg_zero
)
2910 accum
= copy_to_mode_reg (mode
, const0_rtx
);
2913 else if (alg
->op
[0] == alg_m
)
2915 accum
= copy_to_mode_reg (mode
, op0
);
2921 for (opno
= 1; opno
< alg
->ops
; opno
++)
2923 int log
= alg
->log
[opno
];
2924 rtx shift_subtarget
= optimize
? 0 : accum
;
2926 = (opno
== alg
->ops
- 1 && target
!= 0 && variant
!= add_variant
2929 rtx accum_target
= optimize
? 0 : accum
;
2931 switch (alg
->op
[opno
])
2934 accum
= expand_shift (LSHIFT_EXPR
, mode
, accum
,
2935 build_int_cst (NULL_TREE
, log
),
2941 tem
= expand_shift (LSHIFT_EXPR
, mode
, op0
,
2942 build_int_cst (NULL_TREE
, log
),
2944 accum
= force_operand (gen_rtx_PLUS (mode
, accum
, tem
),
2945 add_target
? add_target
: accum_target
);
2946 val_so_far
+= (HOST_WIDE_INT
) 1 << log
;
2950 tem
= expand_shift (LSHIFT_EXPR
, mode
, op0
,
2951 build_int_cst (NULL_TREE
, log
),
2953 accum
= force_operand (gen_rtx_MINUS (mode
, accum
, tem
),
2954 add_target
? add_target
: accum_target
);
2955 val_so_far
-= (HOST_WIDE_INT
) 1 << log
;
2959 accum
= expand_shift (LSHIFT_EXPR
, mode
, accum
,
2960 build_int_cst (NULL_TREE
, log
),
2963 accum
= force_operand (gen_rtx_PLUS (mode
, accum
, op0
),
2964 add_target
? add_target
: accum_target
);
2965 val_so_far
= (val_so_far
<< log
) + 1;
2969 accum
= expand_shift (LSHIFT_EXPR
, mode
, accum
,
2970 build_int_cst (NULL_TREE
, log
),
2971 shift_subtarget
, 0);
2972 accum
= force_operand (gen_rtx_MINUS (mode
, accum
, op0
),
2973 add_target
? add_target
: accum_target
);
2974 val_so_far
= (val_so_far
<< log
) - 1;
2977 case alg_add_factor
:
2978 tem
= expand_shift (LSHIFT_EXPR
, mode
, accum
,
2979 build_int_cst (NULL_TREE
, log
),
2981 accum
= force_operand (gen_rtx_PLUS (mode
, accum
, tem
),
2982 add_target
? add_target
: accum_target
);
2983 val_so_far
+= val_so_far
<< log
;
2986 case alg_sub_factor
:
2987 tem
= expand_shift (LSHIFT_EXPR
, mode
, accum
,
2988 build_int_cst (NULL_TREE
, log
),
2990 accum
= force_operand (gen_rtx_MINUS (mode
, tem
, accum
),
2992 ? add_target
: (optimize
? 0 : tem
)));
2993 val_so_far
= (val_so_far
<< log
) - val_so_far
;
3000 /* Write a REG_EQUAL note on the last insn so that we can cse
3001 multiplication sequences. Note that if ACCUM is a SUBREG,
3002 we've set the inner register and must properly indicate
3005 tem
= op0
, nmode
= mode
;
3006 if (GET_CODE (accum
) == SUBREG
)
3008 nmode
= GET_MODE (SUBREG_REG (accum
));
3009 tem
= gen_lowpart (nmode
, op0
);
3012 insn
= get_last_insn ();
3013 set_unique_reg_note (insn
, REG_EQUAL
,
3014 gen_rtx_MULT (nmode
, tem
,
3015 GEN_INT (val_so_far
)));
3018 if (variant
== negate_variant
)
3020 val_so_far
= -val_so_far
;
3021 accum
= expand_unop (mode
, neg_optab
, accum
, target
, 0);
3023 else if (variant
== add_variant
)
3025 val_so_far
= val_so_far
+ 1;
3026 accum
= force_operand (gen_rtx_PLUS (mode
, accum
, op0
), target
);
3029 /* Compare only the bits of val and val_so_far that are significant
3030 in the result mode, to avoid sign-/zero-extension confusion. */
3031 val
&= GET_MODE_MASK (mode
);
3032 val_so_far
&= GET_MODE_MASK (mode
);
3033 gcc_assert (val
== val_so_far
);
3038 /* Perform a multiplication and return an rtx for the result.
3039 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3040 TARGET is a suggestion for where to store the result (an rtx).
3042 We check specially for a constant integer as OP1.
3043 If you want this check for OP0 as well, then before calling
3044 you should swap the two operands if OP0 would be constant. */
3047 expand_mult (enum machine_mode mode
, rtx op0
, rtx op1
, rtx target
,
3050 enum mult_variant variant
;
3051 struct algorithm algorithm
;
3053 bool speed
= optimize_insn_for_speed_p ();
3055 /* Handling const0_rtx here allows us to use zero as a rogue value for
3057 if (op1
== const0_rtx
)
3059 if (op1
== const1_rtx
)
3061 if (op1
== constm1_rtx
)
3062 return expand_unop (mode
,
3063 GET_MODE_CLASS (mode
) == MODE_INT
3064 && !unsignedp
&& flag_trapv
3065 ? negv_optab
: neg_optab
,
3068 /* These are the operations that are potentially turned into a sequence
3069 of shifts and additions. */
3070 if (SCALAR_INT_MODE_P (mode
)
3071 && (unsignedp
|| !flag_trapv
))
3073 HOST_WIDE_INT coeff
= 0;
3074 rtx fake_reg
= gen_raw_REG (mode
, LAST_VIRTUAL_REGISTER
+ 1);
3076 /* synth_mult does an `unsigned int' multiply. As long as the mode is
3077 less than or equal in size to `unsigned int' this doesn't matter.
3078 If the mode is larger than `unsigned int', then synth_mult works
3079 only if the constant value exactly fits in an `unsigned int' without
3080 any truncation. This means that multiplying by negative values does
3081 not work; results are off by 2^32 on a 32 bit machine. */
3083 if (GET_CODE (op1
) == CONST_INT
)
3085 /* Attempt to handle multiplication of DImode values by negative
3086 coefficients, by performing the multiplication by a positive
3087 multiplier and then inverting the result. */
3088 if (INTVAL (op1
) < 0
3089 && GET_MODE_BITSIZE (mode
) > HOST_BITS_PER_WIDE_INT
)
3091 /* Its safe to use -INTVAL (op1) even for INT_MIN, as the
3092 result is interpreted as an unsigned coefficient.
3093 Exclude cost of op0 from max_cost to match the cost
3094 calculation of the synth_mult. */
3095 max_cost
= rtx_cost (gen_rtx_MULT (mode
, fake_reg
, op1
), SET
, speed
)
3096 - neg_cost
[speed
][mode
];
3098 && choose_mult_variant (mode
, -INTVAL (op1
), &algorithm
,
3099 &variant
, max_cost
))
3101 rtx temp
= expand_mult_const (mode
, op0
, -INTVAL (op1
),
3102 NULL_RTX
, &algorithm
,
3104 return expand_unop (mode
, neg_optab
, temp
, target
, 0);
3107 else coeff
= INTVAL (op1
);
3109 else if (GET_CODE (op1
) == CONST_DOUBLE
)
3111 /* If we are multiplying in DImode, it may still be a win
3112 to try to work with shifts and adds. */
3113 if (CONST_DOUBLE_HIGH (op1
) == 0
3114 && CONST_DOUBLE_LOW (op1
) > 0)
3115 coeff
= CONST_DOUBLE_LOW (op1
);
3116 else if (CONST_DOUBLE_LOW (op1
) == 0
3117 && EXACT_POWER_OF_2_OR_ZERO_P (CONST_DOUBLE_HIGH (op1
)))
3119 int shift
= floor_log2 (CONST_DOUBLE_HIGH (op1
))
3120 + HOST_BITS_PER_WIDE_INT
;
3121 return expand_shift (LSHIFT_EXPR
, mode
, op0
,
3122 build_int_cst (NULL_TREE
, shift
),
3127 /* We used to test optimize here, on the grounds that it's better to
3128 produce a smaller program when -O is not used. But this causes
3129 such a terrible slowdown sometimes that it seems better to always
3133 /* Special case powers of two. */
3134 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff
))
3135 return expand_shift (LSHIFT_EXPR
, mode
, op0
,
3136 build_int_cst (NULL_TREE
, floor_log2 (coeff
)),
3139 /* Exclude cost of op0 from max_cost to match the cost
3140 calculation of the synth_mult. */
3141 max_cost
= rtx_cost (gen_rtx_MULT (mode
, fake_reg
, op1
), SET
, speed
);
3142 if (choose_mult_variant (mode
, coeff
, &algorithm
, &variant
,
3144 return expand_mult_const (mode
, op0
, coeff
, target
,
3145 &algorithm
, variant
);
3149 if (GET_CODE (op0
) == CONST_DOUBLE
)
3156 /* Expand x*2.0 as x+x. */
3157 if (GET_CODE (op1
) == CONST_DOUBLE
3158 && SCALAR_FLOAT_MODE_P (mode
))
3161 REAL_VALUE_FROM_CONST_DOUBLE (d
, op1
);
3163 if (REAL_VALUES_EQUAL (d
, dconst2
))
3165 op0
= force_reg (GET_MODE (op0
), op0
);
3166 return expand_binop (mode
, add_optab
, op0
, op0
,
3167 target
, unsignedp
, OPTAB_LIB_WIDEN
);
3171 /* This used to use umul_optab if unsigned, but for non-widening multiply
3172 there is no difference between signed and unsigned. */
3173 op0
= expand_binop (mode
,
3175 && flag_trapv
&& (GET_MODE_CLASS(mode
) == MODE_INT
)
3176 ? smulv_optab
: smul_optab
,
3177 op0
, op1
, target
, unsignedp
, OPTAB_LIB_WIDEN
);
3182 /* Return the smallest n such that 2**n >= X. */
3185 ceil_log2 (unsigned HOST_WIDE_INT x
)
3187 return floor_log2 (x
- 1) + 1;
3190 /* Choose a minimal N + 1 bit approximation to 1/D that can be used to
3191 replace division by D, and put the least significant N bits of the result
3192 in *MULTIPLIER_PTR and return the most significant bit.
3194 The width of operations is N (should be <= HOST_BITS_PER_WIDE_INT), the
3195 needed precision is in PRECISION (should be <= N).
3197 PRECISION should be as small as possible so this function can choose
3198 multiplier more freely.
3200 The rounded-up logarithm of D is placed in *lgup_ptr. A shift count that
3201 is to be used for a final right shift is placed in *POST_SHIFT_PTR.
3203 Using this function, x/D will be equal to (x * m) >> (*POST_SHIFT_PTR),
3204 where m is the full HOST_BITS_PER_WIDE_INT + 1 bit multiplier. */
3207 unsigned HOST_WIDE_INT
3208 choose_multiplier (unsigned HOST_WIDE_INT d
, int n
, int precision
,
3209 rtx
*multiplier_ptr
, int *post_shift_ptr
, int *lgup_ptr
)
3211 HOST_WIDE_INT mhigh_hi
, mlow_hi
;
3212 unsigned HOST_WIDE_INT mhigh_lo
, mlow_lo
;
3213 int lgup
, post_shift
;
3215 unsigned HOST_WIDE_INT nl
, dummy1
;
3216 HOST_WIDE_INT nh
, dummy2
;
3218 /* lgup = ceil(log2(divisor)); */
3219 lgup
= ceil_log2 (d
);
3221 gcc_assert (lgup
<= n
);
3224 pow2
= n
+ lgup
- precision
;
3226 /* We could handle this with some effort, but this case is much
3227 better handled directly with a scc insn, so rely on caller using
3229 gcc_assert (pow
!= 2 * HOST_BITS_PER_WIDE_INT
);
3231 /* mlow = 2^(N + lgup)/d */
3232 if (pow
>= HOST_BITS_PER_WIDE_INT
)
3234 nh
= (HOST_WIDE_INT
) 1 << (pow
- HOST_BITS_PER_WIDE_INT
);
3240 nl
= (unsigned HOST_WIDE_INT
) 1 << pow
;
3242 div_and_round_double (TRUNC_DIV_EXPR
, 1, nl
, nh
, d
, (HOST_WIDE_INT
) 0,
3243 &mlow_lo
, &mlow_hi
, &dummy1
, &dummy2
);
3245 /* mhigh = (2^(N + lgup) + 2^N + lgup - precision)/d */
3246 if (pow2
>= HOST_BITS_PER_WIDE_INT
)
3247 nh
|= (HOST_WIDE_INT
) 1 << (pow2
- HOST_BITS_PER_WIDE_INT
);
3249 nl
|= (unsigned HOST_WIDE_INT
) 1 << pow2
;
3250 div_and_round_double (TRUNC_DIV_EXPR
, 1, nl
, nh
, d
, (HOST_WIDE_INT
) 0,
3251 &mhigh_lo
, &mhigh_hi
, &dummy1
, &dummy2
);
3253 gcc_assert (!mhigh_hi
|| nh
- d
< d
);
3254 gcc_assert (mhigh_hi
<= 1 && mlow_hi
<= 1);
3255 /* Assert that mlow < mhigh. */
3256 gcc_assert (mlow_hi
< mhigh_hi
3257 || (mlow_hi
== mhigh_hi
&& mlow_lo
< mhigh_lo
));
3259 /* If precision == N, then mlow, mhigh exceed 2^N
3260 (but they do not exceed 2^(N+1)). */
3262 /* Reduce to lowest terms. */
3263 for (post_shift
= lgup
; post_shift
> 0; post_shift
--)
3265 unsigned HOST_WIDE_INT ml_lo
= (mlow_hi
<< (HOST_BITS_PER_WIDE_INT
- 1)) | (mlow_lo
>> 1);
3266 unsigned HOST_WIDE_INT mh_lo
= (mhigh_hi
<< (HOST_BITS_PER_WIDE_INT
- 1)) | (mhigh_lo
>> 1);
3276 *post_shift_ptr
= post_shift
;
3278 if (n
< HOST_BITS_PER_WIDE_INT
)
3280 unsigned HOST_WIDE_INT mask
= ((unsigned HOST_WIDE_INT
) 1 << n
) - 1;
3281 *multiplier_ptr
= GEN_INT (mhigh_lo
& mask
);
3282 return mhigh_lo
>= mask
;
3286 *multiplier_ptr
= GEN_INT (mhigh_lo
);
3291 /* Compute the inverse of X mod 2**n, i.e., find Y such that X * Y is
3292 congruent to 1 (mod 2**N). */
3294 static unsigned HOST_WIDE_INT
3295 invert_mod2n (unsigned HOST_WIDE_INT x
, int n
)
3297 /* Solve x*y == 1 (mod 2^n), where x is odd. Return y. */
3299 /* The algorithm notes that the choice y = x satisfies
3300 x*y == 1 mod 2^3, since x is assumed odd.
3301 Each iteration doubles the number of bits of significance in y. */
3303 unsigned HOST_WIDE_INT mask
;
3304 unsigned HOST_WIDE_INT y
= x
;
3307 mask
= (n
== HOST_BITS_PER_WIDE_INT
3308 ? ~(unsigned HOST_WIDE_INT
) 0
3309 : ((unsigned HOST_WIDE_INT
) 1 << n
) - 1);
3313 y
= y
* (2 - x
*y
) & mask
; /* Modulo 2^N */
3319 /* Emit code to adjust ADJ_OPERAND after multiplication of wrong signedness
3320 flavor of OP0 and OP1. ADJ_OPERAND is already the high half of the
3321 product OP0 x OP1. If UNSIGNEDP is nonzero, adjust the signed product
3322 to become unsigned, if UNSIGNEDP is zero, adjust the unsigned product to
3325 The result is put in TARGET if that is convenient.
3327 MODE is the mode of operation. */
3330 expand_mult_highpart_adjust (enum machine_mode mode
, rtx adj_operand
, rtx op0
,
3331 rtx op1
, rtx target
, int unsignedp
)
3334 enum rtx_code adj_code
= unsignedp
? PLUS
: MINUS
;
3336 tem
= expand_shift (RSHIFT_EXPR
, mode
, op0
,
3337 build_int_cst (NULL_TREE
, GET_MODE_BITSIZE (mode
) - 1),
3339 tem
= expand_and (mode
, tem
, op1
, NULL_RTX
);
3341 = force_operand (gen_rtx_fmt_ee (adj_code
, mode
, adj_operand
, tem
),
3344 tem
= expand_shift (RSHIFT_EXPR
, mode
, op1
,
3345 build_int_cst (NULL_TREE
, GET_MODE_BITSIZE (mode
) - 1),
3347 tem
= expand_and (mode
, tem
, op0
, NULL_RTX
);
3348 target
= force_operand (gen_rtx_fmt_ee (adj_code
, mode
, adj_operand
, tem
),
3354 /* Subroutine of expand_mult_highpart. Return the MODE high part of OP. */
3357 extract_high_half (enum machine_mode mode
, rtx op
)
3359 enum machine_mode wider_mode
;
3361 if (mode
== word_mode
)
3362 return gen_highpart (mode
, op
);
3364 gcc_assert (!SCALAR_FLOAT_MODE_P (mode
));
3366 wider_mode
= GET_MODE_WIDER_MODE (mode
);
3367 op
= expand_shift (RSHIFT_EXPR
, wider_mode
, op
,
3368 build_int_cst (NULL_TREE
, GET_MODE_BITSIZE (mode
)), 0, 1);
3369 return convert_modes (mode
, wider_mode
, op
, 0);
3372 /* Like expand_mult_highpart, but only consider using a multiplication
3373 optab. OP1 is an rtx for the constant operand. */
3376 expand_mult_highpart_optab (enum machine_mode mode
, rtx op0
, rtx op1
,
3377 rtx target
, int unsignedp
, int max_cost
)
3379 rtx narrow_op1
= gen_int_mode (INTVAL (op1
), mode
);
3380 enum machine_mode wider_mode
;
3384 bool speed
= optimize_insn_for_speed_p ();
3386 gcc_assert (!SCALAR_FLOAT_MODE_P (mode
));
3388 wider_mode
= GET_MODE_WIDER_MODE (mode
);
3389 size
= GET_MODE_BITSIZE (mode
);
3391 /* Firstly, try using a multiplication insn that only generates the needed
3392 high part of the product, and in the sign flavor of unsignedp. */
3393 if (mul_highpart_cost
[speed
][mode
] < max_cost
)
3395 moptab
= unsignedp
? umul_highpart_optab
: smul_highpart_optab
;
3396 tem
= expand_binop (mode
, moptab
, op0
, narrow_op1
, target
,
3397 unsignedp
, OPTAB_DIRECT
);
3402 /* Secondly, same as above, but use sign flavor opposite of unsignedp.
3403 Need to adjust the result after the multiplication. */
3404 if (size
- 1 < BITS_PER_WORD
3405 && (mul_highpart_cost
[speed
][mode
] + 2 * shift_cost
[speed
][mode
][size
-1]
3406 + 4 * add_cost
[speed
][mode
] < max_cost
))
3408 moptab
= unsignedp
? smul_highpart_optab
: umul_highpart_optab
;
3409 tem
= expand_binop (mode
, moptab
, op0
, narrow_op1
, target
,
3410 unsignedp
, OPTAB_DIRECT
);
3412 /* We used the wrong signedness. Adjust the result. */
3413 return expand_mult_highpart_adjust (mode
, tem
, op0
, narrow_op1
,
3417 /* Try widening multiplication. */
3418 moptab
= unsignedp
? umul_widen_optab
: smul_widen_optab
;
3419 if (optab_handler (moptab
, wider_mode
)->insn_code
!= CODE_FOR_nothing
3420 && mul_widen_cost
[speed
][wider_mode
] < max_cost
)
3422 tem
= expand_binop (wider_mode
, moptab
, op0
, narrow_op1
, 0,
3423 unsignedp
, OPTAB_WIDEN
);
3425 return extract_high_half (mode
, tem
);
3428 /* Try widening the mode and perform a non-widening multiplication. */
3429 if (optab_handler (smul_optab
, wider_mode
)->insn_code
!= CODE_FOR_nothing
3430 && size
- 1 < BITS_PER_WORD
3431 && mul_cost
[speed
][wider_mode
] + shift_cost
[speed
][mode
][size
-1] < max_cost
)
3433 rtx insns
, wop0
, wop1
;
3435 /* We need to widen the operands, for example to ensure the
3436 constant multiplier is correctly sign or zero extended.
3437 Use a sequence to clean-up any instructions emitted by
3438 the conversions if things don't work out. */
3440 wop0
= convert_modes (wider_mode
, mode
, op0
, unsignedp
);
3441 wop1
= convert_modes (wider_mode
, mode
, op1
, unsignedp
);
3442 tem
= expand_binop (wider_mode
, smul_optab
, wop0
, wop1
, 0,
3443 unsignedp
, OPTAB_WIDEN
);
3444 insns
= get_insns ();
3450 return extract_high_half (mode
, tem
);
3454 /* Try widening multiplication of opposite signedness, and adjust. */
3455 moptab
= unsignedp
? smul_widen_optab
: umul_widen_optab
;
3456 if (optab_handler (moptab
, wider_mode
)->insn_code
!= CODE_FOR_nothing
3457 && size
- 1 < BITS_PER_WORD
3458 && (mul_widen_cost
[speed
][wider_mode
] + 2 * shift_cost
[speed
][mode
][size
-1]
3459 + 4 * add_cost
[speed
][mode
] < max_cost
))
3461 tem
= expand_binop (wider_mode
, moptab
, op0
, narrow_op1
,
3462 NULL_RTX
, ! unsignedp
, OPTAB_WIDEN
);
3465 tem
= extract_high_half (mode
, tem
);
3466 /* We used the wrong signedness. Adjust the result. */
3467 return expand_mult_highpart_adjust (mode
, tem
, op0
, narrow_op1
,
3475 /* Emit code to multiply OP0 and OP1 (where OP1 is an integer constant),
3476 putting the high half of the result in TARGET if that is convenient,
3477 and return where the result is. If the operation can not be performed,
3480 MODE is the mode of operation and result.
3482 UNSIGNEDP nonzero means unsigned multiply.
3484 MAX_COST is the total allowed cost for the expanded RTL. */
3487 expand_mult_highpart (enum machine_mode mode
, rtx op0
, rtx op1
,
3488 rtx target
, int unsignedp
, int max_cost
)
3490 enum machine_mode wider_mode
= GET_MODE_WIDER_MODE (mode
);
3491 unsigned HOST_WIDE_INT cnst1
;
3493 bool sign_adjust
= false;
3494 enum mult_variant variant
;
3495 struct algorithm alg
;
3497 bool speed
= optimize_insn_for_speed_p ();
3499 gcc_assert (!SCALAR_FLOAT_MODE_P (mode
));
3500 /* We can't support modes wider than HOST_BITS_PER_INT. */
3501 gcc_assert (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
);
3503 cnst1
= INTVAL (op1
) & GET_MODE_MASK (mode
);
3505 /* We can't optimize modes wider than BITS_PER_WORD.
3506 ??? We might be able to perform double-word arithmetic if
3507 mode == word_mode, however all the cost calculations in
3508 synth_mult etc. assume single-word operations. */
3509 if (GET_MODE_BITSIZE (wider_mode
) > BITS_PER_WORD
)
3510 return expand_mult_highpart_optab (mode
, op0
, op1
, target
,
3511 unsignedp
, max_cost
);
3513 extra_cost
= shift_cost
[speed
][mode
][GET_MODE_BITSIZE (mode
) - 1];
3515 /* Check whether we try to multiply by a negative constant. */
3516 if (!unsignedp
&& ((cnst1
>> (GET_MODE_BITSIZE (mode
) - 1)) & 1))
3519 extra_cost
+= add_cost
[speed
][mode
];
3522 /* See whether shift/add multiplication is cheap enough. */
3523 if (choose_mult_variant (wider_mode
, cnst1
, &alg
, &variant
,
3524 max_cost
- extra_cost
))
3526 /* See whether the specialized multiplication optabs are
3527 cheaper than the shift/add version. */
3528 tem
= expand_mult_highpart_optab (mode
, op0
, op1
, target
, unsignedp
,
3529 alg
.cost
.cost
+ extra_cost
);
3533 tem
= convert_to_mode (wider_mode
, op0
, unsignedp
);
3534 tem
= expand_mult_const (wider_mode
, tem
, cnst1
, 0, &alg
, variant
);
3535 tem
= extract_high_half (mode
, tem
);
3537 /* Adjust result for signedness. */
3539 tem
= force_operand (gen_rtx_MINUS (mode
, tem
, op0
), tem
);
3543 return expand_mult_highpart_optab (mode
, op0
, op1
, target
,
3544 unsignedp
, max_cost
);
3548 /* Expand signed modulus of OP0 by a power of two D in mode MODE. */
3551 expand_smod_pow2 (enum machine_mode mode
, rtx op0
, HOST_WIDE_INT d
)
3553 unsigned HOST_WIDE_INT masklow
, maskhigh
;
3554 rtx result
, temp
, shift
, label
;
3557 logd
= floor_log2 (d
);
3558 result
= gen_reg_rtx (mode
);
3560 /* Avoid conditional branches when they're expensive. */
3561 if (BRANCH_COST (optimize_insn_for_speed_p (), false) >= 2
3562 && optimize_insn_for_speed_p ())
3564 rtx signmask
= emit_store_flag (result
, LT
, op0
, const0_rtx
,
3568 signmask
= force_reg (mode
, signmask
);
3569 masklow
= ((HOST_WIDE_INT
) 1 << logd
) - 1;
3570 shift
= GEN_INT (GET_MODE_BITSIZE (mode
) - logd
);
3572 /* Use the rtx_cost of a LSHIFTRT instruction to determine
3573 which instruction sequence to use. If logical right shifts
3574 are expensive the use 2 XORs, 2 SUBs and an AND, otherwise
3575 use a LSHIFTRT, 1 ADD, 1 SUB and an AND. */
3577 temp
= gen_rtx_LSHIFTRT (mode
, result
, shift
);
3578 if (optab_handler (lshr_optab
, mode
)->insn_code
== CODE_FOR_nothing
3579 || rtx_cost (temp
, SET
, optimize_insn_for_speed_p ()) > COSTS_N_INSNS (2))
3581 temp
= expand_binop (mode
, xor_optab
, op0
, signmask
,
3582 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3583 temp
= expand_binop (mode
, sub_optab
, temp
, signmask
,
3584 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3585 temp
= expand_binop (mode
, and_optab
, temp
, GEN_INT (masklow
),
3586 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3587 temp
= expand_binop (mode
, xor_optab
, temp
, signmask
,
3588 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3589 temp
= expand_binop (mode
, sub_optab
, temp
, signmask
,
3590 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3594 signmask
= expand_binop (mode
, lshr_optab
, signmask
, shift
,
3595 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3596 signmask
= force_reg (mode
, signmask
);
3598 temp
= expand_binop (mode
, add_optab
, op0
, signmask
,
3599 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3600 temp
= expand_binop (mode
, and_optab
, temp
, GEN_INT (masklow
),
3601 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3602 temp
= expand_binop (mode
, sub_optab
, temp
, signmask
,
3603 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3609 /* Mask contains the mode's signbit and the significant bits of the
3610 modulus. By including the signbit in the operation, many targets
3611 can avoid an explicit compare operation in the following comparison
3614 masklow
= ((HOST_WIDE_INT
) 1 << logd
) - 1;
3615 if (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
3617 masklow
|= (HOST_WIDE_INT
) -1 << (GET_MODE_BITSIZE (mode
) - 1);
3621 maskhigh
= (HOST_WIDE_INT
) -1
3622 << (GET_MODE_BITSIZE (mode
) - HOST_BITS_PER_WIDE_INT
- 1);
3624 temp
= expand_binop (mode
, and_optab
, op0
,
3625 immed_double_const (masklow
, maskhigh
, mode
),
3626 result
, 1, OPTAB_LIB_WIDEN
);
3628 emit_move_insn (result
, temp
);
3630 label
= gen_label_rtx ();
3631 do_cmp_and_jump (result
, const0_rtx
, GE
, mode
, label
);
3633 temp
= expand_binop (mode
, sub_optab
, result
, const1_rtx
, result
,
3634 0, OPTAB_LIB_WIDEN
);
3635 masklow
= (HOST_WIDE_INT
) -1 << logd
;
3637 temp
= expand_binop (mode
, ior_optab
, temp
,
3638 immed_double_const (masklow
, maskhigh
, mode
),
3639 result
, 1, OPTAB_LIB_WIDEN
);
3640 temp
= expand_binop (mode
, add_optab
, temp
, const1_rtx
, result
,
3641 0, OPTAB_LIB_WIDEN
);
3643 emit_move_insn (result
, temp
);
3648 /* Expand signed division of OP0 by a power of two D in mode MODE.
3649 This routine is only called for positive values of D. */
3652 expand_sdiv_pow2 (enum machine_mode mode
, rtx op0
, HOST_WIDE_INT d
)
3658 logd
= floor_log2 (d
);
3659 shift
= build_int_cst (NULL_TREE
, logd
);
3662 && BRANCH_COST (optimize_insn_for_speed_p (),
3665 temp
= gen_reg_rtx (mode
);
3666 temp
= emit_store_flag (temp
, LT
, op0
, const0_rtx
, mode
, 0, 1);
3667 temp
= expand_binop (mode
, add_optab
, temp
, op0
, NULL_RTX
,
3668 0, OPTAB_LIB_WIDEN
);
3669 return expand_shift (RSHIFT_EXPR
, mode
, temp
, shift
, NULL_RTX
, 0);
3672 #ifdef HAVE_conditional_move
3673 if (BRANCH_COST (optimize_insn_for_speed_p (), false)
3678 /* ??? emit_conditional_move forces a stack adjustment via
3679 compare_from_rtx so, if the sequence is discarded, it will
3680 be lost. Do it now instead. */
3681 do_pending_stack_adjust ();
3684 temp2
= copy_to_mode_reg (mode
, op0
);
3685 temp
= expand_binop (mode
, add_optab
, temp2
, GEN_INT (d
-1),
3686 NULL_RTX
, 0, OPTAB_LIB_WIDEN
);
3687 temp
= force_reg (mode
, temp
);
3689 /* Construct "temp2 = (temp2 < 0) ? temp : temp2". */
3690 temp2
= emit_conditional_move (temp2
, LT
, temp2
, const0_rtx
,
3691 mode
, temp
, temp2
, mode
, 0);
3694 rtx seq
= get_insns ();
3697 return expand_shift (RSHIFT_EXPR
, mode
, temp2
, shift
, NULL_RTX
, 0);
3703 if (BRANCH_COST (optimize_insn_for_speed_p (),
3706 int ushift
= GET_MODE_BITSIZE (mode
) - logd
;
3708 temp
= gen_reg_rtx (mode
);
3709 temp
= emit_store_flag (temp
, LT
, op0
, const0_rtx
, mode
, 0, -1);
3710 if (shift_cost
[optimize_insn_for_speed_p ()][mode
][ushift
] > COSTS_N_INSNS (1))
3711 temp
= expand_binop (mode
, and_optab
, temp
, GEN_INT (d
- 1),
3712 NULL_RTX
, 0, OPTAB_LIB_WIDEN
);
3714 temp
= expand_shift (RSHIFT_EXPR
, mode
, temp
,
3715 build_int_cst (NULL_TREE
, ushift
),
3717 temp
= expand_binop (mode
, add_optab
, temp
, op0
, NULL_RTX
,
3718 0, OPTAB_LIB_WIDEN
);
3719 return expand_shift (RSHIFT_EXPR
, mode
, temp
, shift
, NULL_RTX
, 0);
3722 label
= gen_label_rtx ();
3723 temp
= copy_to_mode_reg (mode
, op0
);
3724 do_cmp_and_jump (temp
, const0_rtx
, GE
, mode
, label
);
3725 expand_inc (temp
, GEN_INT (d
- 1));
3727 return expand_shift (RSHIFT_EXPR
, mode
, temp
, shift
, NULL_RTX
, 0);
3730 /* Emit the code to divide OP0 by OP1, putting the result in TARGET
3731 if that is convenient, and returning where the result is.
3732 You may request either the quotient or the remainder as the result;
3733 specify REM_FLAG nonzero to get the remainder.
3735 CODE is the expression code for which kind of division this is;
3736 it controls how rounding is done. MODE is the machine mode to use.
3737 UNSIGNEDP nonzero means do unsigned division. */
3739 /* ??? For CEIL_MOD_EXPR, can compute incorrect remainder with ANDI
3740 and then correct it by or'ing in missing high bits
3741 if result of ANDI is nonzero.
3742 For ROUND_MOD_EXPR, can use ANDI and then sign-extend the result.
3743 This could optimize to a bfexts instruction.
3744 But C doesn't use these operations, so their optimizations are
3746 /* ??? For modulo, we don't actually need the highpart of the first product,
3747 the low part will do nicely. And for small divisors, the second multiply
3748 can also be a low-part only multiply or even be completely left out.
3749 E.g. to calculate the remainder of a division by 3 with a 32 bit
3750 multiply, multiply with 0x55555556 and extract the upper two bits;
3751 the result is exact for inputs up to 0x1fffffff.
3752 The input range can be reduced by using cross-sum rules.
3753 For odd divisors >= 3, the following table gives right shift counts
3754 so that if a number is shifted by an integer multiple of the given
3755 amount, the remainder stays the same:
3756 2, 4, 3, 6, 10, 12, 4, 8, 18, 6, 11, 20, 18, 0, 5, 10, 12, 0, 12, 20,
3757 14, 12, 23, 21, 8, 0, 20, 18, 0, 0, 6, 12, 0, 22, 0, 18, 20, 30, 0, 0,
3758 0, 8, 0, 11, 12, 10, 36, 0, 30, 0, 0, 12, 0, 0, 0, 0, 44, 12, 24, 0,
3759 20, 0, 7, 14, 0, 18, 36, 0, 0, 46, 60, 0, 42, 0, 15, 24, 20, 0, 0, 33,
3760 0, 20, 0, 0, 18, 0, 60, 0, 0, 0, 0, 0, 40, 18, 0, 0, 12
3762 Cross-sum rules for even numbers can be derived by leaving as many bits
3763 to the right alone as the divisor has zeros to the right.
3764 E.g. if x is an unsigned 32 bit number:
3765 (x mod 12) == (((x & 1023) + ((x >> 8) & ~3)) * 0x15555558 >> 2 * 3) >> 28
3769 expand_divmod (int rem_flag
, enum tree_code code
, enum machine_mode mode
,
3770 rtx op0
, rtx op1
, rtx target
, int unsignedp
)
3772 enum machine_mode compute_mode
;
3774 rtx quotient
= 0, remainder
= 0;
3778 optab optab1
, optab2
;
3779 int op1_is_constant
, op1_is_pow2
= 0;
3780 int max_cost
, extra_cost
;
3781 static HOST_WIDE_INT last_div_const
= 0;
3782 static HOST_WIDE_INT ext_op1
;
3783 bool speed
= optimize_insn_for_speed_p ();
3785 op1_is_constant
= GET_CODE (op1
) == CONST_INT
;
3786 if (op1_is_constant
)
3788 ext_op1
= INTVAL (op1
);
3790 ext_op1
&= GET_MODE_MASK (mode
);
3791 op1_is_pow2
= ((EXACT_POWER_OF_2_OR_ZERO_P (ext_op1
)
3792 || (! unsignedp
&& EXACT_POWER_OF_2_OR_ZERO_P (-ext_op1
))));
3796 This is the structure of expand_divmod:
3798 First comes code to fix up the operands so we can perform the operations
3799 correctly and efficiently.
3801 Second comes a switch statement with code specific for each rounding mode.
3802 For some special operands this code emits all RTL for the desired
3803 operation, for other cases, it generates only a quotient and stores it in
3804 QUOTIENT. The case for trunc division/remainder might leave quotient = 0,
3805 to indicate that it has not done anything.
3807 Last comes code that finishes the operation. If QUOTIENT is set and
3808 REM_FLAG is set, the remainder is computed as OP0 - QUOTIENT * OP1. If
3809 QUOTIENT is not set, it is computed using trunc rounding.
3811 We try to generate special code for division and remainder when OP1 is a
3812 constant. If |OP1| = 2**n we can use shifts and some other fast
3813 operations. For other values of OP1, we compute a carefully selected
3814 fixed-point approximation m = 1/OP1, and generate code that multiplies OP0
3817 In all cases but EXACT_DIV_EXPR, this multiplication requires the upper
3818 half of the product. Different strategies for generating the product are
3819 implemented in expand_mult_highpart.
3821 If what we actually want is the remainder, we generate that by another
3822 by-constant multiplication and a subtraction. */
3824 /* We shouldn't be called with OP1 == const1_rtx, but some of the
3825 code below will malfunction if we are, so check here and handle
3826 the special case if so. */
3827 if (op1
== const1_rtx
)
3828 return rem_flag
? const0_rtx
: op0
;
3830 /* When dividing by -1, we could get an overflow.
3831 negv_optab can handle overflows. */
3832 if (! unsignedp
&& op1
== constm1_rtx
)
3836 return expand_unop (mode
, flag_trapv
&& GET_MODE_CLASS(mode
) == MODE_INT
3837 ? negv_optab
: neg_optab
, op0
, target
, 0);
3841 /* Don't use the function value register as a target
3842 since we have to read it as well as write it,
3843 and function-inlining gets confused by this. */
3844 && ((REG_P (target
) && REG_FUNCTION_VALUE_P (target
))
3845 /* Don't clobber an operand while doing a multi-step calculation. */
3846 || ((rem_flag
|| op1_is_constant
)
3847 && (reg_mentioned_p (target
, op0
)
3848 || (MEM_P (op0
) && MEM_P (target
))))
3849 || reg_mentioned_p (target
, op1
)
3850 || (MEM_P (op1
) && MEM_P (target
))))
3853 /* Get the mode in which to perform this computation. Normally it will
3854 be MODE, but sometimes we can't do the desired operation in MODE.
3855 If so, pick a wider mode in which we can do the operation. Convert
3856 to that mode at the start to avoid repeated conversions.
3858 First see what operations we need. These depend on the expression
3859 we are evaluating. (We assume that divxx3 insns exist under the
3860 same conditions that modxx3 insns and that these insns don't normally
3861 fail. If these assumptions are not correct, we may generate less
3862 efficient code in some cases.)
3864 Then see if we find a mode in which we can open-code that operation
3865 (either a division, modulus, or shift). Finally, check for the smallest
3866 mode for which we can do the operation with a library call. */
3868 /* We might want to refine this now that we have division-by-constant
3869 optimization. Since expand_mult_highpart tries so many variants, it is
3870 not straightforward to generalize this. Maybe we should make an array
3871 of possible modes in init_expmed? Save this for GCC 2.7. */
3873 optab1
= ((op1_is_pow2
&& op1
!= const0_rtx
)
3874 ? (unsignedp
? lshr_optab
: ashr_optab
)
3875 : (unsignedp
? udiv_optab
: sdiv_optab
));
3876 optab2
= ((op1_is_pow2
&& op1
!= const0_rtx
)
3878 : (unsignedp
? udivmod_optab
: sdivmod_optab
));
3880 for (compute_mode
= mode
; compute_mode
!= VOIDmode
;
3881 compute_mode
= GET_MODE_WIDER_MODE (compute_mode
))
3882 if (optab_handler (optab1
, compute_mode
)->insn_code
!= CODE_FOR_nothing
3883 || optab_handler (optab2
, compute_mode
)->insn_code
!= CODE_FOR_nothing
)
3886 if (compute_mode
== VOIDmode
)
3887 for (compute_mode
= mode
; compute_mode
!= VOIDmode
;
3888 compute_mode
= GET_MODE_WIDER_MODE (compute_mode
))
3889 if (optab_libfunc (optab1
, compute_mode
)
3890 || optab_libfunc (optab2
, compute_mode
))
3893 /* If we still couldn't find a mode, use MODE, but expand_binop will
3895 if (compute_mode
== VOIDmode
)
3896 compute_mode
= mode
;
3898 if (target
&& GET_MODE (target
) == compute_mode
)
3901 tquotient
= gen_reg_rtx (compute_mode
);
3903 size
= GET_MODE_BITSIZE (compute_mode
);
3905 /* It should be possible to restrict the precision to GET_MODE_BITSIZE
3906 (mode), and thereby get better code when OP1 is a constant. Do that
3907 later. It will require going over all usages of SIZE below. */
3908 size
= GET_MODE_BITSIZE (mode
);
3911 /* Only deduct something for a REM if the last divide done was
3912 for a different constant. Then set the constant of the last
3914 max_cost
= unsignedp
? udiv_cost
[speed
][compute_mode
] : sdiv_cost
[speed
][compute_mode
];
3915 if (rem_flag
&& ! (last_div_const
!= 0 && op1_is_constant
3916 && INTVAL (op1
) == last_div_const
))
3917 max_cost
-= mul_cost
[speed
][compute_mode
] + add_cost
[speed
][compute_mode
];
3919 last_div_const
= ! rem_flag
&& op1_is_constant
? INTVAL (op1
) : 0;
3921 /* Now convert to the best mode to use. */
3922 if (compute_mode
!= mode
)
3924 op0
= convert_modes (compute_mode
, mode
, op0
, unsignedp
);
3925 op1
= convert_modes (compute_mode
, mode
, op1
, unsignedp
);
3927 /* convert_modes may have placed op1 into a register, so we
3928 must recompute the following. */
3929 op1_is_constant
= GET_CODE (op1
) == CONST_INT
;
3930 op1_is_pow2
= (op1_is_constant
3931 && ((EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1
))
3933 && EXACT_POWER_OF_2_OR_ZERO_P (-INTVAL (op1
)))))) ;
3936 /* If one of the operands is a volatile MEM, copy it into a register. */
3938 if (MEM_P (op0
) && MEM_VOLATILE_P (op0
))
3939 op0
= force_reg (compute_mode
, op0
);
3940 if (MEM_P (op1
) && MEM_VOLATILE_P (op1
))
3941 op1
= force_reg (compute_mode
, op1
);
3943 /* If we need the remainder or if OP1 is constant, we need to
3944 put OP0 in a register in case it has any queued subexpressions. */
3945 if (rem_flag
|| op1_is_constant
)
3946 op0
= force_reg (compute_mode
, op0
);
3948 last
= get_last_insn ();
3950 /* Promote floor rounding to trunc rounding for unsigned operations. */
3953 if (code
== FLOOR_DIV_EXPR
)
3954 code
= TRUNC_DIV_EXPR
;
3955 if (code
== FLOOR_MOD_EXPR
)
3956 code
= TRUNC_MOD_EXPR
;
3957 if (code
== EXACT_DIV_EXPR
&& op1_is_pow2
)
3958 code
= TRUNC_DIV_EXPR
;
3961 if (op1
!= const0_rtx
)
3964 case TRUNC_MOD_EXPR
:
3965 case TRUNC_DIV_EXPR
:
3966 if (op1_is_constant
)
3970 unsigned HOST_WIDE_INT mh
;
3971 int pre_shift
, post_shift
;
3974 unsigned HOST_WIDE_INT d
= (INTVAL (op1
)
3975 & GET_MODE_MASK (compute_mode
));
3977 if (EXACT_POWER_OF_2_OR_ZERO_P (d
))
3979 pre_shift
= floor_log2 (d
);
3983 = expand_binop (compute_mode
, and_optab
, op0
,
3984 GEN_INT (((HOST_WIDE_INT
) 1 << pre_shift
) - 1),
3988 return gen_lowpart (mode
, remainder
);
3990 quotient
= expand_shift (RSHIFT_EXPR
, compute_mode
, op0
,
3991 build_int_cst (NULL_TREE
,
3995 else if (size
<= HOST_BITS_PER_WIDE_INT
)
3997 if (d
>= ((unsigned HOST_WIDE_INT
) 1 << (size
- 1)))
3999 /* Most significant bit of divisor is set; emit an scc
4001 quotient
= emit_store_flag (tquotient
, GEU
, op0
, op1
,
4002 compute_mode
, 1, 1);
4008 /* Find a suitable multiplier and right shift count
4009 instead of multiplying with D. */
4011 mh
= choose_multiplier (d
, size
, size
,
4012 &ml
, &post_shift
, &dummy
);
4014 /* If the suggested multiplier is more than SIZE bits,
4015 we can do better for even divisors, using an
4016 initial right shift. */
4017 if (mh
!= 0 && (d
& 1) == 0)
4019 pre_shift
= floor_log2 (d
& -d
);
4020 mh
= choose_multiplier (d
>> pre_shift
, size
,
4022 &ml
, &post_shift
, &dummy
);
4032 if (post_shift
- 1 >= BITS_PER_WORD
)
4036 = (shift_cost
[speed
][compute_mode
][post_shift
- 1]
4037 + shift_cost
[speed
][compute_mode
][1]
4038 + 2 * add_cost
[speed
][compute_mode
]);
4039 t1
= expand_mult_highpart (compute_mode
, op0
, ml
,
4041 max_cost
- extra_cost
);
4044 t2
= force_operand (gen_rtx_MINUS (compute_mode
,
4048 (RSHIFT_EXPR
, compute_mode
, t2
,
4049 build_int_cst (NULL_TREE
, 1),
4051 t4
= force_operand (gen_rtx_PLUS (compute_mode
,
4054 quotient
= expand_shift
4055 (RSHIFT_EXPR
, compute_mode
, t4
,
4056 build_int_cst (NULL_TREE
, post_shift
- 1),
4063 if (pre_shift
>= BITS_PER_WORD
4064 || post_shift
>= BITS_PER_WORD
)
4068 (RSHIFT_EXPR
, compute_mode
, op0
,
4069 build_int_cst (NULL_TREE
, pre_shift
),
4072 = (shift_cost
[speed
][compute_mode
][pre_shift
]
4073 + shift_cost
[speed
][compute_mode
][post_shift
]);
4074 t2
= expand_mult_highpart (compute_mode
, t1
, ml
,
4076 max_cost
- extra_cost
);
4079 quotient
= expand_shift
4080 (RSHIFT_EXPR
, compute_mode
, t2
,
4081 build_int_cst (NULL_TREE
, post_shift
),
4086 else /* Too wide mode to use tricky code */
4089 insn
= get_last_insn ();
4091 && (set
= single_set (insn
)) != 0
4092 && SET_DEST (set
) == quotient
)
4093 set_unique_reg_note (insn
,
4095 gen_rtx_UDIV (compute_mode
, op0
, op1
));
4097 else /* TRUNC_DIV, signed */
4099 unsigned HOST_WIDE_INT ml
;
4100 int lgup
, post_shift
;
4102 HOST_WIDE_INT d
= INTVAL (op1
);
4103 unsigned HOST_WIDE_INT abs_d
;
4105 /* Since d might be INT_MIN, we have to cast to
4106 unsigned HOST_WIDE_INT before negating to avoid
4107 undefined signed overflow. */
4109 ? (unsigned HOST_WIDE_INT
) d
4110 : - (unsigned HOST_WIDE_INT
) d
);
4112 /* n rem d = n rem -d */
4113 if (rem_flag
&& d
< 0)
4116 op1
= gen_int_mode (abs_d
, compute_mode
);
4122 quotient
= expand_unop (compute_mode
, neg_optab
, op0
,
4124 else if (abs_d
== (unsigned HOST_WIDE_INT
) 1 << (size
- 1))
4126 /* This case is not handled correctly below. */
4127 quotient
= emit_store_flag (tquotient
, EQ
, op0
, op1
,
4128 compute_mode
, 1, 1);
4132 else if (EXACT_POWER_OF_2_OR_ZERO_P (d
)
4133 && (rem_flag
? smod_pow2_cheap
[speed
][compute_mode
]
4134 : sdiv_pow2_cheap
[speed
][compute_mode
])
4135 /* We assume that cheap metric is true if the
4136 optab has an expander for this mode. */
4137 && ((optab_handler ((rem_flag
? smod_optab
4139 compute_mode
)->insn_code
4140 != CODE_FOR_nothing
)
4141 || (optab_handler(sdivmod_optab
,
4143 ->insn_code
!= CODE_FOR_nothing
)))
4145 else if (EXACT_POWER_OF_2_OR_ZERO_P (abs_d
))
4149 remainder
= expand_smod_pow2 (compute_mode
, op0
, d
);
4151 return gen_lowpart (mode
, remainder
);
4154 if (sdiv_pow2_cheap
[speed
][compute_mode
]
4155 && ((optab_handler (sdiv_optab
, compute_mode
)->insn_code
4156 != CODE_FOR_nothing
)
4157 || (optab_handler (sdivmod_optab
, compute_mode
)->insn_code
4158 != CODE_FOR_nothing
)))
4159 quotient
= expand_divmod (0, TRUNC_DIV_EXPR
,
4161 gen_int_mode (abs_d
,
4165 quotient
= expand_sdiv_pow2 (compute_mode
, op0
, abs_d
);
4167 /* We have computed OP0 / abs(OP1). If OP1 is negative,
4168 negate the quotient. */
4171 insn
= get_last_insn ();
4173 && (set
= single_set (insn
)) != 0
4174 && SET_DEST (set
) == quotient
4175 && abs_d
< ((unsigned HOST_WIDE_INT
) 1
4176 << (HOST_BITS_PER_WIDE_INT
- 1)))
4177 set_unique_reg_note (insn
,
4179 gen_rtx_DIV (compute_mode
,
4186 quotient
= expand_unop (compute_mode
, neg_optab
,
4187 quotient
, quotient
, 0);
4190 else if (size
<= HOST_BITS_PER_WIDE_INT
)
4192 choose_multiplier (abs_d
, size
, size
- 1,
4193 &mlr
, &post_shift
, &lgup
);
4194 ml
= (unsigned HOST_WIDE_INT
) INTVAL (mlr
);
4195 if (ml
< (unsigned HOST_WIDE_INT
) 1 << (size
- 1))
4199 if (post_shift
>= BITS_PER_WORD
4200 || size
- 1 >= BITS_PER_WORD
)
4203 extra_cost
= (shift_cost
[speed
][compute_mode
][post_shift
]
4204 + shift_cost
[speed
][compute_mode
][size
- 1]
4205 + add_cost
[speed
][compute_mode
]);
4206 t1
= expand_mult_highpart (compute_mode
, op0
, mlr
,
4208 max_cost
- extra_cost
);
4212 (RSHIFT_EXPR
, compute_mode
, t1
,
4213 build_int_cst (NULL_TREE
, post_shift
),
4216 (RSHIFT_EXPR
, compute_mode
, op0
,
4217 build_int_cst (NULL_TREE
, size
- 1),
4221 = force_operand (gen_rtx_MINUS (compute_mode
,
4226 = force_operand (gen_rtx_MINUS (compute_mode
,
4234 if (post_shift
>= BITS_PER_WORD
4235 || size
- 1 >= BITS_PER_WORD
)
4238 ml
|= (~(unsigned HOST_WIDE_INT
) 0) << (size
- 1);
4239 mlr
= gen_int_mode (ml
, compute_mode
);
4240 extra_cost
= (shift_cost
[speed
][compute_mode
][post_shift
]
4241 + shift_cost
[speed
][compute_mode
][size
- 1]
4242 + 2 * add_cost
[speed
][compute_mode
]);
4243 t1
= expand_mult_highpart (compute_mode
, op0
, mlr
,
4245 max_cost
- extra_cost
);
4248 t2
= force_operand (gen_rtx_PLUS (compute_mode
,
4252 (RSHIFT_EXPR
, compute_mode
, t2
,
4253 build_int_cst (NULL_TREE
, post_shift
),
4256 (RSHIFT_EXPR
, compute_mode
, op0
,
4257 build_int_cst (NULL_TREE
, size
- 1),
4261 = force_operand (gen_rtx_MINUS (compute_mode
,
4266 = force_operand (gen_rtx_MINUS (compute_mode
,
4271 else /* Too wide mode to use tricky code */
4274 insn
= get_last_insn ();
4276 && (set
= single_set (insn
)) != 0
4277 && SET_DEST (set
) == quotient
)
4278 set_unique_reg_note (insn
,
4280 gen_rtx_DIV (compute_mode
, op0
, op1
));
4285 delete_insns_since (last
);
4288 case FLOOR_DIV_EXPR
:
4289 case FLOOR_MOD_EXPR
:
4290 /* We will come here only for signed operations. */
4291 if (op1_is_constant
&& HOST_BITS_PER_WIDE_INT
>= size
)
4293 unsigned HOST_WIDE_INT mh
;
4294 int pre_shift
, lgup
, post_shift
;
4295 HOST_WIDE_INT d
= INTVAL (op1
);
4300 /* We could just as easily deal with negative constants here,
4301 but it does not seem worth the trouble for GCC 2.6. */
4302 if (EXACT_POWER_OF_2_OR_ZERO_P (d
))
4304 pre_shift
= floor_log2 (d
);
4307 remainder
= expand_binop (compute_mode
, and_optab
, op0
,
4308 GEN_INT (((HOST_WIDE_INT
) 1 << pre_shift
) - 1),
4309 remainder
, 0, OPTAB_LIB_WIDEN
);
4311 return gen_lowpart (mode
, remainder
);
4313 quotient
= expand_shift
4314 (RSHIFT_EXPR
, compute_mode
, op0
,
4315 build_int_cst (NULL_TREE
, pre_shift
),
4322 mh
= choose_multiplier (d
, size
, size
- 1,
4323 &ml
, &post_shift
, &lgup
);
4326 if (post_shift
< BITS_PER_WORD
4327 && size
- 1 < BITS_PER_WORD
)
4330 (RSHIFT_EXPR
, compute_mode
, op0
,
4331 build_int_cst (NULL_TREE
, size
- 1),
4333 t2
= expand_binop (compute_mode
, xor_optab
, op0
, t1
,
4334 NULL_RTX
, 0, OPTAB_WIDEN
);
4335 extra_cost
= (shift_cost
[speed
][compute_mode
][post_shift
]
4336 + shift_cost
[speed
][compute_mode
][size
- 1]
4337 + 2 * add_cost
[speed
][compute_mode
]);
4338 t3
= expand_mult_highpart (compute_mode
, t2
, ml
,
4340 max_cost
- extra_cost
);
4344 (RSHIFT_EXPR
, compute_mode
, t3
,
4345 build_int_cst (NULL_TREE
, post_shift
),
4347 quotient
= expand_binop (compute_mode
, xor_optab
,
4348 t4
, t1
, tquotient
, 0,
4356 rtx nsign
, t1
, t2
, t3
, t4
;
4357 t1
= force_operand (gen_rtx_PLUS (compute_mode
,
4358 op0
, constm1_rtx
), NULL_RTX
);
4359 t2
= expand_binop (compute_mode
, ior_optab
, op0
, t1
, NULL_RTX
,
4361 nsign
= expand_shift
4362 (RSHIFT_EXPR
, compute_mode
, t2
,
4363 build_int_cst (NULL_TREE
, size
- 1),
4365 t3
= force_operand (gen_rtx_MINUS (compute_mode
, t1
, nsign
),
4367 t4
= expand_divmod (0, TRUNC_DIV_EXPR
, compute_mode
, t3
, op1
,
4372 t5
= expand_unop (compute_mode
, one_cmpl_optab
, nsign
,
4374 quotient
= force_operand (gen_rtx_PLUS (compute_mode
,
4383 delete_insns_since (last
);
4385 /* Try using an instruction that produces both the quotient and
4386 remainder, using truncation. We can easily compensate the quotient
4387 or remainder to get floor rounding, once we have the remainder.
4388 Notice that we compute also the final remainder value here,
4389 and return the result right away. */
4390 if (target
== 0 || GET_MODE (target
) != compute_mode
)
4391 target
= gen_reg_rtx (compute_mode
);
4396 = REG_P (target
) ? target
: gen_reg_rtx (compute_mode
);
4397 quotient
= gen_reg_rtx (compute_mode
);
4402 = REG_P (target
) ? target
: gen_reg_rtx (compute_mode
);
4403 remainder
= gen_reg_rtx (compute_mode
);
4406 if (expand_twoval_binop (sdivmod_optab
, op0
, op1
,
4407 quotient
, remainder
, 0))
4409 /* This could be computed with a branch-less sequence.
4410 Save that for later. */
4412 rtx label
= gen_label_rtx ();
4413 do_cmp_and_jump (remainder
, const0_rtx
, EQ
, compute_mode
, label
);
4414 tem
= expand_binop (compute_mode
, xor_optab
, op0
, op1
,
4415 NULL_RTX
, 0, OPTAB_WIDEN
);
4416 do_cmp_and_jump (tem
, const0_rtx
, GE
, compute_mode
, label
);
4417 expand_dec (quotient
, const1_rtx
);
4418 expand_inc (remainder
, op1
);
4420 return gen_lowpart (mode
, rem_flag
? remainder
: quotient
);
4423 /* No luck with division elimination or divmod. Have to do it
4424 by conditionally adjusting op0 *and* the result. */
4426 rtx label1
, label2
, label3
, label4
, label5
;
4430 quotient
= gen_reg_rtx (compute_mode
);
4431 adjusted_op0
= copy_to_mode_reg (compute_mode
, op0
);
4432 label1
= gen_label_rtx ();
4433 label2
= gen_label_rtx ();
4434 label3
= gen_label_rtx ();
4435 label4
= gen_label_rtx ();
4436 label5
= gen_label_rtx ();
4437 do_cmp_and_jump (op1
, const0_rtx
, LT
, compute_mode
, label2
);
4438 do_cmp_and_jump (adjusted_op0
, const0_rtx
, LT
, compute_mode
, label1
);
4439 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4440 quotient
, 0, OPTAB_LIB_WIDEN
);
4441 if (tem
!= quotient
)
4442 emit_move_insn (quotient
, tem
);
4443 emit_jump_insn (gen_jump (label5
));
4445 emit_label (label1
);
4446 expand_inc (adjusted_op0
, const1_rtx
);
4447 emit_jump_insn (gen_jump (label4
));
4449 emit_label (label2
);
4450 do_cmp_and_jump (adjusted_op0
, const0_rtx
, GT
, compute_mode
, label3
);
4451 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4452 quotient
, 0, OPTAB_LIB_WIDEN
);
4453 if (tem
!= quotient
)
4454 emit_move_insn (quotient
, tem
);
4455 emit_jump_insn (gen_jump (label5
));
4457 emit_label (label3
);
4458 expand_dec (adjusted_op0
, const1_rtx
);
4459 emit_label (label4
);
4460 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4461 quotient
, 0, OPTAB_LIB_WIDEN
);
4462 if (tem
!= quotient
)
4463 emit_move_insn (quotient
, tem
);
4464 expand_dec (quotient
, const1_rtx
);
4465 emit_label (label5
);
4473 if (op1_is_constant
&& EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1
)))
4476 unsigned HOST_WIDE_INT d
= INTVAL (op1
);
4477 t1
= expand_shift (RSHIFT_EXPR
, compute_mode
, op0
,
4478 build_int_cst (NULL_TREE
, floor_log2 (d
)),
4480 t2
= expand_binop (compute_mode
, and_optab
, op0
,
4482 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
4483 t3
= gen_reg_rtx (compute_mode
);
4484 t3
= emit_store_flag (t3
, NE
, t2
, const0_rtx
,
4485 compute_mode
, 1, 1);
4489 lab
= gen_label_rtx ();
4490 do_cmp_and_jump (t2
, const0_rtx
, EQ
, compute_mode
, lab
);
4491 expand_inc (t1
, const1_rtx
);
4496 quotient
= force_operand (gen_rtx_PLUS (compute_mode
,
4502 /* Try using an instruction that produces both the quotient and
4503 remainder, using truncation. We can easily compensate the
4504 quotient or remainder to get ceiling rounding, once we have the
4505 remainder. Notice that we compute also the final remainder
4506 value here, and return the result right away. */
4507 if (target
== 0 || GET_MODE (target
) != compute_mode
)
4508 target
= gen_reg_rtx (compute_mode
);
4512 remainder
= (REG_P (target
)
4513 ? target
: gen_reg_rtx (compute_mode
));
4514 quotient
= gen_reg_rtx (compute_mode
);
4518 quotient
= (REG_P (target
)
4519 ? target
: gen_reg_rtx (compute_mode
));
4520 remainder
= gen_reg_rtx (compute_mode
);
4523 if (expand_twoval_binop (udivmod_optab
, op0
, op1
, quotient
,
4526 /* This could be computed with a branch-less sequence.
4527 Save that for later. */
4528 rtx label
= gen_label_rtx ();
4529 do_cmp_and_jump (remainder
, const0_rtx
, EQ
,
4530 compute_mode
, label
);
4531 expand_inc (quotient
, const1_rtx
);
4532 expand_dec (remainder
, op1
);
4534 return gen_lowpart (mode
, rem_flag
? remainder
: quotient
);
4537 /* No luck with division elimination or divmod. Have to do it
4538 by conditionally adjusting op0 *and* the result. */
4541 rtx adjusted_op0
, tem
;
4543 quotient
= gen_reg_rtx (compute_mode
);
4544 adjusted_op0
= copy_to_mode_reg (compute_mode
, op0
);
4545 label1
= gen_label_rtx ();
4546 label2
= gen_label_rtx ();
4547 do_cmp_and_jump (adjusted_op0
, const0_rtx
, NE
,
4548 compute_mode
, label1
);
4549 emit_move_insn (quotient
, const0_rtx
);
4550 emit_jump_insn (gen_jump (label2
));
4552 emit_label (label1
);
4553 expand_dec (adjusted_op0
, const1_rtx
);
4554 tem
= expand_binop (compute_mode
, udiv_optab
, adjusted_op0
, op1
,
4555 quotient
, 1, OPTAB_LIB_WIDEN
);
4556 if (tem
!= quotient
)
4557 emit_move_insn (quotient
, tem
);
4558 expand_inc (quotient
, const1_rtx
);
4559 emit_label (label2
);
4564 if (op1_is_constant
&& EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1
))
4565 && INTVAL (op1
) >= 0)
4567 /* This is extremely similar to the code for the unsigned case
4568 above. For 2.7 we should merge these variants, but for
4569 2.6.1 I don't want to touch the code for unsigned since that
4570 get used in C. The signed case will only be used by other
4574 unsigned HOST_WIDE_INT d
= INTVAL (op1
);
4575 t1
= expand_shift (RSHIFT_EXPR
, compute_mode
, op0
,
4576 build_int_cst (NULL_TREE
, floor_log2 (d
)),
4578 t2
= expand_binop (compute_mode
, and_optab
, op0
,
4580 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
4581 t3
= gen_reg_rtx (compute_mode
);
4582 t3
= emit_store_flag (t3
, NE
, t2
, const0_rtx
,
4583 compute_mode
, 1, 1);
4587 lab
= gen_label_rtx ();
4588 do_cmp_and_jump (t2
, const0_rtx
, EQ
, compute_mode
, lab
);
4589 expand_inc (t1
, const1_rtx
);
4594 quotient
= force_operand (gen_rtx_PLUS (compute_mode
,
4600 /* Try using an instruction that produces both the quotient and
4601 remainder, using truncation. We can easily compensate the
4602 quotient or remainder to get ceiling rounding, once we have the
4603 remainder. Notice that we compute also the final remainder
4604 value here, and return the result right away. */
4605 if (target
== 0 || GET_MODE (target
) != compute_mode
)
4606 target
= gen_reg_rtx (compute_mode
);
4609 remainder
= (REG_P (target
)
4610 ? target
: gen_reg_rtx (compute_mode
));
4611 quotient
= gen_reg_rtx (compute_mode
);
4615 quotient
= (REG_P (target
)
4616 ? target
: gen_reg_rtx (compute_mode
));
4617 remainder
= gen_reg_rtx (compute_mode
);
4620 if (expand_twoval_binop (sdivmod_optab
, op0
, op1
, quotient
,
4623 /* This could be computed with a branch-less sequence.
4624 Save that for later. */
4626 rtx label
= gen_label_rtx ();
4627 do_cmp_and_jump (remainder
, const0_rtx
, EQ
,
4628 compute_mode
, label
);
4629 tem
= expand_binop (compute_mode
, xor_optab
, op0
, op1
,
4630 NULL_RTX
, 0, OPTAB_WIDEN
);
4631 do_cmp_and_jump (tem
, const0_rtx
, LT
, compute_mode
, label
);
4632 expand_inc (quotient
, const1_rtx
);
4633 expand_dec (remainder
, op1
);
4635 return gen_lowpart (mode
, rem_flag
? remainder
: quotient
);
4638 /* No luck with division elimination or divmod. Have to do it
4639 by conditionally adjusting op0 *and* the result. */
4641 rtx label1
, label2
, label3
, label4
, label5
;
4645 quotient
= gen_reg_rtx (compute_mode
);
4646 adjusted_op0
= copy_to_mode_reg (compute_mode
, op0
);
4647 label1
= gen_label_rtx ();
4648 label2
= gen_label_rtx ();
4649 label3
= gen_label_rtx ();
4650 label4
= gen_label_rtx ();
4651 label5
= gen_label_rtx ();
4652 do_cmp_and_jump (op1
, const0_rtx
, LT
, compute_mode
, label2
);
4653 do_cmp_and_jump (adjusted_op0
, const0_rtx
, GT
,
4654 compute_mode
, label1
);
4655 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4656 quotient
, 0, OPTAB_LIB_WIDEN
);
4657 if (tem
!= quotient
)
4658 emit_move_insn (quotient
, tem
);
4659 emit_jump_insn (gen_jump (label5
));
4661 emit_label (label1
);
4662 expand_dec (adjusted_op0
, const1_rtx
);
4663 emit_jump_insn (gen_jump (label4
));
4665 emit_label (label2
);
4666 do_cmp_and_jump (adjusted_op0
, const0_rtx
, LT
,
4667 compute_mode
, label3
);
4668 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4669 quotient
, 0, OPTAB_LIB_WIDEN
);
4670 if (tem
!= quotient
)
4671 emit_move_insn (quotient
, tem
);
4672 emit_jump_insn (gen_jump (label5
));
4674 emit_label (label3
);
4675 expand_inc (adjusted_op0
, const1_rtx
);
4676 emit_label (label4
);
4677 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4678 quotient
, 0, OPTAB_LIB_WIDEN
);
4679 if (tem
!= quotient
)
4680 emit_move_insn (quotient
, tem
);
4681 expand_inc (quotient
, const1_rtx
);
4682 emit_label (label5
);
4687 case EXACT_DIV_EXPR
:
4688 if (op1_is_constant
&& HOST_BITS_PER_WIDE_INT
>= size
)
4690 HOST_WIDE_INT d
= INTVAL (op1
);
4691 unsigned HOST_WIDE_INT ml
;
4695 pre_shift
= floor_log2 (d
& -d
);
4696 ml
= invert_mod2n (d
>> pre_shift
, size
);
4697 t1
= expand_shift (RSHIFT_EXPR
, compute_mode
, op0
,
4698 build_int_cst (NULL_TREE
, pre_shift
),
4699 NULL_RTX
, unsignedp
);
4700 quotient
= expand_mult (compute_mode
, t1
,
4701 gen_int_mode (ml
, compute_mode
),
4704 insn
= get_last_insn ();
4705 set_unique_reg_note (insn
,
4707 gen_rtx_fmt_ee (unsignedp
? UDIV
: DIV
,
4713 case ROUND_DIV_EXPR
:
4714 case ROUND_MOD_EXPR
:
4719 label
= gen_label_rtx ();
4720 quotient
= gen_reg_rtx (compute_mode
);
4721 remainder
= gen_reg_rtx (compute_mode
);
4722 if (expand_twoval_binop (udivmod_optab
, op0
, op1
, quotient
, remainder
, 1) == 0)
4725 quotient
= expand_binop (compute_mode
, udiv_optab
, op0
, op1
,
4726 quotient
, 1, OPTAB_LIB_WIDEN
);
4727 tem
= expand_mult (compute_mode
, quotient
, op1
, NULL_RTX
, 1);
4728 remainder
= expand_binop (compute_mode
, sub_optab
, op0
, tem
,
4729 remainder
, 1, OPTAB_LIB_WIDEN
);
4731 tem
= plus_constant (op1
, -1);
4732 tem
= expand_shift (RSHIFT_EXPR
, compute_mode
, tem
,
4733 build_int_cst (NULL_TREE
, 1),
4735 do_cmp_and_jump (remainder
, tem
, LEU
, compute_mode
, label
);
4736 expand_inc (quotient
, const1_rtx
);
4737 expand_dec (remainder
, op1
);
4742 rtx abs_rem
, abs_op1
, tem
, mask
;
4744 label
= gen_label_rtx ();
4745 quotient
= gen_reg_rtx (compute_mode
);
4746 remainder
= gen_reg_rtx (compute_mode
);
4747 if (expand_twoval_binop (sdivmod_optab
, op0
, op1
, quotient
, remainder
, 0) == 0)
4750 quotient
= expand_binop (compute_mode
, sdiv_optab
, op0
, op1
,
4751 quotient
, 0, OPTAB_LIB_WIDEN
);
4752 tem
= expand_mult (compute_mode
, quotient
, op1
, NULL_RTX
, 0);
4753 remainder
= expand_binop (compute_mode
, sub_optab
, op0
, tem
,
4754 remainder
, 0, OPTAB_LIB_WIDEN
);
4756 abs_rem
= expand_abs (compute_mode
, remainder
, NULL_RTX
, 1, 0);
4757 abs_op1
= expand_abs (compute_mode
, op1
, NULL_RTX
, 1, 0);
4758 tem
= expand_shift (LSHIFT_EXPR
, compute_mode
, abs_rem
,
4759 build_int_cst (NULL_TREE
, 1),
4761 do_cmp_and_jump (tem
, abs_op1
, LTU
, compute_mode
, label
);
4762 tem
= expand_binop (compute_mode
, xor_optab
, op0
, op1
,
4763 NULL_RTX
, 0, OPTAB_WIDEN
);
4764 mask
= expand_shift (RSHIFT_EXPR
, compute_mode
, tem
,
4765 build_int_cst (NULL_TREE
, size
- 1),
4767 tem
= expand_binop (compute_mode
, xor_optab
, mask
, const1_rtx
,
4768 NULL_RTX
, 0, OPTAB_WIDEN
);
4769 tem
= expand_binop (compute_mode
, sub_optab
, tem
, mask
,
4770 NULL_RTX
, 0, OPTAB_WIDEN
);
4771 expand_inc (quotient
, tem
);
4772 tem
= expand_binop (compute_mode
, xor_optab
, mask
, op1
,
4773 NULL_RTX
, 0, OPTAB_WIDEN
);
4774 tem
= expand_binop (compute_mode
, sub_optab
, tem
, mask
,
4775 NULL_RTX
, 0, OPTAB_WIDEN
);
4776 expand_dec (remainder
, tem
);
4779 return gen_lowpart (mode
, rem_flag
? remainder
: quotient
);
4787 if (target
&& GET_MODE (target
) != compute_mode
)
4792 /* Try to produce the remainder without producing the quotient.
4793 If we seem to have a divmod pattern that does not require widening,
4794 don't try widening here. We should really have a WIDEN argument
4795 to expand_twoval_binop, since what we'd really like to do here is
4796 1) try a mod insn in compute_mode
4797 2) try a divmod insn in compute_mode
4798 3) try a div insn in compute_mode and multiply-subtract to get
4800 4) try the same things with widening allowed. */
4802 = sign_expand_binop (compute_mode
, umod_optab
, smod_optab
,
4805 ((optab_handler (optab2
, compute_mode
)->insn_code
4806 != CODE_FOR_nothing
)
4807 ? OPTAB_DIRECT
: OPTAB_WIDEN
));
4810 /* No luck there. Can we do remainder and divide at once
4811 without a library call? */
4812 remainder
= gen_reg_rtx (compute_mode
);
4813 if (! expand_twoval_binop ((unsignedp
4817 NULL_RTX
, remainder
, unsignedp
))
4822 return gen_lowpart (mode
, remainder
);
4825 /* Produce the quotient. Try a quotient insn, but not a library call.
4826 If we have a divmod in this mode, use it in preference to widening
4827 the div (for this test we assume it will not fail). Note that optab2
4828 is set to the one of the two optabs that the call below will use. */
4830 = sign_expand_binop (compute_mode
, udiv_optab
, sdiv_optab
,
4831 op0
, op1
, rem_flag
? NULL_RTX
: target
,
4833 ((optab_handler (optab2
, compute_mode
)->insn_code
4834 != CODE_FOR_nothing
)
4835 ? OPTAB_DIRECT
: OPTAB_WIDEN
));
4839 /* No luck there. Try a quotient-and-remainder insn,
4840 keeping the quotient alone. */
4841 quotient
= gen_reg_rtx (compute_mode
);
4842 if (! expand_twoval_binop (unsignedp
? udivmod_optab
: sdivmod_optab
,
4844 quotient
, NULL_RTX
, unsignedp
))
4848 /* Still no luck. If we are not computing the remainder,
4849 use a library call for the quotient. */
4850 quotient
= sign_expand_binop (compute_mode
,
4851 udiv_optab
, sdiv_optab
,
4853 unsignedp
, OPTAB_LIB_WIDEN
);
4860 if (target
&& GET_MODE (target
) != compute_mode
)
4865 /* No divide instruction either. Use library for remainder. */
4866 remainder
= sign_expand_binop (compute_mode
, umod_optab
, smod_optab
,
4868 unsignedp
, OPTAB_LIB_WIDEN
);
4869 /* No remainder function. Try a quotient-and-remainder
4870 function, keeping the remainder. */
4873 remainder
= gen_reg_rtx (compute_mode
);
4874 if (!expand_twoval_binop_libfunc
4875 (unsignedp
? udivmod_optab
: sdivmod_optab
,
4877 NULL_RTX
, remainder
,
4878 unsignedp
? UMOD
: MOD
))
4879 remainder
= NULL_RTX
;
4884 /* We divided. Now finish doing X - Y * (X / Y). */
4885 remainder
= expand_mult (compute_mode
, quotient
, op1
,
4886 NULL_RTX
, unsignedp
);
4887 remainder
= expand_binop (compute_mode
, sub_optab
, op0
,
4888 remainder
, target
, unsignedp
,
4893 return gen_lowpart (mode
, rem_flag
? remainder
: quotient
);
4896 /* Return a tree node with data type TYPE, describing the value of X.
4897 Usually this is an VAR_DECL, if there is no obvious better choice.
4898 X may be an expression, however we only support those expressions
4899 generated by loop.c. */
4902 make_tree (tree type
, rtx x
)
4906 switch (GET_CODE (x
))
4910 HOST_WIDE_INT hi
= 0;
4913 && !(TYPE_UNSIGNED (type
)
4914 && (GET_MODE_BITSIZE (TYPE_MODE (type
))
4915 < HOST_BITS_PER_WIDE_INT
)))
4918 t
= build_int_cst_wide (type
, INTVAL (x
), hi
);
4924 if (GET_MODE (x
) == VOIDmode
)
4925 t
= build_int_cst_wide (type
,
4926 CONST_DOUBLE_LOW (x
), CONST_DOUBLE_HIGH (x
));
4931 REAL_VALUE_FROM_CONST_DOUBLE (d
, x
);
4932 t
= build_real (type
, d
);
4939 int units
= CONST_VECTOR_NUNITS (x
);
4940 tree itype
= TREE_TYPE (type
);
4945 /* Build a tree with vector elements. */
4946 for (i
= units
- 1; i
>= 0; --i
)
4948 rtx elt
= CONST_VECTOR_ELT (x
, i
);
4949 t
= tree_cons (NULL_TREE
, make_tree (itype
, elt
), t
);
4952 return build_vector (type
, t
);
4956 return fold_build2 (PLUS_EXPR
, type
, make_tree (type
, XEXP (x
, 0)),
4957 make_tree (type
, XEXP (x
, 1)));
4960 return fold_build2 (MINUS_EXPR
, type
, make_tree (type
, XEXP (x
, 0)),
4961 make_tree (type
, XEXP (x
, 1)));
4964 return fold_build1 (NEGATE_EXPR
, type
, make_tree (type
, XEXP (x
, 0)));
4967 return fold_build2 (MULT_EXPR
, type
, make_tree (type
, XEXP (x
, 0)),
4968 make_tree (type
, XEXP (x
, 1)));
4971 return fold_build2 (LSHIFT_EXPR
, type
, make_tree (type
, XEXP (x
, 0)),
4972 make_tree (type
, XEXP (x
, 1)));
4975 t
= unsigned_type_for (type
);
4976 return fold_convert (type
, build2 (RSHIFT_EXPR
, t
,
4977 make_tree (t
, XEXP (x
, 0)),
4978 make_tree (type
, XEXP (x
, 1))));
4981 t
= signed_type_for (type
);
4982 return fold_convert (type
, build2 (RSHIFT_EXPR
, t
,
4983 make_tree (t
, XEXP (x
, 0)),
4984 make_tree (type
, XEXP (x
, 1))));
4987 if (TREE_CODE (type
) != REAL_TYPE
)
4988 t
= signed_type_for (type
);
4992 return fold_convert (type
, build2 (TRUNC_DIV_EXPR
, t
,
4993 make_tree (t
, XEXP (x
, 0)),
4994 make_tree (t
, XEXP (x
, 1))));
4996 t
= unsigned_type_for (type
);
4997 return fold_convert (type
, build2 (TRUNC_DIV_EXPR
, t
,
4998 make_tree (t
, XEXP (x
, 0)),
4999 make_tree (t
, XEXP (x
, 1))));
5003 t
= lang_hooks
.types
.type_for_mode (GET_MODE (XEXP (x
, 0)),
5004 GET_CODE (x
) == ZERO_EXTEND
);
5005 return fold_convert (type
, make_tree (t
, XEXP (x
, 0)));
5008 return make_tree (type
, XEXP (x
, 0));
5011 t
= SYMBOL_REF_DECL (x
);
5013 return fold_convert (type
, build_fold_addr_expr (t
));
5014 /* else fall through. */
5017 t
= build_decl (VAR_DECL
, NULL_TREE
, type
);
5019 /* If TYPE is a POINTER_TYPE, X might be Pmode with TYPE_MODE being
5020 ptr_mode. So convert. */
5021 if (POINTER_TYPE_P (type
))
5022 x
= convert_memory_address (TYPE_MODE (type
), x
);
5024 /* Note that we do *not* use SET_DECL_RTL here, because we do not
5025 want set_decl_rtl to go adjusting REG_ATTRS for this temporary. */
5026 t
->decl_with_rtl
.rtl
= x
;
5032 /* Compute the logical-and of OP0 and OP1, storing it in TARGET
5033 and returning TARGET.
5035 If TARGET is 0, a pseudo-register or constant is returned. */
5038 expand_and (enum machine_mode mode
, rtx op0
, rtx op1
, rtx target
)
5042 if (GET_MODE (op0
) == VOIDmode
&& GET_MODE (op1
) == VOIDmode
)
5043 tem
= simplify_binary_operation (AND
, mode
, op0
, op1
);
5045 tem
= expand_binop (mode
, and_optab
, op0
, op1
, target
, 0, OPTAB_LIB_WIDEN
);
5049 else if (tem
!= target
)
5050 emit_move_insn (target
, tem
);
5054 /* Helper function for emit_store_flag. */
5056 emit_store_flag_1 (rtx target
, rtx subtarget
, enum machine_mode mode
,
5060 enum machine_mode target_mode
= GET_MODE (target
);
5062 /* If we are converting to a wider mode, first convert to
5063 TARGET_MODE, then normalize. This produces better combining
5064 opportunities on machines that have a SIGN_EXTRACT when we are
5065 testing a single bit. This mostly benefits the 68k.
5067 If STORE_FLAG_VALUE does not have the sign bit set when
5068 interpreted in MODE, we can do this conversion as unsigned, which
5069 is usually more efficient. */
5070 if (GET_MODE_SIZE (target_mode
) > GET_MODE_SIZE (mode
))
5072 convert_move (target
, subtarget
,
5073 (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
5074 && 0 == (STORE_FLAG_VALUE
5075 & ((HOST_WIDE_INT
) 1
5076 << (GET_MODE_BITSIZE (mode
) -1))));
5083 /* If we want to keep subexpressions around, don't reuse our last
5088 /* Now normalize to the proper value in MODE. Sometimes we don't
5089 have to do anything. */
5090 if (normalizep
== 0 || normalizep
== STORE_FLAG_VALUE
)
5092 /* STORE_FLAG_VALUE might be the most negative number, so write
5093 the comparison this way to avoid a compiler-time warning. */
5094 else if (- normalizep
== STORE_FLAG_VALUE
)
5095 op0
= expand_unop (mode
, neg_optab
, op0
, subtarget
, 0);
5097 /* We don't want to use STORE_FLAG_VALUE < 0 below since this makes
5098 it hard to use a value of just the sign bit due to ANSI integer
5099 constant typing rules. */
5100 else if (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
5101 && (STORE_FLAG_VALUE
5102 & ((HOST_WIDE_INT
) 1 << (GET_MODE_BITSIZE (mode
) - 1))))
5103 op0
= expand_shift (RSHIFT_EXPR
, mode
, op0
,
5104 size_int (GET_MODE_BITSIZE (mode
) - 1), subtarget
,
5108 gcc_assert (STORE_FLAG_VALUE
& 1);
5110 op0
= expand_and (mode
, op0
, const1_rtx
, subtarget
);
5111 if (normalizep
== -1)
5112 op0
= expand_unop (mode
, neg_optab
, op0
, op0
, 0);
5115 /* If we were converting to a smaller mode, do the conversion now. */
5116 if (target_mode
!= mode
)
5118 convert_move (target
, op0
, 0);
5125 /* Emit a store-flags instruction for comparison CODE on OP0 and OP1
5126 and storing in TARGET. Normally return TARGET.
5127 Return 0 if that cannot be done.
5129 MODE is the mode to use for OP0 and OP1 should they be CONST_INTs. If
5130 it is VOIDmode, they cannot both be CONST_INT.
5132 UNSIGNEDP is for the case where we have to widen the operands
5133 to perform the operation. It says to use zero-extension.
5135 NORMALIZEP is 1 if we should convert the result to be either zero
5136 or one. Normalize is -1 if we should convert the result to be
5137 either zero or -1. If NORMALIZEP is zero, the result will be left
5138 "raw" out of the scc insn. */
5141 emit_store_flag (rtx target
, enum rtx_code code
, rtx op0
, rtx op1
,
5142 enum machine_mode mode
, int unsignedp
, int normalizep
)
5145 enum insn_code icode
;
5146 enum machine_mode compare_mode
;
5147 enum machine_mode target_mode
= GET_MODE (target
);
5149 rtx last
= get_last_insn ();
5150 rtx pattern
, comparison
;
5153 code
= unsigned_condition (code
);
5155 /* If one operand is constant, make it the second one. Only do this
5156 if the other operand is not constant as well. */
5158 if (swap_commutative_operands_p (op0
, op1
))
5163 code
= swap_condition (code
);
5166 if (mode
== VOIDmode
)
5167 mode
= GET_MODE (op0
);
5169 /* For some comparisons with 1 and -1, we can convert this to
5170 comparisons with zero. This will often produce more opportunities for
5171 store-flag insns. */
5176 if (op1
== const1_rtx
)
5177 op1
= const0_rtx
, code
= LE
;
5180 if (op1
== constm1_rtx
)
5181 op1
= const0_rtx
, code
= LT
;
5184 if (op1
== const1_rtx
)
5185 op1
= const0_rtx
, code
= GT
;
5188 if (op1
== constm1_rtx
)
5189 op1
= const0_rtx
, code
= GE
;
5192 if (op1
== const1_rtx
)
5193 op1
= const0_rtx
, code
= NE
;
5196 if (op1
== const1_rtx
)
5197 op1
= const0_rtx
, code
= EQ
;
5203 /* If we are comparing a double-word integer with zero or -1, we can
5204 convert the comparison into one involving a single word. */
5205 if (GET_MODE_BITSIZE (mode
) == BITS_PER_WORD
* 2
5206 && GET_MODE_CLASS (mode
) == MODE_INT
5207 && (!MEM_P (op0
) || ! MEM_VOLATILE_P (op0
)))
5209 if ((code
== EQ
|| code
== NE
)
5210 && (op1
== const0_rtx
|| op1
== constm1_rtx
))
5212 rtx op00
, op01
, op0both
;
5214 /* Do a logical OR or AND of the two words and compare the
5216 op00
= simplify_gen_subreg (word_mode
, op0
, mode
, 0);
5217 op01
= simplify_gen_subreg (word_mode
, op0
, mode
, UNITS_PER_WORD
);
5218 op0both
= expand_binop (word_mode
,
5219 op1
== const0_rtx
? ior_optab
: and_optab
,
5220 op00
, op01
, NULL_RTX
, unsignedp
,
5224 return emit_store_flag (target
, code
, op0both
, op1
, word_mode
,
5225 unsignedp
, normalizep
);
5227 else if ((code
== LT
|| code
== GE
) && op1
== const0_rtx
)
5231 /* If testing the sign bit, can just test on high word. */
5232 op0h
= simplify_gen_subreg (word_mode
, op0
, mode
,
5233 subreg_highpart_offset (word_mode
,
5235 return emit_store_flag (target
, code
, op0h
, op1
, word_mode
,
5236 unsignedp
, normalizep
);
5240 /* If this is A < 0 or A >= 0, we can do this by taking the ones
5241 complement of A (for GE) and shifting the sign bit to the low bit. */
5242 if (op1
== const0_rtx
&& (code
== LT
|| code
== GE
)
5243 && GET_MODE_CLASS (mode
) == MODE_INT
5244 && (normalizep
|| STORE_FLAG_VALUE
== 1
5245 || (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
5246 && ((STORE_FLAG_VALUE
& GET_MODE_MASK (mode
))
5247 == ((unsigned HOST_WIDE_INT
) 1
5248 << (GET_MODE_BITSIZE (mode
) - 1))))))
5252 /* If the result is to be wider than OP0, it is best to convert it
5253 first. If it is to be narrower, it is *incorrect* to convert it
5255 if (GET_MODE_SIZE (target_mode
) > GET_MODE_SIZE (mode
))
5257 op0
= convert_modes (target_mode
, mode
, op0
, 0);
5261 if (target_mode
!= mode
)
5265 op0
= expand_unop (mode
, one_cmpl_optab
, op0
,
5266 ((STORE_FLAG_VALUE
== 1 || normalizep
)
5267 ? 0 : subtarget
), 0);
5269 if (STORE_FLAG_VALUE
== 1 || normalizep
)
5270 /* If we are supposed to produce a 0/1 value, we want to do
5271 a logical shift from the sign bit to the low-order bit; for
5272 a -1/0 value, we do an arithmetic shift. */
5273 op0
= expand_shift (RSHIFT_EXPR
, mode
, op0
,
5274 size_int (GET_MODE_BITSIZE (mode
) - 1),
5275 subtarget
, normalizep
!= -1);
5277 if (mode
!= target_mode
)
5278 op0
= convert_modes (target_mode
, mode
, op0
, 0);
5283 icode
= setcc_gen_code
[(int) code
];
5285 if (icode
!= CODE_FOR_nothing
)
5287 insn_operand_predicate_fn pred
;
5289 /* We think we may be able to do this with a scc insn. Emit the
5290 comparison and then the scc insn. */
5292 do_pending_stack_adjust ();
5293 last
= get_last_insn ();
5296 = compare_from_rtx (op0
, op1
, code
, unsignedp
, mode
, NULL_RTX
);
5297 if (CONSTANT_P (comparison
))
5299 switch (GET_CODE (comparison
))
5302 if (comparison
== const0_rtx
)
5306 #ifdef FLOAT_STORE_FLAG_VALUE
5308 if (comparison
== CONST0_RTX (GET_MODE (comparison
)))
5316 if (normalizep
== 1)
5318 if (normalizep
== -1)
5320 return const_true_rtx
;
5323 /* The code of COMPARISON may not match CODE if compare_from_rtx
5324 decided to swap its operands and reverse the original code.
5326 We know that compare_from_rtx returns either a CONST_INT or
5327 a new comparison code, so it is safe to just extract the
5328 code from COMPARISON. */
5329 code
= GET_CODE (comparison
);
5331 /* Get a reference to the target in the proper mode for this insn. */
5332 compare_mode
= insn_data
[(int) icode
].operand
[0].mode
;
5334 pred
= insn_data
[(int) icode
].operand
[0].predicate
;
5335 if (optimize
|| ! (*pred
) (subtarget
, compare_mode
))
5336 subtarget
= gen_reg_rtx (compare_mode
);
5338 pattern
= GEN_FCN (icode
) (subtarget
);
5341 emit_insn (pattern
);
5342 return emit_store_flag_1 (target
, subtarget
, compare_mode
,
5348 /* We don't have an scc insn, so try a cstore insn. */
5350 for (compare_mode
= mode
; compare_mode
!= VOIDmode
;
5351 compare_mode
= GET_MODE_WIDER_MODE (compare_mode
))
5353 icode
= optab_handler (cstore_optab
, compare_mode
)->insn_code
;
5354 if (icode
!= CODE_FOR_nothing
)
5358 if (icode
!= CODE_FOR_nothing
)
5360 enum machine_mode result_mode
5361 = insn_data
[(int) icode
].operand
[0].mode
;
5362 rtx cstore_op0
= op0
;
5363 rtx cstore_op1
= op1
;
5365 do_pending_stack_adjust ();
5366 last
= get_last_insn ();
5368 if (compare_mode
!= mode
)
5370 cstore_op0
= convert_modes (compare_mode
, mode
, cstore_op0
,
5372 cstore_op1
= convert_modes (compare_mode
, mode
, cstore_op1
,
5376 if (!insn_data
[(int) icode
].operand
[2].predicate (cstore_op0
,
5378 cstore_op0
= copy_to_mode_reg (compare_mode
, cstore_op0
);
5380 if (!insn_data
[(int) icode
].operand
[3].predicate (cstore_op1
,
5382 cstore_op1
= copy_to_mode_reg (compare_mode
, cstore_op1
);
5384 comparison
= gen_rtx_fmt_ee (code
, result_mode
, cstore_op0
,
5388 if (optimize
|| !(insn_data
[(int) icode
].operand
[0].predicate
5389 (subtarget
, result_mode
)))
5390 subtarget
= gen_reg_rtx (result_mode
);
5392 pattern
= GEN_FCN (icode
) (subtarget
, comparison
, cstore_op0
,
5397 emit_insn (pattern
);
5398 return emit_store_flag_1 (target
, subtarget
, result_mode
,
5404 delete_insns_since (last
);
5406 /* If optimizing, use different pseudo registers for each insn, instead
5407 of reusing the same pseudo. This leads to better CSE, but slows
5408 down the compiler, since there are more pseudos */
5409 subtarget
= (!optimize
5410 && (target_mode
== mode
)) ? target
: NULL_RTX
;
5412 /* If we reached here, we can't do this with a scc insn. However, there
5413 are some comparisons that can be done directly. For example, if
5414 this is an equality comparison of integers, we can try to exclusive-or
5415 (or subtract) the two operands and use a recursive call to try the
5416 comparison with zero. Don't do any of these cases if branches are
5419 if (BRANCH_COST (optimize_insn_for_speed_p (),
5421 && GET_MODE_CLASS (mode
) == MODE_INT
&& (code
== EQ
|| code
== NE
)
5422 && op1
!= const0_rtx
)
5424 tem
= expand_binop (mode
, xor_optab
, op0
, op1
, subtarget
, 1,
5428 tem
= expand_binop (mode
, sub_optab
, op0
, op1
, subtarget
, 1,
5431 tem
= emit_store_flag (target
, code
, tem
, const0_rtx
,
5432 mode
, unsignedp
, normalizep
);
5434 delete_insns_since (last
);
5438 /* Some other cases we can do are EQ, NE, LE, and GT comparisons with
5439 the constant zero. Reject all other comparisons at this point. Only
5440 do LE and GT if branches are expensive since they are expensive on
5441 2-operand machines. */
5443 if (BRANCH_COST (optimize_insn_for_speed_p (),
5445 || GET_MODE_CLASS (mode
) != MODE_INT
|| op1
!= const0_rtx
5446 || (code
!= EQ
&& code
!= NE
5447 && (BRANCH_COST (optimize_insn_for_speed_p (),
5448 false) <= 1 || (code
!= LE
&& code
!= GT
))))
5451 /* See what we need to return. We can only return a 1, -1, or the
5454 if (normalizep
== 0)
5456 if (STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
5457 normalizep
= STORE_FLAG_VALUE
;
5459 else if (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
5460 && ((STORE_FLAG_VALUE
& GET_MODE_MASK (mode
))
5461 == (unsigned HOST_WIDE_INT
) 1 << (GET_MODE_BITSIZE (mode
) - 1)))
5467 /* Try to put the result of the comparison in the sign bit. Assume we can't
5468 do the necessary operation below. */
5472 /* To see if A <= 0, compute (A | (A - 1)). A <= 0 iff that result has
5473 the sign bit set. */
5477 /* This is destructive, so SUBTARGET can't be OP0. */
5478 if (rtx_equal_p (subtarget
, op0
))
5481 tem
= expand_binop (mode
, sub_optab
, op0
, const1_rtx
, subtarget
, 0,
5484 tem
= expand_binop (mode
, ior_optab
, op0
, tem
, subtarget
, 0,
5488 /* To see if A > 0, compute (((signed) A) << BITS) - A, where BITS is the
5489 number of bits in the mode of OP0, minus one. */
5493 if (rtx_equal_p (subtarget
, op0
))
5496 tem
= expand_shift (RSHIFT_EXPR
, mode
, op0
,
5497 size_int (GET_MODE_BITSIZE (mode
) - 1),
5499 tem
= expand_binop (mode
, sub_optab
, tem
, op0
, subtarget
, 0,
5503 if (code
== EQ
|| code
== NE
)
5505 /* For EQ or NE, one way to do the comparison is to apply an operation
5506 that converts the operand into a positive number if it is nonzero
5507 or zero if it was originally zero. Then, for EQ, we subtract 1 and
5508 for NE we negate. This puts the result in the sign bit. Then we
5509 normalize with a shift, if needed.
5511 Two operations that can do the above actions are ABS and FFS, so try
5512 them. If that doesn't work, and MODE is smaller than a full word,
5513 we can use zero-extension to the wider mode (an unsigned conversion)
5514 as the operation. */
5516 /* Note that ABS doesn't yield a positive number for INT_MIN, but
5517 that is compensated by the subsequent overflow when subtracting
5520 if (optab_handler (abs_optab
, mode
)->insn_code
!= CODE_FOR_nothing
)
5521 tem
= expand_unop (mode
, abs_optab
, op0
, subtarget
, 1);
5522 else if (optab_handler (ffs_optab
, mode
)->insn_code
!= CODE_FOR_nothing
)
5523 tem
= expand_unop (mode
, ffs_optab
, op0
, subtarget
, 1);
5524 else if (GET_MODE_SIZE (mode
) < UNITS_PER_WORD
)
5526 tem
= convert_modes (word_mode
, mode
, op0
, 1);
5533 tem
= expand_binop (mode
, sub_optab
, tem
, const1_rtx
, subtarget
,
5536 tem
= expand_unop (mode
, neg_optab
, tem
, subtarget
, 0);
5539 /* If we couldn't do it that way, for NE we can "or" the two's complement
5540 of the value with itself. For EQ, we take the one's complement of
5541 that "or", which is an extra insn, so we only handle EQ if branches
5546 || BRANCH_COST (optimize_insn_for_speed_p (),
5549 if (rtx_equal_p (subtarget
, op0
))
5552 tem
= expand_unop (mode
, neg_optab
, op0
, subtarget
, 0);
5553 tem
= expand_binop (mode
, ior_optab
, tem
, op0
, subtarget
, 0,
5556 if (tem
&& code
== EQ
)
5557 tem
= expand_unop (mode
, one_cmpl_optab
, tem
, subtarget
, 0);
5561 if (tem
&& normalizep
)
5562 tem
= expand_shift (RSHIFT_EXPR
, mode
, tem
,
5563 size_int (GET_MODE_BITSIZE (mode
) - 1),
5564 subtarget
, normalizep
== 1);
5568 if (GET_MODE (tem
) != target_mode
)
5570 convert_move (target
, tem
, 0);
5573 else if (!subtarget
)
5575 emit_move_insn (target
, tem
);
5580 delete_insns_since (last
);
5585 /* Like emit_store_flag, but always succeeds. */
5588 emit_store_flag_force (rtx target
, enum rtx_code code
, rtx op0
, rtx op1
,
5589 enum machine_mode mode
, int unsignedp
, int normalizep
)
5593 /* First see if emit_store_flag can do the job. */
5594 tem
= emit_store_flag (target
, code
, op0
, op1
, mode
, unsignedp
, normalizep
);
5598 if (normalizep
== 0)
5601 /* If this failed, we have to do this with set/compare/jump/set code. */
5604 || reg_mentioned_p (target
, op0
) || reg_mentioned_p (target
, op1
))
5605 target
= gen_reg_rtx (GET_MODE (target
));
5607 emit_move_insn (target
, const1_rtx
);
5608 label
= gen_label_rtx ();
5609 do_compare_rtx_and_jump (op0
, op1
, code
, unsignedp
, mode
, NULL_RTX
,
5612 emit_move_insn (target
, const0_rtx
);
5618 /* Perform possibly multi-word comparison and conditional jump to LABEL
5619 if ARG1 OP ARG2 true where ARG1 and ARG2 are of mode MODE. This is
5620 now a thin wrapper around do_compare_rtx_and_jump. */
5623 do_cmp_and_jump (rtx arg1
, rtx arg2
, enum rtx_code op
, enum machine_mode mode
,
5626 int unsignedp
= (op
== LTU
|| op
== LEU
|| op
== GTU
|| op
== GEU
);
5627 do_compare_rtx_and_jump (arg1
, arg2
, op
, unsignedp
, mode
,
5628 NULL_RTX
, NULL_RTX
, label
);