PR optimization/9090
[official-gcc.git] / gcc / gcse.c
bloba68374de953bdbbe0a8e48a229ba00381e27407a
1 /* Global common subexpression elimination/Partial redundancy elimination
2 and global constant/copy propagation for GNU compiler.
3 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
23 /* TODO
24 - reordering of memory allocation and freeing to be more space efficient
25 - do rough calc of how many regs are needed in each block, and a rough
26 calc of how many regs are available in each class and use that to
27 throttle back the code in cases where RTX_COST is minimal.
28 - a store to the same address as a load does not kill the load if the
29 source of the store is also the destination of the load. Handling this
30 allows more load motion, particularly out of loops.
31 - ability to realloc sbitmap vectors would allow one initial computation
32 of reg_set_in_block with only subsequent additions, rather than
33 recomputing it for each pass
37 /* References searched while implementing this.
39 Compilers Principles, Techniques and Tools
40 Aho, Sethi, Ullman
41 Addison-Wesley, 1988
43 Global Optimization by Suppression of Partial Redundancies
44 E. Morel, C. Renvoise
45 communications of the acm, Vol. 22, Num. 2, Feb. 1979
47 A Portable Machine-Independent Global Optimizer - Design and Measurements
48 Frederick Chow
49 Stanford Ph.D. thesis, Dec. 1983
51 A Fast Algorithm for Code Movement Optimization
52 D.M. Dhamdhere
53 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
55 A Solution to a Problem with Morel and Renvoise's
56 Global Optimization by Suppression of Partial Redundancies
57 K-H Drechsler, M.P. Stadel
58 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
60 Practical Adaptation of the Global Optimization
61 Algorithm of Morel and Renvoise
62 D.M. Dhamdhere
63 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
65 Efficiently Computing Static Single Assignment Form and the Control
66 Dependence Graph
67 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
68 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
70 Lazy Code Motion
71 J. Knoop, O. Ruthing, B. Steffen
72 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
74 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
75 Time for Reducible Flow Control
76 Thomas Ball
77 ACM Letters on Programming Languages and Systems,
78 Vol. 2, Num. 1-4, Mar-Dec 1993
80 An Efficient Representation for Sparse Sets
81 Preston Briggs, Linda Torczon
82 ACM Letters on Programming Languages and Systems,
83 Vol. 2, Num. 1-4, Mar-Dec 1993
85 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
86 K-H Drechsler, M.P. Stadel
87 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
89 Partial Dead Code Elimination
90 J. Knoop, O. Ruthing, B. Steffen
91 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
93 Effective Partial Redundancy Elimination
94 P. Briggs, K.D. Cooper
95 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
97 The Program Structure Tree: Computing Control Regions in Linear Time
98 R. Johnson, D. Pearson, K. Pingali
99 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
101 Optimal Code Motion: Theory and Practice
102 J. Knoop, O. Ruthing, B. Steffen
103 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
105 The power of assignment motion
106 J. Knoop, O. Ruthing, B. Steffen
107 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
109 Global code motion / global value numbering
110 C. Click
111 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
113 Value Driven Redundancy Elimination
114 L.T. Simpson
115 Rice University Ph.D. thesis, Apr. 1996
117 Value Numbering
118 L.T. Simpson
119 Massively Scalar Compiler Project, Rice University, Sep. 1996
121 High Performance Compilers for Parallel Computing
122 Michael Wolfe
123 Addison-Wesley, 1996
125 Advanced Compiler Design and Implementation
126 Steven Muchnick
127 Morgan Kaufmann, 1997
129 Building an Optimizing Compiler
130 Robert Morgan
131 Digital Press, 1998
133 People wishing to speed up the code here should read:
134 Elimination Algorithms for Data Flow Analysis
135 B.G. Ryder, M.C. Paull
136 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
138 How to Analyze Large Programs Efficiently and Informatively
139 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
140 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
142 People wishing to do something different can find various possibilities
143 in the above papers and elsewhere.
146 #include "config.h"
147 #include "system.h"
148 #include "coretypes.h"
149 #include "tm.h"
150 #include "toplev.h"
152 #include "rtl.h"
153 #include "tm_p.h"
154 #include "regs.h"
155 #include "hard-reg-set.h"
156 #include "flags.h"
157 #include "real.h"
158 #include "insn-config.h"
159 #include "recog.h"
160 #include "basic-block.h"
161 #include "output.h"
162 #include "function.h"
163 #include "expr.h"
164 #include "except.h"
165 #include "ggc.h"
166 #include "params.h"
167 #include "cselib.h"
169 #include "obstack.h"
171 /* Propagate flow information through back edges and thus enable PRE's
172 moving loop invariant calculations out of loops.
174 Originally this tended to create worse overall code, but several
175 improvements during the development of PRE seem to have made following
176 back edges generally a win.
178 Note much of the loop invariant code motion done here would normally
179 be done by loop.c, which has more heuristics for when to move invariants
180 out of loops. At some point we might need to move some of those
181 heuristics into gcse.c. */
183 /* We support GCSE via Partial Redundancy Elimination. PRE optimizations
184 are a superset of those done by GCSE.
186 We perform the following steps:
188 1) Compute basic block information.
190 2) Compute table of places where registers are set.
192 3) Perform copy/constant propagation.
194 4) Perform global cse.
196 5) Perform another pass of copy/constant propagation.
198 Two passes of copy/constant propagation are done because the first one
199 enables more GCSE and the second one helps to clean up the copies that
200 GCSE creates. This is needed more for PRE than for Classic because Classic
201 GCSE will try to use an existing register containing the common
202 subexpression rather than create a new one. This is harder to do for PRE
203 because of the code motion (which Classic GCSE doesn't do).
205 Expressions we are interested in GCSE-ing are of the form
206 (set (pseudo-reg) (expression)).
207 Function want_to_gcse_p says what these are.
209 PRE handles moving invariant expressions out of loops (by treating them as
210 partially redundant).
212 Eventually it would be nice to replace cse.c/gcse.c with SSA (static single
213 assignment) based GVN (global value numbering). L. T. Simpson's paper
214 (Rice University) on value numbering is a useful reference for this.
216 **********************
218 We used to support multiple passes but there are diminishing returns in
219 doing so. The first pass usually makes 90% of the changes that are doable.
220 A second pass can make a few more changes made possible by the first pass.
221 Experiments show any further passes don't make enough changes to justify
222 the expense.
224 A study of spec92 using an unlimited number of passes:
225 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
226 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
227 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
229 It was found doing copy propagation between each pass enables further
230 substitutions.
232 PRE is quite expensive in complicated functions because the DFA can take
233 awhile to converge. Hence we only perform one pass. The parameter max-gcse-passes can
234 be modified if one wants to experiment.
236 **********************
238 The steps for PRE are:
240 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
242 2) Perform the data flow analysis for PRE.
244 3) Delete the redundant instructions
246 4) Insert the required copies [if any] that make the partially
247 redundant instructions fully redundant.
249 5) For other reaching expressions, insert an instruction to copy the value
250 to a newly created pseudo that will reach the redundant instruction.
252 The deletion is done first so that when we do insertions we
253 know which pseudo reg to use.
255 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
256 argue it is not. The number of iterations for the algorithm to converge
257 is typically 2-4 so I don't view it as that expensive (relatively speaking).
259 PRE GCSE depends heavily on the second CSE pass to clean up the copies
260 we create. To make an expression reach the place where it's redundant,
261 the result of the expression is copied to a new register, and the redundant
262 expression is deleted by replacing it with this new register. Classic GCSE
263 doesn't have this problem as much as it computes the reaching defs of
264 each register in each block and thus can try to use an existing register.
266 **********************
268 A fair bit of simplicity is created by creating small functions for simple
269 tasks, even when the function is only called in one place. This may
270 measurably slow things down [or may not] by creating more function call
271 overhead than is necessary. The source is laid out so that it's trivial
272 to make the affected functions inline so that one can measure what speed
273 up, if any, can be achieved, and maybe later when things settle things can
274 be rearranged.
276 Help stamp out big monolithic functions! */
278 /* GCSE global vars. */
280 /* -dG dump file. */
281 static FILE *gcse_file;
283 /* Note whether or not we should run jump optimization after gcse. We
284 want to do this for two cases.
286 * If we changed any jumps via cprop.
288 * If we added any labels via edge splitting. */
290 static int run_jump_opt_after_gcse;
292 /* Bitmaps are normally not included in debugging dumps.
293 However it's useful to be able to print them from GDB.
294 We could create special functions for this, but it's simpler to
295 just allow passing stderr to the dump_foo fns. Since stderr can
296 be a macro, we store a copy here. */
297 static FILE *debug_stderr;
299 /* An obstack for our working variables. */
300 static struct obstack gcse_obstack;
302 /* Nonzero for each mode that supports (set (reg) (reg)).
303 This is trivially true for integer and floating point values.
304 It may or may not be true for condition codes. */
305 static char can_copy_p[(int) NUM_MACHINE_MODES];
307 /* Nonzero if can_copy_p has been initialized. */
308 static int can_copy_init_p;
310 struct reg_use {rtx reg_rtx; };
312 /* Hash table of expressions. */
314 struct expr
316 /* The expression (SET_SRC for expressions, PATTERN for assignments). */
317 rtx expr;
318 /* Index in the available expression bitmaps. */
319 int bitmap_index;
320 /* Next entry with the same hash. */
321 struct expr *next_same_hash;
322 /* List of anticipatable occurrences in basic blocks in the function.
323 An "anticipatable occurrence" is one that is the first occurrence in the
324 basic block, the operands are not modified in the basic block prior
325 to the occurrence and the output is not used between the start of
326 the block and the occurrence. */
327 struct occr *antic_occr;
328 /* List of available occurrence in basic blocks in the function.
329 An "available occurrence" is one that is the last occurrence in the
330 basic block and the operands are not modified by following statements in
331 the basic block [including this insn]. */
332 struct occr *avail_occr;
333 /* Non-null if the computation is PRE redundant.
334 The value is the newly created pseudo-reg to record a copy of the
335 expression in all the places that reach the redundant copy. */
336 rtx reaching_reg;
339 /* Occurrence of an expression.
340 There is one per basic block. If a pattern appears more than once the
341 last appearance is used [or first for anticipatable expressions]. */
343 struct occr
345 /* Next occurrence of this expression. */
346 struct occr *next;
347 /* The insn that computes the expression. */
348 rtx insn;
349 /* Nonzero if this [anticipatable] occurrence has been deleted. */
350 char deleted_p;
351 /* Nonzero if this [available] occurrence has been copied to
352 reaching_reg. */
353 /* ??? This is mutually exclusive with deleted_p, so they could share
354 the same byte. */
355 char copied_p;
358 /* Expression and copy propagation hash tables.
359 Each hash table is an array of buckets.
360 ??? It is known that if it were an array of entries, structure elements
361 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
362 not clear whether in the final analysis a sufficient amount of memory would
363 be saved as the size of the available expression bitmaps would be larger
364 [one could build a mapping table without holes afterwards though].
365 Someday I'll perform the computation and figure it out. */
367 struct hash_table
369 /* The table itself.
370 This is an array of `expr_hash_table_size' elements. */
371 struct expr **table;
373 /* Size of the hash table, in elements. */
374 unsigned int size;
376 /* Number of hash table elements. */
377 unsigned int n_elems;
379 /* Whether the table is expression of copy propagation one. */
380 int set_p;
383 /* Expression hash table. */
384 static struct hash_table expr_hash_table;
386 /* Copy propagation hash table. */
387 static struct hash_table set_hash_table;
389 /* Mapping of uids to cuids.
390 Only real insns get cuids. */
391 static int *uid_cuid;
393 /* Highest UID in UID_CUID. */
394 static int max_uid;
396 /* Get the cuid of an insn. */
397 #ifdef ENABLE_CHECKING
398 #define INSN_CUID(INSN) (INSN_UID (INSN) > max_uid ? (abort (), 0) : uid_cuid[INSN_UID (INSN)])
399 #else
400 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
401 #endif
403 /* Number of cuids. */
404 static int max_cuid;
406 /* Mapping of cuids to insns. */
407 static rtx *cuid_insn;
409 /* Get insn from cuid. */
410 #define CUID_INSN(CUID) (cuid_insn[CUID])
412 /* Maximum register number in function prior to doing gcse + 1.
413 Registers created during this pass have regno >= max_gcse_regno.
414 This is named with "gcse" to not collide with global of same name. */
415 static unsigned int max_gcse_regno;
417 /* Table of registers that are modified.
419 For each register, each element is a list of places where the pseudo-reg
420 is set.
422 For simplicity, GCSE is done on sets of pseudo-regs only. PRE GCSE only
423 requires knowledge of which blocks kill which regs [and thus could use
424 a bitmap instead of the lists `reg_set_table' uses].
426 `reg_set_table' and could be turned into an array of bitmaps (num-bbs x
427 num-regs) [however perhaps it may be useful to keep the data as is]. One
428 advantage of recording things this way is that `reg_set_table' is fairly
429 sparse with respect to pseudo regs but for hard regs could be fairly dense
430 [relatively speaking]. And recording sets of pseudo-regs in lists speeds
431 up functions like compute_transp since in the case of pseudo-regs we only
432 need to iterate over the number of times a pseudo-reg is set, not over the
433 number of basic blocks [clearly there is a bit of a slow down in the cases
434 where a pseudo is set more than once in a block, however it is believed
435 that the net effect is to speed things up]. This isn't done for hard-regs
436 because recording call-clobbered hard-regs in `reg_set_table' at each
437 function call can consume a fair bit of memory, and iterating over
438 hard-regs stored this way in compute_transp will be more expensive. */
440 typedef struct reg_set
442 /* The next setting of this register. */
443 struct reg_set *next;
444 /* The insn where it was set. */
445 rtx insn;
446 } reg_set;
448 static reg_set **reg_set_table;
450 /* Size of `reg_set_table'.
451 The table starts out at max_gcse_regno + slop, and is enlarged as
452 necessary. */
453 static int reg_set_table_size;
455 /* Amount to grow `reg_set_table' by when it's full. */
456 #define REG_SET_TABLE_SLOP 100
458 /* This is a list of expressions which are MEMs and will be used by load
459 or store motion.
460 Load motion tracks MEMs which aren't killed by
461 anything except itself. (ie, loads and stores to a single location).
462 We can then allow movement of these MEM refs with a little special
463 allowance. (all stores copy the same value to the reaching reg used
464 for the loads). This means all values used to store into memory must have
465 no side effects so we can re-issue the setter value.
466 Store Motion uses this structure as an expression table to track stores
467 which look interesting, and might be moveable towards the exit block. */
469 struct ls_expr
471 struct expr * expr; /* Gcse expression reference for LM. */
472 rtx pattern; /* Pattern of this mem. */
473 rtx loads; /* INSN list of loads seen. */
474 rtx stores; /* INSN list of stores seen. */
475 struct ls_expr * next; /* Next in the list. */
476 int invalid; /* Invalid for some reason. */
477 int index; /* If it maps to a bitmap index. */
478 int hash_index; /* Index when in a hash table. */
479 rtx reaching_reg; /* Register to use when re-writing. */
482 /* Head of the list of load/store memory refs. */
483 static struct ls_expr * pre_ldst_mems = NULL;
485 /* Bitmap containing one bit for each register in the program.
486 Used when performing GCSE to track which registers have been set since
487 the start of the basic block. */
488 static regset reg_set_bitmap;
490 /* For each block, a bitmap of registers set in the block.
491 This is used by expr_killed_p and compute_transp.
492 It is computed during hash table computation and not by compute_sets
493 as it includes registers added since the last pass (or between cprop and
494 gcse) and it's currently not easy to realloc sbitmap vectors. */
495 static sbitmap *reg_set_in_block;
497 /* Array, indexed by basic block number for a list of insns which modify
498 memory within that block. */
499 static rtx * modify_mem_list;
500 bitmap modify_mem_list_set;
502 /* This array parallels modify_mem_list, but is kept canonicalized. */
503 static rtx * canon_modify_mem_list;
504 bitmap canon_modify_mem_list_set;
505 /* Various variables for statistics gathering. */
507 /* Memory used in a pass.
508 This isn't intended to be absolutely precise. Its intent is only
509 to keep an eye on memory usage. */
510 static int bytes_used;
512 /* GCSE substitutions made. */
513 static int gcse_subst_count;
514 /* Number of copy instructions created. */
515 static int gcse_create_count;
516 /* Number of constants propagated. */
517 static int const_prop_count;
518 /* Number of copys propagated. */
519 static int copy_prop_count;
521 /* These variables are used by classic GCSE.
522 Normally they'd be defined a bit later, but `rd_gen' needs to
523 be declared sooner. */
525 /* Each block has a bitmap of each type.
526 The length of each blocks bitmap is:
528 max_cuid - for reaching definitions
529 n_exprs - for available expressions
531 Thus we view the bitmaps as 2 dimensional arrays. i.e.
532 rd_kill[block_num][cuid_num]
533 ae_kill[block_num][expr_num] */
535 /* For reaching defs */
536 static sbitmap *rd_kill, *rd_gen, *reaching_defs, *rd_out;
538 /* for available exprs */
539 static sbitmap *ae_kill, *ae_gen, *ae_in, *ae_out;
541 /* Objects of this type are passed around by the null-pointer check
542 removal routines. */
543 struct null_pointer_info
545 /* The basic block being processed. */
546 basic_block current_block;
547 /* The first register to be handled in this pass. */
548 unsigned int min_reg;
549 /* One greater than the last register to be handled in this pass. */
550 unsigned int max_reg;
551 sbitmap *nonnull_local;
552 sbitmap *nonnull_killed;
555 static void compute_can_copy PARAMS ((void));
556 static char *gmalloc PARAMS ((unsigned int));
557 static char *grealloc PARAMS ((char *, unsigned int));
558 static char *gcse_alloc PARAMS ((unsigned long));
559 static void alloc_gcse_mem PARAMS ((rtx));
560 static void free_gcse_mem PARAMS ((void));
561 static void alloc_reg_set_mem PARAMS ((int));
562 static void free_reg_set_mem PARAMS ((void));
563 static int get_bitmap_width PARAMS ((int, int, int));
564 static void record_one_set PARAMS ((int, rtx));
565 static void record_set_info PARAMS ((rtx, rtx, void *));
566 static void compute_sets PARAMS ((rtx));
567 static void hash_scan_insn PARAMS ((rtx, struct hash_table *, int));
568 static void hash_scan_set PARAMS ((rtx, rtx, struct hash_table *));
569 static void hash_scan_clobber PARAMS ((rtx, rtx, struct hash_table *));
570 static void hash_scan_call PARAMS ((rtx, rtx, struct hash_table *));
571 static int want_to_gcse_p PARAMS ((rtx));
572 static int oprs_unchanged_p PARAMS ((rtx, rtx, int));
573 static int oprs_anticipatable_p PARAMS ((rtx, rtx));
574 static int oprs_available_p PARAMS ((rtx, rtx));
575 static void insert_expr_in_table PARAMS ((rtx, enum machine_mode, rtx,
576 int, int, struct hash_table *));
577 static void insert_set_in_table PARAMS ((rtx, rtx, struct hash_table *));
578 static unsigned int hash_expr PARAMS ((rtx, enum machine_mode, int *, int));
579 static unsigned int hash_expr_1 PARAMS ((rtx, enum machine_mode, int *));
580 static unsigned int hash_string_1 PARAMS ((const char *));
581 static unsigned int hash_set PARAMS ((int, int));
582 static int expr_equiv_p PARAMS ((rtx, rtx));
583 static void record_last_reg_set_info PARAMS ((rtx, int));
584 static void record_last_mem_set_info PARAMS ((rtx));
585 static void record_last_set_info PARAMS ((rtx, rtx, void *));
586 static void compute_hash_table PARAMS ((struct hash_table *));
587 static void alloc_hash_table PARAMS ((int, struct hash_table *, int));
588 static void free_hash_table PARAMS ((struct hash_table *));
589 static void compute_hash_table_work PARAMS ((struct hash_table *));
590 static void dump_hash_table PARAMS ((FILE *, const char *,
591 struct hash_table *));
592 static struct expr *lookup_expr PARAMS ((rtx, struct hash_table *));
593 static struct expr *lookup_set PARAMS ((unsigned int, rtx, struct hash_table *));
594 static struct expr *next_set PARAMS ((unsigned int, struct expr *));
595 static void reset_opr_set_tables PARAMS ((void));
596 static int oprs_not_set_p PARAMS ((rtx, rtx));
597 static void mark_call PARAMS ((rtx));
598 static void mark_set PARAMS ((rtx, rtx));
599 static void mark_clobber PARAMS ((rtx, rtx));
600 static void mark_oprs_set PARAMS ((rtx));
601 static void alloc_cprop_mem PARAMS ((int, int));
602 static void free_cprop_mem PARAMS ((void));
603 static void compute_transp PARAMS ((rtx, int, sbitmap *, int));
604 static void compute_transpout PARAMS ((void));
605 static void compute_local_properties PARAMS ((sbitmap *, sbitmap *, sbitmap *,
606 struct hash_table *));
607 static void compute_cprop_data PARAMS ((void));
608 static void find_used_regs PARAMS ((rtx *, void *));
609 static int try_replace_reg PARAMS ((rtx, rtx, rtx));
610 static struct expr *find_avail_set PARAMS ((int, rtx));
611 static int cprop_jump PARAMS ((basic_block, rtx, rtx, rtx, rtx));
612 static void mems_conflict_for_gcse_p PARAMS ((rtx, rtx, void *));
613 static int load_killed_in_block_p PARAMS ((basic_block, int, rtx, int));
614 static void canon_list_insert PARAMS ((rtx, rtx, void *));
615 static int cprop_insn PARAMS ((rtx, int));
616 static int cprop PARAMS ((int));
617 static int one_cprop_pass PARAMS ((int, int, int));
618 static bool constprop_register PARAMS ((rtx, rtx, rtx, int));
619 static struct expr *find_bypass_set PARAMS ((int, int));
620 static int bypass_block PARAMS ((basic_block, rtx, rtx));
621 static int bypass_conditional_jumps PARAMS ((void));
622 static void alloc_pre_mem PARAMS ((int, int));
623 static void free_pre_mem PARAMS ((void));
624 static void compute_pre_data PARAMS ((void));
625 static int pre_expr_reaches_here_p PARAMS ((basic_block, struct expr *,
626 basic_block));
627 static void insert_insn_end_bb PARAMS ((struct expr *, basic_block, int));
628 static void pre_insert_copy_insn PARAMS ((struct expr *, rtx));
629 static void pre_insert_copies PARAMS ((void));
630 static int pre_delete PARAMS ((void));
631 static int pre_gcse PARAMS ((void));
632 static int one_pre_gcse_pass PARAMS ((int));
633 static void add_label_notes PARAMS ((rtx, rtx));
634 static void alloc_code_hoist_mem PARAMS ((int, int));
635 static void free_code_hoist_mem PARAMS ((void));
636 static void compute_code_hoist_vbeinout PARAMS ((void));
637 static void compute_code_hoist_data PARAMS ((void));
638 static int hoist_expr_reaches_here_p PARAMS ((basic_block, int, basic_block,
639 char *));
640 static void hoist_code PARAMS ((void));
641 static int one_code_hoisting_pass PARAMS ((void));
642 static void alloc_rd_mem PARAMS ((int, int));
643 static void free_rd_mem PARAMS ((void));
644 static void handle_rd_kill_set PARAMS ((rtx, int, basic_block));
645 static void compute_kill_rd PARAMS ((void));
646 static void compute_rd PARAMS ((void));
647 static void alloc_avail_expr_mem PARAMS ((int, int));
648 static void free_avail_expr_mem PARAMS ((void));
649 static void compute_ae_gen PARAMS ((struct hash_table *));
650 static int expr_killed_p PARAMS ((rtx, basic_block));
651 static void compute_ae_kill PARAMS ((sbitmap *, sbitmap *, struct hash_table *));
652 static int expr_reaches_here_p PARAMS ((struct occr *, struct expr *,
653 basic_block, int));
654 static rtx computing_insn PARAMS ((struct expr *, rtx));
655 static int def_reaches_here_p PARAMS ((rtx, rtx));
656 static int can_disregard_other_sets PARAMS ((struct reg_set **, rtx, int));
657 static int handle_avail_expr PARAMS ((rtx, struct expr *));
658 static int classic_gcse PARAMS ((void));
659 static int one_classic_gcse_pass PARAMS ((int));
660 static void invalidate_nonnull_info PARAMS ((rtx, rtx, void *));
661 static int delete_null_pointer_checks_1 PARAMS ((unsigned int *,
662 sbitmap *, sbitmap *,
663 struct null_pointer_info *));
664 static rtx process_insert_insn PARAMS ((struct expr *));
665 static int pre_edge_insert PARAMS ((struct edge_list *, struct expr **));
666 static int expr_reaches_here_p_work PARAMS ((struct occr *, struct expr *,
667 basic_block, int, char *));
668 static int pre_expr_reaches_here_p_work PARAMS ((basic_block, struct expr *,
669 basic_block, char *));
670 static struct ls_expr * ldst_entry PARAMS ((rtx));
671 static void free_ldst_entry PARAMS ((struct ls_expr *));
672 static void free_ldst_mems PARAMS ((void));
673 static void print_ldst_list PARAMS ((FILE *));
674 static struct ls_expr * find_rtx_in_ldst PARAMS ((rtx));
675 static int enumerate_ldsts PARAMS ((void));
676 static inline struct ls_expr * first_ls_expr PARAMS ((void));
677 static inline struct ls_expr * next_ls_expr PARAMS ((struct ls_expr *));
678 static int simple_mem PARAMS ((rtx));
679 static void invalidate_any_buried_refs PARAMS ((rtx));
680 static void compute_ld_motion_mems PARAMS ((void));
681 static void trim_ld_motion_mems PARAMS ((void));
682 static void update_ld_motion_stores PARAMS ((struct expr *));
683 static void reg_set_info PARAMS ((rtx, rtx, void *));
684 static int store_ops_ok PARAMS ((rtx, basic_block));
685 static void find_moveable_store PARAMS ((rtx));
686 static int compute_store_table PARAMS ((void));
687 static int load_kills_store PARAMS ((rtx, rtx));
688 static int find_loads PARAMS ((rtx, rtx));
689 static int store_killed_in_insn PARAMS ((rtx, rtx));
690 static int store_killed_after PARAMS ((rtx, rtx, basic_block));
691 static int store_killed_before PARAMS ((rtx, rtx, basic_block));
692 static void build_store_vectors PARAMS ((void));
693 static void insert_insn_start_bb PARAMS ((rtx, basic_block));
694 static int insert_store PARAMS ((struct ls_expr *, edge));
695 static void replace_store_insn PARAMS ((rtx, rtx, basic_block));
696 static void delete_store PARAMS ((struct ls_expr *,
697 basic_block));
698 static void free_store_memory PARAMS ((void));
699 static void store_motion PARAMS ((void));
700 static void free_insn_expr_list_list PARAMS ((rtx *));
701 static void clear_modify_mem_tables PARAMS ((void));
702 static void free_modify_mem_tables PARAMS ((void));
703 static rtx gcse_emit_move_after PARAMS ((rtx, rtx, rtx));
704 static bool do_local_cprop PARAMS ((rtx, rtx, int, rtx*));
705 static bool adjust_libcall_notes PARAMS ((rtx, rtx, rtx, rtx*));
706 static void local_cprop_pass PARAMS ((int));
708 /* Entry point for global common subexpression elimination.
709 F is the first instruction in the function. */
712 gcse_main (f, file)
713 rtx f;
714 FILE *file;
716 int changed, pass;
717 /* Bytes used at start of pass. */
718 int initial_bytes_used;
719 /* Maximum number of bytes used by a pass. */
720 int max_pass_bytes;
721 /* Point to release obstack data from for each pass. */
722 char *gcse_obstack_bottom;
724 /* We do not construct an accurate cfg in functions which call
725 setjmp, so just punt to be safe. */
726 if (current_function_calls_setjmp)
727 return 0;
729 /* Assume that we do not need to run jump optimizations after gcse. */
730 run_jump_opt_after_gcse = 0;
732 /* For calling dump_foo fns from gdb. */
733 debug_stderr = stderr;
734 gcse_file = file;
736 /* Identify the basic block information for this function, including
737 successors and predecessors. */
738 max_gcse_regno = max_reg_num ();
740 if (file)
741 dump_flow_info (file);
743 /* Return if there's nothing to do. */
744 if (n_basic_blocks <= 1)
745 return 0;
747 /* Trying to perform global optimizations on flow graphs which have
748 a high connectivity will take a long time and is unlikely to be
749 particularly useful.
751 In normal circumstances a cfg should have about twice as many edges
752 as blocks. But we do not want to punish small functions which have
753 a couple switch statements. So we require a relatively large number
754 of basic blocks and the ratio of edges to blocks to be high. */
755 if (n_basic_blocks > 1000 && n_edges / n_basic_blocks >= 20)
757 if (warn_disabled_optimization)
758 warning ("GCSE disabled: %d > 1000 basic blocks and %d >= 20 edges/basic block",
759 n_basic_blocks, n_edges / n_basic_blocks);
760 return 0;
763 /* If allocating memory for the cprop bitmap would take up too much
764 storage it's better just to disable the optimization. */
765 if ((n_basic_blocks
766 * SBITMAP_SET_SIZE (max_gcse_regno)
767 * sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY)
769 if (warn_disabled_optimization)
770 warning ("GCSE disabled: %d basic blocks and %d registers",
771 n_basic_blocks, max_gcse_regno);
773 return 0;
776 /* See what modes support reg/reg copy operations. */
777 if (! can_copy_init_p)
779 compute_can_copy ();
780 can_copy_init_p = 1;
783 gcc_obstack_init (&gcse_obstack);
784 bytes_used = 0;
786 /* We need alias. */
787 init_alias_analysis ();
788 /* Record where pseudo-registers are set. This data is kept accurate
789 during each pass. ??? We could also record hard-reg information here
790 [since it's unchanging], however it is currently done during hash table
791 computation.
793 It may be tempting to compute MEM set information here too, but MEM sets
794 will be subject to code motion one day and thus we need to compute
795 information about memory sets when we build the hash tables. */
797 alloc_reg_set_mem (max_gcse_regno);
798 compute_sets (f);
800 pass = 0;
801 initial_bytes_used = bytes_used;
802 max_pass_bytes = 0;
803 gcse_obstack_bottom = gcse_alloc (1);
804 changed = 1;
805 while (changed && pass < MAX_GCSE_PASSES)
807 changed = 0;
808 if (file)
809 fprintf (file, "GCSE pass %d\n\n", pass + 1);
811 /* Initialize bytes_used to the space for the pred/succ lists,
812 and the reg_set_table data. */
813 bytes_used = initial_bytes_used;
815 /* Each pass may create new registers, so recalculate each time. */
816 max_gcse_regno = max_reg_num ();
818 alloc_gcse_mem (f);
820 /* Don't allow constant propagation to modify jumps
821 during this pass. */
822 changed = one_cprop_pass (pass + 1, 0, 0);
824 if (optimize_size)
825 changed |= one_classic_gcse_pass (pass + 1);
826 else
828 changed |= one_pre_gcse_pass (pass + 1);
829 /* We may have just created new basic blocks. Release and
830 recompute various things which are sized on the number of
831 basic blocks. */
832 if (changed)
834 free_modify_mem_tables ();
835 modify_mem_list
836 = (rtx *) gmalloc (last_basic_block * sizeof (rtx));
837 canon_modify_mem_list
838 = (rtx *) gmalloc (last_basic_block * sizeof (rtx));
839 memset ((char *) modify_mem_list, 0, last_basic_block * sizeof (rtx));
840 memset ((char *) canon_modify_mem_list, 0, last_basic_block * sizeof (rtx));
842 free_reg_set_mem ();
843 alloc_reg_set_mem (max_reg_num ());
844 compute_sets (f);
845 run_jump_opt_after_gcse = 1;
848 if (max_pass_bytes < bytes_used)
849 max_pass_bytes = bytes_used;
851 /* Free up memory, then reallocate for code hoisting. We can
852 not re-use the existing allocated memory because the tables
853 will not have info for the insns or registers created by
854 partial redundancy elimination. */
855 free_gcse_mem ();
857 /* It does not make sense to run code hoisting unless we optimizing
858 for code size -- it rarely makes programs faster, and can make
859 them bigger if we did partial redundancy elimination (when optimizing
860 for space, we use a classic gcse algorithm instead of partial
861 redundancy algorithms). */
862 if (optimize_size)
864 max_gcse_regno = max_reg_num ();
865 alloc_gcse_mem (f);
866 changed |= one_code_hoisting_pass ();
867 free_gcse_mem ();
869 if (max_pass_bytes < bytes_used)
870 max_pass_bytes = bytes_used;
873 if (file)
875 fprintf (file, "\n");
876 fflush (file);
879 obstack_free (&gcse_obstack, gcse_obstack_bottom);
880 pass++;
883 /* Do one last pass of copy propagation, including cprop into
884 conditional jumps. */
886 max_gcse_regno = max_reg_num ();
887 alloc_gcse_mem (f);
888 /* This time, go ahead and allow cprop to alter jumps. */
889 one_cprop_pass (pass + 1, 1, 0);
890 free_gcse_mem ();
892 if (file)
894 fprintf (file, "GCSE of %s: %d basic blocks, ",
895 current_function_name, n_basic_blocks);
896 fprintf (file, "%d pass%s, %d bytes\n\n",
897 pass, pass > 1 ? "es" : "", max_pass_bytes);
900 obstack_free (&gcse_obstack, NULL);
901 free_reg_set_mem ();
902 /* We are finished with alias. */
903 end_alias_analysis ();
904 allocate_reg_info (max_reg_num (), FALSE, FALSE);
906 /* Store motion disabled until it is fixed. */
907 if (0 && !optimize_size && flag_gcse_sm)
908 store_motion ();
909 /* Record where pseudo-registers are set. */
910 return run_jump_opt_after_gcse;
913 /* Misc. utilities. */
915 /* Compute which modes support reg/reg copy operations. */
917 static void
918 compute_can_copy ()
920 int i;
921 #ifndef AVOID_CCMODE_COPIES
922 rtx reg, insn;
923 #endif
924 memset (can_copy_p, 0, NUM_MACHINE_MODES);
926 start_sequence ();
927 for (i = 0; i < NUM_MACHINE_MODES; i++)
928 if (GET_MODE_CLASS (i) == MODE_CC)
930 #ifdef AVOID_CCMODE_COPIES
931 can_copy_p[i] = 0;
932 #else
933 reg = gen_rtx_REG ((enum machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
934 insn = emit_insn (gen_rtx_SET (VOIDmode, reg, reg));
935 if (recog (PATTERN (insn), insn, NULL) >= 0)
936 can_copy_p[i] = 1;
937 #endif
939 else
940 can_copy_p[i] = 1;
942 end_sequence ();
945 /* Cover function to xmalloc to record bytes allocated. */
947 static char *
948 gmalloc (size)
949 unsigned int size;
951 bytes_used += size;
952 return xmalloc (size);
955 /* Cover function to xrealloc.
956 We don't record the additional size since we don't know it.
957 It won't affect memory usage stats much anyway. */
959 static char *
960 grealloc (ptr, size)
961 char *ptr;
962 unsigned int size;
964 return xrealloc (ptr, size);
967 /* Cover function to obstack_alloc. */
969 static char *
970 gcse_alloc (size)
971 unsigned long size;
973 bytes_used += size;
974 return (char *) obstack_alloc (&gcse_obstack, size);
977 /* Allocate memory for the cuid mapping array,
978 and reg/memory set tracking tables.
980 This is called at the start of each pass. */
982 static void
983 alloc_gcse_mem (f)
984 rtx f;
986 int i, n;
987 rtx insn;
989 /* Find the largest UID and create a mapping from UIDs to CUIDs.
990 CUIDs are like UIDs except they increase monotonically, have no gaps,
991 and only apply to real insns. */
993 max_uid = get_max_uid ();
994 n = (max_uid + 1) * sizeof (int);
995 uid_cuid = (int *) gmalloc (n);
996 memset ((char *) uid_cuid, 0, n);
997 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
999 if (INSN_P (insn))
1000 uid_cuid[INSN_UID (insn)] = i++;
1001 else
1002 uid_cuid[INSN_UID (insn)] = i;
1005 /* Create a table mapping cuids to insns. */
1007 max_cuid = i;
1008 n = (max_cuid + 1) * sizeof (rtx);
1009 cuid_insn = (rtx *) gmalloc (n);
1010 memset ((char *) cuid_insn, 0, n);
1011 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
1012 if (INSN_P (insn))
1013 CUID_INSN (i++) = insn;
1015 /* Allocate vars to track sets of regs. */
1016 reg_set_bitmap = BITMAP_XMALLOC ();
1018 /* Allocate vars to track sets of regs, memory per block. */
1019 reg_set_in_block = (sbitmap *) sbitmap_vector_alloc (last_basic_block,
1020 max_gcse_regno);
1021 /* Allocate array to keep a list of insns which modify memory in each
1022 basic block. */
1023 modify_mem_list = (rtx *) gmalloc (last_basic_block * sizeof (rtx));
1024 canon_modify_mem_list = (rtx *) gmalloc (last_basic_block * sizeof (rtx));
1025 memset ((char *) modify_mem_list, 0, last_basic_block * sizeof (rtx));
1026 memset ((char *) canon_modify_mem_list, 0, last_basic_block * sizeof (rtx));
1027 modify_mem_list_set = BITMAP_XMALLOC ();
1028 canon_modify_mem_list_set = BITMAP_XMALLOC ();
1031 /* Free memory allocated by alloc_gcse_mem. */
1033 static void
1034 free_gcse_mem ()
1036 free (uid_cuid);
1037 free (cuid_insn);
1039 BITMAP_XFREE (reg_set_bitmap);
1041 sbitmap_vector_free (reg_set_in_block);
1042 free_modify_mem_tables ();
1043 BITMAP_XFREE (modify_mem_list_set);
1044 BITMAP_XFREE (canon_modify_mem_list_set);
1047 /* Many of the global optimization algorithms work by solving dataflow
1048 equations for various expressions. Initially, some local value is
1049 computed for each expression in each block. Then, the values across the
1050 various blocks are combined (by following flow graph edges) to arrive at
1051 global values. Conceptually, each set of equations is independent. We
1052 may therefore solve all the equations in parallel, solve them one at a
1053 time, or pick any intermediate approach.
1055 When you're going to need N two-dimensional bitmaps, each X (say, the
1056 number of blocks) by Y (say, the number of expressions), call this
1057 function. It's not important what X and Y represent; only that Y
1058 correspond to the things that can be done in parallel. This function will
1059 return an appropriate chunking factor C; you should solve C sets of
1060 equations in parallel. By going through this function, we can easily
1061 trade space against time; by solving fewer equations in parallel we use
1062 less space. */
1064 static int
1065 get_bitmap_width (n, x, y)
1066 int n;
1067 int x;
1068 int y;
1070 /* It's not really worth figuring out *exactly* how much memory will
1071 be used by a particular choice. The important thing is to get
1072 something approximately right. */
1073 size_t max_bitmap_memory = 10 * 1024 * 1024;
1075 /* The number of bytes we'd use for a single column of minimum
1076 width. */
1077 size_t column_size = n * x * sizeof (SBITMAP_ELT_TYPE);
1079 /* Often, it's reasonable just to solve all the equations in
1080 parallel. */
1081 if (column_size * SBITMAP_SET_SIZE (y) <= max_bitmap_memory)
1082 return y;
1084 /* Otherwise, pick the largest width we can, without going over the
1085 limit. */
1086 return SBITMAP_ELT_BITS * ((max_bitmap_memory + column_size - 1)
1087 / column_size);
1090 /* Compute the local properties of each recorded expression.
1092 Local properties are those that are defined by the block, irrespective of
1093 other blocks.
1095 An expression is transparent in a block if its operands are not modified
1096 in the block.
1098 An expression is computed (locally available) in a block if it is computed
1099 at least once and expression would contain the same value if the
1100 computation was moved to the end of the block.
1102 An expression is locally anticipatable in a block if it is computed at
1103 least once and expression would contain the same value if the computation
1104 was moved to the beginning of the block.
1106 We call this routine for cprop, pre and code hoisting. They all compute
1107 basically the same information and thus can easily share this code.
1109 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
1110 properties. If NULL, then it is not necessary to compute or record that
1111 particular property.
1113 TABLE controls which hash table to look at. If it is set hash table,
1114 additionally, TRANSP is computed as ~TRANSP, since this is really cprop's
1115 ABSALTERED. */
1117 static void
1118 compute_local_properties (transp, comp, antloc, table)
1119 sbitmap *transp;
1120 sbitmap *comp;
1121 sbitmap *antloc;
1122 struct hash_table *table;
1124 unsigned int i;
1126 /* Initialize any bitmaps that were passed in. */
1127 if (transp)
1129 if (table->set_p)
1130 sbitmap_vector_zero (transp, last_basic_block);
1131 else
1132 sbitmap_vector_ones (transp, last_basic_block);
1135 if (comp)
1136 sbitmap_vector_zero (comp, last_basic_block);
1137 if (antloc)
1138 sbitmap_vector_zero (antloc, last_basic_block);
1140 for (i = 0; i < table->size; i++)
1142 struct expr *expr;
1144 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1146 int indx = expr->bitmap_index;
1147 struct occr *occr;
1149 /* The expression is transparent in this block if it is not killed.
1150 We start by assuming all are transparent [none are killed], and
1151 then reset the bits for those that are. */
1152 if (transp)
1153 compute_transp (expr->expr, indx, transp, table->set_p);
1155 /* The occurrences recorded in antic_occr are exactly those that
1156 we want to set to nonzero in ANTLOC. */
1157 if (antloc)
1158 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
1160 SET_BIT (antloc[BLOCK_NUM (occr->insn)], indx);
1162 /* While we're scanning the table, this is a good place to
1163 initialize this. */
1164 occr->deleted_p = 0;
1167 /* The occurrences recorded in avail_occr are exactly those that
1168 we want to set to nonzero in COMP. */
1169 if (comp)
1170 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
1172 SET_BIT (comp[BLOCK_NUM (occr->insn)], indx);
1174 /* While we're scanning the table, this is a good place to
1175 initialize this. */
1176 occr->copied_p = 0;
1179 /* While we're scanning the table, this is a good place to
1180 initialize this. */
1181 expr->reaching_reg = 0;
1186 /* Register set information.
1188 `reg_set_table' records where each register is set or otherwise
1189 modified. */
1191 static struct obstack reg_set_obstack;
1193 static void
1194 alloc_reg_set_mem (n_regs)
1195 int n_regs;
1197 unsigned int n;
1199 reg_set_table_size = n_regs + REG_SET_TABLE_SLOP;
1200 n = reg_set_table_size * sizeof (struct reg_set *);
1201 reg_set_table = (struct reg_set **) gmalloc (n);
1202 memset ((char *) reg_set_table, 0, n);
1204 gcc_obstack_init (&reg_set_obstack);
1207 static void
1208 free_reg_set_mem ()
1210 free (reg_set_table);
1211 obstack_free (&reg_set_obstack, NULL);
1214 /* Record REGNO in the reg_set table. */
1216 static void
1217 record_one_set (regno, insn)
1218 int regno;
1219 rtx insn;
1221 /* Allocate a new reg_set element and link it onto the list. */
1222 struct reg_set *new_reg_info;
1224 /* If the table isn't big enough, enlarge it. */
1225 if (regno >= reg_set_table_size)
1227 int new_size = regno + REG_SET_TABLE_SLOP;
1229 reg_set_table
1230 = (struct reg_set **) grealloc ((char *) reg_set_table,
1231 new_size * sizeof (struct reg_set *));
1232 memset ((char *) (reg_set_table + reg_set_table_size), 0,
1233 (new_size - reg_set_table_size) * sizeof (struct reg_set *));
1234 reg_set_table_size = new_size;
1237 new_reg_info = (struct reg_set *) obstack_alloc (&reg_set_obstack,
1238 sizeof (struct reg_set));
1239 bytes_used += sizeof (struct reg_set);
1240 new_reg_info->insn = insn;
1241 new_reg_info->next = reg_set_table[regno];
1242 reg_set_table[regno] = new_reg_info;
1245 /* Called from compute_sets via note_stores to handle one SET or CLOBBER in
1246 an insn. The DATA is really the instruction in which the SET is
1247 occurring. */
1249 static void
1250 record_set_info (dest, setter, data)
1251 rtx dest, setter ATTRIBUTE_UNUSED;
1252 void *data;
1254 rtx record_set_insn = (rtx) data;
1256 if (GET_CODE (dest) == REG && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
1257 record_one_set (REGNO (dest), record_set_insn);
1260 /* Scan the function and record each set of each pseudo-register.
1262 This is called once, at the start of the gcse pass. See the comments for
1263 `reg_set_table' for further documentation. */
1265 static void
1266 compute_sets (f)
1267 rtx f;
1269 rtx insn;
1271 for (insn = f; insn != 0; insn = NEXT_INSN (insn))
1272 if (INSN_P (insn))
1273 note_stores (PATTERN (insn), record_set_info, insn);
1276 /* Hash table support. */
1278 struct reg_avail_info
1280 basic_block last_bb;
1281 int first_set;
1282 int last_set;
1285 static struct reg_avail_info *reg_avail_info;
1286 static basic_block current_bb;
1289 /* See whether X, the source of a set, is something we want to consider for
1290 GCSE. */
1292 static GTY(()) rtx test_insn;
1293 static int
1294 want_to_gcse_p (x)
1295 rtx x;
1297 int num_clobbers = 0;
1298 int icode;
1300 switch (GET_CODE (x))
1302 case REG:
1303 case SUBREG:
1304 case CONST_INT:
1305 case CONST_DOUBLE:
1306 case CONST_VECTOR:
1307 case CALL:
1308 case CONSTANT_P_RTX:
1309 return 0;
1311 default:
1312 break;
1315 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
1316 if (general_operand (x, GET_MODE (x)))
1317 return 1;
1318 else if (GET_MODE (x) == VOIDmode)
1319 return 0;
1321 /* Otherwise, check if we can make a valid insn from it. First initialize
1322 our test insn if we haven't already. */
1323 if (test_insn == 0)
1325 test_insn
1326 = make_insn_raw (gen_rtx_SET (VOIDmode,
1327 gen_rtx_REG (word_mode,
1328 FIRST_PSEUDO_REGISTER * 2),
1329 const0_rtx));
1330 NEXT_INSN (test_insn) = PREV_INSN (test_insn) = 0;
1333 /* Now make an insn like the one we would make when GCSE'ing and see if
1334 valid. */
1335 PUT_MODE (SET_DEST (PATTERN (test_insn)), GET_MODE (x));
1336 SET_SRC (PATTERN (test_insn)) = x;
1337 return ((icode = recog (PATTERN (test_insn), test_insn, &num_clobbers)) >= 0
1338 && (num_clobbers == 0 || ! added_clobbers_hard_reg_p (icode)));
1341 /* Return nonzero if the operands of expression X are unchanged from the
1342 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
1343 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
1345 static int
1346 oprs_unchanged_p (x, insn, avail_p)
1347 rtx x, insn;
1348 int avail_p;
1350 int i, j;
1351 enum rtx_code code;
1352 const char *fmt;
1354 if (x == 0)
1355 return 1;
1357 code = GET_CODE (x);
1358 switch (code)
1360 case REG:
1362 struct reg_avail_info *info = &reg_avail_info[REGNO (x)];
1364 if (info->last_bb != current_bb)
1365 return 1;
1366 if (avail_p)
1367 return info->last_set < INSN_CUID (insn);
1368 else
1369 return info->first_set >= INSN_CUID (insn);
1372 case MEM:
1373 if (load_killed_in_block_p (current_bb, INSN_CUID (insn),
1374 x, avail_p))
1375 return 0;
1376 else
1377 return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
1379 case PRE_DEC:
1380 case PRE_INC:
1381 case POST_DEC:
1382 case POST_INC:
1383 case PRE_MODIFY:
1384 case POST_MODIFY:
1385 return 0;
1387 case PC:
1388 case CC0: /*FIXME*/
1389 case CONST:
1390 case CONST_INT:
1391 case CONST_DOUBLE:
1392 case CONST_VECTOR:
1393 case SYMBOL_REF:
1394 case LABEL_REF:
1395 case ADDR_VEC:
1396 case ADDR_DIFF_VEC:
1397 return 1;
1399 default:
1400 break;
1403 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
1405 if (fmt[i] == 'e')
1407 /* If we are about to do the last recursive call needed at this
1408 level, change it into iteration. This function is called enough
1409 to be worth it. */
1410 if (i == 0)
1411 return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
1413 else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
1414 return 0;
1416 else if (fmt[i] == 'E')
1417 for (j = 0; j < XVECLEN (x, i); j++)
1418 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
1419 return 0;
1422 return 1;
1425 /* Used for communication between mems_conflict_for_gcse_p and
1426 load_killed_in_block_p. Nonzero if mems_conflict_for_gcse_p finds a
1427 conflict between two memory references. */
1428 static int gcse_mems_conflict_p;
1430 /* Used for communication between mems_conflict_for_gcse_p and
1431 load_killed_in_block_p. A memory reference for a load instruction,
1432 mems_conflict_for_gcse_p will see if a memory store conflicts with
1433 this memory load. */
1434 static rtx gcse_mem_operand;
1436 /* DEST is the output of an instruction. If it is a memory reference, and
1437 possibly conflicts with the load found in gcse_mem_operand, then set
1438 gcse_mems_conflict_p to a nonzero value. */
1440 static void
1441 mems_conflict_for_gcse_p (dest, setter, data)
1442 rtx dest, setter ATTRIBUTE_UNUSED;
1443 void *data ATTRIBUTE_UNUSED;
1445 while (GET_CODE (dest) == SUBREG
1446 || GET_CODE (dest) == ZERO_EXTRACT
1447 || GET_CODE (dest) == SIGN_EXTRACT
1448 || GET_CODE (dest) == STRICT_LOW_PART)
1449 dest = XEXP (dest, 0);
1451 /* If DEST is not a MEM, then it will not conflict with the load. Note
1452 that function calls are assumed to clobber memory, but are handled
1453 elsewhere. */
1454 if (GET_CODE (dest) != MEM)
1455 return;
1457 /* If we are setting a MEM in our list of specially recognized MEMs,
1458 don't mark as killed this time. */
1460 if (dest == gcse_mem_operand && pre_ldst_mems != NULL)
1462 if (!find_rtx_in_ldst (dest))
1463 gcse_mems_conflict_p = 1;
1464 return;
1467 if (true_dependence (dest, GET_MODE (dest), gcse_mem_operand,
1468 rtx_addr_varies_p))
1469 gcse_mems_conflict_p = 1;
1472 /* Return nonzero if the expression in X (a memory reference) is killed
1473 in block BB before or after the insn with the CUID in UID_LIMIT.
1474 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
1475 before UID_LIMIT.
1477 To check the entire block, set UID_LIMIT to max_uid + 1 and
1478 AVAIL_P to 0. */
1480 static int
1481 load_killed_in_block_p (bb, uid_limit, x, avail_p)
1482 basic_block bb;
1483 int uid_limit;
1484 rtx x;
1485 int avail_p;
1487 rtx list_entry = modify_mem_list[bb->index];
1488 while (list_entry)
1490 rtx setter;
1491 /* Ignore entries in the list that do not apply. */
1492 if ((avail_p
1493 && INSN_CUID (XEXP (list_entry, 0)) < uid_limit)
1494 || (! avail_p
1495 && INSN_CUID (XEXP (list_entry, 0)) > uid_limit))
1497 list_entry = XEXP (list_entry, 1);
1498 continue;
1501 setter = XEXP (list_entry, 0);
1503 /* If SETTER is a call everything is clobbered. Note that calls
1504 to pure functions are never put on the list, so we need not
1505 worry about them. */
1506 if (GET_CODE (setter) == CALL_INSN)
1507 return 1;
1509 /* SETTER must be an INSN of some kind that sets memory. Call
1510 note_stores to examine each hunk of memory that is modified.
1512 The note_stores interface is pretty limited, so we have to
1513 communicate via global variables. Yuk. */
1514 gcse_mem_operand = x;
1515 gcse_mems_conflict_p = 0;
1516 note_stores (PATTERN (setter), mems_conflict_for_gcse_p, NULL);
1517 if (gcse_mems_conflict_p)
1518 return 1;
1519 list_entry = XEXP (list_entry, 1);
1521 return 0;
1524 /* Return nonzero if the operands of expression X are unchanged from
1525 the start of INSN's basic block up to but not including INSN. */
1527 static int
1528 oprs_anticipatable_p (x, insn)
1529 rtx x, insn;
1531 return oprs_unchanged_p (x, insn, 0);
1534 /* Return nonzero if the operands of expression X are unchanged from
1535 INSN to the end of INSN's basic block. */
1537 static int
1538 oprs_available_p (x, insn)
1539 rtx x, insn;
1541 return oprs_unchanged_p (x, insn, 1);
1544 /* Hash expression X.
1546 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1547 indicating if a volatile operand is found or if the expression contains
1548 something we don't want to insert in the table.
1550 ??? One might want to merge this with canon_hash. Later. */
1552 static unsigned int
1553 hash_expr (x, mode, do_not_record_p, hash_table_size)
1554 rtx x;
1555 enum machine_mode mode;
1556 int *do_not_record_p;
1557 int hash_table_size;
1559 unsigned int hash;
1561 *do_not_record_p = 0;
1563 hash = hash_expr_1 (x, mode, do_not_record_p);
1564 return hash % hash_table_size;
1567 /* Hash a string. Just add its bytes up. */
1569 static inline unsigned
1570 hash_string_1 (ps)
1571 const char *ps;
1573 unsigned hash = 0;
1574 const unsigned char *p = (const unsigned char *) ps;
1576 if (p)
1577 while (*p)
1578 hash += *p++;
1580 return hash;
1583 /* Subroutine of hash_expr to do the actual work. */
1585 static unsigned int
1586 hash_expr_1 (x, mode, do_not_record_p)
1587 rtx x;
1588 enum machine_mode mode;
1589 int *do_not_record_p;
1591 int i, j;
1592 unsigned hash = 0;
1593 enum rtx_code code;
1594 const char *fmt;
1596 /* Used to turn recursion into iteration. We can't rely on GCC's
1597 tail-recursion elimination since we need to keep accumulating values
1598 in HASH. */
1600 if (x == 0)
1601 return hash;
1603 repeat:
1604 code = GET_CODE (x);
1605 switch (code)
1607 case REG:
1608 hash += ((unsigned int) REG << 7) + REGNO (x);
1609 return hash;
1611 case CONST_INT:
1612 hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
1613 + (unsigned int) INTVAL (x));
1614 return hash;
1616 case CONST_DOUBLE:
1617 /* This is like the general case, except that it only counts
1618 the integers representing the constant. */
1619 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
1620 if (GET_MODE (x) != VOIDmode)
1621 for (i = 2; i < GET_RTX_LENGTH (CONST_DOUBLE); i++)
1622 hash += (unsigned int) XWINT (x, i);
1623 else
1624 hash += ((unsigned int) CONST_DOUBLE_LOW (x)
1625 + (unsigned int) CONST_DOUBLE_HIGH (x));
1626 return hash;
1628 case CONST_VECTOR:
1630 int units;
1631 rtx elt;
1633 units = CONST_VECTOR_NUNITS (x);
1635 for (i = 0; i < units; ++i)
1637 elt = CONST_VECTOR_ELT (x, i);
1638 hash += hash_expr_1 (elt, GET_MODE (elt), do_not_record_p);
1641 return hash;
1644 /* Assume there is only one rtx object for any given label. */
1645 case LABEL_REF:
1646 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
1647 differences and differences between each stage's debugging dumps. */
1648 hash += (((unsigned int) LABEL_REF << 7)
1649 + CODE_LABEL_NUMBER (XEXP (x, 0)));
1650 return hash;
1652 case SYMBOL_REF:
1654 /* Don't hash on the symbol's address to avoid bootstrap differences.
1655 Different hash values may cause expressions to be recorded in
1656 different orders and thus different registers to be used in the
1657 final assembler. This also avoids differences in the dump files
1658 between various stages. */
1659 unsigned int h = 0;
1660 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
1662 while (*p)
1663 h += (h << 7) + *p++; /* ??? revisit */
1665 hash += ((unsigned int) SYMBOL_REF << 7) + h;
1666 return hash;
1669 case MEM:
1670 if (MEM_VOLATILE_P (x))
1672 *do_not_record_p = 1;
1673 return 0;
1676 hash += (unsigned int) MEM;
1677 /* We used alias set for hashing, but this is not good, since the alias
1678 set may differ in -fprofile-arcs and -fbranch-probabilities compilation
1679 causing the profiles to fail to match. */
1680 x = XEXP (x, 0);
1681 goto repeat;
1683 case PRE_DEC:
1684 case PRE_INC:
1685 case POST_DEC:
1686 case POST_INC:
1687 case PC:
1688 case CC0:
1689 case CALL:
1690 case UNSPEC_VOLATILE:
1691 *do_not_record_p = 1;
1692 return 0;
1694 case ASM_OPERANDS:
1695 if (MEM_VOLATILE_P (x))
1697 *do_not_record_p = 1;
1698 return 0;
1700 else
1702 /* We don't want to take the filename and line into account. */
1703 hash += (unsigned) code + (unsigned) GET_MODE (x)
1704 + hash_string_1 (ASM_OPERANDS_TEMPLATE (x))
1705 + hash_string_1 (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
1706 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
1708 if (ASM_OPERANDS_INPUT_LENGTH (x))
1710 for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
1712 hash += (hash_expr_1 (ASM_OPERANDS_INPUT (x, i),
1713 GET_MODE (ASM_OPERANDS_INPUT (x, i)),
1714 do_not_record_p)
1715 + hash_string_1 (ASM_OPERANDS_INPUT_CONSTRAINT
1716 (x, i)));
1719 hash += hash_string_1 (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
1720 x = ASM_OPERANDS_INPUT (x, 0);
1721 mode = GET_MODE (x);
1722 goto repeat;
1724 return hash;
1727 default:
1728 break;
1731 hash += (unsigned) code + (unsigned) GET_MODE (x);
1732 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
1734 if (fmt[i] == 'e')
1736 /* If we are about to do the last recursive call
1737 needed at this level, change it into iteration.
1738 This function is called enough to be worth it. */
1739 if (i == 0)
1741 x = XEXP (x, i);
1742 goto repeat;
1745 hash += hash_expr_1 (XEXP (x, i), 0, do_not_record_p);
1746 if (*do_not_record_p)
1747 return 0;
1750 else if (fmt[i] == 'E')
1751 for (j = 0; j < XVECLEN (x, i); j++)
1753 hash += hash_expr_1 (XVECEXP (x, i, j), 0, do_not_record_p);
1754 if (*do_not_record_p)
1755 return 0;
1758 else if (fmt[i] == 's')
1759 hash += hash_string_1 (XSTR (x, i));
1760 else if (fmt[i] == 'i')
1761 hash += (unsigned int) XINT (x, i);
1762 else
1763 abort ();
1766 return hash;
1769 /* Hash a set of register REGNO.
1771 Sets are hashed on the register that is set. This simplifies the PRE copy
1772 propagation code.
1774 ??? May need to make things more elaborate. Later, as necessary. */
1776 static unsigned int
1777 hash_set (regno, hash_table_size)
1778 int regno;
1779 int hash_table_size;
1781 unsigned int hash;
1783 hash = regno;
1784 return hash % hash_table_size;
1787 /* Return nonzero if exp1 is equivalent to exp2.
1788 ??? Borrowed from cse.c. Might want to remerge with cse.c. Later. */
1790 static int
1791 expr_equiv_p (x, y)
1792 rtx x, y;
1794 int i, j;
1795 enum rtx_code code;
1796 const char *fmt;
1798 if (x == y)
1799 return 1;
1801 if (x == 0 || y == 0)
1802 return x == y;
1804 code = GET_CODE (x);
1805 if (code != GET_CODE (y))
1806 return 0;
1808 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1809 if (GET_MODE (x) != GET_MODE (y))
1810 return 0;
1812 switch (code)
1814 case PC:
1815 case CC0:
1816 return x == y;
1818 case CONST_INT:
1819 return INTVAL (x) == INTVAL (y);
1821 case LABEL_REF:
1822 return XEXP (x, 0) == XEXP (y, 0);
1824 case SYMBOL_REF:
1825 return XSTR (x, 0) == XSTR (y, 0);
1827 case REG:
1828 return REGNO (x) == REGNO (y);
1830 case MEM:
1831 /* Can't merge two expressions in different alias sets, since we can
1832 decide that the expression is transparent in a block when it isn't,
1833 due to it being set with the different alias set. */
1834 if (MEM_ALIAS_SET (x) != MEM_ALIAS_SET (y))
1835 return 0;
1836 break;
1838 /* For commutative operations, check both orders. */
1839 case PLUS:
1840 case MULT:
1841 case AND:
1842 case IOR:
1843 case XOR:
1844 case NE:
1845 case EQ:
1846 return ((expr_equiv_p (XEXP (x, 0), XEXP (y, 0))
1847 && expr_equiv_p (XEXP (x, 1), XEXP (y, 1)))
1848 || (expr_equiv_p (XEXP (x, 0), XEXP (y, 1))
1849 && expr_equiv_p (XEXP (x, 1), XEXP (y, 0))));
1851 case ASM_OPERANDS:
1852 /* We don't use the generic code below because we want to
1853 disregard filename and line numbers. */
1855 /* A volatile asm isn't equivalent to any other. */
1856 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
1857 return 0;
1859 if (GET_MODE (x) != GET_MODE (y)
1860 || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
1861 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
1862 ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
1863 || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
1864 || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
1865 return 0;
1867 if (ASM_OPERANDS_INPUT_LENGTH (x))
1869 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
1870 if (! expr_equiv_p (ASM_OPERANDS_INPUT (x, i),
1871 ASM_OPERANDS_INPUT (y, i))
1872 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
1873 ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
1874 return 0;
1877 return 1;
1879 default:
1880 break;
1883 /* Compare the elements. If any pair of corresponding elements
1884 fail to match, return 0 for the whole thing. */
1886 fmt = GET_RTX_FORMAT (code);
1887 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1889 switch (fmt[i])
1891 case 'e':
1892 if (! expr_equiv_p (XEXP (x, i), XEXP (y, i)))
1893 return 0;
1894 break;
1896 case 'E':
1897 if (XVECLEN (x, i) != XVECLEN (y, i))
1898 return 0;
1899 for (j = 0; j < XVECLEN (x, i); j++)
1900 if (! expr_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
1901 return 0;
1902 break;
1904 case 's':
1905 if (strcmp (XSTR (x, i), XSTR (y, i)))
1906 return 0;
1907 break;
1909 case 'i':
1910 if (XINT (x, i) != XINT (y, i))
1911 return 0;
1912 break;
1914 case 'w':
1915 if (XWINT (x, i) != XWINT (y, i))
1916 return 0;
1917 break;
1919 case '0':
1920 break;
1922 default:
1923 abort ();
1927 return 1;
1930 /* Insert expression X in INSN in the hash TABLE.
1931 If it is already present, record it as the last occurrence in INSN's
1932 basic block.
1934 MODE is the mode of the value X is being stored into.
1935 It is only used if X is a CONST_INT.
1937 ANTIC_P is nonzero if X is an anticipatable expression.
1938 AVAIL_P is nonzero if X is an available expression. */
1940 static void
1941 insert_expr_in_table (x, mode, insn, antic_p, avail_p, table)
1942 rtx x;
1943 enum machine_mode mode;
1944 rtx insn;
1945 int antic_p, avail_p;
1946 struct hash_table *table;
1948 int found, do_not_record_p;
1949 unsigned int hash;
1950 struct expr *cur_expr, *last_expr = NULL;
1951 struct occr *antic_occr, *avail_occr;
1952 struct occr *last_occr = NULL;
1954 hash = hash_expr (x, mode, &do_not_record_p, table->size);
1956 /* Do not insert expression in table if it contains volatile operands,
1957 or if hash_expr determines the expression is something we don't want
1958 to or can't handle. */
1959 if (do_not_record_p)
1960 return;
1962 cur_expr = table->table[hash];
1963 found = 0;
1965 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1967 /* If the expression isn't found, save a pointer to the end of
1968 the list. */
1969 last_expr = cur_expr;
1970 cur_expr = cur_expr->next_same_hash;
1973 if (! found)
1975 cur_expr = (struct expr *) gcse_alloc (sizeof (struct expr));
1976 bytes_used += sizeof (struct expr);
1977 if (table->table[hash] == NULL)
1978 /* This is the first pattern that hashed to this index. */
1979 table->table[hash] = cur_expr;
1980 else
1981 /* Add EXPR to end of this hash chain. */
1982 last_expr->next_same_hash = cur_expr;
1984 /* Set the fields of the expr element. */
1985 cur_expr->expr = x;
1986 cur_expr->bitmap_index = table->n_elems++;
1987 cur_expr->next_same_hash = NULL;
1988 cur_expr->antic_occr = NULL;
1989 cur_expr->avail_occr = NULL;
1992 /* Now record the occurrence(s). */
1993 if (antic_p)
1995 antic_occr = cur_expr->antic_occr;
1997 /* Search for another occurrence in the same basic block. */
1998 while (antic_occr && BLOCK_NUM (antic_occr->insn) != BLOCK_NUM (insn))
2000 /* If an occurrence isn't found, save a pointer to the end of
2001 the list. */
2002 last_occr = antic_occr;
2003 antic_occr = antic_occr->next;
2006 if (antic_occr)
2007 /* Found another instance of the expression in the same basic block.
2008 Prefer the currently recorded one. We want the first one in the
2009 block and the block is scanned from start to end. */
2010 ; /* nothing to do */
2011 else
2013 /* First occurrence of this expression in this basic block. */
2014 antic_occr = (struct occr *) gcse_alloc (sizeof (struct occr));
2015 bytes_used += sizeof (struct occr);
2016 /* First occurrence of this expression in any block? */
2017 if (cur_expr->antic_occr == NULL)
2018 cur_expr->antic_occr = antic_occr;
2019 else
2020 last_occr->next = antic_occr;
2022 antic_occr->insn = insn;
2023 antic_occr->next = NULL;
2027 if (avail_p)
2029 avail_occr = cur_expr->avail_occr;
2031 /* Search for another occurrence in the same basic block. */
2032 while (avail_occr && BLOCK_NUM (avail_occr->insn) != BLOCK_NUM (insn))
2034 /* If an occurrence isn't found, save a pointer to the end of
2035 the list. */
2036 last_occr = avail_occr;
2037 avail_occr = avail_occr->next;
2040 if (avail_occr)
2041 /* Found another instance of the expression in the same basic block.
2042 Prefer this occurrence to the currently recorded one. We want
2043 the last one in the block and the block is scanned from start
2044 to end. */
2045 avail_occr->insn = insn;
2046 else
2048 /* First occurrence of this expression in this basic block. */
2049 avail_occr = (struct occr *) gcse_alloc (sizeof (struct occr));
2050 bytes_used += sizeof (struct occr);
2052 /* First occurrence of this expression in any block? */
2053 if (cur_expr->avail_occr == NULL)
2054 cur_expr->avail_occr = avail_occr;
2055 else
2056 last_occr->next = avail_occr;
2058 avail_occr->insn = insn;
2059 avail_occr->next = NULL;
2064 /* Insert pattern X in INSN in the hash table.
2065 X is a SET of a reg to either another reg or a constant.
2066 If it is already present, record it as the last occurrence in INSN's
2067 basic block. */
2069 static void
2070 insert_set_in_table (x, insn, table)
2071 rtx x;
2072 rtx insn;
2073 struct hash_table *table;
2075 int found;
2076 unsigned int hash;
2077 struct expr *cur_expr, *last_expr = NULL;
2078 struct occr *cur_occr, *last_occr = NULL;
2080 if (GET_CODE (x) != SET
2081 || GET_CODE (SET_DEST (x)) != REG)
2082 abort ();
2084 hash = hash_set (REGNO (SET_DEST (x)), table->size);
2086 cur_expr = table->table[hash];
2087 found = 0;
2089 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
2091 /* If the expression isn't found, save a pointer to the end of
2092 the list. */
2093 last_expr = cur_expr;
2094 cur_expr = cur_expr->next_same_hash;
2097 if (! found)
2099 cur_expr = (struct expr *) gcse_alloc (sizeof (struct expr));
2100 bytes_used += sizeof (struct expr);
2101 if (table->table[hash] == NULL)
2102 /* This is the first pattern that hashed to this index. */
2103 table->table[hash] = cur_expr;
2104 else
2105 /* Add EXPR to end of this hash chain. */
2106 last_expr->next_same_hash = cur_expr;
2108 /* Set the fields of the expr element.
2109 We must copy X because it can be modified when copy propagation is
2110 performed on its operands. */
2111 cur_expr->expr = copy_rtx (x);
2112 cur_expr->bitmap_index = table->n_elems++;
2113 cur_expr->next_same_hash = NULL;
2114 cur_expr->antic_occr = NULL;
2115 cur_expr->avail_occr = NULL;
2118 /* Now record the occurrence. */
2119 cur_occr = cur_expr->avail_occr;
2121 /* Search for another occurrence in the same basic block. */
2122 while (cur_occr && BLOCK_NUM (cur_occr->insn) != BLOCK_NUM (insn))
2124 /* If an occurrence isn't found, save a pointer to the end of
2125 the list. */
2126 last_occr = cur_occr;
2127 cur_occr = cur_occr->next;
2130 if (cur_occr)
2131 /* Found another instance of the expression in the same basic block.
2132 Prefer this occurrence to the currently recorded one. We want the
2133 last one in the block and the block is scanned from start to end. */
2134 cur_occr->insn = insn;
2135 else
2137 /* First occurrence of this expression in this basic block. */
2138 cur_occr = (struct occr *) gcse_alloc (sizeof (struct occr));
2139 bytes_used += sizeof (struct occr);
2141 /* First occurrence of this expression in any block? */
2142 if (cur_expr->avail_occr == NULL)
2143 cur_expr->avail_occr = cur_occr;
2144 else
2145 last_occr->next = cur_occr;
2147 cur_occr->insn = insn;
2148 cur_occr->next = NULL;
2152 /* Scan pattern PAT of INSN and add an entry to the hash TABLE (set or
2153 expression one). */
2155 static void
2156 hash_scan_set (pat, insn, table)
2157 rtx pat, insn;
2158 struct hash_table *table;
2160 rtx src = SET_SRC (pat);
2161 rtx dest = SET_DEST (pat);
2162 rtx note;
2164 if (GET_CODE (src) == CALL)
2165 hash_scan_call (src, insn, table);
2167 else if (GET_CODE (dest) == REG)
2169 unsigned int regno = REGNO (dest);
2170 rtx tmp;
2172 /* If this is a single set and we are doing constant propagation,
2173 see if a REG_NOTE shows this equivalent to a constant. */
2174 if (table->set_p && (note = find_reg_equal_equiv_note (insn)) != 0
2175 && CONSTANT_P (XEXP (note, 0)))
2176 src = XEXP (note, 0), pat = gen_rtx_SET (VOIDmode, dest, src);
2178 /* Only record sets of pseudo-regs in the hash table. */
2179 if (! table->set_p
2180 && regno >= FIRST_PSEUDO_REGISTER
2181 /* Don't GCSE something if we can't do a reg/reg copy. */
2182 && can_copy_p [GET_MODE (dest)]
2183 /* GCSE commonly inserts instruction after the insn. We can't
2184 do that easily for EH_REGION notes so disable GCSE on these
2185 for now. */
2186 && !find_reg_note (insn, REG_EH_REGION, NULL_RTX)
2187 /* Is SET_SRC something we want to gcse? */
2188 && want_to_gcse_p (src)
2189 /* Don't CSE a nop. */
2190 && ! set_noop_p (pat)
2191 /* Don't GCSE if it has attached REG_EQUIV note.
2192 At this point this only function parameters should have
2193 REG_EQUIV notes and if the argument slot is used somewhere
2194 explicitly, it means address of parameter has been taken,
2195 so we should not extend the lifetime of the pseudo. */
2196 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
2197 || GET_CODE (XEXP (note, 0)) != MEM))
2199 /* An expression is not anticipatable if its operands are
2200 modified before this insn or if this is not the only SET in
2201 this insn. */
2202 int antic_p = oprs_anticipatable_p (src, insn) && single_set (insn);
2203 /* An expression is not available if its operands are
2204 subsequently modified, including this insn. It's also not
2205 available if this is a branch, because we can't insert
2206 a set after the branch. */
2207 int avail_p = (oprs_available_p (src, insn)
2208 && ! JUMP_P (insn));
2210 insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p, table);
2213 /* Record sets for constant/copy propagation. */
2214 else if (table->set_p
2215 && regno >= FIRST_PSEUDO_REGISTER
2216 && ((GET_CODE (src) == REG
2217 && REGNO (src) >= FIRST_PSEUDO_REGISTER
2218 && can_copy_p [GET_MODE (dest)]
2219 && REGNO (src) != regno)
2220 || (CONSTANT_P (src)
2221 && GET_CODE (src) != CONSTANT_P_RTX))
2222 /* A copy is not available if its src or dest is subsequently
2223 modified. Here we want to search from INSN+1 on, but
2224 oprs_available_p searches from INSN on. */
2225 && (insn == BLOCK_END (BLOCK_NUM (insn))
2226 || ((tmp = next_nonnote_insn (insn)) != NULL_RTX
2227 && oprs_available_p (pat, tmp))))
2228 insert_set_in_table (pat, insn, table);
2232 static void
2233 hash_scan_clobber (x, insn, table)
2234 rtx x ATTRIBUTE_UNUSED, insn ATTRIBUTE_UNUSED;
2235 struct hash_table *table ATTRIBUTE_UNUSED;
2237 /* Currently nothing to do. */
2240 static void
2241 hash_scan_call (x, insn, table)
2242 rtx x ATTRIBUTE_UNUSED, insn ATTRIBUTE_UNUSED;
2243 struct hash_table *table ATTRIBUTE_UNUSED;
2245 /* Currently nothing to do. */
2248 /* Process INSN and add hash table entries as appropriate.
2250 Only available expressions that set a single pseudo-reg are recorded.
2252 Single sets in a PARALLEL could be handled, but it's an extra complication
2253 that isn't dealt with right now. The trick is handling the CLOBBERs that
2254 are also in the PARALLEL. Later.
2256 If SET_P is nonzero, this is for the assignment hash table,
2257 otherwise it is for the expression hash table.
2258 If IN_LIBCALL_BLOCK nonzero, we are in a libcall block, and should
2259 not record any expressions. */
2261 static void
2262 hash_scan_insn (insn, table, in_libcall_block)
2263 rtx insn;
2264 struct hash_table *table;
2265 int in_libcall_block;
2267 rtx pat = PATTERN (insn);
2268 int i;
2270 if (in_libcall_block)
2271 return;
2273 /* Pick out the sets of INSN and for other forms of instructions record
2274 what's been modified. */
2276 if (GET_CODE (pat) == SET)
2277 hash_scan_set (pat, insn, table);
2278 else if (GET_CODE (pat) == PARALLEL)
2279 for (i = 0; i < XVECLEN (pat, 0); i++)
2281 rtx x = XVECEXP (pat, 0, i);
2283 if (GET_CODE (x) == SET)
2284 hash_scan_set (x, insn, table);
2285 else if (GET_CODE (x) == CLOBBER)
2286 hash_scan_clobber (x, insn, table);
2287 else if (GET_CODE (x) == CALL)
2288 hash_scan_call (x, insn, table);
2291 else if (GET_CODE (pat) == CLOBBER)
2292 hash_scan_clobber (pat, insn, table);
2293 else if (GET_CODE (pat) == CALL)
2294 hash_scan_call (pat, insn, table);
2297 static void
2298 dump_hash_table (file, name, table)
2299 FILE *file;
2300 const char *name;
2301 struct hash_table *table;
2303 int i;
2304 /* Flattened out table, so it's printed in proper order. */
2305 struct expr **flat_table;
2306 unsigned int *hash_val;
2307 struct expr *expr;
2309 flat_table
2310 = (struct expr **) xcalloc (table->n_elems, sizeof (struct expr *));
2311 hash_val = (unsigned int *) xmalloc (table->n_elems * sizeof (unsigned int));
2313 for (i = 0; i < (int) table->size; i++)
2314 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
2316 flat_table[expr->bitmap_index] = expr;
2317 hash_val[expr->bitmap_index] = i;
2320 fprintf (file, "%s hash table (%d buckets, %d entries)\n",
2321 name, table->size, table->n_elems);
2323 for (i = 0; i < (int) table->n_elems; i++)
2324 if (flat_table[i] != 0)
2326 expr = flat_table[i];
2327 fprintf (file, "Index %d (hash value %d)\n ",
2328 expr->bitmap_index, hash_val[i]);
2329 print_rtl (file, expr->expr);
2330 fprintf (file, "\n");
2333 fprintf (file, "\n");
2335 free (flat_table);
2336 free (hash_val);
2339 /* Record register first/last/block set information for REGNO in INSN.
2341 first_set records the first place in the block where the register
2342 is set and is used to compute "anticipatability".
2344 last_set records the last place in the block where the register
2345 is set and is used to compute "availability".
2347 last_bb records the block for which first_set and last_set are
2348 valid, as a quick test to invalidate them.
2350 reg_set_in_block records whether the register is set in the block
2351 and is used to compute "transparency". */
2353 static void
2354 record_last_reg_set_info (insn, regno)
2355 rtx insn;
2356 int regno;
2358 struct reg_avail_info *info = &reg_avail_info[regno];
2359 int cuid = INSN_CUID (insn);
2361 info->last_set = cuid;
2362 if (info->last_bb != current_bb)
2364 info->last_bb = current_bb;
2365 info->first_set = cuid;
2366 SET_BIT (reg_set_in_block[current_bb->index], regno);
2371 /* Record all of the canonicalized MEMs of record_last_mem_set_info's insn.
2372 Note we store a pair of elements in the list, so they have to be
2373 taken off pairwise. */
2375 static void
2376 canon_list_insert (dest, unused1, v_insn)
2377 rtx dest ATTRIBUTE_UNUSED;
2378 rtx unused1 ATTRIBUTE_UNUSED;
2379 void * v_insn;
2381 rtx dest_addr, insn;
2382 int bb;
2384 while (GET_CODE (dest) == SUBREG
2385 || GET_CODE (dest) == ZERO_EXTRACT
2386 || GET_CODE (dest) == SIGN_EXTRACT
2387 || GET_CODE (dest) == STRICT_LOW_PART)
2388 dest = XEXP (dest, 0);
2390 /* If DEST is not a MEM, then it will not conflict with a load. Note
2391 that function calls are assumed to clobber memory, but are handled
2392 elsewhere. */
2394 if (GET_CODE (dest) != MEM)
2395 return;
2397 dest_addr = get_addr (XEXP (dest, 0));
2398 dest_addr = canon_rtx (dest_addr);
2399 insn = (rtx) v_insn;
2400 bb = BLOCK_NUM (insn);
2402 canon_modify_mem_list[bb] =
2403 alloc_EXPR_LIST (VOIDmode, dest_addr, canon_modify_mem_list[bb]);
2404 canon_modify_mem_list[bb] =
2405 alloc_EXPR_LIST (VOIDmode, dest, canon_modify_mem_list[bb]);
2406 bitmap_set_bit (canon_modify_mem_list_set, bb);
2409 /* Record memory modification information for INSN. We do not actually care
2410 about the memory location(s) that are set, or even how they are set (consider
2411 a CALL_INSN). We merely need to record which insns modify memory. */
2413 static void
2414 record_last_mem_set_info (insn)
2415 rtx insn;
2417 int bb = BLOCK_NUM (insn);
2419 /* load_killed_in_block_p will handle the case of calls clobbering
2420 everything. */
2421 modify_mem_list[bb] = alloc_INSN_LIST (insn, modify_mem_list[bb]);
2422 bitmap_set_bit (modify_mem_list_set, bb);
2424 if (GET_CODE (insn) == CALL_INSN)
2426 /* Note that traversals of this loop (other than for free-ing)
2427 will break after encountering a CALL_INSN. So, there's no
2428 need to insert a pair of items, as canon_list_insert does. */
2429 canon_modify_mem_list[bb] =
2430 alloc_INSN_LIST (insn, canon_modify_mem_list[bb]);
2431 bitmap_set_bit (canon_modify_mem_list_set, bb);
2433 else
2434 note_stores (PATTERN (insn), canon_list_insert, (void*) insn);
2437 /* Called from compute_hash_table via note_stores to handle one
2438 SET or CLOBBER in an insn. DATA is really the instruction in which
2439 the SET is taking place. */
2441 static void
2442 record_last_set_info (dest, setter, data)
2443 rtx dest, setter ATTRIBUTE_UNUSED;
2444 void *data;
2446 rtx last_set_insn = (rtx) data;
2448 if (GET_CODE (dest) == SUBREG)
2449 dest = SUBREG_REG (dest);
2451 if (GET_CODE (dest) == REG)
2452 record_last_reg_set_info (last_set_insn, REGNO (dest));
2453 else if (GET_CODE (dest) == MEM
2454 /* Ignore pushes, they clobber nothing. */
2455 && ! push_operand (dest, GET_MODE (dest)))
2456 record_last_mem_set_info (last_set_insn);
2459 /* Top level function to create an expression or assignment hash table.
2461 Expression entries are placed in the hash table if
2462 - they are of the form (set (pseudo-reg) src),
2463 - src is something we want to perform GCSE on,
2464 - none of the operands are subsequently modified in the block
2466 Assignment entries are placed in the hash table if
2467 - they are of the form (set (pseudo-reg) src),
2468 - src is something we want to perform const/copy propagation on,
2469 - none of the operands or target are subsequently modified in the block
2471 Currently src must be a pseudo-reg or a const_int.
2473 F is the first insn.
2474 TABLE is the table computed. */
2476 static void
2477 compute_hash_table_work (table)
2478 struct hash_table *table;
2480 unsigned int i;
2482 /* While we compute the hash table we also compute a bit array of which
2483 registers are set in which blocks.
2484 ??? This isn't needed during const/copy propagation, but it's cheap to
2485 compute. Later. */
2486 sbitmap_vector_zero (reg_set_in_block, last_basic_block);
2488 /* re-Cache any INSN_LIST nodes we have allocated. */
2489 clear_modify_mem_tables ();
2490 /* Some working arrays used to track first and last set in each block. */
2491 reg_avail_info = (struct reg_avail_info*)
2492 gmalloc (max_gcse_regno * sizeof (struct reg_avail_info));
2494 for (i = 0; i < max_gcse_regno; ++i)
2495 reg_avail_info[i].last_bb = NULL;
2497 FOR_EACH_BB (current_bb)
2499 rtx insn;
2500 unsigned int regno;
2501 int in_libcall_block;
2503 /* First pass over the instructions records information used to
2504 determine when registers and memory are first and last set.
2505 ??? hard-reg reg_set_in_block computation
2506 could be moved to compute_sets since they currently don't change. */
2508 for (insn = current_bb->head;
2509 insn && insn != NEXT_INSN (current_bb->end);
2510 insn = NEXT_INSN (insn))
2512 if (! INSN_P (insn))
2513 continue;
2515 if (GET_CODE (insn) == CALL_INSN)
2517 bool clobbers_all = false;
2518 #ifdef NON_SAVING_SETJMP
2519 if (NON_SAVING_SETJMP
2520 && find_reg_note (insn, REG_SETJMP, NULL_RTX))
2521 clobbers_all = true;
2522 #endif
2524 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
2525 if (clobbers_all
2526 || TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
2527 record_last_reg_set_info (insn, regno);
2529 mark_call (insn);
2532 note_stores (PATTERN (insn), record_last_set_info, insn);
2535 /* The next pass builds the hash table. */
2537 for (insn = current_bb->head, in_libcall_block = 0;
2538 insn && insn != NEXT_INSN (current_bb->end);
2539 insn = NEXT_INSN (insn))
2540 if (INSN_P (insn))
2542 if (find_reg_note (insn, REG_LIBCALL, NULL_RTX))
2543 in_libcall_block = 1;
2544 else if (table->set_p && find_reg_note (insn, REG_RETVAL, NULL_RTX))
2545 in_libcall_block = 0;
2546 hash_scan_insn (insn, table, in_libcall_block);
2547 if (!table->set_p && find_reg_note (insn, REG_RETVAL, NULL_RTX))
2548 in_libcall_block = 0;
2552 free (reg_avail_info);
2553 reg_avail_info = NULL;
2556 /* Allocate space for the set/expr hash TABLE.
2557 N_INSNS is the number of instructions in the function.
2558 It is used to determine the number of buckets to use.
2559 SET_P determines whether set or expression table will
2560 be created. */
2562 static void
2563 alloc_hash_table (n_insns, table, set_p)
2564 int n_insns;
2565 struct hash_table *table;
2566 int set_p;
2568 int n;
2570 table->size = n_insns / 4;
2571 if (table->size < 11)
2572 table->size = 11;
2574 /* Attempt to maintain efficient use of hash table.
2575 Making it an odd number is simplest for now.
2576 ??? Later take some measurements. */
2577 table->size |= 1;
2578 n = table->size * sizeof (struct expr *);
2579 table->table = (struct expr **) gmalloc (n);
2580 table->set_p = set_p;
2583 /* Free things allocated by alloc_hash_table. */
2585 static void
2586 free_hash_table (table)
2587 struct hash_table *table;
2589 free (table->table);
2592 /* Compute the hash TABLE for doing copy/const propagation or
2593 expression hash table. */
2595 static void
2596 compute_hash_table (table)
2597 struct hash_table *table;
2599 /* Initialize count of number of entries in hash table. */
2600 table->n_elems = 0;
2601 memset ((char *) table->table, 0,
2602 table->size * sizeof (struct expr *));
2604 compute_hash_table_work (table);
2607 /* Expression tracking support. */
2609 /* Lookup pattern PAT in the expression TABLE.
2610 The result is a pointer to the table entry, or NULL if not found. */
2612 static struct expr *
2613 lookup_expr (pat, table)
2614 rtx pat;
2615 struct hash_table *table;
2617 int do_not_record_p;
2618 unsigned int hash = hash_expr (pat, GET_MODE (pat), &do_not_record_p,
2619 table->size);
2620 struct expr *expr;
2622 if (do_not_record_p)
2623 return NULL;
2625 expr = table->table[hash];
2627 while (expr && ! expr_equiv_p (expr->expr, pat))
2628 expr = expr->next_same_hash;
2630 return expr;
2633 /* Lookup REGNO in the set TABLE. If PAT is non-NULL look for the entry that
2634 matches it, otherwise return the first entry for REGNO. The result is a
2635 pointer to the table entry, or NULL if not found. */
2637 static struct expr *
2638 lookup_set (regno, pat, table)
2639 unsigned int regno;
2640 rtx pat;
2641 struct hash_table *table;
2643 unsigned int hash = hash_set (regno, table->size);
2644 struct expr *expr;
2646 expr = table->table[hash];
2648 if (pat)
2650 while (expr && ! expr_equiv_p (expr->expr, pat))
2651 expr = expr->next_same_hash;
2653 else
2655 while (expr && REGNO (SET_DEST (expr->expr)) != regno)
2656 expr = expr->next_same_hash;
2659 return expr;
2662 /* Return the next entry for REGNO in list EXPR. */
2664 static struct expr *
2665 next_set (regno, expr)
2666 unsigned int regno;
2667 struct expr *expr;
2670 expr = expr->next_same_hash;
2671 while (expr && REGNO (SET_DEST (expr->expr)) != regno);
2673 return expr;
2676 /* Like free_INSN_LIST_list or free_EXPR_LIST_list, except that the node
2677 types may be mixed. */
2679 static void
2680 free_insn_expr_list_list (listp)
2681 rtx *listp;
2683 rtx list, next;
2685 for (list = *listp; list ; list = next)
2687 next = XEXP (list, 1);
2688 if (GET_CODE (list) == EXPR_LIST)
2689 free_EXPR_LIST_node (list);
2690 else
2691 free_INSN_LIST_node (list);
2694 *listp = NULL;
2697 /* Clear canon_modify_mem_list and modify_mem_list tables. */
2698 static void
2699 clear_modify_mem_tables ()
2701 int i;
2703 EXECUTE_IF_SET_IN_BITMAP
2704 (modify_mem_list_set, 0, i, free_INSN_LIST_list (modify_mem_list + i));
2705 bitmap_clear (modify_mem_list_set);
2707 EXECUTE_IF_SET_IN_BITMAP
2708 (canon_modify_mem_list_set, 0, i,
2709 free_insn_expr_list_list (canon_modify_mem_list + i));
2710 bitmap_clear (canon_modify_mem_list_set);
2713 /* Release memory used by modify_mem_list_set and canon_modify_mem_list_set. */
2715 static void
2716 free_modify_mem_tables ()
2718 clear_modify_mem_tables ();
2719 free (modify_mem_list);
2720 free (canon_modify_mem_list);
2721 modify_mem_list = 0;
2722 canon_modify_mem_list = 0;
2725 /* Reset tables used to keep track of what's still available [since the
2726 start of the block]. */
2728 static void
2729 reset_opr_set_tables ()
2731 /* Maintain a bitmap of which regs have been set since beginning of
2732 the block. */
2733 CLEAR_REG_SET (reg_set_bitmap);
2735 /* Also keep a record of the last instruction to modify memory.
2736 For now this is very trivial, we only record whether any memory
2737 location has been modified. */
2738 clear_modify_mem_tables ();
2741 /* Return nonzero if the operands of X are not set before INSN in
2742 INSN's basic block. */
2744 static int
2745 oprs_not_set_p (x, insn)
2746 rtx x, insn;
2748 int i, j;
2749 enum rtx_code code;
2750 const char *fmt;
2752 if (x == 0)
2753 return 1;
2755 code = GET_CODE (x);
2756 switch (code)
2758 case PC:
2759 case CC0:
2760 case CONST:
2761 case CONST_INT:
2762 case CONST_DOUBLE:
2763 case CONST_VECTOR:
2764 case SYMBOL_REF:
2765 case LABEL_REF:
2766 case ADDR_VEC:
2767 case ADDR_DIFF_VEC:
2768 return 1;
2770 case MEM:
2771 if (load_killed_in_block_p (BLOCK_FOR_INSN (insn),
2772 INSN_CUID (insn), x, 0))
2773 return 0;
2774 else
2775 return oprs_not_set_p (XEXP (x, 0), insn);
2777 case REG:
2778 return ! REGNO_REG_SET_P (reg_set_bitmap, REGNO (x));
2780 default:
2781 break;
2784 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2786 if (fmt[i] == 'e')
2788 /* If we are about to do the last recursive call
2789 needed at this level, change it into iteration.
2790 This function is called enough to be worth it. */
2791 if (i == 0)
2792 return oprs_not_set_p (XEXP (x, i), insn);
2794 if (! oprs_not_set_p (XEXP (x, i), insn))
2795 return 0;
2797 else if (fmt[i] == 'E')
2798 for (j = 0; j < XVECLEN (x, i); j++)
2799 if (! oprs_not_set_p (XVECEXP (x, i, j), insn))
2800 return 0;
2803 return 1;
2806 /* Mark things set by a CALL. */
2808 static void
2809 mark_call (insn)
2810 rtx insn;
2812 if (! CONST_OR_PURE_CALL_P (insn))
2813 record_last_mem_set_info (insn);
2816 /* Mark things set by a SET. */
2818 static void
2819 mark_set (pat, insn)
2820 rtx pat, insn;
2822 rtx dest = SET_DEST (pat);
2824 while (GET_CODE (dest) == SUBREG
2825 || GET_CODE (dest) == ZERO_EXTRACT
2826 || GET_CODE (dest) == SIGN_EXTRACT
2827 || GET_CODE (dest) == STRICT_LOW_PART)
2828 dest = XEXP (dest, 0);
2830 if (GET_CODE (dest) == REG)
2831 SET_REGNO_REG_SET (reg_set_bitmap, REGNO (dest));
2832 else if (GET_CODE (dest) == MEM)
2833 record_last_mem_set_info (insn);
2835 if (GET_CODE (SET_SRC (pat)) == CALL)
2836 mark_call (insn);
2839 /* Record things set by a CLOBBER. */
2841 static void
2842 mark_clobber (pat, insn)
2843 rtx pat, insn;
2845 rtx clob = XEXP (pat, 0);
2847 while (GET_CODE (clob) == SUBREG || GET_CODE (clob) == STRICT_LOW_PART)
2848 clob = XEXP (clob, 0);
2850 if (GET_CODE (clob) == REG)
2851 SET_REGNO_REG_SET (reg_set_bitmap, REGNO (clob));
2852 else
2853 record_last_mem_set_info (insn);
2856 /* Record things set by INSN.
2857 This data is used by oprs_not_set_p. */
2859 static void
2860 mark_oprs_set (insn)
2861 rtx insn;
2863 rtx pat = PATTERN (insn);
2864 int i;
2866 if (GET_CODE (pat) == SET)
2867 mark_set (pat, insn);
2868 else if (GET_CODE (pat) == PARALLEL)
2869 for (i = 0; i < XVECLEN (pat, 0); i++)
2871 rtx x = XVECEXP (pat, 0, i);
2873 if (GET_CODE (x) == SET)
2874 mark_set (x, insn);
2875 else if (GET_CODE (x) == CLOBBER)
2876 mark_clobber (x, insn);
2877 else if (GET_CODE (x) == CALL)
2878 mark_call (insn);
2881 else if (GET_CODE (pat) == CLOBBER)
2882 mark_clobber (pat, insn);
2883 else if (GET_CODE (pat) == CALL)
2884 mark_call (insn);
2888 /* Classic GCSE reaching definition support. */
2890 /* Allocate reaching def variables. */
2892 static void
2893 alloc_rd_mem (n_blocks, n_insns)
2894 int n_blocks, n_insns;
2896 rd_kill = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
2897 sbitmap_vector_zero (rd_kill, n_blocks);
2899 rd_gen = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
2900 sbitmap_vector_zero (rd_gen, n_blocks);
2902 reaching_defs = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
2903 sbitmap_vector_zero (reaching_defs, n_blocks);
2905 rd_out = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
2906 sbitmap_vector_zero (rd_out, n_blocks);
2909 /* Free reaching def variables. */
2911 static void
2912 free_rd_mem ()
2914 sbitmap_vector_free (rd_kill);
2915 sbitmap_vector_free (rd_gen);
2916 sbitmap_vector_free (reaching_defs);
2917 sbitmap_vector_free (rd_out);
2920 /* Add INSN to the kills of BB. REGNO, set in BB, is killed by INSN. */
2922 static void
2923 handle_rd_kill_set (insn, regno, bb)
2924 rtx insn;
2925 int regno;
2926 basic_block bb;
2928 struct reg_set *this_reg;
2930 for (this_reg = reg_set_table[regno]; this_reg; this_reg = this_reg ->next)
2931 if (BLOCK_NUM (this_reg->insn) != BLOCK_NUM (insn))
2932 SET_BIT (rd_kill[bb->index], INSN_CUID (this_reg->insn));
2935 /* Compute the set of kill's for reaching definitions. */
2937 static void
2938 compute_kill_rd ()
2940 int cuid;
2941 unsigned int regno;
2942 int i;
2943 basic_block bb;
2945 /* For each block
2946 For each set bit in `gen' of the block (i.e each insn which
2947 generates a definition in the block)
2948 Call the reg set by the insn corresponding to that bit regx
2949 Look at the linked list starting at reg_set_table[regx]
2950 For each setting of regx in the linked list, which is not in
2951 this block
2952 Set the bit in `kill' corresponding to that insn. */
2953 FOR_EACH_BB (bb)
2954 for (cuid = 0; cuid < max_cuid; cuid++)
2955 if (TEST_BIT (rd_gen[bb->index], cuid))
2957 rtx insn = CUID_INSN (cuid);
2958 rtx pat = PATTERN (insn);
2960 if (GET_CODE (insn) == CALL_INSN)
2962 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
2963 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
2964 handle_rd_kill_set (insn, regno, bb);
2967 if (GET_CODE (pat) == PARALLEL)
2969 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
2971 enum rtx_code code = GET_CODE (XVECEXP (pat, 0, i));
2973 if ((code == SET || code == CLOBBER)
2974 && GET_CODE (XEXP (XVECEXP (pat, 0, i), 0)) == REG)
2975 handle_rd_kill_set (insn,
2976 REGNO (XEXP (XVECEXP (pat, 0, i), 0)),
2977 bb);
2980 else if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == REG)
2981 /* Each setting of this register outside of this block
2982 must be marked in the set of kills in this block. */
2983 handle_rd_kill_set (insn, REGNO (SET_DEST (pat)), bb);
2987 /* Compute the reaching definitions as in
2988 Compilers Principles, Techniques, and Tools. Aho, Sethi, Ullman,
2989 Chapter 10. It is the same algorithm as used for computing available
2990 expressions but applied to the gens and kills of reaching definitions. */
2992 static void
2993 compute_rd ()
2995 int changed, passes;
2996 basic_block bb;
2998 FOR_EACH_BB (bb)
2999 sbitmap_copy (rd_out[bb->index] /*dst*/, rd_gen[bb->index] /*src*/);
3001 passes = 0;
3002 changed = 1;
3003 while (changed)
3005 changed = 0;
3006 FOR_EACH_BB (bb)
3008 sbitmap_union_of_preds (reaching_defs[bb->index], rd_out, bb->index);
3009 changed |= sbitmap_union_of_diff_cg (rd_out[bb->index], rd_gen[bb->index],
3010 reaching_defs[bb->index], rd_kill[bb->index]);
3012 passes++;
3015 if (gcse_file)
3016 fprintf (gcse_file, "reaching def computation: %d passes\n", passes);
3019 /* Classic GCSE available expression support. */
3021 /* Allocate memory for available expression computation. */
3023 static void
3024 alloc_avail_expr_mem (n_blocks, n_exprs)
3025 int n_blocks, n_exprs;
3027 ae_kill = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
3028 sbitmap_vector_zero (ae_kill, n_blocks);
3030 ae_gen = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
3031 sbitmap_vector_zero (ae_gen, n_blocks);
3033 ae_in = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
3034 sbitmap_vector_zero (ae_in, n_blocks);
3036 ae_out = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
3037 sbitmap_vector_zero (ae_out, n_blocks);
3040 static void
3041 free_avail_expr_mem ()
3043 sbitmap_vector_free (ae_kill);
3044 sbitmap_vector_free (ae_gen);
3045 sbitmap_vector_free (ae_in);
3046 sbitmap_vector_free (ae_out);
3049 /* Compute the set of available expressions generated in each basic block. */
3051 static void
3052 compute_ae_gen (expr_hash_table)
3053 struct hash_table *expr_hash_table;
3055 unsigned int i;
3056 struct expr *expr;
3057 struct occr *occr;
3059 /* For each recorded occurrence of each expression, set ae_gen[bb][expr].
3060 This is all we have to do because an expression is not recorded if it
3061 is not available, and the only expressions we want to work with are the
3062 ones that are recorded. */
3063 for (i = 0; i < expr_hash_table->size; i++)
3064 for (expr = expr_hash_table->table[i]; expr != 0; expr = expr->next_same_hash)
3065 for (occr = expr->avail_occr; occr != 0; occr = occr->next)
3066 SET_BIT (ae_gen[BLOCK_NUM (occr->insn)], expr->bitmap_index);
3069 /* Return nonzero if expression X is killed in BB. */
3071 static int
3072 expr_killed_p (x, bb)
3073 rtx x;
3074 basic_block bb;
3076 int i, j;
3077 enum rtx_code code;
3078 const char *fmt;
3080 if (x == 0)
3081 return 1;
3083 code = GET_CODE (x);
3084 switch (code)
3086 case REG:
3087 return TEST_BIT (reg_set_in_block[bb->index], REGNO (x));
3089 case MEM:
3090 if (load_killed_in_block_p (bb, get_max_uid () + 1, x, 0))
3091 return 1;
3092 else
3093 return expr_killed_p (XEXP (x, 0), bb);
3095 case PC:
3096 case CC0: /*FIXME*/
3097 case CONST:
3098 case CONST_INT:
3099 case CONST_DOUBLE:
3100 case CONST_VECTOR:
3101 case SYMBOL_REF:
3102 case LABEL_REF:
3103 case ADDR_VEC:
3104 case ADDR_DIFF_VEC:
3105 return 0;
3107 default:
3108 break;
3111 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
3113 if (fmt[i] == 'e')
3115 /* If we are about to do the last recursive call
3116 needed at this level, change it into iteration.
3117 This function is called enough to be worth it. */
3118 if (i == 0)
3119 return expr_killed_p (XEXP (x, i), bb);
3120 else if (expr_killed_p (XEXP (x, i), bb))
3121 return 1;
3123 else if (fmt[i] == 'E')
3124 for (j = 0; j < XVECLEN (x, i); j++)
3125 if (expr_killed_p (XVECEXP (x, i, j), bb))
3126 return 1;
3129 return 0;
3132 /* Compute the set of available expressions killed in each basic block. */
3134 static void
3135 compute_ae_kill (ae_gen, ae_kill, expr_hash_table)
3136 sbitmap *ae_gen, *ae_kill;
3137 struct hash_table *expr_hash_table;
3139 basic_block bb;
3140 unsigned int i;
3141 struct expr *expr;
3143 FOR_EACH_BB (bb)
3144 for (i = 0; i < expr_hash_table->size; i++)
3145 for (expr = expr_hash_table->table[i]; expr; expr = expr->next_same_hash)
3147 /* Skip EXPR if generated in this block. */
3148 if (TEST_BIT (ae_gen[bb->index], expr->bitmap_index))
3149 continue;
3151 if (expr_killed_p (expr->expr, bb))
3152 SET_BIT (ae_kill[bb->index], expr->bitmap_index);
3156 /* Actually perform the Classic GCSE optimizations. */
3158 /* Return nonzero if occurrence OCCR of expression EXPR reaches block BB.
3160 CHECK_SELF_LOOP is nonzero if we should consider a block reaching itself
3161 as a positive reach. We want to do this when there are two computations
3162 of the expression in the block.
3164 VISITED is a pointer to a working buffer for tracking which BB's have
3165 been visited. It is NULL for the top-level call.
3167 We treat reaching expressions that go through blocks containing the same
3168 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
3169 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
3170 2 as not reaching. The intent is to improve the probability of finding
3171 only one reaching expression and to reduce register lifetimes by picking
3172 the closest such expression. */
3174 static int
3175 expr_reaches_here_p_work (occr, expr, bb, check_self_loop, visited)
3176 struct occr *occr;
3177 struct expr *expr;
3178 basic_block bb;
3179 int check_self_loop;
3180 char *visited;
3182 edge pred;
3184 for (pred = bb->pred; pred != NULL; pred = pred->pred_next)
3186 basic_block pred_bb = pred->src;
3188 if (visited[pred_bb->index])
3189 /* This predecessor has already been visited. Nothing to do. */
3191 else if (pred_bb == bb)
3193 /* BB loops on itself. */
3194 if (check_self_loop
3195 && TEST_BIT (ae_gen[pred_bb->index], expr->bitmap_index)
3196 && BLOCK_NUM (occr->insn) == pred_bb->index)
3197 return 1;
3199 visited[pred_bb->index] = 1;
3202 /* Ignore this predecessor if it kills the expression. */
3203 else if (TEST_BIT (ae_kill[pred_bb->index], expr->bitmap_index))
3204 visited[pred_bb->index] = 1;
3206 /* Does this predecessor generate this expression? */
3207 else if (TEST_BIT (ae_gen[pred_bb->index], expr->bitmap_index))
3209 /* Is this the occurrence we're looking for?
3210 Note that there's only one generating occurrence per block
3211 so we just need to check the block number. */
3212 if (BLOCK_NUM (occr->insn) == pred_bb->index)
3213 return 1;
3215 visited[pred_bb->index] = 1;
3218 /* Neither gen nor kill. */
3219 else
3221 visited[pred_bb->index] = 1;
3222 if (expr_reaches_here_p_work (occr, expr, pred_bb, check_self_loop,
3223 visited))
3225 return 1;
3229 /* All paths have been checked. */
3230 return 0;
3233 /* This wrapper for expr_reaches_here_p_work() is to ensure that any
3234 memory allocated for that function is returned. */
3236 static int
3237 expr_reaches_here_p (occr, expr, bb, check_self_loop)
3238 struct occr *occr;
3239 struct expr *expr;
3240 basic_block bb;
3241 int check_self_loop;
3243 int rval;
3244 char *visited = (char *) xcalloc (last_basic_block, 1);
3246 rval = expr_reaches_here_p_work (occr, expr, bb, check_self_loop, visited);
3248 free (visited);
3249 return rval;
3252 /* Return the instruction that computes EXPR that reaches INSN's basic block.
3253 If there is more than one such instruction, return NULL.
3255 Called only by handle_avail_expr. */
3257 static rtx
3258 computing_insn (expr, insn)
3259 struct expr *expr;
3260 rtx insn;
3262 basic_block bb = BLOCK_FOR_INSN (insn);
3264 if (expr->avail_occr->next == NULL)
3266 if (BLOCK_FOR_INSN (expr->avail_occr->insn) == bb)
3267 /* The available expression is actually itself
3268 (i.e. a loop in the flow graph) so do nothing. */
3269 return NULL;
3271 /* (FIXME) Case that we found a pattern that was created by
3272 a substitution that took place. */
3273 return expr->avail_occr->insn;
3275 else
3277 /* Pattern is computed more than once.
3278 Search backwards from this insn to see how many of these
3279 computations actually reach this insn. */
3280 struct occr *occr;
3281 rtx insn_computes_expr = NULL;
3282 int can_reach = 0;
3284 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
3286 if (BLOCK_FOR_INSN (occr->insn) == bb)
3288 /* The expression is generated in this block.
3289 The only time we care about this is when the expression
3290 is generated later in the block [and thus there's a loop].
3291 We let the normal cse pass handle the other cases. */
3292 if (INSN_CUID (insn) < INSN_CUID (occr->insn)
3293 && expr_reaches_here_p (occr, expr, bb, 1))
3295 can_reach++;
3296 if (can_reach > 1)
3297 return NULL;
3299 insn_computes_expr = occr->insn;
3302 else if (expr_reaches_here_p (occr, expr, bb, 0))
3304 can_reach++;
3305 if (can_reach > 1)
3306 return NULL;
3308 insn_computes_expr = occr->insn;
3312 if (insn_computes_expr == NULL)
3313 abort ();
3315 return insn_computes_expr;
3319 /* Return nonzero if the definition in DEF_INSN can reach INSN.
3320 Only called by can_disregard_other_sets. */
3322 static int
3323 def_reaches_here_p (insn, def_insn)
3324 rtx insn, def_insn;
3326 rtx reg;
3328 if (TEST_BIT (reaching_defs[BLOCK_NUM (insn)], INSN_CUID (def_insn)))
3329 return 1;
3331 if (BLOCK_NUM (insn) == BLOCK_NUM (def_insn))
3333 if (INSN_CUID (def_insn) < INSN_CUID (insn))
3335 if (GET_CODE (PATTERN (def_insn)) == PARALLEL)
3336 return 1;
3337 else if (GET_CODE (PATTERN (def_insn)) == CLOBBER)
3338 reg = XEXP (PATTERN (def_insn), 0);
3339 else if (GET_CODE (PATTERN (def_insn)) == SET)
3340 reg = SET_DEST (PATTERN (def_insn));
3341 else
3342 abort ();
3344 return ! reg_set_between_p (reg, NEXT_INSN (def_insn), insn);
3346 else
3347 return 0;
3350 return 0;
3353 /* Return nonzero if *ADDR_THIS_REG can only have one value at INSN. The
3354 value returned is the number of definitions that reach INSN. Returning a
3355 value of zero means that [maybe] more than one definition reaches INSN and
3356 the caller can't perform whatever optimization it is trying. i.e. it is
3357 always safe to return zero. */
3359 static int
3360 can_disregard_other_sets (addr_this_reg, insn, for_combine)
3361 struct reg_set **addr_this_reg;
3362 rtx insn;
3363 int for_combine;
3365 int number_of_reaching_defs = 0;
3366 struct reg_set *this_reg;
3368 for (this_reg = *addr_this_reg; this_reg != 0; this_reg = this_reg->next)
3369 if (def_reaches_here_p (insn, this_reg->insn))
3371 number_of_reaching_defs++;
3372 /* Ignore parallels for now. */
3373 if (GET_CODE (PATTERN (this_reg->insn)) == PARALLEL)
3374 return 0;
3376 if (!for_combine
3377 && (GET_CODE (PATTERN (this_reg->insn)) == CLOBBER
3378 || ! rtx_equal_p (SET_SRC (PATTERN (this_reg->insn)),
3379 SET_SRC (PATTERN (insn)))))
3380 /* A setting of the reg to a different value reaches INSN. */
3381 return 0;
3383 if (number_of_reaching_defs > 1)
3385 /* If in this setting the value the register is being set to is
3386 equal to the previous value the register was set to and this
3387 setting reaches the insn we are trying to do the substitution
3388 on then we are ok. */
3389 if (GET_CODE (PATTERN (this_reg->insn)) == CLOBBER)
3390 return 0;
3391 else if (! rtx_equal_p (SET_SRC (PATTERN (this_reg->insn)),
3392 SET_SRC (PATTERN (insn))))
3393 return 0;
3396 *addr_this_reg = this_reg;
3399 return number_of_reaching_defs;
3402 /* Expression computed by insn is available and the substitution is legal,
3403 so try to perform the substitution.
3405 The result is nonzero if any changes were made. */
3407 static int
3408 handle_avail_expr (insn, expr)
3409 rtx insn;
3410 struct expr *expr;
3412 rtx pat, insn_computes_expr, expr_set;
3413 rtx to;
3414 struct reg_set *this_reg;
3415 int found_setting, use_src;
3416 int changed = 0;
3418 /* We only handle the case where one computation of the expression
3419 reaches this instruction. */
3420 insn_computes_expr = computing_insn (expr, insn);
3421 if (insn_computes_expr == NULL)
3422 return 0;
3423 expr_set = single_set (insn_computes_expr);
3424 if (!expr_set)
3425 abort ();
3427 found_setting = 0;
3428 use_src = 0;
3430 /* At this point we know only one computation of EXPR outside of this
3431 block reaches this insn. Now try to find a register that the
3432 expression is computed into. */
3433 if (GET_CODE (SET_SRC (expr_set)) == REG)
3435 /* This is the case when the available expression that reaches
3436 here has already been handled as an available expression. */
3437 unsigned int regnum_for_replacing
3438 = REGNO (SET_SRC (expr_set));
3440 /* If the register was created by GCSE we can't use `reg_set_table',
3441 however we know it's set only once. */
3442 if (regnum_for_replacing >= max_gcse_regno
3443 /* If the register the expression is computed into is set only once,
3444 or only one set reaches this insn, we can use it. */
3445 || (((this_reg = reg_set_table[regnum_for_replacing]),
3446 this_reg->next == NULL)
3447 || can_disregard_other_sets (&this_reg, insn, 0)))
3449 use_src = 1;
3450 found_setting = 1;
3454 if (!found_setting)
3456 unsigned int regnum_for_replacing
3457 = REGNO (SET_DEST (expr_set));
3459 /* This shouldn't happen. */
3460 if (regnum_for_replacing >= max_gcse_regno)
3461 abort ();
3463 this_reg = reg_set_table[regnum_for_replacing];
3465 /* If the register the expression is computed into is set only once,
3466 or only one set reaches this insn, use it. */
3467 if (this_reg->next == NULL
3468 || can_disregard_other_sets (&this_reg, insn, 0))
3469 found_setting = 1;
3472 if (found_setting)
3474 pat = PATTERN (insn);
3475 if (use_src)
3476 to = SET_SRC (expr_set);
3477 else
3478 to = SET_DEST (expr_set);
3479 changed = validate_change (insn, &SET_SRC (pat), to, 0);
3481 /* We should be able to ignore the return code from validate_change but
3482 to play it safe we check. */
3483 if (changed)
3485 gcse_subst_count++;
3486 if (gcse_file != NULL)
3488 fprintf (gcse_file, "GCSE: Replacing the source in insn %d with",
3489 INSN_UID (insn));
3490 fprintf (gcse_file, " reg %d %s insn %d\n",
3491 REGNO (to), use_src ? "from" : "set in",
3492 INSN_UID (insn_computes_expr));
3497 /* The register that the expr is computed into is set more than once. */
3498 else if (1 /*expensive_op(this_pattrn->op) && do_expensive_gcse)*/)
3500 /* Insert an insn after insnx that copies the reg set in insnx
3501 into a new pseudo register call this new register REGN.
3502 From insnb until end of basic block or until REGB is set
3503 replace all uses of REGB with REGN. */
3504 rtx new_insn;
3506 to = gen_reg_rtx (GET_MODE (SET_DEST (expr_set)));
3508 /* Generate the new insn. */
3509 /* ??? If the change fails, we return 0, even though we created
3510 an insn. I think this is ok. */
3511 new_insn
3512 = emit_insn_after (gen_rtx_SET (VOIDmode, to,
3513 SET_DEST (expr_set)),
3514 insn_computes_expr);
3516 /* Keep register set table up to date. */
3517 record_one_set (REGNO (to), new_insn);
3519 gcse_create_count++;
3520 if (gcse_file != NULL)
3522 fprintf (gcse_file, "GCSE: Creating insn %d to copy value of reg %d",
3523 INSN_UID (NEXT_INSN (insn_computes_expr)),
3524 REGNO (SET_SRC (PATTERN (NEXT_INSN (insn_computes_expr)))));
3525 fprintf (gcse_file, ", computed in insn %d,\n",
3526 INSN_UID (insn_computes_expr));
3527 fprintf (gcse_file, " into newly allocated reg %d\n",
3528 REGNO (to));
3531 pat = PATTERN (insn);
3533 /* Do register replacement for INSN. */
3534 changed = validate_change (insn, &SET_SRC (pat),
3535 SET_DEST (PATTERN
3536 (NEXT_INSN (insn_computes_expr))),
3539 /* We should be able to ignore the return code from validate_change but
3540 to play it safe we check. */
3541 if (changed)
3543 gcse_subst_count++;
3544 if (gcse_file != NULL)
3546 fprintf (gcse_file,
3547 "GCSE: Replacing the source in insn %d with reg %d ",
3548 INSN_UID (insn),
3549 REGNO (SET_DEST (PATTERN (NEXT_INSN
3550 (insn_computes_expr)))));
3551 fprintf (gcse_file, "set in insn %d\n",
3552 INSN_UID (insn_computes_expr));
3557 return changed;
3560 /* Perform classic GCSE. This is called by one_classic_gcse_pass after all
3561 the dataflow analysis has been done.
3563 The result is nonzero if a change was made. */
3565 static int
3566 classic_gcse ()
3568 int changed;
3569 rtx insn;
3570 basic_block bb;
3572 /* Note we start at block 1. */
3574 if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
3575 return 0;
3577 changed = 0;
3578 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb, EXIT_BLOCK_PTR, next_bb)
3580 /* Reset tables used to keep track of what's still valid [since the
3581 start of the block]. */
3582 reset_opr_set_tables ();
3584 for (insn = bb->head;
3585 insn != NULL && insn != NEXT_INSN (bb->end);
3586 insn = NEXT_INSN (insn))
3588 /* Is insn of form (set (pseudo-reg) ...)? */
3589 if (GET_CODE (insn) == INSN
3590 && GET_CODE (PATTERN (insn)) == SET
3591 && GET_CODE (SET_DEST (PATTERN (insn))) == REG
3592 && REGNO (SET_DEST (PATTERN (insn))) >= FIRST_PSEUDO_REGISTER)
3594 rtx pat = PATTERN (insn);
3595 rtx src = SET_SRC (pat);
3596 struct expr *expr;
3598 if (want_to_gcse_p (src)
3599 /* Is the expression recorded? */
3600 && ((expr = lookup_expr (src, &expr_hash_table)) != NULL)
3601 /* Is the expression available [at the start of the
3602 block]? */
3603 && TEST_BIT (ae_in[bb->index], expr->bitmap_index)
3604 /* Are the operands unchanged since the start of the
3605 block? */
3606 && oprs_not_set_p (src, insn))
3607 changed |= handle_avail_expr (insn, expr);
3610 /* Keep track of everything modified by this insn. */
3611 /* ??? Need to be careful w.r.t. mods done to INSN. */
3612 if (INSN_P (insn))
3613 mark_oprs_set (insn);
3617 return changed;
3620 /* Top level routine to perform one classic GCSE pass.
3622 Return nonzero if a change was made. */
3624 static int
3625 one_classic_gcse_pass (pass)
3626 int pass;
3628 int changed = 0;
3630 gcse_subst_count = 0;
3631 gcse_create_count = 0;
3633 alloc_hash_table (max_cuid, &expr_hash_table, 0);
3634 alloc_rd_mem (last_basic_block, max_cuid);
3635 compute_hash_table (&expr_hash_table);
3636 if (gcse_file)
3637 dump_hash_table (gcse_file, "Expression", &expr_hash_table);
3639 if (expr_hash_table.n_elems > 0)
3641 compute_kill_rd ();
3642 compute_rd ();
3643 alloc_avail_expr_mem (last_basic_block, expr_hash_table.n_elems);
3644 compute_ae_gen (&expr_hash_table);
3645 compute_ae_kill (ae_gen, ae_kill, &expr_hash_table);
3646 compute_available (ae_gen, ae_kill, ae_out, ae_in);
3647 changed = classic_gcse ();
3648 free_avail_expr_mem ();
3651 free_rd_mem ();
3652 free_hash_table (&expr_hash_table);
3654 if (gcse_file)
3656 fprintf (gcse_file, "\n");
3657 fprintf (gcse_file, "GCSE of %s, pass %d: %d bytes needed, %d substs,",
3658 current_function_name, pass, bytes_used, gcse_subst_count);
3659 fprintf (gcse_file, "%d insns created\n", gcse_create_count);
3662 return changed;
3665 /* Compute copy/constant propagation working variables. */
3667 /* Local properties of assignments. */
3668 static sbitmap *cprop_pavloc;
3669 static sbitmap *cprop_absaltered;
3671 /* Global properties of assignments (computed from the local properties). */
3672 static sbitmap *cprop_avin;
3673 static sbitmap *cprop_avout;
3675 /* Allocate vars used for copy/const propagation. N_BLOCKS is the number of
3676 basic blocks. N_SETS is the number of sets. */
3678 static void
3679 alloc_cprop_mem (n_blocks, n_sets)
3680 int n_blocks, n_sets;
3682 cprop_pavloc = sbitmap_vector_alloc (n_blocks, n_sets);
3683 cprop_absaltered = sbitmap_vector_alloc (n_blocks, n_sets);
3685 cprop_avin = sbitmap_vector_alloc (n_blocks, n_sets);
3686 cprop_avout = sbitmap_vector_alloc (n_blocks, n_sets);
3689 /* Free vars used by copy/const propagation. */
3691 static void
3692 free_cprop_mem ()
3694 sbitmap_vector_free (cprop_pavloc);
3695 sbitmap_vector_free (cprop_absaltered);
3696 sbitmap_vector_free (cprop_avin);
3697 sbitmap_vector_free (cprop_avout);
3700 /* For each block, compute whether X is transparent. X is either an
3701 expression or an assignment [though we don't care which, for this context
3702 an assignment is treated as an expression]. For each block where an
3703 element of X is modified, set (SET_P == 1) or reset (SET_P == 0) the INDX
3704 bit in BMAP. */
3706 static void
3707 compute_transp (x, indx, bmap, set_p)
3708 rtx x;
3709 int indx;
3710 sbitmap *bmap;
3711 int set_p;
3713 int i, j;
3714 basic_block bb;
3715 enum rtx_code code;
3716 reg_set *r;
3717 const char *fmt;
3719 /* repeat is used to turn tail-recursion into iteration since GCC
3720 can't do it when there's no return value. */
3721 repeat:
3723 if (x == 0)
3724 return;
3726 code = GET_CODE (x);
3727 switch (code)
3729 case REG:
3730 if (set_p)
3732 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
3734 FOR_EACH_BB (bb)
3735 if (TEST_BIT (reg_set_in_block[bb->index], REGNO (x)))
3736 SET_BIT (bmap[bb->index], indx);
3738 else
3740 for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
3741 SET_BIT (bmap[BLOCK_NUM (r->insn)], indx);
3744 else
3746 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
3748 FOR_EACH_BB (bb)
3749 if (TEST_BIT (reg_set_in_block[bb->index], REGNO (x)))
3750 RESET_BIT (bmap[bb->index], indx);
3752 else
3754 for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
3755 RESET_BIT (bmap[BLOCK_NUM (r->insn)], indx);
3759 return;
3761 case MEM:
3762 FOR_EACH_BB (bb)
3764 rtx list_entry = canon_modify_mem_list[bb->index];
3766 while (list_entry)
3768 rtx dest, dest_addr;
3770 if (GET_CODE (XEXP (list_entry, 0)) == CALL_INSN)
3772 if (set_p)
3773 SET_BIT (bmap[bb->index], indx);
3774 else
3775 RESET_BIT (bmap[bb->index], indx);
3776 break;
3778 /* LIST_ENTRY must be an INSN of some kind that sets memory.
3779 Examine each hunk of memory that is modified. */
3781 dest = XEXP (list_entry, 0);
3782 list_entry = XEXP (list_entry, 1);
3783 dest_addr = XEXP (list_entry, 0);
3785 if (canon_true_dependence (dest, GET_MODE (dest), dest_addr,
3786 x, rtx_addr_varies_p))
3788 if (set_p)
3789 SET_BIT (bmap[bb->index], indx);
3790 else
3791 RESET_BIT (bmap[bb->index], indx);
3792 break;
3794 list_entry = XEXP (list_entry, 1);
3798 x = XEXP (x, 0);
3799 goto repeat;
3801 case PC:
3802 case CC0: /*FIXME*/
3803 case CONST:
3804 case CONST_INT:
3805 case CONST_DOUBLE:
3806 case CONST_VECTOR:
3807 case SYMBOL_REF:
3808 case LABEL_REF:
3809 case ADDR_VEC:
3810 case ADDR_DIFF_VEC:
3811 return;
3813 default:
3814 break;
3817 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
3819 if (fmt[i] == 'e')
3821 /* If we are about to do the last recursive call
3822 needed at this level, change it into iteration.
3823 This function is called enough to be worth it. */
3824 if (i == 0)
3826 x = XEXP (x, i);
3827 goto repeat;
3830 compute_transp (XEXP (x, i), indx, bmap, set_p);
3832 else if (fmt[i] == 'E')
3833 for (j = 0; j < XVECLEN (x, i); j++)
3834 compute_transp (XVECEXP (x, i, j), indx, bmap, set_p);
3838 /* Top level routine to do the dataflow analysis needed by copy/const
3839 propagation. */
3841 static void
3842 compute_cprop_data ()
3844 compute_local_properties (cprop_absaltered, cprop_pavloc, NULL, &set_hash_table);
3845 compute_available (cprop_pavloc, cprop_absaltered,
3846 cprop_avout, cprop_avin);
3849 /* Copy/constant propagation. */
3851 /* Maximum number of register uses in an insn that we handle. */
3852 #define MAX_USES 8
3854 /* Table of uses found in an insn.
3855 Allocated statically to avoid alloc/free complexity and overhead. */
3856 static struct reg_use reg_use_table[MAX_USES];
3858 /* Index into `reg_use_table' while building it. */
3859 static int reg_use_count;
3861 /* Set up a list of register numbers used in INSN. The found uses are stored
3862 in `reg_use_table'. `reg_use_count' is initialized to zero before entry,
3863 and contains the number of uses in the table upon exit.
3865 ??? If a register appears multiple times we will record it multiple times.
3866 This doesn't hurt anything but it will slow things down. */
3868 static void
3869 find_used_regs (xptr, data)
3870 rtx *xptr;
3871 void *data ATTRIBUTE_UNUSED;
3873 int i, j;
3874 enum rtx_code code;
3875 const char *fmt;
3876 rtx x = *xptr;
3878 /* repeat is used to turn tail-recursion into iteration since GCC
3879 can't do it when there's no return value. */
3880 repeat:
3881 if (x == 0)
3882 return;
3884 code = GET_CODE (x);
3885 if (REG_P (x))
3887 if (reg_use_count == MAX_USES)
3888 return;
3890 reg_use_table[reg_use_count].reg_rtx = x;
3891 reg_use_count++;
3894 /* Recursively scan the operands of this expression. */
3896 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
3898 if (fmt[i] == 'e')
3900 /* If we are about to do the last recursive call
3901 needed at this level, change it into iteration.
3902 This function is called enough to be worth it. */
3903 if (i == 0)
3905 x = XEXP (x, 0);
3906 goto repeat;
3909 find_used_regs (&XEXP (x, i), data);
3911 else if (fmt[i] == 'E')
3912 for (j = 0; j < XVECLEN (x, i); j++)
3913 find_used_regs (&XVECEXP (x, i, j), data);
3917 /* Try to replace all non-SET_DEST occurrences of FROM in INSN with TO.
3918 Returns nonzero is successful. */
3920 static int
3921 try_replace_reg (from, to, insn)
3922 rtx from, to, insn;
3924 rtx note = find_reg_equal_equiv_note (insn);
3925 rtx src = 0;
3926 int success = 0;
3927 rtx set = single_set (insn);
3929 validate_replace_src_group (from, to, insn);
3930 if (num_changes_pending () && apply_change_group ())
3931 success = 1;
3933 if (!success && set && reg_mentioned_p (from, SET_SRC (set)))
3935 /* If above failed and this is a single set, try to simplify the source of
3936 the set given our substitution. We could perhaps try this for multiple
3937 SETs, but it probably won't buy us anything. */
3938 src = simplify_replace_rtx (SET_SRC (set), from, to);
3940 if (!rtx_equal_p (src, SET_SRC (set))
3941 && validate_change (insn, &SET_SRC (set), src, 0))
3942 success = 1;
3944 /* If we've failed to do replacement, have a single SET, and don't already
3945 have a note, add a REG_EQUAL note to not lose information. */
3946 if (!success && note == 0 && set != 0)
3947 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
3950 /* If there is already a NOTE, update the expression in it with our
3951 replacement. */
3952 else if (note != 0)
3953 XEXP (note, 0) = simplify_replace_rtx (XEXP (note, 0), from, to);
3955 /* REG_EQUAL may get simplified into register.
3956 We don't allow that. Remove that note. This code ought
3957 not to happen, because previous code ought to synthesize
3958 reg-reg move, but be on the safe side. */
3959 if (note && REG_P (XEXP (note, 0)))
3960 remove_note (insn, note);
3962 return success;
3965 /* Find a set of REGNOs that are available on entry to INSN's block. Returns
3966 NULL no such set is found. */
3968 static struct expr *
3969 find_avail_set (regno, insn)
3970 int regno;
3971 rtx insn;
3973 /* SET1 contains the last set found that can be returned to the caller for
3974 use in a substitution. */
3975 struct expr *set1 = 0;
3977 /* Loops are not possible here. To get a loop we would need two sets
3978 available at the start of the block containing INSN. ie we would
3979 need two sets like this available at the start of the block:
3981 (set (reg X) (reg Y))
3982 (set (reg Y) (reg X))
3984 This can not happen since the set of (reg Y) would have killed the
3985 set of (reg X) making it unavailable at the start of this block. */
3986 while (1)
3988 rtx src;
3989 struct expr *set = lookup_set (regno, NULL_RTX, &set_hash_table);
3991 /* Find a set that is available at the start of the block
3992 which contains INSN. */
3993 while (set)
3995 if (TEST_BIT (cprop_avin[BLOCK_NUM (insn)], set->bitmap_index))
3996 break;
3997 set = next_set (regno, set);
4000 /* If no available set was found we've reached the end of the
4001 (possibly empty) copy chain. */
4002 if (set == 0)
4003 break;
4005 if (GET_CODE (set->expr) != SET)
4006 abort ();
4008 src = SET_SRC (set->expr);
4010 /* We know the set is available.
4011 Now check that SRC is ANTLOC (i.e. none of the source operands
4012 have changed since the start of the block).
4014 If the source operand changed, we may still use it for the next
4015 iteration of this loop, but we may not use it for substitutions. */
4017 if (CONSTANT_P (src) || oprs_not_set_p (src, insn))
4018 set1 = set;
4020 /* If the source of the set is anything except a register, then
4021 we have reached the end of the copy chain. */
4022 if (GET_CODE (src) != REG)
4023 break;
4025 /* Follow the copy chain, ie start another iteration of the loop
4026 and see if we have an available copy into SRC. */
4027 regno = REGNO (src);
4030 /* SET1 holds the last set that was available and anticipatable at
4031 INSN. */
4032 return set1;
4035 /* Subroutine of cprop_insn that tries to propagate constants into
4036 JUMP_INSNS. JUMP must be a conditional jump. If SETCC is non-NULL
4037 it is the instruction that immediately precedes JUMP, and must be a
4038 single SET of a register. FROM is what we will try to replace,
4039 SRC is the constant we will try to substitute for it. Returns nonzero
4040 if a change was made. */
4042 static int
4043 cprop_jump (bb, setcc, jump, from, src)
4044 basic_block bb;
4045 rtx setcc;
4046 rtx jump;
4047 rtx from;
4048 rtx src;
4050 rtx new, new_set;
4051 rtx set = pc_set (jump);
4053 /* First substitute in the INSN condition as the SET_SRC of the JUMP,
4054 then substitute that given values in this expanded JUMP. */
4055 if (setcc != NULL
4056 && !modified_between_p (from, setcc, jump)
4057 && !modified_between_p (src, setcc, jump))
4059 rtx setcc_set = single_set (setcc);
4060 new_set = simplify_replace_rtx (SET_SRC (set),
4061 SET_DEST (setcc_set),
4062 SET_SRC (setcc_set));
4064 else
4065 new_set = set;
4067 new = simplify_replace_rtx (new_set, from, src);
4069 /* If no simplification can be made, then try the next
4070 register. */
4071 if (rtx_equal_p (new, new_set) || rtx_equal_p (new, SET_SRC (set)))
4072 return 0;
4074 /* If this is now a no-op delete it, otherwise this must be a valid insn. */
4075 if (new == pc_rtx)
4076 delete_insn (jump);
4077 else
4079 /* Ensure the value computed inside the jump insn to be equivalent
4080 to one computed by setcc. */
4081 if (setcc
4082 && modified_in_p (new, setcc))
4083 return 0;
4084 if (! validate_change (jump, &SET_SRC (set), new, 0))
4085 return 0;
4087 /* If this has turned into an unconditional jump,
4088 then put a barrier after it so that the unreachable
4089 code will be deleted. */
4090 if (GET_CODE (SET_SRC (set)) == LABEL_REF)
4091 emit_barrier_after (jump);
4094 #ifdef HAVE_cc0
4095 /* Delete the cc0 setter. */
4096 if (setcc != NULL && CC0_P (SET_DEST (single_set (setcc))))
4097 delete_insn (setcc);
4098 #endif
4100 run_jump_opt_after_gcse = 1;
4102 const_prop_count++;
4103 if (gcse_file != NULL)
4105 fprintf (gcse_file,
4106 "CONST-PROP: Replacing reg %d in jump_insn %d with constant ",
4107 REGNO (from), INSN_UID (jump));
4108 print_rtl (gcse_file, src);
4109 fprintf (gcse_file, "\n");
4111 purge_dead_edges (bb);
4113 return 1;
4116 static bool
4117 constprop_register (insn, from, to, alter_jumps)
4118 rtx insn;
4119 rtx from;
4120 rtx to;
4121 int alter_jumps;
4123 rtx sset;
4125 /* Check for reg or cc0 setting instructions followed by
4126 conditional branch instructions first. */
4127 if (alter_jumps
4128 && (sset = single_set (insn)) != NULL
4129 && any_condjump_p (NEXT_INSN (insn)) && onlyjump_p (NEXT_INSN (insn)))
4131 rtx dest = SET_DEST (sset);
4132 if ((REG_P (dest) || CC0_P (dest))
4133 && cprop_jump (BLOCK_FOR_INSN (insn), insn, NEXT_INSN (insn), from, to))
4134 return 1;
4137 /* Handle normal insns next. */
4138 if (GET_CODE (insn) == INSN
4139 && try_replace_reg (from, to, insn))
4140 return 1;
4142 /* Try to propagate a CONST_INT into a conditional jump.
4143 We're pretty specific about what we will handle in this
4144 code, we can extend this as necessary over time.
4146 Right now the insn in question must look like
4147 (set (pc) (if_then_else ...)) */
4148 else if (alter_jumps && any_condjump_p (insn) && onlyjump_p (insn))
4149 return cprop_jump (BLOCK_FOR_INSN (insn), NULL, insn, from, to);
4150 return 0;
4153 /* Perform constant and copy propagation on INSN.
4154 The result is nonzero if a change was made. */
4156 static int
4157 cprop_insn (insn, alter_jumps)
4158 rtx insn;
4159 int alter_jumps;
4161 struct reg_use *reg_used;
4162 int changed = 0;
4163 rtx note;
4165 if (!INSN_P (insn))
4166 return 0;
4168 reg_use_count = 0;
4169 note_uses (&PATTERN (insn), find_used_regs, NULL);
4171 note = find_reg_equal_equiv_note (insn);
4173 /* We may win even when propagating constants into notes. */
4174 if (note)
4175 find_used_regs (&XEXP (note, 0), NULL);
4177 for (reg_used = &reg_use_table[0]; reg_use_count > 0;
4178 reg_used++, reg_use_count--)
4180 unsigned int regno = REGNO (reg_used->reg_rtx);
4181 rtx pat, src;
4182 struct expr *set;
4184 /* Ignore registers created by GCSE.
4185 We do this because ... */
4186 if (regno >= max_gcse_regno)
4187 continue;
4189 /* If the register has already been set in this block, there's
4190 nothing we can do. */
4191 if (! oprs_not_set_p (reg_used->reg_rtx, insn))
4192 continue;
4194 /* Find an assignment that sets reg_used and is available
4195 at the start of the block. */
4196 set = find_avail_set (regno, insn);
4197 if (! set)
4198 continue;
4200 pat = set->expr;
4201 /* ??? We might be able to handle PARALLELs. Later. */
4202 if (GET_CODE (pat) != SET)
4203 abort ();
4205 src = SET_SRC (pat);
4207 /* Constant propagation. */
4208 if (CONSTANT_P (src))
4210 if (constprop_register (insn, reg_used->reg_rtx, src, alter_jumps))
4212 changed = 1;
4213 const_prop_count++;
4214 if (gcse_file != NULL)
4216 fprintf (gcse_file, "GLOBAL CONST-PROP: Replacing reg %d in ", regno);
4217 fprintf (gcse_file, "insn %d with constant ", INSN_UID (insn));
4218 print_rtl (gcse_file, src);
4219 fprintf (gcse_file, "\n");
4223 else if (GET_CODE (src) == REG
4224 && REGNO (src) >= FIRST_PSEUDO_REGISTER
4225 && REGNO (src) != regno)
4227 if (try_replace_reg (reg_used->reg_rtx, src, insn))
4229 changed = 1;
4230 copy_prop_count++;
4231 if (gcse_file != NULL)
4233 fprintf (gcse_file, "GLOBAL COPY-PROP: Replacing reg %d in insn %d",
4234 regno, INSN_UID (insn));
4235 fprintf (gcse_file, " with reg %d\n", REGNO (src));
4238 /* The original insn setting reg_used may or may not now be
4239 deletable. We leave the deletion to flow. */
4240 /* FIXME: If it turns out that the insn isn't deletable,
4241 then we may have unnecessarily extended register lifetimes
4242 and made things worse. */
4247 return changed;
4250 /* LIBCALL_SP is a zero-terminated array of insns at the end of a libcall;
4251 their REG_EQUAL notes need updating. */
4253 static bool
4254 do_local_cprop (x, insn, alter_jumps, libcall_sp)
4255 rtx x;
4256 rtx insn;
4257 int alter_jumps;
4258 rtx *libcall_sp;
4260 rtx newreg = NULL, newcnst = NULL;
4262 /* Rule out USE instructions and ASM statements as we don't want to
4263 change the hard registers mentioned. */
4264 if (GET_CODE (x) == REG
4265 && (REGNO (x) >= FIRST_PSEUDO_REGISTER
4266 || (GET_CODE (PATTERN (insn)) != USE
4267 && asm_noperands (PATTERN (insn)) < 0)))
4269 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0);
4270 struct elt_loc_list *l;
4272 if (!val)
4273 return false;
4274 for (l = val->locs; l; l = l->next)
4276 rtx this_rtx = l->loc;
4277 rtx note;
4279 if (l->in_libcall)
4280 continue;
4282 if (CONSTANT_P (this_rtx)
4283 && GET_CODE (this_rtx) != CONSTANT_P_RTX)
4284 newcnst = this_rtx;
4285 if (REG_P (this_rtx) && REGNO (this_rtx) >= FIRST_PSEUDO_REGISTER
4286 /* Don't copy propagate if it has attached REG_EQUIV note.
4287 At this point this only function parameters should have
4288 REG_EQUIV notes and if the argument slot is used somewhere
4289 explicitly, it means address of parameter has been taken,
4290 so we should not extend the lifetime of the pseudo. */
4291 && (!(note = find_reg_note (l->setting_insn, REG_EQUIV, NULL_RTX))
4292 || GET_CODE (XEXP (note, 0)) != MEM))
4293 newreg = this_rtx;
4295 if (newcnst && constprop_register (insn, x, newcnst, alter_jumps))
4297 /* If we find a case where we can't fix the retval REG_EQUAL notes
4298 match the new register, we either have to abandon this replacement
4299 or fix delete_trivially_dead_insns to preserve the setting insn,
4300 or make it delete the REG_EUAQL note, and fix up all passes that
4301 require the REG_EQUAL note there. */
4302 if (!adjust_libcall_notes (x, newcnst, insn, libcall_sp))
4303 abort ();
4304 if (gcse_file != NULL)
4306 fprintf (gcse_file, "LOCAL CONST-PROP: Replacing reg %d in ",
4307 REGNO (x));
4308 fprintf (gcse_file, "insn %d with constant ",
4309 INSN_UID (insn));
4310 print_rtl (gcse_file, newcnst);
4311 fprintf (gcse_file, "\n");
4313 const_prop_count++;
4314 return true;
4316 else if (newreg && newreg != x && try_replace_reg (x, newreg, insn))
4318 adjust_libcall_notes (x, newreg, insn, libcall_sp);
4319 if (gcse_file != NULL)
4321 fprintf (gcse_file,
4322 "LOCAL COPY-PROP: Replacing reg %d in insn %d",
4323 REGNO (x), INSN_UID (insn));
4324 fprintf (gcse_file, " with reg %d\n", REGNO (newreg));
4326 copy_prop_count++;
4327 return true;
4330 return false;
4333 /* LIBCALL_SP is a zero-terminated array of insns at the end of a libcall;
4334 their REG_EQUAL notes need updating to reflect that OLDREG has been
4335 replaced with NEWVAL in INSN. Return true if all substitutions could
4336 be made. */
4337 static bool
4338 adjust_libcall_notes (oldreg, newval, insn, libcall_sp)
4339 rtx oldreg, newval, insn, *libcall_sp;
4341 rtx end;
4343 while ((end = *libcall_sp++))
4345 rtx note = find_reg_equal_equiv_note (end);
4347 if (! note)
4348 continue;
4350 if (REG_P (newval))
4352 if (reg_set_between_p (newval, PREV_INSN (insn), end))
4356 note = find_reg_equal_equiv_note (end);
4357 if (! note)
4358 continue;
4359 if (reg_mentioned_p (newval, XEXP (note, 0)))
4360 return false;
4362 while ((end = *libcall_sp++));
4363 return true;
4366 XEXP (note, 0) = replace_rtx (XEXP (note, 0), oldreg, newval);
4367 insn = end;
4369 return true;
4372 #define MAX_NESTED_LIBCALLS 9
4374 static void
4375 local_cprop_pass (alter_jumps)
4376 int alter_jumps;
4378 rtx insn;
4379 struct reg_use *reg_used;
4380 rtx libcall_stack[MAX_NESTED_LIBCALLS + 1], *libcall_sp;
4381 bool changed = false;
4383 cselib_init ();
4384 libcall_sp = &libcall_stack[MAX_NESTED_LIBCALLS];
4385 *libcall_sp = 0;
4386 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4388 if (INSN_P (insn))
4390 rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
4392 if (note)
4394 if (libcall_sp == libcall_stack)
4395 abort ();
4396 *--libcall_sp = XEXP (note, 0);
4398 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
4399 if (note)
4400 libcall_sp++;
4401 note = find_reg_equal_equiv_note (insn);
4404 reg_use_count = 0;
4405 note_uses (&PATTERN (insn), find_used_regs, NULL);
4406 if (note)
4407 find_used_regs (&XEXP (note, 0), NULL);
4409 for (reg_used = &reg_use_table[0]; reg_use_count > 0;
4410 reg_used++, reg_use_count--)
4411 if (do_local_cprop (reg_used->reg_rtx, insn, alter_jumps,
4412 libcall_sp))
4414 changed = true;
4415 break;
4418 while (reg_use_count);
4420 cselib_process_insn (insn);
4422 cselib_finish ();
4423 /* Global analysis may get into infinite loops for unreachable blocks. */
4424 if (changed && alter_jumps)
4426 delete_unreachable_blocks ();
4427 free_reg_set_mem ();
4428 alloc_reg_set_mem (max_reg_num ());
4429 compute_sets (get_insns ());
4433 /* Forward propagate copies. This includes copies and constants. Return
4434 nonzero if a change was made. */
4436 static int
4437 cprop (alter_jumps)
4438 int alter_jumps;
4440 int changed;
4441 basic_block bb;
4442 rtx insn;
4444 /* Note we start at block 1. */
4445 if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
4447 if (gcse_file != NULL)
4448 fprintf (gcse_file, "\n");
4449 return 0;
4452 changed = 0;
4453 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb, EXIT_BLOCK_PTR, next_bb)
4455 /* Reset tables used to keep track of what's still valid [since the
4456 start of the block]. */
4457 reset_opr_set_tables ();
4459 for (insn = bb->head;
4460 insn != NULL && insn != NEXT_INSN (bb->end);
4461 insn = NEXT_INSN (insn))
4462 if (INSN_P (insn))
4464 changed |= cprop_insn (insn, alter_jumps);
4466 /* Keep track of everything modified by this insn. */
4467 /* ??? Need to be careful w.r.t. mods done to INSN. Don't
4468 call mark_oprs_set if we turned the insn into a NOTE. */
4469 if (GET_CODE (insn) != NOTE)
4470 mark_oprs_set (insn);
4474 if (gcse_file != NULL)
4475 fprintf (gcse_file, "\n");
4477 return changed;
4480 /* Perform one copy/constant propagation pass.
4481 PASS is the pass count. If CPROP_JUMPS is true, perform constant
4482 propagation into conditional jumps. If BYPASS_JUMPS is true,
4483 perform conditional jump bypassing optimizations. */
4485 static int
4486 one_cprop_pass (pass, cprop_jumps, bypass_jumps)
4487 int pass;
4488 int cprop_jumps;
4489 int bypass_jumps;
4491 int changed = 0;
4493 const_prop_count = 0;
4494 copy_prop_count = 0;
4496 local_cprop_pass (cprop_jumps);
4498 alloc_hash_table (max_cuid, &set_hash_table, 1);
4499 compute_hash_table (&set_hash_table);
4500 if (gcse_file)
4501 dump_hash_table (gcse_file, "SET", &set_hash_table);
4502 if (set_hash_table.n_elems > 0)
4504 alloc_cprop_mem (last_basic_block, set_hash_table.n_elems);
4505 compute_cprop_data ();
4506 changed = cprop (cprop_jumps);
4507 if (bypass_jumps)
4508 changed |= bypass_conditional_jumps ();
4509 free_cprop_mem ();
4512 free_hash_table (&set_hash_table);
4514 if (gcse_file)
4516 fprintf (gcse_file, "CPROP of %s, pass %d: %d bytes needed, ",
4517 current_function_name, pass, bytes_used);
4518 fprintf (gcse_file, "%d const props, %d copy props\n\n",
4519 const_prop_count, copy_prop_count);
4521 /* Global analysis may get into infinite loops for unreachable blocks. */
4522 if (changed && cprop_jumps)
4523 delete_unreachable_blocks ();
4525 return changed;
4528 /* Bypass conditional jumps. */
4530 /* The value of last_basic_block at the beginning of the jump_bypass
4531 pass. The use of redirect_edge_and_branch_force may introduce new
4532 basic blocks, but the data flow analysis is only valid for basic
4533 block indices less than bypass_last_basic_block. */
4535 static int bypass_last_basic_block;
4537 /* Find a set of REGNO to a constant that is available at the end of basic
4538 block BB. Returns NULL if no such set is found. Based heavily upon
4539 find_avail_set. */
4541 static struct expr *
4542 find_bypass_set (regno, bb)
4543 int regno;
4544 int bb;
4546 struct expr *result = 0;
4548 for (;;)
4550 rtx src;
4551 struct expr *set = lookup_set (regno, NULL_RTX, &set_hash_table);
4553 while (set)
4555 if (TEST_BIT (cprop_avout[bb], set->bitmap_index))
4556 break;
4557 set = next_set (regno, set);
4560 if (set == 0)
4561 break;
4563 if (GET_CODE (set->expr) != SET)
4564 abort ();
4566 src = SET_SRC (set->expr);
4567 if (CONSTANT_P (src))
4568 result = set;
4570 if (GET_CODE (src) != REG)
4571 break;
4573 regno = REGNO (src);
4575 return result;
4579 /* Subroutine of bypass_conditional_jumps that attempts to bypass the given
4580 basic block BB which has more than one predecessor. If not NULL, SETCC
4581 is the first instruction of BB, which is immediately followed by JUMP_INSN
4582 JUMP. Otherwise, SETCC is NULL, and JUMP is the first insn of BB.
4583 Returns nonzero if a change was made. */
4585 static int
4586 bypass_block (bb, setcc, jump)
4587 basic_block bb;
4588 rtx setcc, jump;
4590 rtx insn, note;
4591 edge e, enext;
4592 int i, change;
4594 insn = (setcc != NULL) ? setcc : jump;
4596 /* Determine set of register uses in INSN. */
4597 reg_use_count = 0;
4598 note_uses (&PATTERN (insn), find_used_regs, NULL);
4599 note = find_reg_equal_equiv_note (insn);
4600 if (note)
4601 find_used_regs (&XEXP (note, 0), NULL);
4603 change = 0;
4604 for (e = bb->pred; e; e = enext)
4606 enext = e->pred_next;
4607 if (e->flags & EDGE_COMPLEX)
4608 continue;
4610 /* We can't redirect edges from new basic blocks. */
4611 if (e->src->index >= bypass_last_basic_block)
4612 continue;
4614 for (i = 0; i < reg_use_count; i++)
4616 struct reg_use *reg_used = &reg_use_table[i];
4617 unsigned int regno = REGNO (reg_used->reg_rtx);
4618 basic_block dest, old_dest;
4619 struct expr *set;
4620 rtx src, new;
4622 if (regno >= max_gcse_regno)
4623 continue;
4625 set = find_bypass_set (regno, e->src->index);
4627 if (! set)
4628 continue;
4630 src = SET_SRC (pc_set (jump));
4632 if (setcc != NULL)
4633 src = simplify_replace_rtx (src,
4634 SET_DEST (PATTERN (setcc)),
4635 SET_SRC (PATTERN (setcc)));
4637 new = simplify_replace_rtx (src, reg_used->reg_rtx,
4638 SET_SRC (set->expr));
4640 if (new == pc_rtx)
4641 dest = FALLTHRU_EDGE (bb)->dest;
4642 else if (GET_CODE (new) == LABEL_REF)
4643 dest = BRANCH_EDGE (bb)->dest;
4644 else
4645 dest = NULL;
4647 old_dest = e->dest;
4648 if (dest != NULL
4649 && dest != old_dest
4650 && dest != EXIT_BLOCK_PTR)
4652 redirect_edge_and_branch_force (e, dest);
4654 /* Copy the register setter to the redirected edge.
4655 Don't copy CC0 setters, as CC0 is dead after jump. */
4656 if (setcc)
4658 rtx pat = PATTERN (setcc);
4659 if (!CC0_P (SET_DEST (pat)))
4660 insert_insn_on_edge (copy_insn (pat), e);
4663 if (gcse_file != NULL)
4665 fprintf (gcse_file, "JUMP-BYPASS: Proved reg %d in jump_insn %d equals constant ",
4666 regno, INSN_UID (jump));
4667 print_rtl (gcse_file, SET_SRC (set->expr));
4668 fprintf (gcse_file, "\nBypass edge from %d->%d to %d\n",
4669 e->src->index, old_dest->index, dest->index);
4671 change = 1;
4672 break;
4676 return change;
4679 /* Find basic blocks with more than one predecessor that only contain a
4680 single conditional jump. If the result of the comparison is known at
4681 compile-time from any incoming edge, redirect that edge to the
4682 appropriate target. Returns nonzero if a change was made. */
4684 static int
4685 bypass_conditional_jumps ()
4687 basic_block bb;
4688 int changed;
4689 rtx setcc;
4690 rtx insn;
4691 rtx dest;
4693 /* Note we start at block 1. */
4694 if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
4695 return 0;
4697 bypass_last_basic_block = last_basic_block;
4699 changed = 0;
4700 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb,
4701 EXIT_BLOCK_PTR, next_bb)
4703 /* Check for more than one predecessor. */
4704 if (bb->pred && bb->pred->pred_next)
4706 setcc = NULL_RTX;
4707 for (insn = bb->head;
4708 insn != NULL && insn != NEXT_INSN (bb->end);
4709 insn = NEXT_INSN (insn))
4710 if (GET_CODE (insn) == INSN)
4712 if (setcc)
4713 break;
4714 if (GET_CODE (PATTERN (insn)) != SET)
4715 break;
4717 dest = SET_DEST (PATTERN (insn));
4718 if (REG_P (dest) || CC0_P (dest))
4719 setcc = insn;
4720 else
4721 break;
4723 else if (GET_CODE (insn) == JUMP_INSN)
4725 if (any_condjump_p (insn) && onlyjump_p (insn))
4726 changed |= bypass_block (bb, setcc, insn);
4727 break;
4729 else if (INSN_P (insn))
4730 break;
4734 /* If we bypassed any register setting insns, we inserted a
4735 copy on the redirected edge. These need to be committed. */
4736 if (changed)
4737 commit_edge_insertions();
4739 return changed;
4742 /* Compute PRE+LCM working variables. */
4744 /* Local properties of expressions. */
4745 /* Nonzero for expressions that are transparent in the block. */
4746 static sbitmap *transp;
4748 /* Nonzero for expressions that are transparent at the end of the block.
4749 This is only zero for expressions killed by abnormal critical edge
4750 created by a calls. */
4751 static sbitmap *transpout;
4753 /* Nonzero for expressions that are computed (available) in the block. */
4754 static sbitmap *comp;
4756 /* Nonzero for expressions that are locally anticipatable in the block. */
4757 static sbitmap *antloc;
4759 /* Nonzero for expressions where this block is an optimal computation
4760 point. */
4761 static sbitmap *pre_optimal;
4763 /* Nonzero for expressions which are redundant in a particular block. */
4764 static sbitmap *pre_redundant;
4766 /* Nonzero for expressions which should be inserted on a specific edge. */
4767 static sbitmap *pre_insert_map;
4769 /* Nonzero for expressions which should be deleted in a specific block. */
4770 static sbitmap *pre_delete_map;
4772 /* Contains the edge_list returned by pre_edge_lcm. */
4773 static struct edge_list *edge_list;
4775 /* Redundant insns. */
4776 static sbitmap pre_redundant_insns;
4778 /* Allocate vars used for PRE analysis. */
4780 static void
4781 alloc_pre_mem (n_blocks, n_exprs)
4782 int n_blocks, n_exprs;
4784 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
4785 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
4786 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
4788 pre_optimal = NULL;
4789 pre_redundant = NULL;
4790 pre_insert_map = NULL;
4791 pre_delete_map = NULL;
4792 ae_in = NULL;
4793 ae_out = NULL;
4794 ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
4796 /* pre_insert and pre_delete are allocated later. */
4799 /* Free vars used for PRE analysis. */
4801 static void
4802 free_pre_mem ()
4804 sbitmap_vector_free (transp);
4805 sbitmap_vector_free (comp);
4807 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
4809 if (pre_optimal)
4810 sbitmap_vector_free (pre_optimal);
4811 if (pre_redundant)
4812 sbitmap_vector_free (pre_redundant);
4813 if (pre_insert_map)
4814 sbitmap_vector_free (pre_insert_map);
4815 if (pre_delete_map)
4816 sbitmap_vector_free (pre_delete_map);
4817 if (ae_in)
4818 sbitmap_vector_free (ae_in);
4819 if (ae_out)
4820 sbitmap_vector_free (ae_out);
4822 transp = comp = NULL;
4823 pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
4824 ae_in = ae_out = NULL;
4827 /* Top level routine to do the dataflow analysis needed by PRE. */
4829 static void
4830 compute_pre_data ()
4832 sbitmap trapping_expr;
4833 basic_block bb;
4834 unsigned int ui;
4836 compute_local_properties (transp, comp, antloc, &expr_hash_table);
4837 sbitmap_vector_zero (ae_kill, last_basic_block);
4839 /* Collect expressions which might trap. */
4840 trapping_expr = sbitmap_alloc (expr_hash_table.n_elems);
4841 sbitmap_zero (trapping_expr);
4842 for (ui = 0; ui < expr_hash_table.size; ui++)
4844 struct expr *e;
4845 for (e = expr_hash_table.table[ui]; e != NULL; e = e->next_same_hash)
4846 if (may_trap_p (e->expr))
4847 SET_BIT (trapping_expr, e->bitmap_index);
4850 /* Compute ae_kill for each basic block using:
4852 ~(TRANSP | COMP)
4854 This is significantly faster than compute_ae_kill. */
4856 FOR_EACH_BB (bb)
4858 edge e;
4860 /* If the current block is the destination of an abnormal edge, we
4861 kill all trapping expressions because we won't be able to properly
4862 place the instruction on the edge. So make them neither
4863 anticipatable nor transparent. This is fairly conservative. */
4864 for (e = bb->pred; e ; e = e->pred_next)
4865 if (e->flags & EDGE_ABNORMAL)
4867 sbitmap_difference (antloc[bb->index], antloc[bb->index], trapping_expr);
4868 sbitmap_difference (transp[bb->index], transp[bb->index], trapping_expr);
4869 break;
4872 sbitmap_a_or_b (ae_kill[bb->index], transp[bb->index], comp[bb->index]);
4873 sbitmap_not (ae_kill[bb->index], ae_kill[bb->index]);
4876 edge_list = pre_edge_lcm (gcse_file, expr_hash_table.n_elems, transp, comp, antloc,
4877 ae_kill, &pre_insert_map, &pre_delete_map);
4878 sbitmap_vector_free (antloc);
4879 antloc = NULL;
4880 sbitmap_vector_free (ae_kill);
4881 ae_kill = NULL;
4882 sbitmap_free (trapping_expr);
4885 /* PRE utilities */
4887 /* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
4888 block BB.
4890 VISITED is a pointer to a working buffer for tracking which BB's have
4891 been visited. It is NULL for the top-level call.
4893 We treat reaching expressions that go through blocks containing the same
4894 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
4895 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
4896 2 as not reaching. The intent is to improve the probability of finding
4897 only one reaching expression and to reduce register lifetimes by picking
4898 the closest such expression. */
4900 static int
4901 pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited)
4902 basic_block occr_bb;
4903 struct expr *expr;
4904 basic_block bb;
4905 char *visited;
4907 edge pred;
4909 for (pred = bb->pred; pred != NULL; pred = pred->pred_next)
4911 basic_block pred_bb = pred->src;
4913 if (pred->src == ENTRY_BLOCK_PTR
4914 /* Has predecessor has already been visited? */
4915 || visited[pred_bb->index])
4916 ;/* Nothing to do. */
4918 /* Does this predecessor generate this expression? */
4919 else if (TEST_BIT (comp[pred_bb->index], expr->bitmap_index))
4921 /* Is this the occurrence we're looking for?
4922 Note that there's only one generating occurrence per block
4923 so we just need to check the block number. */
4924 if (occr_bb == pred_bb)
4925 return 1;
4927 visited[pred_bb->index] = 1;
4929 /* Ignore this predecessor if it kills the expression. */
4930 else if (! TEST_BIT (transp[pred_bb->index], expr->bitmap_index))
4931 visited[pred_bb->index] = 1;
4933 /* Neither gen nor kill. */
4934 else
4936 visited[pred_bb->index] = 1;
4937 if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
4938 return 1;
4942 /* All paths have been checked. */
4943 return 0;
4946 /* The wrapper for pre_expr_reaches_here_work that ensures that any
4947 memory allocated for that function is returned. */
4949 static int
4950 pre_expr_reaches_here_p (occr_bb, expr, bb)
4951 basic_block occr_bb;
4952 struct expr *expr;
4953 basic_block bb;
4955 int rval;
4956 char *visited = (char *) xcalloc (last_basic_block, 1);
4958 rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
4960 free (visited);
4961 return rval;
4965 /* Given an expr, generate RTL which we can insert at the end of a BB,
4966 or on an edge. Set the block number of any insns generated to
4967 the value of BB. */
4969 static rtx
4970 process_insert_insn (expr)
4971 struct expr *expr;
4973 rtx reg = expr->reaching_reg;
4974 rtx exp = copy_rtx (expr->expr);
4975 rtx pat;
4977 start_sequence ();
4979 /* If the expression is something that's an operand, like a constant,
4980 just copy it to a register. */
4981 if (general_operand (exp, GET_MODE (reg)))
4982 emit_move_insn (reg, exp);
4984 /* Otherwise, make a new insn to compute this expression and make sure the
4985 insn will be recognized (this also adds any needed CLOBBERs). Copy the
4986 expression to make sure we don't have any sharing issues. */
4987 else if (insn_invalid_p (emit_insn (gen_rtx_SET (VOIDmode, reg, exp))))
4988 abort ();
4990 pat = get_insns ();
4991 end_sequence ();
4993 return pat;
4996 /* Add EXPR to the end of basic block BB.
4998 This is used by both the PRE and code hoisting.
5000 For PRE, we want to verify that the expr is either transparent
5001 or locally anticipatable in the target block. This check makes
5002 no sense for code hoisting. */
5004 static void
5005 insert_insn_end_bb (expr, bb, pre)
5006 struct expr *expr;
5007 basic_block bb;
5008 int pre;
5010 rtx insn = bb->end;
5011 rtx new_insn;
5012 rtx reg = expr->reaching_reg;
5013 int regno = REGNO (reg);
5014 rtx pat, pat_end;
5016 pat = process_insert_insn (expr);
5017 if (pat == NULL_RTX || ! INSN_P (pat))
5018 abort ();
5020 pat_end = pat;
5021 while (NEXT_INSN (pat_end) != NULL_RTX)
5022 pat_end = NEXT_INSN (pat_end);
5024 /* If the last insn is a jump, insert EXPR in front [taking care to
5025 handle cc0, etc. properly]. Similary we need to care trapping
5026 instructions in presence of non-call exceptions. */
5028 if (GET_CODE (insn) == JUMP_INSN
5029 || (GET_CODE (insn) == INSN
5030 && (bb->succ->succ_next || (bb->succ->flags & EDGE_ABNORMAL))))
5032 #ifdef HAVE_cc0
5033 rtx note;
5034 #endif
5035 /* It should always be the case that we can put these instructions
5036 anywhere in the basic block with performing PRE optimizations.
5037 Check this. */
5038 if (GET_CODE (insn) == INSN && pre
5039 && !TEST_BIT (antloc[bb->index], expr->bitmap_index)
5040 && !TEST_BIT (transp[bb->index], expr->bitmap_index))
5041 abort ();
5043 /* If this is a jump table, then we can't insert stuff here. Since
5044 we know the previous real insn must be the tablejump, we insert
5045 the new instruction just before the tablejump. */
5046 if (GET_CODE (PATTERN (insn)) == ADDR_VEC
5047 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
5048 insn = prev_real_insn (insn);
5050 #ifdef HAVE_cc0
5051 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
5052 if cc0 isn't set. */
5053 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
5054 if (note)
5055 insn = XEXP (note, 0);
5056 else
5058 rtx maybe_cc0_setter = prev_nonnote_insn (insn);
5059 if (maybe_cc0_setter
5060 && INSN_P (maybe_cc0_setter)
5061 && sets_cc0_p (PATTERN (maybe_cc0_setter)))
5062 insn = maybe_cc0_setter;
5064 #endif
5065 /* FIXME: What if something in cc0/jump uses value set in new insn? */
5066 new_insn = emit_insn_before (pat, insn);
5069 /* Likewise if the last insn is a call, as will happen in the presence
5070 of exception handling. */
5071 else if (GET_CODE (insn) == CALL_INSN
5072 && (bb->succ->succ_next || (bb->succ->flags & EDGE_ABNORMAL)))
5074 /* Keeping in mind SMALL_REGISTER_CLASSES and parameters in registers,
5075 we search backward and place the instructions before the first
5076 parameter is loaded. Do this for everyone for consistency and a
5077 presumption that we'll get better code elsewhere as well.
5079 It should always be the case that we can put these instructions
5080 anywhere in the basic block with performing PRE optimizations.
5081 Check this. */
5083 if (pre
5084 && !TEST_BIT (antloc[bb->index], expr->bitmap_index)
5085 && !TEST_BIT (transp[bb->index], expr->bitmap_index))
5086 abort ();
5088 /* Since different machines initialize their parameter registers
5089 in different orders, assume nothing. Collect the set of all
5090 parameter registers. */
5091 insn = find_first_parameter_load (insn, bb->head);
5093 /* If we found all the parameter loads, then we want to insert
5094 before the first parameter load.
5096 If we did not find all the parameter loads, then we might have
5097 stopped on the head of the block, which could be a CODE_LABEL.
5098 If we inserted before the CODE_LABEL, then we would be putting
5099 the insn in the wrong basic block. In that case, put the insn
5100 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
5101 while (GET_CODE (insn) == CODE_LABEL
5102 || NOTE_INSN_BASIC_BLOCK_P (insn))
5103 insn = NEXT_INSN (insn);
5105 new_insn = emit_insn_before (pat, insn);
5107 else
5108 new_insn = emit_insn_after (pat, insn);
5110 while (1)
5112 if (INSN_P (pat))
5114 add_label_notes (PATTERN (pat), new_insn);
5115 note_stores (PATTERN (pat), record_set_info, pat);
5117 if (pat == pat_end)
5118 break;
5119 pat = NEXT_INSN (pat);
5122 gcse_create_count++;
5124 if (gcse_file)
5126 fprintf (gcse_file, "PRE/HOIST: end of bb %d, insn %d, ",
5127 bb->index, INSN_UID (new_insn));
5128 fprintf (gcse_file, "copying expression %d to reg %d\n",
5129 expr->bitmap_index, regno);
5133 /* Insert partially redundant expressions on edges in the CFG to make
5134 the expressions fully redundant. */
5136 static int
5137 pre_edge_insert (edge_list, index_map)
5138 struct edge_list *edge_list;
5139 struct expr **index_map;
5141 int e, i, j, num_edges, set_size, did_insert = 0;
5142 sbitmap *inserted;
5144 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
5145 if it reaches any of the deleted expressions. */
5147 set_size = pre_insert_map[0]->size;
5148 num_edges = NUM_EDGES (edge_list);
5149 inserted = sbitmap_vector_alloc (num_edges, expr_hash_table.n_elems);
5150 sbitmap_vector_zero (inserted, num_edges);
5152 for (e = 0; e < num_edges; e++)
5154 int indx;
5155 basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
5157 for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
5159 SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
5161 for (j = indx; insert && j < (int) expr_hash_table.n_elems; j++, insert >>= 1)
5162 if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
5164 struct expr *expr = index_map[j];
5165 struct occr *occr;
5167 /* Now look at each deleted occurrence of this expression. */
5168 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
5170 if (! occr->deleted_p)
5171 continue;
5173 /* Insert this expression on this edge if if it would
5174 reach the deleted occurrence in BB. */
5175 if (!TEST_BIT (inserted[e], j))
5177 rtx insn;
5178 edge eg = INDEX_EDGE (edge_list, e);
5180 /* We can't insert anything on an abnormal and
5181 critical edge, so we insert the insn at the end of
5182 the previous block. There are several alternatives
5183 detailed in Morgans book P277 (sec 10.5) for
5184 handling this situation. This one is easiest for
5185 now. */
5187 if ((eg->flags & EDGE_ABNORMAL) == EDGE_ABNORMAL)
5188 insert_insn_end_bb (index_map[j], bb, 0);
5189 else
5191 insn = process_insert_insn (index_map[j]);
5192 insert_insn_on_edge (insn, eg);
5195 if (gcse_file)
5197 fprintf (gcse_file, "PRE/HOIST: edge (%d,%d), ",
5198 bb->index,
5199 INDEX_EDGE_SUCC_BB (edge_list, e)->index);
5200 fprintf (gcse_file, "copy expression %d\n",
5201 expr->bitmap_index);
5204 update_ld_motion_stores (expr);
5205 SET_BIT (inserted[e], j);
5206 did_insert = 1;
5207 gcse_create_count++;
5214 sbitmap_vector_free (inserted);
5215 return did_insert;
5218 /* Copy the result of INSN to REG. INDX is the expression number. */
5220 static void
5221 pre_insert_copy_insn (expr, insn)
5222 struct expr *expr;
5223 rtx insn;
5225 rtx reg = expr->reaching_reg;
5226 int regno = REGNO (reg);
5227 int indx = expr->bitmap_index;
5228 rtx set = single_set (insn);
5229 rtx new_insn;
5231 if (!set)
5232 abort ();
5234 new_insn = emit_insn_after (gen_move_insn (reg, SET_DEST (set)), insn);
5236 /* Keep register set table up to date. */
5237 record_one_set (regno, new_insn);
5239 gcse_create_count++;
5241 if (gcse_file)
5242 fprintf (gcse_file,
5243 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
5244 BLOCK_NUM (insn), INSN_UID (new_insn), indx,
5245 INSN_UID (insn), regno);
5246 update_ld_motion_stores (expr);
5249 /* Copy available expressions that reach the redundant expression
5250 to `reaching_reg'. */
5252 static void
5253 pre_insert_copies ()
5255 unsigned int i;
5256 struct expr *expr;
5257 struct occr *occr;
5258 struct occr *avail;
5260 /* For each available expression in the table, copy the result to
5261 `reaching_reg' if the expression reaches a deleted one.
5263 ??? The current algorithm is rather brute force.
5264 Need to do some profiling. */
5266 for (i = 0; i < expr_hash_table.size; i++)
5267 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
5269 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
5270 we don't want to insert a copy here because the expression may not
5271 really be redundant. So only insert an insn if the expression was
5272 deleted. This test also avoids further processing if the
5273 expression wasn't deleted anywhere. */
5274 if (expr->reaching_reg == NULL)
5275 continue;
5277 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
5279 if (! occr->deleted_p)
5280 continue;
5282 for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
5284 rtx insn = avail->insn;
5286 /* No need to handle this one if handled already. */
5287 if (avail->copied_p)
5288 continue;
5290 /* Don't handle this one if it's a redundant one. */
5291 if (TEST_BIT (pre_redundant_insns, INSN_CUID (insn)))
5292 continue;
5294 /* Or if the expression doesn't reach the deleted one. */
5295 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
5296 expr,
5297 BLOCK_FOR_INSN (occr->insn)))
5298 continue;
5300 /* Copy the result of avail to reaching_reg. */
5301 pre_insert_copy_insn (expr, insn);
5302 avail->copied_p = 1;
5308 /* Emit move from SRC to DEST noting the equivalence with expression computed
5309 in INSN. */
5310 static rtx
5311 gcse_emit_move_after (src, dest, insn)
5312 rtx src, dest, insn;
5314 rtx new;
5315 rtx set = single_set (insn), set2;
5316 rtx note;
5317 rtx eqv;
5319 /* This should never fail since we're creating a reg->reg copy
5320 we've verified to be valid. */
5322 new = emit_insn_after (gen_move_insn (dest, src), insn);
5324 /* Note the equivalence for local CSE pass. */
5325 set2 = single_set (new);
5326 if (!set2 || !rtx_equal_p (SET_DEST (set2), dest))
5327 return new;
5328 if ((note = find_reg_equal_equiv_note (insn)))
5329 eqv = XEXP (note, 0);
5330 else
5331 eqv = SET_SRC (set);
5333 set_unique_reg_note (new, REG_EQUAL, copy_insn_1 (eqv));
5335 return new;
5338 /* Delete redundant computations.
5339 Deletion is done by changing the insn to copy the `reaching_reg' of
5340 the expression into the result of the SET. It is left to later passes
5341 (cprop, cse2, flow, combine, regmove) to propagate the copy or eliminate it.
5343 Returns nonzero if a change is made. */
5345 static int
5346 pre_delete ()
5348 unsigned int i;
5349 int changed;
5350 struct expr *expr;
5351 struct occr *occr;
5353 changed = 0;
5354 for (i = 0; i < expr_hash_table.size; i++)
5355 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
5357 int indx = expr->bitmap_index;
5359 /* We only need to search antic_occr since we require
5360 ANTLOC != 0. */
5362 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
5364 rtx insn = occr->insn;
5365 rtx set;
5366 basic_block bb = BLOCK_FOR_INSN (insn);
5368 if (TEST_BIT (pre_delete_map[bb->index], indx))
5370 set = single_set (insn);
5371 if (! set)
5372 abort ();
5374 /* Create a pseudo-reg to store the result of reaching
5375 expressions into. Get the mode for the new pseudo from
5376 the mode of the original destination pseudo. */
5377 if (expr->reaching_reg == NULL)
5378 expr->reaching_reg
5379 = gen_reg_rtx (GET_MODE (SET_DEST (set)));
5381 gcse_emit_move_after (expr->reaching_reg, SET_DEST (set), insn);
5382 delete_insn (insn);
5383 occr->deleted_p = 1;
5384 SET_BIT (pre_redundant_insns, INSN_CUID (insn));
5385 changed = 1;
5386 gcse_subst_count++;
5388 if (gcse_file)
5390 fprintf (gcse_file,
5391 "PRE: redundant insn %d (expression %d) in ",
5392 INSN_UID (insn), indx);
5393 fprintf (gcse_file, "bb %d, reaching reg is %d\n",
5394 bb->index, REGNO (expr->reaching_reg));
5400 return changed;
5403 /* Perform GCSE optimizations using PRE.
5404 This is called by one_pre_gcse_pass after all the dataflow analysis
5405 has been done.
5407 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
5408 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
5409 Compiler Design and Implementation.
5411 ??? A new pseudo reg is created to hold the reaching expression. The nice
5412 thing about the classical approach is that it would try to use an existing
5413 reg. If the register can't be adequately optimized [i.e. we introduce
5414 reload problems], one could add a pass here to propagate the new register
5415 through the block.
5417 ??? We don't handle single sets in PARALLELs because we're [currently] not
5418 able to copy the rest of the parallel when we insert copies to create full
5419 redundancies from partial redundancies. However, there's no reason why we
5420 can't handle PARALLELs in the cases where there are no partial
5421 redundancies. */
5423 static int
5424 pre_gcse ()
5426 unsigned int i;
5427 int did_insert, changed;
5428 struct expr **index_map;
5429 struct expr *expr;
5431 /* Compute a mapping from expression number (`bitmap_index') to
5432 hash table entry. */
5434 index_map = (struct expr **) xcalloc (expr_hash_table.n_elems, sizeof (struct expr *));
5435 for (i = 0; i < expr_hash_table.size; i++)
5436 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
5437 index_map[expr->bitmap_index] = expr;
5439 /* Reset bitmap used to track which insns are redundant. */
5440 pre_redundant_insns = sbitmap_alloc (max_cuid);
5441 sbitmap_zero (pre_redundant_insns);
5443 /* Delete the redundant insns first so that
5444 - we know what register to use for the new insns and for the other
5445 ones with reaching expressions
5446 - we know which insns are redundant when we go to create copies */
5448 changed = pre_delete ();
5450 did_insert = pre_edge_insert (edge_list, index_map);
5452 /* In other places with reaching expressions, copy the expression to the
5453 specially allocated pseudo-reg that reaches the redundant expr. */
5454 pre_insert_copies ();
5455 if (did_insert)
5457 commit_edge_insertions ();
5458 changed = 1;
5461 free (index_map);
5462 sbitmap_free (pre_redundant_insns);
5463 return changed;
5466 /* Top level routine to perform one PRE GCSE pass.
5468 Return nonzero if a change was made. */
5470 static int
5471 one_pre_gcse_pass (pass)
5472 int pass;
5474 int changed = 0;
5476 gcse_subst_count = 0;
5477 gcse_create_count = 0;
5479 alloc_hash_table (max_cuid, &expr_hash_table, 0);
5480 add_noreturn_fake_exit_edges ();
5481 if (flag_gcse_lm)
5482 compute_ld_motion_mems ();
5484 compute_hash_table (&expr_hash_table);
5485 trim_ld_motion_mems ();
5486 if (gcse_file)
5487 dump_hash_table (gcse_file, "Expression", &expr_hash_table);
5489 if (expr_hash_table.n_elems > 0)
5491 alloc_pre_mem (last_basic_block, expr_hash_table.n_elems);
5492 compute_pre_data ();
5493 changed |= pre_gcse ();
5494 free_edge_list (edge_list);
5495 free_pre_mem ();
5498 free_ldst_mems ();
5499 remove_fake_edges ();
5500 free_hash_table (&expr_hash_table);
5502 if (gcse_file)
5504 fprintf (gcse_file, "\nPRE GCSE of %s, pass %d: %d bytes needed, ",
5505 current_function_name, pass, bytes_used);
5506 fprintf (gcse_file, "%d substs, %d insns created\n",
5507 gcse_subst_count, gcse_create_count);
5510 return changed;
5513 /* If X contains any LABEL_REF's, add REG_LABEL notes for them to INSN.
5514 If notes are added to an insn which references a CODE_LABEL, the
5515 LABEL_NUSES count is incremented. We have to add REG_LABEL notes,
5516 because the following loop optimization pass requires them. */
5518 /* ??? This is very similar to the loop.c add_label_notes function. We
5519 could probably share code here. */
5521 /* ??? If there was a jump optimization pass after gcse and before loop,
5522 then we would not need to do this here, because jump would add the
5523 necessary REG_LABEL notes. */
5525 static void
5526 add_label_notes (x, insn)
5527 rtx x;
5528 rtx insn;
5530 enum rtx_code code = GET_CODE (x);
5531 int i, j;
5532 const char *fmt;
5534 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
5536 /* This code used to ignore labels that referred to dispatch tables to
5537 avoid flow generating (slighly) worse code.
5539 We no longer ignore such label references (see LABEL_REF handling in
5540 mark_jump_label for additional information). */
5542 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL, XEXP (x, 0),
5543 REG_NOTES (insn));
5544 if (LABEL_P (XEXP (x, 0)))
5545 LABEL_NUSES (XEXP (x, 0))++;
5546 return;
5549 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
5551 if (fmt[i] == 'e')
5552 add_label_notes (XEXP (x, i), insn);
5553 else if (fmt[i] == 'E')
5554 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5555 add_label_notes (XVECEXP (x, i, j), insn);
5559 /* Compute transparent outgoing information for each block.
5561 An expression is transparent to an edge unless it is killed by
5562 the edge itself. This can only happen with abnormal control flow,
5563 when the edge is traversed through a call. This happens with
5564 non-local labels and exceptions.
5566 This would not be necessary if we split the edge. While this is
5567 normally impossible for abnormal critical edges, with some effort
5568 it should be possible with exception handling, since we still have
5569 control over which handler should be invoked. But due to increased
5570 EH table sizes, this may not be worthwhile. */
5572 static void
5573 compute_transpout ()
5575 basic_block bb;
5576 unsigned int i;
5577 struct expr *expr;
5579 sbitmap_vector_ones (transpout, last_basic_block);
5581 FOR_EACH_BB (bb)
5583 /* Note that flow inserted a nop a the end of basic blocks that
5584 end in call instructions for reasons other than abnormal
5585 control flow. */
5586 if (GET_CODE (bb->end) != CALL_INSN)
5587 continue;
5589 for (i = 0; i < expr_hash_table.size; i++)
5590 for (expr = expr_hash_table.table[i]; expr ; expr = expr->next_same_hash)
5591 if (GET_CODE (expr->expr) == MEM)
5593 if (GET_CODE (XEXP (expr->expr, 0)) == SYMBOL_REF
5594 && CONSTANT_POOL_ADDRESS_P (XEXP (expr->expr, 0)))
5595 continue;
5597 /* ??? Optimally, we would use interprocedural alias
5598 analysis to determine if this mem is actually killed
5599 by this call. */
5600 RESET_BIT (transpout[bb->index], expr->bitmap_index);
5605 /* Removal of useless null pointer checks */
5607 /* Called via note_stores. X is set by SETTER. If X is a register we must
5608 invalidate nonnull_local and set nonnull_killed. DATA is really a
5609 `null_pointer_info *'.
5611 We ignore hard registers. */
5613 static void
5614 invalidate_nonnull_info (x, setter, data)
5615 rtx x;
5616 rtx setter ATTRIBUTE_UNUSED;
5617 void *data;
5619 unsigned int regno;
5620 struct null_pointer_info *npi = (struct null_pointer_info *) data;
5622 while (GET_CODE (x) == SUBREG)
5623 x = SUBREG_REG (x);
5625 /* Ignore anything that is not a register or is a hard register. */
5626 if (GET_CODE (x) != REG
5627 || REGNO (x) < npi->min_reg
5628 || REGNO (x) >= npi->max_reg)
5629 return;
5631 regno = REGNO (x) - npi->min_reg;
5633 RESET_BIT (npi->nonnull_local[npi->current_block->index], regno);
5634 SET_BIT (npi->nonnull_killed[npi->current_block->index], regno);
5637 /* Do null-pointer check elimination for the registers indicated in
5638 NPI. NONNULL_AVIN and NONNULL_AVOUT are pre-allocated sbitmaps;
5639 they are not our responsibility to free. */
5641 static int
5642 delete_null_pointer_checks_1 (block_reg, nonnull_avin,
5643 nonnull_avout, npi)
5644 unsigned int *block_reg;
5645 sbitmap *nonnull_avin;
5646 sbitmap *nonnull_avout;
5647 struct null_pointer_info *npi;
5649 basic_block bb, current_block;
5650 sbitmap *nonnull_local = npi->nonnull_local;
5651 sbitmap *nonnull_killed = npi->nonnull_killed;
5652 int something_changed = 0;
5654 /* Compute local properties, nonnull and killed. A register will have
5655 the nonnull property if at the end of the current block its value is
5656 known to be nonnull. The killed property indicates that somewhere in
5657 the block any information we had about the register is killed.
5659 Note that a register can have both properties in a single block. That
5660 indicates that it's killed, then later in the block a new value is
5661 computed. */
5662 sbitmap_vector_zero (nonnull_local, last_basic_block);
5663 sbitmap_vector_zero (nonnull_killed, last_basic_block);
5665 FOR_EACH_BB (current_block)
5667 rtx insn, stop_insn;
5669 /* Set the current block for invalidate_nonnull_info. */
5670 npi->current_block = current_block;
5672 /* Scan each insn in the basic block looking for memory references and
5673 register sets. */
5674 stop_insn = NEXT_INSN (current_block->end);
5675 for (insn = current_block->head;
5676 insn != stop_insn;
5677 insn = NEXT_INSN (insn))
5679 rtx set;
5680 rtx reg;
5682 /* Ignore anything that is not a normal insn. */
5683 if (! INSN_P (insn))
5684 continue;
5686 /* Basically ignore anything that is not a simple SET. We do have
5687 to make sure to invalidate nonnull_local and set nonnull_killed
5688 for such insns though. */
5689 set = single_set (insn);
5690 if (!set)
5692 note_stores (PATTERN (insn), invalidate_nonnull_info, npi);
5693 continue;
5696 /* See if we've got a usable memory load. We handle it first
5697 in case it uses its address register as a dest (which kills
5698 the nonnull property). */
5699 if (GET_CODE (SET_SRC (set)) == MEM
5700 && GET_CODE ((reg = XEXP (SET_SRC (set), 0))) == REG
5701 && REGNO (reg) >= npi->min_reg
5702 && REGNO (reg) < npi->max_reg)
5703 SET_BIT (nonnull_local[current_block->index],
5704 REGNO (reg) - npi->min_reg);
5706 /* Now invalidate stuff clobbered by this insn. */
5707 note_stores (PATTERN (insn), invalidate_nonnull_info, npi);
5709 /* And handle stores, we do these last since any sets in INSN can
5710 not kill the nonnull property if it is derived from a MEM
5711 appearing in a SET_DEST. */
5712 if (GET_CODE (SET_DEST (set)) == MEM
5713 && GET_CODE ((reg = XEXP (SET_DEST (set), 0))) == REG
5714 && REGNO (reg) >= npi->min_reg
5715 && REGNO (reg) < npi->max_reg)
5716 SET_BIT (nonnull_local[current_block->index],
5717 REGNO (reg) - npi->min_reg);
5721 /* Now compute global properties based on the local properties. This
5722 is a classic global availability algorithm. */
5723 compute_available (nonnull_local, nonnull_killed,
5724 nonnull_avout, nonnull_avin);
5726 /* Now look at each bb and see if it ends with a compare of a value
5727 against zero. */
5728 FOR_EACH_BB (bb)
5730 rtx last_insn = bb->end;
5731 rtx condition, earliest;
5732 int compare_and_branch;
5734 /* Since MIN_REG is always at least FIRST_PSEUDO_REGISTER, and
5735 since BLOCK_REG[BB] is zero if this block did not end with a
5736 comparison against zero, this condition works. */
5737 if (block_reg[bb->index] < npi->min_reg
5738 || block_reg[bb->index] >= npi->max_reg)
5739 continue;
5741 /* LAST_INSN is a conditional jump. Get its condition. */
5742 condition = get_condition (last_insn, &earliest);
5744 /* If we can't determine the condition then skip. */
5745 if (! condition)
5746 continue;
5748 /* Is the register known to have a nonzero value? */
5749 if (!TEST_BIT (nonnull_avout[bb->index], block_reg[bb->index] - npi->min_reg))
5750 continue;
5752 /* Try to compute whether the compare/branch at the loop end is one or
5753 two instructions. */
5754 if (earliest == last_insn)
5755 compare_and_branch = 1;
5756 else if (earliest == prev_nonnote_insn (last_insn))
5757 compare_and_branch = 2;
5758 else
5759 continue;
5761 /* We know the register in this comparison is nonnull at exit from
5762 this block. We can optimize this comparison. */
5763 if (GET_CODE (condition) == NE)
5765 rtx new_jump;
5767 new_jump = emit_jump_insn_after (gen_jump (JUMP_LABEL (last_insn)),
5768 last_insn);
5769 JUMP_LABEL (new_jump) = JUMP_LABEL (last_insn);
5770 LABEL_NUSES (JUMP_LABEL (new_jump))++;
5771 emit_barrier_after (new_jump);
5774 something_changed = 1;
5775 delete_insn (last_insn);
5776 if (compare_and_branch == 2)
5777 delete_insn (earliest);
5778 purge_dead_edges (bb);
5780 /* Don't check this block again. (Note that BLOCK_END is
5781 invalid here; we deleted the last instruction in the
5782 block.) */
5783 block_reg[bb->index] = 0;
5786 return something_changed;
5789 /* Find EQ/NE comparisons against zero which can be (indirectly) evaluated
5790 at compile time.
5792 This is conceptually similar to global constant/copy propagation and
5793 classic global CSE (it even uses the same dataflow equations as cprop).
5795 If a register is used as memory address with the form (mem (reg)), then we
5796 know that REG can not be zero at that point in the program. Any instruction
5797 which sets REG "kills" this property.
5799 So, if every path leading to a conditional branch has an available memory
5800 reference of that form, then we know the register can not have the value
5801 zero at the conditional branch.
5803 So we merely need to compute the local properties and propagate that data
5804 around the cfg, then optimize where possible.
5806 We run this pass two times. Once before CSE, then again after CSE. This
5807 has proven to be the most profitable approach. It is rare for new
5808 optimization opportunities of this nature to appear after the first CSE
5809 pass.
5811 This could probably be integrated with global cprop with a little work. */
5814 delete_null_pointer_checks (f)
5815 rtx f ATTRIBUTE_UNUSED;
5817 sbitmap *nonnull_avin, *nonnull_avout;
5818 unsigned int *block_reg;
5819 basic_block bb;
5820 int reg;
5821 int regs_per_pass;
5822 int max_reg;
5823 struct null_pointer_info npi;
5824 int something_changed = 0;
5826 /* If we have only a single block, then there's nothing to do. */
5827 if (n_basic_blocks <= 1)
5828 return 0;
5830 /* Trying to perform global optimizations on flow graphs which have
5831 a high connectivity will take a long time and is unlikely to be
5832 particularly useful.
5834 In normal circumstances a cfg should have about twice as many edges
5835 as blocks. But we do not want to punish small functions which have
5836 a couple switch statements. So we require a relatively large number
5837 of basic blocks and the ratio of edges to blocks to be high. */
5838 if (n_basic_blocks > 1000 && n_edges / n_basic_blocks >= 20)
5839 return 0;
5841 /* We need four bitmaps, each with a bit for each register in each
5842 basic block. */
5843 max_reg = max_reg_num ();
5844 regs_per_pass = get_bitmap_width (4, last_basic_block, max_reg);
5846 /* Allocate bitmaps to hold local and global properties. */
5847 npi.nonnull_local = sbitmap_vector_alloc (last_basic_block, regs_per_pass);
5848 npi.nonnull_killed = sbitmap_vector_alloc (last_basic_block, regs_per_pass);
5849 nonnull_avin = sbitmap_vector_alloc (last_basic_block, regs_per_pass);
5850 nonnull_avout = sbitmap_vector_alloc (last_basic_block, regs_per_pass);
5852 /* Go through the basic blocks, seeing whether or not each block
5853 ends with a conditional branch whose condition is a comparison
5854 against zero. Record the register compared in BLOCK_REG. */
5855 block_reg = (unsigned int *) xcalloc (last_basic_block, sizeof (int));
5856 FOR_EACH_BB (bb)
5858 rtx last_insn = bb->end;
5859 rtx condition, earliest, reg;
5861 /* We only want conditional branches. */
5862 if (GET_CODE (last_insn) != JUMP_INSN
5863 || !any_condjump_p (last_insn)
5864 || !onlyjump_p (last_insn))
5865 continue;
5867 /* LAST_INSN is a conditional jump. Get its condition. */
5868 condition = get_condition (last_insn, &earliest);
5870 /* If we were unable to get the condition, or it is not an equality
5871 comparison against zero then there's nothing we can do. */
5872 if (!condition
5873 || (GET_CODE (condition) != NE && GET_CODE (condition) != EQ)
5874 || GET_CODE (XEXP (condition, 1)) != CONST_INT
5875 || (XEXP (condition, 1)
5876 != CONST0_RTX (GET_MODE (XEXP (condition, 0)))))
5877 continue;
5879 /* We must be checking a register against zero. */
5880 reg = XEXP (condition, 0);
5881 if (GET_CODE (reg) != REG)
5882 continue;
5884 block_reg[bb->index] = REGNO (reg);
5887 /* Go through the algorithm for each block of registers. */
5888 for (reg = FIRST_PSEUDO_REGISTER; reg < max_reg; reg += regs_per_pass)
5890 npi.min_reg = reg;
5891 npi.max_reg = MIN (reg + regs_per_pass, max_reg);
5892 something_changed |= delete_null_pointer_checks_1 (block_reg,
5893 nonnull_avin,
5894 nonnull_avout,
5895 &npi);
5898 /* Free the table of registers compared at the end of every block. */
5899 free (block_reg);
5901 /* Free bitmaps. */
5902 sbitmap_vector_free (npi.nonnull_local);
5903 sbitmap_vector_free (npi.nonnull_killed);
5904 sbitmap_vector_free (nonnull_avin);
5905 sbitmap_vector_free (nonnull_avout);
5907 return something_changed;
5910 /* Code Hoisting variables and subroutines. */
5912 /* Very busy expressions. */
5913 static sbitmap *hoist_vbein;
5914 static sbitmap *hoist_vbeout;
5916 /* Hoistable expressions. */
5917 static sbitmap *hoist_exprs;
5919 /* Dominator bitmaps. */
5920 dominance_info dominators;
5922 /* ??? We could compute post dominators and run this algorithm in
5923 reverse to perform tail merging, doing so would probably be
5924 more effective than the tail merging code in jump.c.
5926 It's unclear if tail merging could be run in parallel with
5927 code hoisting. It would be nice. */
5929 /* Allocate vars used for code hoisting analysis. */
5931 static void
5932 alloc_code_hoist_mem (n_blocks, n_exprs)
5933 int n_blocks, n_exprs;
5935 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
5936 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
5937 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
5939 hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
5940 hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
5941 hoist_exprs = sbitmap_vector_alloc (n_blocks, n_exprs);
5942 transpout = sbitmap_vector_alloc (n_blocks, n_exprs);
5945 /* Free vars used for code hoisting analysis. */
5947 static void
5948 free_code_hoist_mem ()
5950 sbitmap_vector_free (antloc);
5951 sbitmap_vector_free (transp);
5952 sbitmap_vector_free (comp);
5954 sbitmap_vector_free (hoist_vbein);
5955 sbitmap_vector_free (hoist_vbeout);
5956 sbitmap_vector_free (hoist_exprs);
5957 sbitmap_vector_free (transpout);
5959 free_dominance_info (dominators);
5962 /* Compute the very busy expressions at entry/exit from each block.
5964 An expression is very busy if all paths from a given point
5965 compute the expression. */
5967 static void
5968 compute_code_hoist_vbeinout ()
5970 int changed, passes;
5971 basic_block bb;
5973 sbitmap_vector_zero (hoist_vbeout, last_basic_block);
5974 sbitmap_vector_zero (hoist_vbein, last_basic_block);
5976 passes = 0;
5977 changed = 1;
5979 while (changed)
5981 changed = 0;
5983 /* We scan the blocks in the reverse order to speed up
5984 the convergence. */
5985 FOR_EACH_BB_REVERSE (bb)
5987 changed |= sbitmap_a_or_b_and_c_cg (hoist_vbein[bb->index], antloc[bb->index],
5988 hoist_vbeout[bb->index], transp[bb->index]);
5989 if (bb->next_bb != EXIT_BLOCK_PTR)
5990 sbitmap_intersection_of_succs (hoist_vbeout[bb->index], hoist_vbein, bb->index);
5993 passes++;
5996 if (gcse_file)
5997 fprintf (gcse_file, "hoisting vbeinout computation: %d passes\n", passes);
6000 /* Top level routine to do the dataflow analysis needed by code hoisting. */
6002 static void
6003 compute_code_hoist_data ()
6005 compute_local_properties (transp, comp, antloc, &expr_hash_table);
6006 compute_transpout ();
6007 compute_code_hoist_vbeinout ();
6008 dominators = calculate_dominance_info (CDI_DOMINATORS);
6009 if (gcse_file)
6010 fprintf (gcse_file, "\n");
6013 /* Determine if the expression identified by EXPR_INDEX would
6014 reach BB unimpared if it was placed at the end of EXPR_BB.
6016 It's unclear exactly what Muchnick meant by "unimpared". It seems
6017 to me that the expression must either be computed or transparent in
6018 *every* block in the path(s) from EXPR_BB to BB. Any other definition
6019 would allow the expression to be hoisted out of loops, even if
6020 the expression wasn't a loop invariant.
6022 Contrast this to reachability for PRE where an expression is
6023 considered reachable if *any* path reaches instead of *all*
6024 paths. */
6026 static int
6027 hoist_expr_reaches_here_p (expr_bb, expr_index, bb, visited)
6028 basic_block expr_bb;
6029 int expr_index;
6030 basic_block bb;
6031 char *visited;
6033 edge pred;
6034 int visited_allocated_locally = 0;
6037 if (visited == NULL)
6039 visited_allocated_locally = 1;
6040 visited = xcalloc (last_basic_block, 1);
6043 for (pred = bb->pred; pred != NULL; pred = pred->pred_next)
6045 basic_block pred_bb = pred->src;
6047 if (pred->src == ENTRY_BLOCK_PTR)
6048 break;
6049 else if (pred_bb == expr_bb)
6050 continue;
6051 else if (visited[pred_bb->index])
6052 continue;
6054 /* Does this predecessor generate this expression? */
6055 else if (TEST_BIT (comp[pred_bb->index], expr_index))
6056 break;
6057 else if (! TEST_BIT (transp[pred_bb->index], expr_index))
6058 break;
6060 /* Not killed. */
6061 else
6063 visited[pred_bb->index] = 1;
6064 if (! hoist_expr_reaches_here_p (expr_bb, expr_index,
6065 pred_bb, visited))
6066 break;
6069 if (visited_allocated_locally)
6070 free (visited);
6072 return (pred == NULL);
6075 /* Actually perform code hoisting. */
6077 static void
6078 hoist_code ()
6080 basic_block bb, dominated;
6081 basic_block *domby;
6082 unsigned int domby_len;
6083 unsigned int i,j;
6084 struct expr **index_map;
6085 struct expr *expr;
6087 sbitmap_vector_zero (hoist_exprs, last_basic_block);
6089 /* Compute a mapping from expression number (`bitmap_index') to
6090 hash table entry. */
6092 index_map = (struct expr **) xcalloc (expr_hash_table.n_elems, sizeof (struct expr *));
6093 for (i = 0; i < expr_hash_table.size; i++)
6094 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
6095 index_map[expr->bitmap_index] = expr;
6097 /* Walk over each basic block looking for potentially hoistable
6098 expressions, nothing gets hoisted from the entry block. */
6099 FOR_EACH_BB (bb)
6101 int found = 0;
6102 int insn_inserted_p;
6104 domby_len = get_dominated_by (dominators, bb, &domby);
6105 /* Examine each expression that is very busy at the exit of this
6106 block. These are the potentially hoistable expressions. */
6107 for (i = 0; i < hoist_vbeout[bb->index]->n_bits; i++)
6109 int hoistable = 0;
6111 if (TEST_BIT (hoist_vbeout[bb->index], i)
6112 && TEST_BIT (transpout[bb->index], i))
6114 /* We've found a potentially hoistable expression, now
6115 we look at every block BB dominates to see if it
6116 computes the expression. */
6117 for (j = 0; j < domby_len; j++)
6119 dominated = domby[j];
6120 /* Ignore self dominance. */
6121 if (bb == dominated)
6122 continue;
6123 /* We've found a dominated block, now see if it computes
6124 the busy expression and whether or not moving that
6125 expression to the "beginning" of that block is safe. */
6126 if (!TEST_BIT (antloc[dominated->index], i))
6127 continue;
6129 /* Note if the expression would reach the dominated block
6130 unimpared if it was placed at the end of BB.
6132 Keep track of how many times this expression is hoistable
6133 from a dominated block into BB. */
6134 if (hoist_expr_reaches_here_p (bb, i, dominated, NULL))
6135 hoistable++;
6138 /* If we found more than one hoistable occurrence of this
6139 expression, then note it in the bitmap of expressions to
6140 hoist. It makes no sense to hoist things which are computed
6141 in only one BB, and doing so tends to pessimize register
6142 allocation. One could increase this value to try harder
6143 to avoid any possible code expansion due to register
6144 allocation issues; however experiments have shown that
6145 the vast majority of hoistable expressions are only movable
6146 from two successors, so raising this threshhold is likely
6147 to nullify any benefit we get from code hoisting. */
6148 if (hoistable > 1)
6150 SET_BIT (hoist_exprs[bb->index], i);
6151 found = 1;
6155 /* If we found nothing to hoist, then quit now. */
6156 if (! found)
6158 free (domby);
6159 continue;
6162 /* Loop over all the hoistable expressions. */
6163 for (i = 0; i < hoist_exprs[bb->index]->n_bits; i++)
6165 /* We want to insert the expression into BB only once, so
6166 note when we've inserted it. */
6167 insn_inserted_p = 0;
6169 /* These tests should be the same as the tests above. */
6170 if (TEST_BIT (hoist_vbeout[bb->index], i))
6172 /* We've found a potentially hoistable expression, now
6173 we look at every block BB dominates to see if it
6174 computes the expression. */
6175 for (j = 0; j < domby_len; j++)
6177 dominated = domby[j];
6178 /* Ignore self dominance. */
6179 if (bb == dominated)
6180 continue;
6182 /* We've found a dominated block, now see if it computes
6183 the busy expression and whether or not moving that
6184 expression to the "beginning" of that block is safe. */
6185 if (!TEST_BIT (antloc[dominated->index], i))
6186 continue;
6188 /* The expression is computed in the dominated block and
6189 it would be safe to compute it at the start of the
6190 dominated block. Now we have to determine if the
6191 expression would reach the dominated block if it was
6192 placed at the end of BB. */
6193 if (hoist_expr_reaches_here_p (bb, i, dominated, NULL))
6195 struct expr *expr = index_map[i];
6196 struct occr *occr = expr->antic_occr;
6197 rtx insn;
6198 rtx set;
6200 /* Find the right occurrence of this expression. */
6201 while (BLOCK_FOR_INSN (occr->insn) != dominated && occr)
6202 occr = occr->next;
6204 /* Should never happen. */
6205 if (!occr)
6206 abort ();
6208 insn = occr->insn;
6210 set = single_set (insn);
6211 if (! set)
6212 abort ();
6214 /* Create a pseudo-reg to store the result of reaching
6215 expressions into. Get the mode for the new pseudo
6216 from the mode of the original destination pseudo. */
6217 if (expr->reaching_reg == NULL)
6218 expr->reaching_reg
6219 = gen_reg_rtx (GET_MODE (SET_DEST (set)));
6221 gcse_emit_move_after (expr->reaching_reg, SET_DEST (set), insn);
6222 delete_insn (insn);
6223 occr->deleted_p = 1;
6224 if (!insn_inserted_p)
6226 insert_insn_end_bb (index_map[i], bb, 0);
6227 insn_inserted_p = 1;
6233 free (domby);
6236 free (index_map);
6239 /* Top level routine to perform one code hoisting (aka unification) pass
6241 Return nonzero if a change was made. */
6243 static int
6244 one_code_hoisting_pass ()
6246 int changed = 0;
6248 alloc_hash_table (max_cuid, &expr_hash_table, 0);
6249 compute_hash_table (&expr_hash_table);
6250 if (gcse_file)
6251 dump_hash_table (gcse_file, "Code Hosting Expressions", &expr_hash_table);
6253 if (expr_hash_table.n_elems > 0)
6255 alloc_code_hoist_mem (last_basic_block, expr_hash_table.n_elems);
6256 compute_code_hoist_data ();
6257 hoist_code ();
6258 free_code_hoist_mem ();
6261 free_hash_table (&expr_hash_table);
6263 return changed;
6266 /* Here we provide the things required to do store motion towards
6267 the exit. In order for this to be effective, gcse also needed to
6268 be taught how to move a load when it is kill only by a store to itself.
6270 int i;
6271 float a[10];
6273 void foo(float scale)
6275 for (i=0; i<10; i++)
6276 a[i] *= scale;
6279 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
6280 the load out since its live around the loop, and stored at the bottom
6281 of the loop.
6283 The 'Load Motion' referred to and implemented in this file is
6284 an enhancement to gcse which when using edge based lcm, recognizes
6285 this situation and allows gcse to move the load out of the loop.
6287 Once gcse has hoisted the load, store motion can then push this
6288 load towards the exit, and we end up with no loads or stores of 'i'
6289 in the loop. */
6291 /* This will search the ldst list for a matching expression. If it
6292 doesn't find one, we create one and initialize it. */
6294 static struct ls_expr *
6295 ldst_entry (x)
6296 rtx x;
6298 struct ls_expr * ptr;
6300 for (ptr = first_ls_expr(); ptr != NULL; ptr = next_ls_expr (ptr))
6301 if (expr_equiv_p (ptr->pattern, x))
6302 break;
6304 if (!ptr)
6306 ptr = (struct ls_expr *) xmalloc (sizeof (struct ls_expr));
6308 ptr->next = pre_ldst_mems;
6309 ptr->expr = NULL;
6310 ptr->pattern = x;
6311 ptr->loads = NULL_RTX;
6312 ptr->stores = NULL_RTX;
6313 ptr->reaching_reg = NULL_RTX;
6314 ptr->invalid = 0;
6315 ptr->index = 0;
6316 ptr->hash_index = 0;
6317 pre_ldst_mems = ptr;
6320 return ptr;
6323 /* Free up an individual ldst entry. */
6325 static void
6326 free_ldst_entry (ptr)
6327 struct ls_expr * ptr;
6329 free_INSN_LIST_list (& ptr->loads);
6330 free_INSN_LIST_list (& ptr->stores);
6332 free (ptr);
6335 /* Free up all memory associated with the ldst list. */
6337 static void
6338 free_ldst_mems ()
6340 while (pre_ldst_mems)
6342 struct ls_expr * tmp = pre_ldst_mems;
6344 pre_ldst_mems = pre_ldst_mems->next;
6346 free_ldst_entry (tmp);
6349 pre_ldst_mems = NULL;
6352 /* Dump debugging info about the ldst list. */
6354 static void
6355 print_ldst_list (file)
6356 FILE * file;
6358 struct ls_expr * ptr;
6360 fprintf (file, "LDST list: \n");
6362 for (ptr = first_ls_expr(); ptr != NULL; ptr = next_ls_expr (ptr))
6364 fprintf (file, " Pattern (%3d): ", ptr->index);
6366 print_rtl (file, ptr->pattern);
6368 fprintf (file, "\n Loads : ");
6370 if (ptr->loads)
6371 print_rtl (file, ptr->loads);
6372 else
6373 fprintf (file, "(nil)");
6375 fprintf (file, "\n Stores : ");
6377 if (ptr->stores)
6378 print_rtl (file, ptr->stores);
6379 else
6380 fprintf (file, "(nil)");
6382 fprintf (file, "\n\n");
6385 fprintf (file, "\n");
6388 /* Returns 1 if X is in the list of ldst only expressions. */
6390 static struct ls_expr *
6391 find_rtx_in_ldst (x)
6392 rtx x;
6394 struct ls_expr * ptr;
6396 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
6397 if (expr_equiv_p (ptr->pattern, x) && ! ptr->invalid)
6398 return ptr;
6400 return NULL;
6403 /* Assign each element of the list of mems a monotonically increasing value. */
6405 static int
6406 enumerate_ldsts ()
6408 struct ls_expr * ptr;
6409 int n = 0;
6411 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
6412 ptr->index = n++;
6414 return n;
6417 /* Return first item in the list. */
6419 static inline struct ls_expr *
6420 first_ls_expr ()
6422 return pre_ldst_mems;
6425 /* Return the next item in ther list after the specified one. */
6427 static inline struct ls_expr *
6428 next_ls_expr (ptr)
6429 struct ls_expr * ptr;
6431 return ptr->next;
6434 /* Load Motion for loads which only kill themselves. */
6436 /* Return true if x is a simple MEM operation, with no registers or
6437 side effects. These are the types of loads we consider for the
6438 ld_motion list, otherwise we let the usual aliasing take care of it. */
6440 static int
6441 simple_mem (x)
6442 rtx x;
6444 if (GET_CODE (x) != MEM)
6445 return 0;
6447 if (MEM_VOLATILE_P (x))
6448 return 0;
6450 if (GET_MODE (x) == BLKmode)
6451 return 0;
6453 if (!rtx_varies_p (XEXP (x, 0), 0))
6454 return 1;
6456 return 0;
6459 /* Make sure there isn't a buried reference in this pattern anywhere.
6460 If there is, invalidate the entry for it since we're not capable
6461 of fixing it up just yet.. We have to be sure we know about ALL
6462 loads since the aliasing code will allow all entries in the
6463 ld_motion list to not-alias itself. If we miss a load, we will get
6464 the wrong value since gcse might common it and we won't know to
6465 fix it up. */
6467 static void
6468 invalidate_any_buried_refs (x)
6469 rtx x;
6471 const char * fmt;
6472 int i, j;
6473 struct ls_expr * ptr;
6475 /* Invalidate it in the list. */
6476 if (GET_CODE (x) == MEM && simple_mem (x))
6478 ptr = ldst_entry (x);
6479 ptr->invalid = 1;
6482 /* Recursively process the insn. */
6483 fmt = GET_RTX_FORMAT (GET_CODE (x));
6485 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6487 if (fmt[i] == 'e')
6488 invalidate_any_buried_refs (XEXP (x, i));
6489 else if (fmt[i] == 'E')
6490 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6491 invalidate_any_buried_refs (XVECEXP (x, i, j));
6495 /* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
6496 being defined as MEM loads and stores to symbols, with no
6497 side effects and no registers in the expression. If there are any
6498 uses/defs which don't match this criteria, it is invalidated and
6499 trimmed out later. */
6501 static void
6502 compute_ld_motion_mems ()
6504 struct ls_expr * ptr;
6505 basic_block bb;
6506 rtx insn;
6508 pre_ldst_mems = NULL;
6510 FOR_EACH_BB (bb)
6512 for (insn = bb->head;
6513 insn && insn != NEXT_INSN (bb->end);
6514 insn = NEXT_INSN (insn))
6516 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
6518 if (GET_CODE (PATTERN (insn)) == SET)
6520 rtx src = SET_SRC (PATTERN (insn));
6521 rtx dest = SET_DEST (PATTERN (insn));
6523 /* Check for a simple LOAD... */
6524 if (GET_CODE (src) == MEM && simple_mem (src))
6526 ptr = ldst_entry (src);
6527 if (GET_CODE (dest) == REG)
6528 ptr->loads = alloc_INSN_LIST (insn, ptr->loads);
6529 else
6530 ptr->invalid = 1;
6532 else
6534 /* Make sure there isn't a buried load somewhere. */
6535 invalidate_any_buried_refs (src);
6538 /* Check for stores. Don't worry about aliased ones, they
6539 will block any movement we might do later. We only care
6540 about this exact pattern since those are the only
6541 circumstance that we will ignore the aliasing info. */
6542 if (GET_CODE (dest) == MEM && simple_mem (dest))
6544 ptr = ldst_entry (dest);
6546 if (GET_CODE (src) != MEM
6547 && GET_CODE (src) != ASM_OPERANDS)
6548 ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
6549 else
6550 ptr->invalid = 1;
6553 else
6554 invalidate_any_buried_refs (PATTERN (insn));
6560 /* Remove any references that have been either invalidated or are not in the
6561 expression list for pre gcse. */
6563 static void
6564 trim_ld_motion_mems ()
6566 struct ls_expr * last = NULL;
6567 struct ls_expr * ptr = first_ls_expr ();
6569 while (ptr != NULL)
6571 int del = ptr->invalid;
6572 struct expr * expr = NULL;
6574 /* Delete if entry has been made invalid. */
6575 if (!del)
6577 unsigned int i;
6579 del = 1;
6580 /* Delete if we cannot find this mem in the expression list. */
6581 for (i = 0; i < expr_hash_table.size && del; i++)
6583 for (expr = expr_hash_table.table[i];
6584 expr != NULL;
6585 expr = expr->next_same_hash)
6586 if (expr_equiv_p (expr->expr, ptr->pattern))
6588 del = 0;
6589 break;
6594 if (del)
6596 if (last != NULL)
6598 last->next = ptr->next;
6599 free_ldst_entry (ptr);
6600 ptr = last->next;
6602 else
6604 pre_ldst_mems = pre_ldst_mems->next;
6605 free_ldst_entry (ptr);
6606 ptr = pre_ldst_mems;
6609 else
6611 /* Set the expression field if we are keeping it. */
6612 last = ptr;
6613 ptr->expr = expr;
6614 ptr = ptr->next;
6618 /* Show the world what we've found. */
6619 if (gcse_file && pre_ldst_mems != NULL)
6620 print_ldst_list (gcse_file);
6623 /* This routine will take an expression which we are replacing with
6624 a reaching register, and update any stores that are needed if
6625 that expression is in the ld_motion list. Stores are updated by
6626 copying their SRC to the reaching register, and then storeing
6627 the reaching register into the store location. These keeps the
6628 correct value in the reaching register for the loads. */
6630 static void
6631 update_ld_motion_stores (expr)
6632 struct expr * expr;
6634 struct ls_expr * mem_ptr;
6636 if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
6638 /* We can try to find just the REACHED stores, but is shouldn't
6639 matter to set the reaching reg everywhere... some might be
6640 dead and should be eliminated later. */
6642 /* We replace SET mem = expr with
6643 SET reg = expr
6644 SET mem = reg , where reg is the
6645 reaching reg used in the load. */
6646 rtx list = mem_ptr->stores;
6648 for ( ; list != NULL_RTX; list = XEXP (list, 1))
6650 rtx insn = XEXP (list, 0);
6651 rtx pat = PATTERN (insn);
6652 rtx src = SET_SRC (pat);
6653 rtx reg = expr->reaching_reg;
6654 rtx copy, new;
6656 /* If we've already copied it, continue. */
6657 if (expr->reaching_reg == src)
6658 continue;
6660 if (gcse_file)
6662 fprintf (gcse_file, "PRE: store updated with reaching reg ");
6663 print_rtl (gcse_file, expr->reaching_reg);
6664 fprintf (gcse_file, ":\n ");
6665 print_inline_rtx (gcse_file, insn, 8);
6666 fprintf (gcse_file, "\n");
6669 copy = gen_move_insn ( reg, SET_SRC (pat));
6670 new = emit_insn_before (copy, insn);
6671 record_one_set (REGNO (reg), new);
6672 SET_SRC (pat) = reg;
6674 /* un-recognize this pattern since it's probably different now. */
6675 INSN_CODE (insn) = -1;
6676 gcse_create_count++;
6681 /* Store motion code. */
6683 /* This is used to communicate the target bitvector we want to use in the
6684 reg_set_info routine when called via the note_stores mechanism. */
6685 static sbitmap * regvec;
6687 /* Used in computing the reverse edge graph bit vectors. */
6688 static sbitmap * st_antloc;
6690 /* Global holding the number of store expressions we are dealing with. */
6691 static int num_stores;
6693 /* Checks to set if we need to mark a register set. Called from note_stores. */
6695 static void
6696 reg_set_info (dest, setter, data)
6697 rtx dest, setter ATTRIBUTE_UNUSED;
6698 void * data ATTRIBUTE_UNUSED;
6700 if (GET_CODE (dest) == SUBREG)
6701 dest = SUBREG_REG (dest);
6703 if (GET_CODE (dest) == REG)
6704 SET_BIT (*regvec, REGNO (dest));
6707 /* Return nonzero if the register operands of expression X are killed
6708 anywhere in basic block BB. */
6710 static int
6711 store_ops_ok (x, bb)
6712 rtx x;
6713 basic_block bb;
6715 int i;
6716 enum rtx_code code;
6717 const char * fmt;
6719 /* Repeat is used to turn tail-recursion into iteration. */
6720 repeat:
6722 if (x == 0)
6723 return 1;
6725 code = GET_CODE (x);
6726 switch (code)
6728 case REG:
6729 /* If a reg has changed after us in this
6730 block, the operand has been killed. */
6731 return TEST_BIT (reg_set_in_block[bb->index], REGNO (x));
6733 case MEM:
6734 x = XEXP (x, 0);
6735 goto repeat;
6737 case PRE_DEC:
6738 case PRE_INC:
6739 case POST_DEC:
6740 case POST_INC:
6741 return 0;
6743 case PC:
6744 case CC0: /*FIXME*/
6745 case CONST:
6746 case CONST_INT:
6747 case CONST_DOUBLE:
6748 case CONST_VECTOR:
6749 case SYMBOL_REF:
6750 case LABEL_REF:
6751 case ADDR_VEC:
6752 case ADDR_DIFF_VEC:
6753 return 1;
6755 default:
6756 break;
6759 i = GET_RTX_LENGTH (code) - 1;
6760 fmt = GET_RTX_FORMAT (code);
6762 for (; i >= 0; i--)
6764 if (fmt[i] == 'e')
6766 rtx tem = XEXP (x, i);
6768 /* If we are about to do the last recursive call
6769 needed at this level, change it into iteration.
6770 This function is called enough to be worth it. */
6771 if (i == 0)
6773 x = tem;
6774 goto repeat;
6777 if (! store_ops_ok (tem, bb))
6778 return 0;
6780 else if (fmt[i] == 'E')
6782 int j;
6784 for (j = 0; j < XVECLEN (x, i); j++)
6786 if (! store_ops_ok (XVECEXP (x, i, j), bb))
6787 return 0;
6792 return 1;
6795 /* Determine whether insn is MEM store pattern that we will consider moving. */
6797 static void
6798 find_moveable_store (insn)
6799 rtx insn;
6801 struct ls_expr * ptr;
6802 rtx dest = PATTERN (insn);
6804 if (GET_CODE (dest) != SET
6805 || GET_CODE (SET_SRC (dest)) == ASM_OPERANDS)
6806 return;
6808 dest = SET_DEST (dest);
6810 if (GET_CODE (dest) != MEM || MEM_VOLATILE_P (dest)
6811 || GET_MODE (dest) == BLKmode)
6812 return;
6814 if (GET_CODE (XEXP (dest, 0)) != SYMBOL_REF)
6815 return;
6817 if (rtx_varies_p (XEXP (dest, 0), 0))
6818 return;
6820 ptr = ldst_entry (dest);
6821 ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
6824 /* Perform store motion. Much like gcse, except we move expressions the
6825 other way by looking at the flowgraph in reverse. */
6827 static int
6828 compute_store_table ()
6830 int ret;
6831 basic_block bb;
6832 unsigned regno;
6833 rtx insn, pat;
6835 max_gcse_regno = max_reg_num ();
6837 reg_set_in_block = (sbitmap *) sbitmap_vector_alloc (last_basic_block,
6838 max_gcse_regno);
6839 sbitmap_vector_zero (reg_set_in_block, last_basic_block);
6840 pre_ldst_mems = 0;
6842 /* Find all the stores we care about. */
6843 FOR_EACH_BB (bb)
6845 regvec = & (reg_set_in_block[bb->index]);
6846 for (insn = bb->end;
6847 insn && insn != PREV_INSN (bb->end);
6848 insn = PREV_INSN (insn))
6850 /* Ignore anything that is not a normal insn. */
6851 if (! INSN_P (insn))
6852 continue;
6854 if (GET_CODE (insn) == CALL_INSN)
6856 bool clobbers_all = false;
6857 #ifdef NON_SAVING_SETJMP
6858 if (NON_SAVING_SETJMP
6859 && find_reg_note (insn, REG_SETJMP, NULL_RTX))
6860 clobbers_all = true;
6861 #endif
6863 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
6864 if (clobbers_all
6865 || TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
6866 SET_BIT (reg_set_in_block[bb->index], regno);
6869 pat = PATTERN (insn);
6870 note_stores (pat, reg_set_info, NULL);
6872 /* Now that we've marked regs, look for stores. */
6873 if (GET_CODE (pat) == SET)
6874 find_moveable_store (insn);
6878 ret = enumerate_ldsts ();
6880 if (gcse_file)
6882 fprintf (gcse_file, "Store Motion Expressions.\n");
6883 print_ldst_list (gcse_file);
6886 return ret;
6889 /* Check to see if the load X is aliased with STORE_PATTERN. */
6891 static int
6892 load_kills_store (x, store_pattern)
6893 rtx x, store_pattern;
6895 if (true_dependence (x, GET_MODE (x), store_pattern, rtx_addr_varies_p))
6896 return 1;
6897 return 0;
6900 /* Go through the entire insn X, looking for any loads which might alias
6901 STORE_PATTERN. Return 1 if found. */
6903 static int
6904 find_loads (x, store_pattern)
6905 rtx x, store_pattern;
6907 const char * fmt;
6908 int i, j;
6909 int ret = 0;
6911 if (!x)
6912 return 0;
6914 if (GET_CODE (x) == SET)
6915 x = SET_SRC (x);
6917 if (GET_CODE (x) == MEM)
6919 if (load_kills_store (x, store_pattern))
6920 return 1;
6923 /* Recursively process the insn. */
6924 fmt = GET_RTX_FORMAT (GET_CODE (x));
6926 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0 && !ret; i--)
6928 if (fmt[i] == 'e')
6929 ret |= find_loads (XEXP (x, i), store_pattern);
6930 else if (fmt[i] == 'E')
6931 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6932 ret |= find_loads (XVECEXP (x, i, j), store_pattern);
6934 return ret;
6937 /* Check if INSN kills the store pattern X (is aliased with it).
6938 Return 1 if it it does. */
6940 static int
6941 store_killed_in_insn (x, insn)
6942 rtx x, insn;
6944 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
6945 return 0;
6947 if (GET_CODE (insn) == CALL_INSN)
6949 /* A normal or pure call might read from pattern,
6950 but a const call will not. */
6951 return ! CONST_OR_PURE_CALL_P (insn) || pure_call_p (insn);
6954 if (GET_CODE (PATTERN (insn)) == SET)
6956 rtx pat = PATTERN (insn);
6957 /* Check for memory stores to aliased objects. */
6958 if (GET_CODE (SET_DEST (pat)) == MEM && !expr_equiv_p (SET_DEST (pat), x))
6959 /* pretend its a load and check for aliasing. */
6960 if (find_loads (SET_DEST (pat), x))
6961 return 1;
6962 return find_loads (SET_SRC (pat), x);
6964 else
6965 return find_loads (PATTERN (insn), x);
6968 /* Returns 1 if the expression X is loaded or clobbered on or after INSN
6969 within basic block BB. */
6971 static int
6972 store_killed_after (x, insn, bb)
6973 rtx x, insn;
6974 basic_block bb;
6976 rtx last = bb->end;
6978 if (insn == last)
6979 return 0;
6981 /* Check if the register operands of the store are OK in this block.
6982 Note that if registers are changed ANYWHERE in the block, we'll
6983 decide we can't move it, regardless of whether it changed above
6984 or below the store. This could be improved by checking the register
6985 operands while looking for aliasing in each insn. */
6986 if (!store_ops_ok (XEXP (x, 0), bb))
6987 return 1;
6989 for ( ; insn && insn != NEXT_INSN (last); insn = NEXT_INSN (insn))
6990 if (store_killed_in_insn (x, insn))
6991 return 1;
6993 return 0;
6996 /* Returns 1 if the expression X is loaded or clobbered on or before INSN
6997 within basic block BB. */
6998 static int
6999 store_killed_before (x, insn, bb)
7000 rtx x, insn;
7001 basic_block bb;
7003 rtx first = bb->head;
7005 if (insn == first)
7006 return store_killed_in_insn (x, insn);
7008 /* Check if the register operands of the store are OK in this block.
7009 Note that if registers are changed ANYWHERE in the block, we'll
7010 decide we can't move it, regardless of whether it changed above
7011 or below the store. This could be improved by checking the register
7012 operands while looking for aliasing in each insn. */
7013 if (!store_ops_ok (XEXP (x, 0), bb))
7014 return 1;
7016 for ( ; insn && insn != PREV_INSN (first); insn = PREV_INSN (insn))
7017 if (store_killed_in_insn (x, insn))
7018 return 1;
7020 return 0;
7023 #define ANTIC_STORE_LIST(x) ((x)->loads)
7024 #define AVAIL_STORE_LIST(x) ((x)->stores)
7026 /* Given the table of available store insns at the end of blocks,
7027 determine which ones are not killed by aliasing, and generate
7028 the appropriate vectors for gen and killed. */
7029 static void
7030 build_store_vectors ()
7032 basic_block bb, b;
7033 rtx insn, st;
7034 struct ls_expr * ptr;
7036 /* Build the gen_vector. This is any store in the table which is not killed
7037 by aliasing later in its block. */
7038 ae_gen = (sbitmap *) sbitmap_vector_alloc (last_basic_block, num_stores);
7039 sbitmap_vector_zero (ae_gen, last_basic_block);
7041 st_antloc = (sbitmap *) sbitmap_vector_alloc (last_basic_block, num_stores);
7042 sbitmap_vector_zero (st_antloc, last_basic_block);
7044 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
7046 /* Put all the stores into either the antic list, or the avail list,
7047 or both. */
7048 rtx store_list = ptr->stores;
7049 ptr->stores = NULL_RTX;
7051 for (st = store_list; st != NULL; st = XEXP (st, 1))
7053 insn = XEXP (st, 0);
7054 bb = BLOCK_FOR_INSN (insn);
7056 if (!store_killed_after (ptr->pattern, insn, bb))
7058 /* If we've already seen an available expression in this block,
7059 we can delete the one we saw already (It occurs earlier in
7060 the block), and replace it with this one). We'll copy the
7061 old SRC expression to an unused register in case there
7062 are any side effects. */
7063 if (TEST_BIT (ae_gen[bb->index], ptr->index))
7065 /* Find previous store. */
7066 rtx st;
7067 for (st = AVAIL_STORE_LIST (ptr); st ; st = XEXP (st, 1))
7068 if (BLOCK_FOR_INSN (XEXP (st, 0)) == bb)
7069 break;
7070 if (st)
7072 rtx r = gen_reg_rtx (GET_MODE (ptr->pattern));
7073 if (gcse_file)
7074 fprintf (gcse_file, "Removing redundant store:\n");
7075 replace_store_insn (r, XEXP (st, 0), bb);
7076 XEXP (st, 0) = insn;
7077 continue;
7080 SET_BIT (ae_gen[bb->index], ptr->index);
7081 AVAIL_STORE_LIST (ptr) = alloc_INSN_LIST (insn,
7082 AVAIL_STORE_LIST (ptr));
7085 if (!store_killed_before (ptr->pattern, insn, bb))
7087 SET_BIT (st_antloc[BLOCK_NUM (insn)], ptr->index);
7088 ANTIC_STORE_LIST (ptr) = alloc_INSN_LIST (insn,
7089 ANTIC_STORE_LIST (ptr));
7093 /* Free the original list of store insns. */
7094 free_INSN_LIST_list (&store_list);
7097 ae_kill = (sbitmap *) sbitmap_vector_alloc (last_basic_block, num_stores);
7098 sbitmap_vector_zero (ae_kill, last_basic_block);
7100 transp = (sbitmap *) sbitmap_vector_alloc (last_basic_block, num_stores);
7101 sbitmap_vector_zero (transp, last_basic_block);
7103 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
7104 FOR_EACH_BB (b)
7106 if (store_killed_after (ptr->pattern, b->head, b))
7108 /* The anticipatable expression is not killed if it's gen'd. */
7110 We leave this check out for now. If we have a code sequence
7111 in a block which looks like:
7112 ST MEMa = x
7113 L y = MEMa
7114 ST MEMa = z
7115 We should flag this as having an ANTIC expression, NOT
7116 transparent, NOT killed, and AVAIL.
7117 Unfortunately, since we haven't re-written all loads to
7118 use the reaching reg, we'll end up doing an incorrect
7119 Load in the middle here if we push the store down. It happens in
7120 gcc.c-torture/execute/960311-1.c with -O3
7121 If we always kill it in this case, we'll sometimes do
7122 unnecessary work, but it shouldn't actually hurt anything.
7123 if (!TEST_BIT (ae_gen[b], ptr->index)). */
7124 SET_BIT (ae_kill[b->index], ptr->index);
7126 else
7127 SET_BIT (transp[b->index], ptr->index);
7130 /* Any block with no exits calls some non-returning function, so
7131 we better mark the store killed here, or we might not store to
7132 it at all. If we knew it was abort, we wouldn't have to store,
7133 but we don't know that for sure. */
7134 if (gcse_file)
7136 fprintf (gcse_file, "ST_avail and ST_antic (shown under loads..)\n");
7137 print_ldst_list (gcse_file);
7138 dump_sbitmap_vector (gcse_file, "st_antloc", "", st_antloc, last_basic_block);
7139 dump_sbitmap_vector (gcse_file, "st_kill", "", ae_kill, last_basic_block);
7140 dump_sbitmap_vector (gcse_file, "Transpt", "", transp, last_basic_block);
7141 dump_sbitmap_vector (gcse_file, "st_avloc", "", ae_gen, last_basic_block);
7145 /* Insert an instruction at the beginning of a basic block, and update
7146 the BLOCK_HEAD if needed. */
7148 static void
7149 insert_insn_start_bb (insn, bb)
7150 rtx insn;
7151 basic_block bb;
7153 /* Insert at start of successor block. */
7154 rtx prev = PREV_INSN (bb->head);
7155 rtx before = bb->head;
7156 while (before != 0)
7158 if (GET_CODE (before) != CODE_LABEL
7159 && (GET_CODE (before) != NOTE
7160 || NOTE_LINE_NUMBER (before) != NOTE_INSN_BASIC_BLOCK))
7161 break;
7162 prev = before;
7163 if (prev == bb->end)
7164 break;
7165 before = NEXT_INSN (before);
7168 insn = emit_insn_after (insn, prev);
7170 if (gcse_file)
7172 fprintf (gcse_file, "STORE_MOTION insert store at start of BB %d:\n",
7173 bb->index);
7174 print_inline_rtx (gcse_file, insn, 6);
7175 fprintf (gcse_file, "\n");
7179 /* This routine will insert a store on an edge. EXPR is the ldst entry for
7180 the memory reference, and E is the edge to insert it on. Returns nonzero
7181 if an edge insertion was performed. */
7183 static int
7184 insert_store (expr, e)
7185 struct ls_expr * expr;
7186 edge e;
7188 rtx reg, insn;
7189 basic_block bb;
7190 edge tmp;
7192 /* We did all the deleted before this insert, so if we didn't delete a
7193 store, then we haven't set the reaching reg yet either. */
7194 if (expr->reaching_reg == NULL_RTX)
7195 return 0;
7197 reg = expr->reaching_reg;
7198 insn = gen_move_insn (expr->pattern, reg);
7200 /* If we are inserting this expression on ALL predecessor edges of a BB,
7201 insert it at the start of the BB, and reset the insert bits on the other
7202 edges so we don't try to insert it on the other edges. */
7203 bb = e->dest;
7204 for (tmp = e->dest->pred; tmp ; tmp = tmp->pred_next)
7206 int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest);
7207 if (index == EDGE_INDEX_NO_EDGE)
7208 abort ();
7209 if (! TEST_BIT (pre_insert_map[index], expr->index))
7210 break;
7213 /* If tmp is NULL, we found an insertion on every edge, blank the
7214 insertion vector for these edges, and insert at the start of the BB. */
7215 if (!tmp && bb != EXIT_BLOCK_PTR)
7217 for (tmp = e->dest->pred; tmp ; tmp = tmp->pred_next)
7219 int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest);
7220 RESET_BIT (pre_insert_map[index], expr->index);
7222 insert_insn_start_bb (insn, bb);
7223 return 0;
7226 /* We can't insert on this edge, so we'll insert at the head of the
7227 successors block. See Morgan, sec 10.5. */
7228 if ((e->flags & EDGE_ABNORMAL) == EDGE_ABNORMAL)
7230 insert_insn_start_bb (insn, bb);
7231 return 0;
7234 insert_insn_on_edge (insn, e);
7236 if (gcse_file)
7238 fprintf (gcse_file, "STORE_MOTION insert insn on edge (%d, %d):\n",
7239 e->src->index, e->dest->index);
7240 print_inline_rtx (gcse_file, insn, 6);
7241 fprintf (gcse_file, "\n");
7244 return 1;
7247 /* This routine will replace a store with a SET to a specified register. */
7249 static void
7250 replace_store_insn (reg, del, bb)
7251 rtx reg, del;
7252 basic_block bb;
7254 rtx insn;
7256 insn = gen_move_insn (reg, SET_SRC (PATTERN (del)));
7257 insn = emit_insn_after (insn, del);
7259 if (gcse_file)
7261 fprintf (gcse_file,
7262 "STORE_MOTION delete insn in BB %d:\n ", bb->index);
7263 print_inline_rtx (gcse_file, del, 6);
7264 fprintf (gcse_file, "\nSTORE MOTION replaced with insn:\n ");
7265 print_inline_rtx (gcse_file, insn, 6);
7266 fprintf (gcse_file, "\n");
7269 delete_insn (del);
7273 /* Delete a store, but copy the value that would have been stored into
7274 the reaching_reg for later storing. */
7276 static void
7277 delete_store (expr, bb)
7278 struct ls_expr * expr;
7279 basic_block bb;
7281 rtx reg, i, del;
7283 if (expr->reaching_reg == NULL_RTX)
7284 expr->reaching_reg = gen_reg_rtx (GET_MODE (expr->pattern));
7287 /* If there is more than 1 store, the earlier ones will be dead,
7288 but it doesn't hurt to replace them here. */
7289 reg = expr->reaching_reg;
7291 for (i = AVAIL_STORE_LIST (expr); i; i = XEXP (i, 1))
7293 del = XEXP (i, 0);
7294 if (BLOCK_FOR_INSN (del) == bb)
7296 /* We know there is only one since we deleted redundant
7297 ones during the available computation. */
7298 replace_store_insn (reg, del, bb);
7299 break;
7304 /* Free memory used by store motion. */
7306 static void
7307 free_store_memory ()
7309 free_ldst_mems ();
7311 if (ae_gen)
7312 sbitmap_vector_free (ae_gen);
7313 if (ae_kill)
7314 sbitmap_vector_free (ae_kill);
7315 if (transp)
7316 sbitmap_vector_free (transp);
7317 if (st_antloc)
7318 sbitmap_vector_free (st_antloc);
7319 if (pre_insert_map)
7320 sbitmap_vector_free (pre_insert_map);
7321 if (pre_delete_map)
7322 sbitmap_vector_free (pre_delete_map);
7323 if (reg_set_in_block)
7324 sbitmap_vector_free (reg_set_in_block);
7326 ae_gen = ae_kill = transp = st_antloc = NULL;
7327 pre_insert_map = pre_delete_map = reg_set_in_block = NULL;
7330 /* Perform store motion. Much like gcse, except we move expressions the
7331 other way by looking at the flowgraph in reverse. */
7333 static void
7334 store_motion ()
7336 basic_block bb;
7337 int x;
7338 struct ls_expr * ptr;
7339 int update_flow = 0;
7341 if (gcse_file)
7343 fprintf (gcse_file, "before store motion\n");
7344 print_rtl (gcse_file, get_insns ());
7348 init_alias_analysis ();
7350 /* Find all the stores that are live to the end of their block. */
7351 num_stores = compute_store_table ();
7352 if (num_stores == 0)
7354 sbitmap_vector_free (reg_set_in_block);
7355 end_alias_analysis ();
7356 return;
7359 /* Now compute whats actually available to move. */
7360 add_noreturn_fake_exit_edges ();
7361 build_store_vectors ();
7363 edge_list = pre_edge_rev_lcm (gcse_file, num_stores, transp, ae_gen,
7364 st_antloc, ae_kill, &pre_insert_map,
7365 &pre_delete_map);
7367 /* Now we want to insert the new stores which are going to be needed. */
7368 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
7370 FOR_EACH_BB (bb)
7371 if (TEST_BIT (pre_delete_map[bb->index], ptr->index))
7372 delete_store (ptr, bb);
7374 for (x = 0; x < NUM_EDGES (edge_list); x++)
7375 if (TEST_BIT (pre_insert_map[x], ptr->index))
7376 update_flow |= insert_store (ptr, INDEX_EDGE (edge_list, x));
7379 if (update_flow)
7380 commit_edge_insertions ();
7382 free_store_memory ();
7383 free_edge_list (edge_list);
7384 remove_fake_edges ();
7385 end_alias_analysis ();
7389 /* Entry point for jump bypassing optimization pass. */
7392 bypass_jumps (file)
7393 FILE *file;
7395 int changed;
7397 /* We do not construct an accurate cfg in functions which call
7398 setjmp, so just punt to be safe. */
7399 if (current_function_calls_setjmp)
7400 return 0;
7402 /* For calling dump_foo fns from gdb. */
7403 debug_stderr = stderr;
7404 gcse_file = file;
7406 /* Identify the basic block information for this function, including
7407 successors and predecessors. */
7408 max_gcse_regno = max_reg_num ();
7410 if (file)
7411 dump_flow_info (file);
7413 /* Return if there's nothing to do. */
7414 if (n_basic_blocks <= 1)
7415 return 0;
7417 /* Trying to perform global optimizations on flow graphs which have
7418 a high connectivity will take a long time and is unlikely to be
7419 particularly useful.
7421 In normal circumstances a cfg should have about twice as many edges
7422 as blocks. But we do not want to punish small functions which have
7423 a couple switch statements. So we require a relatively large number
7424 of basic blocks and the ratio of edges to blocks to be high. */
7425 if (n_basic_blocks > 1000 && n_edges / n_basic_blocks >= 20)
7427 if (warn_disabled_optimization)
7428 warning ("BYPASS disabled: %d > 1000 basic blocks and %d >= 20 edges/basic block",
7429 n_basic_blocks, n_edges / n_basic_blocks);
7430 return 0;
7433 /* If allocating memory for the cprop bitmap would take up too much
7434 storage it's better just to disable the optimization. */
7435 if ((n_basic_blocks
7436 * SBITMAP_SET_SIZE (max_gcse_regno)
7437 * sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY)
7439 if (warn_disabled_optimization)
7440 warning ("GCSE disabled: %d basic blocks and %d registers",
7441 n_basic_blocks, max_gcse_regno);
7443 return 0;
7446 /* See what modes support reg/reg copy operations. */
7447 if (! can_copy_init_p)
7449 compute_can_copy ();
7450 can_copy_init_p = 1;
7453 gcc_obstack_init (&gcse_obstack);
7454 bytes_used = 0;
7456 /* We need alias. */
7457 init_alias_analysis ();
7459 /* Record where pseudo-registers are set. This data is kept accurate
7460 during each pass. ??? We could also record hard-reg information here
7461 [since it's unchanging], however it is currently done during hash table
7462 computation.
7464 It may be tempting to compute MEM set information here too, but MEM sets
7465 will be subject to code motion one day and thus we need to compute
7466 information about memory sets when we build the hash tables. */
7468 alloc_reg_set_mem (max_gcse_regno);
7469 compute_sets (get_insns ());
7471 max_gcse_regno = max_reg_num ();
7472 alloc_gcse_mem (get_insns ());
7473 changed = one_cprop_pass (1, 1, 1);
7474 free_gcse_mem ();
7476 if (file)
7478 fprintf (file, "BYPASS of %s: %d basic blocks, ",
7479 current_function_name, n_basic_blocks);
7480 fprintf (file, "%d bytes\n\n", bytes_used);
7483 obstack_free (&gcse_obstack, NULL);
7484 free_reg_set_mem ();
7486 /* We are finished with alias. */
7487 end_alias_analysis ();
7488 allocate_reg_info (max_reg_num (), FALSE, FALSE);
7490 return changed;
7493 #include "gt-gcse.h"