* doc/gcc.texi, doc/install.texi, doc/invoke.texi: Remove trailing
[official-gcc.git] / gcc / regclass.c
blob0af5328effef7f5bb90796e15ba966e0e5be214e
1 /* Compute register class preferences for pseudo-registers.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996
3 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
23 /* This file contains two passes of the compiler: reg_scan and reg_class.
24 It also defines some tables of information about the hardware registers
25 and a function init_reg_sets to initialize the tables. */
27 #include "config.h"
28 #include "system.h"
29 #include "rtl.h"
30 #include "expr.h"
31 #include "tm_p.h"
32 #include "hard-reg-set.h"
33 #include "flags.h"
34 #include "basic-block.h"
35 #include "regs.h"
36 #include "function.h"
37 #include "insn-config.h"
38 #include "recog.h"
39 #include "reload.h"
40 #include "real.h"
41 #include "toplev.h"
42 #include "output.h"
43 #include "ggc.h"
45 #ifndef REGISTER_MOVE_COST
46 #define REGISTER_MOVE_COST(m, x, y) 2
47 #endif
49 static void init_reg_sets_1 PARAMS ((void));
50 static void init_reg_modes PARAMS ((void));
52 /* If we have auto-increment or auto-decrement and we can have secondary
53 reloads, we are not allowed to use classes requiring secondary
54 reloads for pseudos auto-incremented since reload can't handle it. */
56 #ifdef AUTO_INC_DEC
57 #if defined(SECONDARY_INPUT_RELOAD_CLASS) || defined(SECONDARY_OUTPUT_RELOAD_CLASS)
58 #define FORBIDDEN_INC_DEC_CLASSES
59 #endif
60 #endif
62 /* Register tables used by many passes. */
64 /* Indexed by hard register number, contains 1 for registers
65 that are fixed use (stack pointer, pc, frame pointer, etc.).
66 These are the registers that cannot be used to allocate
67 a pseudo reg for general use. */
69 char fixed_regs[FIRST_PSEUDO_REGISTER];
71 /* Same info as a HARD_REG_SET. */
73 HARD_REG_SET fixed_reg_set;
75 /* Data for initializing the above. */
77 static char initial_fixed_regs[] = FIXED_REGISTERS;
79 /* Indexed by hard register number, contains 1 for registers
80 that are fixed use or are clobbered by function calls.
81 These are the registers that cannot be used to allocate
82 a pseudo reg whose life crosses calls unless we are able
83 to save/restore them across the calls. */
85 char call_used_regs[FIRST_PSEUDO_REGISTER];
87 /* Same info as a HARD_REG_SET. */
89 HARD_REG_SET call_used_reg_set;
91 /* HARD_REG_SET of registers we want to avoid caller saving. */
92 HARD_REG_SET losing_caller_save_reg_set;
94 /* Data for initializing the above. */
96 static char initial_call_used_regs[] = CALL_USED_REGISTERS;
98 /* Indexed by hard register number, contains 1 for registers that are
99 fixed use or call used registers that cannot hold quantities across
100 calls even if we are willing to save and restore them. call fixed
101 registers are a subset of call used registers. */
103 char call_fixed_regs[FIRST_PSEUDO_REGISTER];
105 /* The same info as a HARD_REG_SET. */
107 HARD_REG_SET call_fixed_reg_set;
109 /* Number of non-fixed registers. */
111 int n_non_fixed_regs;
113 /* Indexed by hard register number, contains 1 for registers
114 that are being used for global register decls.
115 These must be exempt from ordinary flow analysis
116 and are also considered fixed. */
118 char global_regs[FIRST_PSEUDO_REGISTER];
120 /* Table of register numbers in the order in which to try to use them. */
121 #ifdef REG_ALLOC_ORDER
122 int reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
124 /* The inverse of reg_alloc_order. */
125 int inv_reg_alloc_order[FIRST_PSEUDO_REGISTER];
126 #endif
128 /* For each reg class, a HARD_REG_SET saying which registers are in it. */
130 HARD_REG_SET reg_class_contents[N_REG_CLASSES];
132 /* The same information, but as an array of unsigned ints. We copy from
133 these unsigned ints to the table above. We do this so the tm.h files
134 do not have to be aware of the wordsize for machines with <= 64 regs. */
136 #define N_REG_INTS \
137 ((FIRST_PSEUDO_REGISTER + (HOST_BITS_PER_INT - 1)) / HOST_BITS_PER_INT)
139 static unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
140 = REG_CLASS_CONTENTS;
142 /* For each reg class, number of regs it contains. */
144 unsigned int reg_class_size[N_REG_CLASSES];
146 /* For each reg class, table listing all the containing classes. */
148 enum reg_class reg_class_superclasses[N_REG_CLASSES][N_REG_CLASSES];
150 /* For each reg class, table listing all the classes contained in it. */
152 enum reg_class reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
154 /* For each pair of reg classes,
155 a largest reg class contained in their union. */
157 enum reg_class reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
159 /* For each pair of reg classes,
160 the smallest reg class containing their union. */
162 enum reg_class reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
164 /* Array containing all of the register names. Unless
165 DEBUG_REGISTER_NAMES is defined, use the copy in print-rtl.c. */
167 #ifdef DEBUG_REGISTER_NAMES
168 const char * reg_names[] = REGISTER_NAMES;
169 #endif
171 /* For each hard register, the widest mode object that it can contain.
172 This will be a MODE_INT mode if the register can hold integers. Otherwise
173 it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
174 register. */
176 enum machine_mode reg_raw_mode[FIRST_PSEUDO_REGISTER];
178 /* 1 if class does contain register of given mode. */
180 static char contains_reg_of_mode [N_REG_CLASSES] [MAX_MACHINE_MODE];
182 /* Maximum cost of moving from a register in one class to a register in
183 another class. Based on REGISTER_MOVE_COST. */
185 static int move_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
187 /* Similar, but here we don't have to move if the first index is a subset
188 of the second so in that case the cost is zero. */
190 static int may_move_in_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
192 /* Similar, but here we don't have to move if the first index is a superset
193 of the second so in that case the cost is zero. */
195 static int may_move_out_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
197 #ifdef FORBIDDEN_INC_DEC_CLASSES
199 /* These are the classes that regs which are auto-incremented or decremented
200 cannot be put in. */
202 static int forbidden_inc_dec_class[N_REG_CLASSES];
204 /* Indexed by n, is non-zero if (REG n) is used in an auto-inc or auto-dec
205 context. */
207 static char *in_inc_dec;
209 #endif /* FORBIDDEN_INC_DEC_CLASSES */
211 #ifdef CLASS_CANNOT_CHANGE_MODE
213 /* These are the classes containing only registers that can be used in
214 a SUBREG expression that changes the mode of the register in some
215 way that is illegal. */
217 static int class_can_change_mode[N_REG_CLASSES];
219 /* Registers, including pseudos, which change modes in some way that
220 is illegal. */
222 static regset reg_changes_mode;
224 #endif /* CLASS_CANNOT_CHANGE_MODE */
226 #ifdef HAVE_SECONDARY_RELOADS
228 /* Sample MEM values for use by memory_move_secondary_cost. */
230 static rtx top_of_stack[MAX_MACHINE_MODE];
232 #endif /* HAVE_SECONDARY_RELOADS */
234 /* Linked list of reg_info structures allocated for reg_n_info array.
235 Grouping all of the allocated structures together in one lump
236 means only one call to bzero to clear them, rather than n smaller
237 calls. */
238 struct reg_info_data {
239 struct reg_info_data *next; /* next set of reg_info structures */
240 size_t min_index; /* minimum index # */
241 size_t max_index; /* maximum index # */
242 char used_p; /* non-zero if this has been used previously */
243 reg_info data[1]; /* beginning of the reg_info data */
246 static struct reg_info_data *reg_info_head;
248 /* No more global register variables may be declared; true once
249 regclass has been initialized. */
251 static int no_global_reg_vars = 0;
254 /* Function called only once to initialize the above data on reg usage.
255 Once this is done, various switches may override. */
257 void
258 init_reg_sets ()
260 register int i, j;
262 /* First copy the register information from the initial int form into
263 the regsets. */
265 for (i = 0; i < N_REG_CLASSES; i++)
267 CLEAR_HARD_REG_SET (reg_class_contents[i]);
269 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
270 if (int_reg_class_contents[i][j / HOST_BITS_PER_INT]
271 & ((unsigned) 1 << (j % HOST_BITS_PER_INT)))
272 SET_HARD_REG_BIT (reg_class_contents[i], j);
275 memcpy (fixed_regs, initial_fixed_regs, sizeof fixed_regs);
276 memcpy (call_used_regs, initial_call_used_regs, sizeof call_used_regs);
277 memset (global_regs, 0, sizeof global_regs);
279 /* Do any additional initialization regsets may need */
280 INIT_ONCE_REG_SET ();
282 #ifdef REG_ALLOC_ORDER
283 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
284 inv_reg_alloc_order[reg_alloc_order[i]] = i;
285 #endif
288 /* After switches have been processed, which perhaps alter
289 `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs. */
291 static void
292 init_reg_sets_1 ()
294 register unsigned int i, j;
295 register unsigned int /* enum machine_mode */ m;
296 char allocatable_regs_of_mode [MAX_MACHINE_MODE];
298 /* This macro allows the fixed or call-used registers
299 and the register classes to depend on target flags. */
301 #ifdef CONDITIONAL_REGISTER_USAGE
302 CONDITIONAL_REGISTER_USAGE;
303 #endif
305 /* Compute number of hard regs in each class. */
307 memset ((char *) reg_class_size, 0, sizeof reg_class_size);
308 for (i = 0; i < N_REG_CLASSES; i++)
309 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
310 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
311 reg_class_size[i]++;
313 /* Initialize the table of subunions.
314 reg_class_subunion[I][J] gets the largest-numbered reg-class
315 that is contained in the union of classes I and J. */
317 for (i = 0; i < N_REG_CLASSES; i++)
319 for (j = 0; j < N_REG_CLASSES; j++)
321 #ifdef HARD_REG_SET
322 register /* Declare it register if it's a scalar. */
323 #endif
324 HARD_REG_SET c;
325 register int k;
327 COPY_HARD_REG_SET (c, reg_class_contents[i]);
328 IOR_HARD_REG_SET (c, reg_class_contents[j]);
329 for (k = 0; k < N_REG_CLASSES; k++)
331 GO_IF_HARD_REG_SUBSET (reg_class_contents[k], c,
332 subclass1);
333 continue;
335 subclass1:
336 /* keep the largest subclass */ /* SPEE 900308 */
337 GO_IF_HARD_REG_SUBSET (reg_class_contents[k],
338 reg_class_contents[(int) reg_class_subunion[i][j]],
339 subclass2);
340 reg_class_subunion[i][j] = (enum reg_class) k;
341 subclass2:
347 /* Initialize the table of superunions.
348 reg_class_superunion[I][J] gets the smallest-numbered reg-class
349 containing the union of classes I and J. */
351 for (i = 0; i < N_REG_CLASSES; i++)
353 for (j = 0; j < N_REG_CLASSES; j++)
355 #ifdef HARD_REG_SET
356 register /* Declare it register if it's a scalar. */
357 #endif
358 HARD_REG_SET c;
359 register int k;
361 COPY_HARD_REG_SET (c, reg_class_contents[i]);
362 IOR_HARD_REG_SET (c, reg_class_contents[j]);
363 for (k = 0; k < N_REG_CLASSES; k++)
364 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[k], superclass);
366 superclass:
367 reg_class_superunion[i][j] = (enum reg_class) k;
371 /* Initialize the tables of subclasses and superclasses of each reg class.
372 First clear the whole table, then add the elements as they are found. */
374 for (i = 0; i < N_REG_CLASSES; i++)
376 for (j = 0; j < N_REG_CLASSES; j++)
378 reg_class_superclasses[i][j] = LIM_REG_CLASSES;
379 reg_class_subclasses[i][j] = LIM_REG_CLASSES;
383 for (i = 0; i < N_REG_CLASSES; i++)
385 if (i == (int) NO_REGS)
386 continue;
388 for (j = i + 1; j < N_REG_CLASSES; j++)
390 enum reg_class *p;
392 GO_IF_HARD_REG_SUBSET (reg_class_contents[i], reg_class_contents[j],
393 subclass);
394 continue;
395 subclass:
396 /* Reg class I is a subclass of J.
397 Add J to the table of superclasses of I. */
398 p = &reg_class_superclasses[i][0];
399 while (*p != LIM_REG_CLASSES) p++;
400 *p = (enum reg_class) j;
401 /* Add I to the table of superclasses of J. */
402 p = &reg_class_subclasses[j][0];
403 while (*p != LIM_REG_CLASSES) p++;
404 *p = (enum reg_class) i;
408 /* Initialize "constant" tables. */
410 CLEAR_HARD_REG_SET (fixed_reg_set);
411 CLEAR_HARD_REG_SET (call_used_reg_set);
412 CLEAR_HARD_REG_SET (call_fixed_reg_set);
414 memcpy (call_fixed_regs, fixed_regs, sizeof call_fixed_regs);
416 n_non_fixed_regs = 0;
418 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
420 if (fixed_regs[i])
421 SET_HARD_REG_BIT (fixed_reg_set, i);
422 else
423 n_non_fixed_regs++;
425 if (call_used_regs[i])
426 SET_HARD_REG_BIT (call_used_reg_set, i);
427 if (call_fixed_regs[i])
428 SET_HARD_REG_BIT (call_fixed_reg_set, i);
429 if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (i)))
430 SET_HARD_REG_BIT (losing_caller_save_reg_set, i);
432 memset (contains_reg_of_mode, 0, sizeof (contains_reg_of_mode));
433 memset (allocatable_regs_of_mode, 0, sizeof (allocatable_regs_of_mode));
434 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
435 for (i = 0; i < N_REG_CLASSES; i++)
436 if (CLASS_MAX_NREGS (i, m) <= reg_class_size[i])
437 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
438 if (!fixed_regs [j] && TEST_HARD_REG_BIT (reg_class_contents[i], j)
439 && HARD_REGNO_MODE_OK (j, m))
441 contains_reg_of_mode [i][m] = 1;
442 allocatable_regs_of_mode [m] = 1;
443 break;
446 /* Initialize the move cost table. Find every subset of each class
447 and take the maximum cost of moving any subset to any other. */
449 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
450 if (allocatable_regs_of_mode [m])
452 for (i = 0; i < N_REG_CLASSES; i++)
453 if (contains_reg_of_mode [i][m])
454 for (j = 0; j < N_REG_CLASSES; j++)
456 int cost;
457 enum reg_class *p1, *p2;
459 if (!contains_reg_of_mode [j][m])
461 move_cost[m][i][j] = 65536;
462 may_move_in_cost[m][i][j] = 65536;
463 may_move_out_cost[m][i][j] = 65536;
465 else
467 cost = i == j ? 2 : REGISTER_MOVE_COST (m, i, j);
469 for (p2 = &reg_class_subclasses[j][0];
470 *p2 != LIM_REG_CLASSES;
471 p2++)
472 if (*p2 != i && contains_reg_of_mode [*p2][m])
473 cost = MAX (cost, move_cost [m][i][*p2]);
475 for (p1 = &reg_class_subclasses[i][0];
476 *p1 != LIM_REG_CLASSES;
477 p1++)
478 if (*p1 != j && contains_reg_of_mode [*p1][m])
479 cost = MAX (cost, move_cost [m][*p1][j]);
481 move_cost[m][i][j] = cost;
483 if (reg_class_subset_p (i, j))
484 may_move_in_cost[m][i][j] = 0;
485 else
486 may_move_in_cost[m][i][j] = cost;
488 if (reg_class_subset_p (j, i))
489 may_move_out_cost[m][i][j] = 0;
490 else
491 may_move_out_cost[m][i][j] = cost;
494 else
495 for (j = 0; j < N_REG_CLASSES; j++)
497 move_cost[m][i][j] = 65536;
498 may_move_in_cost[m][i][j] = 65536;
499 may_move_out_cost[m][i][j] = 65536;
503 #ifdef CLASS_CANNOT_CHANGE_MODE
505 HARD_REG_SET c;
506 COMPL_HARD_REG_SET (c, reg_class_contents[CLASS_CANNOT_CHANGE_MODE]);
508 for (i = 0; i < N_REG_CLASSES; i++)
510 GO_IF_HARD_REG_SUBSET (reg_class_contents[i], c, ok_class);
511 class_can_change_mode [i] = 0;
512 continue;
513 ok_class:
514 class_can_change_mode [i] = 1;
517 #endif /* CLASS_CANNOT_CHANGE_MODE */
520 /* Compute the table of register modes.
521 These values are used to record death information for individual registers
522 (as opposed to a multi-register mode). */
524 static void
525 init_reg_modes ()
527 register int i;
529 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
531 reg_raw_mode[i] = choose_hard_reg_mode (i, 1);
533 /* If we couldn't find a valid mode, just use the previous mode.
534 ??? One situation in which we need to do this is on the mips where
535 HARD_REGNO_NREGS (fpreg, [SD]Fmode) returns 2. Ideally we'd like
536 to use DF mode for the even registers and VOIDmode for the odd
537 (for the cpu models where the odd ones are inaccessible). */
538 if (reg_raw_mode[i] == VOIDmode)
539 reg_raw_mode[i] = i == 0 ? word_mode : reg_raw_mode[i-1];
543 /* Finish initializing the register sets and
544 initialize the register modes. */
546 void
547 init_regs ()
549 /* This finishes what was started by init_reg_sets, but couldn't be done
550 until after register usage was specified. */
551 init_reg_sets_1 ();
553 init_reg_modes ();
555 #ifdef HAVE_SECONDARY_RELOADS
557 /* Make some fake stack-frame MEM references for use in
558 memory_move_secondary_cost. */
559 int i;
561 for (i = 0; i < MAX_MACHINE_MODE; i++)
562 top_of_stack[i] = gen_rtx_MEM (i, stack_pointer_rtx);
563 ggc_add_rtx_root (top_of_stack, MAX_MACHINE_MODE);
565 #endif
568 #ifdef HAVE_SECONDARY_RELOADS
570 /* Compute extra cost of moving registers to/from memory due to reloads.
571 Only needed if secondary reloads are required for memory moves. */
574 memory_move_secondary_cost (mode, class, in)
575 enum machine_mode mode;
576 enum reg_class class;
577 int in;
579 enum reg_class altclass;
580 int partial_cost = 0;
581 /* We need a memory reference to feed to SECONDARY... macros. */
582 /* mem may be unused even if the SECONDARY_ macros are defined. */
583 rtx mem ATTRIBUTE_UNUSED = top_of_stack[(int) mode];
586 if (in)
588 #ifdef SECONDARY_INPUT_RELOAD_CLASS
589 altclass = SECONDARY_INPUT_RELOAD_CLASS (class, mode, mem);
590 #else
591 altclass = NO_REGS;
592 #endif
594 else
596 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
597 altclass = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, mem);
598 #else
599 altclass = NO_REGS;
600 #endif
603 if (altclass == NO_REGS)
604 return 0;
606 if (in)
607 partial_cost = REGISTER_MOVE_COST (mode, altclass, class);
608 else
609 partial_cost = REGISTER_MOVE_COST (mode, class, altclass);
611 if (class == altclass)
612 /* This isn't simply a copy-to-temporary situation. Can't guess
613 what it is, so MEMORY_MOVE_COST really ought not to be calling
614 here in that case.
616 I'm tempted to put in an abort here, but returning this will
617 probably only give poor estimates, which is what we would've
618 had before this code anyways. */
619 return partial_cost;
621 /* Check if the secondary reload register will also need a
622 secondary reload. */
623 return memory_move_secondary_cost (mode, altclass, in) + partial_cost;
625 #endif
627 /* Return a machine mode that is legitimate for hard reg REGNO and large
628 enough to save nregs. If we can't find one, return VOIDmode. */
630 enum machine_mode
631 choose_hard_reg_mode (regno, nregs)
632 unsigned int regno ATTRIBUTE_UNUSED;
633 unsigned int nregs;
635 unsigned int /* enum machine_mode */ m;
636 enum machine_mode found_mode = VOIDmode, mode;
638 /* We first look for the largest integer mode that can be validly
639 held in REGNO. If none, we look for the largest floating-point mode.
640 If we still didn't find a valid mode, try CCmode. */
642 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
643 mode != VOIDmode;
644 mode = GET_MODE_WIDER_MODE (mode))
645 if (HARD_REGNO_NREGS (regno, mode) == nregs
646 && HARD_REGNO_MODE_OK (regno, mode))
647 found_mode = mode;
649 if (found_mode != VOIDmode)
650 return found_mode;
652 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
653 mode != VOIDmode;
654 mode = GET_MODE_WIDER_MODE (mode))
655 if (HARD_REGNO_NREGS (regno, mode) == nregs
656 && HARD_REGNO_MODE_OK (regno, mode))
657 found_mode = mode;
659 if (found_mode != VOIDmode)
660 return found_mode;
662 /* Iterate over all of the CCmodes. */
663 for (m = (unsigned int) CCmode; m < (unsigned int) NUM_MACHINE_MODES; ++m)
665 mode = (enum machine_mode) m;
666 if (HARD_REGNO_NREGS (regno, mode) == nregs
667 && HARD_REGNO_MODE_OK (regno, mode))
668 return mode;
671 /* We can't find a mode valid for this register. */
672 return VOIDmode;
675 /* Specify the usage characteristics of the register named NAME.
676 It should be a fixed register if FIXED and a
677 call-used register if CALL_USED. */
679 void
680 fix_register (name, fixed, call_used)
681 const char *name;
682 int fixed, call_used;
684 int i;
686 /* Decode the name and update the primary form of
687 the register info. */
689 if ((i = decode_reg_name (name)) >= 0)
691 if ((i == STACK_POINTER_REGNUM
692 #ifdef HARD_FRAME_POINTER_REGNUM
693 || i == HARD_FRAME_POINTER_REGNUM
694 #else
695 || i == FRAME_POINTER_REGNUM
696 #endif
698 && (fixed == 0 || call_used == 0))
700 static const char * const what_option[2][2] = {
701 { "call-saved", "call-used" },
702 { "no-such-option", "fixed" }};
704 error ("can't use '%s' as a %s register", name,
705 what_option[fixed][call_used]);
707 else
709 fixed_regs[i] = fixed;
710 call_used_regs[i] = call_used;
713 else
715 warning ("unknown register name: %s", name);
719 /* Mark register number I as global. */
721 void
722 globalize_reg (i)
723 int i;
725 if (fixed_regs[i] == 0 && no_global_reg_vars)
726 error ("global register variable follows a function definition");
728 if (global_regs[i])
730 warning ("register used for two global register variables");
731 return;
734 if (call_used_regs[i] && ! fixed_regs[i])
735 warning ("call-clobbered register used for global register variable");
737 global_regs[i] = 1;
739 /* If already fixed, nothing else to do. */
740 if (fixed_regs[i])
741 return;
743 fixed_regs[i] = call_used_regs[i] = call_fixed_regs[i] = 1;
744 n_non_fixed_regs--;
746 SET_HARD_REG_BIT (fixed_reg_set, i);
747 SET_HARD_REG_BIT (call_used_reg_set, i);
748 SET_HARD_REG_BIT (call_fixed_reg_set, i);
751 /* Now the data and code for the `regclass' pass, which happens
752 just before local-alloc. */
754 /* The `costs' struct records the cost of using a hard register of each class
755 and of using memory for each pseudo. We use this data to set up
756 register class preferences. */
758 struct costs
760 int cost[N_REG_CLASSES];
761 int mem_cost;
764 /* Structure used to record preferrences of given pseudo. */
765 struct reg_pref
767 /* (enum reg_class) prefclass is the preferred class. */
768 char prefclass;
770 /* altclass is a register class that we should use for allocating
771 pseudo if no register in the preferred class is available.
772 If no register in this class is available, memory is preferred.
774 It might appear to be more general to have a bitmask of classes here,
775 but since it is recommended that there be a class corresponding to the
776 union of most major pair of classes, that generality is not required. */
777 char altclass;
780 /* Record the cost of each class for each pseudo. */
782 static struct costs *costs;
784 /* Initialized once, and used to initialize cost values for each insn. */
786 static struct costs init_cost;
788 /* Record preferrences of each pseudo.
789 This is available after `regclass' is run. */
791 static struct reg_pref *reg_pref;
793 /* Allocated buffers for reg_pref. */
795 static struct reg_pref *reg_pref_buffer;
797 /* Frequency of executions of current insn. */
799 static int frequency;
801 static rtx scan_one_insn PARAMS ((rtx, int));
802 static void record_operand_costs PARAMS ((rtx, struct costs *, struct reg_pref *));
803 static void dump_regclass PARAMS ((FILE *));
804 static void record_reg_classes PARAMS ((int, int, rtx *, enum machine_mode *,
805 const char **, rtx,
806 struct costs *, struct reg_pref *));
807 static int copy_cost PARAMS ((rtx, enum machine_mode,
808 enum reg_class, int));
809 static void record_address_regs PARAMS ((rtx, enum reg_class, int));
810 #ifdef FORBIDDEN_INC_DEC_CLASSES
811 static int auto_inc_dec_reg_p PARAMS ((rtx, enum machine_mode));
812 #endif
813 static void reg_scan_mark_refs PARAMS ((rtx, rtx, int, unsigned int));
815 /* Return the reg_class in which pseudo reg number REGNO is best allocated.
816 This function is sometimes called before the info has been computed.
817 When that happens, just return GENERAL_REGS, which is innocuous. */
819 enum reg_class
820 reg_preferred_class (regno)
821 int regno;
823 if (reg_pref == 0)
824 return GENERAL_REGS;
825 return (enum reg_class) reg_pref[regno].prefclass;
828 enum reg_class
829 reg_alternate_class (regno)
830 int regno;
832 if (reg_pref == 0)
833 return ALL_REGS;
835 return (enum reg_class) reg_pref[regno].altclass;
838 /* Initialize some global data for this pass. */
840 void
841 regclass_init ()
843 int i;
845 init_cost.mem_cost = 10000;
846 for (i = 0; i < N_REG_CLASSES; i++)
847 init_cost.cost[i] = 10000;
849 /* This prevents dump_flow_info from losing if called
850 before regclass is run. */
851 reg_pref = NULL;
853 /* No more global register variables may be declared. */
854 no_global_reg_vars = 1;
857 /* Dump register costs. */
858 static void
859 dump_regclass (dump)
860 FILE *dump;
862 static const char *const reg_class_names[] = REG_CLASS_NAMES;
863 int i;
864 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
866 int /* enum reg_class */ class;
867 if (REG_N_REFS (i))
869 fprintf (dump, " Register %i costs:", i);
870 for (class = 0; class < (int) N_REG_CLASSES; class++)
871 if (contains_reg_of_mode [(enum reg_class) class][PSEUDO_REGNO_MODE (i)]
872 #ifdef FORBIDDEN_INC_DEC_CLASSES
873 && (!in_inc_dec[i]
874 || !forbidden_inc_dec_class[(enum reg_class) class])
875 #endif
876 #ifdef CLASS_CANNOT_CHANGE_MODE
877 && (!REGNO_REG_SET_P (reg_changes_mode, i)
878 || class_can_change_mode [(enum reg_class) class])
879 #endif
881 fprintf (dump, " %s:%i", reg_class_names[class],
882 costs[i].cost[(enum reg_class) class]);
883 fprintf (dump, " MEM:%i\n", costs[i].mem_cost);
889 /* Calculate the costs of insn operands. */
891 static void
892 record_operand_costs (insn, op_costs, reg_pref)
893 rtx insn;
894 struct costs *op_costs;
895 struct reg_pref *reg_pref;
897 const char *constraints[MAX_RECOG_OPERANDS];
898 enum machine_mode modes[MAX_RECOG_OPERANDS];
899 int i;
901 for (i = 0; i < recog_data.n_operands; i++)
903 constraints[i] = recog_data.constraints[i];
904 modes[i] = recog_data.operand_mode[i];
907 /* If we get here, we are set up to record the costs of all the
908 operands for this insn. Start by initializing the costs.
909 Then handle any address registers. Finally record the desired
910 classes for any pseudos, doing it twice if some pair of
911 operands are commutative. */
913 for (i = 0; i < recog_data.n_operands; i++)
915 op_costs[i] = init_cost;
917 if (GET_CODE (recog_data.operand[i]) == SUBREG)
919 rtx inner = SUBREG_REG (recog_data.operand[i]);
920 #ifdef CLASS_CANNOT_CHANGE_MODE
921 if (GET_CODE (inner) == REG
922 && CLASS_CANNOT_CHANGE_MODE_P (modes[i], GET_MODE (inner)))
923 SET_REGNO_REG_SET (reg_changes_mode, REGNO (inner));
924 #endif
925 recog_data.operand[i] = inner;
928 if (GET_CODE (recog_data.operand[i]) == MEM)
929 record_address_regs (XEXP (recog_data.operand[i], 0),
930 BASE_REG_CLASS, frequency * 2);
931 else if (constraints[i][0] == 'p')
932 record_address_regs (recog_data.operand[i],
933 BASE_REG_CLASS, frequency * 2);
936 /* Check for commutative in a separate loop so everything will
937 have been initialized. We must do this even if one operand
938 is a constant--see addsi3 in m68k.md. */
940 for (i = 0; i < (int) recog_data.n_operands - 1; i++)
941 if (constraints[i][0] == '%')
943 const char *xconstraints[MAX_RECOG_OPERANDS];
944 int j;
946 /* Handle commutative operands by swapping the constraints.
947 We assume the modes are the same. */
949 for (j = 0; j < recog_data.n_operands; j++)
950 xconstraints[j] = constraints[j];
952 xconstraints[i] = constraints[i+1];
953 xconstraints[i+1] = constraints[i];
954 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
955 recog_data.operand, modes,
956 xconstraints, insn, op_costs, reg_pref);
959 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
960 recog_data.operand, modes,
961 constraints, insn, op_costs, reg_pref);
964 /* Subroutine of regclass, processes one insn INSN. Scan it and record each
965 time it would save code to put a certain register in a certain class.
966 PASS, when nonzero, inhibits some optimizations which need only be done
967 once.
968 Return the last insn processed, so that the scan can be continued from
969 there. */
971 static rtx
972 scan_one_insn (insn, pass)
973 rtx insn;
974 int pass;
976 enum rtx_code code = GET_CODE (insn);
977 enum rtx_code pat_code;
978 rtx set, note;
979 int i, j;
980 struct costs op_costs[MAX_RECOG_OPERANDS];
982 if (GET_RTX_CLASS (code) != 'i')
983 return insn;
985 pat_code = GET_CODE (PATTERN (insn));
986 if (pat_code == USE
987 || pat_code == CLOBBER
988 || pat_code == ASM_INPUT
989 || pat_code == ADDR_VEC
990 || pat_code == ADDR_DIFF_VEC)
991 return insn;
993 set = single_set (insn);
994 extract_insn (insn);
996 /* If this insn loads a parameter from its stack slot, then
997 it represents a savings, rather than a cost, if the
998 parameter is stored in memory. Record this fact. */
1000 if (set != 0 && GET_CODE (SET_DEST (set)) == REG
1001 && GET_CODE (SET_SRC (set)) == MEM
1002 && (note = find_reg_note (insn, REG_EQUIV,
1003 NULL_RTX)) != 0
1004 && GET_CODE (XEXP (note, 0)) == MEM)
1006 costs[REGNO (SET_DEST (set))].mem_cost
1007 -= (MEMORY_MOVE_COST (GET_MODE (SET_DEST (set)),
1008 GENERAL_REGS, 1)
1009 * frequency);
1010 record_address_regs (XEXP (SET_SRC (set), 0),
1011 BASE_REG_CLASS, frequency * 2);
1012 return insn;
1015 /* Improve handling of two-address insns such as
1016 (set X (ashift CONST Y)) where CONST must be made to
1017 match X. Change it into two insns: (set X CONST)
1018 (set X (ashift X Y)). If we left this for reloading, it
1019 would probably get three insns because X and Y might go
1020 in the same place. This prevents X and Y from receiving
1021 the same hard reg.
1023 We can only do this if the modes of operands 0 and 1
1024 (which might not be the same) are tieable and we only need
1025 do this during our first pass. */
1027 if (pass == 0 && optimize
1028 && recog_data.n_operands >= 3
1029 && recog_data.constraints[1][0] == '0'
1030 && recog_data.constraints[1][1] == 0
1031 && CONSTANT_P (recog_data.operand[1])
1032 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[1])
1033 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[2])
1034 && GET_CODE (recog_data.operand[0]) == REG
1035 && MODES_TIEABLE_P (GET_MODE (recog_data.operand[0]),
1036 recog_data.operand_mode[1]))
1038 rtx previnsn = prev_real_insn (insn);
1039 rtx dest
1040 = gen_lowpart (recog_data.operand_mode[1],
1041 recog_data.operand[0]);
1042 rtx newinsn
1043 = emit_insn_before (gen_move_insn (dest, recog_data.operand[1]), insn);
1045 /* If this insn was the start of a basic block,
1046 include the new insn in that block.
1047 We need not check for code_label here;
1048 while a basic block can start with a code_label,
1049 INSN could not be at the beginning of that block. */
1050 if (previnsn == 0 || GET_CODE (previnsn) == JUMP_INSN)
1052 int b;
1053 for (b = 0; b < n_basic_blocks; b++)
1054 if (insn == BLOCK_HEAD (b))
1055 BLOCK_HEAD (b) = newinsn;
1058 /* This makes one more setting of new insns's dest. */
1059 REG_N_SETS (REGNO (recog_data.operand[0]))++;
1060 REG_N_REFS (REGNO (recog_data.operand[0]))++;
1061 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1063 *recog_data.operand_loc[1] = recog_data.operand[0];
1064 REG_N_REFS (REGNO (recog_data.operand[0]))++;
1065 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1066 for (i = recog_data.n_dups - 1; i >= 0; i--)
1067 if (recog_data.dup_num[i] == 1)
1069 *recog_data.dup_loc[i] = recog_data.operand[0];
1070 REG_N_REFS (REGNO (recog_data.operand[0]))++;
1071 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1074 return PREV_INSN (newinsn);
1077 record_operand_costs (insn, op_costs, reg_pref);
1079 /* Now add the cost for each operand to the total costs for
1080 its register. */
1082 for (i = 0; i < recog_data.n_operands; i++)
1083 if (GET_CODE (recog_data.operand[i]) == REG
1084 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER)
1086 int regno = REGNO (recog_data.operand[i]);
1087 struct costs *p = &costs[regno], *q = &op_costs[i];
1089 p->mem_cost += q->mem_cost * frequency;
1090 for (j = 0; j < N_REG_CLASSES; j++)
1091 p->cost[j] += q->cost[j] * frequency;
1094 return insn;
1097 /* This is a pass of the compiler that scans all instructions
1098 and calculates the preferred class for each pseudo-register.
1099 This information can be accessed later by calling `reg_preferred_class'.
1100 This pass comes just before local register allocation. */
1102 void
1103 regclass (f, nregs, dump)
1104 rtx f;
1105 int nregs;
1106 FILE *dump;
1108 register rtx insn;
1109 register int i;
1110 int pass;
1112 init_recog ();
1114 costs = (struct costs *) xmalloc (nregs * sizeof (struct costs));
1116 #ifdef CLASS_CANNOT_CHANGE_MODE
1117 reg_changes_mode = BITMAP_XMALLOC();
1118 #endif
1120 #ifdef FORBIDDEN_INC_DEC_CLASSES
1122 in_inc_dec = (char *) xmalloc (nregs);
1124 /* Initialize information about which register classes can be used for
1125 pseudos that are auto-incremented or auto-decremented. It would
1126 seem better to put this in init_reg_sets, but we need to be able
1127 to allocate rtx, which we can't do that early. */
1129 for (i = 0; i < N_REG_CLASSES; i++)
1131 rtx r = gen_rtx_REG (VOIDmode, 0);
1132 enum machine_mode m;
1133 register int j;
1135 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1136 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
1138 REGNO (r) = j;
1140 for (m = VOIDmode; (int) m < (int) MAX_MACHINE_MODE;
1141 m = (enum machine_mode) ((int) m + 1))
1142 if (HARD_REGNO_MODE_OK (j, m))
1144 PUT_MODE (r, m);
1146 /* If a register is not directly suitable for an
1147 auto-increment or decrement addressing mode and
1148 requires secondary reloads, disallow its class from
1149 being used in such addresses. */
1151 if ((0
1152 #ifdef SECONDARY_RELOAD_CLASS
1153 || (SECONDARY_RELOAD_CLASS (BASE_REG_CLASS, m, r)
1154 != NO_REGS)
1155 #else
1156 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1157 || (SECONDARY_INPUT_RELOAD_CLASS (BASE_REG_CLASS, m, r)
1158 != NO_REGS)
1159 #endif
1160 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1161 || (SECONDARY_OUTPUT_RELOAD_CLASS (BASE_REG_CLASS, m, r)
1162 != NO_REGS)
1163 #endif
1164 #endif
1166 && ! auto_inc_dec_reg_p (r, m))
1167 forbidden_inc_dec_class[i] = 1;
1171 #endif /* FORBIDDEN_INC_DEC_CLASSES */
1173 /* Normally we scan the insns once and determine the best class to use for
1174 each register. However, if -fexpensive_optimizations are on, we do so
1175 twice, the second time using the tentative best classes to guide the
1176 selection. */
1178 for (pass = 0; pass <= flag_expensive_optimizations; pass++)
1180 int index;
1182 if (dump)
1183 fprintf (dump, "\n\nPass %i\n\n",pass);
1184 /* Zero out our accumulation of the cost of each class for each reg. */
1186 memset ((char *) costs, 0, nregs * sizeof (struct costs));
1188 #ifdef FORBIDDEN_INC_DEC_CLASSES
1189 memset (in_inc_dec, 0, nregs);
1190 #endif
1192 /* Scan the instructions and record each time it would
1193 save code to put a certain register in a certain class. */
1195 if (!optimize)
1197 frequency = 1;
1198 for (insn = f; insn; insn = NEXT_INSN (insn))
1199 insn = scan_one_insn (insn, pass);
1201 else
1202 for (index = 0; index < n_basic_blocks; index++)
1204 basic_block bb = BASIC_BLOCK (index);
1206 /* Show that an insn inside a loop is likely to be executed three
1207 times more than insns outside a loop. This is much more
1208 aggressive than the assumptions made elsewhere and is being
1209 tried as an experiment. */
1210 if (optimize_size)
1211 frequency = 1;
1212 else
1213 frequency = bb->frequency ? bb->frequency : 1;
1214 for (insn = bb->head; ; insn = NEXT_INSN (insn))
1216 insn = scan_one_insn (insn, pass);
1217 if (insn == bb->end)
1218 break;
1222 /* Now for each register look at how desirable each class is
1223 and find which class is preferred. Store that in
1224 `prefclass'. Record in `altclass' the largest register
1225 class any of whose registers is better than memory. */
1227 if (pass == 0)
1228 reg_pref = reg_pref_buffer;
1230 if (dump)
1232 dump_regclass (dump);
1233 fprintf (dump,"\n");
1235 for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
1237 register int best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1238 enum reg_class best = ALL_REGS, alt = NO_REGS;
1239 /* This is an enum reg_class, but we call it an int
1240 to save lots of casts. */
1241 register int class;
1242 register struct costs *p = &costs[i];
1244 /* In non-optimizing compilation REG_N_REFS is not initialized
1245 yet. */
1246 if (optimize && !REG_N_REFS (i))
1247 continue;
1249 for (class = (int) ALL_REGS - 1; class > 0; class--)
1251 /* Ignore classes that are too small for this operand or
1252 invalid for a operand that was auto-incremented. */
1253 if (!contains_reg_of_mode [class][PSEUDO_REGNO_MODE (i)]
1254 #ifdef FORBIDDEN_INC_DEC_CLASSES
1255 || (in_inc_dec[i] && forbidden_inc_dec_class[class])
1256 #endif
1257 #ifdef CLASS_CANNOT_CHANGE_MODE
1258 || (REGNO_REG_SET_P (reg_changes_mode, i)
1259 && ! class_can_change_mode [class])
1260 #endif
1263 else if (p->cost[class] < best_cost)
1265 best_cost = p->cost[class];
1266 best = (enum reg_class) class;
1268 else if (p->cost[class] == best_cost)
1269 best = reg_class_subunion[(int)best][class];
1272 /* Record the alternate register class; i.e., a class for which
1273 every register in it is better than using memory. If adding a
1274 class would make a smaller class (i.e., no union of just those
1275 classes exists), skip that class. The major unions of classes
1276 should be provided as a register class. Don't do this if we
1277 will be doing it again later. */
1279 if ((pass == 1 || dump) || ! flag_expensive_optimizations)
1280 for (class = 0; class < N_REG_CLASSES; class++)
1281 if (p->cost[class] < p->mem_cost
1282 && (reg_class_size[(int) reg_class_subunion[(int) alt][class]]
1283 > reg_class_size[(int) alt])
1284 #ifdef FORBIDDEN_INC_DEC_CLASSES
1285 && ! (in_inc_dec[i] && forbidden_inc_dec_class[class])
1286 #endif
1287 #ifdef CLASS_CANNOT_CHANGE_MODE
1288 && ! (REGNO_REG_SET_P (reg_changes_mode, i)
1289 && ! class_can_change_mode [class])
1290 #endif
1292 alt = reg_class_subunion[(int) alt][class];
1294 /* If we don't add any classes, nothing to try. */
1295 if (alt == best)
1296 alt = NO_REGS;
1298 if (dump
1299 && (reg_pref[i].prefclass != (int) best
1300 || reg_pref[i].altclass != (int) alt))
1302 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1303 fprintf (dump, " Register %i", i);
1304 if (alt == ALL_REGS || best == ALL_REGS)
1305 fprintf (dump, " pref %s\n", reg_class_names[(int) best]);
1306 else if (alt == NO_REGS)
1307 fprintf (dump, " pref %s or none\n", reg_class_names[(int) best]);
1308 else
1309 fprintf (dump, " pref %s, else %s\n",
1310 reg_class_names[(int) best],
1311 reg_class_names[(int) alt]);
1314 /* We cast to (int) because (char) hits bugs in some compilers. */
1315 reg_pref[i].prefclass = (int) best;
1316 reg_pref[i].altclass = (int) alt;
1320 #ifdef FORBIDDEN_INC_DEC_CLASSES
1321 free (in_inc_dec);
1322 #endif
1323 #ifdef CLASS_CANNOT_CHANGE_MODE
1324 BITMAP_XFREE (reg_changes_mode);
1325 #endif
1326 free (costs);
1329 /* Record the cost of using memory or registers of various classes for
1330 the operands in INSN.
1332 N_ALTS is the number of alternatives.
1334 N_OPS is the number of operands.
1336 OPS is an array of the operands.
1338 MODES are the modes of the operands, in case any are VOIDmode.
1340 CONSTRAINTS are the constraints to use for the operands. This array
1341 is modified by this procedure.
1343 This procedure works alternative by alternative. For each alternative
1344 we assume that we will be able to allocate all pseudos to their ideal
1345 register class and calculate the cost of using that alternative. Then
1346 we compute for each operand that is a pseudo-register, the cost of
1347 having the pseudo allocated to each register class and using it in that
1348 alternative. To this cost is added the cost of the alternative.
1350 The cost of each class for this insn is its lowest cost among all the
1351 alternatives. */
1353 static void
1354 record_reg_classes (n_alts, n_ops, ops, modes,
1355 constraints, insn, op_costs, reg_pref)
1356 int n_alts;
1357 int n_ops;
1358 rtx *ops;
1359 enum machine_mode *modes;
1360 const char **constraints;
1361 rtx insn;
1362 struct costs *op_costs;
1363 struct reg_pref *reg_pref;
1365 int alt;
1366 int i, j;
1367 rtx set;
1369 /* Process each alternative, each time minimizing an operand's cost with
1370 the cost for each operand in that alternative. */
1372 for (alt = 0; alt < n_alts; alt++)
1374 struct costs this_op_costs[MAX_RECOG_OPERANDS];
1375 int alt_fail = 0;
1376 int alt_cost = 0;
1377 enum reg_class classes[MAX_RECOG_OPERANDS];
1378 int allows_mem[MAX_RECOG_OPERANDS];
1379 int class;
1381 for (i = 0; i < n_ops; i++)
1383 const char *p = constraints[i];
1384 rtx op = ops[i];
1385 enum machine_mode mode = modes[i];
1386 int allows_addr = 0;
1387 int win = 0;
1388 unsigned char c;
1390 /* Initially show we know nothing about the register class. */
1391 classes[i] = NO_REGS;
1392 allows_mem[i] = 0;
1394 /* If this operand has no constraints at all, we can conclude
1395 nothing about it since anything is valid. */
1397 if (*p == 0)
1399 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1400 memset ((char *) &this_op_costs[i], 0, sizeof this_op_costs[i]);
1402 continue;
1405 /* If this alternative is only relevant when this operand
1406 matches a previous operand, we do different things depending
1407 on whether this operand is a pseudo-reg or not. We must process
1408 any modifiers for the operand before we can make this test. */
1410 while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
1411 p++;
1413 if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
1415 /* Copy class and whether memory is allowed from the matching
1416 alternative. Then perform any needed cost computations
1417 and/or adjustments. */
1418 j = p[0] - '0';
1419 classes[i] = classes[j];
1420 allows_mem[i] = allows_mem[j];
1422 if (GET_CODE (op) != REG || REGNO (op) < FIRST_PSEUDO_REGISTER)
1424 /* If this matches the other operand, we have no added
1425 cost and we win. */
1426 if (rtx_equal_p (ops[j], op))
1427 win = 1;
1429 /* If we can put the other operand into a register, add to
1430 the cost of this alternative the cost to copy this
1431 operand to the register used for the other operand. */
1433 else if (classes[j] != NO_REGS)
1434 alt_cost += copy_cost (op, mode, classes[j], 1), win = 1;
1436 else if (GET_CODE (ops[j]) != REG
1437 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
1439 /* This op is a pseudo but the one it matches is not. */
1441 /* If we can't put the other operand into a register, this
1442 alternative can't be used. */
1444 if (classes[j] == NO_REGS)
1445 alt_fail = 1;
1447 /* Otherwise, add to the cost of this alternative the cost
1448 to copy the other operand to the register used for this
1449 operand. */
1451 else
1452 alt_cost += copy_cost (ops[j], mode, classes[j], 1);
1454 else
1456 /* The costs of this operand are not the same as the other
1457 operand since move costs are not symmetric. Moreover,
1458 if we cannot tie them, this alternative needs to do a
1459 copy, which is one instruction. */
1461 struct costs *pp = &this_op_costs[i];
1463 for (class = 0; class < N_REG_CLASSES; class++)
1464 pp->cost[class]
1465 = ((recog_data.operand_type[i] != OP_OUT
1466 ? may_move_in_cost[mode][class][(int) classes[i]]
1467 : 0)
1468 + (recog_data.operand_type[i] != OP_IN
1469 ? may_move_out_cost[mode][(int) classes[i]][class]
1470 : 0));
1472 /* If the alternative actually allows memory, make things
1473 a bit cheaper since we won't need an extra insn to
1474 load it. */
1476 pp->mem_cost
1477 = ((recog_data.operand_type[i] != OP_IN
1478 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1479 : 0)
1480 + (recog_data.operand_type[i] != OP_OUT
1481 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1482 : 0) - allows_mem[i]);
1484 /* If we have assigned a class to this register in our
1485 first pass, add a cost to this alternative corresponding
1486 to what we would add if this register were not in the
1487 appropriate class. */
1489 if (reg_pref)
1490 alt_cost
1491 += (may_move_in_cost[mode]
1492 [(unsigned char) reg_pref[REGNO (op)].prefclass]
1493 [(int) classes[i]]);
1495 if (REGNO (ops[i]) != REGNO (ops[j])
1496 && ! find_reg_note (insn, REG_DEAD, op))
1497 alt_cost += 2;
1499 /* This is in place of ordinary cost computation
1500 for this operand, so skip to the end of the
1501 alternative (should be just one character). */
1502 while (*p && *p++ != ',')
1505 constraints[i] = p;
1506 continue;
1510 /* Scan all the constraint letters. See if the operand matches
1511 any of the constraints. Collect the valid register classes
1512 and see if this operand accepts memory. */
1514 while (*p && (c = *p++) != ',')
1515 switch (c)
1517 case '*':
1518 /* Ignore the next letter for this pass. */
1519 p++;
1520 break;
1522 case '?':
1523 alt_cost += 2;
1524 case '!': case '#': case '&':
1525 case '0': case '1': case '2': case '3': case '4':
1526 case '5': case '6': case '7': case '8': case '9':
1527 break;
1529 case 'p':
1530 allows_addr = 1;
1531 win = address_operand (op, GET_MODE (op));
1532 /* We know this operand is an address, so we want it to be
1533 allocated to a register that can be the base of an
1534 address, ie BASE_REG_CLASS. */
1535 classes[i]
1536 = reg_class_subunion[(int) classes[i]]
1537 [(int) BASE_REG_CLASS];
1538 break;
1540 case 'm': case 'o': case 'V':
1541 /* It doesn't seem worth distinguishing between offsettable
1542 and non-offsettable addresses here. */
1543 allows_mem[i] = 1;
1544 if (GET_CODE (op) == MEM)
1545 win = 1;
1546 break;
1548 case '<':
1549 if (GET_CODE (op) == MEM
1550 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
1551 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1552 win = 1;
1553 break;
1555 case '>':
1556 if (GET_CODE (op) == MEM
1557 && (GET_CODE (XEXP (op, 0)) == PRE_INC
1558 || GET_CODE (XEXP (op, 0)) == POST_INC))
1559 win = 1;
1560 break;
1562 case 'E':
1563 #ifndef REAL_ARITHMETIC
1564 /* Match any floating double constant, but only if
1565 we can examine the bits of it reliably. */
1566 if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
1567 || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
1568 && GET_MODE (op) != VOIDmode && ! flag_pretend_float)
1569 break;
1570 #endif
1571 if (GET_CODE (op) == CONST_DOUBLE)
1572 win = 1;
1573 break;
1575 case 'F':
1576 if (GET_CODE (op) == CONST_DOUBLE)
1577 win = 1;
1578 break;
1580 case 'G':
1581 case 'H':
1582 if (GET_CODE (op) == CONST_DOUBLE
1583 && CONST_DOUBLE_OK_FOR_LETTER_P (op, c))
1584 win = 1;
1585 break;
1587 case 's':
1588 if (GET_CODE (op) == CONST_INT
1589 || (GET_CODE (op) == CONST_DOUBLE
1590 && GET_MODE (op) == VOIDmode))
1591 break;
1592 case 'i':
1593 if (CONSTANT_P (op)
1594 #ifdef LEGITIMATE_PIC_OPERAND_P
1595 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1596 #endif
1598 win = 1;
1599 break;
1601 case 'n':
1602 if (GET_CODE (op) == CONST_INT
1603 || (GET_CODE (op) == CONST_DOUBLE
1604 && GET_MODE (op) == VOIDmode))
1605 win = 1;
1606 break;
1608 case 'I':
1609 case 'J':
1610 case 'K':
1611 case 'L':
1612 case 'M':
1613 case 'N':
1614 case 'O':
1615 case 'P':
1616 if (GET_CODE (op) == CONST_INT
1617 && CONST_OK_FOR_LETTER_P (INTVAL (op), c))
1618 win = 1;
1619 break;
1621 case 'X':
1622 win = 1;
1623 break;
1625 case 'g':
1626 if (GET_CODE (op) == MEM
1627 || (CONSTANT_P (op)
1628 #ifdef LEGITIMATE_PIC_OPERAND_P
1629 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1630 #endif
1632 win = 1;
1633 allows_mem[i] = 1;
1634 case 'r':
1635 classes[i]
1636 = reg_class_subunion[(int) classes[i]][(int) GENERAL_REGS];
1637 break;
1639 default:
1640 if (REG_CLASS_FROM_LETTER (c) != NO_REGS)
1641 classes[i]
1642 = reg_class_subunion[(int) classes[i]]
1643 [(int) REG_CLASS_FROM_LETTER (c)];
1644 #ifdef EXTRA_CONSTRAINT
1645 else if (EXTRA_CONSTRAINT (op, c))
1646 win = 1;
1647 #endif
1648 break;
1651 constraints[i] = p;
1653 /* How we account for this operand now depends on whether it is a
1654 pseudo register or not. If it is, we first check if any
1655 register classes are valid. If not, we ignore this alternative,
1656 since we want to assume that all pseudos get allocated for
1657 register preferencing. If some register class is valid, compute
1658 the costs of moving the pseudo into that class. */
1660 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1662 if (classes[i] == NO_REGS)
1664 /* We must always fail if the operand is a REG, but
1665 we did not find a suitable class.
1667 Otherwise we may perform an uninitialized read
1668 from this_op_costs after the `continue' statement
1669 below. */
1670 alt_fail = 1;
1672 else
1674 struct costs *pp = &this_op_costs[i];
1676 for (class = 0; class < N_REG_CLASSES; class++)
1677 pp->cost[class]
1678 = ((recog_data.operand_type[i] != OP_OUT
1679 ? may_move_in_cost[mode][class][(int) classes[i]]
1680 : 0)
1681 + (recog_data.operand_type[i] != OP_IN
1682 ? may_move_out_cost[mode][(int) classes[i]][class]
1683 : 0));
1685 /* If the alternative actually allows memory, make things
1686 a bit cheaper since we won't need an extra insn to
1687 load it. */
1689 pp->mem_cost
1690 = ((recog_data.operand_type[i] != OP_IN
1691 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1692 : 0)
1693 + (recog_data.operand_type[i] != OP_OUT
1694 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1695 : 0) - allows_mem[i]);
1697 /* If we have assigned a class to this register in our
1698 first pass, add a cost to this alternative corresponding
1699 to what we would add if this register were not in the
1700 appropriate class. */
1702 if (reg_pref)
1703 alt_cost
1704 += (may_move_in_cost[mode]
1705 [(unsigned char) reg_pref[REGNO (op)].prefclass]
1706 [(int) classes[i]]);
1710 /* Otherwise, if this alternative wins, either because we
1711 have already determined that or if we have a hard register of
1712 the proper class, there is no cost for this alternative. */
1714 else if (win
1715 || (GET_CODE (op) == REG
1716 && reg_fits_class_p (op, classes[i], 0, GET_MODE (op))))
1719 /* If registers are valid, the cost of this alternative includes
1720 copying the object to and/or from a register. */
1722 else if (classes[i] != NO_REGS)
1724 if (recog_data.operand_type[i] != OP_OUT)
1725 alt_cost += copy_cost (op, mode, classes[i], 1);
1727 if (recog_data.operand_type[i] != OP_IN)
1728 alt_cost += copy_cost (op, mode, classes[i], 0);
1731 /* The only other way this alternative can be used is if this is a
1732 constant that could be placed into memory. */
1734 else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
1735 alt_cost += MEMORY_MOVE_COST (mode, classes[i], 1);
1736 else
1737 alt_fail = 1;
1740 if (alt_fail)
1741 continue;
1743 /* Finally, update the costs with the information we've calculated
1744 about this alternative. */
1746 for (i = 0; i < n_ops; i++)
1747 if (GET_CODE (ops[i]) == REG
1748 && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1750 struct costs *pp = &op_costs[i], *qq = &this_op_costs[i];
1751 int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
1753 pp->mem_cost = MIN (pp->mem_cost,
1754 (qq->mem_cost + alt_cost) * scale);
1756 for (class = 0; class < N_REG_CLASSES; class++)
1757 pp->cost[class] = MIN (pp->cost[class],
1758 (qq->cost[class] + alt_cost) * scale);
1762 /* If this insn is a single set copying operand 1 to operand 0
1763 and one operand is a pseudo with the other a hard reg or a pseudo
1764 that prefers a register that is in its own register class then
1765 we may want to adjust the cost of that register class to -1.
1767 Avoid the adjustment if the source does not die to avoid stressing of
1768 register allocator by preferrencing two coliding registers into single
1769 class.
1771 Also avoid the adjustment if a copy between registers of the class
1772 is expensive (ten times the cost of a default copy is considered
1773 arbitrarily expensive). This avoids losing when the preferred class
1774 is very expensive as the source of a copy instruction. */
1776 if ((set = single_set (insn)) != 0
1777 && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set)
1778 && GET_CODE (ops[0]) == REG && GET_CODE (ops[1]) == REG
1779 && find_regno_note (insn, REG_DEAD, REGNO (ops[1])))
1780 for (i = 0; i <= 1; i++)
1781 if (REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1783 unsigned int regno = REGNO (ops[!i]);
1784 enum machine_mode mode = GET_MODE (ops[!i]);
1785 int class;
1786 unsigned int nr;
1788 if (regno >= FIRST_PSEUDO_REGISTER && reg_pref != 0)
1790 enum reg_class pref = reg_pref[regno].prefclass;
1792 if ((reg_class_size[(unsigned char) pref]
1793 == CLASS_MAX_NREGS (pref, mode))
1794 && REGISTER_MOVE_COST (mode, pref, pref) < 10 * 2)
1795 op_costs[i].cost[(unsigned char) pref] = -1;
1797 else if (regno < FIRST_PSEUDO_REGISTER)
1798 for (class = 0; class < N_REG_CLASSES; class++)
1799 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
1800 && reg_class_size[class] == CLASS_MAX_NREGS (class, mode))
1802 if (reg_class_size[class] == 1)
1803 op_costs[i].cost[class] = -1;
1804 else
1806 for (nr = 0; nr < HARD_REGNO_NREGS (regno, mode); nr++)
1808 if (! TEST_HARD_REG_BIT (reg_class_contents[class],
1809 regno + nr))
1810 break;
1813 if (nr == HARD_REGNO_NREGS (regno,mode))
1814 op_costs[i].cost[class] = -1;
1820 /* Compute the cost of loading X into (if TO_P is non-zero) or from (if
1821 TO_P is zero) a register of class CLASS in mode MODE.
1823 X must not be a pseudo. */
1825 static int
1826 copy_cost (x, mode, class, to_p)
1827 rtx x;
1828 enum machine_mode mode ATTRIBUTE_UNUSED;
1829 enum reg_class class;
1830 int to_p ATTRIBUTE_UNUSED;
1832 #ifdef HAVE_SECONDARY_RELOADS
1833 enum reg_class secondary_class = NO_REGS;
1834 #endif
1836 /* If X is a SCRATCH, there is actually nothing to move since we are
1837 assuming optimal allocation. */
1839 if (GET_CODE (x) == SCRATCH)
1840 return 0;
1842 /* Get the class we will actually use for a reload. */
1843 class = PREFERRED_RELOAD_CLASS (x, class);
1845 #ifdef HAVE_SECONDARY_RELOADS
1846 /* If we need a secondary reload (we assume here that we are using
1847 the secondary reload as an intermediate, not a scratch register), the
1848 cost is that to load the input into the intermediate register, then
1849 to copy them. We use a special value of TO_P to avoid recursion. */
1851 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1852 if (to_p == 1)
1853 secondary_class = SECONDARY_INPUT_RELOAD_CLASS (class, mode, x);
1854 #endif
1856 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1857 if (! to_p)
1858 secondary_class = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, x);
1859 #endif
1861 if (secondary_class != NO_REGS)
1862 return (move_cost[mode][(int) secondary_class][(int) class]
1863 + copy_cost (x, mode, secondary_class, 2));
1864 #endif /* HAVE_SECONDARY_RELOADS */
1866 /* For memory, use the memory move cost, for (hard) registers, use the
1867 cost to move between the register classes, and use 2 for everything
1868 else (constants). */
1870 if (GET_CODE (x) == MEM || class == NO_REGS)
1871 return MEMORY_MOVE_COST (mode, class, to_p);
1873 else if (GET_CODE (x) == REG)
1874 return move_cost[mode][(int) REGNO_REG_CLASS (REGNO (x))][(int) class];
1876 else
1877 /* If this is a constant, we may eventually want to call rtx_cost here. */
1878 return COSTS_N_INSNS (1);
1881 /* Record the pseudo registers we must reload into hard registers
1882 in a subexpression of a memory address, X.
1884 CLASS is the class that the register needs to be in and is either
1885 BASE_REG_CLASS or INDEX_REG_CLASS.
1887 SCALE is twice the amount to multiply the cost by (it is twice so we
1888 can represent half-cost adjustments). */
1890 static void
1891 record_address_regs (x, class, scale)
1892 rtx x;
1893 enum reg_class class;
1894 int scale;
1896 register enum rtx_code code = GET_CODE (x);
1898 switch (code)
1900 case CONST_INT:
1901 case CONST:
1902 case CC0:
1903 case PC:
1904 case SYMBOL_REF:
1905 case LABEL_REF:
1906 return;
1908 case PLUS:
1909 /* When we have an address that is a sum,
1910 we must determine whether registers are "base" or "index" regs.
1911 If there is a sum of two registers, we must choose one to be
1912 the "base". Luckily, we can use the REG_POINTER to make a good
1913 choice most of the time. We only need to do this on machines
1914 that can have two registers in an address and where the base
1915 and index register classes are different.
1917 ??? This code used to set REGNO_POINTER_FLAG in some cases, but
1918 that seems bogus since it should only be set when we are sure
1919 the register is being used as a pointer. */
1922 rtx arg0 = XEXP (x, 0);
1923 rtx arg1 = XEXP (x, 1);
1924 register enum rtx_code code0 = GET_CODE (arg0);
1925 register enum rtx_code code1 = GET_CODE (arg1);
1927 /* Look inside subregs. */
1928 if (code0 == SUBREG)
1929 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
1930 if (code1 == SUBREG)
1931 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1933 /* If this machine only allows one register per address, it must
1934 be in the first operand. */
1936 if (MAX_REGS_PER_ADDRESS == 1)
1937 record_address_regs (arg0, class, scale);
1939 /* If index and base registers are the same on this machine, just
1940 record registers in any non-constant operands. We assume here,
1941 as well as in the tests below, that all addresses are in
1942 canonical form. */
1944 else if (INDEX_REG_CLASS == BASE_REG_CLASS)
1946 record_address_regs (arg0, class, scale);
1947 if (! CONSTANT_P (arg1))
1948 record_address_regs (arg1, class, scale);
1951 /* If the second operand is a constant integer, it doesn't change
1952 what class the first operand must be. */
1954 else if (code1 == CONST_INT || code1 == CONST_DOUBLE)
1955 record_address_regs (arg0, class, scale);
1957 /* If the second operand is a symbolic constant, the first operand
1958 must be an index register. */
1960 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
1961 record_address_regs (arg0, INDEX_REG_CLASS, scale);
1963 /* If both operands are registers but one is already a hard register
1964 of index or base class, give the other the class that the hard
1965 register is not. */
1967 #ifdef REG_OK_FOR_BASE_P
1968 else if (code0 == REG && code1 == REG
1969 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
1970 && (REG_OK_FOR_BASE_P (arg0) || REG_OK_FOR_INDEX_P (arg0)))
1971 record_address_regs (arg1,
1972 REG_OK_FOR_BASE_P (arg0)
1973 ? INDEX_REG_CLASS : BASE_REG_CLASS,
1974 scale);
1975 else if (code0 == REG && code1 == REG
1976 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
1977 && (REG_OK_FOR_BASE_P (arg1) || REG_OK_FOR_INDEX_P (arg1)))
1978 record_address_regs (arg0,
1979 REG_OK_FOR_BASE_P (arg1)
1980 ? INDEX_REG_CLASS : BASE_REG_CLASS,
1981 scale);
1982 #endif
1984 /* If one operand is known to be a pointer, it must be the base
1985 with the other operand the index. Likewise if the other operand
1986 is a MULT. */
1988 else if ((code0 == REG && REG_POINTER (arg0))
1989 || code1 == MULT)
1991 record_address_regs (arg0, BASE_REG_CLASS, scale);
1992 record_address_regs (arg1, INDEX_REG_CLASS, scale);
1994 else if ((code1 == REG && REG_POINTER (arg1))
1995 || code0 == MULT)
1997 record_address_regs (arg0, INDEX_REG_CLASS, scale);
1998 record_address_regs (arg1, BASE_REG_CLASS, scale);
2001 /* Otherwise, count equal chances that each might be a base
2002 or index register. This case should be rare. */
2004 else
2006 record_address_regs (arg0, BASE_REG_CLASS, scale / 2);
2007 record_address_regs (arg0, INDEX_REG_CLASS, scale / 2);
2008 record_address_regs (arg1, BASE_REG_CLASS, scale / 2);
2009 record_address_regs (arg1, INDEX_REG_CLASS, scale / 2);
2012 break;
2014 /* Double the importance of a pseudo register that is incremented
2015 or decremented, since it would take two extra insns
2016 if it ends up in the wrong place. */
2017 case POST_MODIFY:
2018 case PRE_MODIFY:
2019 record_address_regs (XEXP (x, 0), BASE_REG_CLASS, 2 * scale);
2020 if (REG_P (XEXP (XEXP (x, 1), 1)))
2021 record_address_regs (XEXP (XEXP (x, 1), 1),
2022 INDEX_REG_CLASS, 2 * scale);
2023 break;
2025 case POST_INC:
2026 case PRE_INC:
2027 case POST_DEC:
2028 case PRE_DEC:
2029 /* Double the importance of a pseudo register that is incremented
2030 or decremented, since it would take two extra insns
2031 if it ends up in the wrong place. If the operand is a pseudo,
2032 show it is being used in an INC_DEC context. */
2034 #ifdef FORBIDDEN_INC_DEC_CLASSES
2035 if (GET_CODE (XEXP (x, 0)) == REG
2036 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER)
2037 in_inc_dec[REGNO (XEXP (x, 0))] = 1;
2038 #endif
2040 record_address_regs (XEXP (x, 0), class, 2 * scale);
2041 break;
2043 case REG:
2045 register struct costs *pp = &costs[REGNO (x)];
2046 register int i;
2048 pp->mem_cost += (MEMORY_MOVE_COST (Pmode, class, 1) * scale) / 2;
2050 for (i = 0; i < N_REG_CLASSES; i++)
2051 pp->cost[i] += (may_move_in_cost[Pmode][i][(int) class] * scale) / 2;
2053 break;
2055 default:
2057 register const char *fmt = GET_RTX_FORMAT (code);
2058 register int i;
2059 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2060 if (fmt[i] == 'e')
2061 record_address_regs (XEXP (x, i), class, scale);
2066 #ifdef FORBIDDEN_INC_DEC_CLASSES
2068 /* Return 1 if REG is valid as an auto-increment memory reference
2069 to an object of MODE. */
2071 static int
2072 auto_inc_dec_reg_p (reg, mode)
2073 rtx reg;
2074 enum machine_mode mode;
2076 if (HAVE_POST_INCREMENT
2077 && memory_address_p (mode, gen_rtx_POST_INC (Pmode, reg)))
2078 return 1;
2080 if (HAVE_POST_DECREMENT
2081 && memory_address_p (mode, gen_rtx_POST_DEC (Pmode, reg)))
2082 return 1;
2084 if (HAVE_PRE_INCREMENT
2085 && memory_address_p (mode, gen_rtx_PRE_INC (Pmode, reg)))
2086 return 1;
2088 if (HAVE_PRE_DECREMENT
2089 && memory_address_p (mode, gen_rtx_PRE_DEC (Pmode, reg)))
2090 return 1;
2092 return 0;
2094 #endif
2096 static short *renumber;
2097 static size_t regno_allocated;
2098 static unsigned int reg_n_max;
2100 /* Allocate enough space to hold NUM_REGS registers for the tables used for
2101 reg_scan and flow_analysis that are indexed by the register number. If
2102 NEW_P is non zero, initialize all of the registers, otherwise only
2103 initialize the new registers allocated. The same table is kept from
2104 function to function, only reallocating it when we need more room. If
2105 RENUMBER_P is non zero, allocate the reg_renumber array also. */
2107 void
2108 allocate_reg_info (num_regs, new_p, renumber_p)
2109 size_t num_regs;
2110 int new_p;
2111 int renumber_p;
2113 size_t size_info;
2114 size_t size_renumber;
2115 size_t min = (new_p) ? 0 : reg_n_max;
2116 struct reg_info_data *reg_data;
2118 if (num_regs > regno_allocated)
2120 size_t old_allocated = regno_allocated;
2122 regno_allocated = num_regs + (num_regs / 20); /* add some slop space */
2123 size_renumber = regno_allocated * sizeof (short);
2125 if (!reg_n_info)
2127 VARRAY_REG_INIT (reg_n_info, regno_allocated, "reg_n_info");
2128 renumber = (short *) xmalloc (size_renumber);
2129 reg_pref_buffer = (struct reg_pref *) xmalloc (regno_allocated
2130 * sizeof (struct reg_pref));
2133 else
2135 VARRAY_GROW (reg_n_info, regno_allocated);
2137 if (new_p) /* if we're zapping everything, no need to realloc */
2139 free ((char *)renumber);
2140 free ((char *)reg_pref);
2141 renumber = (short *) xmalloc (size_renumber);
2142 reg_pref_buffer = (struct reg_pref *) xmalloc (regno_allocated
2143 * sizeof (struct reg_pref));
2146 else
2148 renumber = (short *) xrealloc ((char *)renumber, size_renumber);
2149 reg_pref_buffer = (struct reg_pref *) xrealloc ((char *)reg_pref_buffer,
2150 regno_allocated
2151 * sizeof (struct reg_pref));
2155 size_info = (regno_allocated - old_allocated) * sizeof (reg_info)
2156 + sizeof (struct reg_info_data) - sizeof (reg_info);
2157 reg_data = (struct reg_info_data *) xcalloc (size_info, 1);
2158 reg_data->min_index = old_allocated;
2159 reg_data->max_index = regno_allocated - 1;
2160 reg_data->next = reg_info_head;
2161 reg_info_head = reg_data;
2164 reg_n_max = num_regs;
2165 if (min < num_regs)
2167 /* Loop through each of the segments allocated for the actual
2168 reg_info pages, and set up the pointers, zero the pages, etc. */
2169 for (reg_data = reg_info_head;
2170 reg_data && reg_data->max_index >= min;
2171 reg_data = reg_data->next)
2173 size_t min_index = reg_data->min_index;
2174 size_t max_index = reg_data->max_index;
2175 size_t max = MIN (max_index, num_regs);
2176 size_t local_min = min - min_index;
2177 size_t i;
2179 if (reg_data->min_index > num_regs)
2180 continue;
2182 if (min < min_index)
2183 local_min = 0;
2184 if (!reg_data->used_p) /* page just allocated with calloc */
2185 reg_data->used_p = 1; /* no need to zero */
2186 else
2187 memset ((char *) &reg_data->data[local_min], 0,
2188 sizeof (reg_info) * (max - min_index - local_min + 1));
2190 for (i = min_index+local_min; i <= max; i++)
2192 VARRAY_REG (reg_n_info, i) = &reg_data->data[i-min_index];
2193 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
2194 renumber[i] = -1;
2195 reg_pref_buffer[i].prefclass = (char) NO_REGS;
2196 reg_pref_buffer[i].altclass = (char) NO_REGS;
2201 /* If {pref,alt}class have already been allocated, update the pointers to
2202 the newly realloced ones. */
2203 if (reg_pref)
2204 reg_pref = reg_pref_buffer;
2206 if (renumber_p)
2207 reg_renumber = renumber;
2209 /* Tell the regset code about the new number of registers */
2210 MAX_REGNO_REG_SET (num_regs, new_p, renumber_p);
2213 /* Free up the space allocated by allocate_reg_info. */
2214 void
2215 free_reg_info ()
2217 if (reg_n_info)
2219 struct reg_info_data *reg_data;
2220 struct reg_info_data *reg_next;
2222 VARRAY_FREE (reg_n_info);
2223 for (reg_data = reg_info_head; reg_data; reg_data = reg_next)
2225 reg_next = reg_data->next;
2226 free ((char *)reg_data);
2229 free (reg_pref_buffer);
2230 reg_pref_buffer = (struct reg_pref *)0;
2231 reg_info_head = (struct reg_info_data *)0;
2232 renumber = (short *)0;
2234 regno_allocated = 0;
2235 reg_n_max = 0;
2238 /* This is the `regscan' pass of the compiler, run just before cse
2239 and again just before loop.
2241 It finds the first and last use of each pseudo-register
2242 and records them in the vectors regno_first_uid, regno_last_uid
2243 and counts the number of sets in the vector reg_n_sets.
2245 REPEAT is nonzero the second time this is called. */
2247 /* Maximum number of parallel sets and clobbers in any insn in this fn.
2248 Always at least 3, since the combiner could put that many together
2249 and we want this to remain correct for all the remaining passes.
2250 This corresponds to the maximum number of times note_stores will call
2251 a function for any insn. */
2253 int max_parallel;
2255 /* Used as a temporary to record the largest number of registers in
2256 PARALLEL in a SET_DEST. This is added to max_parallel. */
2258 static int max_set_parallel;
2260 void
2261 reg_scan (f, nregs, repeat)
2262 rtx f;
2263 unsigned int nregs;
2264 int repeat ATTRIBUTE_UNUSED;
2266 register rtx insn;
2268 allocate_reg_info (nregs, TRUE, FALSE);
2269 max_parallel = 3;
2270 max_set_parallel = 0;
2272 for (insn = f; insn; insn = NEXT_INSN (insn))
2273 if (GET_CODE (insn) == INSN
2274 || GET_CODE (insn) == CALL_INSN
2275 || GET_CODE (insn) == JUMP_INSN)
2277 if (GET_CODE (PATTERN (insn)) == PARALLEL
2278 && XVECLEN (PATTERN (insn), 0) > max_parallel)
2279 max_parallel = XVECLEN (PATTERN (insn), 0);
2280 reg_scan_mark_refs (PATTERN (insn), insn, 0, 0);
2282 if (REG_NOTES (insn))
2283 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, 0);
2286 max_parallel += max_set_parallel;
2289 /* Update 'regscan' information by looking at the insns
2290 from FIRST to LAST. Some new REGs have been created,
2291 and any REG with number greater than OLD_MAX_REGNO is
2292 such a REG. We only update information for those. */
2294 void
2295 reg_scan_update (first, last, old_max_regno)
2296 rtx first;
2297 rtx last;
2298 unsigned int old_max_regno;
2300 register rtx insn;
2302 allocate_reg_info (max_reg_num (), FALSE, FALSE);
2304 for (insn = first; insn != last; insn = NEXT_INSN (insn))
2305 if (GET_CODE (insn) == INSN
2306 || GET_CODE (insn) == CALL_INSN
2307 || GET_CODE (insn) == JUMP_INSN)
2309 if (GET_CODE (PATTERN (insn)) == PARALLEL
2310 && XVECLEN (PATTERN (insn), 0) > max_parallel)
2311 max_parallel = XVECLEN (PATTERN (insn), 0);
2312 reg_scan_mark_refs (PATTERN (insn), insn, 0, old_max_regno);
2314 if (REG_NOTES (insn))
2315 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, old_max_regno);
2319 /* X is the expression to scan. INSN is the insn it appears in.
2320 NOTE_FLAG is nonzero if X is from INSN's notes rather than its body.
2321 We should only record information for REGs with numbers
2322 greater than or equal to MIN_REGNO. */
2324 static void
2325 reg_scan_mark_refs (x, insn, note_flag, min_regno)
2326 rtx x;
2327 rtx insn;
2328 int note_flag;
2329 unsigned int min_regno;
2331 register enum rtx_code code;
2332 register rtx dest;
2333 register rtx note;
2335 code = GET_CODE (x);
2336 switch (code)
2338 case CONST:
2339 case CONST_INT:
2340 case CONST_DOUBLE:
2341 case CC0:
2342 case PC:
2343 case SYMBOL_REF:
2344 case LABEL_REF:
2345 case ADDR_VEC:
2346 case ADDR_DIFF_VEC:
2347 return;
2349 case REG:
2351 unsigned int regno = REGNO (x);
2353 if (regno >= min_regno)
2355 REGNO_LAST_NOTE_UID (regno) = INSN_UID (insn);
2356 if (!note_flag)
2357 REGNO_LAST_UID (regno) = INSN_UID (insn);
2358 if (REGNO_FIRST_UID (regno) == 0)
2359 REGNO_FIRST_UID (regno) = INSN_UID (insn);
2362 break;
2364 case EXPR_LIST:
2365 if (XEXP (x, 0))
2366 reg_scan_mark_refs (XEXP (x, 0), insn, note_flag, min_regno);
2367 if (XEXP (x, 1))
2368 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2369 break;
2371 case INSN_LIST:
2372 if (XEXP (x, 1))
2373 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2374 break;
2376 case SET:
2377 /* Count a set of the destination if it is a register. */
2378 for (dest = SET_DEST (x);
2379 GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2380 || GET_CODE (dest) == ZERO_EXTEND;
2381 dest = XEXP (dest, 0))
2384 /* For a PARALLEL, record the number of things (less the usual one for a
2385 SET) that are set. */
2386 if (GET_CODE (dest) == PARALLEL)
2387 max_set_parallel = MAX (max_set_parallel, XVECLEN (dest, 0) - 1);
2389 if (GET_CODE (dest) == REG
2390 && REGNO (dest) >= min_regno)
2391 REG_N_SETS (REGNO (dest))++;
2393 /* If this is setting a pseudo from another pseudo or the sum of a
2394 pseudo and a constant integer and the other pseudo is known to be
2395 a pointer, set the destination to be a pointer as well.
2397 Likewise if it is setting the destination from an address or from a
2398 value equivalent to an address or to the sum of an address and
2399 something else.
2401 But don't do any of this if the pseudo corresponds to a user
2402 variable since it should have already been set as a pointer based
2403 on the type. */
2405 if (GET_CODE (SET_DEST (x)) == REG
2406 && REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
2407 && REGNO (SET_DEST (x)) >= min_regno
2408 /* If the destination pseudo is set more than once, then other
2409 sets might not be to a pointer value (consider access to a
2410 union in two threads of control in the presense of global
2411 optimizations). So only set REG_POINTER on the destination
2412 pseudo if this is the only set of that pseudo. */
2413 && REG_N_SETS (REGNO (SET_DEST (x))) == 1
2414 && ! REG_USERVAR_P (SET_DEST (x))
2415 && ! REG_POINTER (SET_DEST (x))
2416 && ((GET_CODE (SET_SRC (x)) == REG
2417 && REG_POINTER (SET_SRC (x)))
2418 || ((GET_CODE (SET_SRC (x)) == PLUS
2419 || GET_CODE (SET_SRC (x)) == LO_SUM)
2420 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
2421 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
2422 && REG_POINTER (XEXP (SET_SRC (x), 0)))
2423 || GET_CODE (SET_SRC (x)) == CONST
2424 || GET_CODE (SET_SRC (x)) == SYMBOL_REF
2425 || GET_CODE (SET_SRC (x)) == LABEL_REF
2426 || (GET_CODE (SET_SRC (x)) == HIGH
2427 && (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
2428 || GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
2429 || GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
2430 || ((GET_CODE (SET_SRC (x)) == PLUS
2431 || GET_CODE (SET_SRC (x)) == LO_SUM)
2432 && (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
2433 || GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
2434 || GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
2435 || ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2436 && (GET_CODE (XEXP (note, 0)) == CONST
2437 || GET_CODE (XEXP (note, 0)) == SYMBOL_REF
2438 || GET_CODE (XEXP (note, 0)) == LABEL_REF))))
2439 REG_POINTER (SET_DEST (x)) = 1;
2441 /* ... fall through ... */
2443 default:
2445 register const char *fmt = GET_RTX_FORMAT (code);
2446 register int i;
2447 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2449 if (fmt[i] == 'e')
2450 reg_scan_mark_refs (XEXP (x, i), insn, note_flag, min_regno);
2451 else if (fmt[i] == 'E' && XVEC (x, i) != 0)
2453 register int j;
2454 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2455 reg_scan_mark_refs (XVECEXP (x, i, j), insn, note_flag, min_regno);
2462 /* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
2463 is also in C2. */
2466 reg_class_subset_p (c1, c2)
2467 register enum reg_class c1;
2468 register enum reg_class c2;
2470 if (c1 == c2) return 1;
2472 if (c2 == ALL_REGS)
2473 win:
2474 return 1;
2475 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int)c1],
2476 reg_class_contents[(int)c2],
2477 win);
2478 return 0;
2481 /* Return nonzero if there is a register that is in both C1 and C2. */
2484 reg_classes_intersect_p (c1, c2)
2485 register enum reg_class c1;
2486 register enum reg_class c2;
2488 #ifdef HARD_REG_SET
2489 register
2490 #endif
2491 HARD_REG_SET c;
2493 if (c1 == c2) return 1;
2495 if (c1 == ALL_REGS || c2 == ALL_REGS)
2496 return 1;
2498 COPY_HARD_REG_SET (c, reg_class_contents[(int) c1]);
2499 AND_HARD_REG_SET (c, reg_class_contents[(int) c2]);
2501 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[(int) NO_REGS], lose);
2502 return 1;
2504 lose:
2505 return 0;
2508 /* Release any memory allocated by register sets. */
2510 void
2511 regset_release_memory ()
2513 bitmap_release_memory ();