* doc/gcc.texi, doc/install.texi, doc/invoke.texi: Remove trailing
[official-gcc.git] / gcc / jump.c
blobcc87b6876412e96d75f11c1c9bb3028a995793cc
1 /* Optimize jump instructions, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997
3 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 /* This is the jump-optimization pass of the compiler.
23 It is run two or three times: once before cse, sometimes once after cse,
24 and once after reload (before final).
26 jump_optimize deletes unreachable code and labels that are not used.
27 It also deletes jumps that jump to the following insn,
28 and simplifies jumps around unconditional jumps and jumps
29 to unconditional jumps.
31 Each CODE_LABEL has a count of the times it is used
32 stored in the LABEL_NUSES internal field, and each JUMP_INSN
33 has one label that it refers to stored in the
34 JUMP_LABEL internal field. With this we can detect labels that
35 become unused because of the deletion of all the jumps that
36 formerly used them. The JUMP_LABEL info is sometimes looked
37 at by later passes.
39 Optionally, cross-jumping can be done. Currently it is done
40 only the last time (when after reload and before final).
41 In fact, the code for cross-jumping now assumes that register
42 allocation has been done, since it uses `rtx_renumbered_equal_p'.
44 Jump optimization is done after cse when cse's constant-propagation
45 causes jumps to become unconditional or to be deleted.
47 Unreachable loops are not detected here, because the labels
48 have references and the insns appear reachable from the labels.
49 find_basic_blocks in flow.c finds and deletes such loops.
51 The subroutines delete_insn, redirect_jump, and invert_jump are used
52 from other passes as well. */
54 #include "config.h"
55 #include "system.h"
56 #include "rtl.h"
57 #include "tm_p.h"
58 #include "flags.h"
59 #include "hard-reg-set.h"
60 #include "regs.h"
61 #include "insn-config.h"
62 #include "insn-attr.h"
63 #include "recog.h"
64 #include "function.h"
65 #include "expr.h"
66 #include "real.h"
67 #include "except.h"
68 #include "toplev.h"
69 #include "reload.h"
70 #include "predict.h"
72 /* ??? Eventually must record somehow the labels used by jumps
73 from nested functions. */
74 /* Pre-record the next or previous real insn for each label?
75 No, this pass is very fast anyway. */
76 /* Condense consecutive labels?
77 This would make life analysis faster, maybe. */
78 /* Optimize jump y; x: ... y: jumpif... x?
79 Don't know if it is worth bothering with. */
80 /* Optimize two cases of conditional jump to conditional jump?
81 This can never delete any instruction or make anything dead,
82 or even change what is live at any point.
83 So perhaps let combiner do it. */
85 /* Vector indexed by uid.
86 For each CODE_LABEL, index by its uid to get first unconditional jump
87 that jumps to the label.
88 For each JUMP_INSN, index by its uid to get the next unconditional jump
89 that jumps to the same label.
90 Element 0 is the start of a chain of all return insns.
91 (It is safe to use element 0 because insn uid 0 is not used. */
93 static rtx *jump_chain;
95 /* Maximum index in jump_chain. */
97 static int max_jump_chain;
99 /* Indicates whether death notes are significant in cross jump analysis.
100 Normally they are not significant, because of A and B jump to C,
101 and R dies in A, it must die in B. But this might not be true after
102 stack register conversion, and we must compare death notes in that
103 case. */
105 static int cross_jump_death_matters = 0;
107 static int init_label_info PARAMS ((rtx));
108 static void delete_barrier_successors PARAMS ((rtx));
109 static void mark_all_labels PARAMS ((rtx, int));
110 static rtx delete_unreferenced_labels PARAMS ((rtx));
111 static void delete_noop_moves PARAMS ((rtx));
112 static int duplicate_loop_exit_test PARAMS ((rtx));
113 static void find_cross_jump PARAMS ((rtx, rtx, int, rtx *, rtx *));
114 static void do_cross_jump PARAMS ((rtx, rtx, rtx));
115 static int jump_back_p PARAMS ((rtx, rtx));
116 static int tension_vector_labels PARAMS ((rtx, int));
117 static void delete_computation PARAMS ((rtx));
118 static void redirect_exp_1 PARAMS ((rtx *, rtx, rtx, rtx));
119 static int redirect_exp PARAMS ((rtx, rtx, rtx));
120 static void invert_exp_1 PARAMS ((rtx));
121 static int invert_exp PARAMS ((rtx));
122 static void delete_from_jump_chain PARAMS ((rtx));
123 static int delete_labelref_insn PARAMS ((rtx, rtx, int));
124 static void mark_modified_reg PARAMS ((rtx, rtx, void *));
125 static void redirect_tablejump PARAMS ((rtx, rtx));
126 static void jump_optimize_1 PARAMS ((rtx, int, int, int, int, int));
127 static int returnjump_p_1 PARAMS ((rtx *, void *));
128 static void delete_prior_computation PARAMS ((rtx, rtx));
130 /* Main external entry point into the jump optimizer. See comments before
131 jump_optimize_1 for descriptions of the arguments. */
132 void
133 jump_optimize (f, cross_jump, noop_moves, after_regscan)
134 rtx f;
135 int cross_jump;
136 int noop_moves;
137 int after_regscan;
139 jump_optimize_1 (f, cross_jump, noop_moves, after_regscan, 0, 0);
142 /* Alternate entry into the jump optimizer. This entry point only rebuilds
143 the JUMP_LABEL field in jumping insns and REG_LABEL notes in non-jumping
144 instructions. */
145 void
146 rebuild_jump_labels (f)
147 rtx f;
149 jump_optimize_1 (f, 0, 0, 0, 1, 0);
152 /* Alternate entry into the jump optimizer. Do only trivial optimizations. */
154 void
155 jump_optimize_minimal (f)
156 rtx f;
158 jump_optimize_1 (f, 0, 0, 0, 0, 1);
161 /* Delete no-op jumps and optimize jumps to jumps
162 and jumps around jumps.
163 Delete unused labels and unreachable code.
165 If CROSS_JUMP is 1, detect matching code
166 before a jump and its destination and unify them.
167 If CROSS_JUMP is 2, do cross-jumping, but pay attention to death notes.
169 If NOOP_MOVES is nonzero, delete no-op move insns.
171 If AFTER_REGSCAN is nonzero, then this jump pass is being run immediately
172 after regscan, and it is safe to use regno_first_uid and regno_last_uid.
174 If MARK_LABELS_ONLY is nonzero, then we only rebuild the jump chain
175 and JUMP_LABEL field for jumping insns.
177 If `optimize' is zero, don't change any code,
178 just determine whether control drops off the end of the function.
179 This case occurs when we have -W and not -O.
180 It works because `delete_insn' checks the value of `optimize'
181 and refrains from actually deleting when that is 0.
183 If MINIMAL is nonzero, then we only perform trivial optimizations:
185 * Removal of unreachable code after BARRIERs.
186 * Removal of unreferenced CODE_LABELs.
187 * Removal of a jump to the next instruction.
188 * Removal of a conditional jump followed by an unconditional jump
189 to the same target as the conditional jump.
190 * Simplify a conditional jump around an unconditional jump.
191 * Simplify a jump to a jump.
192 * Delete extraneous line number notes.
195 static void
196 jump_optimize_1 (f, cross_jump, noop_moves, after_regscan,
197 mark_labels_only, minimal)
198 rtx f;
199 int cross_jump;
200 int noop_moves;
201 int after_regscan;
202 int mark_labels_only;
203 int minimal;
205 register rtx insn, next;
206 int changed;
207 int old_max_reg;
208 int first = 1;
209 int max_uid = 0;
210 rtx last_insn;
211 #ifdef HAVE_trap
212 enum rtx_code reversed_code;
213 #endif
215 cross_jump_death_matters = (cross_jump == 2);
216 max_uid = init_label_info (f) + 1;
218 /* Leave some extra room for labels and duplicate exit test insns
219 we make. */
220 max_jump_chain = max_uid * 14 / 10;
221 jump_chain = (rtx *) xcalloc (max_jump_chain, sizeof (rtx));
223 mark_all_labels (f, cross_jump);
225 /* Keep track of labels used from static data; we don't track them
226 closely enough to delete them here, so make sure their reference
227 count doesn't drop to zero. */
229 for (insn = forced_labels; insn; insn = XEXP (insn, 1))
230 if (GET_CODE (XEXP (insn, 0)) == CODE_LABEL)
231 LABEL_NUSES (XEXP (insn, 0))++;
233 /* Keep track of labels used for marking handlers for exception
234 regions; they cannot usually be deleted. */
236 for (insn = exception_handler_labels; insn; insn = XEXP (insn, 1))
237 if (GET_CODE (XEXP (insn, 0)) == CODE_LABEL)
238 LABEL_NUSES (XEXP (insn, 0))++;
240 /* Quit now if we just wanted to rebuild the JUMP_LABEL and REG_LABEL
241 notes and recompute LABEL_NUSES. */
242 if (mark_labels_only)
243 goto end;
245 delete_barrier_successors (f);
247 last_insn = delete_unreferenced_labels (f);
249 if (noop_moves)
250 delete_noop_moves (f);
252 /* Now iterate optimizing jumps until nothing changes over one pass. */
253 changed = 1;
254 old_max_reg = max_reg_num ();
255 while (changed)
257 changed = 0;
259 for (insn = f; insn; insn = next)
261 rtx reallabelprev;
262 rtx temp, temp1, temp2 = NULL_RTX;
263 rtx temp4 ATTRIBUTE_UNUSED;
264 rtx nlabel;
265 int this_is_any_uncondjump;
266 int this_is_any_condjump;
267 int this_is_onlyjump;
269 next = NEXT_INSN (insn);
271 /* See if this is a NOTE_INSN_LOOP_BEG followed by an unconditional
272 jump. Try to optimize by duplicating the loop exit test if so.
273 This is only safe immediately after regscan, because it uses
274 the values of regno_first_uid and regno_last_uid. */
275 if (after_regscan && GET_CODE (insn) == NOTE
276 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG
277 && (temp1 = next_nonnote_insn (insn)) != 0
278 && any_uncondjump_p (temp1)
279 && onlyjump_p (temp1))
281 temp = PREV_INSN (insn);
282 if (duplicate_loop_exit_test (insn))
284 changed = 1;
285 next = NEXT_INSN (temp);
286 continue;
290 if (GET_CODE (insn) != JUMP_INSN)
291 continue;
293 this_is_any_condjump = any_condjump_p (insn);
294 this_is_any_uncondjump = any_uncondjump_p (insn);
295 this_is_onlyjump = onlyjump_p (insn);
297 /* Tension the labels in dispatch tables. */
299 if (GET_CODE (PATTERN (insn)) == ADDR_VEC)
300 changed |= tension_vector_labels (PATTERN (insn), 0);
301 if (GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
302 changed |= tension_vector_labels (PATTERN (insn), 1);
304 /* See if this jump goes to another jump and redirect if so. */
305 nlabel = follow_jumps (JUMP_LABEL (insn));
306 if (nlabel != JUMP_LABEL (insn))
307 changed |= redirect_jump (insn, nlabel, 1);
309 if (! optimize || minimal)
310 continue;
312 /* If a dispatch table always goes to the same place,
313 get rid of it and replace the insn that uses it. */
315 if (GET_CODE (PATTERN (insn)) == ADDR_VEC
316 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
318 int i;
319 rtx pat = PATTERN (insn);
320 int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
321 int len = XVECLEN (pat, diff_vec_p);
322 rtx dispatch = prev_real_insn (insn);
323 rtx set;
325 for (i = 0; i < len; i++)
326 if (XEXP (XVECEXP (pat, diff_vec_p, i), 0)
327 != XEXP (XVECEXP (pat, diff_vec_p, 0), 0))
328 break;
330 if (i == len
331 && dispatch != 0
332 && GET_CODE (dispatch) == JUMP_INSN
333 && JUMP_LABEL (dispatch) != 0
334 /* Don't mess with a casesi insn.
335 XXX according to the comment before computed_jump_p(),
336 all casesi insns should be a parallel of the jump
337 and a USE of a LABEL_REF. */
338 && ! ((set = single_set (dispatch)) != NULL
339 && (GET_CODE (SET_SRC (set)) == IF_THEN_ELSE))
340 && next_real_insn (JUMP_LABEL (dispatch)) == insn)
342 redirect_tablejump (dispatch,
343 XEXP (XVECEXP (pat, diff_vec_p, 0), 0));
344 changed = 1;
348 reallabelprev = prev_active_insn (JUMP_LABEL (insn));
350 /* Detect jump to following insn. */
351 if (reallabelprev == insn
352 && (this_is_any_condjump || this_is_any_uncondjump)
353 && this_is_onlyjump)
355 next = next_real_insn (JUMP_LABEL (insn));
356 delete_jump (insn);
358 /* Remove the "inactive" but "real" insns (i.e. uses and
359 clobbers) in between here and there. */
360 temp = insn;
361 while ((temp = next_real_insn (temp)) != next)
362 delete_insn (temp);
364 changed = 1;
365 continue;
368 /* Detect a conditional jump going to the same place
369 as an immediately following unconditional jump. */
370 else if (this_is_any_condjump && this_is_onlyjump
371 && (temp = next_active_insn (insn)) != 0
372 && simplejump_p (temp)
373 && (next_active_insn (JUMP_LABEL (insn))
374 == next_active_insn (JUMP_LABEL (temp))))
376 /* Don't mess up test coverage analysis. */
377 temp2 = temp;
378 if (flag_test_coverage && !reload_completed)
379 for (temp2 = insn; temp2 != temp; temp2 = NEXT_INSN (temp2))
380 if (GET_CODE (temp2) == NOTE && NOTE_LINE_NUMBER (temp2) > 0)
381 break;
383 if (temp2 == temp)
385 /* Ensure that we jump to the later of the two labels.
386 Consider:
388 if (test) goto L2;
389 goto L1;
392 (clobber return-reg)
394 (use return-reg)
396 If we leave the goto L1, we'll incorrectly leave
397 return-reg dead for TEST true. */
399 temp2 = next_active_insn (JUMP_LABEL (insn));
400 if (!temp2)
401 temp2 = get_last_insn ();
402 if (GET_CODE (temp2) != CODE_LABEL)
403 temp2 = prev_label (temp2);
404 if (temp2 != JUMP_LABEL (temp))
405 redirect_jump (temp, temp2, 1);
407 delete_jump (insn);
408 changed = 1;
409 continue;
413 /* Detect a conditional jump jumping over an unconditional jump. */
415 else if (this_is_any_condjump
416 && reallabelprev != 0
417 && GET_CODE (reallabelprev) == JUMP_INSN
418 && prev_active_insn (reallabelprev) == insn
419 && no_labels_between_p (insn, reallabelprev)
420 && any_uncondjump_p (reallabelprev)
421 && onlyjump_p (reallabelprev))
423 /* When we invert the unconditional jump, we will be
424 decrementing the usage count of its old label.
425 Make sure that we don't delete it now because that
426 might cause the following code to be deleted. */
427 rtx prev_uses = prev_nonnote_insn (reallabelprev);
428 rtx prev_label = JUMP_LABEL (insn);
430 if (prev_label)
431 ++LABEL_NUSES (prev_label);
433 if (invert_jump (insn, JUMP_LABEL (reallabelprev), 1))
435 /* It is very likely that if there are USE insns before
436 this jump, they hold REG_DEAD notes. These REG_DEAD
437 notes are no longer valid due to this optimization,
438 and will cause the life-analysis that following passes
439 (notably delayed-branch scheduling) to think that
440 these registers are dead when they are not.
442 To prevent this trouble, we just remove the USE insns
443 from the insn chain. */
445 while (prev_uses && GET_CODE (prev_uses) == INSN
446 && GET_CODE (PATTERN (prev_uses)) == USE)
448 rtx useless = prev_uses;
449 prev_uses = prev_nonnote_insn (prev_uses);
450 delete_insn (useless);
453 delete_insn (reallabelprev);
454 changed = 1;
457 /* We can now safely delete the label if it is unreferenced
458 since the delete_insn above has deleted the BARRIER. */
459 if (prev_label && --LABEL_NUSES (prev_label) == 0)
460 delete_insn (prev_label);
462 next = NEXT_INSN (insn);
465 /* If we have an unconditional jump preceded by a USE, try to put
466 the USE before the target and jump there. This simplifies many
467 of the optimizations below since we don't have to worry about
468 dealing with these USE insns. We only do this if the label
469 being branch to already has the identical USE or if code
470 never falls through to that label. */
472 else if (this_is_any_uncondjump
473 && (temp = prev_nonnote_insn (insn)) != 0
474 && GET_CODE (temp) == INSN
475 && GET_CODE (PATTERN (temp)) == USE
476 && (temp1 = prev_nonnote_insn (JUMP_LABEL (insn))) != 0
477 && (GET_CODE (temp1) == BARRIER
478 || (GET_CODE (temp1) == INSN
479 && rtx_equal_p (PATTERN (temp), PATTERN (temp1))))
480 /* Don't do this optimization if we have a loop containing
481 only the USE instruction, and the loop start label has
482 a usage count of 1. This is because we will redo this
483 optimization everytime through the outer loop, and jump
484 opt will never exit. */
485 && ! ((temp2 = prev_nonnote_insn (temp)) != 0
486 && temp2 == JUMP_LABEL (insn)
487 && LABEL_NUSES (temp2) == 1))
489 if (GET_CODE (temp1) == BARRIER)
491 emit_insn_after (PATTERN (temp), temp1);
492 temp1 = NEXT_INSN (temp1);
495 delete_insn (temp);
496 redirect_jump (insn, get_label_before (temp1), 1);
497 reallabelprev = prev_real_insn (temp1);
498 changed = 1;
499 next = NEXT_INSN (insn);
502 #ifdef HAVE_trap
503 /* Detect a conditional jump jumping over an unconditional trap. */
504 if (HAVE_trap
505 && this_is_any_condjump && this_is_onlyjump
506 && reallabelprev != 0
507 && GET_CODE (reallabelprev) == INSN
508 && GET_CODE (PATTERN (reallabelprev)) == TRAP_IF
509 && TRAP_CONDITION (PATTERN (reallabelprev)) == const_true_rtx
510 && prev_active_insn (reallabelprev) == insn
511 && no_labels_between_p (insn, reallabelprev)
512 && (temp2 = get_condition (insn, &temp4))
513 && ((reversed_code = reversed_comparison_code (temp2, insn))
514 != UNKNOWN))
516 rtx new = gen_cond_trap (reversed_code,
517 XEXP (temp2, 0), XEXP (temp2, 1),
518 TRAP_CODE (PATTERN (reallabelprev)));
520 if (new)
522 emit_insn_before (new, temp4);
523 delete_insn (reallabelprev);
524 delete_jump (insn);
525 changed = 1;
526 continue;
529 /* Detect a jump jumping to an unconditional trap. */
530 else if (HAVE_trap && this_is_onlyjump
531 && (temp = next_active_insn (JUMP_LABEL (insn)))
532 && GET_CODE (temp) == INSN
533 && GET_CODE (PATTERN (temp)) == TRAP_IF
534 && (this_is_any_uncondjump
535 || (this_is_any_condjump
536 && (temp2 = get_condition (insn, &temp4)))))
538 rtx tc = TRAP_CONDITION (PATTERN (temp));
540 if (tc == const_true_rtx
541 || (! this_is_any_uncondjump && rtx_equal_p (temp2, tc)))
543 rtx new;
544 /* Replace an unconditional jump to a trap with a trap. */
545 if (this_is_any_uncondjump)
547 emit_barrier_after (emit_insn_before (gen_trap (), insn));
548 delete_jump (insn);
549 changed = 1;
550 continue;
552 new = gen_cond_trap (GET_CODE (temp2), XEXP (temp2, 0),
553 XEXP (temp2, 1),
554 TRAP_CODE (PATTERN (temp)));
555 if (new)
557 emit_insn_before (new, temp4);
558 delete_jump (insn);
559 changed = 1;
560 continue;
563 /* If the trap condition and jump condition are mutually
564 exclusive, redirect the jump to the following insn. */
565 else if (GET_RTX_CLASS (GET_CODE (tc)) == '<'
566 && this_is_any_condjump
567 && swap_condition (GET_CODE (temp2)) == GET_CODE (tc)
568 && rtx_equal_p (XEXP (tc, 0), XEXP (temp2, 0))
569 && rtx_equal_p (XEXP (tc, 1), XEXP (temp2, 1))
570 && redirect_jump (insn, get_label_after (temp), 1))
572 changed = 1;
573 continue;
576 #endif
577 else
579 /* Now that the jump has been tensioned,
580 try cross jumping: check for identical code
581 before the jump and before its target label. */
583 /* First, cross jumping of conditional jumps: */
585 if (cross_jump && condjump_p (insn))
587 rtx newjpos, newlpos;
588 rtx x = prev_real_insn (JUMP_LABEL (insn));
590 /* A conditional jump may be crossjumped
591 only if the place it jumps to follows
592 an opposing jump that comes back here. */
594 if (x != 0 && ! jump_back_p (x, insn))
595 /* We have no opposing jump;
596 cannot cross jump this insn. */
597 x = 0;
599 newjpos = 0;
600 /* TARGET is nonzero if it is ok to cross jump
601 to code before TARGET. If so, see if matches. */
602 if (x != 0)
603 find_cross_jump (insn, x, 2,
604 &newjpos, &newlpos);
606 if (newjpos != 0)
608 do_cross_jump (insn, newjpos, newlpos);
609 /* Make the old conditional jump
610 into an unconditional one. */
611 PATTERN (insn) = gen_jump (JUMP_LABEL (insn));
612 INSN_CODE (insn) = -1;
613 emit_barrier_after (insn);
614 /* Add to jump_chain unless this is a new label
615 whose UID is too large. */
616 if (INSN_UID (JUMP_LABEL (insn)) < max_jump_chain)
618 jump_chain[INSN_UID (insn)]
619 = jump_chain[INSN_UID (JUMP_LABEL (insn))];
620 jump_chain[INSN_UID (JUMP_LABEL (insn))] = insn;
622 changed = 1;
623 next = insn;
627 /* Cross jumping of unconditional jumps:
628 a few differences. */
630 if (cross_jump && simplejump_p (insn))
632 rtx newjpos, newlpos;
633 rtx target;
635 newjpos = 0;
637 /* TARGET is nonzero if it is ok to cross jump
638 to code before TARGET. If so, see if matches. */
639 find_cross_jump (insn, JUMP_LABEL (insn), 1,
640 &newjpos, &newlpos);
642 /* If cannot cross jump to code before the label,
643 see if we can cross jump to another jump to
644 the same label. */
645 /* Try each other jump to this label. */
646 if (INSN_UID (JUMP_LABEL (insn)) < max_uid)
647 for (target = jump_chain[INSN_UID (JUMP_LABEL (insn))];
648 target != 0 && newjpos == 0;
649 target = jump_chain[INSN_UID (target)])
650 if (target != insn
651 && JUMP_LABEL (target) == JUMP_LABEL (insn)
652 /* Ignore TARGET if it's deleted. */
653 && ! INSN_DELETED_P (target))
654 find_cross_jump (insn, target, 2,
655 &newjpos, &newlpos);
657 if (newjpos != 0)
659 do_cross_jump (insn, newjpos, newlpos);
660 changed = 1;
661 next = insn;
665 /* This code was dead in the previous jump.c! */
666 if (cross_jump && GET_CODE (PATTERN (insn)) == RETURN)
668 /* Return insns all "jump to the same place"
669 so we can cross-jump between any two of them. */
671 rtx newjpos, newlpos, target;
673 newjpos = 0;
675 /* If cannot cross jump to code before the label,
676 see if we can cross jump to another jump to
677 the same label. */
678 /* Try each other jump to this label. */
679 for (target = jump_chain[0];
680 target != 0 && newjpos == 0;
681 target = jump_chain[INSN_UID (target)])
682 if (target != insn
683 && ! INSN_DELETED_P (target)
684 && GET_CODE (PATTERN (target)) == RETURN)
685 find_cross_jump (insn, target, 2,
686 &newjpos, &newlpos);
688 if (newjpos != 0)
690 do_cross_jump (insn, newjpos, newlpos);
691 changed = 1;
692 next = insn;
698 first = 0;
701 /* Delete extraneous line number notes.
702 Note that two consecutive notes for different lines are not really
703 extraneous. There should be some indication where that line belonged,
704 even if it became empty. */
707 rtx last_note = 0;
709 for (insn = f; insn; insn = NEXT_INSN (insn))
710 if (GET_CODE (insn) == NOTE)
712 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG)
713 /* Any previous line note was for the prologue; gdb wants a new
714 note after the prologue even if it is for the same line. */
715 last_note = NULL_RTX;
716 else if (NOTE_LINE_NUMBER (insn) >= 0)
718 /* Delete this note if it is identical to previous note. */
719 if (last_note
720 && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last_note)
721 && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last_note))
723 delete_insn (insn);
724 continue;
727 last_note = insn;
732 end:
733 /* Clean up. */
734 free (jump_chain);
735 jump_chain = 0;
738 /* Initialize LABEL_NUSES and JUMP_LABEL fields. Delete any REG_LABEL
739 notes whose labels don't occur in the insn any more. Returns the
740 largest INSN_UID found. */
741 static int
742 init_label_info (f)
743 rtx f;
745 int largest_uid = 0;
746 rtx insn;
748 for (insn = f; insn; insn = NEXT_INSN (insn))
750 if (GET_CODE (insn) == CODE_LABEL)
751 LABEL_NUSES (insn) = (LABEL_PRESERVE_P (insn) != 0);
752 else if (GET_CODE (insn) == JUMP_INSN)
753 JUMP_LABEL (insn) = 0;
754 else if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN)
756 rtx note, next;
758 for (note = REG_NOTES (insn); note; note = next)
760 next = XEXP (note, 1);
761 if (REG_NOTE_KIND (note) == REG_LABEL
762 && ! reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
763 remove_note (insn, note);
766 if (INSN_UID (insn) > largest_uid)
767 largest_uid = INSN_UID (insn);
770 return largest_uid;
773 /* Delete insns following barriers, up to next label.
775 Also delete no-op jumps created by gcse. */
777 static void
778 delete_barrier_successors (f)
779 rtx f;
781 rtx insn;
782 rtx set;
784 for (insn = f; insn;)
786 if (GET_CODE (insn) == BARRIER)
788 insn = NEXT_INSN (insn);
790 never_reached_warning (insn);
792 while (insn != 0 && GET_CODE (insn) != CODE_LABEL)
794 if (GET_CODE (insn) == JUMP_INSN)
796 /* Detect when we're deleting a tablejump; get rid of
797 the jump table as well. */
798 rtx next1 = next_nonnote_insn (insn);
799 rtx next2 = next1 ? next_nonnote_insn (next1) : 0;
800 if (next2 && GET_CODE (next1) == CODE_LABEL
801 && GET_CODE (next2) == JUMP_INSN
802 && (GET_CODE (PATTERN (next2)) == ADDR_VEC
803 || GET_CODE (PATTERN (next2)) == ADDR_DIFF_VEC))
805 delete_insn (insn);
806 insn = next2;
808 else
809 insn = delete_insn (insn);
811 else if (GET_CODE (insn) == NOTE
812 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_FUNCTION_END)
813 insn = NEXT_INSN (insn);
814 else
815 insn = delete_insn (insn);
817 /* INSN is now the code_label. */
820 /* Also remove (set (pc) (pc)) insns which can be created by
821 gcse. We eliminate such insns now to avoid having them
822 cause problems later. */
823 else if (GET_CODE (insn) == JUMP_INSN
824 && (set = pc_set (insn)) != NULL
825 && SET_SRC (set) == pc_rtx
826 && SET_DEST (set) == pc_rtx
827 && onlyjump_p (insn))
828 insn = delete_insn (insn);
830 else
831 insn = NEXT_INSN (insn);
835 /* Mark the label each jump jumps to.
836 Combine consecutive labels, and count uses of labels.
838 For each label, make a chain (using `jump_chain')
839 of all the *unconditional* jumps that jump to it;
840 also make a chain of all returns.
842 CROSS_JUMP indicates whether we are doing cross jumping
843 and if we are whether we will be paying attention to
844 death notes or not. */
846 static void
847 mark_all_labels (f, cross_jump)
848 rtx f;
849 int cross_jump;
851 rtx insn;
853 for (insn = f; insn; insn = NEXT_INSN (insn))
854 if (INSN_P (insn))
856 if (GET_CODE (insn) == CALL_INSN
857 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
859 mark_all_labels (XEXP (PATTERN (insn), 0), cross_jump);
860 mark_all_labels (XEXP (PATTERN (insn), 1), cross_jump);
861 mark_all_labels (XEXP (PATTERN (insn), 2), cross_jump);
863 /* Canonicalize the tail recursion label attached to the
864 CALL_PLACEHOLDER insn. */
865 if (XEXP (PATTERN (insn), 3))
867 rtx label_ref = gen_rtx_LABEL_REF (VOIDmode,
868 XEXP (PATTERN (insn), 3));
869 mark_jump_label (label_ref, insn, cross_jump, 0);
870 XEXP (PATTERN (insn), 3) = XEXP (label_ref, 0);
873 continue;
876 mark_jump_label (PATTERN (insn), insn, cross_jump, 0);
877 if (! INSN_DELETED_P (insn) && GET_CODE (insn) == JUMP_INSN)
879 /* When we know the LABEL_REF contained in a REG used in
880 an indirect jump, we'll have a REG_LABEL note so that
881 flow can tell where it's going. */
882 if (JUMP_LABEL (insn) == 0)
884 rtx label_note = find_reg_note (insn, REG_LABEL, NULL_RTX);
885 if (label_note)
887 /* But a LABEL_REF around the REG_LABEL note, so
888 that we can canonicalize it. */
889 rtx label_ref = gen_rtx_LABEL_REF (VOIDmode,
890 XEXP (label_note, 0));
892 mark_jump_label (label_ref, insn, cross_jump, 0);
893 XEXP (label_note, 0) = XEXP (label_ref, 0);
894 JUMP_LABEL (insn) = XEXP (label_note, 0);
897 if (JUMP_LABEL (insn) != 0 && simplejump_p (insn))
899 jump_chain[INSN_UID (insn)]
900 = jump_chain[INSN_UID (JUMP_LABEL (insn))];
901 jump_chain[INSN_UID (JUMP_LABEL (insn))] = insn;
903 if (GET_CODE (PATTERN (insn)) == RETURN)
905 jump_chain[INSN_UID (insn)] = jump_chain[0];
906 jump_chain[0] = insn;
912 /* Delete all labels already not referenced.
913 Also find and return the last insn. */
915 static rtx
916 delete_unreferenced_labels (f)
917 rtx f;
919 rtx final = NULL_RTX;
920 rtx insn;
922 for (insn = f; insn;)
924 if (GET_CODE (insn) == CODE_LABEL
925 && LABEL_NUSES (insn) == 0
926 && LABEL_ALTERNATE_NAME (insn) == NULL)
927 insn = delete_insn (insn);
928 else
930 final = insn;
931 insn = NEXT_INSN (insn);
935 return final;
938 /* Delete various simple forms of moves which have no necessary
939 side effect. */
941 static void
942 delete_noop_moves (f)
943 rtx f;
945 rtx insn, next;
947 for (insn = f; insn;)
949 next = NEXT_INSN (insn);
951 if (GET_CODE (insn) == INSN)
953 register rtx body = PATTERN (insn);
955 /* Detect and delete no-op move instructions
956 resulting from not allocating a parameter in a register. */
958 if (GET_CODE (body) == SET && set_noop_p (body))
959 delete_computation (insn);
961 /* Detect and ignore no-op move instructions
962 resulting from smart or fortuitous register allocation. */
964 else if (GET_CODE (body) == SET)
966 int sreg = true_regnum (SET_SRC (body));
967 int dreg = true_regnum (SET_DEST (body));
969 if (sreg == dreg && sreg >= 0)
970 delete_insn (insn);
971 else if (sreg >= 0 && dreg >= 0)
973 rtx trial;
974 rtx tem = find_equiv_reg (NULL_RTX, insn, 0,
975 sreg, NULL, dreg,
976 GET_MODE (SET_SRC (body)));
978 if (tem != 0
979 && GET_MODE (tem) == GET_MODE (SET_DEST (body)))
981 /* DREG may have been the target of a REG_DEAD note in
982 the insn which makes INSN redundant. If so, reorg
983 would still think it is dead. So search for such a
984 note and delete it if we find it. */
985 if (! find_regno_note (insn, REG_UNUSED, dreg))
986 for (trial = prev_nonnote_insn (insn);
987 trial && GET_CODE (trial) != CODE_LABEL;
988 trial = prev_nonnote_insn (trial))
989 if (find_regno_note (trial, REG_DEAD, dreg))
991 remove_death (dreg, trial);
992 break;
995 /* Deleting insn could lose a death-note for SREG. */
996 if ((trial = find_regno_note (insn, REG_DEAD, sreg)))
998 /* Change this into a USE so that we won't emit
999 code for it, but still can keep the note. */
1000 PATTERN (insn)
1001 = gen_rtx_USE (VOIDmode, XEXP (trial, 0));
1002 INSN_CODE (insn) = -1;
1003 /* Remove all reg notes but the REG_DEAD one. */
1004 REG_NOTES (insn) = trial;
1005 XEXP (trial, 1) = NULL_RTX;
1007 else
1008 delete_insn (insn);
1011 else if (dreg >= 0 && CONSTANT_P (SET_SRC (body))
1012 && find_equiv_reg (SET_SRC (body), insn, 0, dreg,
1013 NULL, 0, GET_MODE (SET_DEST (body))))
1015 /* This handles the case where we have two consecutive
1016 assignments of the same constant to pseudos that didn't
1017 get a hard reg. Each SET from the constant will be
1018 converted into a SET of the spill register and an
1019 output reload will be made following it. This produces
1020 two loads of the same constant into the same spill
1021 register. */
1023 rtx in_insn = insn;
1025 /* Look back for a death note for the first reg.
1026 If there is one, it is no longer accurate. */
1027 while (in_insn && GET_CODE (in_insn) != CODE_LABEL)
1029 if ((GET_CODE (in_insn) == INSN
1030 || GET_CODE (in_insn) == JUMP_INSN)
1031 && find_regno_note (in_insn, REG_DEAD, dreg))
1033 remove_death (dreg, in_insn);
1034 break;
1036 in_insn = PREV_INSN (in_insn);
1039 /* Delete the second load of the value. */
1040 delete_insn (insn);
1043 else if (GET_CODE (body) == PARALLEL)
1045 /* If each part is a set between two identical registers or
1046 a USE or CLOBBER, delete the insn. */
1047 int i, sreg, dreg;
1048 rtx tem;
1050 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1052 tem = XVECEXP (body, 0, i);
1053 if (GET_CODE (tem) == USE || GET_CODE (tem) == CLOBBER)
1054 continue;
1056 if (GET_CODE (tem) != SET
1057 || (sreg = true_regnum (SET_SRC (tem))) < 0
1058 || (dreg = true_regnum (SET_DEST (tem))) < 0
1059 || dreg != sreg)
1060 break;
1063 if (i < 0)
1064 delete_insn (insn);
1067 insn = next;
1071 /* LOOP_START is a NOTE_INSN_LOOP_BEG note that is followed by an unconditional
1072 jump. Assume that this unconditional jump is to the exit test code. If
1073 the code is sufficiently simple, make a copy of it before INSN,
1074 followed by a jump to the exit of the loop. Then delete the unconditional
1075 jump after INSN.
1077 Return 1 if we made the change, else 0.
1079 This is only safe immediately after a regscan pass because it uses the
1080 values of regno_first_uid and regno_last_uid. */
1082 static int
1083 duplicate_loop_exit_test (loop_start)
1084 rtx loop_start;
1086 rtx insn, set, reg, p, link;
1087 rtx copy = 0, first_copy = 0;
1088 int num_insns = 0;
1089 rtx exitcode = NEXT_INSN (JUMP_LABEL (next_nonnote_insn (loop_start)));
1090 rtx lastexit;
1091 int max_reg = max_reg_num ();
1092 rtx *reg_map = 0;
1094 /* Scan the exit code. We do not perform this optimization if any insn:
1096 is a CALL_INSN
1097 is a CODE_LABEL
1098 has a REG_RETVAL or REG_LIBCALL note (hard to adjust)
1099 is a NOTE_INSN_LOOP_BEG because this means we have a nested loop
1100 is a NOTE_INSN_BLOCK_{BEG,END} because duplicating these notes
1101 is not valid.
1103 We also do not do this if we find an insn with ASM_OPERANDS. While
1104 this restriction should not be necessary, copying an insn with
1105 ASM_OPERANDS can confuse asm_noperands in some cases.
1107 Also, don't do this if the exit code is more than 20 insns. */
1109 for (insn = exitcode;
1110 insn
1111 && ! (GET_CODE (insn) == NOTE
1112 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END);
1113 insn = NEXT_INSN (insn))
1115 switch (GET_CODE (insn))
1117 case CODE_LABEL:
1118 case CALL_INSN:
1119 return 0;
1120 case NOTE:
1121 /* We could be in front of the wrong NOTE_INSN_LOOP_END if there is
1122 a jump immediately after the loop start that branches outside
1123 the loop but within an outer loop, near the exit test.
1124 If we copied this exit test and created a phony
1125 NOTE_INSN_LOOP_VTOP, this could make instructions immediately
1126 before the exit test look like these could be safely moved
1127 out of the loop even if they actually may be never executed.
1128 This can be avoided by checking here for NOTE_INSN_LOOP_CONT. */
1130 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG
1131 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_CONT)
1132 return 0;
1134 if (optimize < 2
1135 && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG
1136 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END))
1137 /* If we were to duplicate this code, we would not move
1138 the BLOCK notes, and so debugging the moved code would
1139 be difficult. Thus, we only move the code with -O2 or
1140 higher. */
1141 return 0;
1143 break;
1144 case JUMP_INSN:
1145 case INSN:
1146 /* The code below would grossly mishandle REG_WAS_0 notes,
1147 so get rid of them here. */
1148 while ((p = find_reg_note (insn, REG_WAS_0, NULL_RTX)) != 0)
1149 remove_note (insn, p);
1150 if (++num_insns > 20
1151 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1152 || find_reg_note (insn, REG_LIBCALL, NULL_RTX))
1153 return 0;
1154 break;
1155 default:
1156 break;
1160 /* Unless INSN is zero, we can do the optimization. */
1161 if (insn == 0)
1162 return 0;
1164 lastexit = insn;
1166 /* See if any insn sets a register only used in the loop exit code and
1167 not a user variable. If so, replace it with a new register. */
1168 for (insn = exitcode; insn != lastexit; insn = NEXT_INSN (insn))
1169 if (GET_CODE (insn) == INSN
1170 && (set = single_set (insn)) != 0
1171 && ((reg = SET_DEST (set), GET_CODE (reg) == REG)
1172 || (GET_CODE (reg) == SUBREG
1173 && (reg = SUBREG_REG (reg), GET_CODE (reg) == REG)))
1174 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
1175 && REGNO_FIRST_UID (REGNO (reg)) == INSN_UID (insn))
1177 for (p = NEXT_INSN (insn); p != lastexit; p = NEXT_INSN (p))
1178 if (REGNO_LAST_UID (REGNO (reg)) == INSN_UID (p))
1179 break;
1181 if (p != lastexit)
1183 /* We can do the replacement. Allocate reg_map if this is the
1184 first replacement we found. */
1185 if (reg_map == 0)
1186 reg_map = (rtx *) xcalloc (max_reg, sizeof (rtx));
1188 REG_LOOP_TEST_P (reg) = 1;
1190 reg_map[REGNO (reg)] = gen_reg_rtx (GET_MODE (reg));
1194 /* Now copy each insn. */
1195 for (insn = exitcode; insn != lastexit; insn = NEXT_INSN (insn))
1197 switch (GET_CODE (insn))
1199 case BARRIER:
1200 copy = emit_barrier_before (loop_start);
1201 break;
1202 case NOTE:
1203 /* Only copy line-number notes. */
1204 if (NOTE_LINE_NUMBER (insn) >= 0)
1206 copy = emit_note_before (NOTE_LINE_NUMBER (insn), loop_start);
1207 NOTE_SOURCE_FILE (copy) = NOTE_SOURCE_FILE (insn);
1209 break;
1211 case INSN:
1212 copy = emit_insn_before (copy_insn (PATTERN (insn)), loop_start);
1213 if (reg_map)
1214 replace_regs (PATTERN (copy), reg_map, max_reg, 1);
1216 mark_jump_label (PATTERN (copy), copy, 0, 0);
1218 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
1219 make them. */
1220 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1221 if (REG_NOTE_KIND (link) != REG_LABEL)
1223 if (GET_CODE (link) == EXPR_LIST)
1224 REG_NOTES (copy)
1225 = copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
1226 XEXP (link, 0),
1227 REG_NOTES (copy)));
1228 else
1229 REG_NOTES (copy)
1230 = copy_insn_1 (gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
1231 XEXP (link, 0),
1232 REG_NOTES (copy)));
1235 if (reg_map && REG_NOTES (copy))
1236 replace_regs (REG_NOTES (copy), reg_map, max_reg, 1);
1237 break;
1239 case JUMP_INSN:
1240 copy = emit_jump_insn_before (copy_insn (PATTERN (insn)),
1241 loop_start);
1242 if (reg_map)
1243 replace_regs (PATTERN (copy), reg_map, max_reg, 1);
1244 mark_jump_label (PATTERN (copy), copy, 0, 0);
1245 if (REG_NOTES (insn))
1247 REG_NOTES (copy) = copy_insn_1 (REG_NOTES (insn));
1248 if (reg_map)
1249 replace_regs (REG_NOTES (copy), reg_map, max_reg, 1);
1252 /* Predict conditional jump that do make loop looping as taken.
1253 Other jumps are probably exit conditions, so predict
1254 them as untaken. */
1255 if (any_condjump_p (copy))
1257 rtx label = JUMP_LABEL (copy);
1258 if (label)
1260 /* The jump_insn after loop_start should be followed
1261 by barrier and loopback label. */
1262 if (prev_nonnote_insn (label)
1263 && (PREV_INSN (prev_nonnote_insn (label))
1264 == NEXT_INSN (loop_start)))
1265 predict_insn_def (copy, PRED_LOOP_HEADER, TAKEN);
1266 else
1267 predict_insn_def (copy, PRED_LOOP_HEADER, NOT_TAKEN);
1270 /* If this is a simple jump, add it to the jump chain. */
1272 if (INSN_UID (copy) < max_jump_chain && JUMP_LABEL (copy)
1273 && simplejump_p (copy))
1275 jump_chain[INSN_UID (copy)]
1276 = jump_chain[INSN_UID (JUMP_LABEL (copy))];
1277 jump_chain[INSN_UID (JUMP_LABEL (copy))] = copy;
1279 break;
1281 default:
1282 abort ();
1285 /* Record the first insn we copied. We need it so that we can
1286 scan the copied insns for new pseudo registers. */
1287 if (! first_copy)
1288 first_copy = copy;
1291 /* Now clean up by emitting a jump to the end label and deleting the jump
1292 at the start of the loop. */
1293 if (! copy || GET_CODE (copy) != BARRIER)
1295 copy = emit_jump_insn_before (gen_jump (get_label_after (insn)),
1296 loop_start);
1298 /* Record the first insn we copied. We need it so that we can
1299 scan the copied insns for new pseudo registers. This may not
1300 be strictly necessary since we should have copied at least one
1301 insn above. But I am going to be safe. */
1302 if (! first_copy)
1303 first_copy = copy;
1305 mark_jump_label (PATTERN (copy), copy, 0, 0);
1306 if (INSN_UID (copy) < max_jump_chain
1307 && INSN_UID (JUMP_LABEL (copy)) < max_jump_chain)
1309 jump_chain[INSN_UID (copy)]
1310 = jump_chain[INSN_UID (JUMP_LABEL (copy))];
1311 jump_chain[INSN_UID (JUMP_LABEL (copy))] = copy;
1313 emit_barrier_before (loop_start);
1316 /* Now scan from the first insn we copied to the last insn we copied
1317 (copy) for new pseudo registers. Do this after the code to jump to
1318 the end label since that might create a new pseudo too. */
1319 reg_scan_update (first_copy, copy, max_reg);
1321 /* Mark the exit code as the virtual top of the converted loop. */
1322 emit_note_before (NOTE_INSN_LOOP_VTOP, exitcode);
1324 delete_insn (next_nonnote_insn (loop_start));
1326 /* Clean up. */
1327 if (reg_map)
1328 free (reg_map);
1330 return 1;
1333 /* Move all block-beg, block-end, loop-beg, loop-cont, loop-vtop, loop-end,
1334 notes between START and END out before START. Assume that END is not
1335 such a note. START may be such a note. Returns the value of the new
1336 starting insn, which may be different if the original start was such a
1337 note. */
1340 squeeze_notes (start, end)
1341 rtx start, end;
1343 rtx insn;
1344 rtx next;
1346 for (insn = start; insn != end; insn = next)
1348 next = NEXT_INSN (insn);
1349 if (GET_CODE (insn) == NOTE
1350 && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END
1351 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG
1352 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG
1353 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END
1354 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_CONT
1355 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_VTOP))
1357 if (insn == start)
1358 start = next;
1359 else
1361 rtx prev = PREV_INSN (insn);
1362 PREV_INSN (insn) = PREV_INSN (start);
1363 NEXT_INSN (insn) = start;
1364 NEXT_INSN (PREV_INSN (insn)) = insn;
1365 PREV_INSN (NEXT_INSN (insn)) = insn;
1366 NEXT_INSN (prev) = next;
1367 PREV_INSN (next) = prev;
1372 return start;
1375 /* Compare the instructions before insn E1 with those before E2
1376 to find an opportunity for cross jumping.
1377 (This means detecting identical sequences of insns followed by
1378 jumps to the same place, or followed by a label and a jump
1379 to that label, and replacing one with a jump to the other.)
1381 Assume E1 is a jump that jumps to label E2
1382 (that is not always true but it might as well be).
1383 Find the longest possible equivalent sequences
1384 and store the first insns of those sequences into *F1 and *F2.
1385 Store zero there if no equivalent preceding instructions are found.
1387 We give up if we find a label in stream 1.
1388 Actually we could transfer that label into stream 2. */
1390 static void
1391 find_cross_jump (e1, e2, minimum, f1, f2)
1392 rtx e1, e2;
1393 int minimum;
1394 rtx *f1, *f2;
1396 register rtx i1 = e1, i2 = e2;
1397 register rtx p1, p2;
1398 int lose = 0;
1400 rtx last1 = 0, last2 = 0;
1401 rtx afterlast1 = 0, afterlast2 = 0;
1403 *f1 = 0;
1404 *f2 = 0;
1406 while (1)
1408 i1 = prev_nonnote_insn (i1);
1410 i2 = PREV_INSN (i2);
1411 while (i2 && (GET_CODE (i2) == NOTE || GET_CODE (i2) == CODE_LABEL))
1412 i2 = PREV_INSN (i2);
1414 if (i1 == 0)
1415 break;
1417 /* Don't allow the range of insns preceding E1 or E2
1418 to include the other (E2 or E1). */
1419 if (i2 == e1 || i1 == e2)
1420 break;
1422 /* If we will get to this code by jumping, those jumps will be
1423 tensioned to go directly to the new label (before I2),
1424 so this cross-jumping won't cost extra. So reduce the minimum. */
1425 if (GET_CODE (i1) == CODE_LABEL)
1427 --minimum;
1428 break;
1431 if (i2 == 0 || GET_CODE (i1) != GET_CODE (i2))
1432 break;
1434 p1 = PATTERN (i1);
1435 p2 = PATTERN (i2);
1437 /* If this is a CALL_INSN, compare register usage information.
1438 If we don't check this on stack register machines, the two
1439 CALL_INSNs might be merged leaving reg-stack.c with mismatching
1440 numbers of stack registers in the same basic block.
1441 If we don't check this on machines with delay slots, a delay slot may
1442 be filled that clobbers a parameter expected by the subroutine.
1444 ??? We take the simple route for now and assume that if they're
1445 equal, they were constructed identically. */
1447 if (GET_CODE (i1) == CALL_INSN
1448 && ! rtx_equal_p (CALL_INSN_FUNCTION_USAGE (i1),
1449 CALL_INSN_FUNCTION_USAGE (i2)))
1450 lose = 1;
1452 #ifdef STACK_REGS
1453 /* If cross_jump_death_matters is not 0, the insn's mode
1454 indicates whether or not the insn contains any stack-like
1455 regs. */
1457 if (!lose && cross_jump_death_matters && stack_regs_mentioned (i1))
1459 /* If register stack conversion has already been done, then
1460 death notes must also be compared before it is certain that
1461 the two instruction streams match. */
1463 rtx note;
1464 HARD_REG_SET i1_regset, i2_regset;
1466 CLEAR_HARD_REG_SET (i1_regset);
1467 CLEAR_HARD_REG_SET (i2_regset);
1469 for (note = REG_NOTES (i1); note; note = XEXP (note, 1))
1470 if (REG_NOTE_KIND (note) == REG_DEAD
1471 && STACK_REG_P (XEXP (note, 0)))
1472 SET_HARD_REG_BIT (i1_regset, REGNO (XEXP (note, 0)));
1474 for (note = REG_NOTES (i2); note; note = XEXP (note, 1))
1475 if (REG_NOTE_KIND (note) == REG_DEAD
1476 && STACK_REG_P (XEXP (note, 0)))
1477 SET_HARD_REG_BIT (i2_regset, REGNO (XEXP (note, 0)));
1479 GO_IF_HARD_REG_EQUAL (i1_regset, i2_regset, done);
1481 lose = 1;
1483 done:
1486 #endif
1488 /* Don't allow old-style asm or volatile extended asms to be accepted
1489 for cross jumping purposes. It is conceptually correct to allow
1490 them, since cross-jumping preserves the dynamic instruction order
1491 even though it is changing the static instruction order. However,
1492 if an asm is being used to emit an assembler pseudo-op, such as
1493 the MIPS `.set reorder' pseudo-op, then the static instruction order
1494 matters and it must be preserved. */
1495 if (GET_CODE (p1) == ASM_INPUT || GET_CODE (p2) == ASM_INPUT
1496 || (GET_CODE (p1) == ASM_OPERANDS && MEM_VOLATILE_P (p1))
1497 || (GET_CODE (p2) == ASM_OPERANDS && MEM_VOLATILE_P (p2)))
1498 lose = 1;
1500 if (lose || GET_CODE (p1) != GET_CODE (p2)
1501 || ! rtx_renumbered_equal_p (p1, p2))
1503 /* The following code helps take care of G++ cleanups. */
1504 rtx equiv1;
1505 rtx equiv2;
1507 if (!lose && GET_CODE (p1) == GET_CODE (p2)
1508 && ((equiv1 = find_reg_note (i1, REG_EQUAL, NULL_RTX)) != 0
1509 || (equiv1 = find_reg_note (i1, REG_EQUIV, NULL_RTX)) != 0)
1510 && ((equiv2 = find_reg_note (i2, REG_EQUAL, NULL_RTX)) != 0
1511 || (equiv2 = find_reg_note (i2, REG_EQUIV, NULL_RTX)) != 0)
1512 /* If the equivalences are not to a constant, they may
1513 reference pseudos that no longer exist, so we can't
1514 use them. */
1515 && CONSTANT_P (XEXP (equiv1, 0))
1516 && rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))
1518 rtx s1 = single_set (i1);
1519 rtx s2 = single_set (i2);
1520 if (s1 != 0 && s2 != 0
1521 && rtx_renumbered_equal_p (SET_DEST (s1), SET_DEST (s2)))
1523 validate_change (i1, &SET_SRC (s1), XEXP (equiv1, 0), 1);
1524 validate_change (i2, &SET_SRC (s2), XEXP (equiv2, 0), 1);
1525 if (! rtx_renumbered_equal_p (p1, p2))
1526 cancel_changes (0);
1527 else if (apply_change_group ())
1528 goto win;
1532 /* Insns fail to match; cross jumping is limited to the following
1533 insns. */
1535 #ifdef HAVE_cc0
1536 /* Don't allow the insn after a compare to be shared by
1537 cross-jumping unless the compare is also shared.
1538 Here, if either of these non-matching insns is a compare,
1539 exclude the following insn from possible cross-jumping. */
1540 if (sets_cc0_p (p1) || sets_cc0_p (p2))
1541 last1 = afterlast1, last2 = afterlast2, ++minimum;
1542 #endif
1544 /* If cross-jumping here will feed a jump-around-jump
1545 optimization, this jump won't cost extra, so reduce
1546 the minimum. */
1547 if (GET_CODE (i1) == JUMP_INSN
1548 && JUMP_LABEL (i1)
1549 && prev_real_insn (JUMP_LABEL (i1)) == e1)
1550 --minimum;
1551 break;
1554 win:
1555 if (GET_CODE (p1) != USE && GET_CODE (p1) != CLOBBER)
1557 /* Ok, this insn is potentially includable in a cross-jump here. */
1558 afterlast1 = last1, afterlast2 = last2;
1559 last1 = i1, last2 = i2, --minimum;
1563 if (minimum <= 0 && last1 != 0 && last1 != e1)
1564 *f1 = last1, *f2 = last2;
1567 static void
1568 do_cross_jump (insn, newjpos, newlpos)
1569 rtx insn, newjpos, newlpos;
1571 /* Find an existing label at this point
1572 or make a new one if there is none. */
1573 register rtx label = get_label_before (newlpos);
1575 /* Make the same jump insn jump to the new point. */
1576 if (GET_CODE (PATTERN (insn)) == RETURN)
1578 /* Remove from jump chain of returns. */
1579 delete_from_jump_chain (insn);
1580 /* Change the insn. */
1581 PATTERN (insn) = gen_jump (label);
1582 INSN_CODE (insn) = -1;
1583 JUMP_LABEL (insn) = label;
1584 LABEL_NUSES (label)++;
1585 /* Add to new the jump chain. */
1586 if (INSN_UID (label) < max_jump_chain
1587 && INSN_UID (insn) < max_jump_chain)
1589 jump_chain[INSN_UID (insn)] = jump_chain[INSN_UID (label)];
1590 jump_chain[INSN_UID (label)] = insn;
1593 else
1594 redirect_jump (insn, label, 1);
1596 /* Delete the matching insns before the jump. Also, remove any REG_EQUAL
1597 or REG_EQUIV note in the NEWLPOS stream that isn't also present in
1598 the NEWJPOS stream. */
1600 while (newjpos != insn)
1602 rtx lnote;
1604 for (lnote = REG_NOTES (newlpos); lnote; lnote = XEXP (lnote, 1))
1605 if ((REG_NOTE_KIND (lnote) == REG_EQUAL
1606 || REG_NOTE_KIND (lnote) == REG_EQUIV)
1607 && ! find_reg_note (newjpos, REG_EQUAL, XEXP (lnote, 0))
1608 && ! find_reg_note (newjpos, REG_EQUIV, XEXP (lnote, 0)))
1609 remove_note (newlpos, lnote);
1611 delete_insn (newjpos);
1612 newjpos = next_real_insn (newjpos);
1613 newlpos = next_real_insn (newlpos);
1617 /* Return the label before INSN, or put a new label there. */
1620 get_label_before (insn)
1621 rtx insn;
1623 rtx label;
1625 /* Find an existing label at this point
1626 or make a new one if there is none. */
1627 label = prev_nonnote_insn (insn);
1629 if (label == 0 || GET_CODE (label) != CODE_LABEL)
1631 rtx prev = PREV_INSN (insn);
1633 label = gen_label_rtx ();
1634 emit_label_after (label, prev);
1635 LABEL_NUSES (label) = 0;
1637 return label;
1640 /* Return the label after INSN, or put a new label there. */
1643 get_label_after (insn)
1644 rtx insn;
1646 rtx label;
1648 /* Find an existing label at this point
1649 or make a new one if there is none. */
1650 label = next_nonnote_insn (insn);
1652 if (label == 0 || GET_CODE (label) != CODE_LABEL)
1654 label = gen_label_rtx ();
1655 emit_label_after (label, insn);
1656 LABEL_NUSES (label) = 0;
1658 return label;
1661 /* Return 1 if INSN is a jump that jumps to right after TARGET
1662 only on the condition that TARGET itself would drop through.
1663 Assumes that TARGET is a conditional jump. */
1665 static int
1666 jump_back_p (insn, target)
1667 rtx insn, target;
1669 rtx cinsn, ctarget;
1670 enum rtx_code codei, codet;
1671 rtx set, tset;
1673 if (! any_condjump_p (insn)
1674 || any_uncondjump_p (target)
1675 || target != prev_real_insn (JUMP_LABEL (insn)))
1676 return 0;
1677 set = pc_set (insn);
1678 tset = pc_set (target);
1680 cinsn = XEXP (SET_SRC (set), 0);
1681 ctarget = XEXP (SET_SRC (tset), 0);
1683 codei = GET_CODE (cinsn);
1684 codet = GET_CODE (ctarget);
1686 if (XEXP (SET_SRC (set), 1) == pc_rtx)
1688 codei = reversed_comparison_code (cinsn, insn);
1689 if (codei == UNKNOWN)
1690 return 0;
1693 if (XEXP (SET_SRC (tset), 2) == pc_rtx)
1695 codet = reversed_comparison_code (ctarget, target);
1696 if (codei == UNKNOWN)
1697 return 0;
1700 return (codei == codet
1701 && rtx_renumbered_equal_p (XEXP (cinsn, 0), XEXP (ctarget, 0))
1702 && rtx_renumbered_equal_p (XEXP (cinsn, 1), XEXP (ctarget, 1)));
1705 /* Given a comparison (CODE ARG0 ARG1), inside a insn, INSN, return an code
1706 of reversed comparison if it is possible to do so. Otherwise return UNKNOWN.
1707 UNKNOWN may be returned in case we are having CC_MODE compare and we don't
1708 know whether it's source is floating point or integer comparison. Machine
1709 description should define REVERSIBLE_CC_MODE and REVERSE_CONDITION macros
1710 to help this function avoid overhead in these cases. */
1711 enum rtx_code
1712 reversed_comparison_code_parts (code, arg0, arg1, insn)
1713 rtx insn, arg0, arg1;
1714 enum rtx_code code;
1716 enum machine_mode mode;
1718 /* If this is not actually a comparison, we can't reverse it. */
1719 if (GET_RTX_CLASS (code) != '<')
1720 return UNKNOWN;
1722 mode = GET_MODE (arg0);
1723 if (mode == VOIDmode)
1724 mode = GET_MODE (arg1);
1726 /* First see if machine description supply us way to reverse the comparison.
1727 Give it priority over everything else to allow machine description to do
1728 tricks. */
1729 #ifdef REVERSIBLE_CC_MODE
1730 if (GET_MODE_CLASS (mode) == MODE_CC
1731 && REVERSIBLE_CC_MODE (mode))
1733 #ifdef REVERSE_CONDITION
1734 return REVERSE_CONDITION (code, mode);
1735 #endif
1736 return reverse_condition (code);
1738 #endif
1740 /* Try few special cases based on the comparison code. */
1741 switch (code)
1743 case GEU:
1744 case GTU:
1745 case LEU:
1746 case LTU:
1747 case NE:
1748 case EQ:
1749 /* It is always safe to reverse EQ and NE, even for the floating
1750 point. Similary the unsigned comparisons are never used for
1751 floating point so we can reverse them in the default way. */
1752 return reverse_condition (code);
1753 case ORDERED:
1754 case UNORDERED:
1755 case LTGT:
1756 case UNEQ:
1757 /* In case we already see unordered comparison, we can be sure to
1758 be dealing with floating point so we don't need any more tests. */
1759 return reverse_condition_maybe_unordered (code);
1760 case UNLT:
1761 case UNLE:
1762 case UNGT:
1763 case UNGE:
1764 /* We don't have safe way to reverse these yet. */
1765 return UNKNOWN;
1766 default:
1767 break;
1770 /* In case we give up IEEE compatibility, all comparisons are reversible. */
1771 if (TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
1772 || flag_unsafe_math_optimizations)
1773 return reverse_condition (code);
1775 if (GET_MODE_CLASS (mode) == MODE_CC
1776 #ifdef HAVE_cc0
1777 || arg0 == cc0_rtx
1778 #endif
1781 rtx prev;
1782 /* Try to search for the comparison to determine the real mode.
1783 This code is expensive, but with sane machine description it
1784 will be never used, since REVERSIBLE_CC_MODE will return true
1785 in all cases. */
1786 if (! insn)
1787 return UNKNOWN;
1789 for (prev = prev_nonnote_insn (insn);
1790 prev != 0 && GET_CODE (prev) != CODE_LABEL;
1791 prev = prev_nonnote_insn (prev))
1793 rtx set = set_of (arg0, prev);
1794 if (set && GET_CODE (set) == SET
1795 && rtx_equal_p (SET_DEST (set), arg0))
1797 rtx src = SET_SRC (set);
1799 if (GET_CODE (src) == COMPARE)
1801 rtx comparison = src;
1802 arg0 = XEXP (src, 0);
1803 mode = GET_MODE (arg0);
1804 if (mode == VOIDmode)
1805 mode = GET_MODE (XEXP (comparison, 1));
1806 break;
1808 /* We can get past reg-reg moves. This may be usefull for model
1809 of i387 comparisons that first move flag registers around. */
1810 if (REG_P (src))
1812 arg0 = src;
1813 continue;
1816 /* If register is clobbered in some ununderstandable way,
1817 give up. */
1818 if (set)
1819 return UNKNOWN;
1823 /* An integer condition. */
1824 if (GET_CODE (arg0) == CONST_INT
1825 || (GET_MODE (arg0) != VOIDmode
1826 && GET_MODE_CLASS (mode) != MODE_CC
1827 && ! FLOAT_MODE_P (mode)))
1828 return reverse_condition (code);
1830 return UNKNOWN;
1833 /* An wrapper around the previous function to take COMPARISON as rtx
1834 expression. This simplifies many callers. */
1835 enum rtx_code
1836 reversed_comparison_code (comparison, insn)
1837 rtx comparison, insn;
1839 if (GET_RTX_CLASS (GET_CODE (comparison)) != '<')
1840 return UNKNOWN;
1841 return reversed_comparison_code_parts (GET_CODE (comparison),
1842 XEXP (comparison, 0),
1843 XEXP (comparison, 1), insn);
1846 /* Given an rtx-code for a comparison, return the code for the negated
1847 comparison. If no such code exists, return UNKNOWN.
1849 WATCH OUT! reverse_condition is not safe to use on a jump that might
1850 be acting on the results of an IEEE floating point comparison, because
1851 of the special treatment of non-signaling nans in comparisons.
1852 Use reversed_comparison_code instead. */
1854 enum rtx_code
1855 reverse_condition (code)
1856 enum rtx_code code;
1858 switch (code)
1860 case EQ:
1861 return NE;
1862 case NE:
1863 return EQ;
1864 case GT:
1865 return LE;
1866 case GE:
1867 return LT;
1868 case LT:
1869 return GE;
1870 case LE:
1871 return GT;
1872 case GTU:
1873 return LEU;
1874 case GEU:
1875 return LTU;
1876 case LTU:
1877 return GEU;
1878 case LEU:
1879 return GTU;
1880 case UNORDERED:
1881 return ORDERED;
1882 case ORDERED:
1883 return UNORDERED;
1885 case UNLT:
1886 case UNLE:
1887 case UNGT:
1888 case UNGE:
1889 case UNEQ:
1890 case LTGT:
1891 return UNKNOWN;
1893 default:
1894 abort ();
1898 /* Similar, but we're allowed to generate unordered comparisons, which
1899 makes it safe for IEEE floating-point. Of course, we have to recognize
1900 that the target will support them too... */
1902 enum rtx_code
1903 reverse_condition_maybe_unordered (code)
1904 enum rtx_code code;
1906 /* Non-IEEE formats don't have unordered conditions. */
1907 if (TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT)
1908 return reverse_condition (code);
1910 switch (code)
1912 case EQ:
1913 return NE;
1914 case NE:
1915 return EQ;
1916 case GT:
1917 return UNLE;
1918 case GE:
1919 return UNLT;
1920 case LT:
1921 return UNGE;
1922 case LE:
1923 return UNGT;
1924 case LTGT:
1925 return UNEQ;
1926 case UNORDERED:
1927 return ORDERED;
1928 case ORDERED:
1929 return UNORDERED;
1930 case UNLT:
1931 return GE;
1932 case UNLE:
1933 return GT;
1934 case UNGT:
1935 return LE;
1936 case UNGE:
1937 return LT;
1938 case UNEQ:
1939 return LTGT;
1941 default:
1942 abort ();
1946 /* Similar, but return the code when two operands of a comparison are swapped.
1947 This IS safe for IEEE floating-point. */
1949 enum rtx_code
1950 swap_condition (code)
1951 enum rtx_code code;
1953 switch (code)
1955 case EQ:
1956 case NE:
1957 case UNORDERED:
1958 case ORDERED:
1959 case UNEQ:
1960 case LTGT:
1961 return code;
1963 case GT:
1964 return LT;
1965 case GE:
1966 return LE;
1967 case LT:
1968 return GT;
1969 case LE:
1970 return GE;
1971 case GTU:
1972 return LTU;
1973 case GEU:
1974 return LEU;
1975 case LTU:
1976 return GTU;
1977 case LEU:
1978 return GEU;
1979 case UNLT:
1980 return UNGT;
1981 case UNLE:
1982 return UNGE;
1983 case UNGT:
1984 return UNLT;
1985 case UNGE:
1986 return UNLE;
1988 default:
1989 abort ();
1993 /* Given a comparison CODE, return the corresponding unsigned comparison.
1994 If CODE is an equality comparison or already an unsigned comparison,
1995 CODE is returned. */
1997 enum rtx_code
1998 unsigned_condition (code)
1999 enum rtx_code code;
2001 switch (code)
2003 case EQ:
2004 case NE:
2005 case GTU:
2006 case GEU:
2007 case LTU:
2008 case LEU:
2009 return code;
2011 case GT:
2012 return GTU;
2013 case GE:
2014 return GEU;
2015 case LT:
2016 return LTU;
2017 case LE:
2018 return LEU;
2020 default:
2021 abort ();
2025 /* Similarly, return the signed version of a comparison. */
2027 enum rtx_code
2028 signed_condition (code)
2029 enum rtx_code code;
2031 switch (code)
2033 case EQ:
2034 case NE:
2035 case GT:
2036 case GE:
2037 case LT:
2038 case LE:
2039 return code;
2041 case GTU:
2042 return GT;
2043 case GEU:
2044 return GE;
2045 case LTU:
2046 return LT;
2047 case LEU:
2048 return LE;
2050 default:
2051 abort ();
2055 /* Return non-zero if CODE1 is more strict than CODE2, i.e., if the
2056 truth of CODE1 implies the truth of CODE2. */
2059 comparison_dominates_p (code1, code2)
2060 enum rtx_code code1, code2;
2062 /* UNKNOWN comparison codes can happen as a result of trying to revert
2063 comparison codes.
2064 They can't match anything, so we have to reject them here. */
2065 if (code1 == UNKNOWN || code2 == UNKNOWN)
2066 return 0;
2068 if (code1 == code2)
2069 return 1;
2071 switch (code1)
2073 case UNEQ:
2074 if (code2 == UNLE || code2 == UNGE)
2075 return 1;
2076 break;
2078 case EQ:
2079 if (code2 == LE || code2 == LEU || code2 == GE || code2 == GEU
2080 || code2 == ORDERED)
2081 return 1;
2082 break;
2084 case UNLT:
2085 if (code2 == UNLE || code2 == NE)
2086 return 1;
2087 break;
2089 case LT:
2090 if (code2 == LE || code2 == NE || code2 == ORDERED || code2 == LTGT)
2091 return 1;
2092 break;
2094 case UNGT:
2095 if (code2 == UNGE || code2 == NE)
2096 return 1;
2097 break;
2099 case GT:
2100 if (code2 == GE || code2 == NE || code2 == ORDERED || code2 == LTGT)
2101 return 1;
2102 break;
2104 case GE:
2105 case LE:
2106 if (code2 == ORDERED)
2107 return 1;
2108 break;
2110 case LTGT:
2111 if (code2 == NE || code2 == ORDERED)
2112 return 1;
2113 break;
2115 case LTU:
2116 if (code2 == LEU || code2 == NE)
2117 return 1;
2118 break;
2120 case GTU:
2121 if (code2 == GEU || code2 == NE)
2122 return 1;
2123 break;
2125 case UNORDERED:
2126 if (code2 == NE || code2 == UNEQ || code2 == UNLE || code2 == UNLT
2127 || code2 == UNGE || code2 == UNGT)
2128 return 1;
2129 break;
2131 default:
2132 break;
2135 return 0;
2138 /* Return 1 if INSN is an unconditional jump and nothing else. */
2141 simplejump_p (insn)
2142 rtx insn;
2144 return (GET_CODE (insn) == JUMP_INSN
2145 && GET_CODE (PATTERN (insn)) == SET
2146 && GET_CODE (SET_DEST (PATTERN (insn))) == PC
2147 && GET_CODE (SET_SRC (PATTERN (insn))) == LABEL_REF);
2150 /* Return nonzero if INSN is a (possibly) conditional jump
2151 and nothing more.
2153 Use this function is deprecated, since we need to support combined
2154 branch and compare insns. Use any_condjump_p instead whenever possible. */
2157 condjump_p (insn)
2158 rtx insn;
2160 register rtx x = PATTERN (insn);
2162 if (GET_CODE (x) != SET
2163 || GET_CODE (SET_DEST (x)) != PC)
2164 return 0;
2166 x = SET_SRC (x);
2167 if (GET_CODE (x) == LABEL_REF)
2168 return 1;
2169 else
2170 return (GET_CODE (x) == IF_THEN_ELSE
2171 && ((GET_CODE (XEXP (x, 2)) == PC
2172 && (GET_CODE (XEXP (x, 1)) == LABEL_REF
2173 || GET_CODE (XEXP (x, 1)) == RETURN))
2174 || (GET_CODE (XEXP (x, 1)) == PC
2175 && (GET_CODE (XEXP (x, 2)) == LABEL_REF
2176 || GET_CODE (XEXP (x, 2)) == RETURN))));
2178 return 0;
2181 /* Return nonzero if INSN is a (possibly) conditional jump inside a
2182 PARALLEL.
2184 Use this function is deprecated, since we need to support combined
2185 branch and compare insns. Use any_condjump_p instead whenever possible. */
2188 condjump_in_parallel_p (insn)
2189 rtx insn;
2191 register rtx x = PATTERN (insn);
2193 if (GET_CODE (x) != PARALLEL)
2194 return 0;
2195 else
2196 x = XVECEXP (x, 0, 0);
2198 if (GET_CODE (x) != SET)
2199 return 0;
2200 if (GET_CODE (SET_DEST (x)) != PC)
2201 return 0;
2202 if (GET_CODE (SET_SRC (x)) == LABEL_REF)
2203 return 1;
2204 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
2205 return 0;
2206 if (XEXP (SET_SRC (x), 2) == pc_rtx
2207 && (GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF
2208 || GET_CODE (XEXP (SET_SRC (x), 1)) == RETURN))
2209 return 1;
2210 if (XEXP (SET_SRC (x), 1) == pc_rtx
2211 && (GET_CODE (XEXP (SET_SRC (x), 2)) == LABEL_REF
2212 || GET_CODE (XEXP (SET_SRC (x), 2)) == RETURN))
2213 return 1;
2214 return 0;
2217 /* Return set of PC, otherwise NULL. */
2220 pc_set (insn)
2221 rtx insn;
2223 rtx pat;
2224 if (GET_CODE (insn) != JUMP_INSN)
2225 return NULL_RTX;
2226 pat = PATTERN (insn);
2228 /* The set is allowed to appear either as the insn pattern or
2229 the first set in a PARALLEL. */
2230 if (GET_CODE (pat) == PARALLEL)
2231 pat = XVECEXP (pat, 0, 0);
2232 if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == PC)
2233 return pat;
2235 return NULL_RTX;
2238 /* Return true when insn is an unconditional direct jump,
2239 possibly bundled inside a PARALLEL. */
2242 any_uncondjump_p (insn)
2243 rtx insn;
2245 rtx x = pc_set (insn);
2246 if (!x)
2247 return 0;
2248 if (GET_CODE (SET_SRC (x)) != LABEL_REF)
2249 return 0;
2250 return 1;
2253 /* Return true when insn is a conditional jump. This function works for
2254 instructions containing PC sets in PARALLELs. The instruction may have
2255 various other effects so before removing the jump you must verify
2256 onlyjump_p.
2258 Note that unlike condjump_p it returns false for unconditional jumps. */
2261 any_condjump_p (insn)
2262 rtx insn;
2264 rtx x = pc_set (insn);
2265 enum rtx_code a, b;
2267 if (!x)
2268 return 0;
2269 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
2270 return 0;
2272 a = GET_CODE (XEXP (SET_SRC (x), 1));
2273 b = GET_CODE (XEXP (SET_SRC (x), 2));
2275 return ((b == PC && (a == LABEL_REF || a == RETURN))
2276 || (a == PC && (b == LABEL_REF || b == RETURN)));
2279 /* Return the label of a conditional jump. */
2282 condjump_label (insn)
2283 rtx insn;
2285 rtx x = pc_set (insn);
2287 if (!x)
2288 return NULL_RTX;
2289 x = SET_SRC (x);
2290 if (GET_CODE (x) == LABEL_REF)
2291 return x;
2292 if (GET_CODE (x) != IF_THEN_ELSE)
2293 return NULL_RTX;
2294 if (XEXP (x, 2) == pc_rtx && GET_CODE (XEXP (x, 1)) == LABEL_REF)
2295 return XEXP (x, 1);
2296 if (XEXP (x, 1) == pc_rtx && GET_CODE (XEXP (x, 2)) == LABEL_REF)
2297 return XEXP (x, 2);
2298 return NULL_RTX;
2301 /* Return true if INSN is a (possibly conditional) return insn. */
2303 static int
2304 returnjump_p_1 (loc, data)
2305 rtx *loc;
2306 void *data ATTRIBUTE_UNUSED;
2308 rtx x = *loc;
2309 return x && GET_CODE (x) == RETURN;
2313 returnjump_p (insn)
2314 rtx insn;
2316 if (GET_CODE (insn) != JUMP_INSN)
2317 return 0;
2318 return for_each_rtx (&PATTERN (insn), returnjump_p_1, NULL);
2321 /* Return true if INSN is a jump that only transfers control and
2322 nothing more. */
2325 onlyjump_p (insn)
2326 rtx insn;
2328 rtx set;
2330 if (GET_CODE (insn) != JUMP_INSN)
2331 return 0;
2333 set = single_set (insn);
2334 if (set == NULL)
2335 return 0;
2336 if (GET_CODE (SET_DEST (set)) != PC)
2337 return 0;
2338 if (side_effects_p (SET_SRC (set)))
2339 return 0;
2341 return 1;
2344 #ifdef HAVE_cc0
2346 /* Return 1 if X is an RTX that does nothing but set the condition codes
2347 and CLOBBER or USE registers.
2348 Return -1 if X does explicitly set the condition codes,
2349 but also does other things. */
2352 sets_cc0_p (x)
2353 rtx x ATTRIBUTE_UNUSED;
2355 if (GET_CODE (x) == SET && SET_DEST (x) == cc0_rtx)
2356 return 1;
2357 if (GET_CODE (x) == PARALLEL)
2359 int i;
2360 int sets_cc0 = 0;
2361 int other_things = 0;
2362 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
2364 if (GET_CODE (XVECEXP (x, 0, i)) == SET
2365 && SET_DEST (XVECEXP (x, 0, i)) == cc0_rtx)
2366 sets_cc0 = 1;
2367 else if (GET_CODE (XVECEXP (x, 0, i)) == SET)
2368 other_things = 1;
2370 return ! sets_cc0 ? 0 : other_things ? -1 : 1;
2372 return 0;
2374 #endif
2376 /* Follow any unconditional jump at LABEL;
2377 return the ultimate label reached by any such chain of jumps.
2378 If LABEL is not followed by a jump, return LABEL.
2379 If the chain loops or we can't find end, return LABEL,
2380 since that tells caller to avoid changing the insn.
2382 If RELOAD_COMPLETED is 0, we do not chain across a NOTE_INSN_LOOP_BEG or
2383 a USE or CLOBBER. */
2386 follow_jumps (label)
2387 rtx label;
2389 register rtx insn;
2390 register rtx next;
2391 register rtx value = label;
2392 register int depth;
2394 for (depth = 0;
2395 (depth < 10
2396 && (insn = next_active_insn (value)) != 0
2397 && GET_CODE (insn) == JUMP_INSN
2398 && ((JUMP_LABEL (insn) != 0 && any_uncondjump_p (insn)
2399 && onlyjump_p (insn))
2400 || GET_CODE (PATTERN (insn)) == RETURN)
2401 && (next = NEXT_INSN (insn))
2402 && GET_CODE (next) == BARRIER);
2403 depth++)
2405 /* Don't chain through the insn that jumps into a loop
2406 from outside the loop,
2407 since that would create multiple loop entry jumps
2408 and prevent loop optimization. */
2409 rtx tem;
2410 if (!reload_completed)
2411 for (tem = value; tem != insn; tem = NEXT_INSN (tem))
2412 if (GET_CODE (tem) == NOTE
2413 && (NOTE_LINE_NUMBER (tem) == NOTE_INSN_LOOP_BEG
2414 /* ??? Optional. Disables some optimizations, but makes
2415 gcov output more accurate with -O. */
2416 || (flag_test_coverage && NOTE_LINE_NUMBER (tem) > 0)))
2417 return value;
2419 /* If we have found a cycle, make the insn jump to itself. */
2420 if (JUMP_LABEL (insn) == label)
2421 return label;
2423 tem = next_active_insn (JUMP_LABEL (insn));
2424 if (tem && (GET_CODE (PATTERN (tem)) == ADDR_VEC
2425 || GET_CODE (PATTERN (tem)) == ADDR_DIFF_VEC))
2426 break;
2428 value = JUMP_LABEL (insn);
2430 if (depth == 10)
2431 return label;
2432 return value;
2435 /* Assuming that field IDX of X is a vector of label_refs,
2436 replace each of them by the ultimate label reached by it.
2437 Return nonzero if a change is made.
2438 If IGNORE_LOOPS is 0, we do not chain across a NOTE_INSN_LOOP_BEG. */
2440 static int
2441 tension_vector_labels (x, idx)
2442 register rtx x;
2443 register int idx;
2445 int changed = 0;
2446 register int i;
2447 for (i = XVECLEN (x, idx) - 1; i >= 0; i--)
2449 register rtx olabel = XEXP (XVECEXP (x, idx, i), 0);
2450 register rtx nlabel = follow_jumps (olabel);
2451 if (nlabel && nlabel != olabel)
2453 XEXP (XVECEXP (x, idx, i), 0) = nlabel;
2454 ++LABEL_NUSES (nlabel);
2455 if (--LABEL_NUSES (olabel) == 0)
2456 delete_insn (olabel);
2457 changed = 1;
2460 return changed;
2463 /* Find all CODE_LABELs referred to in X, and increment their use counts.
2464 If INSN is a JUMP_INSN and there is at least one CODE_LABEL referenced
2465 in INSN, then store one of them in JUMP_LABEL (INSN).
2466 If INSN is an INSN or a CALL_INSN and there is at least one CODE_LABEL
2467 referenced in INSN, add a REG_LABEL note containing that label to INSN.
2468 Also, when there are consecutive labels, canonicalize on the last of them.
2470 Note that two labels separated by a loop-beginning note
2471 must be kept distinct if we have not yet done loop-optimization,
2472 because the gap between them is where loop-optimize
2473 will want to move invariant code to. CROSS_JUMP tells us
2474 that loop-optimization is done with.
2476 Once reload has completed (CROSS_JUMP non-zero), we need not consider
2477 two labels distinct if they are separated by only USE or CLOBBER insns. */
2479 void
2480 mark_jump_label (x, insn, cross_jump, in_mem)
2481 register rtx x;
2482 rtx insn;
2483 int cross_jump;
2484 int in_mem;
2486 register RTX_CODE code = GET_CODE (x);
2487 register int i;
2488 register const char *fmt;
2490 switch (code)
2492 case PC:
2493 case CC0:
2494 case REG:
2495 case SUBREG:
2496 case CONST_INT:
2497 case CONST_DOUBLE:
2498 case CLOBBER:
2499 case CALL:
2500 return;
2502 case MEM:
2503 in_mem = 1;
2504 break;
2506 case SYMBOL_REF:
2507 if (!in_mem)
2508 return;
2510 /* If this is a constant-pool reference, see if it is a label. */
2511 if (CONSTANT_POOL_ADDRESS_P (x))
2512 mark_jump_label (get_pool_constant (x), insn, cross_jump, in_mem);
2513 break;
2515 case LABEL_REF:
2517 rtx label = XEXP (x, 0);
2518 rtx olabel = label;
2519 rtx next;
2521 /* Ignore remaining references to unreachable labels that
2522 have been deleted. */
2523 if (GET_CODE (label) == NOTE
2524 && NOTE_LINE_NUMBER (label) == NOTE_INSN_DELETED_LABEL)
2525 break;
2527 if (GET_CODE (label) != CODE_LABEL)
2528 abort ();
2530 /* Ignore references to labels of containing functions. */
2531 if (LABEL_REF_NONLOCAL_P (x))
2532 break;
2534 /* If there are other labels following this one,
2535 replace it with the last of the consecutive labels. */
2536 for (next = NEXT_INSN (label); next; next = NEXT_INSN (next))
2538 if (GET_CODE (next) == CODE_LABEL)
2539 label = next;
2540 else if (cross_jump && GET_CODE (next) == INSN
2541 && (GET_CODE (PATTERN (next)) == USE
2542 || GET_CODE (PATTERN (next)) == CLOBBER))
2543 continue;
2544 else if (GET_CODE (next) != NOTE)
2545 break;
2546 else if (! cross_jump
2547 && (NOTE_LINE_NUMBER (next) == NOTE_INSN_LOOP_BEG
2548 || NOTE_LINE_NUMBER (next) == NOTE_INSN_FUNCTION_END
2549 /* ??? Optional. Disables some optimizations, but
2550 makes gcov output more accurate with -O. */
2551 || (flag_test_coverage
2552 && NOTE_LINE_NUMBER (next) > 0)))
2553 break;
2556 XEXP (x, 0) = label;
2557 if (! insn || ! INSN_DELETED_P (insn))
2558 ++LABEL_NUSES (label);
2560 if (insn)
2562 if (GET_CODE (insn) == JUMP_INSN)
2563 JUMP_LABEL (insn) = label;
2564 else
2566 /* If we've changed the label, update notes accordingly. */
2567 if (label != olabel)
2569 rtx note;
2571 /* We may have a REG_LABEL note to indicate that this
2572 instruction uses the label. */
2573 note = find_reg_note (insn, REG_LABEL, olabel);
2574 if (note)
2575 XEXP (note, 0) = label;
2577 /* We may also have a REG_EQUAL note to indicate that
2578 a register is being set to the address of the
2579 label. */
2580 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
2581 if (note
2582 && GET_CODE (XEXP (note, 0)) == LABEL_REF
2583 && XEXP (XEXP (note, 0), 0) == olabel)
2584 XEXP (XEXP (note, 0), 0) = label;
2587 /* Add a REG_LABEL note for LABEL unless there already
2588 is one. All uses of a label, except for labels
2589 that are the targets of jumps, must have a
2590 REG_LABEL note. */
2591 if (! find_reg_note (insn, REG_LABEL, label))
2592 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL, label,
2593 REG_NOTES (insn));
2596 return;
2599 /* Do walk the labels in a vector, but not the first operand of an
2600 ADDR_DIFF_VEC. Don't set the JUMP_LABEL of a vector. */
2601 case ADDR_VEC:
2602 case ADDR_DIFF_VEC:
2603 if (! INSN_DELETED_P (insn))
2605 int eltnum = code == ADDR_DIFF_VEC ? 1 : 0;
2607 for (i = 0; i < XVECLEN (x, eltnum); i++)
2608 mark_jump_label (XVECEXP (x, eltnum, i), NULL_RTX,
2609 cross_jump, in_mem);
2611 return;
2613 default:
2614 break;
2617 fmt = GET_RTX_FORMAT (code);
2618 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2620 if (fmt[i] == 'e')
2621 mark_jump_label (XEXP (x, i), insn, cross_jump, in_mem);
2622 else if (fmt[i] == 'E')
2624 register int j;
2625 for (j = 0; j < XVECLEN (x, i); j++)
2626 mark_jump_label (XVECEXP (x, i, j), insn, cross_jump, in_mem);
2631 /* If all INSN does is set the pc, delete it,
2632 and delete the insn that set the condition codes for it
2633 if that's what the previous thing was. */
2635 void
2636 delete_jump (insn)
2637 rtx insn;
2639 register rtx set = single_set (insn);
2641 if (set && GET_CODE (SET_DEST (set)) == PC)
2642 delete_computation (insn);
2645 /* Verify INSN is a BARRIER and delete it. */
2647 void
2648 delete_barrier (insn)
2649 rtx insn;
2651 if (GET_CODE (insn) != BARRIER)
2652 abort ();
2654 delete_insn (insn);
2657 /* Recursively delete prior insns that compute the value (used only by INSN
2658 which the caller is deleting) stored in the register mentioned by NOTE
2659 which is a REG_DEAD note associated with INSN. */
2661 static void
2662 delete_prior_computation (note, insn)
2663 rtx note;
2664 rtx insn;
2666 rtx our_prev;
2667 rtx reg = XEXP (note, 0);
2669 for (our_prev = prev_nonnote_insn (insn);
2670 our_prev && (GET_CODE (our_prev) == INSN
2671 || GET_CODE (our_prev) == CALL_INSN);
2672 our_prev = prev_nonnote_insn (our_prev))
2674 rtx pat = PATTERN (our_prev);
2676 /* If we reach a CALL which is not calling a const function
2677 or the callee pops the arguments, then give up. */
2678 if (GET_CODE (our_prev) == CALL_INSN
2679 && (! CONST_CALL_P (our_prev)
2680 || GET_CODE (pat) != SET || GET_CODE (SET_SRC (pat)) != CALL))
2681 break;
2683 /* If we reach a SEQUENCE, it is too complex to try to
2684 do anything with it, so give up. */
2685 if (GET_CODE (pat) == SEQUENCE)
2686 break;
2688 if (GET_CODE (pat) == USE
2689 && GET_CODE (XEXP (pat, 0)) == INSN)
2690 /* reorg creates USEs that look like this. We leave them
2691 alone because reorg needs them for its own purposes. */
2692 break;
2694 if (reg_set_p (reg, pat))
2696 if (side_effects_p (pat) && GET_CODE (our_prev) != CALL_INSN)
2697 break;
2699 if (GET_CODE (pat) == PARALLEL)
2701 /* If we find a SET of something else, we can't
2702 delete the insn. */
2704 int i;
2706 for (i = 0; i < XVECLEN (pat, 0); i++)
2708 rtx part = XVECEXP (pat, 0, i);
2710 if (GET_CODE (part) == SET
2711 && SET_DEST (part) != reg)
2712 break;
2715 if (i == XVECLEN (pat, 0))
2716 delete_computation (our_prev);
2718 else if (GET_CODE (pat) == SET
2719 && GET_CODE (SET_DEST (pat)) == REG)
2721 int dest_regno = REGNO (SET_DEST (pat));
2722 int dest_endregno
2723 = (dest_regno
2724 + (dest_regno < FIRST_PSEUDO_REGISTER
2725 ? HARD_REGNO_NREGS (dest_regno,
2726 GET_MODE (SET_DEST (pat))) : 1));
2727 int regno = REGNO (reg);
2728 int endregno
2729 = (regno
2730 + (regno < FIRST_PSEUDO_REGISTER
2731 ? HARD_REGNO_NREGS (regno, GET_MODE (reg)) : 1));
2733 if (dest_regno >= regno
2734 && dest_endregno <= endregno)
2735 delete_computation (our_prev);
2737 /* We may have a multi-word hard register and some, but not
2738 all, of the words of the register are needed in subsequent
2739 insns. Write REG_UNUSED notes for those parts that were not
2740 needed. */
2741 else if (dest_regno <= regno
2742 && dest_endregno >= endregno)
2744 int i;
2746 REG_NOTES (our_prev)
2747 = gen_rtx_EXPR_LIST (REG_UNUSED, reg,
2748 REG_NOTES (our_prev));
2750 for (i = dest_regno; i < dest_endregno; i++)
2751 if (! find_regno_note (our_prev, REG_UNUSED, i))
2752 break;
2754 if (i == dest_endregno)
2755 delete_computation (our_prev);
2759 break;
2762 /* If PAT references the register that dies here, it is an
2763 additional use. Hence any prior SET isn't dead. However, this
2764 insn becomes the new place for the REG_DEAD note. */
2765 if (reg_overlap_mentioned_p (reg, pat))
2767 XEXP (note, 1) = REG_NOTES (our_prev);
2768 REG_NOTES (our_prev) = note;
2769 break;
2774 /* Delete INSN and recursively delete insns that compute values used only
2775 by INSN. This uses the REG_DEAD notes computed during flow analysis.
2776 If we are running before flow.c, we need do nothing since flow.c will
2777 delete dead code. We also can't know if the registers being used are
2778 dead or not at this point.
2780 Otherwise, look at all our REG_DEAD notes. If a previous insn does
2781 nothing other than set a register that dies in this insn, we can delete
2782 that insn as well.
2784 On machines with CC0, if CC0 is used in this insn, we may be able to
2785 delete the insn that set it. */
2787 static void
2788 delete_computation (insn)
2789 rtx insn;
2791 rtx note, next;
2793 #ifdef HAVE_cc0
2794 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2796 rtx prev = prev_nonnote_insn (insn);
2797 /* We assume that at this stage
2798 CC's are always set explicitly
2799 and always immediately before the jump that
2800 will use them. So if the previous insn
2801 exists to set the CC's, delete it
2802 (unless it performs auto-increments, etc.). */
2803 if (prev && GET_CODE (prev) == INSN
2804 && sets_cc0_p (PATTERN (prev)))
2806 if (sets_cc0_p (PATTERN (prev)) > 0
2807 && ! side_effects_p (PATTERN (prev)))
2808 delete_computation (prev);
2809 else
2810 /* Otherwise, show that cc0 won't be used. */
2811 REG_NOTES (prev) = gen_rtx_EXPR_LIST (REG_UNUSED,
2812 cc0_rtx, REG_NOTES (prev));
2815 #endif
2817 for (note = REG_NOTES (insn); note; note = next)
2819 next = XEXP (note, 1);
2821 if (REG_NOTE_KIND (note) != REG_DEAD
2822 /* Verify that the REG_NOTE is legitimate. */
2823 || GET_CODE (XEXP (note, 0)) != REG)
2824 continue;
2826 delete_prior_computation (note, insn);
2829 delete_insn (insn);
2832 /* Delete insn INSN from the chain of insns and update label ref counts.
2833 May delete some following insns as a consequence; may even delete
2834 a label elsewhere and insns that follow it.
2836 Returns the first insn after INSN that was not deleted. */
2839 delete_insn (insn)
2840 register rtx insn;
2842 register rtx next = NEXT_INSN (insn);
2843 register rtx prev = PREV_INSN (insn);
2844 register int was_code_label = (GET_CODE (insn) == CODE_LABEL);
2845 register int dont_really_delete = 0;
2846 rtx note;
2848 while (next && INSN_DELETED_P (next))
2849 next = NEXT_INSN (next);
2851 /* This insn is already deleted => return first following nondeleted. */
2852 if (INSN_DELETED_P (insn))
2853 return next;
2855 if (was_code_label)
2856 remove_node_from_expr_list (insn, &nonlocal_goto_handler_labels);
2858 /* Don't delete user-declared labels. When optimizing, convert them
2859 to special NOTEs instead. When not optimizing, leave them alone. */
2860 if (was_code_label && LABEL_NAME (insn) != 0)
2862 if (optimize)
2864 const char *name = LABEL_NAME (insn);
2865 PUT_CODE (insn, NOTE);
2866 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED_LABEL;
2867 NOTE_SOURCE_FILE (insn) = name;
2870 dont_really_delete = 1;
2872 else
2873 /* Mark this insn as deleted. */
2874 INSN_DELETED_P (insn) = 1;
2876 /* If this is an unconditional jump, delete it from the jump chain. */
2877 if (simplejump_p (insn))
2878 delete_from_jump_chain (insn);
2880 /* If instruction is followed by a barrier,
2881 delete the barrier too. */
2883 if (next != 0 && GET_CODE (next) == BARRIER)
2885 INSN_DELETED_P (next) = 1;
2886 next = NEXT_INSN (next);
2889 /* Patch out INSN (and the barrier if any) */
2891 if (! dont_really_delete)
2893 if (prev)
2895 NEXT_INSN (prev) = next;
2896 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
2897 NEXT_INSN (XVECEXP (PATTERN (prev), 0,
2898 XVECLEN (PATTERN (prev), 0) - 1)) = next;
2901 if (next)
2903 PREV_INSN (next) = prev;
2904 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
2905 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
2908 if (prev && NEXT_INSN (prev) == 0)
2909 set_last_insn (prev);
2912 /* If deleting a jump, decrement the count of the label,
2913 and delete the label if it is now unused. */
2915 if (GET_CODE (insn) == JUMP_INSN && JUMP_LABEL (insn))
2917 rtx lab = JUMP_LABEL (insn), lab_next;
2919 if (--LABEL_NUSES (lab) == 0)
2921 /* This can delete NEXT or PREV,
2922 either directly if NEXT is JUMP_LABEL (INSN),
2923 or indirectly through more levels of jumps. */
2924 delete_insn (lab);
2926 /* I feel a little doubtful about this loop,
2927 but I see no clean and sure alternative way
2928 to find the first insn after INSN that is not now deleted.
2929 I hope this works. */
2930 while (next && INSN_DELETED_P (next))
2931 next = NEXT_INSN (next);
2932 return next;
2934 else if ((lab_next = next_nonnote_insn (lab)) != NULL
2935 && GET_CODE (lab_next) == JUMP_INSN
2936 && (GET_CODE (PATTERN (lab_next)) == ADDR_VEC
2937 || GET_CODE (PATTERN (lab_next)) == ADDR_DIFF_VEC))
2939 /* If we're deleting the tablejump, delete the dispatch table.
2940 We may not be able to kill the label immediately preceeding
2941 just yet, as it might be referenced in code leading up to
2942 the tablejump. */
2943 delete_insn (lab_next);
2947 /* Likewise if we're deleting a dispatch table. */
2949 if (GET_CODE (insn) == JUMP_INSN
2950 && (GET_CODE (PATTERN (insn)) == ADDR_VEC
2951 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC))
2953 rtx pat = PATTERN (insn);
2954 int i, diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
2955 int len = XVECLEN (pat, diff_vec_p);
2957 for (i = 0; i < len; i++)
2958 if (--LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0)) == 0)
2959 delete_insn (XEXP (XVECEXP (pat, diff_vec_p, i), 0));
2960 while (next && INSN_DELETED_P (next))
2961 next = NEXT_INSN (next);
2962 return next;
2965 /* Likewise for an ordinary INSN / CALL_INSN with a REG_LABEL note. */
2966 if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN)
2967 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2968 if (REG_NOTE_KIND (note) == REG_LABEL
2969 /* This could also be a NOTE_INSN_DELETED_LABEL note. */
2970 && GET_CODE (XEXP (note, 0)) == CODE_LABEL)
2971 if (--LABEL_NUSES (XEXP (note, 0)) == 0)
2972 delete_insn (XEXP (note, 0));
2974 while (prev && (INSN_DELETED_P (prev) || GET_CODE (prev) == NOTE))
2975 prev = PREV_INSN (prev);
2977 /* If INSN was a label and a dispatch table follows it,
2978 delete the dispatch table. The tablejump must have gone already.
2979 It isn't useful to fall through into a table. */
2981 if (was_code_label
2982 && NEXT_INSN (insn) != 0
2983 && GET_CODE (NEXT_INSN (insn)) == JUMP_INSN
2984 && (GET_CODE (PATTERN (NEXT_INSN (insn))) == ADDR_VEC
2985 || GET_CODE (PATTERN (NEXT_INSN (insn))) == ADDR_DIFF_VEC))
2986 next = delete_insn (NEXT_INSN (insn));
2988 /* If INSN was a label, delete insns following it if now unreachable. */
2990 if (was_code_label && prev && GET_CODE (prev) == BARRIER)
2992 register RTX_CODE code;
2993 while (next != 0
2994 && (GET_RTX_CLASS (code = GET_CODE (next)) == 'i'
2995 || code == NOTE || code == BARRIER
2996 || (code == CODE_LABEL && INSN_DELETED_P (next))))
2998 if (code == NOTE
2999 && NOTE_LINE_NUMBER (next) != NOTE_INSN_FUNCTION_END)
3000 next = NEXT_INSN (next);
3001 /* Keep going past other deleted labels to delete what follows. */
3002 else if (code == CODE_LABEL && INSN_DELETED_P (next))
3003 next = NEXT_INSN (next);
3004 else
3005 /* Note: if this deletes a jump, it can cause more
3006 deletion of unreachable code, after a different label.
3007 As long as the value from this recursive call is correct,
3008 this invocation functions correctly. */
3009 next = delete_insn (next);
3013 return next;
3016 /* Advance from INSN till reaching something not deleted
3017 then return that. May return INSN itself. */
3020 next_nondeleted_insn (insn)
3021 rtx insn;
3023 while (INSN_DELETED_P (insn))
3024 insn = NEXT_INSN (insn);
3025 return insn;
3028 /* Delete a range of insns from FROM to TO, inclusive.
3029 This is for the sake of peephole optimization, so assume
3030 that whatever these insns do will still be done by a new
3031 peephole insn that will replace them. */
3033 void
3034 delete_for_peephole (from, to)
3035 register rtx from, to;
3037 register rtx insn = from;
3039 while (1)
3041 register rtx next = NEXT_INSN (insn);
3042 register rtx prev = PREV_INSN (insn);
3044 if (GET_CODE (insn) != NOTE)
3046 INSN_DELETED_P (insn) = 1;
3048 /* Patch this insn out of the chain. */
3049 /* We don't do this all at once, because we
3050 must preserve all NOTEs. */
3051 if (prev)
3052 NEXT_INSN (prev) = next;
3054 if (next)
3055 PREV_INSN (next) = prev;
3058 if (insn == to)
3059 break;
3060 insn = next;
3063 /* Note that if TO is an unconditional jump
3064 we *do not* delete the BARRIER that follows,
3065 since the peephole that replaces this sequence
3066 is also an unconditional jump in that case. */
3069 /* We have determined that INSN is never reached, and are about to
3070 delete it. Print a warning if the user asked for one.
3072 To try to make this warning more useful, this should only be called
3073 once per basic block not reached, and it only warns when the basic
3074 block contains more than one line from the current function, and
3075 contains at least one operation. CSE and inlining can duplicate insns,
3076 so it's possible to get spurious warnings from this. */
3078 void
3079 never_reached_warning (avoided_insn)
3080 rtx avoided_insn;
3082 rtx insn;
3083 rtx a_line_note = NULL;
3084 int two_avoided_lines = 0;
3085 int contains_insn = 0;
3087 if (! warn_notreached)
3088 return;
3090 /* Scan forwards, looking at LINE_NUMBER notes, until
3091 we hit a LABEL or we run out of insns. */
3093 for (insn = avoided_insn; insn != NULL; insn = NEXT_INSN (insn))
3095 if (GET_CODE (insn) == CODE_LABEL)
3096 break;
3097 else if (GET_CODE (insn) == NOTE /* A line number note? */
3098 && NOTE_LINE_NUMBER (insn) >= 0)
3100 if (a_line_note == NULL)
3101 a_line_note = insn;
3102 else
3103 two_avoided_lines |= (NOTE_LINE_NUMBER (a_line_note)
3104 != NOTE_LINE_NUMBER (insn));
3106 else if (INSN_P (insn))
3107 contains_insn = 1;
3109 if (two_avoided_lines && contains_insn)
3110 warning_with_file_and_line (NOTE_SOURCE_FILE (a_line_note),
3111 NOTE_LINE_NUMBER (a_line_note),
3112 "will never be executed");
3115 /* Throughout LOC, redirect OLABEL to NLABEL. Treat null OLABEL or
3116 NLABEL as a return. Accrue modifications into the change group. */
3118 static void
3119 redirect_exp_1 (loc, olabel, nlabel, insn)
3120 rtx *loc;
3121 rtx olabel, nlabel;
3122 rtx insn;
3124 register rtx x = *loc;
3125 register RTX_CODE code = GET_CODE (x);
3126 register int i;
3127 register const char *fmt;
3129 if (code == LABEL_REF)
3131 if (XEXP (x, 0) == olabel)
3133 rtx n;
3134 if (nlabel)
3135 n = gen_rtx_LABEL_REF (VOIDmode, nlabel);
3136 else
3137 n = gen_rtx_RETURN (VOIDmode);
3139 validate_change (insn, loc, n, 1);
3140 return;
3143 else if (code == RETURN && olabel == 0)
3145 x = gen_rtx_LABEL_REF (VOIDmode, nlabel);
3146 if (loc == &PATTERN (insn))
3147 x = gen_rtx_SET (VOIDmode, pc_rtx, x);
3148 validate_change (insn, loc, x, 1);
3149 return;
3152 if (code == SET && nlabel == 0 && SET_DEST (x) == pc_rtx
3153 && GET_CODE (SET_SRC (x)) == LABEL_REF
3154 && XEXP (SET_SRC (x), 0) == olabel)
3156 validate_change (insn, loc, gen_rtx_RETURN (VOIDmode), 1);
3157 return;
3160 fmt = GET_RTX_FORMAT (code);
3161 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3163 if (fmt[i] == 'e')
3164 redirect_exp_1 (&XEXP (x, i), olabel, nlabel, insn);
3165 else if (fmt[i] == 'E')
3167 register int j;
3168 for (j = 0; j < XVECLEN (x, i); j++)
3169 redirect_exp_1 (&XVECEXP (x, i, j), olabel, nlabel, insn);
3174 /* Similar, but apply the change group and report success or failure. */
3176 static int
3177 redirect_exp (olabel, nlabel, insn)
3178 rtx olabel, nlabel;
3179 rtx insn;
3181 rtx *loc;
3183 if (GET_CODE (PATTERN (insn)) == PARALLEL)
3184 loc = &XVECEXP (PATTERN (insn), 0, 0);
3185 else
3186 loc = &PATTERN (insn);
3188 redirect_exp_1 (loc, olabel, nlabel, insn);
3189 if (num_validated_changes () == 0)
3190 return 0;
3192 return apply_change_group ();
3195 /* Make JUMP go to NLABEL instead of where it jumps now. Accrue
3196 the modifications into the change group. Return false if we did
3197 not see how to do that. */
3200 redirect_jump_1 (jump, nlabel)
3201 rtx jump, nlabel;
3203 int ochanges = num_validated_changes ();
3204 rtx *loc;
3206 if (GET_CODE (PATTERN (jump)) == PARALLEL)
3207 loc = &XVECEXP (PATTERN (jump), 0, 0);
3208 else
3209 loc = &PATTERN (jump);
3211 redirect_exp_1 (loc, JUMP_LABEL (jump), nlabel, jump);
3212 return num_validated_changes () > ochanges;
3215 /* Make JUMP go to NLABEL instead of where it jumps now. If the old
3216 jump target label is unused as a result, it and the code following
3217 it may be deleted.
3219 If NLABEL is zero, we are to turn the jump into a (possibly conditional)
3220 RETURN insn.
3222 The return value will be 1 if the change was made, 0 if it wasn't
3223 (this can only occur for NLABEL == 0). */
3226 redirect_jump (jump, nlabel, delete_unused)
3227 rtx jump, nlabel;
3228 int delete_unused;
3230 register rtx olabel = JUMP_LABEL (jump);
3232 if (nlabel == olabel)
3233 return 1;
3235 if (! redirect_exp (olabel, nlabel, jump))
3236 return 0;
3238 /* If this is an unconditional branch, delete it from the jump_chain of
3239 OLABEL and add it to the jump_chain of NLABEL (assuming both labels
3240 have UID's in range and JUMP_CHAIN is valid). */
3241 if (jump_chain && (simplejump_p (jump)
3242 || GET_CODE (PATTERN (jump)) == RETURN))
3244 int label_index = nlabel ? INSN_UID (nlabel) : 0;
3246 delete_from_jump_chain (jump);
3247 if (label_index < max_jump_chain
3248 && INSN_UID (jump) < max_jump_chain)
3250 jump_chain[INSN_UID (jump)] = jump_chain[label_index];
3251 jump_chain[label_index] = jump;
3255 JUMP_LABEL (jump) = nlabel;
3256 if (nlabel)
3257 ++LABEL_NUSES (nlabel);
3259 /* If we're eliding the jump over exception cleanups at the end of a
3260 function, move the function end note so that -Wreturn-type works. */
3261 if (olabel && nlabel
3262 && NEXT_INSN (olabel)
3263 && GET_CODE (NEXT_INSN (olabel)) == NOTE
3264 && NOTE_LINE_NUMBER (NEXT_INSN (olabel)) == NOTE_INSN_FUNCTION_END)
3265 emit_note_after (NOTE_INSN_FUNCTION_END, nlabel);
3267 if (olabel && --LABEL_NUSES (olabel) == 0 && delete_unused)
3268 delete_insn (olabel);
3270 return 1;
3273 /* Invert the jump condition of rtx X contained in jump insn, INSN.
3274 Accrue the modifications into the change group. */
3276 static void
3277 invert_exp_1 (insn)
3278 rtx insn;
3280 register RTX_CODE code;
3281 rtx x = pc_set (insn);
3283 if (!x)
3284 abort ();
3285 x = SET_SRC (x);
3287 code = GET_CODE (x);
3289 if (code == IF_THEN_ELSE)
3291 register rtx comp = XEXP (x, 0);
3292 register rtx tem;
3293 enum rtx_code reversed_code;
3295 /* We can do this in two ways: The preferable way, which can only
3296 be done if this is not an integer comparison, is to reverse
3297 the comparison code. Otherwise, swap the THEN-part and ELSE-part
3298 of the IF_THEN_ELSE. If we can't do either, fail. */
3300 reversed_code = reversed_comparison_code (comp, insn);
3302 if (reversed_code != UNKNOWN)
3304 validate_change (insn, &XEXP (x, 0),
3305 gen_rtx_fmt_ee (reversed_code,
3306 GET_MODE (comp), XEXP (comp, 0),
3307 XEXP (comp, 1)),
3309 return;
3312 tem = XEXP (x, 1);
3313 validate_change (insn, &XEXP (x, 1), XEXP (x, 2), 1);
3314 validate_change (insn, &XEXP (x, 2), tem, 1);
3316 else
3317 abort ();
3320 /* Invert the jump condition of conditional jump insn, INSN.
3322 Return 1 if we can do so, 0 if we cannot find a way to do so that
3323 matches a pattern. */
3325 static int
3326 invert_exp (insn)
3327 rtx insn;
3329 invert_exp_1 (insn);
3330 if (num_validated_changes () == 0)
3331 return 0;
3333 return apply_change_group ();
3336 /* Invert the condition of the jump JUMP, and make it jump to label
3337 NLABEL instead of where it jumps now. Accrue changes into the
3338 change group. Return false if we didn't see how to perform the
3339 inversion and redirection. */
3342 invert_jump_1 (jump, nlabel)
3343 rtx jump, nlabel;
3345 int ochanges;
3347 ochanges = num_validated_changes ();
3348 invert_exp_1 (jump);
3349 if (num_validated_changes () == ochanges)
3350 return 0;
3352 return redirect_jump_1 (jump, nlabel);
3355 /* Invert the condition of the jump JUMP, and make it jump to label
3356 NLABEL instead of where it jumps now. Return true if successful. */
3359 invert_jump (jump, nlabel, delete_unused)
3360 rtx jump, nlabel;
3361 int delete_unused;
3363 /* We have to either invert the condition and change the label or
3364 do neither. Either operation could fail. We first try to invert
3365 the jump. If that succeeds, we try changing the label. If that fails,
3366 we invert the jump back to what it was. */
3368 if (! invert_exp (jump))
3369 return 0;
3371 if (redirect_jump (jump, nlabel, delete_unused))
3373 invert_br_probabilities (jump);
3375 return 1;
3378 if (! invert_exp (jump))
3379 /* This should just be putting it back the way it was. */
3380 abort ();
3382 return 0;
3385 /* Delete the instruction JUMP from any jump chain it might be on. */
3387 static void
3388 delete_from_jump_chain (jump)
3389 rtx jump;
3391 int index;
3392 rtx olabel = JUMP_LABEL (jump);
3394 /* Handle unconditional jumps. */
3395 if (jump_chain && olabel != 0
3396 && INSN_UID (olabel) < max_jump_chain
3397 && simplejump_p (jump))
3398 index = INSN_UID (olabel);
3399 /* Handle return insns. */
3400 else if (jump_chain && GET_CODE (PATTERN (jump)) == RETURN)
3401 index = 0;
3402 else
3403 return;
3405 if (jump_chain[index] == jump)
3406 jump_chain[index] = jump_chain[INSN_UID (jump)];
3407 else
3409 rtx insn;
3411 for (insn = jump_chain[index];
3412 insn != 0;
3413 insn = jump_chain[INSN_UID (insn)])
3414 if (jump_chain[INSN_UID (insn)] == jump)
3416 jump_chain[INSN_UID (insn)] = jump_chain[INSN_UID (jump)];
3417 break;
3422 /* Make jump JUMP jump to label NLABEL, assuming it used to be a tablejump.
3424 If the old jump target label (before the dispatch table) becomes unused,
3425 it and the dispatch table may be deleted. In that case, find the insn
3426 before the jump references that label and delete it and logical successors
3427 too. */
3429 static void
3430 redirect_tablejump (jump, nlabel)
3431 rtx jump, nlabel;
3433 register rtx olabel = JUMP_LABEL (jump);
3434 rtx *notep, note, next;
3436 /* Add this jump to the jump_chain of NLABEL. */
3437 if (jump_chain && INSN_UID (nlabel) < max_jump_chain
3438 && INSN_UID (jump) < max_jump_chain)
3440 jump_chain[INSN_UID (jump)] = jump_chain[INSN_UID (nlabel)];
3441 jump_chain[INSN_UID (nlabel)] = jump;
3444 for (notep = &REG_NOTES (jump), note = *notep; note; note = next)
3446 next = XEXP (note, 1);
3448 if (REG_NOTE_KIND (note) != REG_DEAD
3449 /* Verify that the REG_NOTE is legitimate. */
3450 || GET_CODE (XEXP (note, 0)) != REG
3451 || ! reg_mentioned_p (XEXP (note, 0), PATTERN (jump)))
3452 notep = &XEXP (note, 1);
3453 else
3455 delete_prior_computation (note, jump);
3456 *notep = next;
3460 PATTERN (jump) = gen_jump (nlabel);
3461 JUMP_LABEL (jump) = nlabel;
3462 ++LABEL_NUSES (nlabel);
3463 INSN_CODE (jump) = -1;
3465 if (--LABEL_NUSES (olabel) == 0)
3467 delete_labelref_insn (jump, olabel, 0);
3468 delete_insn (olabel);
3472 /* Find the insn referencing LABEL that is a logical predecessor of INSN.
3473 If we found one, delete it and then delete this insn if DELETE_THIS is
3474 non-zero. Return non-zero if INSN or a predecessor references LABEL. */
3476 static int
3477 delete_labelref_insn (insn, label, delete_this)
3478 rtx insn, label;
3479 int delete_this;
3481 int deleted = 0;
3482 rtx link;
3484 if (GET_CODE (insn) != NOTE
3485 && reg_mentioned_p (label, PATTERN (insn)))
3487 if (delete_this)
3489 delete_insn (insn);
3490 deleted = 1;
3492 else
3493 return 1;
3496 for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
3497 if (delete_labelref_insn (XEXP (link, 0), label, 1))
3499 if (delete_this)
3501 delete_insn (insn);
3502 deleted = 1;
3504 else
3505 return 1;
3508 return deleted;
3511 /* Like rtx_equal_p except that it considers two REGs as equal
3512 if they renumber to the same value and considers two commutative
3513 operations to be the same if the order of the operands has been
3514 reversed.
3516 ??? Addition is not commutative on the PA due to the weird implicit
3517 space register selection rules for memory addresses. Therefore, we
3518 don't consider a + b == b + a.
3520 We could/should make this test a little tighter. Possibly only
3521 disabling it on the PA via some backend macro or only disabling this
3522 case when the PLUS is inside a MEM. */
3525 rtx_renumbered_equal_p (x, y)
3526 rtx x, y;
3528 register int i;
3529 register RTX_CODE code = GET_CODE (x);
3530 register const char *fmt;
3532 if (x == y)
3533 return 1;
3535 if ((code == REG || (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG))
3536 && (GET_CODE (y) == REG || (GET_CODE (y) == SUBREG
3537 && GET_CODE (SUBREG_REG (y)) == REG)))
3539 int reg_x = -1, reg_y = -1;
3540 int byte_x = 0, byte_y = 0;
3542 if (GET_MODE (x) != GET_MODE (y))
3543 return 0;
3545 /* If we haven't done any renumbering, don't
3546 make any assumptions. */
3547 if (reg_renumber == 0)
3548 return rtx_equal_p (x, y);
3550 if (code == SUBREG)
3552 reg_x = REGNO (SUBREG_REG (x));
3553 byte_x = SUBREG_BYTE (x);
3555 if (reg_renumber[reg_x] >= 0)
3557 reg_x = subreg_regno_offset (reg_renumber[reg_x],
3558 GET_MODE (SUBREG_REG (x)),
3559 byte_x,
3560 GET_MODE (x));
3561 byte_x = 0;
3564 else
3566 reg_x = REGNO (x);
3567 if (reg_renumber[reg_x] >= 0)
3568 reg_x = reg_renumber[reg_x];
3571 if (GET_CODE (y) == SUBREG)
3573 reg_y = REGNO (SUBREG_REG (y));
3574 byte_y = SUBREG_BYTE (y);
3576 if (reg_renumber[reg_y] >= 0)
3578 reg_y = subreg_regno_offset (reg_renumber[reg_y],
3579 GET_MODE (SUBREG_REG (y)),
3580 byte_y,
3581 GET_MODE (y));
3582 byte_y = 0;
3585 else
3587 reg_y = REGNO (y);
3588 if (reg_renumber[reg_y] >= 0)
3589 reg_y = reg_renumber[reg_y];
3592 return reg_x >= 0 && reg_x == reg_y && byte_x == byte_y;
3595 /* Now we have disposed of all the cases
3596 in which different rtx codes can match. */
3597 if (code != GET_CODE (y))
3598 return 0;
3600 switch (code)
3602 case PC:
3603 case CC0:
3604 case ADDR_VEC:
3605 case ADDR_DIFF_VEC:
3606 return 0;
3608 case CONST_INT:
3609 return INTVAL (x) == INTVAL (y);
3611 case LABEL_REF:
3612 /* We can't assume nonlocal labels have their following insns yet. */
3613 if (LABEL_REF_NONLOCAL_P (x) || LABEL_REF_NONLOCAL_P (y))
3614 return XEXP (x, 0) == XEXP (y, 0);
3616 /* Two label-refs are equivalent if they point at labels
3617 in the same position in the instruction stream. */
3618 return (next_real_insn (XEXP (x, 0))
3619 == next_real_insn (XEXP (y, 0)));
3621 case SYMBOL_REF:
3622 return XSTR (x, 0) == XSTR (y, 0);
3624 case CODE_LABEL:
3625 /* If we didn't match EQ equality above, they aren't the same. */
3626 return 0;
3628 default:
3629 break;
3632 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
3634 if (GET_MODE (x) != GET_MODE (y))
3635 return 0;
3637 /* For commutative operations, the RTX match if the operand match in any
3638 order. Also handle the simple binary and unary cases without a loop.
3640 ??? Don't consider PLUS a commutative operator; see comments above. */
3641 if ((code == EQ || code == NE || GET_RTX_CLASS (code) == 'c')
3642 && code != PLUS)
3643 return ((rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
3644 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)))
3645 || (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 1))
3646 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 0))));
3647 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == '2')
3648 return (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
3649 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)));
3650 else if (GET_RTX_CLASS (code) == '1')
3651 return rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0));
3653 /* Compare the elements. If any pair of corresponding elements
3654 fail to match, return 0 for the whole things. */
3656 fmt = GET_RTX_FORMAT (code);
3657 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3659 register int j;
3660 switch (fmt[i])
3662 case 'w':
3663 if (XWINT (x, i) != XWINT (y, i))
3664 return 0;
3665 break;
3667 case 'i':
3668 if (XINT (x, i) != XINT (y, i))
3669 return 0;
3670 break;
3672 case 's':
3673 if (strcmp (XSTR (x, i), XSTR (y, i)))
3674 return 0;
3675 break;
3677 case 'e':
3678 if (! rtx_renumbered_equal_p (XEXP (x, i), XEXP (y, i)))
3679 return 0;
3680 break;
3682 case 'u':
3683 if (XEXP (x, i) != XEXP (y, i))
3684 return 0;
3685 /* fall through. */
3686 case '0':
3687 break;
3689 case 'E':
3690 if (XVECLEN (x, i) != XVECLEN (y, i))
3691 return 0;
3692 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3693 if (!rtx_renumbered_equal_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
3694 return 0;
3695 break;
3697 default:
3698 abort ();
3701 return 1;
3704 /* If X is a hard register or equivalent to one or a subregister of one,
3705 return the hard register number. If X is a pseudo register that was not
3706 assigned a hard register, return the pseudo register number. Otherwise,
3707 return -1. Any rtx is valid for X. */
3710 true_regnum (x)
3711 rtx x;
3713 if (GET_CODE (x) == REG)
3715 if (REGNO (x) >= FIRST_PSEUDO_REGISTER && reg_renumber[REGNO (x)] >= 0)
3716 return reg_renumber[REGNO (x)];
3717 return REGNO (x);
3719 if (GET_CODE (x) == SUBREG)
3721 int base = true_regnum (SUBREG_REG (x));
3722 if (base >= 0 && base < FIRST_PSEUDO_REGISTER)
3723 return base + subreg_regno_offset (REGNO (SUBREG_REG (x)),
3724 GET_MODE (SUBREG_REG (x)),
3725 SUBREG_BYTE (x), GET_MODE (x));
3727 return -1;
3730 /* Optimize code of the form:
3732 for (x = a[i]; x; ...)
3734 for (x = a[i]; x; ...)
3736 foo:
3738 Loop optimize will change the above code into
3740 if (x = a[i])
3741 for (;;)
3742 { ...; if (! (x = ...)) break; }
3743 if (x = a[i])
3744 for (;;)
3745 { ...; if (! (x = ...)) break; }
3746 foo:
3748 In general, if the first test fails, the program can branch
3749 directly to `foo' and skip the second try which is doomed to fail.
3750 We run this after loop optimization and before flow analysis. */
3752 /* When comparing the insn patterns, we track the fact that different
3753 pseudo-register numbers may have been used in each computation.
3754 The following array stores an equivalence -- same_regs[I] == J means
3755 that pseudo register I was used in the first set of tests in a context
3756 where J was used in the second set. We also count the number of such
3757 pending equivalences. If nonzero, the expressions really aren't the
3758 same. */
3760 static int *same_regs;
3762 static int num_same_regs;
3764 /* Track any registers modified between the target of the first jump and
3765 the second jump. They never compare equal. */
3767 static char *modified_regs;
3769 /* Record if memory was modified. */
3771 static int modified_mem;
3773 /* Called via note_stores on each insn between the target of the first
3774 branch and the second branch. It marks any changed registers. */
3776 static void
3777 mark_modified_reg (dest, x, data)
3778 rtx dest;
3779 rtx x;
3780 void *data ATTRIBUTE_UNUSED;
3782 int regno;
3783 unsigned int i;
3785 if (GET_CODE (dest) == SUBREG)
3786 dest = SUBREG_REG (dest);
3788 if (GET_CODE (dest) == MEM)
3789 modified_mem = 1;
3791 if (GET_CODE (dest) != REG)
3792 return;
3794 regno = REGNO (dest);
3795 if (regno >= FIRST_PSEUDO_REGISTER)
3796 modified_regs[regno] = 1;
3797 /* Don't consider a hard condition code register as modified,
3798 if it is only being set. thread_jumps will check if it is set
3799 to the same value. */
3800 else if (GET_MODE_CLASS (GET_MODE (dest)) != MODE_CC
3801 || GET_CODE (x) != SET
3802 || ! rtx_equal_p (dest, SET_DEST (x))
3803 || HARD_REGNO_NREGS (regno, GET_MODE (dest)) != 1)
3804 for (i = 0; i < HARD_REGNO_NREGS (regno, GET_MODE (dest)); i++)
3805 modified_regs[regno + i] = 1;
3808 /* F is the first insn in the chain of insns. */
3810 void
3811 thread_jumps (f, max_reg, flag_before_loop)
3812 rtx f;
3813 int max_reg;
3814 int flag_before_loop;
3816 /* Basic algorithm is to find a conditional branch,
3817 the label it may branch to, and the branch after
3818 that label. If the two branches test the same condition,
3819 walk back from both branch paths until the insn patterns
3820 differ, or code labels are hit. If we make it back to
3821 the target of the first branch, then we know that the first branch
3822 will either always succeed or always fail depending on the relative
3823 senses of the two branches. So adjust the first branch accordingly
3824 in this case. */
3826 rtx label, b1, b2, t1, t2;
3827 enum rtx_code code1, code2;
3828 rtx b1op0, b1op1, b2op0, b2op1;
3829 int changed = 1;
3830 int i;
3831 int *all_reset;
3832 enum rtx_code reversed_code1, reversed_code2;
3834 /* Allocate register tables and quick-reset table. */
3835 modified_regs = (char *) xmalloc (max_reg * sizeof (char));
3836 same_regs = (int *) xmalloc (max_reg * sizeof (int));
3837 all_reset = (int *) xmalloc (max_reg * sizeof (int));
3838 for (i = 0; i < max_reg; i++)
3839 all_reset[i] = -1;
3841 while (changed)
3843 changed = 0;
3845 for (b1 = f; b1; b1 = NEXT_INSN (b1))
3847 rtx set;
3848 rtx set2;
3850 /* Get to a candidate branch insn. */
3851 if (GET_CODE (b1) != JUMP_INSN
3852 || ! any_condjump_p (b1) || JUMP_LABEL (b1) == 0)
3853 continue;
3855 memset (modified_regs, 0, max_reg * sizeof (char));
3856 modified_mem = 0;
3858 memcpy (same_regs, all_reset, max_reg * sizeof (int));
3859 num_same_regs = 0;
3861 label = JUMP_LABEL (b1);
3863 /* Look for a branch after the target. Record any registers and
3864 memory modified between the target and the branch. Stop when we
3865 get to a label since we can't know what was changed there. */
3866 for (b2 = NEXT_INSN (label); b2; b2 = NEXT_INSN (b2))
3868 if (GET_CODE (b2) == CODE_LABEL)
3869 break;
3871 else if (GET_CODE (b2) == JUMP_INSN)
3873 /* If this is an unconditional jump and is the only use of
3874 its target label, we can follow it. */
3875 if (any_uncondjump_p (b2)
3876 && onlyjump_p (b2)
3877 && JUMP_LABEL (b2) != 0
3878 && LABEL_NUSES (JUMP_LABEL (b2)) == 1)
3880 b2 = JUMP_LABEL (b2);
3881 continue;
3883 else
3884 break;
3887 if (GET_CODE (b2) != CALL_INSN && GET_CODE (b2) != INSN)
3888 continue;
3890 if (GET_CODE (b2) == CALL_INSN)
3892 modified_mem = 1;
3893 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3894 if (call_used_regs[i] && ! fixed_regs[i]
3895 && i != STACK_POINTER_REGNUM
3896 && i != FRAME_POINTER_REGNUM
3897 && i != HARD_FRAME_POINTER_REGNUM
3898 && i != ARG_POINTER_REGNUM)
3899 modified_regs[i] = 1;
3902 note_stores (PATTERN (b2), mark_modified_reg, NULL);
3905 /* Check the next candidate branch insn from the label
3906 of the first. */
3907 if (b2 == 0
3908 || GET_CODE (b2) != JUMP_INSN
3909 || b2 == b1
3910 || !any_condjump_p (b2)
3911 || !onlyjump_p (b2))
3912 continue;
3913 set = pc_set (b1);
3914 set2 = pc_set (b2);
3916 /* Get the comparison codes and operands, reversing the
3917 codes if appropriate. If we don't have comparison codes,
3918 we can't do anything. */
3919 b1op0 = XEXP (XEXP (SET_SRC (set), 0), 0);
3920 b1op1 = XEXP (XEXP (SET_SRC (set), 0), 1);
3921 code1 = GET_CODE (XEXP (SET_SRC (set), 0));
3922 reversed_code1 = code1;
3923 if (XEXP (SET_SRC (set), 1) == pc_rtx)
3924 code1 = reversed_comparison_code (XEXP (SET_SRC (set), 0), b1);
3925 else
3926 reversed_code1 = reversed_comparison_code (XEXP (SET_SRC (set), 0), b1);
3928 b2op0 = XEXP (XEXP (SET_SRC (set2), 0), 0);
3929 b2op1 = XEXP (XEXP (SET_SRC (set2), 0), 1);
3930 code2 = GET_CODE (XEXP (SET_SRC (set2), 0));
3931 reversed_code2 = code2;
3932 if (XEXP (SET_SRC (set2), 1) == pc_rtx)
3933 code2 = reversed_comparison_code (XEXP (SET_SRC (set2), 0), b2);
3934 else
3935 reversed_code2 = reversed_comparison_code (XEXP (SET_SRC (set2), 0), b2);
3937 /* If they test the same things and knowing that B1 branches
3938 tells us whether or not B2 branches, check if we
3939 can thread the branch. */
3940 if (rtx_equal_for_thread_p (b1op0, b2op0, b2)
3941 && rtx_equal_for_thread_p (b1op1, b2op1, b2)
3942 && (comparison_dominates_p (code1, code2)
3943 || comparison_dominates_p (code1, reversed_code2)))
3946 t1 = prev_nonnote_insn (b1);
3947 t2 = prev_nonnote_insn (b2);
3949 while (t1 != 0 && t2 != 0)
3951 if (t2 == label)
3953 /* We have reached the target of the first branch.
3954 If there are no pending register equivalents,
3955 we know that this branch will either always
3956 succeed (if the senses of the two branches are
3957 the same) or always fail (if not). */
3958 rtx new_label;
3960 if (num_same_regs != 0)
3961 break;
3963 if (comparison_dominates_p (code1, code2))
3964 new_label = JUMP_LABEL (b2);
3965 else
3966 new_label = get_label_after (b2);
3968 if (JUMP_LABEL (b1) != new_label)
3970 rtx prev = PREV_INSN (new_label);
3972 if (flag_before_loop
3973 && GET_CODE (prev) == NOTE
3974 && NOTE_LINE_NUMBER (prev) == NOTE_INSN_LOOP_BEG)
3976 /* Don't thread to the loop label. If a loop
3977 label is reused, loop optimization will
3978 be disabled for that loop. */
3979 new_label = gen_label_rtx ();
3980 emit_label_after (new_label, PREV_INSN (prev));
3982 changed |= redirect_jump (b1, new_label, 1);
3984 break;
3987 /* If either of these is not a normal insn (it might be
3988 a JUMP_INSN, CALL_INSN, or CODE_LABEL) we fail. (NOTEs
3989 have already been skipped above.) Similarly, fail
3990 if the insns are different. */
3991 if (GET_CODE (t1) != INSN || GET_CODE (t2) != INSN
3992 || recog_memoized (t1) != recog_memoized (t2)
3993 || ! rtx_equal_for_thread_p (PATTERN (t1),
3994 PATTERN (t2), t2))
3995 break;
3997 t1 = prev_nonnote_insn (t1);
3998 t2 = prev_nonnote_insn (t2);
4004 /* Clean up. */
4005 free (modified_regs);
4006 free (same_regs);
4007 free (all_reset);
4010 /* This is like RTX_EQUAL_P except that it knows about our handling of
4011 possibly equivalent registers and knows to consider volatile and
4012 modified objects as not equal.
4014 YINSN is the insn containing Y. */
4017 rtx_equal_for_thread_p (x, y, yinsn)
4018 rtx x, y;
4019 rtx yinsn;
4021 register int i;
4022 register int j;
4023 register enum rtx_code code;
4024 register const char *fmt;
4026 code = GET_CODE (x);
4027 /* Rtx's of different codes cannot be equal. */
4028 if (code != GET_CODE (y))
4029 return 0;
4031 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
4032 (REG:SI x) and (REG:HI x) are NOT equivalent. */
4034 if (GET_MODE (x) != GET_MODE (y))
4035 return 0;
4037 /* For floating-point, consider everything unequal. This is a bit
4038 pessimistic, but this pass would only rarely do anything for FP
4039 anyway. */
4040 if (TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
4041 && FLOAT_MODE_P (GET_MODE (x)) && ! flag_unsafe_math_optimizations)
4042 return 0;
4044 /* For commutative operations, the RTX match if the operand match in any
4045 order. Also handle the simple binary and unary cases without a loop. */
4046 if (code == EQ || code == NE || GET_RTX_CLASS (code) == 'c')
4047 return ((rtx_equal_for_thread_p (XEXP (x, 0), XEXP (y, 0), yinsn)
4048 && rtx_equal_for_thread_p (XEXP (x, 1), XEXP (y, 1), yinsn))
4049 || (rtx_equal_for_thread_p (XEXP (x, 0), XEXP (y, 1), yinsn)
4050 && rtx_equal_for_thread_p (XEXP (x, 1), XEXP (y, 0), yinsn)));
4051 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == '2')
4052 return (rtx_equal_for_thread_p (XEXP (x, 0), XEXP (y, 0), yinsn)
4053 && rtx_equal_for_thread_p (XEXP (x, 1), XEXP (y, 1), yinsn));
4054 else if (GET_RTX_CLASS (code) == '1')
4055 return rtx_equal_for_thread_p (XEXP (x, 0), XEXP (y, 0), yinsn);
4057 /* Handle special-cases first. */
4058 switch (code)
4060 case REG:
4061 if (REGNO (x) == REGNO (y) && ! modified_regs[REGNO (x)])
4062 return 1;
4064 /* If neither is user variable or hard register, check for possible
4065 equivalence. */
4066 if (REG_USERVAR_P (x) || REG_USERVAR_P (y)
4067 || REGNO (x) < FIRST_PSEUDO_REGISTER
4068 || REGNO (y) < FIRST_PSEUDO_REGISTER)
4069 return 0;
4071 if (same_regs[REGNO (x)] == -1)
4073 same_regs[REGNO (x)] = REGNO (y);
4074 num_same_regs++;
4076 /* If this is the first time we are seeing a register on the `Y'
4077 side, see if it is the last use. If not, we can't thread the
4078 jump, so mark it as not equivalent. */
4079 if (REGNO_LAST_UID (REGNO (y)) != INSN_UID (yinsn))
4080 return 0;
4082 return 1;
4084 else
4085 return (same_regs[REGNO (x)] == (int) REGNO (y));
4087 break;
4089 case MEM:
4090 /* If memory modified or either volatile, not equivalent.
4091 Else, check address. */
4092 if (modified_mem || MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
4093 return 0;
4095 return rtx_equal_for_thread_p (XEXP (x, 0), XEXP (y, 0), yinsn);
4097 case ASM_INPUT:
4098 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
4099 return 0;
4101 break;
4103 case SET:
4104 /* Cancel a pending `same_regs' if setting equivalenced registers.
4105 Then process source. */
4106 if (GET_CODE (SET_DEST (x)) == REG
4107 && GET_CODE (SET_DEST (y)) == REG)
4109 if (same_regs[REGNO (SET_DEST (x))] == (int) REGNO (SET_DEST (y)))
4111 same_regs[REGNO (SET_DEST (x))] = -1;
4112 num_same_regs--;
4114 else if (REGNO (SET_DEST (x)) != REGNO (SET_DEST (y)))
4115 return 0;
4117 else
4119 if (rtx_equal_for_thread_p (SET_DEST (x), SET_DEST (y), yinsn) == 0)
4120 return 0;
4123 return rtx_equal_for_thread_p (SET_SRC (x), SET_SRC (y), yinsn);
4125 case LABEL_REF:
4126 return XEXP (x, 0) == XEXP (y, 0);
4128 case SYMBOL_REF:
4129 return XSTR (x, 0) == XSTR (y, 0);
4131 default:
4132 break;
4135 if (x == y)
4136 return 1;
4138 fmt = GET_RTX_FORMAT (code);
4139 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4141 switch (fmt[i])
4143 case 'w':
4144 if (XWINT (x, i) != XWINT (y, i))
4145 return 0;
4146 break;
4148 case 'n':
4149 case 'i':
4150 if (XINT (x, i) != XINT (y, i))
4151 return 0;
4152 break;
4154 case 'V':
4155 case 'E':
4156 /* Two vectors must have the same length. */
4157 if (XVECLEN (x, i) != XVECLEN (y, i))
4158 return 0;
4160 /* And the corresponding elements must match. */
4161 for (j = 0; j < XVECLEN (x, i); j++)
4162 if (rtx_equal_for_thread_p (XVECEXP (x, i, j),
4163 XVECEXP (y, i, j), yinsn) == 0)
4164 return 0;
4165 break;
4167 case 'e':
4168 if (rtx_equal_for_thread_p (XEXP (x, i), XEXP (y, i), yinsn) == 0)
4169 return 0;
4170 break;
4172 case 'S':
4173 case 's':
4174 if (strcmp (XSTR (x, i), XSTR (y, i)))
4175 return 0;
4176 break;
4178 case 'u':
4179 /* These are just backpointers, so they don't matter. */
4180 break;
4182 case '0':
4183 case 't':
4184 break;
4186 /* It is believed that rtx's at this level will never
4187 contain anything but integers and other rtx's,
4188 except for within LABEL_REFs and SYMBOL_REFs. */
4189 default:
4190 abort ();
4193 return 1;