1 //===-- tsan_mman.cpp -----------------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file is a part of ThreadSanitizer (TSan), a race detector.
11 //===----------------------------------------------------------------------===//
12 #include "sanitizer_common/sanitizer_allocator_checks.h"
13 #include "sanitizer_common/sanitizer_allocator_interface.h"
14 #include "sanitizer_common/sanitizer_allocator_report.h"
15 #include "sanitizer_common/sanitizer_common.h"
16 #include "sanitizer_common/sanitizer_errno.h"
17 #include "sanitizer_common/sanitizer_placement_new.h"
18 #include "tsan_mman.h"
20 #include "tsan_report.h"
21 #include "tsan_flags.h"
25 struct MapUnmapCallback
{
26 void OnMap(uptr p
, uptr size
) const { }
27 void OnUnmap(uptr p
, uptr size
) const {
28 // We are about to unmap a chunk of user memory.
29 // Mark the corresponding shadow memory as not needed.
30 DontNeedShadowFor(p
, size
);
31 // Mark the corresponding meta shadow memory as not needed.
32 // Note the block does not contain any meta info at this point
33 // (this happens after free).
34 const uptr kMetaRatio
= kMetaShadowCell
/ kMetaShadowSize
;
35 const uptr kPageSize
= GetPageSizeCached() * kMetaRatio
;
36 // Block came from LargeMmapAllocator, so must be large.
37 // We rely on this in the calculations below.
38 CHECK_GE(size
, 2 * kPageSize
);
39 uptr diff
= RoundUp(p
, kPageSize
) - p
;
44 diff
= p
+ size
- RoundDown(p
+ size
, kPageSize
);
47 uptr p_meta
= (uptr
)MemToMeta(p
);
48 ReleaseMemoryPagesToOS(p_meta
, p_meta
+ size
/ kMetaRatio
);
52 static char allocator_placeholder
[sizeof(Allocator
)] ALIGNED(64);
53 Allocator
*allocator() {
54 return reinterpret_cast<Allocator
*>(&allocator_placeholder
);
60 // This mutex represents the internal allocator combined for
61 // the purposes of deadlock detection. The internal allocator
62 // uses multiple mutexes, moreover they are locked only occasionally
63 // and they are spin mutexes which don't support deadlock detection.
64 // So we use this fake mutex to serve as a substitute for these mutexes.
65 CheckedMutex internal_alloc_mtx
;
68 : mtx(MutexTypeGlobalProc
),
70 internal_alloc_mtx(MutexTypeInternalAlloc
) {}
73 static char global_proc_placeholder
[sizeof(GlobalProc
)] ALIGNED(64);
74 GlobalProc
*global_proc() {
75 return reinterpret_cast<GlobalProc
*>(&global_proc_placeholder
);
78 static void InternalAllocAccess() {
79 global_proc()->internal_alloc_mtx
.Lock();
80 global_proc()->internal_alloc_mtx
.Unlock();
83 ScopedGlobalProcessor::ScopedGlobalProcessor() {
84 GlobalProc
*gp
= global_proc();
85 ThreadState
*thr
= cur_thread();
88 // If we don't have a proc, use the global one.
89 // There are currently only two known case where this path is triggered:
91 // __nptl_deallocate_tsd
96 // __interceptor_munmap
100 // Ideally, we destroy thread state (and unwire proc) when a thread actually
101 // exits (i.e. when we join/wait it). Then we would not need the global proc
103 ProcWire(gp
->proc
, thr
);
106 ScopedGlobalProcessor::~ScopedGlobalProcessor() {
107 GlobalProc
*gp
= global_proc();
108 ThreadState
*thr
= cur_thread();
109 if (thr
->proc() != gp
->proc
)
111 ProcUnwire(gp
->proc
, thr
);
115 void AllocatorLock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS
{
116 global_proc()->internal_alloc_mtx
.Lock();
117 InternalAllocatorLock();
120 void AllocatorUnlock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS
{
121 InternalAllocatorUnlock();
122 global_proc()->internal_alloc_mtx
.Unlock();
125 void GlobalProcessorLock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS
{
126 global_proc()->mtx
.Lock();
129 void GlobalProcessorUnlock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS
{
130 global_proc()->mtx
.Unlock();
133 static constexpr uptr kMaxAllowedMallocSize
= 1ull << 40;
134 static uptr max_user_defined_malloc_size
;
136 void InitializeAllocator() {
137 SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null
);
138 allocator()->Init(common_flags()->allocator_release_to_os_interval_ms
);
139 max_user_defined_malloc_size
= common_flags()->max_allocation_size_mb
140 ? common_flags()->max_allocation_size_mb
142 : kMaxAllowedMallocSize
;
145 void InitializeAllocatorLate() {
146 new(global_proc()) GlobalProc();
149 void AllocatorProcStart(Processor
*proc
) {
150 allocator()->InitCache(&proc
->alloc_cache
);
151 internal_allocator()->InitCache(&proc
->internal_alloc_cache
);
154 void AllocatorProcFinish(Processor
*proc
) {
155 allocator()->DestroyCache(&proc
->alloc_cache
);
156 internal_allocator()->DestroyCache(&proc
->internal_alloc_cache
);
159 void AllocatorPrintStats() {
160 allocator()->PrintStats();
163 static void SignalUnsafeCall(ThreadState
*thr
, uptr pc
) {
164 if (atomic_load_relaxed(&thr
->in_signal_handler
) == 0 ||
165 !ShouldReport(thr
, ReportTypeSignalUnsafe
))
167 VarSizeStackTrace stack
;
168 ObtainCurrentStack(thr
, pc
, &stack
);
169 if (IsFiredSuppression(ctx
, ReportTypeSignalUnsafe
, stack
))
171 ThreadRegistryLock
l(&ctx
->thread_registry
);
172 ScopedReport
rep(ReportTypeSignalUnsafe
);
173 rep
.AddStack(stack
, true);
174 OutputReport(thr
, rep
);
178 void *user_alloc_internal(ThreadState
*thr
, uptr pc
, uptr sz
, uptr align
,
180 if (sz
>= kMaxAllowedMallocSize
|| align
>= kMaxAllowedMallocSize
||
181 sz
> max_user_defined_malloc_size
) {
182 if (AllocatorMayReturnNull())
185 Min(kMaxAllowedMallocSize
, max_user_defined_malloc_size
);
186 GET_STACK_TRACE_FATAL(thr
, pc
);
187 ReportAllocationSizeTooBig(sz
, malloc_limit
, &stack
);
189 if (UNLIKELY(IsRssLimitExceeded())) {
190 if (AllocatorMayReturnNull())
192 GET_STACK_TRACE_FATAL(thr
, pc
);
193 ReportRssLimitExceeded(&stack
);
195 void *p
= allocator()->Allocate(&thr
->proc()->alloc_cache
, sz
, align
);
197 SetAllocatorOutOfMemory();
198 if (AllocatorMayReturnNull())
200 GET_STACK_TRACE_FATAL(thr
, pc
);
201 ReportOutOfMemory(sz
, &stack
);
203 if (ctx
&& ctx
->initialized
)
204 OnUserAlloc(thr
, pc
, (uptr
)p
, sz
, true);
206 SignalUnsafeCall(thr
, pc
);
210 void user_free(ThreadState
*thr
, uptr pc
, void *p
, bool signal
) {
211 ScopedGlobalProcessor sgp
;
212 if (ctx
&& ctx
->initialized
)
213 OnUserFree(thr
, pc
, (uptr
)p
, true);
214 allocator()->Deallocate(&thr
->proc()->alloc_cache
, p
);
216 SignalUnsafeCall(thr
, pc
);
219 void *user_alloc(ThreadState
*thr
, uptr pc
, uptr sz
) {
220 return SetErrnoOnNull(user_alloc_internal(thr
, pc
, sz
, kDefaultAlignment
));
223 void *user_calloc(ThreadState
*thr
, uptr pc
, uptr size
, uptr n
) {
224 if (UNLIKELY(CheckForCallocOverflow(size
, n
))) {
225 if (AllocatorMayReturnNull())
226 return SetErrnoOnNull(nullptr);
227 GET_STACK_TRACE_FATAL(thr
, pc
);
228 ReportCallocOverflow(n
, size
, &stack
);
230 void *p
= user_alloc_internal(thr
, pc
, n
* size
);
232 internal_memset(p
, 0, n
* size
);
233 return SetErrnoOnNull(p
);
236 void *user_reallocarray(ThreadState
*thr
, uptr pc
, void *p
, uptr size
, uptr n
) {
237 if (UNLIKELY(CheckForCallocOverflow(size
, n
))) {
238 if (AllocatorMayReturnNull())
239 return SetErrnoOnNull(nullptr);
240 GET_STACK_TRACE_FATAL(thr
, pc
);
241 ReportReallocArrayOverflow(size
, n
, &stack
);
243 return user_realloc(thr
, pc
, p
, size
* n
);
246 void OnUserAlloc(ThreadState
*thr
, uptr pc
, uptr p
, uptr sz
, bool write
) {
247 DPrintf("#%d: alloc(%zu) = 0x%zx\n", thr
->tid
, sz
, p
);
248 // Note: this can run before thread initialization/after finalization.
249 // As a result this is not necessarily synchronized with DoReset,
250 // which iterates over and resets all sync objects,
251 // but it is fine to create new MBlocks in this context.
252 ctx
->metamap
.AllocBlock(thr
, pc
, p
, sz
);
253 // If this runs before thread initialization/after finalization
254 // and we don't have trace initialized, we can't imitate writes.
255 // In such case just reset the shadow range, it is fine since
256 // it affects only a small fraction of special objects.
257 if (write
&& thr
->ignore_reads_and_writes
== 0 &&
258 atomic_load_relaxed(&thr
->trace_pos
))
259 MemoryRangeImitateWrite(thr
, pc
, (uptr
)p
, sz
);
261 MemoryResetRange(thr
, pc
, (uptr
)p
, sz
);
264 void OnUserFree(ThreadState
*thr
, uptr pc
, uptr p
, bool write
) {
265 CHECK_NE(p
, (void*)0);
267 // Very early/late in thread lifetime, or during fork.
268 UNUSED uptr sz
= ctx
->metamap
.FreeBlock(thr
->proc(), p
, false);
269 DPrintf("#%d: free(0x%zx, %zu) (no slot)\n", thr
->tid
, p
, sz
);
272 SlotLocker
locker(thr
);
273 uptr sz
= ctx
->metamap
.FreeBlock(thr
->proc(), p
, true);
274 DPrintf("#%d: free(0x%zx, %zu)\n", thr
->tid
, p
, sz
);
275 if (write
&& thr
->ignore_reads_and_writes
== 0)
276 MemoryRangeFreed(thr
, pc
, (uptr
)p
, sz
);
279 void *user_realloc(ThreadState
*thr
, uptr pc
, void *p
, uptr sz
) {
280 // FIXME: Handle "shrinking" more efficiently,
281 // it seems that some software actually does this.
283 return SetErrnoOnNull(user_alloc_internal(thr
, pc
, sz
));
285 user_free(thr
, pc
, p
);
288 void *new_p
= user_alloc_internal(thr
, pc
, sz
);
290 uptr old_sz
= user_alloc_usable_size(p
);
291 internal_memcpy(new_p
, p
, min(old_sz
, sz
));
292 user_free(thr
, pc
, p
);
294 return SetErrnoOnNull(new_p
);
297 void *user_memalign(ThreadState
*thr
, uptr pc
, uptr align
, uptr sz
) {
298 if (UNLIKELY(!IsPowerOfTwo(align
))) {
299 errno
= errno_EINVAL
;
300 if (AllocatorMayReturnNull())
302 GET_STACK_TRACE_FATAL(thr
, pc
);
303 ReportInvalidAllocationAlignment(align
, &stack
);
305 return SetErrnoOnNull(user_alloc_internal(thr
, pc
, sz
, align
));
308 int user_posix_memalign(ThreadState
*thr
, uptr pc
, void **memptr
, uptr align
,
310 if (UNLIKELY(!CheckPosixMemalignAlignment(align
))) {
311 if (AllocatorMayReturnNull())
313 GET_STACK_TRACE_FATAL(thr
, pc
);
314 ReportInvalidPosixMemalignAlignment(align
, &stack
);
316 void *ptr
= user_alloc_internal(thr
, pc
, sz
, align
);
318 // OOM error is already taken care of by user_alloc_internal.
320 CHECK(IsAligned((uptr
)ptr
, align
));
325 void *user_aligned_alloc(ThreadState
*thr
, uptr pc
, uptr align
, uptr sz
) {
326 if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(align
, sz
))) {
327 errno
= errno_EINVAL
;
328 if (AllocatorMayReturnNull())
330 GET_STACK_TRACE_FATAL(thr
, pc
);
331 ReportInvalidAlignedAllocAlignment(sz
, align
, &stack
);
333 return SetErrnoOnNull(user_alloc_internal(thr
, pc
, sz
, align
));
336 void *user_valloc(ThreadState
*thr
, uptr pc
, uptr sz
) {
337 return SetErrnoOnNull(user_alloc_internal(thr
, pc
, sz
, GetPageSizeCached()));
340 void *user_pvalloc(ThreadState
*thr
, uptr pc
, uptr sz
) {
341 uptr PageSize
= GetPageSizeCached();
342 if (UNLIKELY(CheckForPvallocOverflow(sz
, PageSize
))) {
343 errno
= errno_ENOMEM
;
344 if (AllocatorMayReturnNull())
346 GET_STACK_TRACE_FATAL(thr
, pc
);
347 ReportPvallocOverflow(sz
, &stack
);
349 // pvalloc(0) should allocate one page.
350 sz
= sz
? RoundUpTo(sz
, PageSize
) : PageSize
;
351 return SetErrnoOnNull(user_alloc_internal(thr
, pc
, sz
, PageSize
));
354 uptr
user_alloc_usable_size(const void *p
) {
355 if (p
== 0 || !IsAppMem((uptr
)p
))
357 MBlock
*b
= ctx
->metamap
.GetBlock((uptr
)p
);
359 return 0; // Not a valid pointer.
361 return 1; // Zero-sized allocations are actually 1 byte.
365 void invoke_malloc_hook(void *ptr
, uptr size
) {
366 ThreadState
*thr
= cur_thread();
367 if (ctx
== 0 || !ctx
->initialized
|| thr
->ignore_interceptors
)
369 RunMallocHooks(ptr
, size
);
372 void invoke_free_hook(void *ptr
) {
373 ThreadState
*thr
= cur_thread();
374 if (ctx
== 0 || !ctx
->initialized
|| thr
->ignore_interceptors
)
379 void *Alloc(uptr sz
) {
380 ThreadState
*thr
= cur_thread();
382 thr
->nomalloc
= 0; // CHECK calls internal_malloc().
385 InternalAllocAccess();
386 return InternalAlloc(sz
, &thr
->proc()->internal_alloc_cache
);
389 void FreeImpl(void *p
) {
390 ThreadState
*thr
= cur_thread();
392 thr
->nomalloc
= 0; // CHECK calls internal_malloc().
395 InternalAllocAccess();
396 InternalFree(p
, &thr
->proc()->internal_alloc_cache
);
399 } // namespace __tsan
401 using namespace __tsan
;
404 uptr
__sanitizer_get_current_allocated_bytes() {
405 uptr stats
[AllocatorStatCount
];
406 allocator()->GetStats(stats
);
407 return stats
[AllocatorStatAllocated
];
410 uptr
__sanitizer_get_heap_size() {
411 uptr stats
[AllocatorStatCount
];
412 allocator()->GetStats(stats
);
413 return stats
[AllocatorStatMapped
];
416 uptr
__sanitizer_get_free_bytes() {
420 uptr
__sanitizer_get_unmapped_bytes() {
424 uptr
__sanitizer_get_estimated_allocated_size(uptr size
) {
428 int __sanitizer_get_ownership(const void *p
) {
429 return allocator()->GetBlockBegin(p
) != 0;
432 uptr
__sanitizer_get_allocated_size(const void *p
) {
433 return user_alloc_usable_size(p
);
436 void __tsan_on_thread_idle() {
437 ThreadState
*thr
= cur_thread();
438 allocator()->SwallowCache(&thr
->proc()->alloc_cache
);
439 internal_allocator()->SwallowCache(&thr
->proc()->internal_alloc_cache
);
440 ctx
->metamap
.OnProcIdle(thr
->proc());