1998-09-21 Ben Elliston <bje@cygnus.com>
[official-gcc.git] / gcc / caller-save.c
blob4a2deb60db8bf2188e28078bb1928123ef5aaca7
1 /* Save and restore call-clobbered registers which are live across a call.
2 Copyright (C) 1989, 1992, 94-95, 1997, 1998 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
21 #include "config.h"
22 #include "system.h"
23 #include "rtl.h"
24 #include "insn-config.h"
25 #include "flags.h"
26 #include "regs.h"
27 #include "hard-reg-set.h"
28 #include "recog.h"
29 #include "basic-block.h"
30 #include "reload.h"
31 #include "expr.h"
32 #include "toplev.h"
34 #ifndef MAX_MOVE_MAX
35 #define MAX_MOVE_MAX MOVE_MAX
36 #endif
38 #ifndef MIN_UNITS_PER_WORD
39 #define MIN_UNITS_PER_WORD UNITS_PER_WORD
40 #endif
42 /* Modes for each hard register that we can save. The smallest mode is wide
43 enough to save the entire contents of the register. When saving the
44 register because it is live we first try to save in multi-register modes.
45 If that is not possible the save is done one register at a time. */
47 static enum machine_mode
48 regno_save_mode[FIRST_PSEUDO_REGISTER][MAX_MOVE_MAX / MIN_UNITS_PER_WORD + 1];
50 /* For each hard register, a place on the stack where it can be saved,
51 if needed. */
53 static rtx
54 regno_save_mem[FIRST_PSEUDO_REGISTER][MAX_MOVE_MAX / MIN_UNITS_PER_WORD + 1];
56 /* We will only make a register eligible for caller-save if it can be
57 saved in its widest mode with a simple SET insn as long as the memory
58 address is valid. We record the INSN_CODE is those insns here since
59 when we emit them, the addresses might not be valid, so they might not
60 be recognized. */
62 static enum insn_code
63 reg_save_code[FIRST_PSEUDO_REGISTER][MAX_MOVE_MAX / MIN_UNITS_PER_WORD + 1];
64 static enum insn_code
65 reg_restore_code[FIRST_PSEUDO_REGISTER][MAX_MOVE_MAX / MIN_UNITS_PER_WORD + 1];
67 /* Set of hard regs currently live (during scan of all insns). */
69 static HARD_REG_SET hard_regs_live;
71 /* Set of hard regs currently residing in save area (during insn scan). */
73 static HARD_REG_SET hard_regs_saved;
75 /* Set of hard regs which need to be restored before referenced. */
77 static HARD_REG_SET hard_regs_need_restore;
79 /* Number of registers currently in hard_regs_saved. */
81 int n_regs_saved;
83 static void set_reg_live PROTO((rtx, rtx));
84 static void clear_reg_live PROTO((rtx));
85 static void restore_referenced_regs PROTO((rtx, rtx, enum machine_mode));
86 static int insert_save_restore PROTO((rtx, int, int,
87 enum machine_mode, int));
89 /* Initialize for caller-save.
91 Look at all the hard registers that are used by a call and for which
92 regclass.c has not already excluded from being used across a call.
94 Ensure that we can find a mode to save the register and that there is a
95 simple insn to save and restore the register. This latter check avoids
96 problems that would occur if we tried to save the MQ register of some
97 machines directly into memory. */
99 void
100 init_caller_save ()
102 char *first_obj = (char *) oballoc (0);
103 rtx addr_reg;
104 int offset;
105 rtx address;
106 int i, j;
108 /* First find all the registers that we need to deal with and all
109 the modes that they can have. If we can't find a mode to use,
110 we can't have the register live over calls. */
112 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
114 if (call_used_regs[i] && ! call_fixed_regs[i])
116 for (j = 1; j <= MOVE_MAX / UNITS_PER_WORD; j++)
118 regno_save_mode[i][j] = choose_hard_reg_mode (i, j);
119 if (regno_save_mode[i][j] == VOIDmode && j == 1)
121 call_fixed_regs[i] = 1;
122 SET_HARD_REG_BIT (call_fixed_reg_set, i);
126 else
127 regno_save_mode[i][1] = VOIDmode;
130 /* The following code tries to approximate the conditions under which
131 we can easily save and restore a register without scratch registers or
132 other complexities. It will usually work, except under conditions where
133 the validity of an insn operand is dependent on the address offset.
134 No such cases are currently known.
136 We first find a typical offset from some BASE_REG_CLASS register.
137 This address is chosen by finding the first register in the class
138 and by finding the smallest power of two that is a valid offset from
139 that register in every mode we will use to save registers. */
141 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
142 if (TEST_HARD_REG_BIT (reg_class_contents[(int) BASE_REG_CLASS], i))
143 break;
145 if (i == FIRST_PSEUDO_REGISTER)
146 abort ();
148 addr_reg = gen_rtx_REG (Pmode, i);
150 for (offset = 1 << (HOST_BITS_PER_INT / 2); offset; offset >>= 1)
152 address = gen_rtx_PLUS (Pmode, addr_reg, GEN_INT (offset));
154 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
155 if (regno_save_mode[i][1] != VOIDmode
156 && ! strict_memory_address_p (regno_save_mode[i][1], address))
157 break;
159 if (i == FIRST_PSEUDO_REGISTER)
160 break;
163 /* If we didn't find a valid address, we must use register indirect. */
164 if (offset == 0)
165 address = addr_reg;
167 /* Next we try to form an insn to save and restore the register. We
168 see if such an insn is recognized and meets its constraints. */
170 start_sequence ();
172 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
173 for (j = 1; j <= MOVE_MAX / UNITS_PER_WORD; j++)
174 if (regno_save_mode[i][j] != VOIDmode)
176 rtx mem = gen_rtx_MEM (regno_save_mode[i][j], address);
177 rtx reg = gen_rtx_REG (regno_save_mode[i][j], i);
178 rtx savepat = gen_rtx_SET (VOIDmode, mem, reg);
179 rtx restpat = gen_rtx_SET (VOIDmode, reg, mem);
180 rtx saveinsn = emit_insn (savepat);
181 rtx restinsn = emit_insn (restpat);
182 int ok;
184 reg_save_code[i][j] = recog_memoized (saveinsn);
185 reg_restore_code[i][j] = recog_memoized (restinsn);
187 /* Now extract both insns and see if we can meet their
188 constraints. */
189 ok = (reg_save_code[i][j] != -1 && reg_restore_code[i][j] != -1);
190 if (ok)
192 insn_extract (saveinsn);
193 ok = constrain_operands (reg_save_code[i][j], 1);
194 insn_extract (restinsn);
195 ok &= constrain_operands (reg_restore_code[i][j], 1);
198 if (! ok)
200 regno_save_mode[i][j] = VOIDmode;
201 if (j == 1)
203 call_fixed_regs[i] = 1;
204 SET_HARD_REG_BIT (call_fixed_reg_set, i);
209 end_sequence ();
211 obfree (first_obj);
214 /* Initialize save areas by showing that we haven't allocated any yet. */
216 void
217 init_save_areas ()
219 int i, j;
221 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
222 for (j = 1; j <= MOVE_MAX / UNITS_PER_WORD; j++)
223 regno_save_mem[i][j] = 0;
226 /* Allocate save areas for any hard registers that might need saving.
227 We take a conservative approach here and look for call-clobbered hard
228 registers that are assigned to pseudos that cross calls. This may
229 overestimate slightly (especially if some of these registers are later
230 used as spill registers), but it should not be significant.
232 Then perform register elimination in the addresses of the save area
233 locations; return 1 if all eliminated addresses are strictly valid.
234 We assume that our caller has set up the elimination table to the
235 worst (largest) possible offsets.
237 Set *PCHANGED to 1 if we had to allocate some memory for the save area.
239 Future work:
241 In the fallback case we should iterate backwards across all possible
242 modes for the save, choosing the largest available one instead of
243 falling back to the smallest mode immediately. (eg TF -> DF -> SF).
245 We do not try to use "move multiple" instructions that exist
246 on some machines (such as the 68k moveml). It could be a win to try
247 and use them when possible. The hard part is doing it in a way that is
248 machine independent since they might be saving non-consecutive
249 registers. (imagine caller-saving d0,d1,a0,a1 on the 68k) */
252 setup_save_areas (pchanged)
253 int *pchanged;
255 int i, j, k;
256 HARD_REG_SET hard_regs_used;
257 int ok = 1;
260 /* Allocate space in the save area for the largest multi-register
261 pseudos first, then work backwards to single register
262 pseudos. */
264 /* Find and record all call-used hard-registers in this function. */
265 CLEAR_HARD_REG_SET (hard_regs_used);
266 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
267 if (reg_renumber[i] >= 0 && REG_N_CALLS_CROSSED (i) > 0)
269 int regno = reg_renumber[i];
270 int endregno
271 = regno + HARD_REGNO_NREGS (regno, GET_MODE (regno_reg_rtx[i]));
272 int nregs = endregno - regno;
274 for (j = 0; j < nregs; j++)
276 if (call_used_regs[regno+j])
277 SET_HARD_REG_BIT (hard_regs_used, regno+j);
281 /* Now run through all the call-used hard-registers and allocate
282 space for them in the caller-save area. Try to allocate space
283 in a manner which allows multi-register saves/restores to be done. */
285 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
286 for (j = MOVE_MAX / UNITS_PER_WORD; j > 0; j--)
288 int ok = 1;
289 int do_save;
291 /* If no mode exists for this size, try another. Also break out
292 if we have already saved this hard register. */
293 if (regno_save_mode[i][j] == VOIDmode || regno_save_mem[i][1] != 0)
294 continue;
296 /* See if any register in this group has been saved. */
297 do_save = 1;
298 for (k = 0; k < j; k++)
299 if (regno_save_mem[i + k][1])
301 do_save = 0;
302 break;
304 if (! do_save)
305 continue;
307 for (k = 0; k < j; k++)
309 int regno = i + k;
310 ok &= (TEST_HARD_REG_BIT (hard_regs_used, regno) != 0);
313 /* We have found an acceptable mode to store in. */
314 if (ok)
317 regno_save_mem[i][j]
318 = assign_stack_local (regno_save_mode[i][j],
319 GET_MODE_SIZE (regno_save_mode[i][j]), 0);
321 /* Setup single word save area just in case... */
322 for (k = 0; k < j; k++)
324 /* This should not depend on WORDS_BIG_ENDIAN.
325 The order of words in regs is the same as in memory. */
326 rtx temp = gen_rtx_MEM (regno_save_mode[i+k][1],
327 XEXP (regno_save_mem[i][j], 0));
329 regno_save_mem[i+k][1]
330 = adj_offsettable_operand (temp, k * UNITS_PER_WORD);
332 *pchanged = 1;
336 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
337 for (j = 1; j <= MOVE_MAX / UNITS_PER_WORD; j++)
338 if (regno_save_mem[i][j] != 0)
339 ok &= strict_memory_address_p (GET_MODE (regno_save_mem[i][j]),
340 XEXP (eliminate_regs (regno_save_mem[i][j], 0, NULL_RTX), 0));
342 return ok;
345 /* Find the places where hard regs are live across calls and save them.
347 INSN_MODE is the mode to assign to any insns that we add. This is used
348 by reload to determine whether or not reloads or register eliminations
349 need be done on these insns. */
351 void
352 save_call_clobbered_regs (insn_mode)
353 enum machine_mode insn_mode;
355 rtx insn;
356 int b;
358 for (b = 0; b < n_basic_blocks; b++)
360 regset regs_live = basic_block_live_at_start[b];
361 rtx prev_block_last = PREV_INSN (basic_block_head[b]);
362 int i, j;
363 int regno;
365 /* Compute hard regs live at start of block -- this is the
366 real hard regs marked live, plus live pseudo regs that
367 have been renumbered to hard regs. No registers have yet been
368 saved because we restore all of them before the end of the basic
369 block. */
371 REG_SET_TO_HARD_REG_SET (hard_regs_live, regs_live);
372 CLEAR_HARD_REG_SET (hard_regs_saved);
373 CLEAR_HARD_REG_SET (hard_regs_need_restore);
374 n_regs_saved = 0;
376 EXECUTE_IF_SET_IN_REG_SET (regs_live, 0, i,
378 if ((regno = reg_renumber[i]) >= 0)
379 for (j = regno;
380 j < regno + HARD_REGNO_NREGS (regno,
381 PSEUDO_REGNO_MODE (i));
382 j++)
383 SET_HARD_REG_BIT (hard_regs_live, j);
386 /* Now scan the insns in the block, keeping track of what hard
387 regs are live as we go. When we see a call, save the live
388 call-clobbered hard regs. */
390 for (insn = basic_block_head[b]; ; insn = NEXT_INSN (insn))
392 RTX_CODE code = GET_CODE (insn);
394 if (GET_RTX_CLASS (code) == 'i')
396 rtx link;
398 /* If some registers have been saved, see if INSN references
399 any of them. We must restore them before the insn if so. */
401 if (n_regs_saved)
402 restore_referenced_regs (PATTERN (insn), insn, insn_mode);
404 /* NB: the normal procedure is to first enliven any
405 registers set by insn, then deaden any registers that
406 had their last use at insn. This is incorrect now,
407 since multiple pseudos may have been mapped to the
408 same hard reg, and the death notes are ambiguous. So
409 it must be done in the other, safe, order. */
411 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
412 if (REG_NOTE_KIND (link) == REG_DEAD)
413 clear_reg_live (XEXP (link, 0));
415 /* When we reach a call, we need to save all registers that are
416 live, call-used, not fixed, and not already saved. We must
417 test at this point because registers that die in a CALL_INSN
418 are not live across the call and likewise for registers that
419 are born in the CALL_INSN.
421 If registers are filled with parameters for this function,
422 and some of these are also being set by this function, then
423 they will not appear to die (no REG_DEAD note for them),
424 to check if in fact they do, collect the set registers in
425 hard_regs_live first. */
427 if (code == CALL_INSN)
429 HARD_REG_SET this_call_sets;
431 HARD_REG_SET old_hard_regs_live;
433 /* Save the hard_regs_live information. */
434 COPY_HARD_REG_SET (old_hard_regs_live, hard_regs_live);
436 /* Now calculate hard_regs_live for this CALL_INSN
437 only. */
438 CLEAR_HARD_REG_SET (hard_regs_live);
439 note_stores (PATTERN (insn), set_reg_live);
440 COPY_HARD_REG_SET (this_call_sets, hard_regs_live);
442 /* Restore the hard_regs_live information. */
443 COPY_HARD_REG_SET (hard_regs_live, old_hard_regs_live);
446 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
447 if (call_used_regs[regno] && ! call_fixed_regs[regno]
448 && TEST_HARD_REG_BIT (hard_regs_live, regno)
449 /* It must not be set by this instruction. */
450 && ! TEST_HARD_REG_BIT (this_call_sets, regno)
451 && ! TEST_HARD_REG_BIT (hard_regs_saved, regno))
452 regno += insert_save_restore (insn, 1, regno,
453 insn_mode, 0);
455 /* Put the information for this CALL_INSN on top of what
456 we already had. */
457 IOR_HARD_REG_SET (hard_regs_live, this_call_sets);
458 COPY_HARD_REG_SET (hard_regs_need_restore, hard_regs_saved);
460 /* Must recompute n_regs_saved. */
461 n_regs_saved = 0;
462 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
463 if (TEST_HARD_REG_BIT (hard_regs_saved, regno))
464 n_regs_saved++;
466 else
468 note_stores (PATTERN (insn), set_reg_live);
469 #ifdef AUTO_INC_DEC
470 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
471 if (REG_NOTE_KIND (link) == REG_INC)
472 set_reg_live (XEXP (link, 0), NULL_RTX);
473 #endif
476 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
477 if (REG_NOTE_KIND (link) == REG_UNUSED)
478 clear_reg_live (XEXP (link, 0));
481 if (insn == basic_block_end[b])
482 break;
485 /* At the end of the basic block, we must restore any registers that
486 remain saved. If the last insn in the block is a JUMP_INSN, put
487 the restore before the insn, otherwise, put it after the insn. */
489 if (n_regs_saved)
490 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
491 if (TEST_HARD_REG_BIT (hard_regs_need_restore, regno))
492 regno += insert_save_restore ((GET_CODE (insn) == JUMP_INSN
493 ? insn : NEXT_INSN (insn)), 0,
494 regno, insn_mode, MOVE_MAX / UNITS_PER_WORD);
496 /* If we added any insns at the start of the block, update the start
497 of the block to point at those insns. */
498 basic_block_head[b] = NEXT_INSN (prev_block_last);
502 /* Here from note_stores when an insn stores a value in a register.
503 Set the proper bit or bits in hard_regs_live. All pseudos that have
504 been assigned hard regs have had their register number changed already,
505 so we can ignore pseudos. */
507 static void
508 set_reg_live (reg, setter)
509 rtx reg;
510 rtx setter ATTRIBUTE_UNUSED;
512 register int regno, endregno, i;
513 enum machine_mode mode = GET_MODE (reg);
514 int word = 0;
516 if (GET_CODE (reg) == SUBREG)
518 word = SUBREG_WORD (reg);
519 reg = SUBREG_REG (reg);
522 if (GET_CODE (reg) != REG || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
523 return;
525 regno = REGNO (reg) + word;
526 endregno = regno + HARD_REGNO_NREGS (regno, mode);
528 for (i = regno; i < endregno; i++)
530 SET_HARD_REG_BIT (hard_regs_live, i);
531 CLEAR_HARD_REG_BIT (hard_regs_saved, i);
532 CLEAR_HARD_REG_BIT (hard_regs_need_restore, i);
536 /* Here when a REG_DEAD note records the last use of a reg. Clear
537 the appropriate bit or bits in hard_regs_live. Again we can ignore
538 pseudos. */
540 static void
541 clear_reg_live (reg)
542 rtx reg;
544 register int regno, endregno, i;
546 if (GET_CODE (reg) != REG || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
547 return;
549 regno = REGNO (reg);
550 endregno= regno + HARD_REGNO_NREGS (regno, GET_MODE (reg));
552 for (i = regno; i < endregno; i++)
554 CLEAR_HARD_REG_BIT (hard_regs_live, i);
555 CLEAR_HARD_REG_BIT (hard_regs_need_restore, i);
556 CLEAR_HARD_REG_BIT (hard_regs_saved, i);
560 /* If any register currently residing in the save area is referenced in X,
561 which is part of INSN, emit code to restore the register in front of INSN.
562 INSN_MODE is the mode to assign to any insns that we add. */
564 static void
565 restore_referenced_regs (x, insn, insn_mode)
566 rtx x;
567 rtx insn;
568 enum machine_mode insn_mode;
570 enum rtx_code code = GET_CODE (x);
571 char *fmt;
572 int i, j;
574 if (code == CLOBBER)
575 return;
577 if (code == REG)
579 int regno = REGNO (x);
581 /* If this is a pseudo, scan its memory location, since it might
582 involve the use of another register, which might be saved. */
584 if (regno >= FIRST_PSEUDO_REGISTER
585 && reg_equiv_mem[regno] != 0)
586 restore_referenced_regs (XEXP (reg_equiv_mem[regno], 0),
587 insn, insn_mode);
588 else if (regno >= FIRST_PSEUDO_REGISTER
589 && reg_equiv_address[regno] != 0)
590 restore_referenced_regs (reg_equiv_address[regno],
591 insn, insn_mode);
593 /* Otherwise if this is a hard register, restore any piece of it that
594 is currently saved. */
596 else if (regno < FIRST_PSEUDO_REGISTER)
598 int numregs = HARD_REGNO_NREGS (regno, GET_MODE (x));
599 /* Save at most SAVEREGS at a time. This can not be larger than
600 MOVE_MAX, because that causes insert_save_restore to fail. */
601 int saveregs = MIN (numregs, MOVE_MAX / UNITS_PER_WORD);
602 int endregno = regno + numregs;
604 for (i = regno; i < endregno; i++)
605 if (TEST_HARD_REG_BIT (hard_regs_need_restore, i))
606 i += insert_save_restore (insn, 0, i, insn_mode, saveregs);
609 return;
612 fmt = GET_RTX_FORMAT (code);
613 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
615 if (fmt[i] == 'e')
616 restore_referenced_regs (XEXP (x, i), insn, insn_mode);
617 else if (fmt[i] == 'E')
618 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
619 restore_referenced_regs (XVECEXP (x, i, j), insn, insn_mode);
623 /* Insert a sequence of insns to save or restore, SAVE_P says which,
624 REGNO. Place these insns in front of INSN. INSN_MODE is the mode
625 to assign to these insns. MAXRESTORE is the maximum number of registers
626 which should be restored during this call (when SAVE_P == 0). It should
627 never be less than 1 since we only work with entire registers.
629 Note that we have verified in init_caller_save that we can do this
630 with a simple SET, so use it. Set INSN_CODE to what we save there
631 since the address might not be valid so the insn might not be recognized.
632 These insns will be reloaded and have register elimination done by
633 find_reload, so we need not worry about that here.
635 Return the extra number of registers saved. */
637 static int
638 insert_save_restore (insn, save_p, regno, insn_mode, maxrestore)
639 rtx insn;
640 int save_p;
641 int regno;
642 enum machine_mode insn_mode;
643 int maxrestore;
645 rtx pat = NULL_RTX;
646 enum insn_code code = CODE_FOR_nothing;
647 int numregs = 0;
649 /* A common failure mode if register status is not correct in the RTL
650 is for this routine to be called with a REGNO we didn't expect to
651 save. That will cause us to write an insn with a (nil) SET_DEST
652 or SET_SRC. Instead of doing so and causing a crash later, check
653 for this common case and abort here instead. This will remove one
654 step in debugging such problems. */
656 if (regno_save_mem[regno][1] == 0)
657 abort ();
659 #ifdef HAVE_cc0
660 /* If INSN references CC0, put our insns in front of the insn that sets
661 CC0. This is always safe, since the only way we could be passed an
662 insn that references CC0 is for a restore, and doing a restore earlier
663 isn't a problem. We do, however, assume here that CALL_INSNs don't
664 reference CC0. Guard against non-INSN's like CODE_LABEL. */
666 if ((GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
667 && reg_referenced_p (cc0_rtx, PATTERN (insn)))
668 insn = prev_nonnote_insn (insn);
669 #endif
671 /* Get the pattern to emit and update our status. */
672 if (save_p)
674 int i, j, k;
675 int ok;
677 /* See if we can save several registers with a single instruction.
678 Work backwards to the single register case. */
679 for (i = MOVE_MAX / UNITS_PER_WORD; i > 0; i--)
681 ok = 1;
682 if (regno_save_mem[regno][i] != 0)
683 for (j = 0; j < i; j++)
685 if (! call_used_regs[regno + j] || call_fixed_regs[regno + j]
686 || ! TEST_HARD_REG_BIT (hard_regs_live, regno + j)
687 || TEST_HARD_REG_BIT (hard_regs_saved, regno + j))
688 ok = 0;
690 else
691 continue;
693 /* Must do this one save at a time */
694 if (! ok)
695 continue;
697 pat = gen_rtx_SET (VOIDmode, regno_save_mem[regno][i],
698 gen_rtx_REG (GET_MODE (regno_save_mem[regno][i]),
699 regno));
700 code = reg_save_code[regno][i];
702 /* Set hard_regs_saved for all the registers we saved. */
703 for (k = 0; k < i; k++)
705 SET_HARD_REG_BIT (hard_regs_saved, regno + k);
706 SET_HARD_REG_BIT (hard_regs_need_restore, regno + k);
707 n_regs_saved++;
710 numregs = i;
711 break;
714 else
716 int i, j, k;
717 int ok;
719 /* See if we can restore `maxrestore' registers at once. Work
720 backwards to the single register case. */
721 for (i = maxrestore; i > 0; i--)
723 ok = 1;
724 if (regno_save_mem[regno][i])
725 for (j = 0; j < i; j++)
727 if (! TEST_HARD_REG_BIT (hard_regs_need_restore, regno + j))
728 ok = 0;
730 else
731 continue;
733 /* Must do this one restore at a time */
734 if (! ok)
735 continue;
737 pat = gen_rtx_SET (VOIDmode,
738 gen_rtx_REG (GET_MODE (regno_save_mem[regno][i]),
739 regno),
740 regno_save_mem[regno][i]);
741 code = reg_restore_code[regno][i];
744 /* Clear status for all registers we restored. */
745 for (k = 0; k < i; k++)
747 CLEAR_HARD_REG_BIT (hard_regs_need_restore, regno + k);
748 n_regs_saved--;
751 numregs = i;
752 break;
755 /* Emit the insn and set the code and mode. */
757 insn = emit_insn_before (pat, insn);
758 PUT_MODE (insn, insn_mode);
759 INSN_CODE (insn) = code;
761 /* Tell our callers how many extra registers we saved/restored */
762 return numregs - 1;