pa.c (pa_som_asm_init_sections): Fix comment.
[official-gcc.git] / gcc / tree-ssa-threadedge.c
blob1fafd7b593257991ab32bee7b1bb27eb860eae21
1 /* SSA Jump Threading
2 Copyright (C) 2005-2017 Free Software Foundation, Inc.
3 Contributed by Jeff Law <law@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "predict.h"
28 #include "ssa.h"
29 #include "fold-const.h"
30 #include "cfgloop.h"
31 #include "gimple-iterator.h"
32 #include "tree-cfg.h"
33 #include "tree-ssa-threadupdate.h"
34 #include "params.h"
35 #include "tree-ssa-scopedtables.h"
36 #include "tree-ssa-threadedge.h"
37 #include "tree-ssa-dom.h"
38 #include "gimple-fold.h"
39 #include "cfganal.h"
40 #include "alloc-pool.h"
41 #include "vr-values.h"
42 #include "gimple-ssa-evrp-analyze.h"
44 /* To avoid code explosion due to jump threading, we limit the
45 number of statements we are going to copy. This variable
46 holds the number of statements currently seen that we'll have
47 to copy as part of the jump threading process. */
48 static int stmt_count;
50 /* Array to record value-handles per SSA_NAME. */
51 vec<tree> ssa_name_values;
53 typedef tree (pfn_simplify) (gimple *, gimple *,
54 class avail_exprs_stack *,
55 basic_block);
57 /* Set the value for the SSA name NAME to VALUE. */
59 void
60 set_ssa_name_value (tree name, tree value)
62 if (SSA_NAME_VERSION (name) >= ssa_name_values.length ())
63 ssa_name_values.safe_grow_cleared (SSA_NAME_VERSION (name) + 1);
64 if (value && TREE_OVERFLOW_P (value))
65 value = drop_tree_overflow (value);
66 ssa_name_values[SSA_NAME_VERSION (name)] = value;
69 /* Initialize the per SSA_NAME value-handles array. Returns it. */
70 void
71 threadedge_initialize_values (void)
73 gcc_assert (!ssa_name_values.exists ());
74 ssa_name_values.create (num_ssa_names);
77 /* Free the per SSA_NAME value-handle array. */
78 void
79 threadedge_finalize_values (void)
81 ssa_name_values.release ();
84 /* Return TRUE if we may be able to thread an incoming edge into
85 BB to an outgoing edge from BB. Return FALSE otherwise. */
87 bool
88 potentially_threadable_block (basic_block bb)
90 gimple_stmt_iterator gsi;
92 /* Special case. We can get blocks that are forwarders, but are
93 not optimized away because they forward from outside a loop
94 to the loop header. We want to thread through them as we can
95 sometimes thread to the loop exit, which is obviously profitable.
96 the interesting case here is when the block has PHIs. */
97 if (gsi_end_p (gsi_start_nondebug_bb (bb))
98 && !gsi_end_p (gsi_start_phis (bb)))
99 return true;
101 /* If BB has a single successor or a single predecessor, then
102 there is no threading opportunity. */
103 if (single_succ_p (bb) || single_pred_p (bb))
104 return false;
106 /* If BB does not end with a conditional, switch or computed goto,
107 then there is no threading opportunity. */
108 gsi = gsi_last_bb (bb);
109 if (gsi_end_p (gsi)
110 || ! gsi_stmt (gsi)
111 || (gimple_code (gsi_stmt (gsi)) != GIMPLE_COND
112 && gimple_code (gsi_stmt (gsi)) != GIMPLE_GOTO
113 && gimple_code (gsi_stmt (gsi)) != GIMPLE_SWITCH))
114 return false;
116 return true;
119 /* Record temporary equivalences created by PHIs at the target of the
120 edge E. Record unwind information for the equivalences into
121 CONST_AND_COPIES and EVRP_RANGE_DATA.
123 If a PHI which prevents threading is encountered, then return FALSE
124 indicating we should not thread this edge, else return TRUE. */
126 static bool
127 record_temporary_equivalences_from_phis (edge e,
128 const_and_copies *const_and_copies,
129 evrp_range_analyzer *evrp_range_analyzer)
131 gphi_iterator gsi;
133 /* Each PHI creates a temporary equivalence, record them.
134 These are context sensitive equivalences and will be removed
135 later. */
136 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
138 gphi *phi = gsi.phi ();
139 tree src = PHI_ARG_DEF_FROM_EDGE (phi, e);
140 tree dst = gimple_phi_result (phi);
142 /* If the desired argument is not the same as this PHI's result
143 and it is set by a PHI in E->dest, then we can not thread
144 through E->dest. */
145 if (src != dst
146 && TREE_CODE (src) == SSA_NAME
147 && gimple_code (SSA_NAME_DEF_STMT (src)) == GIMPLE_PHI
148 && gimple_bb (SSA_NAME_DEF_STMT (src)) == e->dest)
149 return false;
151 /* We consider any non-virtual PHI as a statement since it
152 count result in a constant assignment or copy operation. */
153 if (!virtual_operand_p (dst))
154 stmt_count++;
156 const_and_copies->record_const_or_copy (dst, src);
158 /* Also update the value range associated with DST, using
159 the range from SRC. */
160 if (evrp_range_analyzer && TREE_CODE (src) == SSA_NAME)
162 value_range *vr = evrp_range_analyzer->get_value_range (src);
163 evrp_range_analyzer->push_value_range (dst, vr);
166 return true;
169 /* Valueize hook for gimple_fold_stmt_to_constant_1. */
171 static tree
172 threadedge_valueize (tree t)
174 if (TREE_CODE (t) == SSA_NAME)
176 tree tem = SSA_NAME_VALUE (t);
177 if (tem)
178 return tem;
180 return t;
183 /* Try to simplify each statement in E->dest, ultimately leading to
184 a simplification of the COND_EXPR at the end of E->dest.
186 Record unwind information for temporary equivalences onto STACK.
188 Use SIMPLIFY (a pointer to a callback function) to further simplify
189 statements using pass specific information.
191 We might consider marking just those statements which ultimately
192 feed the COND_EXPR. It's not clear if the overhead of bookkeeping
193 would be recovered by trying to simplify fewer statements.
195 If we are able to simplify a statement into the form
196 SSA_NAME = (SSA_NAME | gimple invariant), then we can record
197 a context sensitive equivalence which may help us simplify
198 later statements in E->dest. */
200 static gimple *
201 record_temporary_equivalences_from_stmts_at_dest (edge e,
202 const_and_copies *const_and_copies,
203 avail_exprs_stack *avail_exprs_stack,
204 evrp_range_analyzer *evrp_range_analyzer,
205 pfn_simplify simplify)
207 gimple *stmt = NULL;
208 gimple_stmt_iterator gsi;
209 int max_stmt_count;
211 max_stmt_count = PARAM_VALUE (PARAM_MAX_JUMP_THREAD_DUPLICATION_STMTS);
213 /* Walk through each statement in the block recording equivalences
214 we discover. Note any equivalences we discover are context
215 sensitive (ie, are dependent on traversing E) and must be unwound
216 when we're finished processing E. */
217 for (gsi = gsi_start_bb (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
219 tree cached_lhs = NULL;
221 stmt = gsi_stmt (gsi);
223 /* Ignore empty statements and labels. */
224 if (gimple_code (stmt) == GIMPLE_NOP
225 || gimple_code (stmt) == GIMPLE_LABEL
226 || is_gimple_debug (stmt))
227 continue;
229 /* If the statement has volatile operands, then we assume we
230 can not thread through this block. This is overly
231 conservative in some ways. */
232 if (gimple_code (stmt) == GIMPLE_ASM
233 && gimple_asm_volatile_p (as_a <gasm *> (stmt)))
234 return NULL;
236 /* If the statement is a unique builtin, we can not thread
237 through here. */
238 if (gimple_code (stmt) == GIMPLE_CALL
239 && gimple_call_internal_p (stmt)
240 && gimple_call_internal_unique_p (stmt))
241 return NULL;
243 /* If duplicating this block is going to cause too much code
244 expansion, then do not thread through this block. */
245 stmt_count++;
246 if (stmt_count > max_stmt_count)
248 /* If any of the stmts in the PATH's dests are going to be
249 killed due to threading, grow the max count
250 accordingly. */
251 if (max_stmt_count
252 == PARAM_VALUE (PARAM_MAX_JUMP_THREAD_DUPLICATION_STMTS))
254 max_stmt_count += estimate_threading_killed_stmts (e->dest);
255 if (dump_file)
256 fprintf (dump_file, "threading bb %i up to %i stmts\n",
257 e->dest->index, max_stmt_count);
259 /* If we're still past the limit, we're done. */
260 if (stmt_count > max_stmt_count)
261 return NULL;
264 /* These are temporary ranges, do nto reflect them back into
265 the global range data. */
266 if (evrp_range_analyzer)
267 evrp_range_analyzer->record_ranges_from_stmt (stmt, true);
269 /* If this is not a statement that sets an SSA_NAME to a new
270 value, then do not try to simplify this statement as it will
271 not simplify in any way that is helpful for jump threading. */
272 if ((gimple_code (stmt) != GIMPLE_ASSIGN
273 || TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
274 && (gimple_code (stmt) != GIMPLE_CALL
275 || gimple_call_lhs (stmt) == NULL_TREE
276 || TREE_CODE (gimple_call_lhs (stmt)) != SSA_NAME))
277 continue;
279 /* The result of __builtin_object_size depends on all the arguments
280 of a phi node. Temporarily using only one edge produces invalid
281 results. For example
283 if (x < 6)
284 goto l;
285 else
286 goto l;
289 r = PHI <&w[2].a[1](2), &a.a[6](3)>
290 __builtin_object_size (r, 0)
292 The result of __builtin_object_size is defined to be the maximum of
293 remaining bytes. If we use only one edge on the phi, the result will
294 change to be the remaining bytes for the corresponding phi argument.
296 Similarly for __builtin_constant_p:
298 r = PHI <1(2), 2(3)>
299 __builtin_constant_p (r)
301 Both PHI arguments are constant, but x ? 1 : 2 is still not
302 constant. */
304 if (is_gimple_call (stmt))
306 tree fndecl = gimple_call_fndecl (stmt);
307 if (fndecl
308 && (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_OBJECT_SIZE
309 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CONSTANT_P))
310 continue;
313 /* At this point we have a statement which assigns an RHS to an
314 SSA_VAR on the LHS. We want to try and simplify this statement
315 to expose more context sensitive equivalences which in turn may
316 allow us to simplify the condition at the end of the loop.
318 Handle simple copy operations as well as implied copies from
319 ASSERT_EXPRs. */
320 if (gimple_assign_single_p (stmt)
321 && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME)
322 cached_lhs = gimple_assign_rhs1 (stmt);
323 else if (gimple_assign_single_p (stmt)
324 && TREE_CODE (gimple_assign_rhs1 (stmt)) == ASSERT_EXPR)
325 cached_lhs = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
326 else
328 /* A statement that is not a trivial copy or ASSERT_EXPR.
329 Try to fold the new expression. Inserting the
330 expression into the hash table is unlikely to help. */
331 /* ??? The DOM callback below can be changed to setting
332 the mprts_hook around the call to thread_across_edge,
333 avoiding the use substitution. The VRP hook should be
334 changed to properly valueize operands itself using
335 SSA_NAME_VALUE in addition to its own lattice. */
336 cached_lhs = gimple_fold_stmt_to_constant_1 (stmt,
337 threadedge_valueize);
338 if (NUM_SSA_OPERANDS (stmt, SSA_OP_ALL_USES) != 0
339 && (!cached_lhs
340 || (TREE_CODE (cached_lhs) != SSA_NAME
341 && !is_gimple_min_invariant (cached_lhs))))
343 /* We're going to temporarily copy propagate the operands
344 and see if that allows us to simplify this statement. */
345 tree *copy;
346 ssa_op_iter iter;
347 use_operand_p use_p;
348 unsigned int num, i = 0;
350 num = NUM_SSA_OPERANDS (stmt, SSA_OP_ALL_USES);
351 copy = XALLOCAVEC (tree, num);
353 /* Make a copy of the uses & vuses into USES_COPY, then cprop into
354 the operands. */
355 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
357 tree tmp = NULL;
358 tree use = USE_FROM_PTR (use_p);
360 copy[i++] = use;
361 if (TREE_CODE (use) == SSA_NAME)
362 tmp = SSA_NAME_VALUE (use);
363 if (tmp)
364 SET_USE (use_p, tmp);
367 cached_lhs = (*simplify) (stmt, stmt, avail_exprs_stack, e->src);
369 /* Restore the statement's original uses/defs. */
370 i = 0;
371 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
372 SET_USE (use_p, copy[i++]);
376 /* Record the context sensitive equivalence if we were able
377 to simplify this statement. */
378 if (cached_lhs
379 && (TREE_CODE (cached_lhs) == SSA_NAME
380 || is_gimple_min_invariant (cached_lhs)))
381 const_and_copies->record_const_or_copy (gimple_get_lhs (stmt),
382 cached_lhs);
384 return stmt;
387 static tree simplify_control_stmt_condition_1 (edge, gimple *,
388 class avail_exprs_stack *,
389 tree, enum tree_code, tree,
390 gcond *, pfn_simplify,
391 unsigned);
393 /* Simplify the control statement at the end of the block E->dest.
395 To avoid allocating memory unnecessarily, a scratch GIMPLE_COND
396 is available to use/clobber in DUMMY_COND.
398 Use SIMPLIFY (a pointer to a callback function) to further simplify
399 a condition using pass specific information.
401 Return the simplified condition or NULL if simplification could
402 not be performed. When simplifying a GIMPLE_SWITCH, we may return
403 the CASE_LABEL_EXPR that will be taken.
405 The available expression table is referenced via AVAIL_EXPRS_STACK. */
407 static tree
408 simplify_control_stmt_condition (edge e,
409 gimple *stmt,
410 class avail_exprs_stack *avail_exprs_stack,
411 gcond *dummy_cond,
412 pfn_simplify simplify)
414 tree cond, cached_lhs;
415 enum gimple_code code = gimple_code (stmt);
417 /* For comparisons, we have to update both operands, then try
418 to simplify the comparison. */
419 if (code == GIMPLE_COND)
421 tree op0, op1;
422 enum tree_code cond_code;
424 op0 = gimple_cond_lhs (stmt);
425 op1 = gimple_cond_rhs (stmt);
426 cond_code = gimple_cond_code (stmt);
428 /* Get the current value of both operands. */
429 if (TREE_CODE (op0) == SSA_NAME)
431 for (int i = 0; i < 2; i++)
433 if (TREE_CODE (op0) == SSA_NAME
434 && SSA_NAME_VALUE (op0))
435 op0 = SSA_NAME_VALUE (op0);
436 else
437 break;
441 if (TREE_CODE (op1) == SSA_NAME)
443 for (int i = 0; i < 2; i++)
445 if (TREE_CODE (op1) == SSA_NAME
446 && SSA_NAME_VALUE (op1))
447 op1 = SSA_NAME_VALUE (op1);
448 else
449 break;
453 const unsigned recursion_limit = 4;
455 cached_lhs
456 = simplify_control_stmt_condition_1 (e, stmt, avail_exprs_stack,
457 op0, cond_code, op1,
458 dummy_cond, simplify,
459 recursion_limit);
461 /* If we were testing an integer/pointer against a constant, then
462 we can use the FSM code to trace the value of the SSA_NAME. If
463 a value is found, then the condition will collapse to a constant.
465 Return the SSA_NAME we want to trace back rather than the full
466 expression and give the FSM threader a chance to find its value. */
467 if (cached_lhs == NULL)
469 /* Recover the original operands. They may have been simplified
470 using context sensitive equivalences. Those context sensitive
471 equivalences may not be valid on paths found by the FSM optimizer. */
472 tree op0 = gimple_cond_lhs (stmt);
473 tree op1 = gimple_cond_rhs (stmt);
475 if ((INTEGRAL_TYPE_P (TREE_TYPE (op0))
476 || POINTER_TYPE_P (TREE_TYPE (op0)))
477 && TREE_CODE (op0) == SSA_NAME
478 && TREE_CODE (op1) == INTEGER_CST)
479 return op0;
482 return cached_lhs;
485 if (code == GIMPLE_SWITCH)
486 cond = gimple_switch_index (as_a <gswitch *> (stmt));
487 else if (code == GIMPLE_GOTO)
488 cond = gimple_goto_dest (stmt);
489 else
490 gcc_unreachable ();
492 /* We can have conditionals which just test the state of a variable
493 rather than use a relational operator. These are simpler to handle. */
494 if (TREE_CODE (cond) == SSA_NAME)
496 tree original_lhs = cond;
497 cached_lhs = cond;
499 /* Get the variable's current value from the equivalence chains.
501 It is possible to get loops in the SSA_NAME_VALUE chains
502 (consider threading the backedge of a loop where we have
503 a loop invariant SSA_NAME used in the condition). */
504 if (cached_lhs)
506 for (int i = 0; i < 2; i++)
508 if (TREE_CODE (cached_lhs) == SSA_NAME
509 && SSA_NAME_VALUE (cached_lhs))
510 cached_lhs = SSA_NAME_VALUE (cached_lhs);
511 else
512 break;
516 /* If we haven't simplified to an invariant yet, then use the
517 pass specific callback to try and simplify it further. */
518 if (cached_lhs && ! is_gimple_min_invariant (cached_lhs))
520 if (code == GIMPLE_SWITCH)
522 /* Replace the index operand of the GIMPLE_SWITCH with any LHS
523 we found before handing off to VRP. If simplification is
524 possible, the simplified value will be a CASE_LABEL_EXPR of
525 the label that is proven to be taken. */
526 gswitch *dummy_switch = as_a<gswitch *> (gimple_copy (stmt));
527 gimple_switch_set_index (dummy_switch, cached_lhs);
528 cached_lhs = (*simplify) (dummy_switch, stmt,
529 avail_exprs_stack, e->src);
530 ggc_free (dummy_switch);
532 else
533 cached_lhs = (*simplify) (stmt, stmt, avail_exprs_stack, e->src);
536 /* We couldn't find an invariant. But, callers of this
537 function may be able to do something useful with the
538 unmodified destination. */
539 if (!cached_lhs)
540 cached_lhs = original_lhs;
542 else
543 cached_lhs = NULL;
545 return cached_lhs;
548 /* Recursive helper for simplify_control_stmt_condition. */
550 static tree
551 simplify_control_stmt_condition_1 (edge e,
552 gimple *stmt,
553 class avail_exprs_stack *avail_exprs_stack,
554 tree op0,
555 enum tree_code cond_code,
556 tree op1,
557 gcond *dummy_cond,
558 pfn_simplify simplify,
559 unsigned limit)
561 if (limit == 0)
562 return NULL_TREE;
564 /* We may need to canonicalize the comparison. For
565 example, op0 might be a constant while op1 is an
566 SSA_NAME. Failure to canonicalize will cause us to
567 miss threading opportunities. */
568 if (tree_swap_operands_p (op0, op1))
570 cond_code = swap_tree_comparison (cond_code);
571 std::swap (op0, op1);
574 /* If the condition has the form (A & B) CMP 0 or (A | B) CMP 0 then
575 recurse into the LHS to see if there is a dominating ASSERT_EXPR
576 of A or of B that makes this condition always true or always false
577 along the edge E. */
578 if ((cond_code == EQ_EXPR || cond_code == NE_EXPR)
579 && TREE_CODE (op0) == SSA_NAME
580 && integer_zerop (op1))
582 gimple *def_stmt = SSA_NAME_DEF_STMT (op0);
583 if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
585 else if (gimple_assign_rhs_code (def_stmt) == BIT_AND_EXPR
586 || gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR)
588 enum tree_code rhs_code = gimple_assign_rhs_code (def_stmt);
589 const tree rhs1 = gimple_assign_rhs1 (def_stmt);
590 const tree rhs2 = gimple_assign_rhs2 (def_stmt);
592 /* Is A != 0 ? */
593 const tree res1
594 = simplify_control_stmt_condition_1 (e, def_stmt, avail_exprs_stack,
595 rhs1, NE_EXPR, op1,
596 dummy_cond, simplify,
597 limit - 1);
598 if (res1 == NULL_TREE)
600 else if (rhs_code == BIT_AND_EXPR && integer_zerop (res1))
602 /* If A == 0 then (A & B) != 0 is always false. */
603 if (cond_code == NE_EXPR)
604 return boolean_false_node;
605 /* If A == 0 then (A & B) == 0 is always true. */
606 if (cond_code == EQ_EXPR)
607 return boolean_true_node;
609 else if (rhs_code == BIT_IOR_EXPR && integer_nonzerop (res1))
611 /* If A != 0 then (A | B) != 0 is always true. */
612 if (cond_code == NE_EXPR)
613 return boolean_true_node;
614 /* If A != 0 then (A | B) == 0 is always false. */
615 if (cond_code == EQ_EXPR)
616 return boolean_false_node;
619 /* Is B != 0 ? */
620 const tree res2
621 = simplify_control_stmt_condition_1 (e, def_stmt, avail_exprs_stack,
622 rhs2, NE_EXPR, op1,
623 dummy_cond, simplify,
624 limit - 1);
625 if (res2 == NULL_TREE)
627 else if (rhs_code == BIT_AND_EXPR && integer_zerop (res2))
629 /* If B == 0 then (A & B) != 0 is always false. */
630 if (cond_code == NE_EXPR)
631 return boolean_false_node;
632 /* If B == 0 then (A & B) == 0 is always true. */
633 if (cond_code == EQ_EXPR)
634 return boolean_true_node;
636 else if (rhs_code == BIT_IOR_EXPR && integer_nonzerop (res2))
638 /* If B != 0 then (A | B) != 0 is always true. */
639 if (cond_code == NE_EXPR)
640 return boolean_true_node;
641 /* If B != 0 then (A | B) == 0 is always false. */
642 if (cond_code == EQ_EXPR)
643 return boolean_false_node;
646 if (res1 != NULL_TREE && res2 != NULL_TREE)
648 if (rhs_code == BIT_AND_EXPR
649 && TYPE_PRECISION (TREE_TYPE (op0)) == 1
650 && integer_nonzerop (res1)
651 && integer_nonzerop (res2))
653 /* If A != 0 and B != 0 then (bool)(A & B) != 0 is true. */
654 if (cond_code == NE_EXPR)
655 return boolean_true_node;
656 /* If A != 0 and B != 0 then (bool)(A & B) == 0 is false. */
657 if (cond_code == EQ_EXPR)
658 return boolean_false_node;
661 if (rhs_code == BIT_IOR_EXPR
662 && integer_zerop (res1)
663 && integer_zerop (res2))
665 /* If A == 0 and B == 0 then (A | B) != 0 is false. */
666 if (cond_code == NE_EXPR)
667 return boolean_false_node;
668 /* If A == 0 and B == 0 then (A | B) == 0 is true. */
669 if (cond_code == EQ_EXPR)
670 return boolean_true_node;
674 /* Handle (A CMP B) CMP 0. */
675 else if (TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt))
676 == tcc_comparison)
678 tree rhs1 = gimple_assign_rhs1 (def_stmt);
679 tree rhs2 = gimple_assign_rhs2 (def_stmt);
681 tree_code new_cond = gimple_assign_rhs_code (def_stmt);
682 if (cond_code == EQ_EXPR)
683 new_cond = invert_tree_comparison (new_cond, false);
685 tree res
686 = simplify_control_stmt_condition_1 (e, def_stmt, avail_exprs_stack,
687 rhs1, new_cond, rhs2,
688 dummy_cond, simplify,
689 limit - 1);
690 if (res != NULL_TREE && is_gimple_min_invariant (res))
691 return res;
695 gimple_cond_set_code (dummy_cond, cond_code);
696 gimple_cond_set_lhs (dummy_cond, op0);
697 gimple_cond_set_rhs (dummy_cond, op1);
699 /* We absolutely do not care about any type conversions
700 we only care about a zero/nonzero value. */
701 fold_defer_overflow_warnings ();
703 tree res = fold_binary (cond_code, boolean_type_node, op0, op1);
704 if (res)
705 while (CONVERT_EXPR_P (res))
706 res = TREE_OPERAND (res, 0);
708 fold_undefer_overflow_warnings ((res && is_gimple_min_invariant (res)),
709 stmt, WARN_STRICT_OVERFLOW_CONDITIONAL);
711 /* If we have not simplified the condition down to an invariant,
712 then use the pass specific callback to simplify the condition. */
713 if (!res
714 || !is_gimple_min_invariant (res))
715 res = (*simplify) (dummy_cond, stmt, avail_exprs_stack, e->src);
717 return res;
720 /* Copy debug stmts from DEST's chain of single predecessors up to
721 SRC, so that we don't lose the bindings as PHI nodes are introduced
722 when DEST gains new predecessors. */
723 void
724 propagate_threaded_block_debug_into (basic_block dest, basic_block src)
726 if (!MAY_HAVE_DEBUG_BIND_STMTS)
727 return;
729 if (!single_pred_p (dest))
730 return;
732 gcc_checking_assert (dest != src);
734 gimple_stmt_iterator gsi = gsi_after_labels (dest);
735 int i = 0;
736 const int alloc_count = 16; // ?? Should this be a PARAM?
738 /* Estimate the number of debug vars overridden in the beginning of
739 DEST, to tell how many we're going to need to begin with. */
740 for (gimple_stmt_iterator si = gsi;
741 i * 4 <= alloc_count * 3 && !gsi_end_p (si); gsi_next (&si))
743 gimple *stmt = gsi_stmt (si);
744 if (!is_gimple_debug (stmt))
745 break;
746 if (gimple_debug_nonbind_marker_p (stmt))
747 continue;
748 i++;
751 auto_vec<tree, alloc_count> fewvars;
752 hash_set<tree> *vars = NULL;
754 /* If we're already starting with 3/4 of alloc_count, go for a
755 hash_set, otherwise start with an unordered stack-allocated
756 VEC. */
757 if (i * 4 > alloc_count * 3)
758 vars = new hash_set<tree>;
760 /* Now go through the initial debug stmts in DEST again, this time
761 actually inserting in VARS or FEWVARS. Don't bother checking for
762 duplicates in FEWVARS. */
763 for (gimple_stmt_iterator si = gsi; !gsi_end_p (si); gsi_next (&si))
765 gimple *stmt = gsi_stmt (si);
766 if (!is_gimple_debug (stmt))
767 break;
769 tree var;
771 if (gimple_debug_bind_p (stmt))
772 var = gimple_debug_bind_get_var (stmt);
773 else if (gimple_debug_source_bind_p (stmt))
774 var = gimple_debug_source_bind_get_var (stmt);
775 else if (gimple_debug_nonbind_marker_p (stmt))
776 continue;
777 else
778 gcc_unreachable ();
780 if (vars)
781 vars->add (var);
782 else
783 fewvars.quick_push (var);
786 basic_block bb = dest;
790 bb = single_pred (bb);
791 for (gimple_stmt_iterator si = gsi_last_bb (bb);
792 !gsi_end_p (si); gsi_prev (&si))
794 gimple *stmt = gsi_stmt (si);
795 if (!is_gimple_debug (stmt))
796 continue;
798 tree var;
800 if (gimple_debug_bind_p (stmt))
801 var = gimple_debug_bind_get_var (stmt);
802 else if (gimple_debug_source_bind_p (stmt))
803 var = gimple_debug_source_bind_get_var (stmt);
804 else if (gimple_debug_nonbind_marker_p (stmt))
805 continue;
806 else
807 gcc_unreachable ();
809 /* Discard debug bind overlaps. Unlike stmts from src,
810 copied into a new block that will precede BB, debug bind
811 stmts in bypassed BBs may actually be discarded if
812 they're overwritten by subsequent debug bind stmts. We
813 want to copy binds for all modified variables, so that we
814 retain a bind to the shared def if there is one, or to a
815 newly introduced PHI node if there is one. Our bind will
816 end up reset if the value is dead, but that implies the
817 variable couldn't have survived, so it's fine. We are
818 not actually running the code that performed the binds at
819 this point, we're just adding binds so that they survive
820 the new confluence, so markers should not be copied. */
821 if (vars && vars->add (var))
822 continue;
823 else if (!vars)
825 int i = fewvars.length ();
826 while (i--)
827 if (fewvars[i] == var)
828 break;
829 if (i >= 0)
830 continue;
831 else if (fewvars.length () < (unsigned) alloc_count)
832 fewvars.quick_push (var);
833 else
835 vars = new hash_set<tree>;
836 for (i = 0; i < alloc_count; i++)
837 vars->add (fewvars[i]);
838 fewvars.release ();
839 vars->add (var);
843 stmt = gimple_copy (stmt);
844 /* ??? Should we drop the location of the copy to denote
845 they're artificial bindings? */
846 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
849 while (bb != src && single_pred_p (bb));
851 if (vars)
852 delete vars;
853 else if (fewvars.exists ())
854 fewvars.release ();
857 /* See if TAKEN_EDGE->dest is a threadable block with no side effecs (ie, it
858 need not be duplicated as part of the CFG/SSA updating process).
860 If it is threadable, add it to PATH and VISITED and recurse, ultimately
861 returning TRUE from the toplevel call. Otherwise do nothing and
862 return false.
864 DUMMY_COND, SIMPLIFY are used to try and simplify the condition at the
865 end of TAKEN_EDGE->dest.
867 The available expression table is referenced via AVAIL_EXPRS_STACK. */
869 static bool
870 thread_around_empty_blocks (edge taken_edge,
871 gcond *dummy_cond,
872 class avail_exprs_stack *avail_exprs_stack,
873 pfn_simplify simplify,
874 bitmap visited,
875 vec<jump_thread_edge *> *path)
877 basic_block bb = taken_edge->dest;
878 gimple_stmt_iterator gsi;
879 gimple *stmt;
880 tree cond;
882 /* The key property of these blocks is that they need not be duplicated
883 when threading. Thus they can not have visible side effects such
884 as PHI nodes. */
885 if (!gsi_end_p (gsi_start_phis (bb)))
886 return false;
888 /* Skip over DEBUG statements at the start of the block. */
889 gsi = gsi_start_nondebug_bb (bb);
891 /* If the block has no statements, but does have a single successor, then
892 it's just a forwarding block and we can thread through it trivially.
894 However, note that just threading through empty blocks with single
895 successors is not inherently profitable. For the jump thread to
896 be profitable, we must avoid a runtime conditional.
898 By taking the return value from the recursive call, we get the
899 desired effect of returning TRUE when we found a profitable jump
900 threading opportunity and FALSE otherwise.
902 This is particularly important when this routine is called after
903 processing a joiner block. Returning TRUE too aggressively in
904 that case results in pointless duplication of the joiner block. */
905 if (gsi_end_p (gsi))
907 if (single_succ_p (bb))
909 taken_edge = single_succ_edge (bb);
911 if ((taken_edge->flags & EDGE_DFS_BACK) != 0)
912 return false;
914 if (!bitmap_bit_p (visited, taken_edge->dest->index))
916 jump_thread_edge *x
917 = new jump_thread_edge (taken_edge, EDGE_NO_COPY_SRC_BLOCK);
918 path->safe_push (x);
919 bitmap_set_bit (visited, taken_edge->dest->index);
920 return thread_around_empty_blocks (taken_edge,
921 dummy_cond,
922 avail_exprs_stack,
923 simplify,
924 visited,
925 path);
929 /* We have a block with no statements, but multiple successors? */
930 return false;
933 /* The only real statements this block can have are a control
934 flow altering statement. Anything else stops the thread. */
935 stmt = gsi_stmt (gsi);
936 if (gimple_code (stmt) != GIMPLE_COND
937 && gimple_code (stmt) != GIMPLE_GOTO
938 && gimple_code (stmt) != GIMPLE_SWITCH)
939 return false;
941 /* Extract and simplify the condition. */
942 cond = simplify_control_stmt_condition (taken_edge, stmt,
943 avail_exprs_stack, dummy_cond,
944 simplify);
946 /* If the condition can be statically computed and we have not already
947 visited the destination edge, then add the taken edge to our thread
948 path. */
949 if (cond != NULL_TREE
950 && (is_gimple_min_invariant (cond)
951 || TREE_CODE (cond) == CASE_LABEL_EXPR))
953 if (TREE_CODE (cond) == CASE_LABEL_EXPR)
954 taken_edge = find_edge (bb, label_to_block (CASE_LABEL (cond)));
955 else
956 taken_edge = find_taken_edge (bb, cond);
958 if ((taken_edge->flags & EDGE_DFS_BACK) != 0)
959 return false;
961 if (bitmap_bit_p (visited, taken_edge->dest->index))
962 return false;
963 bitmap_set_bit (visited, taken_edge->dest->index);
965 jump_thread_edge *x
966 = new jump_thread_edge (taken_edge, EDGE_NO_COPY_SRC_BLOCK);
967 path->safe_push (x);
969 thread_around_empty_blocks (taken_edge,
970 dummy_cond,
971 avail_exprs_stack,
972 simplify,
973 visited,
974 path);
975 return true;
978 return false;
981 /* We are exiting E->src, see if E->dest ends with a conditional
982 jump which has a known value when reached via E.
984 E->dest can have arbitrary side effects which, if threading is
985 successful, will be maintained.
987 Special care is necessary if E is a back edge in the CFG as we
988 may have already recorded equivalences for E->dest into our
989 various tables, including the result of the conditional at
990 the end of E->dest. Threading opportunities are severely
991 limited in that case to avoid short-circuiting the loop
992 incorrectly.
994 DUMMY_COND is a shared cond_expr used by condition simplification as scratch,
995 to avoid allocating memory.
997 STACK is used to undo temporary equivalences created during the walk of
998 E->dest.
1000 SIMPLIFY is a pass-specific function used to simplify statements.
1002 Our caller is responsible for restoring the state of the expression
1003 and const_and_copies stacks.
1005 Positive return value is success. Zero return value is failure, but
1006 the block can still be duplicated as a joiner in a jump thread path,
1007 negative indicates the block should not be duplicated and thus is not
1008 suitable for a joiner in a jump threading path. */
1010 static int
1011 thread_through_normal_block (edge e,
1012 gcond *dummy_cond,
1013 const_and_copies *const_and_copies,
1014 avail_exprs_stack *avail_exprs_stack,
1015 evrp_range_analyzer *evrp_range_analyzer,
1016 pfn_simplify simplify,
1017 vec<jump_thread_edge *> *path,
1018 bitmap visited)
1020 /* We want to record any equivalences created by traversing E. */
1021 record_temporary_equivalences (e, const_and_copies, avail_exprs_stack);
1023 /* PHIs create temporary equivalences.
1024 Note that if we found a PHI that made the block non-threadable, then
1025 we need to bubble that up to our caller in the same manner we do
1026 when we prematurely stop processing statements below. */
1027 if (!record_temporary_equivalences_from_phis (e, const_and_copies,
1028 evrp_range_analyzer))
1029 return -1;
1031 /* Now walk each statement recording any context sensitive
1032 temporary equivalences we can detect. */
1033 gimple *stmt
1034 = record_temporary_equivalences_from_stmts_at_dest (e, const_and_copies,
1035 avail_exprs_stack,
1036 evrp_range_analyzer,
1037 simplify);
1039 /* There's two reasons STMT might be null, and distinguishing
1040 between them is important.
1042 First the block may not have had any statements. For example, it
1043 might have some PHIs and unconditionally transfer control elsewhere.
1044 Such blocks are suitable for jump threading, particularly as a
1045 joiner block.
1047 The second reason would be if we did not process all the statements
1048 in the block (because there were too many to make duplicating the
1049 block profitable. If we did not look at all the statements, then
1050 we may not have invalidated everything needing invalidation. Thus
1051 we must signal to our caller that this block is not suitable for
1052 use as a joiner in a threading path. */
1053 if (!stmt)
1055 /* First case. The statement simply doesn't have any instructions, but
1056 does have PHIs. */
1057 if (gsi_end_p (gsi_start_nondebug_bb (e->dest))
1058 && !gsi_end_p (gsi_start_phis (e->dest)))
1059 return 0;
1061 /* Second case. */
1062 return -1;
1065 /* If we stopped at a COND_EXPR or SWITCH_EXPR, see if we know which arm
1066 will be taken. */
1067 if (gimple_code (stmt) == GIMPLE_COND
1068 || gimple_code (stmt) == GIMPLE_GOTO
1069 || gimple_code (stmt) == GIMPLE_SWITCH)
1071 tree cond;
1073 /* Extract and simplify the condition. */
1074 cond = simplify_control_stmt_condition (e, stmt, avail_exprs_stack,
1075 dummy_cond, simplify);
1077 if (!cond)
1078 return 0;
1080 if (is_gimple_min_invariant (cond)
1081 || TREE_CODE (cond) == CASE_LABEL_EXPR)
1083 edge taken_edge;
1084 if (TREE_CODE (cond) == CASE_LABEL_EXPR)
1085 taken_edge = find_edge (e->dest,
1086 label_to_block (CASE_LABEL (cond)));
1087 else
1088 taken_edge = find_taken_edge (e->dest, cond);
1090 basic_block dest = (taken_edge ? taken_edge->dest : NULL);
1092 /* DEST could be NULL for a computed jump to an absolute
1093 address. */
1094 if (dest == NULL
1095 || dest == e->dest
1096 || (taken_edge->flags & EDGE_DFS_BACK) != 0
1097 || bitmap_bit_p (visited, dest->index))
1098 return 0;
1100 /* Only push the EDGE_START_JUMP_THREAD marker if this is
1101 first edge on the path. */
1102 if (path->length () == 0)
1104 jump_thread_edge *x
1105 = new jump_thread_edge (e, EDGE_START_JUMP_THREAD);
1106 path->safe_push (x);
1109 jump_thread_edge *x
1110 = new jump_thread_edge (taken_edge, EDGE_COPY_SRC_BLOCK);
1111 path->safe_push (x);
1113 /* See if we can thread through DEST as well, this helps capture
1114 secondary effects of threading without having to re-run DOM or
1115 VRP.
1117 We don't want to thread back to a block we have already
1118 visited. This may be overly conservative. */
1119 bitmap_set_bit (visited, dest->index);
1120 bitmap_set_bit (visited, e->dest->index);
1121 thread_around_empty_blocks (taken_edge,
1122 dummy_cond,
1123 avail_exprs_stack,
1124 simplify,
1125 visited,
1126 path);
1127 return 1;
1130 return 0;
1133 /* We are exiting E->src, see if E->dest ends with a conditional
1134 jump which has a known value when reached via E.
1136 DUMMY_COND is a shared cond_expr used by condition simplification as scratch,
1137 to avoid allocating memory.
1139 CONST_AND_COPIES is used to undo temporary equivalences created during the
1140 walk of E->dest.
1142 The available expression table is referenced vai AVAIL_EXPRS_STACK.
1144 SIMPLIFY is a pass-specific function used to simplify statements. */
1146 static void
1147 thread_across_edge (gcond *dummy_cond,
1148 edge e,
1149 class const_and_copies *const_and_copies,
1150 class avail_exprs_stack *avail_exprs_stack,
1151 class evrp_range_analyzer *evrp_range_analyzer,
1152 pfn_simplify simplify)
1154 bitmap visited = BITMAP_ALLOC (NULL);
1156 const_and_copies->push_marker ();
1157 avail_exprs_stack->push_marker ();
1158 if (evrp_range_analyzer)
1159 evrp_range_analyzer->push_marker ();
1161 stmt_count = 0;
1163 vec<jump_thread_edge *> *path = new vec<jump_thread_edge *> ();
1164 bitmap_clear (visited);
1165 bitmap_set_bit (visited, e->src->index);
1166 bitmap_set_bit (visited, e->dest->index);
1168 int threaded;
1169 if ((e->flags & EDGE_DFS_BACK) == 0)
1170 threaded = thread_through_normal_block (e, dummy_cond,
1171 const_and_copies,
1172 avail_exprs_stack,
1173 evrp_range_analyzer,
1174 simplify, path,
1175 visited);
1176 else
1177 threaded = 0;
1179 if (threaded > 0)
1181 propagate_threaded_block_debug_into (path->last ()->e->dest,
1182 e->dest);
1183 const_and_copies->pop_to_marker ();
1184 avail_exprs_stack->pop_to_marker ();
1185 if (evrp_range_analyzer)
1186 evrp_range_analyzer->pop_to_marker ();
1187 BITMAP_FREE (visited);
1188 register_jump_thread (path);
1189 return;
1191 else
1193 /* Negative and zero return values indicate no threading was possible,
1194 thus there should be no edges on the thread path and no need to walk
1195 through the vector entries. */
1196 gcc_assert (path->length () == 0);
1197 path->release ();
1198 delete path;
1200 /* A negative status indicates the target block was deemed too big to
1201 duplicate. Just quit now rather than trying to use the block as
1202 a joiner in a jump threading path.
1204 This prevents unnecessary code growth, but more importantly if we
1205 do not look at all the statements in the block, then we may have
1206 missed some invalidations if we had traversed a backedge! */
1207 if (threaded < 0)
1209 BITMAP_FREE (visited);
1210 const_and_copies->pop_to_marker ();
1211 avail_exprs_stack->pop_to_marker ();
1212 if (evrp_range_analyzer)
1213 evrp_range_analyzer->pop_to_marker ();
1214 return;
1218 /* We were unable to determine what out edge from E->dest is taken. However,
1219 we might still be able to thread through successors of E->dest. This
1220 often occurs when E->dest is a joiner block which then fans back out
1221 based on redundant tests.
1223 If so, we'll copy E->dest and redirect the appropriate predecessor to
1224 the copy. Within the copy of E->dest, we'll thread one or more edges
1225 to points deeper in the CFG.
1227 This is a stopgap until we have a more structured approach to path
1228 isolation. */
1230 edge taken_edge;
1231 edge_iterator ei;
1232 bool found;
1234 /* If E->dest has abnormal outgoing edges, then there's no guarantee
1235 we can safely redirect any of the edges. Just punt those cases. */
1236 FOR_EACH_EDGE (taken_edge, ei, e->dest->succs)
1237 if (taken_edge->flags & EDGE_ABNORMAL)
1239 const_and_copies->pop_to_marker ();
1240 avail_exprs_stack->pop_to_marker ();
1241 if (evrp_range_analyzer)
1242 evrp_range_analyzer->pop_to_marker ();
1243 BITMAP_FREE (visited);
1244 return;
1247 /* Look at each successor of E->dest to see if we can thread through it. */
1248 FOR_EACH_EDGE (taken_edge, ei, e->dest->succs)
1250 if ((e->flags & EDGE_DFS_BACK) != 0
1251 || (taken_edge->flags & EDGE_DFS_BACK) != 0)
1252 continue;
1254 /* Push a fresh marker so we can unwind the equivalences created
1255 for each of E->dest's successors. */
1256 const_and_copies->push_marker ();
1257 avail_exprs_stack->push_marker ();
1258 if (evrp_range_analyzer)
1259 evrp_range_analyzer->push_marker ();
1261 /* Avoid threading to any block we have already visited. */
1262 bitmap_clear (visited);
1263 bitmap_set_bit (visited, e->src->index);
1264 bitmap_set_bit (visited, e->dest->index);
1265 bitmap_set_bit (visited, taken_edge->dest->index);
1266 vec<jump_thread_edge *> *path = new vec<jump_thread_edge *> ();
1268 /* Record whether or not we were able to thread through a successor
1269 of E->dest. */
1270 jump_thread_edge *x = new jump_thread_edge (e, EDGE_START_JUMP_THREAD);
1271 path->safe_push (x);
1273 x = new jump_thread_edge (taken_edge, EDGE_COPY_SRC_JOINER_BLOCK);
1274 path->safe_push (x);
1275 found = false;
1276 found = thread_around_empty_blocks (taken_edge,
1277 dummy_cond,
1278 avail_exprs_stack,
1279 simplify,
1280 visited,
1281 path);
1283 if (!found)
1284 found = thread_through_normal_block (path->last ()->e, dummy_cond,
1285 const_and_copies,
1286 avail_exprs_stack,
1287 evrp_range_analyzer,
1288 simplify, path,
1289 visited) > 0;
1291 /* If we were able to thread through a successor of E->dest, then
1292 record the jump threading opportunity. */
1293 if (found)
1295 propagate_threaded_block_debug_into (path->last ()->e->dest,
1296 taken_edge->dest);
1297 register_jump_thread (path);
1299 else
1300 delete_jump_thread_path (path);
1302 /* And unwind the equivalence table. */
1303 if (evrp_range_analyzer)
1304 evrp_range_analyzer->pop_to_marker ();
1305 avail_exprs_stack->pop_to_marker ();
1306 const_and_copies->pop_to_marker ();
1308 BITMAP_FREE (visited);
1311 if (evrp_range_analyzer)
1312 evrp_range_analyzer->pop_to_marker ();
1313 const_and_copies->pop_to_marker ();
1314 avail_exprs_stack->pop_to_marker ();
1317 /* Examine the outgoing edges from BB and conditionally
1318 try to thread them.
1320 DUMMY_COND is a shared cond_expr used by condition simplification as scratch,
1321 to avoid allocating memory.
1323 CONST_AND_COPIES is used to undo temporary equivalences created during the
1324 walk of E->dest.
1326 The available expression table is referenced vai AVAIL_EXPRS_STACK.
1328 SIMPLIFY is a pass-specific function used to simplify statements. */
1330 void
1331 thread_outgoing_edges (basic_block bb, gcond *dummy_cond,
1332 class const_and_copies *const_and_copies,
1333 class avail_exprs_stack *avail_exprs_stack,
1334 class evrp_range_analyzer *evrp_range_analyzer,
1335 tree (*simplify) (gimple *, gimple *,
1336 class avail_exprs_stack *,
1337 basic_block))
1339 int flags = (EDGE_IGNORE | EDGE_COMPLEX | EDGE_ABNORMAL);
1340 gimple *last;
1342 /* If we have an outgoing edge to a block with multiple incoming and
1343 outgoing edges, then we may be able to thread the edge, i.e., we
1344 may be able to statically determine which of the outgoing edges
1345 will be traversed when the incoming edge from BB is traversed. */
1346 if (single_succ_p (bb)
1347 && (single_succ_edge (bb)->flags & flags) == 0
1348 && potentially_threadable_block (single_succ (bb)))
1350 thread_across_edge (dummy_cond, single_succ_edge (bb),
1351 const_and_copies, avail_exprs_stack,
1352 evrp_range_analyzer, simplify);
1354 else if ((last = last_stmt (bb))
1355 && gimple_code (last) == GIMPLE_COND
1356 && EDGE_COUNT (bb->succs) == 2
1357 && (EDGE_SUCC (bb, 0)->flags & flags) == 0
1358 && (EDGE_SUCC (bb, 1)->flags & flags) == 0)
1360 edge true_edge, false_edge;
1362 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
1364 /* Only try to thread the edge if it reaches a target block with
1365 more than one predecessor and more than one successor. */
1366 if (potentially_threadable_block (true_edge->dest))
1367 thread_across_edge (dummy_cond, true_edge,
1368 const_and_copies, avail_exprs_stack,
1369 evrp_range_analyzer, simplify);
1371 /* Similarly for the ELSE arm. */
1372 if (potentially_threadable_block (false_edge->dest))
1373 thread_across_edge (dummy_cond, false_edge,
1374 const_and_copies, avail_exprs_stack,
1375 evrp_range_analyzer, simplify);