1 /* Global, SSA-based optimizations using mathematical identities.
2 Copyright (C) 2005-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* Currently, the only mini-pass in this file tries to CSE reciprocal
21 operations. These are common in sequences such as this one:
23 modulus = sqrt(x*x + y*y + z*z);
28 that can be optimized to
30 modulus = sqrt(x*x + y*y + z*z);
31 rmodulus = 1.0 / modulus;
36 We do this for loop invariant divisors, and with this pass whenever
37 we notice that a division has the same divisor multiple times.
39 Of course, like in PRE, we don't insert a division if a dominator
40 already has one. However, this cannot be done as an extension of
41 PRE for several reasons.
43 First of all, with some experiments it was found out that the
44 transformation is not always useful if there are only two divisions
45 by the same divisor. This is probably because modern processors
46 can pipeline the divisions; on older, in-order processors it should
47 still be effective to optimize two divisions by the same number.
48 We make this a param, and it shall be called N in the remainder of
51 Second, if trapping math is active, we have less freedom on where
52 to insert divisions: we can only do so in basic blocks that already
53 contain one. (If divisions don't trap, instead, we can insert
54 divisions elsewhere, which will be in blocks that are common dominators
55 of those that have the division).
57 We really don't want to compute the reciprocal unless a division will
58 be found. To do this, we won't insert the division in a basic block
59 that has less than N divisions *post-dominating* it.
61 The algorithm constructs a subset of the dominator tree, holding the
62 blocks containing the divisions and the common dominators to them,
63 and walk it twice. The first walk is in post-order, and it annotates
64 each block with the number of divisions that post-dominate it: this
65 gives information on where divisions can be inserted profitably.
66 The second walk is in pre-order, and it inserts divisions as explained
67 above, and replaces divisions by multiplications.
69 In the best case, the cost of the pass is O(n_statements). In the
70 worst-case, the cost is due to creating the dominator tree subset,
71 with a cost of O(n_basic_blocks ^ 2); however this can only happen
72 for n_statements / n_basic_blocks statements. So, the amortized cost
73 of creating the dominator tree subset is O(n_basic_blocks) and the
74 worst-case cost of the pass is O(n_statements * n_basic_blocks).
76 More practically, the cost will be small because there are few
77 divisions, and they tend to be in the same basic block, so insert_bb
78 is called very few times.
80 If we did this using domwalk.c, an efficient implementation would have
81 to work on all the variables in a single pass, because we could not
82 work on just a subset of the dominator tree, as we do now, and the
83 cost would also be something like O(n_statements * n_basic_blocks).
84 The data structures would be more complex in order to work on all the
85 variables in a single pass. */
89 #include "coretypes.h"
96 #include "alloc-pool.h"
97 #include "tree-pass.h"
99 #include "optabs-tree.h"
100 #include "gimple-pretty-print.h"
102 #include "fold-const.h"
103 #include "gimple-fold.h"
104 #include "gimple-iterator.h"
105 #include "gimplify.h"
106 #include "gimplify-me.h"
107 #include "stor-layout.h"
108 #include "tree-cfg.h"
109 #include "tree-dfa.h"
110 #include "tree-ssa.h"
111 #include "builtins.h"
113 #include "internal-fn.h"
114 #include "case-cfn-macros.h"
115 #include "optabs-libfuncs.h"
117 #include "targhooks.h"
119 /* This structure represents one basic block that either computes a
120 division, or is a common dominator for basic block that compute a
123 /* The basic block represented by this structure. */
126 /* If non-NULL, the SSA_NAME holding the definition for a reciprocal
130 /* If non-NULL, the SSA_NAME holding the definition for a squared
131 reciprocal inserted in BB. */
132 tree square_recip_def
;
134 /* If non-NULL, the GIMPLE_ASSIGN for a reciprocal computation that
135 was inserted in BB. */
136 gimple
*recip_def_stmt
;
138 /* Pointer to a list of "struct occurrence"s for blocks dominated
140 struct occurrence
*children
;
142 /* Pointer to the next "struct occurrence"s in the list of blocks
143 sharing a common dominator. */
144 struct occurrence
*next
;
146 /* The number of divisions that are in BB before compute_merit. The
147 number of divisions that are in BB or post-dominate it after
151 /* True if the basic block has a division, false if it is a common
152 dominator for basic blocks that do. If it is false and trapping
153 math is active, BB is not a candidate for inserting a reciprocal. */
154 bool bb_has_division
;
159 /* Number of 1.0/X ops inserted. */
162 /* Number of 1.0/FUNC ops inserted. */
168 /* Number of cexpi calls inserted. */
174 /* Number of widening multiplication ops inserted. */
175 int widen_mults_inserted
;
177 /* Number of integer multiply-and-accumulate ops inserted. */
180 /* Number of fp fused multiply-add ops inserted. */
183 /* Number of divmod calls inserted. */
184 int divmod_calls_inserted
;
187 /* The instance of "struct occurrence" representing the highest
188 interesting block in the dominator tree. */
189 static struct occurrence
*occ_head
;
191 /* Allocation pool for getting instances of "struct occurrence". */
192 static object_allocator
<occurrence
> *occ_pool
;
196 /* Allocate and return a new struct occurrence for basic block BB, and
197 whose children list is headed by CHILDREN. */
198 static struct occurrence
*
199 occ_new (basic_block bb
, struct occurrence
*children
)
201 struct occurrence
*occ
;
203 bb
->aux
= occ
= occ_pool
->allocate ();
204 memset (occ
, 0, sizeof (struct occurrence
));
207 occ
->children
= children
;
212 /* Insert NEW_OCC into our subset of the dominator tree. P_HEAD points to a
213 list of "struct occurrence"s, one per basic block, having IDOM as
214 their common dominator.
216 We try to insert NEW_OCC as deep as possible in the tree, and we also
217 insert any other block that is a common dominator for BB and one
218 block already in the tree. */
221 insert_bb (struct occurrence
*new_occ
, basic_block idom
,
222 struct occurrence
**p_head
)
224 struct occurrence
*occ
, **p_occ
;
226 for (p_occ
= p_head
; (occ
= *p_occ
) != NULL
; )
228 basic_block bb
= new_occ
->bb
, occ_bb
= occ
->bb
;
229 basic_block dom
= nearest_common_dominator (CDI_DOMINATORS
, occ_bb
, bb
);
232 /* BB dominates OCC_BB. OCC becomes NEW_OCC's child: remove OCC
235 occ
->next
= new_occ
->children
;
236 new_occ
->children
= occ
;
238 /* Try the next block (it may as well be dominated by BB). */
241 else if (dom
== occ_bb
)
243 /* OCC_BB dominates BB. Tail recurse to look deeper. */
244 insert_bb (new_occ
, dom
, &occ
->children
);
248 else if (dom
!= idom
)
250 gcc_assert (!dom
->aux
);
252 /* There is a dominator between IDOM and BB, add it and make
253 two children out of NEW_OCC and OCC. First, remove OCC from
259 /* None of the previous blocks has DOM as a dominator: if we tail
260 recursed, we would reexamine them uselessly. Just switch BB with
261 DOM, and go on looking for blocks dominated by DOM. */
262 new_occ
= occ_new (dom
, new_occ
);
267 /* Nothing special, go on with the next element. */
272 /* No place was found as a child of IDOM. Make BB a sibling of IDOM. */
273 new_occ
->next
= *p_head
;
277 /* Register that we found a division in BB.
278 IMPORTANCE is a measure of how much weighting to give
279 that division. Use IMPORTANCE = 2 to register a single
280 division. If the division is going to be found multiple
281 times use 1 (as it is with squares). */
284 register_division_in (basic_block bb
, int importance
)
286 struct occurrence
*occ
;
288 occ
= (struct occurrence
*) bb
->aux
;
291 occ
= occ_new (bb
, NULL
);
292 insert_bb (occ
, ENTRY_BLOCK_PTR_FOR_FN (cfun
), &occ_head
);
295 occ
->bb_has_division
= true;
296 occ
->num_divisions
+= importance
;
300 /* Compute the number of divisions that postdominate each block in OCC and
304 compute_merit (struct occurrence
*occ
)
306 struct occurrence
*occ_child
;
307 basic_block dom
= occ
->bb
;
309 for (occ_child
= occ
->children
; occ_child
; occ_child
= occ_child
->next
)
312 if (occ_child
->children
)
313 compute_merit (occ_child
);
316 bb
= single_noncomplex_succ (dom
);
320 if (dominated_by_p (CDI_POST_DOMINATORS
, bb
, occ_child
->bb
))
321 occ
->num_divisions
+= occ_child
->num_divisions
;
326 /* Return whether USE_STMT is a floating-point division by DEF. */
328 is_division_by (gimple
*use_stmt
, tree def
)
330 return is_gimple_assign (use_stmt
)
331 && gimple_assign_rhs_code (use_stmt
) == RDIV_EXPR
332 && gimple_assign_rhs2 (use_stmt
) == def
333 /* Do not recognize x / x as valid division, as we are getting
334 confused later by replacing all immediate uses x in such
336 && gimple_assign_rhs1 (use_stmt
) != def
;
339 /* Return whether USE_STMT is DEF * DEF. */
341 is_square_of (gimple
*use_stmt
, tree def
)
343 if (gimple_code (use_stmt
) == GIMPLE_ASSIGN
344 && gimple_assign_rhs_code (use_stmt
) == MULT_EXPR
)
346 tree op0
= gimple_assign_rhs1 (use_stmt
);
347 tree op1
= gimple_assign_rhs2 (use_stmt
);
349 return op0
== op1
&& op0
== def
;
354 /* Return whether USE_STMT is a floating-point division by
357 is_division_by_square (gimple
*use_stmt
, tree def
)
359 if (gimple_code (use_stmt
) == GIMPLE_ASSIGN
360 && gimple_assign_rhs_code (use_stmt
) == RDIV_EXPR
361 && gimple_assign_rhs1 (use_stmt
) != gimple_assign_rhs2 (use_stmt
))
363 tree denominator
= gimple_assign_rhs2 (use_stmt
);
364 if (TREE_CODE (denominator
) == SSA_NAME
)
366 return is_square_of (SSA_NAME_DEF_STMT (denominator
), def
);
372 /* Walk the subset of the dominator tree rooted at OCC, setting the
373 RECIP_DEF field to a definition of 1.0 / DEF that can be used in
374 the given basic block. The field may be left NULL, of course,
375 if it is not possible or profitable to do the optimization.
377 DEF_BSI is an iterator pointing at the statement defining DEF.
378 If RECIP_DEF is set, a dominator already has a computation that can
381 If should_insert_square_recip is set, then this also inserts
382 the square of the reciprocal immediately after the definition
383 of the reciprocal. */
386 insert_reciprocals (gimple_stmt_iterator
*def_gsi
, struct occurrence
*occ
,
387 tree def
, tree recip_def
, tree square_recip_def
,
388 int should_insert_square_recip
, int threshold
)
391 gassign
*new_stmt
, *new_square_stmt
;
392 gimple_stmt_iterator gsi
;
393 struct occurrence
*occ_child
;
396 && (occ
->bb_has_division
|| !flag_trapping_math
)
397 /* Divide by two as all divisions are counted twice in
399 && occ
->num_divisions
/ 2 >= threshold
)
401 /* Make a variable with the replacement and substitute it. */
402 type
= TREE_TYPE (def
);
403 recip_def
= create_tmp_reg (type
, "reciptmp");
404 new_stmt
= gimple_build_assign (recip_def
, RDIV_EXPR
,
405 build_one_cst (type
), def
);
407 if (should_insert_square_recip
)
409 square_recip_def
= create_tmp_reg (type
, "powmult_reciptmp");
410 new_square_stmt
= gimple_build_assign (square_recip_def
, MULT_EXPR
,
411 recip_def
, recip_def
);
414 if (occ
->bb_has_division
)
416 /* Case 1: insert before an existing division. */
417 gsi
= gsi_after_labels (occ
->bb
);
418 while (!gsi_end_p (gsi
)
419 && (!is_division_by (gsi_stmt (gsi
), def
))
420 && (!is_division_by_square (gsi_stmt (gsi
), def
)))
423 gsi_insert_before (&gsi
, new_stmt
, GSI_SAME_STMT
);
425 else if (def_gsi
&& occ
->bb
== def_gsi
->bb
)
427 /* Case 2: insert right after the definition. Note that this will
428 never happen if the definition statement can throw, because in
429 that case the sole successor of the statement's basic block will
430 dominate all the uses as well. */
432 gsi_insert_after (def_gsi
, new_stmt
, GSI_NEW_STMT
);
436 /* Case 3: insert in a basic block not containing defs/uses. */
437 gsi
= gsi_after_labels (occ
->bb
);
438 gsi_insert_before (&gsi
, new_stmt
, GSI_SAME_STMT
);
441 /* Regardless of which case the reciprocal as inserted in,
442 we insert the square immediately after the reciprocal. */
443 if (should_insert_square_recip
)
444 gsi_insert_before (&gsi
, new_square_stmt
, GSI_SAME_STMT
);
446 reciprocal_stats
.rdivs_inserted
++;
448 occ
->recip_def_stmt
= new_stmt
;
451 occ
->recip_def
= recip_def
;
452 occ
->square_recip_def
= square_recip_def
;
453 for (occ_child
= occ
->children
; occ_child
; occ_child
= occ_child
->next
)
454 insert_reciprocals (def_gsi
, occ_child
, def
, recip_def
,
455 square_recip_def
, should_insert_square_recip
,
459 /* Replace occurrences of expr / (x * x) with expr * ((1 / x) * (1 / x)).
460 Take as argument the use for (x * x). */
462 replace_reciprocal_squares (use_operand_p use_p
)
464 gimple
*use_stmt
= USE_STMT (use_p
);
465 basic_block bb
= gimple_bb (use_stmt
);
466 struct occurrence
*occ
= (struct occurrence
*) bb
->aux
;
468 if (optimize_bb_for_speed_p (bb
) && occ
->square_recip_def
471 gimple_stmt_iterator gsi
= gsi_for_stmt (use_stmt
);
472 gimple_assign_set_rhs_code (use_stmt
, MULT_EXPR
);
473 gimple_assign_set_rhs2 (use_stmt
, occ
->square_recip_def
);
474 SET_USE (use_p
, occ
->square_recip_def
);
475 fold_stmt_inplace (&gsi
);
476 update_stmt (use_stmt
);
481 /* Replace the division at USE_P with a multiplication by the reciprocal, if
485 replace_reciprocal (use_operand_p use_p
)
487 gimple
*use_stmt
= USE_STMT (use_p
);
488 basic_block bb
= gimple_bb (use_stmt
);
489 struct occurrence
*occ
= (struct occurrence
*) bb
->aux
;
491 if (optimize_bb_for_speed_p (bb
)
492 && occ
->recip_def
&& use_stmt
!= occ
->recip_def_stmt
)
494 gimple_stmt_iterator gsi
= gsi_for_stmt (use_stmt
);
495 gimple_assign_set_rhs_code (use_stmt
, MULT_EXPR
);
496 SET_USE (use_p
, occ
->recip_def
);
497 fold_stmt_inplace (&gsi
);
498 update_stmt (use_stmt
);
503 /* Free OCC and return one more "struct occurrence" to be freed. */
505 static struct occurrence
*
506 free_bb (struct occurrence
*occ
)
508 struct occurrence
*child
, *next
;
510 /* First get the two pointers hanging off OCC. */
512 child
= occ
->children
;
514 occ_pool
->remove (occ
);
516 /* Now ensure that we don't recurse unless it is necessary. */
522 next
= free_bb (next
);
529 /* Look for floating-point divisions among DEF's uses, and try to
530 replace them by multiplications with the reciprocal. Add
531 as many statements computing the reciprocal as needed.
533 DEF must be a GIMPLE register of a floating-point type. */
536 execute_cse_reciprocals_1 (gimple_stmt_iterator
*def_gsi
, tree def
)
538 use_operand_p use_p
, square_use_p
;
539 imm_use_iterator use_iter
, square_use_iter
;
541 struct occurrence
*occ
;
544 int square_recip_count
= 0;
545 int sqrt_recip_count
= 0;
547 gcc_assert (FLOAT_TYPE_P (TREE_TYPE (def
)) && is_gimple_reg (def
));
548 threshold
= targetm
.min_divisions_for_recip_mul (TYPE_MODE (TREE_TYPE (def
)));
550 /* If this is a square (x * x), we should check whether there are any
551 enough divisions by x on it's own to warrant waiting for that pass. */
552 if (TREE_CODE (def
) == SSA_NAME
)
554 gimple
*def_stmt
= SSA_NAME_DEF_STMT (def
);
556 if (is_gimple_assign (def_stmt
)
557 && gimple_assign_rhs_code (def_stmt
) == MULT_EXPR
558 && gimple_assign_rhs1 (def_stmt
) == gimple_assign_rhs2 (def_stmt
))
560 /* This statement is a square of something. We should take this
561 in to account, as it may be more profitable to not extract
562 the reciprocal here. */
563 tree op0
= gimple_assign_rhs1 (def_stmt
);
564 FOR_EACH_IMM_USE_FAST (use_p
, use_iter
, op0
)
566 gimple
*use_stmt
= USE_STMT (use_p
);
567 if (is_division_by (use_stmt
, op0
))
573 FOR_EACH_IMM_USE_FAST (use_p
, use_iter
, def
)
575 gimple
*use_stmt
= USE_STMT (use_p
);
576 if (is_division_by (use_stmt
, def
))
578 register_division_in (gimple_bb (use_stmt
), 2);
582 if (is_square_of (use_stmt
, def
))
584 square_def
= gimple_assign_lhs (use_stmt
);
585 FOR_EACH_IMM_USE_FAST (square_use_p
, square_use_iter
, square_def
)
587 gimple
*square_use_stmt
= USE_STMT (square_use_p
);
588 if (is_division_by (square_use_stmt
, square_def
))
590 /* Halve the relative importance as this is called twice
591 for each division by a square. */
592 register_division_in (gimple_bb (square_use_stmt
), 1);
593 square_recip_count
++;
599 /* Square reciprocals will have been counted twice. */
600 square_recip_count
/= 2;
602 if (sqrt_recip_count
> square_recip_count
)
603 /* It will be more profitable to extract a 1 / x expression later,
604 so it is not worth attempting to extract 1 / (x * x) now. */
607 /* Do the expensive part only if we can hope to optimize something. */
608 if (count
+ square_recip_count
>= threshold
612 for (occ
= occ_head
; occ
; occ
= occ
->next
)
615 insert_reciprocals (def_gsi
, occ
, def
, NULL
, NULL
,
616 square_recip_count
, threshold
);
619 FOR_EACH_IMM_USE_STMT (use_stmt
, use_iter
, def
)
621 if (is_division_by (use_stmt
, def
))
623 FOR_EACH_IMM_USE_ON_STMT (use_p
, use_iter
)
624 replace_reciprocal (use_p
);
626 else if (square_recip_count
> 0
627 && is_square_of (use_stmt
, def
))
629 FOR_EACH_IMM_USE_ON_STMT (use_p
, use_iter
)
631 /* Find all uses of the square that are divisions and
632 * replace them by multiplications with the inverse. */
633 imm_use_iterator square_iterator
;
634 gimple
*powmult_use_stmt
= USE_STMT (use_p
);
635 tree powmult_def_name
= gimple_assign_lhs (powmult_use_stmt
);
637 FOR_EACH_IMM_USE_STMT (powmult_use_stmt
,
638 square_iterator
, powmult_def_name
)
639 FOR_EACH_IMM_USE_ON_STMT (square_use_p
, square_iterator
)
641 gimple
*powmult_use_stmt
= USE_STMT (square_use_p
);
642 if (is_division_by (powmult_use_stmt
, powmult_def_name
))
643 replace_reciprocal_squares (square_use_p
);
650 for (occ
= occ_head
; occ
; )
656 /* Return an internal function that implements the reciprocal of CALL,
657 or IFN_LAST if there is no such function that the target supports. */
660 internal_fn_reciprocal (gcall
*call
)
664 switch (gimple_call_combined_fn (call
))
675 tree_pair types
= direct_internal_fn_types (ifn
, call
);
676 if (!direct_internal_fn_supported_p (ifn
, types
, OPTIMIZE_FOR_SPEED
))
682 /* Go through all the floating-point SSA_NAMEs, and call
683 execute_cse_reciprocals_1 on each of them. */
686 const pass_data pass_data_cse_reciprocals
=
688 GIMPLE_PASS
, /* type */
690 OPTGROUP_NONE
, /* optinfo_flags */
691 TV_TREE_RECIP
, /* tv_id */
692 PROP_ssa
, /* properties_required */
693 0, /* properties_provided */
694 0, /* properties_destroyed */
695 0, /* todo_flags_start */
696 TODO_update_ssa
, /* todo_flags_finish */
699 class pass_cse_reciprocals
: public gimple_opt_pass
702 pass_cse_reciprocals (gcc::context
*ctxt
)
703 : gimple_opt_pass (pass_data_cse_reciprocals
, ctxt
)
706 /* opt_pass methods: */
707 virtual bool gate (function
*) { return optimize
&& flag_reciprocal_math
; }
708 virtual unsigned int execute (function
*);
710 }; // class pass_cse_reciprocals
713 pass_cse_reciprocals::execute (function
*fun
)
718 occ_pool
= new object_allocator
<occurrence
> ("dominators for recip");
720 memset (&reciprocal_stats
, 0, sizeof (reciprocal_stats
));
721 calculate_dominance_info (CDI_DOMINATORS
);
722 calculate_dominance_info (CDI_POST_DOMINATORS
);
725 FOR_EACH_BB_FN (bb
, fun
)
726 gcc_assert (!bb
->aux
);
728 for (arg
= DECL_ARGUMENTS (fun
->decl
); arg
; arg
= DECL_CHAIN (arg
))
729 if (FLOAT_TYPE_P (TREE_TYPE (arg
))
730 && is_gimple_reg (arg
))
732 tree name
= ssa_default_def (fun
, arg
);
734 execute_cse_reciprocals_1 (NULL
, name
);
737 FOR_EACH_BB_FN (bb
, fun
)
741 for (gphi_iterator gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
);
744 gphi
*phi
= gsi
.phi ();
745 def
= PHI_RESULT (phi
);
746 if (! virtual_operand_p (def
)
747 && FLOAT_TYPE_P (TREE_TYPE (def
)))
748 execute_cse_reciprocals_1 (NULL
, def
);
751 for (gimple_stmt_iterator gsi
= gsi_after_labels (bb
); !gsi_end_p (gsi
);
754 gimple
*stmt
= gsi_stmt (gsi
);
756 if (gimple_has_lhs (stmt
)
757 && (def
= SINGLE_SSA_TREE_OPERAND (stmt
, SSA_OP_DEF
)) != NULL
758 && FLOAT_TYPE_P (TREE_TYPE (def
))
759 && TREE_CODE (def
) == SSA_NAME
)
760 execute_cse_reciprocals_1 (&gsi
, def
);
763 if (optimize_bb_for_size_p (bb
))
766 /* Scan for a/func(b) and convert it to reciprocal a*rfunc(b). */
767 for (gimple_stmt_iterator gsi
= gsi_after_labels (bb
); !gsi_end_p (gsi
);
770 gimple
*stmt
= gsi_stmt (gsi
);
772 if (is_gimple_assign (stmt
)
773 && gimple_assign_rhs_code (stmt
) == RDIV_EXPR
)
775 tree arg1
= gimple_assign_rhs2 (stmt
);
778 if (TREE_CODE (arg1
) != SSA_NAME
)
781 stmt1
= SSA_NAME_DEF_STMT (arg1
);
783 if (is_gimple_call (stmt1
)
784 && gimple_call_lhs (stmt1
))
789 tree fndecl
= NULL_TREE
;
791 gcall
*call
= as_a
<gcall
*> (stmt1
);
792 internal_fn ifn
= internal_fn_reciprocal (call
);
795 fndecl
= gimple_call_fndecl (call
);
797 || DECL_BUILT_IN_CLASS (fndecl
) != BUILT_IN_MD
)
799 fndecl
= targetm
.builtin_reciprocal (fndecl
);
804 /* Check that all uses of the SSA name are divisions,
805 otherwise replacing the defining statement will do
808 FOR_EACH_IMM_USE_FAST (use_p
, ui
, arg1
)
810 gimple
*stmt2
= USE_STMT (use_p
);
811 if (is_gimple_debug (stmt2
))
813 if (!is_gimple_assign (stmt2
)
814 || gimple_assign_rhs_code (stmt2
) != RDIV_EXPR
815 || gimple_assign_rhs1 (stmt2
) == arg1
816 || gimple_assign_rhs2 (stmt2
) != arg1
)
825 gimple_replace_ssa_lhs (call
, arg1
);
826 if (gimple_call_internal_p (call
) != (ifn
!= IFN_LAST
))
828 auto_vec
<tree
, 4> args
;
829 for (unsigned int i
= 0;
830 i
< gimple_call_num_args (call
); i
++)
831 args
.safe_push (gimple_call_arg (call
, i
));
834 stmt2
= gimple_build_call_vec (fndecl
, args
);
836 stmt2
= gimple_build_call_internal_vec (ifn
, args
);
837 gimple_call_set_lhs (stmt2
, arg1
);
838 if (gimple_vdef (call
))
840 gimple_set_vdef (stmt2
, gimple_vdef (call
));
841 SSA_NAME_DEF_STMT (gimple_vdef (stmt2
)) = stmt2
;
843 gimple_call_set_nothrow (stmt2
,
844 gimple_call_nothrow_p (call
));
845 gimple_set_vuse (stmt2
, gimple_vuse (call
));
846 gimple_stmt_iterator gsi2
= gsi_for_stmt (call
);
847 gsi_replace (&gsi2
, stmt2
, true);
852 gimple_call_set_fndecl (call
, fndecl
);
854 gimple_call_set_internal_fn (call
, ifn
);
857 reciprocal_stats
.rfuncs_inserted
++;
859 FOR_EACH_IMM_USE_STMT (stmt
, ui
, arg1
)
861 gimple_stmt_iterator gsi
= gsi_for_stmt (stmt
);
862 gimple_assign_set_rhs_code (stmt
, MULT_EXPR
);
863 fold_stmt_inplace (&gsi
);
871 statistics_counter_event (fun
, "reciprocal divs inserted",
872 reciprocal_stats
.rdivs_inserted
);
873 statistics_counter_event (fun
, "reciprocal functions inserted",
874 reciprocal_stats
.rfuncs_inserted
);
876 free_dominance_info (CDI_DOMINATORS
);
877 free_dominance_info (CDI_POST_DOMINATORS
);
885 make_pass_cse_reciprocals (gcc::context
*ctxt
)
887 return new pass_cse_reciprocals (ctxt
);
890 /* Records an occurrence at statement USE_STMT in the vector of trees
891 STMTS if it is dominated by *TOP_BB or dominates it or this basic block
892 is not yet initialized. Returns true if the occurrence was pushed on
893 the vector. Adjusts *TOP_BB to be the basic block dominating all
894 statements in the vector. */
897 maybe_record_sincos (vec
<gimple
*> *stmts
,
898 basic_block
*top_bb
, gimple
*use_stmt
)
900 basic_block use_bb
= gimple_bb (use_stmt
);
902 && (*top_bb
== use_bb
903 || dominated_by_p (CDI_DOMINATORS
, use_bb
, *top_bb
)))
904 stmts
->safe_push (use_stmt
);
906 || dominated_by_p (CDI_DOMINATORS
, *top_bb
, use_bb
))
908 stmts
->safe_push (use_stmt
);
917 /* Look for sin, cos and cexpi calls with the same argument NAME and
918 create a single call to cexpi CSEing the result in this case.
919 We first walk over all immediate uses of the argument collecting
920 statements that we can CSE in a vector and in a second pass replace
921 the statement rhs with a REALPART or IMAGPART expression on the
922 result of the cexpi call we insert before the use statement that
923 dominates all other candidates. */
926 execute_cse_sincos_1 (tree name
)
928 gimple_stmt_iterator gsi
;
929 imm_use_iterator use_iter
;
930 tree fndecl
, res
, type
;
931 gimple
*def_stmt
, *use_stmt
, *stmt
;
932 int seen_cos
= 0, seen_sin
= 0, seen_cexpi
= 0;
933 auto_vec
<gimple
*> stmts
;
934 basic_block top_bb
= NULL
;
936 bool cfg_changed
= false;
938 type
= TREE_TYPE (name
);
939 FOR_EACH_IMM_USE_STMT (use_stmt
, use_iter
, name
)
941 if (gimple_code (use_stmt
) != GIMPLE_CALL
942 || !gimple_call_lhs (use_stmt
))
945 switch (gimple_call_combined_fn (use_stmt
))
948 seen_cos
|= maybe_record_sincos (&stmts
, &top_bb
, use_stmt
) ? 1 : 0;
952 seen_sin
|= maybe_record_sincos (&stmts
, &top_bb
, use_stmt
) ? 1 : 0;
956 seen_cexpi
|= maybe_record_sincos (&stmts
, &top_bb
, use_stmt
) ? 1 : 0;
963 if (seen_cos
+ seen_sin
+ seen_cexpi
<= 1)
966 /* Simply insert cexpi at the beginning of top_bb but not earlier than
967 the name def statement. */
968 fndecl
= mathfn_built_in (type
, BUILT_IN_CEXPI
);
971 stmt
= gimple_build_call (fndecl
, 1, name
);
972 res
= make_temp_ssa_name (TREE_TYPE (TREE_TYPE (fndecl
)), stmt
, "sincostmp");
973 gimple_call_set_lhs (stmt
, res
);
975 def_stmt
= SSA_NAME_DEF_STMT (name
);
976 if (!SSA_NAME_IS_DEFAULT_DEF (name
)
977 && gimple_code (def_stmt
) != GIMPLE_PHI
978 && gimple_bb (def_stmt
) == top_bb
)
980 gsi
= gsi_for_stmt (def_stmt
);
981 gsi_insert_after (&gsi
, stmt
, GSI_SAME_STMT
);
985 gsi
= gsi_after_labels (top_bb
);
986 gsi_insert_before (&gsi
, stmt
, GSI_SAME_STMT
);
988 sincos_stats
.inserted
++;
990 /* And adjust the recorded old call sites. */
991 for (i
= 0; stmts
.iterate (i
, &use_stmt
); ++i
)
995 switch (gimple_call_combined_fn (use_stmt
))
998 rhs
= fold_build1 (REALPART_EXPR
, type
, res
);
1002 rhs
= fold_build1 (IMAGPART_EXPR
, type
, res
);
1013 /* Replace call with a copy. */
1014 stmt
= gimple_build_assign (gimple_call_lhs (use_stmt
), rhs
);
1016 gsi
= gsi_for_stmt (use_stmt
);
1017 gsi_replace (&gsi
, stmt
, true);
1018 if (gimple_purge_dead_eh_edges (gimple_bb (stmt
)))
1025 /* To evaluate powi(x,n), the floating point value x raised to the
1026 constant integer exponent n, we use a hybrid algorithm that
1027 combines the "window method" with look-up tables. For an
1028 introduction to exponentiation algorithms and "addition chains",
1029 see section 4.6.3, "Evaluation of Powers" of Donald E. Knuth,
1030 "Seminumerical Algorithms", Vol. 2, "The Art of Computer Programming",
1031 3rd Edition, 1998, and Daniel M. Gordon, "A Survey of Fast Exponentiation
1032 Methods", Journal of Algorithms, Vol. 27, pp. 129-146, 1998. */
1034 /* Provide a default value for POWI_MAX_MULTS, the maximum number of
1035 multiplications to inline before calling the system library's pow
1036 function. powi(x,n) requires at worst 2*bits(n)-2 multiplications,
1037 so this default never requires calling pow, powf or powl. */
1039 #ifndef POWI_MAX_MULTS
1040 #define POWI_MAX_MULTS (2*HOST_BITS_PER_WIDE_INT-2)
1043 /* The size of the "optimal power tree" lookup table. All
1044 exponents less than this value are simply looked up in the
1045 powi_table below. This threshold is also used to size the
1046 cache of pseudo registers that hold intermediate results. */
1047 #define POWI_TABLE_SIZE 256
1049 /* The size, in bits of the window, used in the "window method"
1050 exponentiation algorithm. This is equivalent to a radix of
1051 (1<<POWI_WINDOW_SIZE) in the corresponding "m-ary method". */
1052 #define POWI_WINDOW_SIZE 3
1054 /* The following table is an efficient representation of an
1055 "optimal power tree". For each value, i, the corresponding
1056 value, j, in the table states than an optimal evaluation
1057 sequence for calculating pow(x,i) can be found by evaluating
1058 pow(x,j)*pow(x,i-j). An optimal power tree for the first
1059 100 integers is given in Knuth's "Seminumerical algorithms". */
1061 static const unsigned char powi_table
[POWI_TABLE_SIZE
] =
1063 0, 1, 1, 2, 2, 3, 3, 4, /* 0 - 7 */
1064 4, 6, 5, 6, 6, 10, 7, 9, /* 8 - 15 */
1065 8, 16, 9, 16, 10, 12, 11, 13, /* 16 - 23 */
1066 12, 17, 13, 18, 14, 24, 15, 26, /* 24 - 31 */
1067 16, 17, 17, 19, 18, 33, 19, 26, /* 32 - 39 */
1068 20, 25, 21, 40, 22, 27, 23, 44, /* 40 - 47 */
1069 24, 32, 25, 34, 26, 29, 27, 44, /* 48 - 55 */
1070 28, 31, 29, 34, 30, 60, 31, 36, /* 56 - 63 */
1071 32, 64, 33, 34, 34, 46, 35, 37, /* 64 - 71 */
1072 36, 65, 37, 50, 38, 48, 39, 69, /* 72 - 79 */
1073 40, 49, 41, 43, 42, 51, 43, 58, /* 80 - 87 */
1074 44, 64, 45, 47, 46, 59, 47, 76, /* 88 - 95 */
1075 48, 65, 49, 66, 50, 67, 51, 66, /* 96 - 103 */
1076 52, 70, 53, 74, 54, 104, 55, 74, /* 104 - 111 */
1077 56, 64, 57, 69, 58, 78, 59, 68, /* 112 - 119 */
1078 60, 61, 61, 80, 62, 75, 63, 68, /* 120 - 127 */
1079 64, 65, 65, 128, 66, 129, 67, 90, /* 128 - 135 */
1080 68, 73, 69, 131, 70, 94, 71, 88, /* 136 - 143 */
1081 72, 128, 73, 98, 74, 132, 75, 121, /* 144 - 151 */
1082 76, 102, 77, 124, 78, 132, 79, 106, /* 152 - 159 */
1083 80, 97, 81, 160, 82, 99, 83, 134, /* 160 - 167 */
1084 84, 86, 85, 95, 86, 160, 87, 100, /* 168 - 175 */
1085 88, 113, 89, 98, 90, 107, 91, 122, /* 176 - 183 */
1086 92, 111, 93, 102, 94, 126, 95, 150, /* 184 - 191 */
1087 96, 128, 97, 130, 98, 133, 99, 195, /* 192 - 199 */
1088 100, 128, 101, 123, 102, 164, 103, 138, /* 200 - 207 */
1089 104, 145, 105, 146, 106, 109, 107, 149, /* 208 - 215 */
1090 108, 200, 109, 146, 110, 170, 111, 157, /* 216 - 223 */
1091 112, 128, 113, 130, 114, 182, 115, 132, /* 224 - 231 */
1092 116, 200, 117, 132, 118, 158, 119, 206, /* 232 - 239 */
1093 120, 240, 121, 162, 122, 147, 123, 152, /* 240 - 247 */
1094 124, 166, 125, 214, 126, 138, 127, 153, /* 248 - 255 */
1098 /* Return the number of multiplications required to calculate
1099 powi(x,n) where n is less than POWI_TABLE_SIZE. This is a
1100 subroutine of powi_cost. CACHE is an array indicating
1101 which exponents have already been calculated. */
1104 powi_lookup_cost (unsigned HOST_WIDE_INT n
, bool *cache
)
1106 /* If we've already calculated this exponent, then this evaluation
1107 doesn't require any additional multiplications. */
1112 return powi_lookup_cost (n
- powi_table
[n
], cache
)
1113 + powi_lookup_cost (powi_table
[n
], cache
) + 1;
1116 /* Return the number of multiplications required to calculate
1117 powi(x,n) for an arbitrary x, given the exponent N. This
1118 function needs to be kept in sync with powi_as_mults below. */
1121 powi_cost (HOST_WIDE_INT n
)
1123 bool cache
[POWI_TABLE_SIZE
];
1124 unsigned HOST_WIDE_INT digit
;
1125 unsigned HOST_WIDE_INT val
;
1131 /* Ignore the reciprocal when calculating the cost. */
1132 val
= (n
< 0) ? -n
: n
;
1134 /* Initialize the exponent cache. */
1135 memset (cache
, 0, POWI_TABLE_SIZE
* sizeof (bool));
1140 while (val
>= POWI_TABLE_SIZE
)
1144 digit
= val
& ((1 << POWI_WINDOW_SIZE
) - 1);
1145 result
+= powi_lookup_cost (digit
, cache
)
1146 + POWI_WINDOW_SIZE
+ 1;
1147 val
>>= POWI_WINDOW_SIZE
;
1156 return result
+ powi_lookup_cost (val
, cache
);
1159 /* Recursive subroutine of powi_as_mults. This function takes the
1160 array, CACHE, of already calculated exponents and an exponent N and
1161 returns a tree that corresponds to CACHE[1]**N, with type TYPE. */
1164 powi_as_mults_1 (gimple_stmt_iterator
*gsi
, location_t loc
, tree type
,
1165 HOST_WIDE_INT n
, tree
*cache
)
1167 tree op0
, op1
, ssa_target
;
1168 unsigned HOST_WIDE_INT digit
;
1171 if (n
< POWI_TABLE_SIZE
&& cache
[n
])
1174 ssa_target
= make_temp_ssa_name (type
, NULL
, "powmult");
1176 if (n
< POWI_TABLE_SIZE
)
1178 cache
[n
] = ssa_target
;
1179 op0
= powi_as_mults_1 (gsi
, loc
, type
, n
- powi_table
[n
], cache
);
1180 op1
= powi_as_mults_1 (gsi
, loc
, type
, powi_table
[n
], cache
);
1184 digit
= n
& ((1 << POWI_WINDOW_SIZE
) - 1);
1185 op0
= powi_as_mults_1 (gsi
, loc
, type
, n
- digit
, cache
);
1186 op1
= powi_as_mults_1 (gsi
, loc
, type
, digit
, cache
);
1190 op0
= powi_as_mults_1 (gsi
, loc
, type
, n
>> 1, cache
);
1194 mult_stmt
= gimple_build_assign (ssa_target
, MULT_EXPR
, op0
, op1
);
1195 gimple_set_location (mult_stmt
, loc
);
1196 gsi_insert_before (gsi
, mult_stmt
, GSI_SAME_STMT
);
1201 /* Convert ARG0**N to a tree of multiplications of ARG0 with itself.
1202 This function needs to be kept in sync with powi_cost above. */
1205 powi_as_mults (gimple_stmt_iterator
*gsi
, location_t loc
,
1206 tree arg0
, HOST_WIDE_INT n
)
1208 tree cache
[POWI_TABLE_SIZE
], result
, type
= TREE_TYPE (arg0
);
1213 return build_real (type
, dconst1
);
1215 memset (cache
, 0, sizeof (cache
));
1218 result
= powi_as_mults_1 (gsi
, loc
, type
, (n
< 0) ? -n
: n
, cache
);
1222 /* If the original exponent was negative, reciprocate the result. */
1223 target
= make_temp_ssa_name (type
, NULL
, "powmult");
1224 div_stmt
= gimple_build_assign (target
, RDIV_EXPR
,
1225 build_real (type
, dconst1
), result
);
1226 gimple_set_location (div_stmt
, loc
);
1227 gsi_insert_before (gsi
, div_stmt
, GSI_SAME_STMT
);
1232 /* ARG0 and N are the two arguments to a powi builtin in GSI with
1233 location info LOC. If the arguments are appropriate, create an
1234 equivalent sequence of statements prior to GSI using an optimal
1235 number of multiplications, and return an expession holding the
1239 gimple_expand_builtin_powi (gimple_stmt_iterator
*gsi
, location_t loc
,
1240 tree arg0
, HOST_WIDE_INT n
)
1242 /* Avoid largest negative number. */
1244 && ((n
>= -1 && n
<= 2)
1245 || (optimize_function_for_speed_p (cfun
)
1246 && powi_cost (n
) <= POWI_MAX_MULTS
)))
1247 return powi_as_mults (gsi
, loc
, arg0
, n
);
1252 /* Build a gimple call statement that calls FN with argument ARG.
1253 Set the lhs of the call statement to a fresh SSA name. Insert the
1254 statement prior to GSI's current position, and return the fresh
1258 build_and_insert_call (gimple_stmt_iterator
*gsi
, location_t loc
,
1264 call_stmt
= gimple_build_call (fn
, 1, arg
);
1265 ssa_target
= make_temp_ssa_name (TREE_TYPE (arg
), NULL
, "powroot");
1266 gimple_set_lhs (call_stmt
, ssa_target
);
1267 gimple_set_location (call_stmt
, loc
);
1268 gsi_insert_before (gsi
, call_stmt
, GSI_SAME_STMT
);
1273 /* Build a gimple binary operation with the given CODE and arguments
1274 ARG0, ARG1, assigning the result to a new SSA name for variable
1275 TARGET. Insert the statement prior to GSI's current position, and
1276 return the fresh SSA name.*/
1279 build_and_insert_binop (gimple_stmt_iterator
*gsi
, location_t loc
,
1280 const char *name
, enum tree_code code
,
1281 tree arg0
, tree arg1
)
1283 tree result
= make_temp_ssa_name (TREE_TYPE (arg0
), NULL
, name
);
1284 gassign
*stmt
= gimple_build_assign (result
, code
, arg0
, arg1
);
1285 gimple_set_location (stmt
, loc
);
1286 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1290 /* Build a gimple reference operation with the given CODE and argument
1291 ARG, assigning the result to a new SSA name of TYPE with NAME.
1292 Insert the statement prior to GSI's current position, and return
1293 the fresh SSA name. */
1296 build_and_insert_ref (gimple_stmt_iterator
*gsi
, location_t loc
, tree type
,
1297 const char *name
, enum tree_code code
, tree arg0
)
1299 tree result
= make_temp_ssa_name (type
, NULL
, name
);
1300 gimple
*stmt
= gimple_build_assign (result
, build1 (code
, type
, arg0
));
1301 gimple_set_location (stmt
, loc
);
1302 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1306 /* Build a gimple assignment to cast VAL to TYPE. Insert the statement
1307 prior to GSI's current position, and return the fresh SSA name. */
1310 build_and_insert_cast (gimple_stmt_iterator
*gsi
, location_t loc
,
1311 tree type
, tree val
)
1313 tree result
= make_ssa_name (type
);
1314 gassign
*stmt
= gimple_build_assign (result
, NOP_EXPR
, val
);
1315 gimple_set_location (stmt
, loc
);
1316 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1320 struct pow_synth_sqrt_info
1323 unsigned int deepest
;
1324 unsigned int num_mults
;
1327 /* Return true iff the real value C can be represented as a
1328 sum of powers of 0.5 up to N. That is:
1329 C == SUM<i from 1..N> (a[i]*(0.5**i)) where a[i] is either 0 or 1.
1330 Record in INFO the various parameters of the synthesis algorithm such
1331 as the factors a[i], the maximum 0.5 power and the number of
1332 multiplications that will be required. */
1335 representable_as_half_series_p (REAL_VALUE_TYPE c
, unsigned n
,
1336 struct pow_synth_sqrt_info
*info
)
1338 REAL_VALUE_TYPE factor
= dconsthalf
;
1339 REAL_VALUE_TYPE remainder
= c
;
1342 info
->num_mults
= 0;
1343 memset (info
->factors
, 0, n
* sizeof (bool));
1345 for (unsigned i
= 0; i
< n
; i
++)
1347 REAL_VALUE_TYPE res
;
1349 /* If something inexact happened bail out now. */
1350 if (real_arithmetic (&res
, MINUS_EXPR
, &remainder
, &factor
))
1353 /* We have hit zero. The number is representable as a sum
1354 of powers of 0.5. */
1355 if (real_equal (&res
, &dconst0
))
1357 info
->factors
[i
] = true;
1358 info
->deepest
= i
+ 1;
1361 else if (!REAL_VALUE_NEGATIVE (res
))
1364 info
->factors
[i
] = true;
1368 info
->factors
[i
] = false;
1370 real_arithmetic (&factor
, MULT_EXPR
, &factor
, &dconsthalf
);
1375 /* Return the tree corresponding to FN being applied
1376 to ARG N times at GSI and LOC.
1377 Look up previous results from CACHE if need be.
1378 cache[0] should contain just plain ARG i.e. FN applied to ARG 0 times. */
1381 get_fn_chain (tree arg
, unsigned int n
, gimple_stmt_iterator
*gsi
,
1382 tree fn
, location_t loc
, tree
*cache
)
1384 tree res
= cache
[n
];
1387 tree prev
= get_fn_chain (arg
, n
- 1, gsi
, fn
, loc
, cache
);
1388 res
= build_and_insert_call (gsi
, loc
, fn
, prev
);
1395 /* Print to STREAM the repeated application of function FNAME to ARG
1396 N times. So, for FNAME = "foo", ARG = "x", N = 2 it would print:
1400 print_nested_fn (FILE* stream
, const char *fname
, const char* arg
,
1404 fprintf (stream
, "%s", arg
);
1407 fprintf (stream
, "%s (", fname
);
1408 print_nested_fn (stream
, fname
, arg
, n
- 1);
1409 fprintf (stream
, ")");
1413 /* Print to STREAM the fractional sequence of sqrt chains
1414 applied to ARG, described by INFO. Used for the dump file. */
1417 dump_fractional_sqrt_sequence (FILE *stream
, const char *arg
,
1418 struct pow_synth_sqrt_info
*info
)
1420 for (unsigned int i
= 0; i
< info
->deepest
; i
++)
1422 bool is_set
= info
->factors
[i
];
1425 print_nested_fn (stream
, "sqrt", arg
, i
+ 1);
1426 if (i
!= info
->deepest
- 1)
1427 fprintf (stream
, " * ");
1432 /* Print to STREAM a representation of raising ARG to an integer
1433 power N. Used for the dump file. */
1436 dump_integer_part (FILE *stream
, const char* arg
, HOST_WIDE_INT n
)
1439 fprintf (stream
, "powi (%s, " HOST_WIDE_INT_PRINT_DEC
")", arg
, n
);
1441 fprintf (stream
, "%s", arg
);
1444 /* Attempt to synthesize a POW[F] (ARG0, ARG1) call using chains of
1445 square roots. Place at GSI and LOC. Limit the maximum depth
1446 of the sqrt chains to MAX_DEPTH. Return the tree holding the
1447 result of the expanded sequence or NULL_TREE if the expansion failed.
1449 This routine assumes that ARG1 is a real number with a fractional part
1450 (the integer exponent case will have been handled earlier in
1451 gimple_expand_builtin_pow).
1454 * For ARG1 composed of a whole part WHOLE_PART and a fractional part
1455 FRAC_PART i.e. WHOLE_PART == floor (ARG1) and
1456 FRAC_PART == ARG1 - WHOLE_PART:
1457 Produce POWI (ARG0, WHOLE_PART) * POW (ARG0, FRAC_PART) where
1458 POW (ARG0, FRAC_PART) is expanded as a product of square root chains
1459 if it can be expressed as such, that is if FRAC_PART satisfies:
1460 FRAC_PART == <SUM from i = 1 until MAX_DEPTH> (a[i] * (0.5**i))
1461 where integer a[i] is either 0 or 1.
1464 POW (x, 3.625) == POWI (x, 3) * POW (x, 0.625)
1465 --> POWI (x, 3) * SQRT (x) * SQRT (SQRT (SQRT (x)))
1467 For ARG1 < 0.0 there are two approaches:
1468 * (A) Expand to 1.0 / POW (ARG0, -ARG1) where POW (ARG0, -ARG1)
1469 is calculated as above.
1472 POW (x, -5.625) == 1.0 / POW (x, 5.625)
1473 --> 1.0 / (POWI (x, 5) * SQRT (x) * SQRT (SQRT (SQRT (x))))
1475 * (B) : WHOLE_PART := - ceil (abs (ARG1))
1476 FRAC_PART := ARG1 - WHOLE_PART
1477 and expand to POW (x, FRAC_PART) / POWI (x, WHOLE_PART).
1479 POW (x, -5.875) == POW (x, 0.125) / POWI (X, 6)
1480 --> SQRT (SQRT (SQRT (x))) / (POWI (x, 6))
1482 For ARG1 < 0.0 we choose between (A) and (B) depending on
1483 how many multiplications we'd have to do.
1484 So, for the example in (B): POW (x, -5.875), if we were to
1485 follow algorithm (A) we would produce:
1486 1.0 / POWI (X, 5) * SQRT (X) * SQRT (SQRT (X)) * SQRT (SQRT (SQRT (X)))
1487 which contains more multiplications than approach (B).
1489 Hopefully, this approach will eliminate potentially expensive POW library
1490 calls when unsafe floating point math is enabled and allow the compiler to
1491 further optimise the multiplies, square roots and divides produced by this
1495 expand_pow_as_sqrts (gimple_stmt_iterator
*gsi
, location_t loc
,
1496 tree arg0
, tree arg1
, HOST_WIDE_INT max_depth
)
1498 tree type
= TREE_TYPE (arg0
);
1499 machine_mode mode
= TYPE_MODE (type
);
1500 tree sqrtfn
= mathfn_built_in (type
, BUILT_IN_SQRT
);
1501 bool one_over
= true;
1506 if (TREE_CODE (arg1
) != REAL_CST
)
1509 REAL_VALUE_TYPE exp_init
= TREE_REAL_CST (arg1
);
1511 gcc_assert (max_depth
> 0);
1512 tree
*cache
= XALLOCAVEC (tree
, max_depth
+ 1);
1514 struct pow_synth_sqrt_info synth_info
;
1515 synth_info
.factors
= XALLOCAVEC (bool, max_depth
+ 1);
1516 synth_info
.deepest
= 0;
1517 synth_info
.num_mults
= 0;
1519 bool neg_exp
= REAL_VALUE_NEGATIVE (exp_init
);
1520 REAL_VALUE_TYPE exp
= real_value_abs (&exp_init
);
1522 /* The whole and fractional parts of exp. */
1523 REAL_VALUE_TYPE whole_part
;
1524 REAL_VALUE_TYPE frac_part
;
1526 real_floor (&whole_part
, mode
, &exp
);
1527 real_arithmetic (&frac_part
, MINUS_EXPR
, &exp
, &whole_part
);
1530 REAL_VALUE_TYPE ceil_whole
= dconst0
;
1531 REAL_VALUE_TYPE ceil_fract
= dconst0
;
1535 real_ceil (&ceil_whole
, mode
, &exp
);
1536 real_arithmetic (&ceil_fract
, MINUS_EXPR
, &ceil_whole
, &exp
);
1539 if (!representable_as_half_series_p (frac_part
, max_depth
, &synth_info
))
1542 /* Check whether it's more profitable to not use 1.0 / ... */
1545 struct pow_synth_sqrt_info alt_synth_info
;
1546 alt_synth_info
.factors
= XALLOCAVEC (bool, max_depth
+ 1);
1547 alt_synth_info
.deepest
= 0;
1548 alt_synth_info
.num_mults
= 0;
1550 if (representable_as_half_series_p (ceil_fract
, max_depth
,
1552 && alt_synth_info
.deepest
<= synth_info
.deepest
1553 && alt_synth_info
.num_mults
< synth_info
.num_mults
)
1555 whole_part
= ceil_whole
;
1556 frac_part
= ceil_fract
;
1557 synth_info
.deepest
= alt_synth_info
.deepest
;
1558 synth_info
.num_mults
= alt_synth_info
.num_mults
;
1559 memcpy (synth_info
.factors
, alt_synth_info
.factors
,
1560 (max_depth
+ 1) * sizeof (bool));
1565 HOST_WIDE_INT n
= real_to_integer (&whole_part
);
1566 REAL_VALUE_TYPE cint
;
1567 real_from_integer (&cint
, VOIDmode
, n
, SIGNED
);
1569 if (!real_identical (&whole_part
, &cint
))
1572 if (powi_cost (n
) + synth_info
.num_mults
> POWI_MAX_MULTS
)
1575 memset (cache
, 0, (max_depth
+ 1) * sizeof (tree
));
1577 tree integer_res
= n
== 0 ? build_real (type
, dconst1
) : arg0
;
1579 /* Calculate the integer part of the exponent. */
1582 integer_res
= gimple_expand_builtin_powi (gsi
, loc
, arg0
, n
);
1591 real_to_decimal (string
, &exp_init
, sizeof (string
), 0, 1);
1592 fprintf (dump_file
, "synthesizing pow (x, %s) as:\n", string
);
1598 fprintf (dump_file
, "1.0 / (");
1599 dump_integer_part (dump_file
, "x", n
);
1601 fprintf (dump_file
, " * ");
1602 dump_fractional_sqrt_sequence (dump_file
, "x", &synth_info
);
1603 fprintf (dump_file
, ")");
1607 dump_fractional_sqrt_sequence (dump_file
, "x", &synth_info
);
1608 fprintf (dump_file
, " / (");
1609 dump_integer_part (dump_file
, "x", n
);
1610 fprintf (dump_file
, ")");
1615 dump_fractional_sqrt_sequence (dump_file
, "x", &synth_info
);
1617 fprintf (dump_file
, " * ");
1618 dump_integer_part (dump_file
, "x", n
);
1621 fprintf (dump_file
, "\ndeepest sqrt chain: %d\n", synth_info
.deepest
);
1625 tree fract_res
= NULL_TREE
;
1628 /* Calculate the fractional part of the exponent. */
1629 for (unsigned i
= 0; i
< synth_info
.deepest
; i
++)
1631 if (synth_info
.factors
[i
])
1633 tree sqrt_chain
= get_fn_chain (arg0
, i
+ 1, gsi
, sqrtfn
, loc
, cache
);
1636 fract_res
= sqrt_chain
;
1639 fract_res
= build_and_insert_binop (gsi
, loc
, "powroot", MULT_EXPR
,
1640 fract_res
, sqrt_chain
);
1644 tree res
= NULL_TREE
;
1651 res
= build_and_insert_binop (gsi
, loc
, "powroot", MULT_EXPR
,
1652 fract_res
, integer_res
);
1656 res
= build_and_insert_binop (gsi
, loc
, "powrootrecip", RDIV_EXPR
,
1657 build_real (type
, dconst1
), res
);
1661 res
= build_and_insert_binop (gsi
, loc
, "powroot", RDIV_EXPR
,
1662 fract_res
, integer_res
);
1666 res
= build_and_insert_binop (gsi
, loc
, "powroot", MULT_EXPR
,
1667 fract_res
, integer_res
);
1671 /* ARG0 and ARG1 are the two arguments to a pow builtin call in GSI
1672 with location info LOC. If possible, create an equivalent and
1673 less expensive sequence of statements prior to GSI, and return an
1674 expession holding the result. */
1677 gimple_expand_builtin_pow (gimple_stmt_iterator
*gsi
, location_t loc
,
1678 tree arg0
, tree arg1
)
1680 REAL_VALUE_TYPE c
, cint
, dconst1_3
, dconst1_4
, dconst1_6
;
1681 REAL_VALUE_TYPE c2
, dconst3
;
1683 tree type
, sqrtfn
, cbrtfn
, sqrt_arg0
, result
, cbrt_x
, powi_cbrt_x
;
1685 bool speed_p
= optimize_bb_for_speed_p (gsi_bb (*gsi
));
1686 bool hw_sqrt_exists
, c_is_int
, c2_is_int
;
1688 dconst1_4
= dconst1
;
1689 SET_REAL_EXP (&dconst1_4
, REAL_EXP (&dconst1_4
) - 2);
1691 /* If the exponent isn't a constant, there's nothing of interest
1693 if (TREE_CODE (arg1
) != REAL_CST
)
1696 /* Don't perform the operation if flag_signaling_nans is on
1697 and the operand is a signaling NaN. */
1698 if (HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg1
)))
1699 && ((TREE_CODE (arg0
) == REAL_CST
1700 && REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg0
)))
1701 || REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg1
))))
1704 /* If the exponent is equivalent to an integer, expand to an optimal
1705 multiplication sequence when profitable. */
1706 c
= TREE_REAL_CST (arg1
);
1707 n
= real_to_integer (&c
);
1708 real_from_integer (&cint
, VOIDmode
, n
, SIGNED
);
1709 c_is_int
= real_identical (&c
, &cint
);
1712 && ((n
>= -1 && n
<= 2)
1713 || (flag_unsafe_math_optimizations
1715 && powi_cost (n
) <= POWI_MAX_MULTS
)))
1716 return gimple_expand_builtin_powi (gsi
, loc
, arg0
, n
);
1718 /* Attempt various optimizations using sqrt and cbrt. */
1719 type
= TREE_TYPE (arg0
);
1720 mode
= TYPE_MODE (type
);
1721 sqrtfn
= mathfn_built_in (type
, BUILT_IN_SQRT
);
1723 /* Optimize pow(x,0.5) = sqrt(x). This replacement is always safe
1724 unless signed zeros must be maintained. pow(-0,0.5) = +0, while
1727 && real_equal (&c
, &dconsthalf
)
1728 && !HONOR_SIGNED_ZEROS (mode
))
1729 return build_and_insert_call (gsi
, loc
, sqrtfn
, arg0
);
1731 hw_sqrt_exists
= optab_handler (sqrt_optab
, mode
) != CODE_FOR_nothing
;
1733 /* Optimize pow(x,1./3.) = cbrt(x). This requires unsafe math
1734 optimizations since 1./3. is not exactly representable. If x
1735 is negative and finite, the correct value of pow(x,1./3.) is
1736 a NaN with the "invalid" exception raised, because the value
1737 of 1./3. actually has an even denominator. The correct value
1738 of cbrt(x) is a negative real value. */
1739 cbrtfn
= mathfn_built_in (type
, BUILT_IN_CBRT
);
1740 dconst1_3
= real_value_truncate (mode
, dconst_third ());
1742 if (flag_unsafe_math_optimizations
1744 && (!HONOR_NANS (mode
) || tree_expr_nonnegative_p (arg0
))
1745 && real_equal (&c
, &dconst1_3
))
1746 return build_and_insert_call (gsi
, loc
, cbrtfn
, arg0
);
1748 /* Optimize pow(x,1./6.) = cbrt(sqrt(x)). Don't do this optimization
1749 if we don't have a hardware sqrt insn. */
1750 dconst1_6
= dconst1_3
;
1751 SET_REAL_EXP (&dconst1_6
, REAL_EXP (&dconst1_6
) - 1);
1753 if (flag_unsafe_math_optimizations
1756 && (!HONOR_NANS (mode
) || tree_expr_nonnegative_p (arg0
))
1759 && real_equal (&c
, &dconst1_6
))
1762 sqrt_arg0
= build_and_insert_call (gsi
, loc
, sqrtfn
, arg0
);
1765 return build_and_insert_call (gsi
, loc
, cbrtfn
, sqrt_arg0
);
1769 /* Attempt to expand the POW as a product of square root chains.
1770 Expand the 0.25 case even when otpimising for size. */
1771 if (flag_unsafe_math_optimizations
1774 && (speed_p
|| real_equal (&c
, &dconst1_4
))
1775 && !HONOR_SIGNED_ZEROS (mode
))
1777 unsigned int max_depth
= speed_p
1778 ? PARAM_VALUE (PARAM_MAX_POW_SQRT_DEPTH
)
1781 tree expand_with_sqrts
1782 = expand_pow_as_sqrts (gsi
, loc
, arg0
, arg1
, max_depth
);
1784 if (expand_with_sqrts
)
1785 return expand_with_sqrts
;
1788 real_arithmetic (&c2
, MULT_EXPR
, &c
, &dconst2
);
1789 n
= real_to_integer (&c2
);
1790 real_from_integer (&cint
, VOIDmode
, n
, SIGNED
);
1791 c2_is_int
= real_identical (&c2
, &cint
);
1793 /* Optimize pow(x,c), where 3c = n for some nonzero integer n, into
1795 powi(x, n/3) * powi(cbrt(x), n%3), n > 0;
1796 1.0 / (powi(x, abs(n)/3) * powi(cbrt(x), abs(n)%3)), n < 0.
1798 Do not calculate the first factor when n/3 = 0. As cbrt(x) is
1799 different from pow(x, 1./3.) due to rounding and behavior with
1800 negative x, we need to constrain this transformation to unsafe
1801 math and positive x or finite math. */
1802 real_from_integer (&dconst3
, VOIDmode
, 3, SIGNED
);
1803 real_arithmetic (&c2
, MULT_EXPR
, &c
, &dconst3
);
1804 real_round (&c2
, mode
, &c2
);
1805 n
= real_to_integer (&c2
);
1806 real_from_integer (&cint
, VOIDmode
, n
, SIGNED
);
1807 real_arithmetic (&c2
, RDIV_EXPR
, &cint
, &dconst3
);
1808 real_convert (&c2
, mode
, &c2
);
1810 if (flag_unsafe_math_optimizations
1812 && (!HONOR_NANS (mode
) || tree_expr_nonnegative_p (arg0
))
1813 && real_identical (&c2
, &c
)
1815 && optimize_function_for_speed_p (cfun
)
1816 && powi_cost (n
/ 3) <= POWI_MAX_MULTS
)
1818 tree powi_x_ndiv3
= NULL_TREE
;
1820 /* Attempt to fold powi(arg0, abs(n/3)) into multiplies. If not
1821 possible or profitable, give up. Skip the degenerate case when
1822 abs(n) < 3, where the result is always 1. */
1823 if (absu_hwi (n
) >= 3)
1825 powi_x_ndiv3
= gimple_expand_builtin_powi (gsi
, loc
, arg0
,
1831 /* Calculate powi(cbrt(x), n%3). Don't use gimple_expand_builtin_powi
1832 as that creates an unnecessary variable. Instead, just produce
1833 either cbrt(x) or cbrt(x) * cbrt(x). */
1834 cbrt_x
= build_and_insert_call (gsi
, loc
, cbrtfn
, arg0
);
1836 if (absu_hwi (n
) % 3 == 1)
1837 powi_cbrt_x
= cbrt_x
;
1839 powi_cbrt_x
= build_and_insert_binop (gsi
, loc
, "powroot", MULT_EXPR
,
1842 /* Multiply the two subexpressions, unless powi(x,abs(n)/3) = 1. */
1843 if (absu_hwi (n
) < 3)
1844 result
= powi_cbrt_x
;
1846 result
= build_and_insert_binop (gsi
, loc
, "powroot", MULT_EXPR
,
1847 powi_x_ndiv3
, powi_cbrt_x
);
1849 /* If n is negative, reciprocate the result. */
1851 result
= build_and_insert_binop (gsi
, loc
, "powroot", RDIV_EXPR
,
1852 build_real (type
, dconst1
), result
);
1857 /* No optimizations succeeded. */
1861 /* ARG is the argument to a cabs builtin call in GSI with location info
1862 LOC. Create a sequence of statements prior to GSI that calculates
1863 sqrt(R*R + I*I), where R and I are the real and imaginary components
1864 of ARG, respectively. Return an expression holding the result. */
1867 gimple_expand_builtin_cabs (gimple_stmt_iterator
*gsi
, location_t loc
, tree arg
)
1869 tree real_part
, imag_part
, addend1
, addend2
, sum
, result
;
1870 tree type
= TREE_TYPE (TREE_TYPE (arg
));
1871 tree sqrtfn
= mathfn_built_in (type
, BUILT_IN_SQRT
);
1872 machine_mode mode
= TYPE_MODE (type
);
1874 if (!flag_unsafe_math_optimizations
1875 || !optimize_bb_for_speed_p (gimple_bb (gsi_stmt (*gsi
)))
1877 || optab_handler (sqrt_optab
, mode
) == CODE_FOR_nothing
)
1880 real_part
= build_and_insert_ref (gsi
, loc
, type
, "cabs",
1881 REALPART_EXPR
, arg
);
1882 addend1
= build_and_insert_binop (gsi
, loc
, "cabs", MULT_EXPR
,
1883 real_part
, real_part
);
1884 imag_part
= build_and_insert_ref (gsi
, loc
, type
, "cabs",
1885 IMAGPART_EXPR
, arg
);
1886 addend2
= build_and_insert_binop (gsi
, loc
, "cabs", MULT_EXPR
,
1887 imag_part
, imag_part
);
1888 sum
= build_and_insert_binop (gsi
, loc
, "cabs", PLUS_EXPR
, addend1
, addend2
);
1889 result
= build_and_insert_call (gsi
, loc
, sqrtfn
, sum
);
1894 /* Go through all calls to sin, cos and cexpi and call execute_cse_sincos_1
1895 on the SSA_NAME argument of each of them. Also expand powi(x,n) into
1896 an optimal number of multiplies, when n is a constant. */
1900 const pass_data pass_data_cse_sincos
=
1902 GIMPLE_PASS
, /* type */
1903 "sincos", /* name */
1904 OPTGROUP_NONE
, /* optinfo_flags */
1905 TV_TREE_SINCOS
, /* tv_id */
1906 PROP_ssa
, /* properties_required */
1907 PROP_gimple_opt_math
, /* properties_provided */
1908 0, /* properties_destroyed */
1909 0, /* todo_flags_start */
1910 TODO_update_ssa
, /* todo_flags_finish */
1913 class pass_cse_sincos
: public gimple_opt_pass
1916 pass_cse_sincos (gcc::context
*ctxt
)
1917 : gimple_opt_pass (pass_data_cse_sincos
, ctxt
)
1920 /* opt_pass methods: */
1921 virtual bool gate (function
*)
1923 /* We no longer require either sincos or cexp, since powi expansion
1924 piggybacks on this pass. */
1928 virtual unsigned int execute (function
*);
1930 }; // class pass_cse_sincos
1933 pass_cse_sincos::execute (function
*fun
)
1936 bool cfg_changed
= false;
1938 calculate_dominance_info (CDI_DOMINATORS
);
1939 memset (&sincos_stats
, 0, sizeof (sincos_stats
));
1941 FOR_EACH_BB_FN (bb
, fun
)
1943 gimple_stmt_iterator gsi
;
1944 bool cleanup_eh
= false;
1946 for (gsi
= gsi_after_labels (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1948 gimple
*stmt
= gsi_stmt (gsi
);
1950 /* Only the last stmt in a bb could throw, no need to call
1951 gimple_purge_dead_eh_edges if we change something in the middle
1952 of a basic block. */
1955 if (is_gimple_call (stmt
)
1956 && gimple_call_lhs (stmt
))
1958 tree arg
, arg0
, arg1
, result
;
1962 switch (gimple_call_combined_fn (stmt
))
1967 /* Make sure we have either sincos or cexp. */
1968 if (!targetm
.libc_has_function (function_c99_math_complex
)
1969 && !targetm
.libc_has_function (function_sincos
))
1972 arg
= gimple_call_arg (stmt
, 0);
1973 if (TREE_CODE (arg
) == SSA_NAME
)
1974 cfg_changed
|= execute_cse_sincos_1 (arg
);
1978 arg0
= gimple_call_arg (stmt
, 0);
1979 arg1
= gimple_call_arg (stmt
, 1);
1981 loc
= gimple_location (stmt
);
1982 result
= gimple_expand_builtin_pow (&gsi
, loc
, arg0
, arg1
);
1986 tree lhs
= gimple_get_lhs (stmt
);
1987 gassign
*new_stmt
= gimple_build_assign (lhs
, result
);
1988 gimple_set_location (new_stmt
, loc
);
1989 unlink_stmt_vdef (stmt
);
1990 gsi_replace (&gsi
, new_stmt
, true);
1992 if (gimple_vdef (stmt
))
1993 release_ssa_name (gimple_vdef (stmt
));
1998 arg0
= gimple_call_arg (stmt
, 0);
1999 arg1
= gimple_call_arg (stmt
, 1);
2000 loc
= gimple_location (stmt
);
2002 if (real_minus_onep (arg0
))
2004 tree t0
, t1
, cond
, one
, minus_one
;
2007 t0
= TREE_TYPE (arg0
);
2008 t1
= TREE_TYPE (arg1
);
2009 one
= build_real (t0
, dconst1
);
2010 minus_one
= build_real (t0
, dconstm1
);
2012 cond
= make_temp_ssa_name (t1
, NULL
, "powi_cond");
2013 stmt
= gimple_build_assign (cond
, BIT_AND_EXPR
,
2014 arg1
, build_int_cst (t1
, 1));
2015 gimple_set_location (stmt
, loc
);
2016 gsi_insert_before (&gsi
, stmt
, GSI_SAME_STMT
);
2018 result
= make_temp_ssa_name (t0
, NULL
, "powi");
2019 stmt
= gimple_build_assign (result
, COND_EXPR
, cond
,
2021 gimple_set_location (stmt
, loc
);
2022 gsi_insert_before (&gsi
, stmt
, GSI_SAME_STMT
);
2026 if (!tree_fits_shwi_p (arg1
))
2029 n
= tree_to_shwi (arg1
);
2030 result
= gimple_expand_builtin_powi (&gsi
, loc
, arg0
, n
);
2035 tree lhs
= gimple_get_lhs (stmt
);
2036 gassign
*new_stmt
= gimple_build_assign (lhs
, result
);
2037 gimple_set_location (new_stmt
, loc
);
2038 unlink_stmt_vdef (stmt
);
2039 gsi_replace (&gsi
, new_stmt
, true);
2041 if (gimple_vdef (stmt
))
2042 release_ssa_name (gimple_vdef (stmt
));
2047 arg0
= gimple_call_arg (stmt
, 0);
2048 loc
= gimple_location (stmt
);
2049 result
= gimple_expand_builtin_cabs (&gsi
, loc
, arg0
);
2053 tree lhs
= gimple_get_lhs (stmt
);
2054 gassign
*new_stmt
= gimple_build_assign (lhs
, result
);
2055 gimple_set_location (new_stmt
, loc
);
2056 unlink_stmt_vdef (stmt
);
2057 gsi_replace (&gsi
, new_stmt
, true);
2059 if (gimple_vdef (stmt
))
2060 release_ssa_name (gimple_vdef (stmt
));
2069 cfg_changed
|= gimple_purge_dead_eh_edges (bb
);
2072 statistics_counter_event (fun
, "sincos statements inserted",
2073 sincos_stats
.inserted
);
2075 return cfg_changed
? TODO_cleanup_cfg
: 0;
2081 make_pass_cse_sincos (gcc::context
*ctxt
)
2083 return new pass_cse_sincos (ctxt
);
2086 /* Return true if stmt is a type conversion operation that can be stripped
2087 when used in a widening multiply operation. */
2089 widening_mult_conversion_strippable_p (tree result_type
, gimple
*stmt
)
2091 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
2093 if (TREE_CODE (result_type
) == INTEGER_TYPE
)
2098 if (!CONVERT_EXPR_CODE_P (rhs_code
))
2101 op_type
= TREE_TYPE (gimple_assign_lhs (stmt
));
2103 /* If the type of OP has the same precision as the result, then
2104 we can strip this conversion. The multiply operation will be
2105 selected to create the correct extension as a by-product. */
2106 if (TYPE_PRECISION (result_type
) == TYPE_PRECISION (op_type
))
2109 /* We can also strip a conversion if it preserves the signed-ness of
2110 the operation and doesn't narrow the range. */
2111 inner_op_type
= TREE_TYPE (gimple_assign_rhs1 (stmt
));
2113 /* If the inner-most type is unsigned, then we can strip any
2114 intermediate widening operation. If it's signed, then the
2115 intermediate widening operation must also be signed. */
2116 if ((TYPE_UNSIGNED (inner_op_type
)
2117 || TYPE_UNSIGNED (op_type
) == TYPE_UNSIGNED (inner_op_type
))
2118 && TYPE_PRECISION (op_type
) > TYPE_PRECISION (inner_op_type
))
2124 return rhs_code
== FIXED_CONVERT_EXPR
;
2127 /* Return true if RHS is a suitable operand for a widening multiplication,
2128 assuming a target type of TYPE.
2129 There are two cases:
2131 - RHS makes some value at least twice as wide. Store that value
2132 in *NEW_RHS_OUT if so, and store its type in *TYPE_OUT.
2134 - RHS is an integer constant. Store that value in *NEW_RHS_OUT if so,
2135 but leave *TYPE_OUT untouched. */
2138 is_widening_mult_rhs_p (tree type
, tree rhs
, tree
*type_out
,
2144 if (TREE_CODE (rhs
) == SSA_NAME
)
2146 stmt
= SSA_NAME_DEF_STMT (rhs
);
2147 if (is_gimple_assign (stmt
))
2149 if (! widening_mult_conversion_strippable_p (type
, stmt
))
2153 rhs1
= gimple_assign_rhs1 (stmt
);
2155 if (TREE_CODE (rhs1
) == INTEGER_CST
)
2157 *new_rhs_out
= rhs1
;
2166 type1
= TREE_TYPE (rhs1
);
2168 if (TREE_CODE (type1
) != TREE_CODE (type
)
2169 || TYPE_PRECISION (type1
) * 2 > TYPE_PRECISION (type
))
2172 *new_rhs_out
= rhs1
;
2177 if (TREE_CODE (rhs
) == INTEGER_CST
)
2187 /* Return true if STMT performs a widening multiplication, assuming the
2188 output type is TYPE. If so, store the unwidened types of the operands
2189 in *TYPE1_OUT and *TYPE2_OUT respectively. Also fill *RHS1_OUT and
2190 *RHS2_OUT such that converting those operands to types *TYPE1_OUT
2191 and *TYPE2_OUT would give the operands of the multiplication. */
2194 is_widening_mult_p (gimple
*stmt
,
2195 tree
*type1_out
, tree
*rhs1_out
,
2196 tree
*type2_out
, tree
*rhs2_out
)
2198 tree type
= TREE_TYPE (gimple_assign_lhs (stmt
));
2200 if (TREE_CODE (type
) != INTEGER_TYPE
2201 && TREE_CODE (type
) != FIXED_POINT_TYPE
)
2204 if (!is_widening_mult_rhs_p (type
, gimple_assign_rhs1 (stmt
), type1_out
,
2208 if (!is_widening_mult_rhs_p (type
, gimple_assign_rhs2 (stmt
), type2_out
,
2212 if (*type1_out
== NULL
)
2214 if (*type2_out
== NULL
|| !int_fits_type_p (*rhs1_out
, *type2_out
))
2216 *type1_out
= *type2_out
;
2219 if (*type2_out
== NULL
)
2221 if (!int_fits_type_p (*rhs2_out
, *type1_out
))
2223 *type2_out
= *type1_out
;
2226 /* Ensure that the larger of the two operands comes first. */
2227 if (TYPE_PRECISION (*type1_out
) < TYPE_PRECISION (*type2_out
))
2229 std::swap (*type1_out
, *type2_out
);
2230 std::swap (*rhs1_out
, *rhs2_out
);
2236 /* Check to see if the CALL statement is an invocation of copysign
2237 with 1. being the first argument. */
2239 is_copysign_call_with_1 (gimple
*call
)
2241 gcall
*c
= dyn_cast
<gcall
*> (call
);
2245 enum combined_fn code
= gimple_call_combined_fn (c
);
2247 if (code
== CFN_LAST
)
2250 if (builtin_fn_p (code
))
2252 switch (as_builtin_fn (code
))
2254 CASE_FLT_FN (BUILT_IN_COPYSIGN
):
2255 CASE_FLT_FN_FLOATN_NX (BUILT_IN_COPYSIGN
):
2256 return real_onep (gimple_call_arg (c
, 0));
2262 if (internal_fn_p (code
))
2264 switch (as_internal_fn (code
))
2267 return real_onep (gimple_call_arg (c
, 0));
2276 /* Try to expand the pattern x * copysign (1, y) into xorsign (x, y).
2277 This only happens when the the xorsign optab is defined, if the
2278 pattern is not a xorsign pattern or if expansion fails FALSE is
2279 returned, otherwise TRUE is returned. */
2281 convert_expand_mult_copysign (gimple
*stmt
, gimple_stmt_iterator
*gsi
)
2283 tree treeop0
, treeop1
, lhs
, type
;
2284 location_t loc
= gimple_location (stmt
);
2285 lhs
= gimple_assign_lhs (stmt
);
2286 treeop0
= gimple_assign_rhs1 (stmt
);
2287 treeop1
= gimple_assign_rhs2 (stmt
);
2288 type
= TREE_TYPE (lhs
);
2289 machine_mode mode
= TYPE_MODE (type
);
2291 if (HONOR_SNANS (type
))
2294 if (TREE_CODE (treeop0
) == SSA_NAME
&& TREE_CODE (treeop1
) == SSA_NAME
)
2296 gimple
*call0
= SSA_NAME_DEF_STMT (treeop0
);
2297 if (!has_single_use (treeop0
) || !is_copysign_call_with_1 (call0
))
2299 call0
= SSA_NAME_DEF_STMT (treeop1
);
2300 if (!has_single_use (treeop1
) || !is_copysign_call_with_1 (call0
))
2305 if (optab_handler (xorsign_optab
, mode
) == CODE_FOR_nothing
)
2308 gcall
*c
= as_a
<gcall
*> (call0
);
2309 treeop0
= gimple_call_arg (c
, 1);
2312 = gimple_build_call_internal (IFN_XORSIGN
, 2, treeop1
, treeop0
);
2313 gimple_set_lhs (call_stmt
, lhs
);
2314 gimple_set_location (call_stmt
, loc
);
2315 gsi_replace (gsi
, call_stmt
, true);
2322 /* Process a single gimple statement STMT, which has a MULT_EXPR as
2323 its rhs, and try to convert it into a WIDEN_MULT_EXPR. The return
2324 value is true iff we converted the statement. */
2327 convert_mult_to_widen (gimple
*stmt
, gimple_stmt_iterator
*gsi
)
2329 tree lhs
, rhs1
, rhs2
, type
, type1
, type2
;
2330 enum insn_code handler
;
2331 scalar_int_mode to_mode
, from_mode
, actual_mode
;
2333 int actual_precision
;
2334 location_t loc
= gimple_location (stmt
);
2335 bool from_unsigned1
, from_unsigned2
;
2337 lhs
= gimple_assign_lhs (stmt
);
2338 type
= TREE_TYPE (lhs
);
2339 if (TREE_CODE (type
) != INTEGER_TYPE
)
2342 if (!is_widening_mult_p (stmt
, &type1
, &rhs1
, &type2
, &rhs2
))
2345 to_mode
= SCALAR_INT_TYPE_MODE (type
);
2346 from_mode
= SCALAR_INT_TYPE_MODE (type1
);
2347 if (to_mode
== from_mode
)
2350 from_unsigned1
= TYPE_UNSIGNED (type1
);
2351 from_unsigned2
= TYPE_UNSIGNED (type2
);
2353 if (from_unsigned1
&& from_unsigned2
)
2354 op
= umul_widen_optab
;
2355 else if (!from_unsigned1
&& !from_unsigned2
)
2356 op
= smul_widen_optab
;
2358 op
= usmul_widen_optab
;
2360 handler
= find_widening_optab_handler_and_mode (op
, to_mode
, from_mode
,
2363 if (handler
== CODE_FOR_nothing
)
2365 if (op
!= smul_widen_optab
)
2367 /* We can use a signed multiply with unsigned types as long as
2368 there is a wider mode to use, or it is the smaller of the two
2369 types that is unsigned. Note that type1 >= type2, always. */
2370 if ((TYPE_UNSIGNED (type1
)
2371 && TYPE_PRECISION (type1
) == GET_MODE_PRECISION (from_mode
))
2372 || (TYPE_UNSIGNED (type2
)
2373 && TYPE_PRECISION (type2
) == GET_MODE_PRECISION (from_mode
)))
2375 if (!GET_MODE_WIDER_MODE (from_mode
).exists (&from_mode
)
2376 || GET_MODE_SIZE (to_mode
) <= GET_MODE_SIZE (from_mode
))
2380 op
= smul_widen_optab
;
2381 handler
= find_widening_optab_handler_and_mode (op
, to_mode
,
2385 if (handler
== CODE_FOR_nothing
)
2388 from_unsigned1
= from_unsigned2
= false;
2394 /* Ensure that the inputs to the handler are in the correct precison
2395 for the opcode. This will be the full mode size. */
2396 actual_precision
= GET_MODE_PRECISION (actual_mode
);
2397 if (2 * actual_precision
> TYPE_PRECISION (type
))
2399 if (actual_precision
!= TYPE_PRECISION (type1
)
2400 || from_unsigned1
!= TYPE_UNSIGNED (type1
))
2401 rhs1
= build_and_insert_cast (gsi
, loc
,
2402 build_nonstandard_integer_type
2403 (actual_precision
, from_unsigned1
), rhs1
);
2404 if (actual_precision
!= TYPE_PRECISION (type2
)
2405 || from_unsigned2
!= TYPE_UNSIGNED (type2
))
2406 rhs2
= build_and_insert_cast (gsi
, loc
,
2407 build_nonstandard_integer_type
2408 (actual_precision
, from_unsigned2
), rhs2
);
2410 /* Handle constants. */
2411 if (TREE_CODE (rhs1
) == INTEGER_CST
)
2412 rhs1
= fold_convert (type1
, rhs1
);
2413 if (TREE_CODE (rhs2
) == INTEGER_CST
)
2414 rhs2
= fold_convert (type2
, rhs2
);
2416 gimple_assign_set_rhs1 (stmt
, rhs1
);
2417 gimple_assign_set_rhs2 (stmt
, rhs2
);
2418 gimple_assign_set_rhs_code (stmt
, WIDEN_MULT_EXPR
);
2420 widen_mul_stats
.widen_mults_inserted
++;
2424 /* Process a single gimple statement STMT, which is found at the
2425 iterator GSI and has a either a PLUS_EXPR or a MINUS_EXPR as its
2426 rhs (given by CODE), and try to convert it into a
2427 WIDEN_MULT_PLUS_EXPR or a WIDEN_MULT_MINUS_EXPR. The return value
2428 is true iff we converted the statement. */
2431 convert_plusminus_to_widen (gimple_stmt_iterator
*gsi
, gimple
*stmt
,
2432 enum tree_code code
)
2434 gimple
*rhs1_stmt
= NULL
, *rhs2_stmt
= NULL
;
2435 gimple
*conv1_stmt
= NULL
, *conv2_stmt
= NULL
, *conv_stmt
;
2436 tree type
, type1
, type2
, optype
;
2437 tree lhs
, rhs1
, rhs2
, mult_rhs1
, mult_rhs2
, add_rhs
;
2438 enum tree_code rhs1_code
= ERROR_MARK
, rhs2_code
= ERROR_MARK
;
2440 enum tree_code wmult_code
;
2441 enum insn_code handler
;
2442 scalar_mode to_mode
, from_mode
, actual_mode
;
2443 location_t loc
= gimple_location (stmt
);
2444 int actual_precision
;
2445 bool from_unsigned1
, from_unsigned2
;
2447 lhs
= gimple_assign_lhs (stmt
);
2448 type
= TREE_TYPE (lhs
);
2449 if (TREE_CODE (type
) != INTEGER_TYPE
2450 && TREE_CODE (type
) != FIXED_POINT_TYPE
)
2453 if (code
== MINUS_EXPR
)
2454 wmult_code
= WIDEN_MULT_MINUS_EXPR
;
2456 wmult_code
= WIDEN_MULT_PLUS_EXPR
;
2458 rhs1
= gimple_assign_rhs1 (stmt
);
2459 rhs2
= gimple_assign_rhs2 (stmt
);
2461 if (TREE_CODE (rhs1
) == SSA_NAME
)
2463 rhs1_stmt
= SSA_NAME_DEF_STMT (rhs1
);
2464 if (is_gimple_assign (rhs1_stmt
))
2465 rhs1_code
= gimple_assign_rhs_code (rhs1_stmt
);
2468 if (TREE_CODE (rhs2
) == SSA_NAME
)
2470 rhs2_stmt
= SSA_NAME_DEF_STMT (rhs2
);
2471 if (is_gimple_assign (rhs2_stmt
))
2472 rhs2_code
= gimple_assign_rhs_code (rhs2_stmt
);
2475 /* Allow for one conversion statement between the multiply
2476 and addition/subtraction statement. If there are more than
2477 one conversions then we assume they would invalidate this
2478 transformation. If that's not the case then they should have
2479 been folded before now. */
2480 if (CONVERT_EXPR_CODE_P (rhs1_code
))
2482 conv1_stmt
= rhs1_stmt
;
2483 rhs1
= gimple_assign_rhs1 (rhs1_stmt
);
2484 if (TREE_CODE (rhs1
) == SSA_NAME
)
2486 rhs1_stmt
= SSA_NAME_DEF_STMT (rhs1
);
2487 if (is_gimple_assign (rhs1_stmt
))
2488 rhs1_code
= gimple_assign_rhs_code (rhs1_stmt
);
2493 if (CONVERT_EXPR_CODE_P (rhs2_code
))
2495 conv2_stmt
= rhs2_stmt
;
2496 rhs2
= gimple_assign_rhs1 (rhs2_stmt
);
2497 if (TREE_CODE (rhs2
) == SSA_NAME
)
2499 rhs2_stmt
= SSA_NAME_DEF_STMT (rhs2
);
2500 if (is_gimple_assign (rhs2_stmt
))
2501 rhs2_code
= gimple_assign_rhs_code (rhs2_stmt
);
2507 /* If code is WIDEN_MULT_EXPR then it would seem unnecessary to call
2508 is_widening_mult_p, but we still need the rhs returns.
2510 It might also appear that it would be sufficient to use the existing
2511 operands of the widening multiply, but that would limit the choice of
2512 multiply-and-accumulate instructions.
2514 If the widened-multiplication result has more than one uses, it is
2515 probably wiser not to do the conversion. */
2516 if (code
== PLUS_EXPR
2517 && (rhs1_code
== MULT_EXPR
|| rhs1_code
== WIDEN_MULT_EXPR
))
2519 if (!has_single_use (rhs1
)
2520 || !is_widening_mult_p (rhs1_stmt
, &type1
, &mult_rhs1
,
2521 &type2
, &mult_rhs2
))
2524 conv_stmt
= conv1_stmt
;
2526 else if (rhs2_code
== MULT_EXPR
|| rhs2_code
== WIDEN_MULT_EXPR
)
2528 if (!has_single_use (rhs2
)
2529 || !is_widening_mult_p (rhs2_stmt
, &type1
, &mult_rhs1
,
2530 &type2
, &mult_rhs2
))
2533 conv_stmt
= conv2_stmt
;
2538 to_mode
= SCALAR_TYPE_MODE (type
);
2539 from_mode
= SCALAR_TYPE_MODE (type1
);
2540 if (to_mode
== from_mode
)
2543 from_unsigned1
= TYPE_UNSIGNED (type1
);
2544 from_unsigned2
= TYPE_UNSIGNED (type2
);
2547 /* There's no such thing as a mixed sign madd yet, so use a wider mode. */
2548 if (from_unsigned1
!= from_unsigned2
)
2550 if (!INTEGRAL_TYPE_P (type
))
2552 /* We can use a signed multiply with unsigned types as long as
2553 there is a wider mode to use, or it is the smaller of the two
2554 types that is unsigned. Note that type1 >= type2, always. */
2556 && TYPE_PRECISION (type1
) == GET_MODE_PRECISION (from_mode
))
2558 && TYPE_PRECISION (type2
) == GET_MODE_PRECISION (from_mode
)))
2560 if (!GET_MODE_WIDER_MODE (from_mode
).exists (&from_mode
)
2561 || GET_MODE_SIZE (from_mode
) >= GET_MODE_SIZE (to_mode
))
2565 from_unsigned1
= from_unsigned2
= false;
2566 optype
= build_nonstandard_integer_type (GET_MODE_PRECISION (from_mode
),
2570 /* If there was a conversion between the multiply and addition
2571 then we need to make sure it fits a multiply-and-accumulate.
2572 The should be a single mode change which does not change the
2576 /* We use the original, unmodified data types for this. */
2577 tree from_type
= TREE_TYPE (gimple_assign_rhs1 (conv_stmt
));
2578 tree to_type
= TREE_TYPE (gimple_assign_lhs (conv_stmt
));
2579 int data_size
= TYPE_PRECISION (type1
) + TYPE_PRECISION (type2
);
2580 bool is_unsigned
= TYPE_UNSIGNED (type1
) && TYPE_UNSIGNED (type2
);
2582 if (TYPE_PRECISION (from_type
) > TYPE_PRECISION (to_type
))
2584 /* Conversion is a truncate. */
2585 if (TYPE_PRECISION (to_type
) < data_size
)
2588 else if (TYPE_PRECISION (from_type
) < TYPE_PRECISION (to_type
))
2590 /* Conversion is an extend. Check it's the right sort. */
2591 if (TYPE_UNSIGNED (from_type
) != is_unsigned
2592 && !(is_unsigned
&& TYPE_PRECISION (from_type
) > data_size
))
2595 /* else convert is a no-op for our purposes. */
2598 /* Verify that the machine can perform a widening multiply
2599 accumulate in this mode/signedness combination, otherwise
2600 this transformation is likely to pessimize code. */
2601 this_optab
= optab_for_tree_code (wmult_code
, optype
, optab_default
);
2602 handler
= find_widening_optab_handler_and_mode (this_optab
, to_mode
,
2603 from_mode
, &actual_mode
);
2605 if (handler
== CODE_FOR_nothing
)
2608 /* Ensure that the inputs to the handler are in the correct precison
2609 for the opcode. This will be the full mode size. */
2610 actual_precision
= GET_MODE_PRECISION (actual_mode
);
2611 if (actual_precision
!= TYPE_PRECISION (type1
)
2612 || from_unsigned1
!= TYPE_UNSIGNED (type1
))
2613 mult_rhs1
= build_and_insert_cast (gsi
, loc
,
2614 build_nonstandard_integer_type
2615 (actual_precision
, from_unsigned1
),
2617 if (actual_precision
!= TYPE_PRECISION (type2
)
2618 || from_unsigned2
!= TYPE_UNSIGNED (type2
))
2619 mult_rhs2
= build_and_insert_cast (gsi
, loc
,
2620 build_nonstandard_integer_type
2621 (actual_precision
, from_unsigned2
),
2624 if (!useless_type_conversion_p (type
, TREE_TYPE (add_rhs
)))
2625 add_rhs
= build_and_insert_cast (gsi
, loc
, type
, add_rhs
);
2627 /* Handle constants. */
2628 if (TREE_CODE (mult_rhs1
) == INTEGER_CST
)
2629 mult_rhs1
= fold_convert (type1
, mult_rhs1
);
2630 if (TREE_CODE (mult_rhs2
) == INTEGER_CST
)
2631 mult_rhs2
= fold_convert (type2
, mult_rhs2
);
2633 gimple_assign_set_rhs_with_ops (gsi
, wmult_code
, mult_rhs1
, mult_rhs2
,
2635 update_stmt (gsi_stmt (*gsi
));
2636 widen_mul_stats
.maccs_inserted
++;
2640 /* Combine the multiplication at MUL_STMT with operands MULOP1 and MULOP2
2641 with uses in additions and subtractions to form fused multiply-add
2642 operations. Returns true if successful and MUL_STMT should be removed. */
2645 convert_mult_to_fma (gimple
*mul_stmt
, tree op1
, tree op2
)
2647 tree mul_result
= gimple_get_lhs (mul_stmt
);
2648 tree type
= TREE_TYPE (mul_result
);
2649 gimple
*use_stmt
, *neguse_stmt
;
2651 use_operand_p use_p
;
2652 imm_use_iterator imm_iter
;
2654 if (FLOAT_TYPE_P (type
)
2655 && flag_fp_contract_mode
== FP_CONTRACT_OFF
)
2658 /* We don't want to do bitfield reduction ops. */
2659 if (INTEGRAL_TYPE_P (type
)
2660 && !type_has_mode_precision_p (type
))
2663 /* If the target doesn't support it, don't generate it. We assume that
2664 if fma isn't available then fms, fnma or fnms are not either. */
2665 if (optab_handler (fma_optab
, TYPE_MODE (type
)) == CODE_FOR_nothing
)
2668 /* If the multiplication has zero uses, it is kept around probably because
2669 of -fnon-call-exceptions. Don't optimize it away in that case,
2671 if (has_zero_uses (mul_result
))
2674 /* Make sure that the multiplication statement becomes dead after
2675 the transformation, thus that all uses are transformed to FMAs.
2676 This means we assume that an FMA operation has the same cost
2678 FOR_EACH_IMM_USE_FAST (use_p
, imm_iter
, mul_result
)
2680 enum tree_code use_code
;
2681 tree result
= mul_result
;
2682 bool negate_p
= false;
2684 use_stmt
= USE_STMT (use_p
);
2686 if (is_gimple_debug (use_stmt
))
2689 /* For now restrict this operations to single basic blocks. In theory
2690 we would want to support sinking the multiplication in
2696 to form a fma in the then block and sink the multiplication to the
2698 if (gimple_bb (use_stmt
) != gimple_bb (mul_stmt
))
2701 if (!is_gimple_assign (use_stmt
))
2704 use_code
= gimple_assign_rhs_code (use_stmt
);
2706 /* A negate on the multiplication leads to FNMA. */
2707 if (use_code
== NEGATE_EXPR
)
2712 result
= gimple_assign_lhs (use_stmt
);
2714 /* Make sure the negate statement becomes dead with this
2715 single transformation. */
2716 if (!single_imm_use (gimple_assign_lhs (use_stmt
),
2717 &use_p
, &neguse_stmt
))
2720 /* Make sure the multiplication isn't also used on that stmt. */
2721 FOR_EACH_PHI_OR_STMT_USE (usep
, neguse_stmt
, iter
, SSA_OP_USE
)
2722 if (USE_FROM_PTR (usep
) == mul_result
)
2726 use_stmt
= neguse_stmt
;
2727 if (gimple_bb (use_stmt
) != gimple_bb (mul_stmt
))
2729 if (!is_gimple_assign (use_stmt
))
2732 use_code
= gimple_assign_rhs_code (use_stmt
);
2739 if (gimple_assign_rhs2 (use_stmt
) == result
)
2740 negate_p
= !negate_p
;
2745 /* FMA can only be formed from PLUS and MINUS. */
2749 /* If the subtrahend (gimple_assign_rhs2 (use_stmt)) is computed
2750 by a MULT_EXPR that we'll visit later, we might be able to
2751 get a more profitable match with fnma.
2752 OTOH, if we don't, a negate / fma pair has likely lower latency
2753 that a mult / subtract pair. */
2754 if (use_code
== MINUS_EXPR
&& !negate_p
2755 && gimple_assign_rhs1 (use_stmt
) == result
2756 && optab_handler (fms_optab
, TYPE_MODE (type
)) == CODE_FOR_nothing
2757 && optab_handler (fnma_optab
, TYPE_MODE (type
)) != CODE_FOR_nothing
)
2759 tree rhs2
= gimple_assign_rhs2 (use_stmt
);
2761 if (TREE_CODE (rhs2
) == SSA_NAME
)
2763 gimple
*stmt2
= SSA_NAME_DEF_STMT (rhs2
);
2764 if (has_single_use (rhs2
)
2765 && is_gimple_assign (stmt2
)
2766 && gimple_assign_rhs_code (stmt2
) == MULT_EXPR
)
2771 /* We can't handle a * b + a * b. */
2772 if (gimple_assign_rhs1 (use_stmt
) == gimple_assign_rhs2 (use_stmt
))
2775 /* While it is possible to validate whether or not the exact form
2776 that we've recognized is available in the backend, the assumption
2777 is that the transformation is never a loss. For instance, suppose
2778 the target only has the plain FMA pattern available. Consider
2779 a*b-c -> fma(a,b,-c): we've exchanged MUL+SUB for FMA+NEG, which
2780 is still two operations. Consider -(a*b)-c -> fma(-a,b,-c): we
2781 still have 3 operations, but in the FMA form the two NEGs are
2782 independent and could be run in parallel. */
2785 FOR_EACH_IMM_USE_STMT (use_stmt
, imm_iter
, mul_result
)
2787 gimple_stmt_iterator gsi
= gsi_for_stmt (use_stmt
);
2788 enum tree_code use_code
;
2789 tree addop
, mulop1
= op1
, result
= mul_result
;
2790 bool negate_p
= false;
2792 if (is_gimple_debug (use_stmt
))
2795 use_code
= gimple_assign_rhs_code (use_stmt
);
2796 if (use_code
== NEGATE_EXPR
)
2798 result
= gimple_assign_lhs (use_stmt
);
2799 single_imm_use (gimple_assign_lhs (use_stmt
), &use_p
, &neguse_stmt
);
2800 gsi_remove (&gsi
, true);
2801 release_defs (use_stmt
);
2803 use_stmt
= neguse_stmt
;
2804 gsi
= gsi_for_stmt (use_stmt
);
2805 use_code
= gimple_assign_rhs_code (use_stmt
);
2809 if (gimple_assign_rhs1 (use_stmt
) == result
)
2811 addop
= gimple_assign_rhs2 (use_stmt
);
2812 /* a * b - c -> a * b + (-c) */
2813 if (gimple_assign_rhs_code (use_stmt
) == MINUS_EXPR
)
2814 addop
= force_gimple_operand_gsi (&gsi
,
2815 build1 (NEGATE_EXPR
,
2817 true, NULL_TREE
, true,
2822 addop
= gimple_assign_rhs1 (use_stmt
);
2823 /* a - b * c -> (-b) * c + a */
2824 if (gimple_assign_rhs_code (use_stmt
) == MINUS_EXPR
)
2825 negate_p
= !negate_p
;
2829 mulop1
= force_gimple_operand_gsi (&gsi
,
2830 build1 (NEGATE_EXPR
,
2832 true, NULL_TREE
, true,
2835 fma_stmt
= gimple_build_assign (gimple_assign_lhs (use_stmt
),
2836 FMA_EXPR
, mulop1
, op2
, addop
);
2837 gsi_replace (&gsi
, fma_stmt
, true);
2838 widen_mul_stats
.fmas_inserted
++;
2845 /* Helper function of match_uaddsub_overflow. Return 1
2846 if USE_STMT is unsigned overflow check ovf != 0 for
2847 STMT, -1 if USE_STMT is unsigned overflow check ovf == 0
2851 uaddsub_overflow_check_p (gimple
*stmt
, gimple
*use_stmt
)
2853 enum tree_code ccode
= ERROR_MARK
;
2854 tree crhs1
= NULL_TREE
, crhs2
= NULL_TREE
;
2855 if (gimple_code (use_stmt
) == GIMPLE_COND
)
2857 ccode
= gimple_cond_code (use_stmt
);
2858 crhs1
= gimple_cond_lhs (use_stmt
);
2859 crhs2
= gimple_cond_rhs (use_stmt
);
2861 else if (is_gimple_assign (use_stmt
))
2863 if (gimple_assign_rhs_class (use_stmt
) == GIMPLE_BINARY_RHS
)
2865 ccode
= gimple_assign_rhs_code (use_stmt
);
2866 crhs1
= gimple_assign_rhs1 (use_stmt
);
2867 crhs2
= gimple_assign_rhs2 (use_stmt
);
2869 else if (gimple_assign_rhs_code (use_stmt
) == COND_EXPR
)
2871 tree cond
= gimple_assign_rhs1 (use_stmt
);
2872 if (COMPARISON_CLASS_P (cond
))
2874 ccode
= TREE_CODE (cond
);
2875 crhs1
= TREE_OPERAND (cond
, 0);
2876 crhs2
= TREE_OPERAND (cond
, 1);
2887 if (TREE_CODE_CLASS (ccode
) != tcc_comparison
)
2890 enum tree_code code
= gimple_assign_rhs_code (stmt
);
2891 tree lhs
= gimple_assign_lhs (stmt
);
2892 tree rhs1
= gimple_assign_rhs1 (stmt
);
2893 tree rhs2
= gimple_assign_rhs2 (stmt
);
2899 /* r = a - b; r > a or r <= a
2900 r = a + b; a > r or a <= r or b > r or b <= r. */
2901 if ((code
== MINUS_EXPR
&& crhs1
== lhs
&& crhs2
== rhs1
)
2902 || (code
== PLUS_EXPR
&& (crhs1
== rhs1
|| crhs1
== rhs2
)
2904 return ccode
== GT_EXPR
? 1 : -1;
2908 /* r = a - b; a < r or a >= r
2909 r = a + b; r < a or r >= a or r < b or r >= b. */
2910 if ((code
== MINUS_EXPR
&& crhs1
== rhs1
&& crhs2
== lhs
)
2911 || (code
== PLUS_EXPR
&& crhs1
== lhs
2912 && (crhs2
== rhs1
|| crhs2
== rhs2
)))
2913 return ccode
== LT_EXPR
? 1 : -1;
2921 /* Recognize for unsigned x
2924 where there are other uses of x and replace it with
2925 _7 = SUB_OVERFLOW (y, z);
2926 x = REALPART_EXPR <_7>;
2927 _8 = IMAGPART_EXPR <_7>;
2929 and similarly for addition. */
2932 match_uaddsub_overflow (gimple_stmt_iterator
*gsi
, gimple
*stmt
,
2933 enum tree_code code
)
2935 tree lhs
= gimple_assign_lhs (stmt
);
2936 tree type
= TREE_TYPE (lhs
);
2937 use_operand_p use_p
;
2938 imm_use_iterator iter
;
2939 bool use_seen
= false;
2940 bool ovf_use_seen
= false;
2943 gcc_checking_assert (code
== PLUS_EXPR
|| code
== MINUS_EXPR
);
2944 if (!INTEGRAL_TYPE_P (type
)
2945 || !TYPE_UNSIGNED (type
)
2946 || has_zero_uses (lhs
)
2947 || has_single_use (lhs
)
2948 || optab_handler (code
== PLUS_EXPR
? uaddv4_optab
: usubv4_optab
,
2949 TYPE_MODE (type
)) == CODE_FOR_nothing
)
2952 FOR_EACH_IMM_USE_FAST (use_p
, iter
, lhs
)
2954 use_stmt
= USE_STMT (use_p
);
2955 if (is_gimple_debug (use_stmt
))
2958 if (uaddsub_overflow_check_p (stmt
, use_stmt
))
2959 ovf_use_seen
= true;
2962 if (ovf_use_seen
&& use_seen
)
2966 if (!ovf_use_seen
|| !use_seen
)
2969 tree ctype
= build_complex_type (type
);
2970 tree rhs1
= gimple_assign_rhs1 (stmt
);
2971 tree rhs2
= gimple_assign_rhs2 (stmt
);
2972 gcall
*g
= gimple_build_call_internal (code
== PLUS_EXPR
2973 ? IFN_ADD_OVERFLOW
: IFN_SUB_OVERFLOW
,
2975 tree ctmp
= make_ssa_name (ctype
);
2976 gimple_call_set_lhs (g
, ctmp
);
2977 gsi_insert_before (gsi
, g
, GSI_SAME_STMT
);
2978 gassign
*g2
= gimple_build_assign (lhs
, REALPART_EXPR
,
2979 build1 (REALPART_EXPR
, type
, ctmp
));
2980 gsi_replace (gsi
, g2
, true);
2981 tree ovf
= make_ssa_name (type
);
2982 g2
= gimple_build_assign (ovf
, IMAGPART_EXPR
,
2983 build1 (IMAGPART_EXPR
, type
, ctmp
));
2984 gsi_insert_after (gsi
, g2
, GSI_NEW_STMT
);
2986 FOR_EACH_IMM_USE_STMT (use_stmt
, iter
, lhs
)
2988 if (is_gimple_debug (use_stmt
))
2991 int ovf_use
= uaddsub_overflow_check_p (stmt
, use_stmt
);
2994 if (gimple_code (use_stmt
) == GIMPLE_COND
)
2996 gcond
*cond_stmt
= as_a
<gcond
*> (use_stmt
);
2997 gimple_cond_set_lhs (cond_stmt
, ovf
);
2998 gimple_cond_set_rhs (cond_stmt
, build_int_cst (type
, 0));
2999 gimple_cond_set_code (cond_stmt
, ovf_use
== 1 ? NE_EXPR
: EQ_EXPR
);
3003 gcc_checking_assert (is_gimple_assign (use_stmt
));
3004 if (gimple_assign_rhs_class (use_stmt
) == GIMPLE_BINARY_RHS
)
3006 gimple_assign_set_rhs1 (use_stmt
, ovf
);
3007 gimple_assign_set_rhs2 (use_stmt
, build_int_cst (type
, 0));
3008 gimple_assign_set_rhs_code (use_stmt
,
3009 ovf_use
== 1 ? NE_EXPR
: EQ_EXPR
);
3013 gcc_checking_assert (gimple_assign_rhs_code (use_stmt
)
3015 tree cond
= build2 (ovf_use
== 1 ? NE_EXPR
: EQ_EXPR
,
3016 boolean_type_node
, ovf
,
3017 build_int_cst (type
, 0));
3018 gimple_assign_set_rhs1 (use_stmt
, cond
);
3021 update_stmt (use_stmt
);
3026 /* Return true if target has support for divmod. */
3029 target_supports_divmod_p (optab divmod_optab
, optab div_optab
, machine_mode mode
)
3031 /* If target supports hardware divmod insn, use it for divmod. */
3032 if (optab_handler (divmod_optab
, mode
) != CODE_FOR_nothing
)
3035 /* Check if libfunc for divmod is available. */
3036 rtx libfunc
= optab_libfunc (divmod_optab
, mode
);
3037 if (libfunc
!= NULL_RTX
)
3039 /* If optab_handler exists for div_optab, perhaps in a wider mode,
3040 we don't want to use the libfunc even if it exists for given mode. */
3041 machine_mode div_mode
;
3042 FOR_EACH_MODE_FROM (div_mode
, mode
)
3043 if (optab_handler (div_optab
, div_mode
) != CODE_FOR_nothing
)
3046 return targetm
.expand_divmod_libfunc
!= NULL
;
3052 /* Check if stmt is candidate for divmod transform. */
3055 divmod_candidate_p (gassign
*stmt
)
3057 tree type
= TREE_TYPE (gimple_assign_lhs (stmt
));
3058 machine_mode mode
= TYPE_MODE (type
);
3059 optab divmod_optab
, div_optab
;
3061 if (TYPE_UNSIGNED (type
))
3063 divmod_optab
= udivmod_optab
;
3064 div_optab
= udiv_optab
;
3068 divmod_optab
= sdivmod_optab
;
3069 div_optab
= sdiv_optab
;
3072 tree op1
= gimple_assign_rhs1 (stmt
);
3073 tree op2
= gimple_assign_rhs2 (stmt
);
3075 /* Disable the transform if either is a constant, since division-by-constant
3076 may have specialized expansion. */
3077 if (CONSTANT_CLASS_P (op1
) || CONSTANT_CLASS_P (op2
))
3080 /* Exclude the case where TYPE_OVERFLOW_TRAPS (type) as that should
3081 expand using the [su]divv optabs. */
3082 if (TYPE_OVERFLOW_TRAPS (type
))
3085 if (!target_supports_divmod_p (divmod_optab
, div_optab
, mode
))
3091 /* This function looks for:
3092 t1 = a TRUNC_DIV_EXPR b;
3093 t2 = a TRUNC_MOD_EXPR b;
3094 and transforms it to the following sequence:
3095 complex_tmp = DIVMOD (a, b);
3096 t1 = REALPART_EXPR(a);
3097 t2 = IMAGPART_EXPR(b);
3098 For conditions enabling the transform see divmod_candidate_p().
3100 The pass has three parts:
3101 1) Find top_stmt which is trunc_div or trunc_mod stmt and dominates all
3102 other trunc_div_expr and trunc_mod_expr stmts.
3103 2) Add top_stmt and all trunc_div and trunc_mod stmts dominated by top_stmt
3105 3) Insert DIVMOD call just before top_stmt and update entries in
3106 stmts vector to use return value of DIMOVD (REALEXPR_PART for div,
3107 IMAGPART_EXPR for mod). */
3110 convert_to_divmod (gassign
*stmt
)
3112 if (stmt_can_throw_internal (stmt
)
3113 || !divmod_candidate_p (stmt
))
3116 tree op1
= gimple_assign_rhs1 (stmt
);
3117 tree op2
= gimple_assign_rhs2 (stmt
);
3119 imm_use_iterator use_iter
;
3121 auto_vec
<gimple
*> stmts
;
3123 gimple
*top_stmt
= stmt
;
3124 basic_block top_bb
= gimple_bb (stmt
);
3126 /* Part 1: Try to set top_stmt to "topmost" stmt that dominates
3127 at-least stmt and possibly other trunc_div/trunc_mod stmts
3128 having same operands as stmt. */
3130 FOR_EACH_IMM_USE_STMT (use_stmt
, use_iter
, op1
)
3132 if (is_gimple_assign (use_stmt
)
3133 && (gimple_assign_rhs_code (use_stmt
) == TRUNC_DIV_EXPR
3134 || gimple_assign_rhs_code (use_stmt
) == TRUNC_MOD_EXPR
)
3135 && operand_equal_p (op1
, gimple_assign_rhs1 (use_stmt
), 0)
3136 && operand_equal_p (op2
, gimple_assign_rhs2 (use_stmt
), 0))
3138 if (stmt_can_throw_internal (use_stmt
))
3141 basic_block bb
= gimple_bb (use_stmt
);
3145 if (gimple_uid (use_stmt
) < gimple_uid (top_stmt
))
3146 top_stmt
= use_stmt
;
3148 else if (dominated_by_p (CDI_DOMINATORS
, top_bb
, bb
))
3151 top_stmt
= use_stmt
;
3156 tree top_op1
= gimple_assign_rhs1 (top_stmt
);
3157 tree top_op2
= gimple_assign_rhs2 (top_stmt
);
3159 stmts
.safe_push (top_stmt
);
3160 bool div_seen
= (gimple_assign_rhs_code (top_stmt
) == TRUNC_DIV_EXPR
);
3162 /* Part 2: Add all trunc_div/trunc_mod statements domianted by top_bb
3163 to stmts vector. The 2nd loop will always add stmt to stmts vector, since
3164 gimple_bb (top_stmt) dominates gimple_bb (stmt), so the
3165 2nd loop ends up adding at-least single trunc_mod_expr stmt. */
3167 FOR_EACH_IMM_USE_STMT (use_stmt
, use_iter
, top_op1
)
3169 if (is_gimple_assign (use_stmt
)
3170 && (gimple_assign_rhs_code (use_stmt
) == TRUNC_DIV_EXPR
3171 || gimple_assign_rhs_code (use_stmt
) == TRUNC_MOD_EXPR
)
3172 && operand_equal_p (top_op1
, gimple_assign_rhs1 (use_stmt
), 0)
3173 && operand_equal_p (top_op2
, gimple_assign_rhs2 (use_stmt
), 0))
3175 if (use_stmt
== top_stmt
3176 || stmt_can_throw_internal (use_stmt
)
3177 || !dominated_by_p (CDI_DOMINATORS
, gimple_bb (use_stmt
), top_bb
))
3180 stmts
.safe_push (use_stmt
);
3181 if (gimple_assign_rhs_code (use_stmt
) == TRUNC_DIV_EXPR
)
3189 /* Part 3: Create libcall to internal fn DIVMOD:
3190 divmod_tmp = DIVMOD (op1, op2). */
3192 gcall
*call_stmt
= gimple_build_call_internal (IFN_DIVMOD
, 2, op1
, op2
);
3193 tree res
= make_temp_ssa_name (build_complex_type (TREE_TYPE (op1
)),
3194 call_stmt
, "divmod_tmp");
3195 gimple_call_set_lhs (call_stmt
, res
);
3196 /* We rejected throwing statements above. */
3197 gimple_call_set_nothrow (call_stmt
, true);
3199 /* Insert the call before top_stmt. */
3200 gimple_stmt_iterator top_stmt_gsi
= gsi_for_stmt (top_stmt
);
3201 gsi_insert_before (&top_stmt_gsi
, call_stmt
, GSI_SAME_STMT
);
3203 widen_mul_stats
.divmod_calls_inserted
++;
3205 /* Update all statements in stmts vector:
3206 lhs = op1 TRUNC_DIV_EXPR op2 -> lhs = REALPART_EXPR<divmod_tmp>
3207 lhs = op1 TRUNC_MOD_EXPR op2 -> lhs = IMAGPART_EXPR<divmod_tmp>. */
3209 for (unsigned i
= 0; stmts
.iterate (i
, &use_stmt
); ++i
)
3213 switch (gimple_assign_rhs_code (use_stmt
))
3215 case TRUNC_DIV_EXPR
:
3216 new_rhs
= fold_build1 (REALPART_EXPR
, TREE_TYPE (op1
), res
);
3219 case TRUNC_MOD_EXPR
:
3220 new_rhs
= fold_build1 (IMAGPART_EXPR
, TREE_TYPE (op1
), res
);
3227 gimple_stmt_iterator gsi
= gsi_for_stmt (use_stmt
);
3228 gimple_assign_set_rhs_from_tree (&gsi
, new_rhs
);
3229 update_stmt (use_stmt
);
3235 /* Find integer multiplications where the operands are extended from
3236 smaller types, and replace the MULT_EXPR with a WIDEN_MULT_EXPR
3237 where appropriate. */
3241 const pass_data pass_data_optimize_widening_mul
=
3243 GIMPLE_PASS
, /* type */
3244 "widening_mul", /* name */
3245 OPTGROUP_NONE
, /* optinfo_flags */
3246 TV_TREE_WIDEN_MUL
, /* tv_id */
3247 PROP_ssa
, /* properties_required */
3248 0, /* properties_provided */
3249 0, /* properties_destroyed */
3250 0, /* todo_flags_start */
3251 TODO_update_ssa
, /* todo_flags_finish */
3254 class pass_optimize_widening_mul
: public gimple_opt_pass
3257 pass_optimize_widening_mul (gcc::context
*ctxt
)
3258 : gimple_opt_pass (pass_data_optimize_widening_mul
, ctxt
)
3261 /* opt_pass methods: */
3262 virtual bool gate (function
*)
3264 return flag_expensive_optimizations
&& optimize
;
3267 virtual unsigned int execute (function
*);
3269 }; // class pass_optimize_widening_mul
3272 pass_optimize_widening_mul::execute (function
*fun
)
3275 bool cfg_changed
= false;
3277 memset (&widen_mul_stats
, 0, sizeof (widen_mul_stats
));
3278 calculate_dominance_info (CDI_DOMINATORS
);
3279 renumber_gimple_stmt_uids ();
3281 FOR_EACH_BB_FN (bb
, fun
)
3283 gimple_stmt_iterator gsi
;
3285 for (gsi
= gsi_after_labels (bb
); !gsi_end_p (gsi
);)
3287 gimple
*stmt
= gsi_stmt (gsi
);
3288 enum tree_code code
;
3290 if (is_gimple_assign (stmt
))
3292 code
= gimple_assign_rhs_code (stmt
);
3296 if (!convert_mult_to_widen (stmt
, &gsi
)
3297 && !convert_expand_mult_copysign (stmt
, &gsi
)
3298 && convert_mult_to_fma (stmt
,
3299 gimple_assign_rhs1 (stmt
),
3300 gimple_assign_rhs2 (stmt
)))
3302 gsi_remove (&gsi
, true);
3303 release_defs (stmt
);
3310 if (!convert_plusminus_to_widen (&gsi
, stmt
, code
))
3311 match_uaddsub_overflow (&gsi
, stmt
, code
);
3314 case TRUNC_MOD_EXPR
:
3315 convert_to_divmod (as_a
<gassign
*> (stmt
));
3321 else if (is_gimple_call (stmt
)
3322 && gimple_call_lhs (stmt
))
3324 tree fndecl
= gimple_call_fndecl (stmt
);
3326 && gimple_call_builtin_p (stmt
, BUILT_IN_NORMAL
))
3328 switch (DECL_FUNCTION_CODE (fndecl
))
3333 if (TREE_CODE (gimple_call_arg (stmt
, 1)) == REAL_CST
3335 (&TREE_REAL_CST (gimple_call_arg (stmt
, 1)),
3337 && convert_mult_to_fma (stmt
,
3338 gimple_call_arg (stmt
, 0),
3339 gimple_call_arg (stmt
, 0)))
3341 unlink_stmt_vdef (stmt
);
3342 if (gsi_remove (&gsi
, true)
3343 && gimple_purge_dead_eh_edges (bb
))
3345 release_defs (stmt
);
3358 statistics_counter_event (fun
, "widening multiplications inserted",
3359 widen_mul_stats
.widen_mults_inserted
);
3360 statistics_counter_event (fun
, "widening maccs inserted",
3361 widen_mul_stats
.maccs_inserted
);
3362 statistics_counter_event (fun
, "fused multiply-adds inserted",
3363 widen_mul_stats
.fmas_inserted
);
3364 statistics_counter_event (fun
, "divmod calls inserted",
3365 widen_mul_stats
.divmod_calls_inserted
);
3367 return cfg_changed
? TODO_cleanup_cfg
: 0;
3373 make_pass_optimize_widening_mul (gcc::context
*ctxt
)
3375 return new pass_optimize_widening_mul (ctxt
);