pa.c (pa_som_asm_init_sections): Fix comment.
[official-gcc.git] / gcc / tree-cfg.c
blob4bf621895cd67f54521264d722ee107c87c24b45
1 /* Control flow functions for trees.
2 Copyright (C) 2001-2017 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "cfghooks.h"
30 #include "tree-pass.h"
31 #include "ssa.h"
32 #include "cgraph.h"
33 #include "gimple-pretty-print.h"
34 #include "diagnostic-core.h"
35 #include "fold-const.h"
36 #include "trans-mem.h"
37 #include "stor-layout.h"
38 #include "print-tree.h"
39 #include "cfganal.h"
40 #include "gimple-fold.h"
41 #include "tree-eh.h"
42 #include "gimple-iterator.h"
43 #include "gimplify-me.h"
44 #include "gimple-walk.h"
45 #include "tree-cfg.h"
46 #include "tree-ssa-loop-manip.h"
47 #include "tree-ssa-loop-niter.h"
48 #include "tree-into-ssa.h"
49 #include "tree-dfa.h"
50 #include "tree-ssa.h"
51 #include "except.h"
52 #include "cfgloop.h"
53 #include "tree-ssa-propagate.h"
54 #include "value-prof.h"
55 #include "tree-inline.h"
56 #include "tree-ssa-live.h"
57 #include "omp-general.h"
58 #include "omp-expand.h"
59 #include "tree-cfgcleanup.h"
60 #include "gimplify.h"
61 #include "attribs.h"
62 #include "selftest.h"
63 #include "opts.h"
64 #include "asan.h"
66 /* This file contains functions for building the Control Flow Graph (CFG)
67 for a function tree. */
69 /* Local declarations. */
71 /* Initial capacity for the basic block array. */
72 static const int initial_cfg_capacity = 20;
74 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
75 which use a particular edge. The CASE_LABEL_EXPRs are chained together
76 via their CASE_CHAIN field, which we clear after we're done with the
77 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
79 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
80 update the case vector in response to edge redirections.
82 Right now this table is set up and torn down at key points in the
83 compilation process. It would be nice if we could make the table
84 more persistent. The key is getting notification of changes to
85 the CFG (particularly edge removal, creation and redirection). */
87 static hash_map<edge, tree> *edge_to_cases;
89 /* If we record edge_to_cases, this bitmap will hold indexes
90 of basic blocks that end in a GIMPLE_SWITCH which we touched
91 due to edge manipulations. */
93 static bitmap touched_switch_bbs;
95 /* CFG statistics. */
96 struct cfg_stats_d
98 long num_merged_labels;
101 static struct cfg_stats_d cfg_stats;
103 /* Data to pass to replace_block_vars_by_duplicates_1. */
104 struct replace_decls_d
106 hash_map<tree, tree> *vars_map;
107 tree to_context;
110 /* Hash table to store last discriminator assigned for each locus. */
111 struct locus_discrim_map
113 location_t locus;
114 int discriminator;
117 /* Hashtable helpers. */
119 struct locus_discrim_hasher : free_ptr_hash <locus_discrim_map>
121 static inline hashval_t hash (const locus_discrim_map *);
122 static inline bool equal (const locus_discrim_map *,
123 const locus_discrim_map *);
126 /* Trivial hash function for a location_t. ITEM is a pointer to
127 a hash table entry that maps a location_t to a discriminator. */
129 inline hashval_t
130 locus_discrim_hasher::hash (const locus_discrim_map *item)
132 return LOCATION_LINE (item->locus);
135 /* Equality function for the locus-to-discriminator map. A and B
136 point to the two hash table entries to compare. */
138 inline bool
139 locus_discrim_hasher::equal (const locus_discrim_map *a,
140 const locus_discrim_map *b)
142 return LOCATION_LINE (a->locus) == LOCATION_LINE (b->locus);
145 static hash_table<locus_discrim_hasher> *discriminator_per_locus;
147 /* Basic blocks and flowgraphs. */
148 static void make_blocks (gimple_seq);
150 /* Edges. */
151 static void make_edges (void);
152 static void assign_discriminators (void);
153 static void make_cond_expr_edges (basic_block);
154 static void make_gimple_switch_edges (gswitch *, basic_block);
155 static bool make_goto_expr_edges (basic_block);
156 static void make_gimple_asm_edges (basic_block);
157 static edge gimple_redirect_edge_and_branch (edge, basic_block);
158 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
160 /* Various helpers. */
161 static inline bool stmt_starts_bb_p (gimple *, gimple *);
162 static int gimple_verify_flow_info (void);
163 static void gimple_make_forwarder_block (edge);
164 static gimple *first_non_label_stmt (basic_block);
165 static bool verify_gimple_transaction (gtransaction *);
166 static bool call_can_make_abnormal_goto (gimple *);
168 /* Flowgraph optimization and cleanup. */
169 static void gimple_merge_blocks (basic_block, basic_block);
170 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
171 static void remove_bb (basic_block);
172 static edge find_taken_edge_computed_goto (basic_block, tree);
173 static edge find_taken_edge_cond_expr (const gcond *, tree);
174 static edge find_taken_edge_switch_expr (const gswitch *, tree);
175 static tree find_case_label_for_value (const gswitch *, tree);
176 static void lower_phi_internal_fn ();
178 void
179 init_empty_tree_cfg_for_function (struct function *fn)
181 /* Initialize the basic block array. */
182 init_flow (fn);
183 profile_status_for_fn (fn) = PROFILE_ABSENT;
184 n_basic_blocks_for_fn (fn) = NUM_FIXED_BLOCKS;
185 last_basic_block_for_fn (fn) = NUM_FIXED_BLOCKS;
186 vec_alloc (basic_block_info_for_fn (fn), initial_cfg_capacity);
187 vec_safe_grow_cleared (basic_block_info_for_fn (fn),
188 initial_cfg_capacity);
190 /* Build a mapping of labels to their associated blocks. */
191 vec_alloc (label_to_block_map_for_fn (fn), initial_cfg_capacity);
192 vec_safe_grow_cleared (label_to_block_map_for_fn (fn),
193 initial_cfg_capacity);
195 SET_BASIC_BLOCK_FOR_FN (fn, ENTRY_BLOCK, ENTRY_BLOCK_PTR_FOR_FN (fn));
196 SET_BASIC_BLOCK_FOR_FN (fn, EXIT_BLOCK, EXIT_BLOCK_PTR_FOR_FN (fn));
198 ENTRY_BLOCK_PTR_FOR_FN (fn)->next_bb
199 = EXIT_BLOCK_PTR_FOR_FN (fn);
200 EXIT_BLOCK_PTR_FOR_FN (fn)->prev_bb
201 = ENTRY_BLOCK_PTR_FOR_FN (fn);
204 void
205 init_empty_tree_cfg (void)
207 init_empty_tree_cfg_for_function (cfun);
210 /*---------------------------------------------------------------------------
211 Create basic blocks
212 ---------------------------------------------------------------------------*/
214 /* Entry point to the CFG builder for trees. SEQ is the sequence of
215 statements to be added to the flowgraph. */
217 static void
218 build_gimple_cfg (gimple_seq seq)
220 /* Register specific gimple functions. */
221 gimple_register_cfg_hooks ();
223 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
225 init_empty_tree_cfg ();
227 make_blocks (seq);
229 /* Make sure there is always at least one block, even if it's empty. */
230 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
231 create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
233 /* Adjust the size of the array. */
234 if (basic_block_info_for_fn (cfun)->length ()
235 < (size_t) n_basic_blocks_for_fn (cfun))
236 vec_safe_grow_cleared (basic_block_info_for_fn (cfun),
237 n_basic_blocks_for_fn (cfun));
239 /* To speed up statement iterator walks, we first purge dead labels. */
240 cleanup_dead_labels ();
242 /* Group case nodes to reduce the number of edges.
243 We do this after cleaning up dead labels because otherwise we miss
244 a lot of obvious case merging opportunities. */
245 group_case_labels ();
247 /* Create the edges of the flowgraph. */
248 discriminator_per_locus = new hash_table<locus_discrim_hasher> (13);
249 make_edges ();
250 assign_discriminators ();
251 lower_phi_internal_fn ();
252 cleanup_dead_labels ();
253 delete discriminator_per_locus;
254 discriminator_per_locus = NULL;
257 /* Look for ANNOTATE calls with loop annotation kind in BB; if found, remove
258 them and propagate the information to LOOP. We assume that the annotations
259 come immediately before the condition in BB, if any. */
261 static void
262 replace_loop_annotate_in_block (basic_block bb, struct loop *loop)
264 gimple_stmt_iterator gsi = gsi_last_bb (bb);
265 gimple *stmt = gsi_stmt (gsi);
267 if (!(stmt && gimple_code (stmt) == GIMPLE_COND))
268 return;
270 for (gsi_prev_nondebug (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
272 stmt = gsi_stmt (gsi);
273 if (gimple_code (stmt) != GIMPLE_CALL)
274 break;
275 if (!gimple_call_internal_p (stmt)
276 || gimple_call_internal_fn (stmt) != IFN_ANNOTATE)
277 break;
279 switch ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1)))
281 case annot_expr_ivdep_kind:
282 loop->safelen = INT_MAX;
283 break;
284 case annot_expr_unroll_kind:
285 loop->unroll
286 = (unsigned short) tree_to_shwi (gimple_call_arg (stmt, 2));
287 cfun->has_unroll = true;
288 break;
289 case annot_expr_no_vector_kind:
290 loop->dont_vectorize = true;
291 break;
292 case annot_expr_vector_kind:
293 loop->force_vectorize = true;
294 cfun->has_force_vectorize_loops = true;
295 break;
296 case annot_expr_parallel_kind:
297 loop->can_be_parallel = true;
298 loop->safelen = INT_MAX;
299 break;
300 default:
301 gcc_unreachable ();
304 stmt = gimple_build_assign (gimple_call_lhs (stmt),
305 gimple_call_arg (stmt, 0));
306 gsi_replace (&gsi, stmt, true);
310 /* Look for ANNOTATE calls with loop annotation kind; if found, remove
311 them and propagate the information to the loop. We assume that the
312 annotations come immediately before the condition of the loop. */
314 static void
315 replace_loop_annotate (void)
317 struct loop *loop;
318 basic_block bb;
319 gimple_stmt_iterator gsi;
320 gimple *stmt;
322 FOR_EACH_LOOP (loop, 0)
324 /* First look into the header. */
325 replace_loop_annotate_in_block (loop->header, loop);
327 /* Then look into the latch, if any. */
328 if (loop->latch)
329 replace_loop_annotate_in_block (loop->latch, loop);
332 /* Remove IFN_ANNOTATE. Safeguard for the case loop->latch == NULL. */
333 FOR_EACH_BB_FN (bb, cfun)
335 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
337 stmt = gsi_stmt (gsi);
338 if (gimple_code (stmt) != GIMPLE_CALL)
339 continue;
340 if (!gimple_call_internal_p (stmt)
341 || gimple_call_internal_fn (stmt) != IFN_ANNOTATE)
342 continue;
344 switch ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1)))
346 case annot_expr_ivdep_kind:
347 case annot_expr_unroll_kind:
348 case annot_expr_no_vector_kind:
349 case annot_expr_vector_kind:
350 break;
351 default:
352 gcc_unreachable ();
355 warning_at (gimple_location (stmt), 0, "ignoring loop annotation");
356 stmt = gimple_build_assign (gimple_call_lhs (stmt),
357 gimple_call_arg (stmt, 0));
358 gsi_replace (&gsi, stmt, true);
363 /* Lower internal PHI function from GIMPLE FE. */
365 static void
366 lower_phi_internal_fn ()
368 basic_block bb, pred = NULL;
369 gimple_stmt_iterator gsi;
370 tree lhs;
371 gphi *phi_node;
372 gimple *stmt;
374 /* After edge creation, handle __PHI function from GIMPLE FE. */
375 FOR_EACH_BB_FN (bb, cfun)
377 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi);)
379 stmt = gsi_stmt (gsi);
380 if (! gimple_call_internal_p (stmt, IFN_PHI))
381 break;
383 lhs = gimple_call_lhs (stmt);
384 phi_node = create_phi_node (lhs, bb);
386 /* Add arguments to the PHI node. */
387 for (unsigned i = 0; i < gimple_call_num_args (stmt); ++i)
389 tree arg = gimple_call_arg (stmt, i);
390 if (TREE_CODE (arg) == LABEL_DECL)
391 pred = label_to_block (arg);
392 else
394 edge e = find_edge (pred, bb);
395 add_phi_arg (phi_node, arg, e, UNKNOWN_LOCATION);
399 gsi_remove (&gsi, true);
404 static unsigned int
405 execute_build_cfg (void)
407 gimple_seq body = gimple_body (current_function_decl);
409 build_gimple_cfg (body);
410 gimple_set_body (current_function_decl, NULL);
411 if (dump_file && (dump_flags & TDF_DETAILS))
413 fprintf (dump_file, "Scope blocks:\n");
414 dump_scope_blocks (dump_file, dump_flags);
416 cleanup_tree_cfg ();
417 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
418 replace_loop_annotate ();
419 return 0;
422 namespace {
424 const pass_data pass_data_build_cfg =
426 GIMPLE_PASS, /* type */
427 "cfg", /* name */
428 OPTGROUP_NONE, /* optinfo_flags */
429 TV_TREE_CFG, /* tv_id */
430 PROP_gimple_leh, /* properties_required */
431 ( PROP_cfg | PROP_loops ), /* properties_provided */
432 0, /* properties_destroyed */
433 0, /* todo_flags_start */
434 0, /* todo_flags_finish */
437 class pass_build_cfg : public gimple_opt_pass
439 public:
440 pass_build_cfg (gcc::context *ctxt)
441 : gimple_opt_pass (pass_data_build_cfg, ctxt)
444 /* opt_pass methods: */
445 virtual unsigned int execute (function *) { return execute_build_cfg (); }
447 }; // class pass_build_cfg
449 } // anon namespace
451 gimple_opt_pass *
452 make_pass_build_cfg (gcc::context *ctxt)
454 return new pass_build_cfg (ctxt);
458 /* Return true if T is a computed goto. */
460 bool
461 computed_goto_p (gimple *t)
463 return (gimple_code (t) == GIMPLE_GOTO
464 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
467 /* Returns true if the sequence of statements STMTS only contains
468 a call to __builtin_unreachable (). */
470 bool
471 gimple_seq_unreachable_p (gimple_seq stmts)
473 if (stmts == NULL
474 /* Return false if -fsanitize=unreachable, we don't want to
475 optimize away those calls, but rather turn them into
476 __ubsan_handle_builtin_unreachable () or __builtin_trap ()
477 later. */
478 || sanitize_flags_p (SANITIZE_UNREACHABLE))
479 return false;
481 gimple_stmt_iterator gsi = gsi_last (stmts);
483 if (!gimple_call_builtin_p (gsi_stmt (gsi), BUILT_IN_UNREACHABLE))
484 return false;
486 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
488 gimple *stmt = gsi_stmt (gsi);
489 if (gimple_code (stmt) != GIMPLE_LABEL
490 && !is_gimple_debug (stmt)
491 && !gimple_clobber_p (stmt))
492 return false;
494 return true;
497 /* Returns true for edge E where e->src ends with a GIMPLE_COND and
498 the other edge points to a bb with just __builtin_unreachable ().
499 I.e. return true for C->M edge in:
500 <bb C>:
502 if (something)
503 goto <bb N>;
504 else
505 goto <bb M>;
506 <bb N>:
507 __builtin_unreachable ();
508 <bb M>: */
510 bool
511 assert_unreachable_fallthru_edge_p (edge e)
513 basic_block pred_bb = e->src;
514 gimple *last = last_stmt (pred_bb);
515 if (last && gimple_code (last) == GIMPLE_COND)
517 basic_block other_bb = EDGE_SUCC (pred_bb, 0)->dest;
518 if (other_bb == e->dest)
519 other_bb = EDGE_SUCC (pred_bb, 1)->dest;
520 if (EDGE_COUNT (other_bb->succs) == 0)
521 return gimple_seq_unreachable_p (bb_seq (other_bb));
523 return false;
527 /* Initialize GF_CALL_CTRL_ALTERING flag, which indicates the call
528 could alter control flow except via eh. We initialize the flag at
529 CFG build time and only ever clear it later. */
531 static void
532 gimple_call_initialize_ctrl_altering (gimple *stmt)
534 int flags = gimple_call_flags (stmt);
536 /* A call alters control flow if it can make an abnormal goto. */
537 if (call_can_make_abnormal_goto (stmt)
538 /* A call also alters control flow if it does not return. */
539 || flags & ECF_NORETURN
540 /* TM ending statements have backedges out of the transaction.
541 Return true so we split the basic block containing them.
542 Note that the TM_BUILTIN test is merely an optimization. */
543 || ((flags & ECF_TM_BUILTIN)
544 && is_tm_ending_fndecl (gimple_call_fndecl (stmt)))
545 /* BUILT_IN_RETURN call is same as return statement. */
546 || gimple_call_builtin_p (stmt, BUILT_IN_RETURN)
547 /* IFN_UNIQUE should be the last insn, to make checking for it
548 as cheap as possible. */
549 || (gimple_call_internal_p (stmt)
550 && gimple_call_internal_unique_p (stmt)))
551 gimple_call_set_ctrl_altering (stmt, true);
552 else
553 gimple_call_set_ctrl_altering (stmt, false);
557 /* Insert SEQ after BB and build a flowgraph. */
559 static basic_block
560 make_blocks_1 (gimple_seq seq, basic_block bb)
562 gimple_stmt_iterator i = gsi_start (seq);
563 gimple *stmt = NULL;
564 gimple *prev_stmt = NULL;
565 bool start_new_block = true;
566 bool first_stmt_of_seq = true;
568 while (!gsi_end_p (i))
570 /* PREV_STMT should only be set to a debug stmt if the debug
571 stmt is before nondebug stmts. Once stmt reaches a nondebug
572 nonlabel, prev_stmt will be set to it, so that
573 stmt_starts_bb_p will know to start a new block if a label is
574 found. However, if stmt was a label after debug stmts only,
575 keep the label in prev_stmt even if we find further debug
576 stmts, for there may be other labels after them, and they
577 should land in the same block. */
578 if (!prev_stmt || !stmt || !is_gimple_debug (stmt))
579 prev_stmt = stmt;
580 stmt = gsi_stmt (i);
582 if (stmt && is_gimple_call (stmt))
583 gimple_call_initialize_ctrl_altering (stmt);
585 /* If the statement starts a new basic block or if we have determined
586 in a previous pass that we need to create a new block for STMT, do
587 so now. */
588 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
590 if (!first_stmt_of_seq)
591 gsi_split_seq_before (&i, &seq);
592 bb = create_basic_block (seq, bb);
593 start_new_block = false;
594 prev_stmt = NULL;
597 /* Now add STMT to BB and create the subgraphs for special statement
598 codes. */
599 gimple_set_bb (stmt, bb);
601 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
602 next iteration. */
603 if (stmt_ends_bb_p (stmt))
605 /* If the stmt can make abnormal goto use a new temporary
606 for the assignment to the LHS. This makes sure the old value
607 of the LHS is available on the abnormal edge. Otherwise
608 we will end up with overlapping life-ranges for abnormal
609 SSA names. */
610 if (gimple_has_lhs (stmt)
611 && stmt_can_make_abnormal_goto (stmt)
612 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
614 tree lhs = gimple_get_lhs (stmt);
615 tree tmp = create_tmp_var (TREE_TYPE (lhs));
616 gimple *s = gimple_build_assign (lhs, tmp);
617 gimple_set_location (s, gimple_location (stmt));
618 gimple_set_block (s, gimple_block (stmt));
619 gimple_set_lhs (stmt, tmp);
620 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
621 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
622 DECL_GIMPLE_REG_P (tmp) = 1;
623 gsi_insert_after (&i, s, GSI_SAME_STMT);
625 start_new_block = true;
628 gsi_next (&i);
629 first_stmt_of_seq = false;
631 return bb;
634 /* Build a flowgraph for the sequence of stmts SEQ. */
636 static void
637 make_blocks (gimple_seq seq)
639 make_blocks_1 (seq, ENTRY_BLOCK_PTR_FOR_FN (cfun));
642 /* Create and return a new empty basic block after bb AFTER. */
644 static basic_block
645 create_bb (void *h, void *e, basic_block after)
647 basic_block bb;
649 gcc_assert (!e);
651 /* Create and initialize a new basic block. Since alloc_block uses
652 GC allocation that clears memory to allocate a basic block, we do
653 not have to clear the newly allocated basic block here. */
654 bb = alloc_block ();
656 bb->index = last_basic_block_for_fn (cfun);
657 bb->flags = BB_NEW;
658 set_bb_seq (bb, h ? (gimple_seq) h : NULL);
660 /* Add the new block to the linked list of blocks. */
661 link_block (bb, after);
663 /* Grow the basic block array if needed. */
664 if ((size_t) last_basic_block_for_fn (cfun)
665 == basic_block_info_for_fn (cfun)->length ())
667 size_t new_size =
668 (last_basic_block_for_fn (cfun)
669 + (last_basic_block_for_fn (cfun) + 3) / 4);
670 vec_safe_grow_cleared (basic_block_info_for_fn (cfun), new_size);
673 /* Add the newly created block to the array. */
674 SET_BASIC_BLOCK_FOR_FN (cfun, last_basic_block_for_fn (cfun), bb);
676 n_basic_blocks_for_fn (cfun)++;
677 last_basic_block_for_fn (cfun)++;
679 return bb;
683 /*---------------------------------------------------------------------------
684 Edge creation
685 ---------------------------------------------------------------------------*/
687 /* If basic block BB has an abnormal edge to a basic block
688 containing IFN_ABNORMAL_DISPATCHER internal call, return
689 that the dispatcher's basic block, otherwise return NULL. */
691 basic_block
692 get_abnormal_succ_dispatcher (basic_block bb)
694 edge e;
695 edge_iterator ei;
697 FOR_EACH_EDGE (e, ei, bb->succs)
698 if ((e->flags & (EDGE_ABNORMAL | EDGE_EH)) == EDGE_ABNORMAL)
700 gimple_stmt_iterator gsi
701 = gsi_start_nondebug_after_labels_bb (e->dest);
702 gimple *g = gsi_stmt (gsi);
703 if (g && gimple_call_internal_p (g, IFN_ABNORMAL_DISPATCHER))
704 return e->dest;
706 return NULL;
709 /* Helper function for make_edges. Create a basic block with
710 with ABNORMAL_DISPATCHER internal call in it if needed, and
711 create abnormal edges from BBS to it and from it to FOR_BB
712 if COMPUTED_GOTO is false, otherwise factor the computed gotos. */
714 static void
715 handle_abnormal_edges (basic_block *dispatcher_bbs,
716 basic_block for_bb, int *bb_to_omp_idx,
717 auto_vec<basic_block> *bbs, bool computed_goto)
719 basic_block *dispatcher = dispatcher_bbs + (computed_goto ? 1 : 0);
720 unsigned int idx = 0;
721 basic_block bb;
722 bool inner = false;
724 if (bb_to_omp_idx)
726 dispatcher = dispatcher_bbs + 2 * bb_to_omp_idx[for_bb->index];
727 if (bb_to_omp_idx[for_bb->index] != 0)
728 inner = true;
731 /* If the dispatcher has been created already, then there are basic
732 blocks with abnormal edges to it, so just make a new edge to
733 for_bb. */
734 if (*dispatcher == NULL)
736 /* Check if there are any basic blocks that need to have
737 abnormal edges to this dispatcher. If there are none, return
738 early. */
739 if (bb_to_omp_idx == NULL)
741 if (bbs->is_empty ())
742 return;
744 else
746 FOR_EACH_VEC_ELT (*bbs, idx, bb)
747 if (bb_to_omp_idx[bb->index] == bb_to_omp_idx[for_bb->index])
748 break;
749 if (bb == NULL)
750 return;
753 /* Create the dispatcher bb. */
754 *dispatcher = create_basic_block (NULL, for_bb);
755 if (computed_goto)
757 /* Factor computed gotos into a common computed goto site. Also
758 record the location of that site so that we can un-factor the
759 gotos after we have converted back to normal form. */
760 gimple_stmt_iterator gsi = gsi_start_bb (*dispatcher);
762 /* Create the destination of the factored goto. Each original
763 computed goto will put its desired destination into this
764 variable and jump to the label we create immediately below. */
765 tree var = create_tmp_var (ptr_type_node, "gotovar");
767 /* Build a label for the new block which will contain the
768 factored computed goto. */
769 tree factored_label_decl
770 = create_artificial_label (UNKNOWN_LOCATION);
771 gimple *factored_computed_goto_label
772 = gimple_build_label (factored_label_decl);
773 gsi_insert_after (&gsi, factored_computed_goto_label, GSI_NEW_STMT);
775 /* Build our new computed goto. */
776 gimple *factored_computed_goto = gimple_build_goto (var);
777 gsi_insert_after (&gsi, factored_computed_goto, GSI_NEW_STMT);
779 FOR_EACH_VEC_ELT (*bbs, idx, bb)
781 if (bb_to_omp_idx
782 && bb_to_omp_idx[bb->index] != bb_to_omp_idx[for_bb->index])
783 continue;
785 gsi = gsi_last_bb (bb);
786 gimple *last = gsi_stmt (gsi);
788 gcc_assert (computed_goto_p (last));
790 /* Copy the original computed goto's destination into VAR. */
791 gimple *assignment
792 = gimple_build_assign (var, gimple_goto_dest (last));
793 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
795 edge e = make_edge (bb, *dispatcher, EDGE_FALLTHRU);
796 e->goto_locus = gimple_location (last);
797 gsi_remove (&gsi, true);
800 else
802 tree arg = inner ? boolean_true_node : boolean_false_node;
803 gimple *g = gimple_build_call_internal (IFN_ABNORMAL_DISPATCHER,
804 1, arg);
805 gimple_stmt_iterator gsi = gsi_after_labels (*dispatcher);
806 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
808 /* Create predecessor edges of the dispatcher. */
809 FOR_EACH_VEC_ELT (*bbs, idx, bb)
811 if (bb_to_omp_idx
812 && bb_to_omp_idx[bb->index] != bb_to_omp_idx[for_bb->index])
813 continue;
814 make_edge (bb, *dispatcher, EDGE_ABNORMAL);
819 make_edge (*dispatcher, for_bb, EDGE_ABNORMAL);
822 /* Creates outgoing edges for BB. Returns 1 when it ends with an
823 computed goto, returns 2 when it ends with a statement that
824 might return to this function via an nonlocal goto, otherwise
825 return 0. Updates *PCUR_REGION with the OMP region this BB is in. */
827 static int
828 make_edges_bb (basic_block bb, struct omp_region **pcur_region, int *pomp_index)
830 gimple *last = last_stmt (bb);
831 bool fallthru = false;
832 int ret = 0;
834 if (!last)
835 return ret;
837 switch (gimple_code (last))
839 case GIMPLE_GOTO:
840 if (make_goto_expr_edges (bb))
841 ret = 1;
842 fallthru = false;
843 break;
844 case GIMPLE_RETURN:
846 edge e = make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
847 e->goto_locus = gimple_location (last);
848 fallthru = false;
850 break;
851 case GIMPLE_COND:
852 make_cond_expr_edges (bb);
853 fallthru = false;
854 break;
855 case GIMPLE_SWITCH:
856 make_gimple_switch_edges (as_a <gswitch *> (last), bb);
857 fallthru = false;
858 break;
859 case GIMPLE_RESX:
860 make_eh_edges (last);
861 fallthru = false;
862 break;
863 case GIMPLE_EH_DISPATCH:
864 fallthru = make_eh_dispatch_edges (as_a <geh_dispatch *> (last));
865 break;
867 case GIMPLE_CALL:
868 /* If this function receives a nonlocal goto, then we need to
869 make edges from this call site to all the nonlocal goto
870 handlers. */
871 if (stmt_can_make_abnormal_goto (last))
872 ret = 2;
874 /* If this statement has reachable exception handlers, then
875 create abnormal edges to them. */
876 make_eh_edges (last);
878 /* BUILTIN_RETURN is really a return statement. */
879 if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
881 make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
882 fallthru = false;
884 /* Some calls are known not to return. */
885 else
886 fallthru = !gimple_call_noreturn_p (last);
887 break;
889 case GIMPLE_ASSIGN:
890 /* A GIMPLE_ASSIGN may throw internally and thus be considered
891 control-altering. */
892 if (is_ctrl_altering_stmt (last))
893 make_eh_edges (last);
894 fallthru = true;
895 break;
897 case GIMPLE_ASM:
898 make_gimple_asm_edges (bb);
899 fallthru = true;
900 break;
902 CASE_GIMPLE_OMP:
903 fallthru = omp_make_gimple_edges (bb, pcur_region, pomp_index);
904 break;
906 case GIMPLE_TRANSACTION:
908 gtransaction *txn = as_a <gtransaction *> (last);
909 tree label1 = gimple_transaction_label_norm (txn);
910 tree label2 = gimple_transaction_label_uninst (txn);
912 if (label1)
913 make_edge (bb, label_to_block (label1), EDGE_FALLTHRU);
914 if (label2)
915 make_edge (bb, label_to_block (label2),
916 EDGE_TM_UNINSTRUMENTED | (label1 ? 0 : EDGE_FALLTHRU));
918 tree label3 = gimple_transaction_label_over (txn);
919 if (gimple_transaction_subcode (txn)
920 & (GTMA_HAVE_ABORT | GTMA_IS_OUTER))
921 make_edge (bb, label_to_block (label3), EDGE_TM_ABORT);
923 fallthru = false;
925 break;
927 default:
928 gcc_assert (!stmt_ends_bb_p (last));
929 fallthru = true;
930 break;
933 if (fallthru)
934 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
936 return ret;
939 /* Join all the blocks in the flowgraph. */
941 static void
942 make_edges (void)
944 basic_block bb;
945 struct omp_region *cur_region = NULL;
946 auto_vec<basic_block> ab_edge_goto;
947 auto_vec<basic_block> ab_edge_call;
948 int *bb_to_omp_idx = NULL;
949 int cur_omp_region_idx = 0;
951 /* Create an edge from entry to the first block with executable
952 statements in it. */
953 make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun),
954 BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS),
955 EDGE_FALLTHRU);
957 /* Traverse the basic block array placing edges. */
958 FOR_EACH_BB_FN (bb, cfun)
960 int mer;
962 if (bb_to_omp_idx)
963 bb_to_omp_idx[bb->index] = cur_omp_region_idx;
965 mer = make_edges_bb (bb, &cur_region, &cur_omp_region_idx);
966 if (mer == 1)
967 ab_edge_goto.safe_push (bb);
968 else if (mer == 2)
969 ab_edge_call.safe_push (bb);
971 if (cur_region && bb_to_omp_idx == NULL)
972 bb_to_omp_idx = XCNEWVEC (int, n_basic_blocks_for_fn (cfun));
975 /* Computed gotos are hell to deal with, especially if there are
976 lots of them with a large number of destinations. So we factor
977 them to a common computed goto location before we build the
978 edge list. After we convert back to normal form, we will un-factor
979 the computed gotos since factoring introduces an unwanted jump.
980 For non-local gotos and abnormal edges from calls to calls that return
981 twice or forced labels, factor the abnormal edges too, by having all
982 abnormal edges from the calls go to a common artificial basic block
983 with ABNORMAL_DISPATCHER internal call and abnormal edges from that
984 basic block to all forced labels and calls returning twice.
985 We do this per-OpenMP structured block, because those regions
986 are guaranteed to be single entry single exit by the standard,
987 so it is not allowed to enter or exit such regions abnormally this way,
988 thus all computed gotos, non-local gotos and setjmp/longjmp calls
989 must not transfer control across SESE region boundaries. */
990 if (!ab_edge_goto.is_empty () || !ab_edge_call.is_empty ())
992 gimple_stmt_iterator gsi;
993 basic_block dispatcher_bb_array[2] = { NULL, NULL };
994 basic_block *dispatcher_bbs = dispatcher_bb_array;
995 int count = n_basic_blocks_for_fn (cfun);
997 if (bb_to_omp_idx)
998 dispatcher_bbs = XCNEWVEC (basic_block, 2 * count);
1000 FOR_EACH_BB_FN (bb, cfun)
1002 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1004 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (gsi));
1005 tree target;
1007 if (!label_stmt)
1009 if (is_gimple_debug (gsi_stmt (gsi)))
1010 continue;
1011 break;
1014 target = gimple_label_label (label_stmt);
1016 /* Make an edge to every label block that has been marked as a
1017 potential target for a computed goto or a non-local goto. */
1018 if (FORCED_LABEL (target))
1019 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
1020 &ab_edge_goto, true);
1021 if (DECL_NONLOCAL (target))
1023 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
1024 &ab_edge_call, false);
1025 break;
1029 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
1030 gsi_next_nondebug (&gsi);
1031 if (!gsi_end_p (gsi))
1033 /* Make an edge to every setjmp-like call. */
1034 gimple *call_stmt = gsi_stmt (gsi);
1035 if (is_gimple_call (call_stmt)
1036 && ((gimple_call_flags (call_stmt) & ECF_RETURNS_TWICE)
1037 || gimple_call_builtin_p (call_stmt,
1038 BUILT_IN_SETJMP_RECEIVER)))
1039 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
1040 &ab_edge_call, false);
1044 if (bb_to_omp_idx)
1045 XDELETE (dispatcher_bbs);
1048 XDELETE (bb_to_omp_idx);
1050 omp_free_regions ();
1053 /* Add SEQ after GSI. Start new bb after GSI, and created further bbs as
1054 needed. Returns true if new bbs were created.
1055 Note: This is transitional code, and should not be used for new code. We
1056 should be able to get rid of this by rewriting all target va-arg
1057 gimplification hooks to use an interface gimple_build_cond_value as described
1058 in https://gcc.gnu.org/ml/gcc-patches/2015-02/msg01194.html. */
1060 bool
1061 gimple_find_sub_bbs (gimple_seq seq, gimple_stmt_iterator *gsi)
1063 gimple *stmt = gsi_stmt (*gsi);
1064 basic_block bb = gimple_bb (stmt);
1065 basic_block lastbb, afterbb;
1066 int old_num_bbs = n_basic_blocks_for_fn (cfun);
1067 edge e;
1068 lastbb = make_blocks_1 (seq, bb);
1069 if (old_num_bbs == n_basic_blocks_for_fn (cfun))
1070 return false;
1071 e = split_block (bb, stmt);
1072 /* Move e->dest to come after the new basic blocks. */
1073 afterbb = e->dest;
1074 unlink_block (afterbb);
1075 link_block (afterbb, lastbb);
1076 redirect_edge_succ (e, bb->next_bb);
1077 bb = bb->next_bb;
1078 while (bb != afterbb)
1080 struct omp_region *cur_region = NULL;
1081 profile_count cnt = profile_count::zero ();
1082 bool all = true;
1084 int cur_omp_region_idx = 0;
1085 int mer = make_edges_bb (bb, &cur_region, &cur_omp_region_idx);
1086 gcc_assert (!mer && !cur_region);
1087 add_bb_to_loop (bb, afterbb->loop_father);
1089 edge e;
1090 edge_iterator ei;
1091 FOR_EACH_EDGE (e, ei, bb->preds)
1093 if (e->count ().initialized_p ())
1094 cnt += e->count ();
1095 else
1096 all = false;
1098 tree_guess_outgoing_edge_probabilities (bb);
1099 if (all || profile_status_for_fn (cfun) == PROFILE_READ)
1100 bb->count = cnt;
1102 bb = bb->next_bb;
1104 return true;
1107 /* Find the next available discriminator value for LOCUS. The
1108 discriminator distinguishes among several basic blocks that
1109 share a common locus, allowing for more accurate sample-based
1110 profiling. */
1112 static int
1113 next_discriminator_for_locus (location_t locus)
1115 struct locus_discrim_map item;
1116 struct locus_discrim_map **slot;
1118 item.locus = locus;
1119 item.discriminator = 0;
1120 slot = discriminator_per_locus->find_slot_with_hash (
1121 &item, LOCATION_LINE (locus), INSERT);
1122 gcc_assert (slot);
1123 if (*slot == HTAB_EMPTY_ENTRY)
1125 *slot = XNEW (struct locus_discrim_map);
1126 gcc_assert (*slot);
1127 (*slot)->locus = locus;
1128 (*slot)->discriminator = 0;
1130 (*slot)->discriminator++;
1131 return (*slot)->discriminator;
1134 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
1136 static bool
1137 same_line_p (location_t locus1, location_t locus2)
1139 expanded_location from, to;
1141 if (locus1 == locus2)
1142 return true;
1144 from = expand_location (locus1);
1145 to = expand_location (locus2);
1147 if (from.line != to.line)
1148 return false;
1149 if (from.file == to.file)
1150 return true;
1151 return (from.file != NULL
1152 && to.file != NULL
1153 && filename_cmp (from.file, to.file) == 0);
1156 /* Assign discriminators to each basic block. */
1158 static void
1159 assign_discriminators (void)
1161 basic_block bb;
1163 FOR_EACH_BB_FN (bb, cfun)
1165 edge e;
1166 edge_iterator ei;
1167 gimple *last = last_stmt (bb);
1168 location_t locus = last ? gimple_location (last) : UNKNOWN_LOCATION;
1170 if (locus == UNKNOWN_LOCATION)
1171 continue;
1173 FOR_EACH_EDGE (e, ei, bb->succs)
1175 gimple *first = first_non_label_stmt (e->dest);
1176 gimple *last = last_stmt (e->dest);
1177 if ((first && same_line_p (locus, gimple_location (first)))
1178 || (last && same_line_p (locus, gimple_location (last))))
1180 if (e->dest->discriminator != 0 && bb->discriminator == 0)
1181 bb->discriminator = next_discriminator_for_locus (locus);
1182 else
1183 e->dest->discriminator = next_discriminator_for_locus (locus);
1189 /* Create the edges for a GIMPLE_COND starting at block BB. */
1191 static void
1192 make_cond_expr_edges (basic_block bb)
1194 gcond *entry = as_a <gcond *> (last_stmt (bb));
1195 gimple *then_stmt, *else_stmt;
1196 basic_block then_bb, else_bb;
1197 tree then_label, else_label;
1198 edge e;
1200 gcc_assert (entry);
1201 gcc_assert (gimple_code (entry) == GIMPLE_COND);
1203 /* Entry basic blocks for each component. */
1204 then_label = gimple_cond_true_label (entry);
1205 else_label = gimple_cond_false_label (entry);
1206 then_bb = label_to_block (then_label);
1207 else_bb = label_to_block (else_label);
1208 then_stmt = first_stmt (then_bb);
1209 else_stmt = first_stmt (else_bb);
1211 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
1212 e->goto_locus = gimple_location (then_stmt);
1213 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
1214 if (e)
1215 e->goto_locus = gimple_location (else_stmt);
1217 /* We do not need the labels anymore. */
1218 gimple_cond_set_true_label (entry, NULL_TREE);
1219 gimple_cond_set_false_label (entry, NULL_TREE);
1223 /* Called for each element in the hash table (P) as we delete the
1224 edge to cases hash table.
1226 Clear all the CASE_CHAINs to prevent problems with copying of
1227 SWITCH_EXPRs and structure sharing rules, then free the hash table
1228 element. */
1230 bool
1231 edge_to_cases_cleanup (edge const &, tree const &value, void *)
1233 tree t, next;
1235 for (t = value; t; t = next)
1237 next = CASE_CHAIN (t);
1238 CASE_CHAIN (t) = NULL;
1241 return true;
1244 /* Start recording information mapping edges to case labels. */
1246 void
1247 start_recording_case_labels (void)
1249 gcc_assert (edge_to_cases == NULL);
1250 edge_to_cases = new hash_map<edge, tree>;
1251 touched_switch_bbs = BITMAP_ALLOC (NULL);
1254 /* Return nonzero if we are recording information for case labels. */
1256 static bool
1257 recording_case_labels_p (void)
1259 return (edge_to_cases != NULL);
1262 /* Stop recording information mapping edges to case labels and
1263 remove any information we have recorded. */
1264 void
1265 end_recording_case_labels (void)
1267 bitmap_iterator bi;
1268 unsigned i;
1269 edge_to_cases->traverse<void *, edge_to_cases_cleanup> (NULL);
1270 delete edge_to_cases;
1271 edge_to_cases = NULL;
1272 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
1274 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
1275 if (bb)
1277 gimple *stmt = last_stmt (bb);
1278 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1279 group_case_labels_stmt (as_a <gswitch *> (stmt));
1282 BITMAP_FREE (touched_switch_bbs);
1285 /* If we are inside a {start,end}_recording_cases block, then return
1286 a chain of CASE_LABEL_EXPRs from T which reference E.
1288 Otherwise return NULL. */
1290 static tree
1291 get_cases_for_edge (edge e, gswitch *t)
1293 tree *slot;
1294 size_t i, n;
1296 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
1297 chains available. Return NULL so the caller can detect this case. */
1298 if (!recording_case_labels_p ())
1299 return NULL;
1301 slot = edge_to_cases->get (e);
1302 if (slot)
1303 return *slot;
1305 /* If we did not find E in the hash table, then this must be the first
1306 time we have been queried for information about E & T. Add all the
1307 elements from T to the hash table then perform the query again. */
1309 n = gimple_switch_num_labels (t);
1310 for (i = 0; i < n; i++)
1312 tree elt = gimple_switch_label (t, i);
1313 tree lab = CASE_LABEL (elt);
1314 basic_block label_bb = label_to_block (lab);
1315 edge this_edge = find_edge (e->src, label_bb);
1317 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
1318 a new chain. */
1319 tree &s = edge_to_cases->get_or_insert (this_edge);
1320 CASE_CHAIN (elt) = s;
1321 s = elt;
1324 return *edge_to_cases->get (e);
1327 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
1329 static void
1330 make_gimple_switch_edges (gswitch *entry, basic_block bb)
1332 size_t i, n;
1334 n = gimple_switch_num_labels (entry);
1336 for (i = 0; i < n; ++i)
1338 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
1339 basic_block label_bb = label_to_block (lab);
1340 make_edge (bb, label_bb, 0);
1345 /* Return the basic block holding label DEST. */
1347 basic_block
1348 label_to_block_fn (struct function *ifun, tree dest)
1350 int uid = LABEL_DECL_UID (dest);
1352 /* We would die hard when faced by an undefined label. Emit a label to
1353 the very first basic block. This will hopefully make even the dataflow
1354 and undefined variable warnings quite right. */
1355 if (seen_error () && uid < 0)
1357 gimple_stmt_iterator gsi =
1358 gsi_start_bb (BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS));
1359 gimple *stmt;
1361 stmt = gimple_build_label (dest);
1362 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
1363 uid = LABEL_DECL_UID (dest);
1365 if (vec_safe_length (ifun->cfg->x_label_to_block_map) <= (unsigned int) uid)
1366 return NULL;
1367 return (*ifun->cfg->x_label_to_block_map)[uid];
1370 /* Create edges for a goto statement at block BB. Returns true
1371 if abnormal edges should be created. */
1373 static bool
1374 make_goto_expr_edges (basic_block bb)
1376 gimple_stmt_iterator last = gsi_last_bb (bb);
1377 gimple *goto_t = gsi_stmt (last);
1379 /* A simple GOTO creates normal edges. */
1380 if (simple_goto_p (goto_t))
1382 tree dest = gimple_goto_dest (goto_t);
1383 basic_block label_bb = label_to_block (dest);
1384 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1385 e->goto_locus = gimple_location (goto_t);
1386 gsi_remove (&last, true);
1387 return false;
1390 /* A computed GOTO creates abnormal edges. */
1391 return true;
1394 /* Create edges for an asm statement with labels at block BB. */
1396 static void
1397 make_gimple_asm_edges (basic_block bb)
1399 gasm *stmt = as_a <gasm *> (last_stmt (bb));
1400 int i, n = gimple_asm_nlabels (stmt);
1402 for (i = 0; i < n; ++i)
1404 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1405 basic_block label_bb = label_to_block (label);
1406 make_edge (bb, label_bb, 0);
1410 /*---------------------------------------------------------------------------
1411 Flowgraph analysis
1412 ---------------------------------------------------------------------------*/
1414 /* Cleanup useless labels in basic blocks. This is something we wish
1415 to do early because it allows us to group case labels before creating
1416 the edges for the CFG, and it speeds up block statement iterators in
1417 all passes later on.
1418 We rerun this pass after CFG is created, to get rid of the labels that
1419 are no longer referenced. After then we do not run it any more, since
1420 (almost) no new labels should be created. */
1422 /* A map from basic block index to the leading label of that block. */
1423 static struct label_record
1425 /* The label. */
1426 tree label;
1428 /* True if the label is referenced from somewhere. */
1429 bool used;
1430 } *label_for_bb;
1432 /* Given LABEL return the first label in the same basic block. */
1434 static tree
1435 main_block_label (tree label)
1437 basic_block bb = label_to_block (label);
1438 tree main_label = label_for_bb[bb->index].label;
1440 /* label_to_block possibly inserted undefined label into the chain. */
1441 if (!main_label)
1443 label_for_bb[bb->index].label = label;
1444 main_label = label;
1447 label_for_bb[bb->index].used = true;
1448 return main_label;
1451 /* Clean up redundant labels within the exception tree. */
1453 static void
1454 cleanup_dead_labels_eh (void)
1456 eh_landing_pad lp;
1457 eh_region r;
1458 tree lab;
1459 int i;
1461 if (cfun->eh == NULL)
1462 return;
1464 for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
1465 if (lp && lp->post_landing_pad)
1467 lab = main_block_label (lp->post_landing_pad);
1468 if (lab != lp->post_landing_pad)
1470 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1471 EH_LANDING_PAD_NR (lab) = lp->index;
1475 FOR_ALL_EH_REGION (r)
1476 switch (r->type)
1478 case ERT_CLEANUP:
1479 case ERT_MUST_NOT_THROW:
1480 break;
1482 case ERT_TRY:
1484 eh_catch c;
1485 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1487 lab = c->label;
1488 if (lab)
1489 c->label = main_block_label (lab);
1492 break;
1494 case ERT_ALLOWED_EXCEPTIONS:
1495 lab = r->u.allowed.label;
1496 if (lab)
1497 r->u.allowed.label = main_block_label (lab);
1498 break;
1503 /* Cleanup redundant labels. This is a three-step process:
1504 1) Find the leading label for each block.
1505 2) Redirect all references to labels to the leading labels.
1506 3) Cleanup all useless labels. */
1508 void
1509 cleanup_dead_labels (void)
1511 basic_block bb;
1512 label_for_bb = XCNEWVEC (struct label_record, last_basic_block_for_fn (cfun));
1514 /* Find a suitable label for each block. We use the first user-defined
1515 label if there is one, or otherwise just the first label we see. */
1516 FOR_EACH_BB_FN (bb, cfun)
1518 gimple_stmt_iterator i;
1520 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1522 if (is_gimple_debug (gsi_stmt (i)))
1523 continue;
1525 tree label;
1526 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (i));
1528 if (!label_stmt)
1529 break;
1531 label = gimple_label_label (label_stmt);
1533 /* If we have not yet seen a label for the current block,
1534 remember this one and see if there are more labels. */
1535 if (!label_for_bb[bb->index].label)
1537 label_for_bb[bb->index].label = label;
1538 continue;
1541 /* If we did see a label for the current block already, but it
1542 is an artificially created label, replace it if the current
1543 label is a user defined label. */
1544 if (!DECL_ARTIFICIAL (label)
1545 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1547 label_for_bb[bb->index].label = label;
1548 break;
1553 /* Now redirect all jumps/branches to the selected label.
1554 First do so for each block ending in a control statement. */
1555 FOR_EACH_BB_FN (bb, cfun)
1557 gimple *stmt = last_stmt (bb);
1558 tree label, new_label;
1560 if (!stmt)
1561 continue;
1563 switch (gimple_code (stmt))
1565 case GIMPLE_COND:
1567 gcond *cond_stmt = as_a <gcond *> (stmt);
1568 label = gimple_cond_true_label (cond_stmt);
1569 if (label)
1571 new_label = main_block_label (label);
1572 if (new_label != label)
1573 gimple_cond_set_true_label (cond_stmt, new_label);
1576 label = gimple_cond_false_label (cond_stmt);
1577 if (label)
1579 new_label = main_block_label (label);
1580 if (new_label != label)
1581 gimple_cond_set_false_label (cond_stmt, new_label);
1584 break;
1586 case GIMPLE_SWITCH:
1588 gswitch *switch_stmt = as_a <gswitch *> (stmt);
1589 size_t i, n = gimple_switch_num_labels (switch_stmt);
1591 /* Replace all destination labels. */
1592 for (i = 0; i < n; ++i)
1594 tree case_label = gimple_switch_label (switch_stmt, i);
1595 label = CASE_LABEL (case_label);
1596 new_label = main_block_label (label);
1597 if (new_label != label)
1598 CASE_LABEL (case_label) = new_label;
1600 break;
1603 case GIMPLE_ASM:
1605 gasm *asm_stmt = as_a <gasm *> (stmt);
1606 int i, n = gimple_asm_nlabels (asm_stmt);
1608 for (i = 0; i < n; ++i)
1610 tree cons = gimple_asm_label_op (asm_stmt, i);
1611 tree label = main_block_label (TREE_VALUE (cons));
1612 TREE_VALUE (cons) = label;
1614 break;
1617 /* We have to handle gotos until they're removed, and we don't
1618 remove them until after we've created the CFG edges. */
1619 case GIMPLE_GOTO:
1620 if (!computed_goto_p (stmt))
1622 ggoto *goto_stmt = as_a <ggoto *> (stmt);
1623 label = gimple_goto_dest (goto_stmt);
1624 new_label = main_block_label (label);
1625 if (new_label != label)
1626 gimple_goto_set_dest (goto_stmt, new_label);
1628 break;
1630 case GIMPLE_TRANSACTION:
1632 gtransaction *txn = as_a <gtransaction *> (stmt);
1634 label = gimple_transaction_label_norm (txn);
1635 if (label)
1637 new_label = main_block_label (label);
1638 if (new_label != label)
1639 gimple_transaction_set_label_norm (txn, new_label);
1642 label = gimple_transaction_label_uninst (txn);
1643 if (label)
1645 new_label = main_block_label (label);
1646 if (new_label != label)
1647 gimple_transaction_set_label_uninst (txn, new_label);
1650 label = gimple_transaction_label_over (txn);
1651 if (label)
1653 new_label = main_block_label (label);
1654 if (new_label != label)
1655 gimple_transaction_set_label_over (txn, new_label);
1658 break;
1660 default:
1661 break;
1665 /* Do the same for the exception region tree labels. */
1666 cleanup_dead_labels_eh ();
1668 /* Finally, purge dead labels. All user-defined labels and labels that
1669 can be the target of non-local gotos and labels which have their
1670 address taken are preserved. */
1671 FOR_EACH_BB_FN (bb, cfun)
1673 gimple_stmt_iterator i;
1674 tree label_for_this_bb = label_for_bb[bb->index].label;
1676 if (!label_for_this_bb)
1677 continue;
1679 /* If the main label of the block is unused, we may still remove it. */
1680 if (!label_for_bb[bb->index].used)
1681 label_for_this_bb = NULL;
1683 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1685 if (is_gimple_debug (gsi_stmt (i)))
1687 gsi_next (&i);
1688 continue;
1691 tree label;
1692 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (i));
1694 if (!label_stmt)
1695 break;
1697 label = gimple_label_label (label_stmt);
1699 if (label == label_for_this_bb
1700 || !DECL_ARTIFICIAL (label)
1701 || DECL_NONLOCAL (label)
1702 || FORCED_LABEL (label))
1703 gsi_next (&i);
1704 else
1705 gsi_remove (&i, true);
1709 free (label_for_bb);
1712 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1713 the ones jumping to the same label.
1714 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1716 bool
1717 group_case_labels_stmt (gswitch *stmt)
1719 int old_size = gimple_switch_num_labels (stmt);
1720 int i, next_index, new_size;
1721 basic_block default_bb = NULL;
1723 default_bb = label_to_block (CASE_LABEL (gimple_switch_default_label (stmt)));
1725 /* Look for possible opportunities to merge cases. */
1726 new_size = i = 1;
1727 while (i < old_size)
1729 tree base_case, base_high;
1730 basic_block base_bb;
1732 base_case = gimple_switch_label (stmt, i);
1734 gcc_assert (base_case);
1735 base_bb = label_to_block (CASE_LABEL (base_case));
1737 /* Discard cases that have the same destination as the default case or
1738 whose destiniation blocks have already been removed as unreachable. */
1739 if (base_bb == NULL || base_bb == default_bb)
1741 i++;
1742 continue;
1745 base_high = CASE_HIGH (base_case)
1746 ? CASE_HIGH (base_case)
1747 : CASE_LOW (base_case);
1748 next_index = i + 1;
1750 /* Try to merge case labels. Break out when we reach the end
1751 of the label vector or when we cannot merge the next case
1752 label with the current one. */
1753 while (next_index < old_size)
1755 tree merge_case = gimple_switch_label (stmt, next_index);
1756 basic_block merge_bb = label_to_block (CASE_LABEL (merge_case));
1757 wide_int bhp1 = wi::to_wide (base_high) + 1;
1759 /* Merge the cases if they jump to the same place,
1760 and their ranges are consecutive. */
1761 if (merge_bb == base_bb
1762 && wi::to_wide (CASE_LOW (merge_case)) == bhp1)
1764 base_high = CASE_HIGH (merge_case) ?
1765 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1766 CASE_HIGH (base_case) = base_high;
1767 next_index++;
1769 else
1770 break;
1773 /* Discard cases that have an unreachable destination block. */
1774 if (EDGE_COUNT (base_bb->succs) == 0
1775 && gimple_seq_unreachable_p (bb_seq (base_bb))
1776 /* Don't optimize this if __builtin_unreachable () is the
1777 implicitly added one by the C++ FE too early, before
1778 -Wreturn-type can be diagnosed. We'll optimize it later
1779 during switchconv pass or any other cfg cleanup. */
1780 && (gimple_in_ssa_p (cfun)
1781 || (LOCATION_LOCUS (gimple_location (last_stmt (base_bb)))
1782 != BUILTINS_LOCATION)))
1784 edge base_edge = find_edge (gimple_bb (stmt), base_bb);
1785 if (base_edge != NULL)
1786 remove_edge_and_dominated_blocks (base_edge);
1787 i = next_index;
1788 continue;
1791 if (new_size < i)
1792 gimple_switch_set_label (stmt, new_size,
1793 gimple_switch_label (stmt, i));
1794 i = next_index;
1795 new_size++;
1798 gcc_assert (new_size <= old_size);
1800 if (new_size < old_size)
1801 gimple_switch_set_num_labels (stmt, new_size);
1803 return new_size < old_size;
1806 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1807 and scan the sorted vector of cases. Combine the ones jumping to the
1808 same label. */
1810 bool
1811 group_case_labels (void)
1813 basic_block bb;
1814 bool changed = false;
1816 FOR_EACH_BB_FN (bb, cfun)
1818 gimple *stmt = last_stmt (bb);
1819 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1820 changed |= group_case_labels_stmt (as_a <gswitch *> (stmt));
1823 return changed;
1826 /* Checks whether we can merge block B into block A. */
1828 static bool
1829 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1831 gimple *stmt;
1833 if (!single_succ_p (a))
1834 return false;
1836 if (single_succ_edge (a)->flags & EDGE_COMPLEX)
1837 return false;
1839 if (single_succ (a) != b)
1840 return false;
1842 if (!single_pred_p (b))
1843 return false;
1845 if (a == ENTRY_BLOCK_PTR_FOR_FN (cfun)
1846 || b == EXIT_BLOCK_PTR_FOR_FN (cfun))
1847 return false;
1849 /* If A ends by a statement causing exceptions or something similar, we
1850 cannot merge the blocks. */
1851 stmt = last_stmt (a);
1852 if (stmt && stmt_ends_bb_p (stmt))
1853 return false;
1855 /* Do not allow a block with only a non-local label to be merged. */
1856 if (stmt)
1857 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
1858 if (DECL_NONLOCAL (gimple_label_label (label_stmt)))
1859 return false;
1861 /* Examine the labels at the beginning of B. */
1862 for (gimple_stmt_iterator gsi = gsi_start_bb (b); !gsi_end_p (gsi);
1863 gsi_next (&gsi))
1865 tree lab;
1866 if (is_gimple_debug (gsi_stmt (gsi)))
1867 continue;
1868 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (gsi));
1869 if (!label_stmt)
1870 break;
1871 lab = gimple_label_label (label_stmt);
1873 /* Do not remove user forced labels or for -O0 any user labels. */
1874 if (!DECL_ARTIFICIAL (lab) && (!optimize || FORCED_LABEL (lab)))
1875 return false;
1878 /* Protect simple loop latches. We only want to avoid merging
1879 the latch with the loop header or with a block in another
1880 loop in this case. */
1881 if (current_loops
1882 && b->loop_father->latch == b
1883 && loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES)
1884 && (b->loop_father->header == a
1885 || b->loop_father != a->loop_father))
1886 return false;
1888 /* It must be possible to eliminate all phi nodes in B. If ssa form
1889 is not up-to-date and a name-mapping is registered, we cannot eliminate
1890 any phis. Symbols marked for renaming are never a problem though. */
1891 for (gphi_iterator gsi = gsi_start_phis (b); !gsi_end_p (gsi);
1892 gsi_next (&gsi))
1894 gphi *phi = gsi.phi ();
1895 /* Technically only new names matter. */
1896 if (name_registered_for_update_p (PHI_RESULT (phi)))
1897 return false;
1900 /* When not optimizing, don't merge if we'd lose goto_locus. */
1901 if (!optimize
1902 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1904 location_t goto_locus = single_succ_edge (a)->goto_locus;
1905 gimple_stmt_iterator prev, next;
1906 prev = gsi_last_nondebug_bb (a);
1907 next = gsi_after_labels (b);
1908 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
1909 gsi_next_nondebug (&next);
1910 if ((gsi_end_p (prev)
1911 || gimple_location (gsi_stmt (prev)) != goto_locus)
1912 && (gsi_end_p (next)
1913 || gimple_location (gsi_stmt (next)) != goto_locus))
1914 return false;
1917 return true;
1920 /* Replaces all uses of NAME by VAL. */
1922 void
1923 replace_uses_by (tree name, tree val)
1925 imm_use_iterator imm_iter;
1926 use_operand_p use;
1927 gimple *stmt;
1928 edge e;
1930 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1932 /* Mark the block if we change the last stmt in it. */
1933 if (cfgcleanup_altered_bbs
1934 && stmt_ends_bb_p (stmt))
1935 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1937 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1939 replace_exp (use, val);
1941 if (gimple_code (stmt) == GIMPLE_PHI)
1943 e = gimple_phi_arg_edge (as_a <gphi *> (stmt),
1944 PHI_ARG_INDEX_FROM_USE (use));
1945 if (e->flags & EDGE_ABNORMAL
1946 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val))
1948 /* This can only occur for virtual operands, since
1949 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1950 would prevent replacement. */
1951 gcc_checking_assert (virtual_operand_p (name));
1952 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1957 if (gimple_code (stmt) != GIMPLE_PHI)
1959 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
1960 gimple *orig_stmt = stmt;
1961 size_t i;
1963 /* FIXME. It shouldn't be required to keep TREE_CONSTANT
1964 on ADDR_EXPRs up-to-date on GIMPLE. Propagation will
1965 only change sth from non-invariant to invariant, and only
1966 when propagating constants. */
1967 if (is_gimple_min_invariant (val))
1968 for (i = 0; i < gimple_num_ops (stmt); i++)
1970 tree op = gimple_op (stmt, i);
1971 /* Operands may be empty here. For example, the labels
1972 of a GIMPLE_COND are nulled out following the creation
1973 of the corresponding CFG edges. */
1974 if (op && TREE_CODE (op) == ADDR_EXPR)
1975 recompute_tree_invariant_for_addr_expr (op);
1978 if (fold_stmt (&gsi))
1979 stmt = gsi_stmt (gsi);
1981 if (maybe_clean_or_replace_eh_stmt (orig_stmt, stmt))
1982 gimple_purge_dead_eh_edges (gimple_bb (stmt));
1984 update_stmt (stmt);
1988 gcc_checking_assert (has_zero_uses (name));
1990 /* Also update the trees stored in loop structures. */
1991 if (current_loops)
1993 struct loop *loop;
1995 FOR_EACH_LOOP (loop, 0)
1997 substitute_in_loop_info (loop, name, val);
2002 /* Merge block B into block A. */
2004 static void
2005 gimple_merge_blocks (basic_block a, basic_block b)
2007 gimple_stmt_iterator last, gsi;
2008 gphi_iterator psi;
2010 if (dump_file)
2011 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
2013 /* Remove all single-valued PHI nodes from block B of the form
2014 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
2015 gsi = gsi_last_bb (a);
2016 for (psi = gsi_start_phis (b); !gsi_end_p (psi); )
2018 gimple *phi = gsi_stmt (psi);
2019 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
2020 gimple *copy;
2021 bool may_replace_uses = (virtual_operand_p (def)
2022 || may_propagate_copy (def, use));
2024 /* In case we maintain loop closed ssa form, do not propagate arguments
2025 of loop exit phi nodes. */
2026 if (current_loops
2027 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
2028 && !virtual_operand_p (def)
2029 && TREE_CODE (use) == SSA_NAME
2030 && a->loop_father != b->loop_father)
2031 may_replace_uses = false;
2033 if (!may_replace_uses)
2035 gcc_assert (!virtual_operand_p (def));
2037 /* Note that just emitting the copies is fine -- there is no problem
2038 with ordering of phi nodes. This is because A is the single
2039 predecessor of B, therefore results of the phi nodes cannot
2040 appear as arguments of the phi nodes. */
2041 copy = gimple_build_assign (def, use);
2042 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
2043 remove_phi_node (&psi, false);
2045 else
2047 /* If we deal with a PHI for virtual operands, we can simply
2048 propagate these without fussing with folding or updating
2049 the stmt. */
2050 if (virtual_operand_p (def))
2052 imm_use_iterator iter;
2053 use_operand_p use_p;
2054 gimple *stmt;
2056 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
2057 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
2058 SET_USE (use_p, use);
2060 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
2061 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
2063 else
2064 replace_uses_by (def, use);
2066 remove_phi_node (&psi, true);
2070 /* Ensure that B follows A. */
2071 move_block_after (b, a);
2073 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
2074 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
2076 /* Remove labels from B and set gimple_bb to A for other statements. */
2077 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
2079 gimple *stmt = gsi_stmt (gsi);
2080 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
2082 tree label = gimple_label_label (label_stmt);
2083 int lp_nr;
2085 gsi_remove (&gsi, false);
2087 /* Now that we can thread computed gotos, we might have
2088 a situation where we have a forced label in block B
2089 However, the label at the start of block B might still be
2090 used in other ways (think about the runtime checking for
2091 Fortran assigned gotos). So we can not just delete the
2092 label. Instead we move the label to the start of block A. */
2093 if (FORCED_LABEL (label))
2095 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
2096 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
2098 /* Other user labels keep around in a form of a debug stmt. */
2099 else if (!DECL_ARTIFICIAL (label) && MAY_HAVE_DEBUG_BIND_STMTS)
2101 gimple *dbg = gimple_build_debug_bind (label,
2102 integer_zero_node,
2103 stmt);
2104 gimple_debug_bind_reset_value (dbg);
2105 gsi_insert_before (&gsi, dbg, GSI_SAME_STMT);
2108 lp_nr = EH_LANDING_PAD_NR (label);
2109 if (lp_nr)
2111 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
2112 lp->post_landing_pad = NULL;
2115 else
2117 gimple_set_bb (stmt, a);
2118 gsi_next (&gsi);
2122 /* When merging two BBs, if their counts are different, the larger count
2123 is selected as the new bb count. This is to handle inconsistent
2124 profiles. */
2125 if (a->loop_father == b->loop_father)
2127 a->count = a->count.merge (b->count);
2130 /* Merge the sequences. */
2131 last = gsi_last_bb (a);
2132 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
2133 set_bb_seq (b, NULL);
2135 if (cfgcleanup_altered_bbs)
2136 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
2140 /* Return the one of two successors of BB that is not reachable by a
2141 complex edge, if there is one. Else, return BB. We use
2142 this in optimizations that use post-dominators for their heuristics,
2143 to catch the cases in C++ where function calls are involved. */
2145 basic_block
2146 single_noncomplex_succ (basic_block bb)
2148 edge e0, e1;
2149 if (EDGE_COUNT (bb->succs) != 2)
2150 return bb;
2152 e0 = EDGE_SUCC (bb, 0);
2153 e1 = EDGE_SUCC (bb, 1);
2154 if (e0->flags & EDGE_COMPLEX)
2155 return e1->dest;
2156 if (e1->flags & EDGE_COMPLEX)
2157 return e0->dest;
2159 return bb;
2162 /* T is CALL_EXPR. Set current_function_calls_* flags. */
2164 void
2165 notice_special_calls (gcall *call)
2167 int flags = gimple_call_flags (call);
2169 if (flags & ECF_MAY_BE_ALLOCA)
2170 cfun->calls_alloca = true;
2171 if (flags & ECF_RETURNS_TWICE)
2172 cfun->calls_setjmp = true;
2176 /* Clear flags set by notice_special_calls. Used by dead code removal
2177 to update the flags. */
2179 void
2180 clear_special_calls (void)
2182 cfun->calls_alloca = false;
2183 cfun->calls_setjmp = false;
2186 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
2188 static void
2189 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
2191 /* Since this block is no longer reachable, we can just delete all
2192 of its PHI nodes. */
2193 remove_phi_nodes (bb);
2195 /* Remove edges to BB's successors. */
2196 while (EDGE_COUNT (bb->succs) > 0)
2197 remove_edge (EDGE_SUCC (bb, 0));
2201 /* Remove statements of basic block BB. */
2203 static void
2204 remove_bb (basic_block bb)
2206 gimple_stmt_iterator i;
2208 if (dump_file)
2210 fprintf (dump_file, "Removing basic block %d\n", bb->index);
2211 if (dump_flags & TDF_DETAILS)
2213 dump_bb (dump_file, bb, 0, TDF_BLOCKS);
2214 fprintf (dump_file, "\n");
2218 if (current_loops)
2220 struct loop *loop = bb->loop_father;
2222 /* If a loop gets removed, clean up the information associated
2223 with it. */
2224 if (loop->latch == bb
2225 || loop->header == bb)
2226 free_numbers_of_iterations_estimates (loop);
2229 /* Remove all the instructions in the block. */
2230 if (bb_seq (bb) != NULL)
2232 /* Walk backwards so as to get a chance to substitute all
2233 released DEFs into debug stmts. See
2234 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
2235 details. */
2236 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
2238 gimple *stmt = gsi_stmt (i);
2239 glabel *label_stmt = dyn_cast <glabel *> (stmt);
2240 if (label_stmt
2241 && (FORCED_LABEL (gimple_label_label (label_stmt))
2242 || DECL_NONLOCAL (gimple_label_label (label_stmt))))
2244 basic_block new_bb;
2245 gimple_stmt_iterator new_gsi;
2247 /* A non-reachable non-local label may still be referenced.
2248 But it no longer needs to carry the extra semantics of
2249 non-locality. */
2250 if (DECL_NONLOCAL (gimple_label_label (label_stmt)))
2252 DECL_NONLOCAL (gimple_label_label (label_stmt)) = 0;
2253 FORCED_LABEL (gimple_label_label (label_stmt)) = 1;
2256 new_bb = bb->prev_bb;
2257 new_gsi = gsi_start_bb (new_bb);
2258 gsi_remove (&i, false);
2259 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
2261 else
2263 /* Release SSA definitions. */
2264 release_defs (stmt);
2265 gsi_remove (&i, true);
2268 if (gsi_end_p (i))
2269 i = gsi_last_bb (bb);
2270 else
2271 gsi_prev (&i);
2275 remove_phi_nodes_and_edges_for_unreachable_block (bb);
2276 bb->il.gimple.seq = NULL;
2277 bb->il.gimple.phi_nodes = NULL;
2281 /* Given a basic block BB and a value VAL for use in the final statement
2282 of the block (if a GIMPLE_COND, GIMPLE_SWITCH, or computed goto), return
2283 the edge that will be taken out of the block.
2284 If VAL is NULL_TREE, then the current value of the final statement's
2285 predicate or index is used.
2286 If the value does not match a unique edge, NULL is returned. */
2288 edge
2289 find_taken_edge (basic_block bb, tree val)
2291 gimple *stmt;
2293 stmt = last_stmt (bb);
2295 /* Handle ENTRY and EXIT. */
2296 if (!stmt)
2297 return NULL;
2299 if (gimple_code (stmt) == GIMPLE_COND)
2300 return find_taken_edge_cond_expr (as_a <gcond *> (stmt), val);
2302 if (gimple_code (stmt) == GIMPLE_SWITCH)
2303 return find_taken_edge_switch_expr (as_a <gswitch *> (stmt), val);
2305 if (computed_goto_p (stmt))
2307 /* Only optimize if the argument is a label, if the argument is
2308 not a label then we can not construct a proper CFG.
2310 It may be the case that we only need to allow the LABEL_REF to
2311 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
2312 appear inside a LABEL_EXPR just to be safe. */
2313 if (val
2314 && (TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
2315 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
2316 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
2319 /* Otherwise we only know the taken successor edge if it's unique. */
2320 return single_succ_p (bb) ? single_succ_edge (bb) : NULL;
2323 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
2324 statement, determine which of the outgoing edges will be taken out of the
2325 block. Return NULL if either edge may be taken. */
2327 static edge
2328 find_taken_edge_computed_goto (basic_block bb, tree val)
2330 basic_block dest;
2331 edge e = NULL;
2333 dest = label_to_block (val);
2334 if (dest)
2336 e = find_edge (bb, dest);
2337 gcc_assert (e != NULL);
2340 return e;
2343 /* Given COND_STMT and a constant value VAL for use as the predicate,
2344 determine which of the two edges will be taken out of
2345 the statement's block. Return NULL if either edge may be taken.
2346 If VAL is NULL_TREE, then the current value of COND_STMT's predicate
2347 is used. */
2349 static edge
2350 find_taken_edge_cond_expr (const gcond *cond_stmt, tree val)
2352 edge true_edge, false_edge;
2354 if (val == NULL_TREE)
2356 /* Use the current value of the predicate. */
2357 if (gimple_cond_true_p (cond_stmt))
2358 val = integer_one_node;
2359 else if (gimple_cond_false_p (cond_stmt))
2360 val = integer_zero_node;
2361 else
2362 return NULL;
2364 else if (TREE_CODE (val) != INTEGER_CST)
2365 return NULL;
2367 extract_true_false_edges_from_block (gimple_bb (cond_stmt),
2368 &true_edge, &false_edge);
2370 return (integer_zerop (val) ? false_edge : true_edge);
2373 /* Given SWITCH_STMT and an INTEGER_CST VAL for use as the index, determine
2374 which edge will be taken out of the statement's block. Return NULL if any
2375 edge may be taken.
2376 If VAL is NULL_TREE, then the current value of SWITCH_STMT's index
2377 is used. */
2379 static edge
2380 find_taken_edge_switch_expr (const gswitch *switch_stmt, tree val)
2382 basic_block dest_bb;
2383 edge e;
2384 tree taken_case;
2386 if (gimple_switch_num_labels (switch_stmt) == 1)
2387 taken_case = gimple_switch_default_label (switch_stmt);
2388 else
2390 if (val == NULL_TREE)
2391 val = gimple_switch_index (switch_stmt);
2392 if (TREE_CODE (val) != INTEGER_CST)
2393 return NULL;
2394 else
2395 taken_case = find_case_label_for_value (switch_stmt, val);
2397 dest_bb = label_to_block (CASE_LABEL (taken_case));
2399 e = find_edge (gimple_bb (switch_stmt), dest_bb);
2400 gcc_assert (e);
2401 return e;
2405 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
2406 We can make optimal use here of the fact that the case labels are
2407 sorted: We can do a binary search for a case matching VAL. */
2409 static tree
2410 find_case_label_for_value (const gswitch *switch_stmt, tree val)
2412 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
2413 tree default_case = gimple_switch_default_label (switch_stmt);
2415 for (low = 0, high = n; high - low > 1; )
2417 size_t i = (high + low) / 2;
2418 tree t = gimple_switch_label (switch_stmt, i);
2419 int cmp;
2421 /* Cache the result of comparing CASE_LOW and val. */
2422 cmp = tree_int_cst_compare (CASE_LOW (t), val);
2424 if (cmp > 0)
2425 high = i;
2426 else
2427 low = i;
2429 if (CASE_HIGH (t) == NULL)
2431 /* A singe-valued case label. */
2432 if (cmp == 0)
2433 return t;
2435 else
2437 /* A case range. We can only handle integer ranges. */
2438 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2439 return t;
2443 return default_case;
2447 /* Dump a basic block on stderr. */
2449 void
2450 gimple_debug_bb (basic_block bb)
2452 dump_bb (stderr, bb, 0, TDF_VOPS|TDF_MEMSYMS|TDF_BLOCKS);
2456 /* Dump basic block with index N on stderr. */
2458 basic_block
2459 gimple_debug_bb_n (int n)
2461 gimple_debug_bb (BASIC_BLOCK_FOR_FN (cfun, n));
2462 return BASIC_BLOCK_FOR_FN (cfun, n);
2466 /* Dump the CFG on stderr.
2468 FLAGS are the same used by the tree dumping functions
2469 (see TDF_* in dumpfile.h). */
2471 void
2472 gimple_debug_cfg (dump_flags_t flags)
2474 gimple_dump_cfg (stderr, flags);
2478 /* Dump the program showing basic block boundaries on the given FILE.
2480 FLAGS are the same used by the tree dumping functions (see TDF_* in
2481 tree.h). */
2483 void
2484 gimple_dump_cfg (FILE *file, dump_flags_t flags)
2486 if (flags & TDF_DETAILS)
2488 dump_function_header (file, current_function_decl, flags);
2489 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2490 n_basic_blocks_for_fn (cfun), n_edges_for_fn (cfun),
2491 last_basic_block_for_fn (cfun));
2493 brief_dump_cfg (file, flags);
2494 fprintf (file, "\n");
2497 if (flags & TDF_STATS)
2498 dump_cfg_stats (file);
2500 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2504 /* Dump CFG statistics on FILE. */
2506 void
2507 dump_cfg_stats (FILE *file)
2509 static long max_num_merged_labels = 0;
2510 unsigned long size, total = 0;
2511 long num_edges;
2512 basic_block bb;
2513 const char * const fmt_str = "%-30s%-13s%12s\n";
2514 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2515 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2516 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2517 const char *funcname = current_function_name ();
2519 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2521 fprintf (file, "---------------------------------------------------------\n");
2522 fprintf (file, fmt_str, "", " Number of ", "Memory");
2523 fprintf (file, fmt_str, "", " instances ", "used ");
2524 fprintf (file, "---------------------------------------------------------\n");
2526 size = n_basic_blocks_for_fn (cfun) * sizeof (struct basic_block_def);
2527 total += size;
2528 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks_for_fn (cfun),
2529 SCALE (size), LABEL (size));
2531 num_edges = 0;
2532 FOR_EACH_BB_FN (bb, cfun)
2533 num_edges += EDGE_COUNT (bb->succs);
2534 size = num_edges * sizeof (struct edge_def);
2535 total += size;
2536 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2538 fprintf (file, "---------------------------------------------------------\n");
2539 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2540 LABEL (total));
2541 fprintf (file, "---------------------------------------------------------\n");
2542 fprintf (file, "\n");
2544 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2545 max_num_merged_labels = cfg_stats.num_merged_labels;
2547 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2548 cfg_stats.num_merged_labels, max_num_merged_labels);
2550 fprintf (file, "\n");
2554 /* Dump CFG statistics on stderr. Keep extern so that it's always
2555 linked in the final executable. */
2557 DEBUG_FUNCTION void
2558 debug_cfg_stats (void)
2560 dump_cfg_stats (stderr);
2563 /*---------------------------------------------------------------------------
2564 Miscellaneous helpers
2565 ---------------------------------------------------------------------------*/
2567 /* Return true if T, a GIMPLE_CALL, can make an abnormal transfer of control
2568 flow. Transfers of control flow associated with EH are excluded. */
2570 static bool
2571 call_can_make_abnormal_goto (gimple *t)
2573 /* If the function has no non-local labels, then a call cannot make an
2574 abnormal transfer of control. */
2575 if (!cfun->has_nonlocal_label
2576 && !cfun->calls_setjmp)
2577 return false;
2579 /* Likewise if the call has no side effects. */
2580 if (!gimple_has_side_effects (t))
2581 return false;
2583 /* Likewise if the called function is leaf. */
2584 if (gimple_call_flags (t) & ECF_LEAF)
2585 return false;
2587 return true;
2591 /* Return true if T can make an abnormal transfer of control flow.
2592 Transfers of control flow associated with EH are excluded. */
2594 bool
2595 stmt_can_make_abnormal_goto (gimple *t)
2597 if (computed_goto_p (t))
2598 return true;
2599 if (is_gimple_call (t))
2600 return call_can_make_abnormal_goto (t);
2601 return false;
2605 /* Return true if T represents a stmt that always transfers control. */
2607 bool
2608 is_ctrl_stmt (gimple *t)
2610 switch (gimple_code (t))
2612 case GIMPLE_COND:
2613 case GIMPLE_SWITCH:
2614 case GIMPLE_GOTO:
2615 case GIMPLE_RETURN:
2616 case GIMPLE_RESX:
2617 return true;
2618 default:
2619 return false;
2624 /* Return true if T is a statement that may alter the flow of control
2625 (e.g., a call to a non-returning function). */
2627 bool
2628 is_ctrl_altering_stmt (gimple *t)
2630 gcc_assert (t);
2632 switch (gimple_code (t))
2634 case GIMPLE_CALL:
2635 /* Per stmt call flag indicates whether the call could alter
2636 controlflow. */
2637 if (gimple_call_ctrl_altering_p (t))
2638 return true;
2639 break;
2641 case GIMPLE_EH_DISPATCH:
2642 /* EH_DISPATCH branches to the individual catch handlers at
2643 this level of a try or allowed-exceptions region. It can
2644 fallthru to the next statement as well. */
2645 return true;
2647 case GIMPLE_ASM:
2648 if (gimple_asm_nlabels (as_a <gasm *> (t)) > 0)
2649 return true;
2650 break;
2652 CASE_GIMPLE_OMP:
2653 /* OpenMP directives alter control flow. */
2654 return true;
2656 case GIMPLE_TRANSACTION:
2657 /* A transaction start alters control flow. */
2658 return true;
2660 default:
2661 break;
2664 /* If a statement can throw, it alters control flow. */
2665 return stmt_can_throw_internal (t);
2669 /* Return true if T is a simple local goto. */
2671 bool
2672 simple_goto_p (gimple *t)
2674 return (gimple_code (t) == GIMPLE_GOTO
2675 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2679 /* Return true if STMT should start a new basic block. PREV_STMT is
2680 the statement preceding STMT. It is used when STMT is a label or a
2681 case label. Labels should only start a new basic block if their
2682 previous statement wasn't a label. Otherwise, sequence of labels
2683 would generate unnecessary basic blocks that only contain a single
2684 label. */
2686 static inline bool
2687 stmt_starts_bb_p (gimple *stmt, gimple *prev_stmt)
2689 if (stmt == NULL)
2690 return false;
2692 /* PREV_STMT is only set to a debug stmt if the debug stmt is before
2693 any nondebug stmts in the block. We don't want to start another
2694 block in this case: the debug stmt will already have started the
2695 one STMT would start if we weren't outputting debug stmts. */
2696 if (prev_stmt && is_gimple_debug (prev_stmt))
2697 return false;
2699 /* Labels start a new basic block only if the preceding statement
2700 wasn't a label of the same type. This prevents the creation of
2701 consecutive blocks that have nothing but a single label. */
2702 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
2704 /* Nonlocal and computed GOTO targets always start a new block. */
2705 if (DECL_NONLOCAL (gimple_label_label (label_stmt))
2706 || FORCED_LABEL (gimple_label_label (label_stmt)))
2707 return true;
2709 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2711 if (DECL_NONLOCAL (gimple_label_label (
2712 as_a <glabel *> (prev_stmt))))
2713 return true;
2715 cfg_stats.num_merged_labels++;
2716 return false;
2718 else
2719 return true;
2721 else if (gimple_code (stmt) == GIMPLE_CALL)
2723 if (gimple_call_flags (stmt) & ECF_RETURNS_TWICE)
2724 /* setjmp acts similar to a nonlocal GOTO target and thus should
2725 start a new block. */
2726 return true;
2727 if (gimple_call_internal_p (stmt, IFN_PHI)
2728 && prev_stmt
2729 && gimple_code (prev_stmt) != GIMPLE_LABEL
2730 && (gimple_code (prev_stmt) != GIMPLE_CALL
2731 || ! gimple_call_internal_p (prev_stmt, IFN_PHI)))
2732 /* PHI nodes start a new block unless preceeded by a label
2733 or another PHI. */
2734 return true;
2737 return false;
2741 /* Return true if T should end a basic block. */
2743 bool
2744 stmt_ends_bb_p (gimple *t)
2746 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2749 /* Remove block annotations and other data structures. */
2751 void
2752 delete_tree_cfg_annotations (struct function *fn)
2754 vec_free (label_to_block_map_for_fn (fn));
2757 /* Return the virtual phi in BB. */
2759 gphi *
2760 get_virtual_phi (basic_block bb)
2762 for (gphi_iterator gsi = gsi_start_phis (bb);
2763 !gsi_end_p (gsi);
2764 gsi_next (&gsi))
2766 gphi *phi = gsi.phi ();
2768 if (virtual_operand_p (PHI_RESULT (phi)))
2769 return phi;
2772 return NULL;
2775 /* Return the first statement in basic block BB. */
2777 gimple *
2778 first_stmt (basic_block bb)
2780 gimple_stmt_iterator i = gsi_start_bb (bb);
2781 gimple *stmt = NULL;
2783 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2785 gsi_next (&i);
2786 stmt = NULL;
2788 return stmt;
2791 /* Return the first non-label statement in basic block BB. */
2793 static gimple *
2794 first_non_label_stmt (basic_block bb)
2796 gimple_stmt_iterator i = gsi_start_bb (bb);
2797 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2798 gsi_next (&i);
2799 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2802 /* Return the last statement in basic block BB. */
2804 gimple *
2805 last_stmt (basic_block bb)
2807 gimple_stmt_iterator i = gsi_last_bb (bb);
2808 gimple *stmt = NULL;
2810 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2812 gsi_prev (&i);
2813 stmt = NULL;
2815 return stmt;
2818 /* Return the last statement of an otherwise empty block. Return NULL
2819 if the block is totally empty, or if it contains more than one
2820 statement. */
2822 gimple *
2823 last_and_only_stmt (basic_block bb)
2825 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2826 gimple *last, *prev;
2828 if (gsi_end_p (i))
2829 return NULL;
2831 last = gsi_stmt (i);
2832 gsi_prev_nondebug (&i);
2833 if (gsi_end_p (i))
2834 return last;
2836 /* Empty statements should no longer appear in the instruction stream.
2837 Everything that might have appeared before should be deleted by
2838 remove_useless_stmts, and the optimizers should just gsi_remove
2839 instead of smashing with build_empty_stmt.
2841 Thus the only thing that should appear here in a block containing
2842 one executable statement is a label. */
2843 prev = gsi_stmt (i);
2844 if (gimple_code (prev) == GIMPLE_LABEL)
2845 return last;
2846 else
2847 return NULL;
2850 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2852 static void
2853 reinstall_phi_args (edge new_edge, edge old_edge)
2855 edge_var_map *vm;
2856 int i;
2857 gphi_iterator phis;
2859 vec<edge_var_map> *v = redirect_edge_var_map_vector (old_edge);
2860 if (!v)
2861 return;
2863 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2864 v->iterate (i, &vm) && !gsi_end_p (phis);
2865 i++, gsi_next (&phis))
2867 gphi *phi = phis.phi ();
2868 tree result = redirect_edge_var_map_result (vm);
2869 tree arg = redirect_edge_var_map_def (vm);
2871 gcc_assert (result == gimple_phi_result (phi));
2873 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2876 redirect_edge_var_map_clear (old_edge);
2879 /* Returns the basic block after which the new basic block created
2880 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2881 near its "logical" location. This is of most help to humans looking
2882 at debugging dumps. */
2884 basic_block
2885 split_edge_bb_loc (edge edge_in)
2887 basic_block dest = edge_in->dest;
2888 basic_block dest_prev = dest->prev_bb;
2890 if (dest_prev)
2892 edge e = find_edge (dest_prev, dest);
2893 if (e && !(e->flags & EDGE_COMPLEX))
2894 return edge_in->src;
2896 return dest_prev;
2899 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2900 Abort on abnormal edges. */
2902 static basic_block
2903 gimple_split_edge (edge edge_in)
2905 basic_block new_bb, after_bb, dest;
2906 edge new_edge, e;
2908 /* Abnormal edges cannot be split. */
2909 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2911 dest = edge_in->dest;
2913 after_bb = split_edge_bb_loc (edge_in);
2915 new_bb = create_empty_bb (after_bb);
2916 new_bb->count = edge_in->count ();
2918 e = redirect_edge_and_branch (edge_in, new_bb);
2919 gcc_assert (e == edge_in);
2921 new_edge = make_single_succ_edge (new_bb, dest, EDGE_FALLTHRU);
2922 reinstall_phi_args (new_edge, e);
2924 return new_bb;
2928 /* Verify properties of the address expression T with base object BASE. */
2930 static tree
2931 verify_address (tree t, tree base)
2933 bool old_constant;
2934 bool old_side_effects;
2935 bool new_constant;
2936 bool new_side_effects;
2938 old_constant = TREE_CONSTANT (t);
2939 old_side_effects = TREE_SIDE_EFFECTS (t);
2941 recompute_tree_invariant_for_addr_expr (t);
2942 new_side_effects = TREE_SIDE_EFFECTS (t);
2943 new_constant = TREE_CONSTANT (t);
2945 if (old_constant != new_constant)
2947 error ("constant not recomputed when ADDR_EXPR changed");
2948 return t;
2950 if (old_side_effects != new_side_effects)
2952 error ("side effects not recomputed when ADDR_EXPR changed");
2953 return t;
2956 if (!(VAR_P (base)
2957 || TREE_CODE (base) == PARM_DECL
2958 || TREE_CODE (base) == RESULT_DECL))
2959 return NULL_TREE;
2961 if (DECL_GIMPLE_REG_P (base))
2963 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2964 return base;
2967 return NULL_TREE;
2970 /* Callback for walk_tree, check that all elements with address taken are
2971 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2972 inside a PHI node. */
2974 static tree
2975 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
2977 tree t = *tp, x;
2979 if (TYPE_P (t))
2980 *walk_subtrees = 0;
2982 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2983 #define CHECK_OP(N, MSG) \
2984 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2985 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2987 switch (TREE_CODE (t))
2989 case SSA_NAME:
2990 if (SSA_NAME_IN_FREE_LIST (t))
2992 error ("SSA name in freelist but still referenced");
2993 return *tp;
2995 break;
2997 case PARM_DECL:
2998 case VAR_DECL:
2999 case RESULT_DECL:
3001 tree context = decl_function_context (t);
3002 if (context != cfun->decl
3003 && !SCOPE_FILE_SCOPE_P (context)
3004 && !TREE_STATIC (t)
3005 && !DECL_EXTERNAL (t))
3007 error ("Local declaration from a different function");
3008 return t;
3011 break;
3013 case INDIRECT_REF:
3014 error ("INDIRECT_REF in gimple IL");
3015 return t;
3017 case MEM_REF:
3018 x = TREE_OPERAND (t, 0);
3019 if (!POINTER_TYPE_P (TREE_TYPE (x))
3020 || !is_gimple_mem_ref_addr (x))
3022 error ("invalid first operand of MEM_REF");
3023 return x;
3025 if (TREE_CODE (TREE_OPERAND (t, 1)) != INTEGER_CST
3026 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
3028 error ("invalid offset operand of MEM_REF");
3029 return TREE_OPERAND (t, 1);
3031 if (TREE_CODE (x) == ADDR_EXPR)
3033 tree va = verify_address (x, TREE_OPERAND (x, 0));
3034 if (va)
3035 return va;
3036 x = TREE_OPERAND (x, 0);
3038 walk_tree (&x, verify_expr, data, NULL);
3039 *walk_subtrees = 0;
3040 break;
3042 case ASSERT_EXPR:
3043 x = fold (ASSERT_EXPR_COND (t));
3044 if (x == boolean_false_node)
3046 error ("ASSERT_EXPR with an always-false condition");
3047 return *tp;
3049 break;
3051 case MODIFY_EXPR:
3052 error ("MODIFY_EXPR not expected while having tuples");
3053 return *tp;
3055 case ADDR_EXPR:
3057 tree tem;
3059 gcc_assert (is_gimple_address (t));
3061 /* Skip any references (they will be checked when we recurse down the
3062 tree) and ensure that any variable used as a prefix is marked
3063 addressable. */
3064 for (x = TREE_OPERAND (t, 0);
3065 handled_component_p (x);
3066 x = TREE_OPERAND (x, 0))
3069 if ((tem = verify_address (t, x)))
3070 return tem;
3072 if (!(VAR_P (x)
3073 || TREE_CODE (x) == PARM_DECL
3074 || TREE_CODE (x) == RESULT_DECL))
3075 return NULL;
3077 if (!TREE_ADDRESSABLE (x))
3079 error ("address taken, but ADDRESSABLE bit not set");
3080 return x;
3083 break;
3086 case COND_EXPR:
3087 x = COND_EXPR_COND (t);
3088 if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
3090 error ("non-integral used in condition");
3091 return x;
3093 if (!is_gimple_condexpr (x))
3095 error ("invalid conditional operand");
3096 return x;
3098 break;
3100 case NON_LVALUE_EXPR:
3101 case TRUTH_NOT_EXPR:
3102 gcc_unreachable ();
3104 CASE_CONVERT:
3105 case FIX_TRUNC_EXPR:
3106 case FLOAT_EXPR:
3107 case NEGATE_EXPR:
3108 case ABS_EXPR:
3109 case BIT_NOT_EXPR:
3110 CHECK_OP (0, "invalid operand to unary operator");
3111 break;
3113 case REALPART_EXPR:
3114 case IMAGPART_EXPR:
3115 case BIT_FIELD_REF:
3116 if (!is_gimple_reg_type (TREE_TYPE (t)))
3118 error ("non-scalar BIT_FIELD_REF, IMAGPART_EXPR or REALPART_EXPR");
3119 return t;
3122 if (TREE_CODE (t) == BIT_FIELD_REF)
3124 tree t0 = TREE_OPERAND (t, 0);
3125 tree t1 = TREE_OPERAND (t, 1);
3126 tree t2 = TREE_OPERAND (t, 2);
3127 if (!tree_fits_uhwi_p (t1)
3128 || !tree_fits_uhwi_p (t2)
3129 || !types_compatible_p (bitsizetype, TREE_TYPE (t1))
3130 || !types_compatible_p (bitsizetype, TREE_TYPE (t2)))
3132 error ("invalid position or size operand to BIT_FIELD_REF");
3133 return t;
3135 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
3136 && (TYPE_PRECISION (TREE_TYPE (t))
3137 != tree_to_uhwi (t1)))
3139 error ("integral result type precision does not match "
3140 "field size of BIT_FIELD_REF");
3141 return t;
3143 else if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
3144 && TYPE_MODE (TREE_TYPE (t)) != BLKmode
3145 && (GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t)))
3146 != tree_to_uhwi (t1)))
3148 error ("mode size of non-integral result does not "
3149 "match field size of BIT_FIELD_REF");
3150 return t;
3152 if (!AGGREGATE_TYPE_P (TREE_TYPE (t0))
3153 && (tree_to_uhwi (t1) + tree_to_uhwi (t2)
3154 > tree_to_uhwi (TYPE_SIZE (TREE_TYPE (t0)))))
3156 error ("position plus size exceeds size of referenced object in "
3157 "BIT_FIELD_REF");
3158 return t;
3161 t = TREE_OPERAND (t, 0);
3163 /* Fall-through. */
3164 case COMPONENT_REF:
3165 case ARRAY_REF:
3166 case ARRAY_RANGE_REF:
3167 case VIEW_CONVERT_EXPR:
3168 /* We have a nest of references. Verify that each of the operands
3169 that determine where to reference is either a constant or a variable,
3170 verify that the base is valid, and then show we've already checked
3171 the subtrees. */
3172 while (handled_component_p (t))
3174 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
3175 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
3176 else if (TREE_CODE (t) == ARRAY_REF
3177 || TREE_CODE (t) == ARRAY_RANGE_REF)
3179 CHECK_OP (1, "invalid array index");
3180 if (TREE_OPERAND (t, 2))
3181 CHECK_OP (2, "invalid array lower bound");
3182 if (TREE_OPERAND (t, 3))
3183 CHECK_OP (3, "invalid array stride");
3185 else if (TREE_CODE (t) == BIT_FIELD_REF
3186 || TREE_CODE (t) == REALPART_EXPR
3187 || TREE_CODE (t) == IMAGPART_EXPR)
3189 error ("non-top-level BIT_FIELD_REF, IMAGPART_EXPR or "
3190 "REALPART_EXPR");
3191 return t;
3194 t = TREE_OPERAND (t, 0);
3197 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
3199 error ("invalid reference prefix");
3200 return t;
3202 walk_tree (&t, verify_expr, data, NULL);
3203 *walk_subtrees = 0;
3204 break;
3205 case PLUS_EXPR:
3206 case MINUS_EXPR:
3207 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
3208 POINTER_PLUS_EXPR. */
3209 if (POINTER_TYPE_P (TREE_TYPE (t)))
3211 error ("invalid operand to plus/minus, type is a pointer");
3212 return t;
3214 CHECK_OP (0, "invalid operand to binary operator");
3215 CHECK_OP (1, "invalid operand to binary operator");
3216 break;
3218 case POINTER_DIFF_EXPR:
3219 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0)))
3220 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
3222 error ("invalid operand to pointer diff, operand is not a pointer");
3223 return t;
3225 if (TREE_CODE (TREE_TYPE (t)) != INTEGER_TYPE
3226 || TYPE_UNSIGNED (TREE_TYPE (t))
3227 || (TYPE_PRECISION (TREE_TYPE (t))
3228 != TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (t, 0)))))
3230 error ("invalid type for pointer diff");
3231 return t;
3233 CHECK_OP (0, "invalid operand to pointer diff");
3234 CHECK_OP (1, "invalid operand to pointer diff");
3235 break;
3237 case POINTER_PLUS_EXPR:
3238 /* Check to make sure the first operand is a pointer or reference type. */
3239 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
3241 error ("invalid operand to pointer plus, first operand is not a pointer");
3242 return t;
3244 /* Check to make sure the second operand is a ptrofftype. */
3245 if (!ptrofftype_p (TREE_TYPE (TREE_OPERAND (t, 1))))
3247 error ("invalid operand to pointer plus, second operand is not an "
3248 "integer type of appropriate width");
3249 return t;
3251 /* FALLTHROUGH */
3252 case LT_EXPR:
3253 case LE_EXPR:
3254 case GT_EXPR:
3255 case GE_EXPR:
3256 case EQ_EXPR:
3257 case NE_EXPR:
3258 case UNORDERED_EXPR:
3259 case ORDERED_EXPR:
3260 case UNLT_EXPR:
3261 case UNLE_EXPR:
3262 case UNGT_EXPR:
3263 case UNGE_EXPR:
3264 case UNEQ_EXPR:
3265 case LTGT_EXPR:
3266 case MULT_EXPR:
3267 case TRUNC_DIV_EXPR:
3268 case CEIL_DIV_EXPR:
3269 case FLOOR_DIV_EXPR:
3270 case ROUND_DIV_EXPR:
3271 case TRUNC_MOD_EXPR:
3272 case CEIL_MOD_EXPR:
3273 case FLOOR_MOD_EXPR:
3274 case ROUND_MOD_EXPR:
3275 case RDIV_EXPR:
3276 case EXACT_DIV_EXPR:
3277 case MIN_EXPR:
3278 case MAX_EXPR:
3279 case LSHIFT_EXPR:
3280 case RSHIFT_EXPR:
3281 case LROTATE_EXPR:
3282 case RROTATE_EXPR:
3283 case BIT_IOR_EXPR:
3284 case BIT_XOR_EXPR:
3285 case BIT_AND_EXPR:
3286 CHECK_OP (0, "invalid operand to binary operator");
3287 CHECK_OP (1, "invalid operand to binary operator");
3288 break;
3290 case CONSTRUCTOR:
3291 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
3292 *walk_subtrees = 0;
3293 break;
3295 case CASE_LABEL_EXPR:
3296 if (CASE_CHAIN (t))
3298 error ("invalid CASE_CHAIN");
3299 return t;
3301 break;
3303 default:
3304 break;
3306 return NULL;
3308 #undef CHECK_OP
3312 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
3313 Returns true if there is an error, otherwise false. */
3315 static bool
3316 verify_types_in_gimple_min_lval (tree expr)
3318 tree op;
3320 if (is_gimple_id (expr))
3321 return false;
3323 if (TREE_CODE (expr) != TARGET_MEM_REF
3324 && TREE_CODE (expr) != MEM_REF)
3326 error ("invalid expression for min lvalue");
3327 return true;
3330 /* TARGET_MEM_REFs are strange beasts. */
3331 if (TREE_CODE (expr) == TARGET_MEM_REF)
3332 return false;
3334 op = TREE_OPERAND (expr, 0);
3335 if (!is_gimple_val (op))
3337 error ("invalid operand in indirect reference");
3338 debug_generic_stmt (op);
3339 return true;
3341 /* Memory references now generally can involve a value conversion. */
3343 return false;
3346 /* Verify if EXPR is a valid GIMPLE reference expression. If
3347 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
3348 if there is an error, otherwise false. */
3350 static bool
3351 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
3353 while (handled_component_p (expr))
3355 tree op = TREE_OPERAND (expr, 0);
3357 if (TREE_CODE (expr) == ARRAY_REF
3358 || TREE_CODE (expr) == ARRAY_RANGE_REF)
3360 if (!is_gimple_val (TREE_OPERAND (expr, 1))
3361 || (TREE_OPERAND (expr, 2)
3362 && !is_gimple_val (TREE_OPERAND (expr, 2)))
3363 || (TREE_OPERAND (expr, 3)
3364 && !is_gimple_val (TREE_OPERAND (expr, 3))))
3366 error ("invalid operands to array reference");
3367 debug_generic_stmt (expr);
3368 return true;
3372 /* Verify if the reference array element types are compatible. */
3373 if (TREE_CODE (expr) == ARRAY_REF
3374 && !useless_type_conversion_p (TREE_TYPE (expr),
3375 TREE_TYPE (TREE_TYPE (op))))
3377 error ("type mismatch in array reference");
3378 debug_generic_stmt (TREE_TYPE (expr));
3379 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3380 return true;
3382 if (TREE_CODE (expr) == ARRAY_RANGE_REF
3383 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
3384 TREE_TYPE (TREE_TYPE (op))))
3386 error ("type mismatch in array range reference");
3387 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
3388 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3389 return true;
3392 if ((TREE_CODE (expr) == REALPART_EXPR
3393 || TREE_CODE (expr) == IMAGPART_EXPR)
3394 && !useless_type_conversion_p (TREE_TYPE (expr),
3395 TREE_TYPE (TREE_TYPE (op))))
3397 error ("type mismatch in real/imagpart reference");
3398 debug_generic_stmt (TREE_TYPE (expr));
3399 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3400 return true;
3403 if (TREE_CODE (expr) == COMPONENT_REF
3404 && !useless_type_conversion_p (TREE_TYPE (expr),
3405 TREE_TYPE (TREE_OPERAND (expr, 1))))
3407 error ("type mismatch in component reference");
3408 debug_generic_stmt (TREE_TYPE (expr));
3409 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
3410 return true;
3413 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
3415 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
3416 that their operand is not an SSA name or an invariant when
3417 requiring an lvalue (this usually means there is a SRA or IPA-SRA
3418 bug). Otherwise there is nothing to verify, gross mismatches at
3419 most invoke undefined behavior. */
3420 if (require_lvalue
3421 && (TREE_CODE (op) == SSA_NAME
3422 || is_gimple_min_invariant (op)))
3424 error ("conversion of an SSA_NAME on the left hand side");
3425 debug_generic_stmt (expr);
3426 return true;
3428 else if (TREE_CODE (op) == SSA_NAME
3429 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
3431 error ("conversion of register to a different size");
3432 debug_generic_stmt (expr);
3433 return true;
3435 else if (!handled_component_p (op))
3436 return false;
3439 expr = op;
3442 if (TREE_CODE (expr) == MEM_REF)
3444 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0)))
3446 error ("invalid address operand in MEM_REF");
3447 debug_generic_stmt (expr);
3448 return true;
3450 if (TREE_CODE (TREE_OPERAND (expr, 1)) != INTEGER_CST
3451 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
3453 error ("invalid offset operand in MEM_REF");
3454 debug_generic_stmt (expr);
3455 return true;
3458 else if (TREE_CODE (expr) == TARGET_MEM_REF)
3460 if (!TMR_BASE (expr)
3461 || !is_gimple_mem_ref_addr (TMR_BASE (expr)))
3463 error ("invalid address operand in TARGET_MEM_REF");
3464 return true;
3466 if (!TMR_OFFSET (expr)
3467 || TREE_CODE (TMR_OFFSET (expr)) != INTEGER_CST
3468 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
3470 error ("invalid offset operand in TARGET_MEM_REF");
3471 debug_generic_stmt (expr);
3472 return true;
3476 return ((require_lvalue || !is_gimple_min_invariant (expr))
3477 && verify_types_in_gimple_min_lval (expr));
3480 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3481 list of pointer-to types that is trivially convertible to DEST. */
3483 static bool
3484 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3486 tree src;
3488 if (!TYPE_POINTER_TO (src_obj))
3489 return true;
3491 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3492 if (useless_type_conversion_p (dest, src))
3493 return true;
3495 return false;
3498 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3499 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3501 static bool
3502 valid_fixed_convert_types_p (tree type1, tree type2)
3504 return (FIXED_POINT_TYPE_P (type1)
3505 && (INTEGRAL_TYPE_P (type2)
3506 || SCALAR_FLOAT_TYPE_P (type2)
3507 || FIXED_POINT_TYPE_P (type2)));
3510 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3511 is a problem, otherwise false. */
3513 static bool
3514 verify_gimple_call (gcall *stmt)
3516 tree fn = gimple_call_fn (stmt);
3517 tree fntype, fndecl;
3518 unsigned i;
3520 if (gimple_call_internal_p (stmt))
3522 if (fn)
3524 error ("gimple call has two targets");
3525 debug_generic_stmt (fn);
3526 return true;
3528 /* FIXME : for passing label as arg in internal fn PHI from GIMPLE FE*/
3529 else if (gimple_call_internal_fn (stmt) == IFN_PHI)
3531 return false;
3534 else
3536 if (!fn)
3538 error ("gimple call has no target");
3539 return true;
3543 if (fn && !is_gimple_call_addr (fn))
3545 error ("invalid function in gimple call");
3546 debug_generic_stmt (fn);
3547 return true;
3550 if (fn
3551 && (!POINTER_TYPE_P (TREE_TYPE (fn))
3552 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3553 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE)))
3555 error ("non-function in gimple call");
3556 return true;
3559 fndecl = gimple_call_fndecl (stmt);
3560 if (fndecl
3561 && TREE_CODE (fndecl) == FUNCTION_DECL
3562 && DECL_LOOPING_CONST_OR_PURE_P (fndecl)
3563 && !DECL_PURE_P (fndecl)
3564 && !TREE_READONLY (fndecl))
3566 error ("invalid pure const state for function");
3567 return true;
3570 tree lhs = gimple_call_lhs (stmt);
3571 if (lhs
3572 && (!is_gimple_lvalue (lhs)
3573 || verify_types_in_gimple_reference (lhs, true)))
3575 error ("invalid LHS in gimple call");
3576 return true;
3579 if (gimple_call_ctrl_altering_p (stmt)
3580 && gimple_call_noreturn_p (stmt)
3581 && should_remove_lhs_p (lhs))
3583 error ("LHS in noreturn call");
3584 return true;
3587 fntype = gimple_call_fntype (stmt);
3588 if (fntype
3589 && lhs
3590 && !useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (fntype))
3591 /* ??? At least C++ misses conversions at assignments from
3592 void * call results.
3593 For now simply allow arbitrary pointer type conversions. */
3594 && !(POINTER_TYPE_P (TREE_TYPE (lhs))
3595 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3597 error ("invalid conversion in gimple call");
3598 debug_generic_stmt (TREE_TYPE (lhs));
3599 debug_generic_stmt (TREE_TYPE (fntype));
3600 return true;
3603 if (gimple_call_chain (stmt)
3604 && !is_gimple_val (gimple_call_chain (stmt)))
3606 error ("invalid static chain in gimple call");
3607 debug_generic_stmt (gimple_call_chain (stmt));
3608 return true;
3611 /* If there is a static chain argument, the call should either be
3612 indirect, or the decl should have DECL_STATIC_CHAIN set. */
3613 if (gimple_call_chain (stmt)
3614 && fndecl
3615 && !DECL_STATIC_CHAIN (fndecl))
3617 error ("static chain with function that doesn%'t use one");
3618 return true;
3621 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
3623 switch (DECL_FUNCTION_CODE (fndecl))
3625 case BUILT_IN_UNREACHABLE:
3626 case BUILT_IN_TRAP:
3627 if (gimple_call_num_args (stmt) > 0)
3629 /* Built-in unreachable with parameters might not be caught by
3630 undefined behavior sanitizer. Front-ends do check users do not
3631 call them that way but we also produce calls to
3632 __builtin_unreachable internally, for example when IPA figures
3633 out a call cannot happen in a legal program. In such cases,
3634 we must make sure arguments are stripped off. */
3635 error ("__builtin_unreachable or __builtin_trap call with "
3636 "arguments");
3637 return true;
3639 break;
3640 default:
3641 break;
3645 /* ??? The C frontend passes unpromoted arguments in case it
3646 didn't see a function declaration before the call. So for now
3647 leave the call arguments mostly unverified. Once we gimplify
3648 unit-at-a-time we have a chance to fix this. */
3650 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3652 tree arg = gimple_call_arg (stmt, i);
3653 if ((is_gimple_reg_type (TREE_TYPE (arg))
3654 && !is_gimple_val (arg))
3655 || (!is_gimple_reg_type (TREE_TYPE (arg))
3656 && !is_gimple_lvalue (arg)))
3658 error ("invalid argument to gimple call");
3659 debug_generic_expr (arg);
3660 return true;
3664 return false;
3667 /* Verifies the gimple comparison with the result type TYPE and
3668 the operands OP0 and OP1, comparison code is CODE. */
3670 static bool
3671 verify_gimple_comparison (tree type, tree op0, tree op1, enum tree_code code)
3673 tree op0_type = TREE_TYPE (op0);
3674 tree op1_type = TREE_TYPE (op1);
3676 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3678 error ("invalid operands in gimple comparison");
3679 return true;
3682 /* For comparisons we do not have the operations type as the
3683 effective type the comparison is carried out in. Instead
3684 we require that either the first operand is trivially
3685 convertible into the second, or the other way around.
3686 Because we special-case pointers to void we allow
3687 comparisons of pointers with the same mode as well. */
3688 if (!useless_type_conversion_p (op0_type, op1_type)
3689 && !useless_type_conversion_p (op1_type, op0_type)
3690 && (!POINTER_TYPE_P (op0_type)
3691 || !POINTER_TYPE_P (op1_type)
3692 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3694 error ("mismatching comparison operand types");
3695 debug_generic_expr (op0_type);
3696 debug_generic_expr (op1_type);
3697 return true;
3700 /* The resulting type of a comparison may be an effective boolean type. */
3701 if (INTEGRAL_TYPE_P (type)
3702 && (TREE_CODE (type) == BOOLEAN_TYPE
3703 || TYPE_PRECISION (type) == 1))
3705 if ((TREE_CODE (op0_type) == VECTOR_TYPE
3706 || TREE_CODE (op1_type) == VECTOR_TYPE)
3707 && code != EQ_EXPR && code != NE_EXPR
3708 && !VECTOR_BOOLEAN_TYPE_P (op0_type)
3709 && !VECTOR_INTEGER_TYPE_P (op0_type))
3711 error ("unsupported operation or type for vector comparison"
3712 " returning a boolean");
3713 debug_generic_expr (op0_type);
3714 debug_generic_expr (op1_type);
3715 return true;
3718 /* Or a boolean vector type with the same element count
3719 as the comparison operand types. */
3720 else if (TREE_CODE (type) == VECTOR_TYPE
3721 && TREE_CODE (TREE_TYPE (type)) == BOOLEAN_TYPE)
3723 if (TREE_CODE (op0_type) != VECTOR_TYPE
3724 || TREE_CODE (op1_type) != VECTOR_TYPE)
3726 error ("non-vector operands in vector comparison");
3727 debug_generic_expr (op0_type);
3728 debug_generic_expr (op1_type);
3729 return true;
3732 if (TYPE_VECTOR_SUBPARTS (type) != TYPE_VECTOR_SUBPARTS (op0_type))
3734 error ("invalid vector comparison resulting type");
3735 debug_generic_expr (type);
3736 return true;
3739 else
3741 error ("bogus comparison result type");
3742 debug_generic_expr (type);
3743 return true;
3746 return false;
3749 /* Verify a gimple assignment statement STMT with an unary rhs.
3750 Returns true if anything is wrong. */
3752 static bool
3753 verify_gimple_assign_unary (gassign *stmt)
3755 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3756 tree lhs = gimple_assign_lhs (stmt);
3757 tree lhs_type = TREE_TYPE (lhs);
3758 tree rhs1 = gimple_assign_rhs1 (stmt);
3759 tree rhs1_type = TREE_TYPE (rhs1);
3761 if (!is_gimple_reg (lhs))
3763 error ("non-register as LHS of unary operation");
3764 return true;
3767 if (!is_gimple_val (rhs1))
3769 error ("invalid operand in unary operation");
3770 return true;
3773 /* First handle conversions. */
3774 switch (rhs_code)
3776 CASE_CONVERT:
3778 /* Allow conversions from pointer type to integral type only if
3779 there is no sign or zero extension involved.
3780 For targets were the precision of ptrofftype doesn't match that
3781 of pointers we need to allow arbitrary conversions to ptrofftype. */
3782 if ((POINTER_TYPE_P (lhs_type)
3783 && INTEGRAL_TYPE_P (rhs1_type))
3784 || (POINTER_TYPE_P (rhs1_type)
3785 && INTEGRAL_TYPE_P (lhs_type)
3786 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3787 || ptrofftype_p (sizetype))))
3788 return false;
3790 /* Allow conversion from integral to offset type and vice versa. */
3791 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3792 && INTEGRAL_TYPE_P (rhs1_type))
3793 || (INTEGRAL_TYPE_P (lhs_type)
3794 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3795 return false;
3797 /* Otherwise assert we are converting between types of the
3798 same kind. */
3799 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3801 error ("invalid types in nop conversion");
3802 debug_generic_expr (lhs_type);
3803 debug_generic_expr (rhs1_type);
3804 return true;
3807 return false;
3810 case ADDR_SPACE_CONVERT_EXPR:
3812 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3813 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3814 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3816 error ("invalid types in address space conversion");
3817 debug_generic_expr (lhs_type);
3818 debug_generic_expr (rhs1_type);
3819 return true;
3822 return false;
3825 case FIXED_CONVERT_EXPR:
3827 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3828 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3830 error ("invalid types in fixed-point conversion");
3831 debug_generic_expr (lhs_type);
3832 debug_generic_expr (rhs1_type);
3833 return true;
3836 return false;
3839 case FLOAT_EXPR:
3841 if ((!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3842 && (!VECTOR_INTEGER_TYPE_P (rhs1_type)
3843 || !VECTOR_FLOAT_TYPE_P (lhs_type)))
3845 error ("invalid types in conversion to floating point");
3846 debug_generic_expr (lhs_type);
3847 debug_generic_expr (rhs1_type);
3848 return true;
3851 return false;
3854 case FIX_TRUNC_EXPR:
3856 if ((!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3857 && (!VECTOR_INTEGER_TYPE_P (lhs_type)
3858 || !VECTOR_FLOAT_TYPE_P (rhs1_type)))
3860 error ("invalid types in conversion to integer");
3861 debug_generic_expr (lhs_type);
3862 debug_generic_expr (rhs1_type);
3863 return true;
3866 return false;
3869 case VEC_UNPACK_HI_EXPR:
3870 case VEC_UNPACK_LO_EXPR:
3871 case VEC_UNPACK_FLOAT_HI_EXPR:
3872 case VEC_UNPACK_FLOAT_LO_EXPR:
3873 /* FIXME. */
3874 return false;
3876 case NEGATE_EXPR:
3877 case ABS_EXPR:
3878 case BIT_NOT_EXPR:
3879 case PAREN_EXPR:
3880 case CONJ_EXPR:
3881 break;
3883 case VEC_DUPLICATE_EXPR:
3884 if (TREE_CODE (lhs_type) != VECTOR_TYPE
3885 || !useless_type_conversion_p (TREE_TYPE (lhs_type), rhs1_type))
3887 error ("vec_duplicate should be from a scalar to a like vector");
3888 debug_generic_expr (lhs_type);
3889 debug_generic_expr (rhs1_type);
3890 return true;
3892 return false;
3894 default:
3895 gcc_unreachable ();
3898 /* For the remaining codes assert there is no conversion involved. */
3899 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3901 error ("non-trivial conversion in unary operation");
3902 debug_generic_expr (lhs_type);
3903 debug_generic_expr (rhs1_type);
3904 return true;
3907 return false;
3910 /* Verify a gimple assignment statement STMT with a binary rhs.
3911 Returns true if anything is wrong. */
3913 static bool
3914 verify_gimple_assign_binary (gassign *stmt)
3916 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3917 tree lhs = gimple_assign_lhs (stmt);
3918 tree lhs_type = TREE_TYPE (lhs);
3919 tree rhs1 = gimple_assign_rhs1 (stmt);
3920 tree rhs1_type = TREE_TYPE (rhs1);
3921 tree rhs2 = gimple_assign_rhs2 (stmt);
3922 tree rhs2_type = TREE_TYPE (rhs2);
3924 if (!is_gimple_reg (lhs))
3926 error ("non-register as LHS of binary operation");
3927 return true;
3930 if (!is_gimple_val (rhs1)
3931 || !is_gimple_val (rhs2))
3933 error ("invalid operands in binary operation");
3934 return true;
3937 /* First handle operations that involve different types. */
3938 switch (rhs_code)
3940 case COMPLEX_EXPR:
3942 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3943 || !(INTEGRAL_TYPE_P (rhs1_type)
3944 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3945 || !(INTEGRAL_TYPE_P (rhs2_type)
3946 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3948 error ("type mismatch in complex expression");
3949 debug_generic_expr (lhs_type);
3950 debug_generic_expr (rhs1_type);
3951 debug_generic_expr (rhs2_type);
3952 return true;
3955 return false;
3958 case LSHIFT_EXPR:
3959 case RSHIFT_EXPR:
3960 case LROTATE_EXPR:
3961 case RROTATE_EXPR:
3963 /* Shifts and rotates are ok on integral types, fixed point
3964 types and integer vector types. */
3965 if ((!INTEGRAL_TYPE_P (rhs1_type)
3966 && !FIXED_POINT_TYPE_P (rhs1_type)
3967 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3968 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3969 || (!INTEGRAL_TYPE_P (rhs2_type)
3970 /* Vector shifts of vectors are also ok. */
3971 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3972 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3973 && TREE_CODE (rhs2_type) == VECTOR_TYPE
3974 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3975 || !useless_type_conversion_p (lhs_type, rhs1_type))
3977 error ("type mismatch in shift expression");
3978 debug_generic_expr (lhs_type);
3979 debug_generic_expr (rhs1_type);
3980 debug_generic_expr (rhs2_type);
3981 return true;
3984 return false;
3987 case WIDEN_LSHIFT_EXPR:
3989 if (!INTEGRAL_TYPE_P (lhs_type)
3990 || !INTEGRAL_TYPE_P (rhs1_type)
3991 || TREE_CODE (rhs2) != INTEGER_CST
3992 || (2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)))
3994 error ("type mismatch in widening vector shift expression");
3995 debug_generic_expr (lhs_type);
3996 debug_generic_expr (rhs1_type);
3997 debug_generic_expr (rhs2_type);
3998 return true;
4001 return false;
4004 case VEC_WIDEN_LSHIFT_HI_EXPR:
4005 case VEC_WIDEN_LSHIFT_LO_EXPR:
4007 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4008 || TREE_CODE (lhs_type) != VECTOR_TYPE
4009 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
4010 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
4011 || TREE_CODE (rhs2) != INTEGER_CST
4012 || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type))
4013 > TYPE_PRECISION (TREE_TYPE (lhs_type))))
4015 error ("type mismatch in widening vector shift expression");
4016 debug_generic_expr (lhs_type);
4017 debug_generic_expr (rhs1_type);
4018 debug_generic_expr (rhs2_type);
4019 return true;
4022 return false;
4025 case PLUS_EXPR:
4026 case MINUS_EXPR:
4028 tree lhs_etype = lhs_type;
4029 tree rhs1_etype = rhs1_type;
4030 tree rhs2_etype = rhs2_type;
4031 if (TREE_CODE (lhs_type) == VECTOR_TYPE)
4033 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4034 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
4036 error ("invalid non-vector operands to vector valued plus");
4037 return true;
4039 lhs_etype = TREE_TYPE (lhs_type);
4040 rhs1_etype = TREE_TYPE (rhs1_type);
4041 rhs2_etype = TREE_TYPE (rhs2_type);
4043 if (POINTER_TYPE_P (lhs_etype)
4044 || POINTER_TYPE_P (rhs1_etype)
4045 || POINTER_TYPE_P (rhs2_etype))
4047 error ("invalid (pointer) operands to plus/minus");
4048 return true;
4051 /* Continue with generic binary expression handling. */
4052 break;
4055 case POINTER_PLUS_EXPR:
4057 if (!POINTER_TYPE_P (rhs1_type)
4058 || !useless_type_conversion_p (lhs_type, rhs1_type)
4059 || !ptrofftype_p (rhs2_type))
4061 error ("type mismatch in pointer plus expression");
4062 debug_generic_stmt (lhs_type);
4063 debug_generic_stmt (rhs1_type);
4064 debug_generic_stmt (rhs2_type);
4065 return true;
4068 return false;
4071 case POINTER_DIFF_EXPR:
4073 if (!POINTER_TYPE_P (rhs1_type)
4074 || !POINTER_TYPE_P (rhs2_type)
4075 /* Because we special-case pointers to void we allow difference
4076 of arbitrary pointers with the same mode. */
4077 || TYPE_MODE (rhs1_type) != TYPE_MODE (rhs2_type)
4078 || TREE_CODE (lhs_type) != INTEGER_TYPE
4079 || TYPE_UNSIGNED (lhs_type)
4080 || TYPE_PRECISION (lhs_type) != TYPE_PRECISION (rhs1_type))
4082 error ("type mismatch in pointer diff expression");
4083 debug_generic_stmt (lhs_type);
4084 debug_generic_stmt (rhs1_type);
4085 debug_generic_stmt (rhs2_type);
4086 return true;
4089 return false;
4092 case TRUTH_ANDIF_EXPR:
4093 case TRUTH_ORIF_EXPR:
4094 case TRUTH_AND_EXPR:
4095 case TRUTH_OR_EXPR:
4096 case TRUTH_XOR_EXPR:
4098 gcc_unreachable ();
4100 case LT_EXPR:
4101 case LE_EXPR:
4102 case GT_EXPR:
4103 case GE_EXPR:
4104 case EQ_EXPR:
4105 case NE_EXPR:
4106 case UNORDERED_EXPR:
4107 case ORDERED_EXPR:
4108 case UNLT_EXPR:
4109 case UNLE_EXPR:
4110 case UNGT_EXPR:
4111 case UNGE_EXPR:
4112 case UNEQ_EXPR:
4113 case LTGT_EXPR:
4114 /* Comparisons are also binary, but the result type is not
4115 connected to the operand types. */
4116 return verify_gimple_comparison (lhs_type, rhs1, rhs2, rhs_code);
4118 case WIDEN_MULT_EXPR:
4119 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
4120 return true;
4121 return ((2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type))
4122 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
4124 case WIDEN_SUM_EXPR:
4126 if (((TREE_CODE (rhs1_type) != VECTOR_TYPE
4127 || TREE_CODE (lhs_type) != VECTOR_TYPE)
4128 && ((!INTEGRAL_TYPE_P (rhs1_type)
4129 && !SCALAR_FLOAT_TYPE_P (rhs1_type))
4130 || (!INTEGRAL_TYPE_P (lhs_type)
4131 && !SCALAR_FLOAT_TYPE_P (lhs_type))))
4132 || !useless_type_conversion_p (lhs_type, rhs2_type)
4133 || (GET_MODE_SIZE (element_mode (rhs2_type))
4134 < 2 * GET_MODE_SIZE (element_mode (rhs1_type))))
4136 error ("type mismatch in widening sum reduction");
4137 debug_generic_expr (lhs_type);
4138 debug_generic_expr (rhs1_type);
4139 debug_generic_expr (rhs2_type);
4140 return true;
4142 return false;
4145 case VEC_WIDEN_MULT_HI_EXPR:
4146 case VEC_WIDEN_MULT_LO_EXPR:
4147 case VEC_WIDEN_MULT_EVEN_EXPR:
4148 case VEC_WIDEN_MULT_ODD_EXPR:
4150 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4151 || TREE_CODE (lhs_type) != VECTOR_TYPE
4152 || !types_compatible_p (rhs1_type, rhs2_type)
4153 || (GET_MODE_SIZE (element_mode (lhs_type))
4154 != 2 * GET_MODE_SIZE (element_mode (rhs1_type))))
4156 error ("type mismatch in vector widening multiplication");
4157 debug_generic_expr (lhs_type);
4158 debug_generic_expr (rhs1_type);
4159 debug_generic_expr (rhs2_type);
4160 return true;
4162 return false;
4165 case VEC_PACK_TRUNC_EXPR:
4166 /* ??? We currently use VEC_PACK_TRUNC_EXPR to simply concat
4167 vector boolean types. */
4168 if (VECTOR_BOOLEAN_TYPE_P (lhs_type)
4169 && VECTOR_BOOLEAN_TYPE_P (rhs1_type)
4170 && types_compatible_p (rhs1_type, rhs2_type)
4171 && (TYPE_VECTOR_SUBPARTS (lhs_type)
4172 == 2 * TYPE_VECTOR_SUBPARTS (rhs1_type)))
4173 return false;
4175 /* Fallthru. */
4176 case VEC_PACK_SAT_EXPR:
4177 case VEC_PACK_FIX_TRUNC_EXPR:
4179 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4180 || TREE_CODE (lhs_type) != VECTOR_TYPE
4181 || !((rhs_code == VEC_PACK_FIX_TRUNC_EXPR
4182 && SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type))
4183 && INTEGRAL_TYPE_P (TREE_TYPE (lhs_type)))
4184 || (INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
4185 == INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))))
4186 || !types_compatible_p (rhs1_type, rhs2_type)
4187 || (GET_MODE_SIZE (element_mode (rhs1_type))
4188 != 2 * GET_MODE_SIZE (element_mode (lhs_type))))
4190 error ("type mismatch in vector pack expression");
4191 debug_generic_expr (lhs_type);
4192 debug_generic_expr (rhs1_type);
4193 debug_generic_expr (rhs2_type);
4194 return true;
4197 return false;
4200 case MULT_EXPR:
4201 case MULT_HIGHPART_EXPR:
4202 case TRUNC_DIV_EXPR:
4203 case CEIL_DIV_EXPR:
4204 case FLOOR_DIV_EXPR:
4205 case ROUND_DIV_EXPR:
4206 case TRUNC_MOD_EXPR:
4207 case CEIL_MOD_EXPR:
4208 case FLOOR_MOD_EXPR:
4209 case ROUND_MOD_EXPR:
4210 case RDIV_EXPR:
4211 case EXACT_DIV_EXPR:
4212 case MIN_EXPR:
4213 case MAX_EXPR:
4214 case BIT_IOR_EXPR:
4215 case BIT_XOR_EXPR:
4216 case BIT_AND_EXPR:
4217 /* Continue with generic binary expression handling. */
4218 break;
4220 case VEC_SERIES_EXPR:
4221 if (!useless_type_conversion_p (rhs1_type, rhs2_type))
4223 error ("type mismatch in series expression");
4224 debug_generic_expr (rhs1_type);
4225 debug_generic_expr (rhs2_type);
4226 return true;
4228 if (TREE_CODE (lhs_type) != VECTOR_TYPE
4229 || !useless_type_conversion_p (TREE_TYPE (lhs_type), rhs1_type))
4231 error ("vector type expected in series expression");
4232 debug_generic_expr (lhs_type);
4233 return true;
4235 return false;
4237 default:
4238 gcc_unreachable ();
4241 if (!useless_type_conversion_p (lhs_type, rhs1_type)
4242 || !useless_type_conversion_p (lhs_type, rhs2_type))
4244 error ("type mismatch in binary expression");
4245 debug_generic_stmt (lhs_type);
4246 debug_generic_stmt (rhs1_type);
4247 debug_generic_stmt (rhs2_type);
4248 return true;
4251 return false;
4254 /* Verify a gimple assignment statement STMT with a ternary rhs.
4255 Returns true if anything is wrong. */
4257 static bool
4258 verify_gimple_assign_ternary (gassign *stmt)
4260 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
4261 tree lhs = gimple_assign_lhs (stmt);
4262 tree lhs_type = TREE_TYPE (lhs);
4263 tree rhs1 = gimple_assign_rhs1 (stmt);
4264 tree rhs1_type = TREE_TYPE (rhs1);
4265 tree rhs2 = gimple_assign_rhs2 (stmt);
4266 tree rhs2_type = TREE_TYPE (rhs2);
4267 tree rhs3 = gimple_assign_rhs3 (stmt);
4268 tree rhs3_type = TREE_TYPE (rhs3);
4270 if (!is_gimple_reg (lhs))
4272 error ("non-register as LHS of ternary operation");
4273 return true;
4276 if (((rhs_code == VEC_COND_EXPR || rhs_code == COND_EXPR)
4277 ? !is_gimple_condexpr (rhs1) : !is_gimple_val (rhs1))
4278 || !is_gimple_val (rhs2)
4279 || !is_gimple_val (rhs3))
4281 error ("invalid operands in ternary operation");
4282 return true;
4285 /* First handle operations that involve different types. */
4286 switch (rhs_code)
4288 case WIDEN_MULT_PLUS_EXPR:
4289 case WIDEN_MULT_MINUS_EXPR:
4290 if ((!INTEGRAL_TYPE_P (rhs1_type)
4291 && !FIXED_POINT_TYPE_P (rhs1_type))
4292 || !useless_type_conversion_p (rhs1_type, rhs2_type)
4293 || !useless_type_conversion_p (lhs_type, rhs3_type)
4294 || 2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)
4295 || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
4297 error ("type mismatch in widening multiply-accumulate expression");
4298 debug_generic_expr (lhs_type);
4299 debug_generic_expr (rhs1_type);
4300 debug_generic_expr (rhs2_type);
4301 debug_generic_expr (rhs3_type);
4302 return true;
4304 break;
4306 case FMA_EXPR:
4307 if (!useless_type_conversion_p (lhs_type, rhs1_type)
4308 || !useless_type_conversion_p (lhs_type, rhs2_type)
4309 || !useless_type_conversion_p (lhs_type, rhs3_type))
4311 error ("type mismatch in fused multiply-add expression");
4312 debug_generic_expr (lhs_type);
4313 debug_generic_expr (rhs1_type);
4314 debug_generic_expr (rhs2_type);
4315 debug_generic_expr (rhs3_type);
4316 return true;
4318 break;
4320 case VEC_COND_EXPR:
4321 if (!VECTOR_BOOLEAN_TYPE_P (rhs1_type)
4322 || TYPE_VECTOR_SUBPARTS (rhs1_type)
4323 != TYPE_VECTOR_SUBPARTS (lhs_type))
4325 error ("the first argument of a VEC_COND_EXPR must be of a "
4326 "boolean vector type of the same number of elements "
4327 "as the result");
4328 debug_generic_expr (lhs_type);
4329 debug_generic_expr (rhs1_type);
4330 return true;
4332 /* Fallthrough. */
4333 case COND_EXPR:
4334 if (!useless_type_conversion_p (lhs_type, rhs2_type)
4335 || !useless_type_conversion_p (lhs_type, rhs3_type))
4337 error ("type mismatch in conditional expression");
4338 debug_generic_expr (lhs_type);
4339 debug_generic_expr (rhs2_type);
4340 debug_generic_expr (rhs3_type);
4341 return true;
4343 break;
4345 case VEC_PERM_EXPR:
4346 if (!useless_type_conversion_p (lhs_type, rhs1_type)
4347 || !useless_type_conversion_p (lhs_type, rhs2_type))
4349 error ("type mismatch in vector permute expression");
4350 debug_generic_expr (lhs_type);
4351 debug_generic_expr (rhs1_type);
4352 debug_generic_expr (rhs2_type);
4353 debug_generic_expr (rhs3_type);
4354 return true;
4357 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4358 || TREE_CODE (rhs2_type) != VECTOR_TYPE
4359 || TREE_CODE (rhs3_type) != VECTOR_TYPE)
4361 error ("vector types expected in vector permute expression");
4362 debug_generic_expr (lhs_type);
4363 debug_generic_expr (rhs1_type);
4364 debug_generic_expr (rhs2_type);
4365 debug_generic_expr (rhs3_type);
4366 return true;
4369 if (TYPE_VECTOR_SUBPARTS (rhs1_type) != TYPE_VECTOR_SUBPARTS (rhs2_type)
4370 || TYPE_VECTOR_SUBPARTS (rhs2_type)
4371 != TYPE_VECTOR_SUBPARTS (rhs3_type)
4372 || TYPE_VECTOR_SUBPARTS (rhs3_type)
4373 != TYPE_VECTOR_SUBPARTS (lhs_type))
4375 error ("vectors with different element number found "
4376 "in vector permute expression");
4377 debug_generic_expr (lhs_type);
4378 debug_generic_expr (rhs1_type);
4379 debug_generic_expr (rhs2_type);
4380 debug_generic_expr (rhs3_type);
4381 return true;
4384 if (TREE_CODE (TREE_TYPE (rhs3_type)) != INTEGER_TYPE
4385 || GET_MODE_BITSIZE (SCALAR_INT_TYPE_MODE (TREE_TYPE (rhs3_type)))
4386 != GET_MODE_BITSIZE (SCALAR_TYPE_MODE (TREE_TYPE (rhs1_type))))
4388 error ("invalid mask type in vector permute expression");
4389 debug_generic_expr (lhs_type);
4390 debug_generic_expr (rhs1_type);
4391 debug_generic_expr (rhs2_type);
4392 debug_generic_expr (rhs3_type);
4393 return true;
4396 return false;
4398 case SAD_EXPR:
4399 if (!useless_type_conversion_p (rhs1_type, rhs2_type)
4400 || !useless_type_conversion_p (lhs_type, rhs3_type)
4401 || 2 * GET_MODE_UNIT_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type)))
4402 > GET_MODE_UNIT_BITSIZE (TYPE_MODE (TREE_TYPE (lhs_type))))
4404 error ("type mismatch in sad expression");
4405 debug_generic_expr (lhs_type);
4406 debug_generic_expr (rhs1_type);
4407 debug_generic_expr (rhs2_type);
4408 debug_generic_expr (rhs3_type);
4409 return true;
4412 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4413 || TREE_CODE (rhs2_type) != VECTOR_TYPE
4414 || TREE_CODE (rhs3_type) != VECTOR_TYPE)
4416 error ("vector types expected in sad expression");
4417 debug_generic_expr (lhs_type);
4418 debug_generic_expr (rhs1_type);
4419 debug_generic_expr (rhs2_type);
4420 debug_generic_expr (rhs3_type);
4421 return true;
4424 return false;
4426 case BIT_INSERT_EXPR:
4427 if (! useless_type_conversion_p (lhs_type, rhs1_type))
4429 error ("type mismatch in BIT_INSERT_EXPR");
4430 debug_generic_expr (lhs_type);
4431 debug_generic_expr (rhs1_type);
4432 return true;
4434 if (! ((INTEGRAL_TYPE_P (rhs1_type)
4435 && INTEGRAL_TYPE_P (rhs2_type))
4436 || (VECTOR_TYPE_P (rhs1_type)
4437 && types_compatible_p (TREE_TYPE (rhs1_type), rhs2_type))))
4439 error ("not allowed type combination in BIT_INSERT_EXPR");
4440 debug_generic_expr (rhs1_type);
4441 debug_generic_expr (rhs2_type);
4442 return true;
4444 if (! tree_fits_uhwi_p (rhs3)
4445 || ! types_compatible_p (bitsizetype, TREE_TYPE (rhs3))
4446 || ! tree_fits_uhwi_p (TYPE_SIZE (rhs2_type)))
4448 error ("invalid position or size in BIT_INSERT_EXPR");
4449 return true;
4451 if (INTEGRAL_TYPE_P (rhs1_type))
4453 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (rhs3);
4454 if (bitpos >= TYPE_PRECISION (rhs1_type)
4455 || (bitpos + TYPE_PRECISION (rhs2_type)
4456 > TYPE_PRECISION (rhs1_type)))
4458 error ("insertion out of range in BIT_INSERT_EXPR");
4459 return true;
4462 else if (VECTOR_TYPE_P (rhs1_type))
4464 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (rhs3);
4465 unsigned HOST_WIDE_INT bitsize = tree_to_uhwi (TYPE_SIZE (rhs2_type));
4466 if (bitpos % bitsize != 0)
4468 error ("vector insertion not at element boundary");
4469 return true;
4472 return false;
4474 case DOT_PROD_EXPR:
4476 if (((TREE_CODE (rhs1_type) != VECTOR_TYPE
4477 || TREE_CODE (lhs_type) != VECTOR_TYPE)
4478 && ((!INTEGRAL_TYPE_P (rhs1_type)
4479 && !SCALAR_FLOAT_TYPE_P (rhs1_type))
4480 || (!INTEGRAL_TYPE_P (lhs_type)
4481 && !SCALAR_FLOAT_TYPE_P (lhs_type))))
4482 || !types_compatible_p (rhs1_type, rhs2_type)
4483 || !useless_type_conversion_p (lhs_type, rhs3_type)
4484 || (GET_MODE_SIZE (element_mode (rhs3_type))
4485 < 2 * GET_MODE_SIZE (element_mode (rhs1_type))))
4487 error ("type mismatch in dot product reduction");
4488 debug_generic_expr (lhs_type);
4489 debug_generic_expr (rhs1_type);
4490 debug_generic_expr (rhs2_type);
4491 return true;
4493 return false;
4496 case REALIGN_LOAD_EXPR:
4497 /* FIXME. */
4498 return false;
4500 default:
4501 gcc_unreachable ();
4503 return false;
4506 /* Verify a gimple assignment statement STMT with a single rhs.
4507 Returns true if anything is wrong. */
4509 static bool
4510 verify_gimple_assign_single (gassign *stmt)
4512 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
4513 tree lhs = gimple_assign_lhs (stmt);
4514 tree lhs_type = TREE_TYPE (lhs);
4515 tree rhs1 = gimple_assign_rhs1 (stmt);
4516 tree rhs1_type = TREE_TYPE (rhs1);
4517 bool res = false;
4519 if (!useless_type_conversion_p (lhs_type, rhs1_type))
4521 error ("non-trivial conversion at assignment");
4522 debug_generic_expr (lhs_type);
4523 debug_generic_expr (rhs1_type);
4524 return true;
4527 if (gimple_clobber_p (stmt)
4528 && !(DECL_P (lhs) || TREE_CODE (lhs) == MEM_REF))
4530 error ("non-decl/MEM_REF LHS in clobber statement");
4531 debug_generic_expr (lhs);
4532 return true;
4535 if (handled_component_p (lhs)
4536 || TREE_CODE (lhs) == MEM_REF
4537 || TREE_CODE (lhs) == TARGET_MEM_REF)
4538 res |= verify_types_in_gimple_reference (lhs, true);
4540 /* Special codes we cannot handle via their class. */
4541 switch (rhs_code)
4543 case ADDR_EXPR:
4545 tree op = TREE_OPERAND (rhs1, 0);
4546 if (!is_gimple_addressable (op))
4548 error ("invalid operand in unary expression");
4549 return true;
4552 /* Technically there is no longer a need for matching types, but
4553 gimple hygiene asks for this check. In LTO we can end up
4554 combining incompatible units and thus end up with addresses
4555 of globals that change their type to a common one. */
4556 if (!in_lto_p
4557 && !types_compatible_p (TREE_TYPE (op),
4558 TREE_TYPE (TREE_TYPE (rhs1)))
4559 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
4560 TREE_TYPE (op)))
4562 error ("type mismatch in address expression");
4563 debug_generic_stmt (TREE_TYPE (rhs1));
4564 debug_generic_stmt (TREE_TYPE (op));
4565 return true;
4568 return verify_types_in_gimple_reference (op, true);
4571 /* tcc_reference */
4572 case INDIRECT_REF:
4573 error ("INDIRECT_REF in gimple IL");
4574 return true;
4576 case COMPONENT_REF:
4577 case BIT_FIELD_REF:
4578 case ARRAY_REF:
4579 case ARRAY_RANGE_REF:
4580 case VIEW_CONVERT_EXPR:
4581 case REALPART_EXPR:
4582 case IMAGPART_EXPR:
4583 case TARGET_MEM_REF:
4584 case MEM_REF:
4585 if (!is_gimple_reg (lhs)
4586 && is_gimple_reg_type (TREE_TYPE (lhs)))
4588 error ("invalid rhs for gimple memory store");
4589 debug_generic_stmt (lhs);
4590 debug_generic_stmt (rhs1);
4591 return true;
4593 return res || verify_types_in_gimple_reference (rhs1, false);
4595 /* tcc_constant */
4596 case SSA_NAME:
4597 case INTEGER_CST:
4598 case REAL_CST:
4599 case FIXED_CST:
4600 case COMPLEX_CST:
4601 case VECTOR_CST:
4602 case STRING_CST:
4603 return res;
4605 /* tcc_declaration */
4606 case CONST_DECL:
4607 return res;
4608 case VAR_DECL:
4609 case PARM_DECL:
4610 if (!is_gimple_reg (lhs)
4611 && !is_gimple_reg (rhs1)
4612 && is_gimple_reg_type (TREE_TYPE (lhs)))
4614 error ("invalid rhs for gimple memory store");
4615 debug_generic_stmt (lhs);
4616 debug_generic_stmt (rhs1);
4617 return true;
4619 return res;
4621 case CONSTRUCTOR:
4622 if (TREE_CODE (rhs1_type) == VECTOR_TYPE)
4624 unsigned int i;
4625 tree elt_i, elt_v, elt_t = NULL_TREE;
4627 if (CONSTRUCTOR_NELTS (rhs1) == 0)
4628 return res;
4629 /* For vector CONSTRUCTORs we require that either it is empty
4630 CONSTRUCTOR, or it is a CONSTRUCTOR of smaller vector elements
4631 (then the element count must be correct to cover the whole
4632 outer vector and index must be NULL on all elements, or it is
4633 a CONSTRUCTOR of scalar elements, where we as an exception allow
4634 smaller number of elements (assuming zero filling) and
4635 consecutive indexes as compared to NULL indexes (such
4636 CONSTRUCTORs can appear in the IL from FEs). */
4637 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (rhs1), i, elt_i, elt_v)
4639 if (elt_t == NULL_TREE)
4641 elt_t = TREE_TYPE (elt_v);
4642 if (TREE_CODE (elt_t) == VECTOR_TYPE)
4644 tree elt_t = TREE_TYPE (elt_v);
4645 if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
4646 TREE_TYPE (elt_t)))
4648 error ("incorrect type of vector CONSTRUCTOR"
4649 " elements");
4650 debug_generic_stmt (rhs1);
4651 return true;
4653 else if (CONSTRUCTOR_NELTS (rhs1)
4654 * TYPE_VECTOR_SUBPARTS (elt_t)
4655 != TYPE_VECTOR_SUBPARTS (rhs1_type))
4657 error ("incorrect number of vector CONSTRUCTOR"
4658 " elements");
4659 debug_generic_stmt (rhs1);
4660 return true;
4663 else if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
4664 elt_t))
4666 error ("incorrect type of vector CONSTRUCTOR elements");
4667 debug_generic_stmt (rhs1);
4668 return true;
4670 else if (CONSTRUCTOR_NELTS (rhs1)
4671 > TYPE_VECTOR_SUBPARTS (rhs1_type))
4673 error ("incorrect number of vector CONSTRUCTOR elements");
4674 debug_generic_stmt (rhs1);
4675 return true;
4678 else if (!useless_type_conversion_p (elt_t, TREE_TYPE (elt_v)))
4680 error ("incorrect type of vector CONSTRUCTOR elements");
4681 debug_generic_stmt (rhs1);
4682 return true;
4684 if (elt_i != NULL_TREE
4685 && (TREE_CODE (elt_t) == VECTOR_TYPE
4686 || TREE_CODE (elt_i) != INTEGER_CST
4687 || compare_tree_int (elt_i, i) != 0))
4689 error ("vector CONSTRUCTOR with non-NULL element index");
4690 debug_generic_stmt (rhs1);
4691 return true;
4693 if (!is_gimple_val (elt_v))
4695 error ("vector CONSTRUCTOR element is not a GIMPLE value");
4696 debug_generic_stmt (rhs1);
4697 return true;
4701 else if (CONSTRUCTOR_NELTS (rhs1) != 0)
4703 error ("non-vector CONSTRUCTOR with elements");
4704 debug_generic_stmt (rhs1);
4705 return true;
4707 return res;
4708 case OBJ_TYPE_REF:
4709 case ASSERT_EXPR:
4710 case WITH_SIZE_EXPR:
4711 /* FIXME. */
4712 return res;
4714 default:;
4717 return res;
4720 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
4721 is a problem, otherwise false. */
4723 static bool
4724 verify_gimple_assign (gassign *stmt)
4726 switch (gimple_assign_rhs_class (stmt))
4728 case GIMPLE_SINGLE_RHS:
4729 return verify_gimple_assign_single (stmt);
4731 case GIMPLE_UNARY_RHS:
4732 return verify_gimple_assign_unary (stmt);
4734 case GIMPLE_BINARY_RHS:
4735 return verify_gimple_assign_binary (stmt);
4737 case GIMPLE_TERNARY_RHS:
4738 return verify_gimple_assign_ternary (stmt);
4740 default:
4741 gcc_unreachable ();
4745 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
4746 is a problem, otherwise false. */
4748 static bool
4749 verify_gimple_return (greturn *stmt)
4751 tree op = gimple_return_retval (stmt);
4752 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
4754 /* We cannot test for present return values as we do not fix up missing
4755 return values from the original source. */
4756 if (op == NULL)
4757 return false;
4759 if (!is_gimple_val (op)
4760 && TREE_CODE (op) != RESULT_DECL)
4762 error ("invalid operand in return statement");
4763 debug_generic_stmt (op);
4764 return true;
4767 if ((TREE_CODE (op) == RESULT_DECL
4768 && DECL_BY_REFERENCE (op))
4769 || (TREE_CODE (op) == SSA_NAME
4770 && SSA_NAME_VAR (op)
4771 && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
4772 && DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
4773 op = TREE_TYPE (op);
4775 if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
4777 error ("invalid conversion in return statement");
4778 debug_generic_stmt (restype);
4779 debug_generic_stmt (TREE_TYPE (op));
4780 return true;
4783 return false;
4787 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
4788 is a problem, otherwise false. */
4790 static bool
4791 verify_gimple_goto (ggoto *stmt)
4793 tree dest = gimple_goto_dest (stmt);
4795 /* ??? We have two canonical forms of direct goto destinations, a
4796 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
4797 if (TREE_CODE (dest) != LABEL_DECL
4798 && (!is_gimple_val (dest)
4799 || !POINTER_TYPE_P (TREE_TYPE (dest))))
4801 error ("goto destination is neither a label nor a pointer");
4802 return true;
4805 return false;
4808 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
4809 is a problem, otherwise false. */
4811 static bool
4812 verify_gimple_switch (gswitch *stmt)
4814 unsigned int i, n;
4815 tree elt, prev_upper_bound = NULL_TREE;
4816 tree index_type, elt_type = NULL_TREE;
4818 if (!is_gimple_val (gimple_switch_index (stmt)))
4820 error ("invalid operand to switch statement");
4821 debug_generic_stmt (gimple_switch_index (stmt));
4822 return true;
4825 index_type = TREE_TYPE (gimple_switch_index (stmt));
4826 if (! INTEGRAL_TYPE_P (index_type))
4828 error ("non-integral type switch statement");
4829 debug_generic_expr (index_type);
4830 return true;
4833 elt = gimple_switch_label (stmt, 0);
4834 if (CASE_LOW (elt) != NULL_TREE || CASE_HIGH (elt) != NULL_TREE)
4836 error ("invalid default case label in switch statement");
4837 debug_generic_expr (elt);
4838 return true;
4841 n = gimple_switch_num_labels (stmt);
4842 for (i = 1; i < n; i++)
4844 elt = gimple_switch_label (stmt, i);
4846 if (! CASE_LOW (elt))
4848 error ("invalid case label in switch statement");
4849 debug_generic_expr (elt);
4850 return true;
4852 if (CASE_HIGH (elt)
4853 && ! tree_int_cst_lt (CASE_LOW (elt), CASE_HIGH (elt)))
4855 error ("invalid case range in switch statement");
4856 debug_generic_expr (elt);
4857 return true;
4860 if (elt_type)
4862 if (TREE_TYPE (CASE_LOW (elt)) != elt_type
4863 || (CASE_HIGH (elt) && TREE_TYPE (CASE_HIGH (elt)) != elt_type))
4865 error ("type mismatch for case label in switch statement");
4866 debug_generic_expr (elt);
4867 return true;
4870 else
4872 elt_type = TREE_TYPE (CASE_LOW (elt));
4873 if (TYPE_PRECISION (index_type) < TYPE_PRECISION (elt_type))
4875 error ("type precision mismatch in switch statement");
4876 return true;
4880 if (prev_upper_bound)
4882 if (! tree_int_cst_lt (prev_upper_bound, CASE_LOW (elt)))
4884 error ("case labels not sorted in switch statement");
4885 return true;
4889 prev_upper_bound = CASE_HIGH (elt);
4890 if (! prev_upper_bound)
4891 prev_upper_bound = CASE_LOW (elt);
4894 return false;
4897 /* Verify a gimple debug statement STMT.
4898 Returns true if anything is wrong. */
4900 static bool
4901 verify_gimple_debug (gimple *stmt ATTRIBUTE_UNUSED)
4903 /* There isn't much that could be wrong in a gimple debug stmt. A
4904 gimple debug bind stmt, for example, maps a tree, that's usually
4905 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
4906 component or member of an aggregate type, to another tree, that
4907 can be an arbitrary expression. These stmts expand into debug
4908 insns, and are converted to debug notes by var-tracking.c. */
4909 return false;
4912 /* Verify a gimple label statement STMT.
4913 Returns true if anything is wrong. */
4915 static bool
4916 verify_gimple_label (glabel *stmt)
4918 tree decl = gimple_label_label (stmt);
4919 int uid;
4920 bool err = false;
4922 if (TREE_CODE (decl) != LABEL_DECL)
4923 return true;
4924 if (!DECL_NONLOCAL (decl) && !FORCED_LABEL (decl)
4925 && DECL_CONTEXT (decl) != current_function_decl)
4927 error ("label's context is not the current function decl");
4928 err |= true;
4931 uid = LABEL_DECL_UID (decl);
4932 if (cfun->cfg
4933 && (uid == -1
4934 || (*label_to_block_map_for_fn (cfun))[uid] != gimple_bb (stmt)))
4936 error ("incorrect entry in label_to_block_map");
4937 err |= true;
4940 uid = EH_LANDING_PAD_NR (decl);
4941 if (uid)
4943 eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
4944 if (decl != lp->post_landing_pad)
4946 error ("incorrect setting of landing pad number");
4947 err |= true;
4951 return err;
4954 /* Verify a gimple cond statement STMT.
4955 Returns true if anything is wrong. */
4957 static bool
4958 verify_gimple_cond (gcond *stmt)
4960 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
4962 error ("invalid comparison code in gimple cond");
4963 return true;
4965 if (!(!gimple_cond_true_label (stmt)
4966 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
4967 || !(!gimple_cond_false_label (stmt)
4968 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
4970 error ("invalid labels in gimple cond");
4971 return true;
4974 return verify_gimple_comparison (boolean_type_node,
4975 gimple_cond_lhs (stmt),
4976 gimple_cond_rhs (stmt),
4977 gimple_cond_code (stmt));
4980 /* Verify the GIMPLE statement STMT. Returns true if there is an
4981 error, otherwise false. */
4983 static bool
4984 verify_gimple_stmt (gimple *stmt)
4986 switch (gimple_code (stmt))
4988 case GIMPLE_ASSIGN:
4989 return verify_gimple_assign (as_a <gassign *> (stmt));
4991 case GIMPLE_LABEL:
4992 return verify_gimple_label (as_a <glabel *> (stmt));
4994 case GIMPLE_CALL:
4995 return verify_gimple_call (as_a <gcall *> (stmt));
4997 case GIMPLE_COND:
4998 return verify_gimple_cond (as_a <gcond *> (stmt));
5000 case GIMPLE_GOTO:
5001 return verify_gimple_goto (as_a <ggoto *> (stmt));
5003 case GIMPLE_SWITCH:
5004 return verify_gimple_switch (as_a <gswitch *> (stmt));
5006 case GIMPLE_RETURN:
5007 return verify_gimple_return (as_a <greturn *> (stmt));
5009 case GIMPLE_ASM:
5010 return false;
5012 case GIMPLE_TRANSACTION:
5013 return verify_gimple_transaction (as_a <gtransaction *> (stmt));
5015 /* Tuples that do not have tree operands. */
5016 case GIMPLE_NOP:
5017 case GIMPLE_PREDICT:
5018 case GIMPLE_RESX:
5019 case GIMPLE_EH_DISPATCH:
5020 case GIMPLE_EH_MUST_NOT_THROW:
5021 return false;
5023 CASE_GIMPLE_OMP:
5024 /* OpenMP directives are validated by the FE and never operated
5025 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
5026 non-gimple expressions when the main index variable has had
5027 its address taken. This does not affect the loop itself
5028 because the header of an GIMPLE_OMP_FOR is merely used to determine
5029 how to setup the parallel iteration. */
5030 return false;
5032 case GIMPLE_DEBUG:
5033 return verify_gimple_debug (stmt);
5035 default:
5036 gcc_unreachable ();
5040 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
5041 and false otherwise. */
5043 static bool
5044 verify_gimple_phi (gimple *phi)
5046 bool err = false;
5047 unsigned i;
5048 tree phi_result = gimple_phi_result (phi);
5049 bool virtual_p;
5051 if (!phi_result)
5053 error ("invalid PHI result");
5054 return true;
5057 virtual_p = virtual_operand_p (phi_result);
5058 if (TREE_CODE (phi_result) != SSA_NAME
5059 || (virtual_p
5060 && SSA_NAME_VAR (phi_result) != gimple_vop (cfun)))
5062 error ("invalid PHI result");
5063 err = true;
5066 for (i = 0; i < gimple_phi_num_args (phi); i++)
5068 tree t = gimple_phi_arg_def (phi, i);
5070 if (!t)
5072 error ("missing PHI def");
5073 err |= true;
5074 continue;
5076 /* Addressable variables do have SSA_NAMEs but they
5077 are not considered gimple values. */
5078 else if ((TREE_CODE (t) == SSA_NAME
5079 && virtual_p != virtual_operand_p (t))
5080 || (virtual_p
5081 && (TREE_CODE (t) != SSA_NAME
5082 || SSA_NAME_VAR (t) != gimple_vop (cfun)))
5083 || (!virtual_p
5084 && !is_gimple_val (t)))
5086 error ("invalid PHI argument");
5087 debug_generic_expr (t);
5088 err |= true;
5090 #ifdef ENABLE_TYPES_CHECKING
5091 if (!useless_type_conversion_p (TREE_TYPE (phi_result), TREE_TYPE (t)))
5093 error ("incompatible types in PHI argument %u", i);
5094 debug_generic_stmt (TREE_TYPE (phi_result));
5095 debug_generic_stmt (TREE_TYPE (t));
5096 err |= true;
5098 #endif
5101 return err;
5104 /* Verify the GIMPLE statements inside the sequence STMTS. */
5106 static bool
5107 verify_gimple_in_seq_2 (gimple_seq stmts)
5109 gimple_stmt_iterator ittr;
5110 bool err = false;
5112 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
5114 gimple *stmt = gsi_stmt (ittr);
5116 switch (gimple_code (stmt))
5118 case GIMPLE_BIND:
5119 err |= verify_gimple_in_seq_2 (
5120 gimple_bind_body (as_a <gbind *> (stmt)));
5121 break;
5123 case GIMPLE_TRY:
5124 err |= verify_gimple_in_seq_2 (gimple_try_eval (stmt));
5125 err |= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt));
5126 break;
5128 case GIMPLE_EH_FILTER:
5129 err |= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt));
5130 break;
5132 case GIMPLE_EH_ELSE:
5134 geh_else *eh_else = as_a <geh_else *> (stmt);
5135 err |= verify_gimple_in_seq_2 (gimple_eh_else_n_body (eh_else));
5136 err |= verify_gimple_in_seq_2 (gimple_eh_else_e_body (eh_else));
5138 break;
5140 case GIMPLE_CATCH:
5141 err |= verify_gimple_in_seq_2 (gimple_catch_handler (
5142 as_a <gcatch *> (stmt)));
5143 break;
5145 case GIMPLE_TRANSACTION:
5146 err |= verify_gimple_transaction (as_a <gtransaction *> (stmt));
5147 break;
5149 default:
5151 bool err2 = verify_gimple_stmt (stmt);
5152 if (err2)
5153 debug_gimple_stmt (stmt);
5154 err |= err2;
5159 return err;
5162 /* Verify the contents of a GIMPLE_TRANSACTION. Returns true if there
5163 is a problem, otherwise false. */
5165 static bool
5166 verify_gimple_transaction (gtransaction *stmt)
5168 tree lab;
5170 lab = gimple_transaction_label_norm (stmt);
5171 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
5172 return true;
5173 lab = gimple_transaction_label_uninst (stmt);
5174 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
5175 return true;
5176 lab = gimple_transaction_label_over (stmt);
5177 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
5178 return true;
5180 return verify_gimple_in_seq_2 (gimple_transaction_body (stmt));
5184 /* Verify the GIMPLE statements inside the statement list STMTS. */
5186 DEBUG_FUNCTION void
5187 verify_gimple_in_seq (gimple_seq stmts)
5189 timevar_push (TV_TREE_STMT_VERIFY);
5190 if (verify_gimple_in_seq_2 (stmts))
5191 internal_error ("verify_gimple failed");
5192 timevar_pop (TV_TREE_STMT_VERIFY);
5195 /* Return true when the T can be shared. */
5197 static bool
5198 tree_node_can_be_shared (tree t)
5200 if (IS_TYPE_OR_DECL_P (t)
5201 || is_gimple_min_invariant (t)
5202 || TREE_CODE (t) == SSA_NAME
5203 || t == error_mark_node
5204 || TREE_CODE (t) == IDENTIFIER_NODE)
5205 return true;
5207 if (TREE_CODE (t) == CASE_LABEL_EXPR)
5208 return true;
5210 if (DECL_P (t))
5211 return true;
5213 return false;
5216 /* Called via walk_tree. Verify tree sharing. */
5218 static tree
5219 verify_node_sharing_1 (tree *tp, int *walk_subtrees, void *data)
5221 hash_set<void *> *visited = (hash_set<void *> *) data;
5223 if (tree_node_can_be_shared (*tp))
5225 *walk_subtrees = false;
5226 return NULL;
5229 if (visited->add (*tp))
5230 return *tp;
5232 return NULL;
5235 /* Called via walk_gimple_stmt. Verify tree sharing. */
5237 static tree
5238 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
5240 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5241 return verify_node_sharing_1 (tp, walk_subtrees, wi->info);
5244 static bool eh_error_found;
5245 bool
5246 verify_eh_throw_stmt_node (gimple *const &stmt, const int &,
5247 hash_set<gimple *> *visited)
5249 if (!visited->contains (stmt))
5251 error ("dead STMT in EH table");
5252 debug_gimple_stmt (stmt);
5253 eh_error_found = true;
5255 return true;
5258 /* Verify if the location LOCs block is in BLOCKS. */
5260 static bool
5261 verify_location (hash_set<tree> *blocks, location_t loc)
5263 tree block = LOCATION_BLOCK (loc);
5264 if (block != NULL_TREE
5265 && !blocks->contains (block))
5267 error ("location references block not in block tree");
5268 return true;
5270 if (block != NULL_TREE)
5271 return verify_location (blocks, BLOCK_SOURCE_LOCATION (block));
5272 return false;
5275 /* Called via walk_tree. Verify that expressions have no blocks. */
5277 static tree
5278 verify_expr_no_block (tree *tp, int *walk_subtrees, void *)
5280 if (!EXPR_P (*tp))
5282 *walk_subtrees = false;
5283 return NULL;
5286 location_t loc = EXPR_LOCATION (*tp);
5287 if (LOCATION_BLOCK (loc) != NULL)
5288 return *tp;
5290 return NULL;
5293 /* Called via walk_tree. Verify locations of expressions. */
5295 static tree
5296 verify_expr_location_1 (tree *tp, int *walk_subtrees, void *data)
5298 hash_set<tree> *blocks = (hash_set<tree> *) data;
5300 if (VAR_P (*tp) && DECL_HAS_DEBUG_EXPR_P (*tp))
5302 tree t = DECL_DEBUG_EXPR (*tp);
5303 tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL);
5304 if (addr)
5305 return addr;
5307 if ((VAR_P (*tp)
5308 || TREE_CODE (*tp) == PARM_DECL
5309 || TREE_CODE (*tp) == RESULT_DECL)
5310 && DECL_HAS_VALUE_EXPR_P (*tp))
5312 tree t = DECL_VALUE_EXPR (*tp);
5313 tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL);
5314 if (addr)
5315 return addr;
5318 if (!EXPR_P (*tp))
5320 *walk_subtrees = false;
5321 return NULL;
5324 location_t loc = EXPR_LOCATION (*tp);
5325 if (verify_location (blocks, loc))
5326 return *tp;
5328 return NULL;
5331 /* Called via walk_gimple_op. Verify locations of expressions. */
5333 static tree
5334 verify_expr_location (tree *tp, int *walk_subtrees, void *data)
5336 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5337 return verify_expr_location_1 (tp, walk_subtrees, wi->info);
5340 /* Insert all subblocks of BLOCK into BLOCKS and recurse. */
5342 static void
5343 collect_subblocks (hash_set<tree> *blocks, tree block)
5345 tree t;
5346 for (t = BLOCK_SUBBLOCKS (block); t; t = BLOCK_CHAIN (t))
5348 blocks->add (t);
5349 collect_subblocks (blocks, t);
5353 /* Verify the GIMPLE statements in the CFG of FN. */
5355 DEBUG_FUNCTION void
5356 verify_gimple_in_cfg (struct function *fn, bool verify_nothrow)
5358 basic_block bb;
5359 bool err = false;
5361 timevar_push (TV_TREE_STMT_VERIFY);
5362 hash_set<void *> visited;
5363 hash_set<gimple *> visited_stmts;
5365 /* Collect all BLOCKs referenced by the BLOCK tree of FN. */
5366 hash_set<tree> blocks;
5367 if (DECL_INITIAL (fn->decl))
5369 blocks.add (DECL_INITIAL (fn->decl));
5370 collect_subblocks (&blocks, DECL_INITIAL (fn->decl));
5373 FOR_EACH_BB_FN (bb, fn)
5375 gimple_stmt_iterator gsi;
5377 for (gphi_iterator gpi = gsi_start_phis (bb);
5378 !gsi_end_p (gpi);
5379 gsi_next (&gpi))
5381 gphi *phi = gpi.phi ();
5382 bool err2 = false;
5383 unsigned i;
5385 visited_stmts.add (phi);
5387 if (gimple_bb (phi) != bb)
5389 error ("gimple_bb (phi) is set to a wrong basic block");
5390 err2 = true;
5393 err2 |= verify_gimple_phi (phi);
5395 /* Only PHI arguments have locations. */
5396 if (gimple_location (phi) != UNKNOWN_LOCATION)
5398 error ("PHI node with location");
5399 err2 = true;
5402 for (i = 0; i < gimple_phi_num_args (phi); i++)
5404 tree arg = gimple_phi_arg_def (phi, i);
5405 tree addr = walk_tree (&arg, verify_node_sharing_1,
5406 &visited, NULL);
5407 if (addr)
5409 error ("incorrect sharing of tree nodes");
5410 debug_generic_expr (addr);
5411 err2 |= true;
5413 location_t loc = gimple_phi_arg_location (phi, i);
5414 if (virtual_operand_p (gimple_phi_result (phi))
5415 && loc != UNKNOWN_LOCATION)
5417 error ("virtual PHI with argument locations");
5418 err2 = true;
5420 addr = walk_tree (&arg, verify_expr_location_1, &blocks, NULL);
5421 if (addr)
5423 debug_generic_expr (addr);
5424 err2 = true;
5426 err2 |= verify_location (&blocks, loc);
5429 if (err2)
5430 debug_gimple_stmt (phi);
5431 err |= err2;
5434 bool label_allowed = true;
5435 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5437 gimple *stmt = gsi_stmt (gsi);
5438 bool err2 = false;
5439 struct walk_stmt_info wi;
5440 tree addr;
5441 int lp_nr;
5443 visited_stmts.add (stmt);
5445 if (gimple_bb (stmt) != bb)
5447 error ("gimple_bb (stmt) is set to a wrong basic block");
5448 err2 = true;
5451 /* Labels may be preceded only by debug markers, not debug bind
5452 or source bind or any other statements. */
5453 if (gimple_code (stmt) == GIMPLE_LABEL)
5455 if (!label_allowed)
5457 error ("gimple label in the middle of a basic block");
5458 err2 = true;
5461 else if (!gimple_debug_begin_stmt_p (stmt))
5462 label_allowed = false;
5464 err2 |= verify_gimple_stmt (stmt);
5465 err2 |= verify_location (&blocks, gimple_location (stmt));
5467 memset (&wi, 0, sizeof (wi));
5468 wi.info = (void *) &visited;
5469 addr = walk_gimple_op (stmt, verify_node_sharing, &wi);
5470 if (addr)
5472 error ("incorrect sharing of tree nodes");
5473 debug_generic_expr (addr);
5474 err2 |= true;
5477 memset (&wi, 0, sizeof (wi));
5478 wi.info = (void *) &blocks;
5479 addr = walk_gimple_op (stmt, verify_expr_location, &wi);
5480 if (addr)
5482 debug_generic_expr (addr);
5483 err2 |= true;
5486 /* ??? Instead of not checking these stmts at all the walker
5487 should know its context via wi. */
5488 if (!is_gimple_debug (stmt)
5489 && !is_gimple_omp (stmt))
5491 memset (&wi, 0, sizeof (wi));
5492 addr = walk_gimple_op (stmt, verify_expr, &wi);
5493 if (addr)
5495 debug_generic_expr (addr);
5496 inform (gimple_location (stmt), "in statement");
5497 err2 |= true;
5501 /* If the statement is marked as part of an EH region, then it is
5502 expected that the statement could throw. Verify that when we
5503 have optimizations that simplify statements such that we prove
5504 that they cannot throw, that we update other data structures
5505 to match. */
5506 lp_nr = lookup_stmt_eh_lp (stmt);
5507 if (lp_nr > 0)
5509 if (!stmt_could_throw_p (stmt))
5511 if (verify_nothrow)
5513 error ("statement marked for throw, but doesn%'t");
5514 err2 |= true;
5517 else if (!gsi_one_before_end_p (gsi))
5519 error ("statement marked for throw in middle of block");
5520 err2 |= true;
5524 if (err2)
5525 debug_gimple_stmt (stmt);
5526 err |= err2;
5530 eh_error_found = false;
5531 hash_map<gimple *, int> *eh_table = get_eh_throw_stmt_table (cfun);
5532 if (eh_table)
5533 eh_table->traverse<hash_set<gimple *> *, verify_eh_throw_stmt_node>
5534 (&visited_stmts);
5536 if (err || eh_error_found)
5537 internal_error ("verify_gimple failed");
5539 verify_histograms ();
5540 timevar_pop (TV_TREE_STMT_VERIFY);
5544 /* Verifies that the flow information is OK. */
5546 static int
5547 gimple_verify_flow_info (void)
5549 int err = 0;
5550 basic_block bb;
5551 gimple_stmt_iterator gsi;
5552 gimple *stmt;
5553 edge e;
5554 edge_iterator ei;
5556 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq
5557 || ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes)
5559 error ("ENTRY_BLOCK has IL associated with it");
5560 err = 1;
5563 if (EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq
5564 || EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes)
5566 error ("EXIT_BLOCK has IL associated with it");
5567 err = 1;
5570 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
5571 if (e->flags & EDGE_FALLTHRU)
5573 error ("fallthru to exit from bb %d", e->src->index);
5574 err = 1;
5577 FOR_EACH_BB_FN (bb, cfun)
5579 bool found_ctrl_stmt = false;
5581 stmt = NULL;
5583 /* Skip labels on the start of basic block. */
5584 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5586 tree label;
5588 if (is_gimple_debug (gsi_stmt (gsi)))
5589 continue;
5591 gimple *prev_stmt = stmt;
5593 stmt = gsi_stmt (gsi);
5595 if (gimple_code (stmt) != GIMPLE_LABEL)
5596 break;
5598 label = gimple_label_label (as_a <glabel *> (stmt));
5599 if (prev_stmt && DECL_NONLOCAL (label))
5601 error ("nonlocal label ");
5602 print_generic_expr (stderr, label);
5603 fprintf (stderr, " is not first in a sequence of labels in bb %d",
5604 bb->index);
5605 err = 1;
5608 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
5610 error ("EH landing pad label ");
5611 print_generic_expr (stderr, label);
5612 fprintf (stderr, " is not first in a sequence of labels in bb %d",
5613 bb->index);
5614 err = 1;
5617 if (label_to_block (label) != bb)
5619 error ("label ");
5620 print_generic_expr (stderr, label);
5621 fprintf (stderr, " to block does not match in bb %d",
5622 bb->index);
5623 err = 1;
5626 if (decl_function_context (label) != current_function_decl)
5628 error ("label ");
5629 print_generic_expr (stderr, label);
5630 fprintf (stderr, " has incorrect context in bb %d",
5631 bb->index);
5632 err = 1;
5636 /* Verify that body of basic block BB is free of control flow. */
5637 for (; !gsi_end_p (gsi); gsi_next (&gsi))
5639 gimple *stmt = gsi_stmt (gsi);
5641 if (found_ctrl_stmt)
5643 error ("control flow in the middle of basic block %d",
5644 bb->index);
5645 err = 1;
5648 if (stmt_ends_bb_p (stmt))
5649 found_ctrl_stmt = true;
5651 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
5653 error ("label ");
5654 print_generic_expr (stderr, gimple_label_label (label_stmt));
5655 fprintf (stderr, " in the middle of basic block %d", bb->index);
5656 err = 1;
5660 gsi = gsi_last_nondebug_bb (bb);
5661 if (gsi_end_p (gsi))
5662 continue;
5664 stmt = gsi_stmt (gsi);
5666 if (gimple_code (stmt) == GIMPLE_LABEL)
5667 continue;
5669 err |= verify_eh_edges (stmt);
5671 if (is_ctrl_stmt (stmt))
5673 FOR_EACH_EDGE (e, ei, bb->succs)
5674 if (e->flags & EDGE_FALLTHRU)
5676 error ("fallthru edge after a control statement in bb %d",
5677 bb->index);
5678 err = 1;
5682 if (gimple_code (stmt) != GIMPLE_COND)
5684 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
5685 after anything else but if statement. */
5686 FOR_EACH_EDGE (e, ei, bb->succs)
5687 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
5689 error ("true/false edge after a non-GIMPLE_COND in bb %d",
5690 bb->index);
5691 err = 1;
5695 switch (gimple_code (stmt))
5697 case GIMPLE_COND:
5699 edge true_edge;
5700 edge false_edge;
5702 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
5704 if (!true_edge
5705 || !false_edge
5706 || !(true_edge->flags & EDGE_TRUE_VALUE)
5707 || !(false_edge->flags & EDGE_FALSE_VALUE)
5708 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
5709 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
5710 || EDGE_COUNT (bb->succs) >= 3)
5712 error ("wrong outgoing edge flags at end of bb %d",
5713 bb->index);
5714 err = 1;
5717 break;
5719 case GIMPLE_GOTO:
5720 if (simple_goto_p (stmt))
5722 error ("explicit goto at end of bb %d", bb->index);
5723 err = 1;
5725 else
5727 /* FIXME. We should double check that the labels in the
5728 destination blocks have their address taken. */
5729 FOR_EACH_EDGE (e, ei, bb->succs)
5730 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
5731 | EDGE_FALSE_VALUE))
5732 || !(e->flags & EDGE_ABNORMAL))
5734 error ("wrong outgoing edge flags at end of bb %d",
5735 bb->index);
5736 err = 1;
5739 break;
5741 case GIMPLE_CALL:
5742 if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
5743 break;
5744 /* fallthru */
5745 case GIMPLE_RETURN:
5746 if (!single_succ_p (bb)
5747 || (single_succ_edge (bb)->flags
5748 & (EDGE_FALLTHRU | EDGE_ABNORMAL
5749 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5751 error ("wrong outgoing edge flags at end of bb %d", bb->index);
5752 err = 1;
5754 if (single_succ (bb) != EXIT_BLOCK_PTR_FOR_FN (cfun))
5756 error ("return edge does not point to exit in bb %d",
5757 bb->index);
5758 err = 1;
5760 break;
5762 case GIMPLE_SWITCH:
5764 gswitch *switch_stmt = as_a <gswitch *> (stmt);
5765 tree prev;
5766 edge e;
5767 size_t i, n;
5769 n = gimple_switch_num_labels (switch_stmt);
5771 /* Mark all the destination basic blocks. */
5772 for (i = 0; i < n; ++i)
5774 tree lab = CASE_LABEL (gimple_switch_label (switch_stmt, i));
5775 basic_block label_bb = label_to_block (lab);
5776 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
5777 label_bb->aux = (void *)1;
5780 /* Verify that the case labels are sorted. */
5781 prev = gimple_switch_label (switch_stmt, 0);
5782 for (i = 1; i < n; ++i)
5784 tree c = gimple_switch_label (switch_stmt, i);
5785 if (!CASE_LOW (c))
5787 error ("found default case not at the start of "
5788 "case vector");
5789 err = 1;
5790 continue;
5792 if (CASE_LOW (prev)
5793 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
5795 error ("case labels not sorted: ");
5796 print_generic_expr (stderr, prev);
5797 fprintf (stderr," is greater than ");
5798 print_generic_expr (stderr, c);
5799 fprintf (stderr," but comes before it.\n");
5800 err = 1;
5802 prev = c;
5804 /* VRP will remove the default case if it can prove it will
5805 never be executed. So do not verify there always exists
5806 a default case here. */
5808 FOR_EACH_EDGE (e, ei, bb->succs)
5810 if (!e->dest->aux)
5812 error ("extra outgoing edge %d->%d",
5813 bb->index, e->dest->index);
5814 err = 1;
5817 e->dest->aux = (void *)2;
5818 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
5819 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5821 error ("wrong outgoing edge flags at end of bb %d",
5822 bb->index);
5823 err = 1;
5827 /* Check that we have all of them. */
5828 for (i = 0; i < n; ++i)
5830 tree lab = CASE_LABEL (gimple_switch_label (switch_stmt, i));
5831 basic_block label_bb = label_to_block (lab);
5833 if (label_bb->aux != (void *)2)
5835 error ("missing edge %i->%i", bb->index, label_bb->index);
5836 err = 1;
5840 FOR_EACH_EDGE (e, ei, bb->succs)
5841 e->dest->aux = (void *)0;
5843 break;
5845 case GIMPLE_EH_DISPATCH:
5846 err |= verify_eh_dispatch_edge (as_a <geh_dispatch *> (stmt));
5847 break;
5849 default:
5850 break;
5854 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
5855 verify_dominators (CDI_DOMINATORS);
5857 return err;
5861 /* Updates phi nodes after creating a forwarder block joined
5862 by edge FALLTHRU. */
5864 static void
5865 gimple_make_forwarder_block (edge fallthru)
5867 edge e;
5868 edge_iterator ei;
5869 basic_block dummy, bb;
5870 tree var;
5871 gphi_iterator gsi;
5873 dummy = fallthru->src;
5874 bb = fallthru->dest;
5876 if (single_pred_p (bb))
5877 return;
5879 /* If we redirected a branch we must create new PHI nodes at the
5880 start of BB. */
5881 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
5883 gphi *phi, *new_phi;
5885 phi = gsi.phi ();
5886 var = gimple_phi_result (phi);
5887 new_phi = create_phi_node (var, bb);
5888 gimple_phi_set_result (phi, copy_ssa_name (var, phi));
5889 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
5890 UNKNOWN_LOCATION);
5893 /* Add the arguments we have stored on edges. */
5894 FOR_EACH_EDGE (e, ei, bb->preds)
5896 if (e == fallthru)
5897 continue;
5899 flush_pending_stmts (e);
5904 /* Return a non-special label in the head of basic block BLOCK.
5905 Create one if it doesn't exist. */
5907 tree
5908 gimple_block_label (basic_block bb)
5910 gimple_stmt_iterator i, s = gsi_start_bb (bb);
5911 bool first = true;
5912 tree label;
5913 glabel *stmt;
5915 for (i = s; !gsi_end_p (i); gsi_next (&i))
5917 if (is_gimple_debug (gsi_stmt (i)))
5918 continue;
5919 stmt = dyn_cast <glabel *> (gsi_stmt (i));
5920 if (!stmt)
5921 break;
5922 label = gimple_label_label (stmt);
5923 if (!DECL_NONLOCAL (label))
5925 if (!first)
5926 gsi_move_before (&i, &s);
5927 return label;
5929 first = false;
5932 label = create_artificial_label (UNKNOWN_LOCATION);
5933 stmt = gimple_build_label (label);
5934 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
5935 return label;
5939 /* Attempt to perform edge redirection by replacing a possibly complex
5940 jump instruction by a goto or by removing the jump completely.
5941 This can apply only if all edges now point to the same block. The
5942 parameters and return values are equivalent to
5943 redirect_edge_and_branch. */
5945 static edge
5946 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
5948 basic_block src = e->src;
5949 gimple_stmt_iterator i;
5950 gimple *stmt;
5952 /* We can replace or remove a complex jump only when we have exactly
5953 two edges. */
5954 if (EDGE_COUNT (src->succs) != 2
5955 /* Verify that all targets will be TARGET. Specifically, the
5956 edge that is not E must also go to TARGET. */
5957 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
5958 return NULL;
5960 i = gsi_last_bb (src);
5961 if (gsi_end_p (i))
5962 return NULL;
5964 stmt = gsi_stmt (i);
5966 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
5968 gsi_remove (&i, true);
5969 e = ssa_redirect_edge (e, target);
5970 e->flags = EDGE_FALLTHRU;
5971 return e;
5974 return NULL;
5978 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
5979 edge representing the redirected branch. */
5981 static edge
5982 gimple_redirect_edge_and_branch (edge e, basic_block dest)
5984 basic_block bb = e->src;
5985 gimple_stmt_iterator gsi;
5986 edge ret;
5987 gimple *stmt;
5989 if (e->flags & EDGE_ABNORMAL)
5990 return NULL;
5992 if (e->dest == dest)
5993 return NULL;
5995 if (e->flags & EDGE_EH)
5996 return redirect_eh_edge (e, dest);
5998 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
6000 ret = gimple_try_redirect_by_replacing_jump (e, dest);
6001 if (ret)
6002 return ret;
6005 gsi = gsi_last_nondebug_bb (bb);
6006 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
6008 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
6010 case GIMPLE_COND:
6011 /* For COND_EXPR, we only need to redirect the edge. */
6012 break;
6014 case GIMPLE_GOTO:
6015 /* No non-abnormal edges should lead from a non-simple goto, and
6016 simple ones should be represented implicitly. */
6017 gcc_unreachable ();
6019 case GIMPLE_SWITCH:
6021 gswitch *switch_stmt = as_a <gswitch *> (stmt);
6022 tree label = gimple_block_label (dest);
6023 tree cases = get_cases_for_edge (e, switch_stmt);
6025 /* If we have a list of cases associated with E, then use it
6026 as it's a lot faster than walking the entire case vector. */
6027 if (cases)
6029 edge e2 = find_edge (e->src, dest);
6030 tree last, first;
6032 first = cases;
6033 while (cases)
6035 last = cases;
6036 CASE_LABEL (cases) = label;
6037 cases = CASE_CHAIN (cases);
6040 /* If there was already an edge in the CFG, then we need
6041 to move all the cases associated with E to E2. */
6042 if (e2)
6044 tree cases2 = get_cases_for_edge (e2, switch_stmt);
6046 CASE_CHAIN (last) = CASE_CHAIN (cases2);
6047 CASE_CHAIN (cases2) = first;
6049 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
6051 else
6053 size_t i, n = gimple_switch_num_labels (switch_stmt);
6055 for (i = 0; i < n; i++)
6057 tree elt = gimple_switch_label (switch_stmt, i);
6058 if (label_to_block (CASE_LABEL (elt)) == e->dest)
6059 CASE_LABEL (elt) = label;
6063 break;
6065 case GIMPLE_ASM:
6067 gasm *asm_stmt = as_a <gasm *> (stmt);
6068 int i, n = gimple_asm_nlabels (asm_stmt);
6069 tree label = NULL;
6071 for (i = 0; i < n; ++i)
6073 tree cons = gimple_asm_label_op (asm_stmt, i);
6074 if (label_to_block (TREE_VALUE (cons)) == e->dest)
6076 if (!label)
6077 label = gimple_block_label (dest);
6078 TREE_VALUE (cons) = label;
6082 /* If we didn't find any label matching the former edge in the
6083 asm labels, we must be redirecting the fallthrough
6084 edge. */
6085 gcc_assert (label || (e->flags & EDGE_FALLTHRU));
6087 break;
6089 case GIMPLE_RETURN:
6090 gsi_remove (&gsi, true);
6091 e->flags |= EDGE_FALLTHRU;
6092 break;
6094 case GIMPLE_OMP_RETURN:
6095 case GIMPLE_OMP_CONTINUE:
6096 case GIMPLE_OMP_SECTIONS_SWITCH:
6097 case GIMPLE_OMP_FOR:
6098 /* The edges from OMP constructs can be simply redirected. */
6099 break;
6101 case GIMPLE_EH_DISPATCH:
6102 if (!(e->flags & EDGE_FALLTHRU))
6103 redirect_eh_dispatch_edge (as_a <geh_dispatch *> (stmt), e, dest);
6104 break;
6106 case GIMPLE_TRANSACTION:
6107 if (e->flags & EDGE_TM_ABORT)
6108 gimple_transaction_set_label_over (as_a <gtransaction *> (stmt),
6109 gimple_block_label (dest));
6110 else if (e->flags & EDGE_TM_UNINSTRUMENTED)
6111 gimple_transaction_set_label_uninst (as_a <gtransaction *> (stmt),
6112 gimple_block_label (dest));
6113 else
6114 gimple_transaction_set_label_norm (as_a <gtransaction *> (stmt),
6115 gimple_block_label (dest));
6116 break;
6118 default:
6119 /* Otherwise it must be a fallthru edge, and we don't need to
6120 do anything besides redirecting it. */
6121 gcc_assert (e->flags & EDGE_FALLTHRU);
6122 break;
6125 /* Update/insert PHI nodes as necessary. */
6127 /* Now update the edges in the CFG. */
6128 e = ssa_redirect_edge (e, dest);
6130 return e;
6133 /* Returns true if it is possible to remove edge E by redirecting
6134 it to the destination of the other edge from E->src. */
6136 static bool
6137 gimple_can_remove_branch_p (const_edge e)
6139 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
6140 return false;
6142 return true;
6145 /* Simple wrapper, as we can always redirect fallthru edges. */
6147 static basic_block
6148 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
6150 e = gimple_redirect_edge_and_branch (e, dest);
6151 gcc_assert (e);
6153 return NULL;
6157 /* Splits basic block BB after statement STMT (but at least after the
6158 labels). If STMT is NULL, BB is split just after the labels. */
6160 static basic_block
6161 gimple_split_block (basic_block bb, void *stmt)
6163 gimple_stmt_iterator gsi;
6164 gimple_stmt_iterator gsi_tgt;
6165 gimple_seq list;
6166 basic_block new_bb;
6167 edge e;
6168 edge_iterator ei;
6170 new_bb = create_empty_bb (bb);
6172 /* Redirect the outgoing edges. */
6173 new_bb->succs = bb->succs;
6174 bb->succs = NULL;
6175 FOR_EACH_EDGE (e, ei, new_bb->succs)
6176 e->src = new_bb;
6178 /* Get a stmt iterator pointing to the first stmt to move. */
6179 if (!stmt || gimple_code ((gimple *) stmt) == GIMPLE_LABEL)
6180 gsi = gsi_after_labels (bb);
6181 else
6183 gsi = gsi_for_stmt ((gimple *) stmt);
6184 gsi_next (&gsi);
6187 /* Move everything from GSI to the new basic block. */
6188 if (gsi_end_p (gsi))
6189 return new_bb;
6191 /* Split the statement list - avoid re-creating new containers as this
6192 brings ugly quadratic memory consumption in the inliner.
6193 (We are still quadratic since we need to update stmt BB pointers,
6194 sadly.) */
6195 gsi_split_seq_before (&gsi, &list);
6196 set_bb_seq (new_bb, list);
6197 for (gsi_tgt = gsi_start (list);
6198 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
6199 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
6201 return new_bb;
6205 /* Moves basic block BB after block AFTER. */
6207 static bool
6208 gimple_move_block_after (basic_block bb, basic_block after)
6210 if (bb->prev_bb == after)
6211 return true;
6213 unlink_block (bb);
6214 link_block (bb, after);
6216 return true;
6220 /* Return TRUE if block BB has no executable statements, otherwise return
6221 FALSE. */
6223 static bool
6224 gimple_empty_block_p (basic_block bb)
6226 /* BB must have no executable statements. */
6227 gimple_stmt_iterator gsi = gsi_after_labels (bb);
6228 if (phi_nodes (bb))
6229 return false;
6230 if (gsi_end_p (gsi))
6231 return true;
6232 if (is_gimple_debug (gsi_stmt (gsi)))
6233 gsi_next_nondebug (&gsi);
6234 return gsi_end_p (gsi);
6238 /* Split a basic block if it ends with a conditional branch and if the
6239 other part of the block is not empty. */
6241 static basic_block
6242 gimple_split_block_before_cond_jump (basic_block bb)
6244 gimple *last, *split_point;
6245 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
6246 if (gsi_end_p (gsi))
6247 return NULL;
6248 last = gsi_stmt (gsi);
6249 if (gimple_code (last) != GIMPLE_COND
6250 && gimple_code (last) != GIMPLE_SWITCH)
6251 return NULL;
6252 gsi_prev (&gsi);
6253 split_point = gsi_stmt (gsi);
6254 return split_block (bb, split_point)->dest;
6258 /* Return true if basic_block can be duplicated. */
6260 static bool
6261 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
6263 return true;
6266 /* Create a duplicate of the basic block BB. NOTE: This does not
6267 preserve SSA form. */
6269 static basic_block
6270 gimple_duplicate_bb (basic_block bb)
6272 basic_block new_bb;
6273 gimple_stmt_iterator gsi_tgt;
6275 new_bb = create_empty_bb (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
6277 /* Copy the PHI nodes. We ignore PHI node arguments here because
6278 the incoming edges have not been setup yet. */
6279 for (gphi_iterator gpi = gsi_start_phis (bb);
6280 !gsi_end_p (gpi);
6281 gsi_next (&gpi))
6283 gphi *phi, *copy;
6284 phi = gpi.phi ();
6285 copy = create_phi_node (NULL_TREE, new_bb);
6286 create_new_def_for (gimple_phi_result (phi), copy,
6287 gimple_phi_result_ptr (copy));
6288 gimple_set_uid (copy, gimple_uid (phi));
6291 gsi_tgt = gsi_start_bb (new_bb);
6292 for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
6293 !gsi_end_p (gsi);
6294 gsi_next (&gsi))
6296 def_operand_p def_p;
6297 ssa_op_iter op_iter;
6298 tree lhs;
6299 gimple *stmt, *copy;
6301 stmt = gsi_stmt (gsi);
6302 if (gimple_code (stmt) == GIMPLE_LABEL)
6303 continue;
6305 /* Don't duplicate label debug stmts. */
6306 if (gimple_debug_bind_p (stmt)
6307 && TREE_CODE (gimple_debug_bind_get_var (stmt))
6308 == LABEL_DECL)
6309 continue;
6311 /* Create a new copy of STMT and duplicate STMT's virtual
6312 operands. */
6313 copy = gimple_copy (stmt);
6314 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
6316 maybe_duplicate_eh_stmt (copy, stmt);
6317 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
6319 /* When copying around a stmt writing into a local non-user
6320 aggregate, make sure it won't share stack slot with other
6321 vars. */
6322 lhs = gimple_get_lhs (stmt);
6323 if (lhs && TREE_CODE (lhs) != SSA_NAME)
6325 tree base = get_base_address (lhs);
6326 if (base
6327 && (VAR_P (base) || TREE_CODE (base) == RESULT_DECL)
6328 && DECL_IGNORED_P (base)
6329 && !TREE_STATIC (base)
6330 && !DECL_EXTERNAL (base)
6331 && (!VAR_P (base) || !DECL_HAS_VALUE_EXPR_P (base)))
6332 DECL_NONSHAREABLE (base) = 1;
6335 /* Create new names for all the definitions created by COPY and
6336 add replacement mappings for each new name. */
6337 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
6338 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
6341 return new_bb;
6344 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
6346 static void
6347 add_phi_args_after_copy_edge (edge e_copy)
6349 basic_block bb, bb_copy = e_copy->src, dest;
6350 edge e;
6351 edge_iterator ei;
6352 gphi *phi, *phi_copy;
6353 tree def;
6354 gphi_iterator psi, psi_copy;
6356 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
6357 return;
6359 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
6361 if (e_copy->dest->flags & BB_DUPLICATED)
6362 dest = get_bb_original (e_copy->dest);
6363 else
6364 dest = e_copy->dest;
6366 e = find_edge (bb, dest);
6367 if (!e)
6369 /* During loop unrolling the target of the latch edge is copied.
6370 In this case we are not looking for edge to dest, but to
6371 duplicated block whose original was dest. */
6372 FOR_EACH_EDGE (e, ei, bb->succs)
6374 if ((e->dest->flags & BB_DUPLICATED)
6375 && get_bb_original (e->dest) == dest)
6376 break;
6379 gcc_assert (e != NULL);
6382 for (psi = gsi_start_phis (e->dest),
6383 psi_copy = gsi_start_phis (e_copy->dest);
6384 !gsi_end_p (psi);
6385 gsi_next (&psi), gsi_next (&psi_copy))
6387 phi = psi.phi ();
6388 phi_copy = psi_copy.phi ();
6389 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
6390 add_phi_arg (phi_copy, def, e_copy,
6391 gimple_phi_arg_location_from_edge (phi, e));
6396 /* Basic block BB_COPY was created by code duplication. Add phi node
6397 arguments for edges going out of BB_COPY. The blocks that were
6398 duplicated have BB_DUPLICATED set. */
6400 void
6401 add_phi_args_after_copy_bb (basic_block bb_copy)
6403 edge e_copy;
6404 edge_iterator ei;
6406 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
6408 add_phi_args_after_copy_edge (e_copy);
6412 /* Blocks in REGION_COPY array of length N_REGION were created by
6413 duplication of basic blocks. Add phi node arguments for edges
6414 going from these blocks. If E_COPY is not NULL, also add
6415 phi node arguments for its destination.*/
6417 void
6418 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
6419 edge e_copy)
6421 unsigned i;
6423 for (i = 0; i < n_region; i++)
6424 region_copy[i]->flags |= BB_DUPLICATED;
6426 for (i = 0; i < n_region; i++)
6427 add_phi_args_after_copy_bb (region_copy[i]);
6428 if (e_copy)
6429 add_phi_args_after_copy_edge (e_copy);
6431 for (i = 0; i < n_region; i++)
6432 region_copy[i]->flags &= ~BB_DUPLICATED;
6435 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
6436 important exit edge EXIT. By important we mean that no SSA name defined
6437 inside region is live over the other exit edges of the region. All entry
6438 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
6439 to the duplicate of the region. Dominance and loop information is
6440 updated if UPDATE_DOMINANCE is true, but not the SSA web. If
6441 UPDATE_DOMINANCE is false then we assume that the caller will update the
6442 dominance information after calling this function. The new basic
6443 blocks are stored to REGION_COPY in the same order as they had in REGION,
6444 provided that REGION_COPY is not NULL.
6445 The function returns false if it is unable to copy the region,
6446 true otherwise. */
6448 bool
6449 gimple_duplicate_sese_region (edge entry, edge exit,
6450 basic_block *region, unsigned n_region,
6451 basic_block *region_copy,
6452 bool update_dominance)
6454 unsigned i;
6455 bool free_region_copy = false, copying_header = false;
6456 struct loop *loop = entry->dest->loop_father;
6457 edge exit_copy;
6458 vec<basic_block> doms = vNULL;
6459 edge redirected;
6460 profile_count total_count = profile_count::uninitialized ();
6461 profile_count entry_count = profile_count::uninitialized ();
6463 if (!can_copy_bbs_p (region, n_region))
6464 return false;
6466 /* Some sanity checking. Note that we do not check for all possible
6467 missuses of the functions. I.e. if you ask to copy something weird,
6468 it will work, but the state of structures probably will not be
6469 correct. */
6470 for (i = 0; i < n_region; i++)
6472 /* We do not handle subloops, i.e. all the blocks must belong to the
6473 same loop. */
6474 if (region[i]->loop_father != loop)
6475 return false;
6477 if (region[i] != entry->dest
6478 && region[i] == loop->header)
6479 return false;
6482 /* In case the function is used for loop header copying (which is the primary
6483 use), ensure that EXIT and its copy will be new latch and entry edges. */
6484 if (loop->header == entry->dest)
6486 copying_header = true;
6488 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
6489 return false;
6491 for (i = 0; i < n_region; i++)
6492 if (region[i] != exit->src
6493 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
6494 return false;
6497 initialize_original_copy_tables ();
6499 if (copying_header)
6500 set_loop_copy (loop, loop_outer (loop));
6501 else
6502 set_loop_copy (loop, loop);
6504 if (!region_copy)
6506 region_copy = XNEWVEC (basic_block, n_region);
6507 free_region_copy = true;
6510 /* Record blocks outside the region that are dominated by something
6511 inside. */
6512 if (update_dominance)
6514 doms.create (0);
6515 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
6518 if (entry->dest->count.initialized_p ())
6520 total_count = entry->dest->count;
6521 entry_count = entry->count ();
6522 /* Fix up corner cases, to avoid division by zero or creation of negative
6523 frequencies. */
6524 if (entry_count > total_count)
6525 entry_count = total_count;
6528 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
6529 split_edge_bb_loc (entry), update_dominance);
6530 if (total_count.initialized_p () && entry_count.initialized_p ())
6532 scale_bbs_frequencies_profile_count (region, n_region,
6533 total_count - entry_count,
6534 total_count);
6535 scale_bbs_frequencies_profile_count (region_copy, n_region, entry_count,
6536 total_count);
6539 if (copying_header)
6541 loop->header = exit->dest;
6542 loop->latch = exit->src;
6545 /* Redirect the entry and add the phi node arguments. */
6546 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
6547 gcc_assert (redirected != NULL);
6548 flush_pending_stmts (entry);
6550 /* Concerning updating of dominators: We must recount dominators
6551 for entry block and its copy. Anything that is outside of the
6552 region, but was dominated by something inside needs recounting as
6553 well. */
6554 if (update_dominance)
6556 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
6557 doms.safe_push (get_bb_original (entry->dest));
6558 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
6559 doms.release ();
6562 /* Add the other PHI node arguments. */
6563 add_phi_args_after_copy (region_copy, n_region, NULL);
6565 if (free_region_copy)
6566 free (region_copy);
6568 free_original_copy_tables ();
6569 return true;
6572 /* Checks if BB is part of the region defined by N_REGION BBS. */
6573 static bool
6574 bb_part_of_region_p (basic_block bb, basic_block* bbs, unsigned n_region)
6576 unsigned int n;
6578 for (n = 0; n < n_region; n++)
6580 if (bb == bbs[n])
6581 return true;
6583 return false;
6586 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
6587 are stored to REGION_COPY in the same order in that they appear
6588 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
6589 the region, EXIT an exit from it. The condition guarding EXIT
6590 is moved to ENTRY. Returns true if duplication succeeds, false
6591 otherwise.
6593 For example,
6595 some_code;
6596 if (cond)
6598 else
6601 is transformed to
6603 if (cond)
6605 some_code;
6608 else
6610 some_code;
6615 bool
6616 gimple_duplicate_sese_tail (edge entry, edge exit,
6617 basic_block *region, unsigned n_region,
6618 basic_block *region_copy)
6620 unsigned i;
6621 bool free_region_copy = false;
6622 struct loop *loop = exit->dest->loop_father;
6623 struct loop *orig_loop = entry->dest->loop_father;
6624 basic_block switch_bb, entry_bb, nentry_bb;
6625 vec<basic_block> doms;
6626 profile_count total_count = profile_count::uninitialized (),
6627 exit_count = profile_count::uninitialized ();
6628 edge exits[2], nexits[2], e;
6629 gimple_stmt_iterator gsi;
6630 gimple *cond_stmt;
6631 edge sorig, snew;
6632 basic_block exit_bb;
6633 gphi_iterator psi;
6634 gphi *phi;
6635 tree def;
6636 struct loop *target, *aloop, *cloop;
6638 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
6639 exits[0] = exit;
6640 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
6642 if (!can_copy_bbs_p (region, n_region))
6643 return false;
6645 initialize_original_copy_tables ();
6646 set_loop_copy (orig_loop, loop);
6648 target= loop;
6649 for (aloop = orig_loop->inner; aloop; aloop = aloop->next)
6651 if (bb_part_of_region_p (aloop->header, region, n_region))
6653 cloop = duplicate_loop (aloop, target);
6654 duplicate_subloops (aloop, cloop);
6658 if (!region_copy)
6660 region_copy = XNEWVEC (basic_block, n_region);
6661 free_region_copy = true;
6664 gcc_assert (!need_ssa_update_p (cfun));
6666 /* Record blocks outside the region that are dominated by something
6667 inside. */
6668 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
6670 total_count = exit->src->count;
6671 exit_count = exit->count ();
6672 /* Fix up corner cases, to avoid division by zero or creation of negative
6673 frequencies. */
6674 if (exit_count > total_count)
6675 exit_count = total_count;
6677 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
6678 split_edge_bb_loc (exit), true);
6679 if (total_count.initialized_p () && exit_count.initialized_p ())
6681 scale_bbs_frequencies_profile_count (region, n_region,
6682 total_count - exit_count,
6683 total_count);
6684 scale_bbs_frequencies_profile_count (region_copy, n_region, exit_count,
6685 total_count);
6688 /* Create the switch block, and put the exit condition to it. */
6689 entry_bb = entry->dest;
6690 nentry_bb = get_bb_copy (entry_bb);
6691 if (!last_stmt (entry->src)
6692 || !stmt_ends_bb_p (last_stmt (entry->src)))
6693 switch_bb = entry->src;
6694 else
6695 switch_bb = split_edge (entry);
6696 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
6698 gsi = gsi_last_bb (switch_bb);
6699 cond_stmt = last_stmt (exit->src);
6700 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
6701 cond_stmt = gimple_copy (cond_stmt);
6703 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
6705 sorig = single_succ_edge (switch_bb);
6706 sorig->flags = exits[1]->flags;
6707 sorig->probability = exits[1]->probability;
6708 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
6709 snew->probability = exits[0]->probability;
6712 /* Register the new edge from SWITCH_BB in loop exit lists. */
6713 rescan_loop_exit (snew, true, false);
6715 /* Add the PHI node arguments. */
6716 add_phi_args_after_copy (region_copy, n_region, snew);
6718 /* Get rid of now superfluous conditions and associated edges (and phi node
6719 arguments). */
6720 exit_bb = exit->dest;
6722 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
6723 PENDING_STMT (e) = NULL;
6725 /* The latch of ORIG_LOOP was copied, and so was the backedge
6726 to the original header. We redirect this backedge to EXIT_BB. */
6727 for (i = 0; i < n_region; i++)
6728 if (get_bb_original (region_copy[i]) == orig_loop->latch)
6730 gcc_assert (single_succ_edge (region_copy[i]));
6731 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
6732 PENDING_STMT (e) = NULL;
6733 for (psi = gsi_start_phis (exit_bb);
6734 !gsi_end_p (psi);
6735 gsi_next (&psi))
6737 phi = psi.phi ();
6738 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
6739 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
6742 e = redirect_edge_and_branch (nexits[1], nexits[0]->dest);
6743 PENDING_STMT (e) = NULL;
6745 /* Anything that is outside of the region, but was dominated by something
6746 inside needs to update dominance info. */
6747 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
6748 doms.release ();
6749 /* Update the SSA web. */
6750 update_ssa (TODO_update_ssa);
6752 if (free_region_copy)
6753 free (region_copy);
6755 free_original_copy_tables ();
6756 return true;
6759 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
6760 adding blocks when the dominator traversal reaches EXIT. This
6761 function silently assumes that ENTRY strictly dominates EXIT. */
6763 void
6764 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
6765 vec<basic_block> *bbs_p)
6767 basic_block son;
6769 for (son = first_dom_son (CDI_DOMINATORS, entry);
6770 son;
6771 son = next_dom_son (CDI_DOMINATORS, son))
6773 bbs_p->safe_push (son);
6774 if (son != exit)
6775 gather_blocks_in_sese_region (son, exit, bbs_p);
6779 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
6780 The duplicates are recorded in VARS_MAP. */
6782 static void
6783 replace_by_duplicate_decl (tree *tp, hash_map<tree, tree> *vars_map,
6784 tree to_context)
6786 tree t = *tp, new_t;
6787 struct function *f = DECL_STRUCT_FUNCTION (to_context);
6789 if (DECL_CONTEXT (t) == to_context)
6790 return;
6792 bool existed;
6793 tree &loc = vars_map->get_or_insert (t, &existed);
6795 if (!existed)
6797 if (SSA_VAR_P (t))
6799 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
6800 add_local_decl (f, new_t);
6802 else
6804 gcc_assert (TREE_CODE (t) == CONST_DECL);
6805 new_t = copy_node (t);
6807 DECL_CONTEXT (new_t) = to_context;
6809 loc = new_t;
6811 else
6812 new_t = loc;
6814 *tp = new_t;
6818 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
6819 VARS_MAP maps old ssa names and var_decls to the new ones. */
6821 static tree
6822 replace_ssa_name (tree name, hash_map<tree, tree> *vars_map,
6823 tree to_context)
6825 tree new_name;
6827 gcc_assert (!virtual_operand_p (name));
6829 tree *loc = vars_map->get (name);
6831 if (!loc)
6833 tree decl = SSA_NAME_VAR (name);
6834 if (decl)
6836 gcc_assert (!SSA_NAME_IS_DEFAULT_DEF (name));
6837 replace_by_duplicate_decl (&decl, vars_map, to_context);
6838 new_name = make_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6839 decl, SSA_NAME_DEF_STMT (name));
6841 else
6842 new_name = copy_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6843 name, SSA_NAME_DEF_STMT (name));
6845 /* Now that we've used the def stmt to define new_name, make sure it
6846 doesn't define name anymore. */
6847 SSA_NAME_DEF_STMT (name) = NULL;
6849 vars_map->put (name, new_name);
6851 else
6852 new_name = *loc;
6854 return new_name;
6857 struct move_stmt_d
6859 tree orig_block;
6860 tree new_block;
6861 tree from_context;
6862 tree to_context;
6863 hash_map<tree, tree> *vars_map;
6864 htab_t new_label_map;
6865 hash_map<void *, void *> *eh_map;
6866 bool remap_decls_p;
6869 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
6870 contained in *TP if it has been ORIG_BLOCK previously and change the
6871 DECL_CONTEXT of every local variable referenced in *TP. */
6873 static tree
6874 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
6876 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
6877 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6878 tree t = *tp;
6880 if (EXPR_P (t))
6882 tree block = TREE_BLOCK (t);
6883 if (block == NULL_TREE)
6885 else if (block == p->orig_block
6886 || p->orig_block == NULL_TREE)
6887 TREE_SET_BLOCK (t, p->new_block);
6888 else if (flag_checking)
6890 while (block && TREE_CODE (block) == BLOCK && block != p->orig_block)
6891 block = BLOCK_SUPERCONTEXT (block);
6892 gcc_assert (block == p->orig_block);
6895 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
6897 if (TREE_CODE (t) == SSA_NAME)
6898 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
6899 else if (TREE_CODE (t) == PARM_DECL
6900 && gimple_in_ssa_p (cfun))
6901 *tp = *(p->vars_map->get (t));
6902 else if (TREE_CODE (t) == LABEL_DECL)
6904 if (p->new_label_map)
6906 struct tree_map in, *out;
6907 in.base.from = t;
6908 out = (struct tree_map *)
6909 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
6910 if (out)
6911 *tp = t = out->to;
6914 /* For FORCED_LABELs we can end up with references from other
6915 functions if some SESE regions are outlined. It is UB to
6916 jump in between them, but they could be used just for printing
6917 addresses etc. In that case, DECL_CONTEXT on the label should
6918 be the function containing the glabel stmt with that LABEL_DECL,
6919 rather than whatever function a reference to the label was seen
6920 last time. */
6921 if (!FORCED_LABEL (t) && !DECL_NONLOCAL (t))
6922 DECL_CONTEXT (t) = p->to_context;
6924 else if (p->remap_decls_p)
6926 /* Replace T with its duplicate. T should no longer appear in the
6927 parent function, so this looks wasteful; however, it may appear
6928 in referenced_vars, and more importantly, as virtual operands of
6929 statements, and in alias lists of other variables. It would be
6930 quite difficult to expunge it from all those places. ??? It might
6931 suffice to do this for addressable variables. */
6932 if ((VAR_P (t) && !is_global_var (t))
6933 || TREE_CODE (t) == CONST_DECL)
6934 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
6936 *walk_subtrees = 0;
6938 else if (TYPE_P (t))
6939 *walk_subtrees = 0;
6941 return NULL_TREE;
6944 /* Helper for move_stmt_r. Given an EH region number for the source
6945 function, map that to the duplicate EH regio number in the dest. */
6947 static int
6948 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
6950 eh_region old_r, new_r;
6952 old_r = get_eh_region_from_number (old_nr);
6953 new_r = static_cast<eh_region> (*p->eh_map->get (old_r));
6955 return new_r->index;
6958 /* Similar, but operate on INTEGER_CSTs. */
6960 static tree
6961 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
6963 int old_nr, new_nr;
6965 old_nr = tree_to_shwi (old_t_nr);
6966 new_nr = move_stmt_eh_region_nr (old_nr, p);
6968 return build_int_cst (integer_type_node, new_nr);
6971 /* Like move_stmt_op, but for gimple statements.
6973 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
6974 contained in the current statement in *GSI_P and change the
6975 DECL_CONTEXT of every local variable referenced in the current
6976 statement. */
6978 static tree
6979 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
6980 struct walk_stmt_info *wi)
6982 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6983 gimple *stmt = gsi_stmt (*gsi_p);
6984 tree block = gimple_block (stmt);
6986 if (block == p->orig_block
6987 || (p->orig_block == NULL_TREE
6988 && block != NULL_TREE))
6989 gimple_set_block (stmt, p->new_block);
6991 switch (gimple_code (stmt))
6993 case GIMPLE_CALL:
6994 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
6996 tree r, fndecl = gimple_call_fndecl (stmt);
6997 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
6998 switch (DECL_FUNCTION_CODE (fndecl))
7000 case BUILT_IN_EH_COPY_VALUES:
7001 r = gimple_call_arg (stmt, 1);
7002 r = move_stmt_eh_region_tree_nr (r, p);
7003 gimple_call_set_arg (stmt, 1, r);
7004 /* FALLTHRU */
7006 case BUILT_IN_EH_POINTER:
7007 case BUILT_IN_EH_FILTER:
7008 r = gimple_call_arg (stmt, 0);
7009 r = move_stmt_eh_region_tree_nr (r, p);
7010 gimple_call_set_arg (stmt, 0, r);
7011 break;
7013 default:
7014 break;
7017 break;
7019 case GIMPLE_RESX:
7021 gresx *resx_stmt = as_a <gresx *> (stmt);
7022 int r = gimple_resx_region (resx_stmt);
7023 r = move_stmt_eh_region_nr (r, p);
7024 gimple_resx_set_region (resx_stmt, r);
7026 break;
7028 case GIMPLE_EH_DISPATCH:
7030 geh_dispatch *eh_dispatch_stmt = as_a <geh_dispatch *> (stmt);
7031 int r = gimple_eh_dispatch_region (eh_dispatch_stmt);
7032 r = move_stmt_eh_region_nr (r, p);
7033 gimple_eh_dispatch_set_region (eh_dispatch_stmt, r);
7035 break;
7037 case GIMPLE_OMP_RETURN:
7038 case GIMPLE_OMP_CONTINUE:
7039 break;
7041 case GIMPLE_LABEL:
7043 /* For FORCED_LABEL, move_stmt_op doesn't adjust DECL_CONTEXT,
7044 so that such labels can be referenced from other regions.
7045 Make sure to update it when seeing a GIMPLE_LABEL though,
7046 that is the owner of the label. */
7047 walk_gimple_op (stmt, move_stmt_op, wi);
7048 *handled_ops_p = true;
7049 tree label = gimple_label_label (as_a <glabel *> (stmt));
7050 if (FORCED_LABEL (label) || DECL_NONLOCAL (label))
7051 DECL_CONTEXT (label) = p->to_context;
7053 break;
7055 default:
7056 if (is_gimple_omp (stmt))
7058 /* Do not remap variables inside OMP directives. Variables
7059 referenced in clauses and directive header belong to the
7060 parent function and should not be moved into the child
7061 function. */
7062 bool save_remap_decls_p = p->remap_decls_p;
7063 p->remap_decls_p = false;
7064 *handled_ops_p = true;
7066 walk_gimple_seq_mod (gimple_omp_body_ptr (stmt), move_stmt_r,
7067 move_stmt_op, wi);
7069 p->remap_decls_p = save_remap_decls_p;
7071 break;
7074 return NULL_TREE;
7077 /* Move basic block BB from function CFUN to function DEST_FN. The
7078 block is moved out of the original linked list and placed after
7079 block AFTER in the new list. Also, the block is removed from the
7080 original array of blocks and placed in DEST_FN's array of blocks.
7081 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
7082 updated to reflect the moved edges.
7084 The local variables are remapped to new instances, VARS_MAP is used
7085 to record the mapping. */
7087 static void
7088 move_block_to_fn (struct function *dest_cfun, basic_block bb,
7089 basic_block after, bool update_edge_count_p,
7090 struct move_stmt_d *d)
7092 struct control_flow_graph *cfg;
7093 edge_iterator ei;
7094 edge e;
7095 gimple_stmt_iterator si;
7096 unsigned old_len, new_len;
7098 /* Remove BB from dominance structures. */
7099 delete_from_dominance_info (CDI_DOMINATORS, bb);
7101 /* Move BB from its current loop to the copy in the new function. */
7102 if (current_loops)
7104 struct loop *new_loop = (struct loop *)bb->loop_father->aux;
7105 if (new_loop)
7106 bb->loop_father = new_loop;
7109 /* Link BB to the new linked list. */
7110 move_block_after (bb, after);
7112 /* Update the edge count in the corresponding flowgraphs. */
7113 if (update_edge_count_p)
7114 FOR_EACH_EDGE (e, ei, bb->succs)
7116 cfun->cfg->x_n_edges--;
7117 dest_cfun->cfg->x_n_edges++;
7120 /* Remove BB from the original basic block array. */
7121 (*cfun->cfg->x_basic_block_info)[bb->index] = NULL;
7122 cfun->cfg->x_n_basic_blocks--;
7124 /* Grow DEST_CFUN's basic block array if needed. */
7125 cfg = dest_cfun->cfg;
7126 cfg->x_n_basic_blocks++;
7127 if (bb->index >= cfg->x_last_basic_block)
7128 cfg->x_last_basic_block = bb->index + 1;
7130 old_len = vec_safe_length (cfg->x_basic_block_info);
7131 if ((unsigned) cfg->x_last_basic_block >= old_len)
7133 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
7134 vec_safe_grow_cleared (cfg->x_basic_block_info, new_len);
7137 (*cfg->x_basic_block_info)[bb->index] = bb;
7139 /* Remap the variables in phi nodes. */
7140 for (gphi_iterator psi = gsi_start_phis (bb);
7141 !gsi_end_p (psi); )
7143 gphi *phi = psi.phi ();
7144 use_operand_p use;
7145 tree op = PHI_RESULT (phi);
7146 ssa_op_iter oi;
7147 unsigned i;
7149 if (virtual_operand_p (op))
7151 /* Remove the phi nodes for virtual operands (alias analysis will be
7152 run for the new function, anyway). */
7153 remove_phi_node (&psi, true);
7154 continue;
7157 SET_PHI_RESULT (phi,
7158 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
7159 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
7161 op = USE_FROM_PTR (use);
7162 if (TREE_CODE (op) == SSA_NAME)
7163 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
7166 for (i = 0; i < EDGE_COUNT (bb->preds); i++)
7168 location_t locus = gimple_phi_arg_location (phi, i);
7169 tree block = LOCATION_BLOCK (locus);
7171 if (locus == UNKNOWN_LOCATION)
7172 continue;
7173 if (d->orig_block == NULL_TREE || block == d->orig_block)
7175 locus = set_block (locus, d->new_block);
7176 gimple_phi_arg_set_location (phi, i, locus);
7180 gsi_next (&psi);
7183 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
7185 gimple *stmt = gsi_stmt (si);
7186 struct walk_stmt_info wi;
7188 memset (&wi, 0, sizeof (wi));
7189 wi.info = d;
7190 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
7192 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
7194 tree label = gimple_label_label (label_stmt);
7195 int uid = LABEL_DECL_UID (label);
7197 gcc_assert (uid > -1);
7199 old_len = vec_safe_length (cfg->x_label_to_block_map);
7200 if (old_len <= (unsigned) uid)
7202 new_len = 3 * uid / 2 + 1;
7203 vec_safe_grow_cleared (cfg->x_label_to_block_map, new_len);
7206 (*cfg->x_label_to_block_map)[uid] = bb;
7207 (*cfun->cfg->x_label_to_block_map)[uid] = NULL;
7209 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
7211 if (uid >= dest_cfun->cfg->last_label_uid)
7212 dest_cfun->cfg->last_label_uid = uid + 1;
7215 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
7216 remove_stmt_from_eh_lp_fn (cfun, stmt);
7218 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
7219 gimple_remove_stmt_histograms (cfun, stmt);
7221 /* We cannot leave any operands allocated from the operand caches of
7222 the current function. */
7223 free_stmt_operands (cfun, stmt);
7224 push_cfun (dest_cfun);
7225 update_stmt (stmt);
7226 pop_cfun ();
7229 FOR_EACH_EDGE (e, ei, bb->succs)
7230 if (e->goto_locus != UNKNOWN_LOCATION)
7232 tree block = LOCATION_BLOCK (e->goto_locus);
7233 if (d->orig_block == NULL_TREE
7234 || block == d->orig_block)
7235 e->goto_locus = set_block (e->goto_locus, d->new_block);
7239 /* Examine the statements in BB (which is in SRC_CFUN); find and return
7240 the outermost EH region. Use REGION as the incoming base EH region. */
7242 static eh_region
7243 find_outermost_region_in_block (struct function *src_cfun,
7244 basic_block bb, eh_region region)
7246 gimple_stmt_iterator si;
7248 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
7250 gimple *stmt = gsi_stmt (si);
7251 eh_region stmt_region;
7252 int lp_nr;
7254 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
7255 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
7256 if (stmt_region)
7258 if (region == NULL)
7259 region = stmt_region;
7260 else if (stmt_region != region)
7262 region = eh_region_outermost (src_cfun, stmt_region, region);
7263 gcc_assert (region != NULL);
7268 return region;
7271 static tree
7272 new_label_mapper (tree decl, void *data)
7274 htab_t hash = (htab_t) data;
7275 struct tree_map *m;
7276 void **slot;
7278 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
7280 m = XNEW (struct tree_map);
7281 m->hash = DECL_UID (decl);
7282 m->base.from = decl;
7283 m->to = create_artificial_label (UNKNOWN_LOCATION);
7284 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
7285 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
7286 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
7288 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
7289 gcc_assert (*slot == NULL);
7291 *slot = m;
7293 return m->to;
7296 /* Tree walker to replace the decls used inside value expressions by
7297 duplicates. */
7299 static tree
7300 replace_block_vars_by_duplicates_1 (tree *tp, int *walk_subtrees, void *data)
7302 struct replace_decls_d *rd = (struct replace_decls_d *)data;
7304 switch (TREE_CODE (*tp))
7306 case VAR_DECL:
7307 case PARM_DECL:
7308 case RESULT_DECL:
7309 replace_by_duplicate_decl (tp, rd->vars_map, rd->to_context);
7310 break;
7311 default:
7312 break;
7315 if (IS_TYPE_OR_DECL_P (*tp))
7316 *walk_subtrees = false;
7318 return NULL;
7321 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
7322 subblocks. */
7324 static void
7325 replace_block_vars_by_duplicates (tree block, hash_map<tree, tree> *vars_map,
7326 tree to_context)
7328 tree *tp, t;
7330 for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
7332 t = *tp;
7333 if (!VAR_P (t) && TREE_CODE (t) != CONST_DECL)
7334 continue;
7335 replace_by_duplicate_decl (&t, vars_map, to_context);
7336 if (t != *tp)
7338 if (VAR_P (*tp) && DECL_HAS_VALUE_EXPR_P (*tp))
7340 tree x = DECL_VALUE_EXPR (*tp);
7341 struct replace_decls_d rd = { vars_map, to_context };
7342 unshare_expr (x);
7343 walk_tree (&x, replace_block_vars_by_duplicates_1, &rd, NULL);
7344 SET_DECL_VALUE_EXPR (t, x);
7345 DECL_HAS_VALUE_EXPR_P (t) = 1;
7347 DECL_CHAIN (t) = DECL_CHAIN (*tp);
7348 *tp = t;
7352 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
7353 replace_block_vars_by_duplicates (block, vars_map, to_context);
7356 /* Fixup the loop arrays and numbers after moving LOOP and its subloops
7357 from FN1 to FN2. */
7359 static void
7360 fixup_loop_arrays_after_move (struct function *fn1, struct function *fn2,
7361 struct loop *loop)
7363 /* Discard it from the old loop array. */
7364 (*get_loops (fn1))[loop->num] = NULL;
7366 /* Place it in the new loop array, assigning it a new number. */
7367 loop->num = number_of_loops (fn2);
7368 vec_safe_push (loops_for_fn (fn2)->larray, loop);
7370 /* Recurse to children. */
7371 for (loop = loop->inner; loop; loop = loop->next)
7372 fixup_loop_arrays_after_move (fn1, fn2, loop);
7375 /* Verify that the blocks in BBS_P are a single-entry, single-exit region
7376 delimited by ENTRY_BB and EXIT_BB, possibly containing noreturn blocks. */
7378 DEBUG_FUNCTION void
7379 verify_sese (basic_block entry, basic_block exit, vec<basic_block> *bbs_p)
7381 basic_block bb;
7382 edge_iterator ei;
7383 edge e;
7384 bitmap bbs = BITMAP_ALLOC (NULL);
7385 int i;
7387 gcc_assert (entry != NULL);
7388 gcc_assert (entry != exit);
7389 gcc_assert (bbs_p != NULL);
7391 gcc_assert (bbs_p->length () > 0);
7393 FOR_EACH_VEC_ELT (*bbs_p, i, bb)
7394 bitmap_set_bit (bbs, bb->index);
7396 gcc_assert (bitmap_bit_p (bbs, entry->index));
7397 gcc_assert (exit == NULL || bitmap_bit_p (bbs, exit->index));
7399 FOR_EACH_VEC_ELT (*bbs_p, i, bb)
7401 if (bb == entry)
7403 gcc_assert (single_pred_p (entry));
7404 gcc_assert (!bitmap_bit_p (bbs, single_pred (entry)->index));
7406 else
7407 for (ei = ei_start (bb->preds); !ei_end_p (ei); ei_next (&ei))
7409 e = ei_edge (ei);
7410 gcc_assert (bitmap_bit_p (bbs, e->src->index));
7413 if (bb == exit)
7415 gcc_assert (single_succ_p (exit));
7416 gcc_assert (!bitmap_bit_p (bbs, single_succ (exit)->index));
7418 else
7419 for (ei = ei_start (bb->succs); !ei_end_p (ei); ei_next (&ei))
7421 e = ei_edge (ei);
7422 gcc_assert (bitmap_bit_p (bbs, e->dest->index));
7426 BITMAP_FREE (bbs);
7429 /* If FROM is an SSA_NAME, mark the version in bitmap DATA. */
7431 bool
7432 gather_ssa_name_hash_map_from (tree const &from, tree const &, void *data)
7434 bitmap release_names = (bitmap)data;
7436 if (TREE_CODE (from) != SSA_NAME)
7437 return true;
7439 bitmap_set_bit (release_names, SSA_NAME_VERSION (from));
7440 return true;
7443 /* Return LOOP_DIST_ALIAS call if present in BB. */
7445 static gimple *
7446 find_loop_dist_alias (basic_block bb)
7448 gimple *g = last_stmt (bb);
7449 if (g == NULL || gimple_code (g) != GIMPLE_COND)
7450 return NULL;
7452 gimple_stmt_iterator gsi = gsi_for_stmt (g);
7453 gsi_prev (&gsi);
7454 if (gsi_end_p (gsi))
7455 return NULL;
7457 g = gsi_stmt (gsi);
7458 if (gimple_call_internal_p (g, IFN_LOOP_DIST_ALIAS))
7459 return g;
7460 return NULL;
7463 /* Fold loop internal call G like IFN_LOOP_VECTORIZED/IFN_LOOP_DIST_ALIAS
7464 to VALUE and update any immediate uses of it's LHS. */
7466 void
7467 fold_loop_internal_call (gimple *g, tree value)
7469 tree lhs = gimple_call_lhs (g);
7470 use_operand_p use_p;
7471 imm_use_iterator iter;
7472 gimple *use_stmt;
7473 gimple_stmt_iterator gsi = gsi_for_stmt (g);
7475 update_call_from_tree (&gsi, value);
7476 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
7478 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
7479 SET_USE (use_p, value);
7480 update_stmt (use_stmt);
7484 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
7485 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
7486 single basic block in the original CFG and the new basic block is
7487 returned. DEST_CFUN must not have a CFG yet.
7489 Note that the region need not be a pure SESE region. Blocks inside
7490 the region may contain calls to abort/exit. The only restriction
7491 is that ENTRY_BB should be the only entry point and it must
7492 dominate EXIT_BB.
7494 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
7495 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
7496 to the new function.
7498 All local variables referenced in the region are assumed to be in
7499 the corresponding BLOCK_VARS and unexpanded variable lists
7500 associated with DEST_CFUN.
7502 TODO: investigate whether we can reuse gimple_duplicate_sese_region to
7503 reimplement move_sese_region_to_fn by duplicating the region rather than
7504 moving it. */
7506 basic_block
7507 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
7508 basic_block exit_bb, tree orig_block)
7510 vec<basic_block> bbs, dom_bbs;
7511 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
7512 basic_block after, bb, *entry_pred, *exit_succ, abb;
7513 struct function *saved_cfun = cfun;
7514 int *entry_flag, *exit_flag;
7515 profile_probability *entry_prob, *exit_prob;
7516 unsigned i, num_entry_edges, num_exit_edges, num_nodes;
7517 edge e;
7518 edge_iterator ei;
7519 htab_t new_label_map;
7520 hash_map<void *, void *> *eh_map;
7521 struct loop *loop = entry_bb->loop_father;
7522 struct loop *loop0 = get_loop (saved_cfun, 0);
7523 struct move_stmt_d d;
7525 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
7526 region. */
7527 gcc_assert (entry_bb != exit_bb
7528 && (!exit_bb
7529 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
7531 /* Collect all the blocks in the region. Manually add ENTRY_BB
7532 because it won't be added by dfs_enumerate_from. */
7533 bbs.create (0);
7534 bbs.safe_push (entry_bb);
7535 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
7537 if (flag_checking)
7538 verify_sese (entry_bb, exit_bb, &bbs);
7540 /* The blocks that used to be dominated by something in BBS will now be
7541 dominated by the new block. */
7542 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
7543 bbs.address (),
7544 bbs.length ());
7546 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
7547 the predecessor edges to ENTRY_BB and the successor edges to
7548 EXIT_BB so that we can re-attach them to the new basic block that
7549 will replace the region. */
7550 num_entry_edges = EDGE_COUNT (entry_bb->preds);
7551 entry_pred = XNEWVEC (basic_block, num_entry_edges);
7552 entry_flag = XNEWVEC (int, num_entry_edges);
7553 entry_prob = XNEWVEC (profile_probability, num_entry_edges);
7554 i = 0;
7555 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
7557 entry_prob[i] = e->probability;
7558 entry_flag[i] = e->flags;
7559 entry_pred[i++] = e->src;
7560 remove_edge (e);
7563 if (exit_bb)
7565 num_exit_edges = EDGE_COUNT (exit_bb->succs);
7566 exit_succ = XNEWVEC (basic_block, num_exit_edges);
7567 exit_flag = XNEWVEC (int, num_exit_edges);
7568 exit_prob = XNEWVEC (profile_probability, num_exit_edges);
7569 i = 0;
7570 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
7572 exit_prob[i] = e->probability;
7573 exit_flag[i] = e->flags;
7574 exit_succ[i++] = e->dest;
7575 remove_edge (e);
7578 else
7580 num_exit_edges = 0;
7581 exit_succ = NULL;
7582 exit_flag = NULL;
7583 exit_prob = NULL;
7586 /* Switch context to the child function to initialize DEST_FN's CFG. */
7587 gcc_assert (dest_cfun->cfg == NULL);
7588 push_cfun (dest_cfun);
7590 init_empty_tree_cfg ();
7592 /* Initialize EH information for the new function. */
7593 eh_map = NULL;
7594 new_label_map = NULL;
7595 if (saved_cfun->eh)
7597 eh_region region = NULL;
7599 FOR_EACH_VEC_ELT (bbs, i, bb)
7600 region = find_outermost_region_in_block (saved_cfun, bb, region);
7602 init_eh_for_function ();
7603 if (region != NULL)
7605 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
7606 eh_map = duplicate_eh_regions (saved_cfun, region, 0,
7607 new_label_mapper, new_label_map);
7611 /* Initialize an empty loop tree. */
7612 struct loops *loops = ggc_cleared_alloc<struct loops> ();
7613 init_loops_structure (dest_cfun, loops, 1);
7614 loops->state = LOOPS_MAY_HAVE_MULTIPLE_LATCHES;
7615 set_loops_for_fn (dest_cfun, loops);
7617 vec<loop_p, va_gc> *larray = get_loops (saved_cfun)->copy ();
7619 /* Move the outlined loop tree part. */
7620 num_nodes = bbs.length ();
7621 FOR_EACH_VEC_ELT (bbs, i, bb)
7623 if (bb->loop_father->header == bb)
7625 struct loop *this_loop = bb->loop_father;
7626 struct loop *outer = loop_outer (this_loop);
7627 if (outer == loop
7628 /* If the SESE region contains some bbs ending with
7629 a noreturn call, those are considered to belong
7630 to the outermost loop in saved_cfun, rather than
7631 the entry_bb's loop_father. */
7632 || outer == loop0)
7634 if (outer != loop)
7635 num_nodes -= this_loop->num_nodes;
7636 flow_loop_tree_node_remove (bb->loop_father);
7637 flow_loop_tree_node_add (get_loop (dest_cfun, 0), this_loop);
7638 fixup_loop_arrays_after_move (saved_cfun, cfun, this_loop);
7641 else if (bb->loop_father == loop0 && loop0 != loop)
7642 num_nodes--;
7644 /* Remove loop exits from the outlined region. */
7645 if (loops_for_fn (saved_cfun)->exits)
7646 FOR_EACH_EDGE (e, ei, bb->succs)
7648 struct loops *l = loops_for_fn (saved_cfun);
7649 loop_exit **slot
7650 = l->exits->find_slot_with_hash (e, htab_hash_pointer (e),
7651 NO_INSERT);
7652 if (slot)
7653 l->exits->clear_slot (slot);
7657 /* Adjust the number of blocks in the tree root of the outlined part. */
7658 get_loop (dest_cfun, 0)->num_nodes = bbs.length () + 2;
7660 /* Setup a mapping to be used by move_block_to_fn. */
7661 loop->aux = current_loops->tree_root;
7662 loop0->aux = current_loops->tree_root;
7664 /* Fix up orig_loop_num. If the block referenced in it has been moved
7665 to dest_cfun, update orig_loop_num field, otherwise clear it. */
7666 struct loop *dloop;
7667 signed char *moved_orig_loop_num = NULL;
7668 FOR_EACH_LOOP_FN (dest_cfun, dloop, 0)
7669 if (dloop->orig_loop_num)
7671 if (moved_orig_loop_num == NULL)
7672 moved_orig_loop_num
7673 = XCNEWVEC (signed char, vec_safe_length (larray));
7674 if ((*larray)[dloop->orig_loop_num] != NULL
7675 && get_loop (saved_cfun, dloop->orig_loop_num) == NULL)
7677 if (moved_orig_loop_num[dloop->orig_loop_num] >= 0
7678 && moved_orig_loop_num[dloop->orig_loop_num] < 2)
7679 moved_orig_loop_num[dloop->orig_loop_num]++;
7680 dloop->orig_loop_num = (*larray)[dloop->orig_loop_num]->num;
7682 else
7684 moved_orig_loop_num[dloop->orig_loop_num] = -1;
7685 dloop->orig_loop_num = 0;
7688 pop_cfun ();
7690 if (moved_orig_loop_num)
7692 FOR_EACH_VEC_ELT (bbs, i, bb)
7694 gimple *g = find_loop_dist_alias (bb);
7695 if (g == NULL)
7696 continue;
7698 int orig_loop_num = tree_to_shwi (gimple_call_arg (g, 0));
7699 gcc_assert (orig_loop_num
7700 && (unsigned) orig_loop_num < vec_safe_length (larray));
7701 if (moved_orig_loop_num[orig_loop_num] == 2)
7703 /* If we have moved both loops with this orig_loop_num into
7704 dest_cfun and the LOOP_DIST_ALIAS call is being moved there
7705 too, update the first argument. */
7706 gcc_assert ((*larray)[dloop->orig_loop_num] != NULL
7707 && (get_loop (saved_cfun, dloop->orig_loop_num)
7708 == NULL));
7709 tree t = build_int_cst (integer_type_node,
7710 (*larray)[dloop->orig_loop_num]->num);
7711 gimple_call_set_arg (g, 0, t);
7712 update_stmt (g);
7713 /* Make sure the following loop will not update it. */
7714 moved_orig_loop_num[orig_loop_num] = 0;
7716 else
7717 /* Otherwise at least one of the loops stayed in saved_cfun.
7718 Remove the LOOP_DIST_ALIAS call. */
7719 fold_loop_internal_call (g, gimple_call_arg (g, 1));
7721 FOR_EACH_BB_FN (bb, saved_cfun)
7723 gimple *g = find_loop_dist_alias (bb);
7724 if (g == NULL)
7725 continue;
7726 int orig_loop_num = tree_to_shwi (gimple_call_arg (g, 0));
7727 gcc_assert (orig_loop_num
7728 && (unsigned) orig_loop_num < vec_safe_length (larray));
7729 if (moved_orig_loop_num[orig_loop_num])
7730 /* LOOP_DIST_ALIAS call remained in saved_cfun, if at least one
7731 of the corresponding loops was moved, remove it. */
7732 fold_loop_internal_call (g, gimple_call_arg (g, 1));
7734 XDELETEVEC (moved_orig_loop_num);
7736 ggc_free (larray);
7738 /* Move blocks from BBS into DEST_CFUN. */
7739 gcc_assert (bbs.length () >= 2);
7740 after = dest_cfun->cfg->x_entry_block_ptr;
7741 hash_map<tree, tree> vars_map;
7743 memset (&d, 0, sizeof (d));
7744 d.orig_block = orig_block;
7745 d.new_block = DECL_INITIAL (dest_cfun->decl);
7746 d.from_context = cfun->decl;
7747 d.to_context = dest_cfun->decl;
7748 d.vars_map = &vars_map;
7749 d.new_label_map = new_label_map;
7750 d.eh_map = eh_map;
7751 d.remap_decls_p = true;
7753 if (gimple_in_ssa_p (cfun))
7754 for (tree arg = DECL_ARGUMENTS (d.to_context); arg; arg = DECL_CHAIN (arg))
7756 tree narg = make_ssa_name_fn (dest_cfun, arg, gimple_build_nop ());
7757 set_ssa_default_def (dest_cfun, arg, narg);
7758 vars_map.put (arg, narg);
7761 FOR_EACH_VEC_ELT (bbs, i, bb)
7763 /* No need to update edge counts on the last block. It has
7764 already been updated earlier when we detached the region from
7765 the original CFG. */
7766 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
7767 after = bb;
7770 loop->aux = NULL;
7771 loop0->aux = NULL;
7772 /* Loop sizes are no longer correct, fix them up. */
7773 loop->num_nodes -= num_nodes;
7774 for (struct loop *outer = loop_outer (loop);
7775 outer; outer = loop_outer (outer))
7776 outer->num_nodes -= num_nodes;
7777 loop0->num_nodes -= bbs.length () - num_nodes;
7779 if (saved_cfun->has_simduid_loops || saved_cfun->has_force_vectorize_loops)
7781 struct loop *aloop;
7782 for (i = 0; vec_safe_iterate (loops->larray, i, &aloop); i++)
7783 if (aloop != NULL)
7785 if (aloop->simduid)
7787 replace_by_duplicate_decl (&aloop->simduid, d.vars_map,
7788 d.to_context);
7789 dest_cfun->has_simduid_loops = true;
7791 if (aloop->force_vectorize)
7792 dest_cfun->has_force_vectorize_loops = true;
7796 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
7797 if (orig_block)
7799 tree block;
7800 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
7801 == NULL_TREE);
7802 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
7803 = BLOCK_SUBBLOCKS (orig_block);
7804 for (block = BLOCK_SUBBLOCKS (orig_block);
7805 block; block = BLOCK_CHAIN (block))
7806 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
7807 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
7810 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
7811 &vars_map, dest_cfun->decl);
7813 if (new_label_map)
7814 htab_delete (new_label_map);
7815 if (eh_map)
7816 delete eh_map;
7818 if (gimple_in_ssa_p (cfun))
7820 /* We need to release ssa-names in a defined order, so first find them,
7821 and then iterate in ascending version order. */
7822 bitmap release_names = BITMAP_ALLOC (NULL);
7823 vars_map.traverse<void *, gather_ssa_name_hash_map_from> (release_names);
7824 bitmap_iterator bi;
7825 unsigned i;
7826 EXECUTE_IF_SET_IN_BITMAP (release_names, 0, i, bi)
7827 release_ssa_name (ssa_name (i));
7828 BITMAP_FREE (release_names);
7831 /* Rewire the entry and exit blocks. The successor to the entry
7832 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
7833 the child function. Similarly, the predecessor of DEST_FN's
7834 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
7835 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
7836 various CFG manipulation function get to the right CFG.
7838 FIXME, this is silly. The CFG ought to become a parameter to
7839 these helpers. */
7840 push_cfun (dest_cfun);
7841 ENTRY_BLOCK_PTR_FOR_FN (cfun)->count = entry_bb->count;
7842 make_single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), entry_bb, EDGE_FALLTHRU);
7843 if (exit_bb)
7845 make_single_succ_edge (exit_bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
7846 EXIT_BLOCK_PTR_FOR_FN (cfun)->count = exit_bb->count;
7848 else
7849 EXIT_BLOCK_PTR_FOR_FN (cfun)->count = profile_count::zero ();
7850 pop_cfun ();
7852 /* Back in the original function, the SESE region has disappeared,
7853 create a new basic block in its place. */
7854 bb = create_empty_bb (entry_pred[0]);
7855 if (current_loops)
7856 add_bb_to_loop (bb, loop);
7857 for (i = 0; i < num_entry_edges; i++)
7859 e = make_edge (entry_pred[i], bb, entry_flag[i]);
7860 e->probability = entry_prob[i];
7863 for (i = 0; i < num_exit_edges; i++)
7865 e = make_edge (bb, exit_succ[i], exit_flag[i]);
7866 e->probability = exit_prob[i];
7869 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
7870 FOR_EACH_VEC_ELT (dom_bbs, i, abb)
7871 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
7872 dom_bbs.release ();
7874 if (exit_bb)
7876 free (exit_prob);
7877 free (exit_flag);
7878 free (exit_succ);
7880 free (entry_prob);
7881 free (entry_flag);
7882 free (entry_pred);
7883 bbs.release ();
7885 return bb;
7888 /* Dump default def DEF to file FILE using FLAGS and indentation
7889 SPC. */
7891 static void
7892 dump_default_def (FILE *file, tree def, int spc, dump_flags_t flags)
7894 for (int i = 0; i < spc; ++i)
7895 fprintf (file, " ");
7896 dump_ssaname_info_to_file (file, def, spc);
7898 print_generic_expr (file, TREE_TYPE (def), flags);
7899 fprintf (file, " ");
7900 print_generic_expr (file, def, flags);
7901 fprintf (file, " = ");
7902 print_generic_expr (file, SSA_NAME_VAR (def), flags);
7903 fprintf (file, ";\n");
7906 /* Print no_sanitize attribute to FILE for a given attribute VALUE. */
7908 static void
7909 print_no_sanitize_attr_value (FILE *file, tree value)
7911 unsigned int flags = tree_to_uhwi (value);
7912 bool first = true;
7913 for (int i = 0; sanitizer_opts[i].name != NULL; ++i)
7915 if ((sanitizer_opts[i].flag & flags) == sanitizer_opts[i].flag)
7917 if (!first)
7918 fprintf (file, " | ");
7919 fprintf (file, "%s", sanitizer_opts[i].name);
7920 first = false;
7925 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in dumpfile.h)
7928 void
7929 dump_function_to_file (tree fndecl, FILE *file, dump_flags_t flags)
7931 tree arg, var, old_current_fndecl = current_function_decl;
7932 struct function *dsf;
7933 bool ignore_topmost_bind = false, any_var = false;
7934 basic_block bb;
7935 tree chain;
7936 bool tmclone = (TREE_CODE (fndecl) == FUNCTION_DECL
7937 && decl_is_tm_clone (fndecl));
7938 struct function *fun = DECL_STRUCT_FUNCTION (fndecl);
7940 if (DECL_ATTRIBUTES (fndecl) != NULL_TREE)
7942 fprintf (file, "__attribute__((");
7944 bool first = true;
7945 tree chain;
7946 for (chain = DECL_ATTRIBUTES (fndecl); chain;
7947 first = false, chain = TREE_CHAIN (chain))
7949 if (!first)
7950 fprintf (file, ", ");
7952 tree name = get_attribute_name (chain);
7953 print_generic_expr (file, name, dump_flags);
7954 if (TREE_VALUE (chain) != NULL_TREE)
7956 fprintf (file, " (");
7958 if (strstr (IDENTIFIER_POINTER (name), "no_sanitize"))
7959 print_no_sanitize_attr_value (file, TREE_VALUE (chain));
7960 else
7961 print_generic_expr (file, TREE_VALUE (chain), dump_flags);
7962 fprintf (file, ")");
7966 fprintf (file, "))\n");
7969 current_function_decl = fndecl;
7970 if (flags & TDF_GIMPLE)
7972 print_generic_expr (file, TREE_TYPE (TREE_TYPE (fndecl)),
7973 dump_flags | TDF_SLIM);
7974 fprintf (file, " __GIMPLE ()\n%s (", function_name (fun));
7976 else
7977 fprintf (file, "%s %s(", function_name (fun), tmclone ? "[tm-clone] " : "");
7979 arg = DECL_ARGUMENTS (fndecl);
7980 while (arg)
7982 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
7983 fprintf (file, " ");
7984 print_generic_expr (file, arg, dump_flags);
7985 if (DECL_CHAIN (arg))
7986 fprintf (file, ", ");
7987 arg = DECL_CHAIN (arg);
7989 fprintf (file, ")\n");
7991 dsf = DECL_STRUCT_FUNCTION (fndecl);
7992 if (dsf && (flags & TDF_EH))
7993 dump_eh_tree (file, dsf);
7995 if (flags & TDF_RAW && !gimple_has_body_p (fndecl))
7997 dump_node (fndecl, TDF_SLIM | flags, file);
7998 current_function_decl = old_current_fndecl;
7999 return;
8002 /* When GIMPLE is lowered, the variables are no longer available in
8003 BIND_EXPRs, so display them separately. */
8004 if (fun && fun->decl == fndecl && (fun->curr_properties & PROP_gimple_lcf))
8006 unsigned ix;
8007 ignore_topmost_bind = true;
8009 fprintf (file, "{\n");
8010 if (gimple_in_ssa_p (fun)
8011 && (flags & TDF_ALIAS))
8013 for (arg = DECL_ARGUMENTS (fndecl); arg != NULL;
8014 arg = DECL_CHAIN (arg))
8016 tree def = ssa_default_def (fun, arg);
8017 if (def)
8018 dump_default_def (file, def, 2, flags);
8021 tree res = DECL_RESULT (fun->decl);
8022 if (res != NULL_TREE
8023 && DECL_BY_REFERENCE (res))
8025 tree def = ssa_default_def (fun, res);
8026 if (def)
8027 dump_default_def (file, def, 2, flags);
8030 tree static_chain = fun->static_chain_decl;
8031 if (static_chain != NULL_TREE)
8033 tree def = ssa_default_def (fun, static_chain);
8034 if (def)
8035 dump_default_def (file, def, 2, flags);
8039 if (!vec_safe_is_empty (fun->local_decls))
8040 FOR_EACH_LOCAL_DECL (fun, ix, var)
8042 print_generic_decl (file, var, flags);
8043 fprintf (file, "\n");
8045 any_var = true;
8048 tree name;
8050 if (gimple_in_ssa_p (cfun))
8051 FOR_EACH_SSA_NAME (ix, name, cfun)
8053 if (!SSA_NAME_VAR (name))
8055 fprintf (file, " ");
8056 print_generic_expr (file, TREE_TYPE (name), flags);
8057 fprintf (file, " ");
8058 print_generic_expr (file, name, flags);
8059 fprintf (file, ";\n");
8061 any_var = true;
8066 if (fun && fun->decl == fndecl
8067 && fun->cfg
8068 && basic_block_info_for_fn (fun))
8070 /* If the CFG has been built, emit a CFG-based dump. */
8071 if (!ignore_topmost_bind)
8072 fprintf (file, "{\n");
8074 if (any_var && n_basic_blocks_for_fn (fun))
8075 fprintf (file, "\n");
8077 FOR_EACH_BB_FN (bb, fun)
8078 dump_bb (file, bb, 2, flags);
8080 fprintf (file, "}\n");
8082 else if (fun->curr_properties & PROP_gimple_any)
8084 /* The function is now in GIMPLE form but the CFG has not been
8085 built yet. Emit the single sequence of GIMPLE statements
8086 that make up its body. */
8087 gimple_seq body = gimple_body (fndecl);
8089 if (gimple_seq_first_stmt (body)
8090 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
8091 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
8092 print_gimple_seq (file, body, 0, flags);
8093 else
8095 if (!ignore_topmost_bind)
8096 fprintf (file, "{\n");
8098 if (any_var)
8099 fprintf (file, "\n");
8101 print_gimple_seq (file, body, 2, flags);
8102 fprintf (file, "}\n");
8105 else
8107 int indent;
8109 /* Make a tree based dump. */
8110 chain = DECL_SAVED_TREE (fndecl);
8111 if (chain && TREE_CODE (chain) == BIND_EXPR)
8113 if (ignore_topmost_bind)
8115 chain = BIND_EXPR_BODY (chain);
8116 indent = 2;
8118 else
8119 indent = 0;
8121 else
8123 if (!ignore_topmost_bind)
8125 fprintf (file, "{\n");
8126 /* No topmost bind, pretend it's ignored for later. */
8127 ignore_topmost_bind = true;
8129 indent = 2;
8132 if (any_var)
8133 fprintf (file, "\n");
8135 print_generic_stmt_indented (file, chain, flags, indent);
8136 if (ignore_topmost_bind)
8137 fprintf (file, "}\n");
8140 if (flags & TDF_ENUMERATE_LOCALS)
8141 dump_enumerated_decls (file, flags);
8142 fprintf (file, "\n\n");
8144 current_function_decl = old_current_fndecl;
8147 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
8149 DEBUG_FUNCTION void
8150 debug_function (tree fn, dump_flags_t flags)
8152 dump_function_to_file (fn, stderr, flags);
8156 /* Print on FILE the indexes for the predecessors of basic_block BB. */
8158 static void
8159 print_pred_bbs (FILE *file, basic_block bb)
8161 edge e;
8162 edge_iterator ei;
8164 FOR_EACH_EDGE (e, ei, bb->preds)
8165 fprintf (file, "bb_%d ", e->src->index);
8169 /* Print on FILE the indexes for the successors of basic_block BB. */
8171 static void
8172 print_succ_bbs (FILE *file, basic_block bb)
8174 edge e;
8175 edge_iterator ei;
8177 FOR_EACH_EDGE (e, ei, bb->succs)
8178 fprintf (file, "bb_%d ", e->dest->index);
8181 /* Print to FILE the basic block BB following the VERBOSITY level. */
8183 void
8184 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
8186 char *s_indent = (char *) alloca ((size_t) indent + 1);
8187 memset ((void *) s_indent, ' ', (size_t) indent);
8188 s_indent[indent] = '\0';
8190 /* Print basic_block's header. */
8191 if (verbosity >= 2)
8193 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
8194 print_pred_bbs (file, bb);
8195 fprintf (file, "}, succs = {");
8196 print_succ_bbs (file, bb);
8197 fprintf (file, "})\n");
8200 /* Print basic_block's body. */
8201 if (verbosity >= 3)
8203 fprintf (file, "%s {\n", s_indent);
8204 dump_bb (file, bb, indent + 4, TDF_VOPS|TDF_MEMSYMS);
8205 fprintf (file, "%s }\n", s_indent);
8209 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
8211 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
8212 VERBOSITY level this outputs the contents of the loop, or just its
8213 structure. */
8215 static void
8216 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
8218 char *s_indent;
8219 basic_block bb;
8221 if (loop == NULL)
8222 return;
8224 s_indent = (char *) alloca ((size_t) indent + 1);
8225 memset ((void *) s_indent, ' ', (size_t) indent);
8226 s_indent[indent] = '\0';
8228 /* Print loop's header. */
8229 fprintf (file, "%sloop_%d (", s_indent, loop->num);
8230 if (loop->header)
8231 fprintf (file, "header = %d", loop->header->index);
8232 else
8234 fprintf (file, "deleted)\n");
8235 return;
8237 if (loop->latch)
8238 fprintf (file, ", latch = %d", loop->latch->index);
8239 else
8240 fprintf (file, ", multiple latches");
8241 fprintf (file, ", niter = ");
8242 print_generic_expr (file, loop->nb_iterations);
8244 if (loop->any_upper_bound)
8246 fprintf (file, ", upper_bound = ");
8247 print_decu (loop->nb_iterations_upper_bound, file);
8249 if (loop->any_likely_upper_bound)
8251 fprintf (file, ", likely_upper_bound = ");
8252 print_decu (loop->nb_iterations_likely_upper_bound, file);
8255 if (loop->any_estimate)
8257 fprintf (file, ", estimate = ");
8258 print_decu (loop->nb_iterations_estimate, file);
8260 if (loop->unroll)
8261 fprintf (file, ", unroll = %d", loop->unroll);
8262 fprintf (file, ")\n");
8264 /* Print loop's body. */
8265 if (verbosity >= 1)
8267 fprintf (file, "%s{\n", s_indent);
8268 FOR_EACH_BB_FN (bb, cfun)
8269 if (bb->loop_father == loop)
8270 print_loops_bb (file, bb, indent, verbosity);
8272 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
8273 fprintf (file, "%s}\n", s_indent);
8277 /* Print the LOOP and its sibling loops on FILE, indented INDENT
8278 spaces. Following VERBOSITY level this outputs the contents of the
8279 loop, or just its structure. */
8281 static void
8282 print_loop_and_siblings (FILE *file, struct loop *loop, int indent,
8283 int verbosity)
8285 if (loop == NULL)
8286 return;
8288 print_loop (file, loop, indent, verbosity);
8289 print_loop_and_siblings (file, loop->next, indent, verbosity);
8292 /* Follow a CFG edge from the entry point of the program, and on entry
8293 of a loop, pretty print the loop structure on FILE. */
8295 void
8296 print_loops (FILE *file, int verbosity)
8298 basic_block bb;
8300 bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
8301 fprintf (file, "\nLoops in function: %s\n", current_function_name ());
8302 if (bb && bb->loop_father)
8303 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
8306 /* Dump a loop. */
8308 DEBUG_FUNCTION void
8309 debug (struct loop &ref)
8311 print_loop (stderr, &ref, 0, /*verbosity*/0);
8314 DEBUG_FUNCTION void
8315 debug (struct loop *ptr)
8317 if (ptr)
8318 debug (*ptr);
8319 else
8320 fprintf (stderr, "<nil>\n");
8323 /* Dump a loop verbosely. */
8325 DEBUG_FUNCTION void
8326 debug_verbose (struct loop &ref)
8328 print_loop (stderr, &ref, 0, /*verbosity*/3);
8331 DEBUG_FUNCTION void
8332 debug_verbose (struct loop *ptr)
8334 if (ptr)
8335 debug (*ptr);
8336 else
8337 fprintf (stderr, "<nil>\n");
8341 /* Debugging loops structure at tree level, at some VERBOSITY level. */
8343 DEBUG_FUNCTION void
8344 debug_loops (int verbosity)
8346 print_loops (stderr, verbosity);
8349 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
8351 DEBUG_FUNCTION void
8352 debug_loop (struct loop *loop, int verbosity)
8354 print_loop (stderr, loop, 0, verbosity);
8357 /* Print on stderr the code of loop number NUM, at some VERBOSITY
8358 level. */
8360 DEBUG_FUNCTION void
8361 debug_loop_num (unsigned num, int verbosity)
8363 debug_loop (get_loop (cfun, num), verbosity);
8366 /* Return true if BB ends with a call, possibly followed by some
8367 instructions that must stay with the call. Return false,
8368 otherwise. */
8370 static bool
8371 gimple_block_ends_with_call_p (basic_block bb)
8373 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
8374 return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
8378 /* Return true if BB ends with a conditional branch. Return false,
8379 otherwise. */
8381 static bool
8382 gimple_block_ends_with_condjump_p (const_basic_block bb)
8384 gimple *stmt = last_stmt (CONST_CAST_BB (bb));
8385 return (stmt && gimple_code (stmt) == GIMPLE_COND);
8389 /* Return true if statement T may terminate execution of BB in ways not
8390 explicitly represtented in the CFG. */
8392 bool
8393 stmt_can_terminate_bb_p (gimple *t)
8395 tree fndecl = NULL_TREE;
8396 int call_flags = 0;
8398 /* Eh exception not handled internally terminates execution of the whole
8399 function. */
8400 if (stmt_can_throw_external (t))
8401 return true;
8403 /* NORETURN and LONGJMP calls already have an edge to exit.
8404 CONST and PURE calls do not need one.
8405 We don't currently check for CONST and PURE here, although
8406 it would be a good idea, because those attributes are
8407 figured out from the RTL in mark_constant_function, and
8408 the counter incrementation code from -fprofile-arcs
8409 leads to different results from -fbranch-probabilities. */
8410 if (is_gimple_call (t))
8412 fndecl = gimple_call_fndecl (t);
8413 call_flags = gimple_call_flags (t);
8416 if (is_gimple_call (t)
8417 && fndecl
8418 && DECL_BUILT_IN (fndecl)
8419 && (call_flags & ECF_NOTHROW)
8420 && !(call_flags & ECF_RETURNS_TWICE)
8421 /* fork() doesn't really return twice, but the effect of
8422 wrapping it in __gcov_fork() which calls __gcov_flush()
8423 and clears the counters before forking has the same
8424 effect as returning twice. Force a fake edge. */
8425 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
8426 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
8427 return false;
8429 if (is_gimple_call (t))
8431 edge_iterator ei;
8432 edge e;
8433 basic_block bb;
8435 if (call_flags & (ECF_PURE | ECF_CONST)
8436 && !(call_flags & ECF_LOOPING_CONST_OR_PURE))
8437 return false;
8439 /* Function call may do longjmp, terminate program or do other things.
8440 Special case noreturn that have non-abnormal edges out as in this case
8441 the fact is sufficiently represented by lack of edges out of T. */
8442 if (!(call_flags & ECF_NORETURN))
8443 return true;
8445 bb = gimple_bb (t);
8446 FOR_EACH_EDGE (e, ei, bb->succs)
8447 if ((e->flags & EDGE_FAKE) == 0)
8448 return true;
8451 if (gasm *asm_stmt = dyn_cast <gasm *> (t))
8452 if (gimple_asm_volatile_p (asm_stmt) || gimple_asm_input_p (asm_stmt))
8453 return true;
8455 return false;
8459 /* Add fake edges to the function exit for any non constant and non
8460 noreturn calls (or noreturn calls with EH/abnormal edges),
8461 volatile inline assembly in the bitmap of blocks specified by BLOCKS
8462 or to the whole CFG if BLOCKS is zero. Return the number of blocks
8463 that were split.
8465 The goal is to expose cases in which entering a basic block does
8466 not imply that all subsequent instructions must be executed. */
8468 static int
8469 gimple_flow_call_edges_add (sbitmap blocks)
8471 int i;
8472 int blocks_split = 0;
8473 int last_bb = last_basic_block_for_fn (cfun);
8474 bool check_last_block = false;
8476 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
8477 return 0;
8479 if (! blocks)
8480 check_last_block = true;
8481 else
8482 check_last_block = bitmap_bit_p (blocks,
8483 EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb->index);
8485 /* In the last basic block, before epilogue generation, there will be
8486 a fallthru edge to EXIT. Special care is required if the last insn
8487 of the last basic block is a call because make_edge folds duplicate
8488 edges, which would result in the fallthru edge also being marked
8489 fake, which would result in the fallthru edge being removed by
8490 remove_fake_edges, which would result in an invalid CFG.
8492 Moreover, we can't elide the outgoing fake edge, since the block
8493 profiler needs to take this into account in order to solve the minimal
8494 spanning tree in the case that the call doesn't return.
8496 Handle this by adding a dummy instruction in a new last basic block. */
8497 if (check_last_block)
8499 basic_block bb = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
8500 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
8501 gimple *t = NULL;
8503 if (!gsi_end_p (gsi))
8504 t = gsi_stmt (gsi);
8506 if (t && stmt_can_terminate_bb_p (t))
8508 edge e;
8510 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
8511 if (e)
8513 gsi_insert_on_edge (e, gimple_build_nop ());
8514 gsi_commit_edge_inserts ();
8519 /* Now add fake edges to the function exit for any non constant
8520 calls since there is no way that we can determine if they will
8521 return or not... */
8522 for (i = 0; i < last_bb; i++)
8524 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
8525 gimple_stmt_iterator gsi;
8526 gimple *stmt, *last_stmt;
8528 if (!bb)
8529 continue;
8531 if (blocks && !bitmap_bit_p (blocks, i))
8532 continue;
8534 gsi = gsi_last_nondebug_bb (bb);
8535 if (!gsi_end_p (gsi))
8537 last_stmt = gsi_stmt (gsi);
8540 stmt = gsi_stmt (gsi);
8541 if (stmt_can_terminate_bb_p (stmt))
8543 edge e;
8545 /* The handling above of the final block before the
8546 epilogue should be enough to verify that there is
8547 no edge to the exit block in CFG already.
8548 Calling make_edge in such case would cause us to
8549 mark that edge as fake and remove it later. */
8550 if (flag_checking && stmt == last_stmt)
8552 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
8553 gcc_assert (e == NULL);
8556 /* Note that the following may create a new basic block
8557 and renumber the existing basic blocks. */
8558 if (stmt != last_stmt)
8560 e = split_block (bb, stmt);
8561 if (e)
8562 blocks_split++;
8564 e = make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), EDGE_FAKE);
8565 e->probability = profile_probability::guessed_never ();
8567 gsi_prev (&gsi);
8569 while (!gsi_end_p (gsi));
8573 if (blocks_split)
8574 checking_verify_flow_info ();
8576 return blocks_split;
8579 /* Removes edge E and all the blocks dominated by it, and updates dominance
8580 information. The IL in E->src needs to be updated separately.
8581 If dominance info is not available, only the edge E is removed.*/
8583 void
8584 remove_edge_and_dominated_blocks (edge e)
8586 vec<basic_block> bbs_to_remove = vNULL;
8587 vec<basic_block> bbs_to_fix_dom = vNULL;
8588 edge f;
8589 edge_iterator ei;
8590 bool none_removed = false;
8591 unsigned i;
8592 basic_block bb, dbb;
8593 bitmap_iterator bi;
8595 /* If we are removing a path inside a non-root loop that may change
8596 loop ownership of blocks or remove loops. Mark loops for fixup. */
8597 if (current_loops
8598 && loop_outer (e->src->loop_father) != NULL
8599 && e->src->loop_father == e->dest->loop_father)
8600 loops_state_set (LOOPS_NEED_FIXUP);
8602 if (!dom_info_available_p (CDI_DOMINATORS))
8604 remove_edge (e);
8605 return;
8608 /* No updating is needed for edges to exit. */
8609 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
8611 if (cfgcleanup_altered_bbs)
8612 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
8613 remove_edge (e);
8614 return;
8617 /* First, we find the basic blocks to remove. If E->dest has a predecessor
8618 that is not dominated by E->dest, then this set is empty. Otherwise,
8619 all the basic blocks dominated by E->dest are removed.
8621 Also, to DF_IDOM we store the immediate dominators of the blocks in
8622 the dominance frontier of E (i.e., of the successors of the
8623 removed blocks, if there are any, and of E->dest otherwise). */
8624 FOR_EACH_EDGE (f, ei, e->dest->preds)
8626 if (f == e)
8627 continue;
8629 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
8631 none_removed = true;
8632 break;
8636 auto_bitmap df, df_idom;
8637 if (none_removed)
8638 bitmap_set_bit (df_idom,
8639 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
8640 else
8642 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
8643 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
8645 FOR_EACH_EDGE (f, ei, bb->succs)
8647 if (f->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
8648 bitmap_set_bit (df, f->dest->index);
8651 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
8652 bitmap_clear_bit (df, bb->index);
8654 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
8656 bb = BASIC_BLOCK_FOR_FN (cfun, i);
8657 bitmap_set_bit (df_idom,
8658 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
8662 if (cfgcleanup_altered_bbs)
8664 /* Record the set of the altered basic blocks. */
8665 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
8666 bitmap_ior_into (cfgcleanup_altered_bbs, df);
8669 /* Remove E and the cancelled blocks. */
8670 if (none_removed)
8671 remove_edge (e);
8672 else
8674 /* Walk backwards so as to get a chance to substitute all
8675 released DEFs into debug stmts. See
8676 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
8677 details. */
8678 for (i = bbs_to_remove.length (); i-- > 0; )
8679 delete_basic_block (bbs_to_remove[i]);
8682 /* Update the dominance information. The immediate dominator may change only
8683 for blocks whose immediate dominator belongs to DF_IDOM:
8685 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
8686 removal. Let Z the arbitrary block such that idom(Z) = Y and
8687 Z dominates X after the removal. Before removal, there exists a path P
8688 from Y to X that avoids Z. Let F be the last edge on P that is
8689 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
8690 dominates W, and because of P, Z does not dominate W), and W belongs to
8691 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
8692 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
8694 bb = BASIC_BLOCK_FOR_FN (cfun, i);
8695 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
8696 dbb;
8697 dbb = next_dom_son (CDI_DOMINATORS, dbb))
8698 bbs_to_fix_dom.safe_push (dbb);
8701 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
8703 bbs_to_remove.release ();
8704 bbs_to_fix_dom.release ();
8707 /* Purge dead EH edges from basic block BB. */
8709 bool
8710 gimple_purge_dead_eh_edges (basic_block bb)
8712 bool changed = false;
8713 edge e;
8714 edge_iterator ei;
8715 gimple *stmt = last_stmt (bb);
8717 if (stmt && stmt_can_throw_internal (stmt))
8718 return false;
8720 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
8722 if (e->flags & EDGE_EH)
8724 remove_edge_and_dominated_blocks (e);
8725 changed = true;
8727 else
8728 ei_next (&ei);
8731 return changed;
8734 /* Purge dead EH edges from basic block listed in BLOCKS. */
8736 bool
8737 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
8739 bool changed = false;
8740 unsigned i;
8741 bitmap_iterator bi;
8743 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
8745 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
8747 /* Earlier gimple_purge_dead_eh_edges could have removed
8748 this basic block already. */
8749 gcc_assert (bb || changed);
8750 if (bb != NULL)
8751 changed |= gimple_purge_dead_eh_edges (bb);
8754 return changed;
8757 /* Purge dead abnormal call edges from basic block BB. */
8759 bool
8760 gimple_purge_dead_abnormal_call_edges (basic_block bb)
8762 bool changed = false;
8763 edge e;
8764 edge_iterator ei;
8765 gimple *stmt = last_stmt (bb);
8767 if (!cfun->has_nonlocal_label
8768 && !cfun->calls_setjmp)
8769 return false;
8771 if (stmt && stmt_can_make_abnormal_goto (stmt))
8772 return false;
8774 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
8776 if (e->flags & EDGE_ABNORMAL)
8778 if (e->flags & EDGE_FALLTHRU)
8779 e->flags &= ~EDGE_ABNORMAL;
8780 else
8781 remove_edge_and_dominated_blocks (e);
8782 changed = true;
8784 else
8785 ei_next (&ei);
8788 return changed;
8791 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
8793 bool
8794 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks)
8796 bool changed = false;
8797 unsigned i;
8798 bitmap_iterator bi;
8800 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
8802 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
8804 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
8805 this basic block already. */
8806 gcc_assert (bb || changed);
8807 if (bb != NULL)
8808 changed |= gimple_purge_dead_abnormal_call_edges (bb);
8811 return changed;
8814 /* This function is called whenever a new edge is created or
8815 redirected. */
8817 static void
8818 gimple_execute_on_growing_pred (edge e)
8820 basic_block bb = e->dest;
8822 if (!gimple_seq_empty_p (phi_nodes (bb)))
8823 reserve_phi_args_for_new_edge (bb);
8826 /* This function is called immediately before edge E is removed from
8827 the edge vector E->dest->preds. */
8829 static void
8830 gimple_execute_on_shrinking_pred (edge e)
8832 if (!gimple_seq_empty_p (phi_nodes (e->dest)))
8833 remove_phi_args (e);
8836 /*---------------------------------------------------------------------------
8837 Helper functions for Loop versioning
8838 ---------------------------------------------------------------------------*/
8840 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
8841 of 'first'. Both of them are dominated by 'new_head' basic block. When
8842 'new_head' was created by 'second's incoming edge it received phi arguments
8843 on the edge by split_edge(). Later, additional edge 'e' was created to
8844 connect 'new_head' and 'first'. Now this routine adds phi args on this
8845 additional edge 'e' that new_head to second edge received as part of edge
8846 splitting. */
8848 static void
8849 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
8850 basic_block new_head, edge e)
8852 gphi *phi1, *phi2;
8853 gphi_iterator psi1, psi2;
8854 tree def;
8855 edge e2 = find_edge (new_head, second);
8857 /* Because NEW_HEAD has been created by splitting SECOND's incoming
8858 edge, we should always have an edge from NEW_HEAD to SECOND. */
8859 gcc_assert (e2 != NULL);
8861 /* Browse all 'second' basic block phi nodes and add phi args to
8862 edge 'e' for 'first' head. PHI args are always in correct order. */
8864 for (psi2 = gsi_start_phis (second),
8865 psi1 = gsi_start_phis (first);
8866 !gsi_end_p (psi2) && !gsi_end_p (psi1);
8867 gsi_next (&psi2), gsi_next (&psi1))
8869 phi1 = psi1.phi ();
8870 phi2 = psi2.phi ();
8871 def = PHI_ARG_DEF (phi2, e2->dest_idx);
8872 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
8877 /* Adds a if else statement to COND_BB with condition COND_EXPR.
8878 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
8879 the destination of the ELSE part. */
8881 static void
8882 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
8883 basic_block second_head ATTRIBUTE_UNUSED,
8884 basic_block cond_bb, void *cond_e)
8886 gimple_stmt_iterator gsi;
8887 gimple *new_cond_expr;
8888 tree cond_expr = (tree) cond_e;
8889 edge e0;
8891 /* Build new conditional expr */
8892 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
8893 NULL_TREE, NULL_TREE);
8895 /* Add new cond in cond_bb. */
8896 gsi = gsi_last_bb (cond_bb);
8897 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
8899 /* Adjust edges appropriately to connect new head with first head
8900 as well as second head. */
8901 e0 = single_succ_edge (cond_bb);
8902 e0->flags &= ~EDGE_FALLTHRU;
8903 e0->flags |= EDGE_FALSE_VALUE;
8907 /* Do book-keeping of basic block BB for the profile consistency checker.
8908 If AFTER_PASS is 0, do pre-pass accounting, or if AFTER_PASS is 1
8909 then do post-pass accounting. Store the counting in RECORD. */
8910 static void
8911 gimple_account_profile_record (basic_block bb, int after_pass,
8912 struct profile_record *record)
8914 gimple_stmt_iterator i;
8915 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
8917 record->size[after_pass]
8918 += estimate_num_insns (gsi_stmt (i), &eni_size_weights);
8919 if (bb->count.initialized_p ())
8920 record->time[after_pass]
8921 += estimate_num_insns (gsi_stmt (i),
8922 &eni_time_weights) * bb->count.to_gcov_type ();
8923 else if (profile_status_for_fn (cfun) == PROFILE_GUESSED)
8924 record->time[after_pass]
8925 += estimate_num_insns (gsi_stmt (i),
8926 &eni_time_weights) * bb->count.to_frequency (cfun);
8930 struct cfg_hooks gimple_cfg_hooks = {
8931 "gimple",
8932 gimple_verify_flow_info,
8933 gimple_dump_bb, /* dump_bb */
8934 gimple_dump_bb_for_graph, /* dump_bb_for_graph */
8935 create_bb, /* create_basic_block */
8936 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
8937 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
8938 gimple_can_remove_branch_p, /* can_remove_branch_p */
8939 remove_bb, /* delete_basic_block */
8940 gimple_split_block, /* split_block */
8941 gimple_move_block_after, /* move_block_after */
8942 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
8943 gimple_merge_blocks, /* merge_blocks */
8944 gimple_predict_edge, /* predict_edge */
8945 gimple_predicted_by_p, /* predicted_by_p */
8946 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
8947 gimple_duplicate_bb, /* duplicate_block */
8948 gimple_split_edge, /* split_edge */
8949 gimple_make_forwarder_block, /* make_forward_block */
8950 NULL, /* tidy_fallthru_edge */
8951 NULL, /* force_nonfallthru */
8952 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
8953 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
8954 gimple_flow_call_edges_add, /* flow_call_edges_add */
8955 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
8956 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
8957 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
8958 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
8959 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
8960 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
8961 flush_pending_stmts, /* flush_pending_stmts */
8962 gimple_empty_block_p, /* block_empty_p */
8963 gimple_split_block_before_cond_jump, /* split_block_before_cond_jump */
8964 gimple_account_profile_record,
8968 /* Split all critical edges. */
8970 unsigned int
8971 split_critical_edges (void)
8973 basic_block bb;
8974 edge e;
8975 edge_iterator ei;
8977 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
8978 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
8979 mappings around the calls to split_edge. */
8980 start_recording_case_labels ();
8981 FOR_ALL_BB_FN (bb, cfun)
8983 FOR_EACH_EDGE (e, ei, bb->succs)
8985 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
8986 split_edge (e);
8987 /* PRE inserts statements to edges and expects that
8988 since split_critical_edges was done beforehand, committing edge
8989 insertions will not split more edges. In addition to critical
8990 edges we must split edges that have multiple successors and
8991 end by control flow statements, such as RESX.
8992 Go ahead and split them too. This matches the logic in
8993 gimple_find_edge_insert_loc. */
8994 else if ((!single_pred_p (e->dest)
8995 || !gimple_seq_empty_p (phi_nodes (e->dest))
8996 || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
8997 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
8998 && !(e->flags & EDGE_ABNORMAL))
9000 gimple_stmt_iterator gsi;
9002 gsi = gsi_last_bb (e->src);
9003 if (!gsi_end_p (gsi)
9004 && stmt_ends_bb_p (gsi_stmt (gsi))
9005 && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
9006 && !gimple_call_builtin_p (gsi_stmt (gsi),
9007 BUILT_IN_RETURN)))
9008 split_edge (e);
9012 end_recording_case_labels ();
9013 return 0;
9016 namespace {
9018 const pass_data pass_data_split_crit_edges =
9020 GIMPLE_PASS, /* type */
9021 "crited", /* name */
9022 OPTGROUP_NONE, /* optinfo_flags */
9023 TV_TREE_SPLIT_EDGES, /* tv_id */
9024 PROP_cfg, /* properties_required */
9025 PROP_no_crit_edges, /* properties_provided */
9026 0, /* properties_destroyed */
9027 0, /* todo_flags_start */
9028 0, /* todo_flags_finish */
9031 class pass_split_crit_edges : public gimple_opt_pass
9033 public:
9034 pass_split_crit_edges (gcc::context *ctxt)
9035 : gimple_opt_pass (pass_data_split_crit_edges, ctxt)
9038 /* opt_pass methods: */
9039 virtual unsigned int execute (function *) { return split_critical_edges (); }
9041 opt_pass * clone () { return new pass_split_crit_edges (m_ctxt); }
9042 }; // class pass_split_crit_edges
9044 } // anon namespace
9046 gimple_opt_pass *
9047 make_pass_split_crit_edges (gcc::context *ctxt)
9049 return new pass_split_crit_edges (ctxt);
9053 /* Insert COND expression which is GIMPLE_COND after STMT
9054 in basic block BB with appropriate basic block split
9055 and creation of a new conditionally executed basic block.
9056 Update profile so the new bb is visited with probability PROB.
9057 Return created basic block. */
9058 basic_block
9059 insert_cond_bb (basic_block bb, gimple *stmt, gimple *cond,
9060 profile_probability prob)
9062 edge fall = split_block (bb, stmt);
9063 gimple_stmt_iterator iter = gsi_last_bb (bb);
9064 basic_block new_bb;
9066 /* Insert cond statement. */
9067 gcc_assert (gimple_code (cond) == GIMPLE_COND);
9068 if (gsi_end_p (iter))
9069 gsi_insert_before (&iter, cond, GSI_CONTINUE_LINKING);
9070 else
9071 gsi_insert_after (&iter, cond, GSI_CONTINUE_LINKING);
9073 /* Create conditionally executed block. */
9074 new_bb = create_empty_bb (bb);
9075 edge e = make_edge (bb, new_bb, EDGE_TRUE_VALUE);
9076 e->probability = prob;
9077 new_bb->count = e->count ();
9078 make_single_succ_edge (new_bb, fall->dest, EDGE_FALLTHRU);
9080 /* Fix edge for split bb. */
9081 fall->flags = EDGE_FALSE_VALUE;
9082 fall->probability -= e->probability;
9084 /* Update dominance info. */
9085 if (dom_info_available_p (CDI_DOMINATORS))
9087 set_immediate_dominator (CDI_DOMINATORS, new_bb, bb);
9088 set_immediate_dominator (CDI_DOMINATORS, fall->dest, bb);
9091 /* Update loop info. */
9092 if (current_loops)
9093 add_bb_to_loop (new_bb, bb->loop_father);
9095 return new_bb;
9098 /* Build a ternary operation and gimplify it. Emit code before GSI.
9099 Return the gimple_val holding the result. */
9101 tree
9102 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
9103 tree type, tree a, tree b, tree c)
9105 tree ret;
9106 location_t loc = gimple_location (gsi_stmt (*gsi));
9108 ret = fold_build3_loc (loc, code, type, a, b, c);
9109 STRIP_NOPS (ret);
9111 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
9112 GSI_SAME_STMT);
9115 /* Build a binary operation and gimplify it. Emit code before GSI.
9116 Return the gimple_val holding the result. */
9118 tree
9119 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
9120 tree type, tree a, tree b)
9122 tree ret;
9124 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
9125 STRIP_NOPS (ret);
9127 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
9128 GSI_SAME_STMT);
9131 /* Build a unary operation and gimplify it. Emit code before GSI.
9132 Return the gimple_val holding the result. */
9134 tree
9135 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
9136 tree a)
9138 tree ret;
9140 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
9141 STRIP_NOPS (ret);
9143 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
9144 GSI_SAME_STMT);
9149 /* Given a basic block B which ends with a conditional and has
9150 precisely two successors, determine which of the edges is taken if
9151 the conditional is true and which is taken if the conditional is
9152 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
9154 void
9155 extract_true_false_edges_from_block (basic_block b,
9156 edge *true_edge,
9157 edge *false_edge)
9159 edge e = EDGE_SUCC (b, 0);
9161 if (e->flags & EDGE_TRUE_VALUE)
9163 *true_edge = e;
9164 *false_edge = EDGE_SUCC (b, 1);
9166 else
9168 *false_edge = e;
9169 *true_edge = EDGE_SUCC (b, 1);
9174 /* From a controlling predicate in the immediate dominator DOM of
9175 PHIBLOCK determine the edges into PHIBLOCK that are chosen if the
9176 predicate evaluates to true and false and store them to
9177 *TRUE_CONTROLLED_EDGE and *FALSE_CONTROLLED_EDGE if
9178 they are non-NULL. Returns true if the edges can be determined,
9179 else return false. */
9181 bool
9182 extract_true_false_controlled_edges (basic_block dom, basic_block phiblock,
9183 edge *true_controlled_edge,
9184 edge *false_controlled_edge)
9186 basic_block bb = phiblock;
9187 edge true_edge, false_edge, tem;
9188 edge e0 = NULL, e1 = NULL;
9190 /* We have to verify that one edge into the PHI node is dominated
9191 by the true edge of the predicate block and the other edge
9192 dominated by the false edge. This ensures that the PHI argument
9193 we are going to take is completely determined by the path we
9194 take from the predicate block.
9195 We can only use BB dominance checks below if the destination of
9196 the true/false edges are dominated by their edge, thus only
9197 have a single predecessor. */
9198 extract_true_false_edges_from_block (dom, &true_edge, &false_edge);
9199 tem = EDGE_PRED (bb, 0);
9200 if (tem == true_edge
9201 || (single_pred_p (true_edge->dest)
9202 && (tem->src == true_edge->dest
9203 || dominated_by_p (CDI_DOMINATORS,
9204 tem->src, true_edge->dest))))
9205 e0 = tem;
9206 else if (tem == false_edge
9207 || (single_pred_p (false_edge->dest)
9208 && (tem->src == false_edge->dest
9209 || dominated_by_p (CDI_DOMINATORS,
9210 tem->src, false_edge->dest))))
9211 e1 = tem;
9212 else
9213 return false;
9214 tem = EDGE_PRED (bb, 1);
9215 if (tem == true_edge
9216 || (single_pred_p (true_edge->dest)
9217 && (tem->src == true_edge->dest
9218 || dominated_by_p (CDI_DOMINATORS,
9219 tem->src, true_edge->dest))))
9220 e0 = tem;
9221 else if (tem == false_edge
9222 || (single_pred_p (false_edge->dest)
9223 && (tem->src == false_edge->dest
9224 || dominated_by_p (CDI_DOMINATORS,
9225 tem->src, false_edge->dest))))
9226 e1 = tem;
9227 else
9228 return false;
9229 if (!e0 || !e1)
9230 return false;
9232 if (true_controlled_edge)
9233 *true_controlled_edge = e0;
9234 if (false_controlled_edge)
9235 *false_controlled_edge = e1;
9237 return true;
9240 /* Generate a range test LHS CODE RHS that determines whether INDEX is in the
9241 range [low, high]. Place associated stmts before *GSI. */
9243 void
9244 generate_range_test (basic_block bb, tree index, tree low, tree high,
9245 tree *lhs, tree *rhs)
9247 tree type = TREE_TYPE (index);
9248 tree utype = unsigned_type_for (type);
9250 low = fold_convert (type, low);
9251 high = fold_convert (type, high);
9253 tree tmp = make_ssa_name (type);
9254 gassign *sub1
9255 = gimple_build_assign (tmp, MINUS_EXPR, index, low);
9257 *lhs = make_ssa_name (utype);
9258 gassign *a = gimple_build_assign (*lhs, NOP_EXPR, tmp);
9260 *rhs = fold_build2 (MINUS_EXPR, utype, high, low);
9261 gimple_stmt_iterator gsi = gsi_last_bb (bb);
9262 gsi_insert_before (&gsi, sub1, GSI_SAME_STMT);
9263 gsi_insert_before (&gsi, a, GSI_SAME_STMT);
9266 /* Emit return warnings. */
9268 namespace {
9270 const pass_data pass_data_warn_function_return =
9272 GIMPLE_PASS, /* type */
9273 "*warn_function_return", /* name */
9274 OPTGROUP_NONE, /* optinfo_flags */
9275 TV_NONE, /* tv_id */
9276 PROP_cfg, /* properties_required */
9277 0, /* properties_provided */
9278 0, /* properties_destroyed */
9279 0, /* todo_flags_start */
9280 0, /* todo_flags_finish */
9283 class pass_warn_function_return : public gimple_opt_pass
9285 public:
9286 pass_warn_function_return (gcc::context *ctxt)
9287 : gimple_opt_pass (pass_data_warn_function_return, ctxt)
9290 /* opt_pass methods: */
9291 virtual unsigned int execute (function *);
9293 }; // class pass_warn_function_return
9295 unsigned int
9296 pass_warn_function_return::execute (function *fun)
9298 source_location location;
9299 gimple *last;
9300 edge e;
9301 edge_iterator ei;
9303 if (!targetm.warn_func_return (fun->decl))
9304 return 0;
9306 /* If we have a path to EXIT, then we do return. */
9307 if (TREE_THIS_VOLATILE (fun->decl)
9308 && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (fun)->preds) > 0)
9310 location = UNKNOWN_LOCATION;
9311 for (ei = ei_start (EXIT_BLOCK_PTR_FOR_FN (fun)->preds);
9312 (e = ei_safe_edge (ei)); )
9314 last = last_stmt (e->src);
9315 if ((gimple_code (last) == GIMPLE_RETURN
9316 || gimple_call_builtin_p (last, BUILT_IN_RETURN))
9317 && location == UNKNOWN_LOCATION
9318 && ((location = LOCATION_LOCUS (gimple_location (last)))
9319 != UNKNOWN_LOCATION)
9320 && !optimize)
9321 break;
9322 /* When optimizing, replace return stmts in noreturn functions
9323 with __builtin_unreachable () call. */
9324 if (optimize && gimple_code (last) == GIMPLE_RETURN)
9326 tree fndecl = builtin_decl_implicit (BUILT_IN_UNREACHABLE);
9327 gimple *new_stmt = gimple_build_call (fndecl, 0);
9328 gimple_set_location (new_stmt, gimple_location (last));
9329 gimple_stmt_iterator gsi = gsi_for_stmt (last);
9330 gsi_replace (&gsi, new_stmt, true);
9331 remove_edge (e);
9333 else
9334 ei_next (&ei);
9336 if (location == UNKNOWN_LOCATION)
9337 location = cfun->function_end_locus;
9338 warning_at (location, 0, "%<noreturn%> function does return");
9341 /* If we see "return;" in some basic block, then we do reach the end
9342 without returning a value. */
9343 else if (warn_return_type > 0
9344 && !TREE_NO_WARNING (fun->decl)
9345 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (fun->decl))))
9347 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (fun)->preds)
9349 gimple *last = last_stmt (e->src);
9350 greturn *return_stmt = dyn_cast <greturn *> (last);
9351 if (return_stmt
9352 && gimple_return_retval (return_stmt) == NULL
9353 && !gimple_no_warning_p (last))
9355 location = gimple_location (last);
9356 if (LOCATION_LOCUS (location) == UNKNOWN_LOCATION)
9357 location = fun->function_end_locus;
9358 warning_at (location, OPT_Wreturn_type,
9359 "control reaches end of non-void function");
9360 TREE_NO_WARNING (fun->decl) = 1;
9361 break;
9364 /* The C++ FE turns fallthrough from the end of non-void function
9365 into __builtin_unreachable () call with BUILTINS_LOCATION.
9366 Recognize those too. */
9367 basic_block bb;
9368 if (!TREE_NO_WARNING (fun->decl))
9369 FOR_EACH_BB_FN (bb, fun)
9370 if (EDGE_COUNT (bb->succs) == 0)
9372 gimple *last = last_stmt (bb);
9373 const enum built_in_function ubsan_missing_ret
9374 = BUILT_IN_UBSAN_HANDLE_MISSING_RETURN;
9375 if (last
9376 && ((LOCATION_LOCUS (gimple_location (last))
9377 == BUILTINS_LOCATION
9378 && gimple_call_builtin_p (last, BUILT_IN_UNREACHABLE))
9379 || gimple_call_builtin_p (last, ubsan_missing_ret)))
9381 gimple_stmt_iterator gsi = gsi_for_stmt (last);
9382 gsi_prev_nondebug (&gsi);
9383 gimple *prev = gsi_stmt (gsi);
9384 if (prev == NULL)
9385 location = UNKNOWN_LOCATION;
9386 else
9387 location = gimple_location (prev);
9388 if (LOCATION_LOCUS (location) == UNKNOWN_LOCATION)
9389 location = fun->function_end_locus;
9390 warning_at (location, OPT_Wreturn_type,
9391 "control reaches end of non-void function");
9392 TREE_NO_WARNING (fun->decl) = 1;
9393 break;
9397 return 0;
9400 } // anon namespace
9402 gimple_opt_pass *
9403 make_pass_warn_function_return (gcc::context *ctxt)
9405 return new pass_warn_function_return (ctxt);
9408 /* Walk a gimplified function and warn for functions whose return value is
9409 ignored and attribute((warn_unused_result)) is set. This is done before
9410 inlining, so we don't have to worry about that. */
9412 static void
9413 do_warn_unused_result (gimple_seq seq)
9415 tree fdecl, ftype;
9416 gimple_stmt_iterator i;
9418 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
9420 gimple *g = gsi_stmt (i);
9422 switch (gimple_code (g))
9424 case GIMPLE_BIND:
9425 do_warn_unused_result (gimple_bind_body (as_a <gbind *>(g)));
9426 break;
9427 case GIMPLE_TRY:
9428 do_warn_unused_result (gimple_try_eval (g));
9429 do_warn_unused_result (gimple_try_cleanup (g));
9430 break;
9431 case GIMPLE_CATCH:
9432 do_warn_unused_result (gimple_catch_handler (
9433 as_a <gcatch *> (g)));
9434 break;
9435 case GIMPLE_EH_FILTER:
9436 do_warn_unused_result (gimple_eh_filter_failure (g));
9437 break;
9439 case GIMPLE_CALL:
9440 if (gimple_call_lhs (g))
9441 break;
9442 if (gimple_call_internal_p (g))
9443 break;
9445 /* This is a naked call, as opposed to a GIMPLE_CALL with an
9446 LHS. All calls whose value is ignored should be
9447 represented like this. Look for the attribute. */
9448 fdecl = gimple_call_fndecl (g);
9449 ftype = gimple_call_fntype (g);
9451 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
9453 location_t loc = gimple_location (g);
9455 if (fdecl)
9456 warning_at (loc, OPT_Wunused_result,
9457 "ignoring return value of %qD, "
9458 "declared with attribute warn_unused_result",
9459 fdecl);
9460 else
9461 warning_at (loc, OPT_Wunused_result,
9462 "ignoring return value of function "
9463 "declared with attribute warn_unused_result");
9465 break;
9467 default:
9468 /* Not a container, not a call, or a call whose value is used. */
9469 break;
9474 namespace {
9476 const pass_data pass_data_warn_unused_result =
9478 GIMPLE_PASS, /* type */
9479 "*warn_unused_result", /* name */
9480 OPTGROUP_NONE, /* optinfo_flags */
9481 TV_NONE, /* tv_id */
9482 PROP_gimple_any, /* properties_required */
9483 0, /* properties_provided */
9484 0, /* properties_destroyed */
9485 0, /* todo_flags_start */
9486 0, /* todo_flags_finish */
9489 class pass_warn_unused_result : public gimple_opt_pass
9491 public:
9492 pass_warn_unused_result (gcc::context *ctxt)
9493 : gimple_opt_pass (pass_data_warn_unused_result, ctxt)
9496 /* opt_pass methods: */
9497 virtual bool gate (function *) { return flag_warn_unused_result; }
9498 virtual unsigned int execute (function *)
9500 do_warn_unused_result (gimple_body (current_function_decl));
9501 return 0;
9504 }; // class pass_warn_unused_result
9506 } // anon namespace
9508 gimple_opt_pass *
9509 make_pass_warn_unused_result (gcc::context *ctxt)
9511 return new pass_warn_unused_result (ctxt);
9514 /* IPA passes, compilation of earlier functions or inlining
9515 might have changed some properties, such as marked functions nothrow,
9516 pure, const or noreturn.
9517 Remove redundant edges and basic blocks, and create new ones if necessary.
9519 This pass can't be executed as stand alone pass from pass manager, because
9520 in between inlining and this fixup the verify_flow_info would fail. */
9522 unsigned int
9523 execute_fixup_cfg (void)
9525 basic_block bb;
9526 gimple_stmt_iterator gsi;
9527 int todo = 0;
9528 cgraph_node *node = cgraph_node::get (current_function_decl);
9529 profile_count num = node->count;
9530 profile_count den = ENTRY_BLOCK_PTR_FOR_FN (cfun)->count;
9531 bool scale = num.initialized_p () && !(num == den);
9533 if (scale)
9535 profile_count::adjust_for_ipa_scaling (&num, &den);
9536 ENTRY_BLOCK_PTR_FOR_FN (cfun)->count = node->count;
9537 EXIT_BLOCK_PTR_FOR_FN (cfun)->count
9538 = EXIT_BLOCK_PTR_FOR_FN (cfun)->count.apply_scale (num, den);
9541 FOR_EACH_BB_FN (bb, cfun)
9543 if (scale)
9544 bb->count = bb->count.apply_scale (num, den);
9545 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
9547 gimple *stmt = gsi_stmt (gsi);
9548 tree decl = is_gimple_call (stmt)
9549 ? gimple_call_fndecl (stmt)
9550 : NULL;
9551 if (decl)
9553 int flags = gimple_call_flags (stmt);
9554 if (flags & (ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE))
9556 if (gimple_purge_dead_abnormal_call_edges (bb))
9557 todo |= TODO_cleanup_cfg;
9559 if (gimple_in_ssa_p (cfun))
9561 todo |= TODO_update_ssa | TODO_cleanup_cfg;
9562 update_stmt (stmt);
9566 if (flags & ECF_NORETURN
9567 && fixup_noreturn_call (stmt))
9568 todo |= TODO_cleanup_cfg;
9571 /* Remove stores to variables we marked write-only.
9572 Keep access when store has side effect, i.e. in case when source
9573 is volatile. */
9574 if (gimple_store_p (stmt)
9575 && !gimple_has_side_effects (stmt))
9577 tree lhs = get_base_address (gimple_get_lhs (stmt));
9579 if (VAR_P (lhs)
9580 && (TREE_STATIC (lhs) || DECL_EXTERNAL (lhs))
9581 && varpool_node::get (lhs)->writeonly)
9583 unlink_stmt_vdef (stmt);
9584 gsi_remove (&gsi, true);
9585 release_defs (stmt);
9586 todo |= TODO_update_ssa | TODO_cleanup_cfg;
9587 continue;
9590 /* For calls we can simply remove LHS when it is known
9591 to be write-only. */
9592 if (is_gimple_call (stmt)
9593 && gimple_get_lhs (stmt))
9595 tree lhs = get_base_address (gimple_get_lhs (stmt));
9597 if (VAR_P (lhs)
9598 && (TREE_STATIC (lhs) || DECL_EXTERNAL (lhs))
9599 && varpool_node::get (lhs)->writeonly)
9601 gimple_call_set_lhs (stmt, NULL);
9602 update_stmt (stmt);
9603 todo |= TODO_update_ssa | TODO_cleanup_cfg;
9607 if (maybe_clean_eh_stmt (stmt)
9608 && gimple_purge_dead_eh_edges (bb))
9609 todo |= TODO_cleanup_cfg;
9610 gsi_next (&gsi);
9613 /* If we have a basic block with no successors that does not
9614 end with a control statement or a noreturn call end it with
9615 a call to __builtin_unreachable. This situation can occur
9616 when inlining a noreturn call that does in fact return. */
9617 if (EDGE_COUNT (bb->succs) == 0)
9619 gimple *stmt = last_stmt (bb);
9620 if (!stmt
9621 || (!is_ctrl_stmt (stmt)
9622 && (!is_gimple_call (stmt)
9623 || !gimple_call_noreturn_p (stmt))))
9625 if (stmt && is_gimple_call (stmt))
9626 gimple_call_set_ctrl_altering (stmt, false);
9627 tree fndecl = builtin_decl_implicit (BUILT_IN_UNREACHABLE);
9628 stmt = gimple_build_call (fndecl, 0);
9629 gimple_stmt_iterator gsi = gsi_last_bb (bb);
9630 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
9631 if (!cfun->after_inlining)
9633 gcall *call_stmt = dyn_cast <gcall *> (stmt);
9634 node->create_edge (cgraph_node::get_create (fndecl),
9635 call_stmt, bb->count);
9640 if (scale)
9641 compute_function_frequency ();
9643 if (current_loops
9644 && (todo & TODO_cleanup_cfg))
9645 loops_state_set (LOOPS_NEED_FIXUP);
9647 return todo;
9650 namespace {
9652 const pass_data pass_data_fixup_cfg =
9654 GIMPLE_PASS, /* type */
9655 "fixup_cfg", /* name */
9656 OPTGROUP_NONE, /* optinfo_flags */
9657 TV_NONE, /* tv_id */
9658 PROP_cfg, /* properties_required */
9659 0, /* properties_provided */
9660 0, /* properties_destroyed */
9661 0, /* todo_flags_start */
9662 0, /* todo_flags_finish */
9665 class pass_fixup_cfg : public gimple_opt_pass
9667 public:
9668 pass_fixup_cfg (gcc::context *ctxt)
9669 : gimple_opt_pass (pass_data_fixup_cfg, ctxt)
9672 /* opt_pass methods: */
9673 opt_pass * clone () { return new pass_fixup_cfg (m_ctxt); }
9674 virtual unsigned int execute (function *) { return execute_fixup_cfg (); }
9676 }; // class pass_fixup_cfg
9678 } // anon namespace
9680 gimple_opt_pass *
9681 make_pass_fixup_cfg (gcc::context *ctxt)
9683 return new pass_fixup_cfg (ctxt);
9686 /* Garbage collection support for edge_def. */
9688 extern void gt_ggc_mx (tree&);
9689 extern void gt_ggc_mx (gimple *&);
9690 extern void gt_ggc_mx (rtx&);
9691 extern void gt_ggc_mx (basic_block&);
9693 static void
9694 gt_ggc_mx (rtx_insn *& x)
9696 if (x)
9697 gt_ggc_mx_rtx_def ((void *) x);
9700 void
9701 gt_ggc_mx (edge_def *e)
9703 tree block = LOCATION_BLOCK (e->goto_locus);
9704 gt_ggc_mx (e->src);
9705 gt_ggc_mx (e->dest);
9706 if (current_ir_type () == IR_GIMPLE)
9707 gt_ggc_mx (e->insns.g);
9708 else
9709 gt_ggc_mx (e->insns.r);
9710 gt_ggc_mx (block);
9713 /* PCH support for edge_def. */
9715 extern void gt_pch_nx (tree&);
9716 extern void gt_pch_nx (gimple *&);
9717 extern void gt_pch_nx (rtx&);
9718 extern void gt_pch_nx (basic_block&);
9720 static void
9721 gt_pch_nx (rtx_insn *& x)
9723 if (x)
9724 gt_pch_nx_rtx_def ((void *) x);
9727 void
9728 gt_pch_nx (edge_def *e)
9730 tree block = LOCATION_BLOCK (e->goto_locus);
9731 gt_pch_nx (e->src);
9732 gt_pch_nx (e->dest);
9733 if (current_ir_type () == IR_GIMPLE)
9734 gt_pch_nx (e->insns.g);
9735 else
9736 gt_pch_nx (e->insns.r);
9737 gt_pch_nx (block);
9740 void
9741 gt_pch_nx (edge_def *e, gt_pointer_operator op, void *cookie)
9743 tree block = LOCATION_BLOCK (e->goto_locus);
9744 op (&(e->src), cookie);
9745 op (&(e->dest), cookie);
9746 if (current_ir_type () == IR_GIMPLE)
9747 op (&(e->insns.g), cookie);
9748 else
9749 op (&(e->insns.r), cookie);
9750 op (&(block), cookie);
9753 #if CHECKING_P
9755 namespace selftest {
9757 /* Helper function for CFG selftests: create a dummy function decl
9758 and push it as cfun. */
9760 static tree
9761 push_fndecl (const char *name)
9763 tree fn_type = build_function_type_array (integer_type_node, 0, NULL);
9764 /* FIXME: this uses input_location: */
9765 tree fndecl = build_fn_decl (name, fn_type);
9766 tree retval = build_decl (UNKNOWN_LOCATION, RESULT_DECL,
9767 NULL_TREE, integer_type_node);
9768 DECL_RESULT (fndecl) = retval;
9769 push_struct_function (fndecl);
9770 function *fun = DECL_STRUCT_FUNCTION (fndecl);
9771 ASSERT_TRUE (fun != NULL);
9772 init_empty_tree_cfg_for_function (fun);
9773 ASSERT_EQ (2, n_basic_blocks_for_fn (fun));
9774 ASSERT_EQ (0, n_edges_for_fn (fun));
9775 return fndecl;
9778 /* These tests directly create CFGs.
9779 Compare with the static fns within tree-cfg.c:
9780 - build_gimple_cfg
9781 - make_blocks: calls create_basic_block (seq, bb);
9782 - make_edges. */
9784 /* Verify a simple cfg of the form:
9785 ENTRY -> A -> B -> C -> EXIT. */
9787 static void
9788 test_linear_chain ()
9790 gimple_register_cfg_hooks ();
9792 tree fndecl = push_fndecl ("cfg_test_linear_chain");
9793 function *fun = DECL_STRUCT_FUNCTION (fndecl);
9795 /* Create some empty blocks. */
9796 basic_block bb_a = create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun));
9797 basic_block bb_b = create_empty_bb (bb_a);
9798 basic_block bb_c = create_empty_bb (bb_b);
9800 ASSERT_EQ (5, n_basic_blocks_for_fn (fun));
9801 ASSERT_EQ (0, n_edges_for_fn (fun));
9803 /* Create some edges: a simple linear chain of BBs. */
9804 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun), bb_a, EDGE_FALLTHRU);
9805 make_edge (bb_a, bb_b, 0);
9806 make_edge (bb_b, bb_c, 0);
9807 make_edge (bb_c, EXIT_BLOCK_PTR_FOR_FN (fun), 0);
9809 /* Verify the edges. */
9810 ASSERT_EQ (4, n_edges_for_fn (fun));
9811 ASSERT_EQ (NULL, ENTRY_BLOCK_PTR_FOR_FN (fun)->preds);
9812 ASSERT_EQ (1, ENTRY_BLOCK_PTR_FOR_FN (fun)->succs->length ());
9813 ASSERT_EQ (1, bb_a->preds->length ());
9814 ASSERT_EQ (1, bb_a->succs->length ());
9815 ASSERT_EQ (1, bb_b->preds->length ());
9816 ASSERT_EQ (1, bb_b->succs->length ());
9817 ASSERT_EQ (1, bb_c->preds->length ());
9818 ASSERT_EQ (1, bb_c->succs->length ());
9819 ASSERT_EQ (1, EXIT_BLOCK_PTR_FOR_FN (fun)->preds->length ());
9820 ASSERT_EQ (NULL, EXIT_BLOCK_PTR_FOR_FN (fun)->succs);
9822 /* Verify the dominance information
9823 Each BB in our simple chain should be dominated by the one before
9824 it. */
9825 calculate_dominance_info (CDI_DOMINATORS);
9826 ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_b));
9827 ASSERT_EQ (bb_b, get_immediate_dominator (CDI_DOMINATORS, bb_c));
9828 vec<basic_block> dom_by_b = get_dominated_by (CDI_DOMINATORS, bb_b);
9829 ASSERT_EQ (1, dom_by_b.length ());
9830 ASSERT_EQ (bb_c, dom_by_b[0]);
9831 free_dominance_info (CDI_DOMINATORS);
9832 dom_by_b.release ();
9834 /* Similarly for post-dominance: each BB in our chain is post-dominated
9835 by the one after it. */
9836 calculate_dominance_info (CDI_POST_DOMINATORS);
9837 ASSERT_EQ (bb_b, get_immediate_dominator (CDI_POST_DOMINATORS, bb_a));
9838 ASSERT_EQ (bb_c, get_immediate_dominator (CDI_POST_DOMINATORS, bb_b));
9839 vec<basic_block> postdom_by_b = get_dominated_by (CDI_POST_DOMINATORS, bb_b);
9840 ASSERT_EQ (1, postdom_by_b.length ());
9841 ASSERT_EQ (bb_a, postdom_by_b[0]);
9842 free_dominance_info (CDI_POST_DOMINATORS);
9843 postdom_by_b.release ();
9845 pop_cfun ();
9848 /* Verify a simple CFG of the form:
9849 ENTRY
9853 /t \f
9859 EXIT. */
9861 static void
9862 test_diamond ()
9864 gimple_register_cfg_hooks ();
9866 tree fndecl = push_fndecl ("cfg_test_diamond");
9867 function *fun = DECL_STRUCT_FUNCTION (fndecl);
9869 /* Create some empty blocks. */
9870 basic_block bb_a = create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun));
9871 basic_block bb_b = create_empty_bb (bb_a);
9872 basic_block bb_c = create_empty_bb (bb_a);
9873 basic_block bb_d = create_empty_bb (bb_b);
9875 ASSERT_EQ (6, n_basic_blocks_for_fn (fun));
9876 ASSERT_EQ (0, n_edges_for_fn (fun));
9878 /* Create the edges. */
9879 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun), bb_a, EDGE_FALLTHRU);
9880 make_edge (bb_a, bb_b, EDGE_TRUE_VALUE);
9881 make_edge (bb_a, bb_c, EDGE_FALSE_VALUE);
9882 make_edge (bb_b, bb_d, 0);
9883 make_edge (bb_c, bb_d, 0);
9884 make_edge (bb_d, EXIT_BLOCK_PTR_FOR_FN (fun), 0);
9886 /* Verify the edges. */
9887 ASSERT_EQ (6, n_edges_for_fn (fun));
9888 ASSERT_EQ (1, bb_a->preds->length ());
9889 ASSERT_EQ (2, bb_a->succs->length ());
9890 ASSERT_EQ (1, bb_b->preds->length ());
9891 ASSERT_EQ (1, bb_b->succs->length ());
9892 ASSERT_EQ (1, bb_c->preds->length ());
9893 ASSERT_EQ (1, bb_c->succs->length ());
9894 ASSERT_EQ (2, bb_d->preds->length ());
9895 ASSERT_EQ (1, bb_d->succs->length ());
9897 /* Verify the dominance information. */
9898 calculate_dominance_info (CDI_DOMINATORS);
9899 ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_b));
9900 ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_c));
9901 ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_d));
9902 vec<basic_block> dom_by_a = get_dominated_by (CDI_DOMINATORS, bb_a);
9903 ASSERT_EQ (3, dom_by_a.length ()); /* B, C, D, in some order. */
9904 dom_by_a.release ();
9905 vec<basic_block> dom_by_b = get_dominated_by (CDI_DOMINATORS, bb_b);
9906 ASSERT_EQ (0, dom_by_b.length ());
9907 dom_by_b.release ();
9908 free_dominance_info (CDI_DOMINATORS);
9910 /* Similarly for post-dominance. */
9911 calculate_dominance_info (CDI_POST_DOMINATORS);
9912 ASSERT_EQ (bb_d, get_immediate_dominator (CDI_POST_DOMINATORS, bb_a));
9913 ASSERT_EQ (bb_d, get_immediate_dominator (CDI_POST_DOMINATORS, bb_b));
9914 ASSERT_EQ (bb_d, get_immediate_dominator (CDI_POST_DOMINATORS, bb_c));
9915 vec<basic_block> postdom_by_d = get_dominated_by (CDI_POST_DOMINATORS, bb_d);
9916 ASSERT_EQ (3, postdom_by_d.length ()); /* A, B, C in some order. */
9917 postdom_by_d.release ();
9918 vec<basic_block> postdom_by_b = get_dominated_by (CDI_POST_DOMINATORS, bb_b);
9919 ASSERT_EQ (0, postdom_by_b.length ());
9920 postdom_by_b.release ();
9921 free_dominance_info (CDI_POST_DOMINATORS);
9923 pop_cfun ();
9926 /* Verify that we can handle a CFG containing a "complete" aka
9927 fully-connected subgraph (where A B C D below all have edges
9928 pointing to each other node, also to themselves).
9929 e.g.:
9930 ENTRY EXIT
9936 A<--->B
9937 ^^ ^^
9938 | \ / |
9939 | X |
9940 | / \ |
9941 VV VV
9942 C<--->D
9945 static void
9946 test_fully_connected ()
9948 gimple_register_cfg_hooks ();
9950 tree fndecl = push_fndecl ("cfg_fully_connected");
9951 function *fun = DECL_STRUCT_FUNCTION (fndecl);
9953 const int n = 4;
9955 /* Create some empty blocks. */
9956 auto_vec <basic_block> subgraph_nodes;
9957 for (int i = 0; i < n; i++)
9958 subgraph_nodes.safe_push (create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun)));
9960 ASSERT_EQ (n + 2, n_basic_blocks_for_fn (fun));
9961 ASSERT_EQ (0, n_edges_for_fn (fun));
9963 /* Create the edges. */
9964 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun), subgraph_nodes[0], EDGE_FALLTHRU);
9965 make_edge (subgraph_nodes[0], EXIT_BLOCK_PTR_FOR_FN (fun), 0);
9966 for (int i = 0; i < n; i++)
9967 for (int j = 0; j < n; j++)
9968 make_edge (subgraph_nodes[i], subgraph_nodes[j], 0);
9970 /* Verify the edges. */
9971 ASSERT_EQ (2 + (n * n), n_edges_for_fn (fun));
9972 /* The first one is linked to ENTRY/EXIT as well as itself and
9973 everything else. */
9974 ASSERT_EQ (n + 1, subgraph_nodes[0]->preds->length ());
9975 ASSERT_EQ (n + 1, subgraph_nodes[0]->succs->length ());
9976 /* The other ones in the subgraph are linked to everything in
9977 the subgraph (including themselves). */
9978 for (int i = 1; i < n; i++)
9980 ASSERT_EQ (n, subgraph_nodes[i]->preds->length ());
9981 ASSERT_EQ (n, subgraph_nodes[i]->succs->length ());
9984 /* Verify the dominance information. */
9985 calculate_dominance_info (CDI_DOMINATORS);
9986 /* The initial block in the subgraph should be dominated by ENTRY. */
9987 ASSERT_EQ (ENTRY_BLOCK_PTR_FOR_FN (fun),
9988 get_immediate_dominator (CDI_DOMINATORS,
9989 subgraph_nodes[0]));
9990 /* Every other block in the subgraph should be dominated by the
9991 initial block. */
9992 for (int i = 1; i < n; i++)
9993 ASSERT_EQ (subgraph_nodes[0],
9994 get_immediate_dominator (CDI_DOMINATORS,
9995 subgraph_nodes[i]));
9996 free_dominance_info (CDI_DOMINATORS);
9998 /* Similarly for post-dominance. */
9999 calculate_dominance_info (CDI_POST_DOMINATORS);
10000 /* The initial block in the subgraph should be postdominated by EXIT. */
10001 ASSERT_EQ (EXIT_BLOCK_PTR_FOR_FN (fun),
10002 get_immediate_dominator (CDI_POST_DOMINATORS,
10003 subgraph_nodes[0]));
10004 /* Every other block in the subgraph should be postdominated by the
10005 initial block, since that leads to EXIT. */
10006 for (int i = 1; i < n; i++)
10007 ASSERT_EQ (subgraph_nodes[0],
10008 get_immediate_dominator (CDI_POST_DOMINATORS,
10009 subgraph_nodes[i]));
10010 free_dominance_info (CDI_POST_DOMINATORS);
10012 pop_cfun ();
10015 /* Run all of the selftests within this file. */
10017 void
10018 tree_cfg_c_tests ()
10020 test_linear_chain ();
10021 test_diamond ();
10022 test_fully_connected ();
10025 } // namespace selftest
10027 /* TODO: test the dominator/postdominator logic with various graphs/nodes:
10028 - loop
10029 - nested loops
10030 - switch statement (a block with many out-edges)
10031 - something that jumps to itself
10032 - etc */
10034 #endif /* CHECKING_P */