1 /* Control flow functions for trees.
2 Copyright (C) 2001-2018 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
30 #include "tree-pass.h"
33 #include "gimple-pretty-print.h"
34 #include "diagnostic-core.h"
35 #include "fold-const.h"
36 #include "trans-mem.h"
37 #include "stor-layout.h"
38 #include "print-tree.h"
40 #include "gimple-fold.h"
42 #include "gimple-iterator.h"
43 #include "gimplify-me.h"
44 #include "gimple-walk.h"
46 #include "tree-ssa-loop-manip.h"
47 #include "tree-ssa-loop-niter.h"
48 #include "tree-into-ssa.h"
53 #include "tree-ssa-propagate.h"
54 #include "value-prof.h"
55 #include "tree-inline.h"
56 #include "tree-ssa-live.h"
57 #include "omp-general.h"
58 #include "omp-expand.h"
59 #include "tree-cfgcleanup.h"
66 /* This file contains functions for building the Control Flow Graph (CFG)
67 for a function tree. */
69 /* Local declarations. */
71 /* Initial capacity for the basic block array. */
72 static const int initial_cfg_capacity
= 20;
74 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
75 which use a particular edge. The CASE_LABEL_EXPRs are chained together
76 via their CASE_CHAIN field, which we clear after we're done with the
77 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
79 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
80 update the case vector in response to edge redirections.
82 Right now this table is set up and torn down at key points in the
83 compilation process. It would be nice if we could make the table
84 more persistent. The key is getting notification of changes to
85 the CFG (particularly edge removal, creation and redirection). */
87 static hash_map
<edge
, tree
> *edge_to_cases
;
89 /* If we record edge_to_cases, this bitmap will hold indexes
90 of basic blocks that end in a GIMPLE_SWITCH which we touched
91 due to edge manipulations. */
93 static bitmap touched_switch_bbs
;
98 long num_merged_labels
;
101 static struct cfg_stats_d cfg_stats
;
103 /* Data to pass to replace_block_vars_by_duplicates_1. */
104 struct replace_decls_d
106 hash_map
<tree
, tree
> *vars_map
;
110 /* Hash table to store last discriminator assigned for each locus. */
111 struct locus_discrim_map
117 /* Hashtable helpers. */
119 struct locus_discrim_hasher
: free_ptr_hash
<locus_discrim_map
>
121 static inline hashval_t
hash (const locus_discrim_map
*);
122 static inline bool equal (const locus_discrim_map
*,
123 const locus_discrim_map
*);
126 /* Trivial hash function for a location_t. ITEM is a pointer to
127 a hash table entry that maps a location_t to a discriminator. */
130 locus_discrim_hasher::hash (const locus_discrim_map
*item
)
132 return LOCATION_LINE (item
->locus
);
135 /* Equality function for the locus-to-discriminator map. A and B
136 point to the two hash table entries to compare. */
139 locus_discrim_hasher::equal (const locus_discrim_map
*a
,
140 const locus_discrim_map
*b
)
142 return LOCATION_LINE (a
->locus
) == LOCATION_LINE (b
->locus
);
145 static hash_table
<locus_discrim_hasher
> *discriminator_per_locus
;
147 /* Basic blocks and flowgraphs. */
148 static void make_blocks (gimple_seq
);
151 static void make_edges (void);
152 static void assign_discriminators (void);
153 static void make_cond_expr_edges (basic_block
);
154 static void make_gimple_switch_edges (gswitch
*, basic_block
);
155 static bool make_goto_expr_edges (basic_block
);
156 static void make_gimple_asm_edges (basic_block
);
157 static edge
gimple_redirect_edge_and_branch (edge
, basic_block
);
158 static edge
gimple_try_redirect_by_replacing_jump (edge
, basic_block
);
160 /* Various helpers. */
161 static inline bool stmt_starts_bb_p (gimple
*, gimple
*);
162 static int gimple_verify_flow_info (void);
163 static void gimple_make_forwarder_block (edge
);
164 static gimple
*first_non_label_stmt (basic_block
);
165 static bool verify_gimple_transaction (gtransaction
*);
166 static bool call_can_make_abnormal_goto (gimple
*);
168 /* Flowgraph optimization and cleanup. */
169 static void gimple_merge_blocks (basic_block
, basic_block
);
170 static bool gimple_can_merge_blocks_p (basic_block
, basic_block
);
171 static void remove_bb (basic_block
);
172 static edge
find_taken_edge_computed_goto (basic_block
, tree
);
173 static edge
find_taken_edge_cond_expr (const gcond
*, tree
);
174 static edge
find_taken_edge_switch_expr (const gswitch
*, tree
);
175 static tree
find_case_label_for_value (const gswitch
*, tree
);
176 static void lower_phi_internal_fn ();
179 init_empty_tree_cfg_for_function (struct function
*fn
)
181 /* Initialize the basic block array. */
183 profile_status_for_fn (fn
) = PROFILE_ABSENT
;
184 n_basic_blocks_for_fn (fn
) = NUM_FIXED_BLOCKS
;
185 last_basic_block_for_fn (fn
) = NUM_FIXED_BLOCKS
;
186 vec_alloc (basic_block_info_for_fn (fn
), initial_cfg_capacity
);
187 vec_safe_grow_cleared (basic_block_info_for_fn (fn
),
188 initial_cfg_capacity
);
190 /* Build a mapping of labels to their associated blocks. */
191 vec_alloc (label_to_block_map_for_fn (fn
), initial_cfg_capacity
);
192 vec_safe_grow_cleared (label_to_block_map_for_fn (fn
),
193 initial_cfg_capacity
);
195 SET_BASIC_BLOCK_FOR_FN (fn
, ENTRY_BLOCK
, ENTRY_BLOCK_PTR_FOR_FN (fn
));
196 SET_BASIC_BLOCK_FOR_FN (fn
, EXIT_BLOCK
, EXIT_BLOCK_PTR_FOR_FN (fn
));
198 ENTRY_BLOCK_PTR_FOR_FN (fn
)->next_bb
199 = EXIT_BLOCK_PTR_FOR_FN (fn
);
200 EXIT_BLOCK_PTR_FOR_FN (fn
)->prev_bb
201 = ENTRY_BLOCK_PTR_FOR_FN (fn
);
205 init_empty_tree_cfg (void)
207 init_empty_tree_cfg_for_function (cfun
);
210 /*---------------------------------------------------------------------------
212 ---------------------------------------------------------------------------*/
214 /* Entry point to the CFG builder for trees. SEQ is the sequence of
215 statements to be added to the flowgraph. */
218 build_gimple_cfg (gimple_seq seq
)
220 /* Register specific gimple functions. */
221 gimple_register_cfg_hooks ();
223 memset ((void *) &cfg_stats
, 0, sizeof (cfg_stats
));
225 init_empty_tree_cfg ();
229 /* Make sure there is always at least one block, even if it's empty. */
230 if (n_basic_blocks_for_fn (cfun
) == NUM_FIXED_BLOCKS
)
231 create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun
));
233 /* Adjust the size of the array. */
234 if (basic_block_info_for_fn (cfun
)->length ()
235 < (size_t) n_basic_blocks_for_fn (cfun
))
236 vec_safe_grow_cleared (basic_block_info_for_fn (cfun
),
237 n_basic_blocks_for_fn (cfun
));
239 /* To speed up statement iterator walks, we first purge dead labels. */
240 cleanup_dead_labels ();
242 /* Group case nodes to reduce the number of edges.
243 We do this after cleaning up dead labels because otherwise we miss
244 a lot of obvious case merging opportunities. */
245 group_case_labels ();
247 /* Create the edges of the flowgraph. */
248 discriminator_per_locus
= new hash_table
<locus_discrim_hasher
> (13);
250 assign_discriminators ();
251 lower_phi_internal_fn ();
252 cleanup_dead_labels ();
253 delete discriminator_per_locus
;
254 discriminator_per_locus
= NULL
;
257 /* Look for ANNOTATE calls with loop annotation kind in BB; if found, remove
258 them and propagate the information to LOOP. We assume that the annotations
259 come immediately before the condition in BB, if any. */
262 replace_loop_annotate_in_block (basic_block bb
, struct loop
*loop
)
264 gimple_stmt_iterator gsi
= gsi_last_bb (bb
);
265 gimple
*stmt
= gsi_stmt (gsi
);
267 if (!(stmt
&& gimple_code (stmt
) == GIMPLE_COND
))
270 for (gsi_prev_nondebug (&gsi
); !gsi_end_p (gsi
); gsi_prev (&gsi
))
272 stmt
= gsi_stmt (gsi
);
273 if (gimple_code (stmt
) != GIMPLE_CALL
)
275 if (!gimple_call_internal_p (stmt
)
276 || gimple_call_internal_fn (stmt
) != IFN_ANNOTATE
)
279 switch ((annot_expr_kind
) tree_to_shwi (gimple_call_arg (stmt
, 1)))
281 case annot_expr_ivdep_kind
:
282 loop
->safelen
= INT_MAX
;
284 case annot_expr_unroll_kind
:
286 = (unsigned short) tree_to_shwi (gimple_call_arg (stmt
, 2));
287 cfun
->has_unroll
= true;
289 case annot_expr_no_vector_kind
:
290 loop
->dont_vectorize
= true;
292 case annot_expr_vector_kind
:
293 loop
->force_vectorize
= true;
294 cfun
->has_force_vectorize_loops
= true;
296 case annot_expr_parallel_kind
:
297 loop
->can_be_parallel
= true;
298 loop
->safelen
= INT_MAX
;
304 stmt
= gimple_build_assign (gimple_call_lhs (stmt
),
305 gimple_call_arg (stmt
, 0));
306 gsi_replace (&gsi
, stmt
, true);
310 /* Look for ANNOTATE calls with loop annotation kind; if found, remove
311 them and propagate the information to the loop. We assume that the
312 annotations come immediately before the condition of the loop. */
315 replace_loop_annotate (void)
319 gimple_stmt_iterator gsi
;
322 FOR_EACH_LOOP (loop
, 0)
324 /* First look into the header. */
325 replace_loop_annotate_in_block (loop
->header
, loop
);
327 /* Then look into the latch, if any. */
329 replace_loop_annotate_in_block (loop
->latch
, loop
);
332 /* Remove IFN_ANNOTATE. Safeguard for the case loop->latch == NULL. */
333 FOR_EACH_BB_FN (bb
, cfun
)
335 for (gsi
= gsi_last_bb (bb
); !gsi_end_p (gsi
); gsi_prev (&gsi
))
337 stmt
= gsi_stmt (gsi
);
338 if (gimple_code (stmt
) != GIMPLE_CALL
)
340 if (!gimple_call_internal_p (stmt
)
341 || gimple_call_internal_fn (stmt
) != IFN_ANNOTATE
)
344 switch ((annot_expr_kind
) tree_to_shwi (gimple_call_arg (stmt
, 1)))
346 case annot_expr_ivdep_kind
:
347 case annot_expr_unroll_kind
:
348 case annot_expr_no_vector_kind
:
349 case annot_expr_vector_kind
:
350 case annot_expr_parallel_kind
:
356 warning_at (gimple_location (stmt
), 0, "ignoring loop annotation");
357 stmt
= gimple_build_assign (gimple_call_lhs (stmt
),
358 gimple_call_arg (stmt
, 0));
359 gsi_replace (&gsi
, stmt
, true);
364 /* Lower internal PHI function from GIMPLE FE. */
367 lower_phi_internal_fn ()
369 basic_block bb
, pred
= NULL
;
370 gimple_stmt_iterator gsi
;
375 /* After edge creation, handle __PHI function from GIMPLE FE. */
376 FOR_EACH_BB_FN (bb
, cfun
)
378 for (gsi
= gsi_after_labels (bb
); !gsi_end_p (gsi
);)
380 stmt
= gsi_stmt (gsi
);
381 if (! gimple_call_internal_p (stmt
, IFN_PHI
))
384 lhs
= gimple_call_lhs (stmt
);
385 phi_node
= create_phi_node (lhs
, bb
);
387 /* Add arguments to the PHI node. */
388 for (unsigned i
= 0; i
< gimple_call_num_args (stmt
); ++i
)
390 tree arg
= gimple_call_arg (stmt
, i
);
391 if (TREE_CODE (arg
) == LABEL_DECL
)
392 pred
= label_to_block (arg
);
395 edge e
= find_edge (pred
, bb
);
396 add_phi_arg (phi_node
, arg
, e
, UNKNOWN_LOCATION
);
400 gsi_remove (&gsi
, true);
406 execute_build_cfg (void)
408 gimple_seq body
= gimple_body (current_function_decl
);
410 build_gimple_cfg (body
);
411 gimple_set_body (current_function_decl
, NULL
);
412 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
414 fprintf (dump_file
, "Scope blocks:\n");
415 dump_scope_blocks (dump_file
, dump_flags
);
418 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
);
419 replace_loop_annotate ();
425 const pass_data pass_data_build_cfg
=
427 GIMPLE_PASS
, /* type */
429 OPTGROUP_NONE
, /* optinfo_flags */
430 TV_TREE_CFG
, /* tv_id */
431 PROP_gimple_leh
, /* properties_required */
432 ( PROP_cfg
| PROP_loops
), /* properties_provided */
433 0, /* properties_destroyed */
434 0, /* todo_flags_start */
435 0, /* todo_flags_finish */
438 class pass_build_cfg
: public gimple_opt_pass
441 pass_build_cfg (gcc::context
*ctxt
)
442 : gimple_opt_pass (pass_data_build_cfg
, ctxt
)
445 /* opt_pass methods: */
446 virtual unsigned int execute (function
*) { return execute_build_cfg (); }
448 }; // class pass_build_cfg
453 make_pass_build_cfg (gcc::context
*ctxt
)
455 return new pass_build_cfg (ctxt
);
459 /* Return true if T is a computed goto. */
462 computed_goto_p (gimple
*t
)
464 return (gimple_code (t
) == GIMPLE_GOTO
465 && TREE_CODE (gimple_goto_dest (t
)) != LABEL_DECL
);
468 /* Returns true if the sequence of statements STMTS only contains
469 a call to __builtin_unreachable (). */
472 gimple_seq_unreachable_p (gimple_seq stmts
)
475 /* Return false if -fsanitize=unreachable, we don't want to
476 optimize away those calls, but rather turn them into
477 __ubsan_handle_builtin_unreachable () or __builtin_trap ()
479 || sanitize_flags_p (SANITIZE_UNREACHABLE
))
482 gimple_stmt_iterator gsi
= gsi_last (stmts
);
484 if (!gimple_call_builtin_p (gsi_stmt (gsi
), BUILT_IN_UNREACHABLE
))
487 for (gsi_prev (&gsi
); !gsi_end_p (gsi
); gsi_prev (&gsi
))
489 gimple
*stmt
= gsi_stmt (gsi
);
490 if (gimple_code (stmt
) != GIMPLE_LABEL
491 && !is_gimple_debug (stmt
)
492 && !gimple_clobber_p (stmt
))
498 /* Returns true for edge E where e->src ends with a GIMPLE_COND and
499 the other edge points to a bb with just __builtin_unreachable ().
500 I.e. return true for C->M edge in:
508 __builtin_unreachable ();
512 assert_unreachable_fallthru_edge_p (edge e
)
514 basic_block pred_bb
= e
->src
;
515 gimple
*last
= last_stmt (pred_bb
);
516 if (last
&& gimple_code (last
) == GIMPLE_COND
)
518 basic_block other_bb
= EDGE_SUCC (pred_bb
, 0)->dest
;
519 if (other_bb
== e
->dest
)
520 other_bb
= EDGE_SUCC (pred_bb
, 1)->dest
;
521 if (EDGE_COUNT (other_bb
->succs
) == 0)
522 return gimple_seq_unreachable_p (bb_seq (other_bb
));
528 /* Initialize GF_CALL_CTRL_ALTERING flag, which indicates the call
529 could alter control flow except via eh. We initialize the flag at
530 CFG build time and only ever clear it later. */
533 gimple_call_initialize_ctrl_altering (gimple
*stmt
)
535 int flags
= gimple_call_flags (stmt
);
537 /* A call alters control flow if it can make an abnormal goto. */
538 if (call_can_make_abnormal_goto (stmt
)
539 /* A call also alters control flow if it does not return. */
540 || flags
& ECF_NORETURN
541 /* TM ending statements have backedges out of the transaction.
542 Return true so we split the basic block containing them.
543 Note that the TM_BUILTIN test is merely an optimization. */
544 || ((flags
& ECF_TM_BUILTIN
)
545 && is_tm_ending_fndecl (gimple_call_fndecl (stmt
)))
546 /* BUILT_IN_RETURN call is same as return statement. */
547 || gimple_call_builtin_p (stmt
, BUILT_IN_RETURN
)
548 /* IFN_UNIQUE should be the last insn, to make checking for it
549 as cheap as possible. */
550 || (gimple_call_internal_p (stmt
)
551 && gimple_call_internal_unique_p (stmt
)))
552 gimple_call_set_ctrl_altering (stmt
, true);
554 gimple_call_set_ctrl_altering (stmt
, false);
558 /* Insert SEQ after BB and build a flowgraph. */
561 make_blocks_1 (gimple_seq seq
, basic_block bb
)
563 gimple_stmt_iterator i
= gsi_start (seq
);
565 gimple
*prev_stmt
= NULL
;
566 bool start_new_block
= true;
567 bool first_stmt_of_seq
= true;
569 while (!gsi_end_p (i
))
571 /* PREV_STMT should only be set to a debug stmt if the debug
572 stmt is before nondebug stmts. Once stmt reaches a nondebug
573 nonlabel, prev_stmt will be set to it, so that
574 stmt_starts_bb_p will know to start a new block if a label is
575 found. However, if stmt was a label after debug stmts only,
576 keep the label in prev_stmt even if we find further debug
577 stmts, for there may be other labels after them, and they
578 should land in the same block. */
579 if (!prev_stmt
|| !stmt
|| !is_gimple_debug (stmt
))
583 if (stmt
&& is_gimple_call (stmt
))
584 gimple_call_initialize_ctrl_altering (stmt
);
586 /* If the statement starts a new basic block or if we have determined
587 in a previous pass that we need to create a new block for STMT, do
589 if (start_new_block
|| stmt_starts_bb_p (stmt
, prev_stmt
))
591 if (!first_stmt_of_seq
)
592 gsi_split_seq_before (&i
, &seq
);
593 bb
= create_basic_block (seq
, bb
);
594 start_new_block
= false;
598 /* Now add STMT to BB and create the subgraphs for special statement
600 gimple_set_bb (stmt
, bb
);
602 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
604 if (stmt_ends_bb_p (stmt
))
606 /* If the stmt can make abnormal goto use a new temporary
607 for the assignment to the LHS. This makes sure the old value
608 of the LHS is available on the abnormal edge. Otherwise
609 we will end up with overlapping life-ranges for abnormal
611 if (gimple_has_lhs (stmt
)
612 && stmt_can_make_abnormal_goto (stmt
)
613 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt
))))
615 tree lhs
= gimple_get_lhs (stmt
);
616 tree tmp
= create_tmp_var (TREE_TYPE (lhs
));
617 gimple
*s
= gimple_build_assign (lhs
, tmp
);
618 gimple_set_location (s
, gimple_location (stmt
));
619 gimple_set_block (s
, gimple_block (stmt
));
620 gimple_set_lhs (stmt
, tmp
);
621 if (TREE_CODE (TREE_TYPE (tmp
)) == COMPLEX_TYPE
622 || TREE_CODE (TREE_TYPE (tmp
)) == VECTOR_TYPE
)
623 DECL_GIMPLE_REG_P (tmp
) = 1;
624 gsi_insert_after (&i
, s
, GSI_SAME_STMT
);
626 start_new_block
= true;
630 first_stmt_of_seq
= false;
635 /* Build a flowgraph for the sequence of stmts SEQ. */
638 make_blocks (gimple_seq seq
)
640 /* Look for debug markers right before labels, and move the debug
641 stmts after the labels. Accepting labels among debug markers
642 adds no value, just complexity; if we wanted to annotate labels
643 with view numbers (so sequencing among markers would matter) or
644 somesuch, we're probably better off still moving the labels, but
645 adding other debug annotations in their original positions or
646 emitting nonbind or bind markers associated with the labels in
647 the original position of the labels.
649 Moving labels would probably be simpler, but we can't do that:
650 moving labels assigns label ids to them, and doing so because of
651 debug markers makes for -fcompare-debug and possibly even codegen
652 differences. So, we have to move the debug stmts instead. To
653 that end, we scan SEQ backwards, marking the position of the
654 latest (earliest we find) label, and moving debug stmts that are
655 not separated from it by nondebug nonlabel stmts after the
657 if (MAY_HAVE_DEBUG_MARKER_STMTS
)
659 gimple_stmt_iterator label
= gsi_none ();
661 for (gimple_stmt_iterator i
= gsi_last (seq
); !gsi_end_p (i
); gsi_prev (&i
))
663 gimple
*stmt
= gsi_stmt (i
);
665 /* If this is the first label we encounter (latest in SEQ)
666 before nondebug stmts, record its position. */
667 if (is_a
<glabel
*> (stmt
))
669 if (gsi_end_p (label
))
674 /* Without a recorded label position to move debug stmts to,
675 there's nothing to do. */
676 if (gsi_end_p (label
))
679 /* Move the debug stmt at I after LABEL. */
680 if (is_gimple_debug (stmt
))
682 gcc_assert (gimple_debug_nonbind_marker_p (stmt
));
683 /* As STMT is removed, I advances to the stmt after
684 STMT, so the gsi_prev in the for "increment"
685 expression gets us to the stmt we're to visit after
686 STMT. LABEL, however, would advance to the moved
687 stmt if we passed it to gsi_move_after, so pass it a
688 copy instead, so as to keep LABEL pointing to the
690 gimple_stmt_iterator copy
= label
;
691 gsi_move_after (&i
, ©
);
695 /* There aren't any (more?) debug stmts before label, so
696 there isn't anything else to move after it. */
701 make_blocks_1 (seq
, ENTRY_BLOCK_PTR_FOR_FN (cfun
));
704 /* Create and return a new empty basic block after bb AFTER. */
707 create_bb (void *h
, void *e
, basic_block after
)
713 /* Create and initialize a new basic block. Since alloc_block uses
714 GC allocation that clears memory to allocate a basic block, we do
715 not have to clear the newly allocated basic block here. */
718 bb
->index
= last_basic_block_for_fn (cfun
);
720 set_bb_seq (bb
, h
? (gimple_seq
) h
: NULL
);
722 /* Add the new block to the linked list of blocks. */
723 link_block (bb
, after
);
725 /* Grow the basic block array if needed. */
726 if ((size_t) last_basic_block_for_fn (cfun
)
727 == basic_block_info_for_fn (cfun
)->length ())
730 (last_basic_block_for_fn (cfun
)
731 + (last_basic_block_for_fn (cfun
) + 3) / 4);
732 vec_safe_grow_cleared (basic_block_info_for_fn (cfun
), new_size
);
735 /* Add the newly created block to the array. */
736 SET_BASIC_BLOCK_FOR_FN (cfun
, last_basic_block_for_fn (cfun
), bb
);
738 n_basic_blocks_for_fn (cfun
)++;
739 last_basic_block_for_fn (cfun
)++;
745 /*---------------------------------------------------------------------------
747 ---------------------------------------------------------------------------*/
749 /* If basic block BB has an abnormal edge to a basic block
750 containing IFN_ABNORMAL_DISPATCHER internal call, return
751 that the dispatcher's basic block, otherwise return NULL. */
754 get_abnormal_succ_dispatcher (basic_block bb
)
759 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
760 if ((e
->flags
& (EDGE_ABNORMAL
| EDGE_EH
)) == EDGE_ABNORMAL
)
762 gimple_stmt_iterator gsi
763 = gsi_start_nondebug_after_labels_bb (e
->dest
);
764 gimple
*g
= gsi_stmt (gsi
);
765 if (g
&& gimple_call_internal_p (g
, IFN_ABNORMAL_DISPATCHER
))
771 /* Helper function for make_edges. Create a basic block with
772 with ABNORMAL_DISPATCHER internal call in it if needed, and
773 create abnormal edges from BBS to it and from it to FOR_BB
774 if COMPUTED_GOTO is false, otherwise factor the computed gotos. */
777 handle_abnormal_edges (basic_block
*dispatcher_bbs
,
778 basic_block for_bb
, int *bb_to_omp_idx
,
779 auto_vec
<basic_block
> *bbs
, bool computed_goto
)
781 basic_block
*dispatcher
= dispatcher_bbs
+ (computed_goto
? 1 : 0);
782 unsigned int idx
= 0;
788 dispatcher
= dispatcher_bbs
+ 2 * bb_to_omp_idx
[for_bb
->index
];
789 if (bb_to_omp_idx
[for_bb
->index
] != 0)
793 /* If the dispatcher has been created already, then there are basic
794 blocks with abnormal edges to it, so just make a new edge to
796 if (*dispatcher
== NULL
)
798 /* Check if there are any basic blocks that need to have
799 abnormal edges to this dispatcher. If there are none, return
801 if (bb_to_omp_idx
== NULL
)
803 if (bbs
->is_empty ())
808 FOR_EACH_VEC_ELT (*bbs
, idx
, bb
)
809 if (bb_to_omp_idx
[bb
->index
] == bb_to_omp_idx
[for_bb
->index
])
815 /* Create the dispatcher bb. */
816 *dispatcher
= create_basic_block (NULL
, for_bb
);
819 /* Factor computed gotos into a common computed goto site. Also
820 record the location of that site so that we can un-factor the
821 gotos after we have converted back to normal form. */
822 gimple_stmt_iterator gsi
= gsi_start_bb (*dispatcher
);
824 /* Create the destination of the factored goto. Each original
825 computed goto will put its desired destination into this
826 variable and jump to the label we create immediately below. */
827 tree var
= create_tmp_var (ptr_type_node
, "gotovar");
829 /* Build a label for the new block which will contain the
830 factored computed goto. */
831 tree factored_label_decl
832 = create_artificial_label (UNKNOWN_LOCATION
);
833 gimple
*factored_computed_goto_label
834 = gimple_build_label (factored_label_decl
);
835 gsi_insert_after (&gsi
, factored_computed_goto_label
, GSI_NEW_STMT
);
837 /* Build our new computed goto. */
838 gimple
*factored_computed_goto
= gimple_build_goto (var
);
839 gsi_insert_after (&gsi
, factored_computed_goto
, GSI_NEW_STMT
);
841 FOR_EACH_VEC_ELT (*bbs
, idx
, bb
)
844 && bb_to_omp_idx
[bb
->index
] != bb_to_omp_idx
[for_bb
->index
])
847 gsi
= gsi_last_bb (bb
);
848 gimple
*last
= gsi_stmt (gsi
);
850 gcc_assert (computed_goto_p (last
));
852 /* Copy the original computed goto's destination into VAR. */
854 = gimple_build_assign (var
, gimple_goto_dest (last
));
855 gsi_insert_before (&gsi
, assignment
, GSI_SAME_STMT
);
857 edge e
= make_edge (bb
, *dispatcher
, EDGE_FALLTHRU
);
858 e
->goto_locus
= gimple_location (last
);
859 gsi_remove (&gsi
, true);
864 tree arg
= inner
? boolean_true_node
: boolean_false_node
;
865 gimple
*g
= gimple_build_call_internal (IFN_ABNORMAL_DISPATCHER
,
867 gimple_stmt_iterator gsi
= gsi_after_labels (*dispatcher
);
868 gsi_insert_after (&gsi
, g
, GSI_NEW_STMT
);
870 /* Create predecessor edges of the dispatcher. */
871 FOR_EACH_VEC_ELT (*bbs
, idx
, bb
)
874 && bb_to_omp_idx
[bb
->index
] != bb_to_omp_idx
[for_bb
->index
])
876 make_edge (bb
, *dispatcher
, EDGE_ABNORMAL
);
881 make_edge (*dispatcher
, for_bb
, EDGE_ABNORMAL
);
884 /* Creates outgoing edges for BB. Returns 1 when it ends with an
885 computed goto, returns 2 when it ends with a statement that
886 might return to this function via an nonlocal goto, otherwise
887 return 0. Updates *PCUR_REGION with the OMP region this BB is in. */
890 make_edges_bb (basic_block bb
, struct omp_region
**pcur_region
, int *pomp_index
)
892 gimple
*last
= last_stmt (bb
);
893 bool fallthru
= false;
899 switch (gimple_code (last
))
902 if (make_goto_expr_edges (bb
))
908 edge e
= make_edge (bb
, EXIT_BLOCK_PTR_FOR_FN (cfun
), 0);
909 e
->goto_locus
= gimple_location (last
);
914 make_cond_expr_edges (bb
);
918 make_gimple_switch_edges (as_a
<gswitch
*> (last
), bb
);
922 make_eh_edges (last
);
925 case GIMPLE_EH_DISPATCH
:
926 fallthru
= make_eh_dispatch_edges (as_a
<geh_dispatch
*> (last
));
930 /* If this function receives a nonlocal goto, then we need to
931 make edges from this call site to all the nonlocal goto
933 if (stmt_can_make_abnormal_goto (last
))
936 /* If this statement has reachable exception handlers, then
937 create abnormal edges to them. */
938 make_eh_edges (last
);
940 /* BUILTIN_RETURN is really a return statement. */
941 if (gimple_call_builtin_p (last
, BUILT_IN_RETURN
))
943 make_edge (bb
, EXIT_BLOCK_PTR_FOR_FN (cfun
), 0);
946 /* Some calls are known not to return. */
948 fallthru
= !gimple_call_noreturn_p (last
);
952 /* A GIMPLE_ASSIGN may throw internally and thus be considered
954 if (is_ctrl_altering_stmt (last
))
955 make_eh_edges (last
);
960 make_gimple_asm_edges (bb
);
965 fallthru
= omp_make_gimple_edges (bb
, pcur_region
, pomp_index
);
968 case GIMPLE_TRANSACTION
:
970 gtransaction
*txn
= as_a
<gtransaction
*> (last
);
971 tree label1
= gimple_transaction_label_norm (txn
);
972 tree label2
= gimple_transaction_label_uninst (txn
);
975 make_edge (bb
, label_to_block (label1
), EDGE_FALLTHRU
);
977 make_edge (bb
, label_to_block (label2
),
978 EDGE_TM_UNINSTRUMENTED
| (label1
? 0 : EDGE_FALLTHRU
));
980 tree label3
= gimple_transaction_label_over (txn
);
981 if (gimple_transaction_subcode (txn
)
982 & (GTMA_HAVE_ABORT
| GTMA_IS_OUTER
))
983 make_edge (bb
, label_to_block (label3
), EDGE_TM_ABORT
);
990 gcc_assert (!stmt_ends_bb_p (last
));
996 make_edge (bb
, bb
->next_bb
, EDGE_FALLTHRU
);
1001 /* Join all the blocks in the flowgraph. */
1007 struct omp_region
*cur_region
= NULL
;
1008 auto_vec
<basic_block
> ab_edge_goto
;
1009 auto_vec
<basic_block
> ab_edge_call
;
1010 int *bb_to_omp_idx
= NULL
;
1011 int cur_omp_region_idx
= 0;
1013 /* Create an edge from entry to the first block with executable
1014 statements in it. */
1015 make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun
),
1016 BASIC_BLOCK_FOR_FN (cfun
, NUM_FIXED_BLOCKS
),
1019 /* Traverse the basic block array placing edges. */
1020 FOR_EACH_BB_FN (bb
, cfun
)
1025 bb_to_omp_idx
[bb
->index
] = cur_omp_region_idx
;
1027 mer
= make_edges_bb (bb
, &cur_region
, &cur_omp_region_idx
);
1029 ab_edge_goto
.safe_push (bb
);
1031 ab_edge_call
.safe_push (bb
);
1033 if (cur_region
&& bb_to_omp_idx
== NULL
)
1034 bb_to_omp_idx
= XCNEWVEC (int, n_basic_blocks_for_fn (cfun
));
1037 /* Computed gotos are hell to deal with, especially if there are
1038 lots of them with a large number of destinations. So we factor
1039 them to a common computed goto location before we build the
1040 edge list. After we convert back to normal form, we will un-factor
1041 the computed gotos since factoring introduces an unwanted jump.
1042 For non-local gotos and abnormal edges from calls to calls that return
1043 twice or forced labels, factor the abnormal edges too, by having all
1044 abnormal edges from the calls go to a common artificial basic block
1045 with ABNORMAL_DISPATCHER internal call and abnormal edges from that
1046 basic block to all forced labels and calls returning twice.
1047 We do this per-OpenMP structured block, because those regions
1048 are guaranteed to be single entry single exit by the standard,
1049 so it is not allowed to enter or exit such regions abnormally this way,
1050 thus all computed gotos, non-local gotos and setjmp/longjmp calls
1051 must not transfer control across SESE region boundaries. */
1052 if (!ab_edge_goto
.is_empty () || !ab_edge_call
.is_empty ())
1054 gimple_stmt_iterator gsi
;
1055 basic_block dispatcher_bb_array
[2] = { NULL
, NULL
};
1056 basic_block
*dispatcher_bbs
= dispatcher_bb_array
;
1057 int count
= n_basic_blocks_for_fn (cfun
);
1060 dispatcher_bbs
= XCNEWVEC (basic_block
, 2 * count
);
1062 FOR_EACH_BB_FN (bb
, cfun
)
1064 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1066 glabel
*label_stmt
= dyn_cast
<glabel
*> (gsi_stmt (gsi
));
1072 target
= gimple_label_label (label_stmt
);
1074 /* Make an edge to every label block that has been marked as a
1075 potential target for a computed goto or a non-local goto. */
1076 if (FORCED_LABEL (target
))
1077 handle_abnormal_edges (dispatcher_bbs
, bb
, bb_to_omp_idx
,
1078 &ab_edge_goto
, true);
1079 if (DECL_NONLOCAL (target
))
1081 handle_abnormal_edges (dispatcher_bbs
, bb
, bb_to_omp_idx
,
1082 &ab_edge_call
, false);
1087 if (!gsi_end_p (gsi
) && is_gimple_debug (gsi_stmt (gsi
)))
1088 gsi_next_nondebug (&gsi
);
1089 if (!gsi_end_p (gsi
))
1091 /* Make an edge to every setjmp-like call. */
1092 gimple
*call_stmt
= gsi_stmt (gsi
);
1093 if (is_gimple_call (call_stmt
)
1094 && ((gimple_call_flags (call_stmt
) & ECF_RETURNS_TWICE
)
1095 || gimple_call_builtin_p (call_stmt
,
1096 BUILT_IN_SETJMP_RECEIVER
)))
1097 handle_abnormal_edges (dispatcher_bbs
, bb
, bb_to_omp_idx
,
1098 &ab_edge_call
, false);
1103 XDELETE (dispatcher_bbs
);
1106 XDELETE (bb_to_omp_idx
);
1108 omp_free_regions ();
1111 /* Add SEQ after GSI. Start new bb after GSI, and created further bbs as
1112 needed. Returns true if new bbs were created.
1113 Note: This is transitional code, and should not be used for new code. We
1114 should be able to get rid of this by rewriting all target va-arg
1115 gimplification hooks to use an interface gimple_build_cond_value as described
1116 in https://gcc.gnu.org/ml/gcc-patches/2015-02/msg01194.html. */
1119 gimple_find_sub_bbs (gimple_seq seq
, gimple_stmt_iterator
*gsi
)
1121 gimple
*stmt
= gsi_stmt (*gsi
);
1122 basic_block bb
= gimple_bb (stmt
);
1123 basic_block lastbb
, afterbb
;
1124 int old_num_bbs
= n_basic_blocks_for_fn (cfun
);
1126 lastbb
= make_blocks_1 (seq
, bb
);
1127 if (old_num_bbs
== n_basic_blocks_for_fn (cfun
))
1129 e
= split_block (bb
, stmt
);
1130 /* Move e->dest to come after the new basic blocks. */
1132 unlink_block (afterbb
);
1133 link_block (afterbb
, lastbb
);
1134 redirect_edge_succ (e
, bb
->next_bb
);
1136 while (bb
!= afterbb
)
1138 struct omp_region
*cur_region
= NULL
;
1139 profile_count cnt
= profile_count::zero ();
1142 int cur_omp_region_idx
= 0;
1143 int mer
= make_edges_bb (bb
, &cur_region
, &cur_omp_region_idx
);
1144 gcc_assert (!mer
&& !cur_region
);
1145 add_bb_to_loop (bb
, afterbb
->loop_father
);
1149 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
1151 if (e
->count ().initialized_p ())
1156 tree_guess_outgoing_edge_probabilities (bb
);
1157 if (all
|| profile_status_for_fn (cfun
) == PROFILE_READ
)
1165 /* Find the next available discriminator value for LOCUS. The
1166 discriminator distinguishes among several basic blocks that
1167 share a common locus, allowing for more accurate sample-based
1171 next_discriminator_for_locus (location_t locus
)
1173 struct locus_discrim_map item
;
1174 struct locus_discrim_map
**slot
;
1177 item
.discriminator
= 0;
1178 slot
= discriminator_per_locus
->find_slot_with_hash (
1179 &item
, LOCATION_LINE (locus
), INSERT
);
1181 if (*slot
== HTAB_EMPTY_ENTRY
)
1183 *slot
= XNEW (struct locus_discrim_map
);
1185 (*slot
)->locus
= locus
;
1186 (*slot
)->discriminator
= 0;
1188 (*slot
)->discriminator
++;
1189 return (*slot
)->discriminator
;
1192 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
1195 same_line_p (location_t locus1
, location_t locus2
)
1197 expanded_location from
, to
;
1199 if (locus1
== locus2
)
1202 from
= expand_location (locus1
);
1203 to
= expand_location (locus2
);
1205 if (from
.line
!= to
.line
)
1207 if (from
.file
== to
.file
)
1209 return (from
.file
!= NULL
1211 && filename_cmp (from
.file
, to
.file
) == 0);
1214 /* Assign discriminators to each basic block. */
1217 assign_discriminators (void)
1221 FOR_EACH_BB_FN (bb
, cfun
)
1225 gimple
*last
= last_stmt (bb
);
1226 location_t locus
= last
? gimple_location (last
) : UNKNOWN_LOCATION
;
1228 if (locus
== UNKNOWN_LOCATION
)
1231 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
1233 gimple
*first
= first_non_label_stmt (e
->dest
);
1234 gimple
*last
= last_stmt (e
->dest
);
1235 if ((first
&& same_line_p (locus
, gimple_location (first
)))
1236 || (last
&& same_line_p (locus
, gimple_location (last
))))
1238 if (e
->dest
->discriminator
!= 0 && bb
->discriminator
== 0)
1239 bb
->discriminator
= next_discriminator_for_locus (locus
);
1241 e
->dest
->discriminator
= next_discriminator_for_locus (locus
);
1247 /* Create the edges for a GIMPLE_COND starting at block BB. */
1250 make_cond_expr_edges (basic_block bb
)
1252 gcond
*entry
= as_a
<gcond
*> (last_stmt (bb
));
1253 gimple
*then_stmt
, *else_stmt
;
1254 basic_block then_bb
, else_bb
;
1255 tree then_label
, else_label
;
1259 gcc_assert (gimple_code (entry
) == GIMPLE_COND
);
1261 /* Entry basic blocks for each component. */
1262 then_label
= gimple_cond_true_label (entry
);
1263 else_label
= gimple_cond_false_label (entry
);
1264 then_bb
= label_to_block (then_label
);
1265 else_bb
= label_to_block (else_label
);
1266 then_stmt
= first_stmt (then_bb
);
1267 else_stmt
= first_stmt (else_bb
);
1269 e
= make_edge (bb
, then_bb
, EDGE_TRUE_VALUE
);
1270 e
->goto_locus
= gimple_location (then_stmt
);
1271 e
= make_edge (bb
, else_bb
, EDGE_FALSE_VALUE
);
1273 e
->goto_locus
= gimple_location (else_stmt
);
1275 /* We do not need the labels anymore. */
1276 gimple_cond_set_true_label (entry
, NULL_TREE
);
1277 gimple_cond_set_false_label (entry
, NULL_TREE
);
1281 /* Called for each element in the hash table (P) as we delete the
1282 edge to cases hash table.
1284 Clear all the CASE_CHAINs to prevent problems with copying of
1285 SWITCH_EXPRs and structure sharing rules, then free the hash table
1289 edge_to_cases_cleanup (edge
const &, tree
const &value
, void *)
1293 for (t
= value
; t
; t
= next
)
1295 next
= CASE_CHAIN (t
);
1296 CASE_CHAIN (t
) = NULL
;
1302 /* Start recording information mapping edges to case labels. */
1305 start_recording_case_labels (void)
1307 gcc_assert (edge_to_cases
== NULL
);
1308 edge_to_cases
= new hash_map
<edge
, tree
>;
1309 touched_switch_bbs
= BITMAP_ALLOC (NULL
);
1312 /* Return nonzero if we are recording information for case labels. */
1315 recording_case_labels_p (void)
1317 return (edge_to_cases
!= NULL
);
1320 /* Stop recording information mapping edges to case labels and
1321 remove any information we have recorded. */
1323 end_recording_case_labels (void)
1327 edge_to_cases
->traverse
<void *, edge_to_cases_cleanup
> (NULL
);
1328 delete edge_to_cases
;
1329 edge_to_cases
= NULL
;
1330 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs
, 0, i
, bi
)
1332 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
1335 gimple
*stmt
= last_stmt (bb
);
1336 if (stmt
&& gimple_code (stmt
) == GIMPLE_SWITCH
)
1337 group_case_labels_stmt (as_a
<gswitch
*> (stmt
));
1340 BITMAP_FREE (touched_switch_bbs
);
1343 /* If we are inside a {start,end}_recording_cases block, then return
1344 a chain of CASE_LABEL_EXPRs from T which reference E.
1346 Otherwise return NULL. */
1349 get_cases_for_edge (edge e
, gswitch
*t
)
1354 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
1355 chains available. Return NULL so the caller can detect this case. */
1356 if (!recording_case_labels_p ())
1359 slot
= edge_to_cases
->get (e
);
1363 /* If we did not find E in the hash table, then this must be the first
1364 time we have been queried for information about E & T. Add all the
1365 elements from T to the hash table then perform the query again. */
1367 n
= gimple_switch_num_labels (t
);
1368 for (i
= 0; i
< n
; i
++)
1370 tree elt
= gimple_switch_label (t
, i
);
1371 tree lab
= CASE_LABEL (elt
);
1372 basic_block label_bb
= label_to_block (lab
);
1373 edge this_edge
= find_edge (e
->src
, label_bb
);
1375 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
1377 tree
&s
= edge_to_cases
->get_or_insert (this_edge
);
1378 CASE_CHAIN (elt
) = s
;
1382 return *edge_to_cases
->get (e
);
1385 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
1388 make_gimple_switch_edges (gswitch
*entry
, basic_block bb
)
1392 n
= gimple_switch_num_labels (entry
);
1394 for (i
= 0; i
< n
; ++i
)
1396 tree lab
= CASE_LABEL (gimple_switch_label (entry
, i
));
1397 basic_block label_bb
= label_to_block (lab
);
1398 make_edge (bb
, label_bb
, 0);
1403 /* Return the basic block holding label DEST. */
1406 label_to_block_fn (struct function
*ifun
, tree dest
)
1408 int uid
= LABEL_DECL_UID (dest
);
1410 /* We would die hard when faced by an undefined label. Emit a label to
1411 the very first basic block. This will hopefully make even the dataflow
1412 and undefined variable warnings quite right. */
1413 if (seen_error () && uid
< 0)
1415 gimple_stmt_iterator gsi
=
1416 gsi_start_bb (BASIC_BLOCK_FOR_FN (cfun
, NUM_FIXED_BLOCKS
));
1419 stmt
= gimple_build_label (dest
);
1420 gsi_insert_before (&gsi
, stmt
, GSI_NEW_STMT
);
1421 uid
= LABEL_DECL_UID (dest
);
1423 if (vec_safe_length (ifun
->cfg
->x_label_to_block_map
) <= (unsigned int) uid
)
1425 return (*ifun
->cfg
->x_label_to_block_map
)[uid
];
1428 /* Create edges for a goto statement at block BB. Returns true
1429 if abnormal edges should be created. */
1432 make_goto_expr_edges (basic_block bb
)
1434 gimple_stmt_iterator last
= gsi_last_bb (bb
);
1435 gimple
*goto_t
= gsi_stmt (last
);
1437 /* A simple GOTO creates normal edges. */
1438 if (simple_goto_p (goto_t
))
1440 tree dest
= gimple_goto_dest (goto_t
);
1441 basic_block label_bb
= label_to_block (dest
);
1442 edge e
= make_edge (bb
, label_bb
, EDGE_FALLTHRU
);
1443 e
->goto_locus
= gimple_location (goto_t
);
1444 gsi_remove (&last
, true);
1448 /* A computed GOTO creates abnormal edges. */
1452 /* Create edges for an asm statement with labels at block BB. */
1455 make_gimple_asm_edges (basic_block bb
)
1457 gasm
*stmt
= as_a
<gasm
*> (last_stmt (bb
));
1458 int i
, n
= gimple_asm_nlabels (stmt
);
1460 for (i
= 0; i
< n
; ++i
)
1462 tree label
= TREE_VALUE (gimple_asm_label_op (stmt
, i
));
1463 basic_block label_bb
= label_to_block (label
);
1464 make_edge (bb
, label_bb
, 0);
1468 /*---------------------------------------------------------------------------
1470 ---------------------------------------------------------------------------*/
1472 /* Cleanup useless labels in basic blocks. This is something we wish
1473 to do early because it allows us to group case labels before creating
1474 the edges for the CFG, and it speeds up block statement iterators in
1475 all passes later on.
1476 We rerun this pass after CFG is created, to get rid of the labels that
1477 are no longer referenced. After then we do not run it any more, since
1478 (almost) no new labels should be created. */
1480 /* A map from basic block index to the leading label of that block. */
1481 static struct label_record
1486 /* True if the label is referenced from somewhere. */
1490 /* Given LABEL return the first label in the same basic block. */
1493 main_block_label (tree label
)
1495 basic_block bb
= label_to_block (label
);
1496 tree main_label
= label_for_bb
[bb
->index
].label
;
1498 /* label_to_block possibly inserted undefined label into the chain. */
1501 label_for_bb
[bb
->index
].label
= label
;
1505 label_for_bb
[bb
->index
].used
= true;
1509 /* Clean up redundant labels within the exception tree. */
1512 cleanup_dead_labels_eh (void)
1519 if (cfun
->eh
== NULL
)
1522 for (i
= 1; vec_safe_iterate (cfun
->eh
->lp_array
, i
, &lp
); ++i
)
1523 if (lp
&& lp
->post_landing_pad
)
1525 lab
= main_block_label (lp
->post_landing_pad
);
1526 if (lab
!= lp
->post_landing_pad
)
1528 EH_LANDING_PAD_NR (lp
->post_landing_pad
) = 0;
1529 EH_LANDING_PAD_NR (lab
) = lp
->index
;
1533 FOR_ALL_EH_REGION (r
)
1537 case ERT_MUST_NOT_THROW
:
1543 for (c
= r
->u
.eh_try
.first_catch
; c
; c
= c
->next_catch
)
1547 c
->label
= main_block_label (lab
);
1552 case ERT_ALLOWED_EXCEPTIONS
:
1553 lab
= r
->u
.allowed
.label
;
1555 r
->u
.allowed
.label
= main_block_label (lab
);
1561 /* Cleanup redundant labels. This is a three-step process:
1562 1) Find the leading label for each block.
1563 2) Redirect all references to labels to the leading labels.
1564 3) Cleanup all useless labels. */
1567 cleanup_dead_labels (void)
1570 label_for_bb
= XCNEWVEC (struct label_record
, last_basic_block_for_fn (cfun
));
1572 /* Find a suitable label for each block. We use the first user-defined
1573 label if there is one, or otherwise just the first label we see. */
1574 FOR_EACH_BB_FN (bb
, cfun
)
1576 gimple_stmt_iterator i
;
1578 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); gsi_next (&i
))
1581 glabel
*label_stmt
= dyn_cast
<glabel
*> (gsi_stmt (i
));
1586 label
= gimple_label_label (label_stmt
);
1588 /* If we have not yet seen a label for the current block,
1589 remember this one and see if there are more labels. */
1590 if (!label_for_bb
[bb
->index
].label
)
1592 label_for_bb
[bb
->index
].label
= label
;
1596 /* If we did see a label for the current block already, but it
1597 is an artificially created label, replace it if the current
1598 label is a user defined label. */
1599 if (!DECL_ARTIFICIAL (label
)
1600 && DECL_ARTIFICIAL (label_for_bb
[bb
->index
].label
))
1602 label_for_bb
[bb
->index
].label
= label
;
1608 /* Now redirect all jumps/branches to the selected label.
1609 First do so for each block ending in a control statement. */
1610 FOR_EACH_BB_FN (bb
, cfun
)
1612 gimple
*stmt
= last_stmt (bb
);
1613 tree label
, new_label
;
1618 switch (gimple_code (stmt
))
1622 gcond
*cond_stmt
= as_a
<gcond
*> (stmt
);
1623 label
= gimple_cond_true_label (cond_stmt
);
1626 new_label
= main_block_label (label
);
1627 if (new_label
!= label
)
1628 gimple_cond_set_true_label (cond_stmt
, new_label
);
1631 label
= gimple_cond_false_label (cond_stmt
);
1634 new_label
= main_block_label (label
);
1635 if (new_label
!= label
)
1636 gimple_cond_set_false_label (cond_stmt
, new_label
);
1643 gswitch
*switch_stmt
= as_a
<gswitch
*> (stmt
);
1644 size_t i
, n
= gimple_switch_num_labels (switch_stmt
);
1646 /* Replace all destination labels. */
1647 for (i
= 0; i
< n
; ++i
)
1649 tree case_label
= gimple_switch_label (switch_stmt
, i
);
1650 label
= CASE_LABEL (case_label
);
1651 new_label
= main_block_label (label
);
1652 if (new_label
!= label
)
1653 CASE_LABEL (case_label
) = new_label
;
1660 gasm
*asm_stmt
= as_a
<gasm
*> (stmt
);
1661 int i
, n
= gimple_asm_nlabels (asm_stmt
);
1663 for (i
= 0; i
< n
; ++i
)
1665 tree cons
= gimple_asm_label_op (asm_stmt
, i
);
1666 tree label
= main_block_label (TREE_VALUE (cons
));
1667 TREE_VALUE (cons
) = label
;
1672 /* We have to handle gotos until they're removed, and we don't
1673 remove them until after we've created the CFG edges. */
1675 if (!computed_goto_p (stmt
))
1677 ggoto
*goto_stmt
= as_a
<ggoto
*> (stmt
);
1678 label
= gimple_goto_dest (goto_stmt
);
1679 new_label
= main_block_label (label
);
1680 if (new_label
!= label
)
1681 gimple_goto_set_dest (goto_stmt
, new_label
);
1685 case GIMPLE_TRANSACTION
:
1687 gtransaction
*txn
= as_a
<gtransaction
*> (stmt
);
1689 label
= gimple_transaction_label_norm (txn
);
1692 new_label
= main_block_label (label
);
1693 if (new_label
!= label
)
1694 gimple_transaction_set_label_norm (txn
, new_label
);
1697 label
= gimple_transaction_label_uninst (txn
);
1700 new_label
= main_block_label (label
);
1701 if (new_label
!= label
)
1702 gimple_transaction_set_label_uninst (txn
, new_label
);
1705 label
= gimple_transaction_label_over (txn
);
1708 new_label
= main_block_label (label
);
1709 if (new_label
!= label
)
1710 gimple_transaction_set_label_over (txn
, new_label
);
1720 /* Do the same for the exception region tree labels. */
1721 cleanup_dead_labels_eh ();
1723 /* Finally, purge dead labels. All user-defined labels and labels that
1724 can be the target of non-local gotos and labels which have their
1725 address taken are preserved. */
1726 FOR_EACH_BB_FN (bb
, cfun
)
1728 gimple_stmt_iterator i
;
1729 tree label_for_this_bb
= label_for_bb
[bb
->index
].label
;
1731 if (!label_for_this_bb
)
1734 /* If the main label of the block is unused, we may still remove it. */
1735 if (!label_for_bb
[bb
->index
].used
)
1736 label_for_this_bb
= NULL
;
1738 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); )
1741 glabel
*label_stmt
= dyn_cast
<glabel
*> (gsi_stmt (i
));
1746 label
= gimple_label_label (label_stmt
);
1748 if (label
== label_for_this_bb
1749 || !DECL_ARTIFICIAL (label
)
1750 || DECL_NONLOCAL (label
)
1751 || FORCED_LABEL (label
))
1754 gsi_remove (&i
, true);
1758 free (label_for_bb
);
1761 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1762 the ones jumping to the same label.
1763 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1766 group_case_labels_stmt (gswitch
*stmt
)
1768 int old_size
= gimple_switch_num_labels (stmt
);
1769 int i
, next_index
, new_size
;
1770 basic_block default_bb
= NULL
;
1772 default_bb
= label_to_block (CASE_LABEL (gimple_switch_default_label (stmt
)));
1774 /* Look for possible opportunities to merge cases. */
1776 while (i
< old_size
)
1778 tree base_case
, base_high
;
1779 basic_block base_bb
;
1781 base_case
= gimple_switch_label (stmt
, i
);
1783 gcc_assert (base_case
);
1784 base_bb
= label_to_block (CASE_LABEL (base_case
));
1786 /* Discard cases that have the same destination as the default case or
1787 whose destiniation blocks have already been removed as unreachable. */
1788 if (base_bb
== NULL
|| base_bb
== default_bb
)
1794 base_high
= CASE_HIGH (base_case
)
1795 ? CASE_HIGH (base_case
)
1796 : CASE_LOW (base_case
);
1799 /* Try to merge case labels. Break out when we reach the end
1800 of the label vector or when we cannot merge the next case
1801 label with the current one. */
1802 while (next_index
< old_size
)
1804 tree merge_case
= gimple_switch_label (stmt
, next_index
);
1805 basic_block merge_bb
= label_to_block (CASE_LABEL (merge_case
));
1806 wide_int bhp1
= wi::to_wide (base_high
) + 1;
1808 /* Merge the cases if they jump to the same place,
1809 and their ranges are consecutive. */
1810 if (merge_bb
== base_bb
1811 && wi::to_wide (CASE_LOW (merge_case
)) == bhp1
)
1813 base_high
= CASE_HIGH (merge_case
) ?
1814 CASE_HIGH (merge_case
) : CASE_LOW (merge_case
);
1815 CASE_HIGH (base_case
) = base_high
;
1822 /* Discard cases that have an unreachable destination block. */
1823 if (EDGE_COUNT (base_bb
->succs
) == 0
1824 && gimple_seq_unreachable_p (bb_seq (base_bb
))
1825 /* Don't optimize this if __builtin_unreachable () is the
1826 implicitly added one by the C++ FE too early, before
1827 -Wreturn-type can be diagnosed. We'll optimize it later
1828 during switchconv pass or any other cfg cleanup. */
1829 && (gimple_in_ssa_p (cfun
)
1830 || (LOCATION_LOCUS (gimple_location (last_stmt (base_bb
)))
1831 != BUILTINS_LOCATION
)))
1833 edge base_edge
= find_edge (gimple_bb (stmt
), base_bb
);
1834 if (base_edge
!= NULL
)
1835 remove_edge_and_dominated_blocks (base_edge
);
1841 gimple_switch_set_label (stmt
, new_size
,
1842 gimple_switch_label (stmt
, i
));
1847 gcc_assert (new_size
<= old_size
);
1849 if (new_size
< old_size
)
1850 gimple_switch_set_num_labels (stmt
, new_size
);
1852 return new_size
< old_size
;
1855 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1856 and scan the sorted vector of cases. Combine the ones jumping to the
1860 group_case_labels (void)
1863 bool changed
= false;
1865 FOR_EACH_BB_FN (bb
, cfun
)
1867 gimple
*stmt
= last_stmt (bb
);
1868 if (stmt
&& gimple_code (stmt
) == GIMPLE_SWITCH
)
1869 changed
|= group_case_labels_stmt (as_a
<gswitch
*> (stmt
));
1875 /* Checks whether we can merge block B into block A. */
1878 gimple_can_merge_blocks_p (basic_block a
, basic_block b
)
1882 if (!single_succ_p (a
))
1885 if (single_succ_edge (a
)->flags
& EDGE_COMPLEX
)
1888 if (single_succ (a
) != b
)
1891 if (!single_pred_p (b
))
1894 if (a
== ENTRY_BLOCK_PTR_FOR_FN (cfun
)
1895 || b
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
1898 /* If A ends by a statement causing exceptions or something similar, we
1899 cannot merge the blocks. */
1900 stmt
= last_stmt (a
);
1901 if (stmt
&& stmt_ends_bb_p (stmt
))
1904 /* Do not allow a block with only a non-local label to be merged. */
1906 if (glabel
*label_stmt
= dyn_cast
<glabel
*> (stmt
))
1907 if (DECL_NONLOCAL (gimple_label_label (label_stmt
)))
1910 /* Examine the labels at the beginning of B. */
1911 for (gimple_stmt_iterator gsi
= gsi_start_bb (b
); !gsi_end_p (gsi
);
1915 glabel
*label_stmt
= dyn_cast
<glabel
*> (gsi_stmt (gsi
));
1918 lab
= gimple_label_label (label_stmt
);
1920 /* Do not remove user forced labels or for -O0 any user labels. */
1921 if (!DECL_ARTIFICIAL (lab
) && (!optimize
|| FORCED_LABEL (lab
)))
1925 /* Protect simple loop latches. We only want to avoid merging
1926 the latch with the loop header or with a block in another
1927 loop in this case. */
1929 && b
->loop_father
->latch
== b
1930 && loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES
)
1931 && (b
->loop_father
->header
== a
1932 || b
->loop_father
!= a
->loop_father
))
1935 /* It must be possible to eliminate all phi nodes in B. If ssa form
1936 is not up-to-date and a name-mapping is registered, we cannot eliminate
1937 any phis. Symbols marked for renaming are never a problem though. */
1938 for (gphi_iterator gsi
= gsi_start_phis (b
); !gsi_end_p (gsi
);
1941 gphi
*phi
= gsi
.phi ();
1942 /* Technically only new names matter. */
1943 if (name_registered_for_update_p (PHI_RESULT (phi
)))
1947 /* When not optimizing, don't merge if we'd lose goto_locus. */
1949 && single_succ_edge (a
)->goto_locus
!= UNKNOWN_LOCATION
)
1951 location_t goto_locus
= single_succ_edge (a
)->goto_locus
;
1952 gimple_stmt_iterator prev
, next
;
1953 prev
= gsi_last_nondebug_bb (a
);
1954 next
= gsi_after_labels (b
);
1955 if (!gsi_end_p (next
) && is_gimple_debug (gsi_stmt (next
)))
1956 gsi_next_nondebug (&next
);
1957 if ((gsi_end_p (prev
)
1958 || gimple_location (gsi_stmt (prev
)) != goto_locus
)
1959 && (gsi_end_p (next
)
1960 || gimple_location (gsi_stmt (next
)) != goto_locus
))
1967 /* Replaces all uses of NAME by VAL. */
1970 replace_uses_by (tree name
, tree val
)
1972 imm_use_iterator imm_iter
;
1977 FOR_EACH_IMM_USE_STMT (stmt
, imm_iter
, name
)
1979 /* Mark the block if we change the last stmt in it. */
1980 if (cfgcleanup_altered_bbs
1981 && stmt_ends_bb_p (stmt
))
1982 bitmap_set_bit (cfgcleanup_altered_bbs
, gimple_bb (stmt
)->index
);
1984 FOR_EACH_IMM_USE_ON_STMT (use
, imm_iter
)
1986 replace_exp (use
, val
);
1988 if (gimple_code (stmt
) == GIMPLE_PHI
)
1990 e
= gimple_phi_arg_edge (as_a
<gphi
*> (stmt
),
1991 PHI_ARG_INDEX_FROM_USE (use
));
1992 if (e
->flags
& EDGE_ABNORMAL
1993 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val
))
1995 /* This can only occur for virtual operands, since
1996 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1997 would prevent replacement. */
1998 gcc_checking_assert (virtual_operand_p (name
));
1999 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val
) = 1;
2004 if (gimple_code (stmt
) != GIMPLE_PHI
)
2006 gimple_stmt_iterator gsi
= gsi_for_stmt (stmt
);
2007 gimple
*orig_stmt
= stmt
;
2010 /* FIXME. It shouldn't be required to keep TREE_CONSTANT
2011 on ADDR_EXPRs up-to-date on GIMPLE. Propagation will
2012 only change sth from non-invariant to invariant, and only
2013 when propagating constants. */
2014 if (is_gimple_min_invariant (val
))
2015 for (i
= 0; i
< gimple_num_ops (stmt
); i
++)
2017 tree op
= gimple_op (stmt
, i
);
2018 /* Operands may be empty here. For example, the labels
2019 of a GIMPLE_COND are nulled out following the creation
2020 of the corresponding CFG edges. */
2021 if (op
&& TREE_CODE (op
) == ADDR_EXPR
)
2022 recompute_tree_invariant_for_addr_expr (op
);
2025 if (fold_stmt (&gsi
))
2026 stmt
= gsi_stmt (gsi
);
2028 if (maybe_clean_or_replace_eh_stmt (orig_stmt
, stmt
))
2029 gimple_purge_dead_eh_edges (gimple_bb (stmt
));
2035 gcc_checking_assert (has_zero_uses (name
));
2037 /* Also update the trees stored in loop structures. */
2042 FOR_EACH_LOOP (loop
, 0)
2044 substitute_in_loop_info (loop
, name
, val
);
2049 /* Merge block B into block A. */
2052 gimple_merge_blocks (basic_block a
, basic_block b
)
2054 gimple_stmt_iterator last
, gsi
;
2058 fprintf (dump_file
, "Merging blocks %d and %d\n", a
->index
, b
->index
);
2060 /* Remove all single-valued PHI nodes from block B of the form
2061 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
2062 gsi
= gsi_last_bb (a
);
2063 for (psi
= gsi_start_phis (b
); !gsi_end_p (psi
); )
2065 gimple
*phi
= gsi_stmt (psi
);
2066 tree def
= gimple_phi_result (phi
), use
= gimple_phi_arg_def (phi
, 0);
2068 bool may_replace_uses
= (virtual_operand_p (def
)
2069 || may_propagate_copy (def
, use
));
2071 /* In case we maintain loop closed ssa form, do not propagate arguments
2072 of loop exit phi nodes. */
2074 && loops_state_satisfies_p (LOOP_CLOSED_SSA
)
2075 && !virtual_operand_p (def
)
2076 && TREE_CODE (use
) == SSA_NAME
2077 && a
->loop_father
!= b
->loop_father
)
2078 may_replace_uses
= false;
2080 if (!may_replace_uses
)
2082 gcc_assert (!virtual_operand_p (def
));
2084 /* Note that just emitting the copies is fine -- there is no problem
2085 with ordering of phi nodes. This is because A is the single
2086 predecessor of B, therefore results of the phi nodes cannot
2087 appear as arguments of the phi nodes. */
2088 copy
= gimple_build_assign (def
, use
);
2089 gsi_insert_after (&gsi
, copy
, GSI_NEW_STMT
);
2090 remove_phi_node (&psi
, false);
2094 /* If we deal with a PHI for virtual operands, we can simply
2095 propagate these without fussing with folding or updating
2097 if (virtual_operand_p (def
))
2099 imm_use_iterator iter
;
2100 use_operand_p use_p
;
2103 FOR_EACH_IMM_USE_STMT (stmt
, iter
, def
)
2104 FOR_EACH_IMM_USE_ON_STMT (use_p
, iter
)
2105 SET_USE (use_p
, use
);
2107 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def
))
2108 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use
) = 1;
2111 replace_uses_by (def
, use
);
2113 remove_phi_node (&psi
, true);
2117 /* Ensure that B follows A. */
2118 move_block_after (b
, a
);
2120 gcc_assert (single_succ_edge (a
)->flags
& EDGE_FALLTHRU
);
2121 gcc_assert (!last_stmt (a
) || !stmt_ends_bb_p (last_stmt (a
)));
2123 /* Remove labels from B and set gimple_bb to A for other statements. */
2124 for (gsi
= gsi_start_bb (b
); !gsi_end_p (gsi
);)
2126 gimple
*stmt
= gsi_stmt (gsi
);
2127 if (glabel
*label_stmt
= dyn_cast
<glabel
*> (stmt
))
2129 tree label
= gimple_label_label (label_stmt
);
2132 gsi_remove (&gsi
, false);
2134 /* Now that we can thread computed gotos, we might have
2135 a situation where we have a forced label in block B
2136 However, the label at the start of block B might still be
2137 used in other ways (think about the runtime checking for
2138 Fortran assigned gotos). So we can not just delete the
2139 label. Instead we move the label to the start of block A. */
2140 if (FORCED_LABEL (label
))
2142 gimple_stmt_iterator dest_gsi
= gsi_start_bb (a
);
2143 gsi_insert_before (&dest_gsi
, stmt
, GSI_NEW_STMT
);
2145 /* Other user labels keep around in a form of a debug stmt. */
2146 else if (!DECL_ARTIFICIAL (label
) && MAY_HAVE_DEBUG_BIND_STMTS
)
2148 gimple
*dbg
= gimple_build_debug_bind (label
,
2151 gimple_debug_bind_reset_value (dbg
);
2152 gsi_insert_before (&gsi
, dbg
, GSI_SAME_STMT
);
2155 lp_nr
= EH_LANDING_PAD_NR (label
);
2158 eh_landing_pad lp
= get_eh_landing_pad_from_number (lp_nr
);
2159 lp
->post_landing_pad
= NULL
;
2164 gimple_set_bb (stmt
, a
);
2169 /* When merging two BBs, if their counts are different, the larger count
2170 is selected as the new bb count. This is to handle inconsistent
2172 if (a
->loop_father
== b
->loop_father
)
2174 a
->count
= a
->count
.merge (b
->count
);
2177 /* Merge the sequences. */
2178 last
= gsi_last_bb (a
);
2179 gsi_insert_seq_after (&last
, bb_seq (b
), GSI_NEW_STMT
);
2180 set_bb_seq (b
, NULL
);
2182 if (cfgcleanup_altered_bbs
)
2183 bitmap_set_bit (cfgcleanup_altered_bbs
, a
->index
);
2187 /* Return the one of two successors of BB that is not reachable by a
2188 complex edge, if there is one. Else, return BB. We use
2189 this in optimizations that use post-dominators for their heuristics,
2190 to catch the cases in C++ where function calls are involved. */
2193 single_noncomplex_succ (basic_block bb
)
2196 if (EDGE_COUNT (bb
->succs
) != 2)
2199 e0
= EDGE_SUCC (bb
, 0);
2200 e1
= EDGE_SUCC (bb
, 1);
2201 if (e0
->flags
& EDGE_COMPLEX
)
2203 if (e1
->flags
& EDGE_COMPLEX
)
2209 /* T is CALL_EXPR. Set current_function_calls_* flags. */
2212 notice_special_calls (gcall
*call
)
2214 int flags
= gimple_call_flags (call
);
2216 if (flags
& ECF_MAY_BE_ALLOCA
)
2217 cfun
->calls_alloca
= true;
2218 if (flags
& ECF_RETURNS_TWICE
)
2219 cfun
->calls_setjmp
= true;
2223 /* Clear flags set by notice_special_calls. Used by dead code removal
2224 to update the flags. */
2227 clear_special_calls (void)
2229 cfun
->calls_alloca
= false;
2230 cfun
->calls_setjmp
= false;
2233 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
2236 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb
)
2238 /* Since this block is no longer reachable, we can just delete all
2239 of its PHI nodes. */
2240 remove_phi_nodes (bb
);
2242 /* Remove edges to BB's successors. */
2243 while (EDGE_COUNT (bb
->succs
) > 0)
2244 remove_edge (EDGE_SUCC (bb
, 0));
2248 /* Remove statements of basic block BB. */
2251 remove_bb (basic_block bb
)
2253 gimple_stmt_iterator i
;
2257 fprintf (dump_file
, "Removing basic block %d\n", bb
->index
);
2258 if (dump_flags
& TDF_DETAILS
)
2260 dump_bb (dump_file
, bb
, 0, TDF_BLOCKS
);
2261 fprintf (dump_file
, "\n");
2267 struct loop
*loop
= bb
->loop_father
;
2269 /* If a loop gets removed, clean up the information associated
2271 if (loop
->latch
== bb
2272 || loop
->header
== bb
)
2273 free_numbers_of_iterations_estimates (loop
);
2276 /* Remove all the instructions in the block. */
2277 if (bb_seq (bb
) != NULL
)
2279 /* Walk backwards so as to get a chance to substitute all
2280 released DEFs into debug stmts. See
2281 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
2283 for (i
= gsi_last_bb (bb
); !gsi_end_p (i
);)
2285 gimple
*stmt
= gsi_stmt (i
);
2286 glabel
*label_stmt
= dyn_cast
<glabel
*> (stmt
);
2288 && (FORCED_LABEL (gimple_label_label (label_stmt
))
2289 || DECL_NONLOCAL (gimple_label_label (label_stmt
))))
2292 gimple_stmt_iterator new_gsi
;
2294 /* A non-reachable non-local label may still be referenced.
2295 But it no longer needs to carry the extra semantics of
2297 if (DECL_NONLOCAL (gimple_label_label (label_stmt
)))
2299 DECL_NONLOCAL (gimple_label_label (label_stmt
)) = 0;
2300 FORCED_LABEL (gimple_label_label (label_stmt
)) = 1;
2303 new_bb
= bb
->prev_bb
;
2304 /* Don't move any labels into ENTRY block. */
2305 if (new_bb
== ENTRY_BLOCK_PTR_FOR_FN (cfun
))
2307 new_bb
= single_succ (new_bb
);
2308 gcc_assert (new_bb
!= bb
);
2310 new_gsi
= gsi_start_bb (new_bb
);
2311 gsi_remove (&i
, false);
2312 gsi_insert_before (&new_gsi
, stmt
, GSI_NEW_STMT
);
2316 /* Release SSA definitions. */
2317 release_defs (stmt
);
2318 gsi_remove (&i
, true);
2322 i
= gsi_last_bb (bb
);
2328 remove_phi_nodes_and_edges_for_unreachable_block (bb
);
2329 bb
->il
.gimple
.seq
= NULL
;
2330 bb
->il
.gimple
.phi_nodes
= NULL
;
2334 /* Given a basic block BB and a value VAL for use in the final statement
2335 of the block (if a GIMPLE_COND, GIMPLE_SWITCH, or computed goto), return
2336 the edge that will be taken out of the block.
2337 If VAL is NULL_TREE, then the current value of the final statement's
2338 predicate or index is used.
2339 If the value does not match a unique edge, NULL is returned. */
2342 find_taken_edge (basic_block bb
, tree val
)
2346 stmt
= last_stmt (bb
);
2348 /* Handle ENTRY and EXIT. */
2352 if (gimple_code (stmt
) == GIMPLE_COND
)
2353 return find_taken_edge_cond_expr (as_a
<gcond
*> (stmt
), val
);
2355 if (gimple_code (stmt
) == GIMPLE_SWITCH
)
2356 return find_taken_edge_switch_expr (as_a
<gswitch
*> (stmt
), val
);
2358 if (computed_goto_p (stmt
))
2360 /* Only optimize if the argument is a label, if the argument is
2361 not a label then we can not construct a proper CFG.
2363 It may be the case that we only need to allow the LABEL_REF to
2364 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
2365 appear inside a LABEL_EXPR just to be safe. */
2367 && (TREE_CODE (val
) == ADDR_EXPR
|| TREE_CODE (val
) == LABEL_EXPR
)
2368 && TREE_CODE (TREE_OPERAND (val
, 0)) == LABEL_DECL
)
2369 return find_taken_edge_computed_goto (bb
, TREE_OPERAND (val
, 0));
2372 /* Otherwise we only know the taken successor edge if it's unique. */
2373 return single_succ_p (bb
) ? single_succ_edge (bb
) : NULL
;
2376 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
2377 statement, determine which of the outgoing edges will be taken out of the
2378 block. Return NULL if either edge may be taken. */
2381 find_taken_edge_computed_goto (basic_block bb
, tree val
)
2386 dest
= label_to_block (val
);
2388 e
= find_edge (bb
, dest
);
2390 /* It's possible for find_edge to return NULL here on invalid code
2391 that abuses the labels-as-values extension (e.g. code that attempts to
2392 jump *between* functions via stored labels-as-values; PR 84136).
2393 If so, then we simply return that NULL for the edge.
2394 We don't currently have a way of detecting such invalid code, so we
2395 can't assert that it was the case when a NULL edge occurs here. */
2400 /* Given COND_STMT and a constant value VAL for use as the predicate,
2401 determine which of the two edges will be taken out of
2402 the statement's block. Return NULL if either edge may be taken.
2403 If VAL is NULL_TREE, then the current value of COND_STMT's predicate
2407 find_taken_edge_cond_expr (const gcond
*cond_stmt
, tree val
)
2409 edge true_edge
, false_edge
;
2411 if (val
== NULL_TREE
)
2413 /* Use the current value of the predicate. */
2414 if (gimple_cond_true_p (cond_stmt
))
2415 val
= integer_one_node
;
2416 else if (gimple_cond_false_p (cond_stmt
))
2417 val
= integer_zero_node
;
2421 else if (TREE_CODE (val
) != INTEGER_CST
)
2424 extract_true_false_edges_from_block (gimple_bb (cond_stmt
),
2425 &true_edge
, &false_edge
);
2427 return (integer_zerop (val
) ? false_edge
: true_edge
);
2430 /* Given SWITCH_STMT and an INTEGER_CST VAL for use as the index, determine
2431 which edge will be taken out of the statement's block. Return NULL if any
2433 If VAL is NULL_TREE, then the current value of SWITCH_STMT's index
2437 find_taken_edge_switch_expr (const gswitch
*switch_stmt
, tree val
)
2439 basic_block dest_bb
;
2443 if (gimple_switch_num_labels (switch_stmt
) == 1)
2444 taken_case
= gimple_switch_default_label (switch_stmt
);
2447 if (val
== NULL_TREE
)
2448 val
= gimple_switch_index (switch_stmt
);
2449 if (TREE_CODE (val
) != INTEGER_CST
)
2452 taken_case
= find_case_label_for_value (switch_stmt
, val
);
2454 dest_bb
= label_to_block (CASE_LABEL (taken_case
));
2456 e
= find_edge (gimple_bb (switch_stmt
), dest_bb
);
2462 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
2463 We can make optimal use here of the fact that the case labels are
2464 sorted: We can do a binary search for a case matching VAL. */
2467 find_case_label_for_value (const gswitch
*switch_stmt
, tree val
)
2469 size_t low
, high
, n
= gimple_switch_num_labels (switch_stmt
);
2470 tree default_case
= gimple_switch_default_label (switch_stmt
);
2472 for (low
= 0, high
= n
; high
- low
> 1; )
2474 size_t i
= (high
+ low
) / 2;
2475 tree t
= gimple_switch_label (switch_stmt
, i
);
2478 /* Cache the result of comparing CASE_LOW and val. */
2479 cmp
= tree_int_cst_compare (CASE_LOW (t
), val
);
2486 if (CASE_HIGH (t
) == NULL
)
2488 /* A singe-valued case label. */
2494 /* A case range. We can only handle integer ranges. */
2495 if (cmp
<= 0 && tree_int_cst_compare (CASE_HIGH (t
), val
) >= 0)
2500 return default_case
;
2504 /* Dump a basic block on stderr. */
2507 gimple_debug_bb (basic_block bb
)
2509 dump_bb (stderr
, bb
, 0, TDF_VOPS
|TDF_MEMSYMS
|TDF_BLOCKS
);
2513 /* Dump basic block with index N on stderr. */
2516 gimple_debug_bb_n (int n
)
2518 gimple_debug_bb (BASIC_BLOCK_FOR_FN (cfun
, n
));
2519 return BASIC_BLOCK_FOR_FN (cfun
, n
);
2523 /* Dump the CFG on stderr.
2525 FLAGS are the same used by the tree dumping functions
2526 (see TDF_* in dumpfile.h). */
2529 gimple_debug_cfg (dump_flags_t flags
)
2531 gimple_dump_cfg (stderr
, flags
);
2535 /* Dump the program showing basic block boundaries on the given FILE.
2537 FLAGS are the same used by the tree dumping functions (see TDF_* in
2541 gimple_dump_cfg (FILE *file
, dump_flags_t flags
)
2543 if (flags
& TDF_DETAILS
)
2545 dump_function_header (file
, current_function_decl
, flags
);
2546 fprintf (file
, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2547 n_basic_blocks_for_fn (cfun
), n_edges_for_fn (cfun
),
2548 last_basic_block_for_fn (cfun
));
2550 brief_dump_cfg (file
, flags
);
2551 fprintf (file
, "\n");
2554 if (flags
& TDF_STATS
)
2555 dump_cfg_stats (file
);
2557 dump_function_to_file (current_function_decl
, file
, flags
| TDF_BLOCKS
);
2561 /* Dump CFG statistics on FILE. */
2564 dump_cfg_stats (FILE *file
)
2566 static long max_num_merged_labels
= 0;
2567 unsigned long size
, total
= 0;
2570 const char * const fmt_str
= "%-30s%-13s%12s\n";
2571 const char * const fmt_str_1
= "%-30s%13d%11lu%c\n";
2572 const char * const fmt_str_2
= "%-30s%13ld%11lu%c\n";
2573 const char * const fmt_str_3
= "%-43s%11lu%c\n";
2574 const char *funcname
= current_function_name ();
2576 fprintf (file
, "\nCFG Statistics for %s\n\n", funcname
);
2578 fprintf (file
, "---------------------------------------------------------\n");
2579 fprintf (file
, fmt_str
, "", " Number of ", "Memory");
2580 fprintf (file
, fmt_str
, "", " instances ", "used ");
2581 fprintf (file
, "---------------------------------------------------------\n");
2583 size
= n_basic_blocks_for_fn (cfun
) * sizeof (struct basic_block_def
);
2585 fprintf (file
, fmt_str_1
, "Basic blocks", n_basic_blocks_for_fn (cfun
),
2586 SCALE (size
), LABEL (size
));
2589 FOR_EACH_BB_FN (bb
, cfun
)
2590 num_edges
+= EDGE_COUNT (bb
->succs
);
2591 size
= num_edges
* sizeof (struct edge_def
);
2593 fprintf (file
, fmt_str_2
, "Edges", num_edges
, SCALE (size
), LABEL (size
));
2595 fprintf (file
, "---------------------------------------------------------\n");
2596 fprintf (file
, fmt_str_3
, "Total memory used by CFG data", SCALE (total
),
2598 fprintf (file
, "---------------------------------------------------------\n");
2599 fprintf (file
, "\n");
2601 if (cfg_stats
.num_merged_labels
> max_num_merged_labels
)
2602 max_num_merged_labels
= cfg_stats
.num_merged_labels
;
2604 fprintf (file
, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2605 cfg_stats
.num_merged_labels
, max_num_merged_labels
);
2607 fprintf (file
, "\n");
2611 /* Dump CFG statistics on stderr. Keep extern so that it's always
2612 linked in the final executable. */
2615 debug_cfg_stats (void)
2617 dump_cfg_stats (stderr
);
2620 /*---------------------------------------------------------------------------
2621 Miscellaneous helpers
2622 ---------------------------------------------------------------------------*/
2624 /* Return true if T, a GIMPLE_CALL, can make an abnormal transfer of control
2625 flow. Transfers of control flow associated with EH are excluded. */
2628 call_can_make_abnormal_goto (gimple
*t
)
2630 /* If the function has no non-local labels, then a call cannot make an
2631 abnormal transfer of control. */
2632 if (!cfun
->has_nonlocal_label
2633 && !cfun
->calls_setjmp
)
2636 /* Likewise if the call has no side effects. */
2637 if (!gimple_has_side_effects (t
))
2640 /* Likewise if the called function is leaf. */
2641 if (gimple_call_flags (t
) & ECF_LEAF
)
2648 /* Return true if T can make an abnormal transfer of control flow.
2649 Transfers of control flow associated with EH are excluded. */
2652 stmt_can_make_abnormal_goto (gimple
*t
)
2654 if (computed_goto_p (t
))
2656 if (is_gimple_call (t
))
2657 return call_can_make_abnormal_goto (t
);
2662 /* Return true if T represents a stmt that always transfers control. */
2665 is_ctrl_stmt (gimple
*t
)
2667 switch (gimple_code (t
))
2681 /* Return true if T is a statement that may alter the flow of control
2682 (e.g., a call to a non-returning function). */
2685 is_ctrl_altering_stmt (gimple
*t
)
2689 switch (gimple_code (t
))
2692 /* Per stmt call flag indicates whether the call could alter
2694 if (gimple_call_ctrl_altering_p (t
))
2698 case GIMPLE_EH_DISPATCH
:
2699 /* EH_DISPATCH branches to the individual catch handlers at
2700 this level of a try or allowed-exceptions region. It can
2701 fallthru to the next statement as well. */
2705 if (gimple_asm_nlabels (as_a
<gasm
*> (t
)) > 0)
2710 /* OpenMP directives alter control flow. */
2713 case GIMPLE_TRANSACTION
:
2714 /* A transaction start alters control flow. */
2721 /* If a statement can throw, it alters control flow. */
2722 return stmt_can_throw_internal (t
);
2726 /* Return true if T is a simple local goto. */
2729 simple_goto_p (gimple
*t
)
2731 return (gimple_code (t
) == GIMPLE_GOTO
2732 && TREE_CODE (gimple_goto_dest (t
)) == LABEL_DECL
);
2736 /* Return true if STMT should start a new basic block. PREV_STMT is
2737 the statement preceding STMT. It is used when STMT is a label or a
2738 case label. Labels should only start a new basic block if their
2739 previous statement wasn't a label. Otherwise, sequence of labels
2740 would generate unnecessary basic blocks that only contain a single
2744 stmt_starts_bb_p (gimple
*stmt
, gimple
*prev_stmt
)
2749 /* PREV_STMT is only set to a debug stmt if the debug stmt is before
2750 any nondebug stmts in the block. We don't want to start another
2751 block in this case: the debug stmt will already have started the
2752 one STMT would start if we weren't outputting debug stmts. */
2753 if (prev_stmt
&& is_gimple_debug (prev_stmt
))
2756 /* Labels start a new basic block only if the preceding statement
2757 wasn't a label of the same type. This prevents the creation of
2758 consecutive blocks that have nothing but a single label. */
2759 if (glabel
*label_stmt
= dyn_cast
<glabel
*> (stmt
))
2761 /* Nonlocal and computed GOTO targets always start a new block. */
2762 if (DECL_NONLOCAL (gimple_label_label (label_stmt
))
2763 || FORCED_LABEL (gimple_label_label (label_stmt
)))
2766 if (prev_stmt
&& gimple_code (prev_stmt
) == GIMPLE_LABEL
)
2768 if (DECL_NONLOCAL (gimple_label_label (
2769 as_a
<glabel
*> (prev_stmt
))))
2772 cfg_stats
.num_merged_labels
++;
2778 else if (gimple_code (stmt
) == GIMPLE_CALL
)
2780 if (gimple_call_flags (stmt
) & ECF_RETURNS_TWICE
)
2781 /* setjmp acts similar to a nonlocal GOTO target and thus should
2782 start a new block. */
2784 if (gimple_call_internal_p (stmt
, IFN_PHI
)
2786 && gimple_code (prev_stmt
) != GIMPLE_LABEL
2787 && (gimple_code (prev_stmt
) != GIMPLE_CALL
2788 || ! gimple_call_internal_p (prev_stmt
, IFN_PHI
)))
2789 /* PHI nodes start a new block unless preceeded by a label
2798 /* Return true if T should end a basic block. */
2801 stmt_ends_bb_p (gimple
*t
)
2803 return is_ctrl_stmt (t
) || is_ctrl_altering_stmt (t
);
2806 /* Remove block annotations and other data structures. */
2809 delete_tree_cfg_annotations (struct function
*fn
)
2811 vec_free (label_to_block_map_for_fn (fn
));
2814 /* Return the virtual phi in BB. */
2817 get_virtual_phi (basic_block bb
)
2819 for (gphi_iterator gsi
= gsi_start_phis (bb
);
2823 gphi
*phi
= gsi
.phi ();
2825 if (virtual_operand_p (PHI_RESULT (phi
)))
2832 /* Return the first statement in basic block BB. */
2835 first_stmt (basic_block bb
)
2837 gimple_stmt_iterator i
= gsi_start_bb (bb
);
2838 gimple
*stmt
= NULL
;
2840 while (!gsi_end_p (i
) && is_gimple_debug ((stmt
= gsi_stmt (i
))))
2848 /* Return the first non-label statement in basic block BB. */
2851 first_non_label_stmt (basic_block bb
)
2853 gimple_stmt_iterator i
= gsi_start_bb (bb
);
2854 while (!gsi_end_p (i
) && gimple_code (gsi_stmt (i
)) == GIMPLE_LABEL
)
2856 return !gsi_end_p (i
) ? gsi_stmt (i
) : NULL
;
2859 /* Return the last statement in basic block BB. */
2862 last_stmt (basic_block bb
)
2864 gimple_stmt_iterator i
= gsi_last_bb (bb
);
2865 gimple
*stmt
= NULL
;
2867 while (!gsi_end_p (i
) && is_gimple_debug ((stmt
= gsi_stmt (i
))))
2875 /* Return the last statement of an otherwise empty block. Return NULL
2876 if the block is totally empty, or if it contains more than one
2880 last_and_only_stmt (basic_block bb
)
2882 gimple_stmt_iterator i
= gsi_last_nondebug_bb (bb
);
2883 gimple
*last
, *prev
;
2888 last
= gsi_stmt (i
);
2889 gsi_prev_nondebug (&i
);
2893 /* Empty statements should no longer appear in the instruction stream.
2894 Everything that might have appeared before should be deleted by
2895 remove_useless_stmts, and the optimizers should just gsi_remove
2896 instead of smashing with build_empty_stmt.
2898 Thus the only thing that should appear here in a block containing
2899 one executable statement is a label. */
2900 prev
= gsi_stmt (i
);
2901 if (gimple_code (prev
) == GIMPLE_LABEL
)
2907 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2910 reinstall_phi_args (edge new_edge
, edge old_edge
)
2916 vec
<edge_var_map
> *v
= redirect_edge_var_map_vector (old_edge
);
2920 for (i
= 0, phis
= gsi_start_phis (new_edge
->dest
);
2921 v
->iterate (i
, &vm
) && !gsi_end_p (phis
);
2922 i
++, gsi_next (&phis
))
2924 gphi
*phi
= phis
.phi ();
2925 tree result
= redirect_edge_var_map_result (vm
);
2926 tree arg
= redirect_edge_var_map_def (vm
);
2928 gcc_assert (result
== gimple_phi_result (phi
));
2930 add_phi_arg (phi
, arg
, new_edge
, redirect_edge_var_map_location (vm
));
2933 redirect_edge_var_map_clear (old_edge
);
2936 /* Returns the basic block after which the new basic block created
2937 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2938 near its "logical" location. This is of most help to humans looking
2939 at debugging dumps. */
2942 split_edge_bb_loc (edge edge_in
)
2944 basic_block dest
= edge_in
->dest
;
2945 basic_block dest_prev
= dest
->prev_bb
;
2949 edge e
= find_edge (dest_prev
, dest
);
2950 if (e
&& !(e
->flags
& EDGE_COMPLEX
))
2951 return edge_in
->src
;
2956 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2957 Abort on abnormal edges. */
2960 gimple_split_edge (edge edge_in
)
2962 basic_block new_bb
, after_bb
, dest
;
2965 /* Abnormal edges cannot be split. */
2966 gcc_assert (!(edge_in
->flags
& EDGE_ABNORMAL
));
2968 dest
= edge_in
->dest
;
2970 after_bb
= split_edge_bb_loc (edge_in
);
2972 new_bb
= create_empty_bb (after_bb
);
2973 new_bb
->count
= edge_in
->count ();
2975 e
= redirect_edge_and_branch (edge_in
, new_bb
);
2976 gcc_assert (e
== edge_in
);
2978 new_edge
= make_single_succ_edge (new_bb
, dest
, EDGE_FALLTHRU
);
2979 reinstall_phi_args (new_edge
, e
);
2985 /* Verify properties of the address expression T with base object BASE. */
2988 verify_address (tree t
, tree base
)
2991 bool old_side_effects
;
2993 bool new_side_effects
;
2995 old_constant
= TREE_CONSTANT (t
);
2996 old_side_effects
= TREE_SIDE_EFFECTS (t
);
2998 recompute_tree_invariant_for_addr_expr (t
);
2999 new_side_effects
= TREE_SIDE_EFFECTS (t
);
3000 new_constant
= TREE_CONSTANT (t
);
3002 if (old_constant
!= new_constant
)
3004 error ("constant not recomputed when ADDR_EXPR changed");
3007 if (old_side_effects
!= new_side_effects
)
3009 error ("side effects not recomputed when ADDR_EXPR changed");
3014 || TREE_CODE (base
) == PARM_DECL
3015 || TREE_CODE (base
) == RESULT_DECL
))
3018 if (DECL_GIMPLE_REG_P (base
))
3020 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
3027 /* Callback for walk_tree, check that all elements with address taken are
3028 properly noticed as such. The DATA is an int* that is 1 if TP was seen
3029 inside a PHI node. */
3032 verify_expr (tree
*tp
, int *walk_subtrees
, void *data ATTRIBUTE_UNUSED
)
3039 /* Check operand N for being valid GIMPLE and give error MSG if not. */
3040 #define CHECK_OP(N, MSG) \
3041 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
3042 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
3044 switch (TREE_CODE (t
))
3047 if (SSA_NAME_IN_FREE_LIST (t
))
3049 error ("SSA name in freelist but still referenced");
3058 tree context
= decl_function_context (t
);
3059 if (context
!= cfun
->decl
3060 && !SCOPE_FILE_SCOPE_P (context
)
3062 && !DECL_EXTERNAL (t
))
3064 error ("Local declaration from a different function");
3071 error ("INDIRECT_REF in gimple IL");
3075 x
= TREE_OPERAND (t
, 0);
3076 if (!POINTER_TYPE_P (TREE_TYPE (x
))
3077 || !is_gimple_mem_ref_addr (x
))
3079 error ("invalid first operand of MEM_REF");
3082 if (!poly_int_tree_p (TREE_OPERAND (t
, 1))
3083 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t
, 1))))
3085 error ("invalid offset operand of MEM_REF");
3086 return TREE_OPERAND (t
, 1);
3088 if (TREE_CODE (x
) == ADDR_EXPR
)
3090 tree va
= verify_address (x
, TREE_OPERAND (x
, 0));
3093 x
= TREE_OPERAND (x
, 0);
3095 walk_tree (&x
, verify_expr
, data
, NULL
);
3100 x
= fold (ASSERT_EXPR_COND (t
));
3101 if (x
== boolean_false_node
)
3103 error ("ASSERT_EXPR with an always-false condition");
3109 error ("MODIFY_EXPR not expected while having tuples");
3116 gcc_assert (is_gimple_address (t
));
3118 /* Skip any references (they will be checked when we recurse down the
3119 tree) and ensure that any variable used as a prefix is marked
3121 for (x
= TREE_OPERAND (t
, 0);
3122 handled_component_p (x
);
3123 x
= TREE_OPERAND (x
, 0))
3126 if ((tem
= verify_address (t
, x
)))
3130 || TREE_CODE (x
) == PARM_DECL
3131 || TREE_CODE (x
) == RESULT_DECL
))
3134 if (!TREE_ADDRESSABLE (x
))
3136 error ("address taken, but ADDRESSABLE bit not set");
3144 x
= COND_EXPR_COND (t
);
3145 if (!INTEGRAL_TYPE_P (TREE_TYPE (x
)))
3147 error ("non-integral used in condition");
3150 if (!is_gimple_condexpr (x
))
3152 error ("invalid conditional operand");
3157 case NON_LVALUE_EXPR
:
3158 case TRUTH_NOT_EXPR
:
3162 case FIX_TRUNC_EXPR
:
3167 CHECK_OP (0, "invalid operand to unary operator");
3173 if (!is_gimple_reg_type (TREE_TYPE (t
)))
3175 error ("non-scalar BIT_FIELD_REF, IMAGPART_EXPR or REALPART_EXPR");
3179 if (TREE_CODE (t
) == BIT_FIELD_REF
)
3181 tree t0
= TREE_OPERAND (t
, 0);
3182 tree t1
= TREE_OPERAND (t
, 1);
3183 tree t2
= TREE_OPERAND (t
, 2);
3184 poly_uint64 size
, bitpos
;
3185 if (!poly_int_tree_p (t1
, &size
)
3186 || !poly_int_tree_p (t2
, &bitpos
)
3187 || !types_compatible_p (bitsizetype
, TREE_TYPE (t1
))
3188 || !types_compatible_p (bitsizetype
, TREE_TYPE (t2
)))
3190 error ("invalid position or size operand to BIT_FIELD_REF");
3193 if (INTEGRAL_TYPE_P (TREE_TYPE (t
))
3194 && maybe_ne (TYPE_PRECISION (TREE_TYPE (t
)), size
))
3196 error ("integral result type precision does not match "
3197 "field size of BIT_FIELD_REF");
3200 else if (!INTEGRAL_TYPE_P (TREE_TYPE (t
))
3201 && TYPE_MODE (TREE_TYPE (t
)) != BLKmode
3202 && maybe_ne (GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t
))),
3205 error ("mode size of non-integral result does not "
3206 "match field size of BIT_FIELD_REF");
3209 if (!AGGREGATE_TYPE_P (TREE_TYPE (t0
))
3210 && maybe_gt (size
+ bitpos
,
3211 tree_to_poly_uint64 (TYPE_SIZE (TREE_TYPE (t0
)))))
3213 error ("position plus size exceeds size of referenced object in "
3218 t
= TREE_OPERAND (t
, 0);
3223 case ARRAY_RANGE_REF
:
3224 case VIEW_CONVERT_EXPR
:
3225 /* We have a nest of references. Verify that each of the operands
3226 that determine where to reference is either a constant or a variable,
3227 verify that the base is valid, and then show we've already checked
3229 while (handled_component_p (t
))
3231 if (TREE_CODE (t
) == COMPONENT_REF
&& TREE_OPERAND (t
, 2))
3232 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
3233 else if (TREE_CODE (t
) == ARRAY_REF
3234 || TREE_CODE (t
) == ARRAY_RANGE_REF
)
3236 CHECK_OP (1, "invalid array index");
3237 if (TREE_OPERAND (t
, 2))
3238 CHECK_OP (2, "invalid array lower bound");
3239 if (TREE_OPERAND (t
, 3))
3240 CHECK_OP (3, "invalid array stride");
3242 else if (TREE_CODE (t
) == BIT_FIELD_REF
3243 || TREE_CODE (t
) == REALPART_EXPR
3244 || TREE_CODE (t
) == IMAGPART_EXPR
)
3246 error ("non-top-level BIT_FIELD_REF, IMAGPART_EXPR or "
3251 t
= TREE_OPERAND (t
, 0);
3254 if (!is_gimple_min_invariant (t
) && !is_gimple_lvalue (t
))
3256 error ("invalid reference prefix");
3259 walk_tree (&t
, verify_expr
, data
, NULL
);
3264 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
3265 POINTER_PLUS_EXPR. */
3266 if (POINTER_TYPE_P (TREE_TYPE (t
)))
3268 error ("invalid operand to plus/minus, type is a pointer");
3271 CHECK_OP (0, "invalid operand to binary operator");
3272 CHECK_OP (1, "invalid operand to binary operator");
3275 case POINTER_DIFF_EXPR
:
3276 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t
, 0)))
3277 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t
, 1))))
3279 error ("invalid operand to pointer diff, operand is not a pointer");
3282 if (TREE_CODE (TREE_TYPE (t
)) != INTEGER_TYPE
3283 || TYPE_UNSIGNED (TREE_TYPE (t
))
3284 || (TYPE_PRECISION (TREE_TYPE (t
))
3285 != TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (t
, 0)))))
3287 error ("invalid type for pointer diff");
3290 CHECK_OP (0, "invalid operand to pointer diff");
3291 CHECK_OP (1, "invalid operand to pointer diff");
3294 case POINTER_PLUS_EXPR
:
3295 /* Check to make sure the first operand is a pointer or reference type. */
3296 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t
, 0))))
3298 error ("invalid operand to pointer plus, first operand is not a pointer");
3301 /* Check to make sure the second operand is a ptrofftype. */
3302 if (!ptrofftype_p (TREE_TYPE (TREE_OPERAND (t
, 1))))
3304 error ("invalid operand to pointer plus, second operand is not an "
3305 "integer type of appropriate width");
3315 case UNORDERED_EXPR
:
3324 case TRUNC_DIV_EXPR
:
3326 case FLOOR_DIV_EXPR
:
3327 case ROUND_DIV_EXPR
:
3328 case TRUNC_MOD_EXPR
:
3330 case FLOOR_MOD_EXPR
:
3331 case ROUND_MOD_EXPR
:
3333 case EXACT_DIV_EXPR
:
3343 CHECK_OP (0, "invalid operand to binary operator");
3344 CHECK_OP (1, "invalid operand to binary operator");
3348 if (TREE_CONSTANT (t
) && TREE_CODE (TREE_TYPE (t
)) == VECTOR_TYPE
)
3352 case CASE_LABEL_EXPR
:
3355 error ("invalid CASE_CHAIN");
3369 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
3370 Returns true if there is an error, otherwise false. */
3373 verify_types_in_gimple_min_lval (tree expr
)
3377 if (is_gimple_id (expr
))
3380 if (TREE_CODE (expr
) != TARGET_MEM_REF
3381 && TREE_CODE (expr
) != MEM_REF
)
3383 error ("invalid expression for min lvalue");
3387 /* TARGET_MEM_REFs are strange beasts. */
3388 if (TREE_CODE (expr
) == TARGET_MEM_REF
)
3391 op
= TREE_OPERAND (expr
, 0);
3392 if (!is_gimple_val (op
))
3394 error ("invalid operand in indirect reference");
3395 debug_generic_stmt (op
);
3398 /* Memory references now generally can involve a value conversion. */
3403 /* Verify if EXPR is a valid GIMPLE reference expression. If
3404 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
3405 if there is an error, otherwise false. */
3408 verify_types_in_gimple_reference (tree expr
, bool require_lvalue
)
3410 while (handled_component_p (expr
))
3412 tree op
= TREE_OPERAND (expr
, 0);
3414 if (TREE_CODE (expr
) == ARRAY_REF
3415 || TREE_CODE (expr
) == ARRAY_RANGE_REF
)
3417 if (!is_gimple_val (TREE_OPERAND (expr
, 1))
3418 || (TREE_OPERAND (expr
, 2)
3419 && !is_gimple_val (TREE_OPERAND (expr
, 2)))
3420 || (TREE_OPERAND (expr
, 3)
3421 && !is_gimple_val (TREE_OPERAND (expr
, 3))))
3423 error ("invalid operands to array reference");
3424 debug_generic_stmt (expr
);
3429 /* Verify if the reference array element types are compatible. */
3430 if (TREE_CODE (expr
) == ARRAY_REF
3431 && !useless_type_conversion_p (TREE_TYPE (expr
),
3432 TREE_TYPE (TREE_TYPE (op
))))
3434 error ("type mismatch in array reference");
3435 debug_generic_stmt (TREE_TYPE (expr
));
3436 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op
)));
3439 if (TREE_CODE (expr
) == ARRAY_RANGE_REF
3440 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr
)),
3441 TREE_TYPE (TREE_TYPE (op
))))
3443 error ("type mismatch in array range reference");
3444 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr
)));
3445 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op
)));
3449 if ((TREE_CODE (expr
) == REALPART_EXPR
3450 || TREE_CODE (expr
) == IMAGPART_EXPR
)
3451 && !useless_type_conversion_p (TREE_TYPE (expr
),
3452 TREE_TYPE (TREE_TYPE (op
))))
3454 error ("type mismatch in real/imagpart reference");
3455 debug_generic_stmt (TREE_TYPE (expr
));
3456 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op
)));
3460 if (TREE_CODE (expr
) == COMPONENT_REF
3461 && !useless_type_conversion_p (TREE_TYPE (expr
),
3462 TREE_TYPE (TREE_OPERAND (expr
, 1))))
3464 error ("type mismatch in component reference");
3465 debug_generic_stmt (TREE_TYPE (expr
));
3466 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr
, 1)));
3470 if (TREE_CODE (expr
) == VIEW_CONVERT_EXPR
)
3472 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
3473 that their operand is not an SSA name or an invariant when
3474 requiring an lvalue (this usually means there is a SRA or IPA-SRA
3475 bug). Otherwise there is nothing to verify, gross mismatches at
3476 most invoke undefined behavior. */
3478 && (TREE_CODE (op
) == SSA_NAME
3479 || is_gimple_min_invariant (op
)))
3481 error ("conversion of an SSA_NAME on the left hand side");
3482 debug_generic_stmt (expr
);
3485 else if (TREE_CODE (op
) == SSA_NAME
3486 && TYPE_SIZE (TREE_TYPE (expr
)) != TYPE_SIZE (TREE_TYPE (op
)))
3488 error ("conversion of register to a different size");
3489 debug_generic_stmt (expr
);
3492 else if (!handled_component_p (op
))
3499 if (TREE_CODE (expr
) == MEM_REF
)
3501 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr
, 0)))
3503 error ("invalid address operand in MEM_REF");
3504 debug_generic_stmt (expr
);
3507 if (!poly_int_tree_p (TREE_OPERAND (expr
, 1))
3508 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr
, 1))))
3510 error ("invalid offset operand in MEM_REF");
3511 debug_generic_stmt (expr
);
3515 else if (TREE_CODE (expr
) == TARGET_MEM_REF
)
3517 if (!TMR_BASE (expr
)
3518 || !is_gimple_mem_ref_addr (TMR_BASE (expr
)))
3520 error ("invalid address operand in TARGET_MEM_REF");
3523 if (!TMR_OFFSET (expr
)
3524 || !poly_int_tree_p (TMR_OFFSET (expr
))
3525 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr
))))
3527 error ("invalid offset operand in TARGET_MEM_REF");
3528 debug_generic_stmt (expr
);
3533 return ((require_lvalue
|| !is_gimple_min_invariant (expr
))
3534 && verify_types_in_gimple_min_lval (expr
));
3537 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3538 list of pointer-to types that is trivially convertible to DEST. */
3541 one_pointer_to_useless_type_conversion_p (tree dest
, tree src_obj
)
3545 if (!TYPE_POINTER_TO (src_obj
))
3548 for (src
= TYPE_POINTER_TO (src_obj
); src
; src
= TYPE_NEXT_PTR_TO (src
))
3549 if (useless_type_conversion_p (dest
, src
))
3555 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3556 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3559 valid_fixed_convert_types_p (tree type1
, tree type2
)
3561 return (FIXED_POINT_TYPE_P (type1
)
3562 && (INTEGRAL_TYPE_P (type2
)
3563 || SCALAR_FLOAT_TYPE_P (type2
)
3564 || FIXED_POINT_TYPE_P (type2
)));
3567 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3568 is a problem, otherwise false. */
3571 verify_gimple_call (gcall
*stmt
)
3573 tree fn
= gimple_call_fn (stmt
);
3574 tree fntype
, fndecl
;
3577 if (gimple_call_internal_p (stmt
))
3581 error ("gimple call has two targets");
3582 debug_generic_stmt (fn
);
3585 /* FIXME : for passing label as arg in internal fn PHI from GIMPLE FE*/
3586 else if (gimple_call_internal_fn (stmt
) == IFN_PHI
)
3595 error ("gimple call has no target");
3600 if (fn
&& !is_gimple_call_addr (fn
))
3602 error ("invalid function in gimple call");
3603 debug_generic_stmt (fn
);
3608 && (!POINTER_TYPE_P (TREE_TYPE (fn
))
3609 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn
))) != FUNCTION_TYPE
3610 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn
))) != METHOD_TYPE
)))
3612 error ("non-function in gimple call");
3616 fndecl
= gimple_call_fndecl (stmt
);
3618 && TREE_CODE (fndecl
) == FUNCTION_DECL
3619 && DECL_LOOPING_CONST_OR_PURE_P (fndecl
)
3620 && !DECL_PURE_P (fndecl
)
3621 && !TREE_READONLY (fndecl
))
3623 error ("invalid pure const state for function");
3627 tree lhs
= gimple_call_lhs (stmt
);
3629 && (!is_gimple_lvalue (lhs
)
3630 || verify_types_in_gimple_reference (lhs
, true)))
3632 error ("invalid LHS in gimple call");
3636 if (gimple_call_ctrl_altering_p (stmt
)
3637 && gimple_call_noreturn_p (stmt
)
3638 && should_remove_lhs_p (lhs
))
3640 error ("LHS in noreturn call");
3644 fntype
= gimple_call_fntype (stmt
);
3647 && !useless_type_conversion_p (TREE_TYPE (lhs
), TREE_TYPE (fntype
))
3648 /* ??? At least C++ misses conversions at assignments from
3649 void * call results.
3650 For now simply allow arbitrary pointer type conversions. */
3651 && !(POINTER_TYPE_P (TREE_TYPE (lhs
))
3652 && POINTER_TYPE_P (TREE_TYPE (fntype
))))
3654 error ("invalid conversion in gimple call");
3655 debug_generic_stmt (TREE_TYPE (lhs
));
3656 debug_generic_stmt (TREE_TYPE (fntype
));
3660 if (gimple_call_chain (stmt
)
3661 && !is_gimple_val (gimple_call_chain (stmt
)))
3663 error ("invalid static chain in gimple call");
3664 debug_generic_stmt (gimple_call_chain (stmt
));
3668 /* If there is a static chain argument, the call should either be
3669 indirect, or the decl should have DECL_STATIC_CHAIN set. */
3670 if (gimple_call_chain (stmt
)
3672 && !DECL_STATIC_CHAIN (fndecl
))
3674 error ("static chain with function that doesn%'t use one");
3678 if (fndecl
&& DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
)
3680 switch (DECL_FUNCTION_CODE (fndecl
))
3682 case BUILT_IN_UNREACHABLE
:
3684 if (gimple_call_num_args (stmt
) > 0)
3686 /* Built-in unreachable with parameters might not be caught by
3687 undefined behavior sanitizer. Front-ends do check users do not
3688 call them that way but we also produce calls to
3689 __builtin_unreachable internally, for example when IPA figures
3690 out a call cannot happen in a legal program. In such cases,
3691 we must make sure arguments are stripped off. */
3692 error ("__builtin_unreachable or __builtin_trap call with "
3702 /* ??? The C frontend passes unpromoted arguments in case it
3703 didn't see a function declaration before the call. So for now
3704 leave the call arguments mostly unverified. Once we gimplify
3705 unit-at-a-time we have a chance to fix this. */
3707 for (i
= 0; i
< gimple_call_num_args (stmt
); ++i
)
3709 tree arg
= gimple_call_arg (stmt
, i
);
3710 if ((is_gimple_reg_type (TREE_TYPE (arg
))
3711 && !is_gimple_val (arg
))
3712 || (!is_gimple_reg_type (TREE_TYPE (arg
))
3713 && !is_gimple_lvalue (arg
)))
3715 error ("invalid argument to gimple call");
3716 debug_generic_expr (arg
);
3724 /* Verifies the gimple comparison with the result type TYPE and
3725 the operands OP0 and OP1, comparison code is CODE. */
3728 verify_gimple_comparison (tree type
, tree op0
, tree op1
, enum tree_code code
)
3730 tree op0_type
= TREE_TYPE (op0
);
3731 tree op1_type
= TREE_TYPE (op1
);
3733 if (!is_gimple_val (op0
) || !is_gimple_val (op1
))
3735 error ("invalid operands in gimple comparison");
3739 /* For comparisons we do not have the operations type as the
3740 effective type the comparison is carried out in. Instead
3741 we require that either the first operand is trivially
3742 convertible into the second, or the other way around.
3743 Because we special-case pointers to void we allow
3744 comparisons of pointers with the same mode as well. */
3745 if (!useless_type_conversion_p (op0_type
, op1_type
)
3746 && !useless_type_conversion_p (op1_type
, op0_type
)
3747 && (!POINTER_TYPE_P (op0_type
)
3748 || !POINTER_TYPE_P (op1_type
)
3749 || TYPE_MODE (op0_type
) != TYPE_MODE (op1_type
)))
3751 error ("mismatching comparison operand types");
3752 debug_generic_expr (op0_type
);
3753 debug_generic_expr (op1_type
);
3757 /* The resulting type of a comparison may be an effective boolean type. */
3758 if (INTEGRAL_TYPE_P (type
)
3759 && (TREE_CODE (type
) == BOOLEAN_TYPE
3760 || TYPE_PRECISION (type
) == 1))
3762 if ((TREE_CODE (op0_type
) == VECTOR_TYPE
3763 || TREE_CODE (op1_type
) == VECTOR_TYPE
)
3764 && code
!= EQ_EXPR
&& code
!= NE_EXPR
3765 && !VECTOR_BOOLEAN_TYPE_P (op0_type
)
3766 && !VECTOR_INTEGER_TYPE_P (op0_type
))
3768 error ("unsupported operation or type for vector comparison"
3769 " returning a boolean");
3770 debug_generic_expr (op0_type
);
3771 debug_generic_expr (op1_type
);
3775 /* Or a boolean vector type with the same element count
3776 as the comparison operand types. */
3777 else if (TREE_CODE (type
) == VECTOR_TYPE
3778 && TREE_CODE (TREE_TYPE (type
)) == BOOLEAN_TYPE
)
3780 if (TREE_CODE (op0_type
) != VECTOR_TYPE
3781 || TREE_CODE (op1_type
) != VECTOR_TYPE
)
3783 error ("non-vector operands in vector comparison");
3784 debug_generic_expr (op0_type
);
3785 debug_generic_expr (op1_type
);
3789 if (maybe_ne (TYPE_VECTOR_SUBPARTS (type
),
3790 TYPE_VECTOR_SUBPARTS (op0_type
)))
3792 error ("invalid vector comparison resulting type");
3793 debug_generic_expr (type
);
3799 error ("bogus comparison result type");
3800 debug_generic_expr (type
);
3807 /* Verify a gimple assignment statement STMT with an unary rhs.
3808 Returns true if anything is wrong. */
3811 verify_gimple_assign_unary (gassign
*stmt
)
3813 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
3814 tree lhs
= gimple_assign_lhs (stmt
);
3815 tree lhs_type
= TREE_TYPE (lhs
);
3816 tree rhs1
= gimple_assign_rhs1 (stmt
);
3817 tree rhs1_type
= TREE_TYPE (rhs1
);
3819 if (!is_gimple_reg (lhs
))
3821 error ("non-register as LHS of unary operation");
3825 if (!is_gimple_val (rhs1
))
3827 error ("invalid operand in unary operation");
3831 /* First handle conversions. */
3836 /* Allow conversions from pointer type to integral type only if
3837 there is no sign or zero extension involved.
3838 For targets were the precision of ptrofftype doesn't match that
3839 of pointers we need to allow arbitrary conversions to ptrofftype. */
3840 if ((POINTER_TYPE_P (lhs_type
)
3841 && INTEGRAL_TYPE_P (rhs1_type
))
3842 || (POINTER_TYPE_P (rhs1_type
)
3843 && INTEGRAL_TYPE_P (lhs_type
)
3844 && (TYPE_PRECISION (rhs1_type
) >= TYPE_PRECISION (lhs_type
)
3845 || ptrofftype_p (sizetype
))))
3848 /* Allow conversion from integral to offset type and vice versa. */
3849 if ((TREE_CODE (lhs_type
) == OFFSET_TYPE
3850 && INTEGRAL_TYPE_P (rhs1_type
))
3851 || (INTEGRAL_TYPE_P (lhs_type
)
3852 && TREE_CODE (rhs1_type
) == OFFSET_TYPE
))
3855 /* Otherwise assert we are converting between types of the
3857 if (INTEGRAL_TYPE_P (lhs_type
) != INTEGRAL_TYPE_P (rhs1_type
))
3859 error ("invalid types in nop conversion");
3860 debug_generic_expr (lhs_type
);
3861 debug_generic_expr (rhs1_type
);
3868 case ADDR_SPACE_CONVERT_EXPR
:
3870 if (!POINTER_TYPE_P (rhs1_type
) || !POINTER_TYPE_P (lhs_type
)
3871 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type
))
3872 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type
))))
3874 error ("invalid types in address space conversion");
3875 debug_generic_expr (lhs_type
);
3876 debug_generic_expr (rhs1_type
);
3883 case FIXED_CONVERT_EXPR
:
3885 if (!valid_fixed_convert_types_p (lhs_type
, rhs1_type
)
3886 && !valid_fixed_convert_types_p (rhs1_type
, lhs_type
))
3888 error ("invalid types in fixed-point conversion");
3889 debug_generic_expr (lhs_type
);
3890 debug_generic_expr (rhs1_type
);
3899 if ((!INTEGRAL_TYPE_P (rhs1_type
) || !SCALAR_FLOAT_TYPE_P (lhs_type
))
3900 && (!VECTOR_INTEGER_TYPE_P (rhs1_type
)
3901 || !VECTOR_FLOAT_TYPE_P (lhs_type
)))
3903 error ("invalid types in conversion to floating point");
3904 debug_generic_expr (lhs_type
);
3905 debug_generic_expr (rhs1_type
);
3912 case FIX_TRUNC_EXPR
:
3914 if ((!INTEGRAL_TYPE_P (lhs_type
) || !SCALAR_FLOAT_TYPE_P (rhs1_type
))
3915 && (!VECTOR_INTEGER_TYPE_P (lhs_type
)
3916 || !VECTOR_FLOAT_TYPE_P (rhs1_type
)))
3918 error ("invalid types in conversion to integer");
3919 debug_generic_expr (lhs_type
);
3920 debug_generic_expr (rhs1_type
);
3927 case VEC_UNPACK_HI_EXPR
:
3928 case VEC_UNPACK_LO_EXPR
:
3929 case VEC_UNPACK_FLOAT_HI_EXPR
:
3930 case VEC_UNPACK_FLOAT_LO_EXPR
:
3941 case VEC_DUPLICATE_EXPR
:
3942 if (TREE_CODE (lhs_type
) != VECTOR_TYPE
3943 || !useless_type_conversion_p (TREE_TYPE (lhs_type
), rhs1_type
))
3945 error ("vec_duplicate should be from a scalar to a like vector");
3946 debug_generic_expr (lhs_type
);
3947 debug_generic_expr (rhs1_type
);
3956 /* For the remaining codes assert there is no conversion involved. */
3957 if (!useless_type_conversion_p (lhs_type
, rhs1_type
))
3959 error ("non-trivial conversion in unary operation");
3960 debug_generic_expr (lhs_type
);
3961 debug_generic_expr (rhs1_type
);
3968 /* Verify a gimple assignment statement STMT with a binary rhs.
3969 Returns true if anything is wrong. */
3972 verify_gimple_assign_binary (gassign
*stmt
)
3974 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
3975 tree lhs
= gimple_assign_lhs (stmt
);
3976 tree lhs_type
= TREE_TYPE (lhs
);
3977 tree rhs1
= gimple_assign_rhs1 (stmt
);
3978 tree rhs1_type
= TREE_TYPE (rhs1
);
3979 tree rhs2
= gimple_assign_rhs2 (stmt
);
3980 tree rhs2_type
= TREE_TYPE (rhs2
);
3982 if (!is_gimple_reg (lhs
))
3984 error ("non-register as LHS of binary operation");
3988 if (!is_gimple_val (rhs1
)
3989 || !is_gimple_val (rhs2
))
3991 error ("invalid operands in binary operation");
3995 /* First handle operations that involve different types. */
4000 if (TREE_CODE (lhs_type
) != COMPLEX_TYPE
4001 || !(INTEGRAL_TYPE_P (rhs1_type
)
4002 || SCALAR_FLOAT_TYPE_P (rhs1_type
))
4003 || !(INTEGRAL_TYPE_P (rhs2_type
)
4004 || SCALAR_FLOAT_TYPE_P (rhs2_type
)))
4006 error ("type mismatch in complex expression");
4007 debug_generic_expr (lhs_type
);
4008 debug_generic_expr (rhs1_type
);
4009 debug_generic_expr (rhs2_type
);
4021 /* Shifts and rotates are ok on integral types, fixed point
4022 types and integer vector types. */
4023 if ((!INTEGRAL_TYPE_P (rhs1_type
)
4024 && !FIXED_POINT_TYPE_P (rhs1_type
)
4025 && !(TREE_CODE (rhs1_type
) == VECTOR_TYPE
4026 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))))
4027 || (!INTEGRAL_TYPE_P (rhs2_type
)
4028 /* Vector shifts of vectors are also ok. */
4029 && !(TREE_CODE (rhs1_type
) == VECTOR_TYPE
4030 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
4031 && TREE_CODE (rhs2_type
) == VECTOR_TYPE
4032 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type
))))
4033 || !useless_type_conversion_p (lhs_type
, rhs1_type
))
4035 error ("type mismatch in shift expression");
4036 debug_generic_expr (lhs_type
);
4037 debug_generic_expr (rhs1_type
);
4038 debug_generic_expr (rhs2_type
);
4045 case WIDEN_LSHIFT_EXPR
:
4047 if (!INTEGRAL_TYPE_P (lhs_type
)
4048 || !INTEGRAL_TYPE_P (rhs1_type
)
4049 || TREE_CODE (rhs2
) != INTEGER_CST
4050 || (2 * TYPE_PRECISION (rhs1_type
) > TYPE_PRECISION (lhs_type
)))
4052 error ("type mismatch in widening vector shift expression");
4053 debug_generic_expr (lhs_type
);
4054 debug_generic_expr (rhs1_type
);
4055 debug_generic_expr (rhs2_type
);
4062 case VEC_WIDEN_LSHIFT_HI_EXPR
:
4063 case VEC_WIDEN_LSHIFT_LO_EXPR
:
4065 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
4066 || TREE_CODE (lhs_type
) != VECTOR_TYPE
4067 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
4068 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type
))
4069 || TREE_CODE (rhs2
) != INTEGER_CST
4070 || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type
))
4071 > TYPE_PRECISION (TREE_TYPE (lhs_type
))))
4073 error ("type mismatch in widening vector shift expression");
4074 debug_generic_expr (lhs_type
);
4075 debug_generic_expr (rhs1_type
);
4076 debug_generic_expr (rhs2_type
);
4086 tree lhs_etype
= lhs_type
;
4087 tree rhs1_etype
= rhs1_type
;
4088 tree rhs2_etype
= rhs2_type
;
4089 if (TREE_CODE (lhs_type
) == VECTOR_TYPE
)
4091 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
4092 || TREE_CODE (rhs2_type
) != VECTOR_TYPE
)
4094 error ("invalid non-vector operands to vector valued plus");
4097 lhs_etype
= TREE_TYPE (lhs_type
);
4098 rhs1_etype
= TREE_TYPE (rhs1_type
);
4099 rhs2_etype
= TREE_TYPE (rhs2_type
);
4101 if (POINTER_TYPE_P (lhs_etype
)
4102 || POINTER_TYPE_P (rhs1_etype
)
4103 || POINTER_TYPE_P (rhs2_etype
))
4105 error ("invalid (pointer) operands to plus/minus");
4109 /* Continue with generic binary expression handling. */
4113 case POINTER_PLUS_EXPR
:
4115 if (!POINTER_TYPE_P (rhs1_type
)
4116 || !useless_type_conversion_p (lhs_type
, rhs1_type
)
4117 || !ptrofftype_p (rhs2_type
))
4119 error ("type mismatch in pointer plus expression");
4120 debug_generic_stmt (lhs_type
);
4121 debug_generic_stmt (rhs1_type
);
4122 debug_generic_stmt (rhs2_type
);
4129 case POINTER_DIFF_EXPR
:
4131 if (!POINTER_TYPE_P (rhs1_type
)
4132 || !POINTER_TYPE_P (rhs2_type
)
4133 /* Because we special-case pointers to void we allow difference
4134 of arbitrary pointers with the same mode. */
4135 || TYPE_MODE (rhs1_type
) != TYPE_MODE (rhs2_type
)
4136 || TREE_CODE (lhs_type
) != INTEGER_TYPE
4137 || TYPE_UNSIGNED (lhs_type
)
4138 || TYPE_PRECISION (lhs_type
) != TYPE_PRECISION (rhs1_type
))
4140 error ("type mismatch in pointer diff expression");
4141 debug_generic_stmt (lhs_type
);
4142 debug_generic_stmt (rhs1_type
);
4143 debug_generic_stmt (rhs2_type
);
4150 case TRUTH_ANDIF_EXPR
:
4151 case TRUTH_ORIF_EXPR
:
4152 case TRUTH_AND_EXPR
:
4154 case TRUTH_XOR_EXPR
:
4164 case UNORDERED_EXPR
:
4172 /* Comparisons are also binary, but the result type is not
4173 connected to the operand types. */
4174 return verify_gimple_comparison (lhs_type
, rhs1
, rhs2
, rhs_code
);
4176 case WIDEN_MULT_EXPR
:
4177 if (TREE_CODE (lhs_type
) != INTEGER_TYPE
)
4179 return ((2 * TYPE_PRECISION (rhs1_type
) > TYPE_PRECISION (lhs_type
))
4180 || (TYPE_PRECISION (rhs1_type
) != TYPE_PRECISION (rhs2_type
)));
4182 case WIDEN_SUM_EXPR
:
4184 if (((TREE_CODE (rhs1_type
) != VECTOR_TYPE
4185 || TREE_CODE (lhs_type
) != VECTOR_TYPE
)
4186 && ((!INTEGRAL_TYPE_P (rhs1_type
)
4187 && !SCALAR_FLOAT_TYPE_P (rhs1_type
))
4188 || (!INTEGRAL_TYPE_P (lhs_type
)
4189 && !SCALAR_FLOAT_TYPE_P (lhs_type
))))
4190 || !useless_type_conversion_p (lhs_type
, rhs2_type
)
4191 || maybe_lt (GET_MODE_SIZE (element_mode (rhs2_type
)),
4192 2 * GET_MODE_SIZE (element_mode (rhs1_type
))))
4194 error ("type mismatch in widening sum reduction");
4195 debug_generic_expr (lhs_type
);
4196 debug_generic_expr (rhs1_type
);
4197 debug_generic_expr (rhs2_type
);
4203 case VEC_WIDEN_MULT_HI_EXPR
:
4204 case VEC_WIDEN_MULT_LO_EXPR
:
4205 case VEC_WIDEN_MULT_EVEN_EXPR
:
4206 case VEC_WIDEN_MULT_ODD_EXPR
:
4208 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
4209 || TREE_CODE (lhs_type
) != VECTOR_TYPE
4210 || !types_compatible_p (rhs1_type
, rhs2_type
)
4211 || maybe_ne (GET_MODE_SIZE (element_mode (lhs_type
)),
4212 2 * GET_MODE_SIZE (element_mode (rhs1_type
))))
4214 error ("type mismatch in vector widening multiplication");
4215 debug_generic_expr (lhs_type
);
4216 debug_generic_expr (rhs1_type
);
4217 debug_generic_expr (rhs2_type
);
4223 case VEC_PACK_TRUNC_EXPR
:
4224 /* ??? We currently use VEC_PACK_TRUNC_EXPR to simply concat
4225 vector boolean types. */
4226 if (VECTOR_BOOLEAN_TYPE_P (lhs_type
)
4227 && VECTOR_BOOLEAN_TYPE_P (rhs1_type
)
4228 && types_compatible_p (rhs1_type
, rhs2_type
)
4229 && known_eq (TYPE_VECTOR_SUBPARTS (lhs_type
),
4230 2 * TYPE_VECTOR_SUBPARTS (rhs1_type
)))
4234 case VEC_PACK_SAT_EXPR
:
4235 case VEC_PACK_FIX_TRUNC_EXPR
:
4237 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
4238 || TREE_CODE (lhs_type
) != VECTOR_TYPE
4239 || !((rhs_code
== VEC_PACK_FIX_TRUNC_EXPR
4240 && SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type
))
4241 && INTEGRAL_TYPE_P (TREE_TYPE (lhs_type
)))
4242 || (INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
4243 == INTEGRAL_TYPE_P (TREE_TYPE (lhs_type
))))
4244 || !types_compatible_p (rhs1_type
, rhs2_type
)
4245 || maybe_ne (GET_MODE_SIZE (element_mode (rhs1_type
)),
4246 2 * GET_MODE_SIZE (element_mode (lhs_type
))))
4248 error ("type mismatch in vector pack expression");
4249 debug_generic_expr (lhs_type
);
4250 debug_generic_expr (rhs1_type
);
4251 debug_generic_expr (rhs2_type
);
4259 case MULT_HIGHPART_EXPR
:
4260 case TRUNC_DIV_EXPR
:
4262 case FLOOR_DIV_EXPR
:
4263 case ROUND_DIV_EXPR
:
4264 case TRUNC_MOD_EXPR
:
4266 case FLOOR_MOD_EXPR
:
4267 case ROUND_MOD_EXPR
:
4269 case EXACT_DIV_EXPR
:
4275 /* Continue with generic binary expression handling. */
4278 case VEC_SERIES_EXPR
:
4279 if (!useless_type_conversion_p (rhs1_type
, rhs2_type
))
4281 error ("type mismatch in series expression");
4282 debug_generic_expr (rhs1_type
);
4283 debug_generic_expr (rhs2_type
);
4286 if (TREE_CODE (lhs_type
) != VECTOR_TYPE
4287 || !useless_type_conversion_p (TREE_TYPE (lhs_type
), rhs1_type
))
4289 error ("vector type expected in series expression");
4290 debug_generic_expr (lhs_type
);
4299 if (!useless_type_conversion_p (lhs_type
, rhs1_type
)
4300 || !useless_type_conversion_p (lhs_type
, rhs2_type
))
4302 error ("type mismatch in binary expression");
4303 debug_generic_stmt (lhs_type
);
4304 debug_generic_stmt (rhs1_type
);
4305 debug_generic_stmt (rhs2_type
);
4312 /* Verify a gimple assignment statement STMT with a ternary rhs.
4313 Returns true if anything is wrong. */
4316 verify_gimple_assign_ternary (gassign
*stmt
)
4318 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
4319 tree lhs
= gimple_assign_lhs (stmt
);
4320 tree lhs_type
= TREE_TYPE (lhs
);
4321 tree rhs1
= gimple_assign_rhs1 (stmt
);
4322 tree rhs1_type
= TREE_TYPE (rhs1
);
4323 tree rhs2
= gimple_assign_rhs2 (stmt
);
4324 tree rhs2_type
= TREE_TYPE (rhs2
);
4325 tree rhs3
= gimple_assign_rhs3 (stmt
);
4326 tree rhs3_type
= TREE_TYPE (rhs3
);
4328 if (!is_gimple_reg (lhs
))
4330 error ("non-register as LHS of ternary operation");
4334 if (((rhs_code
== VEC_COND_EXPR
|| rhs_code
== COND_EXPR
)
4335 ? !is_gimple_condexpr (rhs1
) : !is_gimple_val (rhs1
))
4336 || !is_gimple_val (rhs2
)
4337 || !is_gimple_val (rhs3
))
4339 error ("invalid operands in ternary operation");
4343 /* First handle operations that involve different types. */
4346 case WIDEN_MULT_PLUS_EXPR
:
4347 case WIDEN_MULT_MINUS_EXPR
:
4348 if ((!INTEGRAL_TYPE_P (rhs1_type
)
4349 && !FIXED_POINT_TYPE_P (rhs1_type
))
4350 || !useless_type_conversion_p (rhs1_type
, rhs2_type
)
4351 || !useless_type_conversion_p (lhs_type
, rhs3_type
)
4352 || 2 * TYPE_PRECISION (rhs1_type
) > TYPE_PRECISION (lhs_type
)
4353 || TYPE_PRECISION (rhs1_type
) != TYPE_PRECISION (rhs2_type
))
4355 error ("type mismatch in widening multiply-accumulate expression");
4356 debug_generic_expr (lhs_type
);
4357 debug_generic_expr (rhs1_type
);
4358 debug_generic_expr (rhs2_type
);
4359 debug_generic_expr (rhs3_type
);
4365 if (!useless_type_conversion_p (lhs_type
, rhs1_type
)
4366 || !useless_type_conversion_p (lhs_type
, rhs2_type
)
4367 || !useless_type_conversion_p (lhs_type
, rhs3_type
))
4369 error ("type mismatch in fused multiply-add expression");
4370 debug_generic_expr (lhs_type
);
4371 debug_generic_expr (rhs1_type
);
4372 debug_generic_expr (rhs2_type
);
4373 debug_generic_expr (rhs3_type
);
4379 if (!VECTOR_BOOLEAN_TYPE_P (rhs1_type
)
4380 || maybe_ne (TYPE_VECTOR_SUBPARTS (rhs1_type
),
4381 TYPE_VECTOR_SUBPARTS (lhs_type
)))
4383 error ("the first argument of a VEC_COND_EXPR must be of a "
4384 "boolean vector type of the same number of elements "
4386 debug_generic_expr (lhs_type
);
4387 debug_generic_expr (rhs1_type
);
4392 if (!useless_type_conversion_p (lhs_type
, rhs2_type
)
4393 || !useless_type_conversion_p (lhs_type
, rhs3_type
))
4395 error ("type mismatch in conditional expression");
4396 debug_generic_expr (lhs_type
);
4397 debug_generic_expr (rhs2_type
);
4398 debug_generic_expr (rhs3_type
);
4404 if (!useless_type_conversion_p (lhs_type
, rhs1_type
)
4405 || !useless_type_conversion_p (lhs_type
, rhs2_type
))
4407 error ("type mismatch in vector permute expression");
4408 debug_generic_expr (lhs_type
);
4409 debug_generic_expr (rhs1_type
);
4410 debug_generic_expr (rhs2_type
);
4411 debug_generic_expr (rhs3_type
);
4415 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
4416 || TREE_CODE (rhs2_type
) != VECTOR_TYPE
4417 || TREE_CODE (rhs3_type
) != VECTOR_TYPE
)
4419 error ("vector types expected in vector permute expression");
4420 debug_generic_expr (lhs_type
);
4421 debug_generic_expr (rhs1_type
);
4422 debug_generic_expr (rhs2_type
);
4423 debug_generic_expr (rhs3_type
);
4427 if (maybe_ne (TYPE_VECTOR_SUBPARTS (rhs1_type
),
4428 TYPE_VECTOR_SUBPARTS (rhs2_type
))
4429 || maybe_ne (TYPE_VECTOR_SUBPARTS (rhs2_type
),
4430 TYPE_VECTOR_SUBPARTS (rhs3_type
))
4431 || maybe_ne (TYPE_VECTOR_SUBPARTS (rhs3_type
),
4432 TYPE_VECTOR_SUBPARTS (lhs_type
)))
4434 error ("vectors with different element number found "
4435 "in vector permute expression");
4436 debug_generic_expr (lhs_type
);
4437 debug_generic_expr (rhs1_type
);
4438 debug_generic_expr (rhs2_type
);
4439 debug_generic_expr (rhs3_type
);
4443 if (TREE_CODE (TREE_TYPE (rhs3_type
)) != INTEGER_TYPE
4444 || (TREE_CODE (rhs3
) != VECTOR_CST
4445 && (GET_MODE_BITSIZE (SCALAR_INT_TYPE_MODE
4446 (TREE_TYPE (rhs3_type
)))
4447 != GET_MODE_BITSIZE (SCALAR_TYPE_MODE
4448 (TREE_TYPE (rhs1_type
))))))
4450 error ("invalid mask type in vector permute expression");
4451 debug_generic_expr (lhs_type
);
4452 debug_generic_expr (rhs1_type
);
4453 debug_generic_expr (rhs2_type
);
4454 debug_generic_expr (rhs3_type
);
4461 if (!useless_type_conversion_p (rhs1_type
, rhs2_type
)
4462 || !useless_type_conversion_p (lhs_type
, rhs3_type
)
4463 || 2 * GET_MODE_UNIT_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type
)))
4464 > GET_MODE_UNIT_BITSIZE (TYPE_MODE (TREE_TYPE (lhs_type
))))
4466 error ("type mismatch in sad expression");
4467 debug_generic_expr (lhs_type
);
4468 debug_generic_expr (rhs1_type
);
4469 debug_generic_expr (rhs2_type
);
4470 debug_generic_expr (rhs3_type
);
4474 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
4475 || TREE_CODE (rhs2_type
) != VECTOR_TYPE
4476 || TREE_CODE (rhs3_type
) != VECTOR_TYPE
)
4478 error ("vector types expected in sad expression");
4479 debug_generic_expr (lhs_type
);
4480 debug_generic_expr (rhs1_type
);
4481 debug_generic_expr (rhs2_type
);
4482 debug_generic_expr (rhs3_type
);
4488 case BIT_INSERT_EXPR
:
4489 if (! useless_type_conversion_p (lhs_type
, rhs1_type
))
4491 error ("type mismatch in BIT_INSERT_EXPR");
4492 debug_generic_expr (lhs_type
);
4493 debug_generic_expr (rhs1_type
);
4496 if (! ((INTEGRAL_TYPE_P (rhs1_type
)
4497 && INTEGRAL_TYPE_P (rhs2_type
))
4498 || (VECTOR_TYPE_P (rhs1_type
)
4499 && types_compatible_p (TREE_TYPE (rhs1_type
), rhs2_type
))))
4501 error ("not allowed type combination in BIT_INSERT_EXPR");
4502 debug_generic_expr (rhs1_type
);
4503 debug_generic_expr (rhs2_type
);
4506 if (! tree_fits_uhwi_p (rhs3
)
4507 || ! types_compatible_p (bitsizetype
, TREE_TYPE (rhs3
))
4508 || ! tree_fits_uhwi_p (TYPE_SIZE (rhs2_type
)))
4510 error ("invalid position or size in BIT_INSERT_EXPR");
4513 if (INTEGRAL_TYPE_P (rhs1_type
))
4515 unsigned HOST_WIDE_INT bitpos
= tree_to_uhwi (rhs3
);
4516 if (bitpos
>= TYPE_PRECISION (rhs1_type
)
4517 || (bitpos
+ TYPE_PRECISION (rhs2_type
)
4518 > TYPE_PRECISION (rhs1_type
)))
4520 error ("insertion out of range in BIT_INSERT_EXPR");
4524 else if (VECTOR_TYPE_P (rhs1_type
))
4526 unsigned HOST_WIDE_INT bitpos
= tree_to_uhwi (rhs3
);
4527 unsigned HOST_WIDE_INT bitsize
= tree_to_uhwi (TYPE_SIZE (rhs2_type
));
4528 if (bitpos
% bitsize
!= 0)
4530 error ("vector insertion not at element boundary");
4538 if (((TREE_CODE (rhs1_type
) != VECTOR_TYPE
4539 || TREE_CODE (lhs_type
) != VECTOR_TYPE
)
4540 && ((!INTEGRAL_TYPE_P (rhs1_type
)
4541 && !SCALAR_FLOAT_TYPE_P (rhs1_type
))
4542 || (!INTEGRAL_TYPE_P (lhs_type
)
4543 && !SCALAR_FLOAT_TYPE_P (lhs_type
))))
4544 || !types_compatible_p (rhs1_type
, rhs2_type
)
4545 || !useless_type_conversion_p (lhs_type
, rhs3_type
)
4546 || maybe_lt (GET_MODE_SIZE (element_mode (rhs3_type
)),
4547 2 * GET_MODE_SIZE (element_mode (rhs1_type
))))
4549 error ("type mismatch in dot product reduction");
4550 debug_generic_expr (lhs_type
);
4551 debug_generic_expr (rhs1_type
);
4552 debug_generic_expr (rhs2_type
);
4558 case REALIGN_LOAD_EXPR
:
4568 /* Verify a gimple assignment statement STMT with a single rhs.
4569 Returns true if anything is wrong. */
4572 verify_gimple_assign_single (gassign
*stmt
)
4574 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
4575 tree lhs
= gimple_assign_lhs (stmt
);
4576 tree lhs_type
= TREE_TYPE (lhs
);
4577 tree rhs1
= gimple_assign_rhs1 (stmt
);
4578 tree rhs1_type
= TREE_TYPE (rhs1
);
4581 if (!useless_type_conversion_p (lhs_type
, rhs1_type
))
4583 error ("non-trivial conversion at assignment");
4584 debug_generic_expr (lhs_type
);
4585 debug_generic_expr (rhs1_type
);
4589 if (gimple_clobber_p (stmt
)
4590 && !(DECL_P (lhs
) || TREE_CODE (lhs
) == MEM_REF
))
4592 error ("non-decl/MEM_REF LHS in clobber statement");
4593 debug_generic_expr (lhs
);
4597 if (handled_component_p (lhs
)
4598 || TREE_CODE (lhs
) == MEM_REF
4599 || TREE_CODE (lhs
) == TARGET_MEM_REF
)
4600 res
|= verify_types_in_gimple_reference (lhs
, true);
4602 /* Special codes we cannot handle via their class. */
4607 tree op
= TREE_OPERAND (rhs1
, 0);
4608 if (!is_gimple_addressable (op
))
4610 error ("invalid operand in unary expression");
4614 /* Technically there is no longer a need for matching types, but
4615 gimple hygiene asks for this check. In LTO we can end up
4616 combining incompatible units and thus end up with addresses
4617 of globals that change their type to a common one. */
4619 && !types_compatible_p (TREE_TYPE (op
),
4620 TREE_TYPE (TREE_TYPE (rhs1
)))
4621 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1
),
4624 error ("type mismatch in address expression");
4625 debug_generic_stmt (TREE_TYPE (rhs1
));
4626 debug_generic_stmt (TREE_TYPE (op
));
4630 return verify_types_in_gimple_reference (op
, true);
4635 error ("INDIRECT_REF in gimple IL");
4641 case ARRAY_RANGE_REF
:
4642 case VIEW_CONVERT_EXPR
:
4645 case TARGET_MEM_REF
:
4647 if (!is_gimple_reg (lhs
)
4648 && is_gimple_reg_type (TREE_TYPE (lhs
)))
4650 error ("invalid rhs for gimple memory store");
4651 debug_generic_stmt (lhs
);
4652 debug_generic_stmt (rhs1
);
4655 return res
|| verify_types_in_gimple_reference (rhs1
, false);
4667 /* tcc_declaration */
4672 if (!is_gimple_reg (lhs
)
4673 && !is_gimple_reg (rhs1
)
4674 && is_gimple_reg_type (TREE_TYPE (lhs
)))
4676 error ("invalid rhs for gimple memory store");
4677 debug_generic_stmt (lhs
);
4678 debug_generic_stmt (rhs1
);
4684 if (TREE_CODE (rhs1_type
) == VECTOR_TYPE
)
4687 tree elt_i
, elt_v
, elt_t
= NULL_TREE
;
4689 if (CONSTRUCTOR_NELTS (rhs1
) == 0)
4691 /* For vector CONSTRUCTORs we require that either it is empty
4692 CONSTRUCTOR, or it is a CONSTRUCTOR of smaller vector elements
4693 (then the element count must be correct to cover the whole
4694 outer vector and index must be NULL on all elements, or it is
4695 a CONSTRUCTOR of scalar elements, where we as an exception allow
4696 smaller number of elements (assuming zero filling) and
4697 consecutive indexes as compared to NULL indexes (such
4698 CONSTRUCTORs can appear in the IL from FEs). */
4699 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (rhs1
), i
, elt_i
, elt_v
)
4701 if (elt_t
== NULL_TREE
)
4703 elt_t
= TREE_TYPE (elt_v
);
4704 if (TREE_CODE (elt_t
) == VECTOR_TYPE
)
4706 tree elt_t
= TREE_TYPE (elt_v
);
4707 if (!useless_type_conversion_p (TREE_TYPE (rhs1_type
),
4710 error ("incorrect type of vector CONSTRUCTOR"
4712 debug_generic_stmt (rhs1
);
4715 else if (maybe_ne (CONSTRUCTOR_NELTS (rhs1
)
4716 * TYPE_VECTOR_SUBPARTS (elt_t
),
4717 TYPE_VECTOR_SUBPARTS (rhs1_type
)))
4719 error ("incorrect number of vector CONSTRUCTOR"
4721 debug_generic_stmt (rhs1
);
4725 else if (!useless_type_conversion_p (TREE_TYPE (rhs1_type
),
4728 error ("incorrect type of vector CONSTRUCTOR elements");
4729 debug_generic_stmt (rhs1
);
4732 else if (maybe_gt (CONSTRUCTOR_NELTS (rhs1
),
4733 TYPE_VECTOR_SUBPARTS (rhs1_type
)))
4735 error ("incorrect number of vector CONSTRUCTOR elements");
4736 debug_generic_stmt (rhs1
);
4740 else if (!useless_type_conversion_p (elt_t
, TREE_TYPE (elt_v
)))
4742 error ("incorrect type of vector CONSTRUCTOR elements");
4743 debug_generic_stmt (rhs1
);
4746 if (elt_i
!= NULL_TREE
4747 && (TREE_CODE (elt_t
) == VECTOR_TYPE
4748 || TREE_CODE (elt_i
) != INTEGER_CST
4749 || compare_tree_int (elt_i
, i
) != 0))
4751 error ("vector CONSTRUCTOR with non-NULL element index");
4752 debug_generic_stmt (rhs1
);
4755 if (!is_gimple_val (elt_v
))
4757 error ("vector CONSTRUCTOR element is not a GIMPLE value");
4758 debug_generic_stmt (rhs1
);
4763 else if (CONSTRUCTOR_NELTS (rhs1
) != 0)
4765 error ("non-vector CONSTRUCTOR with elements");
4766 debug_generic_stmt (rhs1
);
4772 case WITH_SIZE_EXPR
:
4782 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
4783 is a problem, otherwise false. */
4786 verify_gimple_assign (gassign
*stmt
)
4788 switch (gimple_assign_rhs_class (stmt
))
4790 case GIMPLE_SINGLE_RHS
:
4791 return verify_gimple_assign_single (stmt
);
4793 case GIMPLE_UNARY_RHS
:
4794 return verify_gimple_assign_unary (stmt
);
4796 case GIMPLE_BINARY_RHS
:
4797 return verify_gimple_assign_binary (stmt
);
4799 case GIMPLE_TERNARY_RHS
:
4800 return verify_gimple_assign_ternary (stmt
);
4807 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
4808 is a problem, otherwise false. */
4811 verify_gimple_return (greturn
*stmt
)
4813 tree op
= gimple_return_retval (stmt
);
4814 tree restype
= TREE_TYPE (TREE_TYPE (cfun
->decl
));
4816 /* We cannot test for present return values as we do not fix up missing
4817 return values from the original source. */
4821 if (!is_gimple_val (op
)
4822 && TREE_CODE (op
) != RESULT_DECL
)
4824 error ("invalid operand in return statement");
4825 debug_generic_stmt (op
);
4829 if ((TREE_CODE (op
) == RESULT_DECL
4830 && DECL_BY_REFERENCE (op
))
4831 || (TREE_CODE (op
) == SSA_NAME
4832 && SSA_NAME_VAR (op
)
4833 && TREE_CODE (SSA_NAME_VAR (op
)) == RESULT_DECL
4834 && DECL_BY_REFERENCE (SSA_NAME_VAR (op
))))
4835 op
= TREE_TYPE (op
);
4837 if (!useless_type_conversion_p (restype
, TREE_TYPE (op
)))
4839 error ("invalid conversion in return statement");
4840 debug_generic_stmt (restype
);
4841 debug_generic_stmt (TREE_TYPE (op
));
4849 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
4850 is a problem, otherwise false. */
4853 verify_gimple_goto (ggoto
*stmt
)
4855 tree dest
= gimple_goto_dest (stmt
);
4857 /* ??? We have two canonical forms of direct goto destinations, a
4858 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
4859 if (TREE_CODE (dest
) != LABEL_DECL
4860 && (!is_gimple_val (dest
)
4861 || !POINTER_TYPE_P (TREE_TYPE (dest
))))
4863 error ("goto destination is neither a label nor a pointer");
4870 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
4871 is a problem, otherwise false. */
4874 verify_gimple_switch (gswitch
*stmt
)
4877 tree elt
, prev_upper_bound
= NULL_TREE
;
4878 tree index_type
, elt_type
= NULL_TREE
;
4880 if (!is_gimple_val (gimple_switch_index (stmt
)))
4882 error ("invalid operand to switch statement");
4883 debug_generic_stmt (gimple_switch_index (stmt
));
4887 index_type
= TREE_TYPE (gimple_switch_index (stmt
));
4888 if (! INTEGRAL_TYPE_P (index_type
))
4890 error ("non-integral type switch statement");
4891 debug_generic_expr (index_type
);
4895 elt
= gimple_switch_label (stmt
, 0);
4896 if (CASE_LOW (elt
) != NULL_TREE
|| CASE_HIGH (elt
) != NULL_TREE
)
4898 error ("invalid default case label in switch statement");
4899 debug_generic_expr (elt
);
4903 n
= gimple_switch_num_labels (stmt
);
4904 for (i
= 1; i
< n
; i
++)
4906 elt
= gimple_switch_label (stmt
, i
);
4908 if (! CASE_LOW (elt
))
4910 error ("invalid case label in switch statement");
4911 debug_generic_expr (elt
);
4915 && ! tree_int_cst_lt (CASE_LOW (elt
), CASE_HIGH (elt
)))
4917 error ("invalid case range in switch statement");
4918 debug_generic_expr (elt
);
4924 if (TREE_TYPE (CASE_LOW (elt
)) != elt_type
4925 || (CASE_HIGH (elt
) && TREE_TYPE (CASE_HIGH (elt
)) != elt_type
))
4927 error ("type mismatch for case label in switch statement");
4928 debug_generic_expr (elt
);
4934 elt_type
= TREE_TYPE (CASE_LOW (elt
));
4935 if (TYPE_PRECISION (index_type
) < TYPE_PRECISION (elt_type
))
4937 error ("type precision mismatch in switch statement");
4942 if (prev_upper_bound
)
4944 if (! tree_int_cst_lt (prev_upper_bound
, CASE_LOW (elt
)))
4946 error ("case labels not sorted in switch statement");
4951 prev_upper_bound
= CASE_HIGH (elt
);
4952 if (! prev_upper_bound
)
4953 prev_upper_bound
= CASE_LOW (elt
);
4959 /* Verify a gimple debug statement STMT.
4960 Returns true if anything is wrong. */
4963 verify_gimple_debug (gimple
*stmt ATTRIBUTE_UNUSED
)
4965 /* There isn't much that could be wrong in a gimple debug stmt. A
4966 gimple debug bind stmt, for example, maps a tree, that's usually
4967 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
4968 component or member of an aggregate type, to another tree, that
4969 can be an arbitrary expression. These stmts expand into debug
4970 insns, and are converted to debug notes by var-tracking.c. */
4974 /* Verify a gimple label statement STMT.
4975 Returns true if anything is wrong. */
4978 verify_gimple_label (glabel
*stmt
)
4980 tree decl
= gimple_label_label (stmt
);
4984 if (TREE_CODE (decl
) != LABEL_DECL
)
4986 if (!DECL_NONLOCAL (decl
) && !FORCED_LABEL (decl
)
4987 && DECL_CONTEXT (decl
) != current_function_decl
)
4989 error ("label's context is not the current function decl");
4993 uid
= LABEL_DECL_UID (decl
);
4996 || (*label_to_block_map_for_fn (cfun
))[uid
] != gimple_bb (stmt
)))
4998 error ("incorrect entry in label_to_block_map");
5002 uid
= EH_LANDING_PAD_NR (decl
);
5005 eh_landing_pad lp
= get_eh_landing_pad_from_number (uid
);
5006 if (decl
!= lp
->post_landing_pad
)
5008 error ("incorrect setting of landing pad number");
5016 /* Verify a gimple cond statement STMT.
5017 Returns true if anything is wrong. */
5020 verify_gimple_cond (gcond
*stmt
)
5022 if (TREE_CODE_CLASS (gimple_cond_code (stmt
)) != tcc_comparison
)
5024 error ("invalid comparison code in gimple cond");
5027 if (!(!gimple_cond_true_label (stmt
)
5028 || TREE_CODE (gimple_cond_true_label (stmt
)) == LABEL_DECL
)
5029 || !(!gimple_cond_false_label (stmt
)
5030 || TREE_CODE (gimple_cond_false_label (stmt
)) == LABEL_DECL
))
5032 error ("invalid labels in gimple cond");
5036 return verify_gimple_comparison (boolean_type_node
,
5037 gimple_cond_lhs (stmt
),
5038 gimple_cond_rhs (stmt
),
5039 gimple_cond_code (stmt
));
5042 /* Verify the GIMPLE statement STMT. Returns true if there is an
5043 error, otherwise false. */
5046 verify_gimple_stmt (gimple
*stmt
)
5048 switch (gimple_code (stmt
))
5051 return verify_gimple_assign (as_a
<gassign
*> (stmt
));
5054 return verify_gimple_label (as_a
<glabel
*> (stmt
));
5057 return verify_gimple_call (as_a
<gcall
*> (stmt
));
5060 return verify_gimple_cond (as_a
<gcond
*> (stmt
));
5063 return verify_gimple_goto (as_a
<ggoto
*> (stmt
));
5066 return verify_gimple_switch (as_a
<gswitch
*> (stmt
));
5069 return verify_gimple_return (as_a
<greturn
*> (stmt
));
5074 case GIMPLE_TRANSACTION
:
5075 return verify_gimple_transaction (as_a
<gtransaction
*> (stmt
));
5077 /* Tuples that do not have tree operands. */
5079 case GIMPLE_PREDICT
:
5081 case GIMPLE_EH_DISPATCH
:
5082 case GIMPLE_EH_MUST_NOT_THROW
:
5086 /* OpenMP directives are validated by the FE and never operated
5087 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
5088 non-gimple expressions when the main index variable has had
5089 its address taken. This does not affect the loop itself
5090 because the header of an GIMPLE_OMP_FOR is merely used to determine
5091 how to setup the parallel iteration. */
5095 return verify_gimple_debug (stmt
);
5102 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
5103 and false otherwise. */
5106 verify_gimple_phi (gimple
*phi
)
5110 tree phi_result
= gimple_phi_result (phi
);
5115 error ("invalid PHI result");
5119 virtual_p
= virtual_operand_p (phi_result
);
5120 if (TREE_CODE (phi_result
) != SSA_NAME
5122 && SSA_NAME_VAR (phi_result
) != gimple_vop (cfun
)))
5124 error ("invalid PHI result");
5128 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
5130 tree t
= gimple_phi_arg_def (phi
, i
);
5134 error ("missing PHI def");
5138 /* Addressable variables do have SSA_NAMEs but they
5139 are not considered gimple values. */
5140 else if ((TREE_CODE (t
) == SSA_NAME
5141 && virtual_p
!= virtual_operand_p (t
))
5143 && (TREE_CODE (t
) != SSA_NAME
5144 || SSA_NAME_VAR (t
) != gimple_vop (cfun
)))
5146 && !is_gimple_val (t
)))
5148 error ("invalid PHI argument");
5149 debug_generic_expr (t
);
5152 #ifdef ENABLE_TYPES_CHECKING
5153 if (!useless_type_conversion_p (TREE_TYPE (phi_result
), TREE_TYPE (t
)))
5155 error ("incompatible types in PHI argument %u", i
);
5156 debug_generic_stmt (TREE_TYPE (phi_result
));
5157 debug_generic_stmt (TREE_TYPE (t
));
5166 /* Verify the GIMPLE statements inside the sequence STMTS. */
5169 verify_gimple_in_seq_2 (gimple_seq stmts
)
5171 gimple_stmt_iterator ittr
;
5174 for (ittr
= gsi_start (stmts
); !gsi_end_p (ittr
); gsi_next (&ittr
))
5176 gimple
*stmt
= gsi_stmt (ittr
);
5178 switch (gimple_code (stmt
))
5181 err
|= verify_gimple_in_seq_2 (
5182 gimple_bind_body (as_a
<gbind
*> (stmt
)));
5186 err
|= verify_gimple_in_seq_2 (gimple_try_eval (stmt
));
5187 err
|= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt
));
5190 case GIMPLE_EH_FILTER
:
5191 err
|= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt
));
5194 case GIMPLE_EH_ELSE
:
5196 geh_else
*eh_else
= as_a
<geh_else
*> (stmt
);
5197 err
|= verify_gimple_in_seq_2 (gimple_eh_else_n_body (eh_else
));
5198 err
|= verify_gimple_in_seq_2 (gimple_eh_else_e_body (eh_else
));
5203 err
|= verify_gimple_in_seq_2 (gimple_catch_handler (
5204 as_a
<gcatch
*> (stmt
)));
5207 case GIMPLE_TRANSACTION
:
5208 err
|= verify_gimple_transaction (as_a
<gtransaction
*> (stmt
));
5213 bool err2
= verify_gimple_stmt (stmt
);
5215 debug_gimple_stmt (stmt
);
5224 /* Verify the contents of a GIMPLE_TRANSACTION. Returns true if there
5225 is a problem, otherwise false. */
5228 verify_gimple_transaction (gtransaction
*stmt
)
5232 lab
= gimple_transaction_label_norm (stmt
);
5233 if (lab
!= NULL
&& TREE_CODE (lab
) != LABEL_DECL
)
5235 lab
= gimple_transaction_label_uninst (stmt
);
5236 if (lab
!= NULL
&& TREE_CODE (lab
) != LABEL_DECL
)
5238 lab
= gimple_transaction_label_over (stmt
);
5239 if (lab
!= NULL
&& TREE_CODE (lab
) != LABEL_DECL
)
5242 return verify_gimple_in_seq_2 (gimple_transaction_body (stmt
));
5246 /* Verify the GIMPLE statements inside the statement list STMTS. */
5249 verify_gimple_in_seq (gimple_seq stmts
)
5251 timevar_push (TV_TREE_STMT_VERIFY
);
5252 if (verify_gimple_in_seq_2 (stmts
))
5253 internal_error ("verify_gimple failed");
5254 timevar_pop (TV_TREE_STMT_VERIFY
);
5257 /* Return true when the T can be shared. */
5260 tree_node_can_be_shared (tree t
)
5262 if (IS_TYPE_OR_DECL_P (t
)
5263 || is_gimple_min_invariant (t
)
5264 || TREE_CODE (t
) == SSA_NAME
5265 || t
== error_mark_node
5266 || TREE_CODE (t
) == IDENTIFIER_NODE
)
5269 if (TREE_CODE (t
) == CASE_LABEL_EXPR
)
5278 /* Called via walk_tree. Verify tree sharing. */
5281 verify_node_sharing_1 (tree
*tp
, int *walk_subtrees
, void *data
)
5283 hash_set
<void *> *visited
= (hash_set
<void *> *) data
;
5285 if (tree_node_can_be_shared (*tp
))
5287 *walk_subtrees
= false;
5291 if (visited
->add (*tp
))
5297 /* Called via walk_gimple_stmt. Verify tree sharing. */
5300 verify_node_sharing (tree
*tp
, int *walk_subtrees
, void *data
)
5302 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
5303 return verify_node_sharing_1 (tp
, walk_subtrees
, wi
->info
);
5306 static bool eh_error_found
;
5308 verify_eh_throw_stmt_node (gimple
*const &stmt
, const int &,
5309 hash_set
<gimple
*> *visited
)
5311 if (!visited
->contains (stmt
))
5313 error ("dead STMT in EH table");
5314 debug_gimple_stmt (stmt
);
5315 eh_error_found
= true;
5320 /* Verify if the location LOCs block is in BLOCKS. */
5323 verify_location (hash_set
<tree
> *blocks
, location_t loc
)
5325 tree block
= LOCATION_BLOCK (loc
);
5326 if (block
!= NULL_TREE
5327 && !blocks
->contains (block
))
5329 error ("location references block not in block tree");
5332 if (block
!= NULL_TREE
)
5333 return verify_location (blocks
, BLOCK_SOURCE_LOCATION (block
));
5337 /* Called via walk_tree. Verify that expressions have no blocks. */
5340 verify_expr_no_block (tree
*tp
, int *walk_subtrees
, void *)
5344 *walk_subtrees
= false;
5348 location_t loc
= EXPR_LOCATION (*tp
);
5349 if (LOCATION_BLOCK (loc
) != NULL
)
5355 /* Called via walk_tree. Verify locations of expressions. */
5358 verify_expr_location_1 (tree
*tp
, int *walk_subtrees
, void *data
)
5360 hash_set
<tree
> *blocks
= (hash_set
<tree
> *) data
;
5362 if (VAR_P (*tp
) && DECL_HAS_DEBUG_EXPR_P (*tp
))
5364 tree t
= DECL_DEBUG_EXPR (*tp
);
5365 tree addr
= walk_tree (&t
, verify_expr_no_block
, NULL
, NULL
);
5370 || TREE_CODE (*tp
) == PARM_DECL
5371 || TREE_CODE (*tp
) == RESULT_DECL
)
5372 && DECL_HAS_VALUE_EXPR_P (*tp
))
5374 tree t
= DECL_VALUE_EXPR (*tp
);
5375 tree addr
= walk_tree (&t
, verify_expr_no_block
, NULL
, NULL
);
5382 *walk_subtrees
= false;
5386 location_t loc
= EXPR_LOCATION (*tp
);
5387 if (verify_location (blocks
, loc
))
5393 /* Called via walk_gimple_op. Verify locations of expressions. */
5396 verify_expr_location (tree
*tp
, int *walk_subtrees
, void *data
)
5398 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
5399 return verify_expr_location_1 (tp
, walk_subtrees
, wi
->info
);
5402 /* Insert all subblocks of BLOCK into BLOCKS and recurse. */
5405 collect_subblocks (hash_set
<tree
> *blocks
, tree block
)
5408 for (t
= BLOCK_SUBBLOCKS (block
); t
; t
= BLOCK_CHAIN (t
))
5411 collect_subblocks (blocks
, t
);
5415 /* Verify the GIMPLE statements in the CFG of FN. */
5418 verify_gimple_in_cfg (struct function
*fn
, bool verify_nothrow
)
5423 timevar_push (TV_TREE_STMT_VERIFY
);
5424 hash_set
<void *> visited
;
5425 hash_set
<gimple
*> visited_stmts
;
5427 /* Collect all BLOCKs referenced by the BLOCK tree of FN. */
5428 hash_set
<tree
> blocks
;
5429 if (DECL_INITIAL (fn
->decl
))
5431 blocks
.add (DECL_INITIAL (fn
->decl
));
5432 collect_subblocks (&blocks
, DECL_INITIAL (fn
->decl
));
5435 FOR_EACH_BB_FN (bb
, fn
)
5437 gimple_stmt_iterator gsi
;
5439 for (gphi_iterator gpi
= gsi_start_phis (bb
);
5443 gphi
*phi
= gpi
.phi ();
5447 visited_stmts
.add (phi
);
5449 if (gimple_bb (phi
) != bb
)
5451 error ("gimple_bb (phi) is set to a wrong basic block");
5455 err2
|= verify_gimple_phi (phi
);
5457 /* Only PHI arguments have locations. */
5458 if (gimple_location (phi
) != UNKNOWN_LOCATION
)
5460 error ("PHI node with location");
5464 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
5466 tree arg
= gimple_phi_arg_def (phi
, i
);
5467 tree addr
= walk_tree (&arg
, verify_node_sharing_1
,
5471 error ("incorrect sharing of tree nodes");
5472 debug_generic_expr (addr
);
5475 location_t loc
= gimple_phi_arg_location (phi
, i
);
5476 if (virtual_operand_p (gimple_phi_result (phi
))
5477 && loc
!= UNKNOWN_LOCATION
)
5479 error ("virtual PHI with argument locations");
5482 addr
= walk_tree (&arg
, verify_expr_location_1
, &blocks
, NULL
);
5485 debug_generic_expr (addr
);
5488 err2
|= verify_location (&blocks
, loc
);
5492 debug_gimple_stmt (phi
);
5496 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5498 gimple
*stmt
= gsi_stmt (gsi
);
5500 struct walk_stmt_info wi
;
5504 visited_stmts
.add (stmt
);
5506 if (gimple_bb (stmt
) != bb
)
5508 error ("gimple_bb (stmt) is set to a wrong basic block");
5512 err2
|= verify_gimple_stmt (stmt
);
5513 err2
|= verify_location (&blocks
, gimple_location (stmt
));
5515 memset (&wi
, 0, sizeof (wi
));
5516 wi
.info
= (void *) &visited
;
5517 addr
= walk_gimple_op (stmt
, verify_node_sharing
, &wi
);
5520 error ("incorrect sharing of tree nodes");
5521 debug_generic_expr (addr
);
5525 memset (&wi
, 0, sizeof (wi
));
5526 wi
.info
= (void *) &blocks
;
5527 addr
= walk_gimple_op (stmt
, verify_expr_location
, &wi
);
5530 debug_generic_expr (addr
);
5534 /* ??? Instead of not checking these stmts at all the walker
5535 should know its context via wi. */
5536 if (!is_gimple_debug (stmt
)
5537 && !is_gimple_omp (stmt
))
5539 memset (&wi
, 0, sizeof (wi
));
5540 addr
= walk_gimple_op (stmt
, verify_expr
, &wi
);
5543 debug_generic_expr (addr
);
5544 inform (gimple_location (stmt
), "in statement");
5549 /* If the statement is marked as part of an EH region, then it is
5550 expected that the statement could throw. Verify that when we
5551 have optimizations that simplify statements such that we prove
5552 that they cannot throw, that we update other data structures
5554 lp_nr
= lookup_stmt_eh_lp (stmt
);
5557 if (!stmt_could_throw_p (stmt
))
5561 error ("statement marked for throw, but doesn%'t");
5565 else if (!gsi_one_before_end_p (gsi
))
5567 error ("statement marked for throw in middle of block");
5573 debug_gimple_stmt (stmt
);
5578 eh_error_found
= false;
5579 hash_map
<gimple
*, int> *eh_table
= get_eh_throw_stmt_table (cfun
);
5581 eh_table
->traverse
<hash_set
<gimple
*> *, verify_eh_throw_stmt_node
>
5584 if (err
|| eh_error_found
)
5585 internal_error ("verify_gimple failed");
5587 verify_histograms ();
5588 timevar_pop (TV_TREE_STMT_VERIFY
);
5592 /* Verifies that the flow information is OK. */
5595 gimple_verify_flow_info (void)
5599 gimple_stmt_iterator gsi
;
5604 if (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->il
.gimple
.seq
5605 || ENTRY_BLOCK_PTR_FOR_FN (cfun
)->il
.gimple
.phi_nodes
)
5607 error ("ENTRY_BLOCK has IL associated with it");
5611 if (EXIT_BLOCK_PTR_FOR_FN (cfun
)->il
.gimple
.seq
5612 || EXIT_BLOCK_PTR_FOR_FN (cfun
)->il
.gimple
.phi_nodes
)
5614 error ("EXIT_BLOCK has IL associated with it");
5618 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR_FOR_FN (cfun
)->preds
)
5619 if (e
->flags
& EDGE_FALLTHRU
)
5621 error ("fallthru to exit from bb %d", e
->src
->index
);
5625 FOR_EACH_BB_FN (bb
, cfun
)
5627 bool found_ctrl_stmt
= false;
5631 /* Skip labels on the start of basic block. */
5632 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5635 gimple
*prev_stmt
= stmt
;
5637 stmt
= gsi_stmt (gsi
);
5639 if (gimple_code (stmt
) != GIMPLE_LABEL
)
5642 label
= gimple_label_label (as_a
<glabel
*> (stmt
));
5643 if (prev_stmt
&& DECL_NONLOCAL (label
))
5645 error ("nonlocal label ");
5646 print_generic_expr (stderr
, label
);
5647 fprintf (stderr
, " is not first in a sequence of labels in bb %d",
5652 if (prev_stmt
&& EH_LANDING_PAD_NR (label
) != 0)
5654 error ("EH landing pad label ");
5655 print_generic_expr (stderr
, label
);
5656 fprintf (stderr
, " is not first in a sequence of labels in bb %d",
5661 if (label_to_block (label
) != bb
)
5664 print_generic_expr (stderr
, label
);
5665 fprintf (stderr
, " to block does not match in bb %d",
5670 if (decl_function_context (label
) != current_function_decl
)
5673 print_generic_expr (stderr
, label
);
5674 fprintf (stderr
, " has incorrect context in bb %d",
5680 /* Verify that body of basic block BB is free of control flow. */
5681 for (; !gsi_end_p (gsi
); gsi_next (&gsi
))
5683 gimple
*stmt
= gsi_stmt (gsi
);
5685 if (found_ctrl_stmt
)
5687 error ("control flow in the middle of basic block %d",
5692 if (stmt_ends_bb_p (stmt
))
5693 found_ctrl_stmt
= true;
5695 if (glabel
*label_stmt
= dyn_cast
<glabel
*> (stmt
))
5698 print_generic_expr (stderr
, gimple_label_label (label_stmt
));
5699 fprintf (stderr
, " in the middle of basic block %d", bb
->index
);
5704 gsi
= gsi_last_nondebug_bb (bb
);
5705 if (gsi_end_p (gsi
))
5708 stmt
= gsi_stmt (gsi
);
5710 if (gimple_code (stmt
) == GIMPLE_LABEL
)
5713 err
|= verify_eh_edges (stmt
);
5715 if (is_ctrl_stmt (stmt
))
5717 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5718 if (e
->flags
& EDGE_FALLTHRU
)
5720 error ("fallthru edge after a control statement in bb %d",
5726 if (gimple_code (stmt
) != GIMPLE_COND
)
5728 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
5729 after anything else but if statement. */
5730 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5731 if (e
->flags
& (EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
))
5733 error ("true/false edge after a non-GIMPLE_COND in bb %d",
5739 switch (gimple_code (stmt
))
5746 extract_true_false_edges_from_block (bb
, &true_edge
, &false_edge
);
5750 || !(true_edge
->flags
& EDGE_TRUE_VALUE
)
5751 || !(false_edge
->flags
& EDGE_FALSE_VALUE
)
5752 || (true_edge
->flags
& (EDGE_FALLTHRU
| EDGE_ABNORMAL
))
5753 || (false_edge
->flags
& (EDGE_FALLTHRU
| EDGE_ABNORMAL
))
5754 || EDGE_COUNT (bb
->succs
) >= 3)
5756 error ("wrong outgoing edge flags at end of bb %d",
5764 if (simple_goto_p (stmt
))
5766 error ("explicit goto at end of bb %d", bb
->index
);
5771 /* FIXME. We should double check that the labels in the
5772 destination blocks have their address taken. */
5773 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5774 if ((e
->flags
& (EDGE_FALLTHRU
| EDGE_TRUE_VALUE
5775 | EDGE_FALSE_VALUE
))
5776 || !(e
->flags
& EDGE_ABNORMAL
))
5778 error ("wrong outgoing edge flags at end of bb %d",
5786 if (!gimple_call_builtin_p (stmt
, BUILT_IN_RETURN
))
5790 if (!single_succ_p (bb
)
5791 || (single_succ_edge (bb
)->flags
5792 & (EDGE_FALLTHRU
| EDGE_ABNORMAL
5793 | EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
)))
5795 error ("wrong outgoing edge flags at end of bb %d", bb
->index
);
5798 if (single_succ (bb
) != EXIT_BLOCK_PTR_FOR_FN (cfun
))
5800 error ("return edge does not point to exit in bb %d",
5808 gswitch
*switch_stmt
= as_a
<gswitch
*> (stmt
);
5813 n
= gimple_switch_num_labels (switch_stmt
);
5815 /* Mark all the destination basic blocks. */
5816 for (i
= 0; i
< n
; ++i
)
5818 tree lab
= CASE_LABEL (gimple_switch_label (switch_stmt
, i
));
5819 basic_block label_bb
= label_to_block (lab
);
5820 gcc_assert (!label_bb
->aux
|| label_bb
->aux
== (void *)1);
5821 label_bb
->aux
= (void *)1;
5824 /* Verify that the case labels are sorted. */
5825 prev
= gimple_switch_label (switch_stmt
, 0);
5826 for (i
= 1; i
< n
; ++i
)
5828 tree c
= gimple_switch_label (switch_stmt
, i
);
5831 error ("found default case not at the start of "
5837 && !tree_int_cst_lt (CASE_LOW (prev
), CASE_LOW (c
)))
5839 error ("case labels not sorted: ");
5840 print_generic_expr (stderr
, prev
);
5841 fprintf (stderr
," is greater than ");
5842 print_generic_expr (stderr
, c
);
5843 fprintf (stderr
," but comes before it.\n");
5848 /* VRP will remove the default case if it can prove it will
5849 never be executed. So do not verify there always exists
5850 a default case here. */
5852 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5856 error ("extra outgoing edge %d->%d",
5857 bb
->index
, e
->dest
->index
);
5861 e
->dest
->aux
= (void *)2;
5862 if ((e
->flags
& (EDGE_FALLTHRU
| EDGE_ABNORMAL
5863 | EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
)))
5865 error ("wrong outgoing edge flags at end of bb %d",
5871 /* Check that we have all of them. */
5872 for (i
= 0; i
< n
; ++i
)
5874 tree lab
= CASE_LABEL (gimple_switch_label (switch_stmt
, i
));
5875 basic_block label_bb
= label_to_block (lab
);
5877 if (label_bb
->aux
!= (void *)2)
5879 error ("missing edge %i->%i", bb
->index
, label_bb
->index
);
5884 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5885 e
->dest
->aux
= (void *)0;
5889 case GIMPLE_EH_DISPATCH
:
5890 err
|= verify_eh_dispatch_edge (as_a
<geh_dispatch
*> (stmt
));
5898 if (dom_info_state (CDI_DOMINATORS
) >= DOM_NO_FAST_QUERY
)
5899 verify_dominators (CDI_DOMINATORS
);
5905 /* Updates phi nodes after creating a forwarder block joined
5906 by edge FALLTHRU. */
5909 gimple_make_forwarder_block (edge fallthru
)
5913 basic_block dummy
, bb
;
5917 dummy
= fallthru
->src
;
5918 bb
= fallthru
->dest
;
5920 if (single_pred_p (bb
))
5923 /* If we redirected a branch we must create new PHI nodes at the
5925 for (gsi
= gsi_start_phis (dummy
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5927 gphi
*phi
, *new_phi
;
5930 var
= gimple_phi_result (phi
);
5931 new_phi
= create_phi_node (var
, bb
);
5932 gimple_phi_set_result (phi
, copy_ssa_name (var
, phi
));
5933 add_phi_arg (new_phi
, gimple_phi_result (phi
), fallthru
,
5937 /* Add the arguments we have stored on edges. */
5938 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
5943 flush_pending_stmts (e
);
5948 /* Return a non-special label in the head of basic block BLOCK.
5949 Create one if it doesn't exist. */
5952 gimple_block_label (basic_block bb
)
5954 gimple_stmt_iterator i
, s
= gsi_start_bb (bb
);
5959 for (i
= s
; !gsi_end_p (i
); first
= false, gsi_next (&i
))
5961 stmt
= dyn_cast
<glabel
*> (gsi_stmt (i
));
5964 label
= gimple_label_label (stmt
);
5965 if (!DECL_NONLOCAL (label
))
5968 gsi_move_before (&i
, &s
);
5973 label
= create_artificial_label (UNKNOWN_LOCATION
);
5974 stmt
= gimple_build_label (label
);
5975 gsi_insert_before (&s
, stmt
, GSI_NEW_STMT
);
5980 /* Attempt to perform edge redirection by replacing a possibly complex
5981 jump instruction by a goto or by removing the jump completely.
5982 This can apply only if all edges now point to the same block. The
5983 parameters and return values are equivalent to
5984 redirect_edge_and_branch. */
5987 gimple_try_redirect_by_replacing_jump (edge e
, basic_block target
)
5989 basic_block src
= e
->src
;
5990 gimple_stmt_iterator i
;
5993 /* We can replace or remove a complex jump only when we have exactly
5995 if (EDGE_COUNT (src
->succs
) != 2
5996 /* Verify that all targets will be TARGET. Specifically, the
5997 edge that is not E must also go to TARGET. */
5998 || EDGE_SUCC (src
, EDGE_SUCC (src
, 0) == e
)->dest
!= target
)
6001 i
= gsi_last_bb (src
);
6005 stmt
= gsi_stmt (i
);
6007 if (gimple_code (stmt
) == GIMPLE_COND
|| gimple_code (stmt
) == GIMPLE_SWITCH
)
6009 gsi_remove (&i
, true);
6010 e
= ssa_redirect_edge (e
, target
);
6011 e
->flags
= EDGE_FALLTHRU
;
6019 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
6020 edge representing the redirected branch. */
6023 gimple_redirect_edge_and_branch (edge e
, basic_block dest
)
6025 basic_block bb
= e
->src
;
6026 gimple_stmt_iterator gsi
;
6030 if (e
->flags
& EDGE_ABNORMAL
)
6033 if (e
->dest
== dest
)
6036 if (e
->flags
& EDGE_EH
)
6037 return redirect_eh_edge (e
, dest
);
6039 if (e
->src
!= ENTRY_BLOCK_PTR_FOR_FN (cfun
))
6041 ret
= gimple_try_redirect_by_replacing_jump (e
, dest
);
6046 gsi
= gsi_last_nondebug_bb (bb
);
6047 stmt
= gsi_end_p (gsi
) ? NULL
: gsi_stmt (gsi
);
6049 switch (stmt
? gimple_code (stmt
) : GIMPLE_ERROR_MARK
)
6052 /* For COND_EXPR, we only need to redirect the edge. */
6056 /* No non-abnormal edges should lead from a non-simple goto, and
6057 simple ones should be represented implicitly. */
6062 gswitch
*switch_stmt
= as_a
<gswitch
*> (stmt
);
6063 tree label
= gimple_block_label (dest
);
6064 tree cases
= get_cases_for_edge (e
, switch_stmt
);
6066 /* If we have a list of cases associated with E, then use it
6067 as it's a lot faster than walking the entire case vector. */
6070 edge e2
= find_edge (e
->src
, dest
);
6077 CASE_LABEL (cases
) = label
;
6078 cases
= CASE_CHAIN (cases
);
6081 /* If there was already an edge in the CFG, then we need
6082 to move all the cases associated with E to E2. */
6085 tree cases2
= get_cases_for_edge (e2
, switch_stmt
);
6087 CASE_CHAIN (last
) = CASE_CHAIN (cases2
);
6088 CASE_CHAIN (cases2
) = first
;
6090 bitmap_set_bit (touched_switch_bbs
, gimple_bb (stmt
)->index
);
6094 size_t i
, n
= gimple_switch_num_labels (switch_stmt
);
6096 for (i
= 0; i
< n
; i
++)
6098 tree elt
= gimple_switch_label (switch_stmt
, i
);
6099 if (label_to_block (CASE_LABEL (elt
)) == e
->dest
)
6100 CASE_LABEL (elt
) = label
;
6108 gasm
*asm_stmt
= as_a
<gasm
*> (stmt
);
6109 int i
, n
= gimple_asm_nlabels (asm_stmt
);
6112 for (i
= 0; i
< n
; ++i
)
6114 tree cons
= gimple_asm_label_op (asm_stmt
, i
);
6115 if (label_to_block (TREE_VALUE (cons
)) == e
->dest
)
6118 label
= gimple_block_label (dest
);
6119 TREE_VALUE (cons
) = label
;
6123 /* If we didn't find any label matching the former edge in the
6124 asm labels, we must be redirecting the fallthrough
6126 gcc_assert (label
|| (e
->flags
& EDGE_FALLTHRU
));
6131 gsi_remove (&gsi
, true);
6132 e
->flags
|= EDGE_FALLTHRU
;
6135 case GIMPLE_OMP_RETURN
:
6136 case GIMPLE_OMP_CONTINUE
:
6137 case GIMPLE_OMP_SECTIONS_SWITCH
:
6138 case GIMPLE_OMP_FOR
:
6139 /* The edges from OMP constructs can be simply redirected. */
6142 case GIMPLE_EH_DISPATCH
:
6143 if (!(e
->flags
& EDGE_FALLTHRU
))
6144 redirect_eh_dispatch_edge (as_a
<geh_dispatch
*> (stmt
), e
, dest
);
6147 case GIMPLE_TRANSACTION
:
6148 if (e
->flags
& EDGE_TM_ABORT
)
6149 gimple_transaction_set_label_over (as_a
<gtransaction
*> (stmt
),
6150 gimple_block_label (dest
));
6151 else if (e
->flags
& EDGE_TM_UNINSTRUMENTED
)
6152 gimple_transaction_set_label_uninst (as_a
<gtransaction
*> (stmt
),
6153 gimple_block_label (dest
));
6155 gimple_transaction_set_label_norm (as_a
<gtransaction
*> (stmt
),
6156 gimple_block_label (dest
));
6160 /* Otherwise it must be a fallthru edge, and we don't need to
6161 do anything besides redirecting it. */
6162 gcc_assert (e
->flags
& EDGE_FALLTHRU
);
6166 /* Update/insert PHI nodes as necessary. */
6168 /* Now update the edges in the CFG. */
6169 e
= ssa_redirect_edge (e
, dest
);
6174 /* Returns true if it is possible to remove edge E by redirecting
6175 it to the destination of the other edge from E->src. */
6178 gimple_can_remove_branch_p (const_edge e
)
6180 if (e
->flags
& (EDGE_ABNORMAL
| EDGE_EH
))
6186 /* Simple wrapper, as we can always redirect fallthru edges. */
6189 gimple_redirect_edge_and_branch_force (edge e
, basic_block dest
)
6191 e
= gimple_redirect_edge_and_branch (e
, dest
);
6198 /* Splits basic block BB after statement STMT (but at least after the
6199 labels). If STMT is NULL, BB is split just after the labels. */
6202 gimple_split_block (basic_block bb
, void *stmt
)
6204 gimple_stmt_iterator gsi
;
6205 gimple_stmt_iterator gsi_tgt
;
6211 new_bb
= create_empty_bb (bb
);
6213 /* Redirect the outgoing edges. */
6214 new_bb
->succs
= bb
->succs
;
6216 FOR_EACH_EDGE (e
, ei
, new_bb
->succs
)
6219 /* Get a stmt iterator pointing to the first stmt to move. */
6220 if (!stmt
|| gimple_code ((gimple
*) stmt
) == GIMPLE_LABEL
)
6221 gsi
= gsi_after_labels (bb
);
6224 gsi
= gsi_for_stmt ((gimple
*) stmt
);
6228 /* Move everything from GSI to the new basic block. */
6229 if (gsi_end_p (gsi
))
6232 /* Split the statement list - avoid re-creating new containers as this
6233 brings ugly quadratic memory consumption in the inliner.
6234 (We are still quadratic since we need to update stmt BB pointers,
6236 gsi_split_seq_before (&gsi
, &list
);
6237 set_bb_seq (new_bb
, list
);
6238 for (gsi_tgt
= gsi_start (list
);
6239 !gsi_end_p (gsi_tgt
); gsi_next (&gsi_tgt
))
6240 gimple_set_bb (gsi_stmt (gsi_tgt
), new_bb
);
6246 /* Moves basic block BB after block AFTER. */
6249 gimple_move_block_after (basic_block bb
, basic_block after
)
6251 if (bb
->prev_bb
== after
)
6255 link_block (bb
, after
);
6261 /* Return TRUE if block BB has no executable statements, otherwise return
6265 gimple_empty_block_p (basic_block bb
)
6267 /* BB must have no executable statements. */
6268 gimple_stmt_iterator gsi
= gsi_after_labels (bb
);
6271 if (gsi_end_p (gsi
))
6273 if (is_gimple_debug (gsi_stmt (gsi
)))
6274 gsi_next_nondebug (&gsi
);
6275 return gsi_end_p (gsi
);
6279 /* Split a basic block if it ends with a conditional branch and if the
6280 other part of the block is not empty. */
6283 gimple_split_block_before_cond_jump (basic_block bb
)
6285 gimple
*last
, *split_point
;
6286 gimple_stmt_iterator gsi
= gsi_last_nondebug_bb (bb
);
6287 if (gsi_end_p (gsi
))
6289 last
= gsi_stmt (gsi
);
6290 if (gimple_code (last
) != GIMPLE_COND
6291 && gimple_code (last
) != GIMPLE_SWITCH
)
6294 split_point
= gsi_stmt (gsi
);
6295 return split_block (bb
, split_point
)->dest
;
6299 /* Return true if basic_block can be duplicated. */
6302 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED
)
6307 /* Create a duplicate of the basic block BB. NOTE: This does not
6308 preserve SSA form. */
6311 gimple_duplicate_bb (basic_block bb
)
6314 gimple_stmt_iterator gsi_tgt
;
6316 new_bb
= create_empty_bb (EXIT_BLOCK_PTR_FOR_FN (cfun
)->prev_bb
);
6318 /* Copy the PHI nodes. We ignore PHI node arguments here because
6319 the incoming edges have not been setup yet. */
6320 for (gphi_iterator gpi
= gsi_start_phis (bb
);
6326 copy
= create_phi_node (NULL_TREE
, new_bb
);
6327 create_new_def_for (gimple_phi_result (phi
), copy
,
6328 gimple_phi_result_ptr (copy
));
6329 gimple_set_uid (copy
, gimple_uid (phi
));
6332 gsi_tgt
= gsi_start_bb (new_bb
);
6333 for (gimple_stmt_iterator gsi
= gsi_start_bb (bb
);
6337 def_operand_p def_p
;
6338 ssa_op_iter op_iter
;
6340 gimple
*stmt
, *copy
;
6342 stmt
= gsi_stmt (gsi
);
6343 if (gimple_code (stmt
) == GIMPLE_LABEL
)
6346 /* Don't duplicate label debug stmts. */
6347 if (gimple_debug_bind_p (stmt
)
6348 && TREE_CODE (gimple_debug_bind_get_var (stmt
))
6352 /* Create a new copy of STMT and duplicate STMT's virtual
6354 copy
= gimple_copy (stmt
);
6355 gsi_insert_after (&gsi_tgt
, copy
, GSI_NEW_STMT
);
6357 maybe_duplicate_eh_stmt (copy
, stmt
);
6358 gimple_duplicate_stmt_histograms (cfun
, copy
, cfun
, stmt
);
6360 /* When copying around a stmt writing into a local non-user
6361 aggregate, make sure it won't share stack slot with other
6363 lhs
= gimple_get_lhs (stmt
);
6364 if (lhs
&& TREE_CODE (lhs
) != SSA_NAME
)
6366 tree base
= get_base_address (lhs
);
6368 && (VAR_P (base
) || TREE_CODE (base
) == RESULT_DECL
)
6369 && DECL_IGNORED_P (base
)
6370 && !TREE_STATIC (base
)
6371 && !DECL_EXTERNAL (base
)
6372 && (!VAR_P (base
) || !DECL_HAS_VALUE_EXPR_P (base
)))
6373 DECL_NONSHAREABLE (base
) = 1;
6376 /* Create new names for all the definitions created by COPY and
6377 add replacement mappings for each new name. */
6378 FOR_EACH_SSA_DEF_OPERAND (def_p
, copy
, op_iter
, SSA_OP_ALL_DEFS
)
6379 create_new_def_for (DEF_FROM_PTR (def_p
), copy
, def_p
);
6385 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
6388 add_phi_args_after_copy_edge (edge e_copy
)
6390 basic_block bb
, bb_copy
= e_copy
->src
, dest
;
6393 gphi
*phi
, *phi_copy
;
6395 gphi_iterator psi
, psi_copy
;
6397 if (gimple_seq_empty_p (phi_nodes (e_copy
->dest
)))
6400 bb
= bb_copy
->flags
& BB_DUPLICATED
? get_bb_original (bb_copy
) : bb_copy
;
6402 if (e_copy
->dest
->flags
& BB_DUPLICATED
)
6403 dest
= get_bb_original (e_copy
->dest
);
6405 dest
= e_copy
->dest
;
6407 e
= find_edge (bb
, dest
);
6410 /* During loop unrolling the target of the latch edge is copied.
6411 In this case we are not looking for edge to dest, but to
6412 duplicated block whose original was dest. */
6413 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
6415 if ((e
->dest
->flags
& BB_DUPLICATED
)
6416 && get_bb_original (e
->dest
) == dest
)
6420 gcc_assert (e
!= NULL
);
6423 for (psi
= gsi_start_phis (e
->dest
),
6424 psi_copy
= gsi_start_phis (e_copy
->dest
);
6426 gsi_next (&psi
), gsi_next (&psi_copy
))
6429 phi_copy
= psi_copy
.phi ();
6430 def
= PHI_ARG_DEF_FROM_EDGE (phi
, e
);
6431 add_phi_arg (phi_copy
, def
, e_copy
,
6432 gimple_phi_arg_location_from_edge (phi
, e
));
6437 /* Basic block BB_COPY was created by code duplication. Add phi node
6438 arguments for edges going out of BB_COPY. The blocks that were
6439 duplicated have BB_DUPLICATED set. */
6442 add_phi_args_after_copy_bb (basic_block bb_copy
)
6447 FOR_EACH_EDGE (e_copy
, ei
, bb_copy
->succs
)
6449 add_phi_args_after_copy_edge (e_copy
);
6453 /* Blocks in REGION_COPY array of length N_REGION were created by
6454 duplication of basic blocks. Add phi node arguments for edges
6455 going from these blocks. If E_COPY is not NULL, also add
6456 phi node arguments for its destination.*/
6459 add_phi_args_after_copy (basic_block
*region_copy
, unsigned n_region
,
6464 for (i
= 0; i
< n_region
; i
++)
6465 region_copy
[i
]->flags
|= BB_DUPLICATED
;
6467 for (i
= 0; i
< n_region
; i
++)
6468 add_phi_args_after_copy_bb (region_copy
[i
]);
6470 add_phi_args_after_copy_edge (e_copy
);
6472 for (i
= 0; i
< n_region
; i
++)
6473 region_copy
[i
]->flags
&= ~BB_DUPLICATED
;
6476 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
6477 important exit edge EXIT. By important we mean that no SSA name defined
6478 inside region is live over the other exit edges of the region. All entry
6479 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
6480 to the duplicate of the region. Dominance and loop information is
6481 updated if UPDATE_DOMINANCE is true, but not the SSA web. If
6482 UPDATE_DOMINANCE is false then we assume that the caller will update the
6483 dominance information after calling this function. The new basic
6484 blocks are stored to REGION_COPY in the same order as they had in REGION,
6485 provided that REGION_COPY is not NULL.
6486 The function returns false if it is unable to copy the region,
6490 gimple_duplicate_sese_region (edge entry
, edge exit
,
6491 basic_block
*region
, unsigned n_region
,
6492 basic_block
*region_copy
,
6493 bool update_dominance
)
6496 bool free_region_copy
= false, copying_header
= false;
6497 struct loop
*loop
= entry
->dest
->loop_father
;
6499 vec
<basic_block
> doms
= vNULL
;
6501 profile_count total_count
= profile_count::uninitialized ();
6502 profile_count entry_count
= profile_count::uninitialized ();
6504 if (!can_copy_bbs_p (region
, n_region
))
6507 /* Some sanity checking. Note that we do not check for all possible
6508 missuses of the functions. I.e. if you ask to copy something weird,
6509 it will work, but the state of structures probably will not be
6511 for (i
= 0; i
< n_region
; i
++)
6513 /* We do not handle subloops, i.e. all the blocks must belong to the
6515 if (region
[i
]->loop_father
!= loop
)
6518 if (region
[i
] != entry
->dest
6519 && region
[i
] == loop
->header
)
6523 /* In case the function is used for loop header copying (which is the primary
6524 use), ensure that EXIT and its copy will be new latch and entry edges. */
6525 if (loop
->header
== entry
->dest
)
6527 copying_header
= true;
6529 if (!dominated_by_p (CDI_DOMINATORS
, loop
->latch
, exit
->src
))
6532 for (i
= 0; i
< n_region
; i
++)
6533 if (region
[i
] != exit
->src
6534 && dominated_by_p (CDI_DOMINATORS
, region
[i
], exit
->src
))
6538 initialize_original_copy_tables ();
6541 set_loop_copy (loop
, loop_outer (loop
));
6543 set_loop_copy (loop
, loop
);
6547 region_copy
= XNEWVEC (basic_block
, n_region
);
6548 free_region_copy
= true;
6551 /* Record blocks outside the region that are dominated by something
6553 if (update_dominance
)
6556 doms
= get_dominated_by_region (CDI_DOMINATORS
, region
, n_region
);
6559 if (entry
->dest
->count
.initialized_p ())
6561 total_count
= entry
->dest
->count
;
6562 entry_count
= entry
->count ();
6563 /* Fix up corner cases, to avoid division by zero or creation of negative
6565 if (entry_count
> total_count
)
6566 entry_count
= total_count
;
6569 copy_bbs (region
, n_region
, region_copy
, &exit
, 1, &exit_copy
, loop
,
6570 split_edge_bb_loc (entry
), update_dominance
);
6571 if (total_count
.initialized_p () && entry_count
.initialized_p ())
6573 scale_bbs_frequencies_profile_count (region
, n_region
,
6574 total_count
- entry_count
,
6576 scale_bbs_frequencies_profile_count (region_copy
, n_region
, entry_count
,
6582 loop
->header
= exit
->dest
;
6583 loop
->latch
= exit
->src
;
6586 /* Redirect the entry and add the phi node arguments. */
6587 redirected
= redirect_edge_and_branch (entry
, get_bb_copy (entry
->dest
));
6588 gcc_assert (redirected
!= NULL
);
6589 flush_pending_stmts (entry
);
6591 /* Concerning updating of dominators: We must recount dominators
6592 for entry block and its copy. Anything that is outside of the
6593 region, but was dominated by something inside needs recounting as
6595 if (update_dominance
)
6597 set_immediate_dominator (CDI_DOMINATORS
, entry
->dest
, entry
->src
);
6598 doms
.safe_push (get_bb_original (entry
->dest
));
6599 iterate_fix_dominators (CDI_DOMINATORS
, doms
, false);
6603 /* Add the other PHI node arguments. */
6604 add_phi_args_after_copy (region_copy
, n_region
, NULL
);
6606 if (free_region_copy
)
6609 free_original_copy_tables ();
6613 /* Checks if BB is part of the region defined by N_REGION BBS. */
6615 bb_part_of_region_p (basic_block bb
, basic_block
* bbs
, unsigned n_region
)
6619 for (n
= 0; n
< n_region
; n
++)
6627 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
6628 are stored to REGION_COPY in the same order in that they appear
6629 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
6630 the region, EXIT an exit from it. The condition guarding EXIT
6631 is moved to ENTRY. Returns true if duplication succeeds, false
6657 gimple_duplicate_sese_tail (edge entry
, edge exit
,
6658 basic_block
*region
, unsigned n_region
,
6659 basic_block
*region_copy
)
6662 bool free_region_copy
= false;
6663 struct loop
*loop
= exit
->dest
->loop_father
;
6664 struct loop
*orig_loop
= entry
->dest
->loop_father
;
6665 basic_block switch_bb
, entry_bb
, nentry_bb
;
6666 vec
<basic_block
> doms
;
6667 profile_count total_count
= profile_count::uninitialized (),
6668 exit_count
= profile_count::uninitialized ();
6669 edge exits
[2], nexits
[2], e
;
6670 gimple_stmt_iterator gsi
;
6673 basic_block exit_bb
;
6677 struct loop
*target
, *aloop
, *cloop
;
6679 gcc_assert (EDGE_COUNT (exit
->src
->succs
) == 2);
6681 exits
[1] = EDGE_SUCC (exit
->src
, EDGE_SUCC (exit
->src
, 0) == exit
);
6683 if (!can_copy_bbs_p (region
, n_region
))
6686 initialize_original_copy_tables ();
6687 set_loop_copy (orig_loop
, loop
);
6690 for (aloop
= orig_loop
->inner
; aloop
; aloop
= aloop
->next
)
6692 if (bb_part_of_region_p (aloop
->header
, region
, n_region
))
6694 cloop
= duplicate_loop (aloop
, target
);
6695 duplicate_subloops (aloop
, cloop
);
6701 region_copy
= XNEWVEC (basic_block
, n_region
);
6702 free_region_copy
= true;
6705 gcc_assert (!need_ssa_update_p (cfun
));
6707 /* Record blocks outside the region that are dominated by something
6709 doms
= get_dominated_by_region (CDI_DOMINATORS
, region
, n_region
);
6711 total_count
= exit
->src
->count
;
6712 exit_count
= exit
->count ();
6713 /* Fix up corner cases, to avoid division by zero or creation of negative
6715 if (exit_count
> total_count
)
6716 exit_count
= total_count
;
6718 copy_bbs (region
, n_region
, region_copy
, exits
, 2, nexits
, orig_loop
,
6719 split_edge_bb_loc (exit
), true);
6720 if (total_count
.initialized_p () && exit_count
.initialized_p ())
6722 scale_bbs_frequencies_profile_count (region
, n_region
,
6723 total_count
- exit_count
,
6725 scale_bbs_frequencies_profile_count (region_copy
, n_region
, exit_count
,
6729 /* Create the switch block, and put the exit condition to it. */
6730 entry_bb
= entry
->dest
;
6731 nentry_bb
= get_bb_copy (entry_bb
);
6732 if (!last_stmt (entry
->src
)
6733 || !stmt_ends_bb_p (last_stmt (entry
->src
)))
6734 switch_bb
= entry
->src
;
6736 switch_bb
= split_edge (entry
);
6737 set_immediate_dominator (CDI_DOMINATORS
, nentry_bb
, switch_bb
);
6739 gsi
= gsi_last_bb (switch_bb
);
6740 cond_stmt
= last_stmt (exit
->src
);
6741 gcc_assert (gimple_code (cond_stmt
) == GIMPLE_COND
);
6742 cond_stmt
= gimple_copy (cond_stmt
);
6744 gsi_insert_after (&gsi
, cond_stmt
, GSI_NEW_STMT
);
6746 sorig
= single_succ_edge (switch_bb
);
6747 sorig
->flags
= exits
[1]->flags
;
6748 sorig
->probability
= exits
[1]->probability
;
6749 snew
= make_edge (switch_bb
, nentry_bb
, exits
[0]->flags
);
6750 snew
->probability
= exits
[0]->probability
;
6753 /* Register the new edge from SWITCH_BB in loop exit lists. */
6754 rescan_loop_exit (snew
, true, false);
6756 /* Add the PHI node arguments. */
6757 add_phi_args_after_copy (region_copy
, n_region
, snew
);
6759 /* Get rid of now superfluous conditions and associated edges (and phi node
6761 exit_bb
= exit
->dest
;
6763 e
= redirect_edge_and_branch (exits
[0], exits
[1]->dest
);
6764 PENDING_STMT (e
) = NULL
;
6766 /* The latch of ORIG_LOOP was copied, and so was the backedge
6767 to the original header. We redirect this backedge to EXIT_BB. */
6768 for (i
= 0; i
< n_region
; i
++)
6769 if (get_bb_original (region_copy
[i
]) == orig_loop
->latch
)
6771 gcc_assert (single_succ_edge (region_copy
[i
]));
6772 e
= redirect_edge_and_branch (single_succ_edge (region_copy
[i
]), exit_bb
);
6773 PENDING_STMT (e
) = NULL
;
6774 for (psi
= gsi_start_phis (exit_bb
);
6779 def
= PHI_ARG_DEF (phi
, nexits
[0]->dest_idx
);
6780 add_phi_arg (phi
, def
, e
, gimple_phi_arg_location_from_edge (phi
, e
));
6783 e
= redirect_edge_and_branch (nexits
[1], nexits
[0]->dest
);
6784 PENDING_STMT (e
) = NULL
;
6786 /* Anything that is outside of the region, but was dominated by something
6787 inside needs to update dominance info. */
6788 iterate_fix_dominators (CDI_DOMINATORS
, doms
, false);
6790 /* Update the SSA web. */
6791 update_ssa (TODO_update_ssa
);
6793 if (free_region_copy
)
6796 free_original_copy_tables ();
6800 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
6801 adding blocks when the dominator traversal reaches EXIT. This
6802 function silently assumes that ENTRY strictly dominates EXIT. */
6805 gather_blocks_in_sese_region (basic_block entry
, basic_block exit
,
6806 vec
<basic_block
> *bbs_p
)
6810 for (son
= first_dom_son (CDI_DOMINATORS
, entry
);
6812 son
= next_dom_son (CDI_DOMINATORS
, son
))
6814 bbs_p
->safe_push (son
);
6816 gather_blocks_in_sese_region (son
, exit
, bbs_p
);
6820 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
6821 The duplicates are recorded in VARS_MAP. */
6824 replace_by_duplicate_decl (tree
*tp
, hash_map
<tree
, tree
> *vars_map
,
6827 tree t
= *tp
, new_t
;
6828 struct function
*f
= DECL_STRUCT_FUNCTION (to_context
);
6830 if (DECL_CONTEXT (t
) == to_context
)
6834 tree
&loc
= vars_map
->get_or_insert (t
, &existed
);
6840 new_t
= copy_var_decl (t
, DECL_NAME (t
), TREE_TYPE (t
));
6841 add_local_decl (f
, new_t
);
6845 gcc_assert (TREE_CODE (t
) == CONST_DECL
);
6846 new_t
= copy_node (t
);
6848 DECL_CONTEXT (new_t
) = to_context
;
6859 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
6860 VARS_MAP maps old ssa names and var_decls to the new ones. */
6863 replace_ssa_name (tree name
, hash_map
<tree
, tree
> *vars_map
,
6868 gcc_assert (!virtual_operand_p (name
));
6870 tree
*loc
= vars_map
->get (name
);
6874 tree decl
= SSA_NAME_VAR (name
);
6877 gcc_assert (!SSA_NAME_IS_DEFAULT_DEF (name
));
6878 replace_by_duplicate_decl (&decl
, vars_map
, to_context
);
6879 new_name
= make_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context
),
6880 decl
, SSA_NAME_DEF_STMT (name
));
6883 new_name
= copy_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context
),
6884 name
, SSA_NAME_DEF_STMT (name
));
6886 /* Now that we've used the def stmt to define new_name, make sure it
6887 doesn't define name anymore. */
6888 SSA_NAME_DEF_STMT (name
) = NULL
;
6890 vars_map
->put (name
, new_name
);
6904 hash_map
<tree
, tree
> *vars_map
;
6905 htab_t new_label_map
;
6906 hash_map
<void *, void *> *eh_map
;
6910 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
6911 contained in *TP if it has been ORIG_BLOCK previously and change the
6912 DECL_CONTEXT of every local variable referenced in *TP. */
6915 move_stmt_op (tree
*tp
, int *walk_subtrees
, void *data
)
6917 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
6918 struct move_stmt_d
*p
= (struct move_stmt_d
*) wi
->info
;
6923 tree block
= TREE_BLOCK (t
);
6924 if (block
== NULL_TREE
)
6926 else if (block
== p
->orig_block
6927 || p
->orig_block
== NULL_TREE
)
6928 TREE_SET_BLOCK (t
, p
->new_block
);
6929 else if (flag_checking
)
6931 while (block
&& TREE_CODE (block
) == BLOCK
&& block
!= p
->orig_block
)
6932 block
= BLOCK_SUPERCONTEXT (block
);
6933 gcc_assert (block
== p
->orig_block
);
6936 else if (DECL_P (t
) || TREE_CODE (t
) == SSA_NAME
)
6938 if (TREE_CODE (t
) == SSA_NAME
)
6939 *tp
= replace_ssa_name (t
, p
->vars_map
, p
->to_context
);
6940 else if (TREE_CODE (t
) == PARM_DECL
6941 && gimple_in_ssa_p (cfun
))
6942 *tp
= *(p
->vars_map
->get (t
));
6943 else if (TREE_CODE (t
) == LABEL_DECL
)
6945 if (p
->new_label_map
)
6947 struct tree_map in
, *out
;
6949 out
= (struct tree_map
*)
6950 htab_find_with_hash (p
->new_label_map
, &in
, DECL_UID (t
));
6955 /* For FORCED_LABELs we can end up with references from other
6956 functions if some SESE regions are outlined. It is UB to
6957 jump in between them, but they could be used just for printing
6958 addresses etc. In that case, DECL_CONTEXT on the label should
6959 be the function containing the glabel stmt with that LABEL_DECL,
6960 rather than whatever function a reference to the label was seen
6962 if (!FORCED_LABEL (t
) && !DECL_NONLOCAL (t
))
6963 DECL_CONTEXT (t
) = p
->to_context
;
6965 else if (p
->remap_decls_p
)
6967 /* Replace T with its duplicate. T should no longer appear in the
6968 parent function, so this looks wasteful; however, it may appear
6969 in referenced_vars, and more importantly, as virtual operands of
6970 statements, and in alias lists of other variables. It would be
6971 quite difficult to expunge it from all those places. ??? It might
6972 suffice to do this for addressable variables. */
6973 if ((VAR_P (t
) && !is_global_var (t
))
6974 || TREE_CODE (t
) == CONST_DECL
)
6975 replace_by_duplicate_decl (tp
, p
->vars_map
, p
->to_context
);
6979 else if (TYPE_P (t
))
6985 /* Helper for move_stmt_r. Given an EH region number for the source
6986 function, map that to the duplicate EH regio number in the dest. */
6989 move_stmt_eh_region_nr (int old_nr
, struct move_stmt_d
*p
)
6991 eh_region old_r
, new_r
;
6993 old_r
= get_eh_region_from_number (old_nr
);
6994 new_r
= static_cast<eh_region
> (*p
->eh_map
->get (old_r
));
6996 return new_r
->index
;
6999 /* Similar, but operate on INTEGER_CSTs. */
7002 move_stmt_eh_region_tree_nr (tree old_t_nr
, struct move_stmt_d
*p
)
7006 old_nr
= tree_to_shwi (old_t_nr
);
7007 new_nr
= move_stmt_eh_region_nr (old_nr
, p
);
7009 return build_int_cst (integer_type_node
, new_nr
);
7012 /* Like move_stmt_op, but for gimple statements.
7014 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
7015 contained in the current statement in *GSI_P and change the
7016 DECL_CONTEXT of every local variable referenced in the current
7020 move_stmt_r (gimple_stmt_iterator
*gsi_p
, bool *handled_ops_p
,
7021 struct walk_stmt_info
*wi
)
7023 struct move_stmt_d
*p
= (struct move_stmt_d
*) wi
->info
;
7024 gimple
*stmt
= gsi_stmt (*gsi_p
);
7025 tree block
= gimple_block (stmt
);
7027 if (block
== p
->orig_block
7028 || (p
->orig_block
== NULL_TREE
7029 && block
!= NULL_TREE
))
7030 gimple_set_block (stmt
, p
->new_block
);
7032 switch (gimple_code (stmt
))
7035 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
7037 tree r
, fndecl
= gimple_call_fndecl (stmt
);
7038 if (fndecl
&& DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
)
7039 switch (DECL_FUNCTION_CODE (fndecl
))
7041 case BUILT_IN_EH_COPY_VALUES
:
7042 r
= gimple_call_arg (stmt
, 1);
7043 r
= move_stmt_eh_region_tree_nr (r
, p
);
7044 gimple_call_set_arg (stmt
, 1, r
);
7047 case BUILT_IN_EH_POINTER
:
7048 case BUILT_IN_EH_FILTER
:
7049 r
= gimple_call_arg (stmt
, 0);
7050 r
= move_stmt_eh_region_tree_nr (r
, p
);
7051 gimple_call_set_arg (stmt
, 0, r
);
7062 gresx
*resx_stmt
= as_a
<gresx
*> (stmt
);
7063 int r
= gimple_resx_region (resx_stmt
);
7064 r
= move_stmt_eh_region_nr (r
, p
);
7065 gimple_resx_set_region (resx_stmt
, r
);
7069 case GIMPLE_EH_DISPATCH
:
7071 geh_dispatch
*eh_dispatch_stmt
= as_a
<geh_dispatch
*> (stmt
);
7072 int r
= gimple_eh_dispatch_region (eh_dispatch_stmt
);
7073 r
= move_stmt_eh_region_nr (r
, p
);
7074 gimple_eh_dispatch_set_region (eh_dispatch_stmt
, r
);
7078 case GIMPLE_OMP_RETURN
:
7079 case GIMPLE_OMP_CONTINUE
:
7084 /* For FORCED_LABEL, move_stmt_op doesn't adjust DECL_CONTEXT,
7085 so that such labels can be referenced from other regions.
7086 Make sure to update it when seeing a GIMPLE_LABEL though,
7087 that is the owner of the label. */
7088 walk_gimple_op (stmt
, move_stmt_op
, wi
);
7089 *handled_ops_p
= true;
7090 tree label
= gimple_label_label (as_a
<glabel
*> (stmt
));
7091 if (FORCED_LABEL (label
) || DECL_NONLOCAL (label
))
7092 DECL_CONTEXT (label
) = p
->to_context
;
7097 if (is_gimple_omp (stmt
))
7099 /* Do not remap variables inside OMP directives. Variables
7100 referenced in clauses and directive header belong to the
7101 parent function and should not be moved into the child
7103 bool save_remap_decls_p
= p
->remap_decls_p
;
7104 p
->remap_decls_p
= false;
7105 *handled_ops_p
= true;
7107 walk_gimple_seq_mod (gimple_omp_body_ptr (stmt
), move_stmt_r
,
7110 p
->remap_decls_p
= save_remap_decls_p
;
7118 /* Move basic block BB from function CFUN to function DEST_FN. The
7119 block is moved out of the original linked list and placed after
7120 block AFTER in the new list. Also, the block is removed from the
7121 original array of blocks and placed in DEST_FN's array of blocks.
7122 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
7123 updated to reflect the moved edges.
7125 The local variables are remapped to new instances, VARS_MAP is used
7126 to record the mapping. */
7129 move_block_to_fn (struct function
*dest_cfun
, basic_block bb
,
7130 basic_block after
, bool update_edge_count_p
,
7131 struct move_stmt_d
*d
)
7133 struct control_flow_graph
*cfg
;
7136 gimple_stmt_iterator si
;
7137 unsigned old_len
, new_len
;
7139 /* Remove BB from dominance structures. */
7140 delete_from_dominance_info (CDI_DOMINATORS
, bb
);
7142 /* Move BB from its current loop to the copy in the new function. */
7145 struct loop
*new_loop
= (struct loop
*)bb
->loop_father
->aux
;
7147 bb
->loop_father
= new_loop
;
7150 /* Link BB to the new linked list. */
7151 move_block_after (bb
, after
);
7153 /* Update the edge count in the corresponding flowgraphs. */
7154 if (update_edge_count_p
)
7155 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
7157 cfun
->cfg
->x_n_edges
--;
7158 dest_cfun
->cfg
->x_n_edges
++;
7161 /* Remove BB from the original basic block array. */
7162 (*cfun
->cfg
->x_basic_block_info
)[bb
->index
] = NULL
;
7163 cfun
->cfg
->x_n_basic_blocks
--;
7165 /* Grow DEST_CFUN's basic block array if needed. */
7166 cfg
= dest_cfun
->cfg
;
7167 cfg
->x_n_basic_blocks
++;
7168 if (bb
->index
>= cfg
->x_last_basic_block
)
7169 cfg
->x_last_basic_block
= bb
->index
+ 1;
7171 old_len
= vec_safe_length (cfg
->x_basic_block_info
);
7172 if ((unsigned) cfg
->x_last_basic_block
>= old_len
)
7174 new_len
= cfg
->x_last_basic_block
+ (cfg
->x_last_basic_block
+ 3) / 4;
7175 vec_safe_grow_cleared (cfg
->x_basic_block_info
, new_len
);
7178 (*cfg
->x_basic_block_info
)[bb
->index
] = bb
;
7180 /* Remap the variables in phi nodes. */
7181 for (gphi_iterator psi
= gsi_start_phis (bb
);
7184 gphi
*phi
= psi
.phi ();
7186 tree op
= PHI_RESULT (phi
);
7190 if (virtual_operand_p (op
))
7192 /* Remove the phi nodes for virtual operands (alias analysis will be
7193 run for the new function, anyway). */
7194 remove_phi_node (&psi
, true);
7198 SET_PHI_RESULT (phi
,
7199 replace_ssa_name (op
, d
->vars_map
, dest_cfun
->decl
));
7200 FOR_EACH_PHI_ARG (use
, phi
, oi
, SSA_OP_USE
)
7202 op
= USE_FROM_PTR (use
);
7203 if (TREE_CODE (op
) == SSA_NAME
)
7204 SET_USE (use
, replace_ssa_name (op
, d
->vars_map
, dest_cfun
->decl
));
7207 for (i
= 0; i
< EDGE_COUNT (bb
->preds
); i
++)
7209 location_t locus
= gimple_phi_arg_location (phi
, i
);
7210 tree block
= LOCATION_BLOCK (locus
);
7212 if (locus
== UNKNOWN_LOCATION
)
7214 if (d
->orig_block
== NULL_TREE
|| block
== d
->orig_block
)
7216 locus
= set_block (locus
, d
->new_block
);
7217 gimple_phi_arg_set_location (phi
, i
, locus
);
7224 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
7226 gimple
*stmt
= gsi_stmt (si
);
7227 struct walk_stmt_info wi
;
7229 memset (&wi
, 0, sizeof (wi
));
7231 walk_gimple_stmt (&si
, move_stmt_r
, move_stmt_op
, &wi
);
7233 if (glabel
*label_stmt
= dyn_cast
<glabel
*> (stmt
))
7235 tree label
= gimple_label_label (label_stmt
);
7236 int uid
= LABEL_DECL_UID (label
);
7238 gcc_assert (uid
> -1);
7240 old_len
= vec_safe_length (cfg
->x_label_to_block_map
);
7241 if (old_len
<= (unsigned) uid
)
7243 new_len
= 3 * uid
/ 2 + 1;
7244 vec_safe_grow_cleared (cfg
->x_label_to_block_map
, new_len
);
7247 (*cfg
->x_label_to_block_map
)[uid
] = bb
;
7248 (*cfun
->cfg
->x_label_to_block_map
)[uid
] = NULL
;
7250 gcc_assert (DECL_CONTEXT (label
) == dest_cfun
->decl
);
7252 if (uid
>= dest_cfun
->cfg
->last_label_uid
)
7253 dest_cfun
->cfg
->last_label_uid
= uid
+ 1;
7256 maybe_duplicate_eh_stmt_fn (dest_cfun
, stmt
, cfun
, stmt
, d
->eh_map
, 0);
7257 remove_stmt_from_eh_lp_fn (cfun
, stmt
);
7259 gimple_duplicate_stmt_histograms (dest_cfun
, stmt
, cfun
, stmt
);
7260 gimple_remove_stmt_histograms (cfun
, stmt
);
7262 /* We cannot leave any operands allocated from the operand caches of
7263 the current function. */
7264 free_stmt_operands (cfun
, stmt
);
7265 push_cfun (dest_cfun
);
7270 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
7271 if (e
->goto_locus
!= UNKNOWN_LOCATION
)
7273 tree block
= LOCATION_BLOCK (e
->goto_locus
);
7274 if (d
->orig_block
== NULL_TREE
7275 || block
== d
->orig_block
)
7276 e
->goto_locus
= set_block (e
->goto_locus
, d
->new_block
);
7280 /* Examine the statements in BB (which is in SRC_CFUN); find and return
7281 the outermost EH region. Use REGION as the incoming base EH region. */
7284 find_outermost_region_in_block (struct function
*src_cfun
,
7285 basic_block bb
, eh_region region
)
7287 gimple_stmt_iterator si
;
7289 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
7291 gimple
*stmt
= gsi_stmt (si
);
7292 eh_region stmt_region
;
7295 lp_nr
= lookup_stmt_eh_lp_fn (src_cfun
, stmt
);
7296 stmt_region
= get_eh_region_from_lp_number_fn (src_cfun
, lp_nr
);
7300 region
= stmt_region
;
7301 else if (stmt_region
!= region
)
7303 region
= eh_region_outermost (src_cfun
, stmt_region
, region
);
7304 gcc_assert (region
!= NULL
);
7313 new_label_mapper (tree decl
, void *data
)
7315 htab_t hash
= (htab_t
) data
;
7319 gcc_assert (TREE_CODE (decl
) == LABEL_DECL
);
7321 m
= XNEW (struct tree_map
);
7322 m
->hash
= DECL_UID (decl
);
7323 m
->base
.from
= decl
;
7324 m
->to
= create_artificial_label (UNKNOWN_LOCATION
);
7325 LABEL_DECL_UID (m
->to
) = LABEL_DECL_UID (decl
);
7326 if (LABEL_DECL_UID (m
->to
) >= cfun
->cfg
->last_label_uid
)
7327 cfun
->cfg
->last_label_uid
= LABEL_DECL_UID (m
->to
) + 1;
7329 slot
= htab_find_slot_with_hash (hash
, m
, m
->hash
, INSERT
);
7330 gcc_assert (*slot
== NULL
);
7337 /* Tree walker to replace the decls used inside value expressions by
7341 replace_block_vars_by_duplicates_1 (tree
*tp
, int *walk_subtrees
, void *data
)
7343 struct replace_decls_d
*rd
= (struct replace_decls_d
*)data
;
7345 switch (TREE_CODE (*tp
))
7350 replace_by_duplicate_decl (tp
, rd
->vars_map
, rd
->to_context
);
7356 if (IS_TYPE_OR_DECL_P (*tp
))
7357 *walk_subtrees
= false;
7362 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
7366 replace_block_vars_by_duplicates (tree block
, hash_map
<tree
, tree
> *vars_map
,
7371 for (tp
= &BLOCK_VARS (block
); *tp
; tp
= &DECL_CHAIN (*tp
))
7374 if (!VAR_P (t
) && TREE_CODE (t
) != CONST_DECL
)
7376 replace_by_duplicate_decl (&t
, vars_map
, to_context
);
7379 if (VAR_P (*tp
) && DECL_HAS_VALUE_EXPR_P (*tp
))
7381 tree x
= DECL_VALUE_EXPR (*tp
);
7382 struct replace_decls_d rd
= { vars_map
, to_context
};
7384 walk_tree (&x
, replace_block_vars_by_duplicates_1
, &rd
, NULL
);
7385 SET_DECL_VALUE_EXPR (t
, x
);
7386 DECL_HAS_VALUE_EXPR_P (t
) = 1;
7388 DECL_CHAIN (t
) = DECL_CHAIN (*tp
);
7393 for (block
= BLOCK_SUBBLOCKS (block
); block
; block
= BLOCK_CHAIN (block
))
7394 replace_block_vars_by_duplicates (block
, vars_map
, to_context
);
7397 /* Fixup the loop arrays and numbers after moving LOOP and its subloops
7401 fixup_loop_arrays_after_move (struct function
*fn1
, struct function
*fn2
,
7404 /* Discard it from the old loop array. */
7405 (*get_loops (fn1
))[loop
->num
] = NULL
;
7407 /* Place it in the new loop array, assigning it a new number. */
7408 loop
->num
= number_of_loops (fn2
);
7409 vec_safe_push (loops_for_fn (fn2
)->larray
, loop
);
7411 /* Recurse to children. */
7412 for (loop
= loop
->inner
; loop
; loop
= loop
->next
)
7413 fixup_loop_arrays_after_move (fn1
, fn2
, loop
);
7416 /* Verify that the blocks in BBS_P are a single-entry, single-exit region
7417 delimited by ENTRY_BB and EXIT_BB, possibly containing noreturn blocks. */
7420 verify_sese (basic_block entry
, basic_block exit
, vec
<basic_block
> *bbs_p
)
7425 bitmap bbs
= BITMAP_ALLOC (NULL
);
7428 gcc_assert (entry
!= NULL
);
7429 gcc_assert (entry
!= exit
);
7430 gcc_assert (bbs_p
!= NULL
);
7432 gcc_assert (bbs_p
->length () > 0);
7434 FOR_EACH_VEC_ELT (*bbs_p
, i
, bb
)
7435 bitmap_set_bit (bbs
, bb
->index
);
7437 gcc_assert (bitmap_bit_p (bbs
, entry
->index
));
7438 gcc_assert (exit
== NULL
|| bitmap_bit_p (bbs
, exit
->index
));
7440 FOR_EACH_VEC_ELT (*bbs_p
, i
, bb
)
7444 gcc_assert (single_pred_p (entry
));
7445 gcc_assert (!bitmap_bit_p (bbs
, single_pred (entry
)->index
));
7448 for (ei
= ei_start (bb
->preds
); !ei_end_p (ei
); ei_next (&ei
))
7451 gcc_assert (bitmap_bit_p (bbs
, e
->src
->index
));
7456 gcc_assert (single_succ_p (exit
));
7457 gcc_assert (!bitmap_bit_p (bbs
, single_succ (exit
)->index
));
7460 for (ei
= ei_start (bb
->succs
); !ei_end_p (ei
); ei_next (&ei
))
7463 gcc_assert (bitmap_bit_p (bbs
, e
->dest
->index
));
7470 /* If FROM is an SSA_NAME, mark the version in bitmap DATA. */
7473 gather_ssa_name_hash_map_from (tree
const &from
, tree
const &, void *data
)
7475 bitmap release_names
= (bitmap
)data
;
7477 if (TREE_CODE (from
) != SSA_NAME
)
7480 bitmap_set_bit (release_names
, SSA_NAME_VERSION (from
));
7484 /* Return LOOP_DIST_ALIAS call if present in BB. */
7487 find_loop_dist_alias (basic_block bb
)
7489 gimple
*g
= last_stmt (bb
);
7490 if (g
== NULL
|| gimple_code (g
) != GIMPLE_COND
)
7493 gimple_stmt_iterator gsi
= gsi_for_stmt (g
);
7495 if (gsi_end_p (gsi
))
7499 if (gimple_call_internal_p (g
, IFN_LOOP_DIST_ALIAS
))
7504 /* Fold loop internal call G like IFN_LOOP_VECTORIZED/IFN_LOOP_DIST_ALIAS
7505 to VALUE and update any immediate uses of it's LHS. */
7508 fold_loop_internal_call (gimple
*g
, tree value
)
7510 tree lhs
= gimple_call_lhs (g
);
7511 use_operand_p use_p
;
7512 imm_use_iterator iter
;
7514 gimple_stmt_iterator gsi
= gsi_for_stmt (g
);
7516 update_call_from_tree (&gsi
, value
);
7517 FOR_EACH_IMM_USE_STMT (use_stmt
, iter
, lhs
)
7519 FOR_EACH_IMM_USE_ON_STMT (use_p
, iter
)
7520 SET_USE (use_p
, value
);
7521 update_stmt (use_stmt
);
7525 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
7526 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
7527 single basic block in the original CFG and the new basic block is
7528 returned. DEST_CFUN must not have a CFG yet.
7530 Note that the region need not be a pure SESE region. Blocks inside
7531 the region may contain calls to abort/exit. The only restriction
7532 is that ENTRY_BB should be the only entry point and it must
7535 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
7536 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
7537 to the new function.
7539 All local variables referenced in the region are assumed to be in
7540 the corresponding BLOCK_VARS and unexpanded variable lists
7541 associated with DEST_CFUN.
7543 TODO: investigate whether we can reuse gimple_duplicate_sese_region to
7544 reimplement move_sese_region_to_fn by duplicating the region rather than
7548 move_sese_region_to_fn (struct function
*dest_cfun
, basic_block entry_bb
,
7549 basic_block exit_bb
, tree orig_block
)
7551 vec
<basic_block
> bbs
, dom_bbs
;
7552 basic_block dom_entry
= get_immediate_dominator (CDI_DOMINATORS
, entry_bb
);
7553 basic_block after
, bb
, *entry_pred
, *exit_succ
, abb
;
7554 struct function
*saved_cfun
= cfun
;
7555 int *entry_flag
, *exit_flag
;
7556 profile_probability
*entry_prob
, *exit_prob
;
7557 unsigned i
, num_entry_edges
, num_exit_edges
, num_nodes
;
7560 htab_t new_label_map
;
7561 hash_map
<void *, void *> *eh_map
;
7562 struct loop
*loop
= entry_bb
->loop_father
;
7563 struct loop
*loop0
= get_loop (saved_cfun
, 0);
7564 struct move_stmt_d d
;
7566 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
7568 gcc_assert (entry_bb
!= exit_bb
7570 || dominated_by_p (CDI_DOMINATORS
, exit_bb
, entry_bb
)));
7572 /* Collect all the blocks in the region. Manually add ENTRY_BB
7573 because it won't be added by dfs_enumerate_from. */
7575 bbs
.safe_push (entry_bb
);
7576 gather_blocks_in_sese_region (entry_bb
, exit_bb
, &bbs
);
7579 verify_sese (entry_bb
, exit_bb
, &bbs
);
7581 /* The blocks that used to be dominated by something in BBS will now be
7582 dominated by the new block. */
7583 dom_bbs
= get_dominated_by_region (CDI_DOMINATORS
,
7587 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
7588 the predecessor edges to ENTRY_BB and the successor edges to
7589 EXIT_BB so that we can re-attach them to the new basic block that
7590 will replace the region. */
7591 num_entry_edges
= EDGE_COUNT (entry_bb
->preds
);
7592 entry_pred
= XNEWVEC (basic_block
, num_entry_edges
);
7593 entry_flag
= XNEWVEC (int, num_entry_edges
);
7594 entry_prob
= XNEWVEC (profile_probability
, num_entry_edges
);
7596 for (ei
= ei_start (entry_bb
->preds
); (e
= ei_safe_edge (ei
)) != NULL
;)
7598 entry_prob
[i
] = e
->probability
;
7599 entry_flag
[i
] = e
->flags
;
7600 entry_pred
[i
++] = e
->src
;
7606 num_exit_edges
= EDGE_COUNT (exit_bb
->succs
);
7607 exit_succ
= XNEWVEC (basic_block
, num_exit_edges
);
7608 exit_flag
= XNEWVEC (int, num_exit_edges
);
7609 exit_prob
= XNEWVEC (profile_probability
, num_exit_edges
);
7611 for (ei
= ei_start (exit_bb
->succs
); (e
= ei_safe_edge (ei
)) != NULL
;)
7613 exit_prob
[i
] = e
->probability
;
7614 exit_flag
[i
] = e
->flags
;
7615 exit_succ
[i
++] = e
->dest
;
7627 /* Switch context to the child function to initialize DEST_FN's CFG. */
7628 gcc_assert (dest_cfun
->cfg
== NULL
);
7629 push_cfun (dest_cfun
);
7631 init_empty_tree_cfg ();
7633 /* Initialize EH information for the new function. */
7635 new_label_map
= NULL
;
7638 eh_region region
= NULL
;
7640 FOR_EACH_VEC_ELT (bbs
, i
, bb
)
7641 region
= find_outermost_region_in_block (saved_cfun
, bb
, region
);
7643 init_eh_for_function ();
7646 new_label_map
= htab_create (17, tree_map_hash
, tree_map_eq
, free
);
7647 eh_map
= duplicate_eh_regions (saved_cfun
, region
, 0,
7648 new_label_mapper
, new_label_map
);
7652 /* Initialize an empty loop tree. */
7653 struct loops
*loops
= ggc_cleared_alloc
<struct loops
> ();
7654 init_loops_structure (dest_cfun
, loops
, 1);
7655 loops
->state
= LOOPS_MAY_HAVE_MULTIPLE_LATCHES
;
7656 set_loops_for_fn (dest_cfun
, loops
);
7658 vec
<loop_p
, va_gc
> *larray
= get_loops (saved_cfun
)->copy ();
7660 /* Move the outlined loop tree part. */
7661 num_nodes
= bbs
.length ();
7662 FOR_EACH_VEC_ELT (bbs
, i
, bb
)
7664 if (bb
->loop_father
->header
== bb
)
7666 struct loop
*this_loop
= bb
->loop_father
;
7667 struct loop
*outer
= loop_outer (this_loop
);
7669 /* If the SESE region contains some bbs ending with
7670 a noreturn call, those are considered to belong
7671 to the outermost loop in saved_cfun, rather than
7672 the entry_bb's loop_father. */
7676 num_nodes
-= this_loop
->num_nodes
;
7677 flow_loop_tree_node_remove (bb
->loop_father
);
7678 flow_loop_tree_node_add (get_loop (dest_cfun
, 0), this_loop
);
7679 fixup_loop_arrays_after_move (saved_cfun
, cfun
, this_loop
);
7682 else if (bb
->loop_father
== loop0
&& loop0
!= loop
)
7685 /* Remove loop exits from the outlined region. */
7686 if (loops_for_fn (saved_cfun
)->exits
)
7687 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
7689 struct loops
*l
= loops_for_fn (saved_cfun
);
7691 = l
->exits
->find_slot_with_hash (e
, htab_hash_pointer (e
),
7694 l
->exits
->clear_slot (slot
);
7698 /* Adjust the number of blocks in the tree root of the outlined part. */
7699 get_loop (dest_cfun
, 0)->num_nodes
= bbs
.length () + 2;
7701 /* Setup a mapping to be used by move_block_to_fn. */
7702 loop
->aux
= current_loops
->tree_root
;
7703 loop0
->aux
= current_loops
->tree_root
;
7705 /* Fix up orig_loop_num. If the block referenced in it has been moved
7706 to dest_cfun, update orig_loop_num field, otherwise clear it. */
7708 signed char *moved_orig_loop_num
= NULL
;
7709 FOR_EACH_LOOP_FN (dest_cfun
, dloop
, 0)
7710 if (dloop
->orig_loop_num
)
7712 if (moved_orig_loop_num
== NULL
)
7714 = XCNEWVEC (signed char, vec_safe_length (larray
));
7715 if ((*larray
)[dloop
->orig_loop_num
] != NULL
7716 && get_loop (saved_cfun
, dloop
->orig_loop_num
) == NULL
)
7718 if (moved_orig_loop_num
[dloop
->orig_loop_num
] >= 0
7719 && moved_orig_loop_num
[dloop
->orig_loop_num
] < 2)
7720 moved_orig_loop_num
[dloop
->orig_loop_num
]++;
7721 dloop
->orig_loop_num
= (*larray
)[dloop
->orig_loop_num
]->num
;
7725 moved_orig_loop_num
[dloop
->orig_loop_num
] = -1;
7726 dloop
->orig_loop_num
= 0;
7731 if (moved_orig_loop_num
)
7733 FOR_EACH_VEC_ELT (bbs
, i
, bb
)
7735 gimple
*g
= find_loop_dist_alias (bb
);
7739 int orig_loop_num
= tree_to_shwi (gimple_call_arg (g
, 0));
7740 gcc_assert (orig_loop_num
7741 && (unsigned) orig_loop_num
< vec_safe_length (larray
));
7742 if (moved_orig_loop_num
[orig_loop_num
] == 2)
7744 /* If we have moved both loops with this orig_loop_num into
7745 dest_cfun and the LOOP_DIST_ALIAS call is being moved there
7746 too, update the first argument. */
7747 gcc_assert ((*larray
)[dloop
->orig_loop_num
] != NULL
7748 && (get_loop (saved_cfun
, dloop
->orig_loop_num
)
7750 tree t
= build_int_cst (integer_type_node
,
7751 (*larray
)[dloop
->orig_loop_num
]->num
);
7752 gimple_call_set_arg (g
, 0, t
);
7754 /* Make sure the following loop will not update it. */
7755 moved_orig_loop_num
[orig_loop_num
] = 0;
7758 /* Otherwise at least one of the loops stayed in saved_cfun.
7759 Remove the LOOP_DIST_ALIAS call. */
7760 fold_loop_internal_call (g
, gimple_call_arg (g
, 1));
7762 FOR_EACH_BB_FN (bb
, saved_cfun
)
7764 gimple
*g
= find_loop_dist_alias (bb
);
7767 int orig_loop_num
= tree_to_shwi (gimple_call_arg (g
, 0));
7768 gcc_assert (orig_loop_num
7769 && (unsigned) orig_loop_num
< vec_safe_length (larray
));
7770 if (moved_orig_loop_num
[orig_loop_num
])
7771 /* LOOP_DIST_ALIAS call remained in saved_cfun, if at least one
7772 of the corresponding loops was moved, remove it. */
7773 fold_loop_internal_call (g
, gimple_call_arg (g
, 1));
7775 XDELETEVEC (moved_orig_loop_num
);
7779 /* Move blocks from BBS into DEST_CFUN. */
7780 gcc_assert (bbs
.length () >= 2);
7781 after
= dest_cfun
->cfg
->x_entry_block_ptr
;
7782 hash_map
<tree
, tree
> vars_map
;
7784 memset (&d
, 0, sizeof (d
));
7785 d
.orig_block
= orig_block
;
7786 d
.new_block
= DECL_INITIAL (dest_cfun
->decl
);
7787 d
.from_context
= cfun
->decl
;
7788 d
.to_context
= dest_cfun
->decl
;
7789 d
.vars_map
= &vars_map
;
7790 d
.new_label_map
= new_label_map
;
7792 d
.remap_decls_p
= true;
7794 if (gimple_in_ssa_p (cfun
))
7795 for (tree arg
= DECL_ARGUMENTS (d
.to_context
); arg
; arg
= DECL_CHAIN (arg
))
7797 tree narg
= make_ssa_name_fn (dest_cfun
, arg
, gimple_build_nop ());
7798 set_ssa_default_def (dest_cfun
, arg
, narg
);
7799 vars_map
.put (arg
, narg
);
7802 FOR_EACH_VEC_ELT (bbs
, i
, bb
)
7804 /* No need to update edge counts on the last block. It has
7805 already been updated earlier when we detached the region from
7806 the original CFG. */
7807 move_block_to_fn (dest_cfun
, bb
, after
, bb
!= exit_bb
, &d
);
7813 /* Loop sizes are no longer correct, fix them up. */
7814 loop
->num_nodes
-= num_nodes
;
7815 for (struct loop
*outer
= loop_outer (loop
);
7816 outer
; outer
= loop_outer (outer
))
7817 outer
->num_nodes
-= num_nodes
;
7818 loop0
->num_nodes
-= bbs
.length () - num_nodes
;
7820 if (saved_cfun
->has_simduid_loops
|| saved_cfun
->has_force_vectorize_loops
)
7823 for (i
= 0; vec_safe_iterate (loops
->larray
, i
, &aloop
); i
++)
7828 replace_by_duplicate_decl (&aloop
->simduid
, d
.vars_map
,
7830 dest_cfun
->has_simduid_loops
= true;
7832 if (aloop
->force_vectorize
)
7833 dest_cfun
->has_force_vectorize_loops
= true;
7837 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
7841 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun
->decl
))
7843 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun
->decl
))
7844 = BLOCK_SUBBLOCKS (orig_block
);
7845 for (block
= BLOCK_SUBBLOCKS (orig_block
);
7846 block
; block
= BLOCK_CHAIN (block
))
7847 BLOCK_SUPERCONTEXT (block
) = DECL_INITIAL (dest_cfun
->decl
);
7848 BLOCK_SUBBLOCKS (orig_block
) = NULL_TREE
;
7851 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun
->decl
),
7852 &vars_map
, dest_cfun
->decl
);
7855 htab_delete (new_label_map
);
7859 if (gimple_in_ssa_p (cfun
))
7861 /* We need to release ssa-names in a defined order, so first find them,
7862 and then iterate in ascending version order. */
7863 bitmap release_names
= BITMAP_ALLOC (NULL
);
7864 vars_map
.traverse
<void *, gather_ssa_name_hash_map_from
> (release_names
);
7867 EXECUTE_IF_SET_IN_BITMAP (release_names
, 0, i
, bi
)
7868 release_ssa_name (ssa_name (i
));
7869 BITMAP_FREE (release_names
);
7872 /* Rewire the entry and exit blocks. The successor to the entry
7873 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
7874 the child function. Similarly, the predecessor of DEST_FN's
7875 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
7876 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
7877 various CFG manipulation function get to the right CFG.
7879 FIXME, this is silly. The CFG ought to become a parameter to
7881 push_cfun (dest_cfun
);
7882 ENTRY_BLOCK_PTR_FOR_FN (cfun
)->count
= entry_bb
->count
;
7883 make_single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun
), entry_bb
, EDGE_FALLTHRU
);
7886 make_single_succ_edge (exit_bb
, EXIT_BLOCK_PTR_FOR_FN (cfun
), 0);
7887 EXIT_BLOCK_PTR_FOR_FN (cfun
)->count
= exit_bb
->count
;
7890 EXIT_BLOCK_PTR_FOR_FN (cfun
)->count
= profile_count::zero ();
7893 /* Back in the original function, the SESE region has disappeared,
7894 create a new basic block in its place. */
7895 bb
= create_empty_bb (entry_pred
[0]);
7897 add_bb_to_loop (bb
, loop
);
7898 for (i
= 0; i
< num_entry_edges
; i
++)
7900 e
= make_edge (entry_pred
[i
], bb
, entry_flag
[i
]);
7901 e
->probability
= entry_prob
[i
];
7904 for (i
= 0; i
< num_exit_edges
; i
++)
7906 e
= make_edge (bb
, exit_succ
[i
], exit_flag
[i
]);
7907 e
->probability
= exit_prob
[i
];
7910 set_immediate_dominator (CDI_DOMINATORS
, bb
, dom_entry
);
7911 FOR_EACH_VEC_ELT (dom_bbs
, i
, abb
)
7912 set_immediate_dominator (CDI_DOMINATORS
, abb
, bb
);
7929 /* Dump default def DEF to file FILE using FLAGS and indentation
7933 dump_default_def (FILE *file
, tree def
, int spc
, dump_flags_t flags
)
7935 for (int i
= 0; i
< spc
; ++i
)
7936 fprintf (file
, " ");
7937 dump_ssaname_info_to_file (file
, def
, spc
);
7939 print_generic_expr (file
, TREE_TYPE (def
), flags
);
7940 fprintf (file
, " ");
7941 print_generic_expr (file
, def
, flags
);
7942 fprintf (file
, " = ");
7943 print_generic_expr (file
, SSA_NAME_VAR (def
), flags
);
7944 fprintf (file
, ";\n");
7947 /* Print no_sanitize attribute to FILE for a given attribute VALUE. */
7950 print_no_sanitize_attr_value (FILE *file
, tree value
)
7952 unsigned int flags
= tree_to_uhwi (value
);
7954 for (int i
= 0; sanitizer_opts
[i
].name
!= NULL
; ++i
)
7956 if ((sanitizer_opts
[i
].flag
& flags
) == sanitizer_opts
[i
].flag
)
7959 fprintf (file
, " | ");
7960 fprintf (file
, "%s", sanitizer_opts
[i
].name
);
7966 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in dumpfile.h)
7970 dump_function_to_file (tree fndecl
, FILE *file
, dump_flags_t flags
)
7972 tree arg
, var
, old_current_fndecl
= current_function_decl
;
7973 struct function
*dsf
;
7974 bool ignore_topmost_bind
= false, any_var
= false;
7977 bool tmclone
= (TREE_CODE (fndecl
) == FUNCTION_DECL
7978 && decl_is_tm_clone (fndecl
));
7979 struct function
*fun
= DECL_STRUCT_FUNCTION (fndecl
);
7981 if (DECL_ATTRIBUTES (fndecl
) != NULL_TREE
)
7983 fprintf (file
, "__attribute__((");
7987 for (chain
= DECL_ATTRIBUTES (fndecl
); chain
;
7988 first
= false, chain
= TREE_CHAIN (chain
))
7991 fprintf (file
, ", ");
7993 tree name
= get_attribute_name (chain
);
7994 print_generic_expr (file
, name
, dump_flags
);
7995 if (TREE_VALUE (chain
) != NULL_TREE
)
7997 fprintf (file
, " (");
7999 if (strstr (IDENTIFIER_POINTER (name
), "no_sanitize"))
8000 print_no_sanitize_attr_value (file
, TREE_VALUE (chain
));
8002 print_generic_expr (file
, TREE_VALUE (chain
), dump_flags
);
8003 fprintf (file
, ")");
8007 fprintf (file
, "))\n");
8010 current_function_decl
= fndecl
;
8011 if (flags
& TDF_GIMPLE
)
8013 print_generic_expr (file
, TREE_TYPE (TREE_TYPE (fndecl
)),
8014 dump_flags
| TDF_SLIM
);
8015 fprintf (file
, " __GIMPLE ()\n%s (", function_name (fun
));
8018 fprintf (file
, "%s %s(", function_name (fun
), tmclone
? "[tm-clone] " : "");
8020 arg
= DECL_ARGUMENTS (fndecl
);
8023 print_generic_expr (file
, TREE_TYPE (arg
), dump_flags
);
8024 fprintf (file
, " ");
8025 print_generic_expr (file
, arg
, dump_flags
);
8026 if (DECL_CHAIN (arg
))
8027 fprintf (file
, ", ");
8028 arg
= DECL_CHAIN (arg
);
8030 fprintf (file
, ")\n");
8032 dsf
= DECL_STRUCT_FUNCTION (fndecl
);
8033 if (dsf
&& (flags
& TDF_EH
))
8034 dump_eh_tree (file
, dsf
);
8036 if (flags
& TDF_RAW
&& !gimple_has_body_p (fndecl
))
8038 dump_node (fndecl
, TDF_SLIM
| flags
, file
);
8039 current_function_decl
= old_current_fndecl
;
8043 /* When GIMPLE is lowered, the variables are no longer available in
8044 BIND_EXPRs, so display them separately. */
8045 if (fun
&& fun
->decl
== fndecl
&& (fun
->curr_properties
& PROP_gimple_lcf
))
8048 ignore_topmost_bind
= true;
8050 fprintf (file
, "{\n");
8051 if (gimple_in_ssa_p (fun
)
8052 && (flags
& TDF_ALIAS
))
8054 for (arg
= DECL_ARGUMENTS (fndecl
); arg
!= NULL
;
8055 arg
= DECL_CHAIN (arg
))
8057 tree def
= ssa_default_def (fun
, arg
);
8059 dump_default_def (file
, def
, 2, flags
);
8062 tree res
= DECL_RESULT (fun
->decl
);
8063 if (res
!= NULL_TREE
8064 && DECL_BY_REFERENCE (res
))
8066 tree def
= ssa_default_def (fun
, res
);
8068 dump_default_def (file
, def
, 2, flags
);
8071 tree static_chain
= fun
->static_chain_decl
;
8072 if (static_chain
!= NULL_TREE
)
8074 tree def
= ssa_default_def (fun
, static_chain
);
8076 dump_default_def (file
, def
, 2, flags
);
8080 if (!vec_safe_is_empty (fun
->local_decls
))
8081 FOR_EACH_LOCAL_DECL (fun
, ix
, var
)
8083 print_generic_decl (file
, var
, flags
);
8084 fprintf (file
, "\n");
8091 if (gimple_in_ssa_p (cfun
))
8092 FOR_EACH_SSA_NAME (ix
, name
, cfun
)
8094 if (!SSA_NAME_VAR (name
))
8096 fprintf (file
, " ");
8097 print_generic_expr (file
, TREE_TYPE (name
), flags
);
8098 fprintf (file
, " ");
8099 print_generic_expr (file
, name
, flags
);
8100 fprintf (file
, ";\n");
8107 if (fun
&& fun
->decl
== fndecl
8109 && basic_block_info_for_fn (fun
))
8111 /* If the CFG has been built, emit a CFG-based dump. */
8112 if (!ignore_topmost_bind
)
8113 fprintf (file
, "{\n");
8115 if (any_var
&& n_basic_blocks_for_fn (fun
))
8116 fprintf (file
, "\n");
8118 FOR_EACH_BB_FN (bb
, fun
)
8119 dump_bb (file
, bb
, 2, flags
);
8121 fprintf (file
, "}\n");
8123 else if (fun
->curr_properties
& PROP_gimple_any
)
8125 /* The function is now in GIMPLE form but the CFG has not been
8126 built yet. Emit the single sequence of GIMPLE statements
8127 that make up its body. */
8128 gimple_seq body
= gimple_body (fndecl
);
8130 if (gimple_seq_first_stmt (body
)
8131 && gimple_seq_first_stmt (body
) == gimple_seq_last_stmt (body
)
8132 && gimple_code (gimple_seq_first_stmt (body
)) == GIMPLE_BIND
)
8133 print_gimple_seq (file
, body
, 0, flags
);
8136 if (!ignore_topmost_bind
)
8137 fprintf (file
, "{\n");
8140 fprintf (file
, "\n");
8142 print_gimple_seq (file
, body
, 2, flags
);
8143 fprintf (file
, "}\n");
8150 /* Make a tree based dump. */
8151 chain
= DECL_SAVED_TREE (fndecl
);
8152 if (chain
&& TREE_CODE (chain
) == BIND_EXPR
)
8154 if (ignore_topmost_bind
)
8156 chain
= BIND_EXPR_BODY (chain
);
8164 if (!ignore_topmost_bind
)
8166 fprintf (file
, "{\n");
8167 /* No topmost bind, pretend it's ignored for later. */
8168 ignore_topmost_bind
= true;
8174 fprintf (file
, "\n");
8176 print_generic_stmt_indented (file
, chain
, flags
, indent
);
8177 if (ignore_topmost_bind
)
8178 fprintf (file
, "}\n");
8181 if (flags
& TDF_ENUMERATE_LOCALS
)
8182 dump_enumerated_decls (file
, flags
);
8183 fprintf (file
, "\n\n");
8185 current_function_decl
= old_current_fndecl
;
8188 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
8191 debug_function (tree fn
, dump_flags_t flags
)
8193 dump_function_to_file (fn
, stderr
, flags
);
8197 /* Print on FILE the indexes for the predecessors of basic_block BB. */
8200 print_pred_bbs (FILE *file
, basic_block bb
)
8205 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
8206 fprintf (file
, "bb_%d ", e
->src
->index
);
8210 /* Print on FILE the indexes for the successors of basic_block BB. */
8213 print_succ_bbs (FILE *file
, basic_block bb
)
8218 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
8219 fprintf (file
, "bb_%d ", e
->dest
->index
);
8222 /* Print to FILE the basic block BB following the VERBOSITY level. */
8225 print_loops_bb (FILE *file
, basic_block bb
, int indent
, int verbosity
)
8227 char *s_indent
= (char *) alloca ((size_t) indent
+ 1);
8228 memset ((void *) s_indent
, ' ', (size_t) indent
);
8229 s_indent
[indent
] = '\0';
8231 /* Print basic_block's header. */
8234 fprintf (file
, "%s bb_%d (preds = {", s_indent
, bb
->index
);
8235 print_pred_bbs (file
, bb
);
8236 fprintf (file
, "}, succs = {");
8237 print_succ_bbs (file
, bb
);
8238 fprintf (file
, "})\n");
8241 /* Print basic_block's body. */
8244 fprintf (file
, "%s {\n", s_indent
);
8245 dump_bb (file
, bb
, indent
+ 4, TDF_VOPS
|TDF_MEMSYMS
);
8246 fprintf (file
, "%s }\n", s_indent
);
8250 static void print_loop_and_siblings (FILE *, struct loop
*, int, int);
8252 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
8253 VERBOSITY level this outputs the contents of the loop, or just its
8257 print_loop (FILE *file
, struct loop
*loop
, int indent
, int verbosity
)
8265 s_indent
= (char *) alloca ((size_t) indent
+ 1);
8266 memset ((void *) s_indent
, ' ', (size_t) indent
);
8267 s_indent
[indent
] = '\0';
8269 /* Print loop's header. */
8270 fprintf (file
, "%sloop_%d (", s_indent
, loop
->num
);
8272 fprintf (file
, "header = %d", loop
->header
->index
);
8275 fprintf (file
, "deleted)\n");
8279 fprintf (file
, ", latch = %d", loop
->latch
->index
);
8281 fprintf (file
, ", multiple latches");
8282 fprintf (file
, ", niter = ");
8283 print_generic_expr (file
, loop
->nb_iterations
);
8285 if (loop
->any_upper_bound
)
8287 fprintf (file
, ", upper_bound = ");
8288 print_decu (loop
->nb_iterations_upper_bound
, file
);
8290 if (loop
->any_likely_upper_bound
)
8292 fprintf (file
, ", likely_upper_bound = ");
8293 print_decu (loop
->nb_iterations_likely_upper_bound
, file
);
8296 if (loop
->any_estimate
)
8298 fprintf (file
, ", estimate = ");
8299 print_decu (loop
->nb_iterations_estimate
, file
);
8302 fprintf (file
, ", unroll = %d", loop
->unroll
);
8303 fprintf (file
, ")\n");
8305 /* Print loop's body. */
8308 fprintf (file
, "%s{\n", s_indent
);
8309 FOR_EACH_BB_FN (bb
, cfun
)
8310 if (bb
->loop_father
== loop
)
8311 print_loops_bb (file
, bb
, indent
, verbosity
);
8313 print_loop_and_siblings (file
, loop
->inner
, indent
+ 2, verbosity
);
8314 fprintf (file
, "%s}\n", s_indent
);
8318 /* Print the LOOP and its sibling loops on FILE, indented INDENT
8319 spaces. Following VERBOSITY level this outputs the contents of the
8320 loop, or just its structure. */
8323 print_loop_and_siblings (FILE *file
, struct loop
*loop
, int indent
,
8329 print_loop (file
, loop
, indent
, verbosity
);
8330 print_loop_and_siblings (file
, loop
->next
, indent
, verbosity
);
8333 /* Follow a CFG edge from the entry point of the program, and on entry
8334 of a loop, pretty print the loop structure on FILE. */
8337 print_loops (FILE *file
, int verbosity
)
8341 bb
= ENTRY_BLOCK_PTR_FOR_FN (cfun
);
8342 fprintf (file
, "\nLoops in function: %s\n", current_function_name ());
8343 if (bb
&& bb
->loop_father
)
8344 print_loop_and_siblings (file
, bb
->loop_father
, 0, verbosity
);
8350 debug (struct loop
&ref
)
8352 print_loop (stderr
, &ref
, 0, /*verbosity*/0);
8356 debug (struct loop
*ptr
)
8361 fprintf (stderr
, "<nil>\n");
8364 /* Dump a loop verbosely. */
8367 debug_verbose (struct loop
&ref
)
8369 print_loop (stderr
, &ref
, 0, /*verbosity*/3);
8373 debug_verbose (struct loop
*ptr
)
8378 fprintf (stderr
, "<nil>\n");
8382 /* Debugging loops structure at tree level, at some VERBOSITY level. */
8385 debug_loops (int verbosity
)
8387 print_loops (stderr
, verbosity
);
8390 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
8393 debug_loop (struct loop
*loop
, int verbosity
)
8395 print_loop (stderr
, loop
, 0, verbosity
);
8398 /* Print on stderr the code of loop number NUM, at some VERBOSITY
8402 debug_loop_num (unsigned num
, int verbosity
)
8404 debug_loop (get_loop (cfun
, num
), verbosity
);
8407 /* Return true if BB ends with a call, possibly followed by some
8408 instructions that must stay with the call. Return false,
8412 gimple_block_ends_with_call_p (basic_block bb
)
8414 gimple_stmt_iterator gsi
= gsi_last_nondebug_bb (bb
);
8415 return !gsi_end_p (gsi
) && is_gimple_call (gsi_stmt (gsi
));
8419 /* Return true if BB ends with a conditional branch. Return false,
8423 gimple_block_ends_with_condjump_p (const_basic_block bb
)
8425 gimple
*stmt
= last_stmt (CONST_CAST_BB (bb
));
8426 return (stmt
&& gimple_code (stmt
) == GIMPLE_COND
);
8430 /* Return true if statement T may terminate execution of BB in ways not
8431 explicitly represtented in the CFG. */
8434 stmt_can_terminate_bb_p (gimple
*t
)
8436 tree fndecl
= NULL_TREE
;
8439 /* Eh exception not handled internally terminates execution of the whole
8441 if (stmt_can_throw_external (t
))
8444 /* NORETURN and LONGJMP calls already have an edge to exit.
8445 CONST and PURE calls do not need one.
8446 We don't currently check for CONST and PURE here, although
8447 it would be a good idea, because those attributes are
8448 figured out from the RTL in mark_constant_function, and
8449 the counter incrementation code from -fprofile-arcs
8450 leads to different results from -fbranch-probabilities. */
8451 if (is_gimple_call (t
))
8453 fndecl
= gimple_call_fndecl (t
);
8454 call_flags
= gimple_call_flags (t
);
8457 if (is_gimple_call (t
)
8459 && DECL_BUILT_IN (fndecl
)
8460 && (call_flags
& ECF_NOTHROW
)
8461 && !(call_flags
& ECF_RETURNS_TWICE
)
8462 /* fork() doesn't really return twice, but the effect of
8463 wrapping it in __gcov_fork() which calls __gcov_flush()
8464 and clears the counters before forking has the same
8465 effect as returning twice. Force a fake edge. */
8466 && !(DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
8467 && DECL_FUNCTION_CODE (fndecl
) == BUILT_IN_FORK
))
8470 if (is_gimple_call (t
))
8476 if (call_flags
& (ECF_PURE
| ECF_CONST
)
8477 && !(call_flags
& ECF_LOOPING_CONST_OR_PURE
))
8480 /* Function call may do longjmp, terminate program or do other things.
8481 Special case noreturn that have non-abnormal edges out as in this case
8482 the fact is sufficiently represented by lack of edges out of T. */
8483 if (!(call_flags
& ECF_NORETURN
))
8487 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
8488 if ((e
->flags
& EDGE_FAKE
) == 0)
8492 if (gasm
*asm_stmt
= dyn_cast
<gasm
*> (t
))
8493 if (gimple_asm_volatile_p (asm_stmt
) || gimple_asm_input_p (asm_stmt
))
8500 /* Add fake edges to the function exit for any non constant and non
8501 noreturn calls (or noreturn calls with EH/abnormal edges),
8502 volatile inline assembly in the bitmap of blocks specified by BLOCKS
8503 or to the whole CFG if BLOCKS is zero. Return the number of blocks
8506 The goal is to expose cases in which entering a basic block does
8507 not imply that all subsequent instructions must be executed. */
8510 gimple_flow_call_edges_add (sbitmap blocks
)
8513 int blocks_split
= 0;
8514 int last_bb
= last_basic_block_for_fn (cfun
);
8515 bool check_last_block
= false;
8517 if (n_basic_blocks_for_fn (cfun
) == NUM_FIXED_BLOCKS
)
8521 check_last_block
= true;
8523 check_last_block
= bitmap_bit_p (blocks
,
8524 EXIT_BLOCK_PTR_FOR_FN (cfun
)->prev_bb
->index
);
8526 /* In the last basic block, before epilogue generation, there will be
8527 a fallthru edge to EXIT. Special care is required if the last insn
8528 of the last basic block is a call because make_edge folds duplicate
8529 edges, which would result in the fallthru edge also being marked
8530 fake, which would result in the fallthru edge being removed by
8531 remove_fake_edges, which would result in an invalid CFG.
8533 Moreover, we can't elide the outgoing fake edge, since the block
8534 profiler needs to take this into account in order to solve the minimal
8535 spanning tree in the case that the call doesn't return.
8537 Handle this by adding a dummy instruction in a new last basic block. */
8538 if (check_last_block
)
8540 basic_block bb
= EXIT_BLOCK_PTR_FOR_FN (cfun
)->prev_bb
;
8541 gimple_stmt_iterator gsi
= gsi_last_nondebug_bb (bb
);
8544 if (!gsi_end_p (gsi
))
8547 if (t
&& stmt_can_terminate_bb_p (t
))
8551 e
= find_edge (bb
, EXIT_BLOCK_PTR_FOR_FN (cfun
));
8554 gsi_insert_on_edge (e
, gimple_build_nop ());
8555 gsi_commit_edge_inserts ();
8560 /* Now add fake edges to the function exit for any non constant
8561 calls since there is no way that we can determine if they will
8563 for (i
= 0; i
< last_bb
; i
++)
8565 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
8566 gimple_stmt_iterator gsi
;
8567 gimple
*stmt
, *last_stmt
;
8572 if (blocks
&& !bitmap_bit_p (blocks
, i
))
8575 gsi
= gsi_last_nondebug_bb (bb
);
8576 if (!gsi_end_p (gsi
))
8578 last_stmt
= gsi_stmt (gsi
);
8581 stmt
= gsi_stmt (gsi
);
8582 if (stmt_can_terminate_bb_p (stmt
))
8586 /* The handling above of the final block before the
8587 epilogue should be enough to verify that there is
8588 no edge to the exit block in CFG already.
8589 Calling make_edge in such case would cause us to
8590 mark that edge as fake and remove it later. */
8591 if (flag_checking
&& stmt
== last_stmt
)
8593 e
= find_edge (bb
, EXIT_BLOCK_PTR_FOR_FN (cfun
));
8594 gcc_assert (e
== NULL
);
8597 /* Note that the following may create a new basic block
8598 and renumber the existing basic blocks. */
8599 if (stmt
!= last_stmt
)
8601 e
= split_block (bb
, stmt
);
8605 e
= make_edge (bb
, EXIT_BLOCK_PTR_FOR_FN (cfun
), EDGE_FAKE
);
8606 e
->probability
= profile_probability::guessed_never ();
8610 while (!gsi_end_p (gsi
));
8615 checking_verify_flow_info ();
8617 return blocks_split
;
8620 /* Removes edge E and all the blocks dominated by it, and updates dominance
8621 information. The IL in E->src needs to be updated separately.
8622 If dominance info is not available, only the edge E is removed.*/
8625 remove_edge_and_dominated_blocks (edge e
)
8627 vec
<basic_block
> bbs_to_remove
= vNULL
;
8628 vec
<basic_block
> bbs_to_fix_dom
= vNULL
;
8631 bool none_removed
= false;
8633 basic_block bb
, dbb
;
8636 /* If we are removing a path inside a non-root loop that may change
8637 loop ownership of blocks or remove loops. Mark loops for fixup. */
8639 && loop_outer (e
->src
->loop_father
) != NULL
8640 && e
->src
->loop_father
== e
->dest
->loop_father
)
8641 loops_state_set (LOOPS_NEED_FIXUP
);
8643 if (!dom_info_available_p (CDI_DOMINATORS
))
8649 /* No updating is needed for edges to exit. */
8650 if (e
->dest
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
8652 if (cfgcleanup_altered_bbs
)
8653 bitmap_set_bit (cfgcleanup_altered_bbs
, e
->src
->index
);
8658 /* First, we find the basic blocks to remove. If E->dest has a predecessor
8659 that is not dominated by E->dest, then this set is empty. Otherwise,
8660 all the basic blocks dominated by E->dest are removed.
8662 Also, to DF_IDOM we store the immediate dominators of the blocks in
8663 the dominance frontier of E (i.e., of the successors of the
8664 removed blocks, if there are any, and of E->dest otherwise). */
8665 FOR_EACH_EDGE (f
, ei
, e
->dest
->preds
)
8670 if (!dominated_by_p (CDI_DOMINATORS
, f
->src
, e
->dest
))
8672 none_removed
= true;
8677 auto_bitmap df
, df_idom
;
8679 bitmap_set_bit (df_idom
,
8680 get_immediate_dominator (CDI_DOMINATORS
, e
->dest
)->index
);
8683 bbs_to_remove
= get_all_dominated_blocks (CDI_DOMINATORS
, e
->dest
);
8684 FOR_EACH_VEC_ELT (bbs_to_remove
, i
, bb
)
8686 FOR_EACH_EDGE (f
, ei
, bb
->succs
)
8688 if (f
->dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
))
8689 bitmap_set_bit (df
, f
->dest
->index
);
8692 FOR_EACH_VEC_ELT (bbs_to_remove
, i
, bb
)
8693 bitmap_clear_bit (df
, bb
->index
);
8695 EXECUTE_IF_SET_IN_BITMAP (df
, 0, i
, bi
)
8697 bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
8698 bitmap_set_bit (df_idom
,
8699 get_immediate_dominator (CDI_DOMINATORS
, bb
)->index
);
8703 if (cfgcleanup_altered_bbs
)
8705 /* Record the set of the altered basic blocks. */
8706 bitmap_set_bit (cfgcleanup_altered_bbs
, e
->src
->index
);
8707 bitmap_ior_into (cfgcleanup_altered_bbs
, df
);
8710 /* Remove E and the cancelled blocks. */
8715 /* Walk backwards so as to get a chance to substitute all
8716 released DEFs into debug stmts. See
8717 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
8719 for (i
= bbs_to_remove
.length (); i
-- > 0; )
8720 delete_basic_block (bbs_to_remove
[i
]);
8723 /* Update the dominance information. The immediate dominator may change only
8724 for blocks whose immediate dominator belongs to DF_IDOM:
8726 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
8727 removal. Let Z the arbitrary block such that idom(Z) = Y and
8728 Z dominates X after the removal. Before removal, there exists a path P
8729 from Y to X that avoids Z. Let F be the last edge on P that is
8730 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
8731 dominates W, and because of P, Z does not dominate W), and W belongs to
8732 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
8733 EXECUTE_IF_SET_IN_BITMAP (df_idom
, 0, i
, bi
)
8735 bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
8736 for (dbb
= first_dom_son (CDI_DOMINATORS
, bb
);
8738 dbb
= next_dom_son (CDI_DOMINATORS
, dbb
))
8739 bbs_to_fix_dom
.safe_push (dbb
);
8742 iterate_fix_dominators (CDI_DOMINATORS
, bbs_to_fix_dom
, true);
8744 bbs_to_remove
.release ();
8745 bbs_to_fix_dom
.release ();
8748 /* Purge dead EH edges from basic block BB. */
8751 gimple_purge_dead_eh_edges (basic_block bb
)
8753 bool changed
= false;
8756 gimple
*stmt
= last_stmt (bb
);
8758 if (stmt
&& stmt_can_throw_internal (stmt
))
8761 for (ei
= ei_start (bb
->succs
); (e
= ei_safe_edge (ei
)); )
8763 if (e
->flags
& EDGE_EH
)
8765 remove_edge_and_dominated_blocks (e
);
8775 /* Purge dead EH edges from basic block listed in BLOCKS. */
8778 gimple_purge_all_dead_eh_edges (const_bitmap blocks
)
8780 bool changed
= false;
8784 EXECUTE_IF_SET_IN_BITMAP (blocks
, 0, i
, bi
)
8786 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
8788 /* Earlier gimple_purge_dead_eh_edges could have removed
8789 this basic block already. */
8790 gcc_assert (bb
|| changed
);
8792 changed
|= gimple_purge_dead_eh_edges (bb
);
8798 /* Purge dead abnormal call edges from basic block BB. */
8801 gimple_purge_dead_abnormal_call_edges (basic_block bb
)
8803 bool changed
= false;
8806 gimple
*stmt
= last_stmt (bb
);
8808 if (!cfun
->has_nonlocal_label
8809 && !cfun
->calls_setjmp
)
8812 if (stmt
&& stmt_can_make_abnormal_goto (stmt
))
8815 for (ei
= ei_start (bb
->succs
); (e
= ei_safe_edge (ei
)); )
8817 if (e
->flags
& EDGE_ABNORMAL
)
8819 if (e
->flags
& EDGE_FALLTHRU
)
8820 e
->flags
&= ~EDGE_ABNORMAL
;
8822 remove_edge_and_dominated_blocks (e
);
8832 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
8835 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks
)
8837 bool changed
= false;
8841 EXECUTE_IF_SET_IN_BITMAP (blocks
, 0, i
, bi
)
8843 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
8845 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
8846 this basic block already. */
8847 gcc_assert (bb
|| changed
);
8849 changed
|= gimple_purge_dead_abnormal_call_edges (bb
);
8855 /* This function is called whenever a new edge is created or
8859 gimple_execute_on_growing_pred (edge e
)
8861 basic_block bb
= e
->dest
;
8863 if (!gimple_seq_empty_p (phi_nodes (bb
)))
8864 reserve_phi_args_for_new_edge (bb
);
8867 /* This function is called immediately before edge E is removed from
8868 the edge vector E->dest->preds. */
8871 gimple_execute_on_shrinking_pred (edge e
)
8873 if (!gimple_seq_empty_p (phi_nodes (e
->dest
)))
8874 remove_phi_args (e
);
8877 /*---------------------------------------------------------------------------
8878 Helper functions for Loop versioning
8879 ---------------------------------------------------------------------------*/
8881 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
8882 of 'first'. Both of them are dominated by 'new_head' basic block. When
8883 'new_head' was created by 'second's incoming edge it received phi arguments
8884 on the edge by split_edge(). Later, additional edge 'e' was created to
8885 connect 'new_head' and 'first'. Now this routine adds phi args on this
8886 additional edge 'e' that new_head to second edge received as part of edge
8890 gimple_lv_adjust_loop_header_phi (basic_block first
, basic_block second
,
8891 basic_block new_head
, edge e
)
8894 gphi_iterator psi1
, psi2
;
8896 edge e2
= find_edge (new_head
, second
);
8898 /* Because NEW_HEAD has been created by splitting SECOND's incoming
8899 edge, we should always have an edge from NEW_HEAD to SECOND. */
8900 gcc_assert (e2
!= NULL
);
8902 /* Browse all 'second' basic block phi nodes and add phi args to
8903 edge 'e' for 'first' head. PHI args are always in correct order. */
8905 for (psi2
= gsi_start_phis (second
),
8906 psi1
= gsi_start_phis (first
);
8907 !gsi_end_p (psi2
) && !gsi_end_p (psi1
);
8908 gsi_next (&psi2
), gsi_next (&psi1
))
8912 def
= PHI_ARG_DEF (phi2
, e2
->dest_idx
);
8913 add_phi_arg (phi1
, def
, e
, gimple_phi_arg_location_from_edge (phi2
, e2
));
8918 /* Adds a if else statement to COND_BB with condition COND_EXPR.
8919 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
8920 the destination of the ELSE part. */
8923 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED
,
8924 basic_block second_head ATTRIBUTE_UNUSED
,
8925 basic_block cond_bb
, void *cond_e
)
8927 gimple_stmt_iterator gsi
;
8928 gimple
*new_cond_expr
;
8929 tree cond_expr
= (tree
) cond_e
;
8932 /* Build new conditional expr */
8933 new_cond_expr
= gimple_build_cond_from_tree (cond_expr
,
8934 NULL_TREE
, NULL_TREE
);
8936 /* Add new cond in cond_bb. */
8937 gsi
= gsi_last_bb (cond_bb
);
8938 gsi_insert_after (&gsi
, new_cond_expr
, GSI_NEW_STMT
);
8940 /* Adjust edges appropriately to connect new head with first head
8941 as well as second head. */
8942 e0
= single_succ_edge (cond_bb
);
8943 e0
->flags
&= ~EDGE_FALLTHRU
;
8944 e0
->flags
|= EDGE_FALSE_VALUE
;
8948 /* Do book-keeping of basic block BB for the profile consistency checker.
8949 If AFTER_PASS is 0, do pre-pass accounting, or if AFTER_PASS is 1
8950 then do post-pass accounting. Store the counting in RECORD. */
8952 gimple_account_profile_record (basic_block bb
, int after_pass
,
8953 struct profile_record
*record
)
8955 gimple_stmt_iterator i
;
8956 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); gsi_next (&i
))
8958 record
->size
[after_pass
]
8959 += estimate_num_insns (gsi_stmt (i
), &eni_size_weights
);
8960 if (bb
->count
.initialized_p ())
8961 record
->time
[after_pass
]
8962 += estimate_num_insns (gsi_stmt (i
),
8963 &eni_time_weights
) * bb
->count
.to_gcov_type ();
8964 else if (profile_status_for_fn (cfun
) == PROFILE_GUESSED
)
8965 record
->time
[after_pass
]
8966 += estimate_num_insns (gsi_stmt (i
),
8967 &eni_time_weights
) * bb
->count
.to_frequency (cfun
);
8971 struct cfg_hooks gimple_cfg_hooks
= {
8973 gimple_verify_flow_info
,
8974 gimple_dump_bb
, /* dump_bb */
8975 gimple_dump_bb_for_graph
, /* dump_bb_for_graph */
8976 create_bb
, /* create_basic_block */
8977 gimple_redirect_edge_and_branch
, /* redirect_edge_and_branch */
8978 gimple_redirect_edge_and_branch_force
, /* redirect_edge_and_branch_force */
8979 gimple_can_remove_branch_p
, /* can_remove_branch_p */
8980 remove_bb
, /* delete_basic_block */
8981 gimple_split_block
, /* split_block */
8982 gimple_move_block_after
, /* move_block_after */
8983 gimple_can_merge_blocks_p
, /* can_merge_blocks_p */
8984 gimple_merge_blocks
, /* merge_blocks */
8985 gimple_predict_edge
, /* predict_edge */
8986 gimple_predicted_by_p
, /* predicted_by_p */
8987 gimple_can_duplicate_bb_p
, /* can_duplicate_block_p */
8988 gimple_duplicate_bb
, /* duplicate_block */
8989 gimple_split_edge
, /* split_edge */
8990 gimple_make_forwarder_block
, /* make_forward_block */
8991 NULL
, /* tidy_fallthru_edge */
8992 NULL
, /* force_nonfallthru */
8993 gimple_block_ends_with_call_p
,/* block_ends_with_call_p */
8994 gimple_block_ends_with_condjump_p
, /* block_ends_with_condjump_p */
8995 gimple_flow_call_edges_add
, /* flow_call_edges_add */
8996 gimple_execute_on_growing_pred
, /* execute_on_growing_pred */
8997 gimple_execute_on_shrinking_pred
, /* execute_on_shrinking_pred */
8998 gimple_duplicate_loop_to_header_edge
, /* duplicate loop for trees */
8999 gimple_lv_add_condition_to_bb
, /* lv_add_condition_to_bb */
9000 gimple_lv_adjust_loop_header_phi
, /* lv_adjust_loop_header_phi*/
9001 extract_true_false_edges_from_block
, /* extract_cond_bb_edges */
9002 flush_pending_stmts
, /* flush_pending_stmts */
9003 gimple_empty_block_p
, /* block_empty_p */
9004 gimple_split_block_before_cond_jump
, /* split_block_before_cond_jump */
9005 gimple_account_profile_record
,
9009 /* Split all critical edges. */
9012 split_critical_edges (void)
9018 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
9019 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
9020 mappings around the calls to split_edge. */
9021 start_recording_case_labels ();
9022 FOR_ALL_BB_FN (bb
, cfun
)
9024 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
9026 if (EDGE_CRITICAL_P (e
) && !(e
->flags
& EDGE_ABNORMAL
))
9028 /* PRE inserts statements to edges and expects that
9029 since split_critical_edges was done beforehand, committing edge
9030 insertions will not split more edges. In addition to critical
9031 edges we must split edges that have multiple successors and
9032 end by control flow statements, such as RESX.
9033 Go ahead and split them too. This matches the logic in
9034 gimple_find_edge_insert_loc. */
9035 else if ((!single_pred_p (e
->dest
)
9036 || !gimple_seq_empty_p (phi_nodes (e
->dest
))
9037 || e
->dest
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
9038 && e
->src
!= ENTRY_BLOCK_PTR_FOR_FN (cfun
)
9039 && !(e
->flags
& EDGE_ABNORMAL
))
9041 gimple_stmt_iterator gsi
;
9043 gsi
= gsi_last_bb (e
->src
);
9044 if (!gsi_end_p (gsi
)
9045 && stmt_ends_bb_p (gsi_stmt (gsi
))
9046 && (gimple_code (gsi_stmt (gsi
)) != GIMPLE_RETURN
9047 && !gimple_call_builtin_p (gsi_stmt (gsi
),
9053 end_recording_case_labels ();
9059 const pass_data pass_data_split_crit_edges
=
9061 GIMPLE_PASS
, /* type */
9062 "crited", /* name */
9063 OPTGROUP_NONE
, /* optinfo_flags */
9064 TV_TREE_SPLIT_EDGES
, /* tv_id */
9065 PROP_cfg
, /* properties_required */
9066 PROP_no_crit_edges
, /* properties_provided */
9067 0, /* properties_destroyed */
9068 0, /* todo_flags_start */
9069 0, /* todo_flags_finish */
9072 class pass_split_crit_edges
: public gimple_opt_pass
9075 pass_split_crit_edges (gcc::context
*ctxt
)
9076 : gimple_opt_pass (pass_data_split_crit_edges
, ctxt
)
9079 /* opt_pass methods: */
9080 virtual unsigned int execute (function
*) { return split_critical_edges (); }
9082 opt_pass
* clone () { return new pass_split_crit_edges (m_ctxt
); }
9083 }; // class pass_split_crit_edges
9088 make_pass_split_crit_edges (gcc::context
*ctxt
)
9090 return new pass_split_crit_edges (ctxt
);
9094 /* Insert COND expression which is GIMPLE_COND after STMT
9095 in basic block BB with appropriate basic block split
9096 and creation of a new conditionally executed basic block.
9097 Update profile so the new bb is visited with probability PROB.
9098 Return created basic block. */
9100 insert_cond_bb (basic_block bb
, gimple
*stmt
, gimple
*cond
,
9101 profile_probability prob
)
9103 edge fall
= split_block (bb
, stmt
);
9104 gimple_stmt_iterator iter
= gsi_last_bb (bb
);
9107 /* Insert cond statement. */
9108 gcc_assert (gimple_code (cond
) == GIMPLE_COND
);
9109 if (gsi_end_p (iter
))
9110 gsi_insert_before (&iter
, cond
, GSI_CONTINUE_LINKING
);
9112 gsi_insert_after (&iter
, cond
, GSI_CONTINUE_LINKING
);
9114 /* Create conditionally executed block. */
9115 new_bb
= create_empty_bb (bb
);
9116 edge e
= make_edge (bb
, new_bb
, EDGE_TRUE_VALUE
);
9117 e
->probability
= prob
;
9118 new_bb
->count
= e
->count ();
9119 make_single_succ_edge (new_bb
, fall
->dest
, EDGE_FALLTHRU
);
9121 /* Fix edge for split bb. */
9122 fall
->flags
= EDGE_FALSE_VALUE
;
9123 fall
->probability
-= e
->probability
;
9125 /* Update dominance info. */
9126 if (dom_info_available_p (CDI_DOMINATORS
))
9128 set_immediate_dominator (CDI_DOMINATORS
, new_bb
, bb
);
9129 set_immediate_dominator (CDI_DOMINATORS
, fall
->dest
, bb
);
9132 /* Update loop info. */
9134 add_bb_to_loop (new_bb
, bb
->loop_father
);
9139 /* Build a ternary operation and gimplify it. Emit code before GSI.
9140 Return the gimple_val holding the result. */
9143 gimplify_build3 (gimple_stmt_iterator
*gsi
, enum tree_code code
,
9144 tree type
, tree a
, tree b
, tree c
)
9147 location_t loc
= gimple_location (gsi_stmt (*gsi
));
9149 ret
= fold_build3_loc (loc
, code
, type
, a
, b
, c
);
9152 return force_gimple_operand_gsi (gsi
, ret
, true, NULL
, true,
9156 /* Build a binary operation and gimplify it. Emit code before GSI.
9157 Return the gimple_val holding the result. */
9160 gimplify_build2 (gimple_stmt_iterator
*gsi
, enum tree_code code
,
9161 tree type
, tree a
, tree b
)
9165 ret
= fold_build2_loc (gimple_location (gsi_stmt (*gsi
)), code
, type
, a
, b
);
9168 return force_gimple_operand_gsi (gsi
, ret
, true, NULL
, true,
9172 /* Build a unary operation and gimplify it. Emit code before GSI.
9173 Return the gimple_val holding the result. */
9176 gimplify_build1 (gimple_stmt_iterator
*gsi
, enum tree_code code
, tree type
,
9181 ret
= fold_build1_loc (gimple_location (gsi_stmt (*gsi
)), code
, type
, a
);
9184 return force_gimple_operand_gsi (gsi
, ret
, true, NULL
, true,
9190 /* Given a basic block B which ends with a conditional and has
9191 precisely two successors, determine which of the edges is taken if
9192 the conditional is true and which is taken if the conditional is
9193 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
9196 extract_true_false_edges_from_block (basic_block b
,
9200 edge e
= EDGE_SUCC (b
, 0);
9202 if (e
->flags
& EDGE_TRUE_VALUE
)
9205 *false_edge
= EDGE_SUCC (b
, 1);
9210 *true_edge
= EDGE_SUCC (b
, 1);
9215 /* From a controlling predicate in the immediate dominator DOM of
9216 PHIBLOCK determine the edges into PHIBLOCK that are chosen if the
9217 predicate evaluates to true and false and store them to
9218 *TRUE_CONTROLLED_EDGE and *FALSE_CONTROLLED_EDGE if
9219 they are non-NULL. Returns true if the edges can be determined,
9220 else return false. */
9223 extract_true_false_controlled_edges (basic_block dom
, basic_block phiblock
,
9224 edge
*true_controlled_edge
,
9225 edge
*false_controlled_edge
)
9227 basic_block bb
= phiblock
;
9228 edge true_edge
, false_edge
, tem
;
9229 edge e0
= NULL
, e1
= NULL
;
9231 /* We have to verify that one edge into the PHI node is dominated
9232 by the true edge of the predicate block and the other edge
9233 dominated by the false edge. This ensures that the PHI argument
9234 we are going to take is completely determined by the path we
9235 take from the predicate block.
9236 We can only use BB dominance checks below if the destination of
9237 the true/false edges are dominated by their edge, thus only
9238 have a single predecessor. */
9239 extract_true_false_edges_from_block (dom
, &true_edge
, &false_edge
);
9240 tem
= EDGE_PRED (bb
, 0);
9241 if (tem
== true_edge
9242 || (single_pred_p (true_edge
->dest
)
9243 && (tem
->src
== true_edge
->dest
9244 || dominated_by_p (CDI_DOMINATORS
,
9245 tem
->src
, true_edge
->dest
))))
9247 else if (tem
== false_edge
9248 || (single_pred_p (false_edge
->dest
)
9249 && (tem
->src
== false_edge
->dest
9250 || dominated_by_p (CDI_DOMINATORS
,
9251 tem
->src
, false_edge
->dest
))))
9255 tem
= EDGE_PRED (bb
, 1);
9256 if (tem
== true_edge
9257 || (single_pred_p (true_edge
->dest
)
9258 && (tem
->src
== true_edge
->dest
9259 || dominated_by_p (CDI_DOMINATORS
,
9260 tem
->src
, true_edge
->dest
))))
9262 else if (tem
== false_edge
9263 || (single_pred_p (false_edge
->dest
)
9264 && (tem
->src
== false_edge
->dest
9265 || dominated_by_p (CDI_DOMINATORS
,
9266 tem
->src
, false_edge
->dest
))))
9273 if (true_controlled_edge
)
9274 *true_controlled_edge
= e0
;
9275 if (false_controlled_edge
)
9276 *false_controlled_edge
= e1
;
9281 /* Generate a range test LHS CODE RHS that determines whether INDEX is in the
9282 range [low, high]. Place associated stmts before *GSI. */
9285 generate_range_test (basic_block bb
, tree index
, tree low
, tree high
,
9286 tree
*lhs
, tree
*rhs
)
9288 tree type
= TREE_TYPE (index
);
9289 tree utype
= unsigned_type_for (type
);
9291 low
= fold_convert (type
, low
);
9292 high
= fold_convert (type
, high
);
9294 tree tmp
= make_ssa_name (type
);
9296 = gimple_build_assign (tmp
, MINUS_EXPR
, index
, low
);
9298 *lhs
= make_ssa_name (utype
);
9299 gassign
*a
= gimple_build_assign (*lhs
, NOP_EXPR
, tmp
);
9301 *rhs
= fold_build2 (MINUS_EXPR
, utype
, high
, low
);
9302 gimple_stmt_iterator gsi
= gsi_last_bb (bb
);
9303 gsi_insert_before (&gsi
, sub1
, GSI_SAME_STMT
);
9304 gsi_insert_before (&gsi
, a
, GSI_SAME_STMT
);
9307 /* Emit return warnings. */
9311 const pass_data pass_data_warn_function_return
=
9313 GIMPLE_PASS
, /* type */
9314 "*warn_function_return", /* name */
9315 OPTGROUP_NONE
, /* optinfo_flags */
9316 TV_NONE
, /* tv_id */
9317 PROP_cfg
, /* properties_required */
9318 0, /* properties_provided */
9319 0, /* properties_destroyed */
9320 0, /* todo_flags_start */
9321 0, /* todo_flags_finish */
9324 class pass_warn_function_return
: public gimple_opt_pass
9327 pass_warn_function_return (gcc::context
*ctxt
)
9328 : gimple_opt_pass (pass_data_warn_function_return
, ctxt
)
9331 /* opt_pass methods: */
9332 virtual unsigned int execute (function
*);
9334 }; // class pass_warn_function_return
9337 pass_warn_function_return::execute (function
*fun
)
9339 source_location location
;
9344 if (!targetm
.warn_func_return (fun
->decl
))
9347 /* If we have a path to EXIT, then we do return. */
9348 if (TREE_THIS_VOLATILE (fun
->decl
)
9349 && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (fun
)->preds
) > 0)
9351 location
= UNKNOWN_LOCATION
;
9352 for (ei
= ei_start (EXIT_BLOCK_PTR_FOR_FN (fun
)->preds
);
9353 (e
= ei_safe_edge (ei
)); )
9355 last
= last_stmt (e
->src
);
9356 if ((gimple_code (last
) == GIMPLE_RETURN
9357 || gimple_call_builtin_p (last
, BUILT_IN_RETURN
))
9358 && location
== UNKNOWN_LOCATION
9359 && ((location
= LOCATION_LOCUS (gimple_location (last
)))
9360 != UNKNOWN_LOCATION
)
9363 /* When optimizing, replace return stmts in noreturn functions
9364 with __builtin_unreachable () call. */
9365 if (optimize
&& gimple_code (last
) == GIMPLE_RETURN
)
9367 tree fndecl
= builtin_decl_implicit (BUILT_IN_UNREACHABLE
);
9368 gimple
*new_stmt
= gimple_build_call (fndecl
, 0);
9369 gimple_set_location (new_stmt
, gimple_location (last
));
9370 gimple_stmt_iterator gsi
= gsi_for_stmt (last
);
9371 gsi_replace (&gsi
, new_stmt
, true);
9377 if (location
== UNKNOWN_LOCATION
)
9378 location
= cfun
->function_end_locus
;
9379 warning_at (location
, 0, "%<noreturn%> function does return");
9382 /* If we see "return;" in some basic block, then we do reach the end
9383 without returning a value. */
9384 else if (warn_return_type
> 0
9385 && !TREE_NO_WARNING (fun
->decl
)
9386 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (fun
->decl
))))
9388 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR_FOR_FN (fun
)->preds
)
9390 gimple
*last
= last_stmt (e
->src
);
9391 greturn
*return_stmt
= dyn_cast
<greturn
*> (last
);
9393 && gimple_return_retval (return_stmt
) == NULL
9394 && !gimple_no_warning_p (last
))
9396 location
= gimple_location (last
);
9397 if (LOCATION_LOCUS (location
) == UNKNOWN_LOCATION
)
9398 location
= fun
->function_end_locus
;
9399 warning_at (location
, OPT_Wreturn_type
,
9400 "control reaches end of non-void function");
9401 TREE_NO_WARNING (fun
->decl
) = 1;
9405 /* The C++ FE turns fallthrough from the end of non-void function
9406 into __builtin_unreachable () call with BUILTINS_LOCATION.
9407 Recognize those too. */
9409 if (!TREE_NO_WARNING (fun
->decl
))
9410 FOR_EACH_BB_FN (bb
, fun
)
9411 if (EDGE_COUNT (bb
->succs
) == 0)
9413 gimple
*last
= last_stmt (bb
);
9414 const enum built_in_function ubsan_missing_ret
9415 = BUILT_IN_UBSAN_HANDLE_MISSING_RETURN
;
9417 && ((LOCATION_LOCUS (gimple_location (last
))
9418 == BUILTINS_LOCATION
9419 && gimple_call_builtin_p (last
, BUILT_IN_UNREACHABLE
))
9420 || gimple_call_builtin_p (last
, ubsan_missing_ret
)))
9422 gimple_stmt_iterator gsi
= gsi_for_stmt (last
);
9423 gsi_prev_nondebug (&gsi
);
9424 gimple
*prev
= gsi_stmt (gsi
);
9426 location
= UNKNOWN_LOCATION
;
9428 location
= gimple_location (prev
);
9429 if (LOCATION_LOCUS (location
) == UNKNOWN_LOCATION
)
9430 location
= fun
->function_end_locus
;
9431 warning_at (location
, OPT_Wreturn_type
,
9432 "control reaches end of non-void function");
9433 TREE_NO_WARNING (fun
->decl
) = 1;
9444 make_pass_warn_function_return (gcc::context
*ctxt
)
9446 return new pass_warn_function_return (ctxt
);
9449 /* Walk a gimplified function and warn for functions whose return value is
9450 ignored and attribute((warn_unused_result)) is set. This is done before
9451 inlining, so we don't have to worry about that. */
9454 do_warn_unused_result (gimple_seq seq
)
9457 gimple_stmt_iterator i
;
9459 for (i
= gsi_start (seq
); !gsi_end_p (i
); gsi_next (&i
))
9461 gimple
*g
= gsi_stmt (i
);
9463 switch (gimple_code (g
))
9466 do_warn_unused_result (gimple_bind_body (as_a
<gbind
*>(g
)));
9469 do_warn_unused_result (gimple_try_eval (g
));
9470 do_warn_unused_result (gimple_try_cleanup (g
));
9473 do_warn_unused_result (gimple_catch_handler (
9474 as_a
<gcatch
*> (g
)));
9476 case GIMPLE_EH_FILTER
:
9477 do_warn_unused_result (gimple_eh_filter_failure (g
));
9481 if (gimple_call_lhs (g
))
9483 if (gimple_call_internal_p (g
))
9486 /* This is a naked call, as opposed to a GIMPLE_CALL with an
9487 LHS. All calls whose value is ignored should be
9488 represented like this. Look for the attribute. */
9489 fdecl
= gimple_call_fndecl (g
);
9490 ftype
= gimple_call_fntype (g
);
9492 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype
)))
9494 location_t loc
= gimple_location (g
);
9497 warning_at (loc
, OPT_Wunused_result
,
9498 "ignoring return value of %qD, "
9499 "declared with attribute warn_unused_result",
9502 warning_at (loc
, OPT_Wunused_result
,
9503 "ignoring return value of function "
9504 "declared with attribute warn_unused_result");
9509 /* Not a container, not a call, or a call whose value is used. */
9517 const pass_data pass_data_warn_unused_result
=
9519 GIMPLE_PASS
, /* type */
9520 "*warn_unused_result", /* name */
9521 OPTGROUP_NONE
, /* optinfo_flags */
9522 TV_NONE
, /* tv_id */
9523 PROP_gimple_any
, /* properties_required */
9524 0, /* properties_provided */
9525 0, /* properties_destroyed */
9526 0, /* todo_flags_start */
9527 0, /* todo_flags_finish */
9530 class pass_warn_unused_result
: public gimple_opt_pass
9533 pass_warn_unused_result (gcc::context
*ctxt
)
9534 : gimple_opt_pass (pass_data_warn_unused_result
, ctxt
)
9537 /* opt_pass methods: */
9538 virtual bool gate (function
*) { return flag_warn_unused_result
; }
9539 virtual unsigned int execute (function
*)
9541 do_warn_unused_result (gimple_body (current_function_decl
));
9545 }; // class pass_warn_unused_result
9550 make_pass_warn_unused_result (gcc::context
*ctxt
)
9552 return new pass_warn_unused_result (ctxt
);
9555 /* IPA passes, compilation of earlier functions or inlining
9556 might have changed some properties, such as marked functions nothrow,
9557 pure, const or noreturn.
9558 Remove redundant edges and basic blocks, and create new ones if necessary.
9560 This pass can't be executed as stand alone pass from pass manager, because
9561 in between inlining and this fixup the verify_flow_info would fail. */
9564 execute_fixup_cfg (void)
9567 gimple_stmt_iterator gsi
;
9569 cgraph_node
*node
= cgraph_node::get (current_function_decl
);
9570 profile_count num
= node
->count
;
9571 profile_count den
= ENTRY_BLOCK_PTR_FOR_FN (cfun
)->count
;
9572 bool scale
= num
.initialized_p () && !(num
== den
);
9576 profile_count::adjust_for_ipa_scaling (&num
, &den
);
9577 ENTRY_BLOCK_PTR_FOR_FN (cfun
)->count
= node
->count
;
9578 EXIT_BLOCK_PTR_FOR_FN (cfun
)->count
9579 = EXIT_BLOCK_PTR_FOR_FN (cfun
)->count
.apply_scale (num
, den
);
9582 FOR_EACH_BB_FN (bb
, cfun
)
9585 bb
->count
= bb
->count
.apply_scale (num
, den
);
9586 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
);)
9588 gimple
*stmt
= gsi_stmt (gsi
);
9589 tree decl
= is_gimple_call (stmt
)
9590 ? gimple_call_fndecl (stmt
)
9594 int flags
= gimple_call_flags (stmt
);
9595 if (flags
& (ECF_CONST
| ECF_PURE
| ECF_LOOPING_CONST_OR_PURE
))
9597 if (gimple_purge_dead_abnormal_call_edges (bb
))
9598 todo
|= TODO_cleanup_cfg
;
9600 if (gimple_in_ssa_p (cfun
))
9602 todo
|= TODO_update_ssa
| TODO_cleanup_cfg
;
9607 if (flags
& ECF_NORETURN
9608 && fixup_noreturn_call (stmt
))
9609 todo
|= TODO_cleanup_cfg
;
9612 /* Remove stores to variables we marked write-only.
9613 Keep access when store has side effect, i.e. in case when source
9615 if (gimple_store_p (stmt
)
9616 && !gimple_has_side_effects (stmt
))
9618 tree lhs
= get_base_address (gimple_get_lhs (stmt
));
9621 && (TREE_STATIC (lhs
) || DECL_EXTERNAL (lhs
))
9622 && varpool_node::get (lhs
)->writeonly
)
9624 unlink_stmt_vdef (stmt
);
9625 gsi_remove (&gsi
, true);
9626 release_defs (stmt
);
9627 todo
|= TODO_update_ssa
| TODO_cleanup_cfg
;
9631 /* For calls we can simply remove LHS when it is known
9632 to be write-only. */
9633 if (is_gimple_call (stmt
)
9634 && gimple_get_lhs (stmt
))
9636 tree lhs
= get_base_address (gimple_get_lhs (stmt
));
9639 && (TREE_STATIC (lhs
) || DECL_EXTERNAL (lhs
))
9640 && varpool_node::get (lhs
)->writeonly
)
9642 gimple_call_set_lhs (stmt
, NULL
);
9644 todo
|= TODO_update_ssa
| TODO_cleanup_cfg
;
9648 if (maybe_clean_eh_stmt (stmt
)
9649 && gimple_purge_dead_eh_edges (bb
))
9650 todo
|= TODO_cleanup_cfg
;
9654 /* If we have a basic block with no successors that does not
9655 end with a control statement or a noreturn call end it with
9656 a call to __builtin_unreachable. This situation can occur
9657 when inlining a noreturn call that does in fact return. */
9658 if (EDGE_COUNT (bb
->succs
) == 0)
9660 gimple
*stmt
= last_stmt (bb
);
9662 || (!is_ctrl_stmt (stmt
)
9663 && (!is_gimple_call (stmt
)
9664 || !gimple_call_noreturn_p (stmt
))))
9666 if (stmt
&& is_gimple_call (stmt
))
9667 gimple_call_set_ctrl_altering (stmt
, false);
9668 tree fndecl
= builtin_decl_implicit (BUILT_IN_UNREACHABLE
);
9669 stmt
= gimple_build_call (fndecl
, 0);
9670 gimple_stmt_iterator gsi
= gsi_last_bb (bb
);
9671 gsi_insert_after (&gsi
, stmt
, GSI_NEW_STMT
);
9672 if (!cfun
->after_inlining
)
9674 gcall
*call_stmt
= dyn_cast
<gcall
*> (stmt
);
9675 node
->create_edge (cgraph_node::get_create (fndecl
),
9676 call_stmt
, bb
->count
);
9682 compute_function_frequency ();
9685 && (todo
& TODO_cleanup_cfg
))
9686 loops_state_set (LOOPS_NEED_FIXUP
);
9693 const pass_data pass_data_fixup_cfg
=
9695 GIMPLE_PASS
, /* type */
9696 "fixup_cfg", /* name */
9697 OPTGROUP_NONE
, /* optinfo_flags */
9698 TV_NONE
, /* tv_id */
9699 PROP_cfg
, /* properties_required */
9700 0, /* properties_provided */
9701 0, /* properties_destroyed */
9702 0, /* todo_flags_start */
9703 0, /* todo_flags_finish */
9706 class pass_fixup_cfg
: public gimple_opt_pass
9709 pass_fixup_cfg (gcc::context
*ctxt
)
9710 : gimple_opt_pass (pass_data_fixup_cfg
, ctxt
)
9713 /* opt_pass methods: */
9714 opt_pass
* clone () { return new pass_fixup_cfg (m_ctxt
); }
9715 virtual unsigned int execute (function
*) { return execute_fixup_cfg (); }
9717 }; // class pass_fixup_cfg
9722 make_pass_fixup_cfg (gcc::context
*ctxt
)
9724 return new pass_fixup_cfg (ctxt
);
9727 /* Garbage collection support for edge_def. */
9729 extern void gt_ggc_mx (tree
&);
9730 extern void gt_ggc_mx (gimple
*&);
9731 extern void gt_ggc_mx (rtx
&);
9732 extern void gt_ggc_mx (basic_block
&);
9735 gt_ggc_mx (rtx_insn
*& x
)
9738 gt_ggc_mx_rtx_def ((void *) x
);
9742 gt_ggc_mx (edge_def
*e
)
9744 tree block
= LOCATION_BLOCK (e
->goto_locus
);
9746 gt_ggc_mx (e
->dest
);
9747 if (current_ir_type () == IR_GIMPLE
)
9748 gt_ggc_mx (e
->insns
.g
);
9750 gt_ggc_mx (e
->insns
.r
);
9754 /* PCH support for edge_def. */
9756 extern void gt_pch_nx (tree
&);
9757 extern void gt_pch_nx (gimple
*&);
9758 extern void gt_pch_nx (rtx
&);
9759 extern void gt_pch_nx (basic_block
&);
9762 gt_pch_nx (rtx_insn
*& x
)
9765 gt_pch_nx_rtx_def ((void *) x
);
9769 gt_pch_nx (edge_def
*e
)
9771 tree block
= LOCATION_BLOCK (e
->goto_locus
);
9773 gt_pch_nx (e
->dest
);
9774 if (current_ir_type () == IR_GIMPLE
)
9775 gt_pch_nx (e
->insns
.g
);
9777 gt_pch_nx (e
->insns
.r
);
9782 gt_pch_nx (edge_def
*e
, gt_pointer_operator op
, void *cookie
)
9784 tree block
= LOCATION_BLOCK (e
->goto_locus
);
9785 op (&(e
->src
), cookie
);
9786 op (&(e
->dest
), cookie
);
9787 if (current_ir_type () == IR_GIMPLE
)
9788 op (&(e
->insns
.g
), cookie
);
9790 op (&(e
->insns
.r
), cookie
);
9791 op (&(block
), cookie
);
9796 namespace selftest
{
9798 /* Helper function for CFG selftests: create a dummy function decl
9799 and push it as cfun. */
9802 push_fndecl (const char *name
)
9804 tree fn_type
= build_function_type_array (integer_type_node
, 0, NULL
);
9805 /* FIXME: this uses input_location: */
9806 tree fndecl
= build_fn_decl (name
, fn_type
);
9807 tree retval
= build_decl (UNKNOWN_LOCATION
, RESULT_DECL
,
9808 NULL_TREE
, integer_type_node
);
9809 DECL_RESULT (fndecl
) = retval
;
9810 push_struct_function (fndecl
);
9811 function
*fun
= DECL_STRUCT_FUNCTION (fndecl
);
9812 ASSERT_TRUE (fun
!= NULL
);
9813 init_empty_tree_cfg_for_function (fun
);
9814 ASSERT_EQ (2, n_basic_blocks_for_fn (fun
));
9815 ASSERT_EQ (0, n_edges_for_fn (fun
));
9819 /* These tests directly create CFGs.
9820 Compare with the static fns within tree-cfg.c:
9822 - make_blocks: calls create_basic_block (seq, bb);
9825 /* Verify a simple cfg of the form:
9826 ENTRY -> A -> B -> C -> EXIT. */
9829 test_linear_chain ()
9831 gimple_register_cfg_hooks ();
9833 tree fndecl
= push_fndecl ("cfg_test_linear_chain");
9834 function
*fun
= DECL_STRUCT_FUNCTION (fndecl
);
9836 /* Create some empty blocks. */
9837 basic_block bb_a
= create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun
));
9838 basic_block bb_b
= create_empty_bb (bb_a
);
9839 basic_block bb_c
= create_empty_bb (bb_b
);
9841 ASSERT_EQ (5, n_basic_blocks_for_fn (fun
));
9842 ASSERT_EQ (0, n_edges_for_fn (fun
));
9844 /* Create some edges: a simple linear chain of BBs. */
9845 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun
), bb_a
, EDGE_FALLTHRU
);
9846 make_edge (bb_a
, bb_b
, 0);
9847 make_edge (bb_b
, bb_c
, 0);
9848 make_edge (bb_c
, EXIT_BLOCK_PTR_FOR_FN (fun
), 0);
9850 /* Verify the edges. */
9851 ASSERT_EQ (4, n_edges_for_fn (fun
));
9852 ASSERT_EQ (NULL
, ENTRY_BLOCK_PTR_FOR_FN (fun
)->preds
);
9853 ASSERT_EQ (1, ENTRY_BLOCK_PTR_FOR_FN (fun
)->succs
->length ());
9854 ASSERT_EQ (1, bb_a
->preds
->length ());
9855 ASSERT_EQ (1, bb_a
->succs
->length ());
9856 ASSERT_EQ (1, bb_b
->preds
->length ());
9857 ASSERT_EQ (1, bb_b
->succs
->length ());
9858 ASSERT_EQ (1, bb_c
->preds
->length ());
9859 ASSERT_EQ (1, bb_c
->succs
->length ());
9860 ASSERT_EQ (1, EXIT_BLOCK_PTR_FOR_FN (fun
)->preds
->length ());
9861 ASSERT_EQ (NULL
, EXIT_BLOCK_PTR_FOR_FN (fun
)->succs
);
9863 /* Verify the dominance information
9864 Each BB in our simple chain should be dominated by the one before
9866 calculate_dominance_info (CDI_DOMINATORS
);
9867 ASSERT_EQ (bb_a
, get_immediate_dominator (CDI_DOMINATORS
, bb_b
));
9868 ASSERT_EQ (bb_b
, get_immediate_dominator (CDI_DOMINATORS
, bb_c
));
9869 vec
<basic_block
> dom_by_b
= get_dominated_by (CDI_DOMINATORS
, bb_b
);
9870 ASSERT_EQ (1, dom_by_b
.length ());
9871 ASSERT_EQ (bb_c
, dom_by_b
[0]);
9872 free_dominance_info (CDI_DOMINATORS
);
9873 dom_by_b
.release ();
9875 /* Similarly for post-dominance: each BB in our chain is post-dominated
9876 by the one after it. */
9877 calculate_dominance_info (CDI_POST_DOMINATORS
);
9878 ASSERT_EQ (bb_b
, get_immediate_dominator (CDI_POST_DOMINATORS
, bb_a
));
9879 ASSERT_EQ (bb_c
, get_immediate_dominator (CDI_POST_DOMINATORS
, bb_b
));
9880 vec
<basic_block
> postdom_by_b
= get_dominated_by (CDI_POST_DOMINATORS
, bb_b
);
9881 ASSERT_EQ (1, postdom_by_b
.length ());
9882 ASSERT_EQ (bb_a
, postdom_by_b
[0]);
9883 free_dominance_info (CDI_POST_DOMINATORS
);
9884 postdom_by_b
.release ();
9889 /* Verify a simple CFG of the form:
9905 gimple_register_cfg_hooks ();
9907 tree fndecl
= push_fndecl ("cfg_test_diamond");
9908 function
*fun
= DECL_STRUCT_FUNCTION (fndecl
);
9910 /* Create some empty blocks. */
9911 basic_block bb_a
= create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun
));
9912 basic_block bb_b
= create_empty_bb (bb_a
);
9913 basic_block bb_c
= create_empty_bb (bb_a
);
9914 basic_block bb_d
= create_empty_bb (bb_b
);
9916 ASSERT_EQ (6, n_basic_blocks_for_fn (fun
));
9917 ASSERT_EQ (0, n_edges_for_fn (fun
));
9919 /* Create the edges. */
9920 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun
), bb_a
, EDGE_FALLTHRU
);
9921 make_edge (bb_a
, bb_b
, EDGE_TRUE_VALUE
);
9922 make_edge (bb_a
, bb_c
, EDGE_FALSE_VALUE
);
9923 make_edge (bb_b
, bb_d
, 0);
9924 make_edge (bb_c
, bb_d
, 0);
9925 make_edge (bb_d
, EXIT_BLOCK_PTR_FOR_FN (fun
), 0);
9927 /* Verify the edges. */
9928 ASSERT_EQ (6, n_edges_for_fn (fun
));
9929 ASSERT_EQ (1, bb_a
->preds
->length ());
9930 ASSERT_EQ (2, bb_a
->succs
->length ());
9931 ASSERT_EQ (1, bb_b
->preds
->length ());
9932 ASSERT_EQ (1, bb_b
->succs
->length ());
9933 ASSERT_EQ (1, bb_c
->preds
->length ());
9934 ASSERT_EQ (1, bb_c
->succs
->length ());
9935 ASSERT_EQ (2, bb_d
->preds
->length ());
9936 ASSERT_EQ (1, bb_d
->succs
->length ());
9938 /* Verify the dominance information. */
9939 calculate_dominance_info (CDI_DOMINATORS
);
9940 ASSERT_EQ (bb_a
, get_immediate_dominator (CDI_DOMINATORS
, bb_b
));
9941 ASSERT_EQ (bb_a
, get_immediate_dominator (CDI_DOMINATORS
, bb_c
));
9942 ASSERT_EQ (bb_a
, get_immediate_dominator (CDI_DOMINATORS
, bb_d
));
9943 vec
<basic_block
> dom_by_a
= get_dominated_by (CDI_DOMINATORS
, bb_a
);
9944 ASSERT_EQ (3, dom_by_a
.length ()); /* B, C, D, in some order. */
9945 dom_by_a
.release ();
9946 vec
<basic_block
> dom_by_b
= get_dominated_by (CDI_DOMINATORS
, bb_b
);
9947 ASSERT_EQ (0, dom_by_b
.length ());
9948 dom_by_b
.release ();
9949 free_dominance_info (CDI_DOMINATORS
);
9951 /* Similarly for post-dominance. */
9952 calculate_dominance_info (CDI_POST_DOMINATORS
);
9953 ASSERT_EQ (bb_d
, get_immediate_dominator (CDI_POST_DOMINATORS
, bb_a
));
9954 ASSERT_EQ (bb_d
, get_immediate_dominator (CDI_POST_DOMINATORS
, bb_b
));
9955 ASSERT_EQ (bb_d
, get_immediate_dominator (CDI_POST_DOMINATORS
, bb_c
));
9956 vec
<basic_block
> postdom_by_d
= get_dominated_by (CDI_POST_DOMINATORS
, bb_d
);
9957 ASSERT_EQ (3, postdom_by_d
.length ()); /* A, B, C in some order. */
9958 postdom_by_d
.release ();
9959 vec
<basic_block
> postdom_by_b
= get_dominated_by (CDI_POST_DOMINATORS
, bb_b
);
9960 ASSERT_EQ (0, postdom_by_b
.length ());
9961 postdom_by_b
.release ();
9962 free_dominance_info (CDI_POST_DOMINATORS
);
9967 /* Verify that we can handle a CFG containing a "complete" aka
9968 fully-connected subgraph (where A B C D below all have edges
9969 pointing to each other node, also to themselves).
9987 test_fully_connected ()
9989 gimple_register_cfg_hooks ();
9991 tree fndecl
= push_fndecl ("cfg_fully_connected");
9992 function
*fun
= DECL_STRUCT_FUNCTION (fndecl
);
9996 /* Create some empty blocks. */
9997 auto_vec
<basic_block
> subgraph_nodes
;
9998 for (int i
= 0; i
< n
; i
++)
9999 subgraph_nodes
.safe_push (create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun
)));
10001 ASSERT_EQ (n
+ 2, n_basic_blocks_for_fn (fun
));
10002 ASSERT_EQ (0, n_edges_for_fn (fun
));
10004 /* Create the edges. */
10005 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun
), subgraph_nodes
[0], EDGE_FALLTHRU
);
10006 make_edge (subgraph_nodes
[0], EXIT_BLOCK_PTR_FOR_FN (fun
), 0);
10007 for (int i
= 0; i
< n
; i
++)
10008 for (int j
= 0; j
< n
; j
++)
10009 make_edge (subgraph_nodes
[i
], subgraph_nodes
[j
], 0);
10011 /* Verify the edges. */
10012 ASSERT_EQ (2 + (n
* n
), n_edges_for_fn (fun
));
10013 /* The first one is linked to ENTRY/EXIT as well as itself and
10014 everything else. */
10015 ASSERT_EQ (n
+ 1, subgraph_nodes
[0]->preds
->length ());
10016 ASSERT_EQ (n
+ 1, subgraph_nodes
[0]->succs
->length ());
10017 /* The other ones in the subgraph are linked to everything in
10018 the subgraph (including themselves). */
10019 for (int i
= 1; i
< n
; i
++)
10021 ASSERT_EQ (n
, subgraph_nodes
[i
]->preds
->length ());
10022 ASSERT_EQ (n
, subgraph_nodes
[i
]->succs
->length ());
10025 /* Verify the dominance information. */
10026 calculate_dominance_info (CDI_DOMINATORS
);
10027 /* The initial block in the subgraph should be dominated by ENTRY. */
10028 ASSERT_EQ (ENTRY_BLOCK_PTR_FOR_FN (fun
),
10029 get_immediate_dominator (CDI_DOMINATORS
,
10030 subgraph_nodes
[0]));
10031 /* Every other block in the subgraph should be dominated by the
10033 for (int i
= 1; i
< n
; i
++)
10034 ASSERT_EQ (subgraph_nodes
[0],
10035 get_immediate_dominator (CDI_DOMINATORS
,
10036 subgraph_nodes
[i
]));
10037 free_dominance_info (CDI_DOMINATORS
);
10039 /* Similarly for post-dominance. */
10040 calculate_dominance_info (CDI_POST_DOMINATORS
);
10041 /* The initial block in the subgraph should be postdominated by EXIT. */
10042 ASSERT_EQ (EXIT_BLOCK_PTR_FOR_FN (fun
),
10043 get_immediate_dominator (CDI_POST_DOMINATORS
,
10044 subgraph_nodes
[0]));
10045 /* Every other block in the subgraph should be postdominated by the
10046 initial block, since that leads to EXIT. */
10047 for (int i
= 1; i
< n
; i
++)
10048 ASSERT_EQ (subgraph_nodes
[0],
10049 get_immediate_dominator (CDI_POST_DOMINATORS
,
10050 subgraph_nodes
[i
]));
10051 free_dominance_info (CDI_POST_DOMINATORS
);
10056 /* Run all of the selftests within this file. */
10059 tree_cfg_c_tests ()
10061 test_linear_chain ();
10063 test_fully_connected ();
10066 } // namespace selftest
10068 /* TODO: test the dominator/postdominator logic with various graphs/nodes:
10071 - switch statement (a block with many out-edges)
10072 - something that jumps to itself
10075 #endif /* CHECKING_P */