1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2018, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Aspects
; use Aspects
;
27 with Atree
; use Atree
;
28 with Debug
; use Debug
;
29 with Einfo
; use Einfo
;
30 with Elists
; use Elists
;
31 with Errout
; use Errout
;
32 with Exp_Util
; use Exp_Util
;
33 with Itypes
; use Itypes
;
35 with Lib
.Xref
; use Lib
.Xref
;
36 with Namet
; use Namet
;
37 with Namet
.Sp
; use Namet
.Sp
;
38 with Nlists
; use Nlists
;
39 with Nmake
; use Nmake
;
41 with Output
; use Output
;
42 with Restrict
; use Restrict
;
43 with Rident
; use Rident
;
45 with Sem_Aux
; use Sem_Aux
;
46 with Sem_Case
; use Sem_Case
;
47 with Sem_Cat
; use Sem_Cat
;
48 with Sem_Ch3
; use Sem_Ch3
;
49 with Sem_Ch6
; use Sem_Ch6
;
50 with Sem_Ch8
; use Sem_Ch8
;
51 with Sem_Dim
; use Sem_Dim
;
52 with Sem_Disp
; use Sem_Disp
;
53 with Sem_Dist
; use Sem_Dist
;
54 with Sem_Eval
; use Sem_Eval
;
55 with Sem_Res
; use Sem_Res
;
56 with Sem_Type
; use Sem_Type
;
57 with Sem_Util
; use Sem_Util
;
58 with Sem_Warn
; use Sem_Warn
;
59 with Stand
; use Stand
;
60 with Sinfo
; use Sinfo
;
61 with Snames
; use Snames
;
62 with Tbuild
; use Tbuild
;
63 with Uintp
; use Uintp
;
65 package body Sem_Ch4
is
67 -- Tables which speed up the identification of dangerous calls to Ada 2012
68 -- functions with writable actuals (AI05-0144).
70 -- The following table enumerates the Ada constructs which may evaluate in
71 -- arbitrary order. It does not cover all the language constructs which can
72 -- be evaluated in arbitrary order but the subset needed for AI05-0144.
74 Has_Arbitrary_Evaluation_Order
: constant array (Node_Kind
) of Boolean :=
76 N_Assignment_Statement
=> True,
77 N_Entry_Call_Statement
=> True,
78 N_Extension_Aggregate
=> True,
79 N_Full_Type_Declaration
=> True,
80 N_Indexed_Component
=> True,
81 N_Object_Declaration
=> True,
85 N_Array_Type_Definition
=> True,
86 N_Membership_Test
=> True,
88 N_Subprogram_Call
=> True,
91 -- The following table enumerates the nodes on which we stop climbing when
92 -- locating the outermost Ada construct that can be evaluated in arbitrary
95 Stop_Subtree_Climbing
: constant array (Node_Kind
) of Boolean :=
97 N_Assignment_Statement
=> True,
98 N_Entry_Call_Statement
=> True,
99 N_Extended_Return_Statement
=> True,
100 N_Extension_Aggregate
=> True,
101 N_Full_Type_Declaration
=> True,
102 N_Object_Declaration
=> True,
103 N_Object_Renaming_Declaration
=> True,
104 N_Package_Specification
=> True,
106 N_Procedure_Call_Statement
=> True,
107 N_Simple_Return_Statement
=> True,
108 N_Has_Condition
=> True,
111 -----------------------
112 -- Local Subprograms --
113 -----------------------
115 procedure Analyze_Concatenation_Rest
(N
: Node_Id
);
116 -- Does the "rest" of the work of Analyze_Concatenation, after the left
117 -- operand has been analyzed. See Analyze_Concatenation for details.
119 procedure Analyze_Expression
(N
: Node_Id
);
120 -- For expressions that are not names, this is just a call to analyze. If
121 -- the expression is a name, it may be a call to a parameterless function,
122 -- and if so must be converted into an explicit call node and analyzed as
123 -- such. This deproceduring must be done during the first pass of overload
124 -- resolution, because otherwise a procedure call with overloaded actuals
125 -- may fail to resolve.
127 procedure Analyze_Operator_Call
(N
: Node_Id
; Op_Id
: Entity_Id
);
128 -- Analyze a call of the form "+"(x, y), etc. The prefix of the call is an
129 -- operator name or an expanded name whose selector is an operator name,
130 -- and one possible interpretation is as a predefined operator.
132 procedure Analyze_Overloaded_Selected_Component
(N
: Node_Id
);
133 -- If the prefix of a selected_component is overloaded, the proper
134 -- interpretation that yields a record type with the proper selector
135 -- name must be selected.
137 procedure Analyze_User_Defined_Binary_Op
(N
: Node_Id
; Op_Id
: Entity_Id
);
138 -- Procedure to analyze a user defined binary operator, which is resolved
139 -- like a function, but instead of a list of actuals it is presented
140 -- with the left and right operands of an operator node.
142 procedure Analyze_User_Defined_Unary_Op
(N
: Node_Id
; Op_Id
: Entity_Id
);
143 -- Procedure to analyze a user defined unary operator, which is resolved
144 -- like a function, but instead of a list of actuals, it is presented with
145 -- the operand of the operator node.
147 procedure Ambiguous_Operands
(N
: Node_Id
);
148 -- For equality, membership, and comparison operators with overloaded
149 -- arguments, list possible interpretations.
151 procedure Analyze_One_Call
155 Success
: out Boolean;
156 Skip_First
: Boolean := False);
157 -- Check one interpretation of an overloaded subprogram name for
158 -- compatibility with the types of the actuals in a call. If there is a
159 -- single interpretation which does not match, post error if Report is
162 -- Nam is the entity that provides the formals against which the actuals
163 -- are checked. Nam is either the name of a subprogram, or the internal
164 -- subprogram type constructed for an access_to_subprogram. If the actuals
165 -- are compatible with Nam, then Nam is added to the list of candidate
166 -- interpretations for N, and Success is set to True.
168 -- The flag Skip_First is used when analyzing a call that was rewritten
169 -- from object notation. In this case the first actual may have to receive
170 -- an explicit dereference, depending on the first formal of the operation
171 -- being called. The caller will have verified that the object is legal
172 -- for the call. If the remaining parameters match, the first parameter
173 -- will rewritten as a dereference if needed, prior to completing analysis.
175 procedure Check_Misspelled_Selector
178 -- Give possible misspelling message if Sel seems likely to be a mis-
179 -- spelling of one of the selectors of the Prefix. This is called by
180 -- Analyze_Selected_Component after producing an invalid selector error
183 function Defined_In_Scope
(T
: Entity_Id
; S
: Entity_Id
) return Boolean;
184 -- Verify that type T is declared in scope S. Used to find interpretations
185 -- for operators given by expanded names. This is abstracted as a separate
186 -- function to handle extensions to System, where S is System, but T is
187 -- declared in the extension.
189 procedure Find_Arithmetic_Types
193 -- L and R are the operands of an arithmetic operator. Find consistent
194 -- pairs of interpretations for L and R that have a numeric type consistent
195 -- with the semantics of the operator.
197 procedure Find_Comparison_Types
201 -- L and R are operands of a comparison operator. Find consistent pairs of
202 -- interpretations for L and R.
204 procedure Find_Concatenation_Types
208 -- For the four varieties of concatenation
210 procedure Find_Equality_Types
214 -- Ditto for equality operators
216 procedure Find_Boolean_Types
220 -- Ditto for binary logical operations
222 procedure Find_Negation_Types
226 -- Find consistent interpretation for operand of negation operator
228 procedure Find_Non_Universal_Interpretations
233 -- For equality and comparison operators, the result is always boolean, and
234 -- the legality of the operation is determined from the visibility of the
235 -- operand types. If one of the operands has a universal interpretation,
236 -- the legality check uses some compatible non-universal interpretation of
237 -- the other operand. N can be an operator node, or a function call whose
238 -- name is an operator designator. Any_Access, which is the initial type of
239 -- the literal NULL, is a universal type for the purpose of this routine.
241 function Find_Primitive_Operation
(N
: Node_Id
) return Boolean;
242 -- Find candidate interpretations for the name Obj.Proc when it appears in
243 -- a subprogram renaming declaration.
245 procedure Find_Unary_Types
249 -- Unary arithmetic types: plus, minus, abs
251 procedure Check_Arithmetic_Pair
255 -- Subsidiary procedure to Find_Arithmetic_Types. T1 and T2 are valid types
256 -- for left and right operand. Determine whether they constitute a valid
257 -- pair for the given operator, and record the corresponding interpretation
258 -- of the operator node. The node N may be an operator node (the usual
259 -- case) or a function call whose prefix is an operator designator. In
260 -- both cases Op_Id is the operator name itself.
262 procedure Diagnose_Call
(N
: Node_Id
; Nam
: Node_Id
);
263 -- Give detailed information on overloaded call where none of the
264 -- interpretations match. N is the call node, Nam the designator for
265 -- the overloaded entity being called.
267 function Junk_Operand
(N
: Node_Id
) return Boolean;
268 -- Test for an operand that is an inappropriate entity (e.g. a package
269 -- name or a label). If so, issue an error message and return True. If
270 -- the operand is not an inappropriate entity kind, return False.
272 procedure Operator_Check
(N
: Node_Id
);
273 -- Verify that an operator has received some valid interpretation. If none
274 -- was found, determine whether a use clause would make the operation
275 -- legal. The variable Candidate_Type (defined in Sem_Type) is set for
276 -- every type compatible with the operator, even if the operator for the
277 -- type is not directly visible. The routine uses this type to emit a more
278 -- informative message.
280 function Process_Implicit_Dereference_Prefix
282 P
: Node_Id
) return Entity_Id
;
283 -- Called when P is the prefix of an implicit dereference, denoting an
284 -- object E. The function returns the designated type of the prefix, taking
285 -- into account that the designated type of an anonymous access type may be
286 -- a limited view, when the nonlimited view is visible.
288 -- If in semantics only mode (-gnatc or generic), the function also records
289 -- that the prefix is a reference to E, if any. Normally, such a reference
290 -- is generated only when the implicit dereference is expanded into an
291 -- explicit one, but for consistency we must generate the reference when
292 -- expansion is disabled as well.
294 procedure Remove_Abstract_Operations
(N
: Node_Id
);
295 -- Ada 2005: implementation of AI-310. An abstract non-dispatching
296 -- operation is not a candidate interpretation.
298 function Try_Container_Indexing
301 Exprs
: List_Id
) return Boolean;
302 -- AI05-0139: Generalized indexing to support iterators over containers
304 function Try_Indexed_Call
308 Skip_First
: Boolean) return Boolean;
309 -- If a function has defaults for all its actuals, a call to it may in fact
310 -- be an indexing on the result of the call. Try_Indexed_Call attempts the
311 -- interpretation as an indexing, prior to analysis as a call. If both are
312 -- possible, the node is overloaded with both interpretations (same symbol
313 -- but two different types). If the call is written in prefix form, the
314 -- prefix becomes the first parameter in the call, and only the remaining
315 -- actuals must be checked for the presence of defaults.
317 function Try_Indirect_Call
320 Typ
: Entity_Id
) return Boolean;
321 -- Similarly, a function F that needs no actuals can return an access to a
322 -- subprogram, and the call F (X) interpreted as F.all (X). In this case
323 -- the call may be overloaded with both interpretations.
325 procedure wpo
(T
: Entity_Id
);
326 pragma Warnings
(Off
, wpo
);
327 -- Used for debugging: obtain list of primitive operations even if
328 -- type is not frozen and dispatch table is not built yet.
330 ------------------------
331 -- Ambiguous_Operands --
332 ------------------------
334 procedure Ambiguous_Operands
(N
: Node_Id
) is
335 procedure List_Operand_Interps
(Opnd
: Node_Id
);
337 --------------------------
338 -- List_Operand_Interps --
339 --------------------------
341 procedure List_Operand_Interps
(Opnd
: Node_Id
) is
342 Nam
: Node_Id
:= Empty
;
346 if Is_Overloaded
(Opnd
) then
347 if Nkind
(Opnd
) in N_Op
then
350 elsif Nkind
(Opnd
) = N_Function_Call
then
353 elsif Ada_Version
>= Ada_2012
then
359 Get_First_Interp
(Opnd
, I
, It
);
360 while Present
(It
.Nam
) loop
361 if Has_Implicit_Dereference
(It
.Typ
) then
363 ("can be interpreted as implicit dereference", Opnd
);
367 Get_Next_Interp
(I
, It
);
378 if Opnd
= Left_Opnd
(N
) then
380 ("\left operand has the following interpretations", N
);
383 ("\right operand has the following interpretations", N
);
387 List_Interps
(Nam
, Err
);
388 end List_Operand_Interps
;
390 -- Start of processing for Ambiguous_Operands
393 if Nkind
(N
) in N_Membership_Test
then
394 Error_Msg_N
("ambiguous operands for membership", N
);
396 elsif Nkind_In
(N
, N_Op_Eq
, N_Op_Ne
) then
397 Error_Msg_N
("ambiguous operands for equality", N
);
400 Error_Msg_N
("ambiguous operands for comparison", N
);
403 if All_Errors_Mode
then
404 List_Operand_Interps
(Left_Opnd
(N
));
405 List_Operand_Interps
(Right_Opnd
(N
));
407 Error_Msg_N
("\use -gnatf switch for details", N
);
409 end Ambiguous_Operands
;
411 -----------------------
412 -- Analyze_Aggregate --
413 -----------------------
415 -- Most of the analysis of Aggregates requires that the type be known, and
416 -- is therefore put off until resolution of the context. Delta aggregates
417 -- have a base component that determines the enclosing aggregate type so
418 -- its type can be ascertained earlier. This also allows delta aggregates
419 -- to appear in the context of a record type with a private extension, as
420 -- per the latest update of AI12-0127.
422 procedure Analyze_Aggregate
(N
: Node_Id
) is
424 if No
(Etype
(N
)) then
425 if Nkind
(N
) = N_Delta_Aggregate
then
427 Base
: constant Node_Id
:= Expression
(N
);
435 -- If the base is overloaded, propagate interpretations to the
436 -- enclosing aggregate.
438 if Is_Overloaded
(Base
) then
439 Get_First_Interp
(Base
, I
, It
);
440 Set_Etype
(N
, Any_Type
);
442 while Present
(It
.Nam
) loop
443 Add_One_Interp
(N
, It
.Typ
, It
.Typ
);
444 Get_Next_Interp
(I
, It
);
448 Set_Etype
(N
, Etype
(Base
));
453 Set_Etype
(N
, Any_Composite
);
456 end Analyze_Aggregate
;
458 -----------------------
459 -- Analyze_Allocator --
460 -----------------------
462 procedure Analyze_Allocator
(N
: Node_Id
) is
463 Loc
: constant Source_Ptr
:= Sloc
(N
);
464 Sav_Errs
: constant Nat
:= Serious_Errors_Detected
;
465 E
: Node_Id
:= Expression
(N
);
466 Acc_Type
: Entity_Id
;
473 Check_SPARK_05_Restriction
("allocator is not allowed", N
);
475 -- Deal with allocator restrictions
477 -- In accordance with H.4(7), the No_Allocators restriction only applies
478 -- to user-written allocators. The same consideration applies to the
479 -- No_Standard_Allocators_Before_Elaboration restriction.
481 if Comes_From_Source
(N
) then
482 Check_Restriction
(No_Allocators
, N
);
484 -- Processing for No_Standard_Allocators_After_Elaboration, loop to
485 -- look at enclosing context, checking task/main subprogram case.
489 while Present
(P
) loop
491 -- For the task case we need a handled sequence of statements,
492 -- where the occurrence of the allocator is within the statements
493 -- and the parent is a task body
495 if Nkind
(P
) = N_Handled_Sequence_Of_Statements
496 and then Is_List_Member
(C
)
497 and then List_Containing
(C
) = Statements
(P
)
499 Onode
:= Original_Node
(Parent
(P
));
501 -- Check for allocator within task body, this is a definite
502 -- violation of No_Allocators_After_Elaboration we can detect
505 if Nkind
(Onode
) = N_Task_Body
then
507 (No_Standard_Allocators_After_Elaboration
, N
);
512 -- The other case is appearance in a subprogram body. This is
513 -- a violation if this is a library level subprogram with no
514 -- parameters. Note that this is now a static error even if the
515 -- subprogram is not the main program (this is a change, in an
516 -- earlier version only the main program was affected, and the
517 -- check had to be done in the binder.
519 if Nkind
(P
) = N_Subprogram_Body
520 and then Nkind
(Parent
(P
)) = N_Compilation_Unit
521 and then No
(Parameter_Specifications
(Specification
(P
)))
524 (No_Standard_Allocators_After_Elaboration
, N
);
532 -- Ada 2012 (AI05-0111-3): Analyze the subpool_specification, if
533 -- any. The expected type for the name is any type. A non-overloading
534 -- rule then requires it to be of a type descended from
535 -- System.Storage_Pools.Subpools.Subpool_Handle.
537 -- This isn't exactly what the AI says, but it seems to be the right
538 -- rule. The AI should be fixed.???
541 Subpool
: constant Node_Id
:= Subpool_Handle_Name
(N
);
544 if Present
(Subpool
) then
547 if Is_Overloaded
(Subpool
) then
548 Error_Msg_N
("ambiguous subpool handle", Subpool
);
551 -- Check that Etype (Subpool) is descended from Subpool_Handle
557 -- Analyze the qualified expression or subtype indication
559 if Nkind
(E
) = N_Qualified_Expression
then
560 Acc_Type
:= Create_Itype
(E_Allocator_Type
, N
);
561 Set_Etype
(Acc_Type
, Acc_Type
);
562 Find_Type
(Subtype_Mark
(E
));
564 -- Analyze the qualified expression, and apply the name resolution
565 -- rule given in 4.7(3).
568 Type_Id
:= Etype
(E
);
569 Set_Directly_Designated_Type
(Acc_Type
, Type_Id
);
571 -- A qualified expression requires an exact match of the type,
572 -- class-wide matching is not allowed.
574 -- if Is_Class_Wide_Type (Type_Id)
575 -- and then Base_Type
576 -- (Etype (Expression (E))) /= Base_Type (Type_Id)
578 -- Wrong_Type (Expression (E), Type_Id);
581 -- We don't analyze the qualified expression itself because it's
582 -- part of the allocator. It is fully analyzed and resolved when
583 -- the allocator is resolved with the context type.
585 Set_Etype
(E
, Type_Id
);
587 -- Case where allocator has a subtype indication
592 Base_Typ
: Entity_Id
;
595 -- If the allocator includes a N_Subtype_Indication then a
596 -- constraint is present, otherwise the node is a subtype mark.
597 -- Introduce an explicit subtype declaration into the tree
598 -- defining some anonymous subtype and rewrite the allocator to
599 -- use this subtype rather than the subtype indication.
601 -- It is important to introduce the explicit subtype declaration
602 -- so that the bounds of the subtype indication are attached to
603 -- the tree in case the allocator is inside a generic unit.
605 -- Finally, if there is no subtype indication and the type is
606 -- a tagged unconstrained type with discriminants, the designated
607 -- object is constrained by their default values, and it is
608 -- simplest to introduce an explicit constraint now. In some cases
609 -- this is done during expansion, but freeze actions are certain
610 -- to be emitted in the proper order if constraint is explicit.
612 if Is_Entity_Name
(E
) and then Expander_Active
then
614 Type_Id
:= Entity
(E
);
616 if Is_Tagged_Type
(Type_Id
)
617 and then Has_Discriminants
(Type_Id
)
618 and then not Is_Constrained
(Type_Id
)
621 (Discriminant_Default_Value
622 (First_Discriminant
(Type_Id
)))
625 Constr
: constant List_Id
:= New_List
;
626 Loc
: constant Source_Ptr
:= Sloc
(E
);
627 Discr
: Entity_Id
:= First_Discriminant
(Type_Id
);
630 if Present
(Discriminant_Default_Value
(Discr
)) then
631 while Present
(Discr
) loop
632 Append
(Discriminant_Default_Value
(Discr
), Constr
);
633 Next_Discriminant
(Discr
);
637 Make_Subtype_Indication
(Loc
,
638 Subtype_Mark
=> New_Occurrence_Of
(Type_Id
, Loc
),
640 Make_Index_Or_Discriminant_Constraint
(Loc
,
641 Constraints
=> Constr
)));
647 if Nkind
(E
) = N_Subtype_Indication
then
649 -- A constraint is only allowed for a composite type in Ada
650 -- 95. In Ada 83, a constraint is also allowed for an
651 -- access-to-composite type, but the constraint is ignored.
653 Find_Type
(Subtype_Mark
(E
));
654 Base_Typ
:= Entity
(Subtype_Mark
(E
));
656 if Is_Elementary_Type
(Base_Typ
) then
657 if not (Ada_Version
= Ada_83
658 and then Is_Access_Type
(Base_Typ
))
660 Error_Msg_N
("constraint not allowed here", E
);
662 if Nkind
(Constraint
(E
)) =
663 N_Index_Or_Discriminant_Constraint
665 Error_Msg_N
-- CODEFIX
666 ("\if qualified expression was meant, " &
667 "use apostrophe", Constraint
(E
));
671 -- Get rid of the bogus constraint:
673 Rewrite
(E
, New_Copy_Tree
(Subtype_Mark
(E
)));
674 Analyze_Allocator
(N
);
678 if Expander_Active
then
679 Def_Id
:= Make_Temporary
(Loc
, 'S');
682 Make_Subtype_Declaration
(Loc
,
683 Defining_Identifier
=> Def_Id
,
684 Subtype_Indication
=> Relocate_Node
(E
)));
686 if Sav_Errs
/= Serious_Errors_Detected
687 and then Nkind
(Constraint
(E
)) =
688 N_Index_Or_Discriminant_Constraint
690 Error_Msg_N
-- CODEFIX
691 ("if qualified expression was meant, "
692 & "use apostrophe!", Constraint
(E
));
695 E
:= New_Occurrence_Of
(Def_Id
, Loc
);
696 Rewrite
(Expression
(N
), E
);
700 Type_Id
:= Process_Subtype
(E
, N
);
701 Acc_Type
:= Create_Itype
(E_Allocator_Type
, N
);
702 Set_Etype
(Acc_Type
, Acc_Type
);
703 Set_Directly_Designated_Type
(Acc_Type
, Type_Id
);
704 Check_Fully_Declared
(Type_Id
, N
);
706 -- Ada 2005 (AI-231): If the designated type is itself an access
707 -- type that excludes null, its default initialization will
708 -- be a null object, and we can insert an unconditional raise
709 -- before the allocator.
711 -- Ada 2012 (AI-104): A not null indication here is altogether
714 if Can_Never_Be_Null
(Type_Id
) then
716 Not_Null_Check
: constant Node_Id
:=
717 Make_Raise_Constraint_Error
(Sloc
(E
),
718 Reason
=> CE_Null_Not_Allowed
);
721 if Expander_Active
then
722 Insert_Action
(N
, Not_Null_Check
);
723 Analyze
(Not_Null_Check
);
725 elsif Warn_On_Ada_2012_Compatibility
then
727 ("null value not allowed here in Ada 2012?y?", E
);
732 -- Check for missing initialization. Skip this check if we already
733 -- had errors on analyzing the allocator, since in that case these
734 -- are probably cascaded errors.
736 if not Is_Definite_Subtype
(Type_Id
)
737 and then Serious_Errors_Detected
= Sav_Errs
739 -- The build-in-place machinery may produce an allocator when
740 -- the designated type is indefinite but the underlying type is
741 -- not. In this case the unknown discriminants are meaningless
742 -- and should not trigger error messages. Check the parent node
743 -- because the allocator is marked as coming from source.
745 if Present
(Underlying_Type
(Type_Id
))
746 and then Is_Definite_Subtype
(Underlying_Type
(Type_Id
))
747 and then not Comes_From_Source
(Parent
(N
))
751 -- An unusual case arises when the parent of a derived type is
752 -- a limited record extension with unknown discriminants, and
753 -- its full view has no discriminants.
755 -- A more general fix might be to create the proper underlying
756 -- type for such a derived type, but it is a record type with
757 -- no private attributes, so this required extending the
758 -- meaning of this attribute. ???
760 elsif Ekind
(Etype
(Type_Id
)) = E_Record_Type_With_Private
761 and then Present
(Underlying_Type
(Etype
(Type_Id
)))
763 not Has_Discriminants
(Underlying_Type
(Etype
(Type_Id
)))
764 and then not Comes_From_Source
(Parent
(N
))
768 elsif Is_Class_Wide_Type
(Type_Id
) then
770 ("initialization required in class-wide allocation", N
);
773 if Ada_Version
< Ada_2005
774 and then Is_Limited_Type
(Type_Id
)
776 Error_Msg_N
("unconstrained allocation not allowed", N
);
778 if Is_Array_Type
(Type_Id
) then
780 ("\constraint with array bounds required", N
);
782 elsif Has_Unknown_Discriminants
(Type_Id
) then
785 else pragma Assert
(Has_Discriminants
(Type_Id
));
787 ("\constraint with discriminant values required", N
);
790 -- Limited Ada 2005 and general nonlimited case
794 ("uninitialized unconstrained allocation not "
797 if Is_Array_Type
(Type_Id
) then
799 ("\qualified expression or constraint with "
800 & "array bounds required", N
);
802 elsif Has_Unknown_Discriminants
(Type_Id
) then
803 Error_Msg_N
("\qualified expression required", N
);
805 else pragma Assert
(Has_Discriminants
(Type_Id
));
807 ("\qualified expression or constraint with "
808 & "discriminant values required", N
);
816 if Is_Abstract_Type
(Type_Id
) then
817 Error_Msg_N
("cannot allocate abstract object", E
);
820 if Has_Task
(Designated_Type
(Acc_Type
)) then
821 Check_Restriction
(No_Tasking
, N
);
822 Check_Restriction
(Max_Tasks
, N
);
823 Check_Restriction
(No_Task_Allocators
, N
);
826 -- Check restriction against dynamically allocated protected objects
828 if Has_Protected
(Designated_Type
(Acc_Type
)) then
829 Check_Restriction
(No_Protected_Type_Allocators
, N
);
832 -- AI05-0013-1: No_Nested_Finalization forbids allocators if the access
833 -- type is nested, and the designated type needs finalization. The rule
834 -- is conservative in that class-wide types need finalization.
836 if Needs_Finalization
(Designated_Type
(Acc_Type
))
837 and then not Is_Library_Level_Entity
(Acc_Type
)
839 Check_Restriction
(No_Nested_Finalization
, N
);
842 -- Check that an allocator of a nested access type doesn't create a
843 -- protected object when restriction No_Local_Protected_Objects applies.
845 if Has_Protected
(Designated_Type
(Acc_Type
))
846 and then not Is_Library_Level_Entity
(Acc_Type
)
848 Check_Restriction
(No_Local_Protected_Objects
, N
);
851 -- Likewise for No_Local_Timing_Events
853 if Has_Timing_Event
(Designated_Type
(Acc_Type
))
854 and then not Is_Library_Level_Entity
(Acc_Type
)
856 Check_Restriction
(No_Local_Timing_Events
, N
);
859 -- If the No_Streams restriction is set, check that the type of the
860 -- object is not, and does not contain, any subtype derived from
861 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
862 -- Has_Stream just for efficiency reasons. There is no point in
863 -- spending time on a Has_Stream check if the restriction is not set.
865 if Restriction_Check_Required
(No_Streams
) then
866 if Has_Stream
(Designated_Type
(Acc_Type
)) then
867 Check_Restriction
(No_Streams
, N
);
871 Set_Etype
(N
, Acc_Type
);
873 if not Is_Library_Level_Entity
(Acc_Type
) then
874 Check_Restriction
(No_Local_Allocators
, N
);
877 if Serious_Errors_Detected
> Sav_Errs
then
878 Set_Error_Posted
(N
);
879 Set_Etype
(N
, Any_Type
);
881 end Analyze_Allocator
;
883 ---------------------------
884 -- Analyze_Arithmetic_Op --
885 ---------------------------
887 procedure Analyze_Arithmetic_Op
(N
: Node_Id
) is
888 L
: constant Node_Id
:= Left_Opnd
(N
);
889 R
: constant Node_Id
:= Right_Opnd
(N
);
893 Candidate_Type
:= Empty
;
894 Analyze_Expression
(L
);
895 Analyze_Expression
(R
);
897 -- If the entity is already set, the node is the instantiation of a
898 -- generic node with a non-local reference, or was manufactured by a
899 -- call to Make_Op_xxx. In either case the entity is known to be valid,
900 -- and we do not need to collect interpretations, instead we just get
901 -- the single possible interpretation.
905 if Present
(Op_Id
) then
906 if Ekind
(Op_Id
) = E_Operator
then
908 if Nkind_In
(N
, N_Op_Divide
, N_Op_Mod
, N_Op_Multiply
, N_Op_Rem
)
909 and then Treat_Fixed_As_Integer
(N
)
913 Set_Etype
(N
, Any_Type
);
914 Find_Arithmetic_Types
(L
, R
, Op_Id
, N
);
918 Set_Etype
(N
, Any_Type
);
919 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
922 -- Entity is not already set, so we do need to collect interpretations
925 Set_Etype
(N
, Any_Type
);
927 Op_Id
:= Get_Name_Entity_Id
(Chars
(N
));
928 while Present
(Op_Id
) loop
929 if Ekind
(Op_Id
) = E_Operator
930 and then Present
(Next_Entity
(First_Entity
(Op_Id
)))
932 Find_Arithmetic_Types
(L
, R
, Op_Id
, N
);
934 -- The following may seem superfluous, because an operator cannot
935 -- be generic, but this ignores the cleverness of the author of
938 elsif Is_Overloadable
(Op_Id
) then
939 Analyze_User_Defined_Binary_Op
(N
, Op_Id
);
942 Op_Id
:= Homonym
(Op_Id
);
947 Check_Function_Writable_Actuals
(N
);
948 end Analyze_Arithmetic_Op
;
954 -- Function, procedure, and entry calls are checked here. The Name in
955 -- the call may be overloaded. The actuals have been analyzed and may
956 -- themselves be overloaded. On exit from this procedure, the node N
957 -- may have zero, one or more interpretations. In the first case an
958 -- error message is produced. In the last case, the node is flagged
959 -- as overloaded and the interpretations are collected in All_Interp.
961 -- If the name is an Access_To_Subprogram, it cannot be overloaded, but
962 -- the type-checking is similar to that of other calls.
964 procedure Analyze_Call
(N
: Node_Id
) is
965 Actuals
: constant List_Id
:= Parameter_Associations
(N
);
966 Loc
: constant Source_Ptr
:= Sloc
(N
);
971 Success
: Boolean := False;
973 Deref
: Boolean := False;
974 -- Flag indicates whether an interpretation of the prefix is a
975 -- parameterless call that returns an access_to_subprogram.
977 procedure Check_Mixed_Parameter_And_Named_Associations
;
978 -- Check that parameter and named associations are not mixed. This is
979 -- a restriction in SPARK mode.
981 procedure Check_Writable_Actuals
(N
: Node_Id
);
982 -- If the call has out or in-out parameters then mark its outermost
983 -- enclosing construct as a node on which the writable actuals check
984 -- must be performed.
986 function Name_Denotes_Function
return Boolean;
987 -- If the type of the name is an access to subprogram, this may be the
988 -- type of a name, or the return type of the function being called. If
989 -- the name is not an entity then it can denote a protected function.
990 -- Until we distinguish Etype from Return_Type, we must use this routine
991 -- to resolve the meaning of the name in the call.
993 procedure No_Interpretation
;
994 -- Output error message when no valid interpretation exists
996 --------------------------------------------------
997 -- Check_Mixed_Parameter_And_Named_Associations --
998 --------------------------------------------------
1000 procedure Check_Mixed_Parameter_And_Named_Associations
is
1002 Named_Seen
: Boolean;
1005 Named_Seen
:= False;
1007 Actual
:= First
(Actuals
);
1008 while Present
(Actual
) loop
1009 case Nkind
(Actual
) is
1010 when N_Parameter_Association
=>
1012 Check_SPARK_05_Restriction
1013 ("named association cannot follow positional one",
1024 end Check_Mixed_Parameter_And_Named_Associations
;
1026 ----------------------------
1027 -- Check_Writable_Actuals --
1028 ----------------------------
1030 -- The identification of conflicts in calls to functions with writable
1031 -- actuals is performed in the analysis phase of the front end to ensure
1032 -- that it reports exactly the same errors compiling with and without
1033 -- expansion enabled. It is performed in two stages:
1035 -- 1) When a call to a function with out-mode parameters is found,
1036 -- we climb to the outermost enclosing construct that can be
1037 -- evaluated in arbitrary order and we mark it with the flag
1040 -- 2) When the analysis of the marked node is complete, we traverse
1041 -- its decorated subtree searching for conflicts (see function
1042 -- Sem_Util.Check_Function_Writable_Actuals).
1044 -- The unique exception to this general rule is for aggregates, since
1045 -- their analysis is performed by the front end in the resolution
1046 -- phase. For aggregates we do not climb to their enclosing construct:
1047 -- we restrict the analysis to the subexpressions initializing the
1048 -- aggregate components.
1050 -- This implies that the analysis of expressions containing aggregates
1051 -- is not complete, since there may be conflicts on writable actuals
1052 -- involving subexpressions of the enclosing logical or arithmetic
1053 -- expressions. However, we cannot wait and perform the analysis when
1054 -- the whole subtree is resolved, since the subtrees may be transformed,
1055 -- thus adding extra complexity and computation cost to identify and
1056 -- report exactly the same errors compiling with and without expansion
1059 procedure Check_Writable_Actuals
(N
: Node_Id
) is
1061 if Comes_From_Source
(N
)
1062 and then Present
(Get_Subprogram_Entity
(N
))
1063 and then Has_Out_Or_In_Out_Parameter
(Get_Subprogram_Entity
(N
))
1065 -- For procedures and entries there is no need to climb since
1066 -- we only need to check if the actuals of this call invoke
1067 -- functions whose out-mode parameters overlap.
1069 if Nkind
(N
) /= N_Function_Call
then
1070 Set_Check_Actuals
(N
);
1072 -- For calls to functions we climb to the outermost enclosing
1073 -- construct where the out-mode actuals of this function may
1074 -- introduce conflicts.
1078 Outermost
: Node_Id
:= Empty
; -- init to avoid warning
1082 while Present
(P
) loop
1083 -- For object declarations we can climb to the node from
1084 -- its object definition branch or from its initializing
1085 -- expression. We prefer to mark the child node as the
1086 -- outermost construct to avoid adding further complexity
1087 -- to the routine that will later take care of
1088 -- performing the writable actuals check.
1090 if Has_Arbitrary_Evaluation_Order
(Nkind
(P
))
1091 and then not Nkind_In
(P
, N_Assignment_Statement
,
1092 N_Object_Declaration
)
1097 -- Avoid climbing more than needed
1099 exit when Stop_Subtree_Climbing
(Nkind
(P
))
1100 or else (Nkind
(P
) = N_Range
1102 Nkind_In
(Parent
(P
), N_In
, N_Not_In
));
1107 Set_Check_Actuals
(Outermost
);
1111 end Check_Writable_Actuals
;
1113 ---------------------------
1114 -- Name_Denotes_Function --
1115 ---------------------------
1117 function Name_Denotes_Function
return Boolean is
1119 if Is_Entity_Name
(Nam
) then
1120 return Ekind
(Entity
(Nam
)) = E_Function
;
1121 elsif Nkind
(Nam
) = N_Selected_Component
then
1122 return Ekind
(Entity
(Selector_Name
(Nam
))) = E_Function
;
1126 end Name_Denotes_Function
;
1128 -----------------------
1129 -- No_Interpretation --
1130 -----------------------
1132 procedure No_Interpretation
is
1133 L
: constant Boolean := Is_List_Member
(N
);
1134 K
: constant Node_Kind
:= Nkind
(Parent
(N
));
1137 -- If the node is in a list whose parent is not an expression then it
1138 -- must be an attempted procedure call.
1140 if L
and then K
not in N_Subexpr
then
1141 if Ekind
(Entity
(Nam
)) = E_Generic_Procedure
then
1143 ("must instantiate generic procedure& before call",
1146 Error_Msg_N
("procedure or entry name expected", Nam
);
1149 -- Check for tasking cases where only an entry call will do
1152 and then Nkind_In
(K
, N_Entry_Call_Alternative
,
1153 N_Triggering_Alternative
)
1155 Error_Msg_N
("entry name expected", Nam
);
1157 -- Otherwise give general error message
1160 Error_Msg_N
("invalid prefix in call", Nam
);
1162 end No_Interpretation
;
1164 -- Start of processing for Analyze_Call
1167 if Restriction_Check_Required
(SPARK_05
) then
1168 Check_Mixed_Parameter_And_Named_Associations
;
1171 -- Initialize the type of the result of the call to the error type,
1172 -- which will be reset if the type is successfully resolved.
1174 Set_Etype
(N
, Any_Type
);
1178 if not Is_Overloaded
(Nam
) then
1180 -- Only one interpretation to check
1182 if Ekind
(Etype
(Nam
)) = E_Subprogram_Type
then
1183 Nam_Ent
:= Etype
(Nam
);
1185 -- If the prefix is an access_to_subprogram, this may be an indirect
1186 -- call. This is the case if the name in the call is not an entity
1187 -- name, or if it is a function name in the context of a procedure
1188 -- call. In this latter case, we have a call to a parameterless
1189 -- function that returns a pointer_to_procedure which is the entity
1190 -- being called. Finally, F (X) may be a call to a parameterless
1191 -- function that returns a pointer to a function with parameters.
1192 -- Note that if F returns an access-to-subprogram whose designated
1193 -- type is an array, F (X) cannot be interpreted as an indirect call
1194 -- through the result of the call to F.
1196 elsif Is_Access_Type
(Etype
(Nam
))
1197 and then Ekind
(Designated_Type
(Etype
(Nam
))) = E_Subprogram_Type
1199 (not Name_Denotes_Function
1200 or else Nkind
(N
) = N_Procedure_Call_Statement
1202 (Nkind
(Parent
(N
)) /= N_Explicit_Dereference
1203 and then Is_Entity_Name
(Nam
)
1204 and then No
(First_Formal
(Entity
(Nam
)))
1206 Is_Array_Type
(Etype
(Designated_Type
(Etype
(Nam
))))
1207 and then Present
(Actuals
)))
1209 Nam_Ent
:= Designated_Type
(Etype
(Nam
));
1210 Insert_Explicit_Dereference
(Nam
);
1212 -- Selected component case. Simple entry or protected operation,
1213 -- where the entry name is given by the selector name.
1215 elsif Nkind
(Nam
) = N_Selected_Component
then
1216 Nam_Ent
:= Entity
(Selector_Name
(Nam
));
1218 if not Ekind_In
(Nam_Ent
, E_Entry
,
1223 Error_Msg_N
("name in call is not a callable entity", Nam
);
1224 Set_Etype
(N
, Any_Type
);
1228 -- If the name is an Indexed component, it can be a call to a member
1229 -- of an entry family. The prefix must be a selected component whose
1230 -- selector is the entry. Analyze_Procedure_Call normalizes several
1231 -- kinds of call into this form.
1233 elsif Nkind
(Nam
) = N_Indexed_Component
then
1234 if Nkind
(Prefix
(Nam
)) = N_Selected_Component
then
1235 Nam_Ent
:= Entity
(Selector_Name
(Prefix
(Nam
)));
1237 Error_Msg_N
("name in call is not a callable entity", Nam
);
1238 Set_Etype
(N
, Any_Type
);
1242 elsif not Is_Entity_Name
(Nam
) then
1243 Error_Msg_N
("name in call is not a callable entity", Nam
);
1244 Set_Etype
(N
, Any_Type
);
1248 Nam_Ent
:= Entity
(Nam
);
1250 -- If not overloadable, this may be a generalized indexing
1251 -- operation with named associations. Rewrite again as an
1252 -- indexed component and analyze as container indexing.
1254 if not Is_Overloadable
(Nam_Ent
) then
1256 (Find_Value_Of_Aspect
1257 (Etype
(Nam_Ent
), Aspect_Constant_Indexing
))
1260 Make_Indexed_Component
(Sloc
(N
),
1262 Expressions
=> Parameter_Associations
(N
)));
1264 if Try_Container_Indexing
(N
, Nam
, Expressions
(N
)) then
1278 -- Operations generated for RACW stub types are called only through
1279 -- dispatching, and can never be the static interpretation of a call.
1281 if Is_RACW_Stub_Type_Operation
(Nam_Ent
) then
1286 Analyze_One_Call
(N
, Nam_Ent
, True, Success
);
1288 -- If this is an indirect call, the return type of the access_to
1289 -- subprogram may be an incomplete type. At the point of the call,
1290 -- use the full type if available, and at the same time update the
1291 -- return type of the access_to_subprogram.
1294 and then Nkind
(Nam
) = N_Explicit_Dereference
1295 and then Ekind
(Etype
(N
)) = E_Incomplete_Type
1296 and then Present
(Full_View
(Etype
(N
)))
1298 Set_Etype
(N
, Full_View
(Etype
(N
)));
1299 Set_Etype
(Nam_Ent
, Etype
(N
));
1305 -- An overloaded selected component must denote overloaded operations
1306 -- of a concurrent type. The interpretations are attached to the
1307 -- simple name of those operations.
1309 if Nkind
(Nam
) = N_Selected_Component
then
1310 Nam
:= Selector_Name
(Nam
);
1313 Get_First_Interp
(Nam
, X
, It
);
1314 while Present
(It
.Nam
) loop
1318 -- Name may be call that returns an access to subprogram, or more
1319 -- generally an overloaded expression one of whose interpretations
1320 -- yields an access to subprogram. If the name is an entity, we do
1321 -- not dereference, because the node is a call that returns the
1322 -- access type: note difference between f(x), where the call may
1323 -- return an access subprogram type, and f(x)(y), where the type
1324 -- returned by the call to f is implicitly dereferenced to analyze
1327 if Is_Access_Type
(Nam_Ent
) then
1328 Nam_Ent
:= Designated_Type
(Nam_Ent
);
1330 elsif Is_Access_Type
(Etype
(Nam_Ent
))
1332 (not Is_Entity_Name
(Nam
)
1333 or else Nkind
(N
) = N_Procedure_Call_Statement
)
1334 and then Ekind
(Designated_Type
(Etype
(Nam_Ent
)))
1337 Nam_Ent
:= Designated_Type
(Etype
(Nam_Ent
));
1339 if Is_Entity_Name
(Nam
) then
1344 -- If the call has been rewritten from a prefixed call, the first
1345 -- parameter has been analyzed, but may need a subsequent
1346 -- dereference, so skip its analysis now.
1348 if N
/= Original_Node
(N
)
1349 and then Nkind
(Original_Node
(N
)) = Nkind
(N
)
1350 and then Nkind
(Name
(N
)) /= Nkind
(Name
(Original_Node
(N
)))
1351 and then Present
(Parameter_Associations
(N
))
1352 and then Present
(Etype
(First
(Parameter_Associations
(N
))))
1355 (N
, Nam_Ent
, False, Success
, Skip_First
=> True);
1357 Analyze_One_Call
(N
, Nam_Ent
, False, Success
);
1360 -- If the interpretation succeeds, mark the proper type of the
1361 -- prefix (any valid candidate will do). If not, remove the
1362 -- candidate interpretation. If this is a parameterless call
1363 -- on an anonymous access to subprogram, X is a variable with
1364 -- an access discriminant D, the entity in the interpretation is
1365 -- D, so rewrite X as X.D.all.
1369 and then Nkind
(Parent
(N
)) /= N_Explicit_Dereference
1371 if Ekind
(It
.Nam
) = E_Discriminant
1372 and then Has_Implicit_Dereference
(It
.Nam
)
1375 Make_Explicit_Dereference
(Loc
,
1377 Make_Selected_Component
(Loc
,
1379 New_Occurrence_Of
(Entity
(Nam
), Loc
),
1381 New_Occurrence_Of
(It
.Nam
, Loc
))));
1387 Set_Entity
(Nam
, It
.Nam
);
1388 Insert_Explicit_Dereference
(Nam
);
1389 Set_Etype
(Nam
, Nam_Ent
);
1393 Set_Etype
(Nam
, It
.Typ
);
1396 elsif Nkind_In
(Name
(N
), N_Function_Call
, N_Selected_Component
)
1401 Get_Next_Interp
(X
, It
);
1404 -- If the name is the result of a function call, it can only be a
1405 -- call to a function returning an access to subprogram. Insert
1406 -- explicit dereference.
1408 if Nkind
(Nam
) = N_Function_Call
then
1409 Insert_Explicit_Dereference
(Nam
);
1412 if Etype
(N
) = Any_Type
then
1414 -- None of the interpretations is compatible with the actuals
1416 Diagnose_Call
(N
, Nam
);
1418 -- Special checks for uninstantiated put routines
1420 if Nkind
(N
) = N_Procedure_Call_Statement
1421 and then Is_Entity_Name
(Nam
)
1422 and then Chars
(Nam
) = Name_Put
1423 and then List_Length
(Actuals
) = 1
1426 Arg
: constant Node_Id
:= First
(Actuals
);
1430 if Nkind
(Arg
) = N_Parameter_Association
then
1431 Typ
:= Etype
(Explicit_Actual_Parameter
(Arg
));
1436 if Is_Signed_Integer_Type
(Typ
) then
1438 ("possible missing instantiation of "
1439 & "'Text_'I'O.'Integer_'I'O!", Nam
);
1441 elsif Is_Modular_Integer_Type
(Typ
) then
1443 ("possible missing instantiation of "
1444 & "'Text_'I'O.'Modular_'I'O!", Nam
);
1446 elsif Is_Floating_Point_Type
(Typ
) then
1448 ("possible missing instantiation of "
1449 & "'Text_'I'O.'Float_'I'O!", Nam
);
1451 elsif Is_Ordinary_Fixed_Point_Type
(Typ
) then
1453 ("possible missing instantiation of "
1454 & "'Text_'I'O.'Fixed_'I'O!", Nam
);
1456 elsif Is_Decimal_Fixed_Point_Type
(Typ
) then
1458 ("possible missing instantiation of "
1459 & "'Text_'I'O.'Decimal_'I'O!", Nam
);
1461 elsif Is_Enumeration_Type
(Typ
) then
1463 ("possible missing instantiation of "
1464 & "'Text_'I'O.'Enumeration_'I'O!", Nam
);
1469 elsif not Is_Overloaded
(N
)
1470 and then Is_Entity_Name
(Nam
)
1472 -- Resolution yields a single interpretation. Verify that the
1473 -- reference has capitalization consistent with the declaration.
1475 Set_Entity_With_Checks
(Nam
, Entity
(Nam
));
1476 Generate_Reference
(Entity
(Nam
), Nam
);
1478 Set_Etype
(Nam
, Etype
(Entity
(Nam
)));
1480 Remove_Abstract_Operations
(N
);
1486 if Ada_Version
>= Ada_2012
then
1488 -- Check if the call contains a function with writable actuals
1490 Check_Writable_Actuals
(N
);
1492 -- If found and the outermost construct that can be evaluated in
1493 -- an arbitrary order is precisely this call, then check all its
1496 Check_Function_Writable_Actuals
(N
);
1498 -- The return type of the function may be incomplete. This can be
1499 -- the case if the type is a generic formal, or a limited view. It
1500 -- can also happen when the function declaration appears before the
1501 -- full view of the type (which is legal in Ada 2012) and the call
1502 -- appears in a different unit, in which case the incomplete view
1503 -- must be replaced with the full view (or the nonlimited view)
1504 -- to prevent subsequent type errors. Note that the usual install/
1505 -- removal of limited_with clauses is not sufficient to handle this
1506 -- case, because the limited view may have been captured in another
1507 -- compilation unit that defines the current function.
1509 if Is_Incomplete_Type
(Etype
(N
)) then
1510 if Present
(Full_View
(Etype
(N
))) then
1511 if Is_Entity_Name
(Nam
) then
1512 Set_Etype
(Nam
, Full_View
(Etype
(N
)));
1513 Set_Etype
(Entity
(Nam
), Full_View
(Etype
(N
)));
1516 Set_Etype
(N
, Full_View
(Etype
(N
)));
1518 elsif From_Limited_With
(Etype
(N
))
1519 and then Present
(Non_Limited_View
(Etype
(N
)))
1521 Set_Etype
(N
, Non_Limited_View
(Etype
(N
)));
1523 -- If there is no completion for the type, this may be because
1524 -- there is only a limited view of it and there is nothing in
1525 -- the context of the current unit that has required a regular
1526 -- compilation of the unit containing the type. We recognize
1527 -- this unusual case by the fact that that unit is not analyzed.
1528 -- Note that the call being analyzed is in a different unit from
1529 -- the function declaration, and nothing indicates that the type
1530 -- is a limited view.
1532 elsif Ekind
(Scope
(Etype
(N
))) = E_Package
1533 and then Present
(Limited_View
(Scope
(Etype
(N
))))
1534 and then not Analyzed
(Unit_Declaration_Node
(Scope
(Etype
(N
))))
1537 ("cannot call function that returns limited view of}",
1541 ("\there must be a regular with_clause for package & in the "
1542 & "current unit, or in some unit in its context",
1543 N
, Scope
(Etype
(N
)));
1545 Set_Etype
(N
, Any_Type
);
1551 -----------------------------
1552 -- Analyze_Case_Expression --
1553 -----------------------------
1555 procedure Analyze_Case_Expression
(N
: Node_Id
) is
1556 procedure Non_Static_Choice_Error
(Choice
: Node_Id
);
1557 -- Error routine invoked by the generic instantiation below when
1558 -- the case expression has a non static choice.
1560 package Case_Choices_Analysis
is new
1561 Generic_Analyze_Choices
1562 (Process_Associated_Node
=> No_OP
);
1563 use Case_Choices_Analysis
;
1565 package Case_Choices_Checking
is new
1566 Generic_Check_Choices
1567 (Process_Empty_Choice
=> No_OP
,
1568 Process_Non_Static_Choice
=> Non_Static_Choice_Error
,
1569 Process_Associated_Node
=> No_OP
);
1570 use Case_Choices_Checking
;
1572 -----------------------------
1573 -- Non_Static_Choice_Error --
1574 -----------------------------
1576 procedure Non_Static_Choice_Error
(Choice
: Node_Id
) is
1578 Flag_Non_Static_Expr
1579 ("choice given in case expression is not static!", Choice
);
1580 end Non_Static_Choice_Error
;
1584 Expr
: constant Node_Id
:= Expression
(N
);
1586 Exp_Type
: Entity_Id
;
1587 Exp_Btype
: Entity_Id
;
1589 FirstX
: Node_Id
:= Empty
;
1590 -- First expression in the case for which there is some type information
1591 -- available, i.e. it is not Any_Type, which can happen because of some
1592 -- error, or from the use of e.g. raise Constraint_Error.
1594 Others_Present
: Boolean;
1595 -- Indicates if Others was present
1597 Wrong_Alt
: Node_Id
:= Empty
;
1598 -- For error reporting
1600 -- Start of processing for Analyze_Case_Expression
1603 if Comes_From_Source
(N
) then
1604 Check_Compiler_Unit
("case expression", N
);
1607 Analyze_And_Resolve
(Expr
, Any_Discrete
);
1608 Check_Unset_Reference
(Expr
);
1609 Exp_Type
:= Etype
(Expr
);
1610 Exp_Btype
:= Base_Type
(Exp_Type
);
1612 Alt
:= First
(Alternatives
(N
));
1613 while Present
(Alt
) loop
1614 if Error_Posted
(Expression
(Alt
)) then
1618 Analyze
(Expression
(Alt
));
1620 if No
(FirstX
) and then Etype
(Expression
(Alt
)) /= Any_Type
then
1621 FirstX
:= Expression
(Alt
);
1627 -- Get our initial type from the first expression for which we got some
1628 -- useful type information from the expression.
1634 if not Is_Overloaded
(FirstX
) then
1635 Set_Etype
(N
, Etype
(FirstX
));
1643 Set_Etype
(N
, Any_Type
);
1645 Get_First_Interp
(FirstX
, I
, It
);
1646 while Present
(It
.Nam
) loop
1648 -- For each interpretation of the first expression, we only
1649 -- add the interpretation if every other expression in the
1650 -- case expression alternatives has a compatible type.
1652 Alt
:= Next
(First
(Alternatives
(N
)));
1653 while Present
(Alt
) loop
1654 exit when not Has_Compatible_Type
(Expression
(Alt
), It
.Typ
);
1659 Add_One_Interp
(N
, It
.Typ
, It
.Typ
);
1664 Get_Next_Interp
(I
, It
);
1669 Exp_Btype
:= Base_Type
(Exp_Type
);
1671 -- The expression must be of a discrete type which must be determinable
1672 -- independently of the context in which the expression occurs, but
1673 -- using the fact that the expression must be of a discrete type.
1674 -- Moreover, the type this expression must not be a character literal
1675 -- (which is always ambiguous).
1677 -- If error already reported by Resolve, nothing more to do
1679 if Exp_Btype
= Any_Discrete
or else Exp_Btype
= Any_Type
then
1682 -- Special casee message for character literal
1684 elsif Exp_Btype
= Any_Character
then
1686 ("character literal as case expression is ambiguous", Expr
);
1690 if Etype
(N
) = Any_Type
and then Present
(Wrong_Alt
) then
1692 ("type incompatible with that of previous alternatives",
1693 Expression
(Wrong_Alt
));
1697 -- If the case expression is a formal object of mode in out, then
1698 -- treat it as having a nonstatic subtype by forcing use of the base
1699 -- type (which has to get passed to Check_Case_Choices below). Also
1700 -- use base type when the case expression is parenthesized.
1702 if Paren_Count
(Expr
) > 0
1703 or else (Is_Entity_Name
(Expr
)
1704 and then Ekind
(Entity
(Expr
)) = E_Generic_In_Out_Parameter
)
1706 Exp_Type
:= Exp_Btype
;
1709 -- The case expression alternatives cover the range of a static subtype
1710 -- subject to aspect Static_Predicate. Do not check the choices when the
1711 -- case expression has not been fully analyzed yet because this may lead
1714 if Is_OK_Static_Subtype
(Exp_Type
)
1715 and then Has_Static_Predicate_Aspect
(Exp_Type
)
1716 and then In_Spec_Expression
1720 -- Call Analyze_Choices and Check_Choices to do the rest of the work
1723 Analyze_Choices
(Alternatives
(N
), Exp_Type
);
1724 Check_Choices
(N
, Alternatives
(N
), Exp_Type
, Others_Present
);
1726 if Exp_Type
= Universal_Integer
and then not Others_Present
then
1728 ("case on universal integer requires OTHERS choice", Expr
);
1731 end Analyze_Case_Expression
;
1733 ---------------------------
1734 -- Analyze_Comparison_Op --
1735 ---------------------------
1737 procedure Analyze_Comparison_Op
(N
: Node_Id
) is
1738 L
: constant Node_Id
:= Left_Opnd
(N
);
1739 R
: constant Node_Id
:= Right_Opnd
(N
);
1740 Op_Id
: Entity_Id
:= Entity
(N
);
1743 Set_Etype
(N
, Any_Type
);
1744 Candidate_Type
:= Empty
;
1746 Analyze_Expression
(L
);
1747 Analyze_Expression
(R
);
1749 if Present
(Op_Id
) then
1750 if Ekind
(Op_Id
) = E_Operator
then
1751 Find_Comparison_Types
(L
, R
, Op_Id
, N
);
1753 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
1756 if Is_Overloaded
(L
) then
1757 Set_Etype
(L
, Intersect_Types
(L
, R
));
1761 Op_Id
:= Get_Name_Entity_Id
(Chars
(N
));
1762 while Present
(Op_Id
) loop
1763 if Ekind
(Op_Id
) = E_Operator
then
1764 Find_Comparison_Types
(L
, R
, Op_Id
, N
);
1766 Analyze_User_Defined_Binary_Op
(N
, Op_Id
);
1769 Op_Id
:= Homonym
(Op_Id
);
1774 Check_Function_Writable_Actuals
(N
);
1775 end Analyze_Comparison_Op
;
1777 ---------------------------
1778 -- Analyze_Concatenation --
1779 ---------------------------
1781 procedure Analyze_Concatenation
(N
: Node_Id
) is
1783 -- We wish to avoid deep recursion, because concatenations are often
1784 -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
1785 -- operands nonrecursively until we find something that is not a
1786 -- concatenation (A in this case), or has already been analyzed. We
1787 -- analyze that, and then walk back up the tree following Parent
1788 -- pointers, calling Analyze_Concatenation_Rest to do the rest of the
1789 -- work at each level. The Parent pointers allow us to avoid recursion,
1790 -- and thus avoid running out of memory.
1796 Candidate_Type
:= Empty
;
1798 -- The following code is equivalent to:
1800 -- Set_Etype (N, Any_Type);
1801 -- Analyze_Expression (Left_Opnd (N));
1802 -- Analyze_Concatenation_Rest (N);
1804 -- where the Analyze_Expression call recurses back here if the left
1805 -- operand is a concatenation.
1807 -- Walk down left operands
1810 Set_Etype
(NN
, Any_Type
);
1811 L
:= Left_Opnd
(NN
);
1812 exit when Nkind
(L
) /= N_Op_Concat
or else Analyzed
(L
);
1816 -- Now (given the above example) NN is A&B and L is A
1818 -- First analyze L ...
1820 Analyze_Expression
(L
);
1822 -- ... then walk NN back up until we reach N (where we started), calling
1823 -- Analyze_Concatenation_Rest along the way.
1826 Analyze_Concatenation_Rest
(NN
);
1830 end Analyze_Concatenation
;
1832 --------------------------------
1833 -- Analyze_Concatenation_Rest --
1834 --------------------------------
1836 -- If the only one-dimensional array type in scope is String,
1837 -- this is the resulting type of the operation. Otherwise there
1838 -- will be a concatenation operation defined for each user-defined
1839 -- one-dimensional array.
1841 procedure Analyze_Concatenation_Rest
(N
: Node_Id
) is
1842 L
: constant Node_Id
:= Left_Opnd
(N
);
1843 R
: constant Node_Id
:= Right_Opnd
(N
);
1844 Op_Id
: Entity_Id
:= Entity
(N
);
1849 Analyze_Expression
(R
);
1851 -- If the entity is present, the node appears in an instance, and
1852 -- denotes a predefined concatenation operation. The resulting type is
1853 -- obtained from the arguments when possible. If the arguments are
1854 -- aggregates, the array type and the concatenation type must be
1857 if Present
(Op_Id
) then
1858 if Ekind
(Op_Id
) = E_Operator
then
1859 LT
:= Base_Type
(Etype
(L
));
1860 RT
:= Base_Type
(Etype
(R
));
1862 if Is_Array_Type
(LT
)
1863 and then (RT
= LT
or else RT
= Base_Type
(Component_Type
(LT
)))
1865 Add_One_Interp
(N
, Op_Id
, LT
);
1867 elsif Is_Array_Type
(RT
)
1868 and then LT
= Base_Type
(Component_Type
(RT
))
1870 Add_One_Interp
(N
, Op_Id
, RT
);
1872 -- If one operand is a string type or a user-defined array type,
1873 -- and the other is a literal, result is of the specific type.
1876 (Root_Type
(LT
) = Standard_String
1877 or else Scope
(LT
) /= Standard_Standard
)
1878 and then Etype
(R
) = Any_String
1880 Add_One_Interp
(N
, Op_Id
, LT
);
1883 (Root_Type
(RT
) = Standard_String
1884 or else Scope
(RT
) /= Standard_Standard
)
1885 and then Etype
(L
) = Any_String
1887 Add_One_Interp
(N
, Op_Id
, RT
);
1889 elsif not Is_Generic_Type
(Etype
(Op_Id
)) then
1890 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
1893 -- Type and its operations must be visible
1895 Set_Entity
(N
, Empty
);
1896 Analyze_Concatenation
(N
);
1900 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
1904 Op_Id
:= Get_Name_Entity_Id
(Name_Op_Concat
);
1905 while Present
(Op_Id
) loop
1906 if Ekind
(Op_Id
) = E_Operator
then
1908 -- Do not consider operators declared in dead code, they can
1909 -- not be part of the resolution.
1911 if Is_Eliminated
(Op_Id
) then
1914 Find_Concatenation_Types
(L
, R
, Op_Id
, N
);
1918 Analyze_User_Defined_Binary_Op
(N
, Op_Id
);
1921 Op_Id
:= Homonym
(Op_Id
);
1926 end Analyze_Concatenation_Rest
;
1928 -------------------------
1929 -- Analyze_Equality_Op --
1930 -------------------------
1932 procedure Analyze_Equality_Op
(N
: Node_Id
) is
1933 Loc
: constant Source_Ptr
:= Sloc
(N
);
1934 L
: constant Node_Id
:= Left_Opnd
(N
);
1935 R
: constant Node_Id
:= Right_Opnd
(N
);
1939 Set_Etype
(N
, Any_Type
);
1940 Candidate_Type
:= Empty
;
1942 Analyze_Expression
(L
);
1943 Analyze_Expression
(R
);
1945 -- If the entity is set, the node is a generic instance with a non-local
1946 -- reference to the predefined operator or to a user-defined function.
1947 -- It can also be an inequality that is expanded into the negation of a
1948 -- call to a user-defined equality operator.
1950 -- For the predefined case, the result is Boolean, regardless of the
1951 -- type of the operands. The operands may even be limited, if they are
1952 -- generic actuals. If they are overloaded, label the left argument with
1953 -- the common type that must be present, or with the type of the formal
1954 -- of the user-defined function.
1956 if Present
(Entity
(N
)) then
1957 Op_Id
:= Entity
(N
);
1959 if Ekind
(Op_Id
) = E_Operator
then
1960 Add_One_Interp
(N
, Op_Id
, Standard_Boolean
);
1962 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
1965 if Is_Overloaded
(L
) then
1966 if Ekind
(Op_Id
) = E_Operator
then
1967 Set_Etype
(L
, Intersect_Types
(L
, R
));
1969 Set_Etype
(L
, Etype
(First_Formal
(Op_Id
)));
1974 Op_Id
:= Get_Name_Entity_Id
(Chars
(N
));
1975 while Present
(Op_Id
) loop
1976 if Ekind
(Op_Id
) = E_Operator
then
1977 Find_Equality_Types
(L
, R
, Op_Id
, N
);
1979 Analyze_User_Defined_Binary_Op
(N
, Op_Id
);
1982 Op_Id
:= Homonym
(Op_Id
);
1986 -- If there was no match, and the operator is inequality, this may be
1987 -- a case where inequality has not been made explicit, as for tagged
1988 -- types. Analyze the node as the negation of an equality operation.
1989 -- This cannot be done earlier, because before analysis we cannot rule
1990 -- out the presence of an explicit inequality.
1992 if Etype
(N
) = Any_Type
1993 and then Nkind
(N
) = N_Op_Ne
1995 Op_Id
:= Get_Name_Entity_Id
(Name_Op_Eq
);
1996 while Present
(Op_Id
) loop
1997 if Ekind
(Op_Id
) = E_Operator
then
1998 Find_Equality_Types
(L
, R
, Op_Id
, N
);
2000 Analyze_User_Defined_Binary_Op
(N
, Op_Id
);
2003 Op_Id
:= Homonym
(Op_Id
);
2006 if Etype
(N
) /= Any_Type
then
2007 Op_Id
:= Entity
(N
);
2013 Left_Opnd
=> Left_Opnd
(N
),
2014 Right_Opnd
=> Right_Opnd
(N
))));
2016 Set_Entity
(Right_Opnd
(N
), Op_Id
);
2022 Check_Function_Writable_Actuals
(N
);
2023 end Analyze_Equality_Op
;
2025 ----------------------------------
2026 -- Analyze_Explicit_Dereference --
2027 ----------------------------------
2029 procedure Analyze_Explicit_Dereference
(N
: Node_Id
) is
2030 Loc
: constant Source_Ptr
:= Sloc
(N
);
2031 P
: constant Node_Id
:= Prefix
(N
);
2037 function Is_Function_Type
return Boolean;
2038 -- Check whether node may be interpreted as an implicit function call
2040 ----------------------
2041 -- Is_Function_Type --
2042 ----------------------
2044 function Is_Function_Type
return Boolean is
2049 if not Is_Overloaded
(N
) then
2050 return Ekind
(Base_Type
(Etype
(N
))) = E_Subprogram_Type
2051 and then Etype
(Base_Type
(Etype
(N
))) /= Standard_Void_Type
;
2054 Get_First_Interp
(N
, I
, It
);
2055 while Present
(It
.Nam
) loop
2056 if Ekind
(Base_Type
(It
.Typ
)) /= E_Subprogram_Type
2057 or else Etype
(Base_Type
(It
.Typ
)) = Standard_Void_Type
2062 Get_Next_Interp
(I
, It
);
2067 end Is_Function_Type
;
2069 -- Start of processing for Analyze_Explicit_Dereference
2072 -- If source node, check SPARK restriction. We guard this with the
2073 -- source node check, because ???
2075 if Comes_From_Source
(N
) then
2076 Check_SPARK_05_Restriction
("explicit dereference is not allowed", N
);
2079 -- In formal verification mode, keep track of all reads and writes
2080 -- through explicit dereferences.
2082 if GNATprove_Mode
then
2083 SPARK_Specific
.Generate_Dereference
(N
);
2087 Set_Etype
(N
, Any_Type
);
2089 -- Test for remote access to subprogram type, and if so return
2090 -- after rewriting the original tree.
2092 if Remote_AST_E_Dereference
(P
) then
2096 -- Normal processing for other than remote access to subprogram type
2098 if not Is_Overloaded
(P
) then
2099 if Is_Access_Type
(Etype
(P
)) then
2101 -- Set the Etype. We need to go through Is_For_Access_Subtypes to
2102 -- avoid other problems caused by the Private_Subtype and it is
2103 -- safe to go to the Base_Type because this is the same as
2104 -- converting the access value to its Base_Type.
2107 DT
: Entity_Id
:= Designated_Type
(Etype
(P
));
2110 if Ekind
(DT
) = E_Private_Subtype
2111 and then Is_For_Access_Subtype
(DT
)
2113 DT
:= Base_Type
(DT
);
2116 -- An explicit dereference is a legal occurrence of an
2117 -- incomplete type imported through a limited_with clause, if
2118 -- the full view is visible, or if we are within an instance
2119 -- body, where the enclosing body has a regular with_clause
2122 if From_Limited_With
(DT
)
2123 and then not From_Limited_With
(Scope
(DT
))
2125 (Is_Immediately_Visible
(Scope
(DT
))
2127 (Is_Child_Unit
(Scope
(DT
))
2128 and then Is_Visible_Lib_Unit
(Scope
(DT
)))
2129 or else In_Instance_Body
)
2131 Set_Etype
(N
, Available_View
(DT
));
2138 elsif Etype
(P
) /= Any_Type
then
2139 Error_Msg_N
("prefix of dereference must be an access type", N
);
2144 Get_First_Interp
(P
, I
, It
);
2145 while Present
(It
.Nam
) loop
2148 if Is_Access_Type
(T
) then
2149 Add_One_Interp
(N
, Designated_Type
(T
), Designated_Type
(T
));
2152 Get_Next_Interp
(I
, It
);
2155 -- Error if no interpretation of the prefix has an access type
2157 if Etype
(N
) = Any_Type
then
2159 ("access type required in prefix of explicit dereference", P
);
2160 Set_Etype
(N
, Any_Type
);
2166 and then Nkind
(Parent
(N
)) /= N_Indexed_Component
2168 and then (Nkind
(Parent
(N
)) /= N_Function_Call
2169 or else N
/= Name
(Parent
(N
)))
2171 and then (Nkind
(Parent
(N
)) /= N_Procedure_Call_Statement
2172 or else N
/= Name
(Parent
(N
)))
2174 and then Nkind
(Parent
(N
)) /= N_Subprogram_Renaming_Declaration
2175 and then (Nkind
(Parent
(N
)) /= N_Attribute_Reference
2177 (Attribute_Name
(Parent
(N
)) /= Name_Address
2179 Attribute_Name
(Parent
(N
)) /= Name_Access
))
2181 -- Name is a function call with no actuals, in a context that
2182 -- requires deproceduring (including as an actual in an enclosing
2183 -- function or procedure call). There are some pathological cases
2184 -- where the prefix might include functions that return access to
2185 -- subprograms and others that return a regular type. Disambiguation
2186 -- of those has to take place in Resolve.
2189 Make_Function_Call
(Loc
,
2190 Name
=> Make_Explicit_Dereference
(Loc
, P
),
2191 Parameter_Associations
=> New_List
);
2193 -- If the prefix is overloaded, remove operations that have formals,
2194 -- we know that this is a parameterless call.
2196 if Is_Overloaded
(P
) then
2197 Get_First_Interp
(P
, I
, It
);
2198 while Present
(It
.Nam
) loop
2201 if No
(First_Formal
(Base_Type
(Designated_Type
(T
)))) then
2207 Get_Next_Interp
(I
, It
);
2214 elsif not Is_Function_Type
2215 and then Is_Overloaded
(N
)
2217 -- The prefix may include access to subprograms and other access
2218 -- types. If the context selects the interpretation that is a
2219 -- function call (not a procedure call) we cannot rewrite the node
2220 -- yet, but we include the result of the call interpretation.
2222 Get_First_Interp
(N
, I
, It
);
2223 while Present
(It
.Nam
) loop
2224 if Ekind
(Base_Type
(It
.Typ
)) = E_Subprogram_Type
2225 and then Etype
(Base_Type
(It
.Typ
)) /= Standard_Void_Type
2226 and then Nkind
(Parent
(N
)) /= N_Procedure_Call_Statement
2228 Add_One_Interp
(N
, Etype
(It
.Typ
), Etype
(It
.Typ
));
2231 Get_Next_Interp
(I
, It
);
2235 -- A value of remote access-to-class-wide must not be dereferenced
2238 Validate_Remote_Access_To_Class_Wide_Type
(N
);
2239 end Analyze_Explicit_Dereference
;
2241 ------------------------
2242 -- Analyze_Expression --
2243 ------------------------
2245 procedure Analyze_Expression
(N
: Node_Id
) is
2248 -- If the expression is an indexed component that will be rewritten
2249 -- as a container indexing, it has already been analyzed.
2251 if Nkind
(N
) = N_Indexed_Component
2252 and then Present
(Generalized_Indexing
(N
))
2258 Check_Parameterless_Call
(N
);
2260 end Analyze_Expression
;
2262 -------------------------------------
2263 -- Analyze_Expression_With_Actions --
2264 -------------------------------------
2266 procedure Analyze_Expression_With_Actions
(N
: Node_Id
) is
2270 A
:= First
(Actions
(N
));
2271 while Present
(A
) loop
2276 Analyze_Expression
(Expression
(N
));
2277 Set_Etype
(N
, Etype
(Expression
(N
)));
2278 end Analyze_Expression_With_Actions
;
2280 ---------------------------
2281 -- Analyze_If_Expression --
2282 ---------------------------
2284 procedure Analyze_If_Expression
(N
: Node_Id
) is
2285 Condition
: constant Node_Id
:= First
(Expressions
(N
));
2286 Then_Expr
: Node_Id
;
2287 Else_Expr
: Node_Id
;
2290 -- Defend against error of missing expressions from previous error
2292 if No
(Condition
) then
2293 Check_Error_Detected
;
2297 Then_Expr
:= Next
(Condition
);
2299 if No
(Then_Expr
) then
2300 Check_Error_Detected
;
2304 Else_Expr
:= Next
(Then_Expr
);
2306 if Comes_From_Source
(N
) then
2307 Check_SPARK_05_Restriction
("if expression is not allowed", N
);
2310 if Comes_From_Source
(N
) then
2311 Check_Compiler_Unit
("if expression", N
);
2314 -- Analyze and resolve the condition. We need to resolve this now so
2315 -- that it gets folded to True/False if possible, before we analyze
2316 -- the THEN/ELSE branches, because when analyzing these branches, we
2317 -- may call Is_Statically_Unevaluated, which expects the condition of
2318 -- an enclosing IF to have been analyze/resolved/evaluated.
2320 Analyze_Expression
(Condition
);
2321 Resolve
(Condition
, Any_Boolean
);
2323 -- Analyze THEN expression and (if present) ELSE expression. For those
2324 -- we delay resolution in the normal manner, because of overloading etc.
2326 Analyze_Expression
(Then_Expr
);
2328 if Present
(Else_Expr
) then
2329 Analyze_Expression
(Else_Expr
);
2332 -- If then expression not overloaded, then that decides the type
2334 if not Is_Overloaded
(Then_Expr
) then
2335 Set_Etype
(N
, Etype
(Then_Expr
));
2337 -- Case where then expression is overloaded
2345 Set_Etype
(N
, Any_Type
);
2347 -- Loop through interpretations of Then_Expr
2349 Get_First_Interp
(Then_Expr
, I
, It
);
2350 while Present
(It
.Nam
) loop
2352 -- Add possible interpretation of Then_Expr if no Else_Expr, or
2353 -- Else_Expr is present and has a compatible type.
2356 or else Has_Compatible_Type
(Else_Expr
, It
.Typ
)
2358 Add_One_Interp
(N
, It
.Typ
, It
.Typ
);
2361 Get_Next_Interp
(I
, It
);
2364 -- If no valid interpretation has been found, then the type of the
2365 -- ELSE expression does not match any interpretation of the THEN
2368 if Etype
(N
) = Any_Type
then
2370 ("type incompatible with that of `THEN` expression",
2376 end Analyze_If_Expression
;
2378 ------------------------------------
2379 -- Analyze_Indexed_Component_Form --
2380 ------------------------------------
2382 procedure Analyze_Indexed_Component_Form
(N
: Node_Id
) is
2383 P
: constant Node_Id
:= Prefix
(N
);
2384 Exprs
: constant List_Id
:= Expressions
(N
);
2390 procedure Process_Function_Call
;
2391 -- Prefix in indexed component form is an overloadable entity, so the
2392 -- node is a function call. Reformat it as such.
2394 procedure Process_Indexed_Component
;
2395 -- Prefix in indexed component form is actually an indexed component.
2396 -- This routine processes it, knowing that the prefix is already
2399 procedure Process_Indexed_Component_Or_Slice
;
2400 -- An indexed component with a single index may designate a slice if
2401 -- the index is a subtype mark. This routine disambiguates these two
2402 -- cases by resolving the prefix to see if it is a subtype mark.
2404 procedure Process_Overloaded_Indexed_Component
;
2405 -- If the prefix of an indexed component is overloaded, the proper
2406 -- interpretation is selected by the index types and the context.
2408 ---------------------------
2409 -- Process_Function_Call --
2410 ---------------------------
2412 procedure Process_Function_Call
is
2413 Loc
: constant Source_Ptr
:= Sloc
(N
);
2417 Change_Node
(N
, N_Function_Call
);
2419 Set_Parameter_Associations
(N
, Exprs
);
2421 -- Analyze actuals prior to analyzing the call itself
2423 Actual
:= First
(Parameter_Associations
(N
));
2424 while Present
(Actual
) loop
2426 Check_Parameterless_Call
(Actual
);
2428 -- Move to next actual. Note that we use Next, not Next_Actual
2429 -- here. The reason for this is a bit subtle. If a function call
2430 -- includes named associations, the parser recognizes the node
2431 -- as a call, and it is analyzed as such. If all associations are
2432 -- positional, the parser builds an indexed_component node, and
2433 -- it is only after analysis of the prefix that the construct
2434 -- is recognized as a call, in which case Process_Function_Call
2435 -- rewrites the node and analyzes the actuals. If the list of
2436 -- actuals is malformed, the parser may leave the node as an
2437 -- indexed component (despite the presence of named associations).
2438 -- The iterator Next_Actual is equivalent to Next if the list is
2439 -- positional, but follows the normalized chain of actuals when
2440 -- named associations are present. In this case normalization has
2441 -- not taken place, and actuals remain unanalyzed, which leads to
2442 -- subsequent crashes or loops if there is an attempt to continue
2443 -- analysis of the program.
2445 -- IF there is a single actual and it is a type name, the node
2446 -- can only be interpreted as a slice of a parameterless call.
2447 -- Rebuild the node as such and analyze.
2449 if No
(Next
(Actual
))
2450 and then Is_Entity_Name
(Actual
)
2451 and then Is_Type
(Entity
(Actual
))
2452 and then Is_Discrete_Type
(Entity
(Actual
))
2458 New_Occurrence_Of
(Entity
(Actual
), Loc
)));
2468 end Process_Function_Call
;
2470 -------------------------------
2471 -- Process_Indexed_Component --
2472 -------------------------------
2474 procedure Process_Indexed_Component
is
2476 Array_Type
: Entity_Id
;
2478 Pent
: Entity_Id
:= Empty
;
2481 Exp
:= First
(Exprs
);
2483 if Is_Overloaded
(P
) then
2484 Process_Overloaded_Indexed_Component
;
2487 Array_Type
:= Etype
(P
);
2489 if Is_Entity_Name
(P
) then
2491 elsif Nkind
(P
) = N_Selected_Component
2492 and then Is_Entity_Name
(Selector_Name
(P
))
2494 Pent
:= Entity
(Selector_Name
(P
));
2497 -- Prefix must be appropriate for an array type, taking into
2498 -- account a possible implicit dereference.
2500 if Is_Access_Type
(Array_Type
) then
2502 (Warn_On_Dereference
, "?d?implicit dereference", N
);
2503 Array_Type
:= Process_Implicit_Dereference_Prefix
(Pent
, P
);
2506 if Is_Array_Type
(Array_Type
) then
2508 -- In order to correctly access First_Index component later,
2509 -- replace string literal subtype by its parent type.
2511 if Ekind
(Array_Type
) = E_String_Literal_Subtype
then
2512 Array_Type
:= Etype
(Array_Type
);
2515 elsif Present
(Pent
) and then Ekind
(Pent
) = E_Entry_Family
then
2517 Set_Etype
(N
, Any_Type
);
2519 if not Has_Compatible_Type
(Exp
, Entry_Index_Type
(Pent
)) then
2520 Error_Msg_N
("invalid index type in entry name", N
);
2522 elsif Present
(Next
(Exp
)) then
2523 Error_Msg_N
("too many subscripts in entry reference", N
);
2526 Set_Etype
(N
, Etype
(P
));
2531 elsif Is_Record_Type
(Array_Type
)
2532 and then Remote_AST_I_Dereference
(P
)
2536 elsif Try_Container_Indexing
(N
, P
, Exprs
) then
2539 elsif Array_Type
= Any_Type
then
2540 Set_Etype
(N
, Any_Type
);
2542 -- In most cases the analysis of the prefix will have emitted
2543 -- an error already, but if the prefix may be interpreted as a
2544 -- call in prefixed notation, the report is left to the caller.
2545 -- To prevent cascaded errors, report only if no previous ones.
2547 if Serious_Errors_Detected
= 0 then
2548 Error_Msg_N
("invalid prefix in indexed component", P
);
2550 if Nkind
(P
) = N_Expanded_Name
then
2551 Error_Msg_NE
("\& is not visible", P
, Selector_Name
(P
));
2557 -- Here we definitely have a bad indexing
2560 if Nkind
(Parent
(N
)) = N_Requeue_Statement
2561 and then Present
(Pent
) and then Ekind
(Pent
) = E_Entry
2564 ("REQUEUE does not permit parameters", First
(Exprs
));
2566 elsif Is_Entity_Name
(P
)
2567 and then Etype
(P
) = Standard_Void_Type
2569 Error_Msg_NE
("incorrect use of &", P
, Entity
(P
));
2572 Error_Msg_N
("array type required in indexed component", P
);
2575 Set_Etype
(N
, Any_Type
);
2579 Index
:= First_Index
(Array_Type
);
2580 while Present
(Index
) and then Present
(Exp
) loop
2581 if not Has_Compatible_Type
(Exp
, Etype
(Index
)) then
2582 Wrong_Type
(Exp
, Etype
(Index
));
2583 Set_Etype
(N
, Any_Type
);
2591 Set_Etype
(N
, Component_Type
(Array_Type
));
2592 Check_Implicit_Dereference
(N
, Etype
(N
));
2594 if Present
(Index
) then
2596 ("too few subscripts in array reference", First
(Exprs
));
2598 elsif Present
(Exp
) then
2599 Error_Msg_N
("too many subscripts in array reference", Exp
);
2602 end Process_Indexed_Component
;
2604 ----------------------------------------
2605 -- Process_Indexed_Component_Or_Slice --
2606 ----------------------------------------
2608 procedure Process_Indexed_Component_Or_Slice
is
2610 Exp
:= First
(Exprs
);
2611 while Present
(Exp
) loop
2612 Analyze_Expression
(Exp
);
2616 Exp
:= First
(Exprs
);
2618 -- If one index is present, and it is a subtype name, then the node
2619 -- denotes a slice (note that the case of an explicit range for a
2620 -- slice was already built as an N_Slice node in the first place,
2621 -- so that case is not handled here).
2623 -- We use a replace rather than a rewrite here because this is one
2624 -- of the cases in which the tree built by the parser is plain wrong.
2627 and then Is_Entity_Name
(Exp
)
2628 and then Is_Type
(Entity
(Exp
))
2631 Make_Slice
(Sloc
(N
),
2633 Discrete_Range
=> New_Copy
(Exp
)));
2636 -- Otherwise (more than one index present, or single index is not
2637 -- a subtype name), then we have the indexed component case.
2640 Process_Indexed_Component
;
2642 end Process_Indexed_Component_Or_Slice
;
2644 ------------------------------------------
2645 -- Process_Overloaded_Indexed_Component --
2646 ------------------------------------------
2648 procedure Process_Overloaded_Indexed_Component
is
2657 Set_Etype
(N
, Any_Type
);
2659 Get_First_Interp
(P
, I
, It
);
2660 while Present
(It
.Nam
) loop
2663 if Is_Access_Type
(Typ
) then
2664 Typ
:= Designated_Type
(Typ
);
2666 (Warn_On_Dereference
, "?d?implicit dereference", N
);
2669 if Is_Array_Type
(Typ
) then
2671 -- Got a candidate: verify that index types are compatible
2673 Index
:= First_Index
(Typ
);
2675 Exp
:= First
(Exprs
);
2676 while Present
(Index
) and then Present
(Exp
) loop
2677 if Has_Compatible_Type
(Exp
, Etype
(Index
)) then
2689 if Found
and then No
(Index
) and then No
(Exp
) then
2691 CT
: constant Entity_Id
:=
2692 Base_Type
(Component_Type
(Typ
));
2694 Add_One_Interp
(N
, CT
, CT
);
2695 Check_Implicit_Dereference
(N
, CT
);
2699 elsif Try_Container_Indexing
(N
, P
, Exprs
) then
2704 Get_Next_Interp
(I
, It
);
2707 if Etype
(N
) = Any_Type
then
2708 Error_Msg_N
("no legal interpretation for indexed component", N
);
2709 Set_Is_Overloaded
(N
, False);
2713 end Process_Overloaded_Indexed_Component
;
2715 -- Start of processing for Analyze_Indexed_Component_Form
2718 -- Get name of array, function or type
2722 -- If P is an explicit dereference whose prefix is of a remote access-
2723 -- to-subprogram type, then N has already been rewritten as a subprogram
2724 -- call and analyzed.
2726 if Nkind
(N
) in N_Subprogram_Call
then
2729 -- When the prefix is attribute 'Loop_Entry and the sole expression of
2730 -- the indexed component denotes a loop name, the indexed form is turned
2731 -- into an attribute reference.
2733 elsif Nkind
(N
) = N_Attribute_Reference
2734 and then Attribute_Name
(N
) = Name_Loop_Entry
2739 pragma Assert
(Nkind
(N
) = N_Indexed_Component
);
2741 P_T
:= Base_Type
(Etype
(P
));
2743 if Is_Entity_Name
(P
) and then Present
(Entity
(P
)) then
2746 if Is_Type
(U_N
) then
2748 -- Reformat node as a type conversion
2750 E
:= Remove_Head
(Exprs
);
2752 if Present
(First
(Exprs
)) then
2754 ("argument of type conversion must be single expression", N
);
2757 Change_Node
(N
, N_Type_Conversion
);
2758 Set_Subtype_Mark
(N
, P
);
2760 Set_Expression
(N
, E
);
2762 -- After changing the node, call for the specific Analysis
2763 -- routine directly, to avoid a double call to the expander.
2765 Analyze_Type_Conversion
(N
);
2769 if Is_Overloadable
(U_N
) then
2770 Process_Function_Call
;
2772 elsif Ekind
(Etype
(P
)) = E_Subprogram_Type
2773 or else (Is_Access_Type
(Etype
(P
))
2775 Ekind
(Designated_Type
(Etype
(P
))) =
2778 -- Call to access_to-subprogram with possible implicit dereference
2780 Process_Function_Call
;
2782 elsif Is_Generic_Subprogram
(U_N
) then
2784 -- A common beginner's (or C++ templates fan) error
2786 Error_Msg_N
("generic subprogram cannot be called", N
);
2787 Set_Etype
(N
, Any_Type
);
2791 Process_Indexed_Component_Or_Slice
;
2794 -- If not an entity name, prefix is an expression that may denote
2795 -- an array or an access-to-subprogram.
2798 if Ekind
(P_T
) = E_Subprogram_Type
2799 or else (Is_Access_Type
(P_T
)
2801 Ekind
(Designated_Type
(P_T
)) = E_Subprogram_Type
)
2803 Process_Function_Call
;
2805 elsif Nkind
(P
) = N_Selected_Component
2806 and then Present
(Entity
(Selector_Name
(P
)))
2807 and then Is_Overloadable
(Entity
(Selector_Name
(P
)))
2809 Process_Function_Call
;
2811 -- In ASIS mode within a generic, a prefixed call is analyzed and
2812 -- partially rewritten but the original indexed component has not
2813 -- yet been rewritten as a call. Perform the replacement now.
2815 elsif Nkind
(P
) = N_Selected_Component
2816 and then Nkind
(Parent
(P
)) = N_Function_Call
2819 Rewrite
(N
, Parent
(P
));
2823 -- Indexed component, slice, or a call to a member of a family
2824 -- entry, which will be converted to an entry call later.
2826 Process_Indexed_Component_Or_Slice
;
2830 Analyze_Dimension
(N
);
2831 end Analyze_Indexed_Component_Form
;
2833 ------------------------
2834 -- Analyze_Logical_Op --
2835 ------------------------
2837 procedure Analyze_Logical_Op
(N
: Node_Id
) is
2838 L
: constant Node_Id
:= Left_Opnd
(N
);
2839 R
: constant Node_Id
:= Right_Opnd
(N
);
2840 Op_Id
: Entity_Id
:= Entity
(N
);
2843 Set_Etype
(N
, Any_Type
);
2844 Candidate_Type
:= Empty
;
2846 Analyze_Expression
(L
);
2847 Analyze_Expression
(R
);
2849 if Present
(Op_Id
) then
2851 if Ekind
(Op_Id
) = E_Operator
then
2852 Find_Boolean_Types
(L
, R
, Op_Id
, N
);
2854 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
2858 Op_Id
:= Get_Name_Entity_Id
(Chars
(N
));
2859 while Present
(Op_Id
) loop
2860 if Ekind
(Op_Id
) = E_Operator
then
2861 Find_Boolean_Types
(L
, R
, Op_Id
, N
);
2863 Analyze_User_Defined_Binary_Op
(N
, Op_Id
);
2866 Op_Id
:= Homonym
(Op_Id
);
2871 Check_Function_Writable_Actuals
(N
);
2872 end Analyze_Logical_Op
;
2874 ---------------------------
2875 -- Analyze_Membership_Op --
2876 ---------------------------
2878 procedure Analyze_Membership_Op
(N
: Node_Id
) is
2879 Loc
: constant Source_Ptr
:= Sloc
(N
);
2880 L
: constant Node_Id
:= Left_Opnd
(N
);
2881 R
: constant Node_Id
:= Right_Opnd
(N
);
2883 Index
: Interp_Index
;
2885 Found
: Boolean := False;
2889 procedure Try_One_Interp
(T1
: Entity_Id
);
2890 -- Routine to try one proposed interpretation. Note that the context
2891 -- of the operation plays no role in resolving the arguments, so that
2892 -- if there is more than one interpretation of the operands that is
2893 -- compatible with a membership test, the operation is ambiguous.
2895 --------------------
2896 -- Try_One_Interp --
2897 --------------------
2899 procedure Try_One_Interp
(T1
: Entity_Id
) is
2901 if Has_Compatible_Type
(R
, T1
) then
2903 and then Base_Type
(T1
) /= Base_Type
(T_F
)
2905 It
:= Disambiguate
(L
, I_F
, Index
, Any_Type
);
2907 if It
= No_Interp
then
2908 Ambiguous_Operands
(N
);
2909 Set_Etype
(L
, Any_Type
);
2926 procedure Analyze_Set_Membership
;
2927 -- If a set of alternatives is present, analyze each and find the
2928 -- common type to which they must all resolve.
2930 ----------------------------
2931 -- Analyze_Set_Membership --
2932 ----------------------------
2934 procedure Analyze_Set_Membership
is
2936 Index
: Interp_Index
;
2938 Candidate_Interps
: Node_Id
;
2939 Common_Type
: Entity_Id
:= Empty
;
2942 if Comes_From_Source
(N
) then
2943 Check_Compiler_Unit
("set membership", N
);
2947 Candidate_Interps
:= L
;
2949 if not Is_Overloaded
(L
) then
2950 Common_Type
:= Etype
(L
);
2952 Alt
:= First
(Alternatives
(N
));
2953 while Present
(Alt
) loop
2956 if not Has_Compatible_Type
(Alt
, Common_Type
) then
2957 Wrong_Type
(Alt
, Common_Type
);
2964 Alt
:= First
(Alternatives
(N
));
2965 while Present
(Alt
) loop
2967 if not Is_Overloaded
(Alt
) then
2968 Common_Type
:= Etype
(Alt
);
2971 Get_First_Interp
(Alt
, Index
, It
);
2972 while Present
(It
.Typ
) loop
2974 Has_Compatible_Type
(Candidate_Interps
, It
.Typ
)
2976 Remove_Interp
(Index
);
2979 Get_Next_Interp
(Index
, It
);
2982 Get_First_Interp
(Alt
, Index
, It
);
2985 Error_Msg_N
("alternative has no legal type", Alt
);
2989 -- If alternative is not overloaded, we have a unique type
2992 Set_Etype
(Alt
, It
.Typ
);
2994 -- If the alternative is an enumeration literal, use the one
2995 -- for this interpretation.
2997 if Is_Entity_Name
(Alt
) then
2998 Set_Entity
(Alt
, It
.Nam
);
3001 Get_Next_Interp
(Index
, It
);
3004 Set_Is_Overloaded
(Alt
, False);
3005 Common_Type
:= Etype
(Alt
);
3008 Candidate_Interps
:= Alt
;
3015 Set_Etype
(N
, Standard_Boolean
);
3017 if Present
(Common_Type
) then
3018 Set_Etype
(L
, Common_Type
);
3020 -- The left operand may still be overloaded, to be resolved using
3024 Error_Msg_N
("cannot resolve membership operation", N
);
3026 end Analyze_Set_Membership
;
3028 -- Start of processing for Analyze_Membership_Op
3031 Analyze_Expression
(L
);
3033 if No
(R
) and then Ada_Version
>= Ada_2012
then
3034 Analyze_Set_Membership
;
3035 Check_Function_Writable_Actuals
(N
);
3040 if Nkind
(R
) = N_Range
3041 or else (Nkind
(R
) = N_Attribute_Reference
3042 and then Attribute_Name
(R
) = Name_Range
)
3046 if not Is_Overloaded
(L
) then
3047 Try_One_Interp
(Etype
(L
));
3050 Get_First_Interp
(L
, Index
, It
);
3051 while Present
(It
.Typ
) loop
3052 Try_One_Interp
(It
.Typ
);
3053 Get_Next_Interp
(Index
, It
);
3057 -- If not a range, it can be a subtype mark, or else it is a degenerate
3058 -- membership test with a singleton value, i.e. a test for equality,
3059 -- if the types are compatible.
3064 if Is_Entity_Name
(R
)
3065 and then Is_Type
(Entity
(R
))
3068 Check_Fully_Declared
(Entity
(R
), R
);
3070 elsif Ada_Version
>= Ada_2012
3071 and then Has_Compatible_Type
(R
, Etype
(L
))
3073 if Nkind
(N
) = N_In
then
3089 -- In all versions of the language, if we reach this point there
3090 -- is a previous error that will be diagnosed below.
3096 -- Compatibility between expression and subtype mark or range is
3097 -- checked during resolution. The result of the operation is Boolean
3100 Set_Etype
(N
, Standard_Boolean
);
3102 if Comes_From_Source
(N
)
3103 and then Present
(Right_Opnd
(N
))
3104 and then Is_CPP_Class
(Etype
(Etype
(Right_Opnd
(N
))))
3106 Error_Msg_N
("membership test not applicable to cpp-class types", N
);
3109 Check_Function_Writable_Actuals
(N
);
3110 end Analyze_Membership_Op
;
3116 procedure Analyze_Mod
(N
: Node_Id
) is
3118 -- A special warning check, if we have an expression of the form:
3119 -- expr mod 2 * literal
3120 -- where literal is 64 or less, then probably what was meant was
3121 -- expr mod 2 ** literal
3122 -- so issue an appropriate warning.
3124 if Warn_On_Suspicious_Modulus_Value
3125 and then Nkind
(Right_Opnd
(N
)) = N_Integer_Literal
3126 and then Intval
(Right_Opnd
(N
)) = Uint_2
3127 and then Nkind
(Parent
(N
)) = N_Op_Multiply
3128 and then Nkind
(Right_Opnd
(Parent
(N
))) = N_Integer_Literal
3129 and then Intval
(Right_Opnd
(Parent
(N
))) <= Uint_64
3132 ("suspicious MOD value, was '*'* intended'??M?", Parent
(N
));
3135 -- Remaining processing is same as for other arithmetic operators
3137 Analyze_Arithmetic_Op
(N
);
3140 ----------------------
3141 -- Analyze_Negation --
3142 ----------------------
3144 procedure Analyze_Negation
(N
: Node_Id
) is
3145 R
: constant Node_Id
:= Right_Opnd
(N
);
3146 Op_Id
: Entity_Id
:= Entity
(N
);
3149 Set_Etype
(N
, Any_Type
);
3150 Candidate_Type
:= Empty
;
3152 Analyze_Expression
(R
);
3154 if Present
(Op_Id
) then
3155 if Ekind
(Op_Id
) = E_Operator
then
3156 Find_Negation_Types
(R
, Op_Id
, N
);
3158 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
3162 Op_Id
:= Get_Name_Entity_Id
(Chars
(N
));
3163 while Present
(Op_Id
) loop
3164 if Ekind
(Op_Id
) = E_Operator
then
3165 Find_Negation_Types
(R
, Op_Id
, N
);
3167 Analyze_User_Defined_Unary_Op
(N
, Op_Id
);
3170 Op_Id
:= Homonym
(Op_Id
);
3175 end Analyze_Negation
;
3181 procedure Analyze_Null
(N
: Node_Id
) is
3183 Check_SPARK_05_Restriction
("null is not allowed", N
);
3185 Set_Etype
(N
, Any_Access
);
3188 ----------------------
3189 -- Analyze_One_Call --
3190 ----------------------
3192 procedure Analyze_One_Call
3196 Success
: out Boolean;
3197 Skip_First
: Boolean := False)
3199 Actuals
: constant List_Id
:= Parameter_Associations
(N
);
3200 Prev_T
: constant Entity_Id
:= Etype
(N
);
3202 Must_Skip
: constant Boolean := Skip_First
3203 or else Nkind
(Original_Node
(N
)) = N_Selected_Component
3205 (Nkind
(Original_Node
(N
)) = N_Indexed_Component
3206 and then Nkind
(Prefix
(Original_Node
(N
)))
3207 = N_Selected_Component
);
3208 -- The first formal must be omitted from the match when trying to find
3209 -- a primitive operation that is a possible interpretation, and also
3210 -- after the call has been rewritten, because the corresponding actual
3211 -- is already known to be compatible, and because this may be an
3212 -- indexing of a call with default parameters.
3216 Is_Indexed
: Boolean := False;
3217 Is_Indirect
: Boolean := False;
3218 Subp_Type
: constant Entity_Id
:= Etype
(Nam
);
3221 function Compatible_Types_In_Predicate
3223 T2
: Entity_Id
) return Boolean;
3224 -- For an Ada 2012 predicate or invariant, a call may mention an
3225 -- incomplete type, while resolution of the corresponding predicate
3226 -- function may see the full view, as a consequence of the delayed
3227 -- resolution of the corresponding expressions. This may occur in
3228 -- the body of a predicate function, or in a call to such. Anomalies
3229 -- involving private and full views can also happen. In each case,
3230 -- rewrite node or add conversions to remove spurious type errors.
3232 procedure Indicate_Name_And_Type
;
3233 -- If candidate interpretation matches, indicate name and type of result
3236 function Operator_Hidden_By
(Fun
: Entity_Id
) return Boolean;
3237 -- There may be a user-defined operator that hides the current
3238 -- interpretation. We must check for this independently of the
3239 -- analysis of the call with the user-defined operation, because
3240 -- the parameter names may be wrong and yet the hiding takes place.
3241 -- This fixes a problem with ACATS test B34014O.
3243 -- When the type Address is a visible integer type, and the DEC
3244 -- system extension is visible, the predefined operator may be
3245 -- hidden as well, by one of the address operations in auxdec.
3246 -- Finally, The abstract operations on address do not hide the
3247 -- predefined operator (this is the purpose of making them abstract).
3249 -----------------------------------
3250 -- Compatible_Types_In_Predicate --
3251 -----------------------------------
3253 function Compatible_Types_In_Predicate
3255 T2
: Entity_Id
) return Boolean
3257 function Common_Type
(T
: Entity_Id
) return Entity_Id
;
3258 -- Find non-private full view if any, without going to ancestor type
3259 -- (as opposed to Underlying_Type).
3265 function Common_Type
(T
: Entity_Id
) return Entity_Id
is
3267 if Is_Private_Type
(T
) and then Present
(Full_View
(T
)) then
3268 return Base_Type
(Full_View
(T
));
3270 return Base_Type
(T
);
3274 -- Start of processing for Compatible_Types_In_Predicate
3277 if (Ekind
(Current_Scope
) = E_Function
3278 and then Is_Predicate_Function
(Current_Scope
))
3280 (Ekind
(Nam
) = E_Function
3281 and then Is_Predicate_Function
(Nam
))
3283 if Is_Incomplete_Type
(T1
)
3284 and then Present
(Full_View
(T1
))
3285 and then Full_View
(T1
) = T2
3287 Set_Etype
(Formal
, Etype
(Actual
));
3290 elsif Common_Type
(T1
) = Common_Type
(T2
) then
3291 Rewrite
(Actual
, Unchecked_Convert_To
(Etype
(Formal
), Actual
));
3301 end Compatible_Types_In_Predicate
;
3303 ----------------------------
3304 -- Indicate_Name_And_Type --
3305 ----------------------------
3307 procedure Indicate_Name_And_Type
is
3309 Add_One_Interp
(N
, Nam
, Etype
(Nam
));
3310 Check_Implicit_Dereference
(N
, Etype
(Nam
));
3313 -- If the prefix of the call is a name, indicate the entity
3314 -- being called. If it is not a name, it is an expression that
3315 -- denotes an access to subprogram or else an entry or family. In
3316 -- the latter case, the name is a selected component, and the entity
3317 -- being called is noted on the selector.
3319 if not Is_Type
(Nam
) then
3320 if Is_Entity_Name
(Name
(N
)) then
3321 Set_Entity
(Name
(N
), Nam
);
3322 Set_Etype
(Name
(N
), Etype
(Nam
));
3324 elsif Nkind
(Name
(N
)) = N_Selected_Component
then
3325 Set_Entity
(Selector_Name
(Name
(N
)), Nam
);
3329 if Debug_Flag_E
and not Report
then
3330 Write_Str
(" Overloaded call ");
3331 Write_Int
(Int
(N
));
3332 Write_Str
(" compatible with ");
3333 Write_Int
(Int
(Nam
));
3336 end Indicate_Name_And_Type
;
3338 ------------------------
3339 -- Operator_Hidden_By --
3340 ------------------------
3342 function Operator_Hidden_By
(Fun
: Entity_Id
) return Boolean is
3343 Act1
: constant Node_Id
:= First_Actual
(N
);
3344 Act2
: constant Node_Id
:= Next_Actual
(Act1
);
3345 Form1
: constant Entity_Id
:= First_Formal
(Fun
);
3346 Form2
: constant Entity_Id
:= Next_Formal
(Form1
);
3349 if Ekind
(Fun
) /= E_Function
or else Is_Abstract_Subprogram
(Fun
) then
3352 elsif not Has_Compatible_Type
(Act1
, Etype
(Form1
)) then
3355 elsif Present
(Form2
) then
3357 or else not Has_Compatible_Type
(Act2
, Etype
(Form2
))
3362 elsif Present
(Act2
) then
3366 -- Now we know that the arity of the operator matches the function,
3367 -- and the function call is a valid interpretation. The function
3368 -- hides the operator if it has the right signature, or if one of
3369 -- its operands is a non-abstract operation on Address when this is
3370 -- a visible integer type.
3372 return Hides_Op
(Fun
, Nam
)
3373 or else Is_Descendant_Of_Address
(Etype
(Form1
))
3376 and then Is_Descendant_Of_Address
(Etype
(Form2
)));
3377 end Operator_Hidden_By
;
3379 -- Start of processing for Analyze_One_Call
3384 -- If the subprogram has no formals or if all the formals have defaults,
3385 -- and the return type is an array type, the node may denote an indexing
3386 -- of the result of a parameterless call. In Ada 2005, the subprogram
3387 -- may have one non-defaulted formal, and the call may have been written
3388 -- in prefix notation, so that the rebuilt parameter list has more than
3391 if not Is_Overloadable
(Nam
)
3392 and then Ekind
(Nam
) /= E_Subprogram_Type
3393 and then Ekind
(Nam
) /= E_Entry_Family
3398 -- An indexing requires at least one actual. The name of the call cannot
3399 -- be an implicit indirect call, so it cannot be a generated explicit
3402 if not Is_Empty_List
(Actuals
)
3404 (Needs_No_Actuals
(Nam
)
3406 (Needs_One_Actual
(Nam
)
3407 and then Present
(Next_Actual
(First
(Actuals
)))))
3409 if Is_Array_Type
(Subp_Type
)
3411 (Nkind
(Name
(N
)) /= N_Explicit_Dereference
3412 or else Comes_From_Source
(Name
(N
)))
3414 Is_Indexed
:= Try_Indexed_Call
(N
, Nam
, Subp_Type
, Must_Skip
);
3416 elsif Is_Access_Type
(Subp_Type
)
3417 and then Is_Array_Type
(Designated_Type
(Subp_Type
))
3421 (N
, Nam
, Designated_Type
(Subp_Type
), Must_Skip
);
3423 -- The prefix can also be a parameterless function that returns an
3424 -- access to subprogram, in which case this is an indirect call.
3425 -- If this succeeds, an explicit dereference is added later on,
3426 -- in Analyze_Call or Resolve_Call.
3428 elsif Is_Access_Type
(Subp_Type
)
3429 and then Ekind
(Designated_Type
(Subp_Type
)) = E_Subprogram_Type
3431 Is_Indirect
:= Try_Indirect_Call
(N
, Nam
, Subp_Type
);
3436 -- If the call has been transformed into a slice, it is of the form
3437 -- F (Subtype) where F is parameterless. The node has been rewritten in
3438 -- Try_Indexed_Call and there is nothing else to do.
3441 and then Nkind
(N
) = N_Slice
3447 (N
, Nam
, (Report
and not Is_Indexed
and not Is_Indirect
), Norm_OK
);
3451 -- If an indirect call is a possible interpretation, indicate
3452 -- success to the caller. This may be an indexing of an explicit
3453 -- dereference of a call that returns an access type (see above).
3457 and then Nkind
(Name
(N
)) = N_Explicit_Dereference
3458 and then Comes_From_Source
(Name
(N
)))
3463 -- Mismatch in number or names of parameters
3465 elsif Debug_Flag_E
then
3466 Write_Str
(" normalization fails in call ");
3467 Write_Int
(Int
(N
));
3468 Write_Str
(" with subprogram ");
3469 Write_Int
(Int
(Nam
));
3473 -- If the context expects a function call, discard any interpretation
3474 -- that is a procedure. If the node is not overloaded, leave as is for
3475 -- better error reporting when type mismatch is found.
3477 elsif Nkind
(N
) = N_Function_Call
3478 and then Is_Overloaded
(Name
(N
))
3479 and then Ekind
(Nam
) = E_Procedure
3483 -- Ditto for function calls in a procedure context
3485 elsif Nkind
(N
) = N_Procedure_Call_Statement
3486 and then Is_Overloaded
(Name
(N
))
3487 and then Etype
(Nam
) /= Standard_Void_Type
3491 elsif No
(Actuals
) then
3493 -- If Normalize succeeds, then there are default parameters for
3496 Indicate_Name_And_Type
;
3498 elsif Ekind
(Nam
) = E_Operator
then
3499 if Nkind
(N
) = N_Procedure_Call_Statement
then
3503 -- This can occur when the prefix of the call is an operator
3504 -- name or an expanded name whose selector is an operator name.
3506 Analyze_Operator_Call
(N
, Nam
);
3508 if Etype
(N
) /= Prev_T
then
3510 -- Check that operator is not hidden by a function interpretation
3512 if Is_Overloaded
(Name
(N
)) then
3518 Get_First_Interp
(Name
(N
), I
, It
);
3519 while Present
(It
.Nam
) loop
3520 if Operator_Hidden_By
(It
.Nam
) then
3521 Set_Etype
(N
, Prev_T
);
3525 Get_Next_Interp
(I
, It
);
3530 -- If operator matches formals, record its name on the call.
3531 -- If the operator is overloaded, Resolve will select the
3532 -- correct one from the list of interpretations. The call
3533 -- node itself carries the first candidate.
3535 Set_Entity
(Name
(N
), Nam
);
3538 elsif Report
and then Etype
(N
) = Any_Type
then
3539 Error_Msg_N
("incompatible arguments for operator", N
);
3543 -- Normalize_Actuals has chained the named associations in the
3544 -- correct order of the formals.
3546 Actual
:= First_Actual
(N
);
3547 Formal
:= First_Formal
(Nam
);
3549 -- If we are analyzing a call rewritten from object notation, skip
3550 -- first actual, which may be rewritten later as an explicit
3554 Next_Actual
(Actual
);
3555 Next_Formal
(Formal
);
3558 while Present
(Actual
) and then Present
(Formal
) loop
3559 if Nkind
(Parent
(Actual
)) /= N_Parameter_Association
3560 or else Chars
(Selector_Name
(Parent
(Actual
))) = Chars
(Formal
)
3562 -- The actual can be compatible with the formal, but we must
3563 -- also check that the context is not an address type that is
3564 -- visibly an integer type. In this case the use of literals is
3565 -- illegal, except in the body of descendants of system, where
3566 -- arithmetic operations on address are of course used.
3568 if Has_Compatible_Type
(Actual
, Etype
(Formal
))
3570 (Etype
(Actual
) /= Universal_Integer
3571 or else not Is_Descendant_Of_Address
(Etype
(Formal
))
3572 or else In_Predefined_Unit
(N
))
3574 Next_Actual
(Actual
);
3575 Next_Formal
(Formal
);
3577 -- In Allow_Integer_Address mode, we allow an actual integer to
3578 -- match a formal address type and vice versa. We only do this
3579 -- if we are certain that an error will otherwise be issued
3581 elsif Address_Integer_Convert_OK
3582 (Etype
(Actual
), Etype
(Formal
))
3583 and then (Report
and not Is_Indexed
and not Is_Indirect
)
3585 -- Handle this case by introducing an unchecked conversion
3588 Unchecked_Convert_To
(Etype
(Formal
),
3589 Relocate_Node
(Actual
)));
3590 Analyze_And_Resolve
(Actual
, Etype
(Formal
));
3591 Next_Actual
(Actual
);
3592 Next_Formal
(Formal
);
3594 -- Under relaxed RM semantics silently replace occurrences of
3595 -- null by System.Address_Null. We only do this if we know that
3596 -- an error will otherwise be issued.
3598 elsif Null_To_Null_Address_Convert_OK
(Actual
, Etype
(Formal
))
3599 and then (Report
and not Is_Indexed
and not Is_Indirect
)
3601 Replace_Null_By_Null_Address
(Actual
);
3602 Analyze_And_Resolve
(Actual
, Etype
(Formal
));
3603 Next_Actual
(Actual
);
3604 Next_Formal
(Formal
);
3606 elsif Compatible_Types_In_Predicate
3607 (Etype
(Formal
), Etype
(Actual
))
3609 Next_Actual
(Actual
);
3610 Next_Formal
(Formal
);
3612 -- In a complex case where an enclosing generic and a nested
3613 -- generic package, both declared with partially parameterized
3614 -- formal subprograms with the same names, are instantiated
3615 -- with the same type, the types of the actual parameter and
3616 -- that of the formal may appear incompatible at first sight.
3619 -- type Outer_T is private;
3620 -- with function Func (Formal : Outer_T)
3621 -- return ... is <>;
3623 -- package Outer_Gen is
3625 -- type Inner_T is private;
3626 -- with function Func (Formal : Inner_T) -- (1)
3627 -- return ... is <>;
3629 -- package Inner_Gen is
3630 -- function Inner_Func (Formal : Inner_T) -- (2)
3631 -- return ... is (Func (Formal));
3633 -- end Outer_Generic;
3635 -- package Outer_Inst is new Outer_Gen (Actual_T);
3636 -- package Inner_Inst is new Outer_Inst.Inner_Gen (Actual_T);
3638 -- In the example above, the type of parameter
3639 -- Inner_Func.Formal at (2) is incompatible with the type of
3640 -- Func.Formal at (1) in the context of instantiations
3641 -- Outer_Inst and Inner_Inst. In reality both types are generic
3642 -- actual subtypes renaming base type Actual_T as part of the
3643 -- generic prologues for the instantiations.
3645 -- Recognize this case and add a type conversion to allow this
3646 -- kind of generic actual subtype conformance. Note that this
3647 -- is done only when the call is non-overloaded because the
3648 -- resolution mechanism already has the means to disambiguate
3651 elsif not Is_Overloaded
(Name
(N
))
3652 and then Is_Type
(Etype
(Actual
))
3653 and then Is_Type
(Etype
(Formal
))
3654 and then Is_Generic_Actual_Type
(Etype
(Actual
))
3655 and then Is_Generic_Actual_Type
(Etype
(Formal
))
3656 and then Base_Type
(Etype
(Actual
)) =
3657 Base_Type
(Etype
(Formal
))
3660 Convert_To
(Etype
(Formal
), Relocate_Node
(Actual
)));
3661 Analyze_And_Resolve
(Actual
, Etype
(Formal
));
3662 Next_Actual
(Actual
);
3663 Next_Formal
(Formal
);
3665 -- Handle failed type check
3668 if Debug_Flag_E
then
3669 Write_Str
(" type checking fails in call ");
3670 Write_Int
(Int
(N
));
3671 Write_Str
(" with formal ");
3672 Write_Int
(Int
(Formal
));
3673 Write_Str
(" in subprogram ");
3674 Write_Int
(Int
(Nam
));
3678 -- Comment needed on the following test???
3680 if Report
and not Is_Indexed
and not Is_Indirect
then
3682 -- Ada 2005 (AI-251): Complete the error notification
3683 -- to help new Ada 2005 users.
3685 if Is_Class_Wide_Type
(Etype
(Formal
))
3686 and then Is_Interface
(Etype
(Etype
(Formal
)))
3687 and then not Interface_Present_In_Ancestor
3688 (Typ
=> Etype
(Actual
),
3689 Iface
=> Etype
(Etype
(Formal
)))
3692 ("(Ada 2005) does not implement interface }",
3693 Actual
, Etype
(Etype
(Formal
)));
3696 Wrong_Type
(Actual
, Etype
(Formal
));
3698 if Nkind
(Actual
) = N_Op_Eq
3699 and then Nkind
(Left_Opnd
(Actual
)) = N_Identifier
3701 Formal
:= First_Formal
(Nam
);
3702 while Present
(Formal
) loop
3703 if Chars
(Left_Opnd
(Actual
)) = Chars
(Formal
) then
3704 Error_Msg_N
-- CODEFIX
3705 ("possible misspelling of `='>`!", Actual
);
3709 Next_Formal
(Formal
);
3713 if All_Errors_Mode
then
3714 Error_Msg_Sloc
:= Sloc
(Nam
);
3716 if Etype
(Formal
) = Any_Type
then
3718 ("there is no legal actual parameter", Actual
);
3721 if Is_Overloadable
(Nam
)
3722 and then Present
(Alias
(Nam
))
3723 and then not Comes_From_Source
(Nam
)
3726 ("\\ =='> in call to inherited operation & #!",
3729 elsif Ekind
(Nam
) = E_Subprogram_Type
then
3731 Access_To_Subprogram_Typ
:
3732 constant Entity_Id
:=
3734 (Associated_Node_For_Itype
(Nam
));
3737 ("\\ =='> in call to dereference of &#!",
3738 Actual
, Access_To_Subprogram_Typ
);
3743 ("\\ =='> in call to &#!", Actual
, Nam
);
3753 -- Normalize_Actuals has verified that a default value exists
3754 -- for this formal. Current actual names a subsequent formal.
3756 Next_Formal
(Formal
);
3760 -- On exit, all actuals match
3762 Indicate_Name_And_Type
;
3764 end Analyze_One_Call
;
3766 ---------------------------
3767 -- Analyze_Operator_Call --
3768 ---------------------------
3770 procedure Analyze_Operator_Call
(N
: Node_Id
; Op_Id
: Entity_Id
) is
3771 Op_Name
: constant Name_Id
:= Chars
(Op_Id
);
3772 Act1
: constant Node_Id
:= First_Actual
(N
);
3773 Act2
: constant Node_Id
:= Next_Actual
(Act1
);
3776 -- Binary operator case
3778 if Present
(Act2
) then
3780 -- If more than two operands, then not binary operator after all
3782 if Present
(Next_Actual
(Act2
)) then
3786 -- Otherwise action depends on operator
3797 Find_Arithmetic_Types
(Act1
, Act2
, Op_Id
, N
);
3803 Find_Boolean_Types
(Act1
, Act2
, Op_Id
, N
);
3810 Find_Comparison_Types
(Act1
, Act2
, Op_Id
, N
);
3815 Find_Equality_Types
(Act1
, Act2
, Op_Id
, N
);
3817 when Name_Op_Concat
=>
3818 Find_Concatenation_Types
(Act1
, Act2
, Op_Id
, N
);
3820 -- Is this when others, or should it be an abort???
3826 -- Unary operator case
3834 Find_Unary_Types
(Act1
, Op_Id
, N
);
3837 Find_Negation_Types
(Act1
, Op_Id
, N
);
3839 -- Is this when others correct, or should it be an abort???
3845 end Analyze_Operator_Call
;
3847 -------------------------------------------
3848 -- Analyze_Overloaded_Selected_Component --
3849 -------------------------------------------
3851 procedure Analyze_Overloaded_Selected_Component
(N
: Node_Id
) is
3852 Nam
: constant Node_Id
:= Prefix
(N
);
3853 Sel
: constant Node_Id
:= Selector_Name
(N
);
3860 Set_Etype
(Sel
, Any_Type
);
3862 Get_First_Interp
(Nam
, I
, It
);
3863 while Present
(It
.Typ
) loop
3864 if Is_Access_Type
(It
.Typ
) then
3865 T
:= Designated_Type
(It
.Typ
);
3866 Error_Msg_NW
(Warn_On_Dereference
, "?d?implicit dereference", N
);
3871 -- Locate the component. For a private prefix the selector can denote
3874 if Is_Record_Type
(T
) or else Is_Private_Type
(T
) then
3876 -- If the prefix is a class-wide type, the visible components are
3877 -- those of the base type.
3879 if Is_Class_Wide_Type
(T
) then
3883 Comp
:= First_Entity
(T
);
3884 while Present
(Comp
) loop
3885 if Chars
(Comp
) = Chars
(Sel
)
3886 and then Is_Visible_Component
(Comp
)
3889 -- AI05-105: if the context is an object renaming with
3890 -- an anonymous access type, the expected type of the
3891 -- object must be anonymous. This is a name resolution rule.
3893 if Nkind
(Parent
(N
)) /= N_Object_Renaming_Declaration
3894 or else No
(Access_Definition
(Parent
(N
)))
3895 or else Ekind
(Etype
(Comp
)) = E_Anonymous_Access_Type
3897 Ekind
(Etype
(Comp
)) = E_Anonymous_Access_Subprogram_Type
3899 Set_Entity
(Sel
, Comp
);
3900 Set_Etype
(Sel
, Etype
(Comp
));
3901 Add_One_Interp
(N
, Etype
(Comp
), Etype
(Comp
));
3902 Check_Implicit_Dereference
(N
, Etype
(Comp
));
3904 -- This also specifies a candidate to resolve the name.
3905 -- Further overloading will be resolved from context.
3906 -- The selector name itself does not carry overloading
3909 Set_Etype
(Nam
, It
.Typ
);
3912 -- Named access type in the context of a renaming
3913 -- declaration with an access definition. Remove
3914 -- inapplicable candidate.
3923 elsif Is_Concurrent_Type
(T
) then
3924 Comp
:= First_Entity
(T
);
3925 while Present
(Comp
)
3926 and then Comp
/= First_Private_Entity
(T
)
3928 if Chars
(Comp
) = Chars
(Sel
) then
3929 if Is_Overloadable
(Comp
) then
3930 Add_One_Interp
(Sel
, Comp
, Etype
(Comp
));
3932 Set_Entity_With_Checks
(Sel
, Comp
);
3933 Generate_Reference
(Comp
, Sel
);
3936 Set_Etype
(Sel
, Etype
(Comp
));
3937 Set_Etype
(N
, Etype
(Comp
));
3938 Set_Etype
(Nam
, It
.Typ
);
3940 -- For access type case, introduce explicit dereference for
3941 -- more uniform treatment of entry calls. Do this only once
3942 -- if several interpretations yield an access type.
3944 if Is_Access_Type
(Etype
(Nam
))
3945 and then Nkind
(Nam
) /= N_Explicit_Dereference
3947 Insert_Explicit_Dereference
(Nam
);
3949 (Warn_On_Dereference
, "?d?implicit dereference", N
);
3956 Set_Is_Overloaded
(N
, Is_Overloaded
(Sel
));
3959 Get_Next_Interp
(I
, It
);
3962 if Etype
(N
) = Any_Type
3963 and then not Try_Object_Operation
(N
)
3965 Error_Msg_NE
("undefined selector& for overloaded prefix", N
, Sel
);
3966 Set_Entity
(Sel
, Any_Id
);
3967 Set_Etype
(Sel
, Any_Type
);
3969 end Analyze_Overloaded_Selected_Component
;
3971 ----------------------------------
3972 -- Analyze_Qualified_Expression --
3973 ----------------------------------
3975 procedure Analyze_Qualified_Expression
(N
: Node_Id
) is
3976 Mark
: constant Entity_Id
:= Subtype_Mark
(N
);
3977 Expr
: constant Node_Id
:= Expression
(N
);
3983 Analyze_Expression
(Expr
);
3985 Set_Etype
(N
, Any_Type
);
3989 if Nkind_In
(Enclosing_Declaration
(N
), N_Formal_Type_Declaration
,
3990 N_Full_Type_Declaration
,
3991 N_Incomplete_Type_Declaration
,
3992 N_Protected_Type_Declaration
,
3993 N_Private_Extension_Declaration
,
3994 N_Private_Type_Declaration
,
3995 N_Subtype_Declaration
,
3996 N_Task_Type_Declaration
)
3997 and then T
= Defining_Identifier
(Enclosing_Declaration
(N
))
3999 Error_Msg_N
("current instance not allowed", Mark
);
4005 if T
= Any_Type
then
4009 Check_Fully_Declared
(T
, N
);
4011 -- If expected type is class-wide, check for exact match before
4012 -- expansion, because if the expression is a dispatching call it
4013 -- may be rewritten as explicit dereference with class-wide result.
4014 -- If expression is overloaded, retain only interpretations that
4015 -- will yield exact matches.
4017 if Is_Class_Wide_Type
(T
) then
4018 if not Is_Overloaded
(Expr
) then
4019 if Base_Type
(Etype
(Expr
)) /= Base_Type
(T
) then
4020 if Nkind
(Expr
) = N_Aggregate
then
4021 Error_Msg_N
("type of aggregate cannot be class-wide", Expr
);
4023 Wrong_Type
(Expr
, T
);
4028 Get_First_Interp
(Expr
, I
, It
);
4030 while Present
(It
.Nam
) loop
4031 if Base_Type
(It
.Typ
) /= Base_Type
(T
) then
4035 Get_Next_Interp
(I
, It
);
4041 end Analyze_Qualified_Expression
;
4043 -----------------------------------
4044 -- Analyze_Quantified_Expression --
4045 -----------------------------------
4047 procedure Analyze_Quantified_Expression
(N
: Node_Id
) is
4048 function Is_Empty_Range
(Typ
: Entity_Id
) return Boolean;
4049 -- If the iterator is part of a quantified expression, and the range is
4050 -- known to be statically empty, emit a warning and replace expression
4051 -- with its static value. Returns True if the replacement occurs.
4053 function No_Else_Or_Trivial_True
(If_Expr
: Node_Id
) return Boolean;
4054 -- Determine whether if expression If_Expr lacks an else part or if it
4055 -- has one, it evaluates to True.
4057 --------------------
4058 -- Is_Empty_Range --
4059 --------------------
4061 function Is_Empty_Range
(Typ
: Entity_Id
) return Boolean is
4062 Loc
: constant Source_Ptr
:= Sloc
(N
);
4065 if Is_Array_Type
(Typ
)
4066 and then Compile_Time_Known_Bounds
(Typ
)
4068 (Expr_Value
(Type_Low_Bound
(Etype
(First_Index
(Typ
)))) >
4069 Expr_Value
(Type_High_Bound
(Etype
(First_Index
(Typ
)))))
4071 Preanalyze_And_Resolve
(Condition
(N
), Standard_Boolean
);
4073 if All_Present
(N
) then
4075 ("??quantified expression with ALL "
4076 & "over a null range has value True", N
);
4077 Rewrite
(N
, New_Occurrence_Of
(Standard_True
, Loc
));
4081 ("??quantified expression with SOME "
4082 & "over a null range has value False", N
);
4083 Rewrite
(N
, New_Occurrence_Of
(Standard_False
, Loc
));
4094 -----------------------------
4095 -- No_Else_Or_Trivial_True --
4096 -----------------------------
4098 function No_Else_Or_Trivial_True
(If_Expr
: Node_Id
) return Boolean is
4099 Else_Expr
: constant Node_Id
:=
4100 Next
(Next
(First
(Expressions
(If_Expr
))));
4104 or else (Compile_Time_Known_Value
(Else_Expr
)
4105 and then Is_True
(Expr_Value
(Else_Expr
)));
4106 end No_Else_Or_Trivial_True
;
4110 Cond
: constant Node_Id
:= Condition
(N
);
4111 Loop_Id
: Entity_Id
;
4112 QE_Scop
: Entity_Id
;
4114 -- Start of processing for Analyze_Quantified_Expression
4117 Check_SPARK_05_Restriction
("quantified expression is not allowed", N
);
4119 -- Create a scope to emulate the loop-like behavior of the quantified
4120 -- expression. The scope is needed to provide proper visibility of the
4123 QE_Scop
:= New_Internal_Entity
(E_Loop
, Current_Scope
, Sloc
(N
), 'L');
4124 Set_Etype
(QE_Scop
, Standard_Void_Type
);
4125 Set_Scope
(QE_Scop
, Current_Scope
);
4126 Set_Parent
(QE_Scop
, N
);
4128 Push_Scope
(QE_Scop
);
4130 -- All constituents are preanalyzed and resolved to avoid untimely
4131 -- generation of various temporaries and types. Full analysis and
4132 -- expansion is carried out when the quantified expression is
4133 -- transformed into an expression with actions.
4135 if Present
(Iterator_Specification
(N
)) then
4136 Preanalyze
(Iterator_Specification
(N
));
4138 -- Do not proceed with the analysis when the range of iteration is
4139 -- empty. The appropriate error is issued by Is_Empty_Range.
4141 if Is_Entity_Name
(Name
(Iterator_Specification
(N
)))
4142 and then Is_Empty_Range
(Etype
(Name
(Iterator_Specification
(N
))))
4147 else pragma Assert
(Present
(Loop_Parameter_Specification
(N
)));
4149 Loop_Par
: constant Node_Id
:= Loop_Parameter_Specification
(N
);
4152 Preanalyze
(Loop_Par
);
4154 if Nkind
(Discrete_Subtype_Definition
(Loop_Par
)) = N_Function_Call
4155 and then Parent
(Loop_Par
) /= N
4157 -- The parser cannot distinguish between a loop specification
4158 -- and an iterator specification. If after preanalysis the
4159 -- proper form has been recognized, rewrite the expression to
4160 -- reflect the right kind. This is needed for proper ASIS
4161 -- navigation. If expansion is enabled, the transformation is
4162 -- performed when the expression is rewritten as a loop.
4164 Set_Iterator_Specification
(N
,
4165 New_Copy_Tree
(Iterator_Specification
(Parent
(Loop_Par
))));
4167 Set_Defining_Identifier
(Iterator_Specification
(N
),
4168 Relocate_Node
(Defining_Identifier
(Loop_Par
)));
4169 Set_Name
(Iterator_Specification
(N
),
4170 Relocate_Node
(Discrete_Subtype_Definition
(Loop_Par
)));
4171 Set_Comes_From_Source
(Iterator_Specification
(N
),
4172 Comes_From_Source
(Loop_Parameter_Specification
(N
)));
4173 Set_Loop_Parameter_Specification
(N
, Empty
);
4178 Preanalyze_And_Resolve
(Cond
, Standard_Boolean
);
4181 Set_Etype
(N
, Standard_Boolean
);
4183 -- Verify that the loop variable is used within the condition of the
4184 -- quantified expression.
4186 if Present
(Iterator_Specification
(N
)) then
4187 Loop_Id
:= Defining_Identifier
(Iterator_Specification
(N
));
4189 Loop_Id
:= Defining_Identifier
(Loop_Parameter_Specification
(N
));
4192 if Warn_On_Suspicious_Contract
4193 and then not Referenced
(Loop_Id
, Cond
)
4195 -- Generating C, this check causes spurious warnings on inlined
4196 -- postconditions; we can safely disable it because this check
4197 -- was previously performed when analyzing the internally built
4198 -- postconditions procedure.
4200 if Modify_Tree_For_C
and then In_Inlined_Body
then
4203 Error_Msg_N
("?T?unused variable &", Loop_Id
);
4207 -- Diagnose a possible misuse of the SOME existential quantifier. When
4208 -- we have a quantified expression of the form:
4210 -- for some X => (if P then Q [else True])
4212 -- any value for X that makes P False results in the if expression being
4213 -- trivially True, and so also results in the quantified expression
4214 -- being trivially True.
4216 if Warn_On_Suspicious_Contract
4217 and then not All_Present
(N
)
4218 and then Nkind
(Cond
) = N_If_Expression
4219 and then No_Else_Or_Trivial_True
(Cond
)
4221 Error_Msg_N
("?T?suspicious expression", N
);
4222 Error_Msg_N
("\\did you mean (for all X ='> (if P then Q))", N
);
4223 Error_Msg_N
("\\or (for some X ='> P and then Q) instead'?", N
);
4225 end Analyze_Quantified_Expression
;
4231 procedure Analyze_Range
(N
: Node_Id
) is
4232 L
: constant Node_Id
:= Low_Bound
(N
);
4233 H
: constant Node_Id
:= High_Bound
(N
);
4234 I1
, I2
: Interp_Index
;
4237 procedure Check_Common_Type
(T1
, T2
: Entity_Id
);
4238 -- Verify the compatibility of two types, and choose the
4239 -- non universal one if the other is universal.
4241 procedure Check_High_Bound
(T
: Entity_Id
);
4242 -- Test one interpretation of the low bound against all those
4243 -- of the high bound.
4245 procedure Check_Universal_Expression
(N
: Node_Id
);
4246 -- In Ada 83, reject bounds of a universal range that are not literals
4249 -----------------------
4250 -- Check_Common_Type --
4251 -----------------------
4253 procedure Check_Common_Type
(T1
, T2
: Entity_Id
) is
4255 if Covers
(T1
=> T1
, T2
=> T2
)
4257 Covers
(T1
=> T2
, T2
=> T1
)
4259 if T1
= Universal_Integer
4260 or else T1
= Universal_Real
4261 or else T1
= Any_Character
4263 Add_One_Interp
(N
, Base_Type
(T2
), Base_Type
(T2
));
4266 Add_One_Interp
(N
, T1
, T1
);
4269 Add_One_Interp
(N
, Base_Type
(T1
), Base_Type
(T1
));
4272 end Check_Common_Type
;
4274 ----------------------
4275 -- Check_High_Bound --
4276 ----------------------
4278 procedure Check_High_Bound
(T
: Entity_Id
) is
4280 if not Is_Overloaded
(H
) then
4281 Check_Common_Type
(T
, Etype
(H
));
4283 Get_First_Interp
(H
, I2
, It2
);
4284 while Present
(It2
.Typ
) loop
4285 Check_Common_Type
(T
, It2
.Typ
);
4286 Get_Next_Interp
(I2
, It2
);
4289 end Check_High_Bound
;
4291 -----------------------------
4292 -- Is_Universal_Expression --
4293 -----------------------------
4295 procedure Check_Universal_Expression
(N
: Node_Id
) is
4297 if Etype
(N
) = Universal_Integer
4298 and then Nkind
(N
) /= N_Integer_Literal
4299 and then not Is_Entity_Name
(N
)
4300 and then Nkind
(N
) /= N_Attribute_Reference
4302 Error_Msg_N
("illegal bound in discrete range", N
);
4304 end Check_Universal_Expression
;
4306 -- Start of processing for Analyze_Range
4309 Set_Etype
(N
, Any_Type
);
4310 Analyze_Expression
(L
);
4311 Analyze_Expression
(H
);
4313 if Etype
(L
) = Any_Type
or else Etype
(H
) = Any_Type
then
4317 if not Is_Overloaded
(L
) then
4318 Check_High_Bound
(Etype
(L
));
4320 Get_First_Interp
(L
, I1
, It1
);
4321 while Present
(It1
.Typ
) loop
4322 Check_High_Bound
(It1
.Typ
);
4323 Get_Next_Interp
(I1
, It1
);
4327 -- If result is Any_Type, then we did not find a compatible pair
4329 if Etype
(N
) = Any_Type
then
4330 Error_Msg_N
("incompatible types in range ", N
);
4334 if Ada_Version
= Ada_83
4336 (Nkind
(Parent
(N
)) = N_Loop_Parameter_Specification
4337 or else Nkind
(Parent
(N
)) = N_Constrained_Array_Definition
)
4339 Check_Universal_Expression
(L
);
4340 Check_Universal_Expression
(H
);
4343 Check_Function_Writable_Actuals
(N
);
4346 -----------------------------------
4347 -- Analyze_Reduction_Expression --
4348 -----------------------------------
4350 procedure Analyze_Reduction_Expression
(N
: Node_Id
) is
4351 Expr
: constant Node_Id
:= Expression
(N
);
4352 QE_Scop
: Entity_Id
;
4355 QE_Scop
:= New_Internal_Entity
(E_Loop
, Current_Scope
, Sloc
(N
), 'L');
4356 Set_Etype
(QE_Scop
, Standard_Void_Type
);
4357 Set_Scope
(QE_Scop
, Current_Scope
);
4358 Set_Parent
(QE_Scop
, N
);
4360 Push_Scope
(QE_Scop
);
4362 -- All constituents are preanalyzed and resolved to avoid untimely
4363 -- generation of various temporaries and types. Full analysis and
4364 -- expansion is carried out when the reduction expression is
4365 -- transformed into an expression with actions.
4367 if Present
(Iterator_Specification
(N
)) then
4368 Preanalyze
(Iterator_Specification
(N
));
4370 else pragma Assert
(Present
(Loop_Parameter_Specification
(N
)));
4372 Loop_Par
: constant Node_Id
:= Loop_Parameter_Specification
(N
);
4375 Preanalyze
(Loop_Par
);
4377 if Nkind
(Discrete_Subtype_Definition
(Loop_Par
)) = N_Function_Call
4378 and then Parent
(Loop_Par
) /= N
4380 -- The parser cannot distinguish between a loop specification
4381 -- and an iterator specification. If after preanalysis the
4382 -- proper form has been recognized, rewrite the expression to
4383 -- reflect the right kind. This is needed for proper ASIS
4384 -- navigation. If expansion is enabled, the transformation is
4385 -- performed when the expression is rewritten as a loop.
4387 Set_Iterator_Specification
(N
,
4388 New_Copy_Tree
(Iterator_Specification
(Parent
(Loop_Par
))));
4390 Set_Defining_Identifier
(Iterator_Specification
(N
),
4391 Relocate_Node
(Defining_Identifier
(Loop_Par
)));
4392 Set_Name
(Iterator_Specification
(N
),
4393 Relocate_Node
(Discrete_Subtype_Definition
(Loop_Par
)));
4394 Set_Comes_From_Source
(Iterator_Specification
(N
),
4395 Comes_From_Source
(Loop_Parameter_Specification
(N
)));
4396 Set_Loop_Parameter_Specification
(N
, Empty
);
4404 Set_Etype
(N
, Etype
(Expr
));
4405 end Analyze_Reduction_Expression
;
4407 --------------------------------------------
4408 -- Analyze_Reduction_Expression_Parameter --
4409 --------------------------------------------
4411 procedure Analyze_Reduction_Expression_Parameter
(N
: Node_Id
) is
4412 Expr
: constant Node_Id
:= Expression
(N
);
4416 Set_Etype
(N
, Etype
(Expr
));
4417 end Analyze_Reduction_Expression_Parameter
;
4419 -----------------------
4420 -- Analyze_Reference --
4421 -----------------------
4423 procedure Analyze_Reference
(N
: Node_Id
) is
4424 P
: constant Node_Id
:= Prefix
(N
);
4427 Acc_Type
: Entity_Id
;
4432 -- An interesting error check, if we take the 'Ref of an object for
4433 -- which a pragma Atomic or Volatile has been given, and the type of the
4434 -- object is not Atomic or Volatile, then we are in trouble. The problem
4435 -- is that no trace of the atomic/volatile status will remain for the
4436 -- backend to respect when it deals with the resulting pointer, since
4437 -- the pointer type will not be marked atomic (it is a pointer to the
4438 -- base type of the object).
4440 -- It is not clear if that can ever occur, but in case it does, we will
4441 -- generate an error message. Not clear if this message can ever be
4442 -- generated, and pretty clear that it represents a bug if it is, still
4443 -- seems worth checking, except in CodePeer mode where we do not really
4444 -- care and don't want to bother the user.
4448 if Is_Entity_Name
(P
)
4449 and then Is_Object_Reference
(P
)
4450 and then not CodePeer_Mode
4455 if (Has_Atomic_Components
(E
)
4456 and then not Has_Atomic_Components
(T
))
4458 (Has_Volatile_Components
(E
)
4459 and then not Has_Volatile_Components
(T
))
4460 or else (Is_Atomic
(E
) and then not Is_Atomic
(T
))
4461 or else (Is_Volatile
(E
) and then not Is_Volatile
(T
))
4463 Error_Msg_N
("cannot take reference to Atomic/Volatile object", N
);
4467 -- Carry on with normal processing
4469 Acc_Type
:= Create_Itype
(E_Allocator_Type
, N
);
4470 Set_Etype
(Acc_Type
, Acc_Type
);
4471 Set_Directly_Designated_Type
(Acc_Type
, Etype
(P
));
4472 Set_Etype
(N
, Acc_Type
);
4473 end Analyze_Reference
;
4475 --------------------------------
4476 -- Analyze_Selected_Component --
4477 --------------------------------
4479 -- Prefix is a record type or a task or protected type. In the latter case,
4480 -- the selector must denote a visible entry.
4482 procedure Analyze_Selected_Component
(N
: Node_Id
) is
4483 Name
: constant Node_Id
:= Prefix
(N
);
4484 Sel
: constant Node_Id
:= Selector_Name
(N
);
4487 Has_Candidate
: Boolean := False;
4488 Hidden_Comp
: Entity_Id
;
4490 Is_Private_Op
: Boolean;
4492 Pent
: Entity_Id
:= Empty
;
4493 Prefix_Type
: Entity_Id
;
4495 Type_To_Use
: Entity_Id
;
4496 -- In most cases this is the Prefix_Type, but if the Prefix_Type is
4497 -- a class-wide type, we use its root type, whose components are
4498 -- present in the class-wide type.
4500 Is_Single_Concurrent_Object
: Boolean;
4501 -- Set True if the prefix is a single task or a single protected object
4503 procedure Find_Component_In_Instance
(Rec
: Entity_Id
);
4504 -- In an instance, a component of a private extension may not be visible
4505 -- while it was visible in the generic. Search candidate scope for a
4506 -- component with the proper identifier. This is only done if all other
4507 -- searches have failed. If a match is found, the Etype of both N and
4508 -- Sel are set from this component, and the entity of Sel is set to
4509 -- reference this component. If no match is found, Entity (Sel) remains
4510 -- unset. For a derived type that is an actual of the instance, the
4511 -- desired component may be found in any ancestor.
4513 function Has_Mode_Conformant_Spec
(Comp
: Entity_Id
) return Boolean;
4514 -- It is known that the parent of N denotes a subprogram call. Comp
4515 -- is an overloadable component of the concurrent type of the prefix.
4516 -- Determine whether all formals of the parent of N and Comp are mode
4517 -- conformant. If the parent node is not analyzed yet it may be an
4518 -- indexed component rather than a function call.
4520 function Has_Dereference
(Nod
: Node_Id
) return Boolean;
4521 -- Check whether prefix includes a dereference at any level.
4523 --------------------------------
4524 -- Find_Component_In_Instance --
4525 --------------------------------
4527 procedure Find_Component_In_Instance
(Rec
: Entity_Id
) is
4533 while Present
(Typ
) loop
4534 Comp
:= First_Component
(Typ
);
4535 while Present
(Comp
) loop
4536 if Chars
(Comp
) = Chars
(Sel
) then
4537 Set_Entity_With_Checks
(Sel
, Comp
);
4538 Set_Etype
(Sel
, Etype
(Comp
));
4539 Set_Etype
(N
, Etype
(Comp
));
4543 Next_Component
(Comp
);
4546 -- If not found, the component may be declared in the parent
4547 -- type or its full view, if any.
4549 if Is_Derived_Type
(Typ
) then
4552 if Is_Private_Type
(Typ
) then
4553 Typ
:= Full_View
(Typ
);
4561 -- If we fall through, no match, so no changes made
4564 end Find_Component_In_Instance
;
4566 ------------------------------
4567 -- Has_Mode_Conformant_Spec --
4568 ------------------------------
4570 function Has_Mode_Conformant_Spec
(Comp
: Entity_Id
) return Boolean is
4571 Comp_Param
: Entity_Id
;
4573 Param_Typ
: Entity_Id
;
4576 Comp_Param
:= First_Formal
(Comp
);
4578 if Nkind
(Parent
(N
)) = N_Indexed_Component
then
4579 Param
:= First
(Expressions
(Parent
(N
)));
4581 Param
:= First
(Parameter_Associations
(Parent
(N
)));
4584 while Present
(Comp_Param
)
4585 and then Present
(Param
)
4587 Param_Typ
:= Find_Parameter_Type
(Param
);
4589 if Present
(Param_Typ
)
4591 not Conforming_Types
4592 (Etype
(Comp_Param
), Param_Typ
, Mode_Conformant
)
4597 Next_Formal
(Comp_Param
);
4601 -- One of the specs has additional formals; there is no match, unless
4602 -- this may be an indexing of a parameterless call.
4604 -- Note that when expansion is disabled, the corresponding record
4605 -- type of synchronized types is not constructed, so that there is
4606 -- no point is attempting an interpretation as a prefixed call, as
4607 -- this is bound to fail because the primitive operations will not
4608 -- be properly located.
4610 if Present
(Comp_Param
) or else Present
(Param
) then
4611 if Needs_No_Actuals
(Comp
)
4612 and then Is_Array_Type
(Etype
(Comp
))
4613 and then not Expander_Active
4622 end Has_Mode_Conformant_Spec
;
4624 ---------------------
4625 -- Has_Dereference --
4626 ---------------------
4628 function Has_Dereference
(Nod
: Node_Id
) return Boolean is
4630 if Nkind
(Nod
) = N_Explicit_Dereference
then
4633 -- When expansion is disabled an explicit dereference may not have
4634 -- been inserted, but if this is an access type the indirection makes
4637 elsif Is_Access_Type
(Etype
(Nod
)) then
4640 elsif Nkind_In
(Nod
, N_Indexed_Component
, N_Selected_Component
) then
4641 return Has_Dereference
(Prefix
(Nod
));
4646 end Has_Dereference
;
4648 -- Start of processing for Analyze_Selected_Component
4651 Set_Etype
(N
, Any_Type
);
4653 if Is_Overloaded
(Name
) then
4654 Analyze_Overloaded_Selected_Component
(N
);
4657 elsif Etype
(Name
) = Any_Type
then
4658 Set_Entity
(Sel
, Any_Id
);
4659 Set_Etype
(Sel
, Any_Type
);
4663 Prefix_Type
:= Etype
(Name
);
4666 if Is_Access_Type
(Prefix_Type
) then
4668 -- A RACW object can never be used as prefix of a selected component
4669 -- since that means it is dereferenced without being a controlling
4670 -- operand of a dispatching operation (RM E.2.2(16/1)). Before
4671 -- reporting an error, we must check whether this is actually a
4672 -- dispatching call in prefix form.
4674 if Is_Remote_Access_To_Class_Wide_Type
(Prefix_Type
)
4675 and then Comes_From_Source
(N
)
4677 if Try_Object_Operation
(N
) then
4681 ("invalid dereference of a remote access-to-class-wide value",
4685 -- Normal case of selected component applied to access type
4688 Error_Msg_NW
(Warn_On_Dereference
, "?d?implicit dereference", N
);
4690 if Is_Entity_Name
(Name
) then
4691 Pent
:= Entity
(Name
);
4692 elsif Nkind
(Name
) = N_Selected_Component
4693 and then Is_Entity_Name
(Selector_Name
(Name
))
4695 Pent
:= Entity
(Selector_Name
(Name
));
4698 Prefix_Type
:= Process_Implicit_Dereference_Prefix
(Pent
, Name
);
4701 -- If we have an explicit dereference of a remote access-to-class-wide
4702 -- value, then issue an error (see RM-E.2.2(16/1)). However we first
4703 -- have to check for the case of a prefix that is a controlling operand
4704 -- of a prefixed dispatching call, as the dereference is legal in that
4705 -- case. Normally this condition is checked in Validate_Remote_Access_
4706 -- To_Class_Wide_Type, but we have to defer the checking for selected
4707 -- component prefixes because of the prefixed dispatching call case.
4708 -- Note that implicit dereferences are checked for this just above.
4710 elsif Nkind
(Name
) = N_Explicit_Dereference
4711 and then Is_Remote_Access_To_Class_Wide_Type
(Etype
(Prefix
(Name
)))
4712 and then Comes_From_Source
(N
)
4714 if Try_Object_Operation
(N
) then
4718 ("invalid dereference of a remote access-to-class-wide value",
4723 -- (Ada 2005): if the prefix is the limited view of a type, and
4724 -- the context already includes the full view, use the full view
4725 -- in what follows, either to retrieve a component of to find
4726 -- a primitive operation. If the prefix is an explicit dereference,
4727 -- set the type of the prefix to reflect this transformation.
4728 -- If the nonlimited view is itself an incomplete type, get the
4729 -- full view if available.
4731 if From_Limited_With
(Prefix_Type
)
4732 and then Has_Non_Limited_View
(Prefix_Type
)
4734 Prefix_Type
:= Get_Full_View
(Non_Limited_View
(Prefix_Type
));
4736 if Nkind
(N
) = N_Explicit_Dereference
then
4737 Set_Etype
(Prefix
(N
), Prefix_Type
);
4741 if Ekind
(Prefix_Type
) = E_Private_Subtype
then
4742 Prefix_Type
:= Base_Type
(Prefix_Type
);
4745 Type_To_Use
:= Prefix_Type
;
4747 -- For class-wide types, use the entity list of the root type. This
4748 -- indirection is specially important for private extensions because
4749 -- only the root type get switched (not the class-wide type).
4751 if Is_Class_Wide_Type
(Prefix_Type
) then
4752 Type_To_Use
:= Root_Type
(Prefix_Type
);
4755 -- If the prefix is a single concurrent object, use its name in error
4756 -- messages, rather than that of its anonymous type.
4758 Is_Single_Concurrent_Object
:=
4759 Is_Concurrent_Type
(Prefix_Type
)
4760 and then Is_Internal_Name
(Chars
(Prefix_Type
))
4761 and then not Is_Derived_Type
(Prefix_Type
)
4762 and then Is_Entity_Name
(Name
);
4764 Comp
:= First_Entity
(Type_To_Use
);
4766 -- If the selector has an original discriminant, the node appears in
4767 -- an instance. Replace the discriminant with the corresponding one
4768 -- in the current discriminated type. For nested generics, this must
4769 -- be done transitively, so note the new original discriminant.
4771 if Nkind
(Sel
) = N_Identifier
4772 and then In_Instance
4773 and then Present
(Original_Discriminant
(Sel
))
4775 Comp
:= Find_Corresponding_Discriminant
(Sel
, Prefix_Type
);
4777 -- Mark entity before rewriting, for completeness and because
4778 -- subsequent semantic checks might examine the original node.
4780 Set_Entity
(Sel
, Comp
);
4781 Rewrite
(Selector_Name
(N
), New_Occurrence_Of
(Comp
, Sloc
(N
)));
4782 Set_Original_Discriminant
(Selector_Name
(N
), Comp
);
4783 Set_Etype
(N
, Etype
(Comp
));
4784 Check_Implicit_Dereference
(N
, Etype
(Comp
));
4786 if Is_Access_Type
(Etype
(Name
)) then
4787 Insert_Explicit_Dereference
(Name
);
4788 Error_Msg_NW
(Warn_On_Dereference
, "?d?implicit dereference", N
);
4791 elsif Is_Record_Type
(Prefix_Type
) then
4793 -- Find component with given name. In an instance, if the node is
4794 -- known as a prefixed call, do not examine components whose
4795 -- visibility may be accidental.
4797 while Present
(Comp
) and then not Is_Prefixed_Call
(N
) loop
4798 if Chars
(Comp
) = Chars
(Sel
)
4799 and then Is_Visible_Component
(Comp
, N
)
4801 Set_Entity_With_Checks
(Sel
, Comp
);
4802 Set_Etype
(Sel
, Etype
(Comp
));
4804 if Ekind
(Comp
) = E_Discriminant
then
4805 if Is_Unchecked_Union
(Base_Type
(Prefix_Type
)) then
4807 ("cannot reference discriminant of unchecked union",
4811 if Is_Generic_Type
(Prefix_Type
)
4813 Is_Generic_Type
(Root_Type
(Prefix_Type
))
4815 Set_Original_Discriminant
(Sel
, Comp
);
4819 -- Resolve the prefix early otherwise it is not possible to
4820 -- build the actual subtype of the component: it may need
4821 -- to duplicate this prefix and duplication is only allowed
4822 -- on fully resolved expressions.
4826 -- Ada 2005 (AI-50217): Check wrong use of incomplete types or
4827 -- subtypes in a package specification.
4830 -- limited with Pkg;
4832 -- type Acc_Inc is access Pkg.T;
4834 -- N : Natural := X.all.Comp; -- ERROR, limited view
4835 -- end Pkg; -- Comp is not visible
4837 if Nkind
(Name
) = N_Explicit_Dereference
4838 and then From_Limited_With
(Etype
(Prefix
(Name
)))
4839 and then not Is_Potentially_Use_Visible
(Etype
(Name
))
4840 and then Nkind
(Parent
(Cunit_Entity
(Current_Sem_Unit
))) =
4841 N_Package_Specification
4844 ("premature usage of incomplete}", Prefix
(Name
),
4845 Etype
(Prefix
(Name
)));
4848 -- We never need an actual subtype for the case of a selection
4849 -- for a indexed component of a non-packed array, since in
4850 -- this case gigi generates all the checks and can find the
4851 -- necessary bounds information.
4853 -- We also do not need an actual subtype for the case of a
4854 -- first, last, length, or range attribute applied to a
4855 -- non-packed array, since gigi can again get the bounds in
4856 -- these cases (gigi cannot handle the packed case, since it
4857 -- has the bounds of the packed array type, not the original
4858 -- bounds of the type). However, if the prefix is itself a
4859 -- selected component, as in a.b.c (i), gigi may regard a.b.c
4860 -- as a dynamic-sized temporary, so we do generate an actual
4861 -- subtype for this case.
4863 Parent_N
:= Parent
(N
);
4865 if not Is_Packed
(Etype
(Comp
))
4867 ((Nkind
(Parent_N
) = N_Indexed_Component
4868 and then Nkind
(Name
) /= N_Selected_Component
)
4870 (Nkind
(Parent_N
) = N_Attribute_Reference
4872 Nam_In
(Attribute_Name
(Parent_N
), Name_First
,
4877 Set_Etype
(N
, Etype
(Comp
));
4879 -- If full analysis is not enabled, we do not generate an
4880 -- actual subtype, because in the absence of expansion
4881 -- reference to a formal of a protected type, for example,
4882 -- will not be properly transformed, and will lead to
4883 -- out-of-scope references in gigi.
4885 -- In all other cases, we currently build an actual subtype.
4886 -- It seems likely that many of these cases can be avoided,
4887 -- but right now, the front end makes direct references to the
4888 -- bounds (e.g. in generating a length check), and if we do
4889 -- not make an actual subtype, we end up getting a direct
4890 -- reference to a discriminant, which will not do.
4892 elsif Full_Analysis
then
4894 Build_Actual_Subtype_Of_Component
(Etype
(Comp
), N
);
4895 Insert_Action
(N
, Act_Decl
);
4897 if No
(Act_Decl
) then
4898 Set_Etype
(N
, Etype
(Comp
));
4901 -- Component type depends on discriminants. Enter the
4902 -- main attributes of the subtype.
4905 Subt
: constant Entity_Id
:=
4906 Defining_Identifier
(Act_Decl
);
4909 Set_Etype
(Subt
, Base_Type
(Etype
(Comp
)));
4910 Set_Ekind
(Subt
, Ekind
(Etype
(Comp
)));
4911 Set_Etype
(N
, Subt
);
4915 -- If Full_Analysis not enabled, just set the Etype
4918 Set_Etype
(N
, Etype
(Comp
));
4921 Check_Implicit_Dereference
(N
, Etype
(N
));
4925 -- If the prefix is a private extension, check only the visible
4926 -- components of the partial view. This must include the tag,
4927 -- which can appear in expanded code in a tag check.
4929 if Ekind
(Type_To_Use
) = E_Record_Type_With_Private
4930 and then Chars
(Selector_Name
(N
)) /= Name_uTag
4932 exit when Comp
= Last_Entity
(Type_To_Use
);
4938 -- Ada 2005 (AI-252): The selected component can be interpreted as
4939 -- a prefixed view of a subprogram. Depending on the context, this is
4940 -- either a name that can appear in a renaming declaration, or part
4941 -- of an enclosing call given in prefix form.
4943 -- Ada 2005 (AI05-0030): In the case of dispatching requeue, the
4944 -- selected component should resolve to a name.
4946 if Ada_Version
>= Ada_2005
4947 and then Is_Tagged_Type
(Prefix_Type
)
4948 and then not Is_Concurrent_Type
(Prefix_Type
)
4950 if Nkind
(Parent
(N
)) = N_Generic_Association
4951 or else Nkind
(Parent
(N
)) = N_Requeue_Statement
4952 or else Nkind
(Parent
(N
)) = N_Subprogram_Renaming_Declaration
4954 if Find_Primitive_Operation
(N
) then
4958 elsif Try_Object_Operation
(N
) then
4962 -- If the transformation fails, it will be necessary to redo the
4963 -- analysis with all errors enabled, to indicate candidate
4964 -- interpretations and reasons for each failure ???
4968 elsif Is_Private_Type
(Prefix_Type
) then
4970 -- Allow access only to discriminants of the type. If the type has
4971 -- no full view, gigi uses the parent type for the components, so we
4972 -- do the same here.
4974 if No
(Full_View
(Prefix_Type
)) then
4975 Type_To_Use
:= Root_Type
(Base_Type
(Prefix_Type
));
4976 Comp
:= First_Entity
(Type_To_Use
);
4979 while Present
(Comp
) loop
4980 if Chars
(Comp
) = Chars
(Sel
) then
4981 if Ekind
(Comp
) = E_Discriminant
then
4982 Set_Entity_With_Checks
(Sel
, Comp
);
4983 Generate_Reference
(Comp
, Sel
);
4985 Set_Etype
(Sel
, Etype
(Comp
));
4986 Set_Etype
(N
, Etype
(Comp
));
4987 Check_Implicit_Dereference
(N
, Etype
(N
));
4989 if Is_Generic_Type
(Prefix_Type
)
4990 or else Is_Generic_Type
(Root_Type
(Prefix_Type
))
4992 Set_Original_Discriminant
(Sel
, Comp
);
4995 -- Before declaring an error, check whether this is tagged
4996 -- private type and a call to a primitive operation.
4998 elsif Ada_Version
>= Ada_2005
4999 and then Is_Tagged_Type
(Prefix_Type
)
5000 and then Try_Object_Operation
(N
)
5005 Error_Msg_Node_2
:= First_Subtype
(Prefix_Type
);
5006 Error_Msg_NE
("invisible selector& for }", N
, Sel
);
5007 Set_Entity
(Sel
, Any_Id
);
5008 Set_Etype
(N
, Any_Type
);
5017 elsif Is_Concurrent_Type
(Prefix_Type
) then
5019 -- Find visible operation with given name. For a protected type,
5020 -- the possible candidates are discriminants, entries or protected
5021 -- subprograms. For a task type, the set can only include entries or
5022 -- discriminants if the task type is not an enclosing scope. If it
5023 -- is an enclosing scope (e.g. in an inner task) then all entities
5024 -- are visible, but the prefix must denote the enclosing scope, i.e.
5025 -- can only be a direct name or an expanded name.
5027 Set_Etype
(Sel
, Any_Type
);
5028 Hidden_Comp
:= Empty
;
5029 In_Scope
:= In_Open_Scopes
(Prefix_Type
);
5030 Is_Private_Op
:= False;
5032 while Present
(Comp
) loop
5034 -- Do not examine private operations of the type if not within
5037 if Chars
(Comp
) = Chars
(Sel
) then
5038 if Is_Overloadable
(Comp
)
5040 or else Comp
/= First_Private_Entity
(Type_To_Use
))
5042 Add_One_Interp
(Sel
, Comp
, Etype
(Comp
));
5043 if Comp
= First_Private_Entity
(Type_To_Use
) then
5044 Is_Private_Op
:= True;
5047 -- If the prefix is tagged, the correct interpretation may
5048 -- lie in the primitive or class-wide operations of the
5049 -- type. Perform a simple conformance check to determine
5050 -- whether Try_Object_Operation should be invoked even if
5051 -- a visible entity is found.
5053 if Is_Tagged_Type
(Prefix_Type
)
5054 and then Nkind_In
(Parent
(N
), N_Function_Call
,
5055 N_Indexed_Component
,
5056 N_Procedure_Call_Statement
)
5057 and then Has_Mode_Conformant_Spec
(Comp
)
5059 Has_Candidate
:= True;
5062 -- Note: a selected component may not denote a component of a
5063 -- protected type (4.1.3(7)).
5065 elsif Ekind_In
(Comp
, E_Discriminant
, E_Entry_Family
)
5067 and then not Is_Protected_Type
(Prefix_Type
)
5068 and then Is_Entity_Name
(Name
))
5070 Set_Entity_With_Checks
(Sel
, Comp
);
5071 Generate_Reference
(Comp
, Sel
);
5073 -- The selector is not overloadable, so we have a candidate
5076 Has_Candidate
:= True;
5079 if Ekind
(Comp
) = E_Component
then
5080 Hidden_Comp
:= Comp
;
5086 Set_Etype
(Sel
, Etype
(Comp
));
5087 Set_Etype
(N
, Etype
(Comp
));
5089 if Ekind
(Comp
) = E_Discriminant
then
5090 Set_Original_Discriminant
(Sel
, Comp
);
5093 -- For access type case, introduce explicit dereference for
5094 -- more uniform treatment of entry calls.
5096 if Is_Access_Type
(Etype
(Name
)) then
5097 Insert_Explicit_Dereference
(Name
);
5099 (Warn_On_Dereference
, "?d?implicit dereference", N
);
5104 if Comp
= First_Private_Entity
(Type_To_Use
) then
5105 if Etype
(Sel
) /= Any_Type
then
5107 -- We have a candiate
5112 -- Indicate that subsequent operations are private,
5113 -- for better error reporting.
5115 Is_Private_Op
:= True;
5119 -- Do not examine private operations if not within scope of
5120 -- the synchronized type.
5122 exit when not In_Scope
5124 Comp
= First_Private_Entity
(Base_Type
(Prefix_Type
));
5128 -- If the scope is a current instance, the prefix cannot be an
5129 -- expression of the same type, unless the selector designates a
5130 -- public operation (otherwise that would represent an attempt to
5131 -- reach an internal entity of another synchronized object).
5133 -- This is legal if prefix is an access to such type and there is
5134 -- a dereference, or is a component with a dereferenced prefix.
5135 -- It is also legal if the prefix is a component of a task type,
5136 -- and the selector is one of the task operations.
5139 and then not Is_Entity_Name
(Name
)
5140 and then not Has_Dereference
(Name
)
5142 if Is_Task_Type
(Prefix_Type
)
5143 and then Present
(Entity
(Sel
))
5144 and then Ekind_In
(Entity
(Sel
), E_Entry
, E_Entry_Family
)
5148 elsif Is_Protected_Type
(Prefix_Type
)
5149 and then Is_Overloadable
(Entity
(Sel
))
5150 and then not Is_Private_Op
5156 ("invalid reference to internal operation of some object of "
5157 & "type &", N
, Type_To_Use
);
5158 Set_Entity
(Sel
, Any_Id
);
5159 Set_Etype
(Sel
, Any_Type
);
5163 -- Another special case: the prefix may denote an object of the type
5164 -- (but not a type) in which case this is an external call and the
5165 -- operation must be public.
5168 and then Is_Object_Reference
(Original_Node
(Prefix
(N
)))
5169 and then Comes_From_Source
(N
)
5170 and then Is_Private_Op
5172 if Present
(Hidden_Comp
) then
5174 ("invalid reference to private component of object of type "
5175 & "&", N
, Type_To_Use
);
5179 ("invalid reference to private operation of some object of "
5180 & "type &", N
, Type_To_Use
);
5183 Set_Entity
(Sel
, Any_Id
);
5184 Set_Etype
(Sel
, Any_Type
);
5188 -- If there is no visible entity with the given name or none of the
5189 -- visible entities are plausible interpretations, check whether
5190 -- there is some other primitive operation with that name.
5192 if Ada_Version
>= Ada_2005
and then Is_Tagged_Type
(Prefix_Type
) then
5193 if (Etype
(N
) = Any_Type
5194 or else not Has_Candidate
)
5195 and then Try_Object_Operation
(N
)
5199 -- If the context is not syntactically a procedure call, it
5200 -- may be a call to a primitive function declared outside of
5201 -- the synchronized type.
5203 -- If the context is a procedure call, there might still be
5204 -- an overloading between an entry and a primitive procedure
5205 -- declared outside of the synchronized type, called in prefix
5206 -- notation. This is harder to disambiguate because in one case
5207 -- the controlling formal is implicit ???
5209 elsif Nkind
(Parent
(N
)) /= N_Procedure_Call_Statement
5210 and then Nkind
(Parent
(N
)) /= N_Indexed_Component
5211 and then Try_Object_Operation
(N
)
5216 -- Ada 2012 (AI05-0090-1): If we found a candidate of a call to an
5217 -- entry or procedure of a tagged concurrent type we must check
5218 -- if there are class-wide subprograms covering the primitive. If
5219 -- true then Try_Object_Operation reports the error.
5222 and then Is_Concurrent_Type
(Prefix_Type
)
5223 and then Nkind
(Parent
(N
)) = N_Procedure_Call_Statement
5225 -- Duplicate the call. This is required to avoid problems with
5226 -- the tree transformations performed by Try_Object_Operation.
5227 -- Set properly the parent of the copied call, because it is
5228 -- about to be reanalyzed.
5231 Par
: constant Node_Id
:= New_Copy_Tree
(Parent
(N
));
5234 Set_Parent
(Par
, Parent
(Parent
(N
)));
5236 if Try_Object_Operation
5237 (Sinfo
.Name
(Par
), CW_Test_Only
=> True)
5245 if Etype
(N
) = Any_Type
and then Is_Protected_Type
(Prefix_Type
) then
5247 -- Case of a prefix of a protected type: selector might denote
5248 -- an invisible private component.
5250 Comp
:= First_Private_Entity
(Base_Type
(Prefix_Type
));
5251 while Present
(Comp
) and then Chars
(Comp
) /= Chars
(Sel
) loop
5255 if Present
(Comp
) then
5256 if Is_Single_Concurrent_Object
then
5257 Error_Msg_Node_2
:= Entity
(Name
);
5258 Error_Msg_NE
("invisible selector& for &", N
, Sel
);
5261 Error_Msg_Node_2
:= First_Subtype
(Prefix_Type
);
5262 Error_Msg_NE
("invisible selector& for }", N
, Sel
);
5268 Set_Is_Overloaded
(N
, Is_Overloaded
(Sel
));
5273 Error_Msg_NE
("invalid prefix in selected component&", N
, Sel
);
5276 -- If N still has no type, the component is not defined in the prefix
5278 if Etype
(N
) = Any_Type
then
5280 if Is_Single_Concurrent_Object
then
5281 Error_Msg_Node_2
:= Entity
(Name
);
5282 Error_Msg_NE
("no selector& for&", N
, Sel
);
5284 Check_Misspelled_Selector
(Type_To_Use
, Sel
);
5286 -- If this is a derived formal type, the parent may have different
5287 -- visibility at this point. Try for an inherited component before
5288 -- reporting an error.
5290 elsif Is_Generic_Type
(Prefix_Type
)
5291 and then Ekind
(Prefix_Type
) = E_Record_Type_With_Private
5292 and then Prefix_Type
/= Etype
(Prefix_Type
)
5293 and then Is_Record_Type
(Etype
(Prefix_Type
))
5295 Set_Etype
(Prefix
(N
), Etype
(Prefix_Type
));
5296 Analyze_Selected_Component
(N
);
5299 -- Similarly, if this is the actual for a formal derived type, or
5300 -- a derived type thereof, the component inherited from the generic
5301 -- parent may not be visible in the actual, but the selected
5302 -- component is legal. Climb up the derivation chain of the generic
5303 -- parent type until we find the proper ancestor type.
5305 elsif In_Instance
and then Is_Tagged_Type
(Prefix_Type
) then
5307 Par
: Entity_Id
:= Prefix_Type
;
5309 -- Climb up derivation chain to generic actual subtype
5311 while not Is_Generic_Actual_Type
(Par
) loop
5312 if Ekind
(Par
) = E_Record_Type
then
5313 Par
:= Parent_Subtype
(Par
);
5316 exit when Par
= Etype
(Par
);
5321 if Present
(Par
) and then Is_Generic_Actual_Type
(Par
) then
5323 -- Now look for component in ancestor types
5325 Par
:= Generic_Parent_Type
(Declaration_Node
(Par
));
5327 Find_Component_In_Instance
(Par
);
5328 exit when Present
(Entity
(Sel
))
5329 or else Par
= Etype
(Par
);
5333 -- Another special case: the type is an extension of a private
5334 -- type T, is an actual in an instance, and we are in the body
5335 -- of the instance, so the generic body had a full view of the
5336 -- type declaration for T or of some ancestor that defines the
5337 -- component in question.
5339 elsif Is_Derived_Type
(Type_To_Use
)
5340 and then Used_As_Generic_Actual
(Type_To_Use
)
5341 and then In_Instance_Body
5343 Find_Component_In_Instance
(Parent_Subtype
(Type_To_Use
));
5345 -- In ASIS mode the generic parent type may be absent. Examine
5346 -- the parent type directly for a component that may have been
5347 -- visible in a parent generic unit.
5349 elsif Is_Derived_Type
(Prefix_Type
) then
5350 Par
:= Etype
(Prefix_Type
);
5351 Find_Component_In_Instance
(Par
);
5355 -- The search above must have eventually succeeded, since the
5356 -- selected component was legal in the generic.
5358 if No
(Entity
(Sel
)) then
5359 raise Program_Error
;
5364 -- Component not found, specialize error message when appropriate
5367 if Ekind
(Prefix_Type
) = E_Record_Subtype
then
5369 -- Check whether this is a component of the base type which
5370 -- is absent from a statically constrained subtype. This will
5371 -- raise constraint error at run time, but is not a compile-
5372 -- time error. When the selector is illegal for base type as
5373 -- well fall through and generate a compilation error anyway.
5375 Comp
:= First_Component
(Base_Type
(Prefix_Type
));
5376 while Present
(Comp
) loop
5377 if Chars
(Comp
) = Chars
(Sel
)
5378 and then Is_Visible_Component
(Comp
)
5380 Set_Entity_With_Checks
(Sel
, Comp
);
5381 Generate_Reference
(Comp
, Sel
);
5382 Set_Etype
(Sel
, Etype
(Comp
));
5383 Set_Etype
(N
, Etype
(Comp
));
5385 -- Emit appropriate message. The node will be replaced
5386 -- by an appropriate raise statement.
5388 -- Note that in SPARK mode, as with all calls to apply a
5389 -- compile time constraint error, this will be made into
5390 -- an error to simplify the processing of the formal
5391 -- verification backend.
5393 Apply_Compile_Time_Constraint_Error
5394 (N
, "component not present in }??",
5395 CE_Discriminant_Check_Failed
,
5396 Ent
=> Prefix_Type
, Rep
=> False);
5398 Set_Raises_Constraint_Error
(N
);
5402 Next_Component
(Comp
);
5407 Error_Msg_Node_2
:= First_Subtype
(Prefix_Type
);
5408 Error_Msg_NE
("no selector& for}", N
, Sel
);
5410 -- Add information in the case of an incomplete prefix
5412 if Is_Incomplete_Type
(Type_To_Use
) then
5414 Inc
: constant Entity_Id
:= First_Subtype
(Type_To_Use
);
5417 if From_Limited_With
(Scope
(Type_To_Use
)) then
5419 ("\limited view of& has no components", N
, Inc
);
5423 ("\premature usage of incomplete type&", N
, Inc
);
5425 if Nkind
(Parent
(Inc
)) =
5426 N_Incomplete_Type_Declaration
5428 -- Record location of premature use in entity so that
5429 -- a continuation message is generated when the
5430 -- completion is seen.
5432 Set_Premature_Use
(Parent
(Inc
), N
);
5438 Check_Misspelled_Selector
(Type_To_Use
, Sel
);
5441 Set_Entity
(Sel
, Any_Id
);
5442 Set_Etype
(Sel
, Any_Type
);
5444 end Analyze_Selected_Component
;
5446 ---------------------------
5447 -- Analyze_Short_Circuit --
5448 ---------------------------
5450 procedure Analyze_Short_Circuit
(N
: Node_Id
) is
5451 L
: constant Node_Id
:= Left_Opnd
(N
);
5452 R
: constant Node_Id
:= Right_Opnd
(N
);
5457 Analyze_Expression
(L
);
5458 Analyze_Expression
(R
);
5459 Set_Etype
(N
, Any_Type
);
5461 if not Is_Overloaded
(L
) then
5462 if Root_Type
(Etype
(L
)) = Standard_Boolean
5463 and then Has_Compatible_Type
(R
, Etype
(L
))
5465 Add_One_Interp
(N
, Etype
(L
), Etype
(L
));
5469 Get_First_Interp
(L
, Ind
, It
);
5470 while Present
(It
.Typ
) loop
5471 if Root_Type
(It
.Typ
) = Standard_Boolean
5472 and then Has_Compatible_Type
(R
, It
.Typ
)
5474 Add_One_Interp
(N
, It
.Typ
, It
.Typ
);
5477 Get_Next_Interp
(Ind
, It
);
5481 -- Here we have failed to find an interpretation. Clearly we know that
5482 -- it is not the case that both operands can have an interpretation of
5483 -- Boolean, but this is by far the most likely intended interpretation.
5484 -- So we simply resolve both operands as Booleans, and at least one of
5485 -- these resolutions will generate an error message, and we do not need
5486 -- to give another error message on the short circuit operation itself.
5488 if Etype
(N
) = Any_Type
then
5489 Resolve
(L
, Standard_Boolean
);
5490 Resolve
(R
, Standard_Boolean
);
5491 Set_Etype
(N
, Standard_Boolean
);
5493 end Analyze_Short_Circuit
;
5499 procedure Analyze_Slice
(N
: Node_Id
) is
5500 D
: constant Node_Id
:= Discrete_Range
(N
);
5501 P
: constant Node_Id
:= Prefix
(N
);
5502 Array_Type
: Entity_Id
;
5503 Index_Type
: Entity_Id
;
5505 procedure Analyze_Overloaded_Slice
;
5506 -- If the prefix is overloaded, select those interpretations that
5507 -- yield a one-dimensional array type.
5509 ------------------------------
5510 -- Analyze_Overloaded_Slice --
5511 ------------------------------
5513 procedure Analyze_Overloaded_Slice
is
5519 Set_Etype
(N
, Any_Type
);
5521 Get_First_Interp
(P
, I
, It
);
5522 while Present
(It
.Nam
) loop
5525 if Is_Access_Type
(Typ
) then
5526 Typ
:= Designated_Type
(Typ
);
5528 (Warn_On_Dereference
, "?d?implicit dereference", N
);
5531 if Is_Array_Type
(Typ
)
5532 and then Number_Dimensions
(Typ
) = 1
5533 and then Has_Compatible_Type
(D
, Etype
(First_Index
(Typ
)))
5535 Add_One_Interp
(N
, Typ
, Typ
);
5538 Get_Next_Interp
(I
, It
);
5541 if Etype
(N
) = Any_Type
then
5542 Error_Msg_N
("expect array type in prefix of slice", N
);
5544 end Analyze_Overloaded_Slice
;
5546 -- Start of processing for Analyze_Slice
5549 if Comes_From_Source
(N
) then
5550 Check_SPARK_05_Restriction
("slice is not allowed", N
);
5556 if Is_Overloaded
(P
) then
5557 Analyze_Overloaded_Slice
;
5560 Array_Type
:= Etype
(P
);
5561 Set_Etype
(N
, Any_Type
);
5563 if Is_Access_Type
(Array_Type
) then
5564 Array_Type
:= Designated_Type
(Array_Type
);
5565 Error_Msg_NW
(Warn_On_Dereference
, "?d?implicit dereference", N
);
5568 if not Is_Array_Type
(Array_Type
) then
5569 Wrong_Type
(P
, Any_Array
);
5571 elsif Number_Dimensions
(Array_Type
) > 1 then
5573 ("type is not one-dimensional array in slice prefix", N
);
5576 if Ekind
(Array_Type
) = E_String_Literal_Subtype
then
5577 Index_Type
:= Etype
(String_Literal_Low_Bound
(Array_Type
));
5579 Index_Type
:= Etype
(First_Index
(Array_Type
));
5582 if not Has_Compatible_Type
(D
, Index_Type
) then
5583 Wrong_Type
(D
, Index_Type
);
5585 Set_Etype
(N
, Array_Type
);
5591 -----------------------------
5592 -- Analyze_Type_Conversion --
5593 -----------------------------
5595 procedure Analyze_Type_Conversion
(N
: Node_Id
) is
5596 Expr
: constant Node_Id
:= Expression
(N
);
5600 -- If Conversion_OK is set, then the Etype is already set, and the only
5601 -- processing required is to analyze the expression. This is used to
5602 -- construct certain "illegal" conversions which are not allowed by Ada
5603 -- semantics, but can be handled by Gigi, see Sinfo for further details.
5605 if Conversion_OK
(N
) then
5610 -- Otherwise full type analysis is required, as well as some semantic
5611 -- checks to make sure the argument of the conversion is appropriate.
5613 Find_Type
(Subtype_Mark
(N
));
5614 Typ
:= Entity
(Subtype_Mark
(N
));
5616 Check_Fully_Declared
(Typ
, N
);
5617 Analyze_Expression
(Expr
);
5618 Validate_Remote_Type_Type_Conversion
(N
);
5620 -- Only remaining step is validity checks on the argument. These
5621 -- are skipped if the conversion does not come from the source.
5623 if not Comes_From_Source
(N
) then
5626 -- If there was an error in a generic unit, no need to replicate the
5627 -- error message. Conversely, constant-folding in the generic may
5628 -- transform the argument of a conversion into a string literal, which
5629 -- is legal. Therefore the following tests are not performed in an
5630 -- instance. The same applies to an inlined body.
5632 elsif In_Instance
or In_Inlined_Body
then
5635 elsif Nkind
(Expr
) = N_Null
then
5636 Error_Msg_N
("argument of conversion cannot be null", N
);
5637 Error_Msg_N
("\use qualified expression instead", N
);
5638 Set_Etype
(N
, Any_Type
);
5640 elsif Nkind
(Expr
) = N_Aggregate
then
5641 Error_Msg_N
("argument of conversion cannot be aggregate", N
);
5642 Error_Msg_N
("\use qualified expression instead", N
);
5644 elsif Nkind
(Expr
) = N_Allocator
then
5645 Error_Msg_N
("argument of conversion cannot be an allocator", N
);
5646 Error_Msg_N
("\use qualified expression instead", N
);
5648 elsif Nkind
(Expr
) = N_String_Literal
then
5649 Error_Msg_N
("argument of conversion cannot be string literal", N
);
5650 Error_Msg_N
("\use qualified expression instead", N
);
5652 elsif Nkind
(Expr
) = N_Character_Literal
then
5653 if Ada_Version
= Ada_83
then
5654 Resolve
(Expr
, Typ
);
5656 Error_Msg_N
("argument of conversion cannot be character literal",
5658 Error_Msg_N
("\use qualified expression instead", N
);
5661 elsif Nkind
(Expr
) = N_Attribute_Reference
5662 and then Nam_In
(Attribute_Name
(Expr
), Name_Access
,
5663 Name_Unchecked_Access
,
5664 Name_Unrestricted_Access
)
5666 Error_Msg_N
("argument of conversion cannot be access", N
);
5667 Error_Msg_N
("\use qualified expression instead", N
);
5670 -- A formal parameter of a specific tagged type whose related subprogram
5671 -- is subject to pragma Extensions_Visible with value "False" cannot
5672 -- appear in a class-wide conversion (SPARK RM 6.1.7(3)). Do not check
5673 -- internally generated expressions.
5675 if Is_Class_Wide_Type
(Typ
)
5676 and then Comes_From_Source
(Expr
)
5677 and then Is_EVF_Expression
(Expr
)
5680 ("formal parameter cannot be converted to class-wide type when "
5681 & "Extensions_Visible is False", Expr
);
5683 end Analyze_Type_Conversion
;
5685 ----------------------
5686 -- Analyze_Unary_Op --
5687 ----------------------
5689 procedure Analyze_Unary_Op
(N
: Node_Id
) is
5690 R
: constant Node_Id
:= Right_Opnd
(N
);
5691 Op_Id
: Entity_Id
:= Entity
(N
);
5694 Set_Etype
(N
, Any_Type
);
5695 Candidate_Type
:= Empty
;
5697 Analyze_Expression
(R
);
5699 if Present
(Op_Id
) then
5700 if Ekind
(Op_Id
) = E_Operator
then
5701 Find_Unary_Types
(R
, Op_Id
, N
);
5703 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
5707 Op_Id
:= Get_Name_Entity_Id
(Chars
(N
));
5708 while Present
(Op_Id
) loop
5709 if Ekind
(Op_Id
) = E_Operator
then
5710 if No
(Next_Entity
(First_Entity
(Op_Id
))) then
5711 Find_Unary_Types
(R
, Op_Id
, N
);
5714 elsif Is_Overloadable
(Op_Id
) then
5715 Analyze_User_Defined_Unary_Op
(N
, Op_Id
);
5718 Op_Id
:= Homonym
(Op_Id
);
5723 end Analyze_Unary_Op
;
5725 ----------------------------------
5726 -- Analyze_Unchecked_Expression --
5727 ----------------------------------
5729 procedure Analyze_Unchecked_Expression
(N
: Node_Id
) is
5731 Analyze
(Expression
(N
), Suppress
=> All_Checks
);
5732 Set_Etype
(N
, Etype
(Expression
(N
)));
5733 Save_Interps
(Expression
(N
), N
);
5734 end Analyze_Unchecked_Expression
;
5736 ---------------------------------------
5737 -- Analyze_Unchecked_Type_Conversion --
5738 ---------------------------------------
5740 procedure Analyze_Unchecked_Type_Conversion
(N
: Node_Id
) is
5742 Find_Type
(Subtype_Mark
(N
));
5743 Analyze_Expression
(Expression
(N
));
5744 Set_Etype
(N
, Entity
(Subtype_Mark
(N
)));
5745 end Analyze_Unchecked_Type_Conversion
;
5747 ------------------------------------
5748 -- Analyze_User_Defined_Binary_Op --
5749 ------------------------------------
5751 procedure Analyze_User_Defined_Binary_Op
5756 -- Only do analysis if the operator Comes_From_Source, since otherwise
5757 -- the operator was generated by the expander, and all such operators
5758 -- always refer to the operators in package Standard.
5760 if Comes_From_Source
(N
) then
5762 F1
: constant Entity_Id
:= First_Formal
(Op_Id
);
5763 F2
: constant Entity_Id
:= Next_Formal
(F1
);
5766 -- Verify that Op_Id is a visible binary function. Note that since
5767 -- we know Op_Id is overloaded, potentially use visible means use
5768 -- visible for sure (RM 9.4(11)).
5770 if Ekind
(Op_Id
) = E_Function
5771 and then Present
(F2
)
5772 and then (Is_Immediately_Visible
(Op_Id
)
5773 or else Is_Potentially_Use_Visible
(Op_Id
))
5774 and then Has_Compatible_Type
(Left_Opnd
(N
), Etype
(F1
))
5775 and then Has_Compatible_Type
(Right_Opnd
(N
), Etype
(F2
))
5777 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
5779 -- If the left operand is overloaded, indicate that the current
5780 -- type is a viable candidate. This is redundant in most cases,
5781 -- but for equality and comparison operators where the context
5782 -- does not impose a type on the operands, setting the proper
5783 -- type is necessary to avoid subsequent ambiguities during
5784 -- resolution, when both user-defined and predefined operators
5785 -- may be candidates.
5787 if Is_Overloaded
(Left_Opnd
(N
)) then
5788 Set_Etype
(Left_Opnd
(N
), Etype
(F1
));
5791 if Debug_Flag_E
then
5792 Write_Str
("user defined operator ");
5793 Write_Name
(Chars
(Op_Id
));
5794 Write_Str
(" on node ");
5795 Write_Int
(Int
(N
));
5801 end Analyze_User_Defined_Binary_Op
;
5803 -----------------------------------
5804 -- Analyze_User_Defined_Unary_Op --
5805 -----------------------------------
5807 procedure Analyze_User_Defined_Unary_Op
5812 -- Only do analysis if the operator Comes_From_Source, since otherwise
5813 -- the operator was generated by the expander, and all such operators
5814 -- always refer to the operators in package Standard.
5816 if Comes_From_Source
(N
) then
5818 F
: constant Entity_Id
:= First_Formal
(Op_Id
);
5821 -- Verify that Op_Id is a visible unary function. Note that since
5822 -- we know Op_Id is overloaded, potentially use visible means use
5823 -- visible for sure (RM 9.4(11)).
5825 if Ekind
(Op_Id
) = E_Function
5826 and then No
(Next_Formal
(F
))
5827 and then (Is_Immediately_Visible
(Op_Id
)
5828 or else Is_Potentially_Use_Visible
(Op_Id
))
5829 and then Has_Compatible_Type
(Right_Opnd
(N
), Etype
(F
))
5831 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
5835 end Analyze_User_Defined_Unary_Op
;
5837 ---------------------------
5838 -- Check_Arithmetic_Pair --
5839 ---------------------------
5841 procedure Check_Arithmetic_Pair
5842 (T1
, T2
: Entity_Id
;
5846 Op_Name
: constant Name_Id
:= Chars
(Op_Id
);
5848 function Has_Fixed_Op
(Typ
: Entity_Id
; Op
: Entity_Id
) return Boolean;
5849 -- Check whether the fixed-point type Typ has a user-defined operator
5850 -- (multiplication or division) that should hide the corresponding
5851 -- predefined operator. Used to implement Ada 2005 AI-264, to make
5852 -- such operators more visible and therefore useful.
5854 -- If the name of the operation is an expanded name with prefix
5855 -- Standard, the predefined universal fixed operator is available,
5856 -- as specified by AI-420 (RM 4.5.5 (19.1/2)).
5858 function Specific_Type
(T1
, T2
: Entity_Id
) return Entity_Id
;
5859 -- Get specific type (i.e. non-universal type if there is one)
5865 function Has_Fixed_Op
(Typ
: Entity_Id
; Op
: Entity_Id
) return Boolean is
5866 Bas
: constant Entity_Id
:= Base_Type
(Typ
);
5872 -- If the universal_fixed operation is given explicitly the rule
5873 -- concerning primitive operations of the type do not apply.
5875 if Nkind
(N
) = N_Function_Call
5876 and then Nkind
(Name
(N
)) = N_Expanded_Name
5877 and then Entity
(Prefix
(Name
(N
))) = Standard_Standard
5882 -- The operation is treated as primitive if it is declared in the
5883 -- same scope as the type, and therefore on the same entity chain.
5885 Ent
:= Next_Entity
(Typ
);
5886 while Present
(Ent
) loop
5887 if Chars
(Ent
) = Chars
(Op
) then
5888 F1
:= First_Formal
(Ent
);
5889 F2
:= Next_Formal
(F1
);
5891 -- The operation counts as primitive if either operand or
5892 -- result are of the given base type, and both operands are
5893 -- fixed point types.
5895 if (Base_Type
(Etype
(F1
)) = Bas
5896 and then Is_Fixed_Point_Type
(Etype
(F2
)))
5899 (Base_Type
(Etype
(F2
)) = Bas
5900 and then Is_Fixed_Point_Type
(Etype
(F1
)))
5903 (Base_Type
(Etype
(Ent
)) = Bas
5904 and then Is_Fixed_Point_Type
(Etype
(F1
))
5905 and then Is_Fixed_Point_Type
(Etype
(F2
)))
5921 function Specific_Type
(T1
, T2
: Entity_Id
) return Entity_Id
is
5923 if T1
= Universal_Integer
or else T1
= Universal_Real
then
5924 return Base_Type
(T2
);
5926 return Base_Type
(T1
);
5930 -- Start of processing for Check_Arithmetic_Pair
5933 if Nam_In
(Op_Name
, Name_Op_Add
, Name_Op_Subtract
) then
5934 if Is_Numeric_Type
(T1
)
5935 and then Is_Numeric_Type
(T2
)
5936 and then (Covers
(T1
=> T1
, T2
=> T2
)
5938 Covers
(T1
=> T2
, T2
=> T1
))
5940 Add_One_Interp
(N
, Op_Id
, Specific_Type
(T1
, T2
));
5943 elsif Nam_In
(Op_Name
, Name_Op_Multiply
, Name_Op_Divide
) then
5944 if Is_Fixed_Point_Type
(T1
)
5945 and then (Is_Fixed_Point_Type
(T2
) or else T2
= Universal_Real
)
5947 -- If Treat_Fixed_As_Integer is set then the Etype is already set
5948 -- and no further processing is required (this is the case of an
5949 -- operator constructed by Exp_Fixd for a fixed point operation)
5950 -- Otherwise add one interpretation with universal fixed result
5951 -- If the operator is given in functional notation, it comes
5952 -- from source and Fixed_As_Integer cannot apply.
5954 if (Nkind
(N
) not in N_Op
5955 or else not Treat_Fixed_As_Integer
(N
))
5957 (not Has_Fixed_Op
(T1
, Op_Id
)
5958 or else Nkind
(Parent
(N
)) = N_Type_Conversion
)
5960 Add_One_Interp
(N
, Op_Id
, Universal_Fixed
);
5963 elsif Is_Fixed_Point_Type
(T2
)
5964 and then (Nkind
(N
) not in N_Op
5965 or else not Treat_Fixed_As_Integer
(N
))
5966 and then T1
= Universal_Real
5968 (not Has_Fixed_Op
(T1
, Op_Id
)
5969 or else Nkind
(Parent
(N
)) = N_Type_Conversion
)
5971 Add_One_Interp
(N
, Op_Id
, Universal_Fixed
);
5973 elsif Is_Numeric_Type
(T1
)
5974 and then Is_Numeric_Type
(T2
)
5975 and then (Covers
(T1
=> T1
, T2
=> T2
)
5977 Covers
(T1
=> T2
, T2
=> T1
))
5979 Add_One_Interp
(N
, Op_Id
, Specific_Type
(T1
, T2
));
5981 elsif Is_Fixed_Point_Type
(T1
)
5982 and then (Base_Type
(T2
) = Base_Type
(Standard_Integer
)
5983 or else T2
= Universal_Integer
)
5985 Add_One_Interp
(N
, Op_Id
, T1
);
5987 elsif T2
= Universal_Real
5988 and then Base_Type
(T1
) = Base_Type
(Standard_Integer
)
5989 and then Op_Name
= Name_Op_Multiply
5991 Add_One_Interp
(N
, Op_Id
, Any_Fixed
);
5993 elsif T1
= Universal_Real
5994 and then Base_Type
(T2
) = Base_Type
(Standard_Integer
)
5996 Add_One_Interp
(N
, Op_Id
, Any_Fixed
);
5998 elsif Is_Fixed_Point_Type
(T2
)
5999 and then (Base_Type
(T1
) = Base_Type
(Standard_Integer
)
6000 or else T1
= Universal_Integer
)
6001 and then Op_Name
= Name_Op_Multiply
6003 Add_One_Interp
(N
, Op_Id
, T2
);
6005 elsif T1
= Universal_Real
and then T2
= Universal_Integer
then
6006 Add_One_Interp
(N
, Op_Id
, T1
);
6008 elsif T2
= Universal_Real
6009 and then T1
= Universal_Integer
6010 and then Op_Name
= Name_Op_Multiply
6012 Add_One_Interp
(N
, Op_Id
, T2
);
6015 elsif Op_Name
= Name_Op_Mod
or else Op_Name
= Name_Op_Rem
then
6017 -- Note: The fixed-point operands case with Treat_Fixed_As_Integer
6018 -- set does not require any special processing, since the Etype is
6019 -- already set (case of operation constructed by Exp_Fixed).
6021 if Is_Integer_Type
(T1
)
6022 and then (Covers
(T1
=> T1
, T2
=> T2
)
6024 Covers
(T1
=> T2
, T2
=> T1
))
6026 Add_One_Interp
(N
, Op_Id
, Specific_Type
(T1
, T2
));
6029 elsif Op_Name
= Name_Op_Expon
then
6030 if Is_Numeric_Type
(T1
)
6031 and then not Is_Fixed_Point_Type
(T1
)
6032 and then (Base_Type
(T2
) = Base_Type
(Standard_Integer
)
6033 or else T2
= Universal_Integer
)
6035 Add_One_Interp
(N
, Op_Id
, Base_Type
(T1
));
6038 else pragma Assert
(Nkind
(N
) in N_Op_Shift
);
6040 -- If not one of the predefined operators, the node may be one
6041 -- of the intrinsic functions. Its kind is always specific, and
6042 -- we can use it directly, rather than the name of the operation.
6044 if Is_Integer_Type
(T1
)
6045 and then (Base_Type
(T2
) = Base_Type
(Standard_Integer
)
6046 or else T2
= Universal_Integer
)
6048 Add_One_Interp
(N
, Op_Id
, Base_Type
(T1
));
6051 end Check_Arithmetic_Pair
;
6053 -------------------------------
6054 -- Check_Misspelled_Selector --
6055 -------------------------------
6057 procedure Check_Misspelled_Selector
6058 (Prefix
: Entity_Id
;
6061 Max_Suggestions
: constant := 2;
6062 Nr_Of_Suggestions
: Natural := 0;
6064 Suggestion_1
: Entity_Id
:= Empty
;
6065 Suggestion_2
: Entity_Id
:= Empty
;
6070 -- All the components of the prefix of selector Sel are matched against
6071 -- Sel and a count is maintained of possible misspellings. When at
6072 -- the end of the analysis there are one or two (not more) possible
6073 -- misspellings, these misspellings will be suggested as possible
6076 if not (Is_Private_Type
(Prefix
) or else Is_Record_Type
(Prefix
)) then
6078 -- Concurrent types should be handled as well ???
6083 Comp
:= First_Entity
(Prefix
);
6084 while Nr_Of_Suggestions
<= Max_Suggestions
and then Present
(Comp
) loop
6085 if Is_Visible_Component
(Comp
) then
6086 if Is_Bad_Spelling_Of
(Chars
(Comp
), Chars
(Sel
)) then
6087 Nr_Of_Suggestions
:= Nr_Of_Suggestions
+ 1;
6089 case Nr_Of_Suggestions
is
6090 when 1 => Suggestion_1
:= Comp
;
6091 when 2 => Suggestion_2
:= Comp
;
6092 when others => null;
6097 Comp
:= Next_Entity
(Comp
);
6100 -- Report at most two suggestions
6102 if Nr_Of_Suggestions
= 1 then
6103 Error_Msg_NE
-- CODEFIX
6104 ("\possible misspelling of&", Sel
, Suggestion_1
);
6106 elsif Nr_Of_Suggestions
= 2 then
6107 Error_Msg_Node_2
:= Suggestion_2
;
6108 Error_Msg_NE
-- CODEFIX
6109 ("\possible misspelling of& or&", Sel
, Suggestion_1
);
6111 end Check_Misspelled_Selector
;
6113 ----------------------
6114 -- Defined_In_Scope --
6115 ----------------------
6117 function Defined_In_Scope
(T
: Entity_Id
; S
: Entity_Id
) return Boolean
6119 S1
: constant Entity_Id
:= Scope
(Base_Type
(T
));
6122 or else (S1
= System_Aux_Id
and then S
= Scope
(S1
));
6123 end Defined_In_Scope
;
6129 procedure Diagnose_Call
(N
: Node_Id
; Nam
: Node_Id
) is
6135 Void_Interp_Seen
: Boolean := False;
6138 pragma Warnings
(Off
, Boolean);
6141 if Ada_Version
>= Ada_2005
then
6142 Actual
:= First_Actual
(N
);
6143 while Present
(Actual
) loop
6145 -- Ada 2005 (AI-50217): Post an error in case of premature
6146 -- usage of an entity from the limited view.
6148 if not Analyzed
(Etype
(Actual
))
6149 and then From_Limited_With
(Etype
(Actual
))
6151 Error_Msg_Qual_Level
:= 1;
6153 ("missing with_clause for scope of imported type&",
6154 Actual
, Etype
(Actual
));
6155 Error_Msg_Qual_Level
:= 0;
6158 Next_Actual
(Actual
);
6162 -- Before listing the possible candidates, check whether this is
6163 -- a prefix of a selected component that has been rewritten as a
6164 -- parameterless function call because there is a callable candidate
6165 -- interpretation. If there is a hidden package in the list of homonyms
6166 -- of the function name (bad programming style in any case) suggest that
6167 -- this is the intended entity.
6169 if No
(Parameter_Associations
(N
))
6170 and then Nkind
(Parent
(N
)) = N_Selected_Component
6171 and then Nkind
(Parent
(Parent
(N
))) in N_Declaration
6172 and then Is_Overloaded
(Nam
)
6178 Ent
:= Current_Entity
(Nam
);
6179 while Present
(Ent
) loop
6180 if Ekind
(Ent
) = E_Package
then
6182 ("no legal interpretations as function call,!", Nam
);
6183 Error_Msg_NE
("\package& is not visible", N
, Ent
);
6185 Rewrite
(Parent
(N
),
6186 New_Occurrence_Of
(Any_Type
, Sloc
(N
)));
6190 Ent
:= Homonym
(Ent
);
6195 -- Analyze each candidate call again, with full error reporting for
6199 ("no candidate interpretations match the actuals:!", Nam
);
6200 Err_Mode
:= All_Errors_Mode
;
6201 All_Errors_Mode
:= True;
6203 -- If this is a call to an operation of a concurrent type,
6204 -- the failed interpretations have been removed from the
6205 -- name. Recover them to provide full diagnostics.
6207 if Nkind
(Parent
(Nam
)) = N_Selected_Component
then
6208 Set_Entity
(Nam
, Empty
);
6209 New_Nam
:= New_Copy_Tree
(Parent
(Nam
));
6210 Set_Is_Overloaded
(New_Nam
, False);
6211 Set_Is_Overloaded
(Selector_Name
(New_Nam
), False);
6212 Set_Parent
(New_Nam
, Parent
(Parent
(Nam
)));
6213 Analyze_Selected_Component
(New_Nam
);
6214 Get_First_Interp
(Selector_Name
(New_Nam
), X
, It
);
6216 Get_First_Interp
(Nam
, X
, It
);
6219 while Present
(It
.Nam
) loop
6220 if Etype
(It
.Nam
) = Standard_Void_Type
then
6221 Void_Interp_Seen
:= True;
6224 Analyze_One_Call
(N
, It
.Nam
, True, Success
);
6225 Get_Next_Interp
(X
, It
);
6228 if Nkind
(N
) = N_Function_Call
then
6229 Get_First_Interp
(Nam
, X
, It
);
6230 while Present
(It
.Nam
) loop
6231 if Ekind_In
(It
.Nam
, E_Function
, E_Operator
) then
6234 Get_Next_Interp
(X
, It
);
6238 -- If all interpretations are procedures, this deserves a
6239 -- more precise message. Ditto if this appears as the prefix
6240 -- of a selected component, which may be a lexical error.
6243 ("\context requires function call, found procedure name", Nam
);
6245 if Nkind
(Parent
(N
)) = N_Selected_Component
6246 and then N
= Prefix
(Parent
(N
))
6248 Error_Msg_N
-- CODEFIX
6249 ("\period should probably be semicolon", Parent
(N
));
6252 elsif Nkind
(N
) = N_Procedure_Call_Statement
6253 and then not Void_Interp_Seen
6256 "\function name found in procedure call", Nam
);
6259 All_Errors_Mode
:= Err_Mode
;
6262 ---------------------------
6263 -- Find_Arithmetic_Types --
6264 ---------------------------
6266 procedure Find_Arithmetic_Types
6271 Index1
: Interp_Index
;
6272 Index2
: Interp_Index
;
6276 procedure Check_Right_Argument
(T
: Entity_Id
);
6277 -- Check right operand of operator
6279 --------------------------
6280 -- Check_Right_Argument --
6281 --------------------------
6283 procedure Check_Right_Argument
(T
: Entity_Id
) is
6285 if not Is_Overloaded
(R
) then
6286 Check_Arithmetic_Pair
(T
, Etype
(R
), Op_Id
, N
);
6288 Get_First_Interp
(R
, Index2
, It2
);
6289 while Present
(It2
.Typ
) loop
6290 Check_Arithmetic_Pair
(T
, It2
.Typ
, Op_Id
, N
);
6291 Get_Next_Interp
(Index2
, It2
);
6294 end Check_Right_Argument
;
6296 -- Start of processing for Find_Arithmetic_Types
6299 if not Is_Overloaded
(L
) then
6300 Check_Right_Argument
(Etype
(L
));
6303 Get_First_Interp
(L
, Index1
, It1
);
6304 while Present
(It1
.Typ
) loop
6305 Check_Right_Argument
(It1
.Typ
);
6306 Get_Next_Interp
(Index1
, It1
);
6310 end Find_Arithmetic_Types
;
6312 ------------------------
6313 -- Find_Boolean_Types --
6314 ------------------------
6316 procedure Find_Boolean_Types
6321 Index
: Interp_Index
;
6324 procedure Check_Numeric_Argument
(T
: Entity_Id
);
6325 -- Special case for logical operations one of whose operands is an
6326 -- integer literal. If both are literal the result is any modular type.
6328 ----------------------------
6329 -- Check_Numeric_Argument --
6330 ----------------------------
6332 procedure Check_Numeric_Argument
(T
: Entity_Id
) is
6334 if T
= Universal_Integer
then
6335 Add_One_Interp
(N
, Op_Id
, Any_Modular
);
6337 elsif Is_Modular_Integer_Type
(T
) then
6338 Add_One_Interp
(N
, Op_Id
, T
);
6340 end Check_Numeric_Argument
;
6342 -- Start of processing for Find_Boolean_Types
6345 if not Is_Overloaded
(L
) then
6346 if Etype
(L
) = Universal_Integer
6347 or else Etype
(L
) = Any_Modular
6349 if not Is_Overloaded
(R
) then
6350 Check_Numeric_Argument
(Etype
(R
));
6353 Get_First_Interp
(R
, Index
, It
);
6354 while Present
(It
.Typ
) loop
6355 Check_Numeric_Argument
(It
.Typ
);
6356 Get_Next_Interp
(Index
, It
);
6360 -- If operands are aggregates, we must assume that they may be
6361 -- boolean arrays, and leave disambiguation for the second pass.
6362 -- If only one is an aggregate, verify that the other one has an
6363 -- interpretation as a boolean array
6365 elsif Nkind
(L
) = N_Aggregate
then
6366 if Nkind
(R
) = N_Aggregate
then
6367 Add_One_Interp
(N
, Op_Id
, Etype
(L
));
6369 elsif not Is_Overloaded
(R
) then
6370 if Valid_Boolean_Arg
(Etype
(R
)) then
6371 Add_One_Interp
(N
, Op_Id
, Etype
(R
));
6375 Get_First_Interp
(R
, Index
, It
);
6376 while Present
(It
.Typ
) loop
6377 if Valid_Boolean_Arg
(It
.Typ
) then
6378 Add_One_Interp
(N
, Op_Id
, It
.Typ
);
6381 Get_Next_Interp
(Index
, It
);
6385 elsif Valid_Boolean_Arg
(Etype
(L
))
6386 and then Has_Compatible_Type
(R
, Etype
(L
))
6388 Add_One_Interp
(N
, Op_Id
, Etype
(L
));
6392 Get_First_Interp
(L
, Index
, It
);
6393 while Present
(It
.Typ
) loop
6394 if Valid_Boolean_Arg
(It
.Typ
)
6395 and then Has_Compatible_Type
(R
, It
.Typ
)
6397 Add_One_Interp
(N
, Op_Id
, It
.Typ
);
6400 Get_Next_Interp
(Index
, It
);
6403 end Find_Boolean_Types
;
6405 ---------------------------
6406 -- Find_Comparison_Types --
6407 ---------------------------
6409 procedure Find_Comparison_Types
6414 Index
: Interp_Index
;
6416 Found
: Boolean := False;
6419 Scop
: Entity_Id
:= Empty
;
6421 procedure Try_One_Interp
(T1
: Entity_Id
);
6422 -- Routine to try one proposed interpretation. Note that the context
6423 -- of the operator plays no role in resolving the arguments, so that
6424 -- if there is more than one interpretation of the operands that is
6425 -- compatible with comparison, the operation is ambiguous.
6427 --------------------
6428 -- Try_One_Interp --
6429 --------------------
6431 procedure Try_One_Interp
(T1
: Entity_Id
) is
6433 -- If the operator is an expanded name, then the type of the operand
6434 -- must be defined in the corresponding scope. If the type is
6435 -- universal, the context will impose the correct type. Note that we
6436 -- also avoid returning if we are currently within a generic instance
6437 -- due to the fact that the generic package declaration has already
6438 -- been successfully analyzed and Defined_In_Scope expects the base
6439 -- type to be defined within the instance which will never be the
6443 and then not Defined_In_Scope
(T1
, Scop
)
6444 and then not In_Instance
6445 and then T1
/= Universal_Integer
6446 and then T1
/= Universal_Real
6447 and then T1
/= Any_String
6448 and then T1
/= Any_Composite
6453 if Valid_Comparison_Arg
(T1
) and then Has_Compatible_Type
(R
, T1
) then
6454 if Found
and then Base_Type
(T1
) /= Base_Type
(T_F
) then
6455 It
:= Disambiguate
(L
, I_F
, Index
, Any_Type
);
6457 if It
= No_Interp
then
6458 Ambiguous_Operands
(N
);
6459 Set_Etype
(L
, Any_Type
);
6472 Find_Non_Universal_Interpretations
(N
, R
, Op_Id
, T1
);
6476 -- Start of processing for Find_Comparison_Types
6479 -- If left operand is aggregate, the right operand has to
6480 -- provide a usable type for it.
6482 if Nkind
(L
) = N_Aggregate
and then Nkind
(R
) /= N_Aggregate
then
6483 Find_Comparison_Types
(L
=> R
, R
=> L
, Op_Id
=> Op_Id
, N
=> N
);
6487 if Nkind
(N
) = N_Function_Call
6488 and then Nkind
(Name
(N
)) = N_Expanded_Name
6490 Scop
:= Entity
(Prefix
(Name
(N
)));
6492 -- The prefix may be a package renaming, and the subsequent test
6493 -- requires the original package.
6495 if Ekind
(Scop
) = E_Package
6496 and then Present
(Renamed_Entity
(Scop
))
6498 Scop
:= Renamed_Entity
(Scop
);
6499 Set_Entity
(Prefix
(Name
(N
)), Scop
);
6503 if not Is_Overloaded
(L
) then
6504 Try_One_Interp
(Etype
(L
));
6507 Get_First_Interp
(L
, Index
, It
);
6508 while Present
(It
.Typ
) loop
6509 Try_One_Interp
(It
.Typ
);
6510 Get_Next_Interp
(Index
, It
);
6513 end Find_Comparison_Types
;
6515 ----------------------------------------
6516 -- Find_Non_Universal_Interpretations --
6517 ----------------------------------------
6519 procedure Find_Non_Universal_Interpretations
6525 Index
: Interp_Index
;
6529 if T1
= Universal_Integer
or else T1
= Universal_Real
6531 -- If the left operand of an equality operator is null, the visibility
6532 -- of the operator must be determined from the interpretation of the
6533 -- right operand. This processing must be done for Any_Access, which
6534 -- is the internal representation of the type of the literal null.
6536 or else T1
= Any_Access
6538 if not Is_Overloaded
(R
) then
6539 Add_One_Interp
(N
, Op_Id
, Standard_Boolean
, Base_Type
(Etype
(R
)));
6541 Get_First_Interp
(R
, Index
, It
);
6542 while Present
(It
.Typ
) loop
6543 if Covers
(It
.Typ
, T1
) then
6545 (N
, Op_Id
, Standard_Boolean
, Base_Type
(It
.Typ
));
6548 Get_Next_Interp
(Index
, It
);
6552 Add_One_Interp
(N
, Op_Id
, Standard_Boolean
, Base_Type
(T1
));
6554 end Find_Non_Universal_Interpretations
;
6556 ------------------------------
6557 -- Find_Concatenation_Types --
6558 ------------------------------
6560 procedure Find_Concatenation_Types
6565 Is_String
: constant Boolean := Nkind
(L
) = N_String_Literal
6567 Nkind
(R
) = N_String_Literal
;
6568 Op_Type
: constant Entity_Id
:= Etype
(Op_Id
);
6571 if Is_Array_Type
(Op_Type
)
6573 -- Small but very effective optimization: if at least one operand is a
6574 -- string literal, then the type of the operator must be either array
6575 -- of characters or array of strings.
6577 and then (not Is_String
6579 Is_Character_Type
(Component_Type
(Op_Type
))
6581 Is_String_Type
(Component_Type
(Op_Type
)))
6583 and then not Is_Limited_Type
(Op_Type
)
6585 and then (Has_Compatible_Type
(L
, Op_Type
)
6587 Has_Compatible_Type
(L
, Component_Type
(Op_Type
)))
6589 and then (Has_Compatible_Type
(R
, Op_Type
)
6591 Has_Compatible_Type
(R
, Component_Type
(Op_Type
)))
6593 Add_One_Interp
(N
, Op_Id
, Op_Type
);
6595 end Find_Concatenation_Types
;
6597 -------------------------
6598 -- Find_Equality_Types --
6599 -------------------------
6601 procedure Find_Equality_Types
6606 Index
: Interp_Index
;
6608 Found
: Boolean := False;
6611 Scop
: Entity_Id
:= Empty
;
6613 procedure Try_One_Interp
(T1
: Entity_Id
);
6614 -- The context of the equality operator plays no role in resolving the
6615 -- arguments, so that if there is more than one interpretation of the
6616 -- operands that is compatible with equality, the construct is ambiguous
6617 -- and an error can be emitted now, after trying to disambiguate, i.e.
6618 -- applying preference rules.
6620 --------------------
6621 -- Try_One_Interp --
6622 --------------------
6624 procedure Try_One_Interp
(T1
: Entity_Id
) is
6628 -- Perform a sanity check in case of previous errors
6634 Bas
:= Base_Type
(T1
);
6636 -- If the operator is an expanded name, then the type of the operand
6637 -- must be defined in the corresponding scope. If the type is
6638 -- universal, the context will impose the correct type. An anonymous
6639 -- type for a 'Access reference is also universal in this sense, as
6640 -- the actual type is obtained from context.
6642 -- In Ada 2005, the equality operator for anonymous access types
6643 -- is declared in Standard, and preference rules apply to it.
6645 if Present
(Scop
) then
6647 -- Note that we avoid returning if we are currently within a
6648 -- generic instance due to the fact that the generic package
6649 -- declaration has already been successfully analyzed and
6650 -- Defined_In_Scope expects the base type to be defined within
6651 -- the instance which will never be the case.
6653 if Defined_In_Scope
(T1
, Scop
)
6655 or else T1
= Universal_Integer
6656 or else T1
= Universal_Real
6657 or else T1
= Any_Access
6658 or else T1
= Any_String
6659 or else T1
= Any_Composite
6660 or else (Ekind
(T1
) = E_Access_Subprogram_Type
6661 and then not Comes_From_Source
(T1
))
6665 elsif Ekind
(T1
) = E_Anonymous_Access_Type
6666 and then Scop
= Standard_Standard
6671 -- The scope does not contain an operator for the type
6676 -- If we have infix notation, the operator must be usable. Within
6677 -- an instance, if the type is already established we know it is
6678 -- correct. If an operand is universal it is compatible with any
6681 elsif In_Open_Scopes
(Scope
(Bas
))
6682 or else Is_Potentially_Use_Visible
(Bas
)
6683 or else In_Use
(Bas
)
6684 or else (In_Use
(Scope
(Bas
)) and then not Is_Hidden
(Bas
))
6686 -- In an instance, the type may have been immediately visible.
6687 -- Either the types are compatible, or one operand is universal
6688 -- (numeric or null).
6691 ((In_Instance
or else In_Inlined_Body
)
6693 (First_Subtype
(T1
) = First_Subtype
(Etype
(R
))
6694 or else Nkind
(R
) = N_Null
6696 (Is_Numeric_Type
(T1
)
6697 and then Is_Universal_Numeric_Type
(Etype
(R
)))))
6699 -- In Ada 2005, the equality on anonymous access types is declared
6700 -- in Standard, and is always visible.
6702 or else Ekind
(T1
) = E_Anonymous_Access_Type
6707 -- Save candidate type for subsequent error message, if any
6709 if not Is_Limited_Type
(T1
) then
6710 Candidate_Type
:= T1
;
6716 -- Ada 2005 (AI-230): Keep restriction imposed by Ada 83 and 95:
6717 -- Do not allow anonymous access types in equality operators.
6719 if Ada_Version
< Ada_2005
6720 and then Ekind
(T1
) = E_Anonymous_Access_Type
6725 -- If the right operand has a type compatible with T1, check for an
6726 -- acceptable interpretation, unless T1 is limited (no predefined
6727 -- equality available), or this is use of a "/=" for a tagged type.
6728 -- In the latter case, possible interpretations of equality need
6729 -- to be considered, we don't want the default inequality declared
6730 -- in Standard to be chosen, and the "/=" will be rewritten as a
6731 -- negation of "=" (see the end of Analyze_Equality_Op). This ensures
6732 -- that rewriting happens during analysis rather than being
6733 -- delayed until expansion (this is needed for ASIS, which only sees
6734 -- the unexpanded tree). Note that if the node is N_Op_Ne, but Op_Id
6735 -- is Name_Op_Eq then we still proceed with the interpretation,
6736 -- because that indicates the potential rewriting case where the
6737 -- interpretation to consider is actually "=" and the node may be
6738 -- about to be rewritten by Analyze_Equality_Op.
6740 if T1
/= Standard_Void_Type
6741 and then Has_Compatible_Type
(R
, T1
)
6744 ((not Is_Limited_Type
(T1
)
6745 and then not Is_Limited_Composite
(T1
))
6749 and then not Is_Limited_Type
(Component_Type
(T1
))
6750 and then Available_Full_View_Of_Component
(T1
)))
6753 (Nkind
(N
) /= N_Op_Ne
6754 or else not Is_Tagged_Type
(T1
)
6755 or else Chars
(Op_Id
) = Name_Op_Eq
)
6758 and then Base_Type
(T1
) /= Base_Type
(T_F
)
6760 It
:= Disambiguate
(L
, I_F
, Index
, Any_Type
);
6762 if It
= No_Interp
then
6763 Ambiguous_Operands
(N
);
6764 Set_Etype
(L
, Any_Type
);
6777 if not Analyzed
(L
) then
6781 Find_Non_Universal_Interpretations
(N
, R
, Op_Id
, T1
);
6783 -- Case of operator was not visible, Etype still set to Any_Type
6785 if Etype
(N
) = Any_Type
then
6789 elsif Scop
= Standard_Standard
6790 and then Ekind
(T1
) = E_Anonymous_Access_Type
6796 -- Start of processing for Find_Equality_Types
6799 -- If left operand is aggregate, the right operand has to
6800 -- provide a usable type for it.
6802 if Nkind
(L
) = N_Aggregate
6803 and then Nkind
(R
) /= N_Aggregate
6805 Find_Equality_Types
(L
=> R
, R
=> L
, Op_Id
=> Op_Id
, N
=> N
);
6809 if Nkind
(N
) = N_Function_Call
6810 and then Nkind
(Name
(N
)) = N_Expanded_Name
6812 Scop
:= Entity
(Prefix
(Name
(N
)));
6814 -- The prefix may be a package renaming, and the subsequent test
6815 -- requires the original package.
6817 if Ekind
(Scop
) = E_Package
6818 and then Present
(Renamed_Entity
(Scop
))
6820 Scop
:= Renamed_Entity
(Scop
);
6821 Set_Entity
(Prefix
(Name
(N
)), Scop
);
6825 if not Is_Overloaded
(L
) then
6826 Try_One_Interp
(Etype
(L
));
6829 Get_First_Interp
(L
, Index
, It
);
6830 while Present
(It
.Typ
) loop
6831 Try_One_Interp
(It
.Typ
);
6832 Get_Next_Interp
(Index
, It
);
6835 end Find_Equality_Types
;
6837 -------------------------
6838 -- Find_Negation_Types --
6839 -------------------------
6841 procedure Find_Negation_Types
6846 Index
: Interp_Index
;
6850 if not Is_Overloaded
(R
) then
6851 if Etype
(R
) = Universal_Integer
then
6852 Add_One_Interp
(N
, Op_Id
, Any_Modular
);
6853 elsif Valid_Boolean_Arg
(Etype
(R
)) then
6854 Add_One_Interp
(N
, Op_Id
, Etype
(R
));
6858 Get_First_Interp
(R
, Index
, It
);
6859 while Present
(It
.Typ
) loop
6860 if Valid_Boolean_Arg
(It
.Typ
) then
6861 Add_One_Interp
(N
, Op_Id
, It
.Typ
);
6864 Get_Next_Interp
(Index
, It
);
6867 end Find_Negation_Types
;
6869 ------------------------------
6870 -- Find_Primitive_Operation --
6871 ------------------------------
6873 function Find_Primitive_Operation
(N
: Node_Id
) return Boolean is
6874 Obj
: constant Node_Id
:= Prefix
(N
);
6875 Op
: constant Node_Id
:= Selector_Name
(N
);
6882 Set_Etype
(Op
, Any_Type
);
6884 if Is_Access_Type
(Etype
(Obj
)) then
6885 Typ
:= Designated_Type
(Etype
(Obj
));
6890 if Is_Class_Wide_Type
(Typ
) then
6891 Typ
:= Root_Type
(Typ
);
6894 Prims
:= Primitive_Operations
(Typ
);
6896 Prim
:= First_Elmt
(Prims
);
6897 while Present
(Prim
) loop
6898 if Chars
(Node
(Prim
)) = Chars
(Op
) then
6899 Add_One_Interp
(Op
, Node
(Prim
), Etype
(Node
(Prim
)));
6900 Set_Etype
(N
, Etype
(Node
(Prim
)));
6906 -- Now look for class-wide operations of the type or any of its
6907 -- ancestors by iterating over the homonyms of the selector.
6910 Cls_Type
: constant Entity_Id
:= Class_Wide_Type
(Typ
);
6914 Hom
:= Current_Entity
(Op
);
6915 while Present
(Hom
) loop
6916 if (Ekind
(Hom
) = E_Procedure
6918 Ekind
(Hom
) = E_Function
)
6919 and then Scope
(Hom
) = Scope
(Typ
)
6920 and then Present
(First_Formal
(Hom
))
6922 (Base_Type
(Etype
(First_Formal
(Hom
))) = Cls_Type
6924 (Is_Access_Type
(Etype
(First_Formal
(Hom
)))
6926 Ekind
(Etype
(First_Formal
(Hom
))) =
6927 E_Anonymous_Access_Type
6930 (Designated_Type
(Etype
(First_Formal
(Hom
)))) =
6933 Add_One_Interp
(Op
, Hom
, Etype
(Hom
));
6934 Set_Etype
(N
, Etype
(Hom
));
6937 Hom
:= Homonym
(Hom
);
6941 return Etype
(Op
) /= Any_Type
;
6942 end Find_Primitive_Operation
;
6944 ----------------------
6945 -- Find_Unary_Types --
6946 ----------------------
6948 procedure Find_Unary_Types
6953 Index
: Interp_Index
;
6957 if not Is_Overloaded
(R
) then
6958 if Is_Numeric_Type
(Etype
(R
)) then
6960 -- In an instance a generic actual may be a numeric type even if
6961 -- the formal in the generic unit was not. In that case, the
6962 -- predefined operator was not a possible interpretation in the
6963 -- generic, and cannot be one in the instance, unless the operator
6964 -- is an actual of an instance.
6968 not Is_Numeric_Type
(Corresponding_Generic_Type
(Etype
(R
)))
6972 Add_One_Interp
(N
, Op_Id
, Base_Type
(Etype
(R
)));
6977 Get_First_Interp
(R
, Index
, It
);
6978 while Present
(It
.Typ
) loop
6979 if Is_Numeric_Type
(It
.Typ
) then
6983 (Corresponding_Generic_Type
(Etype
(It
.Typ
)))
6988 Add_One_Interp
(N
, Op_Id
, Base_Type
(It
.Typ
));
6992 Get_Next_Interp
(Index
, It
);
6995 end Find_Unary_Types
;
7001 function Junk_Operand
(N
: Node_Id
) return Boolean is
7005 if Error_Posted
(N
) then
7009 -- Get entity to be tested
7011 if Is_Entity_Name
(N
)
7012 and then Present
(Entity
(N
))
7016 -- An odd case, a procedure name gets converted to a very peculiar
7017 -- function call, and here is where we detect this happening.
7019 elsif Nkind
(N
) = N_Function_Call
7020 and then Is_Entity_Name
(Name
(N
))
7021 and then Present
(Entity
(Name
(N
)))
7025 -- Another odd case, there are at least some cases of selected
7026 -- components where the selected component is not marked as having
7027 -- an entity, even though the selector does have an entity
7029 elsif Nkind
(N
) = N_Selected_Component
7030 and then Present
(Entity
(Selector_Name
(N
)))
7032 Enode
:= Selector_Name
(N
);
7038 -- Now test the entity we got to see if it is a bad case
7040 case Ekind
(Entity
(Enode
)) is
7043 ("package name cannot be used as operand", Enode
);
7045 when Generic_Unit_Kind
=>
7047 ("generic unit name cannot be used as operand", Enode
);
7051 ("subtype name cannot be used as operand", Enode
);
7055 ("entry name cannot be used as operand", Enode
);
7059 ("procedure name cannot be used as operand", Enode
);
7063 ("exception name cannot be used as operand", Enode
);
7070 ("label name cannot be used as operand", Enode
);
7079 --------------------
7080 -- Operator_Check --
7081 --------------------
7083 procedure Operator_Check
(N
: Node_Id
) is
7085 Remove_Abstract_Operations
(N
);
7087 -- Test for case of no interpretation found for operator
7089 if Etype
(N
) = Any_Type
then
7093 Op_Id
: Entity_Id
:= Empty
;
7096 R
:= Right_Opnd
(N
);
7098 if Nkind
(N
) in N_Binary_Op
then
7104 -- If either operand has no type, then don't complain further,
7105 -- since this simply means that we have a propagated error.
7108 or else Etype
(R
) = Any_Type
7109 or else (Nkind
(N
) in N_Binary_Op
and then Etype
(L
) = Any_Type
)
7111 -- For the rather unusual case where one of the operands is
7112 -- a Raise_Expression, whose initial type is Any_Type, use
7113 -- the type of the other operand.
7115 if Nkind
(L
) = N_Raise_Expression
then
7116 Set_Etype
(L
, Etype
(R
));
7117 Set_Etype
(N
, Etype
(R
));
7119 elsif Nkind
(R
) = N_Raise_Expression
then
7120 Set_Etype
(R
, Etype
(L
));
7121 Set_Etype
(N
, Etype
(L
));
7126 -- We explicitly check for the case of concatenation of component
7127 -- with component to avoid reporting spurious matching array types
7128 -- that might happen to be lurking in distant packages (such as
7129 -- run-time packages). This also prevents inconsistencies in the
7130 -- messages for certain ACVC B tests, which can vary depending on
7131 -- types declared in run-time interfaces. Another improvement when
7132 -- aggregates are present is to look for a well-typed operand.
7134 elsif Present
(Candidate_Type
)
7135 and then (Nkind
(N
) /= N_Op_Concat
7136 or else Is_Array_Type
(Etype
(L
))
7137 or else Is_Array_Type
(Etype
(R
)))
7139 if Nkind
(N
) = N_Op_Concat
then
7140 if Etype
(L
) /= Any_Composite
7141 and then Is_Array_Type
(Etype
(L
))
7143 Candidate_Type
:= Etype
(L
);
7145 elsif Etype
(R
) /= Any_Composite
7146 and then Is_Array_Type
(Etype
(R
))
7148 Candidate_Type
:= Etype
(R
);
7152 Error_Msg_NE
-- CODEFIX
7153 ("operator for} is not directly visible!",
7154 N
, First_Subtype
(Candidate_Type
));
7157 U
: constant Node_Id
:=
7158 Cunit
(Get_Source_Unit
(Candidate_Type
));
7160 if Unit_Is_Visible
(U
) then
7161 Error_Msg_N
-- CODEFIX
7162 ("use clause would make operation legal!", N
);
7164 Error_Msg_NE
-- CODEFIX
7165 ("add with_clause and use_clause for&!",
7166 N
, Defining_Entity
(Unit
(U
)));
7171 -- If either operand is a junk operand (e.g. package name), then
7172 -- post appropriate error messages, but do not complain further.
7174 -- Note that the use of OR in this test instead of OR ELSE is
7175 -- quite deliberate, we may as well check both operands in the
7176 -- binary operator case.
7178 elsif Junk_Operand
(R
)
7179 or -- really mean OR here and not OR ELSE, see above
7180 (Nkind
(N
) in N_Binary_Op
and then Junk_Operand
(L
))
7184 -- If we have a logical operator, one of whose operands is
7185 -- Boolean, then we know that the other operand cannot resolve to
7186 -- Boolean (since we got no interpretations), but in that case we
7187 -- pretty much know that the other operand should be Boolean, so
7188 -- resolve it that way (generating an error).
7190 elsif Nkind_In
(N
, N_Op_And
, N_Op_Or
, N_Op_Xor
) then
7191 if Etype
(L
) = Standard_Boolean
then
7192 Resolve
(R
, Standard_Boolean
);
7194 elsif Etype
(R
) = Standard_Boolean
then
7195 Resolve
(L
, Standard_Boolean
);
7199 -- For an arithmetic operator or comparison operator, if one
7200 -- of the operands is numeric, then we know the other operand
7201 -- is not the same numeric type. If it is a non-numeric type,
7202 -- then probably it is intended to match the other operand.
7204 elsif Nkind_In
(N
, N_Op_Add
,
7210 Nkind_In
(N
, N_Op_Lt
,
7216 -- If Allow_Integer_Address is active, check whether the
7217 -- operation becomes legal after converting an operand.
7219 if Is_Numeric_Type
(Etype
(L
))
7220 and then not Is_Numeric_Type
(Etype
(R
))
7222 if Address_Integer_Convert_OK
(Etype
(R
), Etype
(L
)) then
7224 Unchecked_Convert_To
(Etype
(L
), Relocate_Node
(R
)));
7226 if Nkind_In
(N
, N_Op_Ge
, N_Op_Gt
, N_Op_Le
, N_Op_Lt
) then
7227 Analyze_Comparison_Op
(N
);
7229 Analyze_Arithmetic_Op
(N
);
7232 Resolve
(R
, Etype
(L
));
7237 elsif Is_Numeric_Type
(Etype
(R
))
7238 and then not Is_Numeric_Type
(Etype
(L
))
7240 if Address_Integer_Convert_OK
(Etype
(L
), Etype
(R
)) then
7242 Unchecked_Convert_To
(Etype
(R
), Relocate_Node
(L
)));
7244 if Nkind_In
(N
, N_Op_Ge
, N_Op_Gt
, N_Op_Le
, N_Op_Lt
) then
7245 Analyze_Comparison_Op
(N
);
7247 Analyze_Arithmetic_Op
(N
);
7253 Resolve
(L
, Etype
(R
));
7258 elsif Allow_Integer_Address
7259 and then Is_Descendant_Of_Address
(Etype
(L
))
7260 and then Is_Descendant_Of_Address
(Etype
(R
))
7261 and then not Error_Posted
(N
)
7264 Addr_Type
: constant Entity_Id
:= Etype
(L
);
7268 Unchecked_Convert_To
(
7269 Standard_Integer
, Relocate_Node
(L
)));
7271 Unchecked_Convert_To
(
7272 Standard_Integer
, Relocate_Node
(R
)));
7274 if Nkind_In
(N
, N_Op_Ge
, N_Op_Gt
, N_Op_Le
, N_Op_Lt
) then
7275 Analyze_Comparison_Op
(N
);
7277 Analyze_Arithmetic_Op
(N
);
7280 -- If this is an operand in an enclosing arithmetic
7281 -- operation, Convert the result as an address so that
7282 -- arithmetic folding of address can continue.
7284 if Nkind
(Parent
(N
)) in N_Op
then
7286 Unchecked_Convert_To
(Addr_Type
, Relocate_Node
(N
)));
7292 -- Under relaxed RM semantics silently replace occurrences of
7293 -- null by System.Address_Null.
7295 elsif Null_To_Null_Address_Convert_OK
(N
) then
7296 Replace_Null_By_Null_Address
(N
);
7298 if Nkind_In
(N
, N_Op_Ge
, N_Op_Gt
, N_Op_Le
, N_Op_Lt
) then
7299 Analyze_Comparison_Op
(N
);
7301 Analyze_Arithmetic_Op
(N
);
7307 -- Comparisons on A'Access are common enough to deserve a
7310 elsif Nkind_In
(N
, N_Op_Eq
, N_Op_Ne
)
7311 and then Ekind
(Etype
(L
)) = E_Access_Attribute_Type
7312 and then Ekind
(Etype
(R
)) = E_Access_Attribute_Type
7315 ("two access attributes cannot be compared directly", N
);
7317 ("\use qualified expression for one of the operands",
7321 -- Another one for C programmers
7323 elsif Nkind
(N
) = N_Op_Concat
7324 and then Valid_Boolean_Arg
(Etype
(L
))
7325 and then Valid_Boolean_Arg
(Etype
(R
))
7327 Error_Msg_N
("invalid operands for concatenation", N
);
7328 Error_Msg_N
-- CODEFIX
7329 ("\maybe AND was meant", N
);
7332 -- A special case for comparison of access parameter with null
7334 elsif Nkind
(N
) = N_Op_Eq
7335 and then Is_Entity_Name
(L
)
7336 and then Nkind
(Parent
(Entity
(L
))) = N_Parameter_Specification
7337 and then Nkind
(Parameter_Type
(Parent
(Entity
(L
)))) =
7339 and then Nkind
(R
) = N_Null
7341 Error_Msg_N
("access parameter is not allowed to be null", L
);
7342 Error_Msg_N
("\(call would raise Constraint_Error)", L
);
7345 -- Another special case for exponentiation, where the right
7346 -- operand must be Natural, independently of the base.
7348 elsif Nkind
(N
) = N_Op_Expon
7349 and then Is_Numeric_Type
(Etype
(L
))
7350 and then not Is_Overloaded
(R
)
7352 First_Subtype
(Base_Type
(Etype
(R
))) /= Standard_Integer
7353 and then Base_Type
(Etype
(R
)) /= Universal_Integer
7355 if Ada_Version
>= Ada_2012
7356 and then Has_Dimension_System
(Etype
(L
))
7359 ("exponent for dimensioned type must be a rational" &
7360 ", found}", R
, Etype
(R
));
7363 ("exponent must be of type Natural, found}", R
, Etype
(R
));
7368 elsif Nkind_In
(N
, N_Op_Eq
, N_Op_Ne
) then
7369 if Address_Integer_Convert_OK
(Etype
(R
), Etype
(L
)) then
7371 Unchecked_Convert_To
(Etype
(L
), Relocate_Node
(R
)));
7372 Analyze_Equality_Op
(N
);
7375 -- Under relaxed RM semantics silently replace occurrences of
7376 -- null by System.Address_Null.
7378 elsif Null_To_Null_Address_Convert_OK
(N
) then
7379 Replace_Null_By_Null_Address
(N
);
7380 Analyze_Equality_Op
(N
);
7385 -- If we fall through then just give general message. Note that in
7386 -- the following messages, if the operand is overloaded we choose
7387 -- an arbitrary type to complain about, but that is probably more
7388 -- useful than not giving a type at all.
7390 if Nkind
(N
) in N_Unary_Op
then
7391 Error_Msg_Node_2
:= Etype
(R
);
7392 Error_Msg_N
("operator& not defined for}", N
);
7396 if Nkind
(N
) in N_Binary_Op
then
7397 if not Is_Overloaded
(L
)
7398 and then not Is_Overloaded
(R
)
7399 and then Base_Type
(Etype
(L
)) = Base_Type
(Etype
(R
))
7401 Error_Msg_Node_2
:= First_Subtype
(Etype
(R
));
7402 Error_Msg_N
("there is no applicable operator& for}", N
);
7405 -- Another attempt to find a fix: one of the candidate
7406 -- interpretations may not be use-visible. This has
7407 -- already been checked for predefined operators, so
7408 -- we examine only user-defined functions.
7410 Op_Id
:= Get_Name_Entity_Id
(Chars
(N
));
7412 while Present
(Op_Id
) loop
7413 if Ekind
(Op_Id
) /= E_Operator
7414 and then Is_Overloadable
(Op_Id
)
7416 if not Is_Immediately_Visible
(Op_Id
)
7417 and then not In_Use
(Scope
(Op_Id
))
7418 and then not Is_Abstract_Subprogram
(Op_Id
)
7419 and then not Is_Hidden
(Op_Id
)
7420 and then Ekind
(Scope
(Op_Id
)) = E_Package
7423 (L
, Etype
(First_Formal
(Op_Id
)))
7425 (Next_Formal
(First_Formal
(Op_Id
)))
7429 Etype
(Next_Formal
(First_Formal
(Op_Id
))))
7432 ("No legal interpretation for operator&", N
);
7434 ("\use clause on& would make operation legal",
7440 Op_Id
:= Homonym
(Op_Id
);
7444 Error_Msg_N
("invalid operand types for operator&", N
);
7446 if Nkind
(N
) /= N_Op_Concat
then
7447 Error_Msg_NE
("\left operand has}!", N
, Etype
(L
));
7448 Error_Msg_NE
("\right operand has}!", N
, Etype
(R
));
7450 -- For concatenation operators it is more difficult to
7451 -- determine which is the wrong operand. It is worth
7452 -- flagging explicitly an access type, for those who
7453 -- might think that a dereference happens here.
7455 elsif Is_Access_Type
(Etype
(L
)) then
7456 Error_Msg_N
("\left operand is access type", N
);
7458 elsif Is_Access_Type
(Etype
(R
)) then
7459 Error_Msg_N
("\right operand is access type", N
);
7469 -----------------------------------------
7470 -- Process_Implicit_Dereference_Prefix --
7471 -----------------------------------------
7473 function Process_Implicit_Dereference_Prefix
7475 P
: Entity_Id
) return Entity_Id
7478 Typ
: constant Entity_Id
:= Designated_Type
(Etype
(P
));
7482 and then (Operating_Mode
= Check_Semantics
or else not Expander_Active
)
7484 -- We create a dummy reference to E to ensure that the reference is
7485 -- not considered as part of an assignment (an implicit dereference
7486 -- can never assign to its prefix). The Comes_From_Source attribute
7487 -- needs to be propagated for accurate warnings.
7489 Ref
:= New_Occurrence_Of
(E
, Sloc
(P
));
7490 Set_Comes_From_Source
(Ref
, Comes_From_Source
(P
));
7491 Generate_Reference
(E
, Ref
);
7494 -- An implicit dereference is a legal occurrence of an incomplete type
7495 -- imported through a limited_with clause, if the full view is visible.
7497 if From_Limited_With
(Typ
)
7498 and then not From_Limited_With
(Scope
(Typ
))
7500 (Is_Immediately_Visible
(Scope
(Typ
))
7502 (Is_Child_Unit
(Scope
(Typ
))
7503 and then Is_Visible_Lib_Unit
(Scope
(Typ
))))
7505 return Available_View
(Typ
);
7509 end Process_Implicit_Dereference_Prefix
;
7511 --------------------------------
7512 -- Remove_Abstract_Operations --
7513 --------------------------------
7515 procedure Remove_Abstract_Operations
(N
: Node_Id
) is
7516 Abstract_Op
: Entity_Id
:= Empty
;
7517 Address_Descendant
: Boolean := False;
7521 -- AI-310: If overloaded, remove abstract non-dispatching operations. We
7522 -- activate this if either extensions are enabled, or if the abstract
7523 -- operation in question comes from a predefined file. This latter test
7524 -- allows us to use abstract to make operations invisible to users. In
7525 -- particular, if type Address is non-private and abstract subprograms
7526 -- are used to hide its operators, they will be truly hidden.
7528 type Operand_Position
is (First_Op
, Second_Op
);
7529 Univ_Type
: constant Entity_Id
:= Universal_Interpretation
(N
);
7531 procedure Remove_Address_Interpretations
(Op
: Operand_Position
);
7532 -- Ambiguities may arise when the operands are literal and the address
7533 -- operations in s-auxdec are visible. In that case, remove the
7534 -- interpretation of a literal as Address, to retain the semantics
7535 -- of Address as a private type.
7537 ------------------------------------
7538 -- Remove_Address_Interpretations --
7539 ------------------------------------
7541 procedure Remove_Address_Interpretations
(Op
: Operand_Position
) is
7545 if Is_Overloaded
(N
) then
7546 Get_First_Interp
(N
, I
, It
);
7547 while Present
(It
.Nam
) loop
7548 Formal
:= First_Entity
(It
.Nam
);
7550 if Op
= Second_Op
then
7551 Formal
:= Next_Entity
(Formal
);
7554 if Is_Descendant_Of_Address
(Etype
(Formal
)) then
7555 Address_Descendant
:= True;
7559 Get_Next_Interp
(I
, It
);
7562 end Remove_Address_Interpretations
;
7564 -- Start of processing for Remove_Abstract_Operations
7567 if Is_Overloaded
(N
) then
7568 if Debug_Flag_V
then
7569 Write_Str
("Remove_Abstract_Operations: ");
7570 Write_Overloads
(N
);
7573 Get_First_Interp
(N
, I
, It
);
7575 while Present
(It
.Nam
) loop
7576 if Is_Overloadable
(It
.Nam
)
7577 and then Is_Abstract_Subprogram
(It
.Nam
)
7578 and then not Is_Dispatching_Operation
(It
.Nam
)
7580 Abstract_Op
:= It
.Nam
;
7582 if Is_Descendant_Of_Address
(It
.Typ
) then
7583 Address_Descendant
:= True;
7587 -- In Ada 2005, this operation does not participate in overload
7588 -- resolution. If the operation is defined in a predefined
7589 -- unit, it is one of the operations declared abstract in some
7590 -- variants of System, and it must be removed as well.
7592 elsif Ada_Version
>= Ada_2005
7593 or else In_Predefined_Unit
(It
.Nam
)
7600 Get_Next_Interp
(I
, It
);
7603 if No
(Abstract_Op
) then
7605 -- If some interpretation yields an integer type, it is still
7606 -- possible that there are address interpretations. Remove them
7607 -- if one operand is a literal, to avoid spurious ambiguities
7608 -- on systems where Address is a visible integer type.
7610 if Is_Overloaded
(N
)
7611 and then Nkind
(N
) in N_Op
7612 and then Is_Integer_Type
(Etype
(N
))
7614 if Nkind
(N
) in N_Binary_Op
then
7615 if Nkind
(Right_Opnd
(N
)) = N_Integer_Literal
then
7616 Remove_Address_Interpretations
(Second_Op
);
7618 elsif Nkind
(Left_Opnd
(N
)) = N_Integer_Literal
then
7619 Remove_Address_Interpretations
(First_Op
);
7624 elsif Nkind
(N
) in N_Op
then
7626 -- Remove interpretations that treat literals as addresses. This
7627 -- is never appropriate, even when Address is defined as a visible
7628 -- Integer type. The reason is that we would really prefer Address
7629 -- to behave as a private type, even in this case. If Address is a
7630 -- visible integer type, we get lots of overload ambiguities.
7632 if Nkind
(N
) in N_Binary_Op
then
7634 U1
: constant Boolean :=
7635 Present
(Universal_Interpretation
(Right_Opnd
(N
)));
7636 U2
: constant Boolean :=
7637 Present
(Universal_Interpretation
(Left_Opnd
(N
)));
7641 Remove_Address_Interpretations
(Second_Op
);
7645 Remove_Address_Interpretations
(First_Op
);
7648 if not (U1
and U2
) then
7650 -- Remove corresponding predefined operator, which is
7651 -- always added to the overload set.
7653 Get_First_Interp
(N
, I
, It
);
7654 while Present
(It
.Nam
) loop
7655 if Scope
(It
.Nam
) = Standard_Standard
7656 and then Base_Type
(It
.Typ
) =
7657 Base_Type
(Etype
(Abstract_Op
))
7662 Get_Next_Interp
(I
, It
);
7665 elsif Is_Overloaded
(N
)
7666 and then Present
(Univ_Type
)
7668 -- If both operands have a universal interpretation,
7669 -- it is still necessary to remove interpretations that
7670 -- yield Address. Any remaining ambiguities will be
7671 -- removed in Disambiguate.
7673 Get_First_Interp
(N
, I
, It
);
7674 while Present
(It
.Nam
) loop
7675 if Is_Descendant_Of_Address
(It
.Typ
) then
7678 elsif not Is_Type
(It
.Nam
) then
7679 Set_Entity
(N
, It
.Nam
);
7682 Get_Next_Interp
(I
, It
);
7688 elsif Nkind
(N
) = N_Function_Call
7690 (Nkind
(Name
(N
)) = N_Operator_Symbol
7692 (Nkind
(Name
(N
)) = N_Expanded_Name
7694 Nkind
(Selector_Name
(Name
(N
))) = N_Operator_Symbol
))
7698 Arg1
: constant Node_Id
:= First
(Parameter_Associations
(N
));
7699 U1
: constant Boolean :=
7700 Present
(Universal_Interpretation
(Arg1
));
7701 U2
: constant Boolean :=
7702 Present
(Next
(Arg1
)) and then
7703 Present
(Universal_Interpretation
(Next
(Arg1
)));
7707 Remove_Address_Interpretations
(First_Op
);
7711 Remove_Address_Interpretations
(Second_Op
);
7714 if not (U1
and U2
) then
7715 Get_First_Interp
(N
, I
, It
);
7716 while Present
(It
.Nam
) loop
7717 if Scope
(It
.Nam
) = Standard_Standard
7718 and then It
.Typ
= Base_Type
(Etype
(Abstract_Op
))
7723 Get_Next_Interp
(I
, It
);
7729 -- If the removal has left no valid interpretations, emit an error
7730 -- message now and label node as illegal.
7732 if Present
(Abstract_Op
) then
7733 Get_First_Interp
(N
, I
, It
);
7737 -- Removal of abstract operation left no viable candidate
7739 Set_Etype
(N
, Any_Type
);
7740 Error_Msg_Sloc
:= Sloc
(Abstract_Op
);
7742 ("cannot call abstract operation& declared#", N
, Abstract_Op
);
7744 -- In Ada 2005, an abstract operation may disable predefined
7745 -- operators. Since the context is not yet known, we mark the
7746 -- predefined operators as potentially hidden. Do not include
7747 -- predefined operators when addresses are involved since this
7748 -- case is handled separately.
7750 elsif Ada_Version
>= Ada_2005
and then not Address_Descendant
then
7751 while Present
(It
.Nam
) loop
7752 if Is_Numeric_Type
(It
.Typ
)
7753 and then Scope
(It
.Typ
) = Standard_Standard
7755 Set_Abstract_Op
(I
, Abstract_Op
);
7758 Get_Next_Interp
(I
, It
);
7763 if Debug_Flag_V
then
7764 Write_Str
("Remove_Abstract_Operations done: ");
7765 Write_Overloads
(N
);
7768 end Remove_Abstract_Operations
;
7770 ----------------------------
7771 -- Try_Container_Indexing --
7772 ----------------------------
7774 function Try_Container_Indexing
7777 Exprs
: List_Id
) return Boolean
7779 Pref_Typ
: constant Entity_Id
:= Etype
(Prefix
);
7781 function Constant_Indexing_OK
return Boolean;
7782 -- Constant_Indexing is legal if there is no Variable_Indexing defined
7783 -- for the type, or else node not a target of assignment, or an actual
7784 -- for an IN OUT or OUT formal (RM 4.1.6 (11)).
7786 function Expr_Matches_In_Formal
7788 Par
: Node_Id
) return Boolean;
7789 -- Find formal corresponding to given indexed component that is an
7790 -- actual in a call. Note that the enclosing subprogram call has not
7791 -- been analyzed yet, and the parameter list is not normalized, so
7792 -- that if the argument is a parameter association we must match it
7793 -- by name and not by position.
7795 function Find_Indexing_Operations
7798 Is_Constant
: Boolean) return Node_Id
;
7799 -- Return a reference to the primitive operation of type T denoted by
7800 -- name Nam. If the operation is overloaded, the reference carries all
7801 -- interpretations. Flag Is_Constant should be set when the context is
7802 -- constant indexing.
7804 --------------------------
7805 -- Constant_Indexing_OK --
7806 --------------------------
7808 function Constant_Indexing_OK
return Boolean is
7812 if No
(Find_Value_Of_Aspect
(Pref_Typ
, Aspect_Variable_Indexing
)) then
7815 elsif not Is_Variable
(Prefix
) then
7820 while Present
(Par
) loop
7821 if Nkind
(Parent
(Par
)) = N_Assignment_Statement
7822 and then Par
= Name
(Parent
(Par
))
7826 -- The call may be overloaded, in which case we assume that its
7827 -- resolution does not depend on the type of the parameter that
7828 -- includes the indexing operation.
7830 elsif Nkind_In
(Parent
(Par
), N_Function_Call
,
7831 N_Procedure_Call_Statement
)
7832 and then Is_Entity_Name
(Name
(Parent
(Par
)))
7838 -- We should look for an interpretation with the proper
7839 -- number of formals, and determine whether it is an
7840 -- In_Parameter, but for now we examine the formal that
7841 -- corresponds to the indexing, and assume that variable
7842 -- indexing is required if some interpretation has an
7843 -- assignable formal at that position. Still does not
7844 -- cover the most complex cases ???
7846 if Is_Overloaded
(Name
(Parent
(Par
))) then
7848 Proc
: constant Node_Id
:= Name
(Parent
(Par
));
7853 Get_First_Interp
(Proc
, I
, It
);
7854 while Present
(It
.Nam
) loop
7855 if not Expr_Matches_In_Formal
(It
.Nam
, Par
) then
7859 Get_Next_Interp
(I
, It
);
7863 -- All interpretations have a matching in-mode formal
7868 Proc
:= Entity
(Name
(Parent
(Par
)));
7870 -- If this is an indirect call, get formals from
7873 if Is_Access_Subprogram_Type
(Etype
(Proc
)) then
7874 Proc
:= Designated_Type
(Etype
(Proc
));
7878 return Expr_Matches_In_Formal
(Proc
, Par
);
7881 elsif Nkind
(Parent
(Par
)) = N_Object_Renaming_Declaration
then
7884 -- If the indexed component is a prefix it may be the first actual
7885 -- of a prefixed call. Retrieve the called entity, if any, and
7886 -- check its first formal. Determine if the context is a procedure
7887 -- or function call.
7889 elsif Nkind
(Parent
(Par
)) = N_Selected_Component
then
7891 Sel
: constant Node_Id
:= Selector_Name
(Parent
(Par
));
7892 Nam
: constant Entity_Id
:= Current_Entity
(Sel
);
7895 if Present
(Nam
) and then Is_Overloadable
(Nam
) then
7896 if Nkind
(Parent
(Parent
(Par
))) =
7897 N_Procedure_Call_Statement
7901 elsif Ekind
(Nam
) = E_Function
7902 and then Present
(First_Formal
(Nam
))
7904 return Ekind
(First_Formal
(Nam
)) = E_In_Parameter
;
7909 elsif Nkind
(Par
) in N_Op
then
7913 Par
:= Parent
(Par
);
7916 -- In all other cases, constant indexing is legal
7919 end Constant_Indexing_OK
;
7921 ----------------------------
7922 -- Expr_Matches_In_Formal --
7923 ----------------------------
7925 function Expr_Matches_In_Formal
7927 Par
: Node_Id
) return Boolean
7933 Formal
:= First_Formal
(Subp
);
7934 Actual
:= First
(Parameter_Associations
((Parent
(Par
))));
7936 if Nkind
(Par
) /= N_Parameter_Association
then
7938 -- Match by position
7940 while Present
(Actual
) and then Present
(Formal
) loop
7941 exit when Actual
= Par
;
7944 if Present
(Formal
) then
7945 Next_Formal
(Formal
);
7947 -- Otherwise this is a parameter mismatch, the error is
7948 -- reported elsewhere, or else variable indexing is implied.
7958 while Present
(Formal
) loop
7959 exit when Chars
(Formal
) = Chars
(Selector_Name
(Par
));
7960 Next_Formal
(Formal
);
7968 return Present
(Formal
) and then Ekind
(Formal
) = E_In_Parameter
;
7969 end Expr_Matches_In_Formal
;
7971 ------------------------------
7972 -- Find_Indexing_Operations --
7973 ------------------------------
7975 function Find_Indexing_Operations
7978 Is_Constant
: Boolean) return Node_Id
7980 procedure Inspect_Declarations
7982 Ref
: in out Node_Id
);
7983 -- Traverse the declarative list where type Typ resides and collect
7984 -- all suitable interpretations in node Ref.
7986 procedure Inspect_Primitives
7988 Ref
: in out Node_Id
);
7989 -- Traverse the list of primitive operations of type Typ and collect
7990 -- all suitable interpretations in node Ref.
7992 function Is_OK_Candidate
7993 (Subp_Id
: Entity_Id
;
7994 Typ
: Entity_Id
) return Boolean;
7995 -- Determine whether subprogram Subp_Id is a suitable indexing
7996 -- operation for type Typ. To qualify as such, the subprogram must
7997 -- be a function, have at least two parameters, and the type of the
7998 -- first parameter must be either Typ, or Typ'Class, or access [to
7999 -- constant] with designated type Typ or Typ'Class.
8001 procedure Record_Interp
(Subp_Id
: Entity_Id
; Ref
: in out Node_Id
);
8002 -- Store subprogram Subp_Id as an interpretation in node Ref
8004 --------------------------
8005 -- Inspect_Declarations --
8006 --------------------------
8008 procedure Inspect_Declarations
8010 Ref
: in out Node_Id
)
8012 Typ_Decl
: constant Node_Id
:= Declaration_Node
(Typ
);
8014 Subp_Id
: Entity_Id
;
8017 -- Ensure that the routine is not called with itypes, which lack a
8018 -- declarative node.
8020 pragma Assert
(Present
(Typ_Decl
));
8021 pragma Assert
(Is_List_Member
(Typ_Decl
));
8023 Decl
:= First
(List_Containing
(Typ_Decl
));
8024 while Present
(Decl
) loop
8025 if Nkind
(Decl
) = N_Subprogram_Declaration
then
8026 Subp_Id
:= Defining_Entity
(Decl
);
8028 if Is_OK_Candidate
(Subp_Id
, Typ
) then
8029 Record_Interp
(Subp_Id
, Ref
);
8035 end Inspect_Declarations
;
8037 ------------------------
8038 -- Inspect_Primitives --
8039 ------------------------
8041 procedure Inspect_Primitives
8043 Ref
: in out Node_Id
)
8045 Prim_Elmt
: Elmt_Id
;
8046 Prim_Id
: Entity_Id
;
8049 Prim_Elmt
:= First_Elmt
(Primitive_Operations
(Typ
));
8050 while Present
(Prim_Elmt
) loop
8051 Prim_Id
:= Node
(Prim_Elmt
);
8053 if Is_OK_Candidate
(Prim_Id
, Typ
) then
8054 Record_Interp
(Prim_Id
, Ref
);
8057 Next_Elmt
(Prim_Elmt
);
8059 end Inspect_Primitives
;
8061 ---------------------
8062 -- Is_OK_Candidate --
8063 ---------------------
8065 function Is_OK_Candidate
8066 (Subp_Id
: Entity_Id
;
8067 Typ
: Entity_Id
) return Boolean
8070 Formal_Typ
: Entity_Id
;
8071 Param_Typ
: Node_Id
;
8074 -- To classify as a suitable candidate, the subprogram must be a
8075 -- function whose name matches the argument of aspect Constant or
8076 -- Variable_Indexing.
8078 if Ekind
(Subp_Id
) = E_Function
and then Chars
(Subp_Id
) = Nam
then
8079 Formal
:= First_Formal
(Subp_Id
);
8081 -- The candidate requires at least two parameters
8083 if Present
(Formal
) and then Present
(Next_Formal
(Formal
)) then
8084 Formal_Typ
:= Empty
;
8085 Param_Typ
:= Parameter_Type
(Parent
(Formal
));
8087 -- Use the designated type when the first parameter is of an
8090 if Nkind
(Param_Typ
) = N_Access_Definition
8091 and then Present
(Subtype_Mark
(Param_Typ
))
8093 -- When the context is a constant indexing, the access
8094 -- definition must be access-to-constant. This does not
8095 -- apply to variable indexing.
8098 or else Constant_Present
(Param_Typ
)
8100 Formal_Typ
:= Etype
(Subtype_Mark
(Param_Typ
));
8103 -- Otherwise use the parameter type
8106 Formal_Typ
:= Etype
(Param_Typ
);
8109 if Present
(Formal_Typ
) then
8111 -- Use the specific type when the parameter type is
8114 if Is_Class_Wide_Type
(Formal_Typ
) then
8115 Formal_Typ
:= Etype
(Base_Type
(Formal_Typ
));
8118 -- Use the full view when the parameter type is private
8121 if Is_Incomplete_Or_Private_Type
(Formal_Typ
)
8122 and then Present
(Full_View
(Formal_Typ
))
8124 Formal_Typ
:= Full_View
(Formal_Typ
);
8127 -- The type of the first parameter must denote the type
8128 -- of the container or acts as its ancestor type.
8132 or else Is_Ancestor
(Formal_Typ
, Typ
);
8138 end Is_OK_Candidate
;
8144 procedure Record_Interp
(Subp_Id
: Entity_Id
; Ref
: in out Node_Id
) is
8146 if Present
(Ref
) then
8147 Add_One_Interp
(Ref
, Subp_Id
, Etype
(Subp_Id
));
8149 -- Otherwise this is the first interpretation. Create a reference
8150 -- where all remaining interpretations will be collected.
8153 Ref
:= New_Occurrence_Of
(Subp_Id
, Sloc
(T
));
8162 -- Start of processing for Find_Indexing_Operations
8167 -- Use the specific type when the parameter type is class-wide
8169 if Is_Class_Wide_Type
(Typ
) then
8170 Typ
:= Root_Type
(Typ
);
8174 Typ
:= Underlying_Type
(Base_Type
(Typ
));
8176 Inspect_Primitives
(Typ
, Ref
);
8178 -- Now look for explicit declarations of an indexing operation.
8179 -- If the type is private the operation may be declared in the
8180 -- visible part that contains the partial view.
8182 if Is_Private_Type
(T
) then
8183 Inspect_Declarations
(T
, Ref
);
8186 Inspect_Declarations
(Typ
, Ref
);
8189 end Find_Indexing_Operations
;
8193 Loc
: constant Source_Ptr
:= Sloc
(N
);
8197 Func_Name
: Node_Id
;
8200 Is_Constant_Indexing
: Boolean := False;
8201 -- This flag reflects the nature of the container indexing. Note that
8202 -- the context may be suited for constant indexing, but the type may
8203 -- lack a Constant_Indexing annotation.
8205 -- Start of processing for Try_Container_Indexing
8208 -- Node may have been analyzed already when testing for a prefixed
8209 -- call, in which case do not redo analysis.
8211 if Present
(Generalized_Indexing
(N
)) then
8217 -- If indexing a class-wide container, obtain indexing primitive from
8220 if Is_Class_Wide_Type
(C_Type
) then
8221 C_Type
:= Etype
(Base_Type
(C_Type
));
8224 -- Check whether the type has a specified indexing aspect
8228 -- The context is suitable for constant indexing, so obtain the name of
8229 -- the indexing function from aspect Constant_Indexing.
8231 if Constant_Indexing_OK
then
8233 Find_Value_Of_Aspect
(Pref_Typ
, Aspect_Constant_Indexing
);
8236 if Present
(Func_Name
) then
8237 Is_Constant_Indexing
:= True;
8239 -- Otherwise attempt variable indexing
8243 Find_Value_Of_Aspect
(Pref_Typ
, Aspect_Variable_Indexing
);
8246 -- The type is not subject to either form of indexing, therefore the
8247 -- indexed component does not denote container indexing. If this is a
8248 -- true error, it is diagnosed by the caller.
8250 if No
(Func_Name
) then
8252 -- The prefix itself may be an indexing of a container. Rewrite it
8253 -- as such and retry.
8255 if Has_Implicit_Dereference
(Pref_Typ
) then
8256 Build_Explicit_Dereference
(Prefix
, First_Discriminant
(Pref_Typ
));
8257 return Try_Container_Indexing
(N
, Prefix
, Exprs
);
8259 -- Otherwise this is definitely not container indexing
8265 -- If the container type is derived from another container type, the
8266 -- value of the inherited aspect is the Reference operation declared
8267 -- for the parent type.
8269 -- However, Reference is also a primitive operation of the type, and the
8270 -- inherited operation has a different signature. We retrieve the right
8271 -- ones (the function may be overloaded) from the list of primitive
8272 -- operations of the derived type.
8274 -- Note that predefined containers are typically all derived from one of
8275 -- the Controlled types. The code below is motivated by containers that
8276 -- are derived from other types with a Reference aspect.
8278 elsif Is_Derived_Type
(C_Type
)
8279 and then Etype
(First_Formal
(Entity
(Func_Name
))) /= Pref_Typ
8282 Find_Indexing_Operations
8284 Nam
=> Chars
(Func_Name
),
8285 Is_Constant
=> Is_Constant_Indexing
);
8288 Assoc
:= New_List
(Relocate_Node
(Prefix
));
8290 -- A generalized indexing may have nore than one index expression, so
8291 -- transfer all of them to the argument list to be used in the call.
8292 -- Note that there may be named associations, in which case the node
8293 -- was rewritten earlier as a call, and has been transformed back into
8294 -- an indexed expression to share the following processing.
8296 -- The generalized indexing node is the one on which analysis and
8297 -- resolution take place. Before expansion the original node is replaced
8298 -- with the generalized indexing node, which is a call, possibly with a
8299 -- dereference operation.
8301 if Comes_From_Source
(N
) then
8302 Check_Compiler_Unit
("generalized indexing", N
);
8305 -- Create argument list for function call that represents generalized
8306 -- indexing. Note that indices (i.e. actuals) may themselves be
8314 Arg
:= First
(Exprs
);
8315 while Present
(Arg
) loop
8316 New_Arg
:= Relocate_Node
(Arg
);
8318 -- The arguments can be parameter associations, in which case the
8319 -- explicit actual parameter carries the overloadings.
8321 if Nkind
(New_Arg
) /= N_Parameter_Association
then
8322 Save_Interps
(Arg
, New_Arg
);
8325 Append
(New_Arg
, Assoc
);
8330 if not Is_Overloaded
(Func_Name
) then
8331 Func
:= Entity
(Func_Name
);
8334 Make_Function_Call
(Loc
,
8335 Name
=> New_Occurrence_Of
(Func
, Loc
),
8336 Parameter_Associations
=> Assoc
);
8338 Set_Parent
(Indexing
, Parent
(N
));
8339 Set_Generalized_Indexing
(N
, Indexing
);
8341 Set_Etype
(N
, Etype
(Indexing
));
8343 -- If the return type of the indexing function is a reference type,
8344 -- add the dereference as a possible interpretation. Note that the
8345 -- indexing aspect may be a function that returns the element type
8346 -- with no intervening implicit dereference, and that the reference
8347 -- discriminant is not the first discriminant.
8349 if Has_Discriminants
(Etype
(Func
)) then
8350 Check_Implicit_Dereference
(N
, Etype
(Func
));
8354 -- If there are multiple indexing functions, build a function call
8355 -- and analyze it for each of the possible interpretations.
8358 Make_Function_Call
(Loc
,
8360 Make_Identifier
(Loc
, Chars
(Func_Name
)),
8361 Parameter_Associations
=> Assoc
);
8362 Set_Parent
(Indexing
, Parent
(N
));
8363 Set_Generalized_Indexing
(N
, Indexing
);
8364 Set_Etype
(N
, Any_Type
);
8365 Set_Etype
(Name
(Indexing
), Any_Type
);
8373 Get_First_Interp
(Func_Name
, I
, It
);
8374 Set_Etype
(Indexing
, Any_Type
);
8376 -- Analyze each candidate function with the given actuals
8378 while Present
(It
.Nam
) loop
8379 Analyze_One_Call
(Indexing
, It
.Nam
, False, Success
);
8380 Get_Next_Interp
(I
, It
);
8383 -- If there are several successful candidates, resolution will
8384 -- be by result. Mark the interpretations of the function name
8387 if Is_Overloaded
(Indexing
) then
8388 Get_First_Interp
(Indexing
, I
, It
);
8390 while Present
(It
.Nam
) loop
8391 Add_One_Interp
(Name
(Indexing
), It
.Nam
, It
.Typ
);
8392 Get_Next_Interp
(I
, It
);
8396 Set_Etype
(Name
(Indexing
), Etype
(Indexing
));
8399 -- Now add the candidate interpretations to the indexing node
8400 -- itself, to be replaced later by the function call.
8402 if Is_Overloaded
(Name
(Indexing
)) then
8403 Get_First_Interp
(Name
(Indexing
), I
, It
);
8405 while Present
(It
.Nam
) loop
8406 Add_One_Interp
(N
, It
.Nam
, It
.Typ
);
8408 -- Add dereference interpretation if the result type has
8409 -- implicit reference discriminants.
8411 if Has_Discriminants
(Etype
(It
.Nam
)) then
8412 Check_Implicit_Dereference
(N
, Etype
(It
.Nam
));
8415 Get_Next_Interp
(I
, It
);
8419 Set_Etype
(N
, Etype
(Name
(Indexing
)));
8420 if Has_Discriminants
(Etype
(N
)) then
8421 Check_Implicit_Dereference
(N
, Etype
(N
));
8427 if Etype
(Indexing
) = Any_Type
then
8429 ("container cannot be indexed with&", N
, Etype
(First
(Exprs
)));
8430 Rewrite
(N
, New_Occurrence_Of
(Any_Id
, Loc
));
8434 end Try_Container_Indexing
;
8436 -----------------------
8437 -- Try_Indirect_Call --
8438 -----------------------
8440 function Try_Indirect_Call
8443 Typ
: Entity_Id
) return Boolean
8449 pragma Warnings
(Off
, Call_OK
);
8452 Normalize_Actuals
(N
, Designated_Type
(Typ
), False, Call_OK
);
8454 Actual
:= First_Actual
(N
);
8455 Formal
:= First_Formal
(Designated_Type
(Typ
));
8456 while Present
(Actual
) and then Present
(Formal
) loop
8457 if not Has_Compatible_Type
(Actual
, Etype
(Formal
)) then
8462 Next_Formal
(Formal
);
8465 if No
(Actual
) and then No
(Formal
) then
8466 Add_One_Interp
(N
, Nam
, Etype
(Designated_Type
(Typ
)));
8468 -- Nam is a candidate interpretation for the name in the call,
8469 -- if it is not an indirect call.
8471 if not Is_Type
(Nam
)
8472 and then Is_Entity_Name
(Name
(N
))
8474 Set_Entity
(Name
(N
), Nam
);
8482 end Try_Indirect_Call
;
8484 ----------------------
8485 -- Try_Indexed_Call --
8486 ----------------------
8488 function Try_Indexed_Call
8492 Skip_First
: Boolean) return Boolean
8494 Loc
: constant Source_Ptr
:= Sloc
(N
);
8495 Actuals
: constant List_Id
:= Parameter_Associations
(N
);
8500 Actual
:= First
(Actuals
);
8502 -- If the call was originally written in prefix form, skip the first
8503 -- actual, which is obviously not defaulted.
8509 Index
:= First_Index
(Typ
);
8510 while Present
(Actual
) and then Present
(Index
) loop
8512 -- If the parameter list has a named association, the expression
8513 -- is definitely a call and not an indexed component.
8515 if Nkind
(Actual
) = N_Parameter_Association
then
8519 if Is_Entity_Name
(Actual
)
8520 and then Is_Type
(Entity
(Actual
))
8521 and then No
(Next
(Actual
))
8523 -- A single actual that is a type name indicates a slice if the
8524 -- type is discrete, and an error otherwise.
8526 if Is_Discrete_Type
(Entity
(Actual
)) then
8530 Make_Function_Call
(Loc
,
8531 Name
=> Relocate_Node
(Name
(N
))),
8533 New_Occurrence_Of
(Entity
(Actual
), Sloc
(Actual
))));
8538 Error_Msg_N
("invalid use of type in expression", Actual
);
8539 Set_Etype
(N
, Any_Type
);
8544 elsif not Has_Compatible_Type
(Actual
, Etype
(Index
)) then
8552 if No
(Actual
) and then No
(Index
) then
8553 Add_One_Interp
(N
, Nam
, Component_Type
(Typ
));
8555 -- Nam is a candidate interpretation for the name in the call,
8556 -- if it is not an indirect call.
8558 if not Is_Type
(Nam
)
8559 and then Is_Entity_Name
(Name
(N
))
8561 Set_Entity
(Name
(N
), Nam
);
8568 end Try_Indexed_Call
;
8570 --------------------------
8571 -- Try_Object_Operation --
8572 --------------------------
8574 function Try_Object_Operation
8575 (N
: Node_Id
; CW_Test_Only
: Boolean := False) return Boolean
8577 K
: constant Node_Kind
:= Nkind
(Parent
(N
));
8578 Is_Subprg_Call
: constant Boolean := K
in N_Subprogram_Call
;
8579 Loc
: constant Source_Ptr
:= Sloc
(N
);
8580 Obj
: constant Node_Id
:= Prefix
(N
);
8582 Subprog
: constant Node_Id
:=
8583 Make_Identifier
(Sloc
(Selector_Name
(N
)),
8584 Chars
=> Chars
(Selector_Name
(N
)));
8585 -- Identifier on which possible interpretations will be collected
8587 Report_Error
: Boolean := False;
8588 -- If no candidate interpretation matches the context, redo analysis
8589 -- with Report_Error True to provide additional information.
8592 Candidate
: Entity_Id
:= Empty
;
8593 New_Call_Node
: Node_Id
:= Empty
;
8594 Node_To_Replace
: Node_Id
;
8595 Obj_Type
: Entity_Id
:= Etype
(Obj
);
8596 Success
: Boolean := False;
8598 procedure Complete_Object_Operation
8599 (Call_Node
: Node_Id
;
8600 Node_To_Replace
: Node_Id
);
8601 -- Make Subprog the name of Call_Node, replace Node_To_Replace with
8602 -- Call_Node, insert the object (or its dereference) as the first actual
8603 -- in the call, and complete the analysis of the call.
8605 procedure Report_Ambiguity
(Op
: Entity_Id
);
8606 -- If a prefixed procedure call is ambiguous, indicate whether the call
8607 -- includes an implicit dereference or an implicit 'Access.
8609 procedure Transform_Object_Operation
8610 (Call_Node
: out Node_Id
;
8611 Node_To_Replace
: out Node_Id
);
8612 -- Transform Obj.Operation (X, Y,,) into Operation (Obj, X, Y ..)
8613 -- Call_Node is the resulting subprogram call, Node_To_Replace is
8614 -- either N or the parent of N, and Subprog is a reference to the
8615 -- subprogram we are trying to match.
8617 function Try_Class_Wide_Operation
8618 (Call_Node
: Node_Id
;
8619 Node_To_Replace
: Node_Id
) return Boolean;
8620 -- Traverse all ancestor types looking for a class-wide subprogram for
8621 -- which the current operation is a valid non-dispatching call.
8623 procedure Try_One_Prefix_Interpretation
(T
: Entity_Id
);
8624 -- If prefix is overloaded, its interpretation may include different
8625 -- tagged types, and we must examine the primitive operations and the
8626 -- class-wide operations of each in order to find candidate
8627 -- interpretations for the call as a whole.
8629 function Try_Primitive_Operation
8630 (Call_Node
: Node_Id
;
8631 Node_To_Replace
: Node_Id
) return Boolean;
8632 -- Traverse the list of primitive subprograms looking for a dispatching
8633 -- operation for which the current node is a valid call.
8635 function Valid_Candidate
8638 Subp
: Entity_Id
) return Entity_Id
;
8639 -- If the subprogram is a valid interpretation, record it, and add to
8640 -- the list of interpretations of Subprog. Otherwise return Empty.
8642 -------------------------------
8643 -- Complete_Object_Operation --
8644 -------------------------------
8646 procedure Complete_Object_Operation
8647 (Call_Node
: Node_Id
;
8648 Node_To_Replace
: Node_Id
)
8650 Control
: constant Entity_Id
:= First_Formal
(Entity
(Subprog
));
8651 Formal_Type
: constant Entity_Id
:= Etype
(Control
);
8652 First_Actual
: Node_Id
;
8655 -- Place the name of the operation, with its interpretations,
8656 -- on the rewritten call.
8658 Set_Name
(Call_Node
, Subprog
);
8660 First_Actual
:= First
(Parameter_Associations
(Call_Node
));
8662 -- For cross-reference purposes, treat the new node as being in the
8663 -- source if the original one is. Set entity and type, even though
8664 -- they may be overwritten during resolution if overloaded.
8666 Set_Comes_From_Source
(Subprog
, Comes_From_Source
(N
));
8667 Set_Comes_From_Source
(Call_Node
, Comes_From_Source
(N
));
8669 if Nkind
(N
) = N_Selected_Component
8670 and then not Inside_A_Generic
8672 Set_Entity
(Selector_Name
(N
), Entity
(Subprog
));
8673 Set_Etype
(Selector_Name
(N
), Etype
(Entity
(Subprog
)));
8676 -- If need be, rewrite first actual as an explicit dereference. If
8677 -- the call is overloaded, the rewriting can only be done once the
8678 -- primitive operation is identified.
8680 if Is_Overloaded
(Subprog
) then
8682 -- The prefix itself may be overloaded, and its interpretations
8683 -- must be propagated to the new actual in the call.
8685 if Is_Overloaded
(Obj
) then
8686 Save_Interps
(Obj
, First_Actual
);
8689 Rewrite
(First_Actual
, Obj
);
8691 elsif not Is_Access_Type
(Formal_Type
)
8692 and then Is_Access_Type
(Etype
(Obj
))
8694 Rewrite
(First_Actual
,
8695 Make_Explicit_Dereference
(Sloc
(Obj
), Obj
));
8696 Analyze
(First_Actual
);
8698 -- If we need to introduce an explicit dereference, verify that
8699 -- the resulting actual is compatible with the mode of the formal.
8701 if Ekind
(First_Formal
(Entity
(Subprog
))) /= E_In_Parameter
8702 and then Is_Access_Constant
(Etype
(Obj
))
8705 ("expect variable in call to&", Prefix
(N
), Entity
(Subprog
));
8708 -- Conversely, if the formal is an access parameter and the object is
8709 -- not an access type or a reference type (i.e. a type with the
8710 -- Implicit_Dereference aspect specified), replace the actual with a
8711 -- 'Access reference. Its analysis will check that the object is
8714 elsif Is_Access_Type
(Formal_Type
)
8715 and then not Is_Access_Type
(Etype
(Obj
))
8717 (not Has_Implicit_Dereference
(Etype
(Obj
))
8719 not Is_Access_Type
(Designated_Type
(Etype
8720 (Get_Reference_Discriminant
(Etype
(Obj
))))))
8722 -- A special case: A.all'Access is illegal if A is an access to a
8723 -- constant and the context requires an access to a variable.
8725 if not Is_Access_Constant
(Formal_Type
) then
8726 if (Nkind
(Obj
) = N_Explicit_Dereference
8727 and then Is_Access_Constant
(Etype
(Prefix
(Obj
))))
8728 or else not Is_Variable
(Obj
)
8731 ("actual for & must be a variable", Obj
, Control
);
8735 Rewrite
(First_Actual
,
8736 Make_Attribute_Reference
(Loc
,
8737 Attribute_Name
=> Name_Access
,
8738 Prefix
=> Relocate_Node
(Obj
)));
8740 -- If the object is not overloaded verify that taking access of
8741 -- it is legal. Otherwise check is made during resolution.
8743 if not Is_Overloaded
(Obj
)
8744 and then not Is_Aliased_View
(Obj
)
8747 ("object in prefixed call to & must be aliased "
8748 & "(RM 4.1.3 (13 1/2))", Prefix
(First_Actual
), Subprog
);
8751 Analyze
(First_Actual
);
8754 if Is_Overloaded
(Obj
) then
8755 Save_Interps
(Obj
, First_Actual
);
8758 Rewrite
(First_Actual
, Obj
);
8761 -- The operation is obtained from the dispatch table and not by
8762 -- visibility, and may be declared in a unit that is not explicitly
8763 -- referenced in the source, but is nevertheless required in the
8764 -- context of the current unit. Indicate that operation and its scope
8765 -- are referenced, to prevent spurious and misleading warnings. If
8766 -- the operation is overloaded, all primitives are in the same scope
8767 -- and we can use any of them.
8769 Set_Referenced
(Entity
(Subprog
), True);
8770 Set_Referenced
(Scope
(Entity
(Subprog
)), True);
8772 Rewrite
(Node_To_Replace
, Call_Node
);
8774 -- Propagate the interpretations collected in subprog to the new
8775 -- function call node, to be resolved from context.
8777 if Is_Overloaded
(Subprog
) then
8778 Save_Interps
(Subprog
, Node_To_Replace
);
8781 -- The type of the subprogram may be a limited view obtained
8782 -- transitively from another unit. If full view is available,
8783 -- use it to analyze call. If there is no nonlimited view, then
8784 -- this is diagnosed when analyzing the rewritten call.
8787 T
: constant Entity_Id
:= Etype
(Subprog
);
8789 if From_Limited_With
(T
) then
8790 Set_Etype
(Entity
(Subprog
), Available_View
(T
));
8794 Analyze
(Node_To_Replace
);
8796 -- If the operation has been rewritten into a call, which may get
8797 -- subsequently an explicit dereference, preserve the type on the
8798 -- original node (selected component or indexed component) for
8799 -- subsequent legality tests, e.g. Is_Variable. which examines
8800 -- the original node.
8802 if Nkind
(Node_To_Replace
) = N_Function_Call
then
8804 (Original_Node
(Node_To_Replace
), Etype
(Node_To_Replace
));
8807 end Complete_Object_Operation
;
8809 ----------------------
8810 -- Report_Ambiguity --
8811 ----------------------
8813 procedure Report_Ambiguity
(Op
: Entity_Id
) is
8814 Access_Actual
: constant Boolean :=
8815 Is_Access_Type
(Etype
(Prefix
(N
)));
8816 Access_Formal
: Boolean := False;
8819 Error_Msg_Sloc
:= Sloc
(Op
);
8821 if Present
(First_Formal
(Op
)) then
8822 Access_Formal
:= Is_Access_Type
(Etype
(First_Formal
(Op
)));
8825 if Access_Formal
and then not Access_Actual
then
8826 if Nkind
(Parent
(Op
)) = N_Full_Type_Declaration
then
8828 ("\possible interpretation "
8829 & "(inherited, with implicit 'Access) #", N
);
8832 ("\possible interpretation (with implicit 'Access) #", N
);
8835 elsif not Access_Formal
and then Access_Actual
then
8836 if Nkind
(Parent
(Op
)) = N_Full_Type_Declaration
then
8838 ("\possible interpretation "
8839 & "(inherited, with implicit dereference) #", N
);
8842 ("\possible interpretation (with implicit dereference) #", N
);
8846 if Nkind
(Parent
(Op
)) = N_Full_Type_Declaration
then
8847 Error_Msg_N
("\possible interpretation (inherited)#", N
);
8849 Error_Msg_N
-- CODEFIX
8850 ("\possible interpretation#", N
);
8853 end Report_Ambiguity
;
8855 --------------------------------
8856 -- Transform_Object_Operation --
8857 --------------------------------
8859 procedure Transform_Object_Operation
8860 (Call_Node
: out Node_Id
;
8861 Node_To_Replace
: out Node_Id
)
8863 Dummy
: constant Node_Id
:= New_Copy
(Obj
);
8864 -- Placeholder used as a first parameter in the call, replaced
8865 -- eventually by the proper object.
8867 Parent_Node
: constant Node_Id
:= Parent
(N
);
8873 -- Obj may already have been rewritten if it involves an implicit
8874 -- dereference (e.g. if it is an access to a limited view). Preserve
8875 -- a link to the original node for ASIS use.
8877 if not Comes_From_Source
(Obj
) then
8878 Set_Original_Node
(Dummy
, Original_Node
(Obj
));
8881 -- Common case covering 1) Call to a procedure and 2) Call to a
8882 -- function that has some additional actuals.
8884 if Nkind
(Parent_Node
) in N_Subprogram_Call
8886 -- N is a selected component node containing the name of the
8887 -- subprogram. If N is not the name of the parent node we must
8888 -- not replace the parent node by the new construct. This case
8889 -- occurs when N is a parameterless call to a subprogram that
8890 -- is an actual parameter of a call to another subprogram. For
8892 -- Some_Subprogram (..., Obj.Operation, ...)
8894 and then Name
(Parent_Node
) = N
8896 Node_To_Replace
:= Parent_Node
;
8898 Actuals
:= Parameter_Associations
(Parent_Node
);
8900 if Present
(Actuals
) then
8901 Prepend
(Dummy
, Actuals
);
8903 Actuals
:= New_List
(Dummy
);
8906 if Nkind
(Parent_Node
) = N_Procedure_Call_Statement
then
8908 Make_Procedure_Call_Statement
(Loc
,
8909 Name
=> New_Copy
(Subprog
),
8910 Parameter_Associations
=> Actuals
);
8914 Make_Function_Call
(Loc
,
8915 Name
=> New_Copy
(Subprog
),
8916 Parameter_Associations
=> Actuals
);
8919 -- Before analysis, a function call appears as an indexed component
8920 -- if there are no named associations.
8922 elsif Nkind
(Parent_Node
) = N_Indexed_Component
8923 and then N
= Prefix
(Parent_Node
)
8925 Node_To_Replace
:= Parent_Node
;
8926 Actuals
:= Expressions
(Parent_Node
);
8928 Actual
:= First
(Actuals
);
8929 while Present
(Actual
) loop
8934 Prepend
(Dummy
, Actuals
);
8937 Make_Function_Call
(Loc
,
8938 Name
=> New_Copy
(Subprog
),
8939 Parameter_Associations
=> Actuals
);
8941 -- Parameterless call: Obj.F is rewritten as F (Obj)
8944 Node_To_Replace
:= N
;
8947 Make_Function_Call
(Loc
,
8948 Name
=> New_Copy
(Subprog
),
8949 Parameter_Associations
=> New_List
(Dummy
));
8951 end Transform_Object_Operation
;
8953 ------------------------------
8954 -- Try_Class_Wide_Operation --
8955 ------------------------------
8957 function Try_Class_Wide_Operation
8958 (Call_Node
: Node_Id
;
8959 Node_To_Replace
: Node_Id
) return Boolean
8961 Anc_Type
: Entity_Id
;
8962 Matching_Op
: Entity_Id
:= Empty
;
8965 procedure Traverse_Homonyms
8966 (Anc_Type
: Entity_Id
;
8967 Error
: out Boolean);
8968 -- Traverse the homonym chain of the subprogram searching for those
8969 -- homonyms whose first formal has the Anc_Type's class-wide type,
8970 -- or an anonymous access type designating the class-wide type. If
8971 -- an ambiguity is detected, then Error is set to True.
8973 procedure Traverse_Interfaces
8974 (Anc_Type
: Entity_Id
;
8975 Error
: out Boolean);
8976 -- Traverse the list of interfaces, if any, associated with Anc_Type
8977 -- and search for acceptable class-wide homonyms associated with each
8978 -- interface. If an ambiguity is detected, then Error is set to True.
8980 -----------------------
8981 -- Traverse_Homonyms --
8982 -----------------------
8984 procedure Traverse_Homonyms
8985 (Anc_Type
: Entity_Id
;
8986 Error
: out Boolean)
8988 Cls_Type
: Entity_Id
;
8996 Cls_Type
:= Class_Wide_Type
(Anc_Type
);
8998 Hom
:= Current_Entity
(Subprog
);
9000 -- Find a non-hidden operation whose first parameter is of the
9001 -- class-wide type, a subtype thereof, or an anonymous access
9002 -- to same. If in an instance, the operation can be considered
9003 -- even if hidden (it may be hidden because the instantiation
9004 -- is expanded after the containing package has been analyzed).
9006 while Present
(Hom
) loop
9007 if Ekind_In
(Hom
, E_Procedure
, E_Function
)
9008 and then (not Is_Hidden
(Hom
) or else In_Instance
)
9009 and then Scope
(Hom
) = Scope
(Base_Type
(Anc_Type
))
9010 and then Present
(First_Formal
(Hom
))
9012 (Base_Type
(Etype
(First_Formal
(Hom
))) = Cls_Type
9014 (Is_Access_Type
(Etype
(First_Formal
(Hom
)))
9016 Ekind
(Etype
(First_Formal
(Hom
))) =
9017 E_Anonymous_Access_Type
9020 (Designated_Type
(Etype
(First_Formal
(Hom
)))) =
9023 -- If the context is a procedure call, ignore functions
9024 -- in the name of the call.
9026 if Ekind
(Hom
) = E_Function
9027 and then Nkind
(Parent
(N
)) = N_Procedure_Call_Statement
9028 and then N
= Name
(Parent
(N
))
9032 -- If the context is a function call, ignore procedures
9033 -- in the name of the call.
9035 elsif Ekind
(Hom
) = E_Procedure
9036 and then Nkind
(Parent
(N
)) /= N_Procedure_Call_Statement
9041 Set_Etype
(Call_Node
, Any_Type
);
9042 Set_Is_Overloaded
(Call_Node
, False);
9045 if No
(Matching_Op
) then
9046 Hom_Ref
:= New_Occurrence_Of
(Hom
, Sloc
(Subprog
));
9047 Set_Etype
(Call_Node
, Any_Type
);
9048 Set_Parent
(Call_Node
, Parent
(Node_To_Replace
));
9050 Set_Name
(Call_Node
, Hom_Ref
);
9055 Report
=> Report_Error
,
9057 Skip_First
=> True);
9060 Valid_Candidate
(Success
, Call_Node
, Hom
);
9066 Report
=> Report_Error
,
9068 Skip_First
=> True);
9070 -- The same operation may be encountered on two homonym
9071 -- traversals, before and after looking at interfaces.
9072 -- Check for this case before reporting a real ambiguity.
9074 if Present
(Valid_Candidate
(Success
, Call_Node
, Hom
))
9075 and then Nkind
(Call_Node
) /= N_Function_Call
9076 and then Hom
/= Matching_Op
9078 Error_Msg_NE
("ambiguous call to&", N
, Hom
);
9079 Report_Ambiguity
(Matching_Op
);
9080 Report_Ambiguity
(Hom
);
9088 Hom
:= Homonym
(Hom
);
9090 end Traverse_Homonyms
;
9092 -------------------------
9093 -- Traverse_Interfaces --
9094 -------------------------
9096 procedure Traverse_Interfaces
9097 (Anc_Type
: Entity_Id
;
9098 Error
: out Boolean)
9100 Intface_List
: constant List_Id
:=
9101 Abstract_Interface_List
(Anc_Type
);
9107 if Is_Non_Empty_List
(Intface_List
) then
9108 Intface
:= First
(Intface_List
);
9109 while Present
(Intface
) loop
9111 -- Look for acceptable class-wide homonyms associated with
9114 Traverse_Homonyms
(Etype
(Intface
), Error
);
9120 -- Continue the search by looking at each of the interface's
9121 -- associated interface ancestors.
9123 Traverse_Interfaces
(Etype
(Intface
), Error
);
9132 end Traverse_Interfaces
;
9134 -- Start of processing for Try_Class_Wide_Operation
9137 -- If we are searching only for conflicting class-wide subprograms
9138 -- then initialize directly Matching_Op with the target entity.
9140 if CW_Test_Only
then
9141 Matching_Op
:= Entity
(Selector_Name
(N
));
9144 -- Loop through ancestor types (including interfaces), traversing
9145 -- the homonym chain of the subprogram, trying out those homonyms
9146 -- whose first formal has the class-wide type of the ancestor, or
9147 -- an anonymous access type designating the class-wide type.
9149 Anc_Type
:= Obj_Type
;
9151 -- Look for a match among homonyms associated with the ancestor
9153 Traverse_Homonyms
(Anc_Type
, Error
);
9159 -- Continue the search for matches among homonyms associated with
9160 -- any interfaces implemented by the ancestor.
9162 Traverse_Interfaces
(Anc_Type
, Error
);
9168 exit when Etype
(Anc_Type
) = Anc_Type
;
9169 Anc_Type
:= Etype
(Anc_Type
);
9172 if Present
(Matching_Op
) then
9173 Set_Etype
(Call_Node
, Etype
(Matching_Op
));
9176 return Present
(Matching_Op
);
9177 end Try_Class_Wide_Operation
;
9179 -----------------------------------
9180 -- Try_One_Prefix_Interpretation --
9181 -----------------------------------
9183 procedure Try_One_Prefix_Interpretation
(T
: Entity_Id
) is
9184 Prev_Obj_Type
: constant Entity_Id
:= Obj_Type
;
9185 -- If the interpretation does not have a valid candidate type,
9186 -- preserve current value of Obj_Type for subsequent errors.
9191 if Is_Access_Type
(Obj_Type
) then
9192 Obj_Type
:= Designated_Type
(Obj_Type
);
9195 if Ekind_In
(Obj_Type
, E_Private_Subtype
,
9196 E_Record_Subtype_With_Private
)
9198 Obj_Type
:= Base_Type
(Obj_Type
);
9201 if Is_Class_Wide_Type
(Obj_Type
) then
9202 Obj_Type
:= Etype
(Class_Wide_Type
(Obj_Type
));
9205 -- The type may have be obtained through a limited_with clause,
9206 -- in which case the primitive operations are available on its
9207 -- nonlimited view. If still incomplete, retrieve full view.
9209 if Ekind
(Obj_Type
) = E_Incomplete_Type
9210 and then From_Limited_With
(Obj_Type
)
9211 and then Has_Non_Limited_View
(Obj_Type
)
9213 Obj_Type
:= Get_Full_View
(Non_Limited_View
(Obj_Type
));
9216 -- If the object is not tagged, or the type is still an incomplete
9217 -- type, this is not a prefixed call. Restore the previous type as
9218 -- the current one is not a legal candidate.
9220 if not Is_Tagged_Type
(Obj_Type
)
9221 or else Is_Incomplete_Type
(Obj_Type
)
9223 Obj_Type
:= Prev_Obj_Type
;
9228 Dup_Call_Node
: constant Node_Id
:= New_Copy
(New_Call_Node
);
9230 Prim_Result
: Boolean := False;
9233 if not CW_Test_Only
then
9235 Try_Primitive_Operation
9236 (Call_Node
=> New_Call_Node
,
9237 Node_To_Replace
=> Node_To_Replace
);
9240 -- Check if there is a class-wide subprogram covering the
9241 -- primitive. This check must be done even if a candidate
9242 -- was found in order to report ambiguous calls.
9244 if not Prim_Result
then
9246 Try_Class_Wide_Operation
9247 (Call_Node
=> New_Call_Node
,
9248 Node_To_Replace
=> Node_To_Replace
);
9250 -- If we found a primitive we search for class-wide subprograms
9251 -- using a duplicate of the call node (done to avoid missing its
9252 -- decoration if there is no ambiguity).
9256 Try_Class_Wide_Operation
9257 (Call_Node
=> Dup_Call_Node
,
9258 Node_To_Replace
=> Node_To_Replace
);
9261 end Try_One_Prefix_Interpretation
;
9263 -----------------------------
9264 -- Try_Primitive_Operation --
9265 -----------------------------
9267 function Try_Primitive_Operation
9268 (Call_Node
: Node_Id
;
9269 Node_To_Replace
: Node_Id
) return Boolean
9272 Prim_Op
: Entity_Id
;
9273 Matching_Op
: Entity_Id
:= Empty
;
9274 Prim_Op_Ref
: Node_Id
:= Empty
;
9276 Corr_Type
: Entity_Id
:= Empty
;
9277 -- If the prefix is a synchronized type, the controlling type of
9278 -- the primitive operation is the corresponding record type, else
9279 -- this is the object type itself.
9281 Success
: Boolean := False;
9283 function Collect_Generic_Type_Ops
(T
: Entity_Id
) return Elist_Id
;
9284 -- For tagged types the candidate interpretations are found in
9285 -- the list of primitive operations of the type and its ancestors.
9286 -- For formal tagged types we have to find the operations declared
9287 -- in the same scope as the type (including in the generic formal
9288 -- part) because the type itself carries no primitive operations,
9289 -- except for formal derived types that inherit the operations of
9290 -- the parent and progenitors.
9292 -- If the context is a generic subprogram body, the generic formals
9293 -- are visible by name, but are not in the entity list of the
9294 -- subprogram because that list starts with the subprogram formals.
9295 -- We retrieve the candidate operations from the generic declaration.
9297 function Extended_Primitive_Ops
(T
: Entity_Id
) return Elist_Id
;
9298 -- Prefix notation can also be used on operations that are not
9299 -- primitives of the type, but are declared in the same immediate
9300 -- declarative part, which can only mean the corresponding package
9301 -- body (See RM 4.1.3 (9.2/3)). If we are in that body we extend the
9302 -- list of primitives with body operations with the same name that
9303 -- may be candidates, so that Try_Primitive_Operations can examine
9304 -- them if no real primitive is found.
9306 function Is_Private_Overriding
(Op
: Entity_Id
) return Boolean;
9307 -- An operation that overrides an inherited operation in the private
9308 -- part of its package may be hidden, but if the inherited operation
9309 -- is visible a direct call to it will dispatch to the private one,
9310 -- which is therefore a valid candidate.
9312 function Names_Match
9313 (Obj_Type
: Entity_Id
;
9314 Prim_Op
: Entity_Id
;
9315 Subprog
: Entity_Id
) return Boolean;
9316 -- Return True if the names of Prim_Op and Subprog match. If Obj_Type
9317 -- is a protected type then compare also the original name of Prim_Op
9318 -- with the name of Subprog (since the expander may have added a
9319 -- prefix to its original name --see Exp_Ch9.Build_Selected_Name).
9321 function Valid_First_Argument_Of
(Op
: Entity_Id
) return Boolean;
9322 -- Verify that the prefix, dereferenced if need be, is a valid
9323 -- controlling argument in a call to Op. The remaining actuals
9324 -- are checked in the subsequent call to Analyze_One_Call.
9326 ------------------------------
9327 -- Collect_Generic_Type_Ops --
9328 ------------------------------
9330 function Collect_Generic_Type_Ops
(T
: Entity_Id
) return Elist_Id
is
9331 Bas
: constant Entity_Id
:= Base_Type
(T
);
9332 Candidates
: constant Elist_Id
:= New_Elmt_List
;
9336 procedure Check_Candidate
;
9337 -- The operation is a candidate if its first parameter is a
9338 -- controlling operand of the desired type.
9340 -----------------------
9341 -- Check_Candidate; --
9342 -----------------------
9344 procedure Check_Candidate
is
9346 Formal
:= First_Formal
(Subp
);
9349 and then Is_Controlling_Formal
(Formal
)
9351 (Base_Type
(Etype
(Formal
)) = Bas
9353 (Is_Access_Type
(Etype
(Formal
))
9354 and then Designated_Type
(Etype
(Formal
)) = Bas
))
9356 Append_Elmt
(Subp
, Candidates
);
9358 end Check_Candidate
;
9360 -- Start of processing for Collect_Generic_Type_Ops
9363 if Is_Derived_Type
(T
) then
9364 return Primitive_Operations
(T
);
9366 elsif Ekind_In
(Scope
(T
), E_Procedure
, E_Function
) then
9368 -- Scan the list of generic formals to find subprograms
9369 -- that may have a first controlling formal of the type.
9371 if Nkind
(Unit_Declaration_Node
(Scope
(T
))) =
9372 N_Generic_Subprogram_Declaration
9379 First
(Generic_Formal_Declarations
9380 (Unit_Declaration_Node
(Scope
(T
))));
9381 while Present
(Decl
) loop
9382 if Nkind
(Decl
) in N_Formal_Subprogram_Declaration
then
9383 Subp
:= Defining_Entity
(Decl
);
9394 -- Scan the list of entities declared in the same scope as
9395 -- the type. In general this will be an open scope, given that
9396 -- the call we are analyzing can only appear within a generic
9397 -- declaration or body (either the one that declares T, or a
9400 -- For a subtype representing a generic actual type, go to the
9403 if Is_Generic_Actual_Type
(T
) then
9404 Subp
:= First_Entity
(Scope
(Base_Type
(T
)));
9406 Subp
:= First_Entity
(Scope
(T
));
9409 while Present
(Subp
) loop
9410 if Is_Overloadable
(Subp
) then
9419 end Collect_Generic_Type_Ops
;
9421 ----------------------------
9422 -- Extended_Primitive_Ops --
9423 ----------------------------
9425 function Extended_Primitive_Ops
(T
: Entity_Id
) return Elist_Id
is
9426 Type_Scope
: constant Entity_Id
:= Scope
(T
);
9428 Body_Decls
: List_Id
;
9434 Op_List
:= Primitive_Operations
(T
);
9436 if Ekind
(Type_Scope
) = E_Package
9437 and then In_Package_Body
(Type_Scope
)
9438 and then In_Open_Scopes
(Type_Scope
)
9440 -- Retrieve list of declarations of package body.
9444 (Unit_Declaration_Node
9446 (Unit_Declaration_Node
(Type_Scope
))));
9448 Op
:= Current_Entity
(Subprog
);
9450 while Present
(Op
) loop
9451 if Comes_From_Source
(Op
)
9452 and then Is_Overloadable
(Op
)
9454 -- Exclude overriding primitive operations of a type
9455 -- extension declared in the package body, to prevent
9456 -- duplicates in extended list.
9458 and then not Is_Primitive
(Op
)
9459 and then Is_List_Member
(Unit_Declaration_Node
(Op
))
9460 and then List_Containing
(Unit_Declaration_Node
(Op
)) =
9463 if not Op_Found
then
9465 -- Copy list of primitives so it is not affected for
9468 Op_List
:= New_Copy_Elist
(Op_List
);
9472 Append_Elmt
(Op
, Op_List
);
9480 end Extended_Primitive_Ops
;
9482 ---------------------------
9483 -- Is_Private_Overriding --
9484 ---------------------------
9486 function Is_Private_Overriding
(Op
: Entity_Id
) return Boolean is
9487 Visible_Op
: Entity_Id
;
9490 -- The subprogram may be overloaded with both visible and private
9491 -- entities with the same name. We have to scan the chain of
9492 -- homonyms to determine whether there is a previous implicit
9493 -- declaration in the same scope that is overridden by the
9494 -- private candidate.
9496 Visible_Op
:= Homonym
(Op
);
9497 while Present
(Visible_Op
) loop
9498 if Scope
(Op
) /= Scope
(Visible_Op
) then
9501 elsif not Comes_From_Source
(Visible_Op
)
9502 and then Alias
(Visible_Op
) = Op
9503 and then not Is_Hidden
(Visible_Op
)
9508 Visible_Op
:= Homonym
(Visible_Op
);
9512 end Is_Private_Overriding
;
9518 function Names_Match
9519 (Obj_Type
: Entity_Id
;
9520 Prim_Op
: Entity_Id
;
9521 Subprog
: Entity_Id
) return Boolean is
9523 -- Common case: exact match
9525 if Chars
(Prim_Op
) = Chars
(Subprog
) then
9528 -- For protected type primitives the expander may have built the
9529 -- name of the dispatching primitive prepending the type name to
9530 -- avoid conflicts with the name of the protected subprogram (see
9531 -- Exp_Ch9.Build_Selected_Name).
9533 elsif Is_Protected_Type
(Obj_Type
) then
9535 Present
(Original_Protected_Subprogram
(Prim_Op
))
9536 and then Chars
(Original_Protected_Subprogram
(Prim_Op
)) =
9543 -----------------------------
9544 -- Valid_First_Argument_Of --
9545 -----------------------------
9547 function Valid_First_Argument_Of
(Op
: Entity_Id
) return Boolean is
9548 Typ
: Entity_Id
:= Etype
(First_Formal
(Op
));
9551 if Is_Concurrent_Type
(Typ
)
9552 and then Present
(Corresponding_Record_Type
(Typ
))
9554 Typ
:= Corresponding_Record_Type
(Typ
);
9557 -- Simple case. Object may be a subtype of the tagged type or may
9558 -- be the corresponding record of a synchronized type.
9560 return Obj_Type
= Typ
9561 or else Base_Type
(Obj_Type
) = Typ
9562 or else Corr_Type
= Typ
9564 -- Object may be of a derived type whose parent has unknown
9565 -- discriminants, in which case the type matches the underlying
9566 -- record view of its base.
9569 (Has_Unknown_Discriminants
(Typ
)
9570 and then Typ
= Underlying_Record_View
(Base_Type
(Obj_Type
)))
9572 -- Prefix can be dereferenced
9575 (Is_Access_Type
(Corr_Type
)
9576 and then Designated_Type
(Corr_Type
) = Typ
)
9578 -- Formal is an access parameter, for which the object can
9579 -- provide an access.
9582 (Ekind
(Typ
) = E_Anonymous_Access_Type
9584 Base_Type
(Designated_Type
(Typ
)) = Base_Type
(Corr_Type
));
9585 end Valid_First_Argument_Of
;
9587 -- Start of processing for Try_Primitive_Operation
9590 -- Look for subprograms in the list of primitive operations. The name
9591 -- must be identical, and the kind of call indicates the expected
9592 -- kind of operation (function or procedure). If the type is a
9593 -- (tagged) synchronized type, the primitive ops are attached to the
9594 -- corresponding record (base) type.
9596 if Is_Concurrent_Type
(Obj_Type
) then
9597 if Present
(Corresponding_Record_Type
(Obj_Type
)) then
9598 Corr_Type
:= Base_Type
(Corresponding_Record_Type
(Obj_Type
));
9599 Elmt
:= First_Elmt
(Primitive_Operations
(Corr_Type
));
9601 Corr_Type
:= Obj_Type
;
9602 Elmt
:= First_Elmt
(Collect_Generic_Type_Ops
(Obj_Type
));
9605 elsif not Is_Generic_Type
(Obj_Type
) then
9606 Corr_Type
:= Obj_Type
;
9607 Elmt
:= First_Elmt
(Extended_Primitive_Ops
(Obj_Type
));
9610 Corr_Type
:= Obj_Type
;
9611 Elmt
:= First_Elmt
(Collect_Generic_Type_Ops
(Obj_Type
));
9614 while Present
(Elmt
) loop
9615 Prim_Op
:= Node
(Elmt
);
9617 if Names_Match
(Obj_Type
, Prim_Op
, Subprog
)
9618 and then Present
(First_Formal
(Prim_Op
))
9619 and then Valid_First_Argument_Of
(Prim_Op
)
9621 (Nkind
(Call_Node
) = N_Function_Call
)
9623 (Ekind
(Prim_Op
) = E_Function
)
9625 -- Ada 2005 (AI-251): If this primitive operation corresponds
9626 -- to an immediate ancestor interface there is no need to add
9627 -- it to the list of interpretations; the corresponding aliased
9628 -- primitive is also in this list of primitive operations and
9629 -- will be used instead.
9631 if (Present
(Interface_Alias
(Prim_Op
))
9632 and then Is_Ancestor
(Find_Dispatching_Type
9633 (Alias
(Prim_Op
)), Corr_Type
))
9635 -- Do not consider hidden primitives unless the type is in an
9636 -- open scope or we are within an instance, where visibility
9637 -- is known to be correct, or else if this is an overriding
9638 -- operation in the private part for an inherited operation.
9640 or else (Is_Hidden
(Prim_Op
)
9641 and then not Is_Immediately_Visible
(Obj_Type
)
9642 and then not In_Instance
9643 and then not Is_Private_Overriding
(Prim_Op
))
9648 Set_Etype
(Call_Node
, Any_Type
);
9649 Set_Is_Overloaded
(Call_Node
, False);
9651 if No
(Matching_Op
) then
9652 Prim_Op_Ref
:= New_Occurrence_Of
(Prim_Op
, Sloc
(Subprog
));
9653 Candidate
:= Prim_Op
;
9655 Set_Parent
(Call_Node
, Parent
(Node_To_Replace
));
9657 Set_Name
(Call_Node
, Prim_Op_Ref
);
9663 Report
=> Report_Error
,
9665 Skip_First
=> True);
9667 Matching_Op
:= Valid_Candidate
(Success
, Call_Node
, Prim_Op
);
9669 -- More than one interpretation, collect for subsequent
9670 -- disambiguation. If this is a procedure call and there
9671 -- is another match, report ambiguity now.
9677 Report
=> Report_Error
,
9679 Skip_First
=> True);
9681 if Present
(Valid_Candidate
(Success
, Call_Node
, Prim_Op
))
9682 and then Nkind
(Call_Node
) /= N_Function_Call
9684 Error_Msg_NE
("ambiguous call to&", N
, Prim_Op
);
9685 Report_Ambiguity
(Matching_Op
);
9686 Report_Ambiguity
(Prim_Op
);
9696 if Present
(Matching_Op
) then
9697 Set_Etype
(Call_Node
, Etype
(Matching_Op
));
9700 return Present
(Matching_Op
);
9701 end Try_Primitive_Operation
;
9703 ---------------------
9704 -- Valid_Candidate --
9705 ---------------------
9707 function Valid_Candidate
9710 Subp
: Entity_Id
) return Entity_Id
9712 Arr_Type
: Entity_Id
;
9713 Comp_Type
: Entity_Id
;
9716 -- If the subprogram is a valid interpretation, record it in global
9717 -- variable Subprog, to collect all possible overloadings.
9720 if Subp
/= Entity
(Subprog
) then
9721 Add_One_Interp
(Subprog
, Subp
, Etype
(Subp
));
9725 -- If the call may be an indexed call, retrieve component type of
9726 -- resulting expression, and add possible interpretation.
9731 if Nkind
(Call
) = N_Function_Call
9732 and then Nkind
(Parent
(N
)) = N_Indexed_Component
9733 and then Needs_One_Actual
(Subp
)
9735 if Is_Array_Type
(Etype
(Subp
)) then
9736 Arr_Type
:= Etype
(Subp
);
9738 elsif Is_Access_Type
(Etype
(Subp
))
9739 and then Is_Array_Type
(Designated_Type
(Etype
(Subp
)))
9741 Arr_Type
:= Designated_Type
(Etype
(Subp
));
9745 if Present
(Arr_Type
) then
9747 -- Verify that the actuals (excluding the object) match the types
9755 Actual
:= Next
(First_Actual
(Call
));
9756 Index
:= First_Index
(Arr_Type
);
9757 while Present
(Actual
) and then Present
(Index
) loop
9758 if not Has_Compatible_Type
(Actual
, Etype
(Index
)) then
9763 Next_Actual
(Actual
);
9769 and then Present
(Arr_Type
)
9771 Comp_Type
:= Component_Type
(Arr_Type
);
9775 if Present
(Comp_Type
)
9776 and then Etype
(Subprog
) /= Comp_Type
9778 Add_One_Interp
(Subprog
, Subp
, Comp_Type
);
9782 if Etype
(Call
) /= Any_Type
then
9787 end Valid_Candidate
;
9789 -- Start of processing for Try_Object_Operation
9792 Analyze_Expression
(Obj
);
9794 -- Analyze the actuals if node is known to be a subprogram call
9796 if Is_Subprg_Call
and then N
= Name
(Parent
(N
)) then
9797 Actual
:= First
(Parameter_Associations
(Parent
(N
)));
9798 while Present
(Actual
) loop
9799 Analyze_Expression
(Actual
);
9804 -- Build a subprogram call node, using a copy of Obj as its first
9805 -- actual. This is a placeholder, to be replaced by an explicit
9806 -- dereference when needed.
9808 Transform_Object_Operation
9809 (Call_Node
=> New_Call_Node
,
9810 Node_To_Replace
=> Node_To_Replace
);
9812 Set_Etype
(New_Call_Node
, Any_Type
);
9813 Set_Etype
(Subprog
, Any_Type
);
9814 Set_Parent
(New_Call_Node
, Parent
(Node_To_Replace
));
9816 if not Is_Overloaded
(Obj
) then
9817 Try_One_Prefix_Interpretation
(Obj_Type
);
9824 Get_First_Interp
(Obj
, I
, It
);
9825 while Present
(It
.Nam
) loop
9826 Try_One_Prefix_Interpretation
(It
.Typ
);
9827 Get_Next_Interp
(I
, It
);
9832 if Etype
(New_Call_Node
) /= Any_Type
then
9834 -- No need to complete the tree transformations if we are only
9835 -- searching for conflicting class-wide subprograms
9837 if CW_Test_Only
then
9840 Complete_Object_Operation
9841 (Call_Node
=> New_Call_Node
,
9842 Node_To_Replace
=> Node_To_Replace
);
9846 elsif Present
(Candidate
) then
9848 -- The argument list is not type correct. Re-analyze with error
9849 -- reporting enabled, and use one of the possible candidates.
9850 -- In All_Errors_Mode, re-analyze all failed interpretations.
9852 if All_Errors_Mode
then
9853 Report_Error
:= True;
9854 if Try_Primitive_Operation
9855 (Call_Node
=> New_Call_Node
,
9856 Node_To_Replace
=> Node_To_Replace
)
9859 Try_Class_Wide_Operation
9860 (Call_Node
=> New_Call_Node
,
9861 Node_To_Replace
=> Node_To_Replace
)
9868 (N
=> New_Call_Node
,
9872 Skip_First
=> True);
9875 -- No need for further errors
9880 -- There was no candidate operation, so report it as an error
9881 -- in the caller: Analyze_Selected_Component.
9885 end Try_Object_Operation
;
9891 procedure wpo
(T
: Entity_Id
) is
9896 if not Is_Tagged_Type
(T
) then
9900 E
:= First_Elmt
(Primitive_Operations
(Base_Type
(T
)));
9901 while Present
(E
) loop
9903 Write_Int
(Int
(Op
));
9904 Write_Str
(" === ");
9905 Write_Name
(Chars
(Op
));
9907 Write_Name
(Chars
(Scope
(Op
)));