1 /* Analyze RTL for C-Compiler
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
25 #include "coretypes.h"
29 #include "hard-reg-set.h"
30 #include "insn-config.h"
34 #include "basic-block.h"
37 /* Forward declarations */
38 static int global_reg_mentioned_p_1
PARAMS ((rtx
*, void *));
39 static void set_of_1
PARAMS ((rtx
, rtx
, void *));
40 static void insn_dependent_p_1
PARAMS ((rtx
, rtx
, void *));
41 static int subrtx_p_1
PARAMS ((rtx
*, void *));
42 static int computed_jump_p_1
PARAMS ((rtx
));
43 static void parms_set
PARAMS ((rtx
, rtx
, void *));
44 static bool hoist_test_store
PARAMS ((rtx
, rtx
, regset
));
45 static void hoist_update_store
PARAMS ((rtx
, rtx
*, rtx
, rtx
));
47 /* Bit flags that specify the machine subtype we are compiling for.
48 Bits are tested using macros TARGET_... defined in the tm.h file
49 and set by `-m...' switches. Must be defined in rtlanal.c. */
53 /* Return 1 if the value of X is unstable
54 (would be different at a different point in the program).
55 The frame pointer, arg pointer, etc. are considered stable
56 (within one function) and so is anything marked `unchanging'. */
62 RTX_CODE code
= GET_CODE (x
);
69 return ! RTX_UNCHANGING_P (x
) || rtx_unstable_p (XEXP (x
, 0));
84 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
85 if (x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
86 /* The arg pointer varies if it is not a fixed register. */
87 || (x
== arg_pointer_rtx
&& fixed_regs
[ARG_POINTER_REGNUM
])
88 || RTX_UNCHANGING_P (x
))
90 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
91 /* ??? When call-clobbered, the value is stable modulo the restore
92 that must happen after a call. This currently screws up local-alloc
93 into believing that the restore is not needed. */
94 if (x
== pic_offset_table_rtx
)
100 if (MEM_VOLATILE_P (x
))
109 fmt
= GET_RTX_FORMAT (code
);
110 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
113 if (rtx_unstable_p (XEXP (x
, i
)))
116 else if (fmt
[i
] == 'E')
119 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
120 if (rtx_unstable_p (XVECEXP (x
, i
, j
)))
127 /* Return 1 if X has a value that can vary even between two
128 executions of the program. 0 means X can be compared reliably
129 against certain constants or near-constants.
130 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
131 zero, we are slightly more conservative.
132 The frame pointer and the arg pointer are considered constant. */
135 rtx_varies_p (x
, for_alias
)
139 RTX_CODE code
= GET_CODE (x
);
146 return ! RTX_UNCHANGING_P (x
) || rtx_varies_p (XEXP (x
, 0), for_alias
);
160 /* This will resolve to some offset from the frame pointer. */
164 /* Note that we have to test for the actual rtx used for the frame
165 and arg pointers and not just the register number in case we have
166 eliminated the frame and/or arg pointer and are using it
168 if (x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
169 /* The arg pointer varies if it is not a fixed register. */
170 || (x
== arg_pointer_rtx
&& fixed_regs
[ARG_POINTER_REGNUM
]))
172 if (x
== pic_offset_table_rtx
173 #ifdef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
174 /* ??? When call-clobbered, the value is stable modulo the restore
175 that must happen after a call. This currently screws up
176 local-alloc into believing that the restore is not needed, so we
177 must return 0 only if we are called from alias analysis. */
185 /* The operand 0 of a LO_SUM is considered constant
186 (in fact it is related specifically to operand 1)
187 during alias analysis. */
188 return (! for_alias
&& rtx_varies_p (XEXP (x
, 0), for_alias
))
189 || rtx_varies_p (XEXP (x
, 1), for_alias
);
192 if (MEM_VOLATILE_P (x
))
201 fmt
= GET_RTX_FORMAT (code
);
202 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
205 if (rtx_varies_p (XEXP (x
, i
), for_alias
))
208 else if (fmt
[i
] == 'E')
211 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
212 if (rtx_varies_p (XVECEXP (x
, i
, j
), for_alias
))
219 /* Return 0 if the use of X as an address in a MEM can cause a trap. */
222 rtx_addr_can_trap_p (x
)
225 enum rtx_code code
= GET_CODE (x
);
230 return SYMBOL_REF_WEAK (x
);
236 /* This will resolve to some offset from the frame pointer. */
240 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
241 if (x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
242 || x
== stack_pointer_rtx
243 /* The arg pointer varies if it is not a fixed register. */
244 || (x
== arg_pointer_rtx
&& fixed_regs
[ARG_POINTER_REGNUM
]))
246 /* All of the virtual frame registers are stack references. */
247 if (REGNO (x
) >= FIRST_VIRTUAL_REGISTER
248 && REGNO (x
) <= LAST_VIRTUAL_REGISTER
)
253 return rtx_addr_can_trap_p (XEXP (x
, 0));
256 /* An address is assumed not to trap if it is an address that can't
257 trap plus a constant integer or it is the pic register plus a
259 return ! ((! rtx_addr_can_trap_p (XEXP (x
, 0))
260 && GET_CODE (XEXP (x
, 1)) == CONST_INT
)
261 || (XEXP (x
, 0) == pic_offset_table_rtx
262 && CONSTANT_P (XEXP (x
, 1))));
266 return rtx_addr_can_trap_p (XEXP (x
, 1));
273 return rtx_addr_can_trap_p (XEXP (x
, 0));
279 /* If it isn't one of the case above, it can cause a trap. */
283 /* Return true if X is an address that is known to not be zero. */
286 nonzero_address_p (x
)
289 enum rtx_code code
= GET_CODE (x
);
294 return !SYMBOL_REF_WEAK (x
);
300 /* This will resolve to some offset from the frame pointer. */
304 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
305 if (x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
306 || x
== stack_pointer_rtx
307 || (x
== arg_pointer_rtx
&& fixed_regs
[ARG_POINTER_REGNUM
]))
309 /* All of the virtual frame registers are stack references. */
310 if (REGNO (x
) >= FIRST_VIRTUAL_REGISTER
311 && REGNO (x
) <= LAST_VIRTUAL_REGISTER
)
316 return nonzero_address_p (XEXP (x
, 0));
319 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
)
321 /* Pointers aren't allowed to wrap. If we've got a register
322 that is known to be a pointer, and a positive offset, then
323 the composite can't be zero. */
324 if (INTVAL (XEXP (x
, 1)) > 0
325 && REG_P (XEXP (x
, 0))
326 && REG_POINTER (XEXP (x
, 0)))
329 return nonzero_address_p (XEXP (x
, 0));
331 /* Handle PIC references. */
332 else if (XEXP (x
, 0) == pic_offset_table_rtx
333 && CONSTANT_P (XEXP (x
, 1)))
338 /* Similar to the above; allow positive offsets. Further, since
339 auto-inc is only allowed in memories, the register must be a
341 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
342 && INTVAL (XEXP (x
, 1)) > 0)
344 return nonzero_address_p (XEXP (x
, 0));
347 /* Similarly. Further, the offset is always positive. */
354 return nonzero_address_p (XEXP (x
, 0));
357 return nonzero_address_p (XEXP (x
, 1));
363 /* If it isn't one of the case above, might be zero. */
367 /* Return 1 if X refers to a memory location whose address
368 cannot be compared reliably with constant addresses,
369 or if X refers to a BLKmode memory object.
370 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
371 zero, we are slightly more conservative. */
374 rtx_addr_varies_p (x
, for_alias
)
387 return GET_MODE (x
) == BLKmode
|| rtx_varies_p (XEXP (x
, 0), for_alias
);
389 fmt
= GET_RTX_FORMAT (code
);
390 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
393 if (rtx_addr_varies_p (XEXP (x
, i
), for_alias
))
396 else if (fmt
[i
] == 'E')
399 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
400 if (rtx_addr_varies_p (XVECEXP (x
, i
, j
), for_alias
))
406 /* Return the value of the integer term in X, if one is apparent;
408 Only obvious integer terms are detected.
409 This is used in cse.c with the `related_value' field. */
415 if (GET_CODE (x
) == CONST
)
418 if (GET_CODE (x
) == MINUS
419 && GET_CODE (XEXP (x
, 1)) == CONST_INT
)
420 return - INTVAL (XEXP (x
, 1));
421 if (GET_CODE (x
) == PLUS
422 && GET_CODE (XEXP (x
, 1)) == CONST_INT
)
423 return INTVAL (XEXP (x
, 1));
427 /* If X is a constant, return the value sans apparent integer term;
429 Only obvious integer terms are detected. */
432 get_related_value (x
)
435 if (GET_CODE (x
) != CONST
)
438 if (GET_CODE (x
) == PLUS
439 && GET_CODE (XEXP (x
, 1)) == CONST_INT
)
441 else if (GET_CODE (x
) == MINUS
442 && GET_CODE (XEXP (x
, 1)) == CONST_INT
)
447 /* Given a tablejump insn INSN, return the RTL expression for the offset
448 into the jump table. If the offset cannot be determined, then return
451 If EARLIEST is nonzero, it is a pointer to a place where the earliest
452 insn used in locating the offset was found. */
455 get_jump_table_offset (insn
, earliest
)
469 if (GET_CODE (insn
) != JUMP_INSN
470 || ! (label
= JUMP_LABEL (insn
))
471 || ! (table
= NEXT_INSN (label
))
472 || GET_CODE (table
) != JUMP_INSN
473 || (GET_CODE (PATTERN (table
)) != ADDR_VEC
474 && GET_CODE (PATTERN (table
)) != ADDR_DIFF_VEC
)
475 || ! (set
= single_set (insn
)))
480 /* Some targets (eg, ARM) emit a tablejump that also
481 contains the out-of-range target. */
482 if (GET_CODE (x
) == IF_THEN_ELSE
483 && GET_CODE (XEXP (x
, 2)) == LABEL_REF
)
486 /* Search backwards and locate the expression stored in X. */
487 for (old_x
= NULL_RTX
; GET_CODE (x
) == REG
&& x
!= old_x
;
488 old_x
= x
, x
= find_last_value (x
, &insn
, NULL_RTX
, 0))
491 /* If X is an expression using a relative address then strip
492 off the addition / subtraction of PC, PIC_OFFSET_TABLE_REGNUM,
493 or the jump table label. */
494 if (GET_CODE (PATTERN (table
)) == ADDR_DIFF_VEC
495 && (GET_CODE (x
) == PLUS
|| GET_CODE (x
) == MINUS
))
497 for (i
= 0; i
< 2; i
++)
502 if (y
== pc_rtx
|| y
== pic_offset_table_rtx
)
505 for (old_y
= NULL_RTX
; GET_CODE (y
) == REG
&& y
!= old_y
;
506 old_y
= y
, y
= find_last_value (y
, &old_insn
, NULL_RTX
, 0))
509 if ((GET_CODE (y
) == LABEL_REF
&& XEXP (y
, 0) == label
))
518 for (old_x
= NULL_RTX
; GET_CODE (x
) == REG
&& x
!= old_x
;
519 old_x
= x
, x
= find_last_value (x
, &insn
, NULL_RTX
, 0))
523 /* Strip off any sign or zero extension. */
524 if (GET_CODE (x
) == SIGN_EXTEND
|| GET_CODE (x
) == ZERO_EXTEND
)
528 for (old_x
= NULL_RTX
; GET_CODE (x
) == REG
&& x
!= old_x
;
529 old_x
= x
, x
= find_last_value (x
, &insn
, NULL_RTX
, 0))
533 /* If X isn't a MEM then this isn't a tablejump we understand. */
534 if (GET_CODE (x
) != MEM
)
537 /* Strip off the MEM. */
540 for (old_x
= NULL_RTX
; GET_CODE (x
) == REG
&& x
!= old_x
;
541 old_x
= x
, x
= find_last_value (x
, &insn
, NULL_RTX
, 0))
544 /* If X isn't a PLUS than this isn't a tablejump we understand. */
545 if (GET_CODE (x
) != PLUS
)
548 /* At this point we should have an expression representing the jump table
549 plus an offset. Examine each operand in order to determine which one
550 represents the jump table. Knowing that tells us that the other operand
551 must represent the offset. */
552 for (i
= 0; i
< 2; i
++)
557 for (old_y
= NULL_RTX
; GET_CODE (y
) == REG
&& y
!= old_y
;
558 old_y
= y
, y
= find_last_value (y
, &old_insn
, NULL_RTX
, 0))
561 if ((GET_CODE (y
) == CONST
|| GET_CODE (y
) == LABEL_REF
)
562 && reg_mentioned_p (label
, y
))
571 /* Strip off the addition / subtraction of PIC_OFFSET_TABLE_REGNUM. */
572 if (GET_CODE (x
) == PLUS
|| GET_CODE (x
) == MINUS
)
573 for (i
= 0; i
< 2; i
++)
574 if (XEXP (x
, i
) == pic_offset_table_rtx
)
583 /* Return the RTL expression representing the offset. */
587 /* A subroutine of global_reg_mentioned_p, returns 1 if *LOC mentions
588 a global register. */
591 global_reg_mentioned_p_1 (loc
, data
)
593 void *data ATTRIBUTE_UNUSED
;
601 switch (GET_CODE (x
))
604 if (GET_CODE (SUBREG_REG (x
)) == REG
)
606 if (REGNO (SUBREG_REG (x
)) < FIRST_PSEUDO_REGISTER
607 && global_regs
[subreg_regno (x
)])
615 if (regno
< FIRST_PSEUDO_REGISTER
&& global_regs
[regno
])
629 /* A non-constant call might use a global register. */
639 /* Returns nonzero if X mentions a global register. */
642 global_reg_mentioned_p (x
)
648 if (GET_CODE (x
) == CALL_INSN
)
650 if (! CONST_OR_PURE_CALL_P (x
))
652 x
= CALL_INSN_FUNCTION_USAGE (x
);
660 return for_each_rtx (&x
, global_reg_mentioned_p_1
, NULL
);
663 /* Return the number of places FIND appears within X. If COUNT_DEST is
664 zero, we do not count occurrences inside the destination of a SET. */
667 count_occurrences (x
, find
, count_dest
)
673 const char *format_ptr
;
694 if (GET_CODE (find
) == MEM
&& rtx_equal_p (x
, find
))
699 if (SET_DEST (x
) == find
&& ! count_dest
)
700 return count_occurrences (SET_SRC (x
), find
, count_dest
);
707 format_ptr
= GET_RTX_FORMAT (code
);
710 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
712 switch (*format_ptr
++)
715 count
+= count_occurrences (XEXP (x
, i
), find
, count_dest
);
719 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
720 count
+= count_occurrences (XVECEXP (x
, i
, j
), find
, count_dest
);
727 /* Nonzero if register REG appears somewhere within IN.
728 Also works if REG is not a register; in this case it checks
729 for a subexpression of IN that is Lisp "equal" to REG. */
732 reg_mentioned_p (reg
, in
)
745 if (GET_CODE (in
) == LABEL_REF
)
746 return reg
== XEXP (in
, 0);
748 code
= GET_CODE (in
);
752 /* Compare registers by number. */
754 return GET_CODE (reg
) == REG
&& REGNO (in
) == REGNO (reg
);
756 /* These codes have no constituent expressions
764 return GET_CODE (reg
) == CONST_INT
&& INTVAL (in
) == INTVAL (reg
);
768 /* These are kept unique for a given value. */
775 if (GET_CODE (reg
) == code
&& rtx_equal_p (reg
, in
))
778 fmt
= GET_RTX_FORMAT (code
);
780 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
785 for (j
= XVECLEN (in
, i
) - 1; j
>= 0; j
--)
786 if (reg_mentioned_p (reg
, XVECEXP (in
, i
, j
)))
789 else if (fmt
[i
] == 'e'
790 && reg_mentioned_p (reg
, XEXP (in
, i
)))
796 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
797 no CODE_LABEL insn. */
800 no_labels_between_p (beg
, end
)
806 for (p
= NEXT_INSN (beg
); p
!= end
; p
= NEXT_INSN (p
))
807 if (GET_CODE (p
) == CODE_LABEL
)
812 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
813 no JUMP_INSN insn. */
816 no_jumps_between_p (beg
, end
)
820 for (p
= NEXT_INSN (beg
); p
!= end
; p
= NEXT_INSN (p
))
821 if (GET_CODE (p
) == JUMP_INSN
)
826 /* Nonzero if register REG is used in an insn between
827 FROM_INSN and TO_INSN (exclusive of those two). */
830 reg_used_between_p (reg
, from_insn
, to_insn
)
831 rtx reg
, from_insn
, to_insn
;
835 if (from_insn
== to_insn
)
838 for (insn
= NEXT_INSN (from_insn
); insn
!= to_insn
; insn
= NEXT_INSN (insn
))
840 && (reg_overlap_mentioned_p (reg
, PATTERN (insn
))
841 || (GET_CODE (insn
) == CALL_INSN
842 && (find_reg_fusage (insn
, USE
, reg
)
843 || find_reg_fusage (insn
, CLOBBER
, reg
)))))
848 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
849 is entirely replaced by a new value and the only use is as a SET_DEST,
850 we do not consider it a reference. */
853 reg_referenced_p (x
, body
)
859 switch (GET_CODE (body
))
862 if (reg_overlap_mentioned_p (x
, SET_SRC (body
)))
865 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
866 of a REG that occupies all of the REG, the insn references X if
867 it is mentioned in the destination. */
868 if (GET_CODE (SET_DEST (body
)) != CC0
869 && GET_CODE (SET_DEST (body
)) != PC
870 && GET_CODE (SET_DEST (body
)) != REG
871 && ! (GET_CODE (SET_DEST (body
)) == SUBREG
872 && GET_CODE (SUBREG_REG (SET_DEST (body
))) == REG
873 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body
))))
874 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)
875 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body
)))
876 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)))
877 && reg_overlap_mentioned_p (x
, SET_DEST (body
)))
882 for (i
= ASM_OPERANDS_INPUT_LENGTH (body
) - 1; i
>= 0; i
--)
883 if (reg_overlap_mentioned_p (x
, ASM_OPERANDS_INPUT (body
, i
)))
890 return reg_overlap_mentioned_p (x
, body
);
893 return reg_overlap_mentioned_p (x
, TRAP_CONDITION (body
));
896 return reg_overlap_mentioned_p (x
, XEXP (body
, 0));
899 case UNSPEC_VOLATILE
:
900 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
901 if (reg_overlap_mentioned_p (x
, XVECEXP (body
, 0, i
)))
906 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
907 if (reg_referenced_p (x
, XVECEXP (body
, 0, i
)))
912 if (GET_CODE (XEXP (body
, 0)) == MEM
)
913 if (reg_overlap_mentioned_p (x
, XEXP (XEXP (body
, 0), 0)))
918 if (reg_overlap_mentioned_p (x
, COND_EXEC_TEST (body
)))
920 return reg_referenced_p (x
, COND_EXEC_CODE (body
));
927 /* Nonzero if register REG is referenced in an insn between
928 FROM_INSN and TO_INSN (exclusive of those two). Sets of REG do
932 reg_referenced_between_p (reg
, from_insn
, to_insn
)
933 rtx reg
, from_insn
, to_insn
;
937 if (from_insn
== to_insn
)
940 for (insn
= NEXT_INSN (from_insn
); insn
!= to_insn
; insn
= NEXT_INSN (insn
))
942 && (reg_referenced_p (reg
, PATTERN (insn
))
943 || (GET_CODE (insn
) == CALL_INSN
944 && find_reg_fusage (insn
, USE
, reg
))))
949 /* Nonzero if register REG is set or clobbered in an insn between
950 FROM_INSN and TO_INSN (exclusive of those two). */
953 reg_set_between_p (reg
, from_insn
, to_insn
)
954 rtx reg
, from_insn
, to_insn
;
958 if (from_insn
== to_insn
)
961 for (insn
= NEXT_INSN (from_insn
); insn
!= to_insn
; insn
= NEXT_INSN (insn
))
962 if (INSN_P (insn
) && reg_set_p (reg
, insn
))
967 /* Internals of reg_set_between_p. */
969 reg_set_p (reg
, insn
)
972 /* We can be passed an insn or part of one. If we are passed an insn,
973 check if a side-effect of the insn clobbers REG. */
975 && (FIND_REG_INC_NOTE (insn
, reg
)
976 || (GET_CODE (insn
) == CALL_INSN
977 /* We'd like to test call_used_regs here, but rtlanal.c can't
978 reference that variable due to its use in genattrtab. So
979 we'll just be more conservative.
981 ??? Unless we could ensure that the CALL_INSN_FUNCTION_USAGE
982 information holds all clobbered registers. */
983 && ((GET_CODE (reg
) == REG
984 && REGNO (reg
) < FIRST_PSEUDO_REGISTER
)
985 || GET_CODE (reg
) == MEM
986 || find_reg_fusage (insn
, CLOBBER
, reg
)))))
989 return set_of (reg
, insn
) != NULL_RTX
;
992 /* Similar to reg_set_between_p, but check all registers in X. Return 0
993 only if none of them are modified between START and END. Do not
994 consider non-registers one way or the other. */
997 regs_set_between_p (x
, start
, end
)
1001 enum rtx_code code
= GET_CODE (x
);
1018 return reg_set_between_p (x
, start
, end
);
1024 fmt
= GET_RTX_FORMAT (code
);
1025 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1027 if (fmt
[i
] == 'e' && regs_set_between_p (XEXP (x
, i
), start
, end
))
1030 else if (fmt
[i
] == 'E')
1031 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1032 if (regs_set_between_p (XVECEXP (x
, i
, j
), start
, end
))
1039 /* Similar to reg_set_between_p, but check all registers in X. Return 0
1040 only if none of them are modified between START and END. Return 1 if
1041 X contains a MEM; this routine does usememory aliasing. */
1044 modified_between_p (x
, start
, end
)
1048 enum rtx_code code
= GET_CODE (x
);
1071 if (RTX_UNCHANGING_P (x
))
1073 if (modified_between_p (XEXP (x
, 0), start
, end
))
1075 for (insn
= NEXT_INSN (start
); insn
!= end
; insn
= NEXT_INSN (insn
))
1076 if (memory_modified_in_insn_p (x
, insn
))
1082 return reg_set_between_p (x
, start
, end
);
1088 fmt
= GET_RTX_FORMAT (code
);
1089 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1091 if (fmt
[i
] == 'e' && modified_between_p (XEXP (x
, i
), start
, end
))
1094 else if (fmt
[i
] == 'E')
1095 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1096 if (modified_between_p (XVECEXP (x
, i
, j
), start
, end
))
1103 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
1104 of them are modified in INSN. Return 1 if X contains a MEM; this routine
1105 does use memory aliasing. */
1108 modified_in_p (x
, insn
)
1112 enum rtx_code code
= GET_CODE (x
);
1131 if (RTX_UNCHANGING_P (x
))
1133 if (modified_in_p (XEXP (x
, 0), insn
))
1135 if (memory_modified_in_insn_p (x
, insn
))
1141 return reg_set_p (x
, insn
);
1147 fmt
= GET_RTX_FORMAT (code
);
1148 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1150 if (fmt
[i
] == 'e' && modified_in_p (XEXP (x
, i
), insn
))
1153 else if (fmt
[i
] == 'E')
1154 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1155 if (modified_in_p (XVECEXP (x
, i
, j
), insn
))
1162 /* Return true if anything in insn X is (anti,output,true) dependent on
1163 anything in insn Y. */
1166 insn_dependent_p (x
, y
)
1171 if (! INSN_P (x
) || ! INSN_P (y
))
1175 note_stores (PATTERN (x
), insn_dependent_p_1
, &tmp
);
1176 if (tmp
== NULL_RTX
)
1180 note_stores (PATTERN (y
), insn_dependent_p_1
, &tmp
);
1181 if (tmp
== NULL_RTX
)
1187 /* A helper routine for insn_dependent_p called through note_stores. */
1190 insn_dependent_p_1 (x
, pat
, data
)
1192 rtx pat ATTRIBUTE_UNUSED
;
1195 rtx
* pinsn
= (rtx
*) data
;
1197 if (*pinsn
&& reg_mentioned_p (x
, *pinsn
))
1201 /* Helper function for set_of. */
1209 set_of_1 (x
, pat
, data1
)
1214 struct set_of_data
*data
= (struct set_of_data
*) (data1
);
1215 if (rtx_equal_p (x
, data
->pat
)
1216 || (GET_CODE (x
) != MEM
&& reg_overlap_mentioned_p (data
->pat
, x
)))
1220 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
1221 (either directly or via STRICT_LOW_PART and similar modifiers). */
1226 struct set_of_data data
;
1227 data
.found
= NULL_RTX
;
1229 note_stores (INSN_P (insn
) ? PATTERN (insn
) : insn
, set_of_1
, &data
);
1233 /* Given an INSN, return a SET expression if this insn has only a single SET.
1234 It may also have CLOBBERs, USEs, or SET whose output
1235 will not be used, which we ignore. */
1238 single_set_2 (insn
, pat
)
1242 int set_verified
= 1;
1245 if (GET_CODE (pat
) == PARALLEL
)
1247 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
1249 rtx sub
= XVECEXP (pat
, 0, i
);
1250 switch (GET_CODE (sub
))
1257 /* We can consider insns having multiple sets, where all
1258 but one are dead as single set insns. In common case
1259 only single set is present in the pattern so we want
1260 to avoid checking for REG_UNUSED notes unless necessary.
1262 When we reach set first time, we just expect this is
1263 the single set we are looking for and only when more
1264 sets are found in the insn, we check them. */
1267 if (find_reg_note (insn
, REG_UNUSED
, SET_DEST (set
))
1268 && !side_effects_p (set
))
1274 set
= sub
, set_verified
= 0;
1275 else if (!find_reg_note (insn
, REG_UNUSED
, SET_DEST (sub
))
1276 || side_effects_p (sub
))
1288 /* Given an INSN, return nonzero if it has more than one SET, else return
1292 multiple_sets (insn
)
1298 /* INSN must be an insn. */
1299 if (! INSN_P (insn
))
1302 /* Only a PARALLEL can have multiple SETs. */
1303 if (GET_CODE (PATTERN (insn
)) == PARALLEL
)
1305 for (i
= 0, found
= 0; i
< XVECLEN (PATTERN (insn
), 0); i
++)
1306 if (GET_CODE (XVECEXP (PATTERN (insn
), 0, i
)) == SET
)
1308 /* If we have already found a SET, then return now. */
1316 /* Either zero or one SET. */
1320 /* Return nonzero if the destination of SET equals the source
1321 and there are no side effects. */
1327 rtx src
= SET_SRC (set
);
1328 rtx dst
= SET_DEST (set
);
1330 if (side_effects_p (src
) || side_effects_p (dst
))
1333 if (GET_CODE (dst
) == MEM
&& GET_CODE (src
) == MEM
)
1334 return rtx_equal_p (dst
, src
);
1336 if (dst
== pc_rtx
&& src
== pc_rtx
)
1339 if (GET_CODE (dst
) == SIGN_EXTRACT
1340 || GET_CODE (dst
) == ZERO_EXTRACT
)
1341 return rtx_equal_p (XEXP (dst
, 0), src
)
1342 && ! BYTES_BIG_ENDIAN
&& XEXP (dst
, 2) == const0_rtx
;
1344 if (GET_CODE (dst
) == STRICT_LOW_PART
)
1345 dst
= XEXP (dst
, 0);
1347 if (GET_CODE (src
) == SUBREG
&& GET_CODE (dst
) == SUBREG
)
1349 if (SUBREG_BYTE (src
) != SUBREG_BYTE (dst
))
1351 src
= SUBREG_REG (src
);
1352 dst
= SUBREG_REG (dst
);
1355 return (GET_CODE (src
) == REG
&& GET_CODE (dst
) == REG
1356 && REGNO (src
) == REGNO (dst
));
1359 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1366 rtx pat
= PATTERN (insn
);
1368 if (INSN_CODE (insn
) == NOOP_MOVE_INSN_CODE
)
1371 /* Insns carrying these notes are useful later on. */
1372 if (find_reg_note (insn
, REG_EQUAL
, NULL_RTX
))
1375 /* For now treat an insn with a REG_RETVAL note as a
1376 a special insn which should not be considered a no-op. */
1377 if (find_reg_note (insn
, REG_RETVAL
, NULL_RTX
))
1380 if (GET_CODE (pat
) == SET
&& set_noop_p (pat
))
1383 if (GET_CODE (pat
) == PARALLEL
)
1386 /* If nothing but SETs of registers to themselves,
1387 this insn can also be deleted. */
1388 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
1390 rtx tem
= XVECEXP (pat
, 0, i
);
1392 if (GET_CODE (tem
) == USE
1393 || GET_CODE (tem
) == CLOBBER
)
1396 if (GET_CODE (tem
) != SET
|| ! set_noop_p (tem
))
1406 /* Return the last thing that X was assigned from before *PINSN. If VALID_TO
1407 is not NULL_RTX then verify that the object is not modified up to VALID_TO.
1408 If the object was modified, if we hit a partial assignment to X, or hit a
1409 CODE_LABEL first, return X. If we found an assignment, update *PINSN to
1410 point to it. ALLOW_HWREG is set to 1 if hardware registers are allowed to
1414 find_last_value (x
, pinsn
, valid_to
, allow_hwreg
)
1422 for (p
= PREV_INSN (*pinsn
); p
&& GET_CODE (p
) != CODE_LABEL
;
1426 rtx set
= single_set (p
);
1427 rtx note
= find_reg_note (p
, REG_EQUAL
, NULL_RTX
);
1429 if (set
&& rtx_equal_p (x
, SET_DEST (set
)))
1431 rtx src
= SET_SRC (set
);
1433 if (note
&& GET_CODE (XEXP (note
, 0)) != EXPR_LIST
)
1434 src
= XEXP (note
, 0);
1436 if ((valid_to
== NULL_RTX
1437 || ! modified_between_p (src
, PREV_INSN (p
), valid_to
))
1438 /* Reject hard registers because we don't usually want
1439 to use them; we'd rather use a pseudo. */
1440 && (! (GET_CODE (src
) == REG
1441 && REGNO (src
) < FIRST_PSEUDO_REGISTER
) || allow_hwreg
))
1448 /* If set in non-simple way, we don't have a value. */
1449 if (reg_set_p (x
, p
))
1456 /* Return nonzero if register in range [REGNO, ENDREGNO)
1457 appears either explicitly or implicitly in X
1458 other than being stored into.
1460 References contained within the substructure at LOC do not count.
1461 LOC may be zero, meaning don't ignore anything. */
1464 refers_to_regno_p (regno
, endregno
, x
, loc
)
1465 unsigned int regno
, endregno
;
1470 unsigned int x_regno
;
1475 /* The contents of a REG_NONNEG note is always zero, so we must come here
1476 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1480 code
= GET_CODE (x
);
1485 x_regno
= REGNO (x
);
1487 /* If we modifying the stack, frame, or argument pointer, it will
1488 clobber a virtual register. In fact, we could be more precise,
1489 but it isn't worth it. */
1490 if ((x_regno
== STACK_POINTER_REGNUM
1491 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1492 || x_regno
== ARG_POINTER_REGNUM
1494 || x_regno
== FRAME_POINTER_REGNUM
)
1495 && regno
>= FIRST_VIRTUAL_REGISTER
&& regno
<= LAST_VIRTUAL_REGISTER
)
1498 return (endregno
> x_regno
1499 && regno
< x_regno
+ (x_regno
< FIRST_PSEUDO_REGISTER
1500 ? HARD_REGNO_NREGS (x_regno
, GET_MODE (x
))
1504 /* If this is a SUBREG of a hard reg, we can see exactly which
1505 registers are being modified. Otherwise, handle normally. */
1506 if (GET_CODE (SUBREG_REG (x
)) == REG
1507 && REGNO (SUBREG_REG (x
)) < FIRST_PSEUDO_REGISTER
)
1509 unsigned int inner_regno
= subreg_regno (x
);
1510 unsigned int inner_endregno
1511 = inner_regno
+ (inner_regno
< FIRST_PSEUDO_REGISTER
1512 ? HARD_REGNO_NREGS (regno
, GET_MODE (x
)) : 1);
1514 return endregno
> inner_regno
&& regno
< inner_endregno
;
1520 if (&SET_DEST (x
) != loc
1521 /* Note setting a SUBREG counts as referring to the REG it is in for
1522 a pseudo but not for hard registers since we can
1523 treat each word individually. */
1524 && ((GET_CODE (SET_DEST (x
)) == SUBREG
1525 && loc
!= &SUBREG_REG (SET_DEST (x
))
1526 && GET_CODE (SUBREG_REG (SET_DEST (x
))) == REG
1527 && REGNO (SUBREG_REG (SET_DEST (x
))) >= FIRST_PSEUDO_REGISTER
1528 && refers_to_regno_p (regno
, endregno
,
1529 SUBREG_REG (SET_DEST (x
)), loc
))
1530 || (GET_CODE (SET_DEST (x
)) != REG
1531 && refers_to_regno_p (regno
, endregno
, SET_DEST (x
), loc
))))
1534 if (code
== CLOBBER
|| loc
== &SET_SRC (x
))
1543 /* X does not match, so try its subexpressions. */
1545 fmt
= GET_RTX_FORMAT (code
);
1546 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1548 if (fmt
[i
] == 'e' && loc
!= &XEXP (x
, i
))
1556 if (refers_to_regno_p (regno
, endregno
, XEXP (x
, i
), loc
))
1559 else if (fmt
[i
] == 'E')
1562 for (j
= XVECLEN (x
, i
) - 1; j
>=0; j
--)
1563 if (loc
!= &XVECEXP (x
, i
, j
)
1564 && refers_to_regno_p (regno
, endregno
, XVECEXP (x
, i
, j
), loc
))
1571 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1572 we check if any register number in X conflicts with the relevant register
1573 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1574 contains a MEM (we don't bother checking for memory addresses that can't
1575 conflict because we expect this to be a rare case. */
1578 reg_overlap_mentioned_p (x
, in
)
1581 unsigned int regno
, endregno
;
1583 /* Overly conservative. */
1584 if (GET_CODE (x
) == STRICT_LOW_PART
)
1587 /* If either argument is a constant, then modifying X can not affect IN. */
1588 if (CONSTANT_P (x
) || CONSTANT_P (in
))
1591 switch (GET_CODE (x
))
1594 regno
= REGNO (SUBREG_REG (x
));
1595 if (regno
< FIRST_PSEUDO_REGISTER
)
1596 regno
= subreg_regno (x
);
1602 endregno
= regno
+ (regno
< FIRST_PSEUDO_REGISTER
1603 ? HARD_REGNO_NREGS (regno
, GET_MODE (x
)) : 1);
1604 return refers_to_regno_p (regno
, endregno
, in
, (rtx
*) 0);
1611 if (GET_CODE (in
) == MEM
)
1614 fmt
= GET_RTX_FORMAT (GET_CODE (in
));
1615 for (i
= GET_RTX_LENGTH (GET_CODE (in
)) - 1; i
>= 0; i
--)
1616 if (fmt
[i
] == 'e' && reg_overlap_mentioned_p (x
, XEXP (in
, i
)))
1625 return reg_mentioned_p (x
, in
);
1631 /* If any register in here refers to it we return true. */
1632 for (i
= XVECLEN (x
, 0) - 1; i
>= 0; i
--)
1633 if (XEXP (XVECEXP (x
, 0, i
), 0) != 0
1634 && reg_overlap_mentioned_p (XEXP (XVECEXP (x
, 0, i
), 0), in
))
1646 /* Return the last value to which REG was set prior to INSN. If we can't
1647 find it easily, return 0.
1649 We only return a REG, SUBREG, or constant because it is too hard to
1650 check if a MEM remains unchanged. */
1653 reg_set_last (x
, insn
)
1657 rtx orig_insn
= insn
;
1659 /* Scan backwards until reg_set_last_1 changed one of the above flags.
1660 Stop when we reach a label or X is a hard reg and we reach a
1661 CALL_INSN (if reg_set_last_last_regno is a hard reg).
1663 If we find a set of X, ensure that its SET_SRC remains unchanged. */
1665 /* We compare with <= here, because reg_set_last_last_regno
1666 is actually the number of the first reg *not* in X. */
1668 insn
&& GET_CODE (insn
) != CODE_LABEL
1669 && ! (GET_CODE (insn
) == CALL_INSN
1670 && REGNO (x
) <= FIRST_PSEUDO_REGISTER
);
1671 insn
= PREV_INSN (insn
))
1674 rtx set
= set_of (x
, insn
);
1675 /* OK, this function modify our register. See if we understand it. */
1679 if (GET_CODE (set
) != SET
|| SET_DEST (set
) != x
)
1681 last_value
= SET_SRC (x
);
1682 if (CONSTANT_P (last_value
)
1683 || ((GET_CODE (last_value
) == REG
1684 || GET_CODE (last_value
) == SUBREG
)
1685 && ! reg_set_between_p (last_value
,
1696 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1697 (X would be the pattern of an insn).
1698 FUN receives two arguments:
1699 the REG, MEM, CC0 or PC being stored in or clobbered,
1700 the SET or CLOBBER rtx that does the store.
1702 If the item being stored in or clobbered is a SUBREG of a hard register,
1703 the SUBREG will be passed. */
1706 note_stores (x
, fun
, data
)
1708 void (*fun
) PARAMS ((rtx
, rtx
, void *));
1713 if (GET_CODE (x
) == COND_EXEC
)
1714 x
= COND_EXEC_CODE (x
);
1716 if (GET_CODE (x
) == SET
|| GET_CODE (x
) == CLOBBER
)
1718 rtx dest
= SET_DEST (x
);
1720 while ((GET_CODE (dest
) == SUBREG
1721 && (GET_CODE (SUBREG_REG (dest
)) != REG
1722 || REGNO (SUBREG_REG (dest
)) >= FIRST_PSEUDO_REGISTER
))
1723 || GET_CODE (dest
) == ZERO_EXTRACT
1724 || GET_CODE (dest
) == SIGN_EXTRACT
1725 || GET_CODE (dest
) == STRICT_LOW_PART
)
1726 dest
= XEXP (dest
, 0);
1728 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1729 each of whose first operand is a register. */
1730 if (GET_CODE (dest
) == PARALLEL
)
1732 for (i
= XVECLEN (dest
, 0) - 1; i
>= 0; i
--)
1733 if (XEXP (XVECEXP (dest
, 0, i
), 0) != 0)
1734 (*fun
) (XEXP (XVECEXP (dest
, 0, i
), 0), x
, data
);
1737 (*fun
) (dest
, x
, data
);
1740 else if (GET_CODE (x
) == PARALLEL
)
1741 for (i
= XVECLEN (x
, 0) - 1; i
>= 0; i
--)
1742 note_stores (XVECEXP (x
, 0, i
), fun
, data
);
1745 /* Like notes_stores, but call FUN for each expression that is being
1746 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1747 FUN for each expression, not any interior subexpressions. FUN receives a
1748 pointer to the expression and the DATA passed to this function.
1750 Note that this is not quite the same test as that done in reg_referenced_p
1751 since that considers something as being referenced if it is being
1752 partially set, while we do not. */
1755 note_uses (pbody
, fun
, data
)
1757 void (*fun
) PARAMS ((rtx
*, void *));
1763 switch (GET_CODE (body
))
1766 (*fun
) (&COND_EXEC_TEST (body
), data
);
1767 note_uses (&COND_EXEC_CODE (body
), fun
, data
);
1771 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
1772 note_uses (&XVECEXP (body
, 0, i
), fun
, data
);
1776 (*fun
) (&XEXP (body
, 0), data
);
1780 for (i
= ASM_OPERANDS_INPUT_LENGTH (body
) - 1; i
>= 0; i
--)
1781 (*fun
) (&ASM_OPERANDS_INPUT (body
, i
), data
);
1785 (*fun
) (&TRAP_CONDITION (body
), data
);
1789 (*fun
) (&XEXP (body
, 0), data
);
1793 case UNSPEC_VOLATILE
:
1794 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
1795 (*fun
) (&XVECEXP (body
, 0, i
), data
);
1799 if (GET_CODE (XEXP (body
, 0)) == MEM
)
1800 (*fun
) (&XEXP (XEXP (body
, 0), 0), data
);
1805 rtx dest
= SET_DEST (body
);
1807 /* For sets we replace everything in source plus registers in memory
1808 expression in store and operands of a ZERO_EXTRACT. */
1809 (*fun
) (&SET_SRC (body
), data
);
1811 if (GET_CODE (dest
) == ZERO_EXTRACT
)
1813 (*fun
) (&XEXP (dest
, 1), data
);
1814 (*fun
) (&XEXP (dest
, 2), data
);
1817 while (GET_CODE (dest
) == SUBREG
|| GET_CODE (dest
) == STRICT_LOW_PART
)
1818 dest
= XEXP (dest
, 0);
1820 if (GET_CODE (dest
) == MEM
)
1821 (*fun
) (&XEXP (dest
, 0), data
);
1826 /* All the other possibilities never store. */
1827 (*fun
) (pbody
, data
);
1832 /* Return nonzero if X's old contents don't survive after INSN.
1833 This will be true if X is (cc0) or if X is a register and
1834 X dies in INSN or because INSN entirely sets X.
1836 "Entirely set" means set directly and not through a SUBREG,
1837 ZERO_EXTRACT or SIGN_EXTRACT, so no trace of the old contents remains.
1838 Likewise, REG_INC does not count.
1840 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1841 but for this use that makes no difference, since regs don't overlap
1842 during their lifetimes. Therefore, this function may be used
1843 at any time after deaths have been computed (in flow.c).
1845 If REG is a hard reg that occupies multiple machine registers, this
1846 function will only return 1 if each of those registers will be replaced
1850 dead_or_set_p (insn
, x
)
1854 unsigned int regno
, last_regno
;
1857 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1858 if (GET_CODE (x
) == CC0
)
1861 if (GET_CODE (x
) != REG
)
1865 last_regno
= (regno
>= FIRST_PSEUDO_REGISTER
? regno
1866 : regno
+ HARD_REGNO_NREGS (regno
, GET_MODE (x
)) - 1);
1868 for (i
= regno
; i
<= last_regno
; i
++)
1869 if (! dead_or_set_regno_p (insn
, i
))
1875 /* Utility function for dead_or_set_p to check an individual register. Also
1876 called from flow.c. */
1879 dead_or_set_regno_p (insn
, test_regno
)
1881 unsigned int test_regno
;
1883 unsigned int regno
, endregno
;
1886 /* See if there is a death note for something that includes TEST_REGNO. */
1887 if (find_regno_note (insn
, REG_DEAD
, test_regno
))
1890 if (GET_CODE (insn
) == CALL_INSN
1891 && find_regno_fusage (insn
, CLOBBER
, test_regno
))
1894 pattern
= PATTERN (insn
);
1896 if (GET_CODE (pattern
) == COND_EXEC
)
1897 pattern
= COND_EXEC_CODE (pattern
);
1899 if (GET_CODE (pattern
) == SET
)
1901 rtx dest
= SET_DEST (pattern
);
1903 /* A value is totally replaced if it is the destination or the
1904 destination is a SUBREG of REGNO that does not change the number of
1906 if (GET_CODE (dest
) == SUBREG
1907 && (((GET_MODE_SIZE (GET_MODE (dest
))
1908 + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
)
1909 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest
)))
1910 + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
)))
1911 dest
= SUBREG_REG (dest
);
1913 if (GET_CODE (dest
) != REG
)
1916 regno
= REGNO (dest
);
1917 endregno
= (regno
>= FIRST_PSEUDO_REGISTER
? regno
+ 1
1918 : regno
+ HARD_REGNO_NREGS (regno
, GET_MODE (dest
)));
1920 return (test_regno
>= regno
&& test_regno
< endregno
);
1922 else if (GET_CODE (pattern
) == PARALLEL
)
1926 for (i
= XVECLEN (pattern
, 0) - 1; i
>= 0; i
--)
1928 rtx body
= XVECEXP (pattern
, 0, i
);
1930 if (GET_CODE (body
) == COND_EXEC
)
1931 body
= COND_EXEC_CODE (body
);
1933 if (GET_CODE (body
) == SET
|| GET_CODE (body
) == CLOBBER
)
1935 rtx dest
= SET_DEST (body
);
1937 if (GET_CODE (dest
) == SUBREG
1938 && (((GET_MODE_SIZE (GET_MODE (dest
))
1939 + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
)
1940 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest
)))
1941 + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
)))
1942 dest
= SUBREG_REG (dest
);
1944 if (GET_CODE (dest
) != REG
)
1947 regno
= REGNO (dest
);
1948 endregno
= (regno
>= FIRST_PSEUDO_REGISTER
? regno
+ 1
1949 : regno
+ HARD_REGNO_NREGS (regno
, GET_MODE (dest
)));
1951 if (test_regno
>= regno
&& test_regno
< endregno
)
1960 /* Return the reg-note of kind KIND in insn INSN, if there is one.
1961 If DATUM is nonzero, look for one whose datum is DATUM. */
1964 find_reg_note (insn
, kind
, datum
)
1971 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1972 if (! INSN_P (insn
))
1975 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1976 if (REG_NOTE_KIND (link
) == kind
1977 && (datum
== 0 || datum
== XEXP (link
, 0)))
1982 /* Return the reg-note of kind KIND in insn INSN which applies to register
1983 number REGNO, if any. Return 0 if there is no such reg-note. Note that
1984 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1985 it might be the case that the note overlaps REGNO. */
1988 find_regno_note (insn
, kind
, regno
)
1995 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1996 if (! INSN_P (insn
))
1999 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
2000 if (REG_NOTE_KIND (link
) == kind
2001 /* Verify that it is a register, so that scratch and MEM won't cause a
2003 && GET_CODE (XEXP (link
, 0)) == REG
2004 && REGNO (XEXP (link
, 0)) <= regno
2005 && ((REGNO (XEXP (link
, 0))
2006 + (REGNO (XEXP (link
, 0)) >= FIRST_PSEUDO_REGISTER
? 1
2007 : HARD_REGNO_NREGS (REGNO (XEXP (link
, 0)),
2008 GET_MODE (XEXP (link
, 0)))))
2014 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
2018 find_reg_equal_equiv_note (insn
)
2023 if (single_set (insn
) == 0)
2025 else if ((note
= find_reg_note (insn
, REG_EQUIV
, NULL_RTX
)) != 0)
2028 return find_reg_note (insn
, REG_EQUAL
, NULL_RTX
);
2031 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
2032 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
2035 find_reg_fusage (insn
, code
, datum
)
2040 /* If it's not a CALL_INSN, it can't possibly have a
2041 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
2042 if (GET_CODE (insn
) != CALL_INSN
)
2048 if (GET_CODE (datum
) != REG
)
2052 for (link
= CALL_INSN_FUNCTION_USAGE (insn
);
2054 link
= XEXP (link
, 1))
2055 if (GET_CODE (XEXP (link
, 0)) == code
2056 && rtx_equal_p (datum
, XEXP (XEXP (link
, 0), 0)))
2061 unsigned int regno
= REGNO (datum
);
2063 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2064 to pseudo registers, so don't bother checking. */
2066 if (regno
< FIRST_PSEUDO_REGISTER
)
2068 unsigned int end_regno
2069 = regno
+ HARD_REGNO_NREGS (regno
, GET_MODE (datum
));
2072 for (i
= regno
; i
< end_regno
; i
++)
2073 if (find_regno_fusage (insn
, code
, i
))
2081 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
2082 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
2085 find_regno_fusage (insn
, code
, regno
)
2092 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2093 to pseudo registers, so don't bother checking. */
2095 if (regno
>= FIRST_PSEUDO_REGISTER
2096 || GET_CODE (insn
) != CALL_INSN
)
2099 for (link
= CALL_INSN_FUNCTION_USAGE (insn
); link
; link
= XEXP (link
, 1))
2101 unsigned int regnote
;
2104 if (GET_CODE (op
= XEXP (link
, 0)) == code
2105 && GET_CODE (reg
= XEXP (op
, 0)) == REG
2106 && (regnote
= REGNO (reg
)) <= regno
2107 && regnote
+ HARD_REGNO_NREGS (regnote
, GET_MODE (reg
)) > regno
)
2114 /* Return true if INSN is a call to a pure function. */
2122 if (GET_CODE (insn
) != CALL_INSN
|| ! CONST_OR_PURE_CALL_P (insn
))
2125 /* Look for the note that differentiates const and pure functions. */
2126 for (link
= CALL_INSN_FUNCTION_USAGE (insn
); link
; link
= XEXP (link
, 1))
2130 if (GET_CODE (u
= XEXP (link
, 0)) == USE
2131 && GET_CODE (m
= XEXP (u
, 0)) == MEM
&& GET_MODE (m
) == BLKmode
2132 && GET_CODE (XEXP (m
, 0)) == SCRATCH
)
2139 /* Remove register note NOTE from the REG_NOTES of INSN. */
2142 remove_note (insn
, note
)
2148 if (note
== NULL_RTX
)
2151 if (REG_NOTES (insn
) == note
)
2153 REG_NOTES (insn
) = XEXP (note
, 1);
2157 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
2158 if (XEXP (link
, 1) == note
)
2160 XEXP (link
, 1) = XEXP (note
, 1);
2167 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2168 return 1 if it is found. A simple equality test is used to determine if
2172 in_expr_list_p (listp
, node
)
2178 for (x
= listp
; x
; x
= XEXP (x
, 1))
2179 if (node
== XEXP (x
, 0))
2185 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2186 remove that entry from the list if it is found.
2188 A simple equality test is used to determine if NODE matches. */
2191 remove_node_from_expr_list (node
, listp
)
2196 rtx prev
= NULL_RTX
;
2200 if (node
== XEXP (temp
, 0))
2202 /* Splice the node out of the list. */
2204 XEXP (prev
, 1) = XEXP (temp
, 1);
2206 *listp
= XEXP (temp
, 1);
2212 temp
= XEXP (temp
, 1);
2216 /* Nonzero if X contains any volatile instructions. These are instructions
2217 which may cause unpredictable machine state instructions, and thus no
2218 instructions should be moved or combined across them. This includes
2219 only volatile asms and UNSPEC_VOLATILE instructions. */
2227 code
= GET_CODE (x
);
2247 case UNSPEC_VOLATILE
:
2248 /* case TRAP_IF: This isn't clear yet. */
2253 if (MEM_VOLATILE_P (x
))
2260 /* Recursively scan the operands of this expression. */
2263 const char *fmt
= GET_RTX_FORMAT (code
);
2266 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2270 if (volatile_insn_p (XEXP (x
, i
)))
2273 else if (fmt
[i
] == 'E')
2276 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2277 if (volatile_insn_p (XVECEXP (x
, i
, j
)))
2285 /* Nonzero if X contains any volatile memory references
2286 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2294 code
= GET_CODE (x
);
2312 case UNSPEC_VOLATILE
:
2318 if (MEM_VOLATILE_P (x
))
2325 /* Recursively scan the operands of this expression. */
2328 const char *fmt
= GET_RTX_FORMAT (code
);
2331 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2335 if (volatile_refs_p (XEXP (x
, i
)))
2338 else if (fmt
[i
] == 'E')
2341 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2342 if (volatile_refs_p (XVECEXP (x
, i
, j
)))
2350 /* Similar to above, except that it also rejects register pre- and post-
2359 code
= GET_CODE (x
);
2377 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2378 when some combination can't be done. If we see one, don't think
2379 that we can simplify the expression. */
2380 return (GET_MODE (x
) != VOIDmode
);
2389 case UNSPEC_VOLATILE
:
2390 /* case TRAP_IF: This isn't clear yet. */
2396 if (MEM_VOLATILE_P (x
))
2403 /* Recursively scan the operands of this expression. */
2406 const char *fmt
= GET_RTX_FORMAT (code
);
2409 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2413 if (side_effects_p (XEXP (x
, i
)))
2416 else if (fmt
[i
] == 'E')
2419 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2420 if (side_effects_p (XVECEXP (x
, i
, j
)))
2428 /* Return nonzero if evaluating rtx X might cause a trap. */
2440 code
= GET_CODE (x
);
2443 /* Handle these cases quickly. */
2457 case UNSPEC_VOLATILE
:
2462 return MEM_VOLATILE_P (x
);
2464 /* Memory ref can trap unless it's a static var or a stack slot. */
2466 return rtx_addr_can_trap_p (XEXP (x
, 0));
2468 /* Division by a non-constant might trap. */
2473 if (HONOR_SNANS (GET_MODE (x
)))
2475 if (! CONSTANT_P (XEXP (x
, 1))
2476 || (GET_MODE_CLASS (GET_MODE (x
)) == MODE_FLOAT
2477 && flag_trapping_math
))
2479 /* This was const0_rtx, but by not using that,
2480 we can link this file into other programs. */
2481 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
&& INTVAL (XEXP (x
, 1)) == 0)
2486 /* An EXPR_LIST is used to represent a function call. This
2487 certainly may trap. */
2495 /* Some floating point comparisons may trap. */
2496 if (!flag_trapping_math
)
2498 /* ??? There is no machine independent way to check for tests that trap
2499 when COMPARE is used, though many targets do make this distinction.
2500 For instance, sparc uses CCFPE for compares which generate exceptions
2501 and CCFP for compares which do not generate exceptions. */
2502 if (HONOR_NANS (GET_MODE (x
)))
2504 /* But often the compare has some CC mode, so check operand
2506 if (HONOR_NANS (GET_MODE (XEXP (x
, 0)))
2507 || HONOR_NANS (GET_MODE (XEXP (x
, 1))))
2513 if (HONOR_SNANS (GET_MODE (x
)))
2515 /* Often comparison is CC mode, so check operand modes. */
2516 if (HONOR_SNANS (GET_MODE (XEXP (x
, 0)))
2517 || HONOR_SNANS (GET_MODE (XEXP (x
, 1))))
2522 /* Conversion of floating point might trap. */
2523 if (flag_trapping_math
&& HONOR_NANS (GET_MODE (XEXP (x
, 0))))
2529 /* These operations don't trap even with floating point. */
2533 /* Any floating arithmetic may trap. */
2534 if (GET_MODE_CLASS (GET_MODE (x
)) == MODE_FLOAT
2535 && flag_trapping_math
)
2539 fmt
= GET_RTX_FORMAT (code
);
2540 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2544 if (may_trap_p (XEXP (x
, i
)))
2547 else if (fmt
[i
] == 'E')
2550 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2551 if (may_trap_p (XVECEXP (x
, i
, j
)))
2558 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2559 i.e., an inequality. */
2562 inequality_comparisons_p (x
)
2567 enum rtx_code code
= GET_CODE (x
);
2597 len
= GET_RTX_LENGTH (code
);
2598 fmt
= GET_RTX_FORMAT (code
);
2600 for (i
= 0; i
< len
; i
++)
2604 if (inequality_comparisons_p (XEXP (x
, i
)))
2607 else if (fmt
[i
] == 'E')
2610 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
2611 if (inequality_comparisons_p (XVECEXP (x
, i
, j
)))
2619 /* Replace any occurrence of FROM in X with TO. The function does
2620 not enter into CONST_DOUBLE for the replace.
2622 Note that copying is not done so X must not be shared unless all copies
2623 are to be modified. */
2626 replace_rtx (x
, from
, to
)
2632 /* The following prevents loops occurrence when we change MEM in
2633 CONST_DOUBLE onto the same CONST_DOUBLE. */
2634 if (x
!= 0 && GET_CODE (x
) == CONST_DOUBLE
)
2640 /* Allow this function to make replacements in EXPR_LISTs. */
2644 if (GET_CODE (x
) == SUBREG
)
2646 rtx
new = replace_rtx (SUBREG_REG (x
), from
, to
);
2648 if (GET_CODE (new) == CONST_INT
)
2650 x
= simplify_subreg (GET_MODE (x
), new,
2651 GET_MODE (SUBREG_REG (x
)),
2657 SUBREG_REG (x
) = new;
2661 else if (GET_CODE (x
) == ZERO_EXTEND
)
2663 rtx
new = replace_rtx (XEXP (x
, 0), from
, to
);
2665 if (GET_CODE (new) == CONST_INT
)
2667 x
= simplify_unary_operation (ZERO_EXTEND
, GET_MODE (x
),
2668 new, GET_MODE (XEXP (x
, 0)));
2678 fmt
= GET_RTX_FORMAT (GET_CODE (x
));
2679 for (i
= GET_RTX_LENGTH (GET_CODE (x
)) - 1; i
>= 0; i
--)
2682 XEXP (x
, i
) = replace_rtx (XEXP (x
, i
), from
, to
);
2683 else if (fmt
[i
] == 'E')
2684 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
2685 XVECEXP (x
, i
, j
) = replace_rtx (XVECEXP (x
, i
, j
), from
, to
);
2691 /* Throughout the rtx X, replace many registers according to REG_MAP.
2692 Return the replacement for X (which may be X with altered contents).
2693 REG_MAP[R] is the replacement for register R, or 0 for don't replace.
2694 NREGS is the length of REG_MAP; regs >= NREGS are not mapped.
2696 We only support REG_MAP entries of REG or SUBREG. Also, hard registers
2697 should not be mapped to pseudos or vice versa since validate_change
2700 If REPLACE_DEST is 1, replacements are also done in destinations;
2701 otherwise, only sources are replaced. */
2704 replace_regs (x
, reg_map
, nregs
, replace_dest
)
2717 code
= GET_CODE (x
);
2732 /* Verify that the register has an entry before trying to access it. */
2733 if (REGNO (x
) < nregs
&& reg_map
[REGNO (x
)] != 0)
2735 /* SUBREGs can't be shared. Always return a copy to ensure that if
2736 this replacement occurs more than once then each instance will
2737 get distinct rtx. */
2738 if (GET_CODE (reg_map
[REGNO (x
)]) == SUBREG
)
2739 return copy_rtx (reg_map
[REGNO (x
)]);
2740 return reg_map
[REGNO (x
)];
2745 /* Prevent making nested SUBREGs. */
2746 if (GET_CODE (SUBREG_REG (x
)) == REG
&& REGNO (SUBREG_REG (x
)) < nregs
2747 && reg_map
[REGNO (SUBREG_REG (x
))] != 0
2748 && GET_CODE (reg_map
[REGNO (SUBREG_REG (x
))]) == SUBREG
)
2750 rtx map_val
= reg_map
[REGNO (SUBREG_REG (x
))];
2751 return simplify_gen_subreg (GET_MODE (x
), map_val
,
2752 GET_MODE (SUBREG_REG (x
)),
2759 SET_DEST (x
) = replace_regs (SET_DEST (x
), reg_map
, nregs
, 0);
2761 else if (GET_CODE (SET_DEST (x
)) == MEM
2762 || GET_CODE (SET_DEST (x
)) == STRICT_LOW_PART
)
2763 /* Even if we are not to replace destinations, replace register if it
2764 is CONTAINED in destination (destination is memory or
2765 STRICT_LOW_PART). */
2766 XEXP (SET_DEST (x
), 0) = replace_regs (XEXP (SET_DEST (x
), 0),
2768 else if (GET_CODE (SET_DEST (x
)) == ZERO_EXTRACT
)
2769 /* Similarly, for ZERO_EXTRACT we replace all operands. */
2772 SET_SRC (x
) = replace_regs (SET_SRC (x
), reg_map
, nregs
, 0);
2779 fmt
= GET_RTX_FORMAT (code
);
2780 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2783 XEXP (x
, i
) = replace_regs (XEXP (x
, i
), reg_map
, nregs
, replace_dest
);
2784 else if (fmt
[i
] == 'E')
2787 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2788 XVECEXP (x
, i
, j
) = replace_regs (XVECEXP (x
, i
, j
), reg_map
,
2789 nregs
, replace_dest
);
2795 /* Replace occurrences of the old label in *X with the new one.
2796 DATA is an rtx_pair containing the old and new labels, respectively. */
2799 replace_label (x
, data
)
2804 rtx old_label
= ((rtx_pair
*) data
)->r1
;
2805 rtx new_label
= ((rtx_pair
*) data
)->r2
;
2810 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
2811 field. This is not handled by for_each_rtx because it doesn't
2812 handle unprinted ('0') fields. */
2813 if (GET_CODE (l
) == JUMP_INSN
&& JUMP_LABEL (l
) == old_label
)
2814 JUMP_LABEL (l
) = new_label
;
2816 if (GET_CODE (l
) != LABEL_REF
)
2819 if (XEXP (l
, 0) != old_label
)
2822 XEXP (l
, 0) = new_label
;
2823 ++LABEL_NUSES (new_label
);
2824 --LABEL_NUSES (old_label
);
2829 /* Return RTX_EQUAL_P (*PX, SUBX). If *PX and SUBX are not equal
2830 FOR_EACH_RTX continues traversing, if they are equal FOR_EACH_RTX
2831 stops traversing and returns the same value as this function. */
2834 subrtx_p_1 (px
, subx
)
2838 return rtx_equal_p (*px
, (rtx
) subx
);
2841 /* Return true if SUBX is equal to some subexpression of X. */
2848 return for_each_rtx (&x
, subrtx_p_1
, subx
);
2851 /* If INSN is a jump to jumptable insn rturn true and store the label (which
2852 INSN jumps to) to *LABEL and the tablejump insn to *TABLE.
2853 LABEL and TABLE may be NULL. */
2856 tablejump_p (insn
, label
, table
)
2863 if (onlyjump_p (insn
)
2864 && (l
= JUMP_LABEL (insn
)) != NULL_RTX
2865 && (t
= NEXT_INSN (l
)) != NULL_RTX
2866 && GET_CODE (t
) == JUMP_INSN
2867 && (GET_CODE (PATTERN (t
)) == ADDR_VEC
2868 || GET_CODE (PATTERN (t
)) == ADDR_DIFF_VEC
))
2879 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2880 constant that is not in the constant pool and not in the condition
2881 of an IF_THEN_ELSE. */
2884 computed_jump_p_1 (x
)
2887 enum rtx_code code
= GET_CODE (x
);
2906 return ! (GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
2907 && CONSTANT_POOL_ADDRESS_P (XEXP (x
, 0)));
2910 return (computed_jump_p_1 (XEXP (x
, 1))
2911 || computed_jump_p_1 (XEXP (x
, 2)));
2917 fmt
= GET_RTX_FORMAT (code
);
2918 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2921 && computed_jump_p_1 (XEXP (x
, i
)))
2924 else if (fmt
[i
] == 'E')
2925 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2926 if (computed_jump_p_1 (XVECEXP (x
, i
, j
)))
2933 /* Return nonzero if INSN is an indirect jump (aka computed jump).
2935 Tablejumps and casesi insns are not considered indirect jumps;
2936 we can recognize them by a (use (label_ref)). */
2939 computed_jump_p (insn
)
2943 if (GET_CODE (insn
) == JUMP_INSN
)
2945 rtx pat
= PATTERN (insn
);
2947 if (find_reg_note (insn
, REG_LABEL
, NULL_RTX
))
2949 else if (GET_CODE (pat
) == PARALLEL
)
2951 int len
= XVECLEN (pat
, 0);
2952 int has_use_labelref
= 0;
2954 for (i
= len
- 1; i
>= 0; i
--)
2955 if (GET_CODE (XVECEXP (pat
, 0, i
)) == USE
2956 && (GET_CODE (XEXP (XVECEXP (pat
, 0, i
), 0))
2958 has_use_labelref
= 1;
2960 if (! has_use_labelref
)
2961 for (i
= len
- 1; i
>= 0; i
--)
2962 if (GET_CODE (XVECEXP (pat
, 0, i
)) == SET
2963 && SET_DEST (XVECEXP (pat
, 0, i
)) == pc_rtx
2964 && computed_jump_p_1 (SET_SRC (XVECEXP (pat
, 0, i
))))
2967 else if (GET_CODE (pat
) == SET
2968 && SET_DEST (pat
) == pc_rtx
2969 && computed_jump_p_1 (SET_SRC (pat
)))
2975 /* Traverse X via depth-first search, calling F for each
2976 sub-expression (including X itself). F is also passed the DATA.
2977 If F returns -1, do not traverse sub-expressions, but continue
2978 traversing the rest of the tree. If F ever returns any other
2979 nonzero value, stop the traversal, and return the value returned
2980 by F. Otherwise, return 0. This function does not traverse inside
2981 tree structure that contains RTX_EXPRs, or into sub-expressions
2982 whose format code is `0' since it is not known whether or not those
2983 codes are actually RTL.
2985 This routine is very general, and could (should?) be used to
2986 implement many of the other routines in this file. */
2989 for_each_rtx (x
, f
, data
)
3000 result
= (*f
) (x
, data
);
3002 /* Do not traverse sub-expressions. */
3004 else if (result
!= 0)
3005 /* Stop the traversal. */
3009 /* There are no sub-expressions. */
3012 length
= GET_RTX_LENGTH (GET_CODE (*x
));
3013 format
= GET_RTX_FORMAT (GET_CODE (*x
));
3015 for (i
= 0; i
< length
; ++i
)
3020 result
= for_each_rtx (&XEXP (*x
, i
), f
, data
);
3027 if (XVEC (*x
, i
) != 0)
3030 for (j
= 0; j
< XVECLEN (*x
, i
); ++j
)
3032 result
= for_each_rtx (&XVECEXP (*x
, i
, j
), f
, data
);
3040 /* Nothing to do. */
3049 /* Searches X for any reference to REGNO, returning the rtx of the
3050 reference found if any. Otherwise, returns NULL_RTX. */
3053 regno_use_in (regno
, x
)
3061 if (GET_CODE (x
) == REG
&& REGNO (x
) == regno
)
3064 fmt
= GET_RTX_FORMAT (GET_CODE (x
));
3065 for (i
= GET_RTX_LENGTH (GET_CODE (x
)) - 1; i
>= 0; i
--)
3069 if ((tem
= regno_use_in (regno
, XEXP (x
, i
))))
3072 else if (fmt
[i
] == 'E')
3073 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
3074 if ((tem
= regno_use_in (regno
, XVECEXP (x
, i
, j
))))
3081 /* Return a value indicating whether OP, an operand of a commutative
3082 operation, is preferred as the first or second operand. The higher
3083 the value, the stronger the preference for being the first operand.
3084 We use negative values to indicate a preference for the first operand
3085 and positive values for the second operand. */
3088 commutative_operand_precedence (op
)
3091 /* Constants always come the second operand. Prefer "nice" constants. */
3092 if (GET_CODE (op
) == CONST_INT
)
3094 if (GET_CODE (op
) == CONST_DOUBLE
)
3096 if (CONSTANT_P (op
))
3099 /* SUBREGs of objects should come second. */
3100 if (GET_CODE (op
) == SUBREG
3101 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (op
))) == 'o')
3104 /* If only one operand is a `neg', `not',
3105 `mult', `plus', or `minus' expression, it will be the first
3107 if (GET_CODE (op
) == NEG
|| GET_CODE (op
) == NOT
3108 || GET_CODE (op
) == MULT
|| GET_CODE (op
) == PLUS
3109 || GET_CODE (op
) == MINUS
)
3112 /* Complex expressions should be the first, so decrease priority
3114 if (GET_RTX_CLASS (GET_CODE (op
)) == 'o')
3119 /* Return 1 iff it is necessary to swap operands of commutative operation
3120 in order to canonicalize expression. */
3123 swap_commutative_operands_p (x
, y
)
3126 return (commutative_operand_precedence (x
)
3127 < commutative_operand_precedence (y
));
3130 /* Return 1 if X is an autoincrement side effect and the register is
3131 not the stack pointer. */
3136 switch (GET_CODE (x
))
3144 /* There are no REG_INC notes for SP. */
3145 if (XEXP (x
, 0) != stack_pointer_rtx
)
3153 /* Return 1 if the sequence of instructions beginning with FROM and up
3154 to and including TO is safe to move. If NEW_TO is non-NULL, and
3155 the sequence is not already safe to move, but can be easily
3156 extended to a sequence which is safe, then NEW_TO will point to the
3157 end of the extended sequence.
3159 For now, this function only checks that the region contains whole
3160 exception regions, but it could be extended to check additional
3161 conditions as well. */
3164 insns_safe_to_move_p (from
, to
, new_to
)
3169 int eh_region_count
= 0;
3173 /* By default, assume the end of the region will be what was
3180 if (GET_CODE (r
) == NOTE
)
3182 switch (NOTE_LINE_NUMBER (r
))
3184 case NOTE_INSN_EH_REGION_BEG
:
3188 case NOTE_INSN_EH_REGION_END
:
3189 if (eh_region_count
== 0)
3190 /* This sequence of instructions contains the end of
3191 an exception region, but not he beginning. Moving
3192 it will cause chaos. */
3203 /* If we've passed TO, and we see a non-note instruction, we
3204 can't extend the sequence to a movable sequence. */
3210 /* It's OK to move the sequence if there were matched sets of
3211 exception region notes. */
3212 return eh_region_count
== 0;
3217 /* It's OK to move the sequence if there were matched sets of
3218 exception region notes. */
3219 if (past_to_p
&& eh_region_count
== 0)
3225 /* Go to the next instruction. */
3232 /* Return nonzero if IN contains a piece of rtl that has the address LOC */
3234 loc_mentioned_in_p (loc
, in
)
3237 enum rtx_code code
= GET_CODE (in
);
3238 const char *fmt
= GET_RTX_FORMAT (code
);
3241 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3243 if (loc
== &in
->fld
[i
].rtx
)
3247 if (loc_mentioned_in_p (loc
, XEXP (in
, i
)))
3250 else if (fmt
[i
] == 'E')
3251 for (j
= XVECLEN (in
, i
) - 1; j
>= 0; j
--)
3252 if (loc_mentioned_in_p (loc
, XVECEXP (in
, i
, j
)))
3258 /* Given a subreg X, return the bit offset where the subreg begins
3259 (counting from the least significant bit of the reg). */
3265 enum machine_mode inner_mode
= GET_MODE (SUBREG_REG (x
));
3266 enum machine_mode mode
= GET_MODE (x
);
3267 unsigned int bitpos
;
3271 /* A paradoxical subreg begins at bit position 0. */
3272 if (GET_MODE_BITSIZE (mode
) > GET_MODE_BITSIZE (inner_mode
))
3275 if (WORDS_BIG_ENDIAN
!= BYTES_BIG_ENDIAN
)
3276 /* If the subreg crosses a word boundary ensure that
3277 it also begins and ends on a word boundary. */
3278 if ((SUBREG_BYTE (x
) % UNITS_PER_WORD
3279 + GET_MODE_SIZE (mode
)) > UNITS_PER_WORD
3280 && (SUBREG_BYTE (x
) % UNITS_PER_WORD
3281 || GET_MODE_SIZE (mode
) % UNITS_PER_WORD
))
3284 if (WORDS_BIG_ENDIAN
)
3285 word
= (GET_MODE_SIZE (inner_mode
)
3286 - (SUBREG_BYTE (x
) + GET_MODE_SIZE (mode
))) / UNITS_PER_WORD
;
3288 word
= SUBREG_BYTE (x
) / UNITS_PER_WORD
;
3289 bitpos
= word
* BITS_PER_WORD
;
3291 if (BYTES_BIG_ENDIAN
)
3292 byte
= (GET_MODE_SIZE (inner_mode
)
3293 - (SUBREG_BYTE (x
) + GET_MODE_SIZE (mode
))) % UNITS_PER_WORD
;
3295 byte
= SUBREG_BYTE (x
) % UNITS_PER_WORD
;
3296 bitpos
+= byte
* BITS_PER_UNIT
;
3301 /* This function returns the regno offset of a subreg expression.
3302 xregno - A regno of an inner hard subreg_reg (or what will become one).
3303 xmode - The mode of xregno.
3304 offset - The byte offset.
3305 ymode - The mode of a top level SUBREG (or what may become one).
3306 RETURN - The regno offset which would be used. */
3308 subreg_regno_offset (xregno
, xmode
, offset
, ymode
)
3309 unsigned int xregno
;
3310 enum machine_mode xmode
;
3311 unsigned int offset
;
3312 enum machine_mode ymode
;
3314 int nregs_xmode
, nregs_ymode
;
3315 int mode_multiple
, nregs_multiple
;
3318 if (xregno
>= FIRST_PSEUDO_REGISTER
)
3321 nregs_xmode
= HARD_REGNO_NREGS (xregno
, xmode
);
3322 nregs_ymode
= HARD_REGNO_NREGS (xregno
, ymode
);
3324 /* If this is a big endian paradoxical subreg, which uses more actual
3325 hard registers than the original register, we must return a negative
3326 offset so that we find the proper highpart of the register. */
3328 && nregs_ymode
> nregs_xmode
3329 && (GET_MODE_SIZE (ymode
) > UNITS_PER_WORD
3330 ? WORDS_BIG_ENDIAN
: BYTES_BIG_ENDIAN
))
3331 return nregs_xmode
- nregs_ymode
;
3333 if (offset
== 0 || nregs_xmode
== nregs_ymode
)
3336 /* size of ymode must not be greater than the size of xmode. */
3337 mode_multiple
= GET_MODE_SIZE (xmode
) / GET_MODE_SIZE (ymode
);
3338 if (mode_multiple
== 0)
3341 y_offset
= offset
/ GET_MODE_SIZE (ymode
);
3342 nregs_multiple
= nregs_xmode
/ nregs_ymode
;
3343 return (y_offset
/ (mode_multiple
/ nregs_multiple
)) * nregs_ymode
;
3346 /* Return the final regno that a subreg expression refers to. */
3352 rtx subreg
= SUBREG_REG (x
);
3353 int regno
= REGNO (subreg
);
3355 ret
= regno
+ subreg_regno_offset (regno
,
3362 struct parms_set_data
3368 /* Helper function for noticing stores to parameter registers. */
3370 parms_set (x
, pat
, data
)
3371 rtx x
, pat ATTRIBUTE_UNUSED
;
3374 struct parms_set_data
*d
= data
;
3375 if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
3376 && TEST_HARD_REG_BIT (d
->regs
, REGNO (x
)))
3378 CLEAR_HARD_REG_BIT (d
->regs
, REGNO (x
));
3383 /* Look backward for first parameter to be loaded.
3384 Do not skip BOUNDARY. */
3386 find_first_parameter_load (call_insn
, boundary
)
3387 rtx call_insn
, boundary
;
3389 struct parms_set_data parm
;
3392 /* Since different machines initialize their parameter registers
3393 in different orders, assume nothing. Collect the set of all
3394 parameter registers. */
3395 CLEAR_HARD_REG_SET (parm
.regs
);
3397 for (p
= CALL_INSN_FUNCTION_USAGE (call_insn
); p
; p
= XEXP (p
, 1))
3398 if (GET_CODE (XEXP (p
, 0)) == USE
3399 && GET_CODE (XEXP (XEXP (p
, 0), 0)) == REG
)
3401 if (REGNO (XEXP (XEXP (p
, 0), 0)) >= FIRST_PSEUDO_REGISTER
)
3404 /* We only care about registers which can hold function
3406 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p
, 0), 0))))
3409 SET_HARD_REG_BIT (parm
.regs
, REGNO (XEXP (XEXP (p
, 0), 0)));
3414 /* Search backward for the first set of a register in this set. */
3415 while (parm
.nregs
&& before
!= boundary
)
3417 before
= PREV_INSN (before
);
3419 /* It is possible that some loads got CSEed from one call to
3420 another. Stop in that case. */
3421 if (GET_CODE (before
) == CALL_INSN
)
3424 /* Our caller needs either ensure that we will find all sets
3425 (in case code has not been optimized yet), or take care
3426 for possible labels in a way by setting boundary to preceding
3428 if (GET_CODE (before
) == CODE_LABEL
)
3430 if (before
!= boundary
)
3435 if (INSN_P (before
))
3436 note_stores (PATTERN (before
), parms_set
, &parm
);
3441 /* Return true if we should avoid inserting code between INSN and preceding
3442 call instruction. */
3445 keep_with_call_p (insn
)
3450 if (INSN_P (insn
) && (set
= single_set (insn
)) != NULL
)
3452 if (GET_CODE (SET_DEST (set
)) == REG
3453 && REGNO (SET_DEST (set
)) < FIRST_PSEUDO_REGISTER
3454 && fixed_regs
[REGNO (SET_DEST (set
))]
3455 && general_operand (SET_SRC (set
), VOIDmode
))
3457 if (GET_CODE (SET_SRC (set
)) == REG
3458 && FUNCTION_VALUE_REGNO_P (REGNO (SET_SRC (set
)))
3459 && GET_CODE (SET_DEST (set
)) == REG
3460 && REGNO (SET_DEST (set
)) >= FIRST_PSEUDO_REGISTER
)
3462 /* There may be a stack pop just after the call and before the store
3463 of the return register. Search for the actual store when deciding
3464 if we can break or not. */
3465 if (SET_DEST (set
) == stack_pointer_rtx
)
3467 rtx i2
= next_nonnote_insn (insn
);
3468 if (i2
&& keep_with_call_p (i2
))
3475 /* Return true when store to register X can be hoisted to the place
3476 with LIVE registers (can be NULL). Value VAL contains destination
3477 whose value will be used. */
3480 hoist_test_store (x
, val
, live
)
3484 if (GET_CODE (x
) == SCRATCH
)
3487 if (rtx_equal_p (x
, val
))
3490 /* Allow subreg of X in case it is not writting just part of multireg pseudo.
3491 Then we would need to update all users to care hoisting the store too.
3492 Caller may represent that by specifying whole subreg as val. */
3494 if (GET_CODE (x
) == SUBREG
&& rtx_equal_p (SUBREG_REG (x
), val
))
3496 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))) > UNITS_PER_WORD
3497 && GET_MODE_BITSIZE (GET_MODE (x
)) <
3498 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x
))))
3502 if (GET_CODE (x
) == SUBREG
)
3505 /* Anything except register store is not hoistable. This includes the
3506 partial stores to registers. */
3511 /* Pseudo registers can be allways replaced by another pseudo to avoid
3512 the side effect, for hard register we must ensure that they are dead.
3513 Eventually we may want to add code to try turn pseudos to hards, but it
3514 is unlikely useful. */
3516 if (REGNO (x
) < FIRST_PSEUDO_REGISTER
)
3518 int regno
= REGNO (x
);
3519 int n
= HARD_REGNO_NREGS (regno
, GET_MODE (x
));
3523 if (REGNO_REG_SET_P (live
, regno
))
3526 if (REGNO_REG_SET_P (live
, regno
+ n
))
3533 /* Return true if INSN can be hoisted to place with LIVE hard registers
3534 (LIVE can be NULL when unknown). VAL is expected to be stored by the insn
3535 and used by the hoisting pass. */
3538 can_hoist_insn_p (insn
, val
, live
)
3542 rtx pat
= PATTERN (insn
);
3545 /* It probably does not worth the complexity to handle multiple
3547 if (!single_set (insn
))
3549 /* We can move CALL_INSN, but we need to check that all caller clobbered
3551 if (GET_CODE (insn
) == CALL_INSN
)
3553 /* In future we will handle hoisting of libcall sequences, but
3555 if (find_reg_note (insn
, REG_RETVAL
, NULL_RTX
))
3557 switch (GET_CODE (pat
))
3560 if (!hoist_test_store (SET_DEST (pat
), val
, live
))
3564 /* USES do have sick semantics, so do not move them. */
3568 if (!hoist_test_store (XEXP (pat
, 0), val
, live
))
3572 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
3574 rtx x
= XVECEXP (pat
, 0, i
);
3575 switch (GET_CODE (x
))
3578 if (!hoist_test_store (SET_DEST (x
), val
, live
))
3582 /* We need to fix callers to really ensure availability
3583 of all values inisn uses, but for now it is safe to prohibit
3584 hoisting of any insn having such a hidden uses. */
3588 if (!hoist_test_store (SET_DEST (x
), val
, live
))
3602 /* Update store after hoisting - replace all stores to pseudo registers
3603 by new ones to avoid clobbering of values except for store to VAL that will
3604 be updated to NEW. */
3607 hoist_update_store (insn
, xp
, val
, new)
3608 rtx insn
, *xp
, val
, new;
3612 if (GET_CODE (x
) == SCRATCH
)
3615 if (GET_CODE (x
) == SUBREG
&& SUBREG_REG (x
) == val
)
3616 validate_change (insn
, xp
,
3617 simplify_gen_subreg (GET_MODE (x
), new, GET_MODE (new),
3618 SUBREG_BYTE (x
)), 1);
3619 if (rtx_equal_p (x
, val
))
3621 validate_change (insn
, xp
, new, 1);
3624 if (GET_CODE (x
) == SUBREG
)
3626 xp
= &SUBREG_REG (x
);
3633 /* We've verified that hard registers are dead, so we may keep the side
3634 effect. Otherwise replace it by new pseudo. */
3635 if (REGNO (x
) >= FIRST_PSEUDO_REGISTER
)
3636 validate_change (insn
, xp
, gen_reg_rtx (GET_MODE (x
)), 1);
3638 = alloc_EXPR_LIST (REG_UNUSED
, *xp
, REG_NOTES (insn
));
3641 /* Create a copy of INSN after AFTER replacing store of VAL to NEW
3642 and each other side effect to pseudo register by new pseudo register. */
3645 hoist_insn_after (insn
, after
, val
, new)
3646 rtx insn
, after
, val
, new;
3652 insn
= emit_copy_of_insn_after (insn
, after
);
3653 pat
= PATTERN (insn
);
3655 /* Remove REG_UNUSED notes as we will re-emit them. */
3656 while ((note
= find_reg_note (insn
, REG_UNUSED
, NULL_RTX
)))
3657 remove_note (insn
, note
);
3659 /* To get this working callers must ensure to move everything referenced
3660 by REG_EQUAL/REG_EQUIV notes too. Lets remove them, it is probably
3662 while ((note
= find_reg_note (insn
, REG_EQUAL
, NULL_RTX
)))
3663 remove_note (insn
, note
);
3664 while ((note
= find_reg_note (insn
, REG_EQUIV
, NULL_RTX
)))
3665 remove_note (insn
, note
);
3667 /* Remove REG_DEAD notes as they might not be valid anymore in case
3668 we create redundancy. */
3669 while ((note
= find_reg_note (insn
, REG_DEAD
, NULL_RTX
)))
3670 remove_note (insn
, note
);
3671 switch (GET_CODE (pat
))
3674 hoist_update_store (insn
, &SET_DEST (pat
), val
, new);
3679 hoist_update_store (insn
, &XEXP (pat
, 0), val
, new);
3682 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
3684 rtx x
= XVECEXP (pat
, 0, i
);
3685 switch (GET_CODE (x
))
3688 hoist_update_store (insn
, &SET_DEST (x
), val
, new);
3693 hoist_update_store (insn
, &SET_DEST (x
), val
, new);
3703 if (!apply_change_group ())
3710 hoist_insn_to_edge (insn
, e
, val
, new)
3716 /* We cannot insert instructions on an abnormal critical edge.
3717 It will be easier to find the culprit if we die now. */
3718 if ((e
->flags
& EDGE_ABNORMAL
) && EDGE_CRITICAL_P (e
))
3721 /* Do not use emit_insn_on_edge as we want to preserve notes and similar
3722 stuff. We also emit CALL_INSNS and firends. */
3723 if (e
->insns
== NULL_RTX
)
3726 emit_note (NULL
, NOTE_INSN_DELETED
);
3729 push_to_sequence (e
->insns
);
3731 new_insn
= hoist_insn_after (insn
, get_last_insn (), val
, new);
3733 e
->insns
= get_insns ();