2018-06-04 Richard Biener <rguenther@suse.de>
[official-gcc.git] / gcc / tree-cfg.c
blob4a1b2bef5705a3049378b6d1253456c72e10e771
1 /* Control flow functions for trees.
2 Copyright (C) 2001-2018 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "cfghooks.h"
30 #include "tree-pass.h"
31 #include "ssa.h"
32 #include "cgraph.h"
33 #include "gimple-pretty-print.h"
34 #include "diagnostic-core.h"
35 #include "fold-const.h"
36 #include "trans-mem.h"
37 #include "stor-layout.h"
38 #include "print-tree.h"
39 #include "cfganal.h"
40 #include "gimple-fold.h"
41 #include "tree-eh.h"
42 #include "gimple-iterator.h"
43 #include "gimplify-me.h"
44 #include "gimple-walk.h"
45 #include "tree-cfg.h"
46 #include "tree-ssa-loop-manip.h"
47 #include "tree-ssa-loop-niter.h"
48 #include "tree-into-ssa.h"
49 #include "tree-dfa.h"
50 #include "tree-ssa.h"
51 #include "except.h"
52 #include "cfgloop.h"
53 #include "tree-ssa-propagate.h"
54 #include "value-prof.h"
55 #include "tree-inline.h"
56 #include "tree-ssa-live.h"
57 #include "omp-general.h"
58 #include "omp-expand.h"
59 #include "tree-cfgcleanup.h"
60 #include "gimplify.h"
61 #include "attribs.h"
62 #include "selftest.h"
63 #include "opts.h"
64 #include "asan.h"
66 /* This file contains functions for building the Control Flow Graph (CFG)
67 for a function tree. */
69 /* Local declarations. */
71 /* Initial capacity for the basic block array. */
72 static const int initial_cfg_capacity = 20;
74 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
75 which use a particular edge. The CASE_LABEL_EXPRs are chained together
76 via their CASE_CHAIN field, which we clear after we're done with the
77 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
79 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
80 update the case vector in response to edge redirections.
82 Right now this table is set up and torn down at key points in the
83 compilation process. It would be nice if we could make the table
84 more persistent. The key is getting notification of changes to
85 the CFG (particularly edge removal, creation and redirection). */
87 static hash_map<edge, tree> *edge_to_cases;
89 /* If we record edge_to_cases, this bitmap will hold indexes
90 of basic blocks that end in a GIMPLE_SWITCH which we touched
91 due to edge manipulations. */
93 static bitmap touched_switch_bbs;
95 /* CFG statistics. */
96 struct cfg_stats_d
98 long num_merged_labels;
101 static struct cfg_stats_d cfg_stats;
103 /* Data to pass to replace_block_vars_by_duplicates_1. */
104 struct replace_decls_d
106 hash_map<tree, tree> *vars_map;
107 tree to_context;
110 /* Hash table to store last discriminator assigned for each locus. */
111 struct locus_discrim_map
113 location_t locus;
114 int discriminator;
117 /* Hashtable helpers. */
119 struct locus_discrim_hasher : free_ptr_hash <locus_discrim_map>
121 static inline hashval_t hash (const locus_discrim_map *);
122 static inline bool equal (const locus_discrim_map *,
123 const locus_discrim_map *);
126 /* Trivial hash function for a location_t. ITEM is a pointer to
127 a hash table entry that maps a location_t to a discriminator. */
129 inline hashval_t
130 locus_discrim_hasher::hash (const locus_discrim_map *item)
132 return LOCATION_LINE (item->locus);
135 /* Equality function for the locus-to-discriminator map. A and B
136 point to the two hash table entries to compare. */
138 inline bool
139 locus_discrim_hasher::equal (const locus_discrim_map *a,
140 const locus_discrim_map *b)
142 return LOCATION_LINE (a->locus) == LOCATION_LINE (b->locus);
145 static hash_table<locus_discrim_hasher> *discriminator_per_locus;
147 /* Basic blocks and flowgraphs. */
148 static void make_blocks (gimple_seq);
150 /* Edges. */
151 static void make_edges (void);
152 static void assign_discriminators (void);
153 static void make_cond_expr_edges (basic_block);
154 static void make_gimple_switch_edges (gswitch *, basic_block);
155 static bool make_goto_expr_edges (basic_block);
156 static void make_gimple_asm_edges (basic_block);
157 static edge gimple_redirect_edge_and_branch (edge, basic_block);
158 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
160 /* Various helpers. */
161 static inline bool stmt_starts_bb_p (gimple *, gimple *);
162 static int gimple_verify_flow_info (void);
163 static void gimple_make_forwarder_block (edge);
164 static gimple *first_non_label_stmt (basic_block);
165 static bool verify_gimple_transaction (gtransaction *);
166 static bool call_can_make_abnormal_goto (gimple *);
168 /* Flowgraph optimization and cleanup. */
169 static void gimple_merge_blocks (basic_block, basic_block);
170 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
171 static void remove_bb (basic_block);
172 static edge find_taken_edge_computed_goto (basic_block, tree);
173 static edge find_taken_edge_cond_expr (const gcond *, tree);
174 static edge find_taken_edge_switch_expr (const gswitch *, tree);
175 static tree find_case_label_for_value (const gswitch *, tree);
176 static void lower_phi_internal_fn ();
178 void
179 init_empty_tree_cfg_for_function (struct function *fn)
181 /* Initialize the basic block array. */
182 init_flow (fn);
183 profile_status_for_fn (fn) = PROFILE_ABSENT;
184 n_basic_blocks_for_fn (fn) = NUM_FIXED_BLOCKS;
185 last_basic_block_for_fn (fn) = NUM_FIXED_BLOCKS;
186 vec_alloc (basic_block_info_for_fn (fn), initial_cfg_capacity);
187 vec_safe_grow_cleared (basic_block_info_for_fn (fn),
188 initial_cfg_capacity);
190 /* Build a mapping of labels to their associated blocks. */
191 vec_alloc (label_to_block_map_for_fn (fn), initial_cfg_capacity);
192 vec_safe_grow_cleared (label_to_block_map_for_fn (fn),
193 initial_cfg_capacity);
195 SET_BASIC_BLOCK_FOR_FN (fn, ENTRY_BLOCK, ENTRY_BLOCK_PTR_FOR_FN (fn));
196 SET_BASIC_BLOCK_FOR_FN (fn, EXIT_BLOCK, EXIT_BLOCK_PTR_FOR_FN (fn));
198 ENTRY_BLOCK_PTR_FOR_FN (fn)->next_bb
199 = EXIT_BLOCK_PTR_FOR_FN (fn);
200 EXIT_BLOCK_PTR_FOR_FN (fn)->prev_bb
201 = ENTRY_BLOCK_PTR_FOR_FN (fn);
204 void
205 init_empty_tree_cfg (void)
207 init_empty_tree_cfg_for_function (cfun);
210 /*---------------------------------------------------------------------------
211 Create basic blocks
212 ---------------------------------------------------------------------------*/
214 /* Entry point to the CFG builder for trees. SEQ is the sequence of
215 statements to be added to the flowgraph. */
217 static void
218 build_gimple_cfg (gimple_seq seq)
220 /* Register specific gimple functions. */
221 gimple_register_cfg_hooks ();
223 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
225 init_empty_tree_cfg ();
227 make_blocks (seq);
229 /* Make sure there is always at least one block, even if it's empty. */
230 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
231 create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
233 /* Adjust the size of the array. */
234 if (basic_block_info_for_fn (cfun)->length ()
235 < (size_t) n_basic_blocks_for_fn (cfun))
236 vec_safe_grow_cleared (basic_block_info_for_fn (cfun),
237 n_basic_blocks_for_fn (cfun));
239 /* To speed up statement iterator walks, we first purge dead labels. */
240 cleanup_dead_labels ();
242 /* Group case nodes to reduce the number of edges.
243 We do this after cleaning up dead labels because otherwise we miss
244 a lot of obvious case merging opportunities. */
245 group_case_labels ();
247 /* Create the edges of the flowgraph. */
248 discriminator_per_locus = new hash_table<locus_discrim_hasher> (13);
249 make_edges ();
250 assign_discriminators ();
251 lower_phi_internal_fn ();
252 cleanup_dead_labels ();
253 delete discriminator_per_locus;
254 discriminator_per_locus = NULL;
257 /* Look for ANNOTATE calls with loop annotation kind in BB; if found, remove
258 them and propagate the information to LOOP. We assume that the annotations
259 come immediately before the condition in BB, if any. */
261 static void
262 replace_loop_annotate_in_block (basic_block bb, struct loop *loop)
264 gimple_stmt_iterator gsi = gsi_last_bb (bb);
265 gimple *stmt = gsi_stmt (gsi);
267 if (!(stmt && gimple_code (stmt) == GIMPLE_COND))
268 return;
270 for (gsi_prev_nondebug (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
272 stmt = gsi_stmt (gsi);
273 if (gimple_code (stmt) != GIMPLE_CALL)
274 break;
275 if (!gimple_call_internal_p (stmt)
276 || gimple_call_internal_fn (stmt) != IFN_ANNOTATE)
277 break;
279 switch ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1)))
281 case annot_expr_ivdep_kind:
282 loop->safelen = INT_MAX;
283 break;
284 case annot_expr_unroll_kind:
285 loop->unroll
286 = (unsigned short) tree_to_shwi (gimple_call_arg (stmt, 2));
287 cfun->has_unroll = true;
288 break;
289 case annot_expr_no_vector_kind:
290 loop->dont_vectorize = true;
291 break;
292 case annot_expr_vector_kind:
293 loop->force_vectorize = true;
294 cfun->has_force_vectorize_loops = true;
295 break;
296 case annot_expr_parallel_kind:
297 loop->can_be_parallel = true;
298 loop->safelen = INT_MAX;
299 break;
300 default:
301 gcc_unreachable ();
304 stmt = gimple_build_assign (gimple_call_lhs (stmt),
305 gimple_call_arg (stmt, 0));
306 gsi_replace (&gsi, stmt, true);
310 /* Look for ANNOTATE calls with loop annotation kind; if found, remove
311 them and propagate the information to the loop. We assume that the
312 annotations come immediately before the condition of the loop. */
314 static void
315 replace_loop_annotate (void)
317 struct loop *loop;
318 basic_block bb;
319 gimple_stmt_iterator gsi;
320 gimple *stmt;
322 FOR_EACH_LOOP (loop, 0)
324 /* First look into the header. */
325 replace_loop_annotate_in_block (loop->header, loop);
327 /* Then look into the latch, if any. */
328 if (loop->latch)
329 replace_loop_annotate_in_block (loop->latch, loop);
332 /* Remove IFN_ANNOTATE. Safeguard for the case loop->latch == NULL. */
333 FOR_EACH_BB_FN (bb, cfun)
335 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
337 stmt = gsi_stmt (gsi);
338 if (gimple_code (stmt) != GIMPLE_CALL)
339 continue;
340 if (!gimple_call_internal_p (stmt)
341 || gimple_call_internal_fn (stmt) != IFN_ANNOTATE)
342 continue;
344 switch ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1)))
346 case annot_expr_ivdep_kind:
347 case annot_expr_unroll_kind:
348 case annot_expr_no_vector_kind:
349 case annot_expr_vector_kind:
350 case annot_expr_parallel_kind:
351 break;
352 default:
353 gcc_unreachable ();
356 warning_at (gimple_location (stmt), 0, "ignoring loop annotation");
357 stmt = gimple_build_assign (gimple_call_lhs (stmt),
358 gimple_call_arg (stmt, 0));
359 gsi_replace (&gsi, stmt, true);
364 /* Lower internal PHI function from GIMPLE FE. */
366 static void
367 lower_phi_internal_fn ()
369 basic_block bb, pred = NULL;
370 gimple_stmt_iterator gsi;
371 tree lhs;
372 gphi *phi_node;
373 gimple *stmt;
375 /* After edge creation, handle __PHI function from GIMPLE FE. */
376 FOR_EACH_BB_FN (bb, cfun)
378 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi);)
380 stmt = gsi_stmt (gsi);
381 if (! gimple_call_internal_p (stmt, IFN_PHI))
382 break;
384 lhs = gimple_call_lhs (stmt);
385 phi_node = create_phi_node (lhs, bb);
387 /* Add arguments to the PHI node. */
388 for (unsigned i = 0; i < gimple_call_num_args (stmt); ++i)
390 tree arg = gimple_call_arg (stmt, i);
391 if (TREE_CODE (arg) == LABEL_DECL)
392 pred = label_to_block (arg);
393 else
395 edge e = find_edge (pred, bb);
396 add_phi_arg (phi_node, arg, e, UNKNOWN_LOCATION);
400 gsi_remove (&gsi, true);
405 static unsigned int
406 execute_build_cfg (void)
408 gimple_seq body = gimple_body (current_function_decl);
410 build_gimple_cfg (body);
411 gimple_set_body (current_function_decl, NULL);
412 if (dump_file && (dump_flags & TDF_DETAILS))
414 fprintf (dump_file, "Scope blocks:\n");
415 dump_scope_blocks (dump_file, dump_flags);
417 cleanup_tree_cfg ();
418 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
419 replace_loop_annotate ();
420 return 0;
423 namespace {
425 const pass_data pass_data_build_cfg =
427 GIMPLE_PASS, /* type */
428 "cfg", /* name */
429 OPTGROUP_NONE, /* optinfo_flags */
430 TV_TREE_CFG, /* tv_id */
431 PROP_gimple_leh, /* properties_required */
432 ( PROP_cfg | PROP_loops ), /* properties_provided */
433 0, /* properties_destroyed */
434 0, /* todo_flags_start */
435 0, /* todo_flags_finish */
438 class pass_build_cfg : public gimple_opt_pass
440 public:
441 pass_build_cfg (gcc::context *ctxt)
442 : gimple_opt_pass (pass_data_build_cfg, ctxt)
445 /* opt_pass methods: */
446 virtual unsigned int execute (function *) { return execute_build_cfg (); }
448 }; // class pass_build_cfg
450 } // anon namespace
452 gimple_opt_pass *
453 make_pass_build_cfg (gcc::context *ctxt)
455 return new pass_build_cfg (ctxt);
459 /* Return true if T is a computed goto. */
461 bool
462 computed_goto_p (gimple *t)
464 return (gimple_code (t) == GIMPLE_GOTO
465 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
468 /* Returns true if the sequence of statements STMTS only contains
469 a call to __builtin_unreachable (). */
471 bool
472 gimple_seq_unreachable_p (gimple_seq stmts)
474 if (stmts == NULL
475 /* Return false if -fsanitize=unreachable, we don't want to
476 optimize away those calls, but rather turn them into
477 __ubsan_handle_builtin_unreachable () or __builtin_trap ()
478 later. */
479 || sanitize_flags_p (SANITIZE_UNREACHABLE))
480 return false;
482 gimple_stmt_iterator gsi = gsi_last (stmts);
484 if (!gimple_call_builtin_p (gsi_stmt (gsi), BUILT_IN_UNREACHABLE))
485 return false;
487 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
489 gimple *stmt = gsi_stmt (gsi);
490 if (gimple_code (stmt) != GIMPLE_LABEL
491 && !is_gimple_debug (stmt)
492 && !gimple_clobber_p (stmt))
493 return false;
495 return true;
498 /* Returns true for edge E where e->src ends with a GIMPLE_COND and
499 the other edge points to a bb with just __builtin_unreachable ().
500 I.e. return true for C->M edge in:
501 <bb C>:
503 if (something)
504 goto <bb N>;
505 else
506 goto <bb M>;
507 <bb N>:
508 __builtin_unreachable ();
509 <bb M>: */
511 bool
512 assert_unreachable_fallthru_edge_p (edge e)
514 basic_block pred_bb = e->src;
515 gimple *last = last_stmt (pred_bb);
516 if (last && gimple_code (last) == GIMPLE_COND)
518 basic_block other_bb = EDGE_SUCC (pred_bb, 0)->dest;
519 if (other_bb == e->dest)
520 other_bb = EDGE_SUCC (pred_bb, 1)->dest;
521 if (EDGE_COUNT (other_bb->succs) == 0)
522 return gimple_seq_unreachable_p (bb_seq (other_bb));
524 return false;
528 /* Initialize GF_CALL_CTRL_ALTERING flag, which indicates the call
529 could alter control flow except via eh. We initialize the flag at
530 CFG build time and only ever clear it later. */
532 static void
533 gimple_call_initialize_ctrl_altering (gimple *stmt)
535 int flags = gimple_call_flags (stmt);
537 /* A call alters control flow if it can make an abnormal goto. */
538 if (call_can_make_abnormal_goto (stmt)
539 /* A call also alters control flow if it does not return. */
540 || flags & ECF_NORETURN
541 /* TM ending statements have backedges out of the transaction.
542 Return true so we split the basic block containing them.
543 Note that the TM_BUILTIN test is merely an optimization. */
544 || ((flags & ECF_TM_BUILTIN)
545 && is_tm_ending_fndecl (gimple_call_fndecl (stmt)))
546 /* BUILT_IN_RETURN call is same as return statement. */
547 || gimple_call_builtin_p (stmt, BUILT_IN_RETURN)
548 /* IFN_UNIQUE should be the last insn, to make checking for it
549 as cheap as possible. */
550 || (gimple_call_internal_p (stmt)
551 && gimple_call_internal_unique_p (stmt)))
552 gimple_call_set_ctrl_altering (stmt, true);
553 else
554 gimple_call_set_ctrl_altering (stmt, false);
558 /* Insert SEQ after BB and build a flowgraph. */
560 static basic_block
561 make_blocks_1 (gimple_seq seq, basic_block bb)
563 gimple_stmt_iterator i = gsi_start (seq);
564 gimple *stmt = NULL;
565 gimple *prev_stmt = NULL;
566 bool start_new_block = true;
567 bool first_stmt_of_seq = true;
569 while (!gsi_end_p (i))
571 /* PREV_STMT should only be set to a debug stmt if the debug
572 stmt is before nondebug stmts. Once stmt reaches a nondebug
573 nonlabel, prev_stmt will be set to it, so that
574 stmt_starts_bb_p will know to start a new block if a label is
575 found. However, if stmt was a label after debug stmts only,
576 keep the label in prev_stmt even if we find further debug
577 stmts, for there may be other labels after them, and they
578 should land in the same block. */
579 if (!prev_stmt || !stmt || !is_gimple_debug (stmt))
580 prev_stmt = stmt;
581 stmt = gsi_stmt (i);
583 if (stmt && is_gimple_call (stmt))
584 gimple_call_initialize_ctrl_altering (stmt);
586 /* If the statement starts a new basic block or if we have determined
587 in a previous pass that we need to create a new block for STMT, do
588 so now. */
589 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
591 if (!first_stmt_of_seq)
592 gsi_split_seq_before (&i, &seq);
593 bb = create_basic_block (seq, bb);
594 start_new_block = false;
595 prev_stmt = NULL;
598 /* Now add STMT to BB and create the subgraphs for special statement
599 codes. */
600 gimple_set_bb (stmt, bb);
602 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
603 next iteration. */
604 if (stmt_ends_bb_p (stmt))
606 /* If the stmt can make abnormal goto use a new temporary
607 for the assignment to the LHS. This makes sure the old value
608 of the LHS is available on the abnormal edge. Otherwise
609 we will end up with overlapping life-ranges for abnormal
610 SSA names. */
611 if (gimple_has_lhs (stmt)
612 && stmt_can_make_abnormal_goto (stmt)
613 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
615 tree lhs = gimple_get_lhs (stmt);
616 tree tmp = create_tmp_var (TREE_TYPE (lhs));
617 gimple *s = gimple_build_assign (lhs, tmp);
618 gimple_set_location (s, gimple_location (stmt));
619 gimple_set_block (s, gimple_block (stmt));
620 gimple_set_lhs (stmt, tmp);
621 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
622 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
623 DECL_GIMPLE_REG_P (tmp) = 1;
624 gsi_insert_after (&i, s, GSI_SAME_STMT);
626 start_new_block = true;
629 gsi_next (&i);
630 first_stmt_of_seq = false;
632 return bb;
635 /* Build a flowgraph for the sequence of stmts SEQ. */
637 static void
638 make_blocks (gimple_seq seq)
640 /* Look for debug markers right before labels, and move the debug
641 stmts after the labels. Accepting labels among debug markers
642 adds no value, just complexity; if we wanted to annotate labels
643 with view numbers (so sequencing among markers would matter) or
644 somesuch, we're probably better off still moving the labels, but
645 adding other debug annotations in their original positions or
646 emitting nonbind or bind markers associated with the labels in
647 the original position of the labels.
649 Moving labels would probably be simpler, but we can't do that:
650 moving labels assigns label ids to them, and doing so because of
651 debug markers makes for -fcompare-debug and possibly even codegen
652 differences. So, we have to move the debug stmts instead. To
653 that end, we scan SEQ backwards, marking the position of the
654 latest (earliest we find) label, and moving debug stmts that are
655 not separated from it by nondebug nonlabel stmts after the
656 label. */
657 if (MAY_HAVE_DEBUG_MARKER_STMTS)
659 gimple_stmt_iterator label = gsi_none ();
661 for (gimple_stmt_iterator i = gsi_last (seq); !gsi_end_p (i); gsi_prev (&i))
663 gimple *stmt = gsi_stmt (i);
665 /* If this is the first label we encounter (latest in SEQ)
666 before nondebug stmts, record its position. */
667 if (is_a <glabel *> (stmt))
669 if (gsi_end_p (label))
670 label = i;
671 continue;
674 /* Without a recorded label position to move debug stmts to,
675 there's nothing to do. */
676 if (gsi_end_p (label))
677 continue;
679 /* Move the debug stmt at I after LABEL. */
680 if (is_gimple_debug (stmt))
682 gcc_assert (gimple_debug_nonbind_marker_p (stmt));
683 /* As STMT is removed, I advances to the stmt after
684 STMT, so the gsi_prev in the for "increment"
685 expression gets us to the stmt we're to visit after
686 STMT. LABEL, however, would advance to the moved
687 stmt if we passed it to gsi_move_after, so pass it a
688 copy instead, so as to keep LABEL pointing to the
689 LABEL. */
690 gimple_stmt_iterator copy = label;
691 gsi_move_after (&i, &copy);
692 continue;
695 /* There aren't any (more?) debug stmts before label, so
696 there isn't anything else to move after it. */
697 label = gsi_none ();
701 make_blocks_1 (seq, ENTRY_BLOCK_PTR_FOR_FN (cfun));
704 /* Create and return a new empty basic block after bb AFTER. */
706 static basic_block
707 create_bb (void *h, void *e, basic_block after)
709 basic_block bb;
711 gcc_assert (!e);
713 /* Create and initialize a new basic block. Since alloc_block uses
714 GC allocation that clears memory to allocate a basic block, we do
715 not have to clear the newly allocated basic block here. */
716 bb = alloc_block ();
718 bb->index = last_basic_block_for_fn (cfun);
719 bb->flags = BB_NEW;
720 set_bb_seq (bb, h ? (gimple_seq) h : NULL);
722 /* Add the new block to the linked list of blocks. */
723 link_block (bb, after);
725 /* Grow the basic block array if needed. */
726 if ((size_t) last_basic_block_for_fn (cfun)
727 == basic_block_info_for_fn (cfun)->length ())
729 size_t new_size =
730 (last_basic_block_for_fn (cfun)
731 + (last_basic_block_for_fn (cfun) + 3) / 4);
732 vec_safe_grow_cleared (basic_block_info_for_fn (cfun), new_size);
735 /* Add the newly created block to the array. */
736 SET_BASIC_BLOCK_FOR_FN (cfun, last_basic_block_for_fn (cfun), bb);
738 n_basic_blocks_for_fn (cfun)++;
739 last_basic_block_for_fn (cfun)++;
741 return bb;
745 /*---------------------------------------------------------------------------
746 Edge creation
747 ---------------------------------------------------------------------------*/
749 /* If basic block BB has an abnormal edge to a basic block
750 containing IFN_ABNORMAL_DISPATCHER internal call, return
751 that the dispatcher's basic block, otherwise return NULL. */
753 basic_block
754 get_abnormal_succ_dispatcher (basic_block bb)
756 edge e;
757 edge_iterator ei;
759 FOR_EACH_EDGE (e, ei, bb->succs)
760 if ((e->flags & (EDGE_ABNORMAL | EDGE_EH)) == EDGE_ABNORMAL)
762 gimple_stmt_iterator gsi
763 = gsi_start_nondebug_after_labels_bb (e->dest);
764 gimple *g = gsi_stmt (gsi);
765 if (g && gimple_call_internal_p (g, IFN_ABNORMAL_DISPATCHER))
766 return e->dest;
768 return NULL;
771 /* Helper function for make_edges. Create a basic block with
772 with ABNORMAL_DISPATCHER internal call in it if needed, and
773 create abnormal edges from BBS to it and from it to FOR_BB
774 if COMPUTED_GOTO is false, otherwise factor the computed gotos. */
776 static void
777 handle_abnormal_edges (basic_block *dispatcher_bbs,
778 basic_block for_bb, int *bb_to_omp_idx,
779 auto_vec<basic_block> *bbs, bool computed_goto)
781 basic_block *dispatcher = dispatcher_bbs + (computed_goto ? 1 : 0);
782 unsigned int idx = 0;
783 basic_block bb;
784 bool inner = false;
786 if (bb_to_omp_idx)
788 dispatcher = dispatcher_bbs + 2 * bb_to_omp_idx[for_bb->index];
789 if (bb_to_omp_idx[for_bb->index] != 0)
790 inner = true;
793 /* If the dispatcher has been created already, then there are basic
794 blocks with abnormal edges to it, so just make a new edge to
795 for_bb. */
796 if (*dispatcher == NULL)
798 /* Check if there are any basic blocks that need to have
799 abnormal edges to this dispatcher. If there are none, return
800 early. */
801 if (bb_to_omp_idx == NULL)
803 if (bbs->is_empty ())
804 return;
806 else
808 FOR_EACH_VEC_ELT (*bbs, idx, bb)
809 if (bb_to_omp_idx[bb->index] == bb_to_omp_idx[for_bb->index])
810 break;
811 if (bb == NULL)
812 return;
815 /* Create the dispatcher bb. */
816 *dispatcher = create_basic_block (NULL, for_bb);
817 if (computed_goto)
819 /* Factor computed gotos into a common computed goto site. Also
820 record the location of that site so that we can un-factor the
821 gotos after we have converted back to normal form. */
822 gimple_stmt_iterator gsi = gsi_start_bb (*dispatcher);
824 /* Create the destination of the factored goto. Each original
825 computed goto will put its desired destination into this
826 variable and jump to the label we create immediately below. */
827 tree var = create_tmp_var (ptr_type_node, "gotovar");
829 /* Build a label for the new block which will contain the
830 factored computed goto. */
831 tree factored_label_decl
832 = create_artificial_label (UNKNOWN_LOCATION);
833 gimple *factored_computed_goto_label
834 = gimple_build_label (factored_label_decl);
835 gsi_insert_after (&gsi, factored_computed_goto_label, GSI_NEW_STMT);
837 /* Build our new computed goto. */
838 gimple *factored_computed_goto = gimple_build_goto (var);
839 gsi_insert_after (&gsi, factored_computed_goto, GSI_NEW_STMT);
841 FOR_EACH_VEC_ELT (*bbs, idx, bb)
843 if (bb_to_omp_idx
844 && bb_to_omp_idx[bb->index] != bb_to_omp_idx[for_bb->index])
845 continue;
847 gsi = gsi_last_bb (bb);
848 gimple *last = gsi_stmt (gsi);
850 gcc_assert (computed_goto_p (last));
852 /* Copy the original computed goto's destination into VAR. */
853 gimple *assignment
854 = gimple_build_assign (var, gimple_goto_dest (last));
855 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
857 edge e = make_edge (bb, *dispatcher, EDGE_FALLTHRU);
858 e->goto_locus = gimple_location (last);
859 gsi_remove (&gsi, true);
862 else
864 tree arg = inner ? boolean_true_node : boolean_false_node;
865 gimple *g = gimple_build_call_internal (IFN_ABNORMAL_DISPATCHER,
866 1, arg);
867 gimple_stmt_iterator gsi = gsi_after_labels (*dispatcher);
868 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
870 /* Create predecessor edges of the dispatcher. */
871 FOR_EACH_VEC_ELT (*bbs, idx, bb)
873 if (bb_to_omp_idx
874 && bb_to_omp_idx[bb->index] != bb_to_omp_idx[for_bb->index])
875 continue;
876 make_edge (bb, *dispatcher, EDGE_ABNORMAL);
881 make_edge (*dispatcher, for_bb, EDGE_ABNORMAL);
884 /* Creates outgoing edges for BB. Returns 1 when it ends with an
885 computed goto, returns 2 when it ends with a statement that
886 might return to this function via an nonlocal goto, otherwise
887 return 0. Updates *PCUR_REGION with the OMP region this BB is in. */
889 static int
890 make_edges_bb (basic_block bb, struct omp_region **pcur_region, int *pomp_index)
892 gimple *last = last_stmt (bb);
893 bool fallthru = false;
894 int ret = 0;
896 if (!last)
897 return ret;
899 switch (gimple_code (last))
901 case GIMPLE_GOTO:
902 if (make_goto_expr_edges (bb))
903 ret = 1;
904 fallthru = false;
905 break;
906 case GIMPLE_RETURN:
908 edge e = make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
909 e->goto_locus = gimple_location (last);
910 fallthru = false;
912 break;
913 case GIMPLE_COND:
914 make_cond_expr_edges (bb);
915 fallthru = false;
916 break;
917 case GIMPLE_SWITCH:
918 make_gimple_switch_edges (as_a <gswitch *> (last), bb);
919 fallthru = false;
920 break;
921 case GIMPLE_RESX:
922 make_eh_edges (last);
923 fallthru = false;
924 break;
925 case GIMPLE_EH_DISPATCH:
926 fallthru = make_eh_dispatch_edges (as_a <geh_dispatch *> (last));
927 break;
929 case GIMPLE_CALL:
930 /* If this function receives a nonlocal goto, then we need to
931 make edges from this call site to all the nonlocal goto
932 handlers. */
933 if (stmt_can_make_abnormal_goto (last))
934 ret = 2;
936 /* If this statement has reachable exception handlers, then
937 create abnormal edges to them. */
938 make_eh_edges (last);
940 /* BUILTIN_RETURN is really a return statement. */
941 if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
943 make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
944 fallthru = false;
946 /* Some calls are known not to return. */
947 else
948 fallthru = !gimple_call_noreturn_p (last);
949 break;
951 case GIMPLE_ASSIGN:
952 /* A GIMPLE_ASSIGN may throw internally and thus be considered
953 control-altering. */
954 if (is_ctrl_altering_stmt (last))
955 make_eh_edges (last);
956 fallthru = true;
957 break;
959 case GIMPLE_ASM:
960 make_gimple_asm_edges (bb);
961 fallthru = true;
962 break;
964 CASE_GIMPLE_OMP:
965 fallthru = omp_make_gimple_edges (bb, pcur_region, pomp_index);
966 break;
968 case GIMPLE_TRANSACTION:
970 gtransaction *txn = as_a <gtransaction *> (last);
971 tree label1 = gimple_transaction_label_norm (txn);
972 tree label2 = gimple_transaction_label_uninst (txn);
974 if (label1)
975 make_edge (bb, label_to_block (label1), EDGE_FALLTHRU);
976 if (label2)
977 make_edge (bb, label_to_block (label2),
978 EDGE_TM_UNINSTRUMENTED | (label1 ? 0 : EDGE_FALLTHRU));
980 tree label3 = gimple_transaction_label_over (txn);
981 if (gimple_transaction_subcode (txn)
982 & (GTMA_HAVE_ABORT | GTMA_IS_OUTER))
983 make_edge (bb, label_to_block (label3), EDGE_TM_ABORT);
985 fallthru = false;
987 break;
989 default:
990 gcc_assert (!stmt_ends_bb_p (last));
991 fallthru = true;
992 break;
995 if (fallthru)
996 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
998 return ret;
1001 /* Join all the blocks in the flowgraph. */
1003 static void
1004 make_edges (void)
1006 basic_block bb;
1007 struct omp_region *cur_region = NULL;
1008 auto_vec<basic_block> ab_edge_goto;
1009 auto_vec<basic_block> ab_edge_call;
1010 int *bb_to_omp_idx = NULL;
1011 int cur_omp_region_idx = 0;
1013 /* Create an edge from entry to the first block with executable
1014 statements in it. */
1015 make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun),
1016 BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS),
1017 EDGE_FALLTHRU);
1019 /* Traverse the basic block array placing edges. */
1020 FOR_EACH_BB_FN (bb, cfun)
1022 int mer;
1024 if (bb_to_omp_idx)
1025 bb_to_omp_idx[bb->index] = cur_omp_region_idx;
1027 mer = make_edges_bb (bb, &cur_region, &cur_omp_region_idx);
1028 if (mer == 1)
1029 ab_edge_goto.safe_push (bb);
1030 else if (mer == 2)
1031 ab_edge_call.safe_push (bb);
1033 if (cur_region && bb_to_omp_idx == NULL)
1034 bb_to_omp_idx = XCNEWVEC (int, n_basic_blocks_for_fn (cfun));
1037 /* Computed gotos are hell to deal with, especially if there are
1038 lots of them with a large number of destinations. So we factor
1039 them to a common computed goto location before we build the
1040 edge list. After we convert back to normal form, we will un-factor
1041 the computed gotos since factoring introduces an unwanted jump.
1042 For non-local gotos and abnormal edges from calls to calls that return
1043 twice or forced labels, factor the abnormal edges too, by having all
1044 abnormal edges from the calls go to a common artificial basic block
1045 with ABNORMAL_DISPATCHER internal call and abnormal edges from that
1046 basic block to all forced labels and calls returning twice.
1047 We do this per-OpenMP structured block, because those regions
1048 are guaranteed to be single entry single exit by the standard,
1049 so it is not allowed to enter or exit such regions abnormally this way,
1050 thus all computed gotos, non-local gotos and setjmp/longjmp calls
1051 must not transfer control across SESE region boundaries. */
1052 if (!ab_edge_goto.is_empty () || !ab_edge_call.is_empty ())
1054 gimple_stmt_iterator gsi;
1055 basic_block dispatcher_bb_array[2] = { NULL, NULL };
1056 basic_block *dispatcher_bbs = dispatcher_bb_array;
1057 int count = n_basic_blocks_for_fn (cfun);
1059 if (bb_to_omp_idx)
1060 dispatcher_bbs = XCNEWVEC (basic_block, 2 * count);
1062 FOR_EACH_BB_FN (bb, cfun)
1064 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1066 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (gsi));
1067 tree target;
1069 if (!label_stmt)
1070 break;
1072 target = gimple_label_label (label_stmt);
1074 /* Make an edge to every label block that has been marked as a
1075 potential target for a computed goto or a non-local goto. */
1076 if (FORCED_LABEL (target))
1077 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
1078 &ab_edge_goto, true);
1079 if (DECL_NONLOCAL (target))
1081 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
1082 &ab_edge_call, false);
1083 break;
1087 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
1088 gsi_next_nondebug (&gsi);
1089 if (!gsi_end_p (gsi))
1091 /* Make an edge to every setjmp-like call. */
1092 gimple *call_stmt = gsi_stmt (gsi);
1093 if (is_gimple_call (call_stmt)
1094 && ((gimple_call_flags (call_stmt) & ECF_RETURNS_TWICE)
1095 || gimple_call_builtin_p (call_stmt,
1096 BUILT_IN_SETJMP_RECEIVER)))
1097 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
1098 &ab_edge_call, false);
1102 if (bb_to_omp_idx)
1103 XDELETE (dispatcher_bbs);
1106 XDELETE (bb_to_omp_idx);
1108 omp_free_regions ();
1111 /* Add SEQ after GSI. Start new bb after GSI, and created further bbs as
1112 needed. Returns true if new bbs were created.
1113 Note: This is transitional code, and should not be used for new code. We
1114 should be able to get rid of this by rewriting all target va-arg
1115 gimplification hooks to use an interface gimple_build_cond_value as described
1116 in https://gcc.gnu.org/ml/gcc-patches/2015-02/msg01194.html. */
1118 bool
1119 gimple_find_sub_bbs (gimple_seq seq, gimple_stmt_iterator *gsi)
1121 gimple *stmt = gsi_stmt (*gsi);
1122 basic_block bb = gimple_bb (stmt);
1123 basic_block lastbb, afterbb;
1124 int old_num_bbs = n_basic_blocks_for_fn (cfun);
1125 edge e;
1126 lastbb = make_blocks_1 (seq, bb);
1127 if (old_num_bbs == n_basic_blocks_for_fn (cfun))
1128 return false;
1129 e = split_block (bb, stmt);
1130 /* Move e->dest to come after the new basic blocks. */
1131 afterbb = e->dest;
1132 unlink_block (afterbb);
1133 link_block (afterbb, lastbb);
1134 redirect_edge_succ (e, bb->next_bb);
1135 bb = bb->next_bb;
1136 while (bb != afterbb)
1138 struct omp_region *cur_region = NULL;
1139 profile_count cnt = profile_count::zero ();
1140 bool all = true;
1142 int cur_omp_region_idx = 0;
1143 int mer = make_edges_bb (bb, &cur_region, &cur_omp_region_idx);
1144 gcc_assert (!mer && !cur_region);
1145 add_bb_to_loop (bb, afterbb->loop_father);
1147 edge e;
1148 edge_iterator ei;
1149 FOR_EACH_EDGE (e, ei, bb->preds)
1151 if (e->count ().initialized_p ())
1152 cnt += e->count ();
1153 else
1154 all = false;
1156 tree_guess_outgoing_edge_probabilities (bb);
1157 if (all || profile_status_for_fn (cfun) == PROFILE_READ)
1158 bb->count = cnt;
1160 bb = bb->next_bb;
1162 return true;
1165 /* Find the next available discriminator value for LOCUS. The
1166 discriminator distinguishes among several basic blocks that
1167 share a common locus, allowing for more accurate sample-based
1168 profiling. */
1170 static int
1171 next_discriminator_for_locus (location_t locus)
1173 struct locus_discrim_map item;
1174 struct locus_discrim_map **slot;
1176 item.locus = locus;
1177 item.discriminator = 0;
1178 slot = discriminator_per_locus->find_slot_with_hash (
1179 &item, LOCATION_LINE (locus), INSERT);
1180 gcc_assert (slot);
1181 if (*slot == HTAB_EMPTY_ENTRY)
1183 *slot = XNEW (struct locus_discrim_map);
1184 gcc_assert (*slot);
1185 (*slot)->locus = locus;
1186 (*slot)->discriminator = 0;
1188 (*slot)->discriminator++;
1189 return (*slot)->discriminator;
1192 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
1194 static bool
1195 same_line_p (location_t locus1, location_t locus2)
1197 expanded_location from, to;
1199 if (locus1 == locus2)
1200 return true;
1202 from = expand_location (locus1);
1203 to = expand_location (locus2);
1205 if (from.line != to.line)
1206 return false;
1207 if (from.file == to.file)
1208 return true;
1209 return (from.file != NULL
1210 && to.file != NULL
1211 && filename_cmp (from.file, to.file) == 0);
1214 /* Assign discriminators to each basic block. */
1216 static void
1217 assign_discriminators (void)
1219 basic_block bb;
1221 FOR_EACH_BB_FN (bb, cfun)
1223 edge e;
1224 edge_iterator ei;
1225 gimple *last = last_stmt (bb);
1226 location_t locus = last ? gimple_location (last) : UNKNOWN_LOCATION;
1228 if (locus == UNKNOWN_LOCATION)
1229 continue;
1231 FOR_EACH_EDGE (e, ei, bb->succs)
1233 gimple *first = first_non_label_stmt (e->dest);
1234 gimple *last = last_stmt (e->dest);
1235 if ((first && same_line_p (locus, gimple_location (first)))
1236 || (last && same_line_p (locus, gimple_location (last))))
1238 if (e->dest->discriminator != 0 && bb->discriminator == 0)
1239 bb->discriminator = next_discriminator_for_locus (locus);
1240 else
1241 e->dest->discriminator = next_discriminator_for_locus (locus);
1247 /* Create the edges for a GIMPLE_COND starting at block BB. */
1249 static void
1250 make_cond_expr_edges (basic_block bb)
1252 gcond *entry = as_a <gcond *> (last_stmt (bb));
1253 gimple *then_stmt, *else_stmt;
1254 basic_block then_bb, else_bb;
1255 tree then_label, else_label;
1256 edge e;
1258 gcc_assert (entry);
1259 gcc_assert (gimple_code (entry) == GIMPLE_COND);
1261 /* Entry basic blocks for each component. */
1262 then_label = gimple_cond_true_label (entry);
1263 else_label = gimple_cond_false_label (entry);
1264 then_bb = label_to_block (then_label);
1265 else_bb = label_to_block (else_label);
1266 then_stmt = first_stmt (then_bb);
1267 else_stmt = first_stmt (else_bb);
1269 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
1270 e->goto_locus = gimple_location (then_stmt);
1271 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
1272 if (e)
1273 e->goto_locus = gimple_location (else_stmt);
1275 /* We do not need the labels anymore. */
1276 gimple_cond_set_true_label (entry, NULL_TREE);
1277 gimple_cond_set_false_label (entry, NULL_TREE);
1281 /* Called for each element in the hash table (P) as we delete the
1282 edge to cases hash table.
1284 Clear all the CASE_CHAINs to prevent problems with copying of
1285 SWITCH_EXPRs and structure sharing rules, then free the hash table
1286 element. */
1288 bool
1289 edge_to_cases_cleanup (edge const &, tree const &value, void *)
1291 tree t, next;
1293 for (t = value; t; t = next)
1295 next = CASE_CHAIN (t);
1296 CASE_CHAIN (t) = NULL;
1299 return true;
1302 /* Start recording information mapping edges to case labels. */
1304 void
1305 start_recording_case_labels (void)
1307 gcc_assert (edge_to_cases == NULL);
1308 edge_to_cases = new hash_map<edge, tree>;
1309 touched_switch_bbs = BITMAP_ALLOC (NULL);
1312 /* Return nonzero if we are recording information for case labels. */
1314 static bool
1315 recording_case_labels_p (void)
1317 return (edge_to_cases != NULL);
1320 /* Stop recording information mapping edges to case labels and
1321 remove any information we have recorded. */
1322 void
1323 end_recording_case_labels (void)
1325 bitmap_iterator bi;
1326 unsigned i;
1327 edge_to_cases->traverse<void *, edge_to_cases_cleanup> (NULL);
1328 delete edge_to_cases;
1329 edge_to_cases = NULL;
1330 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
1332 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
1333 if (bb)
1335 gimple *stmt = last_stmt (bb);
1336 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1337 group_case_labels_stmt (as_a <gswitch *> (stmt));
1340 BITMAP_FREE (touched_switch_bbs);
1343 /* If we are inside a {start,end}_recording_cases block, then return
1344 a chain of CASE_LABEL_EXPRs from T which reference E.
1346 Otherwise return NULL. */
1348 static tree
1349 get_cases_for_edge (edge e, gswitch *t)
1351 tree *slot;
1352 size_t i, n;
1354 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
1355 chains available. Return NULL so the caller can detect this case. */
1356 if (!recording_case_labels_p ())
1357 return NULL;
1359 slot = edge_to_cases->get (e);
1360 if (slot)
1361 return *slot;
1363 /* If we did not find E in the hash table, then this must be the first
1364 time we have been queried for information about E & T. Add all the
1365 elements from T to the hash table then perform the query again. */
1367 n = gimple_switch_num_labels (t);
1368 for (i = 0; i < n; i++)
1370 tree elt = gimple_switch_label (t, i);
1371 tree lab = CASE_LABEL (elt);
1372 basic_block label_bb = label_to_block (lab);
1373 edge this_edge = find_edge (e->src, label_bb);
1375 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
1376 a new chain. */
1377 tree &s = edge_to_cases->get_or_insert (this_edge);
1378 CASE_CHAIN (elt) = s;
1379 s = elt;
1382 return *edge_to_cases->get (e);
1385 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
1387 static void
1388 make_gimple_switch_edges (gswitch *entry, basic_block bb)
1390 size_t i, n;
1392 n = gimple_switch_num_labels (entry);
1394 for (i = 0; i < n; ++i)
1396 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
1397 basic_block label_bb = label_to_block (lab);
1398 make_edge (bb, label_bb, 0);
1403 /* Return the basic block holding label DEST. */
1405 basic_block
1406 label_to_block_fn (struct function *ifun, tree dest)
1408 int uid = LABEL_DECL_UID (dest);
1410 /* We would die hard when faced by an undefined label. Emit a label to
1411 the very first basic block. This will hopefully make even the dataflow
1412 and undefined variable warnings quite right. */
1413 if (seen_error () && uid < 0)
1415 gimple_stmt_iterator gsi =
1416 gsi_start_bb (BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS));
1417 gimple *stmt;
1419 stmt = gimple_build_label (dest);
1420 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
1421 uid = LABEL_DECL_UID (dest);
1423 if (vec_safe_length (ifun->cfg->x_label_to_block_map) <= (unsigned int) uid)
1424 return NULL;
1425 return (*ifun->cfg->x_label_to_block_map)[uid];
1428 /* Create edges for a goto statement at block BB. Returns true
1429 if abnormal edges should be created. */
1431 static bool
1432 make_goto_expr_edges (basic_block bb)
1434 gimple_stmt_iterator last = gsi_last_bb (bb);
1435 gimple *goto_t = gsi_stmt (last);
1437 /* A simple GOTO creates normal edges. */
1438 if (simple_goto_p (goto_t))
1440 tree dest = gimple_goto_dest (goto_t);
1441 basic_block label_bb = label_to_block (dest);
1442 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1443 e->goto_locus = gimple_location (goto_t);
1444 gsi_remove (&last, true);
1445 return false;
1448 /* A computed GOTO creates abnormal edges. */
1449 return true;
1452 /* Create edges for an asm statement with labels at block BB. */
1454 static void
1455 make_gimple_asm_edges (basic_block bb)
1457 gasm *stmt = as_a <gasm *> (last_stmt (bb));
1458 int i, n = gimple_asm_nlabels (stmt);
1460 for (i = 0; i < n; ++i)
1462 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1463 basic_block label_bb = label_to_block (label);
1464 make_edge (bb, label_bb, 0);
1468 /*---------------------------------------------------------------------------
1469 Flowgraph analysis
1470 ---------------------------------------------------------------------------*/
1472 /* Cleanup useless labels in basic blocks. This is something we wish
1473 to do early because it allows us to group case labels before creating
1474 the edges for the CFG, and it speeds up block statement iterators in
1475 all passes later on.
1476 We rerun this pass after CFG is created, to get rid of the labels that
1477 are no longer referenced. After then we do not run it any more, since
1478 (almost) no new labels should be created. */
1480 /* A map from basic block index to the leading label of that block. */
1481 static struct label_record
1483 /* The label. */
1484 tree label;
1486 /* True if the label is referenced from somewhere. */
1487 bool used;
1488 } *label_for_bb;
1490 /* Given LABEL return the first label in the same basic block. */
1492 static tree
1493 main_block_label (tree label)
1495 basic_block bb = label_to_block (label);
1496 tree main_label = label_for_bb[bb->index].label;
1498 /* label_to_block possibly inserted undefined label into the chain. */
1499 if (!main_label)
1501 label_for_bb[bb->index].label = label;
1502 main_label = label;
1505 label_for_bb[bb->index].used = true;
1506 return main_label;
1509 /* Clean up redundant labels within the exception tree. */
1511 static void
1512 cleanup_dead_labels_eh (void)
1514 eh_landing_pad lp;
1515 eh_region r;
1516 tree lab;
1517 int i;
1519 if (cfun->eh == NULL)
1520 return;
1522 for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
1523 if (lp && lp->post_landing_pad)
1525 lab = main_block_label (lp->post_landing_pad);
1526 if (lab != lp->post_landing_pad)
1528 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1529 EH_LANDING_PAD_NR (lab) = lp->index;
1533 FOR_ALL_EH_REGION (r)
1534 switch (r->type)
1536 case ERT_CLEANUP:
1537 case ERT_MUST_NOT_THROW:
1538 break;
1540 case ERT_TRY:
1542 eh_catch c;
1543 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1545 lab = c->label;
1546 if (lab)
1547 c->label = main_block_label (lab);
1550 break;
1552 case ERT_ALLOWED_EXCEPTIONS:
1553 lab = r->u.allowed.label;
1554 if (lab)
1555 r->u.allowed.label = main_block_label (lab);
1556 break;
1561 /* Cleanup redundant labels. This is a three-step process:
1562 1) Find the leading label for each block.
1563 2) Redirect all references to labels to the leading labels.
1564 3) Cleanup all useless labels. */
1566 void
1567 cleanup_dead_labels (void)
1569 basic_block bb;
1570 label_for_bb = XCNEWVEC (struct label_record, last_basic_block_for_fn (cfun));
1572 /* Find a suitable label for each block. We use the first user-defined
1573 label if there is one, or otherwise just the first label we see. */
1574 FOR_EACH_BB_FN (bb, cfun)
1576 gimple_stmt_iterator i;
1578 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1580 tree label;
1581 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (i));
1583 if (!label_stmt)
1584 break;
1586 label = gimple_label_label (label_stmt);
1588 /* If we have not yet seen a label for the current block,
1589 remember this one and see if there are more labels. */
1590 if (!label_for_bb[bb->index].label)
1592 label_for_bb[bb->index].label = label;
1593 continue;
1596 /* If we did see a label for the current block already, but it
1597 is an artificially created label, replace it if the current
1598 label is a user defined label. */
1599 if (!DECL_ARTIFICIAL (label)
1600 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1602 label_for_bb[bb->index].label = label;
1603 break;
1608 /* Now redirect all jumps/branches to the selected label.
1609 First do so for each block ending in a control statement. */
1610 FOR_EACH_BB_FN (bb, cfun)
1612 gimple *stmt = last_stmt (bb);
1613 tree label, new_label;
1615 if (!stmt)
1616 continue;
1618 switch (gimple_code (stmt))
1620 case GIMPLE_COND:
1622 gcond *cond_stmt = as_a <gcond *> (stmt);
1623 label = gimple_cond_true_label (cond_stmt);
1624 if (label)
1626 new_label = main_block_label (label);
1627 if (new_label != label)
1628 gimple_cond_set_true_label (cond_stmt, new_label);
1631 label = gimple_cond_false_label (cond_stmt);
1632 if (label)
1634 new_label = main_block_label (label);
1635 if (new_label != label)
1636 gimple_cond_set_false_label (cond_stmt, new_label);
1639 break;
1641 case GIMPLE_SWITCH:
1643 gswitch *switch_stmt = as_a <gswitch *> (stmt);
1644 size_t i, n = gimple_switch_num_labels (switch_stmt);
1646 /* Replace all destination labels. */
1647 for (i = 0; i < n; ++i)
1649 tree case_label = gimple_switch_label (switch_stmt, i);
1650 label = CASE_LABEL (case_label);
1651 new_label = main_block_label (label);
1652 if (new_label != label)
1653 CASE_LABEL (case_label) = new_label;
1655 break;
1658 case GIMPLE_ASM:
1660 gasm *asm_stmt = as_a <gasm *> (stmt);
1661 int i, n = gimple_asm_nlabels (asm_stmt);
1663 for (i = 0; i < n; ++i)
1665 tree cons = gimple_asm_label_op (asm_stmt, i);
1666 tree label = main_block_label (TREE_VALUE (cons));
1667 TREE_VALUE (cons) = label;
1669 break;
1672 /* We have to handle gotos until they're removed, and we don't
1673 remove them until after we've created the CFG edges. */
1674 case GIMPLE_GOTO:
1675 if (!computed_goto_p (stmt))
1677 ggoto *goto_stmt = as_a <ggoto *> (stmt);
1678 label = gimple_goto_dest (goto_stmt);
1679 new_label = main_block_label (label);
1680 if (new_label != label)
1681 gimple_goto_set_dest (goto_stmt, new_label);
1683 break;
1685 case GIMPLE_TRANSACTION:
1687 gtransaction *txn = as_a <gtransaction *> (stmt);
1689 label = gimple_transaction_label_norm (txn);
1690 if (label)
1692 new_label = main_block_label (label);
1693 if (new_label != label)
1694 gimple_transaction_set_label_norm (txn, new_label);
1697 label = gimple_transaction_label_uninst (txn);
1698 if (label)
1700 new_label = main_block_label (label);
1701 if (new_label != label)
1702 gimple_transaction_set_label_uninst (txn, new_label);
1705 label = gimple_transaction_label_over (txn);
1706 if (label)
1708 new_label = main_block_label (label);
1709 if (new_label != label)
1710 gimple_transaction_set_label_over (txn, new_label);
1713 break;
1715 default:
1716 break;
1720 /* Do the same for the exception region tree labels. */
1721 cleanup_dead_labels_eh ();
1723 /* Finally, purge dead labels. All user-defined labels and labels that
1724 can be the target of non-local gotos and labels which have their
1725 address taken are preserved. */
1726 FOR_EACH_BB_FN (bb, cfun)
1728 gimple_stmt_iterator i;
1729 tree label_for_this_bb = label_for_bb[bb->index].label;
1731 if (!label_for_this_bb)
1732 continue;
1734 /* If the main label of the block is unused, we may still remove it. */
1735 if (!label_for_bb[bb->index].used)
1736 label_for_this_bb = NULL;
1738 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1740 tree label;
1741 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (i));
1743 if (!label_stmt)
1744 break;
1746 label = gimple_label_label (label_stmt);
1748 if (label == label_for_this_bb
1749 || !DECL_ARTIFICIAL (label)
1750 || DECL_NONLOCAL (label)
1751 || FORCED_LABEL (label))
1752 gsi_next (&i);
1753 else
1754 gsi_remove (&i, true);
1758 free (label_for_bb);
1761 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1762 the ones jumping to the same label.
1763 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1765 bool
1766 group_case_labels_stmt (gswitch *stmt)
1768 int old_size = gimple_switch_num_labels (stmt);
1769 int i, next_index, new_size;
1770 basic_block default_bb = NULL;
1772 default_bb = label_to_block (CASE_LABEL (gimple_switch_default_label (stmt)));
1774 /* Look for possible opportunities to merge cases. */
1775 new_size = i = 1;
1776 while (i < old_size)
1778 tree base_case, base_high;
1779 basic_block base_bb;
1781 base_case = gimple_switch_label (stmt, i);
1783 gcc_assert (base_case);
1784 base_bb = label_to_block (CASE_LABEL (base_case));
1786 /* Discard cases that have the same destination as the default case or
1787 whose destiniation blocks have already been removed as unreachable. */
1788 if (base_bb == NULL || base_bb == default_bb)
1790 i++;
1791 continue;
1794 base_high = CASE_HIGH (base_case)
1795 ? CASE_HIGH (base_case)
1796 : CASE_LOW (base_case);
1797 next_index = i + 1;
1799 /* Try to merge case labels. Break out when we reach the end
1800 of the label vector or when we cannot merge the next case
1801 label with the current one. */
1802 while (next_index < old_size)
1804 tree merge_case = gimple_switch_label (stmt, next_index);
1805 basic_block merge_bb = label_to_block (CASE_LABEL (merge_case));
1806 wide_int bhp1 = wi::to_wide (base_high) + 1;
1808 /* Merge the cases if they jump to the same place,
1809 and their ranges are consecutive. */
1810 if (merge_bb == base_bb
1811 && wi::to_wide (CASE_LOW (merge_case)) == bhp1)
1813 base_high = CASE_HIGH (merge_case) ?
1814 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1815 CASE_HIGH (base_case) = base_high;
1816 next_index++;
1818 else
1819 break;
1822 /* Discard cases that have an unreachable destination block. */
1823 if (EDGE_COUNT (base_bb->succs) == 0
1824 && gimple_seq_unreachable_p (bb_seq (base_bb))
1825 /* Don't optimize this if __builtin_unreachable () is the
1826 implicitly added one by the C++ FE too early, before
1827 -Wreturn-type can be diagnosed. We'll optimize it later
1828 during switchconv pass or any other cfg cleanup. */
1829 && (gimple_in_ssa_p (cfun)
1830 || (LOCATION_LOCUS (gimple_location (last_stmt (base_bb)))
1831 != BUILTINS_LOCATION)))
1833 edge base_edge = find_edge (gimple_bb (stmt), base_bb);
1834 if (base_edge != NULL)
1835 remove_edge_and_dominated_blocks (base_edge);
1836 i = next_index;
1837 continue;
1840 if (new_size < i)
1841 gimple_switch_set_label (stmt, new_size,
1842 gimple_switch_label (stmt, i));
1843 i = next_index;
1844 new_size++;
1847 gcc_assert (new_size <= old_size);
1849 if (new_size < old_size)
1850 gimple_switch_set_num_labels (stmt, new_size);
1852 return new_size < old_size;
1855 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1856 and scan the sorted vector of cases. Combine the ones jumping to the
1857 same label. */
1859 bool
1860 group_case_labels (void)
1862 basic_block bb;
1863 bool changed = false;
1865 FOR_EACH_BB_FN (bb, cfun)
1867 gimple *stmt = last_stmt (bb);
1868 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1869 changed |= group_case_labels_stmt (as_a <gswitch *> (stmt));
1872 return changed;
1875 /* Checks whether we can merge block B into block A. */
1877 static bool
1878 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1880 gimple *stmt;
1882 if (!single_succ_p (a))
1883 return false;
1885 if (single_succ_edge (a)->flags & EDGE_COMPLEX)
1886 return false;
1888 if (single_succ (a) != b)
1889 return false;
1891 if (!single_pred_p (b))
1892 return false;
1894 if (a == ENTRY_BLOCK_PTR_FOR_FN (cfun)
1895 || b == EXIT_BLOCK_PTR_FOR_FN (cfun))
1896 return false;
1898 /* If A ends by a statement causing exceptions or something similar, we
1899 cannot merge the blocks. */
1900 stmt = last_stmt (a);
1901 if (stmt && stmt_ends_bb_p (stmt))
1902 return false;
1904 /* Do not allow a block with only a non-local label to be merged. */
1905 if (stmt)
1906 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
1907 if (DECL_NONLOCAL (gimple_label_label (label_stmt)))
1908 return false;
1910 /* Examine the labels at the beginning of B. */
1911 for (gimple_stmt_iterator gsi = gsi_start_bb (b); !gsi_end_p (gsi);
1912 gsi_next (&gsi))
1914 tree lab;
1915 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (gsi));
1916 if (!label_stmt)
1917 break;
1918 lab = gimple_label_label (label_stmt);
1920 /* Do not remove user forced labels or for -O0 any user labels. */
1921 if (!DECL_ARTIFICIAL (lab) && (!optimize || FORCED_LABEL (lab)))
1922 return false;
1925 /* Protect simple loop latches. We only want to avoid merging
1926 the latch with the loop header or with a block in another
1927 loop in this case. */
1928 if (current_loops
1929 && b->loop_father->latch == b
1930 && loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES)
1931 && (b->loop_father->header == a
1932 || b->loop_father != a->loop_father))
1933 return false;
1935 /* It must be possible to eliminate all phi nodes in B. If ssa form
1936 is not up-to-date and a name-mapping is registered, we cannot eliminate
1937 any phis. Symbols marked for renaming are never a problem though. */
1938 for (gphi_iterator gsi = gsi_start_phis (b); !gsi_end_p (gsi);
1939 gsi_next (&gsi))
1941 gphi *phi = gsi.phi ();
1942 /* Technically only new names matter. */
1943 if (name_registered_for_update_p (PHI_RESULT (phi)))
1944 return false;
1947 /* When not optimizing, don't merge if we'd lose goto_locus. */
1948 if (!optimize
1949 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1951 location_t goto_locus = single_succ_edge (a)->goto_locus;
1952 gimple_stmt_iterator prev, next;
1953 prev = gsi_last_nondebug_bb (a);
1954 next = gsi_after_labels (b);
1955 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
1956 gsi_next_nondebug (&next);
1957 if ((gsi_end_p (prev)
1958 || gimple_location (gsi_stmt (prev)) != goto_locus)
1959 && (gsi_end_p (next)
1960 || gimple_location (gsi_stmt (next)) != goto_locus))
1961 return false;
1964 return true;
1967 /* Replaces all uses of NAME by VAL. */
1969 void
1970 replace_uses_by (tree name, tree val)
1972 imm_use_iterator imm_iter;
1973 use_operand_p use;
1974 gimple *stmt;
1975 edge e;
1977 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1979 /* Mark the block if we change the last stmt in it. */
1980 if (cfgcleanup_altered_bbs
1981 && stmt_ends_bb_p (stmt))
1982 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1984 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1986 replace_exp (use, val);
1988 if (gimple_code (stmt) == GIMPLE_PHI)
1990 e = gimple_phi_arg_edge (as_a <gphi *> (stmt),
1991 PHI_ARG_INDEX_FROM_USE (use));
1992 if (e->flags & EDGE_ABNORMAL
1993 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val))
1995 /* This can only occur for virtual operands, since
1996 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1997 would prevent replacement. */
1998 gcc_checking_assert (virtual_operand_p (name));
1999 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
2004 if (gimple_code (stmt) != GIMPLE_PHI)
2006 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
2007 gimple *orig_stmt = stmt;
2008 size_t i;
2010 /* FIXME. It shouldn't be required to keep TREE_CONSTANT
2011 on ADDR_EXPRs up-to-date on GIMPLE. Propagation will
2012 only change sth from non-invariant to invariant, and only
2013 when propagating constants. */
2014 if (is_gimple_min_invariant (val))
2015 for (i = 0; i < gimple_num_ops (stmt); i++)
2017 tree op = gimple_op (stmt, i);
2018 /* Operands may be empty here. For example, the labels
2019 of a GIMPLE_COND are nulled out following the creation
2020 of the corresponding CFG edges. */
2021 if (op && TREE_CODE (op) == ADDR_EXPR)
2022 recompute_tree_invariant_for_addr_expr (op);
2025 if (fold_stmt (&gsi))
2026 stmt = gsi_stmt (gsi);
2028 if (maybe_clean_or_replace_eh_stmt (orig_stmt, stmt))
2029 gimple_purge_dead_eh_edges (gimple_bb (stmt));
2031 update_stmt (stmt);
2035 gcc_checking_assert (has_zero_uses (name));
2037 /* Also update the trees stored in loop structures. */
2038 if (current_loops)
2040 struct loop *loop;
2042 FOR_EACH_LOOP (loop, 0)
2044 substitute_in_loop_info (loop, name, val);
2049 /* Merge block B into block A. */
2051 static void
2052 gimple_merge_blocks (basic_block a, basic_block b)
2054 gimple_stmt_iterator last, gsi;
2055 gphi_iterator psi;
2057 if (dump_file)
2058 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
2060 /* Remove all single-valued PHI nodes from block B of the form
2061 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
2062 gsi = gsi_last_bb (a);
2063 for (psi = gsi_start_phis (b); !gsi_end_p (psi); )
2065 gimple *phi = gsi_stmt (psi);
2066 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
2067 gimple *copy;
2068 bool may_replace_uses = (virtual_operand_p (def)
2069 || may_propagate_copy (def, use));
2071 /* In case we maintain loop closed ssa form, do not propagate arguments
2072 of loop exit phi nodes. */
2073 if (current_loops
2074 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
2075 && !virtual_operand_p (def)
2076 && TREE_CODE (use) == SSA_NAME
2077 && a->loop_father != b->loop_father)
2078 may_replace_uses = false;
2080 if (!may_replace_uses)
2082 gcc_assert (!virtual_operand_p (def));
2084 /* Note that just emitting the copies is fine -- there is no problem
2085 with ordering of phi nodes. This is because A is the single
2086 predecessor of B, therefore results of the phi nodes cannot
2087 appear as arguments of the phi nodes. */
2088 copy = gimple_build_assign (def, use);
2089 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
2090 remove_phi_node (&psi, false);
2092 else
2094 /* If we deal with a PHI for virtual operands, we can simply
2095 propagate these without fussing with folding or updating
2096 the stmt. */
2097 if (virtual_operand_p (def))
2099 imm_use_iterator iter;
2100 use_operand_p use_p;
2101 gimple *stmt;
2103 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
2104 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
2105 SET_USE (use_p, use);
2107 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
2108 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
2110 else
2111 replace_uses_by (def, use);
2113 remove_phi_node (&psi, true);
2117 /* Ensure that B follows A. */
2118 move_block_after (b, a);
2120 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
2121 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
2123 /* Remove labels from B and set gimple_bb to A for other statements. */
2124 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
2126 gimple *stmt = gsi_stmt (gsi);
2127 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
2129 tree label = gimple_label_label (label_stmt);
2130 int lp_nr;
2132 gsi_remove (&gsi, false);
2134 /* Now that we can thread computed gotos, we might have
2135 a situation where we have a forced label in block B
2136 However, the label at the start of block B might still be
2137 used in other ways (think about the runtime checking for
2138 Fortran assigned gotos). So we can not just delete the
2139 label. Instead we move the label to the start of block A. */
2140 if (FORCED_LABEL (label))
2142 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
2143 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
2145 /* Other user labels keep around in a form of a debug stmt. */
2146 else if (!DECL_ARTIFICIAL (label) && MAY_HAVE_DEBUG_BIND_STMTS)
2148 gimple *dbg = gimple_build_debug_bind (label,
2149 integer_zero_node,
2150 stmt);
2151 gimple_debug_bind_reset_value (dbg);
2152 gsi_insert_before (&gsi, dbg, GSI_SAME_STMT);
2155 lp_nr = EH_LANDING_PAD_NR (label);
2156 if (lp_nr)
2158 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
2159 lp->post_landing_pad = NULL;
2162 else
2164 gimple_set_bb (stmt, a);
2165 gsi_next (&gsi);
2169 /* When merging two BBs, if their counts are different, the larger count
2170 is selected as the new bb count. This is to handle inconsistent
2171 profiles. */
2172 if (a->loop_father == b->loop_father)
2174 a->count = a->count.merge (b->count);
2177 /* Merge the sequences. */
2178 last = gsi_last_bb (a);
2179 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
2180 set_bb_seq (b, NULL);
2182 if (cfgcleanup_altered_bbs)
2183 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
2187 /* Return the one of two successors of BB that is not reachable by a
2188 complex edge, if there is one. Else, return BB. We use
2189 this in optimizations that use post-dominators for their heuristics,
2190 to catch the cases in C++ where function calls are involved. */
2192 basic_block
2193 single_noncomplex_succ (basic_block bb)
2195 edge e0, e1;
2196 if (EDGE_COUNT (bb->succs) != 2)
2197 return bb;
2199 e0 = EDGE_SUCC (bb, 0);
2200 e1 = EDGE_SUCC (bb, 1);
2201 if (e0->flags & EDGE_COMPLEX)
2202 return e1->dest;
2203 if (e1->flags & EDGE_COMPLEX)
2204 return e0->dest;
2206 return bb;
2209 /* T is CALL_EXPR. Set current_function_calls_* flags. */
2211 void
2212 notice_special_calls (gcall *call)
2214 int flags = gimple_call_flags (call);
2216 if (flags & ECF_MAY_BE_ALLOCA)
2217 cfun->calls_alloca = true;
2218 if (flags & ECF_RETURNS_TWICE)
2219 cfun->calls_setjmp = true;
2223 /* Clear flags set by notice_special_calls. Used by dead code removal
2224 to update the flags. */
2226 void
2227 clear_special_calls (void)
2229 cfun->calls_alloca = false;
2230 cfun->calls_setjmp = false;
2233 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
2235 static void
2236 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
2238 /* Since this block is no longer reachable, we can just delete all
2239 of its PHI nodes. */
2240 remove_phi_nodes (bb);
2242 /* Remove edges to BB's successors. */
2243 while (EDGE_COUNT (bb->succs) > 0)
2244 remove_edge (EDGE_SUCC (bb, 0));
2248 /* Remove statements of basic block BB. */
2250 static void
2251 remove_bb (basic_block bb)
2253 gimple_stmt_iterator i;
2255 if (dump_file)
2257 fprintf (dump_file, "Removing basic block %d\n", bb->index);
2258 if (dump_flags & TDF_DETAILS)
2260 dump_bb (dump_file, bb, 0, TDF_BLOCKS);
2261 fprintf (dump_file, "\n");
2265 if (current_loops)
2267 struct loop *loop = bb->loop_father;
2269 /* If a loop gets removed, clean up the information associated
2270 with it. */
2271 if (loop->latch == bb
2272 || loop->header == bb)
2273 free_numbers_of_iterations_estimates (loop);
2276 /* Remove all the instructions in the block. */
2277 if (bb_seq (bb) != NULL)
2279 /* Walk backwards so as to get a chance to substitute all
2280 released DEFs into debug stmts. See
2281 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
2282 details. */
2283 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
2285 gimple *stmt = gsi_stmt (i);
2286 glabel *label_stmt = dyn_cast <glabel *> (stmt);
2287 if (label_stmt
2288 && (FORCED_LABEL (gimple_label_label (label_stmt))
2289 || DECL_NONLOCAL (gimple_label_label (label_stmt))))
2291 basic_block new_bb;
2292 gimple_stmt_iterator new_gsi;
2294 /* A non-reachable non-local label may still be referenced.
2295 But it no longer needs to carry the extra semantics of
2296 non-locality. */
2297 if (DECL_NONLOCAL (gimple_label_label (label_stmt)))
2299 DECL_NONLOCAL (gimple_label_label (label_stmt)) = 0;
2300 FORCED_LABEL (gimple_label_label (label_stmt)) = 1;
2303 new_bb = bb->prev_bb;
2304 /* Don't move any labels into ENTRY block. */
2305 if (new_bb == ENTRY_BLOCK_PTR_FOR_FN (cfun))
2307 new_bb = single_succ (new_bb);
2308 gcc_assert (new_bb != bb);
2310 new_gsi = gsi_start_bb (new_bb);
2311 gsi_remove (&i, false);
2312 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
2314 else
2316 /* Release SSA definitions. */
2317 release_defs (stmt);
2318 gsi_remove (&i, true);
2321 if (gsi_end_p (i))
2322 i = gsi_last_bb (bb);
2323 else
2324 gsi_prev (&i);
2328 remove_phi_nodes_and_edges_for_unreachable_block (bb);
2329 bb->il.gimple.seq = NULL;
2330 bb->il.gimple.phi_nodes = NULL;
2334 /* Given a basic block BB and a value VAL for use in the final statement
2335 of the block (if a GIMPLE_COND, GIMPLE_SWITCH, or computed goto), return
2336 the edge that will be taken out of the block.
2337 If VAL is NULL_TREE, then the current value of the final statement's
2338 predicate or index is used.
2339 If the value does not match a unique edge, NULL is returned. */
2341 edge
2342 find_taken_edge (basic_block bb, tree val)
2344 gimple *stmt;
2346 stmt = last_stmt (bb);
2348 /* Handle ENTRY and EXIT. */
2349 if (!stmt)
2350 return NULL;
2352 if (gimple_code (stmt) == GIMPLE_COND)
2353 return find_taken_edge_cond_expr (as_a <gcond *> (stmt), val);
2355 if (gimple_code (stmt) == GIMPLE_SWITCH)
2356 return find_taken_edge_switch_expr (as_a <gswitch *> (stmt), val);
2358 if (computed_goto_p (stmt))
2360 /* Only optimize if the argument is a label, if the argument is
2361 not a label then we can not construct a proper CFG.
2363 It may be the case that we only need to allow the LABEL_REF to
2364 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
2365 appear inside a LABEL_EXPR just to be safe. */
2366 if (val
2367 && (TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
2368 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
2369 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
2372 /* Otherwise we only know the taken successor edge if it's unique. */
2373 return single_succ_p (bb) ? single_succ_edge (bb) : NULL;
2376 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
2377 statement, determine which of the outgoing edges will be taken out of the
2378 block. Return NULL if either edge may be taken. */
2380 static edge
2381 find_taken_edge_computed_goto (basic_block bb, tree val)
2383 basic_block dest;
2384 edge e = NULL;
2386 dest = label_to_block (val);
2387 if (dest)
2388 e = find_edge (bb, dest);
2390 /* It's possible for find_edge to return NULL here on invalid code
2391 that abuses the labels-as-values extension (e.g. code that attempts to
2392 jump *between* functions via stored labels-as-values; PR 84136).
2393 If so, then we simply return that NULL for the edge.
2394 We don't currently have a way of detecting such invalid code, so we
2395 can't assert that it was the case when a NULL edge occurs here. */
2397 return e;
2400 /* Given COND_STMT and a constant value VAL for use as the predicate,
2401 determine which of the two edges will be taken out of
2402 the statement's block. Return NULL if either edge may be taken.
2403 If VAL is NULL_TREE, then the current value of COND_STMT's predicate
2404 is used. */
2406 static edge
2407 find_taken_edge_cond_expr (const gcond *cond_stmt, tree val)
2409 edge true_edge, false_edge;
2411 if (val == NULL_TREE)
2413 /* Use the current value of the predicate. */
2414 if (gimple_cond_true_p (cond_stmt))
2415 val = integer_one_node;
2416 else if (gimple_cond_false_p (cond_stmt))
2417 val = integer_zero_node;
2418 else
2419 return NULL;
2421 else if (TREE_CODE (val) != INTEGER_CST)
2422 return NULL;
2424 extract_true_false_edges_from_block (gimple_bb (cond_stmt),
2425 &true_edge, &false_edge);
2427 return (integer_zerop (val) ? false_edge : true_edge);
2430 /* Given SWITCH_STMT and an INTEGER_CST VAL for use as the index, determine
2431 which edge will be taken out of the statement's block. Return NULL if any
2432 edge may be taken.
2433 If VAL is NULL_TREE, then the current value of SWITCH_STMT's index
2434 is used. */
2436 static edge
2437 find_taken_edge_switch_expr (const gswitch *switch_stmt, tree val)
2439 basic_block dest_bb;
2440 edge e;
2441 tree taken_case;
2443 if (gimple_switch_num_labels (switch_stmt) == 1)
2444 taken_case = gimple_switch_default_label (switch_stmt);
2445 else
2447 if (val == NULL_TREE)
2448 val = gimple_switch_index (switch_stmt);
2449 if (TREE_CODE (val) != INTEGER_CST)
2450 return NULL;
2451 else
2452 taken_case = find_case_label_for_value (switch_stmt, val);
2454 dest_bb = label_to_block (CASE_LABEL (taken_case));
2456 e = find_edge (gimple_bb (switch_stmt), dest_bb);
2457 gcc_assert (e);
2458 return e;
2462 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
2463 We can make optimal use here of the fact that the case labels are
2464 sorted: We can do a binary search for a case matching VAL. */
2466 static tree
2467 find_case_label_for_value (const gswitch *switch_stmt, tree val)
2469 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
2470 tree default_case = gimple_switch_default_label (switch_stmt);
2472 for (low = 0, high = n; high - low > 1; )
2474 size_t i = (high + low) / 2;
2475 tree t = gimple_switch_label (switch_stmt, i);
2476 int cmp;
2478 /* Cache the result of comparing CASE_LOW and val. */
2479 cmp = tree_int_cst_compare (CASE_LOW (t), val);
2481 if (cmp > 0)
2482 high = i;
2483 else
2484 low = i;
2486 if (CASE_HIGH (t) == NULL)
2488 /* A singe-valued case label. */
2489 if (cmp == 0)
2490 return t;
2492 else
2494 /* A case range. We can only handle integer ranges. */
2495 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2496 return t;
2500 return default_case;
2504 /* Dump a basic block on stderr. */
2506 void
2507 gimple_debug_bb (basic_block bb)
2509 dump_bb (stderr, bb, 0, TDF_VOPS|TDF_MEMSYMS|TDF_BLOCKS);
2513 /* Dump basic block with index N on stderr. */
2515 basic_block
2516 gimple_debug_bb_n (int n)
2518 gimple_debug_bb (BASIC_BLOCK_FOR_FN (cfun, n));
2519 return BASIC_BLOCK_FOR_FN (cfun, n);
2523 /* Dump the CFG on stderr.
2525 FLAGS are the same used by the tree dumping functions
2526 (see TDF_* in dumpfile.h). */
2528 void
2529 gimple_debug_cfg (dump_flags_t flags)
2531 gimple_dump_cfg (stderr, flags);
2535 /* Dump the program showing basic block boundaries on the given FILE.
2537 FLAGS are the same used by the tree dumping functions (see TDF_* in
2538 tree.h). */
2540 void
2541 gimple_dump_cfg (FILE *file, dump_flags_t flags)
2543 if (flags & TDF_DETAILS)
2545 dump_function_header (file, current_function_decl, flags);
2546 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2547 n_basic_blocks_for_fn (cfun), n_edges_for_fn (cfun),
2548 last_basic_block_for_fn (cfun));
2550 brief_dump_cfg (file, flags);
2551 fprintf (file, "\n");
2554 if (flags & TDF_STATS)
2555 dump_cfg_stats (file);
2557 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2561 /* Dump CFG statistics on FILE. */
2563 void
2564 dump_cfg_stats (FILE *file)
2566 static long max_num_merged_labels = 0;
2567 unsigned long size, total = 0;
2568 long num_edges;
2569 basic_block bb;
2570 const char * const fmt_str = "%-30s%-13s%12s\n";
2571 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2572 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2573 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2574 const char *funcname = current_function_name ();
2576 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2578 fprintf (file, "---------------------------------------------------------\n");
2579 fprintf (file, fmt_str, "", " Number of ", "Memory");
2580 fprintf (file, fmt_str, "", " instances ", "used ");
2581 fprintf (file, "---------------------------------------------------------\n");
2583 size = n_basic_blocks_for_fn (cfun) * sizeof (struct basic_block_def);
2584 total += size;
2585 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks_for_fn (cfun),
2586 SCALE (size), LABEL (size));
2588 num_edges = 0;
2589 FOR_EACH_BB_FN (bb, cfun)
2590 num_edges += EDGE_COUNT (bb->succs);
2591 size = num_edges * sizeof (struct edge_def);
2592 total += size;
2593 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2595 fprintf (file, "---------------------------------------------------------\n");
2596 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2597 LABEL (total));
2598 fprintf (file, "---------------------------------------------------------\n");
2599 fprintf (file, "\n");
2601 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2602 max_num_merged_labels = cfg_stats.num_merged_labels;
2604 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2605 cfg_stats.num_merged_labels, max_num_merged_labels);
2607 fprintf (file, "\n");
2611 /* Dump CFG statistics on stderr. Keep extern so that it's always
2612 linked in the final executable. */
2614 DEBUG_FUNCTION void
2615 debug_cfg_stats (void)
2617 dump_cfg_stats (stderr);
2620 /*---------------------------------------------------------------------------
2621 Miscellaneous helpers
2622 ---------------------------------------------------------------------------*/
2624 /* Return true if T, a GIMPLE_CALL, can make an abnormal transfer of control
2625 flow. Transfers of control flow associated with EH are excluded. */
2627 static bool
2628 call_can_make_abnormal_goto (gimple *t)
2630 /* If the function has no non-local labels, then a call cannot make an
2631 abnormal transfer of control. */
2632 if (!cfun->has_nonlocal_label
2633 && !cfun->calls_setjmp)
2634 return false;
2636 /* Likewise if the call has no side effects. */
2637 if (!gimple_has_side_effects (t))
2638 return false;
2640 /* Likewise if the called function is leaf. */
2641 if (gimple_call_flags (t) & ECF_LEAF)
2642 return false;
2644 return true;
2648 /* Return true if T can make an abnormal transfer of control flow.
2649 Transfers of control flow associated with EH are excluded. */
2651 bool
2652 stmt_can_make_abnormal_goto (gimple *t)
2654 if (computed_goto_p (t))
2655 return true;
2656 if (is_gimple_call (t))
2657 return call_can_make_abnormal_goto (t);
2658 return false;
2662 /* Return true if T represents a stmt that always transfers control. */
2664 bool
2665 is_ctrl_stmt (gimple *t)
2667 switch (gimple_code (t))
2669 case GIMPLE_COND:
2670 case GIMPLE_SWITCH:
2671 case GIMPLE_GOTO:
2672 case GIMPLE_RETURN:
2673 case GIMPLE_RESX:
2674 return true;
2675 default:
2676 return false;
2681 /* Return true if T is a statement that may alter the flow of control
2682 (e.g., a call to a non-returning function). */
2684 bool
2685 is_ctrl_altering_stmt (gimple *t)
2687 gcc_assert (t);
2689 switch (gimple_code (t))
2691 case GIMPLE_CALL:
2692 /* Per stmt call flag indicates whether the call could alter
2693 controlflow. */
2694 if (gimple_call_ctrl_altering_p (t))
2695 return true;
2696 break;
2698 case GIMPLE_EH_DISPATCH:
2699 /* EH_DISPATCH branches to the individual catch handlers at
2700 this level of a try or allowed-exceptions region. It can
2701 fallthru to the next statement as well. */
2702 return true;
2704 case GIMPLE_ASM:
2705 if (gimple_asm_nlabels (as_a <gasm *> (t)) > 0)
2706 return true;
2707 break;
2709 CASE_GIMPLE_OMP:
2710 /* OpenMP directives alter control flow. */
2711 return true;
2713 case GIMPLE_TRANSACTION:
2714 /* A transaction start alters control flow. */
2715 return true;
2717 default:
2718 break;
2721 /* If a statement can throw, it alters control flow. */
2722 return stmt_can_throw_internal (t);
2726 /* Return true if T is a simple local goto. */
2728 bool
2729 simple_goto_p (gimple *t)
2731 return (gimple_code (t) == GIMPLE_GOTO
2732 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2736 /* Return true if STMT should start a new basic block. PREV_STMT is
2737 the statement preceding STMT. It is used when STMT is a label or a
2738 case label. Labels should only start a new basic block if their
2739 previous statement wasn't a label. Otherwise, sequence of labels
2740 would generate unnecessary basic blocks that only contain a single
2741 label. */
2743 static inline bool
2744 stmt_starts_bb_p (gimple *stmt, gimple *prev_stmt)
2746 if (stmt == NULL)
2747 return false;
2749 /* PREV_STMT is only set to a debug stmt if the debug stmt is before
2750 any nondebug stmts in the block. We don't want to start another
2751 block in this case: the debug stmt will already have started the
2752 one STMT would start if we weren't outputting debug stmts. */
2753 if (prev_stmt && is_gimple_debug (prev_stmt))
2754 return false;
2756 /* Labels start a new basic block only if the preceding statement
2757 wasn't a label of the same type. This prevents the creation of
2758 consecutive blocks that have nothing but a single label. */
2759 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
2761 /* Nonlocal and computed GOTO targets always start a new block. */
2762 if (DECL_NONLOCAL (gimple_label_label (label_stmt))
2763 || FORCED_LABEL (gimple_label_label (label_stmt)))
2764 return true;
2766 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2768 if (DECL_NONLOCAL (gimple_label_label (
2769 as_a <glabel *> (prev_stmt))))
2770 return true;
2772 cfg_stats.num_merged_labels++;
2773 return false;
2775 else
2776 return true;
2778 else if (gimple_code (stmt) == GIMPLE_CALL)
2780 if (gimple_call_flags (stmt) & ECF_RETURNS_TWICE)
2781 /* setjmp acts similar to a nonlocal GOTO target and thus should
2782 start a new block. */
2783 return true;
2784 if (gimple_call_internal_p (stmt, IFN_PHI)
2785 && prev_stmt
2786 && gimple_code (prev_stmt) != GIMPLE_LABEL
2787 && (gimple_code (prev_stmt) != GIMPLE_CALL
2788 || ! gimple_call_internal_p (prev_stmt, IFN_PHI)))
2789 /* PHI nodes start a new block unless preceeded by a label
2790 or another PHI. */
2791 return true;
2794 return false;
2798 /* Return true if T should end a basic block. */
2800 bool
2801 stmt_ends_bb_p (gimple *t)
2803 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2806 /* Remove block annotations and other data structures. */
2808 void
2809 delete_tree_cfg_annotations (struct function *fn)
2811 vec_free (label_to_block_map_for_fn (fn));
2814 /* Return the virtual phi in BB. */
2816 gphi *
2817 get_virtual_phi (basic_block bb)
2819 for (gphi_iterator gsi = gsi_start_phis (bb);
2820 !gsi_end_p (gsi);
2821 gsi_next (&gsi))
2823 gphi *phi = gsi.phi ();
2825 if (virtual_operand_p (PHI_RESULT (phi)))
2826 return phi;
2829 return NULL;
2832 /* Return the first statement in basic block BB. */
2834 gimple *
2835 first_stmt (basic_block bb)
2837 gimple_stmt_iterator i = gsi_start_bb (bb);
2838 gimple *stmt = NULL;
2840 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2842 gsi_next (&i);
2843 stmt = NULL;
2845 return stmt;
2848 /* Return the first non-label statement in basic block BB. */
2850 static gimple *
2851 first_non_label_stmt (basic_block bb)
2853 gimple_stmt_iterator i = gsi_start_bb (bb);
2854 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2855 gsi_next (&i);
2856 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2859 /* Return the last statement in basic block BB. */
2861 gimple *
2862 last_stmt (basic_block bb)
2864 gimple_stmt_iterator i = gsi_last_bb (bb);
2865 gimple *stmt = NULL;
2867 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2869 gsi_prev (&i);
2870 stmt = NULL;
2872 return stmt;
2875 /* Return the last statement of an otherwise empty block. Return NULL
2876 if the block is totally empty, or if it contains more than one
2877 statement. */
2879 gimple *
2880 last_and_only_stmt (basic_block bb)
2882 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2883 gimple *last, *prev;
2885 if (gsi_end_p (i))
2886 return NULL;
2888 last = gsi_stmt (i);
2889 gsi_prev_nondebug (&i);
2890 if (gsi_end_p (i))
2891 return last;
2893 /* Empty statements should no longer appear in the instruction stream.
2894 Everything that might have appeared before should be deleted by
2895 remove_useless_stmts, and the optimizers should just gsi_remove
2896 instead of smashing with build_empty_stmt.
2898 Thus the only thing that should appear here in a block containing
2899 one executable statement is a label. */
2900 prev = gsi_stmt (i);
2901 if (gimple_code (prev) == GIMPLE_LABEL)
2902 return last;
2903 else
2904 return NULL;
2907 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2909 static void
2910 reinstall_phi_args (edge new_edge, edge old_edge)
2912 edge_var_map *vm;
2913 int i;
2914 gphi_iterator phis;
2916 vec<edge_var_map> *v = redirect_edge_var_map_vector (old_edge);
2917 if (!v)
2918 return;
2920 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2921 v->iterate (i, &vm) && !gsi_end_p (phis);
2922 i++, gsi_next (&phis))
2924 gphi *phi = phis.phi ();
2925 tree result = redirect_edge_var_map_result (vm);
2926 tree arg = redirect_edge_var_map_def (vm);
2928 gcc_assert (result == gimple_phi_result (phi));
2930 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2933 redirect_edge_var_map_clear (old_edge);
2936 /* Returns the basic block after which the new basic block created
2937 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2938 near its "logical" location. This is of most help to humans looking
2939 at debugging dumps. */
2941 basic_block
2942 split_edge_bb_loc (edge edge_in)
2944 basic_block dest = edge_in->dest;
2945 basic_block dest_prev = dest->prev_bb;
2947 if (dest_prev)
2949 edge e = find_edge (dest_prev, dest);
2950 if (e && !(e->flags & EDGE_COMPLEX))
2951 return edge_in->src;
2953 return dest_prev;
2956 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2957 Abort on abnormal edges. */
2959 static basic_block
2960 gimple_split_edge (edge edge_in)
2962 basic_block new_bb, after_bb, dest;
2963 edge new_edge, e;
2965 /* Abnormal edges cannot be split. */
2966 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2968 dest = edge_in->dest;
2970 after_bb = split_edge_bb_loc (edge_in);
2972 new_bb = create_empty_bb (after_bb);
2973 new_bb->count = edge_in->count ();
2975 e = redirect_edge_and_branch (edge_in, new_bb);
2976 gcc_assert (e == edge_in);
2978 new_edge = make_single_succ_edge (new_bb, dest, EDGE_FALLTHRU);
2979 reinstall_phi_args (new_edge, e);
2981 return new_bb;
2985 /* Verify properties of the address expression T whose base should be
2986 TREE_ADDRESSABLE if VERIFY_ADDRESSABLE is true. */
2988 static bool
2989 verify_address (tree t, bool verify_addressable)
2991 bool old_constant;
2992 bool old_side_effects;
2993 bool new_constant;
2994 bool new_side_effects;
2996 old_constant = TREE_CONSTANT (t);
2997 old_side_effects = TREE_SIDE_EFFECTS (t);
2999 recompute_tree_invariant_for_addr_expr (t);
3000 new_side_effects = TREE_SIDE_EFFECTS (t);
3001 new_constant = TREE_CONSTANT (t);
3003 if (old_constant != new_constant)
3005 error ("constant not recomputed when ADDR_EXPR changed");
3006 return true;
3008 if (old_side_effects != new_side_effects)
3010 error ("side effects not recomputed when ADDR_EXPR changed");
3011 return true;
3014 tree base = TREE_OPERAND (t, 0);
3015 while (handled_component_p (base))
3016 base = TREE_OPERAND (base, 0);
3018 if (!(VAR_P (base)
3019 || TREE_CODE (base) == PARM_DECL
3020 || TREE_CODE (base) == RESULT_DECL))
3021 return false;
3023 if (DECL_GIMPLE_REG_P (base))
3025 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
3026 return true;
3029 if (verify_addressable && !TREE_ADDRESSABLE (base))
3031 error ("address taken, but ADDRESSABLE bit not set");
3032 return true;
3035 return false;
3039 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
3040 Returns true if there is an error, otherwise false. */
3042 static bool
3043 verify_types_in_gimple_min_lval (tree expr)
3045 tree op;
3047 if (is_gimple_id (expr))
3048 return false;
3050 if (TREE_CODE (expr) != TARGET_MEM_REF
3051 && TREE_CODE (expr) != MEM_REF)
3053 error ("invalid expression for min lvalue");
3054 return true;
3057 /* TARGET_MEM_REFs are strange beasts. */
3058 if (TREE_CODE (expr) == TARGET_MEM_REF)
3059 return false;
3061 op = TREE_OPERAND (expr, 0);
3062 if (!is_gimple_val (op))
3064 error ("invalid operand in indirect reference");
3065 debug_generic_stmt (op);
3066 return true;
3068 /* Memory references now generally can involve a value conversion. */
3070 return false;
3073 /* Verify if EXPR is a valid GIMPLE reference expression. If
3074 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
3075 if there is an error, otherwise false. */
3077 static bool
3078 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
3080 if (TREE_CODE (expr) == REALPART_EXPR
3081 || TREE_CODE (expr) == IMAGPART_EXPR
3082 || TREE_CODE (expr) == BIT_FIELD_REF)
3084 tree op = TREE_OPERAND (expr, 0);
3085 if (!is_gimple_reg_type (TREE_TYPE (expr)))
3087 error ("non-scalar BIT_FIELD_REF, IMAGPART_EXPR or REALPART_EXPR");
3088 return true;
3091 if (TREE_CODE (expr) == BIT_FIELD_REF)
3093 tree t1 = TREE_OPERAND (expr, 1);
3094 tree t2 = TREE_OPERAND (expr, 2);
3095 poly_uint64 size, bitpos;
3096 if (!poly_int_tree_p (t1, &size)
3097 || !poly_int_tree_p (t2, &bitpos)
3098 || !types_compatible_p (bitsizetype, TREE_TYPE (t1))
3099 || !types_compatible_p (bitsizetype, TREE_TYPE (t2)))
3101 error ("invalid position or size operand to BIT_FIELD_REF");
3102 return true;
3104 if (INTEGRAL_TYPE_P (TREE_TYPE (expr))
3105 && maybe_ne (TYPE_PRECISION (TREE_TYPE (expr)), size))
3107 error ("integral result type precision does not match "
3108 "field size of BIT_FIELD_REF");
3109 return true;
3111 else if (!INTEGRAL_TYPE_P (TREE_TYPE (expr))
3112 && TYPE_MODE (TREE_TYPE (expr)) != BLKmode
3113 && maybe_ne (GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr))),
3114 size))
3116 error ("mode size of non-integral result does not "
3117 "match field size of BIT_FIELD_REF");
3118 return true;
3120 if (!AGGREGATE_TYPE_P (TREE_TYPE (op))
3121 && maybe_gt (size + bitpos,
3122 tree_to_poly_uint64 (TYPE_SIZE (TREE_TYPE (op)))))
3124 error ("position plus size exceeds size of referenced object in "
3125 "BIT_FIELD_REF");
3126 return true;
3130 if ((TREE_CODE (expr) == REALPART_EXPR
3131 || TREE_CODE (expr) == IMAGPART_EXPR)
3132 && !useless_type_conversion_p (TREE_TYPE (expr),
3133 TREE_TYPE (TREE_TYPE (op))))
3135 error ("type mismatch in real/imagpart reference");
3136 debug_generic_stmt (TREE_TYPE (expr));
3137 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3138 return true;
3140 expr = op;
3143 while (handled_component_p (expr))
3145 if (TREE_CODE (expr) == REALPART_EXPR
3146 || TREE_CODE (expr) == IMAGPART_EXPR
3147 || TREE_CODE (expr) == BIT_FIELD_REF)
3149 error ("non-top-level BIT_FIELD_REF, IMAGPART_EXPR or REALPART_EXPR");
3150 return true;
3153 tree op = TREE_OPERAND (expr, 0);
3155 if (TREE_CODE (expr) == ARRAY_REF
3156 || TREE_CODE (expr) == ARRAY_RANGE_REF)
3158 if (!is_gimple_val (TREE_OPERAND (expr, 1))
3159 || (TREE_OPERAND (expr, 2)
3160 && !is_gimple_val (TREE_OPERAND (expr, 2)))
3161 || (TREE_OPERAND (expr, 3)
3162 && !is_gimple_val (TREE_OPERAND (expr, 3))))
3164 error ("invalid operands to array reference");
3165 debug_generic_stmt (expr);
3166 return true;
3170 /* Verify if the reference array element types are compatible. */
3171 if (TREE_CODE (expr) == ARRAY_REF
3172 && !useless_type_conversion_p (TREE_TYPE (expr),
3173 TREE_TYPE (TREE_TYPE (op))))
3175 error ("type mismatch in array reference");
3176 debug_generic_stmt (TREE_TYPE (expr));
3177 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3178 return true;
3180 if (TREE_CODE (expr) == ARRAY_RANGE_REF
3181 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
3182 TREE_TYPE (TREE_TYPE (op))))
3184 error ("type mismatch in array range reference");
3185 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
3186 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3187 return true;
3190 if (TREE_CODE (expr) == COMPONENT_REF)
3192 if (TREE_OPERAND (expr, 2)
3193 && !is_gimple_val (TREE_OPERAND (expr, 2)))
3195 error ("invalid COMPONENT_REF offset operator");
3196 return true;
3198 if (!useless_type_conversion_p (TREE_TYPE (expr),
3199 TREE_TYPE (TREE_OPERAND (expr, 1))))
3201 error ("type mismatch in component reference");
3202 debug_generic_stmt (TREE_TYPE (expr));
3203 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
3204 return true;
3208 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
3210 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
3211 that their operand is not an SSA name or an invariant when
3212 requiring an lvalue (this usually means there is a SRA or IPA-SRA
3213 bug). Otherwise there is nothing to verify, gross mismatches at
3214 most invoke undefined behavior. */
3215 if (require_lvalue
3216 && (TREE_CODE (op) == SSA_NAME
3217 || is_gimple_min_invariant (op)))
3219 error ("conversion of an SSA_NAME on the left hand side");
3220 debug_generic_stmt (expr);
3221 return true;
3223 else if (TREE_CODE (op) == SSA_NAME
3224 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
3226 error ("conversion of register to a different size");
3227 debug_generic_stmt (expr);
3228 return true;
3230 else if (!handled_component_p (op))
3231 return false;
3234 expr = op;
3237 if (TREE_CODE (expr) == MEM_REF)
3239 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0))
3240 || (TREE_CODE (TREE_OPERAND (expr, 0)) == ADDR_EXPR
3241 && verify_address (TREE_OPERAND (expr, 0), false)))
3243 error ("invalid address operand in MEM_REF");
3244 debug_generic_stmt (expr);
3245 return true;
3247 if (!poly_int_tree_p (TREE_OPERAND (expr, 1))
3248 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
3250 error ("invalid offset operand in MEM_REF");
3251 debug_generic_stmt (expr);
3252 return true;
3255 else if (TREE_CODE (expr) == TARGET_MEM_REF)
3257 if (!TMR_BASE (expr)
3258 || !is_gimple_mem_ref_addr (TMR_BASE (expr))
3259 || (TREE_CODE (TMR_BASE (expr)) == ADDR_EXPR
3260 && verify_address (TMR_BASE (expr), false)))
3262 error ("invalid address operand in TARGET_MEM_REF");
3263 return true;
3265 if (!TMR_OFFSET (expr)
3266 || !poly_int_tree_p (TMR_OFFSET (expr))
3267 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
3269 error ("invalid offset operand in TARGET_MEM_REF");
3270 debug_generic_stmt (expr);
3271 return true;
3274 else if (TREE_CODE (expr) == INDIRECT_REF)
3276 error ("INDIRECT_REF in gimple IL");
3277 debug_generic_stmt (expr);
3278 return true;
3281 return ((require_lvalue || !is_gimple_min_invariant (expr))
3282 && verify_types_in_gimple_min_lval (expr));
3285 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3286 list of pointer-to types that is trivially convertible to DEST. */
3288 static bool
3289 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3291 tree src;
3293 if (!TYPE_POINTER_TO (src_obj))
3294 return true;
3296 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3297 if (useless_type_conversion_p (dest, src))
3298 return true;
3300 return false;
3303 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3304 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3306 static bool
3307 valid_fixed_convert_types_p (tree type1, tree type2)
3309 return (FIXED_POINT_TYPE_P (type1)
3310 && (INTEGRAL_TYPE_P (type2)
3311 || SCALAR_FLOAT_TYPE_P (type2)
3312 || FIXED_POINT_TYPE_P (type2)));
3315 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3316 is a problem, otherwise false. */
3318 static bool
3319 verify_gimple_call (gcall *stmt)
3321 tree fn = gimple_call_fn (stmt);
3322 tree fntype, fndecl;
3323 unsigned i;
3325 if (gimple_call_internal_p (stmt))
3327 if (fn)
3329 error ("gimple call has two targets");
3330 debug_generic_stmt (fn);
3331 return true;
3333 /* FIXME : for passing label as arg in internal fn PHI from GIMPLE FE*/
3334 else if (gimple_call_internal_fn (stmt) == IFN_PHI)
3336 return false;
3339 else
3341 if (!fn)
3343 error ("gimple call has no target");
3344 return true;
3348 if (fn && !is_gimple_call_addr (fn))
3350 error ("invalid function in gimple call");
3351 debug_generic_stmt (fn);
3352 return true;
3355 if (fn
3356 && (!POINTER_TYPE_P (TREE_TYPE (fn))
3357 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3358 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE)))
3360 error ("non-function in gimple call");
3361 return true;
3364 fndecl = gimple_call_fndecl (stmt);
3365 if (fndecl
3366 && TREE_CODE (fndecl) == FUNCTION_DECL
3367 && DECL_LOOPING_CONST_OR_PURE_P (fndecl)
3368 && !DECL_PURE_P (fndecl)
3369 && !TREE_READONLY (fndecl))
3371 error ("invalid pure const state for function");
3372 return true;
3375 tree lhs = gimple_call_lhs (stmt);
3376 if (lhs
3377 && (!is_gimple_lvalue (lhs)
3378 || verify_types_in_gimple_reference (lhs, true)))
3380 error ("invalid LHS in gimple call");
3381 return true;
3384 if (gimple_call_ctrl_altering_p (stmt)
3385 && gimple_call_noreturn_p (stmt)
3386 && should_remove_lhs_p (lhs))
3388 error ("LHS in noreturn call");
3389 return true;
3392 fntype = gimple_call_fntype (stmt);
3393 if (fntype
3394 && lhs
3395 && !useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (fntype))
3396 /* ??? At least C++ misses conversions at assignments from
3397 void * call results.
3398 For now simply allow arbitrary pointer type conversions. */
3399 && !(POINTER_TYPE_P (TREE_TYPE (lhs))
3400 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3402 error ("invalid conversion in gimple call");
3403 debug_generic_stmt (TREE_TYPE (lhs));
3404 debug_generic_stmt (TREE_TYPE (fntype));
3405 return true;
3408 if (gimple_call_chain (stmt)
3409 && !is_gimple_val (gimple_call_chain (stmt)))
3411 error ("invalid static chain in gimple call");
3412 debug_generic_stmt (gimple_call_chain (stmt));
3413 return true;
3416 /* If there is a static chain argument, the call should either be
3417 indirect, or the decl should have DECL_STATIC_CHAIN set. */
3418 if (gimple_call_chain (stmt)
3419 && fndecl
3420 && !DECL_STATIC_CHAIN (fndecl))
3422 error ("static chain with function that doesn%'t use one");
3423 return true;
3426 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
3428 switch (DECL_FUNCTION_CODE (fndecl))
3430 case BUILT_IN_UNREACHABLE:
3431 case BUILT_IN_TRAP:
3432 if (gimple_call_num_args (stmt) > 0)
3434 /* Built-in unreachable with parameters might not be caught by
3435 undefined behavior sanitizer. Front-ends do check users do not
3436 call them that way but we also produce calls to
3437 __builtin_unreachable internally, for example when IPA figures
3438 out a call cannot happen in a legal program. In such cases,
3439 we must make sure arguments are stripped off. */
3440 error ("__builtin_unreachable or __builtin_trap call with "
3441 "arguments");
3442 return true;
3444 break;
3445 default:
3446 break;
3450 /* ??? The C frontend passes unpromoted arguments in case it
3451 didn't see a function declaration before the call. So for now
3452 leave the call arguments mostly unverified. Once we gimplify
3453 unit-at-a-time we have a chance to fix this. */
3455 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3457 tree arg = gimple_call_arg (stmt, i);
3458 if ((is_gimple_reg_type (TREE_TYPE (arg))
3459 && !is_gimple_val (arg))
3460 || (!is_gimple_reg_type (TREE_TYPE (arg))
3461 && !is_gimple_lvalue (arg)))
3463 error ("invalid argument to gimple call");
3464 debug_generic_expr (arg);
3465 return true;
3469 return false;
3472 /* Verifies the gimple comparison with the result type TYPE and
3473 the operands OP0 and OP1, comparison code is CODE. */
3475 static bool
3476 verify_gimple_comparison (tree type, tree op0, tree op1, enum tree_code code)
3478 tree op0_type = TREE_TYPE (op0);
3479 tree op1_type = TREE_TYPE (op1);
3481 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3483 error ("invalid operands in gimple comparison");
3484 return true;
3487 /* For comparisons we do not have the operations type as the
3488 effective type the comparison is carried out in. Instead
3489 we require that either the first operand is trivially
3490 convertible into the second, or the other way around.
3491 Because we special-case pointers to void we allow
3492 comparisons of pointers with the same mode as well. */
3493 if (!useless_type_conversion_p (op0_type, op1_type)
3494 && !useless_type_conversion_p (op1_type, op0_type)
3495 && (!POINTER_TYPE_P (op0_type)
3496 || !POINTER_TYPE_P (op1_type)
3497 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3499 error ("mismatching comparison operand types");
3500 debug_generic_expr (op0_type);
3501 debug_generic_expr (op1_type);
3502 return true;
3505 /* The resulting type of a comparison may be an effective boolean type. */
3506 if (INTEGRAL_TYPE_P (type)
3507 && (TREE_CODE (type) == BOOLEAN_TYPE
3508 || TYPE_PRECISION (type) == 1))
3510 if ((TREE_CODE (op0_type) == VECTOR_TYPE
3511 || TREE_CODE (op1_type) == VECTOR_TYPE)
3512 && code != EQ_EXPR && code != NE_EXPR
3513 && !VECTOR_BOOLEAN_TYPE_P (op0_type)
3514 && !VECTOR_INTEGER_TYPE_P (op0_type))
3516 error ("unsupported operation or type for vector comparison"
3517 " returning a boolean");
3518 debug_generic_expr (op0_type);
3519 debug_generic_expr (op1_type);
3520 return true;
3523 /* Or a boolean vector type with the same element count
3524 as the comparison operand types. */
3525 else if (TREE_CODE (type) == VECTOR_TYPE
3526 && TREE_CODE (TREE_TYPE (type)) == BOOLEAN_TYPE)
3528 if (TREE_CODE (op0_type) != VECTOR_TYPE
3529 || TREE_CODE (op1_type) != VECTOR_TYPE)
3531 error ("non-vector operands in vector comparison");
3532 debug_generic_expr (op0_type);
3533 debug_generic_expr (op1_type);
3534 return true;
3537 if (maybe_ne (TYPE_VECTOR_SUBPARTS (type),
3538 TYPE_VECTOR_SUBPARTS (op0_type)))
3540 error ("invalid vector comparison resulting type");
3541 debug_generic_expr (type);
3542 return true;
3545 else
3547 error ("bogus comparison result type");
3548 debug_generic_expr (type);
3549 return true;
3552 return false;
3555 /* Verify a gimple assignment statement STMT with an unary rhs.
3556 Returns true if anything is wrong. */
3558 static bool
3559 verify_gimple_assign_unary (gassign *stmt)
3561 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3562 tree lhs = gimple_assign_lhs (stmt);
3563 tree lhs_type = TREE_TYPE (lhs);
3564 tree rhs1 = gimple_assign_rhs1 (stmt);
3565 tree rhs1_type = TREE_TYPE (rhs1);
3567 if (!is_gimple_reg (lhs))
3569 error ("non-register as LHS of unary operation");
3570 return true;
3573 if (!is_gimple_val (rhs1))
3575 error ("invalid operand in unary operation");
3576 return true;
3579 /* First handle conversions. */
3580 switch (rhs_code)
3582 CASE_CONVERT:
3584 /* Allow conversions from pointer type to integral type only if
3585 there is no sign or zero extension involved.
3586 For targets were the precision of ptrofftype doesn't match that
3587 of pointers we need to allow arbitrary conversions to ptrofftype. */
3588 if ((POINTER_TYPE_P (lhs_type)
3589 && INTEGRAL_TYPE_P (rhs1_type))
3590 || (POINTER_TYPE_P (rhs1_type)
3591 && INTEGRAL_TYPE_P (lhs_type)
3592 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3593 || ptrofftype_p (lhs_type))))
3594 return false;
3596 /* Allow conversion from integral to offset type and vice versa. */
3597 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3598 && INTEGRAL_TYPE_P (rhs1_type))
3599 || (INTEGRAL_TYPE_P (lhs_type)
3600 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3601 return false;
3603 /* Otherwise assert we are converting between types of the
3604 same kind. */
3605 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3607 error ("invalid types in nop conversion");
3608 debug_generic_expr (lhs_type);
3609 debug_generic_expr (rhs1_type);
3610 return true;
3613 return false;
3616 case ADDR_SPACE_CONVERT_EXPR:
3618 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3619 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3620 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3622 error ("invalid types in address space conversion");
3623 debug_generic_expr (lhs_type);
3624 debug_generic_expr (rhs1_type);
3625 return true;
3628 return false;
3631 case FIXED_CONVERT_EXPR:
3633 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3634 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3636 error ("invalid types in fixed-point conversion");
3637 debug_generic_expr (lhs_type);
3638 debug_generic_expr (rhs1_type);
3639 return true;
3642 return false;
3645 case FLOAT_EXPR:
3647 if ((!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3648 && (!VECTOR_INTEGER_TYPE_P (rhs1_type)
3649 || !VECTOR_FLOAT_TYPE_P (lhs_type)))
3651 error ("invalid types in conversion to floating point");
3652 debug_generic_expr (lhs_type);
3653 debug_generic_expr (rhs1_type);
3654 return true;
3657 return false;
3660 case FIX_TRUNC_EXPR:
3662 if ((!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3663 && (!VECTOR_INTEGER_TYPE_P (lhs_type)
3664 || !VECTOR_FLOAT_TYPE_P (rhs1_type)))
3666 error ("invalid types in conversion to integer");
3667 debug_generic_expr (lhs_type);
3668 debug_generic_expr (rhs1_type);
3669 return true;
3672 return false;
3675 case VEC_UNPACK_HI_EXPR:
3676 case VEC_UNPACK_LO_EXPR:
3677 case VEC_UNPACK_FLOAT_HI_EXPR:
3678 case VEC_UNPACK_FLOAT_LO_EXPR:
3679 case VEC_UNPACK_FIX_TRUNC_HI_EXPR:
3680 case VEC_UNPACK_FIX_TRUNC_LO_EXPR:
3681 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3682 || TREE_CODE (lhs_type) != VECTOR_TYPE
3683 || (!INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
3684 && !SCALAR_FLOAT_TYPE_P (TREE_TYPE (lhs_type)))
3685 || (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3686 && !SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type)))
3687 || ((rhs_code == VEC_UNPACK_HI_EXPR
3688 || rhs_code == VEC_UNPACK_LO_EXPR)
3689 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
3690 != INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3691 || ((rhs_code == VEC_UNPACK_FLOAT_HI_EXPR
3692 || rhs_code == VEC_UNPACK_FLOAT_LO_EXPR)
3693 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
3694 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type))))
3695 || ((rhs_code == VEC_UNPACK_FIX_TRUNC_HI_EXPR
3696 || rhs_code == VEC_UNPACK_FIX_TRUNC_LO_EXPR)
3697 && (INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3698 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (lhs_type))))
3699 || (maybe_ne (GET_MODE_SIZE (element_mode (lhs_type)),
3700 2 * GET_MODE_SIZE (element_mode (rhs1_type)))
3701 && (!VECTOR_BOOLEAN_TYPE_P (lhs_type)
3702 || !VECTOR_BOOLEAN_TYPE_P (rhs1_type)))
3703 || maybe_ne (2 * TYPE_VECTOR_SUBPARTS (lhs_type),
3704 TYPE_VECTOR_SUBPARTS (rhs1_type)))
3706 error ("type mismatch in vector unpack expression");
3707 debug_generic_expr (lhs_type);
3708 debug_generic_expr (rhs1_type);
3709 return true;
3712 return false;
3714 case NEGATE_EXPR:
3715 case ABS_EXPR:
3716 case BIT_NOT_EXPR:
3717 case PAREN_EXPR:
3718 case CONJ_EXPR:
3719 break;
3721 case VEC_DUPLICATE_EXPR:
3722 if (TREE_CODE (lhs_type) != VECTOR_TYPE
3723 || !useless_type_conversion_p (TREE_TYPE (lhs_type), rhs1_type))
3725 error ("vec_duplicate should be from a scalar to a like vector");
3726 debug_generic_expr (lhs_type);
3727 debug_generic_expr (rhs1_type);
3728 return true;
3730 return false;
3732 default:
3733 gcc_unreachable ();
3736 /* For the remaining codes assert there is no conversion involved. */
3737 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3739 error ("non-trivial conversion in unary operation");
3740 debug_generic_expr (lhs_type);
3741 debug_generic_expr (rhs1_type);
3742 return true;
3745 return false;
3748 /* Verify a gimple assignment statement STMT with a binary rhs.
3749 Returns true if anything is wrong. */
3751 static bool
3752 verify_gimple_assign_binary (gassign *stmt)
3754 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3755 tree lhs = gimple_assign_lhs (stmt);
3756 tree lhs_type = TREE_TYPE (lhs);
3757 tree rhs1 = gimple_assign_rhs1 (stmt);
3758 tree rhs1_type = TREE_TYPE (rhs1);
3759 tree rhs2 = gimple_assign_rhs2 (stmt);
3760 tree rhs2_type = TREE_TYPE (rhs2);
3762 if (!is_gimple_reg (lhs))
3764 error ("non-register as LHS of binary operation");
3765 return true;
3768 if (!is_gimple_val (rhs1)
3769 || !is_gimple_val (rhs2))
3771 error ("invalid operands in binary operation");
3772 return true;
3775 /* First handle operations that involve different types. */
3776 switch (rhs_code)
3778 case COMPLEX_EXPR:
3780 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3781 || !(INTEGRAL_TYPE_P (rhs1_type)
3782 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3783 || !(INTEGRAL_TYPE_P (rhs2_type)
3784 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3786 error ("type mismatch in complex expression");
3787 debug_generic_expr (lhs_type);
3788 debug_generic_expr (rhs1_type);
3789 debug_generic_expr (rhs2_type);
3790 return true;
3793 return false;
3796 case LSHIFT_EXPR:
3797 case RSHIFT_EXPR:
3798 case LROTATE_EXPR:
3799 case RROTATE_EXPR:
3801 /* Shifts and rotates are ok on integral types, fixed point
3802 types and integer vector types. */
3803 if ((!INTEGRAL_TYPE_P (rhs1_type)
3804 && !FIXED_POINT_TYPE_P (rhs1_type)
3805 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3806 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3807 || (!INTEGRAL_TYPE_P (rhs2_type)
3808 /* Vector shifts of vectors are also ok. */
3809 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3810 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3811 && TREE_CODE (rhs2_type) == VECTOR_TYPE
3812 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3813 || !useless_type_conversion_p (lhs_type, rhs1_type))
3815 error ("type mismatch in shift expression");
3816 debug_generic_expr (lhs_type);
3817 debug_generic_expr (rhs1_type);
3818 debug_generic_expr (rhs2_type);
3819 return true;
3822 return false;
3825 case WIDEN_LSHIFT_EXPR:
3827 if (!INTEGRAL_TYPE_P (lhs_type)
3828 || !INTEGRAL_TYPE_P (rhs1_type)
3829 || TREE_CODE (rhs2) != INTEGER_CST
3830 || (2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)))
3832 error ("type mismatch in widening vector shift expression");
3833 debug_generic_expr (lhs_type);
3834 debug_generic_expr (rhs1_type);
3835 debug_generic_expr (rhs2_type);
3836 return true;
3839 return false;
3842 case VEC_WIDEN_LSHIFT_HI_EXPR:
3843 case VEC_WIDEN_LSHIFT_LO_EXPR:
3845 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3846 || TREE_CODE (lhs_type) != VECTOR_TYPE
3847 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3848 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
3849 || TREE_CODE (rhs2) != INTEGER_CST
3850 || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type))
3851 > TYPE_PRECISION (TREE_TYPE (lhs_type))))
3853 error ("type mismatch in widening vector shift expression");
3854 debug_generic_expr (lhs_type);
3855 debug_generic_expr (rhs1_type);
3856 debug_generic_expr (rhs2_type);
3857 return true;
3860 return false;
3863 case PLUS_EXPR:
3864 case MINUS_EXPR:
3866 tree lhs_etype = lhs_type;
3867 tree rhs1_etype = rhs1_type;
3868 tree rhs2_etype = rhs2_type;
3869 if (TREE_CODE (lhs_type) == VECTOR_TYPE)
3871 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3872 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
3874 error ("invalid non-vector operands to vector valued plus");
3875 return true;
3877 lhs_etype = TREE_TYPE (lhs_type);
3878 rhs1_etype = TREE_TYPE (rhs1_type);
3879 rhs2_etype = TREE_TYPE (rhs2_type);
3881 if (POINTER_TYPE_P (lhs_etype)
3882 || POINTER_TYPE_P (rhs1_etype)
3883 || POINTER_TYPE_P (rhs2_etype))
3885 error ("invalid (pointer) operands to plus/minus");
3886 return true;
3889 /* Continue with generic binary expression handling. */
3890 break;
3893 case POINTER_PLUS_EXPR:
3895 if (!POINTER_TYPE_P (rhs1_type)
3896 || !useless_type_conversion_p (lhs_type, rhs1_type)
3897 || !ptrofftype_p (rhs2_type))
3899 error ("type mismatch in pointer plus expression");
3900 debug_generic_stmt (lhs_type);
3901 debug_generic_stmt (rhs1_type);
3902 debug_generic_stmt (rhs2_type);
3903 return true;
3906 return false;
3909 case POINTER_DIFF_EXPR:
3911 if (!POINTER_TYPE_P (rhs1_type)
3912 || !POINTER_TYPE_P (rhs2_type)
3913 /* Because we special-case pointers to void we allow difference
3914 of arbitrary pointers with the same mode. */
3915 || TYPE_MODE (rhs1_type) != TYPE_MODE (rhs2_type)
3916 || TREE_CODE (lhs_type) != INTEGER_TYPE
3917 || TYPE_UNSIGNED (lhs_type)
3918 || TYPE_PRECISION (lhs_type) != TYPE_PRECISION (rhs1_type))
3920 error ("type mismatch in pointer diff expression");
3921 debug_generic_stmt (lhs_type);
3922 debug_generic_stmt (rhs1_type);
3923 debug_generic_stmt (rhs2_type);
3924 return true;
3927 return false;
3930 case TRUTH_ANDIF_EXPR:
3931 case TRUTH_ORIF_EXPR:
3932 case TRUTH_AND_EXPR:
3933 case TRUTH_OR_EXPR:
3934 case TRUTH_XOR_EXPR:
3936 gcc_unreachable ();
3938 case LT_EXPR:
3939 case LE_EXPR:
3940 case GT_EXPR:
3941 case GE_EXPR:
3942 case EQ_EXPR:
3943 case NE_EXPR:
3944 case UNORDERED_EXPR:
3945 case ORDERED_EXPR:
3946 case UNLT_EXPR:
3947 case UNLE_EXPR:
3948 case UNGT_EXPR:
3949 case UNGE_EXPR:
3950 case UNEQ_EXPR:
3951 case LTGT_EXPR:
3952 /* Comparisons are also binary, but the result type is not
3953 connected to the operand types. */
3954 return verify_gimple_comparison (lhs_type, rhs1, rhs2, rhs_code);
3956 case WIDEN_MULT_EXPR:
3957 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
3958 return true;
3959 return ((2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type))
3960 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
3962 case WIDEN_SUM_EXPR:
3964 if (((TREE_CODE (rhs1_type) != VECTOR_TYPE
3965 || TREE_CODE (lhs_type) != VECTOR_TYPE)
3966 && ((!INTEGRAL_TYPE_P (rhs1_type)
3967 && !SCALAR_FLOAT_TYPE_P (rhs1_type))
3968 || (!INTEGRAL_TYPE_P (lhs_type)
3969 && !SCALAR_FLOAT_TYPE_P (lhs_type))))
3970 || !useless_type_conversion_p (lhs_type, rhs2_type)
3971 || maybe_lt (GET_MODE_SIZE (element_mode (rhs2_type)),
3972 2 * GET_MODE_SIZE (element_mode (rhs1_type))))
3974 error ("type mismatch in widening sum reduction");
3975 debug_generic_expr (lhs_type);
3976 debug_generic_expr (rhs1_type);
3977 debug_generic_expr (rhs2_type);
3978 return true;
3980 return false;
3983 case VEC_WIDEN_MULT_HI_EXPR:
3984 case VEC_WIDEN_MULT_LO_EXPR:
3985 case VEC_WIDEN_MULT_EVEN_EXPR:
3986 case VEC_WIDEN_MULT_ODD_EXPR:
3988 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3989 || TREE_CODE (lhs_type) != VECTOR_TYPE
3990 || !types_compatible_p (rhs1_type, rhs2_type)
3991 || maybe_ne (GET_MODE_SIZE (element_mode (lhs_type)),
3992 2 * GET_MODE_SIZE (element_mode (rhs1_type))))
3994 error ("type mismatch in vector widening multiplication");
3995 debug_generic_expr (lhs_type);
3996 debug_generic_expr (rhs1_type);
3997 debug_generic_expr (rhs2_type);
3998 return true;
4000 return false;
4003 case VEC_PACK_TRUNC_EXPR:
4004 /* ??? We currently use VEC_PACK_TRUNC_EXPR to simply concat
4005 vector boolean types. */
4006 if (VECTOR_BOOLEAN_TYPE_P (lhs_type)
4007 && VECTOR_BOOLEAN_TYPE_P (rhs1_type)
4008 && types_compatible_p (rhs1_type, rhs2_type)
4009 && known_eq (TYPE_VECTOR_SUBPARTS (lhs_type),
4010 2 * TYPE_VECTOR_SUBPARTS (rhs1_type)))
4011 return false;
4013 /* Fallthru. */
4014 case VEC_PACK_SAT_EXPR:
4015 case VEC_PACK_FIX_TRUNC_EXPR:
4017 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4018 || TREE_CODE (lhs_type) != VECTOR_TYPE
4019 || !((rhs_code == VEC_PACK_FIX_TRUNC_EXPR
4020 && SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type))
4021 && INTEGRAL_TYPE_P (TREE_TYPE (lhs_type)))
4022 || (INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
4023 == INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))))
4024 || !types_compatible_p (rhs1_type, rhs2_type)
4025 || maybe_ne (GET_MODE_SIZE (element_mode (rhs1_type)),
4026 2 * GET_MODE_SIZE (element_mode (lhs_type)))
4027 || maybe_ne (2 * TYPE_VECTOR_SUBPARTS (rhs1_type),
4028 TYPE_VECTOR_SUBPARTS (lhs_type)))
4030 error ("type mismatch in vector pack expression");
4031 debug_generic_expr (lhs_type);
4032 debug_generic_expr (rhs1_type);
4033 debug_generic_expr (rhs2_type);
4034 return true;
4037 return false;
4040 case VEC_PACK_FLOAT_EXPR:
4041 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4042 || TREE_CODE (lhs_type) != VECTOR_TYPE
4043 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
4044 || !SCALAR_FLOAT_TYPE_P (TREE_TYPE (lhs_type))
4045 || !types_compatible_p (rhs1_type, rhs2_type)
4046 || maybe_ne (GET_MODE_SIZE (element_mode (rhs1_type)),
4047 2 * GET_MODE_SIZE (element_mode (lhs_type)))
4048 || maybe_ne (2 * TYPE_VECTOR_SUBPARTS (rhs1_type),
4049 TYPE_VECTOR_SUBPARTS (lhs_type)))
4051 error ("type mismatch in vector pack expression");
4052 debug_generic_expr (lhs_type);
4053 debug_generic_expr (rhs1_type);
4054 debug_generic_expr (rhs2_type);
4055 return true;
4058 return false;
4060 case MULT_EXPR:
4061 case MULT_HIGHPART_EXPR:
4062 case TRUNC_DIV_EXPR:
4063 case CEIL_DIV_EXPR:
4064 case FLOOR_DIV_EXPR:
4065 case ROUND_DIV_EXPR:
4066 case TRUNC_MOD_EXPR:
4067 case CEIL_MOD_EXPR:
4068 case FLOOR_MOD_EXPR:
4069 case ROUND_MOD_EXPR:
4070 case RDIV_EXPR:
4071 case EXACT_DIV_EXPR:
4072 case MIN_EXPR:
4073 case MAX_EXPR:
4074 case BIT_IOR_EXPR:
4075 case BIT_XOR_EXPR:
4076 case BIT_AND_EXPR:
4077 /* Continue with generic binary expression handling. */
4078 break;
4080 case VEC_SERIES_EXPR:
4081 if (!useless_type_conversion_p (rhs1_type, rhs2_type))
4083 error ("type mismatch in series expression");
4084 debug_generic_expr (rhs1_type);
4085 debug_generic_expr (rhs2_type);
4086 return true;
4088 if (TREE_CODE (lhs_type) != VECTOR_TYPE
4089 || !useless_type_conversion_p (TREE_TYPE (lhs_type), rhs1_type))
4091 error ("vector type expected in series expression");
4092 debug_generic_expr (lhs_type);
4093 return true;
4095 return false;
4097 default:
4098 gcc_unreachable ();
4101 if (!useless_type_conversion_p (lhs_type, rhs1_type)
4102 || !useless_type_conversion_p (lhs_type, rhs2_type))
4104 error ("type mismatch in binary expression");
4105 debug_generic_stmt (lhs_type);
4106 debug_generic_stmt (rhs1_type);
4107 debug_generic_stmt (rhs2_type);
4108 return true;
4111 return false;
4114 /* Verify a gimple assignment statement STMT with a ternary rhs.
4115 Returns true if anything is wrong. */
4117 static bool
4118 verify_gimple_assign_ternary (gassign *stmt)
4120 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
4121 tree lhs = gimple_assign_lhs (stmt);
4122 tree lhs_type = TREE_TYPE (lhs);
4123 tree rhs1 = gimple_assign_rhs1 (stmt);
4124 tree rhs1_type = TREE_TYPE (rhs1);
4125 tree rhs2 = gimple_assign_rhs2 (stmt);
4126 tree rhs2_type = TREE_TYPE (rhs2);
4127 tree rhs3 = gimple_assign_rhs3 (stmt);
4128 tree rhs3_type = TREE_TYPE (rhs3);
4130 if (!is_gimple_reg (lhs))
4132 error ("non-register as LHS of ternary operation");
4133 return true;
4136 if (((rhs_code == VEC_COND_EXPR || rhs_code == COND_EXPR)
4137 ? !is_gimple_condexpr (rhs1) : !is_gimple_val (rhs1))
4138 || !is_gimple_val (rhs2)
4139 || !is_gimple_val (rhs3))
4141 error ("invalid operands in ternary operation");
4142 return true;
4145 /* First handle operations that involve different types. */
4146 switch (rhs_code)
4148 case WIDEN_MULT_PLUS_EXPR:
4149 case WIDEN_MULT_MINUS_EXPR:
4150 if ((!INTEGRAL_TYPE_P (rhs1_type)
4151 && !FIXED_POINT_TYPE_P (rhs1_type))
4152 || !useless_type_conversion_p (rhs1_type, rhs2_type)
4153 || !useless_type_conversion_p (lhs_type, rhs3_type)
4154 || 2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)
4155 || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
4157 error ("type mismatch in widening multiply-accumulate expression");
4158 debug_generic_expr (lhs_type);
4159 debug_generic_expr (rhs1_type);
4160 debug_generic_expr (rhs2_type);
4161 debug_generic_expr (rhs3_type);
4162 return true;
4164 break;
4166 case VEC_COND_EXPR:
4167 if (!VECTOR_BOOLEAN_TYPE_P (rhs1_type)
4168 || maybe_ne (TYPE_VECTOR_SUBPARTS (rhs1_type),
4169 TYPE_VECTOR_SUBPARTS (lhs_type)))
4171 error ("the first argument of a VEC_COND_EXPR must be of a "
4172 "boolean vector type of the same number of elements "
4173 "as the result");
4174 debug_generic_expr (lhs_type);
4175 debug_generic_expr (rhs1_type);
4176 return true;
4178 /* Fallthrough. */
4179 case COND_EXPR:
4180 if (!is_gimple_val (rhs1)
4181 && verify_gimple_comparison (TREE_TYPE (rhs1),
4182 TREE_OPERAND (rhs1, 0),
4183 TREE_OPERAND (rhs1, 1),
4184 TREE_CODE (rhs1)))
4185 return true;
4186 if (!useless_type_conversion_p (lhs_type, rhs2_type)
4187 || !useless_type_conversion_p (lhs_type, rhs3_type))
4189 error ("type mismatch in conditional expression");
4190 debug_generic_expr (lhs_type);
4191 debug_generic_expr (rhs2_type);
4192 debug_generic_expr (rhs3_type);
4193 return true;
4195 break;
4197 case VEC_PERM_EXPR:
4198 if (!useless_type_conversion_p (lhs_type, rhs1_type)
4199 || !useless_type_conversion_p (lhs_type, rhs2_type))
4201 error ("type mismatch in vector permute expression");
4202 debug_generic_expr (lhs_type);
4203 debug_generic_expr (rhs1_type);
4204 debug_generic_expr (rhs2_type);
4205 debug_generic_expr (rhs3_type);
4206 return true;
4209 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4210 || TREE_CODE (rhs2_type) != VECTOR_TYPE
4211 || TREE_CODE (rhs3_type) != VECTOR_TYPE)
4213 error ("vector types expected in vector permute expression");
4214 debug_generic_expr (lhs_type);
4215 debug_generic_expr (rhs1_type);
4216 debug_generic_expr (rhs2_type);
4217 debug_generic_expr (rhs3_type);
4218 return true;
4221 if (maybe_ne (TYPE_VECTOR_SUBPARTS (rhs1_type),
4222 TYPE_VECTOR_SUBPARTS (rhs2_type))
4223 || maybe_ne (TYPE_VECTOR_SUBPARTS (rhs2_type),
4224 TYPE_VECTOR_SUBPARTS (rhs3_type))
4225 || maybe_ne (TYPE_VECTOR_SUBPARTS (rhs3_type),
4226 TYPE_VECTOR_SUBPARTS (lhs_type)))
4228 error ("vectors with different element number found "
4229 "in vector permute expression");
4230 debug_generic_expr (lhs_type);
4231 debug_generic_expr (rhs1_type);
4232 debug_generic_expr (rhs2_type);
4233 debug_generic_expr (rhs3_type);
4234 return true;
4237 if (TREE_CODE (TREE_TYPE (rhs3_type)) != INTEGER_TYPE
4238 || (TREE_CODE (rhs3) != VECTOR_CST
4239 && (GET_MODE_BITSIZE (SCALAR_INT_TYPE_MODE
4240 (TREE_TYPE (rhs3_type)))
4241 != GET_MODE_BITSIZE (SCALAR_TYPE_MODE
4242 (TREE_TYPE (rhs1_type))))))
4244 error ("invalid mask type in vector permute expression");
4245 debug_generic_expr (lhs_type);
4246 debug_generic_expr (rhs1_type);
4247 debug_generic_expr (rhs2_type);
4248 debug_generic_expr (rhs3_type);
4249 return true;
4252 return false;
4254 case SAD_EXPR:
4255 if (!useless_type_conversion_p (rhs1_type, rhs2_type)
4256 || !useless_type_conversion_p (lhs_type, rhs3_type)
4257 || 2 * GET_MODE_UNIT_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type)))
4258 > GET_MODE_UNIT_BITSIZE (TYPE_MODE (TREE_TYPE (lhs_type))))
4260 error ("type mismatch in sad expression");
4261 debug_generic_expr (lhs_type);
4262 debug_generic_expr (rhs1_type);
4263 debug_generic_expr (rhs2_type);
4264 debug_generic_expr (rhs3_type);
4265 return true;
4268 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4269 || TREE_CODE (rhs2_type) != VECTOR_TYPE
4270 || TREE_CODE (rhs3_type) != VECTOR_TYPE)
4272 error ("vector types expected in sad expression");
4273 debug_generic_expr (lhs_type);
4274 debug_generic_expr (rhs1_type);
4275 debug_generic_expr (rhs2_type);
4276 debug_generic_expr (rhs3_type);
4277 return true;
4280 return false;
4282 case BIT_INSERT_EXPR:
4283 if (! useless_type_conversion_p (lhs_type, rhs1_type))
4285 error ("type mismatch in BIT_INSERT_EXPR");
4286 debug_generic_expr (lhs_type);
4287 debug_generic_expr (rhs1_type);
4288 return true;
4290 if (! ((INTEGRAL_TYPE_P (rhs1_type)
4291 && INTEGRAL_TYPE_P (rhs2_type))
4292 || (VECTOR_TYPE_P (rhs1_type)
4293 && types_compatible_p (TREE_TYPE (rhs1_type), rhs2_type))))
4295 error ("not allowed type combination in BIT_INSERT_EXPR");
4296 debug_generic_expr (rhs1_type);
4297 debug_generic_expr (rhs2_type);
4298 return true;
4300 if (! tree_fits_uhwi_p (rhs3)
4301 || ! types_compatible_p (bitsizetype, TREE_TYPE (rhs3))
4302 || ! tree_fits_uhwi_p (TYPE_SIZE (rhs2_type)))
4304 error ("invalid position or size in BIT_INSERT_EXPR");
4305 return true;
4307 if (INTEGRAL_TYPE_P (rhs1_type))
4309 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (rhs3);
4310 if (bitpos >= TYPE_PRECISION (rhs1_type)
4311 || (bitpos + TYPE_PRECISION (rhs2_type)
4312 > TYPE_PRECISION (rhs1_type)))
4314 error ("insertion out of range in BIT_INSERT_EXPR");
4315 return true;
4318 else if (VECTOR_TYPE_P (rhs1_type))
4320 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (rhs3);
4321 unsigned HOST_WIDE_INT bitsize = tree_to_uhwi (TYPE_SIZE (rhs2_type));
4322 if (bitpos % bitsize != 0)
4324 error ("vector insertion not at element boundary");
4325 return true;
4328 return false;
4330 case DOT_PROD_EXPR:
4332 if (((TREE_CODE (rhs1_type) != VECTOR_TYPE
4333 || TREE_CODE (lhs_type) != VECTOR_TYPE)
4334 && ((!INTEGRAL_TYPE_P (rhs1_type)
4335 && !SCALAR_FLOAT_TYPE_P (rhs1_type))
4336 || (!INTEGRAL_TYPE_P (lhs_type)
4337 && !SCALAR_FLOAT_TYPE_P (lhs_type))))
4338 || !types_compatible_p (rhs1_type, rhs2_type)
4339 || !useless_type_conversion_p (lhs_type, rhs3_type)
4340 || maybe_lt (GET_MODE_SIZE (element_mode (rhs3_type)),
4341 2 * GET_MODE_SIZE (element_mode (rhs1_type))))
4343 error ("type mismatch in dot product reduction");
4344 debug_generic_expr (lhs_type);
4345 debug_generic_expr (rhs1_type);
4346 debug_generic_expr (rhs2_type);
4347 return true;
4349 return false;
4352 case REALIGN_LOAD_EXPR:
4353 /* FIXME. */
4354 return false;
4356 default:
4357 gcc_unreachable ();
4359 return false;
4362 /* Verify a gimple assignment statement STMT with a single rhs.
4363 Returns true if anything is wrong. */
4365 static bool
4366 verify_gimple_assign_single (gassign *stmt)
4368 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
4369 tree lhs = gimple_assign_lhs (stmt);
4370 tree lhs_type = TREE_TYPE (lhs);
4371 tree rhs1 = gimple_assign_rhs1 (stmt);
4372 tree rhs1_type = TREE_TYPE (rhs1);
4373 bool res = false;
4375 if (!useless_type_conversion_p (lhs_type, rhs1_type))
4377 error ("non-trivial conversion at assignment");
4378 debug_generic_expr (lhs_type);
4379 debug_generic_expr (rhs1_type);
4380 return true;
4383 if (gimple_clobber_p (stmt)
4384 && !(DECL_P (lhs) || TREE_CODE (lhs) == MEM_REF))
4386 error ("non-decl/MEM_REF LHS in clobber statement");
4387 debug_generic_expr (lhs);
4388 return true;
4391 if (handled_component_p (lhs)
4392 || TREE_CODE (lhs) == MEM_REF
4393 || TREE_CODE (lhs) == TARGET_MEM_REF)
4394 res |= verify_types_in_gimple_reference (lhs, true);
4396 /* Special codes we cannot handle via their class. */
4397 switch (rhs_code)
4399 case ADDR_EXPR:
4401 tree op = TREE_OPERAND (rhs1, 0);
4402 if (!is_gimple_addressable (op))
4404 error ("invalid operand in unary expression");
4405 return true;
4408 /* Technically there is no longer a need for matching types, but
4409 gimple hygiene asks for this check. In LTO we can end up
4410 combining incompatible units and thus end up with addresses
4411 of globals that change their type to a common one. */
4412 if (!in_lto_p
4413 && !types_compatible_p (TREE_TYPE (op),
4414 TREE_TYPE (TREE_TYPE (rhs1)))
4415 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
4416 TREE_TYPE (op)))
4418 error ("type mismatch in address expression");
4419 debug_generic_stmt (TREE_TYPE (rhs1));
4420 debug_generic_stmt (TREE_TYPE (op));
4421 return true;
4424 return (verify_address (rhs1, true)
4425 || verify_types_in_gimple_reference (op, true));
4428 /* tcc_reference */
4429 case INDIRECT_REF:
4430 error ("INDIRECT_REF in gimple IL");
4431 return true;
4433 case COMPONENT_REF:
4434 case BIT_FIELD_REF:
4435 case ARRAY_REF:
4436 case ARRAY_RANGE_REF:
4437 case VIEW_CONVERT_EXPR:
4438 case REALPART_EXPR:
4439 case IMAGPART_EXPR:
4440 case TARGET_MEM_REF:
4441 case MEM_REF:
4442 if (!is_gimple_reg (lhs)
4443 && is_gimple_reg_type (TREE_TYPE (lhs)))
4445 error ("invalid rhs for gimple memory store");
4446 debug_generic_stmt (lhs);
4447 debug_generic_stmt (rhs1);
4448 return true;
4450 return res || verify_types_in_gimple_reference (rhs1, false);
4452 /* tcc_constant */
4453 case SSA_NAME:
4454 case INTEGER_CST:
4455 case REAL_CST:
4456 case FIXED_CST:
4457 case COMPLEX_CST:
4458 case VECTOR_CST:
4459 case STRING_CST:
4460 return res;
4462 /* tcc_declaration */
4463 case CONST_DECL:
4464 return res;
4465 case VAR_DECL:
4466 case PARM_DECL:
4467 if (!is_gimple_reg (lhs)
4468 && !is_gimple_reg (rhs1)
4469 && is_gimple_reg_type (TREE_TYPE (lhs)))
4471 error ("invalid rhs for gimple memory store");
4472 debug_generic_stmt (lhs);
4473 debug_generic_stmt (rhs1);
4474 return true;
4476 return res;
4478 case CONSTRUCTOR:
4479 if (TREE_CODE (rhs1_type) == VECTOR_TYPE)
4481 unsigned int i;
4482 tree elt_i, elt_v, elt_t = NULL_TREE;
4484 if (CONSTRUCTOR_NELTS (rhs1) == 0)
4485 return res;
4486 /* For vector CONSTRUCTORs we require that either it is empty
4487 CONSTRUCTOR, or it is a CONSTRUCTOR of smaller vector elements
4488 (then the element count must be correct to cover the whole
4489 outer vector and index must be NULL on all elements, or it is
4490 a CONSTRUCTOR of scalar elements, where we as an exception allow
4491 smaller number of elements (assuming zero filling) and
4492 consecutive indexes as compared to NULL indexes (such
4493 CONSTRUCTORs can appear in the IL from FEs). */
4494 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (rhs1), i, elt_i, elt_v)
4496 if (elt_t == NULL_TREE)
4498 elt_t = TREE_TYPE (elt_v);
4499 if (TREE_CODE (elt_t) == VECTOR_TYPE)
4501 tree elt_t = TREE_TYPE (elt_v);
4502 if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
4503 TREE_TYPE (elt_t)))
4505 error ("incorrect type of vector CONSTRUCTOR"
4506 " elements");
4507 debug_generic_stmt (rhs1);
4508 return true;
4510 else if (maybe_ne (CONSTRUCTOR_NELTS (rhs1)
4511 * TYPE_VECTOR_SUBPARTS (elt_t),
4512 TYPE_VECTOR_SUBPARTS (rhs1_type)))
4514 error ("incorrect number of vector CONSTRUCTOR"
4515 " elements");
4516 debug_generic_stmt (rhs1);
4517 return true;
4520 else if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
4521 elt_t))
4523 error ("incorrect type of vector CONSTRUCTOR elements");
4524 debug_generic_stmt (rhs1);
4525 return true;
4527 else if (maybe_gt (CONSTRUCTOR_NELTS (rhs1),
4528 TYPE_VECTOR_SUBPARTS (rhs1_type)))
4530 error ("incorrect number of vector CONSTRUCTOR elements");
4531 debug_generic_stmt (rhs1);
4532 return true;
4535 else if (!useless_type_conversion_p (elt_t, TREE_TYPE (elt_v)))
4537 error ("incorrect type of vector CONSTRUCTOR elements");
4538 debug_generic_stmt (rhs1);
4539 return true;
4541 if (elt_i != NULL_TREE
4542 && (TREE_CODE (elt_t) == VECTOR_TYPE
4543 || TREE_CODE (elt_i) != INTEGER_CST
4544 || compare_tree_int (elt_i, i) != 0))
4546 error ("vector CONSTRUCTOR with non-NULL element index");
4547 debug_generic_stmt (rhs1);
4548 return true;
4550 if (!is_gimple_val (elt_v))
4552 error ("vector CONSTRUCTOR element is not a GIMPLE value");
4553 debug_generic_stmt (rhs1);
4554 return true;
4558 else if (CONSTRUCTOR_NELTS (rhs1) != 0)
4560 error ("non-vector CONSTRUCTOR with elements");
4561 debug_generic_stmt (rhs1);
4562 return true;
4564 return res;
4566 case ASSERT_EXPR:
4567 /* FIXME. */
4568 rhs1 = fold (ASSERT_EXPR_COND (rhs1));
4569 if (rhs1 == boolean_false_node)
4571 error ("ASSERT_EXPR with an always-false condition");
4572 debug_generic_stmt (rhs1);
4573 return true;
4575 break;
4577 case OBJ_TYPE_REF:
4578 case WITH_SIZE_EXPR:
4579 /* FIXME. */
4580 return res;
4582 default:;
4585 return res;
4588 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
4589 is a problem, otherwise false. */
4591 static bool
4592 verify_gimple_assign (gassign *stmt)
4594 switch (gimple_assign_rhs_class (stmt))
4596 case GIMPLE_SINGLE_RHS:
4597 return verify_gimple_assign_single (stmt);
4599 case GIMPLE_UNARY_RHS:
4600 return verify_gimple_assign_unary (stmt);
4602 case GIMPLE_BINARY_RHS:
4603 return verify_gimple_assign_binary (stmt);
4605 case GIMPLE_TERNARY_RHS:
4606 return verify_gimple_assign_ternary (stmt);
4608 default:
4609 gcc_unreachable ();
4613 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
4614 is a problem, otherwise false. */
4616 static bool
4617 verify_gimple_return (greturn *stmt)
4619 tree op = gimple_return_retval (stmt);
4620 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
4622 /* We cannot test for present return values as we do not fix up missing
4623 return values from the original source. */
4624 if (op == NULL)
4625 return false;
4627 if (!is_gimple_val (op)
4628 && TREE_CODE (op) != RESULT_DECL)
4630 error ("invalid operand in return statement");
4631 debug_generic_stmt (op);
4632 return true;
4635 if ((TREE_CODE (op) == RESULT_DECL
4636 && DECL_BY_REFERENCE (op))
4637 || (TREE_CODE (op) == SSA_NAME
4638 && SSA_NAME_VAR (op)
4639 && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
4640 && DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
4641 op = TREE_TYPE (op);
4643 if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
4645 error ("invalid conversion in return statement");
4646 debug_generic_stmt (restype);
4647 debug_generic_stmt (TREE_TYPE (op));
4648 return true;
4651 return false;
4655 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
4656 is a problem, otherwise false. */
4658 static bool
4659 verify_gimple_goto (ggoto *stmt)
4661 tree dest = gimple_goto_dest (stmt);
4663 /* ??? We have two canonical forms of direct goto destinations, a
4664 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
4665 if (TREE_CODE (dest) != LABEL_DECL
4666 && (!is_gimple_val (dest)
4667 || !POINTER_TYPE_P (TREE_TYPE (dest))))
4669 error ("goto destination is neither a label nor a pointer");
4670 return true;
4673 return false;
4676 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
4677 is a problem, otherwise false. */
4679 static bool
4680 verify_gimple_switch (gswitch *stmt)
4682 unsigned int i, n;
4683 tree elt, prev_upper_bound = NULL_TREE;
4684 tree index_type, elt_type = NULL_TREE;
4686 if (!is_gimple_val (gimple_switch_index (stmt)))
4688 error ("invalid operand to switch statement");
4689 debug_generic_stmt (gimple_switch_index (stmt));
4690 return true;
4693 index_type = TREE_TYPE (gimple_switch_index (stmt));
4694 if (! INTEGRAL_TYPE_P (index_type))
4696 error ("non-integral type switch statement");
4697 debug_generic_expr (index_type);
4698 return true;
4701 elt = gimple_switch_label (stmt, 0);
4702 if (CASE_LOW (elt) != NULL_TREE
4703 || CASE_HIGH (elt) != NULL_TREE
4704 || CASE_CHAIN (elt) != NULL_TREE)
4706 error ("invalid default case label in switch statement");
4707 debug_generic_expr (elt);
4708 return true;
4711 n = gimple_switch_num_labels (stmt);
4712 for (i = 1; i < n; i++)
4714 elt = gimple_switch_label (stmt, i);
4716 if (CASE_CHAIN (elt))
4718 error ("invalid CASE_CHAIN");
4719 debug_generic_expr (elt);
4720 return true;
4722 if (! CASE_LOW (elt))
4724 error ("invalid case label in switch statement");
4725 debug_generic_expr (elt);
4726 return true;
4728 if (CASE_HIGH (elt)
4729 && ! tree_int_cst_lt (CASE_LOW (elt), CASE_HIGH (elt)))
4731 error ("invalid case range in switch statement");
4732 debug_generic_expr (elt);
4733 return true;
4736 if (elt_type)
4738 if (TREE_TYPE (CASE_LOW (elt)) != elt_type
4739 || (CASE_HIGH (elt) && TREE_TYPE (CASE_HIGH (elt)) != elt_type))
4741 error ("type mismatch for case label in switch statement");
4742 debug_generic_expr (elt);
4743 return true;
4746 else
4748 elt_type = TREE_TYPE (CASE_LOW (elt));
4749 if (TYPE_PRECISION (index_type) < TYPE_PRECISION (elt_type))
4751 error ("type precision mismatch in switch statement");
4752 return true;
4756 if (prev_upper_bound)
4758 if (! tree_int_cst_lt (prev_upper_bound, CASE_LOW (elt)))
4760 error ("case labels not sorted in switch statement");
4761 return true;
4765 prev_upper_bound = CASE_HIGH (elt);
4766 if (! prev_upper_bound)
4767 prev_upper_bound = CASE_LOW (elt);
4770 return false;
4773 /* Verify a gimple debug statement STMT.
4774 Returns true if anything is wrong. */
4776 static bool
4777 verify_gimple_debug (gimple *stmt ATTRIBUTE_UNUSED)
4779 /* There isn't much that could be wrong in a gimple debug stmt. A
4780 gimple debug bind stmt, for example, maps a tree, that's usually
4781 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
4782 component or member of an aggregate type, to another tree, that
4783 can be an arbitrary expression. These stmts expand into debug
4784 insns, and are converted to debug notes by var-tracking.c. */
4785 return false;
4788 /* Verify a gimple label statement STMT.
4789 Returns true if anything is wrong. */
4791 static bool
4792 verify_gimple_label (glabel *stmt)
4794 tree decl = gimple_label_label (stmt);
4795 int uid;
4796 bool err = false;
4798 if (TREE_CODE (decl) != LABEL_DECL)
4799 return true;
4800 if (!DECL_NONLOCAL (decl) && !FORCED_LABEL (decl)
4801 && DECL_CONTEXT (decl) != current_function_decl)
4803 error ("label's context is not the current function decl");
4804 err |= true;
4807 uid = LABEL_DECL_UID (decl);
4808 if (cfun->cfg
4809 && (uid == -1
4810 || (*label_to_block_map_for_fn (cfun))[uid] != gimple_bb (stmt)))
4812 error ("incorrect entry in label_to_block_map");
4813 err |= true;
4816 uid = EH_LANDING_PAD_NR (decl);
4817 if (uid)
4819 eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
4820 if (decl != lp->post_landing_pad)
4822 error ("incorrect setting of landing pad number");
4823 err |= true;
4827 return err;
4830 /* Verify a gimple cond statement STMT.
4831 Returns true if anything is wrong. */
4833 static bool
4834 verify_gimple_cond (gcond *stmt)
4836 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
4838 error ("invalid comparison code in gimple cond");
4839 return true;
4841 if (!(!gimple_cond_true_label (stmt)
4842 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
4843 || !(!gimple_cond_false_label (stmt)
4844 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
4846 error ("invalid labels in gimple cond");
4847 return true;
4850 return verify_gimple_comparison (boolean_type_node,
4851 gimple_cond_lhs (stmt),
4852 gimple_cond_rhs (stmt),
4853 gimple_cond_code (stmt));
4856 /* Verify the GIMPLE statement STMT. Returns true if there is an
4857 error, otherwise false. */
4859 static bool
4860 verify_gimple_stmt (gimple *stmt)
4862 switch (gimple_code (stmt))
4864 case GIMPLE_ASSIGN:
4865 return verify_gimple_assign (as_a <gassign *> (stmt));
4867 case GIMPLE_LABEL:
4868 return verify_gimple_label (as_a <glabel *> (stmt));
4870 case GIMPLE_CALL:
4871 return verify_gimple_call (as_a <gcall *> (stmt));
4873 case GIMPLE_COND:
4874 return verify_gimple_cond (as_a <gcond *> (stmt));
4876 case GIMPLE_GOTO:
4877 return verify_gimple_goto (as_a <ggoto *> (stmt));
4879 case GIMPLE_SWITCH:
4880 return verify_gimple_switch (as_a <gswitch *> (stmt));
4882 case GIMPLE_RETURN:
4883 return verify_gimple_return (as_a <greturn *> (stmt));
4885 case GIMPLE_ASM:
4886 return false;
4888 case GIMPLE_TRANSACTION:
4889 return verify_gimple_transaction (as_a <gtransaction *> (stmt));
4891 /* Tuples that do not have tree operands. */
4892 case GIMPLE_NOP:
4893 case GIMPLE_PREDICT:
4894 case GIMPLE_RESX:
4895 case GIMPLE_EH_DISPATCH:
4896 case GIMPLE_EH_MUST_NOT_THROW:
4897 return false;
4899 CASE_GIMPLE_OMP:
4900 /* OpenMP directives are validated by the FE and never operated
4901 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4902 non-gimple expressions when the main index variable has had
4903 its address taken. This does not affect the loop itself
4904 because the header of an GIMPLE_OMP_FOR is merely used to determine
4905 how to setup the parallel iteration. */
4906 return false;
4908 case GIMPLE_DEBUG:
4909 return verify_gimple_debug (stmt);
4911 default:
4912 gcc_unreachable ();
4916 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
4917 and false otherwise. */
4919 static bool
4920 verify_gimple_phi (gphi *phi)
4922 bool err = false;
4923 unsigned i;
4924 tree phi_result = gimple_phi_result (phi);
4925 bool virtual_p;
4927 if (!phi_result)
4929 error ("invalid PHI result");
4930 return true;
4933 virtual_p = virtual_operand_p (phi_result);
4934 if (TREE_CODE (phi_result) != SSA_NAME
4935 || (virtual_p
4936 && SSA_NAME_VAR (phi_result) != gimple_vop (cfun)))
4938 error ("invalid PHI result");
4939 err = true;
4942 for (i = 0; i < gimple_phi_num_args (phi); i++)
4944 tree t = gimple_phi_arg_def (phi, i);
4946 if (!t)
4948 error ("missing PHI def");
4949 err |= true;
4950 continue;
4952 /* Addressable variables do have SSA_NAMEs but they
4953 are not considered gimple values. */
4954 else if ((TREE_CODE (t) == SSA_NAME
4955 && virtual_p != virtual_operand_p (t))
4956 || (virtual_p
4957 && (TREE_CODE (t) != SSA_NAME
4958 || SSA_NAME_VAR (t) != gimple_vop (cfun)))
4959 || (!virtual_p
4960 && !is_gimple_val (t)))
4962 error ("invalid PHI argument");
4963 debug_generic_expr (t);
4964 err |= true;
4966 #ifdef ENABLE_TYPES_CHECKING
4967 if (!useless_type_conversion_p (TREE_TYPE (phi_result), TREE_TYPE (t)))
4969 error ("incompatible types in PHI argument %u", i);
4970 debug_generic_stmt (TREE_TYPE (phi_result));
4971 debug_generic_stmt (TREE_TYPE (t));
4972 err |= true;
4974 #endif
4977 return err;
4980 /* Verify the GIMPLE statements inside the sequence STMTS. */
4982 static bool
4983 verify_gimple_in_seq_2 (gimple_seq stmts)
4985 gimple_stmt_iterator ittr;
4986 bool err = false;
4988 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
4990 gimple *stmt = gsi_stmt (ittr);
4992 switch (gimple_code (stmt))
4994 case GIMPLE_BIND:
4995 err |= verify_gimple_in_seq_2 (
4996 gimple_bind_body (as_a <gbind *> (stmt)));
4997 break;
4999 case GIMPLE_TRY:
5000 err |= verify_gimple_in_seq_2 (gimple_try_eval (stmt));
5001 err |= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt));
5002 break;
5004 case GIMPLE_EH_FILTER:
5005 err |= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt));
5006 break;
5008 case GIMPLE_EH_ELSE:
5010 geh_else *eh_else = as_a <geh_else *> (stmt);
5011 err |= verify_gimple_in_seq_2 (gimple_eh_else_n_body (eh_else));
5012 err |= verify_gimple_in_seq_2 (gimple_eh_else_e_body (eh_else));
5014 break;
5016 case GIMPLE_CATCH:
5017 err |= verify_gimple_in_seq_2 (gimple_catch_handler (
5018 as_a <gcatch *> (stmt)));
5019 break;
5021 case GIMPLE_TRANSACTION:
5022 err |= verify_gimple_transaction (as_a <gtransaction *> (stmt));
5023 break;
5025 default:
5027 bool err2 = verify_gimple_stmt (stmt);
5028 if (err2)
5029 debug_gimple_stmt (stmt);
5030 err |= err2;
5035 return err;
5038 /* Verify the contents of a GIMPLE_TRANSACTION. Returns true if there
5039 is a problem, otherwise false. */
5041 static bool
5042 verify_gimple_transaction (gtransaction *stmt)
5044 tree lab;
5046 lab = gimple_transaction_label_norm (stmt);
5047 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
5048 return true;
5049 lab = gimple_transaction_label_uninst (stmt);
5050 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
5051 return true;
5052 lab = gimple_transaction_label_over (stmt);
5053 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
5054 return true;
5056 return verify_gimple_in_seq_2 (gimple_transaction_body (stmt));
5060 /* Verify the GIMPLE statements inside the statement list STMTS. */
5062 DEBUG_FUNCTION void
5063 verify_gimple_in_seq (gimple_seq stmts)
5065 timevar_push (TV_TREE_STMT_VERIFY);
5066 if (verify_gimple_in_seq_2 (stmts))
5067 internal_error ("verify_gimple failed");
5068 timevar_pop (TV_TREE_STMT_VERIFY);
5071 /* Return true when the T can be shared. */
5073 static bool
5074 tree_node_can_be_shared (tree t)
5076 if (IS_TYPE_OR_DECL_P (t)
5077 || TREE_CODE (t) == SSA_NAME
5078 || TREE_CODE (t) == IDENTIFIER_NODE
5079 || TREE_CODE (t) == CASE_LABEL_EXPR
5080 || is_gimple_min_invariant (t))
5081 return true;
5083 if (t == error_mark_node)
5084 return true;
5086 return false;
5089 /* Called via walk_tree. Verify tree sharing. */
5091 static tree
5092 verify_node_sharing_1 (tree *tp, int *walk_subtrees, void *data)
5094 hash_set<void *> *visited = (hash_set<void *> *) data;
5096 if (tree_node_can_be_shared (*tp))
5098 *walk_subtrees = false;
5099 return NULL;
5102 if (visited->add (*tp))
5103 return *tp;
5105 return NULL;
5108 /* Called via walk_gimple_stmt. Verify tree sharing. */
5110 static tree
5111 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
5113 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5114 return verify_node_sharing_1 (tp, walk_subtrees, wi->info);
5117 static bool eh_error_found;
5118 bool
5119 verify_eh_throw_stmt_node (gimple *const &stmt, const int &,
5120 hash_set<gimple *> *visited)
5122 if (!visited->contains (stmt))
5124 error ("dead STMT in EH table");
5125 debug_gimple_stmt (stmt);
5126 eh_error_found = true;
5128 return true;
5131 /* Verify if the location LOCs block is in BLOCKS. */
5133 static bool
5134 verify_location (hash_set<tree> *blocks, location_t loc)
5136 tree block = LOCATION_BLOCK (loc);
5137 if (block != NULL_TREE
5138 && !blocks->contains (block))
5140 error ("location references block not in block tree");
5141 return true;
5143 if (block != NULL_TREE)
5144 return verify_location (blocks, BLOCK_SOURCE_LOCATION (block));
5145 return false;
5148 /* Called via walk_tree. Verify that expressions have no blocks. */
5150 static tree
5151 verify_expr_no_block (tree *tp, int *walk_subtrees, void *)
5153 if (!EXPR_P (*tp))
5155 *walk_subtrees = false;
5156 return NULL;
5159 location_t loc = EXPR_LOCATION (*tp);
5160 if (LOCATION_BLOCK (loc) != NULL)
5161 return *tp;
5163 return NULL;
5166 /* Called via walk_tree. Verify locations of expressions. */
5168 static tree
5169 verify_expr_location_1 (tree *tp, int *walk_subtrees, void *data)
5171 hash_set<tree> *blocks = (hash_set<tree> *) data;
5172 tree t = *tp;
5174 /* ??? This doesn't really belong here but there's no good place to
5175 stick this remainder of old verify_expr. */
5176 /* ??? This barfs on debug stmts which contain binds to vars with
5177 different function context. */
5178 #if 0
5179 if (VAR_P (t)
5180 || TREE_CODE (t) == PARM_DECL
5181 || TREE_CODE (t) == RESULT_DECL)
5183 tree context = decl_function_context (t);
5184 if (context != cfun->decl
5185 && !SCOPE_FILE_SCOPE_P (context)
5186 && !TREE_STATIC (t)
5187 && !DECL_EXTERNAL (t))
5189 error ("local declaration from a different function");
5190 return t;
5193 #endif
5195 if (VAR_P (t) && DECL_HAS_DEBUG_EXPR_P (t))
5197 tree x = DECL_DEBUG_EXPR (t);
5198 tree addr = walk_tree (&x, verify_expr_no_block, NULL, NULL);
5199 if (addr)
5200 return addr;
5202 if ((VAR_P (t)
5203 || TREE_CODE (t) == PARM_DECL
5204 || TREE_CODE (t) == RESULT_DECL)
5205 && DECL_HAS_VALUE_EXPR_P (t))
5207 tree x = DECL_VALUE_EXPR (t);
5208 tree addr = walk_tree (&x, verify_expr_no_block, NULL, NULL);
5209 if (addr)
5210 return addr;
5213 if (!EXPR_P (t))
5215 *walk_subtrees = false;
5216 return NULL;
5219 location_t loc = EXPR_LOCATION (t);
5220 if (verify_location (blocks, loc))
5221 return t;
5223 return NULL;
5226 /* Called via walk_gimple_op. Verify locations of expressions. */
5228 static tree
5229 verify_expr_location (tree *tp, int *walk_subtrees, void *data)
5231 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5232 return verify_expr_location_1 (tp, walk_subtrees, wi->info);
5235 /* Insert all subblocks of BLOCK into BLOCKS and recurse. */
5237 static void
5238 collect_subblocks (hash_set<tree> *blocks, tree block)
5240 tree t;
5241 for (t = BLOCK_SUBBLOCKS (block); t; t = BLOCK_CHAIN (t))
5243 blocks->add (t);
5244 collect_subblocks (blocks, t);
5248 /* Verify the GIMPLE statements in the CFG of FN. */
5250 DEBUG_FUNCTION void
5251 verify_gimple_in_cfg (struct function *fn, bool verify_nothrow)
5253 basic_block bb;
5254 bool err = false;
5256 timevar_push (TV_TREE_STMT_VERIFY);
5257 hash_set<void *> visited;
5258 hash_set<gimple *> visited_throwing_stmts;
5260 /* Collect all BLOCKs referenced by the BLOCK tree of FN. */
5261 hash_set<tree> blocks;
5262 if (DECL_INITIAL (fn->decl))
5264 blocks.add (DECL_INITIAL (fn->decl));
5265 collect_subblocks (&blocks, DECL_INITIAL (fn->decl));
5268 FOR_EACH_BB_FN (bb, fn)
5270 gimple_stmt_iterator gsi;
5272 for (gphi_iterator gpi = gsi_start_phis (bb);
5273 !gsi_end_p (gpi);
5274 gsi_next (&gpi))
5276 gphi *phi = gpi.phi ();
5277 bool err2 = false;
5278 unsigned i;
5280 if (gimple_bb (phi) != bb)
5282 error ("gimple_bb (phi) is set to a wrong basic block");
5283 err2 = true;
5286 err2 |= verify_gimple_phi (phi);
5288 /* Only PHI arguments have locations. */
5289 if (gimple_location (phi) != UNKNOWN_LOCATION)
5291 error ("PHI node with location");
5292 err2 = true;
5295 for (i = 0; i < gimple_phi_num_args (phi); i++)
5297 tree arg = gimple_phi_arg_def (phi, i);
5298 tree addr = walk_tree (&arg, verify_node_sharing_1,
5299 &visited, NULL);
5300 if (addr)
5302 error ("incorrect sharing of tree nodes");
5303 debug_generic_expr (addr);
5304 err2 |= true;
5306 location_t loc = gimple_phi_arg_location (phi, i);
5307 if (virtual_operand_p (gimple_phi_result (phi))
5308 && loc != UNKNOWN_LOCATION)
5310 error ("virtual PHI with argument locations");
5311 err2 = true;
5313 addr = walk_tree (&arg, verify_expr_location_1, &blocks, NULL);
5314 if (addr)
5316 debug_generic_expr (addr);
5317 err2 = true;
5319 err2 |= verify_location (&blocks, loc);
5322 if (err2)
5323 debug_gimple_stmt (phi);
5324 err |= err2;
5327 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5329 gimple *stmt = gsi_stmt (gsi);
5330 bool err2 = false;
5331 struct walk_stmt_info wi;
5332 tree addr;
5333 int lp_nr;
5335 if (gimple_bb (stmt) != bb)
5337 error ("gimple_bb (stmt) is set to a wrong basic block");
5338 err2 = true;
5341 err2 |= verify_gimple_stmt (stmt);
5342 err2 |= verify_location (&blocks, gimple_location (stmt));
5344 memset (&wi, 0, sizeof (wi));
5345 wi.info = (void *) &visited;
5346 addr = walk_gimple_op (stmt, verify_node_sharing, &wi);
5347 if (addr)
5349 error ("incorrect sharing of tree nodes");
5350 debug_generic_expr (addr);
5351 err2 |= true;
5354 memset (&wi, 0, sizeof (wi));
5355 wi.info = (void *) &blocks;
5356 addr = walk_gimple_op (stmt, verify_expr_location, &wi);
5357 if (addr)
5359 debug_generic_expr (addr);
5360 err2 |= true;
5363 /* If the statement is marked as part of an EH region, then it is
5364 expected that the statement could throw. Verify that when we
5365 have optimizations that simplify statements such that we prove
5366 that they cannot throw, that we update other data structures
5367 to match. */
5368 lp_nr = lookup_stmt_eh_lp (stmt);
5369 if (lp_nr != 0)
5370 visited_throwing_stmts.add (stmt);
5371 if (lp_nr > 0)
5373 if (!stmt_could_throw_p (stmt))
5375 if (verify_nothrow)
5377 error ("statement marked for throw, but doesn%'t");
5378 err2 |= true;
5381 else if (!gsi_one_before_end_p (gsi))
5383 error ("statement marked for throw in middle of block");
5384 err2 |= true;
5388 if (err2)
5389 debug_gimple_stmt (stmt);
5390 err |= err2;
5394 hash_map<gimple *, int> *eh_table = get_eh_throw_stmt_table (cfun);
5395 eh_error_found = false;
5396 if (eh_table)
5397 eh_table->traverse<hash_set<gimple *> *, verify_eh_throw_stmt_node>
5398 (&visited_throwing_stmts);
5400 if (err || eh_error_found)
5401 internal_error ("verify_gimple failed");
5403 verify_histograms ();
5404 timevar_pop (TV_TREE_STMT_VERIFY);
5408 /* Verifies that the flow information is OK. */
5410 static int
5411 gimple_verify_flow_info (void)
5413 int err = 0;
5414 basic_block bb;
5415 gimple_stmt_iterator gsi;
5416 gimple *stmt;
5417 edge e;
5418 edge_iterator ei;
5420 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq
5421 || ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes)
5423 error ("ENTRY_BLOCK has IL associated with it");
5424 err = 1;
5427 if (EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq
5428 || EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes)
5430 error ("EXIT_BLOCK has IL associated with it");
5431 err = 1;
5434 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
5435 if (e->flags & EDGE_FALLTHRU)
5437 error ("fallthru to exit from bb %d", e->src->index);
5438 err = 1;
5441 FOR_EACH_BB_FN (bb, cfun)
5443 bool found_ctrl_stmt = false;
5445 stmt = NULL;
5447 /* Skip labels on the start of basic block. */
5448 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5450 tree label;
5451 gimple *prev_stmt = stmt;
5453 stmt = gsi_stmt (gsi);
5455 if (gimple_code (stmt) != GIMPLE_LABEL)
5456 break;
5458 label = gimple_label_label (as_a <glabel *> (stmt));
5459 if (prev_stmt && DECL_NONLOCAL (label))
5461 error ("nonlocal label ");
5462 print_generic_expr (stderr, label);
5463 fprintf (stderr, " is not first in a sequence of labels in bb %d",
5464 bb->index);
5465 err = 1;
5468 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
5470 error ("EH landing pad label ");
5471 print_generic_expr (stderr, label);
5472 fprintf (stderr, " is not first in a sequence of labels in bb %d",
5473 bb->index);
5474 err = 1;
5477 if (label_to_block (label) != bb)
5479 error ("label ");
5480 print_generic_expr (stderr, label);
5481 fprintf (stderr, " to block does not match in bb %d",
5482 bb->index);
5483 err = 1;
5486 if (decl_function_context (label) != current_function_decl)
5488 error ("label ");
5489 print_generic_expr (stderr, label);
5490 fprintf (stderr, " has incorrect context in bb %d",
5491 bb->index);
5492 err = 1;
5496 /* Verify that body of basic block BB is free of control flow. */
5497 for (; !gsi_end_p (gsi); gsi_next (&gsi))
5499 gimple *stmt = gsi_stmt (gsi);
5501 if (found_ctrl_stmt)
5503 error ("control flow in the middle of basic block %d",
5504 bb->index);
5505 err = 1;
5508 if (stmt_ends_bb_p (stmt))
5509 found_ctrl_stmt = true;
5511 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
5513 error ("label ");
5514 print_generic_expr (stderr, gimple_label_label (label_stmt));
5515 fprintf (stderr, " in the middle of basic block %d", bb->index);
5516 err = 1;
5520 gsi = gsi_last_nondebug_bb (bb);
5521 if (gsi_end_p (gsi))
5522 continue;
5524 stmt = gsi_stmt (gsi);
5526 if (gimple_code (stmt) == GIMPLE_LABEL)
5527 continue;
5529 err |= verify_eh_edges (stmt);
5531 if (is_ctrl_stmt (stmt))
5533 FOR_EACH_EDGE (e, ei, bb->succs)
5534 if (e->flags & EDGE_FALLTHRU)
5536 error ("fallthru edge after a control statement in bb %d",
5537 bb->index);
5538 err = 1;
5542 if (gimple_code (stmt) != GIMPLE_COND)
5544 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
5545 after anything else but if statement. */
5546 FOR_EACH_EDGE (e, ei, bb->succs)
5547 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
5549 error ("true/false edge after a non-GIMPLE_COND in bb %d",
5550 bb->index);
5551 err = 1;
5555 switch (gimple_code (stmt))
5557 case GIMPLE_COND:
5559 edge true_edge;
5560 edge false_edge;
5562 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
5564 if (!true_edge
5565 || !false_edge
5566 || !(true_edge->flags & EDGE_TRUE_VALUE)
5567 || !(false_edge->flags & EDGE_FALSE_VALUE)
5568 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
5569 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
5570 || EDGE_COUNT (bb->succs) >= 3)
5572 error ("wrong outgoing edge flags at end of bb %d",
5573 bb->index);
5574 err = 1;
5577 break;
5579 case GIMPLE_GOTO:
5580 if (simple_goto_p (stmt))
5582 error ("explicit goto at end of bb %d", bb->index);
5583 err = 1;
5585 else
5587 /* FIXME. We should double check that the labels in the
5588 destination blocks have their address taken. */
5589 FOR_EACH_EDGE (e, ei, bb->succs)
5590 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
5591 | EDGE_FALSE_VALUE))
5592 || !(e->flags & EDGE_ABNORMAL))
5594 error ("wrong outgoing edge flags at end of bb %d",
5595 bb->index);
5596 err = 1;
5599 break;
5601 case GIMPLE_CALL:
5602 if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
5603 break;
5604 /* fallthru */
5605 case GIMPLE_RETURN:
5606 if (!single_succ_p (bb)
5607 || (single_succ_edge (bb)->flags
5608 & (EDGE_FALLTHRU | EDGE_ABNORMAL
5609 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5611 error ("wrong outgoing edge flags at end of bb %d", bb->index);
5612 err = 1;
5614 if (single_succ (bb) != EXIT_BLOCK_PTR_FOR_FN (cfun))
5616 error ("return edge does not point to exit in bb %d",
5617 bb->index);
5618 err = 1;
5620 break;
5622 case GIMPLE_SWITCH:
5624 gswitch *switch_stmt = as_a <gswitch *> (stmt);
5625 tree prev;
5626 edge e;
5627 size_t i, n;
5629 n = gimple_switch_num_labels (switch_stmt);
5631 /* Mark all the destination basic blocks. */
5632 for (i = 0; i < n; ++i)
5634 tree lab = CASE_LABEL (gimple_switch_label (switch_stmt, i));
5635 basic_block label_bb = label_to_block (lab);
5636 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
5637 label_bb->aux = (void *)1;
5640 /* Verify that the case labels are sorted. */
5641 prev = gimple_switch_label (switch_stmt, 0);
5642 for (i = 1; i < n; ++i)
5644 tree c = gimple_switch_label (switch_stmt, i);
5645 if (!CASE_LOW (c))
5647 error ("found default case not at the start of "
5648 "case vector");
5649 err = 1;
5650 continue;
5652 if (CASE_LOW (prev)
5653 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
5655 error ("case labels not sorted: ");
5656 print_generic_expr (stderr, prev);
5657 fprintf (stderr," is greater than ");
5658 print_generic_expr (stderr, c);
5659 fprintf (stderr," but comes before it.\n");
5660 err = 1;
5662 prev = c;
5664 /* VRP will remove the default case if it can prove it will
5665 never be executed. So do not verify there always exists
5666 a default case here. */
5668 FOR_EACH_EDGE (e, ei, bb->succs)
5670 if (!e->dest->aux)
5672 error ("extra outgoing edge %d->%d",
5673 bb->index, e->dest->index);
5674 err = 1;
5677 e->dest->aux = (void *)2;
5678 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
5679 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5681 error ("wrong outgoing edge flags at end of bb %d",
5682 bb->index);
5683 err = 1;
5687 /* Check that we have all of them. */
5688 for (i = 0; i < n; ++i)
5690 tree lab = CASE_LABEL (gimple_switch_label (switch_stmt, i));
5691 basic_block label_bb = label_to_block (lab);
5693 if (label_bb->aux != (void *)2)
5695 error ("missing edge %i->%i", bb->index, label_bb->index);
5696 err = 1;
5700 FOR_EACH_EDGE (e, ei, bb->succs)
5701 e->dest->aux = (void *)0;
5703 break;
5705 case GIMPLE_EH_DISPATCH:
5706 err |= verify_eh_dispatch_edge (as_a <geh_dispatch *> (stmt));
5707 break;
5709 default:
5710 break;
5714 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
5715 verify_dominators (CDI_DOMINATORS);
5717 return err;
5721 /* Updates phi nodes after creating a forwarder block joined
5722 by edge FALLTHRU. */
5724 static void
5725 gimple_make_forwarder_block (edge fallthru)
5727 edge e;
5728 edge_iterator ei;
5729 basic_block dummy, bb;
5730 tree var;
5731 gphi_iterator gsi;
5733 dummy = fallthru->src;
5734 bb = fallthru->dest;
5736 if (single_pred_p (bb))
5737 return;
5739 /* If we redirected a branch we must create new PHI nodes at the
5740 start of BB. */
5741 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
5743 gphi *phi, *new_phi;
5745 phi = gsi.phi ();
5746 var = gimple_phi_result (phi);
5747 new_phi = create_phi_node (var, bb);
5748 gimple_phi_set_result (phi, copy_ssa_name (var, phi));
5749 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
5750 UNKNOWN_LOCATION);
5753 /* Add the arguments we have stored on edges. */
5754 FOR_EACH_EDGE (e, ei, bb->preds)
5756 if (e == fallthru)
5757 continue;
5759 flush_pending_stmts (e);
5764 /* Return a non-special label in the head of basic block BLOCK.
5765 Create one if it doesn't exist. */
5767 tree
5768 gimple_block_label (basic_block bb)
5770 gimple_stmt_iterator i, s = gsi_start_bb (bb);
5771 bool first = true;
5772 tree label;
5773 glabel *stmt;
5775 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
5777 stmt = dyn_cast <glabel *> (gsi_stmt (i));
5778 if (!stmt)
5779 break;
5780 label = gimple_label_label (stmt);
5781 if (!DECL_NONLOCAL (label))
5783 if (!first)
5784 gsi_move_before (&i, &s);
5785 return label;
5789 label = create_artificial_label (UNKNOWN_LOCATION);
5790 stmt = gimple_build_label (label);
5791 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
5792 return label;
5796 /* Attempt to perform edge redirection by replacing a possibly complex
5797 jump instruction by a goto or by removing the jump completely.
5798 This can apply only if all edges now point to the same block. The
5799 parameters and return values are equivalent to
5800 redirect_edge_and_branch. */
5802 static edge
5803 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
5805 basic_block src = e->src;
5806 gimple_stmt_iterator i;
5807 gimple *stmt;
5809 /* We can replace or remove a complex jump only when we have exactly
5810 two edges. */
5811 if (EDGE_COUNT (src->succs) != 2
5812 /* Verify that all targets will be TARGET. Specifically, the
5813 edge that is not E must also go to TARGET. */
5814 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
5815 return NULL;
5817 i = gsi_last_bb (src);
5818 if (gsi_end_p (i))
5819 return NULL;
5821 stmt = gsi_stmt (i);
5823 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
5825 gsi_remove (&i, true);
5826 e = ssa_redirect_edge (e, target);
5827 e->flags = EDGE_FALLTHRU;
5828 return e;
5831 return NULL;
5835 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
5836 edge representing the redirected branch. */
5838 static edge
5839 gimple_redirect_edge_and_branch (edge e, basic_block dest)
5841 basic_block bb = e->src;
5842 gimple_stmt_iterator gsi;
5843 edge ret;
5844 gimple *stmt;
5846 if (e->flags & EDGE_ABNORMAL)
5847 return NULL;
5849 if (e->dest == dest)
5850 return NULL;
5852 if (e->flags & EDGE_EH)
5853 return redirect_eh_edge (e, dest);
5855 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
5857 ret = gimple_try_redirect_by_replacing_jump (e, dest);
5858 if (ret)
5859 return ret;
5862 gsi = gsi_last_nondebug_bb (bb);
5863 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
5865 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
5867 case GIMPLE_COND:
5868 /* For COND_EXPR, we only need to redirect the edge. */
5869 break;
5871 case GIMPLE_GOTO:
5872 /* No non-abnormal edges should lead from a non-simple goto, and
5873 simple ones should be represented implicitly. */
5874 gcc_unreachable ();
5876 case GIMPLE_SWITCH:
5878 gswitch *switch_stmt = as_a <gswitch *> (stmt);
5879 tree label = gimple_block_label (dest);
5880 tree cases = get_cases_for_edge (e, switch_stmt);
5882 /* If we have a list of cases associated with E, then use it
5883 as it's a lot faster than walking the entire case vector. */
5884 if (cases)
5886 edge e2 = find_edge (e->src, dest);
5887 tree last, first;
5889 first = cases;
5890 while (cases)
5892 last = cases;
5893 CASE_LABEL (cases) = label;
5894 cases = CASE_CHAIN (cases);
5897 /* If there was already an edge in the CFG, then we need
5898 to move all the cases associated with E to E2. */
5899 if (e2)
5901 tree cases2 = get_cases_for_edge (e2, switch_stmt);
5903 CASE_CHAIN (last) = CASE_CHAIN (cases2);
5904 CASE_CHAIN (cases2) = first;
5906 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
5908 else
5910 size_t i, n = gimple_switch_num_labels (switch_stmt);
5912 for (i = 0; i < n; i++)
5914 tree elt = gimple_switch_label (switch_stmt, i);
5915 if (label_to_block (CASE_LABEL (elt)) == e->dest)
5916 CASE_LABEL (elt) = label;
5920 break;
5922 case GIMPLE_ASM:
5924 gasm *asm_stmt = as_a <gasm *> (stmt);
5925 int i, n = gimple_asm_nlabels (asm_stmt);
5926 tree label = NULL;
5928 for (i = 0; i < n; ++i)
5930 tree cons = gimple_asm_label_op (asm_stmt, i);
5931 if (label_to_block (TREE_VALUE (cons)) == e->dest)
5933 if (!label)
5934 label = gimple_block_label (dest);
5935 TREE_VALUE (cons) = label;
5939 /* If we didn't find any label matching the former edge in the
5940 asm labels, we must be redirecting the fallthrough
5941 edge. */
5942 gcc_assert (label || (e->flags & EDGE_FALLTHRU));
5944 break;
5946 case GIMPLE_RETURN:
5947 gsi_remove (&gsi, true);
5948 e->flags |= EDGE_FALLTHRU;
5949 break;
5951 case GIMPLE_OMP_RETURN:
5952 case GIMPLE_OMP_CONTINUE:
5953 case GIMPLE_OMP_SECTIONS_SWITCH:
5954 case GIMPLE_OMP_FOR:
5955 /* The edges from OMP constructs can be simply redirected. */
5956 break;
5958 case GIMPLE_EH_DISPATCH:
5959 if (!(e->flags & EDGE_FALLTHRU))
5960 redirect_eh_dispatch_edge (as_a <geh_dispatch *> (stmt), e, dest);
5961 break;
5963 case GIMPLE_TRANSACTION:
5964 if (e->flags & EDGE_TM_ABORT)
5965 gimple_transaction_set_label_over (as_a <gtransaction *> (stmt),
5966 gimple_block_label (dest));
5967 else if (e->flags & EDGE_TM_UNINSTRUMENTED)
5968 gimple_transaction_set_label_uninst (as_a <gtransaction *> (stmt),
5969 gimple_block_label (dest));
5970 else
5971 gimple_transaction_set_label_norm (as_a <gtransaction *> (stmt),
5972 gimple_block_label (dest));
5973 break;
5975 default:
5976 /* Otherwise it must be a fallthru edge, and we don't need to
5977 do anything besides redirecting it. */
5978 gcc_assert (e->flags & EDGE_FALLTHRU);
5979 break;
5982 /* Update/insert PHI nodes as necessary. */
5984 /* Now update the edges in the CFG. */
5985 e = ssa_redirect_edge (e, dest);
5987 return e;
5990 /* Returns true if it is possible to remove edge E by redirecting
5991 it to the destination of the other edge from E->src. */
5993 static bool
5994 gimple_can_remove_branch_p (const_edge e)
5996 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
5997 return false;
5999 return true;
6002 /* Simple wrapper, as we can always redirect fallthru edges. */
6004 static basic_block
6005 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
6007 e = gimple_redirect_edge_and_branch (e, dest);
6008 gcc_assert (e);
6010 return NULL;
6014 /* Splits basic block BB after statement STMT (but at least after the
6015 labels). If STMT is NULL, BB is split just after the labels. */
6017 static basic_block
6018 gimple_split_block (basic_block bb, void *stmt)
6020 gimple_stmt_iterator gsi;
6021 gimple_stmt_iterator gsi_tgt;
6022 gimple_seq list;
6023 basic_block new_bb;
6024 edge e;
6025 edge_iterator ei;
6027 new_bb = create_empty_bb (bb);
6029 /* Redirect the outgoing edges. */
6030 new_bb->succs = bb->succs;
6031 bb->succs = NULL;
6032 FOR_EACH_EDGE (e, ei, new_bb->succs)
6033 e->src = new_bb;
6035 /* Get a stmt iterator pointing to the first stmt to move. */
6036 if (!stmt || gimple_code ((gimple *) stmt) == GIMPLE_LABEL)
6037 gsi = gsi_after_labels (bb);
6038 else
6040 gsi = gsi_for_stmt ((gimple *) stmt);
6041 gsi_next (&gsi);
6044 /* Move everything from GSI to the new basic block. */
6045 if (gsi_end_p (gsi))
6046 return new_bb;
6048 /* Split the statement list - avoid re-creating new containers as this
6049 brings ugly quadratic memory consumption in the inliner.
6050 (We are still quadratic since we need to update stmt BB pointers,
6051 sadly.) */
6052 gsi_split_seq_before (&gsi, &list);
6053 set_bb_seq (new_bb, list);
6054 for (gsi_tgt = gsi_start (list);
6055 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
6056 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
6058 return new_bb;
6062 /* Moves basic block BB after block AFTER. */
6064 static bool
6065 gimple_move_block_after (basic_block bb, basic_block after)
6067 if (bb->prev_bb == after)
6068 return true;
6070 unlink_block (bb);
6071 link_block (bb, after);
6073 return true;
6077 /* Return TRUE if block BB has no executable statements, otherwise return
6078 FALSE. */
6080 static bool
6081 gimple_empty_block_p (basic_block bb)
6083 /* BB must have no executable statements. */
6084 gimple_stmt_iterator gsi = gsi_after_labels (bb);
6085 if (phi_nodes (bb))
6086 return false;
6087 if (gsi_end_p (gsi))
6088 return true;
6089 if (is_gimple_debug (gsi_stmt (gsi)))
6090 gsi_next_nondebug (&gsi);
6091 return gsi_end_p (gsi);
6095 /* Split a basic block if it ends with a conditional branch and if the
6096 other part of the block is not empty. */
6098 static basic_block
6099 gimple_split_block_before_cond_jump (basic_block bb)
6101 gimple *last, *split_point;
6102 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
6103 if (gsi_end_p (gsi))
6104 return NULL;
6105 last = gsi_stmt (gsi);
6106 if (gimple_code (last) != GIMPLE_COND
6107 && gimple_code (last) != GIMPLE_SWITCH)
6108 return NULL;
6109 gsi_prev (&gsi);
6110 split_point = gsi_stmt (gsi);
6111 return split_block (bb, split_point)->dest;
6115 /* Return true if basic_block can be duplicated. */
6117 static bool
6118 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
6120 return true;
6123 /* Create a duplicate of the basic block BB. NOTE: This does not
6124 preserve SSA form. */
6126 static basic_block
6127 gimple_duplicate_bb (basic_block bb)
6129 basic_block new_bb;
6130 gimple_stmt_iterator gsi_tgt;
6132 new_bb = create_empty_bb (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
6134 /* Copy the PHI nodes. We ignore PHI node arguments here because
6135 the incoming edges have not been setup yet. */
6136 for (gphi_iterator gpi = gsi_start_phis (bb);
6137 !gsi_end_p (gpi);
6138 gsi_next (&gpi))
6140 gphi *phi, *copy;
6141 phi = gpi.phi ();
6142 copy = create_phi_node (NULL_TREE, new_bb);
6143 create_new_def_for (gimple_phi_result (phi), copy,
6144 gimple_phi_result_ptr (copy));
6145 gimple_set_uid (copy, gimple_uid (phi));
6148 gsi_tgt = gsi_start_bb (new_bb);
6149 for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
6150 !gsi_end_p (gsi);
6151 gsi_next (&gsi))
6153 def_operand_p def_p;
6154 ssa_op_iter op_iter;
6155 tree lhs;
6156 gimple *stmt, *copy;
6158 stmt = gsi_stmt (gsi);
6159 if (gimple_code (stmt) == GIMPLE_LABEL)
6160 continue;
6162 /* Don't duplicate label debug stmts. */
6163 if (gimple_debug_bind_p (stmt)
6164 && TREE_CODE (gimple_debug_bind_get_var (stmt))
6165 == LABEL_DECL)
6166 continue;
6168 /* Create a new copy of STMT and duplicate STMT's virtual
6169 operands. */
6170 copy = gimple_copy (stmt);
6171 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
6173 maybe_duplicate_eh_stmt (copy, stmt);
6174 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
6176 /* When copying around a stmt writing into a local non-user
6177 aggregate, make sure it won't share stack slot with other
6178 vars. */
6179 lhs = gimple_get_lhs (stmt);
6180 if (lhs && TREE_CODE (lhs) != SSA_NAME)
6182 tree base = get_base_address (lhs);
6183 if (base
6184 && (VAR_P (base) || TREE_CODE (base) == RESULT_DECL)
6185 && DECL_IGNORED_P (base)
6186 && !TREE_STATIC (base)
6187 && !DECL_EXTERNAL (base)
6188 && (!VAR_P (base) || !DECL_HAS_VALUE_EXPR_P (base)))
6189 DECL_NONSHAREABLE (base) = 1;
6192 /* Create new names for all the definitions created by COPY and
6193 add replacement mappings for each new name. */
6194 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
6195 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
6198 return new_bb;
6201 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
6203 static void
6204 add_phi_args_after_copy_edge (edge e_copy)
6206 basic_block bb, bb_copy = e_copy->src, dest;
6207 edge e;
6208 edge_iterator ei;
6209 gphi *phi, *phi_copy;
6210 tree def;
6211 gphi_iterator psi, psi_copy;
6213 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
6214 return;
6216 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
6218 if (e_copy->dest->flags & BB_DUPLICATED)
6219 dest = get_bb_original (e_copy->dest);
6220 else
6221 dest = e_copy->dest;
6223 e = find_edge (bb, dest);
6224 if (!e)
6226 /* During loop unrolling the target of the latch edge is copied.
6227 In this case we are not looking for edge to dest, but to
6228 duplicated block whose original was dest. */
6229 FOR_EACH_EDGE (e, ei, bb->succs)
6231 if ((e->dest->flags & BB_DUPLICATED)
6232 && get_bb_original (e->dest) == dest)
6233 break;
6236 gcc_assert (e != NULL);
6239 for (psi = gsi_start_phis (e->dest),
6240 psi_copy = gsi_start_phis (e_copy->dest);
6241 !gsi_end_p (psi);
6242 gsi_next (&psi), gsi_next (&psi_copy))
6244 phi = psi.phi ();
6245 phi_copy = psi_copy.phi ();
6246 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
6247 add_phi_arg (phi_copy, def, e_copy,
6248 gimple_phi_arg_location_from_edge (phi, e));
6253 /* Basic block BB_COPY was created by code duplication. Add phi node
6254 arguments for edges going out of BB_COPY. The blocks that were
6255 duplicated have BB_DUPLICATED set. */
6257 void
6258 add_phi_args_after_copy_bb (basic_block bb_copy)
6260 edge e_copy;
6261 edge_iterator ei;
6263 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
6265 add_phi_args_after_copy_edge (e_copy);
6269 /* Blocks in REGION_COPY array of length N_REGION were created by
6270 duplication of basic blocks. Add phi node arguments for edges
6271 going from these blocks. If E_COPY is not NULL, also add
6272 phi node arguments for its destination.*/
6274 void
6275 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
6276 edge e_copy)
6278 unsigned i;
6280 for (i = 0; i < n_region; i++)
6281 region_copy[i]->flags |= BB_DUPLICATED;
6283 for (i = 0; i < n_region; i++)
6284 add_phi_args_after_copy_bb (region_copy[i]);
6285 if (e_copy)
6286 add_phi_args_after_copy_edge (e_copy);
6288 for (i = 0; i < n_region; i++)
6289 region_copy[i]->flags &= ~BB_DUPLICATED;
6292 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
6293 important exit edge EXIT. By important we mean that no SSA name defined
6294 inside region is live over the other exit edges of the region. All entry
6295 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
6296 to the duplicate of the region. Dominance and loop information is
6297 updated if UPDATE_DOMINANCE is true, but not the SSA web. If
6298 UPDATE_DOMINANCE is false then we assume that the caller will update the
6299 dominance information after calling this function. The new basic
6300 blocks are stored to REGION_COPY in the same order as they had in REGION,
6301 provided that REGION_COPY is not NULL.
6302 The function returns false if it is unable to copy the region,
6303 true otherwise. */
6305 bool
6306 gimple_duplicate_sese_region (edge entry, edge exit,
6307 basic_block *region, unsigned n_region,
6308 basic_block *region_copy,
6309 bool update_dominance)
6311 unsigned i;
6312 bool free_region_copy = false, copying_header = false;
6313 struct loop *loop = entry->dest->loop_father;
6314 edge exit_copy;
6315 vec<basic_block> doms = vNULL;
6316 edge redirected;
6317 profile_count total_count = profile_count::uninitialized ();
6318 profile_count entry_count = profile_count::uninitialized ();
6320 if (!can_copy_bbs_p (region, n_region))
6321 return false;
6323 /* Some sanity checking. Note that we do not check for all possible
6324 missuses of the functions. I.e. if you ask to copy something weird,
6325 it will work, but the state of structures probably will not be
6326 correct. */
6327 for (i = 0; i < n_region; i++)
6329 /* We do not handle subloops, i.e. all the blocks must belong to the
6330 same loop. */
6331 if (region[i]->loop_father != loop)
6332 return false;
6334 if (region[i] != entry->dest
6335 && region[i] == loop->header)
6336 return false;
6339 /* In case the function is used for loop header copying (which is the primary
6340 use), ensure that EXIT and its copy will be new latch and entry edges. */
6341 if (loop->header == entry->dest)
6343 copying_header = true;
6345 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
6346 return false;
6348 for (i = 0; i < n_region; i++)
6349 if (region[i] != exit->src
6350 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
6351 return false;
6354 initialize_original_copy_tables ();
6356 if (copying_header)
6357 set_loop_copy (loop, loop_outer (loop));
6358 else
6359 set_loop_copy (loop, loop);
6361 if (!region_copy)
6363 region_copy = XNEWVEC (basic_block, n_region);
6364 free_region_copy = true;
6367 /* Record blocks outside the region that are dominated by something
6368 inside. */
6369 if (update_dominance)
6371 doms.create (0);
6372 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
6375 if (entry->dest->count.initialized_p ())
6377 total_count = entry->dest->count;
6378 entry_count = entry->count ();
6379 /* Fix up corner cases, to avoid division by zero or creation of negative
6380 frequencies. */
6381 if (entry_count > total_count)
6382 entry_count = total_count;
6385 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
6386 split_edge_bb_loc (entry), update_dominance);
6387 if (total_count.initialized_p () && entry_count.initialized_p ())
6389 scale_bbs_frequencies_profile_count (region, n_region,
6390 total_count - entry_count,
6391 total_count);
6392 scale_bbs_frequencies_profile_count (region_copy, n_region, entry_count,
6393 total_count);
6396 if (copying_header)
6398 loop->header = exit->dest;
6399 loop->latch = exit->src;
6402 /* Redirect the entry and add the phi node arguments. */
6403 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
6404 gcc_assert (redirected != NULL);
6405 flush_pending_stmts (entry);
6407 /* Concerning updating of dominators: We must recount dominators
6408 for entry block and its copy. Anything that is outside of the
6409 region, but was dominated by something inside needs recounting as
6410 well. */
6411 if (update_dominance)
6413 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
6414 doms.safe_push (get_bb_original (entry->dest));
6415 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
6416 doms.release ();
6419 /* Add the other PHI node arguments. */
6420 add_phi_args_after_copy (region_copy, n_region, NULL);
6422 if (free_region_copy)
6423 free (region_copy);
6425 free_original_copy_tables ();
6426 return true;
6429 /* Checks if BB is part of the region defined by N_REGION BBS. */
6430 static bool
6431 bb_part_of_region_p (basic_block bb, basic_block* bbs, unsigned n_region)
6433 unsigned int n;
6435 for (n = 0; n < n_region; n++)
6437 if (bb == bbs[n])
6438 return true;
6440 return false;
6443 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
6444 are stored to REGION_COPY in the same order in that they appear
6445 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
6446 the region, EXIT an exit from it. The condition guarding EXIT
6447 is moved to ENTRY. Returns true if duplication succeeds, false
6448 otherwise.
6450 For example,
6452 some_code;
6453 if (cond)
6455 else
6458 is transformed to
6460 if (cond)
6462 some_code;
6465 else
6467 some_code;
6472 bool
6473 gimple_duplicate_sese_tail (edge entry, edge exit,
6474 basic_block *region, unsigned n_region,
6475 basic_block *region_copy)
6477 unsigned i;
6478 bool free_region_copy = false;
6479 struct loop *loop = exit->dest->loop_father;
6480 struct loop *orig_loop = entry->dest->loop_father;
6481 basic_block switch_bb, entry_bb, nentry_bb;
6482 vec<basic_block> doms;
6483 profile_count total_count = profile_count::uninitialized (),
6484 exit_count = profile_count::uninitialized ();
6485 edge exits[2], nexits[2], e;
6486 gimple_stmt_iterator gsi;
6487 gimple *cond_stmt;
6488 edge sorig, snew;
6489 basic_block exit_bb;
6490 gphi_iterator psi;
6491 gphi *phi;
6492 tree def;
6493 struct loop *target, *aloop, *cloop;
6495 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
6496 exits[0] = exit;
6497 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
6499 if (!can_copy_bbs_p (region, n_region))
6500 return false;
6502 initialize_original_copy_tables ();
6503 set_loop_copy (orig_loop, loop);
6505 target= loop;
6506 for (aloop = orig_loop->inner; aloop; aloop = aloop->next)
6508 if (bb_part_of_region_p (aloop->header, region, n_region))
6510 cloop = duplicate_loop (aloop, target);
6511 duplicate_subloops (aloop, cloop);
6515 if (!region_copy)
6517 region_copy = XNEWVEC (basic_block, n_region);
6518 free_region_copy = true;
6521 gcc_assert (!need_ssa_update_p (cfun));
6523 /* Record blocks outside the region that are dominated by something
6524 inside. */
6525 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
6527 total_count = exit->src->count;
6528 exit_count = exit->count ();
6529 /* Fix up corner cases, to avoid division by zero or creation of negative
6530 frequencies. */
6531 if (exit_count > total_count)
6532 exit_count = total_count;
6534 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
6535 split_edge_bb_loc (exit), true);
6536 if (total_count.initialized_p () && exit_count.initialized_p ())
6538 scale_bbs_frequencies_profile_count (region, n_region,
6539 total_count - exit_count,
6540 total_count);
6541 scale_bbs_frequencies_profile_count (region_copy, n_region, exit_count,
6542 total_count);
6545 /* Create the switch block, and put the exit condition to it. */
6546 entry_bb = entry->dest;
6547 nentry_bb = get_bb_copy (entry_bb);
6548 if (!last_stmt (entry->src)
6549 || !stmt_ends_bb_p (last_stmt (entry->src)))
6550 switch_bb = entry->src;
6551 else
6552 switch_bb = split_edge (entry);
6553 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
6555 gsi = gsi_last_bb (switch_bb);
6556 cond_stmt = last_stmt (exit->src);
6557 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
6558 cond_stmt = gimple_copy (cond_stmt);
6560 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
6562 sorig = single_succ_edge (switch_bb);
6563 sorig->flags = exits[1]->flags;
6564 sorig->probability = exits[1]->probability;
6565 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
6566 snew->probability = exits[0]->probability;
6569 /* Register the new edge from SWITCH_BB in loop exit lists. */
6570 rescan_loop_exit (snew, true, false);
6572 /* Add the PHI node arguments. */
6573 add_phi_args_after_copy (region_copy, n_region, snew);
6575 /* Get rid of now superfluous conditions and associated edges (and phi node
6576 arguments). */
6577 exit_bb = exit->dest;
6579 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
6580 PENDING_STMT (e) = NULL;
6582 /* The latch of ORIG_LOOP was copied, and so was the backedge
6583 to the original header. We redirect this backedge to EXIT_BB. */
6584 for (i = 0; i < n_region; i++)
6585 if (get_bb_original (region_copy[i]) == orig_loop->latch)
6587 gcc_assert (single_succ_edge (region_copy[i]));
6588 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
6589 PENDING_STMT (e) = NULL;
6590 for (psi = gsi_start_phis (exit_bb);
6591 !gsi_end_p (psi);
6592 gsi_next (&psi))
6594 phi = psi.phi ();
6595 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
6596 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
6599 e = redirect_edge_and_branch (nexits[1], nexits[0]->dest);
6600 PENDING_STMT (e) = NULL;
6602 /* Anything that is outside of the region, but was dominated by something
6603 inside needs to update dominance info. */
6604 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
6605 doms.release ();
6606 /* Update the SSA web. */
6607 update_ssa (TODO_update_ssa);
6609 if (free_region_copy)
6610 free (region_copy);
6612 free_original_copy_tables ();
6613 return true;
6616 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
6617 adding blocks when the dominator traversal reaches EXIT. This
6618 function silently assumes that ENTRY strictly dominates EXIT. */
6620 void
6621 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
6622 vec<basic_block> *bbs_p)
6624 basic_block son;
6626 for (son = first_dom_son (CDI_DOMINATORS, entry);
6627 son;
6628 son = next_dom_son (CDI_DOMINATORS, son))
6630 bbs_p->safe_push (son);
6631 if (son != exit)
6632 gather_blocks_in_sese_region (son, exit, bbs_p);
6636 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
6637 The duplicates are recorded in VARS_MAP. */
6639 static void
6640 replace_by_duplicate_decl (tree *tp, hash_map<tree, tree> *vars_map,
6641 tree to_context)
6643 tree t = *tp, new_t;
6644 struct function *f = DECL_STRUCT_FUNCTION (to_context);
6646 if (DECL_CONTEXT (t) == to_context)
6647 return;
6649 bool existed;
6650 tree &loc = vars_map->get_or_insert (t, &existed);
6652 if (!existed)
6654 if (SSA_VAR_P (t))
6656 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
6657 add_local_decl (f, new_t);
6659 else
6661 gcc_assert (TREE_CODE (t) == CONST_DECL);
6662 new_t = copy_node (t);
6664 DECL_CONTEXT (new_t) = to_context;
6666 loc = new_t;
6668 else
6669 new_t = loc;
6671 *tp = new_t;
6675 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
6676 VARS_MAP maps old ssa names and var_decls to the new ones. */
6678 static tree
6679 replace_ssa_name (tree name, hash_map<tree, tree> *vars_map,
6680 tree to_context)
6682 tree new_name;
6684 gcc_assert (!virtual_operand_p (name));
6686 tree *loc = vars_map->get (name);
6688 if (!loc)
6690 tree decl = SSA_NAME_VAR (name);
6691 if (decl)
6693 gcc_assert (!SSA_NAME_IS_DEFAULT_DEF (name));
6694 replace_by_duplicate_decl (&decl, vars_map, to_context);
6695 new_name = make_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6696 decl, SSA_NAME_DEF_STMT (name));
6698 else
6699 new_name = copy_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6700 name, SSA_NAME_DEF_STMT (name));
6702 /* Now that we've used the def stmt to define new_name, make sure it
6703 doesn't define name anymore. */
6704 SSA_NAME_DEF_STMT (name) = NULL;
6706 vars_map->put (name, new_name);
6708 else
6709 new_name = *loc;
6711 return new_name;
6714 struct move_stmt_d
6716 tree orig_block;
6717 tree new_block;
6718 tree from_context;
6719 tree to_context;
6720 hash_map<tree, tree> *vars_map;
6721 htab_t new_label_map;
6722 hash_map<void *, void *> *eh_map;
6723 bool remap_decls_p;
6726 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
6727 contained in *TP if it has been ORIG_BLOCK previously and change the
6728 DECL_CONTEXT of every local variable referenced in *TP. */
6730 static tree
6731 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
6733 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
6734 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6735 tree t = *tp;
6737 if (EXPR_P (t))
6739 tree block = TREE_BLOCK (t);
6740 if (block == NULL_TREE)
6742 else if (block == p->orig_block
6743 || p->orig_block == NULL_TREE)
6744 TREE_SET_BLOCK (t, p->new_block);
6745 else if (flag_checking)
6747 while (block && TREE_CODE (block) == BLOCK && block != p->orig_block)
6748 block = BLOCK_SUPERCONTEXT (block);
6749 gcc_assert (block == p->orig_block);
6752 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
6754 if (TREE_CODE (t) == SSA_NAME)
6755 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
6756 else if (TREE_CODE (t) == PARM_DECL
6757 && gimple_in_ssa_p (cfun))
6758 *tp = *(p->vars_map->get (t));
6759 else if (TREE_CODE (t) == LABEL_DECL)
6761 if (p->new_label_map)
6763 struct tree_map in, *out;
6764 in.base.from = t;
6765 out = (struct tree_map *)
6766 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
6767 if (out)
6768 *tp = t = out->to;
6771 /* For FORCED_LABELs we can end up with references from other
6772 functions if some SESE regions are outlined. It is UB to
6773 jump in between them, but they could be used just for printing
6774 addresses etc. In that case, DECL_CONTEXT on the label should
6775 be the function containing the glabel stmt with that LABEL_DECL,
6776 rather than whatever function a reference to the label was seen
6777 last time. */
6778 if (!FORCED_LABEL (t) && !DECL_NONLOCAL (t))
6779 DECL_CONTEXT (t) = p->to_context;
6781 else if (p->remap_decls_p)
6783 /* Replace T with its duplicate. T should no longer appear in the
6784 parent function, so this looks wasteful; however, it may appear
6785 in referenced_vars, and more importantly, as virtual operands of
6786 statements, and in alias lists of other variables. It would be
6787 quite difficult to expunge it from all those places. ??? It might
6788 suffice to do this for addressable variables. */
6789 if ((VAR_P (t) && !is_global_var (t))
6790 || TREE_CODE (t) == CONST_DECL)
6791 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
6793 *walk_subtrees = 0;
6795 else if (TYPE_P (t))
6796 *walk_subtrees = 0;
6798 return NULL_TREE;
6801 /* Helper for move_stmt_r. Given an EH region number for the source
6802 function, map that to the duplicate EH regio number in the dest. */
6804 static int
6805 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
6807 eh_region old_r, new_r;
6809 old_r = get_eh_region_from_number (old_nr);
6810 new_r = static_cast<eh_region> (*p->eh_map->get (old_r));
6812 return new_r->index;
6815 /* Similar, but operate on INTEGER_CSTs. */
6817 static tree
6818 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
6820 int old_nr, new_nr;
6822 old_nr = tree_to_shwi (old_t_nr);
6823 new_nr = move_stmt_eh_region_nr (old_nr, p);
6825 return build_int_cst (integer_type_node, new_nr);
6828 /* Like move_stmt_op, but for gimple statements.
6830 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
6831 contained in the current statement in *GSI_P and change the
6832 DECL_CONTEXT of every local variable referenced in the current
6833 statement. */
6835 static tree
6836 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
6837 struct walk_stmt_info *wi)
6839 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6840 gimple *stmt = gsi_stmt (*gsi_p);
6841 tree block = gimple_block (stmt);
6843 if (block == p->orig_block
6844 || (p->orig_block == NULL_TREE
6845 && block != NULL_TREE))
6846 gimple_set_block (stmt, p->new_block);
6848 switch (gimple_code (stmt))
6850 case GIMPLE_CALL:
6851 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
6853 tree r, fndecl = gimple_call_fndecl (stmt);
6854 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
6855 switch (DECL_FUNCTION_CODE (fndecl))
6857 case BUILT_IN_EH_COPY_VALUES:
6858 r = gimple_call_arg (stmt, 1);
6859 r = move_stmt_eh_region_tree_nr (r, p);
6860 gimple_call_set_arg (stmt, 1, r);
6861 /* FALLTHRU */
6863 case BUILT_IN_EH_POINTER:
6864 case BUILT_IN_EH_FILTER:
6865 r = gimple_call_arg (stmt, 0);
6866 r = move_stmt_eh_region_tree_nr (r, p);
6867 gimple_call_set_arg (stmt, 0, r);
6868 break;
6870 default:
6871 break;
6874 break;
6876 case GIMPLE_RESX:
6878 gresx *resx_stmt = as_a <gresx *> (stmt);
6879 int r = gimple_resx_region (resx_stmt);
6880 r = move_stmt_eh_region_nr (r, p);
6881 gimple_resx_set_region (resx_stmt, r);
6883 break;
6885 case GIMPLE_EH_DISPATCH:
6887 geh_dispatch *eh_dispatch_stmt = as_a <geh_dispatch *> (stmt);
6888 int r = gimple_eh_dispatch_region (eh_dispatch_stmt);
6889 r = move_stmt_eh_region_nr (r, p);
6890 gimple_eh_dispatch_set_region (eh_dispatch_stmt, r);
6892 break;
6894 case GIMPLE_OMP_RETURN:
6895 case GIMPLE_OMP_CONTINUE:
6896 break;
6898 case GIMPLE_LABEL:
6900 /* For FORCED_LABEL, move_stmt_op doesn't adjust DECL_CONTEXT,
6901 so that such labels can be referenced from other regions.
6902 Make sure to update it when seeing a GIMPLE_LABEL though,
6903 that is the owner of the label. */
6904 walk_gimple_op (stmt, move_stmt_op, wi);
6905 *handled_ops_p = true;
6906 tree label = gimple_label_label (as_a <glabel *> (stmt));
6907 if (FORCED_LABEL (label) || DECL_NONLOCAL (label))
6908 DECL_CONTEXT (label) = p->to_context;
6910 break;
6912 default:
6913 if (is_gimple_omp (stmt))
6915 /* Do not remap variables inside OMP directives. Variables
6916 referenced in clauses and directive header belong to the
6917 parent function and should not be moved into the child
6918 function. */
6919 bool save_remap_decls_p = p->remap_decls_p;
6920 p->remap_decls_p = false;
6921 *handled_ops_p = true;
6923 walk_gimple_seq_mod (gimple_omp_body_ptr (stmt), move_stmt_r,
6924 move_stmt_op, wi);
6926 p->remap_decls_p = save_remap_decls_p;
6928 break;
6931 return NULL_TREE;
6934 /* Move basic block BB from function CFUN to function DEST_FN. The
6935 block is moved out of the original linked list and placed after
6936 block AFTER in the new list. Also, the block is removed from the
6937 original array of blocks and placed in DEST_FN's array of blocks.
6938 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
6939 updated to reflect the moved edges.
6941 The local variables are remapped to new instances, VARS_MAP is used
6942 to record the mapping. */
6944 static void
6945 move_block_to_fn (struct function *dest_cfun, basic_block bb,
6946 basic_block after, bool update_edge_count_p,
6947 struct move_stmt_d *d)
6949 struct control_flow_graph *cfg;
6950 edge_iterator ei;
6951 edge e;
6952 gimple_stmt_iterator si;
6953 unsigned old_len, new_len;
6955 /* Remove BB from dominance structures. */
6956 delete_from_dominance_info (CDI_DOMINATORS, bb);
6958 /* Move BB from its current loop to the copy in the new function. */
6959 if (current_loops)
6961 struct loop *new_loop = (struct loop *)bb->loop_father->aux;
6962 if (new_loop)
6963 bb->loop_father = new_loop;
6966 /* Link BB to the new linked list. */
6967 move_block_after (bb, after);
6969 /* Update the edge count in the corresponding flowgraphs. */
6970 if (update_edge_count_p)
6971 FOR_EACH_EDGE (e, ei, bb->succs)
6973 cfun->cfg->x_n_edges--;
6974 dest_cfun->cfg->x_n_edges++;
6977 /* Remove BB from the original basic block array. */
6978 (*cfun->cfg->x_basic_block_info)[bb->index] = NULL;
6979 cfun->cfg->x_n_basic_blocks--;
6981 /* Grow DEST_CFUN's basic block array if needed. */
6982 cfg = dest_cfun->cfg;
6983 cfg->x_n_basic_blocks++;
6984 if (bb->index >= cfg->x_last_basic_block)
6985 cfg->x_last_basic_block = bb->index + 1;
6987 old_len = vec_safe_length (cfg->x_basic_block_info);
6988 if ((unsigned) cfg->x_last_basic_block >= old_len)
6990 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
6991 vec_safe_grow_cleared (cfg->x_basic_block_info, new_len);
6994 (*cfg->x_basic_block_info)[bb->index] = bb;
6996 /* Remap the variables in phi nodes. */
6997 for (gphi_iterator psi = gsi_start_phis (bb);
6998 !gsi_end_p (psi); )
7000 gphi *phi = psi.phi ();
7001 use_operand_p use;
7002 tree op = PHI_RESULT (phi);
7003 ssa_op_iter oi;
7004 unsigned i;
7006 if (virtual_operand_p (op))
7008 /* Remove the phi nodes for virtual operands (alias analysis will be
7009 run for the new function, anyway). */
7010 remove_phi_node (&psi, true);
7011 continue;
7014 SET_PHI_RESULT (phi,
7015 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
7016 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
7018 op = USE_FROM_PTR (use);
7019 if (TREE_CODE (op) == SSA_NAME)
7020 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
7023 for (i = 0; i < EDGE_COUNT (bb->preds); i++)
7025 location_t locus = gimple_phi_arg_location (phi, i);
7026 tree block = LOCATION_BLOCK (locus);
7028 if (locus == UNKNOWN_LOCATION)
7029 continue;
7030 if (d->orig_block == NULL_TREE || block == d->orig_block)
7032 locus = set_block (locus, d->new_block);
7033 gimple_phi_arg_set_location (phi, i, locus);
7037 gsi_next (&psi);
7040 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
7042 gimple *stmt = gsi_stmt (si);
7043 struct walk_stmt_info wi;
7045 memset (&wi, 0, sizeof (wi));
7046 wi.info = d;
7047 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
7049 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
7051 tree label = gimple_label_label (label_stmt);
7052 int uid = LABEL_DECL_UID (label);
7054 gcc_assert (uid > -1);
7056 old_len = vec_safe_length (cfg->x_label_to_block_map);
7057 if (old_len <= (unsigned) uid)
7059 new_len = 3 * uid / 2 + 1;
7060 vec_safe_grow_cleared (cfg->x_label_to_block_map, new_len);
7063 (*cfg->x_label_to_block_map)[uid] = bb;
7064 (*cfun->cfg->x_label_to_block_map)[uid] = NULL;
7066 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
7068 if (uid >= dest_cfun->cfg->last_label_uid)
7069 dest_cfun->cfg->last_label_uid = uid + 1;
7072 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
7073 remove_stmt_from_eh_lp_fn (cfun, stmt);
7075 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
7076 gimple_remove_stmt_histograms (cfun, stmt);
7078 /* We cannot leave any operands allocated from the operand caches of
7079 the current function. */
7080 free_stmt_operands (cfun, stmt);
7081 push_cfun (dest_cfun);
7082 update_stmt (stmt);
7083 pop_cfun ();
7086 FOR_EACH_EDGE (e, ei, bb->succs)
7087 if (e->goto_locus != UNKNOWN_LOCATION)
7089 tree block = LOCATION_BLOCK (e->goto_locus);
7090 if (d->orig_block == NULL_TREE
7091 || block == d->orig_block)
7092 e->goto_locus = set_block (e->goto_locus, d->new_block);
7096 /* Examine the statements in BB (which is in SRC_CFUN); find and return
7097 the outermost EH region. Use REGION as the incoming base EH region. */
7099 static eh_region
7100 find_outermost_region_in_block (struct function *src_cfun,
7101 basic_block bb, eh_region region)
7103 gimple_stmt_iterator si;
7105 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
7107 gimple *stmt = gsi_stmt (si);
7108 eh_region stmt_region;
7109 int lp_nr;
7111 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
7112 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
7113 if (stmt_region)
7115 if (region == NULL)
7116 region = stmt_region;
7117 else if (stmt_region != region)
7119 region = eh_region_outermost (src_cfun, stmt_region, region);
7120 gcc_assert (region != NULL);
7125 return region;
7128 static tree
7129 new_label_mapper (tree decl, void *data)
7131 htab_t hash = (htab_t) data;
7132 struct tree_map *m;
7133 void **slot;
7135 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
7137 m = XNEW (struct tree_map);
7138 m->hash = DECL_UID (decl);
7139 m->base.from = decl;
7140 m->to = create_artificial_label (UNKNOWN_LOCATION);
7141 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
7142 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
7143 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
7145 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
7146 gcc_assert (*slot == NULL);
7148 *slot = m;
7150 return m->to;
7153 /* Tree walker to replace the decls used inside value expressions by
7154 duplicates. */
7156 static tree
7157 replace_block_vars_by_duplicates_1 (tree *tp, int *walk_subtrees, void *data)
7159 struct replace_decls_d *rd = (struct replace_decls_d *)data;
7161 switch (TREE_CODE (*tp))
7163 case VAR_DECL:
7164 case PARM_DECL:
7165 case RESULT_DECL:
7166 replace_by_duplicate_decl (tp, rd->vars_map, rd->to_context);
7167 break;
7168 default:
7169 break;
7172 if (IS_TYPE_OR_DECL_P (*tp))
7173 *walk_subtrees = false;
7175 return NULL;
7178 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
7179 subblocks. */
7181 static void
7182 replace_block_vars_by_duplicates (tree block, hash_map<tree, tree> *vars_map,
7183 tree to_context)
7185 tree *tp, t;
7187 for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
7189 t = *tp;
7190 if (!VAR_P (t) && TREE_CODE (t) != CONST_DECL)
7191 continue;
7192 replace_by_duplicate_decl (&t, vars_map, to_context);
7193 if (t != *tp)
7195 if (VAR_P (*tp) && DECL_HAS_VALUE_EXPR_P (*tp))
7197 tree x = DECL_VALUE_EXPR (*tp);
7198 struct replace_decls_d rd = { vars_map, to_context };
7199 unshare_expr (x);
7200 walk_tree (&x, replace_block_vars_by_duplicates_1, &rd, NULL);
7201 SET_DECL_VALUE_EXPR (t, x);
7202 DECL_HAS_VALUE_EXPR_P (t) = 1;
7204 DECL_CHAIN (t) = DECL_CHAIN (*tp);
7205 *tp = t;
7209 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
7210 replace_block_vars_by_duplicates (block, vars_map, to_context);
7213 /* Fixup the loop arrays and numbers after moving LOOP and its subloops
7214 from FN1 to FN2. */
7216 static void
7217 fixup_loop_arrays_after_move (struct function *fn1, struct function *fn2,
7218 struct loop *loop)
7220 /* Discard it from the old loop array. */
7221 (*get_loops (fn1))[loop->num] = NULL;
7223 /* Place it in the new loop array, assigning it a new number. */
7224 loop->num = number_of_loops (fn2);
7225 vec_safe_push (loops_for_fn (fn2)->larray, loop);
7227 /* Recurse to children. */
7228 for (loop = loop->inner; loop; loop = loop->next)
7229 fixup_loop_arrays_after_move (fn1, fn2, loop);
7232 /* Verify that the blocks in BBS_P are a single-entry, single-exit region
7233 delimited by ENTRY_BB and EXIT_BB, possibly containing noreturn blocks. */
7235 DEBUG_FUNCTION void
7236 verify_sese (basic_block entry, basic_block exit, vec<basic_block> *bbs_p)
7238 basic_block bb;
7239 edge_iterator ei;
7240 edge e;
7241 bitmap bbs = BITMAP_ALLOC (NULL);
7242 int i;
7244 gcc_assert (entry != NULL);
7245 gcc_assert (entry != exit);
7246 gcc_assert (bbs_p != NULL);
7248 gcc_assert (bbs_p->length () > 0);
7250 FOR_EACH_VEC_ELT (*bbs_p, i, bb)
7251 bitmap_set_bit (bbs, bb->index);
7253 gcc_assert (bitmap_bit_p (bbs, entry->index));
7254 gcc_assert (exit == NULL || bitmap_bit_p (bbs, exit->index));
7256 FOR_EACH_VEC_ELT (*bbs_p, i, bb)
7258 if (bb == entry)
7260 gcc_assert (single_pred_p (entry));
7261 gcc_assert (!bitmap_bit_p (bbs, single_pred (entry)->index));
7263 else
7264 for (ei = ei_start (bb->preds); !ei_end_p (ei); ei_next (&ei))
7266 e = ei_edge (ei);
7267 gcc_assert (bitmap_bit_p (bbs, e->src->index));
7270 if (bb == exit)
7272 gcc_assert (single_succ_p (exit));
7273 gcc_assert (!bitmap_bit_p (bbs, single_succ (exit)->index));
7275 else
7276 for (ei = ei_start (bb->succs); !ei_end_p (ei); ei_next (&ei))
7278 e = ei_edge (ei);
7279 gcc_assert (bitmap_bit_p (bbs, e->dest->index));
7283 BITMAP_FREE (bbs);
7286 /* If FROM is an SSA_NAME, mark the version in bitmap DATA. */
7288 bool
7289 gather_ssa_name_hash_map_from (tree const &from, tree const &, void *data)
7291 bitmap release_names = (bitmap)data;
7293 if (TREE_CODE (from) != SSA_NAME)
7294 return true;
7296 bitmap_set_bit (release_names, SSA_NAME_VERSION (from));
7297 return true;
7300 /* Return LOOP_DIST_ALIAS call if present in BB. */
7302 static gimple *
7303 find_loop_dist_alias (basic_block bb)
7305 gimple *g = last_stmt (bb);
7306 if (g == NULL || gimple_code (g) != GIMPLE_COND)
7307 return NULL;
7309 gimple_stmt_iterator gsi = gsi_for_stmt (g);
7310 gsi_prev (&gsi);
7311 if (gsi_end_p (gsi))
7312 return NULL;
7314 g = gsi_stmt (gsi);
7315 if (gimple_call_internal_p (g, IFN_LOOP_DIST_ALIAS))
7316 return g;
7317 return NULL;
7320 /* Fold loop internal call G like IFN_LOOP_VECTORIZED/IFN_LOOP_DIST_ALIAS
7321 to VALUE and update any immediate uses of it's LHS. */
7323 void
7324 fold_loop_internal_call (gimple *g, tree value)
7326 tree lhs = gimple_call_lhs (g);
7327 use_operand_p use_p;
7328 imm_use_iterator iter;
7329 gimple *use_stmt;
7330 gimple_stmt_iterator gsi = gsi_for_stmt (g);
7332 update_call_from_tree (&gsi, value);
7333 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
7335 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
7336 SET_USE (use_p, value);
7337 update_stmt (use_stmt);
7341 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
7342 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
7343 single basic block in the original CFG and the new basic block is
7344 returned. DEST_CFUN must not have a CFG yet.
7346 Note that the region need not be a pure SESE region. Blocks inside
7347 the region may contain calls to abort/exit. The only restriction
7348 is that ENTRY_BB should be the only entry point and it must
7349 dominate EXIT_BB.
7351 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
7352 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
7353 to the new function.
7355 All local variables referenced in the region are assumed to be in
7356 the corresponding BLOCK_VARS and unexpanded variable lists
7357 associated with DEST_CFUN.
7359 TODO: investigate whether we can reuse gimple_duplicate_sese_region to
7360 reimplement move_sese_region_to_fn by duplicating the region rather than
7361 moving it. */
7363 basic_block
7364 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
7365 basic_block exit_bb, tree orig_block)
7367 vec<basic_block> bbs, dom_bbs;
7368 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
7369 basic_block after, bb, *entry_pred, *exit_succ, abb;
7370 struct function *saved_cfun = cfun;
7371 int *entry_flag, *exit_flag;
7372 profile_probability *entry_prob, *exit_prob;
7373 unsigned i, num_entry_edges, num_exit_edges, num_nodes;
7374 edge e;
7375 edge_iterator ei;
7376 htab_t new_label_map;
7377 hash_map<void *, void *> *eh_map;
7378 struct loop *loop = entry_bb->loop_father;
7379 struct loop *loop0 = get_loop (saved_cfun, 0);
7380 struct move_stmt_d d;
7382 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
7383 region. */
7384 gcc_assert (entry_bb != exit_bb
7385 && (!exit_bb
7386 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
7388 /* Collect all the blocks in the region. Manually add ENTRY_BB
7389 because it won't be added by dfs_enumerate_from. */
7390 bbs.create (0);
7391 bbs.safe_push (entry_bb);
7392 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
7394 if (flag_checking)
7395 verify_sese (entry_bb, exit_bb, &bbs);
7397 /* The blocks that used to be dominated by something in BBS will now be
7398 dominated by the new block. */
7399 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
7400 bbs.address (),
7401 bbs.length ());
7403 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
7404 the predecessor edges to ENTRY_BB and the successor edges to
7405 EXIT_BB so that we can re-attach them to the new basic block that
7406 will replace the region. */
7407 num_entry_edges = EDGE_COUNT (entry_bb->preds);
7408 entry_pred = XNEWVEC (basic_block, num_entry_edges);
7409 entry_flag = XNEWVEC (int, num_entry_edges);
7410 entry_prob = XNEWVEC (profile_probability, num_entry_edges);
7411 i = 0;
7412 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
7414 entry_prob[i] = e->probability;
7415 entry_flag[i] = e->flags;
7416 entry_pred[i++] = e->src;
7417 remove_edge (e);
7420 if (exit_bb)
7422 num_exit_edges = EDGE_COUNT (exit_bb->succs);
7423 exit_succ = XNEWVEC (basic_block, num_exit_edges);
7424 exit_flag = XNEWVEC (int, num_exit_edges);
7425 exit_prob = XNEWVEC (profile_probability, num_exit_edges);
7426 i = 0;
7427 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
7429 exit_prob[i] = e->probability;
7430 exit_flag[i] = e->flags;
7431 exit_succ[i++] = e->dest;
7432 remove_edge (e);
7435 else
7437 num_exit_edges = 0;
7438 exit_succ = NULL;
7439 exit_flag = NULL;
7440 exit_prob = NULL;
7443 /* Switch context to the child function to initialize DEST_FN's CFG. */
7444 gcc_assert (dest_cfun->cfg == NULL);
7445 push_cfun (dest_cfun);
7447 init_empty_tree_cfg ();
7449 /* Initialize EH information for the new function. */
7450 eh_map = NULL;
7451 new_label_map = NULL;
7452 if (saved_cfun->eh)
7454 eh_region region = NULL;
7456 FOR_EACH_VEC_ELT (bbs, i, bb)
7457 region = find_outermost_region_in_block (saved_cfun, bb, region);
7459 init_eh_for_function ();
7460 if (region != NULL)
7462 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
7463 eh_map = duplicate_eh_regions (saved_cfun, region, 0,
7464 new_label_mapper, new_label_map);
7468 /* Initialize an empty loop tree. */
7469 struct loops *loops = ggc_cleared_alloc<struct loops> ();
7470 init_loops_structure (dest_cfun, loops, 1);
7471 loops->state = LOOPS_MAY_HAVE_MULTIPLE_LATCHES;
7472 set_loops_for_fn (dest_cfun, loops);
7474 vec<loop_p, va_gc> *larray = get_loops (saved_cfun)->copy ();
7476 /* Move the outlined loop tree part. */
7477 num_nodes = bbs.length ();
7478 FOR_EACH_VEC_ELT (bbs, i, bb)
7480 if (bb->loop_father->header == bb)
7482 struct loop *this_loop = bb->loop_father;
7483 struct loop *outer = loop_outer (this_loop);
7484 if (outer == loop
7485 /* If the SESE region contains some bbs ending with
7486 a noreturn call, those are considered to belong
7487 to the outermost loop in saved_cfun, rather than
7488 the entry_bb's loop_father. */
7489 || outer == loop0)
7491 if (outer != loop)
7492 num_nodes -= this_loop->num_nodes;
7493 flow_loop_tree_node_remove (bb->loop_father);
7494 flow_loop_tree_node_add (get_loop (dest_cfun, 0), this_loop);
7495 fixup_loop_arrays_after_move (saved_cfun, cfun, this_loop);
7498 else if (bb->loop_father == loop0 && loop0 != loop)
7499 num_nodes--;
7501 /* Remove loop exits from the outlined region. */
7502 if (loops_for_fn (saved_cfun)->exits)
7503 FOR_EACH_EDGE (e, ei, bb->succs)
7505 struct loops *l = loops_for_fn (saved_cfun);
7506 loop_exit **slot
7507 = l->exits->find_slot_with_hash (e, htab_hash_pointer (e),
7508 NO_INSERT);
7509 if (slot)
7510 l->exits->clear_slot (slot);
7514 /* Adjust the number of blocks in the tree root of the outlined part. */
7515 get_loop (dest_cfun, 0)->num_nodes = bbs.length () + 2;
7517 /* Setup a mapping to be used by move_block_to_fn. */
7518 loop->aux = current_loops->tree_root;
7519 loop0->aux = current_loops->tree_root;
7521 /* Fix up orig_loop_num. If the block referenced in it has been moved
7522 to dest_cfun, update orig_loop_num field, otherwise clear it. */
7523 struct loop *dloop;
7524 signed char *moved_orig_loop_num = NULL;
7525 FOR_EACH_LOOP_FN (dest_cfun, dloop, 0)
7526 if (dloop->orig_loop_num)
7528 if (moved_orig_loop_num == NULL)
7529 moved_orig_loop_num
7530 = XCNEWVEC (signed char, vec_safe_length (larray));
7531 if ((*larray)[dloop->orig_loop_num] != NULL
7532 && get_loop (saved_cfun, dloop->orig_loop_num) == NULL)
7534 if (moved_orig_loop_num[dloop->orig_loop_num] >= 0
7535 && moved_orig_loop_num[dloop->orig_loop_num] < 2)
7536 moved_orig_loop_num[dloop->orig_loop_num]++;
7537 dloop->orig_loop_num = (*larray)[dloop->orig_loop_num]->num;
7539 else
7541 moved_orig_loop_num[dloop->orig_loop_num] = -1;
7542 dloop->orig_loop_num = 0;
7545 pop_cfun ();
7547 if (moved_orig_loop_num)
7549 FOR_EACH_VEC_ELT (bbs, i, bb)
7551 gimple *g = find_loop_dist_alias (bb);
7552 if (g == NULL)
7553 continue;
7555 int orig_loop_num = tree_to_shwi (gimple_call_arg (g, 0));
7556 gcc_assert (orig_loop_num
7557 && (unsigned) orig_loop_num < vec_safe_length (larray));
7558 if (moved_orig_loop_num[orig_loop_num] == 2)
7560 /* If we have moved both loops with this orig_loop_num into
7561 dest_cfun and the LOOP_DIST_ALIAS call is being moved there
7562 too, update the first argument. */
7563 gcc_assert ((*larray)[dloop->orig_loop_num] != NULL
7564 && (get_loop (saved_cfun, dloop->orig_loop_num)
7565 == NULL));
7566 tree t = build_int_cst (integer_type_node,
7567 (*larray)[dloop->orig_loop_num]->num);
7568 gimple_call_set_arg (g, 0, t);
7569 update_stmt (g);
7570 /* Make sure the following loop will not update it. */
7571 moved_orig_loop_num[orig_loop_num] = 0;
7573 else
7574 /* Otherwise at least one of the loops stayed in saved_cfun.
7575 Remove the LOOP_DIST_ALIAS call. */
7576 fold_loop_internal_call (g, gimple_call_arg (g, 1));
7578 FOR_EACH_BB_FN (bb, saved_cfun)
7580 gimple *g = find_loop_dist_alias (bb);
7581 if (g == NULL)
7582 continue;
7583 int orig_loop_num = tree_to_shwi (gimple_call_arg (g, 0));
7584 gcc_assert (orig_loop_num
7585 && (unsigned) orig_loop_num < vec_safe_length (larray));
7586 if (moved_orig_loop_num[orig_loop_num])
7587 /* LOOP_DIST_ALIAS call remained in saved_cfun, if at least one
7588 of the corresponding loops was moved, remove it. */
7589 fold_loop_internal_call (g, gimple_call_arg (g, 1));
7591 XDELETEVEC (moved_orig_loop_num);
7593 ggc_free (larray);
7595 /* Move blocks from BBS into DEST_CFUN. */
7596 gcc_assert (bbs.length () >= 2);
7597 after = dest_cfun->cfg->x_entry_block_ptr;
7598 hash_map<tree, tree> vars_map;
7600 memset (&d, 0, sizeof (d));
7601 d.orig_block = orig_block;
7602 d.new_block = DECL_INITIAL (dest_cfun->decl);
7603 d.from_context = cfun->decl;
7604 d.to_context = dest_cfun->decl;
7605 d.vars_map = &vars_map;
7606 d.new_label_map = new_label_map;
7607 d.eh_map = eh_map;
7608 d.remap_decls_p = true;
7610 if (gimple_in_ssa_p (cfun))
7611 for (tree arg = DECL_ARGUMENTS (d.to_context); arg; arg = DECL_CHAIN (arg))
7613 tree narg = make_ssa_name_fn (dest_cfun, arg, gimple_build_nop ());
7614 set_ssa_default_def (dest_cfun, arg, narg);
7615 vars_map.put (arg, narg);
7618 FOR_EACH_VEC_ELT (bbs, i, bb)
7620 /* No need to update edge counts on the last block. It has
7621 already been updated earlier when we detached the region from
7622 the original CFG. */
7623 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
7624 after = bb;
7627 loop->aux = NULL;
7628 loop0->aux = NULL;
7629 /* Loop sizes are no longer correct, fix them up. */
7630 loop->num_nodes -= num_nodes;
7631 for (struct loop *outer = loop_outer (loop);
7632 outer; outer = loop_outer (outer))
7633 outer->num_nodes -= num_nodes;
7634 loop0->num_nodes -= bbs.length () - num_nodes;
7636 if (saved_cfun->has_simduid_loops || saved_cfun->has_force_vectorize_loops)
7638 struct loop *aloop;
7639 for (i = 0; vec_safe_iterate (loops->larray, i, &aloop); i++)
7640 if (aloop != NULL)
7642 if (aloop->simduid)
7644 replace_by_duplicate_decl (&aloop->simduid, d.vars_map,
7645 d.to_context);
7646 dest_cfun->has_simduid_loops = true;
7648 if (aloop->force_vectorize)
7649 dest_cfun->has_force_vectorize_loops = true;
7653 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
7654 if (orig_block)
7656 tree block;
7657 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
7658 == NULL_TREE);
7659 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
7660 = BLOCK_SUBBLOCKS (orig_block);
7661 for (block = BLOCK_SUBBLOCKS (orig_block);
7662 block; block = BLOCK_CHAIN (block))
7663 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
7664 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
7667 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
7668 &vars_map, dest_cfun->decl);
7670 if (new_label_map)
7671 htab_delete (new_label_map);
7672 if (eh_map)
7673 delete eh_map;
7675 if (gimple_in_ssa_p (cfun))
7677 /* We need to release ssa-names in a defined order, so first find them,
7678 and then iterate in ascending version order. */
7679 bitmap release_names = BITMAP_ALLOC (NULL);
7680 vars_map.traverse<void *, gather_ssa_name_hash_map_from> (release_names);
7681 bitmap_iterator bi;
7682 unsigned i;
7683 EXECUTE_IF_SET_IN_BITMAP (release_names, 0, i, bi)
7684 release_ssa_name (ssa_name (i));
7685 BITMAP_FREE (release_names);
7688 /* Rewire the entry and exit blocks. The successor to the entry
7689 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
7690 the child function. Similarly, the predecessor of DEST_FN's
7691 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
7692 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
7693 various CFG manipulation function get to the right CFG.
7695 FIXME, this is silly. The CFG ought to become a parameter to
7696 these helpers. */
7697 push_cfun (dest_cfun);
7698 ENTRY_BLOCK_PTR_FOR_FN (cfun)->count = entry_bb->count;
7699 make_single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), entry_bb, EDGE_FALLTHRU);
7700 if (exit_bb)
7702 make_single_succ_edge (exit_bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
7703 EXIT_BLOCK_PTR_FOR_FN (cfun)->count = exit_bb->count;
7705 else
7706 EXIT_BLOCK_PTR_FOR_FN (cfun)->count = profile_count::zero ();
7707 pop_cfun ();
7709 /* Back in the original function, the SESE region has disappeared,
7710 create a new basic block in its place. */
7711 bb = create_empty_bb (entry_pred[0]);
7712 if (current_loops)
7713 add_bb_to_loop (bb, loop);
7714 for (i = 0; i < num_entry_edges; i++)
7716 e = make_edge (entry_pred[i], bb, entry_flag[i]);
7717 e->probability = entry_prob[i];
7720 for (i = 0; i < num_exit_edges; i++)
7722 e = make_edge (bb, exit_succ[i], exit_flag[i]);
7723 e->probability = exit_prob[i];
7726 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
7727 FOR_EACH_VEC_ELT (dom_bbs, i, abb)
7728 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
7729 dom_bbs.release ();
7731 if (exit_bb)
7733 free (exit_prob);
7734 free (exit_flag);
7735 free (exit_succ);
7737 free (entry_prob);
7738 free (entry_flag);
7739 free (entry_pred);
7740 bbs.release ();
7742 return bb;
7745 /* Dump default def DEF to file FILE using FLAGS and indentation
7746 SPC. */
7748 static void
7749 dump_default_def (FILE *file, tree def, int spc, dump_flags_t flags)
7751 for (int i = 0; i < spc; ++i)
7752 fprintf (file, " ");
7753 dump_ssaname_info_to_file (file, def, spc);
7755 print_generic_expr (file, TREE_TYPE (def), flags);
7756 fprintf (file, " ");
7757 print_generic_expr (file, def, flags);
7758 fprintf (file, " = ");
7759 print_generic_expr (file, SSA_NAME_VAR (def), flags);
7760 fprintf (file, ";\n");
7763 /* Print no_sanitize attribute to FILE for a given attribute VALUE. */
7765 static void
7766 print_no_sanitize_attr_value (FILE *file, tree value)
7768 unsigned int flags = tree_to_uhwi (value);
7769 bool first = true;
7770 for (int i = 0; sanitizer_opts[i].name != NULL; ++i)
7772 if ((sanitizer_opts[i].flag & flags) == sanitizer_opts[i].flag)
7774 if (!first)
7775 fprintf (file, " | ");
7776 fprintf (file, "%s", sanitizer_opts[i].name);
7777 first = false;
7782 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in dumpfile.h)
7785 void
7786 dump_function_to_file (tree fndecl, FILE *file, dump_flags_t flags)
7788 tree arg, var, old_current_fndecl = current_function_decl;
7789 struct function *dsf;
7790 bool ignore_topmost_bind = false, any_var = false;
7791 basic_block bb;
7792 tree chain;
7793 bool tmclone = (TREE_CODE (fndecl) == FUNCTION_DECL
7794 && decl_is_tm_clone (fndecl));
7795 struct function *fun = DECL_STRUCT_FUNCTION (fndecl);
7797 if (DECL_ATTRIBUTES (fndecl) != NULL_TREE)
7799 fprintf (file, "__attribute__((");
7801 bool first = true;
7802 tree chain;
7803 for (chain = DECL_ATTRIBUTES (fndecl); chain;
7804 first = false, chain = TREE_CHAIN (chain))
7806 if (!first)
7807 fprintf (file, ", ");
7809 tree name = get_attribute_name (chain);
7810 print_generic_expr (file, name, dump_flags);
7811 if (TREE_VALUE (chain) != NULL_TREE)
7813 fprintf (file, " (");
7815 if (strstr (IDENTIFIER_POINTER (name), "no_sanitize"))
7816 print_no_sanitize_attr_value (file, TREE_VALUE (chain));
7817 else
7818 print_generic_expr (file, TREE_VALUE (chain), dump_flags);
7819 fprintf (file, ")");
7823 fprintf (file, "))\n");
7826 current_function_decl = fndecl;
7827 if (flags & TDF_GIMPLE)
7829 print_generic_expr (file, TREE_TYPE (TREE_TYPE (fndecl)),
7830 dump_flags | TDF_SLIM);
7831 fprintf (file, " __GIMPLE ()\n%s (", function_name (fun));
7833 else
7834 fprintf (file, "%s %s(", function_name (fun), tmclone ? "[tm-clone] " : "");
7836 arg = DECL_ARGUMENTS (fndecl);
7837 while (arg)
7839 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
7840 fprintf (file, " ");
7841 print_generic_expr (file, arg, dump_flags);
7842 if (DECL_CHAIN (arg))
7843 fprintf (file, ", ");
7844 arg = DECL_CHAIN (arg);
7846 fprintf (file, ")\n");
7848 dsf = DECL_STRUCT_FUNCTION (fndecl);
7849 if (dsf && (flags & TDF_EH))
7850 dump_eh_tree (file, dsf);
7852 if (flags & TDF_RAW && !gimple_has_body_p (fndecl))
7854 dump_node (fndecl, TDF_SLIM | flags, file);
7855 current_function_decl = old_current_fndecl;
7856 return;
7859 /* When GIMPLE is lowered, the variables are no longer available in
7860 BIND_EXPRs, so display them separately. */
7861 if (fun && fun->decl == fndecl && (fun->curr_properties & PROP_gimple_lcf))
7863 unsigned ix;
7864 ignore_topmost_bind = true;
7866 fprintf (file, "{\n");
7867 if (gimple_in_ssa_p (fun)
7868 && (flags & TDF_ALIAS))
7870 for (arg = DECL_ARGUMENTS (fndecl); arg != NULL;
7871 arg = DECL_CHAIN (arg))
7873 tree def = ssa_default_def (fun, arg);
7874 if (def)
7875 dump_default_def (file, def, 2, flags);
7878 tree res = DECL_RESULT (fun->decl);
7879 if (res != NULL_TREE
7880 && DECL_BY_REFERENCE (res))
7882 tree def = ssa_default_def (fun, res);
7883 if (def)
7884 dump_default_def (file, def, 2, flags);
7887 tree static_chain = fun->static_chain_decl;
7888 if (static_chain != NULL_TREE)
7890 tree def = ssa_default_def (fun, static_chain);
7891 if (def)
7892 dump_default_def (file, def, 2, flags);
7896 if (!vec_safe_is_empty (fun->local_decls))
7897 FOR_EACH_LOCAL_DECL (fun, ix, var)
7899 print_generic_decl (file, var, flags);
7900 fprintf (file, "\n");
7902 any_var = true;
7905 tree name;
7907 if (gimple_in_ssa_p (cfun))
7908 FOR_EACH_SSA_NAME (ix, name, cfun)
7910 if (!SSA_NAME_VAR (name))
7912 fprintf (file, " ");
7913 print_generic_expr (file, TREE_TYPE (name), flags);
7914 fprintf (file, " ");
7915 print_generic_expr (file, name, flags);
7916 fprintf (file, ";\n");
7918 any_var = true;
7923 if (fun && fun->decl == fndecl
7924 && fun->cfg
7925 && basic_block_info_for_fn (fun))
7927 /* If the CFG has been built, emit a CFG-based dump. */
7928 if (!ignore_topmost_bind)
7929 fprintf (file, "{\n");
7931 if (any_var && n_basic_blocks_for_fn (fun))
7932 fprintf (file, "\n");
7934 FOR_EACH_BB_FN (bb, fun)
7935 dump_bb (file, bb, 2, flags);
7937 fprintf (file, "}\n");
7939 else if (fun->curr_properties & PROP_gimple_any)
7941 /* The function is now in GIMPLE form but the CFG has not been
7942 built yet. Emit the single sequence of GIMPLE statements
7943 that make up its body. */
7944 gimple_seq body = gimple_body (fndecl);
7946 if (gimple_seq_first_stmt (body)
7947 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
7948 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
7949 print_gimple_seq (file, body, 0, flags);
7950 else
7952 if (!ignore_topmost_bind)
7953 fprintf (file, "{\n");
7955 if (any_var)
7956 fprintf (file, "\n");
7958 print_gimple_seq (file, body, 2, flags);
7959 fprintf (file, "}\n");
7962 else
7964 int indent;
7966 /* Make a tree based dump. */
7967 chain = DECL_SAVED_TREE (fndecl);
7968 if (chain && TREE_CODE (chain) == BIND_EXPR)
7970 if (ignore_topmost_bind)
7972 chain = BIND_EXPR_BODY (chain);
7973 indent = 2;
7975 else
7976 indent = 0;
7978 else
7980 if (!ignore_topmost_bind)
7982 fprintf (file, "{\n");
7983 /* No topmost bind, pretend it's ignored for later. */
7984 ignore_topmost_bind = true;
7986 indent = 2;
7989 if (any_var)
7990 fprintf (file, "\n");
7992 print_generic_stmt_indented (file, chain, flags, indent);
7993 if (ignore_topmost_bind)
7994 fprintf (file, "}\n");
7997 if (flags & TDF_ENUMERATE_LOCALS)
7998 dump_enumerated_decls (file, flags);
7999 fprintf (file, "\n\n");
8001 current_function_decl = old_current_fndecl;
8004 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
8006 DEBUG_FUNCTION void
8007 debug_function (tree fn, dump_flags_t flags)
8009 dump_function_to_file (fn, stderr, flags);
8013 /* Print on FILE the indexes for the predecessors of basic_block BB. */
8015 static void
8016 print_pred_bbs (FILE *file, basic_block bb)
8018 edge e;
8019 edge_iterator ei;
8021 FOR_EACH_EDGE (e, ei, bb->preds)
8022 fprintf (file, "bb_%d ", e->src->index);
8026 /* Print on FILE the indexes for the successors of basic_block BB. */
8028 static void
8029 print_succ_bbs (FILE *file, basic_block bb)
8031 edge e;
8032 edge_iterator ei;
8034 FOR_EACH_EDGE (e, ei, bb->succs)
8035 fprintf (file, "bb_%d ", e->dest->index);
8038 /* Print to FILE the basic block BB following the VERBOSITY level. */
8040 void
8041 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
8043 char *s_indent = (char *) alloca ((size_t) indent + 1);
8044 memset ((void *) s_indent, ' ', (size_t) indent);
8045 s_indent[indent] = '\0';
8047 /* Print basic_block's header. */
8048 if (verbosity >= 2)
8050 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
8051 print_pred_bbs (file, bb);
8052 fprintf (file, "}, succs = {");
8053 print_succ_bbs (file, bb);
8054 fprintf (file, "})\n");
8057 /* Print basic_block's body. */
8058 if (verbosity >= 3)
8060 fprintf (file, "%s {\n", s_indent);
8061 dump_bb (file, bb, indent + 4, TDF_VOPS|TDF_MEMSYMS);
8062 fprintf (file, "%s }\n", s_indent);
8066 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
8068 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
8069 VERBOSITY level this outputs the contents of the loop, or just its
8070 structure. */
8072 static void
8073 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
8075 char *s_indent;
8076 basic_block bb;
8078 if (loop == NULL)
8079 return;
8081 s_indent = (char *) alloca ((size_t) indent + 1);
8082 memset ((void *) s_indent, ' ', (size_t) indent);
8083 s_indent[indent] = '\0';
8085 /* Print loop's header. */
8086 fprintf (file, "%sloop_%d (", s_indent, loop->num);
8087 if (loop->header)
8088 fprintf (file, "header = %d", loop->header->index);
8089 else
8091 fprintf (file, "deleted)\n");
8092 return;
8094 if (loop->latch)
8095 fprintf (file, ", latch = %d", loop->latch->index);
8096 else
8097 fprintf (file, ", multiple latches");
8098 fprintf (file, ", niter = ");
8099 print_generic_expr (file, loop->nb_iterations);
8101 if (loop->any_upper_bound)
8103 fprintf (file, ", upper_bound = ");
8104 print_decu (loop->nb_iterations_upper_bound, file);
8106 if (loop->any_likely_upper_bound)
8108 fprintf (file, ", likely_upper_bound = ");
8109 print_decu (loop->nb_iterations_likely_upper_bound, file);
8112 if (loop->any_estimate)
8114 fprintf (file, ", estimate = ");
8115 print_decu (loop->nb_iterations_estimate, file);
8117 if (loop->unroll)
8118 fprintf (file, ", unroll = %d", loop->unroll);
8119 fprintf (file, ")\n");
8121 /* Print loop's body. */
8122 if (verbosity >= 1)
8124 fprintf (file, "%s{\n", s_indent);
8125 FOR_EACH_BB_FN (bb, cfun)
8126 if (bb->loop_father == loop)
8127 print_loops_bb (file, bb, indent, verbosity);
8129 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
8130 fprintf (file, "%s}\n", s_indent);
8134 /* Print the LOOP and its sibling loops on FILE, indented INDENT
8135 spaces. Following VERBOSITY level this outputs the contents of the
8136 loop, or just its structure. */
8138 static void
8139 print_loop_and_siblings (FILE *file, struct loop *loop, int indent,
8140 int verbosity)
8142 if (loop == NULL)
8143 return;
8145 print_loop (file, loop, indent, verbosity);
8146 print_loop_and_siblings (file, loop->next, indent, verbosity);
8149 /* Follow a CFG edge from the entry point of the program, and on entry
8150 of a loop, pretty print the loop structure on FILE. */
8152 void
8153 print_loops (FILE *file, int verbosity)
8155 basic_block bb;
8157 bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
8158 fprintf (file, "\nLoops in function: %s\n", current_function_name ());
8159 if (bb && bb->loop_father)
8160 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
8163 /* Dump a loop. */
8165 DEBUG_FUNCTION void
8166 debug (struct loop &ref)
8168 print_loop (stderr, &ref, 0, /*verbosity*/0);
8171 DEBUG_FUNCTION void
8172 debug (struct loop *ptr)
8174 if (ptr)
8175 debug (*ptr);
8176 else
8177 fprintf (stderr, "<nil>\n");
8180 /* Dump a loop verbosely. */
8182 DEBUG_FUNCTION void
8183 debug_verbose (struct loop &ref)
8185 print_loop (stderr, &ref, 0, /*verbosity*/3);
8188 DEBUG_FUNCTION void
8189 debug_verbose (struct loop *ptr)
8191 if (ptr)
8192 debug (*ptr);
8193 else
8194 fprintf (stderr, "<nil>\n");
8198 /* Debugging loops structure at tree level, at some VERBOSITY level. */
8200 DEBUG_FUNCTION void
8201 debug_loops (int verbosity)
8203 print_loops (stderr, verbosity);
8206 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
8208 DEBUG_FUNCTION void
8209 debug_loop (struct loop *loop, int verbosity)
8211 print_loop (stderr, loop, 0, verbosity);
8214 /* Print on stderr the code of loop number NUM, at some VERBOSITY
8215 level. */
8217 DEBUG_FUNCTION void
8218 debug_loop_num (unsigned num, int verbosity)
8220 debug_loop (get_loop (cfun, num), verbosity);
8223 /* Return true if BB ends with a call, possibly followed by some
8224 instructions that must stay with the call. Return false,
8225 otherwise. */
8227 static bool
8228 gimple_block_ends_with_call_p (basic_block bb)
8230 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
8231 return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
8235 /* Return true if BB ends with a conditional branch. Return false,
8236 otherwise. */
8238 static bool
8239 gimple_block_ends_with_condjump_p (const_basic_block bb)
8241 gimple *stmt = last_stmt (CONST_CAST_BB (bb));
8242 return (stmt && gimple_code (stmt) == GIMPLE_COND);
8246 /* Return true if statement T may terminate execution of BB in ways not
8247 explicitly represtented in the CFG. */
8249 bool
8250 stmt_can_terminate_bb_p (gimple *t)
8252 tree fndecl = NULL_TREE;
8253 int call_flags = 0;
8255 /* Eh exception not handled internally terminates execution of the whole
8256 function. */
8257 if (stmt_can_throw_external (t))
8258 return true;
8260 /* NORETURN and LONGJMP calls already have an edge to exit.
8261 CONST and PURE calls do not need one.
8262 We don't currently check for CONST and PURE here, although
8263 it would be a good idea, because those attributes are
8264 figured out from the RTL in mark_constant_function, and
8265 the counter incrementation code from -fprofile-arcs
8266 leads to different results from -fbranch-probabilities. */
8267 if (is_gimple_call (t))
8269 fndecl = gimple_call_fndecl (t);
8270 call_flags = gimple_call_flags (t);
8273 if (is_gimple_call (t)
8274 && fndecl
8275 && DECL_BUILT_IN (fndecl)
8276 && (call_flags & ECF_NOTHROW)
8277 && !(call_flags & ECF_RETURNS_TWICE)
8278 /* fork() doesn't really return twice, but the effect of
8279 wrapping it in __gcov_fork() which calls __gcov_flush()
8280 and clears the counters before forking has the same
8281 effect as returning twice. Force a fake edge. */
8282 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
8283 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
8284 return false;
8286 if (is_gimple_call (t))
8288 edge_iterator ei;
8289 edge e;
8290 basic_block bb;
8292 if (call_flags & (ECF_PURE | ECF_CONST)
8293 && !(call_flags & ECF_LOOPING_CONST_OR_PURE))
8294 return false;
8296 /* Function call may do longjmp, terminate program or do other things.
8297 Special case noreturn that have non-abnormal edges out as in this case
8298 the fact is sufficiently represented by lack of edges out of T. */
8299 if (!(call_flags & ECF_NORETURN))
8300 return true;
8302 bb = gimple_bb (t);
8303 FOR_EACH_EDGE (e, ei, bb->succs)
8304 if ((e->flags & EDGE_FAKE) == 0)
8305 return true;
8308 if (gasm *asm_stmt = dyn_cast <gasm *> (t))
8309 if (gimple_asm_volatile_p (asm_stmt) || gimple_asm_input_p (asm_stmt))
8310 return true;
8312 return false;
8316 /* Add fake edges to the function exit for any non constant and non
8317 noreturn calls (or noreturn calls with EH/abnormal edges),
8318 volatile inline assembly in the bitmap of blocks specified by BLOCKS
8319 or to the whole CFG if BLOCKS is zero. Return the number of blocks
8320 that were split.
8322 The goal is to expose cases in which entering a basic block does
8323 not imply that all subsequent instructions must be executed. */
8325 static int
8326 gimple_flow_call_edges_add (sbitmap blocks)
8328 int i;
8329 int blocks_split = 0;
8330 int last_bb = last_basic_block_for_fn (cfun);
8331 bool check_last_block = false;
8333 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
8334 return 0;
8336 if (! blocks)
8337 check_last_block = true;
8338 else
8339 check_last_block = bitmap_bit_p (blocks,
8340 EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb->index);
8342 /* In the last basic block, before epilogue generation, there will be
8343 a fallthru edge to EXIT. Special care is required if the last insn
8344 of the last basic block is a call because make_edge folds duplicate
8345 edges, which would result in the fallthru edge also being marked
8346 fake, which would result in the fallthru edge being removed by
8347 remove_fake_edges, which would result in an invalid CFG.
8349 Moreover, we can't elide the outgoing fake edge, since the block
8350 profiler needs to take this into account in order to solve the minimal
8351 spanning tree in the case that the call doesn't return.
8353 Handle this by adding a dummy instruction in a new last basic block. */
8354 if (check_last_block)
8356 basic_block bb = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
8357 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
8358 gimple *t = NULL;
8360 if (!gsi_end_p (gsi))
8361 t = gsi_stmt (gsi);
8363 if (t && stmt_can_terminate_bb_p (t))
8365 edge e;
8367 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
8368 if (e)
8370 gsi_insert_on_edge (e, gimple_build_nop ());
8371 gsi_commit_edge_inserts ();
8376 /* Now add fake edges to the function exit for any non constant
8377 calls since there is no way that we can determine if they will
8378 return or not... */
8379 for (i = 0; i < last_bb; i++)
8381 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
8382 gimple_stmt_iterator gsi;
8383 gimple *stmt, *last_stmt;
8385 if (!bb)
8386 continue;
8388 if (blocks && !bitmap_bit_p (blocks, i))
8389 continue;
8391 gsi = gsi_last_nondebug_bb (bb);
8392 if (!gsi_end_p (gsi))
8394 last_stmt = gsi_stmt (gsi);
8397 stmt = gsi_stmt (gsi);
8398 if (stmt_can_terminate_bb_p (stmt))
8400 edge e;
8402 /* The handling above of the final block before the
8403 epilogue should be enough to verify that there is
8404 no edge to the exit block in CFG already.
8405 Calling make_edge in such case would cause us to
8406 mark that edge as fake and remove it later. */
8407 if (flag_checking && stmt == last_stmt)
8409 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
8410 gcc_assert (e == NULL);
8413 /* Note that the following may create a new basic block
8414 and renumber the existing basic blocks. */
8415 if (stmt != last_stmt)
8417 e = split_block (bb, stmt);
8418 if (e)
8419 blocks_split++;
8421 e = make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), EDGE_FAKE);
8422 e->probability = profile_probability::guessed_never ();
8424 gsi_prev (&gsi);
8426 while (!gsi_end_p (gsi));
8430 if (blocks_split)
8431 checking_verify_flow_info ();
8433 return blocks_split;
8436 /* Removes edge E and all the blocks dominated by it, and updates dominance
8437 information. The IL in E->src needs to be updated separately.
8438 If dominance info is not available, only the edge E is removed.*/
8440 void
8441 remove_edge_and_dominated_blocks (edge e)
8443 vec<basic_block> bbs_to_remove = vNULL;
8444 vec<basic_block> bbs_to_fix_dom = vNULL;
8445 edge f;
8446 edge_iterator ei;
8447 bool none_removed = false;
8448 unsigned i;
8449 basic_block bb, dbb;
8450 bitmap_iterator bi;
8452 /* If we are removing a path inside a non-root loop that may change
8453 loop ownership of blocks or remove loops. Mark loops for fixup. */
8454 if (current_loops
8455 && loop_outer (e->src->loop_father) != NULL
8456 && e->src->loop_father == e->dest->loop_father)
8457 loops_state_set (LOOPS_NEED_FIXUP);
8459 if (!dom_info_available_p (CDI_DOMINATORS))
8461 remove_edge (e);
8462 return;
8465 /* No updating is needed for edges to exit. */
8466 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
8468 if (cfgcleanup_altered_bbs)
8469 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
8470 remove_edge (e);
8471 return;
8474 /* First, we find the basic blocks to remove. If E->dest has a predecessor
8475 that is not dominated by E->dest, then this set is empty. Otherwise,
8476 all the basic blocks dominated by E->dest are removed.
8478 Also, to DF_IDOM we store the immediate dominators of the blocks in
8479 the dominance frontier of E (i.e., of the successors of the
8480 removed blocks, if there are any, and of E->dest otherwise). */
8481 FOR_EACH_EDGE (f, ei, e->dest->preds)
8483 if (f == e)
8484 continue;
8486 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
8488 none_removed = true;
8489 break;
8493 auto_bitmap df, df_idom;
8494 if (none_removed)
8495 bitmap_set_bit (df_idom,
8496 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
8497 else
8499 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
8500 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
8502 FOR_EACH_EDGE (f, ei, bb->succs)
8504 if (f->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
8505 bitmap_set_bit (df, f->dest->index);
8508 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
8509 bitmap_clear_bit (df, bb->index);
8511 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
8513 bb = BASIC_BLOCK_FOR_FN (cfun, i);
8514 bitmap_set_bit (df_idom,
8515 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
8519 if (cfgcleanup_altered_bbs)
8521 /* Record the set of the altered basic blocks. */
8522 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
8523 bitmap_ior_into (cfgcleanup_altered_bbs, df);
8526 /* Remove E and the cancelled blocks. */
8527 if (none_removed)
8528 remove_edge (e);
8529 else
8531 /* Walk backwards so as to get a chance to substitute all
8532 released DEFs into debug stmts. See
8533 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
8534 details. */
8535 for (i = bbs_to_remove.length (); i-- > 0; )
8536 delete_basic_block (bbs_to_remove[i]);
8539 /* Update the dominance information. The immediate dominator may change only
8540 for blocks whose immediate dominator belongs to DF_IDOM:
8542 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
8543 removal. Let Z the arbitrary block such that idom(Z) = Y and
8544 Z dominates X after the removal. Before removal, there exists a path P
8545 from Y to X that avoids Z. Let F be the last edge on P that is
8546 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
8547 dominates W, and because of P, Z does not dominate W), and W belongs to
8548 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
8549 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
8551 bb = BASIC_BLOCK_FOR_FN (cfun, i);
8552 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
8553 dbb;
8554 dbb = next_dom_son (CDI_DOMINATORS, dbb))
8555 bbs_to_fix_dom.safe_push (dbb);
8558 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
8560 bbs_to_remove.release ();
8561 bbs_to_fix_dom.release ();
8564 /* Purge dead EH edges from basic block BB. */
8566 bool
8567 gimple_purge_dead_eh_edges (basic_block bb)
8569 bool changed = false;
8570 edge e;
8571 edge_iterator ei;
8572 gimple *stmt = last_stmt (bb);
8574 if (stmt && stmt_can_throw_internal (stmt))
8575 return false;
8577 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
8579 if (e->flags & EDGE_EH)
8581 remove_edge_and_dominated_blocks (e);
8582 changed = true;
8584 else
8585 ei_next (&ei);
8588 return changed;
8591 /* Purge dead EH edges from basic block listed in BLOCKS. */
8593 bool
8594 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
8596 bool changed = false;
8597 unsigned i;
8598 bitmap_iterator bi;
8600 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
8602 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
8604 /* Earlier gimple_purge_dead_eh_edges could have removed
8605 this basic block already. */
8606 gcc_assert (bb || changed);
8607 if (bb != NULL)
8608 changed |= gimple_purge_dead_eh_edges (bb);
8611 return changed;
8614 /* Purge dead abnormal call edges from basic block BB. */
8616 bool
8617 gimple_purge_dead_abnormal_call_edges (basic_block bb)
8619 bool changed = false;
8620 edge e;
8621 edge_iterator ei;
8622 gimple *stmt = last_stmt (bb);
8624 if (!cfun->has_nonlocal_label
8625 && !cfun->calls_setjmp)
8626 return false;
8628 if (stmt && stmt_can_make_abnormal_goto (stmt))
8629 return false;
8631 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
8633 if (e->flags & EDGE_ABNORMAL)
8635 if (e->flags & EDGE_FALLTHRU)
8636 e->flags &= ~EDGE_ABNORMAL;
8637 else
8638 remove_edge_and_dominated_blocks (e);
8639 changed = true;
8641 else
8642 ei_next (&ei);
8645 return changed;
8648 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
8650 bool
8651 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks)
8653 bool changed = false;
8654 unsigned i;
8655 bitmap_iterator bi;
8657 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
8659 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
8661 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
8662 this basic block already. */
8663 gcc_assert (bb || changed);
8664 if (bb != NULL)
8665 changed |= gimple_purge_dead_abnormal_call_edges (bb);
8668 return changed;
8671 /* This function is called whenever a new edge is created or
8672 redirected. */
8674 static void
8675 gimple_execute_on_growing_pred (edge e)
8677 basic_block bb = e->dest;
8679 if (!gimple_seq_empty_p (phi_nodes (bb)))
8680 reserve_phi_args_for_new_edge (bb);
8683 /* This function is called immediately before edge E is removed from
8684 the edge vector E->dest->preds. */
8686 static void
8687 gimple_execute_on_shrinking_pred (edge e)
8689 if (!gimple_seq_empty_p (phi_nodes (e->dest)))
8690 remove_phi_args (e);
8693 /*---------------------------------------------------------------------------
8694 Helper functions for Loop versioning
8695 ---------------------------------------------------------------------------*/
8697 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
8698 of 'first'. Both of them are dominated by 'new_head' basic block. When
8699 'new_head' was created by 'second's incoming edge it received phi arguments
8700 on the edge by split_edge(). Later, additional edge 'e' was created to
8701 connect 'new_head' and 'first'. Now this routine adds phi args on this
8702 additional edge 'e' that new_head to second edge received as part of edge
8703 splitting. */
8705 static void
8706 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
8707 basic_block new_head, edge e)
8709 gphi *phi1, *phi2;
8710 gphi_iterator psi1, psi2;
8711 tree def;
8712 edge e2 = find_edge (new_head, second);
8714 /* Because NEW_HEAD has been created by splitting SECOND's incoming
8715 edge, we should always have an edge from NEW_HEAD to SECOND. */
8716 gcc_assert (e2 != NULL);
8718 /* Browse all 'second' basic block phi nodes and add phi args to
8719 edge 'e' for 'first' head. PHI args are always in correct order. */
8721 for (psi2 = gsi_start_phis (second),
8722 psi1 = gsi_start_phis (first);
8723 !gsi_end_p (psi2) && !gsi_end_p (psi1);
8724 gsi_next (&psi2), gsi_next (&psi1))
8726 phi1 = psi1.phi ();
8727 phi2 = psi2.phi ();
8728 def = PHI_ARG_DEF (phi2, e2->dest_idx);
8729 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
8734 /* Adds a if else statement to COND_BB with condition COND_EXPR.
8735 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
8736 the destination of the ELSE part. */
8738 static void
8739 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
8740 basic_block second_head ATTRIBUTE_UNUSED,
8741 basic_block cond_bb, void *cond_e)
8743 gimple_stmt_iterator gsi;
8744 gimple *new_cond_expr;
8745 tree cond_expr = (tree) cond_e;
8746 edge e0;
8748 /* Build new conditional expr */
8749 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
8750 NULL_TREE, NULL_TREE);
8752 /* Add new cond in cond_bb. */
8753 gsi = gsi_last_bb (cond_bb);
8754 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
8756 /* Adjust edges appropriately to connect new head with first head
8757 as well as second head. */
8758 e0 = single_succ_edge (cond_bb);
8759 e0->flags &= ~EDGE_FALLTHRU;
8760 e0->flags |= EDGE_FALSE_VALUE;
8764 /* Do book-keeping of basic block BB for the profile consistency checker.
8765 If AFTER_PASS is 0, do pre-pass accounting, or if AFTER_PASS is 1
8766 then do post-pass accounting. Store the counting in RECORD. */
8767 static void
8768 gimple_account_profile_record (basic_block bb, int after_pass,
8769 struct profile_record *record)
8771 gimple_stmt_iterator i;
8772 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
8774 record->size[after_pass]
8775 += estimate_num_insns (gsi_stmt (i), &eni_size_weights);
8776 if (bb->count.initialized_p ())
8777 record->time[after_pass]
8778 += estimate_num_insns (gsi_stmt (i),
8779 &eni_time_weights) * bb->count.to_gcov_type ();
8780 else if (profile_status_for_fn (cfun) == PROFILE_GUESSED)
8781 record->time[after_pass]
8782 += estimate_num_insns (gsi_stmt (i),
8783 &eni_time_weights) * bb->count.to_frequency (cfun);
8787 struct cfg_hooks gimple_cfg_hooks = {
8788 "gimple",
8789 gimple_verify_flow_info,
8790 gimple_dump_bb, /* dump_bb */
8791 gimple_dump_bb_for_graph, /* dump_bb_for_graph */
8792 create_bb, /* create_basic_block */
8793 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
8794 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
8795 gimple_can_remove_branch_p, /* can_remove_branch_p */
8796 remove_bb, /* delete_basic_block */
8797 gimple_split_block, /* split_block */
8798 gimple_move_block_after, /* move_block_after */
8799 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
8800 gimple_merge_blocks, /* merge_blocks */
8801 gimple_predict_edge, /* predict_edge */
8802 gimple_predicted_by_p, /* predicted_by_p */
8803 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
8804 gimple_duplicate_bb, /* duplicate_block */
8805 gimple_split_edge, /* split_edge */
8806 gimple_make_forwarder_block, /* make_forward_block */
8807 NULL, /* tidy_fallthru_edge */
8808 NULL, /* force_nonfallthru */
8809 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
8810 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
8811 gimple_flow_call_edges_add, /* flow_call_edges_add */
8812 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
8813 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
8814 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
8815 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
8816 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
8817 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
8818 flush_pending_stmts, /* flush_pending_stmts */
8819 gimple_empty_block_p, /* block_empty_p */
8820 gimple_split_block_before_cond_jump, /* split_block_before_cond_jump */
8821 gimple_account_profile_record,
8825 /* Split all critical edges. */
8827 unsigned int
8828 split_critical_edges (void)
8830 basic_block bb;
8831 edge e;
8832 edge_iterator ei;
8834 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
8835 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
8836 mappings around the calls to split_edge. */
8837 start_recording_case_labels ();
8838 FOR_ALL_BB_FN (bb, cfun)
8840 FOR_EACH_EDGE (e, ei, bb->succs)
8842 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
8843 split_edge (e);
8844 /* PRE inserts statements to edges and expects that
8845 since split_critical_edges was done beforehand, committing edge
8846 insertions will not split more edges. In addition to critical
8847 edges we must split edges that have multiple successors and
8848 end by control flow statements, such as RESX.
8849 Go ahead and split them too. This matches the logic in
8850 gimple_find_edge_insert_loc. */
8851 else if ((!single_pred_p (e->dest)
8852 || !gimple_seq_empty_p (phi_nodes (e->dest))
8853 || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
8854 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
8855 && !(e->flags & EDGE_ABNORMAL))
8857 gimple_stmt_iterator gsi;
8859 gsi = gsi_last_bb (e->src);
8860 if (!gsi_end_p (gsi)
8861 && stmt_ends_bb_p (gsi_stmt (gsi))
8862 && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
8863 && !gimple_call_builtin_p (gsi_stmt (gsi),
8864 BUILT_IN_RETURN)))
8865 split_edge (e);
8869 end_recording_case_labels ();
8870 return 0;
8873 namespace {
8875 const pass_data pass_data_split_crit_edges =
8877 GIMPLE_PASS, /* type */
8878 "crited", /* name */
8879 OPTGROUP_NONE, /* optinfo_flags */
8880 TV_TREE_SPLIT_EDGES, /* tv_id */
8881 PROP_cfg, /* properties_required */
8882 PROP_no_crit_edges, /* properties_provided */
8883 0, /* properties_destroyed */
8884 0, /* todo_flags_start */
8885 0, /* todo_flags_finish */
8888 class pass_split_crit_edges : public gimple_opt_pass
8890 public:
8891 pass_split_crit_edges (gcc::context *ctxt)
8892 : gimple_opt_pass (pass_data_split_crit_edges, ctxt)
8895 /* opt_pass methods: */
8896 virtual unsigned int execute (function *) { return split_critical_edges (); }
8898 opt_pass * clone () { return new pass_split_crit_edges (m_ctxt); }
8899 }; // class pass_split_crit_edges
8901 } // anon namespace
8903 gimple_opt_pass *
8904 make_pass_split_crit_edges (gcc::context *ctxt)
8906 return new pass_split_crit_edges (ctxt);
8910 /* Insert COND expression which is GIMPLE_COND after STMT
8911 in basic block BB with appropriate basic block split
8912 and creation of a new conditionally executed basic block.
8913 Update profile so the new bb is visited with probability PROB.
8914 Return created basic block. */
8915 basic_block
8916 insert_cond_bb (basic_block bb, gimple *stmt, gimple *cond,
8917 profile_probability prob)
8919 edge fall = split_block (bb, stmt);
8920 gimple_stmt_iterator iter = gsi_last_bb (bb);
8921 basic_block new_bb;
8923 /* Insert cond statement. */
8924 gcc_assert (gimple_code (cond) == GIMPLE_COND);
8925 if (gsi_end_p (iter))
8926 gsi_insert_before (&iter, cond, GSI_CONTINUE_LINKING);
8927 else
8928 gsi_insert_after (&iter, cond, GSI_CONTINUE_LINKING);
8930 /* Create conditionally executed block. */
8931 new_bb = create_empty_bb (bb);
8932 edge e = make_edge (bb, new_bb, EDGE_TRUE_VALUE);
8933 e->probability = prob;
8934 new_bb->count = e->count ();
8935 make_single_succ_edge (new_bb, fall->dest, EDGE_FALLTHRU);
8937 /* Fix edge for split bb. */
8938 fall->flags = EDGE_FALSE_VALUE;
8939 fall->probability -= e->probability;
8941 /* Update dominance info. */
8942 if (dom_info_available_p (CDI_DOMINATORS))
8944 set_immediate_dominator (CDI_DOMINATORS, new_bb, bb);
8945 set_immediate_dominator (CDI_DOMINATORS, fall->dest, bb);
8948 /* Update loop info. */
8949 if (current_loops)
8950 add_bb_to_loop (new_bb, bb->loop_father);
8952 return new_bb;
8955 /* Build a ternary operation and gimplify it. Emit code before GSI.
8956 Return the gimple_val holding the result. */
8958 tree
8959 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
8960 tree type, tree a, tree b, tree c)
8962 tree ret;
8963 location_t loc = gimple_location (gsi_stmt (*gsi));
8965 ret = fold_build3_loc (loc, code, type, a, b, c);
8966 STRIP_NOPS (ret);
8968 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
8969 GSI_SAME_STMT);
8972 /* Build a binary operation and gimplify it. Emit code before GSI.
8973 Return the gimple_val holding the result. */
8975 tree
8976 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
8977 tree type, tree a, tree b)
8979 tree ret;
8981 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
8982 STRIP_NOPS (ret);
8984 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
8985 GSI_SAME_STMT);
8988 /* Build a unary operation and gimplify it. Emit code before GSI.
8989 Return the gimple_val holding the result. */
8991 tree
8992 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
8993 tree a)
8995 tree ret;
8997 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
8998 STRIP_NOPS (ret);
9000 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
9001 GSI_SAME_STMT);
9006 /* Given a basic block B which ends with a conditional and has
9007 precisely two successors, determine which of the edges is taken if
9008 the conditional is true and which is taken if the conditional is
9009 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
9011 void
9012 extract_true_false_edges_from_block (basic_block b,
9013 edge *true_edge,
9014 edge *false_edge)
9016 edge e = EDGE_SUCC (b, 0);
9018 if (e->flags & EDGE_TRUE_VALUE)
9020 *true_edge = e;
9021 *false_edge = EDGE_SUCC (b, 1);
9023 else
9025 *false_edge = e;
9026 *true_edge = EDGE_SUCC (b, 1);
9031 /* From a controlling predicate in the immediate dominator DOM of
9032 PHIBLOCK determine the edges into PHIBLOCK that are chosen if the
9033 predicate evaluates to true and false and store them to
9034 *TRUE_CONTROLLED_EDGE and *FALSE_CONTROLLED_EDGE if
9035 they are non-NULL. Returns true if the edges can be determined,
9036 else return false. */
9038 bool
9039 extract_true_false_controlled_edges (basic_block dom, basic_block phiblock,
9040 edge *true_controlled_edge,
9041 edge *false_controlled_edge)
9043 basic_block bb = phiblock;
9044 edge true_edge, false_edge, tem;
9045 edge e0 = NULL, e1 = NULL;
9047 /* We have to verify that one edge into the PHI node is dominated
9048 by the true edge of the predicate block and the other edge
9049 dominated by the false edge. This ensures that the PHI argument
9050 we are going to take is completely determined by the path we
9051 take from the predicate block.
9052 We can only use BB dominance checks below if the destination of
9053 the true/false edges are dominated by their edge, thus only
9054 have a single predecessor. */
9055 extract_true_false_edges_from_block (dom, &true_edge, &false_edge);
9056 tem = EDGE_PRED (bb, 0);
9057 if (tem == true_edge
9058 || (single_pred_p (true_edge->dest)
9059 && (tem->src == true_edge->dest
9060 || dominated_by_p (CDI_DOMINATORS,
9061 tem->src, true_edge->dest))))
9062 e0 = tem;
9063 else if (tem == false_edge
9064 || (single_pred_p (false_edge->dest)
9065 && (tem->src == false_edge->dest
9066 || dominated_by_p (CDI_DOMINATORS,
9067 tem->src, false_edge->dest))))
9068 e1 = tem;
9069 else
9070 return false;
9071 tem = EDGE_PRED (bb, 1);
9072 if (tem == true_edge
9073 || (single_pred_p (true_edge->dest)
9074 && (tem->src == true_edge->dest
9075 || dominated_by_p (CDI_DOMINATORS,
9076 tem->src, true_edge->dest))))
9077 e0 = tem;
9078 else if (tem == false_edge
9079 || (single_pred_p (false_edge->dest)
9080 && (tem->src == false_edge->dest
9081 || dominated_by_p (CDI_DOMINATORS,
9082 tem->src, false_edge->dest))))
9083 e1 = tem;
9084 else
9085 return false;
9086 if (!e0 || !e1)
9087 return false;
9089 if (true_controlled_edge)
9090 *true_controlled_edge = e0;
9091 if (false_controlled_edge)
9092 *false_controlled_edge = e1;
9094 return true;
9097 /* Generate a range test LHS CODE RHS that determines whether INDEX is in the
9098 range [low, high]. Place associated stmts before *GSI. */
9100 void
9101 generate_range_test (basic_block bb, tree index, tree low, tree high,
9102 tree *lhs, tree *rhs)
9104 tree type = TREE_TYPE (index);
9105 tree utype = unsigned_type_for (type);
9107 low = fold_convert (type, low);
9108 high = fold_convert (type, high);
9110 tree tmp = make_ssa_name (type);
9111 gassign *sub1
9112 = gimple_build_assign (tmp, MINUS_EXPR, index, low);
9114 *lhs = make_ssa_name (utype);
9115 gassign *a = gimple_build_assign (*lhs, NOP_EXPR, tmp);
9117 *rhs = fold_build2 (MINUS_EXPR, utype, high, low);
9118 gimple_stmt_iterator gsi = gsi_last_bb (bb);
9119 gsi_insert_before (&gsi, sub1, GSI_SAME_STMT);
9120 gsi_insert_before (&gsi, a, GSI_SAME_STMT);
9123 /* Emit return warnings. */
9125 namespace {
9127 const pass_data pass_data_warn_function_return =
9129 GIMPLE_PASS, /* type */
9130 "*warn_function_return", /* name */
9131 OPTGROUP_NONE, /* optinfo_flags */
9132 TV_NONE, /* tv_id */
9133 PROP_cfg, /* properties_required */
9134 0, /* properties_provided */
9135 0, /* properties_destroyed */
9136 0, /* todo_flags_start */
9137 0, /* todo_flags_finish */
9140 class pass_warn_function_return : public gimple_opt_pass
9142 public:
9143 pass_warn_function_return (gcc::context *ctxt)
9144 : gimple_opt_pass (pass_data_warn_function_return, ctxt)
9147 /* opt_pass methods: */
9148 virtual unsigned int execute (function *);
9150 }; // class pass_warn_function_return
9152 unsigned int
9153 pass_warn_function_return::execute (function *fun)
9155 source_location location;
9156 gimple *last;
9157 edge e;
9158 edge_iterator ei;
9160 if (!targetm.warn_func_return (fun->decl))
9161 return 0;
9163 /* If we have a path to EXIT, then we do return. */
9164 if (TREE_THIS_VOLATILE (fun->decl)
9165 && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (fun)->preds) > 0)
9167 location = UNKNOWN_LOCATION;
9168 for (ei = ei_start (EXIT_BLOCK_PTR_FOR_FN (fun)->preds);
9169 (e = ei_safe_edge (ei)); )
9171 last = last_stmt (e->src);
9172 if ((gimple_code (last) == GIMPLE_RETURN
9173 || gimple_call_builtin_p (last, BUILT_IN_RETURN))
9174 && location == UNKNOWN_LOCATION
9175 && ((location = LOCATION_LOCUS (gimple_location (last)))
9176 != UNKNOWN_LOCATION)
9177 && !optimize)
9178 break;
9179 /* When optimizing, replace return stmts in noreturn functions
9180 with __builtin_unreachable () call. */
9181 if (optimize && gimple_code (last) == GIMPLE_RETURN)
9183 tree fndecl = builtin_decl_implicit (BUILT_IN_UNREACHABLE);
9184 gimple *new_stmt = gimple_build_call (fndecl, 0);
9185 gimple_set_location (new_stmt, gimple_location (last));
9186 gimple_stmt_iterator gsi = gsi_for_stmt (last);
9187 gsi_replace (&gsi, new_stmt, true);
9188 remove_edge (e);
9190 else
9191 ei_next (&ei);
9193 if (location == UNKNOWN_LOCATION)
9194 location = cfun->function_end_locus;
9195 warning_at (location, 0, "%<noreturn%> function does return");
9198 /* If we see "return;" in some basic block, then we do reach the end
9199 without returning a value. */
9200 else if (warn_return_type > 0
9201 && !TREE_NO_WARNING (fun->decl)
9202 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (fun->decl))))
9204 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (fun)->preds)
9206 gimple *last = last_stmt (e->src);
9207 greturn *return_stmt = dyn_cast <greturn *> (last);
9208 if (return_stmt
9209 && gimple_return_retval (return_stmt) == NULL
9210 && !gimple_no_warning_p (last))
9212 location = gimple_location (last);
9213 if (LOCATION_LOCUS (location) == UNKNOWN_LOCATION)
9214 location = fun->function_end_locus;
9215 warning_at (location, OPT_Wreturn_type,
9216 "control reaches end of non-void function");
9217 TREE_NO_WARNING (fun->decl) = 1;
9218 break;
9221 /* The C++ FE turns fallthrough from the end of non-void function
9222 into __builtin_unreachable () call with BUILTINS_LOCATION.
9223 Recognize those too. */
9224 basic_block bb;
9225 if (!TREE_NO_WARNING (fun->decl))
9226 FOR_EACH_BB_FN (bb, fun)
9227 if (EDGE_COUNT (bb->succs) == 0)
9229 gimple *last = last_stmt (bb);
9230 const enum built_in_function ubsan_missing_ret
9231 = BUILT_IN_UBSAN_HANDLE_MISSING_RETURN;
9232 if (last
9233 && ((LOCATION_LOCUS (gimple_location (last))
9234 == BUILTINS_LOCATION
9235 && gimple_call_builtin_p (last, BUILT_IN_UNREACHABLE))
9236 || gimple_call_builtin_p (last, ubsan_missing_ret)))
9238 gimple_stmt_iterator gsi = gsi_for_stmt (last);
9239 gsi_prev_nondebug (&gsi);
9240 gimple *prev = gsi_stmt (gsi);
9241 if (prev == NULL)
9242 location = UNKNOWN_LOCATION;
9243 else
9244 location = gimple_location (prev);
9245 if (LOCATION_LOCUS (location) == UNKNOWN_LOCATION)
9246 location = fun->function_end_locus;
9247 warning_at (location, OPT_Wreturn_type,
9248 "control reaches end of non-void function");
9249 TREE_NO_WARNING (fun->decl) = 1;
9250 break;
9254 return 0;
9257 } // anon namespace
9259 gimple_opt_pass *
9260 make_pass_warn_function_return (gcc::context *ctxt)
9262 return new pass_warn_function_return (ctxt);
9265 /* Walk a gimplified function and warn for functions whose return value is
9266 ignored and attribute((warn_unused_result)) is set. This is done before
9267 inlining, so we don't have to worry about that. */
9269 static void
9270 do_warn_unused_result (gimple_seq seq)
9272 tree fdecl, ftype;
9273 gimple_stmt_iterator i;
9275 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
9277 gimple *g = gsi_stmt (i);
9279 switch (gimple_code (g))
9281 case GIMPLE_BIND:
9282 do_warn_unused_result (gimple_bind_body (as_a <gbind *>(g)));
9283 break;
9284 case GIMPLE_TRY:
9285 do_warn_unused_result (gimple_try_eval (g));
9286 do_warn_unused_result (gimple_try_cleanup (g));
9287 break;
9288 case GIMPLE_CATCH:
9289 do_warn_unused_result (gimple_catch_handler (
9290 as_a <gcatch *> (g)));
9291 break;
9292 case GIMPLE_EH_FILTER:
9293 do_warn_unused_result (gimple_eh_filter_failure (g));
9294 break;
9296 case GIMPLE_CALL:
9297 if (gimple_call_lhs (g))
9298 break;
9299 if (gimple_call_internal_p (g))
9300 break;
9302 /* This is a naked call, as opposed to a GIMPLE_CALL with an
9303 LHS. All calls whose value is ignored should be
9304 represented like this. Look for the attribute. */
9305 fdecl = gimple_call_fndecl (g);
9306 ftype = gimple_call_fntype (g);
9308 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
9310 location_t loc = gimple_location (g);
9312 if (fdecl)
9313 warning_at (loc, OPT_Wunused_result,
9314 "ignoring return value of %qD, "
9315 "declared with attribute warn_unused_result",
9316 fdecl);
9317 else
9318 warning_at (loc, OPT_Wunused_result,
9319 "ignoring return value of function "
9320 "declared with attribute warn_unused_result");
9322 break;
9324 default:
9325 /* Not a container, not a call, or a call whose value is used. */
9326 break;
9331 namespace {
9333 const pass_data pass_data_warn_unused_result =
9335 GIMPLE_PASS, /* type */
9336 "*warn_unused_result", /* name */
9337 OPTGROUP_NONE, /* optinfo_flags */
9338 TV_NONE, /* tv_id */
9339 PROP_gimple_any, /* properties_required */
9340 0, /* properties_provided */
9341 0, /* properties_destroyed */
9342 0, /* todo_flags_start */
9343 0, /* todo_flags_finish */
9346 class pass_warn_unused_result : public gimple_opt_pass
9348 public:
9349 pass_warn_unused_result (gcc::context *ctxt)
9350 : gimple_opt_pass (pass_data_warn_unused_result, ctxt)
9353 /* opt_pass methods: */
9354 virtual bool gate (function *) { return flag_warn_unused_result; }
9355 virtual unsigned int execute (function *)
9357 do_warn_unused_result (gimple_body (current_function_decl));
9358 return 0;
9361 }; // class pass_warn_unused_result
9363 } // anon namespace
9365 gimple_opt_pass *
9366 make_pass_warn_unused_result (gcc::context *ctxt)
9368 return new pass_warn_unused_result (ctxt);
9371 /* IPA passes, compilation of earlier functions or inlining
9372 might have changed some properties, such as marked functions nothrow,
9373 pure, const or noreturn.
9374 Remove redundant edges and basic blocks, and create new ones if necessary.
9376 This pass can't be executed as stand alone pass from pass manager, because
9377 in between inlining and this fixup the verify_flow_info would fail. */
9379 unsigned int
9380 execute_fixup_cfg (void)
9382 basic_block bb;
9383 gimple_stmt_iterator gsi;
9384 int todo = 0;
9385 cgraph_node *node = cgraph_node::get (current_function_decl);
9386 profile_count num = node->count;
9387 profile_count den = ENTRY_BLOCK_PTR_FOR_FN (cfun)->count;
9388 bool scale = num.initialized_p () && !(num == den);
9390 if (scale)
9392 profile_count::adjust_for_ipa_scaling (&num, &den);
9393 ENTRY_BLOCK_PTR_FOR_FN (cfun)->count = node->count;
9394 EXIT_BLOCK_PTR_FOR_FN (cfun)->count
9395 = EXIT_BLOCK_PTR_FOR_FN (cfun)->count.apply_scale (num, den);
9398 FOR_EACH_BB_FN (bb, cfun)
9400 if (scale)
9401 bb->count = bb->count.apply_scale (num, den);
9402 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
9404 gimple *stmt = gsi_stmt (gsi);
9405 tree decl = is_gimple_call (stmt)
9406 ? gimple_call_fndecl (stmt)
9407 : NULL;
9408 if (decl)
9410 int flags = gimple_call_flags (stmt);
9411 if (flags & (ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE))
9413 if (gimple_purge_dead_abnormal_call_edges (bb))
9414 todo |= TODO_cleanup_cfg;
9416 if (gimple_in_ssa_p (cfun))
9418 todo |= TODO_update_ssa | TODO_cleanup_cfg;
9419 update_stmt (stmt);
9423 if (flags & ECF_NORETURN
9424 && fixup_noreturn_call (stmt))
9425 todo |= TODO_cleanup_cfg;
9428 /* Remove stores to variables we marked write-only.
9429 Keep access when store has side effect, i.e. in case when source
9430 is volatile. */
9431 if (gimple_store_p (stmt)
9432 && !gimple_has_side_effects (stmt))
9434 tree lhs = get_base_address (gimple_get_lhs (stmt));
9436 if (VAR_P (lhs)
9437 && (TREE_STATIC (lhs) || DECL_EXTERNAL (lhs))
9438 && varpool_node::get (lhs)->writeonly)
9440 unlink_stmt_vdef (stmt);
9441 gsi_remove (&gsi, true);
9442 release_defs (stmt);
9443 todo |= TODO_update_ssa | TODO_cleanup_cfg;
9444 continue;
9447 /* For calls we can simply remove LHS when it is known
9448 to be write-only. */
9449 if (is_gimple_call (stmt)
9450 && gimple_get_lhs (stmt))
9452 tree lhs = get_base_address (gimple_get_lhs (stmt));
9454 if (VAR_P (lhs)
9455 && (TREE_STATIC (lhs) || DECL_EXTERNAL (lhs))
9456 && varpool_node::get (lhs)->writeonly)
9458 gimple_call_set_lhs (stmt, NULL);
9459 update_stmt (stmt);
9460 todo |= TODO_update_ssa | TODO_cleanup_cfg;
9464 if (maybe_clean_eh_stmt (stmt)
9465 && gimple_purge_dead_eh_edges (bb))
9466 todo |= TODO_cleanup_cfg;
9467 gsi_next (&gsi);
9470 /* If we have a basic block with no successors that does not
9471 end with a control statement or a noreturn call end it with
9472 a call to __builtin_unreachable. This situation can occur
9473 when inlining a noreturn call that does in fact return. */
9474 if (EDGE_COUNT (bb->succs) == 0)
9476 gimple *stmt = last_stmt (bb);
9477 if (!stmt
9478 || (!is_ctrl_stmt (stmt)
9479 && (!is_gimple_call (stmt)
9480 || !gimple_call_noreturn_p (stmt))))
9482 if (stmt && is_gimple_call (stmt))
9483 gimple_call_set_ctrl_altering (stmt, false);
9484 tree fndecl = builtin_decl_implicit (BUILT_IN_UNREACHABLE);
9485 stmt = gimple_build_call (fndecl, 0);
9486 gimple_stmt_iterator gsi = gsi_last_bb (bb);
9487 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
9488 if (!cfun->after_inlining)
9490 gcall *call_stmt = dyn_cast <gcall *> (stmt);
9491 node->create_edge (cgraph_node::get_create (fndecl),
9492 call_stmt, bb->count);
9497 if (scale)
9498 compute_function_frequency ();
9500 if (current_loops
9501 && (todo & TODO_cleanup_cfg))
9502 loops_state_set (LOOPS_NEED_FIXUP);
9504 return todo;
9507 namespace {
9509 const pass_data pass_data_fixup_cfg =
9511 GIMPLE_PASS, /* type */
9512 "fixup_cfg", /* name */
9513 OPTGROUP_NONE, /* optinfo_flags */
9514 TV_NONE, /* tv_id */
9515 PROP_cfg, /* properties_required */
9516 0, /* properties_provided */
9517 0, /* properties_destroyed */
9518 0, /* todo_flags_start */
9519 0, /* todo_flags_finish */
9522 class pass_fixup_cfg : public gimple_opt_pass
9524 public:
9525 pass_fixup_cfg (gcc::context *ctxt)
9526 : gimple_opt_pass (pass_data_fixup_cfg, ctxt)
9529 /* opt_pass methods: */
9530 opt_pass * clone () { return new pass_fixup_cfg (m_ctxt); }
9531 virtual unsigned int execute (function *) { return execute_fixup_cfg (); }
9533 }; // class pass_fixup_cfg
9535 } // anon namespace
9537 gimple_opt_pass *
9538 make_pass_fixup_cfg (gcc::context *ctxt)
9540 return new pass_fixup_cfg (ctxt);
9543 /* Garbage collection support for edge_def. */
9545 extern void gt_ggc_mx (tree&);
9546 extern void gt_ggc_mx (gimple *&);
9547 extern void gt_ggc_mx (rtx&);
9548 extern void gt_ggc_mx (basic_block&);
9550 static void
9551 gt_ggc_mx (rtx_insn *& x)
9553 if (x)
9554 gt_ggc_mx_rtx_def ((void *) x);
9557 void
9558 gt_ggc_mx (edge_def *e)
9560 tree block = LOCATION_BLOCK (e->goto_locus);
9561 gt_ggc_mx (e->src);
9562 gt_ggc_mx (e->dest);
9563 if (current_ir_type () == IR_GIMPLE)
9564 gt_ggc_mx (e->insns.g);
9565 else
9566 gt_ggc_mx (e->insns.r);
9567 gt_ggc_mx (block);
9570 /* PCH support for edge_def. */
9572 extern void gt_pch_nx (tree&);
9573 extern void gt_pch_nx (gimple *&);
9574 extern void gt_pch_nx (rtx&);
9575 extern void gt_pch_nx (basic_block&);
9577 static void
9578 gt_pch_nx (rtx_insn *& x)
9580 if (x)
9581 gt_pch_nx_rtx_def ((void *) x);
9584 void
9585 gt_pch_nx (edge_def *e)
9587 tree block = LOCATION_BLOCK (e->goto_locus);
9588 gt_pch_nx (e->src);
9589 gt_pch_nx (e->dest);
9590 if (current_ir_type () == IR_GIMPLE)
9591 gt_pch_nx (e->insns.g);
9592 else
9593 gt_pch_nx (e->insns.r);
9594 gt_pch_nx (block);
9597 void
9598 gt_pch_nx (edge_def *e, gt_pointer_operator op, void *cookie)
9600 tree block = LOCATION_BLOCK (e->goto_locus);
9601 op (&(e->src), cookie);
9602 op (&(e->dest), cookie);
9603 if (current_ir_type () == IR_GIMPLE)
9604 op (&(e->insns.g), cookie);
9605 else
9606 op (&(e->insns.r), cookie);
9607 op (&(block), cookie);
9610 #if CHECKING_P
9612 namespace selftest {
9614 /* Helper function for CFG selftests: create a dummy function decl
9615 and push it as cfun. */
9617 static tree
9618 push_fndecl (const char *name)
9620 tree fn_type = build_function_type_array (integer_type_node, 0, NULL);
9621 /* FIXME: this uses input_location: */
9622 tree fndecl = build_fn_decl (name, fn_type);
9623 tree retval = build_decl (UNKNOWN_LOCATION, RESULT_DECL,
9624 NULL_TREE, integer_type_node);
9625 DECL_RESULT (fndecl) = retval;
9626 push_struct_function (fndecl);
9627 function *fun = DECL_STRUCT_FUNCTION (fndecl);
9628 ASSERT_TRUE (fun != NULL);
9629 init_empty_tree_cfg_for_function (fun);
9630 ASSERT_EQ (2, n_basic_blocks_for_fn (fun));
9631 ASSERT_EQ (0, n_edges_for_fn (fun));
9632 return fndecl;
9635 /* These tests directly create CFGs.
9636 Compare with the static fns within tree-cfg.c:
9637 - build_gimple_cfg
9638 - make_blocks: calls create_basic_block (seq, bb);
9639 - make_edges. */
9641 /* Verify a simple cfg of the form:
9642 ENTRY -> A -> B -> C -> EXIT. */
9644 static void
9645 test_linear_chain ()
9647 gimple_register_cfg_hooks ();
9649 tree fndecl = push_fndecl ("cfg_test_linear_chain");
9650 function *fun = DECL_STRUCT_FUNCTION (fndecl);
9652 /* Create some empty blocks. */
9653 basic_block bb_a = create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun));
9654 basic_block bb_b = create_empty_bb (bb_a);
9655 basic_block bb_c = create_empty_bb (bb_b);
9657 ASSERT_EQ (5, n_basic_blocks_for_fn (fun));
9658 ASSERT_EQ (0, n_edges_for_fn (fun));
9660 /* Create some edges: a simple linear chain of BBs. */
9661 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun), bb_a, EDGE_FALLTHRU);
9662 make_edge (bb_a, bb_b, 0);
9663 make_edge (bb_b, bb_c, 0);
9664 make_edge (bb_c, EXIT_BLOCK_PTR_FOR_FN (fun), 0);
9666 /* Verify the edges. */
9667 ASSERT_EQ (4, n_edges_for_fn (fun));
9668 ASSERT_EQ (NULL, ENTRY_BLOCK_PTR_FOR_FN (fun)->preds);
9669 ASSERT_EQ (1, ENTRY_BLOCK_PTR_FOR_FN (fun)->succs->length ());
9670 ASSERT_EQ (1, bb_a->preds->length ());
9671 ASSERT_EQ (1, bb_a->succs->length ());
9672 ASSERT_EQ (1, bb_b->preds->length ());
9673 ASSERT_EQ (1, bb_b->succs->length ());
9674 ASSERT_EQ (1, bb_c->preds->length ());
9675 ASSERT_EQ (1, bb_c->succs->length ());
9676 ASSERT_EQ (1, EXIT_BLOCK_PTR_FOR_FN (fun)->preds->length ());
9677 ASSERT_EQ (NULL, EXIT_BLOCK_PTR_FOR_FN (fun)->succs);
9679 /* Verify the dominance information
9680 Each BB in our simple chain should be dominated by the one before
9681 it. */
9682 calculate_dominance_info (CDI_DOMINATORS);
9683 ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_b));
9684 ASSERT_EQ (bb_b, get_immediate_dominator (CDI_DOMINATORS, bb_c));
9685 vec<basic_block> dom_by_b = get_dominated_by (CDI_DOMINATORS, bb_b);
9686 ASSERT_EQ (1, dom_by_b.length ());
9687 ASSERT_EQ (bb_c, dom_by_b[0]);
9688 free_dominance_info (CDI_DOMINATORS);
9689 dom_by_b.release ();
9691 /* Similarly for post-dominance: each BB in our chain is post-dominated
9692 by the one after it. */
9693 calculate_dominance_info (CDI_POST_DOMINATORS);
9694 ASSERT_EQ (bb_b, get_immediate_dominator (CDI_POST_DOMINATORS, bb_a));
9695 ASSERT_EQ (bb_c, get_immediate_dominator (CDI_POST_DOMINATORS, bb_b));
9696 vec<basic_block> postdom_by_b = get_dominated_by (CDI_POST_DOMINATORS, bb_b);
9697 ASSERT_EQ (1, postdom_by_b.length ());
9698 ASSERT_EQ (bb_a, postdom_by_b[0]);
9699 free_dominance_info (CDI_POST_DOMINATORS);
9700 postdom_by_b.release ();
9702 pop_cfun ();
9705 /* Verify a simple CFG of the form:
9706 ENTRY
9710 /t \f
9716 EXIT. */
9718 static void
9719 test_diamond ()
9721 gimple_register_cfg_hooks ();
9723 tree fndecl = push_fndecl ("cfg_test_diamond");
9724 function *fun = DECL_STRUCT_FUNCTION (fndecl);
9726 /* Create some empty blocks. */
9727 basic_block bb_a = create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun));
9728 basic_block bb_b = create_empty_bb (bb_a);
9729 basic_block bb_c = create_empty_bb (bb_a);
9730 basic_block bb_d = create_empty_bb (bb_b);
9732 ASSERT_EQ (6, n_basic_blocks_for_fn (fun));
9733 ASSERT_EQ (0, n_edges_for_fn (fun));
9735 /* Create the edges. */
9736 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun), bb_a, EDGE_FALLTHRU);
9737 make_edge (bb_a, bb_b, EDGE_TRUE_VALUE);
9738 make_edge (bb_a, bb_c, EDGE_FALSE_VALUE);
9739 make_edge (bb_b, bb_d, 0);
9740 make_edge (bb_c, bb_d, 0);
9741 make_edge (bb_d, EXIT_BLOCK_PTR_FOR_FN (fun), 0);
9743 /* Verify the edges. */
9744 ASSERT_EQ (6, n_edges_for_fn (fun));
9745 ASSERT_EQ (1, bb_a->preds->length ());
9746 ASSERT_EQ (2, bb_a->succs->length ());
9747 ASSERT_EQ (1, bb_b->preds->length ());
9748 ASSERT_EQ (1, bb_b->succs->length ());
9749 ASSERT_EQ (1, bb_c->preds->length ());
9750 ASSERT_EQ (1, bb_c->succs->length ());
9751 ASSERT_EQ (2, bb_d->preds->length ());
9752 ASSERT_EQ (1, bb_d->succs->length ());
9754 /* Verify the dominance information. */
9755 calculate_dominance_info (CDI_DOMINATORS);
9756 ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_b));
9757 ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_c));
9758 ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_d));
9759 vec<basic_block> dom_by_a = get_dominated_by (CDI_DOMINATORS, bb_a);
9760 ASSERT_EQ (3, dom_by_a.length ()); /* B, C, D, in some order. */
9761 dom_by_a.release ();
9762 vec<basic_block> dom_by_b = get_dominated_by (CDI_DOMINATORS, bb_b);
9763 ASSERT_EQ (0, dom_by_b.length ());
9764 dom_by_b.release ();
9765 free_dominance_info (CDI_DOMINATORS);
9767 /* Similarly for post-dominance. */
9768 calculate_dominance_info (CDI_POST_DOMINATORS);
9769 ASSERT_EQ (bb_d, get_immediate_dominator (CDI_POST_DOMINATORS, bb_a));
9770 ASSERT_EQ (bb_d, get_immediate_dominator (CDI_POST_DOMINATORS, bb_b));
9771 ASSERT_EQ (bb_d, get_immediate_dominator (CDI_POST_DOMINATORS, bb_c));
9772 vec<basic_block> postdom_by_d = get_dominated_by (CDI_POST_DOMINATORS, bb_d);
9773 ASSERT_EQ (3, postdom_by_d.length ()); /* A, B, C in some order. */
9774 postdom_by_d.release ();
9775 vec<basic_block> postdom_by_b = get_dominated_by (CDI_POST_DOMINATORS, bb_b);
9776 ASSERT_EQ (0, postdom_by_b.length ());
9777 postdom_by_b.release ();
9778 free_dominance_info (CDI_POST_DOMINATORS);
9780 pop_cfun ();
9783 /* Verify that we can handle a CFG containing a "complete" aka
9784 fully-connected subgraph (where A B C D below all have edges
9785 pointing to each other node, also to themselves).
9786 e.g.:
9787 ENTRY EXIT
9793 A<--->B
9794 ^^ ^^
9795 | \ / |
9796 | X |
9797 | / \ |
9798 VV VV
9799 C<--->D
9802 static void
9803 test_fully_connected ()
9805 gimple_register_cfg_hooks ();
9807 tree fndecl = push_fndecl ("cfg_fully_connected");
9808 function *fun = DECL_STRUCT_FUNCTION (fndecl);
9810 const int n = 4;
9812 /* Create some empty blocks. */
9813 auto_vec <basic_block> subgraph_nodes;
9814 for (int i = 0; i < n; i++)
9815 subgraph_nodes.safe_push (create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun)));
9817 ASSERT_EQ (n + 2, n_basic_blocks_for_fn (fun));
9818 ASSERT_EQ (0, n_edges_for_fn (fun));
9820 /* Create the edges. */
9821 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun), subgraph_nodes[0], EDGE_FALLTHRU);
9822 make_edge (subgraph_nodes[0], EXIT_BLOCK_PTR_FOR_FN (fun), 0);
9823 for (int i = 0; i < n; i++)
9824 for (int j = 0; j < n; j++)
9825 make_edge (subgraph_nodes[i], subgraph_nodes[j], 0);
9827 /* Verify the edges. */
9828 ASSERT_EQ (2 + (n * n), n_edges_for_fn (fun));
9829 /* The first one is linked to ENTRY/EXIT as well as itself and
9830 everything else. */
9831 ASSERT_EQ (n + 1, subgraph_nodes[0]->preds->length ());
9832 ASSERT_EQ (n + 1, subgraph_nodes[0]->succs->length ());
9833 /* The other ones in the subgraph are linked to everything in
9834 the subgraph (including themselves). */
9835 for (int i = 1; i < n; i++)
9837 ASSERT_EQ (n, subgraph_nodes[i]->preds->length ());
9838 ASSERT_EQ (n, subgraph_nodes[i]->succs->length ());
9841 /* Verify the dominance information. */
9842 calculate_dominance_info (CDI_DOMINATORS);
9843 /* The initial block in the subgraph should be dominated by ENTRY. */
9844 ASSERT_EQ (ENTRY_BLOCK_PTR_FOR_FN (fun),
9845 get_immediate_dominator (CDI_DOMINATORS,
9846 subgraph_nodes[0]));
9847 /* Every other block in the subgraph should be dominated by the
9848 initial block. */
9849 for (int i = 1; i < n; i++)
9850 ASSERT_EQ (subgraph_nodes[0],
9851 get_immediate_dominator (CDI_DOMINATORS,
9852 subgraph_nodes[i]));
9853 free_dominance_info (CDI_DOMINATORS);
9855 /* Similarly for post-dominance. */
9856 calculate_dominance_info (CDI_POST_DOMINATORS);
9857 /* The initial block in the subgraph should be postdominated by EXIT. */
9858 ASSERT_EQ (EXIT_BLOCK_PTR_FOR_FN (fun),
9859 get_immediate_dominator (CDI_POST_DOMINATORS,
9860 subgraph_nodes[0]));
9861 /* Every other block in the subgraph should be postdominated by the
9862 initial block, since that leads to EXIT. */
9863 for (int i = 1; i < n; i++)
9864 ASSERT_EQ (subgraph_nodes[0],
9865 get_immediate_dominator (CDI_POST_DOMINATORS,
9866 subgraph_nodes[i]));
9867 free_dominance_info (CDI_POST_DOMINATORS);
9869 pop_cfun ();
9872 /* Run all of the selftests within this file. */
9874 void
9875 tree_cfg_c_tests ()
9877 test_linear_chain ();
9878 test_diamond ();
9879 test_fully_connected ();
9882 } // namespace selftest
9884 /* TODO: test the dominator/postdominator logic with various graphs/nodes:
9885 - loop
9886 - nested loops
9887 - switch statement (a block with many out-edges)
9888 - something that jumps to itself
9889 - etc */
9891 #endif /* CHECKING_P */