1 /* Control flow functions for trees.
2 Copyright (C) 2001-2018 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
30 #include "tree-pass.h"
33 #include "gimple-pretty-print.h"
34 #include "diagnostic-core.h"
35 #include "fold-const.h"
36 #include "trans-mem.h"
37 #include "stor-layout.h"
38 #include "print-tree.h"
40 #include "gimple-fold.h"
42 #include "gimple-iterator.h"
43 #include "gimplify-me.h"
44 #include "gimple-walk.h"
46 #include "tree-ssa-loop-manip.h"
47 #include "tree-ssa-loop-niter.h"
48 #include "tree-into-ssa.h"
53 #include "tree-ssa-propagate.h"
54 #include "value-prof.h"
55 #include "tree-inline.h"
56 #include "tree-ssa-live.h"
57 #include "omp-general.h"
58 #include "omp-expand.h"
59 #include "tree-cfgcleanup.h"
66 /* This file contains functions for building the Control Flow Graph (CFG)
67 for a function tree. */
69 /* Local declarations. */
71 /* Initial capacity for the basic block array. */
72 static const int initial_cfg_capacity
= 20;
74 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
75 which use a particular edge. The CASE_LABEL_EXPRs are chained together
76 via their CASE_CHAIN field, which we clear after we're done with the
77 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
79 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
80 update the case vector in response to edge redirections.
82 Right now this table is set up and torn down at key points in the
83 compilation process. It would be nice if we could make the table
84 more persistent. The key is getting notification of changes to
85 the CFG (particularly edge removal, creation and redirection). */
87 static hash_map
<edge
, tree
> *edge_to_cases
;
89 /* If we record edge_to_cases, this bitmap will hold indexes
90 of basic blocks that end in a GIMPLE_SWITCH which we touched
91 due to edge manipulations. */
93 static bitmap touched_switch_bbs
;
98 long num_merged_labels
;
101 static struct cfg_stats_d cfg_stats
;
103 /* Data to pass to replace_block_vars_by_duplicates_1. */
104 struct replace_decls_d
106 hash_map
<tree
, tree
> *vars_map
;
110 /* Hash table to store last discriminator assigned for each locus. */
111 struct locus_discrim_map
117 /* Hashtable helpers. */
119 struct locus_discrim_hasher
: free_ptr_hash
<locus_discrim_map
>
121 static inline hashval_t
hash (const locus_discrim_map
*);
122 static inline bool equal (const locus_discrim_map
*,
123 const locus_discrim_map
*);
126 /* Trivial hash function for a location_t. ITEM is a pointer to
127 a hash table entry that maps a location_t to a discriminator. */
130 locus_discrim_hasher::hash (const locus_discrim_map
*item
)
132 return LOCATION_LINE (item
->locus
);
135 /* Equality function for the locus-to-discriminator map. A and B
136 point to the two hash table entries to compare. */
139 locus_discrim_hasher::equal (const locus_discrim_map
*a
,
140 const locus_discrim_map
*b
)
142 return LOCATION_LINE (a
->locus
) == LOCATION_LINE (b
->locus
);
145 static hash_table
<locus_discrim_hasher
> *discriminator_per_locus
;
147 /* Basic blocks and flowgraphs. */
148 static void make_blocks (gimple_seq
);
151 static void make_edges (void);
152 static void assign_discriminators (void);
153 static void make_cond_expr_edges (basic_block
);
154 static void make_gimple_switch_edges (gswitch
*, basic_block
);
155 static bool make_goto_expr_edges (basic_block
);
156 static void make_gimple_asm_edges (basic_block
);
157 static edge
gimple_redirect_edge_and_branch (edge
, basic_block
);
158 static edge
gimple_try_redirect_by_replacing_jump (edge
, basic_block
);
160 /* Various helpers. */
161 static inline bool stmt_starts_bb_p (gimple
*, gimple
*);
162 static int gimple_verify_flow_info (void);
163 static void gimple_make_forwarder_block (edge
);
164 static gimple
*first_non_label_stmt (basic_block
);
165 static bool verify_gimple_transaction (gtransaction
*);
166 static bool call_can_make_abnormal_goto (gimple
*);
168 /* Flowgraph optimization and cleanup. */
169 static void gimple_merge_blocks (basic_block
, basic_block
);
170 static bool gimple_can_merge_blocks_p (basic_block
, basic_block
);
171 static void remove_bb (basic_block
);
172 static edge
find_taken_edge_computed_goto (basic_block
, tree
);
173 static edge
find_taken_edge_cond_expr (const gcond
*, tree
);
174 static edge
find_taken_edge_switch_expr (const gswitch
*, tree
);
175 static tree
find_case_label_for_value (const gswitch
*, tree
);
176 static void lower_phi_internal_fn ();
179 init_empty_tree_cfg_for_function (struct function
*fn
)
181 /* Initialize the basic block array. */
183 profile_status_for_fn (fn
) = PROFILE_ABSENT
;
184 n_basic_blocks_for_fn (fn
) = NUM_FIXED_BLOCKS
;
185 last_basic_block_for_fn (fn
) = NUM_FIXED_BLOCKS
;
186 vec_alloc (basic_block_info_for_fn (fn
), initial_cfg_capacity
);
187 vec_safe_grow_cleared (basic_block_info_for_fn (fn
),
188 initial_cfg_capacity
);
190 /* Build a mapping of labels to their associated blocks. */
191 vec_alloc (label_to_block_map_for_fn (fn
), initial_cfg_capacity
);
192 vec_safe_grow_cleared (label_to_block_map_for_fn (fn
),
193 initial_cfg_capacity
);
195 SET_BASIC_BLOCK_FOR_FN (fn
, ENTRY_BLOCK
, ENTRY_BLOCK_PTR_FOR_FN (fn
));
196 SET_BASIC_BLOCK_FOR_FN (fn
, EXIT_BLOCK
, EXIT_BLOCK_PTR_FOR_FN (fn
));
198 ENTRY_BLOCK_PTR_FOR_FN (fn
)->next_bb
199 = EXIT_BLOCK_PTR_FOR_FN (fn
);
200 EXIT_BLOCK_PTR_FOR_FN (fn
)->prev_bb
201 = ENTRY_BLOCK_PTR_FOR_FN (fn
);
205 init_empty_tree_cfg (void)
207 init_empty_tree_cfg_for_function (cfun
);
210 /*---------------------------------------------------------------------------
212 ---------------------------------------------------------------------------*/
214 /* Entry point to the CFG builder for trees. SEQ is the sequence of
215 statements to be added to the flowgraph. */
218 build_gimple_cfg (gimple_seq seq
)
220 /* Register specific gimple functions. */
221 gimple_register_cfg_hooks ();
223 memset ((void *) &cfg_stats
, 0, sizeof (cfg_stats
));
225 init_empty_tree_cfg ();
229 /* Make sure there is always at least one block, even if it's empty. */
230 if (n_basic_blocks_for_fn (cfun
) == NUM_FIXED_BLOCKS
)
231 create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun
));
233 /* Adjust the size of the array. */
234 if (basic_block_info_for_fn (cfun
)->length ()
235 < (size_t) n_basic_blocks_for_fn (cfun
))
236 vec_safe_grow_cleared (basic_block_info_for_fn (cfun
),
237 n_basic_blocks_for_fn (cfun
));
239 /* To speed up statement iterator walks, we first purge dead labels. */
240 cleanup_dead_labels ();
242 /* Group case nodes to reduce the number of edges.
243 We do this after cleaning up dead labels because otherwise we miss
244 a lot of obvious case merging opportunities. */
245 group_case_labels ();
247 /* Create the edges of the flowgraph. */
248 discriminator_per_locus
= new hash_table
<locus_discrim_hasher
> (13);
250 assign_discriminators ();
251 lower_phi_internal_fn ();
252 cleanup_dead_labels ();
253 delete discriminator_per_locus
;
254 discriminator_per_locus
= NULL
;
257 /* Look for ANNOTATE calls with loop annotation kind in BB; if found, remove
258 them and propagate the information to LOOP. We assume that the annotations
259 come immediately before the condition in BB, if any. */
262 replace_loop_annotate_in_block (basic_block bb
, struct loop
*loop
)
264 gimple_stmt_iterator gsi
= gsi_last_bb (bb
);
265 gimple
*stmt
= gsi_stmt (gsi
);
267 if (!(stmt
&& gimple_code (stmt
) == GIMPLE_COND
))
270 for (gsi_prev_nondebug (&gsi
); !gsi_end_p (gsi
); gsi_prev (&gsi
))
272 stmt
= gsi_stmt (gsi
);
273 if (gimple_code (stmt
) != GIMPLE_CALL
)
275 if (!gimple_call_internal_p (stmt
)
276 || gimple_call_internal_fn (stmt
) != IFN_ANNOTATE
)
279 switch ((annot_expr_kind
) tree_to_shwi (gimple_call_arg (stmt
, 1)))
281 case annot_expr_ivdep_kind
:
282 loop
->safelen
= INT_MAX
;
284 case annot_expr_unroll_kind
:
286 = (unsigned short) tree_to_shwi (gimple_call_arg (stmt
, 2));
287 cfun
->has_unroll
= true;
289 case annot_expr_no_vector_kind
:
290 loop
->dont_vectorize
= true;
292 case annot_expr_vector_kind
:
293 loop
->force_vectorize
= true;
294 cfun
->has_force_vectorize_loops
= true;
296 case annot_expr_parallel_kind
:
297 loop
->can_be_parallel
= true;
298 loop
->safelen
= INT_MAX
;
304 stmt
= gimple_build_assign (gimple_call_lhs (stmt
),
305 gimple_call_arg (stmt
, 0));
306 gsi_replace (&gsi
, stmt
, true);
310 /* Look for ANNOTATE calls with loop annotation kind; if found, remove
311 them and propagate the information to the loop. We assume that the
312 annotations come immediately before the condition of the loop. */
315 replace_loop_annotate (void)
319 gimple_stmt_iterator gsi
;
322 FOR_EACH_LOOP (loop
, 0)
324 /* First look into the header. */
325 replace_loop_annotate_in_block (loop
->header
, loop
);
327 /* Then look into the latch, if any. */
329 replace_loop_annotate_in_block (loop
->latch
, loop
);
332 /* Remove IFN_ANNOTATE. Safeguard for the case loop->latch == NULL. */
333 FOR_EACH_BB_FN (bb
, cfun
)
335 for (gsi
= gsi_last_bb (bb
); !gsi_end_p (gsi
); gsi_prev (&gsi
))
337 stmt
= gsi_stmt (gsi
);
338 if (gimple_code (stmt
) != GIMPLE_CALL
)
340 if (!gimple_call_internal_p (stmt
)
341 || gimple_call_internal_fn (stmt
) != IFN_ANNOTATE
)
344 switch ((annot_expr_kind
) tree_to_shwi (gimple_call_arg (stmt
, 1)))
346 case annot_expr_ivdep_kind
:
347 case annot_expr_unroll_kind
:
348 case annot_expr_no_vector_kind
:
349 case annot_expr_vector_kind
:
350 case annot_expr_parallel_kind
:
356 warning_at (gimple_location (stmt
), 0, "ignoring loop annotation");
357 stmt
= gimple_build_assign (gimple_call_lhs (stmt
),
358 gimple_call_arg (stmt
, 0));
359 gsi_replace (&gsi
, stmt
, true);
364 /* Lower internal PHI function from GIMPLE FE. */
367 lower_phi_internal_fn ()
369 basic_block bb
, pred
= NULL
;
370 gimple_stmt_iterator gsi
;
375 /* After edge creation, handle __PHI function from GIMPLE FE. */
376 FOR_EACH_BB_FN (bb
, cfun
)
378 for (gsi
= gsi_after_labels (bb
); !gsi_end_p (gsi
);)
380 stmt
= gsi_stmt (gsi
);
381 if (! gimple_call_internal_p (stmt
, IFN_PHI
))
384 lhs
= gimple_call_lhs (stmt
);
385 phi_node
= create_phi_node (lhs
, bb
);
387 /* Add arguments to the PHI node. */
388 for (unsigned i
= 0; i
< gimple_call_num_args (stmt
); ++i
)
390 tree arg
= gimple_call_arg (stmt
, i
);
391 if (TREE_CODE (arg
) == LABEL_DECL
)
392 pred
= label_to_block (arg
);
395 edge e
= find_edge (pred
, bb
);
396 add_phi_arg (phi_node
, arg
, e
, UNKNOWN_LOCATION
);
400 gsi_remove (&gsi
, true);
406 execute_build_cfg (void)
408 gimple_seq body
= gimple_body (current_function_decl
);
410 build_gimple_cfg (body
);
411 gimple_set_body (current_function_decl
, NULL
);
412 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
414 fprintf (dump_file
, "Scope blocks:\n");
415 dump_scope_blocks (dump_file
, dump_flags
);
418 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
);
419 replace_loop_annotate ();
425 const pass_data pass_data_build_cfg
=
427 GIMPLE_PASS
, /* type */
429 OPTGROUP_NONE
, /* optinfo_flags */
430 TV_TREE_CFG
, /* tv_id */
431 PROP_gimple_leh
, /* properties_required */
432 ( PROP_cfg
| PROP_loops
), /* properties_provided */
433 0, /* properties_destroyed */
434 0, /* todo_flags_start */
435 0, /* todo_flags_finish */
438 class pass_build_cfg
: public gimple_opt_pass
441 pass_build_cfg (gcc::context
*ctxt
)
442 : gimple_opt_pass (pass_data_build_cfg
, ctxt
)
445 /* opt_pass methods: */
446 virtual unsigned int execute (function
*) { return execute_build_cfg (); }
448 }; // class pass_build_cfg
453 make_pass_build_cfg (gcc::context
*ctxt
)
455 return new pass_build_cfg (ctxt
);
459 /* Return true if T is a computed goto. */
462 computed_goto_p (gimple
*t
)
464 return (gimple_code (t
) == GIMPLE_GOTO
465 && TREE_CODE (gimple_goto_dest (t
)) != LABEL_DECL
);
468 /* Returns true if the sequence of statements STMTS only contains
469 a call to __builtin_unreachable (). */
472 gimple_seq_unreachable_p (gimple_seq stmts
)
475 /* Return false if -fsanitize=unreachable, we don't want to
476 optimize away those calls, but rather turn them into
477 __ubsan_handle_builtin_unreachable () or __builtin_trap ()
479 || sanitize_flags_p (SANITIZE_UNREACHABLE
))
482 gimple_stmt_iterator gsi
= gsi_last (stmts
);
484 if (!gimple_call_builtin_p (gsi_stmt (gsi
), BUILT_IN_UNREACHABLE
))
487 for (gsi_prev (&gsi
); !gsi_end_p (gsi
); gsi_prev (&gsi
))
489 gimple
*stmt
= gsi_stmt (gsi
);
490 if (gimple_code (stmt
) != GIMPLE_LABEL
491 && !is_gimple_debug (stmt
)
492 && !gimple_clobber_p (stmt
))
498 /* Returns true for edge E where e->src ends with a GIMPLE_COND and
499 the other edge points to a bb with just __builtin_unreachable ().
500 I.e. return true for C->M edge in:
508 __builtin_unreachable ();
512 assert_unreachable_fallthru_edge_p (edge e
)
514 basic_block pred_bb
= e
->src
;
515 gimple
*last
= last_stmt (pred_bb
);
516 if (last
&& gimple_code (last
) == GIMPLE_COND
)
518 basic_block other_bb
= EDGE_SUCC (pred_bb
, 0)->dest
;
519 if (other_bb
== e
->dest
)
520 other_bb
= EDGE_SUCC (pred_bb
, 1)->dest
;
521 if (EDGE_COUNT (other_bb
->succs
) == 0)
522 return gimple_seq_unreachable_p (bb_seq (other_bb
));
528 /* Initialize GF_CALL_CTRL_ALTERING flag, which indicates the call
529 could alter control flow except via eh. We initialize the flag at
530 CFG build time and only ever clear it later. */
533 gimple_call_initialize_ctrl_altering (gimple
*stmt
)
535 int flags
= gimple_call_flags (stmt
);
537 /* A call alters control flow if it can make an abnormal goto. */
538 if (call_can_make_abnormal_goto (stmt
)
539 /* A call also alters control flow if it does not return. */
540 || flags
& ECF_NORETURN
541 /* TM ending statements have backedges out of the transaction.
542 Return true so we split the basic block containing them.
543 Note that the TM_BUILTIN test is merely an optimization. */
544 || ((flags
& ECF_TM_BUILTIN
)
545 && is_tm_ending_fndecl (gimple_call_fndecl (stmt
)))
546 /* BUILT_IN_RETURN call is same as return statement. */
547 || gimple_call_builtin_p (stmt
, BUILT_IN_RETURN
)
548 /* IFN_UNIQUE should be the last insn, to make checking for it
549 as cheap as possible. */
550 || (gimple_call_internal_p (stmt
)
551 && gimple_call_internal_unique_p (stmt
)))
552 gimple_call_set_ctrl_altering (stmt
, true);
554 gimple_call_set_ctrl_altering (stmt
, false);
558 /* Insert SEQ after BB and build a flowgraph. */
561 make_blocks_1 (gimple_seq seq
, basic_block bb
)
563 gimple_stmt_iterator i
= gsi_start (seq
);
565 gimple
*prev_stmt
= NULL
;
566 bool start_new_block
= true;
567 bool first_stmt_of_seq
= true;
569 while (!gsi_end_p (i
))
571 /* PREV_STMT should only be set to a debug stmt if the debug
572 stmt is before nondebug stmts. Once stmt reaches a nondebug
573 nonlabel, prev_stmt will be set to it, so that
574 stmt_starts_bb_p will know to start a new block if a label is
575 found. However, if stmt was a label after debug stmts only,
576 keep the label in prev_stmt even if we find further debug
577 stmts, for there may be other labels after them, and they
578 should land in the same block. */
579 if (!prev_stmt
|| !stmt
|| !is_gimple_debug (stmt
))
583 if (stmt
&& is_gimple_call (stmt
))
584 gimple_call_initialize_ctrl_altering (stmt
);
586 /* If the statement starts a new basic block or if we have determined
587 in a previous pass that we need to create a new block for STMT, do
589 if (start_new_block
|| stmt_starts_bb_p (stmt
, prev_stmt
))
591 if (!first_stmt_of_seq
)
592 gsi_split_seq_before (&i
, &seq
);
593 bb
= create_basic_block (seq
, bb
);
594 start_new_block
= false;
598 /* Now add STMT to BB and create the subgraphs for special statement
600 gimple_set_bb (stmt
, bb
);
602 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
604 if (stmt_ends_bb_p (stmt
))
606 /* If the stmt can make abnormal goto use a new temporary
607 for the assignment to the LHS. This makes sure the old value
608 of the LHS is available on the abnormal edge. Otherwise
609 we will end up with overlapping life-ranges for abnormal
611 if (gimple_has_lhs (stmt
)
612 && stmt_can_make_abnormal_goto (stmt
)
613 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt
))))
615 tree lhs
= gimple_get_lhs (stmt
);
616 tree tmp
= create_tmp_var (TREE_TYPE (lhs
));
617 gimple
*s
= gimple_build_assign (lhs
, tmp
);
618 gimple_set_location (s
, gimple_location (stmt
));
619 gimple_set_block (s
, gimple_block (stmt
));
620 gimple_set_lhs (stmt
, tmp
);
621 if (TREE_CODE (TREE_TYPE (tmp
)) == COMPLEX_TYPE
622 || TREE_CODE (TREE_TYPE (tmp
)) == VECTOR_TYPE
)
623 DECL_GIMPLE_REG_P (tmp
) = 1;
624 gsi_insert_after (&i
, s
, GSI_SAME_STMT
);
626 start_new_block
= true;
630 first_stmt_of_seq
= false;
635 /* Build a flowgraph for the sequence of stmts SEQ. */
638 make_blocks (gimple_seq seq
)
640 /* Look for debug markers right before labels, and move the debug
641 stmts after the labels. Accepting labels among debug markers
642 adds no value, just complexity; if we wanted to annotate labels
643 with view numbers (so sequencing among markers would matter) or
644 somesuch, we're probably better off still moving the labels, but
645 adding other debug annotations in their original positions or
646 emitting nonbind or bind markers associated with the labels in
647 the original position of the labels.
649 Moving labels would probably be simpler, but we can't do that:
650 moving labels assigns label ids to them, and doing so because of
651 debug markers makes for -fcompare-debug and possibly even codegen
652 differences. So, we have to move the debug stmts instead. To
653 that end, we scan SEQ backwards, marking the position of the
654 latest (earliest we find) label, and moving debug stmts that are
655 not separated from it by nondebug nonlabel stmts after the
657 if (MAY_HAVE_DEBUG_MARKER_STMTS
)
659 gimple_stmt_iterator label
= gsi_none ();
661 for (gimple_stmt_iterator i
= gsi_last (seq
); !gsi_end_p (i
); gsi_prev (&i
))
663 gimple
*stmt
= gsi_stmt (i
);
665 /* If this is the first label we encounter (latest in SEQ)
666 before nondebug stmts, record its position. */
667 if (is_a
<glabel
*> (stmt
))
669 if (gsi_end_p (label
))
674 /* Without a recorded label position to move debug stmts to,
675 there's nothing to do. */
676 if (gsi_end_p (label
))
679 /* Move the debug stmt at I after LABEL. */
680 if (is_gimple_debug (stmt
))
682 gcc_assert (gimple_debug_nonbind_marker_p (stmt
));
683 /* As STMT is removed, I advances to the stmt after
684 STMT, so the gsi_prev in the for "increment"
685 expression gets us to the stmt we're to visit after
686 STMT. LABEL, however, would advance to the moved
687 stmt if we passed it to gsi_move_after, so pass it a
688 copy instead, so as to keep LABEL pointing to the
690 gimple_stmt_iterator copy
= label
;
691 gsi_move_after (&i
, ©
);
695 /* There aren't any (more?) debug stmts before label, so
696 there isn't anything else to move after it. */
701 make_blocks_1 (seq
, ENTRY_BLOCK_PTR_FOR_FN (cfun
));
704 /* Create and return a new empty basic block after bb AFTER. */
707 create_bb (void *h
, void *e
, basic_block after
)
713 /* Create and initialize a new basic block. Since alloc_block uses
714 GC allocation that clears memory to allocate a basic block, we do
715 not have to clear the newly allocated basic block here. */
718 bb
->index
= last_basic_block_for_fn (cfun
);
720 set_bb_seq (bb
, h
? (gimple_seq
) h
: NULL
);
722 /* Add the new block to the linked list of blocks. */
723 link_block (bb
, after
);
725 /* Grow the basic block array if needed. */
726 if ((size_t) last_basic_block_for_fn (cfun
)
727 == basic_block_info_for_fn (cfun
)->length ())
730 (last_basic_block_for_fn (cfun
)
731 + (last_basic_block_for_fn (cfun
) + 3) / 4);
732 vec_safe_grow_cleared (basic_block_info_for_fn (cfun
), new_size
);
735 /* Add the newly created block to the array. */
736 SET_BASIC_BLOCK_FOR_FN (cfun
, last_basic_block_for_fn (cfun
), bb
);
738 n_basic_blocks_for_fn (cfun
)++;
739 last_basic_block_for_fn (cfun
)++;
745 /*---------------------------------------------------------------------------
747 ---------------------------------------------------------------------------*/
749 /* If basic block BB has an abnormal edge to a basic block
750 containing IFN_ABNORMAL_DISPATCHER internal call, return
751 that the dispatcher's basic block, otherwise return NULL. */
754 get_abnormal_succ_dispatcher (basic_block bb
)
759 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
760 if ((e
->flags
& (EDGE_ABNORMAL
| EDGE_EH
)) == EDGE_ABNORMAL
)
762 gimple_stmt_iterator gsi
763 = gsi_start_nondebug_after_labels_bb (e
->dest
);
764 gimple
*g
= gsi_stmt (gsi
);
765 if (g
&& gimple_call_internal_p (g
, IFN_ABNORMAL_DISPATCHER
))
771 /* Helper function for make_edges. Create a basic block with
772 with ABNORMAL_DISPATCHER internal call in it if needed, and
773 create abnormal edges from BBS to it and from it to FOR_BB
774 if COMPUTED_GOTO is false, otherwise factor the computed gotos. */
777 handle_abnormal_edges (basic_block
*dispatcher_bbs
,
778 basic_block for_bb
, int *bb_to_omp_idx
,
779 auto_vec
<basic_block
> *bbs
, bool computed_goto
)
781 basic_block
*dispatcher
= dispatcher_bbs
+ (computed_goto
? 1 : 0);
782 unsigned int idx
= 0;
788 dispatcher
= dispatcher_bbs
+ 2 * bb_to_omp_idx
[for_bb
->index
];
789 if (bb_to_omp_idx
[for_bb
->index
] != 0)
793 /* If the dispatcher has been created already, then there are basic
794 blocks with abnormal edges to it, so just make a new edge to
796 if (*dispatcher
== NULL
)
798 /* Check if there are any basic blocks that need to have
799 abnormal edges to this dispatcher. If there are none, return
801 if (bb_to_omp_idx
== NULL
)
803 if (bbs
->is_empty ())
808 FOR_EACH_VEC_ELT (*bbs
, idx
, bb
)
809 if (bb_to_omp_idx
[bb
->index
] == bb_to_omp_idx
[for_bb
->index
])
815 /* Create the dispatcher bb. */
816 *dispatcher
= create_basic_block (NULL
, for_bb
);
819 /* Factor computed gotos into a common computed goto site. Also
820 record the location of that site so that we can un-factor the
821 gotos after we have converted back to normal form. */
822 gimple_stmt_iterator gsi
= gsi_start_bb (*dispatcher
);
824 /* Create the destination of the factored goto. Each original
825 computed goto will put its desired destination into this
826 variable and jump to the label we create immediately below. */
827 tree var
= create_tmp_var (ptr_type_node
, "gotovar");
829 /* Build a label for the new block which will contain the
830 factored computed goto. */
831 tree factored_label_decl
832 = create_artificial_label (UNKNOWN_LOCATION
);
833 gimple
*factored_computed_goto_label
834 = gimple_build_label (factored_label_decl
);
835 gsi_insert_after (&gsi
, factored_computed_goto_label
, GSI_NEW_STMT
);
837 /* Build our new computed goto. */
838 gimple
*factored_computed_goto
= gimple_build_goto (var
);
839 gsi_insert_after (&gsi
, factored_computed_goto
, GSI_NEW_STMT
);
841 FOR_EACH_VEC_ELT (*bbs
, idx
, bb
)
844 && bb_to_omp_idx
[bb
->index
] != bb_to_omp_idx
[for_bb
->index
])
847 gsi
= gsi_last_bb (bb
);
848 gimple
*last
= gsi_stmt (gsi
);
850 gcc_assert (computed_goto_p (last
));
852 /* Copy the original computed goto's destination into VAR. */
854 = gimple_build_assign (var
, gimple_goto_dest (last
));
855 gsi_insert_before (&gsi
, assignment
, GSI_SAME_STMT
);
857 edge e
= make_edge (bb
, *dispatcher
, EDGE_FALLTHRU
);
858 e
->goto_locus
= gimple_location (last
);
859 gsi_remove (&gsi
, true);
864 tree arg
= inner
? boolean_true_node
: boolean_false_node
;
865 gimple
*g
= gimple_build_call_internal (IFN_ABNORMAL_DISPATCHER
,
867 gimple_stmt_iterator gsi
= gsi_after_labels (*dispatcher
);
868 gsi_insert_after (&gsi
, g
, GSI_NEW_STMT
);
870 /* Create predecessor edges of the dispatcher. */
871 FOR_EACH_VEC_ELT (*bbs
, idx
, bb
)
874 && bb_to_omp_idx
[bb
->index
] != bb_to_omp_idx
[for_bb
->index
])
876 make_edge (bb
, *dispatcher
, EDGE_ABNORMAL
);
881 make_edge (*dispatcher
, for_bb
, EDGE_ABNORMAL
);
884 /* Creates outgoing edges for BB. Returns 1 when it ends with an
885 computed goto, returns 2 when it ends with a statement that
886 might return to this function via an nonlocal goto, otherwise
887 return 0. Updates *PCUR_REGION with the OMP region this BB is in. */
890 make_edges_bb (basic_block bb
, struct omp_region
**pcur_region
, int *pomp_index
)
892 gimple
*last
= last_stmt (bb
);
893 bool fallthru
= false;
899 switch (gimple_code (last
))
902 if (make_goto_expr_edges (bb
))
908 edge e
= make_edge (bb
, EXIT_BLOCK_PTR_FOR_FN (cfun
), 0);
909 e
->goto_locus
= gimple_location (last
);
914 make_cond_expr_edges (bb
);
918 make_gimple_switch_edges (as_a
<gswitch
*> (last
), bb
);
922 make_eh_edges (last
);
925 case GIMPLE_EH_DISPATCH
:
926 fallthru
= make_eh_dispatch_edges (as_a
<geh_dispatch
*> (last
));
930 /* If this function receives a nonlocal goto, then we need to
931 make edges from this call site to all the nonlocal goto
933 if (stmt_can_make_abnormal_goto (last
))
936 /* If this statement has reachable exception handlers, then
937 create abnormal edges to them. */
938 make_eh_edges (last
);
940 /* BUILTIN_RETURN is really a return statement. */
941 if (gimple_call_builtin_p (last
, BUILT_IN_RETURN
))
943 make_edge (bb
, EXIT_BLOCK_PTR_FOR_FN (cfun
), 0);
946 /* Some calls are known not to return. */
948 fallthru
= !gimple_call_noreturn_p (last
);
952 /* A GIMPLE_ASSIGN may throw internally and thus be considered
954 if (is_ctrl_altering_stmt (last
))
955 make_eh_edges (last
);
960 make_gimple_asm_edges (bb
);
965 fallthru
= omp_make_gimple_edges (bb
, pcur_region
, pomp_index
);
968 case GIMPLE_TRANSACTION
:
970 gtransaction
*txn
= as_a
<gtransaction
*> (last
);
971 tree label1
= gimple_transaction_label_norm (txn
);
972 tree label2
= gimple_transaction_label_uninst (txn
);
975 make_edge (bb
, label_to_block (label1
), EDGE_FALLTHRU
);
977 make_edge (bb
, label_to_block (label2
),
978 EDGE_TM_UNINSTRUMENTED
| (label1
? 0 : EDGE_FALLTHRU
));
980 tree label3
= gimple_transaction_label_over (txn
);
981 if (gimple_transaction_subcode (txn
)
982 & (GTMA_HAVE_ABORT
| GTMA_IS_OUTER
))
983 make_edge (bb
, label_to_block (label3
), EDGE_TM_ABORT
);
990 gcc_assert (!stmt_ends_bb_p (last
));
996 make_edge (bb
, bb
->next_bb
, EDGE_FALLTHRU
);
1001 /* Join all the blocks in the flowgraph. */
1007 struct omp_region
*cur_region
= NULL
;
1008 auto_vec
<basic_block
> ab_edge_goto
;
1009 auto_vec
<basic_block
> ab_edge_call
;
1010 int *bb_to_omp_idx
= NULL
;
1011 int cur_omp_region_idx
= 0;
1013 /* Create an edge from entry to the first block with executable
1014 statements in it. */
1015 make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun
),
1016 BASIC_BLOCK_FOR_FN (cfun
, NUM_FIXED_BLOCKS
),
1019 /* Traverse the basic block array placing edges. */
1020 FOR_EACH_BB_FN (bb
, cfun
)
1025 bb_to_omp_idx
[bb
->index
] = cur_omp_region_idx
;
1027 mer
= make_edges_bb (bb
, &cur_region
, &cur_omp_region_idx
);
1029 ab_edge_goto
.safe_push (bb
);
1031 ab_edge_call
.safe_push (bb
);
1033 if (cur_region
&& bb_to_omp_idx
== NULL
)
1034 bb_to_omp_idx
= XCNEWVEC (int, n_basic_blocks_for_fn (cfun
));
1037 /* Computed gotos are hell to deal with, especially if there are
1038 lots of them with a large number of destinations. So we factor
1039 them to a common computed goto location before we build the
1040 edge list. After we convert back to normal form, we will un-factor
1041 the computed gotos since factoring introduces an unwanted jump.
1042 For non-local gotos and abnormal edges from calls to calls that return
1043 twice or forced labels, factor the abnormal edges too, by having all
1044 abnormal edges from the calls go to a common artificial basic block
1045 with ABNORMAL_DISPATCHER internal call and abnormal edges from that
1046 basic block to all forced labels and calls returning twice.
1047 We do this per-OpenMP structured block, because those regions
1048 are guaranteed to be single entry single exit by the standard,
1049 so it is not allowed to enter or exit such regions abnormally this way,
1050 thus all computed gotos, non-local gotos and setjmp/longjmp calls
1051 must not transfer control across SESE region boundaries. */
1052 if (!ab_edge_goto
.is_empty () || !ab_edge_call
.is_empty ())
1054 gimple_stmt_iterator gsi
;
1055 basic_block dispatcher_bb_array
[2] = { NULL
, NULL
};
1056 basic_block
*dispatcher_bbs
= dispatcher_bb_array
;
1057 int count
= n_basic_blocks_for_fn (cfun
);
1060 dispatcher_bbs
= XCNEWVEC (basic_block
, 2 * count
);
1062 FOR_EACH_BB_FN (bb
, cfun
)
1064 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1066 glabel
*label_stmt
= dyn_cast
<glabel
*> (gsi_stmt (gsi
));
1072 target
= gimple_label_label (label_stmt
);
1074 /* Make an edge to every label block that has been marked as a
1075 potential target for a computed goto or a non-local goto. */
1076 if (FORCED_LABEL (target
))
1077 handle_abnormal_edges (dispatcher_bbs
, bb
, bb_to_omp_idx
,
1078 &ab_edge_goto
, true);
1079 if (DECL_NONLOCAL (target
))
1081 handle_abnormal_edges (dispatcher_bbs
, bb
, bb_to_omp_idx
,
1082 &ab_edge_call
, false);
1087 if (!gsi_end_p (gsi
) && is_gimple_debug (gsi_stmt (gsi
)))
1088 gsi_next_nondebug (&gsi
);
1089 if (!gsi_end_p (gsi
))
1091 /* Make an edge to every setjmp-like call. */
1092 gimple
*call_stmt
= gsi_stmt (gsi
);
1093 if (is_gimple_call (call_stmt
)
1094 && ((gimple_call_flags (call_stmt
) & ECF_RETURNS_TWICE
)
1095 || gimple_call_builtin_p (call_stmt
,
1096 BUILT_IN_SETJMP_RECEIVER
)))
1097 handle_abnormal_edges (dispatcher_bbs
, bb
, bb_to_omp_idx
,
1098 &ab_edge_call
, false);
1103 XDELETE (dispatcher_bbs
);
1106 XDELETE (bb_to_omp_idx
);
1108 omp_free_regions ();
1111 /* Add SEQ after GSI. Start new bb after GSI, and created further bbs as
1112 needed. Returns true if new bbs were created.
1113 Note: This is transitional code, and should not be used for new code. We
1114 should be able to get rid of this by rewriting all target va-arg
1115 gimplification hooks to use an interface gimple_build_cond_value as described
1116 in https://gcc.gnu.org/ml/gcc-patches/2015-02/msg01194.html. */
1119 gimple_find_sub_bbs (gimple_seq seq
, gimple_stmt_iterator
*gsi
)
1121 gimple
*stmt
= gsi_stmt (*gsi
);
1122 basic_block bb
= gimple_bb (stmt
);
1123 basic_block lastbb
, afterbb
;
1124 int old_num_bbs
= n_basic_blocks_for_fn (cfun
);
1126 lastbb
= make_blocks_1 (seq
, bb
);
1127 if (old_num_bbs
== n_basic_blocks_for_fn (cfun
))
1129 e
= split_block (bb
, stmt
);
1130 /* Move e->dest to come after the new basic blocks. */
1132 unlink_block (afterbb
);
1133 link_block (afterbb
, lastbb
);
1134 redirect_edge_succ (e
, bb
->next_bb
);
1136 while (bb
!= afterbb
)
1138 struct omp_region
*cur_region
= NULL
;
1139 profile_count cnt
= profile_count::zero ();
1142 int cur_omp_region_idx
= 0;
1143 int mer
= make_edges_bb (bb
, &cur_region
, &cur_omp_region_idx
);
1144 gcc_assert (!mer
&& !cur_region
);
1145 add_bb_to_loop (bb
, afterbb
->loop_father
);
1149 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
1151 if (e
->count ().initialized_p ())
1156 tree_guess_outgoing_edge_probabilities (bb
);
1157 if (all
|| profile_status_for_fn (cfun
) == PROFILE_READ
)
1165 /* Find the next available discriminator value for LOCUS. The
1166 discriminator distinguishes among several basic blocks that
1167 share a common locus, allowing for more accurate sample-based
1171 next_discriminator_for_locus (location_t locus
)
1173 struct locus_discrim_map item
;
1174 struct locus_discrim_map
**slot
;
1177 item
.discriminator
= 0;
1178 slot
= discriminator_per_locus
->find_slot_with_hash (
1179 &item
, LOCATION_LINE (locus
), INSERT
);
1181 if (*slot
== HTAB_EMPTY_ENTRY
)
1183 *slot
= XNEW (struct locus_discrim_map
);
1185 (*slot
)->locus
= locus
;
1186 (*slot
)->discriminator
= 0;
1188 (*slot
)->discriminator
++;
1189 return (*slot
)->discriminator
;
1192 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
1195 same_line_p (location_t locus1
, location_t locus2
)
1197 expanded_location from
, to
;
1199 if (locus1
== locus2
)
1202 from
= expand_location (locus1
);
1203 to
= expand_location (locus2
);
1205 if (from
.line
!= to
.line
)
1207 if (from
.file
== to
.file
)
1209 return (from
.file
!= NULL
1211 && filename_cmp (from
.file
, to
.file
) == 0);
1214 /* Assign discriminators to each basic block. */
1217 assign_discriminators (void)
1221 FOR_EACH_BB_FN (bb
, cfun
)
1225 gimple
*last
= last_stmt (bb
);
1226 location_t locus
= last
? gimple_location (last
) : UNKNOWN_LOCATION
;
1228 if (locus
== UNKNOWN_LOCATION
)
1231 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
1233 gimple
*first
= first_non_label_stmt (e
->dest
);
1234 gimple
*last
= last_stmt (e
->dest
);
1235 if ((first
&& same_line_p (locus
, gimple_location (first
)))
1236 || (last
&& same_line_p (locus
, gimple_location (last
))))
1238 if (e
->dest
->discriminator
!= 0 && bb
->discriminator
== 0)
1239 bb
->discriminator
= next_discriminator_for_locus (locus
);
1241 e
->dest
->discriminator
= next_discriminator_for_locus (locus
);
1247 /* Create the edges for a GIMPLE_COND starting at block BB. */
1250 make_cond_expr_edges (basic_block bb
)
1252 gcond
*entry
= as_a
<gcond
*> (last_stmt (bb
));
1253 gimple
*then_stmt
, *else_stmt
;
1254 basic_block then_bb
, else_bb
;
1255 tree then_label
, else_label
;
1259 gcc_assert (gimple_code (entry
) == GIMPLE_COND
);
1261 /* Entry basic blocks for each component. */
1262 then_label
= gimple_cond_true_label (entry
);
1263 else_label
= gimple_cond_false_label (entry
);
1264 then_bb
= label_to_block (then_label
);
1265 else_bb
= label_to_block (else_label
);
1266 then_stmt
= first_stmt (then_bb
);
1267 else_stmt
= first_stmt (else_bb
);
1269 e
= make_edge (bb
, then_bb
, EDGE_TRUE_VALUE
);
1270 e
->goto_locus
= gimple_location (then_stmt
);
1271 e
= make_edge (bb
, else_bb
, EDGE_FALSE_VALUE
);
1273 e
->goto_locus
= gimple_location (else_stmt
);
1275 /* We do not need the labels anymore. */
1276 gimple_cond_set_true_label (entry
, NULL_TREE
);
1277 gimple_cond_set_false_label (entry
, NULL_TREE
);
1281 /* Called for each element in the hash table (P) as we delete the
1282 edge to cases hash table.
1284 Clear all the CASE_CHAINs to prevent problems with copying of
1285 SWITCH_EXPRs and structure sharing rules, then free the hash table
1289 edge_to_cases_cleanup (edge
const &, tree
const &value
, void *)
1293 for (t
= value
; t
; t
= next
)
1295 next
= CASE_CHAIN (t
);
1296 CASE_CHAIN (t
) = NULL
;
1302 /* Start recording information mapping edges to case labels. */
1305 start_recording_case_labels (void)
1307 gcc_assert (edge_to_cases
== NULL
);
1308 edge_to_cases
= new hash_map
<edge
, tree
>;
1309 touched_switch_bbs
= BITMAP_ALLOC (NULL
);
1312 /* Return nonzero if we are recording information for case labels. */
1315 recording_case_labels_p (void)
1317 return (edge_to_cases
!= NULL
);
1320 /* Stop recording information mapping edges to case labels and
1321 remove any information we have recorded. */
1323 end_recording_case_labels (void)
1327 edge_to_cases
->traverse
<void *, edge_to_cases_cleanup
> (NULL
);
1328 delete edge_to_cases
;
1329 edge_to_cases
= NULL
;
1330 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs
, 0, i
, bi
)
1332 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
1335 gimple
*stmt
= last_stmt (bb
);
1336 if (stmt
&& gimple_code (stmt
) == GIMPLE_SWITCH
)
1337 group_case_labels_stmt (as_a
<gswitch
*> (stmt
));
1340 BITMAP_FREE (touched_switch_bbs
);
1343 /* If we are inside a {start,end}_recording_cases block, then return
1344 a chain of CASE_LABEL_EXPRs from T which reference E.
1346 Otherwise return NULL. */
1349 get_cases_for_edge (edge e
, gswitch
*t
)
1354 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
1355 chains available. Return NULL so the caller can detect this case. */
1356 if (!recording_case_labels_p ())
1359 slot
= edge_to_cases
->get (e
);
1363 /* If we did not find E in the hash table, then this must be the first
1364 time we have been queried for information about E & T. Add all the
1365 elements from T to the hash table then perform the query again. */
1367 n
= gimple_switch_num_labels (t
);
1368 for (i
= 0; i
< n
; i
++)
1370 tree elt
= gimple_switch_label (t
, i
);
1371 tree lab
= CASE_LABEL (elt
);
1372 basic_block label_bb
= label_to_block (lab
);
1373 edge this_edge
= find_edge (e
->src
, label_bb
);
1375 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
1377 tree
&s
= edge_to_cases
->get_or_insert (this_edge
);
1378 CASE_CHAIN (elt
) = s
;
1382 return *edge_to_cases
->get (e
);
1385 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
1388 make_gimple_switch_edges (gswitch
*entry
, basic_block bb
)
1392 n
= gimple_switch_num_labels (entry
);
1394 for (i
= 0; i
< n
; ++i
)
1396 tree lab
= CASE_LABEL (gimple_switch_label (entry
, i
));
1397 basic_block label_bb
= label_to_block (lab
);
1398 make_edge (bb
, label_bb
, 0);
1403 /* Return the basic block holding label DEST. */
1406 label_to_block_fn (struct function
*ifun
, tree dest
)
1408 int uid
= LABEL_DECL_UID (dest
);
1410 /* We would die hard when faced by an undefined label. Emit a label to
1411 the very first basic block. This will hopefully make even the dataflow
1412 and undefined variable warnings quite right. */
1413 if (seen_error () && uid
< 0)
1415 gimple_stmt_iterator gsi
=
1416 gsi_start_bb (BASIC_BLOCK_FOR_FN (cfun
, NUM_FIXED_BLOCKS
));
1419 stmt
= gimple_build_label (dest
);
1420 gsi_insert_before (&gsi
, stmt
, GSI_NEW_STMT
);
1421 uid
= LABEL_DECL_UID (dest
);
1423 if (vec_safe_length (ifun
->cfg
->x_label_to_block_map
) <= (unsigned int) uid
)
1425 return (*ifun
->cfg
->x_label_to_block_map
)[uid
];
1428 /* Create edges for a goto statement at block BB. Returns true
1429 if abnormal edges should be created. */
1432 make_goto_expr_edges (basic_block bb
)
1434 gimple_stmt_iterator last
= gsi_last_bb (bb
);
1435 gimple
*goto_t
= gsi_stmt (last
);
1437 /* A simple GOTO creates normal edges. */
1438 if (simple_goto_p (goto_t
))
1440 tree dest
= gimple_goto_dest (goto_t
);
1441 basic_block label_bb
= label_to_block (dest
);
1442 edge e
= make_edge (bb
, label_bb
, EDGE_FALLTHRU
);
1443 e
->goto_locus
= gimple_location (goto_t
);
1444 gsi_remove (&last
, true);
1448 /* A computed GOTO creates abnormal edges. */
1452 /* Create edges for an asm statement with labels at block BB. */
1455 make_gimple_asm_edges (basic_block bb
)
1457 gasm
*stmt
= as_a
<gasm
*> (last_stmt (bb
));
1458 int i
, n
= gimple_asm_nlabels (stmt
);
1460 for (i
= 0; i
< n
; ++i
)
1462 tree label
= TREE_VALUE (gimple_asm_label_op (stmt
, i
));
1463 basic_block label_bb
= label_to_block (label
);
1464 make_edge (bb
, label_bb
, 0);
1468 /*---------------------------------------------------------------------------
1470 ---------------------------------------------------------------------------*/
1472 /* Cleanup useless labels in basic blocks. This is something we wish
1473 to do early because it allows us to group case labels before creating
1474 the edges for the CFG, and it speeds up block statement iterators in
1475 all passes later on.
1476 We rerun this pass after CFG is created, to get rid of the labels that
1477 are no longer referenced. After then we do not run it any more, since
1478 (almost) no new labels should be created. */
1480 /* A map from basic block index to the leading label of that block. */
1481 static struct label_record
1486 /* True if the label is referenced from somewhere. */
1490 /* Given LABEL return the first label in the same basic block. */
1493 main_block_label (tree label
)
1495 basic_block bb
= label_to_block (label
);
1496 tree main_label
= label_for_bb
[bb
->index
].label
;
1498 /* label_to_block possibly inserted undefined label into the chain. */
1501 label_for_bb
[bb
->index
].label
= label
;
1505 label_for_bb
[bb
->index
].used
= true;
1509 /* Clean up redundant labels within the exception tree. */
1512 cleanup_dead_labels_eh (void)
1519 if (cfun
->eh
== NULL
)
1522 for (i
= 1; vec_safe_iterate (cfun
->eh
->lp_array
, i
, &lp
); ++i
)
1523 if (lp
&& lp
->post_landing_pad
)
1525 lab
= main_block_label (lp
->post_landing_pad
);
1526 if (lab
!= lp
->post_landing_pad
)
1528 EH_LANDING_PAD_NR (lp
->post_landing_pad
) = 0;
1529 EH_LANDING_PAD_NR (lab
) = lp
->index
;
1533 FOR_ALL_EH_REGION (r
)
1537 case ERT_MUST_NOT_THROW
:
1543 for (c
= r
->u
.eh_try
.first_catch
; c
; c
= c
->next_catch
)
1547 c
->label
= main_block_label (lab
);
1552 case ERT_ALLOWED_EXCEPTIONS
:
1553 lab
= r
->u
.allowed
.label
;
1555 r
->u
.allowed
.label
= main_block_label (lab
);
1561 /* Cleanup redundant labels. This is a three-step process:
1562 1) Find the leading label for each block.
1563 2) Redirect all references to labels to the leading labels.
1564 3) Cleanup all useless labels. */
1567 cleanup_dead_labels (void)
1570 label_for_bb
= XCNEWVEC (struct label_record
, last_basic_block_for_fn (cfun
));
1572 /* Find a suitable label for each block. We use the first user-defined
1573 label if there is one, or otherwise just the first label we see. */
1574 FOR_EACH_BB_FN (bb
, cfun
)
1576 gimple_stmt_iterator i
;
1578 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); gsi_next (&i
))
1581 glabel
*label_stmt
= dyn_cast
<glabel
*> (gsi_stmt (i
));
1586 label
= gimple_label_label (label_stmt
);
1588 /* If we have not yet seen a label for the current block,
1589 remember this one and see if there are more labels. */
1590 if (!label_for_bb
[bb
->index
].label
)
1592 label_for_bb
[bb
->index
].label
= label
;
1596 /* If we did see a label for the current block already, but it
1597 is an artificially created label, replace it if the current
1598 label is a user defined label. */
1599 if (!DECL_ARTIFICIAL (label
)
1600 && DECL_ARTIFICIAL (label_for_bb
[bb
->index
].label
))
1602 label_for_bb
[bb
->index
].label
= label
;
1608 /* Now redirect all jumps/branches to the selected label.
1609 First do so for each block ending in a control statement. */
1610 FOR_EACH_BB_FN (bb
, cfun
)
1612 gimple
*stmt
= last_stmt (bb
);
1613 tree label
, new_label
;
1618 switch (gimple_code (stmt
))
1622 gcond
*cond_stmt
= as_a
<gcond
*> (stmt
);
1623 label
= gimple_cond_true_label (cond_stmt
);
1626 new_label
= main_block_label (label
);
1627 if (new_label
!= label
)
1628 gimple_cond_set_true_label (cond_stmt
, new_label
);
1631 label
= gimple_cond_false_label (cond_stmt
);
1634 new_label
= main_block_label (label
);
1635 if (new_label
!= label
)
1636 gimple_cond_set_false_label (cond_stmt
, new_label
);
1643 gswitch
*switch_stmt
= as_a
<gswitch
*> (stmt
);
1644 size_t i
, n
= gimple_switch_num_labels (switch_stmt
);
1646 /* Replace all destination labels. */
1647 for (i
= 0; i
< n
; ++i
)
1649 tree case_label
= gimple_switch_label (switch_stmt
, i
);
1650 label
= CASE_LABEL (case_label
);
1651 new_label
= main_block_label (label
);
1652 if (new_label
!= label
)
1653 CASE_LABEL (case_label
) = new_label
;
1660 gasm
*asm_stmt
= as_a
<gasm
*> (stmt
);
1661 int i
, n
= gimple_asm_nlabels (asm_stmt
);
1663 for (i
= 0; i
< n
; ++i
)
1665 tree cons
= gimple_asm_label_op (asm_stmt
, i
);
1666 tree label
= main_block_label (TREE_VALUE (cons
));
1667 TREE_VALUE (cons
) = label
;
1672 /* We have to handle gotos until they're removed, and we don't
1673 remove them until after we've created the CFG edges. */
1675 if (!computed_goto_p (stmt
))
1677 ggoto
*goto_stmt
= as_a
<ggoto
*> (stmt
);
1678 label
= gimple_goto_dest (goto_stmt
);
1679 new_label
= main_block_label (label
);
1680 if (new_label
!= label
)
1681 gimple_goto_set_dest (goto_stmt
, new_label
);
1685 case GIMPLE_TRANSACTION
:
1687 gtransaction
*txn
= as_a
<gtransaction
*> (stmt
);
1689 label
= gimple_transaction_label_norm (txn
);
1692 new_label
= main_block_label (label
);
1693 if (new_label
!= label
)
1694 gimple_transaction_set_label_norm (txn
, new_label
);
1697 label
= gimple_transaction_label_uninst (txn
);
1700 new_label
= main_block_label (label
);
1701 if (new_label
!= label
)
1702 gimple_transaction_set_label_uninst (txn
, new_label
);
1705 label
= gimple_transaction_label_over (txn
);
1708 new_label
= main_block_label (label
);
1709 if (new_label
!= label
)
1710 gimple_transaction_set_label_over (txn
, new_label
);
1720 /* Do the same for the exception region tree labels. */
1721 cleanup_dead_labels_eh ();
1723 /* Finally, purge dead labels. All user-defined labels and labels that
1724 can be the target of non-local gotos and labels which have their
1725 address taken are preserved. */
1726 FOR_EACH_BB_FN (bb
, cfun
)
1728 gimple_stmt_iterator i
;
1729 tree label_for_this_bb
= label_for_bb
[bb
->index
].label
;
1731 if (!label_for_this_bb
)
1734 /* If the main label of the block is unused, we may still remove it. */
1735 if (!label_for_bb
[bb
->index
].used
)
1736 label_for_this_bb
= NULL
;
1738 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); )
1741 glabel
*label_stmt
= dyn_cast
<glabel
*> (gsi_stmt (i
));
1746 label
= gimple_label_label (label_stmt
);
1748 if (label
== label_for_this_bb
1749 || !DECL_ARTIFICIAL (label
)
1750 || DECL_NONLOCAL (label
)
1751 || FORCED_LABEL (label
))
1754 gsi_remove (&i
, true);
1758 free (label_for_bb
);
1761 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1762 the ones jumping to the same label.
1763 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1766 group_case_labels_stmt (gswitch
*stmt
)
1768 int old_size
= gimple_switch_num_labels (stmt
);
1769 int i
, next_index
, new_size
;
1770 basic_block default_bb
= NULL
;
1772 default_bb
= label_to_block (CASE_LABEL (gimple_switch_default_label (stmt
)));
1774 /* Look for possible opportunities to merge cases. */
1776 while (i
< old_size
)
1778 tree base_case
, base_high
;
1779 basic_block base_bb
;
1781 base_case
= gimple_switch_label (stmt
, i
);
1783 gcc_assert (base_case
);
1784 base_bb
= label_to_block (CASE_LABEL (base_case
));
1786 /* Discard cases that have the same destination as the default case or
1787 whose destiniation blocks have already been removed as unreachable. */
1788 if (base_bb
== NULL
|| base_bb
== default_bb
)
1794 base_high
= CASE_HIGH (base_case
)
1795 ? CASE_HIGH (base_case
)
1796 : CASE_LOW (base_case
);
1799 /* Try to merge case labels. Break out when we reach the end
1800 of the label vector or when we cannot merge the next case
1801 label with the current one. */
1802 while (next_index
< old_size
)
1804 tree merge_case
= gimple_switch_label (stmt
, next_index
);
1805 basic_block merge_bb
= label_to_block (CASE_LABEL (merge_case
));
1806 wide_int bhp1
= wi::to_wide (base_high
) + 1;
1808 /* Merge the cases if they jump to the same place,
1809 and their ranges are consecutive. */
1810 if (merge_bb
== base_bb
1811 && wi::to_wide (CASE_LOW (merge_case
)) == bhp1
)
1813 base_high
= CASE_HIGH (merge_case
) ?
1814 CASE_HIGH (merge_case
) : CASE_LOW (merge_case
);
1815 CASE_HIGH (base_case
) = base_high
;
1822 /* Discard cases that have an unreachable destination block. */
1823 if (EDGE_COUNT (base_bb
->succs
) == 0
1824 && gimple_seq_unreachable_p (bb_seq (base_bb
))
1825 /* Don't optimize this if __builtin_unreachable () is the
1826 implicitly added one by the C++ FE too early, before
1827 -Wreturn-type can be diagnosed. We'll optimize it later
1828 during switchconv pass or any other cfg cleanup. */
1829 && (gimple_in_ssa_p (cfun
)
1830 || (LOCATION_LOCUS (gimple_location (last_stmt (base_bb
)))
1831 != BUILTINS_LOCATION
)))
1833 edge base_edge
= find_edge (gimple_bb (stmt
), base_bb
);
1834 if (base_edge
!= NULL
)
1835 remove_edge_and_dominated_blocks (base_edge
);
1841 gimple_switch_set_label (stmt
, new_size
,
1842 gimple_switch_label (stmt
, i
));
1847 gcc_assert (new_size
<= old_size
);
1849 if (new_size
< old_size
)
1850 gimple_switch_set_num_labels (stmt
, new_size
);
1852 return new_size
< old_size
;
1855 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1856 and scan the sorted vector of cases. Combine the ones jumping to the
1860 group_case_labels (void)
1863 bool changed
= false;
1865 FOR_EACH_BB_FN (bb
, cfun
)
1867 gimple
*stmt
= last_stmt (bb
);
1868 if (stmt
&& gimple_code (stmt
) == GIMPLE_SWITCH
)
1869 changed
|= group_case_labels_stmt (as_a
<gswitch
*> (stmt
));
1875 /* Checks whether we can merge block B into block A. */
1878 gimple_can_merge_blocks_p (basic_block a
, basic_block b
)
1882 if (!single_succ_p (a
))
1885 if (single_succ_edge (a
)->flags
& EDGE_COMPLEX
)
1888 if (single_succ (a
) != b
)
1891 if (!single_pred_p (b
))
1894 if (a
== ENTRY_BLOCK_PTR_FOR_FN (cfun
)
1895 || b
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
1898 /* If A ends by a statement causing exceptions or something similar, we
1899 cannot merge the blocks. */
1900 stmt
= last_stmt (a
);
1901 if (stmt
&& stmt_ends_bb_p (stmt
))
1904 /* Do not allow a block with only a non-local label to be merged. */
1906 if (glabel
*label_stmt
= dyn_cast
<glabel
*> (stmt
))
1907 if (DECL_NONLOCAL (gimple_label_label (label_stmt
)))
1910 /* Examine the labels at the beginning of B. */
1911 for (gimple_stmt_iterator gsi
= gsi_start_bb (b
); !gsi_end_p (gsi
);
1915 glabel
*label_stmt
= dyn_cast
<glabel
*> (gsi_stmt (gsi
));
1918 lab
= gimple_label_label (label_stmt
);
1920 /* Do not remove user forced labels or for -O0 any user labels. */
1921 if (!DECL_ARTIFICIAL (lab
) && (!optimize
|| FORCED_LABEL (lab
)))
1925 /* Protect simple loop latches. We only want to avoid merging
1926 the latch with the loop header or with a block in another
1927 loop in this case. */
1929 && b
->loop_father
->latch
== b
1930 && loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES
)
1931 && (b
->loop_father
->header
== a
1932 || b
->loop_father
!= a
->loop_father
))
1935 /* It must be possible to eliminate all phi nodes in B. If ssa form
1936 is not up-to-date and a name-mapping is registered, we cannot eliminate
1937 any phis. Symbols marked for renaming are never a problem though. */
1938 for (gphi_iterator gsi
= gsi_start_phis (b
); !gsi_end_p (gsi
);
1941 gphi
*phi
= gsi
.phi ();
1942 /* Technically only new names matter. */
1943 if (name_registered_for_update_p (PHI_RESULT (phi
)))
1947 /* When not optimizing, don't merge if we'd lose goto_locus. */
1949 && single_succ_edge (a
)->goto_locus
!= UNKNOWN_LOCATION
)
1951 location_t goto_locus
= single_succ_edge (a
)->goto_locus
;
1952 gimple_stmt_iterator prev
, next
;
1953 prev
= gsi_last_nondebug_bb (a
);
1954 next
= gsi_after_labels (b
);
1955 if (!gsi_end_p (next
) && is_gimple_debug (gsi_stmt (next
)))
1956 gsi_next_nondebug (&next
);
1957 if ((gsi_end_p (prev
)
1958 || gimple_location (gsi_stmt (prev
)) != goto_locus
)
1959 && (gsi_end_p (next
)
1960 || gimple_location (gsi_stmt (next
)) != goto_locus
))
1967 /* Replaces all uses of NAME by VAL. */
1970 replace_uses_by (tree name
, tree val
)
1972 imm_use_iterator imm_iter
;
1977 FOR_EACH_IMM_USE_STMT (stmt
, imm_iter
, name
)
1979 /* Mark the block if we change the last stmt in it. */
1980 if (cfgcleanup_altered_bbs
1981 && stmt_ends_bb_p (stmt
))
1982 bitmap_set_bit (cfgcleanup_altered_bbs
, gimple_bb (stmt
)->index
);
1984 FOR_EACH_IMM_USE_ON_STMT (use
, imm_iter
)
1986 replace_exp (use
, val
);
1988 if (gimple_code (stmt
) == GIMPLE_PHI
)
1990 e
= gimple_phi_arg_edge (as_a
<gphi
*> (stmt
),
1991 PHI_ARG_INDEX_FROM_USE (use
));
1992 if (e
->flags
& EDGE_ABNORMAL
1993 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val
))
1995 /* This can only occur for virtual operands, since
1996 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1997 would prevent replacement. */
1998 gcc_checking_assert (virtual_operand_p (name
));
1999 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val
) = 1;
2004 if (gimple_code (stmt
) != GIMPLE_PHI
)
2006 gimple_stmt_iterator gsi
= gsi_for_stmt (stmt
);
2007 gimple
*orig_stmt
= stmt
;
2010 /* FIXME. It shouldn't be required to keep TREE_CONSTANT
2011 on ADDR_EXPRs up-to-date on GIMPLE. Propagation will
2012 only change sth from non-invariant to invariant, and only
2013 when propagating constants. */
2014 if (is_gimple_min_invariant (val
))
2015 for (i
= 0; i
< gimple_num_ops (stmt
); i
++)
2017 tree op
= gimple_op (stmt
, i
);
2018 /* Operands may be empty here. For example, the labels
2019 of a GIMPLE_COND are nulled out following the creation
2020 of the corresponding CFG edges. */
2021 if (op
&& TREE_CODE (op
) == ADDR_EXPR
)
2022 recompute_tree_invariant_for_addr_expr (op
);
2025 if (fold_stmt (&gsi
))
2026 stmt
= gsi_stmt (gsi
);
2028 if (maybe_clean_or_replace_eh_stmt (orig_stmt
, stmt
))
2029 gimple_purge_dead_eh_edges (gimple_bb (stmt
));
2035 gcc_checking_assert (has_zero_uses (name
));
2037 /* Also update the trees stored in loop structures. */
2042 FOR_EACH_LOOP (loop
, 0)
2044 substitute_in_loop_info (loop
, name
, val
);
2049 /* Merge block B into block A. */
2052 gimple_merge_blocks (basic_block a
, basic_block b
)
2054 gimple_stmt_iterator last
, gsi
;
2058 fprintf (dump_file
, "Merging blocks %d and %d\n", a
->index
, b
->index
);
2060 /* Remove all single-valued PHI nodes from block B of the form
2061 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
2062 gsi
= gsi_last_bb (a
);
2063 for (psi
= gsi_start_phis (b
); !gsi_end_p (psi
); )
2065 gimple
*phi
= gsi_stmt (psi
);
2066 tree def
= gimple_phi_result (phi
), use
= gimple_phi_arg_def (phi
, 0);
2068 bool may_replace_uses
= (virtual_operand_p (def
)
2069 || may_propagate_copy (def
, use
));
2071 /* In case we maintain loop closed ssa form, do not propagate arguments
2072 of loop exit phi nodes. */
2074 && loops_state_satisfies_p (LOOP_CLOSED_SSA
)
2075 && !virtual_operand_p (def
)
2076 && TREE_CODE (use
) == SSA_NAME
2077 && a
->loop_father
!= b
->loop_father
)
2078 may_replace_uses
= false;
2080 if (!may_replace_uses
)
2082 gcc_assert (!virtual_operand_p (def
));
2084 /* Note that just emitting the copies is fine -- there is no problem
2085 with ordering of phi nodes. This is because A is the single
2086 predecessor of B, therefore results of the phi nodes cannot
2087 appear as arguments of the phi nodes. */
2088 copy
= gimple_build_assign (def
, use
);
2089 gsi_insert_after (&gsi
, copy
, GSI_NEW_STMT
);
2090 remove_phi_node (&psi
, false);
2094 /* If we deal with a PHI for virtual operands, we can simply
2095 propagate these without fussing with folding or updating
2097 if (virtual_operand_p (def
))
2099 imm_use_iterator iter
;
2100 use_operand_p use_p
;
2103 FOR_EACH_IMM_USE_STMT (stmt
, iter
, def
)
2104 FOR_EACH_IMM_USE_ON_STMT (use_p
, iter
)
2105 SET_USE (use_p
, use
);
2107 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def
))
2108 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use
) = 1;
2111 replace_uses_by (def
, use
);
2113 remove_phi_node (&psi
, true);
2117 /* Ensure that B follows A. */
2118 move_block_after (b
, a
);
2120 gcc_assert (single_succ_edge (a
)->flags
& EDGE_FALLTHRU
);
2121 gcc_assert (!last_stmt (a
) || !stmt_ends_bb_p (last_stmt (a
)));
2123 /* Remove labels from B and set gimple_bb to A for other statements. */
2124 for (gsi
= gsi_start_bb (b
); !gsi_end_p (gsi
);)
2126 gimple
*stmt
= gsi_stmt (gsi
);
2127 if (glabel
*label_stmt
= dyn_cast
<glabel
*> (stmt
))
2129 tree label
= gimple_label_label (label_stmt
);
2132 gsi_remove (&gsi
, false);
2134 /* Now that we can thread computed gotos, we might have
2135 a situation where we have a forced label in block B
2136 However, the label at the start of block B might still be
2137 used in other ways (think about the runtime checking for
2138 Fortran assigned gotos). So we can not just delete the
2139 label. Instead we move the label to the start of block A. */
2140 if (FORCED_LABEL (label
))
2142 gimple_stmt_iterator dest_gsi
= gsi_start_bb (a
);
2143 gsi_insert_before (&dest_gsi
, stmt
, GSI_NEW_STMT
);
2145 /* Other user labels keep around in a form of a debug stmt. */
2146 else if (!DECL_ARTIFICIAL (label
) && MAY_HAVE_DEBUG_BIND_STMTS
)
2148 gimple
*dbg
= gimple_build_debug_bind (label
,
2151 gimple_debug_bind_reset_value (dbg
);
2152 gsi_insert_before (&gsi
, dbg
, GSI_SAME_STMT
);
2155 lp_nr
= EH_LANDING_PAD_NR (label
);
2158 eh_landing_pad lp
= get_eh_landing_pad_from_number (lp_nr
);
2159 lp
->post_landing_pad
= NULL
;
2164 gimple_set_bb (stmt
, a
);
2169 /* When merging two BBs, if their counts are different, the larger count
2170 is selected as the new bb count. This is to handle inconsistent
2172 if (a
->loop_father
== b
->loop_father
)
2174 a
->count
= a
->count
.merge (b
->count
);
2177 /* Merge the sequences. */
2178 last
= gsi_last_bb (a
);
2179 gsi_insert_seq_after (&last
, bb_seq (b
), GSI_NEW_STMT
);
2180 set_bb_seq (b
, NULL
);
2182 if (cfgcleanup_altered_bbs
)
2183 bitmap_set_bit (cfgcleanup_altered_bbs
, a
->index
);
2187 /* Return the one of two successors of BB that is not reachable by a
2188 complex edge, if there is one. Else, return BB. We use
2189 this in optimizations that use post-dominators for their heuristics,
2190 to catch the cases in C++ where function calls are involved. */
2193 single_noncomplex_succ (basic_block bb
)
2196 if (EDGE_COUNT (bb
->succs
) != 2)
2199 e0
= EDGE_SUCC (bb
, 0);
2200 e1
= EDGE_SUCC (bb
, 1);
2201 if (e0
->flags
& EDGE_COMPLEX
)
2203 if (e1
->flags
& EDGE_COMPLEX
)
2209 /* T is CALL_EXPR. Set current_function_calls_* flags. */
2212 notice_special_calls (gcall
*call
)
2214 int flags
= gimple_call_flags (call
);
2216 if (flags
& ECF_MAY_BE_ALLOCA
)
2217 cfun
->calls_alloca
= true;
2218 if (flags
& ECF_RETURNS_TWICE
)
2219 cfun
->calls_setjmp
= true;
2223 /* Clear flags set by notice_special_calls. Used by dead code removal
2224 to update the flags. */
2227 clear_special_calls (void)
2229 cfun
->calls_alloca
= false;
2230 cfun
->calls_setjmp
= false;
2233 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
2236 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb
)
2238 /* Since this block is no longer reachable, we can just delete all
2239 of its PHI nodes. */
2240 remove_phi_nodes (bb
);
2242 /* Remove edges to BB's successors. */
2243 while (EDGE_COUNT (bb
->succs
) > 0)
2244 remove_edge (EDGE_SUCC (bb
, 0));
2248 /* Remove statements of basic block BB. */
2251 remove_bb (basic_block bb
)
2253 gimple_stmt_iterator i
;
2257 fprintf (dump_file
, "Removing basic block %d\n", bb
->index
);
2258 if (dump_flags
& TDF_DETAILS
)
2260 dump_bb (dump_file
, bb
, 0, TDF_BLOCKS
);
2261 fprintf (dump_file
, "\n");
2267 struct loop
*loop
= bb
->loop_father
;
2269 /* If a loop gets removed, clean up the information associated
2271 if (loop
->latch
== bb
2272 || loop
->header
== bb
)
2273 free_numbers_of_iterations_estimates (loop
);
2276 /* Remove all the instructions in the block. */
2277 if (bb_seq (bb
) != NULL
)
2279 /* Walk backwards so as to get a chance to substitute all
2280 released DEFs into debug stmts. See
2281 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
2283 for (i
= gsi_last_bb (bb
); !gsi_end_p (i
);)
2285 gimple
*stmt
= gsi_stmt (i
);
2286 glabel
*label_stmt
= dyn_cast
<glabel
*> (stmt
);
2288 && (FORCED_LABEL (gimple_label_label (label_stmt
))
2289 || DECL_NONLOCAL (gimple_label_label (label_stmt
))))
2292 gimple_stmt_iterator new_gsi
;
2294 /* A non-reachable non-local label may still be referenced.
2295 But it no longer needs to carry the extra semantics of
2297 if (DECL_NONLOCAL (gimple_label_label (label_stmt
)))
2299 DECL_NONLOCAL (gimple_label_label (label_stmt
)) = 0;
2300 FORCED_LABEL (gimple_label_label (label_stmt
)) = 1;
2303 new_bb
= bb
->prev_bb
;
2304 /* Don't move any labels into ENTRY block. */
2305 if (new_bb
== ENTRY_BLOCK_PTR_FOR_FN (cfun
))
2307 new_bb
= single_succ (new_bb
);
2308 gcc_assert (new_bb
!= bb
);
2310 new_gsi
= gsi_start_bb (new_bb
);
2311 gsi_remove (&i
, false);
2312 gsi_insert_before (&new_gsi
, stmt
, GSI_NEW_STMT
);
2316 /* Release SSA definitions. */
2317 release_defs (stmt
);
2318 gsi_remove (&i
, true);
2322 i
= gsi_last_bb (bb
);
2328 remove_phi_nodes_and_edges_for_unreachable_block (bb
);
2329 bb
->il
.gimple
.seq
= NULL
;
2330 bb
->il
.gimple
.phi_nodes
= NULL
;
2334 /* Given a basic block BB and a value VAL for use in the final statement
2335 of the block (if a GIMPLE_COND, GIMPLE_SWITCH, or computed goto), return
2336 the edge that will be taken out of the block.
2337 If VAL is NULL_TREE, then the current value of the final statement's
2338 predicate or index is used.
2339 If the value does not match a unique edge, NULL is returned. */
2342 find_taken_edge (basic_block bb
, tree val
)
2346 stmt
= last_stmt (bb
);
2348 /* Handle ENTRY and EXIT. */
2352 if (gimple_code (stmt
) == GIMPLE_COND
)
2353 return find_taken_edge_cond_expr (as_a
<gcond
*> (stmt
), val
);
2355 if (gimple_code (stmt
) == GIMPLE_SWITCH
)
2356 return find_taken_edge_switch_expr (as_a
<gswitch
*> (stmt
), val
);
2358 if (computed_goto_p (stmt
))
2360 /* Only optimize if the argument is a label, if the argument is
2361 not a label then we can not construct a proper CFG.
2363 It may be the case that we only need to allow the LABEL_REF to
2364 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
2365 appear inside a LABEL_EXPR just to be safe. */
2367 && (TREE_CODE (val
) == ADDR_EXPR
|| TREE_CODE (val
) == LABEL_EXPR
)
2368 && TREE_CODE (TREE_OPERAND (val
, 0)) == LABEL_DECL
)
2369 return find_taken_edge_computed_goto (bb
, TREE_OPERAND (val
, 0));
2372 /* Otherwise we only know the taken successor edge if it's unique. */
2373 return single_succ_p (bb
) ? single_succ_edge (bb
) : NULL
;
2376 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
2377 statement, determine which of the outgoing edges will be taken out of the
2378 block. Return NULL if either edge may be taken. */
2381 find_taken_edge_computed_goto (basic_block bb
, tree val
)
2386 dest
= label_to_block (val
);
2388 e
= find_edge (bb
, dest
);
2390 /* It's possible for find_edge to return NULL here on invalid code
2391 that abuses the labels-as-values extension (e.g. code that attempts to
2392 jump *between* functions via stored labels-as-values; PR 84136).
2393 If so, then we simply return that NULL for the edge.
2394 We don't currently have a way of detecting such invalid code, so we
2395 can't assert that it was the case when a NULL edge occurs here. */
2400 /* Given COND_STMT and a constant value VAL for use as the predicate,
2401 determine which of the two edges will be taken out of
2402 the statement's block. Return NULL if either edge may be taken.
2403 If VAL is NULL_TREE, then the current value of COND_STMT's predicate
2407 find_taken_edge_cond_expr (const gcond
*cond_stmt
, tree val
)
2409 edge true_edge
, false_edge
;
2411 if (val
== NULL_TREE
)
2413 /* Use the current value of the predicate. */
2414 if (gimple_cond_true_p (cond_stmt
))
2415 val
= integer_one_node
;
2416 else if (gimple_cond_false_p (cond_stmt
))
2417 val
= integer_zero_node
;
2421 else if (TREE_CODE (val
) != INTEGER_CST
)
2424 extract_true_false_edges_from_block (gimple_bb (cond_stmt
),
2425 &true_edge
, &false_edge
);
2427 return (integer_zerop (val
) ? false_edge
: true_edge
);
2430 /* Given SWITCH_STMT and an INTEGER_CST VAL for use as the index, determine
2431 which edge will be taken out of the statement's block. Return NULL if any
2433 If VAL is NULL_TREE, then the current value of SWITCH_STMT's index
2437 find_taken_edge_switch_expr (const gswitch
*switch_stmt
, tree val
)
2439 basic_block dest_bb
;
2443 if (gimple_switch_num_labels (switch_stmt
) == 1)
2444 taken_case
= gimple_switch_default_label (switch_stmt
);
2447 if (val
== NULL_TREE
)
2448 val
= gimple_switch_index (switch_stmt
);
2449 if (TREE_CODE (val
) != INTEGER_CST
)
2452 taken_case
= find_case_label_for_value (switch_stmt
, val
);
2454 dest_bb
= label_to_block (CASE_LABEL (taken_case
));
2456 e
= find_edge (gimple_bb (switch_stmt
), dest_bb
);
2462 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
2463 We can make optimal use here of the fact that the case labels are
2464 sorted: We can do a binary search for a case matching VAL. */
2467 find_case_label_for_value (const gswitch
*switch_stmt
, tree val
)
2469 size_t low
, high
, n
= gimple_switch_num_labels (switch_stmt
);
2470 tree default_case
= gimple_switch_default_label (switch_stmt
);
2472 for (low
= 0, high
= n
; high
- low
> 1; )
2474 size_t i
= (high
+ low
) / 2;
2475 tree t
= gimple_switch_label (switch_stmt
, i
);
2478 /* Cache the result of comparing CASE_LOW and val. */
2479 cmp
= tree_int_cst_compare (CASE_LOW (t
), val
);
2486 if (CASE_HIGH (t
) == NULL
)
2488 /* A singe-valued case label. */
2494 /* A case range. We can only handle integer ranges. */
2495 if (cmp
<= 0 && tree_int_cst_compare (CASE_HIGH (t
), val
) >= 0)
2500 return default_case
;
2504 /* Dump a basic block on stderr. */
2507 gimple_debug_bb (basic_block bb
)
2509 dump_bb (stderr
, bb
, 0, TDF_VOPS
|TDF_MEMSYMS
|TDF_BLOCKS
);
2513 /* Dump basic block with index N on stderr. */
2516 gimple_debug_bb_n (int n
)
2518 gimple_debug_bb (BASIC_BLOCK_FOR_FN (cfun
, n
));
2519 return BASIC_BLOCK_FOR_FN (cfun
, n
);
2523 /* Dump the CFG on stderr.
2525 FLAGS are the same used by the tree dumping functions
2526 (see TDF_* in dumpfile.h). */
2529 gimple_debug_cfg (dump_flags_t flags
)
2531 gimple_dump_cfg (stderr
, flags
);
2535 /* Dump the program showing basic block boundaries on the given FILE.
2537 FLAGS are the same used by the tree dumping functions (see TDF_* in
2541 gimple_dump_cfg (FILE *file
, dump_flags_t flags
)
2543 if (flags
& TDF_DETAILS
)
2545 dump_function_header (file
, current_function_decl
, flags
);
2546 fprintf (file
, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2547 n_basic_blocks_for_fn (cfun
), n_edges_for_fn (cfun
),
2548 last_basic_block_for_fn (cfun
));
2550 brief_dump_cfg (file
, flags
);
2551 fprintf (file
, "\n");
2554 if (flags
& TDF_STATS
)
2555 dump_cfg_stats (file
);
2557 dump_function_to_file (current_function_decl
, file
, flags
| TDF_BLOCKS
);
2561 /* Dump CFG statistics on FILE. */
2564 dump_cfg_stats (FILE *file
)
2566 static long max_num_merged_labels
= 0;
2567 unsigned long size
, total
= 0;
2570 const char * const fmt_str
= "%-30s%-13s%12s\n";
2571 const char * const fmt_str_1
= "%-30s%13d%11lu%c\n";
2572 const char * const fmt_str_2
= "%-30s%13ld%11lu%c\n";
2573 const char * const fmt_str_3
= "%-43s%11lu%c\n";
2574 const char *funcname
= current_function_name ();
2576 fprintf (file
, "\nCFG Statistics for %s\n\n", funcname
);
2578 fprintf (file
, "---------------------------------------------------------\n");
2579 fprintf (file
, fmt_str
, "", " Number of ", "Memory");
2580 fprintf (file
, fmt_str
, "", " instances ", "used ");
2581 fprintf (file
, "---------------------------------------------------------\n");
2583 size
= n_basic_blocks_for_fn (cfun
) * sizeof (struct basic_block_def
);
2585 fprintf (file
, fmt_str_1
, "Basic blocks", n_basic_blocks_for_fn (cfun
),
2586 SCALE (size
), LABEL (size
));
2589 FOR_EACH_BB_FN (bb
, cfun
)
2590 num_edges
+= EDGE_COUNT (bb
->succs
);
2591 size
= num_edges
* sizeof (struct edge_def
);
2593 fprintf (file
, fmt_str_2
, "Edges", num_edges
, SCALE (size
), LABEL (size
));
2595 fprintf (file
, "---------------------------------------------------------\n");
2596 fprintf (file
, fmt_str_3
, "Total memory used by CFG data", SCALE (total
),
2598 fprintf (file
, "---------------------------------------------------------\n");
2599 fprintf (file
, "\n");
2601 if (cfg_stats
.num_merged_labels
> max_num_merged_labels
)
2602 max_num_merged_labels
= cfg_stats
.num_merged_labels
;
2604 fprintf (file
, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2605 cfg_stats
.num_merged_labels
, max_num_merged_labels
);
2607 fprintf (file
, "\n");
2611 /* Dump CFG statistics on stderr. Keep extern so that it's always
2612 linked in the final executable. */
2615 debug_cfg_stats (void)
2617 dump_cfg_stats (stderr
);
2620 /*---------------------------------------------------------------------------
2621 Miscellaneous helpers
2622 ---------------------------------------------------------------------------*/
2624 /* Return true if T, a GIMPLE_CALL, can make an abnormal transfer of control
2625 flow. Transfers of control flow associated with EH are excluded. */
2628 call_can_make_abnormal_goto (gimple
*t
)
2630 /* If the function has no non-local labels, then a call cannot make an
2631 abnormal transfer of control. */
2632 if (!cfun
->has_nonlocal_label
2633 && !cfun
->calls_setjmp
)
2636 /* Likewise if the call has no side effects. */
2637 if (!gimple_has_side_effects (t
))
2640 /* Likewise if the called function is leaf. */
2641 if (gimple_call_flags (t
) & ECF_LEAF
)
2648 /* Return true if T can make an abnormal transfer of control flow.
2649 Transfers of control flow associated with EH are excluded. */
2652 stmt_can_make_abnormal_goto (gimple
*t
)
2654 if (computed_goto_p (t
))
2656 if (is_gimple_call (t
))
2657 return call_can_make_abnormal_goto (t
);
2662 /* Return true if T represents a stmt that always transfers control. */
2665 is_ctrl_stmt (gimple
*t
)
2667 switch (gimple_code (t
))
2681 /* Return true if T is a statement that may alter the flow of control
2682 (e.g., a call to a non-returning function). */
2685 is_ctrl_altering_stmt (gimple
*t
)
2689 switch (gimple_code (t
))
2692 /* Per stmt call flag indicates whether the call could alter
2694 if (gimple_call_ctrl_altering_p (t
))
2698 case GIMPLE_EH_DISPATCH
:
2699 /* EH_DISPATCH branches to the individual catch handlers at
2700 this level of a try or allowed-exceptions region. It can
2701 fallthru to the next statement as well. */
2705 if (gimple_asm_nlabels (as_a
<gasm
*> (t
)) > 0)
2710 /* OpenMP directives alter control flow. */
2713 case GIMPLE_TRANSACTION
:
2714 /* A transaction start alters control flow. */
2721 /* If a statement can throw, it alters control flow. */
2722 return stmt_can_throw_internal (t
);
2726 /* Return true if T is a simple local goto. */
2729 simple_goto_p (gimple
*t
)
2731 return (gimple_code (t
) == GIMPLE_GOTO
2732 && TREE_CODE (gimple_goto_dest (t
)) == LABEL_DECL
);
2736 /* Return true if STMT should start a new basic block. PREV_STMT is
2737 the statement preceding STMT. It is used when STMT is a label or a
2738 case label. Labels should only start a new basic block if their
2739 previous statement wasn't a label. Otherwise, sequence of labels
2740 would generate unnecessary basic blocks that only contain a single
2744 stmt_starts_bb_p (gimple
*stmt
, gimple
*prev_stmt
)
2749 /* PREV_STMT is only set to a debug stmt if the debug stmt is before
2750 any nondebug stmts in the block. We don't want to start another
2751 block in this case: the debug stmt will already have started the
2752 one STMT would start if we weren't outputting debug stmts. */
2753 if (prev_stmt
&& is_gimple_debug (prev_stmt
))
2756 /* Labels start a new basic block only if the preceding statement
2757 wasn't a label of the same type. This prevents the creation of
2758 consecutive blocks that have nothing but a single label. */
2759 if (glabel
*label_stmt
= dyn_cast
<glabel
*> (stmt
))
2761 /* Nonlocal and computed GOTO targets always start a new block. */
2762 if (DECL_NONLOCAL (gimple_label_label (label_stmt
))
2763 || FORCED_LABEL (gimple_label_label (label_stmt
)))
2766 if (prev_stmt
&& gimple_code (prev_stmt
) == GIMPLE_LABEL
)
2768 if (DECL_NONLOCAL (gimple_label_label (
2769 as_a
<glabel
*> (prev_stmt
))))
2772 cfg_stats
.num_merged_labels
++;
2778 else if (gimple_code (stmt
) == GIMPLE_CALL
)
2780 if (gimple_call_flags (stmt
) & ECF_RETURNS_TWICE
)
2781 /* setjmp acts similar to a nonlocal GOTO target and thus should
2782 start a new block. */
2784 if (gimple_call_internal_p (stmt
, IFN_PHI
)
2786 && gimple_code (prev_stmt
) != GIMPLE_LABEL
2787 && (gimple_code (prev_stmt
) != GIMPLE_CALL
2788 || ! gimple_call_internal_p (prev_stmt
, IFN_PHI
)))
2789 /* PHI nodes start a new block unless preceeded by a label
2798 /* Return true if T should end a basic block. */
2801 stmt_ends_bb_p (gimple
*t
)
2803 return is_ctrl_stmt (t
) || is_ctrl_altering_stmt (t
);
2806 /* Remove block annotations and other data structures. */
2809 delete_tree_cfg_annotations (struct function
*fn
)
2811 vec_free (label_to_block_map_for_fn (fn
));
2814 /* Return the virtual phi in BB. */
2817 get_virtual_phi (basic_block bb
)
2819 for (gphi_iterator gsi
= gsi_start_phis (bb
);
2823 gphi
*phi
= gsi
.phi ();
2825 if (virtual_operand_p (PHI_RESULT (phi
)))
2832 /* Return the first statement in basic block BB. */
2835 first_stmt (basic_block bb
)
2837 gimple_stmt_iterator i
= gsi_start_bb (bb
);
2838 gimple
*stmt
= NULL
;
2840 while (!gsi_end_p (i
) && is_gimple_debug ((stmt
= gsi_stmt (i
))))
2848 /* Return the first non-label statement in basic block BB. */
2851 first_non_label_stmt (basic_block bb
)
2853 gimple_stmt_iterator i
= gsi_start_bb (bb
);
2854 while (!gsi_end_p (i
) && gimple_code (gsi_stmt (i
)) == GIMPLE_LABEL
)
2856 return !gsi_end_p (i
) ? gsi_stmt (i
) : NULL
;
2859 /* Return the last statement in basic block BB. */
2862 last_stmt (basic_block bb
)
2864 gimple_stmt_iterator i
= gsi_last_bb (bb
);
2865 gimple
*stmt
= NULL
;
2867 while (!gsi_end_p (i
) && is_gimple_debug ((stmt
= gsi_stmt (i
))))
2875 /* Return the last statement of an otherwise empty block. Return NULL
2876 if the block is totally empty, or if it contains more than one
2880 last_and_only_stmt (basic_block bb
)
2882 gimple_stmt_iterator i
= gsi_last_nondebug_bb (bb
);
2883 gimple
*last
, *prev
;
2888 last
= gsi_stmt (i
);
2889 gsi_prev_nondebug (&i
);
2893 /* Empty statements should no longer appear in the instruction stream.
2894 Everything that might have appeared before should be deleted by
2895 remove_useless_stmts, and the optimizers should just gsi_remove
2896 instead of smashing with build_empty_stmt.
2898 Thus the only thing that should appear here in a block containing
2899 one executable statement is a label. */
2900 prev
= gsi_stmt (i
);
2901 if (gimple_code (prev
) == GIMPLE_LABEL
)
2907 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2910 reinstall_phi_args (edge new_edge
, edge old_edge
)
2916 vec
<edge_var_map
> *v
= redirect_edge_var_map_vector (old_edge
);
2920 for (i
= 0, phis
= gsi_start_phis (new_edge
->dest
);
2921 v
->iterate (i
, &vm
) && !gsi_end_p (phis
);
2922 i
++, gsi_next (&phis
))
2924 gphi
*phi
= phis
.phi ();
2925 tree result
= redirect_edge_var_map_result (vm
);
2926 tree arg
= redirect_edge_var_map_def (vm
);
2928 gcc_assert (result
== gimple_phi_result (phi
));
2930 add_phi_arg (phi
, arg
, new_edge
, redirect_edge_var_map_location (vm
));
2933 redirect_edge_var_map_clear (old_edge
);
2936 /* Returns the basic block after which the new basic block created
2937 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2938 near its "logical" location. This is of most help to humans looking
2939 at debugging dumps. */
2942 split_edge_bb_loc (edge edge_in
)
2944 basic_block dest
= edge_in
->dest
;
2945 basic_block dest_prev
= dest
->prev_bb
;
2949 edge e
= find_edge (dest_prev
, dest
);
2950 if (e
&& !(e
->flags
& EDGE_COMPLEX
))
2951 return edge_in
->src
;
2956 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2957 Abort on abnormal edges. */
2960 gimple_split_edge (edge edge_in
)
2962 basic_block new_bb
, after_bb
, dest
;
2965 /* Abnormal edges cannot be split. */
2966 gcc_assert (!(edge_in
->flags
& EDGE_ABNORMAL
));
2968 dest
= edge_in
->dest
;
2970 after_bb
= split_edge_bb_loc (edge_in
);
2972 new_bb
= create_empty_bb (after_bb
);
2973 new_bb
->count
= edge_in
->count ();
2975 e
= redirect_edge_and_branch (edge_in
, new_bb
);
2976 gcc_assert (e
== edge_in
);
2978 new_edge
= make_single_succ_edge (new_bb
, dest
, EDGE_FALLTHRU
);
2979 reinstall_phi_args (new_edge
, e
);
2985 /* Verify properties of the address expression T whose base should be
2986 TREE_ADDRESSABLE if VERIFY_ADDRESSABLE is true. */
2989 verify_address (tree t
, bool verify_addressable
)
2992 bool old_side_effects
;
2994 bool new_side_effects
;
2996 old_constant
= TREE_CONSTANT (t
);
2997 old_side_effects
= TREE_SIDE_EFFECTS (t
);
2999 recompute_tree_invariant_for_addr_expr (t
);
3000 new_side_effects
= TREE_SIDE_EFFECTS (t
);
3001 new_constant
= TREE_CONSTANT (t
);
3003 if (old_constant
!= new_constant
)
3005 error ("constant not recomputed when ADDR_EXPR changed");
3008 if (old_side_effects
!= new_side_effects
)
3010 error ("side effects not recomputed when ADDR_EXPR changed");
3014 tree base
= TREE_OPERAND (t
, 0);
3015 while (handled_component_p (base
))
3016 base
= TREE_OPERAND (base
, 0);
3019 || TREE_CODE (base
) == PARM_DECL
3020 || TREE_CODE (base
) == RESULT_DECL
))
3023 if (DECL_GIMPLE_REG_P (base
))
3025 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
3029 if (verify_addressable
&& !TREE_ADDRESSABLE (base
))
3031 error ("address taken, but ADDRESSABLE bit not set");
3039 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
3040 Returns true if there is an error, otherwise false. */
3043 verify_types_in_gimple_min_lval (tree expr
)
3047 if (is_gimple_id (expr
))
3050 if (TREE_CODE (expr
) != TARGET_MEM_REF
3051 && TREE_CODE (expr
) != MEM_REF
)
3053 error ("invalid expression for min lvalue");
3057 /* TARGET_MEM_REFs are strange beasts. */
3058 if (TREE_CODE (expr
) == TARGET_MEM_REF
)
3061 op
= TREE_OPERAND (expr
, 0);
3062 if (!is_gimple_val (op
))
3064 error ("invalid operand in indirect reference");
3065 debug_generic_stmt (op
);
3068 /* Memory references now generally can involve a value conversion. */
3073 /* Verify if EXPR is a valid GIMPLE reference expression. If
3074 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
3075 if there is an error, otherwise false. */
3078 verify_types_in_gimple_reference (tree expr
, bool require_lvalue
)
3080 if (TREE_CODE (expr
) == REALPART_EXPR
3081 || TREE_CODE (expr
) == IMAGPART_EXPR
3082 || TREE_CODE (expr
) == BIT_FIELD_REF
)
3084 tree op
= TREE_OPERAND (expr
, 0);
3085 if (!is_gimple_reg_type (TREE_TYPE (expr
)))
3087 error ("non-scalar BIT_FIELD_REF, IMAGPART_EXPR or REALPART_EXPR");
3091 if (TREE_CODE (expr
) == BIT_FIELD_REF
)
3093 tree t1
= TREE_OPERAND (expr
, 1);
3094 tree t2
= TREE_OPERAND (expr
, 2);
3095 poly_uint64 size
, bitpos
;
3096 if (!poly_int_tree_p (t1
, &size
)
3097 || !poly_int_tree_p (t2
, &bitpos
)
3098 || !types_compatible_p (bitsizetype
, TREE_TYPE (t1
))
3099 || !types_compatible_p (bitsizetype
, TREE_TYPE (t2
)))
3101 error ("invalid position or size operand to BIT_FIELD_REF");
3104 if (INTEGRAL_TYPE_P (TREE_TYPE (expr
))
3105 && maybe_ne (TYPE_PRECISION (TREE_TYPE (expr
)), size
))
3107 error ("integral result type precision does not match "
3108 "field size of BIT_FIELD_REF");
3111 else if (!INTEGRAL_TYPE_P (TREE_TYPE (expr
))
3112 && TYPE_MODE (TREE_TYPE (expr
)) != BLKmode
3113 && maybe_ne (GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr
))),
3116 error ("mode size of non-integral result does not "
3117 "match field size of BIT_FIELD_REF");
3120 if (!AGGREGATE_TYPE_P (TREE_TYPE (op
))
3121 && maybe_gt (size
+ bitpos
,
3122 tree_to_poly_uint64 (TYPE_SIZE (TREE_TYPE (op
)))))
3124 error ("position plus size exceeds size of referenced object in "
3130 if ((TREE_CODE (expr
) == REALPART_EXPR
3131 || TREE_CODE (expr
) == IMAGPART_EXPR
)
3132 && !useless_type_conversion_p (TREE_TYPE (expr
),
3133 TREE_TYPE (TREE_TYPE (op
))))
3135 error ("type mismatch in real/imagpart reference");
3136 debug_generic_stmt (TREE_TYPE (expr
));
3137 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op
)));
3143 while (handled_component_p (expr
))
3145 if (TREE_CODE (expr
) == REALPART_EXPR
3146 || TREE_CODE (expr
) == IMAGPART_EXPR
3147 || TREE_CODE (expr
) == BIT_FIELD_REF
)
3149 error ("non-top-level BIT_FIELD_REF, IMAGPART_EXPR or REALPART_EXPR");
3153 tree op
= TREE_OPERAND (expr
, 0);
3155 if (TREE_CODE (expr
) == ARRAY_REF
3156 || TREE_CODE (expr
) == ARRAY_RANGE_REF
)
3158 if (!is_gimple_val (TREE_OPERAND (expr
, 1))
3159 || (TREE_OPERAND (expr
, 2)
3160 && !is_gimple_val (TREE_OPERAND (expr
, 2)))
3161 || (TREE_OPERAND (expr
, 3)
3162 && !is_gimple_val (TREE_OPERAND (expr
, 3))))
3164 error ("invalid operands to array reference");
3165 debug_generic_stmt (expr
);
3170 /* Verify if the reference array element types are compatible. */
3171 if (TREE_CODE (expr
) == ARRAY_REF
3172 && !useless_type_conversion_p (TREE_TYPE (expr
),
3173 TREE_TYPE (TREE_TYPE (op
))))
3175 error ("type mismatch in array reference");
3176 debug_generic_stmt (TREE_TYPE (expr
));
3177 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op
)));
3180 if (TREE_CODE (expr
) == ARRAY_RANGE_REF
3181 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr
)),
3182 TREE_TYPE (TREE_TYPE (op
))))
3184 error ("type mismatch in array range reference");
3185 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr
)));
3186 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op
)));
3190 if (TREE_CODE (expr
) == COMPONENT_REF
)
3192 if (TREE_OPERAND (expr
, 2)
3193 && !is_gimple_val (TREE_OPERAND (expr
, 2)))
3195 error ("invalid COMPONENT_REF offset operator");
3198 if (!useless_type_conversion_p (TREE_TYPE (expr
),
3199 TREE_TYPE (TREE_OPERAND (expr
, 1))))
3201 error ("type mismatch in component reference");
3202 debug_generic_stmt (TREE_TYPE (expr
));
3203 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr
, 1)));
3208 if (TREE_CODE (expr
) == VIEW_CONVERT_EXPR
)
3210 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
3211 that their operand is not an SSA name or an invariant when
3212 requiring an lvalue (this usually means there is a SRA or IPA-SRA
3213 bug). Otherwise there is nothing to verify, gross mismatches at
3214 most invoke undefined behavior. */
3216 && (TREE_CODE (op
) == SSA_NAME
3217 || is_gimple_min_invariant (op
)))
3219 error ("conversion of an SSA_NAME on the left hand side");
3220 debug_generic_stmt (expr
);
3223 else if (TREE_CODE (op
) == SSA_NAME
3224 && TYPE_SIZE (TREE_TYPE (expr
)) != TYPE_SIZE (TREE_TYPE (op
)))
3226 error ("conversion of register to a different size");
3227 debug_generic_stmt (expr
);
3230 else if (!handled_component_p (op
))
3237 if (TREE_CODE (expr
) == MEM_REF
)
3239 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr
, 0))
3240 || (TREE_CODE (TREE_OPERAND (expr
, 0)) == ADDR_EXPR
3241 && verify_address (TREE_OPERAND (expr
, 0), false)))
3243 error ("invalid address operand in MEM_REF");
3244 debug_generic_stmt (expr
);
3247 if (!poly_int_tree_p (TREE_OPERAND (expr
, 1))
3248 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr
, 1))))
3250 error ("invalid offset operand in MEM_REF");
3251 debug_generic_stmt (expr
);
3255 else if (TREE_CODE (expr
) == TARGET_MEM_REF
)
3257 if (!TMR_BASE (expr
)
3258 || !is_gimple_mem_ref_addr (TMR_BASE (expr
))
3259 || (TREE_CODE (TMR_BASE (expr
)) == ADDR_EXPR
3260 && verify_address (TMR_BASE (expr
), false)))
3262 error ("invalid address operand in TARGET_MEM_REF");
3265 if (!TMR_OFFSET (expr
)
3266 || !poly_int_tree_p (TMR_OFFSET (expr
))
3267 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr
))))
3269 error ("invalid offset operand in TARGET_MEM_REF");
3270 debug_generic_stmt (expr
);
3274 else if (TREE_CODE (expr
) == INDIRECT_REF
)
3276 error ("INDIRECT_REF in gimple IL");
3277 debug_generic_stmt (expr
);
3281 return ((require_lvalue
|| !is_gimple_min_invariant (expr
))
3282 && verify_types_in_gimple_min_lval (expr
));
3285 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3286 list of pointer-to types that is trivially convertible to DEST. */
3289 one_pointer_to_useless_type_conversion_p (tree dest
, tree src_obj
)
3293 if (!TYPE_POINTER_TO (src_obj
))
3296 for (src
= TYPE_POINTER_TO (src_obj
); src
; src
= TYPE_NEXT_PTR_TO (src
))
3297 if (useless_type_conversion_p (dest
, src
))
3303 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3304 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3307 valid_fixed_convert_types_p (tree type1
, tree type2
)
3309 return (FIXED_POINT_TYPE_P (type1
)
3310 && (INTEGRAL_TYPE_P (type2
)
3311 || SCALAR_FLOAT_TYPE_P (type2
)
3312 || FIXED_POINT_TYPE_P (type2
)));
3315 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3316 is a problem, otherwise false. */
3319 verify_gimple_call (gcall
*stmt
)
3321 tree fn
= gimple_call_fn (stmt
);
3322 tree fntype
, fndecl
;
3325 if (gimple_call_internal_p (stmt
))
3329 error ("gimple call has two targets");
3330 debug_generic_stmt (fn
);
3333 /* FIXME : for passing label as arg in internal fn PHI from GIMPLE FE*/
3334 else if (gimple_call_internal_fn (stmt
) == IFN_PHI
)
3343 error ("gimple call has no target");
3348 if (fn
&& !is_gimple_call_addr (fn
))
3350 error ("invalid function in gimple call");
3351 debug_generic_stmt (fn
);
3356 && (!POINTER_TYPE_P (TREE_TYPE (fn
))
3357 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn
))) != FUNCTION_TYPE
3358 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn
))) != METHOD_TYPE
)))
3360 error ("non-function in gimple call");
3364 fndecl
= gimple_call_fndecl (stmt
);
3366 && TREE_CODE (fndecl
) == FUNCTION_DECL
3367 && DECL_LOOPING_CONST_OR_PURE_P (fndecl
)
3368 && !DECL_PURE_P (fndecl
)
3369 && !TREE_READONLY (fndecl
))
3371 error ("invalid pure const state for function");
3375 tree lhs
= gimple_call_lhs (stmt
);
3377 && (!is_gimple_lvalue (lhs
)
3378 || verify_types_in_gimple_reference (lhs
, true)))
3380 error ("invalid LHS in gimple call");
3384 if (gimple_call_ctrl_altering_p (stmt
)
3385 && gimple_call_noreturn_p (stmt
)
3386 && should_remove_lhs_p (lhs
))
3388 error ("LHS in noreturn call");
3392 fntype
= gimple_call_fntype (stmt
);
3395 && !useless_type_conversion_p (TREE_TYPE (lhs
), TREE_TYPE (fntype
))
3396 /* ??? At least C++ misses conversions at assignments from
3397 void * call results.
3398 For now simply allow arbitrary pointer type conversions. */
3399 && !(POINTER_TYPE_P (TREE_TYPE (lhs
))
3400 && POINTER_TYPE_P (TREE_TYPE (fntype
))))
3402 error ("invalid conversion in gimple call");
3403 debug_generic_stmt (TREE_TYPE (lhs
));
3404 debug_generic_stmt (TREE_TYPE (fntype
));
3408 if (gimple_call_chain (stmt
)
3409 && !is_gimple_val (gimple_call_chain (stmt
)))
3411 error ("invalid static chain in gimple call");
3412 debug_generic_stmt (gimple_call_chain (stmt
));
3416 /* If there is a static chain argument, the call should either be
3417 indirect, or the decl should have DECL_STATIC_CHAIN set. */
3418 if (gimple_call_chain (stmt
)
3420 && !DECL_STATIC_CHAIN (fndecl
))
3422 error ("static chain with function that doesn%'t use one");
3426 if (fndecl
&& DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
)
3428 switch (DECL_FUNCTION_CODE (fndecl
))
3430 case BUILT_IN_UNREACHABLE
:
3432 if (gimple_call_num_args (stmt
) > 0)
3434 /* Built-in unreachable with parameters might not be caught by
3435 undefined behavior sanitizer. Front-ends do check users do not
3436 call them that way but we also produce calls to
3437 __builtin_unreachable internally, for example when IPA figures
3438 out a call cannot happen in a legal program. In such cases,
3439 we must make sure arguments are stripped off. */
3440 error ("__builtin_unreachable or __builtin_trap call with "
3450 /* ??? The C frontend passes unpromoted arguments in case it
3451 didn't see a function declaration before the call. So for now
3452 leave the call arguments mostly unverified. Once we gimplify
3453 unit-at-a-time we have a chance to fix this. */
3455 for (i
= 0; i
< gimple_call_num_args (stmt
); ++i
)
3457 tree arg
= gimple_call_arg (stmt
, i
);
3458 if ((is_gimple_reg_type (TREE_TYPE (arg
))
3459 && !is_gimple_val (arg
))
3460 || (!is_gimple_reg_type (TREE_TYPE (arg
))
3461 && !is_gimple_lvalue (arg
)))
3463 error ("invalid argument to gimple call");
3464 debug_generic_expr (arg
);
3472 /* Verifies the gimple comparison with the result type TYPE and
3473 the operands OP0 and OP1, comparison code is CODE. */
3476 verify_gimple_comparison (tree type
, tree op0
, tree op1
, enum tree_code code
)
3478 tree op0_type
= TREE_TYPE (op0
);
3479 tree op1_type
= TREE_TYPE (op1
);
3481 if (!is_gimple_val (op0
) || !is_gimple_val (op1
))
3483 error ("invalid operands in gimple comparison");
3487 /* For comparisons we do not have the operations type as the
3488 effective type the comparison is carried out in. Instead
3489 we require that either the first operand is trivially
3490 convertible into the second, or the other way around.
3491 Because we special-case pointers to void we allow
3492 comparisons of pointers with the same mode as well. */
3493 if (!useless_type_conversion_p (op0_type
, op1_type
)
3494 && !useless_type_conversion_p (op1_type
, op0_type
)
3495 && (!POINTER_TYPE_P (op0_type
)
3496 || !POINTER_TYPE_P (op1_type
)
3497 || TYPE_MODE (op0_type
) != TYPE_MODE (op1_type
)))
3499 error ("mismatching comparison operand types");
3500 debug_generic_expr (op0_type
);
3501 debug_generic_expr (op1_type
);
3505 /* The resulting type of a comparison may be an effective boolean type. */
3506 if (INTEGRAL_TYPE_P (type
)
3507 && (TREE_CODE (type
) == BOOLEAN_TYPE
3508 || TYPE_PRECISION (type
) == 1))
3510 if ((TREE_CODE (op0_type
) == VECTOR_TYPE
3511 || TREE_CODE (op1_type
) == VECTOR_TYPE
)
3512 && code
!= EQ_EXPR
&& code
!= NE_EXPR
3513 && !VECTOR_BOOLEAN_TYPE_P (op0_type
)
3514 && !VECTOR_INTEGER_TYPE_P (op0_type
))
3516 error ("unsupported operation or type for vector comparison"
3517 " returning a boolean");
3518 debug_generic_expr (op0_type
);
3519 debug_generic_expr (op1_type
);
3523 /* Or a boolean vector type with the same element count
3524 as the comparison operand types. */
3525 else if (TREE_CODE (type
) == VECTOR_TYPE
3526 && TREE_CODE (TREE_TYPE (type
)) == BOOLEAN_TYPE
)
3528 if (TREE_CODE (op0_type
) != VECTOR_TYPE
3529 || TREE_CODE (op1_type
) != VECTOR_TYPE
)
3531 error ("non-vector operands in vector comparison");
3532 debug_generic_expr (op0_type
);
3533 debug_generic_expr (op1_type
);
3537 if (maybe_ne (TYPE_VECTOR_SUBPARTS (type
),
3538 TYPE_VECTOR_SUBPARTS (op0_type
)))
3540 error ("invalid vector comparison resulting type");
3541 debug_generic_expr (type
);
3547 error ("bogus comparison result type");
3548 debug_generic_expr (type
);
3555 /* Verify a gimple assignment statement STMT with an unary rhs.
3556 Returns true if anything is wrong. */
3559 verify_gimple_assign_unary (gassign
*stmt
)
3561 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
3562 tree lhs
= gimple_assign_lhs (stmt
);
3563 tree lhs_type
= TREE_TYPE (lhs
);
3564 tree rhs1
= gimple_assign_rhs1 (stmt
);
3565 tree rhs1_type
= TREE_TYPE (rhs1
);
3567 if (!is_gimple_reg (lhs
))
3569 error ("non-register as LHS of unary operation");
3573 if (!is_gimple_val (rhs1
))
3575 error ("invalid operand in unary operation");
3579 /* First handle conversions. */
3584 /* Allow conversions from pointer type to integral type only if
3585 there is no sign or zero extension involved.
3586 For targets were the precision of ptrofftype doesn't match that
3587 of pointers we need to allow arbitrary conversions to ptrofftype. */
3588 if ((POINTER_TYPE_P (lhs_type
)
3589 && INTEGRAL_TYPE_P (rhs1_type
))
3590 || (POINTER_TYPE_P (rhs1_type
)
3591 && INTEGRAL_TYPE_P (lhs_type
)
3592 && (TYPE_PRECISION (rhs1_type
) >= TYPE_PRECISION (lhs_type
)
3593 || ptrofftype_p (lhs_type
))))
3596 /* Allow conversion from integral to offset type and vice versa. */
3597 if ((TREE_CODE (lhs_type
) == OFFSET_TYPE
3598 && INTEGRAL_TYPE_P (rhs1_type
))
3599 || (INTEGRAL_TYPE_P (lhs_type
)
3600 && TREE_CODE (rhs1_type
) == OFFSET_TYPE
))
3603 /* Otherwise assert we are converting between types of the
3605 if (INTEGRAL_TYPE_P (lhs_type
) != INTEGRAL_TYPE_P (rhs1_type
))
3607 error ("invalid types in nop conversion");
3608 debug_generic_expr (lhs_type
);
3609 debug_generic_expr (rhs1_type
);
3616 case ADDR_SPACE_CONVERT_EXPR
:
3618 if (!POINTER_TYPE_P (rhs1_type
) || !POINTER_TYPE_P (lhs_type
)
3619 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type
))
3620 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type
))))
3622 error ("invalid types in address space conversion");
3623 debug_generic_expr (lhs_type
);
3624 debug_generic_expr (rhs1_type
);
3631 case FIXED_CONVERT_EXPR
:
3633 if (!valid_fixed_convert_types_p (lhs_type
, rhs1_type
)
3634 && !valid_fixed_convert_types_p (rhs1_type
, lhs_type
))
3636 error ("invalid types in fixed-point conversion");
3637 debug_generic_expr (lhs_type
);
3638 debug_generic_expr (rhs1_type
);
3647 if ((!INTEGRAL_TYPE_P (rhs1_type
) || !SCALAR_FLOAT_TYPE_P (lhs_type
))
3648 && (!VECTOR_INTEGER_TYPE_P (rhs1_type
)
3649 || !VECTOR_FLOAT_TYPE_P (lhs_type
)))
3651 error ("invalid types in conversion to floating point");
3652 debug_generic_expr (lhs_type
);
3653 debug_generic_expr (rhs1_type
);
3660 case FIX_TRUNC_EXPR
:
3662 if ((!INTEGRAL_TYPE_P (lhs_type
) || !SCALAR_FLOAT_TYPE_P (rhs1_type
))
3663 && (!VECTOR_INTEGER_TYPE_P (lhs_type
)
3664 || !VECTOR_FLOAT_TYPE_P (rhs1_type
)))
3666 error ("invalid types in conversion to integer");
3667 debug_generic_expr (lhs_type
);
3668 debug_generic_expr (rhs1_type
);
3675 case VEC_UNPACK_HI_EXPR
:
3676 case VEC_UNPACK_LO_EXPR
:
3677 case VEC_UNPACK_FLOAT_HI_EXPR
:
3678 case VEC_UNPACK_FLOAT_LO_EXPR
:
3679 case VEC_UNPACK_FIX_TRUNC_HI_EXPR
:
3680 case VEC_UNPACK_FIX_TRUNC_LO_EXPR
:
3681 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
3682 || TREE_CODE (lhs_type
) != VECTOR_TYPE
3683 || (!INTEGRAL_TYPE_P (TREE_TYPE (lhs_type
))
3684 && !SCALAR_FLOAT_TYPE_P (TREE_TYPE (lhs_type
)))
3685 || (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
3686 && !SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type
)))
3687 || ((rhs_code
== VEC_UNPACK_HI_EXPR
3688 || rhs_code
== VEC_UNPACK_LO_EXPR
)
3689 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs_type
))
3690 != INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))))
3691 || ((rhs_code
== VEC_UNPACK_FLOAT_HI_EXPR
3692 || rhs_code
== VEC_UNPACK_FLOAT_LO_EXPR
)
3693 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs_type
))
3694 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type
))))
3695 || ((rhs_code
== VEC_UNPACK_FIX_TRUNC_HI_EXPR
3696 || rhs_code
== VEC_UNPACK_FIX_TRUNC_LO_EXPR
)
3697 && (INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
3698 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (lhs_type
))))
3699 || (maybe_ne (GET_MODE_SIZE (element_mode (lhs_type
)),
3700 2 * GET_MODE_SIZE (element_mode (rhs1_type
)))
3701 && (!VECTOR_BOOLEAN_TYPE_P (lhs_type
)
3702 || !VECTOR_BOOLEAN_TYPE_P (rhs1_type
)))
3703 || maybe_ne (2 * TYPE_VECTOR_SUBPARTS (lhs_type
),
3704 TYPE_VECTOR_SUBPARTS (rhs1_type
)))
3706 error ("type mismatch in vector unpack expression");
3707 debug_generic_expr (lhs_type
);
3708 debug_generic_expr (rhs1_type
);
3721 case VEC_DUPLICATE_EXPR
:
3722 if (TREE_CODE (lhs_type
) != VECTOR_TYPE
3723 || !useless_type_conversion_p (TREE_TYPE (lhs_type
), rhs1_type
))
3725 error ("vec_duplicate should be from a scalar to a like vector");
3726 debug_generic_expr (lhs_type
);
3727 debug_generic_expr (rhs1_type
);
3736 /* For the remaining codes assert there is no conversion involved. */
3737 if (!useless_type_conversion_p (lhs_type
, rhs1_type
))
3739 error ("non-trivial conversion in unary operation");
3740 debug_generic_expr (lhs_type
);
3741 debug_generic_expr (rhs1_type
);
3748 /* Verify a gimple assignment statement STMT with a binary rhs.
3749 Returns true if anything is wrong. */
3752 verify_gimple_assign_binary (gassign
*stmt
)
3754 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
3755 tree lhs
= gimple_assign_lhs (stmt
);
3756 tree lhs_type
= TREE_TYPE (lhs
);
3757 tree rhs1
= gimple_assign_rhs1 (stmt
);
3758 tree rhs1_type
= TREE_TYPE (rhs1
);
3759 tree rhs2
= gimple_assign_rhs2 (stmt
);
3760 tree rhs2_type
= TREE_TYPE (rhs2
);
3762 if (!is_gimple_reg (lhs
))
3764 error ("non-register as LHS of binary operation");
3768 if (!is_gimple_val (rhs1
)
3769 || !is_gimple_val (rhs2
))
3771 error ("invalid operands in binary operation");
3775 /* First handle operations that involve different types. */
3780 if (TREE_CODE (lhs_type
) != COMPLEX_TYPE
3781 || !(INTEGRAL_TYPE_P (rhs1_type
)
3782 || SCALAR_FLOAT_TYPE_P (rhs1_type
))
3783 || !(INTEGRAL_TYPE_P (rhs2_type
)
3784 || SCALAR_FLOAT_TYPE_P (rhs2_type
)))
3786 error ("type mismatch in complex expression");
3787 debug_generic_expr (lhs_type
);
3788 debug_generic_expr (rhs1_type
);
3789 debug_generic_expr (rhs2_type
);
3801 /* Shifts and rotates are ok on integral types, fixed point
3802 types and integer vector types. */
3803 if ((!INTEGRAL_TYPE_P (rhs1_type
)
3804 && !FIXED_POINT_TYPE_P (rhs1_type
)
3805 && !(TREE_CODE (rhs1_type
) == VECTOR_TYPE
3806 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))))
3807 || (!INTEGRAL_TYPE_P (rhs2_type
)
3808 /* Vector shifts of vectors are also ok. */
3809 && !(TREE_CODE (rhs1_type
) == VECTOR_TYPE
3810 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
3811 && TREE_CODE (rhs2_type
) == VECTOR_TYPE
3812 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type
))))
3813 || !useless_type_conversion_p (lhs_type
, rhs1_type
))
3815 error ("type mismatch in shift expression");
3816 debug_generic_expr (lhs_type
);
3817 debug_generic_expr (rhs1_type
);
3818 debug_generic_expr (rhs2_type
);
3825 case WIDEN_LSHIFT_EXPR
:
3827 if (!INTEGRAL_TYPE_P (lhs_type
)
3828 || !INTEGRAL_TYPE_P (rhs1_type
)
3829 || TREE_CODE (rhs2
) != INTEGER_CST
3830 || (2 * TYPE_PRECISION (rhs1_type
) > TYPE_PRECISION (lhs_type
)))
3832 error ("type mismatch in widening vector shift expression");
3833 debug_generic_expr (lhs_type
);
3834 debug_generic_expr (rhs1_type
);
3835 debug_generic_expr (rhs2_type
);
3842 case VEC_WIDEN_LSHIFT_HI_EXPR
:
3843 case VEC_WIDEN_LSHIFT_LO_EXPR
:
3845 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
3846 || TREE_CODE (lhs_type
) != VECTOR_TYPE
3847 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
3848 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type
))
3849 || TREE_CODE (rhs2
) != INTEGER_CST
3850 || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type
))
3851 > TYPE_PRECISION (TREE_TYPE (lhs_type
))))
3853 error ("type mismatch in widening vector shift expression");
3854 debug_generic_expr (lhs_type
);
3855 debug_generic_expr (rhs1_type
);
3856 debug_generic_expr (rhs2_type
);
3866 tree lhs_etype
= lhs_type
;
3867 tree rhs1_etype
= rhs1_type
;
3868 tree rhs2_etype
= rhs2_type
;
3869 if (TREE_CODE (lhs_type
) == VECTOR_TYPE
)
3871 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
3872 || TREE_CODE (rhs2_type
) != VECTOR_TYPE
)
3874 error ("invalid non-vector operands to vector valued plus");
3877 lhs_etype
= TREE_TYPE (lhs_type
);
3878 rhs1_etype
= TREE_TYPE (rhs1_type
);
3879 rhs2_etype
= TREE_TYPE (rhs2_type
);
3881 if (POINTER_TYPE_P (lhs_etype
)
3882 || POINTER_TYPE_P (rhs1_etype
)
3883 || POINTER_TYPE_P (rhs2_etype
))
3885 error ("invalid (pointer) operands to plus/minus");
3889 /* Continue with generic binary expression handling. */
3893 case POINTER_PLUS_EXPR
:
3895 if (!POINTER_TYPE_P (rhs1_type
)
3896 || !useless_type_conversion_p (lhs_type
, rhs1_type
)
3897 || !ptrofftype_p (rhs2_type
))
3899 error ("type mismatch in pointer plus expression");
3900 debug_generic_stmt (lhs_type
);
3901 debug_generic_stmt (rhs1_type
);
3902 debug_generic_stmt (rhs2_type
);
3909 case POINTER_DIFF_EXPR
:
3911 if (!POINTER_TYPE_P (rhs1_type
)
3912 || !POINTER_TYPE_P (rhs2_type
)
3913 /* Because we special-case pointers to void we allow difference
3914 of arbitrary pointers with the same mode. */
3915 || TYPE_MODE (rhs1_type
) != TYPE_MODE (rhs2_type
)
3916 || TREE_CODE (lhs_type
) != INTEGER_TYPE
3917 || TYPE_UNSIGNED (lhs_type
)
3918 || TYPE_PRECISION (lhs_type
) != TYPE_PRECISION (rhs1_type
))
3920 error ("type mismatch in pointer diff expression");
3921 debug_generic_stmt (lhs_type
);
3922 debug_generic_stmt (rhs1_type
);
3923 debug_generic_stmt (rhs2_type
);
3930 case TRUTH_ANDIF_EXPR
:
3931 case TRUTH_ORIF_EXPR
:
3932 case TRUTH_AND_EXPR
:
3934 case TRUTH_XOR_EXPR
:
3944 case UNORDERED_EXPR
:
3952 /* Comparisons are also binary, but the result type is not
3953 connected to the operand types. */
3954 return verify_gimple_comparison (lhs_type
, rhs1
, rhs2
, rhs_code
);
3956 case WIDEN_MULT_EXPR
:
3957 if (TREE_CODE (lhs_type
) != INTEGER_TYPE
)
3959 return ((2 * TYPE_PRECISION (rhs1_type
) > TYPE_PRECISION (lhs_type
))
3960 || (TYPE_PRECISION (rhs1_type
) != TYPE_PRECISION (rhs2_type
)));
3962 case WIDEN_SUM_EXPR
:
3964 if (((TREE_CODE (rhs1_type
) != VECTOR_TYPE
3965 || TREE_CODE (lhs_type
) != VECTOR_TYPE
)
3966 && ((!INTEGRAL_TYPE_P (rhs1_type
)
3967 && !SCALAR_FLOAT_TYPE_P (rhs1_type
))
3968 || (!INTEGRAL_TYPE_P (lhs_type
)
3969 && !SCALAR_FLOAT_TYPE_P (lhs_type
))))
3970 || !useless_type_conversion_p (lhs_type
, rhs2_type
)
3971 || maybe_lt (GET_MODE_SIZE (element_mode (rhs2_type
)),
3972 2 * GET_MODE_SIZE (element_mode (rhs1_type
))))
3974 error ("type mismatch in widening sum reduction");
3975 debug_generic_expr (lhs_type
);
3976 debug_generic_expr (rhs1_type
);
3977 debug_generic_expr (rhs2_type
);
3983 case VEC_WIDEN_MULT_HI_EXPR
:
3984 case VEC_WIDEN_MULT_LO_EXPR
:
3985 case VEC_WIDEN_MULT_EVEN_EXPR
:
3986 case VEC_WIDEN_MULT_ODD_EXPR
:
3988 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
3989 || TREE_CODE (lhs_type
) != VECTOR_TYPE
3990 || !types_compatible_p (rhs1_type
, rhs2_type
)
3991 || maybe_ne (GET_MODE_SIZE (element_mode (lhs_type
)),
3992 2 * GET_MODE_SIZE (element_mode (rhs1_type
))))
3994 error ("type mismatch in vector widening multiplication");
3995 debug_generic_expr (lhs_type
);
3996 debug_generic_expr (rhs1_type
);
3997 debug_generic_expr (rhs2_type
);
4003 case VEC_PACK_TRUNC_EXPR
:
4004 /* ??? We currently use VEC_PACK_TRUNC_EXPR to simply concat
4005 vector boolean types. */
4006 if (VECTOR_BOOLEAN_TYPE_P (lhs_type
)
4007 && VECTOR_BOOLEAN_TYPE_P (rhs1_type
)
4008 && types_compatible_p (rhs1_type
, rhs2_type
)
4009 && known_eq (TYPE_VECTOR_SUBPARTS (lhs_type
),
4010 2 * TYPE_VECTOR_SUBPARTS (rhs1_type
)))
4014 case VEC_PACK_SAT_EXPR
:
4015 case VEC_PACK_FIX_TRUNC_EXPR
:
4017 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
4018 || TREE_CODE (lhs_type
) != VECTOR_TYPE
4019 || !((rhs_code
== VEC_PACK_FIX_TRUNC_EXPR
4020 && SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type
))
4021 && INTEGRAL_TYPE_P (TREE_TYPE (lhs_type
)))
4022 || (INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
4023 == INTEGRAL_TYPE_P (TREE_TYPE (lhs_type
))))
4024 || !types_compatible_p (rhs1_type
, rhs2_type
)
4025 || maybe_ne (GET_MODE_SIZE (element_mode (rhs1_type
)),
4026 2 * GET_MODE_SIZE (element_mode (lhs_type
)))
4027 || maybe_ne (2 * TYPE_VECTOR_SUBPARTS (rhs1_type
),
4028 TYPE_VECTOR_SUBPARTS (lhs_type
)))
4030 error ("type mismatch in vector pack expression");
4031 debug_generic_expr (lhs_type
);
4032 debug_generic_expr (rhs1_type
);
4033 debug_generic_expr (rhs2_type
);
4040 case VEC_PACK_FLOAT_EXPR
:
4041 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
4042 || TREE_CODE (lhs_type
) != VECTOR_TYPE
4043 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
4044 || !SCALAR_FLOAT_TYPE_P (TREE_TYPE (lhs_type
))
4045 || !types_compatible_p (rhs1_type
, rhs2_type
)
4046 || maybe_ne (GET_MODE_SIZE (element_mode (rhs1_type
)),
4047 2 * GET_MODE_SIZE (element_mode (lhs_type
)))
4048 || maybe_ne (2 * TYPE_VECTOR_SUBPARTS (rhs1_type
),
4049 TYPE_VECTOR_SUBPARTS (lhs_type
)))
4051 error ("type mismatch in vector pack expression");
4052 debug_generic_expr (lhs_type
);
4053 debug_generic_expr (rhs1_type
);
4054 debug_generic_expr (rhs2_type
);
4061 case MULT_HIGHPART_EXPR
:
4062 case TRUNC_DIV_EXPR
:
4064 case FLOOR_DIV_EXPR
:
4065 case ROUND_DIV_EXPR
:
4066 case TRUNC_MOD_EXPR
:
4068 case FLOOR_MOD_EXPR
:
4069 case ROUND_MOD_EXPR
:
4071 case EXACT_DIV_EXPR
:
4077 /* Continue with generic binary expression handling. */
4080 case VEC_SERIES_EXPR
:
4081 if (!useless_type_conversion_p (rhs1_type
, rhs2_type
))
4083 error ("type mismatch in series expression");
4084 debug_generic_expr (rhs1_type
);
4085 debug_generic_expr (rhs2_type
);
4088 if (TREE_CODE (lhs_type
) != VECTOR_TYPE
4089 || !useless_type_conversion_p (TREE_TYPE (lhs_type
), rhs1_type
))
4091 error ("vector type expected in series expression");
4092 debug_generic_expr (lhs_type
);
4101 if (!useless_type_conversion_p (lhs_type
, rhs1_type
)
4102 || !useless_type_conversion_p (lhs_type
, rhs2_type
))
4104 error ("type mismatch in binary expression");
4105 debug_generic_stmt (lhs_type
);
4106 debug_generic_stmt (rhs1_type
);
4107 debug_generic_stmt (rhs2_type
);
4114 /* Verify a gimple assignment statement STMT with a ternary rhs.
4115 Returns true if anything is wrong. */
4118 verify_gimple_assign_ternary (gassign
*stmt
)
4120 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
4121 tree lhs
= gimple_assign_lhs (stmt
);
4122 tree lhs_type
= TREE_TYPE (lhs
);
4123 tree rhs1
= gimple_assign_rhs1 (stmt
);
4124 tree rhs1_type
= TREE_TYPE (rhs1
);
4125 tree rhs2
= gimple_assign_rhs2 (stmt
);
4126 tree rhs2_type
= TREE_TYPE (rhs2
);
4127 tree rhs3
= gimple_assign_rhs3 (stmt
);
4128 tree rhs3_type
= TREE_TYPE (rhs3
);
4130 if (!is_gimple_reg (lhs
))
4132 error ("non-register as LHS of ternary operation");
4136 if (((rhs_code
== VEC_COND_EXPR
|| rhs_code
== COND_EXPR
)
4137 ? !is_gimple_condexpr (rhs1
) : !is_gimple_val (rhs1
))
4138 || !is_gimple_val (rhs2
)
4139 || !is_gimple_val (rhs3
))
4141 error ("invalid operands in ternary operation");
4145 /* First handle operations that involve different types. */
4148 case WIDEN_MULT_PLUS_EXPR
:
4149 case WIDEN_MULT_MINUS_EXPR
:
4150 if ((!INTEGRAL_TYPE_P (rhs1_type
)
4151 && !FIXED_POINT_TYPE_P (rhs1_type
))
4152 || !useless_type_conversion_p (rhs1_type
, rhs2_type
)
4153 || !useless_type_conversion_p (lhs_type
, rhs3_type
)
4154 || 2 * TYPE_PRECISION (rhs1_type
) > TYPE_PRECISION (lhs_type
)
4155 || TYPE_PRECISION (rhs1_type
) != TYPE_PRECISION (rhs2_type
))
4157 error ("type mismatch in widening multiply-accumulate expression");
4158 debug_generic_expr (lhs_type
);
4159 debug_generic_expr (rhs1_type
);
4160 debug_generic_expr (rhs2_type
);
4161 debug_generic_expr (rhs3_type
);
4167 if (!VECTOR_BOOLEAN_TYPE_P (rhs1_type
)
4168 || maybe_ne (TYPE_VECTOR_SUBPARTS (rhs1_type
),
4169 TYPE_VECTOR_SUBPARTS (lhs_type
)))
4171 error ("the first argument of a VEC_COND_EXPR must be of a "
4172 "boolean vector type of the same number of elements "
4174 debug_generic_expr (lhs_type
);
4175 debug_generic_expr (rhs1_type
);
4180 if (!is_gimple_val (rhs1
)
4181 && verify_gimple_comparison (TREE_TYPE (rhs1
),
4182 TREE_OPERAND (rhs1
, 0),
4183 TREE_OPERAND (rhs1
, 1),
4186 if (!useless_type_conversion_p (lhs_type
, rhs2_type
)
4187 || !useless_type_conversion_p (lhs_type
, rhs3_type
))
4189 error ("type mismatch in conditional expression");
4190 debug_generic_expr (lhs_type
);
4191 debug_generic_expr (rhs2_type
);
4192 debug_generic_expr (rhs3_type
);
4198 if (!useless_type_conversion_p (lhs_type
, rhs1_type
)
4199 || !useless_type_conversion_p (lhs_type
, rhs2_type
))
4201 error ("type mismatch in vector permute expression");
4202 debug_generic_expr (lhs_type
);
4203 debug_generic_expr (rhs1_type
);
4204 debug_generic_expr (rhs2_type
);
4205 debug_generic_expr (rhs3_type
);
4209 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
4210 || TREE_CODE (rhs2_type
) != VECTOR_TYPE
4211 || TREE_CODE (rhs3_type
) != VECTOR_TYPE
)
4213 error ("vector types expected in vector permute expression");
4214 debug_generic_expr (lhs_type
);
4215 debug_generic_expr (rhs1_type
);
4216 debug_generic_expr (rhs2_type
);
4217 debug_generic_expr (rhs3_type
);
4221 if (maybe_ne (TYPE_VECTOR_SUBPARTS (rhs1_type
),
4222 TYPE_VECTOR_SUBPARTS (rhs2_type
))
4223 || maybe_ne (TYPE_VECTOR_SUBPARTS (rhs2_type
),
4224 TYPE_VECTOR_SUBPARTS (rhs3_type
))
4225 || maybe_ne (TYPE_VECTOR_SUBPARTS (rhs3_type
),
4226 TYPE_VECTOR_SUBPARTS (lhs_type
)))
4228 error ("vectors with different element number found "
4229 "in vector permute expression");
4230 debug_generic_expr (lhs_type
);
4231 debug_generic_expr (rhs1_type
);
4232 debug_generic_expr (rhs2_type
);
4233 debug_generic_expr (rhs3_type
);
4237 if (TREE_CODE (TREE_TYPE (rhs3_type
)) != INTEGER_TYPE
4238 || (TREE_CODE (rhs3
) != VECTOR_CST
4239 && (GET_MODE_BITSIZE (SCALAR_INT_TYPE_MODE
4240 (TREE_TYPE (rhs3_type
)))
4241 != GET_MODE_BITSIZE (SCALAR_TYPE_MODE
4242 (TREE_TYPE (rhs1_type
))))))
4244 error ("invalid mask type in vector permute expression");
4245 debug_generic_expr (lhs_type
);
4246 debug_generic_expr (rhs1_type
);
4247 debug_generic_expr (rhs2_type
);
4248 debug_generic_expr (rhs3_type
);
4255 if (!useless_type_conversion_p (rhs1_type
, rhs2_type
)
4256 || !useless_type_conversion_p (lhs_type
, rhs3_type
)
4257 || 2 * GET_MODE_UNIT_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type
)))
4258 > GET_MODE_UNIT_BITSIZE (TYPE_MODE (TREE_TYPE (lhs_type
))))
4260 error ("type mismatch in sad expression");
4261 debug_generic_expr (lhs_type
);
4262 debug_generic_expr (rhs1_type
);
4263 debug_generic_expr (rhs2_type
);
4264 debug_generic_expr (rhs3_type
);
4268 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
4269 || TREE_CODE (rhs2_type
) != VECTOR_TYPE
4270 || TREE_CODE (rhs3_type
) != VECTOR_TYPE
)
4272 error ("vector types expected in sad expression");
4273 debug_generic_expr (lhs_type
);
4274 debug_generic_expr (rhs1_type
);
4275 debug_generic_expr (rhs2_type
);
4276 debug_generic_expr (rhs3_type
);
4282 case BIT_INSERT_EXPR
:
4283 if (! useless_type_conversion_p (lhs_type
, rhs1_type
))
4285 error ("type mismatch in BIT_INSERT_EXPR");
4286 debug_generic_expr (lhs_type
);
4287 debug_generic_expr (rhs1_type
);
4290 if (! ((INTEGRAL_TYPE_P (rhs1_type
)
4291 && INTEGRAL_TYPE_P (rhs2_type
))
4292 || (VECTOR_TYPE_P (rhs1_type
)
4293 && types_compatible_p (TREE_TYPE (rhs1_type
), rhs2_type
))))
4295 error ("not allowed type combination in BIT_INSERT_EXPR");
4296 debug_generic_expr (rhs1_type
);
4297 debug_generic_expr (rhs2_type
);
4300 if (! tree_fits_uhwi_p (rhs3
)
4301 || ! types_compatible_p (bitsizetype
, TREE_TYPE (rhs3
))
4302 || ! tree_fits_uhwi_p (TYPE_SIZE (rhs2_type
)))
4304 error ("invalid position or size in BIT_INSERT_EXPR");
4307 if (INTEGRAL_TYPE_P (rhs1_type
))
4309 unsigned HOST_WIDE_INT bitpos
= tree_to_uhwi (rhs3
);
4310 if (bitpos
>= TYPE_PRECISION (rhs1_type
)
4311 || (bitpos
+ TYPE_PRECISION (rhs2_type
)
4312 > TYPE_PRECISION (rhs1_type
)))
4314 error ("insertion out of range in BIT_INSERT_EXPR");
4318 else if (VECTOR_TYPE_P (rhs1_type
))
4320 unsigned HOST_WIDE_INT bitpos
= tree_to_uhwi (rhs3
);
4321 unsigned HOST_WIDE_INT bitsize
= tree_to_uhwi (TYPE_SIZE (rhs2_type
));
4322 if (bitpos
% bitsize
!= 0)
4324 error ("vector insertion not at element boundary");
4332 if (((TREE_CODE (rhs1_type
) != VECTOR_TYPE
4333 || TREE_CODE (lhs_type
) != VECTOR_TYPE
)
4334 && ((!INTEGRAL_TYPE_P (rhs1_type
)
4335 && !SCALAR_FLOAT_TYPE_P (rhs1_type
))
4336 || (!INTEGRAL_TYPE_P (lhs_type
)
4337 && !SCALAR_FLOAT_TYPE_P (lhs_type
))))
4338 || !types_compatible_p (rhs1_type
, rhs2_type
)
4339 || !useless_type_conversion_p (lhs_type
, rhs3_type
)
4340 || maybe_lt (GET_MODE_SIZE (element_mode (rhs3_type
)),
4341 2 * GET_MODE_SIZE (element_mode (rhs1_type
))))
4343 error ("type mismatch in dot product reduction");
4344 debug_generic_expr (lhs_type
);
4345 debug_generic_expr (rhs1_type
);
4346 debug_generic_expr (rhs2_type
);
4352 case REALIGN_LOAD_EXPR
:
4362 /* Verify a gimple assignment statement STMT with a single rhs.
4363 Returns true if anything is wrong. */
4366 verify_gimple_assign_single (gassign
*stmt
)
4368 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
4369 tree lhs
= gimple_assign_lhs (stmt
);
4370 tree lhs_type
= TREE_TYPE (lhs
);
4371 tree rhs1
= gimple_assign_rhs1 (stmt
);
4372 tree rhs1_type
= TREE_TYPE (rhs1
);
4375 if (!useless_type_conversion_p (lhs_type
, rhs1_type
))
4377 error ("non-trivial conversion at assignment");
4378 debug_generic_expr (lhs_type
);
4379 debug_generic_expr (rhs1_type
);
4383 if (gimple_clobber_p (stmt
)
4384 && !(DECL_P (lhs
) || TREE_CODE (lhs
) == MEM_REF
))
4386 error ("non-decl/MEM_REF LHS in clobber statement");
4387 debug_generic_expr (lhs
);
4391 if (handled_component_p (lhs
)
4392 || TREE_CODE (lhs
) == MEM_REF
4393 || TREE_CODE (lhs
) == TARGET_MEM_REF
)
4394 res
|= verify_types_in_gimple_reference (lhs
, true);
4396 /* Special codes we cannot handle via their class. */
4401 tree op
= TREE_OPERAND (rhs1
, 0);
4402 if (!is_gimple_addressable (op
))
4404 error ("invalid operand in unary expression");
4408 /* Technically there is no longer a need for matching types, but
4409 gimple hygiene asks for this check. In LTO we can end up
4410 combining incompatible units and thus end up with addresses
4411 of globals that change their type to a common one. */
4413 && !types_compatible_p (TREE_TYPE (op
),
4414 TREE_TYPE (TREE_TYPE (rhs1
)))
4415 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1
),
4418 error ("type mismatch in address expression");
4419 debug_generic_stmt (TREE_TYPE (rhs1
));
4420 debug_generic_stmt (TREE_TYPE (op
));
4424 return (verify_address (rhs1
, true)
4425 || verify_types_in_gimple_reference (op
, true));
4430 error ("INDIRECT_REF in gimple IL");
4436 case ARRAY_RANGE_REF
:
4437 case VIEW_CONVERT_EXPR
:
4440 case TARGET_MEM_REF
:
4442 if (!is_gimple_reg (lhs
)
4443 && is_gimple_reg_type (TREE_TYPE (lhs
)))
4445 error ("invalid rhs for gimple memory store");
4446 debug_generic_stmt (lhs
);
4447 debug_generic_stmt (rhs1
);
4450 return res
|| verify_types_in_gimple_reference (rhs1
, false);
4462 /* tcc_declaration */
4467 if (!is_gimple_reg (lhs
)
4468 && !is_gimple_reg (rhs1
)
4469 && is_gimple_reg_type (TREE_TYPE (lhs
)))
4471 error ("invalid rhs for gimple memory store");
4472 debug_generic_stmt (lhs
);
4473 debug_generic_stmt (rhs1
);
4479 if (TREE_CODE (rhs1_type
) == VECTOR_TYPE
)
4482 tree elt_i
, elt_v
, elt_t
= NULL_TREE
;
4484 if (CONSTRUCTOR_NELTS (rhs1
) == 0)
4486 /* For vector CONSTRUCTORs we require that either it is empty
4487 CONSTRUCTOR, or it is a CONSTRUCTOR of smaller vector elements
4488 (then the element count must be correct to cover the whole
4489 outer vector and index must be NULL on all elements, or it is
4490 a CONSTRUCTOR of scalar elements, where we as an exception allow
4491 smaller number of elements (assuming zero filling) and
4492 consecutive indexes as compared to NULL indexes (such
4493 CONSTRUCTORs can appear in the IL from FEs). */
4494 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (rhs1
), i
, elt_i
, elt_v
)
4496 if (elt_t
== NULL_TREE
)
4498 elt_t
= TREE_TYPE (elt_v
);
4499 if (TREE_CODE (elt_t
) == VECTOR_TYPE
)
4501 tree elt_t
= TREE_TYPE (elt_v
);
4502 if (!useless_type_conversion_p (TREE_TYPE (rhs1_type
),
4505 error ("incorrect type of vector CONSTRUCTOR"
4507 debug_generic_stmt (rhs1
);
4510 else if (maybe_ne (CONSTRUCTOR_NELTS (rhs1
)
4511 * TYPE_VECTOR_SUBPARTS (elt_t
),
4512 TYPE_VECTOR_SUBPARTS (rhs1_type
)))
4514 error ("incorrect number of vector CONSTRUCTOR"
4516 debug_generic_stmt (rhs1
);
4520 else if (!useless_type_conversion_p (TREE_TYPE (rhs1_type
),
4523 error ("incorrect type of vector CONSTRUCTOR elements");
4524 debug_generic_stmt (rhs1
);
4527 else if (maybe_gt (CONSTRUCTOR_NELTS (rhs1
),
4528 TYPE_VECTOR_SUBPARTS (rhs1_type
)))
4530 error ("incorrect number of vector CONSTRUCTOR elements");
4531 debug_generic_stmt (rhs1
);
4535 else if (!useless_type_conversion_p (elt_t
, TREE_TYPE (elt_v
)))
4537 error ("incorrect type of vector CONSTRUCTOR elements");
4538 debug_generic_stmt (rhs1
);
4541 if (elt_i
!= NULL_TREE
4542 && (TREE_CODE (elt_t
) == VECTOR_TYPE
4543 || TREE_CODE (elt_i
) != INTEGER_CST
4544 || compare_tree_int (elt_i
, i
) != 0))
4546 error ("vector CONSTRUCTOR with non-NULL element index");
4547 debug_generic_stmt (rhs1
);
4550 if (!is_gimple_val (elt_v
))
4552 error ("vector CONSTRUCTOR element is not a GIMPLE value");
4553 debug_generic_stmt (rhs1
);
4558 else if (CONSTRUCTOR_NELTS (rhs1
) != 0)
4560 error ("non-vector CONSTRUCTOR with elements");
4561 debug_generic_stmt (rhs1
);
4568 rhs1
= fold (ASSERT_EXPR_COND (rhs1
));
4569 if (rhs1
== boolean_false_node
)
4571 error ("ASSERT_EXPR with an always-false condition");
4572 debug_generic_stmt (rhs1
);
4578 case WITH_SIZE_EXPR
:
4588 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
4589 is a problem, otherwise false. */
4592 verify_gimple_assign (gassign
*stmt
)
4594 switch (gimple_assign_rhs_class (stmt
))
4596 case GIMPLE_SINGLE_RHS
:
4597 return verify_gimple_assign_single (stmt
);
4599 case GIMPLE_UNARY_RHS
:
4600 return verify_gimple_assign_unary (stmt
);
4602 case GIMPLE_BINARY_RHS
:
4603 return verify_gimple_assign_binary (stmt
);
4605 case GIMPLE_TERNARY_RHS
:
4606 return verify_gimple_assign_ternary (stmt
);
4613 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
4614 is a problem, otherwise false. */
4617 verify_gimple_return (greturn
*stmt
)
4619 tree op
= gimple_return_retval (stmt
);
4620 tree restype
= TREE_TYPE (TREE_TYPE (cfun
->decl
));
4622 /* We cannot test for present return values as we do not fix up missing
4623 return values from the original source. */
4627 if (!is_gimple_val (op
)
4628 && TREE_CODE (op
) != RESULT_DECL
)
4630 error ("invalid operand in return statement");
4631 debug_generic_stmt (op
);
4635 if ((TREE_CODE (op
) == RESULT_DECL
4636 && DECL_BY_REFERENCE (op
))
4637 || (TREE_CODE (op
) == SSA_NAME
4638 && SSA_NAME_VAR (op
)
4639 && TREE_CODE (SSA_NAME_VAR (op
)) == RESULT_DECL
4640 && DECL_BY_REFERENCE (SSA_NAME_VAR (op
))))
4641 op
= TREE_TYPE (op
);
4643 if (!useless_type_conversion_p (restype
, TREE_TYPE (op
)))
4645 error ("invalid conversion in return statement");
4646 debug_generic_stmt (restype
);
4647 debug_generic_stmt (TREE_TYPE (op
));
4655 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
4656 is a problem, otherwise false. */
4659 verify_gimple_goto (ggoto
*stmt
)
4661 tree dest
= gimple_goto_dest (stmt
);
4663 /* ??? We have two canonical forms of direct goto destinations, a
4664 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
4665 if (TREE_CODE (dest
) != LABEL_DECL
4666 && (!is_gimple_val (dest
)
4667 || !POINTER_TYPE_P (TREE_TYPE (dest
))))
4669 error ("goto destination is neither a label nor a pointer");
4676 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
4677 is a problem, otherwise false. */
4680 verify_gimple_switch (gswitch
*stmt
)
4683 tree elt
, prev_upper_bound
= NULL_TREE
;
4684 tree index_type
, elt_type
= NULL_TREE
;
4686 if (!is_gimple_val (gimple_switch_index (stmt
)))
4688 error ("invalid operand to switch statement");
4689 debug_generic_stmt (gimple_switch_index (stmt
));
4693 index_type
= TREE_TYPE (gimple_switch_index (stmt
));
4694 if (! INTEGRAL_TYPE_P (index_type
))
4696 error ("non-integral type switch statement");
4697 debug_generic_expr (index_type
);
4701 elt
= gimple_switch_label (stmt
, 0);
4702 if (CASE_LOW (elt
) != NULL_TREE
4703 || CASE_HIGH (elt
) != NULL_TREE
4704 || CASE_CHAIN (elt
) != NULL_TREE
)
4706 error ("invalid default case label in switch statement");
4707 debug_generic_expr (elt
);
4711 n
= gimple_switch_num_labels (stmt
);
4712 for (i
= 1; i
< n
; i
++)
4714 elt
= gimple_switch_label (stmt
, i
);
4716 if (CASE_CHAIN (elt
))
4718 error ("invalid CASE_CHAIN");
4719 debug_generic_expr (elt
);
4722 if (! CASE_LOW (elt
))
4724 error ("invalid case label in switch statement");
4725 debug_generic_expr (elt
);
4729 && ! tree_int_cst_lt (CASE_LOW (elt
), CASE_HIGH (elt
)))
4731 error ("invalid case range in switch statement");
4732 debug_generic_expr (elt
);
4738 if (TREE_TYPE (CASE_LOW (elt
)) != elt_type
4739 || (CASE_HIGH (elt
) && TREE_TYPE (CASE_HIGH (elt
)) != elt_type
))
4741 error ("type mismatch for case label in switch statement");
4742 debug_generic_expr (elt
);
4748 elt_type
= TREE_TYPE (CASE_LOW (elt
));
4749 if (TYPE_PRECISION (index_type
) < TYPE_PRECISION (elt_type
))
4751 error ("type precision mismatch in switch statement");
4756 if (prev_upper_bound
)
4758 if (! tree_int_cst_lt (prev_upper_bound
, CASE_LOW (elt
)))
4760 error ("case labels not sorted in switch statement");
4765 prev_upper_bound
= CASE_HIGH (elt
);
4766 if (! prev_upper_bound
)
4767 prev_upper_bound
= CASE_LOW (elt
);
4773 /* Verify a gimple debug statement STMT.
4774 Returns true if anything is wrong. */
4777 verify_gimple_debug (gimple
*stmt ATTRIBUTE_UNUSED
)
4779 /* There isn't much that could be wrong in a gimple debug stmt. A
4780 gimple debug bind stmt, for example, maps a tree, that's usually
4781 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
4782 component or member of an aggregate type, to another tree, that
4783 can be an arbitrary expression. These stmts expand into debug
4784 insns, and are converted to debug notes by var-tracking.c. */
4788 /* Verify a gimple label statement STMT.
4789 Returns true if anything is wrong. */
4792 verify_gimple_label (glabel
*stmt
)
4794 tree decl
= gimple_label_label (stmt
);
4798 if (TREE_CODE (decl
) != LABEL_DECL
)
4800 if (!DECL_NONLOCAL (decl
) && !FORCED_LABEL (decl
)
4801 && DECL_CONTEXT (decl
) != current_function_decl
)
4803 error ("label's context is not the current function decl");
4807 uid
= LABEL_DECL_UID (decl
);
4810 || (*label_to_block_map_for_fn (cfun
))[uid
] != gimple_bb (stmt
)))
4812 error ("incorrect entry in label_to_block_map");
4816 uid
= EH_LANDING_PAD_NR (decl
);
4819 eh_landing_pad lp
= get_eh_landing_pad_from_number (uid
);
4820 if (decl
!= lp
->post_landing_pad
)
4822 error ("incorrect setting of landing pad number");
4830 /* Verify a gimple cond statement STMT.
4831 Returns true if anything is wrong. */
4834 verify_gimple_cond (gcond
*stmt
)
4836 if (TREE_CODE_CLASS (gimple_cond_code (stmt
)) != tcc_comparison
)
4838 error ("invalid comparison code in gimple cond");
4841 if (!(!gimple_cond_true_label (stmt
)
4842 || TREE_CODE (gimple_cond_true_label (stmt
)) == LABEL_DECL
)
4843 || !(!gimple_cond_false_label (stmt
)
4844 || TREE_CODE (gimple_cond_false_label (stmt
)) == LABEL_DECL
))
4846 error ("invalid labels in gimple cond");
4850 return verify_gimple_comparison (boolean_type_node
,
4851 gimple_cond_lhs (stmt
),
4852 gimple_cond_rhs (stmt
),
4853 gimple_cond_code (stmt
));
4856 /* Verify the GIMPLE statement STMT. Returns true if there is an
4857 error, otherwise false. */
4860 verify_gimple_stmt (gimple
*stmt
)
4862 switch (gimple_code (stmt
))
4865 return verify_gimple_assign (as_a
<gassign
*> (stmt
));
4868 return verify_gimple_label (as_a
<glabel
*> (stmt
));
4871 return verify_gimple_call (as_a
<gcall
*> (stmt
));
4874 return verify_gimple_cond (as_a
<gcond
*> (stmt
));
4877 return verify_gimple_goto (as_a
<ggoto
*> (stmt
));
4880 return verify_gimple_switch (as_a
<gswitch
*> (stmt
));
4883 return verify_gimple_return (as_a
<greturn
*> (stmt
));
4888 case GIMPLE_TRANSACTION
:
4889 return verify_gimple_transaction (as_a
<gtransaction
*> (stmt
));
4891 /* Tuples that do not have tree operands. */
4893 case GIMPLE_PREDICT
:
4895 case GIMPLE_EH_DISPATCH
:
4896 case GIMPLE_EH_MUST_NOT_THROW
:
4900 /* OpenMP directives are validated by the FE and never operated
4901 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4902 non-gimple expressions when the main index variable has had
4903 its address taken. This does not affect the loop itself
4904 because the header of an GIMPLE_OMP_FOR is merely used to determine
4905 how to setup the parallel iteration. */
4909 return verify_gimple_debug (stmt
);
4916 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
4917 and false otherwise. */
4920 verify_gimple_phi (gphi
*phi
)
4924 tree phi_result
= gimple_phi_result (phi
);
4929 error ("invalid PHI result");
4933 virtual_p
= virtual_operand_p (phi_result
);
4934 if (TREE_CODE (phi_result
) != SSA_NAME
4936 && SSA_NAME_VAR (phi_result
) != gimple_vop (cfun
)))
4938 error ("invalid PHI result");
4942 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
4944 tree t
= gimple_phi_arg_def (phi
, i
);
4948 error ("missing PHI def");
4952 /* Addressable variables do have SSA_NAMEs but they
4953 are not considered gimple values. */
4954 else if ((TREE_CODE (t
) == SSA_NAME
4955 && virtual_p
!= virtual_operand_p (t
))
4957 && (TREE_CODE (t
) != SSA_NAME
4958 || SSA_NAME_VAR (t
) != gimple_vop (cfun
)))
4960 && !is_gimple_val (t
)))
4962 error ("invalid PHI argument");
4963 debug_generic_expr (t
);
4966 #ifdef ENABLE_TYPES_CHECKING
4967 if (!useless_type_conversion_p (TREE_TYPE (phi_result
), TREE_TYPE (t
)))
4969 error ("incompatible types in PHI argument %u", i
);
4970 debug_generic_stmt (TREE_TYPE (phi_result
));
4971 debug_generic_stmt (TREE_TYPE (t
));
4980 /* Verify the GIMPLE statements inside the sequence STMTS. */
4983 verify_gimple_in_seq_2 (gimple_seq stmts
)
4985 gimple_stmt_iterator ittr
;
4988 for (ittr
= gsi_start (stmts
); !gsi_end_p (ittr
); gsi_next (&ittr
))
4990 gimple
*stmt
= gsi_stmt (ittr
);
4992 switch (gimple_code (stmt
))
4995 err
|= verify_gimple_in_seq_2 (
4996 gimple_bind_body (as_a
<gbind
*> (stmt
)));
5000 err
|= verify_gimple_in_seq_2 (gimple_try_eval (stmt
));
5001 err
|= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt
));
5004 case GIMPLE_EH_FILTER
:
5005 err
|= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt
));
5008 case GIMPLE_EH_ELSE
:
5010 geh_else
*eh_else
= as_a
<geh_else
*> (stmt
);
5011 err
|= verify_gimple_in_seq_2 (gimple_eh_else_n_body (eh_else
));
5012 err
|= verify_gimple_in_seq_2 (gimple_eh_else_e_body (eh_else
));
5017 err
|= verify_gimple_in_seq_2 (gimple_catch_handler (
5018 as_a
<gcatch
*> (stmt
)));
5021 case GIMPLE_TRANSACTION
:
5022 err
|= verify_gimple_transaction (as_a
<gtransaction
*> (stmt
));
5027 bool err2
= verify_gimple_stmt (stmt
);
5029 debug_gimple_stmt (stmt
);
5038 /* Verify the contents of a GIMPLE_TRANSACTION. Returns true if there
5039 is a problem, otherwise false. */
5042 verify_gimple_transaction (gtransaction
*stmt
)
5046 lab
= gimple_transaction_label_norm (stmt
);
5047 if (lab
!= NULL
&& TREE_CODE (lab
) != LABEL_DECL
)
5049 lab
= gimple_transaction_label_uninst (stmt
);
5050 if (lab
!= NULL
&& TREE_CODE (lab
) != LABEL_DECL
)
5052 lab
= gimple_transaction_label_over (stmt
);
5053 if (lab
!= NULL
&& TREE_CODE (lab
) != LABEL_DECL
)
5056 return verify_gimple_in_seq_2 (gimple_transaction_body (stmt
));
5060 /* Verify the GIMPLE statements inside the statement list STMTS. */
5063 verify_gimple_in_seq (gimple_seq stmts
)
5065 timevar_push (TV_TREE_STMT_VERIFY
);
5066 if (verify_gimple_in_seq_2 (stmts
))
5067 internal_error ("verify_gimple failed");
5068 timevar_pop (TV_TREE_STMT_VERIFY
);
5071 /* Return true when the T can be shared. */
5074 tree_node_can_be_shared (tree t
)
5076 if (IS_TYPE_OR_DECL_P (t
)
5077 || TREE_CODE (t
) == SSA_NAME
5078 || TREE_CODE (t
) == IDENTIFIER_NODE
5079 || TREE_CODE (t
) == CASE_LABEL_EXPR
5080 || is_gimple_min_invariant (t
))
5083 if (t
== error_mark_node
)
5089 /* Called via walk_tree. Verify tree sharing. */
5092 verify_node_sharing_1 (tree
*tp
, int *walk_subtrees
, void *data
)
5094 hash_set
<void *> *visited
= (hash_set
<void *> *) data
;
5096 if (tree_node_can_be_shared (*tp
))
5098 *walk_subtrees
= false;
5102 if (visited
->add (*tp
))
5108 /* Called via walk_gimple_stmt. Verify tree sharing. */
5111 verify_node_sharing (tree
*tp
, int *walk_subtrees
, void *data
)
5113 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
5114 return verify_node_sharing_1 (tp
, walk_subtrees
, wi
->info
);
5117 static bool eh_error_found
;
5119 verify_eh_throw_stmt_node (gimple
*const &stmt
, const int &,
5120 hash_set
<gimple
*> *visited
)
5122 if (!visited
->contains (stmt
))
5124 error ("dead STMT in EH table");
5125 debug_gimple_stmt (stmt
);
5126 eh_error_found
= true;
5131 /* Verify if the location LOCs block is in BLOCKS. */
5134 verify_location (hash_set
<tree
> *blocks
, location_t loc
)
5136 tree block
= LOCATION_BLOCK (loc
);
5137 if (block
!= NULL_TREE
5138 && !blocks
->contains (block
))
5140 error ("location references block not in block tree");
5143 if (block
!= NULL_TREE
)
5144 return verify_location (blocks
, BLOCK_SOURCE_LOCATION (block
));
5148 /* Called via walk_tree. Verify that expressions have no blocks. */
5151 verify_expr_no_block (tree
*tp
, int *walk_subtrees
, void *)
5155 *walk_subtrees
= false;
5159 location_t loc
= EXPR_LOCATION (*tp
);
5160 if (LOCATION_BLOCK (loc
) != NULL
)
5166 /* Called via walk_tree. Verify locations of expressions. */
5169 verify_expr_location_1 (tree
*tp
, int *walk_subtrees
, void *data
)
5171 hash_set
<tree
> *blocks
= (hash_set
<tree
> *) data
;
5174 /* ??? This doesn't really belong here but there's no good place to
5175 stick this remainder of old verify_expr. */
5176 /* ??? This barfs on debug stmts which contain binds to vars with
5177 different function context. */
5180 || TREE_CODE (t
) == PARM_DECL
5181 || TREE_CODE (t
) == RESULT_DECL
)
5183 tree context
= decl_function_context (t
);
5184 if (context
!= cfun
->decl
5185 && !SCOPE_FILE_SCOPE_P (context
)
5187 && !DECL_EXTERNAL (t
))
5189 error ("local declaration from a different function");
5195 if (VAR_P (t
) && DECL_HAS_DEBUG_EXPR_P (t
))
5197 tree x
= DECL_DEBUG_EXPR (t
);
5198 tree addr
= walk_tree (&x
, verify_expr_no_block
, NULL
, NULL
);
5203 || TREE_CODE (t
) == PARM_DECL
5204 || TREE_CODE (t
) == RESULT_DECL
)
5205 && DECL_HAS_VALUE_EXPR_P (t
))
5207 tree x
= DECL_VALUE_EXPR (t
);
5208 tree addr
= walk_tree (&x
, verify_expr_no_block
, NULL
, NULL
);
5215 *walk_subtrees
= false;
5219 location_t loc
= EXPR_LOCATION (t
);
5220 if (verify_location (blocks
, loc
))
5226 /* Called via walk_gimple_op. Verify locations of expressions. */
5229 verify_expr_location (tree
*tp
, int *walk_subtrees
, void *data
)
5231 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
5232 return verify_expr_location_1 (tp
, walk_subtrees
, wi
->info
);
5235 /* Insert all subblocks of BLOCK into BLOCKS and recurse. */
5238 collect_subblocks (hash_set
<tree
> *blocks
, tree block
)
5241 for (t
= BLOCK_SUBBLOCKS (block
); t
; t
= BLOCK_CHAIN (t
))
5244 collect_subblocks (blocks
, t
);
5248 /* Verify the GIMPLE statements in the CFG of FN. */
5251 verify_gimple_in_cfg (struct function
*fn
, bool verify_nothrow
)
5256 timevar_push (TV_TREE_STMT_VERIFY
);
5257 hash_set
<void *> visited
;
5258 hash_set
<gimple
*> visited_throwing_stmts
;
5260 /* Collect all BLOCKs referenced by the BLOCK tree of FN. */
5261 hash_set
<tree
> blocks
;
5262 if (DECL_INITIAL (fn
->decl
))
5264 blocks
.add (DECL_INITIAL (fn
->decl
));
5265 collect_subblocks (&blocks
, DECL_INITIAL (fn
->decl
));
5268 FOR_EACH_BB_FN (bb
, fn
)
5270 gimple_stmt_iterator gsi
;
5272 for (gphi_iterator gpi
= gsi_start_phis (bb
);
5276 gphi
*phi
= gpi
.phi ();
5280 if (gimple_bb (phi
) != bb
)
5282 error ("gimple_bb (phi) is set to a wrong basic block");
5286 err2
|= verify_gimple_phi (phi
);
5288 /* Only PHI arguments have locations. */
5289 if (gimple_location (phi
) != UNKNOWN_LOCATION
)
5291 error ("PHI node with location");
5295 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
5297 tree arg
= gimple_phi_arg_def (phi
, i
);
5298 tree addr
= walk_tree (&arg
, verify_node_sharing_1
,
5302 error ("incorrect sharing of tree nodes");
5303 debug_generic_expr (addr
);
5306 location_t loc
= gimple_phi_arg_location (phi
, i
);
5307 if (virtual_operand_p (gimple_phi_result (phi
))
5308 && loc
!= UNKNOWN_LOCATION
)
5310 error ("virtual PHI with argument locations");
5313 addr
= walk_tree (&arg
, verify_expr_location_1
, &blocks
, NULL
);
5316 debug_generic_expr (addr
);
5319 err2
|= verify_location (&blocks
, loc
);
5323 debug_gimple_stmt (phi
);
5327 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5329 gimple
*stmt
= gsi_stmt (gsi
);
5331 struct walk_stmt_info wi
;
5335 if (gimple_bb (stmt
) != bb
)
5337 error ("gimple_bb (stmt) is set to a wrong basic block");
5341 err2
|= verify_gimple_stmt (stmt
);
5342 err2
|= verify_location (&blocks
, gimple_location (stmt
));
5344 memset (&wi
, 0, sizeof (wi
));
5345 wi
.info
= (void *) &visited
;
5346 addr
= walk_gimple_op (stmt
, verify_node_sharing
, &wi
);
5349 error ("incorrect sharing of tree nodes");
5350 debug_generic_expr (addr
);
5354 memset (&wi
, 0, sizeof (wi
));
5355 wi
.info
= (void *) &blocks
;
5356 addr
= walk_gimple_op (stmt
, verify_expr_location
, &wi
);
5359 debug_generic_expr (addr
);
5363 /* If the statement is marked as part of an EH region, then it is
5364 expected that the statement could throw. Verify that when we
5365 have optimizations that simplify statements such that we prove
5366 that they cannot throw, that we update other data structures
5368 lp_nr
= lookup_stmt_eh_lp (stmt
);
5370 visited_throwing_stmts
.add (stmt
);
5373 if (!stmt_could_throw_p (stmt
))
5377 error ("statement marked for throw, but doesn%'t");
5381 else if (!gsi_one_before_end_p (gsi
))
5383 error ("statement marked for throw in middle of block");
5389 debug_gimple_stmt (stmt
);
5394 hash_map
<gimple
*, int> *eh_table
= get_eh_throw_stmt_table (cfun
);
5395 eh_error_found
= false;
5397 eh_table
->traverse
<hash_set
<gimple
*> *, verify_eh_throw_stmt_node
>
5398 (&visited_throwing_stmts
);
5400 if (err
|| eh_error_found
)
5401 internal_error ("verify_gimple failed");
5403 verify_histograms ();
5404 timevar_pop (TV_TREE_STMT_VERIFY
);
5408 /* Verifies that the flow information is OK. */
5411 gimple_verify_flow_info (void)
5415 gimple_stmt_iterator gsi
;
5420 if (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->il
.gimple
.seq
5421 || ENTRY_BLOCK_PTR_FOR_FN (cfun
)->il
.gimple
.phi_nodes
)
5423 error ("ENTRY_BLOCK has IL associated with it");
5427 if (EXIT_BLOCK_PTR_FOR_FN (cfun
)->il
.gimple
.seq
5428 || EXIT_BLOCK_PTR_FOR_FN (cfun
)->il
.gimple
.phi_nodes
)
5430 error ("EXIT_BLOCK has IL associated with it");
5434 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR_FOR_FN (cfun
)->preds
)
5435 if (e
->flags
& EDGE_FALLTHRU
)
5437 error ("fallthru to exit from bb %d", e
->src
->index
);
5441 FOR_EACH_BB_FN (bb
, cfun
)
5443 bool found_ctrl_stmt
= false;
5447 /* Skip labels on the start of basic block. */
5448 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5451 gimple
*prev_stmt
= stmt
;
5453 stmt
= gsi_stmt (gsi
);
5455 if (gimple_code (stmt
) != GIMPLE_LABEL
)
5458 label
= gimple_label_label (as_a
<glabel
*> (stmt
));
5459 if (prev_stmt
&& DECL_NONLOCAL (label
))
5461 error ("nonlocal label ");
5462 print_generic_expr (stderr
, label
);
5463 fprintf (stderr
, " is not first in a sequence of labels in bb %d",
5468 if (prev_stmt
&& EH_LANDING_PAD_NR (label
) != 0)
5470 error ("EH landing pad label ");
5471 print_generic_expr (stderr
, label
);
5472 fprintf (stderr
, " is not first in a sequence of labels in bb %d",
5477 if (label_to_block (label
) != bb
)
5480 print_generic_expr (stderr
, label
);
5481 fprintf (stderr
, " to block does not match in bb %d",
5486 if (decl_function_context (label
) != current_function_decl
)
5489 print_generic_expr (stderr
, label
);
5490 fprintf (stderr
, " has incorrect context in bb %d",
5496 /* Verify that body of basic block BB is free of control flow. */
5497 for (; !gsi_end_p (gsi
); gsi_next (&gsi
))
5499 gimple
*stmt
= gsi_stmt (gsi
);
5501 if (found_ctrl_stmt
)
5503 error ("control flow in the middle of basic block %d",
5508 if (stmt_ends_bb_p (stmt
))
5509 found_ctrl_stmt
= true;
5511 if (glabel
*label_stmt
= dyn_cast
<glabel
*> (stmt
))
5514 print_generic_expr (stderr
, gimple_label_label (label_stmt
));
5515 fprintf (stderr
, " in the middle of basic block %d", bb
->index
);
5520 gsi
= gsi_last_nondebug_bb (bb
);
5521 if (gsi_end_p (gsi
))
5524 stmt
= gsi_stmt (gsi
);
5526 if (gimple_code (stmt
) == GIMPLE_LABEL
)
5529 err
|= verify_eh_edges (stmt
);
5531 if (is_ctrl_stmt (stmt
))
5533 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5534 if (e
->flags
& EDGE_FALLTHRU
)
5536 error ("fallthru edge after a control statement in bb %d",
5542 if (gimple_code (stmt
) != GIMPLE_COND
)
5544 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
5545 after anything else but if statement. */
5546 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5547 if (e
->flags
& (EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
))
5549 error ("true/false edge after a non-GIMPLE_COND in bb %d",
5555 switch (gimple_code (stmt
))
5562 extract_true_false_edges_from_block (bb
, &true_edge
, &false_edge
);
5566 || !(true_edge
->flags
& EDGE_TRUE_VALUE
)
5567 || !(false_edge
->flags
& EDGE_FALSE_VALUE
)
5568 || (true_edge
->flags
& (EDGE_FALLTHRU
| EDGE_ABNORMAL
))
5569 || (false_edge
->flags
& (EDGE_FALLTHRU
| EDGE_ABNORMAL
))
5570 || EDGE_COUNT (bb
->succs
) >= 3)
5572 error ("wrong outgoing edge flags at end of bb %d",
5580 if (simple_goto_p (stmt
))
5582 error ("explicit goto at end of bb %d", bb
->index
);
5587 /* FIXME. We should double check that the labels in the
5588 destination blocks have their address taken. */
5589 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5590 if ((e
->flags
& (EDGE_FALLTHRU
| EDGE_TRUE_VALUE
5591 | EDGE_FALSE_VALUE
))
5592 || !(e
->flags
& EDGE_ABNORMAL
))
5594 error ("wrong outgoing edge flags at end of bb %d",
5602 if (!gimple_call_builtin_p (stmt
, BUILT_IN_RETURN
))
5606 if (!single_succ_p (bb
)
5607 || (single_succ_edge (bb
)->flags
5608 & (EDGE_FALLTHRU
| EDGE_ABNORMAL
5609 | EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
)))
5611 error ("wrong outgoing edge flags at end of bb %d", bb
->index
);
5614 if (single_succ (bb
) != EXIT_BLOCK_PTR_FOR_FN (cfun
))
5616 error ("return edge does not point to exit in bb %d",
5624 gswitch
*switch_stmt
= as_a
<gswitch
*> (stmt
);
5629 n
= gimple_switch_num_labels (switch_stmt
);
5631 /* Mark all the destination basic blocks. */
5632 for (i
= 0; i
< n
; ++i
)
5634 tree lab
= CASE_LABEL (gimple_switch_label (switch_stmt
, i
));
5635 basic_block label_bb
= label_to_block (lab
);
5636 gcc_assert (!label_bb
->aux
|| label_bb
->aux
== (void *)1);
5637 label_bb
->aux
= (void *)1;
5640 /* Verify that the case labels are sorted. */
5641 prev
= gimple_switch_label (switch_stmt
, 0);
5642 for (i
= 1; i
< n
; ++i
)
5644 tree c
= gimple_switch_label (switch_stmt
, i
);
5647 error ("found default case not at the start of "
5653 && !tree_int_cst_lt (CASE_LOW (prev
), CASE_LOW (c
)))
5655 error ("case labels not sorted: ");
5656 print_generic_expr (stderr
, prev
);
5657 fprintf (stderr
," is greater than ");
5658 print_generic_expr (stderr
, c
);
5659 fprintf (stderr
," but comes before it.\n");
5664 /* VRP will remove the default case if it can prove it will
5665 never be executed. So do not verify there always exists
5666 a default case here. */
5668 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5672 error ("extra outgoing edge %d->%d",
5673 bb
->index
, e
->dest
->index
);
5677 e
->dest
->aux
= (void *)2;
5678 if ((e
->flags
& (EDGE_FALLTHRU
| EDGE_ABNORMAL
5679 | EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
)))
5681 error ("wrong outgoing edge flags at end of bb %d",
5687 /* Check that we have all of them. */
5688 for (i
= 0; i
< n
; ++i
)
5690 tree lab
= CASE_LABEL (gimple_switch_label (switch_stmt
, i
));
5691 basic_block label_bb
= label_to_block (lab
);
5693 if (label_bb
->aux
!= (void *)2)
5695 error ("missing edge %i->%i", bb
->index
, label_bb
->index
);
5700 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5701 e
->dest
->aux
= (void *)0;
5705 case GIMPLE_EH_DISPATCH
:
5706 err
|= verify_eh_dispatch_edge (as_a
<geh_dispatch
*> (stmt
));
5714 if (dom_info_state (CDI_DOMINATORS
) >= DOM_NO_FAST_QUERY
)
5715 verify_dominators (CDI_DOMINATORS
);
5721 /* Updates phi nodes after creating a forwarder block joined
5722 by edge FALLTHRU. */
5725 gimple_make_forwarder_block (edge fallthru
)
5729 basic_block dummy
, bb
;
5733 dummy
= fallthru
->src
;
5734 bb
= fallthru
->dest
;
5736 if (single_pred_p (bb
))
5739 /* If we redirected a branch we must create new PHI nodes at the
5741 for (gsi
= gsi_start_phis (dummy
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5743 gphi
*phi
, *new_phi
;
5746 var
= gimple_phi_result (phi
);
5747 new_phi
= create_phi_node (var
, bb
);
5748 gimple_phi_set_result (phi
, copy_ssa_name (var
, phi
));
5749 add_phi_arg (new_phi
, gimple_phi_result (phi
), fallthru
,
5753 /* Add the arguments we have stored on edges. */
5754 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
5759 flush_pending_stmts (e
);
5764 /* Return a non-special label in the head of basic block BLOCK.
5765 Create one if it doesn't exist. */
5768 gimple_block_label (basic_block bb
)
5770 gimple_stmt_iterator i
, s
= gsi_start_bb (bb
);
5775 for (i
= s
; !gsi_end_p (i
); first
= false, gsi_next (&i
))
5777 stmt
= dyn_cast
<glabel
*> (gsi_stmt (i
));
5780 label
= gimple_label_label (stmt
);
5781 if (!DECL_NONLOCAL (label
))
5784 gsi_move_before (&i
, &s
);
5789 label
= create_artificial_label (UNKNOWN_LOCATION
);
5790 stmt
= gimple_build_label (label
);
5791 gsi_insert_before (&s
, stmt
, GSI_NEW_STMT
);
5796 /* Attempt to perform edge redirection by replacing a possibly complex
5797 jump instruction by a goto or by removing the jump completely.
5798 This can apply only if all edges now point to the same block. The
5799 parameters and return values are equivalent to
5800 redirect_edge_and_branch. */
5803 gimple_try_redirect_by_replacing_jump (edge e
, basic_block target
)
5805 basic_block src
= e
->src
;
5806 gimple_stmt_iterator i
;
5809 /* We can replace or remove a complex jump only when we have exactly
5811 if (EDGE_COUNT (src
->succs
) != 2
5812 /* Verify that all targets will be TARGET. Specifically, the
5813 edge that is not E must also go to TARGET. */
5814 || EDGE_SUCC (src
, EDGE_SUCC (src
, 0) == e
)->dest
!= target
)
5817 i
= gsi_last_bb (src
);
5821 stmt
= gsi_stmt (i
);
5823 if (gimple_code (stmt
) == GIMPLE_COND
|| gimple_code (stmt
) == GIMPLE_SWITCH
)
5825 gsi_remove (&i
, true);
5826 e
= ssa_redirect_edge (e
, target
);
5827 e
->flags
= EDGE_FALLTHRU
;
5835 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
5836 edge representing the redirected branch. */
5839 gimple_redirect_edge_and_branch (edge e
, basic_block dest
)
5841 basic_block bb
= e
->src
;
5842 gimple_stmt_iterator gsi
;
5846 if (e
->flags
& EDGE_ABNORMAL
)
5849 if (e
->dest
== dest
)
5852 if (e
->flags
& EDGE_EH
)
5853 return redirect_eh_edge (e
, dest
);
5855 if (e
->src
!= ENTRY_BLOCK_PTR_FOR_FN (cfun
))
5857 ret
= gimple_try_redirect_by_replacing_jump (e
, dest
);
5862 gsi
= gsi_last_nondebug_bb (bb
);
5863 stmt
= gsi_end_p (gsi
) ? NULL
: gsi_stmt (gsi
);
5865 switch (stmt
? gimple_code (stmt
) : GIMPLE_ERROR_MARK
)
5868 /* For COND_EXPR, we only need to redirect the edge. */
5872 /* No non-abnormal edges should lead from a non-simple goto, and
5873 simple ones should be represented implicitly. */
5878 gswitch
*switch_stmt
= as_a
<gswitch
*> (stmt
);
5879 tree label
= gimple_block_label (dest
);
5880 tree cases
= get_cases_for_edge (e
, switch_stmt
);
5882 /* If we have a list of cases associated with E, then use it
5883 as it's a lot faster than walking the entire case vector. */
5886 edge e2
= find_edge (e
->src
, dest
);
5893 CASE_LABEL (cases
) = label
;
5894 cases
= CASE_CHAIN (cases
);
5897 /* If there was already an edge in the CFG, then we need
5898 to move all the cases associated with E to E2. */
5901 tree cases2
= get_cases_for_edge (e2
, switch_stmt
);
5903 CASE_CHAIN (last
) = CASE_CHAIN (cases2
);
5904 CASE_CHAIN (cases2
) = first
;
5906 bitmap_set_bit (touched_switch_bbs
, gimple_bb (stmt
)->index
);
5910 size_t i
, n
= gimple_switch_num_labels (switch_stmt
);
5912 for (i
= 0; i
< n
; i
++)
5914 tree elt
= gimple_switch_label (switch_stmt
, i
);
5915 if (label_to_block (CASE_LABEL (elt
)) == e
->dest
)
5916 CASE_LABEL (elt
) = label
;
5924 gasm
*asm_stmt
= as_a
<gasm
*> (stmt
);
5925 int i
, n
= gimple_asm_nlabels (asm_stmt
);
5928 for (i
= 0; i
< n
; ++i
)
5930 tree cons
= gimple_asm_label_op (asm_stmt
, i
);
5931 if (label_to_block (TREE_VALUE (cons
)) == e
->dest
)
5934 label
= gimple_block_label (dest
);
5935 TREE_VALUE (cons
) = label
;
5939 /* If we didn't find any label matching the former edge in the
5940 asm labels, we must be redirecting the fallthrough
5942 gcc_assert (label
|| (e
->flags
& EDGE_FALLTHRU
));
5947 gsi_remove (&gsi
, true);
5948 e
->flags
|= EDGE_FALLTHRU
;
5951 case GIMPLE_OMP_RETURN
:
5952 case GIMPLE_OMP_CONTINUE
:
5953 case GIMPLE_OMP_SECTIONS_SWITCH
:
5954 case GIMPLE_OMP_FOR
:
5955 /* The edges from OMP constructs can be simply redirected. */
5958 case GIMPLE_EH_DISPATCH
:
5959 if (!(e
->flags
& EDGE_FALLTHRU
))
5960 redirect_eh_dispatch_edge (as_a
<geh_dispatch
*> (stmt
), e
, dest
);
5963 case GIMPLE_TRANSACTION
:
5964 if (e
->flags
& EDGE_TM_ABORT
)
5965 gimple_transaction_set_label_over (as_a
<gtransaction
*> (stmt
),
5966 gimple_block_label (dest
));
5967 else if (e
->flags
& EDGE_TM_UNINSTRUMENTED
)
5968 gimple_transaction_set_label_uninst (as_a
<gtransaction
*> (stmt
),
5969 gimple_block_label (dest
));
5971 gimple_transaction_set_label_norm (as_a
<gtransaction
*> (stmt
),
5972 gimple_block_label (dest
));
5976 /* Otherwise it must be a fallthru edge, and we don't need to
5977 do anything besides redirecting it. */
5978 gcc_assert (e
->flags
& EDGE_FALLTHRU
);
5982 /* Update/insert PHI nodes as necessary. */
5984 /* Now update the edges in the CFG. */
5985 e
= ssa_redirect_edge (e
, dest
);
5990 /* Returns true if it is possible to remove edge E by redirecting
5991 it to the destination of the other edge from E->src. */
5994 gimple_can_remove_branch_p (const_edge e
)
5996 if (e
->flags
& (EDGE_ABNORMAL
| EDGE_EH
))
6002 /* Simple wrapper, as we can always redirect fallthru edges. */
6005 gimple_redirect_edge_and_branch_force (edge e
, basic_block dest
)
6007 e
= gimple_redirect_edge_and_branch (e
, dest
);
6014 /* Splits basic block BB after statement STMT (but at least after the
6015 labels). If STMT is NULL, BB is split just after the labels. */
6018 gimple_split_block (basic_block bb
, void *stmt
)
6020 gimple_stmt_iterator gsi
;
6021 gimple_stmt_iterator gsi_tgt
;
6027 new_bb
= create_empty_bb (bb
);
6029 /* Redirect the outgoing edges. */
6030 new_bb
->succs
= bb
->succs
;
6032 FOR_EACH_EDGE (e
, ei
, new_bb
->succs
)
6035 /* Get a stmt iterator pointing to the first stmt to move. */
6036 if (!stmt
|| gimple_code ((gimple
*) stmt
) == GIMPLE_LABEL
)
6037 gsi
= gsi_after_labels (bb
);
6040 gsi
= gsi_for_stmt ((gimple
*) stmt
);
6044 /* Move everything from GSI to the new basic block. */
6045 if (gsi_end_p (gsi
))
6048 /* Split the statement list - avoid re-creating new containers as this
6049 brings ugly quadratic memory consumption in the inliner.
6050 (We are still quadratic since we need to update stmt BB pointers,
6052 gsi_split_seq_before (&gsi
, &list
);
6053 set_bb_seq (new_bb
, list
);
6054 for (gsi_tgt
= gsi_start (list
);
6055 !gsi_end_p (gsi_tgt
); gsi_next (&gsi_tgt
))
6056 gimple_set_bb (gsi_stmt (gsi_tgt
), new_bb
);
6062 /* Moves basic block BB after block AFTER. */
6065 gimple_move_block_after (basic_block bb
, basic_block after
)
6067 if (bb
->prev_bb
== after
)
6071 link_block (bb
, after
);
6077 /* Return TRUE if block BB has no executable statements, otherwise return
6081 gimple_empty_block_p (basic_block bb
)
6083 /* BB must have no executable statements. */
6084 gimple_stmt_iterator gsi
= gsi_after_labels (bb
);
6087 if (gsi_end_p (gsi
))
6089 if (is_gimple_debug (gsi_stmt (gsi
)))
6090 gsi_next_nondebug (&gsi
);
6091 return gsi_end_p (gsi
);
6095 /* Split a basic block if it ends with a conditional branch and if the
6096 other part of the block is not empty. */
6099 gimple_split_block_before_cond_jump (basic_block bb
)
6101 gimple
*last
, *split_point
;
6102 gimple_stmt_iterator gsi
= gsi_last_nondebug_bb (bb
);
6103 if (gsi_end_p (gsi
))
6105 last
= gsi_stmt (gsi
);
6106 if (gimple_code (last
) != GIMPLE_COND
6107 && gimple_code (last
) != GIMPLE_SWITCH
)
6110 split_point
= gsi_stmt (gsi
);
6111 return split_block (bb
, split_point
)->dest
;
6115 /* Return true if basic_block can be duplicated. */
6118 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED
)
6123 /* Create a duplicate of the basic block BB. NOTE: This does not
6124 preserve SSA form. */
6127 gimple_duplicate_bb (basic_block bb
)
6130 gimple_stmt_iterator gsi_tgt
;
6132 new_bb
= create_empty_bb (EXIT_BLOCK_PTR_FOR_FN (cfun
)->prev_bb
);
6134 /* Copy the PHI nodes. We ignore PHI node arguments here because
6135 the incoming edges have not been setup yet. */
6136 for (gphi_iterator gpi
= gsi_start_phis (bb
);
6142 copy
= create_phi_node (NULL_TREE
, new_bb
);
6143 create_new_def_for (gimple_phi_result (phi
), copy
,
6144 gimple_phi_result_ptr (copy
));
6145 gimple_set_uid (copy
, gimple_uid (phi
));
6148 gsi_tgt
= gsi_start_bb (new_bb
);
6149 for (gimple_stmt_iterator gsi
= gsi_start_bb (bb
);
6153 def_operand_p def_p
;
6154 ssa_op_iter op_iter
;
6156 gimple
*stmt
, *copy
;
6158 stmt
= gsi_stmt (gsi
);
6159 if (gimple_code (stmt
) == GIMPLE_LABEL
)
6162 /* Don't duplicate label debug stmts. */
6163 if (gimple_debug_bind_p (stmt
)
6164 && TREE_CODE (gimple_debug_bind_get_var (stmt
))
6168 /* Create a new copy of STMT and duplicate STMT's virtual
6170 copy
= gimple_copy (stmt
);
6171 gsi_insert_after (&gsi_tgt
, copy
, GSI_NEW_STMT
);
6173 maybe_duplicate_eh_stmt (copy
, stmt
);
6174 gimple_duplicate_stmt_histograms (cfun
, copy
, cfun
, stmt
);
6176 /* When copying around a stmt writing into a local non-user
6177 aggregate, make sure it won't share stack slot with other
6179 lhs
= gimple_get_lhs (stmt
);
6180 if (lhs
&& TREE_CODE (lhs
) != SSA_NAME
)
6182 tree base
= get_base_address (lhs
);
6184 && (VAR_P (base
) || TREE_CODE (base
) == RESULT_DECL
)
6185 && DECL_IGNORED_P (base
)
6186 && !TREE_STATIC (base
)
6187 && !DECL_EXTERNAL (base
)
6188 && (!VAR_P (base
) || !DECL_HAS_VALUE_EXPR_P (base
)))
6189 DECL_NONSHAREABLE (base
) = 1;
6192 /* Create new names for all the definitions created by COPY and
6193 add replacement mappings for each new name. */
6194 FOR_EACH_SSA_DEF_OPERAND (def_p
, copy
, op_iter
, SSA_OP_ALL_DEFS
)
6195 create_new_def_for (DEF_FROM_PTR (def_p
), copy
, def_p
);
6201 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
6204 add_phi_args_after_copy_edge (edge e_copy
)
6206 basic_block bb
, bb_copy
= e_copy
->src
, dest
;
6209 gphi
*phi
, *phi_copy
;
6211 gphi_iterator psi
, psi_copy
;
6213 if (gimple_seq_empty_p (phi_nodes (e_copy
->dest
)))
6216 bb
= bb_copy
->flags
& BB_DUPLICATED
? get_bb_original (bb_copy
) : bb_copy
;
6218 if (e_copy
->dest
->flags
& BB_DUPLICATED
)
6219 dest
= get_bb_original (e_copy
->dest
);
6221 dest
= e_copy
->dest
;
6223 e
= find_edge (bb
, dest
);
6226 /* During loop unrolling the target of the latch edge is copied.
6227 In this case we are not looking for edge to dest, but to
6228 duplicated block whose original was dest. */
6229 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
6231 if ((e
->dest
->flags
& BB_DUPLICATED
)
6232 && get_bb_original (e
->dest
) == dest
)
6236 gcc_assert (e
!= NULL
);
6239 for (psi
= gsi_start_phis (e
->dest
),
6240 psi_copy
= gsi_start_phis (e_copy
->dest
);
6242 gsi_next (&psi
), gsi_next (&psi_copy
))
6245 phi_copy
= psi_copy
.phi ();
6246 def
= PHI_ARG_DEF_FROM_EDGE (phi
, e
);
6247 add_phi_arg (phi_copy
, def
, e_copy
,
6248 gimple_phi_arg_location_from_edge (phi
, e
));
6253 /* Basic block BB_COPY was created by code duplication. Add phi node
6254 arguments for edges going out of BB_COPY. The blocks that were
6255 duplicated have BB_DUPLICATED set. */
6258 add_phi_args_after_copy_bb (basic_block bb_copy
)
6263 FOR_EACH_EDGE (e_copy
, ei
, bb_copy
->succs
)
6265 add_phi_args_after_copy_edge (e_copy
);
6269 /* Blocks in REGION_COPY array of length N_REGION were created by
6270 duplication of basic blocks. Add phi node arguments for edges
6271 going from these blocks. If E_COPY is not NULL, also add
6272 phi node arguments for its destination.*/
6275 add_phi_args_after_copy (basic_block
*region_copy
, unsigned n_region
,
6280 for (i
= 0; i
< n_region
; i
++)
6281 region_copy
[i
]->flags
|= BB_DUPLICATED
;
6283 for (i
= 0; i
< n_region
; i
++)
6284 add_phi_args_after_copy_bb (region_copy
[i
]);
6286 add_phi_args_after_copy_edge (e_copy
);
6288 for (i
= 0; i
< n_region
; i
++)
6289 region_copy
[i
]->flags
&= ~BB_DUPLICATED
;
6292 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
6293 important exit edge EXIT. By important we mean that no SSA name defined
6294 inside region is live over the other exit edges of the region. All entry
6295 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
6296 to the duplicate of the region. Dominance and loop information is
6297 updated if UPDATE_DOMINANCE is true, but not the SSA web. If
6298 UPDATE_DOMINANCE is false then we assume that the caller will update the
6299 dominance information after calling this function. The new basic
6300 blocks are stored to REGION_COPY in the same order as they had in REGION,
6301 provided that REGION_COPY is not NULL.
6302 The function returns false if it is unable to copy the region,
6306 gimple_duplicate_sese_region (edge entry
, edge exit
,
6307 basic_block
*region
, unsigned n_region
,
6308 basic_block
*region_copy
,
6309 bool update_dominance
)
6312 bool free_region_copy
= false, copying_header
= false;
6313 struct loop
*loop
= entry
->dest
->loop_father
;
6315 vec
<basic_block
> doms
= vNULL
;
6317 profile_count total_count
= profile_count::uninitialized ();
6318 profile_count entry_count
= profile_count::uninitialized ();
6320 if (!can_copy_bbs_p (region
, n_region
))
6323 /* Some sanity checking. Note that we do not check for all possible
6324 missuses of the functions. I.e. if you ask to copy something weird,
6325 it will work, but the state of structures probably will not be
6327 for (i
= 0; i
< n_region
; i
++)
6329 /* We do not handle subloops, i.e. all the blocks must belong to the
6331 if (region
[i
]->loop_father
!= loop
)
6334 if (region
[i
] != entry
->dest
6335 && region
[i
] == loop
->header
)
6339 /* In case the function is used for loop header copying (which is the primary
6340 use), ensure that EXIT and its copy will be new latch and entry edges. */
6341 if (loop
->header
== entry
->dest
)
6343 copying_header
= true;
6345 if (!dominated_by_p (CDI_DOMINATORS
, loop
->latch
, exit
->src
))
6348 for (i
= 0; i
< n_region
; i
++)
6349 if (region
[i
] != exit
->src
6350 && dominated_by_p (CDI_DOMINATORS
, region
[i
], exit
->src
))
6354 initialize_original_copy_tables ();
6357 set_loop_copy (loop
, loop_outer (loop
));
6359 set_loop_copy (loop
, loop
);
6363 region_copy
= XNEWVEC (basic_block
, n_region
);
6364 free_region_copy
= true;
6367 /* Record blocks outside the region that are dominated by something
6369 if (update_dominance
)
6372 doms
= get_dominated_by_region (CDI_DOMINATORS
, region
, n_region
);
6375 if (entry
->dest
->count
.initialized_p ())
6377 total_count
= entry
->dest
->count
;
6378 entry_count
= entry
->count ();
6379 /* Fix up corner cases, to avoid division by zero or creation of negative
6381 if (entry_count
> total_count
)
6382 entry_count
= total_count
;
6385 copy_bbs (region
, n_region
, region_copy
, &exit
, 1, &exit_copy
, loop
,
6386 split_edge_bb_loc (entry
), update_dominance
);
6387 if (total_count
.initialized_p () && entry_count
.initialized_p ())
6389 scale_bbs_frequencies_profile_count (region
, n_region
,
6390 total_count
- entry_count
,
6392 scale_bbs_frequencies_profile_count (region_copy
, n_region
, entry_count
,
6398 loop
->header
= exit
->dest
;
6399 loop
->latch
= exit
->src
;
6402 /* Redirect the entry and add the phi node arguments. */
6403 redirected
= redirect_edge_and_branch (entry
, get_bb_copy (entry
->dest
));
6404 gcc_assert (redirected
!= NULL
);
6405 flush_pending_stmts (entry
);
6407 /* Concerning updating of dominators: We must recount dominators
6408 for entry block and its copy. Anything that is outside of the
6409 region, but was dominated by something inside needs recounting as
6411 if (update_dominance
)
6413 set_immediate_dominator (CDI_DOMINATORS
, entry
->dest
, entry
->src
);
6414 doms
.safe_push (get_bb_original (entry
->dest
));
6415 iterate_fix_dominators (CDI_DOMINATORS
, doms
, false);
6419 /* Add the other PHI node arguments. */
6420 add_phi_args_after_copy (region_copy
, n_region
, NULL
);
6422 if (free_region_copy
)
6425 free_original_copy_tables ();
6429 /* Checks if BB is part of the region defined by N_REGION BBS. */
6431 bb_part_of_region_p (basic_block bb
, basic_block
* bbs
, unsigned n_region
)
6435 for (n
= 0; n
< n_region
; n
++)
6443 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
6444 are stored to REGION_COPY in the same order in that they appear
6445 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
6446 the region, EXIT an exit from it. The condition guarding EXIT
6447 is moved to ENTRY. Returns true if duplication succeeds, false
6473 gimple_duplicate_sese_tail (edge entry
, edge exit
,
6474 basic_block
*region
, unsigned n_region
,
6475 basic_block
*region_copy
)
6478 bool free_region_copy
= false;
6479 struct loop
*loop
= exit
->dest
->loop_father
;
6480 struct loop
*orig_loop
= entry
->dest
->loop_father
;
6481 basic_block switch_bb
, entry_bb
, nentry_bb
;
6482 vec
<basic_block
> doms
;
6483 profile_count total_count
= profile_count::uninitialized (),
6484 exit_count
= profile_count::uninitialized ();
6485 edge exits
[2], nexits
[2], e
;
6486 gimple_stmt_iterator gsi
;
6489 basic_block exit_bb
;
6493 struct loop
*target
, *aloop
, *cloop
;
6495 gcc_assert (EDGE_COUNT (exit
->src
->succs
) == 2);
6497 exits
[1] = EDGE_SUCC (exit
->src
, EDGE_SUCC (exit
->src
, 0) == exit
);
6499 if (!can_copy_bbs_p (region
, n_region
))
6502 initialize_original_copy_tables ();
6503 set_loop_copy (orig_loop
, loop
);
6506 for (aloop
= orig_loop
->inner
; aloop
; aloop
= aloop
->next
)
6508 if (bb_part_of_region_p (aloop
->header
, region
, n_region
))
6510 cloop
= duplicate_loop (aloop
, target
);
6511 duplicate_subloops (aloop
, cloop
);
6517 region_copy
= XNEWVEC (basic_block
, n_region
);
6518 free_region_copy
= true;
6521 gcc_assert (!need_ssa_update_p (cfun
));
6523 /* Record blocks outside the region that are dominated by something
6525 doms
= get_dominated_by_region (CDI_DOMINATORS
, region
, n_region
);
6527 total_count
= exit
->src
->count
;
6528 exit_count
= exit
->count ();
6529 /* Fix up corner cases, to avoid division by zero or creation of negative
6531 if (exit_count
> total_count
)
6532 exit_count
= total_count
;
6534 copy_bbs (region
, n_region
, region_copy
, exits
, 2, nexits
, orig_loop
,
6535 split_edge_bb_loc (exit
), true);
6536 if (total_count
.initialized_p () && exit_count
.initialized_p ())
6538 scale_bbs_frequencies_profile_count (region
, n_region
,
6539 total_count
- exit_count
,
6541 scale_bbs_frequencies_profile_count (region_copy
, n_region
, exit_count
,
6545 /* Create the switch block, and put the exit condition to it. */
6546 entry_bb
= entry
->dest
;
6547 nentry_bb
= get_bb_copy (entry_bb
);
6548 if (!last_stmt (entry
->src
)
6549 || !stmt_ends_bb_p (last_stmt (entry
->src
)))
6550 switch_bb
= entry
->src
;
6552 switch_bb
= split_edge (entry
);
6553 set_immediate_dominator (CDI_DOMINATORS
, nentry_bb
, switch_bb
);
6555 gsi
= gsi_last_bb (switch_bb
);
6556 cond_stmt
= last_stmt (exit
->src
);
6557 gcc_assert (gimple_code (cond_stmt
) == GIMPLE_COND
);
6558 cond_stmt
= gimple_copy (cond_stmt
);
6560 gsi_insert_after (&gsi
, cond_stmt
, GSI_NEW_STMT
);
6562 sorig
= single_succ_edge (switch_bb
);
6563 sorig
->flags
= exits
[1]->flags
;
6564 sorig
->probability
= exits
[1]->probability
;
6565 snew
= make_edge (switch_bb
, nentry_bb
, exits
[0]->flags
);
6566 snew
->probability
= exits
[0]->probability
;
6569 /* Register the new edge from SWITCH_BB in loop exit lists. */
6570 rescan_loop_exit (snew
, true, false);
6572 /* Add the PHI node arguments. */
6573 add_phi_args_after_copy (region_copy
, n_region
, snew
);
6575 /* Get rid of now superfluous conditions and associated edges (and phi node
6577 exit_bb
= exit
->dest
;
6579 e
= redirect_edge_and_branch (exits
[0], exits
[1]->dest
);
6580 PENDING_STMT (e
) = NULL
;
6582 /* The latch of ORIG_LOOP was copied, and so was the backedge
6583 to the original header. We redirect this backedge to EXIT_BB. */
6584 for (i
= 0; i
< n_region
; i
++)
6585 if (get_bb_original (region_copy
[i
]) == orig_loop
->latch
)
6587 gcc_assert (single_succ_edge (region_copy
[i
]));
6588 e
= redirect_edge_and_branch (single_succ_edge (region_copy
[i
]), exit_bb
);
6589 PENDING_STMT (e
) = NULL
;
6590 for (psi
= gsi_start_phis (exit_bb
);
6595 def
= PHI_ARG_DEF (phi
, nexits
[0]->dest_idx
);
6596 add_phi_arg (phi
, def
, e
, gimple_phi_arg_location_from_edge (phi
, e
));
6599 e
= redirect_edge_and_branch (nexits
[1], nexits
[0]->dest
);
6600 PENDING_STMT (e
) = NULL
;
6602 /* Anything that is outside of the region, but was dominated by something
6603 inside needs to update dominance info. */
6604 iterate_fix_dominators (CDI_DOMINATORS
, doms
, false);
6606 /* Update the SSA web. */
6607 update_ssa (TODO_update_ssa
);
6609 if (free_region_copy
)
6612 free_original_copy_tables ();
6616 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
6617 adding blocks when the dominator traversal reaches EXIT. This
6618 function silently assumes that ENTRY strictly dominates EXIT. */
6621 gather_blocks_in_sese_region (basic_block entry
, basic_block exit
,
6622 vec
<basic_block
> *bbs_p
)
6626 for (son
= first_dom_son (CDI_DOMINATORS
, entry
);
6628 son
= next_dom_son (CDI_DOMINATORS
, son
))
6630 bbs_p
->safe_push (son
);
6632 gather_blocks_in_sese_region (son
, exit
, bbs_p
);
6636 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
6637 The duplicates are recorded in VARS_MAP. */
6640 replace_by_duplicate_decl (tree
*tp
, hash_map
<tree
, tree
> *vars_map
,
6643 tree t
= *tp
, new_t
;
6644 struct function
*f
= DECL_STRUCT_FUNCTION (to_context
);
6646 if (DECL_CONTEXT (t
) == to_context
)
6650 tree
&loc
= vars_map
->get_or_insert (t
, &existed
);
6656 new_t
= copy_var_decl (t
, DECL_NAME (t
), TREE_TYPE (t
));
6657 add_local_decl (f
, new_t
);
6661 gcc_assert (TREE_CODE (t
) == CONST_DECL
);
6662 new_t
= copy_node (t
);
6664 DECL_CONTEXT (new_t
) = to_context
;
6675 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
6676 VARS_MAP maps old ssa names and var_decls to the new ones. */
6679 replace_ssa_name (tree name
, hash_map
<tree
, tree
> *vars_map
,
6684 gcc_assert (!virtual_operand_p (name
));
6686 tree
*loc
= vars_map
->get (name
);
6690 tree decl
= SSA_NAME_VAR (name
);
6693 gcc_assert (!SSA_NAME_IS_DEFAULT_DEF (name
));
6694 replace_by_duplicate_decl (&decl
, vars_map
, to_context
);
6695 new_name
= make_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context
),
6696 decl
, SSA_NAME_DEF_STMT (name
));
6699 new_name
= copy_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context
),
6700 name
, SSA_NAME_DEF_STMT (name
));
6702 /* Now that we've used the def stmt to define new_name, make sure it
6703 doesn't define name anymore. */
6704 SSA_NAME_DEF_STMT (name
) = NULL
;
6706 vars_map
->put (name
, new_name
);
6720 hash_map
<tree
, tree
> *vars_map
;
6721 htab_t new_label_map
;
6722 hash_map
<void *, void *> *eh_map
;
6726 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
6727 contained in *TP if it has been ORIG_BLOCK previously and change the
6728 DECL_CONTEXT of every local variable referenced in *TP. */
6731 move_stmt_op (tree
*tp
, int *walk_subtrees
, void *data
)
6733 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
6734 struct move_stmt_d
*p
= (struct move_stmt_d
*) wi
->info
;
6739 tree block
= TREE_BLOCK (t
);
6740 if (block
== NULL_TREE
)
6742 else if (block
== p
->orig_block
6743 || p
->orig_block
== NULL_TREE
)
6744 TREE_SET_BLOCK (t
, p
->new_block
);
6745 else if (flag_checking
)
6747 while (block
&& TREE_CODE (block
) == BLOCK
&& block
!= p
->orig_block
)
6748 block
= BLOCK_SUPERCONTEXT (block
);
6749 gcc_assert (block
== p
->orig_block
);
6752 else if (DECL_P (t
) || TREE_CODE (t
) == SSA_NAME
)
6754 if (TREE_CODE (t
) == SSA_NAME
)
6755 *tp
= replace_ssa_name (t
, p
->vars_map
, p
->to_context
);
6756 else if (TREE_CODE (t
) == PARM_DECL
6757 && gimple_in_ssa_p (cfun
))
6758 *tp
= *(p
->vars_map
->get (t
));
6759 else if (TREE_CODE (t
) == LABEL_DECL
)
6761 if (p
->new_label_map
)
6763 struct tree_map in
, *out
;
6765 out
= (struct tree_map
*)
6766 htab_find_with_hash (p
->new_label_map
, &in
, DECL_UID (t
));
6771 /* For FORCED_LABELs we can end up with references from other
6772 functions if some SESE regions are outlined. It is UB to
6773 jump in between them, but they could be used just for printing
6774 addresses etc. In that case, DECL_CONTEXT on the label should
6775 be the function containing the glabel stmt with that LABEL_DECL,
6776 rather than whatever function a reference to the label was seen
6778 if (!FORCED_LABEL (t
) && !DECL_NONLOCAL (t
))
6779 DECL_CONTEXT (t
) = p
->to_context
;
6781 else if (p
->remap_decls_p
)
6783 /* Replace T with its duplicate. T should no longer appear in the
6784 parent function, so this looks wasteful; however, it may appear
6785 in referenced_vars, and more importantly, as virtual operands of
6786 statements, and in alias lists of other variables. It would be
6787 quite difficult to expunge it from all those places. ??? It might
6788 suffice to do this for addressable variables. */
6789 if ((VAR_P (t
) && !is_global_var (t
))
6790 || TREE_CODE (t
) == CONST_DECL
)
6791 replace_by_duplicate_decl (tp
, p
->vars_map
, p
->to_context
);
6795 else if (TYPE_P (t
))
6801 /* Helper for move_stmt_r. Given an EH region number for the source
6802 function, map that to the duplicate EH regio number in the dest. */
6805 move_stmt_eh_region_nr (int old_nr
, struct move_stmt_d
*p
)
6807 eh_region old_r
, new_r
;
6809 old_r
= get_eh_region_from_number (old_nr
);
6810 new_r
= static_cast<eh_region
> (*p
->eh_map
->get (old_r
));
6812 return new_r
->index
;
6815 /* Similar, but operate on INTEGER_CSTs. */
6818 move_stmt_eh_region_tree_nr (tree old_t_nr
, struct move_stmt_d
*p
)
6822 old_nr
= tree_to_shwi (old_t_nr
);
6823 new_nr
= move_stmt_eh_region_nr (old_nr
, p
);
6825 return build_int_cst (integer_type_node
, new_nr
);
6828 /* Like move_stmt_op, but for gimple statements.
6830 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
6831 contained in the current statement in *GSI_P and change the
6832 DECL_CONTEXT of every local variable referenced in the current
6836 move_stmt_r (gimple_stmt_iterator
*gsi_p
, bool *handled_ops_p
,
6837 struct walk_stmt_info
*wi
)
6839 struct move_stmt_d
*p
= (struct move_stmt_d
*) wi
->info
;
6840 gimple
*stmt
= gsi_stmt (*gsi_p
);
6841 tree block
= gimple_block (stmt
);
6843 if (block
== p
->orig_block
6844 || (p
->orig_block
== NULL_TREE
6845 && block
!= NULL_TREE
))
6846 gimple_set_block (stmt
, p
->new_block
);
6848 switch (gimple_code (stmt
))
6851 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
6853 tree r
, fndecl
= gimple_call_fndecl (stmt
);
6854 if (fndecl
&& DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
)
6855 switch (DECL_FUNCTION_CODE (fndecl
))
6857 case BUILT_IN_EH_COPY_VALUES
:
6858 r
= gimple_call_arg (stmt
, 1);
6859 r
= move_stmt_eh_region_tree_nr (r
, p
);
6860 gimple_call_set_arg (stmt
, 1, r
);
6863 case BUILT_IN_EH_POINTER
:
6864 case BUILT_IN_EH_FILTER
:
6865 r
= gimple_call_arg (stmt
, 0);
6866 r
= move_stmt_eh_region_tree_nr (r
, p
);
6867 gimple_call_set_arg (stmt
, 0, r
);
6878 gresx
*resx_stmt
= as_a
<gresx
*> (stmt
);
6879 int r
= gimple_resx_region (resx_stmt
);
6880 r
= move_stmt_eh_region_nr (r
, p
);
6881 gimple_resx_set_region (resx_stmt
, r
);
6885 case GIMPLE_EH_DISPATCH
:
6887 geh_dispatch
*eh_dispatch_stmt
= as_a
<geh_dispatch
*> (stmt
);
6888 int r
= gimple_eh_dispatch_region (eh_dispatch_stmt
);
6889 r
= move_stmt_eh_region_nr (r
, p
);
6890 gimple_eh_dispatch_set_region (eh_dispatch_stmt
, r
);
6894 case GIMPLE_OMP_RETURN
:
6895 case GIMPLE_OMP_CONTINUE
:
6900 /* For FORCED_LABEL, move_stmt_op doesn't adjust DECL_CONTEXT,
6901 so that such labels can be referenced from other regions.
6902 Make sure to update it when seeing a GIMPLE_LABEL though,
6903 that is the owner of the label. */
6904 walk_gimple_op (stmt
, move_stmt_op
, wi
);
6905 *handled_ops_p
= true;
6906 tree label
= gimple_label_label (as_a
<glabel
*> (stmt
));
6907 if (FORCED_LABEL (label
) || DECL_NONLOCAL (label
))
6908 DECL_CONTEXT (label
) = p
->to_context
;
6913 if (is_gimple_omp (stmt
))
6915 /* Do not remap variables inside OMP directives. Variables
6916 referenced in clauses and directive header belong to the
6917 parent function and should not be moved into the child
6919 bool save_remap_decls_p
= p
->remap_decls_p
;
6920 p
->remap_decls_p
= false;
6921 *handled_ops_p
= true;
6923 walk_gimple_seq_mod (gimple_omp_body_ptr (stmt
), move_stmt_r
,
6926 p
->remap_decls_p
= save_remap_decls_p
;
6934 /* Move basic block BB from function CFUN to function DEST_FN. The
6935 block is moved out of the original linked list and placed after
6936 block AFTER in the new list. Also, the block is removed from the
6937 original array of blocks and placed in DEST_FN's array of blocks.
6938 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
6939 updated to reflect the moved edges.
6941 The local variables are remapped to new instances, VARS_MAP is used
6942 to record the mapping. */
6945 move_block_to_fn (struct function
*dest_cfun
, basic_block bb
,
6946 basic_block after
, bool update_edge_count_p
,
6947 struct move_stmt_d
*d
)
6949 struct control_flow_graph
*cfg
;
6952 gimple_stmt_iterator si
;
6953 unsigned old_len
, new_len
;
6955 /* Remove BB from dominance structures. */
6956 delete_from_dominance_info (CDI_DOMINATORS
, bb
);
6958 /* Move BB from its current loop to the copy in the new function. */
6961 struct loop
*new_loop
= (struct loop
*)bb
->loop_father
->aux
;
6963 bb
->loop_father
= new_loop
;
6966 /* Link BB to the new linked list. */
6967 move_block_after (bb
, after
);
6969 /* Update the edge count in the corresponding flowgraphs. */
6970 if (update_edge_count_p
)
6971 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
6973 cfun
->cfg
->x_n_edges
--;
6974 dest_cfun
->cfg
->x_n_edges
++;
6977 /* Remove BB from the original basic block array. */
6978 (*cfun
->cfg
->x_basic_block_info
)[bb
->index
] = NULL
;
6979 cfun
->cfg
->x_n_basic_blocks
--;
6981 /* Grow DEST_CFUN's basic block array if needed. */
6982 cfg
= dest_cfun
->cfg
;
6983 cfg
->x_n_basic_blocks
++;
6984 if (bb
->index
>= cfg
->x_last_basic_block
)
6985 cfg
->x_last_basic_block
= bb
->index
+ 1;
6987 old_len
= vec_safe_length (cfg
->x_basic_block_info
);
6988 if ((unsigned) cfg
->x_last_basic_block
>= old_len
)
6990 new_len
= cfg
->x_last_basic_block
+ (cfg
->x_last_basic_block
+ 3) / 4;
6991 vec_safe_grow_cleared (cfg
->x_basic_block_info
, new_len
);
6994 (*cfg
->x_basic_block_info
)[bb
->index
] = bb
;
6996 /* Remap the variables in phi nodes. */
6997 for (gphi_iterator psi
= gsi_start_phis (bb
);
7000 gphi
*phi
= psi
.phi ();
7002 tree op
= PHI_RESULT (phi
);
7006 if (virtual_operand_p (op
))
7008 /* Remove the phi nodes for virtual operands (alias analysis will be
7009 run for the new function, anyway). */
7010 remove_phi_node (&psi
, true);
7014 SET_PHI_RESULT (phi
,
7015 replace_ssa_name (op
, d
->vars_map
, dest_cfun
->decl
));
7016 FOR_EACH_PHI_ARG (use
, phi
, oi
, SSA_OP_USE
)
7018 op
= USE_FROM_PTR (use
);
7019 if (TREE_CODE (op
) == SSA_NAME
)
7020 SET_USE (use
, replace_ssa_name (op
, d
->vars_map
, dest_cfun
->decl
));
7023 for (i
= 0; i
< EDGE_COUNT (bb
->preds
); i
++)
7025 location_t locus
= gimple_phi_arg_location (phi
, i
);
7026 tree block
= LOCATION_BLOCK (locus
);
7028 if (locus
== UNKNOWN_LOCATION
)
7030 if (d
->orig_block
== NULL_TREE
|| block
== d
->orig_block
)
7032 locus
= set_block (locus
, d
->new_block
);
7033 gimple_phi_arg_set_location (phi
, i
, locus
);
7040 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
7042 gimple
*stmt
= gsi_stmt (si
);
7043 struct walk_stmt_info wi
;
7045 memset (&wi
, 0, sizeof (wi
));
7047 walk_gimple_stmt (&si
, move_stmt_r
, move_stmt_op
, &wi
);
7049 if (glabel
*label_stmt
= dyn_cast
<glabel
*> (stmt
))
7051 tree label
= gimple_label_label (label_stmt
);
7052 int uid
= LABEL_DECL_UID (label
);
7054 gcc_assert (uid
> -1);
7056 old_len
= vec_safe_length (cfg
->x_label_to_block_map
);
7057 if (old_len
<= (unsigned) uid
)
7059 new_len
= 3 * uid
/ 2 + 1;
7060 vec_safe_grow_cleared (cfg
->x_label_to_block_map
, new_len
);
7063 (*cfg
->x_label_to_block_map
)[uid
] = bb
;
7064 (*cfun
->cfg
->x_label_to_block_map
)[uid
] = NULL
;
7066 gcc_assert (DECL_CONTEXT (label
) == dest_cfun
->decl
);
7068 if (uid
>= dest_cfun
->cfg
->last_label_uid
)
7069 dest_cfun
->cfg
->last_label_uid
= uid
+ 1;
7072 maybe_duplicate_eh_stmt_fn (dest_cfun
, stmt
, cfun
, stmt
, d
->eh_map
, 0);
7073 remove_stmt_from_eh_lp_fn (cfun
, stmt
);
7075 gimple_duplicate_stmt_histograms (dest_cfun
, stmt
, cfun
, stmt
);
7076 gimple_remove_stmt_histograms (cfun
, stmt
);
7078 /* We cannot leave any operands allocated from the operand caches of
7079 the current function. */
7080 free_stmt_operands (cfun
, stmt
);
7081 push_cfun (dest_cfun
);
7086 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
7087 if (e
->goto_locus
!= UNKNOWN_LOCATION
)
7089 tree block
= LOCATION_BLOCK (e
->goto_locus
);
7090 if (d
->orig_block
== NULL_TREE
7091 || block
== d
->orig_block
)
7092 e
->goto_locus
= set_block (e
->goto_locus
, d
->new_block
);
7096 /* Examine the statements in BB (which is in SRC_CFUN); find and return
7097 the outermost EH region. Use REGION as the incoming base EH region. */
7100 find_outermost_region_in_block (struct function
*src_cfun
,
7101 basic_block bb
, eh_region region
)
7103 gimple_stmt_iterator si
;
7105 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
7107 gimple
*stmt
= gsi_stmt (si
);
7108 eh_region stmt_region
;
7111 lp_nr
= lookup_stmt_eh_lp_fn (src_cfun
, stmt
);
7112 stmt_region
= get_eh_region_from_lp_number_fn (src_cfun
, lp_nr
);
7116 region
= stmt_region
;
7117 else if (stmt_region
!= region
)
7119 region
= eh_region_outermost (src_cfun
, stmt_region
, region
);
7120 gcc_assert (region
!= NULL
);
7129 new_label_mapper (tree decl
, void *data
)
7131 htab_t hash
= (htab_t
) data
;
7135 gcc_assert (TREE_CODE (decl
) == LABEL_DECL
);
7137 m
= XNEW (struct tree_map
);
7138 m
->hash
= DECL_UID (decl
);
7139 m
->base
.from
= decl
;
7140 m
->to
= create_artificial_label (UNKNOWN_LOCATION
);
7141 LABEL_DECL_UID (m
->to
) = LABEL_DECL_UID (decl
);
7142 if (LABEL_DECL_UID (m
->to
) >= cfun
->cfg
->last_label_uid
)
7143 cfun
->cfg
->last_label_uid
= LABEL_DECL_UID (m
->to
) + 1;
7145 slot
= htab_find_slot_with_hash (hash
, m
, m
->hash
, INSERT
);
7146 gcc_assert (*slot
== NULL
);
7153 /* Tree walker to replace the decls used inside value expressions by
7157 replace_block_vars_by_duplicates_1 (tree
*tp
, int *walk_subtrees
, void *data
)
7159 struct replace_decls_d
*rd
= (struct replace_decls_d
*)data
;
7161 switch (TREE_CODE (*tp
))
7166 replace_by_duplicate_decl (tp
, rd
->vars_map
, rd
->to_context
);
7172 if (IS_TYPE_OR_DECL_P (*tp
))
7173 *walk_subtrees
= false;
7178 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
7182 replace_block_vars_by_duplicates (tree block
, hash_map
<tree
, tree
> *vars_map
,
7187 for (tp
= &BLOCK_VARS (block
); *tp
; tp
= &DECL_CHAIN (*tp
))
7190 if (!VAR_P (t
) && TREE_CODE (t
) != CONST_DECL
)
7192 replace_by_duplicate_decl (&t
, vars_map
, to_context
);
7195 if (VAR_P (*tp
) && DECL_HAS_VALUE_EXPR_P (*tp
))
7197 tree x
= DECL_VALUE_EXPR (*tp
);
7198 struct replace_decls_d rd
= { vars_map
, to_context
};
7200 walk_tree (&x
, replace_block_vars_by_duplicates_1
, &rd
, NULL
);
7201 SET_DECL_VALUE_EXPR (t
, x
);
7202 DECL_HAS_VALUE_EXPR_P (t
) = 1;
7204 DECL_CHAIN (t
) = DECL_CHAIN (*tp
);
7209 for (block
= BLOCK_SUBBLOCKS (block
); block
; block
= BLOCK_CHAIN (block
))
7210 replace_block_vars_by_duplicates (block
, vars_map
, to_context
);
7213 /* Fixup the loop arrays and numbers after moving LOOP and its subloops
7217 fixup_loop_arrays_after_move (struct function
*fn1
, struct function
*fn2
,
7220 /* Discard it from the old loop array. */
7221 (*get_loops (fn1
))[loop
->num
] = NULL
;
7223 /* Place it in the new loop array, assigning it a new number. */
7224 loop
->num
= number_of_loops (fn2
);
7225 vec_safe_push (loops_for_fn (fn2
)->larray
, loop
);
7227 /* Recurse to children. */
7228 for (loop
= loop
->inner
; loop
; loop
= loop
->next
)
7229 fixup_loop_arrays_after_move (fn1
, fn2
, loop
);
7232 /* Verify that the blocks in BBS_P are a single-entry, single-exit region
7233 delimited by ENTRY_BB and EXIT_BB, possibly containing noreturn blocks. */
7236 verify_sese (basic_block entry
, basic_block exit
, vec
<basic_block
> *bbs_p
)
7241 bitmap bbs
= BITMAP_ALLOC (NULL
);
7244 gcc_assert (entry
!= NULL
);
7245 gcc_assert (entry
!= exit
);
7246 gcc_assert (bbs_p
!= NULL
);
7248 gcc_assert (bbs_p
->length () > 0);
7250 FOR_EACH_VEC_ELT (*bbs_p
, i
, bb
)
7251 bitmap_set_bit (bbs
, bb
->index
);
7253 gcc_assert (bitmap_bit_p (bbs
, entry
->index
));
7254 gcc_assert (exit
== NULL
|| bitmap_bit_p (bbs
, exit
->index
));
7256 FOR_EACH_VEC_ELT (*bbs_p
, i
, bb
)
7260 gcc_assert (single_pred_p (entry
));
7261 gcc_assert (!bitmap_bit_p (bbs
, single_pred (entry
)->index
));
7264 for (ei
= ei_start (bb
->preds
); !ei_end_p (ei
); ei_next (&ei
))
7267 gcc_assert (bitmap_bit_p (bbs
, e
->src
->index
));
7272 gcc_assert (single_succ_p (exit
));
7273 gcc_assert (!bitmap_bit_p (bbs
, single_succ (exit
)->index
));
7276 for (ei
= ei_start (bb
->succs
); !ei_end_p (ei
); ei_next (&ei
))
7279 gcc_assert (bitmap_bit_p (bbs
, e
->dest
->index
));
7286 /* If FROM is an SSA_NAME, mark the version in bitmap DATA. */
7289 gather_ssa_name_hash_map_from (tree
const &from
, tree
const &, void *data
)
7291 bitmap release_names
= (bitmap
)data
;
7293 if (TREE_CODE (from
) != SSA_NAME
)
7296 bitmap_set_bit (release_names
, SSA_NAME_VERSION (from
));
7300 /* Return LOOP_DIST_ALIAS call if present in BB. */
7303 find_loop_dist_alias (basic_block bb
)
7305 gimple
*g
= last_stmt (bb
);
7306 if (g
== NULL
|| gimple_code (g
) != GIMPLE_COND
)
7309 gimple_stmt_iterator gsi
= gsi_for_stmt (g
);
7311 if (gsi_end_p (gsi
))
7315 if (gimple_call_internal_p (g
, IFN_LOOP_DIST_ALIAS
))
7320 /* Fold loop internal call G like IFN_LOOP_VECTORIZED/IFN_LOOP_DIST_ALIAS
7321 to VALUE and update any immediate uses of it's LHS. */
7324 fold_loop_internal_call (gimple
*g
, tree value
)
7326 tree lhs
= gimple_call_lhs (g
);
7327 use_operand_p use_p
;
7328 imm_use_iterator iter
;
7330 gimple_stmt_iterator gsi
= gsi_for_stmt (g
);
7332 update_call_from_tree (&gsi
, value
);
7333 FOR_EACH_IMM_USE_STMT (use_stmt
, iter
, lhs
)
7335 FOR_EACH_IMM_USE_ON_STMT (use_p
, iter
)
7336 SET_USE (use_p
, value
);
7337 update_stmt (use_stmt
);
7341 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
7342 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
7343 single basic block in the original CFG and the new basic block is
7344 returned. DEST_CFUN must not have a CFG yet.
7346 Note that the region need not be a pure SESE region. Blocks inside
7347 the region may contain calls to abort/exit. The only restriction
7348 is that ENTRY_BB should be the only entry point and it must
7351 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
7352 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
7353 to the new function.
7355 All local variables referenced in the region are assumed to be in
7356 the corresponding BLOCK_VARS and unexpanded variable lists
7357 associated with DEST_CFUN.
7359 TODO: investigate whether we can reuse gimple_duplicate_sese_region to
7360 reimplement move_sese_region_to_fn by duplicating the region rather than
7364 move_sese_region_to_fn (struct function
*dest_cfun
, basic_block entry_bb
,
7365 basic_block exit_bb
, tree orig_block
)
7367 vec
<basic_block
> bbs
, dom_bbs
;
7368 basic_block dom_entry
= get_immediate_dominator (CDI_DOMINATORS
, entry_bb
);
7369 basic_block after
, bb
, *entry_pred
, *exit_succ
, abb
;
7370 struct function
*saved_cfun
= cfun
;
7371 int *entry_flag
, *exit_flag
;
7372 profile_probability
*entry_prob
, *exit_prob
;
7373 unsigned i
, num_entry_edges
, num_exit_edges
, num_nodes
;
7376 htab_t new_label_map
;
7377 hash_map
<void *, void *> *eh_map
;
7378 struct loop
*loop
= entry_bb
->loop_father
;
7379 struct loop
*loop0
= get_loop (saved_cfun
, 0);
7380 struct move_stmt_d d
;
7382 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
7384 gcc_assert (entry_bb
!= exit_bb
7386 || dominated_by_p (CDI_DOMINATORS
, exit_bb
, entry_bb
)));
7388 /* Collect all the blocks in the region. Manually add ENTRY_BB
7389 because it won't be added by dfs_enumerate_from. */
7391 bbs
.safe_push (entry_bb
);
7392 gather_blocks_in_sese_region (entry_bb
, exit_bb
, &bbs
);
7395 verify_sese (entry_bb
, exit_bb
, &bbs
);
7397 /* The blocks that used to be dominated by something in BBS will now be
7398 dominated by the new block. */
7399 dom_bbs
= get_dominated_by_region (CDI_DOMINATORS
,
7403 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
7404 the predecessor edges to ENTRY_BB and the successor edges to
7405 EXIT_BB so that we can re-attach them to the new basic block that
7406 will replace the region. */
7407 num_entry_edges
= EDGE_COUNT (entry_bb
->preds
);
7408 entry_pred
= XNEWVEC (basic_block
, num_entry_edges
);
7409 entry_flag
= XNEWVEC (int, num_entry_edges
);
7410 entry_prob
= XNEWVEC (profile_probability
, num_entry_edges
);
7412 for (ei
= ei_start (entry_bb
->preds
); (e
= ei_safe_edge (ei
)) != NULL
;)
7414 entry_prob
[i
] = e
->probability
;
7415 entry_flag
[i
] = e
->flags
;
7416 entry_pred
[i
++] = e
->src
;
7422 num_exit_edges
= EDGE_COUNT (exit_bb
->succs
);
7423 exit_succ
= XNEWVEC (basic_block
, num_exit_edges
);
7424 exit_flag
= XNEWVEC (int, num_exit_edges
);
7425 exit_prob
= XNEWVEC (profile_probability
, num_exit_edges
);
7427 for (ei
= ei_start (exit_bb
->succs
); (e
= ei_safe_edge (ei
)) != NULL
;)
7429 exit_prob
[i
] = e
->probability
;
7430 exit_flag
[i
] = e
->flags
;
7431 exit_succ
[i
++] = e
->dest
;
7443 /* Switch context to the child function to initialize DEST_FN's CFG. */
7444 gcc_assert (dest_cfun
->cfg
== NULL
);
7445 push_cfun (dest_cfun
);
7447 init_empty_tree_cfg ();
7449 /* Initialize EH information for the new function. */
7451 new_label_map
= NULL
;
7454 eh_region region
= NULL
;
7456 FOR_EACH_VEC_ELT (bbs
, i
, bb
)
7457 region
= find_outermost_region_in_block (saved_cfun
, bb
, region
);
7459 init_eh_for_function ();
7462 new_label_map
= htab_create (17, tree_map_hash
, tree_map_eq
, free
);
7463 eh_map
= duplicate_eh_regions (saved_cfun
, region
, 0,
7464 new_label_mapper
, new_label_map
);
7468 /* Initialize an empty loop tree. */
7469 struct loops
*loops
= ggc_cleared_alloc
<struct loops
> ();
7470 init_loops_structure (dest_cfun
, loops
, 1);
7471 loops
->state
= LOOPS_MAY_HAVE_MULTIPLE_LATCHES
;
7472 set_loops_for_fn (dest_cfun
, loops
);
7474 vec
<loop_p
, va_gc
> *larray
= get_loops (saved_cfun
)->copy ();
7476 /* Move the outlined loop tree part. */
7477 num_nodes
= bbs
.length ();
7478 FOR_EACH_VEC_ELT (bbs
, i
, bb
)
7480 if (bb
->loop_father
->header
== bb
)
7482 struct loop
*this_loop
= bb
->loop_father
;
7483 struct loop
*outer
= loop_outer (this_loop
);
7485 /* If the SESE region contains some bbs ending with
7486 a noreturn call, those are considered to belong
7487 to the outermost loop in saved_cfun, rather than
7488 the entry_bb's loop_father. */
7492 num_nodes
-= this_loop
->num_nodes
;
7493 flow_loop_tree_node_remove (bb
->loop_father
);
7494 flow_loop_tree_node_add (get_loop (dest_cfun
, 0), this_loop
);
7495 fixup_loop_arrays_after_move (saved_cfun
, cfun
, this_loop
);
7498 else if (bb
->loop_father
== loop0
&& loop0
!= loop
)
7501 /* Remove loop exits from the outlined region. */
7502 if (loops_for_fn (saved_cfun
)->exits
)
7503 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
7505 struct loops
*l
= loops_for_fn (saved_cfun
);
7507 = l
->exits
->find_slot_with_hash (e
, htab_hash_pointer (e
),
7510 l
->exits
->clear_slot (slot
);
7514 /* Adjust the number of blocks in the tree root of the outlined part. */
7515 get_loop (dest_cfun
, 0)->num_nodes
= bbs
.length () + 2;
7517 /* Setup a mapping to be used by move_block_to_fn. */
7518 loop
->aux
= current_loops
->tree_root
;
7519 loop0
->aux
= current_loops
->tree_root
;
7521 /* Fix up orig_loop_num. If the block referenced in it has been moved
7522 to dest_cfun, update orig_loop_num field, otherwise clear it. */
7524 signed char *moved_orig_loop_num
= NULL
;
7525 FOR_EACH_LOOP_FN (dest_cfun
, dloop
, 0)
7526 if (dloop
->orig_loop_num
)
7528 if (moved_orig_loop_num
== NULL
)
7530 = XCNEWVEC (signed char, vec_safe_length (larray
));
7531 if ((*larray
)[dloop
->orig_loop_num
] != NULL
7532 && get_loop (saved_cfun
, dloop
->orig_loop_num
) == NULL
)
7534 if (moved_orig_loop_num
[dloop
->orig_loop_num
] >= 0
7535 && moved_orig_loop_num
[dloop
->orig_loop_num
] < 2)
7536 moved_orig_loop_num
[dloop
->orig_loop_num
]++;
7537 dloop
->orig_loop_num
= (*larray
)[dloop
->orig_loop_num
]->num
;
7541 moved_orig_loop_num
[dloop
->orig_loop_num
] = -1;
7542 dloop
->orig_loop_num
= 0;
7547 if (moved_orig_loop_num
)
7549 FOR_EACH_VEC_ELT (bbs
, i
, bb
)
7551 gimple
*g
= find_loop_dist_alias (bb
);
7555 int orig_loop_num
= tree_to_shwi (gimple_call_arg (g
, 0));
7556 gcc_assert (orig_loop_num
7557 && (unsigned) orig_loop_num
< vec_safe_length (larray
));
7558 if (moved_orig_loop_num
[orig_loop_num
] == 2)
7560 /* If we have moved both loops with this orig_loop_num into
7561 dest_cfun and the LOOP_DIST_ALIAS call is being moved there
7562 too, update the first argument. */
7563 gcc_assert ((*larray
)[dloop
->orig_loop_num
] != NULL
7564 && (get_loop (saved_cfun
, dloop
->orig_loop_num
)
7566 tree t
= build_int_cst (integer_type_node
,
7567 (*larray
)[dloop
->orig_loop_num
]->num
);
7568 gimple_call_set_arg (g
, 0, t
);
7570 /* Make sure the following loop will not update it. */
7571 moved_orig_loop_num
[orig_loop_num
] = 0;
7574 /* Otherwise at least one of the loops stayed in saved_cfun.
7575 Remove the LOOP_DIST_ALIAS call. */
7576 fold_loop_internal_call (g
, gimple_call_arg (g
, 1));
7578 FOR_EACH_BB_FN (bb
, saved_cfun
)
7580 gimple
*g
= find_loop_dist_alias (bb
);
7583 int orig_loop_num
= tree_to_shwi (gimple_call_arg (g
, 0));
7584 gcc_assert (orig_loop_num
7585 && (unsigned) orig_loop_num
< vec_safe_length (larray
));
7586 if (moved_orig_loop_num
[orig_loop_num
])
7587 /* LOOP_DIST_ALIAS call remained in saved_cfun, if at least one
7588 of the corresponding loops was moved, remove it. */
7589 fold_loop_internal_call (g
, gimple_call_arg (g
, 1));
7591 XDELETEVEC (moved_orig_loop_num
);
7595 /* Move blocks from BBS into DEST_CFUN. */
7596 gcc_assert (bbs
.length () >= 2);
7597 after
= dest_cfun
->cfg
->x_entry_block_ptr
;
7598 hash_map
<tree
, tree
> vars_map
;
7600 memset (&d
, 0, sizeof (d
));
7601 d
.orig_block
= orig_block
;
7602 d
.new_block
= DECL_INITIAL (dest_cfun
->decl
);
7603 d
.from_context
= cfun
->decl
;
7604 d
.to_context
= dest_cfun
->decl
;
7605 d
.vars_map
= &vars_map
;
7606 d
.new_label_map
= new_label_map
;
7608 d
.remap_decls_p
= true;
7610 if (gimple_in_ssa_p (cfun
))
7611 for (tree arg
= DECL_ARGUMENTS (d
.to_context
); arg
; arg
= DECL_CHAIN (arg
))
7613 tree narg
= make_ssa_name_fn (dest_cfun
, arg
, gimple_build_nop ());
7614 set_ssa_default_def (dest_cfun
, arg
, narg
);
7615 vars_map
.put (arg
, narg
);
7618 FOR_EACH_VEC_ELT (bbs
, i
, bb
)
7620 /* No need to update edge counts on the last block. It has
7621 already been updated earlier when we detached the region from
7622 the original CFG. */
7623 move_block_to_fn (dest_cfun
, bb
, after
, bb
!= exit_bb
, &d
);
7629 /* Loop sizes are no longer correct, fix them up. */
7630 loop
->num_nodes
-= num_nodes
;
7631 for (struct loop
*outer
= loop_outer (loop
);
7632 outer
; outer
= loop_outer (outer
))
7633 outer
->num_nodes
-= num_nodes
;
7634 loop0
->num_nodes
-= bbs
.length () - num_nodes
;
7636 if (saved_cfun
->has_simduid_loops
|| saved_cfun
->has_force_vectorize_loops
)
7639 for (i
= 0; vec_safe_iterate (loops
->larray
, i
, &aloop
); i
++)
7644 replace_by_duplicate_decl (&aloop
->simduid
, d
.vars_map
,
7646 dest_cfun
->has_simduid_loops
= true;
7648 if (aloop
->force_vectorize
)
7649 dest_cfun
->has_force_vectorize_loops
= true;
7653 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
7657 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun
->decl
))
7659 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun
->decl
))
7660 = BLOCK_SUBBLOCKS (orig_block
);
7661 for (block
= BLOCK_SUBBLOCKS (orig_block
);
7662 block
; block
= BLOCK_CHAIN (block
))
7663 BLOCK_SUPERCONTEXT (block
) = DECL_INITIAL (dest_cfun
->decl
);
7664 BLOCK_SUBBLOCKS (orig_block
) = NULL_TREE
;
7667 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun
->decl
),
7668 &vars_map
, dest_cfun
->decl
);
7671 htab_delete (new_label_map
);
7675 if (gimple_in_ssa_p (cfun
))
7677 /* We need to release ssa-names in a defined order, so first find them,
7678 and then iterate in ascending version order. */
7679 bitmap release_names
= BITMAP_ALLOC (NULL
);
7680 vars_map
.traverse
<void *, gather_ssa_name_hash_map_from
> (release_names
);
7683 EXECUTE_IF_SET_IN_BITMAP (release_names
, 0, i
, bi
)
7684 release_ssa_name (ssa_name (i
));
7685 BITMAP_FREE (release_names
);
7688 /* Rewire the entry and exit blocks. The successor to the entry
7689 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
7690 the child function. Similarly, the predecessor of DEST_FN's
7691 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
7692 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
7693 various CFG manipulation function get to the right CFG.
7695 FIXME, this is silly. The CFG ought to become a parameter to
7697 push_cfun (dest_cfun
);
7698 ENTRY_BLOCK_PTR_FOR_FN (cfun
)->count
= entry_bb
->count
;
7699 make_single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun
), entry_bb
, EDGE_FALLTHRU
);
7702 make_single_succ_edge (exit_bb
, EXIT_BLOCK_PTR_FOR_FN (cfun
), 0);
7703 EXIT_BLOCK_PTR_FOR_FN (cfun
)->count
= exit_bb
->count
;
7706 EXIT_BLOCK_PTR_FOR_FN (cfun
)->count
= profile_count::zero ();
7709 /* Back in the original function, the SESE region has disappeared,
7710 create a new basic block in its place. */
7711 bb
= create_empty_bb (entry_pred
[0]);
7713 add_bb_to_loop (bb
, loop
);
7714 for (i
= 0; i
< num_entry_edges
; i
++)
7716 e
= make_edge (entry_pred
[i
], bb
, entry_flag
[i
]);
7717 e
->probability
= entry_prob
[i
];
7720 for (i
= 0; i
< num_exit_edges
; i
++)
7722 e
= make_edge (bb
, exit_succ
[i
], exit_flag
[i
]);
7723 e
->probability
= exit_prob
[i
];
7726 set_immediate_dominator (CDI_DOMINATORS
, bb
, dom_entry
);
7727 FOR_EACH_VEC_ELT (dom_bbs
, i
, abb
)
7728 set_immediate_dominator (CDI_DOMINATORS
, abb
, bb
);
7745 /* Dump default def DEF to file FILE using FLAGS and indentation
7749 dump_default_def (FILE *file
, tree def
, int spc
, dump_flags_t flags
)
7751 for (int i
= 0; i
< spc
; ++i
)
7752 fprintf (file
, " ");
7753 dump_ssaname_info_to_file (file
, def
, spc
);
7755 print_generic_expr (file
, TREE_TYPE (def
), flags
);
7756 fprintf (file
, " ");
7757 print_generic_expr (file
, def
, flags
);
7758 fprintf (file
, " = ");
7759 print_generic_expr (file
, SSA_NAME_VAR (def
), flags
);
7760 fprintf (file
, ";\n");
7763 /* Print no_sanitize attribute to FILE for a given attribute VALUE. */
7766 print_no_sanitize_attr_value (FILE *file
, tree value
)
7768 unsigned int flags
= tree_to_uhwi (value
);
7770 for (int i
= 0; sanitizer_opts
[i
].name
!= NULL
; ++i
)
7772 if ((sanitizer_opts
[i
].flag
& flags
) == sanitizer_opts
[i
].flag
)
7775 fprintf (file
, " | ");
7776 fprintf (file
, "%s", sanitizer_opts
[i
].name
);
7782 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in dumpfile.h)
7786 dump_function_to_file (tree fndecl
, FILE *file
, dump_flags_t flags
)
7788 tree arg
, var
, old_current_fndecl
= current_function_decl
;
7789 struct function
*dsf
;
7790 bool ignore_topmost_bind
= false, any_var
= false;
7793 bool tmclone
= (TREE_CODE (fndecl
) == FUNCTION_DECL
7794 && decl_is_tm_clone (fndecl
));
7795 struct function
*fun
= DECL_STRUCT_FUNCTION (fndecl
);
7797 if (DECL_ATTRIBUTES (fndecl
) != NULL_TREE
)
7799 fprintf (file
, "__attribute__((");
7803 for (chain
= DECL_ATTRIBUTES (fndecl
); chain
;
7804 first
= false, chain
= TREE_CHAIN (chain
))
7807 fprintf (file
, ", ");
7809 tree name
= get_attribute_name (chain
);
7810 print_generic_expr (file
, name
, dump_flags
);
7811 if (TREE_VALUE (chain
) != NULL_TREE
)
7813 fprintf (file
, " (");
7815 if (strstr (IDENTIFIER_POINTER (name
), "no_sanitize"))
7816 print_no_sanitize_attr_value (file
, TREE_VALUE (chain
));
7818 print_generic_expr (file
, TREE_VALUE (chain
), dump_flags
);
7819 fprintf (file
, ")");
7823 fprintf (file
, "))\n");
7826 current_function_decl
= fndecl
;
7827 if (flags
& TDF_GIMPLE
)
7829 print_generic_expr (file
, TREE_TYPE (TREE_TYPE (fndecl
)),
7830 dump_flags
| TDF_SLIM
);
7831 fprintf (file
, " __GIMPLE ()\n%s (", function_name (fun
));
7834 fprintf (file
, "%s %s(", function_name (fun
), tmclone
? "[tm-clone] " : "");
7836 arg
= DECL_ARGUMENTS (fndecl
);
7839 print_generic_expr (file
, TREE_TYPE (arg
), dump_flags
);
7840 fprintf (file
, " ");
7841 print_generic_expr (file
, arg
, dump_flags
);
7842 if (DECL_CHAIN (arg
))
7843 fprintf (file
, ", ");
7844 arg
= DECL_CHAIN (arg
);
7846 fprintf (file
, ")\n");
7848 dsf
= DECL_STRUCT_FUNCTION (fndecl
);
7849 if (dsf
&& (flags
& TDF_EH
))
7850 dump_eh_tree (file
, dsf
);
7852 if (flags
& TDF_RAW
&& !gimple_has_body_p (fndecl
))
7854 dump_node (fndecl
, TDF_SLIM
| flags
, file
);
7855 current_function_decl
= old_current_fndecl
;
7859 /* When GIMPLE is lowered, the variables are no longer available in
7860 BIND_EXPRs, so display them separately. */
7861 if (fun
&& fun
->decl
== fndecl
&& (fun
->curr_properties
& PROP_gimple_lcf
))
7864 ignore_topmost_bind
= true;
7866 fprintf (file
, "{\n");
7867 if (gimple_in_ssa_p (fun
)
7868 && (flags
& TDF_ALIAS
))
7870 for (arg
= DECL_ARGUMENTS (fndecl
); arg
!= NULL
;
7871 arg
= DECL_CHAIN (arg
))
7873 tree def
= ssa_default_def (fun
, arg
);
7875 dump_default_def (file
, def
, 2, flags
);
7878 tree res
= DECL_RESULT (fun
->decl
);
7879 if (res
!= NULL_TREE
7880 && DECL_BY_REFERENCE (res
))
7882 tree def
= ssa_default_def (fun
, res
);
7884 dump_default_def (file
, def
, 2, flags
);
7887 tree static_chain
= fun
->static_chain_decl
;
7888 if (static_chain
!= NULL_TREE
)
7890 tree def
= ssa_default_def (fun
, static_chain
);
7892 dump_default_def (file
, def
, 2, flags
);
7896 if (!vec_safe_is_empty (fun
->local_decls
))
7897 FOR_EACH_LOCAL_DECL (fun
, ix
, var
)
7899 print_generic_decl (file
, var
, flags
);
7900 fprintf (file
, "\n");
7907 if (gimple_in_ssa_p (cfun
))
7908 FOR_EACH_SSA_NAME (ix
, name
, cfun
)
7910 if (!SSA_NAME_VAR (name
))
7912 fprintf (file
, " ");
7913 print_generic_expr (file
, TREE_TYPE (name
), flags
);
7914 fprintf (file
, " ");
7915 print_generic_expr (file
, name
, flags
);
7916 fprintf (file
, ";\n");
7923 if (fun
&& fun
->decl
== fndecl
7925 && basic_block_info_for_fn (fun
))
7927 /* If the CFG has been built, emit a CFG-based dump. */
7928 if (!ignore_topmost_bind
)
7929 fprintf (file
, "{\n");
7931 if (any_var
&& n_basic_blocks_for_fn (fun
))
7932 fprintf (file
, "\n");
7934 FOR_EACH_BB_FN (bb
, fun
)
7935 dump_bb (file
, bb
, 2, flags
);
7937 fprintf (file
, "}\n");
7939 else if (fun
->curr_properties
& PROP_gimple_any
)
7941 /* The function is now in GIMPLE form but the CFG has not been
7942 built yet. Emit the single sequence of GIMPLE statements
7943 that make up its body. */
7944 gimple_seq body
= gimple_body (fndecl
);
7946 if (gimple_seq_first_stmt (body
)
7947 && gimple_seq_first_stmt (body
) == gimple_seq_last_stmt (body
)
7948 && gimple_code (gimple_seq_first_stmt (body
)) == GIMPLE_BIND
)
7949 print_gimple_seq (file
, body
, 0, flags
);
7952 if (!ignore_topmost_bind
)
7953 fprintf (file
, "{\n");
7956 fprintf (file
, "\n");
7958 print_gimple_seq (file
, body
, 2, flags
);
7959 fprintf (file
, "}\n");
7966 /* Make a tree based dump. */
7967 chain
= DECL_SAVED_TREE (fndecl
);
7968 if (chain
&& TREE_CODE (chain
) == BIND_EXPR
)
7970 if (ignore_topmost_bind
)
7972 chain
= BIND_EXPR_BODY (chain
);
7980 if (!ignore_topmost_bind
)
7982 fprintf (file
, "{\n");
7983 /* No topmost bind, pretend it's ignored for later. */
7984 ignore_topmost_bind
= true;
7990 fprintf (file
, "\n");
7992 print_generic_stmt_indented (file
, chain
, flags
, indent
);
7993 if (ignore_topmost_bind
)
7994 fprintf (file
, "}\n");
7997 if (flags
& TDF_ENUMERATE_LOCALS
)
7998 dump_enumerated_decls (file
, flags
);
7999 fprintf (file
, "\n\n");
8001 current_function_decl
= old_current_fndecl
;
8004 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
8007 debug_function (tree fn
, dump_flags_t flags
)
8009 dump_function_to_file (fn
, stderr
, flags
);
8013 /* Print on FILE the indexes for the predecessors of basic_block BB. */
8016 print_pred_bbs (FILE *file
, basic_block bb
)
8021 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
8022 fprintf (file
, "bb_%d ", e
->src
->index
);
8026 /* Print on FILE the indexes for the successors of basic_block BB. */
8029 print_succ_bbs (FILE *file
, basic_block bb
)
8034 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
8035 fprintf (file
, "bb_%d ", e
->dest
->index
);
8038 /* Print to FILE the basic block BB following the VERBOSITY level. */
8041 print_loops_bb (FILE *file
, basic_block bb
, int indent
, int verbosity
)
8043 char *s_indent
= (char *) alloca ((size_t) indent
+ 1);
8044 memset ((void *) s_indent
, ' ', (size_t) indent
);
8045 s_indent
[indent
] = '\0';
8047 /* Print basic_block's header. */
8050 fprintf (file
, "%s bb_%d (preds = {", s_indent
, bb
->index
);
8051 print_pred_bbs (file
, bb
);
8052 fprintf (file
, "}, succs = {");
8053 print_succ_bbs (file
, bb
);
8054 fprintf (file
, "})\n");
8057 /* Print basic_block's body. */
8060 fprintf (file
, "%s {\n", s_indent
);
8061 dump_bb (file
, bb
, indent
+ 4, TDF_VOPS
|TDF_MEMSYMS
);
8062 fprintf (file
, "%s }\n", s_indent
);
8066 static void print_loop_and_siblings (FILE *, struct loop
*, int, int);
8068 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
8069 VERBOSITY level this outputs the contents of the loop, or just its
8073 print_loop (FILE *file
, struct loop
*loop
, int indent
, int verbosity
)
8081 s_indent
= (char *) alloca ((size_t) indent
+ 1);
8082 memset ((void *) s_indent
, ' ', (size_t) indent
);
8083 s_indent
[indent
] = '\0';
8085 /* Print loop's header. */
8086 fprintf (file
, "%sloop_%d (", s_indent
, loop
->num
);
8088 fprintf (file
, "header = %d", loop
->header
->index
);
8091 fprintf (file
, "deleted)\n");
8095 fprintf (file
, ", latch = %d", loop
->latch
->index
);
8097 fprintf (file
, ", multiple latches");
8098 fprintf (file
, ", niter = ");
8099 print_generic_expr (file
, loop
->nb_iterations
);
8101 if (loop
->any_upper_bound
)
8103 fprintf (file
, ", upper_bound = ");
8104 print_decu (loop
->nb_iterations_upper_bound
, file
);
8106 if (loop
->any_likely_upper_bound
)
8108 fprintf (file
, ", likely_upper_bound = ");
8109 print_decu (loop
->nb_iterations_likely_upper_bound
, file
);
8112 if (loop
->any_estimate
)
8114 fprintf (file
, ", estimate = ");
8115 print_decu (loop
->nb_iterations_estimate
, file
);
8118 fprintf (file
, ", unroll = %d", loop
->unroll
);
8119 fprintf (file
, ")\n");
8121 /* Print loop's body. */
8124 fprintf (file
, "%s{\n", s_indent
);
8125 FOR_EACH_BB_FN (bb
, cfun
)
8126 if (bb
->loop_father
== loop
)
8127 print_loops_bb (file
, bb
, indent
, verbosity
);
8129 print_loop_and_siblings (file
, loop
->inner
, indent
+ 2, verbosity
);
8130 fprintf (file
, "%s}\n", s_indent
);
8134 /* Print the LOOP and its sibling loops on FILE, indented INDENT
8135 spaces. Following VERBOSITY level this outputs the contents of the
8136 loop, or just its structure. */
8139 print_loop_and_siblings (FILE *file
, struct loop
*loop
, int indent
,
8145 print_loop (file
, loop
, indent
, verbosity
);
8146 print_loop_and_siblings (file
, loop
->next
, indent
, verbosity
);
8149 /* Follow a CFG edge from the entry point of the program, and on entry
8150 of a loop, pretty print the loop structure on FILE. */
8153 print_loops (FILE *file
, int verbosity
)
8157 bb
= ENTRY_BLOCK_PTR_FOR_FN (cfun
);
8158 fprintf (file
, "\nLoops in function: %s\n", current_function_name ());
8159 if (bb
&& bb
->loop_father
)
8160 print_loop_and_siblings (file
, bb
->loop_father
, 0, verbosity
);
8166 debug (struct loop
&ref
)
8168 print_loop (stderr
, &ref
, 0, /*verbosity*/0);
8172 debug (struct loop
*ptr
)
8177 fprintf (stderr
, "<nil>\n");
8180 /* Dump a loop verbosely. */
8183 debug_verbose (struct loop
&ref
)
8185 print_loop (stderr
, &ref
, 0, /*verbosity*/3);
8189 debug_verbose (struct loop
*ptr
)
8194 fprintf (stderr
, "<nil>\n");
8198 /* Debugging loops structure at tree level, at some VERBOSITY level. */
8201 debug_loops (int verbosity
)
8203 print_loops (stderr
, verbosity
);
8206 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
8209 debug_loop (struct loop
*loop
, int verbosity
)
8211 print_loop (stderr
, loop
, 0, verbosity
);
8214 /* Print on stderr the code of loop number NUM, at some VERBOSITY
8218 debug_loop_num (unsigned num
, int verbosity
)
8220 debug_loop (get_loop (cfun
, num
), verbosity
);
8223 /* Return true if BB ends with a call, possibly followed by some
8224 instructions that must stay with the call. Return false,
8228 gimple_block_ends_with_call_p (basic_block bb
)
8230 gimple_stmt_iterator gsi
= gsi_last_nondebug_bb (bb
);
8231 return !gsi_end_p (gsi
) && is_gimple_call (gsi_stmt (gsi
));
8235 /* Return true if BB ends with a conditional branch. Return false,
8239 gimple_block_ends_with_condjump_p (const_basic_block bb
)
8241 gimple
*stmt
= last_stmt (CONST_CAST_BB (bb
));
8242 return (stmt
&& gimple_code (stmt
) == GIMPLE_COND
);
8246 /* Return true if statement T may terminate execution of BB in ways not
8247 explicitly represtented in the CFG. */
8250 stmt_can_terminate_bb_p (gimple
*t
)
8252 tree fndecl
= NULL_TREE
;
8255 /* Eh exception not handled internally terminates execution of the whole
8257 if (stmt_can_throw_external (t
))
8260 /* NORETURN and LONGJMP calls already have an edge to exit.
8261 CONST and PURE calls do not need one.
8262 We don't currently check for CONST and PURE here, although
8263 it would be a good idea, because those attributes are
8264 figured out from the RTL in mark_constant_function, and
8265 the counter incrementation code from -fprofile-arcs
8266 leads to different results from -fbranch-probabilities. */
8267 if (is_gimple_call (t
))
8269 fndecl
= gimple_call_fndecl (t
);
8270 call_flags
= gimple_call_flags (t
);
8273 if (is_gimple_call (t
)
8275 && DECL_BUILT_IN (fndecl
)
8276 && (call_flags
& ECF_NOTHROW
)
8277 && !(call_flags
& ECF_RETURNS_TWICE
)
8278 /* fork() doesn't really return twice, but the effect of
8279 wrapping it in __gcov_fork() which calls __gcov_flush()
8280 and clears the counters before forking has the same
8281 effect as returning twice. Force a fake edge. */
8282 && !(DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
8283 && DECL_FUNCTION_CODE (fndecl
) == BUILT_IN_FORK
))
8286 if (is_gimple_call (t
))
8292 if (call_flags
& (ECF_PURE
| ECF_CONST
)
8293 && !(call_flags
& ECF_LOOPING_CONST_OR_PURE
))
8296 /* Function call may do longjmp, terminate program or do other things.
8297 Special case noreturn that have non-abnormal edges out as in this case
8298 the fact is sufficiently represented by lack of edges out of T. */
8299 if (!(call_flags
& ECF_NORETURN
))
8303 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
8304 if ((e
->flags
& EDGE_FAKE
) == 0)
8308 if (gasm
*asm_stmt
= dyn_cast
<gasm
*> (t
))
8309 if (gimple_asm_volatile_p (asm_stmt
) || gimple_asm_input_p (asm_stmt
))
8316 /* Add fake edges to the function exit for any non constant and non
8317 noreturn calls (or noreturn calls with EH/abnormal edges),
8318 volatile inline assembly in the bitmap of blocks specified by BLOCKS
8319 or to the whole CFG if BLOCKS is zero. Return the number of blocks
8322 The goal is to expose cases in which entering a basic block does
8323 not imply that all subsequent instructions must be executed. */
8326 gimple_flow_call_edges_add (sbitmap blocks
)
8329 int blocks_split
= 0;
8330 int last_bb
= last_basic_block_for_fn (cfun
);
8331 bool check_last_block
= false;
8333 if (n_basic_blocks_for_fn (cfun
) == NUM_FIXED_BLOCKS
)
8337 check_last_block
= true;
8339 check_last_block
= bitmap_bit_p (blocks
,
8340 EXIT_BLOCK_PTR_FOR_FN (cfun
)->prev_bb
->index
);
8342 /* In the last basic block, before epilogue generation, there will be
8343 a fallthru edge to EXIT. Special care is required if the last insn
8344 of the last basic block is a call because make_edge folds duplicate
8345 edges, which would result in the fallthru edge also being marked
8346 fake, which would result in the fallthru edge being removed by
8347 remove_fake_edges, which would result in an invalid CFG.
8349 Moreover, we can't elide the outgoing fake edge, since the block
8350 profiler needs to take this into account in order to solve the minimal
8351 spanning tree in the case that the call doesn't return.
8353 Handle this by adding a dummy instruction in a new last basic block. */
8354 if (check_last_block
)
8356 basic_block bb
= EXIT_BLOCK_PTR_FOR_FN (cfun
)->prev_bb
;
8357 gimple_stmt_iterator gsi
= gsi_last_nondebug_bb (bb
);
8360 if (!gsi_end_p (gsi
))
8363 if (t
&& stmt_can_terminate_bb_p (t
))
8367 e
= find_edge (bb
, EXIT_BLOCK_PTR_FOR_FN (cfun
));
8370 gsi_insert_on_edge (e
, gimple_build_nop ());
8371 gsi_commit_edge_inserts ();
8376 /* Now add fake edges to the function exit for any non constant
8377 calls since there is no way that we can determine if they will
8379 for (i
= 0; i
< last_bb
; i
++)
8381 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
8382 gimple_stmt_iterator gsi
;
8383 gimple
*stmt
, *last_stmt
;
8388 if (blocks
&& !bitmap_bit_p (blocks
, i
))
8391 gsi
= gsi_last_nondebug_bb (bb
);
8392 if (!gsi_end_p (gsi
))
8394 last_stmt
= gsi_stmt (gsi
);
8397 stmt
= gsi_stmt (gsi
);
8398 if (stmt_can_terminate_bb_p (stmt
))
8402 /* The handling above of the final block before the
8403 epilogue should be enough to verify that there is
8404 no edge to the exit block in CFG already.
8405 Calling make_edge in such case would cause us to
8406 mark that edge as fake and remove it later. */
8407 if (flag_checking
&& stmt
== last_stmt
)
8409 e
= find_edge (bb
, EXIT_BLOCK_PTR_FOR_FN (cfun
));
8410 gcc_assert (e
== NULL
);
8413 /* Note that the following may create a new basic block
8414 and renumber the existing basic blocks. */
8415 if (stmt
!= last_stmt
)
8417 e
= split_block (bb
, stmt
);
8421 e
= make_edge (bb
, EXIT_BLOCK_PTR_FOR_FN (cfun
), EDGE_FAKE
);
8422 e
->probability
= profile_probability::guessed_never ();
8426 while (!gsi_end_p (gsi
));
8431 checking_verify_flow_info ();
8433 return blocks_split
;
8436 /* Removes edge E and all the blocks dominated by it, and updates dominance
8437 information. The IL in E->src needs to be updated separately.
8438 If dominance info is not available, only the edge E is removed.*/
8441 remove_edge_and_dominated_blocks (edge e
)
8443 vec
<basic_block
> bbs_to_remove
= vNULL
;
8444 vec
<basic_block
> bbs_to_fix_dom
= vNULL
;
8447 bool none_removed
= false;
8449 basic_block bb
, dbb
;
8452 /* If we are removing a path inside a non-root loop that may change
8453 loop ownership of blocks or remove loops. Mark loops for fixup. */
8455 && loop_outer (e
->src
->loop_father
) != NULL
8456 && e
->src
->loop_father
== e
->dest
->loop_father
)
8457 loops_state_set (LOOPS_NEED_FIXUP
);
8459 if (!dom_info_available_p (CDI_DOMINATORS
))
8465 /* No updating is needed for edges to exit. */
8466 if (e
->dest
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
8468 if (cfgcleanup_altered_bbs
)
8469 bitmap_set_bit (cfgcleanup_altered_bbs
, e
->src
->index
);
8474 /* First, we find the basic blocks to remove. If E->dest has a predecessor
8475 that is not dominated by E->dest, then this set is empty. Otherwise,
8476 all the basic blocks dominated by E->dest are removed.
8478 Also, to DF_IDOM we store the immediate dominators of the blocks in
8479 the dominance frontier of E (i.e., of the successors of the
8480 removed blocks, if there are any, and of E->dest otherwise). */
8481 FOR_EACH_EDGE (f
, ei
, e
->dest
->preds
)
8486 if (!dominated_by_p (CDI_DOMINATORS
, f
->src
, e
->dest
))
8488 none_removed
= true;
8493 auto_bitmap df
, df_idom
;
8495 bitmap_set_bit (df_idom
,
8496 get_immediate_dominator (CDI_DOMINATORS
, e
->dest
)->index
);
8499 bbs_to_remove
= get_all_dominated_blocks (CDI_DOMINATORS
, e
->dest
);
8500 FOR_EACH_VEC_ELT (bbs_to_remove
, i
, bb
)
8502 FOR_EACH_EDGE (f
, ei
, bb
->succs
)
8504 if (f
->dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
))
8505 bitmap_set_bit (df
, f
->dest
->index
);
8508 FOR_EACH_VEC_ELT (bbs_to_remove
, i
, bb
)
8509 bitmap_clear_bit (df
, bb
->index
);
8511 EXECUTE_IF_SET_IN_BITMAP (df
, 0, i
, bi
)
8513 bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
8514 bitmap_set_bit (df_idom
,
8515 get_immediate_dominator (CDI_DOMINATORS
, bb
)->index
);
8519 if (cfgcleanup_altered_bbs
)
8521 /* Record the set of the altered basic blocks. */
8522 bitmap_set_bit (cfgcleanup_altered_bbs
, e
->src
->index
);
8523 bitmap_ior_into (cfgcleanup_altered_bbs
, df
);
8526 /* Remove E and the cancelled blocks. */
8531 /* Walk backwards so as to get a chance to substitute all
8532 released DEFs into debug stmts. See
8533 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
8535 for (i
= bbs_to_remove
.length (); i
-- > 0; )
8536 delete_basic_block (bbs_to_remove
[i
]);
8539 /* Update the dominance information. The immediate dominator may change only
8540 for blocks whose immediate dominator belongs to DF_IDOM:
8542 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
8543 removal. Let Z the arbitrary block such that idom(Z) = Y and
8544 Z dominates X after the removal. Before removal, there exists a path P
8545 from Y to X that avoids Z. Let F be the last edge on P that is
8546 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
8547 dominates W, and because of P, Z does not dominate W), and W belongs to
8548 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
8549 EXECUTE_IF_SET_IN_BITMAP (df_idom
, 0, i
, bi
)
8551 bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
8552 for (dbb
= first_dom_son (CDI_DOMINATORS
, bb
);
8554 dbb
= next_dom_son (CDI_DOMINATORS
, dbb
))
8555 bbs_to_fix_dom
.safe_push (dbb
);
8558 iterate_fix_dominators (CDI_DOMINATORS
, bbs_to_fix_dom
, true);
8560 bbs_to_remove
.release ();
8561 bbs_to_fix_dom
.release ();
8564 /* Purge dead EH edges from basic block BB. */
8567 gimple_purge_dead_eh_edges (basic_block bb
)
8569 bool changed
= false;
8572 gimple
*stmt
= last_stmt (bb
);
8574 if (stmt
&& stmt_can_throw_internal (stmt
))
8577 for (ei
= ei_start (bb
->succs
); (e
= ei_safe_edge (ei
)); )
8579 if (e
->flags
& EDGE_EH
)
8581 remove_edge_and_dominated_blocks (e
);
8591 /* Purge dead EH edges from basic block listed in BLOCKS. */
8594 gimple_purge_all_dead_eh_edges (const_bitmap blocks
)
8596 bool changed
= false;
8600 EXECUTE_IF_SET_IN_BITMAP (blocks
, 0, i
, bi
)
8602 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
8604 /* Earlier gimple_purge_dead_eh_edges could have removed
8605 this basic block already. */
8606 gcc_assert (bb
|| changed
);
8608 changed
|= gimple_purge_dead_eh_edges (bb
);
8614 /* Purge dead abnormal call edges from basic block BB. */
8617 gimple_purge_dead_abnormal_call_edges (basic_block bb
)
8619 bool changed
= false;
8622 gimple
*stmt
= last_stmt (bb
);
8624 if (!cfun
->has_nonlocal_label
8625 && !cfun
->calls_setjmp
)
8628 if (stmt
&& stmt_can_make_abnormal_goto (stmt
))
8631 for (ei
= ei_start (bb
->succs
); (e
= ei_safe_edge (ei
)); )
8633 if (e
->flags
& EDGE_ABNORMAL
)
8635 if (e
->flags
& EDGE_FALLTHRU
)
8636 e
->flags
&= ~EDGE_ABNORMAL
;
8638 remove_edge_and_dominated_blocks (e
);
8648 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
8651 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks
)
8653 bool changed
= false;
8657 EXECUTE_IF_SET_IN_BITMAP (blocks
, 0, i
, bi
)
8659 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
8661 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
8662 this basic block already. */
8663 gcc_assert (bb
|| changed
);
8665 changed
|= gimple_purge_dead_abnormal_call_edges (bb
);
8671 /* This function is called whenever a new edge is created or
8675 gimple_execute_on_growing_pred (edge e
)
8677 basic_block bb
= e
->dest
;
8679 if (!gimple_seq_empty_p (phi_nodes (bb
)))
8680 reserve_phi_args_for_new_edge (bb
);
8683 /* This function is called immediately before edge E is removed from
8684 the edge vector E->dest->preds. */
8687 gimple_execute_on_shrinking_pred (edge e
)
8689 if (!gimple_seq_empty_p (phi_nodes (e
->dest
)))
8690 remove_phi_args (e
);
8693 /*---------------------------------------------------------------------------
8694 Helper functions for Loop versioning
8695 ---------------------------------------------------------------------------*/
8697 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
8698 of 'first'. Both of them are dominated by 'new_head' basic block. When
8699 'new_head' was created by 'second's incoming edge it received phi arguments
8700 on the edge by split_edge(). Later, additional edge 'e' was created to
8701 connect 'new_head' and 'first'. Now this routine adds phi args on this
8702 additional edge 'e' that new_head to second edge received as part of edge
8706 gimple_lv_adjust_loop_header_phi (basic_block first
, basic_block second
,
8707 basic_block new_head
, edge e
)
8710 gphi_iterator psi1
, psi2
;
8712 edge e2
= find_edge (new_head
, second
);
8714 /* Because NEW_HEAD has been created by splitting SECOND's incoming
8715 edge, we should always have an edge from NEW_HEAD to SECOND. */
8716 gcc_assert (e2
!= NULL
);
8718 /* Browse all 'second' basic block phi nodes and add phi args to
8719 edge 'e' for 'first' head. PHI args are always in correct order. */
8721 for (psi2
= gsi_start_phis (second
),
8722 psi1
= gsi_start_phis (first
);
8723 !gsi_end_p (psi2
) && !gsi_end_p (psi1
);
8724 gsi_next (&psi2
), gsi_next (&psi1
))
8728 def
= PHI_ARG_DEF (phi2
, e2
->dest_idx
);
8729 add_phi_arg (phi1
, def
, e
, gimple_phi_arg_location_from_edge (phi2
, e2
));
8734 /* Adds a if else statement to COND_BB with condition COND_EXPR.
8735 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
8736 the destination of the ELSE part. */
8739 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED
,
8740 basic_block second_head ATTRIBUTE_UNUSED
,
8741 basic_block cond_bb
, void *cond_e
)
8743 gimple_stmt_iterator gsi
;
8744 gimple
*new_cond_expr
;
8745 tree cond_expr
= (tree
) cond_e
;
8748 /* Build new conditional expr */
8749 new_cond_expr
= gimple_build_cond_from_tree (cond_expr
,
8750 NULL_TREE
, NULL_TREE
);
8752 /* Add new cond in cond_bb. */
8753 gsi
= gsi_last_bb (cond_bb
);
8754 gsi_insert_after (&gsi
, new_cond_expr
, GSI_NEW_STMT
);
8756 /* Adjust edges appropriately to connect new head with first head
8757 as well as second head. */
8758 e0
= single_succ_edge (cond_bb
);
8759 e0
->flags
&= ~EDGE_FALLTHRU
;
8760 e0
->flags
|= EDGE_FALSE_VALUE
;
8764 /* Do book-keeping of basic block BB for the profile consistency checker.
8765 If AFTER_PASS is 0, do pre-pass accounting, or if AFTER_PASS is 1
8766 then do post-pass accounting. Store the counting in RECORD. */
8768 gimple_account_profile_record (basic_block bb
, int after_pass
,
8769 struct profile_record
*record
)
8771 gimple_stmt_iterator i
;
8772 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); gsi_next (&i
))
8774 record
->size
[after_pass
]
8775 += estimate_num_insns (gsi_stmt (i
), &eni_size_weights
);
8776 if (bb
->count
.initialized_p ())
8777 record
->time
[after_pass
]
8778 += estimate_num_insns (gsi_stmt (i
),
8779 &eni_time_weights
) * bb
->count
.to_gcov_type ();
8780 else if (profile_status_for_fn (cfun
) == PROFILE_GUESSED
)
8781 record
->time
[after_pass
]
8782 += estimate_num_insns (gsi_stmt (i
),
8783 &eni_time_weights
) * bb
->count
.to_frequency (cfun
);
8787 struct cfg_hooks gimple_cfg_hooks
= {
8789 gimple_verify_flow_info
,
8790 gimple_dump_bb
, /* dump_bb */
8791 gimple_dump_bb_for_graph
, /* dump_bb_for_graph */
8792 create_bb
, /* create_basic_block */
8793 gimple_redirect_edge_and_branch
, /* redirect_edge_and_branch */
8794 gimple_redirect_edge_and_branch_force
, /* redirect_edge_and_branch_force */
8795 gimple_can_remove_branch_p
, /* can_remove_branch_p */
8796 remove_bb
, /* delete_basic_block */
8797 gimple_split_block
, /* split_block */
8798 gimple_move_block_after
, /* move_block_after */
8799 gimple_can_merge_blocks_p
, /* can_merge_blocks_p */
8800 gimple_merge_blocks
, /* merge_blocks */
8801 gimple_predict_edge
, /* predict_edge */
8802 gimple_predicted_by_p
, /* predicted_by_p */
8803 gimple_can_duplicate_bb_p
, /* can_duplicate_block_p */
8804 gimple_duplicate_bb
, /* duplicate_block */
8805 gimple_split_edge
, /* split_edge */
8806 gimple_make_forwarder_block
, /* make_forward_block */
8807 NULL
, /* tidy_fallthru_edge */
8808 NULL
, /* force_nonfallthru */
8809 gimple_block_ends_with_call_p
,/* block_ends_with_call_p */
8810 gimple_block_ends_with_condjump_p
, /* block_ends_with_condjump_p */
8811 gimple_flow_call_edges_add
, /* flow_call_edges_add */
8812 gimple_execute_on_growing_pred
, /* execute_on_growing_pred */
8813 gimple_execute_on_shrinking_pred
, /* execute_on_shrinking_pred */
8814 gimple_duplicate_loop_to_header_edge
, /* duplicate loop for trees */
8815 gimple_lv_add_condition_to_bb
, /* lv_add_condition_to_bb */
8816 gimple_lv_adjust_loop_header_phi
, /* lv_adjust_loop_header_phi*/
8817 extract_true_false_edges_from_block
, /* extract_cond_bb_edges */
8818 flush_pending_stmts
, /* flush_pending_stmts */
8819 gimple_empty_block_p
, /* block_empty_p */
8820 gimple_split_block_before_cond_jump
, /* split_block_before_cond_jump */
8821 gimple_account_profile_record
,
8825 /* Split all critical edges. */
8828 split_critical_edges (void)
8834 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
8835 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
8836 mappings around the calls to split_edge. */
8837 start_recording_case_labels ();
8838 FOR_ALL_BB_FN (bb
, cfun
)
8840 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
8842 if (EDGE_CRITICAL_P (e
) && !(e
->flags
& EDGE_ABNORMAL
))
8844 /* PRE inserts statements to edges and expects that
8845 since split_critical_edges was done beforehand, committing edge
8846 insertions will not split more edges. In addition to critical
8847 edges we must split edges that have multiple successors and
8848 end by control flow statements, such as RESX.
8849 Go ahead and split them too. This matches the logic in
8850 gimple_find_edge_insert_loc. */
8851 else if ((!single_pred_p (e
->dest
)
8852 || !gimple_seq_empty_p (phi_nodes (e
->dest
))
8853 || e
->dest
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
8854 && e
->src
!= ENTRY_BLOCK_PTR_FOR_FN (cfun
)
8855 && !(e
->flags
& EDGE_ABNORMAL
))
8857 gimple_stmt_iterator gsi
;
8859 gsi
= gsi_last_bb (e
->src
);
8860 if (!gsi_end_p (gsi
)
8861 && stmt_ends_bb_p (gsi_stmt (gsi
))
8862 && (gimple_code (gsi_stmt (gsi
)) != GIMPLE_RETURN
8863 && !gimple_call_builtin_p (gsi_stmt (gsi
),
8869 end_recording_case_labels ();
8875 const pass_data pass_data_split_crit_edges
=
8877 GIMPLE_PASS
, /* type */
8878 "crited", /* name */
8879 OPTGROUP_NONE
, /* optinfo_flags */
8880 TV_TREE_SPLIT_EDGES
, /* tv_id */
8881 PROP_cfg
, /* properties_required */
8882 PROP_no_crit_edges
, /* properties_provided */
8883 0, /* properties_destroyed */
8884 0, /* todo_flags_start */
8885 0, /* todo_flags_finish */
8888 class pass_split_crit_edges
: public gimple_opt_pass
8891 pass_split_crit_edges (gcc::context
*ctxt
)
8892 : gimple_opt_pass (pass_data_split_crit_edges
, ctxt
)
8895 /* opt_pass methods: */
8896 virtual unsigned int execute (function
*) { return split_critical_edges (); }
8898 opt_pass
* clone () { return new pass_split_crit_edges (m_ctxt
); }
8899 }; // class pass_split_crit_edges
8904 make_pass_split_crit_edges (gcc::context
*ctxt
)
8906 return new pass_split_crit_edges (ctxt
);
8910 /* Insert COND expression which is GIMPLE_COND after STMT
8911 in basic block BB with appropriate basic block split
8912 and creation of a new conditionally executed basic block.
8913 Update profile so the new bb is visited with probability PROB.
8914 Return created basic block. */
8916 insert_cond_bb (basic_block bb
, gimple
*stmt
, gimple
*cond
,
8917 profile_probability prob
)
8919 edge fall
= split_block (bb
, stmt
);
8920 gimple_stmt_iterator iter
= gsi_last_bb (bb
);
8923 /* Insert cond statement. */
8924 gcc_assert (gimple_code (cond
) == GIMPLE_COND
);
8925 if (gsi_end_p (iter
))
8926 gsi_insert_before (&iter
, cond
, GSI_CONTINUE_LINKING
);
8928 gsi_insert_after (&iter
, cond
, GSI_CONTINUE_LINKING
);
8930 /* Create conditionally executed block. */
8931 new_bb
= create_empty_bb (bb
);
8932 edge e
= make_edge (bb
, new_bb
, EDGE_TRUE_VALUE
);
8933 e
->probability
= prob
;
8934 new_bb
->count
= e
->count ();
8935 make_single_succ_edge (new_bb
, fall
->dest
, EDGE_FALLTHRU
);
8937 /* Fix edge for split bb. */
8938 fall
->flags
= EDGE_FALSE_VALUE
;
8939 fall
->probability
-= e
->probability
;
8941 /* Update dominance info. */
8942 if (dom_info_available_p (CDI_DOMINATORS
))
8944 set_immediate_dominator (CDI_DOMINATORS
, new_bb
, bb
);
8945 set_immediate_dominator (CDI_DOMINATORS
, fall
->dest
, bb
);
8948 /* Update loop info. */
8950 add_bb_to_loop (new_bb
, bb
->loop_father
);
8955 /* Build a ternary operation and gimplify it. Emit code before GSI.
8956 Return the gimple_val holding the result. */
8959 gimplify_build3 (gimple_stmt_iterator
*gsi
, enum tree_code code
,
8960 tree type
, tree a
, tree b
, tree c
)
8963 location_t loc
= gimple_location (gsi_stmt (*gsi
));
8965 ret
= fold_build3_loc (loc
, code
, type
, a
, b
, c
);
8968 return force_gimple_operand_gsi (gsi
, ret
, true, NULL
, true,
8972 /* Build a binary operation and gimplify it. Emit code before GSI.
8973 Return the gimple_val holding the result. */
8976 gimplify_build2 (gimple_stmt_iterator
*gsi
, enum tree_code code
,
8977 tree type
, tree a
, tree b
)
8981 ret
= fold_build2_loc (gimple_location (gsi_stmt (*gsi
)), code
, type
, a
, b
);
8984 return force_gimple_operand_gsi (gsi
, ret
, true, NULL
, true,
8988 /* Build a unary operation and gimplify it. Emit code before GSI.
8989 Return the gimple_val holding the result. */
8992 gimplify_build1 (gimple_stmt_iterator
*gsi
, enum tree_code code
, tree type
,
8997 ret
= fold_build1_loc (gimple_location (gsi_stmt (*gsi
)), code
, type
, a
);
9000 return force_gimple_operand_gsi (gsi
, ret
, true, NULL
, true,
9006 /* Given a basic block B which ends with a conditional and has
9007 precisely two successors, determine which of the edges is taken if
9008 the conditional is true and which is taken if the conditional is
9009 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
9012 extract_true_false_edges_from_block (basic_block b
,
9016 edge e
= EDGE_SUCC (b
, 0);
9018 if (e
->flags
& EDGE_TRUE_VALUE
)
9021 *false_edge
= EDGE_SUCC (b
, 1);
9026 *true_edge
= EDGE_SUCC (b
, 1);
9031 /* From a controlling predicate in the immediate dominator DOM of
9032 PHIBLOCK determine the edges into PHIBLOCK that are chosen if the
9033 predicate evaluates to true and false and store them to
9034 *TRUE_CONTROLLED_EDGE and *FALSE_CONTROLLED_EDGE if
9035 they are non-NULL. Returns true if the edges can be determined,
9036 else return false. */
9039 extract_true_false_controlled_edges (basic_block dom
, basic_block phiblock
,
9040 edge
*true_controlled_edge
,
9041 edge
*false_controlled_edge
)
9043 basic_block bb
= phiblock
;
9044 edge true_edge
, false_edge
, tem
;
9045 edge e0
= NULL
, e1
= NULL
;
9047 /* We have to verify that one edge into the PHI node is dominated
9048 by the true edge of the predicate block and the other edge
9049 dominated by the false edge. This ensures that the PHI argument
9050 we are going to take is completely determined by the path we
9051 take from the predicate block.
9052 We can only use BB dominance checks below if the destination of
9053 the true/false edges are dominated by their edge, thus only
9054 have a single predecessor. */
9055 extract_true_false_edges_from_block (dom
, &true_edge
, &false_edge
);
9056 tem
= EDGE_PRED (bb
, 0);
9057 if (tem
== true_edge
9058 || (single_pred_p (true_edge
->dest
)
9059 && (tem
->src
== true_edge
->dest
9060 || dominated_by_p (CDI_DOMINATORS
,
9061 tem
->src
, true_edge
->dest
))))
9063 else if (tem
== false_edge
9064 || (single_pred_p (false_edge
->dest
)
9065 && (tem
->src
== false_edge
->dest
9066 || dominated_by_p (CDI_DOMINATORS
,
9067 tem
->src
, false_edge
->dest
))))
9071 tem
= EDGE_PRED (bb
, 1);
9072 if (tem
== true_edge
9073 || (single_pred_p (true_edge
->dest
)
9074 && (tem
->src
== true_edge
->dest
9075 || dominated_by_p (CDI_DOMINATORS
,
9076 tem
->src
, true_edge
->dest
))))
9078 else if (tem
== false_edge
9079 || (single_pred_p (false_edge
->dest
)
9080 && (tem
->src
== false_edge
->dest
9081 || dominated_by_p (CDI_DOMINATORS
,
9082 tem
->src
, false_edge
->dest
))))
9089 if (true_controlled_edge
)
9090 *true_controlled_edge
= e0
;
9091 if (false_controlled_edge
)
9092 *false_controlled_edge
= e1
;
9097 /* Generate a range test LHS CODE RHS that determines whether INDEX is in the
9098 range [low, high]. Place associated stmts before *GSI. */
9101 generate_range_test (basic_block bb
, tree index
, tree low
, tree high
,
9102 tree
*lhs
, tree
*rhs
)
9104 tree type
= TREE_TYPE (index
);
9105 tree utype
= unsigned_type_for (type
);
9107 low
= fold_convert (type
, low
);
9108 high
= fold_convert (type
, high
);
9110 tree tmp
= make_ssa_name (type
);
9112 = gimple_build_assign (tmp
, MINUS_EXPR
, index
, low
);
9114 *lhs
= make_ssa_name (utype
);
9115 gassign
*a
= gimple_build_assign (*lhs
, NOP_EXPR
, tmp
);
9117 *rhs
= fold_build2 (MINUS_EXPR
, utype
, high
, low
);
9118 gimple_stmt_iterator gsi
= gsi_last_bb (bb
);
9119 gsi_insert_before (&gsi
, sub1
, GSI_SAME_STMT
);
9120 gsi_insert_before (&gsi
, a
, GSI_SAME_STMT
);
9123 /* Emit return warnings. */
9127 const pass_data pass_data_warn_function_return
=
9129 GIMPLE_PASS
, /* type */
9130 "*warn_function_return", /* name */
9131 OPTGROUP_NONE
, /* optinfo_flags */
9132 TV_NONE
, /* tv_id */
9133 PROP_cfg
, /* properties_required */
9134 0, /* properties_provided */
9135 0, /* properties_destroyed */
9136 0, /* todo_flags_start */
9137 0, /* todo_flags_finish */
9140 class pass_warn_function_return
: public gimple_opt_pass
9143 pass_warn_function_return (gcc::context
*ctxt
)
9144 : gimple_opt_pass (pass_data_warn_function_return
, ctxt
)
9147 /* opt_pass methods: */
9148 virtual unsigned int execute (function
*);
9150 }; // class pass_warn_function_return
9153 pass_warn_function_return::execute (function
*fun
)
9155 source_location location
;
9160 if (!targetm
.warn_func_return (fun
->decl
))
9163 /* If we have a path to EXIT, then we do return. */
9164 if (TREE_THIS_VOLATILE (fun
->decl
)
9165 && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (fun
)->preds
) > 0)
9167 location
= UNKNOWN_LOCATION
;
9168 for (ei
= ei_start (EXIT_BLOCK_PTR_FOR_FN (fun
)->preds
);
9169 (e
= ei_safe_edge (ei
)); )
9171 last
= last_stmt (e
->src
);
9172 if ((gimple_code (last
) == GIMPLE_RETURN
9173 || gimple_call_builtin_p (last
, BUILT_IN_RETURN
))
9174 && location
== UNKNOWN_LOCATION
9175 && ((location
= LOCATION_LOCUS (gimple_location (last
)))
9176 != UNKNOWN_LOCATION
)
9179 /* When optimizing, replace return stmts in noreturn functions
9180 with __builtin_unreachable () call. */
9181 if (optimize
&& gimple_code (last
) == GIMPLE_RETURN
)
9183 tree fndecl
= builtin_decl_implicit (BUILT_IN_UNREACHABLE
);
9184 gimple
*new_stmt
= gimple_build_call (fndecl
, 0);
9185 gimple_set_location (new_stmt
, gimple_location (last
));
9186 gimple_stmt_iterator gsi
= gsi_for_stmt (last
);
9187 gsi_replace (&gsi
, new_stmt
, true);
9193 if (location
== UNKNOWN_LOCATION
)
9194 location
= cfun
->function_end_locus
;
9195 warning_at (location
, 0, "%<noreturn%> function does return");
9198 /* If we see "return;" in some basic block, then we do reach the end
9199 without returning a value. */
9200 else if (warn_return_type
> 0
9201 && !TREE_NO_WARNING (fun
->decl
)
9202 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (fun
->decl
))))
9204 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR_FOR_FN (fun
)->preds
)
9206 gimple
*last
= last_stmt (e
->src
);
9207 greturn
*return_stmt
= dyn_cast
<greturn
*> (last
);
9209 && gimple_return_retval (return_stmt
) == NULL
9210 && !gimple_no_warning_p (last
))
9212 location
= gimple_location (last
);
9213 if (LOCATION_LOCUS (location
) == UNKNOWN_LOCATION
)
9214 location
= fun
->function_end_locus
;
9215 warning_at (location
, OPT_Wreturn_type
,
9216 "control reaches end of non-void function");
9217 TREE_NO_WARNING (fun
->decl
) = 1;
9221 /* The C++ FE turns fallthrough from the end of non-void function
9222 into __builtin_unreachable () call with BUILTINS_LOCATION.
9223 Recognize those too. */
9225 if (!TREE_NO_WARNING (fun
->decl
))
9226 FOR_EACH_BB_FN (bb
, fun
)
9227 if (EDGE_COUNT (bb
->succs
) == 0)
9229 gimple
*last
= last_stmt (bb
);
9230 const enum built_in_function ubsan_missing_ret
9231 = BUILT_IN_UBSAN_HANDLE_MISSING_RETURN
;
9233 && ((LOCATION_LOCUS (gimple_location (last
))
9234 == BUILTINS_LOCATION
9235 && gimple_call_builtin_p (last
, BUILT_IN_UNREACHABLE
))
9236 || gimple_call_builtin_p (last
, ubsan_missing_ret
)))
9238 gimple_stmt_iterator gsi
= gsi_for_stmt (last
);
9239 gsi_prev_nondebug (&gsi
);
9240 gimple
*prev
= gsi_stmt (gsi
);
9242 location
= UNKNOWN_LOCATION
;
9244 location
= gimple_location (prev
);
9245 if (LOCATION_LOCUS (location
) == UNKNOWN_LOCATION
)
9246 location
= fun
->function_end_locus
;
9247 warning_at (location
, OPT_Wreturn_type
,
9248 "control reaches end of non-void function");
9249 TREE_NO_WARNING (fun
->decl
) = 1;
9260 make_pass_warn_function_return (gcc::context
*ctxt
)
9262 return new pass_warn_function_return (ctxt
);
9265 /* Walk a gimplified function and warn for functions whose return value is
9266 ignored and attribute((warn_unused_result)) is set. This is done before
9267 inlining, so we don't have to worry about that. */
9270 do_warn_unused_result (gimple_seq seq
)
9273 gimple_stmt_iterator i
;
9275 for (i
= gsi_start (seq
); !gsi_end_p (i
); gsi_next (&i
))
9277 gimple
*g
= gsi_stmt (i
);
9279 switch (gimple_code (g
))
9282 do_warn_unused_result (gimple_bind_body (as_a
<gbind
*>(g
)));
9285 do_warn_unused_result (gimple_try_eval (g
));
9286 do_warn_unused_result (gimple_try_cleanup (g
));
9289 do_warn_unused_result (gimple_catch_handler (
9290 as_a
<gcatch
*> (g
)));
9292 case GIMPLE_EH_FILTER
:
9293 do_warn_unused_result (gimple_eh_filter_failure (g
));
9297 if (gimple_call_lhs (g
))
9299 if (gimple_call_internal_p (g
))
9302 /* This is a naked call, as opposed to a GIMPLE_CALL with an
9303 LHS. All calls whose value is ignored should be
9304 represented like this. Look for the attribute. */
9305 fdecl
= gimple_call_fndecl (g
);
9306 ftype
= gimple_call_fntype (g
);
9308 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype
)))
9310 location_t loc
= gimple_location (g
);
9313 warning_at (loc
, OPT_Wunused_result
,
9314 "ignoring return value of %qD, "
9315 "declared with attribute warn_unused_result",
9318 warning_at (loc
, OPT_Wunused_result
,
9319 "ignoring return value of function "
9320 "declared with attribute warn_unused_result");
9325 /* Not a container, not a call, or a call whose value is used. */
9333 const pass_data pass_data_warn_unused_result
=
9335 GIMPLE_PASS
, /* type */
9336 "*warn_unused_result", /* name */
9337 OPTGROUP_NONE
, /* optinfo_flags */
9338 TV_NONE
, /* tv_id */
9339 PROP_gimple_any
, /* properties_required */
9340 0, /* properties_provided */
9341 0, /* properties_destroyed */
9342 0, /* todo_flags_start */
9343 0, /* todo_flags_finish */
9346 class pass_warn_unused_result
: public gimple_opt_pass
9349 pass_warn_unused_result (gcc::context
*ctxt
)
9350 : gimple_opt_pass (pass_data_warn_unused_result
, ctxt
)
9353 /* opt_pass methods: */
9354 virtual bool gate (function
*) { return flag_warn_unused_result
; }
9355 virtual unsigned int execute (function
*)
9357 do_warn_unused_result (gimple_body (current_function_decl
));
9361 }; // class pass_warn_unused_result
9366 make_pass_warn_unused_result (gcc::context
*ctxt
)
9368 return new pass_warn_unused_result (ctxt
);
9371 /* IPA passes, compilation of earlier functions or inlining
9372 might have changed some properties, such as marked functions nothrow,
9373 pure, const or noreturn.
9374 Remove redundant edges and basic blocks, and create new ones if necessary.
9376 This pass can't be executed as stand alone pass from pass manager, because
9377 in between inlining and this fixup the verify_flow_info would fail. */
9380 execute_fixup_cfg (void)
9383 gimple_stmt_iterator gsi
;
9385 cgraph_node
*node
= cgraph_node::get (current_function_decl
);
9386 profile_count num
= node
->count
;
9387 profile_count den
= ENTRY_BLOCK_PTR_FOR_FN (cfun
)->count
;
9388 bool scale
= num
.initialized_p () && !(num
== den
);
9392 profile_count::adjust_for_ipa_scaling (&num
, &den
);
9393 ENTRY_BLOCK_PTR_FOR_FN (cfun
)->count
= node
->count
;
9394 EXIT_BLOCK_PTR_FOR_FN (cfun
)->count
9395 = EXIT_BLOCK_PTR_FOR_FN (cfun
)->count
.apply_scale (num
, den
);
9398 FOR_EACH_BB_FN (bb
, cfun
)
9401 bb
->count
= bb
->count
.apply_scale (num
, den
);
9402 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
);)
9404 gimple
*stmt
= gsi_stmt (gsi
);
9405 tree decl
= is_gimple_call (stmt
)
9406 ? gimple_call_fndecl (stmt
)
9410 int flags
= gimple_call_flags (stmt
);
9411 if (flags
& (ECF_CONST
| ECF_PURE
| ECF_LOOPING_CONST_OR_PURE
))
9413 if (gimple_purge_dead_abnormal_call_edges (bb
))
9414 todo
|= TODO_cleanup_cfg
;
9416 if (gimple_in_ssa_p (cfun
))
9418 todo
|= TODO_update_ssa
| TODO_cleanup_cfg
;
9423 if (flags
& ECF_NORETURN
9424 && fixup_noreturn_call (stmt
))
9425 todo
|= TODO_cleanup_cfg
;
9428 /* Remove stores to variables we marked write-only.
9429 Keep access when store has side effect, i.e. in case when source
9431 if (gimple_store_p (stmt
)
9432 && !gimple_has_side_effects (stmt
))
9434 tree lhs
= get_base_address (gimple_get_lhs (stmt
));
9437 && (TREE_STATIC (lhs
) || DECL_EXTERNAL (lhs
))
9438 && varpool_node::get (lhs
)->writeonly
)
9440 unlink_stmt_vdef (stmt
);
9441 gsi_remove (&gsi
, true);
9442 release_defs (stmt
);
9443 todo
|= TODO_update_ssa
| TODO_cleanup_cfg
;
9447 /* For calls we can simply remove LHS when it is known
9448 to be write-only. */
9449 if (is_gimple_call (stmt
)
9450 && gimple_get_lhs (stmt
))
9452 tree lhs
= get_base_address (gimple_get_lhs (stmt
));
9455 && (TREE_STATIC (lhs
) || DECL_EXTERNAL (lhs
))
9456 && varpool_node::get (lhs
)->writeonly
)
9458 gimple_call_set_lhs (stmt
, NULL
);
9460 todo
|= TODO_update_ssa
| TODO_cleanup_cfg
;
9464 if (maybe_clean_eh_stmt (stmt
)
9465 && gimple_purge_dead_eh_edges (bb
))
9466 todo
|= TODO_cleanup_cfg
;
9470 /* If we have a basic block with no successors that does not
9471 end with a control statement or a noreturn call end it with
9472 a call to __builtin_unreachable. This situation can occur
9473 when inlining a noreturn call that does in fact return. */
9474 if (EDGE_COUNT (bb
->succs
) == 0)
9476 gimple
*stmt
= last_stmt (bb
);
9478 || (!is_ctrl_stmt (stmt
)
9479 && (!is_gimple_call (stmt
)
9480 || !gimple_call_noreturn_p (stmt
))))
9482 if (stmt
&& is_gimple_call (stmt
))
9483 gimple_call_set_ctrl_altering (stmt
, false);
9484 tree fndecl
= builtin_decl_implicit (BUILT_IN_UNREACHABLE
);
9485 stmt
= gimple_build_call (fndecl
, 0);
9486 gimple_stmt_iterator gsi
= gsi_last_bb (bb
);
9487 gsi_insert_after (&gsi
, stmt
, GSI_NEW_STMT
);
9488 if (!cfun
->after_inlining
)
9490 gcall
*call_stmt
= dyn_cast
<gcall
*> (stmt
);
9491 node
->create_edge (cgraph_node::get_create (fndecl
),
9492 call_stmt
, bb
->count
);
9498 compute_function_frequency ();
9501 && (todo
& TODO_cleanup_cfg
))
9502 loops_state_set (LOOPS_NEED_FIXUP
);
9509 const pass_data pass_data_fixup_cfg
=
9511 GIMPLE_PASS
, /* type */
9512 "fixup_cfg", /* name */
9513 OPTGROUP_NONE
, /* optinfo_flags */
9514 TV_NONE
, /* tv_id */
9515 PROP_cfg
, /* properties_required */
9516 0, /* properties_provided */
9517 0, /* properties_destroyed */
9518 0, /* todo_flags_start */
9519 0, /* todo_flags_finish */
9522 class pass_fixup_cfg
: public gimple_opt_pass
9525 pass_fixup_cfg (gcc::context
*ctxt
)
9526 : gimple_opt_pass (pass_data_fixup_cfg
, ctxt
)
9529 /* opt_pass methods: */
9530 opt_pass
* clone () { return new pass_fixup_cfg (m_ctxt
); }
9531 virtual unsigned int execute (function
*) { return execute_fixup_cfg (); }
9533 }; // class pass_fixup_cfg
9538 make_pass_fixup_cfg (gcc::context
*ctxt
)
9540 return new pass_fixup_cfg (ctxt
);
9543 /* Garbage collection support for edge_def. */
9545 extern void gt_ggc_mx (tree
&);
9546 extern void gt_ggc_mx (gimple
*&);
9547 extern void gt_ggc_mx (rtx
&);
9548 extern void gt_ggc_mx (basic_block
&);
9551 gt_ggc_mx (rtx_insn
*& x
)
9554 gt_ggc_mx_rtx_def ((void *) x
);
9558 gt_ggc_mx (edge_def
*e
)
9560 tree block
= LOCATION_BLOCK (e
->goto_locus
);
9562 gt_ggc_mx (e
->dest
);
9563 if (current_ir_type () == IR_GIMPLE
)
9564 gt_ggc_mx (e
->insns
.g
);
9566 gt_ggc_mx (e
->insns
.r
);
9570 /* PCH support for edge_def. */
9572 extern void gt_pch_nx (tree
&);
9573 extern void gt_pch_nx (gimple
*&);
9574 extern void gt_pch_nx (rtx
&);
9575 extern void gt_pch_nx (basic_block
&);
9578 gt_pch_nx (rtx_insn
*& x
)
9581 gt_pch_nx_rtx_def ((void *) x
);
9585 gt_pch_nx (edge_def
*e
)
9587 tree block
= LOCATION_BLOCK (e
->goto_locus
);
9589 gt_pch_nx (e
->dest
);
9590 if (current_ir_type () == IR_GIMPLE
)
9591 gt_pch_nx (e
->insns
.g
);
9593 gt_pch_nx (e
->insns
.r
);
9598 gt_pch_nx (edge_def
*e
, gt_pointer_operator op
, void *cookie
)
9600 tree block
= LOCATION_BLOCK (e
->goto_locus
);
9601 op (&(e
->src
), cookie
);
9602 op (&(e
->dest
), cookie
);
9603 if (current_ir_type () == IR_GIMPLE
)
9604 op (&(e
->insns
.g
), cookie
);
9606 op (&(e
->insns
.r
), cookie
);
9607 op (&(block
), cookie
);
9612 namespace selftest
{
9614 /* Helper function for CFG selftests: create a dummy function decl
9615 and push it as cfun. */
9618 push_fndecl (const char *name
)
9620 tree fn_type
= build_function_type_array (integer_type_node
, 0, NULL
);
9621 /* FIXME: this uses input_location: */
9622 tree fndecl
= build_fn_decl (name
, fn_type
);
9623 tree retval
= build_decl (UNKNOWN_LOCATION
, RESULT_DECL
,
9624 NULL_TREE
, integer_type_node
);
9625 DECL_RESULT (fndecl
) = retval
;
9626 push_struct_function (fndecl
);
9627 function
*fun
= DECL_STRUCT_FUNCTION (fndecl
);
9628 ASSERT_TRUE (fun
!= NULL
);
9629 init_empty_tree_cfg_for_function (fun
);
9630 ASSERT_EQ (2, n_basic_blocks_for_fn (fun
));
9631 ASSERT_EQ (0, n_edges_for_fn (fun
));
9635 /* These tests directly create CFGs.
9636 Compare with the static fns within tree-cfg.c:
9638 - make_blocks: calls create_basic_block (seq, bb);
9641 /* Verify a simple cfg of the form:
9642 ENTRY -> A -> B -> C -> EXIT. */
9645 test_linear_chain ()
9647 gimple_register_cfg_hooks ();
9649 tree fndecl
= push_fndecl ("cfg_test_linear_chain");
9650 function
*fun
= DECL_STRUCT_FUNCTION (fndecl
);
9652 /* Create some empty blocks. */
9653 basic_block bb_a
= create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun
));
9654 basic_block bb_b
= create_empty_bb (bb_a
);
9655 basic_block bb_c
= create_empty_bb (bb_b
);
9657 ASSERT_EQ (5, n_basic_blocks_for_fn (fun
));
9658 ASSERT_EQ (0, n_edges_for_fn (fun
));
9660 /* Create some edges: a simple linear chain of BBs. */
9661 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun
), bb_a
, EDGE_FALLTHRU
);
9662 make_edge (bb_a
, bb_b
, 0);
9663 make_edge (bb_b
, bb_c
, 0);
9664 make_edge (bb_c
, EXIT_BLOCK_PTR_FOR_FN (fun
), 0);
9666 /* Verify the edges. */
9667 ASSERT_EQ (4, n_edges_for_fn (fun
));
9668 ASSERT_EQ (NULL
, ENTRY_BLOCK_PTR_FOR_FN (fun
)->preds
);
9669 ASSERT_EQ (1, ENTRY_BLOCK_PTR_FOR_FN (fun
)->succs
->length ());
9670 ASSERT_EQ (1, bb_a
->preds
->length ());
9671 ASSERT_EQ (1, bb_a
->succs
->length ());
9672 ASSERT_EQ (1, bb_b
->preds
->length ());
9673 ASSERT_EQ (1, bb_b
->succs
->length ());
9674 ASSERT_EQ (1, bb_c
->preds
->length ());
9675 ASSERT_EQ (1, bb_c
->succs
->length ());
9676 ASSERT_EQ (1, EXIT_BLOCK_PTR_FOR_FN (fun
)->preds
->length ());
9677 ASSERT_EQ (NULL
, EXIT_BLOCK_PTR_FOR_FN (fun
)->succs
);
9679 /* Verify the dominance information
9680 Each BB in our simple chain should be dominated by the one before
9682 calculate_dominance_info (CDI_DOMINATORS
);
9683 ASSERT_EQ (bb_a
, get_immediate_dominator (CDI_DOMINATORS
, bb_b
));
9684 ASSERT_EQ (bb_b
, get_immediate_dominator (CDI_DOMINATORS
, bb_c
));
9685 vec
<basic_block
> dom_by_b
= get_dominated_by (CDI_DOMINATORS
, bb_b
);
9686 ASSERT_EQ (1, dom_by_b
.length ());
9687 ASSERT_EQ (bb_c
, dom_by_b
[0]);
9688 free_dominance_info (CDI_DOMINATORS
);
9689 dom_by_b
.release ();
9691 /* Similarly for post-dominance: each BB in our chain is post-dominated
9692 by the one after it. */
9693 calculate_dominance_info (CDI_POST_DOMINATORS
);
9694 ASSERT_EQ (bb_b
, get_immediate_dominator (CDI_POST_DOMINATORS
, bb_a
));
9695 ASSERT_EQ (bb_c
, get_immediate_dominator (CDI_POST_DOMINATORS
, bb_b
));
9696 vec
<basic_block
> postdom_by_b
= get_dominated_by (CDI_POST_DOMINATORS
, bb_b
);
9697 ASSERT_EQ (1, postdom_by_b
.length ());
9698 ASSERT_EQ (bb_a
, postdom_by_b
[0]);
9699 free_dominance_info (CDI_POST_DOMINATORS
);
9700 postdom_by_b
.release ();
9705 /* Verify a simple CFG of the form:
9721 gimple_register_cfg_hooks ();
9723 tree fndecl
= push_fndecl ("cfg_test_diamond");
9724 function
*fun
= DECL_STRUCT_FUNCTION (fndecl
);
9726 /* Create some empty blocks. */
9727 basic_block bb_a
= create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun
));
9728 basic_block bb_b
= create_empty_bb (bb_a
);
9729 basic_block bb_c
= create_empty_bb (bb_a
);
9730 basic_block bb_d
= create_empty_bb (bb_b
);
9732 ASSERT_EQ (6, n_basic_blocks_for_fn (fun
));
9733 ASSERT_EQ (0, n_edges_for_fn (fun
));
9735 /* Create the edges. */
9736 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun
), bb_a
, EDGE_FALLTHRU
);
9737 make_edge (bb_a
, bb_b
, EDGE_TRUE_VALUE
);
9738 make_edge (bb_a
, bb_c
, EDGE_FALSE_VALUE
);
9739 make_edge (bb_b
, bb_d
, 0);
9740 make_edge (bb_c
, bb_d
, 0);
9741 make_edge (bb_d
, EXIT_BLOCK_PTR_FOR_FN (fun
), 0);
9743 /* Verify the edges. */
9744 ASSERT_EQ (6, n_edges_for_fn (fun
));
9745 ASSERT_EQ (1, bb_a
->preds
->length ());
9746 ASSERT_EQ (2, bb_a
->succs
->length ());
9747 ASSERT_EQ (1, bb_b
->preds
->length ());
9748 ASSERT_EQ (1, bb_b
->succs
->length ());
9749 ASSERT_EQ (1, bb_c
->preds
->length ());
9750 ASSERT_EQ (1, bb_c
->succs
->length ());
9751 ASSERT_EQ (2, bb_d
->preds
->length ());
9752 ASSERT_EQ (1, bb_d
->succs
->length ());
9754 /* Verify the dominance information. */
9755 calculate_dominance_info (CDI_DOMINATORS
);
9756 ASSERT_EQ (bb_a
, get_immediate_dominator (CDI_DOMINATORS
, bb_b
));
9757 ASSERT_EQ (bb_a
, get_immediate_dominator (CDI_DOMINATORS
, bb_c
));
9758 ASSERT_EQ (bb_a
, get_immediate_dominator (CDI_DOMINATORS
, bb_d
));
9759 vec
<basic_block
> dom_by_a
= get_dominated_by (CDI_DOMINATORS
, bb_a
);
9760 ASSERT_EQ (3, dom_by_a
.length ()); /* B, C, D, in some order. */
9761 dom_by_a
.release ();
9762 vec
<basic_block
> dom_by_b
= get_dominated_by (CDI_DOMINATORS
, bb_b
);
9763 ASSERT_EQ (0, dom_by_b
.length ());
9764 dom_by_b
.release ();
9765 free_dominance_info (CDI_DOMINATORS
);
9767 /* Similarly for post-dominance. */
9768 calculate_dominance_info (CDI_POST_DOMINATORS
);
9769 ASSERT_EQ (bb_d
, get_immediate_dominator (CDI_POST_DOMINATORS
, bb_a
));
9770 ASSERT_EQ (bb_d
, get_immediate_dominator (CDI_POST_DOMINATORS
, bb_b
));
9771 ASSERT_EQ (bb_d
, get_immediate_dominator (CDI_POST_DOMINATORS
, bb_c
));
9772 vec
<basic_block
> postdom_by_d
= get_dominated_by (CDI_POST_DOMINATORS
, bb_d
);
9773 ASSERT_EQ (3, postdom_by_d
.length ()); /* A, B, C in some order. */
9774 postdom_by_d
.release ();
9775 vec
<basic_block
> postdom_by_b
= get_dominated_by (CDI_POST_DOMINATORS
, bb_b
);
9776 ASSERT_EQ (0, postdom_by_b
.length ());
9777 postdom_by_b
.release ();
9778 free_dominance_info (CDI_POST_DOMINATORS
);
9783 /* Verify that we can handle a CFG containing a "complete" aka
9784 fully-connected subgraph (where A B C D below all have edges
9785 pointing to each other node, also to themselves).
9803 test_fully_connected ()
9805 gimple_register_cfg_hooks ();
9807 tree fndecl
= push_fndecl ("cfg_fully_connected");
9808 function
*fun
= DECL_STRUCT_FUNCTION (fndecl
);
9812 /* Create some empty blocks. */
9813 auto_vec
<basic_block
> subgraph_nodes
;
9814 for (int i
= 0; i
< n
; i
++)
9815 subgraph_nodes
.safe_push (create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun
)));
9817 ASSERT_EQ (n
+ 2, n_basic_blocks_for_fn (fun
));
9818 ASSERT_EQ (0, n_edges_for_fn (fun
));
9820 /* Create the edges. */
9821 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun
), subgraph_nodes
[0], EDGE_FALLTHRU
);
9822 make_edge (subgraph_nodes
[0], EXIT_BLOCK_PTR_FOR_FN (fun
), 0);
9823 for (int i
= 0; i
< n
; i
++)
9824 for (int j
= 0; j
< n
; j
++)
9825 make_edge (subgraph_nodes
[i
], subgraph_nodes
[j
], 0);
9827 /* Verify the edges. */
9828 ASSERT_EQ (2 + (n
* n
), n_edges_for_fn (fun
));
9829 /* The first one is linked to ENTRY/EXIT as well as itself and
9831 ASSERT_EQ (n
+ 1, subgraph_nodes
[0]->preds
->length ());
9832 ASSERT_EQ (n
+ 1, subgraph_nodes
[0]->succs
->length ());
9833 /* The other ones in the subgraph are linked to everything in
9834 the subgraph (including themselves). */
9835 for (int i
= 1; i
< n
; i
++)
9837 ASSERT_EQ (n
, subgraph_nodes
[i
]->preds
->length ());
9838 ASSERT_EQ (n
, subgraph_nodes
[i
]->succs
->length ());
9841 /* Verify the dominance information. */
9842 calculate_dominance_info (CDI_DOMINATORS
);
9843 /* The initial block in the subgraph should be dominated by ENTRY. */
9844 ASSERT_EQ (ENTRY_BLOCK_PTR_FOR_FN (fun
),
9845 get_immediate_dominator (CDI_DOMINATORS
,
9846 subgraph_nodes
[0]));
9847 /* Every other block in the subgraph should be dominated by the
9849 for (int i
= 1; i
< n
; i
++)
9850 ASSERT_EQ (subgraph_nodes
[0],
9851 get_immediate_dominator (CDI_DOMINATORS
,
9852 subgraph_nodes
[i
]));
9853 free_dominance_info (CDI_DOMINATORS
);
9855 /* Similarly for post-dominance. */
9856 calculate_dominance_info (CDI_POST_DOMINATORS
);
9857 /* The initial block in the subgraph should be postdominated by EXIT. */
9858 ASSERT_EQ (EXIT_BLOCK_PTR_FOR_FN (fun
),
9859 get_immediate_dominator (CDI_POST_DOMINATORS
,
9860 subgraph_nodes
[0]));
9861 /* Every other block in the subgraph should be postdominated by the
9862 initial block, since that leads to EXIT. */
9863 for (int i
= 1; i
< n
; i
++)
9864 ASSERT_EQ (subgraph_nodes
[0],
9865 get_immediate_dominator (CDI_POST_DOMINATORS
,
9866 subgraph_nodes
[i
]));
9867 free_dominance_info (CDI_POST_DOMINATORS
);
9872 /* Run all of the selftests within this file. */
9877 test_linear_chain ();
9879 test_fully_connected ();
9882 } // namespace selftest
9884 /* TODO: test the dominator/postdominator logic with various graphs/nodes:
9887 - switch statement (a block with many out-edges)
9888 - something that jumps to itself
9891 #endif /* CHECKING_P */