2018-06-04 Richard Biener <rguenther@suse.de>
[official-gcc.git] / gcc / fortran / arith.c
blob6f97d0f978451f2243478ae04788f2d4f9acbdcd
1 /* Compiler arithmetic
2 Copyright (C) 2000-2018 Free Software Foundation, Inc.
3 Contributed by Andy Vaught
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* Since target arithmetic must be done on the host, there has to
22 be some way of evaluating arithmetic expressions as the host
23 would evaluate them. We use the GNU MP library and the MPFR
24 library to do arithmetic, and this file provides the interface. */
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "options.h"
30 #include "gfortran.h"
31 #include "arith.h"
32 #include "target-memory.h"
33 #include "constructor.h"
35 /* MPFR does not have a direct replacement for mpz_set_f() from GMP.
36 It's easily implemented with a few calls though. */
38 void
39 gfc_mpfr_to_mpz (mpz_t z, mpfr_t x, locus *where)
41 mp_exp_t e;
43 if (mpfr_inf_p (x) || mpfr_nan_p (x))
45 gfc_error ("Conversion of an Infinity or Not-a-Number at %L "
46 "to INTEGER", where);
47 mpz_set_ui (z, 0);
48 return;
51 e = mpfr_get_z_exp (z, x);
53 if (e > 0)
54 mpz_mul_2exp (z, z, e);
55 else
56 mpz_tdiv_q_2exp (z, z, -e);
60 /* Set the model number precision by the requested KIND. */
62 void
63 gfc_set_model_kind (int kind)
65 int index = gfc_validate_kind (BT_REAL, kind, false);
66 int base2prec;
68 base2prec = gfc_real_kinds[index].digits;
69 if (gfc_real_kinds[index].radix != 2)
70 base2prec *= gfc_real_kinds[index].radix / 2;
71 mpfr_set_default_prec (base2prec);
75 /* Set the model number precision from mpfr_t x. */
77 void
78 gfc_set_model (mpfr_t x)
80 mpfr_set_default_prec (mpfr_get_prec (x));
84 /* Given an arithmetic error code, return a pointer to a string that
85 explains the error. */
87 static const char *
88 gfc_arith_error (arith code)
90 const char *p;
92 switch (code)
94 case ARITH_OK:
95 p = _("Arithmetic OK at %L");
96 break;
97 case ARITH_OVERFLOW:
98 p = _("Arithmetic overflow at %L");
99 break;
100 case ARITH_UNDERFLOW:
101 p = _("Arithmetic underflow at %L");
102 break;
103 case ARITH_NAN:
104 p = _("Arithmetic NaN at %L");
105 break;
106 case ARITH_DIV0:
107 p = _("Division by zero at %L");
108 break;
109 case ARITH_INCOMMENSURATE:
110 p = _("Array operands are incommensurate at %L");
111 break;
112 case ARITH_ASYMMETRIC:
114 _("Integer outside symmetric range implied by Standard Fortran at %L");
115 break;
116 default:
117 gfc_internal_error ("gfc_arith_error(): Bad error code");
120 return p;
124 /* Get things ready to do math. */
126 void
127 gfc_arith_init_1 (void)
129 gfc_integer_info *int_info;
130 gfc_real_info *real_info;
131 mpfr_t a, b;
132 int i;
134 mpfr_set_default_prec (128);
135 mpfr_init (a);
137 /* Convert the minimum and maximum values for each kind into their
138 GNU MP representation. */
139 for (int_info = gfc_integer_kinds; int_info->kind != 0; int_info++)
141 /* Huge */
142 mpz_init (int_info->huge);
143 mpz_set_ui (int_info->huge, int_info->radix);
144 mpz_pow_ui (int_info->huge, int_info->huge, int_info->digits);
145 mpz_sub_ui (int_info->huge, int_info->huge, 1);
147 /* These are the numbers that are actually representable by the
148 target. For bases other than two, this needs to be changed. */
149 if (int_info->radix != 2)
150 gfc_internal_error ("Fix min_int calculation");
152 /* See PRs 13490 and 17912, related to integer ranges.
153 The pedantic_min_int exists for range checking when a program
154 is compiled with -pedantic, and reflects the belief that
155 Standard Fortran requires integers to be symmetrical, i.e.
156 every negative integer must have a representable positive
157 absolute value, and vice versa. */
159 mpz_init (int_info->pedantic_min_int);
160 mpz_neg (int_info->pedantic_min_int, int_info->huge);
162 mpz_init (int_info->min_int);
163 mpz_sub_ui (int_info->min_int, int_info->pedantic_min_int, 1);
165 /* Range */
166 mpfr_set_z (a, int_info->huge, GFC_RND_MODE);
167 mpfr_log10 (a, a, GFC_RND_MODE);
168 mpfr_trunc (a, a);
169 int_info->range = (int) mpfr_get_si (a, GFC_RND_MODE);
172 mpfr_clear (a);
174 for (real_info = gfc_real_kinds; real_info->kind != 0; real_info++)
176 gfc_set_model_kind (real_info->kind);
178 mpfr_init (a);
179 mpfr_init (b);
181 /* huge(x) = (1 - b**(-p)) * b**(emax-1) * b */
182 /* 1 - b**(-p) */
183 mpfr_init (real_info->huge);
184 mpfr_set_ui (real_info->huge, 1, GFC_RND_MODE);
185 mpfr_set_ui (a, real_info->radix, GFC_RND_MODE);
186 mpfr_pow_si (a, a, -real_info->digits, GFC_RND_MODE);
187 mpfr_sub (real_info->huge, real_info->huge, a, GFC_RND_MODE);
189 /* b**(emax-1) */
190 mpfr_set_ui (a, real_info->radix, GFC_RND_MODE);
191 mpfr_pow_ui (a, a, real_info->max_exponent - 1, GFC_RND_MODE);
193 /* (1 - b**(-p)) * b**(emax-1) */
194 mpfr_mul (real_info->huge, real_info->huge, a, GFC_RND_MODE);
196 /* (1 - b**(-p)) * b**(emax-1) * b */
197 mpfr_mul_ui (real_info->huge, real_info->huge, real_info->radix,
198 GFC_RND_MODE);
200 /* tiny(x) = b**(emin-1) */
201 mpfr_init (real_info->tiny);
202 mpfr_set_ui (real_info->tiny, real_info->radix, GFC_RND_MODE);
203 mpfr_pow_si (real_info->tiny, real_info->tiny,
204 real_info->min_exponent - 1, GFC_RND_MODE);
206 /* subnormal (x) = b**(emin - digit) */
207 mpfr_init (real_info->subnormal);
208 mpfr_set_ui (real_info->subnormal, real_info->radix, GFC_RND_MODE);
209 mpfr_pow_si (real_info->subnormal, real_info->subnormal,
210 real_info->min_exponent - real_info->digits, GFC_RND_MODE);
212 /* epsilon(x) = b**(1-p) */
213 mpfr_init (real_info->epsilon);
214 mpfr_set_ui (real_info->epsilon, real_info->radix, GFC_RND_MODE);
215 mpfr_pow_si (real_info->epsilon, real_info->epsilon,
216 1 - real_info->digits, GFC_RND_MODE);
218 /* range(x) = int(min(log10(huge(x)), -log10(tiny)) */
219 mpfr_log10 (a, real_info->huge, GFC_RND_MODE);
220 mpfr_log10 (b, real_info->tiny, GFC_RND_MODE);
221 mpfr_neg (b, b, GFC_RND_MODE);
223 /* a = min(a, b) */
224 mpfr_min (a, a, b, GFC_RND_MODE);
225 mpfr_trunc (a, a);
226 real_info->range = (int) mpfr_get_si (a, GFC_RND_MODE);
228 /* precision(x) = int((p - 1) * log10(b)) + k */
229 mpfr_set_ui (a, real_info->radix, GFC_RND_MODE);
230 mpfr_log10 (a, a, GFC_RND_MODE);
231 mpfr_mul_ui (a, a, real_info->digits - 1, GFC_RND_MODE);
232 mpfr_trunc (a, a);
233 real_info->precision = (int) mpfr_get_si (a, GFC_RND_MODE);
235 /* If the radix is an integral power of 10, add one to the precision. */
236 for (i = 10; i <= real_info->radix; i *= 10)
237 if (i == real_info->radix)
238 real_info->precision++;
240 mpfr_clears (a, b, NULL);
245 /* Clean up, get rid of numeric constants. */
247 void
248 gfc_arith_done_1 (void)
250 gfc_integer_info *ip;
251 gfc_real_info *rp;
253 for (ip = gfc_integer_kinds; ip->kind; ip++)
255 mpz_clear (ip->min_int);
256 mpz_clear (ip->pedantic_min_int);
257 mpz_clear (ip->huge);
260 for (rp = gfc_real_kinds; rp->kind; rp++)
261 mpfr_clears (rp->epsilon, rp->huge, rp->tiny, rp->subnormal, NULL);
263 mpfr_free_cache ();
267 /* Given a wide character value and a character kind, determine whether
268 the character is representable for that kind. */
269 bool
270 gfc_check_character_range (gfc_char_t c, int kind)
272 /* As wide characters are stored as 32-bit values, they're all
273 representable in UCS=4. */
274 if (kind == 4)
275 return true;
277 if (kind == 1)
278 return c <= 255 ? true : false;
280 gcc_unreachable ();
284 /* Given an integer and a kind, make sure that the integer lies within
285 the range of the kind. Returns ARITH_OK, ARITH_ASYMMETRIC or
286 ARITH_OVERFLOW. */
288 arith
289 gfc_check_integer_range (mpz_t p, int kind)
291 arith result;
292 int i;
294 i = gfc_validate_kind (BT_INTEGER, kind, false);
295 result = ARITH_OK;
297 if (pedantic)
299 if (mpz_cmp (p, gfc_integer_kinds[i].pedantic_min_int) < 0)
300 result = ARITH_ASYMMETRIC;
304 if (flag_range_check == 0)
305 return result;
307 if (mpz_cmp (p, gfc_integer_kinds[i].min_int) < 0
308 || mpz_cmp (p, gfc_integer_kinds[i].huge) > 0)
309 result = ARITH_OVERFLOW;
311 return result;
315 /* Given a real and a kind, make sure that the real lies within the
316 range of the kind. Returns ARITH_OK, ARITH_OVERFLOW or
317 ARITH_UNDERFLOW. */
319 static arith
320 gfc_check_real_range (mpfr_t p, int kind)
322 arith retval;
323 mpfr_t q;
324 int i;
326 i = gfc_validate_kind (BT_REAL, kind, false);
328 gfc_set_model (p);
329 mpfr_init (q);
330 mpfr_abs (q, p, GFC_RND_MODE);
332 retval = ARITH_OK;
334 if (mpfr_inf_p (p))
336 if (flag_range_check != 0)
337 retval = ARITH_OVERFLOW;
339 else if (mpfr_nan_p (p))
341 if (flag_range_check != 0)
342 retval = ARITH_NAN;
344 else if (mpfr_sgn (q) == 0)
346 mpfr_clear (q);
347 return retval;
349 else if (mpfr_cmp (q, gfc_real_kinds[i].huge) > 0)
351 if (flag_range_check == 0)
352 mpfr_set_inf (p, mpfr_sgn (p));
353 else
354 retval = ARITH_OVERFLOW;
356 else if (mpfr_cmp (q, gfc_real_kinds[i].subnormal) < 0)
358 if (flag_range_check == 0)
360 if (mpfr_sgn (p) < 0)
362 mpfr_set_ui (p, 0, GFC_RND_MODE);
363 mpfr_set_si (q, -1, GFC_RND_MODE);
364 mpfr_copysign (p, p, q, GFC_RND_MODE);
366 else
367 mpfr_set_ui (p, 0, GFC_RND_MODE);
369 else
370 retval = ARITH_UNDERFLOW;
372 else if (mpfr_cmp (q, gfc_real_kinds[i].tiny) < 0)
374 mp_exp_t emin, emax;
375 int en;
377 /* Save current values of emin and emax. */
378 emin = mpfr_get_emin ();
379 emax = mpfr_get_emax ();
381 /* Set emin and emax for the current model number. */
382 en = gfc_real_kinds[i].min_exponent - gfc_real_kinds[i].digits + 1;
383 mpfr_set_emin ((mp_exp_t) en);
384 mpfr_set_emax ((mp_exp_t) gfc_real_kinds[i].max_exponent);
385 mpfr_check_range (q, 0, GFC_RND_MODE);
386 mpfr_subnormalize (q, 0, GFC_RND_MODE);
388 /* Reset emin and emax. */
389 mpfr_set_emin (emin);
390 mpfr_set_emax (emax);
392 /* Copy sign if needed. */
393 if (mpfr_sgn (p) < 0)
394 mpfr_neg (p, q, GMP_RNDN);
395 else
396 mpfr_set (p, q, GMP_RNDN);
399 mpfr_clear (q);
401 return retval;
405 /* Low-level arithmetic functions. All of these subroutines assume
406 that all operands are of the same type and return an operand of the
407 same type. The other thing about these subroutines is that they
408 can fail in various ways -- overflow, underflow, division by zero,
409 zero raised to the zero, etc. */
411 static arith
412 gfc_arith_not (gfc_expr *op1, gfc_expr **resultp)
414 gfc_expr *result;
416 result = gfc_get_constant_expr (BT_LOGICAL, op1->ts.kind, &op1->where);
417 result->value.logical = !op1->value.logical;
418 *resultp = result;
420 return ARITH_OK;
424 static arith
425 gfc_arith_and (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
427 gfc_expr *result;
429 result = gfc_get_constant_expr (BT_LOGICAL, gfc_kind_max (op1, op2),
430 &op1->where);
431 result->value.logical = op1->value.logical && op2->value.logical;
432 *resultp = result;
434 return ARITH_OK;
438 static arith
439 gfc_arith_or (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
441 gfc_expr *result;
443 result = gfc_get_constant_expr (BT_LOGICAL, gfc_kind_max (op1, op2),
444 &op1->where);
445 result->value.logical = op1->value.logical || op2->value.logical;
446 *resultp = result;
448 return ARITH_OK;
452 static arith
453 gfc_arith_eqv (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
455 gfc_expr *result;
457 result = gfc_get_constant_expr (BT_LOGICAL, gfc_kind_max (op1, op2),
458 &op1->where);
459 result->value.logical = op1->value.logical == op2->value.logical;
460 *resultp = result;
462 return ARITH_OK;
466 static arith
467 gfc_arith_neqv (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
469 gfc_expr *result;
471 result = gfc_get_constant_expr (BT_LOGICAL, gfc_kind_max (op1, op2),
472 &op1->where);
473 result->value.logical = op1->value.logical != op2->value.logical;
474 *resultp = result;
476 return ARITH_OK;
480 /* Make sure a constant numeric expression is within the range for
481 its type and kind. Note that there's also a gfc_check_range(),
482 but that one deals with the intrinsic RANGE function. */
484 arith
485 gfc_range_check (gfc_expr *e)
487 arith rc;
488 arith rc2;
490 switch (e->ts.type)
492 case BT_INTEGER:
493 rc = gfc_check_integer_range (e->value.integer, e->ts.kind);
494 break;
496 case BT_REAL:
497 rc = gfc_check_real_range (e->value.real, e->ts.kind);
498 if (rc == ARITH_UNDERFLOW)
499 mpfr_set_ui (e->value.real, 0, GFC_RND_MODE);
500 if (rc == ARITH_OVERFLOW)
501 mpfr_set_inf (e->value.real, mpfr_sgn (e->value.real));
502 if (rc == ARITH_NAN)
503 mpfr_set_nan (e->value.real);
504 break;
506 case BT_COMPLEX:
507 rc = gfc_check_real_range (mpc_realref (e->value.complex), e->ts.kind);
508 if (rc == ARITH_UNDERFLOW)
509 mpfr_set_ui (mpc_realref (e->value.complex), 0, GFC_RND_MODE);
510 if (rc == ARITH_OVERFLOW)
511 mpfr_set_inf (mpc_realref (e->value.complex),
512 mpfr_sgn (mpc_realref (e->value.complex)));
513 if (rc == ARITH_NAN)
514 mpfr_set_nan (mpc_realref (e->value.complex));
516 rc2 = gfc_check_real_range (mpc_imagref (e->value.complex), e->ts.kind);
517 if (rc == ARITH_UNDERFLOW)
518 mpfr_set_ui (mpc_imagref (e->value.complex), 0, GFC_RND_MODE);
519 if (rc == ARITH_OVERFLOW)
520 mpfr_set_inf (mpc_imagref (e->value.complex),
521 mpfr_sgn (mpc_imagref (e->value.complex)));
522 if (rc == ARITH_NAN)
523 mpfr_set_nan (mpc_imagref (e->value.complex));
525 if (rc == ARITH_OK)
526 rc = rc2;
527 break;
529 default:
530 gfc_internal_error ("gfc_range_check(): Bad type");
533 return rc;
537 /* Several of the following routines use the same set of statements to
538 check the validity of the result. Encapsulate the checking here. */
540 static arith
541 check_result (arith rc, gfc_expr *x, gfc_expr *r, gfc_expr **rp)
543 arith val = rc;
545 if (val == ARITH_UNDERFLOW)
547 if (warn_underflow)
548 gfc_warning (OPT_Wunderflow, gfc_arith_error (val), &x->where);
549 val = ARITH_OK;
552 if (val == ARITH_ASYMMETRIC)
554 gfc_warning (0, gfc_arith_error (val), &x->where);
555 val = ARITH_OK;
558 if (val == ARITH_OK || val == ARITH_OVERFLOW)
559 *rp = r;
560 else
561 gfc_free_expr (r);
563 return val;
567 /* It may seem silly to have a subroutine that actually computes the
568 unary plus of a constant, but it prevents us from making exceptions
569 in the code elsewhere. Used for unary plus and parenthesized
570 expressions. */
572 static arith
573 gfc_arith_identity (gfc_expr *op1, gfc_expr **resultp)
575 *resultp = gfc_copy_expr (op1);
576 return ARITH_OK;
580 static arith
581 gfc_arith_uminus (gfc_expr *op1, gfc_expr **resultp)
583 gfc_expr *result;
584 arith rc;
586 result = gfc_get_constant_expr (op1->ts.type, op1->ts.kind, &op1->where);
588 switch (op1->ts.type)
590 case BT_INTEGER:
591 mpz_neg (result->value.integer, op1->value.integer);
592 break;
594 case BT_REAL:
595 mpfr_neg (result->value.real, op1->value.real, GFC_RND_MODE);
596 break;
598 case BT_COMPLEX:
599 mpc_neg (result->value.complex, op1->value.complex, GFC_MPC_RND_MODE);
600 break;
602 default:
603 gfc_internal_error ("gfc_arith_uminus(): Bad basic type");
606 rc = gfc_range_check (result);
608 return check_result (rc, op1, result, resultp);
612 static arith
613 gfc_arith_plus (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
615 gfc_expr *result;
616 arith rc;
618 result = gfc_get_constant_expr (op1->ts.type, op1->ts.kind, &op1->where);
620 switch (op1->ts.type)
622 case BT_INTEGER:
623 mpz_add (result->value.integer, op1->value.integer, op2->value.integer);
624 break;
626 case BT_REAL:
627 mpfr_add (result->value.real, op1->value.real, op2->value.real,
628 GFC_RND_MODE);
629 break;
631 case BT_COMPLEX:
632 mpc_add (result->value.complex, op1->value.complex, op2->value.complex,
633 GFC_MPC_RND_MODE);
634 break;
636 default:
637 gfc_internal_error ("gfc_arith_plus(): Bad basic type");
640 rc = gfc_range_check (result);
642 return check_result (rc, op1, result, resultp);
646 static arith
647 gfc_arith_minus (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
649 gfc_expr *result;
650 arith rc;
652 result = gfc_get_constant_expr (op1->ts.type, op1->ts.kind, &op1->where);
654 switch (op1->ts.type)
656 case BT_INTEGER:
657 mpz_sub (result->value.integer, op1->value.integer, op2->value.integer);
658 break;
660 case BT_REAL:
661 mpfr_sub (result->value.real, op1->value.real, op2->value.real,
662 GFC_RND_MODE);
663 break;
665 case BT_COMPLEX:
666 mpc_sub (result->value.complex, op1->value.complex,
667 op2->value.complex, GFC_MPC_RND_MODE);
668 break;
670 default:
671 gfc_internal_error ("gfc_arith_minus(): Bad basic type");
674 rc = gfc_range_check (result);
676 return check_result (rc, op1, result, resultp);
680 static arith
681 gfc_arith_times (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
683 gfc_expr *result;
684 arith rc;
686 result = gfc_get_constant_expr (op1->ts.type, op1->ts.kind, &op1->where);
688 switch (op1->ts.type)
690 case BT_INTEGER:
691 mpz_mul (result->value.integer, op1->value.integer, op2->value.integer);
692 break;
694 case BT_REAL:
695 mpfr_mul (result->value.real, op1->value.real, op2->value.real,
696 GFC_RND_MODE);
697 break;
699 case BT_COMPLEX:
700 gfc_set_model (mpc_realref (op1->value.complex));
701 mpc_mul (result->value.complex, op1->value.complex, op2->value.complex,
702 GFC_MPC_RND_MODE);
703 break;
705 default:
706 gfc_internal_error ("gfc_arith_times(): Bad basic type");
709 rc = gfc_range_check (result);
711 return check_result (rc, op1, result, resultp);
715 static arith
716 gfc_arith_divide (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
718 gfc_expr *result;
719 arith rc;
721 rc = ARITH_OK;
723 result = gfc_get_constant_expr (op1->ts.type, op1->ts.kind, &op1->where);
725 switch (op1->ts.type)
727 case BT_INTEGER:
728 if (mpz_sgn (op2->value.integer) == 0)
730 rc = ARITH_DIV0;
731 break;
734 if (warn_integer_division)
736 mpz_t r;
737 mpz_init (r);
738 mpz_tdiv_qr (result->value.integer, r, op1->value.integer,
739 op2->value.integer);
741 if (mpz_cmp_si (r, 0) != 0)
743 char *p;
744 p = mpz_get_str (NULL, 10, result->value.integer);
745 gfc_warning_now (OPT_Winteger_division, "Integer division "
746 "truncated to constant %qs at %L", p,
747 &op1->where);
748 free (p);
750 mpz_clear (r);
752 else
753 mpz_tdiv_q (result->value.integer, op1->value.integer,
754 op2->value.integer);
756 break;
758 case BT_REAL:
759 if (mpfr_sgn (op2->value.real) == 0 && flag_range_check == 1)
761 rc = ARITH_DIV0;
762 break;
765 mpfr_div (result->value.real, op1->value.real, op2->value.real,
766 GFC_RND_MODE);
767 break;
769 case BT_COMPLEX:
770 if (mpc_cmp_si_si (op2->value.complex, 0, 0) == 0
771 && flag_range_check == 1)
773 rc = ARITH_DIV0;
774 break;
777 gfc_set_model (mpc_realref (op1->value.complex));
778 if (mpc_cmp_si_si (op2->value.complex, 0, 0) == 0)
780 /* In Fortran, return (NaN + NaN I) for any zero divisor. See
781 PR 40318. */
782 mpfr_set_nan (mpc_realref (result->value.complex));
783 mpfr_set_nan (mpc_imagref (result->value.complex));
785 else
786 mpc_div (result->value.complex, op1->value.complex, op2->value.complex,
787 GFC_MPC_RND_MODE);
788 break;
790 default:
791 gfc_internal_error ("gfc_arith_divide(): Bad basic type");
794 if (rc == ARITH_OK)
795 rc = gfc_range_check (result);
797 return check_result (rc, op1, result, resultp);
800 /* Raise a number to a power. */
802 static arith
803 arith_power (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
805 int power_sign;
806 gfc_expr *result;
807 arith rc;
809 rc = ARITH_OK;
810 result = gfc_get_constant_expr (op1->ts.type, op1->ts.kind, &op1->where);
812 switch (op2->ts.type)
814 case BT_INTEGER:
815 power_sign = mpz_sgn (op2->value.integer);
817 if (power_sign == 0)
819 /* Handle something to the zeroth power. Since we're dealing
820 with integral exponents, there is no ambiguity in the
821 limiting procedure used to determine the value of 0**0. */
822 switch (op1->ts.type)
824 case BT_INTEGER:
825 mpz_set_ui (result->value.integer, 1);
826 break;
828 case BT_REAL:
829 mpfr_set_ui (result->value.real, 1, GFC_RND_MODE);
830 break;
832 case BT_COMPLEX:
833 mpc_set_ui (result->value.complex, 1, GFC_MPC_RND_MODE);
834 break;
836 default:
837 gfc_internal_error ("arith_power(): Bad base");
840 else
842 switch (op1->ts.type)
844 case BT_INTEGER:
846 int power;
848 /* First, we simplify the cases of op1 == 1, 0 or -1. */
849 if (mpz_cmp_si (op1->value.integer, 1) == 0)
851 /* 1**op2 == 1 */
852 mpz_set_si (result->value.integer, 1);
854 else if (mpz_cmp_si (op1->value.integer, 0) == 0)
856 /* 0**op2 == 0, if op2 > 0
857 0**op2 overflow, if op2 < 0 ; in that case, we
858 set the result to 0 and return ARITH_DIV0. */
859 mpz_set_si (result->value.integer, 0);
860 if (mpz_cmp_si (op2->value.integer, 0) < 0)
861 rc = ARITH_DIV0;
863 else if (mpz_cmp_si (op1->value.integer, -1) == 0)
865 /* (-1)**op2 == (-1)**(mod(op2,2)) */
866 unsigned int odd = mpz_fdiv_ui (op2->value.integer, 2);
867 if (odd)
868 mpz_set_si (result->value.integer, -1);
869 else
870 mpz_set_si (result->value.integer, 1);
872 /* Then, we take care of op2 < 0. */
873 else if (mpz_cmp_si (op2->value.integer, 0) < 0)
875 /* if op2 < 0, op1**op2 == 0 because abs(op1) > 1. */
876 mpz_set_si (result->value.integer, 0);
877 if (warn_integer_division)
878 gfc_warning_now (OPT_Winteger_division, "Negative "
879 "exponent of integer has zero "
880 "result at %L", &result->where);
882 else if (gfc_extract_int (op2, &power))
884 /* If op2 doesn't fit in an int, the exponentiation will
885 overflow, because op2 > 0 and abs(op1) > 1. */
886 mpz_t max;
887 int i;
888 i = gfc_validate_kind (BT_INTEGER, result->ts.kind, false);
890 if (flag_range_check)
891 rc = ARITH_OVERFLOW;
893 /* Still, we want to give the same value as the
894 processor. */
895 mpz_init (max);
896 mpz_add_ui (max, gfc_integer_kinds[i].huge, 1);
897 mpz_mul_ui (max, max, 2);
898 mpz_powm (result->value.integer, op1->value.integer,
899 op2->value.integer, max);
900 mpz_clear (max);
902 else
903 mpz_pow_ui (result->value.integer, op1->value.integer,
904 power);
906 break;
908 case BT_REAL:
909 mpfr_pow_z (result->value.real, op1->value.real,
910 op2->value.integer, GFC_RND_MODE);
911 break;
913 case BT_COMPLEX:
914 mpc_pow_z (result->value.complex, op1->value.complex,
915 op2->value.integer, GFC_MPC_RND_MODE);
916 break;
918 default:
919 break;
922 break;
924 case BT_REAL:
926 if (gfc_init_expr_flag)
928 if (!gfc_notify_std (GFC_STD_F2003, "Noninteger "
929 "exponent in an initialization "
930 "expression at %L", &op2->where))
932 gfc_free_expr (result);
933 return ARITH_PROHIBIT;
937 if (mpfr_cmp_si (op1->value.real, 0) < 0)
939 gfc_error ("Raising a negative REAL at %L to "
940 "a REAL power is prohibited", &op1->where);
941 gfc_free_expr (result);
942 return ARITH_PROHIBIT;
945 mpfr_pow (result->value.real, op1->value.real, op2->value.real,
946 GFC_RND_MODE);
947 break;
949 case BT_COMPLEX:
951 if (gfc_init_expr_flag)
953 if (!gfc_notify_std (GFC_STD_F2003, "Noninteger "
954 "exponent in an initialization "
955 "expression at %L", &op2->where))
957 gfc_free_expr (result);
958 return ARITH_PROHIBIT;
962 mpc_pow (result->value.complex, op1->value.complex,
963 op2->value.complex, GFC_MPC_RND_MODE);
965 break;
966 default:
967 gfc_internal_error ("arith_power(): unknown type");
970 if (rc == ARITH_OK)
971 rc = gfc_range_check (result);
973 return check_result (rc, op1, result, resultp);
977 /* Concatenate two string constants. */
979 static arith
980 gfc_arith_concat (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
982 gfc_expr *result;
983 size_t len;
985 gcc_assert (op1->ts.kind == op2->ts.kind);
986 result = gfc_get_constant_expr (BT_CHARACTER, op1->ts.kind,
987 &op1->where);
989 len = op1->value.character.length + op2->value.character.length;
991 result->value.character.string = gfc_get_wide_string (len + 1);
992 result->value.character.length = len;
994 memcpy (result->value.character.string, op1->value.character.string,
995 op1->value.character.length * sizeof (gfc_char_t));
997 memcpy (&result->value.character.string[op1->value.character.length],
998 op2->value.character.string,
999 op2->value.character.length * sizeof (gfc_char_t));
1001 result->value.character.string[len] = '\0';
1003 *resultp = result;
1005 return ARITH_OK;
1008 /* Comparison between real values; returns 0 if (op1 .op. op2) is true.
1009 This function mimics mpfr_cmp but takes NaN into account. */
1011 static int
1012 compare_real (gfc_expr *op1, gfc_expr *op2, gfc_intrinsic_op op)
1014 int rc;
1015 switch (op)
1017 case INTRINSIC_EQ:
1018 rc = mpfr_equal_p (op1->value.real, op2->value.real) ? 0 : 1;
1019 break;
1020 case INTRINSIC_GT:
1021 rc = mpfr_greater_p (op1->value.real, op2->value.real) ? 1 : -1;
1022 break;
1023 case INTRINSIC_GE:
1024 rc = mpfr_greaterequal_p (op1->value.real, op2->value.real) ? 1 : -1;
1025 break;
1026 case INTRINSIC_LT:
1027 rc = mpfr_less_p (op1->value.real, op2->value.real) ? -1 : 1;
1028 break;
1029 case INTRINSIC_LE:
1030 rc = mpfr_lessequal_p (op1->value.real, op2->value.real) ? -1 : 1;
1031 break;
1032 default:
1033 gfc_internal_error ("compare_real(): Bad operator");
1036 return rc;
1039 /* Comparison operators. Assumes that the two expression nodes
1040 contain two constants of the same type. The op argument is
1041 needed to handle NaN correctly. */
1044 gfc_compare_expr (gfc_expr *op1, gfc_expr *op2, gfc_intrinsic_op op)
1046 int rc;
1048 switch (op1->ts.type)
1050 case BT_INTEGER:
1051 rc = mpz_cmp (op1->value.integer, op2->value.integer);
1052 break;
1054 case BT_REAL:
1055 rc = compare_real (op1, op2, op);
1056 break;
1058 case BT_CHARACTER:
1059 rc = gfc_compare_string (op1, op2);
1060 break;
1062 case BT_LOGICAL:
1063 rc = ((!op1->value.logical && op2->value.logical)
1064 || (op1->value.logical && !op2->value.logical));
1065 break;
1067 default:
1068 gfc_internal_error ("gfc_compare_expr(): Bad basic type");
1071 return rc;
1075 /* Compare a pair of complex numbers. Naturally, this is only for
1076 equality and inequality. */
1078 static int
1079 compare_complex (gfc_expr *op1, gfc_expr *op2)
1081 return mpc_cmp (op1->value.complex, op2->value.complex) == 0;
1085 /* Given two constant strings and the inverse collating sequence, compare the
1086 strings. We return -1 for a < b, 0 for a == b and 1 for a > b.
1087 We use the processor's default collating sequence. */
1090 gfc_compare_string (gfc_expr *a, gfc_expr *b)
1092 size_t len, alen, blen, i;
1093 gfc_char_t ac, bc;
1095 alen = a->value.character.length;
1096 blen = b->value.character.length;
1098 len = MAX(alen, blen);
1100 for (i = 0; i < len; i++)
1102 ac = ((i < alen) ? a->value.character.string[i] : ' ');
1103 bc = ((i < blen) ? b->value.character.string[i] : ' ');
1105 if (ac < bc)
1106 return -1;
1107 if (ac > bc)
1108 return 1;
1111 /* Strings are equal */
1112 return 0;
1117 gfc_compare_with_Cstring (gfc_expr *a, const char *b, bool case_sensitive)
1119 size_t len, alen, blen, i;
1120 gfc_char_t ac, bc;
1122 alen = a->value.character.length;
1123 blen = strlen (b);
1125 len = MAX(alen, blen);
1127 for (i = 0; i < len; i++)
1129 ac = ((i < alen) ? a->value.character.string[i] : ' ');
1130 bc = ((i < blen) ? b[i] : ' ');
1132 if (!case_sensitive)
1134 ac = TOLOWER (ac);
1135 bc = TOLOWER (bc);
1138 if (ac < bc)
1139 return -1;
1140 if (ac > bc)
1141 return 1;
1144 /* Strings are equal */
1145 return 0;
1149 /* Specific comparison subroutines. */
1151 static arith
1152 gfc_arith_eq (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
1154 gfc_expr *result;
1156 result = gfc_get_constant_expr (BT_LOGICAL, gfc_default_logical_kind,
1157 &op1->where);
1158 result->value.logical = (op1->ts.type == BT_COMPLEX)
1159 ? compare_complex (op1, op2)
1160 : (gfc_compare_expr (op1, op2, INTRINSIC_EQ) == 0);
1162 *resultp = result;
1163 return ARITH_OK;
1167 static arith
1168 gfc_arith_ne (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
1170 gfc_expr *result;
1172 result = gfc_get_constant_expr (BT_LOGICAL, gfc_default_logical_kind,
1173 &op1->where);
1174 result->value.logical = (op1->ts.type == BT_COMPLEX)
1175 ? !compare_complex (op1, op2)
1176 : (gfc_compare_expr (op1, op2, INTRINSIC_EQ) != 0);
1178 *resultp = result;
1179 return ARITH_OK;
1183 static arith
1184 gfc_arith_gt (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
1186 gfc_expr *result;
1188 result = gfc_get_constant_expr (BT_LOGICAL, gfc_default_logical_kind,
1189 &op1->where);
1190 result->value.logical = (gfc_compare_expr (op1, op2, INTRINSIC_GT) > 0);
1191 *resultp = result;
1193 return ARITH_OK;
1197 static arith
1198 gfc_arith_ge (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
1200 gfc_expr *result;
1202 result = gfc_get_constant_expr (BT_LOGICAL, gfc_default_logical_kind,
1203 &op1->where);
1204 result->value.logical = (gfc_compare_expr (op1, op2, INTRINSIC_GE) >= 0);
1205 *resultp = result;
1207 return ARITH_OK;
1211 static arith
1212 gfc_arith_lt (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
1214 gfc_expr *result;
1216 result = gfc_get_constant_expr (BT_LOGICAL, gfc_default_logical_kind,
1217 &op1->where);
1218 result->value.logical = (gfc_compare_expr (op1, op2, INTRINSIC_LT) < 0);
1219 *resultp = result;
1221 return ARITH_OK;
1225 static arith
1226 gfc_arith_le (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
1228 gfc_expr *result;
1230 result = gfc_get_constant_expr (BT_LOGICAL, gfc_default_logical_kind,
1231 &op1->where);
1232 result->value.logical = (gfc_compare_expr (op1, op2, INTRINSIC_LE) <= 0);
1233 *resultp = result;
1235 return ARITH_OK;
1239 static arith
1240 reduce_unary (arith (*eval) (gfc_expr *, gfc_expr **), gfc_expr *op,
1241 gfc_expr **result)
1243 gfc_constructor_base head;
1244 gfc_constructor *c;
1245 gfc_expr *r;
1246 arith rc;
1248 if (op->expr_type == EXPR_CONSTANT)
1249 return eval (op, result);
1251 rc = ARITH_OK;
1252 head = gfc_constructor_copy (op->value.constructor);
1253 for (c = gfc_constructor_first (head); c; c = gfc_constructor_next (c))
1255 rc = reduce_unary (eval, c->expr, &r);
1257 if (rc != ARITH_OK)
1258 break;
1260 gfc_replace_expr (c->expr, r);
1263 if (rc != ARITH_OK)
1264 gfc_constructor_free (head);
1265 else
1267 gfc_constructor *c = gfc_constructor_first (head);
1268 r = gfc_get_array_expr (c->expr->ts.type, c->expr->ts.kind,
1269 &op->where);
1270 r->shape = gfc_copy_shape (op->shape, op->rank);
1271 r->rank = op->rank;
1272 r->value.constructor = head;
1273 *result = r;
1276 return rc;
1280 static arith
1281 reduce_binary_ac (arith (*eval) (gfc_expr *, gfc_expr *, gfc_expr **),
1282 gfc_expr *op1, gfc_expr *op2, gfc_expr **result)
1284 gfc_constructor_base head;
1285 gfc_constructor *c;
1286 gfc_expr *r;
1287 arith rc = ARITH_OK;
1289 head = gfc_constructor_copy (op1->value.constructor);
1290 for (c = gfc_constructor_first (head); c; c = gfc_constructor_next (c))
1292 if (c->expr->expr_type == EXPR_CONSTANT)
1293 rc = eval (c->expr, op2, &r);
1294 else
1295 rc = reduce_binary_ac (eval, c->expr, op2, &r);
1297 if (rc != ARITH_OK)
1298 break;
1300 gfc_replace_expr (c->expr, r);
1303 if (rc != ARITH_OK)
1304 gfc_constructor_free (head);
1305 else
1307 gfc_constructor *c = gfc_constructor_first (head);
1308 r = gfc_get_array_expr (c->expr->ts.type, c->expr->ts.kind,
1309 &op1->where);
1310 r->shape = gfc_copy_shape (op1->shape, op1->rank);
1311 r->rank = op1->rank;
1312 r->value.constructor = head;
1313 *result = r;
1316 return rc;
1320 static arith
1321 reduce_binary_ca (arith (*eval) (gfc_expr *, gfc_expr *, gfc_expr **),
1322 gfc_expr *op1, gfc_expr *op2, gfc_expr **result)
1324 gfc_constructor_base head;
1325 gfc_constructor *c;
1326 gfc_expr *r;
1327 arith rc = ARITH_OK;
1329 head = gfc_constructor_copy (op2->value.constructor);
1330 for (c = gfc_constructor_first (head); c; c = gfc_constructor_next (c))
1332 if (c->expr->expr_type == EXPR_CONSTANT)
1333 rc = eval (op1, c->expr, &r);
1334 else
1335 rc = reduce_binary_ca (eval, op1, c->expr, &r);
1337 if (rc != ARITH_OK)
1338 break;
1340 gfc_replace_expr (c->expr, r);
1343 if (rc != ARITH_OK)
1344 gfc_constructor_free (head);
1345 else
1347 gfc_constructor *c = gfc_constructor_first (head);
1348 r = gfc_get_array_expr (c->expr->ts.type, c->expr->ts.kind,
1349 &op2->where);
1350 r->shape = gfc_copy_shape (op2->shape, op2->rank);
1351 r->rank = op2->rank;
1352 r->value.constructor = head;
1353 *result = r;
1356 return rc;
1360 /* We need a forward declaration of reduce_binary. */
1361 static arith reduce_binary (arith (*eval) (gfc_expr *, gfc_expr *, gfc_expr **),
1362 gfc_expr *op1, gfc_expr *op2, gfc_expr **result);
1365 static arith
1366 reduce_binary_aa (arith (*eval) (gfc_expr *, gfc_expr *, gfc_expr **),
1367 gfc_expr *op1, gfc_expr *op2, gfc_expr **result)
1369 gfc_constructor_base head;
1370 gfc_constructor *c, *d;
1371 gfc_expr *r;
1372 arith rc = ARITH_OK;
1374 if (!gfc_check_conformance (op1, op2, "elemental binary operation"))
1375 return ARITH_INCOMMENSURATE;
1377 head = gfc_constructor_copy (op1->value.constructor);
1378 for (c = gfc_constructor_first (head),
1379 d = gfc_constructor_first (op2->value.constructor);
1380 c && d;
1381 c = gfc_constructor_next (c), d = gfc_constructor_next (d))
1383 rc = reduce_binary (eval, c->expr, d->expr, &r);
1384 if (rc != ARITH_OK)
1385 break;
1387 gfc_replace_expr (c->expr, r);
1390 if (c || d)
1391 rc = ARITH_INCOMMENSURATE;
1393 if (rc != ARITH_OK)
1394 gfc_constructor_free (head);
1395 else
1397 gfc_constructor *c = gfc_constructor_first (head);
1398 r = gfc_get_array_expr (c->expr->ts.type, c->expr->ts.kind,
1399 &op1->where);
1400 r->shape = gfc_copy_shape (op1->shape, op1->rank);
1401 r->rank = op1->rank;
1402 r->value.constructor = head;
1403 *result = r;
1406 return rc;
1410 static arith
1411 reduce_binary (arith (*eval) (gfc_expr *, gfc_expr *, gfc_expr **),
1412 gfc_expr *op1, gfc_expr *op2, gfc_expr **result)
1414 if (op1->expr_type == EXPR_CONSTANT && op2->expr_type == EXPR_CONSTANT)
1415 return eval (op1, op2, result);
1417 if (op1->expr_type == EXPR_CONSTANT && op2->expr_type == EXPR_ARRAY)
1418 return reduce_binary_ca (eval, op1, op2, result);
1420 if (op1->expr_type == EXPR_ARRAY && op2->expr_type == EXPR_CONSTANT)
1421 return reduce_binary_ac (eval, op1, op2, result);
1423 return reduce_binary_aa (eval, op1, op2, result);
1427 typedef union
1429 arith (*f2)(gfc_expr *, gfc_expr **);
1430 arith (*f3)(gfc_expr *, gfc_expr *, gfc_expr **);
1432 eval_f;
1434 /* High level arithmetic subroutines. These subroutines go into
1435 eval_intrinsic(), which can do one of several things to its
1436 operands. If the operands are incompatible with the intrinsic
1437 operation, we return a node pointing to the operands and hope that
1438 an operator interface is found during resolution.
1440 If the operands are compatible and are constants, then we try doing
1441 the arithmetic. We also handle the cases where either or both
1442 operands are array constructors. */
1444 static gfc_expr *
1445 eval_intrinsic (gfc_intrinsic_op op,
1446 eval_f eval, gfc_expr *op1, gfc_expr *op2)
1448 gfc_expr temp, *result;
1449 int unary;
1450 arith rc;
1452 gfc_clear_ts (&temp.ts);
1454 switch (op)
1456 /* Logical unary */
1457 case INTRINSIC_NOT:
1458 if (op1->ts.type != BT_LOGICAL)
1459 goto runtime;
1461 temp.ts.type = BT_LOGICAL;
1462 temp.ts.kind = gfc_default_logical_kind;
1463 unary = 1;
1464 break;
1466 /* Logical binary operators */
1467 case INTRINSIC_OR:
1468 case INTRINSIC_AND:
1469 case INTRINSIC_NEQV:
1470 case INTRINSIC_EQV:
1471 if (op1->ts.type != BT_LOGICAL || op2->ts.type != BT_LOGICAL)
1472 goto runtime;
1474 temp.ts.type = BT_LOGICAL;
1475 temp.ts.kind = gfc_default_logical_kind;
1476 unary = 0;
1477 break;
1479 /* Numeric unary */
1480 case INTRINSIC_UPLUS:
1481 case INTRINSIC_UMINUS:
1482 if (!gfc_numeric_ts (&op1->ts))
1483 goto runtime;
1485 temp.ts = op1->ts;
1486 unary = 1;
1487 break;
1489 case INTRINSIC_PARENTHESES:
1490 temp.ts = op1->ts;
1491 unary = 1;
1492 break;
1494 /* Additional restrictions for ordering relations. */
1495 case INTRINSIC_GE:
1496 case INTRINSIC_GE_OS:
1497 case INTRINSIC_LT:
1498 case INTRINSIC_LT_OS:
1499 case INTRINSIC_LE:
1500 case INTRINSIC_LE_OS:
1501 case INTRINSIC_GT:
1502 case INTRINSIC_GT_OS:
1503 if (op1->ts.type == BT_COMPLEX || op2->ts.type == BT_COMPLEX)
1505 temp.ts.type = BT_LOGICAL;
1506 temp.ts.kind = gfc_default_logical_kind;
1507 goto runtime;
1510 /* Fall through */
1511 case INTRINSIC_EQ:
1512 case INTRINSIC_EQ_OS:
1513 case INTRINSIC_NE:
1514 case INTRINSIC_NE_OS:
1515 if (op1->ts.type == BT_CHARACTER && op2->ts.type == BT_CHARACTER)
1517 unary = 0;
1518 temp.ts.type = BT_LOGICAL;
1519 temp.ts.kind = gfc_default_logical_kind;
1521 /* If kind mismatch, exit and we'll error out later. */
1522 if (op1->ts.kind != op2->ts.kind)
1523 goto runtime;
1525 break;
1528 gcc_fallthrough ();
1529 /* Numeric binary */
1530 case INTRINSIC_PLUS:
1531 case INTRINSIC_MINUS:
1532 case INTRINSIC_TIMES:
1533 case INTRINSIC_DIVIDE:
1534 case INTRINSIC_POWER:
1535 if (!gfc_numeric_ts (&op1->ts) || !gfc_numeric_ts (&op2->ts))
1536 goto runtime;
1538 /* Insert any necessary type conversions to make the operands
1539 compatible. */
1541 temp.expr_type = EXPR_OP;
1542 gfc_clear_ts (&temp.ts);
1543 temp.value.op.op = op;
1545 temp.value.op.op1 = op1;
1546 temp.value.op.op2 = op2;
1548 gfc_type_convert_binary (&temp, warn_conversion || warn_conversion_extra);
1550 if (op == INTRINSIC_EQ || op == INTRINSIC_NE
1551 || op == INTRINSIC_GE || op == INTRINSIC_GT
1552 || op == INTRINSIC_LE || op == INTRINSIC_LT
1553 || op == INTRINSIC_EQ_OS || op == INTRINSIC_NE_OS
1554 || op == INTRINSIC_GE_OS || op == INTRINSIC_GT_OS
1555 || op == INTRINSIC_LE_OS || op == INTRINSIC_LT_OS)
1557 temp.ts.type = BT_LOGICAL;
1558 temp.ts.kind = gfc_default_logical_kind;
1561 unary = 0;
1562 break;
1564 /* Character binary */
1565 case INTRINSIC_CONCAT:
1566 if (op1->ts.type != BT_CHARACTER || op2->ts.type != BT_CHARACTER
1567 || op1->ts.kind != op2->ts.kind)
1568 goto runtime;
1570 temp.ts.type = BT_CHARACTER;
1571 temp.ts.kind = op1->ts.kind;
1572 unary = 0;
1573 break;
1575 case INTRINSIC_USER:
1576 goto runtime;
1578 default:
1579 gfc_internal_error ("eval_intrinsic(): Bad operator");
1582 if (op1->expr_type != EXPR_CONSTANT
1583 && (op1->expr_type != EXPR_ARRAY
1584 || !gfc_is_constant_expr (op1) || !gfc_expanded_ac (op1)))
1585 goto runtime;
1587 if (op2 != NULL
1588 && op2->expr_type != EXPR_CONSTANT
1589 && (op2->expr_type != EXPR_ARRAY
1590 || !gfc_is_constant_expr (op2) || !gfc_expanded_ac (op2)))
1591 goto runtime;
1593 if (unary)
1594 rc = reduce_unary (eval.f2, op1, &result);
1595 else
1596 rc = reduce_binary (eval.f3, op1, op2, &result);
1599 /* Something went wrong. */
1600 if (op == INTRINSIC_POWER && rc == ARITH_PROHIBIT)
1601 return NULL;
1603 if (rc != ARITH_OK)
1605 gfc_error (gfc_arith_error (rc), &op1->where);
1606 if (rc == ARITH_OVERFLOW)
1607 goto done;
1608 return NULL;
1611 done:
1613 gfc_free_expr (op1);
1614 gfc_free_expr (op2);
1615 return result;
1617 runtime:
1618 /* Create a run-time expression. */
1619 result = gfc_get_operator_expr (&op1->where, op, op1, op2);
1620 result->ts = temp.ts;
1622 return result;
1626 /* Modify type of expression for zero size array. */
1628 static gfc_expr *
1629 eval_type_intrinsic0 (gfc_intrinsic_op iop, gfc_expr *op)
1631 if (op == NULL)
1632 gfc_internal_error ("eval_type_intrinsic0(): op NULL");
1634 switch (iop)
1636 case INTRINSIC_GE:
1637 case INTRINSIC_GE_OS:
1638 case INTRINSIC_LT:
1639 case INTRINSIC_LT_OS:
1640 case INTRINSIC_LE:
1641 case INTRINSIC_LE_OS:
1642 case INTRINSIC_GT:
1643 case INTRINSIC_GT_OS:
1644 case INTRINSIC_EQ:
1645 case INTRINSIC_EQ_OS:
1646 case INTRINSIC_NE:
1647 case INTRINSIC_NE_OS:
1648 op->ts.type = BT_LOGICAL;
1649 op->ts.kind = gfc_default_logical_kind;
1650 break;
1652 default:
1653 break;
1656 return op;
1660 /* Return nonzero if the expression is a zero size array. */
1662 static int
1663 gfc_zero_size_array (gfc_expr *e)
1665 if (e->expr_type != EXPR_ARRAY)
1666 return 0;
1668 return e->value.constructor == NULL;
1672 /* Reduce a binary expression where at least one of the operands
1673 involves a zero-length array. Returns NULL if neither of the
1674 operands is a zero-length array. */
1676 static gfc_expr *
1677 reduce_binary0 (gfc_expr *op1, gfc_expr *op2)
1679 if (gfc_zero_size_array (op1))
1681 gfc_free_expr (op2);
1682 return op1;
1685 if (gfc_zero_size_array (op2))
1687 gfc_free_expr (op1);
1688 return op2;
1691 return NULL;
1695 static gfc_expr *
1696 eval_intrinsic_f2 (gfc_intrinsic_op op,
1697 arith (*eval) (gfc_expr *, gfc_expr **),
1698 gfc_expr *op1, gfc_expr *op2)
1700 gfc_expr *result;
1701 eval_f f;
1703 if (op2 == NULL)
1705 if (gfc_zero_size_array (op1))
1706 return eval_type_intrinsic0 (op, op1);
1708 else
1710 result = reduce_binary0 (op1, op2);
1711 if (result != NULL)
1712 return eval_type_intrinsic0 (op, result);
1715 f.f2 = eval;
1716 return eval_intrinsic (op, f, op1, op2);
1720 static gfc_expr *
1721 eval_intrinsic_f3 (gfc_intrinsic_op op,
1722 arith (*eval) (gfc_expr *, gfc_expr *, gfc_expr **),
1723 gfc_expr *op1, gfc_expr *op2)
1725 gfc_expr *result;
1726 eval_f f;
1728 result = reduce_binary0 (op1, op2);
1729 if (result != NULL)
1730 return eval_type_intrinsic0(op, result);
1732 f.f3 = eval;
1733 return eval_intrinsic (op, f, op1, op2);
1737 gfc_expr *
1738 gfc_parentheses (gfc_expr *op)
1740 if (gfc_is_constant_expr (op))
1741 return op;
1743 return eval_intrinsic_f2 (INTRINSIC_PARENTHESES, gfc_arith_identity,
1744 op, NULL);
1747 gfc_expr *
1748 gfc_uplus (gfc_expr *op)
1750 return eval_intrinsic_f2 (INTRINSIC_UPLUS, gfc_arith_identity, op, NULL);
1754 gfc_expr *
1755 gfc_uminus (gfc_expr *op)
1757 return eval_intrinsic_f2 (INTRINSIC_UMINUS, gfc_arith_uminus, op, NULL);
1761 gfc_expr *
1762 gfc_add (gfc_expr *op1, gfc_expr *op2)
1764 return eval_intrinsic_f3 (INTRINSIC_PLUS, gfc_arith_plus, op1, op2);
1768 gfc_expr *
1769 gfc_subtract (gfc_expr *op1, gfc_expr *op2)
1771 return eval_intrinsic_f3 (INTRINSIC_MINUS, gfc_arith_minus, op1, op2);
1775 gfc_expr *
1776 gfc_multiply (gfc_expr *op1, gfc_expr *op2)
1778 return eval_intrinsic_f3 (INTRINSIC_TIMES, gfc_arith_times, op1, op2);
1782 gfc_expr *
1783 gfc_divide (gfc_expr *op1, gfc_expr *op2)
1785 return eval_intrinsic_f3 (INTRINSIC_DIVIDE, gfc_arith_divide, op1, op2);
1789 gfc_expr *
1790 gfc_power (gfc_expr *op1, gfc_expr *op2)
1792 return eval_intrinsic_f3 (INTRINSIC_POWER, arith_power, op1, op2);
1796 gfc_expr *
1797 gfc_concat (gfc_expr *op1, gfc_expr *op2)
1799 return eval_intrinsic_f3 (INTRINSIC_CONCAT, gfc_arith_concat, op1, op2);
1803 gfc_expr *
1804 gfc_and (gfc_expr *op1, gfc_expr *op2)
1806 return eval_intrinsic_f3 (INTRINSIC_AND, gfc_arith_and, op1, op2);
1810 gfc_expr *
1811 gfc_or (gfc_expr *op1, gfc_expr *op2)
1813 return eval_intrinsic_f3 (INTRINSIC_OR, gfc_arith_or, op1, op2);
1817 gfc_expr *
1818 gfc_not (gfc_expr *op1)
1820 return eval_intrinsic_f2 (INTRINSIC_NOT, gfc_arith_not, op1, NULL);
1824 gfc_expr *
1825 gfc_eqv (gfc_expr *op1, gfc_expr *op2)
1827 return eval_intrinsic_f3 (INTRINSIC_EQV, gfc_arith_eqv, op1, op2);
1831 gfc_expr *
1832 gfc_neqv (gfc_expr *op1, gfc_expr *op2)
1834 return eval_intrinsic_f3 (INTRINSIC_NEQV, gfc_arith_neqv, op1, op2);
1838 gfc_expr *
1839 gfc_eq (gfc_expr *op1, gfc_expr *op2, gfc_intrinsic_op op)
1841 return eval_intrinsic_f3 (op, gfc_arith_eq, op1, op2);
1845 gfc_expr *
1846 gfc_ne (gfc_expr *op1, gfc_expr *op2, gfc_intrinsic_op op)
1848 return eval_intrinsic_f3 (op, gfc_arith_ne, op1, op2);
1852 gfc_expr *
1853 gfc_gt (gfc_expr *op1, gfc_expr *op2, gfc_intrinsic_op op)
1855 return eval_intrinsic_f3 (op, gfc_arith_gt, op1, op2);
1859 gfc_expr *
1860 gfc_ge (gfc_expr *op1, gfc_expr *op2, gfc_intrinsic_op op)
1862 return eval_intrinsic_f3 (op, gfc_arith_ge, op1, op2);
1866 gfc_expr *
1867 gfc_lt (gfc_expr *op1, gfc_expr *op2, gfc_intrinsic_op op)
1869 return eval_intrinsic_f3 (op, gfc_arith_lt, op1, op2);
1873 gfc_expr *
1874 gfc_le (gfc_expr *op1, gfc_expr *op2, gfc_intrinsic_op op)
1876 return eval_intrinsic_f3 (op, gfc_arith_le, op1, op2);
1880 /* Convert an integer string to an expression node. */
1882 gfc_expr *
1883 gfc_convert_integer (const char *buffer, int kind, int radix, locus *where)
1885 gfc_expr *e;
1886 const char *t;
1888 e = gfc_get_constant_expr (BT_INTEGER, kind, where);
1889 /* A leading plus is allowed, but not by mpz_set_str. */
1890 if (buffer[0] == '+')
1891 t = buffer + 1;
1892 else
1893 t = buffer;
1894 mpz_set_str (e->value.integer, t, radix);
1896 return e;
1900 /* Convert a real string to an expression node. */
1902 gfc_expr *
1903 gfc_convert_real (const char *buffer, int kind, locus *where)
1905 gfc_expr *e;
1907 e = gfc_get_constant_expr (BT_REAL, kind, where);
1908 mpfr_set_str (e->value.real, buffer, 10, GFC_RND_MODE);
1910 return e;
1914 /* Convert a pair of real, constant expression nodes to a single
1915 complex expression node. */
1917 gfc_expr *
1918 gfc_convert_complex (gfc_expr *real, gfc_expr *imag, int kind)
1920 gfc_expr *e;
1922 e = gfc_get_constant_expr (BT_COMPLEX, kind, &real->where);
1923 mpc_set_fr_fr (e->value.complex, real->value.real, imag->value.real,
1924 GFC_MPC_RND_MODE);
1926 return e;
1930 /******* Simplification of intrinsic functions with constant arguments *****/
1933 /* Deal with an arithmetic error. */
1935 static void
1936 arith_error (arith rc, gfc_typespec *from, gfc_typespec *to, locus *where)
1938 switch (rc)
1940 case ARITH_OK:
1941 gfc_error ("Arithmetic OK converting %s to %s at %L",
1942 gfc_typename (from), gfc_typename (to), where);
1943 break;
1944 case ARITH_OVERFLOW:
1945 gfc_error ("Arithmetic overflow converting %s to %s at %L. This check "
1946 "can be disabled with the option %<-fno-range-check%>",
1947 gfc_typename (from), gfc_typename (to), where);
1948 break;
1949 case ARITH_UNDERFLOW:
1950 gfc_error ("Arithmetic underflow converting %s to %s at %L. This check "
1951 "can be disabled with the option %<-fno-range-check%>",
1952 gfc_typename (from), gfc_typename (to), where);
1953 break;
1954 case ARITH_NAN:
1955 gfc_error ("Arithmetic NaN converting %s to %s at %L. This check "
1956 "can be disabled with the option %<-fno-range-check%>",
1957 gfc_typename (from), gfc_typename (to), where);
1958 break;
1959 case ARITH_DIV0:
1960 gfc_error ("Division by zero converting %s to %s at %L",
1961 gfc_typename (from), gfc_typename (to), where);
1962 break;
1963 case ARITH_INCOMMENSURATE:
1964 gfc_error ("Array operands are incommensurate converting %s to %s at %L",
1965 gfc_typename (from), gfc_typename (to), where);
1966 break;
1967 case ARITH_ASYMMETRIC:
1968 gfc_error ("Integer outside symmetric range implied by Standard Fortran"
1969 " converting %s to %s at %L",
1970 gfc_typename (from), gfc_typename (to), where);
1971 break;
1972 default:
1973 gfc_internal_error ("gfc_arith_error(): Bad error code");
1976 /* TODO: Do something about the error, i.e., throw exception, return
1977 NaN, etc. */
1980 /* Returns true if significant bits were lost when converting real
1981 constant r from from_kind to to_kind. */
1983 static bool
1984 wprecision_real_real (mpfr_t r, int from_kind, int to_kind)
1986 mpfr_t rv, diff;
1987 bool ret;
1989 gfc_set_model_kind (to_kind);
1990 mpfr_init (rv);
1991 gfc_set_model_kind (from_kind);
1992 mpfr_init (diff);
1994 mpfr_set (rv, r, GFC_RND_MODE);
1995 mpfr_sub (diff, rv, r, GFC_RND_MODE);
1997 ret = ! mpfr_zero_p (diff);
1998 mpfr_clear (rv);
1999 mpfr_clear (diff);
2000 return ret;
2003 /* Return true if conversion from an integer to a real loses precision. */
2005 static bool
2006 wprecision_int_real (mpz_t n, mpfr_t r)
2008 bool ret;
2009 mpz_t i;
2010 mpz_init (i);
2011 mpfr_get_z (i, r, GFC_RND_MODE);
2012 mpz_sub (i, i, n);
2013 ret = mpz_cmp_si (i, 0) != 0;
2014 mpz_clear (i);
2015 return ret;
2018 /* Convert integers to integers. */
2020 gfc_expr *
2021 gfc_int2int (gfc_expr *src, int kind)
2023 gfc_expr *result;
2024 arith rc;
2026 result = gfc_get_constant_expr (BT_INTEGER, kind, &src->where);
2028 mpz_set (result->value.integer, src->value.integer);
2030 if ((rc = gfc_check_integer_range (result->value.integer, kind)) != ARITH_OK)
2032 if (rc == ARITH_ASYMMETRIC)
2034 gfc_warning (0, gfc_arith_error (rc), &src->where);
2036 else
2038 arith_error (rc, &src->ts, &result->ts, &src->where);
2039 gfc_free_expr (result);
2040 return NULL;
2044 /* If we do not trap numeric overflow, we need to convert the number to
2045 signed, throwing away high-order bits if necessary. */
2046 if (flag_range_check == 0)
2048 int k;
2050 k = gfc_validate_kind (BT_INTEGER, kind, false);
2051 gfc_convert_mpz_to_signed (result->value.integer,
2052 gfc_integer_kinds[k].bit_size);
2054 if (warn_conversion && kind < src->ts.kind)
2055 gfc_warning_now (OPT_Wconversion, "Conversion from %qs to %qs at %L",
2056 gfc_typename (&src->ts), gfc_typename (&result->ts),
2057 &src->where);
2059 return result;
2063 /* Convert integers to reals. */
2065 gfc_expr *
2066 gfc_int2real (gfc_expr *src, int kind)
2068 gfc_expr *result;
2069 arith rc;
2071 result = gfc_get_constant_expr (BT_REAL, kind, &src->where);
2073 mpfr_set_z (result->value.real, src->value.integer, GFC_RND_MODE);
2075 if ((rc = gfc_check_real_range (result->value.real, kind)) != ARITH_OK)
2077 arith_error (rc, &src->ts, &result->ts, &src->where);
2078 gfc_free_expr (result);
2079 return NULL;
2082 if (warn_conversion
2083 && wprecision_int_real (src->value.integer, result->value.real))
2084 gfc_warning (OPT_Wconversion, "Change of value in conversion "
2085 "from %qs to %qs at %L",
2086 gfc_typename (&src->ts),
2087 gfc_typename (&result->ts),
2088 &src->where);
2090 return result;
2094 /* Convert default integer to default complex. */
2096 gfc_expr *
2097 gfc_int2complex (gfc_expr *src, int kind)
2099 gfc_expr *result;
2100 arith rc;
2102 result = gfc_get_constant_expr (BT_COMPLEX, kind, &src->where);
2104 mpc_set_z (result->value.complex, src->value.integer, GFC_MPC_RND_MODE);
2106 if ((rc = gfc_check_real_range (mpc_realref (result->value.complex), kind))
2107 != ARITH_OK)
2109 arith_error (rc, &src->ts, &result->ts, &src->where);
2110 gfc_free_expr (result);
2111 return NULL;
2114 if (warn_conversion
2115 && wprecision_int_real (src->value.integer,
2116 mpc_realref (result->value.complex)))
2117 gfc_warning_now (OPT_Wconversion, "Change of value in conversion "
2118 "from %qs to %qs at %L",
2119 gfc_typename (&src->ts),
2120 gfc_typename (&result->ts),
2121 &src->where);
2123 return result;
2127 /* Convert default real to default integer. */
2129 gfc_expr *
2130 gfc_real2int (gfc_expr *src, int kind)
2132 gfc_expr *result;
2133 arith rc;
2134 bool did_warn = false;
2136 result = gfc_get_constant_expr (BT_INTEGER, kind, &src->where);
2138 gfc_mpfr_to_mpz (result->value.integer, src->value.real, &src->where);
2140 if ((rc = gfc_check_integer_range (result->value.integer, kind)) != ARITH_OK)
2142 arith_error (rc, &src->ts, &result->ts, &src->where);
2143 gfc_free_expr (result);
2144 return NULL;
2147 /* If there was a fractional part, warn about this. */
2149 if (warn_conversion)
2151 mpfr_t f;
2152 mpfr_init (f);
2153 mpfr_frac (f, src->value.real, GFC_RND_MODE);
2154 if (mpfr_cmp_si (f, 0) != 0)
2156 gfc_warning_now (OPT_Wconversion, "Change of value in conversion "
2157 "from %qs to %qs at %L", gfc_typename (&src->ts),
2158 gfc_typename (&result->ts), &src->where);
2159 did_warn = true;
2162 if (!did_warn && warn_conversion_extra)
2164 gfc_warning_now (OPT_Wconversion_extra, "Conversion from %qs to %qs "
2165 "at %L", gfc_typename (&src->ts),
2166 gfc_typename (&result->ts), &src->where);
2169 return result;
2173 /* Convert real to real. */
2175 gfc_expr *
2176 gfc_real2real (gfc_expr *src, int kind)
2178 gfc_expr *result;
2179 arith rc;
2180 bool did_warn = false;
2182 result = gfc_get_constant_expr (BT_REAL, kind, &src->where);
2184 mpfr_set (result->value.real, src->value.real, GFC_RND_MODE);
2186 rc = gfc_check_real_range (result->value.real, kind);
2188 if (rc == ARITH_UNDERFLOW)
2190 if (warn_underflow)
2191 gfc_warning (OPT_Woverflow, gfc_arith_error (rc), &src->where);
2192 mpfr_set_ui (result->value.real, 0, GFC_RND_MODE);
2194 else if (rc != ARITH_OK)
2196 arith_error (rc, &src->ts, &result->ts, &src->where);
2197 gfc_free_expr (result);
2198 return NULL;
2201 /* As a special bonus, don't warn about REAL values which are not changed by
2202 the conversion if -Wconversion is specified and -Wconversion-extra is
2203 not. */
2205 if ((warn_conversion || warn_conversion_extra) && src->ts.kind > kind)
2207 int w = warn_conversion ? OPT_Wconversion : OPT_Wconversion_extra;
2209 /* Calculate the difference between the constant and the rounded
2210 value and check it against zero. */
2212 if (wprecision_real_real (src->value.real, src->ts.kind, kind))
2214 gfc_warning_now (w, "Change of value in conversion from "
2215 "%qs to %qs at %L",
2216 gfc_typename (&src->ts), gfc_typename (&result->ts),
2217 &src->where);
2218 /* Make sure the conversion warning is not emitted again. */
2219 did_warn = true;
2223 if (!did_warn && warn_conversion_extra)
2224 gfc_warning_now (OPT_Wconversion_extra, "Conversion from %qs to %qs "
2225 "at %L", gfc_typename(&src->ts),
2226 gfc_typename(&result->ts), &src->where);
2228 return result;
2232 /* Convert real to complex. */
2234 gfc_expr *
2235 gfc_real2complex (gfc_expr *src, int kind)
2237 gfc_expr *result;
2238 arith rc;
2239 bool did_warn = false;
2241 result = gfc_get_constant_expr (BT_COMPLEX, kind, &src->where);
2243 mpc_set_fr (result->value.complex, src->value.real, GFC_MPC_RND_MODE);
2245 rc = gfc_check_real_range (mpc_realref (result->value.complex), kind);
2247 if (rc == ARITH_UNDERFLOW)
2249 if (warn_underflow)
2250 gfc_warning (OPT_Woverflow, gfc_arith_error (rc), &src->where);
2251 mpfr_set_ui (mpc_realref (result->value.complex), 0, GFC_RND_MODE);
2253 else if (rc != ARITH_OK)
2255 arith_error (rc, &src->ts, &result->ts, &src->where);
2256 gfc_free_expr (result);
2257 return NULL;
2260 if ((warn_conversion || warn_conversion_extra) && src->ts.kind > kind)
2262 int w = warn_conversion ? OPT_Wconversion : OPT_Wconversion_extra;
2264 if (wprecision_real_real (src->value.real, src->ts.kind, kind))
2266 gfc_warning_now (w, "Change of value in conversion from "
2267 "%qs to %qs at %L",
2268 gfc_typename (&src->ts), gfc_typename (&result->ts),
2269 &src->where);
2270 /* Make sure the conversion warning is not emitted again. */
2271 did_warn = true;
2275 if (!did_warn && warn_conversion_extra)
2276 gfc_warning_now (OPT_Wconversion_extra, "Conversion from %qs to %qs "
2277 "at %L", gfc_typename(&src->ts),
2278 gfc_typename(&result->ts), &src->where);
2280 return result;
2284 /* Convert complex to integer. */
2286 gfc_expr *
2287 gfc_complex2int (gfc_expr *src, int kind)
2289 gfc_expr *result;
2290 arith rc;
2291 bool did_warn = false;
2293 result = gfc_get_constant_expr (BT_INTEGER, kind, &src->where);
2295 gfc_mpfr_to_mpz (result->value.integer, mpc_realref (src->value.complex),
2296 &src->where);
2298 if ((rc = gfc_check_integer_range (result->value.integer, kind)) != ARITH_OK)
2300 arith_error (rc, &src->ts, &result->ts, &src->where);
2301 gfc_free_expr (result);
2302 return NULL;
2305 if (warn_conversion || warn_conversion_extra)
2307 int w = warn_conversion ? OPT_Wconversion : OPT_Wconversion_extra;
2309 /* See if we discarded an imaginary part. */
2310 if (mpfr_cmp_si (mpc_imagref (src->value.complex), 0) != 0)
2312 gfc_warning_now (w, "Non-zero imaginary part discarded "
2313 "in conversion from %qs to %qs at %L",
2314 gfc_typename(&src->ts), gfc_typename (&result->ts),
2315 &src->where);
2316 did_warn = true;
2319 else {
2320 mpfr_t f;
2322 mpfr_init (f);
2323 mpfr_frac (f, src->value.real, GFC_RND_MODE);
2324 if (mpfr_cmp_si (f, 0) != 0)
2326 gfc_warning_now (w, "Change of value in conversion from "
2327 "%qs to %qs at %L", gfc_typename (&src->ts),
2328 gfc_typename (&result->ts), &src->where);
2329 did_warn = true;
2331 mpfr_clear (f);
2334 if (!did_warn && warn_conversion_extra)
2336 gfc_warning_now (OPT_Wconversion_extra, "Conversion from %qs to %qs "
2337 "at %L", gfc_typename (&src->ts),
2338 gfc_typename (&result->ts), &src->where);
2342 return result;
2346 /* Convert complex to real. */
2348 gfc_expr *
2349 gfc_complex2real (gfc_expr *src, int kind)
2351 gfc_expr *result;
2352 arith rc;
2353 bool did_warn = false;
2355 result = gfc_get_constant_expr (BT_REAL, kind, &src->where);
2357 mpc_real (result->value.real, src->value.complex, GFC_RND_MODE);
2359 rc = gfc_check_real_range (result->value.real, kind);
2361 if (rc == ARITH_UNDERFLOW)
2363 if (warn_underflow)
2364 gfc_warning (OPT_Woverflow, gfc_arith_error (rc), &src->where);
2365 mpfr_set_ui (result->value.real, 0, GFC_RND_MODE);
2367 if (rc != ARITH_OK)
2369 arith_error (rc, &src->ts, &result->ts, &src->where);
2370 gfc_free_expr (result);
2371 return NULL;
2374 if (warn_conversion || warn_conversion_extra)
2376 int w = warn_conversion ? OPT_Wconversion : OPT_Wconversion_extra;
2378 /* See if we discarded an imaginary part. */
2379 if (mpfr_cmp_si (mpc_imagref (src->value.complex), 0) != 0)
2381 gfc_warning (w, "Non-zero imaginary part discarded "
2382 "in conversion from %qs to %qs at %L",
2383 gfc_typename(&src->ts), gfc_typename (&result->ts),
2384 &src->where);
2385 did_warn = true;
2388 /* Calculate the difference between the real constant and the rounded
2389 value and check it against zero. */
2391 if (kind > src->ts.kind
2392 && wprecision_real_real (mpc_realref (src->value.complex),
2393 src->ts.kind, kind))
2395 gfc_warning_now (w, "Change of value in conversion from "
2396 "%qs to %qs at %L",
2397 gfc_typename (&src->ts), gfc_typename (&result->ts),
2398 &src->where);
2399 /* Make sure the conversion warning is not emitted again. */
2400 did_warn = true;
2404 if (!did_warn && warn_conversion_extra)
2405 gfc_warning_now (OPT_Wconversion, "Conversion from %qs to %qs at %L",
2406 gfc_typename(&src->ts), gfc_typename (&result->ts),
2407 &src->where);
2409 return result;
2413 /* Convert complex to complex. */
2415 gfc_expr *
2416 gfc_complex2complex (gfc_expr *src, int kind)
2418 gfc_expr *result;
2419 arith rc;
2420 bool did_warn = false;
2422 result = gfc_get_constant_expr (BT_COMPLEX, kind, &src->where);
2424 mpc_set (result->value.complex, src->value.complex, GFC_MPC_RND_MODE);
2426 rc = gfc_check_real_range (mpc_realref (result->value.complex), kind);
2428 if (rc == ARITH_UNDERFLOW)
2430 if (warn_underflow)
2431 gfc_warning (OPT_Woverflow, gfc_arith_error (rc), &src->where);
2432 mpfr_set_ui (mpc_realref (result->value.complex), 0, GFC_RND_MODE);
2434 else if (rc != ARITH_OK)
2436 arith_error (rc, &src->ts, &result->ts, &src->where);
2437 gfc_free_expr (result);
2438 return NULL;
2441 rc = gfc_check_real_range (mpc_imagref (result->value.complex), kind);
2443 if (rc == ARITH_UNDERFLOW)
2445 if (warn_underflow)
2446 gfc_warning (OPT_Woverflow, gfc_arith_error (rc), &src->where);
2447 mpfr_set_ui (mpc_imagref (result->value.complex), 0, GFC_RND_MODE);
2449 else if (rc != ARITH_OK)
2451 arith_error (rc, &src->ts, &result->ts, &src->where);
2452 gfc_free_expr (result);
2453 return NULL;
2456 if ((warn_conversion || warn_conversion_extra) && src->ts.kind > kind
2457 && (wprecision_real_real (mpc_realref (src->value.complex),
2458 src->ts.kind, kind)
2459 || wprecision_real_real (mpc_imagref (src->value.complex),
2460 src->ts.kind, kind)))
2462 int w = warn_conversion ? OPT_Wconversion : OPT_Wconversion_extra;
2464 gfc_warning_now (w, "Change of value in conversion from "
2465 " %qs to %qs at %L",
2466 gfc_typename (&src->ts), gfc_typename (&result->ts),
2467 &src->where);
2468 did_warn = true;
2471 if (!did_warn && warn_conversion_extra && src->ts.kind != kind)
2472 gfc_warning_now (OPT_Wconversion_extra, "Conversion from %qs to %qs "
2473 "at %L", gfc_typename(&src->ts),
2474 gfc_typename (&result->ts), &src->where);
2476 return result;
2480 /* Logical kind conversion. */
2482 gfc_expr *
2483 gfc_log2log (gfc_expr *src, int kind)
2485 gfc_expr *result;
2487 result = gfc_get_constant_expr (BT_LOGICAL, kind, &src->where);
2488 result->value.logical = src->value.logical;
2490 return result;
2494 /* Convert logical to integer. */
2496 gfc_expr *
2497 gfc_log2int (gfc_expr *src, int kind)
2499 gfc_expr *result;
2501 result = gfc_get_constant_expr (BT_INTEGER, kind, &src->where);
2502 mpz_set_si (result->value.integer, src->value.logical);
2504 return result;
2508 /* Convert integer to logical. */
2510 gfc_expr *
2511 gfc_int2log (gfc_expr *src, int kind)
2513 gfc_expr *result;
2515 result = gfc_get_constant_expr (BT_LOGICAL, kind, &src->where);
2516 result->value.logical = (mpz_cmp_si (src->value.integer, 0) != 0);
2518 return result;
2521 /* Convert character to character. We only use wide strings internally,
2522 so we only set the kind. */
2524 gfc_expr *
2525 gfc_character2character (gfc_expr *src, int kind)
2527 gfc_expr *result;
2528 result = gfc_copy_expr (src);
2529 result->ts.kind = kind;
2531 return result;
2534 /* Helper function to set the representation in a Hollerith conversion.
2535 This assumes that the ts.type and ts.kind of the result have already
2536 been set. */
2538 static void
2539 hollerith2representation (gfc_expr *result, gfc_expr *src)
2541 int src_len, result_len;
2543 src_len = src->representation.length - src->ts.u.pad;
2544 result_len = gfc_target_expr_size (result);
2546 if (src_len > result_len)
2548 gfc_warning (0,
2549 "The Hollerith constant at %L is too long to convert to %qs",
2550 &src->where, gfc_typename(&result->ts));
2553 result->representation.string = XCNEWVEC (char, result_len + 1);
2554 memcpy (result->representation.string, src->representation.string,
2555 MIN (result_len, src_len));
2557 if (src_len < result_len)
2558 memset (&result->representation.string[src_len], ' ', result_len - src_len);
2560 result->representation.string[result_len] = '\0'; /* For debugger */
2561 result->representation.length = result_len;
2565 /* Convert Hollerith to integer. The constant will be padded or truncated. */
2567 gfc_expr *
2568 gfc_hollerith2int (gfc_expr *src, int kind)
2570 gfc_expr *result;
2571 result = gfc_get_constant_expr (BT_INTEGER, kind, &src->where);
2573 hollerith2representation (result, src);
2574 gfc_interpret_integer (kind, (unsigned char *) result->representation.string,
2575 result->representation.length, result->value.integer);
2577 return result;
2581 /* Convert Hollerith to real. The constant will be padded or truncated. */
2583 gfc_expr *
2584 gfc_hollerith2real (gfc_expr *src, int kind)
2586 gfc_expr *result;
2587 result = gfc_get_constant_expr (BT_REAL, kind, &src->where);
2589 hollerith2representation (result, src);
2590 gfc_interpret_float (kind, (unsigned char *) result->representation.string,
2591 result->representation.length, result->value.real);
2593 return result;
2597 /* Convert Hollerith to complex. The constant will be padded or truncated. */
2599 gfc_expr *
2600 gfc_hollerith2complex (gfc_expr *src, int kind)
2602 gfc_expr *result;
2603 result = gfc_get_constant_expr (BT_COMPLEX, kind, &src->where);
2605 hollerith2representation (result, src);
2606 gfc_interpret_complex (kind, (unsigned char *) result->representation.string,
2607 result->representation.length, result->value.complex);
2609 return result;
2613 /* Convert Hollerith to character. */
2615 gfc_expr *
2616 gfc_hollerith2character (gfc_expr *src, int kind)
2618 gfc_expr *result;
2620 result = gfc_copy_expr (src);
2621 result->ts.type = BT_CHARACTER;
2622 result->ts.kind = kind;
2623 result->ts.u.pad = 0;
2625 result->value.character.length = result->representation.length;
2626 result->value.character.string
2627 = gfc_char_to_widechar (result->representation.string);
2629 return result;
2633 /* Convert Hollerith to logical. The constant will be padded or truncated. */
2635 gfc_expr *
2636 gfc_hollerith2logical (gfc_expr *src, int kind)
2638 gfc_expr *result;
2639 result = gfc_get_constant_expr (BT_LOGICAL, kind, &src->where);
2641 hollerith2representation (result, src);
2642 gfc_interpret_logical (kind, (unsigned char *) result->representation.string,
2643 result->representation.length, &result->value.logical);
2645 return result;