1 /* Fold a constant sub-tree into a single node for C-compiler
2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /*@@ This file should be rewritten to use an arbitrary precision
21 @@ representation for "struct tree_int_cst" and "struct tree_real_cst".
22 @@ Perhaps the routines could also be used for bc/dc, and made a lib.
23 @@ The routines that translate from the ap rep should
24 @@ warn if precision et. al. is lost.
25 @@ This would also make life easier when this technology is used
26 @@ for cross-compilers. */
28 /* The entry points in this file are fold, size_int_wide and size_binop.
30 fold takes a tree as argument and returns a simplified tree.
32 size_binop takes a tree code for an arithmetic operation
33 and two operands that are trees, and produces a tree for the
34 result, assuming the type comes from `sizetype'.
36 size_int takes an integer value, and creates a tree constant
37 with type from `sizetype'.
39 Note: Since the folders get called on non-gimple code as well as
40 gimple code, we need to handle GIMPLE tuples as well as their
41 corresponding tree equivalents. */
45 #include "coretypes.h"
54 #include "tree-ssa-operands.h"
55 #include "optabs-query.h"
57 #include "diagnostic-core.h"
60 #include "fold-const.h"
61 #include "fold-const-call.h"
62 #include "stor-layout.h"
64 #include "tree-iterator.h"
67 #include "langhooks.h"
72 #include "generic-match.h"
73 #include "gimple-fold.h"
75 #include "tree-into-ssa.h"
77 #include "case-cfn-macros.h"
78 #include "stringpool.h"
80 #include "tree-ssanames.h"
83 #ifndef LOAD_EXTEND_OP
84 #define LOAD_EXTEND_OP(M) UNKNOWN
87 /* Nonzero if we are folding constants inside an initializer; zero
89 int folding_initializer
= 0;
91 /* The following constants represent a bit based encoding of GCC's
92 comparison operators. This encoding simplifies transformations
93 on relational comparison operators, such as AND and OR. */
94 enum comparison_code
{
113 static bool negate_expr_p (tree
);
114 static tree
negate_expr (tree
);
115 static tree
split_tree (location_t
, tree
, tree
, enum tree_code
,
116 tree
*, tree
*, tree
*, int);
117 static tree
associate_trees (location_t
, tree
, tree
, enum tree_code
, tree
);
118 static enum comparison_code
comparison_to_compcode (enum tree_code
);
119 static enum tree_code
compcode_to_comparison (enum comparison_code
);
120 static int operand_equal_for_comparison_p (tree
, tree
, tree
);
121 static int twoval_comparison_p (tree
, tree
*, tree
*, int *);
122 static tree
eval_subst (location_t
, tree
, tree
, tree
, tree
, tree
);
123 static tree
optimize_bit_field_compare (location_t
, enum tree_code
,
125 static int simple_operand_p (const_tree
);
126 static bool simple_operand_p_2 (tree
);
127 static tree
range_binop (enum tree_code
, tree
, tree
, int, tree
, int);
128 static tree
range_predecessor (tree
);
129 static tree
range_successor (tree
);
130 static tree
fold_range_test (location_t
, enum tree_code
, tree
, tree
, tree
);
131 static tree
fold_cond_expr_with_comparison (location_t
, tree
, tree
, tree
, tree
);
132 static tree
unextend (tree
, int, int, tree
);
133 static tree
extract_muldiv (tree
, tree
, enum tree_code
, tree
, bool *);
134 static tree
extract_muldiv_1 (tree
, tree
, enum tree_code
, tree
, bool *);
135 static tree
fold_binary_op_with_conditional_arg (location_t
,
136 enum tree_code
, tree
,
139 static tree
fold_div_compare (location_t
, enum tree_code
, tree
, tree
, tree
);
140 static bool reorder_operands_p (const_tree
, const_tree
);
141 static tree
fold_negate_const (tree
, tree
);
142 static tree
fold_not_const (const_tree
, tree
);
143 static tree
fold_relational_const (enum tree_code
, tree
, tree
, tree
);
144 static tree
fold_convert_const (enum tree_code
, tree
, tree
);
145 static tree
fold_view_convert_expr (tree
, tree
);
146 static bool vec_cst_ctor_to_array (tree
, tree
*);
149 /* Return EXPR_LOCATION of T if it is not UNKNOWN_LOCATION.
150 Otherwise, return LOC. */
153 expr_location_or (tree t
, location_t loc
)
155 location_t tloc
= EXPR_LOCATION (t
);
156 return tloc
== UNKNOWN_LOCATION
? loc
: tloc
;
159 /* Similar to protected_set_expr_location, but never modify x in place,
160 if location can and needs to be set, unshare it. */
163 protected_set_expr_location_unshare (tree x
, location_t loc
)
165 if (CAN_HAVE_LOCATION_P (x
)
166 && EXPR_LOCATION (x
) != loc
167 && !(TREE_CODE (x
) == SAVE_EXPR
168 || TREE_CODE (x
) == TARGET_EXPR
169 || TREE_CODE (x
) == BIND_EXPR
))
172 SET_EXPR_LOCATION (x
, loc
);
177 /* If ARG2 divides ARG1 with zero remainder, carries out the exact
178 division and returns the quotient. Otherwise returns
182 div_if_zero_remainder (const_tree arg1
, const_tree arg2
)
186 if (wi::multiple_of_p (wi::to_widest (arg1
), wi::to_widest (arg2
),
188 return wide_int_to_tree (TREE_TYPE (arg1
), quo
);
193 /* This is nonzero if we should defer warnings about undefined
194 overflow. This facility exists because these warnings are a
195 special case. The code to estimate loop iterations does not want
196 to issue any warnings, since it works with expressions which do not
197 occur in user code. Various bits of cleanup code call fold(), but
198 only use the result if it has certain characteristics (e.g., is a
199 constant); that code only wants to issue a warning if the result is
202 static int fold_deferring_overflow_warnings
;
204 /* If a warning about undefined overflow is deferred, this is the
205 warning. Note that this may cause us to turn two warnings into
206 one, but that is fine since it is sufficient to only give one
207 warning per expression. */
209 static const char* fold_deferred_overflow_warning
;
211 /* If a warning about undefined overflow is deferred, this is the
212 level at which the warning should be emitted. */
214 static enum warn_strict_overflow_code fold_deferred_overflow_code
;
216 /* Start deferring overflow warnings. We could use a stack here to
217 permit nested calls, but at present it is not necessary. */
220 fold_defer_overflow_warnings (void)
222 ++fold_deferring_overflow_warnings
;
225 /* Stop deferring overflow warnings. If there is a pending warning,
226 and ISSUE is true, then issue the warning if appropriate. STMT is
227 the statement with which the warning should be associated (used for
228 location information); STMT may be NULL. CODE is the level of the
229 warning--a warn_strict_overflow_code value. This function will use
230 the smaller of CODE and the deferred code when deciding whether to
231 issue the warning. CODE may be zero to mean to always use the
235 fold_undefer_overflow_warnings (bool issue
, const gimple
*stmt
, int code
)
240 gcc_assert (fold_deferring_overflow_warnings
> 0);
241 --fold_deferring_overflow_warnings
;
242 if (fold_deferring_overflow_warnings
> 0)
244 if (fold_deferred_overflow_warning
!= NULL
246 && code
< (int) fold_deferred_overflow_code
)
247 fold_deferred_overflow_code
= (enum warn_strict_overflow_code
) code
;
251 warnmsg
= fold_deferred_overflow_warning
;
252 fold_deferred_overflow_warning
= NULL
;
254 if (!issue
|| warnmsg
== NULL
)
257 if (gimple_no_warning_p (stmt
))
260 /* Use the smallest code level when deciding to issue the
262 if (code
== 0 || code
> (int) fold_deferred_overflow_code
)
263 code
= fold_deferred_overflow_code
;
265 if (!issue_strict_overflow_warning (code
))
269 locus
= input_location
;
271 locus
= gimple_location (stmt
);
272 warning_at (locus
, OPT_Wstrict_overflow
, "%s", warnmsg
);
275 /* Stop deferring overflow warnings, ignoring any deferred
279 fold_undefer_and_ignore_overflow_warnings (void)
281 fold_undefer_overflow_warnings (false, NULL
, 0);
284 /* Whether we are deferring overflow warnings. */
287 fold_deferring_overflow_warnings_p (void)
289 return fold_deferring_overflow_warnings
> 0;
292 /* This is called when we fold something based on the fact that signed
293 overflow is undefined. */
296 fold_overflow_warning (const char* gmsgid
, enum warn_strict_overflow_code wc
)
298 if (fold_deferring_overflow_warnings
> 0)
300 if (fold_deferred_overflow_warning
== NULL
301 || wc
< fold_deferred_overflow_code
)
303 fold_deferred_overflow_warning
= gmsgid
;
304 fold_deferred_overflow_code
= wc
;
307 else if (issue_strict_overflow_warning (wc
))
308 warning (OPT_Wstrict_overflow
, gmsgid
);
311 /* Return true if the built-in mathematical function specified by CODE
312 is odd, i.e. -f(x) == f(-x). */
315 negate_mathfn_p (combined_fn fn
)
348 return !flag_rounding_math
;
356 /* Check whether we may negate an integer constant T without causing
360 may_negate_without_overflow_p (const_tree t
)
364 gcc_assert (TREE_CODE (t
) == INTEGER_CST
);
366 type
= TREE_TYPE (t
);
367 if (TYPE_UNSIGNED (type
))
370 return !wi::only_sign_bit_p (t
);
373 /* Determine whether an expression T can be cheaply negated using
374 the function negate_expr without introducing undefined overflow. */
377 negate_expr_p (tree t
)
384 type
= TREE_TYPE (t
);
387 switch (TREE_CODE (t
))
390 if (INTEGRAL_TYPE_P (type
) && TYPE_OVERFLOW_WRAPS (type
))
393 /* Check that -CST will not overflow type. */
394 return may_negate_without_overflow_p (t
);
396 return (INTEGRAL_TYPE_P (type
)
397 && TYPE_OVERFLOW_WRAPS (type
));
403 return !TYPE_OVERFLOW_SANITIZED (type
);
406 /* We want to canonicalize to positive real constants. Pretend
407 that only negative ones can be easily negated. */
408 return REAL_VALUE_NEGATIVE (TREE_REAL_CST (t
));
411 return negate_expr_p (TREE_REALPART (t
))
412 && negate_expr_p (TREE_IMAGPART (t
));
416 if (FLOAT_TYPE_P (TREE_TYPE (type
)) || TYPE_OVERFLOW_WRAPS (type
))
419 int count
= TYPE_VECTOR_SUBPARTS (type
), i
;
421 for (i
= 0; i
< count
; i
++)
422 if (!negate_expr_p (VECTOR_CST_ELT (t
, i
)))
429 return negate_expr_p (TREE_OPERAND (t
, 0))
430 && negate_expr_p (TREE_OPERAND (t
, 1));
433 return negate_expr_p (TREE_OPERAND (t
, 0));
436 if (HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type
))
437 || HONOR_SIGNED_ZEROS (element_mode (type
))
438 || (INTEGRAL_TYPE_P (type
)
439 && ! TYPE_OVERFLOW_WRAPS (type
)))
441 /* -(A + B) -> (-B) - A. */
442 if (negate_expr_p (TREE_OPERAND (t
, 1))
443 && reorder_operands_p (TREE_OPERAND (t
, 0),
444 TREE_OPERAND (t
, 1)))
446 /* -(A + B) -> (-A) - B. */
447 return negate_expr_p (TREE_OPERAND (t
, 0));
450 /* We can't turn -(A-B) into B-A when we honor signed zeros. */
451 return !HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type
))
452 && !HONOR_SIGNED_ZEROS (element_mode (type
))
453 && (! INTEGRAL_TYPE_P (type
)
454 || TYPE_OVERFLOW_WRAPS (type
))
455 && reorder_operands_p (TREE_OPERAND (t
, 0),
456 TREE_OPERAND (t
, 1));
459 if (TYPE_UNSIGNED (type
))
461 /* INT_MIN/n * n doesn't overflow while negating one operand it does
462 if n is a power of two. */
463 if (INTEGRAL_TYPE_P (TREE_TYPE (t
))
464 && ! TYPE_OVERFLOW_WRAPS (TREE_TYPE (t
))
465 && ! ((TREE_CODE (TREE_OPERAND (t
, 0)) == INTEGER_CST
466 && ! integer_pow2p (TREE_OPERAND (t
, 0)))
467 || (TREE_CODE (TREE_OPERAND (t
, 1)) == INTEGER_CST
468 && ! integer_pow2p (TREE_OPERAND (t
, 1)))))
474 if (! HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (TREE_TYPE (t
))))
475 return negate_expr_p (TREE_OPERAND (t
, 1))
476 || negate_expr_p (TREE_OPERAND (t
, 0));
482 if (TYPE_UNSIGNED (type
))
484 if (negate_expr_p (TREE_OPERAND (t
, 0)))
486 /* In general we can't negate B in A / B, because if A is INT_MIN and
487 B is 1, we may turn this into INT_MIN / -1 which is undefined
488 and actually traps on some architectures. */
489 if (! INTEGRAL_TYPE_P (TREE_TYPE (t
))
490 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (t
))
491 || (TREE_CODE (TREE_OPERAND (t
, 1)) == INTEGER_CST
492 && ! integer_onep (TREE_OPERAND (t
, 1))))
493 return negate_expr_p (TREE_OPERAND (t
, 1));
497 /* Negate -((double)float) as (double)(-float). */
498 if (TREE_CODE (type
) == REAL_TYPE
)
500 tree tem
= strip_float_extensions (t
);
502 return negate_expr_p (tem
);
507 /* Negate -f(x) as f(-x). */
508 if (negate_mathfn_p (get_call_combined_fn (t
)))
509 return negate_expr_p (CALL_EXPR_ARG (t
, 0));
513 /* Optimize -((int)x >> 31) into (unsigned)x >> 31 for int. */
514 if (TREE_CODE (TREE_OPERAND (t
, 1)) == INTEGER_CST
)
516 tree op1
= TREE_OPERAND (t
, 1);
517 if (wi::eq_p (op1
, TYPE_PRECISION (type
) - 1))
528 /* Given T, an expression, return a folded tree for -T or NULL_TREE, if no
529 simplification is possible.
530 If negate_expr_p would return true for T, NULL_TREE will never be
534 fold_negate_expr (location_t loc
, tree t
)
536 tree type
= TREE_TYPE (t
);
539 switch (TREE_CODE (t
))
541 /* Convert - (~A) to A + 1. */
543 if (INTEGRAL_TYPE_P (type
))
544 return fold_build2_loc (loc
, PLUS_EXPR
, type
, TREE_OPERAND (t
, 0),
545 build_one_cst (type
));
549 tem
= fold_negate_const (t
, type
);
550 if (TREE_OVERFLOW (tem
) == TREE_OVERFLOW (t
)
551 || (ANY_INTEGRAL_TYPE_P (type
)
552 && !TYPE_OVERFLOW_TRAPS (type
)
553 && TYPE_OVERFLOW_WRAPS (type
))
554 || (flag_sanitize
& SANITIZE_SI_OVERFLOW
) == 0)
559 tem
= fold_negate_const (t
, type
);
563 tem
= fold_negate_const (t
, type
);
568 tree rpart
= fold_negate_expr (loc
, TREE_REALPART (t
));
569 tree ipart
= fold_negate_expr (loc
, TREE_IMAGPART (t
));
571 return build_complex (type
, rpart
, ipart
);
577 int count
= TYPE_VECTOR_SUBPARTS (type
), i
;
578 tree
*elts
= XALLOCAVEC (tree
, count
);
580 for (i
= 0; i
< count
; i
++)
582 elts
[i
] = fold_negate_expr (loc
, VECTOR_CST_ELT (t
, i
));
583 if (elts
[i
] == NULL_TREE
)
587 return build_vector (type
, elts
);
591 if (negate_expr_p (t
))
592 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
,
593 fold_negate_expr (loc
, TREE_OPERAND (t
, 0)),
594 fold_negate_expr (loc
, TREE_OPERAND (t
, 1)));
598 if (negate_expr_p (t
))
599 return fold_build1_loc (loc
, CONJ_EXPR
, type
,
600 fold_negate_expr (loc
, TREE_OPERAND (t
, 0)));
604 if (!TYPE_OVERFLOW_SANITIZED (type
))
605 return TREE_OPERAND (t
, 0);
609 if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type
))
610 && !HONOR_SIGNED_ZEROS (element_mode (type
)))
612 /* -(A + B) -> (-B) - A. */
613 if (negate_expr_p (TREE_OPERAND (t
, 1))
614 && reorder_operands_p (TREE_OPERAND (t
, 0),
615 TREE_OPERAND (t
, 1)))
617 tem
= negate_expr (TREE_OPERAND (t
, 1));
618 return fold_build2_loc (loc
, MINUS_EXPR
, type
,
619 tem
, TREE_OPERAND (t
, 0));
622 /* -(A + B) -> (-A) - B. */
623 if (negate_expr_p (TREE_OPERAND (t
, 0)))
625 tem
= negate_expr (TREE_OPERAND (t
, 0));
626 return fold_build2_loc (loc
, MINUS_EXPR
, type
,
627 tem
, TREE_OPERAND (t
, 1));
633 /* - (A - B) -> B - A */
634 if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type
))
635 && !HONOR_SIGNED_ZEROS (element_mode (type
))
636 && reorder_operands_p (TREE_OPERAND (t
, 0), TREE_OPERAND (t
, 1)))
637 return fold_build2_loc (loc
, MINUS_EXPR
, type
,
638 TREE_OPERAND (t
, 1), TREE_OPERAND (t
, 0));
642 if (TYPE_UNSIGNED (type
))
648 if (! HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type
)))
650 tem
= TREE_OPERAND (t
, 1);
651 if (negate_expr_p (tem
))
652 return fold_build2_loc (loc
, TREE_CODE (t
), type
,
653 TREE_OPERAND (t
, 0), negate_expr (tem
));
654 tem
= TREE_OPERAND (t
, 0);
655 if (negate_expr_p (tem
))
656 return fold_build2_loc (loc
, TREE_CODE (t
), type
,
657 negate_expr (tem
), TREE_OPERAND (t
, 1));
664 if (TYPE_UNSIGNED (type
))
666 if (negate_expr_p (TREE_OPERAND (t
, 0)))
667 return fold_build2_loc (loc
, TREE_CODE (t
), type
,
668 negate_expr (TREE_OPERAND (t
, 0)),
669 TREE_OPERAND (t
, 1));
670 /* In general we can't negate B in A / B, because if A is INT_MIN and
671 B is 1, we may turn this into INT_MIN / -1 which is undefined
672 and actually traps on some architectures. */
673 if ((! INTEGRAL_TYPE_P (TREE_TYPE (t
))
674 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (t
))
675 || (TREE_CODE (TREE_OPERAND (t
, 1)) == INTEGER_CST
676 && ! integer_onep (TREE_OPERAND (t
, 1))))
677 && negate_expr_p (TREE_OPERAND (t
, 1)))
678 return fold_build2_loc (loc
, TREE_CODE (t
), type
,
680 negate_expr (TREE_OPERAND (t
, 1)));
684 /* Convert -((double)float) into (double)(-float). */
685 if (TREE_CODE (type
) == REAL_TYPE
)
687 tem
= strip_float_extensions (t
);
688 if (tem
!= t
&& negate_expr_p (tem
))
689 return fold_convert_loc (loc
, type
, negate_expr (tem
));
694 /* Negate -f(x) as f(-x). */
695 if (negate_mathfn_p (get_call_combined_fn (t
))
696 && negate_expr_p (CALL_EXPR_ARG (t
, 0)))
700 fndecl
= get_callee_fndecl (t
);
701 arg
= negate_expr (CALL_EXPR_ARG (t
, 0));
702 return build_call_expr_loc (loc
, fndecl
, 1, arg
);
707 /* Optimize -((int)x >> 31) into (unsigned)x >> 31 for int. */
708 if (TREE_CODE (TREE_OPERAND (t
, 1)) == INTEGER_CST
)
710 tree op1
= TREE_OPERAND (t
, 1);
711 if (wi::eq_p (op1
, TYPE_PRECISION (type
) - 1))
713 tree ntype
= TYPE_UNSIGNED (type
)
714 ? signed_type_for (type
)
715 : unsigned_type_for (type
);
716 tree temp
= fold_convert_loc (loc
, ntype
, TREE_OPERAND (t
, 0));
717 temp
= fold_build2_loc (loc
, RSHIFT_EXPR
, ntype
, temp
, op1
);
718 return fold_convert_loc (loc
, type
, temp
);
730 /* Like fold_negate_expr, but return a NEGATE_EXPR tree, if T can not be
731 negated in a simpler way. Also allow for T to be NULL_TREE, in which case
743 loc
= EXPR_LOCATION (t
);
744 type
= TREE_TYPE (t
);
747 tem
= fold_negate_expr (loc
, t
);
749 tem
= build1_loc (loc
, NEGATE_EXPR
, TREE_TYPE (t
), t
);
750 return fold_convert_loc (loc
, type
, tem
);
753 /* Split a tree IN into a constant, literal and variable parts that could be
754 combined with CODE to make IN. "constant" means an expression with
755 TREE_CONSTANT but that isn't an actual constant. CODE must be a
756 commutative arithmetic operation. Store the constant part into *CONP,
757 the literal in *LITP and return the variable part. If a part isn't
758 present, set it to null. If the tree does not decompose in this way,
759 return the entire tree as the variable part and the other parts as null.
761 If CODE is PLUS_EXPR we also split trees that use MINUS_EXPR. In that
762 case, we negate an operand that was subtracted. Except if it is a
763 literal for which we use *MINUS_LITP instead.
765 If NEGATE_P is true, we are negating all of IN, again except a literal
766 for which we use *MINUS_LITP instead. If a variable part is of pointer
767 type, it is negated after converting to TYPE. This prevents us from
768 generating illegal MINUS pointer expression. LOC is the location of
769 the converted variable part.
771 If IN is itself a literal or constant, return it as appropriate.
773 Note that we do not guarantee that any of the three values will be the
774 same type as IN, but they will have the same signedness and mode. */
777 split_tree (location_t loc
, tree in
, tree type
, enum tree_code code
,
778 tree
*conp
, tree
*litp
, tree
*minus_litp
, int negate_p
)
786 /* Strip any conversions that don't change the machine mode or signedness. */
787 STRIP_SIGN_NOPS (in
);
789 if (TREE_CODE (in
) == INTEGER_CST
|| TREE_CODE (in
) == REAL_CST
790 || TREE_CODE (in
) == FIXED_CST
)
792 else if (TREE_CODE (in
) == code
793 || ((! FLOAT_TYPE_P (TREE_TYPE (in
)) || flag_associative_math
)
794 && ! SAT_FIXED_POINT_TYPE_P (TREE_TYPE (in
))
795 /* We can associate addition and subtraction together (even
796 though the C standard doesn't say so) for integers because
797 the value is not affected. For reals, the value might be
798 affected, so we can't. */
799 && ((code
== PLUS_EXPR
&& TREE_CODE (in
) == MINUS_EXPR
)
800 || (code
== MINUS_EXPR
&& TREE_CODE (in
) == PLUS_EXPR
))))
802 tree op0
= TREE_OPERAND (in
, 0);
803 tree op1
= TREE_OPERAND (in
, 1);
804 int neg1_p
= TREE_CODE (in
) == MINUS_EXPR
;
805 int neg_litp_p
= 0, neg_conp_p
= 0, neg_var_p
= 0;
807 /* First see if either of the operands is a literal, then a constant. */
808 if (TREE_CODE (op0
) == INTEGER_CST
|| TREE_CODE (op0
) == REAL_CST
809 || TREE_CODE (op0
) == FIXED_CST
)
810 *litp
= op0
, op0
= 0;
811 else if (TREE_CODE (op1
) == INTEGER_CST
|| TREE_CODE (op1
) == REAL_CST
812 || TREE_CODE (op1
) == FIXED_CST
)
813 *litp
= op1
, neg_litp_p
= neg1_p
, op1
= 0;
815 if (op0
!= 0 && TREE_CONSTANT (op0
))
816 *conp
= op0
, op0
= 0;
817 else if (op1
!= 0 && TREE_CONSTANT (op1
))
818 *conp
= op1
, neg_conp_p
= neg1_p
, op1
= 0;
820 /* If we haven't dealt with either operand, this is not a case we can
821 decompose. Otherwise, VAR is either of the ones remaining, if any. */
822 if (op0
!= 0 && op1
!= 0)
827 var
= op1
, neg_var_p
= neg1_p
;
829 /* Now do any needed negations. */
831 *minus_litp
= *litp
, *litp
= 0;
833 *conp
= negate_expr (*conp
);
834 if (neg_var_p
&& var
)
836 /* Convert to TYPE before negating. */
837 var
= fold_convert_loc (loc
, type
, var
);
838 var
= negate_expr (var
);
841 else if (TREE_CONSTANT (in
))
843 else if (TREE_CODE (in
) == BIT_NOT_EXPR
844 && code
== PLUS_EXPR
)
846 /* -X - 1 is folded to ~X, undo that here. Do _not_ do this
847 when IN is constant. */
848 *minus_litp
= build_one_cst (TREE_TYPE (in
));
849 var
= negate_expr (TREE_OPERAND (in
, 0));
857 *minus_litp
= *litp
, *litp
= 0;
858 else if (*minus_litp
)
859 *litp
= *minus_litp
, *minus_litp
= 0;
860 *conp
= negate_expr (*conp
);
863 /* Convert to TYPE before negating. */
864 var
= fold_convert_loc (loc
, type
, var
);
865 var
= negate_expr (var
);
872 /* Re-associate trees split by the above function. T1 and T2 are
873 either expressions to associate or null. Return the new
874 expression, if any. LOC is the location of the new expression. If
875 we build an operation, do it in TYPE and with CODE. */
878 associate_trees (location_t loc
, tree t1
, tree t2
, enum tree_code code
, tree type
)
885 /* If either input is CODE, a PLUS_EXPR, or a MINUS_EXPR, don't
886 try to fold this since we will have infinite recursion. But do
887 deal with any NEGATE_EXPRs. */
888 if (TREE_CODE (t1
) == code
|| TREE_CODE (t2
) == code
889 || TREE_CODE (t1
) == MINUS_EXPR
|| TREE_CODE (t2
) == MINUS_EXPR
)
891 if (code
== PLUS_EXPR
)
893 if (TREE_CODE (t1
) == NEGATE_EXPR
)
894 return build2_loc (loc
, MINUS_EXPR
, type
,
895 fold_convert_loc (loc
, type
, t2
),
896 fold_convert_loc (loc
, type
,
897 TREE_OPERAND (t1
, 0)));
898 else if (TREE_CODE (t2
) == NEGATE_EXPR
)
899 return build2_loc (loc
, MINUS_EXPR
, type
,
900 fold_convert_loc (loc
, type
, t1
),
901 fold_convert_loc (loc
, type
,
902 TREE_OPERAND (t2
, 0)));
903 else if (integer_zerop (t2
))
904 return fold_convert_loc (loc
, type
, t1
);
906 else if (code
== MINUS_EXPR
)
908 if (integer_zerop (t2
))
909 return fold_convert_loc (loc
, type
, t1
);
912 return build2_loc (loc
, code
, type
, fold_convert_loc (loc
, type
, t1
),
913 fold_convert_loc (loc
, type
, t2
));
916 return fold_build2_loc (loc
, code
, type
, fold_convert_loc (loc
, type
, t1
),
917 fold_convert_loc (loc
, type
, t2
));
920 /* Check whether TYPE1 and TYPE2 are equivalent integer types, suitable
921 for use in int_const_binop, size_binop and size_diffop. */
924 int_binop_types_match_p (enum tree_code code
, const_tree type1
, const_tree type2
)
926 if (!INTEGRAL_TYPE_P (type1
) && !POINTER_TYPE_P (type1
))
928 if (!INTEGRAL_TYPE_P (type2
) && !POINTER_TYPE_P (type2
))
943 return TYPE_UNSIGNED (type1
) == TYPE_UNSIGNED (type2
)
944 && TYPE_PRECISION (type1
) == TYPE_PRECISION (type2
)
945 && TYPE_MODE (type1
) == TYPE_MODE (type2
);
949 /* Combine two integer constants ARG1 and ARG2 under operation CODE
950 to produce a new constant. Return NULL_TREE if we don't know how
951 to evaluate CODE at compile-time. */
954 int_const_binop_1 (enum tree_code code
, const_tree arg1
, const_tree parg2
,
959 tree type
= TREE_TYPE (arg1
);
960 signop sign
= TYPE_SIGN (type
);
961 bool overflow
= false;
963 wide_int arg2
= wi::to_wide (parg2
, TYPE_PRECISION (type
));
968 res
= wi::bit_or (arg1
, arg2
);
972 res
= wi::bit_xor (arg1
, arg2
);
976 res
= wi::bit_and (arg1
, arg2
);
981 if (wi::neg_p (arg2
))
984 if (code
== RSHIFT_EXPR
)
990 if (code
== RSHIFT_EXPR
)
991 /* It's unclear from the C standard whether shifts can overflow.
992 The following code ignores overflow; perhaps a C standard
993 interpretation ruling is needed. */
994 res
= wi::rshift (arg1
, arg2
, sign
);
996 res
= wi::lshift (arg1
, arg2
);
1001 if (wi::neg_p (arg2
))
1004 if (code
== RROTATE_EXPR
)
1005 code
= LROTATE_EXPR
;
1007 code
= RROTATE_EXPR
;
1010 if (code
== RROTATE_EXPR
)
1011 res
= wi::rrotate (arg1
, arg2
);
1013 res
= wi::lrotate (arg1
, arg2
);
1017 res
= wi::add (arg1
, arg2
, sign
, &overflow
);
1021 res
= wi::sub (arg1
, arg2
, sign
, &overflow
);
1025 res
= wi::mul (arg1
, arg2
, sign
, &overflow
);
1028 case MULT_HIGHPART_EXPR
:
1029 res
= wi::mul_high (arg1
, arg2
, sign
);
1032 case TRUNC_DIV_EXPR
:
1033 case EXACT_DIV_EXPR
:
1036 res
= wi::div_trunc (arg1
, arg2
, sign
, &overflow
);
1039 case FLOOR_DIV_EXPR
:
1042 res
= wi::div_floor (arg1
, arg2
, sign
, &overflow
);
1048 res
= wi::div_ceil (arg1
, arg2
, sign
, &overflow
);
1051 case ROUND_DIV_EXPR
:
1054 res
= wi::div_round (arg1
, arg2
, sign
, &overflow
);
1057 case TRUNC_MOD_EXPR
:
1060 res
= wi::mod_trunc (arg1
, arg2
, sign
, &overflow
);
1063 case FLOOR_MOD_EXPR
:
1066 res
= wi::mod_floor (arg1
, arg2
, sign
, &overflow
);
1072 res
= wi::mod_ceil (arg1
, arg2
, sign
, &overflow
);
1075 case ROUND_MOD_EXPR
:
1078 res
= wi::mod_round (arg1
, arg2
, sign
, &overflow
);
1082 res
= wi::min (arg1
, arg2
, sign
);
1086 res
= wi::max (arg1
, arg2
, sign
);
1093 t
= force_fit_type (type
, res
, overflowable
,
1094 (((sign
== SIGNED
|| overflowable
== -1)
1096 | TREE_OVERFLOW (arg1
) | TREE_OVERFLOW (parg2
)));
1102 int_const_binop (enum tree_code code
, const_tree arg1
, const_tree arg2
)
1104 return int_const_binop_1 (code
, arg1
, arg2
, 1);
1107 /* Combine two constants ARG1 and ARG2 under operation CODE to produce a new
1108 constant. We assume ARG1 and ARG2 have the same data type, or at least
1109 are the same kind of constant and the same machine mode. Return zero if
1110 combining the constants is not allowed in the current operating mode. */
1113 const_binop (enum tree_code code
, tree arg1
, tree arg2
)
1115 /* Sanity check for the recursive cases. */
1122 if (TREE_CODE (arg1
) == INTEGER_CST
&& TREE_CODE (arg2
) == INTEGER_CST
)
1124 if (code
== POINTER_PLUS_EXPR
)
1125 return int_const_binop (PLUS_EXPR
,
1126 arg1
, fold_convert (TREE_TYPE (arg1
), arg2
));
1128 return int_const_binop (code
, arg1
, arg2
);
1131 if (TREE_CODE (arg1
) == REAL_CST
&& TREE_CODE (arg2
) == REAL_CST
)
1136 REAL_VALUE_TYPE value
;
1137 REAL_VALUE_TYPE result
;
1141 /* The following codes are handled by real_arithmetic. */
1156 d1
= TREE_REAL_CST (arg1
);
1157 d2
= TREE_REAL_CST (arg2
);
1159 type
= TREE_TYPE (arg1
);
1160 mode
= TYPE_MODE (type
);
1162 /* Don't perform operation if we honor signaling NaNs and
1163 either operand is a signaling NaN. */
1164 if (HONOR_SNANS (mode
)
1165 && (REAL_VALUE_ISSIGNALING_NAN (d1
)
1166 || REAL_VALUE_ISSIGNALING_NAN (d2
)))
1169 /* Don't perform operation if it would raise a division
1170 by zero exception. */
1171 if (code
== RDIV_EXPR
1172 && real_equal (&d2
, &dconst0
)
1173 && (flag_trapping_math
|| ! MODE_HAS_INFINITIES (mode
)))
1176 /* If either operand is a NaN, just return it. Otherwise, set up
1177 for floating-point trap; we return an overflow. */
1178 if (REAL_VALUE_ISNAN (d1
))
1180 /* Make resulting NaN value to be qNaN when flag_signaling_nans
1183 t
= build_real (type
, d1
);
1186 else if (REAL_VALUE_ISNAN (d2
))
1188 /* Make resulting NaN value to be qNaN when flag_signaling_nans
1191 t
= build_real (type
, d2
);
1195 inexact
= real_arithmetic (&value
, code
, &d1
, &d2
);
1196 real_convert (&result
, mode
, &value
);
1198 /* Don't constant fold this floating point operation if
1199 the result has overflowed and flag_trapping_math. */
1200 if (flag_trapping_math
1201 && MODE_HAS_INFINITIES (mode
)
1202 && REAL_VALUE_ISINF (result
)
1203 && !REAL_VALUE_ISINF (d1
)
1204 && !REAL_VALUE_ISINF (d2
))
1207 /* Don't constant fold this floating point operation if the
1208 result may dependent upon the run-time rounding mode and
1209 flag_rounding_math is set, or if GCC's software emulation
1210 is unable to accurately represent the result. */
1211 if ((flag_rounding_math
1212 || (MODE_COMPOSITE_P (mode
) && !flag_unsafe_math_optimizations
))
1213 && (inexact
|| !real_identical (&result
, &value
)))
1216 t
= build_real (type
, result
);
1218 TREE_OVERFLOW (t
) = TREE_OVERFLOW (arg1
) | TREE_OVERFLOW (arg2
);
1222 if (TREE_CODE (arg1
) == FIXED_CST
)
1224 FIXED_VALUE_TYPE f1
;
1225 FIXED_VALUE_TYPE f2
;
1226 FIXED_VALUE_TYPE result
;
1231 /* The following codes are handled by fixed_arithmetic. */
1237 case TRUNC_DIV_EXPR
:
1238 if (TREE_CODE (arg2
) != FIXED_CST
)
1240 f2
= TREE_FIXED_CST (arg2
);
1246 if (TREE_CODE (arg2
) != INTEGER_CST
)
1249 f2
.data
.high
= w2
.elt (1);
1250 f2
.data
.low
= w2
.elt (0);
1259 f1
= TREE_FIXED_CST (arg1
);
1260 type
= TREE_TYPE (arg1
);
1261 sat_p
= TYPE_SATURATING (type
);
1262 overflow_p
= fixed_arithmetic (&result
, code
, &f1
, &f2
, sat_p
);
1263 t
= build_fixed (type
, result
);
1264 /* Propagate overflow flags. */
1265 if (overflow_p
| TREE_OVERFLOW (arg1
) | TREE_OVERFLOW (arg2
))
1266 TREE_OVERFLOW (t
) = 1;
1270 if (TREE_CODE (arg1
) == COMPLEX_CST
&& TREE_CODE (arg2
) == COMPLEX_CST
)
1272 tree type
= TREE_TYPE (arg1
);
1273 tree r1
= TREE_REALPART (arg1
);
1274 tree i1
= TREE_IMAGPART (arg1
);
1275 tree r2
= TREE_REALPART (arg2
);
1276 tree i2
= TREE_IMAGPART (arg2
);
1283 real
= const_binop (code
, r1
, r2
);
1284 imag
= const_binop (code
, i1
, i2
);
1288 if (COMPLEX_FLOAT_TYPE_P (type
))
1289 return do_mpc_arg2 (arg1
, arg2
, type
,
1290 /* do_nonfinite= */ folding_initializer
,
1293 real
= const_binop (MINUS_EXPR
,
1294 const_binop (MULT_EXPR
, r1
, r2
),
1295 const_binop (MULT_EXPR
, i1
, i2
));
1296 imag
= const_binop (PLUS_EXPR
,
1297 const_binop (MULT_EXPR
, r1
, i2
),
1298 const_binop (MULT_EXPR
, i1
, r2
));
1302 if (COMPLEX_FLOAT_TYPE_P (type
))
1303 return do_mpc_arg2 (arg1
, arg2
, type
,
1304 /* do_nonfinite= */ folding_initializer
,
1307 case TRUNC_DIV_EXPR
:
1309 case FLOOR_DIV_EXPR
:
1310 case ROUND_DIV_EXPR
:
1311 if (flag_complex_method
== 0)
1313 /* Keep this algorithm in sync with
1314 tree-complex.c:expand_complex_div_straight().
1316 Expand complex division to scalars, straightforward algorithm.
1317 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1321 = const_binop (PLUS_EXPR
,
1322 const_binop (MULT_EXPR
, r2
, r2
),
1323 const_binop (MULT_EXPR
, i2
, i2
));
1325 = const_binop (PLUS_EXPR
,
1326 const_binop (MULT_EXPR
, r1
, r2
),
1327 const_binop (MULT_EXPR
, i1
, i2
));
1329 = const_binop (MINUS_EXPR
,
1330 const_binop (MULT_EXPR
, i1
, r2
),
1331 const_binop (MULT_EXPR
, r1
, i2
));
1333 real
= const_binop (code
, t1
, magsquared
);
1334 imag
= const_binop (code
, t2
, magsquared
);
1338 /* Keep this algorithm in sync with
1339 tree-complex.c:expand_complex_div_wide().
1341 Expand complex division to scalars, modified algorithm to minimize
1342 overflow with wide input ranges. */
1343 tree compare
= fold_build2 (LT_EXPR
, boolean_type_node
,
1344 fold_abs_const (r2
, TREE_TYPE (type
)),
1345 fold_abs_const (i2
, TREE_TYPE (type
)));
1347 if (integer_nonzerop (compare
))
1349 /* In the TRUE branch, we compute
1351 div = (br * ratio) + bi;
1352 tr = (ar * ratio) + ai;
1353 ti = (ai * ratio) - ar;
1356 tree ratio
= const_binop (code
, r2
, i2
);
1357 tree div
= const_binop (PLUS_EXPR
, i2
,
1358 const_binop (MULT_EXPR
, r2
, ratio
));
1359 real
= const_binop (MULT_EXPR
, r1
, ratio
);
1360 real
= const_binop (PLUS_EXPR
, real
, i1
);
1361 real
= const_binop (code
, real
, div
);
1363 imag
= const_binop (MULT_EXPR
, i1
, ratio
);
1364 imag
= const_binop (MINUS_EXPR
, imag
, r1
);
1365 imag
= const_binop (code
, imag
, div
);
1369 /* In the FALSE branch, we compute
1371 divisor = (d * ratio) + c;
1372 tr = (b * ratio) + a;
1373 ti = b - (a * ratio);
1376 tree ratio
= const_binop (code
, i2
, r2
);
1377 tree div
= const_binop (PLUS_EXPR
, r2
,
1378 const_binop (MULT_EXPR
, i2
, ratio
));
1380 real
= const_binop (MULT_EXPR
, i1
, ratio
);
1381 real
= const_binop (PLUS_EXPR
, real
, r1
);
1382 real
= const_binop (code
, real
, div
);
1384 imag
= const_binop (MULT_EXPR
, r1
, ratio
);
1385 imag
= const_binop (MINUS_EXPR
, i1
, imag
);
1386 imag
= const_binop (code
, imag
, div
);
1396 return build_complex (type
, real
, imag
);
1399 if (TREE_CODE (arg1
) == VECTOR_CST
1400 && TREE_CODE (arg2
) == VECTOR_CST
)
1402 tree type
= TREE_TYPE (arg1
);
1403 int count
= TYPE_VECTOR_SUBPARTS (type
), i
;
1404 tree
*elts
= XALLOCAVEC (tree
, count
);
1406 for (i
= 0; i
< count
; i
++)
1408 tree elem1
= VECTOR_CST_ELT (arg1
, i
);
1409 tree elem2
= VECTOR_CST_ELT (arg2
, i
);
1411 elts
[i
] = const_binop (code
, elem1
, elem2
);
1413 /* It is possible that const_binop cannot handle the given
1414 code and return NULL_TREE */
1415 if (elts
[i
] == NULL_TREE
)
1419 return build_vector (type
, elts
);
1422 /* Shifts allow a scalar offset for a vector. */
1423 if (TREE_CODE (arg1
) == VECTOR_CST
1424 && TREE_CODE (arg2
) == INTEGER_CST
)
1426 tree type
= TREE_TYPE (arg1
);
1427 int count
= TYPE_VECTOR_SUBPARTS (type
), i
;
1428 tree
*elts
= XALLOCAVEC (tree
, count
);
1430 for (i
= 0; i
< count
; i
++)
1432 tree elem1
= VECTOR_CST_ELT (arg1
, i
);
1434 elts
[i
] = const_binop (code
, elem1
, arg2
);
1436 /* It is possible that const_binop cannot handle the given
1437 code and return NULL_TREE. */
1438 if (elts
[i
] == NULL_TREE
)
1442 return build_vector (type
, elts
);
1447 /* Overload that adds a TYPE parameter to be able to dispatch
1448 to fold_relational_const. */
1451 const_binop (enum tree_code code
, tree type
, tree arg1
, tree arg2
)
1453 if (TREE_CODE_CLASS (code
) == tcc_comparison
)
1454 return fold_relational_const (code
, type
, arg1
, arg2
);
1456 /* ??? Until we make the const_binop worker take the type of the
1457 result as argument put those cases that need it here. */
1461 if ((TREE_CODE (arg1
) == REAL_CST
1462 && TREE_CODE (arg2
) == REAL_CST
)
1463 || (TREE_CODE (arg1
) == INTEGER_CST
1464 && TREE_CODE (arg2
) == INTEGER_CST
))
1465 return build_complex (type
, arg1
, arg2
);
1468 case VEC_PACK_TRUNC_EXPR
:
1469 case VEC_PACK_FIX_TRUNC_EXPR
:
1471 unsigned int nelts
= TYPE_VECTOR_SUBPARTS (type
), i
;
1474 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1
)) == nelts
/ 2
1475 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg2
)) == nelts
/ 2);
1476 if (TREE_CODE (arg1
) != VECTOR_CST
1477 || TREE_CODE (arg2
) != VECTOR_CST
)
1480 elts
= XALLOCAVEC (tree
, nelts
);
1481 if (!vec_cst_ctor_to_array (arg1
, elts
)
1482 || !vec_cst_ctor_to_array (arg2
, elts
+ nelts
/ 2))
1485 for (i
= 0; i
< nelts
; i
++)
1487 elts
[i
] = fold_convert_const (code
== VEC_PACK_TRUNC_EXPR
1488 ? NOP_EXPR
: FIX_TRUNC_EXPR
,
1489 TREE_TYPE (type
), elts
[i
]);
1490 if (elts
[i
] == NULL_TREE
|| !CONSTANT_CLASS_P (elts
[i
]))
1494 return build_vector (type
, elts
);
1497 case VEC_WIDEN_MULT_LO_EXPR
:
1498 case VEC_WIDEN_MULT_HI_EXPR
:
1499 case VEC_WIDEN_MULT_EVEN_EXPR
:
1500 case VEC_WIDEN_MULT_ODD_EXPR
:
1502 unsigned int nelts
= TYPE_VECTOR_SUBPARTS (type
);
1503 unsigned int out
, ofs
, scale
;
1506 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1
)) == nelts
* 2
1507 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg2
)) == nelts
* 2);
1508 if (TREE_CODE (arg1
) != VECTOR_CST
|| TREE_CODE (arg2
) != VECTOR_CST
)
1511 elts
= XALLOCAVEC (tree
, nelts
* 4);
1512 if (!vec_cst_ctor_to_array (arg1
, elts
)
1513 || !vec_cst_ctor_to_array (arg2
, elts
+ nelts
* 2))
1516 if (code
== VEC_WIDEN_MULT_LO_EXPR
)
1517 scale
= 0, ofs
= BYTES_BIG_ENDIAN
? nelts
: 0;
1518 else if (code
== VEC_WIDEN_MULT_HI_EXPR
)
1519 scale
= 0, ofs
= BYTES_BIG_ENDIAN
? 0 : nelts
;
1520 else if (code
== VEC_WIDEN_MULT_EVEN_EXPR
)
1522 else /* if (code == VEC_WIDEN_MULT_ODD_EXPR) */
1525 for (out
= 0; out
< nelts
; out
++)
1527 unsigned int in1
= (out
<< scale
) + ofs
;
1528 unsigned int in2
= in1
+ nelts
* 2;
1531 t1
= fold_convert_const (NOP_EXPR
, TREE_TYPE (type
), elts
[in1
]);
1532 t2
= fold_convert_const (NOP_EXPR
, TREE_TYPE (type
), elts
[in2
]);
1534 if (t1
== NULL_TREE
|| t2
== NULL_TREE
)
1536 elts
[out
] = const_binop (MULT_EXPR
, t1
, t2
);
1537 if (elts
[out
] == NULL_TREE
|| !CONSTANT_CLASS_P (elts
[out
]))
1541 return build_vector (type
, elts
);
1547 if (TREE_CODE_CLASS (code
) != tcc_binary
)
1550 /* Make sure type and arg0 have the same saturating flag. */
1551 gcc_checking_assert (TYPE_SATURATING (type
)
1552 == TYPE_SATURATING (TREE_TYPE (arg1
)));
1554 return const_binop (code
, arg1
, arg2
);
1557 /* Compute CODE ARG1 with resulting type TYPE with ARG1 being constant.
1558 Return zero if computing the constants is not possible. */
1561 const_unop (enum tree_code code
, tree type
, tree arg0
)
1563 /* Don't perform the operation, other than NEGATE and ABS, if
1564 flag_signaling_nans is on and the operand is a signaling NaN. */
1565 if (TREE_CODE (arg0
) == REAL_CST
1566 && HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0
)))
1567 && REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg0
))
1568 && code
!= NEGATE_EXPR
1569 && code
!= ABS_EXPR
)
1576 case FIX_TRUNC_EXPR
:
1577 case FIXED_CONVERT_EXPR
:
1578 return fold_convert_const (code
, type
, arg0
);
1580 case ADDR_SPACE_CONVERT_EXPR
:
1581 /* If the source address is 0, and the source address space
1582 cannot have a valid object at 0, fold to dest type null. */
1583 if (integer_zerop (arg0
)
1584 && !(targetm
.addr_space
.zero_address_valid
1585 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg0
))))))
1586 return fold_convert_const (code
, type
, arg0
);
1589 case VIEW_CONVERT_EXPR
:
1590 return fold_view_convert_expr (type
, arg0
);
1594 /* Can't call fold_negate_const directly here as that doesn't
1595 handle all cases and we might not be able to negate some
1597 tree tem
= fold_negate_expr (UNKNOWN_LOCATION
, arg0
);
1598 if (tem
&& CONSTANT_CLASS_P (tem
))
1604 if (TREE_CODE (arg0
) == INTEGER_CST
|| TREE_CODE (arg0
) == REAL_CST
)
1605 return fold_abs_const (arg0
, type
);
1609 if (TREE_CODE (arg0
) == COMPLEX_CST
)
1611 tree ipart
= fold_negate_const (TREE_IMAGPART (arg0
),
1613 return build_complex (type
, TREE_REALPART (arg0
), ipart
);
1618 if (TREE_CODE (arg0
) == INTEGER_CST
)
1619 return fold_not_const (arg0
, type
);
1620 /* Perform BIT_NOT_EXPR on each element individually. */
1621 else if (TREE_CODE (arg0
) == VECTOR_CST
)
1625 unsigned count
= VECTOR_CST_NELTS (arg0
), i
;
1627 elements
= XALLOCAVEC (tree
, count
);
1628 for (i
= 0; i
< count
; i
++)
1630 elem
= VECTOR_CST_ELT (arg0
, i
);
1631 elem
= const_unop (BIT_NOT_EXPR
, TREE_TYPE (type
), elem
);
1632 if (elem
== NULL_TREE
)
1637 return build_vector (type
, elements
);
1641 case TRUTH_NOT_EXPR
:
1642 if (TREE_CODE (arg0
) == INTEGER_CST
)
1643 return constant_boolean_node (integer_zerop (arg0
), type
);
1647 if (TREE_CODE (arg0
) == COMPLEX_CST
)
1648 return fold_convert (type
, TREE_REALPART (arg0
));
1652 if (TREE_CODE (arg0
) == COMPLEX_CST
)
1653 return fold_convert (type
, TREE_IMAGPART (arg0
));
1656 case VEC_UNPACK_LO_EXPR
:
1657 case VEC_UNPACK_HI_EXPR
:
1658 case VEC_UNPACK_FLOAT_LO_EXPR
:
1659 case VEC_UNPACK_FLOAT_HI_EXPR
:
1661 unsigned int nelts
= TYPE_VECTOR_SUBPARTS (type
), i
;
1663 enum tree_code subcode
;
1665 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0
)) == nelts
* 2);
1666 if (TREE_CODE (arg0
) != VECTOR_CST
)
1669 elts
= XALLOCAVEC (tree
, nelts
* 2);
1670 if (!vec_cst_ctor_to_array (arg0
, elts
))
1673 if ((!BYTES_BIG_ENDIAN
) ^ (code
== VEC_UNPACK_LO_EXPR
1674 || code
== VEC_UNPACK_FLOAT_LO_EXPR
))
1677 if (code
== VEC_UNPACK_LO_EXPR
|| code
== VEC_UNPACK_HI_EXPR
)
1680 subcode
= FLOAT_EXPR
;
1682 for (i
= 0; i
< nelts
; i
++)
1684 elts
[i
] = fold_convert_const (subcode
, TREE_TYPE (type
), elts
[i
]);
1685 if (elts
[i
] == NULL_TREE
|| !CONSTANT_CLASS_P (elts
[i
]))
1689 return build_vector (type
, elts
);
1692 case REDUC_MIN_EXPR
:
1693 case REDUC_MAX_EXPR
:
1694 case REDUC_PLUS_EXPR
:
1696 unsigned int nelts
, i
;
1698 enum tree_code subcode
;
1700 if (TREE_CODE (arg0
) != VECTOR_CST
)
1702 nelts
= TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0
));
1704 elts
= XALLOCAVEC (tree
, nelts
);
1705 if (!vec_cst_ctor_to_array (arg0
, elts
))
1710 case REDUC_MIN_EXPR
: subcode
= MIN_EXPR
; break;
1711 case REDUC_MAX_EXPR
: subcode
= MAX_EXPR
; break;
1712 case REDUC_PLUS_EXPR
: subcode
= PLUS_EXPR
; break;
1713 default: gcc_unreachable ();
1716 for (i
= 1; i
< nelts
; i
++)
1718 elts
[0] = const_binop (subcode
, elts
[0], elts
[i
]);
1719 if (elts
[0] == NULL_TREE
|| !CONSTANT_CLASS_P (elts
[0]))
1733 /* Create a sizetype INT_CST node with NUMBER sign extended. KIND
1734 indicates which particular sizetype to create. */
1737 size_int_kind (HOST_WIDE_INT number
, enum size_type_kind kind
)
1739 return build_int_cst (sizetype_tab
[(int) kind
], number
);
1742 /* Combine operands OP1 and OP2 with arithmetic operation CODE. CODE
1743 is a tree code. The type of the result is taken from the operands.
1744 Both must be equivalent integer types, ala int_binop_types_match_p.
1745 If the operands are constant, so is the result. */
1748 size_binop_loc (location_t loc
, enum tree_code code
, tree arg0
, tree arg1
)
1750 tree type
= TREE_TYPE (arg0
);
1752 if (arg0
== error_mark_node
|| arg1
== error_mark_node
)
1753 return error_mark_node
;
1755 gcc_assert (int_binop_types_match_p (code
, TREE_TYPE (arg0
),
1758 /* Handle the special case of two integer constants faster. */
1759 if (TREE_CODE (arg0
) == INTEGER_CST
&& TREE_CODE (arg1
) == INTEGER_CST
)
1761 /* And some specific cases even faster than that. */
1762 if (code
== PLUS_EXPR
)
1764 if (integer_zerop (arg0
) && !TREE_OVERFLOW (arg0
))
1766 if (integer_zerop (arg1
) && !TREE_OVERFLOW (arg1
))
1769 else if (code
== MINUS_EXPR
)
1771 if (integer_zerop (arg1
) && !TREE_OVERFLOW (arg1
))
1774 else if (code
== MULT_EXPR
)
1776 if (integer_onep (arg0
) && !TREE_OVERFLOW (arg0
))
1780 /* Handle general case of two integer constants. For sizetype
1781 constant calculations we always want to know about overflow,
1782 even in the unsigned case. */
1783 return int_const_binop_1 (code
, arg0
, arg1
, -1);
1786 return fold_build2_loc (loc
, code
, type
, arg0
, arg1
);
1789 /* Given two values, either both of sizetype or both of bitsizetype,
1790 compute the difference between the two values. Return the value
1791 in signed type corresponding to the type of the operands. */
1794 size_diffop_loc (location_t loc
, tree arg0
, tree arg1
)
1796 tree type
= TREE_TYPE (arg0
);
1799 gcc_assert (int_binop_types_match_p (MINUS_EXPR
, TREE_TYPE (arg0
),
1802 /* If the type is already signed, just do the simple thing. */
1803 if (!TYPE_UNSIGNED (type
))
1804 return size_binop_loc (loc
, MINUS_EXPR
, arg0
, arg1
);
1806 if (type
== sizetype
)
1808 else if (type
== bitsizetype
)
1809 ctype
= sbitsizetype
;
1811 ctype
= signed_type_for (type
);
1813 /* If either operand is not a constant, do the conversions to the signed
1814 type and subtract. The hardware will do the right thing with any
1815 overflow in the subtraction. */
1816 if (TREE_CODE (arg0
) != INTEGER_CST
|| TREE_CODE (arg1
) != INTEGER_CST
)
1817 return size_binop_loc (loc
, MINUS_EXPR
,
1818 fold_convert_loc (loc
, ctype
, arg0
),
1819 fold_convert_loc (loc
, ctype
, arg1
));
1821 /* If ARG0 is larger than ARG1, subtract and return the result in CTYPE.
1822 Otherwise, subtract the other way, convert to CTYPE (we know that can't
1823 overflow) and negate (which can't either). Special-case a result
1824 of zero while we're here. */
1825 if (tree_int_cst_equal (arg0
, arg1
))
1826 return build_int_cst (ctype
, 0);
1827 else if (tree_int_cst_lt (arg1
, arg0
))
1828 return fold_convert_loc (loc
, ctype
,
1829 size_binop_loc (loc
, MINUS_EXPR
, arg0
, arg1
));
1831 return size_binop_loc (loc
, MINUS_EXPR
, build_int_cst (ctype
, 0),
1832 fold_convert_loc (loc
, ctype
,
1833 size_binop_loc (loc
,
1838 /* A subroutine of fold_convert_const handling conversions of an
1839 INTEGER_CST to another integer type. */
1842 fold_convert_const_int_from_int (tree type
, const_tree arg1
)
1844 /* Given an integer constant, make new constant with new type,
1845 appropriately sign-extended or truncated. Use widest_int
1846 so that any extension is done according ARG1's type. */
1847 return force_fit_type (type
, wi::to_widest (arg1
),
1848 !POINTER_TYPE_P (TREE_TYPE (arg1
)),
1849 TREE_OVERFLOW (arg1
));
1852 /* A subroutine of fold_convert_const handling conversions a REAL_CST
1853 to an integer type. */
1856 fold_convert_const_int_from_real (enum tree_code code
, tree type
, const_tree arg1
)
1858 bool overflow
= false;
1861 /* The following code implements the floating point to integer
1862 conversion rules required by the Java Language Specification,
1863 that IEEE NaNs are mapped to zero and values that overflow
1864 the target precision saturate, i.e. values greater than
1865 INT_MAX are mapped to INT_MAX, and values less than INT_MIN
1866 are mapped to INT_MIN. These semantics are allowed by the
1867 C and C++ standards that simply state that the behavior of
1868 FP-to-integer conversion is unspecified upon overflow. */
1872 REAL_VALUE_TYPE x
= TREE_REAL_CST (arg1
);
1876 case FIX_TRUNC_EXPR
:
1877 real_trunc (&r
, VOIDmode
, &x
);
1884 /* If R is NaN, return zero and show we have an overflow. */
1885 if (REAL_VALUE_ISNAN (r
))
1888 val
= wi::zero (TYPE_PRECISION (type
));
1891 /* See if R is less than the lower bound or greater than the
1896 tree lt
= TYPE_MIN_VALUE (type
);
1897 REAL_VALUE_TYPE l
= real_value_from_int_cst (NULL_TREE
, lt
);
1898 if (real_less (&r
, &l
))
1907 tree ut
= TYPE_MAX_VALUE (type
);
1910 REAL_VALUE_TYPE u
= real_value_from_int_cst (NULL_TREE
, ut
);
1911 if (real_less (&u
, &r
))
1920 val
= real_to_integer (&r
, &overflow
, TYPE_PRECISION (type
));
1922 t
= force_fit_type (type
, val
, -1, overflow
| TREE_OVERFLOW (arg1
));
1926 /* A subroutine of fold_convert_const handling conversions of a
1927 FIXED_CST to an integer type. */
1930 fold_convert_const_int_from_fixed (tree type
, const_tree arg1
)
1933 double_int temp
, temp_trunc
;
1936 /* Right shift FIXED_CST to temp by fbit. */
1937 temp
= TREE_FIXED_CST (arg1
).data
;
1938 mode
= TREE_FIXED_CST (arg1
).mode
;
1939 if (GET_MODE_FBIT (mode
) < HOST_BITS_PER_DOUBLE_INT
)
1941 temp
= temp
.rshift (GET_MODE_FBIT (mode
),
1942 HOST_BITS_PER_DOUBLE_INT
,
1943 SIGNED_FIXED_POINT_MODE_P (mode
));
1945 /* Left shift temp to temp_trunc by fbit. */
1946 temp_trunc
= temp
.lshift (GET_MODE_FBIT (mode
),
1947 HOST_BITS_PER_DOUBLE_INT
,
1948 SIGNED_FIXED_POINT_MODE_P (mode
));
1952 temp
= double_int_zero
;
1953 temp_trunc
= double_int_zero
;
1956 /* If FIXED_CST is negative, we need to round the value toward 0.
1957 By checking if the fractional bits are not zero to add 1 to temp. */
1958 if (SIGNED_FIXED_POINT_MODE_P (mode
)
1959 && temp_trunc
.is_negative ()
1960 && TREE_FIXED_CST (arg1
).data
!= temp_trunc
)
1961 temp
+= double_int_one
;
1963 /* Given a fixed-point constant, make new constant with new type,
1964 appropriately sign-extended or truncated. */
1965 t
= force_fit_type (type
, temp
, -1,
1966 (temp
.is_negative ()
1967 && (TYPE_UNSIGNED (type
)
1968 < TYPE_UNSIGNED (TREE_TYPE (arg1
))))
1969 | TREE_OVERFLOW (arg1
));
1974 /* A subroutine of fold_convert_const handling conversions a REAL_CST
1975 to another floating point type. */
1978 fold_convert_const_real_from_real (tree type
, const_tree arg1
)
1980 REAL_VALUE_TYPE value
;
1983 /* Don't perform the operation if flag_signaling_nans is on
1984 and the operand is a signaling NaN. */
1985 if (HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg1
)))
1986 && REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg1
)))
1989 real_convert (&value
, TYPE_MODE (type
), &TREE_REAL_CST (arg1
));
1990 t
= build_real (type
, value
);
1992 /* If converting an infinity or NAN to a representation that doesn't
1993 have one, set the overflow bit so that we can produce some kind of
1994 error message at the appropriate point if necessary. It's not the
1995 most user-friendly message, but it's better than nothing. */
1996 if (REAL_VALUE_ISINF (TREE_REAL_CST (arg1
))
1997 && !MODE_HAS_INFINITIES (TYPE_MODE (type
)))
1998 TREE_OVERFLOW (t
) = 1;
1999 else if (REAL_VALUE_ISNAN (TREE_REAL_CST (arg1
))
2000 && !MODE_HAS_NANS (TYPE_MODE (type
)))
2001 TREE_OVERFLOW (t
) = 1;
2002 /* Regular overflow, conversion produced an infinity in a mode that
2003 can't represent them. */
2004 else if (!MODE_HAS_INFINITIES (TYPE_MODE (type
))
2005 && REAL_VALUE_ISINF (value
)
2006 && !REAL_VALUE_ISINF (TREE_REAL_CST (arg1
)))
2007 TREE_OVERFLOW (t
) = 1;
2009 TREE_OVERFLOW (t
) = TREE_OVERFLOW (arg1
);
2013 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
2014 to a floating point type. */
2017 fold_convert_const_real_from_fixed (tree type
, const_tree arg1
)
2019 REAL_VALUE_TYPE value
;
2022 real_convert_from_fixed (&value
, TYPE_MODE (type
), &TREE_FIXED_CST (arg1
));
2023 t
= build_real (type
, value
);
2025 TREE_OVERFLOW (t
) = TREE_OVERFLOW (arg1
);
2029 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
2030 to another fixed-point type. */
2033 fold_convert_const_fixed_from_fixed (tree type
, const_tree arg1
)
2035 FIXED_VALUE_TYPE value
;
2039 overflow_p
= fixed_convert (&value
, TYPE_MODE (type
), &TREE_FIXED_CST (arg1
),
2040 TYPE_SATURATING (type
));
2041 t
= build_fixed (type
, value
);
2043 /* Propagate overflow flags. */
2044 if (overflow_p
| TREE_OVERFLOW (arg1
))
2045 TREE_OVERFLOW (t
) = 1;
2049 /* A subroutine of fold_convert_const handling conversions an INTEGER_CST
2050 to a fixed-point type. */
2053 fold_convert_const_fixed_from_int (tree type
, const_tree arg1
)
2055 FIXED_VALUE_TYPE value
;
2060 gcc_assert (TREE_INT_CST_NUNITS (arg1
) <= 2);
2062 di
.low
= TREE_INT_CST_ELT (arg1
, 0);
2063 if (TREE_INT_CST_NUNITS (arg1
) == 1)
2064 di
.high
= (HOST_WIDE_INT
) di
.low
< 0 ? HOST_WIDE_INT_M1
: 0;
2066 di
.high
= TREE_INT_CST_ELT (arg1
, 1);
2068 overflow_p
= fixed_convert_from_int (&value
, TYPE_MODE (type
), di
,
2069 TYPE_UNSIGNED (TREE_TYPE (arg1
)),
2070 TYPE_SATURATING (type
));
2071 t
= build_fixed (type
, value
);
2073 /* Propagate overflow flags. */
2074 if (overflow_p
| TREE_OVERFLOW (arg1
))
2075 TREE_OVERFLOW (t
) = 1;
2079 /* A subroutine of fold_convert_const handling conversions a REAL_CST
2080 to a fixed-point type. */
2083 fold_convert_const_fixed_from_real (tree type
, const_tree arg1
)
2085 FIXED_VALUE_TYPE value
;
2089 overflow_p
= fixed_convert_from_real (&value
, TYPE_MODE (type
),
2090 &TREE_REAL_CST (arg1
),
2091 TYPE_SATURATING (type
));
2092 t
= build_fixed (type
, value
);
2094 /* Propagate overflow flags. */
2095 if (overflow_p
| TREE_OVERFLOW (arg1
))
2096 TREE_OVERFLOW (t
) = 1;
2100 /* Attempt to fold type conversion operation CODE of expression ARG1 to
2101 type TYPE. If no simplification can be done return NULL_TREE. */
2104 fold_convert_const (enum tree_code code
, tree type
, tree arg1
)
2106 if (TREE_TYPE (arg1
) == type
)
2109 if (POINTER_TYPE_P (type
) || INTEGRAL_TYPE_P (type
)
2110 || TREE_CODE (type
) == OFFSET_TYPE
)
2112 if (TREE_CODE (arg1
) == INTEGER_CST
)
2113 return fold_convert_const_int_from_int (type
, arg1
);
2114 else if (TREE_CODE (arg1
) == REAL_CST
)
2115 return fold_convert_const_int_from_real (code
, type
, arg1
);
2116 else if (TREE_CODE (arg1
) == FIXED_CST
)
2117 return fold_convert_const_int_from_fixed (type
, arg1
);
2119 else if (TREE_CODE (type
) == REAL_TYPE
)
2121 if (TREE_CODE (arg1
) == INTEGER_CST
)
2122 return build_real_from_int_cst (type
, arg1
);
2123 else if (TREE_CODE (arg1
) == REAL_CST
)
2124 return fold_convert_const_real_from_real (type
, arg1
);
2125 else if (TREE_CODE (arg1
) == FIXED_CST
)
2126 return fold_convert_const_real_from_fixed (type
, arg1
);
2128 else if (TREE_CODE (type
) == FIXED_POINT_TYPE
)
2130 if (TREE_CODE (arg1
) == FIXED_CST
)
2131 return fold_convert_const_fixed_from_fixed (type
, arg1
);
2132 else if (TREE_CODE (arg1
) == INTEGER_CST
)
2133 return fold_convert_const_fixed_from_int (type
, arg1
);
2134 else if (TREE_CODE (arg1
) == REAL_CST
)
2135 return fold_convert_const_fixed_from_real (type
, arg1
);
2137 else if (TREE_CODE (type
) == VECTOR_TYPE
)
2139 if (TREE_CODE (arg1
) == VECTOR_CST
2140 && TYPE_VECTOR_SUBPARTS (type
) == VECTOR_CST_NELTS (arg1
))
2142 int len
= TYPE_VECTOR_SUBPARTS (type
);
2143 tree elttype
= TREE_TYPE (type
);
2144 tree
*v
= XALLOCAVEC (tree
, len
);
2145 for (int i
= 0; i
< len
; ++i
)
2147 tree elt
= VECTOR_CST_ELT (arg1
, i
);
2148 tree cvt
= fold_convert_const (code
, elttype
, elt
);
2149 if (cvt
== NULL_TREE
)
2153 return build_vector (type
, v
);
2159 /* Construct a vector of zero elements of vector type TYPE. */
2162 build_zero_vector (tree type
)
2166 t
= fold_convert_const (NOP_EXPR
, TREE_TYPE (type
), integer_zero_node
);
2167 return build_vector_from_val (type
, t
);
2170 /* Returns true, if ARG is convertible to TYPE using a NOP_EXPR. */
2173 fold_convertible_p (const_tree type
, const_tree arg
)
2175 tree orig
= TREE_TYPE (arg
);
2180 if (TREE_CODE (arg
) == ERROR_MARK
2181 || TREE_CODE (type
) == ERROR_MARK
2182 || TREE_CODE (orig
) == ERROR_MARK
)
2185 if (TYPE_MAIN_VARIANT (type
) == TYPE_MAIN_VARIANT (orig
))
2188 switch (TREE_CODE (type
))
2190 case INTEGER_TYPE
: case ENUMERAL_TYPE
: case BOOLEAN_TYPE
:
2191 case POINTER_TYPE
: case REFERENCE_TYPE
:
2193 return (INTEGRAL_TYPE_P (orig
) || POINTER_TYPE_P (orig
)
2194 || TREE_CODE (orig
) == OFFSET_TYPE
);
2197 case FIXED_POINT_TYPE
:
2200 return TREE_CODE (type
) == TREE_CODE (orig
);
2207 /* Convert expression ARG to type TYPE. Used by the middle-end for
2208 simple conversions in preference to calling the front-end's convert. */
2211 fold_convert_loc (location_t loc
, tree type
, tree arg
)
2213 tree orig
= TREE_TYPE (arg
);
2219 if (TREE_CODE (arg
) == ERROR_MARK
2220 || TREE_CODE (type
) == ERROR_MARK
2221 || TREE_CODE (orig
) == ERROR_MARK
)
2222 return error_mark_node
;
2224 switch (TREE_CODE (type
))
2227 case REFERENCE_TYPE
:
2228 /* Handle conversions between pointers to different address spaces. */
2229 if (POINTER_TYPE_P (orig
)
2230 && (TYPE_ADDR_SPACE (TREE_TYPE (type
))
2231 != TYPE_ADDR_SPACE (TREE_TYPE (orig
))))
2232 return fold_build1_loc (loc
, ADDR_SPACE_CONVERT_EXPR
, type
, arg
);
2235 case INTEGER_TYPE
: case ENUMERAL_TYPE
: case BOOLEAN_TYPE
:
2237 if (TREE_CODE (arg
) == INTEGER_CST
)
2239 tem
= fold_convert_const (NOP_EXPR
, type
, arg
);
2240 if (tem
!= NULL_TREE
)
2243 if (INTEGRAL_TYPE_P (orig
) || POINTER_TYPE_P (orig
)
2244 || TREE_CODE (orig
) == OFFSET_TYPE
)
2245 return fold_build1_loc (loc
, NOP_EXPR
, type
, arg
);
2246 if (TREE_CODE (orig
) == COMPLEX_TYPE
)
2247 return fold_convert_loc (loc
, type
,
2248 fold_build1_loc (loc
, REALPART_EXPR
,
2249 TREE_TYPE (orig
), arg
));
2250 gcc_assert (TREE_CODE (orig
) == VECTOR_TYPE
2251 && tree_int_cst_equal (TYPE_SIZE (type
), TYPE_SIZE (orig
)));
2252 return fold_build1_loc (loc
, VIEW_CONVERT_EXPR
, type
, arg
);
2255 if (TREE_CODE (arg
) == INTEGER_CST
)
2257 tem
= fold_convert_const (FLOAT_EXPR
, type
, arg
);
2258 if (tem
!= NULL_TREE
)
2261 else if (TREE_CODE (arg
) == REAL_CST
)
2263 tem
= fold_convert_const (NOP_EXPR
, type
, arg
);
2264 if (tem
!= NULL_TREE
)
2267 else if (TREE_CODE (arg
) == FIXED_CST
)
2269 tem
= fold_convert_const (FIXED_CONVERT_EXPR
, type
, arg
);
2270 if (tem
!= NULL_TREE
)
2274 switch (TREE_CODE (orig
))
2277 case BOOLEAN_TYPE
: case ENUMERAL_TYPE
:
2278 case POINTER_TYPE
: case REFERENCE_TYPE
:
2279 return fold_build1_loc (loc
, FLOAT_EXPR
, type
, arg
);
2282 return fold_build1_loc (loc
, NOP_EXPR
, type
, arg
);
2284 case FIXED_POINT_TYPE
:
2285 return fold_build1_loc (loc
, FIXED_CONVERT_EXPR
, type
, arg
);
2288 tem
= fold_build1_loc (loc
, REALPART_EXPR
, TREE_TYPE (orig
), arg
);
2289 return fold_convert_loc (loc
, type
, tem
);
2295 case FIXED_POINT_TYPE
:
2296 if (TREE_CODE (arg
) == FIXED_CST
|| TREE_CODE (arg
) == INTEGER_CST
2297 || TREE_CODE (arg
) == REAL_CST
)
2299 tem
= fold_convert_const (FIXED_CONVERT_EXPR
, type
, arg
);
2300 if (tem
!= NULL_TREE
)
2301 goto fold_convert_exit
;
2304 switch (TREE_CODE (orig
))
2306 case FIXED_POINT_TYPE
:
2311 return fold_build1_loc (loc
, FIXED_CONVERT_EXPR
, type
, arg
);
2314 tem
= fold_build1_loc (loc
, REALPART_EXPR
, TREE_TYPE (orig
), arg
);
2315 return fold_convert_loc (loc
, type
, tem
);
2322 switch (TREE_CODE (orig
))
2325 case BOOLEAN_TYPE
: case ENUMERAL_TYPE
:
2326 case POINTER_TYPE
: case REFERENCE_TYPE
:
2328 case FIXED_POINT_TYPE
:
2329 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
,
2330 fold_convert_loc (loc
, TREE_TYPE (type
), arg
),
2331 fold_convert_loc (loc
, TREE_TYPE (type
),
2332 integer_zero_node
));
2337 if (TREE_CODE (arg
) == COMPLEX_EXPR
)
2339 rpart
= fold_convert_loc (loc
, TREE_TYPE (type
),
2340 TREE_OPERAND (arg
, 0));
2341 ipart
= fold_convert_loc (loc
, TREE_TYPE (type
),
2342 TREE_OPERAND (arg
, 1));
2343 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, rpart
, ipart
);
2346 arg
= save_expr (arg
);
2347 rpart
= fold_build1_loc (loc
, REALPART_EXPR
, TREE_TYPE (orig
), arg
);
2348 ipart
= fold_build1_loc (loc
, IMAGPART_EXPR
, TREE_TYPE (orig
), arg
);
2349 rpart
= fold_convert_loc (loc
, TREE_TYPE (type
), rpart
);
2350 ipart
= fold_convert_loc (loc
, TREE_TYPE (type
), ipart
);
2351 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, rpart
, ipart
);
2359 if (integer_zerop (arg
))
2360 return build_zero_vector (type
);
2361 gcc_assert (tree_int_cst_equal (TYPE_SIZE (type
), TYPE_SIZE (orig
)));
2362 gcc_assert (INTEGRAL_TYPE_P (orig
) || POINTER_TYPE_P (orig
)
2363 || TREE_CODE (orig
) == VECTOR_TYPE
);
2364 return fold_build1_loc (loc
, VIEW_CONVERT_EXPR
, type
, arg
);
2367 tem
= fold_ignored_result (arg
);
2368 return fold_build1_loc (loc
, NOP_EXPR
, type
, tem
);
2371 if (TYPE_MAIN_VARIANT (type
) == TYPE_MAIN_VARIANT (orig
))
2372 return fold_build1_loc (loc
, NOP_EXPR
, type
, arg
);
2376 protected_set_expr_location_unshare (tem
, loc
);
2380 /* Return false if expr can be assumed not to be an lvalue, true
2384 maybe_lvalue_p (const_tree x
)
2386 /* We only need to wrap lvalue tree codes. */
2387 switch (TREE_CODE (x
))
2400 case ARRAY_RANGE_REF
:
2406 case PREINCREMENT_EXPR
:
2407 case PREDECREMENT_EXPR
:
2409 case TRY_CATCH_EXPR
:
2410 case WITH_CLEANUP_EXPR
:
2419 /* Assume the worst for front-end tree codes. */
2420 if ((int)TREE_CODE (x
) >= NUM_TREE_CODES
)
2428 /* Return an expr equal to X but certainly not valid as an lvalue. */
2431 non_lvalue_loc (location_t loc
, tree x
)
2433 /* While we are in GIMPLE, NON_LVALUE_EXPR doesn't mean anything to
2438 if (! maybe_lvalue_p (x
))
2440 return build1_loc (loc
, NON_LVALUE_EXPR
, TREE_TYPE (x
), x
);
2443 /* When pedantic, return an expr equal to X but certainly not valid as a
2444 pedantic lvalue. Otherwise, return X. */
2447 pedantic_non_lvalue_loc (location_t loc
, tree x
)
2449 return protected_set_expr_location_unshare (x
, loc
);
2452 /* Given a tree comparison code, return the code that is the logical inverse.
2453 It is generally not safe to do this for floating-point comparisons, except
2454 for EQ_EXPR, NE_EXPR, ORDERED_EXPR and UNORDERED_EXPR, so we return
2455 ERROR_MARK in this case. */
2458 invert_tree_comparison (enum tree_code code
, bool honor_nans
)
2460 if (honor_nans
&& flag_trapping_math
&& code
!= EQ_EXPR
&& code
!= NE_EXPR
2461 && code
!= ORDERED_EXPR
&& code
!= UNORDERED_EXPR
)
2471 return honor_nans
? UNLE_EXPR
: LE_EXPR
;
2473 return honor_nans
? UNLT_EXPR
: LT_EXPR
;
2475 return honor_nans
? UNGE_EXPR
: GE_EXPR
;
2477 return honor_nans
? UNGT_EXPR
: GT_EXPR
;
2491 return UNORDERED_EXPR
;
2492 case UNORDERED_EXPR
:
2493 return ORDERED_EXPR
;
2499 /* Similar, but return the comparison that results if the operands are
2500 swapped. This is safe for floating-point. */
2503 swap_tree_comparison (enum tree_code code
)
2510 case UNORDERED_EXPR
:
2536 /* Convert a comparison tree code from an enum tree_code representation
2537 into a compcode bit-based encoding. This function is the inverse of
2538 compcode_to_comparison. */
2540 static enum comparison_code
2541 comparison_to_compcode (enum tree_code code
)
2558 return COMPCODE_ORD
;
2559 case UNORDERED_EXPR
:
2560 return COMPCODE_UNORD
;
2562 return COMPCODE_UNLT
;
2564 return COMPCODE_UNEQ
;
2566 return COMPCODE_UNLE
;
2568 return COMPCODE_UNGT
;
2570 return COMPCODE_LTGT
;
2572 return COMPCODE_UNGE
;
2578 /* Convert a compcode bit-based encoding of a comparison operator back
2579 to GCC's enum tree_code representation. This function is the
2580 inverse of comparison_to_compcode. */
2582 static enum tree_code
2583 compcode_to_comparison (enum comparison_code code
)
2600 return ORDERED_EXPR
;
2601 case COMPCODE_UNORD
:
2602 return UNORDERED_EXPR
;
2620 /* Return a tree for the comparison which is the combination of
2621 doing the AND or OR (depending on CODE) of the two operations LCODE
2622 and RCODE on the identical operands LL_ARG and LR_ARG. Take into account
2623 the possibility of trapping if the mode has NaNs, and return NULL_TREE
2624 if this makes the transformation invalid. */
2627 combine_comparisons (location_t loc
,
2628 enum tree_code code
, enum tree_code lcode
,
2629 enum tree_code rcode
, tree truth_type
,
2630 tree ll_arg
, tree lr_arg
)
2632 bool honor_nans
= HONOR_NANS (ll_arg
);
2633 enum comparison_code lcompcode
= comparison_to_compcode (lcode
);
2634 enum comparison_code rcompcode
= comparison_to_compcode (rcode
);
2639 case TRUTH_AND_EXPR
: case TRUTH_ANDIF_EXPR
:
2640 compcode
= lcompcode
& rcompcode
;
2643 case TRUTH_OR_EXPR
: case TRUTH_ORIF_EXPR
:
2644 compcode
= lcompcode
| rcompcode
;
2653 /* Eliminate unordered comparisons, as well as LTGT and ORD
2654 which are not used unless the mode has NaNs. */
2655 compcode
&= ~COMPCODE_UNORD
;
2656 if (compcode
== COMPCODE_LTGT
)
2657 compcode
= COMPCODE_NE
;
2658 else if (compcode
== COMPCODE_ORD
)
2659 compcode
= COMPCODE_TRUE
;
2661 else if (flag_trapping_math
)
2663 /* Check that the original operation and the optimized ones will trap
2664 under the same condition. */
2665 bool ltrap
= (lcompcode
& COMPCODE_UNORD
) == 0
2666 && (lcompcode
!= COMPCODE_EQ
)
2667 && (lcompcode
!= COMPCODE_ORD
);
2668 bool rtrap
= (rcompcode
& COMPCODE_UNORD
) == 0
2669 && (rcompcode
!= COMPCODE_EQ
)
2670 && (rcompcode
!= COMPCODE_ORD
);
2671 bool trap
= (compcode
& COMPCODE_UNORD
) == 0
2672 && (compcode
!= COMPCODE_EQ
)
2673 && (compcode
!= COMPCODE_ORD
);
2675 /* In a short-circuited boolean expression the LHS might be
2676 such that the RHS, if evaluated, will never trap. For
2677 example, in ORD (x, y) && (x < y), we evaluate the RHS only
2678 if neither x nor y is NaN. (This is a mixed blessing: for
2679 example, the expression above will never trap, hence
2680 optimizing it to x < y would be invalid). */
2681 if ((code
== TRUTH_ORIF_EXPR
&& (lcompcode
& COMPCODE_UNORD
))
2682 || (code
== TRUTH_ANDIF_EXPR
&& !(lcompcode
& COMPCODE_UNORD
)))
2685 /* If the comparison was short-circuited, and only the RHS
2686 trapped, we may now generate a spurious trap. */
2688 && (code
== TRUTH_ANDIF_EXPR
|| code
== TRUTH_ORIF_EXPR
))
2691 /* If we changed the conditions that cause a trap, we lose. */
2692 if ((ltrap
|| rtrap
) != trap
)
2696 if (compcode
== COMPCODE_TRUE
)
2697 return constant_boolean_node (true, truth_type
);
2698 else if (compcode
== COMPCODE_FALSE
)
2699 return constant_boolean_node (false, truth_type
);
2702 enum tree_code tcode
;
2704 tcode
= compcode_to_comparison ((enum comparison_code
) compcode
);
2705 return fold_build2_loc (loc
, tcode
, truth_type
, ll_arg
, lr_arg
);
2709 /* Return nonzero if two operands (typically of the same tree node)
2710 are necessarily equal. FLAGS modifies behavior as follows:
2712 If OEP_ONLY_CONST is set, only return nonzero for constants.
2713 This function tests whether the operands are indistinguishable;
2714 it does not test whether they are equal using C's == operation.
2715 The distinction is important for IEEE floating point, because
2716 (1) -0.0 and 0.0 are distinguishable, but -0.0==0.0, and
2717 (2) two NaNs may be indistinguishable, but NaN!=NaN.
2719 If OEP_ONLY_CONST is unset, a VAR_DECL is considered equal to itself
2720 even though it may hold multiple values during a function.
2721 This is because a GCC tree node guarantees that nothing else is
2722 executed between the evaluation of its "operands" (which may often
2723 be evaluated in arbitrary order). Hence if the operands themselves
2724 don't side-effect, the VAR_DECLs, PARM_DECLs etc... must hold the
2725 same value in each operand/subexpression. Hence leaving OEP_ONLY_CONST
2726 unset means assuming isochronic (or instantaneous) tree equivalence.
2727 Unless comparing arbitrary expression trees, such as from different
2728 statements, this flag can usually be left unset.
2730 If OEP_PURE_SAME is set, then pure functions with identical arguments
2731 are considered the same. It is used when the caller has other ways
2732 to ensure that global memory is unchanged in between.
2734 If OEP_ADDRESS_OF is set, we are actually comparing addresses of objects,
2735 not values of expressions.
2737 Unless OEP_MATCH_SIDE_EFFECTS is set, the function returns false on
2738 any operand with side effect. This is unnecesarily conservative in the
2739 case we know that arg0 and arg1 are in disjoint code paths (such as in
2740 ?: operator). In addition OEP_MATCH_SIDE_EFFECTS is used when comparing
2741 addresses with TREE_CONSTANT flag set so we know that &var == &var
2742 even if var is volatile. */
2745 operand_equal_p (const_tree arg0
, const_tree arg1
, unsigned int flags
)
2747 /* When checking, verify at the outermost operand_equal_p call that
2748 if operand_equal_p returns non-zero then ARG0 and ARG1 has the same
2750 if (flag_checking
&& !(flags
& OEP_NO_HASH_CHECK
))
2752 if (operand_equal_p (arg0
, arg1
, flags
| OEP_NO_HASH_CHECK
))
2756 inchash::hash
hstate0 (0), hstate1 (0);
2757 inchash::add_expr (arg0
, hstate0
, flags
| OEP_HASH_CHECK
);
2758 inchash::add_expr (arg1
, hstate1
, flags
| OEP_HASH_CHECK
);
2759 hashval_t h0
= hstate0
.end ();
2760 hashval_t h1
= hstate1
.end ();
2761 gcc_assert (h0
== h1
);
2769 /* If either is ERROR_MARK, they aren't equal. */
2770 if (TREE_CODE (arg0
) == ERROR_MARK
|| TREE_CODE (arg1
) == ERROR_MARK
2771 || TREE_TYPE (arg0
) == error_mark_node
2772 || TREE_TYPE (arg1
) == error_mark_node
)
2775 /* Similar, if either does not have a type (like a released SSA name),
2776 they aren't equal. */
2777 if (!TREE_TYPE (arg0
) || !TREE_TYPE (arg1
))
2780 /* We cannot consider pointers to different address space equal. */
2781 if (POINTER_TYPE_P (TREE_TYPE (arg0
))
2782 && POINTER_TYPE_P (TREE_TYPE (arg1
))
2783 && (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg0
)))
2784 != TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg1
)))))
2787 /* Check equality of integer constants before bailing out due to
2788 precision differences. */
2789 if (TREE_CODE (arg0
) == INTEGER_CST
&& TREE_CODE (arg1
) == INTEGER_CST
)
2791 /* Address of INTEGER_CST is not defined; check that we did not forget
2792 to drop the OEP_ADDRESS_OF flags. */
2793 gcc_checking_assert (!(flags
& OEP_ADDRESS_OF
));
2794 return tree_int_cst_equal (arg0
, arg1
);
2797 if (!(flags
& OEP_ADDRESS_OF
))
2799 /* If both types don't have the same signedness, then we can't consider
2800 them equal. We must check this before the STRIP_NOPS calls
2801 because they may change the signedness of the arguments. As pointers
2802 strictly don't have a signedness, require either two pointers or
2803 two non-pointers as well. */
2804 if (TYPE_UNSIGNED (TREE_TYPE (arg0
)) != TYPE_UNSIGNED (TREE_TYPE (arg1
))
2805 || POINTER_TYPE_P (TREE_TYPE (arg0
))
2806 != POINTER_TYPE_P (TREE_TYPE (arg1
)))
2809 /* If both types don't have the same precision, then it is not safe
2811 if (element_precision (TREE_TYPE (arg0
))
2812 != element_precision (TREE_TYPE (arg1
)))
2819 /* FIXME: Fortran FE currently produce ADDR_EXPR of NOP_EXPR. Enable the
2820 sanity check once the issue is solved. */
2822 /* Addresses of conversions and SSA_NAMEs (and many other things)
2823 are not defined. Check that we did not forget to drop the
2824 OEP_ADDRESS_OF/OEP_CONSTANT_ADDRESS_OF flags. */
2825 gcc_checking_assert (!CONVERT_EXPR_P (arg0
) && !CONVERT_EXPR_P (arg1
)
2826 && TREE_CODE (arg0
) != SSA_NAME
);
2829 /* In case both args are comparisons but with different comparison
2830 code, try to swap the comparison operands of one arg to produce
2831 a match and compare that variant. */
2832 if (TREE_CODE (arg0
) != TREE_CODE (arg1
)
2833 && COMPARISON_CLASS_P (arg0
)
2834 && COMPARISON_CLASS_P (arg1
))
2836 enum tree_code swap_code
= swap_tree_comparison (TREE_CODE (arg1
));
2838 if (TREE_CODE (arg0
) == swap_code
)
2839 return operand_equal_p (TREE_OPERAND (arg0
, 0),
2840 TREE_OPERAND (arg1
, 1), flags
)
2841 && operand_equal_p (TREE_OPERAND (arg0
, 1),
2842 TREE_OPERAND (arg1
, 0), flags
);
2845 if (TREE_CODE (arg0
) != TREE_CODE (arg1
))
2847 /* NOP_EXPR and CONVERT_EXPR are considered equal. */
2848 if (CONVERT_EXPR_P (arg0
) && CONVERT_EXPR_P (arg1
))
2850 else if (flags
& OEP_ADDRESS_OF
)
2852 /* If we are interested in comparing addresses ignore
2853 MEM_REF wrappings of the base that can appear just for
2855 if (TREE_CODE (arg0
) == MEM_REF
2857 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == ADDR_EXPR
2858 && TREE_OPERAND (TREE_OPERAND (arg0
, 0), 0) == arg1
2859 && integer_zerop (TREE_OPERAND (arg0
, 1)))
2861 else if (TREE_CODE (arg1
) == MEM_REF
2863 && TREE_CODE (TREE_OPERAND (arg1
, 0)) == ADDR_EXPR
2864 && TREE_OPERAND (TREE_OPERAND (arg1
, 0), 0) == arg0
2865 && integer_zerop (TREE_OPERAND (arg1
, 1)))
2873 /* When not checking adddresses, this is needed for conversions and for
2874 COMPONENT_REF. Might as well play it safe and always test this. */
2875 if (TREE_CODE (TREE_TYPE (arg0
)) == ERROR_MARK
2876 || TREE_CODE (TREE_TYPE (arg1
)) == ERROR_MARK
2877 || (TYPE_MODE (TREE_TYPE (arg0
)) != TYPE_MODE (TREE_TYPE (arg1
))
2878 && !(flags
& OEP_ADDRESS_OF
)))
2881 /* If ARG0 and ARG1 are the same SAVE_EXPR, they are necessarily equal.
2882 We don't care about side effects in that case because the SAVE_EXPR
2883 takes care of that for us. In all other cases, two expressions are
2884 equal if they have no side effects. If we have two identical
2885 expressions with side effects that should be treated the same due
2886 to the only side effects being identical SAVE_EXPR's, that will
2887 be detected in the recursive calls below.
2888 If we are taking an invariant address of two identical objects
2889 they are necessarily equal as well. */
2890 if (arg0
== arg1
&& ! (flags
& OEP_ONLY_CONST
)
2891 && (TREE_CODE (arg0
) == SAVE_EXPR
2892 || (flags
& OEP_MATCH_SIDE_EFFECTS
)
2893 || (! TREE_SIDE_EFFECTS (arg0
) && ! TREE_SIDE_EFFECTS (arg1
))))
2896 /* Next handle constant cases, those for which we can return 1 even
2897 if ONLY_CONST is set. */
2898 if (TREE_CONSTANT (arg0
) && TREE_CONSTANT (arg1
))
2899 switch (TREE_CODE (arg0
))
2902 return tree_int_cst_equal (arg0
, arg1
);
2905 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (arg0
),
2906 TREE_FIXED_CST (arg1
));
2909 if (real_identical (&TREE_REAL_CST (arg0
), &TREE_REAL_CST (arg1
)))
2913 if (!HONOR_SIGNED_ZEROS (arg0
))
2915 /* If we do not distinguish between signed and unsigned zero,
2916 consider them equal. */
2917 if (real_zerop (arg0
) && real_zerop (arg1
))
2926 if (VECTOR_CST_NELTS (arg0
) != VECTOR_CST_NELTS (arg1
))
2929 for (i
= 0; i
< VECTOR_CST_NELTS (arg0
); ++i
)
2931 if (!operand_equal_p (VECTOR_CST_ELT (arg0
, i
),
2932 VECTOR_CST_ELT (arg1
, i
), flags
))
2939 return (operand_equal_p (TREE_REALPART (arg0
), TREE_REALPART (arg1
),
2941 && operand_equal_p (TREE_IMAGPART (arg0
), TREE_IMAGPART (arg1
),
2945 return (TREE_STRING_LENGTH (arg0
) == TREE_STRING_LENGTH (arg1
)
2946 && ! memcmp (TREE_STRING_POINTER (arg0
),
2947 TREE_STRING_POINTER (arg1
),
2948 TREE_STRING_LENGTH (arg0
)));
2951 gcc_checking_assert (!(flags
& OEP_ADDRESS_OF
));
2952 return operand_equal_p (TREE_OPERAND (arg0
, 0), TREE_OPERAND (arg1
, 0),
2953 flags
| OEP_ADDRESS_OF
2954 | OEP_MATCH_SIDE_EFFECTS
);
2956 /* In GIMPLE empty constructors are allowed in initializers of
2958 return !CONSTRUCTOR_NELTS (arg0
) && !CONSTRUCTOR_NELTS (arg1
);
2963 if (flags
& OEP_ONLY_CONST
)
2966 /* Define macros to test an operand from arg0 and arg1 for equality and a
2967 variant that allows null and views null as being different from any
2968 non-null value. In the latter case, if either is null, the both
2969 must be; otherwise, do the normal comparison. */
2970 #define OP_SAME(N) operand_equal_p (TREE_OPERAND (arg0, N), \
2971 TREE_OPERAND (arg1, N), flags)
2973 #define OP_SAME_WITH_NULL(N) \
2974 ((!TREE_OPERAND (arg0, N) || !TREE_OPERAND (arg1, N)) \
2975 ? TREE_OPERAND (arg0, N) == TREE_OPERAND (arg1, N) : OP_SAME (N))
2977 switch (TREE_CODE_CLASS (TREE_CODE (arg0
)))
2980 /* Two conversions are equal only if signedness and modes match. */
2981 switch (TREE_CODE (arg0
))
2984 case FIX_TRUNC_EXPR
:
2985 if (TYPE_UNSIGNED (TREE_TYPE (arg0
))
2986 != TYPE_UNSIGNED (TREE_TYPE (arg1
)))
2996 case tcc_comparison
:
2998 if (OP_SAME (0) && OP_SAME (1))
3001 /* For commutative ops, allow the other order. */
3002 return (commutative_tree_code (TREE_CODE (arg0
))
3003 && operand_equal_p (TREE_OPERAND (arg0
, 0),
3004 TREE_OPERAND (arg1
, 1), flags
)
3005 && operand_equal_p (TREE_OPERAND (arg0
, 1),
3006 TREE_OPERAND (arg1
, 0), flags
));
3009 /* If either of the pointer (or reference) expressions we are
3010 dereferencing contain a side effect, these cannot be equal,
3011 but their addresses can be. */
3012 if ((flags
& OEP_MATCH_SIDE_EFFECTS
) == 0
3013 && (TREE_SIDE_EFFECTS (arg0
)
3014 || TREE_SIDE_EFFECTS (arg1
)))
3017 switch (TREE_CODE (arg0
))
3020 if (!(flags
& OEP_ADDRESS_OF
)
3021 && (TYPE_ALIGN (TREE_TYPE (arg0
))
3022 != TYPE_ALIGN (TREE_TYPE (arg1
))))
3024 flags
&= ~OEP_ADDRESS_OF
;
3028 /* Require the same offset. */
3029 if (!operand_equal_p (TYPE_SIZE (TREE_TYPE (arg0
)),
3030 TYPE_SIZE (TREE_TYPE (arg1
)),
3031 flags
& ~OEP_ADDRESS_OF
))
3036 case VIEW_CONVERT_EXPR
:
3039 case TARGET_MEM_REF
:
3041 if (!(flags
& OEP_ADDRESS_OF
))
3043 /* Require equal access sizes */
3044 if (TYPE_SIZE (TREE_TYPE (arg0
)) != TYPE_SIZE (TREE_TYPE (arg1
))
3045 && (!TYPE_SIZE (TREE_TYPE (arg0
))
3046 || !TYPE_SIZE (TREE_TYPE (arg1
))
3047 || !operand_equal_p (TYPE_SIZE (TREE_TYPE (arg0
)),
3048 TYPE_SIZE (TREE_TYPE (arg1
)),
3051 /* Verify that access happens in similar types. */
3052 if (!types_compatible_p (TREE_TYPE (arg0
), TREE_TYPE (arg1
)))
3054 /* Verify that accesses are TBAA compatible. */
3055 if (!alias_ptr_types_compatible_p
3056 (TREE_TYPE (TREE_OPERAND (arg0
, 1)),
3057 TREE_TYPE (TREE_OPERAND (arg1
, 1)))
3058 || (MR_DEPENDENCE_CLIQUE (arg0
)
3059 != MR_DEPENDENCE_CLIQUE (arg1
))
3060 || (MR_DEPENDENCE_BASE (arg0
)
3061 != MR_DEPENDENCE_BASE (arg1
)))
3063 /* Verify that alignment is compatible. */
3064 if (TYPE_ALIGN (TREE_TYPE (arg0
))
3065 != TYPE_ALIGN (TREE_TYPE (arg1
)))
3068 flags
&= ~OEP_ADDRESS_OF
;
3069 return (OP_SAME (0) && OP_SAME (1)
3070 /* TARGET_MEM_REF require equal extra operands. */
3071 && (TREE_CODE (arg0
) != TARGET_MEM_REF
3072 || (OP_SAME_WITH_NULL (2)
3073 && OP_SAME_WITH_NULL (3)
3074 && OP_SAME_WITH_NULL (4))));
3077 case ARRAY_RANGE_REF
:
3080 flags
&= ~OEP_ADDRESS_OF
;
3081 /* Compare the array index by value if it is constant first as we
3082 may have different types but same value here. */
3083 return ((tree_int_cst_equal (TREE_OPERAND (arg0
, 1),
3084 TREE_OPERAND (arg1
, 1))
3086 && OP_SAME_WITH_NULL (2)
3087 && OP_SAME_WITH_NULL (3)
3088 /* Compare low bound and element size as with OEP_ADDRESS_OF
3089 we have to account for the offset of the ref. */
3090 && (TREE_TYPE (TREE_OPERAND (arg0
, 0))
3091 == TREE_TYPE (TREE_OPERAND (arg1
, 0))
3092 || (operand_equal_p (array_ref_low_bound
3093 (CONST_CAST_TREE (arg0
)),
3095 (CONST_CAST_TREE (arg1
)), flags
)
3096 && operand_equal_p (array_ref_element_size
3097 (CONST_CAST_TREE (arg0
)),
3098 array_ref_element_size
3099 (CONST_CAST_TREE (arg1
)),
3103 /* Handle operand 2 the same as for ARRAY_REF. Operand 0
3104 may be NULL when we're called to compare MEM_EXPRs. */
3105 if (!OP_SAME_WITH_NULL (0)
3108 flags
&= ~OEP_ADDRESS_OF
;
3109 return OP_SAME_WITH_NULL (2);
3114 flags
&= ~OEP_ADDRESS_OF
;
3115 return OP_SAME (1) && OP_SAME (2);
3121 case tcc_expression
:
3122 switch (TREE_CODE (arg0
))
3125 /* Be sure we pass right ADDRESS_OF flag. */
3126 gcc_checking_assert (!(flags
& OEP_ADDRESS_OF
));
3127 return operand_equal_p (TREE_OPERAND (arg0
, 0),
3128 TREE_OPERAND (arg1
, 0),
3129 flags
| OEP_ADDRESS_OF
);
3131 case TRUTH_NOT_EXPR
:
3134 case TRUTH_ANDIF_EXPR
:
3135 case TRUTH_ORIF_EXPR
:
3136 return OP_SAME (0) && OP_SAME (1);
3139 case WIDEN_MULT_PLUS_EXPR
:
3140 case WIDEN_MULT_MINUS_EXPR
:
3143 /* The multiplcation operands are commutative. */
3146 case TRUTH_AND_EXPR
:
3148 case TRUTH_XOR_EXPR
:
3149 if (OP_SAME (0) && OP_SAME (1))
3152 /* Otherwise take into account this is a commutative operation. */
3153 return (operand_equal_p (TREE_OPERAND (arg0
, 0),
3154 TREE_OPERAND (arg1
, 1), flags
)
3155 && operand_equal_p (TREE_OPERAND (arg0
, 1),
3156 TREE_OPERAND (arg1
, 0), flags
));
3159 if (! OP_SAME (1) || ! OP_SAME (2))
3161 flags
&= ~OEP_ADDRESS_OF
;
3166 case BIT_INSERT_EXPR
:
3167 return OP_SAME (0) && OP_SAME (1) && OP_SAME (2);
3174 switch (TREE_CODE (arg0
))
3177 if ((CALL_EXPR_FN (arg0
) == NULL_TREE
)
3178 != (CALL_EXPR_FN (arg1
) == NULL_TREE
))
3179 /* If not both CALL_EXPRs are either internal or normal function
3180 functions, then they are not equal. */
3182 else if (CALL_EXPR_FN (arg0
) == NULL_TREE
)
3184 /* If the CALL_EXPRs call different internal functions, then they
3186 if (CALL_EXPR_IFN (arg0
) != CALL_EXPR_IFN (arg1
))
3191 /* If the CALL_EXPRs call different functions, then they are not
3193 if (! operand_equal_p (CALL_EXPR_FN (arg0
), CALL_EXPR_FN (arg1
),
3198 /* FIXME: We could skip this test for OEP_MATCH_SIDE_EFFECTS. */
3200 unsigned int cef
= call_expr_flags (arg0
);
3201 if (flags
& OEP_PURE_SAME
)
3202 cef
&= ECF_CONST
| ECF_PURE
;
3209 /* Now see if all the arguments are the same. */
3211 const_call_expr_arg_iterator iter0
, iter1
;
3213 for (a0
= first_const_call_expr_arg (arg0
, &iter0
),
3214 a1
= first_const_call_expr_arg (arg1
, &iter1
);
3216 a0
= next_const_call_expr_arg (&iter0
),
3217 a1
= next_const_call_expr_arg (&iter1
))
3218 if (! operand_equal_p (a0
, a1
, flags
))
3221 /* If we get here and both argument lists are exhausted
3222 then the CALL_EXPRs are equal. */
3223 return ! (a0
|| a1
);
3229 case tcc_declaration
:
3230 /* Consider __builtin_sqrt equal to sqrt. */
3231 return (TREE_CODE (arg0
) == FUNCTION_DECL
3232 && DECL_BUILT_IN (arg0
) && DECL_BUILT_IN (arg1
)
3233 && DECL_BUILT_IN_CLASS (arg0
) == DECL_BUILT_IN_CLASS (arg1
)
3234 && DECL_FUNCTION_CODE (arg0
) == DECL_FUNCTION_CODE (arg1
));
3236 case tcc_exceptional
:
3237 if (TREE_CODE (arg0
) == CONSTRUCTOR
)
3239 /* In GIMPLE constructors are used only to build vectors from
3240 elements. Individual elements in the constructor must be
3241 indexed in increasing order and form an initial sequence.
3243 We make no effort to compare constructors in generic.
3244 (see sem_variable::equals in ipa-icf which can do so for
3246 if (!VECTOR_TYPE_P (TREE_TYPE (arg0
))
3247 || !VECTOR_TYPE_P (TREE_TYPE (arg1
)))
3250 /* Be sure that vectors constructed have the same representation.
3251 We only tested element precision and modes to match.
3252 Vectors may be BLKmode and thus also check that the number of
3254 if (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0
))
3255 != TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1
)))
3258 vec
<constructor_elt
, va_gc
> *v0
= CONSTRUCTOR_ELTS (arg0
);
3259 vec
<constructor_elt
, va_gc
> *v1
= CONSTRUCTOR_ELTS (arg1
);
3260 unsigned int len
= vec_safe_length (v0
);
3262 if (len
!= vec_safe_length (v1
))
3265 for (unsigned int i
= 0; i
< len
; i
++)
3267 constructor_elt
*c0
= &(*v0
)[i
];
3268 constructor_elt
*c1
= &(*v1
)[i
];
3270 if (!operand_equal_p (c0
->value
, c1
->value
, flags
)
3271 /* In GIMPLE the indexes can be either NULL or matching i.
3272 Double check this so we won't get false
3273 positives for GENERIC. */
3275 && (TREE_CODE (c0
->index
) != INTEGER_CST
3276 || !compare_tree_int (c0
->index
, i
)))
3278 && (TREE_CODE (c1
->index
) != INTEGER_CST
3279 || !compare_tree_int (c1
->index
, i
))))
3291 #undef OP_SAME_WITH_NULL
3294 /* Similar to operand_equal_p, but see if ARG0 might have been made by
3295 shorten_compare from ARG1 when ARG1 was being compared with OTHER.
3297 When in doubt, return 0. */
3300 operand_equal_for_comparison_p (tree arg0
, tree arg1
, tree other
)
3302 int unsignedp1
, unsignedpo
;
3303 tree primarg0
, primarg1
, primother
;
3304 unsigned int correct_width
;
3306 if (operand_equal_p (arg0
, arg1
, 0))
3309 if (! INTEGRAL_TYPE_P (TREE_TYPE (arg0
))
3310 || ! INTEGRAL_TYPE_P (TREE_TYPE (arg1
)))
3313 /* Discard any conversions that don't change the modes of ARG0 and ARG1
3314 and see if the inner values are the same. This removes any
3315 signedness comparison, which doesn't matter here. */
3316 primarg0
= arg0
, primarg1
= arg1
;
3317 STRIP_NOPS (primarg0
);
3318 STRIP_NOPS (primarg1
);
3319 if (operand_equal_p (primarg0
, primarg1
, 0))
3322 /* Duplicate what shorten_compare does to ARG1 and see if that gives the
3323 actual comparison operand, ARG0.
3325 First throw away any conversions to wider types
3326 already present in the operands. */
3328 primarg1
= get_narrower (arg1
, &unsignedp1
);
3329 primother
= get_narrower (other
, &unsignedpo
);
3331 correct_width
= TYPE_PRECISION (TREE_TYPE (arg1
));
3332 if (unsignedp1
== unsignedpo
3333 && TYPE_PRECISION (TREE_TYPE (primarg1
)) < correct_width
3334 && TYPE_PRECISION (TREE_TYPE (primother
)) < correct_width
)
3336 tree type
= TREE_TYPE (arg0
);
3338 /* Make sure shorter operand is extended the right way
3339 to match the longer operand. */
3340 primarg1
= fold_convert (signed_or_unsigned_type_for
3341 (unsignedp1
, TREE_TYPE (primarg1
)), primarg1
);
3343 if (operand_equal_p (arg0
, fold_convert (type
, primarg1
), 0))
3350 /* See if ARG is an expression that is either a comparison or is performing
3351 arithmetic on comparisons. The comparisons must only be comparing
3352 two different values, which will be stored in *CVAL1 and *CVAL2; if
3353 they are nonzero it means that some operands have already been found.
3354 No variables may be used anywhere else in the expression except in the
3355 comparisons. If SAVE_P is true it means we removed a SAVE_EXPR around
3356 the expression and save_expr needs to be called with CVAL1 and CVAL2.
3358 If this is true, return 1. Otherwise, return zero. */
3361 twoval_comparison_p (tree arg
, tree
*cval1
, tree
*cval2
, int *save_p
)
3363 enum tree_code code
= TREE_CODE (arg
);
3364 enum tree_code_class tclass
= TREE_CODE_CLASS (code
);
3366 /* We can handle some of the tcc_expression cases here. */
3367 if (tclass
== tcc_expression
&& code
== TRUTH_NOT_EXPR
)
3369 else if (tclass
== tcc_expression
3370 && (code
== TRUTH_ANDIF_EXPR
|| code
== TRUTH_ORIF_EXPR
3371 || code
== COMPOUND_EXPR
))
3372 tclass
= tcc_binary
;
3374 else if (tclass
== tcc_expression
&& code
== SAVE_EXPR
3375 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg
, 0)))
3377 /* If we've already found a CVAL1 or CVAL2, this expression is
3378 two complex to handle. */
3379 if (*cval1
|| *cval2
)
3389 return twoval_comparison_p (TREE_OPERAND (arg
, 0), cval1
, cval2
, save_p
);
3392 return (twoval_comparison_p (TREE_OPERAND (arg
, 0), cval1
, cval2
, save_p
)
3393 && twoval_comparison_p (TREE_OPERAND (arg
, 1),
3394 cval1
, cval2
, save_p
));
3399 case tcc_expression
:
3400 if (code
== COND_EXPR
)
3401 return (twoval_comparison_p (TREE_OPERAND (arg
, 0),
3402 cval1
, cval2
, save_p
)
3403 && twoval_comparison_p (TREE_OPERAND (arg
, 1),
3404 cval1
, cval2
, save_p
)
3405 && twoval_comparison_p (TREE_OPERAND (arg
, 2),
3406 cval1
, cval2
, save_p
));
3409 case tcc_comparison
:
3410 /* First see if we can handle the first operand, then the second. For
3411 the second operand, we know *CVAL1 can't be zero. It must be that
3412 one side of the comparison is each of the values; test for the
3413 case where this isn't true by failing if the two operands
3416 if (operand_equal_p (TREE_OPERAND (arg
, 0),
3417 TREE_OPERAND (arg
, 1), 0))
3421 *cval1
= TREE_OPERAND (arg
, 0);
3422 else if (operand_equal_p (*cval1
, TREE_OPERAND (arg
, 0), 0))
3424 else if (*cval2
== 0)
3425 *cval2
= TREE_OPERAND (arg
, 0);
3426 else if (operand_equal_p (*cval2
, TREE_OPERAND (arg
, 0), 0))
3431 if (operand_equal_p (*cval1
, TREE_OPERAND (arg
, 1), 0))
3433 else if (*cval2
== 0)
3434 *cval2
= TREE_OPERAND (arg
, 1);
3435 else if (operand_equal_p (*cval2
, TREE_OPERAND (arg
, 1), 0))
3447 /* ARG is a tree that is known to contain just arithmetic operations and
3448 comparisons. Evaluate the operations in the tree substituting NEW0 for
3449 any occurrence of OLD0 as an operand of a comparison and likewise for
3453 eval_subst (location_t loc
, tree arg
, tree old0
, tree new0
,
3454 tree old1
, tree new1
)
3456 tree type
= TREE_TYPE (arg
);
3457 enum tree_code code
= TREE_CODE (arg
);
3458 enum tree_code_class tclass
= TREE_CODE_CLASS (code
);
3460 /* We can handle some of the tcc_expression cases here. */
3461 if (tclass
== tcc_expression
&& code
== TRUTH_NOT_EXPR
)
3463 else if (tclass
== tcc_expression
3464 && (code
== TRUTH_ANDIF_EXPR
|| code
== TRUTH_ORIF_EXPR
))
3465 tclass
= tcc_binary
;
3470 return fold_build1_loc (loc
, code
, type
,
3471 eval_subst (loc
, TREE_OPERAND (arg
, 0),
3472 old0
, new0
, old1
, new1
));
3475 return fold_build2_loc (loc
, code
, type
,
3476 eval_subst (loc
, TREE_OPERAND (arg
, 0),
3477 old0
, new0
, old1
, new1
),
3478 eval_subst (loc
, TREE_OPERAND (arg
, 1),
3479 old0
, new0
, old1
, new1
));
3481 case tcc_expression
:
3485 return eval_subst (loc
, TREE_OPERAND (arg
, 0), old0
, new0
,
3489 return eval_subst (loc
, TREE_OPERAND (arg
, 1), old0
, new0
,
3493 return fold_build3_loc (loc
, code
, type
,
3494 eval_subst (loc
, TREE_OPERAND (arg
, 0),
3495 old0
, new0
, old1
, new1
),
3496 eval_subst (loc
, TREE_OPERAND (arg
, 1),
3497 old0
, new0
, old1
, new1
),
3498 eval_subst (loc
, TREE_OPERAND (arg
, 2),
3499 old0
, new0
, old1
, new1
));
3503 /* Fall through - ??? */
3505 case tcc_comparison
:
3507 tree arg0
= TREE_OPERAND (arg
, 0);
3508 tree arg1
= TREE_OPERAND (arg
, 1);
3510 /* We need to check both for exact equality and tree equality. The
3511 former will be true if the operand has a side-effect. In that
3512 case, we know the operand occurred exactly once. */
3514 if (arg0
== old0
|| operand_equal_p (arg0
, old0
, 0))
3516 else if (arg0
== old1
|| operand_equal_p (arg0
, old1
, 0))
3519 if (arg1
== old0
|| operand_equal_p (arg1
, old0
, 0))
3521 else if (arg1
== old1
|| operand_equal_p (arg1
, old1
, 0))
3524 return fold_build2_loc (loc
, code
, type
, arg0
, arg1
);
3532 /* Return a tree for the case when the result of an expression is RESULT
3533 converted to TYPE and OMITTED was previously an operand of the expression
3534 but is now not needed (e.g., we folded OMITTED * 0).
3536 If OMITTED has side effects, we must evaluate it. Otherwise, just do
3537 the conversion of RESULT to TYPE. */
3540 omit_one_operand_loc (location_t loc
, tree type
, tree result
, tree omitted
)
3542 tree t
= fold_convert_loc (loc
, type
, result
);
3544 /* If the resulting operand is an empty statement, just return the omitted
3545 statement casted to void. */
3546 if (IS_EMPTY_STMT (t
) && TREE_SIDE_EFFECTS (omitted
))
3547 return build1_loc (loc
, NOP_EXPR
, void_type_node
,
3548 fold_ignored_result (omitted
));
3550 if (TREE_SIDE_EFFECTS (omitted
))
3551 return build2_loc (loc
, COMPOUND_EXPR
, type
,
3552 fold_ignored_result (omitted
), t
);
3554 return non_lvalue_loc (loc
, t
);
3557 /* Return a tree for the case when the result of an expression is RESULT
3558 converted to TYPE and OMITTED1 and OMITTED2 were previously operands
3559 of the expression but are now not needed.
3561 If OMITTED1 or OMITTED2 has side effects, they must be evaluated.
3562 If both OMITTED1 and OMITTED2 have side effects, OMITTED1 is
3563 evaluated before OMITTED2. Otherwise, if neither has side effects,
3564 just do the conversion of RESULT to TYPE. */
3567 omit_two_operands_loc (location_t loc
, tree type
, tree result
,
3568 tree omitted1
, tree omitted2
)
3570 tree t
= fold_convert_loc (loc
, type
, result
);
3572 if (TREE_SIDE_EFFECTS (omitted2
))
3573 t
= build2_loc (loc
, COMPOUND_EXPR
, type
, omitted2
, t
);
3574 if (TREE_SIDE_EFFECTS (omitted1
))
3575 t
= build2_loc (loc
, COMPOUND_EXPR
, type
, omitted1
, t
);
3577 return TREE_CODE (t
) != COMPOUND_EXPR
? non_lvalue_loc (loc
, t
) : t
;
3581 /* Return a simplified tree node for the truth-negation of ARG. This
3582 never alters ARG itself. We assume that ARG is an operation that
3583 returns a truth value (0 or 1).
3585 FIXME: one would think we would fold the result, but it causes
3586 problems with the dominator optimizer. */
3589 fold_truth_not_expr (location_t loc
, tree arg
)
3591 tree type
= TREE_TYPE (arg
);
3592 enum tree_code code
= TREE_CODE (arg
);
3593 location_t loc1
, loc2
;
3595 /* If this is a comparison, we can simply invert it, except for
3596 floating-point non-equality comparisons, in which case we just
3597 enclose a TRUTH_NOT_EXPR around what we have. */
3599 if (TREE_CODE_CLASS (code
) == tcc_comparison
)
3601 tree op_type
= TREE_TYPE (TREE_OPERAND (arg
, 0));
3602 if (FLOAT_TYPE_P (op_type
)
3603 && flag_trapping_math
3604 && code
!= ORDERED_EXPR
&& code
!= UNORDERED_EXPR
3605 && code
!= NE_EXPR
&& code
!= EQ_EXPR
)
3608 code
= invert_tree_comparison (code
, HONOR_NANS (op_type
));
3609 if (code
== ERROR_MARK
)
3612 tree ret
= build2_loc (loc
, code
, type
, TREE_OPERAND (arg
, 0),
3613 TREE_OPERAND (arg
, 1));
3614 if (TREE_NO_WARNING (arg
))
3615 TREE_NO_WARNING (ret
) = 1;
3622 return constant_boolean_node (integer_zerop (arg
), type
);
3624 case TRUTH_AND_EXPR
:
3625 loc1
= expr_location_or (TREE_OPERAND (arg
, 0), loc
);
3626 loc2
= expr_location_or (TREE_OPERAND (arg
, 1), loc
);
3627 return build2_loc (loc
, TRUTH_OR_EXPR
, type
,
3628 invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 0)),
3629 invert_truthvalue_loc (loc2
, TREE_OPERAND (arg
, 1)));
3632 loc1
= expr_location_or (TREE_OPERAND (arg
, 0), loc
);
3633 loc2
= expr_location_or (TREE_OPERAND (arg
, 1), loc
);
3634 return build2_loc (loc
, TRUTH_AND_EXPR
, type
,
3635 invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 0)),
3636 invert_truthvalue_loc (loc2
, TREE_OPERAND (arg
, 1)));
3638 case TRUTH_XOR_EXPR
:
3639 /* Here we can invert either operand. We invert the first operand
3640 unless the second operand is a TRUTH_NOT_EXPR in which case our
3641 result is the XOR of the first operand with the inside of the
3642 negation of the second operand. */
3644 if (TREE_CODE (TREE_OPERAND (arg
, 1)) == TRUTH_NOT_EXPR
)
3645 return build2_loc (loc
, TRUTH_XOR_EXPR
, type
, TREE_OPERAND (arg
, 0),
3646 TREE_OPERAND (TREE_OPERAND (arg
, 1), 0));
3648 return build2_loc (loc
, TRUTH_XOR_EXPR
, type
,
3649 invert_truthvalue_loc (loc
, TREE_OPERAND (arg
, 0)),
3650 TREE_OPERAND (arg
, 1));
3652 case TRUTH_ANDIF_EXPR
:
3653 loc1
= expr_location_or (TREE_OPERAND (arg
, 0), loc
);
3654 loc2
= expr_location_or (TREE_OPERAND (arg
, 1), loc
);
3655 return build2_loc (loc
, TRUTH_ORIF_EXPR
, type
,
3656 invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 0)),
3657 invert_truthvalue_loc (loc2
, TREE_OPERAND (arg
, 1)));
3659 case TRUTH_ORIF_EXPR
:
3660 loc1
= expr_location_or (TREE_OPERAND (arg
, 0), loc
);
3661 loc2
= expr_location_or (TREE_OPERAND (arg
, 1), loc
);
3662 return build2_loc (loc
, TRUTH_ANDIF_EXPR
, type
,
3663 invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 0)),
3664 invert_truthvalue_loc (loc2
, TREE_OPERAND (arg
, 1)));
3666 case TRUTH_NOT_EXPR
:
3667 return TREE_OPERAND (arg
, 0);
3671 tree arg1
= TREE_OPERAND (arg
, 1);
3672 tree arg2
= TREE_OPERAND (arg
, 2);
3674 loc1
= expr_location_or (TREE_OPERAND (arg
, 1), loc
);
3675 loc2
= expr_location_or (TREE_OPERAND (arg
, 2), loc
);
3677 /* A COND_EXPR may have a throw as one operand, which
3678 then has void type. Just leave void operands
3680 return build3_loc (loc
, COND_EXPR
, type
, TREE_OPERAND (arg
, 0),
3681 VOID_TYPE_P (TREE_TYPE (arg1
))
3682 ? arg1
: invert_truthvalue_loc (loc1
, arg1
),
3683 VOID_TYPE_P (TREE_TYPE (arg2
))
3684 ? arg2
: invert_truthvalue_loc (loc2
, arg2
));
3688 loc1
= expr_location_or (TREE_OPERAND (arg
, 1), loc
);
3689 return build2_loc (loc
, COMPOUND_EXPR
, type
,
3690 TREE_OPERAND (arg
, 0),
3691 invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 1)));
3693 case NON_LVALUE_EXPR
:
3694 loc1
= expr_location_or (TREE_OPERAND (arg
, 0), loc
);
3695 return invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 0));
3698 if (TREE_CODE (TREE_TYPE (arg
)) == BOOLEAN_TYPE
)
3699 return build1_loc (loc
, TRUTH_NOT_EXPR
, type
, arg
);
3704 loc1
= expr_location_or (TREE_OPERAND (arg
, 0), loc
);
3705 return build1_loc (loc
, TREE_CODE (arg
), type
,
3706 invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 0)));
3709 if (!integer_onep (TREE_OPERAND (arg
, 1)))
3711 return build2_loc (loc
, EQ_EXPR
, type
, arg
, build_int_cst (type
, 0));
3714 return build1_loc (loc
, TRUTH_NOT_EXPR
, type
, arg
);
3716 case CLEANUP_POINT_EXPR
:
3717 loc1
= expr_location_or (TREE_OPERAND (arg
, 0), loc
);
3718 return build1_loc (loc
, CLEANUP_POINT_EXPR
, type
,
3719 invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 0)));
3726 /* Fold the truth-negation of ARG. This never alters ARG itself. We
3727 assume that ARG is an operation that returns a truth value (0 or 1
3728 for scalars, 0 or -1 for vectors). Return the folded expression if
3729 folding is successful. Otherwise, return NULL_TREE. */
3732 fold_invert_truthvalue (location_t loc
, tree arg
)
3734 tree type
= TREE_TYPE (arg
);
3735 return fold_unary_loc (loc
, VECTOR_TYPE_P (type
)
3741 /* Return a simplified tree node for the truth-negation of ARG. This
3742 never alters ARG itself. We assume that ARG is an operation that
3743 returns a truth value (0 or 1 for scalars, 0 or -1 for vectors). */
3746 invert_truthvalue_loc (location_t loc
, tree arg
)
3748 if (TREE_CODE (arg
) == ERROR_MARK
)
3751 tree type
= TREE_TYPE (arg
);
3752 return fold_build1_loc (loc
, VECTOR_TYPE_P (type
)
3758 /* Knowing that ARG0 and ARG1 are both RDIV_EXPRs, simplify a binary operation
3759 with code CODE. This optimization is unsafe. */
3761 distribute_real_division (location_t loc
, enum tree_code code
, tree type
,
3762 tree arg0
, tree arg1
)
3764 bool mul0
= TREE_CODE (arg0
) == MULT_EXPR
;
3765 bool mul1
= TREE_CODE (arg1
) == MULT_EXPR
;
3767 /* (A / C) +- (B / C) -> (A +- B) / C. */
3769 && operand_equal_p (TREE_OPERAND (arg0
, 1),
3770 TREE_OPERAND (arg1
, 1), 0))
3771 return fold_build2_loc (loc
, mul0
? MULT_EXPR
: RDIV_EXPR
, type
,
3772 fold_build2_loc (loc
, code
, type
,
3773 TREE_OPERAND (arg0
, 0),
3774 TREE_OPERAND (arg1
, 0)),
3775 TREE_OPERAND (arg0
, 1));
3777 /* (A / C1) +- (A / C2) -> A * (1 / C1 +- 1 / C2). */
3778 if (operand_equal_p (TREE_OPERAND (arg0
, 0),
3779 TREE_OPERAND (arg1
, 0), 0)
3780 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == REAL_CST
3781 && TREE_CODE (TREE_OPERAND (arg1
, 1)) == REAL_CST
)
3783 REAL_VALUE_TYPE r0
, r1
;
3784 r0
= TREE_REAL_CST (TREE_OPERAND (arg0
, 1));
3785 r1
= TREE_REAL_CST (TREE_OPERAND (arg1
, 1));
3787 real_arithmetic (&r0
, RDIV_EXPR
, &dconst1
, &r0
);
3789 real_arithmetic (&r1
, RDIV_EXPR
, &dconst1
, &r1
);
3790 real_arithmetic (&r0
, code
, &r0
, &r1
);
3791 return fold_build2_loc (loc
, MULT_EXPR
, type
,
3792 TREE_OPERAND (arg0
, 0),
3793 build_real (type
, r0
));
3799 /* Return a BIT_FIELD_REF of type TYPE to refer to BITSIZE bits of INNER
3800 starting at BITPOS. The field is unsigned if UNSIGNEDP is nonzero
3801 and uses reverse storage order if REVERSEP is nonzero. ORIG_INNER
3802 is the original memory reference used to preserve the alias set of
3806 make_bit_field_ref (location_t loc
, tree inner
, tree orig_inner
, tree type
,
3807 HOST_WIDE_INT bitsize
, HOST_WIDE_INT bitpos
,
3808 int unsignedp
, int reversep
)
3810 tree result
, bftype
;
3812 if (get_alias_set (inner
) != get_alias_set (orig_inner
))
3813 inner
= fold_build2 (MEM_REF
, TREE_TYPE (inner
),
3814 build_fold_addr_expr (inner
),
3816 (reference_alias_ptr_type (orig_inner
), 0));
3818 if (bitpos
== 0 && !reversep
)
3820 tree size
= TYPE_SIZE (TREE_TYPE (inner
));
3821 if ((INTEGRAL_TYPE_P (TREE_TYPE (inner
))
3822 || POINTER_TYPE_P (TREE_TYPE (inner
)))
3823 && tree_fits_shwi_p (size
)
3824 && tree_to_shwi (size
) == bitsize
)
3825 return fold_convert_loc (loc
, type
, inner
);
3829 if (TYPE_PRECISION (bftype
) != bitsize
3830 || TYPE_UNSIGNED (bftype
) == !unsignedp
)
3831 bftype
= build_nonstandard_integer_type (bitsize
, 0);
3833 result
= build3_loc (loc
, BIT_FIELD_REF
, bftype
, inner
,
3834 size_int (bitsize
), bitsize_int (bitpos
));
3835 REF_REVERSE_STORAGE_ORDER (result
) = reversep
;
3838 result
= fold_convert_loc (loc
, type
, result
);
3843 /* Optimize a bit-field compare.
3845 There are two cases: First is a compare against a constant and the
3846 second is a comparison of two items where the fields are at the same
3847 bit position relative to the start of a chunk (byte, halfword, word)
3848 large enough to contain it. In these cases we can avoid the shift
3849 implicit in bitfield extractions.
3851 For constants, we emit a compare of the shifted constant with the
3852 BIT_AND_EXPR of a mask and a byte, halfword, or word of the operand being
3853 compared. For two fields at the same position, we do the ANDs with the
3854 similar mask and compare the result of the ANDs.
3856 CODE is the comparison code, known to be either NE_EXPR or EQ_EXPR.
3857 COMPARE_TYPE is the type of the comparison, and LHS and RHS
3858 are the left and right operands of the comparison, respectively.
3860 If the optimization described above can be done, we return the resulting
3861 tree. Otherwise we return zero. */
3864 optimize_bit_field_compare (location_t loc
, enum tree_code code
,
3865 tree compare_type
, tree lhs
, tree rhs
)
3867 HOST_WIDE_INT lbitpos
, lbitsize
, rbitpos
, rbitsize
, nbitpos
, nbitsize
;
3868 tree type
= TREE_TYPE (lhs
);
3870 int const_p
= TREE_CODE (rhs
) == INTEGER_CST
;
3871 machine_mode lmode
, rmode
, nmode
;
3872 int lunsignedp
, runsignedp
;
3873 int lreversep
, rreversep
;
3874 int lvolatilep
= 0, rvolatilep
= 0;
3875 tree linner
, rinner
= NULL_TREE
;
3879 /* Get all the information about the extractions being done. If the bit size
3880 if the same as the size of the underlying object, we aren't doing an
3881 extraction at all and so can do nothing. We also don't want to
3882 do anything if the inner expression is a PLACEHOLDER_EXPR since we
3883 then will no longer be able to replace it. */
3884 linner
= get_inner_reference (lhs
, &lbitsize
, &lbitpos
, &offset
, &lmode
,
3885 &lunsignedp
, &lreversep
, &lvolatilep
);
3886 if (linner
== lhs
|| lbitsize
== GET_MODE_BITSIZE (lmode
) || lbitsize
< 0
3887 || offset
!= 0 || TREE_CODE (linner
) == PLACEHOLDER_EXPR
|| lvolatilep
)
3891 rreversep
= lreversep
;
3894 /* If this is not a constant, we can only do something if bit positions,
3895 sizes, signedness and storage order are the same. */
3897 = get_inner_reference (rhs
, &rbitsize
, &rbitpos
, &offset
, &rmode
,
3898 &runsignedp
, &rreversep
, &rvolatilep
);
3900 if (rinner
== rhs
|| lbitpos
!= rbitpos
|| lbitsize
!= rbitsize
3901 || lunsignedp
!= runsignedp
|| lreversep
!= rreversep
|| offset
!= 0
3902 || TREE_CODE (rinner
) == PLACEHOLDER_EXPR
|| rvolatilep
)
3906 /* Honor the C++ memory model and mimic what RTL expansion does. */
3907 unsigned HOST_WIDE_INT bitstart
= 0;
3908 unsigned HOST_WIDE_INT bitend
= 0;
3909 if (TREE_CODE (lhs
) == COMPONENT_REF
)
3911 get_bit_range (&bitstart
, &bitend
, lhs
, &lbitpos
, &offset
);
3912 if (offset
!= NULL_TREE
)
3916 /* See if we can find a mode to refer to this field. We should be able to,
3917 but fail if we can't. */
3918 nmode
= get_best_mode (lbitsize
, lbitpos
, bitstart
, bitend
,
3919 const_p
? TYPE_ALIGN (TREE_TYPE (linner
))
3920 : MIN (TYPE_ALIGN (TREE_TYPE (linner
)),
3921 TYPE_ALIGN (TREE_TYPE (rinner
))),
3923 if (nmode
== VOIDmode
)
3926 /* Set signed and unsigned types of the precision of this mode for the
3928 unsigned_type
= lang_hooks
.types
.type_for_mode (nmode
, 1);
3930 /* Compute the bit position and size for the new reference and our offset
3931 within it. If the new reference is the same size as the original, we
3932 won't optimize anything, so return zero. */
3933 nbitsize
= GET_MODE_BITSIZE (nmode
);
3934 nbitpos
= lbitpos
& ~ (nbitsize
- 1);
3936 if (nbitsize
== lbitsize
)
3939 if (lreversep
? !BYTES_BIG_ENDIAN
: BYTES_BIG_ENDIAN
)
3940 lbitpos
= nbitsize
- lbitsize
- lbitpos
;
3942 /* Make the mask to be used against the extracted field. */
3943 mask
= build_int_cst_type (unsigned_type
, -1);
3944 mask
= const_binop (LSHIFT_EXPR
, mask
, size_int (nbitsize
- lbitsize
));
3945 mask
= const_binop (RSHIFT_EXPR
, mask
,
3946 size_int (nbitsize
- lbitsize
- lbitpos
));
3949 /* If not comparing with constant, just rework the comparison
3951 return fold_build2_loc (loc
, code
, compare_type
,
3952 fold_build2_loc (loc
, BIT_AND_EXPR
, unsigned_type
,
3953 make_bit_field_ref (loc
, linner
, lhs
,
3958 fold_build2_loc (loc
, BIT_AND_EXPR
, unsigned_type
,
3959 make_bit_field_ref (loc
, rinner
, rhs
,
3965 /* Otherwise, we are handling the constant case. See if the constant is too
3966 big for the field. Warn and return a tree for 0 (false) if so. We do
3967 this not only for its own sake, but to avoid having to test for this
3968 error case below. If we didn't, we might generate wrong code.
3970 For unsigned fields, the constant shifted right by the field length should
3971 be all zero. For signed fields, the high-order bits should agree with
3976 if (wi::lrshift (rhs
, lbitsize
) != 0)
3978 warning (0, "comparison is always %d due to width of bit-field",
3980 return constant_boolean_node (code
== NE_EXPR
, compare_type
);
3985 wide_int tem
= wi::arshift (rhs
, lbitsize
- 1);
3986 if (tem
!= 0 && tem
!= -1)
3988 warning (0, "comparison is always %d due to width of bit-field",
3990 return constant_boolean_node (code
== NE_EXPR
, compare_type
);
3994 /* Single-bit compares should always be against zero. */
3995 if (lbitsize
== 1 && ! integer_zerop (rhs
))
3997 code
= code
== EQ_EXPR
? NE_EXPR
: EQ_EXPR
;
3998 rhs
= build_int_cst (type
, 0);
4001 /* Make a new bitfield reference, shift the constant over the
4002 appropriate number of bits and mask it with the computed mask
4003 (in case this was a signed field). If we changed it, make a new one. */
4004 lhs
= make_bit_field_ref (loc
, linner
, lhs
, unsigned_type
,
4005 nbitsize
, nbitpos
, 1, lreversep
);
4007 rhs
= const_binop (BIT_AND_EXPR
,
4008 const_binop (LSHIFT_EXPR
,
4009 fold_convert_loc (loc
, unsigned_type
, rhs
),
4010 size_int (lbitpos
)),
4013 lhs
= build2_loc (loc
, code
, compare_type
,
4014 build2 (BIT_AND_EXPR
, unsigned_type
, lhs
, mask
), rhs
);
4018 /* Subroutine for fold_truth_andor_1: decode a field reference.
4020 If EXP is a comparison reference, we return the innermost reference.
4022 *PBITSIZE is set to the number of bits in the reference, *PBITPOS is
4023 set to the starting bit number.
4025 If the innermost field can be completely contained in a mode-sized
4026 unit, *PMODE is set to that mode. Otherwise, it is set to VOIDmode.
4028 *PVOLATILEP is set to 1 if the any expression encountered is volatile;
4029 otherwise it is not changed.
4031 *PUNSIGNEDP is set to the signedness of the field.
4033 *PREVERSEP is set to the storage order of the field.
4035 *PMASK is set to the mask used. This is either contained in a
4036 BIT_AND_EXPR or derived from the width of the field.
4038 *PAND_MASK is set to the mask found in a BIT_AND_EXPR, if any.
4040 Return 0 if this is not a component reference or is one that we can't
4041 do anything with. */
4044 decode_field_reference (location_t loc
, tree
*exp_
, HOST_WIDE_INT
*pbitsize
,
4045 HOST_WIDE_INT
*pbitpos
, machine_mode
*pmode
,
4046 int *punsignedp
, int *preversep
, int *pvolatilep
,
4047 tree
*pmask
, tree
*pand_mask
)
4050 tree outer_type
= 0;
4052 tree mask
, inner
, offset
;
4054 unsigned int precision
;
4056 /* All the optimizations using this function assume integer fields.
4057 There are problems with FP fields since the type_for_size call
4058 below can fail for, e.g., XFmode. */
4059 if (! INTEGRAL_TYPE_P (TREE_TYPE (exp
)))
4062 /* We are interested in the bare arrangement of bits, so strip everything
4063 that doesn't affect the machine mode. However, record the type of the
4064 outermost expression if it may matter below. */
4065 if (CONVERT_EXPR_P (exp
)
4066 || TREE_CODE (exp
) == NON_LVALUE_EXPR
)
4067 outer_type
= TREE_TYPE (exp
);
4070 if (TREE_CODE (exp
) == BIT_AND_EXPR
)
4072 and_mask
= TREE_OPERAND (exp
, 1);
4073 exp
= TREE_OPERAND (exp
, 0);
4074 STRIP_NOPS (exp
); STRIP_NOPS (and_mask
);
4075 if (TREE_CODE (and_mask
) != INTEGER_CST
)
4079 inner
= get_inner_reference (exp
, pbitsize
, pbitpos
, &offset
, pmode
,
4080 punsignedp
, preversep
, pvolatilep
);
4081 if ((inner
== exp
&& and_mask
== 0)
4082 || *pbitsize
< 0 || offset
!= 0
4083 || TREE_CODE (inner
) == PLACEHOLDER_EXPR
)
4088 /* If the number of bits in the reference is the same as the bitsize of
4089 the outer type, then the outer type gives the signedness. Otherwise
4090 (in case of a small bitfield) the signedness is unchanged. */
4091 if (outer_type
&& *pbitsize
== TYPE_PRECISION (outer_type
))
4092 *punsignedp
= TYPE_UNSIGNED (outer_type
);
4094 /* Compute the mask to access the bitfield. */
4095 unsigned_type
= lang_hooks
.types
.type_for_size (*pbitsize
, 1);
4096 precision
= TYPE_PRECISION (unsigned_type
);
4098 mask
= build_int_cst_type (unsigned_type
, -1);
4100 mask
= const_binop (LSHIFT_EXPR
, mask
, size_int (precision
- *pbitsize
));
4101 mask
= const_binop (RSHIFT_EXPR
, mask
, size_int (precision
- *pbitsize
));
4103 /* Merge it with the mask we found in the BIT_AND_EXPR, if any. */
4105 mask
= fold_build2_loc (loc
, BIT_AND_EXPR
, unsigned_type
,
4106 fold_convert_loc (loc
, unsigned_type
, and_mask
), mask
);
4109 *pand_mask
= and_mask
;
4113 /* Return nonzero if MASK represents a mask of SIZE ones in the low-order
4114 bit positions and MASK is SIGNED. */
4117 all_ones_mask_p (const_tree mask
, unsigned int size
)
4119 tree type
= TREE_TYPE (mask
);
4120 unsigned int precision
= TYPE_PRECISION (type
);
4122 /* If this function returns true when the type of the mask is
4123 UNSIGNED, then there will be errors. In particular see
4124 gcc.c-torture/execute/990326-1.c. There does not appear to be
4125 any documentation paper trail as to why this is so. But the pre
4126 wide-int worked with that restriction and it has been preserved
4128 if (size
> precision
|| TYPE_SIGN (type
) == UNSIGNED
)
4131 return wi::mask (size
, false, precision
) == mask
;
4134 /* Subroutine for fold: determine if VAL is the INTEGER_CONST that
4135 represents the sign bit of EXP's type. If EXP represents a sign
4136 or zero extension, also test VAL against the unextended type.
4137 The return value is the (sub)expression whose sign bit is VAL,
4138 or NULL_TREE otherwise. */
4141 sign_bit_p (tree exp
, const_tree val
)
4146 /* Tree EXP must have an integral type. */
4147 t
= TREE_TYPE (exp
);
4148 if (! INTEGRAL_TYPE_P (t
))
4151 /* Tree VAL must be an integer constant. */
4152 if (TREE_CODE (val
) != INTEGER_CST
4153 || TREE_OVERFLOW (val
))
4156 width
= TYPE_PRECISION (t
);
4157 if (wi::only_sign_bit_p (val
, width
))
4160 /* Handle extension from a narrower type. */
4161 if (TREE_CODE (exp
) == NOP_EXPR
4162 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp
, 0))) < width
)
4163 return sign_bit_p (TREE_OPERAND (exp
, 0), val
);
4168 /* Subroutine for fold_truth_andor_1: determine if an operand is simple enough
4169 to be evaluated unconditionally. */
4172 simple_operand_p (const_tree exp
)
4174 /* Strip any conversions that don't change the machine mode. */
4177 return (CONSTANT_CLASS_P (exp
)
4178 || TREE_CODE (exp
) == SSA_NAME
4180 && ! TREE_ADDRESSABLE (exp
)
4181 && ! TREE_THIS_VOLATILE (exp
)
4182 && ! DECL_NONLOCAL (exp
)
4183 /* Don't regard global variables as simple. They may be
4184 allocated in ways unknown to the compiler (shared memory,
4185 #pragma weak, etc). */
4186 && ! TREE_PUBLIC (exp
)
4187 && ! DECL_EXTERNAL (exp
)
4188 /* Weakrefs are not safe to be read, since they can be NULL.
4189 They are !TREE_PUBLIC && !DECL_EXTERNAL but still
4190 have DECL_WEAK flag set. */
4191 && (! VAR_OR_FUNCTION_DECL_P (exp
) || ! DECL_WEAK (exp
))
4192 /* Loading a static variable is unduly expensive, but global
4193 registers aren't expensive. */
4194 && (! TREE_STATIC (exp
) || DECL_REGISTER (exp
))));
4197 /* Subroutine for fold_truth_andor: determine if an operand is simple enough
4198 to be evaluated unconditionally.
4199 I addition to simple_operand_p, we assume that comparisons, conversions,
4200 and logic-not operations are simple, if their operands are simple, too. */
4203 simple_operand_p_2 (tree exp
)
4205 enum tree_code code
;
4207 if (TREE_SIDE_EFFECTS (exp
)
4208 || tree_could_trap_p (exp
))
4211 while (CONVERT_EXPR_P (exp
))
4212 exp
= TREE_OPERAND (exp
, 0);
4214 code
= TREE_CODE (exp
);
4216 if (TREE_CODE_CLASS (code
) == tcc_comparison
)
4217 return (simple_operand_p (TREE_OPERAND (exp
, 0))
4218 && simple_operand_p (TREE_OPERAND (exp
, 1)));
4220 if (code
== TRUTH_NOT_EXPR
)
4221 return simple_operand_p_2 (TREE_OPERAND (exp
, 0));
4223 return simple_operand_p (exp
);
4227 /* The following functions are subroutines to fold_range_test and allow it to
4228 try to change a logical combination of comparisons into a range test.
4231 X == 2 || X == 3 || X == 4 || X == 5
4235 (unsigned) (X - 2) <= 3
4237 We describe each set of comparisons as being either inside or outside
4238 a range, using a variable named like IN_P, and then describe the
4239 range with a lower and upper bound. If one of the bounds is omitted,
4240 it represents either the highest or lowest value of the type.
4242 In the comments below, we represent a range by two numbers in brackets
4243 preceded by a "+" to designate being inside that range, or a "-" to
4244 designate being outside that range, so the condition can be inverted by
4245 flipping the prefix. An omitted bound is represented by a "-". For
4246 example, "- [-, 10]" means being outside the range starting at the lowest
4247 possible value and ending at 10, in other words, being greater than 10.
4248 The range "+ [-, -]" is always true and hence the range "- [-, -]" is
4251 We set up things so that the missing bounds are handled in a consistent
4252 manner so neither a missing bound nor "true" and "false" need to be
4253 handled using a special case. */
4255 /* Return the result of applying CODE to ARG0 and ARG1, but handle the case
4256 of ARG0 and/or ARG1 being omitted, meaning an unlimited range. UPPER0_P
4257 and UPPER1_P are nonzero if the respective argument is an upper bound
4258 and zero for a lower. TYPE, if nonzero, is the type of the result; it
4259 must be specified for a comparison. ARG1 will be converted to ARG0's
4260 type if both are specified. */
4263 range_binop (enum tree_code code
, tree type
, tree arg0
, int upper0_p
,
4264 tree arg1
, int upper1_p
)
4270 /* If neither arg represents infinity, do the normal operation.
4271 Else, if not a comparison, return infinity. Else handle the special
4272 comparison rules. Note that most of the cases below won't occur, but
4273 are handled for consistency. */
4275 if (arg0
!= 0 && arg1
!= 0)
4277 tem
= fold_build2 (code
, type
!= 0 ? type
: TREE_TYPE (arg0
),
4278 arg0
, fold_convert (TREE_TYPE (arg0
), arg1
));
4280 return TREE_CODE (tem
) == INTEGER_CST
? tem
: 0;
4283 if (TREE_CODE_CLASS (code
) != tcc_comparison
)
4286 /* Set SGN[01] to -1 if ARG[01] is a lower bound, 1 for upper, and 0
4287 for neither. In real maths, we cannot assume open ended ranges are
4288 the same. But, this is computer arithmetic, where numbers are finite.
4289 We can therefore make the transformation of any unbounded range with
4290 the value Z, Z being greater than any representable number. This permits
4291 us to treat unbounded ranges as equal. */
4292 sgn0
= arg0
!= 0 ? 0 : (upper0_p
? 1 : -1);
4293 sgn1
= arg1
!= 0 ? 0 : (upper1_p
? 1 : -1);
4297 result
= sgn0
== sgn1
;
4300 result
= sgn0
!= sgn1
;
4303 result
= sgn0
< sgn1
;
4306 result
= sgn0
<= sgn1
;
4309 result
= sgn0
> sgn1
;
4312 result
= sgn0
>= sgn1
;
4318 return constant_boolean_node (result
, type
);
4321 /* Helper routine for make_range. Perform one step for it, return
4322 new expression if the loop should continue or NULL_TREE if it should
4326 make_range_step (location_t loc
, enum tree_code code
, tree arg0
, tree arg1
,
4327 tree exp_type
, tree
*p_low
, tree
*p_high
, int *p_in_p
,
4328 bool *strict_overflow_p
)
4330 tree arg0_type
= TREE_TYPE (arg0
);
4331 tree n_low
, n_high
, low
= *p_low
, high
= *p_high
;
4332 int in_p
= *p_in_p
, n_in_p
;
4336 case TRUTH_NOT_EXPR
:
4337 /* We can only do something if the range is testing for zero. */
4338 if (low
== NULL_TREE
|| high
== NULL_TREE
4339 || ! integer_zerop (low
) || ! integer_zerop (high
))
4344 case EQ_EXPR
: case NE_EXPR
:
4345 case LT_EXPR
: case LE_EXPR
: case GE_EXPR
: case GT_EXPR
:
4346 /* We can only do something if the range is testing for zero
4347 and if the second operand is an integer constant. Note that
4348 saying something is "in" the range we make is done by
4349 complementing IN_P since it will set in the initial case of
4350 being not equal to zero; "out" is leaving it alone. */
4351 if (low
== NULL_TREE
|| high
== NULL_TREE
4352 || ! integer_zerop (low
) || ! integer_zerop (high
)
4353 || TREE_CODE (arg1
) != INTEGER_CST
)
4358 case NE_EXPR
: /* - [c, c] */
4361 case EQ_EXPR
: /* + [c, c] */
4362 in_p
= ! in_p
, low
= high
= arg1
;
4364 case GT_EXPR
: /* - [-, c] */
4365 low
= 0, high
= arg1
;
4367 case GE_EXPR
: /* + [c, -] */
4368 in_p
= ! in_p
, low
= arg1
, high
= 0;
4370 case LT_EXPR
: /* - [c, -] */
4371 low
= arg1
, high
= 0;
4373 case LE_EXPR
: /* + [-, c] */
4374 in_p
= ! in_p
, low
= 0, high
= arg1
;
4380 /* If this is an unsigned comparison, we also know that EXP is
4381 greater than or equal to zero. We base the range tests we make
4382 on that fact, so we record it here so we can parse existing
4383 range tests. We test arg0_type since often the return type
4384 of, e.g. EQ_EXPR, is boolean. */
4385 if (TYPE_UNSIGNED (arg0_type
) && (low
== 0 || high
== 0))
4387 if (! merge_ranges (&n_in_p
, &n_low
, &n_high
,
4389 build_int_cst (arg0_type
, 0),
4393 in_p
= n_in_p
, low
= n_low
, high
= n_high
;
4395 /* If the high bound is missing, but we have a nonzero low
4396 bound, reverse the range so it goes from zero to the low bound
4398 if (high
== 0 && low
&& ! integer_zerop (low
))
4401 high
= range_binop (MINUS_EXPR
, NULL_TREE
, low
, 0,
4402 build_int_cst (TREE_TYPE (low
), 1), 0);
4403 low
= build_int_cst (arg0_type
, 0);
4413 /* If flag_wrapv and ARG0_TYPE is signed, make sure
4414 low and high are non-NULL, then normalize will DTRT. */
4415 if (!TYPE_UNSIGNED (arg0_type
)
4416 && !TYPE_OVERFLOW_UNDEFINED (arg0_type
))
4418 if (low
== NULL_TREE
)
4419 low
= TYPE_MIN_VALUE (arg0_type
);
4420 if (high
== NULL_TREE
)
4421 high
= TYPE_MAX_VALUE (arg0_type
);
4424 /* (-x) IN [a,b] -> x in [-b, -a] */
4425 n_low
= range_binop (MINUS_EXPR
, exp_type
,
4426 build_int_cst (exp_type
, 0),
4428 n_high
= range_binop (MINUS_EXPR
, exp_type
,
4429 build_int_cst (exp_type
, 0),
4431 if (n_high
!= 0 && TREE_OVERFLOW (n_high
))
4437 return build2_loc (loc
, MINUS_EXPR
, exp_type
, negate_expr (arg0
),
4438 build_int_cst (exp_type
, 1));
4442 if (TREE_CODE (arg1
) != INTEGER_CST
)
4445 /* If flag_wrapv and ARG0_TYPE is signed, then we cannot
4446 move a constant to the other side. */
4447 if (!TYPE_UNSIGNED (arg0_type
)
4448 && !TYPE_OVERFLOW_UNDEFINED (arg0_type
))
4451 /* If EXP is signed, any overflow in the computation is undefined,
4452 so we don't worry about it so long as our computations on
4453 the bounds don't overflow. For unsigned, overflow is defined
4454 and this is exactly the right thing. */
4455 n_low
= range_binop (code
== MINUS_EXPR
? PLUS_EXPR
: MINUS_EXPR
,
4456 arg0_type
, low
, 0, arg1
, 0);
4457 n_high
= range_binop (code
== MINUS_EXPR
? PLUS_EXPR
: MINUS_EXPR
,
4458 arg0_type
, high
, 1, arg1
, 0);
4459 if ((n_low
!= 0 && TREE_OVERFLOW (n_low
))
4460 || (n_high
!= 0 && TREE_OVERFLOW (n_high
)))
4463 if (TYPE_OVERFLOW_UNDEFINED (arg0_type
))
4464 *strict_overflow_p
= true;
4467 /* Check for an unsigned range which has wrapped around the maximum
4468 value thus making n_high < n_low, and normalize it. */
4469 if (n_low
&& n_high
&& tree_int_cst_lt (n_high
, n_low
))
4471 low
= range_binop (PLUS_EXPR
, arg0_type
, n_high
, 0,
4472 build_int_cst (TREE_TYPE (n_high
), 1), 0);
4473 high
= range_binop (MINUS_EXPR
, arg0_type
, n_low
, 0,
4474 build_int_cst (TREE_TYPE (n_low
), 1), 0);
4476 /* If the range is of the form +/- [ x+1, x ], we won't
4477 be able to normalize it. But then, it represents the
4478 whole range or the empty set, so make it
4480 if (tree_int_cst_equal (n_low
, low
)
4481 && tree_int_cst_equal (n_high
, high
))
4487 low
= n_low
, high
= n_high
;
4495 case NON_LVALUE_EXPR
:
4496 if (TYPE_PRECISION (arg0_type
) > TYPE_PRECISION (exp_type
))
4499 if (! INTEGRAL_TYPE_P (arg0_type
)
4500 || (low
!= 0 && ! int_fits_type_p (low
, arg0_type
))
4501 || (high
!= 0 && ! int_fits_type_p (high
, arg0_type
)))
4504 n_low
= low
, n_high
= high
;
4507 n_low
= fold_convert_loc (loc
, arg0_type
, n_low
);
4510 n_high
= fold_convert_loc (loc
, arg0_type
, n_high
);
4512 /* If we're converting arg0 from an unsigned type, to exp,
4513 a signed type, we will be doing the comparison as unsigned.
4514 The tests above have already verified that LOW and HIGH
4517 So we have to ensure that we will handle large unsigned
4518 values the same way that the current signed bounds treat
4521 if (!TYPE_UNSIGNED (exp_type
) && TYPE_UNSIGNED (arg0_type
))
4525 /* For fixed-point modes, we need to pass the saturating flag
4526 as the 2nd parameter. */
4527 if (ALL_FIXED_POINT_MODE_P (TYPE_MODE (arg0_type
)))
4529 = lang_hooks
.types
.type_for_mode (TYPE_MODE (arg0_type
),
4530 TYPE_SATURATING (arg0_type
));
4533 = lang_hooks
.types
.type_for_mode (TYPE_MODE (arg0_type
), 1);
4535 /* A range without an upper bound is, naturally, unbounded.
4536 Since convert would have cropped a very large value, use
4537 the max value for the destination type. */
4539 = TYPE_MAX_VALUE (equiv_type
) ? TYPE_MAX_VALUE (equiv_type
)
4540 : TYPE_MAX_VALUE (arg0_type
);
4542 if (TYPE_PRECISION (exp_type
) == TYPE_PRECISION (arg0_type
))
4543 high_positive
= fold_build2_loc (loc
, RSHIFT_EXPR
, arg0_type
,
4544 fold_convert_loc (loc
, arg0_type
,
4546 build_int_cst (arg0_type
, 1));
4548 /* If the low bound is specified, "and" the range with the
4549 range for which the original unsigned value will be
4553 if (! merge_ranges (&n_in_p
, &n_low
, &n_high
, 1, n_low
, n_high
,
4554 1, fold_convert_loc (loc
, arg0_type
,
4559 in_p
= (n_in_p
== in_p
);
4563 /* Otherwise, "or" the range with the range of the input
4564 that will be interpreted as negative. */
4565 if (! merge_ranges (&n_in_p
, &n_low
, &n_high
, 0, n_low
, n_high
,
4566 1, fold_convert_loc (loc
, arg0_type
,
4571 in_p
= (in_p
!= n_in_p
);
4585 /* Given EXP, a logical expression, set the range it is testing into
4586 variables denoted by PIN_P, PLOW, and PHIGH. Return the expression
4587 actually being tested. *PLOW and *PHIGH will be made of the same
4588 type as the returned expression. If EXP is not a comparison, we
4589 will most likely not be returning a useful value and range. Set
4590 *STRICT_OVERFLOW_P to true if the return value is only valid
4591 because signed overflow is undefined; otherwise, do not change
4592 *STRICT_OVERFLOW_P. */
4595 make_range (tree exp
, int *pin_p
, tree
*plow
, tree
*phigh
,
4596 bool *strict_overflow_p
)
4598 enum tree_code code
;
4599 tree arg0
, arg1
= NULL_TREE
;
4600 tree exp_type
, nexp
;
4603 location_t loc
= EXPR_LOCATION (exp
);
4605 /* Start with simply saying "EXP != 0" and then look at the code of EXP
4606 and see if we can refine the range. Some of the cases below may not
4607 happen, but it doesn't seem worth worrying about this. We "continue"
4608 the outer loop when we've changed something; otherwise we "break"
4609 the switch, which will "break" the while. */
4612 low
= high
= build_int_cst (TREE_TYPE (exp
), 0);
4616 code
= TREE_CODE (exp
);
4617 exp_type
= TREE_TYPE (exp
);
4620 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code
)))
4622 if (TREE_OPERAND_LENGTH (exp
) > 0)
4623 arg0
= TREE_OPERAND (exp
, 0);
4624 if (TREE_CODE_CLASS (code
) == tcc_binary
4625 || TREE_CODE_CLASS (code
) == tcc_comparison
4626 || (TREE_CODE_CLASS (code
) == tcc_expression
4627 && TREE_OPERAND_LENGTH (exp
) > 1))
4628 arg1
= TREE_OPERAND (exp
, 1);
4630 if (arg0
== NULL_TREE
)
4633 nexp
= make_range_step (loc
, code
, arg0
, arg1
, exp_type
, &low
,
4634 &high
, &in_p
, strict_overflow_p
);
4635 if (nexp
== NULL_TREE
)
4640 /* If EXP is a constant, we can evaluate whether this is true or false. */
4641 if (TREE_CODE (exp
) == INTEGER_CST
)
4643 in_p
= in_p
== (integer_onep (range_binop (GE_EXPR
, integer_type_node
,
4645 && integer_onep (range_binop (LE_EXPR
, integer_type_node
,
4651 *pin_p
= in_p
, *plow
= low
, *phigh
= high
;
4655 /* Given a range, LOW, HIGH, and IN_P, an expression, EXP, and a result
4656 type, TYPE, return an expression to test if EXP is in (or out of, depending
4657 on IN_P) the range. Return 0 if the test couldn't be created. */
4660 build_range_check (location_t loc
, tree type
, tree exp
, int in_p
,
4661 tree low
, tree high
)
4663 tree etype
= TREE_TYPE (exp
), value
;
4665 /* Disable this optimization for function pointer expressions
4666 on targets that require function pointer canonicalization. */
4667 if (targetm
.have_canonicalize_funcptr_for_compare ()
4668 && TREE_CODE (etype
) == POINTER_TYPE
4669 && TREE_CODE (TREE_TYPE (etype
)) == FUNCTION_TYPE
)
4674 value
= build_range_check (loc
, type
, exp
, 1, low
, high
);
4676 return invert_truthvalue_loc (loc
, value
);
4681 if (low
== 0 && high
== 0)
4682 return omit_one_operand_loc (loc
, type
, build_int_cst (type
, 1), exp
);
4685 return fold_build2_loc (loc
, LE_EXPR
, type
, exp
,
4686 fold_convert_loc (loc
, etype
, high
));
4689 return fold_build2_loc (loc
, GE_EXPR
, type
, exp
,
4690 fold_convert_loc (loc
, etype
, low
));
4692 if (operand_equal_p (low
, high
, 0))
4693 return fold_build2_loc (loc
, EQ_EXPR
, type
, exp
,
4694 fold_convert_loc (loc
, etype
, low
));
4696 if (integer_zerop (low
))
4698 if (! TYPE_UNSIGNED (etype
))
4700 etype
= unsigned_type_for (etype
);
4701 high
= fold_convert_loc (loc
, etype
, high
);
4702 exp
= fold_convert_loc (loc
, etype
, exp
);
4704 return build_range_check (loc
, type
, exp
, 1, 0, high
);
4707 /* Optimize (c>=1) && (c<=127) into (signed char)c > 0. */
4708 if (integer_onep (low
) && TREE_CODE (high
) == INTEGER_CST
)
4710 int prec
= TYPE_PRECISION (etype
);
4712 if (wi::mask (prec
- 1, false, prec
) == high
)
4714 if (TYPE_UNSIGNED (etype
))
4716 tree signed_etype
= signed_type_for (etype
);
4717 if (TYPE_PRECISION (signed_etype
) != TYPE_PRECISION (etype
))
4719 = build_nonstandard_integer_type (TYPE_PRECISION (etype
), 0);
4721 etype
= signed_etype
;
4722 exp
= fold_convert_loc (loc
, etype
, exp
);
4724 return fold_build2_loc (loc
, GT_EXPR
, type
, exp
,
4725 build_int_cst (etype
, 0));
4729 /* Optimize (c>=low) && (c<=high) into (c-low>=0) && (c-low<=high-low).
4730 This requires wrap-around arithmetics for the type of the expression.
4731 First make sure that arithmetics in this type is valid, then make sure
4732 that it wraps around. */
4733 if (TREE_CODE (etype
) == ENUMERAL_TYPE
|| TREE_CODE (etype
) == BOOLEAN_TYPE
)
4734 etype
= lang_hooks
.types
.type_for_size (TYPE_PRECISION (etype
),
4735 TYPE_UNSIGNED (etype
));
4737 if (TREE_CODE (etype
) == INTEGER_TYPE
&& !TYPE_OVERFLOW_WRAPS (etype
))
4739 tree utype
, minv
, maxv
;
4741 /* Check if (unsigned) INT_MAX + 1 == (unsigned) INT_MIN
4742 for the type in question, as we rely on this here. */
4743 utype
= unsigned_type_for (etype
);
4744 maxv
= fold_convert_loc (loc
, utype
, TYPE_MAX_VALUE (etype
));
4745 maxv
= range_binop (PLUS_EXPR
, NULL_TREE
, maxv
, 1,
4746 build_int_cst (TREE_TYPE (maxv
), 1), 1);
4747 minv
= fold_convert_loc (loc
, utype
, TYPE_MIN_VALUE (etype
));
4749 if (integer_zerop (range_binop (NE_EXPR
, integer_type_node
,
4756 high
= fold_convert_loc (loc
, etype
, high
);
4757 low
= fold_convert_loc (loc
, etype
, low
);
4758 exp
= fold_convert_loc (loc
, etype
, exp
);
4760 value
= const_binop (MINUS_EXPR
, high
, low
);
4763 if (POINTER_TYPE_P (etype
))
4765 if (value
!= 0 && !TREE_OVERFLOW (value
))
4767 low
= fold_build1_loc (loc
, NEGATE_EXPR
, TREE_TYPE (low
), low
);
4768 return build_range_check (loc
, type
,
4769 fold_build_pointer_plus_loc (loc
, exp
, low
),
4770 1, build_int_cst (etype
, 0), value
);
4775 if (value
!= 0 && !TREE_OVERFLOW (value
))
4776 return build_range_check (loc
, type
,
4777 fold_build2_loc (loc
, MINUS_EXPR
, etype
, exp
, low
),
4778 1, build_int_cst (etype
, 0), value
);
4783 /* Return the predecessor of VAL in its type, handling the infinite case. */
4786 range_predecessor (tree val
)
4788 tree type
= TREE_TYPE (val
);
4790 if (INTEGRAL_TYPE_P (type
)
4791 && operand_equal_p (val
, TYPE_MIN_VALUE (type
), 0))
4794 return range_binop (MINUS_EXPR
, NULL_TREE
, val
, 0,
4795 build_int_cst (TREE_TYPE (val
), 1), 0);
4798 /* Return the successor of VAL in its type, handling the infinite case. */
4801 range_successor (tree val
)
4803 tree type
= TREE_TYPE (val
);
4805 if (INTEGRAL_TYPE_P (type
)
4806 && operand_equal_p (val
, TYPE_MAX_VALUE (type
), 0))
4809 return range_binop (PLUS_EXPR
, NULL_TREE
, val
, 0,
4810 build_int_cst (TREE_TYPE (val
), 1), 0);
4813 /* Given two ranges, see if we can merge them into one. Return 1 if we
4814 can, 0 if we can't. Set the output range into the specified parameters. */
4817 merge_ranges (int *pin_p
, tree
*plow
, tree
*phigh
, int in0_p
, tree low0
,
4818 tree high0
, int in1_p
, tree low1
, tree high1
)
4826 int lowequal
= ((low0
== 0 && low1
== 0)
4827 || integer_onep (range_binop (EQ_EXPR
, integer_type_node
,
4828 low0
, 0, low1
, 0)));
4829 int highequal
= ((high0
== 0 && high1
== 0)
4830 || integer_onep (range_binop (EQ_EXPR
, integer_type_node
,
4831 high0
, 1, high1
, 1)));
4833 /* Make range 0 be the range that starts first, or ends last if they
4834 start at the same value. Swap them if it isn't. */
4835 if (integer_onep (range_binop (GT_EXPR
, integer_type_node
,
4838 && integer_onep (range_binop (GT_EXPR
, integer_type_node
,
4839 high1
, 1, high0
, 1))))
4841 temp
= in0_p
, in0_p
= in1_p
, in1_p
= temp
;
4842 tem
= low0
, low0
= low1
, low1
= tem
;
4843 tem
= high0
, high0
= high1
, high1
= tem
;
4846 /* Now flag two cases, whether the ranges are disjoint or whether the
4847 second range is totally subsumed in the first. Note that the tests
4848 below are simplified by the ones above. */
4849 no_overlap
= integer_onep (range_binop (LT_EXPR
, integer_type_node
,
4850 high0
, 1, low1
, 0));
4851 subset
= integer_onep (range_binop (LE_EXPR
, integer_type_node
,
4852 high1
, 1, high0
, 1));
4854 /* We now have four cases, depending on whether we are including or
4855 excluding the two ranges. */
4858 /* If they don't overlap, the result is false. If the second range
4859 is a subset it is the result. Otherwise, the range is from the start
4860 of the second to the end of the first. */
4862 in_p
= 0, low
= high
= 0;
4864 in_p
= 1, low
= low1
, high
= high1
;
4866 in_p
= 1, low
= low1
, high
= high0
;
4869 else if (in0_p
&& ! in1_p
)
4871 /* If they don't overlap, the result is the first range. If they are
4872 equal, the result is false. If the second range is a subset of the
4873 first, and the ranges begin at the same place, we go from just after
4874 the end of the second range to the end of the first. If the second
4875 range is not a subset of the first, or if it is a subset and both
4876 ranges end at the same place, the range starts at the start of the
4877 first range and ends just before the second range.
4878 Otherwise, we can't describe this as a single range. */
4880 in_p
= 1, low
= low0
, high
= high0
;
4881 else if (lowequal
&& highequal
)
4882 in_p
= 0, low
= high
= 0;
4883 else if (subset
&& lowequal
)
4885 low
= range_successor (high1
);
4890 /* We are in the weird situation where high0 > high1 but
4891 high1 has no successor. Punt. */
4895 else if (! subset
|| highequal
)
4898 high
= range_predecessor (low1
);
4902 /* low0 < low1 but low1 has no predecessor. Punt. */
4910 else if (! in0_p
&& in1_p
)
4912 /* If they don't overlap, the result is the second range. If the second
4913 is a subset of the first, the result is false. Otherwise,
4914 the range starts just after the first range and ends at the
4915 end of the second. */
4917 in_p
= 1, low
= low1
, high
= high1
;
4918 else if (subset
|| highequal
)
4919 in_p
= 0, low
= high
= 0;
4922 low
= range_successor (high0
);
4927 /* high1 > high0 but high0 has no successor. Punt. */
4935 /* The case where we are excluding both ranges. Here the complex case
4936 is if they don't overlap. In that case, the only time we have a
4937 range is if they are adjacent. If the second is a subset of the
4938 first, the result is the first. Otherwise, the range to exclude
4939 starts at the beginning of the first range and ends at the end of the
4943 if (integer_onep (range_binop (EQ_EXPR
, integer_type_node
,
4944 range_successor (high0
),
4946 in_p
= 0, low
= low0
, high
= high1
;
4949 /* Canonicalize - [min, x] into - [-, x]. */
4950 if (low0
&& TREE_CODE (low0
) == INTEGER_CST
)
4951 switch (TREE_CODE (TREE_TYPE (low0
)))
4954 if (TYPE_PRECISION (TREE_TYPE (low0
))
4955 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (low0
))))
4959 if (tree_int_cst_equal (low0
,
4960 TYPE_MIN_VALUE (TREE_TYPE (low0
))))
4964 if (TYPE_UNSIGNED (TREE_TYPE (low0
))
4965 && integer_zerop (low0
))
4972 /* Canonicalize - [x, max] into - [x, -]. */
4973 if (high1
&& TREE_CODE (high1
) == INTEGER_CST
)
4974 switch (TREE_CODE (TREE_TYPE (high1
)))
4977 if (TYPE_PRECISION (TREE_TYPE (high1
))
4978 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (high1
))))
4982 if (tree_int_cst_equal (high1
,
4983 TYPE_MAX_VALUE (TREE_TYPE (high1
))))
4987 if (TYPE_UNSIGNED (TREE_TYPE (high1
))
4988 && integer_zerop (range_binop (PLUS_EXPR
, NULL_TREE
,
4990 build_int_cst (TREE_TYPE (high1
), 1),
4998 /* The ranges might be also adjacent between the maximum and
4999 minimum values of the given type. For
5000 - [{min,-}, x] and - [y, {max,-}] ranges where x + 1 < y
5001 return + [x + 1, y - 1]. */
5002 if (low0
== 0 && high1
== 0)
5004 low
= range_successor (high0
);
5005 high
= range_predecessor (low1
);
5006 if (low
== 0 || high
== 0)
5016 in_p
= 0, low
= low0
, high
= high0
;
5018 in_p
= 0, low
= low0
, high
= high1
;
5021 *pin_p
= in_p
, *plow
= low
, *phigh
= high
;
5026 /* Subroutine of fold, looking inside expressions of the form
5027 A op B ? A : C, where ARG0, ARG1 and ARG2 are the three operands
5028 of the COND_EXPR. This function is being used also to optimize
5029 A op B ? C : A, by reversing the comparison first.
5031 Return a folded expression whose code is not a COND_EXPR
5032 anymore, or NULL_TREE if no folding opportunity is found. */
5035 fold_cond_expr_with_comparison (location_t loc
, tree type
,
5036 tree arg0
, tree arg1
, tree arg2
)
5038 enum tree_code comp_code
= TREE_CODE (arg0
);
5039 tree arg00
= TREE_OPERAND (arg0
, 0);
5040 tree arg01
= TREE_OPERAND (arg0
, 1);
5041 tree arg1_type
= TREE_TYPE (arg1
);
5047 /* If we have A op 0 ? A : -A, consider applying the following
5050 A == 0? A : -A same as -A
5051 A != 0? A : -A same as A
5052 A >= 0? A : -A same as abs (A)
5053 A > 0? A : -A same as abs (A)
5054 A <= 0? A : -A same as -abs (A)
5055 A < 0? A : -A same as -abs (A)
5057 None of these transformations work for modes with signed
5058 zeros. If A is +/-0, the first two transformations will
5059 change the sign of the result (from +0 to -0, or vice
5060 versa). The last four will fix the sign of the result,
5061 even though the original expressions could be positive or
5062 negative, depending on the sign of A.
5064 Note that all these transformations are correct if A is
5065 NaN, since the two alternatives (A and -A) are also NaNs. */
5066 if (!HONOR_SIGNED_ZEROS (element_mode (type
))
5067 && (FLOAT_TYPE_P (TREE_TYPE (arg01
))
5068 ? real_zerop (arg01
)
5069 : integer_zerop (arg01
))
5070 && ((TREE_CODE (arg2
) == NEGATE_EXPR
5071 && operand_equal_p (TREE_OPERAND (arg2
, 0), arg1
, 0))
5072 /* In the case that A is of the form X-Y, '-A' (arg2) may
5073 have already been folded to Y-X, check for that. */
5074 || (TREE_CODE (arg1
) == MINUS_EXPR
5075 && TREE_CODE (arg2
) == MINUS_EXPR
5076 && operand_equal_p (TREE_OPERAND (arg1
, 0),
5077 TREE_OPERAND (arg2
, 1), 0)
5078 && operand_equal_p (TREE_OPERAND (arg1
, 1),
5079 TREE_OPERAND (arg2
, 0), 0))))
5084 tem
= fold_convert_loc (loc
, arg1_type
, arg1
);
5085 return pedantic_non_lvalue_loc (loc
,
5086 fold_convert_loc (loc
, type
,
5087 negate_expr (tem
)));
5090 return pedantic_non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg1
));
5093 if (flag_trapping_math
)
5098 if (TYPE_UNSIGNED (TREE_TYPE (arg1
)))
5100 tem
= fold_build1_loc (loc
, ABS_EXPR
, TREE_TYPE (arg1
), arg1
);
5101 return pedantic_non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, tem
));
5104 if (flag_trapping_math
)
5109 if (TYPE_UNSIGNED (TREE_TYPE (arg1
)))
5111 tem
= fold_build1_loc (loc
, ABS_EXPR
, TREE_TYPE (arg1
), arg1
);
5112 return negate_expr (fold_convert_loc (loc
, type
, tem
));
5114 gcc_assert (TREE_CODE_CLASS (comp_code
) == tcc_comparison
);
5118 /* A != 0 ? A : 0 is simply A, unless A is -0. Likewise
5119 A == 0 ? A : 0 is always 0 unless A is -0. Note that
5120 both transformations are correct when A is NaN: A != 0
5121 is then true, and A == 0 is false. */
5123 if (!HONOR_SIGNED_ZEROS (element_mode (type
))
5124 && integer_zerop (arg01
) && integer_zerop (arg2
))
5126 if (comp_code
== NE_EXPR
)
5127 return pedantic_non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg1
));
5128 else if (comp_code
== EQ_EXPR
)
5129 return build_zero_cst (type
);
5132 /* Try some transformations of A op B ? A : B.
5134 A == B? A : B same as B
5135 A != B? A : B same as A
5136 A >= B? A : B same as max (A, B)
5137 A > B? A : B same as max (B, A)
5138 A <= B? A : B same as min (A, B)
5139 A < B? A : B same as min (B, A)
5141 As above, these transformations don't work in the presence
5142 of signed zeros. For example, if A and B are zeros of
5143 opposite sign, the first two transformations will change
5144 the sign of the result. In the last four, the original
5145 expressions give different results for (A=+0, B=-0) and
5146 (A=-0, B=+0), but the transformed expressions do not.
5148 The first two transformations are correct if either A or B
5149 is a NaN. In the first transformation, the condition will
5150 be false, and B will indeed be chosen. In the case of the
5151 second transformation, the condition A != B will be true,
5152 and A will be chosen.
5154 The conversions to max() and min() are not correct if B is
5155 a number and A is not. The conditions in the original
5156 expressions will be false, so all four give B. The min()
5157 and max() versions would give a NaN instead. */
5158 if (!HONOR_SIGNED_ZEROS (element_mode (type
))
5159 && operand_equal_for_comparison_p (arg01
, arg2
, arg00
)
5160 /* Avoid these transformations if the COND_EXPR may be used
5161 as an lvalue in the C++ front-end. PR c++/19199. */
5163 || VECTOR_TYPE_P (type
)
5164 || (! lang_GNU_CXX ()
5165 && strcmp (lang_hooks
.name
, "GNU Objective-C++") != 0)
5166 || ! maybe_lvalue_p (arg1
)
5167 || ! maybe_lvalue_p (arg2
)))
5169 tree comp_op0
= arg00
;
5170 tree comp_op1
= arg01
;
5171 tree comp_type
= TREE_TYPE (comp_op0
);
5173 /* Avoid adding NOP_EXPRs in case this is an lvalue. */
5174 if (TYPE_MAIN_VARIANT (comp_type
) == TYPE_MAIN_VARIANT (type
))
5184 return pedantic_non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg2
));
5186 return pedantic_non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg1
));
5191 /* In C++ a ?: expression can be an lvalue, so put the
5192 operand which will be used if they are equal first
5193 so that we can convert this back to the
5194 corresponding COND_EXPR. */
5195 if (!HONOR_NANS (arg1
))
5197 comp_op0
= fold_convert_loc (loc
, comp_type
, comp_op0
);
5198 comp_op1
= fold_convert_loc (loc
, comp_type
, comp_op1
);
5199 tem
= (comp_code
== LE_EXPR
|| comp_code
== UNLE_EXPR
)
5200 ? fold_build2_loc (loc
, MIN_EXPR
, comp_type
, comp_op0
, comp_op1
)
5201 : fold_build2_loc (loc
, MIN_EXPR
, comp_type
,
5202 comp_op1
, comp_op0
);
5203 return pedantic_non_lvalue_loc (loc
,
5204 fold_convert_loc (loc
, type
, tem
));
5211 if (!HONOR_NANS (arg1
))
5213 comp_op0
= fold_convert_loc (loc
, comp_type
, comp_op0
);
5214 comp_op1
= fold_convert_loc (loc
, comp_type
, comp_op1
);
5215 tem
= (comp_code
== GE_EXPR
|| comp_code
== UNGE_EXPR
)
5216 ? fold_build2_loc (loc
, MAX_EXPR
, comp_type
, comp_op0
, comp_op1
)
5217 : fold_build2_loc (loc
, MAX_EXPR
, comp_type
,
5218 comp_op1
, comp_op0
);
5219 return pedantic_non_lvalue_loc (loc
,
5220 fold_convert_loc (loc
, type
, tem
));
5224 if (!HONOR_NANS (arg1
))
5225 return pedantic_non_lvalue_loc (loc
,
5226 fold_convert_loc (loc
, type
, arg2
));
5229 if (!HONOR_NANS (arg1
))
5230 return pedantic_non_lvalue_loc (loc
,
5231 fold_convert_loc (loc
, type
, arg1
));
5234 gcc_assert (TREE_CODE_CLASS (comp_code
) == tcc_comparison
);
5239 /* If this is A op C1 ? A : C2 with C1 and C2 constant integers,
5240 we might still be able to simplify this. For example,
5241 if C1 is one less or one more than C2, this might have started
5242 out as a MIN or MAX and been transformed by this function.
5243 Only good for INTEGER_TYPEs, because we need TYPE_MAX_VALUE. */
5245 if (INTEGRAL_TYPE_P (type
)
5246 && TREE_CODE (arg01
) == INTEGER_CST
5247 && TREE_CODE (arg2
) == INTEGER_CST
)
5251 if (TREE_CODE (arg1
) == INTEGER_CST
)
5253 /* We can replace A with C1 in this case. */
5254 arg1
= fold_convert_loc (loc
, type
, arg01
);
5255 return fold_build3_loc (loc
, COND_EXPR
, type
, arg0
, arg1
, arg2
);
5258 /* If C1 is C2 + 1, this is min(A, C2), but use ARG00's type for
5259 MIN_EXPR, to preserve the signedness of the comparison. */
5260 if (! operand_equal_p (arg2
, TYPE_MAX_VALUE (type
),
5262 && operand_equal_p (arg01
,
5263 const_binop (PLUS_EXPR
, arg2
,
5264 build_int_cst (type
, 1)),
5267 tem
= fold_build2_loc (loc
, MIN_EXPR
, TREE_TYPE (arg00
), arg00
,
5268 fold_convert_loc (loc
, TREE_TYPE (arg00
),
5270 return pedantic_non_lvalue_loc (loc
,
5271 fold_convert_loc (loc
, type
, tem
));
5276 /* If C1 is C2 - 1, this is min(A, C2), with the same care
5278 if (! operand_equal_p (arg2
, TYPE_MIN_VALUE (type
),
5280 && operand_equal_p (arg01
,
5281 const_binop (MINUS_EXPR
, arg2
,
5282 build_int_cst (type
, 1)),
5285 tem
= fold_build2_loc (loc
, MIN_EXPR
, TREE_TYPE (arg00
), arg00
,
5286 fold_convert_loc (loc
, TREE_TYPE (arg00
),
5288 return pedantic_non_lvalue_loc (loc
,
5289 fold_convert_loc (loc
, type
, tem
));
5294 /* If C1 is C2 - 1, this is max(A, C2), but use ARG00's type for
5295 MAX_EXPR, to preserve the signedness of the comparison. */
5296 if (! operand_equal_p (arg2
, TYPE_MIN_VALUE (type
),
5298 && operand_equal_p (arg01
,
5299 const_binop (MINUS_EXPR
, arg2
,
5300 build_int_cst (type
, 1)),
5303 tem
= fold_build2_loc (loc
, MAX_EXPR
, TREE_TYPE (arg00
), arg00
,
5304 fold_convert_loc (loc
, TREE_TYPE (arg00
),
5306 return pedantic_non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, tem
));
5311 /* If C1 is C2 + 1, this is max(A, C2), with the same care as above. */
5312 if (! operand_equal_p (arg2
, TYPE_MAX_VALUE (type
),
5314 && operand_equal_p (arg01
,
5315 const_binop (PLUS_EXPR
, arg2
,
5316 build_int_cst (type
, 1)),
5319 tem
= fold_build2_loc (loc
, MAX_EXPR
, TREE_TYPE (arg00
), arg00
,
5320 fold_convert_loc (loc
, TREE_TYPE (arg00
),
5322 return pedantic_non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, tem
));
5336 #ifndef LOGICAL_OP_NON_SHORT_CIRCUIT
5337 #define LOGICAL_OP_NON_SHORT_CIRCUIT \
5338 (BRANCH_COST (optimize_function_for_speed_p (cfun), \
5342 /* EXP is some logical combination of boolean tests. See if we can
5343 merge it into some range test. Return the new tree if so. */
5346 fold_range_test (location_t loc
, enum tree_code code
, tree type
,
5349 int or_op
= (code
== TRUTH_ORIF_EXPR
5350 || code
== TRUTH_OR_EXPR
);
5351 int in0_p
, in1_p
, in_p
;
5352 tree low0
, low1
, low
, high0
, high1
, high
;
5353 bool strict_overflow_p
= false;
5355 const char * const warnmsg
= G_("assuming signed overflow does not occur "
5356 "when simplifying range test");
5358 if (!INTEGRAL_TYPE_P (type
))
5361 lhs
= make_range (op0
, &in0_p
, &low0
, &high0
, &strict_overflow_p
);
5362 rhs
= make_range (op1
, &in1_p
, &low1
, &high1
, &strict_overflow_p
);
5364 /* If this is an OR operation, invert both sides; we will invert
5365 again at the end. */
5367 in0_p
= ! in0_p
, in1_p
= ! in1_p
;
5369 /* If both expressions are the same, if we can merge the ranges, and we
5370 can build the range test, return it or it inverted. If one of the
5371 ranges is always true or always false, consider it to be the same
5372 expression as the other. */
5373 if ((lhs
== 0 || rhs
== 0 || operand_equal_p (lhs
, rhs
, 0))
5374 && merge_ranges (&in_p
, &low
, &high
, in0_p
, low0
, high0
,
5376 && 0 != (tem
= (build_range_check (loc
, type
,
5378 : rhs
!= 0 ? rhs
: integer_zero_node
,
5381 if (strict_overflow_p
)
5382 fold_overflow_warning (warnmsg
, WARN_STRICT_OVERFLOW_COMPARISON
);
5383 return or_op
? invert_truthvalue_loc (loc
, tem
) : tem
;
5386 /* On machines where the branch cost is expensive, if this is a
5387 short-circuited branch and the underlying object on both sides
5388 is the same, make a non-short-circuit operation. */
5389 else if (LOGICAL_OP_NON_SHORT_CIRCUIT
5390 && lhs
!= 0 && rhs
!= 0
5391 && (code
== TRUTH_ANDIF_EXPR
5392 || code
== TRUTH_ORIF_EXPR
)
5393 && operand_equal_p (lhs
, rhs
, 0))
5395 /* If simple enough, just rewrite. Otherwise, make a SAVE_EXPR
5396 unless we are at top level or LHS contains a PLACEHOLDER_EXPR, in
5397 which cases we can't do this. */
5398 if (simple_operand_p (lhs
))
5399 return build2_loc (loc
, code
== TRUTH_ANDIF_EXPR
5400 ? TRUTH_AND_EXPR
: TRUTH_OR_EXPR
,
5403 else if (!lang_hooks
.decls
.global_bindings_p ()
5404 && !CONTAINS_PLACEHOLDER_P (lhs
))
5406 tree common
= save_expr (lhs
);
5408 if (0 != (lhs
= build_range_check (loc
, type
, common
,
5409 or_op
? ! in0_p
: in0_p
,
5411 && (0 != (rhs
= build_range_check (loc
, type
, common
,
5412 or_op
? ! in1_p
: in1_p
,
5415 if (strict_overflow_p
)
5416 fold_overflow_warning (warnmsg
,
5417 WARN_STRICT_OVERFLOW_COMPARISON
);
5418 return build2_loc (loc
, code
== TRUTH_ANDIF_EXPR
5419 ? TRUTH_AND_EXPR
: TRUTH_OR_EXPR
,
5428 /* Subroutine for fold_truth_andor_1: C is an INTEGER_CST interpreted as a P
5429 bit value. Arrange things so the extra bits will be set to zero if and
5430 only if C is signed-extended to its full width. If MASK is nonzero,
5431 it is an INTEGER_CST that should be AND'ed with the extra bits. */
5434 unextend (tree c
, int p
, int unsignedp
, tree mask
)
5436 tree type
= TREE_TYPE (c
);
5437 int modesize
= GET_MODE_BITSIZE (TYPE_MODE (type
));
5440 if (p
== modesize
|| unsignedp
)
5443 /* We work by getting just the sign bit into the low-order bit, then
5444 into the high-order bit, then sign-extend. We then XOR that value
5446 temp
= build_int_cst (TREE_TYPE (c
), wi::extract_uhwi (c
, p
- 1, 1));
5448 /* We must use a signed type in order to get an arithmetic right shift.
5449 However, we must also avoid introducing accidental overflows, so that
5450 a subsequent call to integer_zerop will work. Hence we must
5451 do the type conversion here. At this point, the constant is either
5452 zero or one, and the conversion to a signed type can never overflow.
5453 We could get an overflow if this conversion is done anywhere else. */
5454 if (TYPE_UNSIGNED (type
))
5455 temp
= fold_convert (signed_type_for (type
), temp
);
5457 temp
= const_binop (LSHIFT_EXPR
, temp
, size_int (modesize
- 1));
5458 temp
= const_binop (RSHIFT_EXPR
, temp
, size_int (modesize
- p
- 1));
5460 temp
= const_binop (BIT_AND_EXPR
, temp
,
5461 fold_convert (TREE_TYPE (c
), mask
));
5462 /* If necessary, convert the type back to match the type of C. */
5463 if (TYPE_UNSIGNED (type
))
5464 temp
= fold_convert (type
, temp
);
5466 return fold_convert (type
, const_binop (BIT_XOR_EXPR
, c
, temp
));
5469 /* For an expression that has the form
5473 we can drop one of the inner expressions and simplify to
5477 LOC is the location of the resulting expression. OP is the inner
5478 logical operation; the left-hand side in the examples above, while CMPOP
5479 is the right-hand side. RHS_ONLY is used to prevent us from accidentally
5480 removing a condition that guards another, as in
5481 (A != NULL && A->...) || A == NULL
5482 which we must not transform. If RHS_ONLY is true, only eliminate the
5483 right-most operand of the inner logical operation. */
5486 merge_truthop_with_opposite_arm (location_t loc
, tree op
, tree cmpop
,
5489 tree type
= TREE_TYPE (cmpop
);
5490 enum tree_code code
= TREE_CODE (cmpop
);
5491 enum tree_code truthop_code
= TREE_CODE (op
);
5492 tree lhs
= TREE_OPERAND (op
, 0);
5493 tree rhs
= TREE_OPERAND (op
, 1);
5494 tree orig_lhs
= lhs
, orig_rhs
= rhs
;
5495 enum tree_code rhs_code
= TREE_CODE (rhs
);
5496 enum tree_code lhs_code
= TREE_CODE (lhs
);
5497 enum tree_code inv_code
;
5499 if (TREE_SIDE_EFFECTS (op
) || TREE_SIDE_EFFECTS (cmpop
))
5502 if (TREE_CODE_CLASS (code
) != tcc_comparison
)
5505 if (rhs_code
== truthop_code
)
5507 tree newrhs
= merge_truthop_with_opposite_arm (loc
, rhs
, cmpop
, rhs_only
);
5508 if (newrhs
!= NULL_TREE
)
5511 rhs_code
= TREE_CODE (rhs
);
5514 if (lhs_code
== truthop_code
&& !rhs_only
)
5516 tree newlhs
= merge_truthop_with_opposite_arm (loc
, lhs
, cmpop
, false);
5517 if (newlhs
!= NULL_TREE
)
5520 lhs_code
= TREE_CODE (lhs
);
5524 inv_code
= invert_tree_comparison (code
, HONOR_NANS (type
));
5525 if (inv_code
== rhs_code
5526 && operand_equal_p (TREE_OPERAND (rhs
, 0), TREE_OPERAND (cmpop
, 0), 0)
5527 && operand_equal_p (TREE_OPERAND (rhs
, 1), TREE_OPERAND (cmpop
, 1), 0))
5529 if (!rhs_only
&& inv_code
== lhs_code
5530 && operand_equal_p (TREE_OPERAND (lhs
, 0), TREE_OPERAND (cmpop
, 0), 0)
5531 && operand_equal_p (TREE_OPERAND (lhs
, 1), TREE_OPERAND (cmpop
, 1), 0))
5533 if (rhs
!= orig_rhs
|| lhs
!= orig_lhs
)
5534 return fold_build2_loc (loc
, truthop_code
, TREE_TYPE (cmpop
),
5539 /* Find ways of folding logical expressions of LHS and RHS:
5540 Try to merge two comparisons to the same innermost item.
5541 Look for range tests like "ch >= '0' && ch <= '9'".
5542 Look for combinations of simple terms on machines with expensive branches
5543 and evaluate the RHS unconditionally.
5545 For example, if we have p->a == 2 && p->b == 4 and we can make an
5546 object large enough to span both A and B, we can do this with a comparison
5547 against the object ANDed with the a mask.
5549 If we have p->a == q->a && p->b == q->b, we may be able to use bit masking
5550 operations to do this with one comparison.
5552 We check for both normal comparisons and the BIT_AND_EXPRs made this by
5553 function and the one above.
5555 CODE is the logical operation being done. It can be TRUTH_ANDIF_EXPR,
5556 TRUTH_AND_EXPR, TRUTH_ORIF_EXPR, or TRUTH_OR_EXPR.
5558 TRUTH_TYPE is the type of the logical operand and LHS and RHS are its
5561 We return the simplified tree or 0 if no optimization is possible. */
5564 fold_truth_andor_1 (location_t loc
, enum tree_code code
, tree truth_type
,
5567 /* If this is the "or" of two comparisons, we can do something if
5568 the comparisons are NE_EXPR. If this is the "and", we can do something
5569 if the comparisons are EQ_EXPR. I.e.,
5570 (a->b == 2 && a->c == 4) can become (a->new == NEW).
5572 WANTED_CODE is this operation code. For single bit fields, we can
5573 convert EQ_EXPR to NE_EXPR so we need not reject the "wrong"
5574 comparison for one-bit fields. */
5576 enum tree_code wanted_code
;
5577 enum tree_code lcode
, rcode
;
5578 tree ll_arg
, lr_arg
, rl_arg
, rr_arg
;
5579 tree ll_inner
, lr_inner
, rl_inner
, rr_inner
;
5580 HOST_WIDE_INT ll_bitsize
, ll_bitpos
, lr_bitsize
, lr_bitpos
;
5581 HOST_WIDE_INT rl_bitsize
, rl_bitpos
, rr_bitsize
, rr_bitpos
;
5582 HOST_WIDE_INT xll_bitpos
, xlr_bitpos
, xrl_bitpos
, xrr_bitpos
;
5583 HOST_WIDE_INT lnbitsize
, lnbitpos
, rnbitsize
, rnbitpos
;
5584 int ll_unsignedp
, lr_unsignedp
, rl_unsignedp
, rr_unsignedp
;
5585 int ll_reversep
, lr_reversep
, rl_reversep
, rr_reversep
;
5586 machine_mode ll_mode
, lr_mode
, rl_mode
, rr_mode
;
5587 machine_mode lnmode
, rnmode
;
5588 tree ll_mask
, lr_mask
, rl_mask
, rr_mask
;
5589 tree ll_and_mask
, lr_and_mask
, rl_and_mask
, rr_and_mask
;
5590 tree l_const
, r_const
;
5591 tree lntype
, rntype
, result
;
5592 HOST_WIDE_INT first_bit
, end_bit
;
5595 /* Start by getting the comparison codes. Fail if anything is volatile.
5596 If one operand is a BIT_AND_EXPR with the constant one, treat it as if
5597 it were surrounded with a NE_EXPR. */
5599 if (TREE_SIDE_EFFECTS (lhs
) || TREE_SIDE_EFFECTS (rhs
))
5602 lcode
= TREE_CODE (lhs
);
5603 rcode
= TREE_CODE (rhs
);
5605 if (lcode
== BIT_AND_EXPR
&& integer_onep (TREE_OPERAND (lhs
, 1)))
5607 lhs
= build2 (NE_EXPR
, truth_type
, lhs
,
5608 build_int_cst (TREE_TYPE (lhs
), 0));
5612 if (rcode
== BIT_AND_EXPR
&& integer_onep (TREE_OPERAND (rhs
, 1)))
5614 rhs
= build2 (NE_EXPR
, truth_type
, rhs
,
5615 build_int_cst (TREE_TYPE (rhs
), 0));
5619 if (TREE_CODE_CLASS (lcode
) != tcc_comparison
5620 || TREE_CODE_CLASS (rcode
) != tcc_comparison
)
5623 ll_arg
= TREE_OPERAND (lhs
, 0);
5624 lr_arg
= TREE_OPERAND (lhs
, 1);
5625 rl_arg
= TREE_OPERAND (rhs
, 0);
5626 rr_arg
= TREE_OPERAND (rhs
, 1);
5628 /* Simplify (x<y) && (x==y) into (x<=y) and related optimizations. */
5629 if (simple_operand_p (ll_arg
)
5630 && simple_operand_p (lr_arg
))
5632 if (operand_equal_p (ll_arg
, rl_arg
, 0)
5633 && operand_equal_p (lr_arg
, rr_arg
, 0))
5635 result
= combine_comparisons (loc
, code
, lcode
, rcode
,
5636 truth_type
, ll_arg
, lr_arg
);
5640 else if (operand_equal_p (ll_arg
, rr_arg
, 0)
5641 && operand_equal_p (lr_arg
, rl_arg
, 0))
5643 result
= combine_comparisons (loc
, code
, lcode
,
5644 swap_tree_comparison (rcode
),
5645 truth_type
, ll_arg
, lr_arg
);
5651 code
= ((code
== TRUTH_AND_EXPR
|| code
== TRUTH_ANDIF_EXPR
)
5652 ? TRUTH_AND_EXPR
: TRUTH_OR_EXPR
);
5654 /* If the RHS can be evaluated unconditionally and its operands are
5655 simple, it wins to evaluate the RHS unconditionally on machines
5656 with expensive branches. In this case, this isn't a comparison
5657 that can be merged. */
5659 if (BRANCH_COST (optimize_function_for_speed_p (cfun
),
5661 && ! FLOAT_TYPE_P (TREE_TYPE (rl_arg
))
5662 && simple_operand_p (rl_arg
)
5663 && simple_operand_p (rr_arg
))
5665 /* Convert (a != 0) || (b != 0) into (a | b) != 0. */
5666 if (code
== TRUTH_OR_EXPR
5667 && lcode
== NE_EXPR
&& integer_zerop (lr_arg
)
5668 && rcode
== NE_EXPR
&& integer_zerop (rr_arg
)
5669 && TREE_TYPE (ll_arg
) == TREE_TYPE (rl_arg
)
5670 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg
)))
5671 return build2_loc (loc
, NE_EXPR
, truth_type
,
5672 build2 (BIT_IOR_EXPR
, TREE_TYPE (ll_arg
),
5674 build_int_cst (TREE_TYPE (ll_arg
), 0));
5676 /* Convert (a == 0) && (b == 0) into (a | b) == 0. */
5677 if (code
== TRUTH_AND_EXPR
5678 && lcode
== EQ_EXPR
&& integer_zerop (lr_arg
)
5679 && rcode
== EQ_EXPR
&& integer_zerop (rr_arg
)
5680 && TREE_TYPE (ll_arg
) == TREE_TYPE (rl_arg
)
5681 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg
)))
5682 return build2_loc (loc
, EQ_EXPR
, truth_type
,
5683 build2 (BIT_IOR_EXPR
, TREE_TYPE (ll_arg
),
5685 build_int_cst (TREE_TYPE (ll_arg
), 0));
5688 /* See if the comparisons can be merged. Then get all the parameters for
5691 if ((lcode
!= EQ_EXPR
&& lcode
!= NE_EXPR
)
5692 || (rcode
!= EQ_EXPR
&& rcode
!= NE_EXPR
))
5695 ll_reversep
= lr_reversep
= rl_reversep
= rr_reversep
= 0;
5697 ll_inner
= decode_field_reference (loc
, &ll_arg
,
5698 &ll_bitsize
, &ll_bitpos
, &ll_mode
,
5699 &ll_unsignedp
, &ll_reversep
, &volatilep
,
5700 &ll_mask
, &ll_and_mask
);
5701 lr_inner
= decode_field_reference (loc
, &lr_arg
,
5702 &lr_bitsize
, &lr_bitpos
, &lr_mode
,
5703 &lr_unsignedp
, &lr_reversep
, &volatilep
,
5704 &lr_mask
, &lr_and_mask
);
5705 rl_inner
= decode_field_reference (loc
, &rl_arg
,
5706 &rl_bitsize
, &rl_bitpos
, &rl_mode
,
5707 &rl_unsignedp
, &rl_reversep
, &volatilep
,
5708 &rl_mask
, &rl_and_mask
);
5709 rr_inner
= decode_field_reference (loc
, &rr_arg
,
5710 &rr_bitsize
, &rr_bitpos
, &rr_mode
,
5711 &rr_unsignedp
, &rr_reversep
, &volatilep
,
5712 &rr_mask
, &rr_and_mask
);
5714 /* It must be true that the inner operation on the lhs of each
5715 comparison must be the same if we are to be able to do anything.
5716 Then see if we have constants. If not, the same must be true for
5719 || ll_reversep
!= rl_reversep
5720 || ll_inner
== 0 || rl_inner
== 0
5721 || ! operand_equal_p (ll_inner
, rl_inner
, 0))
5724 if (TREE_CODE (lr_arg
) == INTEGER_CST
5725 && TREE_CODE (rr_arg
) == INTEGER_CST
)
5727 l_const
= lr_arg
, r_const
= rr_arg
;
5728 lr_reversep
= ll_reversep
;
5730 else if (lr_reversep
!= rr_reversep
5731 || lr_inner
== 0 || rr_inner
== 0
5732 || ! operand_equal_p (lr_inner
, rr_inner
, 0))
5735 l_const
= r_const
= 0;
5737 /* If either comparison code is not correct for our logical operation,
5738 fail. However, we can convert a one-bit comparison against zero into
5739 the opposite comparison against that bit being set in the field. */
5741 wanted_code
= (code
== TRUTH_AND_EXPR
? EQ_EXPR
: NE_EXPR
);
5742 if (lcode
!= wanted_code
)
5744 if (l_const
&& integer_zerop (l_const
) && integer_pow2p (ll_mask
))
5746 /* Make the left operand unsigned, since we are only interested
5747 in the value of one bit. Otherwise we are doing the wrong
5756 /* This is analogous to the code for l_const above. */
5757 if (rcode
!= wanted_code
)
5759 if (r_const
&& integer_zerop (r_const
) && integer_pow2p (rl_mask
))
5768 /* See if we can find a mode that contains both fields being compared on
5769 the left. If we can't, fail. Otherwise, update all constants and masks
5770 to be relative to a field of that size. */
5771 first_bit
= MIN (ll_bitpos
, rl_bitpos
);
5772 end_bit
= MAX (ll_bitpos
+ ll_bitsize
, rl_bitpos
+ rl_bitsize
);
5773 lnmode
= get_best_mode (end_bit
- first_bit
, first_bit
, 0, 0,
5774 TYPE_ALIGN (TREE_TYPE (ll_inner
)), word_mode
,
5776 if (lnmode
== VOIDmode
)
5779 lnbitsize
= GET_MODE_BITSIZE (lnmode
);
5780 lnbitpos
= first_bit
& ~ (lnbitsize
- 1);
5781 lntype
= lang_hooks
.types
.type_for_size (lnbitsize
, 1);
5782 xll_bitpos
= ll_bitpos
- lnbitpos
, xrl_bitpos
= rl_bitpos
- lnbitpos
;
5784 if (ll_reversep
? !BYTES_BIG_ENDIAN
: BYTES_BIG_ENDIAN
)
5786 xll_bitpos
= lnbitsize
- xll_bitpos
- ll_bitsize
;
5787 xrl_bitpos
= lnbitsize
- xrl_bitpos
- rl_bitsize
;
5790 ll_mask
= const_binop (LSHIFT_EXPR
, fold_convert_loc (loc
, lntype
, ll_mask
),
5791 size_int (xll_bitpos
));
5792 rl_mask
= const_binop (LSHIFT_EXPR
, fold_convert_loc (loc
, lntype
, rl_mask
),
5793 size_int (xrl_bitpos
));
5797 l_const
= fold_convert_loc (loc
, lntype
, l_const
);
5798 l_const
= unextend (l_const
, ll_bitsize
, ll_unsignedp
, ll_and_mask
);
5799 l_const
= const_binop (LSHIFT_EXPR
, l_const
, size_int (xll_bitpos
));
5800 if (! integer_zerop (const_binop (BIT_AND_EXPR
, l_const
,
5801 fold_build1_loc (loc
, BIT_NOT_EXPR
,
5804 warning (0, "comparison is always %d", wanted_code
== NE_EXPR
);
5806 return constant_boolean_node (wanted_code
== NE_EXPR
, truth_type
);
5811 r_const
= fold_convert_loc (loc
, lntype
, r_const
);
5812 r_const
= unextend (r_const
, rl_bitsize
, rl_unsignedp
, rl_and_mask
);
5813 r_const
= const_binop (LSHIFT_EXPR
, r_const
, size_int (xrl_bitpos
));
5814 if (! integer_zerop (const_binop (BIT_AND_EXPR
, r_const
,
5815 fold_build1_loc (loc
, BIT_NOT_EXPR
,
5818 warning (0, "comparison is always %d", wanted_code
== NE_EXPR
);
5820 return constant_boolean_node (wanted_code
== NE_EXPR
, truth_type
);
5824 /* If the right sides are not constant, do the same for it. Also,
5825 disallow this optimization if a size or signedness mismatch occurs
5826 between the left and right sides. */
5829 if (ll_bitsize
!= lr_bitsize
|| rl_bitsize
!= rr_bitsize
5830 || ll_unsignedp
!= lr_unsignedp
|| rl_unsignedp
!= rr_unsignedp
5831 /* Make sure the two fields on the right
5832 correspond to the left without being swapped. */
5833 || ll_bitpos
- rl_bitpos
!= lr_bitpos
- rr_bitpos
)
5836 first_bit
= MIN (lr_bitpos
, rr_bitpos
);
5837 end_bit
= MAX (lr_bitpos
+ lr_bitsize
, rr_bitpos
+ rr_bitsize
);
5838 rnmode
= get_best_mode (end_bit
- first_bit
, first_bit
, 0, 0,
5839 TYPE_ALIGN (TREE_TYPE (lr_inner
)), word_mode
,
5841 if (rnmode
== VOIDmode
)
5844 rnbitsize
= GET_MODE_BITSIZE (rnmode
);
5845 rnbitpos
= first_bit
& ~ (rnbitsize
- 1);
5846 rntype
= lang_hooks
.types
.type_for_size (rnbitsize
, 1);
5847 xlr_bitpos
= lr_bitpos
- rnbitpos
, xrr_bitpos
= rr_bitpos
- rnbitpos
;
5849 if (lr_reversep
? !BYTES_BIG_ENDIAN
: BYTES_BIG_ENDIAN
)
5851 xlr_bitpos
= rnbitsize
- xlr_bitpos
- lr_bitsize
;
5852 xrr_bitpos
= rnbitsize
- xrr_bitpos
- rr_bitsize
;
5855 lr_mask
= const_binop (LSHIFT_EXPR
, fold_convert_loc (loc
,
5857 size_int (xlr_bitpos
));
5858 rr_mask
= const_binop (LSHIFT_EXPR
, fold_convert_loc (loc
,
5860 size_int (xrr_bitpos
));
5862 /* Make a mask that corresponds to both fields being compared.
5863 Do this for both items being compared. If the operands are the
5864 same size and the bits being compared are in the same position
5865 then we can do this by masking both and comparing the masked
5867 ll_mask
= const_binop (BIT_IOR_EXPR
, ll_mask
, rl_mask
);
5868 lr_mask
= const_binop (BIT_IOR_EXPR
, lr_mask
, rr_mask
);
5869 if (lnbitsize
== rnbitsize
&& xll_bitpos
== xlr_bitpos
)
5871 lhs
= make_bit_field_ref (loc
, ll_inner
, ll_arg
,
5872 lntype
, lnbitsize
, lnbitpos
,
5873 ll_unsignedp
|| rl_unsignedp
, ll_reversep
);
5874 if (! all_ones_mask_p (ll_mask
, lnbitsize
))
5875 lhs
= build2 (BIT_AND_EXPR
, lntype
, lhs
, ll_mask
);
5877 rhs
= make_bit_field_ref (loc
, lr_inner
, lr_arg
,
5878 rntype
, rnbitsize
, rnbitpos
,
5879 lr_unsignedp
|| rr_unsignedp
, lr_reversep
);
5880 if (! all_ones_mask_p (lr_mask
, rnbitsize
))
5881 rhs
= build2 (BIT_AND_EXPR
, rntype
, rhs
, lr_mask
);
5883 return build2_loc (loc
, wanted_code
, truth_type
, lhs
, rhs
);
5886 /* There is still another way we can do something: If both pairs of
5887 fields being compared are adjacent, we may be able to make a wider
5888 field containing them both.
5890 Note that we still must mask the lhs/rhs expressions. Furthermore,
5891 the mask must be shifted to account for the shift done by
5892 make_bit_field_ref. */
5893 if ((ll_bitsize
+ ll_bitpos
== rl_bitpos
5894 && lr_bitsize
+ lr_bitpos
== rr_bitpos
)
5895 || (ll_bitpos
== rl_bitpos
+ rl_bitsize
5896 && lr_bitpos
== rr_bitpos
+ rr_bitsize
))
5900 lhs
= make_bit_field_ref (loc
, ll_inner
, ll_arg
, lntype
,
5901 ll_bitsize
+ rl_bitsize
,
5902 MIN (ll_bitpos
, rl_bitpos
),
5903 ll_unsignedp
, ll_reversep
);
5904 rhs
= make_bit_field_ref (loc
, lr_inner
, lr_arg
, rntype
,
5905 lr_bitsize
+ rr_bitsize
,
5906 MIN (lr_bitpos
, rr_bitpos
),
5907 lr_unsignedp
, lr_reversep
);
5909 ll_mask
= const_binop (RSHIFT_EXPR
, ll_mask
,
5910 size_int (MIN (xll_bitpos
, xrl_bitpos
)));
5911 lr_mask
= const_binop (RSHIFT_EXPR
, lr_mask
,
5912 size_int (MIN (xlr_bitpos
, xrr_bitpos
)));
5914 /* Convert to the smaller type before masking out unwanted bits. */
5916 if (lntype
!= rntype
)
5918 if (lnbitsize
> rnbitsize
)
5920 lhs
= fold_convert_loc (loc
, rntype
, lhs
);
5921 ll_mask
= fold_convert_loc (loc
, rntype
, ll_mask
);
5924 else if (lnbitsize
< rnbitsize
)
5926 rhs
= fold_convert_loc (loc
, lntype
, rhs
);
5927 lr_mask
= fold_convert_loc (loc
, lntype
, lr_mask
);
5932 if (! all_ones_mask_p (ll_mask
, ll_bitsize
+ rl_bitsize
))
5933 lhs
= build2 (BIT_AND_EXPR
, type
, lhs
, ll_mask
);
5935 if (! all_ones_mask_p (lr_mask
, lr_bitsize
+ rr_bitsize
))
5936 rhs
= build2 (BIT_AND_EXPR
, type
, rhs
, lr_mask
);
5938 return build2_loc (loc
, wanted_code
, truth_type
, lhs
, rhs
);
5944 /* Handle the case of comparisons with constants. If there is something in
5945 common between the masks, those bits of the constants must be the same.
5946 If not, the condition is always false. Test for this to avoid generating
5947 incorrect code below. */
5948 result
= const_binop (BIT_AND_EXPR
, ll_mask
, rl_mask
);
5949 if (! integer_zerop (result
)
5950 && simple_cst_equal (const_binop (BIT_AND_EXPR
, result
, l_const
),
5951 const_binop (BIT_AND_EXPR
, result
, r_const
)) != 1)
5953 if (wanted_code
== NE_EXPR
)
5955 warning (0, "%<or%> of unmatched not-equal tests is always 1");
5956 return constant_boolean_node (true, truth_type
);
5960 warning (0, "%<and%> of mutually exclusive equal-tests is always 0");
5961 return constant_boolean_node (false, truth_type
);
5965 /* Construct the expression we will return. First get the component
5966 reference we will make. Unless the mask is all ones the width of
5967 that field, perform the mask operation. Then compare with the
5969 result
= make_bit_field_ref (loc
, ll_inner
, ll_arg
,
5970 lntype
, lnbitsize
, lnbitpos
,
5971 ll_unsignedp
|| rl_unsignedp
, ll_reversep
);
5973 ll_mask
= const_binop (BIT_IOR_EXPR
, ll_mask
, rl_mask
);
5974 if (! all_ones_mask_p (ll_mask
, lnbitsize
))
5975 result
= build2_loc (loc
, BIT_AND_EXPR
, lntype
, result
, ll_mask
);
5977 return build2_loc (loc
, wanted_code
, truth_type
, result
,
5978 const_binop (BIT_IOR_EXPR
, l_const
, r_const
));
5981 /* T is an integer expression that is being multiplied, divided, or taken a
5982 modulus (CODE says which and what kind of divide or modulus) by a
5983 constant C. See if we can eliminate that operation by folding it with
5984 other operations already in T. WIDE_TYPE, if non-null, is a type that
5985 should be used for the computation if wider than our type.
5987 For example, if we are dividing (X * 8) + (Y * 16) by 4, we can return
5988 (X * 2) + (Y * 4). We must, however, be assured that either the original
5989 expression would not overflow or that overflow is undefined for the type
5990 in the language in question.
5992 If we return a non-null expression, it is an equivalent form of the
5993 original computation, but need not be in the original type.
5995 We set *STRICT_OVERFLOW_P to true if the return values depends on
5996 signed overflow being undefined. Otherwise we do not change
5997 *STRICT_OVERFLOW_P. */
6000 extract_muldiv (tree t
, tree c
, enum tree_code code
, tree wide_type
,
6001 bool *strict_overflow_p
)
6003 /* To avoid exponential search depth, refuse to allow recursion past
6004 three levels. Beyond that (1) it's highly unlikely that we'll find
6005 something interesting and (2) we've probably processed it before
6006 when we built the inner expression. */
6015 ret
= extract_muldiv_1 (t
, c
, code
, wide_type
, strict_overflow_p
);
6022 extract_muldiv_1 (tree t
, tree c
, enum tree_code code
, tree wide_type
,
6023 bool *strict_overflow_p
)
6025 tree type
= TREE_TYPE (t
);
6026 enum tree_code tcode
= TREE_CODE (t
);
6027 tree ctype
= (wide_type
!= 0 && (GET_MODE_SIZE (TYPE_MODE (wide_type
))
6028 > GET_MODE_SIZE (TYPE_MODE (type
)))
6029 ? wide_type
: type
);
6031 int same_p
= tcode
== code
;
6032 tree op0
= NULL_TREE
, op1
= NULL_TREE
;
6033 bool sub_strict_overflow_p
;
6035 /* Don't deal with constants of zero here; they confuse the code below. */
6036 if (integer_zerop (c
))
6039 if (TREE_CODE_CLASS (tcode
) == tcc_unary
)
6040 op0
= TREE_OPERAND (t
, 0);
6042 if (TREE_CODE_CLASS (tcode
) == tcc_binary
)
6043 op0
= TREE_OPERAND (t
, 0), op1
= TREE_OPERAND (t
, 1);
6045 /* Note that we need not handle conditional operations here since fold
6046 already handles those cases. So just do arithmetic here. */
6050 /* For a constant, we can always simplify if we are a multiply
6051 or (for divide and modulus) if it is a multiple of our constant. */
6052 if (code
== MULT_EXPR
6053 || wi::multiple_of_p (t
, c
, TYPE_SIGN (type
)))
6055 tree tem
= const_binop (code
, fold_convert (ctype
, t
),
6056 fold_convert (ctype
, c
));
6057 /* If the multiplication overflowed, we lost information on it.
6058 See PR68142 and PR69845. */
6059 if (TREE_OVERFLOW (tem
))
6065 CASE_CONVERT
: case NON_LVALUE_EXPR
:
6066 /* If op0 is an expression ... */
6067 if ((COMPARISON_CLASS_P (op0
)
6068 || UNARY_CLASS_P (op0
)
6069 || BINARY_CLASS_P (op0
)
6070 || VL_EXP_CLASS_P (op0
)
6071 || EXPRESSION_CLASS_P (op0
))
6072 /* ... and has wrapping overflow, and its type is smaller
6073 than ctype, then we cannot pass through as widening. */
6074 && (((ANY_INTEGRAL_TYPE_P (TREE_TYPE (op0
))
6075 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (op0
)))
6076 && (TYPE_PRECISION (ctype
)
6077 > TYPE_PRECISION (TREE_TYPE (op0
))))
6078 /* ... or this is a truncation (t is narrower than op0),
6079 then we cannot pass through this narrowing. */
6080 || (TYPE_PRECISION (type
)
6081 < TYPE_PRECISION (TREE_TYPE (op0
)))
6082 /* ... or signedness changes for division or modulus,
6083 then we cannot pass through this conversion. */
6084 || (code
!= MULT_EXPR
6085 && (TYPE_UNSIGNED (ctype
)
6086 != TYPE_UNSIGNED (TREE_TYPE (op0
))))
6087 /* ... or has undefined overflow while the converted to
6088 type has not, we cannot do the operation in the inner type
6089 as that would introduce undefined overflow. */
6090 || ((ANY_INTEGRAL_TYPE_P (TREE_TYPE (op0
))
6091 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0
)))
6092 && !TYPE_OVERFLOW_UNDEFINED (type
))))
6095 /* Pass the constant down and see if we can make a simplification. If
6096 we can, replace this expression with the inner simplification for
6097 possible later conversion to our or some other type. */
6098 if ((t2
= fold_convert (TREE_TYPE (op0
), c
)) != 0
6099 && TREE_CODE (t2
) == INTEGER_CST
6100 && !TREE_OVERFLOW (t2
)
6101 && (0 != (t1
= extract_muldiv (op0
, t2
, code
,
6103 ? ctype
: NULL_TREE
,
6104 strict_overflow_p
))))
6109 /* If widening the type changes it from signed to unsigned, then we
6110 must avoid building ABS_EXPR itself as unsigned. */
6111 if (TYPE_UNSIGNED (ctype
) && !TYPE_UNSIGNED (type
))
6113 tree cstype
= (*signed_type_for
) (ctype
);
6114 if ((t1
= extract_muldiv (op0
, c
, code
, cstype
, strict_overflow_p
))
6117 t1
= fold_build1 (tcode
, cstype
, fold_convert (cstype
, t1
));
6118 return fold_convert (ctype
, t1
);
6122 /* If the constant is negative, we cannot simplify this. */
6123 if (tree_int_cst_sgn (c
) == -1)
6127 /* For division and modulus, type can't be unsigned, as e.g.
6128 (-(x / 2U)) / 2U isn't equal to -((x / 2U) / 2U) for x >= 2.
6129 For signed types, even with wrapping overflow, this is fine. */
6130 if (code
!= MULT_EXPR
&& TYPE_UNSIGNED (type
))
6132 if ((t1
= extract_muldiv (op0
, c
, code
, wide_type
, strict_overflow_p
))
6134 return fold_build1 (tcode
, ctype
, fold_convert (ctype
, t1
));
6137 case MIN_EXPR
: case MAX_EXPR
:
6138 /* If widening the type changes the signedness, then we can't perform
6139 this optimization as that changes the result. */
6140 if (TYPE_UNSIGNED (ctype
) != TYPE_UNSIGNED (type
))
6143 /* MIN (a, b) / 5 -> MIN (a / 5, b / 5) */
6144 sub_strict_overflow_p
= false;
6145 if ((t1
= extract_muldiv (op0
, c
, code
, wide_type
,
6146 &sub_strict_overflow_p
)) != 0
6147 && (t2
= extract_muldiv (op1
, c
, code
, wide_type
,
6148 &sub_strict_overflow_p
)) != 0)
6150 if (tree_int_cst_sgn (c
) < 0)
6151 tcode
= (tcode
== MIN_EXPR
? MAX_EXPR
: MIN_EXPR
);
6152 if (sub_strict_overflow_p
)
6153 *strict_overflow_p
= true;
6154 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, t1
),
6155 fold_convert (ctype
, t2
));
6159 case LSHIFT_EXPR
: case RSHIFT_EXPR
:
6160 /* If the second operand is constant, this is a multiplication
6161 or floor division, by a power of two, so we can treat it that
6162 way unless the multiplier or divisor overflows. Signed
6163 left-shift overflow is implementation-defined rather than
6164 undefined in C90, so do not convert signed left shift into
6166 if (TREE_CODE (op1
) == INTEGER_CST
6167 && (tcode
== RSHIFT_EXPR
|| TYPE_UNSIGNED (TREE_TYPE (op0
)))
6168 /* const_binop may not detect overflow correctly,
6169 so check for it explicitly here. */
6170 && wi::gtu_p (TYPE_PRECISION (TREE_TYPE (size_one_node
)), op1
)
6171 && 0 != (t1
= fold_convert (ctype
,
6172 const_binop (LSHIFT_EXPR
,
6175 && !TREE_OVERFLOW (t1
))
6176 return extract_muldiv (build2 (tcode
== LSHIFT_EXPR
6177 ? MULT_EXPR
: FLOOR_DIV_EXPR
,
6179 fold_convert (ctype
, op0
),
6181 c
, code
, wide_type
, strict_overflow_p
);
6184 case PLUS_EXPR
: case MINUS_EXPR
:
6185 /* See if we can eliminate the operation on both sides. If we can, we
6186 can return a new PLUS or MINUS. If we can't, the only remaining
6187 cases where we can do anything are if the second operand is a
6189 sub_strict_overflow_p
= false;
6190 t1
= extract_muldiv (op0
, c
, code
, wide_type
, &sub_strict_overflow_p
);
6191 t2
= extract_muldiv (op1
, c
, code
, wide_type
, &sub_strict_overflow_p
);
6192 if (t1
!= 0 && t2
!= 0
6193 && (code
== MULT_EXPR
6194 /* If not multiplication, we can only do this if both operands
6195 are divisible by c. */
6196 || (multiple_of_p (ctype
, op0
, c
)
6197 && multiple_of_p (ctype
, op1
, c
))))
6199 if (sub_strict_overflow_p
)
6200 *strict_overflow_p
= true;
6201 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, t1
),
6202 fold_convert (ctype
, t2
));
6205 /* If this was a subtraction, negate OP1 and set it to be an addition.
6206 This simplifies the logic below. */
6207 if (tcode
== MINUS_EXPR
)
6209 tcode
= PLUS_EXPR
, op1
= negate_expr (op1
);
6210 /* If OP1 was not easily negatable, the constant may be OP0. */
6211 if (TREE_CODE (op0
) == INTEGER_CST
)
6213 std::swap (op0
, op1
);
6218 if (TREE_CODE (op1
) != INTEGER_CST
)
6221 /* If either OP1 or C are negative, this optimization is not safe for
6222 some of the division and remainder types while for others we need
6223 to change the code. */
6224 if (tree_int_cst_sgn (op1
) < 0 || tree_int_cst_sgn (c
) < 0)
6226 if (code
== CEIL_DIV_EXPR
)
6227 code
= FLOOR_DIV_EXPR
;
6228 else if (code
== FLOOR_DIV_EXPR
)
6229 code
= CEIL_DIV_EXPR
;
6230 else if (code
!= MULT_EXPR
6231 && code
!= CEIL_MOD_EXPR
&& code
!= FLOOR_MOD_EXPR
)
6235 /* If it's a multiply or a division/modulus operation of a multiple
6236 of our constant, do the operation and verify it doesn't overflow. */
6237 if (code
== MULT_EXPR
6238 || wi::multiple_of_p (op1
, c
, TYPE_SIGN (type
)))
6240 op1
= const_binop (code
, fold_convert (ctype
, op1
),
6241 fold_convert (ctype
, c
));
6242 /* We allow the constant to overflow with wrapping semantics. */
6244 || (TREE_OVERFLOW (op1
) && !TYPE_OVERFLOW_WRAPS (ctype
)))
6250 /* If we have an unsigned type, we cannot widen the operation since it
6251 will change the result if the original computation overflowed. */
6252 if (TYPE_UNSIGNED (ctype
) && ctype
!= type
)
6255 /* If we were able to eliminate our operation from the first side,
6256 apply our operation to the second side and reform the PLUS. */
6257 if (t1
!= 0 && (TREE_CODE (t1
) != code
|| code
== MULT_EXPR
))
6258 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, t1
), op1
);
6260 /* The last case is if we are a multiply. In that case, we can
6261 apply the distributive law to commute the multiply and addition
6262 if the multiplication of the constants doesn't overflow
6263 and overflow is defined. With undefined overflow
6264 op0 * c might overflow, while (op0 + orig_op1) * c doesn't. */
6265 if (code
== MULT_EXPR
&& TYPE_OVERFLOW_WRAPS (ctype
))
6266 return fold_build2 (tcode
, ctype
,
6267 fold_build2 (code
, ctype
,
6268 fold_convert (ctype
, op0
),
6269 fold_convert (ctype
, c
)),
6275 /* We have a special case here if we are doing something like
6276 (C * 8) % 4 since we know that's zero. */
6277 if ((code
== TRUNC_MOD_EXPR
|| code
== CEIL_MOD_EXPR
6278 || code
== FLOOR_MOD_EXPR
|| code
== ROUND_MOD_EXPR
)
6279 /* If the multiplication can overflow we cannot optimize this. */
6280 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (t
))
6281 && TREE_CODE (TREE_OPERAND (t
, 1)) == INTEGER_CST
6282 && wi::multiple_of_p (op1
, c
, TYPE_SIGN (type
)))
6284 *strict_overflow_p
= true;
6285 return omit_one_operand (type
, integer_zero_node
, op0
);
6288 /* ... fall through ... */
6290 case TRUNC_DIV_EXPR
: case CEIL_DIV_EXPR
: case FLOOR_DIV_EXPR
:
6291 case ROUND_DIV_EXPR
: case EXACT_DIV_EXPR
:
6292 /* If we can extract our operation from the LHS, do so and return a
6293 new operation. Likewise for the RHS from a MULT_EXPR. Otherwise,
6294 do something only if the second operand is a constant. */
6296 && (t1
= extract_muldiv (op0
, c
, code
, wide_type
,
6297 strict_overflow_p
)) != 0)
6298 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, t1
),
6299 fold_convert (ctype
, op1
));
6300 else if (tcode
== MULT_EXPR
&& code
== MULT_EXPR
6301 && (t1
= extract_muldiv (op1
, c
, code
, wide_type
,
6302 strict_overflow_p
)) != 0)
6303 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, op0
),
6304 fold_convert (ctype
, t1
));
6305 else if (TREE_CODE (op1
) != INTEGER_CST
)
6308 /* If these are the same operation types, we can associate them
6309 assuming no overflow. */
6312 bool overflow_p
= false;
6313 bool overflow_mul_p
;
6314 signop sign
= TYPE_SIGN (ctype
);
6315 unsigned prec
= TYPE_PRECISION (ctype
);
6316 wide_int mul
= wi::mul (wi::to_wide (op1
, prec
),
6317 wi::to_wide (c
, prec
),
6318 sign
, &overflow_mul_p
);
6319 overflow_p
= TREE_OVERFLOW (c
) | TREE_OVERFLOW (op1
);
6321 && ((sign
== UNSIGNED
&& tcode
!= MULT_EXPR
) || sign
== SIGNED
))
6324 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, op0
),
6325 wide_int_to_tree (ctype
, mul
));
6328 /* If these operations "cancel" each other, we have the main
6329 optimizations of this pass, which occur when either constant is a
6330 multiple of the other, in which case we replace this with either an
6331 operation or CODE or TCODE.
6333 If we have an unsigned type, we cannot do this since it will change
6334 the result if the original computation overflowed. */
6335 if (TYPE_OVERFLOW_UNDEFINED (ctype
)
6336 && ((code
== MULT_EXPR
&& tcode
== EXACT_DIV_EXPR
)
6337 || (tcode
== MULT_EXPR
6338 && code
!= TRUNC_MOD_EXPR
&& code
!= CEIL_MOD_EXPR
6339 && code
!= FLOOR_MOD_EXPR
&& code
!= ROUND_MOD_EXPR
6340 && code
!= MULT_EXPR
)))
6342 if (wi::multiple_of_p (op1
, c
, TYPE_SIGN (type
)))
6344 if (TYPE_OVERFLOW_UNDEFINED (ctype
))
6345 *strict_overflow_p
= true;
6346 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, op0
),
6347 fold_convert (ctype
,
6348 const_binop (TRUNC_DIV_EXPR
,
6351 else if (wi::multiple_of_p (c
, op1
, TYPE_SIGN (type
)))
6353 if (TYPE_OVERFLOW_UNDEFINED (ctype
))
6354 *strict_overflow_p
= true;
6355 return fold_build2 (code
, ctype
, fold_convert (ctype
, op0
),
6356 fold_convert (ctype
,
6357 const_binop (TRUNC_DIV_EXPR
,
6370 /* Return a node which has the indicated constant VALUE (either 0 or
6371 1 for scalars or {-1,-1,..} or {0,0,...} for vectors),
6372 and is of the indicated TYPE. */
6375 constant_boolean_node (bool value
, tree type
)
6377 if (type
== integer_type_node
)
6378 return value
? integer_one_node
: integer_zero_node
;
6379 else if (type
== boolean_type_node
)
6380 return value
? boolean_true_node
: boolean_false_node
;
6381 else if (TREE_CODE (type
) == VECTOR_TYPE
)
6382 return build_vector_from_val (type
,
6383 build_int_cst (TREE_TYPE (type
),
6386 return fold_convert (type
, value
? integer_one_node
: integer_zero_node
);
6390 /* Transform `a + (b ? x : y)' into `b ? (a + x) : (a + y)'.
6391 Transform, `a + (x < y)' into `(x < y) ? (a + 1) : (a + 0)'. Here
6392 CODE corresponds to the `+', COND to the `(b ? x : y)' or `(x < y)'
6393 expression, and ARG to `a'. If COND_FIRST_P is nonzero, then the
6394 COND is the first argument to CODE; otherwise (as in the example
6395 given here), it is the second argument. TYPE is the type of the
6396 original expression. Return NULL_TREE if no simplification is
6400 fold_binary_op_with_conditional_arg (location_t loc
,
6401 enum tree_code code
,
6402 tree type
, tree op0
, tree op1
,
6403 tree cond
, tree arg
, int cond_first_p
)
6405 tree cond_type
= cond_first_p
? TREE_TYPE (op0
) : TREE_TYPE (op1
);
6406 tree arg_type
= cond_first_p
? TREE_TYPE (op1
) : TREE_TYPE (op0
);
6407 tree test
, true_value
, false_value
;
6408 tree lhs
= NULL_TREE
;
6409 tree rhs
= NULL_TREE
;
6410 enum tree_code cond_code
= COND_EXPR
;
6412 if (TREE_CODE (cond
) == COND_EXPR
6413 || TREE_CODE (cond
) == VEC_COND_EXPR
)
6415 test
= TREE_OPERAND (cond
, 0);
6416 true_value
= TREE_OPERAND (cond
, 1);
6417 false_value
= TREE_OPERAND (cond
, 2);
6418 /* If this operand throws an expression, then it does not make
6419 sense to try to perform a logical or arithmetic operation
6421 if (VOID_TYPE_P (TREE_TYPE (true_value
)))
6423 if (VOID_TYPE_P (TREE_TYPE (false_value
)))
6426 else if (!(TREE_CODE (type
) != VECTOR_TYPE
6427 && TREE_CODE (TREE_TYPE (cond
)) == VECTOR_TYPE
))
6429 tree testtype
= TREE_TYPE (cond
);
6431 true_value
= constant_boolean_node (true, testtype
);
6432 false_value
= constant_boolean_node (false, testtype
);
6435 /* Detect the case of mixing vector and scalar types - bail out. */
6438 if (TREE_CODE (TREE_TYPE (test
)) == VECTOR_TYPE
)
6439 cond_code
= VEC_COND_EXPR
;
6441 /* This transformation is only worthwhile if we don't have to wrap ARG
6442 in a SAVE_EXPR and the operation can be simplified without recursing
6443 on at least one of the branches once its pushed inside the COND_EXPR. */
6444 if (!TREE_CONSTANT (arg
)
6445 && (TREE_SIDE_EFFECTS (arg
)
6446 || TREE_CODE (arg
) == COND_EXPR
|| TREE_CODE (arg
) == VEC_COND_EXPR
6447 || TREE_CONSTANT (true_value
) || TREE_CONSTANT (false_value
)))
6450 arg
= fold_convert_loc (loc
, arg_type
, arg
);
6453 true_value
= fold_convert_loc (loc
, cond_type
, true_value
);
6455 lhs
= fold_build2_loc (loc
, code
, type
, true_value
, arg
);
6457 lhs
= fold_build2_loc (loc
, code
, type
, arg
, true_value
);
6461 false_value
= fold_convert_loc (loc
, cond_type
, false_value
);
6463 rhs
= fold_build2_loc (loc
, code
, type
, false_value
, arg
);
6465 rhs
= fold_build2_loc (loc
, code
, type
, arg
, false_value
);
6468 /* Check that we have simplified at least one of the branches. */
6469 if (!TREE_CONSTANT (arg
) && !TREE_CONSTANT (lhs
) && !TREE_CONSTANT (rhs
))
6472 return fold_build3_loc (loc
, cond_code
, type
, test
, lhs
, rhs
);
6476 /* Subroutine of fold() that checks for the addition of +/- 0.0.
6478 If !NEGATE, return true if ADDEND is +/-0.0 and, for all X of type
6479 TYPE, X + ADDEND is the same as X. If NEGATE, return true if X -
6480 ADDEND is the same as X.
6482 X + 0 and X - 0 both give X when X is NaN, infinite, or nonzero
6483 and finite. The problematic cases are when X is zero, and its mode
6484 has signed zeros. In the case of rounding towards -infinity,
6485 X - 0 is not the same as X because 0 - 0 is -0. In other rounding
6486 modes, X + 0 is not the same as X because -0 + 0 is 0. */
6489 fold_real_zero_addition_p (const_tree type
, const_tree addend
, int negate
)
6491 if (!real_zerop (addend
))
6494 /* Don't allow the fold with -fsignaling-nans. */
6495 if (HONOR_SNANS (element_mode (type
)))
6498 /* Allow the fold if zeros aren't signed, or their sign isn't important. */
6499 if (!HONOR_SIGNED_ZEROS (element_mode (type
)))
6502 /* In a vector or complex, we would need to check the sign of all zeros. */
6503 if (TREE_CODE (addend
) != REAL_CST
)
6506 /* Treat x + -0 as x - 0 and x - -0 as x + 0. */
6507 if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (addend
)))
6510 /* The mode has signed zeros, and we have to honor their sign.
6511 In this situation, there is only one case we can return true for.
6512 X - 0 is the same as X unless rounding towards -infinity is
6514 return negate
&& !HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type
));
6517 /* Subroutine of fold() that optimizes comparisons of a division by
6518 a nonzero integer constant against an integer constant, i.e.
6521 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
6522 GE_EXPR or LE_EXPR. TYPE is the type of the result and ARG0 and ARG1
6523 are the operands of the comparison. ARG1 must be a TREE_REAL_CST.
6525 The function returns the constant folded tree if a simplification
6526 can be made, and NULL_TREE otherwise. */
6529 fold_div_compare (location_t loc
,
6530 enum tree_code code
, tree type
, tree arg0
, tree arg1
)
6532 tree prod
, tmp
, hi
, lo
;
6533 tree arg00
= TREE_OPERAND (arg0
, 0);
6534 tree arg01
= TREE_OPERAND (arg0
, 1);
6535 signop sign
= TYPE_SIGN (TREE_TYPE (arg0
));
6536 bool neg_overflow
= false;
6539 /* We have to do this the hard way to detect unsigned overflow.
6540 prod = int_const_binop (MULT_EXPR, arg01, arg1); */
6541 wide_int val
= wi::mul (arg01
, arg1
, sign
, &overflow
);
6542 prod
= force_fit_type (TREE_TYPE (arg00
), val
, -1, overflow
);
6543 neg_overflow
= false;
6545 if (sign
== UNSIGNED
)
6547 tmp
= int_const_binop (MINUS_EXPR
, arg01
,
6548 build_int_cst (TREE_TYPE (arg01
), 1));
6551 /* Likewise hi = int_const_binop (PLUS_EXPR, prod, tmp). */
6552 val
= wi::add (prod
, tmp
, sign
, &overflow
);
6553 hi
= force_fit_type (TREE_TYPE (arg00
), val
,
6554 -1, overflow
| TREE_OVERFLOW (prod
));
6556 else if (tree_int_cst_sgn (arg01
) >= 0)
6558 tmp
= int_const_binop (MINUS_EXPR
, arg01
,
6559 build_int_cst (TREE_TYPE (arg01
), 1));
6560 switch (tree_int_cst_sgn (arg1
))
6563 neg_overflow
= true;
6564 lo
= int_const_binop (MINUS_EXPR
, prod
, tmp
);
6569 lo
= fold_negate_const (tmp
, TREE_TYPE (arg0
));
6574 hi
= int_const_binop (PLUS_EXPR
, prod
, tmp
);
6584 /* A negative divisor reverses the relational operators. */
6585 code
= swap_tree_comparison (code
);
6587 tmp
= int_const_binop (PLUS_EXPR
, arg01
,
6588 build_int_cst (TREE_TYPE (arg01
), 1));
6589 switch (tree_int_cst_sgn (arg1
))
6592 hi
= int_const_binop (MINUS_EXPR
, prod
, tmp
);
6597 hi
= fold_negate_const (tmp
, TREE_TYPE (arg0
));
6602 neg_overflow
= true;
6603 lo
= int_const_binop (PLUS_EXPR
, prod
, tmp
);
6615 if (TREE_OVERFLOW (lo
) && TREE_OVERFLOW (hi
))
6616 return omit_one_operand_loc (loc
, type
, integer_zero_node
, arg00
);
6617 if (TREE_OVERFLOW (hi
))
6618 return fold_build2_loc (loc
, GE_EXPR
, type
, arg00
, lo
);
6619 if (TREE_OVERFLOW (lo
))
6620 return fold_build2_loc (loc
, LE_EXPR
, type
, arg00
, hi
);
6621 return build_range_check (loc
, type
, arg00
, 1, lo
, hi
);
6624 if (TREE_OVERFLOW (lo
) && TREE_OVERFLOW (hi
))
6625 return omit_one_operand_loc (loc
, type
, integer_one_node
, arg00
);
6626 if (TREE_OVERFLOW (hi
))
6627 return fold_build2_loc (loc
, LT_EXPR
, type
, arg00
, lo
);
6628 if (TREE_OVERFLOW (lo
))
6629 return fold_build2_loc (loc
, GT_EXPR
, type
, arg00
, hi
);
6630 return build_range_check (loc
, type
, arg00
, 0, lo
, hi
);
6633 if (TREE_OVERFLOW (lo
))
6635 tmp
= neg_overflow
? integer_zero_node
: integer_one_node
;
6636 return omit_one_operand_loc (loc
, type
, tmp
, arg00
);
6638 return fold_build2_loc (loc
, LT_EXPR
, type
, arg00
, lo
);
6641 if (TREE_OVERFLOW (hi
))
6643 tmp
= neg_overflow
? integer_zero_node
: integer_one_node
;
6644 return omit_one_operand_loc (loc
, type
, tmp
, arg00
);
6646 return fold_build2_loc (loc
, LE_EXPR
, type
, arg00
, hi
);
6649 if (TREE_OVERFLOW (hi
))
6651 tmp
= neg_overflow
? integer_one_node
: integer_zero_node
;
6652 return omit_one_operand_loc (loc
, type
, tmp
, arg00
);
6654 return fold_build2_loc (loc
, GT_EXPR
, type
, arg00
, hi
);
6657 if (TREE_OVERFLOW (lo
))
6659 tmp
= neg_overflow
? integer_one_node
: integer_zero_node
;
6660 return omit_one_operand_loc (loc
, type
, tmp
, arg00
);
6662 return fold_build2_loc (loc
, GE_EXPR
, type
, arg00
, lo
);
6672 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6673 equality/inequality test, then return a simplified form of the test
6674 using a sign testing. Otherwise return NULL. TYPE is the desired
6678 fold_single_bit_test_into_sign_test (location_t loc
,
6679 enum tree_code code
, tree arg0
, tree arg1
,
6682 /* If this is testing a single bit, we can optimize the test. */
6683 if ((code
== NE_EXPR
|| code
== EQ_EXPR
)
6684 && TREE_CODE (arg0
) == BIT_AND_EXPR
&& integer_zerop (arg1
)
6685 && integer_pow2p (TREE_OPERAND (arg0
, 1)))
6687 /* If we have (A & C) != 0 where C is the sign bit of A, convert
6688 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
6689 tree arg00
= sign_bit_p (TREE_OPERAND (arg0
, 0), TREE_OPERAND (arg0
, 1));
6691 if (arg00
!= NULL_TREE
6692 /* This is only a win if casting to a signed type is cheap,
6693 i.e. when arg00's type is not a partial mode. */
6694 && TYPE_PRECISION (TREE_TYPE (arg00
))
6695 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (arg00
))))
6697 tree stype
= signed_type_for (TREE_TYPE (arg00
));
6698 return fold_build2_loc (loc
, code
== EQ_EXPR
? GE_EXPR
: LT_EXPR
,
6700 fold_convert_loc (loc
, stype
, arg00
),
6701 build_int_cst (stype
, 0));
6708 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6709 equality/inequality test, then return a simplified form of
6710 the test using shifts and logical operations. Otherwise return
6711 NULL. TYPE is the desired result type. */
6714 fold_single_bit_test (location_t loc
, enum tree_code code
,
6715 tree arg0
, tree arg1
, tree result_type
)
6717 /* If this is testing a single bit, we can optimize the test. */
6718 if ((code
== NE_EXPR
|| code
== EQ_EXPR
)
6719 && TREE_CODE (arg0
) == BIT_AND_EXPR
&& integer_zerop (arg1
)
6720 && integer_pow2p (TREE_OPERAND (arg0
, 1)))
6722 tree inner
= TREE_OPERAND (arg0
, 0);
6723 tree type
= TREE_TYPE (arg0
);
6724 int bitnum
= tree_log2 (TREE_OPERAND (arg0
, 1));
6725 machine_mode operand_mode
= TYPE_MODE (type
);
6727 tree signed_type
, unsigned_type
, intermediate_type
;
6730 /* First, see if we can fold the single bit test into a sign-bit
6732 tem
= fold_single_bit_test_into_sign_test (loc
, code
, arg0
, arg1
,
6737 /* Otherwise we have (A & C) != 0 where C is a single bit,
6738 convert that into ((A >> C2) & 1). Where C2 = log2(C).
6739 Similarly for (A & C) == 0. */
6741 /* If INNER is a right shift of a constant and it plus BITNUM does
6742 not overflow, adjust BITNUM and INNER. */
6743 if (TREE_CODE (inner
) == RSHIFT_EXPR
6744 && TREE_CODE (TREE_OPERAND (inner
, 1)) == INTEGER_CST
6745 && bitnum
< TYPE_PRECISION (type
)
6746 && wi::ltu_p (TREE_OPERAND (inner
, 1),
6747 TYPE_PRECISION (type
) - bitnum
))
6749 bitnum
+= tree_to_uhwi (TREE_OPERAND (inner
, 1));
6750 inner
= TREE_OPERAND (inner
, 0);
6753 /* If we are going to be able to omit the AND below, we must do our
6754 operations as unsigned. If we must use the AND, we have a choice.
6755 Normally unsigned is faster, but for some machines signed is. */
6756 ops_unsigned
= (LOAD_EXTEND_OP (operand_mode
) == SIGN_EXTEND
6757 && !flag_syntax_only
) ? 0 : 1;
6759 signed_type
= lang_hooks
.types
.type_for_mode (operand_mode
, 0);
6760 unsigned_type
= lang_hooks
.types
.type_for_mode (operand_mode
, 1);
6761 intermediate_type
= ops_unsigned
? unsigned_type
: signed_type
;
6762 inner
= fold_convert_loc (loc
, intermediate_type
, inner
);
6765 inner
= build2 (RSHIFT_EXPR
, intermediate_type
,
6766 inner
, size_int (bitnum
));
6768 one
= build_int_cst (intermediate_type
, 1);
6770 if (code
== EQ_EXPR
)
6771 inner
= fold_build2_loc (loc
, BIT_XOR_EXPR
, intermediate_type
, inner
, one
);
6773 /* Put the AND last so it can combine with more things. */
6774 inner
= build2 (BIT_AND_EXPR
, intermediate_type
, inner
, one
);
6776 /* Make sure to return the proper type. */
6777 inner
= fold_convert_loc (loc
, result_type
, inner
);
6784 /* Check whether we are allowed to reorder operands arg0 and arg1,
6785 such that the evaluation of arg1 occurs before arg0. */
6788 reorder_operands_p (const_tree arg0
, const_tree arg1
)
6790 if (! flag_evaluation_order
)
6792 if (TREE_CONSTANT (arg0
) || TREE_CONSTANT (arg1
))
6794 return ! TREE_SIDE_EFFECTS (arg0
)
6795 && ! TREE_SIDE_EFFECTS (arg1
);
6798 /* Test whether it is preferable two swap two operands, ARG0 and
6799 ARG1, for example because ARG0 is an integer constant and ARG1
6800 isn't. If REORDER is true, only recommend swapping if we can
6801 evaluate the operands in reverse order. */
6804 tree_swap_operands_p (const_tree arg0
, const_tree arg1
, bool reorder
)
6806 if (CONSTANT_CLASS_P (arg1
))
6808 if (CONSTANT_CLASS_P (arg0
))
6814 if (TREE_CONSTANT (arg1
))
6816 if (TREE_CONSTANT (arg0
))
6819 if (reorder
&& flag_evaluation_order
6820 && (TREE_SIDE_EFFECTS (arg0
) || TREE_SIDE_EFFECTS (arg1
)))
6823 /* It is preferable to swap two SSA_NAME to ensure a canonical form
6824 for commutative and comparison operators. Ensuring a canonical
6825 form allows the optimizers to find additional redundancies without
6826 having to explicitly check for both orderings. */
6827 if (TREE_CODE (arg0
) == SSA_NAME
6828 && TREE_CODE (arg1
) == SSA_NAME
6829 && SSA_NAME_VERSION (arg0
) > SSA_NAME_VERSION (arg1
))
6832 /* Put SSA_NAMEs last. */
6833 if (TREE_CODE (arg1
) == SSA_NAME
)
6835 if (TREE_CODE (arg0
) == SSA_NAME
)
6838 /* Put variables last. */
6848 /* Fold A < X && A + 1 > Y to A < X && A >= Y. Normally A + 1 > Y
6849 means A >= Y && A != MAX, but in this case we know that
6850 A < X <= MAX. INEQ is A + 1 > Y, BOUND is A < X. */
6853 fold_to_nonsharp_ineq_using_bound (location_t loc
, tree ineq
, tree bound
)
6855 tree a
, typea
, type
= TREE_TYPE (ineq
), a1
, diff
, y
;
6857 if (TREE_CODE (bound
) == LT_EXPR
)
6858 a
= TREE_OPERAND (bound
, 0);
6859 else if (TREE_CODE (bound
) == GT_EXPR
)
6860 a
= TREE_OPERAND (bound
, 1);
6864 typea
= TREE_TYPE (a
);
6865 if (!INTEGRAL_TYPE_P (typea
)
6866 && !POINTER_TYPE_P (typea
))
6869 if (TREE_CODE (ineq
) == LT_EXPR
)
6871 a1
= TREE_OPERAND (ineq
, 1);
6872 y
= TREE_OPERAND (ineq
, 0);
6874 else if (TREE_CODE (ineq
) == GT_EXPR
)
6876 a1
= TREE_OPERAND (ineq
, 0);
6877 y
= TREE_OPERAND (ineq
, 1);
6882 if (TREE_TYPE (a1
) != typea
)
6885 if (POINTER_TYPE_P (typea
))
6887 /* Convert the pointer types into integer before taking the difference. */
6888 tree ta
= fold_convert_loc (loc
, ssizetype
, a
);
6889 tree ta1
= fold_convert_loc (loc
, ssizetype
, a1
);
6890 diff
= fold_binary_loc (loc
, MINUS_EXPR
, ssizetype
, ta1
, ta
);
6893 diff
= fold_binary_loc (loc
, MINUS_EXPR
, typea
, a1
, a
);
6895 if (!diff
|| !integer_onep (diff
))
6898 return fold_build2_loc (loc
, GE_EXPR
, type
, a
, y
);
6901 /* Fold a sum or difference of at least one multiplication.
6902 Returns the folded tree or NULL if no simplification could be made. */
6905 fold_plusminus_mult_expr (location_t loc
, enum tree_code code
, tree type
,
6906 tree arg0
, tree arg1
)
6908 tree arg00
, arg01
, arg10
, arg11
;
6909 tree alt0
= NULL_TREE
, alt1
= NULL_TREE
, same
;
6911 /* (A * C) +- (B * C) -> (A+-B) * C.
6912 (A * C) +- A -> A * (C+-1).
6913 We are most concerned about the case where C is a constant,
6914 but other combinations show up during loop reduction. Since
6915 it is not difficult, try all four possibilities. */
6917 if (TREE_CODE (arg0
) == MULT_EXPR
)
6919 arg00
= TREE_OPERAND (arg0
, 0);
6920 arg01
= TREE_OPERAND (arg0
, 1);
6922 else if (TREE_CODE (arg0
) == INTEGER_CST
)
6924 arg00
= build_one_cst (type
);
6929 /* We cannot generate constant 1 for fract. */
6930 if (ALL_FRACT_MODE_P (TYPE_MODE (type
)))
6933 arg01
= build_one_cst (type
);
6935 if (TREE_CODE (arg1
) == MULT_EXPR
)
6937 arg10
= TREE_OPERAND (arg1
, 0);
6938 arg11
= TREE_OPERAND (arg1
, 1);
6940 else if (TREE_CODE (arg1
) == INTEGER_CST
)
6942 arg10
= build_one_cst (type
);
6943 /* As we canonicalize A - 2 to A + -2 get rid of that sign for
6944 the purpose of this canonicalization. */
6945 if (wi::neg_p (arg1
, TYPE_SIGN (TREE_TYPE (arg1
)))
6946 && negate_expr_p (arg1
)
6947 && code
== PLUS_EXPR
)
6949 arg11
= negate_expr (arg1
);
6957 /* We cannot generate constant 1 for fract. */
6958 if (ALL_FRACT_MODE_P (TYPE_MODE (type
)))
6961 arg11
= build_one_cst (type
);
6965 if (operand_equal_p (arg01
, arg11
, 0))
6966 same
= arg01
, alt0
= arg00
, alt1
= arg10
;
6967 else if (operand_equal_p (arg00
, arg10
, 0))
6968 same
= arg00
, alt0
= arg01
, alt1
= arg11
;
6969 else if (operand_equal_p (arg00
, arg11
, 0))
6970 same
= arg00
, alt0
= arg01
, alt1
= arg10
;
6971 else if (operand_equal_p (arg01
, arg10
, 0))
6972 same
= arg01
, alt0
= arg00
, alt1
= arg11
;
6974 /* No identical multiplicands; see if we can find a common
6975 power-of-two factor in non-power-of-two multiplies. This
6976 can help in multi-dimensional array access. */
6977 else if (tree_fits_shwi_p (arg01
)
6978 && tree_fits_shwi_p (arg11
))
6980 HOST_WIDE_INT int01
, int11
, tmp
;
6983 int01
= tree_to_shwi (arg01
);
6984 int11
= tree_to_shwi (arg11
);
6986 /* Move min of absolute values to int11. */
6987 if (absu_hwi (int01
) < absu_hwi (int11
))
6989 tmp
= int01
, int01
= int11
, int11
= tmp
;
6990 alt0
= arg00
, arg00
= arg10
, arg10
= alt0
;
6997 if (exact_log2 (absu_hwi (int11
)) > 0 && int01
% int11
== 0
6998 /* The remainder should not be a constant, otherwise we
6999 end up folding i * 4 + 2 to (i * 2 + 1) * 2 which has
7000 increased the number of multiplications necessary. */
7001 && TREE_CODE (arg10
) != INTEGER_CST
)
7003 alt0
= fold_build2_loc (loc
, MULT_EXPR
, TREE_TYPE (arg00
), arg00
,
7004 build_int_cst (TREE_TYPE (arg00
),
7009 maybe_same
= alt0
, alt0
= alt1
, alt1
= maybe_same
;
7014 return fold_build2_loc (loc
, MULT_EXPR
, type
,
7015 fold_build2_loc (loc
, code
, type
,
7016 fold_convert_loc (loc
, type
, alt0
),
7017 fold_convert_loc (loc
, type
, alt1
)),
7018 fold_convert_loc (loc
, type
, same
));
7023 /* Subroutine of native_encode_expr. Encode the INTEGER_CST
7024 specified by EXPR into the buffer PTR of length LEN bytes.
7025 Return the number of bytes placed in the buffer, or zero
7029 native_encode_int (const_tree expr
, unsigned char *ptr
, int len
, int off
)
7031 tree type
= TREE_TYPE (expr
);
7032 int total_bytes
= GET_MODE_SIZE (TYPE_MODE (type
));
7033 int byte
, offset
, word
, words
;
7034 unsigned char value
;
7036 if ((off
== -1 && total_bytes
> len
)
7037 || off
>= total_bytes
)
7041 words
= total_bytes
/ UNITS_PER_WORD
;
7043 for (byte
= 0; byte
< total_bytes
; byte
++)
7045 int bitpos
= byte
* BITS_PER_UNIT
;
7046 /* Extend EXPR according to TYPE_SIGN if the precision isn't a whole
7048 value
= wi::extract_uhwi (wi::to_widest (expr
), bitpos
, BITS_PER_UNIT
);
7050 if (total_bytes
> UNITS_PER_WORD
)
7052 word
= byte
/ UNITS_PER_WORD
;
7053 if (WORDS_BIG_ENDIAN
)
7054 word
= (words
- 1) - word
;
7055 offset
= word
* UNITS_PER_WORD
;
7056 if (BYTES_BIG_ENDIAN
)
7057 offset
+= (UNITS_PER_WORD
- 1) - (byte
% UNITS_PER_WORD
);
7059 offset
+= byte
% UNITS_PER_WORD
;
7062 offset
= BYTES_BIG_ENDIAN
? (total_bytes
- 1) - byte
: byte
;
7064 && offset
- off
< len
)
7065 ptr
[offset
- off
] = value
;
7067 return MIN (len
, total_bytes
- off
);
7071 /* Subroutine of native_encode_expr. Encode the FIXED_CST
7072 specified by EXPR into the buffer PTR of length LEN bytes.
7073 Return the number of bytes placed in the buffer, or zero
7077 native_encode_fixed (const_tree expr
, unsigned char *ptr
, int len
, int off
)
7079 tree type
= TREE_TYPE (expr
);
7080 machine_mode mode
= TYPE_MODE (type
);
7081 int total_bytes
= GET_MODE_SIZE (mode
);
7082 FIXED_VALUE_TYPE value
;
7083 tree i_value
, i_type
;
7085 if (total_bytes
* BITS_PER_UNIT
> HOST_BITS_PER_DOUBLE_INT
)
7088 i_type
= lang_hooks
.types
.type_for_size (GET_MODE_BITSIZE (mode
), 1);
7090 if (NULL_TREE
== i_type
7091 || TYPE_PRECISION (i_type
) != total_bytes
)
7094 value
= TREE_FIXED_CST (expr
);
7095 i_value
= double_int_to_tree (i_type
, value
.data
);
7097 return native_encode_int (i_value
, ptr
, len
, off
);
7101 /* Subroutine of native_encode_expr. Encode the REAL_CST
7102 specified by EXPR into the buffer PTR of length LEN bytes.
7103 Return the number of bytes placed in the buffer, or zero
7107 native_encode_real (const_tree expr
, unsigned char *ptr
, int len
, int off
)
7109 tree type
= TREE_TYPE (expr
);
7110 int total_bytes
= GET_MODE_SIZE (TYPE_MODE (type
));
7111 int byte
, offset
, word
, words
, bitpos
;
7112 unsigned char value
;
7114 /* There are always 32 bits in each long, no matter the size of
7115 the hosts long. We handle floating point representations with
7119 if ((off
== -1 && total_bytes
> len
)
7120 || off
>= total_bytes
)
7124 words
= (32 / BITS_PER_UNIT
) / UNITS_PER_WORD
;
7126 real_to_target (tmp
, TREE_REAL_CST_PTR (expr
), TYPE_MODE (type
));
7128 for (bitpos
= 0; bitpos
< total_bytes
* BITS_PER_UNIT
;
7129 bitpos
+= BITS_PER_UNIT
)
7131 byte
= (bitpos
/ BITS_PER_UNIT
) & 3;
7132 value
= (unsigned char) (tmp
[bitpos
/ 32] >> (bitpos
& 31));
7134 if (UNITS_PER_WORD
< 4)
7136 word
= byte
/ UNITS_PER_WORD
;
7137 if (WORDS_BIG_ENDIAN
)
7138 word
= (words
- 1) - word
;
7139 offset
= word
* UNITS_PER_WORD
;
7140 if (BYTES_BIG_ENDIAN
)
7141 offset
+= (UNITS_PER_WORD
- 1) - (byte
% UNITS_PER_WORD
);
7143 offset
+= byte
% UNITS_PER_WORD
;
7148 if (BYTES_BIG_ENDIAN
)
7150 /* Reverse bytes within each long, or within the entire float
7151 if it's smaller than a long (for HFmode). */
7152 offset
= MIN (3, total_bytes
- 1) - offset
;
7153 gcc_assert (offset
>= 0);
7156 offset
= offset
+ ((bitpos
/ BITS_PER_UNIT
) & ~3);
7158 && offset
- off
< len
)
7159 ptr
[offset
- off
] = value
;
7161 return MIN (len
, total_bytes
- off
);
7164 /* Subroutine of native_encode_expr. Encode the COMPLEX_CST
7165 specified by EXPR into the buffer PTR of length LEN bytes.
7166 Return the number of bytes placed in the buffer, or zero
7170 native_encode_complex (const_tree expr
, unsigned char *ptr
, int len
, int off
)
7175 part
= TREE_REALPART (expr
);
7176 rsize
= native_encode_expr (part
, ptr
, len
, off
);
7180 part
= TREE_IMAGPART (expr
);
7182 off
= MAX (0, off
- GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (part
))));
7183 isize
= native_encode_expr (part
, ptr
+rsize
, len
-rsize
, off
);
7187 return rsize
+ isize
;
7191 /* Subroutine of native_encode_expr. Encode the VECTOR_CST
7192 specified by EXPR into the buffer PTR of length LEN bytes.
7193 Return the number of bytes placed in the buffer, or zero
7197 native_encode_vector (const_tree expr
, unsigned char *ptr
, int len
, int off
)
7204 count
= VECTOR_CST_NELTS (expr
);
7205 itype
= TREE_TYPE (TREE_TYPE (expr
));
7206 size
= GET_MODE_SIZE (TYPE_MODE (itype
));
7207 for (i
= 0; i
< count
; i
++)
7214 elem
= VECTOR_CST_ELT (expr
, i
);
7215 int res
= native_encode_expr (elem
, ptr
+offset
, len
-offset
, off
);
7216 if ((off
== -1 && res
!= size
)
7229 /* Subroutine of native_encode_expr. Encode the STRING_CST
7230 specified by EXPR into the buffer PTR of length LEN bytes.
7231 Return the number of bytes placed in the buffer, or zero
7235 native_encode_string (const_tree expr
, unsigned char *ptr
, int len
, int off
)
7237 tree type
= TREE_TYPE (expr
);
7238 HOST_WIDE_INT total_bytes
;
7240 if (TREE_CODE (type
) != ARRAY_TYPE
7241 || TREE_CODE (TREE_TYPE (type
)) != INTEGER_TYPE
7242 || GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (type
))) != BITS_PER_UNIT
7243 || !tree_fits_shwi_p (TYPE_SIZE_UNIT (type
)))
7245 total_bytes
= tree_to_shwi (TYPE_SIZE_UNIT (type
));
7246 if ((off
== -1 && total_bytes
> len
)
7247 || off
>= total_bytes
)
7251 if (TREE_STRING_LENGTH (expr
) - off
< MIN (total_bytes
, len
))
7254 if (off
< TREE_STRING_LENGTH (expr
))
7256 written
= MIN (len
, TREE_STRING_LENGTH (expr
) - off
);
7257 memcpy (ptr
, TREE_STRING_POINTER (expr
) + off
, written
);
7259 memset (ptr
+ written
, 0,
7260 MIN (total_bytes
- written
, len
- written
));
7263 memcpy (ptr
, TREE_STRING_POINTER (expr
) + off
, MIN (total_bytes
, len
));
7264 return MIN (total_bytes
- off
, len
);
7268 /* Subroutine of fold_view_convert_expr. Encode the INTEGER_CST,
7269 REAL_CST, COMPLEX_CST or VECTOR_CST specified by EXPR into the
7270 buffer PTR of length LEN bytes. If OFF is not -1 then start
7271 the encoding at byte offset OFF and encode at most LEN bytes.
7272 Return the number of bytes placed in the buffer, or zero upon failure. */
7275 native_encode_expr (const_tree expr
, unsigned char *ptr
, int len
, int off
)
7277 /* We don't support starting at negative offset and -1 is special. */
7281 switch (TREE_CODE (expr
))
7284 return native_encode_int (expr
, ptr
, len
, off
);
7287 return native_encode_real (expr
, ptr
, len
, off
);
7290 return native_encode_fixed (expr
, ptr
, len
, off
);
7293 return native_encode_complex (expr
, ptr
, len
, off
);
7296 return native_encode_vector (expr
, ptr
, len
, off
);
7299 return native_encode_string (expr
, ptr
, len
, off
);
7307 /* Subroutine of native_interpret_expr. Interpret the contents of
7308 the buffer PTR of length LEN as an INTEGER_CST of type TYPE.
7309 If the buffer cannot be interpreted, return NULL_TREE. */
7312 native_interpret_int (tree type
, const unsigned char *ptr
, int len
)
7314 int total_bytes
= GET_MODE_SIZE (TYPE_MODE (type
));
7316 if (total_bytes
> len
7317 || total_bytes
* BITS_PER_UNIT
> HOST_BITS_PER_DOUBLE_INT
)
7320 wide_int result
= wi::from_buffer (ptr
, total_bytes
);
7322 return wide_int_to_tree (type
, result
);
7326 /* Subroutine of native_interpret_expr. Interpret the contents of
7327 the buffer PTR of length LEN as a FIXED_CST of type TYPE.
7328 If the buffer cannot be interpreted, return NULL_TREE. */
7331 native_interpret_fixed (tree type
, const unsigned char *ptr
, int len
)
7333 int total_bytes
= GET_MODE_SIZE (TYPE_MODE (type
));
7335 FIXED_VALUE_TYPE fixed_value
;
7337 if (total_bytes
> len
7338 || total_bytes
* BITS_PER_UNIT
> HOST_BITS_PER_DOUBLE_INT
)
7341 result
= double_int::from_buffer (ptr
, total_bytes
);
7342 fixed_value
= fixed_from_double_int (result
, TYPE_MODE (type
));
7344 return build_fixed (type
, fixed_value
);
7348 /* Subroutine of native_interpret_expr. Interpret the contents of
7349 the buffer PTR of length LEN as a REAL_CST of type TYPE.
7350 If the buffer cannot be interpreted, return NULL_TREE. */
7353 native_interpret_real (tree type
, const unsigned char *ptr
, int len
)
7355 machine_mode mode
= TYPE_MODE (type
);
7356 int total_bytes
= GET_MODE_SIZE (mode
);
7357 unsigned char value
;
7358 /* There are always 32 bits in each long, no matter the size of
7359 the hosts long. We handle floating point representations with
7364 total_bytes
= GET_MODE_SIZE (TYPE_MODE (type
));
7365 if (total_bytes
> len
|| total_bytes
> 24)
7367 int words
= (32 / BITS_PER_UNIT
) / UNITS_PER_WORD
;
7369 memset (tmp
, 0, sizeof (tmp
));
7370 for (int bitpos
= 0; bitpos
< total_bytes
* BITS_PER_UNIT
;
7371 bitpos
+= BITS_PER_UNIT
)
7373 /* Both OFFSET and BYTE index within a long;
7374 bitpos indexes the whole float. */
7375 int offset
, byte
= (bitpos
/ BITS_PER_UNIT
) & 3;
7376 if (UNITS_PER_WORD
< 4)
7378 int word
= byte
/ UNITS_PER_WORD
;
7379 if (WORDS_BIG_ENDIAN
)
7380 word
= (words
- 1) - word
;
7381 offset
= word
* UNITS_PER_WORD
;
7382 if (BYTES_BIG_ENDIAN
)
7383 offset
+= (UNITS_PER_WORD
- 1) - (byte
% UNITS_PER_WORD
);
7385 offset
+= byte
% UNITS_PER_WORD
;
7390 if (BYTES_BIG_ENDIAN
)
7392 /* Reverse bytes within each long, or within the entire float
7393 if it's smaller than a long (for HFmode). */
7394 offset
= MIN (3, total_bytes
- 1) - offset
;
7395 gcc_assert (offset
>= 0);
7398 value
= ptr
[offset
+ ((bitpos
/ BITS_PER_UNIT
) & ~3)];
7400 tmp
[bitpos
/ 32] |= (unsigned long)value
<< (bitpos
& 31);
7403 real_from_target (&r
, tmp
, mode
);
7404 return build_real (type
, r
);
7408 /* Subroutine of native_interpret_expr. Interpret the contents of
7409 the buffer PTR of length LEN as a COMPLEX_CST of type TYPE.
7410 If the buffer cannot be interpreted, return NULL_TREE. */
7413 native_interpret_complex (tree type
, const unsigned char *ptr
, int len
)
7415 tree etype
, rpart
, ipart
;
7418 etype
= TREE_TYPE (type
);
7419 size
= GET_MODE_SIZE (TYPE_MODE (etype
));
7422 rpart
= native_interpret_expr (etype
, ptr
, size
);
7425 ipart
= native_interpret_expr (etype
, ptr
+size
, size
);
7428 return build_complex (type
, rpart
, ipart
);
7432 /* Subroutine of native_interpret_expr. Interpret the contents of
7433 the buffer PTR of length LEN as a VECTOR_CST of type TYPE.
7434 If the buffer cannot be interpreted, return NULL_TREE. */
7437 native_interpret_vector (tree type
, const unsigned char *ptr
, int len
)
7443 etype
= TREE_TYPE (type
);
7444 size
= GET_MODE_SIZE (TYPE_MODE (etype
));
7445 count
= TYPE_VECTOR_SUBPARTS (type
);
7446 if (size
* count
> len
)
7449 elements
= XALLOCAVEC (tree
, count
);
7450 for (i
= count
- 1; i
>= 0; i
--)
7452 elem
= native_interpret_expr (etype
, ptr
+(i
*size
), size
);
7457 return build_vector (type
, elements
);
7461 /* Subroutine of fold_view_convert_expr. Interpret the contents of
7462 the buffer PTR of length LEN as a constant of type TYPE. For
7463 INTEGRAL_TYPE_P we return an INTEGER_CST, for SCALAR_FLOAT_TYPE_P
7464 we return a REAL_CST, etc... If the buffer cannot be interpreted,
7465 return NULL_TREE. */
7468 native_interpret_expr (tree type
, const unsigned char *ptr
, int len
)
7470 switch (TREE_CODE (type
))
7476 case REFERENCE_TYPE
:
7477 return native_interpret_int (type
, ptr
, len
);
7480 return native_interpret_real (type
, ptr
, len
);
7482 case FIXED_POINT_TYPE
:
7483 return native_interpret_fixed (type
, ptr
, len
);
7486 return native_interpret_complex (type
, ptr
, len
);
7489 return native_interpret_vector (type
, ptr
, len
);
7496 /* Returns true if we can interpret the contents of a native encoding
7500 can_native_interpret_type_p (tree type
)
7502 switch (TREE_CODE (type
))
7508 case REFERENCE_TYPE
:
7509 case FIXED_POINT_TYPE
:
7519 /* Fold a VIEW_CONVERT_EXPR of a constant expression EXPR to type
7520 TYPE at compile-time. If we're unable to perform the conversion
7521 return NULL_TREE. */
7524 fold_view_convert_expr (tree type
, tree expr
)
7526 /* We support up to 512-bit values (for V8DFmode). */
7527 unsigned char buffer
[64];
7530 /* Check that the host and target are sane. */
7531 if (CHAR_BIT
!= 8 || BITS_PER_UNIT
!= 8)
7534 len
= native_encode_expr (expr
, buffer
, sizeof (buffer
));
7538 return native_interpret_expr (type
, buffer
, len
);
7541 /* Build an expression for the address of T. Folds away INDIRECT_REF
7542 to avoid confusing the gimplify process. */
7545 build_fold_addr_expr_with_type_loc (location_t loc
, tree t
, tree ptrtype
)
7547 /* The size of the object is not relevant when talking about its address. */
7548 if (TREE_CODE (t
) == WITH_SIZE_EXPR
)
7549 t
= TREE_OPERAND (t
, 0);
7551 if (TREE_CODE (t
) == INDIRECT_REF
)
7553 t
= TREE_OPERAND (t
, 0);
7555 if (TREE_TYPE (t
) != ptrtype
)
7556 t
= build1_loc (loc
, NOP_EXPR
, ptrtype
, t
);
7558 else if (TREE_CODE (t
) == MEM_REF
7559 && integer_zerop (TREE_OPERAND (t
, 1)))
7560 return TREE_OPERAND (t
, 0);
7561 else if (TREE_CODE (t
) == MEM_REF
7562 && TREE_CODE (TREE_OPERAND (t
, 0)) == INTEGER_CST
)
7563 return fold_binary (POINTER_PLUS_EXPR
, ptrtype
,
7564 TREE_OPERAND (t
, 0),
7565 convert_to_ptrofftype (TREE_OPERAND (t
, 1)));
7566 else if (TREE_CODE (t
) == VIEW_CONVERT_EXPR
)
7568 t
= build_fold_addr_expr_loc (loc
, TREE_OPERAND (t
, 0));
7570 if (TREE_TYPE (t
) != ptrtype
)
7571 t
= fold_convert_loc (loc
, ptrtype
, t
);
7574 t
= build1_loc (loc
, ADDR_EXPR
, ptrtype
, t
);
7579 /* Build an expression for the address of T. */
7582 build_fold_addr_expr_loc (location_t loc
, tree t
)
7584 tree ptrtype
= build_pointer_type (TREE_TYPE (t
));
7586 return build_fold_addr_expr_with_type_loc (loc
, t
, ptrtype
);
7589 /* Fold a unary expression of code CODE and type TYPE with operand
7590 OP0. Return the folded expression if folding is successful.
7591 Otherwise, return NULL_TREE. */
7594 fold_unary_loc (location_t loc
, enum tree_code code
, tree type
, tree op0
)
7598 enum tree_code_class kind
= TREE_CODE_CLASS (code
);
7600 gcc_assert (IS_EXPR_CODE_CLASS (kind
)
7601 && TREE_CODE_LENGTH (code
) == 1);
7606 if (CONVERT_EXPR_CODE_P (code
)
7607 || code
== FLOAT_EXPR
|| code
== ABS_EXPR
|| code
== NEGATE_EXPR
)
7609 /* Don't use STRIP_NOPS, because signedness of argument type
7611 STRIP_SIGN_NOPS (arg0
);
7615 /* Strip any conversions that don't change the mode. This
7616 is safe for every expression, except for a comparison
7617 expression because its signedness is derived from its
7620 Note that this is done as an internal manipulation within
7621 the constant folder, in order to find the simplest
7622 representation of the arguments so that their form can be
7623 studied. In any cases, the appropriate type conversions
7624 should be put back in the tree that will get out of the
7629 if (CONSTANT_CLASS_P (arg0
))
7631 tree tem
= const_unop (code
, type
, arg0
);
7634 if (TREE_TYPE (tem
) != type
)
7635 tem
= fold_convert_loc (loc
, type
, tem
);
7641 tem
= generic_simplify (loc
, code
, type
, op0
);
7645 if (TREE_CODE_CLASS (code
) == tcc_unary
)
7647 if (TREE_CODE (arg0
) == COMPOUND_EXPR
)
7648 return build2 (COMPOUND_EXPR
, type
, TREE_OPERAND (arg0
, 0),
7649 fold_build1_loc (loc
, code
, type
,
7650 fold_convert_loc (loc
, TREE_TYPE (op0
),
7651 TREE_OPERAND (arg0
, 1))));
7652 else if (TREE_CODE (arg0
) == COND_EXPR
)
7654 tree arg01
= TREE_OPERAND (arg0
, 1);
7655 tree arg02
= TREE_OPERAND (arg0
, 2);
7656 if (! VOID_TYPE_P (TREE_TYPE (arg01
)))
7657 arg01
= fold_build1_loc (loc
, code
, type
,
7658 fold_convert_loc (loc
,
7659 TREE_TYPE (op0
), arg01
));
7660 if (! VOID_TYPE_P (TREE_TYPE (arg02
)))
7661 arg02
= fold_build1_loc (loc
, code
, type
,
7662 fold_convert_loc (loc
,
7663 TREE_TYPE (op0
), arg02
));
7664 tem
= fold_build3_loc (loc
, COND_EXPR
, type
, TREE_OPERAND (arg0
, 0),
7667 /* If this was a conversion, and all we did was to move into
7668 inside the COND_EXPR, bring it back out. But leave it if
7669 it is a conversion from integer to integer and the
7670 result precision is no wider than a word since such a
7671 conversion is cheap and may be optimized away by combine,
7672 while it couldn't if it were outside the COND_EXPR. Then return
7673 so we don't get into an infinite recursion loop taking the
7674 conversion out and then back in. */
7676 if ((CONVERT_EXPR_CODE_P (code
)
7677 || code
== NON_LVALUE_EXPR
)
7678 && TREE_CODE (tem
) == COND_EXPR
7679 && TREE_CODE (TREE_OPERAND (tem
, 1)) == code
7680 && TREE_CODE (TREE_OPERAND (tem
, 2)) == code
7681 && ! VOID_TYPE_P (TREE_OPERAND (tem
, 1))
7682 && ! VOID_TYPE_P (TREE_OPERAND (tem
, 2))
7683 && (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem
, 1), 0))
7684 == TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem
, 2), 0)))
7685 && (! (INTEGRAL_TYPE_P (TREE_TYPE (tem
))
7687 (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem
, 1), 0))))
7688 && TYPE_PRECISION (TREE_TYPE (tem
)) <= BITS_PER_WORD
)
7689 || flag_syntax_only
))
7690 tem
= build1_loc (loc
, code
, type
,
7692 TREE_TYPE (TREE_OPERAND
7693 (TREE_OPERAND (tem
, 1), 0)),
7694 TREE_OPERAND (tem
, 0),
7695 TREE_OPERAND (TREE_OPERAND (tem
, 1), 0),
7696 TREE_OPERAND (TREE_OPERAND (tem
, 2),
7704 case NON_LVALUE_EXPR
:
7705 if (!maybe_lvalue_p (op0
))
7706 return fold_convert_loc (loc
, type
, op0
);
7711 case FIX_TRUNC_EXPR
:
7712 if (COMPARISON_CLASS_P (op0
))
7714 /* If we have (type) (a CMP b) and type is an integral type, return
7715 new expression involving the new type. Canonicalize
7716 (type) (a CMP b) to (a CMP b) ? (type) true : (type) false for
7718 Do not fold the result as that would not simplify further, also
7719 folding again results in recursions. */
7720 if (TREE_CODE (type
) == BOOLEAN_TYPE
)
7721 return build2_loc (loc
, TREE_CODE (op0
), type
,
7722 TREE_OPERAND (op0
, 0),
7723 TREE_OPERAND (op0
, 1));
7724 else if (!INTEGRAL_TYPE_P (type
) && !VOID_TYPE_P (type
)
7725 && TREE_CODE (type
) != VECTOR_TYPE
)
7726 return build3_loc (loc
, COND_EXPR
, type
, op0
,
7727 constant_boolean_node (true, type
),
7728 constant_boolean_node (false, type
));
7731 /* Handle (T *)&A.B.C for A being of type T and B and C
7732 living at offset zero. This occurs frequently in
7733 C++ upcasting and then accessing the base. */
7734 if (TREE_CODE (op0
) == ADDR_EXPR
7735 && POINTER_TYPE_P (type
)
7736 && handled_component_p (TREE_OPERAND (op0
, 0)))
7738 HOST_WIDE_INT bitsize
, bitpos
;
7741 int unsignedp
, reversep
, volatilep
;
7743 = get_inner_reference (TREE_OPERAND (op0
, 0), &bitsize
, &bitpos
,
7744 &offset
, &mode
, &unsignedp
, &reversep
,
7746 /* If the reference was to a (constant) zero offset, we can use
7747 the address of the base if it has the same base type
7748 as the result type and the pointer type is unqualified. */
7749 if (! offset
&& bitpos
== 0
7750 && (TYPE_MAIN_VARIANT (TREE_TYPE (type
))
7751 == TYPE_MAIN_VARIANT (TREE_TYPE (base
)))
7752 && TYPE_QUALS (type
) == TYPE_UNQUALIFIED
)
7753 return fold_convert_loc (loc
, type
,
7754 build_fold_addr_expr_loc (loc
, base
));
7757 if (TREE_CODE (op0
) == MODIFY_EXPR
7758 && TREE_CONSTANT (TREE_OPERAND (op0
, 1))
7759 /* Detect assigning a bitfield. */
7760 && !(TREE_CODE (TREE_OPERAND (op0
, 0)) == COMPONENT_REF
7762 (TREE_OPERAND (TREE_OPERAND (op0
, 0), 1))))
7764 /* Don't leave an assignment inside a conversion
7765 unless assigning a bitfield. */
7766 tem
= fold_build1_loc (loc
, code
, type
, TREE_OPERAND (op0
, 1));
7767 /* First do the assignment, then return converted constant. */
7768 tem
= build2_loc (loc
, COMPOUND_EXPR
, TREE_TYPE (tem
), op0
, tem
);
7769 TREE_NO_WARNING (tem
) = 1;
7770 TREE_USED (tem
) = 1;
7774 /* Convert (T)(x & c) into (T)x & (T)c, if c is an integer
7775 constants (if x has signed type, the sign bit cannot be set
7776 in c). This folds extension into the BIT_AND_EXPR.
7777 ??? We don't do it for BOOLEAN_TYPE or ENUMERAL_TYPE because they
7778 very likely don't have maximal range for their precision and this
7779 transformation effectively doesn't preserve non-maximal ranges. */
7780 if (TREE_CODE (type
) == INTEGER_TYPE
7781 && TREE_CODE (op0
) == BIT_AND_EXPR
7782 && TREE_CODE (TREE_OPERAND (op0
, 1)) == INTEGER_CST
)
7784 tree and_expr
= op0
;
7785 tree and0
= TREE_OPERAND (and_expr
, 0);
7786 tree and1
= TREE_OPERAND (and_expr
, 1);
7789 if (TYPE_UNSIGNED (TREE_TYPE (and_expr
))
7790 || (TYPE_PRECISION (type
)
7791 <= TYPE_PRECISION (TREE_TYPE (and_expr
))))
7793 else if (TYPE_PRECISION (TREE_TYPE (and1
))
7794 <= HOST_BITS_PER_WIDE_INT
7795 && tree_fits_uhwi_p (and1
))
7797 unsigned HOST_WIDE_INT cst
;
7799 cst
= tree_to_uhwi (and1
);
7800 cst
&= HOST_WIDE_INT_M1U
7801 << (TYPE_PRECISION (TREE_TYPE (and1
)) - 1);
7802 change
= (cst
== 0);
7804 && !flag_syntax_only
7805 && (LOAD_EXTEND_OP (TYPE_MODE (TREE_TYPE (and0
)))
7808 tree uns
= unsigned_type_for (TREE_TYPE (and0
));
7809 and0
= fold_convert_loc (loc
, uns
, and0
);
7810 and1
= fold_convert_loc (loc
, uns
, and1
);
7815 tem
= force_fit_type (type
, wi::to_widest (and1
), 0,
7816 TREE_OVERFLOW (and1
));
7817 return fold_build2_loc (loc
, BIT_AND_EXPR
, type
,
7818 fold_convert_loc (loc
, type
, and0
), tem
);
7822 /* Convert (T1)(X p+ Y) into ((T1)X p+ Y), for pointer type, when the new
7823 cast (T1)X will fold away. We assume that this happens when X itself
7825 if (POINTER_TYPE_P (type
)
7826 && TREE_CODE (arg0
) == POINTER_PLUS_EXPR
7827 && CONVERT_EXPR_P (TREE_OPERAND (arg0
, 0)))
7829 tree arg00
= TREE_OPERAND (arg0
, 0);
7830 tree arg01
= TREE_OPERAND (arg0
, 1);
7832 return fold_build_pointer_plus_loc
7833 (loc
, fold_convert_loc (loc
, type
, arg00
), arg01
);
7836 /* Convert (T1)(~(T2)X) into ~(T1)X if T1 and T2 are integral types
7837 of the same precision, and X is an integer type not narrower than
7838 types T1 or T2, i.e. the cast (T2)X isn't an extension. */
7839 if (INTEGRAL_TYPE_P (type
)
7840 && TREE_CODE (op0
) == BIT_NOT_EXPR
7841 && INTEGRAL_TYPE_P (TREE_TYPE (op0
))
7842 && CONVERT_EXPR_P (TREE_OPERAND (op0
, 0))
7843 && TYPE_PRECISION (type
) == TYPE_PRECISION (TREE_TYPE (op0
)))
7845 tem
= TREE_OPERAND (TREE_OPERAND (op0
, 0), 0);
7846 if (INTEGRAL_TYPE_P (TREE_TYPE (tem
))
7847 && TYPE_PRECISION (type
) <= TYPE_PRECISION (TREE_TYPE (tem
)))
7848 return fold_build1_loc (loc
, BIT_NOT_EXPR
, type
,
7849 fold_convert_loc (loc
, type
, tem
));
7852 /* Convert (T1)(X * Y) into (T1)X * (T1)Y if T1 is narrower than the
7853 type of X and Y (integer types only). */
7854 if (INTEGRAL_TYPE_P (type
)
7855 && TREE_CODE (op0
) == MULT_EXPR
7856 && INTEGRAL_TYPE_P (TREE_TYPE (op0
))
7857 && TYPE_PRECISION (type
) < TYPE_PRECISION (TREE_TYPE (op0
)))
7859 /* Be careful not to introduce new overflows. */
7861 if (TYPE_OVERFLOW_WRAPS (type
))
7864 mult_type
= unsigned_type_for (type
);
7866 if (TYPE_PRECISION (mult_type
) < TYPE_PRECISION (TREE_TYPE (op0
)))
7868 tem
= fold_build2_loc (loc
, MULT_EXPR
, mult_type
,
7869 fold_convert_loc (loc
, mult_type
,
7870 TREE_OPERAND (op0
, 0)),
7871 fold_convert_loc (loc
, mult_type
,
7872 TREE_OPERAND (op0
, 1)));
7873 return fold_convert_loc (loc
, type
, tem
);
7879 case VIEW_CONVERT_EXPR
:
7880 if (TREE_CODE (op0
) == MEM_REF
)
7882 if (TYPE_ALIGN (TREE_TYPE (op0
)) != TYPE_ALIGN (type
))
7883 type
= build_aligned_type (type
, TYPE_ALIGN (TREE_TYPE (op0
)));
7884 tem
= fold_build2_loc (loc
, MEM_REF
, type
,
7885 TREE_OPERAND (op0
, 0), TREE_OPERAND (op0
, 1));
7886 REF_REVERSE_STORAGE_ORDER (tem
) = REF_REVERSE_STORAGE_ORDER (op0
);
7893 tem
= fold_negate_expr (loc
, arg0
);
7895 return fold_convert_loc (loc
, type
, tem
);
7899 /* Convert fabs((double)float) into (double)fabsf(float). */
7900 if (TREE_CODE (arg0
) == NOP_EXPR
7901 && TREE_CODE (type
) == REAL_TYPE
)
7903 tree targ0
= strip_float_extensions (arg0
);
7905 return fold_convert_loc (loc
, type
,
7906 fold_build1_loc (loc
, ABS_EXPR
,
7913 /* Convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
7914 if (TREE_CODE (arg0
) == BIT_XOR_EXPR
7915 && (tem
= fold_unary_loc (loc
, BIT_NOT_EXPR
, type
,
7916 fold_convert_loc (loc
, type
,
7917 TREE_OPERAND (arg0
, 0)))))
7918 return fold_build2_loc (loc
, BIT_XOR_EXPR
, type
, tem
,
7919 fold_convert_loc (loc
, type
,
7920 TREE_OPERAND (arg0
, 1)));
7921 else if (TREE_CODE (arg0
) == BIT_XOR_EXPR
7922 && (tem
= fold_unary_loc (loc
, BIT_NOT_EXPR
, type
,
7923 fold_convert_loc (loc
, type
,
7924 TREE_OPERAND (arg0
, 1)))))
7925 return fold_build2_loc (loc
, BIT_XOR_EXPR
, type
,
7926 fold_convert_loc (loc
, type
,
7927 TREE_OPERAND (arg0
, 0)), tem
);
7931 case TRUTH_NOT_EXPR
:
7932 /* Note that the operand of this must be an int
7933 and its values must be 0 or 1.
7934 ("true" is a fixed value perhaps depending on the language,
7935 but we don't handle values other than 1 correctly yet.) */
7936 tem
= fold_truth_not_expr (loc
, arg0
);
7939 return fold_convert_loc (loc
, type
, tem
);
7942 /* Fold *&X to X if X is an lvalue. */
7943 if (TREE_CODE (op0
) == ADDR_EXPR
)
7945 tree op00
= TREE_OPERAND (op0
, 0);
7947 || TREE_CODE (op00
) == PARM_DECL
7948 || TREE_CODE (op00
) == RESULT_DECL
)
7949 && !TREE_READONLY (op00
))
7956 } /* switch (code) */
7960 /* If the operation was a conversion do _not_ mark a resulting constant
7961 with TREE_OVERFLOW if the original constant was not. These conversions
7962 have implementation defined behavior and retaining the TREE_OVERFLOW
7963 flag here would confuse later passes such as VRP. */
7965 fold_unary_ignore_overflow_loc (location_t loc
, enum tree_code code
,
7966 tree type
, tree op0
)
7968 tree res
= fold_unary_loc (loc
, code
, type
, op0
);
7970 && TREE_CODE (res
) == INTEGER_CST
7971 && TREE_CODE (op0
) == INTEGER_CST
7972 && CONVERT_EXPR_CODE_P (code
))
7973 TREE_OVERFLOW (res
) = TREE_OVERFLOW (op0
);
7978 /* Fold a binary bitwise/truth expression of code CODE and type TYPE with
7979 operands OP0 and OP1. LOC is the location of the resulting expression.
7980 ARG0 and ARG1 are the NOP_STRIPed results of OP0 and OP1.
7981 Return the folded expression if folding is successful. Otherwise,
7982 return NULL_TREE. */
7984 fold_truth_andor (location_t loc
, enum tree_code code
, tree type
,
7985 tree arg0
, tree arg1
, tree op0
, tree op1
)
7989 /* We only do these simplifications if we are optimizing. */
7993 /* Check for things like (A || B) && (A || C). We can convert this
7994 to A || (B && C). Note that either operator can be any of the four
7995 truth and/or operations and the transformation will still be
7996 valid. Also note that we only care about order for the
7997 ANDIF and ORIF operators. If B contains side effects, this
7998 might change the truth-value of A. */
7999 if (TREE_CODE (arg0
) == TREE_CODE (arg1
)
8000 && (TREE_CODE (arg0
) == TRUTH_ANDIF_EXPR
8001 || TREE_CODE (arg0
) == TRUTH_ORIF_EXPR
8002 || TREE_CODE (arg0
) == TRUTH_AND_EXPR
8003 || TREE_CODE (arg0
) == TRUTH_OR_EXPR
)
8004 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg0
, 1)))
8006 tree a00
= TREE_OPERAND (arg0
, 0);
8007 tree a01
= TREE_OPERAND (arg0
, 1);
8008 tree a10
= TREE_OPERAND (arg1
, 0);
8009 tree a11
= TREE_OPERAND (arg1
, 1);
8010 int commutative
= ((TREE_CODE (arg0
) == TRUTH_OR_EXPR
8011 || TREE_CODE (arg0
) == TRUTH_AND_EXPR
)
8012 && (code
== TRUTH_AND_EXPR
8013 || code
== TRUTH_OR_EXPR
));
8015 if (operand_equal_p (a00
, a10
, 0))
8016 return fold_build2_loc (loc
, TREE_CODE (arg0
), type
, a00
,
8017 fold_build2_loc (loc
, code
, type
, a01
, a11
));
8018 else if (commutative
&& operand_equal_p (a00
, a11
, 0))
8019 return fold_build2_loc (loc
, TREE_CODE (arg0
), type
, a00
,
8020 fold_build2_loc (loc
, code
, type
, a01
, a10
));
8021 else if (commutative
&& operand_equal_p (a01
, a10
, 0))
8022 return fold_build2_loc (loc
, TREE_CODE (arg0
), type
, a01
,
8023 fold_build2_loc (loc
, code
, type
, a00
, a11
));
8025 /* This case if tricky because we must either have commutative
8026 operators or else A10 must not have side-effects. */
8028 else if ((commutative
|| ! TREE_SIDE_EFFECTS (a10
))
8029 && operand_equal_p (a01
, a11
, 0))
8030 return fold_build2_loc (loc
, TREE_CODE (arg0
), type
,
8031 fold_build2_loc (loc
, code
, type
, a00
, a10
),
8035 /* See if we can build a range comparison. */
8036 if (0 != (tem
= fold_range_test (loc
, code
, type
, op0
, op1
)))
8039 if ((code
== TRUTH_ANDIF_EXPR
&& TREE_CODE (arg0
) == TRUTH_ORIF_EXPR
)
8040 || (code
== TRUTH_ORIF_EXPR
&& TREE_CODE (arg0
) == TRUTH_ANDIF_EXPR
))
8042 tem
= merge_truthop_with_opposite_arm (loc
, arg0
, arg1
, true);
8044 return fold_build2_loc (loc
, code
, type
, tem
, arg1
);
8047 if ((code
== TRUTH_ANDIF_EXPR
&& TREE_CODE (arg1
) == TRUTH_ORIF_EXPR
)
8048 || (code
== TRUTH_ORIF_EXPR
&& TREE_CODE (arg1
) == TRUTH_ANDIF_EXPR
))
8050 tem
= merge_truthop_with_opposite_arm (loc
, arg1
, arg0
, false);
8052 return fold_build2_loc (loc
, code
, type
, arg0
, tem
);
8055 /* Check for the possibility of merging component references. If our
8056 lhs is another similar operation, try to merge its rhs with our
8057 rhs. Then try to merge our lhs and rhs. */
8058 if (TREE_CODE (arg0
) == code
8059 && 0 != (tem
= fold_truth_andor_1 (loc
, code
, type
,
8060 TREE_OPERAND (arg0
, 1), arg1
)))
8061 return fold_build2_loc (loc
, code
, type
, TREE_OPERAND (arg0
, 0), tem
);
8063 if ((tem
= fold_truth_andor_1 (loc
, code
, type
, arg0
, arg1
)) != 0)
8066 if (LOGICAL_OP_NON_SHORT_CIRCUIT
8067 && (code
== TRUTH_AND_EXPR
8068 || code
== TRUTH_ANDIF_EXPR
8069 || code
== TRUTH_OR_EXPR
8070 || code
== TRUTH_ORIF_EXPR
))
8072 enum tree_code ncode
, icode
;
8074 ncode
= (code
== TRUTH_ANDIF_EXPR
|| code
== TRUTH_AND_EXPR
)
8075 ? TRUTH_AND_EXPR
: TRUTH_OR_EXPR
;
8076 icode
= ncode
== TRUTH_AND_EXPR
? TRUTH_ANDIF_EXPR
: TRUTH_ORIF_EXPR
;
8078 /* Transform ((A AND-IF B) AND[-IF] C) into (A AND-IF (B AND C)),
8079 or ((A OR-IF B) OR[-IF] C) into (A OR-IF (B OR C))
8080 We don't want to pack more than two leafs to a non-IF AND/OR
8082 If tree-code of left-hand operand isn't an AND/OR-IF code and not
8083 equal to IF-CODE, then we don't want to add right-hand operand.
8084 If the inner right-hand side of left-hand operand has
8085 side-effects, or isn't simple, then we can't add to it,
8086 as otherwise we might destroy if-sequence. */
8087 if (TREE_CODE (arg0
) == icode
8088 && simple_operand_p_2 (arg1
)
8089 /* Needed for sequence points to handle trappings, and
8091 && simple_operand_p_2 (TREE_OPERAND (arg0
, 1)))
8093 tem
= fold_build2_loc (loc
, ncode
, type
, TREE_OPERAND (arg0
, 1),
8095 return fold_build2_loc (loc
, icode
, type
, TREE_OPERAND (arg0
, 0),
8098 /* Same as abouve but for (A AND[-IF] (B AND-IF C)) -> ((A AND B) AND-IF C),
8099 or (A OR[-IF] (B OR-IF C) -> ((A OR B) OR-IF C). */
8100 else if (TREE_CODE (arg1
) == icode
8101 && simple_operand_p_2 (arg0
)
8102 /* Needed for sequence points to handle trappings, and
8104 && simple_operand_p_2 (TREE_OPERAND (arg1
, 0)))
8106 tem
= fold_build2_loc (loc
, ncode
, type
,
8107 arg0
, TREE_OPERAND (arg1
, 0));
8108 return fold_build2_loc (loc
, icode
, type
, tem
,
8109 TREE_OPERAND (arg1
, 1));
8111 /* Transform (A AND-IF B) into (A AND B), or (A OR-IF B)
8113 For sequence point consistancy, we need to check for trapping,
8114 and side-effects. */
8115 else if (code
== icode
&& simple_operand_p_2 (arg0
)
8116 && simple_operand_p_2 (arg1
))
8117 return fold_build2_loc (loc
, ncode
, type
, arg0
, arg1
);
8123 /* Helper that tries to canonicalize the comparison ARG0 CODE ARG1
8124 by changing CODE to reduce the magnitude of constants involved in
8125 ARG0 of the comparison.
8126 Returns a canonicalized comparison tree if a simplification was
8127 possible, otherwise returns NULL_TREE.
8128 Set *STRICT_OVERFLOW_P to true if the canonicalization is only
8129 valid if signed overflow is undefined. */
8132 maybe_canonicalize_comparison_1 (location_t loc
, enum tree_code code
, tree type
,
8133 tree arg0
, tree arg1
,
8134 bool *strict_overflow_p
)
8136 enum tree_code code0
= TREE_CODE (arg0
);
8137 tree t
, cst0
= NULL_TREE
;
8140 /* Match A +- CST code arg1. We can change this only if overflow
8142 if (!((ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0
))
8143 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0
)))
8144 /* In principle pointers also have undefined overflow behavior,
8145 but that causes problems elsewhere. */
8146 && !POINTER_TYPE_P (TREE_TYPE (arg0
))
8147 && (code0
== MINUS_EXPR
8148 || code0
== PLUS_EXPR
)
8149 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
))
8152 /* Identify the constant in arg0 and its sign. */
8153 cst0
= TREE_OPERAND (arg0
, 1);
8154 sgn0
= tree_int_cst_sgn (cst0
);
8156 /* Overflowed constants and zero will cause problems. */
8157 if (integer_zerop (cst0
)
8158 || TREE_OVERFLOW (cst0
))
8161 /* See if we can reduce the magnitude of the constant in
8162 arg0 by changing the comparison code. */
8163 /* A - CST < arg1 -> A - CST-1 <= arg1. */
8165 && code0
== ((sgn0
== -1) ? PLUS_EXPR
: MINUS_EXPR
))
8167 /* A + CST > arg1 -> A + CST-1 >= arg1. */
8168 else if (code
== GT_EXPR
8169 && code0
== ((sgn0
== -1) ? MINUS_EXPR
: PLUS_EXPR
))
8171 /* A + CST <= arg1 -> A + CST-1 < arg1. */
8172 else if (code
== LE_EXPR
8173 && code0
== ((sgn0
== -1) ? MINUS_EXPR
: PLUS_EXPR
))
8175 /* A - CST >= arg1 -> A - CST-1 > arg1. */
8176 else if (code
== GE_EXPR
8177 && code0
== ((sgn0
== -1) ? PLUS_EXPR
: MINUS_EXPR
))
8181 *strict_overflow_p
= true;
8183 /* Now build the constant reduced in magnitude. But not if that
8184 would produce one outside of its types range. */
8185 if (INTEGRAL_TYPE_P (TREE_TYPE (cst0
))
8187 && TYPE_MIN_VALUE (TREE_TYPE (cst0
))
8188 && tree_int_cst_equal (cst0
, TYPE_MIN_VALUE (TREE_TYPE (cst0
))))
8190 && TYPE_MAX_VALUE (TREE_TYPE (cst0
))
8191 && tree_int_cst_equal (cst0
, TYPE_MAX_VALUE (TREE_TYPE (cst0
))))))
8194 t
= int_const_binop (sgn0
== -1 ? PLUS_EXPR
: MINUS_EXPR
,
8195 cst0
, build_int_cst (TREE_TYPE (cst0
), 1));
8196 t
= fold_build2_loc (loc
, code0
, TREE_TYPE (arg0
), TREE_OPERAND (arg0
, 0), t
);
8197 t
= fold_convert (TREE_TYPE (arg1
), t
);
8199 return fold_build2_loc (loc
, code
, type
, t
, arg1
);
8202 /* Canonicalize the comparison ARG0 CODE ARG1 with type TYPE with undefined
8203 overflow further. Try to decrease the magnitude of constants involved
8204 by changing LE_EXPR and GE_EXPR to LT_EXPR and GT_EXPR or vice versa
8205 and put sole constants at the second argument position.
8206 Returns the canonicalized tree if changed, otherwise NULL_TREE. */
8209 maybe_canonicalize_comparison (location_t loc
, enum tree_code code
, tree type
,
8210 tree arg0
, tree arg1
)
8213 bool strict_overflow_p
;
8214 const char * const warnmsg
= G_("assuming signed overflow does not occur "
8215 "when reducing constant in comparison");
8217 /* Try canonicalization by simplifying arg0. */
8218 strict_overflow_p
= false;
8219 t
= maybe_canonicalize_comparison_1 (loc
, code
, type
, arg0
, arg1
,
8220 &strict_overflow_p
);
8223 if (strict_overflow_p
)
8224 fold_overflow_warning (warnmsg
, WARN_STRICT_OVERFLOW_MAGNITUDE
);
8228 /* Try canonicalization by simplifying arg1 using the swapped
8230 code
= swap_tree_comparison (code
);
8231 strict_overflow_p
= false;
8232 t
= maybe_canonicalize_comparison_1 (loc
, code
, type
, arg1
, arg0
,
8233 &strict_overflow_p
);
8234 if (t
&& strict_overflow_p
)
8235 fold_overflow_warning (warnmsg
, WARN_STRICT_OVERFLOW_MAGNITUDE
);
8239 /* Return whether BASE + OFFSET + BITPOS may wrap around the address
8240 space. This is used to avoid issuing overflow warnings for
8241 expressions like &p->x which can not wrap. */
8244 pointer_may_wrap_p (tree base
, tree offset
, HOST_WIDE_INT bitpos
)
8246 if (!POINTER_TYPE_P (TREE_TYPE (base
)))
8253 int precision
= TYPE_PRECISION (TREE_TYPE (base
));
8254 if (offset
== NULL_TREE
)
8255 wi_offset
= wi::zero (precision
);
8256 else if (TREE_CODE (offset
) != INTEGER_CST
|| TREE_OVERFLOW (offset
))
8262 wide_int units
= wi::shwi (bitpos
/ BITS_PER_UNIT
, precision
);
8263 wide_int total
= wi::add (wi_offset
, units
, UNSIGNED
, &overflow
);
8267 if (!wi::fits_uhwi_p (total
))
8270 HOST_WIDE_INT size
= int_size_in_bytes (TREE_TYPE (TREE_TYPE (base
)));
8274 /* We can do slightly better for SIZE if we have an ADDR_EXPR of an
8276 if (TREE_CODE (base
) == ADDR_EXPR
)
8278 HOST_WIDE_INT base_size
;
8280 base_size
= int_size_in_bytes (TREE_TYPE (TREE_OPERAND (base
, 0)));
8281 if (base_size
> 0 && size
< base_size
)
8285 return total
.to_uhwi () > (unsigned HOST_WIDE_INT
) size
;
8288 /* Return a positive integer when the symbol DECL is known to have
8289 a nonzero address, zero when it's known not to (e.g., it's a weak
8290 symbol), and a negative integer when the symbol is not yet in the
8291 symbol table and so whether or not its address is zero is unknown. */
8293 maybe_nonzero_address (tree decl
)
8295 if (DECL_P (decl
) && decl_in_symtab_p (decl
))
8296 if (struct symtab_node
*symbol
= symtab_node::get_create (decl
))
8297 return symbol
->nonzero_address ();
8302 /* Subroutine of fold_binary. This routine performs all of the
8303 transformations that are common to the equality/inequality
8304 operators (EQ_EXPR and NE_EXPR) and the ordering operators
8305 (LT_EXPR, LE_EXPR, GE_EXPR and GT_EXPR). Callers other than
8306 fold_binary should call fold_binary. Fold a comparison with
8307 tree code CODE and type TYPE with operands OP0 and OP1. Return
8308 the folded comparison or NULL_TREE. */
8311 fold_comparison (location_t loc
, enum tree_code code
, tree type
,
8314 const bool equality_code
= (code
== EQ_EXPR
|| code
== NE_EXPR
);
8315 tree arg0
, arg1
, tem
;
8320 STRIP_SIGN_NOPS (arg0
);
8321 STRIP_SIGN_NOPS (arg1
);
8323 /* For comparisons of pointers we can decompose it to a compile time
8324 comparison of the base objects and the offsets into the object.
8325 This requires at least one operand being an ADDR_EXPR or a
8326 POINTER_PLUS_EXPR to do more than the operand_equal_p test below. */
8327 if (POINTER_TYPE_P (TREE_TYPE (arg0
))
8328 && (TREE_CODE (arg0
) == ADDR_EXPR
8329 || TREE_CODE (arg1
) == ADDR_EXPR
8330 || TREE_CODE (arg0
) == POINTER_PLUS_EXPR
8331 || TREE_CODE (arg1
) == POINTER_PLUS_EXPR
))
8333 tree base0
, base1
, offset0
= NULL_TREE
, offset1
= NULL_TREE
;
8334 HOST_WIDE_INT bitsize
, bitpos0
= 0, bitpos1
= 0;
8336 int volatilep
, reversep
, unsignedp
;
8337 bool indirect_base0
= false, indirect_base1
= false;
8339 /* Get base and offset for the access. Strip ADDR_EXPR for
8340 get_inner_reference, but put it back by stripping INDIRECT_REF
8341 off the base object if possible. indirect_baseN will be true
8342 if baseN is not an address but refers to the object itself. */
8344 if (TREE_CODE (arg0
) == ADDR_EXPR
)
8347 = get_inner_reference (TREE_OPERAND (arg0
, 0),
8348 &bitsize
, &bitpos0
, &offset0
, &mode
,
8349 &unsignedp
, &reversep
, &volatilep
);
8350 if (TREE_CODE (base0
) == INDIRECT_REF
)
8351 base0
= TREE_OPERAND (base0
, 0);
8353 indirect_base0
= true;
8355 else if (TREE_CODE (arg0
) == POINTER_PLUS_EXPR
)
8357 base0
= TREE_OPERAND (arg0
, 0);
8358 STRIP_SIGN_NOPS (base0
);
8359 if (TREE_CODE (base0
) == ADDR_EXPR
)
8362 = get_inner_reference (TREE_OPERAND (base0
, 0),
8363 &bitsize
, &bitpos0
, &offset0
, &mode
,
8364 &unsignedp
, &reversep
, &volatilep
);
8365 if (TREE_CODE (base0
) == INDIRECT_REF
)
8366 base0
= TREE_OPERAND (base0
, 0);
8368 indirect_base0
= true;
8370 if (offset0
== NULL_TREE
|| integer_zerop (offset0
))
8371 offset0
= TREE_OPERAND (arg0
, 1);
8373 offset0
= size_binop (PLUS_EXPR
, offset0
,
8374 TREE_OPERAND (arg0
, 1));
8375 if (TREE_CODE (offset0
) == INTEGER_CST
)
8377 offset_int tem
= wi::sext (wi::to_offset (offset0
),
8378 TYPE_PRECISION (sizetype
));
8379 tem
<<= LOG2_BITS_PER_UNIT
;
8381 if (wi::fits_shwi_p (tem
))
8383 bitpos0
= tem
.to_shwi ();
8384 offset0
= NULL_TREE
;
8390 if (TREE_CODE (arg1
) == ADDR_EXPR
)
8393 = get_inner_reference (TREE_OPERAND (arg1
, 0),
8394 &bitsize
, &bitpos1
, &offset1
, &mode
,
8395 &unsignedp
, &reversep
, &volatilep
);
8396 if (TREE_CODE (base1
) == INDIRECT_REF
)
8397 base1
= TREE_OPERAND (base1
, 0);
8399 indirect_base1
= true;
8401 else if (TREE_CODE (arg1
) == POINTER_PLUS_EXPR
)
8403 base1
= TREE_OPERAND (arg1
, 0);
8404 STRIP_SIGN_NOPS (base1
);
8405 if (TREE_CODE (base1
) == ADDR_EXPR
)
8408 = get_inner_reference (TREE_OPERAND (base1
, 0),
8409 &bitsize
, &bitpos1
, &offset1
, &mode
,
8410 &unsignedp
, &reversep
, &volatilep
);
8411 if (TREE_CODE (base1
) == INDIRECT_REF
)
8412 base1
= TREE_OPERAND (base1
, 0);
8414 indirect_base1
= true;
8416 if (offset1
== NULL_TREE
|| integer_zerop (offset1
))
8417 offset1
= TREE_OPERAND (arg1
, 1);
8419 offset1
= size_binop (PLUS_EXPR
, offset1
,
8420 TREE_OPERAND (arg1
, 1));
8421 if (TREE_CODE (offset1
) == INTEGER_CST
)
8423 offset_int tem
= wi::sext (wi::to_offset (offset1
),
8424 TYPE_PRECISION (sizetype
));
8425 tem
<<= LOG2_BITS_PER_UNIT
;
8427 if (wi::fits_shwi_p (tem
))
8429 bitpos1
= tem
.to_shwi ();
8430 offset1
= NULL_TREE
;
8435 /* If we have equivalent bases we might be able to simplify. */
8436 if (indirect_base0
== indirect_base1
8437 && operand_equal_p (base0
, base1
,
8438 indirect_base0
? OEP_ADDRESS_OF
: 0))
8440 /* We can fold this expression to a constant if the non-constant
8441 offset parts are equal. */
8442 if ((offset0
== offset1
8443 || (offset0
&& offset1
8444 && operand_equal_p (offset0
, offset1
, 0)))
8447 && (DECL_P (base0
) || CONSTANT_CLASS_P (base0
)))
8448 || POINTER_TYPE_OVERFLOW_UNDEFINED
))
8452 && bitpos0
!= bitpos1
8453 && (pointer_may_wrap_p (base0
, offset0
, bitpos0
)
8454 || pointer_may_wrap_p (base1
, offset1
, bitpos1
)))
8455 fold_overflow_warning (("assuming pointer wraparound does not "
8456 "occur when comparing P +- C1 with "
8458 WARN_STRICT_OVERFLOW_CONDITIONAL
);
8463 return constant_boolean_node (bitpos0
== bitpos1
, type
);
8465 return constant_boolean_node (bitpos0
!= bitpos1
, type
);
8467 return constant_boolean_node (bitpos0
< bitpos1
, type
);
8469 return constant_boolean_node (bitpos0
<= bitpos1
, type
);
8471 return constant_boolean_node (bitpos0
>= bitpos1
, type
);
8473 return constant_boolean_node (bitpos0
> bitpos1
, type
);
8477 /* We can simplify the comparison to a comparison of the variable
8478 offset parts if the constant offset parts are equal.
8479 Be careful to use signed sizetype here because otherwise we
8480 mess with array offsets in the wrong way. This is possible
8481 because pointer arithmetic is restricted to retain within an
8482 object and overflow on pointer differences is undefined as of
8483 6.5.6/8 and /9 with respect to the signed ptrdiff_t. */
8484 else if (bitpos0
== bitpos1
8487 && (DECL_P (base0
) || CONSTANT_CLASS_P (base0
)))
8488 || POINTER_TYPE_OVERFLOW_UNDEFINED
))
8490 /* By converting to signed sizetype we cover middle-end pointer
8491 arithmetic which operates on unsigned pointer types of size
8492 type size and ARRAY_REF offsets which are properly sign or
8493 zero extended from their type in case it is narrower than
8495 if (offset0
== NULL_TREE
)
8496 offset0
= build_int_cst (ssizetype
, 0);
8498 offset0
= fold_convert_loc (loc
, ssizetype
, offset0
);
8499 if (offset1
== NULL_TREE
)
8500 offset1
= build_int_cst (ssizetype
, 0);
8502 offset1
= fold_convert_loc (loc
, ssizetype
, offset1
);
8505 && (pointer_may_wrap_p (base0
, offset0
, bitpos0
)
8506 || pointer_may_wrap_p (base1
, offset1
, bitpos1
)))
8507 fold_overflow_warning (("assuming pointer wraparound does not "
8508 "occur when comparing P +- C1 with "
8510 WARN_STRICT_OVERFLOW_COMPARISON
);
8512 return fold_build2_loc (loc
, code
, type
, offset0
, offset1
);
8515 /* For equal offsets we can simplify to a comparison of the
8517 else if (bitpos0
== bitpos1
8519 ? base0
!= TREE_OPERAND (arg0
, 0) : base0
!= arg0
)
8521 ? base1
!= TREE_OPERAND (arg1
, 0) : base1
!= arg1
)
8522 && ((offset0
== offset1
)
8523 || (offset0
&& offset1
8524 && operand_equal_p (offset0
, offset1
, 0))))
8527 base0
= build_fold_addr_expr_loc (loc
, base0
);
8529 base1
= build_fold_addr_expr_loc (loc
, base1
);
8530 return fold_build2_loc (loc
, code
, type
, base0
, base1
);
8532 /* Comparison between an ordinary (non-weak) symbol and a null
8533 pointer can be eliminated since such symbols must have a non
8534 null address. In C, relational expressions between pointers
8535 to objects and null pointers are undefined. The results
8536 below follow the C++ rules with the additional property that
8537 every object pointer compares greater than a null pointer.
8539 else if (DECL_P (base0
)
8540 && maybe_nonzero_address (base0
) > 0
8541 /* Avoid folding references to struct members at offset 0 to
8542 prevent tests like '&ptr->firstmember == 0' from getting
8543 eliminated. When ptr is null, although the -> expression
8544 is strictly speaking invalid, GCC retains it as a matter
8545 of QoI. See PR c/44555. */
8546 && (offset0
== NULL_TREE
&& bitpos0
!= 0)
8547 /* The caller guarantees that when one of the arguments is
8548 constant (i.e., null in this case) it is second. */
8549 && integer_zerop (arg1
))
8556 return constant_boolean_node (false, type
);
8560 return constant_boolean_node (true, type
);
8567 /* Transform comparisons of the form X +- C1 CMP Y +- C2 to
8568 X CMP Y +- C2 +- C1 for signed X, Y. This is valid if
8569 the resulting offset is smaller in absolute value than the
8570 original one and has the same sign. */
8571 if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0
))
8572 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0
))
8573 && (TREE_CODE (arg0
) == PLUS_EXPR
|| TREE_CODE (arg0
) == MINUS_EXPR
)
8574 && (TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
8575 && !TREE_OVERFLOW (TREE_OPERAND (arg0
, 1)))
8576 && (TREE_CODE (arg1
) == PLUS_EXPR
|| TREE_CODE (arg1
) == MINUS_EXPR
)
8577 && (TREE_CODE (TREE_OPERAND (arg1
, 1)) == INTEGER_CST
8578 && !TREE_OVERFLOW (TREE_OPERAND (arg1
, 1))))
8580 tree const1
= TREE_OPERAND (arg0
, 1);
8581 tree const2
= TREE_OPERAND (arg1
, 1);
8582 tree variable1
= TREE_OPERAND (arg0
, 0);
8583 tree variable2
= TREE_OPERAND (arg1
, 0);
8585 const char * const warnmsg
= G_("assuming signed overflow does not "
8586 "occur when combining constants around "
8589 /* Put the constant on the side where it doesn't overflow and is
8590 of lower absolute value and of same sign than before. */
8591 cst
= int_const_binop (TREE_CODE (arg0
) == TREE_CODE (arg1
)
8592 ? MINUS_EXPR
: PLUS_EXPR
,
8594 if (!TREE_OVERFLOW (cst
)
8595 && tree_int_cst_compare (const2
, cst
) == tree_int_cst_sgn (const2
)
8596 && tree_int_cst_sgn (cst
) == tree_int_cst_sgn (const2
))
8598 fold_overflow_warning (warnmsg
, WARN_STRICT_OVERFLOW_COMPARISON
);
8599 return fold_build2_loc (loc
, code
, type
,
8601 fold_build2_loc (loc
, TREE_CODE (arg1
),
8606 cst
= int_const_binop (TREE_CODE (arg0
) == TREE_CODE (arg1
)
8607 ? MINUS_EXPR
: PLUS_EXPR
,
8609 if (!TREE_OVERFLOW (cst
)
8610 && tree_int_cst_compare (const1
, cst
) == tree_int_cst_sgn (const1
)
8611 && tree_int_cst_sgn (cst
) == tree_int_cst_sgn (const1
))
8613 fold_overflow_warning (warnmsg
, WARN_STRICT_OVERFLOW_COMPARISON
);
8614 return fold_build2_loc (loc
, code
, type
,
8615 fold_build2_loc (loc
, TREE_CODE (arg0
),
8622 tem
= maybe_canonicalize_comparison (loc
, code
, type
, arg0
, arg1
);
8626 /* If we are comparing an expression that just has comparisons
8627 of two integer values, arithmetic expressions of those comparisons,
8628 and constants, we can simplify it. There are only three cases
8629 to check: the two values can either be equal, the first can be
8630 greater, or the second can be greater. Fold the expression for
8631 those three values. Since each value must be 0 or 1, we have
8632 eight possibilities, each of which corresponds to the constant 0
8633 or 1 or one of the six possible comparisons.
8635 This handles common cases like (a > b) == 0 but also handles
8636 expressions like ((x > y) - (y > x)) > 0, which supposedly
8637 occur in macroized code. */
8639 if (TREE_CODE (arg1
) == INTEGER_CST
&& TREE_CODE (arg0
) != INTEGER_CST
)
8641 tree cval1
= 0, cval2
= 0;
8644 if (twoval_comparison_p (arg0
, &cval1
, &cval2
, &save_p
)
8645 /* Don't handle degenerate cases here; they should already
8646 have been handled anyway. */
8647 && cval1
!= 0 && cval2
!= 0
8648 && ! (TREE_CONSTANT (cval1
) && TREE_CONSTANT (cval2
))
8649 && TREE_TYPE (cval1
) == TREE_TYPE (cval2
)
8650 && INTEGRAL_TYPE_P (TREE_TYPE (cval1
))
8651 && TYPE_MAX_VALUE (TREE_TYPE (cval1
))
8652 && TYPE_MAX_VALUE (TREE_TYPE (cval2
))
8653 && ! operand_equal_p (TYPE_MIN_VALUE (TREE_TYPE (cval1
)),
8654 TYPE_MAX_VALUE (TREE_TYPE (cval2
)), 0))
8656 tree maxval
= TYPE_MAX_VALUE (TREE_TYPE (cval1
));
8657 tree minval
= TYPE_MIN_VALUE (TREE_TYPE (cval1
));
8659 /* We can't just pass T to eval_subst in case cval1 or cval2
8660 was the same as ARG1. */
8663 = fold_build2_loc (loc
, code
, type
,
8664 eval_subst (loc
, arg0
, cval1
, maxval
,
8668 = fold_build2_loc (loc
, code
, type
,
8669 eval_subst (loc
, arg0
, cval1
, maxval
,
8673 = fold_build2_loc (loc
, code
, type
,
8674 eval_subst (loc
, arg0
, cval1
, minval
,
8678 /* All three of these results should be 0 or 1. Confirm they are.
8679 Then use those values to select the proper code to use. */
8681 if (TREE_CODE (high_result
) == INTEGER_CST
8682 && TREE_CODE (equal_result
) == INTEGER_CST
8683 && TREE_CODE (low_result
) == INTEGER_CST
)
8685 /* Make a 3-bit mask with the high-order bit being the
8686 value for `>', the next for '=', and the low for '<'. */
8687 switch ((integer_onep (high_result
) * 4)
8688 + (integer_onep (equal_result
) * 2)
8689 + integer_onep (low_result
))
8693 return omit_one_operand_loc (loc
, type
, integer_zero_node
, arg0
);
8714 return omit_one_operand_loc (loc
, type
, integer_one_node
, arg0
);
8719 tem
= save_expr (build2 (code
, type
, cval1
, cval2
));
8720 SET_EXPR_LOCATION (tem
, loc
);
8723 return fold_build2_loc (loc
, code
, type
, cval1
, cval2
);
8728 /* We can fold X/C1 op C2 where C1 and C2 are integer constants
8729 into a single range test. */
8730 if ((TREE_CODE (arg0
) == TRUNC_DIV_EXPR
8731 || TREE_CODE (arg0
) == EXACT_DIV_EXPR
)
8732 && TREE_CODE (arg1
) == INTEGER_CST
8733 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
8734 && !integer_zerop (TREE_OPERAND (arg0
, 1))
8735 && !TREE_OVERFLOW (TREE_OPERAND (arg0
, 1))
8736 && !TREE_OVERFLOW (arg1
))
8738 tem
= fold_div_compare (loc
, code
, type
, arg0
, arg1
);
8739 if (tem
!= NULL_TREE
)
8747 /* Subroutine of fold_binary. Optimize complex multiplications of the
8748 form z * conj(z), as pow(realpart(z),2) + pow(imagpart(z),2). The
8749 argument EXPR represents the expression "z" of type TYPE. */
8752 fold_mult_zconjz (location_t loc
, tree type
, tree expr
)
8754 tree itype
= TREE_TYPE (type
);
8755 tree rpart
, ipart
, tem
;
8757 if (TREE_CODE (expr
) == COMPLEX_EXPR
)
8759 rpart
= TREE_OPERAND (expr
, 0);
8760 ipart
= TREE_OPERAND (expr
, 1);
8762 else if (TREE_CODE (expr
) == COMPLEX_CST
)
8764 rpart
= TREE_REALPART (expr
);
8765 ipart
= TREE_IMAGPART (expr
);
8769 expr
= save_expr (expr
);
8770 rpart
= fold_build1_loc (loc
, REALPART_EXPR
, itype
, expr
);
8771 ipart
= fold_build1_loc (loc
, IMAGPART_EXPR
, itype
, expr
);
8774 rpart
= save_expr (rpart
);
8775 ipart
= save_expr (ipart
);
8776 tem
= fold_build2_loc (loc
, PLUS_EXPR
, itype
,
8777 fold_build2_loc (loc
, MULT_EXPR
, itype
, rpart
, rpart
),
8778 fold_build2_loc (loc
, MULT_EXPR
, itype
, ipart
, ipart
));
8779 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, tem
,
8780 build_zero_cst (itype
));
8784 /* Helper function for fold_vec_perm. Store elements of VECTOR_CST or
8785 CONSTRUCTOR ARG into array ELTS and return true if successful. */
8788 vec_cst_ctor_to_array (tree arg
, tree
*elts
)
8790 unsigned int nelts
= TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg
)), i
;
8792 if (TREE_CODE (arg
) == VECTOR_CST
)
8794 for (i
= 0; i
< VECTOR_CST_NELTS (arg
); ++i
)
8795 elts
[i
] = VECTOR_CST_ELT (arg
, i
);
8797 else if (TREE_CODE (arg
) == CONSTRUCTOR
)
8799 constructor_elt
*elt
;
8801 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (arg
), i
, elt
)
8802 if (i
>= nelts
|| TREE_CODE (TREE_TYPE (elt
->value
)) == VECTOR_TYPE
)
8805 elts
[i
] = elt
->value
;
8809 for (; i
< nelts
; i
++)
8811 = fold_convert (TREE_TYPE (TREE_TYPE (arg
)), integer_zero_node
);
8815 /* Attempt to fold vector permutation of ARG0 and ARG1 vectors using SEL
8816 selector. Return the folded VECTOR_CST or CONSTRUCTOR if successful,
8817 NULL_TREE otherwise. */
8820 fold_vec_perm (tree type
, tree arg0
, tree arg1
, const unsigned char *sel
)
8822 unsigned int nelts
= TYPE_VECTOR_SUBPARTS (type
), i
;
8824 bool need_ctor
= false;
8826 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0
)) == nelts
8827 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1
)) == nelts
);
8828 if (TREE_TYPE (TREE_TYPE (arg0
)) != TREE_TYPE (type
)
8829 || TREE_TYPE (TREE_TYPE (arg1
)) != TREE_TYPE (type
))
8832 elts
= XALLOCAVEC (tree
, nelts
* 3);
8833 if (!vec_cst_ctor_to_array (arg0
, elts
)
8834 || !vec_cst_ctor_to_array (arg1
, elts
+ nelts
))
8837 for (i
= 0; i
< nelts
; i
++)
8839 if (!CONSTANT_CLASS_P (elts
[sel
[i
]]))
8841 elts
[i
+ 2 * nelts
] = unshare_expr (elts
[sel
[i
]]);
8846 vec
<constructor_elt
, va_gc
> *v
;
8847 vec_alloc (v
, nelts
);
8848 for (i
= 0; i
< nelts
; i
++)
8849 CONSTRUCTOR_APPEND_ELT (v
, NULL_TREE
, elts
[2 * nelts
+ i
]);
8850 return build_constructor (type
, v
);
8853 return build_vector (type
, &elts
[2 * nelts
]);
8856 /* Try to fold a pointer difference of type TYPE two address expressions of
8857 array references AREF0 and AREF1 using location LOC. Return a
8858 simplified expression for the difference or NULL_TREE. */
8861 fold_addr_of_array_ref_difference (location_t loc
, tree type
,
8862 tree aref0
, tree aref1
)
8864 tree base0
= TREE_OPERAND (aref0
, 0);
8865 tree base1
= TREE_OPERAND (aref1
, 0);
8866 tree base_offset
= build_int_cst (type
, 0);
8868 /* If the bases are array references as well, recurse. If the bases
8869 are pointer indirections compute the difference of the pointers.
8870 If the bases are equal, we are set. */
8871 if ((TREE_CODE (base0
) == ARRAY_REF
8872 && TREE_CODE (base1
) == ARRAY_REF
8874 = fold_addr_of_array_ref_difference (loc
, type
, base0
, base1
)))
8875 || (INDIRECT_REF_P (base0
)
8876 && INDIRECT_REF_P (base1
)
8878 = fold_binary_loc (loc
, MINUS_EXPR
, type
,
8879 fold_convert (type
, TREE_OPERAND (base0
, 0)),
8881 TREE_OPERAND (base1
, 0)))))
8882 || operand_equal_p (base0
, base1
, OEP_ADDRESS_OF
))
8884 tree op0
= fold_convert_loc (loc
, type
, TREE_OPERAND (aref0
, 1));
8885 tree op1
= fold_convert_loc (loc
, type
, TREE_OPERAND (aref1
, 1));
8886 tree esz
= fold_convert_loc (loc
, type
, array_ref_element_size (aref0
));
8887 tree diff
= build2 (MINUS_EXPR
, type
, op0
, op1
);
8888 return fold_build2_loc (loc
, PLUS_EXPR
, type
,
8890 fold_build2_loc (loc
, MULT_EXPR
, type
,
8896 /* If the real or vector real constant CST of type TYPE has an exact
8897 inverse, return it, else return NULL. */
8900 exact_inverse (tree type
, tree cst
)
8903 tree unit_type
, *elts
;
8905 unsigned vec_nelts
, i
;
8907 switch (TREE_CODE (cst
))
8910 r
= TREE_REAL_CST (cst
);
8912 if (exact_real_inverse (TYPE_MODE (type
), &r
))
8913 return build_real (type
, r
);
8918 vec_nelts
= VECTOR_CST_NELTS (cst
);
8919 elts
= XALLOCAVEC (tree
, vec_nelts
);
8920 unit_type
= TREE_TYPE (type
);
8921 mode
= TYPE_MODE (unit_type
);
8923 for (i
= 0; i
< vec_nelts
; i
++)
8925 r
= TREE_REAL_CST (VECTOR_CST_ELT (cst
, i
));
8926 if (!exact_real_inverse (mode
, &r
))
8928 elts
[i
] = build_real (unit_type
, r
);
8931 return build_vector (type
, elts
);
8938 /* Mask out the tz least significant bits of X of type TYPE where
8939 tz is the number of trailing zeroes in Y. */
8941 mask_with_tz (tree type
, const wide_int
&x
, const wide_int
&y
)
8943 int tz
= wi::ctz (y
);
8945 return wi::mask (tz
, true, TYPE_PRECISION (type
)) & x
;
8949 /* Return true when T is an address and is known to be nonzero.
8950 For floating point we further ensure that T is not denormal.
8951 Similar logic is present in nonzero_address in rtlanal.h.
8953 If the return value is based on the assumption that signed overflow
8954 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
8955 change *STRICT_OVERFLOW_P. */
8958 tree_expr_nonzero_warnv_p (tree t
, bool *strict_overflow_p
)
8960 tree type
= TREE_TYPE (t
);
8961 enum tree_code code
;
8963 /* Doing something useful for floating point would need more work. */
8964 if (!INTEGRAL_TYPE_P (type
) && !POINTER_TYPE_P (type
))
8967 code
= TREE_CODE (t
);
8968 switch (TREE_CODE_CLASS (code
))
8971 return tree_unary_nonzero_warnv_p (code
, type
, TREE_OPERAND (t
, 0),
8974 case tcc_comparison
:
8975 return tree_binary_nonzero_warnv_p (code
, type
,
8976 TREE_OPERAND (t
, 0),
8977 TREE_OPERAND (t
, 1),
8980 case tcc_declaration
:
8982 return tree_single_nonzero_warnv_p (t
, strict_overflow_p
);
8990 case TRUTH_NOT_EXPR
:
8991 return tree_unary_nonzero_warnv_p (code
, type
, TREE_OPERAND (t
, 0),
8994 case TRUTH_AND_EXPR
:
8996 case TRUTH_XOR_EXPR
:
8997 return tree_binary_nonzero_warnv_p (code
, type
,
8998 TREE_OPERAND (t
, 0),
8999 TREE_OPERAND (t
, 1),
9007 case WITH_SIZE_EXPR
:
9009 return tree_single_nonzero_warnv_p (t
, strict_overflow_p
);
9014 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t
, 1),
9018 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t
, 0),
9023 tree fndecl
= get_callee_fndecl (t
);
9024 if (!fndecl
) return false;
9025 if (flag_delete_null_pointer_checks
&& !flag_check_new
9026 && DECL_IS_OPERATOR_NEW (fndecl
)
9027 && !TREE_NOTHROW (fndecl
))
9029 if (flag_delete_null_pointer_checks
9030 && lookup_attribute ("returns_nonnull",
9031 TYPE_ATTRIBUTES (TREE_TYPE (fndecl
))))
9033 return alloca_call_p (t
);
9042 /* Return true when T is an address and is known to be nonzero.
9043 Handle warnings about undefined signed overflow. */
9046 tree_expr_nonzero_p (tree t
)
9048 bool ret
, strict_overflow_p
;
9050 strict_overflow_p
= false;
9051 ret
= tree_expr_nonzero_warnv_p (t
, &strict_overflow_p
);
9052 if (strict_overflow_p
)
9053 fold_overflow_warning (("assuming signed overflow does not occur when "
9054 "determining that expression is always "
9056 WARN_STRICT_OVERFLOW_MISC
);
9060 /* Return true if T is known not to be equal to an integer W. */
9063 expr_not_equal_to (tree t
, const wide_int
&w
)
9065 wide_int min
, max
, nz
;
9066 value_range_type rtype
;
9067 switch (TREE_CODE (t
))
9070 return wi::ne_p (t
, w
);
9073 if (!INTEGRAL_TYPE_P (TREE_TYPE (t
)))
9075 rtype
= get_range_info (t
, &min
, &max
);
9076 if (rtype
== VR_RANGE
)
9078 if (wi::lt_p (max
, w
, TYPE_SIGN (TREE_TYPE (t
))))
9080 if (wi::lt_p (w
, min
, TYPE_SIGN (TREE_TYPE (t
))))
9083 else if (rtype
== VR_ANTI_RANGE
9084 && wi::le_p (min
, w
, TYPE_SIGN (TREE_TYPE (t
)))
9085 && wi::le_p (w
, max
, TYPE_SIGN (TREE_TYPE (t
))))
9087 /* If T has some known zero bits and W has any of those bits set,
9088 then T is known not to be equal to W. */
9089 if (wi::ne_p (wi::zext (wi::bit_and_not (w
, get_nonzero_bits (t
)),
9090 TYPE_PRECISION (TREE_TYPE (t
))), 0))
9099 /* Fold a binary expression of code CODE and type TYPE with operands
9100 OP0 and OP1. LOC is the location of the resulting expression.
9101 Return the folded expression if folding is successful. Otherwise,
9102 return NULL_TREE. */
9105 fold_binary_loc (location_t loc
,
9106 enum tree_code code
, tree type
, tree op0
, tree op1
)
9108 enum tree_code_class kind
= TREE_CODE_CLASS (code
);
9109 tree arg0
, arg1
, tem
;
9110 tree t1
= NULL_TREE
;
9111 bool strict_overflow_p
;
9114 gcc_assert (IS_EXPR_CODE_CLASS (kind
)
9115 && TREE_CODE_LENGTH (code
) == 2
9117 && op1
!= NULL_TREE
);
9122 /* Strip any conversions that don't change the mode. This is
9123 safe for every expression, except for a comparison expression
9124 because its signedness is derived from its operands. So, in
9125 the latter case, only strip conversions that don't change the
9126 signedness. MIN_EXPR/MAX_EXPR also need signedness of arguments
9129 Note that this is done as an internal manipulation within the
9130 constant folder, in order to find the simplest representation
9131 of the arguments so that their form can be studied. In any
9132 cases, the appropriate type conversions should be put back in
9133 the tree that will get out of the constant folder. */
9135 if (kind
== tcc_comparison
|| code
== MIN_EXPR
|| code
== MAX_EXPR
)
9137 STRIP_SIGN_NOPS (arg0
);
9138 STRIP_SIGN_NOPS (arg1
);
9146 /* Note that TREE_CONSTANT isn't enough: static var addresses are
9147 constant but we can't do arithmetic on them. */
9148 if (CONSTANT_CLASS_P (arg0
) && CONSTANT_CLASS_P (arg1
))
9150 tem
= const_binop (code
, type
, arg0
, arg1
);
9151 if (tem
!= NULL_TREE
)
9153 if (TREE_TYPE (tem
) != type
)
9154 tem
= fold_convert_loc (loc
, type
, tem
);
9159 /* If this is a commutative operation, and ARG0 is a constant, move it
9160 to ARG1 to reduce the number of tests below. */
9161 if (commutative_tree_code (code
)
9162 && tree_swap_operands_p (arg0
, arg1
, true))
9163 return fold_build2_loc (loc
, code
, type
, op1
, op0
);
9165 /* Likewise if this is a comparison, and ARG0 is a constant, move it
9166 to ARG1 to reduce the number of tests below. */
9167 if (kind
== tcc_comparison
9168 && tree_swap_operands_p (arg0
, arg1
, true))
9169 return fold_build2_loc (loc
, swap_tree_comparison (code
), type
, op1
, op0
);
9171 tem
= generic_simplify (loc
, code
, type
, op0
, op1
);
9175 /* ARG0 is the first operand of EXPR, and ARG1 is the second operand.
9177 First check for cases where an arithmetic operation is applied to a
9178 compound, conditional, or comparison operation. Push the arithmetic
9179 operation inside the compound or conditional to see if any folding
9180 can then be done. Convert comparison to conditional for this purpose.
9181 The also optimizes non-constant cases that used to be done in
9184 Before we do that, see if this is a BIT_AND_EXPR or a BIT_IOR_EXPR,
9185 one of the operands is a comparison and the other is a comparison, a
9186 BIT_AND_EXPR with the constant 1, or a truth value. In that case, the
9187 code below would make the expression more complex. Change it to a
9188 TRUTH_{AND,OR}_EXPR. Likewise, convert a similar NE_EXPR to
9189 TRUTH_XOR_EXPR and an EQ_EXPR to the inversion of a TRUTH_XOR_EXPR. */
9191 if ((code
== BIT_AND_EXPR
|| code
== BIT_IOR_EXPR
9192 || code
== EQ_EXPR
|| code
== NE_EXPR
)
9193 && TREE_CODE (type
) != VECTOR_TYPE
9194 && ((truth_value_p (TREE_CODE (arg0
))
9195 && (truth_value_p (TREE_CODE (arg1
))
9196 || (TREE_CODE (arg1
) == BIT_AND_EXPR
9197 && integer_onep (TREE_OPERAND (arg1
, 1)))))
9198 || (truth_value_p (TREE_CODE (arg1
))
9199 && (truth_value_p (TREE_CODE (arg0
))
9200 || (TREE_CODE (arg0
) == BIT_AND_EXPR
9201 && integer_onep (TREE_OPERAND (arg0
, 1)))))))
9203 tem
= fold_build2_loc (loc
, code
== BIT_AND_EXPR
? TRUTH_AND_EXPR
9204 : code
== BIT_IOR_EXPR
? TRUTH_OR_EXPR
9207 fold_convert_loc (loc
, boolean_type_node
, arg0
),
9208 fold_convert_loc (loc
, boolean_type_node
, arg1
));
9210 if (code
== EQ_EXPR
)
9211 tem
= invert_truthvalue_loc (loc
, tem
);
9213 return fold_convert_loc (loc
, type
, tem
);
9216 if (TREE_CODE_CLASS (code
) == tcc_binary
9217 || TREE_CODE_CLASS (code
) == tcc_comparison
)
9219 if (TREE_CODE (arg0
) == COMPOUND_EXPR
)
9221 tem
= fold_build2_loc (loc
, code
, type
,
9222 fold_convert_loc (loc
, TREE_TYPE (op0
),
9223 TREE_OPERAND (arg0
, 1)), op1
);
9224 return build2_loc (loc
, COMPOUND_EXPR
, type
, TREE_OPERAND (arg0
, 0),
9227 if (TREE_CODE (arg1
) == COMPOUND_EXPR
9228 && reorder_operands_p (arg0
, TREE_OPERAND (arg1
, 0)))
9230 tem
= fold_build2_loc (loc
, code
, type
, op0
,
9231 fold_convert_loc (loc
, TREE_TYPE (op1
),
9232 TREE_OPERAND (arg1
, 1)));
9233 return build2_loc (loc
, COMPOUND_EXPR
, type
, TREE_OPERAND (arg1
, 0),
9237 if (TREE_CODE (arg0
) == COND_EXPR
9238 || TREE_CODE (arg0
) == VEC_COND_EXPR
9239 || COMPARISON_CLASS_P (arg0
))
9241 tem
= fold_binary_op_with_conditional_arg (loc
, code
, type
, op0
, op1
,
9243 /*cond_first_p=*/1);
9244 if (tem
!= NULL_TREE
)
9248 if (TREE_CODE (arg1
) == COND_EXPR
9249 || TREE_CODE (arg1
) == VEC_COND_EXPR
9250 || COMPARISON_CLASS_P (arg1
))
9252 tem
= fold_binary_op_with_conditional_arg (loc
, code
, type
, op0
, op1
,
9254 /*cond_first_p=*/0);
9255 if (tem
!= NULL_TREE
)
9263 /* MEM[&MEM[p, CST1], CST2] -> MEM[p, CST1 + CST2]. */
9264 if (TREE_CODE (arg0
) == ADDR_EXPR
9265 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == MEM_REF
)
9267 tree iref
= TREE_OPERAND (arg0
, 0);
9268 return fold_build2 (MEM_REF
, type
,
9269 TREE_OPERAND (iref
, 0),
9270 int_const_binop (PLUS_EXPR
, arg1
,
9271 TREE_OPERAND (iref
, 1)));
9274 /* MEM[&a.b, CST2] -> MEM[&a, offsetof (a, b) + CST2]. */
9275 if (TREE_CODE (arg0
) == ADDR_EXPR
9276 && handled_component_p (TREE_OPERAND (arg0
, 0)))
9279 HOST_WIDE_INT coffset
;
9280 base
= get_addr_base_and_unit_offset (TREE_OPERAND (arg0
, 0),
9284 return fold_build2 (MEM_REF
, type
,
9285 build_fold_addr_expr (base
),
9286 int_const_binop (PLUS_EXPR
, arg1
,
9287 size_int (coffset
)));
9292 case POINTER_PLUS_EXPR
:
9293 /* INT +p INT -> (PTR)(INT + INT). Stripping types allows for this. */
9294 if (INTEGRAL_TYPE_P (TREE_TYPE (arg1
))
9295 && INTEGRAL_TYPE_P (TREE_TYPE (arg0
)))
9296 return fold_convert_loc (loc
, type
,
9297 fold_build2_loc (loc
, PLUS_EXPR
, sizetype
,
9298 fold_convert_loc (loc
, sizetype
,
9300 fold_convert_loc (loc
, sizetype
,
9306 if (INTEGRAL_TYPE_P (type
) || VECTOR_INTEGER_TYPE_P (type
))
9308 /* X + (X / CST) * -CST is X % CST. */
9309 if (TREE_CODE (arg1
) == MULT_EXPR
9310 && TREE_CODE (TREE_OPERAND (arg1
, 0)) == TRUNC_DIV_EXPR
9311 && operand_equal_p (arg0
,
9312 TREE_OPERAND (TREE_OPERAND (arg1
, 0), 0), 0))
9314 tree cst0
= TREE_OPERAND (TREE_OPERAND (arg1
, 0), 1);
9315 tree cst1
= TREE_OPERAND (arg1
, 1);
9316 tree sum
= fold_binary_loc (loc
, PLUS_EXPR
, TREE_TYPE (cst1
),
9318 if (sum
&& integer_zerop (sum
))
9319 return fold_convert_loc (loc
, type
,
9320 fold_build2_loc (loc
, TRUNC_MOD_EXPR
,
9321 TREE_TYPE (arg0
), arg0
,
9326 /* Handle (A1 * C1) + (A2 * C2) with A1, A2 or C1, C2 being the same or
9327 one. Make sure the type is not saturating and has the signedness of
9328 the stripped operands, as fold_plusminus_mult_expr will re-associate.
9329 ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */
9330 if ((TREE_CODE (arg0
) == MULT_EXPR
9331 || TREE_CODE (arg1
) == MULT_EXPR
)
9332 && !TYPE_SATURATING (type
)
9333 && TYPE_UNSIGNED (type
) == TYPE_UNSIGNED (TREE_TYPE (arg0
))
9334 && TYPE_UNSIGNED (type
) == TYPE_UNSIGNED (TREE_TYPE (arg1
))
9335 && (!FLOAT_TYPE_P (type
) || flag_associative_math
))
9337 tree tem
= fold_plusminus_mult_expr (loc
, code
, type
, arg0
, arg1
);
9342 if (! FLOAT_TYPE_P (type
))
9344 /* Reassociate (plus (plus (mult) (foo)) (mult)) as
9345 (plus (plus (mult) (mult)) (foo)) so that we can
9346 take advantage of the factoring cases below. */
9347 if (ANY_INTEGRAL_TYPE_P (type
)
9348 && TYPE_OVERFLOW_WRAPS (type
)
9349 && (((TREE_CODE (arg0
) == PLUS_EXPR
9350 || TREE_CODE (arg0
) == MINUS_EXPR
)
9351 && TREE_CODE (arg1
) == MULT_EXPR
)
9352 || ((TREE_CODE (arg1
) == PLUS_EXPR
9353 || TREE_CODE (arg1
) == MINUS_EXPR
)
9354 && TREE_CODE (arg0
) == MULT_EXPR
)))
9356 tree parg0
, parg1
, parg
, marg
;
9357 enum tree_code pcode
;
9359 if (TREE_CODE (arg1
) == MULT_EXPR
)
9360 parg
= arg0
, marg
= arg1
;
9362 parg
= arg1
, marg
= arg0
;
9363 pcode
= TREE_CODE (parg
);
9364 parg0
= TREE_OPERAND (parg
, 0);
9365 parg1
= TREE_OPERAND (parg
, 1);
9369 if (TREE_CODE (parg0
) == MULT_EXPR
9370 && TREE_CODE (parg1
) != MULT_EXPR
)
9371 return fold_build2_loc (loc
, pcode
, type
,
9372 fold_build2_loc (loc
, PLUS_EXPR
, type
,
9373 fold_convert_loc (loc
, type
,
9375 fold_convert_loc (loc
, type
,
9377 fold_convert_loc (loc
, type
, parg1
));
9378 if (TREE_CODE (parg0
) != MULT_EXPR
9379 && TREE_CODE (parg1
) == MULT_EXPR
)
9381 fold_build2_loc (loc
, PLUS_EXPR
, type
,
9382 fold_convert_loc (loc
, type
, parg0
),
9383 fold_build2_loc (loc
, pcode
, type
,
9384 fold_convert_loc (loc
, type
, marg
),
9385 fold_convert_loc (loc
, type
,
9391 /* Fold __complex__ ( x, 0 ) + __complex__ ( 0, y )
9392 to __complex__ ( x, y ). This is not the same for SNaNs or
9393 if signed zeros are involved. */
9394 if (!HONOR_SNANS (element_mode (arg0
))
9395 && !HONOR_SIGNED_ZEROS (element_mode (arg0
))
9396 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0
)))
9398 tree rtype
= TREE_TYPE (TREE_TYPE (arg0
));
9399 tree arg0r
= fold_unary_loc (loc
, REALPART_EXPR
, rtype
, arg0
);
9400 tree arg0i
= fold_unary_loc (loc
, IMAGPART_EXPR
, rtype
, arg0
);
9401 bool arg0rz
= false, arg0iz
= false;
9402 if ((arg0r
&& (arg0rz
= real_zerop (arg0r
)))
9403 || (arg0i
&& (arg0iz
= real_zerop (arg0i
))))
9405 tree arg1r
= fold_unary_loc (loc
, REALPART_EXPR
, rtype
, arg1
);
9406 tree arg1i
= fold_unary_loc (loc
, IMAGPART_EXPR
, rtype
, arg1
);
9407 if (arg0rz
&& arg1i
&& real_zerop (arg1i
))
9409 tree rp
= arg1r
? arg1r
9410 : build1 (REALPART_EXPR
, rtype
, arg1
);
9411 tree ip
= arg0i
? arg0i
9412 : build1 (IMAGPART_EXPR
, rtype
, arg0
);
9413 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, rp
, ip
);
9415 else if (arg0iz
&& arg1r
&& real_zerop (arg1r
))
9417 tree rp
= arg0r
? arg0r
9418 : build1 (REALPART_EXPR
, rtype
, arg0
);
9419 tree ip
= arg1i
? arg1i
9420 : build1 (IMAGPART_EXPR
, rtype
, arg1
);
9421 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, rp
, ip
);
9426 if (flag_unsafe_math_optimizations
9427 && (TREE_CODE (arg0
) == RDIV_EXPR
|| TREE_CODE (arg0
) == MULT_EXPR
)
9428 && (TREE_CODE (arg1
) == RDIV_EXPR
|| TREE_CODE (arg1
) == MULT_EXPR
)
9429 && (tem
= distribute_real_division (loc
, code
, type
, arg0
, arg1
)))
9432 /* Convert a + (b*c + d*e) into (a + b*c) + d*e.
9433 We associate floats only if the user has specified
9434 -fassociative-math. */
9435 if (flag_associative_math
9436 && TREE_CODE (arg1
) == PLUS_EXPR
9437 && TREE_CODE (arg0
) != MULT_EXPR
)
9439 tree tree10
= TREE_OPERAND (arg1
, 0);
9440 tree tree11
= TREE_OPERAND (arg1
, 1);
9441 if (TREE_CODE (tree11
) == MULT_EXPR
9442 && TREE_CODE (tree10
) == MULT_EXPR
)
9445 tree0
= fold_build2_loc (loc
, PLUS_EXPR
, type
, arg0
, tree10
);
9446 return fold_build2_loc (loc
, PLUS_EXPR
, type
, tree0
, tree11
);
9449 /* Convert (b*c + d*e) + a into b*c + (d*e +a).
9450 We associate floats only if the user has specified
9451 -fassociative-math. */
9452 if (flag_associative_math
9453 && TREE_CODE (arg0
) == PLUS_EXPR
9454 && TREE_CODE (arg1
) != MULT_EXPR
)
9456 tree tree00
= TREE_OPERAND (arg0
, 0);
9457 tree tree01
= TREE_OPERAND (arg0
, 1);
9458 if (TREE_CODE (tree01
) == MULT_EXPR
9459 && TREE_CODE (tree00
) == MULT_EXPR
)
9462 tree0
= fold_build2_loc (loc
, PLUS_EXPR
, type
, tree01
, arg1
);
9463 return fold_build2_loc (loc
, PLUS_EXPR
, type
, tree00
, tree0
);
9469 /* (A << C1) + (A >> C2) if A is unsigned and C1+C2 is the size of A
9470 is a rotate of A by C1 bits. */
9471 /* (A << B) + (A >> (Z - B)) if A is unsigned and Z is the size of A
9472 is a rotate of A by B bits. */
9474 enum tree_code code0
, code1
;
9476 code0
= TREE_CODE (arg0
);
9477 code1
= TREE_CODE (arg1
);
9478 if (((code0
== RSHIFT_EXPR
&& code1
== LSHIFT_EXPR
)
9479 || (code1
== RSHIFT_EXPR
&& code0
== LSHIFT_EXPR
))
9480 && operand_equal_p (TREE_OPERAND (arg0
, 0),
9481 TREE_OPERAND (arg1
, 0), 0)
9482 && (rtype
= TREE_TYPE (TREE_OPERAND (arg0
, 0)),
9483 TYPE_UNSIGNED (rtype
))
9484 /* Only create rotates in complete modes. Other cases are not
9485 expanded properly. */
9486 && (element_precision (rtype
)
9487 == GET_MODE_UNIT_PRECISION (TYPE_MODE (rtype
))))
9489 tree tree01
, tree11
;
9490 enum tree_code code01
, code11
;
9492 tree01
= TREE_OPERAND (arg0
, 1);
9493 tree11
= TREE_OPERAND (arg1
, 1);
9494 STRIP_NOPS (tree01
);
9495 STRIP_NOPS (tree11
);
9496 code01
= TREE_CODE (tree01
);
9497 code11
= TREE_CODE (tree11
);
9498 if (code01
== INTEGER_CST
9499 && code11
== INTEGER_CST
9500 && (wi::to_widest (tree01
) + wi::to_widest (tree11
)
9501 == element_precision (TREE_TYPE (TREE_OPERAND (arg0
, 0)))))
9503 tem
= build2_loc (loc
, LROTATE_EXPR
,
9504 TREE_TYPE (TREE_OPERAND (arg0
, 0)),
9505 TREE_OPERAND (arg0
, 0),
9506 code0
== LSHIFT_EXPR
9507 ? TREE_OPERAND (arg0
, 1)
9508 : TREE_OPERAND (arg1
, 1));
9509 return fold_convert_loc (loc
, type
, tem
);
9511 else if (code11
== MINUS_EXPR
)
9513 tree tree110
, tree111
;
9514 tree110
= TREE_OPERAND (tree11
, 0);
9515 tree111
= TREE_OPERAND (tree11
, 1);
9516 STRIP_NOPS (tree110
);
9517 STRIP_NOPS (tree111
);
9518 if (TREE_CODE (tree110
) == INTEGER_CST
9519 && 0 == compare_tree_int (tree110
,
9521 (TREE_TYPE (TREE_OPERAND
9523 && operand_equal_p (tree01
, tree111
, 0))
9525 fold_convert_loc (loc
, type
,
9526 build2 ((code0
== LSHIFT_EXPR
9529 TREE_TYPE (TREE_OPERAND (arg0
, 0)),
9530 TREE_OPERAND (arg0
, 0),
9531 TREE_OPERAND (arg0
, 1)));
9533 else if (code01
== MINUS_EXPR
)
9535 tree tree010
, tree011
;
9536 tree010
= TREE_OPERAND (tree01
, 0);
9537 tree011
= TREE_OPERAND (tree01
, 1);
9538 STRIP_NOPS (tree010
);
9539 STRIP_NOPS (tree011
);
9540 if (TREE_CODE (tree010
) == INTEGER_CST
9541 && 0 == compare_tree_int (tree010
,
9543 (TREE_TYPE (TREE_OPERAND
9545 && operand_equal_p (tree11
, tree011
, 0))
9546 return fold_convert_loc
9548 build2 ((code0
!= LSHIFT_EXPR
9551 TREE_TYPE (TREE_OPERAND (arg0
, 0)),
9552 TREE_OPERAND (arg0
, 0), TREE_OPERAND (arg1
, 1)));
9558 /* In most languages, can't associate operations on floats through
9559 parentheses. Rather than remember where the parentheses were, we
9560 don't associate floats at all, unless the user has specified
9562 And, we need to make sure type is not saturating. */
9564 if ((! FLOAT_TYPE_P (type
) || flag_associative_math
)
9565 && !TYPE_SATURATING (type
))
9567 tree var0
, con0
, lit0
, minus_lit0
;
9568 tree var1
, con1
, lit1
, minus_lit1
;
9572 /* Split both trees into variables, constants, and literals. Then
9573 associate each group together, the constants with literals,
9574 then the result with variables. This increases the chances of
9575 literals being recombined later and of generating relocatable
9576 expressions for the sum of a constant and literal. */
9577 var0
= split_tree (loc
, arg0
, type
, code
,
9578 &con0
, &lit0
, &minus_lit0
, 0);
9579 var1
= split_tree (loc
, arg1
, type
, code
,
9580 &con1
, &lit1
, &minus_lit1
, code
== MINUS_EXPR
);
9582 /* Recombine MINUS_EXPR operands by using PLUS_EXPR. */
9583 if (code
== MINUS_EXPR
)
9586 /* With undefined overflow prefer doing association in a type
9587 which wraps on overflow, if that is one of the operand types. */
9588 if ((POINTER_TYPE_P (type
) && POINTER_TYPE_OVERFLOW_UNDEFINED
)
9589 || (INTEGRAL_TYPE_P (type
) && !TYPE_OVERFLOW_WRAPS (type
)))
9591 if (INTEGRAL_TYPE_P (TREE_TYPE (arg0
))
9592 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0
)))
9593 atype
= TREE_TYPE (arg0
);
9594 else if (INTEGRAL_TYPE_P (TREE_TYPE (arg1
))
9595 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg1
)))
9596 atype
= TREE_TYPE (arg1
);
9597 gcc_assert (TYPE_PRECISION (atype
) == TYPE_PRECISION (type
));
9600 /* With undefined overflow we can only associate constants with one
9601 variable, and constants whose association doesn't overflow. */
9602 if ((POINTER_TYPE_P (atype
) && POINTER_TYPE_OVERFLOW_UNDEFINED
)
9603 || (INTEGRAL_TYPE_P (atype
) && !TYPE_OVERFLOW_WRAPS (atype
)))
9609 bool one_neg
= false;
9611 if (TREE_CODE (tmp0
) == NEGATE_EXPR
)
9613 tmp0
= TREE_OPERAND (tmp0
, 0);
9616 if (CONVERT_EXPR_P (tmp0
)
9617 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp0
, 0)))
9618 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp0
, 0)))
9619 <= TYPE_PRECISION (atype
)))
9620 tmp0
= TREE_OPERAND (tmp0
, 0);
9621 if (TREE_CODE (tmp1
) == NEGATE_EXPR
)
9623 tmp1
= TREE_OPERAND (tmp1
, 0);
9626 if (CONVERT_EXPR_P (tmp1
)
9627 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp1
, 0)))
9628 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp1
, 0)))
9629 <= TYPE_PRECISION (atype
)))
9630 tmp1
= TREE_OPERAND (tmp1
, 0);
9631 /* The only case we can still associate with two variables
9632 is if they cancel out. */
9634 || !operand_equal_p (tmp0
, tmp1
, 0))
9639 /* Only do something if we found more than two objects. Otherwise,
9640 nothing has changed and we risk infinite recursion. */
9642 && (2 < ((var0
!= 0) + (var1
!= 0)
9643 + (con0
!= 0) + (con1
!= 0)
9644 + (lit0
!= 0) + (lit1
!= 0)
9645 + (minus_lit0
!= 0) + (minus_lit1
!= 0))))
9647 bool any_overflows
= false;
9648 if (lit0
) any_overflows
|= TREE_OVERFLOW (lit0
);
9649 if (lit1
) any_overflows
|= TREE_OVERFLOW (lit1
);
9650 if (minus_lit0
) any_overflows
|= TREE_OVERFLOW (minus_lit0
);
9651 if (minus_lit1
) any_overflows
|= TREE_OVERFLOW (minus_lit1
);
9652 var0
= associate_trees (loc
, var0
, var1
, code
, atype
);
9653 con0
= associate_trees (loc
, con0
, con1
, code
, atype
);
9654 lit0
= associate_trees (loc
, lit0
, lit1
, code
, atype
);
9655 minus_lit0
= associate_trees (loc
, minus_lit0
, minus_lit1
,
9658 /* Preserve the MINUS_EXPR if the negative part of the literal is
9659 greater than the positive part. Otherwise, the multiplicative
9660 folding code (i.e extract_muldiv) may be fooled in case
9661 unsigned constants are subtracted, like in the following
9662 example: ((X*2 + 4) - 8U)/2. */
9663 if (minus_lit0
&& lit0
)
9665 if (TREE_CODE (lit0
) == INTEGER_CST
9666 && TREE_CODE (minus_lit0
) == INTEGER_CST
9667 && tree_int_cst_lt (lit0
, minus_lit0
))
9669 minus_lit0
= associate_trees (loc
, minus_lit0
, lit0
,
9675 lit0
= associate_trees (loc
, lit0
, minus_lit0
,
9681 /* Don't introduce overflows through reassociation. */
9683 && ((lit0
&& TREE_OVERFLOW_P (lit0
))
9684 || (minus_lit0
&& TREE_OVERFLOW_P (minus_lit0
))))
9691 fold_convert_loc (loc
, type
,
9692 associate_trees (loc
, var0
, minus_lit0
,
9693 MINUS_EXPR
, atype
));
9696 con0
= associate_trees (loc
, con0
, minus_lit0
,
9699 fold_convert_loc (loc
, type
,
9700 associate_trees (loc
, var0
, con0
,
9705 con0
= associate_trees (loc
, con0
, lit0
, code
, atype
);
9707 fold_convert_loc (loc
, type
, associate_trees (loc
, var0
, con0
,
9715 /* (-A) - B -> (-B) - A where B is easily negated and we can swap. */
9716 if (TREE_CODE (arg0
) == NEGATE_EXPR
9717 && negate_expr_p (op1
)
9718 && reorder_operands_p (arg0
, arg1
))
9719 return fold_build2_loc (loc
, MINUS_EXPR
, type
,
9721 fold_convert_loc (loc
, type
,
9722 TREE_OPERAND (arg0
, 0)));
9724 /* Fold __complex__ ( x, 0 ) - __complex__ ( 0, y ) to
9725 __complex__ ( x, -y ). This is not the same for SNaNs or if
9726 signed zeros are involved. */
9727 if (!HONOR_SNANS (element_mode (arg0
))
9728 && !HONOR_SIGNED_ZEROS (element_mode (arg0
))
9729 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0
)))
9731 tree rtype
= TREE_TYPE (TREE_TYPE (arg0
));
9732 tree arg0r
= fold_unary_loc (loc
, REALPART_EXPR
, rtype
, arg0
);
9733 tree arg0i
= fold_unary_loc (loc
, IMAGPART_EXPR
, rtype
, arg0
);
9734 bool arg0rz
= false, arg0iz
= false;
9735 if ((arg0r
&& (arg0rz
= real_zerop (arg0r
)))
9736 || (arg0i
&& (arg0iz
= real_zerop (arg0i
))))
9738 tree arg1r
= fold_unary_loc (loc
, REALPART_EXPR
, rtype
, arg1
);
9739 tree arg1i
= fold_unary_loc (loc
, IMAGPART_EXPR
, rtype
, arg1
);
9740 if (arg0rz
&& arg1i
&& real_zerop (arg1i
))
9742 tree rp
= fold_build1_loc (loc
, NEGATE_EXPR
, rtype
,
9744 : build1 (REALPART_EXPR
, rtype
, arg1
));
9745 tree ip
= arg0i
? arg0i
9746 : build1 (IMAGPART_EXPR
, rtype
, arg0
);
9747 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, rp
, ip
);
9749 else if (arg0iz
&& arg1r
&& real_zerop (arg1r
))
9751 tree rp
= arg0r
? arg0r
9752 : build1 (REALPART_EXPR
, rtype
, arg0
);
9753 tree ip
= fold_build1_loc (loc
, NEGATE_EXPR
, rtype
,
9755 : build1 (IMAGPART_EXPR
, rtype
, arg1
));
9756 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, rp
, ip
);
9761 /* A - B -> A + (-B) if B is easily negatable. */
9762 if (negate_expr_p (op1
)
9763 && ! TYPE_OVERFLOW_SANITIZED (type
)
9764 && ((FLOAT_TYPE_P (type
)
9765 /* Avoid this transformation if B is a positive REAL_CST. */
9766 && (TREE_CODE (op1
) != REAL_CST
9767 || REAL_VALUE_NEGATIVE (TREE_REAL_CST (op1
))))
9768 || INTEGRAL_TYPE_P (type
)))
9769 return fold_build2_loc (loc
, PLUS_EXPR
, type
,
9770 fold_convert_loc (loc
, type
, arg0
),
9773 /* Fold &a[i] - &a[j] to i-j. */
9774 if (TREE_CODE (arg0
) == ADDR_EXPR
9775 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == ARRAY_REF
9776 && TREE_CODE (arg1
) == ADDR_EXPR
9777 && TREE_CODE (TREE_OPERAND (arg1
, 0)) == ARRAY_REF
)
9779 tree tem
= fold_addr_of_array_ref_difference (loc
, type
,
9780 TREE_OPERAND (arg0
, 0),
9781 TREE_OPERAND (arg1
, 0));
9786 if (FLOAT_TYPE_P (type
)
9787 && flag_unsafe_math_optimizations
9788 && (TREE_CODE (arg0
) == RDIV_EXPR
|| TREE_CODE (arg0
) == MULT_EXPR
)
9789 && (TREE_CODE (arg1
) == RDIV_EXPR
|| TREE_CODE (arg1
) == MULT_EXPR
)
9790 && (tem
= distribute_real_division (loc
, code
, type
, arg0
, arg1
)))
9793 /* Handle (A1 * C1) - (A2 * C2) with A1, A2 or C1, C2 being the same or
9794 one. Make sure the type is not saturating and has the signedness of
9795 the stripped operands, as fold_plusminus_mult_expr will re-associate.
9796 ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */
9797 if ((TREE_CODE (arg0
) == MULT_EXPR
9798 || TREE_CODE (arg1
) == MULT_EXPR
)
9799 && !TYPE_SATURATING (type
)
9800 && TYPE_UNSIGNED (type
) == TYPE_UNSIGNED (TREE_TYPE (arg0
))
9801 && TYPE_UNSIGNED (type
) == TYPE_UNSIGNED (TREE_TYPE (arg1
))
9802 && (!FLOAT_TYPE_P (type
) || flag_associative_math
))
9804 tree tem
= fold_plusminus_mult_expr (loc
, code
, type
, arg0
, arg1
);
9812 if (! FLOAT_TYPE_P (type
))
9814 /* Transform x * -C into -x * C if x is easily negatable. */
9815 if (TREE_CODE (op1
) == INTEGER_CST
9816 && tree_int_cst_sgn (op1
) == -1
9817 && negate_expr_p (op0
)
9818 && (tem
= negate_expr (op1
)) != op1
9819 && ! TREE_OVERFLOW (tem
))
9820 return fold_build2_loc (loc
, MULT_EXPR
, type
,
9821 fold_convert_loc (loc
, type
,
9822 negate_expr (op0
)), tem
);
9824 strict_overflow_p
= false;
9825 if (TREE_CODE (arg1
) == INTEGER_CST
9826 && 0 != (tem
= extract_muldiv (op0
, arg1
, code
, NULL_TREE
,
9827 &strict_overflow_p
)))
9829 if (strict_overflow_p
)
9830 fold_overflow_warning (("assuming signed overflow does not "
9831 "occur when simplifying "
9833 WARN_STRICT_OVERFLOW_MISC
);
9834 return fold_convert_loc (loc
, type
, tem
);
9837 /* Optimize z * conj(z) for integer complex numbers. */
9838 if (TREE_CODE (arg0
) == CONJ_EXPR
9839 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
9840 return fold_mult_zconjz (loc
, type
, arg1
);
9841 if (TREE_CODE (arg1
) == CONJ_EXPR
9842 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
9843 return fold_mult_zconjz (loc
, type
, arg0
);
9847 /* Fold z * +-I to __complex__ (-+__imag z, +-__real z).
9848 This is not the same for NaNs or if signed zeros are
9850 if (!HONOR_NANS (arg0
)
9851 && !HONOR_SIGNED_ZEROS (element_mode (arg0
))
9852 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0
))
9853 && TREE_CODE (arg1
) == COMPLEX_CST
9854 && real_zerop (TREE_REALPART (arg1
)))
9856 tree rtype
= TREE_TYPE (TREE_TYPE (arg0
));
9857 if (real_onep (TREE_IMAGPART (arg1
)))
9859 fold_build2_loc (loc
, COMPLEX_EXPR
, type
,
9860 negate_expr (fold_build1_loc (loc
, IMAGPART_EXPR
,
9862 fold_build1_loc (loc
, REALPART_EXPR
, rtype
, arg0
));
9863 else if (real_minus_onep (TREE_IMAGPART (arg1
)))
9865 fold_build2_loc (loc
, COMPLEX_EXPR
, type
,
9866 fold_build1_loc (loc
, IMAGPART_EXPR
, rtype
, arg0
),
9867 negate_expr (fold_build1_loc (loc
, REALPART_EXPR
,
9871 /* Optimize z * conj(z) for floating point complex numbers.
9872 Guarded by flag_unsafe_math_optimizations as non-finite
9873 imaginary components don't produce scalar results. */
9874 if (flag_unsafe_math_optimizations
9875 && TREE_CODE (arg0
) == CONJ_EXPR
9876 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
9877 return fold_mult_zconjz (loc
, type
, arg1
);
9878 if (flag_unsafe_math_optimizations
9879 && TREE_CODE (arg1
) == CONJ_EXPR
9880 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
9881 return fold_mult_zconjz (loc
, type
, arg0
);
9886 /* Canonicalize (X & C1) | C2. */
9887 if (TREE_CODE (arg0
) == BIT_AND_EXPR
9888 && TREE_CODE (arg1
) == INTEGER_CST
9889 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
)
9891 int width
= TYPE_PRECISION (type
), w
;
9892 wide_int c1
= TREE_OPERAND (arg0
, 1);
9895 /* If (C1&C2) == C1, then (X&C1)|C2 becomes (X,C2). */
9896 if ((c1
& c2
) == c1
)
9897 return omit_one_operand_loc (loc
, type
, arg1
,
9898 TREE_OPERAND (arg0
, 0));
9900 wide_int msk
= wi::mask (width
, false,
9901 TYPE_PRECISION (TREE_TYPE (arg1
)));
9903 /* If (C1|C2) == ~0 then (X&C1)|C2 becomes X|C2. */
9904 if (msk
.and_not (c1
| c2
) == 0)
9905 return fold_build2_loc (loc
, BIT_IOR_EXPR
, type
,
9906 TREE_OPERAND (arg0
, 0), arg1
);
9908 /* Minimize the number of bits set in C1, i.e. C1 := C1 & ~C2,
9909 unless (C1 & ~C2) | (C2 & C3) for some C3 is a mask of some
9910 mode which allows further optimizations. */
9913 wide_int c3
= c1
.and_not (c2
);
9914 for (w
= BITS_PER_UNIT
; w
<= width
; w
<<= 1)
9916 wide_int mask
= wi::mask (w
, false,
9917 TYPE_PRECISION (type
));
9918 if (((c1
| c2
) & mask
) == mask
&& c1
.and_not (mask
) == 0)
9926 return fold_build2_loc (loc
, BIT_IOR_EXPR
, type
,
9927 fold_build2_loc (loc
, BIT_AND_EXPR
, type
,
9928 TREE_OPERAND (arg0
, 0),
9929 wide_int_to_tree (type
,
9934 /* See if this can be simplified into a rotate first. If that
9935 is unsuccessful continue in the association code. */
9939 /* Fold (X & 1) ^ 1 as (X & 1) == 0. */
9940 if (TREE_CODE (arg0
) == BIT_AND_EXPR
9941 && INTEGRAL_TYPE_P (type
)
9942 && integer_onep (TREE_OPERAND (arg0
, 1))
9943 && integer_onep (arg1
))
9944 return fold_build2_loc (loc
, EQ_EXPR
, type
, arg0
,
9945 build_zero_cst (TREE_TYPE (arg0
)));
9947 /* See if this can be simplified into a rotate first. If that
9948 is unsuccessful continue in the association code. */
9952 /* Fold (X ^ 1) & 1 as (X & 1) == 0. */
9953 if (TREE_CODE (arg0
) == BIT_XOR_EXPR
9954 && INTEGRAL_TYPE_P (type
)
9955 && integer_onep (TREE_OPERAND (arg0
, 1))
9956 && integer_onep (arg1
))
9959 tem
= TREE_OPERAND (arg0
, 0);
9960 tem2
= fold_convert_loc (loc
, TREE_TYPE (tem
), arg1
);
9961 tem2
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (tem
),
9963 return fold_build2_loc (loc
, EQ_EXPR
, type
, tem2
,
9964 build_zero_cst (TREE_TYPE (tem
)));
9966 /* Fold ~X & 1 as (X & 1) == 0. */
9967 if (TREE_CODE (arg0
) == BIT_NOT_EXPR
9968 && INTEGRAL_TYPE_P (type
)
9969 && integer_onep (arg1
))
9972 tem
= TREE_OPERAND (arg0
, 0);
9973 tem2
= fold_convert_loc (loc
, TREE_TYPE (tem
), arg1
);
9974 tem2
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (tem
),
9976 return fold_build2_loc (loc
, EQ_EXPR
, type
, tem2
,
9977 build_zero_cst (TREE_TYPE (tem
)));
9979 /* Fold !X & 1 as X == 0. */
9980 if (TREE_CODE (arg0
) == TRUTH_NOT_EXPR
9981 && integer_onep (arg1
))
9983 tem
= TREE_OPERAND (arg0
, 0);
9984 return fold_build2_loc (loc
, EQ_EXPR
, type
, tem
,
9985 build_zero_cst (TREE_TYPE (tem
)));
9988 /* Fold (X * Y) & -(1 << CST) to X * Y if Y is a constant
9989 multiple of 1 << CST. */
9990 if (TREE_CODE (arg1
) == INTEGER_CST
)
9992 wide_int cst1
= arg1
;
9993 wide_int ncst1
= -cst1
;
9994 if ((cst1
& ncst1
) == ncst1
9995 && multiple_of_p (type
, arg0
,
9996 wide_int_to_tree (TREE_TYPE (arg1
), ncst1
)))
9997 return fold_convert_loc (loc
, type
, arg0
);
10000 /* Fold (X * CST1) & CST2 to zero if we can, or drop known zero
10002 if (TREE_CODE (arg1
) == INTEGER_CST
10003 && TREE_CODE (arg0
) == MULT_EXPR
10004 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
)
10006 wide_int warg1
= arg1
;
10007 wide_int masked
= mask_with_tz (type
, warg1
, TREE_OPERAND (arg0
, 1));
10010 return omit_two_operands_loc (loc
, type
, build_zero_cst (type
),
10012 else if (masked
!= warg1
)
10014 /* Avoid the transform if arg1 is a mask of some
10015 mode which allows further optimizations. */
10016 int pop
= wi::popcount (warg1
);
10017 if (!(pop
>= BITS_PER_UNIT
10019 && wi::mask (pop
, false, warg1
.get_precision ()) == warg1
))
10020 return fold_build2_loc (loc
, code
, type
, op0
,
10021 wide_int_to_tree (type
, masked
));
10025 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
10026 ((A & N) + B) & M -> (A + B) & M
10027 Similarly if (N & M) == 0,
10028 ((A | N) + B) & M -> (A + B) & M
10029 and for - instead of + (or unary - instead of +)
10030 and/or ^ instead of |.
10031 If B is constant and (B & M) == 0, fold into A & M. */
10032 if (TREE_CODE (arg1
) == INTEGER_CST
)
10034 wide_int cst1
= arg1
;
10035 if ((~cst1
!= 0) && (cst1
& (cst1
+ 1)) == 0
10036 && INTEGRAL_TYPE_P (TREE_TYPE (arg0
))
10037 && (TREE_CODE (arg0
) == PLUS_EXPR
10038 || TREE_CODE (arg0
) == MINUS_EXPR
10039 || TREE_CODE (arg0
) == NEGATE_EXPR
)
10040 && (TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0
))
10041 || TREE_CODE (TREE_TYPE (arg0
)) == INTEGER_TYPE
))
10047 /* Now we know that arg0 is (C + D) or (C - D) or
10048 -C and arg1 (M) is == (1LL << cst) - 1.
10049 Store C into PMOP[0] and D into PMOP[1]. */
10050 pmop
[0] = TREE_OPERAND (arg0
, 0);
10052 if (TREE_CODE (arg0
) != NEGATE_EXPR
)
10054 pmop
[1] = TREE_OPERAND (arg0
, 1);
10058 if ((wi::max_value (TREE_TYPE (arg0
)) & cst1
) != cst1
)
10061 for (; which
>= 0; which
--)
10062 switch (TREE_CODE (pmop
[which
]))
10067 if (TREE_CODE (TREE_OPERAND (pmop
[which
], 1))
10070 cst0
= TREE_OPERAND (pmop
[which
], 1);
10072 if (TREE_CODE (pmop
[which
]) == BIT_AND_EXPR
)
10077 else if (cst0
!= 0)
10079 /* If C or D is of the form (A & N) where
10080 (N & M) == M, or of the form (A | N) or
10081 (A ^ N) where (N & M) == 0, replace it with A. */
10082 pmop
[which
] = TREE_OPERAND (pmop
[which
], 0);
10085 /* If C or D is a N where (N & M) == 0, it can be
10086 omitted (assumed 0). */
10087 if ((TREE_CODE (arg0
) == PLUS_EXPR
10088 || (TREE_CODE (arg0
) == MINUS_EXPR
&& which
== 0))
10089 && (cst1
& pmop
[which
]) == 0)
10090 pmop
[which
] = NULL
;
10096 /* Only build anything new if we optimized one or both arguments
10098 if (pmop
[0] != TREE_OPERAND (arg0
, 0)
10099 || (TREE_CODE (arg0
) != NEGATE_EXPR
10100 && pmop
[1] != TREE_OPERAND (arg0
, 1)))
10102 tree utype
= TREE_TYPE (arg0
);
10103 if (! TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0
)))
10105 /* Perform the operations in a type that has defined
10106 overflow behavior. */
10107 utype
= unsigned_type_for (TREE_TYPE (arg0
));
10108 if (pmop
[0] != NULL
)
10109 pmop
[0] = fold_convert_loc (loc
, utype
, pmop
[0]);
10110 if (pmop
[1] != NULL
)
10111 pmop
[1] = fold_convert_loc (loc
, utype
, pmop
[1]);
10114 if (TREE_CODE (arg0
) == NEGATE_EXPR
)
10115 tem
= fold_build1_loc (loc
, NEGATE_EXPR
, utype
, pmop
[0]);
10116 else if (TREE_CODE (arg0
) == PLUS_EXPR
)
10118 if (pmop
[0] != NULL
&& pmop
[1] != NULL
)
10119 tem
= fold_build2_loc (loc
, PLUS_EXPR
, utype
,
10121 else if (pmop
[0] != NULL
)
10123 else if (pmop
[1] != NULL
)
10126 return build_int_cst (type
, 0);
10128 else if (pmop
[0] == NULL
)
10129 tem
= fold_build1_loc (loc
, NEGATE_EXPR
, utype
, pmop
[1]);
10131 tem
= fold_build2_loc (loc
, MINUS_EXPR
, utype
,
10133 /* TEM is now the new binary +, - or unary - replacement. */
10134 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, utype
, tem
,
10135 fold_convert_loc (loc
, utype
, arg1
));
10136 return fold_convert_loc (loc
, type
, tem
);
10141 /* Simplify ((int)c & 0377) into (int)c, if c is unsigned char. */
10142 if (TREE_CODE (arg1
) == INTEGER_CST
&& TREE_CODE (arg0
) == NOP_EXPR
10143 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0
, 0))))
10145 prec
= element_precision (TREE_TYPE (TREE_OPERAND (arg0
, 0)));
10147 wide_int mask
= wide_int::from (arg1
, prec
, UNSIGNED
);
10150 fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 0));
10156 /* Don't touch a floating-point divide by zero unless the mode
10157 of the constant can represent infinity. */
10158 if (TREE_CODE (arg1
) == REAL_CST
10159 && !MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg1
)))
10160 && real_zerop (arg1
))
10163 /* (-A) / (-B) -> A / B */
10164 if (TREE_CODE (arg0
) == NEGATE_EXPR
&& negate_expr_p (arg1
))
10165 return fold_build2_loc (loc
, RDIV_EXPR
, type
,
10166 TREE_OPERAND (arg0
, 0),
10167 negate_expr (arg1
));
10168 if (TREE_CODE (arg1
) == NEGATE_EXPR
&& negate_expr_p (arg0
))
10169 return fold_build2_loc (loc
, RDIV_EXPR
, type
,
10170 negate_expr (arg0
),
10171 TREE_OPERAND (arg1
, 0));
10174 case TRUNC_DIV_EXPR
:
10177 case FLOOR_DIV_EXPR
:
10178 /* Simplify A / (B << N) where A and B are positive and B is
10179 a power of 2, to A >> (N + log2(B)). */
10180 strict_overflow_p
= false;
10181 if (TREE_CODE (arg1
) == LSHIFT_EXPR
10182 && (TYPE_UNSIGNED (type
)
10183 || tree_expr_nonnegative_warnv_p (op0
, &strict_overflow_p
)))
10185 tree sval
= TREE_OPERAND (arg1
, 0);
10186 if (integer_pow2p (sval
) && tree_int_cst_sgn (sval
) > 0)
10188 tree sh_cnt
= TREE_OPERAND (arg1
, 1);
10189 tree pow2
= build_int_cst (TREE_TYPE (sh_cnt
),
10190 wi::exact_log2 (sval
));
10192 if (strict_overflow_p
)
10193 fold_overflow_warning (("assuming signed overflow does not "
10194 "occur when simplifying A / (B << N)"),
10195 WARN_STRICT_OVERFLOW_MISC
);
10197 sh_cnt
= fold_build2_loc (loc
, PLUS_EXPR
, TREE_TYPE (sh_cnt
),
10199 return fold_build2_loc (loc
, RSHIFT_EXPR
, type
,
10200 fold_convert_loc (loc
, type
, arg0
), sh_cnt
);
10206 case ROUND_DIV_EXPR
:
10207 case CEIL_DIV_EXPR
:
10208 case EXACT_DIV_EXPR
:
10209 if (integer_zerop (arg1
))
10212 /* Convert -A / -B to A / B when the type is signed and overflow is
10214 if ((!INTEGRAL_TYPE_P (type
) || TYPE_OVERFLOW_UNDEFINED (type
))
10215 && TREE_CODE (arg0
) == NEGATE_EXPR
10216 && negate_expr_p (op1
))
10218 if (INTEGRAL_TYPE_P (type
))
10219 fold_overflow_warning (("assuming signed overflow does not occur "
10220 "when distributing negation across "
10222 WARN_STRICT_OVERFLOW_MISC
);
10223 return fold_build2_loc (loc
, code
, type
,
10224 fold_convert_loc (loc
, type
,
10225 TREE_OPERAND (arg0
, 0)),
10226 negate_expr (op1
));
10228 if ((!INTEGRAL_TYPE_P (type
) || TYPE_OVERFLOW_UNDEFINED (type
))
10229 && TREE_CODE (arg1
) == NEGATE_EXPR
10230 && negate_expr_p (op0
))
10232 if (INTEGRAL_TYPE_P (type
))
10233 fold_overflow_warning (("assuming signed overflow does not occur "
10234 "when distributing negation across "
10236 WARN_STRICT_OVERFLOW_MISC
);
10237 return fold_build2_loc (loc
, code
, type
,
10239 fold_convert_loc (loc
, type
,
10240 TREE_OPERAND (arg1
, 0)));
10243 /* If arg0 is a multiple of arg1, then rewrite to the fastest div
10244 operation, EXACT_DIV_EXPR.
10246 Note that only CEIL_DIV_EXPR and FLOOR_DIV_EXPR are rewritten now.
10247 At one time others generated faster code, it's not clear if they do
10248 after the last round to changes to the DIV code in expmed.c. */
10249 if ((code
== CEIL_DIV_EXPR
|| code
== FLOOR_DIV_EXPR
)
10250 && multiple_of_p (type
, arg0
, arg1
))
10251 return fold_build2_loc (loc
, EXACT_DIV_EXPR
, type
,
10252 fold_convert (type
, arg0
),
10253 fold_convert (type
, arg1
));
10255 strict_overflow_p
= false;
10256 if (TREE_CODE (arg1
) == INTEGER_CST
10257 && 0 != (tem
= extract_muldiv (op0
, arg1
, code
, NULL_TREE
,
10258 &strict_overflow_p
)))
10260 if (strict_overflow_p
)
10261 fold_overflow_warning (("assuming signed overflow does not occur "
10262 "when simplifying division"),
10263 WARN_STRICT_OVERFLOW_MISC
);
10264 return fold_convert_loc (loc
, type
, tem
);
10269 case CEIL_MOD_EXPR
:
10270 case FLOOR_MOD_EXPR
:
10271 case ROUND_MOD_EXPR
:
10272 case TRUNC_MOD_EXPR
:
10273 strict_overflow_p
= false;
10274 if (TREE_CODE (arg1
) == INTEGER_CST
10275 && 0 != (tem
= extract_muldiv (op0
, arg1
, code
, NULL_TREE
,
10276 &strict_overflow_p
)))
10278 if (strict_overflow_p
)
10279 fold_overflow_warning (("assuming signed overflow does not occur "
10280 "when simplifying modulus"),
10281 WARN_STRICT_OVERFLOW_MISC
);
10282 return fold_convert_loc (loc
, type
, tem
);
10291 /* Since negative shift count is not well-defined,
10292 don't try to compute it in the compiler. */
10293 if (TREE_CODE (arg1
) == INTEGER_CST
&& tree_int_cst_sgn (arg1
) < 0)
10296 prec
= element_precision (type
);
10298 /* If we have a rotate of a bit operation with the rotate count and
10299 the second operand of the bit operation both constant,
10300 permute the two operations. */
10301 if (code
== RROTATE_EXPR
&& TREE_CODE (arg1
) == INTEGER_CST
10302 && (TREE_CODE (arg0
) == BIT_AND_EXPR
10303 || TREE_CODE (arg0
) == BIT_IOR_EXPR
10304 || TREE_CODE (arg0
) == BIT_XOR_EXPR
)
10305 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
)
10307 tree arg00
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 0));
10308 tree arg01
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 1));
10309 return fold_build2_loc (loc
, TREE_CODE (arg0
), type
,
10310 fold_build2_loc (loc
, code
, type
,
10312 fold_build2_loc (loc
, code
, type
,
10316 /* Two consecutive rotates adding up to the some integer
10317 multiple of the precision of the type can be ignored. */
10318 if (code
== RROTATE_EXPR
&& TREE_CODE (arg1
) == INTEGER_CST
10319 && TREE_CODE (arg0
) == RROTATE_EXPR
10320 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
10321 && wi::umod_trunc (wi::add (arg1
, TREE_OPERAND (arg0
, 1)),
10323 return fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 0));
10331 case TRUTH_ANDIF_EXPR
:
10332 /* Note that the operands of this must be ints
10333 and their values must be 0 or 1.
10334 ("true" is a fixed value perhaps depending on the language.) */
10335 /* If first arg is constant zero, return it. */
10336 if (integer_zerop (arg0
))
10337 return fold_convert_loc (loc
, type
, arg0
);
10339 case TRUTH_AND_EXPR
:
10340 /* If either arg is constant true, drop it. */
10341 if (TREE_CODE (arg0
) == INTEGER_CST
&& ! integer_zerop (arg0
))
10342 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg1
));
10343 if (TREE_CODE (arg1
) == INTEGER_CST
&& ! integer_zerop (arg1
)
10344 /* Preserve sequence points. */
10345 && (code
!= TRUTH_ANDIF_EXPR
|| ! TREE_SIDE_EFFECTS (arg0
)))
10346 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg0
));
10347 /* If second arg is constant zero, result is zero, but first arg
10348 must be evaluated. */
10349 if (integer_zerop (arg1
))
10350 return omit_one_operand_loc (loc
, type
, arg1
, arg0
);
10351 /* Likewise for first arg, but note that only the TRUTH_AND_EXPR
10352 case will be handled here. */
10353 if (integer_zerop (arg0
))
10354 return omit_one_operand_loc (loc
, type
, arg0
, arg1
);
10356 /* !X && X is always false. */
10357 if (TREE_CODE (arg0
) == TRUTH_NOT_EXPR
10358 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
10359 return omit_one_operand_loc (loc
, type
, integer_zero_node
, arg1
);
10360 /* X && !X is always false. */
10361 if (TREE_CODE (arg1
) == TRUTH_NOT_EXPR
10362 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
10363 return omit_one_operand_loc (loc
, type
, integer_zero_node
, arg0
);
10365 /* A < X && A + 1 > Y ==> A < X && A >= Y. Normally A + 1 > Y
10366 means A >= Y && A != MAX, but in this case we know that
10369 if (!TREE_SIDE_EFFECTS (arg0
)
10370 && !TREE_SIDE_EFFECTS (arg1
))
10372 tem
= fold_to_nonsharp_ineq_using_bound (loc
, arg0
, arg1
);
10373 if (tem
&& !operand_equal_p (tem
, arg0
, 0))
10374 return fold_build2_loc (loc
, code
, type
, tem
, arg1
);
10376 tem
= fold_to_nonsharp_ineq_using_bound (loc
, arg1
, arg0
);
10377 if (tem
&& !operand_equal_p (tem
, arg1
, 0))
10378 return fold_build2_loc (loc
, code
, type
, arg0
, tem
);
10381 if ((tem
= fold_truth_andor (loc
, code
, type
, arg0
, arg1
, op0
, op1
))
10387 case TRUTH_ORIF_EXPR
:
10388 /* Note that the operands of this must be ints
10389 and their values must be 0 or true.
10390 ("true" is a fixed value perhaps depending on the language.) */
10391 /* If first arg is constant true, return it. */
10392 if (TREE_CODE (arg0
) == INTEGER_CST
&& ! integer_zerop (arg0
))
10393 return fold_convert_loc (loc
, type
, arg0
);
10395 case TRUTH_OR_EXPR
:
10396 /* If either arg is constant zero, drop it. */
10397 if (TREE_CODE (arg0
) == INTEGER_CST
&& integer_zerop (arg0
))
10398 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg1
));
10399 if (TREE_CODE (arg1
) == INTEGER_CST
&& integer_zerop (arg1
)
10400 /* Preserve sequence points. */
10401 && (code
!= TRUTH_ORIF_EXPR
|| ! TREE_SIDE_EFFECTS (arg0
)))
10402 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg0
));
10403 /* If second arg is constant true, result is true, but we must
10404 evaluate first arg. */
10405 if (TREE_CODE (arg1
) == INTEGER_CST
&& ! integer_zerop (arg1
))
10406 return omit_one_operand_loc (loc
, type
, arg1
, arg0
);
10407 /* Likewise for first arg, but note this only occurs here for
10409 if (TREE_CODE (arg0
) == INTEGER_CST
&& ! integer_zerop (arg0
))
10410 return omit_one_operand_loc (loc
, type
, arg0
, arg1
);
10412 /* !X || X is always true. */
10413 if (TREE_CODE (arg0
) == TRUTH_NOT_EXPR
10414 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
10415 return omit_one_operand_loc (loc
, type
, integer_one_node
, arg1
);
10416 /* X || !X is always true. */
10417 if (TREE_CODE (arg1
) == TRUTH_NOT_EXPR
10418 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
10419 return omit_one_operand_loc (loc
, type
, integer_one_node
, arg0
);
10421 /* (X && !Y) || (!X && Y) is X ^ Y */
10422 if (TREE_CODE (arg0
) == TRUTH_AND_EXPR
10423 && TREE_CODE (arg1
) == TRUTH_AND_EXPR
)
10425 tree a0
, a1
, l0
, l1
, n0
, n1
;
10427 a0
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg1
, 0));
10428 a1
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg1
, 1));
10430 l0
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 0));
10431 l1
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 1));
10433 n0
= fold_build1_loc (loc
, TRUTH_NOT_EXPR
, type
, l0
);
10434 n1
= fold_build1_loc (loc
, TRUTH_NOT_EXPR
, type
, l1
);
10436 if ((operand_equal_p (n0
, a0
, 0)
10437 && operand_equal_p (n1
, a1
, 0))
10438 || (operand_equal_p (n0
, a1
, 0)
10439 && operand_equal_p (n1
, a0
, 0)))
10440 return fold_build2_loc (loc
, TRUTH_XOR_EXPR
, type
, l0
, n1
);
10443 if ((tem
= fold_truth_andor (loc
, code
, type
, arg0
, arg1
, op0
, op1
))
10449 case TRUTH_XOR_EXPR
:
10450 /* If the second arg is constant zero, drop it. */
10451 if (integer_zerop (arg1
))
10452 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg0
));
10453 /* If the second arg is constant true, this is a logical inversion. */
10454 if (integer_onep (arg1
))
10456 tem
= invert_truthvalue_loc (loc
, arg0
);
10457 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, tem
));
10459 /* Identical arguments cancel to zero. */
10460 if (operand_equal_p (arg0
, arg1
, 0))
10461 return omit_one_operand_loc (loc
, type
, integer_zero_node
, arg0
);
10463 /* !X ^ X is always true. */
10464 if (TREE_CODE (arg0
) == TRUTH_NOT_EXPR
10465 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
10466 return omit_one_operand_loc (loc
, type
, integer_one_node
, arg1
);
10468 /* X ^ !X is always true. */
10469 if (TREE_CODE (arg1
) == TRUTH_NOT_EXPR
10470 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
10471 return omit_one_operand_loc (loc
, type
, integer_one_node
, arg0
);
10480 tem
= fold_comparison (loc
, code
, type
, op0
, op1
);
10481 if (tem
!= NULL_TREE
)
10484 /* bool_var != 1 becomes !bool_var. */
10485 if (TREE_CODE (TREE_TYPE (arg0
)) == BOOLEAN_TYPE
&& integer_onep (arg1
)
10486 && code
== NE_EXPR
)
10487 return fold_convert_loc (loc
, type
,
10488 fold_build1_loc (loc
, TRUTH_NOT_EXPR
,
10489 TREE_TYPE (arg0
), arg0
));
10491 /* bool_var == 0 becomes !bool_var. */
10492 if (TREE_CODE (TREE_TYPE (arg0
)) == BOOLEAN_TYPE
&& integer_zerop (arg1
)
10493 && code
== EQ_EXPR
)
10494 return fold_convert_loc (loc
, type
,
10495 fold_build1_loc (loc
, TRUTH_NOT_EXPR
,
10496 TREE_TYPE (arg0
), arg0
));
10498 /* !exp != 0 becomes !exp */
10499 if (TREE_CODE (arg0
) == TRUTH_NOT_EXPR
&& integer_zerop (arg1
)
10500 && code
== NE_EXPR
)
10501 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg0
));
10503 /* Transform comparisons of the form X +- Y CMP X to Y CMP 0. */
10504 if ((TREE_CODE (arg0
) == PLUS_EXPR
10505 || TREE_CODE (arg0
) == POINTER_PLUS_EXPR
10506 || TREE_CODE (arg0
) == MINUS_EXPR
)
10507 && operand_equal_p (tree_strip_nop_conversions (TREE_OPERAND (arg0
,
10510 && (INTEGRAL_TYPE_P (TREE_TYPE (arg0
))
10511 || POINTER_TYPE_P (TREE_TYPE (arg0
))))
10513 tree val
= TREE_OPERAND (arg0
, 1);
10514 val
= fold_build2_loc (loc
, code
, type
, val
,
10515 build_int_cst (TREE_TYPE (val
), 0));
10516 return omit_two_operands_loc (loc
, type
, val
,
10517 TREE_OPERAND (arg0
, 0), arg1
);
10520 /* Transform comparisons of the form X CMP X +- Y to Y CMP 0. */
10521 if ((TREE_CODE (arg1
) == PLUS_EXPR
10522 || TREE_CODE (arg1
) == POINTER_PLUS_EXPR
10523 || TREE_CODE (arg1
) == MINUS_EXPR
)
10524 && operand_equal_p (tree_strip_nop_conversions (TREE_OPERAND (arg1
,
10527 && (INTEGRAL_TYPE_P (TREE_TYPE (arg1
))
10528 || POINTER_TYPE_P (TREE_TYPE (arg1
))))
10530 tree val
= TREE_OPERAND (arg1
, 1);
10531 val
= fold_build2_loc (loc
, code
, type
, val
,
10532 build_int_cst (TREE_TYPE (val
), 0));
10533 return omit_two_operands_loc (loc
, type
, val
,
10534 TREE_OPERAND (arg1
, 0), arg0
);
10537 /* Transform comparisons of the form C - X CMP X if C % 2 == 1. */
10538 if (TREE_CODE (arg0
) == MINUS_EXPR
10539 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == INTEGER_CST
10540 && operand_equal_p (tree_strip_nop_conversions (TREE_OPERAND (arg0
,
10543 && wi::extract_uhwi (TREE_OPERAND (arg0
, 0), 0, 1) == 1)
10544 return omit_two_operands_loc (loc
, type
,
10546 ? boolean_true_node
: boolean_false_node
,
10547 TREE_OPERAND (arg0
, 1), arg1
);
10549 /* Transform comparisons of the form X CMP C - X if C % 2 == 1. */
10550 if (TREE_CODE (arg1
) == MINUS_EXPR
10551 && TREE_CODE (TREE_OPERAND (arg1
, 0)) == INTEGER_CST
10552 && operand_equal_p (tree_strip_nop_conversions (TREE_OPERAND (arg1
,
10555 && wi::extract_uhwi (TREE_OPERAND (arg1
, 0), 0, 1) == 1)
10556 return omit_two_operands_loc (loc
, type
,
10558 ? boolean_true_node
: boolean_false_node
,
10559 TREE_OPERAND (arg1
, 1), arg0
);
10561 /* If this is an EQ or NE comparison with zero and ARG0 is
10562 (1 << foo) & bar, convert it to (bar >> foo) & 1. Both require
10563 two operations, but the latter can be done in one less insn
10564 on machines that have only two-operand insns or on which a
10565 constant cannot be the first operand. */
10566 if (TREE_CODE (arg0
) == BIT_AND_EXPR
10567 && integer_zerop (arg1
))
10569 tree arg00
= TREE_OPERAND (arg0
, 0);
10570 tree arg01
= TREE_OPERAND (arg0
, 1);
10571 if (TREE_CODE (arg00
) == LSHIFT_EXPR
10572 && integer_onep (TREE_OPERAND (arg00
, 0)))
10574 tree tem
= fold_build2_loc (loc
, RSHIFT_EXPR
, TREE_TYPE (arg00
),
10575 arg01
, TREE_OPERAND (arg00
, 1));
10576 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (arg0
), tem
,
10577 build_int_cst (TREE_TYPE (arg0
), 1));
10578 return fold_build2_loc (loc
, code
, type
,
10579 fold_convert_loc (loc
, TREE_TYPE (arg1
), tem
),
10582 else if (TREE_CODE (arg01
) == LSHIFT_EXPR
10583 && integer_onep (TREE_OPERAND (arg01
, 0)))
10585 tree tem
= fold_build2_loc (loc
, RSHIFT_EXPR
, TREE_TYPE (arg01
),
10586 arg00
, TREE_OPERAND (arg01
, 1));
10587 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (arg0
), tem
,
10588 build_int_cst (TREE_TYPE (arg0
), 1));
10589 return fold_build2_loc (loc
, code
, type
,
10590 fold_convert_loc (loc
, TREE_TYPE (arg1
), tem
),
10595 /* If this is an NE or EQ comparison of zero against the result of a
10596 signed MOD operation whose second operand is a power of 2, make
10597 the MOD operation unsigned since it is simpler and equivalent. */
10598 if (integer_zerop (arg1
)
10599 && !TYPE_UNSIGNED (TREE_TYPE (arg0
))
10600 && (TREE_CODE (arg0
) == TRUNC_MOD_EXPR
10601 || TREE_CODE (arg0
) == CEIL_MOD_EXPR
10602 || TREE_CODE (arg0
) == FLOOR_MOD_EXPR
10603 || TREE_CODE (arg0
) == ROUND_MOD_EXPR
)
10604 && integer_pow2p (TREE_OPERAND (arg0
, 1)))
10606 tree newtype
= unsigned_type_for (TREE_TYPE (arg0
));
10607 tree newmod
= fold_build2_loc (loc
, TREE_CODE (arg0
), newtype
,
10608 fold_convert_loc (loc
, newtype
,
10609 TREE_OPERAND (arg0
, 0)),
10610 fold_convert_loc (loc
, newtype
,
10611 TREE_OPERAND (arg0
, 1)));
10613 return fold_build2_loc (loc
, code
, type
, newmod
,
10614 fold_convert_loc (loc
, newtype
, arg1
));
10617 /* Fold ((X >> C1) & C2) == 0 and ((X >> C1) & C2) != 0 where
10618 C1 is a valid shift constant, and C2 is a power of two, i.e.
10620 if (TREE_CODE (arg0
) == BIT_AND_EXPR
10621 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == RSHIFT_EXPR
10622 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (arg0
, 0), 1))
10624 && integer_pow2p (TREE_OPERAND (arg0
, 1))
10625 && integer_zerop (arg1
))
10627 tree itype
= TREE_TYPE (arg0
);
10628 tree arg001
= TREE_OPERAND (TREE_OPERAND (arg0
, 0), 1);
10629 prec
= TYPE_PRECISION (itype
);
10631 /* Check for a valid shift count. */
10632 if (wi::ltu_p (arg001
, prec
))
10634 tree arg01
= TREE_OPERAND (arg0
, 1);
10635 tree arg000
= TREE_OPERAND (TREE_OPERAND (arg0
, 0), 0);
10636 unsigned HOST_WIDE_INT log2
= tree_log2 (arg01
);
10637 /* If (C2 << C1) doesn't overflow, then ((X >> C1) & C2) != 0
10638 can be rewritten as (X & (C2 << C1)) != 0. */
10639 if ((log2
+ TREE_INT_CST_LOW (arg001
)) < prec
)
10641 tem
= fold_build2_loc (loc
, LSHIFT_EXPR
, itype
, arg01
, arg001
);
10642 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, itype
, arg000
, tem
);
10643 return fold_build2_loc (loc
, code
, type
, tem
,
10644 fold_convert_loc (loc
, itype
, arg1
));
10646 /* Otherwise, for signed (arithmetic) shifts,
10647 ((X >> C1) & C2) != 0 is rewritten as X < 0, and
10648 ((X >> C1) & C2) == 0 is rewritten as X >= 0. */
10649 else if (!TYPE_UNSIGNED (itype
))
10650 return fold_build2_loc (loc
, code
== EQ_EXPR
? GE_EXPR
: LT_EXPR
, type
,
10651 arg000
, build_int_cst (itype
, 0));
10652 /* Otherwise, of unsigned (logical) shifts,
10653 ((X >> C1) & C2) != 0 is rewritten as (X,false), and
10654 ((X >> C1) & C2) == 0 is rewritten as (X,true). */
10656 return omit_one_operand_loc (loc
, type
,
10657 code
== EQ_EXPR
? integer_one_node
10658 : integer_zero_node
,
10663 /* If we have (A & C) == D where D & ~C != 0, convert this into 0.
10664 Similarly for NE_EXPR. */
10665 if (TREE_CODE (arg0
) == BIT_AND_EXPR
10666 && TREE_CODE (arg1
) == INTEGER_CST
10667 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
)
10669 tree notc
= fold_build1_loc (loc
, BIT_NOT_EXPR
,
10670 TREE_TYPE (TREE_OPERAND (arg0
, 1)),
10671 TREE_OPERAND (arg0
, 1));
10673 = fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (arg0
),
10674 fold_convert_loc (loc
, TREE_TYPE (arg0
), arg1
),
10676 tree rslt
= code
== EQ_EXPR
? integer_zero_node
: integer_one_node
;
10677 if (integer_nonzerop (dandnotc
))
10678 return omit_one_operand_loc (loc
, type
, rslt
, arg0
);
10681 /* If this is a comparison of a field, we may be able to simplify it. */
10682 if ((TREE_CODE (arg0
) == COMPONENT_REF
10683 || TREE_CODE (arg0
) == BIT_FIELD_REF
)
10684 /* Handle the constant case even without -O
10685 to make sure the warnings are given. */
10686 && (optimize
|| TREE_CODE (arg1
) == INTEGER_CST
))
10688 t1
= optimize_bit_field_compare (loc
, code
, type
, arg0
, arg1
);
10693 /* Optimize comparisons of strlen vs zero to a compare of the
10694 first character of the string vs zero. To wit,
10695 strlen(ptr) == 0 => *ptr == 0
10696 strlen(ptr) != 0 => *ptr != 0
10697 Other cases should reduce to one of these two (or a constant)
10698 due to the return value of strlen being unsigned. */
10699 if (TREE_CODE (arg0
) == CALL_EXPR
10700 && integer_zerop (arg1
))
10702 tree fndecl
= get_callee_fndecl (arg0
);
10705 && DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
10706 && DECL_FUNCTION_CODE (fndecl
) == BUILT_IN_STRLEN
10707 && call_expr_nargs (arg0
) == 1
10708 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (arg0
, 0))) == POINTER_TYPE
)
10710 tree iref
= build_fold_indirect_ref_loc (loc
,
10711 CALL_EXPR_ARG (arg0
, 0));
10712 return fold_build2_loc (loc
, code
, type
, iref
,
10713 build_int_cst (TREE_TYPE (iref
), 0));
10717 /* Fold (X >> C) != 0 into X < 0 if C is one less than the width
10718 of X. Similarly fold (X >> C) == 0 into X >= 0. */
10719 if (TREE_CODE (arg0
) == RSHIFT_EXPR
10720 && integer_zerop (arg1
)
10721 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
)
10723 tree arg00
= TREE_OPERAND (arg0
, 0);
10724 tree arg01
= TREE_OPERAND (arg0
, 1);
10725 tree itype
= TREE_TYPE (arg00
);
10726 if (wi::eq_p (arg01
, element_precision (itype
) - 1))
10728 if (TYPE_UNSIGNED (itype
))
10730 itype
= signed_type_for (itype
);
10731 arg00
= fold_convert_loc (loc
, itype
, arg00
);
10733 return fold_build2_loc (loc
, code
== EQ_EXPR
? GE_EXPR
: LT_EXPR
,
10734 type
, arg00
, build_zero_cst (itype
));
10738 /* Fold (~X & C) == 0 into (X & C) != 0 and (~X & C) != 0 into
10739 (X & C) == 0 when C is a single bit. */
10740 if (TREE_CODE (arg0
) == BIT_AND_EXPR
10741 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == BIT_NOT_EXPR
10742 && integer_zerop (arg1
)
10743 && integer_pow2p (TREE_OPERAND (arg0
, 1)))
10745 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (arg0
),
10746 TREE_OPERAND (TREE_OPERAND (arg0
, 0), 0),
10747 TREE_OPERAND (arg0
, 1));
10748 return fold_build2_loc (loc
, code
== EQ_EXPR
? NE_EXPR
: EQ_EXPR
,
10750 fold_convert_loc (loc
, TREE_TYPE (arg0
),
10754 /* Fold ((X & C) ^ C) eq/ne 0 into (X & C) ne/eq 0, when the
10755 constant C is a power of two, i.e. a single bit. */
10756 if (TREE_CODE (arg0
) == BIT_XOR_EXPR
10757 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == BIT_AND_EXPR
10758 && integer_zerop (arg1
)
10759 && integer_pow2p (TREE_OPERAND (arg0
, 1))
10760 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0
, 0), 1),
10761 TREE_OPERAND (arg0
, 1), OEP_ONLY_CONST
))
10763 tree arg00
= TREE_OPERAND (arg0
, 0);
10764 return fold_build2_loc (loc
, code
== EQ_EXPR
? NE_EXPR
: EQ_EXPR
, type
,
10765 arg00
, build_int_cst (TREE_TYPE (arg00
), 0));
10768 /* Likewise, fold ((X ^ C) & C) eq/ne 0 into (X & C) ne/eq 0,
10769 when is C is a power of two, i.e. a single bit. */
10770 if (TREE_CODE (arg0
) == BIT_AND_EXPR
10771 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == BIT_XOR_EXPR
10772 && integer_zerop (arg1
)
10773 && integer_pow2p (TREE_OPERAND (arg0
, 1))
10774 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0
, 0), 1),
10775 TREE_OPERAND (arg0
, 1), OEP_ONLY_CONST
))
10777 tree arg000
= TREE_OPERAND (TREE_OPERAND (arg0
, 0), 0);
10778 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (arg000
),
10779 arg000
, TREE_OPERAND (arg0
, 1));
10780 return fold_build2_loc (loc
, code
== EQ_EXPR
? NE_EXPR
: EQ_EXPR
, type
,
10781 tem
, build_int_cst (TREE_TYPE (tem
), 0));
10784 if (integer_zerop (arg1
)
10785 && tree_expr_nonzero_p (arg0
))
10787 tree res
= constant_boolean_node (code
==NE_EXPR
, type
);
10788 return omit_one_operand_loc (loc
, type
, res
, arg0
);
10791 /* Fold (X & C) op (Y & C) as (X ^ Y) & C op 0", and symmetries. */
10792 if (TREE_CODE (arg0
) == BIT_AND_EXPR
10793 && TREE_CODE (arg1
) == BIT_AND_EXPR
)
10795 tree arg00
= TREE_OPERAND (arg0
, 0);
10796 tree arg01
= TREE_OPERAND (arg0
, 1);
10797 tree arg10
= TREE_OPERAND (arg1
, 0);
10798 tree arg11
= TREE_OPERAND (arg1
, 1);
10799 tree itype
= TREE_TYPE (arg0
);
10801 if (operand_equal_p (arg01
, arg11
, 0))
10802 return fold_build2_loc (loc
, code
, type
,
10803 fold_build2_loc (loc
, BIT_AND_EXPR
, itype
,
10804 fold_build2_loc (loc
,
10805 BIT_XOR_EXPR
, itype
,
10808 build_zero_cst (itype
));
10810 if (operand_equal_p (arg01
, arg10
, 0))
10811 return fold_build2_loc (loc
, code
, type
,
10812 fold_build2_loc (loc
, BIT_AND_EXPR
, itype
,
10813 fold_build2_loc (loc
,
10814 BIT_XOR_EXPR
, itype
,
10817 build_zero_cst (itype
));
10819 if (operand_equal_p (arg00
, arg11
, 0))
10820 return fold_build2_loc (loc
, code
, type
,
10821 fold_build2_loc (loc
, BIT_AND_EXPR
, itype
,
10822 fold_build2_loc (loc
,
10823 BIT_XOR_EXPR
, itype
,
10826 build_zero_cst (itype
));
10828 if (operand_equal_p (arg00
, arg10
, 0))
10829 return fold_build2_loc (loc
, code
, type
,
10830 fold_build2_loc (loc
, BIT_AND_EXPR
, itype
,
10831 fold_build2_loc (loc
,
10832 BIT_XOR_EXPR
, itype
,
10835 build_zero_cst (itype
));
10838 if (TREE_CODE (arg0
) == BIT_XOR_EXPR
10839 && TREE_CODE (arg1
) == BIT_XOR_EXPR
)
10841 tree arg00
= TREE_OPERAND (arg0
, 0);
10842 tree arg01
= TREE_OPERAND (arg0
, 1);
10843 tree arg10
= TREE_OPERAND (arg1
, 0);
10844 tree arg11
= TREE_OPERAND (arg1
, 1);
10845 tree itype
= TREE_TYPE (arg0
);
10847 /* Optimize (X ^ Z) op (Y ^ Z) as X op Y, and symmetries.
10848 operand_equal_p guarantees no side-effects so we don't need
10849 to use omit_one_operand on Z. */
10850 if (operand_equal_p (arg01
, arg11
, 0))
10851 return fold_build2_loc (loc
, code
, type
, arg00
,
10852 fold_convert_loc (loc
, TREE_TYPE (arg00
),
10854 if (operand_equal_p (arg01
, arg10
, 0))
10855 return fold_build2_loc (loc
, code
, type
, arg00
,
10856 fold_convert_loc (loc
, TREE_TYPE (arg00
),
10858 if (operand_equal_p (arg00
, arg11
, 0))
10859 return fold_build2_loc (loc
, code
, type
, arg01
,
10860 fold_convert_loc (loc
, TREE_TYPE (arg01
),
10862 if (operand_equal_p (arg00
, arg10
, 0))
10863 return fold_build2_loc (loc
, code
, type
, arg01
,
10864 fold_convert_loc (loc
, TREE_TYPE (arg01
),
10867 /* Optimize (X ^ C1) op (Y ^ C2) as (X ^ (C1 ^ C2)) op Y. */
10868 if (TREE_CODE (arg01
) == INTEGER_CST
10869 && TREE_CODE (arg11
) == INTEGER_CST
)
10871 tem
= fold_build2_loc (loc
, BIT_XOR_EXPR
, itype
, arg01
,
10872 fold_convert_loc (loc
, itype
, arg11
));
10873 tem
= fold_build2_loc (loc
, BIT_XOR_EXPR
, itype
, arg00
, tem
);
10874 return fold_build2_loc (loc
, code
, type
, tem
,
10875 fold_convert_loc (loc
, itype
, arg10
));
10879 /* Attempt to simplify equality/inequality comparisons of complex
10880 values. Only lower the comparison if the result is known or
10881 can be simplified to a single scalar comparison. */
10882 if ((TREE_CODE (arg0
) == COMPLEX_EXPR
10883 || TREE_CODE (arg0
) == COMPLEX_CST
)
10884 && (TREE_CODE (arg1
) == COMPLEX_EXPR
10885 || TREE_CODE (arg1
) == COMPLEX_CST
))
10887 tree real0
, imag0
, real1
, imag1
;
10890 if (TREE_CODE (arg0
) == COMPLEX_EXPR
)
10892 real0
= TREE_OPERAND (arg0
, 0);
10893 imag0
= TREE_OPERAND (arg0
, 1);
10897 real0
= TREE_REALPART (arg0
);
10898 imag0
= TREE_IMAGPART (arg0
);
10901 if (TREE_CODE (arg1
) == COMPLEX_EXPR
)
10903 real1
= TREE_OPERAND (arg1
, 0);
10904 imag1
= TREE_OPERAND (arg1
, 1);
10908 real1
= TREE_REALPART (arg1
);
10909 imag1
= TREE_IMAGPART (arg1
);
10912 rcond
= fold_binary_loc (loc
, code
, type
, real0
, real1
);
10913 if (rcond
&& TREE_CODE (rcond
) == INTEGER_CST
)
10915 if (integer_zerop (rcond
))
10917 if (code
== EQ_EXPR
)
10918 return omit_two_operands_loc (loc
, type
, boolean_false_node
,
10920 return fold_build2_loc (loc
, NE_EXPR
, type
, imag0
, imag1
);
10924 if (code
== NE_EXPR
)
10925 return omit_two_operands_loc (loc
, type
, boolean_true_node
,
10927 return fold_build2_loc (loc
, EQ_EXPR
, type
, imag0
, imag1
);
10931 icond
= fold_binary_loc (loc
, code
, type
, imag0
, imag1
);
10932 if (icond
&& TREE_CODE (icond
) == INTEGER_CST
)
10934 if (integer_zerop (icond
))
10936 if (code
== EQ_EXPR
)
10937 return omit_two_operands_loc (loc
, type
, boolean_false_node
,
10939 return fold_build2_loc (loc
, NE_EXPR
, type
, real0
, real1
);
10943 if (code
== NE_EXPR
)
10944 return omit_two_operands_loc (loc
, type
, boolean_true_node
,
10946 return fold_build2_loc (loc
, EQ_EXPR
, type
, real0
, real1
);
10957 tem
= fold_comparison (loc
, code
, type
, op0
, op1
);
10958 if (tem
!= NULL_TREE
)
10961 /* Transform comparisons of the form X +- C CMP X. */
10962 if ((TREE_CODE (arg0
) == PLUS_EXPR
|| TREE_CODE (arg0
) == MINUS_EXPR
)
10963 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0)
10964 && ((TREE_CODE (TREE_OPERAND (arg0
, 1)) == REAL_CST
10965 && !HONOR_SNANS (arg0
))
10966 || (TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
10967 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1
)))))
10969 tree arg01
= TREE_OPERAND (arg0
, 1);
10970 enum tree_code code0
= TREE_CODE (arg0
);
10973 if (TREE_CODE (arg01
) == REAL_CST
)
10974 is_positive
= REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg01
)) ? -1 : 1;
10976 is_positive
= tree_int_cst_sgn (arg01
);
10978 /* (X - c) > X becomes false. */
10979 if (code
== GT_EXPR
10980 && ((code0
== MINUS_EXPR
&& is_positive
>= 0)
10981 || (code0
== PLUS_EXPR
&& is_positive
<= 0)))
10983 if (TREE_CODE (arg01
) == INTEGER_CST
10984 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1
)))
10985 fold_overflow_warning (("assuming signed overflow does not "
10986 "occur when assuming that (X - c) > X "
10987 "is always false"),
10988 WARN_STRICT_OVERFLOW_ALL
);
10989 return constant_boolean_node (0, type
);
10992 /* Likewise (X + c) < X becomes false. */
10993 if (code
== LT_EXPR
10994 && ((code0
== PLUS_EXPR
&& is_positive
>= 0)
10995 || (code0
== MINUS_EXPR
&& is_positive
<= 0)))
10997 if (TREE_CODE (arg01
) == INTEGER_CST
10998 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1
)))
10999 fold_overflow_warning (("assuming signed overflow does not "
11000 "occur when assuming that "
11001 "(X + c) < X is always false"),
11002 WARN_STRICT_OVERFLOW_ALL
);
11003 return constant_boolean_node (0, type
);
11006 /* Convert (X - c) <= X to true. */
11007 if (!HONOR_NANS (arg1
)
11009 && ((code0
== MINUS_EXPR
&& is_positive
>= 0)
11010 || (code0
== PLUS_EXPR
&& is_positive
<= 0)))
11012 if (TREE_CODE (arg01
) == INTEGER_CST
11013 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1
)))
11014 fold_overflow_warning (("assuming signed overflow does not "
11015 "occur when assuming that "
11016 "(X - c) <= X is always true"),
11017 WARN_STRICT_OVERFLOW_ALL
);
11018 return constant_boolean_node (1, type
);
11021 /* Convert (X + c) >= X to true. */
11022 if (!HONOR_NANS (arg1
)
11024 && ((code0
== PLUS_EXPR
&& is_positive
>= 0)
11025 || (code0
== MINUS_EXPR
&& is_positive
<= 0)))
11027 if (TREE_CODE (arg01
) == INTEGER_CST
11028 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1
)))
11029 fold_overflow_warning (("assuming signed overflow does not "
11030 "occur when assuming that "
11031 "(X + c) >= X is always true"),
11032 WARN_STRICT_OVERFLOW_ALL
);
11033 return constant_boolean_node (1, type
);
11036 if (TREE_CODE (arg01
) == INTEGER_CST
)
11038 /* Convert X + c > X and X - c < X to true for integers. */
11039 if (code
== GT_EXPR
11040 && ((code0
== PLUS_EXPR
&& is_positive
> 0)
11041 || (code0
== MINUS_EXPR
&& is_positive
< 0)))
11043 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1
)))
11044 fold_overflow_warning (("assuming signed overflow does "
11045 "not occur when assuming that "
11046 "(X + c) > X is always true"),
11047 WARN_STRICT_OVERFLOW_ALL
);
11048 return constant_boolean_node (1, type
);
11051 if (code
== LT_EXPR
11052 && ((code0
== MINUS_EXPR
&& is_positive
> 0)
11053 || (code0
== PLUS_EXPR
&& is_positive
< 0)))
11055 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1
)))
11056 fold_overflow_warning (("assuming signed overflow does "
11057 "not occur when assuming that "
11058 "(X - c) < X is always true"),
11059 WARN_STRICT_OVERFLOW_ALL
);
11060 return constant_boolean_node (1, type
);
11063 /* Convert X + c <= X and X - c >= X to false for integers. */
11064 if (code
== LE_EXPR
11065 && ((code0
== PLUS_EXPR
&& is_positive
> 0)
11066 || (code0
== MINUS_EXPR
&& is_positive
< 0)))
11068 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1
)))
11069 fold_overflow_warning (("assuming signed overflow does "
11070 "not occur when assuming that "
11071 "(X + c) <= X is always false"),
11072 WARN_STRICT_OVERFLOW_ALL
);
11073 return constant_boolean_node (0, type
);
11076 if (code
== GE_EXPR
11077 && ((code0
== MINUS_EXPR
&& is_positive
> 0)
11078 || (code0
== PLUS_EXPR
&& is_positive
< 0)))
11080 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1
)))
11081 fold_overflow_warning (("assuming signed overflow does "
11082 "not occur when assuming that "
11083 "(X - c) >= X is always false"),
11084 WARN_STRICT_OVERFLOW_ALL
);
11085 return constant_boolean_node (0, type
);
11090 /* If we are comparing an ABS_EXPR with a constant, we can
11091 convert all the cases into explicit comparisons, but they may
11092 well not be faster than doing the ABS and one comparison.
11093 But ABS (X) <= C is a range comparison, which becomes a subtraction
11094 and a comparison, and is probably faster. */
11095 if (code
== LE_EXPR
11096 && TREE_CODE (arg1
) == INTEGER_CST
11097 && TREE_CODE (arg0
) == ABS_EXPR
11098 && ! TREE_SIDE_EFFECTS (arg0
)
11099 && (0 != (tem
= negate_expr (arg1
)))
11100 && TREE_CODE (tem
) == INTEGER_CST
11101 && !TREE_OVERFLOW (tem
))
11102 return fold_build2_loc (loc
, TRUTH_ANDIF_EXPR
, type
,
11103 build2 (GE_EXPR
, type
,
11104 TREE_OPERAND (arg0
, 0), tem
),
11105 build2 (LE_EXPR
, type
,
11106 TREE_OPERAND (arg0
, 0), arg1
));
11108 /* Convert ABS_EXPR<x> >= 0 to true. */
11109 strict_overflow_p
= false;
11110 if (code
== GE_EXPR
11111 && (integer_zerop (arg1
)
11112 || (! HONOR_NANS (arg0
)
11113 && real_zerop (arg1
)))
11114 && tree_expr_nonnegative_warnv_p (arg0
, &strict_overflow_p
))
11116 if (strict_overflow_p
)
11117 fold_overflow_warning (("assuming signed overflow does not occur "
11118 "when simplifying comparison of "
11119 "absolute value and zero"),
11120 WARN_STRICT_OVERFLOW_CONDITIONAL
);
11121 return omit_one_operand_loc (loc
, type
,
11122 constant_boolean_node (true, type
),
11126 /* Convert ABS_EXPR<x> < 0 to false. */
11127 strict_overflow_p
= false;
11128 if (code
== LT_EXPR
11129 && (integer_zerop (arg1
) || real_zerop (arg1
))
11130 && tree_expr_nonnegative_warnv_p (arg0
, &strict_overflow_p
))
11132 if (strict_overflow_p
)
11133 fold_overflow_warning (("assuming signed overflow does not occur "
11134 "when simplifying comparison of "
11135 "absolute value and zero"),
11136 WARN_STRICT_OVERFLOW_CONDITIONAL
);
11137 return omit_one_operand_loc (loc
, type
,
11138 constant_boolean_node (false, type
),
11142 /* If X is unsigned, convert X < (1 << Y) into X >> Y == 0
11143 and similarly for >= into !=. */
11144 if ((code
== LT_EXPR
|| code
== GE_EXPR
)
11145 && TYPE_UNSIGNED (TREE_TYPE (arg0
))
11146 && TREE_CODE (arg1
) == LSHIFT_EXPR
11147 && integer_onep (TREE_OPERAND (arg1
, 0)))
11148 return build2_loc (loc
, code
== LT_EXPR
? EQ_EXPR
: NE_EXPR
, type
,
11149 build2 (RSHIFT_EXPR
, TREE_TYPE (arg0
), arg0
,
11150 TREE_OPERAND (arg1
, 1)),
11151 build_zero_cst (TREE_TYPE (arg0
)));
11153 /* Similarly for X < (cast) (1 << Y). But cast can't be narrowing,
11154 otherwise Y might be >= # of bits in X's type and thus e.g.
11155 (unsigned char) (1 << Y) for Y 15 might be 0.
11156 If the cast is widening, then 1 << Y should have unsigned type,
11157 otherwise if Y is number of bits in the signed shift type minus 1,
11158 we can't optimize this. E.g. (unsigned long long) (1 << Y) for Y
11159 31 might be 0xffffffff80000000. */
11160 if ((code
== LT_EXPR
|| code
== GE_EXPR
)
11161 && TYPE_UNSIGNED (TREE_TYPE (arg0
))
11162 && CONVERT_EXPR_P (arg1
)
11163 && TREE_CODE (TREE_OPERAND (arg1
, 0)) == LSHIFT_EXPR
11164 && (element_precision (TREE_TYPE (arg1
))
11165 >= element_precision (TREE_TYPE (TREE_OPERAND (arg1
, 0))))
11166 && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg1
, 0)))
11167 || (element_precision (TREE_TYPE (arg1
))
11168 == element_precision (TREE_TYPE (TREE_OPERAND (arg1
, 0)))))
11169 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg1
, 0), 0)))
11171 tem
= build2 (RSHIFT_EXPR
, TREE_TYPE (arg0
), arg0
,
11172 TREE_OPERAND (TREE_OPERAND (arg1
, 0), 1));
11173 return build2_loc (loc
, code
== LT_EXPR
? EQ_EXPR
: NE_EXPR
, type
,
11174 fold_convert_loc (loc
, TREE_TYPE (arg0
), tem
),
11175 build_zero_cst (TREE_TYPE (arg0
)));
11180 case UNORDERED_EXPR
:
11188 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
11190 tree targ0
= strip_float_extensions (arg0
);
11191 tree targ1
= strip_float_extensions (arg1
);
11192 tree newtype
= TREE_TYPE (targ0
);
11194 if (TYPE_PRECISION (TREE_TYPE (targ1
)) > TYPE_PRECISION (newtype
))
11195 newtype
= TREE_TYPE (targ1
);
11197 if (TYPE_PRECISION (newtype
) < TYPE_PRECISION (TREE_TYPE (arg0
)))
11198 return fold_build2_loc (loc
, code
, type
,
11199 fold_convert_loc (loc
, newtype
, targ0
),
11200 fold_convert_loc (loc
, newtype
, targ1
));
11205 case COMPOUND_EXPR
:
11206 /* When pedantic, a compound expression can be neither an lvalue
11207 nor an integer constant expression. */
11208 if (TREE_SIDE_EFFECTS (arg0
) || TREE_CONSTANT (arg1
))
11210 /* Don't let (0, 0) be null pointer constant. */
11211 tem
= integer_zerop (arg1
) ? build1 (NOP_EXPR
, type
, arg1
)
11212 : fold_convert_loc (loc
, type
, arg1
);
11213 return pedantic_non_lvalue_loc (loc
, tem
);
11216 /* An ASSERT_EXPR should never be passed to fold_binary. */
11217 gcc_unreachable ();
11221 } /* switch (code) */
11224 /* Callback for walk_tree, looking for LABEL_EXPR. Return *TP if it is
11225 a LABEL_EXPR; otherwise return NULL_TREE. Do not check the subtrees
11229 contains_label_1 (tree
*tp
, int *walk_subtrees
, void *data ATTRIBUTE_UNUSED
)
11231 switch (TREE_CODE (*tp
))
11237 *walk_subtrees
= 0;
11246 /* Return whether the sub-tree ST contains a label which is accessible from
11247 outside the sub-tree. */
11250 contains_label_p (tree st
)
11253 (walk_tree_without_duplicates (&st
, contains_label_1
, NULL
) != NULL_TREE
);
11256 /* Fold a ternary expression of code CODE and type TYPE with operands
11257 OP0, OP1, and OP2. Return the folded expression if folding is
11258 successful. Otherwise, return NULL_TREE. */
11261 fold_ternary_loc (location_t loc
, enum tree_code code
, tree type
,
11262 tree op0
, tree op1
, tree op2
)
11265 tree arg0
= NULL_TREE
, arg1
= NULL_TREE
, arg2
= NULL_TREE
;
11266 enum tree_code_class kind
= TREE_CODE_CLASS (code
);
11268 gcc_assert (IS_EXPR_CODE_CLASS (kind
)
11269 && TREE_CODE_LENGTH (code
) == 3);
11271 /* If this is a commutative operation, and OP0 is a constant, move it
11272 to OP1 to reduce the number of tests below. */
11273 if (commutative_ternary_tree_code (code
)
11274 && tree_swap_operands_p (op0
, op1
, true))
11275 return fold_build3_loc (loc
, code
, type
, op1
, op0
, op2
);
11277 tem
= generic_simplify (loc
, code
, type
, op0
, op1
, op2
);
11281 /* Strip any conversions that don't change the mode. This is safe
11282 for every expression, except for a comparison expression because
11283 its signedness is derived from its operands. So, in the latter
11284 case, only strip conversions that don't change the signedness.
11286 Note that this is done as an internal manipulation within the
11287 constant folder, in order to find the simplest representation of
11288 the arguments so that their form can be studied. In any cases,
11289 the appropriate type conversions should be put back in the tree
11290 that will get out of the constant folder. */
11311 case COMPONENT_REF
:
11312 if (TREE_CODE (arg0
) == CONSTRUCTOR
11313 && ! type_contains_placeholder_p (TREE_TYPE (arg0
)))
11315 unsigned HOST_WIDE_INT idx
;
11317 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (arg0
), idx
, field
, value
)
11324 case VEC_COND_EXPR
:
11325 /* Pedantic ANSI C says that a conditional expression is never an lvalue,
11326 so all simple results must be passed through pedantic_non_lvalue. */
11327 if (TREE_CODE (arg0
) == INTEGER_CST
)
11329 tree unused_op
= integer_zerop (arg0
) ? op1
: op2
;
11330 tem
= integer_zerop (arg0
) ? op2
: op1
;
11331 /* Only optimize constant conditions when the selected branch
11332 has the same type as the COND_EXPR. This avoids optimizing
11333 away "c ? x : throw", where the throw has a void type.
11334 Avoid throwing away that operand which contains label. */
11335 if ((!TREE_SIDE_EFFECTS (unused_op
)
11336 || !contains_label_p (unused_op
))
11337 && (! VOID_TYPE_P (TREE_TYPE (tem
))
11338 || VOID_TYPE_P (type
)))
11339 return pedantic_non_lvalue_loc (loc
, tem
);
11342 else if (TREE_CODE (arg0
) == VECTOR_CST
)
11344 if ((TREE_CODE (arg1
) == VECTOR_CST
11345 || TREE_CODE (arg1
) == CONSTRUCTOR
)
11346 && (TREE_CODE (arg2
) == VECTOR_CST
11347 || TREE_CODE (arg2
) == CONSTRUCTOR
))
11349 unsigned int nelts
= TYPE_VECTOR_SUBPARTS (type
), i
;
11350 unsigned char *sel
= XALLOCAVEC (unsigned char, nelts
);
11351 gcc_assert (nelts
== VECTOR_CST_NELTS (arg0
));
11352 for (i
= 0; i
< nelts
; i
++)
11354 tree val
= VECTOR_CST_ELT (arg0
, i
);
11355 if (integer_all_onesp (val
))
11357 else if (integer_zerop (val
))
11358 sel
[i
] = nelts
+ i
;
11359 else /* Currently unreachable. */
11362 tree t
= fold_vec_perm (type
, arg1
, arg2
, sel
);
11363 if (t
!= NULL_TREE
)
11368 /* If we have A op B ? A : C, we may be able to convert this to a
11369 simpler expression, depending on the operation and the values
11370 of B and C. Signed zeros prevent all of these transformations,
11371 for reasons given above each one.
11373 Also try swapping the arguments and inverting the conditional. */
11374 if (COMPARISON_CLASS_P (arg0
)
11375 && operand_equal_for_comparison_p (TREE_OPERAND (arg0
, 0),
11376 arg1
, TREE_OPERAND (arg0
, 1))
11377 && !HONOR_SIGNED_ZEROS (element_mode (arg1
)))
11379 tem
= fold_cond_expr_with_comparison (loc
, type
, arg0
, op1
, op2
);
11384 if (COMPARISON_CLASS_P (arg0
)
11385 && operand_equal_for_comparison_p (TREE_OPERAND (arg0
, 0),
11387 TREE_OPERAND (arg0
, 1))
11388 && !HONOR_SIGNED_ZEROS (element_mode (op2
)))
11390 location_t loc0
= expr_location_or (arg0
, loc
);
11391 tem
= fold_invert_truthvalue (loc0
, arg0
);
11392 if (tem
&& COMPARISON_CLASS_P (tem
))
11394 tem
= fold_cond_expr_with_comparison (loc
, type
, tem
, op2
, op1
);
11400 /* If the second operand is simpler than the third, swap them
11401 since that produces better jump optimization results. */
11402 if (truth_value_p (TREE_CODE (arg0
))
11403 && tree_swap_operands_p (op1
, op2
, false))
11405 location_t loc0
= expr_location_or (arg0
, loc
);
11406 /* See if this can be inverted. If it can't, possibly because
11407 it was a floating-point inequality comparison, don't do
11409 tem
= fold_invert_truthvalue (loc0
, arg0
);
11411 return fold_build3_loc (loc
, code
, type
, tem
, op2
, op1
);
11414 /* Convert A ? 1 : 0 to simply A. */
11415 if ((code
== VEC_COND_EXPR
? integer_all_onesp (op1
)
11416 : (integer_onep (op1
)
11417 && !VECTOR_TYPE_P (type
)))
11418 && integer_zerop (op2
)
11419 /* If we try to convert OP0 to our type, the
11420 call to fold will try to move the conversion inside
11421 a COND, which will recurse. In that case, the COND_EXPR
11422 is probably the best choice, so leave it alone. */
11423 && type
== TREE_TYPE (arg0
))
11424 return pedantic_non_lvalue_loc (loc
, arg0
);
11426 /* Convert A ? 0 : 1 to !A. This prefers the use of NOT_EXPR
11427 over COND_EXPR in cases such as floating point comparisons. */
11428 if (integer_zerop (op1
)
11429 && code
== COND_EXPR
11430 && integer_onep (op2
)
11431 && !VECTOR_TYPE_P (type
)
11432 && truth_value_p (TREE_CODE (arg0
)))
11433 return pedantic_non_lvalue_loc (loc
,
11434 fold_convert_loc (loc
, type
,
11435 invert_truthvalue_loc (loc
,
11438 /* A < 0 ? <sign bit of A> : 0 is simply (A & <sign bit of A>). */
11439 if (TREE_CODE (arg0
) == LT_EXPR
11440 && integer_zerop (TREE_OPERAND (arg0
, 1))
11441 && integer_zerop (op2
)
11442 && (tem
= sign_bit_p (TREE_OPERAND (arg0
, 0), arg1
)))
11444 /* sign_bit_p looks through both zero and sign extensions,
11445 but for this optimization only sign extensions are
11447 tree tem2
= TREE_OPERAND (arg0
, 0);
11448 while (tem
!= tem2
)
11450 if (TREE_CODE (tem2
) != NOP_EXPR
11451 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (tem2
, 0))))
11456 tem2
= TREE_OPERAND (tem2
, 0);
11458 /* sign_bit_p only checks ARG1 bits within A's precision.
11459 If <sign bit of A> has wider type than A, bits outside
11460 of A's precision in <sign bit of A> need to be checked.
11461 If they are all 0, this optimization needs to be done
11462 in unsigned A's type, if they are all 1 in signed A's type,
11463 otherwise this can't be done. */
11465 && TYPE_PRECISION (TREE_TYPE (tem
))
11466 < TYPE_PRECISION (TREE_TYPE (arg1
))
11467 && TYPE_PRECISION (TREE_TYPE (tem
))
11468 < TYPE_PRECISION (type
))
11470 int inner_width
, outer_width
;
11473 inner_width
= TYPE_PRECISION (TREE_TYPE (tem
));
11474 outer_width
= TYPE_PRECISION (TREE_TYPE (arg1
));
11475 if (outer_width
> TYPE_PRECISION (type
))
11476 outer_width
= TYPE_PRECISION (type
);
11478 wide_int mask
= wi::shifted_mask
11479 (inner_width
, outer_width
- inner_width
, false,
11480 TYPE_PRECISION (TREE_TYPE (arg1
)));
11482 wide_int common
= mask
& arg1
;
11483 if (common
== mask
)
11485 tem_type
= signed_type_for (TREE_TYPE (tem
));
11486 tem
= fold_convert_loc (loc
, tem_type
, tem
);
11488 else if (common
== 0)
11490 tem_type
= unsigned_type_for (TREE_TYPE (tem
));
11491 tem
= fold_convert_loc (loc
, tem_type
, tem
);
11499 fold_convert_loc (loc
, type
,
11500 fold_build2_loc (loc
, BIT_AND_EXPR
,
11501 TREE_TYPE (tem
), tem
,
11502 fold_convert_loc (loc
,
11507 /* (A >> N) & 1 ? (1 << N) : 0 is simply A & (1 << N). A & 1 was
11508 already handled above. */
11509 if (TREE_CODE (arg0
) == BIT_AND_EXPR
11510 && integer_onep (TREE_OPERAND (arg0
, 1))
11511 && integer_zerop (op2
)
11512 && integer_pow2p (arg1
))
11514 tree tem
= TREE_OPERAND (arg0
, 0);
11516 if (TREE_CODE (tem
) == RSHIFT_EXPR
11517 && tree_fits_uhwi_p (TREE_OPERAND (tem
, 1))
11518 && (unsigned HOST_WIDE_INT
) tree_log2 (arg1
) ==
11519 tree_to_uhwi (TREE_OPERAND (tem
, 1)))
11520 return fold_build2_loc (loc
, BIT_AND_EXPR
, type
,
11521 TREE_OPERAND (tem
, 0), arg1
);
11524 /* A & N ? N : 0 is simply A & N if N is a power of two. This
11525 is probably obsolete because the first operand should be a
11526 truth value (that's why we have the two cases above), but let's
11527 leave it in until we can confirm this for all front-ends. */
11528 if (integer_zerop (op2
)
11529 && TREE_CODE (arg0
) == NE_EXPR
11530 && integer_zerop (TREE_OPERAND (arg0
, 1))
11531 && integer_pow2p (arg1
)
11532 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == BIT_AND_EXPR
11533 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0
, 0), 1),
11534 arg1
, OEP_ONLY_CONST
))
11535 return pedantic_non_lvalue_loc (loc
,
11536 fold_convert_loc (loc
, type
,
11537 TREE_OPERAND (arg0
, 0)));
11539 /* Disable the transformations below for vectors, since
11540 fold_binary_op_with_conditional_arg may undo them immediately,
11541 yielding an infinite loop. */
11542 if (code
== VEC_COND_EXPR
)
11545 /* Convert A ? B : 0 into A && B if A and B are truth values. */
11546 if (integer_zerop (op2
)
11547 && truth_value_p (TREE_CODE (arg0
))
11548 && truth_value_p (TREE_CODE (arg1
))
11549 && (code
== VEC_COND_EXPR
|| !VECTOR_TYPE_P (type
)))
11550 return fold_build2_loc (loc
, code
== VEC_COND_EXPR
? BIT_AND_EXPR
11551 : TRUTH_ANDIF_EXPR
,
11552 type
, fold_convert_loc (loc
, type
, arg0
), arg1
);
11554 /* Convert A ? B : 1 into !A || B if A and B are truth values. */
11555 if (code
== VEC_COND_EXPR
? integer_all_onesp (op2
) : integer_onep (op2
)
11556 && truth_value_p (TREE_CODE (arg0
))
11557 && truth_value_p (TREE_CODE (arg1
))
11558 && (code
== VEC_COND_EXPR
|| !VECTOR_TYPE_P (type
)))
11560 location_t loc0
= expr_location_or (arg0
, loc
);
11561 /* Only perform transformation if ARG0 is easily inverted. */
11562 tem
= fold_invert_truthvalue (loc0
, arg0
);
11564 return fold_build2_loc (loc
, code
== VEC_COND_EXPR
11567 type
, fold_convert_loc (loc
, type
, tem
),
11571 /* Convert A ? 0 : B into !A && B if A and B are truth values. */
11572 if (integer_zerop (arg1
)
11573 && truth_value_p (TREE_CODE (arg0
))
11574 && truth_value_p (TREE_CODE (op2
))
11575 && (code
== VEC_COND_EXPR
|| !VECTOR_TYPE_P (type
)))
11577 location_t loc0
= expr_location_or (arg0
, loc
);
11578 /* Only perform transformation if ARG0 is easily inverted. */
11579 tem
= fold_invert_truthvalue (loc0
, arg0
);
11581 return fold_build2_loc (loc
, code
== VEC_COND_EXPR
11582 ? BIT_AND_EXPR
: TRUTH_ANDIF_EXPR
,
11583 type
, fold_convert_loc (loc
, type
, tem
),
11587 /* Convert A ? 1 : B into A || B if A and B are truth values. */
11588 if (code
== VEC_COND_EXPR
? integer_all_onesp (arg1
) : integer_onep (arg1
)
11589 && truth_value_p (TREE_CODE (arg0
))
11590 && truth_value_p (TREE_CODE (op2
))
11591 && (code
== VEC_COND_EXPR
|| !VECTOR_TYPE_P (type
)))
11592 return fold_build2_loc (loc
, code
== VEC_COND_EXPR
11593 ? BIT_IOR_EXPR
: TRUTH_ORIF_EXPR
,
11594 type
, fold_convert_loc (loc
, type
, arg0
), op2
);
11599 /* CALL_EXPRs used to be ternary exprs. Catch any mistaken uses
11600 of fold_ternary on them. */
11601 gcc_unreachable ();
11603 case BIT_FIELD_REF
:
11604 if (TREE_CODE (arg0
) == VECTOR_CST
11605 && (type
== TREE_TYPE (TREE_TYPE (arg0
))
11606 || (TREE_CODE (type
) == VECTOR_TYPE
11607 && TREE_TYPE (type
) == TREE_TYPE (TREE_TYPE (arg0
)))))
11609 tree eltype
= TREE_TYPE (TREE_TYPE (arg0
));
11610 unsigned HOST_WIDE_INT width
= tree_to_uhwi (TYPE_SIZE (eltype
));
11611 unsigned HOST_WIDE_INT n
= tree_to_uhwi (arg1
);
11612 unsigned HOST_WIDE_INT idx
= tree_to_uhwi (op2
);
11615 && (idx
% width
) == 0
11616 && (n
% width
) == 0
11617 && ((idx
+ n
) / width
) <= TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0
)))
11622 if (TREE_CODE (arg0
) == VECTOR_CST
)
11625 return VECTOR_CST_ELT (arg0
, idx
);
11627 tree
*vals
= XALLOCAVEC (tree
, n
);
11628 for (unsigned i
= 0; i
< n
; ++i
)
11629 vals
[i
] = VECTOR_CST_ELT (arg0
, idx
+ i
);
11630 return build_vector (type
, vals
);
11635 /* On constants we can use native encode/interpret to constant
11636 fold (nearly) all BIT_FIELD_REFs. */
11637 if (CONSTANT_CLASS_P (arg0
)
11638 && can_native_interpret_type_p (type
)
11639 && BITS_PER_UNIT
== 8)
11641 unsigned HOST_WIDE_INT bitpos
= tree_to_uhwi (op2
);
11642 unsigned HOST_WIDE_INT bitsize
= tree_to_uhwi (op1
);
11643 /* Limit us to a reasonable amount of work. To relax the
11644 other limitations we need bit-shifting of the buffer
11645 and rounding up the size. */
11646 if (bitpos
% BITS_PER_UNIT
== 0
11647 && bitsize
% BITS_PER_UNIT
== 0
11648 && bitsize
<= MAX_BITSIZE_MODE_ANY_MODE
)
11650 unsigned char b
[MAX_BITSIZE_MODE_ANY_MODE
/ BITS_PER_UNIT
];
11651 unsigned HOST_WIDE_INT len
11652 = native_encode_expr (arg0
, b
, bitsize
/ BITS_PER_UNIT
,
11653 bitpos
/ BITS_PER_UNIT
);
11655 && len
* BITS_PER_UNIT
>= bitsize
)
11657 tree v
= native_interpret_expr (type
, b
,
11658 bitsize
/ BITS_PER_UNIT
);
11668 /* For integers we can decompose the FMA if possible. */
11669 if (TREE_CODE (arg0
) == INTEGER_CST
11670 && TREE_CODE (arg1
) == INTEGER_CST
)
11671 return fold_build2_loc (loc
, PLUS_EXPR
, type
,
11672 const_binop (MULT_EXPR
, arg0
, arg1
), arg2
);
11673 if (integer_zerop (arg2
))
11674 return fold_build2_loc (loc
, MULT_EXPR
, type
, arg0
, arg1
);
11676 return fold_fma (loc
, type
, arg0
, arg1
, arg2
);
11678 case VEC_PERM_EXPR
:
11679 if (TREE_CODE (arg2
) == VECTOR_CST
)
11681 unsigned int nelts
= TYPE_VECTOR_SUBPARTS (type
), i
, mask
, mask2
;
11682 unsigned char *sel
= XALLOCAVEC (unsigned char, 2 * nelts
);
11683 unsigned char *sel2
= sel
+ nelts
;
11684 bool need_mask_canon
= false;
11685 bool need_mask_canon2
= false;
11686 bool all_in_vec0
= true;
11687 bool all_in_vec1
= true;
11688 bool maybe_identity
= true;
11689 bool single_arg
= (op0
== op1
);
11690 bool changed
= false;
11692 mask2
= 2 * nelts
- 1;
11693 mask
= single_arg
? (nelts
- 1) : mask2
;
11694 gcc_assert (nelts
== VECTOR_CST_NELTS (arg2
));
11695 for (i
= 0; i
< nelts
; i
++)
11697 tree val
= VECTOR_CST_ELT (arg2
, i
);
11698 if (TREE_CODE (val
) != INTEGER_CST
)
11701 /* Make sure that the perm value is in an acceptable
11704 need_mask_canon
|= wi::gtu_p (t
, mask
);
11705 need_mask_canon2
|= wi::gtu_p (t
, mask2
);
11706 sel
[i
] = t
.to_uhwi () & mask
;
11707 sel2
[i
] = t
.to_uhwi () & mask2
;
11709 if (sel
[i
] < nelts
)
11710 all_in_vec1
= false;
11712 all_in_vec0
= false;
11714 if ((sel
[i
] & (nelts
-1)) != i
)
11715 maybe_identity
= false;
11718 if (maybe_identity
)
11728 else if (all_in_vec1
)
11731 for (i
= 0; i
< nelts
; i
++)
11733 need_mask_canon
= true;
11736 if ((TREE_CODE (op0
) == VECTOR_CST
11737 || TREE_CODE (op0
) == CONSTRUCTOR
)
11738 && (TREE_CODE (op1
) == VECTOR_CST
11739 || TREE_CODE (op1
) == CONSTRUCTOR
))
11741 tree t
= fold_vec_perm (type
, op0
, op1
, sel
);
11742 if (t
!= NULL_TREE
)
11746 if (op0
== op1
&& !single_arg
)
11749 /* Some targets are deficient and fail to expand a single
11750 argument permutation while still allowing an equivalent
11751 2-argument version. */
11752 if (need_mask_canon
&& arg2
== op2
11753 && !can_vec_perm_p (TYPE_MODE (type
), false, sel
)
11754 && can_vec_perm_p (TYPE_MODE (type
), false, sel2
))
11756 need_mask_canon
= need_mask_canon2
;
11760 if (need_mask_canon
&& arg2
== op2
)
11762 tree
*tsel
= XALLOCAVEC (tree
, nelts
);
11763 tree eltype
= TREE_TYPE (TREE_TYPE (arg2
));
11764 for (i
= 0; i
< nelts
; i
++)
11765 tsel
[i
] = build_int_cst (eltype
, sel
[i
]);
11766 op2
= build_vector (TREE_TYPE (arg2
), tsel
);
11771 return build3_loc (loc
, VEC_PERM_EXPR
, type
, op0
, op1
, op2
);
11775 case BIT_INSERT_EXPR
:
11776 /* Perform (partial) constant folding of BIT_INSERT_EXPR. */
11777 if (TREE_CODE (arg0
) == INTEGER_CST
11778 && TREE_CODE (arg1
) == INTEGER_CST
)
11780 unsigned HOST_WIDE_INT bitpos
= tree_to_uhwi (op2
);
11781 unsigned bitsize
= TYPE_PRECISION (TREE_TYPE (arg1
));
11782 wide_int tem
= wi::bit_and (arg0
,
11783 wi::shifted_mask (bitpos
, bitsize
, true,
11784 TYPE_PRECISION (type
)));
11786 = wi::lshift (wi::zext (wi::to_wide (arg1
, TYPE_PRECISION (type
)),
11788 return wide_int_to_tree (type
, wi::bit_or (tem
, tem2
));
11790 else if (TREE_CODE (arg0
) == VECTOR_CST
11791 && CONSTANT_CLASS_P (arg1
)
11792 && types_compatible_p (TREE_TYPE (TREE_TYPE (arg0
)),
11795 unsigned HOST_WIDE_INT bitpos
= tree_to_uhwi (op2
);
11796 unsigned HOST_WIDE_INT elsize
11797 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (arg1
)));
11798 if (bitpos
% elsize
== 0)
11800 unsigned k
= bitpos
/ elsize
;
11801 if (operand_equal_p (VECTOR_CST_ELT (arg0
, k
), arg1
, 0))
11805 tree
*elts
= XALLOCAVEC (tree
, TYPE_VECTOR_SUBPARTS (type
));
11806 memcpy (elts
, VECTOR_CST_ELTS (arg0
),
11807 sizeof (tree
) * TYPE_VECTOR_SUBPARTS (type
));
11809 return build_vector (type
, elts
);
11817 } /* switch (code) */
11820 /* Gets the element ACCESS_INDEX from CTOR, which must be a CONSTRUCTOR
11821 of an array (or vector). */
11824 get_array_ctor_element_at_index (tree ctor
, offset_int access_index
)
11826 tree index_type
= NULL_TREE
;
11827 offset_int low_bound
= 0;
11829 if (TREE_CODE (TREE_TYPE (ctor
)) == ARRAY_TYPE
)
11831 tree domain_type
= TYPE_DOMAIN (TREE_TYPE (ctor
));
11832 if (domain_type
&& TYPE_MIN_VALUE (domain_type
))
11834 /* Static constructors for variably sized objects makes no sense. */
11835 gcc_assert (TREE_CODE (TYPE_MIN_VALUE (domain_type
)) == INTEGER_CST
);
11836 index_type
= TREE_TYPE (TYPE_MIN_VALUE (domain_type
));
11837 low_bound
= wi::to_offset (TYPE_MIN_VALUE (domain_type
));
11842 access_index
= wi::ext (access_index
, TYPE_PRECISION (index_type
),
11843 TYPE_SIGN (index_type
));
11845 offset_int index
= low_bound
- 1;
11847 index
= wi::ext (index
, TYPE_PRECISION (index_type
),
11848 TYPE_SIGN (index_type
));
11850 offset_int max_index
;
11851 unsigned HOST_WIDE_INT cnt
;
11854 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor
), cnt
, cfield
, cval
)
11856 /* Array constructor might explicitly set index, or specify a range,
11857 or leave index NULL meaning that it is next index after previous
11861 if (TREE_CODE (cfield
) == INTEGER_CST
)
11862 max_index
= index
= wi::to_offset (cfield
);
11865 gcc_assert (TREE_CODE (cfield
) == RANGE_EXPR
);
11866 index
= wi::to_offset (TREE_OPERAND (cfield
, 0));
11867 max_index
= wi::to_offset (TREE_OPERAND (cfield
, 1));
11874 index
= wi::ext (index
, TYPE_PRECISION (index_type
),
11875 TYPE_SIGN (index_type
));
11879 /* Do we have match? */
11880 if (wi::cmpu (access_index
, index
) >= 0
11881 && wi::cmpu (access_index
, max_index
) <= 0)
11887 /* Perform constant folding and related simplification of EXPR.
11888 The related simplifications include x*1 => x, x*0 => 0, etc.,
11889 and application of the associative law.
11890 NOP_EXPR conversions may be removed freely (as long as we
11891 are careful not to change the type of the overall expression).
11892 We cannot simplify through a CONVERT_EXPR, FIX_EXPR or FLOAT_EXPR,
11893 but we can constant-fold them if they have constant operands. */
11895 #ifdef ENABLE_FOLD_CHECKING
11896 # define fold(x) fold_1 (x)
11897 static tree
fold_1 (tree
);
11903 const tree t
= expr
;
11904 enum tree_code code
= TREE_CODE (t
);
11905 enum tree_code_class kind
= TREE_CODE_CLASS (code
);
11907 location_t loc
= EXPR_LOCATION (expr
);
11909 /* Return right away if a constant. */
11910 if (kind
== tcc_constant
)
11913 /* CALL_EXPR-like objects with variable numbers of operands are
11914 treated specially. */
11915 if (kind
== tcc_vl_exp
)
11917 if (code
== CALL_EXPR
)
11919 tem
= fold_call_expr (loc
, expr
, false);
11920 return tem
? tem
: expr
;
11925 if (IS_EXPR_CODE_CLASS (kind
))
11927 tree type
= TREE_TYPE (t
);
11928 tree op0
, op1
, op2
;
11930 switch (TREE_CODE_LENGTH (code
))
11933 op0
= TREE_OPERAND (t
, 0);
11934 tem
= fold_unary_loc (loc
, code
, type
, op0
);
11935 return tem
? tem
: expr
;
11937 op0
= TREE_OPERAND (t
, 0);
11938 op1
= TREE_OPERAND (t
, 1);
11939 tem
= fold_binary_loc (loc
, code
, type
, op0
, op1
);
11940 return tem
? tem
: expr
;
11942 op0
= TREE_OPERAND (t
, 0);
11943 op1
= TREE_OPERAND (t
, 1);
11944 op2
= TREE_OPERAND (t
, 2);
11945 tem
= fold_ternary_loc (loc
, code
, type
, op0
, op1
, op2
);
11946 return tem
? tem
: expr
;
11956 tree op0
= TREE_OPERAND (t
, 0);
11957 tree op1
= TREE_OPERAND (t
, 1);
11959 if (TREE_CODE (op1
) == INTEGER_CST
11960 && TREE_CODE (op0
) == CONSTRUCTOR
11961 && ! type_contains_placeholder_p (TREE_TYPE (op0
)))
11963 tree val
= get_array_ctor_element_at_index (op0
,
11964 wi::to_offset (op1
));
11972 /* Return a VECTOR_CST if possible. */
11975 tree type
= TREE_TYPE (t
);
11976 if (TREE_CODE (type
) != VECTOR_TYPE
)
11981 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (t
), i
, val
)
11982 if (! CONSTANT_CLASS_P (val
))
11985 return build_vector_from_ctor (type
, CONSTRUCTOR_ELTS (t
));
11989 return fold (DECL_INITIAL (t
));
11993 } /* switch (code) */
11996 #ifdef ENABLE_FOLD_CHECKING
11999 static void fold_checksum_tree (const_tree
, struct md5_ctx
*,
12000 hash_table
<nofree_ptr_hash
<const tree_node
> > *);
12001 static void fold_check_failed (const_tree
, const_tree
);
12002 void print_fold_checksum (const_tree
);
12004 /* When --enable-checking=fold, compute a digest of expr before
12005 and after actual fold call to see if fold did not accidentally
12006 change original expr. */
12012 struct md5_ctx ctx
;
12013 unsigned char checksum_before
[16], checksum_after
[16];
12014 hash_table
<nofree_ptr_hash
<const tree_node
> > ht (32);
12016 md5_init_ctx (&ctx
);
12017 fold_checksum_tree (expr
, &ctx
, &ht
);
12018 md5_finish_ctx (&ctx
, checksum_before
);
12021 ret
= fold_1 (expr
);
12023 md5_init_ctx (&ctx
);
12024 fold_checksum_tree (expr
, &ctx
, &ht
);
12025 md5_finish_ctx (&ctx
, checksum_after
);
12027 if (memcmp (checksum_before
, checksum_after
, 16))
12028 fold_check_failed (expr
, ret
);
12034 print_fold_checksum (const_tree expr
)
12036 struct md5_ctx ctx
;
12037 unsigned char checksum
[16], cnt
;
12038 hash_table
<nofree_ptr_hash
<const tree_node
> > ht (32);
12040 md5_init_ctx (&ctx
);
12041 fold_checksum_tree (expr
, &ctx
, &ht
);
12042 md5_finish_ctx (&ctx
, checksum
);
12043 for (cnt
= 0; cnt
< 16; ++cnt
)
12044 fprintf (stderr
, "%02x", checksum
[cnt
]);
12045 putc ('\n', stderr
);
12049 fold_check_failed (const_tree expr ATTRIBUTE_UNUSED
, const_tree ret ATTRIBUTE_UNUSED
)
12051 internal_error ("fold check: original tree changed by fold");
12055 fold_checksum_tree (const_tree expr
, struct md5_ctx
*ctx
,
12056 hash_table
<nofree_ptr_hash
<const tree_node
> > *ht
)
12058 const tree_node
**slot
;
12059 enum tree_code code
;
12060 union tree_node buf
;
12066 slot
= ht
->find_slot (expr
, INSERT
);
12070 code
= TREE_CODE (expr
);
12071 if (TREE_CODE_CLASS (code
) == tcc_declaration
12072 && HAS_DECL_ASSEMBLER_NAME_P (expr
))
12074 /* Allow DECL_ASSEMBLER_NAME and symtab_node to be modified. */
12075 memcpy ((char *) &buf
, expr
, tree_size (expr
));
12076 SET_DECL_ASSEMBLER_NAME ((tree
)&buf
, NULL
);
12077 buf
.decl_with_vis
.symtab_node
= NULL
;
12078 expr
= (tree
) &buf
;
12080 else if (TREE_CODE_CLASS (code
) == tcc_type
12081 && (TYPE_POINTER_TO (expr
)
12082 || TYPE_REFERENCE_TO (expr
)
12083 || TYPE_CACHED_VALUES_P (expr
)
12084 || TYPE_CONTAINS_PLACEHOLDER_INTERNAL (expr
)
12085 || TYPE_NEXT_VARIANT (expr
)
12086 || TYPE_ALIAS_SET_KNOWN_P (expr
)))
12088 /* Allow these fields to be modified. */
12090 memcpy ((char *) &buf
, expr
, tree_size (expr
));
12091 expr
= tmp
= (tree
) &buf
;
12092 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (tmp
) = 0;
12093 TYPE_POINTER_TO (tmp
) = NULL
;
12094 TYPE_REFERENCE_TO (tmp
) = NULL
;
12095 TYPE_NEXT_VARIANT (tmp
) = NULL
;
12096 TYPE_ALIAS_SET (tmp
) = -1;
12097 if (TYPE_CACHED_VALUES_P (tmp
))
12099 TYPE_CACHED_VALUES_P (tmp
) = 0;
12100 TYPE_CACHED_VALUES (tmp
) = NULL
;
12103 md5_process_bytes (expr
, tree_size (expr
), ctx
);
12104 if (CODE_CONTAINS_STRUCT (code
, TS_TYPED
))
12105 fold_checksum_tree (TREE_TYPE (expr
), ctx
, ht
);
12106 if (TREE_CODE_CLASS (code
) != tcc_type
12107 && TREE_CODE_CLASS (code
) != tcc_declaration
12108 && code
!= TREE_LIST
12109 && code
!= SSA_NAME
12110 && CODE_CONTAINS_STRUCT (code
, TS_COMMON
))
12111 fold_checksum_tree (TREE_CHAIN (expr
), ctx
, ht
);
12112 switch (TREE_CODE_CLASS (code
))
12118 md5_process_bytes (TREE_STRING_POINTER (expr
),
12119 TREE_STRING_LENGTH (expr
), ctx
);
12122 fold_checksum_tree (TREE_REALPART (expr
), ctx
, ht
);
12123 fold_checksum_tree (TREE_IMAGPART (expr
), ctx
, ht
);
12126 for (i
= 0; i
< (int) VECTOR_CST_NELTS (expr
); ++i
)
12127 fold_checksum_tree (VECTOR_CST_ELT (expr
, i
), ctx
, ht
);
12133 case tcc_exceptional
:
12137 fold_checksum_tree (TREE_PURPOSE (expr
), ctx
, ht
);
12138 fold_checksum_tree (TREE_VALUE (expr
), ctx
, ht
);
12139 expr
= TREE_CHAIN (expr
);
12140 goto recursive_label
;
12143 for (i
= 0; i
< TREE_VEC_LENGTH (expr
); ++i
)
12144 fold_checksum_tree (TREE_VEC_ELT (expr
, i
), ctx
, ht
);
12150 case tcc_expression
:
12151 case tcc_reference
:
12152 case tcc_comparison
:
12155 case tcc_statement
:
12157 len
= TREE_OPERAND_LENGTH (expr
);
12158 for (i
= 0; i
< len
; ++i
)
12159 fold_checksum_tree (TREE_OPERAND (expr
, i
), ctx
, ht
);
12161 case tcc_declaration
:
12162 fold_checksum_tree (DECL_NAME (expr
), ctx
, ht
);
12163 fold_checksum_tree (DECL_CONTEXT (expr
), ctx
, ht
);
12164 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr
), TS_DECL_COMMON
))
12166 fold_checksum_tree (DECL_SIZE (expr
), ctx
, ht
);
12167 fold_checksum_tree (DECL_SIZE_UNIT (expr
), ctx
, ht
);
12168 fold_checksum_tree (DECL_INITIAL (expr
), ctx
, ht
);
12169 fold_checksum_tree (DECL_ABSTRACT_ORIGIN (expr
), ctx
, ht
);
12170 fold_checksum_tree (DECL_ATTRIBUTES (expr
), ctx
, ht
);
12173 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr
), TS_DECL_NON_COMMON
))
12175 if (TREE_CODE (expr
) == FUNCTION_DECL
)
12177 fold_checksum_tree (DECL_VINDEX (expr
), ctx
, ht
);
12178 fold_checksum_tree (DECL_ARGUMENTS (expr
), ctx
, ht
);
12180 fold_checksum_tree (DECL_RESULT_FLD (expr
), ctx
, ht
);
12184 if (TREE_CODE (expr
) == ENUMERAL_TYPE
)
12185 fold_checksum_tree (TYPE_VALUES (expr
), ctx
, ht
);
12186 fold_checksum_tree (TYPE_SIZE (expr
), ctx
, ht
);
12187 fold_checksum_tree (TYPE_SIZE_UNIT (expr
), ctx
, ht
);
12188 fold_checksum_tree (TYPE_ATTRIBUTES (expr
), ctx
, ht
);
12189 fold_checksum_tree (TYPE_NAME (expr
), ctx
, ht
);
12190 if (INTEGRAL_TYPE_P (expr
)
12191 || SCALAR_FLOAT_TYPE_P (expr
))
12193 fold_checksum_tree (TYPE_MIN_VALUE (expr
), ctx
, ht
);
12194 fold_checksum_tree (TYPE_MAX_VALUE (expr
), ctx
, ht
);
12196 fold_checksum_tree (TYPE_MAIN_VARIANT (expr
), ctx
, ht
);
12197 if (TREE_CODE (expr
) == RECORD_TYPE
12198 || TREE_CODE (expr
) == UNION_TYPE
12199 || TREE_CODE (expr
) == QUAL_UNION_TYPE
)
12200 fold_checksum_tree (TYPE_BINFO (expr
), ctx
, ht
);
12201 fold_checksum_tree (TYPE_CONTEXT (expr
), ctx
, ht
);
12208 /* Helper function for outputting the checksum of a tree T. When
12209 debugging with gdb, you can "define mynext" to be "next" followed
12210 by "call debug_fold_checksum (op0)", then just trace down till the
12213 DEBUG_FUNCTION
void
12214 debug_fold_checksum (const_tree t
)
12217 unsigned char checksum
[16];
12218 struct md5_ctx ctx
;
12219 hash_table
<nofree_ptr_hash
<const tree_node
> > ht (32);
12221 md5_init_ctx (&ctx
);
12222 fold_checksum_tree (t
, &ctx
, &ht
);
12223 md5_finish_ctx (&ctx
, checksum
);
12226 for (i
= 0; i
< 16; i
++)
12227 fprintf (stderr
, "%d ", checksum
[i
]);
12229 fprintf (stderr
, "\n");
12234 /* Fold a unary tree expression with code CODE of type TYPE with an
12235 operand OP0. LOC is the location of the resulting expression.
12236 Return a folded expression if successful. Otherwise, return a tree
12237 expression with code CODE of type TYPE with an operand OP0. */
12240 fold_build1_stat_loc (location_t loc
,
12241 enum tree_code code
, tree type
, tree op0 MEM_STAT_DECL
)
12244 #ifdef ENABLE_FOLD_CHECKING
12245 unsigned char checksum_before
[16], checksum_after
[16];
12246 struct md5_ctx ctx
;
12247 hash_table
<nofree_ptr_hash
<const tree_node
> > ht (32);
12249 md5_init_ctx (&ctx
);
12250 fold_checksum_tree (op0
, &ctx
, &ht
);
12251 md5_finish_ctx (&ctx
, checksum_before
);
12255 tem
= fold_unary_loc (loc
, code
, type
, op0
);
12257 tem
= build1_stat_loc (loc
, code
, type
, op0 PASS_MEM_STAT
);
12259 #ifdef ENABLE_FOLD_CHECKING
12260 md5_init_ctx (&ctx
);
12261 fold_checksum_tree (op0
, &ctx
, &ht
);
12262 md5_finish_ctx (&ctx
, checksum_after
);
12264 if (memcmp (checksum_before
, checksum_after
, 16))
12265 fold_check_failed (op0
, tem
);
12270 /* Fold a binary tree expression with code CODE of type TYPE with
12271 operands OP0 and OP1. LOC is the location of the resulting
12272 expression. Return a folded expression if successful. Otherwise,
12273 return a tree expression with code CODE of type TYPE with operands
12277 fold_build2_stat_loc (location_t loc
,
12278 enum tree_code code
, tree type
, tree op0
, tree op1
12282 #ifdef ENABLE_FOLD_CHECKING
12283 unsigned char checksum_before_op0
[16],
12284 checksum_before_op1
[16],
12285 checksum_after_op0
[16],
12286 checksum_after_op1
[16];
12287 struct md5_ctx ctx
;
12288 hash_table
<nofree_ptr_hash
<const tree_node
> > ht (32);
12290 md5_init_ctx (&ctx
);
12291 fold_checksum_tree (op0
, &ctx
, &ht
);
12292 md5_finish_ctx (&ctx
, checksum_before_op0
);
12295 md5_init_ctx (&ctx
);
12296 fold_checksum_tree (op1
, &ctx
, &ht
);
12297 md5_finish_ctx (&ctx
, checksum_before_op1
);
12301 tem
= fold_binary_loc (loc
, code
, type
, op0
, op1
);
12303 tem
= build2_stat_loc (loc
, code
, type
, op0
, op1 PASS_MEM_STAT
);
12305 #ifdef ENABLE_FOLD_CHECKING
12306 md5_init_ctx (&ctx
);
12307 fold_checksum_tree (op0
, &ctx
, &ht
);
12308 md5_finish_ctx (&ctx
, checksum_after_op0
);
12311 if (memcmp (checksum_before_op0
, checksum_after_op0
, 16))
12312 fold_check_failed (op0
, tem
);
12314 md5_init_ctx (&ctx
);
12315 fold_checksum_tree (op1
, &ctx
, &ht
);
12316 md5_finish_ctx (&ctx
, checksum_after_op1
);
12318 if (memcmp (checksum_before_op1
, checksum_after_op1
, 16))
12319 fold_check_failed (op1
, tem
);
12324 /* Fold a ternary tree expression with code CODE of type TYPE with
12325 operands OP0, OP1, and OP2. Return a folded expression if
12326 successful. Otherwise, return a tree expression with code CODE of
12327 type TYPE with operands OP0, OP1, and OP2. */
12330 fold_build3_stat_loc (location_t loc
, enum tree_code code
, tree type
,
12331 tree op0
, tree op1
, tree op2 MEM_STAT_DECL
)
12334 #ifdef ENABLE_FOLD_CHECKING
12335 unsigned char checksum_before_op0
[16],
12336 checksum_before_op1
[16],
12337 checksum_before_op2
[16],
12338 checksum_after_op0
[16],
12339 checksum_after_op1
[16],
12340 checksum_after_op2
[16];
12341 struct md5_ctx ctx
;
12342 hash_table
<nofree_ptr_hash
<const tree_node
> > ht (32);
12344 md5_init_ctx (&ctx
);
12345 fold_checksum_tree (op0
, &ctx
, &ht
);
12346 md5_finish_ctx (&ctx
, checksum_before_op0
);
12349 md5_init_ctx (&ctx
);
12350 fold_checksum_tree (op1
, &ctx
, &ht
);
12351 md5_finish_ctx (&ctx
, checksum_before_op1
);
12354 md5_init_ctx (&ctx
);
12355 fold_checksum_tree (op2
, &ctx
, &ht
);
12356 md5_finish_ctx (&ctx
, checksum_before_op2
);
12360 gcc_assert (TREE_CODE_CLASS (code
) != tcc_vl_exp
);
12361 tem
= fold_ternary_loc (loc
, code
, type
, op0
, op1
, op2
);
12363 tem
= build3_stat_loc (loc
, code
, type
, op0
, op1
, op2 PASS_MEM_STAT
);
12365 #ifdef ENABLE_FOLD_CHECKING
12366 md5_init_ctx (&ctx
);
12367 fold_checksum_tree (op0
, &ctx
, &ht
);
12368 md5_finish_ctx (&ctx
, checksum_after_op0
);
12371 if (memcmp (checksum_before_op0
, checksum_after_op0
, 16))
12372 fold_check_failed (op0
, tem
);
12374 md5_init_ctx (&ctx
);
12375 fold_checksum_tree (op1
, &ctx
, &ht
);
12376 md5_finish_ctx (&ctx
, checksum_after_op1
);
12379 if (memcmp (checksum_before_op1
, checksum_after_op1
, 16))
12380 fold_check_failed (op1
, tem
);
12382 md5_init_ctx (&ctx
);
12383 fold_checksum_tree (op2
, &ctx
, &ht
);
12384 md5_finish_ctx (&ctx
, checksum_after_op2
);
12386 if (memcmp (checksum_before_op2
, checksum_after_op2
, 16))
12387 fold_check_failed (op2
, tem
);
12392 /* Fold a CALL_EXPR expression of type TYPE with operands FN and NARGS
12393 arguments in ARGARRAY, and a null static chain.
12394 Return a folded expression if successful. Otherwise, return a CALL_EXPR
12395 of type TYPE from the given operands as constructed by build_call_array. */
12398 fold_build_call_array_loc (location_t loc
, tree type
, tree fn
,
12399 int nargs
, tree
*argarray
)
12402 #ifdef ENABLE_FOLD_CHECKING
12403 unsigned char checksum_before_fn
[16],
12404 checksum_before_arglist
[16],
12405 checksum_after_fn
[16],
12406 checksum_after_arglist
[16];
12407 struct md5_ctx ctx
;
12408 hash_table
<nofree_ptr_hash
<const tree_node
> > ht (32);
12411 md5_init_ctx (&ctx
);
12412 fold_checksum_tree (fn
, &ctx
, &ht
);
12413 md5_finish_ctx (&ctx
, checksum_before_fn
);
12416 md5_init_ctx (&ctx
);
12417 for (i
= 0; i
< nargs
; i
++)
12418 fold_checksum_tree (argarray
[i
], &ctx
, &ht
);
12419 md5_finish_ctx (&ctx
, checksum_before_arglist
);
12423 tem
= fold_builtin_call_array (loc
, type
, fn
, nargs
, argarray
);
12425 tem
= build_call_array_loc (loc
, type
, fn
, nargs
, argarray
);
12427 #ifdef ENABLE_FOLD_CHECKING
12428 md5_init_ctx (&ctx
);
12429 fold_checksum_tree (fn
, &ctx
, &ht
);
12430 md5_finish_ctx (&ctx
, checksum_after_fn
);
12433 if (memcmp (checksum_before_fn
, checksum_after_fn
, 16))
12434 fold_check_failed (fn
, tem
);
12436 md5_init_ctx (&ctx
);
12437 for (i
= 0; i
< nargs
; i
++)
12438 fold_checksum_tree (argarray
[i
], &ctx
, &ht
);
12439 md5_finish_ctx (&ctx
, checksum_after_arglist
);
12441 if (memcmp (checksum_before_arglist
, checksum_after_arglist
, 16))
12442 fold_check_failed (NULL_TREE
, tem
);
12447 /* Perform constant folding and related simplification of initializer
12448 expression EXPR. These behave identically to "fold_buildN" but ignore
12449 potential run-time traps and exceptions that fold must preserve. */
12451 #define START_FOLD_INIT \
12452 int saved_signaling_nans = flag_signaling_nans;\
12453 int saved_trapping_math = flag_trapping_math;\
12454 int saved_rounding_math = flag_rounding_math;\
12455 int saved_trapv = flag_trapv;\
12456 int saved_folding_initializer = folding_initializer;\
12457 flag_signaling_nans = 0;\
12458 flag_trapping_math = 0;\
12459 flag_rounding_math = 0;\
12461 folding_initializer = 1;
12463 #define END_FOLD_INIT \
12464 flag_signaling_nans = saved_signaling_nans;\
12465 flag_trapping_math = saved_trapping_math;\
12466 flag_rounding_math = saved_rounding_math;\
12467 flag_trapv = saved_trapv;\
12468 folding_initializer = saved_folding_initializer;
12471 fold_build1_initializer_loc (location_t loc
, enum tree_code code
,
12472 tree type
, tree op
)
12477 result
= fold_build1_loc (loc
, code
, type
, op
);
12484 fold_build2_initializer_loc (location_t loc
, enum tree_code code
,
12485 tree type
, tree op0
, tree op1
)
12490 result
= fold_build2_loc (loc
, code
, type
, op0
, op1
);
12497 fold_build_call_array_initializer_loc (location_t loc
, tree type
, tree fn
,
12498 int nargs
, tree
*argarray
)
12503 result
= fold_build_call_array_loc (loc
, type
, fn
, nargs
, argarray
);
12509 #undef START_FOLD_INIT
12510 #undef END_FOLD_INIT
12512 /* Determine if first argument is a multiple of second argument. Return 0 if
12513 it is not, or we cannot easily determined it to be.
12515 An example of the sort of thing we care about (at this point; this routine
12516 could surely be made more general, and expanded to do what the *_DIV_EXPR's
12517 fold cases do now) is discovering that
12519 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
12525 when we know that the two SAVE_EXPR (J * 8) nodes are the same node.
12527 This code also handles discovering that
12529 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
12531 is a multiple of 8 so we don't have to worry about dealing with a
12532 possible remainder.
12534 Note that we *look* inside a SAVE_EXPR only to determine how it was
12535 calculated; it is not safe for fold to do much of anything else with the
12536 internals of a SAVE_EXPR, since it cannot know when it will be evaluated
12537 at run time. For example, the latter example above *cannot* be implemented
12538 as SAVE_EXPR (I) * J or any variant thereof, since the value of J at
12539 evaluation time of the original SAVE_EXPR is not necessarily the same at
12540 the time the new expression is evaluated. The only optimization of this
12541 sort that would be valid is changing
12543 SAVE_EXPR (I) * SAVE_EXPR (SAVE_EXPR (J) * 8)
12547 SAVE_EXPR (I) * SAVE_EXPR (J)
12549 (where the same SAVE_EXPR (J) is used in the original and the
12550 transformed version). */
12553 multiple_of_p (tree type
, const_tree top
, const_tree bottom
)
12558 if (operand_equal_p (top
, bottom
, 0))
12561 if (TREE_CODE (type
) != INTEGER_TYPE
)
12564 switch (TREE_CODE (top
))
12567 /* Bitwise and provides a power of two multiple. If the mask is
12568 a multiple of BOTTOM then TOP is a multiple of BOTTOM. */
12569 if (!integer_pow2p (bottom
))
12574 return (multiple_of_p (type
, TREE_OPERAND (top
, 1), bottom
)
12575 || multiple_of_p (type
, TREE_OPERAND (top
, 0), bottom
));
12578 /* It is impossible to prove if op0 - op1 is multiple of bottom
12579 precisely, so be conservative here checking if both op0 and op1
12580 are multiple of bottom. Note we check the second operand first
12581 since it's usually simpler. */
12582 return (multiple_of_p (type
, TREE_OPERAND (top
, 1), bottom
)
12583 && multiple_of_p (type
, TREE_OPERAND (top
, 0), bottom
));
12586 /* The same as MINUS_EXPR, but handle cases like op0 + 0xfffffffd
12587 as op0 - 3 if the expression has unsigned type. For example,
12588 (X / 3) + 0xfffffffd is multiple of 3, but 0xfffffffd is not. */
12589 op1
= TREE_OPERAND (top
, 1);
12590 if (TYPE_UNSIGNED (type
)
12591 && TREE_CODE (op1
) == INTEGER_CST
&& tree_int_cst_sign_bit (op1
))
12592 op1
= fold_build1 (NEGATE_EXPR
, type
, op1
);
12593 return (multiple_of_p (type
, op1
, bottom
)
12594 && multiple_of_p (type
, TREE_OPERAND (top
, 0), bottom
));
12597 if (TREE_CODE (TREE_OPERAND (top
, 1)) == INTEGER_CST
)
12599 op1
= TREE_OPERAND (top
, 1);
12600 /* const_binop may not detect overflow correctly,
12601 so check for it explicitly here. */
12602 if (wi::gtu_p (TYPE_PRECISION (TREE_TYPE (size_one_node
)), op1
)
12603 && 0 != (t1
= fold_convert (type
,
12604 const_binop (LSHIFT_EXPR
,
12607 && !TREE_OVERFLOW (t1
))
12608 return multiple_of_p (type
, t1
, bottom
);
12613 /* Can't handle conversions from non-integral or wider integral type. */
12614 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (top
, 0))) != INTEGER_TYPE
)
12615 || (TYPE_PRECISION (type
)
12616 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (top
, 0)))))
12622 return multiple_of_p (type
, TREE_OPERAND (top
, 0), bottom
);
12625 return (multiple_of_p (type
, TREE_OPERAND (top
, 1), bottom
)
12626 && multiple_of_p (type
, TREE_OPERAND (top
, 2), bottom
));
12629 if (TREE_CODE (bottom
) != INTEGER_CST
12630 || integer_zerop (bottom
)
12631 || (TYPE_UNSIGNED (type
)
12632 && (tree_int_cst_sgn (top
) < 0
12633 || tree_int_cst_sgn (bottom
) < 0)))
12635 return wi::multiple_of_p (wi::to_widest (top
), wi::to_widest (bottom
),
12639 if (TREE_CODE (bottom
) == INTEGER_CST
12640 && (stmt
= SSA_NAME_DEF_STMT (top
)) != NULL
12641 && gimple_code (stmt
) == GIMPLE_ASSIGN
)
12643 enum tree_code code
= gimple_assign_rhs_code (stmt
);
12645 /* Check for special cases to see if top is defined as multiple
12648 top = (X & ~(bottom - 1) ; bottom is power of 2
12654 if (code
== BIT_AND_EXPR
12655 && (op2
= gimple_assign_rhs2 (stmt
)) != NULL_TREE
12656 && TREE_CODE (op2
) == INTEGER_CST
12657 && integer_pow2p (bottom
)
12658 && wi::multiple_of_p (wi::to_widest (op2
),
12659 wi::to_widest (bottom
), UNSIGNED
))
12662 op1
= gimple_assign_rhs1 (stmt
);
12663 if (code
== MINUS_EXPR
12664 && (op2
= gimple_assign_rhs2 (stmt
)) != NULL_TREE
12665 && TREE_CODE (op2
) == SSA_NAME
12666 && (stmt
= SSA_NAME_DEF_STMT (op2
)) != NULL
12667 && gimple_code (stmt
) == GIMPLE_ASSIGN
12668 && (code
= gimple_assign_rhs_code (stmt
)) == TRUNC_MOD_EXPR
12669 && operand_equal_p (op1
, gimple_assign_rhs1 (stmt
), 0)
12670 && operand_equal_p (bottom
, gimple_assign_rhs2 (stmt
), 0))
12681 #define tree_expr_nonnegative_warnv_p(X, Y) \
12682 _Pragma ("GCC error \"Use RECURSE for recursive calls\"") 0
12684 #define RECURSE(X) \
12685 ((tree_expr_nonnegative_warnv_p) (X, strict_overflow_p, depth + 1))
12687 /* Return true if CODE or TYPE is known to be non-negative. */
12690 tree_simple_nonnegative_warnv_p (enum tree_code code
, tree type
)
12692 if ((TYPE_PRECISION (type
) != 1 || TYPE_UNSIGNED (type
))
12693 && truth_value_p (code
))
12694 /* Truth values evaluate to 0 or 1, which is nonnegative unless we
12695 have a signed:1 type (where the value is -1 and 0). */
12700 /* Return true if (CODE OP0) is known to be non-negative. If the return
12701 value is based on the assumption that signed overflow is undefined,
12702 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12703 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12706 tree_unary_nonnegative_warnv_p (enum tree_code code
, tree type
, tree op0
,
12707 bool *strict_overflow_p
, int depth
)
12709 if (TYPE_UNSIGNED (type
))
12715 /* We can't return 1 if flag_wrapv is set because
12716 ABS_EXPR<INT_MIN> = INT_MIN. */
12717 if (!ANY_INTEGRAL_TYPE_P (type
))
12719 if (TYPE_OVERFLOW_UNDEFINED (type
))
12721 *strict_overflow_p
= true;
12726 case NON_LVALUE_EXPR
:
12728 case FIX_TRUNC_EXPR
:
12729 return RECURSE (op0
);
12733 tree inner_type
= TREE_TYPE (op0
);
12734 tree outer_type
= type
;
12736 if (TREE_CODE (outer_type
) == REAL_TYPE
)
12738 if (TREE_CODE (inner_type
) == REAL_TYPE
)
12739 return RECURSE (op0
);
12740 if (INTEGRAL_TYPE_P (inner_type
))
12742 if (TYPE_UNSIGNED (inner_type
))
12744 return RECURSE (op0
);
12747 else if (INTEGRAL_TYPE_P (outer_type
))
12749 if (TREE_CODE (inner_type
) == REAL_TYPE
)
12750 return RECURSE (op0
);
12751 if (INTEGRAL_TYPE_P (inner_type
))
12752 return TYPE_PRECISION (inner_type
) < TYPE_PRECISION (outer_type
)
12753 && TYPE_UNSIGNED (inner_type
);
12759 return tree_simple_nonnegative_warnv_p (code
, type
);
12762 /* We don't know sign of `t', so be conservative and return false. */
12766 /* Return true if (CODE OP0 OP1) is known to be non-negative. If the return
12767 value is based on the assumption that signed overflow is undefined,
12768 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12769 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12772 tree_binary_nonnegative_warnv_p (enum tree_code code
, tree type
, tree op0
,
12773 tree op1
, bool *strict_overflow_p
,
12776 if (TYPE_UNSIGNED (type
))
12781 case POINTER_PLUS_EXPR
:
12783 if (FLOAT_TYPE_P (type
))
12784 return RECURSE (op0
) && RECURSE (op1
);
12786 /* zero_extend(x) + zero_extend(y) is non-negative if x and y are
12787 both unsigned and at least 2 bits shorter than the result. */
12788 if (TREE_CODE (type
) == INTEGER_TYPE
12789 && TREE_CODE (op0
) == NOP_EXPR
12790 && TREE_CODE (op1
) == NOP_EXPR
)
12792 tree inner1
= TREE_TYPE (TREE_OPERAND (op0
, 0));
12793 tree inner2
= TREE_TYPE (TREE_OPERAND (op1
, 0));
12794 if (TREE_CODE (inner1
) == INTEGER_TYPE
&& TYPE_UNSIGNED (inner1
)
12795 && TREE_CODE (inner2
) == INTEGER_TYPE
&& TYPE_UNSIGNED (inner2
))
12797 unsigned int prec
= MAX (TYPE_PRECISION (inner1
),
12798 TYPE_PRECISION (inner2
)) + 1;
12799 return prec
< TYPE_PRECISION (type
);
12805 if (FLOAT_TYPE_P (type
) || TYPE_OVERFLOW_UNDEFINED (type
))
12807 /* x * x is always non-negative for floating point x
12808 or without overflow. */
12809 if (operand_equal_p (op0
, op1
, 0)
12810 || (RECURSE (op0
) && RECURSE (op1
)))
12812 if (ANY_INTEGRAL_TYPE_P (type
)
12813 && TYPE_OVERFLOW_UNDEFINED (type
))
12814 *strict_overflow_p
= true;
12819 /* zero_extend(x) * zero_extend(y) is non-negative if x and y are
12820 both unsigned and their total bits is shorter than the result. */
12821 if (TREE_CODE (type
) == INTEGER_TYPE
12822 && (TREE_CODE (op0
) == NOP_EXPR
|| TREE_CODE (op0
) == INTEGER_CST
)
12823 && (TREE_CODE (op1
) == NOP_EXPR
|| TREE_CODE (op1
) == INTEGER_CST
))
12825 tree inner0
= (TREE_CODE (op0
) == NOP_EXPR
)
12826 ? TREE_TYPE (TREE_OPERAND (op0
, 0))
12828 tree inner1
= (TREE_CODE (op1
) == NOP_EXPR
)
12829 ? TREE_TYPE (TREE_OPERAND (op1
, 0))
12832 bool unsigned0
= TYPE_UNSIGNED (inner0
);
12833 bool unsigned1
= TYPE_UNSIGNED (inner1
);
12835 if (TREE_CODE (op0
) == INTEGER_CST
)
12836 unsigned0
= unsigned0
|| tree_int_cst_sgn (op0
) >= 0;
12838 if (TREE_CODE (op1
) == INTEGER_CST
)
12839 unsigned1
= unsigned1
|| tree_int_cst_sgn (op1
) >= 0;
12841 if (TREE_CODE (inner0
) == INTEGER_TYPE
&& unsigned0
12842 && TREE_CODE (inner1
) == INTEGER_TYPE
&& unsigned1
)
12844 unsigned int precision0
= (TREE_CODE (op0
) == INTEGER_CST
)
12845 ? tree_int_cst_min_precision (op0
, UNSIGNED
)
12846 : TYPE_PRECISION (inner0
);
12848 unsigned int precision1
= (TREE_CODE (op1
) == INTEGER_CST
)
12849 ? tree_int_cst_min_precision (op1
, UNSIGNED
)
12850 : TYPE_PRECISION (inner1
);
12852 return precision0
+ precision1
< TYPE_PRECISION (type
);
12859 return RECURSE (op0
) || RECURSE (op1
);
12865 case TRUNC_DIV_EXPR
:
12866 case CEIL_DIV_EXPR
:
12867 case FLOOR_DIV_EXPR
:
12868 case ROUND_DIV_EXPR
:
12869 return RECURSE (op0
) && RECURSE (op1
);
12871 case TRUNC_MOD_EXPR
:
12872 return RECURSE (op0
);
12874 case FLOOR_MOD_EXPR
:
12875 return RECURSE (op1
);
12877 case CEIL_MOD_EXPR
:
12878 case ROUND_MOD_EXPR
:
12880 return tree_simple_nonnegative_warnv_p (code
, type
);
12883 /* We don't know sign of `t', so be conservative and return false. */
12887 /* Return true if T is known to be non-negative. If the return
12888 value is based on the assumption that signed overflow is undefined,
12889 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12890 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12893 tree_single_nonnegative_warnv_p (tree t
, bool *strict_overflow_p
, int depth
)
12895 if (TYPE_UNSIGNED (TREE_TYPE (t
)))
12898 switch (TREE_CODE (t
))
12901 return tree_int_cst_sgn (t
) >= 0;
12904 return ! REAL_VALUE_NEGATIVE (TREE_REAL_CST (t
));
12907 return ! FIXED_VALUE_NEGATIVE (TREE_FIXED_CST (t
));
12910 return RECURSE (TREE_OPERAND (t
, 1)) && RECURSE (TREE_OPERAND (t
, 2));
12913 /* Limit the depth of recursion to avoid quadratic behavior.
12914 This is expected to catch almost all occurrences in practice.
12915 If this code misses important cases that unbounded recursion
12916 would not, passes that need this information could be revised
12917 to provide it through dataflow propagation. */
12918 return (!name_registered_for_update_p (t
)
12919 && depth
< PARAM_VALUE (PARAM_MAX_SSA_NAME_QUERY_DEPTH
)
12920 && gimple_stmt_nonnegative_warnv_p (SSA_NAME_DEF_STMT (t
),
12921 strict_overflow_p
, depth
));
12924 return tree_simple_nonnegative_warnv_p (TREE_CODE (t
), TREE_TYPE (t
));
12928 /* Return true if T is known to be non-negative. If the return
12929 value is based on the assumption that signed overflow is undefined,
12930 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12931 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12934 tree_call_nonnegative_warnv_p (tree type
, combined_fn fn
, tree arg0
, tree arg1
,
12935 bool *strict_overflow_p
, int depth
)
12956 case CFN_BUILT_IN_BSWAP32
:
12957 case CFN_BUILT_IN_BSWAP64
:
12962 /* sqrt(-0.0) is -0.0. */
12963 if (!HONOR_SIGNED_ZEROS (element_mode (type
)))
12965 return RECURSE (arg0
);
12991 CASE_CFN_NEARBYINT
:
12998 CASE_CFN_SIGNIFICAND
:
13002 /* True if the 1st argument is nonnegative. */
13003 return RECURSE (arg0
);
13006 /* True if the 1st OR 2nd arguments are nonnegative. */
13007 return RECURSE (arg0
) || RECURSE (arg1
);
13010 /* True if the 1st AND 2nd arguments are nonnegative. */
13011 return RECURSE (arg0
) && RECURSE (arg1
);
13014 /* True if the 2nd argument is nonnegative. */
13015 return RECURSE (arg1
);
13018 /* True if the 1st argument is nonnegative or the second
13019 argument is an even integer. */
13020 if (TREE_CODE (arg1
) == INTEGER_CST
13021 && (TREE_INT_CST_LOW (arg1
) & 1) == 0)
13023 return RECURSE (arg0
);
13026 /* True if the 1st argument is nonnegative or the second
13027 argument is an even integer valued real. */
13028 if (TREE_CODE (arg1
) == REAL_CST
)
13033 c
= TREE_REAL_CST (arg1
);
13034 n
= real_to_integer (&c
);
13037 REAL_VALUE_TYPE cint
;
13038 real_from_integer (&cint
, VOIDmode
, n
, SIGNED
);
13039 if (real_identical (&c
, &cint
))
13043 return RECURSE (arg0
);
13048 return tree_simple_nonnegative_warnv_p (CALL_EXPR
, type
);
13051 /* Return true if T is known to be non-negative. If the return
13052 value is based on the assumption that signed overflow is undefined,
13053 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13054 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
13057 tree_invalid_nonnegative_warnv_p (tree t
, bool *strict_overflow_p
, int depth
)
13059 enum tree_code code
= TREE_CODE (t
);
13060 if (TYPE_UNSIGNED (TREE_TYPE (t
)))
13067 tree temp
= TARGET_EXPR_SLOT (t
);
13068 t
= TARGET_EXPR_INITIAL (t
);
13070 /* If the initializer is non-void, then it's a normal expression
13071 that will be assigned to the slot. */
13072 if (!VOID_TYPE_P (t
))
13073 return RECURSE (t
);
13075 /* Otherwise, the initializer sets the slot in some way. One common
13076 way is an assignment statement at the end of the initializer. */
13079 if (TREE_CODE (t
) == BIND_EXPR
)
13080 t
= expr_last (BIND_EXPR_BODY (t
));
13081 else if (TREE_CODE (t
) == TRY_FINALLY_EXPR
13082 || TREE_CODE (t
) == TRY_CATCH_EXPR
)
13083 t
= expr_last (TREE_OPERAND (t
, 0));
13084 else if (TREE_CODE (t
) == STATEMENT_LIST
)
13089 if (TREE_CODE (t
) == MODIFY_EXPR
13090 && TREE_OPERAND (t
, 0) == temp
)
13091 return RECURSE (TREE_OPERAND (t
, 1));
13098 tree arg0
= call_expr_nargs (t
) > 0 ? CALL_EXPR_ARG (t
, 0) : NULL_TREE
;
13099 tree arg1
= call_expr_nargs (t
) > 1 ? CALL_EXPR_ARG (t
, 1) : NULL_TREE
;
13101 return tree_call_nonnegative_warnv_p (TREE_TYPE (t
),
13102 get_call_combined_fn (t
),
13105 strict_overflow_p
, depth
);
13107 case COMPOUND_EXPR
:
13109 return RECURSE (TREE_OPERAND (t
, 1));
13112 return RECURSE (expr_last (TREE_OPERAND (t
, 1)));
13115 return RECURSE (TREE_OPERAND (t
, 0));
13118 return tree_simple_nonnegative_warnv_p (TREE_CODE (t
), TREE_TYPE (t
));
13123 #undef tree_expr_nonnegative_warnv_p
13125 /* Return true if T is known to be non-negative. If the return
13126 value is based on the assumption that signed overflow is undefined,
13127 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13128 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
13131 tree_expr_nonnegative_warnv_p (tree t
, bool *strict_overflow_p
, int depth
)
13133 enum tree_code code
;
13134 if (t
== error_mark_node
)
13137 code
= TREE_CODE (t
);
13138 switch (TREE_CODE_CLASS (code
))
13141 case tcc_comparison
:
13142 return tree_binary_nonnegative_warnv_p (TREE_CODE (t
),
13144 TREE_OPERAND (t
, 0),
13145 TREE_OPERAND (t
, 1),
13146 strict_overflow_p
, depth
);
13149 return tree_unary_nonnegative_warnv_p (TREE_CODE (t
),
13151 TREE_OPERAND (t
, 0),
13152 strict_overflow_p
, depth
);
13155 case tcc_declaration
:
13156 case tcc_reference
:
13157 return tree_single_nonnegative_warnv_p (t
, strict_overflow_p
, depth
);
13165 case TRUTH_AND_EXPR
:
13166 case TRUTH_OR_EXPR
:
13167 case TRUTH_XOR_EXPR
:
13168 return tree_binary_nonnegative_warnv_p (TREE_CODE (t
),
13170 TREE_OPERAND (t
, 0),
13171 TREE_OPERAND (t
, 1),
13172 strict_overflow_p
, depth
);
13173 case TRUTH_NOT_EXPR
:
13174 return tree_unary_nonnegative_warnv_p (TREE_CODE (t
),
13176 TREE_OPERAND (t
, 0),
13177 strict_overflow_p
, depth
);
13184 case WITH_SIZE_EXPR
:
13186 return tree_single_nonnegative_warnv_p (t
, strict_overflow_p
, depth
);
13189 return tree_invalid_nonnegative_warnv_p (t
, strict_overflow_p
, depth
);
13193 /* Return true if `t' is known to be non-negative. Handle warnings
13194 about undefined signed overflow. */
13197 tree_expr_nonnegative_p (tree t
)
13199 bool ret
, strict_overflow_p
;
13201 strict_overflow_p
= false;
13202 ret
= tree_expr_nonnegative_warnv_p (t
, &strict_overflow_p
);
13203 if (strict_overflow_p
)
13204 fold_overflow_warning (("assuming signed overflow does not occur when "
13205 "determining that expression is always "
13207 WARN_STRICT_OVERFLOW_MISC
);
13212 /* Return true when (CODE OP0) is an address and is known to be nonzero.
13213 For floating point we further ensure that T is not denormal.
13214 Similar logic is present in nonzero_address in rtlanal.h.
13216 If the return value is based on the assumption that signed overflow
13217 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13218 change *STRICT_OVERFLOW_P. */
13221 tree_unary_nonzero_warnv_p (enum tree_code code
, tree type
, tree op0
,
13222 bool *strict_overflow_p
)
13227 return tree_expr_nonzero_warnv_p (op0
,
13228 strict_overflow_p
);
13232 tree inner_type
= TREE_TYPE (op0
);
13233 tree outer_type
= type
;
13235 return (TYPE_PRECISION (outer_type
) >= TYPE_PRECISION (inner_type
)
13236 && tree_expr_nonzero_warnv_p (op0
,
13237 strict_overflow_p
));
13241 case NON_LVALUE_EXPR
:
13242 return tree_expr_nonzero_warnv_p (op0
,
13243 strict_overflow_p
);
13252 /* Return true when (CODE OP0 OP1) is an address and is known to be nonzero.
13253 For floating point we further ensure that T is not denormal.
13254 Similar logic is present in nonzero_address in rtlanal.h.
13256 If the return value is based on the assumption that signed overflow
13257 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13258 change *STRICT_OVERFLOW_P. */
13261 tree_binary_nonzero_warnv_p (enum tree_code code
,
13264 tree op1
, bool *strict_overflow_p
)
13266 bool sub_strict_overflow_p
;
13269 case POINTER_PLUS_EXPR
:
13271 if (ANY_INTEGRAL_TYPE_P (type
) && TYPE_OVERFLOW_UNDEFINED (type
))
13273 /* With the presence of negative values it is hard
13274 to say something. */
13275 sub_strict_overflow_p
= false;
13276 if (!tree_expr_nonnegative_warnv_p (op0
,
13277 &sub_strict_overflow_p
)
13278 || !tree_expr_nonnegative_warnv_p (op1
,
13279 &sub_strict_overflow_p
))
13281 /* One of operands must be positive and the other non-negative. */
13282 /* We don't set *STRICT_OVERFLOW_P here: even if this value
13283 overflows, on a twos-complement machine the sum of two
13284 nonnegative numbers can never be zero. */
13285 return (tree_expr_nonzero_warnv_p (op0
,
13287 || tree_expr_nonzero_warnv_p (op1
,
13288 strict_overflow_p
));
13293 if (TYPE_OVERFLOW_UNDEFINED (type
))
13295 if (tree_expr_nonzero_warnv_p (op0
,
13297 && tree_expr_nonzero_warnv_p (op1
,
13298 strict_overflow_p
))
13300 *strict_overflow_p
= true;
13307 sub_strict_overflow_p
= false;
13308 if (tree_expr_nonzero_warnv_p (op0
,
13309 &sub_strict_overflow_p
)
13310 && tree_expr_nonzero_warnv_p (op1
,
13311 &sub_strict_overflow_p
))
13313 if (sub_strict_overflow_p
)
13314 *strict_overflow_p
= true;
13319 sub_strict_overflow_p
= false;
13320 if (tree_expr_nonzero_warnv_p (op0
,
13321 &sub_strict_overflow_p
))
13323 if (sub_strict_overflow_p
)
13324 *strict_overflow_p
= true;
13326 /* When both operands are nonzero, then MAX must be too. */
13327 if (tree_expr_nonzero_warnv_p (op1
,
13328 strict_overflow_p
))
13331 /* MAX where operand 0 is positive is positive. */
13332 return tree_expr_nonnegative_warnv_p (op0
,
13333 strict_overflow_p
);
13335 /* MAX where operand 1 is positive is positive. */
13336 else if (tree_expr_nonzero_warnv_p (op1
,
13337 &sub_strict_overflow_p
)
13338 && tree_expr_nonnegative_warnv_p (op1
,
13339 &sub_strict_overflow_p
))
13341 if (sub_strict_overflow_p
)
13342 *strict_overflow_p
= true;
13348 return (tree_expr_nonzero_warnv_p (op1
,
13350 || tree_expr_nonzero_warnv_p (op0
,
13351 strict_overflow_p
));
13360 /* Return true when T is an address and is known to be nonzero.
13361 For floating point we further ensure that T is not denormal.
13362 Similar logic is present in nonzero_address in rtlanal.h.
13364 If the return value is based on the assumption that signed overflow
13365 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13366 change *STRICT_OVERFLOW_P. */
13369 tree_single_nonzero_warnv_p (tree t
, bool *strict_overflow_p
)
13371 bool sub_strict_overflow_p
;
13372 switch (TREE_CODE (t
))
13375 return !integer_zerop (t
);
13379 tree base
= TREE_OPERAND (t
, 0);
13381 if (!DECL_P (base
))
13382 base
= get_base_address (base
);
13384 if (base
&& TREE_CODE (base
) == TARGET_EXPR
)
13385 base
= TARGET_EXPR_SLOT (base
);
13390 /* For objects in symbol table check if we know they are non-zero.
13391 Don't do anything for variables and functions before symtab is built;
13392 it is quite possible that they will be declared weak later. */
13393 int nonzero_addr
= maybe_nonzero_address (base
);
13394 if (nonzero_addr
>= 0)
13395 return nonzero_addr
;
13397 /* Function local objects are never NULL. */
13399 && (DECL_CONTEXT (base
)
13400 && TREE_CODE (DECL_CONTEXT (base
)) == FUNCTION_DECL
13401 && auto_var_in_fn_p (base
, DECL_CONTEXT (base
))))
13404 /* Constants are never weak. */
13405 if (CONSTANT_CLASS_P (base
))
13412 sub_strict_overflow_p
= false;
13413 if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t
, 1),
13414 &sub_strict_overflow_p
)
13415 && tree_expr_nonzero_warnv_p (TREE_OPERAND (t
, 2),
13416 &sub_strict_overflow_p
))
13418 if (sub_strict_overflow_p
)
13419 *strict_overflow_p
= true;
13430 #define integer_valued_real_p(X) \
13431 _Pragma ("GCC error \"Use RECURSE for recursive calls\"") 0
13433 #define RECURSE(X) \
13434 ((integer_valued_real_p) (X, depth + 1))
13436 /* Return true if the floating point result of (CODE OP0) has an
13437 integer value. We also allow +Inf, -Inf and NaN to be considered
13438 integer values. Return false for signaling NaN.
13440 DEPTH is the current nesting depth of the query. */
13443 integer_valued_real_unary_p (tree_code code
, tree op0
, int depth
)
13451 return RECURSE (op0
);
13455 tree type
= TREE_TYPE (op0
);
13456 if (TREE_CODE (type
) == INTEGER_TYPE
)
13458 if (TREE_CODE (type
) == REAL_TYPE
)
13459 return RECURSE (op0
);
13469 /* Return true if the floating point result of (CODE OP0 OP1) has an
13470 integer value. We also allow +Inf, -Inf and NaN to be considered
13471 integer values. Return false for signaling NaN.
13473 DEPTH is the current nesting depth of the query. */
13476 integer_valued_real_binary_p (tree_code code
, tree op0
, tree op1
, int depth
)
13485 return RECURSE (op0
) && RECURSE (op1
);
13493 /* Return true if the floating point result of calling FNDECL with arguments
13494 ARG0 and ARG1 has an integer value. We also allow +Inf, -Inf and NaN to be
13495 considered integer values. Return false for signaling NaN. If FNDECL
13496 takes fewer than 2 arguments, the remaining ARGn are null.
13498 DEPTH is the current nesting depth of the query. */
13501 integer_valued_real_call_p (combined_fn fn
, tree arg0
, tree arg1
, int depth
)
13507 CASE_CFN_NEARBYINT
:
13515 return RECURSE (arg0
) && RECURSE (arg1
);
13523 /* Return true if the floating point expression T (a GIMPLE_SINGLE_RHS)
13524 has an integer value. We also allow +Inf, -Inf and NaN to be
13525 considered integer values. Return false for signaling NaN.
13527 DEPTH is the current nesting depth of the query. */
13530 integer_valued_real_single_p (tree t
, int depth
)
13532 switch (TREE_CODE (t
))
13535 return real_isinteger (TREE_REAL_CST_PTR (t
), TYPE_MODE (TREE_TYPE (t
)));
13538 return RECURSE (TREE_OPERAND (t
, 1)) && RECURSE (TREE_OPERAND (t
, 2));
13541 /* Limit the depth of recursion to avoid quadratic behavior.
13542 This is expected to catch almost all occurrences in practice.
13543 If this code misses important cases that unbounded recursion
13544 would not, passes that need this information could be revised
13545 to provide it through dataflow propagation. */
13546 return (!name_registered_for_update_p (t
)
13547 && depth
< PARAM_VALUE (PARAM_MAX_SSA_NAME_QUERY_DEPTH
)
13548 && gimple_stmt_integer_valued_real_p (SSA_NAME_DEF_STMT (t
),
13557 /* Return true if the floating point expression T (a GIMPLE_INVALID_RHS)
13558 has an integer value. We also allow +Inf, -Inf and NaN to be
13559 considered integer values. Return false for signaling NaN.
13561 DEPTH is the current nesting depth of the query. */
13564 integer_valued_real_invalid_p (tree t
, int depth
)
13566 switch (TREE_CODE (t
))
13568 case COMPOUND_EXPR
:
13571 return RECURSE (TREE_OPERAND (t
, 1));
13574 return RECURSE (TREE_OPERAND (t
, 0));
13583 #undef integer_valued_real_p
13585 /* Return true if the floating point expression T has an integer value.
13586 We also allow +Inf, -Inf and NaN to be considered integer values.
13587 Return false for signaling NaN.
13589 DEPTH is the current nesting depth of the query. */
13592 integer_valued_real_p (tree t
, int depth
)
13594 if (t
== error_mark_node
)
13597 tree_code code
= TREE_CODE (t
);
13598 switch (TREE_CODE_CLASS (code
))
13601 case tcc_comparison
:
13602 return integer_valued_real_binary_p (code
, TREE_OPERAND (t
, 0),
13603 TREE_OPERAND (t
, 1), depth
);
13606 return integer_valued_real_unary_p (code
, TREE_OPERAND (t
, 0), depth
);
13609 case tcc_declaration
:
13610 case tcc_reference
:
13611 return integer_valued_real_single_p (t
, depth
);
13621 return integer_valued_real_single_p (t
, depth
);
13625 tree arg0
= (call_expr_nargs (t
) > 0
13626 ? CALL_EXPR_ARG (t
, 0)
13628 tree arg1
= (call_expr_nargs (t
) > 1
13629 ? CALL_EXPR_ARG (t
, 1)
13631 return integer_valued_real_call_p (get_call_combined_fn (t
),
13632 arg0
, arg1
, depth
);
13636 return integer_valued_real_invalid_p (t
, depth
);
13640 /* Given the components of a binary expression CODE, TYPE, OP0 and OP1,
13641 attempt to fold the expression to a constant without modifying TYPE,
13644 If the expression could be simplified to a constant, then return
13645 the constant. If the expression would not be simplified to a
13646 constant, then return NULL_TREE. */
13649 fold_binary_to_constant (enum tree_code code
, tree type
, tree op0
, tree op1
)
13651 tree tem
= fold_binary (code
, type
, op0
, op1
);
13652 return (tem
&& TREE_CONSTANT (tem
)) ? tem
: NULL_TREE
;
13655 /* Given the components of a unary expression CODE, TYPE and OP0,
13656 attempt to fold the expression to a constant without modifying
13659 If the expression could be simplified to a constant, then return
13660 the constant. If the expression would not be simplified to a
13661 constant, then return NULL_TREE. */
13664 fold_unary_to_constant (enum tree_code code
, tree type
, tree op0
)
13666 tree tem
= fold_unary (code
, type
, op0
);
13667 return (tem
&& TREE_CONSTANT (tem
)) ? tem
: NULL_TREE
;
13670 /* If EXP represents referencing an element in a constant string
13671 (either via pointer arithmetic or array indexing), return the
13672 tree representing the value accessed, otherwise return NULL. */
13675 fold_read_from_constant_string (tree exp
)
13677 if ((TREE_CODE (exp
) == INDIRECT_REF
13678 || TREE_CODE (exp
) == ARRAY_REF
)
13679 && TREE_CODE (TREE_TYPE (exp
)) == INTEGER_TYPE
)
13681 tree exp1
= TREE_OPERAND (exp
, 0);
13684 location_t loc
= EXPR_LOCATION (exp
);
13686 if (TREE_CODE (exp
) == INDIRECT_REF
)
13687 string
= string_constant (exp1
, &index
);
13690 tree low_bound
= array_ref_low_bound (exp
);
13691 index
= fold_convert_loc (loc
, sizetype
, TREE_OPERAND (exp
, 1));
13693 /* Optimize the special-case of a zero lower bound.
13695 We convert the low_bound to sizetype to avoid some problems
13696 with constant folding. (E.g. suppose the lower bound is 1,
13697 and its mode is QI. Without the conversion,l (ARRAY
13698 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
13699 +INDEX), which becomes (ARRAY+255+INDEX). Oops!) */
13700 if (! integer_zerop (low_bound
))
13701 index
= size_diffop_loc (loc
, index
,
13702 fold_convert_loc (loc
, sizetype
, low_bound
));
13708 && TYPE_MODE (TREE_TYPE (exp
)) == TYPE_MODE (TREE_TYPE (TREE_TYPE (string
)))
13709 && TREE_CODE (string
) == STRING_CST
13710 && TREE_CODE (index
) == INTEGER_CST
13711 && compare_tree_int (index
, TREE_STRING_LENGTH (string
)) < 0
13712 && (GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (TREE_TYPE (string
))))
13714 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_TYPE (string
)))) == 1))
13715 return build_int_cst_type (TREE_TYPE (exp
),
13716 (TREE_STRING_POINTER (string
)
13717 [TREE_INT_CST_LOW (index
)]));
13722 /* Return the tree for neg (ARG0) when ARG0 is known to be either
13723 an integer constant, real, or fixed-point constant.
13725 TYPE is the type of the result. */
13728 fold_negate_const (tree arg0
, tree type
)
13730 tree t
= NULL_TREE
;
13732 switch (TREE_CODE (arg0
))
13737 wide_int val
= wi::neg (arg0
, &overflow
);
13738 t
= force_fit_type (type
, val
, 1,
13739 (overflow
| TREE_OVERFLOW (arg0
))
13740 && !TYPE_UNSIGNED (type
));
13745 t
= build_real (type
, real_value_negate (&TREE_REAL_CST (arg0
)));
13750 FIXED_VALUE_TYPE f
;
13751 bool overflow_p
= fixed_arithmetic (&f
, NEGATE_EXPR
,
13752 &(TREE_FIXED_CST (arg0
)), NULL
,
13753 TYPE_SATURATING (type
));
13754 t
= build_fixed (type
, f
);
13755 /* Propagate overflow flags. */
13756 if (overflow_p
| TREE_OVERFLOW (arg0
))
13757 TREE_OVERFLOW (t
) = 1;
13762 gcc_unreachable ();
13768 /* Return the tree for abs (ARG0) when ARG0 is known to be either
13769 an integer constant or real constant.
13771 TYPE is the type of the result. */
13774 fold_abs_const (tree arg0
, tree type
)
13776 tree t
= NULL_TREE
;
13778 switch (TREE_CODE (arg0
))
13782 /* If the value is unsigned or non-negative, then the absolute value
13783 is the same as the ordinary value. */
13784 if (!wi::neg_p (arg0
, TYPE_SIGN (type
)))
13787 /* If the value is negative, then the absolute value is
13792 wide_int val
= wi::neg (arg0
, &overflow
);
13793 t
= force_fit_type (type
, val
, -1,
13794 overflow
| TREE_OVERFLOW (arg0
));
13800 if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg0
)))
13801 t
= build_real (type
, real_value_negate (&TREE_REAL_CST (arg0
)));
13807 gcc_unreachable ();
13813 /* Return the tree for not (ARG0) when ARG0 is known to be an integer
13814 constant. TYPE is the type of the result. */
13817 fold_not_const (const_tree arg0
, tree type
)
13819 gcc_assert (TREE_CODE (arg0
) == INTEGER_CST
);
13821 return force_fit_type (type
, wi::bit_not (arg0
), 0, TREE_OVERFLOW (arg0
));
13824 /* Given CODE, a relational operator, the target type, TYPE and two
13825 constant operands OP0 and OP1, return the result of the
13826 relational operation. If the result is not a compile time
13827 constant, then return NULL_TREE. */
13830 fold_relational_const (enum tree_code code
, tree type
, tree op0
, tree op1
)
13832 int result
, invert
;
13834 /* From here on, the only cases we handle are when the result is
13835 known to be a constant. */
13837 if (TREE_CODE (op0
) == REAL_CST
&& TREE_CODE (op1
) == REAL_CST
)
13839 const REAL_VALUE_TYPE
*c0
= TREE_REAL_CST_PTR (op0
);
13840 const REAL_VALUE_TYPE
*c1
= TREE_REAL_CST_PTR (op1
);
13842 /* Handle the cases where either operand is a NaN. */
13843 if (real_isnan (c0
) || real_isnan (c1
))
13853 case UNORDERED_EXPR
:
13867 if (flag_trapping_math
)
13873 gcc_unreachable ();
13876 return constant_boolean_node (result
, type
);
13879 return constant_boolean_node (real_compare (code
, c0
, c1
), type
);
13882 if (TREE_CODE (op0
) == FIXED_CST
&& TREE_CODE (op1
) == FIXED_CST
)
13884 const FIXED_VALUE_TYPE
*c0
= TREE_FIXED_CST_PTR (op0
);
13885 const FIXED_VALUE_TYPE
*c1
= TREE_FIXED_CST_PTR (op1
);
13886 return constant_boolean_node (fixed_compare (code
, c0
, c1
), type
);
13889 /* Handle equality/inequality of complex constants. */
13890 if (TREE_CODE (op0
) == COMPLEX_CST
&& TREE_CODE (op1
) == COMPLEX_CST
)
13892 tree rcond
= fold_relational_const (code
, type
,
13893 TREE_REALPART (op0
),
13894 TREE_REALPART (op1
));
13895 tree icond
= fold_relational_const (code
, type
,
13896 TREE_IMAGPART (op0
),
13897 TREE_IMAGPART (op1
));
13898 if (code
== EQ_EXPR
)
13899 return fold_build2 (TRUTH_ANDIF_EXPR
, type
, rcond
, icond
);
13900 else if (code
== NE_EXPR
)
13901 return fold_build2 (TRUTH_ORIF_EXPR
, type
, rcond
, icond
);
13906 if (TREE_CODE (op0
) == VECTOR_CST
&& TREE_CODE (op1
) == VECTOR_CST
)
13908 if (!VECTOR_TYPE_P (type
))
13910 /* Have vector comparison with scalar boolean result. */
13911 gcc_assert ((code
== EQ_EXPR
|| code
== NE_EXPR
)
13912 && VECTOR_CST_NELTS (op0
) == VECTOR_CST_NELTS (op1
));
13913 for (unsigned i
= 0; i
< VECTOR_CST_NELTS (op0
); i
++)
13915 tree elem0
= VECTOR_CST_ELT (op0
, i
);
13916 tree elem1
= VECTOR_CST_ELT (op1
, i
);
13917 tree tmp
= fold_relational_const (code
, type
, elem0
, elem1
);
13918 if (tmp
== NULL_TREE
)
13920 if (integer_zerop (tmp
))
13921 return constant_boolean_node (false, type
);
13923 return constant_boolean_node (true, type
);
13925 unsigned count
= VECTOR_CST_NELTS (op0
);
13926 tree
*elts
= XALLOCAVEC (tree
, count
);
13927 gcc_assert (VECTOR_CST_NELTS (op1
) == count
13928 && TYPE_VECTOR_SUBPARTS (type
) == count
);
13930 for (unsigned i
= 0; i
< count
; i
++)
13932 tree elem_type
= TREE_TYPE (type
);
13933 tree elem0
= VECTOR_CST_ELT (op0
, i
);
13934 tree elem1
= VECTOR_CST_ELT (op1
, i
);
13936 tree tem
= fold_relational_const (code
, elem_type
,
13939 if (tem
== NULL_TREE
)
13942 elts
[i
] = build_int_cst (elem_type
, integer_zerop (tem
) ? 0 : -1);
13945 return build_vector (type
, elts
);
13948 /* From here on we only handle LT, LE, GT, GE, EQ and NE.
13950 To compute GT, swap the arguments and do LT.
13951 To compute GE, do LT and invert the result.
13952 To compute LE, swap the arguments, do LT and invert the result.
13953 To compute NE, do EQ and invert the result.
13955 Therefore, the code below must handle only EQ and LT. */
13957 if (code
== LE_EXPR
|| code
== GT_EXPR
)
13959 std::swap (op0
, op1
);
13960 code
= swap_tree_comparison (code
);
13963 /* Note that it is safe to invert for real values here because we
13964 have already handled the one case that it matters. */
13967 if (code
== NE_EXPR
|| code
== GE_EXPR
)
13970 code
= invert_tree_comparison (code
, false);
13973 /* Compute a result for LT or EQ if args permit;
13974 Otherwise return T. */
13975 if (TREE_CODE (op0
) == INTEGER_CST
&& TREE_CODE (op1
) == INTEGER_CST
)
13977 if (code
== EQ_EXPR
)
13978 result
= tree_int_cst_equal (op0
, op1
);
13980 result
= tree_int_cst_lt (op0
, op1
);
13987 return constant_boolean_node (result
, type
);
13990 /* If necessary, return a CLEANUP_POINT_EXPR for EXPR with the
13991 indicated TYPE. If no CLEANUP_POINT_EXPR is necessary, return EXPR
13995 fold_build_cleanup_point_expr (tree type
, tree expr
)
13997 /* If the expression does not have side effects then we don't have to wrap
13998 it with a cleanup point expression. */
13999 if (!TREE_SIDE_EFFECTS (expr
))
14002 /* If the expression is a return, check to see if the expression inside the
14003 return has no side effects or the right hand side of the modify expression
14004 inside the return. If either don't have side effects set we don't need to
14005 wrap the expression in a cleanup point expression. Note we don't check the
14006 left hand side of the modify because it should always be a return decl. */
14007 if (TREE_CODE (expr
) == RETURN_EXPR
)
14009 tree op
= TREE_OPERAND (expr
, 0);
14010 if (!op
|| !TREE_SIDE_EFFECTS (op
))
14012 op
= TREE_OPERAND (op
, 1);
14013 if (!TREE_SIDE_EFFECTS (op
))
14017 return build1 (CLEANUP_POINT_EXPR
, type
, expr
);
14020 /* Given a pointer value OP0 and a type TYPE, return a simplified version
14021 of an indirection through OP0, or NULL_TREE if no simplification is
14025 fold_indirect_ref_1 (location_t loc
, tree type
, tree op0
)
14031 subtype
= TREE_TYPE (sub
);
14032 if (!POINTER_TYPE_P (subtype
))
14035 if (TREE_CODE (sub
) == ADDR_EXPR
)
14037 tree op
= TREE_OPERAND (sub
, 0);
14038 tree optype
= TREE_TYPE (op
);
14039 /* *&CONST_DECL -> to the value of the const decl. */
14040 if (TREE_CODE (op
) == CONST_DECL
)
14041 return DECL_INITIAL (op
);
14042 /* *&p => p; make sure to handle *&"str"[cst] here. */
14043 if (type
== optype
)
14045 tree fop
= fold_read_from_constant_string (op
);
14051 /* *(foo *)&fooarray => fooarray[0] */
14052 else if (TREE_CODE (optype
) == ARRAY_TYPE
14053 && type
== TREE_TYPE (optype
)
14054 && (!in_gimple_form
14055 || TREE_CODE (TYPE_SIZE (type
)) == INTEGER_CST
))
14057 tree type_domain
= TYPE_DOMAIN (optype
);
14058 tree min_val
= size_zero_node
;
14059 if (type_domain
&& TYPE_MIN_VALUE (type_domain
))
14060 min_val
= TYPE_MIN_VALUE (type_domain
);
14062 && TREE_CODE (min_val
) != INTEGER_CST
)
14064 return build4_loc (loc
, ARRAY_REF
, type
, op
, min_val
,
14065 NULL_TREE
, NULL_TREE
);
14067 /* *(foo *)&complexfoo => __real__ complexfoo */
14068 else if (TREE_CODE (optype
) == COMPLEX_TYPE
14069 && type
== TREE_TYPE (optype
))
14070 return fold_build1_loc (loc
, REALPART_EXPR
, type
, op
);
14071 /* *(foo *)&vectorfoo => BIT_FIELD_REF<vectorfoo,...> */
14072 else if (TREE_CODE (optype
) == VECTOR_TYPE
14073 && type
== TREE_TYPE (optype
))
14075 tree part_width
= TYPE_SIZE (type
);
14076 tree index
= bitsize_int (0);
14077 return fold_build3_loc (loc
, BIT_FIELD_REF
, type
, op
, part_width
, index
);
14081 if (TREE_CODE (sub
) == POINTER_PLUS_EXPR
14082 && TREE_CODE (TREE_OPERAND (sub
, 1)) == INTEGER_CST
)
14084 tree op00
= TREE_OPERAND (sub
, 0);
14085 tree op01
= TREE_OPERAND (sub
, 1);
14088 if (TREE_CODE (op00
) == ADDR_EXPR
)
14091 op00
= TREE_OPERAND (op00
, 0);
14092 op00type
= TREE_TYPE (op00
);
14094 /* ((foo*)&vectorfoo)[1] => BIT_FIELD_REF<vectorfoo,...> */
14095 if (TREE_CODE (op00type
) == VECTOR_TYPE
14096 && type
== TREE_TYPE (op00type
))
14098 tree part_width
= TYPE_SIZE (type
);
14099 unsigned HOST_WIDE_INT max_offset
14100 = (tree_to_uhwi (part_width
) / BITS_PER_UNIT
14101 * TYPE_VECTOR_SUBPARTS (op00type
));
14102 if (tree_int_cst_sign_bit (op01
) == 0
14103 && compare_tree_int (op01
, max_offset
) == -1)
14105 unsigned HOST_WIDE_INT offset
= tree_to_uhwi (op01
);
14106 unsigned HOST_WIDE_INT indexi
= offset
* BITS_PER_UNIT
;
14107 tree index
= bitsize_int (indexi
);
14108 return fold_build3_loc (loc
,
14109 BIT_FIELD_REF
, type
, op00
,
14110 part_width
, index
);
14113 /* ((foo*)&complexfoo)[1] => __imag__ complexfoo */
14114 else if (TREE_CODE (op00type
) == COMPLEX_TYPE
14115 && type
== TREE_TYPE (op00type
))
14117 tree size
= TYPE_SIZE_UNIT (type
);
14118 if (tree_int_cst_equal (size
, op01
))
14119 return fold_build1_loc (loc
, IMAGPART_EXPR
, type
, op00
);
14121 /* ((foo *)&fooarray)[1] => fooarray[1] */
14122 else if (TREE_CODE (op00type
) == ARRAY_TYPE
14123 && type
== TREE_TYPE (op00type
))
14125 tree type_domain
= TYPE_DOMAIN (op00type
);
14126 tree min_val
= size_zero_node
;
14127 if (type_domain
&& TYPE_MIN_VALUE (type_domain
))
14128 min_val
= TYPE_MIN_VALUE (type_domain
);
14129 op01
= size_binop_loc (loc
, EXACT_DIV_EXPR
, op01
,
14130 TYPE_SIZE_UNIT (type
));
14131 op01
= size_binop_loc (loc
, PLUS_EXPR
, op01
, min_val
);
14132 return build4_loc (loc
, ARRAY_REF
, type
, op00
, op01
,
14133 NULL_TREE
, NULL_TREE
);
14138 /* *(foo *)fooarrptr => (*fooarrptr)[0] */
14139 if (TREE_CODE (TREE_TYPE (subtype
)) == ARRAY_TYPE
14140 && type
== TREE_TYPE (TREE_TYPE (subtype
))
14141 && (!in_gimple_form
14142 || TREE_CODE (TYPE_SIZE (type
)) == INTEGER_CST
))
14145 tree min_val
= size_zero_node
;
14146 sub
= build_fold_indirect_ref_loc (loc
, sub
);
14147 type_domain
= TYPE_DOMAIN (TREE_TYPE (sub
));
14148 if (type_domain
&& TYPE_MIN_VALUE (type_domain
))
14149 min_val
= TYPE_MIN_VALUE (type_domain
);
14151 && TREE_CODE (min_val
) != INTEGER_CST
)
14153 return build4_loc (loc
, ARRAY_REF
, type
, sub
, min_val
, NULL_TREE
,
14160 /* Builds an expression for an indirection through T, simplifying some
14164 build_fold_indirect_ref_loc (location_t loc
, tree t
)
14166 tree type
= TREE_TYPE (TREE_TYPE (t
));
14167 tree sub
= fold_indirect_ref_1 (loc
, type
, t
);
14172 return build1_loc (loc
, INDIRECT_REF
, type
, t
);
14175 /* Given an INDIRECT_REF T, return either T or a simplified version. */
14178 fold_indirect_ref_loc (location_t loc
, tree t
)
14180 tree sub
= fold_indirect_ref_1 (loc
, TREE_TYPE (t
), TREE_OPERAND (t
, 0));
14188 /* Strip non-trapping, non-side-effecting tree nodes from an expression
14189 whose result is ignored. The type of the returned tree need not be
14190 the same as the original expression. */
14193 fold_ignored_result (tree t
)
14195 if (!TREE_SIDE_EFFECTS (t
))
14196 return integer_zero_node
;
14199 switch (TREE_CODE_CLASS (TREE_CODE (t
)))
14202 t
= TREE_OPERAND (t
, 0);
14206 case tcc_comparison
:
14207 if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t
, 1)))
14208 t
= TREE_OPERAND (t
, 0);
14209 else if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t
, 0)))
14210 t
= TREE_OPERAND (t
, 1);
14215 case tcc_expression
:
14216 switch (TREE_CODE (t
))
14218 case COMPOUND_EXPR
:
14219 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t
, 1)))
14221 t
= TREE_OPERAND (t
, 0);
14225 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t
, 1))
14226 || TREE_SIDE_EFFECTS (TREE_OPERAND (t
, 2)))
14228 t
= TREE_OPERAND (t
, 0);
14241 /* Return the value of VALUE, rounded up to a multiple of DIVISOR. */
14244 round_up_loc (location_t loc
, tree value
, unsigned int divisor
)
14246 tree div
= NULL_TREE
;
14251 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
14252 have to do anything. Only do this when we are not given a const,
14253 because in that case, this check is more expensive than just
14255 if (TREE_CODE (value
) != INTEGER_CST
)
14257 div
= build_int_cst (TREE_TYPE (value
), divisor
);
14259 if (multiple_of_p (TREE_TYPE (value
), value
, div
))
14263 /* If divisor is a power of two, simplify this to bit manipulation. */
14264 if (pow2_or_zerop (divisor
))
14266 if (TREE_CODE (value
) == INTEGER_CST
)
14268 wide_int val
= value
;
14271 if ((val
& (divisor
- 1)) == 0)
14274 overflow_p
= TREE_OVERFLOW (value
);
14275 val
+= divisor
- 1;
14276 val
&= - (int) divisor
;
14280 return force_fit_type (TREE_TYPE (value
), val
, -1, overflow_p
);
14286 t
= build_int_cst (TREE_TYPE (value
), divisor
- 1);
14287 value
= size_binop_loc (loc
, PLUS_EXPR
, value
, t
);
14288 t
= build_int_cst (TREE_TYPE (value
), - (int) divisor
);
14289 value
= size_binop_loc (loc
, BIT_AND_EXPR
, value
, t
);
14295 div
= build_int_cst (TREE_TYPE (value
), divisor
);
14296 value
= size_binop_loc (loc
, CEIL_DIV_EXPR
, value
, div
);
14297 value
= size_binop_loc (loc
, MULT_EXPR
, value
, div
);
14303 /* Likewise, but round down. */
14306 round_down_loc (location_t loc
, tree value
, int divisor
)
14308 tree div
= NULL_TREE
;
14310 gcc_assert (divisor
> 0);
14314 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
14315 have to do anything. Only do this when we are not given a const,
14316 because in that case, this check is more expensive than just
14318 if (TREE_CODE (value
) != INTEGER_CST
)
14320 div
= build_int_cst (TREE_TYPE (value
), divisor
);
14322 if (multiple_of_p (TREE_TYPE (value
), value
, div
))
14326 /* If divisor is a power of two, simplify this to bit manipulation. */
14327 if (pow2_or_zerop (divisor
))
14331 t
= build_int_cst (TREE_TYPE (value
), -divisor
);
14332 value
= size_binop_loc (loc
, BIT_AND_EXPR
, value
, t
);
14337 div
= build_int_cst (TREE_TYPE (value
), divisor
);
14338 value
= size_binop_loc (loc
, FLOOR_DIV_EXPR
, value
, div
);
14339 value
= size_binop_loc (loc
, MULT_EXPR
, value
, div
);
14345 /* Returns the pointer to the base of the object addressed by EXP and
14346 extracts the information about the offset of the access, storing it
14347 to PBITPOS and POFFSET. */
14350 split_address_to_core_and_offset (tree exp
,
14351 HOST_WIDE_INT
*pbitpos
, tree
*poffset
)
14355 int unsignedp
, reversep
, volatilep
;
14356 HOST_WIDE_INT bitsize
;
14357 location_t loc
= EXPR_LOCATION (exp
);
14359 if (TREE_CODE (exp
) == ADDR_EXPR
)
14361 core
= get_inner_reference (TREE_OPERAND (exp
, 0), &bitsize
, pbitpos
,
14362 poffset
, &mode
, &unsignedp
, &reversep
,
14364 core
= build_fold_addr_expr_loc (loc
, core
);
14370 *poffset
= NULL_TREE
;
14376 /* Returns true if addresses of E1 and E2 differ by a constant, false
14377 otherwise. If they do, E1 - E2 is stored in *DIFF. */
14380 ptr_difference_const (tree e1
, tree e2
, HOST_WIDE_INT
*diff
)
14383 HOST_WIDE_INT bitpos1
, bitpos2
;
14384 tree toffset1
, toffset2
, tdiff
, type
;
14386 core1
= split_address_to_core_and_offset (e1
, &bitpos1
, &toffset1
);
14387 core2
= split_address_to_core_and_offset (e2
, &bitpos2
, &toffset2
);
14389 if (bitpos1
% BITS_PER_UNIT
!= 0
14390 || bitpos2
% BITS_PER_UNIT
!= 0
14391 || !operand_equal_p (core1
, core2
, 0))
14394 if (toffset1
&& toffset2
)
14396 type
= TREE_TYPE (toffset1
);
14397 if (type
!= TREE_TYPE (toffset2
))
14398 toffset2
= fold_convert (type
, toffset2
);
14400 tdiff
= fold_build2 (MINUS_EXPR
, type
, toffset1
, toffset2
);
14401 if (!cst_and_fits_in_hwi (tdiff
))
14404 *diff
= int_cst_value (tdiff
);
14406 else if (toffset1
|| toffset2
)
14408 /* If only one of the offsets is non-constant, the difference cannot
14415 *diff
+= (bitpos1
- bitpos2
) / BITS_PER_UNIT
;
14419 /* Return OFF converted to a pointer offset type suitable as offset for
14420 POINTER_PLUS_EXPR. Use location LOC for this conversion. */
14422 convert_to_ptrofftype_loc (location_t loc
, tree off
)
14424 return fold_convert_loc (loc
, sizetype
, off
);
14427 /* Build and fold a POINTER_PLUS_EXPR at LOC offsetting PTR by OFF. */
14429 fold_build_pointer_plus_loc (location_t loc
, tree ptr
, tree off
)
14431 return fold_build2_loc (loc
, POINTER_PLUS_EXPR
, TREE_TYPE (ptr
),
14432 ptr
, convert_to_ptrofftype_loc (loc
, off
));
14435 /* Build and fold a POINTER_PLUS_EXPR at LOC offsetting PTR by OFF. */
14437 fold_build_pointer_plus_hwi_loc (location_t loc
, tree ptr
, HOST_WIDE_INT off
)
14439 return fold_build2_loc (loc
, POINTER_PLUS_EXPR
, TREE_TYPE (ptr
),
14440 ptr
, size_int (off
));
14443 /* Return a char pointer for a C string if it is a string constant
14444 or sum of string constant and integer constant. We only support
14445 string constants properly terminated with '\0' character.
14446 If STRLEN is a valid pointer, length (including terminating character)
14447 of returned string is stored to the argument. */
14450 c_getstr (tree src
, unsigned HOST_WIDE_INT
*strlen
)
14457 src
= string_constant (src
, &offset_node
);
14461 unsigned HOST_WIDE_INT offset
= 0;
14462 if (offset_node
!= NULL_TREE
)
14464 if (!tree_fits_uhwi_p (offset_node
))
14467 offset
= tree_to_uhwi (offset_node
);
14470 unsigned HOST_WIDE_INT string_length
= TREE_STRING_LENGTH (src
);
14471 const char *string
= TREE_STRING_POINTER (src
);
14473 /* Support only properly null-terminated strings. */
14474 if (string_length
== 0
14475 || string
[string_length
- 1] != '\0'
14476 || offset
>= string_length
)
14480 *strlen
= string_length
- offset
;
14481 return string
+ offset
;
14486 namespace selftest
{
14488 /* Helper functions for writing tests of folding trees. */
14490 /* Verify that the binary op (LHS CODE RHS) folds to CONSTANT. */
14493 assert_binop_folds_to_const (tree lhs
, enum tree_code code
, tree rhs
,
14496 ASSERT_EQ (constant
, fold_build2 (code
, TREE_TYPE (lhs
), lhs
, rhs
));
14499 /* Verify that the binary op (LHS CODE RHS) folds to an NON_LVALUE_EXPR
14500 wrapping WRAPPED_EXPR. */
14503 assert_binop_folds_to_nonlvalue (tree lhs
, enum tree_code code
, tree rhs
,
14506 tree result
= fold_build2 (code
, TREE_TYPE (lhs
), lhs
, rhs
);
14507 ASSERT_NE (wrapped_expr
, result
);
14508 ASSERT_EQ (NON_LVALUE_EXPR
, TREE_CODE (result
));
14509 ASSERT_EQ (wrapped_expr
, TREE_OPERAND (result
, 0));
14512 /* Verify that various arithmetic binary operations are folded
14516 test_arithmetic_folding ()
14518 tree type
= integer_type_node
;
14519 tree x
= create_tmp_var_raw (type
, "x");
14520 tree zero
= build_zero_cst (type
);
14521 tree one
= build_int_cst (type
, 1);
14524 /* 1 <-- (0 + 1) */
14525 assert_binop_folds_to_const (zero
, PLUS_EXPR
, one
,
14527 assert_binop_folds_to_const (one
, PLUS_EXPR
, zero
,
14530 /* (nonlvalue)x <-- (x + 0) */
14531 assert_binop_folds_to_nonlvalue (x
, PLUS_EXPR
, zero
,
14535 /* 0 <-- (x - x) */
14536 assert_binop_folds_to_const (x
, MINUS_EXPR
, x
,
14538 assert_binop_folds_to_nonlvalue (x
, MINUS_EXPR
, zero
,
14541 /* Multiplication. */
14542 /* 0 <-- (x * 0) */
14543 assert_binop_folds_to_const (x
, MULT_EXPR
, zero
,
14546 /* (nonlvalue)x <-- (x * 1) */
14547 assert_binop_folds_to_nonlvalue (x
, MULT_EXPR
, one
,
14551 /* Verify that various binary operations on vectors are folded
14555 test_vector_folding ()
14557 tree inner_type
= integer_type_node
;
14558 tree type
= build_vector_type (inner_type
, 4);
14559 tree zero
= build_zero_cst (type
);
14560 tree one
= build_one_cst (type
);
14562 /* Verify equality tests that return a scalar boolean result. */
14563 tree res_type
= boolean_type_node
;
14564 ASSERT_FALSE (integer_nonzerop (fold_build2 (EQ_EXPR
, res_type
, zero
, one
)));
14565 ASSERT_TRUE (integer_nonzerop (fold_build2 (EQ_EXPR
, res_type
, zero
, zero
)));
14566 ASSERT_TRUE (integer_nonzerop (fold_build2 (NE_EXPR
, res_type
, zero
, one
)));
14567 ASSERT_FALSE (integer_nonzerop (fold_build2 (NE_EXPR
, res_type
, one
, one
)));
14570 /* Run all of the selftests within this file. */
14573 fold_const_c_tests ()
14575 test_arithmetic_folding ();
14576 test_vector_folding ();
14579 } // namespace selftest
14581 #endif /* CHECKING_P */