2015-12-18 Ville Voutilainen <ville.voutilainen@gmail.com>
[official-gcc.git] / gcc / tree-ssa-tail-merge.c
blob7ea092ab650f785572c80f0d03b5f80f904d57ec
1 /* Tail merging for gimple.
2 Copyright (C) 2011-2015 Free Software Foundation, Inc.
3 Contributed by Tom de Vries (tom@codesourcery.com)
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* Pass overview.
24 MOTIVATIONAL EXAMPLE
26 gimple representation of gcc/testsuite/gcc.dg/pr43864.c at
28 hprofStartupp (charD.1 * outputFileNameD.2600, charD.1 * ctxD.2601)
30 struct FILED.1638 * fpD.2605;
31 charD.1 fileNameD.2604[1000];
32 intD.0 D.3915;
33 const charD.1 * restrict outputFileName.0D.3914;
35 # BLOCK 2 freq:10000
36 # PRED: ENTRY [100.0%] (fallthru,exec)
37 # PT = nonlocal { D.3926 } (restr)
38 outputFileName.0D.3914_3
39 = (const charD.1 * restrict) outputFileNameD.2600_2(D);
40 # .MEMD.3923_13 = VDEF <.MEMD.3923_12(D)>
41 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
42 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
43 sprintfD.759 (&fileNameD.2604, outputFileName.0D.3914_3);
44 # .MEMD.3923_14 = VDEF <.MEMD.3923_13>
45 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
46 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
47 D.3915_4 = accessD.2606 (&fileNameD.2604, 1);
48 if (D.3915_4 == 0)
49 goto <bb 3>;
50 else
51 goto <bb 4>;
52 # SUCC: 3 [10.0%] (true,exec) 4 [90.0%] (false,exec)
54 # BLOCK 3 freq:1000
55 # PRED: 2 [10.0%] (true,exec)
56 # .MEMD.3923_15 = VDEF <.MEMD.3923_14>
57 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
58 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
59 freeD.898 (ctxD.2601_5(D));
60 goto <bb 7>;
61 # SUCC: 7 [100.0%] (fallthru,exec)
63 # BLOCK 4 freq:9000
64 # PRED: 2 [90.0%] (false,exec)
65 # .MEMD.3923_16 = VDEF <.MEMD.3923_14>
66 # PT = nonlocal escaped
67 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
68 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
69 fpD.2605_8 = fopenD.1805 (&fileNameD.2604[0], 0B);
70 if (fpD.2605_8 == 0B)
71 goto <bb 5>;
72 else
73 goto <bb 6>;
74 # SUCC: 5 [1.9%] (true,exec) 6 [98.1%] (false,exec)
76 # BLOCK 5 freq:173
77 # PRED: 4 [1.9%] (true,exec)
78 # .MEMD.3923_17 = VDEF <.MEMD.3923_16>
79 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
80 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
81 freeD.898 (ctxD.2601_5(D));
82 goto <bb 7>;
83 # SUCC: 7 [100.0%] (fallthru,exec)
85 # BLOCK 6 freq:8827
86 # PRED: 4 [98.1%] (false,exec)
87 # .MEMD.3923_18 = VDEF <.MEMD.3923_16>
88 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
89 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
90 fooD.2599 (outputFileNameD.2600_2(D), fpD.2605_8);
91 # SUCC: 7 [100.0%] (fallthru,exec)
93 # BLOCK 7 freq:10000
94 # PRED: 3 [100.0%] (fallthru,exec) 5 [100.0%] (fallthru,exec)
95 6 [100.0%] (fallthru,exec)
96 # PT = nonlocal null
98 # ctxD.2601_1 = PHI <0B(3), 0B(5), ctxD.2601_5(D)(6)>
99 # .MEMD.3923_11 = PHI <.MEMD.3923_15(3), .MEMD.3923_17(5),
100 .MEMD.3923_18(6)>
101 # VUSE <.MEMD.3923_11>
102 return ctxD.2601_1;
103 # SUCC: EXIT [100.0%]
106 bb 3 and bb 5 can be merged. The blocks have different predecessors, but the
107 same successors, and the same operations.
110 CONTEXT
112 A technique called tail merging (or cross jumping) can fix the example
113 above. For a block, we look for common code at the end (the tail) of the
114 predecessor blocks, and insert jumps from one block to the other.
115 The example is a special case for tail merging, in that 2 whole blocks
116 can be merged, rather than just the end parts of it.
117 We currently only focus on whole block merging, so in that sense
118 calling this pass tail merge is a bit of a misnomer.
120 We distinguish 2 kinds of situations in which blocks can be merged:
121 - same operations, same predecessors. The successor edges coming from one
122 block are redirected to come from the other block.
123 - same operations, same successors. The predecessor edges entering one block
124 are redirected to enter the other block. Note that this operation might
125 involve introducing phi operations.
127 For efficient implementation, we would like to value numbers the blocks, and
128 have a comparison operator that tells us whether the blocks are equal.
129 Besides being runtime efficient, block value numbering should also abstract
130 from irrelevant differences in order of operations, much like normal value
131 numbering abstracts from irrelevant order of operations.
133 For the first situation (same_operations, same predecessors), normal value
134 numbering fits well. We can calculate a block value number based on the
135 value numbers of the defs and vdefs.
137 For the second situation (same operations, same successors), this approach
138 doesn't work so well. We can illustrate this using the example. The calls
139 to free use different vdefs: MEMD.3923_16 and MEMD.3923_14, and these will
140 remain different in value numbering, since they represent different memory
141 states. So the resulting vdefs of the frees will be different in value
142 numbering, so the block value numbers will be different.
144 The reason why we call the blocks equal is not because they define the same
145 values, but because uses in the blocks use (possibly different) defs in the
146 same way. To be able to detect this efficiently, we need to do some kind of
147 reverse value numbering, meaning number the uses rather than the defs, and
148 calculate a block value number based on the value number of the uses.
149 Ideally, a block comparison operator will also indicate which phis are needed
150 to merge the blocks.
152 For the moment, we don't do block value numbering, but we do insn-by-insn
153 matching, using scc value numbers to match operations with results, and
154 structural comparison otherwise, while ignoring vop mismatches.
157 IMPLEMENTATION
159 1. The pass first determines all groups of blocks with the same successor
160 blocks.
161 2. Within each group, it tries to determine clusters of equal basic blocks.
162 3. The clusters are applied.
163 4. The same successor groups are updated.
164 5. This process is repeated from 2 onwards, until no more changes.
167 LIMITATIONS/TODO
169 - block only
170 - handles only 'same operations, same successors'.
171 It handles same predecessors as a special subcase though.
172 - does not implement the reverse value numbering and block value numbering.
173 - improve memory allocation: use garbage collected memory, obstacks,
174 allocpools where appropriate.
175 - no insertion of gimple_reg phis, We only introduce vop-phis.
176 - handle blocks with gimple_reg phi_nodes.
179 PASS PLACEMENT
180 This 'pass' is not a stand-alone gimple pass, but runs as part of
181 pass_pre, in order to share the value numbering.
184 SWITCHES
186 - ftree-tail-merge. On at -O2. We may have to enable it only at -Os. */
188 #include "config.h"
189 #include "system.h"
190 #include "coretypes.h"
191 #include "backend.h"
192 #include "tree.h"
193 #include "gimple.h"
194 #include "cfghooks.h"
195 #include "tree-pass.h"
196 #include "ssa.h"
197 #include "fold-const.h"
198 #include "trans-mem.h"
199 #include "cfganal.h"
200 #include "cfgcleanup.h"
201 #include "gimple-iterator.h"
202 #include "tree-cfg.h"
203 #include "tree-into-ssa.h"
204 #include "params.h"
205 #include "tree-ssa-sccvn.h"
206 #include "cfgloop.h"
208 /* Describes a group of bbs with the same successors. The successor bbs are
209 cached in succs, and the successor edge flags are cached in succ_flags.
210 If a bb has the EDGE_TRUE/FALSE_VALUE flags swapped compared to succ_flags,
211 it's marked in inverse.
212 Additionally, the hash value for the struct is cached in hashval, and
213 in_worklist indicates whether it's currently part of worklist. */
215 struct same_succ : pointer_hash <same_succ>
217 /* The bbs that have the same successor bbs. */
218 bitmap bbs;
219 /* The successor bbs. */
220 bitmap succs;
221 /* Indicates whether the EDGE_TRUE/FALSE_VALUEs of succ_flags are swapped for
222 bb. */
223 bitmap inverse;
224 /* The edge flags for each of the successor bbs. */
225 vec<int> succ_flags;
226 /* Indicates whether the struct is currently in the worklist. */
227 bool in_worklist;
228 /* The hash value of the struct. */
229 hashval_t hashval;
231 /* hash_table support. */
232 static inline hashval_t hash (const same_succ *);
233 static int equal (const same_succ *, const same_succ *);
234 static void remove (same_succ *);
237 /* hash routine for hash_table support, returns hashval of E. */
239 inline hashval_t
240 same_succ::hash (const same_succ *e)
242 return e->hashval;
245 /* A group of bbs where 1 bb from bbs can replace the other bbs. */
247 struct bb_cluster
249 /* The bbs in the cluster. */
250 bitmap bbs;
251 /* The preds of the bbs in the cluster. */
252 bitmap preds;
253 /* Index in all_clusters vector. */
254 int index;
255 /* The bb to replace the cluster with. */
256 basic_block rep_bb;
259 /* Per bb-info. */
261 struct aux_bb_info
263 /* The number of non-debug statements in the bb. */
264 int size;
265 /* The same_succ that this bb is a member of. */
266 same_succ *bb_same_succ;
267 /* The cluster that this bb is a member of. */
268 bb_cluster *cluster;
269 /* The vop state at the exit of a bb. This is shortlived data, used to
270 communicate data between update_block_by and update_vuses. */
271 tree vop_at_exit;
272 /* The bb that either contains or is dominated by the dependencies of the
273 bb. */
274 basic_block dep_bb;
277 /* Macros to access the fields of struct aux_bb_info. */
279 #define BB_SIZE(bb) (((struct aux_bb_info *)bb->aux)->size)
280 #define BB_SAME_SUCC(bb) (((struct aux_bb_info *)bb->aux)->bb_same_succ)
281 #define BB_CLUSTER(bb) (((struct aux_bb_info *)bb->aux)->cluster)
282 #define BB_VOP_AT_EXIT(bb) (((struct aux_bb_info *)bb->aux)->vop_at_exit)
283 #define BB_DEP_BB(bb) (((struct aux_bb_info *)bb->aux)->dep_bb)
285 /* Returns true if the only effect a statement STMT has, is to define locally
286 used SSA_NAMEs. */
288 static bool
289 stmt_local_def (gimple *stmt)
291 basic_block bb, def_bb;
292 imm_use_iterator iter;
293 use_operand_p use_p;
294 tree val;
295 def_operand_p def_p;
297 if (gimple_vdef (stmt) != NULL_TREE
298 || gimple_has_side_effects (stmt)
299 || gimple_could_trap_p_1 (stmt, false, false)
300 || gimple_vuse (stmt) != NULL_TREE)
301 return false;
303 def_p = SINGLE_SSA_DEF_OPERAND (stmt, SSA_OP_DEF);
304 if (def_p == NULL)
305 return false;
307 val = DEF_FROM_PTR (def_p);
308 if (val == NULL_TREE || TREE_CODE (val) != SSA_NAME)
309 return false;
311 def_bb = gimple_bb (stmt);
313 FOR_EACH_IMM_USE_FAST (use_p, iter, val)
315 if (is_gimple_debug (USE_STMT (use_p)))
316 continue;
317 bb = gimple_bb (USE_STMT (use_p));
318 if (bb == def_bb)
319 continue;
321 if (gimple_code (USE_STMT (use_p)) == GIMPLE_PHI
322 && EDGE_PRED (bb, PHI_ARG_INDEX_FROM_USE (use_p))->src == def_bb)
323 continue;
325 return false;
328 return true;
331 /* Let GSI skip forwards over local defs. */
333 static void
334 gsi_advance_fw_nondebug_nonlocal (gimple_stmt_iterator *gsi)
336 gimple *stmt;
338 while (true)
340 if (gsi_end_p (*gsi))
341 return;
342 stmt = gsi_stmt (*gsi);
343 if (!stmt_local_def (stmt))
344 return;
345 gsi_next_nondebug (gsi);
349 /* VAL1 and VAL2 are either:
350 - uses in BB1 and BB2, or
351 - phi alternatives for BB1 and BB2.
352 Return true if the uses have the same gvn value. */
354 static bool
355 gvn_uses_equal (tree val1, tree val2)
357 gcc_checking_assert (val1 != NULL_TREE && val2 != NULL_TREE);
359 if (val1 == val2)
360 return true;
362 if (vn_valueize (val1) != vn_valueize (val2))
363 return false;
365 return ((TREE_CODE (val1) == SSA_NAME || CONSTANT_CLASS_P (val1))
366 && (TREE_CODE (val2) == SSA_NAME || CONSTANT_CLASS_P (val2)));
369 /* Prints E to FILE. */
371 static void
372 same_succ_print (FILE *file, const same_succ *e)
374 unsigned int i;
375 bitmap_print (file, e->bbs, "bbs:", "\n");
376 bitmap_print (file, e->succs, "succs:", "\n");
377 bitmap_print (file, e->inverse, "inverse:", "\n");
378 fprintf (file, "flags:");
379 for (i = 0; i < e->succ_flags.length (); ++i)
380 fprintf (file, " %x", e->succ_flags[i]);
381 fprintf (file, "\n");
384 /* Prints same_succ VE to VFILE. */
386 inline int
387 ssa_same_succ_print_traverse (same_succ **pe, FILE *file)
389 const same_succ *e = *pe;
390 same_succ_print (file, e);
391 return 1;
394 /* Update BB_DEP_BB (USE_BB), given a use of VAL in USE_BB. */
396 static void
397 update_dep_bb (basic_block use_bb, tree val)
399 basic_block dep_bb;
401 /* Not a dep. */
402 if (TREE_CODE (val) != SSA_NAME)
403 return;
405 /* Skip use of global def. */
406 if (SSA_NAME_IS_DEFAULT_DEF (val))
407 return;
409 /* Skip use of local def. */
410 dep_bb = gimple_bb (SSA_NAME_DEF_STMT (val));
411 if (dep_bb == use_bb)
412 return;
414 if (BB_DEP_BB (use_bb) == NULL
415 || dominated_by_p (CDI_DOMINATORS, dep_bb, BB_DEP_BB (use_bb)))
416 BB_DEP_BB (use_bb) = dep_bb;
419 /* Update BB_DEP_BB, given the dependencies in STMT. */
421 static void
422 stmt_update_dep_bb (gimple *stmt)
424 ssa_op_iter iter;
425 use_operand_p use;
427 FOR_EACH_SSA_USE_OPERAND (use, stmt, iter, SSA_OP_USE)
428 update_dep_bb (gimple_bb (stmt), USE_FROM_PTR (use));
431 /* Calculates hash value for same_succ VE. */
433 static hashval_t
434 same_succ_hash (const same_succ *e)
436 inchash::hash hstate (bitmap_hash (e->succs));
437 int flags;
438 unsigned int i;
439 unsigned int first = bitmap_first_set_bit (e->bbs);
440 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, first);
441 int size = 0;
442 gimple *stmt;
443 tree arg;
444 unsigned int s;
445 bitmap_iterator bs;
447 for (gimple_stmt_iterator gsi = gsi_start_nondebug_bb (bb);
448 !gsi_end_p (gsi); gsi_next_nondebug (&gsi))
450 stmt = gsi_stmt (gsi);
451 stmt_update_dep_bb (stmt);
452 if (stmt_local_def (stmt))
453 continue;
454 size++;
456 hstate.add_int (gimple_code (stmt));
457 if (is_gimple_assign (stmt))
458 hstate.add_int (gimple_assign_rhs_code (stmt));
459 if (!is_gimple_call (stmt))
460 continue;
461 if (gimple_call_internal_p (stmt))
462 hstate.add_int (gimple_call_internal_fn (stmt));
463 else
465 inchash::add_expr (gimple_call_fn (stmt), hstate);
466 if (gimple_call_chain (stmt))
467 inchash::add_expr (gimple_call_chain (stmt), hstate);
469 for (i = 0; i < gimple_call_num_args (stmt); i++)
471 arg = gimple_call_arg (stmt, i);
472 arg = vn_valueize (arg);
473 inchash::add_expr (arg, hstate);
477 hstate.add_int (size);
478 BB_SIZE (bb) = size;
480 for (i = 0; i < e->succ_flags.length (); ++i)
482 flags = e->succ_flags[i];
483 flags = flags & ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
484 hstate.add_int (flags);
487 EXECUTE_IF_SET_IN_BITMAP (e->succs, 0, s, bs)
489 int n = find_edge (bb, BASIC_BLOCK_FOR_FN (cfun, s))->dest_idx;
490 for (gphi_iterator gsi = gsi_start_phis (BASIC_BLOCK_FOR_FN (cfun, s));
491 !gsi_end_p (gsi);
492 gsi_next (&gsi))
494 gphi *phi = gsi.phi ();
495 tree lhs = gimple_phi_result (phi);
496 tree val = gimple_phi_arg_def (phi, n);
498 if (virtual_operand_p (lhs))
499 continue;
500 update_dep_bb (bb, val);
504 return hstate.end ();
507 /* Returns true if E1 and E2 have 2 successors, and if the successor flags
508 are inverse for the EDGE_TRUE_VALUE and EDGE_FALSE_VALUE flags, and equal for
509 the other edge flags. */
511 static bool
512 inverse_flags (const same_succ *e1, const same_succ *e2)
514 int f1a, f1b, f2a, f2b;
515 int mask = ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
517 if (e1->succ_flags.length () != 2)
518 return false;
520 f1a = e1->succ_flags[0];
521 f1b = e1->succ_flags[1];
522 f2a = e2->succ_flags[0];
523 f2b = e2->succ_flags[1];
525 if (f1a == f2a && f1b == f2b)
526 return false;
528 return (f1a & mask) == (f2a & mask) && (f1b & mask) == (f2b & mask);
531 /* Compares SAME_SUCCs E1 and E2. */
534 same_succ::equal (const same_succ *e1, const same_succ *e2)
536 unsigned int i, first1, first2;
537 gimple_stmt_iterator gsi1, gsi2;
538 gimple *s1, *s2;
539 basic_block bb1, bb2;
541 if (e1->hashval != e2->hashval)
542 return 0;
544 if (e1->succ_flags.length () != e2->succ_flags.length ())
545 return 0;
547 if (!bitmap_equal_p (e1->succs, e2->succs))
548 return 0;
550 if (!inverse_flags (e1, e2))
552 for (i = 0; i < e1->succ_flags.length (); ++i)
553 if (e1->succ_flags[i] != e2->succ_flags[i])
554 return 0;
557 first1 = bitmap_first_set_bit (e1->bbs);
558 first2 = bitmap_first_set_bit (e2->bbs);
560 bb1 = BASIC_BLOCK_FOR_FN (cfun, first1);
561 bb2 = BASIC_BLOCK_FOR_FN (cfun, first2);
563 if (BB_SIZE (bb1) != BB_SIZE (bb2))
564 return 0;
566 gsi1 = gsi_start_nondebug_bb (bb1);
567 gsi2 = gsi_start_nondebug_bb (bb2);
568 gsi_advance_fw_nondebug_nonlocal (&gsi1);
569 gsi_advance_fw_nondebug_nonlocal (&gsi2);
570 while (!(gsi_end_p (gsi1) || gsi_end_p (gsi2)))
572 s1 = gsi_stmt (gsi1);
573 s2 = gsi_stmt (gsi2);
574 if (gimple_code (s1) != gimple_code (s2))
575 return 0;
576 if (is_gimple_call (s1) && !gimple_call_same_target_p (s1, s2))
577 return 0;
578 gsi_next_nondebug (&gsi1);
579 gsi_next_nondebug (&gsi2);
580 gsi_advance_fw_nondebug_nonlocal (&gsi1);
581 gsi_advance_fw_nondebug_nonlocal (&gsi2);
584 return 1;
587 /* Alloc and init a new SAME_SUCC. */
589 static same_succ *
590 same_succ_alloc (void)
592 same_succ *same = XNEW (struct same_succ);
594 same->bbs = BITMAP_ALLOC (NULL);
595 same->succs = BITMAP_ALLOC (NULL);
596 same->inverse = BITMAP_ALLOC (NULL);
597 same->succ_flags.create (10);
598 same->in_worklist = false;
600 return same;
603 /* Delete same_succ E. */
605 void
606 same_succ::remove (same_succ *e)
608 BITMAP_FREE (e->bbs);
609 BITMAP_FREE (e->succs);
610 BITMAP_FREE (e->inverse);
611 e->succ_flags.release ();
613 XDELETE (e);
616 /* Reset same_succ SAME. */
618 static void
619 same_succ_reset (same_succ *same)
621 bitmap_clear (same->bbs);
622 bitmap_clear (same->succs);
623 bitmap_clear (same->inverse);
624 same->succ_flags.truncate (0);
627 static hash_table<same_succ> *same_succ_htab;
629 /* Array that is used to store the edge flags for a successor. */
631 static int *same_succ_edge_flags;
633 /* Bitmap that is used to mark bbs that are recently deleted. */
635 static bitmap deleted_bbs;
637 /* Bitmap that is used to mark predecessors of bbs that are
638 deleted. */
640 static bitmap deleted_bb_preds;
642 /* Prints same_succ_htab to stderr. */
644 extern void debug_same_succ (void);
645 DEBUG_FUNCTION void
646 debug_same_succ ( void)
648 same_succ_htab->traverse <FILE *, ssa_same_succ_print_traverse> (stderr);
652 /* Vector of bbs to process. */
654 static vec<same_succ *> worklist;
656 /* Prints worklist to FILE. */
658 static void
659 print_worklist (FILE *file)
661 unsigned int i;
662 for (i = 0; i < worklist.length (); ++i)
663 same_succ_print (file, worklist[i]);
666 /* Adds SAME to worklist. */
668 static void
669 add_to_worklist (same_succ *same)
671 if (same->in_worklist)
672 return;
674 if (bitmap_count_bits (same->bbs) < 2)
675 return;
677 same->in_worklist = true;
678 worklist.safe_push (same);
681 /* Add BB to same_succ_htab. */
683 static void
684 find_same_succ_bb (basic_block bb, same_succ **same_p)
686 unsigned int j;
687 bitmap_iterator bj;
688 same_succ *same = *same_p;
689 same_succ **slot;
690 edge_iterator ei;
691 edge e;
693 if (bb == NULL
694 /* Be conservative with loop structure. It's not evident that this test
695 is sufficient. Before tail-merge, we've just called
696 loop_optimizer_finalize, and LOOPS_MAY_HAVE_MULTIPLE_LATCHES is now
697 set, so there's no guarantee that the loop->latch value is still valid.
698 But we assume that, since we've forced LOOPS_HAVE_SIMPLE_LATCHES at the
699 start of pre, we've kept that property intact throughout pre, and are
700 keeping it throughout tail-merge using this test. */
701 || bb->loop_father->latch == bb)
702 return;
703 bitmap_set_bit (same->bbs, bb->index);
704 FOR_EACH_EDGE (e, ei, bb->succs)
706 int index = e->dest->index;
707 bitmap_set_bit (same->succs, index);
708 same_succ_edge_flags[index] = e->flags;
710 EXECUTE_IF_SET_IN_BITMAP (same->succs, 0, j, bj)
711 same->succ_flags.safe_push (same_succ_edge_flags[j]);
713 same->hashval = same_succ_hash (same);
715 slot = same_succ_htab->find_slot_with_hash (same, same->hashval, INSERT);
716 if (*slot == NULL)
718 *slot = same;
719 BB_SAME_SUCC (bb) = same;
720 add_to_worklist (same);
721 *same_p = NULL;
723 else
725 bitmap_set_bit ((*slot)->bbs, bb->index);
726 BB_SAME_SUCC (bb) = *slot;
727 add_to_worklist (*slot);
728 if (inverse_flags (same, *slot))
729 bitmap_set_bit ((*slot)->inverse, bb->index);
730 same_succ_reset (same);
734 /* Find bbs with same successors. */
736 static void
737 find_same_succ (void)
739 same_succ *same = same_succ_alloc ();
740 basic_block bb;
742 FOR_EACH_BB_FN (bb, cfun)
744 find_same_succ_bb (bb, &same);
745 if (same == NULL)
746 same = same_succ_alloc ();
749 same_succ::remove (same);
752 /* Initializes worklist administration. */
754 static void
755 init_worklist (void)
757 alloc_aux_for_blocks (sizeof (struct aux_bb_info));
758 same_succ_htab = new hash_table<same_succ> (n_basic_blocks_for_fn (cfun));
759 same_succ_edge_flags = XCNEWVEC (int, last_basic_block_for_fn (cfun));
760 deleted_bbs = BITMAP_ALLOC (NULL);
761 deleted_bb_preds = BITMAP_ALLOC (NULL);
762 worklist.create (n_basic_blocks_for_fn (cfun));
763 find_same_succ ();
765 if (dump_file && (dump_flags & TDF_DETAILS))
767 fprintf (dump_file, "initial worklist:\n");
768 print_worklist (dump_file);
772 /* Deletes worklist administration. */
774 static void
775 delete_worklist (void)
777 free_aux_for_blocks ();
778 delete same_succ_htab;
779 same_succ_htab = NULL;
780 XDELETEVEC (same_succ_edge_flags);
781 same_succ_edge_flags = NULL;
782 BITMAP_FREE (deleted_bbs);
783 BITMAP_FREE (deleted_bb_preds);
784 worklist.release ();
787 /* Mark BB as deleted, and mark its predecessors. */
789 static void
790 mark_basic_block_deleted (basic_block bb)
792 edge e;
793 edge_iterator ei;
795 bitmap_set_bit (deleted_bbs, bb->index);
797 FOR_EACH_EDGE (e, ei, bb->preds)
798 bitmap_set_bit (deleted_bb_preds, e->src->index);
801 /* Removes BB from its corresponding same_succ. */
803 static void
804 same_succ_flush_bb (basic_block bb)
806 same_succ *same = BB_SAME_SUCC (bb);
807 BB_SAME_SUCC (bb) = NULL;
808 if (bitmap_single_bit_set_p (same->bbs))
809 same_succ_htab->remove_elt_with_hash (same, same->hashval);
810 else
811 bitmap_clear_bit (same->bbs, bb->index);
814 /* Removes all bbs in BBS from their corresponding same_succ. */
816 static void
817 same_succ_flush_bbs (bitmap bbs)
819 unsigned int i;
820 bitmap_iterator bi;
822 EXECUTE_IF_SET_IN_BITMAP (bbs, 0, i, bi)
823 same_succ_flush_bb (BASIC_BLOCK_FOR_FN (cfun, i));
826 /* Release the last vdef in BB, either normal or phi result. */
828 static void
829 release_last_vdef (basic_block bb)
831 for (gimple_stmt_iterator i = gsi_last_bb (bb); !gsi_end_p (i);
832 gsi_prev_nondebug (&i))
834 gimple *stmt = gsi_stmt (i);
835 if (gimple_vdef (stmt) == NULL_TREE)
836 continue;
838 mark_virtual_operand_for_renaming (gimple_vdef (stmt));
839 return;
842 for (gphi_iterator i = gsi_start_phis (bb); !gsi_end_p (i);
843 gsi_next (&i))
845 gphi *phi = i.phi ();
846 tree res = gimple_phi_result (phi);
848 if (!virtual_operand_p (res))
849 continue;
851 mark_virtual_phi_result_for_renaming (phi);
852 return;
856 /* For deleted_bb_preds, find bbs with same successors. */
858 static void
859 update_worklist (void)
861 unsigned int i;
862 bitmap_iterator bi;
863 basic_block bb;
864 same_succ *same;
866 bitmap_and_compl_into (deleted_bb_preds, deleted_bbs);
867 bitmap_clear (deleted_bbs);
869 bitmap_clear_bit (deleted_bb_preds, ENTRY_BLOCK);
870 same_succ_flush_bbs (deleted_bb_preds);
872 same = same_succ_alloc ();
873 EXECUTE_IF_SET_IN_BITMAP (deleted_bb_preds, 0, i, bi)
875 bb = BASIC_BLOCK_FOR_FN (cfun, i);
876 gcc_assert (bb != NULL);
877 find_same_succ_bb (bb, &same);
878 if (same == NULL)
879 same = same_succ_alloc ();
881 same_succ::remove (same);
882 bitmap_clear (deleted_bb_preds);
885 /* Prints cluster C to FILE. */
887 static void
888 print_cluster (FILE *file, bb_cluster *c)
890 if (c == NULL)
891 return;
892 bitmap_print (file, c->bbs, "bbs:", "\n");
893 bitmap_print (file, c->preds, "preds:", "\n");
896 /* Prints cluster C to stderr. */
898 extern void debug_cluster (bb_cluster *);
899 DEBUG_FUNCTION void
900 debug_cluster (bb_cluster *c)
902 print_cluster (stderr, c);
905 /* Update C->rep_bb, given that BB is added to the cluster. */
907 static void
908 update_rep_bb (bb_cluster *c, basic_block bb)
910 /* Initial. */
911 if (c->rep_bb == NULL)
913 c->rep_bb = bb;
914 return;
917 /* Current needs no deps, keep it. */
918 if (BB_DEP_BB (c->rep_bb) == NULL)
919 return;
921 /* Bb needs no deps, change rep_bb. */
922 if (BB_DEP_BB (bb) == NULL)
924 c->rep_bb = bb;
925 return;
928 /* Bb needs last deps earlier than current, change rep_bb. A potential
929 problem with this, is that the first deps might also be earlier, which
930 would mean we prefer longer lifetimes for the deps. To be able to check
931 for this, we would have to trace BB_FIRST_DEP_BB as well, besides
932 BB_DEP_BB, which is really BB_LAST_DEP_BB.
933 The benefit of choosing the bb with last deps earlier, is that it can
934 potentially be used as replacement for more bbs. */
935 if (dominated_by_p (CDI_DOMINATORS, BB_DEP_BB (c->rep_bb), BB_DEP_BB (bb)))
936 c->rep_bb = bb;
939 /* Add BB to cluster C. Sets BB in C->bbs, and preds of BB in C->preds. */
941 static void
942 add_bb_to_cluster (bb_cluster *c, basic_block bb)
944 edge e;
945 edge_iterator ei;
947 bitmap_set_bit (c->bbs, bb->index);
949 FOR_EACH_EDGE (e, ei, bb->preds)
950 bitmap_set_bit (c->preds, e->src->index);
952 update_rep_bb (c, bb);
955 /* Allocate and init new cluster. */
957 static bb_cluster *
958 new_cluster (void)
960 bb_cluster *c;
961 c = XCNEW (bb_cluster);
962 c->bbs = BITMAP_ALLOC (NULL);
963 c->preds = BITMAP_ALLOC (NULL);
964 c->rep_bb = NULL;
965 return c;
968 /* Delete clusters. */
970 static void
971 delete_cluster (bb_cluster *c)
973 if (c == NULL)
974 return;
975 BITMAP_FREE (c->bbs);
976 BITMAP_FREE (c->preds);
977 XDELETE (c);
981 /* Array that contains all clusters. */
983 static vec<bb_cluster *> all_clusters;
985 /* Allocate all cluster vectors. */
987 static void
988 alloc_cluster_vectors (void)
990 all_clusters.create (n_basic_blocks_for_fn (cfun));
993 /* Reset all cluster vectors. */
995 static void
996 reset_cluster_vectors (void)
998 unsigned int i;
999 basic_block bb;
1000 for (i = 0; i < all_clusters.length (); ++i)
1001 delete_cluster (all_clusters[i]);
1002 all_clusters.truncate (0);
1003 FOR_EACH_BB_FN (bb, cfun)
1004 BB_CLUSTER (bb) = NULL;
1007 /* Delete all cluster vectors. */
1009 static void
1010 delete_cluster_vectors (void)
1012 unsigned int i;
1013 for (i = 0; i < all_clusters.length (); ++i)
1014 delete_cluster (all_clusters[i]);
1015 all_clusters.release ();
1018 /* Merge cluster C2 into C1. */
1020 static void
1021 merge_clusters (bb_cluster *c1, bb_cluster *c2)
1023 bitmap_ior_into (c1->bbs, c2->bbs);
1024 bitmap_ior_into (c1->preds, c2->preds);
1027 /* Register equivalence of BB1 and BB2 (members of cluster C). Store c in
1028 all_clusters, or merge c with existing cluster. */
1030 static void
1031 set_cluster (basic_block bb1, basic_block bb2)
1033 basic_block merge_bb, other_bb;
1034 bb_cluster *merge, *old, *c;
1036 if (BB_CLUSTER (bb1) == NULL && BB_CLUSTER (bb2) == NULL)
1038 c = new_cluster ();
1039 add_bb_to_cluster (c, bb1);
1040 add_bb_to_cluster (c, bb2);
1041 BB_CLUSTER (bb1) = c;
1042 BB_CLUSTER (bb2) = c;
1043 c->index = all_clusters.length ();
1044 all_clusters.safe_push (c);
1046 else if (BB_CLUSTER (bb1) == NULL || BB_CLUSTER (bb2) == NULL)
1048 merge_bb = BB_CLUSTER (bb1) == NULL ? bb2 : bb1;
1049 other_bb = BB_CLUSTER (bb1) == NULL ? bb1 : bb2;
1050 merge = BB_CLUSTER (merge_bb);
1051 add_bb_to_cluster (merge, other_bb);
1052 BB_CLUSTER (other_bb) = merge;
1054 else if (BB_CLUSTER (bb1) != BB_CLUSTER (bb2))
1056 unsigned int i;
1057 bitmap_iterator bi;
1059 old = BB_CLUSTER (bb2);
1060 merge = BB_CLUSTER (bb1);
1061 merge_clusters (merge, old);
1062 EXECUTE_IF_SET_IN_BITMAP (old->bbs, 0, i, bi)
1063 BB_CLUSTER (BASIC_BLOCK_FOR_FN (cfun, i)) = merge;
1064 all_clusters[old->index] = NULL;
1065 update_rep_bb (merge, old->rep_bb);
1066 delete_cluster (old);
1068 else
1069 gcc_unreachable ();
1072 /* Return true if gimple operands T1 and T2 have the same value. */
1074 static bool
1075 gimple_operand_equal_value_p (tree t1, tree t2)
1077 if (t1 == t2)
1078 return true;
1080 if (t1 == NULL_TREE
1081 || t2 == NULL_TREE)
1082 return false;
1084 if (operand_equal_p (t1, t2, OEP_MATCH_SIDE_EFFECTS))
1085 return true;
1087 return gvn_uses_equal (t1, t2);
1090 /* Return true if gimple statements S1 and S2 are equal. Gimple_bb (s1) and
1091 gimple_bb (s2) are members of SAME_SUCC. */
1093 static bool
1094 gimple_equal_p (same_succ *same_succ, gimple *s1, gimple *s2)
1096 unsigned int i;
1097 tree lhs1, lhs2;
1098 basic_block bb1 = gimple_bb (s1), bb2 = gimple_bb (s2);
1099 tree t1, t2;
1100 bool inv_cond;
1101 enum tree_code code1, code2;
1103 if (gimple_code (s1) != gimple_code (s2))
1104 return false;
1106 switch (gimple_code (s1))
1108 case GIMPLE_CALL:
1109 if (!gimple_call_same_target_p (s1, s2))
1110 return false;
1112 t1 = gimple_call_chain (s1);
1113 t2 = gimple_call_chain (s2);
1114 if (!gimple_operand_equal_value_p (t1, t2))
1115 return false;
1117 if (gimple_call_num_args (s1) != gimple_call_num_args (s2))
1118 return false;
1120 for (i = 0; i < gimple_call_num_args (s1); ++i)
1122 t1 = gimple_call_arg (s1, i);
1123 t2 = gimple_call_arg (s2, i);
1124 if (!gimple_operand_equal_value_p (t1, t2))
1125 return false;
1128 lhs1 = gimple_get_lhs (s1);
1129 lhs2 = gimple_get_lhs (s2);
1130 if (lhs1 == NULL_TREE && lhs2 == NULL_TREE)
1131 return true;
1132 if (lhs1 == NULL_TREE || lhs2 == NULL_TREE)
1133 return false;
1134 if (TREE_CODE (lhs1) == SSA_NAME && TREE_CODE (lhs2) == SSA_NAME)
1135 return vn_valueize (lhs1) == vn_valueize (lhs2);
1136 return operand_equal_p (lhs1, lhs2, 0);
1138 case GIMPLE_ASSIGN:
1139 lhs1 = gimple_get_lhs (s1);
1140 lhs2 = gimple_get_lhs (s2);
1141 if (TREE_CODE (lhs1) != SSA_NAME
1142 && TREE_CODE (lhs2) != SSA_NAME)
1143 return (operand_equal_p (lhs1, lhs2, 0)
1144 && gimple_operand_equal_value_p (gimple_assign_rhs1 (s1),
1145 gimple_assign_rhs1 (s2)));
1146 else if (TREE_CODE (lhs1) == SSA_NAME
1147 && TREE_CODE (lhs2) == SSA_NAME)
1148 return operand_equal_p (gimple_assign_rhs1 (s1),
1149 gimple_assign_rhs1 (s2), 0);
1150 return false;
1152 case GIMPLE_COND:
1153 t1 = gimple_cond_lhs (s1);
1154 t2 = gimple_cond_lhs (s2);
1155 if (!gimple_operand_equal_value_p (t1, t2))
1156 return false;
1158 t1 = gimple_cond_rhs (s1);
1159 t2 = gimple_cond_rhs (s2);
1160 if (!gimple_operand_equal_value_p (t1, t2))
1161 return false;
1163 code1 = gimple_expr_code (s1);
1164 code2 = gimple_expr_code (s2);
1165 inv_cond = (bitmap_bit_p (same_succ->inverse, bb1->index)
1166 != bitmap_bit_p (same_succ->inverse, bb2->index));
1167 if (inv_cond)
1169 bool honor_nans = HONOR_NANS (t1);
1170 code2 = invert_tree_comparison (code2, honor_nans);
1172 return code1 == code2;
1174 default:
1175 return false;
1179 /* Let GSI skip backwards over local defs. Return the earliest vuse in VUSE.
1180 Return true in VUSE_ESCAPED if the vuse influenced a SSA_OP_DEF of one of the
1181 processed statements. */
1183 static void
1184 gsi_advance_bw_nondebug_nonlocal (gimple_stmt_iterator *gsi, tree *vuse,
1185 bool *vuse_escaped)
1187 gimple *stmt;
1188 tree lvuse;
1190 while (true)
1192 if (gsi_end_p (*gsi))
1193 return;
1194 stmt = gsi_stmt (*gsi);
1196 lvuse = gimple_vuse (stmt);
1197 if (lvuse != NULL_TREE)
1199 *vuse = lvuse;
1200 if (!ZERO_SSA_OPERANDS (stmt, SSA_OP_DEF))
1201 *vuse_escaped = true;
1204 if (!stmt_local_def (stmt))
1205 return;
1206 gsi_prev_nondebug (gsi);
1210 /* Determines whether BB1 and BB2 (members of same_succ) are duplicates. If so,
1211 clusters them. */
1213 static void
1214 find_duplicate (same_succ *same_succ, basic_block bb1, basic_block bb2)
1216 gimple_stmt_iterator gsi1 = gsi_last_nondebug_bb (bb1);
1217 gimple_stmt_iterator gsi2 = gsi_last_nondebug_bb (bb2);
1218 tree vuse1 = NULL_TREE, vuse2 = NULL_TREE;
1219 bool vuse_escaped = false;
1221 gsi_advance_bw_nondebug_nonlocal (&gsi1, &vuse1, &vuse_escaped);
1222 gsi_advance_bw_nondebug_nonlocal (&gsi2, &vuse2, &vuse_escaped);
1224 while (!gsi_end_p (gsi1) && !gsi_end_p (gsi2))
1226 gimple *stmt1 = gsi_stmt (gsi1);
1227 gimple *stmt2 = gsi_stmt (gsi2);
1229 /* What could be better than this here is to blacklist the bb
1230 containing the stmt, when encountering the stmt f.i. in
1231 same_succ_hash. */
1232 if (is_tm_ending (stmt1)
1233 || is_tm_ending (stmt2))
1234 return;
1236 if (!gimple_equal_p (same_succ, stmt1, stmt2))
1237 return;
1239 gsi_prev_nondebug (&gsi1);
1240 gsi_prev_nondebug (&gsi2);
1241 gsi_advance_bw_nondebug_nonlocal (&gsi1, &vuse1, &vuse_escaped);
1242 gsi_advance_bw_nondebug_nonlocal (&gsi2, &vuse2, &vuse_escaped);
1245 if (!(gsi_end_p (gsi1) && gsi_end_p (gsi2)))
1246 return;
1248 /* If the incoming vuses are not the same, and the vuse escaped into an
1249 SSA_OP_DEF, then merging the 2 blocks will change the value of the def,
1250 which potentially means the semantics of one of the blocks will be changed.
1251 TODO: make this check more precise. */
1252 if (vuse_escaped && vuse1 != vuse2)
1253 return;
1255 if (dump_file)
1256 fprintf (dump_file, "find_duplicates: <bb %d> duplicate of <bb %d>\n",
1257 bb1->index, bb2->index);
1259 set_cluster (bb1, bb2);
1262 /* Returns whether for all phis in DEST the phi alternatives for E1 and
1263 E2 are equal. */
1265 static bool
1266 same_phi_alternatives_1 (basic_block dest, edge e1, edge e2)
1268 int n1 = e1->dest_idx, n2 = e2->dest_idx;
1269 gphi_iterator gsi;
1271 for (gsi = gsi_start_phis (dest); !gsi_end_p (gsi); gsi_next (&gsi))
1273 gphi *phi = gsi.phi ();
1274 tree lhs = gimple_phi_result (phi);
1275 tree val1 = gimple_phi_arg_def (phi, n1);
1276 tree val2 = gimple_phi_arg_def (phi, n2);
1278 if (virtual_operand_p (lhs))
1279 continue;
1281 if (operand_equal_for_phi_arg_p (val1, val2))
1282 continue;
1283 if (gvn_uses_equal (val1, val2))
1284 continue;
1286 return false;
1289 return true;
1292 /* Returns whether for all successors of BB1 and BB2 (members of SAME_SUCC), the
1293 phi alternatives for BB1 and BB2 are equal. */
1295 static bool
1296 same_phi_alternatives (same_succ *same_succ, basic_block bb1, basic_block bb2)
1298 unsigned int s;
1299 bitmap_iterator bs;
1300 edge e1, e2;
1301 basic_block succ;
1303 EXECUTE_IF_SET_IN_BITMAP (same_succ->succs, 0, s, bs)
1305 succ = BASIC_BLOCK_FOR_FN (cfun, s);
1306 e1 = find_edge (bb1, succ);
1307 e2 = find_edge (bb2, succ);
1308 if (e1->flags & EDGE_COMPLEX
1309 || e2->flags & EDGE_COMPLEX)
1310 return false;
1312 /* For all phis in bb, the phi alternatives for e1 and e2 need to have
1313 the same value. */
1314 if (!same_phi_alternatives_1 (succ, e1, e2))
1315 return false;
1318 return true;
1321 /* Return true if BB has non-vop phis. */
1323 static bool
1324 bb_has_non_vop_phi (basic_block bb)
1326 gimple_seq phis = phi_nodes (bb);
1327 gimple *phi;
1329 if (phis == NULL)
1330 return false;
1332 if (!gimple_seq_singleton_p (phis))
1333 return true;
1335 phi = gimple_seq_first_stmt (phis);
1336 return !virtual_operand_p (gimple_phi_result (phi));
1339 /* Returns true if redirecting the incoming edges of FROM to TO maintains the
1340 invariant that uses in FROM are dominates by their defs. */
1342 static bool
1343 deps_ok_for_redirect_from_bb_to_bb (basic_block from, basic_block to)
1345 basic_block cd, dep_bb = BB_DEP_BB (to);
1346 edge_iterator ei;
1347 edge e;
1348 bitmap from_preds = BITMAP_ALLOC (NULL);
1350 if (dep_bb == NULL)
1351 return true;
1353 FOR_EACH_EDGE (e, ei, from->preds)
1354 bitmap_set_bit (from_preds, e->src->index);
1355 cd = nearest_common_dominator_for_set (CDI_DOMINATORS, from_preds);
1356 BITMAP_FREE (from_preds);
1358 return dominated_by_p (CDI_DOMINATORS, dep_bb, cd);
1361 /* Returns true if replacing BB1 (or its replacement bb) by BB2 (or its
1362 replacement bb) and vice versa maintains the invariant that uses in the
1363 replacement are dominates by their defs. */
1365 static bool
1366 deps_ok_for_redirect (basic_block bb1, basic_block bb2)
1368 if (BB_CLUSTER (bb1) != NULL)
1369 bb1 = BB_CLUSTER (bb1)->rep_bb;
1371 if (BB_CLUSTER (bb2) != NULL)
1372 bb2 = BB_CLUSTER (bb2)->rep_bb;
1374 return (deps_ok_for_redirect_from_bb_to_bb (bb1, bb2)
1375 && deps_ok_for_redirect_from_bb_to_bb (bb2, bb1));
1378 /* Within SAME_SUCC->bbs, find clusters of bbs which can be merged. */
1380 static void
1381 find_clusters_1 (same_succ *same_succ)
1383 basic_block bb1, bb2;
1384 unsigned int i, j;
1385 bitmap_iterator bi, bj;
1386 int nr_comparisons;
1387 int max_comparisons = PARAM_VALUE (PARAM_MAX_TAIL_MERGE_COMPARISONS);
1389 EXECUTE_IF_SET_IN_BITMAP (same_succ->bbs, 0, i, bi)
1391 bb1 = BASIC_BLOCK_FOR_FN (cfun, i);
1393 /* TODO: handle blocks with phi-nodes. We'll have to find corresponding
1394 phi-nodes in bb1 and bb2, with the same alternatives for the same
1395 preds. */
1396 if (bb_has_non_vop_phi (bb1))
1397 continue;
1399 nr_comparisons = 0;
1400 EXECUTE_IF_SET_IN_BITMAP (same_succ->bbs, i + 1, j, bj)
1402 bb2 = BASIC_BLOCK_FOR_FN (cfun, j);
1404 if (bb_has_non_vop_phi (bb2))
1405 continue;
1407 if (BB_CLUSTER (bb1) != NULL && BB_CLUSTER (bb1) == BB_CLUSTER (bb2))
1408 continue;
1410 /* Limit quadratic behaviour. */
1411 nr_comparisons++;
1412 if (nr_comparisons > max_comparisons)
1413 break;
1415 /* This is a conservative dependency check. We could test more
1416 precise for allowed replacement direction. */
1417 if (!deps_ok_for_redirect (bb1, bb2))
1418 continue;
1420 if (!(same_phi_alternatives (same_succ, bb1, bb2)))
1421 continue;
1423 find_duplicate (same_succ, bb1, bb2);
1428 /* Find clusters of bbs which can be merged. */
1430 static void
1431 find_clusters (void)
1433 same_succ *same;
1435 while (!worklist.is_empty ())
1437 same = worklist.pop ();
1438 same->in_worklist = false;
1439 if (dump_file && (dump_flags & TDF_DETAILS))
1441 fprintf (dump_file, "processing worklist entry\n");
1442 same_succ_print (dump_file, same);
1444 find_clusters_1 (same);
1448 /* Returns the vop phi of BB, if any. */
1450 static gphi *
1451 vop_phi (basic_block bb)
1453 gphi *stmt;
1454 gphi_iterator gsi;
1455 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1457 stmt = gsi.phi ();
1458 if (! virtual_operand_p (gimple_phi_result (stmt)))
1459 continue;
1460 return stmt;
1462 return NULL;
1465 /* Redirect all edges from BB1 to BB2, removes BB1 and marks it as removed. */
1467 static void
1468 replace_block_by (basic_block bb1, basic_block bb2)
1470 edge pred_edge;
1471 edge e1, e2;
1472 edge_iterator ei;
1473 unsigned int i;
1474 gphi *bb2_phi;
1476 bb2_phi = vop_phi (bb2);
1478 /* Mark the basic block as deleted. */
1479 mark_basic_block_deleted (bb1);
1481 /* Redirect the incoming edges of bb1 to bb2. */
1482 for (i = EDGE_COUNT (bb1->preds); i > 0 ; --i)
1484 pred_edge = EDGE_PRED (bb1, i - 1);
1485 pred_edge = redirect_edge_and_branch (pred_edge, bb2);
1486 gcc_assert (pred_edge != NULL);
1488 if (bb2_phi == NULL)
1489 continue;
1491 /* The phi might have run out of capacity when the redirect added an
1492 argument, which means it could have been replaced. Refresh it. */
1493 bb2_phi = vop_phi (bb2);
1495 add_phi_arg (bb2_phi, SSA_NAME_VAR (gimple_phi_result (bb2_phi)),
1496 pred_edge, UNKNOWN_LOCATION);
1499 bb2->frequency += bb1->frequency;
1500 if (bb2->frequency > BB_FREQ_MAX)
1501 bb2->frequency = BB_FREQ_MAX;
1503 bb2->count += bb1->count;
1505 /* Merge the outgoing edge counts from bb1 onto bb2. */
1506 gcov_type out_sum = 0;
1507 FOR_EACH_EDGE (e1, ei, bb1->succs)
1509 e2 = find_edge (bb2, e1->dest);
1510 gcc_assert (e2);
1511 e2->count += e1->count;
1512 out_sum += e2->count;
1514 /* Recompute the edge probabilities from the new merged edge count.
1515 Use the sum of the new merged edge counts computed above instead
1516 of bb2's merged count, in case there are profile count insanities
1517 making the bb count inconsistent with the edge weights. */
1518 FOR_EACH_EDGE (e2, ei, bb2->succs)
1520 e2->probability = GCOV_COMPUTE_SCALE (e2->count, out_sum);
1523 /* Clear range info from all stmts in BB2 -- this transformation
1524 could make them out of date. */
1525 reset_flow_sensitive_info_in_bb (bb2);
1527 /* Do updates that use bb1, before deleting bb1. */
1528 release_last_vdef (bb1);
1529 same_succ_flush_bb (bb1);
1531 delete_basic_block (bb1);
1534 /* Bbs for which update_debug_stmt need to be called. */
1536 static bitmap update_bbs;
1538 /* For each cluster in all_clusters, merge all cluster->bbs. Returns
1539 number of bbs removed. */
1541 static int
1542 apply_clusters (void)
1544 basic_block bb1, bb2;
1545 bb_cluster *c;
1546 unsigned int i, j;
1547 bitmap_iterator bj;
1548 int nr_bbs_removed = 0;
1550 for (i = 0; i < all_clusters.length (); ++i)
1552 c = all_clusters[i];
1553 if (c == NULL)
1554 continue;
1556 bb2 = c->rep_bb;
1557 bitmap_set_bit (update_bbs, bb2->index);
1559 bitmap_clear_bit (c->bbs, bb2->index);
1560 EXECUTE_IF_SET_IN_BITMAP (c->bbs, 0, j, bj)
1562 bb1 = BASIC_BLOCK_FOR_FN (cfun, j);
1563 bitmap_clear_bit (update_bbs, bb1->index);
1565 replace_block_by (bb1, bb2);
1566 nr_bbs_removed++;
1570 return nr_bbs_removed;
1573 /* Resets debug statement STMT if it has uses that are not dominated by their
1574 defs. */
1576 static void
1577 update_debug_stmt (gimple *stmt)
1579 use_operand_p use_p;
1580 ssa_op_iter oi;
1581 basic_block bbuse;
1583 if (!gimple_debug_bind_p (stmt))
1584 return;
1586 bbuse = gimple_bb (stmt);
1587 FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, oi, SSA_OP_USE)
1589 tree name = USE_FROM_PTR (use_p);
1590 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
1591 basic_block bbdef = gimple_bb (def_stmt);
1592 if (bbdef == NULL || bbuse == bbdef
1593 || dominated_by_p (CDI_DOMINATORS, bbuse, bbdef))
1594 continue;
1596 gimple_debug_bind_reset_value (stmt);
1597 update_stmt (stmt);
1598 break;
1602 /* Resets all debug statements that have uses that are not
1603 dominated by their defs. */
1605 static void
1606 update_debug_stmts (void)
1608 basic_block bb;
1609 bitmap_iterator bi;
1610 unsigned int i;
1612 EXECUTE_IF_SET_IN_BITMAP (update_bbs, 0, i, bi)
1614 gimple *stmt;
1615 gimple_stmt_iterator gsi;
1617 bb = BASIC_BLOCK_FOR_FN (cfun, i);
1618 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1620 stmt = gsi_stmt (gsi);
1621 if (!is_gimple_debug (stmt))
1622 continue;
1623 update_debug_stmt (stmt);
1628 /* Runs tail merge optimization. */
1630 unsigned int
1631 tail_merge_optimize (unsigned int todo)
1633 int nr_bbs_removed_total = 0;
1634 int nr_bbs_removed;
1635 bool loop_entered = false;
1636 int iteration_nr = 0;
1637 int max_iterations = PARAM_VALUE (PARAM_MAX_TAIL_MERGE_ITERATIONS);
1639 if (!flag_tree_tail_merge
1640 || max_iterations == 0)
1641 return 0;
1643 timevar_push (TV_TREE_TAIL_MERGE);
1645 if (!dom_info_available_p (CDI_DOMINATORS))
1647 /* PRE can leave us with unreachable blocks, remove them now. */
1648 delete_unreachable_blocks ();
1649 calculate_dominance_info (CDI_DOMINATORS);
1651 init_worklist ();
1653 while (!worklist.is_empty ())
1655 if (!loop_entered)
1657 loop_entered = true;
1658 alloc_cluster_vectors ();
1659 update_bbs = BITMAP_ALLOC (NULL);
1661 else
1662 reset_cluster_vectors ();
1664 iteration_nr++;
1665 if (dump_file && (dump_flags & TDF_DETAILS))
1666 fprintf (dump_file, "worklist iteration #%d\n", iteration_nr);
1668 find_clusters ();
1669 gcc_assert (worklist.is_empty ());
1670 if (all_clusters.is_empty ())
1671 break;
1673 nr_bbs_removed = apply_clusters ();
1674 nr_bbs_removed_total += nr_bbs_removed;
1675 if (nr_bbs_removed == 0)
1676 break;
1678 free_dominance_info (CDI_DOMINATORS);
1680 if (iteration_nr == max_iterations)
1681 break;
1683 calculate_dominance_info (CDI_DOMINATORS);
1684 update_worklist ();
1687 if (dump_file && (dump_flags & TDF_DETAILS))
1688 fprintf (dump_file, "htab collision / search: %f\n",
1689 same_succ_htab->collisions ());
1691 if (nr_bbs_removed_total > 0)
1693 if (MAY_HAVE_DEBUG_STMTS)
1695 calculate_dominance_info (CDI_DOMINATORS);
1696 update_debug_stmts ();
1699 if (dump_file && (dump_flags & TDF_DETAILS))
1701 fprintf (dump_file, "Before TODOs.\n");
1702 dump_function_to_file (current_function_decl, dump_file, dump_flags);
1705 mark_virtual_operands_for_renaming (cfun);
1708 delete_worklist ();
1709 if (loop_entered)
1711 delete_cluster_vectors ();
1712 BITMAP_FREE (update_bbs);
1715 timevar_pop (TV_TREE_TAIL_MERGE);
1717 return todo;