1 /* If-conversion support.
2 Copyright (C) 2000-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
22 #include "coretypes.h"
38 #include "cfgcleanup.h"
42 #include "tree-pass.h"
44 #include "shrink-wrap.h"
48 #ifndef MAX_CONDITIONAL_EXECUTE
49 #define MAX_CONDITIONAL_EXECUTE \
50 (BRANCH_COST (optimize_function_for_speed_p (cfun), false) \
54 #define IFCVT_MULTIPLE_DUMPS 1
56 #define NULL_BLOCK ((basic_block) NULL)
58 /* True if after combine pass. */
59 static bool ifcvt_after_combine
;
61 /* True if the target has the cbranchcc4 optab. */
62 static bool have_cbranchcc4
;
64 /* # of IF-THEN or IF-THEN-ELSE blocks we looked at */
65 static int num_possible_if_blocks
;
67 /* # of IF-THEN or IF-THEN-ELSE blocks were converted to conditional
69 static int num_updated_if_blocks
;
71 /* # of changes made. */
72 static int num_true_changes
;
74 /* Whether conditional execution changes were made. */
75 static int cond_exec_changed_p
;
77 /* Forward references. */
78 static int count_bb_insns (const_basic_block
);
79 static bool cheap_bb_rtx_cost_p (const_basic_block
, int, int);
80 static rtx_insn
*first_active_insn (basic_block
);
81 static rtx_insn
*last_active_insn (basic_block
, int);
82 static rtx_insn
*find_active_insn_before (basic_block
, rtx_insn
*);
83 static rtx_insn
*find_active_insn_after (basic_block
, rtx_insn
*);
84 static basic_block
block_fallthru (basic_block
);
85 static int cond_exec_process_insns (ce_if_block
*, rtx_insn
*, rtx
, rtx
, int,
87 static rtx
cond_exec_get_condition (rtx_insn
*);
88 static rtx
noce_get_condition (rtx_insn
*, rtx_insn
**, bool);
89 static int noce_operand_ok (const_rtx
);
90 static void merge_if_block (ce_if_block
*);
91 static int find_cond_trap (basic_block
, edge
, edge
);
92 static basic_block
find_if_header (basic_block
, int);
93 static int block_jumps_and_fallthru_p (basic_block
, basic_block
);
94 static int noce_find_if_block (basic_block
, edge
, edge
, int);
95 static int cond_exec_find_if_block (ce_if_block
*);
96 static int find_if_case_1 (basic_block
, edge
, edge
);
97 static int find_if_case_2 (basic_block
, edge
, edge
);
98 static int dead_or_predicable (basic_block
, basic_block
, basic_block
,
100 static void noce_emit_move_insn (rtx
, rtx
);
101 static rtx_insn
*block_has_only_trap (basic_block
);
103 /* Count the number of non-jump active insns in BB. */
106 count_bb_insns (const_basic_block bb
)
109 rtx_insn
*insn
= BB_HEAD (bb
);
113 if (active_insn_p (insn
) && !JUMP_P (insn
))
116 if (insn
== BB_END (bb
))
118 insn
= NEXT_INSN (insn
);
124 /* Determine whether the total insn_rtx_cost on non-jump insns in
125 basic block BB is less than MAX_COST. This function returns
126 false if the cost of any instruction could not be estimated.
128 The cost of the non-jump insns in BB is scaled by REG_BR_PROB_BASE
129 as those insns are being speculated. MAX_COST is scaled with SCALE
130 plus a small fudge factor. */
133 cheap_bb_rtx_cost_p (const_basic_block bb
, int scale
, int max_cost
)
136 rtx_insn
*insn
= BB_HEAD (bb
);
137 bool speed
= optimize_bb_for_speed_p (bb
);
139 /* Set scale to REG_BR_PROB_BASE to void the identical scaling
140 applied to insn_rtx_cost when optimizing for size. Only do
141 this after combine because if-conversion might interfere with
142 passes before combine.
144 Use optimize_function_for_speed_p instead of the pre-defined
145 variable speed to make sure it is set to same value for all
146 basic blocks in one if-conversion transformation. */
147 if (!optimize_function_for_speed_p (cfun
) && ifcvt_after_combine
)
148 scale
= REG_BR_PROB_BASE
;
149 /* Our branch probability/scaling factors are just estimates and don't
150 account for cases where we can get speculation for free and other
151 secondary benefits. So we fudge the scale factor to make speculating
152 appear a little more profitable when optimizing for performance. */
154 scale
+= REG_BR_PROB_BASE
/ 8;
161 if (NONJUMP_INSN_P (insn
))
163 int cost
= insn_rtx_cost (PATTERN (insn
), speed
) * REG_BR_PROB_BASE
;
167 /* If this instruction is the load or set of a "stack" register,
168 such as a floating point register on x87, then the cost of
169 speculatively executing this insn may need to include
170 the additional cost of popping its result off of the
171 register stack. Unfortunately, correctly recognizing and
172 accounting for this additional overhead is tricky, so for
173 now we simply prohibit such speculative execution. */
176 rtx set
= single_set (insn
);
177 if (set
&& STACK_REG_P (SET_DEST (set
)))
183 if (count
>= max_cost
)
186 else if (CALL_P (insn
))
189 if (insn
== BB_END (bb
))
191 insn
= NEXT_INSN (insn
);
197 /* Return the first non-jump active insn in the basic block. */
200 first_active_insn (basic_block bb
)
202 rtx_insn
*insn
= BB_HEAD (bb
);
206 if (insn
== BB_END (bb
))
208 insn
= NEXT_INSN (insn
);
211 while (NOTE_P (insn
) || DEBUG_INSN_P (insn
))
213 if (insn
== BB_END (bb
))
215 insn
= NEXT_INSN (insn
);
224 /* Return the last non-jump active (non-jump) insn in the basic block. */
227 last_active_insn (basic_block bb
, int skip_use_p
)
229 rtx_insn
*insn
= BB_END (bb
);
230 rtx_insn
*head
= BB_HEAD (bb
);
234 || DEBUG_INSN_P (insn
)
236 && NONJUMP_INSN_P (insn
)
237 && GET_CODE (PATTERN (insn
)) == USE
))
241 insn
= PREV_INSN (insn
);
250 /* Return the active insn before INSN inside basic block CURR_BB. */
253 find_active_insn_before (basic_block curr_bb
, rtx_insn
*insn
)
255 if (!insn
|| insn
== BB_HEAD (curr_bb
))
258 while ((insn
= PREV_INSN (insn
)) != NULL_RTX
)
260 if (NONJUMP_INSN_P (insn
) || JUMP_P (insn
) || CALL_P (insn
))
263 /* No other active insn all the way to the start of the basic block. */
264 if (insn
== BB_HEAD (curr_bb
))
271 /* Return the active insn after INSN inside basic block CURR_BB. */
274 find_active_insn_after (basic_block curr_bb
, rtx_insn
*insn
)
276 if (!insn
|| insn
== BB_END (curr_bb
))
279 while ((insn
= NEXT_INSN (insn
)) != NULL_RTX
)
281 if (NONJUMP_INSN_P (insn
) || JUMP_P (insn
) || CALL_P (insn
))
284 /* No other active insn all the way to the end of the basic block. */
285 if (insn
== BB_END (curr_bb
))
292 /* Return the basic block reached by falling though the basic block BB. */
295 block_fallthru (basic_block bb
)
297 edge e
= find_fallthru_edge (bb
->succs
);
299 return (e
) ? e
->dest
: NULL_BLOCK
;
302 /* Return true if RTXs A and B can be safely interchanged. */
305 rtx_interchangeable_p (const_rtx a
, const_rtx b
)
307 if (!rtx_equal_p (a
, b
))
310 if (GET_CODE (a
) != MEM
)
313 /* A dead type-unsafe memory reference is legal, but a live type-unsafe memory
314 reference is not. Interchanging a dead type-unsafe memory reference with
315 a live type-safe one creates a live type-unsafe memory reference, in other
316 words, it makes the program illegal.
317 We check here conservatively whether the two memory references have equal
318 memory attributes. */
320 return mem_attrs_eq_p (get_mem_attrs (a
), get_mem_attrs (b
));
324 /* Go through a bunch of insns, converting them to conditional
325 execution format if possible. Return TRUE if all of the non-note
326 insns were processed. */
329 cond_exec_process_insns (ce_if_block
*ce_info ATTRIBUTE_UNUSED
,
330 /* if block information */rtx_insn
*start
,
331 /* first insn to look at */rtx end
,
332 /* last insn to look at */rtx test
,
333 /* conditional execution test */int prob_val
,
334 /* probability of branch taken. */int mod_ok
)
336 int must_be_last
= FALSE
;
344 for (insn
= start
; ; insn
= NEXT_INSN (insn
))
346 /* dwarf2out can't cope with conditional prologues. */
347 if (NOTE_P (insn
) && NOTE_KIND (insn
) == NOTE_INSN_PROLOGUE_END
)
350 if (NOTE_P (insn
) || DEBUG_INSN_P (insn
))
353 gcc_assert (NONJUMP_INSN_P (insn
) || CALL_P (insn
));
355 /* dwarf2out can't cope with conditional unwind info. */
356 if (RTX_FRAME_RELATED_P (insn
))
359 /* Remove USE insns that get in the way. */
360 if (reload_completed
&& GET_CODE (PATTERN (insn
)) == USE
)
362 /* ??? Ug. Actually unlinking the thing is problematic,
363 given what we'd have to coordinate with our callers. */
364 SET_INSN_DELETED (insn
);
368 /* Last insn wasn't last? */
372 if (modified_in_p (test
, insn
))
379 /* Now build the conditional form of the instruction. */
380 pattern
= PATTERN (insn
);
381 xtest
= copy_rtx (test
);
383 /* If this is already a COND_EXEC, rewrite the test to be an AND of the
385 if (GET_CODE (pattern
) == COND_EXEC
)
387 if (GET_MODE (xtest
) != GET_MODE (COND_EXEC_TEST (pattern
)))
390 xtest
= gen_rtx_AND (GET_MODE (xtest
), xtest
,
391 COND_EXEC_TEST (pattern
));
392 pattern
= COND_EXEC_CODE (pattern
);
395 pattern
= gen_rtx_COND_EXEC (VOIDmode
, xtest
, pattern
);
397 /* If the machine needs to modify the insn being conditionally executed,
398 say for example to force a constant integer operand into a temp
399 register, do so here. */
400 #ifdef IFCVT_MODIFY_INSN
401 IFCVT_MODIFY_INSN (ce_info
, pattern
, insn
);
406 validate_change (insn
, &PATTERN (insn
), pattern
, 1);
408 if (CALL_P (insn
) && prob_val
>= 0)
409 validate_change (insn
, ®_NOTES (insn
),
410 gen_rtx_INT_LIST ((machine_mode
) REG_BR_PROB
,
411 prob_val
, REG_NOTES (insn
)), 1);
421 /* Return the condition for a jump. Do not do any special processing. */
424 cond_exec_get_condition (rtx_insn
*jump
)
428 if (any_condjump_p (jump
))
429 test_if
= SET_SRC (pc_set (jump
));
432 cond
= XEXP (test_if
, 0);
434 /* If this branches to JUMP_LABEL when the condition is false,
435 reverse the condition. */
436 if (GET_CODE (XEXP (test_if
, 2)) == LABEL_REF
437 && LABEL_REF_LABEL (XEXP (test_if
, 2)) == JUMP_LABEL (jump
))
439 enum rtx_code rev
= reversed_comparison_code (cond
, jump
);
443 cond
= gen_rtx_fmt_ee (rev
, GET_MODE (cond
), XEXP (cond
, 0),
450 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
451 to conditional execution. Return TRUE if we were successful at
452 converting the block. */
455 cond_exec_process_if_block (ce_if_block
* ce_info
,
456 /* if block information */int do_multiple_p
)
458 basic_block test_bb
= ce_info
->test_bb
; /* last test block */
459 basic_block then_bb
= ce_info
->then_bb
; /* THEN */
460 basic_block else_bb
= ce_info
->else_bb
; /* ELSE or NULL */
461 rtx test_expr
; /* expression in IF_THEN_ELSE that is tested */
462 rtx_insn
*then_start
; /* first insn in THEN block */
463 rtx_insn
*then_end
; /* last insn + 1 in THEN block */
464 rtx_insn
*else_start
= NULL
; /* first insn in ELSE block or NULL */
465 rtx_insn
*else_end
= NULL
; /* last insn + 1 in ELSE block */
466 int max
; /* max # of insns to convert. */
467 int then_mod_ok
; /* whether conditional mods are ok in THEN */
468 rtx true_expr
; /* test for else block insns */
469 rtx false_expr
; /* test for then block insns */
470 int true_prob_val
; /* probability of else block */
471 int false_prob_val
; /* probability of then block */
472 rtx_insn
*then_last_head
= NULL
; /* Last match at the head of THEN */
473 rtx_insn
*else_last_head
= NULL
; /* Last match at the head of ELSE */
474 rtx_insn
*then_first_tail
= NULL
; /* First match at the tail of THEN */
475 rtx_insn
*else_first_tail
= NULL
; /* First match at the tail of ELSE */
476 int then_n_insns
, else_n_insns
, n_insns
;
477 enum rtx_code false_code
;
480 /* If test is comprised of && or || elements, and we've failed at handling
481 all of them together, just use the last test if it is the special case of
482 && elements without an ELSE block. */
483 if (!do_multiple_p
&& ce_info
->num_multiple_test_blocks
)
485 if (else_bb
|| ! ce_info
->and_and_p
)
488 ce_info
->test_bb
= test_bb
= ce_info
->last_test_bb
;
489 ce_info
->num_multiple_test_blocks
= 0;
490 ce_info
->num_and_and_blocks
= 0;
491 ce_info
->num_or_or_blocks
= 0;
494 /* Find the conditional jump to the ELSE or JOIN part, and isolate
496 test_expr
= cond_exec_get_condition (BB_END (test_bb
));
500 /* If the conditional jump is more than just a conditional jump,
501 then we can not do conditional execution conversion on this block. */
502 if (! onlyjump_p (BB_END (test_bb
)))
505 /* Collect the bounds of where we're to search, skipping any labels, jumps
506 and notes at the beginning and end of the block. Then count the total
507 number of insns and see if it is small enough to convert. */
508 then_start
= first_active_insn (then_bb
);
509 then_end
= last_active_insn (then_bb
, TRUE
);
510 then_n_insns
= ce_info
->num_then_insns
= count_bb_insns (then_bb
);
511 n_insns
= then_n_insns
;
512 max
= MAX_CONDITIONAL_EXECUTE
;
519 else_start
= first_active_insn (else_bb
);
520 else_end
= last_active_insn (else_bb
, TRUE
);
521 else_n_insns
= ce_info
->num_else_insns
= count_bb_insns (else_bb
);
522 n_insns
+= else_n_insns
;
524 /* Look for matching sequences at the head and tail of the two blocks,
525 and limit the range of insns to be converted if possible. */
526 n_matching
= flow_find_cross_jump (then_bb
, else_bb
,
527 &then_first_tail
, &else_first_tail
,
529 if (then_first_tail
== BB_HEAD (then_bb
))
530 then_start
= then_end
= NULL
;
531 if (else_first_tail
== BB_HEAD (else_bb
))
532 else_start
= else_end
= NULL
;
537 then_end
= find_active_insn_before (then_bb
, then_first_tail
);
539 else_end
= find_active_insn_before (else_bb
, else_first_tail
);
540 n_insns
-= 2 * n_matching
;
545 && then_n_insns
> n_matching
546 && else_n_insns
> n_matching
)
548 int longest_match
= MIN (then_n_insns
- n_matching
,
549 else_n_insns
- n_matching
);
551 = flow_find_head_matching_sequence (then_bb
, else_bb
,
560 /* We won't pass the insns in the head sequence to
561 cond_exec_process_insns, so we need to test them here
562 to make sure that they don't clobber the condition. */
563 for (insn
= BB_HEAD (then_bb
);
564 insn
!= NEXT_INSN (then_last_head
);
565 insn
= NEXT_INSN (insn
))
566 if (!LABEL_P (insn
) && !NOTE_P (insn
)
567 && !DEBUG_INSN_P (insn
)
568 && modified_in_p (test_expr
, insn
))
572 if (then_last_head
== then_end
)
573 then_start
= then_end
= NULL
;
574 if (else_last_head
== else_end
)
575 else_start
= else_end
= NULL
;
580 then_start
= find_active_insn_after (then_bb
, then_last_head
);
582 else_start
= find_active_insn_after (else_bb
, else_last_head
);
583 n_insns
-= 2 * n_matching
;
591 /* Map test_expr/test_jump into the appropriate MD tests to use on
592 the conditionally executed code. */
594 true_expr
= test_expr
;
596 false_code
= reversed_comparison_code (true_expr
, BB_END (test_bb
));
597 if (false_code
!= UNKNOWN
)
598 false_expr
= gen_rtx_fmt_ee (false_code
, GET_MODE (true_expr
),
599 XEXP (true_expr
, 0), XEXP (true_expr
, 1));
601 false_expr
= NULL_RTX
;
603 #ifdef IFCVT_MODIFY_TESTS
604 /* If the machine description needs to modify the tests, such as setting a
605 conditional execution register from a comparison, it can do so here. */
606 IFCVT_MODIFY_TESTS (ce_info
, true_expr
, false_expr
);
608 /* See if the conversion failed. */
609 if (!true_expr
|| !false_expr
)
613 note
= find_reg_note (BB_END (test_bb
), REG_BR_PROB
, NULL_RTX
);
616 true_prob_val
= XINT (note
, 0);
617 false_prob_val
= REG_BR_PROB_BASE
- true_prob_val
;
625 /* If we have && or || tests, do them here. These tests are in the adjacent
626 blocks after the first block containing the test. */
627 if (ce_info
->num_multiple_test_blocks
> 0)
629 basic_block bb
= test_bb
;
630 basic_block last_test_bb
= ce_info
->last_test_bb
;
637 rtx_insn
*start
, *end
;
639 enum rtx_code f_code
;
641 bb
= block_fallthru (bb
);
642 start
= first_active_insn (bb
);
643 end
= last_active_insn (bb
, TRUE
);
645 && ! cond_exec_process_insns (ce_info
, start
, end
, false_expr
,
646 false_prob_val
, FALSE
))
649 /* If the conditional jump is more than just a conditional jump, then
650 we can not do conditional execution conversion on this block. */
651 if (! onlyjump_p (BB_END (bb
)))
654 /* Find the conditional jump and isolate the test. */
655 t
= cond_exec_get_condition (BB_END (bb
));
659 f_code
= reversed_comparison_code (t
, BB_END (bb
));
660 if (f_code
== UNKNOWN
)
663 f
= gen_rtx_fmt_ee (f_code
, GET_MODE (t
), XEXP (t
, 0), XEXP (t
, 1));
664 if (ce_info
->and_and_p
)
666 t
= gen_rtx_AND (GET_MODE (t
), true_expr
, t
);
667 f
= gen_rtx_IOR (GET_MODE (t
), false_expr
, f
);
671 t
= gen_rtx_IOR (GET_MODE (t
), true_expr
, t
);
672 f
= gen_rtx_AND (GET_MODE (t
), false_expr
, f
);
675 /* If the machine description needs to modify the tests, such as
676 setting a conditional execution register from a comparison, it can
678 #ifdef IFCVT_MODIFY_MULTIPLE_TESTS
679 IFCVT_MODIFY_MULTIPLE_TESTS (ce_info
, bb
, t
, f
);
681 /* See if the conversion failed. */
689 while (bb
!= last_test_bb
);
692 /* For IF-THEN-ELSE blocks, we don't allow modifications of the test
693 on then THEN block. */
694 then_mod_ok
= (else_bb
== NULL_BLOCK
);
696 /* Go through the THEN and ELSE blocks converting the insns if possible
697 to conditional execution. */
701 || ! cond_exec_process_insns (ce_info
, then_start
, then_end
,
702 false_expr
, false_prob_val
,
706 if (else_bb
&& else_end
707 && ! cond_exec_process_insns (ce_info
, else_start
, else_end
,
708 true_expr
, true_prob_val
, TRUE
))
711 /* If we cannot apply the changes, fail. Do not go through the normal fail
712 processing, since apply_change_group will call cancel_changes. */
713 if (! apply_change_group ())
715 #ifdef IFCVT_MODIFY_CANCEL
716 /* Cancel any machine dependent changes. */
717 IFCVT_MODIFY_CANCEL (ce_info
);
722 #ifdef IFCVT_MODIFY_FINAL
723 /* Do any machine dependent final modifications. */
724 IFCVT_MODIFY_FINAL (ce_info
);
727 /* Conversion succeeded. */
729 fprintf (dump_file
, "%d insn%s converted to conditional execution.\n",
730 n_insns
, (n_insns
== 1) ? " was" : "s were");
732 /* Merge the blocks! If we had matching sequences, make sure to delete one
733 copy at the appropriate location first: delete the copy in the THEN branch
734 for a tail sequence so that the remaining one is executed last for both
735 branches, and delete the copy in the ELSE branch for a head sequence so
736 that the remaining one is executed first for both branches. */
739 rtx_insn
*from
= then_first_tail
;
741 from
= find_active_insn_after (then_bb
, from
);
742 delete_insn_chain (from
, BB_END (then_bb
), false);
745 delete_insn_chain (first_active_insn (else_bb
), else_last_head
, false);
747 merge_if_block (ce_info
);
748 cond_exec_changed_p
= TRUE
;
752 #ifdef IFCVT_MODIFY_CANCEL
753 /* Cancel any machine dependent changes. */
754 IFCVT_MODIFY_CANCEL (ce_info
);
761 /* Used by noce_process_if_block to communicate with its subroutines.
763 The subroutines know that A and B may be evaluated freely. They
764 know that X is a register. They should insert new instructions
765 before cond_earliest. */
769 /* The basic blocks that make up the IF-THEN-{ELSE-,}JOIN block. */
770 basic_block test_bb
, then_bb
, else_bb
, join_bb
;
772 /* The jump that ends TEST_BB. */
775 /* The jump condition. */
778 /* New insns should be inserted before this one. */
779 rtx_insn
*cond_earliest
;
781 /* Insns in the THEN and ELSE block. There is always just this
782 one insns in those blocks. The insns are single_set insns.
783 If there was no ELSE block, INSN_B is the last insn before
784 COND_EARLIEST, or NULL_RTX. In the former case, the insn
785 operands are still valid, as if INSN_B was moved down below
787 rtx_insn
*insn_a
, *insn_b
;
789 /* The SET_SRC of INSN_A and INSN_B. */
792 /* The SET_DEST of INSN_A. */
795 /* True if this if block is not canonical. In the canonical form of
796 if blocks, the THEN_BB is the block reached via the fallthru edge
797 from TEST_BB. For the noce transformations, we allow the symmetric
799 bool then_else_reversed
;
801 /* True if the contents of then_bb and else_bb are a
802 simple single set instruction. */
806 /* The total rtx cost of the instructions in then_bb and else_bb. */
807 unsigned int then_cost
;
808 unsigned int else_cost
;
810 /* Estimated cost of the particular branch instruction. */
811 unsigned int branch_cost
;
814 static rtx
noce_emit_store_flag (struct noce_if_info
*, rtx
, int, int);
815 static int noce_try_move (struct noce_if_info
*);
816 static int noce_try_store_flag (struct noce_if_info
*);
817 static int noce_try_addcc (struct noce_if_info
*);
818 static int noce_try_store_flag_constants (struct noce_if_info
*);
819 static int noce_try_store_flag_mask (struct noce_if_info
*);
820 static rtx
noce_emit_cmove (struct noce_if_info
*, rtx
, enum rtx_code
, rtx
,
822 static int noce_try_cmove (struct noce_if_info
*);
823 static int noce_try_cmove_arith (struct noce_if_info
*);
824 static rtx
noce_get_alt_condition (struct noce_if_info
*, rtx
, rtx_insn
**);
825 static int noce_try_minmax (struct noce_if_info
*);
826 static int noce_try_abs (struct noce_if_info
*);
827 static int noce_try_sign_mask (struct noce_if_info
*);
829 /* Helper function for noce_try_store_flag*. */
832 noce_emit_store_flag (struct noce_if_info
*if_info
, rtx x
, int reversep
,
835 rtx cond
= if_info
->cond
;
839 cond_complex
= (! general_operand (XEXP (cond
, 0), VOIDmode
)
840 || ! general_operand (XEXP (cond
, 1), VOIDmode
));
842 /* If earliest == jump, or when the condition is complex, try to
843 build the store_flag insn directly. */
847 rtx set
= pc_set (if_info
->jump
);
848 cond
= XEXP (SET_SRC (set
), 0);
849 if (GET_CODE (XEXP (SET_SRC (set
), 2)) == LABEL_REF
850 && LABEL_REF_LABEL (XEXP (SET_SRC (set
), 2)) == JUMP_LABEL (if_info
->jump
))
851 reversep
= !reversep
;
852 if (if_info
->then_else_reversed
)
853 reversep
= !reversep
;
857 code
= reversed_comparison_code (cond
, if_info
->jump
);
859 code
= GET_CODE (cond
);
861 if ((if_info
->cond_earliest
== if_info
->jump
|| cond_complex
)
862 && (normalize
== 0 || STORE_FLAG_VALUE
== normalize
))
864 rtx src
= gen_rtx_fmt_ee (code
, GET_MODE (x
), XEXP (cond
, 0),
866 rtx set
= gen_rtx_SET (x
, src
);
869 rtx_insn
*insn
= emit_insn (set
);
871 if (recog_memoized (insn
) >= 0)
873 rtx_insn
*seq
= get_insns ();
877 if_info
->cond_earliest
= if_info
->jump
;
885 /* Don't even try if the comparison operands or the mode of X are weird. */
886 if (cond_complex
|| !SCALAR_INT_MODE_P (GET_MODE (x
)))
889 return emit_store_flag (x
, code
, XEXP (cond
, 0),
890 XEXP (cond
, 1), VOIDmode
,
891 (code
== LTU
|| code
== LEU
892 || code
== GEU
|| code
== GTU
), normalize
);
895 /* Emit instruction to move an rtx, possibly into STRICT_LOW_PART.
896 X is the destination/target and Y is the value to copy. */
899 noce_emit_move_insn (rtx x
, rtx y
)
901 machine_mode outmode
;
905 if (GET_CODE (x
) != STRICT_LOW_PART
)
907 rtx_insn
*seq
, *insn
;
912 /* Check that the SET_SRC is reasonable before calling emit_move_insn,
913 otherwise construct a suitable SET pattern ourselves. */
914 insn
= (OBJECT_P (y
) || CONSTANT_P (y
) || GET_CODE (y
) == SUBREG
)
915 ? emit_move_insn (x
, y
)
916 : emit_insn (gen_rtx_SET (x
, y
));
920 if (recog_memoized (insn
) <= 0)
922 if (GET_CODE (x
) == ZERO_EXTRACT
)
924 rtx op
= XEXP (x
, 0);
925 unsigned HOST_WIDE_INT size
= INTVAL (XEXP (x
, 1));
926 unsigned HOST_WIDE_INT start
= INTVAL (XEXP (x
, 2));
928 /* store_bit_field expects START to be relative to
929 BYTES_BIG_ENDIAN and adjusts this value for machines with
930 BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN. In order to be able to
931 invoke store_bit_field again it is necessary to have the START
932 value from the first call. */
933 if (BITS_BIG_ENDIAN
!= BYTES_BIG_ENDIAN
)
936 start
= BITS_PER_UNIT
- start
- size
;
939 gcc_assert (REG_P (op
));
940 start
= BITS_PER_WORD
- start
- size
;
944 gcc_assert (start
< (MEM_P (op
) ? BITS_PER_UNIT
: BITS_PER_WORD
));
945 store_bit_field (op
, size
, start
, 0, 0, GET_MODE (x
), y
, false);
949 switch (GET_RTX_CLASS (GET_CODE (y
)))
952 ot
= code_to_optab (GET_CODE (y
));
956 target
= expand_unop (GET_MODE (y
), ot
, XEXP (y
, 0), x
, 0);
957 if (target
!= NULL_RTX
)
960 emit_move_insn (x
, target
);
969 ot
= code_to_optab (GET_CODE (y
));
973 target
= expand_binop (GET_MODE (y
), ot
,
974 XEXP (y
, 0), XEXP (y
, 1),
976 if (target
!= NULL_RTX
)
979 emit_move_insn (x
, target
);
996 inner
= XEXP (outer
, 0);
997 outmode
= GET_MODE (outer
);
998 bitpos
= SUBREG_BYTE (outer
) * BITS_PER_UNIT
;
999 store_bit_field (inner
, GET_MODE_BITSIZE (outmode
), bitpos
,
1000 0, 0, outmode
, y
, false);
1003 /* Return the CC reg if it is used in COND. */
1006 cc_in_cond (rtx cond
)
1008 if (have_cbranchcc4
&& cond
1009 && GET_MODE_CLASS (GET_MODE (XEXP (cond
, 0))) == MODE_CC
)
1010 return XEXP (cond
, 0);
1015 /* Return sequence of instructions generated by if conversion. This
1016 function calls end_sequence() to end the current stream, ensures
1017 that the instructions are unshared, recognizable non-jump insns.
1018 On failure, this function returns a NULL_RTX. */
1021 end_ifcvt_sequence (struct noce_if_info
*if_info
)
1024 rtx_insn
*seq
= get_insns ();
1025 rtx cc
= cc_in_cond (if_info
->cond
);
1027 set_used_flags (if_info
->x
);
1028 set_used_flags (if_info
->cond
);
1029 set_used_flags (if_info
->a
);
1030 set_used_flags (if_info
->b
);
1032 for (insn
= seq
; insn
; insn
= NEXT_INSN (insn
))
1033 set_used_flags (insn
);
1035 unshare_all_rtl_in_chain (seq
);
1038 /* Make sure that all of the instructions emitted are recognizable,
1039 and that we haven't introduced a new jump instruction.
1040 As an exercise for the reader, build a general mechanism that
1041 allows proper placement of required clobbers. */
1042 for (insn
= seq
; insn
; insn
= NEXT_INSN (insn
))
1044 || recog_memoized (insn
) == -1
1045 /* Make sure new generated code does not clobber CC. */
1046 || (cc
&& set_of (cc
, insn
)))
1052 /* Return true iff the then and else basic block (if it exists)
1053 consist of a single simple set instruction. */
1056 noce_simple_bbs (struct noce_if_info
*if_info
)
1058 if (!if_info
->then_simple
)
1061 if (if_info
->else_bb
)
1062 return if_info
->else_simple
;
1067 /* Convert "if (a != b) x = a; else x = b" into "x = a" and
1068 "if (a == b) x = a; else x = b" into "x = b". */
1071 noce_try_move (struct noce_if_info
*if_info
)
1073 rtx cond
= if_info
->cond
;
1074 enum rtx_code code
= GET_CODE (cond
);
1078 if (code
!= NE
&& code
!= EQ
)
1081 if (!noce_simple_bbs (if_info
))
1084 /* This optimization isn't valid if either A or B could be a NaN
1085 or a signed zero. */
1086 if (HONOR_NANS (if_info
->x
)
1087 || HONOR_SIGNED_ZEROS (if_info
->x
))
1090 /* Check whether the operands of the comparison are A and in
1092 if ((rtx_equal_p (if_info
->a
, XEXP (cond
, 0))
1093 && rtx_equal_p (if_info
->b
, XEXP (cond
, 1)))
1094 || (rtx_equal_p (if_info
->a
, XEXP (cond
, 1))
1095 && rtx_equal_p (if_info
->b
, XEXP (cond
, 0))))
1097 if (!rtx_interchangeable_p (if_info
->a
, if_info
->b
))
1100 y
= (code
== EQ
) ? if_info
->a
: if_info
->b
;
1102 /* Avoid generating the move if the source is the destination. */
1103 if (! rtx_equal_p (if_info
->x
, y
))
1106 noce_emit_move_insn (if_info
->x
, y
);
1107 seq
= end_ifcvt_sequence (if_info
);
1111 emit_insn_before_setloc (seq
, if_info
->jump
,
1112 INSN_LOCATION (if_info
->insn_a
));
1119 /* Convert "if (test) x = 1; else x = 0".
1121 Only try 0 and STORE_FLAG_VALUE here. Other combinations will be
1122 tried in noce_try_store_flag_constants after noce_try_cmove has had
1123 a go at the conversion. */
1126 noce_try_store_flag (struct noce_if_info
*if_info
)
1132 if (!noce_simple_bbs (if_info
))
1135 if (CONST_INT_P (if_info
->b
)
1136 && INTVAL (if_info
->b
) == STORE_FLAG_VALUE
1137 && if_info
->a
== const0_rtx
)
1139 else if (if_info
->b
== const0_rtx
1140 && CONST_INT_P (if_info
->a
)
1141 && INTVAL (if_info
->a
) == STORE_FLAG_VALUE
1142 && (reversed_comparison_code (if_info
->cond
, if_info
->jump
)
1150 target
= noce_emit_store_flag (if_info
, if_info
->x
, reversep
, 0);
1153 if (target
!= if_info
->x
)
1154 noce_emit_move_insn (if_info
->x
, target
);
1156 seq
= end_ifcvt_sequence (if_info
);
1160 emit_insn_before_setloc (seq
, if_info
->jump
,
1161 INSN_LOCATION (if_info
->insn_a
));
1172 /* Convert "if (test) x = -A; else x = A" into
1173 x = A; if (test) x = -x if the machine can do the
1174 conditional negate form of this cheaply.
1175 Try this before noce_try_cmove that will just load the
1176 immediates into two registers and do a conditional select
1177 between them. If the target has a conditional negate or
1178 conditional invert operation we can save a potentially
1179 expensive constant synthesis. */
1182 noce_try_inverse_constants (struct noce_if_info
*if_info
)
1184 if (!noce_simple_bbs (if_info
))
1187 if (!CONST_INT_P (if_info
->a
)
1188 || !CONST_INT_P (if_info
->b
)
1189 || !REG_P (if_info
->x
))
1192 machine_mode mode
= GET_MODE (if_info
->x
);
1194 HOST_WIDE_INT val_a
= INTVAL (if_info
->a
);
1195 HOST_WIDE_INT val_b
= INTVAL (if_info
->b
);
1197 rtx cond
= if_info
->cond
;
1205 if (val_b
!= HOST_WIDE_INT_MIN
&& val_a
== -val_b
)
1207 else if (val_a
== ~val_b
)
1215 rtx tmp
= gen_reg_rtx (mode
);
1216 noce_emit_move_insn (tmp
, if_info
->a
);
1218 target
= emit_conditional_neg_or_complement (x
, code
, mode
, cond
, tmp
, tmp
);
1222 rtx_insn
*seq
= get_insns ();
1230 if (target
!= if_info
->x
)
1231 noce_emit_move_insn (if_info
->x
, target
);
1233 seq
= end_ifcvt_sequence (if_info
);
1238 emit_insn_before_setloc (seq
, if_info
->jump
,
1239 INSN_LOCATION (if_info
->insn_a
));
1248 /* Convert "if (test) x = a; else x = b", for A and B constant.
1249 Also allow A = y + c1, B = y + c2, with a common y between A
1253 noce_try_store_flag_constants (struct noce_if_info
*if_info
)
1258 HOST_WIDE_INT itrue
, ifalse
, diff
, tmp
;
1261 machine_mode mode
= GET_MODE (if_info
->x
);;
1262 rtx common
= NULL_RTX
;
1267 /* Handle cases like x := test ? y + 3 : y + 4. */
1268 if (GET_CODE (a
) == PLUS
1269 && GET_CODE (b
) == PLUS
1270 && CONST_INT_P (XEXP (a
, 1))
1271 && CONST_INT_P (XEXP (b
, 1))
1272 && rtx_equal_p (XEXP (a
, 0), XEXP (b
, 0))
1273 && noce_operand_ok (XEXP (a
, 0))
1274 && if_info
->branch_cost
>= 2)
1276 common
= XEXP (a
, 0);
1281 if (!noce_simple_bbs (if_info
))
1287 ifalse
= INTVAL (a
);
1289 bool subtract_flag_p
= false;
1291 diff
= (unsigned HOST_WIDE_INT
) itrue
- ifalse
;
1292 /* Make sure we can represent the difference between the two values. */
1294 != ((ifalse
< 0) != (itrue
< 0) ? ifalse
< 0 : ifalse
< itrue
))
1297 diff
= trunc_int_for_mode (diff
, mode
);
1299 can_reverse
= (reversed_comparison_code (if_info
->cond
, if_info
->jump
)
1303 if (diff
== STORE_FLAG_VALUE
|| diff
== -STORE_FLAG_VALUE
)
1306 /* We could collapse these cases but it is easier to follow the
1307 diff/STORE_FLAG_VALUE combinations when they are listed
1311 => 4 + (test != 0). */
1312 if (diff
< 0 && STORE_FLAG_VALUE
< 0)
1315 => can_reverse | 4 + (test == 0)
1316 !can_reverse | 3 - (test != 0). */
1317 else if (diff
> 0 && STORE_FLAG_VALUE
< 0)
1319 reversep
= can_reverse
;
1320 subtract_flag_p
= !can_reverse
;
1321 /* If we need to subtract the flag and we have PLUS-immediate
1322 A and B then it is unlikely to be beneficial to play tricks
1324 if (subtract_flag_p
&& common
)
1328 => can_reverse | 3 + (test == 0)
1329 !can_reverse | 4 - (test != 0). */
1330 else if (diff
< 0 && STORE_FLAG_VALUE
> 0)
1332 reversep
= can_reverse
;
1333 subtract_flag_p
= !can_reverse
;
1334 /* If we need to subtract the flag and we have PLUS-immediate
1335 A and B then it is unlikely to be beneficial to play tricks
1337 if (subtract_flag_p
&& common
)
1341 => 4 + (test != 0). */
1342 else if (diff
> 0 && STORE_FLAG_VALUE
> 0)
1347 else if (ifalse
== 0 && exact_log2 (itrue
) >= 0
1348 && (STORE_FLAG_VALUE
== 1
1349 || if_info
->branch_cost
>= 2))
1351 else if (itrue
== 0 && exact_log2 (ifalse
) >= 0 && can_reverse
1352 && (STORE_FLAG_VALUE
== 1 || if_info
->branch_cost
>= 2))
1357 else if (itrue
== -1
1358 && (STORE_FLAG_VALUE
== -1
1359 || if_info
->branch_cost
>= 2))
1361 else if (ifalse
== -1 && can_reverse
1362 && (STORE_FLAG_VALUE
== -1 || if_info
->branch_cost
>= 2))
1372 std::swap (itrue
, ifalse
);
1373 diff
= trunc_int_for_mode (-(unsigned HOST_WIDE_INT
) diff
, mode
);
1378 /* If we have x := test ? x + 3 : x + 4 then move the original
1379 x out of the way while we store flags. */
1380 if (common
&& rtx_equal_p (common
, if_info
->x
))
1382 common
= gen_reg_rtx (mode
);
1383 noce_emit_move_insn (common
, if_info
->x
);
1386 target
= noce_emit_store_flag (if_info
, if_info
->x
, reversep
, normalize
);
1393 /* if (test) x = 3; else x = 4;
1394 => x = 3 + (test == 0); */
1395 if (diff
== STORE_FLAG_VALUE
|| diff
== -STORE_FLAG_VALUE
)
1397 /* Add the common part now. This may allow combine to merge this
1398 with the store flag operation earlier into some sort of conditional
1399 increment/decrement if the target allows it. */
1401 target
= expand_simple_binop (mode
, PLUS
,
1403 target
, 0, OPTAB_WIDEN
);
1405 /* Always use ifalse here. It should have been swapped with itrue
1406 when appropriate when reversep is true. */
1407 target
= expand_simple_binop (mode
, subtract_flag_p
? MINUS
: PLUS
,
1408 gen_int_mode (ifalse
, mode
), target
,
1409 if_info
->x
, 0, OPTAB_WIDEN
);
1411 /* Other cases are not beneficial when the original A and B are PLUS
1418 /* if (test) x = 8; else x = 0;
1419 => x = (test != 0) << 3; */
1420 else if (ifalse
== 0 && (tmp
= exact_log2 (itrue
)) >= 0)
1422 target
= expand_simple_binop (mode
, ASHIFT
,
1423 target
, GEN_INT (tmp
), if_info
->x
, 0,
1427 /* if (test) x = -1; else x = b;
1428 => x = -(test != 0) | b; */
1429 else if (itrue
== -1)
1431 target
= expand_simple_binop (mode
, IOR
,
1432 target
, gen_int_mode (ifalse
, mode
),
1433 if_info
->x
, 0, OPTAB_WIDEN
);
1447 if (target
!= if_info
->x
)
1448 noce_emit_move_insn (if_info
->x
, target
);
1450 seq
= end_ifcvt_sequence (if_info
);
1454 emit_insn_before_setloc (seq
, if_info
->jump
,
1455 INSN_LOCATION (if_info
->insn_a
));
1462 /* Convert "if (test) foo++" into "foo += (test != 0)", and
1463 similarly for "foo--". */
1466 noce_try_addcc (struct noce_if_info
*if_info
)
1470 int subtract
, normalize
;
1472 if (!noce_simple_bbs (if_info
))
1475 if (GET_CODE (if_info
->a
) == PLUS
1476 && rtx_equal_p (XEXP (if_info
->a
, 0), if_info
->b
)
1477 && (reversed_comparison_code (if_info
->cond
, if_info
->jump
)
1480 rtx cond
= if_info
->cond
;
1481 enum rtx_code code
= reversed_comparison_code (cond
, if_info
->jump
);
1483 /* First try to use addcc pattern. */
1484 if (general_operand (XEXP (cond
, 0), VOIDmode
)
1485 && general_operand (XEXP (cond
, 1), VOIDmode
))
1488 target
= emit_conditional_add (if_info
->x
, code
,
1493 XEXP (if_info
->a
, 1),
1494 GET_MODE (if_info
->x
),
1495 (code
== LTU
|| code
== GEU
1496 || code
== LEU
|| code
== GTU
));
1499 if (target
!= if_info
->x
)
1500 noce_emit_move_insn (if_info
->x
, target
);
1502 seq
= end_ifcvt_sequence (if_info
);
1506 emit_insn_before_setloc (seq
, if_info
->jump
,
1507 INSN_LOCATION (if_info
->insn_a
));
1513 /* If that fails, construct conditional increment or decrement using
1515 if (if_info
->branch_cost
>= 2
1516 && (XEXP (if_info
->a
, 1) == const1_rtx
1517 || XEXP (if_info
->a
, 1) == constm1_rtx
))
1520 if (STORE_FLAG_VALUE
== INTVAL (XEXP (if_info
->a
, 1)))
1521 subtract
= 0, normalize
= 0;
1522 else if (-STORE_FLAG_VALUE
== INTVAL (XEXP (if_info
->a
, 1)))
1523 subtract
= 1, normalize
= 0;
1525 subtract
= 0, normalize
= INTVAL (XEXP (if_info
->a
, 1));
1528 target
= noce_emit_store_flag (if_info
,
1529 gen_reg_rtx (GET_MODE (if_info
->x
)),
1533 target
= expand_simple_binop (GET_MODE (if_info
->x
),
1534 subtract
? MINUS
: PLUS
,
1535 if_info
->b
, target
, if_info
->x
,
1539 if (target
!= if_info
->x
)
1540 noce_emit_move_insn (if_info
->x
, target
);
1542 seq
= end_ifcvt_sequence (if_info
);
1546 emit_insn_before_setloc (seq
, if_info
->jump
,
1547 INSN_LOCATION (if_info
->insn_a
));
1557 /* Convert "if (test) x = 0;" to "x &= -(test == 0);" */
1560 noce_try_store_flag_mask (struct noce_if_info
*if_info
)
1566 if (!noce_simple_bbs (if_info
))
1570 if ((if_info
->branch_cost
>= 2
1571 || STORE_FLAG_VALUE
== -1)
1572 && ((if_info
->a
== const0_rtx
1573 && rtx_equal_p (if_info
->b
, if_info
->x
))
1574 || ((reversep
= (reversed_comparison_code (if_info
->cond
,
1577 && if_info
->b
== const0_rtx
1578 && rtx_equal_p (if_info
->a
, if_info
->x
))))
1581 target
= noce_emit_store_flag (if_info
,
1582 gen_reg_rtx (GET_MODE (if_info
->x
)),
1585 target
= expand_simple_binop (GET_MODE (if_info
->x
), AND
,
1587 target
, if_info
->x
, 0,
1592 int old_cost
, new_cost
, insn_cost
;
1595 if (target
!= if_info
->x
)
1596 noce_emit_move_insn (if_info
->x
, target
);
1598 seq
= end_ifcvt_sequence (if_info
);
1602 speed_p
= optimize_bb_for_speed_p (BLOCK_FOR_INSN (if_info
->insn_a
));
1603 insn_cost
= insn_rtx_cost (PATTERN (if_info
->insn_a
), speed_p
);
1604 old_cost
= COSTS_N_INSNS (if_info
->branch_cost
) + insn_cost
;
1605 new_cost
= seq_cost (seq
, speed_p
);
1607 if (new_cost
> old_cost
)
1610 emit_insn_before_setloc (seq
, if_info
->jump
,
1611 INSN_LOCATION (if_info
->insn_a
));
1621 /* Helper function for noce_try_cmove and noce_try_cmove_arith. */
1624 noce_emit_cmove (struct noce_if_info
*if_info
, rtx x
, enum rtx_code code
,
1625 rtx cmp_a
, rtx cmp_b
, rtx vfalse
, rtx vtrue
)
1627 rtx target ATTRIBUTE_UNUSED
;
1628 int unsignedp ATTRIBUTE_UNUSED
;
1630 /* If earliest == jump, try to build the cmove insn directly.
1631 This is helpful when combine has created some complex condition
1632 (like for alpha's cmovlbs) that we can't hope to regenerate
1633 through the normal interface. */
1635 if (if_info
->cond_earliest
== if_info
->jump
)
1637 rtx cond
= gen_rtx_fmt_ee (code
, GET_MODE (if_info
->cond
), cmp_a
, cmp_b
);
1638 rtx if_then_else
= gen_rtx_IF_THEN_ELSE (GET_MODE (x
),
1639 cond
, vtrue
, vfalse
);
1640 rtx set
= gen_rtx_SET (x
, if_then_else
);
1643 rtx_insn
*insn
= emit_insn (set
);
1645 if (recog_memoized (insn
) >= 0)
1647 rtx_insn
*seq
= get_insns ();
1657 /* Don't even try if the comparison operands are weird
1658 except that the target supports cbranchcc4. */
1659 if (! general_operand (cmp_a
, GET_MODE (cmp_a
))
1660 || ! general_operand (cmp_b
, GET_MODE (cmp_b
)))
1662 if (!have_cbranchcc4
1663 || GET_MODE_CLASS (GET_MODE (cmp_a
)) != MODE_CC
1664 || cmp_b
!= const0_rtx
)
1668 unsignedp
= (code
== LTU
|| code
== GEU
1669 || code
== LEU
|| code
== GTU
);
1671 target
= emit_conditional_move (x
, code
, cmp_a
, cmp_b
, VOIDmode
,
1672 vtrue
, vfalse
, GET_MODE (x
),
1677 /* We might be faced with a situation like:
1680 vtrue = (subreg:M (reg:N VTRUE) BYTE)
1681 vfalse = (subreg:M (reg:N VFALSE) BYTE)
1683 We can't do a conditional move in mode M, but it's possible that we
1684 could do a conditional move in mode N instead and take a subreg of
1687 If we can't create new pseudos, though, don't bother. */
1688 if (reload_completed
)
1691 if (GET_CODE (vtrue
) == SUBREG
&& GET_CODE (vfalse
) == SUBREG
)
1693 rtx reg_vtrue
= SUBREG_REG (vtrue
);
1694 rtx reg_vfalse
= SUBREG_REG (vfalse
);
1695 unsigned int byte_vtrue
= SUBREG_BYTE (vtrue
);
1696 unsigned int byte_vfalse
= SUBREG_BYTE (vfalse
);
1697 rtx promoted_target
;
1699 if (GET_MODE (reg_vtrue
) != GET_MODE (reg_vfalse
)
1700 || byte_vtrue
!= byte_vfalse
1701 || (SUBREG_PROMOTED_VAR_P (vtrue
)
1702 != SUBREG_PROMOTED_VAR_P (vfalse
))
1703 || (SUBREG_PROMOTED_GET (vtrue
)
1704 != SUBREG_PROMOTED_GET (vfalse
)))
1707 promoted_target
= gen_reg_rtx (GET_MODE (reg_vtrue
));
1709 target
= emit_conditional_move (promoted_target
, code
, cmp_a
, cmp_b
,
1710 VOIDmode
, reg_vtrue
, reg_vfalse
,
1711 GET_MODE (reg_vtrue
), unsignedp
);
1712 /* Nope, couldn't do it in that mode either. */
1716 target
= gen_rtx_SUBREG (GET_MODE (vtrue
), promoted_target
, byte_vtrue
);
1717 SUBREG_PROMOTED_VAR_P (target
) = SUBREG_PROMOTED_VAR_P (vtrue
);
1718 SUBREG_PROMOTED_SET (target
, SUBREG_PROMOTED_GET (vtrue
));
1719 emit_move_insn (x
, target
);
1726 /* Try only simple constants and registers here. More complex cases
1727 are handled in noce_try_cmove_arith after noce_try_store_flag_arith
1728 has had a go at it. */
1731 noce_try_cmove (struct noce_if_info
*if_info
)
1737 if (!noce_simple_bbs (if_info
))
1740 if ((CONSTANT_P (if_info
->a
) || register_operand (if_info
->a
, VOIDmode
))
1741 && (CONSTANT_P (if_info
->b
) || register_operand (if_info
->b
, VOIDmode
)))
1745 code
= GET_CODE (if_info
->cond
);
1746 target
= noce_emit_cmove (if_info
, if_info
->x
, code
,
1747 XEXP (if_info
->cond
, 0),
1748 XEXP (if_info
->cond
, 1),
1749 if_info
->a
, if_info
->b
);
1753 if (target
!= if_info
->x
)
1754 noce_emit_move_insn (if_info
->x
, target
);
1756 seq
= end_ifcvt_sequence (if_info
);
1760 emit_insn_before_setloc (seq
, if_info
->jump
,
1761 INSN_LOCATION (if_info
->insn_a
));
1764 /* If both a and b are constants try a last-ditch transformation:
1765 if (test) x = a; else x = b;
1766 => x = (-(test != 0) & (b - a)) + a;
1767 Try this only if the target-specific expansion above has failed.
1768 The target-specific expander may want to generate sequences that
1769 we don't know about, so give them a chance before trying this
1771 else if (!targetm
.have_conditional_execution ()
1772 && CONST_INT_P (if_info
->a
) && CONST_INT_P (if_info
->b
)
1773 && ((if_info
->branch_cost
>= 2 && STORE_FLAG_VALUE
== -1)
1774 || if_info
->branch_cost
>= 3))
1776 machine_mode mode
= GET_MODE (if_info
->x
);
1777 HOST_WIDE_INT ifalse
= INTVAL (if_info
->a
);
1778 HOST_WIDE_INT itrue
= INTVAL (if_info
->b
);
1779 rtx target
= noce_emit_store_flag (if_info
, if_info
->x
, false, -1);
1786 HOST_WIDE_INT diff
= (unsigned HOST_WIDE_INT
) itrue
- ifalse
;
1787 /* Make sure we can represent the difference
1788 between the two values. */
1790 != ((ifalse
< 0) != (itrue
< 0) ? ifalse
< 0 : ifalse
< itrue
))
1796 diff
= trunc_int_for_mode (diff
, mode
);
1797 target
= expand_simple_binop (mode
, AND
,
1798 target
, gen_int_mode (diff
, mode
),
1799 if_info
->x
, 0, OPTAB_WIDEN
);
1801 target
= expand_simple_binop (mode
, PLUS
,
1802 target
, gen_int_mode (ifalse
, mode
),
1803 if_info
->x
, 0, OPTAB_WIDEN
);
1806 if (target
!= if_info
->x
)
1807 noce_emit_move_insn (if_info
->x
, target
);
1809 seq
= end_ifcvt_sequence (if_info
);
1813 emit_insn_before_setloc (seq
, if_info
->jump
,
1814 INSN_LOCATION (if_info
->insn_a
));
1830 /* Return true if X contains a conditional code mode rtx. */
1833 contains_ccmode_rtx_p (rtx x
)
1835 subrtx_iterator::array_type array
;
1836 FOR_EACH_SUBRTX (iter
, array
, x
, ALL
)
1837 if (GET_MODE_CLASS (GET_MODE (*iter
)) == MODE_CC
)
1843 /* Helper for bb_valid_for_noce_process_p. Validate that
1844 the rtx insn INSN is a single set that does not set
1845 the conditional register CC and is in general valid for
1849 insn_valid_noce_process_p (rtx_insn
*insn
, rtx cc
)
1852 || !NONJUMP_INSN_P (insn
)
1853 || (cc
&& set_of (cc
, insn
)))
1856 rtx sset
= single_set (insn
);
1858 /* Currently support only simple single sets in test_bb. */
1860 || !noce_operand_ok (SET_DEST (sset
))
1861 || contains_ccmode_rtx_p (SET_DEST (sset
))
1862 || !noce_operand_ok (SET_SRC (sset
)))
1869 /* Return true iff the registers that the insns in BB_A set do not
1870 get used in BB_B. */
1873 bbs_ok_for_cmove_arith (basic_block bb_a
, basic_block bb_b
)
1876 bitmap bba_sets
= BITMAP_ALLOC (®_obstack
);
1881 FOR_BB_INSNS (bb_a
, a_insn
)
1883 if (!active_insn_p (a_insn
))
1886 rtx sset_a
= single_set (a_insn
);
1890 BITMAP_FREE (bba_sets
);
1894 /* Record all registers that BB_A sets. */
1895 FOR_EACH_INSN_DEF (def
, a_insn
)
1896 bitmap_set_bit (bba_sets
, DF_REF_REGNO (def
));
1901 FOR_BB_INSNS (bb_b
, b_insn
)
1903 if (!active_insn_p (b_insn
))
1906 rtx sset_b
= single_set (b_insn
);
1910 BITMAP_FREE (bba_sets
);
1914 /* Make sure this is a REG and not some instance
1915 of ZERO_EXTRACT or SUBREG or other dangerous stuff. */
1916 if (!REG_P (SET_DEST (sset_b
)))
1918 BITMAP_FREE (bba_sets
);
1922 /* If the insn uses a reg set in BB_A return false. */
1923 FOR_EACH_INSN_USE (use
, b_insn
)
1925 if (bitmap_bit_p (bba_sets
, DF_REF_REGNO (use
)))
1927 BITMAP_FREE (bba_sets
);
1934 BITMAP_FREE (bba_sets
);
1938 /* Emit copies of all the active instructions in BB except the last.
1939 This is a helper for noce_try_cmove_arith. */
1942 noce_emit_all_but_last (basic_block bb
)
1944 rtx_insn
*last
= last_active_insn (bb
, FALSE
);
1946 FOR_BB_INSNS (bb
, insn
)
1948 if (insn
!= last
&& active_insn_p (insn
))
1950 rtx_insn
*to_emit
= as_a
<rtx_insn
*> (copy_rtx (insn
));
1952 emit_insn (PATTERN (to_emit
));
1957 /* Helper for noce_try_cmove_arith. Emit the pattern TO_EMIT and return
1958 the resulting insn or NULL if it's not a valid insn. */
1961 noce_emit_insn (rtx to_emit
)
1963 gcc_assert (to_emit
);
1964 rtx_insn
*insn
= emit_insn (to_emit
);
1966 if (recog_memoized (insn
) < 0)
1972 /* Helper for noce_try_cmove_arith. Emit a copy of the insns up to
1973 and including the penultimate one in BB if it is not simple
1974 (as indicated by SIMPLE). Then emit LAST_INSN as the last
1975 insn in the block. The reason for that is that LAST_INSN may
1976 have been modified by the preparation in noce_try_cmove_arith. */
1979 noce_emit_bb (rtx last_insn
, basic_block bb
, bool simple
)
1982 noce_emit_all_but_last (bb
);
1984 if (last_insn
&& !noce_emit_insn (last_insn
))
1990 /* Try more complex cases involving conditional_move. */
1993 noce_try_cmove_arith (struct noce_if_info
*if_info
)
1999 rtx_insn
*insn_a
, *insn_b
;
2000 bool a_simple
= if_info
->then_simple
;
2001 bool b_simple
= if_info
->else_simple
;
2002 basic_block then_bb
= if_info
->then_bb
;
2003 basic_block else_bb
= if_info
->else_bb
;
2007 rtx_insn
*ifcvt_seq
;
2009 /* A conditional move from two memory sources is equivalent to a
2010 conditional on their addresses followed by a load. Don't do this
2011 early because it'll screw alias analysis. Note that we've
2012 already checked for no side effects. */
2013 /* ??? FIXME: Magic number 5. */
2014 if (cse_not_expected
2015 && MEM_P (a
) && MEM_P (b
)
2016 && MEM_ADDR_SPACE (a
) == MEM_ADDR_SPACE (b
)
2017 && if_info
->branch_cost
>= 5)
2019 machine_mode address_mode
= get_address_mode (a
);
2023 x
= gen_reg_rtx (address_mode
);
2027 /* ??? We could handle this if we knew that a load from A or B could
2028 not trap or fault. This is also true if we've already loaded
2029 from the address along the path from ENTRY. */
2030 else if (may_trap_or_fault_p (a
) || may_trap_or_fault_p (b
))
2033 /* if (test) x = a + b; else x = c - d;
2040 code
= GET_CODE (if_info
->cond
);
2041 insn_a
= if_info
->insn_a
;
2042 insn_b
= if_info
->insn_b
;
2044 machine_mode x_mode
= GET_MODE (x
);
2046 if (!can_conditionally_move_p (x_mode
))
2049 unsigned int then_cost
;
2050 unsigned int else_cost
;
2052 then_cost
= if_info
->then_cost
;
2057 else_cost
= if_info
->else_cost
;
2061 /* We're going to execute one of the basic blocks anyway, so
2062 bail out if the most expensive of the two blocks is unacceptable. */
2063 if (MAX (then_cost
, else_cost
) > COSTS_N_INSNS (if_info
->branch_cost
))
2066 /* Possibly rearrange operands to make things come out more natural. */
2067 if (reversed_comparison_code (if_info
->cond
, if_info
->jump
) != UNKNOWN
)
2070 if (rtx_equal_p (b
, x
))
2072 else if (general_operand (b
, GET_MODE (b
)))
2077 code
= reversed_comparison_code (if_info
->cond
, if_info
->jump
);
2079 std::swap (insn_a
, insn_b
);
2080 std::swap (a_simple
, b_simple
);
2081 std::swap (then_bb
, else_bb
);
2085 if (then_bb
&& else_bb
&& !a_simple
&& !b_simple
2086 && (!bbs_ok_for_cmove_arith (then_bb
, else_bb
)
2087 || !bbs_ok_for_cmove_arith (else_bb
, then_bb
)))
2092 /* If one of the blocks is empty then the corresponding B or A value
2093 came from the test block. The non-empty complex block that we will
2094 emit might clobber the register used by B or A, so move it to a pseudo
2097 rtx tmp_a
= NULL_RTX
;
2098 rtx tmp_b
= NULL_RTX
;
2100 if (b_simple
|| !else_bb
)
2101 tmp_b
= gen_reg_rtx (x_mode
);
2103 if (a_simple
|| !then_bb
)
2104 tmp_a
= gen_reg_rtx (x_mode
);
2109 rtx emit_a
= NULL_RTX
;
2110 rtx emit_b
= NULL_RTX
;
2111 rtx_insn
*tmp_insn
= NULL
;
2112 bool modified_in_a
= false;
2113 bool modified_in_b
= false;
2114 /* If either operand is complex, load it into a register first.
2115 The best way to do this is to copy the original insn. In this
2116 way we preserve any clobbers etc that the insn may have had.
2117 This is of course not possible in the IS_MEM case. */
2119 if (! general_operand (a
, GET_MODE (a
)) || tmp_a
)
2124 rtx reg
= gen_reg_rtx (GET_MODE (a
));
2125 emit_a
= gen_rtx_SET (reg
, a
);
2131 a
= tmp_a
? tmp_a
: gen_reg_rtx (GET_MODE (a
));
2133 rtx_insn
*copy_of_a
= as_a
<rtx_insn
*> (copy_rtx (insn_a
));
2134 rtx set
= single_set (copy_of_a
);
2137 emit_a
= PATTERN (copy_of_a
);
2141 rtx tmp_reg
= tmp_a
? tmp_a
: gen_reg_rtx (GET_MODE (a
));
2142 emit_a
= gen_rtx_SET (tmp_reg
, a
);
2148 if (! general_operand (b
, GET_MODE (b
)) || tmp_b
)
2152 rtx reg
= gen_reg_rtx (GET_MODE (b
));
2153 emit_b
= gen_rtx_SET (reg
, b
);
2159 b
= tmp_b
? tmp_b
: gen_reg_rtx (GET_MODE (b
));
2160 rtx_insn
*copy_of_b
= as_a
<rtx_insn
*> (copy_rtx (insn_b
));
2161 rtx set
= single_set (copy_of_b
);
2164 emit_b
= PATTERN (copy_of_b
);
2168 rtx tmp_reg
= tmp_b
? tmp_b
: gen_reg_rtx (GET_MODE (b
));
2169 emit_b
= gen_rtx_SET (tmp_reg
, b
);
2175 modified_in_a
= emit_a
!= NULL_RTX
&& modified_in_p (orig_b
, emit_a
);
2176 if (tmp_b
&& then_bb
)
2178 FOR_BB_INSNS (then_bb
, tmp_insn
)
2179 /* Don't check inside insn_a. We will have changed it to emit_a
2180 with a destination that doesn't conflict. */
2181 if (!(insn_a
&& tmp_insn
== insn_a
)
2182 && modified_in_p (orig_b
, tmp_insn
))
2184 modified_in_a
= true;
2190 modified_in_b
= emit_b
!= NULL_RTX
&& modified_in_p (orig_a
, emit_b
);
2191 if (tmp_a
&& else_bb
)
2193 FOR_BB_INSNS (else_bb
, tmp_insn
)
2194 /* Don't check inside insn_b. We will have changed it to emit_b
2195 with a destination that doesn't conflict. */
2196 if (!(insn_b
&& tmp_insn
== insn_b
)
2197 && modified_in_p (orig_a
, tmp_insn
))
2199 modified_in_b
= true;
2204 /* If insn to set up A clobbers any registers B depends on, try to
2205 swap insn that sets up A with the one that sets up B. If even
2206 that doesn't help, punt. */
2207 if (modified_in_a
&& !modified_in_b
)
2209 if (!noce_emit_bb (emit_b
, else_bb
, b_simple
))
2210 goto end_seq_and_fail
;
2212 if (!noce_emit_bb (emit_a
, then_bb
, a_simple
))
2213 goto end_seq_and_fail
;
2215 else if (!modified_in_a
)
2217 if (!noce_emit_bb (emit_a
, then_bb
, a_simple
))
2218 goto end_seq_and_fail
;
2220 if (!noce_emit_bb (emit_b
, else_bb
, b_simple
))
2221 goto end_seq_and_fail
;
2224 goto end_seq_and_fail
;
2226 target
= noce_emit_cmove (if_info
, x
, code
, XEXP (if_info
->cond
, 0),
2227 XEXP (if_info
->cond
, 1), a
, b
);
2230 goto end_seq_and_fail
;
2232 /* If we're handling a memory for above, emit the load now. */
2235 rtx mem
= gen_rtx_MEM (GET_MODE (if_info
->x
), target
);
2237 /* Copy over flags as appropriate. */
2238 if (MEM_VOLATILE_P (if_info
->a
) || MEM_VOLATILE_P (if_info
->b
))
2239 MEM_VOLATILE_P (mem
) = 1;
2240 if (MEM_ALIAS_SET (if_info
->a
) == MEM_ALIAS_SET (if_info
->b
))
2241 set_mem_alias_set (mem
, MEM_ALIAS_SET (if_info
->a
));
2243 MIN (MEM_ALIGN (if_info
->a
), MEM_ALIGN (if_info
->b
)));
2245 gcc_assert (MEM_ADDR_SPACE (if_info
->a
) == MEM_ADDR_SPACE (if_info
->b
));
2246 set_mem_addr_space (mem
, MEM_ADDR_SPACE (if_info
->a
));
2248 noce_emit_move_insn (if_info
->x
, mem
);
2250 else if (target
!= x
)
2251 noce_emit_move_insn (x
, target
);
2253 ifcvt_seq
= end_ifcvt_sequence (if_info
);
2257 emit_insn_before_setloc (ifcvt_seq
, if_info
->jump
,
2258 INSN_LOCATION (if_info
->insn_a
));
2266 /* For most cases, the simplified condition we found is the best
2267 choice, but this is not the case for the min/max/abs transforms.
2268 For these we wish to know that it is A or B in the condition. */
2271 noce_get_alt_condition (struct noce_if_info
*if_info
, rtx target
,
2272 rtx_insn
**earliest
)
2278 /* If target is already mentioned in the known condition, return it. */
2279 if (reg_mentioned_p (target
, if_info
->cond
))
2281 *earliest
= if_info
->cond_earliest
;
2282 return if_info
->cond
;
2285 set
= pc_set (if_info
->jump
);
2286 cond
= XEXP (SET_SRC (set
), 0);
2288 = GET_CODE (XEXP (SET_SRC (set
), 2)) == LABEL_REF
2289 && LABEL_REF_LABEL (XEXP (SET_SRC (set
), 2)) == JUMP_LABEL (if_info
->jump
);
2290 if (if_info
->then_else_reversed
)
2293 /* If we're looking for a constant, try to make the conditional
2294 have that constant in it. There are two reasons why it may
2295 not have the constant we want:
2297 1. GCC may have needed to put the constant in a register, because
2298 the target can't compare directly against that constant. For
2299 this case, we look for a SET immediately before the comparison
2300 that puts a constant in that register.
2302 2. GCC may have canonicalized the conditional, for example
2303 replacing "if x < 4" with "if x <= 3". We can undo that (or
2304 make equivalent types of changes) to get the constants we need
2305 if they're off by one in the right direction. */
2307 if (CONST_INT_P (target
))
2309 enum rtx_code code
= GET_CODE (if_info
->cond
);
2310 rtx op_a
= XEXP (if_info
->cond
, 0);
2311 rtx op_b
= XEXP (if_info
->cond
, 1);
2312 rtx_insn
*prev_insn
;
2314 /* First, look to see if we put a constant in a register. */
2315 prev_insn
= prev_nonnote_insn (if_info
->cond_earliest
);
2317 && BLOCK_FOR_INSN (prev_insn
)
2318 == BLOCK_FOR_INSN (if_info
->cond_earliest
)
2319 && INSN_P (prev_insn
)
2320 && GET_CODE (PATTERN (prev_insn
)) == SET
)
2322 rtx src
= find_reg_equal_equiv_note (prev_insn
);
2324 src
= SET_SRC (PATTERN (prev_insn
));
2325 if (CONST_INT_P (src
))
2327 if (rtx_equal_p (op_a
, SET_DEST (PATTERN (prev_insn
))))
2329 else if (rtx_equal_p (op_b
, SET_DEST (PATTERN (prev_insn
))))
2332 if (CONST_INT_P (op_a
))
2334 std::swap (op_a
, op_b
);
2335 code
= swap_condition (code
);
2340 /* Now, look to see if we can get the right constant by
2341 adjusting the conditional. */
2342 if (CONST_INT_P (op_b
))
2344 HOST_WIDE_INT desired_val
= INTVAL (target
);
2345 HOST_WIDE_INT actual_val
= INTVAL (op_b
);
2350 if (actual_val
== desired_val
+ 1)
2353 op_b
= GEN_INT (desired_val
);
2357 if (actual_val
== desired_val
- 1)
2360 op_b
= GEN_INT (desired_val
);
2364 if (actual_val
== desired_val
- 1)
2367 op_b
= GEN_INT (desired_val
);
2371 if (actual_val
== desired_val
+ 1)
2374 op_b
= GEN_INT (desired_val
);
2382 /* If we made any changes, generate a new conditional that is
2383 equivalent to what we started with, but has the right
2385 if (code
!= GET_CODE (if_info
->cond
)
2386 || op_a
!= XEXP (if_info
->cond
, 0)
2387 || op_b
!= XEXP (if_info
->cond
, 1))
2389 cond
= gen_rtx_fmt_ee (code
, GET_MODE (cond
), op_a
, op_b
);
2390 *earliest
= if_info
->cond_earliest
;
2395 cond
= canonicalize_condition (if_info
->jump
, cond
, reverse
,
2396 earliest
, target
, have_cbranchcc4
, true);
2397 if (! cond
|| ! reg_mentioned_p (target
, cond
))
2400 /* We almost certainly searched back to a different place.
2401 Need to re-verify correct lifetimes. */
2403 /* X may not be mentioned in the range (cond_earliest, jump]. */
2404 for (insn
= if_info
->jump
; insn
!= *earliest
; insn
= PREV_INSN (insn
))
2405 if (INSN_P (insn
) && reg_overlap_mentioned_p (if_info
->x
, PATTERN (insn
)))
2408 /* A and B may not be modified in the range [cond_earliest, jump). */
2409 for (insn
= *earliest
; insn
!= if_info
->jump
; insn
= NEXT_INSN (insn
))
2411 && (modified_in_p (if_info
->a
, insn
)
2412 || modified_in_p (if_info
->b
, insn
)))
2418 /* Convert "if (a < b) x = a; else x = b;" to "x = min(a, b);", etc. */
2421 noce_try_minmax (struct noce_if_info
*if_info
)
2424 rtx_insn
*earliest
, *seq
;
2425 enum rtx_code code
, op
;
2428 if (!noce_simple_bbs (if_info
))
2431 /* ??? Reject modes with NaNs or signed zeros since we don't know how
2432 they will be resolved with an SMIN/SMAX. It wouldn't be too hard
2433 to get the target to tell us... */
2434 if (HONOR_SIGNED_ZEROS (if_info
->x
)
2435 || HONOR_NANS (if_info
->x
))
2438 cond
= noce_get_alt_condition (if_info
, if_info
->a
, &earliest
);
2442 /* Verify the condition is of the form we expect, and canonicalize
2443 the comparison code. */
2444 code
= GET_CODE (cond
);
2445 if (rtx_equal_p (XEXP (cond
, 0), if_info
->a
))
2447 if (! rtx_equal_p (XEXP (cond
, 1), if_info
->b
))
2450 else if (rtx_equal_p (XEXP (cond
, 1), if_info
->a
))
2452 if (! rtx_equal_p (XEXP (cond
, 0), if_info
->b
))
2454 code
= swap_condition (code
);
2459 /* Determine what sort of operation this is. Note that the code is for
2460 a taken branch, so the code->operation mapping appears backwards. */
2493 target
= expand_simple_binop (GET_MODE (if_info
->x
), op
,
2494 if_info
->a
, if_info
->b
,
2495 if_info
->x
, unsignedp
, OPTAB_WIDEN
);
2501 if (target
!= if_info
->x
)
2502 noce_emit_move_insn (if_info
->x
, target
);
2504 seq
= end_ifcvt_sequence (if_info
);
2508 emit_insn_before_setloc (seq
, if_info
->jump
, INSN_LOCATION (if_info
->insn_a
));
2509 if_info
->cond
= cond
;
2510 if_info
->cond_earliest
= earliest
;
2515 /* Convert "if (a < 0) x = -a; else x = a;" to "x = abs(a);",
2516 "if (a < 0) x = ~a; else x = a;" to "x = one_cmpl_abs(a);",
2520 noce_try_abs (struct noce_if_info
*if_info
)
2522 rtx cond
, target
, a
, b
, c
;
2523 rtx_insn
*earliest
, *seq
;
2525 bool one_cmpl
= false;
2527 if (!noce_simple_bbs (if_info
))
2530 /* Reject modes with signed zeros. */
2531 if (HONOR_SIGNED_ZEROS (if_info
->x
))
2534 /* Recognize A and B as constituting an ABS or NABS. The canonical
2535 form is a branch around the negation, taken when the object is the
2536 first operand of a comparison against 0 that evaluates to true. */
2539 if (GET_CODE (a
) == NEG
&& rtx_equal_p (XEXP (a
, 0), b
))
2541 else if (GET_CODE (b
) == NEG
&& rtx_equal_p (XEXP (b
, 0), a
))
2546 else if (GET_CODE (a
) == NOT
&& rtx_equal_p (XEXP (a
, 0), b
))
2551 else if (GET_CODE (b
) == NOT
&& rtx_equal_p (XEXP (b
, 0), a
))
2560 cond
= noce_get_alt_condition (if_info
, b
, &earliest
);
2564 /* Verify the condition is of the form we expect. */
2565 if (rtx_equal_p (XEXP (cond
, 0), b
))
2567 else if (rtx_equal_p (XEXP (cond
, 1), b
))
2575 /* Verify that C is zero. Search one step backward for a
2576 REG_EQUAL note or a simple source if necessary. */
2580 rtx_insn
*insn
= prev_nonnote_insn (earliest
);
2582 && BLOCK_FOR_INSN (insn
) == BLOCK_FOR_INSN (earliest
)
2583 && (set
= single_set (insn
))
2584 && rtx_equal_p (SET_DEST (set
), c
))
2586 rtx note
= find_reg_equal_equiv_note (insn
);
2596 && GET_CODE (XEXP (c
, 0)) == SYMBOL_REF
2597 && CONSTANT_POOL_ADDRESS_P (XEXP (c
, 0)))
2598 c
= get_pool_constant (XEXP (c
, 0));
2600 /* Work around funny ideas get_condition has wrt canonicalization.
2601 Note that these rtx constants are known to be CONST_INT, and
2602 therefore imply integer comparisons.
2603 The one_cmpl case is more complicated, as we want to handle
2604 only x < 0 ? ~x : x or x >= 0 ? x : ~x to one_cmpl_abs (x)
2605 and x < 0 ? x : ~x or x >= 0 ? ~x : x to ~one_cmpl_abs (x),
2606 but not other cases (x > -1 is equivalent of x >= 0). */
2607 if (c
== constm1_rtx
&& GET_CODE (cond
) == GT
)
2609 else if (c
== const1_rtx
&& GET_CODE (cond
) == LT
)
2614 else if (c
== CONST0_RTX (GET_MODE (b
)))
2617 && GET_CODE (cond
) != GE
2618 && GET_CODE (cond
) != LT
)
2624 /* Determine what sort of operation this is. */
2625 switch (GET_CODE (cond
))
2644 target
= expand_one_cmpl_abs_nojump (GET_MODE (if_info
->x
), b
,
2647 target
= expand_abs_nojump (GET_MODE (if_info
->x
), b
, if_info
->x
, 1);
2649 /* ??? It's a quandary whether cmove would be better here, especially
2650 for integers. Perhaps combine will clean things up. */
2651 if (target
&& negate
)
2654 target
= expand_simple_unop (GET_MODE (target
), NOT
, target
,
2657 target
= expand_simple_unop (GET_MODE (target
), NEG
, target
,
2667 if (target
!= if_info
->x
)
2668 noce_emit_move_insn (if_info
->x
, target
);
2670 seq
= end_ifcvt_sequence (if_info
);
2674 emit_insn_before_setloc (seq
, if_info
->jump
, INSN_LOCATION (if_info
->insn_a
));
2675 if_info
->cond
= cond
;
2676 if_info
->cond_earliest
= earliest
;
2681 /* Convert "if (m < 0) x = b; else x = 0;" to "x = (m >> C) & b;". */
2684 noce_try_sign_mask (struct noce_if_info
*if_info
)
2690 bool t_unconditional
;
2692 if (!noce_simple_bbs (if_info
))
2695 cond
= if_info
->cond
;
2696 code
= GET_CODE (cond
);
2701 if (if_info
->a
== const0_rtx
)
2703 if ((code
== LT
&& c
== const0_rtx
)
2704 || (code
== LE
&& c
== constm1_rtx
))
2707 else if (if_info
->b
== const0_rtx
)
2709 if ((code
== GE
&& c
== const0_rtx
)
2710 || (code
== GT
&& c
== constm1_rtx
))
2714 if (! t
|| side_effects_p (t
))
2717 /* We currently don't handle different modes. */
2718 mode
= GET_MODE (t
);
2719 if (GET_MODE (m
) != mode
)
2722 /* This is only profitable if T is unconditionally executed/evaluated in the
2723 original insn sequence or T is cheap. The former happens if B is the
2724 non-zero (T) value and if INSN_B was taken from TEST_BB, or there was no
2725 INSN_B which can happen for e.g. conditional stores to memory. For the
2726 cost computation use the block TEST_BB where the evaluation will end up
2727 after the transformation. */
2730 && (if_info
->insn_b
== NULL_RTX
2731 || BLOCK_FOR_INSN (if_info
->insn_b
) == if_info
->test_bb
));
2732 if (!(t_unconditional
2733 || (set_src_cost (t
, mode
, optimize_bb_for_speed_p (if_info
->test_bb
))
2734 < COSTS_N_INSNS (2))))
2738 /* Use emit_store_flag to generate "m < 0 ? -1 : 0" instead of expanding
2739 "(signed) m >> 31" directly. This benefits targets with specialized
2740 insns to obtain the signmask, but still uses ashr_optab otherwise. */
2741 m
= emit_store_flag (gen_reg_rtx (mode
), LT
, m
, const0_rtx
, mode
, 0, -1);
2742 t
= m
? expand_binop (mode
, and_optab
, m
, t
, NULL_RTX
, 0, OPTAB_DIRECT
)
2751 noce_emit_move_insn (if_info
->x
, t
);
2753 seq
= end_ifcvt_sequence (if_info
);
2757 emit_insn_before_setloc (seq
, if_info
->jump
, INSN_LOCATION (if_info
->insn_a
));
2762 /* Optimize away "if (x & C) x |= C" and similar bit manipulation
2766 noce_try_bitop (struct noce_if_info
*if_info
)
2768 rtx cond
, x
, a
, result
;
2775 cond
= if_info
->cond
;
2776 code
= GET_CODE (cond
);
2778 if (!noce_simple_bbs (if_info
))
2781 /* Check for no else condition. */
2782 if (! rtx_equal_p (x
, if_info
->b
))
2785 /* Check for a suitable condition. */
2786 if (code
!= NE
&& code
!= EQ
)
2788 if (XEXP (cond
, 1) != const0_rtx
)
2790 cond
= XEXP (cond
, 0);
2792 /* ??? We could also handle AND here. */
2793 if (GET_CODE (cond
) == ZERO_EXTRACT
)
2795 if (XEXP (cond
, 1) != const1_rtx
2796 || !CONST_INT_P (XEXP (cond
, 2))
2797 || ! rtx_equal_p (x
, XEXP (cond
, 0)))
2799 bitnum
= INTVAL (XEXP (cond
, 2));
2800 mode
= GET_MODE (x
);
2801 if (BITS_BIG_ENDIAN
)
2802 bitnum
= GET_MODE_BITSIZE (mode
) - 1 - bitnum
;
2803 if (bitnum
< 0 || bitnum
>= HOST_BITS_PER_WIDE_INT
)
2810 if (GET_CODE (a
) == IOR
|| GET_CODE (a
) == XOR
)
2812 /* Check for "if (X & C) x = x op C". */
2813 if (! rtx_equal_p (x
, XEXP (a
, 0))
2814 || !CONST_INT_P (XEXP (a
, 1))
2815 || (INTVAL (XEXP (a
, 1)) & GET_MODE_MASK (mode
))
2816 != (unsigned HOST_WIDE_INT
) 1 << bitnum
)
2819 /* if ((x & C) == 0) x |= C; is transformed to x |= C. */
2820 /* if ((x & C) != 0) x |= C; is transformed to nothing. */
2821 if (GET_CODE (a
) == IOR
)
2822 result
= (code
== NE
) ? a
: NULL_RTX
;
2823 else if (code
== NE
)
2825 /* if ((x & C) == 0) x ^= C; is transformed to x |= C. */
2826 result
= gen_int_mode ((HOST_WIDE_INT
) 1 << bitnum
, mode
);
2827 result
= simplify_gen_binary (IOR
, mode
, x
, result
);
2831 /* if ((x & C) != 0) x ^= C; is transformed to x &= ~C. */
2832 result
= gen_int_mode (~((HOST_WIDE_INT
) 1 << bitnum
), mode
);
2833 result
= simplify_gen_binary (AND
, mode
, x
, result
);
2836 else if (GET_CODE (a
) == AND
)
2838 /* Check for "if (X & C) x &= ~C". */
2839 if (! rtx_equal_p (x
, XEXP (a
, 0))
2840 || !CONST_INT_P (XEXP (a
, 1))
2841 || (INTVAL (XEXP (a
, 1)) & GET_MODE_MASK (mode
))
2842 != (~((HOST_WIDE_INT
) 1 << bitnum
) & GET_MODE_MASK (mode
)))
2845 /* if ((x & C) == 0) x &= ~C; is transformed to nothing. */
2846 /* if ((x & C) != 0) x &= ~C; is transformed to x &= ~C. */
2847 result
= (code
== EQ
) ? a
: NULL_RTX
;
2855 noce_emit_move_insn (x
, result
);
2856 seq
= end_ifcvt_sequence (if_info
);
2860 emit_insn_before_setloc (seq
, if_info
->jump
,
2861 INSN_LOCATION (if_info
->insn_a
));
2867 /* Similar to get_condition, only the resulting condition must be
2868 valid at JUMP, instead of at EARLIEST.
2870 If THEN_ELSE_REVERSED is true, the fallthrough does not go to the
2871 THEN block of the caller, and we have to reverse the condition. */
2874 noce_get_condition (rtx_insn
*jump
, rtx_insn
**earliest
, bool then_else_reversed
)
2879 if (! any_condjump_p (jump
))
2882 set
= pc_set (jump
);
2884 /* If this branches to JUMP_LABEL when the condition is false,
2885 reverse the condition. */
2886 reverse
= (GET_CODE (XEXP (SET_SRC (set
), 2)) == LABEL_REF
2887 && LABEL_REF_LABEL (XEXP (SET_SRC (set
), 2)) == JUMP_LABEL (jump
));
2889 /* We may have to reverse because the caller's if block is not canonical,
2890 i.e. the THEN block isn't the fallthrough block for the TEST block
2891 (see find_if_header). */
2892 if (then_else_reversed
)
2895 /* If the condition variable is a register and is MODE_INT, accept it. */
2897 cond
= XEXP (SET_SRC (set
), 0);
2898 tmp
= XEXP (cond
, 0);
2899 if (REG_P (tmp
) && GET_MODE_CLASS (GET_MODE (tmp
)) == MODE_INT
2900 && (GET_MODE (tmp
) != BImode
2901 || !targetm
.small_register_classes_for_mode_p (BImode
)))
2906 cond
= gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond
)),
2907 GET_MODE (cond
), tmp
, XEXP (cond
, 1));
2911 /* Otherwise, fall back on canonicalize_condition to do the dirty
2912 work of manipulating MODE_CC values and COMPARE rtx codes. */
2913 tmp
= canonicalize_condition (jump
, cond
, reverse
, earliest
,
2914 NULL_RTX
, have_cbranchcc4
, true);
2916 /* We don't handle side-effects in the condition, like handling
2917 REG_INC notes and making sure no duplicate conditions are emitted. */
2918 if (tmp
!= NULL_RTX
&& side_effects_p (tmp
))
2924 /* Return true if OP is ok for if-then-else processing. */
2927 noce_operand_ok (const_rtx op
)
2929 if (side_effects_p (op
))
2932 /* We special-case memories, so handle any of them with
2933 no address side effects. */
2935 return ! side_effects_p (XEXP (op
, 0));
2937 return ! may_trap_p (op
);
2940 /* Return true if X contains a MEM subrtx. */
2943 contains_mem_rtx_p (rtx x
)
2945 subrtx_iterator::array_type array
;
2946 FOR_EACH_SUBRTX (iter
, array
, x
, ALL
)
2953 /* Return true iff basic block TEST_BB is valid for noce if-conversion.
2954 The condition used in this if-conversion is in COND.
2955 In practice, check that TEST_BB ends with a single set
2956 x := a and all previous computations
2957 in TEST_BB don't produce any values that are live after TEST_BB.
2958 In other words, all the insns in TEST_BB are there only
2959 to compute a value for x. Put the rtx cost of the insns
2960 in TEST_BB into COST. Record whether TEST_BB is a single simple
2961 set instruction in SIMPLE_P. */
2964 bb_valid_for_noce_process_p (basic_block test_bb
, rtx cond
,
2965 unsigned int *cost
, bool *simple_p
)
2970 rtx_insn
*last_insn
= last_active_insn (test_bb
, FALSE
);
2971 rtx last_set
= NULL_RTX
;
2973 rtx cc
= cc_in_cond (cond
);
2975 if (!insn_valid_noce_process_p (last_insn
, cc
))
2977 last_set
= single_set (last_insn
);
2979 rtx x
= SET_DEST (last_set
);
2980 rtx_insn
*first_insn
= first_active_insn (test_bb
);
2981 rtx first_set
= single_set (first_insn
);
2986 /* We have a single simple set, that's okay. */
2987 bool speed_p
= optimize_bb_for_speed_p (test_bb
);
2989 if (first_insn
== last_insn
)
2991 *simple_p
= noce_operand_ok (SET_DEST (first_set
));
2992 *cost
= insn_rtx_cost (first_set
, speed_p
);
2996 rtx_insn
*prev_last_insn
= PREV_INSN (last_insn
);
2997 gcc_assert (prev_last_insn
);
2999 /* For now, disallow setting x multiple times in test_bb. */
3000 if (REG_P (x
) && reg_set_between_p (x
, first_insn
, prev_last_insn
))
3003 bitmap test_bb_temps
= BITMAP_ALLOC (®_obstack
);
3005 /* The regs that are live out of test_bb. */
3006 bitmap test_bb_live_out
= df_get_live_out (test_bb
);
3008 int potential_cost
= insn_rtx_cost (last_set
, speed_p
);
3010 FOR_BB_INSNS (test_bb
, insn
)
3012 if (insn
!= last_insn
)
3014 if (!active_insn_p (insn
))
3017 if (!insn_valid_noce_process_p (insn
, cc
))
3018 goto free_bitmap_and_fail
;
3020 rtx sset
= single_set (insn
);
3023 if (contains_mem_rtx_p (SET_SRC (sset
))
3024 || !REG_P (SET_DEST (sset
))
3025 || reg_overlap_mentioned_p (SET_DEST (sset
), cond
))
3026 goto free_bitmap_and_fail
;
3028 potential_cost
+= insn_rtx_cost (sset
, speed_p
);
3029 bitmap_set_bit (test_bb_temps
, REGNO (SET_DEST (sset
)));
3033 /* If any of the intermediate results in test_bb are live after test_bb
3035 if (bitmap_intersect_p (test_bb_live_out
, test_bb_temps
))
3036 goto free_bitmap_and_fail
;
3038 BITMAP_FREE (test_bb_temps
);
3039 *cost
= potential_cost
;
3043 free_bitmap_and_fail
:
3044 BITMAP_FREE (test_bb_temps
);
3048 /* We have something like:
3051 { i = a; j = b; k = c; }
3055 tmp_i = (x > y) ? a : i;
3056 tmp_j = (x > y) ? b : j;
3057 tmp_k = (x > y) ? c : k;
3062 Subsequent passes are expected to clean up the extra moves.
3064 Look for special cases such as writes to one register which are
3065 read back in another SET, as might occur in a swap idiom or
3074 Which we want to rewrite to:
3076 tmp_i = (x > y) ? a : i;
3077 tmp_j = (x > y) ? tmp_i : j;
3081 We can catch these when looking at (SET x y) by keeping a list of the
3082 registers we would have targeted before if-conversion and looking back
3083 through it for an overlap with Y. If we find one, we rewire the
3084 conditional set to use the temporary we introduced earlier.
3086 IF_INFO contains the useful information about the block structure and
3087 jump instructions. */
3090 noce_convert_multiple_sets (struct noce_if_info
*if_info
)
3092 basic_block test_bb
= if_info
->test_bb
;
3093 basic_block then_bb
= if_info
->then_bb
;
3094 basic_block join_bb
= if_info
->join_bb
;
3095 rtx_insn
*jump
= if_info
->jump
;
3096 rtx_insn
*cond_earliest
;
3101 /* Decompose the condition attached to the jump. */
3102 rtx cond
= noce_get_condition (jump
, &cond_earliest
, false);
3103 rtx x
= XEXP (cond
, 0);
3104 rtx y
= XEXP (cond
, 1);
3105 rtx_code cond_code
= GET_CODE (cond
);
3107 /* The true targets for a conditional move. */
3108 auto_vec
<rtx
> targets
;
3109 /* The temporaries introduced to allow us to not consider register
3111 auto_vec
<rtx
> temporaries
;
3112 /* The insns we've emitted. */
3113 auto_vec
<rtx_insn
*> unmodified_insns
;
3116 FOR_BB_INSNS (then_bb
, insn
)
3118 /* Skip over non-insns. */
3119 if (!active_insn_p (insn
))
3122 rtx set
= single_set (insn
);
3123 gcc_checking_assert (set
);
3125 rtx target
= SET_DEST (set
);
3126 rtx temp
= gen_reg_rtx (GET_MODE (target
));
3127 rtx new_val
= SET_SRC (set
);
3128 rtx old_val
= target
;
3130 /* If we were supposed to read from an earlier write in this block,
3131 we've changed the register allocation. Rewire the read. While
3132 we are looking, also try to catch a swap idiom. */
3133 for (int i
= count
- 1; i
>= 0; --i
)
3134 if (reg_overlap_mentioned_p (new_val
, targets
[i
]))
3136 /* Catch a "swap" style idiom. */
3137 if (find_reg_note (insn
, REG_DEAD
, new_val
) != NULL_RTX
)
3138 /* The write to targets[i] is only live until the read
3139 here. As the condition codes match, we can propagate
3141 new_val
= SET_SRC (single_set (unmodified_insns
[i
]));
3143 new_val
= temporaries
[i
];
3147 /* If we had a non-canonical conditional jump (i.e. one where
3148 the fallthrough is to the "else" case) we need to reverse
3149 the conditional select. */
3150 if (if_info
->then_else_reversed
)
3151 std::swap (old_val
, new_val
);
3153 /* Actually emit the conditional move. */
3154 rtx temp_dest
= noce_emit_cmove (if_info
, temp
, cond_code
,
3155 x
, y
, new_val
, old_val
);
3157 /* If we failed to expand the conditional move, drop out and don't
3159 if (temp_dest
== NULL_RTX
)
3167 targets
.safe_push (target
);
3168 temporaries
.safe_push (temp_dest
);
3169 unmodified_insns
.safe_push (insn
);
3172 /* We must have seen some sort of insn to insert, otherwise we were
3173 given an empty BB to convert, and we can't handle that. */
3174 gcc_assert (!unmodified_insns
.is_empty ());
3176 /* Now fixup the assignments. */
3177 for (int i
= 0; i
< count
; i
++)
3178 noce_emit_move_insn (targets
[i
], temporaries
[i
]);
3180 /* Actually emit the sequence. */
3181 rtx_insn
*seq
= get_insns ();
3183 for (insn
= seq
; insn
; insn
= NEXT_INSN (insn
))
3184 set_used_flags (insn
);
3186 /* Mark all our temporaries and targets as used. */
3187 for (int i
= 0; i
< count
; i
++)
3189 set_used_flags (temporaries
[i
]);
3190 set_used_flags (targets
[i
]);
3193 set_used_flags (cond
);
3197 unshare_all_rtl_in_chain (seq
);
3203 for (insn
= seq
; insn
; insn
= NEXT_INSN (insn
))
3205 || recog_memoized (insn
) == -1)
3208 emit_insn_before_setloc (seq
, if_info
->jump
,
3209 INSN_LOCATION (unmodified_insns
.last ()));
3211 /* Clean up THEN_BB and the edges in and out of it. */
3212 remove_edge (find_edge (test_bb
, join_bb
));
3213 remove_edge (find_edge (then_bb
, join_bb
));
3214 redirect_edge_and_branch_force (single_succ_edge (test_bb
), join_bb
);
3215 delete_basic_block (then_bb
);
3218 /* Maybe merge blocks now the jump is simple enough. */
3219 if (can_merge_blocks_p (test_bb
, join_bb
))
3221 merge_blocks (test_bb
, join_bb
);
3225 num_updated_if_blocks
++;
3229 /* Return true iff basic block TEST_BB is comprised of only
3230 (SET (REG) (REG)) insns suitable for conversion to a series
3231 of conditional moves. FORNOW: Use II to find the expected cost of
3232 the branch into/over TEST_BB.
3234 TODO: This creates an implicit "magic number" for branch_cost.
3235 II->branch_cost now guides the maximum number of set instructions in
3236 a basic block which is considered profitable to completely
3240 bb_ok_for_noce_convert_multiple_sets (basic_block test_bb
,
3241 struct noce_if_info
*ii
)
3246 FOR_BB_INSNS (test_bb
, insn
)
3248 /* Skip over notes etc. */
3249 if (!active_insn_p (insn
))
3252 /* We only handle SET insns. */
3253 rtx set
= single_set (insn
);
3254 if (set
== NULL_RTX
)
3257 rtx dest
= SET_DEST (set
);
3258 rtx src
= SET_SRC (set
);
3260 /* We can possibly relax this, but for now only handle REG to REG
3261 moves. This avoids any issues that might come from introducing
3262 loads/stores that might violate data-race-freedom guarantees. */
3263 if (!(REG_P (src
) && REG_P (dest
)))
3266 /* Destination must be appropriate for a conditional write. */
3267 if (!noce_operand_ok (dest
))
3270 /* We must be able to conditionally move in this mode. */
3271 if (!can_conditionally_move_p (GET_MODE (dest
)))
3277 /* FORNOW: Our cost model is a count of the number of instructions we
3278 would if-convert. This is suboptimal, and should be improved as part
3279 of a wider rework of branch_cost. */
3280 if (count
> ii
->branch_cost
)
3286 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
3287 it without using conditional execution. Return TRUE if we were successful
3288 at converting the block. */
3291 noce_process_if_block (struct noce_if_info
*if_info
)
3293 basic_block test_bb
= if_info
->test_bb
; /* test block */
3294 basic_block then_bb
= if_info
->then_bb
; /* THEN */
3295 basic_block else_bb
= if_info
->else_bb
; /* ELSE or NULL */
3296 basic_block join_bb
= if_info
->join_bb
; /* JOIN */
3297 rtx_insn
*jump
= if_info
->jump
;
3298 rtx cond
= if_info
->cond
;
3299 rtx_insn
*insn_a
, *insn_b
;
3301 rtx orig_x
, x
, a
, b
;
3303 /* We're looking for patterns of the form
3305 (1) if (...) x = a; else x = b;
3306 (2) x = b; if (...) x = a;
3307 (3) if (...) x = a; // as if with an initial x = x.
3308 (4) if (...) { x = a; y = b; z = c; } // Like 3, for multiple SETS.
3309 The later patterns require jumps to be more expensive.
3310 For the if (...) x = a; else x = b; case we allow multiple insns
3311 inside the then and else blocks as long as their only effect is
3312 to calculate a value for x.
3313 ??? For future expansion, further expand the "multiple X" rules. */
3315 /* First look for multiple SETS. */
3317 && HAVE_conditional_move
3319 && bb_ok_for_noce_convert_multiple_sets (then_bb
, if_info
))
3321 if (noce_convert_multiple_sets (if_info
))
3325 if (! bb_valid_for_noce_process_p (then_bb
, cond
, &if_info
->then_cost
,
3326 &if_info
->then_simple
))
3330 && ! bb_valid_for_noce_process_p (else_bb
, cond
, &if_info
->else_cost
,
3331 &if_info
->else_simple
))
3334 insn_a
= last_active_insn (then_bb
, FALSE
);
3335 set_a
= single_set (insn_a
);
3338 x
= SET_DEST (set_a
);
3339 a
= SET_SRC (set_a
);
3341 /* Look for the other potential set. Make sure we've got equivalent
3343 /* ??? This is overconservative. Storing to two different mems is
3344 as easy as conditionally computing the address. Storing to a
3345 single mem merely requires a scratch memory to use as one of the
3346 destination addresses; often the memory immediately below the
3347 stack pointer is available for this. */
3351 insn_b
= last_active_insn (else_bb
, FALSE
);
3352 set_b
= single_set (insn_b
);
3355 if (!rtx_interchangeable_p (x
, SET_DEST (set_b
)))
3360 insn_b
= prev_nonnote_nondebug_insn (if_info
->cond_earliest
);
3361 /* We're going to be moving the evaluation of B down from above
3362 COND_EARLIEST to JUMP. Make sure the relevant data is still
3365 || BLOCK_FOR_INSN (insn_b
) != BLOCK_FOR_INSN (if_info
->cond_earliest
)
3366 || !NONJUMP_INSN_P (insn_b
)
3367 || (set_b
= single_set (insn_b
)) == NULL_RTX
3368 || ! rtx_interchangeable_p (x
, SET_DEST (set_b
))
3369 || ! noce_operand_ok (SET_SRC (set_b
))
3370 || reg_overlap_mentioned_p (x
, SET_SRC (set_b
))
3371 || modified_between_p (SET_SRC (set_b
), insn_b
, jump
)
3372 /* Avoid extending the lifetime of hard registers on small
3373 register class machines. */
3374 || (REG_P (SET_SRC (set_b
))
3375 && HARD_REGISTER_P (SET_SRC (set_b
))
3376 && targetm
.small_register_classes_for_mode_p
3377 (GET_MODE (SET_SRC (set_b
))))
3378 /* Likewise with X. In particular this can happen when
3379 noce_get_condition looks farther back in the instruction
3380 stream than one might expect. */
3381 || reg_overlap_mentioned_p (x
, cond
)
3382 || reg_overlap_mentioned_p (x
, a
)
3383 || modified_between_p (x
, insn_b
, jump
))
3390 /* If x has side effects then only the if-then-else form is safe to
3391 convert. But even in that case we would need to restore any notes
3392 (such as REG_INC) at then end. That can be tricky if
3393 noce_emit_move_insn expands to more than one insn, so disable the
3394 optimization entirely for now if there are side effects. */
3395 if (side_effects_p (x
))
3398 b
= (set_b
? SET_SRC (set_b
) : x
);
3400 /* Only operate on register destinations, and even then avoid extending
3401 the lifetime of hard registers on small register class machines. */
3404 || (HARD_REGISTER_P (x
)
3405 && targetm
.small_register_classes_for_mode_p (GET_MODE (x
))))
3407 if (GET_MODE (x
) == BLKmode
)
3410 if (GET_CODE (x
) == ZERO_EXTRACT
3411 && (!CONST_INT_P (XEXP (x
, 1))
3412 || !CONST_INT_P (XEXP (x
, 2))))
3415 x
= gen_reg_rtx (GET_MODE (GET_CODE (x
) == STRICT_LOW_PART
3416 ? XEXP (x
, 0) : x
));
3419 /* Don't operate on sources that may trap or are volatile. */
3420 if (! noce_operand_ok (a
) || ! noce_operand_ok (b
))
3424 /* Set up the info block for our subroutines. */
3425 if_info
->insn_a
= insn_a
;
3426 if_info
->insn_b
= insn_b
;
3431 /* Try optimizations in some approximation of a useful order. */
3432 /* ??? Should first look to see if X is live incoming at all. If it
3433 isn't, we don't need anything but an unconditional set. */
3435 /* Look and see if A and B are really the same. Avoid creating silly
3436 cmove constructs that no one will fix up later. */
3437 if (noce_simple_bbs (if_info
)
3438 && rtx_interchangeable_p (a
, b
))
3440 /* If we have an INSN_B, we don't have to create any new rtl. Just
3441 move the instruction that we already have. If we don't have an
3442 INSN_B, that means that A == X, and we've got a noop move. In
3443 that case don't do anything and let the code below delete INSN_A. */
3444 if (insn_b
&& else_bb
)
3448 if (else_bb
&& insn_b
== BB_END (else_bb
))
3449 BB_END (else_bb
) = PREV_INSN (insn_b
);
3450 reorder_insns (insn_b
, insn_b
, PREV_INSN (jump
));
3452 /* If there was a REG_EQUAL note, delete it since it may have been
3453 true due to this insn being after a jump. */
3454 if ((note
= find_reg_note (insn_b
, REG_EQUAL
, NULL_RTX
)) != 0)
3455 remove_note (insn_b
, note
);
3459 /* If we have "x = b; if (...) x = a;", and x has side-effects, then
3460 x must be executed twice. */
3461 else if (insn_b
&& side_effects_p (orig_x
))
3468 if (!set_b
&& MEM_P (orig_x
))
3469 /* We want to avoid store speculation to avoid cases like
3470 if (pthread_mutex_trylock(mutex))
3472 Rather than go to much effort here, we rely on the SSA optimizers,
3473 which do a good enough job these days. */
3476 if (noce_try_move (if_info
))
3478 if (noce_try_store_flag (if_info
))
3480 if (noce_try_bitop (if_info
))
3482 if (noce_try_minmax (if_info
))
3484 if (noce_try_abs (if_info
))
3486 if (noce_try_inverse_constants (if_info
))
3488 if (!targetm
.have_conditional_execution ()
3489 && noce_try_store_flag_constants (if_info
))
3491 if (HAVE_conditional_move
3492 && noce_try_cmove (if_info
))
3494 if (! targetm
.have_conditional_execution ())
3496 if (noce_try_addcc (if_info
))
3498 if (noce_try_store_flag_mask (if_info
))
3500 if (HAVE_conditional_move
3501 && noce_try_cmove_arith (if_info
))
3503 if (noce_try_sign_mask (if_info
))
3507 if (!else_bb
&& set_b
)
3519 /* If we used a temporary, fix it up now. */
3525 noce_emit_move_insn (orig_x
, x
);
3527 set_used_flags (orig_x
);
3528 unshare_all_rtl_in_chain (seq
);
3531 emit_insn_before_setloc (seq
, BB_END (test_bb
), INSN_LOCATION (insn_a
));
3534 /* The original THEN and ELSE blocks may now be removed. The test block
3535 must now jump to the join block. If the test block and the join block
3536 can be merged, do so. */
3539 delete_basic_block (else_bb
);
3543 remove_edge (find_edge (test_bb
, join_bb
));
3545 remove_edge (find_edge (then_bb
, join_bb
));
3546 redirect_edge_and_branch_force (single_succ_edge (test_bb
), join_bb
);
3547 delete_basic_block (then_bb
);
3550 if (can_merge_blocks_p (test_bb
, join_bb
))
3552 merge_blocks (test_bb
, join_bb
);
3556 num_updated_if_blocks
++;
3560 /* Check whether a block is suitable for conditional move conversion.
3561 Every insn must be a simple set of a register to a constant or a
3562 register. For each assignment, store the value in the pointer map
3563 VALS, keyed indexed by register pointer, then store the register
3564 pointer in REGS. COND is the condition we will test. */
3567 check_cond_move_block (basic_block bb
,
3568 hash_map
<rtx
, rtx
> *vals
,
3573 rtx cc
= cc_in_cond (cond
);
3575 /* We can only handle simple jumps at the end of the basic block.
3576 It is almost impossible to update the CFG otherwise. */
3578 if (JUMP_P (insn
) && !onlyjump_p (insn
))
3581 FOR_BB_INSNS (bb
, insn
)
3585 if (!NONDEBUG_INSN_P (insn
) || JUMP_P (insn
))
3587 set
= single_set (insn
);
3591 dest
= SET_DEST (set
);
3592 src
= SET_SRC (set
);
3594 || (HARD_REGISTER_P (dest
)
3595 && targetm
.small_register_classes_for_mode_p (GET_MODE (dest
))))
3598 if (!CONSTANT_P (src
) && !register_operand (src
, VOIDmode
))
3601 if (side_effects_p (src
) || side_effects_p (dest
))
3604 if (may_trap_p (src
) || may_trap_p (dest
))
3607 /* Don't try to handle this if the source register was
3608 modified earlier in the block. */
3611 || (GET_CODE (src
) == SUBREG
&& REG_P (SUBREG_REG (src
))
3612 && vals
->get (SUBREG_REG (src
))))
3615 /* Don't try to handle this if the destination register was
3616 modified earlier in the block. */
3617 if (vals
->get (dest
))
3620 /* Don't try to handle this if the condition uses the
3621 destination register. */
3622 if (reg_overlap_mentioned_p (dest
, cond
))
3625 /* Don't try to handle this if the source register is modified
3626 later in the block. */
3627 if (!CONSTANT_P (src
)
3628 && modified_between_p (src
, insn
, NEXT_INSN (BB_END (bb
))))
3631 /* Skip it if the instruction to be moved might clobber CC. */
3632 if (cc
&& set_of (cc
, insn
))
3635 vals
->put (dest
, src
);
3637 regs
->safe_push (dest
);
3643 /* Given a basic block BB suitable for conditional move conversion,
3644 a condition COND, and pointer maps THEN_VALS and ELSE_VALS containing
3645 the register values depending on COND, emit the insns in the block as
3646 conditional moves. If ELSE_BLOCK is true, THEN_BB was already
3647 processed. The caller has started a sequence for the conversion.
3648 Return true if successful, false if something goes wrong. */
3651 cond_move_convert_if_block (struct noce_if_info
*if_infop
,
3652 basic_block bb
, rtx cond
,
3653 hash_map
<rtx
, rtx
> *then_vals
,
3654 hash_map
<rtx
, rtx
> *else_vals
,
3659 rtx cond_arg0
, cond_arg1
;
3661 code
= GET_CODE (cond
);
3662 cond_arg0
= XEXP (cond
, 0);
3663 cond_arg1
= XEXP (cond
, 1);
3665 FOR_BB_INSNS (bb
, insn
)
3667 rtx set
, target
, dest
, t
, e
;
3669 /* ??? Maybe emit conditional debug insn? */
3670 if (!NONDEBUG_INSN_P (insn
) || JUMP_P (insn
))
3672 set
= single_set (insn
);
3673 gcc_assert (set
&& REG_P (SET_DEST (set
)));
3675 dest
= SET_DEST (set
);
3677 rtx
*then_slot
= then_vals
->get (dest
);
3678 rtx
*else_slot
= else_vals
->get (dest
);
3679 t
= then_slot
? *then_slot
: NULL_RTX
;
3680 e
= else_slot
? *else_slot
: NULL_RTX
;
3684 /* If this register was set in the then block, we already
3685 handled this case there. */
3698 target
= noce_emit_cmove (if_infop
, dest
, code
, cond_arg0
, cond_arg1
,
3704 noce_emit_move_insn (dest
, target
);
3710 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
3711 it using only conditional moves. Return TRUE if we were successful at
3712 converting the block. */
3715 cond_move_process_if_block (struct noce_if_info
*if_info
)
3717 basic_block test_bb
= if_info
->test_bb
;
3718 basic_block then_bb
= if_info
->then_bb
;
3719 basic_block else_bb
= if_info
->else_bb
;
3720 basic_block join_bb
= if_info
->join_bb
;
3721 rtx_insn
*jump
= if_info
->jump
;
3722 rtx cond
= if_info
->cond
;
3723 rtx_insn
*seq
, *loc_insn
;
3726 vec
<rtx
> then_regs
= vNULL
;
3727 vec
<rtx
> else_regs
= vNULL
;
3729 int success_p
= FALSE
;
3731 /* Build a mapping for each block to the value used for each
3733 hash_map
<rtx
, rtx
> then_vals
;
3734 hash_map
<rtx
, rtx
> else_vals
;
3736 /* Make sure the blocks are suitable. */
3737 if (!check_cond_move_block (then_bb
, &then_vals
, &then_regs
, cond
)
3739 && !check_cond_move_block (else_bb
, &else_vals
, &else_regs
, cond
)))
3742 /* Make sure the blocks can be used together. If the same register
3743 is set in both blocks, and is not set to a constant in both
3744 cases, then both blocks must set it to the same register. We
3745 have already verified that if it is set to a register, that the
3746 source register does not change after the assignment. Also count
3747 the number of registers set in only one of the blocks. */
3749 FOR_EACH_VEC_ELT (then_regs
, i
, reg
)
3751 rtx
*then_slot
= then_vals
.get (reg
);
3752 rtx
*else_slot
= else_vals
.get (reg
);
3754 gcc_checking_assert (then_slot
);
3759 rtx then_val
= *then_slot
;
3760 rtx else_val
= *else_slot
;
3761 if (!CONSTANT_P (then_val
) && !CONSTANT_P (else_val
)
3762 && !rtx_equal_p (then_val
, else_val
))
3767 /* Finish off c for MAX_CONDITIONAL_EXECUTE. */
3768 FOR_EACH_VEC_ELT (else_regs
, i
, reg
)
3770 gcc_checking_assert (else_vals
.get (reg
));
3771 if (!then_vals
.get (reg
))
3775 /* Make sure it is reasonable to convert this block. What matters
3776 is the number of assignments currently made in only one of the
3777 branches, since if we convert we are going to always execute
3779 if (c
> MAX_CONDITIONAL_EXECUTE
)
3782 /* Try to emit the conditional moves. First do the then block,
3783 then do anything left in the else blocks. */
3785 if (!cond_move_convert_if_block (if_info
, then_bb
, cond
,
3786 &then_vals
, &else_vals
, false)
3788 && !cond_move_convert_if_block (if_info
, else_bb
, cond
,
3789 &then_vals
, &else_vals
, true)))
3794 seq
= end_ifcvt_sequence (if_info
);
3798 loc_insn
= first_active_insn (then_bb
);
3801 loc_insn
= first_active_insn (else_bb
);
3802 gcc_assert (loc_insn
);
3804 emit_insn_before_setloc (seq
, jump
, INSN_LOCATION (loc_insn
));
3808 delete_basic_block (else_bb
);
3812 remove_edge (find_edge (test_bb
, join_bb
));
3814 remove_edge (find_edge (then_bb
, join_bb
));
3815 redirect_edge_and_branch_force (single_succ_edge (test_bb
), join_bb
);
3816 delete_basic_block (then_bb
);
3819 if (can_merge_blocks_p (test_bb
, join_bb
))
3821 merge_blocks (test_bb
, join_bb
);
3825 num_updated_if_blocks
++;
3830 then_regs
.release ();
3831 else_regs
.release ();
3836 /* Determine if a given basic block heads a simple IF-THEN-JOIN or an
3837 IF-THEN-ELSE-JOIN block.
3839 If so, we'll try to convert the insns to not require the branch,
3840 using only transformations that do not require conditional execution.
3842 Return TRUE if we were successful at converting the block. */
3845 noce_find_if_block (basic_block test_bb
, edge then_edge
, edge else_edge
,
3848 basic_block then_bb
, else_bb
, join_bb
;
3849 bool then_else_reversed
= false;
3852 rtx_insn
*cond_earliest
;
3853 struct noce_if_info if_info
;
3855 /* We only ever should get here before reload. */
3856 gcc_assert (!reload_completed
);
3858 /* Recognize an IF-THEN-ELSE-JOIN block. */
3859 if (single_pred_p (then_edge
->dest
)
3860 && single_succ_p (then_edge
->dest
)
3861 && single_pred_p (else_edge
->dest
)
3862 && single_succ_p (else_edge
->dest
)
3863 && single_succ (then_edge
->dest
) == single_succ (else_edge
->dest
))
3865 then_bb
= then_edge
->dest
;
3866 else_bb
= else_edge
->dest
;
3867 join_bb
= single_succ (then_bb
);
3869 /* Recognize an IF-THEN-JOIN block. */
3870 else if (single_pred_p (then_edge
->dest
)
3871 && single_succ_p (then_edge
->dest
)
3872 && single_succ (then_edge
->dest
) == else_edge
->dest
)
3874 then_bb
= then_edge
->dest
;
3875 else_bb
= NULL_BLOCK
;
3876 join_bb
= else_edge
->dest
;
3878 /* Recognize an IF-ELSE-JOIN block. We can have those because the order
3879 of basic blocks in cfglayout mode does not matter, so the fallthrough
3880 edge can go to any basic block (and not just to bb->next_bb, like in
3882 else if (single_pred_p (else_edge
->dest
)
3883 && single_succ_p (else_edge
->dest
)
3884 && single_succ (else_edge
->dest
) == then_edge
->dest
)
3886 /* The noce transformations do not apply to IF-ELSE-JOIN blocks.
3887 To make this work, we have to invert the THEN and ELSE blocks
3888 and reverse the jump condition. */
3889 then_bb
= else_edge
->dest
;
3890 else_bb
= NULL_BLOCK
;
3891 join_bb
= single_succ (then_bb
);
3892 then_else_reversed
= true;
3895 /* Not a form we can handle. */
3898 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
3899 if (single_succ_edge (then_bb
)->flags
& EDGE_COMPLEX
)
3902 && single_succ_edge (else_bb
)->flags
& EDGE_COMPLEX
)
3905 num_possible_if_blocks
++;
3910 "\nIF-THEN%s-JOIN block found, pass %d, test %d, then %d",
3911 (else_bb
) ? "-ELSE" : "",
3912 pass
, test_bb
->index
, then_bb
->index
);
3915 fprintf (dump_file
, ", else %d", else_bb
->index
);
3917 fprintf (dump_file
, ", join %d\n", join_bb
->index
);
3920 /* If the conditional jump is more than just a conditional
3921 jump, then we can not do if-conversion on this block. */
3922 jump
= BB_END (test_bb
);
3923 if (! onlyjump_p (jump
))
3926 /* If this is not a standard conditional jump, we can't parse it. */
3927 cond
= noce_get_condition (jump
, &cond_earliest
, then_else_reversed
);
3931 /* We must be comparing objects whose modes imply the size. */
3932 if (GET_MODE (XEXP (cond
, 0)) == BLKmode
)
3935 /* Initialize an IF_INFO struct to pass around. */
3936 memset (&if_info
, 0, sizeof if_info
);
3937 if_info
.test_bb
= test_bb
;
3938 if_info
.then_bb
= then_bb
;
3939 if_info
.else_bb
= else_bb
;
3940 if_info
.join_bb
= join_bb
;
3941 if_info
.cond
= cond
;
3942 if_info
.cond_earliest
= cond_earliest
;
3943 if_info
.jump
= jump
;
3944 if_info
.then_else_reversed
= then_else_reversed
;
3945 if_info
.branch_cost
= BRANCH_COST (optimize_bb_for_speed_p (test_bb
),
3946 predictable_edge_p (then_edge
));
3948 /* Do the real work. */
3950 if (noce_process_if_block (&if_info
))
3953 if (HAVE_conditional_move
3954 && cond_move_process_if_block (&if_info
))
3961 /* Merge the blocks and mark for local life update. */
3964 merge_if_block (struct ce_if_block
* ce_info
)
3966 basic_block test_bb
= ce_info
->test_bb
; /* last test block */
3967 basic_block then_bb
= ce_info
->then_bb
; /* THEN */
3968 basic_block else_bb
= ce_info
->else_bb
; /* ELSE or NULL */
3969 basic_block join_bb
= ce_info
->join_bb
; /* join block */
3970 basic_block combo_bb
;
3972 /* All block merging is done into the lower block numbers. */
3975 df_set_bb_dirty (test_bb
);
3977 /* Merge any basic blocks to handle && and || subtests. Each of
3978 the blocks are on the fallthru path from the predecessor block. */
3979 if (ce_info
->num_multiple_test_blocks
> 0)
3981 basic_block bb
= test_bb
;
3982 basic_block last_test_bb
= ce_info
->last_test_bb
;
3983 basic_block fallthru
= block_fallthru (bb
);
3988 fallthru
= block_fallthru (bb
);
3989 merge_blocks (combo_bb
, bb
);
3992 while (bb
!= last_test_bb
);
3995 /* Merge TEST block into THEN block. Normally the THEN block won't have a
3996 label, but it might if there were || tests. That label's count should be
3997 zero, and it normally should be removed. */
4001 /* If THEN_BB has no successors, then there's a BARRIER after it.
4002 If COMBO_BB has more than one successor (THEN_BB), then that BARRIER
4003 is no longer needed, and in fact it is incorrect to leave it in
4005 if (EDGE_COUNT (then_bb
->succs
) == 0
4006 && EDGE_COUNT (combo_bb
->succs
) > 1)
4008 rtx_insn
*end
= NEXT_INSN (BB_END (then_bb
));
4009 while (end
&& NOTE_P (end
) && !NOTE_INSN_BASIC_BLOCK_P (end
))
4010 end
= NEXT_INSN (end
);
4012 if (end
&& BARRIER_P (end
))
4015 merge_blocks (combo_bb
, then_bb
);
4019 /* The ELSE block, if it existed, had a label. That label count
4020 will almost always be zero, but odd things can happen when labels
4021 get their addresses taken. */
4024 /* If ELSE_BB has no successors, then there's a BARRIER after it.
4025 If COMBO_BB has more than one successor (ELSE_BB), then that BARRIER
4026 is no longer needed, and in fact it is incorrect to leave it in
4028 if (EDGE_COUNT (else_bb
->succs
) == 0
4029 && EDGE_COUNT (combo_bb
->succs
) > 1)
4031 rtx_insn
*end
= NEXT_INSN (BB_END (else_bb
));
4032 while (end
&& NOTE_P (end
) && !NOTE_INSN_BASIC_BLOCK_P (end
))
4033 end
= NEXT_INSN (end
);
4035 if (end
&& BARRIER_P (end
))
4038 merge_blocks (combo_bb
, else_bb
);
4042 /* If there was no join block reported, that means it was not adjacent
4043 to the others, and so we cannot merge them. */
4047 rtx_insn
*last
= BB_END (combo_bb
);
4049 /* The outgoing edge for the current COMBO block should already
4050 be correct. Verify this. */
4051 if (EDGE_COUNT (combo_bb
->succs
) == 0)
4052 gcc_assert (find_reg_note (last
, REG_NORETURN
, NULL
)
4053 || (NONJUMP_INSN_P (last
)
4054 && GET_CODE (PATTERN (last
)) == TRAP_IF
4055 && (TRAP_CONDITION (PATTERN (last
))
4056 == const_true_rtx
)));
4059 /* There should still be something at the end of the THEN or ELSE
4060 blocks taking us to our final destination. */
4061 gcc_assert (JUMP_P (last
)
4062 || (EDGE_SUCC (combo_bb
, 0)->dest
4063 == EXIT_BLOCK_PTR_FOR_FN (cfun
)
4065 && SIBLING_CALL_P (last
))
4066 || ((EDGE_SUCC (combo_bb
, 0)->flags
& EDGE_EH
)
4067 && can_throw_internal (last
)));
4070 /* The JOIN block may have had quite a number of other predecessors too.
4071 Since we've already merged the TEST, THEN and ELSE blocks, we should
4072 have only one remaining edge from our if-then-else diamond. If there
4073 is more than one remaining edge, it must come from elsewhere. There
4074 may be zero incoming edges if the THEN block didn't actually join
4075 back up (as with a call to a non-return function). */
4076 else if (EDGE_COUNT (join_bb
->preds
) < 2
4077 && join_bb
!= EXIT_BLOCK_PTR_FOR_FN (cfun
))
4079 /* We can merge the JOIN cleanly and update the dataflow try
4080 again on this pass.*/
4081 merge_blocks (combo_bb
, join_bb
);
4086 /* We cannot merge the JOIN. */
4088 /* The outgoing edge for the current COMBO block should already
4089 be correct. Verify this. */
4090 gcc_assert (single_succ_p (combo_bb
)
4091 && single_succ (combo_bb
) == join_bb
);
4093 /* Remove the jump and cruft from the end of the COMBO block. */
4094 if (join_bb
!= EXIT_BLOCK_PTR_FOR_FN (cfun
))
4095 tidy_fallthru_edge (single_succ_edge (combo_bb
));
4098 num_updated_if_blocks
++;
4101 /* Find a block ending in a simple IF condition and try to transform it
4102 in some way. When converting a multi-block condition, put the new code
4103 in the first such block and delete the rest. Return a pointer to this
4104 first block if some transformation was done. Return NULL otherwise. */
4107 find_if_header (basic_block test_bb
, int pass
)
4109 ce_if_block ce_info
;
4113 /* The kind of block we're looking for has exactly two successors. */
4114 if (EDGE_COUNT (test_bb
->succs
) != 2)
4117 then_edge
= EDGE_SUCC (test_bb
, 0);
4118 else_edge
= EDGE_SUCC (test_bb
, 1);
4120 if (df_get_bb_dirty (then_edge
->dest
))
4122 if (df_get_bb_dirty (else_edge
->dest
))
4125 /* Neither edge should be abnormal. */
4126 if ((then_edge
->flags
& EDGE_COMPLEX
)
4127 || (else_edge
->flags
& EDGE_COMPLEX
))
4130 /* Nor exit the loop. */
4131 if ((then_edge
->flags
& EDGE_LOOP_EXIT
)
4132 || (else_edge
->flags
& EDGE_LOOP_EXIT
))
4135 /* The THEN edge is canonically the one that falls through. */
4136 if (then_edge
->flags
& EDGE_FALLTHRU
)
4138 else if (else_edge
->flags
& EDGE_FALLTHRU
)
4139 std::swap (then_edge
, else_edge
);
4141 /* Otherwise this must be a multiway branch of some sort. */
4144 memset (&ce_info
, 0, sizeof (ce_info
));
4145 ce_info
.test_bb
= test_bb
;
4146 ce_info
.then_bb
= then_edge
->dest
;
4147 ce_info
.else_bb
= else_edge
->dest
;
4148 ce_info
.pass
= pass
;
4150 #ifdef IFCVT_MACHDEP_INIT
4151 IFCVT_MACHDEP_INIT (&ce_info
);
4154 if (!reload_completed
4155 && noce_find_if_block (test_bb
, then_edge
, else_edge
, pass
))
4158 if (reload_completed
4159 && targetm
.have_conditional_execution ()
4160 && cond_exec_find_if_block (&ce_info
))
4163 if (targetm
.have_trap ()
4164 && optab_handler (ctrap_optab
, word_mode
) != CODE_FOR_nothing
4165 && find_cond_trap (test_bb
, then_edge
, else_edge
))
4168 if (dom_info_state (CDI_POST_DOMINATORS
) >= DOM_NO_FAST_QUERY
4169 && (reload_completed
|| !targetm
.have_conditional_execution ()))
4171 if (find_if_case_1 (test_bb
, then_edge
, else_edge
))
4173 if (find_if_case_2 (test_bb
, then_edge
, else_edge
))
4181 fprintf (dump_file
, "Conversion succeeded on pass %d.\n", pass
);
4182 /* Set this so we continue looking. */
4183 cond_exec_changed_p
= TRUE
;
4184 return ce_info
.test_bb
;
4187 /* Return true if a block has two edges, one of which falls through to the next
4188 block, and the other jumps to a specific block, so that we can tell if the
4189 block is part of an && test or an || test. Returns either -1 or the number
4190 of non-note, non-jump, non-USE/CLOBBER insns in the block. */
4193 block_jumps_and_fallthru_p (basic_block cur_bb
, basic_block target_bb
)
4196 int fallthru_p
= FALSE
;
4203 if (!cur_bb
|| !target_bb
)
4206 /* If no edges, obviously it doesn't jump or fallthru. */
4207 if (EDGE_COUNT (cur_bb
->succs
) == 0)
4210 FOR_EACH_EDGE (cur_edge
, ei
, cur_bb
->succs
)
4212 if (cur_edge
->flags
& EDGE_COMPLEX
)
4213 /* Anything complex isn't what we want. */
4216 else if (cur_edge
->flags
& EDGE_FALLTHRU
)
4219 else if (cur_edge
->dest
== target_bb
)
4226 if ((jump_p
& fallthru_p
) == 0)
4229 /* Don't allow calls in the block, since this is used to group && and ||
4230 together for conditional execution support. ??? we should support
4231 conditional execution support across calls for IA-64 some day, but
4232 for now it makes the code simpler. */
4233 end
= BB_END (cur_bb
);
4234 insn
= BB_HEAD (cur_bb
);
4236 while (insn
!= NULL_RTX
)
4243 && !DEBUG_INSN_P (insn
)
4244 && GET_CODE (PATTERN (insn
)) != USE
4245 && GET_CODE (PATTERN (insn
)) != CLOBBER
)
4251 insn
= NEXT_INSN (insn
);
4257 /* Determine if a given basic block heads a simple IF-THEN or IF-THEN-ELSE
4258 block. If so, we'll try to convert the insns to not require the branch.
4259 Return TRUE if we were successful at converting the block. */
4262 cond_exec_find_if_block (struct ce_if_block
* ce_info
)
4264 basic_block test_bb
= ce_info
->test_bb
;
4265 basic_block then_bb
= ce_info
->then_bb
;
4266 basic_block else_bb
= ce_info
->else_bb
;
4267 basic_block join_bb
= NULL_BLOCK
;
4272 ce_info
->last_test_bb
= test_bb
;
4274 /* We only ever should get here after reload,
4275 and if we have conditional execution. */
4276 gcc_assert (reload_completed
&& targetm
.have_conditional_execution ());
4278 /* Discover if any fall through predecessors of the current test basic block
4279 were && tests (which jump to the else block) or || tests (which jump to
4281 if (single_pred_p (test_bb
)
4282 && single_pred_edge (test_bb
)->flags
== EDGE_FALLTHRU
)
4284 basic_block bb
= single_pred (test_bb
);
4285 basic_block target_bb
;
4286 int max_insns
= MAX_CONDITIONAL_EXECUTE
;
4289 /* Determine if the preceding block is an && or || block. */
4290 if ((n_insns
= block_jumps_and_fallthru_p (bb
, else_bb
)) >= 0)
4292 ce_info
->and_and_p
= TRUE
;
4293 target_bb
= else_bb
;
4295 else if ((n_insns
= block_jumps_and_fallthru_p (bb
, then_bb
)) >= 0)
4297 ce_info
->and_and_p
= FALSE
;
4298 target_bb
= then_bb
;
4301 target_bb
= NULL_BLOCK
;
4303 if (target_bb
&& n_insns
<= max_insns
)
4305 int total_insns
= 0;
4308 ce_info
->last_test_bb
= test_bb
;
4310 /* Found at least one && or || block, look for more. */
4313 ce_info
->test_bb
= test_bb
= bb
;
4314 total_insns
+= n_insns
;
4317 if (!single_pred_p (bb
))
4320 bb
= single_pred (bb
);
4321 n_insns
= block_jumps_and_fallthru_p (bb
, target_bb
);
4323 while (n_insns
>= 0 && (total_insns
+ n_insns
) <= max_insns
);
4325 ce_info
->num_multiple_test_blocks
= blocks
;
4326 ce_info
->num_multiple_test_insns
= total_insns
;
4328 if (ce_info
->and_and_p
)
4329 ce_info
->num_and_and_blocks
= blocks
;
4331 ce_info
->num_or_or_blocks
= blocks
;
4335 /* The THEN block of an IF-THEN combo must have exactly one predecessor,
4336 other than any || blocks which jump to the THEN block. */
4337 if ((EDGE_COUNT (then_bb
->preds
) - ce_info
->num_or_or_blocks
) != 1)
4340 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
4341 FOR_EACH_EDGE (cur_edge
, ei
, then_bb
->preds
)
4343 if (cur_edge
->flags
& EDGE_COMPLEX
)
4347 FOR_EACH_EDGE (cur_edge
, ei
, else_bb
->preds
)
4349 if (cur_edge
->flags
& EDGE_COMPLEX
)
4353 /* The THEN block of an IF-THEN combo must have zero or one successors. */
4354 if (EDGE_COUNT (then_bb
->succs
) > 0
4355 && (!single_succ_p (then_bb
)
4356 || (single_succ_edge (then_bb
)->flags
& EDGE_COMPLEX
)
4357 || (epilogue_completed
4358 && tablejump_p (BB_END (then_bb
), NULL
, NULL
))))
4361 /* If the THEN block has no successors, conditional execution can still
4362 make a conditional call. Don't do this unless the ELSE block has
4363 only one incoming edge -- the CFG manipulation is too ugly otherwise.
4364 Check for the last insn of the THEN block being an indirect jump, which
4365 is listed as not having any successors, but confuses the rest of the CE
4366 code processing. ??? we should fix this in the future. */
4367 if (EDGE_COUNT (then_bb
->succs
) == 0)
4369 if (single_pred_p (else_bb
) && else_bb
!= EXIT_BLOCK_PTR_FOR_FN (cfun
))
4371 rtx_insn
*last_insn
= BB_END (then_bb
);
4374 && NOTE_P (last_insn
)
4375 && last_insn
!= BB_HEAD (then_bb
))
4376 last_insn
= PREV_INSN (last_insn
);
4379 && JUMP_P (last_insn
)
4380 && ! simplejump_p (last_insn
))
4384 else_bb
= NULL_BLOCK
;
4390 /* If the THEN block's successor is the other edge out of the TEST block,
4391 then we have an IF-THEN combo without an ELSE. */
4392 else if (single_succ (then_bb
) == else_bb
)
4395 else_bb
= NULL_BLOCK
;
4398 /* If the THEN and ELSE block meet in a subsequent block, and the ELSE
4399 has exactly one predecessor and one successor, and the outgoing edge
4400 is not complex, then we have an IF-THEN-ELSE combo. */
4401 else if (single_succ_p (else_bb
)
4402 && single_succ (then_bb
) == single_succ (else_bb
)
4403 && single_pred_p (else_bb
)
4404 && !(single_succ_edge (else_bb
)->flags
& EDGE_COMPLEX
)
4405 && !(epilogue_completed
4406 && tablejump_p (BB_END (else_bb
), NULL
, NULL
)))
4407 join_bb
= single_succ (else_bb
);
4409 /* Otherwise it is not an IF-THEN or IF-THEN-ELSE combination. */
4413 num_possible_if_blocks
++;
4418 "\nIF-THEN%s block found, pass %d, start block %d "
4419 "[insn %d], then %d [%d]",
4420 (else_bb
) ? "-ELSE" : "",
4423 BB_HEAD (test_bb
) ? (int)INSN_UID (BB_HEAD (test_bb
)) : -1,
4425 BB_HEAD (then_bb
) ? (int)INSN_UID (BB_HEAD (then_bb
)) : -1);
4428 fprintf (dump_file
, ", else %d [%d]",
4430 BB_HEAD (else_bb
) ? (int)INSN_UID (BB_HEAD (else_bb
)) : -1);
4432 fprintf (dump_file
, ", join %d [%d]",
4434 BB_HEAD (join_bb
) ? (int)INSN_UID (BB_HEAD (join_bb
)) : -1);
4436 if (ce_info
->num_multiple_test_blocks
> 0)
4437 fprintf (dump_file
, ", %d %s block%s last test %d [%d]",
4438 ce_info
->num_multiple_test_blocks
,
4439 (ce_info
->and_and_p
) ? "&&" : "||",
4440 (ce_info
->num_multiple_test_blocks
== 1) ? "" : "s",
4441 ce_info
->last_test_bb
->index
,
4442 ((BB_HEAD (ce_info
->last_test_bb
))
4443 ? (int)INSN_UID (BB_HEAD (ce_info
->last_test_bb
))
4446 fputc ('\n', dump_file
);
4449 /* Make sure IF, THEN, and ELSE, blocks are adjacent. Actually, we get the
4450 first condition for free, since we've already asserted that there's a
4451 fallthru edge from IF to THEN. Likewise for the && and || blocks, since
4452 we checked the FALLTHRU flag, those are already adjacent to the last IF
4454 /* ??? As an enhancement, move the ELSE block. Have to deal with
4455 BLOCK notes, if by no other means than backing out the merge if they
4456 exist. Sticky enough I don't want to think about it now. */
4458 if (else_bb
&& (next
= next
->next_bb
) != else_bb
)
4460 if ((next
= next
->next_bb
) != join_bb
4461 && join_bb
!= EXIT_BLOCK_PTR_FOR_FN (cfun
))
4469 /* Do the real work. */
4471 ce_info
->else_bb
= else_bb
;
4472 ce_info
->join_bb
= join_bb
;
4474 /* If we have && and || tests, try to first handle combining the && and ||
4475 tests into the conditional code, and if that fails, go back and handle
4476 it without the && and ||, which at present handles the && case if there
4477 was no ELSE block. */
4478 if (cond_exec_process_if_block (ce_info
, TRUE
))
4481 if (ce_info
->num_multiple_test_blocks
)
4485 if (cond_exec_process_if_block (ce_info
, FALSE
))
4492 /* Convert a branch over a trap, or a branch
4493 to a trap, into a conditional trap. */
4496 find_cond_trap (basic_block test_bb
, edge then_edge
, edge else_edge
)
4498 basic_block then_bb
= then_edge
->dest
;
4499 basic_block else_bb
= else_edge
->dest
;
4500 basic_block other_bb
, trap_bb
;
4501 rtx_insn
*trap
, *jump
;
4503 rtx_insn
*cond_earliest
;
4506 /* Locate the block with the trap instruction. */
4507 /* ??? While we look for no successors, we really ought to allow
4508 EH successors. Need to fix merge_if_block for that to work. */
4509 if ((trap
= block_has_only_trap (then_bb
)) != NULL
)
4510 trap_bb
= then_bb
, other_bb
= else_bb
;
4511 else if ((trap
= block_has_only_trap (else_bb
)) != NULL
)
4512 trap_bb
= else_bb
, other_bb
= then_bb
;
4518 fprintf (dump_file
, "\nTRAP-IF block found, start %d, trap %d\n",
4519 test_bb
->index
, trap_bb
->index
);
4522 /* If this is not a standard conditional jump, we can't parse it. */
4523 jump
= BB_END (test_bb
);
4524 cond
= noce_get_condition (jump
, &cond_earliest
, false);
4528 /* If the conditional jump is more than just a conditional jump, then
4529 we can not do if-conversion on this block. */
4530 if (! onlyjump_p (jump
))
4533 /* We must be comparing objects whose modes imply the size. */
4534 if (GET_MODE (XEXP (cond
, 0)) == BLKmode
)
4537 /* Reverse the comparison code, if necessary. */
4538 code
= GET_CODE (cond
);
4539 if (then_bb
== trap_bb
)
4541 code
= reversed_comparison_code (cond
, jump
);
4542 if (code
== UNKNOWN
)
4546 /* Attempt to generate the conditional trap. */
4547 rtx_insn
*seq
= gen_cond_trap (code
, copy_rtx (XEXP (cond
, 0)),
4548 copy_rtx (XEXP (cond
, 1)),
4549 TRAP_CODE (PATTERN (trap
)));
4553 /* Emit the new insns before cond_earliest. */
4554 emit_insn_before_setloc (seq
, cond_earliest
, INSN_LOCATION (trap
));
4556 /* Delete the trap block if possible. */
4557 remove_edge (trap_bb
== then_bb
? then_edge
: else_edge
);
4558 df_set_bb_dirty (test_bb
);
4559 df_set_bb_dirty (then_bb
);
4560 df_set_bb_dirty (else_bb
);
4562 if (EDGE_COUNT (trap_bb
->preds
) == 0)
4564 delete_basic_block (trap_bb
);
4568 /* Wire together the blocks again. */
4569 if (current_ir_type () == IR_RTL_CFGLAYOUT
)
4570 single_succ_edge (test_bb
)->flags
|= EDGE_FALLTHRU
;
4571 else if (trap_bb
== then_bb
)
4573 rtx lab
= JUMP_LABEL (jump
);
4574 rtx_insn
*seq
= targetm
.gen_jump (lab
);
4575 rtx_jump_insn
*newjump
= emit_jump_insn_after (seq
, jump
);
4576 LABEL_NUSES (lab
) += 1;
4577 JUMP_LABEL (newjump
) = lab
;
4578 emit_barrier_after (newjump
);
4582 if (can_merge_blocks_p (test_bb
, other_bb
))
4584 merge_blocks (test_bb
, other_bb
);
4588 num_updated_if_blocks
++;
4592 /* Subroutine of find_cond_trap: if BB contains only a trap insn,
4596 block_has_only_trap (basic_block bb
)
4600 /* We're not the exit block. */
4601 if (bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
4604 /* The block must have no successors. */
4605 if (EDGE_COUNT (bb
->succs
) > 0)
4608 /* The only instruction in the THEN block must be the trap. */
4609 trap
= first_active_insn (bb
);
4610 if (! (trap
== BB_END (bb
)
4611 && GET_CODE (PATTERN (trap
)) == TRAP_IF
4612 && TRAP_CONDITION (PATTERN (trap
)) == const_true_rtx
))
4618 /* Look for IF-THEN-ELSE cases in which one of THEN or ELSE is
4619 transformable, but not necessarily the other. There need be no
4622 Return TRUE if we were successful at converting the block.
4624 Cases we'd like to look at:
4627 if (test) goto over; // x not live
4635 if (! test) goto label;
4638 if (test) goto E; // x not live
4652 (3) // This one's really only interesting for targets that can do
4653 // multiway branching, e.g. IA-64 BBB bundles. For other targets
4654 // it results in multiple branches on a cache line, which often
4655 // does not sit well with predictors.
4657 if (test1) goto E; // predicted not taken
4673 (A) Don't do (2) if the branch is predicted against the block we're
4674 eliminating. Do it anyway if we can eliminate a branch; this requires
4675 that the sole successor of the eliminated block postdominate the other
4678 (B) With CE, on (3) we can steal from both sides of the if, creating
4687 Again, this is most useful if J postdominates.
4689 (C) CE substitutes for helpful life information.
4691 (D) These heuristics need a lot of work. */
4693 /* Tests for case 1 above. */
4696 find_if_case_1 (basic_block test_bb
, edge then_edge
, edge else_edge
)
4698 basic_block then_bb
= then_edge
->dest
;
4699 basic_block else_bb
= else_edge
->dest
;
4701 int then_bb_index
, then_prob
;
4702 rtx else_target
= NULL_RTX
;
4704 /* If we are partitioning hot/cold basic blocks, we don't want to
4705 mess up unconditional or indirect jumps that cross between hot
4708 Basic block partitioning may result in some jumps that appear to
4709 be optimizable (or blocks that appear to be mergeable), but which really
4710 must be left untouched (they are required to make it safely across
4711 partition boundaries). See the comments at the top of
4712 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
4714 if ((BB_END (then_bb
)
4715 && JUMP_P (BB_END (then_bb
))
4716 && CROSSING_JUMP_P (BB_END (then_bb
)))
4717 || (BB_END (test_bb
)
4718 && JUMP_P (BB_END (test_bb
))
4719 && CROSSING_JUMP_P (BB_END (test_bb
)))
4720 || (BB_END (else_bb
)
4721 && JUMP_P (BB_END (else_bb
))
4722 && CROSSING_JUMP_P (BB_END (else_bb
))))
4725 /* THEN has one successor. */
4726 if (!single_succ_p (then_bb
))
4729 /* THEN does not fall through, but is not strange either. */
4730 if (single_succ_edge (then_bb
)->flags
& (EDGE_COMPLEX
| EDGE_FALLTHRU
))
4733 /* THEN has one predecessor. */
4734 if (!single_pred_p (then_bb
))
4737 /* THEN must do something. */
4738 if (forwarder_block_p (then_bb
))
4741 num_possible_if_blocks
++;
4744 "\nIF-CASE-1 found, start %d, then %d\n",
4745 test_bb
->index
, then_bb
->index
);
4747 if (then_edge
->probability
)
4748 then_prob
= REG_BR_PROB_BASE
- then_edge
->probability
;
4750 then_prob
= REG_BR_PROB_BASE
/ 2;
4752 /* We're speculating from the THEN path, we want to make sure the cost
4753 of speculation is within reason. */
4754 if (! cheap_bb_rtx_cost_p (then_bb
, then_prob
,
4755 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (then_edge
->src
),
4756 predictable_edge_p (then_edge
)))))
4759 if (else_bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
4761 rtx_insn
*jump
= BB_END (else_edge
->src
);
4762 gcc_assert (JUMP_P (jump
));
4763 else_target
= JUMP_LABEL (jump
);
4766 /* Registers set are dead, or are predicable. */
4767 if (! dead_or_predicable (test_bb
, then_bb
, else_bb
,
4768 single_succ_edge (then_bb
), 1))
4771 /* Conversion went ok, including moving the insns and fixing up the
4772 jump. Adjust the CFG to match. */
4774 /* We can avoid creating a new basic block if then_bb is immediately
4775 followed by else_bb, i.e. deleting then_bb allows test_bb to fall
4776 through to else_bb. */
4778 if (then_bb
->next_bb
== else_bb
4779 && then_bb
->prev_bb
== test_bb
4780 && else_bb
!= EXIT_BLOCK_PTR_FOR_FN (cfun
))
4782 redirect_edge_succ (FALLTHRU_EDGE (test_bb
), else_bb
);
4785 else if (else_bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
4786 new_bb
= force_nonfallthru_and_redirect (FALLTHRU_EDGE (test_bb
),
4787 else_bb
, else_target
);
4789 new_bb
= redirect_edge_and_branch_force (FALLTHRU_EDGE (test_bb
),
4792 df_set_bb_dirty (test_bb
);
4793 df_set_bb_dirty (else_bb
);
4795 then_bb_index
= then_bb
->index
;
4796 delete_basic_block (then_bb
);
4798 /* Make rest of code believe that the newly created block is the THEN_BB
4799 block we removed. */
4802 df_bb_replace (then_bb_index
, new_bb
);
4803 /* This should have been done above via force_nonfallthru_and_redirect
4804 (possibly called from redirect_edge_and_branch_force). */
4805 gcc_checking_assert (BB_PARTITION (new_bb
) == BB_PARTITION (test_bb
));
4809 num_updated_if_blocks
++;
4814 /* Test for case 2 above. */
4817 find_if_case_2 (basic_block test_bb
, edge then_edge
, edge else_edge
)
4819 basic_block then_bb
= then_edge
->dest
;
4820 basic_block else_bb
= else_edge
->dest
;
4822 int then_prob
, else_prob
;
4824 /* We do not want to speculate (empty) loop latches. */
4826 && else_bb
->loop_father
->latch
== else_bb
)
4829 /* If we are partitioning hot/cold basic blocks, we don't want to
4830 mess up unconditional or indirect jumps that cross between hot
4833 Basic block partitioning may result in some jumps that appear to
4834 be optimizable (or blocks that appear to be mergeable), but which really
4835 must be left untouched (they are required to make it safely across
4836 partition boundaries). See the comments at the top of
4837 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
4839 if ((BB_END (then_bb
)
4840 && JUMP_P (BB_END (then_bb
))
4841 && CROSSING_JUMP_P (BB_END (then_bb
)))
4842 || (BB_END (test_bb
)
4843 && JUMP_P (BB_END (test_bb
))
4844 && CROSSING_JUMP_P (BB_END (test_bb
)))
4845 || (BB_END (else_bb
)
4846 && JUMP_P (BB_END (else_bb
))
4847 && CROSSING_JUMP_P (BB_END (else_bb
))))
4850 /* ELSE has one successor. */
4851 if (!single_succ_p (else_bb
))
4854 else_succ
= single_succ_edge (else_bb
);
4856 /* ELSE outgoing edge is not complex. */
4857 if (else_succ
->flags
& EDGE_COMPLEX
)
4860 /* ELSE has one predecessor. */
4861 if (!single_pred_p (else_bb
))
4864 /* THEN is not EXIT. */
4865 if (then_bb
->index
< NUM_FIXED_BLOCKS
)
4868 if (else_edge
->probability
)
4870 else_prob
= else_edge
->probability
;
4871 then_prob
= REG_BR_PROB_BASE
- else_prob
;
4875 else_prob
= REG_BR_PROB_BASE
/ 2;
4876 then_prob
= REG_BR_PROB_BASE
/ 2;
4879 /* ELSE is predicted or SUCC(ELSE) postdominates THEN. */
4880 if (else_prob
> then_prob
)
4882 else if (else_succ
->dest
->index
< NUM_FIXED_BLOCKS
4883 || dominated_by_p (CDI_POST_DOMINATORS
, then_bb
,
4889 num_possible_if_blocks
++;
4892 "\nIF-CASE-2 found, start %d, else %d\n",
4893 test_bb
->index
, else_bb
->index
);
4895 /* We're speculating from the ELSE path, we want to make sure the cost
4896 of speculation is within reason. */
4897 if (! cheap_bb_rtx_cost_p (else_bb
, else_prob
,
4898 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (else_edge
->src
),
4899 predictable_edge_p (else_edge
)))))
4902 /* Registers set are dead, or are predicable. */
4903 if (! dead_or_predicable (test_bb
, else_bb
, then_bb
, else_succ
, 0))
4906 /* Conversion went ok, including moving the insns and fixing up the
4907 jump. Adjust the CFG to match. */
4909 df_set_bb_dirty (test_bb
);
4910 df_set_bb_dirty (then_bb
);
4911 delete_basic_block (else_bb
);
4914 num_updated_if_blocks
++;
4916 /* ??? We may now fallthru from one of THEN's successors into a join
4917 block. Rerun cleanup_cfg? Examine things manually? Wait? */
4922 /* Used by the code above to perform the actual rtl transformations.
4923 Return TRUE if successful.
4925 TEST_BB is the block containing the conditional branch. MERGE_BB
4926 is the block containing the code to manipulate. DEST_EDGE is an
4927 edge representing a jump to the join block; after the conversion,
4928 TEST_BB should be branching to its destination.
4929 REVERSEP is true if the sense of the branch should be reversed. */
4932 dead_or_predicable (basic_block test_bb
, basic_block merge_bb
,
4933 basic_block other_bb
, edge dest_edge
, int reversep
)
4935 basic_block new_dest
= dest_edge
->dest
;
4936 rtx_insn
*head
, *end
, *jump
;
4937 rtx_insn
*earliest
= NULL
;
4939 bitmap merge_set
= NULL
;
4940 /* Number of pending changes. */
4941 int n_validated_changes
= 0;
4942 rtx new_dest_label
= NULL_RTX
;
4944 jump
= BB_END (test_bb
);
4946 /* Find the extent of the real code in the merge block. */
4947 head
= BB_HEAD (merge_bb
);
4948 end
= BB_END (merge_bb
);
4950 while (DEBUG_INSN_P (end
) && end
!= head
)
4951 end
= PREV_INSN (end
);
4953 /* If merge_bb ends with a tablejump, predicating/moving insn's
4954 into test_bb and then deleting merge_bb will result in the jumptable
4955 that follows merge_bb being removed along with merge_bb and then we
4956 get an unresolved reference to the jumptable. */
4957 if (tablejump_p (end
, NULL
, NULL
))
4961 head
= NEXT_INSN (head
);
4962 while (DEBUG_INSN_P (head
) && head
!= end
)
4963 head
= NEXT_INSN (head
);
4971 head
= NEXT_INSN (head
);
4972 while (DEBUG_INSN_P (head
) && head
!= end
)
4973 head
= NEXT_INSN (head
);
4978 if (!onlyjump_p (end
))
4985 end
= PREV_INSN (end
);
4986 while (DEBUG_INSN_P (end
) && end
!= head
)
4987 end
= PREV_INSN (end
);
4990 /* Don't move frame-related insn across the conditional branch. This
4991 can lead to one of the paths of the branch having wrong unwind info. */
4992 if (epilogue_completed
)
4994 rtx_insn
*insn
= head
;
4997 if (INSN_P (insn
) && RTX_FRAME_RELATED_P (insn
))
5001 insn
= NEXT_INSN (insn
);
5005 /* Disable handling dead code by conditional execution if the machine needs
5006 to do anything funny with the tests, etc. */
5007 #ifndef IFCVT_MODIFY_TESTS
5008 if (targetm
.have_conditional_execution ())
5010 /* In the conditional execution case, we have things easy. We know
5011 the condition is reversible. We don't have to check life info
5012 because we're going to conditionally execute the code anyway.
5013 All that's left is making sure the insns involved can actually
5018 cond
= cond_exec_get_condition (jump
);
5022 rtx note
= find_reg_note (jump
, REG_BR_PROB
, NULL_RTX
);
5023 int prob_val
= (note
? XINT (note
, 0) : -1);
5027 enum rtx_code rev
= reversed_comparison_code (cond
, jump
);
5030 cond
= gen_rtx_fmt_ee (rev
, GET_MODE (cond
), XEXP (cond
, 0),
5033 prob_val
= REG_BR_PROB_BASE
- prob_val
;
5036 if (cond_exec_process_insns (NULL
, head
, end
, cond
, prob_val
, 0)
5037 && verify_changes (0))
5038 n_validated_changes
= num_validated_changes ();
5046 /* If we allocated new pseudos (e.g. in the conditional move
5047 expander called from noce_emit_cmove), we must resize the
5049 if (max_regno
< max_reg_num ())
5050 max_regno
= max_reg_num ();
5052 /* Try the NCE path if the CE path did not result in any changes. */
5053 if (n_validated_changes
== 0)
5060 /* In the non-conditional execution case, we have to verify that there
5061 are no trapping operations, no calls, no references to memory, and
5062 that any registers modified are dead at the branch site. */
5064 if (!any_condjump_p (jump
))
5067 /* Find the extent of the conditional. */
5068 cond
= noce_get_condition (jump
, &earliest
, false);
5072 live
= BITMAP_ALLOC (®_obstack
);
5073 simulate_backwards_to_point (merge_bb
, live
, end
);
5074 success
= can_move_insns_across (head
, end
, earliest
, jump
,
5076 df_get_live_in (other_bb
), NULL
);
5081 /* Collect the set of registers set in MERGE_BB. */
5082 merge_set
= BITMAP_ALLOC (®_obstack
);
5084 FOR_BB_INSNS (merge_bb
, insn
)
5085 if (NONDEBUG_INSN_P (insn
))
5086 df_simulate_find_defs (insn
, merge_set
);
5088 /* If shrink-wrapping, disable this optimization when test_bb is
5089 the first basic block and merge_bb exits. The idea is to not
5090 move code setting up a return register as that may clobber a
5091 register used to pass function parameters, which then must be
5092 saved in caller-saved regs. A caller-saved reg requires the
5093 prologue, killing a shrink-wrap opportunity. */
5094 if ((SHRINK_WRAPPING_ENABLED
&& !epilogue_completed
)
5095 && ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
== test_bb
5096 && single_succ_p (new_dest
)
5097 && single_succ (new_dest
) == EXIT_BLOCK_PTR_FOR_FN (cfun
)
5098 && bitmap_intersect_p (df_get_live_in (new_dest
), merge_set
))
5103 return_regs
= BITMAP_ALLOC (®_obstack
);
5105 /* Start off with the intersection of regs used to pass
5106 params and regs used to return values. */
5107 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
5108 if (FUNCTION_ARG_REGNO_P (i
)
5109 && targetm
.calls
.function_value_regno_p (i
))
5110 bitmap_set_bit (return_regs
, INCOMING_REGNO (i
));
5112 bitmap_and_into (return_regs
,
5113 df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun
)));
5114 bitmap_and_into (return_regs
,
5115 df_get_live_in (EXIT_BLOCK_PTR_FOR_FN (cfun
)));
5116 if (!bitmap_empty_p (return_regs
))
5118 FOR_BB_INSNS_REVERSE (new_dest
, insn
)
5119 if (NONDEBUG_INSN_P (insn
))
5123 /* If this insn sets any reg in return_regs, add all
5124 reg uses to the set of regs we're interested in. */
5125 FOR_EACH_INSN_DEF (def
, insn
)
5126 if (bitmap_bit_p (return_regs
, DF_REF_REGNO (def
)))
5128 df_simulate_uses (insn
, return_regs
);
5132 if (bitmap_intersect_p (merge_set
, return_regs
))
5134 BITMAP_FREE (return_regs
);
5135 BITMAP_FREE (merge_set
);
5139 BITMAP_FREE (return_regs
);
5144 /* We don't want to use normal invert_jump or redirect_jump because
5145 we don't want to delete_insn called. Also, we want to do our own
5146 change group management. */
5148 old_dest
= JUMP_LABEL (jump
);
5149 if (other_bb
!= new_dest
)
5151 if (!any_condjump_p (jump
))
5154 if (JUMP_P (BB_END (dest_edge
->src
)))
5155 new_dest_label
= JUMP_LABEL (BB_END (dest_edge
->src
));
5156 else if (new_dest
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
5157 new_dest_label
= ret_rtx
;
5159 new_dest_label
= block_label (new_dest
);
5161 rtx_jump_insn
*jump_insn
= as_a
<rtx_jump_insn
*> (jump
);
5163 ? ! invert_jump_1 (jump_insn
, new_dest_label
)
5164 : ! redirect_jump_1 (jump_insn
, new_dest_label
))
5168 if (verify_changes (n_validated_changes
))
5169 confirm_change_group ();
5173 if (other_bb
!= new_dest
)
5175 redirect_jump_2 (as_a
<rtx_jump_insn
*> (jump
), old_dest
, new_dest_label
,
5178 redirect_edge_succ (BRANCH_EDGE (test_bb
), new_dest
);
5181 std::swap (BRANCH_EDGE (test_bb
)->count
,
5182 FALLTHRU_EDGE (test_bb
)->count
);
5183 std::swap (BRANCH_EDGE (test_bb
)->probability
,
5184 FALLTHRU_EDGE (test_bb
)->probability
);
5185 update_br_prob_note (test_bb
);
5189 /* Move the insns out of MERGE_BB to before the branch. */
5194 if (end
== BB_END (merge_bb
))
5195 BB_END (merge_bb
) = PREV_INSN (head
);
5197 /* PR 21767: when moving insns above a conditional branch, the REG_EQUAL
5198 notes being moved might become invalid. */
5204 if (! INSN_P (insn
))
5206 note
= find_reg_note (insn
, REG_EQUAL
, NULL_RTX
);
5209 remove_note (insn
, note
);
5210 } while (insn
!= end
&& (insn
= NEXT_INSN (insn
)));
5212 /* PR46315: when moving insns above a conditional branch, the REG_EQUAL
5213 notes referring to the registers being set might become invalid. */
5219 EXECUTE_IF_SET_IN_BITMAP (merge_set
, 0, i
, bi
)
5220 remove_reg_equal_equiv_notes_for_regno (i
);
5222 BITMAP_FREE (merge_set
);
5225 reorder_insns (head
, end
, PREV_INSN (earliest
));
5228 /* Remove the jump and edge if we can. */
5229 if (other_bb
== new_dest
)
5232 remove_edge (BRANCH_EDGE (test_bb
));
5233 /* ??? Can't merge blocks here, as then_bb is still in use.
5234 At minimum, the merge will get done just before bb-reorder. */
5243 BITMAP_FREE (merge_set
);
5248 /* Main entry point for all if-conversion. AFTER_COMBINE is true if
5249 we are after combine pass. */
5252 if_convert (bool after_combine
)
5259 df_live_add_problem ();
5260 df_live_set_all_dirty ();
5263 /* Record whether we are after combine pass. */
5264 ifcvt_after_combine
= after_combine
;
5265 have_cbranchcc4
= (direct_optab_handler (cbranch_optab
, CCmode
)
5266 != CODE_FOR_nothing
);
5267 num_possible_if_blocks
= 0;
5268 num_updated_if_blocks
= 0;
5269 num_true_changes
= 0;
5271 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
);
5272 mark_loop_exit_edges ();
5273 loop_optimizer_finalize ();
5274 free_dominance_info (CDI_DOMINATORS
);
5276 /* Compute postdominators. */
5277 calculate_dominance_info (CDI_POST_DOMINATORS
);
5279 df_set_flags (DF_LR_RUN_DCE
);
5281 /* Go through each of the basic blocks looking for things to convert. If we
5282 have conditional execution, we make multiple passes to allow us to handle
5283 IF-THEN{-ELSE} blocks within other IF-THEN{-ELSE} blocks. */
5288 /* Only need to do dce on the first pass. */
5289 df_clear_flags (DF_LR_RUN_DCE
);
5290 cond_exec_changed_p
= FALSE
;
5293 #ifdef IFCVT_MULTIPLE_DUMPS
5294 if (dump_file
&& pass
> 1)
5295 fprintf (dump_file
, "\n\n========== Pass %d ==========\n", pass
);
5298 FOR_EACH_BB_FN (bb
, cfun
)
5301 while (!df_get_bb_dirty (bb
)
5302 && (new_bb
= find_if_header (bb
, pass
)) != NULL
)
5306 #ifdef IFCVT_MULTIPLE_DUMPS
5307 if (dump_file
&& cond_exec_changed_p
)
5308 print_rtl_with_bb (dump_file
, get_insns (), dump_flags
);
5311 while (cond_exec_changed_p
);
5313 #ifdef IFCVT_MULTIPLE_DUMPS
5315 fprintf (dump_file
, "\n\n========== no more changes\n");
5318 free_dominance_info (CDI_POST_DOMINATORS
);
5323 clear_aux_for_blocks ();
5325 /* If we allocated new pseudos, we must resize the array for sched1. */
5326 if (max_regno
< max_reg_num ())
5327 max_regno
= max_reg_num ();
5329 /* Write the final stats. */
5330 if (dump_file
&& num_possible_if_blocks
> 0)
5333 "\n%d possible IF blocks searched.\n",
5334 num_possible_if_blocks
);
5336 "%d IF blocks converted.\n",
5337 num_updated_if_blocks
);
5339 "%d true changes made.\n\n\n",
5344 df_remove_problem (df_live
);
5346 checking_verify_flow_info ();
5349 /* If-conversion and CFG cleanup. */
5351 rest_of_handle_if_conversion (void)
5353 if (flag_if_conversion
)
5357 dump_reg_info (dump_file
);
5358 dump_flow_info (dump_file
, dump_flags
);
5360 cleanup_cfg (CLEANUP_EXPENSIVE
);
5370 const pass_data pass_data_rtl_ifcvt
=
5372 RTL_PASS
, /* type */
5374 OPTGROUP_NONE
, /* optinfo_flags */
5375 TV_IFCVT
, /* tv_id */
5376 0, /* properties_required */
5377 0, /* properties_provided */
5378 0, /* properties_destroyed */
5379 0, /* todo_flags_start */
5380 TODO_df_finish
, /* todo_flags_finish */
5383 class pass_rtl_ifcvt
: public rtl_opt_pass
5386 pass_rtl_ifcvt (gcc::context
*ctxt
)
5387 : rtl_opt_pass (pass_data_rtl_ifcvt
, ctxt
)
5390 /* opt_pass methods: */
5391 virtual bool gate (function
*)
5393 return (optimize
> 0) && dbg_cnt (if_conversion
);
5396 virtual unsigned int execute (function
*)
5398 return rest_of_handle_if_conversion ();
5401 }; // class pass_rtl_ifcvt
5406 make_pass_rtl_ifcvt (gcc::context
*ctxt
)
5408 return new pass_rtl_ifcvt (ctxt
);
5412 /* Rerun if-conversion, as combine may have simplified things enough
5413 to now meet sequence length restrictions. */
5417 const pass_data pass_data_if_after_combine
=
5419 RTL_PASS
, /* type */
5421 OPTGROUP_NONE
, /* optinfo_flags */
5422 TV_IFCVT
, /* tv_id */
5423 0, /* properties_required */
5424 0, /* properties_provided */
5425 0, /* properties_destroyed */
5426 0, /* todo_flags_start */
5427 TODO_df_finish
, /* todo_flags_finish */
5430 class pass_if_after_combine
: public rtl_opt_pass
5433 pass_if_after_combine (gcc::context
*ctxt
)
5434 : rtl_opt_pass (pass_data_if_after_combine
, ctxt
)
5437 /* opt_pass methods: */
5438 virtual bool gate (function
*)
5440 return optimize
> 0 && flag_if_conversion
5441 && dbg_cnt (if_after_combine
);
5444 virtual unsigned int execute (function
*)
5450 }; // class pass_if_after_combine
5455 make_pass_if_after_combine (gcc::context
*ctxt
)
5457 return new pass_if_after_combine (ctxt
);
5463 const pass_data pass_data_if_after_reload
=
5465 RTL_PASS
, /* type */
5467 OPTGROUP_NONE
, /* optinfo_flags */
5468 TV_IFCVT2
, /* tv_id */
5469 0, /* properties_required */
5470 0, /* properties_provided */
5471 0, /* properties_destroyed */
5472 0, /* todo_flags_start */
5473 TODO_df_finish
, /* todo_flags_finish */
5476 class pass_if_after_reload
: public rtl_opt_pass
5479 pass_if_after_reload (gcc::context
*ctxt
)
5480 : rtl_opt_pass (pass_data_if_after_reload
, ctxt
)
5483 /* opt_pass methods: */
5484 virtual bool gate (function
*)
5486 return optimize
> 0 && flag_if_conversion2
5487 && dbg_cnt (if_after_reload
);
5490 virtual unsigned int execute (function
*)
5496 }; // class pass_if_after_reload
5501 make_pass_if_after_reload (gcc::context
*ctxt
)
5503 return new pass_if_after_reload (ctxt
);