2015-12-18 Ville Voutilainen <ville.voutilainen@gmail.com>
[official-gcc.git] / gcc / function.c
blob035a49eff3f00f37d3a3d9b7a7ee12d7df5920d5
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file handles the generation of rtl code from tree structure
21 at the level of the function as a whole.
22 It creates the rtl expressions for parameters and auto variables
23 and has full responsibility for allocating stack slots.
25 `expand_function_start' is called at the beginning of a function,
26 before the function body is parsed, and `expand_function_end' is
27 called after parsing the body.
29 Call `assign_stack_local' to allocate a stack slot for a local variable.
30 This is usually done during the RTL generation for the function body,
31 but it can also be done in the reload pass when a pseudo-register does
32 not get a hard register. */
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "backend.h"
38 #include "target.h"
39 #include "rtl.h"
40 #include "tree.h"
41 #include "gimple-expr.h"
42 #include "cfghooks.h"
43 #include "df.h"
44 #include "tm_p.h"
45 #include "stringpool.h"
46 #include "expmed.h"
47 #include "optabs.h"
48 #include "regs.h"
49 #include "emit-rtl.h"
50 #include "recog.h"
51 #include "rtl-error.h"
52 #include "alias.h"
53 #include "fold-const.h"
54 #include "stor-layout.h"
55 #include "varasm.h"
56 #include "except.h"
57 #include "dojump.h"
58 #include "explow.h"
59 #include "calls.h"
60 #include "expr.h"
61 #include "optabs-tree.h"
62 #include "output.h"
63 #include "langhooks.h"
64 #include "common/common-target.h"
65 #include "gimplify.h"
66 #include "tree-pass.h"
67 #include "cfgrtl.h"
68 #include "cfganal.h"
69 #include "cfgbuild.h"
70 #include "cfgcleanup.h"
71 #include "cfgexpand.h"
72 #include "shrink-wrap.h"
73 #include "toplev.h"
74 #include "rtl-iter.h"
75 #include "tree-chkp.h"
76 #include "rtl-chkp.h"
77 #include "tree-dfa.h"
78 #include "tree-ssa.h"
80 /* So we can assign to cfun in this file. */
81 #undef cfun
83 #ifndef STACK_ALIGNMENT_NEEDED
84 #define STACK_ALIGNMENT_NEEDED 1
85 #endif
87 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
89 /* Round a value to the lowest integer less than it that is a multiple of
90 the required alignment. Avoid using division in case the value is
91 negative. Assume the alignment is a power of two. */
92 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
94 /* Similar, but round to the next highest integer that meets the
95 alignment. */
96 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
98 /* Nonzero once virtual register instantiation has been done.
99 assign_stack_local uses frame_pointer_rtx when this is nonzero.
100 calls.c:emit_library_call_value_1 uses it to set up
101 post-instantiation libcalls. */
102 int virtuals_instantiated;
104 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
105 static GTY(()) int funcdef_no;
107 /* These variables hold pointers to functions to create and destroy
108 target specific, per-function data structures. */
109 struct machine_function * (*init_machine_status) (void);
111 /* The currently compiled function. */
112 struct function *cfun = 0;
114 /* These hashes record the prologue and epilogue insns. */
116 struct insn_cache_hasher : ggc_cache_ptr_hash<rtx_def>
118 static hashval_t hash (rtx x) { return htab_hash_pointer (x); }
119 static bool equal (rtx a, rtx b) { return a == b; }
122 static GTY((cache))
123 hash_table<insn_cache_hasher> *prologue_insn_hash;
124 static GTY((cache))
125 hash_table<insn_cache_hasher> *epilogue_insn_hash;
128 hash_table<used_type_hasher> *types_used_by_vars_hash = NULL;
129 vec<tree, va_gc> *types_used_by_cur_var_decl;
131 /* Forward declarations. */
133 static struct temp_slot *find_temp_slot_from_address (rtx);
134 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
135 static void pad_below (struct args_size *, machine_mode, tree);
136 static void reorder_blocks_1 (rtx_insn *, tree, vec<tree> *);
137 static int all_blocks (tree, tree *);
138 static tree *get_block_vector (tree, int *);
139 extern tree debug_find_var_in_block_tree (tree, tree);
140 /* We always define `record_insns' even if it's not used so that we
141 can always export `prologue_epilogue_contains'. */
142 static void record_insns (rtx_insn *, rtx, hash_table<insn_cache_hasher> **)
143 ATTRIBUTE_UNUSED;
144 static bool contains (const_rtx, hash_table<insn_cache_hasher> *);
145 static void prepare_function_start (void);
146 static void do_clobber_return_reg (rtx, void *);
147 static void do_use_return_reg (rtx, void *);
150 /* Stack of nested functions. */
151 /* Keep track of the cfun stack. */
153 static vec<function *> function_context_stack;
155 /* Save the current context for compilation of a nested function.
156 This is called from language-specific code. */
158 void
159 push_function_context (void)
161 if (cfun == 0)
162 allocate_struct_function (NULL, false);
164 function_context_stack.safe_push (cfun);
165 set_cfun (NULL);
168 /* Restore the last saved context, at the end of a nested function.
169 This function is called from language-specific code. */
171 void
172 pop_function_context (void)
174 struct function *p = function_context_stack.pop ();
175 set_cfun (p);
176 current_function_decl = p->decl;
178 /* Reset variables that have known state during rtx generation. */
179 virtuals_instantiated = 0;
180 generating_concat_p = 1;
183 /* Clear out all parts of the state in F that can safely be discarded
184 after the function has been parsed, but not compiled, to let
185 garbage collection reclaim the memory. */
187 void
188 free_after_parsing (struct function *f)
190 f->language = 0;
193 /* Clear out all parts of the state in F that can safely be discarded
194 after the function has been compiled, to let garbage collection
195 reclaim the memory. */
197 void
198 free_after_compilation (struct function *f)
200 prologue_insn_hash = NULL;
201 epilogue_insn_hash = NULL;
203 free (crtl->emit.regno_pointer_align);
205 memset (crtl, 0, sizeof (struct rtl_data));
206 f->eh = NULL;
207 f->machine = NULL;
208 f->cfg = NULL;
209 f->curr_properties &= ~PROP_cfg;
211 regno_reg_rtx = NULL;
214 /* Return size needed for stack frame based on slots so far allocated.
215 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
216 the caller may have to do that. */
218 HOST_WIDE_INT
219 get_frame_size (void)
221 if (FRAME_GROWS_DOWNWARD)
222 return -frame_offset;
223 else
224 return frame_offset;
227 /* Issue an error message and return TRUE if frame OFFSET overflows in
228 the signed target pointer arithmetics for function FUNC. Otherwise
229 return FALSE. */
231 bool
232 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
234 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
236 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
237 /* Leave room for the fixed part of the frame. */
238 - 64 * UNITS_PER_WORD)
240 error_at (DECL_SOURCE_LOCATION (func),
241 "total size of local objects too large");
242 return TRUE;
245 return FALSE;
248 /* Return stack slot alignment in bits for TYPE and MODE. */
250 static unsigned int
251 get_stack_local_alignment (tree type, machine_mode mode)
253 unsigned int alignment;
255 if (mode == BLKmode)
256 alignment = BIGGEST_ALIGNMENT;
257 else
258 alignment = GET_MODE_ALIGNMENT (mode);
260 /* Allow the frond-end to (possibly) increase the alignment of this
261 stack slot. */
262 if (! type)
263 type = lang_hooks.types.type_for_mode (mode, 0);
265 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
268 /* Determine whether it is possible to fit a stack slot of size SIZE and
269 alignment ALIGNMENT into an area in the stack frame that starts at
270 frame offset START and has a length of LENGTH. If so, store the frame
271 offset to be used for the stack slot in *POFFSET and return true;
272 return false otherwise. This function will extend the frame size when
273 given a start/length pair that lies at the end of the frame. */
275 static bool
276 try_fit_stack_local (HOST_WIDE_INT start, HOST_WIDE_INT length,
277 HOST_WIDE_INT size, unsigned int alignment,
278 HOST_WIDE_INT *poffset)
280 HOST_WIDE_INT this_frame_offset;
281 int frame_off, frame_alignment, frame_phase;
283 /* Calculate how many bytes the start of local variables is off from
284 stack alignment. */
285 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
286 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
287 frame_phase = frame_off ? frame_alignment - frame_off : 0;
289 /* Round the frame offset to the specified alignment. */
291 /* We must be careful here, since FRAME_OFFSET might be negative and
292 division with a negative dividend isn't as well defined as we might
293 like. So we instead assume that ALIGNMENT is a power of two and
294 use logical operations which are unambiguous. */
295 if (FRAME_GROWS_DOWNWARD)
296 this_frame_offset
297 = (FLOOR_ROUND (start + length - size - frame_phase,
298 (unsigned HOST_WIDE_INT) alignment)
299 + frame_phase);
300 else
301 this_frame_offset
302 = (CEIL_ROUND (start - frame_phase,
303 (unsigned HOST_WIDE_INT) alignment)
304 + frame_phase);
306 /* See if it fits. If this space is at the edge of the frame,
307 consider extending the frame to make it fit. Our caller relies on
308 this when allocating a new slot. */
309 if (frame_offset == start && this_frame_offset < frame_offset)
310 frame_offset = this_frame_offset;
311 else if (this_frame_offset < start)
312 return false;
313 else if (start + length == frame_offset
314 && this_frame_offset + size > start + length)
315 frame_offset = this_frame_offset + size;
316 else if (this_frame_offset + size > start + length)
317 return false;
319 *poffset = this_frame_offset;
320 return true;
323 /* Create a new frame_space structure describing free space in the stack
324 frame beginning at START and ending at END, and chain it into the
325 function's frame_space_list. */
327 static void
328 add_frame_space (HOST_WIDE_INT start, HOST_WIDE_INT end)
330 struct frame_space *space = ggc_alloc<frame_space> ();
331 space->next = crtl->frame_space_list;
332 crtl->frame_space_list = space;
333 space->start = start;
334 space->length = end - start;
337 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
338 with machine mode MODE.
340 ALIGN controls the amount of alignment for the address of the slot:
341 0 means according to MODE,
342 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
343 -2 means use BITS_PER_UNIT,
344 positive specifies alignment boundary in bits.
346 KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce
347 alignment and ASLK_RECORD_PAD bit set if we should remember
348 extra space we allocated for alignment purposes. When we are
349 called from assign_stack_temp_for_type, it is not set so we don't
350 track the same stack slot in two independent lists.
352 We do not round to stack_boundary here. */
355 assign_stack_local_1 (machine_mode mode, HOST_WIDE_INT size,
356 int align, int kind)
358 rtx x, addr;
359 int bigend_correction = 0;
360 HOST_WIDE_INT slot_offset = 0, old_frame_offset;
361 unsigned int alignment, alignment_in_bits;
363 if (align == 0)
365 alignment = get_stack_local_alignment (NULL, mode);
366 alignment /= BITS_PER_UNIT;
368 else if (align == -1)
370 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
371 size = CEIL_ROUND (size, alignment);
373 else if (align == -2)
374 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
375 else
376 alignment = align / BITS_PER_UNIT;
378 alignment_in_bits = alignment * BITS_PER_UNIT;
380 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
381 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
383 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
384 alignment = alignment_in_bits / BITS_PER_UNIT;
387 if (SUPPORTS_STACK_ALIGNMENT)
389 if (crtl->stack_alignment_estimated < alignment_in_bits)
391 if (!crtl->stack_realign_processed)
392 crtl->stack_alignment_estimated = alignment_in_bits;
393 else
395 /* If stack is realigned and stack alignment value
396 hasn't been finalized, it is OK not to increase
397 stack_alignment_estimated. The bigger alignment
398 requirement is recorded in stack_alignment_needed
399 below. */
400 gcc_assert (!crtl->stack_realign_finalized);
401 if (!crtl->stack_realign_needed)
403 /* It is OK to reduce the alignment as long as the
404 requested size is 0 or the estimated stack
405 alignment >= mode alignment. */
406 gcc_assert ((kind & ASLK_REDUCE_ALIGN)
407 || size == 0
408 || (crtl->stack_alignment_estimated
409 >= GET_MODE_ALIGNMENT (mode)));
410 alignment_in_bits = crtl->stack_alignment_estimated;
411 alignment = alignment_in_bits / BITS_PER_UNIT;
417 if (crtl->stack_alignment_needed < alignment_in_bits)
418 crtl->stack_alignment_needed = alignment_in_bits;
419 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
420 crtl->max_used_stack_slot_alignment = alignment_in_bits;
422 if (mode != BLKmode || size != 0)
424 if (kind & ASLK_RECORD_PAD)
426 struct frame_space **psp;
428 for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next)
430 struct frame_space *space = *psp;
431 if (!try_fit_stack_local (space->start, space->length, size,
432 alignment, &slot_offset))
433 continue;
434 *psp = space->next;
435 if (slot_offset > space->start)
436 add_frame_space (space->start, slot_offset);
437 if (slot_offset + size < space->start + space->length)
438 add_frame_space (slot_offset + size,
439 space->start + space->length);
440 goto found_space;
444 else if (!STACK_ALIGNMENT_NEEDED)
446 slot_offset = frame_offset;
447 goto found_space;
450 old_frame_offset = frame_offset;
452 if (FRAME_GROWS_DOWNWARD)
454 frame_offset -= size;
455 try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset);
457 if (kind & ASLK_RECORD_PAD)
459 if (slot_offset > frame_offset)
460 add_frame_space (frame_offset, slot_offset);
461 if (slot_offset + size < old_frame_offset)
462 add_frame_space (slot_offset + size, old_frame_offset);
465 else
467 frame_offset += size;
468 try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset);
470 if (kind & ASLK_RECORD_PAD)
472 if (slot_offset > old_frame_offset)
473 add_frame_space (old_frame_offset, slot_offset);
474 if (slot_offset + size < frame_offset)
475 add_frame_space (slot_offset + size, frame_offset);
479 found_space:
480 /* On a big-endian machine, if we are allocating more space than we will use,
481 use the least significant bytes of those that are allocated. */
482 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
483 bigend_correction = size - GET_MODE_SIZE (mode);
485 /* If we have already instantiated virtual registers, return the actual
486 address relative to the frame pointer. */
487 if (virtuals_instantiated)
488 addr = plus_constant (Pmode, frame_pointer_rtx,
489 trunc_int_for_mode
490 (slot_offset + bigend_correction
491 + STARTING_FRAME_OFFSET, Pmode));
492 else
493 addr = plus_constant (Pmode, virtual_stack_vars_rtx,
494 trunc_int_for_mode
495 (slot_offset + bigend_correction,
496 Pmode));
498 x = gen_rtx_MEM (mode, addr);
499 set_mem_align (x, alignment_in_bits);
500 MEM_NOTRAP_P (x) = 1;
502 stack_slot_list
503 = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
505 if (frame_offset_overflow (frame_offset, current_function_decl))
506 frame_offset = 0;
508 return x;
511 /* Wrap up assign_stack_local_1 with last parameter as false. */
514 assign_stack_local (machine_mode mode, HOST_WIDE_INT size, int align)
516 return assign_stack_local_1 (mode, size, align, ASLK_RECORD_PAD);
519 /* In order to evaluate some expressions, such as function calls returning
520 structures in memory, we need to temporarily allocate stack locations.
521 We record each allocated temporary in the following structure.
523 Associated with each temporary slot is a nesting level. When we pop up
524 one level, all temporaries associated with the previous level are freed.
525 Normally, all temporaries are freed after the execution of the statement
526 in which they were created. However, if we are inside a ({...}) grouping,
527 the result may be in a temporary and hence must be preserved. If the
528 result could be in a temporary, we preserve it if we can determine which
529 one it is in. If we cannot determine which temporary may contain the
530 result, all temporaries are preserved. A temporary is preserved by
531 pretending it was allocated at the previous nesting level. */
533 struct GTY(()) temp_slot {
534 /* Points to next temporary slot. */
535 struct temp_slot *next;
536 /* Points to previous temporary slot. */
537 struct temp_slot *prev;
538 /* The rtx to used to reference the slot. */
539 rtx slot;
540 /* The size, in units, of the slot. */
541 HOST_WIDE_INT size;
542 /* The type of the object in the slot, or zero if it doesn't correspond
543 to a type. We use this to determine whether a slot can be reused.
544 It can be reused if objects of the type of the new slot will always
545 conflict with objects of the type of the old slot. */
546 tree type;
547 /* The alignment (in bits) of the slot. */
548 unsigned int align;
549 /* Nonzero if this temporary is currently in use. */
550 char in_use;
551 /* Nesting level at which this slot is being used. */
552 int level;
553 /* The offset of the slot from the frame_pointer, including extra space
554 for alignment. This info is for combine_temp_slots. */
555 HOST_WIDE_INT base_offset;
556 /* The size of the slot, including extra space for alignment. This
557 info is for combine_temp_slots. */
558 HOST_WIDE_INT full_size;
561 /* Entry for the below hash table. */
562 struct GTY((for_user)) temp_slot_address_entry {
563 hashval_t hash;
564 rtx address;
565 struct temp_slot *temp_slot;
568 struct temp_address_hasher : ggc_ptr_hash<temp_slot_address_entry>
570 static hashval_t hash (temp_slot_address_entry *);
571 static bool equal (temp_slot_address_entry *, temp_slot_address_entry *);
574 /* A table of addresses that represent a stack slot. The table is a mapping
575 from address RTXen to a temp slot. */
576 static GTY(()) hash_table<temp_address_hasher> *temp_slot_address_table;
577 static size_t n_temp_slots_in_use;
579 /* Removes temporary slot TEMP from LIST. */
581 static void
582 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
584 if (temp->next)
585 temp->next->prev = temp->prev;
586 if (temp->prev)
587 temp->prev->next = temp->next;
588 else
589 *list = temp->next;
591 temp->prev = temp->next = NULL;
594 /* Inserts temporary slot TEMP to LIST. */
596 static void
597 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
599 temp->next = *list;
600 if (*list)
601 (*list)->prev = temp;
602 temp->prev = NULL;
603 *list = temp;
606 /* Returns the list of used temp slots at LEVEL. */
608 static struct temp_slot **
609 temp_slots_at_level (int level)
611 if (level >= (int) vec_safe_length (used_temp_slots))
612 vec_safe_grow_cleared (used_temp_slots, level + 1);
614 return &(*used_temp_slots)[level];
617 /* Returns the maximal temporary slot level. */
619 static int
620 max_slot_level (void)
622 if (!used_temp_slots)
623 return -1;
625 return used_temp_slots->length () - 1;
628 /* Moves temporary slot TEMP to LEVEL. */
630 static void
631 move_slot_to_level (struct temp_slot *temp, int level)
633 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
634 insert_slot_to_list (temp, temp_slots_at_level (level));
635 temp->level = level;
638 /* Make temporary slot TEMP available. */
640 static void
641 make_slot_available (struct temp_slot *temp)
643 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
644 insert_slot_to_list (temp, &avail_temp_slots);
645 temp->in_use = 0;
646 temp->level = -1;
647 n_temp_slots_in_use--;
650 /* Compute the hash value for an address -> temp slot mapping.
651 The value is cached on the mapping entry. */
652 static hashval_t
653 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
655 int do_not_record = 0;
656 return hash_rtx (t->address, GET_MODE (t->address),
657 &do_not_record, NULL, false);
660 /* Return the hash value for an address -> temp slot mapping. */
661 hashval_t
662 temp_address_hasher::hash (temp_slot_address_entry *t)
664 return t->hash;
667 /* Compare two address -> temp slot mapping entries. */
668 bool
669 temp_address_hasher::equal (temp_slot_address_entry *t1,
670 temp_slot_address_entry *t2)
672 return exp_equiv_p (t1->address, t2->address, 0, true);
675 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
676 static void
677 insert_temp_slot_address (rtx address, struct temp_slot *temp_slot)
679 struct temp_slot_address_entry *t = ggc_alloc<temp_slot_address_entry> ();
680 t->address = address;
681 t->temp_slot = temp_slot;
682 t->hash = temp_slot_address_compute_hash (t);
683 *temp_slot_address_table->find_slot_with_hash (t, t->hash, INSERT) = t;
686 /* Remove an address -> temp slot mapping entry if the temp slot is
687 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
689 remove_unused_temp_slot_addresses_1 (temp_slot_address_entry **slot, void *)
691 const struct temp_slot_address_entry *t = *slot;
692 if (! t->temp_slot->in_use)
693 temp_slot_address_table->clear_slot (slot);
694 return 1;
697 /* Remove all mappings of addresses to unused temp slots. */
698 static void
699 remove_unused_temp_slot_addresses (void)
701 /* Use quicker clearing if there aren't any active temp slots. */
702 if (n_temp_slots_in_use)
703 temp_slot_address_table->traverse
704 <void *, remove_unused_temp_slot_addresses_1> (NULL);
705 else
706 temp_slot_address_table->empty ();
709 /* Find the temp slot corresponding to the object at address X. */
711 static struct temp_slot *
712 find_temp_slot_from_address (rtx x)
714 struct temp_slot *p;
715 struct temp_slot_address_entry tmp, *t;
717 /* First try the easy way:
718 See if X exists in the address -> temp slot mapping. */
719 tmp.address = x;
720 tmp.temp_slot = NULL;
721 tmp.hash = temp_slot_address_compute_hash (&tmp);
722 t = temp_slot_address_table->find_with_hash (&tmp, tmp.hash);
723 if (t)
724 return t->temp_slot;
726 /* If we have a sum involving a register, see if it points to a temp
727 slot. */
728 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
729 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
730 return p;
731 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
732 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
733 return p;
735 /* Last resort: Address is a virtual stack var address. */
736 if (GET_CODE (x) == PLUS
737 && XEXP (x, 0) == virtual_stack_vars_rtx
738 && CONST_INT_P (XEXP (x, 1)))
740 int i;
741 for (i = max_slot_level (); i >= 0; i--)
742 for (p = *temp_slots_at_level (i); p; p = p->next)
744 if (INTVAL (XEXP (x, 1)) >= p->base_offset
745 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size)
746 return p;
750 return NULL;
753 /* Allocate a temporary stack slot and record it for possible later
754 reuse.
756 MODE is the machine mode to be given to the returned rtx.
758 SIZE is the size in units of the space required. We do no rounding here
759 since assign_stack_local will do any required rounding.
761 TYPE is the type that will be used for the stack slot. */
764 assign_stack_temp_for_type (machine_mode mode, HOST_WIDE_INT size,
765 tree type)
767 unsigned int align;
768 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
769 rtx slot;
771 /* If SIZE is -1 it means that somebody tried to allocate a temporary
772 of a variable size. */
773 gcc_assert (size != -1);
775 align = get_stack_local_alignment (type, mode);
777 /* Try to find an available, already-allocated temporary of the proper
778 mode which meets the size and alignment requirements. Choose the
779 smallest one with the closest alignment.
781 If assign_stack_temp is called outside of the tree->rtl expansion,
782 we cannot reuse the stack slots (that may still refer to
783 VIRTUAL_STACK_VARS_REGNUM). */
784 if (!virtuals_instantiated)
786 for (p = avail_temp_slots; p; p = p->next)
788 if (p->align >= align && p->size >= size
789 && GET_MODE (p->slot) == mode
790 && objects_must_conflict_p (p->type, type)
791 && (best_p == 0 || best_p->size > p->size
792 || (best_p->size == p->size && best_p->align > p->align)))
794 if (p->align == align && p->size == size)
796 selected = p;
797 cut_slot_from_list (selected, &avail_temp_slots);
798 best_p = 0;
799 break;
801 best_p = p;
806 /* Make our best, if any, the one to use. */
807 if (best_p)
809 selected = best_p;
810 cut_slot_from_list (selected, &avail_temp_slots);
812 /* If there are enough aligned bytes left over, make them into a new
813 temp_slot so that the extra bytes don't get wasted. Do this only
814 for BLKmode slots, so that we can be sure of the alignment. */
815 if (GET_MODE (best_p->slot) == BLKmode)
817 int alignment = best_p->align / BITS_PER_UNIT;
818 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
820 if (best_p->size - rounded_size >= alignment)
822 p = ggc_alloc<temp_slot> ();
823 p->in_use = 0;
824 p->size = best_p->size - rounded_size;
825 p->base_offset = best_p->base_offset + rounded_size;
826 p->full_size = best_p->full_size - rounded_size;
827 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
828 p->align = best_p->align;
829 p->type = best_p->type;
830 insert_slot_to_list (p, &avail_temp_slots);
832 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
833 stack_slot_list);
835 best_p->size = rounded_size;
836 best_p->full_size = rounded_size;
841 /* If we still didn't find one, make a new temporary. */
842 if (selected == 0)
844 HOST_WIDE_INT frame_offset_old = frame_offset;
846 p = ggc_alloc<temp_slot> ();
848 /* We are passing an explicit alignment request to assign_stack_local.
849 One side effect of that is assign_stack_local will not round SIZE
850 to ensure the frame offset remains suitably aligned.
852 So for requests which depended on the rounding of SIZE, we go ahead
853 and round it now. We also make sure ALIGNMENT is at least
854 BIGGEST_ALIGNMENT. */
855 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
856 p->slot = assign_stack_local_1 (mode,
857 (mode == BLKmode
858 ? CEIL_ROUND (size,
859 (int) align
860 / BITS_PER_UNIT)
861 : size),
862 align, 0);
864 p->align = align;
866 /* The following slot size computation is necessary because we don't
867 know the actual size of the temporary slot until assign_stack_local
868 has performed all the frame alignment and size rounding for the
869 requested temporary. Note that extra space added for alignment
870 can be either above or below this stack slot depending on which
871 way the frame grows. We include the extra space if and only if it
872 is above this slot. */
873 if (FRAME_GROWS_DOWNWARD)
874 p->size = frame_offset_old - frame_offset;
875 else
876 p->size = size;
878 /* Now define the fields used by combine_temp_slots. */
879 if (FRAME_GROWS_DOWNWARD)
881 p->base_offset = frame_offset;
882 p->full_size = frame_offset_old - frame_offset;
884 else
886 p->base_offset = frame_offset_old;
887 p->full_size = frame_offset - frame_offset_old;
890 selected = p;
893 p = selected;
894 p->in_use = 1;
895 p->type = type;
896 p->level = temp_slot_level;
897 n_temp_slots_in_use++;
899 pp = temp_slots_at_level (p->level);
900 insert_slot_to_list (p, pp);
901 insert_temp_slot_address (XEXP (p->slot, 0), p);
903 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
904 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
905 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
907 /* If we know the alias set for the memory that will be used, use
908 it. If there's no TYPE, then we don't know anything about the
909 alias set for the memory. */
910 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
911 set_mem_align (slot, align);
913 /* If a type is specified, set the relevant flags. */
914 if (type != 0)
915 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
916 MEM_NOTRAP_P (slot) = 1;
918 return slot;
921 /* Allocate a temporary stack slot and record it for possible later
922 reuse. First two arguments are same as in preceding function. */
925 assign_stack_temp (machine_mode mode, HOST_WIDE_INT size)
927 return assign_stack_temp_for_type (mode, size, NULL_TREE);
930 /* Assign a temporary.
931 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
932 and so that should be used in error messages. In either case, we
933 allocate of the given type.
934 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
935 it is 0 if a register is OK.
936 DONT_PROMOTE is 1 if we should not promote values in register
937 to wider modes. */
940 assign_temp (tree type_or_decl, int memory_required,
941 int dont_promote ATTRIBUTE_UNUSED)
943 tree type, decl;
944 machine_mode mode;
945 #ifdef PROMOTE_MODE
946 int unsignedp;
947 #endif
949 if (DECL_P (type_or_decl))
950 decl = type_or_decl, type = TREE_TYPE (decl);
951 else
952 decl = NULL, type = type_or_decl;
954 mode = TYPE_MODE (type);
955 #ifdef PROMOTE_MODE
956 unsignedp = TYPE_UNSIGNED (type);
957 #endif
959 if (mode == BLKmode || memory_required)
961 HOST_WIDE_INT size = int_size_in_bytes (type);
962 rtx tmp;
964 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
965 problems with allocating the stack space. */
966 if (size == 0)
967 size = 1;
969 /* Unfortunately, we don't yet know how to allocate variable-sized
970 temporaries. However, sometimes we can find a fixed upper limit on
971 the size, so try that instead. */
972 else if (size == -1)
973 size = max_int_size_in_bytes (type);
975 /* The size of the temporary may be too large to fit into an integer. */
976 /* ??? Not sure this should happen except for user silliness, so limit
977 this to things that aren't compiler-generated temporaries. The
978 rest of the time we'll die in assign_stack_temp_for_type. */
979 if (decl && size == -1
980 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
982 error ("size of variable %q+D is too large", decl);
983 size = 1;
986 tmp = assign_stack_temp_for_type (mode, size, type);
987 return tmp;
990 #ifdef PROMOTE_MODE
991 if (! dont_promote)
992 mode = promote_mode (type, mode, &unsignedp);
993 #endif
995 return gen_reg_rtx (mode);
998 /* Combine temporary stack slots which are adjacent on the stack.
1000 This allows for better use of already allocated stack space. This is only
1001 done for BLKmode slots because we can be sure that we won't have alignment
1002 problems in this case. */
1004 static void
1005 combine_temp_slots (void)
1007 struct temp_slot *p, *q, *next, *next_q;
1008 int num_slots;
1010 /* We can't combine slots, because the information about which slot
1011 is in which alias set will be lost. */
1012 if (flag_strict_aliasing)
1013 return;
1015 /* If there are a lot of temp slots, don't do anything unless
1016 high levels of optimization. */
1017 if (! flag_expensive_optimizations)
1018 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
1019 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
1020 return;
1022 for (p = avail_temp_slots; p; p = next)
1024 int delete_p = 0;
1026 next = p->next;
1028 if (GET_MODE (p->slot) != BLKmode)
1029 continue;
1031 for (q = p->next; q; q = next_q)
1033 int delete_q = 0;
1035 next_q = q->next;
1037 if (GET_MODE (q->slot) != BLKmode)
1038 continue;
1040 if (p->base_offset + p->full_size == q->base_offset)
1042 /* Q comes after P; combine Q into P. */
1043 p->size += q->size;
1044 p->full_size += q->full_size;
1045 delete_q = 1;
1047 else if (q->base_offset + q->full_size == p->base_offset)
1049 /* P comes after Q; combine P into Q. */
1050 q->size += p->size;
1051 q->full_size += p->full_size;
1052 delete_p = 1;
1053 break;
1055 if (delete_q)
1056 cut_slot_from_list (q, &avail_temp_slots);
1059 /* Either delete P or advance past it. */
1060 if (delete_p)
1061 cut_slot_from_list (p, &avail_temp_slots);
1065 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1066 slot that previously was known by OLD_RTX. */
1068 void
1069 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1071 struct temp_slot *p;
1073 if (rtx_equal_p (old_rtx, new_rtx))
1074 return;
1076 p = find_temp_slot_from_address (old_rtx);
1078 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1079 NEW_RTX is a register, see if one operand of the PLUS is a
1080 temporary location. If so, NEW_RTX points into it. Otherwise,
1081 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1082 in common between them. If so, try a recursive call on those
1083 values. */
1084 if (p == 0)
1086 if (GET_CODE (old_rtx) != PLUS)
1087 return;
1089 if (REG_P (new_rtx))
1091 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1092 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1093 return;
1095 else if (GET_CODE (new_rtx) != PLUS)
1096 return;
1098 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1099 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1100 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1101 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1102 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1103 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1104 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1105 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1107 return;
1110 /* Otherwise add an alias for the temp's address. */
1111 insert_temp_slot_address (new_rtx, p);
1114 /* If X could be a reference to a temporary slot, mark that slot as
1115 belonging to the to one level higher than the current level. If X
1116 matched one of our slots, just mark that one. Otherwise, we can't
1117 easily predict which it is, so upgrade all of them.
1119 This is called when an ({...}) construct occurs and a statement
1120 returns a value in memory. */
1122 void
1123 preserve_temp_slots (rtx x)
1125 struct temp_slot *p = 0, *next;
1127 if (x == 0)
1128 return;
1130 /* If X is a register that is being used as a pointer, see if we have
1131 a temporary slot we know it points to. */
1132 if (REG_P (x) && REG_POINTER (x))
1133 p = find_temp_slot_from_address (x);
1135 /* If X is not in memory or is at a constant address, it cannot be in
1136 a temporary slot. */
1137 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1138 return;
1140 /* First see if we can find a match. */
1141 if (p == 0)
1142 p = find_temp_slot_from_address (XEXP (x, 0));
1144 if (p != 0)
1146 if (p->level == temp_slot_level)
1147 move_slot_to_level (p, temp_slot_level - 1);
1148 return;
1151 /* Otherwise, preserve all non-kept slots at this level. */
1152 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1154 next = p->next;
1155 move_slot_to_level (p, temp_slot_level - 1);
1159 /* Free all temporaries used so far. This is normally called at the
1160 end of generating code for a statement. */
1162 void
1163 free_temp_slots (void)
1165 struct temp_slot *p, *next;
1166 bool some_available = false;
1168 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1170 next = p->next;
1171 make_slot_available (p);
1172 some_available = true;
1175 if (some_available)
1177 remove_unused_temp_slot_addresses ();
1178 combine_temp_slots ();
1182 /* Push deeper into the nesting level for stack temporaries. */
1184 void
1185 push_temp_slots (void)
1187 temp_slot_level++;
1190 /* Pop a temporary nesting level. All slots in use in the current level
1191 are freed. */
1193 void
1194 pop_temp_slots (void)
1196 free_temp_slots ();
1197 temp_slot_level--;
1200 /* Initialize temporary slots. */
1202 void
1203 init_temp_slots (void)
1205 /* We have not allocated any temporaries yet. */
1206 avail_temp_slots = 0;
1207 vec_alloc (used_temp_slots, 0);
1208 temp_slot_level = 0;
1209 n_temp_slots_in_use = 0;
1211 /* Set up the table to map addresses to temp slots. */
1212 if (! temp_slot_address_table)
1213 temp_slot_address_table = hash_table<temp_address_hasher>::create_ggc (32);
1214 else
1215 temp_slot_address_table->empty ();
1218 /* Functions and data structures to keep track of the values hard regs
1219 had at the start of the function. */
1221 /* Private type used by get_hard_reg_initial_reg, get_hard_reg_initial_val,
1222 and has_hard_reg_initial_val.. */
1223 struct GTY(()) initial_value_pair {
1224 rtx hard_reg;
1225 rtx pseudo;
1227 /* ??? This could be a VEC but there is currently no way to define an
1228 opaque VEC type. This could be worked around by defining struct
1229 initial_value_pair in function.h. */
1230 struct GTY(()) initial_value_struct {
1231 int num_entries;
1232 int max_entries;
1233 initial_value_pair * GTY ((length ("%h.num_entries"))) entries;
1236 /* If a pseudo represents an initial hard reg (or expression), return
1237 it, else return NULL_RTX. */
1240 get_hard_reg_initial_reg (rtx reg)
1242 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1243 int i;
1245 if (ivs == 0)
1246 return NULL_RTX;
1248 for (i = 0; i < ivs->num_entries; i++)
1249 if (rtx_equal_p (ivs->entries[i].pseudo, reg))
1250 return ivs->entries[i].hard_reg;
1252 return NULL_RTX;
1255 /* Make sure that there's a pseudo register of mode MODE that stores the
1256 initial value of hard register REGNO. Return an rtx for such a pseudo. */
1259 get_hard_reg_initial_val (machine_mode mode, unsigned int regno)
1261 struct initial_value_struct *ivs;
1262 rtx rv;
1264 rv = has_hard_reg_initial_val (mode, regno);
1265 if (rv)
1266 return rv;
1268 ivs = crtl->hard_reg_initial_vals;
1269 if (ivs == 0)
1271 ivs = ggc_alloc<initial_value_struct> ();
1272 ivs->num_entries = 0;
1273 ivs->max_entries = 5;
1274 ivs->entries = ggc_vec_alloc<initial_value_pair> (5);
1275 crtl->hard_reg_initial_vals = ivs;
1278 if (ivs->num_entries >= ivs->max_entries)
1280 ivs->max_entries += 5;
1281 ivs->entries = GGC_RESIZEVEC (initial_value_pair, ivs->entries,
1282 ivs->max_entries);
1285 ivs->entries[ivs->num_entries].hard_reg = gen_rtx_REG (mode, regno);
1286 ivs->entries[ivs->num_entries].pseudo = gen_reg_rtx (mode);
1288 return ivs->entries[ivs->num_entries++].pseudo;
1291 /* See if get_hard_reg_initial_val has been used to create a pseudo
1292 for the initial value of hard register REGNO in mode MODE. Return
1293 the associated pseudo if so, otherwise return NULL. */
1296 has_hard_reg_initial_val (machine_mode mode, unsigned int regno)
1298 struct initial_value_struct *ivs;
1299 int i;
1301 ivs = crtl->hard_reg_initial_vals;
1302 if (ivs != 0)
1303 for (i = 0; i < ivs->num_entries; i++)
1304 if (GET_MODE (ivs->entries[i].hard_reg) == mode
1305 && REGNO (ivs->entries[i].hard_reg) == regno)
1306 return ivs->entries[i].pseudo;
1308 return NULL_RTX;
1311 unsigned int
1312 emit_initial_value_sets (void)
1314 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1315 int i;
1316 rtx_insn *seq;
1318 if (ivs == 0)
1319 return 0;
1321 start_sequence ();
1322 for (i = 0; i < ivs->num_entries; i++)
1323 emit_move_insn (ivs->entries[i].pseudo, ivs->entries[i].hard_reg);
1324 seq = get_insns ();
1325 end_sequence ();
1327 emit_insn_at_entry (seq);
1328 return 0;
1331 /* Return the hardreg-pseudoreg initial values pair entry I and
1332 TRUE if I is a valid entry, or FALSE if I is not a valid entry. */
1333 bool
1334 initial_value_entry (int i, rtx *hreg, rtx *preg)
1336 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1337 if (!ivs || i >= ivs->num_entries)
1338 return false;
1340 *hreg = ivs->entries[i].hard_reg;
1341 *preg = ivs->entries[i].pseudo;
1342 return true;
1345 /* These routines are responsible for converting virtual register references
1346 to the actual hard register references once RTL generation is complete.
1348 The following four variables are used for communication between the
1349 routines. They contain the offsets of the virtual registers from their
1350 respective hard registers. */
1352 static int in_arg_offset;
1353 static int var_offset;
1354 static int dynamic_offset;
1355 static int out_arg_offset;
1356 static int cfa_offset;
1358 /* In most machines, the stack pointer register is equivalent to the bottom
1359 of the stack. */
1361 #ifndef STACK_POINTER_OFFSET
1362 #define STACK_POINTER_OFFSET 0
1363 #endif
1365 #if defined (REG_PARM_STACK_SPACE) && !defined (INCOMING_REG_PARM_STACK_SPACE)
1366 #define INCOMING_REG_PARM_STACK_SPACE REG_PARM_STACK_SPACE
1367 #endif
1369 /* If not defined, pick an appropriate default for the offset of dynamically
1370 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1371 INCOMING_REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1373 #ifndef STACK_DYNAMIC_OFFSET
1375 /* The bottom of the stack points to the actual arguments. If
1376 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1377 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1378 stack space for register parameters is not pushed by the caller, but
1379 rather part of the fixed stack areas and hence not included in
1380 `crtl->outgoing_args_size'. Nevertheless, we must allow
1381 for it when allocating stack dynamic objects. */
1383 #ifdef INCOMING_REG_PARM_STACK_SPACE
1384 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1385 ((ACCUMULATE_OUTGOING_ARGS \
1386 ? (crtl->outgoing_args_size \
1387 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1388 : INCOMING_REG_PARM_STACK_SPACE (FNDECL))) \
1389 : 0) + (STACK_POINTER_OFFSET))
1390 #else
1391 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1392 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
1393 + (STACK_POINTER_OFFSET))
1394 #endif
1395 #endif
1398 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1399 is a virtual register, return the equivalent hard register and set the
1400 offset indirectly through the pointer. Otherwise, return 0. */
1402 static rtx
1403 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1405 rtx new_rtx;
1406 HOST_WIDE_INT offset;
1408 if (x == virtual_incoming_args_rtx)
1410 if (stack_realign_drap)
1412 /* Replace virtual_incoming_args_rtx with internal arg
1413 pointer if DRAP is used to realign stack. */
1414 new_rtx = crtl->args.internal_arg_pointer;
1415 offset = 0;
1417 else
1418 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1420 else if (x == virtual_stack_vars_rtx)
1421 new_rtx = frame_pointer_rtx, offset = var_offset;
1422 else if (x == virtual_stack_dynamic_rtx)
1423 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1424 else if (x == virtual_outgoing_args_rtx)
1425 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1426 else if (x == virtual_cfa_rtx)
1428 #ifdef FRAME_POINTER_CFA_OFFSET
1429 new_rtx = frame_pointer_rtx;
1430 #else
1431 new_rtx = arg_pointer_rtx;
1432 #endif
1433 offset = cfa_offset;
1435 else if (x == virtual_preferred_stack_boundary_rtx)
1437 new_rtx = GEN_INT (crtl->preferred_stack_boundary / BITS_PER_UNIT);
1438 offset = 0;
1440 else
1441 return NULL_RTX;
1443 *poffset = offset;
1444 return new_rtx;
1447 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1448 registers present inside of *LOC. The expression is simplified,
1449 as much as possible, but is not to be considered "valid" in any sense
1450 implied by the target. Return true if any change is made. */
1452 static bool
1453 instantiate_virtual_regs_in_rtx (rtx *loc)
1455 if (!*loc)
1456 return false;
1457 bool changed = false;
1458 subrtx_ptr_iterator::array_type array;
1459 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
1461 rtx *loc = *iter;
1462 if (rtx x = *loc)
1464 rtx new_rtx;
1465 HOST_WIDE_INT offset;
1466 switch (GET_CODE (x))
1468 case REG:
1469 new_rtx = instantiate_new_reg (x, &offset);
1470 if (new_rtx)
1472 *loc = plus_constant (GET_MODE (x), new_rtx, offset);
1473 changed = true;
1475 iter.skip_subrtxes ();
1476 break;
1478 case PLUS:
1479 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1480 if (new_rtx)
1482 XEXP (x, 0) = new_rtx;
1483 *loc = plus_constant (GET_MODE (x), x, offset, true);
1484 changed = true;
1485 iter.skip_subrtxes ();
1486 break;
1489 /* FIXME -- from old code */
1490 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1491 we can commute the PLUS and SUBREG because pointers into the
1492 frame are well-behaved. */
1493 break;
1495 default:
1496 break;
1500 return changed;
1503 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1504 matches the predicate for insn CODE operand OPERAND. */
1506 static int
1507 safe_insn_predicate (int code, int operand, rtx x)
1509 return code < 0 || insn_operand_matches ((enum insn_code) code, operand, x);
1512 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1513 registers present inside of insn. The result will be a valid insn. */
1515 static void
1516 instantiate_virtual_regs_in_insn (rtx_insn *insn)
1518 HOST_WIDE_INT offset;
1519 int insn_code, i;
1520 bool any_change = false;
1521 rtx set, new_rtx, x;
1522 rtx_insn *seq;
1524 /* There are some special cases to be handled first. */
1525 set = single_set (insn);
1526 if (set)
1528 /* We're allowed to assign to a virtual register. This is interpreted
1529 to mean that the underlying register gets assigned the inverse
1530 transformation. This is used, for example, in the handling of
1531 non-local gotos. */
1532 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1533 if (new_rtx)
1535 start_sequence ();
1537 instantiate_virtual_regs_in_rtx (&SET_SRC (set));
1538 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1539 gen_int_mode (-offset, GET_MODE (new_rtx)));
1540 x = force_operand (x, new_rtx);
1541 if (x != new_rtx)
1542 emit_move_insn (new_rtx, x);
1544 seq = get_insns ();
1545 end_sequence ();
1547 emit_insn_before (seq, insn);
1548 delete_insn (insn);
1549 return;
1552 /* Handle a straight copy from a virtual register by generating a
1553 new add insn. The difference between this and falling through
1554 to the generic case is avoiding a new pseudo and eliminating a
1555 move insn in the initial rtl stream. */
1556 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1557 if (new_rtx && offset != 0
1558 && REG_P (SET_DEST (set))
1559 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1561 start_sequence ();
1563 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS, new_rtx,
1564 gen_int_mode (offset,
1565 GET_MODE (SET_DEST (set))),
1566 SET_DEST (set), 1, OPTAB_LIB_WIDEN);
1567 if (x != SET_DEST (set))
1568 emit_move_insn (SET_DEST (set), x);
1570 seq = get_insns ();
1571 end_sequence ();
1573 emit_insn_before (seq, insn);
1574 delete_insn (insn);
1575 return;
1578 extract_insn (insn);
1579 insn_code = INSN_CODE (insn);
1581 /* Handle a plus involving a virtual register by determining if the
1582 operands remain valid if they're modified in place. */
1583 if (GET_CODE (SET_SRC (set)) == PLUS
1584 && recog_data.n_operands >= 3
1585 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1586 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1587 && CONST_INT_P (recog_data.operand[2])
1588 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1590 offset += INTVAL (recog_data.operand[2]);
1592 /* If the sum is zero, then replace with a plain move. */
1593 if (offset == 0
1594 && REG_P (SET_DEST (set))
1595 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1597 start_sequence ();
1598 emit_move_insn (SET_DEST (set), new_rtx);
1599 seq = get_insns ();
1600 end_sequence ();
1602 emit_insn_before (seq, insn);
1603 delete_insn (insn);
1604 return;
1607 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1609 /* Using validate_change and apply_change_group here leaves
1610 recog_data in an invalid state. Since we know exactly what
1611 we want to check, do those two by hand. */
1612 if (safe_insn_predicate (insn_code, 1, new_rtx)
1613 && safe_insn_predicate (insn_code, 2, x))
1615 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1616 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1617 any_change = true;
1619 /* Fall through into the regular operand fixup loop in
1620 order to take care of operands other than 1 and 2. */
1624 else
1626 extract_insn (insn);
1627 insn_code = INSN_CODE (insn);
1630 /* In the general case, we expect virtual registers to appear only in
1631 operands, and then only as either bare registers or inside memories. */
1632 for (i = 0; i < recog_data.n_operands; ++i)
1634 x = recog_data.operand[i];
1635 switch (GET_CODE (x))
1637 case MEM:
1639 rtx addr = XEXP (x, 0);
1641 if (!instantiate_virtual_regs_in_rtx (&addr))
1642 continue;
1644 start_sequence ();
1645 x = replace_equiv_address (x, addr, true);
1646 /* It may happen that the address with the virtual reg
1647 was valid (e.g. based on the virtual stack reg, which might
1648 be acceptable to the predicates with all offsets), whereas
1649 the address now isn't anymore, for instance when the address
1650 is still offsetted, but the base reg isn't virtual-stack-reg
1651 anymore. Below we would do a force_reg on the whole operand,
1652 but this insn might actually only accept memory. Hence,
1653 before doing that last resort, try to reload the address into
1654 a register, so this operand stays a MEM. */
1655 if (!safe_insn_predicate (insn_code, i, x))
1657 addr = force_reg (GET_MODE (addr), addr);
1658 x = replace_equiv_address (x, addr, true);
1660 seq = get_insns ();
1661 end_sequence ();
1662 if (seq)
1663 emit_insn_before (seq, insn);
1665 break;
1667 case REG:
1668 new_rtx = instantiate_new_reg (x, &offset);
1669 if (new_rtx == NULL)
1670 continue;
1671 if (offset == 0)
1672 x = new_rtx;
1673 else
1675 start_sequence ();
1677 /* Careful, special mode predicates may have stuff in
1678 insn_data[insn_code].operand[i].mode that isn't useful
1679 to us for computing a new value. */
1680 /* ??? Recognize address_operand and/or "p" constraints
1681 to see if (plus new offset) is a valid before we put
1682 this through expand_simple_binop. */
1683 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1684 gen_int_mode (offset, GET_MODE (x)),
1685 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1686 seq = get_insns ();
1687 end_sequence ();
1688 emit_insn_before (seq, insn);
1690 break;
1692 case SUBREG:
1693 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1694 if (new_rtx == NULL)
1695 continue;
1696 if (offset != 0)
1698 start_sequence ();
1699 new_rtx = expand_simple_binop
1700 (GET_MODE (new_rtx), PLUS, new_rtx,
1701 gen_int_mode (offset, GET_MODE (new_rtx)),
1702 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1703 seq = get_insns ();
1704 end_sequence ();
1705 emit_insn_before (seq, insn);
1707 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1708 GET_MODE (new_rtx), SUBREG_BYTE (x));
1709 gcc_assert (x);
1710 break;
1712 default:
1713 continue;
1716 /* At this point, X contains the new value for the operand.
1717 Validate the new value vs the insn predicate. Note that
1718 asm insns will have insn_code -1 here. */
1719 if (!safe_insn_predicate (insn_code, i, x))
1721 start_sequence ();
1722 if (REG_P (x))
1724 gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
1725 x = copy_to_reg (x);
1727 else
1728 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1729 seq = get_insns ();
1730 end_sequence ();
1731 if (seq)
1732 emit_insn_before (seq, insn);
1735 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1736 any_change = true;
1739 if (any_change)
1741 /* Propagate operand changes into the duplicates. */
1742 for (i = 0; i < recog_data.n_dups; ++i)
1743 *recog_data.dup_loc[i]
1744 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1746 /* Force re-recognition of the instruction for validation. */
1747 INSN_CODE (insn) = -1;
1750 if (asm_noperands (PATTERN (insn)) >= 0)
1752 if (!check_asm_operands (PATTERN (insn)))
1754 error_for_asm (insn, "impossible constraint in %<asm%>");
1755 /* For asm goto, instead of fixing up all the edges
1756 just clear the template and clear input operands
1757 (asm goto doesn't have any output operands). */
1758 if (JUMP_P (insn))
1760 rtx asm_op = extract_asm_operands (PATTERN (insn));
1761 ASM_OPERANDS_TEMPLATE (asm_op) = ggc_strdup ("");
1762 ASM_OPERANDS_INPUT_VEC (asm_op) = rtvec_alloc (0);
1763 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (asm_op) = rtvec_alloc (0);
1765 else
1766 delete_insn (insn);
1769 else
1771 if (recog_memoized (insn) < 0)
1772 fatal_insn_not_found (insn);
1776 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1777 do any instantiation required. */
1779 void
1780 instantiate_decl_rtl (rtx x)
1782 rtx addr;
1784 if (x == 0)
1785 return;
1787 /* If this is a CONCAT, recurse for the pieces. */
1788 if (GET_CODE (x) == CONCAT)
1790 instantiate_decl_rtl (XEXP (x, 0));
1791 instantiate_decl_rtl (XEXP (x, 1));
1792 return;
1795 /* If this is not a MEM, no need to do anything. Similarly if the
1796 address is a constant or a register that is not a virtual register. */
1797 if (!MEM_P (x))
1798 return;
1800 addr = XEXP (x, 0);
1801 if (CONSTANT_P (addr)
1802 || (REG_P (addr)
1803 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1804 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1805 return;
1807 instantiate_virtual_regs_in_rtx (&XEXP (x, 0));
1810 /* Helper for instantiate_decls called via walk_tree: Process all decls
1811 in the given DECL_VALUE_EXPR. */
1813 static tree
1814 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1816 tree t = *tp;
1817 if (! EXPR_P (t))
1819 *walk_subtrees = 0;
1820 if (DECL_P (t))
1822 if (DECL_RTL_SET_P (t))
1823 instantiate_decl_rtl (DECL_RTL (t));
1824 if (TREE_CODE (t) == PARM_DECL && DECL_NAMELESS (t)
1825 && DECL_INCOMING_RTL (t))
1826 instantiate_decl_rtl (DECL_INCOMING_RTL (t));
1827 if ((TREE_CODE (t) == VAR_DECL
1828 || TREE_CODE (t) == RESULT_DECL)
1829 && DECL_HAS_VALUE_EXPR_P (t))
1831 tree v = DECL_VALUE_EXPR (t);
1832 walk_tree (&v, instantiate_expr, NULL, NULL);
1836 return NULL;
1839 /* Subroutine of instantiate_decls: Process all decls in the given
1840 BLOCK node and all its subblocks. */
1842 static void
1843 instantiate_decls_1 (tree let)
1845 tree t;
1847 for (t = BLOCK_VARS (let); t; t = DECL_CHAIN (t))
1849 if (DECL_RTL_SET_P (t))
1850 instantiate_decl_rtl (DECL_RTL (t));
1851 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1853 tree v = DECL_VALUE_EXPR (t);
1854 walk_tree (&v, instantiate_expr, NULL, NULL);
1858 /* Process all subblocks. */
1859 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1860 instantiate_decls_1 (t);
1863 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1864 all virtual registers in their DECL_RTL's. */
1866 static void
1867 instantiate_decls (tree fndecl)
1869 tree decl;
1870 unsigned ix;
1872 /* Process all parameters of the function. */
1873 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = DECL_CHAIN (decl))
1875 instantiate_decl_rtl (DECL_RTL (decl));
1876 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1877 if (DECL_HAS_VALUE_EXPR_P (decl))
1879 tree v = DECL_VALUE_EXPR (decl);
1880 walk_tree (&v, instantiate_expr, NULL, NULL);
1884 if ((decl = DECL_RESULT (fndecl))
1885 && TREE_CODE (decl) == RESULT_DECL)
1887 if (DECL_RTL_SET_P (decl))
1888 instantiate_decl_rtl (DECL_RTL (decl));
1889 if (DECL_HAS_VALUE_EXPR_P (decl))
1891 tree v = DECL_VALUE_EXPR (decl);
1892 walk_tree (&v, instantiate_expr, NULL, NULL);
1896 /* Process the saved static chain if it exists. */
1897 decl = DECL_STRUCT_FUNCTION (fndecl)->static_chain_decl;
1898 if (decl && DECL_HAS_VALUE_EXPR_P (decl))
1899 instantiate_decl_rtl (DECL_RTL (DECL_VALUE_EXPR (decl)));
1901 /* Now process all variables defined in the function or its subblocks. */
1902 instantiate_decls_1 (DECL_INITIAL (fndecl));
1904 FOR_EACH_LOCAL_DECL (cfun, ix, decl)
1905 if (DECL_RTL_SET_P (decl))
1906 instantiate_decl_rtl (DECL_RTL (decl));
1907 vec_free (cfun->local_decls);
1910 /* Pass through the INSNS of function FNDECL and convert virtual register
1911 references to hard register references. */
1913 static unsigned int
1914 instantiate_virtual_regs (void)
1916 rtx_insn *insn;
1918 /* Compute the offsets to use for this function. */
1919 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1920 var_offset = STARTING_FRAME_OFFSET;
1921 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1922 out_arg_offset = STACK_POINTER_OFFSET;
1923 #ifdef FRAME_POINTER_CFA_OFFSET
1924 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1925 #else
1926 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1927 #endif
1929 /* Initialize recognition, indicating that volatile is OK. */
1930 init_recog ();
1932 /* Scan through all the insns, instantiating every virtual register still
1933 present. */
1934 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1935 if (INSN_P (insn))
1937 /* These patterns in the instruction stream can never be recognized.
1938 Fortunately, they shouldn't contain virtual registers either. */
1939 if (GET_CODE (PATTERN (insn)) == USE
1940 || GET_CODE (PATTERN (insn)) == CLOBBER
1941 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1942 continue;
1943 else if (DEBUG_INSN_P (insn))
1944 instantiate_virtual_regs_in_rtx (&INSN_VAR_LOCATION (insn));
1945 else
1946 instantiate_virtual_regs_in_insn (insn);
1948 if (insn->deleted ())
1949 continue;
1951 instantiate_virtual_regs_in_rtx (&REG_NOTES (insn));
1953 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1954 if (CALL_P (insn))
1955 instantiate_virtual_regs_in_rtx (&CALL_INSN_FUNCTION_USAGE (insn));
1958 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1959 instantiate_decls (current_function_decl);
1961 targetm.instantiate_decls ();
1963 /* Indicate that, from now on, assign_stack_local should use
1964 frame_pointer_rtx. */
1965 virtuals_instantiated = 1;
1967 return 0;
1970 namespace {
1972 const pass_data pass_data_instantiate_virtual_regs =
1974 RTL_PASS, /* type */
1975 "vregs", /* name */
1976 OPTGROUP_NONE, /* optinfo_flags */
1977 TV_NONE, /* tv_id */
1978 0, /* properties_required */
1979 0, /* properties_provided */
1980 0, /* properties_destroyed */
1981 0, /* todo_flags_start */
1982 0, /* todo_flags_finish */
1985 class pass_instantiate_virtual_regs : public rtl_opt_pass
1987 public:
1988 pass_instantiate_virtual_regs (gcc::context *ctxt)
1989 : rtl_opt_pass (pass_data_instantiate_virtual_regs, ctxt)
1992 /* opt_pass methods: */
1993 virtual unsigned int execute (function *)
1995 return instantiate_virtual_regs ();
1998 }; // class pass_instantiate_virtual_regs
2000 } // anon namespace
2002 rtl_opt_pass *
2003 make_pass_instantiate_virtual_regs (gcc::context *ctxt)
2005 return new pass_instantiate_virtual_regs (ctxt);
2009 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
2010 This means a type for which function calls must pass an address to the
2011 function or get an address back from the function.
2012 EXP may be a type node or an expression (whose type is tested). */
2015 aggregate_value_p (const_tree exp, const_tree fntype)
2017 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
2018 int i, regno, nregs;
2019 rtx reg;
2021 if (fntype)
2022 switch (TREE_CODE (fntype))
2024 case CALL_EXPR:
2026 tree fndecl = get_callee_fndecl (fntype);
2027 if (fndecl)
2028 fntype = TREE_TYPE (fndecl);
2029 else if (CALL_EXPR_FN (fntype))
2030 fntype = TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype)));
2031 else
2032 /* For internal functions, assume nothing needs to be
2033 returned in memory. */
2034 return 0;
2036 break;
2037 case FUNCTION_DECL:
2038 fntype = TREE_TYPE (fntype);
2039 break;
2040 case FUNCTION_TYPE:
2041 case METHOD_TYPE:
2042 break;
2043 case IDENTIFIER_NODE:
2044 fntype = NULL_TREE;
2045 break;
2046 default:
2047 /* We don't expect other tree types here. */
2048 gcc_unreachable ();
2051 if (VOID_TYPE_P (type))
2052 return 0;
2054 /* If a record should be passed the same as its first (and only) member
2055 don't pass it as an aggregate. */
2056 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2057 return aggregate_value_p (first_field (type), fntype);
2059 /* If the front end has decided that this needs to be passed by
2060 reference, do so. */
2061 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
2062 && DECL_BY_REFERENCE (exp))
2063 return 1;
2065 /* Function types that are TREE_ADDRESSABLE force return in memory. */
2066 if (fntype && TREE_ADDRESSABLE (fntype))
2067 return 1;
2069 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
2070 and thus can't be returned in registers. */
2071 if (TREE_ADDRESSABLE (type))
2072 return 1;
2074 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
2075 return 1;
2077 if (targetm.calls.return_in_memory (type, fntype))
2078 return 1;
2080 /* Make sure we have suitable call-clobbered regs to return
2081 the value in; if not, we must return it in memory. */
2082 reg = hard_function_value (type, 0, fntype, 0);
2084 /* If we have something other than a REG (e.g. a PARALLEL), then assume
2085 it is OK. */
2086 if (!REG_P (reg))
2087 return 0;
2089 regno = REGNO (reg);
2090 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
2091 for (i = 0; i < nregs; i++)
2092 if (! call_used_regs[regno + i])
2093 return 1;
2095 return 0;
2098 /* Return true if we should assign DECL a pseudo register; false if it
2099 should live on the local stack. */
2101 bool
2102 use_register_for_decl (const_tree decl)
2104 if (TREE_CODE (decl) == SSA_NAME)
2106 /* We often try to use the SSA_NAME, instead of its underlying
2107 decl, to get type information and guide decisions, to avoid
2108 differences of behavior between anonymous and named
2109 variables, but in this one case we have to go for the actual
2110 variable if there is one. The main reason is that, at least
2111 at -O0, we want to place user variables on the stack, but we
2112 don't mind using pseudos for anonymous or ignored temps.
2113 Should we take the SSA_NAME, we'd conclude all SSA_NAMEs
2114 should go in pseudos, whereas their corresponding variables
2115 might have to go on the stack. So, disregarding the decl
2116 here would negatively impact debug info at -O0, enable
2117 coalescing between SSA_NAMEs that ought to get different
2118 stack/pseudo assignments, and get the incoming argument
2119 processing thoroughly confused by PARM_DECLs expected to live
2120 in stack slots but assigned to pseudos. */
2121 if (!SSA_NAME_VAR (decl))
2122 return TYPE_MODE (TREE_TYPE (decl)) != BLKmode
2123 && !(flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)));
2125 decl = SSA_NAME_VAR (decl);
2128 /* Honor volatile. */
2129 if (TREE_SIDE_EFFECTS (decl))
2130 return false;
2132 /* Honor addressability. */
2133 if (TREE_ADDRESSABLE (decl))
2134 return false;
2136 /* RESULT_DECLs are a bit special in that they're assigned without
2137 regard to use_register_for_decl, but we generally only store in
2138 them. If we coalesce their SSA NAMEs, we'd better return a
2139 result that matches the assignment in expand_function_start. */
2140 if (TREE_CODE (decl) == RESULT_DECL)
2142 /* If it's not an aggregate, we're going to use a REG or a
2143 PARALLEL containing a REG. */
2144 if (!aggregate_value_p (decl, current_function_decl))
2145 return true;
2147 /* If expand_function_start determines the return value, we'll
2148 use MEM if it's not by reference. */
2149 if (cfun->returns_pcc_struct
2150 || (targetm.calls.struct_value_rtx
2151 (TREE_TYPE (current_function_decl), 1)))
2152 return DECL_BY_REFERENCE (decl);
2154 /* Otherwise, we're taking an extra all.function_result_decl
2155 argument. It's set up in assign_parms_augmented_arg_list,
2156 under the (negated) conditions above, and then it's used to
2157 set up the RESULT_DECL rtl in assign_params, after looping
2158 over all parameters. Now, if the RESULT_DECL is not by
2159 reference, we'll use a MEM either way. */
2160 if (!DECL_BY_REFERENCE (decl))
2161 return false;
2163 /* Otherwise, if RESULT_DECL is DECL_BY_REFERENCE, it will take
2164 the function_result_decl's assignment. Since it's a pointer,
2165 we can short-circuit a number of the tests below, and we must
2166 duplicat e them because we don't have the
2167 function_result_decl to test. */
2168 if (!targetm.calls.allocate_stack_slots_for_args ())
2169 return true;
2170 /* We don't set DECL_IGNORED_P for the function_result_decl. */
2171 if (optimize)
2172 return true;
2173 /* We don't set DECL_REGISTER for the function_result_decl. */
2174 return false;
2177 /* Decl is implicitly addressible by bound stores and loads
2178 if it is an aggregate holding bounds. */
2179 if (chkp_function_instrumented_p (current_function_decl)
2180 && TREE_TYPE (decl)
2181 && !BOUNDED_P (decl)
2182 && chkp_type_has_pointer (TREE_TYPE (decl)))
2183 return false;
2185 /* Only register-like things go in registers. */
2186 if (DECL_MODE (decl) == BLKmode)
2187 return false;
2189 /* If -ffloat-store specified, don't put explicit float variables
2190 into registers. */
2191 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2192 propagates values across these stores, and it probably shouldn't. */
2193 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
2194 return false;
2196 if (!targetm.calls.allocate_stack_slots_for_args ())
2197 return true;
2199 /* If we're not interested in tracking debugging information for
2200 this decl, then we can certainly put it in a register. */
2201 if (DECL_IGNORED_P (decl))
2202 return true;
2204 if (optimize)
2205 return true;
2207 if (!DECL_REGISTER (decl))
2208 return false;
2210 switch (TREE_CODE (TREE_TYPE (decl)))
2212 case RECORD_TYPE:
2213 case UNION_TYPE:
2214 case QUAL_UNION_TYPE:
2215 /* When not optimizing, disregard register keyword for variables with
2216 types containing methods, otherwise the methods won't be callable
2217 from the debugger. */
2218 if (TYPE_METHODS (TYPE_MAIN_VARIANT (TREE_TYPE (decl))))
2219 return false;
2220 break;
2221 default:
2222 break;
2225 return true;
2228 /* Structures to communicate between the subroutines of assign_parms.
2229 The first holds data persistent across all parameters, the second
2230 is cleared out for each parameter. */
2232 struct assign_parm_data_all
2234 /* When INIT_CUMULATIVE_ARGS gets revamped, allocating CUMULATIVE_ARGS
2235 should become a job of the target or otherwise encapsulated. */
2236 CUMULATIVE_ARGS args_so_far_v;
2237 cumulative_args_t args_so_far;
2238 struct args_size stack_args_size;
2239 tree function_result_decl;
2240 tree orig_fnargs;
2241 rtx_insn *first_conversion_insn;
2242 rtx_insn *last_conversion_insn;
2243 HOST_WIDE_INT pretend_args_size;
2244 HOST_WIDE_INT extra_pretend_bytes;
2245 int reg_parm_stack_space;
2248 struct assign_parm_data_one
2250 tree nominal_type;
2251 tree passed_type;
2252 rtx entry_parm;
2253 rtx stack_parm;
2254 machine_mode nominal_mode;
2255 machine_mode passed_mode;
2256 machine_mode promoted_mode;
2257 struct locate_and_pad_arg_data locate;
2258 int partial;
2259 BOOL_BITFIELD named_arg : 1;
2260 BOOL_BITFIELD passed_pointer : 1;
2261 BOOL_BITFIELD on_stack : 1;
2262 BOOL_BITFIELD loaded_in_reg : 1;
2265 struct bounds_parm_data
2267 assign_parm_data_one parm_data;
2268 tree bounds_parm;
2269 tree ptr_parm;
2270 rtx ptr_entry;
2271 int bound_no;
2274 /* A subroutine of assign_parms. Initialize ALL. */
2276 static void
2277 assign_parms_initialize_all (struct assign_parm_data_all *all)
2279 tree fntype ATTRIBUTE_UNUSED;
2281 memset (all, 0, sizeof (*all));
2283 fntype = TREE_TYPE (current_function_decl);
2285 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2286 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far_v, fntype, NULL_RTX);
2287 #else
2288 INIT_CUMULATIVE_ARGS (all->args_so_far_v, fntype, NULL_RTX,
2289 current_function_decl, -1);
2290 #endif
2291 all->args_so_far = pack_cumulative_args (&all->args_so_far_v);
2293 #ifdef INCOMING_REG_PARM_STACK_SPACE
2294 all->reg_parm_stack_space
2295 = INCOMING_REG_PARM_STACK_SPACE (current_function_decl);
2296 #endif
2299 /* If ARGS contains entries with complex types, split the entry into two
2300 entries of the component type. Return a new list of substitutions are
2301 needed, else the old list. */
2303 static void
2304 split_complex_args (vec<tree> *args)
2306 unsigned i;
2307 tree p;
2309 FOR_EACH_VEC_ELT (*args, i, p)
2311 tree type = TREE_TYPE (p);
2312 if (TREE_CODE (type) == COMPLEX_TYPE
2313 && targetm.calls.split_complex_arg (type))
2315 tree decl;
2316 tree subtype = TREE_TYPE (type);
2317 bool addressable = TREE_ADDRESSABLE (p);
2319 /* Rewrite the PARM_DECL's type with its component. */
2320 p = copy_node (p);
2321 TREE_TYPE (p) = subtype;
2322 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2323 DECL_MODE (p) = VOIDmode;
2324 DECL_SIZE (p) = NULL;
2325 DECL_SIZE_UNIT (p) = NULL;
2326 /* If this arg must go in memory, put it in a pseudo here.
2327 We can't allow it to go in memory as per normal parms,
2328 because the usual place might not have the imag part
2329 adjacent to the real part. */
2330 DECL_ARTIFICIAL (p) = addressable;
2331 DECL_IGNORED_P (p) = addressable;
2332 TREE_ADDRESSABLE (p) = 0;
2333 layout_decl (p, 0);
2334 (*args)[i] = p;
2336 /* Build a second synthetic decl. */
2337 decl = build_decl (EXPR_LOCATION (p),
2338 PARM_DECL, NULL_TREE, subtype);
2339 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2340 DECL_ARTIFICIAL (decl) = addressable;
2341 DECL_IGNORED_P (decl) = addressable;
2342 layout_decl (decl, 0);
2343 args->safe_insert (++i, decl);
2348 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2349 the hidden struct return argument, and (abi willing) complex args.
2350 Return the new parameter list. */
2352 static vec<tree>
2353 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2355 tree fndecl = current_function_decl;
2356 tree fntype = TREE_TYPE (fndecl);
2357 vec<tree> fnargs = vNULL;
2358 tree arg;
2360 for (arg = DECL_ARGUMENTS (fndecl); arg; arg = DECL_CHAIN (arg))
2361 fnargs.safe_push (arg);
2363 all->orig_fnargs = DECL_ARGUMENTS (fndecl);
2365 /* If struct value address is treated as the first argument, make it so. */
2366 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2367 && ! cfun->returns_pcc_struct
2368 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2370 tree type = build_pointer_type (TREE_TYPE (fntype));
2371 tree decl;
2373 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2374 PARM_DECL, get_identifier (".result_ptr"), type);
2375 DECL_ARG_TYPE (decl) = type;
2376 DECL_ARTIFICIAL (decl) = 1;
2377 DECL_NAMELESS (decl) = 1;
2378 TREE_CONSTANT (decl) = 1;
2379 /* We don't set DECL_IGNORED_P or DECL_REGISTER here. If this
2380 changes, the end of the RESULT_DECL handling block in
2381 use_register_for_decl must be adjusted to match. */
2383 DECL_CHAIN (decl) = all->orig_fnargs;
2384 all->orig_fnargs = decl;
2385 fnargs.safe_insert (0, decl);
2387 all->function_result_decl = decl;
2389 /* If function is instrumented then bounds of the
2390 passed structure address is the second argument. */
2391 if (chkp_function_instrumented_p (fndecl))
2393 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2394 PARM_DECL, get_identifier (".result_bnd"),
2395 pointer_bounds_type_node);
2396 DECL_ARG_TYPE (decl) = pointer_bounds_type_node;
2397 DECL_ARTIFICIAL (decl) = 1;
2398 DECL_NAMELESS (decl) = 1;
2399 TREE_CONSTANT (decl) = 1;
2401 DECL_CHAIN (decl) = DECL_CHAIN (all->orig_fnargs);
2402 DECL_CHAIN (all->orig_fnargs) = decl;
2403 fnargs.safe_insert (1, decl);
2407 /* If the target wants to split complex arguments into scalars, do so. */
2408 if (targetm.calls.split_complex_arg)
2409 split_complex_args (&fnargs);
2411 return fnargs;
2414 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2415 data for the parameter. Incorporate ABI specifics such as pass-by-
2416 reference and type promotion. */
2418 static void
2419 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2420 struct assign_parm_data_one *data)
2422 tree nominal_type, passed_type;
2423 machine_mode nominal_mode, passed_mode, promoted_mode;
2424 int unsignedp;
2426 memset (data, 0, sizeof (*data));
2428 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2429 if (!cfun->stdarg)
2430 data->named_arg = 1; /* No variadic parms. */
2431 else if (DECL_CHAIN (parm))
2432 data->named_arg = 1; /* Not the last non-variadic parm. */
2433 else if (targetm.calls.strict_argument_naming (all->args_so_far))
2434 data->named_arg = 1; /* Only variadic ones are unnamed. */
2435 else
2436 data->named_arg = 0; /* Treat as variadic. */
2438 nominal_type = TREE_TYPE (parm);
2439 passed_type = DECL_ARG_TYPE (parm);
2441 /* Look out for errors propagating this far. Also, if the parameter's
2442 type is void then its value doesn't matter. */
2443 if (TREE_TYPE (parm) == error_mark_node
2444 /* This can happen after weird syntax errors
2445 or if an enum type is defined among the parms. */
2446 || TREE_CODE (parm) != PARM_DECL
2447 || passed_type == NULL
2448 || VOID_TYPE_P (nominal_type))
2450 nominal_type = passed_type = void_type_node;
2451 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2452 goto egress;
2455 /* Find mode of arg as it is passed, and mode of arg as it should be
2456 during execution of this function. */
2457 passed_mode = TYPE_MODE (passed_type);
2458 nominal_mode = TYPE_MODE (nominal_type);
2460 /* If the parm is to be passed as a transparent union or record, use the
2461 type of the first field for the tests below. We have already verified
2462 that the modes are the same. */
2463 if ((TREE_CODE (passed_type) == UNION_TYPE
2464 || TREE_CODE (passed_type) == RECORD_TYPE)
2465 && TYPE_TRANSPARENT_AGGR (passed_type))
2466 passed_type = TREE_TYPE (first_field (passed_type));
2468 /* See if this arg was passed by invisible reference. */
2469 if (pass_by_reference (&all->args_so_far_v, passed_mode,
2470 passed_type, data->named_arg))
2472 passed_type = nominal_type = build_pointer_type (passed_type);
2473 data->passed_pointer = true;
2474 passed_mode = nominal_mode = TYPE_MODE (nominal_type);
2477 /* Find mode as it is passed by the ABI. */
2478 unsignedp = TYPE_UNSIGNED (passed_type);
2479 promoted_mode = promote_function_mode (passed_type, passed_mode, &unsignedp,
2480 TREE_TYPE (current_function_decl), 0);
2482 egress:
2483 data->nominal_type = nominal_type;
2484 data->passed_type = passed_type;
2485 data->nominal_mode = nominal_mode;
2486 data->passed_mode = passed_mode;
2487 data->promoted_mode = promoted_mode;
2490 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2492 static void
2493 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2494 struct assign_parm_data_one *data, bool no_rtl)
2496 int varargs_pretend_bytes = 0;
2498 targetm.calls.setup_incoming_varargs (all->args_so_far,
2499 data->promoted_mode,
2500 data->passed_type,
2501 &varargs_pretend_bytes, no_rtl);
2503 /* If the back-end has requested extra stack space, record how much is
2504 needed. Do not change pretend_args_size otherwise since it may be
2505 nonzero from an earlier partial argument. */
2506 if (varargs_pretend_bytes > 0)
2507 all->pretend_args_size = varargs_pretend_bytes;
2510 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2511 the incoming location of the current parameter. */
2513 static void
2514 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2515 struct assign_parm_data_one *data)
2517 HOST_WIDE_INT pretend_bytes = 0;
2518 rtx entry_parm;
2519 bool in_regs;
2521 if (data->promoted_mode == VOIDmode)
2523 data->entry_parm = data->stack_parm = const0_rtx;
2524 return;
2527 entry_parm = targetm.calls.function_incoming_arg (all->args_so_far,
2528 data->promoted_mode,
2529 data->passed_type,
2530 data->named_arg);
2532 if (entry_parm == 0)
2533 data->promoted_mode = data->passed_mode;
2535 /* Determine parm's home in the stack, in case it arrives in the stack
2536 or we should pretend it did. Compute the stack position and rtx where
2537 the argument arrives and its size.
2539 There is one complexity here: If this was a parameter that would
2540 have been passed in registers, but wasn't only because it is
2541 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2542 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2543 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2544 as it was the previous time. */
2545 in_regs = (entry_parm != 0) || POINTER_BOUNDS_TYPE_P (data->passed_type);
2546 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2547 in_regs = true;
2548 #endif
2549 if (!in_regs && !data->named_arg)
2551 if (targetm.calls.pretend_outgoing_varargs_named (all->args_so_far))
2553 rtx tem;
2554 tem = targetm.calls.function_incoming_arg (all->args_so_far,
2555 data->promoted_mode,
2556 data->passed_type, true);
2557 in_regs = tem != NULL;
2561 /* If this parameter was passed both in registers and in the stack, use
2562 the copy on the stack. */
2563 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2564 data->passed_type))
2565 entry_parm = 0;
2567 if (entry_parm)
2569 int partial;
2571 partial = targetm.calls.arg_partial_bytes (all->args_so_far,
2572 data->promoted_mode,
2573 data->passed_type,
2574 data->named_arg);
2575 data->partial = partial;
2577 /* The caller might already have allocated stack space for the
2578 register parameters. */
2579 if (partial != 0 && all->reg_parm_stack_space == 0)
2581 /* Part of this argument is passed in registers and part
2582 is passed on the stack. Ask the prologue code to extend
2583 the stack part so that we can recreate the full value.
2585 PRETEND_BYTES is the size of the registers we need to store.
2586 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2587 stack space that the prologue should allocate.
2589 Internally, gcc assumes that the argument pointer is aligned
2590 to STACK_BOUNDARY bits. This is used both for alignment
2591 optimizations (see init_emit) and to locate arguments that are
2592 aligned to more than PARM_BOUNDARY bits. We must preserve this
2593 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2594 a stack boundary. */
2596 /* We assume at most one partial arg, and it must be the first
2597 argument on the stack. */
2598 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2600 pretend_bytes = partial;
2601 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2603 /* We want to align relative to the actual stack pointer, so
2604 don't include this in the stack size until later. */
2605 all->extra_pretend_bytes = all->pretend_args_size;
2609 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2610 all->reg_parm_stack_space,
2611 entry_parm ? data->partial : 0, current_function_decl,
2612 &all->stack_args_size, &data->locate);
2614 /* Update parm_stack_boundary if this parameter is passed in the
2615 stack. */
2616 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2617 crtl->parm_stack_boundary = data->locate.boundary;
2619 /* Adjust offsets to include the pretend args. */
2620 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2621 data->locate.slot_offset.constant += pretend_bytes;
2622 data->locate.offset.constant += pretend_bytes;
2624 data->entry_parm = entry_parm;
2627 /* A subroutine of assign_parms. If there is actually space on the stack
2628 for this parm, count it in stack_args_size and return true. */
2630 static bool
2631 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2632 struct assign_parm_data_one *data)
2634 /* Bounds are never passed on the stack to keep compatibility
2635 with not instrumented code. */
2636 if (POINTER_BOUNDS_TYPE_P (data->passed_type))
2637 return false;
2638 /* Trivially true if we've no incoming register. */
2639 else if (data->entry_parm == NULL)
2641 /* Also true if we're partially in registers and partially not,
2642 since we've arranged to drop the entire argument on the stack. */
2643 else if (data->partial != 0)
2645 /* Also true if the target says that it's passed in both registers
2646 and on the stack. */
2647 else if (GET_CODE (data->entry_parm) == PARALLEL
2648 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2650 /* Also true if the target says that there's stack allocated for
2651 all register parameters. */
2652 else if (all->reg_parm_stack_space > 0)
2654 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2655 else
2656 return false;
2658 all->stack_args_size.constant += data->locate.size.constant;
2659 if (data->locate.size.var)
2660 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2662 return true;
2665 /* A subroutine of assign_parms. Given that this parameter is allocated
2666 stack space by the ABI, find it. */
2668 static void
2669 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2671 rtx offset_rtx, stack_parm;
2672 unsigned int align, boundary;
2674 /* If we're passing this arg using a reg, make its stack home the
2675 aligned stack slot. */
2676 if (data->entry_parm)
2677 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2678 else
2679 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2681 stack_parm = crtl->args.internal_arg_pointer;
2682 if (offset_rtx != const0_rtx)
2683 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2684 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2686 if (!data->passed_pointer)
2688 set_mem_attributes (stack_parm, parm, 1);
2689 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2690 while promoted mode's size is needed. */
2691 if (data->promoted_mode != BLKmode
2692 && data->promoted_mode != DECL_MODE (parm))
2694 set_mem_size (stack_parm, GET_MODE_SIZE (data->promoted_mode));
2695 if (MEM_EXPR (stack_parm) && MEM_OFFSET_KNOWN_P (stack_parm))
2697 int offset = subreg_lowpart_offset (DECL_MODE (parm),
2698 data->promoted_mode);
2699 if (offset)
2700 set_mem_offset (stack_parm, MEM_OFFSET (stack_parm) - offset);
2705 boundary = data->locate.boundary;
2706 align = BITS_PER_UNIT;
2708 /* If we're padding upward, we know that the alignment of the slot
2709 is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2710 intentionally forcing upward padding. Otherwise we have to come
2711 up with a guess at the alignment based on OFFSET_RTX. */
2712 if (data->locate.where_pad != downward || data->entry_parm)
2713 align = boundary;
2714 else if (CONST_INT_P (offset_rtx))
2716 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2717 align = align & -align;
2719 set_mem_align (stack_parm, align);
2721 if (data->entry_parm)
2722 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2724 data->stack_parm = stack_parm;
2727 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2728 always valid and contiguous. */
2730 static void
2731 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2733 rtx entry_parm = data->entry_parm;
2734 rtx stack_parm = data->stack_parm;
2736 /* If this parm was passed part in regs and part in memory, pretend it
2737 arrived entirely in memory by pushing the register-part onto the stack.
2738 In the special case of a DImode or DFmode that is split, we could put
2739 it together in a pseudoreg directly, but for now that's not worth
2740 bothering with. */
2741 if (data->partial != 0)
2743 /* Handle calls that pass values in multiple non-contiguous
2744 locations. The Irix 6 ABI has examples of this. */
2745 if (GET_CODE (entry_parm) == PARALLEL)
2746 emit_group_store (validize_mem (copy_rtx (stack_parm)), entry_parm,
2747 data->passed_type,
2748 int_size_in_bytes (data->passed_type));
2749 else
2751 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2752 move_block_from_reg (REGNO (entry_parm),
2753 validize_mem (copy_rtx (stack_parm)),
2754 data->partial / UNITS_PER_WORD);
2757 entry_parm = stack_parm;
2760 /* If we didn't decide this parm came in a register, by default it came
2761 on the stack. */
2762 else if (entry_parm == NULL)
2763 entry_parm = stack_parm;
2765 /* When an argument is passed in multiple locations, we can't make use
2766 of this information, but we can save some copying if the whole argument
2767 is passed in a single register. */
2768 else if (GET_CODE (entry_parm) == PARALLEL
2769 && data->nominal_mode != BLKmode
2770 && data->passed_mode != BLKmode)
2772 size_t i, len = XVECLEN (entry_parm, 0);
2774 for (i = 0; i < len; i++)
2775 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2776 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2777 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2778 == data->passed_mode)
2779 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2781 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2782 break;
2786 data->entry_parm = entry_parm;
2789 /* A subroutine of assign_parms. Reconstitute any values which were
2790 passed in multiple registers and would fit in a single register. */
2792 static void
2793 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2795 rtx entry_parm = data->entry_parm;
2797 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2798 This can be done with register operations rather than on the
2799 stack, even if we will store the reconstituted parameter on the
2800 stack later. */
2801 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2803 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2804 emit_group_store (parmreg, entry_parm, data->passed_type,
2805 GET_MODE_SIZE (GET_MODE (entry_parm)));
2806 entry_parm = parmreg;
2809 data->entry_parm = entry_parm;
2812 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2813 always valid and properly aligned. */
2815 static void
2816 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2818 rtx stack_parm = data->stack_parm;
2820 /* If we can't trust the parm stack slot to be aligned enough for its
2821 ultimate type, don't use that slot after entry. We'll make another
2822 stack slot, if we need one. */
2823 if (stack_parm
2824 && ((STRICT_ALIGNMENT
2825 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2826 || (data->nominal_type
2827 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2828 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2829 stack_parm = NULL;
2831 /* If parm was passed in memory, and we need to convert it on entry,
2832 don't store it back in that same slot. */
2833 else if (data->entry_parm == stack_parm
2834 && data->nominal_mode != BLKmode
2835 && data->nominal_mode != data->passed_mode)
2836 stack_parm = NULL;
2838 /* If stack protection is in effect for this function, don't leave any
2839 pointers in their passed stack slots. */
2840 else if (crtl->stack_protect_guard
2841 && (flag_stack_protect == 2
2842 || data->passed_pointer
2843 || POINTER_TYPE_P (data->nominal_type)))
2844 stack_parm = NULL;
2846 data->stack_parm = stack_parm;
2849 /* A subroutine of assign_parms. Return true if the current parameter
2850 should be stored as a BLKmode in the current frame. */
2852 static bool
2853 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2855 if (data->nominal_mode == BLKmode)
2856 return true;
2857 if (GET_MODE (data->entry_parm) == BLKmode)
2858 return true;
2860 #ifdef BLOCK_REG_PADDING
2861 /* Only assign_parm_setup_block knows how to deal with register arguments
2862 that are padded at the least significant end. */
2863 if (REG_P (data->entry_parm)
2864 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2865 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2866 == (BYTES_BIG_ENDIAN ? upward : downward)))
2867 return true;
2868 #endif
2870 return false;
2873 /* A subroutine of assign_parms. Arrange for the parameter to be
2874 present and valid in DATA->STACK_RTL. */
2876 static void
2877 assign_parm_setup_block (struct assign_parm_data_all *all,
2878 tree parm, struct assign_parm_data_one *data)
2880 rtx entry_parm = data->entry_parm;
2881 rtx stack_parm = data->stack_parm;
2882 rtx target_reg = NULL_RTX;
2883 bool in_conversion_seq = false;
2884 HOST_WIDE_INT size;
2885 HOST_WIDE_INT size_stored;
2887 if (GET_CODE (entry_parm) == PARALLEL)
2888 entry_parm = emit_group_move_into_temps (entry_parm);
2890 /* If we want the parameter in a pseudo, don't use a stack slot. */
2891 if (is_gimple_reg (parm) && use_register_for_decl (parm))
2893 tree def = ssa_default_def (cfun, parm);
2894 gcc_assert (def);
2895 machine_mode mode = promote_ssa_mode (def, NULL);
2896 rtx reg = gen_reg_rtx (mode);
2897 if (GET_CODE (reg) != CONCAT)
2898 stack_parm = reg;
2899 else
2901 target_reg = reg;
2902 /* Avoid allocating a stack slot, if there isn't one
2903 preallocated by the ABI. It might seem like we should
2904 always prefer a pseudo, but converting between
2905 floating-point and integer modes goes through the stack
2906 on various machines, so it's better to use the reserved
2907 stack slot than to risk wasting it and allocating more
2908 for the conversion. */
2909 if (stack_parm == NULL_RTX)
2911 int save = generating_concat_p;
2912 generating_concat_p = 0;
2913 stack_parm = gen_reg_rtx (mode);
2914 generating_concat_p = save;
2917 data->stack_parm = NULL;
2920 size = int_size_in_bytes (data->passed_type);
2921 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2922 if (stack_parm == 0)
2924 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2925 stack_parm = assign_stack_local (BLKmode, size_stored,
2926 DECL_ALIGN (parm));
2927 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2928 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2929 set_mem_attributes (stack_parm, parm, 1);
2932 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2933 calls that pass values in multiple non-contiguous locations. */
2934 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2936 rtx mem;
2938 /* Note that we will be storing an integral number of words.
2939 So we have to be careful to ensure that we allocate an
2940 integral number of words. We do this above when we call
2941 assign_stack_local if space was not allocated in the argument
2942 list. If it was, this will not work if PARM_BOUNDARY is not
2943 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2944 if it becomes a problem. Exception is when BLKmode arrives
2945 with arguments not conforming to word_mode. */
2947 if (data->stack_parm == 0)
2949 else if (GET_CODE (entry_parm) == PARALLEL)
2951 else
2952 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2954 mem = validize_mem (copy_rtx (stack_parm));
2956 /* Handle values in multiple non-contiguous locations. */
2957 if (GET_CODE (entry_parm) == PARALLEL && !MEM_P (mem))
2958 emit_group_store (mem, entry_parm, data->passed_type, size);
2959 else if (GET_CODE (entry_parm) == PARALLEL)
2961 push_to_sequence2 (all->first_conversion_insn,
2962 all->last_conversion_insn);
2963 emit_group_store (mem, entry_parm, data->passed_type, size);
2964 all->first_conversion_insn = get_insns ();
2965 all->last_conversion_insn = get_last_insn ();
2966 end_sequence ();
2967 in_conversion_seq = true;
2970 else if (size == 0)
2973 /* If SIZE is that of a mode no bigger than a word, just use
2974 that mode's store operation. */
2975 else if (size <= UNITS_PER_WORD)
2977 machine_mode mode
2978 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2980 if (mode != BLKmode
2981 #ifdef BLOCK_REG_PADDING
2982 && (size == UNITS_PER_WORD
2983 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2984 != (BYTES_BIG_ENDIAN ? upward : downward)))
2985 #endif
2988 rtx reg;
2990 /* We are really truncating a word_mode value containing
2991 SIZE bytes into a value of mode MODE. If such an
2992 operation requires no actual instructions, we can refer
2993 to the value directly in mode MODE, otherwise we must
2994 start with the register in word_mode and explicitly
2995 convert it. */
2996 if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
2997 reg = gen_rtx_REG (mode, REGNO (entry_parm));
2998 else
3000 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
3001 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
3003 emit_move_insn (change_address (mem, mode, 0), reg);
3006 #ifdef BLOCK_REG_PADDING
3007 /* Storing the register in memory as a full word, as
3008 move_block_from_reg below would do, and then using the
3009 MEM in a smaller mode, has the effect of shifting right
3010 if BYTES_BIG_ENDIAN. If we're bypassing memory, the
3011 shifting must be explicit. */
3012 else if (!MEM_P (mem))
3014 rtx x;
3016 /* If the assert below fails, we should have taken the
3017 mode != BLKmode path above, unless we have downward
3018 padding of smaller-than-word arguments on a machine
3019 with little-endian bytes, which would likely require
3020 additional changes to work correctly. */
3021 gcc_checking_assert (BYTES_BIG_ENDIAN
3022 && (BLOCK_REG_PADDING (mode,
3023 data->passed_type, 1)
3024 == upward));
3026 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
3028 x = gen_rtx_REG (word_mode, REGNO (entry_parm));
3029 x = expand_shift (RSHIFT_EXPR, word_mode, x, by,
3030 NULL_RTX, 1);
3031 x = force_reg (word_mode, x);
3032 x = gen_lowpart_SUBREG (GET_MODE (mem), x);
3034 emit_move_insn (mem, x);
3036 #endif
3038 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
3039 machine must be aligned to the left before storing
3040 to memory. Note that the previous test doesn't
3041 handle all cases (e.g. SIZE == 3). */
3042 else if (size != UNITS_PER_WORD
3043 #ifdef BLOCK_REG_PADDING
3044 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
3045 == downward)
3046 #else
3047 && BYTES_BIG_ENDIAN
3048 #endif
3051 rtx tem, x;
3052 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
3053 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
3055 x = expand_shift (LSHIFT_EXPR, word_mode, reg, by, NULL_RTX, 1);
3056 tem = change_address (mem, word_mode, 0);
3057 emit_move_insn (tem, x);
3059 else
3060 move_block_from_reg (REGNO (entry_parm), mem,
3061 size_stored / UNITS_PER_WORD);
3063 else if (!MEM_P (mem))
3065 gcc_checking_assert (size > UNITS_PER_WORD);
3066 #ifdef BLOCK_REG_PADDING
3067 gcc_checking_assert (BLOCK_REG_PADDING (GET_MODE (mem),
3068 data->passed_type, 0)
3069 == upward);
3070 #endif
3071 emit_move_insn (mem, entry_parm);
3073 else
3074 move_block_from_reg (REGNO (entry_parm), mem,
3075 size_stored / UNITS_PER_WORD);
3077 else if (data->stack_parm == 0)
3079 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3080 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
3081 BLOCK_OP_NORMAL);
3082 all->first_conversion_insn = get_insns ();
3083 all->last_conversion_insn = get_last_insn ();
3084 end_sequence ();
3085 in_conversion_seq = true;
3088 if (target_reg)
3090 if (!in_conversion_seq)
3091 emit_move_insn (target_reg, stack_parm);
3092 else
3094 push_to_sequence2 (all->first_conversion_insn,
3095 all->last_conversion_insn);
3096 emit_move_insn (target_reg, stack_parm);
3097 all->first_conversion_insn = get_insns ();
3098 all->last_conversion_insn = get_last_insn ();
3099 end_sequence ();
3101 stack_parm = target_reg;
3104 data->stack_parm = stack_parm;
3105 set_parm_rtl (parm, stack_parm);
3108 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
3109 parameter. Get it there. Perform all ABI specified conversions. */
3111 static void
3112 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
3113 struct assign_parm_data_one *data)
3115 rtx parmreg, validated_mem;
3116 rtx equiv_stack_parm;
3117 machine_mode promoted_nominal_mode;
3118 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
3119 bool did_conversion = false;
3120 bool need_conversion, moved;
3121 rtx rtl;
3123 /* Store the parm in a pseudoregister during the function, but we may
3124 need to do it in a wider mode. Using 2 here makes the result
3125 consistent with promote_decl_mode and thus expand_expr_real_1. */
3126 promoted_nominal_mode
3127 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
3128 TREE_TYPE (current_function_decl), 2);
3130 parmreg = gen_reg_rtx (promoted_nominal_mode);
3131 if (!DECL_ARTIFICIAL (parm))
3132 mark_user_reg (parmreg);
3134 /* If this was an item that we received a pointer to,
3135 set rtl appropriately. */
3136 if (data->passed_pointer)
3138 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
3139 set_mem_attributes (rtl, parm, 1);
3141 else
3142 rtl = parmreg;
3144 assign_parm_remove_parallels (data);
3146 /* Copy the value into the register, thus bridging between
3147 assign_parm_find_data_types and expand_expr_real_1. */
3149 equiv_stack_parm = data->stack_parm;
3150 validated_mem = validize_mem (copy_rtx (data->entry_parm));
3152 need_conversion = (data->nominal_mode != data->passed_mode
3153 || promoted_nominal_mode != data->promoted_mode);
3154 moved = false;
3156 if (need_conversion
3157 && GET_MODE_CLASS (data->nominal_mode) == MODE_INT
3158 && data->nominal_mode == data->passed_mode
3159 && data->nominal_mode == GET_MODE (data->entry_parm))
3161 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
3162 mode, by the caller. We now have to convert it to
3163 NOMINAL_MODE, if different. However, PARMREG may be in
3164 a different mode than NOMINAL_MODE if it is being stored
3165 promoted.
3167 If ENTRY_PARM is a hard register, it might be in a register
3168 not valid for operating in its mode (e.g., an odd-numbered
3169 register for a DFmode). In that case, moves are the only
3170 thing valid, so we can't do a convert from there. This
3171 occurs when the calling sequence allow such misaligned
3172 usages.
3174 In addition, the conversion may involve a call, which could
3175 clobber parameters which haven't been copied to pseudo
3176 registers yet.
3178 First, we try to emit an insn which performs the necessary
3179 conversion. We verify that this insn does not clobber any
3180 hard registers. */
3182 enum insn_code icode;
3183 rtx op0, op1;
3185 icode = can_extend_p (promoted_nominal_mode, data->passed_mode,
3186 unsignedp);
3188 op0 = parmreg;
3189 op1 = validated_mem;
3190 if (icode != CODE_FOR_nothing
3191 && insn_operand_matches (icode, 0, op0)
3192 && insn_operand_matches (icode, 1, op1))
3194 enum rtx_code code = unsignedp ? ZERO_EXTEND : SIGN_EXTEND;
3195 rtx_insn *insn, *insns;
3196 rtx t = op1;
3197 HARD_REG_SET hardregs;
3199 start_sequence ();
3200 /* If op1 is a hard register that is likely spilled, first
3201 force it into a pseudo, otherwise combiner might extend
3202 its lifetime too much. */
3203 if (GET_CODE (t) == SUBREG)
3204 t = SUBREG_REG (t);
3205 if (REG_P (t)
3206 && HARD_REGISTER_P (t)
3207 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (t))
3208 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (t))))
3210 t = gen_reg_rtx (GET_MODE (op1));
3211 emit_move_insn (t, op1);
3213 else
3214 t = op1;
3215 rtx_insn *pat = gen_extend_insn (op0, t, promoted_nominal_mode,
3216 data->passed_mode, unsignedp);
3217 emit_insn (pat);
3218 insns = get_insns ();
3220 moved = true;
3221 CLEAR_HARD_REG_SET (hardregs);
3222 for (insn = insns; insn && moved; insn = NEXT_INSN (insn))
3224 if (INSN_P (insn))
3225 note_stores (PATTERN (insn), record_hard_reg_sets,
3226 &hardregs);
3227 if (!hard_reg_set_empty_p (hardregs))
3228 moved = false;
3231 end_sequence ();
3233 if (moved)
3235 emit_insn (insns);
3236 if (equiv_stack_parm != NULL_RTX)
3237 equiv_stack_parm = gen_rtx_fmt_e (code, GET_MODE (parmreg),
3238 equiv_stack_parm);
3243 if (moved)
3244 /* Nothing to do. */
3246 else if (need_conversion)
3248 /* We did not have an insn to convert directly, or the sequence
3249 generated appeared unsafe. We must first copy the parm to a
3250 pseudo reg, and save the conversion until after all
3251 parameters have been moved. */
3253 int save_tree_used;
3254 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3256 emit_move_insn (tempreg, validated_mem);
3258 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3259 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
3261 if (GET_CODE (tempreg) == SUBREG
3262 && GET_MODE (tempreg) == data->nominal_mode
3263 && REG_P (SUBREG_REG (tempreg))
3264 && data->nominal_mode == data->passed_mode
3265 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
3266 && GET_MODE_SIZE (GET_MODE (tempreg))
3267 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
3269 /* The argument is already sign/zero extended, so note it
3270 into the subreg. */
3271 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
3272 SUBREG_PROMOTED_SET (tempreg, unsignedp);
3275 /* TREE_USED gets set erroneously during expand_assignment. */
3276 save_tree_used = TREE_USED (parm);
3277 SET_DECL_RTL (parm, rtl);
3278 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
3279 SET_DECL_RTL (parm, NULL_RTX);
3280 TREE_USED (parm) = save_tree_used;
3281 all->first_conversion_insn = get_insns ();
3282 all->last_conversion_insn = get_last_insn ();
3283 end_sequence ();
3285 did_conversion = true;
3287 else
3288 emit_move_insn (parmreg, validated_mem);
3290 /* If we were passed a pointer but the actual value can safely live
3291 in a register, retrieve it and use it directly. */
3292 if (data->passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode)
3294 /* We can't use nominal_mode, because it will have been set to
3295 Pmode above. We must use the actual mode of the parm. */
3296 if (use_register_for_decl (parm))
3298 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
3299 mark_user_reg (parmreg);
3301 else
3303 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3304 TYPE_MODE (TREE_TYPE (parm)),
3305 TYPE_ALIGN (TREE_TYPE (parm)));
3306 parmreg
3307 = assign_stack_local (TYPE_MODE (TREE_TYPE (parm)),
3308 GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (parm))),
3309 align);
3310 set_mem_attributes (parmreg, parm, 1);
3313 if (GET_MODE (parmreg) != GET_MODE (rtl))
3315 rtx tempreg = gen_reg_rtx (GET_MODE (rtl));
3316 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
3318 push_to_sequence2 (all->first_conversion_insn,
3319 all->last_conversion_insn);
3320 emit_move_insn (tempreg, rtl);
3321 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
3322 emit_move_insn (parmreg, tempreg);
3323 all->first_conversion_insn = get_insns ();
3324 all->last_conversion_insn = get_last_insn ();
3325 end_sequence ();
3327 did_conversion = true;
3329 else
3330 emit_move_insn (parmreg, rtl);
3332 rtl = parmreg;
3334 /* STACK_PARM is the pointer, not the parm, and PARMREG is
3335 now the parm. */
3336 data->stack_parm = NULL;
3339 set_parm_rtl (parm, rtl);
3341 /* Mark the register as eliminable if we did no conversion and it was
3342 copied from memory at a fixed offset, and the arg pointer was not
3343 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
3344 offset formed an invalid address, such memory-equivalences as we
3345 make here would screw up life analysis for it. */
3346 if (data->nominal_mode == data->passed_mode
3347 && !did_conversion
3348 && data->stack_parm != 0
3349 && MEM_P (data->stack_parm)
3350 && data->locate.offset.var == 0
3351 && reg_mentioned_p (virtual_incoming_args_rtx,
3352 XEXP (data->stack_parm, 0)))
3354 rtx_insn *linsn = get_last_insn ();
3355 rtx_insn *sinsn;
3356 rtx set;
3358 /* Mark complex types separately. */
3359 if (GET_CODE (parmreg) == CONCAT)
3361 machine_mode submode
3362 = GET_MODE_INNER (GET_MODE (parmreg));
3363 int regnor = REGNO (XEXP (parmreg, 0));
3364 int regnoi = REGNO (XEXP (parmreg, 1));
3365 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
3366 rtx stacki = adjust_address_nv (data->stack_parm, submode,
3367 GET_MODE_SIZE (submode));
3369 /* Scan backwards for the set of the real and
3370 imaginary parts. */
3371 for (sinsn = linsn; sinsn != 0;
3372 sinsn = prev_nonnote_insn (sinsn))
3374 set = single_set (sinsn);
3375 if (set == 0)
3376 continue;
3378 if (SET_DEST (set) == regno_reg_rtx [regnoi])
3379 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
3380 else if (SET_DEST (set) == regno_reg_rtx [regnor])
3381 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
3384 else
3385 set_dst_reg_note (linsn, REG_EQUIV, equiv_stack_parm, parmreg);
3388 /* For pointer data type, suggest pointer register. */
3389 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3390 mark_reg_pointer (parmreg,
3391 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
3394 /* A subroutine of assign_parms. Allocate stack space to hold the current
3395 parameter. Get it there. Perform all ABI specified conversions. */
3397 static void
3398 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
3399 struct assign_parm_data_one *data)
3401 /* Value must be stored in the stack slot STACK_PARM during function
3402 execution. */
3403 bool to_conversion = false;
3405 assign_parm_remove_parallels (data);
3407 if (data->promoted_mode != data->nominal_mode)
3409 /* Conversion is required. */
3410 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3412 emit_move_insn (tempreg, validize_mem (copy_rtx (data->entry_parm)));
3414 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3415 to_conversion = true;
3417 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
3418 TYPE_UNSIGNED (TREE_TYPE (parm)));
3420 if (data->stack_parm)
3422 int offset = subreg_lowpart_offset (data->nominal_mode,
3423 GET_MODE (data->stack_parm));
3424 /* ??? This may need a big-endian conversion on sparc64. */
3425 data->stack_parm
3426 = adjust_address (data->stack_parm, data->nominal_mode, 0);
3427 if (offset && MEM_OFFSET_KNOWN_P (data->stack_parm))
3428 set_mem_offset (data->stack_parm,
3429 MEM_OFFSET (data->stack_parm) + offset);
3433 if (data->entry_parm != data->stack_parm)
3435 rtx src, dest;
3437 if (data->stack_parm == 0)
3439 int align = STACK_SLOT_ALIGNMENT (data->passed_type,
3440 GET_MODE (data->entry_parm),
3441 TYPE_ALIGN (data->passed_type));
3442 data->stack_parm
3443 = assign_stack_local (GET_MODE (data->entry_parm),
3444 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3445 align);
3446 set_mem_attributes (data->stack_parm, parm, 1);
3449 dest = validize_mem (copy_rtx (data->stack_parm));
3450 src = validize_mem (copy_rtx (data->entry_parm));
3452 if (MEM_P (src))
3454 /* Use a block move to handle potentially misaligned entry_parm. */
3455 if (!to_conversion)
3456 push_to_sequence2 (all->first_conversion_insn,
3457 all->last_conversion_insn);
3458 to_conversion = true;
3460 emit_block_move (dest, src,
3461 GEN_INT (int_size_in_bytes (data->passed_type)),
3462 BLOCK_OP_NORMAL);
3464 else
3465 emit_move_insn (dest, src);
3468 if (to_conversion)
3470 all->first_conversion_insn = get_insns ();
3471 all->last_conversion_insn = get_last_insn ();
3472 end_sequence ();
3475 set_parm_rtl (parm, data->stack_parm);
3478 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3479 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3481 static void
3482 assign_parms_unsplit_complex (struct assign_parm_data_all *all,
3483 vec<tree> fnargs)
3485 tree parm;
3486 tree orig_fnargs = all->orig_fnargs;
3487 unsigned i = 0;
3489 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i)
3491 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3492 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3494 rtx tmp, real, imag;
3495 machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3497 real = DECL_RTL (fnargs[i]);
3498 imag = DECL_RTL (fnargs[i + 1]);
3499 if (inner != GET_MODE (real))
3501 real = gen_lowpart_SUBREG (inner, real);
3502 imag = gen_lowpart_SUBREG (inner, imag);
3505 if (TREE_ADDRESSABLE (parm))
3507 rtx rmem, imem;
3508 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3509 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3510 DECL_MODE (parm),
3511 TYPE_ALIGN (TREE_TYPE (parm)));
3513 /* split_complex_arg put the real and imag parts in
3514 pseudos. Move them to memory. */
3515 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3516 set_mem_attributes (tmp, parm, 1);
3517 rmem = adjust_address_nv (tmp, inner, 0);
3518 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3519 push_to_sequence2 (all->first_conversion_insn,
3520 all->last_conversion_insn);
3521 emit_move_insn (rmem, real);
3522 emit_move_insn (imem, imag);
3523 all->first_conversion_insn = get_insns ();
3524 all->last_conversion_insn = get_last_insn ();
3525 end_sequence ();
3527 else
3528 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3529 set_parm_rtl (parm, tmp);
3531 real = DECL_INCOMING_RTL (fnargs[i]);
3532 imag = DECL_INCOMING_RTL (fnargs[i + 1]);
3533 if (inner != GET_MODE (real))
3535 real = gen_lowpart_SUBREG (inner, real);
3536 imag = gen_lowpart_SUBREG (inner, imag);
3538 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3539 set_decl_incoming_rtl (parm, tmp, false);
3540 i++;
3545 /* Load bounds of PARM from bounds table. */
3546 static void
3547 assign_parm_load_bounds (struct assign_parm_data_one *data,
3548 tree parm,
3549 rtx entry,
3550 unsigned bound_no)
3552 bitmap_iterator bi;
3553 unsigned i, offs = 0;
3554 int bnd_no = -1;
3555 rtx slot = NULL, ptr = NULL;
3557 if (parm)
3559 bitmap slots;
3560 bitmap_obstack_initialize (NULL);
3561 slots = BITMAP_ALLOC (NULL);
3562 chkp_find_bound_slots (TREE_TYPE (parm), slots);
3563 EXECUTE_IF_SET_IN_BITMAP (slots, 0, i, bi)
3565 if (bound_no)
3566 bound_no--;
3567 else
3569 bnd_no = i;
3570 break;
3573 BITMAP_FREE (slots);
3574 bitmap_obstack_release (NULL);
3577 /* We may have bounds not associated with any pointer. */
3578 if (bnd_no != -1)
3579 offs = bnd_no * POINTER_SIZE / BITS_PER_UNIT;
3581 /* Find associated pointer. */
3582 if (bnd_no == -1)
3584 /* If bounds are not associated with any bounds,
3585 then it is passed in a register or special slot. */
3586 gcc_assert (data->entry_parm);
3587 ptr = const0_rtx;
3589 else if (MEM_P (entry))
3590 slot = adjust_address (entry, Pmode, offs);
3591 else if (REG_P (entry))
3592 ptr = gen_rtx_REG (Pmode, REGNO (entry) + bnd_no);
3593 else if (GET_CODE (entry) == PARALLEL)
3594 ptr = chkp_get_value_with_offs (entry, GEN_INT (offs));
3595 else
3596 gcc_unreachable ();
3597 data->entry_parm = targetm.calls.load_bounds_for_arg (slot, ptr,
3598 data->entry_parm);
3601 /* Assign RTL expressions to the function's bounds parameters BNDARGS. */
3603 static void
3604 assign_bounds (vec<bounds_parm_data> &bndargs,
3605 struct assign_parm_data_all &all,
3606 bool assign_regs, bool assign_special,
3607 bool assign_bt)
3609 unsigned i, pass;
3610 bounds_parm_data *pbdata;
3612 if (!bndargs.exists ())
3613 return;
3615 /* We make few passes to store input bounds. Firstly handle bounds
3616 passed in registers. After that we load bounds passed in special
3617 slots. Finally we load bounds from Bounds Table. */
3618 for (pass = 0; pass < 3; pass++)
3619 FOR_EACH_VEC_ELT (bndargs, i, pbdata)
3621 /* Pass 0 => regs only. */
3622 if (pass == 0
3623 && (!assign_regs
3624 ||(!pbdata->parm_data.entry_parm
3625 || GET_CODE (pbdata->parm_data.entry_parm) != REG)))
3626 continue;
3627 /* Pass 1 => slots only. */
3628 else if (pass == 1
3629 && (!assign_special
3630 || (!pbdata->parm_data.entry_parm
3631 || GET_CODE (pbdata->parm_data.entry_parm) == REG)))
3632 continue;
3633 /* Pass 2 => BT only. */
3634 else if (pass == 2
3635 && (!assign_bt
3636 || pbdata->parm_data.entry_parm))
3637 continue;
3639 if (!pbdata->parm_data.entry_parm
3640 || GET_CODE (pbdata->parm_data.entry_parm) != REG)
3641 assign_parm_load_bounds (&pbdata->parm_data, pbdata->ptr_parm,
3642 pbdata->ptr_entry, pbdata->bound_no);
3644 set_decl_incoming_rtl (pbdata->bounds_parm,
3645 pbdata->parm_data.entry_parm, false);
3647 if (assign_parm_setup_block_p (&pbdata->parm_data))
3648 assign_parm_setup_block (&all, pbdata->bounds_parm,
3649 &pbdata->parm_data);
3650 else if (pbdata->parm_data.passed_pointer
3651 || use_register_for_decl (pbdata->bounds_parm))
3652 assign_parm_setup_reg (&all, pbdata->bounds_parm,
3653 &pbdata->parm_data);
3654 else
3655 assign_parm_setup_stack (&all, pbdata->bounds_parm,
3656 &pbdata->parm_data);
3660 /* Assign RTL expressions to the function's parameters. This may involve
3661 copying them into registers and using those registers as the DECL_RTL. */
3663 static void
3664 assign_parms (tree fndecl)
3666 struct assign_parm_data_all all;
3667 tree parm;
3668 vec<tree> fnargs;
3669 unsigned i, bound_no = 0;
3670 tree last_arg = NULL;
3671 rtx last_arg_entry = NULL;
3672 vec<bounds_parm_data> bndargs = vNULL;
3673 bounds_parm_data bdata;
3675 crtl->args.internal_arg_pointer
3676 = targetm.calls.internal_arg_pointer ();
3678 assign_parms_initialize_all (&all);
3679 fnargs = assign_parms_augmented_arg_list (&all);
3681 FOR_EACH_VEC_ELT (fnargs, i, parm)
3683 struct assign_parm_data_one data;
3685 /* Extract the type of PARM; adjust it according to ABI. */
3686 assign_parm_find_data_types (&all, parm, &data);
3688 /* Early out for errors and void parameters. */
3689 if (data.passed_mode == VOIDmode)
3691 SET_DECL_RTL (parm, const0_rtx);
3692 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3693 continue;
3696 /* Estimate stack alignment from parameter alignment. */
3697 if (SUPPORTS_STACK_ALIGNMENT)
3699 unsigned int align
3700 = targetm.calls.function_arg_boundary (data.promoted_mode,
3701 data.passed_type);
3702 align = MINIMUM_ALIGNMENT (data.passed_type, data.promoted_mode,
3703 align);
3704 if (TYPE_ALIGN (data.nominal_type) > align)
3705 align = MINIMUM_ALIGNMENT (data.nominal_type,
3706 TYPE_MODE (data.nominal_type),
3707 TYPE_ALIGN (data.nominal_type));
3708 if (crtl->stack_alignment_estimated < align)
3710 gcc_assert (!crtl->stack_realign_processed);
3711 crtl->stack_alignment_estimated = align;
3715 /* Find out where the parameter arrives in this function. */
3716 assign_parm_find_entry_rtl (&all, &data);
3718 /* Find out where stack space for this parameter might be. */
3719 if (assign_parm_is_stack_parm (&all, &data))
3721 assign_parm_find_stack_rtl (parm, &data);
3722 assign_parm_adjust_entry_rtl (&data);
3724 if (!POINTER_BOUNDS_TYPE_P (data.passed_type))
3726 /* Remember where last non bounds arg was passed in case
3727 we have to load associated bounds for it from Bounds
3728 Table. */
3729 last_arg = parm;
3730 last_arg_entry = data.entry_parm;
3731 bound_no = 0;
3733 /* Record permanently how this parm was passed. */
3734 if (data.passed_pointer)
3736 rtx incoming_rtl
3737 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data.passed_type)),
3738 data.entry_parm);
3739 set_decl_incoming_rtl (parm, incoming_rtl, true);
3741 else
3742 set_decl_incoming_rtl (parm, data.entry_parm, false);
3744 assign_parm_adjust_stack_rtl (&data);
3746 /* Bounds should be loaded in the particular order to
3747 have registers allocated correctly. Collect info about
3748 input bounds and load them later. */
3749 if (POINTER_BOUNDS_TYPE_P (data.passed_type))
3751 /* Expect bounds in instrumented functions only. */
3752 gcc_assert (chkp_function_instrumented_p (fndecl));
3754 bdata.parm_data = data;
3755 bdata.bounds_parm = parm;
3756 bdata.ptr_parm = last_arg;
3757 bdata.ptr_entry = last_arg_entry;
3758 bdata.bound_no = bound_no;
3759 bndargs.safe_push (bdata);
3761 else
3763 if (assign_parm_setup_block_p (&data))
3764 assign_parm_setup_block (&all, parm, &data);
3765 else if (data.passed_pointer || use_register_for_decl (parm))
3766 assign_parm_setup_reg (&all, parm, &data);
3767 else
3768 assign_parm_setup_stack (&all, parm, &data);
3771 if (cfun->stdarg && !DECL_CHAIN (parm))
3773 int pretend_bytes = 0;
3775 assign_parms_setup_varargs (&all, &data, false);
3777 if (chkp_function_instrumented_p (fndecl))
3779 /* We expect this is the last parm. Otherwise it is wrong
3780 to assign bounds right now. */
3781 gcc_assert (i == (fnargs.length () - 1));
3782 assign_bounds (bndargs, all, true, false, false);
3783 targetm.calls.setup_incoming_vararg_bounds (all.args_so_far,
3784 data.promoted_mode,
3785 data.passed_type,
3786 &pretend_bytes,
3787 false);
3788 assign_bounds (bndargs, all, false, true, true);
3789 bndargs.release ();
3793 /* Update info on where next arg arrives in registers. */
3794 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3795 data.passed_type, data.named_arg);
3797 if (POINTER_BOUNDS_TYPE_P (data.passed_type))
3798 bound_no++;
3801 assign_bounds (bndargs, all, true, true, true);
3802 bndargs.release ();
3804 if (targetm.calls.split_complex_arg)
3805 assign_parms_unsplit_complex (&all, fnargs);
3807 fnargs.release ();
3809 /* Output all parameter conversion instructions (possibly including calls)
3810 now that all parameters have been copied out of hard registers. */
3811 emit_insn (all.first_conversion_insn);
3813 /* Estimate reload stack alignment from scalar return mode. */
3814 if (SUPPORTS_STACK_ALIGNMENT)
3816 if (DECL_RESULT (fndecl))
3818 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3819 machine_mode mode = TYPE_MODE (type);
3821 if (mode != BLKmode
3822 && mode != VOIDmode
3823 && !AGGREGATE_TYPE_P (type))
3825 unsigned int align = GET_MODE_ALIGNMENT (mode);
3826 if (crtl->stack_alignment_estimated < align)
3828 gcc_assert (!crtl->stack_realign_processed);
3829 crtl->stack_alignment_estimated = align;
3835 /* If we are receiving a struct value address as the first argument, set up
3836 the RTL for the function result. As this might require code to convert
3837 the transmitted address to Pmode, we do this here to ensure that possible
3838 preliminary conversions of the address have been emitted already. */
3839 if (all.function_result_decl)
3841 tree result = DECL_RESULT (current_function_decl);
3842 rtx addr = DECL_RTL (all.function_result_decl);
3843 rtx x;
3845 if (DECL_BY_REFERENCE (result))
3847 SET_DECL_VALUE_EXPR (result, all.function_result_decl);
3848 x = addr;
3850 else
3852 SET_DECL_VALUE_EXPR (result,
3853 build1 (INDIRECT_REF, TREE_TYPE (result),
3854 all.function_result_decl));
3855 addr = convert_memory_address (Pmode, addr);
3856 x = gen_rtx_MEM (DECL_MODE (result), addr);
3857 set_mem_attributes (x, result, 1);
3860 DECL_HAS_VALUE_EXPR_P (result) = 1;
3862 set_parm_rtl (result, x);
3865 /* We have aligned all the args, so add space for the pretend args. */
3866 crtl->args.pretend_args_size = all.pretend_args_size;
3867 all.stack_args_size.constant += all.extra_pretend_bytes;
3868 crtl->args.size = all.stack_args_size.constant;
3870 /* Adjust function incoming argument size for alignment and
3871 minimum length. */
3873 crtl->args.size = MAX (crtl->args.size, all.reg_parm_stack_space);
3874 crtl->args.size = CEIL_ROUND (crtl->args.size,
3875 PARM_BOUNDARY / BITS_PER_UNIT);
3877 if (ARGS_GROW_DOWNWARD)
3879 crtl->args.arg_offset_rtx
3880 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3881 : expand_expr (size_diffop (all.stack_args_size.var,
3882 size_int (-all.stack_args_size.constant)),
3883 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3885 else
3886 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3888 /* See how many bytes, if any, of its args a function should try to pop
3889 on return. */
3891 crtl->args.pops_args = targetm.calls.return_pops_args (fndecl,
3892 TREE_TYPE (fndecl),
3893 crtl->args.size);
3895 /* For stdarg.h function, save info about
3896 regs and stack space used by the named args. */
3898 crtl->args.info = all.args_so_far_v;
3900 /* Set the rtx used for the function return value. Put this in its
3901 own variable so any optimizers that need this information don't have
3902 to include tree.h. Do this here so it gets done when an inlined
3903 function gets output. */
3905 crtl->return_rtx
3906 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3907 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3909 /* If scalar return value was computed in a pseudo-reg, or was a named
3910 return value that got dumped to the stack, copy that to the hard
3911 return register. */
3912 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3914 tree decl_result = DECL_RESULT (fndecl);
3915 rtx decl_rtl = DECL_RTL (decl_result);
3917 if (REG_P (decl_rtl)
3918 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3919 : DECL_REGISTER (decl_result))
3921 rtx real_decl_rtl;
3923 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3924 fndecl, true);
3925 if (chkp_function_instrumented_p (fndecl))
3926 crtl->return_bnd
3927 = targetm.calls.chkp_function_value_bounds (TREE_TYPE (decl_result),
3928 fndecl, true);
3929 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3930 /* The delay slot scheduler assumes that crtl->return_rtx
3931 holds the hard register containing the return value, not a
3932 temporary pseudo. */
3933 crtl->return_rtx = real_decl_rtl;
3938 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3939 For all seen types, gimplify their sizes. */
3941 static tree
3942 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3944 tree t = *tp;
3946 *walk_subtrees = 0;
3947 if (TYPE_P (t))
3949 if (POINTER_TYPE_P (t))
3950 *walk_subtrees = 1;
3951 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3952 && !TYPE_SIZES_GIMPLIFIED (t))
3954 gimplify_type_sizes (t, (gimple_seq *) data);
3955 *walk_subtrees = 1;
3959 return NULL;
3962 /* Gimplify the parameter list for current_function_decl. This involves
3963 evaluating SAVE_EXPRs of variable sized parameters and generating code
3964 to implement callee-copies reference parameters. Returns a sequence of
3965 statements to add to the beginning of the function. */
3967 gimple_seq
3968 gimplify_parameters (void)
3970 struct assign_parm_data_all all;
3971 tree parm;
3972 gimple_seq stmts = NULL;
3973 vec<tree> fnargs;
3974 unsigned i;
3976 assign_parms_initialize_all (&all);
3977 fnargs = assign_parms_augmented_arg_list (&all);
3979 FOR_EACH_VEC_ELT (fnargs, i, parm)
3981 struct assign_parm_data_one data;
3983 /* Extract the type of PARM; adjust it according to ABI. */
3984 assign_parm_find_data_types (&all, parm, &data);
3986 /* Early out for errors and void parameters. */
3987 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3988 continue;
3990 /* Update info on where next arg arrives in registers. */
3991 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3992 data.passed_type, data.named_arg);
3994 /* ??? Once upon a time variable_size stuffed parameter list
3995 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3996 turned out to be less than manageable in the gimple world.
3997 Now we have to hunt them down ourselves. */
3998 walk_tree_without_duplicates (&data.passed_type,
3999 gimplify_parm_type, &stmts);
4001 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
4003 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
4004 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
4007 if (data.passed_pointer)
4009 tree type = TREE_TYPE (data.passed_type);
4010 if (reference_callee_copied (&all.args_so_far_v, TYPE_MODE (type),
4011 type, data.named_arg))
4013 tree local, t;
4015 /* For constant-sized objects, this is trivial; for
4016 variable-sized objects, we have to play games. */
4017 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
4018 && !(flag_stack_check == GENERIC_STACK_CHECK
4019 && compare_tree_int (DECL_SIZE_UNIT (parm),
4020 STACK_CHECK_MAX_VAR_SIZE) > 0))
4022 local = create_tmp_var (type, get_name (parm));
4023 DECL_IGNORED_P (local) = 0;
4024 /* If PARM was addressable, move that flag over
4025 to the local copy, as its address will be taken,
4026 not the PARMs. Keep the parms address taken
4027 as we'll query that flag during gimplification. */
4028 if (TREE_ADDRESSABLE (parm))
4029 TREE_ADDRESSABLE (local) = 1;
4030 else if (TREE_CODE (type) == COMPLEX_TYPE
4031 || TREE_CODE (type) == VECTOR_TYPE)
4032 DECL_GIMPLE_REG_P (local) = 1;
4034 else
4036 tree ptr_type, addr;
4038 ptr_type = build_pointer_type (type);
4039 addr = create_tmp_reg (ptr_type, get_name (parm));
4040 DECL_IGNORED_P (addr) = 0;
4041 local = build_fold_indirect_ref (addr);
4043 t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN);
4044 t = build_call_expr (t, 2, DECL_SIZE_UNIT (parm),
4045 size_int (DECL_ALIGN (parm)));
4047 /* The call has been built for a variable-sized object. */
4048 CALL_ALLOCA_FOR_VAR_P (t) = 1;
4049 t = fold_convert (ptr_type, t);
4050 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
4051 gimplify_and_add (t, &stmts);
4054 gimplify_assign (local, parm, &stmts);
4056 SET_DECL_VALUE_EXPR (parm, local);
4057 DECL_HAS_VALUE_EXPR_P (parm) = 1;
4062 fnargs.release ();
4064 return stmts;
4067 /* Compute the size and offset from the start of the stacked arguments for a
4068 parm passed in mode PASSED_MODE and with type TYPE.
4070 INITIAL_OFFSET_PTR points to the current offset into the stacked
4071 arguments.
4073 The starting offset and size for this parm are returned in
4074 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
4075 nonzero, the offset is that of stack slot, which is returned in
4076 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
4077 padding required from the initial offset ptr to the stack slot.
4079 IN_REGS is nonzero if the argument will be passed in registers. It will
4080 never be set if REG_PARM_STACK_SPACE is not defined.
4082 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
4083 for arguments which are passed in registers.
4085 FNDECL is the function in which the argument was defined.
4087 There are two types of rounding that are done. The first, controlled by
4088 TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the
4089 argument list to be aligned to the specific boundary (in bits). This
4090 rounding affects the initial and starting offsets, but not the argument
4091 size.
4093 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
4094 optionally rounds the size of the parm to PARM_BOUNDARY. The
4095 initial offset is not affected by this rounding, while the size always
4096 is and the starting offset may be. */
4098 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
4099 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
4100 callers pass in the total size of args so far as
4101 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
4103 void
4104 locate_and_pad_parm (machine_mode passed_mode, tree type, int in_regs,
4105 int reg_parm_stack_space, int partial,
4106 tree fndecl ATTRIBUTE_UNUSED,
4107 struct args_size *initial_offset_ptr,
4108 struct locate_and_pad_arg_data *locate)
4110 tree sizetree;
4111 enum direction where_pad;
4112 unsigned int boundary, round_boundary;
4113 int part_size_in_regs;
4115 /* If we have found a stack parm before we reach the end of the
4116 area reserved for registers, skip that area. */
4117 if (! in_regs)
4119 if (reg_parm_stack_space > 0)
4121 if (initial_offset_ptr->var)
4123 initial_offset_ptr->var
4124 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
4125 ssize_int (reg_parm_stack_space));
4126 initial_offset_ptr->constant = 0;
4128 else if (initial_offset_ptr->constant < reg_parm_stack_space)
4129 initial_offset_ptr->constant = reg_parm_stack_space;
4133 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
4135 sizetree
4136 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
4137 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
4138 boundary = targetm.calls.function_arg_boundary (passed_mode, type);
4139 round_boundary = targetm.calls.function_arg_round_boundary (passed_mode,
4140 type);
4141 locate->where_pad = where_pad;
4143 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
4144 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
4145 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
4147 locate->boundary = boundary;
4149 if (SUPPORTS_STACK_ALIGNMENT)
4151 /* stack_alignment_estimated can't change after stack has been
4152 realigned. */
4153 if (crtl->stack_alignment_estimated < boundary)
4155 if (!crtl->stack_realign_processed)
4156 crtl->stack_alignment_estimated = boundary;
4157 else
4159 /* If stack is realigned and stack alignment value
4160 hasn't been finalized, it is OK not to increase
4161 stack_alignment_estimated. The bigger alignment
4162 requirement is recorded in stack_alignment_needed
4163 below. */
4164 gcc_assert (!crtl->stack_realign_finalized
4165 && crtl->stack_realign_needed);
4170 /* Remember if the outgoing parameter requires extra alignment on the
4171 calling function side. */
4172 if (crtl->stack_alignment_needed < boundary)
4173 crtl->stack_alignment_needed = boundary;
4174 if (crtl->preferred_stack_boundary < boundary)
4175 crtl->preferred_stack_boundary = boundary;
4177 if (ARGS_GROW_DOWNWARD)
4179 locate->slot_offset.constant = -initial_offset_ptr->constant;
4180 if (initial_offset_ptr->var)
4181 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
4182 initial_offset_ptr->var);
4185 tree s2 = sizetree;
4186 if (where_pad != none
4187 && (!tree_fits_uhwi_p (sizetree)
4188 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
4189 s2 = round_up (s2, round_boundary / BITS_PER_UNIT);
4190 SUB_PARM_SIZE (locate->slot_offset, s2);
4193 locate->slot_offset.constant += part_size_in_regs;
4195 if (!in_regs || reg_parm_stack_space > 0)
4196 pad_to_arg_alignment (&locate->slot_offset, boundary,
4197 &locate->alignment_pad);
4199 locate->size.constant = (-initial_offset_ptr->constant
4200 - locate->slot_offset.constant);
4201 if (initial_offset_ptr->var)
4202 locate->size.var = size_binop (MINUS_EXPR,
4203 size_binop (MINUS_EXPR,
4204 ssize_int (0),
4205 initial_offset_ptr->var),
4206 locate->slot_offset.var);
4208 /* Pad_below needs the pre-rounded size to know how much to pad
4209 below. */
4210 locate->offset = locate->slot_offset;
4211 if (where_pad == downward)
4212 pad_below (&locate->offset, passed_mode, sizetree);
4215 else
4217 if (!in_regs || reg_parm_stack_space > 0)
4218 pad_to_arg_alignment (initial_offset_ptr, boundary,
4219 &locate->alignment_pad);
4220 locate->slot_offset = *initial_offset_ptr;
4222 #ifdef PUSH_ROUNDING
4223 if (passed_mode != BLKmode)
4224 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
4225 #endif
4227 /* Pad_below needs the pre-rounded size to know how much to pad below
4228 so this must be done before rounding up. */
4229 locate->offset = locate->slot_offset;
4230 if (where_pad == downward)
4231 pad_below (&locate->offset, passed_mode, sizetree);
4233 if (where_pad != none
4234 && (!tree_fits_uhwi_p (sizetree)
4235 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
4236 sizetree = round_up (sizetree, round_boundary / BITS_PER_UNIT);
4238 ADD_PARM_SIZE (locate->size, sizetree);
4240 locate->size.constant -= part_size_in_regs;
4243 #ifdef FUNCTION_ARG_OFFSET
4244 locate->offset.constant += FUNCTION_ARG_OFFSET (passed_mode, type);
4245 #endif
4248 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
4249 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
4251 static void
4252 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
4253 struct args_size *alignment_pad)
4255 tree save_var = NULL_TREE;
4256 HOST_WIDE_INT save_constant = 0;
4257 int boundary_in_bytes = boundary / BITS_PER_UNIT;
4258 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
4260 #ifdef SPARC_STACK_BOUNDARY_HACK
4261 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
4262 the real alignment of %sp. However, when it does this, the
4263 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
4264 if (SPARC_STACK_BOUNDARY_HACK)
4265 sp_offset = 0;
4266 #endif
4268 if (boundary > PARM_BOUNDARY)
4270 save_var = offset_ptr->var;
4271 save_constant = offset_ptr->constant;
4274 alignment_pad->var = NULL_TREE;
4275 alignment_pad->constant = 0;
4277 if (boundary > BITS_PER_UNIT)
4279 if (offset_ptr->var)
4281 tree sp_offset_tree = ssize_int (sp_offset);
4282 tree offset = size_binop (PLUS_EXPR,
4283 ARGS_SIZE_TREE (*offset_ptr),
4284 sp_offset_tree);
4285 tree rounded;
4286 if (ARGS_GROW_DOWNWARD)
4287 rounded = round_down (offset, boundary / BITS_PER_UNIT);
4288 else
4289 rounded = round_up (offset, boundary / BITS_PER_UNIT);
4291 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
4292 /* ARGS_SIZE_TREE includes constant term. */
4293 offset_ptr->constant = 0;
4294 if (boundary > PARM_BOUNDARY)
4295 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
4296 save_var);
4298 else
4300 offset_ptr->constant = -sp_offset +
4301 (ARGS_GROW_DOWNWARD
4302 ? FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes)
4303 : CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes));
4305 if (boundary > PARM_BOUNDARY)
4306 alignment_pad->constant = offset_ptr->constant - save_constant;
4311 static void
4312 pad_below (struct args_size *offset_ptr, machine_mode passed_mode, tree sizetree)
4314 if (passed_mode != BLKmode)
4316 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
4317 offset_ptr->constant
4318 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
4319 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
4320 - GET_MODE_SIZE (passed_mode));
4322 else
4324 if (TREE_CODE (sizetree) != INTEGER_CST
4325 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
4327 /* Round the size up to multiple of PARM_BOUNDARY bits. */
4328 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
4329 /* Add it in. */
4330 ADD_PARM_SIZE (*offset_ptr, s2);
4331 SUB_PARM_SIZE (*offset_ptr, sizetree);
4337 /* True if register REGNO was alive at a place where `setjmp' was
4338 called and was set more than once or is an argument. Such regs may
4339 be clobbered by `longjmp'. */
4341 static bool
4342 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
4344 /* There appear to be cases where some local vars never reach the
4345 backend but have bogus regnos. */
4346 if (regno >= max_reg_num ())
4347 return false;
4349 return ((REG_N_SETS (regno) > 1
4350 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
4351 regno))
4352 && REGNO_REG_SET_P (setjmp_crosses, regno));
4355 /* Walk the tree of blocks describing the binding levels within a
4356 function and warn about variables the might be killed by setjmp or
4357 vfork. This is done after calling flow_analysis before register
4358 allocation since that will clobber the pseudo-regs to hard
4359 regs. */
4361 static void
4362 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
4364 tree decl, sub;
4366 for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
4368 if (TREE_CODE (decl) == VAR_DECL
4369 && DECL_RTL_SET_P (decl)
4370 && REG_P (DECL_RTL (decl))
4371 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4372 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
4373 " %<longjmp%> or %<vfork%>", decl);
4376 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
4377 setjmp_vars_warning (setjmp_crosses, sub);
4380 /* Do the appropriate part of setjmp_vars_warning
4381 but for arguments instead of local variables. */
4383 static void
4384 setjmp_args_warning (bitmap setjmp_crosses)
4386 tree decl;
4387 for (decl = DECL_ARGUMENTS (current_function_decl);
4388 decl; decl = DECL_CHAIN (decl))
4389 if (DECL_RTL (decl) != 0
4390 && REG_P (DECL_RTL (decl))
4391 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4392 warning (OPT_Wclobbered,
4393 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
4394 decl);
4397 /* Generate warning messages for variables live across setjmp. */
4399 void
4400 generate_setjmp_warnings (void)
4402 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
4404 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS
4405 || bitmap_empty_p (setjmp_crosses))
4406 return;
4408 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
4409 setjmp_args_warning (setjmp_crosses);
4413 /* Reverse the order of elements in the fragment chain T of blocks,
4414 and return the new head of the chain (old last element).
4415 In addition to that clear BLOCK_SAME_RANGE flags when needed
4416 and adjust BLOCK_SUPERCONTEXT from the super fragment to
4417 its super fragment origin. */
4419 static tree
4420 block_fragments_nreverse (tree t)
4422 tree prev = 0, block, next, prev_super = 0;
4423 tree super = BLOCK_SUPERCONTEXT (t);
4424 if (BLOCK_FRAGMENT_ORIGIN (super))
4425 super = BLOCK_FRAGMENT_ORIGIN (super);
4426 for (block = t; block; block = next)
4428 next = BLOCK_FRAGMENT_CHAIN (block);
4429 BLOCK_FRAGMENT_CHAIN (block) = prev;
4430 if ((prev && !BLOCK_SAME_RANGE (prev))
4431 || (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (block))
4432 != prev_super))
4433 BLOCK_SAME_RANGE (block) = 0;
4434 prev_super = BLOCK_SUPERCONTEXT (block);
4435 BLOCK_SUPERCONTEXT (block) = super;
4436 prev = block;
4438 t = BLOCK_FRAGMENT_ORIGIN (t);
4439 if (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (t))
4440 != prev_super)
4441 BLOCK_SAME_RANGE (t) = 0;
4442 BLOCK_SUPERCONTEXT (t) = super;
4443 return prev;
4446 /* Reverse the order of elements in the chain T of blocks,
4447 and return the new head of the chain (old last element).
4448 Also do the same on subblocks and reverse the order of elements
4449 in BLOCK_FRAGMENT_CHAIN as well. */
4451 static tree
4452 blocks_nreverse_all (tree t)
4454 tree prev = 0, block, next;
4455 for (block = t; block; block = next)
4457 next = BLOCK_CHAIN (block);
4458 BLOCK_CHAIN (block) = prev;
4459 if (BLOCK_FRAGMENT_CHAIN (block)
4460 && BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE)
4462 BLOCK_FRAGMENT_CHAIN (block)
4463 = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block));
4464 if (!BLOCK_SAME_RANGE (BLOCK_FRAGMENT_CHAIN (block)))
4465 BLOCK_SAME_RANGE (block) = 0;
4467 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4468 prev = block;
4470 return prev;
4474 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
4475 and create duplicate blocks. */
4476 /* ??? Need an option to either create block fragments or to create
4477 abstract origin duplicates of a source block. It really depends
4478 on what optimization has been performed. */
4480 void
4481 reorder_blocks (void)
4483 tree block = DECL_INITIAL (current_function_decl);
4485 if (block == NULL_TREE)
4486 return;
4488 auto_vec<tree, 10> block_stack;
4490 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
4491 clear_block_marks (block);
4493 /* Prune the old trees away, so that they don't get in the way. */
4494 BLOCK_SUBBLOCKS (block) = NULL_TREE;
4495 BLOCK_CHAIN (block) = NULL_TREE;
4497 /* Recreate the block tree from the note nesting. */
4498 reorder_blocks_1 (get_insns (), block, &block_stack);
4499 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4502 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
4504 void
4505 clear_block_marks (tree block)
4507 while (block)
4509 TREE_ASM_WRITTEN (block) = 0;
4510 clear_block_marks (BLOCK_SUBBLOCKS (block));
4511 block = BLOCK_CHAIN (block);
4515 static void
4516 reorder_blocks_1 (rtx_insn *insns, tree current_block,
4517 vec<tree> *p_block_stack)
4519 rtx_insn *insn;
4520 tree prev_beg = NULL_TREE, prev_end = NULL_TREE;
4522 for (insn = insns; insn; insn = NEXT_INSN (insn))
4524 if (NOTE_P (insn))
4526 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
4528 tree block = NOTE_BLOCK (insn);
4529 tree origin;
4531 gcc_assert (BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE);
4532 origin = block;
4534 if (prev_end)
4535 BLOCK_SAME_RANGE (prev_end) = 0;
4536 prev_end = NULL_TREE;
4538 /* If we have seen this block before, that means it now
4539 spans multiple address regions. Create a new fragment. */
4540 if (TREE_ASM_WRITTEN (block))
4542 tree new_block = copy_node (block);
4544 BLOCK_SAME_RANGE (new_block) = 0;
4545 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
4546 BLOCK_FRAGMENT_CHAIN (new_block)
4547 = BLOCK_FRAGMENT_CHAIN (origin);
4548 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
4550 NOTE_BLOCK (insn) = new_block;
4551 block = new_block;
4554 if (prev_beg == current_block && prev_beg)
4555 BLOCK_SAME_RANGE (block) = 1;
4557 prev_beg = origin;
4559 BLOCK_SUBBLOCKS (block) = 0;
4560 TREE_ASM_WRITTEN (block) = 1;
4561 /* When there's only one block for the entire function,
4562 current_block == block and we mustn't do this, it
4563 will cause infinite recursion. */
4564 if (block != current_block)
4566 tree super;
4567 if (block != origin)
4568 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block
4569 || BLOCK_FRAGMENT_ORIGIN (BLOCK_SUPERCONTEXT
4570 (origin))
4571 == current_block);
4572 if (p_block_stack->is_empty ())
4573 super = current_block;
4574 else
4576 super = p_block_stack->last ();
4577 gcc_assert (super == current_block
4578 || BLOCK_FRAGMENT_ORIGIN (super)
4579 == current_block);
4581 BLOCK_SUPERCONTEXT (block) = super;
4582 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
4583 BLOCK_SUBBLOCKS (current_block) = block;
4584 current_block = origin;
4586 p_block_stack->safe_push (block);
4588 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
4590 NOTE_BLOCK (insn) = p_block_stack->pop ();
4591 current_block = BLOCK_SUPERCONTEXT (current_block);
4592 if (BLOCK_FRAGMENT_ORIGIN (current_block))
4593 current_block = BLOCK_FRAGMENT_ORIGIN (current_block);
4594 prev_beg = NULL_TREE;
4595 prev_end = BLOCK_SAME_RANGE (NOTE_BLOCK (insn))
4596 ? NOTE_BLOCK (insn) : NULL_TREE;
4599 else
4601 prev_beg = NULL_TREE;
4602 if (prev_end)
4603 BLOCK_SAME_RANGE (prev_end) = 0;
4604 prev_end = NULL_TREE;
4609 /* Reverse the order of elements in the chain T of blocks,
4610 and return the new head of the chain (old last element). */
4612 tree
4613 blocks_nreverse (tree t)
4615 tree prev = 0, block, next;
4616 for (block = t; block; block = next)
4618 next = BLOCK_CHAIN (block);
4619 BLOCK_CHAIN (block) = prev;
4620 prev = block;
4622 return prev;
4625 /* Concatenate two chains of blocks (chained through BLOCK_CHAIN)
4626 by modifying the last node in chain 1 to point to chain 2. */
4628 tree
4629 block_chainon (tree op1, tree op2)
4631 tree t1;
4633 if (!op1)
4634 return op2;
4635 if (!op2)
4636 return op1;
4638 for (t1 = op1; BLOCK_CHAIN (t1); t1 = BLOCK_CHAIN (t1))
4639 continue;
4640 BLOCK_CHAIN (t1) = op2;
4642 #ifdef ENABLE_TREE_CHECKING
4644 tree t2;
4645 for (t2 = op2; t2; t2 = BLOCK_CHAIN (t2))
4646 gcc_assert (t2 != t1);
4648 #endif
4650 return op1;
4653 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
4654 non-NULL, list them all into VECTOR, in a depth-first preorder
4655 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
4656 blocks. */
4658 static int
4659 all_blocks (tree block, tree *vector)
4661 int n_blocks = 0;
4663 while (block)
4665 TREE_ASM_WRITTEN (block) = 0;
4667 /* Record this block. */
4668 if (vector)
4669 vector[n_blocks] = block;
4671 ++n_blocks;
4673 /* Record the subblocks, and their subblocks... */
4674 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
4675 vector ? vector + n_blocks : 0);
4676 block = BLOCK_CHAIN (block);
4679 return n_blocks;
4682 /* Return a vector containing all the blocks rooted at BLOCK. The
4683 number of elements in the vector is stored in N_BLOCKS_P. The
4684 vector is dynamically allocated; it is the caller's responsibility
4685 to call `free' on the pointer returned. */
4687 static tree *
4688 get_block_vector (tree block, int *n_blocks_p)
4690 tree *block_vector;
4692 *n_blocks_p = all_blocks (block, NULL);
4693 block_vector = XNEWVEC (tree, *n_blocks_p);
4694 all_blocks (block, block_vector);
4696 return block_vector;
4699 static GTY(()) int next_block_index = 2;
4701 /* Set BLOCK_NUMBER for all the blocks in FN. */
4703 void
4704 number_blocks (tree fn)
4706 int i;
4707 int n_blocks;
4708 tree *block_vector;
4710 /* For SDB and XCOFF debugging output, we start numbering the blocks
4711 from 1 within each function, rather than keeping a running
4712 count. */
4713 #if SDB_DEBUGGING_INFO || defined (XCOFF_DEBUGGING_INFO)
4714 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
4715 next_block_index = 1;
4716 #endif
4718 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
4720 /* The top-level BLOCK isn't numbered at all. */
4721 for (i = 1; i < n_blocks; ++i)
4722 /* We number the blocks from two. */
4723 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
4725 free (block_vector);
4727 return;
4730 /* If VAR is present in a subblock of BLOCK, return the subblock. */
4732 DEBUG_FUNCTION tree
4733 debug_find_var_in_block_tree (tree var, tree block)
4735 tree t;
4737 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
4738 if (t == var)
4739 return block;
4741 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
4743 tree ret = debug_find_var_in_block_tree (var, t);
4744 if (ret)
4745 return ret;
4748 return NULL_TREE;
4751 /* Keep track of whether we're in a dummy function context. If we are,
4752 we don't want to invoke the set_current_function hook, because we'll
4753 get into trouble if the hook calls target_reinit () recursively or
4754 when the initial initialization is not yet complete. */
4756 static bool in_dummy_function;
4758 /* Invoke the target hook when setting cfun. Update the optimization options
4759 if the function uses different options than the default. */
4761 static void
4762 invoke_set_current_function_hook (tree fndecl)
4764 if (!in_dummy_function)
4766 tree opts = ((fndecl)
4767 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4768 : optimization_default_node);
4770 if (!opts)
4771 opts = optimization_default_node;
4773 /* Change optimization options if needed. */
4774 if (optimization_current_node != opts)
4776 optimization_current_node = opts;
4777 cl_optimization_restore (&global_options, TREE_OPTIMIZATION (opts));
4780 targetm.set_current_function (fndecl);
4781 this_fn_optabs = this_target_optabs;
4783 if (opts != optimization_default_node)
4785 init_tree_optimization_optabs (opts);
4786 if (TREE_OPTIMIZATION_OPTABS (opts))
4787 this_fn_optabs = (struct target_optabs *)
4788 TREE_OPTIMIZATION_OPTABS (opts);
4793 /* cfun should never be set directly; use this function. */
4795 void
4796 set_cfun (struct function *new_cfun)
4798 if (cfun != new_cfun)
4800 cfun = new_cfun;
4801 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4802 redirect_edge_var_map_empty ();
4806 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4808 static vec<function *> cfun_stack;
4810 /* Push the current cfun onto the stack, and set cfun to new_cfun. Also set
4811 current_function_decl accordingly. */
4813 void
4814 push_cfun (struct function *new_cfun)
4816 gcc_assert ((!cfun && !current_function_decl)
4817 || (cfun && current_function_decl == cfun->decl));
4818 cfun_stack.safe_push (cfun);
4819 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4820 set_cfun (new_cfun);
4823 /* Pop cfun from the stack. Also set current_function_decl accordingly. */
4825 void
4826 pop_cfun (void)
4828 struct function *new_cfun = cfun_stack.pop ();
4829 /* When in_dummy_function, we do have a cfun but current_function_decl is
4830 NULL. We also allow pushing NULL cfun and subsequently changing
4831 current_function_decl to something else and have both restored by
4832 pop_cfun. */
4833 gcc_checking_assert (in_dummy_function
4834 || !cfun
4835 || current_function_decl == cfun->decl);
4836 set_cfun (new_cfun);
4837 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4840 /* Return value of funcdef and increase it. */
4842 get_next_funcdef_no (void)
4844 return funcdef_no++;
4847 /* Return value of funcdef. */
4849 get_last_funcdef_no (void)
4851 return funcdef_no;
4854 /* Allocate a function structure for FNDECL and set its contents
4855 to the defaults. Set cfun to the newly-allocated object.
4856 Some of the helper functions invoked during initialization assume
4857 that cfun has already been set. Therefore, assign the new object
4858 directly into cfun and invoke the back end hook explicitly at the
4859 very end, rather than initializing a temporary and calling set_cfun
4860 on it.
4862 ABSTRACT_P is true if this is a function that will never be seen by
4863 the middle-end. Such functions are front-end concepts (like C++
4864 function templates) that do not correspond directly to functions
4865 placed in object files. */
4867 void
4868 allocate_struct_function (tree fndecl, bool abstract_p)
4870 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4872 cfun = ggc_cleared_alloc<function> ();
4874 init_eh_for_function ();
4876 if (init_machine_status)
4877 cfun->machine = (*init_machine_status) ();
4879 #ifdef OVERRIDE_ABI_FORMAT
4880 OVERRIDE_ABI_FORMAT (fndecl);
4881 #endif
4883 if (fndecl != NULL_TREE)
4885 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4886 cfun->decl = fndecl;
4887 current_function_funcdef_no = get_next_funcdef_no ();
4890 invoke_set_current_function_hook (fndecl);
4892 if (fndecl != NULL_TREE)
4894 tree result = DECL_RESULT (fndecl);
4896 if (!abstract_p)
4898 /* Now that we have activated any function-specific attributes
4899 that might affect layout, particularly vector modes, relayout
4900 each of the parameters and the result. */
4901 relayout_decl (result);
4902 for (tree parm = DECL_ARGUMENTS (fndecl); parm;
4903 parm = DECL_CHAIN (parm))
4904 relayout_decl (parm);
4906 /* Similarly relayout the function decl. */
4907 targetm.target_option.relayout_function (fndecl);
4910 if (!abstract_p && aggregate_value_p (result, fndecl))
4912 #ifdef PCC_STATIC_STRUCT_RETURN
4913 cfun->returns_pcc_struct = 1;
4914 #endif
4915 cfun->returns_struct = 1;
4918 cfun->stdarg = stdarg_p (fntype);
4920 /* Assume all registers in stdarg functions need to be saved. */
4921 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4922 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4924 /* ??? This could be set on a per-function basis by the front-end
4925 but is this worth the hassle? */
4926 cfun->can_throw_non_call_exceptions = flag_non_call_exceptions;
4927 cfun->can_delete_dead_exceptions = flag_delete_dead_exceptions;
4929 if (!profile_flag && !flag_instrument_function_entry_exit)
4930 DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (fndecl) = 1;
4934 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4935 instead of just setting it. */
4937 void
4938 push_struct_function (tree fndecl)
4940 /* When in_dummy_function we might be in the middle of a pop_cfun and
4941 current_function_decl and cfun may not match. */
4942 gcc_assert (in_dummy_function
4943 || (!cfun && !current_function_decl)
4944 || (cfun && current_function_decl == cfun->decl));
4945 cfun_stack.safe_push (cfun);
4946 current_function_decl = fndecl;
4947 allocate_struct_function (fndecl, false);
4950 /* Reset crtl and other non-struct-function variables to defaults as
4951 appropriate for emitting rtl at the start of a function. */
4953 static void
4954 prepare_function_start (void)
4956 gcc_assert (!get_last_insn ());
4957 init_temp_slots ();
4958 init_emit ();
4959 init_varasm_status ();
4960 init_expr ();
4961 default_rtl_profile ();
4963 if (flag_stack_usage_info)
4965 cfun->su = ggc_cleared_alloc<stack_usage> ();
4966 cfun->su->static_stack_size = -1;
4969 cse_not_expected = ! optimize;
4971 /* Caller save not needed yet. */
4972 caller_save_needed = 0;
4974 /* We haven't done register allocation yet. */
4975 reg_renumber = 0;
4977 /* Indicate that we have not instantiated virtual registers yet. */
4978 virtuals_instantiated = 0;
4980 /* Indicate that we want CONCATs now. */
4981 generating_concat_p = 1;
4983 /* Indicate we have no need of a frame pointer yet. */
4984 frame_pointer_needed = 0;
4987 void
4988 push_dummy_function (bool with_decl)
4990 tree fn_decl, fn_type, fn_result_decl;
4992 gcc_assert (!in_dummy_function);
4993 in_dummy_function = true;
4995 if (with_decl)
4997 fn_type = build_function_type_list (void_type_node, NULL_TREE);
4998 fn_decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, NULL_TREE,
4999 fn_type);
5000 fn_result_decl = build_decl (UNKNOWN_LOCATION, RESULT_DECL,
5001 NULL_TREE, void_type_node);
5002 DECL_RESULT (fn_decl) = fn_result_decl;
5004 else
5005 fn_decl = NULL_TREE;
5007 push_struct_function (fn_decl);
5010 /* Initialize the rtl expansion mechanism so that we can do simple things
5011 like generate sequences. This is used to provide a context during global
5012 initialization of some passes. You must call expand_dummy_function_end
5013 to exit this context. */
5015 void
5016 init_dummy_function_start (void)
5018 push_dummy_function (false);
5019 prepare_function_start ();
5022 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
5023 and initialize static variables for generating RTL for the statements
5024 of the function. */
5026 void
5027 init_function_start (tree subr)
5029 /* Initialize backend, if needed. */
5030 initialize_rtl ();
5032 prepare_function_start ();
5033 decide_function_section (subr);
5035 /* Warn if this value is an aggregate type,
5036 regardless of which calling convention we are using for it. */
5037 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
5038 warning (OPT_Waggregate_return, "function returns an aggregate");
5041 /* Expand code to verify the stack_protect_guard. This is invoked at
5042 the end of a function to be protected. */
5044 void
5045 stack_protect_epilogue (void)
5047 tree guard_decl = targetm.stack_protect_guard ();
5048 rtx_code_label *label = gen_label_rtx ();
5049 rtx x, y;
5050 rtx_insn *seq;
5052 x = expand_normal (crtl->stack_protect_guard);
5053 y = expand_normal (guard_decl);
5055 /* Allow the target to compare Y with X without leaking either into
5056 a register. */
5057 if (targetm.have_stack_protect_test ()
5058 && ((seq = targetm.gen_stack_protect_test (x, y, label)) != NULL_RTX))
5059 emit_insn (seq);
5060 else
5061 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
5063 /* The noreturn predictor has been moved to the tree level. The rtl-level
5064 predictors estimate this branch about 20%, which isn't enough to get
5065 things moved out of line. Since this is the only extant case of adding
5066 a noreturn function at the rtl level, it doesn't seem worth doing ought
5067 except adding the prediction by hand. */
5068 rtx_insn *tmp = get_last_insn ();
5069 if (JUMP_P (tmp))
5070 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
5072 expand_call (targetm.stack_protect_fail (), NULL_RTX, /*ignore=*/true);
5073 free_temp_slots ();
5074 emit_label (label);
5077 /* Start the RTL for a new function, and set variables used for
5078 emitting RTL.
5079 SUBR is the FUNCTION_DECL node.
5080 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
5081 the function's parameters, which must be run at any return statement. */
5083 void
5084 expand_function_start (tree subr)
5086 /* Make sure volatile mem refs aren't considered
5087 valid operands of arithmetic insns. */
5088 init_recog_no_volatile ();
5090 crtl->profile
5091 = (profile_flag
5092 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
5094 crtl->limit_stack
5095 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
5097 /* Make the label for return statements to jump to. Do not special
5098 case machines with special return instructions -- they will be
5099 handled later during jump, ifcvt, or epilogue creation. */
5100 return_label = gen_label_rtx ();
5102 /* Initialize rtx used to return the value. */
5103 /* Do this before assign_parms so that we copy the struct value address
5104 before any library calls that assign parms might generate. */
5106 /* Decide whether to return the value in memory or in a register. */
5107 tree res = DECL_RESULT (subr);
5108 if (aggregate_value_p (res, subr))
5110 /* Returning something that won't go in a register. */
5111 rtx value_address = 0;
5113 #ifdef PCC_STATIC_STRUCT_RETURN
5114 if (cfun->returns_pcc_struct)
5116 int size = int_size_in_bytes (TREE_TYPE (res));
5117 value_address = assemble_static_space (size);
5119 else
5120 #endif
5122 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
5123 /* Expect to be passed the address of a place to store the value.
5124 If it is passed as an argument, assign_parms will take care of
5125 it. */
5126 if (sv)
5128 value_address = gen_reg_rtx (Pmode);
5129 emit_move_insn (value_address, sv);
5132 if (value_address)
5134 rtx x = value_address;
5135 if (!DECL_BY_REFERENCE (res))
5137 x = gen_rtx_MEM (DECL_MODE (res), x);
5138 set_mem_attributes (x, res, 1);
5140 set_parm_rtl (res, x);
5143 else if (DECL_MODE (res) == VOIDmode)
5144 /* If return mode is void, this decl rtl should not be used. */
5145 set_parm_rtl (res, NULL_RTX);
5146 else
5148 /* Compute the return values into a pseudo reg, which we will copy
5149 into the true return register after the cleanups are done. */
5150 tree return_type = TREE_TYPE (res);
5152 /* If we may coalesce this result, make sure it has the expected mode
5153 in case it was promoted. But we need not bother about BLKmode. */
5154 machine_mode promoted_mode
5155 = flag_tree_coalesce_vars && is_gimple_reg (res)
5156 ? promote_ssa_mode (ssa_default_def (cfun, res), NULL)
5157 : BLKmode;
5159 if (promoted_mode != BLKmode)
5160 set_parm_rtl (res, gen_reg_rtx (promoted_mode));
5161 else if (TYPE_MODE (return_type) != BLKmode
5162 && targetm.calls.return_in_msb (return_type))
5163 /* expand_function_end will insert the appropriate padding in
5164 this case. Use the return value's natural (unpadded) mode
5165 within the function proper. */
5166 set_parm_rtl (res, gen_reg_rtx (TYPE_MODE (return_type)));
5167 else
5169 /* In order to figure out what mode to use for the pseudo, we
5170 figure out what the mode of the eventual return register will
5171 actually be, and use that. */
5172 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
5174 /* Structures that are returned in registers are not
5175 aggregate_value_p, so we may see a PARALLEL or a REG. */
5176 if (REG_P (hard_reg))
5177 set_parm_rtl (res, gen_reg_rtx (GET_MODE (hard_reg)));
5178 else
5180 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
5181 set_parm_rtl (res, gen_group_rtx (hard_reg));
5185 /* Set DECL_REGISTER flag so that expand_function_end will copy the
5186 result to the real return register(s). */
5187 DECL_REGISTER (res) = 1;
5189 if (chkp_function_instrumented_p (current_function_decl))
5191 tree return_type = TREE_TYPE (res);
5192 rtx bounds = targetm.calls.chkp_function_value_bounds (return_type,
5193 subr, 1);
5194 SET_DECL_BOUNDS_RTL (res, bounds);
5198 /* Initialize rtx for parameters and local variables.
5199 In some cases this requires emitting insns. */
5200 assign_parms (subr);
5202 /* If function gets a static chain arg, store it. */
5203 if (cfun->static_chain_decl)
5205 tree parm = cfun->static_chain_decl;
5206 rtx local, chain;
5207 rtx_insn *insn;
5208 int unsignedp;
5210 local = gen_reg_rtx (promote_decl_mode (parm, &unsignedp));
5211 chain = targetm.calls.static_chain (current_function_decl, true);
5213 set_decl_incoming_rtl (parm, chain, false);
5214 set_parm_rtl (parm, local);
5215 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
5217 if (GET_MODE (local) != GET_MODE (chain))
5219 convert_move (local, chain, unsignedp);
5220 insn = get_last_insn ();
5222 else
5223 insn = emit_move_insn (local, chain);
5225 /* Mark the register as eliminable, similar to parameters. */
5226 if (MEM_P (chain)
5227 && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
5228 set_dst_reg_note (insn, REG_EQUIV, chain, local);
5230 /* If we aren't optimizing, save the static chain onto the stack. */
5231 if (!optimize)
5233 tree saved_static_chain_decl
5234 = build_decl (DECL_SOURCE_LOCATION (parm), VAR_DECL,
5235 DECL_NAME (parm), TREE_TYPE (parm));
5236 rtx saved_static_chain_rtx
5237 = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5238 SET_DECL_RTL (saved_static_chain_decl, saved_static_chain_rtx);
5239 emit_move_insn (saved_static_chain_rtx, chain);
5240 SET_DECL_VALUE_EXPR (parm, saved_static_chain_decl);
5241 DECL_HAS_VALUE_EXPR_P (parm) = 1;
5245 /* If the function receives a non-local goto, then store the
5246 bits we need to restore the frame pointer. */
5247 if (cfun->nonlocal_goto_save_area)
5249 tree t_save;
5250 rtx r_save;
5252 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
5253 gcc_assert (DECL_RTL_SET_P (var));
5255 t_save = build4 (ARRAY_REF,
5256 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
5257 cfun->nonlocal_goto_save_area,
5258 integer_zero_node, NULL_TREE, NULL_TREE);
5259 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
5260 gcc_assert (GET_MODE (r_save) == Pmode);
5262 emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
5263 update_nonlocal_goto_save_area ();
5266 /* The following was moved from init_function_start.
5267 The move is supposed to make sdb output more accurate. */
5268 /* Indicate the beginning of the function body,
5269 as opposed to parm setup. */
5270 emit_note (NOTE_INSN_FUNCTION_BEG);
5272 gcc_assert (NOTE_P (get_last_insn ()));
5274 parm_birth_insn = get_last_insn ();
5276 if (crtl->profile)
5278 #ifdef PROFILE_HOOK
5279 PROFILE_HOOK (current_function_funcdef_no);
5280 #endif
5283 /* If we are doing generic stack checking, the probe should go here. */
5284 if (flag_stack_check == GENERIC_STACK_CHECK)
5285 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
5288 void
5289 pop_dummy_function (void)
5291 pop_cfun ();
5292 in_dummy_function = false;
5295 /* Undo the effects of init_dummy_function_start. */
5296 void
5297 expand_dummy_function_end (void)
5299 gcc_assert (in_dummy_function);
5301 /* End any sequences that failed to be closed due to syntax errors. */
5302 while (in_sequence_p ())
5303 end_sequence ();
5305 /* Outside function body, can't compute type's actual size
5306 until next function's body starts. */
5308 free_after_parsing (cfun);
5309 free_after_compilation (cfun);
5310 pop_dummy_function ();
5313 /* Helper for diddle_return_value. */
5315 void
5316 diddle_return_value_1 (void (*doit) (rtx, void *), void *arg, rtx outgoing)
5318 if (! outgoing)
5319 return;
5321 if (REG_P (outgoing))
5322 (*doit) (outgoing, arg);
5323 else if (GET_CODE (outgoing) == PARALLEL)
5325 int i;
5327 for (i = 0; i < XVECLEN (outgoing, 0); i++)
5329 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
5331 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
5332 (*doit) (x, arg);
5337 /* Call DOIT for each hard register used as a return value from
5338 the current function. */
5340 void
5341 diddle_return_value (void (*doit) (rtx, void *), void *arg)
5343 diddle_return_value_1 (doit, arg, crtl->return_bnd);
5344 diddle_return_value_1 (doit, arg, crtl->return_rtx);
5347 static void
5348 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
5350 emit_clobber (reg);
5353 void
5354 clobber_return_register (void)
5356 diddle_return_value (do_clobber_return_reg, NULL);
5358 /* In case we do use pseudo to return value, clobber it too. */
5359 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5361 tree decl_result = DECL_RESULT (current_function_decl);
5362 rtx decl_rtl = DECL_RTL (decl_result);
5363 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
5365 do_clobber_return_reg (decl_rtl, NULL);
5370 static void
5371 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
5373 emit_use (reg);
5376 static void
5377 use_return_register (void)
5379 diddle_return_value (do_use_return_reg, NULL);
5382 /* Set the location of the insn chain starting at INSN to LOC. */
5384 static void
5385 set_insn_locations (rtx_insn *insn, int loc)
5387 while (insn != NULL)
5389 if (INSN_P (insn))
5390 INSN_LOCATION (insn) = loc;
5391 insn = NEXT_INSN (insn);
5395 /* Generate RTL for the end of the current function. */
5397 void
5398 expand_function_end (void)
5400 /* If arg_pointer_save_area was referenced only from a nested
5401 function, we will not have initialized it yet. Do that now. */
5402 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
5403 get_arg_pointer_save_area ();
5405 /* If we are doing generic stack checking and this function makes calls,
5406 do a stack probe at the start of the function to ensure we have enough
5407 space for another stack frame. */
5408 if (flag_stack_check == GENERIC_STACK_CHECK)
5410 rtx_insn *insn, *seq;
5412 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5413 if (CALL_P (insn))
5415 rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
5416 start_sequence ();
5417 if (STACK_CHECK_MOVING_SP)
5418 anti_adjust_stack_and_probe (max_frame_size, true);
5419 else
5420 probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
5421 seq = get_insns ();
5422 end_sequence ();
5423 set_insn_locations (seq, prologue_location);
5424 emit_insn_before (seq, stack_check_probe_note);
5425 break;
5429 /* End any sequences that failed to be closed due to syntax errors. */
5430 while (in_sequence_p ())
5431 end_sequence ();
5433 clear_pending_stack_adjust ();
5434 do_pending_stack_adjust ();
5436 /* Output a linenumber for the end of the function.
5437 SDB depends on this. */
5438 set_curr_insn_location (input_location);
5440 /* Before the return label (if any), clobber the return
5441 registers so that they are not propagated live to the rest of
5442 the function. This can only happen with functions that drop
5443 through; if there had been a return statement, there would
5444 have either been a return rtx, or a jump to the return label.
5446 We delay actual code generation after the current_function_value_rtx
5447 is computed. */
5448 rtx_insn *clobber_after = get_last_insn ();
5450 /* Output the label for the actual return from the function. */
5451 emit_label (return_label);
5453 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
5455 /* Let except.c know where it should emit the call to unregister
5456 the function context for sjlj exceptions. */
5457 if (flag_exceptions)
5458 sjlj_emit_function_exit_after (get_last_insn ());
5460 else
5462 /* We want to ensure that instructions that may trap are not
5463 moved into the epilogue by scheduling, because we don't
5464 always emit unwind information for the epilogue. */
5465 if (cfun->can_throw_non_call_exceptions)
5466 emit_insn (gen_blockage ());
5469 /* If this is an implementation of throw, do what's necessary to
5470 communicate between __builtin_eh_return and the epilogue. */
5471 expand_eh_return ();
5473 /* If scalar return value was computed in a pseudo-reg, or was a named
5474 return value that got dumped to the stack, copy that to the hard
5475 return register. */
5476 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5478 tree decl_result = DECL_RESULT (current_function_decl);
5479 rtx decl_rtl = DECL_RTL (decl_result);
5481 if (REG_P (decl_rtl)
5482 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
5483 : DECL_REGISTER (decl_result))
5485 rtx real_decl_rtl = crtl->return_rtx;
5487 /* This should be set in assign_parms. */
5488 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
5490 /* If this is a BLKmode structure being returned in registers,
5491 then use the mode computed in expand_return. Note that if
5492 decl_rtl is memory, then its mode may have been changed,
5493 but that crtl->return_rtx has not. */
5494 if (GET_MODE (real_decl_rtl) == BLKmode)
5495 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
5497 /* If a non-BLKmode return value should be padded at the least
5498 significant end of the register, shift it left by the appropriate
5499 amount. BLKmode results are handled using the group load/store
5500 machinery. */
5501 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
5502 && REG_P (real_decl_rtl)
5503 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
5505 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
5506 REGNO (real_decl_rtl)),
5507 decl_rtl);
5508 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
5510 else if (GET_CODE (real_decl_rtl) == PARALLEL)
5512 /* If expand_function_start has created a PARALLEL for decl_rtl,
5513 move the result to the real return registers. Otherwise, do
5514 a group load from decl_rtl for a named return. */
5515 if (GET_CODE (decl_rtl) == PARALLEL)
5516 emit_group_move (real_decl_rtl, decl_rtl);
5517 else
5518 emit_group_load (real_decl_rtl, decl_rtl,
5519 TREE_TYPE (decl_result),
5520 int_size_in_bytes (TREE_TYPE (decl_result)));
5522 /* In the case of complex integer modes smaller than a word, we'll
5523 need to generate some non-trivial bitfield insertions. Do that
5524 on a pseudo and not the hard register. */
5525 else if (GET_CODE (decl_rtl) == CONCAT
5526 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
5527 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
5529 int old_generating_concat_p;
5530 rtx tmp;
5532 old_generating_concat_p = generating_concat_p;
5533 generating_concat_p = 0;
5534 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
5535 generating_concat_p = old_generating_concat_p;
5537 emit_move_insn (tmp, decl_rtl);
5538 emit_move_insn (real_decl_rtl, tmp);
5540 /* If a named return value dumped decl_return to memory, then
5541 we may need to re-do the PROMOTE_MODE signed/unsigned
5542 extension. */
5543 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
5545 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
5546 promote_function_mode (TREE_TYPE (decl_result),
5547 GET_MODE (decl_rtl), &unsignedp,
5548 TREE_TYPE (current_function_decl), 1);
5550 convert_move (real_decl_rtl, decl_rtl, unsignedp);
5552 else
5553 emit_move_insn (real_decl_rtl, decl_rtl);
5557 /* If returning a structure, arrange to return the address of the value
5558 in a place where debuggers expect to find it.
5560 If returning a structure PCC style,
5561 the caller also depends on this value.
5562 And cfun->returns_pcc_struct is not necessarily set. */
5563 if ((cfun->returns_struct || cfun->returns_pcc_struct)
5564 && !targetm.calls.omit_struct_return_reg)
5566 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
5567 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
5568 rtx outgoing;
5570 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
5571 type = TREE_TYPE (type);
5572 else
5573 value_address = XEXP (value_address, 0);
5575 outgoing = targetm.calls.function_value (build_pointer_type (type),
5576 current_function_decl, true);
5578 /* Mark this as a function return value so integrate will delete the
5579 assignment and USE below when inlining this function. */
5580 REG_FUNCTION_VALUE_P (outgoing) = 1;
5582 /* The address may be ptr_mode and OUTGOING may be Pmode. */
5583 value_address = convert_memory_address (GET_MODE (outgoing),
5584 value_address);
5586 emit_move_insn (outgoing, value_address);
5588 /* Show return register used to hold result (in this case the address
5589 of the result. */
5590 crtl->return_rtx = outgoing;
5593 /* Emit the actual code to clobber return register. Don't emit
5594 it if clobber_after is a barrier, then the previous basic block
5595 certainly doesn't fall thru into the exit block. */
5596 if (!BARRIER_P (clobber_after))
5598 start_sequence ();
5599 clobber_return_register ();
5600 rtx_insn *seq = get_insns ();
5601 end_sequence ();
5603 emit_insn_after (seq, clobber_after);
5606 /* Output the label for the naked return from the function. */
5607 if (naked_return_label)
5608 emit_label (naked_return_label);
5610 /* @@@ This is a kludge. We want to ensure that instructions that
5611 may trap are not moved into the epilogue by scheduling, because
5612 we don't always emit unwind information for the epilogue. */
5613 if (cfun->can_throw_non_call_exceptions
5614 && targetm_common.except_unwind_info (&global_options) != UI_SJLJ)
5615 emit_insn (gen_blockage ());
5617 /* If stack protection is enabled for this function, check the guard. */
5618 if (crtl->stack_protect_guard)
5619 stack_protect_epilogue ();
5621 /* If we had calls to alloca, and this machine needs
5622 an accurate stack pointer to exit the function,
5623 insert some code to save and restore the stack pointer. */
5624 if (! EXIT_IGNORE_STACK
5625 && cfun->calls_alloca)
5627 rtx tem = 0;
5629 start_sequence ();
5630 emit_stack_save (SAVE_FUNCTION, &tem);
5631 rtx_insn *seq = get_insns ();
5632 end_sequence ();
5633 emit_insn_before (seq, parm_birth_insn);
5635 emit_stack_restore (SAVE_FUNCTION, tem);
5638 /* ??? This should no longer be necessary since stupid is no longer with
5639 us, but there are some parts of the compiler (eg reload_combine, and
5640 sh mach_dep_reorg) that still try and compute their own lifetime info
5641 instead of using the general framework. */
5642 use_return_register ();
5646 get_arg_pointer_save_area (void)
5648 rtx ret = arg_pointer_save_area;
5650 if (! ret)
5652 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5653 arg_pointer_save_area = ret;
5656 if (! crtl->arg_pointer_save_area_init)
5658 /* Save the arg pointer at the beginning of the function. The
5659 generated stack slot may not be a valid memory address, so we
5660 have to check it and fix it if necessary. */
5661 start_sequence ();
5662 emit_move_insn (validize_mem (copy_rtx (ret)),
5663 crtl->args.internal_arg_pointer);
5664 rtx_insn *seq = get_insns ();
5665 end_sequence ();
5667 push_topmost_sequence ();
5668 emit_insn_after (seq, entry_of_function ());
5669 pop_topmost_sequence ();
5671 crtl->arg_pointer_save_area_init = true;
5674 return ret;
5677 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
5678 for the first time. */
5680 static void
5681 record_insns (rtx_insn *insns, rtx end, hash_table<insn_cache_hasher> **hashp)
5683 rtx_insn *tmp;
5684 hash_table<insn_cache_hasher> *hash = *hashp;
5686 if (hash == NULL)
5687 *hashp = hash = hash_table<insn_cache_hasher>::create_ggc (17);
5689 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
5691 rtx *slot = hash->find_slot (tmp, INSERT);
5692 gcc_assert (*slot == NULL);
5693 *slot = tmp;
5697 /* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a
5698 basic block, splitting or peepholes. If INSN is a prologue or epilogue
5699 insn, then record COPY as well. */
5701 void
5702 maybe_copy_prologue_epilogue_insn (rtx insn, rtx copy)
5704 hash_table<insn_cache_hasher> *hash;
5705 rtx *slot;
5707 hash = epilogue_insn_hash;
5708 if (!hash || !hash->find (insn))
5710 hash = prologue_insn_hash;
5711 if (!hash || !hash->find (insn))
5712 return;
5715 slot = hash->find_slot (copy, INSERT);
5716 gcc_assert (*slot == NULL);
5717 *slot = copy;
5720 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
5721 we can be running after reorg, SEQUENCE rtl is possible. */
5723 static bool
5724 contains (const_rtx insn, hash_table<insn_cache_hasher> *hash)
5726 if (hash == NULL)
5727 return false;
5729 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
5731 rtx_sequence *seq = as_a <rtx_sequence *> (PATTERN (insn));
5732 int i;
5733 for (i = seq->len () - 1; i >= 0; i--)
5734 if (hash->find (seq->element (i)))
5735 return true;
5736 return false;
5739 return hash->find (const_cast<rtx> (insn)) != NULL;
5743 prologue_epilogue_contains (const_rtx insn)
5745 if (contains (insn, prologue_insn_hash))
5746 return 1;
5747 if (contains (insn, epilogue_insn_hash))
5748 return 1;
5749 return 0;
5752 /* Insert use of return register before the end of BB. */
5754 static void
5755 emit_use_return_register_into_block (basic_block bb)
5757 start_sequence ();
5758 use_return_register ();
5759 rtx_insn *seq = get_insns ();
5760 end_sequence ();
5761 rtx_insn *insn = BB_END (bb);
5762 if (HAVE_cc0 && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
5763 insn = prev_cc0_setter (insn);
5765 emit_insn_before (seq, insn);
5769 /* Create a return pattern, either simple_return or return, depending on
5770 simple_p. */
5772 static rtx_insn *
5773 gen_return_pattern (bool simple_p)
5775 return (simple_p
5776 ? targetm.gen_simple_return ()
5777 : targetm.gen_return ());
5780 /* Insert an appropriate return pattern at the end of block BB. This
5781 also means updating block_for_insn appropriately. SIMPLE_P is
5782 the same as in gen_return_pattern and passed to it. */
5784 void
5785 emit_return_into_block (bool simple_p, basic_block bb)
5787 rtx_jump_insn *jump = emit_jump_insn_after (gen_return_pattern (simple_p),
5788 BB_END (bb));
5789 rtx pat = PATTERN (jump);
5790 if (GET_CODE (pat) == PARALLEL)
5791 pat = XVECEXP (pat, 0, 0);
5792 gcc_assert (ANY_RETURN_P (pat));
5793 JUMP_LABEL (jump) = pat;
5796 /* Set JUMP_LABEL for a return insn. */
5798 void
5799 set_return_jump_label (rtx_insn *returnjump)
5801 rtx pat = PATTERN (returnjump);
5802 if (GET_CODE (pat) == PARALLEL)
5803 pat = XVECEXP (pat, 0, 0);
5804 if (ANY_RETURN_P (pat))
5805 JUMP_LABEL (returnjump) = pat;
5806 else
5807 JUMP_LABEL (returnjump) = ret_rtx;
5810 /* Return true if there are any active insns between HEAD and TAIL. */
5811 bool
5812 active_insn_between (rtx_insn *head, rtx_insn *tail)
5814 while (tail)
5816 if (active_insn_p (tail))
5817 return true;
5818 if (tail == head)
5819 return false;
5820 tail = PREV_INSN (tail);
5822 return false;
5825 /* LAST_BB is a block that exits, and empty of active instructions.
5826 Examine its predecessors for jumps that can be converted to
5827 (conditional) returns. */
5828 vec<edge>
5829 convert_jumps_to_returns (basic_block last_bb, bool simple_p,
5830 vec<edge> unconverted ATTRIBUTE_UNUSED)
5832 int i;
5833 basic_block bb;
5834 edge_iterator ei;
5835 edge e;
5836 auto_vec<basic_block> src_bbs (EDGE_COUNT (last_bb->preds));
5838 FOR_EACH_EDGE (e, ei, last_bb->preds)
5839 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
5840 src_bbs.quick_push (e->src);
5842 rtx_insn *label = BB_HEAD (last_bb);
5844 FOR_EACH_VEC_ELT (src_bbs, i, bb)
5846 rtx_insn *jump = BB_END (bb);
5848 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5849 continue;
5851 e = find_edge (bb, last_bb);
5853 /* If we have an unconditional jump, we can replace that
5854 with a simple return instruction. */
5855 if (simplejump_p (jump))
5857 /* The use of the return register might be present in the exit
5858 fallthru block. Either:
5859 - removing the use is safe, and we should remove the use in
5860 the exit fallthru block, or
5861 - removing the use is not safe, and we should add it here.
5862 For now, we conservatively choose the latter. Either of the
5863 2 helps in crossjumping. */
5864 emit_use_return_register_into_block (bb);
5866 emit_return_into_block (simple_p, bb);
5867 delete_insn (jump);
5870 /* If we have a conditional jump branching to the last
5871 block, we can try to replace that with a conditional
5872 return instruction. */
5873 else if (condjump_p (jump))
5875 rtx dest;
5877 if (simple_p)
5878 dest = simple_return_rtx;
5879 else
5880 dest = ret_rtx;
5881 if (!redirect_jump (as_a <rtx_jump_insn *> (jump), dest, 0))
5883 if (targetm.have_simple_return () && simple_p)
5885 if (dump_file)
5886 fprintf (dump_file,
5887 "Failed to redirect bb %d branch.\n", bb->index);
5888 unconverted.safe_push (e);
5890 continue;
5893 /* See comment in simplejump_p case above. */
5894 emit_use_return_register_into_block (bb);
5896 /* If this block has only one successor, it both jumps
5897 and falls through to the fallthru block, so we can't
5898 delete the edge. */
5899 if (single_succ_p (bb))
5900 continue;
5902 else
5904 if (targetm.have_simple_return () && simple_p)
5906 if (dump_file)
5907 fprintf (dump_file,
5908 "Failed to redirect bb %d branch.\n", bb->index);
5909 unconverted.safe_push (e);
5911 continue;
5914 /* Fix up the CFG for the successful change we just made. */
5915 redirect_edge_succ (e, EXIT_BLOCK_PTR_FOR_FN (cfun));
5916 e->flags &= ~EDGE_CROSSING;
5918 src_bbs.release ();
5919 return unconverted;
5922 /* Emit a return insn for the exit fallthru block. */
5923 basic_block
5924 emit_return_for_exit (edge exit_fallthru_edge, bool simple_p)
5926 basic_block last_bb = exit_fallthru_edge->src;
5928 if (JUMP_P (BB_END (last_bb)))
5930 last_bb = split_edge (exit_fallthru_edge);
5931 exit_fallthru_edge = single_succ_edge (last_bb);
5933 emit_barrier_after (BB_END (last_bb));
5934 emit_return_into_block (simple_p, last_bb);
5935 exit_fallthru_edge->flags &= ~EDGE_FALLTHRU;
5936 return last_bb;
5940 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5941 this into place with notes indicating where the prologue ends and where
5942 the epilogue begins. Update the basic block information when possible.
5944 Notes on epilogue placement:
5945 There are several kinds of edges to the exit block:
5946 * a single fallthru edge from LAST_BB
5947 * possibly, edges from blocks containing sibcalls
5948 * possibly, fake edges from infinite loops
5950 The epilogue is always emitted on the fallthru edge from the last basic
5951 block in the function, LAST_BB, into the exit block.
5953 If LAST_BB is empty except for a label, it is the target of every
5954 other basic block in the function that ends in a return. If a
5955 target has a return or simple_return pattern (possibly with
5956 conditional variants), these basic blocks can be changed so that a
5957 return insn is emitted into them, and their target is adjusted to
5958 the real exit block.
5960 Notes on shrink wrapping: We implement a fairly conservative
5961 version of shrink-wrapping rather than the textbook one. We only
5962 generate a single prologue and a single epilogue. This is
5963 sufficient to catch a number of interesting cases involving early
5964 exits.
5966 First, we identify the blocks that require the prologue to occur before
5967 them. These are the ones that modify a call-saved register, or reference
5968 any of the stack or frame pointer registers. To simplify things, we then
5969 mark everything reachable from these blocks as also requiring a prologue.
5970 This takes care of loops automatically, and avoids the need to examine
5971 whether MEMs reference the frame, since it is sufficient to check for
5972 occurrences of the stack or frame pointer.
5974 We then compute the set of blocks for which the need for a prologue
5975 is anticipatable (borrowing terminology from the shrink-wrapping
5976 description in Muchnick's book). These are the blocks which either
5977 require a prologue themselves, or those that have only successors
5978 where the prologue is anticipatable. The prologue needs to be
5979 inserted on all edges from BB1->BB2 where BB2 is in ANTIC and BB1
5980 is not. For the moment, we ensure that only one such edge exists.
5982 The epilogue is placed as described above, but we make a
5983 distinction between inserting return and simple_return patterns
5984 when modifying other blocks that end in a return. Blocks that end
5985 in a sibcall omit the sibcall_epilogue if the block is not in
5986 ANTIC. */
5988 void
5989 thread_prologue_and_epilogue_insns (void)
5991 bool inserted;
5992 vec<edge> unconverted_simple_returns = vNULL;
5993 bitmap_head bb_flags;
5994 rtx_insn *returnjump;
5995 rtx_insn *epilogue_end ATTRIBUTE_UNUSED;
5996 rtx_insn *prologue_seq ATTRIBUTE_UNUSED, *split_prologue_seq ATTRIBUTE_UNUSED;
5997 edge e, entry_edge, orig_entry_edge, exit_fallthru_edge;
5998 edge_iterator ei;
6000 df_analyze ();
6002 rtl_profile_for_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
6004 inserted = false;
6005 epilogue_end = NULL;
6006 returnjump = NULL;
6008 /* Can't deal with multiple successors of the entry block at the
6009 moment. Function should always have at least one entry
6010 point. */
6011 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
6012 entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
6013 orig_entry_edge = entry_edge;
6015 split_prologue_seq = NULL;
6016 if (flag_split_stack
6017 && (lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun->decl))
6018 == NULL))
6020 start_sequence ();
6021 emit_insn (targetm.gen_split_stack_prologue ());
6022 split_prologue_seq = get_insns ();
6023 end_sequence ();
6025 record_insns (split_prologue_seq, NULL, &prologue_insn_hash);
6026 set_insn_locations (split_prologue_seq, prologue_location);
6029 prologue_seq = NULL;
6030 if (targetm.have_prologue ())
6032 start_sequence ();
6033 rtx_insn *seq = targetm.gen_prologue ();
6034 emit_insn (seq);
6036 /* Insert an explicit USE for the frame pointer
6037 if the profiling is on and the frame pointer is required. */
6038 if (crtl->profile && frame_pointer_needed)
6039 emit_use (hard_frame_pointer_rtx);
6041 /* Retain a map of the prologue insns. */
6042 record_insns (seq, NULL, &prologue_insn_hash);
6043 emit_note (NOTE_INSN_PROLOGUE_END);
6045 /* Ensure that instructions are not moved into the prologue when
6046 profiling is on. The call to the profiling routine can be
6047 emitted within the live range of a call-clobbered register. */
6048 if (!targetm.profile_before_prologue () && crtl->profile)
6049 emit_insn (gen_blockage ());
6051 prologue_seq = get_insns ();
6052 end_sequence ();
6053 set_insn_locations (prologue_seq, prologue_location);
6056 bitmap_initialize (&bb_flags, &bitmap_default_obstack);
6058 /* Try to perform a kind of shrink-wrapping, making sure the
6059 prologue/epilogue is emitted only around those parts of the
6060 function that require it. */
6062 try_shrink_wrapping (&entry_edge, &bb_flags, prologue_seq);
6064 if (split_prologue_seq != NULL_RTX)
6066 insert_insn_on_edge (split_prologue_seq, orig_entry_edge);
6067 inserted = true;
6069 if (prologue_seq != NULL_RTX)
6071 insert_insn_on_edge (prologue_seq, entry_edge);
6072 inserted = true;
6075 /* If the exit block has no non-fake predecessors, we don't need
6076 an epilogue. */
6077 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6078 if ((e->flags & EDGE_FAKE) == 0)
6079 break;
6080 if (e == NULL)
6081 goto epilogue_done;
6083 rtl_profile_for_bb (EXIT_BLOCK_PTR_FOR_FN (cfun));
6085 exit_fallthru_edge = find_fallthru_edge (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
6087 if (targetm.have_simple_return () && entry_edge != orig_entry_edge)
6088 exit_fallthru_edge
6089 = get_unconverted_simple_return (exit_fallthru_edge, bb_flags,
6090 &unconverted_simple_returns,
6091 &returnjump);
6092 if (targetm.have_return ())
6094 if (exit_fallthru_edge == NULL)
6095 goto epilogue_done;
6097 if (optimize)
6099 basic_block last_bb = exit_fallthru_edge->src;
6101 if (LABEL_P (BB_HEAD (last_bb))
6102 && !active_insn_between (BB_HEAD (last_bb), BB_END (last_bb)))
6103 convert_jumps_to_returns (last_bb, false, vNULL);
6105 if (EDGE_COUNT (last_bb->preds) != 0
6106 && single_succ_p (last_bb))
6108 last_bb = emit_return_for_exit (exit_fallthru_edge, false);
6109 epilogue_end = returnjump = BB_END (last_bb);
6111 /* Emitting the return may add a basic block.
6112 Fix bb_flags for the added block. */
6113 if (targetm.have_simple_return ()
6114 && last_bb != exit_fallthru_edge->src)
6115 bitmap_set_bit (&bb_flags, last_bb->index);
6117 goto epilogue_done;
6122 /* A small fib -- epilogue is not yet completed, but we wish to re-use
6123 this marker for the splits of EH_RETURN patterns, and nothing else
6124 uses the flag in the meantime. */
6125 epilogue_completed = 1;
6127 /* Find non-fallthru edges that end with EH_RETURN instructions. On
6128 some targets, these get split to a special version of the epilogue
6129 code. In order to be able to properly annotate these with unwind
6130 info, try to split them now. If we get a valid split, drop an
6131 EPILOGUE_BEG note and mark the insns as epilogue insns. */
6132 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6134 rtx_insn *prev, *last, *trial;
6136 if (e->flags & EDGE_FALLTHRU)
6137 continue;
6138 last = BB_END (e->src);
6139 if (!eh_returnjump_p (last))
6140 continue;
6142 prev = PREV_INSN (last);
6143 trial = try_split (PATTERN (last), last, 1);
6144 if (trial == last)
6145 continue;
6147 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
6148 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
6151 /* If nothing falls through into the exit block, we don't need an
6152 epilogue. */
6154 if (exit_fallthru_edge == NULL)
6155 goto epilogue_done;
6157 if (targetm.have_epilogue ())
6159 start_sequence ();
6160 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
6161 rtx_insn *seq = targetm.gen_epilogue ();
6162 if (seq)
6163 emit_jump_insn (seq);
6165 /* Retain a map of the epilogue insns. */
6166 record_insns (seq, NULL, &epilogue_insn_hash);
6167 set_insn_locations (seq, epilogue_location);
6169 seq = get_insns ();
6170 returnjump = get_last_insn ();
6171 end_sequence ();
6173 insert_insn_on_edge (seq, exit_fallthru_edge);
6174 inserted = true;
6176 if (JUMP_P (returnjump))
6177 set_return_jump_label (returnjump);
6179 else
6181 basic_block cur_bb;
6183 if (! next_active_insn (BB_END (exit_fallthru_edge->src)))
6184 goto epilogue_done;
6185 /* We have a fall-through edge to the exit block, the source is not
6186 at the end of the function, and there will be an assembler epilogue
6187 at the end of the function.
6188 We can't use force_nonfallthru here, because that would try to
6189 use return. Inserting a jump 'by hand' is extremely messy, so
6190 we take advantage of cfg_layout_finalize using
6191 fixup_fallthru_exit_predecessor. */
6192 cfg_layout_initialize (0);
6193 FOR_EACH_BB_FN (cur_bb, cfun)
6194 if (cur_bb->index >= NUM_FIXED_BLOCKS
6195 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
6196 cur_bb->aux = cur_bb->next_bb;
6197 cfg_layout_finalize ();
6200 epilogue_done:
6202 default_rtl_profile ();
6204 if (inserted)
6206 sbitmap blocks;
6208 commit_edge_insertions ();
6210 /* Look for basic blocks within the prologue insns. */
6211 blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
6212 bitmap_clear (blocks);
6213 bitmap_set_bit (blocks, entry_edge->dest->index);
6214 bitmap_set_bit (blocks, orig_entry_edge->dest->index);
6215 find_many_sub_basic_blocks (blocks);
6216 sbitmap_free (blocks);
6218 /* The epilogue insns we inserted may cause the exit edge to no longer
6219 be fallthru. */
6220 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6222 if (((e->flags & EDGE_FALLTHRU) != 0)
6223 && returnjump_p (BB_END (e->src)))
6224 e->flags &= ~EDGE_FALLTHRU;
6228 if (targetm.have_simple_return ())
6229 convert_to_simple_return (entry_edge, orig_entry_edge, bb_flags,
6230 returnjump, unconverted_simple_returns);
6232 /* Emit sibling epilogues before any sibling call sites. */
6233 for (ei = ei_start (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds); (e =
6234 ei_safe_edge (ei));
6237 basic_block bb = e->src;
6238 rtx_insn *insn = BB_END (bb);
6240 if (!CALL_P (insn)
6241 || ! SIBLING_CALL_P (insn)
6242 || (targetm.have_simple_return ()
6243 && entry_edge != orig_entry_edge
6244 && !bitmap_bit_p (&bb_flags, bb->index)))
6246 ei_next (&ei);
6247 continue;
6250 if (rtx_insn *ep_seq = targetm.gen_sibcall_epilogue ())
6252 start_sequence ();
6253 emit_note (NOTE_INSN_EPILOGUE_BEG);
6254 emit_insn (ep_seq);
6255 rtx_insn *seq = get_insns ();
6256 end_sequence ();
6258 /* Retain a map of the epilogue insns. Used in life analysis to
6259 avoid getting rid of sibcall epilogue insns. Do this before we
6260 actually emit the sequence. */
6261 record_insns (seq, NULL, &epilogue_insn_hash);
6262 set_insn_locations (seq, epilogue_location);
6264 emit_insn_before (seq, insn);
6266 ei_next (&ei);
6269 if (epilogue_end)
6271 rtx_insn *insn, *next;
6273 /* Similarly, move any line notes that appear after the epilogue.
6274 There is no need, however, to be quite so anal about the existence
6275 of such a note. Also possibly move
6276 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
6277 info generation. */
6278 for (insn = epilogue_end; insn; insn = next)
6280 next = NEXT_INSN (insn);
6281 if (NOTE_P (insn)
6282 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
6283 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
6287 bitmap_clear (&bb_flags);
6289 /* Threading the prologue and epilogue changes the artificial refs
6290 in the entry and exit blocks. */
6291 epilogue_completed = 1;
6292 df_update_entry_exit_and_calls ();
6295 /* Reposition the prologue-end and epilogue-begin notes after
6296 instruction scheduling. */
6298 void
6299 reposition_prologue_and_epilogue_notes (void)
6301 if (!targetm.have_prologue ()
6302 && !targetm.have_epilogue ()
6303 && !targetm.have_sibcall_epilogue ())
6304 return;
6306 /* Since the hash table is created on demand, the fact that it is
6307 non-null is a signal that it is non-empty. */
6308 if (prologue_insn_hash != NULL)
6310 size_t len = prologue_insn_hash->elements ();
6311 rtx_insn *insn, *last = NULL, *note = NULL;
6313 /* Scan from the beginning until we reach the last prologue insn. */
6314 /* ??? While we do have the CFG intact, there are two problems:
6315 (1) The prologue can contain loops (typically probing the stack),
6316 which means that the end of the prologue isn't in the first bb.
6317 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
6318 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6320 if (NOTE_P (insn))
6322 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
6323 note = insn;
6325 else if (contains (insn, prologue_insn_hash))
6327 last = insn;
6328 if (--len == 0)
6329 break;
6333 if (last)
6335 if (note == NULL)
6337 /* Scan forward looking for the PROLOGUE_END note. It should
6338 be right at the beginning of the block, possibly with other
6339 insn notes that got moved there. */
6340 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
6342 if (NOTE_P (note)
6343 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
6344 break;
6348 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
6349 if (LABEL_P (last))
6350 last = NEXT_INSN (last);
6351 reorder_insns (note, note, last);
6355 if (epilogue_insn_hash != NULL)
6357 edge_iterator ei;
6358 edge e;
6360 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6362 rtx_insn *insn, *first = NULL, *note = NULL;
6363 basic_block bb = e->src;
6365 /* Scan from the beginning until we reach the first epilogue insn. */
6366 FOR_BB_INSNS (bb, insn)
6368 if (NOTE_P (insn))
6370 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
6372 note = insn;
6373 if (first != NULL)
6374 break;
6377 else if (first == NULL && contains (insn, epilogue_insn_hash))
6379 first = insn;
6380 if (note != NULL)
6381 break;
6385 if (note)
6387 /* If the function has a single basic block, and no real
6388 epilogue insns (e.g. sibcall with no cleanup), the
6389 epilogue note can get scheduled before the prologue
6390 note. If we have frame related prologue insns, having
6391 them scanned during the epilogue will result in a crash.
6392 In this case re-order the epilogue note to just before
6393 the last insn in the block. */
6394 if (first == NULL)
6395 first = BB_END (bb);
6397 if (PREV_INSN (first) != note)
6398 reorder_insns (note, note, PREV_INSN (first));
6404 /* Returns the name of function declared by FNDECL. */
6405 const char *
6406 fndecl_name (tree fndecl)
6408 if (fndecl == NULL)
6409 return "(nofn)";
6410 return lang_hooks.decl_printable_name (fndecl, 2);
6413 /* Returns the name of function FN. */
6414 const char *
6415 function_name (struct function *fn)
6417 tree fndecl = (fn == NULL) ? NULL : fn->decl;
6418 return fndecl_name (fndecl);
6421 /* Returns the name of the current function. */
6422 const char *
6423 current_function_name (void)
6425 return function_name (cfun);
6429 static unsigned int
6430 rest_of_handle_check_leaf_regs (void)
6432 #ifdef LEAF_REGISTERS
6433 crtl->uses_only_leaf_regs
6434 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
6435 #endif
6436 return 0;
6439 /* Insert a TYPE into the used types hash table of CFUN. */
6441 static void
6442 used_types_insert_helper (tree type, struct function *func)
6444 if (type != NULL && func != NULL)
6446 if (func->used_types_hash == NULL)
6447 func->used_types_hash = hash_set<tree>::create_ggc (37);
6449 func->used_types_hash->add (type);
6453 /* Given a type, insert it into the used hash table in cfun. */
6454 void
6455 used_types_insert (tree t)
6457 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
6458 if (TYPE_NAME (t))
6459 break;
6460 else
6461 t = TREE_TYPE (t);
6462 if (TREE_CODE (t) == ERROR_MARK)
6463 return;
6464 if (TYPE_NAME (t) == NULL_TREE
6465 || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t)))
6466 t = TYPE_MAIN_VARIANT (t);
6467 if (debug_info_level > DINFO_LEVEL_NONE)
6469 if (cfun)
6470 used_types_insert_helper (t, cfun);
6471 else
6473 /* So this might be a type referenced by a global variable.
6474 Record that type so that we can later decide to emit its
6475 debug information. */
6476 vec_safe_push (types_used_by_cur_var_decl, t);
6481 /* Helper to Hash a struct types_used_by_vars_entry. */
6483 static hashval_t
6484 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
6486 gcc_assert (entry && entry->var_decl && entry->type);
6488 return iterative_hash_object (entry->type,
6489 iterative_hash_object (entry->var_decl, 0));
6492 /* Hash function of the types_used_by_vars_entry hash table. */
6494 hashval_t
6495 used_type_hasher::hash (types_used_by_vars_entry *entry)
6497 return hash_types_used_by_vars_entry (entry);
6500 /*Equality function of the types_used_by_vars_entry hash table. */
6502 bool
6503 used_type_hasher::equal (types_used_by_vars_entry *e1,
6504 types_used_by_vars_entry *e2)
6506 return (e1->var_decl == e2->var_decl && e1->type == e2->type);
6509 /* Inserts an entry into the types_used_by_vars_hash hash table. */
6511 void
6512 types_used_by_var_decl_insert (tree type, tree var_decl)
6514 if (type != NULL && var_decl != NULL)
6516 types_used_by_vars_entry **slot;
6517 struct types_used_by_vars_entry e;
6518 e.var_decl = var_decl;
6519 e.type = type;
6520 if (types_used_by_vars_hash == NULL)
6521 types_used_by_vars_hash
6522 = hash_table<used_type_hasher>::create_ggc (37);
6524 slot = types_used_by_vars_hash->find_slot (&e, INSERT);
6525 if (*slot == NULL)
6527 struct types_used_by_vars_entry *entry;
6528 entry = ggc_alloc<types_used_by_vars_entry> ();
6529 entry->type = type;
6530 entry->var_decl = var_decl;
6531 *slot = entry;
6536 namespace {
6538 const pass_data pass_data_leaf_regs =
6540 RTL_PASS, /* type */
6541 "*leaf_regs", /* name */
6542 OPTGROUP_NONE, /* optinfo_flags */
6543 TV_NONE, /* tv_id */
6544 0, /* properties_required */
6545 0, /* properties_provided */
6546 0, /* properties_destroyed */
6547 0, /* todo_flags_start */
6548 0, /* todo_flags_finish */
6551 class pass_leaf_regs : public rtl_opt_pass
6553 public:
6554 pass_leaf_regs (gcc::context *ctxt)
6555 : rtl_opt_pass (pass_data_leaf_regs, ctxt)
6558 /* opt_pass methods: */
6559 virtual unsigned int execute (function *)
6561 return rest_of_handle_check_leaf_regs ();
6564 }; // class pass_leaf_regs
6566 } // anon namespace
6568 rtl_opt_pass *
6569 make_pass_leaf_regs (gcc::context *ctxt)
6571 return new pass_leaf_regs (ctxt);
6574 static unsigned int
6575 rest_of_handle_thread_prologue_and_epilogue (void)
6577 if (optimize)
6578 cleanup_cfg (CLEANUP_EXPENSIVE);
6580 /* On some machines, the prologue and epilogue code, or parts thereof,
6581 can be represented as RTL. Doing so lets us schedule insns between
6582 it and the rest of the code and also allows delayed branch
6583 scheduling to operate in the epilogue. */
6584 thread_prologue_and_epilogue_insns ();
6586 /* Some non-cold blocks may now be only reachable from cold blocks.
6587 Fix that up. */
6588 fixup_partitions ();
6590 /* Shrink-wrapping can result in unreachable edges in the epilogue,
6591 see PR57320. */
6592 cleanup_cfg (0);
6594 /* The stack usage info is finalized during prologue expansion. */
6595 if (flag_stack_usage_info)
6596 output_stack_usage ();
6598 return 0;
6601 namespace {
6603 const pass_data pass_data_thread_prologue_and_epilogue =
6605 RTL_PASS, /* type */
6606 "pro_and_epilogue", /* name */
6607 OPTGROUP_NONE, /* optinfo_flags */
6608 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
6609 0, /* properties_required */
6610 0, /* properties_provided */
6611 0, /* properties_destroyed */
6612 0, /* todo_flags_start */
6613 ( TODO_df_verify | TODO_df_finish ), /* todo_flags_finish */
6616 class pass_thread_prologue_and_epilogue : public rtl_opt_pass
6618 public:
6619 pass_thread_prologue_and_epilogue (gcc::context *ctxt)
6620 : rtl_opt_pass (pass_data_thread_prologue_and_epilogue, ctxt)
6623 /* opt_pass methods: */
6624 virtual unsigned int execute (function *)
6626 return rest_of_handle_thread_prologue_and_epilogue ();
6629 }; // class pass_thread_prologue_and_epilogue
6631 } // anon namespace
6633 rtl_opt_pass *
6634 make_pass_thread_prologue_and_epilogue (gcc::context *ctxt)
6636 return new pass_thread_prologue_and_epilogue (ctxt);
6640 /* This mini-pass fixes fall-out from SSA in asm statements that have
6641 in-out constraints. Say you start with
6643 orig = inout;
6644 asm ("": "+mr" (inout));
6645 use (orig);
6647 which is transformed very early to use explicit output and match operands:
6649 orig = inout;
6650 asm ("": "=mr" (inout) : "0" (inout));
6651 use (orig);
6653 Or, after SSA and copyprop,
6655 asm ("": "=mr" (inout_2) : "0" (inout_1));
6656 use (inout_1);
6658 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
6659 they represent two separate values, so they will get different pseudo
6660 registers during expansion. Then, since the two operands need to match
6661 per the constraints, but use different pseudo registers, reload can
6662 only register a reload for these operands. But reloads can only be
6663 satisfied by hardregs, not by memory, so we need a register for this
6664 reload, just because we are presented with non-matching operands.
6665 So, even though we allow memory for this operand, no memory can be
6666 used for it, just because the two operands don't match. This can
6667 cause reload failures on register-starved targets.
6669 So it's a symptom of reload not being able to use memory for reloads
6670 or, alternatively it's also a symptom of both operands not coming into
6671 reload as matching (in which case the pseudo could go to memory just
6672 fine, as the alternative allows it, and no reload would be necessary).
6673 We fix the latter problem here, by transforming
6675 asm ("": "=mr" (inout_2) : "0" (inout_1));
6677 back to
6679 inout_2 = inout_1;
6680 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
6682 static void
6683 match_asm_constraints_1 (rtx_insn *insn, rtx *p_sets, int noutputs)
6685 int i;
6686 bool changed = false;
6687 rtx op = SET_SRC (p_sets[0]);
6688 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
6689 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
6690 bool *output_matched = XALLOCAVEC (bool, noutputs);
6692 memset (output_matched, 0, noutputs * sizeof (bool));
6693 for (i = 0; i < ninputs; i++)
6695 rtx input, output;
6696 rtx_insn *insns;
6697 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
6698 char *end;
6699 int match, j;
6701 if (*constraint == '%')
6702 constraint++;
6704 match = strtoul (constraint, &end, 10);
6705 if (end == constraint)
6706 continue;
6708 gcc_assert (match < noutputs);
6709 output = SET_DEST (p_sets[match]);
6710 input = RTVEC_ELT (inputs, i);
6711 /* Only do the transformation for pseudos. */
6712 if (! REG_P (output)
6713 || rtx_equal_p (output, input)
6714 || (GET_MODE (input) != VOIDmode
6715 && GET_MODE (input) != GET_MODE (output)))
6716 continue;
6718 /* We can't do anything if the output is also used as input,
6719 as we're going to overwrite it. */
6720 for (j = 0; j < ninputs; j++)
6721 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
6722 break;
6723 if (j != ninputs)
6724 continue;
6726 /* Avoid changing the same input several times. For
6727 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
6728 only change in once (to out1), rather than changing it
6729 first to out1 and afterwards to out2. */
6730 if (i > 0)
6732 for (j = 0; j < noutputs; j++)
6733 if (output_matched[j] && input == SET_DEST (p_sets[j]))
6734 break;
6735 if (j != noutputs)
6736 continue;
6738 output_matched[match] = true;
6740 start_sequence ();
6741 emit_move_insn (output, input);
6742 insns = get_insns ();
6743 end_sequence ();
6744 emit_insn_before (insns, insn);
6746 /* Now replace all mentions of the input with output. We can't
6747 just replace the occurrence in inputs[i], as the register might
6748 also be used in some other input (or even in an address of an
6749 output), which would mean possibly increasing the number of
6750 inputs by one (namely 'output' in addition), which might pose
6751 a too complicated problem for reload to solve. E.g. this situation:
6753 asm ("" : "=r" (output), "=m" (input) : "0" (input))
6755 Here 'input' is used in two occurrences as input (once for the
6756 input operand, once for the address in the second output operand).
6757 If we would replace only the occurrence of the input operand (to
6758 make the matching) we would be left with this:
6760 output = input
6761 asm ("" : "=r" (output), "=m" (input) : "0" (output))
6763 Now we suddenly have two different input values (containing the same
6764 value, but different pseudos) where we formerly had only one.
6765 With more complicated asms this might lead to reload failures
6766 which wouldn't have happen without this pass. So, iterate over
6767 all operands and replace all occurrences of the register used. */
6768 for (j = 0; j < noutputs; j++)
6769 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
6770 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
6771 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
6772 input, output);
6773 for (j = 0; j < ninputs; j++)
6774 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
6775 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
6776 input, output);
6778 changed = true;
6781 if (changed)
6782 df_insn_rescan (insn);
6785 /* Add the decl D to the local_decls list of FUN. */
6787 void
6788 add_local_decl (struct function *fun, tree d)
6790 gcc_assert (TREE_CODE (d) == VAR_DECL);
6791 vec_safe_push (fun->local_decls, d);
6794 namespace {
6796 const pass_data pass_data_match_asm_constraints =
6798 RTL_PASS, /* type */
6799 "asmcons", /* name */
6800 OPTGROUP_NONE, /* optinfo_flags */
6801 TV_NONE, /* tv_id */
6802 0, /* properties_required */
6803 0, /* properties_provided */
6804 0, /* properties_destroyed */
6805 0, /* todo_flags_start */
6806 0, /* todo_flags_finish */
6809 class pass_match_asm_constraints : public rtl_opt_pass
6811 public:
6812 pass_match_asm_constraints (gcc::context *ctxt)
6813 : rtl_opt_pass (pass_data_match_asm_constraints, ctxt)
6816 /* opt_pass methods: */
6817 virtual unsigned int execute (function *);
6819 }; // class pass_match_asm_constraints
6821 unsigned
6822 pass_match_asm_constraints::execute (function *fun)
6824 basic_block bb;
6825 rtx_insn *insn;
6826 rtx pat, *p_sets;
6827 int noutputs;
6829 if (!crtl->has_asm_statement)
6830 return 0;
6832 df_set_flags (DF_DEFER_INSN_RESCAN);
6833 FOR_EACH_BB_FN (bb, fun)
6835 FOR_BB_INSNS (bb, insn)
6837 if (!INSN_P (insn))
6838 continue;
6840 pat = PATTERN (insn);
6841 if (GET_CODE (pat) == PARALLEL)
6842 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
6843 else if (GET_CODE (pat) == SET)
6844 p_sets = &PATTERN (insn), noutputs = 1;
6845 else
6846 continue;
6848 if (GET_CODE (*p_sets) == SET
6849 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
6850 match_asm_constraints_1 (insn, p_sets, noutputs);
6854 return TODO_df_finish;
6857 } // anon namespace
6859 rtl_opt_pass *
6860 make_pass_match_asm_constraints (gcc::context *ctxt)
6862 return new pass_match_asm_constraints (ctxt);
6866 #include "gt-function.h"