1 /* Functions to support general ended bitmaps.
2 Copyright (C) 1997-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
23 /* Implementation of sparse integer sets as a linked list.
25 This sparse set representation is suitable for sparse sets with an
26 unknown (a priori) universe. The set is represented as a double-linked
27 list of container nodes (struct bitmap_element). Each node consists
28 of an index for the first member that could be held in the container,
29 a small array of integers that represent the members in the container,
30 and pointers to the next and previous element in the linked list. The
31 elements in the list are sorted in ascending order, i.e. the head of
32 the list holds the element with the smallest member of the set.
34 For a given member I in the set:
35 - the element for I will have index is I / (bits per element)
36 - the position for I within element is I % (bits per element)
38 This representation is very space-efficient for large sparse sets, and
39 the size of the set can be changed dynamically without much overhead.
40 An important parameter is the number of bits per element. In this
41 implementation, there are 128 bits per element. This results in a
42 high storage overhead *per element*, but a small overall overhead if
43 the set is very sparse.
45 The downside is that many operations are relatively slow because the
46 linked list has to be traversed to test membership (i.e. member_p/
47 add_member/remove_member). To improve the performance of this set
48 representation, the last accessed element and its index are cached.
49 For membership tests on members close to recently accessed members,
50 the cached last element improves membership test to a constant-time
53 The following operations can always be performed in O(1) time:
55 * clear : bitmap_clear
56 * choose_one : (not implemented, but could be
57 implemented in constant time)
59 The following operations can be performed in O(E) time worst-case (with
60 E the number of elements in the linked list), but in O(1) time with a
61 suitable access patterns:
63 * member_p : bitmap_bit_p
64 * add_member : bitmap_set_bit
65 * remove_member : bitmap_clear_bit
67 The following operations can be performed in O(E) time:
69 * cardinality : bitmap_count_bits
70 * set_size : bitmap_last_set_bit (but this could
71 in constant time with a pointer to
72 the last element in the chain)
74 Additionally, the linked-list sparse set representation supports
75 enumeration of the members in O(E) time:
77 * forall : EXECUTE_IF_SET_IN_BITMAP
78 * set_copy : bitmap_copy
79 * set_intersection : bitmap_intersect_p /
80 bitmap_and / bitmap_and_into /
81 EXECUTE_IF_AND_IN_BITMAP
82 * set_union : bitmap_ior / bitmap_ior_into
83 * set_difference : bitmap_intersect_compl_p /
84 bitmap_and_comp / bitmap_and_comp_into /
85 EXECUTE_IF_AND_COMPL_IN_BITMAP
86 * set_disjuction : bitmap_xor_comp / bitmap_xor_comp_into
87 * set_compare : bitmap_equal_p
89 Some operations on 3 sets that occur frequently in data flow problems
92 * A | (B & C) : bitmap_ior_and_into
93 * A | (B & ~C) : bitmap_ior_and_compl /
94 bitmap_ior_and_compl_into
96 The storage requirements for linked-list sparse sets are O(E), with E->N
97 in the worst case (a sparse set with large distances between the values
100 The linked-list set representation works well for problems involving very
101 sparse sets. The canonical example in GCC is, of course, the "set of
102 sets" for some CFG-based data flow problems (liveness analysis, dominance
105 This representation also works well for data flow problems where the size
106 of the set may grow dynamically, but care must be taken that the member_p,
107 add_member, and remove_member operations occur with a suitable access
110 For random-access sets with a known, relatively small universe size, the
111 SparseSet or simple bitmap representations may be more efficient than a
112 linked-list set. For random-access sets of unknown universe, a hash table
113 or a balanced binary tree representation is likely to be a more suitable
116 Traversing linked lists is usually cache-unfriendly, even with the last
117 accessed element cached.
119 Cache performance can be improved by keeping the elements in the set
120 grouped together in memory, using a dedicated obstack for a set (or group
121 of related sets). Elements allocated on obstacks are released to a
122 free-list and taken off the free list. If multiple sets are allocated on
123 the same obstack, elements freed from one set may be re-used for one of
124 the other sets. This usually helps avoid cache misses.
126 A single free-list is used for all sets allocated in GGC space. This is
127 bad for persistent sets, so persistent sets should be allocated on an
128 obstack whenever possible. */
132 /* Bitmap memory usage. */
133 struct bitmap_usage
: public mem_usage
135 /* Default contructor. */
136 bitmap_usage (): m_nsearches (0), m_search_iter (0) {}
138 bitmap_usage (size_t allocated
, size_t times
, size_t peak
,
139 uint64_t nsearches
, uint64_t search_iter
)
140 : mem_usage (allocated
, times
, peak
),
141 m_nsearches (nsearches
), m_search_iter (search_iter
) {}
143 /* Sum the usage with SECOND usage. */
145 operator+ (const bitmap_usage
&second
)
147 return bitmap_usage (m_allocated
+ second
.m_allocated
,
148 m_times
+ second
.m_times
,
149 m_peak
+ second
.m_peak
,
150 m_nsearches
+ second
.m_nsearches
,
151 m_search_iter
+ second
.m_search_iter
);
154 /* Dump usage coupled to LOC location, where TOTAL is sum of all rows. */
156 dump (mem_location
*loc
, mem_usage
&total
) const
158 char *location_string
= loc
->to_string ();
160 fprintf (stderr
, "%-48s %10li:%5.1f%%%10li%10li:%5.1f%%%12li%12li%10s\n",
162 (long)m_allocated
, get_percent (m_allocated
, total
.m_allocated
),
163 (long)m_peak
, (long)m_times
,
164 get_percent (m_times
, total
.m_times
),
165 (long)m_nsearches
, (long)m_search_iter
,
166 loc
->m_ggc
? "ggc" : "heap");
168 free (location_string
);
171 /* Dump header with NAME. */
173 dump_header (const char *name
)
175 fprintf (stderr
, "%-48s %11s%16s%17s%12s%12s%10s\n", name
, "Leak", "Peak",
176 "Times", "N searches", "Search iter", "Type");
180 /* Number search operations. */
181 uint64_t m_nsearches
;
182 /* Number of search iterations. */
183 uint64_t m_search_iter
;
186 /* Bitmap memory description. */
187 extern mem_alloc_description
<bitmap_usage
> bitmap_mem_desc
;
189 /* Fundamental storage type for bitmap. */
191 typedef unsigned long BITMAP_WORD
;
192 /* BITMAP_WORD_BITS needs to be unsigned, but cannot contain casts as
193 it is used in preprocessor directives -- hence the 1u. */
194 #define BITMAP_WORD_BITS (CHAR_BIT * SIZEOF_LONG * 1u)
196 /* Number of words to use for each element in the linked list. */
198 #ifndef BITMAP_ELEMENT_WORDS
199 #define BITMAP_ELEMENT_WORDS ((128 + BITMAP_WORD_BITS - 1) / BITMAP_WORD_BITS)
202 /* Number of bits in each actual element of a bitmap. */
204 #define BITMAP_ELEMENT_ALL_BITS (BITMAP_ELEMENT_WORDS * BITMAP_WORD_BITS)
206 /* Obstack for allocating bitmaps and elements from. */
207 struct GTY (()) bitmap_obstack
{
208 struct bitmap_element
*elements
;
209 struct bitmap_head
*heads
;
210 struct obstack
GTY ((skip
)) obstack
;
213 /* Bitmap set element. We use a linked list to hold only the bits that
214 are set. This allows for use to grow the bitset dynamically without
215 having to realloc and copy a giant bit array.
217 The free list is implemented as a list of lists. There is one
218 outer list connected together by prev fields. Each element of that
219 outer is an inner list (that may consist only of the outer list
220 element) that are connected by the next fields. The prev pointer
221 is undefined for interior elements. This allows
222 bitmap_elt_clear_from to be implemented in unit time rather than
223 linear in the number of elements to be freed. */
225 struct GTY((chain_next ("%h.next"), chain_prev ("%h.prev"))) bitmap_element
{
226 struct bitmap_element
*next
; /* Next element. */
227 struct bitmap_element
*prev
; /* Previous element. */
228 unsigned int indx
; /* regno/BITMAP_ELEMENT_ALL_BITS. */
229 BITMAP_WORD bits
[BITMAP_ELEMENT_WORDS
]; /* Bits that are set. */
232 /* Head of bitmap linked list. The 'current' member points to something
233 already pointed to by the chain started by first, so GTY((skip)) it. */
235 struct GTY(()) bitmap_head
{
236 unsigned int indx
; /* Index of last element looked at. */
237 unsigned int descriptor_id
; /* Unique identifier for the allocation
238 site of this bitmap, for detailed
239 statistics gathering. */
240 bitmap_element
*first
; /* First element in linked list. */
241 bitmap_element
* GTY((skip(""))) current
; /* Last element looked at. */
242 bitmap_obstack
*obstack
; /* Obstack to allocate elements from.
243 If NULL, then use GGC allocation. */
247 extern bitmap_element bitmap_zero_bits
; /* Zero bitmap element */
248 extern bitmap_obstack bitmap_default_obstack
; /* Default bitmap obstack */
250 /* Clear a bitmap by freeing up the linked list. */
251 extern void bitmap_clear (bitmap
);
253 /* Copy a bitmap to another bitmap. */
254 extern void bitmap_copy (bitmap
, const_bitmap
);
256 /* True if two bitmaps are identical. */
257 extern bool bitmap_equal_p (const_bitmap
, const_bitmap
);
259 /* True if the bitmaps intersect (their AND is non-empty). */
260 extern bool bitmap_intersect_p (const_bitmap
, const_bitmap
);
262 /* True if the complement of the second intersects the first (their
263 AND_COMPL is non-empty). */
264 extern bool bitmap_intersect_compl_p (const_bitmap
, const_bitmap
);
266 /* True if MAP is an empty bitmap. */
267 inline bool bitmap_empty_p (const_bitmap map
)
272 /* True if the bitmap has only a single bit set. */
273 extern bool bitmap_single_bit_set_p (const_bitmap
);
275 /* Count the number of bits set in the bitmap. */
276 extern unsigned long bitmap_count_bits (const_bitmap
);
278 /* Boolean operations on bitmaps. The _into variants are two operand
279 versions that modify the first source operand. The other variants
280 are three operand versions that to not destroy the source bitmaps.
281 The operations supported are &, & ~, |, ^. */
282 extern void bitmap_and (bitmap
, const_bitmap
, const_bitmap
);
283 extern bool bitmap_and_into (bitmap
, const_bitmap
);
284 extern bool bitmap_and_compl (bitmap
, const_bitmap
, const_bitmap
);
285 extern bool bitmap_and_compl_into (bitmap
, const_bitmap
);
286 #define bitmap_compl_and(DST, A, B) bitmap_and_compl (DST, B, A)
287 extern void bitmap_compl_and_into (bitmap
, const_bitmap
);
288 extern void bitmap_clear_range (bitmap
, unsigned int, unsigned int);
289 extern void bitmap_set_range (bitmap
, unsigned int, unsigned int);
290 extern bool bitmap_ior (bitmap
, const_bitmap
, const_bitmap
);
291 extern bool bitmap_ior_into (bitmap
, const_bitmap
);
292 extern void bitmap_xor (bitmap
, const_bitmap
, const_bitmap
);
293 extern void bitmap_xor_into (bitmap
, const_bitmap
);
295 /* DST = A | (B & C). Return true if DST changes. */
296 extern bool bitmap_ior_and_into (bitmap DST
, const_bitmap B
, const_bitmap C
);
297 /* DST = A | (B & ~C). Return true if DST changes. */
298 extern bool bitmap_ior_and_compl (bitmap DST
, const_bitmap A
,
299 const_bitmap B
, const_bitmap C
);
300 /* A |= (B & ~C). Return true if A changes. */
301 extern bool bitmap_ior_and_compl_into (bitmap A
,
302 const_bitmap B
, const_bitmap C
);
304 /* Clear a single bit in a bitmap. Return true if the bit changed. */
305 extern bool bitmap_clear_bit (bitmap
, int);
307 /* Set a single bit in a bitmap. Return true if the bit changed. */
308 extern bool bitmap_set_bit (bitmap
, int);
310 /* Return true if a register is set in a register set. */
311 extern int bitmap_bit_p (bitmap
, int);
313 /* Debug functions to print a bitmap linked list. */
314 extern void debug_bitmap (const_bitmap
);
315 extern void debug_bitmap_file (FILE *, const_bitmap
);
317 /* Print a bitmap. */
318 extern void bitmap_print (FILE *, const_bitmap
, const char *, const char *);
320 /* Initialize and release a bitmap obstack. */
321 extern void bitmap_obstack_initialize (bitmap_obstack
*);
322 extern void bitmap_obstack_release (bitmap_obstack
*);
323 extern void bitmap_register (bitmap MEM_STAT_DECL
);
324 extern void dump_bitmap_statistics (void);
326 /* Initialize a bitmap header. OBSTACK indicates the bitmap obstack
327 to allocate from, NULL for GC'd bitmap. */
330 bitmap_initialize_stat (bitmap head
, bitmap_obstack
*obstack MEM_STAT_DECL
)
332 head
->first
= head
->current
= NULL
;
333 head
->obstack
= obstack
;
334 if (GATHER_STATISTICS
)
335 bitmap_register (head PASS_MEM_STAT
);
337 #define bitmap_initialize(h,o) bitmap_initialize_stat (h,o MEM_STAT_INFO)
339 /* Allocate and free bitmaps from obstack, malloc and gc'd memory. */
340 extern bitmap
bitmap_obstack_alloc_stat (bitmap_obstack
*obstack MEM_STAT_DECL
);
341 #define bitmap_obstack_alloc(t) bitmap_obstack_alloc_stat (t MEM_STAT_INFO)
342 extern bitmap
bitmap_gc_alloc_stat (ALONE_MEM_STAT_DECL
);
343 #define bitmap_gc_alloc() bitmap_gc_alloc_stat (ALONE_MEM_STAT_INFO)
344 extern void bitmap_obstack_free (bitmap
);
346 /* A few compatibility/functions macros for compatibility with sbitmaps */
347 inline void dump_bitmap (FILE *file
, const_bitmap map
)
349 bitmap_print (file
, map
, "", "\n");
351 extern void debug (const bitmap_head
&ref
);
352 extern void debug (const bitmap_head
*ptr
);
354 extern unsigned bitmap_first_set_bit (const_bitmap
);
355 extern unsigned bitmap_last_set_bit (const_bitmap
);
357 /* Compute bitmap hash (for purposes of hashing etc.) */
358 extern hashval_t
bitmap_hash (const_bitmap
);
360 /* Allocate a bitmap from a bit obstack. */
361 #define BITMAP_ALLOC(OBSTACK) bitmap_obstack_alloc (OBSTACK)
363 /* Allocate a gc'd bitmap. */
364 #define BITMAP_GGC_ALLOC() bitmap_gc_alloc ()
366 /* Do any cleanup needed on a bitmap when it is no longer used. */
367 #define BITMAP_FREE(BITMAP) \
368 ((void) (bitmap_obstack_free ((bitmap) BITMAP), (BITMAP) = (bitmap) NULL))
370 /* Iterator for bitmaps. */
372 struct bitmap_iterator
374 /* Pointer to the current bitmap element. */
375 bitmap_element
*elt1
;
377 /* Pointer to 2nd bitmap element when two are involved. */
378 bitmap_element
*elt2
;
380 /* Word within the current element. */
383 /* Contents of the actually processed word. When finding next bit
384 it is shifted right, so that the actual bit is always the least
385 significant bit of ACTUAL. */
389 /* Initialize a single bitmap iterator. START_BIT is the first bit to
393 bmp_iter_set_init (bitmap_iterator
*bi
, const_bitmap map
,
394 unsigned start_bit
, unsigned *bit_no
)
396 bi
->elt1
= map
->first
;
399 /* Advance elt1 until it is not before the block containing start_bit. */
404 bi
->elt1
= &bitmap_zero_bits
;
408 if (bi
->elt1
->indx
>= start_bit
/ BITMAP_ELEMENT_ALL_BITS
)
410 bi
->elt1
= bi
->elt1
->next
;
413 /* We might have gone past the start bit, so reinitialize it. */
414 if (bi
->elt1
->indx
!= start_bit
/ BITMAP_ELEMENT_ALL_BITS
)
415 start_bit
= bi
->elt1
->indx
* BITMAP_ELEMENT_ALL_BITS
;
417 /* Initialize for what is now start_bit. */
418 bi
->word_no
= start_bit
/ BITMAP_WORD_BITS
% BITMAP_ELEMENT_WORDS
;
419 bi
->bits
= bi
->elt1
->bits
[bi
->word_no
];
420 bi
->bits
>>= start_bit
% BITMAP_WORD_BITS
;
422 /* If this word is zero, we must make sure we're not pointing at the
423 first bit, otherwise our incrementing to the next word boundary
424 will fail. It won't matter if this increment moves us into the
426 start_bit
+= !bi
->bits
;
431 /* Initialize an iterator to iterate over the intersection of two
432 bitmaps. START_BIT is the bit to commence from. */
435 bmp_iter_and_init (bitmap_iterator
*bi
, const_bitmap map1
, const_bitmap map2
,
436 unsigned start_bit
, unsigned *bit_no
)
438 bi
->elt1
= map1
->first
;
439 bi
->elt2
= map2
->first
;
441 /* Advance elt1 until it is not before the block containing
451 if (bi
->elt1
->indx
>= start_bit
/ BITMAP_ELEMENT_ALL_BITS
)
453 bi
->elt1
= bi
->elt1
->next
;
456 /* Advance elt2 until it is not before elt1. */
461 bi
->elt1
= bi
->elt2
= &bitmap_zero_bits
;
465 if (bi
->elt2
->indx
>= bi
->elt1
->indx
)
467 bi
->elt2
= bi
->elt2
->next
;
470 /* If we're at the same index, then we have some intersecting bits. */
471 if (bi
->elt1
->indx
== bi
->elt2
->indx
)
473 /* We might have advanced beyond the start_bit, so reinitialize
475 if (bi
->elt1
->indx
!= start_bit
/ BITMAP_ELEMENT_ALL_BITS
)
476 start_bit
= bi
->elt1
->indx
* BITMAP_ELEMENT_ALL_BITS
;
478 bi
->word_no
= start_bit
/ BITMAP_WORD_BITS
% BITMAP_ELEMENT_WORDS
;
479 bi
->bits
= bi
->elt1
->bits
[bi
->word_no
] & bi
->elt2
->bits
[bi
->word_no
];
480 bi
->bits
>>= start_bit
% BITMAP_WORD_BITS
;
484 /* Otherwise we must immediately advance elt1, so initialize for
486 bi
->word_no
= BITMAP_ELEMENT_WORDS
- 1;
490 /* If this word is zero, we must make sure we're not pointing at the
491 first bit, otherwise our incrementing to the next word boundary
492 will fail. It won't matter if this increment moves us into the
494 start_bit
+= !bi
->bits
;
499 /* Initialize an iterator to iterate over the bits in MAP1 & ~MAP2.
503 bmp_iter_and_compl_init (bitmap_iterator
*bi
,
504 const_bitmap map1
, const_bitmap map2
,
505 unsigned start_bit
, unsigned *bit_no
)
507 bi
->elt1
= map1
->first
;
508 bi
->elt2
= map2
->first
;
510 /* Advance elt1 until it is not before the block containing start_bit. */
515 bi
->elt1
= &bitmap_zero_bits
;
519 if (bi
->elt1
->indx
>= start_bit
/ BITMAP_ELEMENT_ALL_BITS
)
521 bi
->elt1
= bi
->elt1
->next
;
524 /* Advance elt2 until it is not before elt1. */
525 while (bi
->elt2
&& bi
->elt2
->indx
< bi
->elt1
->indx
)
526 bi
->elt2
= bi
->elt2
->next
;
528 /* We might have advanced beyond the start_bit, so reinitialize for
530 if (bi
->elt1
->indx
!= start_bit
/ BITMAP_ELEMENT_ALL_BITS
)
531 start_bit
= bi
->elt1
->indx
* BITMAP_ELEMENT_ALL_BITS
;
533 bi
->word_no
= start_bit
/ BITMAP_WORD_BITS
% BITMAP_ELEMENT_WORDS
;
534 bi
->bits
= bi
->elt1
->bits
[bi
->word_no
];
535 if (bi
->elt2
&& bi
->elt1
->indx
== bi
->elt2
->indx
)
536 bi
->bits
&= ~bi
->elt2
->bits
[bi
->word_no
];
537 bi
->bits
>>= start_bit
% BITMAP_WORD_BITS
;
539 /* If this word is zero, we must make sure we're not pointing at the
540 first bit, otherwise our incrementing to the next word boundary
541 will fail. It won't matter if this increment moves us into the
543 start_bit
+= !bi
->bits
;
548 /* Advance to the next bit in BI. We don't advance to the next
552 bmp_iter_next (bitmap_iterator
*bi
, unsigned *bit_no
)
558 /* Advance to first set bit in BI. */
561 bmp_iter_next_bit (bitmap_iterator
* bi
, unsigned *bit_no
)
563 #if (GCC_VERSION >= 3004)
565 unsigned int n
= __builtin_ctzl (bi
->bits
);
566 gcc_assert (sizeof (unsigned long) == sizeof (BITMAP_WORD
));
571 while (!(bi
->bits
& 1))
579 /* Advance to the next nonzero bit of a single bitmap, we will have
580 already advanced past the just iterated bit. Return true if there
581 is a bit to iterate. */
584 bmp_iter_set (bitmap_iterator
*bi
, unsigned *bit_no
)
586 /* If our current word is nonzero, it contains the bit we want. */
590 bmp_iter_next_bit (bi
, bit_no
);
594 /* Round up to the word boundary. We might have just iterated past
595 the end of the last word, hence the -1. It is not possible for
596 bit_no to point at the beginning of the now last word. */
597 *bit_no
= ((*bit_no
+ BITMAP_WORD_BITS
- 1)
598 / BITMAP_WORD_BITS
* BITMAP_WORD_BITS
);
603 /* Find the next nonzero word in this elt. */
604 while (bi
->word_no
!= BITMAP_ELEMENT_WORDS
)
606 bi
->bits
= bi
->elt1
->bits
[bi
->word_no
];
609 *bit_no
+= BITMAP_WORD_BITS
;
613 /* Advance to the next element. */
614 bi
->elt1
= bi
->elt1
->next
;
617 *bit_no
= bi
->elt1
->indx
* BITMAP_ELEMENT_ALL_BITS
;
622 /* Advance to the next nonzero bit of an intersecting pair of
623 bitmaps. We will have already advanced past the just iterated bit.
624 Return true if there is a bit to iterate. */
627 bmp_iter_and (bitmap_iterator
*bi
, unsigned *bit_no
)
629 /* If our current word is nonzero, it contains the bit we want. */
633 bmp_iter_next_bit (bi
, bit_no
);
637 /* Round up to the word boundary. We might have just iterated past
638 the end of the last word, hence the -1. It is not possible for
639 bit_no to point at the beginning of the now last word. */
640 *bit_no
= ((*bit_no
+ BITMAP_WORD_BITS
- 1)
641 / BITMAP_WORD_BITS
* BITMAP_WORD_BITS
);
646 /* Find the next nonzero word in this elt. */
647 while (bi
->word_no
!= BITMAP_ELEMENT_WORDS
)
649 bi
->bits
= bi
->elt1
->bits
[bi
->word_no
] & bi
->elt2
->bits
[bi
->word_no
];
652 *bit_no
+= BITMAP_WORD_BITS
;
656 /* Advance to the next identical element. */
659 /* Advance elt1 while it is less than elt2. We always want
660 to advance one elt. */
663 bi
->elt1
= bi
->elt1
->next
;
667 while (bi
->elt1
->indx
< bi
->elt2
->indx
);
669 /* Advance elt2 to be no less than elt1. This might not
671 while (bi
->elt2
->indx
< bi
->elt1
->indx
)
673 bi
->elt2
= bi
->elt2
->next
;
678 while (bi
->elt1
->indx
!= bi
->elt2
->indx
);
680 *bit_no
= bi
->elt1
->indx
* BITMAP_ELEMENT_ALL_BITS
;
685 /* Advance to the next nonzero bit in the intersection of
686 complemented bitmaps. We will have already advanced past the just
690 bmp_iter_and_compl (bitmap_iterator
*bi
, unsigned *bit_no
)
692 /* If our current word is nonzero, it contains the bit we want. */
696 bmp_iter_next_bit (bi
, bit_no
);
700 /* Round up to the word boundary. We might have just iterated past
701 the end of the last word, hence the -1. It is not possible for
702 bit_no to point at the beginning of the now last word. */
703 *bit_no
= ((*bit_no
+ BITMAP_WORD_BITS
- 1)
704 / BITMAP_WORD_BITS
* BITMAP_WORD_BITS
);
709 /* Find the next nonzero word in this elt. */
710 while (bi
->word_no
!= BITMAP_ELEMENT_WORDS
)
712 bi
->bits
= bi
->elt1
->bits
[bi
->word_no
];
713 if (bi
->elt2
&& bi
->elt2
->indx
== bi
->elt1
->indx
)
714 bi
->bits
&= ~bi
->elt2
->bits
[bi
->word_no
];
717 *bit_no
+= BITMAP_WORD_BITS
;
721 /* Advance to the next element of elt1. */
722 bi
->elt1
= bi
->elt1
->next
;
726 /* Advance elt2 until it is no less than elt1. */
727 while (bi
->elt2
&& bi
->elt2
->indx
< bi
->elt1
->indx
)
728 bi
->elt2
= bi
->elt2
->next
;
730 *bit_no
= bi
->elt1
->indx
* BITMAP_ELEMENT_ALL_BITS
;
735 /* Loop over all bits set in BITMAP, starting with MIN and setting
736 BITNUM to the bit number. ITER is a bitmap iterator. BITNUM
737 should be treated as a read-only variable as it contains loop
740 #ifndef EXECUTE_IF_SET_IN_BITMAP
741 /* See sbitmap.h for the other definition of EXECUTE_IF_SET_IN_BITMAP. */
742 #define EXECUTE_IF_SET_IN_BITMAP(BITMAP, MIN, BITNUM, ITER) \
743 for (bmp_iter_set_init (&(ITER), (BITMAP), (MIN), &(BITNUM)); \
744 bmp_iter_set (&(ITER), &(BITNUM)); \
745 bmp_iter_next (&(ITER), &(BITNUM)))
748 /* Loop over all the bits set in BITMAP1 & BITMAP2, starting with MIN
749 and setting BITNUM to the bit number. ITER is a bitmap iterator.
750 BITNUM should be treated as a read-only variable as it contains
753 #define EXECUTE_IF_AND_IN_BITMAP(BITMAP1, BITMAP2, MIN, BITNUM, ITER) \
754 for (bmp_iter_and_init (&(ITER), (BITMAP1), (BITMAP2), (MIN), \
756 bmp_iter_and (&(ITER), &(BITNUM)); \
757 bmp_iter_next (&(ITER), &(BITNUM)))
759 /* Loop over all the bits set in BITMAP1 & ~BITMAP2, starting with MIN
760 and setting BITNUM to the bit number. ITER is a bitmap iterator.
761 BITNUM should be treated as a read-only variable as it contains
764 #define EXECUTE_IF_AND_COMPL_IN_BITMAP(BITMAP1, BITMAP2, MIN, BITNUM, ITER) \
765 for (bmp_iter_and_compl_init (&(ITER), (BITMAP1), (BITMAP2), (MIN), \
767 bmp_iter_and_compl (&(ITER), &(BITNUM)); \
768 bmp_iter_next (&(ITER), &(BITNUM)))
770 #endif /* GCC_BITMAP_H */