1 /* Exception handling semantics and decomposition for trees.
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
29 #include "pointer-set.h"
30 #include "tree-flow.h"
31 #include "tree-dump.h"
32 #include "tree-inline.h"
33 #include "tree-iterator.h"
34 #include "tree-pass.h"
36 #include "langhooks.h"
38 #include "diagnostic-core.h"
42 /* In some instances a tree and a gimple need to be stored in a same table,
43 i.e. in hash tables. This is a structure to do this. */
44 typedef union {tree
*tp
; tree t
; gimple g
;} treemple
;
46 /* Nonzero if we are using EH to handle cleanups. */
47 static int using_eh_for_cleanups_p
= 0;
50 using_eh_for_cleanups (void)
52 using_eh_for_cleanups_p
= 1;
55 /* Misc functions used in this file. */
57 /* Compare and hash for any structure which begins with a canonical
58 pointer. Assumes all pointers are interchangeable, which is sort
59 of already assumed by gcc elsewhere IIRC. */
62 struct_ptr_eq (const void *a
, const void *b
)
64 const void * const * x
= (const void * const *) a
;
65 const void * const * y
= (const void * const *) b
;
70 struct_ptr_hash (const void *a
)
72 const void * const * x
= (const void * const *) a
;
73 return (size_t)*x
>> 4;
77 /* Remember and lookup EH landing pad data for arbitrary statements.
78 Really this means any statement that could_throw_p. We could
79 stuff this information into the stmt_ann data structure, but:
81 (1) We absolutely rely on this information being kept until
82 we get to rtl. Once we're done with lowering here, if we lose
83 the information there's no way to recover it!
85 (2) There are many more statements that *cannot* throw as
86 compared to those that can. We should be saving some amount
87 of space by only allocating memory for those that can throw. */
89 /* Add statement T in function IFUN to landing pad NUM. */
92 add_stmt_to_eh_lp_fn (struct function
*ifun
, gimple t
, int num
)
94 struct throw_stmt_node
*n
;
97 gcc_assert (num
!= 0);
99 n
= ggc_alloc_throw_stmt_node ();
103 if (!get_eh_throw_stmt_table (ifun
))
104 set_eh_throw_stmt_table (ifun
, htab_create_ggc (31, struct_ptr_hash
,
108 slot
= htab_find_slot (get_eh_throw_stmt_table (ifun
), n
, INSERT
);
113 /* Add statement T in the current function (cfun) to EH landing pad NUM. */
116 add_stmt_to_eh_lp (gimple t
, int num
)
118 add_stmt_to_eh_lp_fn (cfun
, t
, num
);
121 /* Add statement T to the single EH landing pad in REGION. */
124 record_stmt_eh_region (eh_region region
, gimple t
)
128 if (region
->type
== ERT_MUST_NOT_THROW
)
129 add_stmt_to_eh_lp_fn (cfun
, t
, -region
->index
);
132 eh_landing_pad lp
= region
->landing_pads
;
134 lp
= gen_eh_landing_pad (region
);
136 gcc_assert (lp
->next_lp
== NULL
);
137 add_stmt_to_eh_lp_fn (cfun
, t
, lp
->index
);
142 /* Remove statement T in function IFUN from its EH landing pad. */
145 remove_stmt_from_eh_lp_fn (struct function
*ifun
, gimple t
)
147 struct throw_stmt_node dummy
;
150 if (!get_eh_throw_stmt_table (ifun
))
154 slot
= htab_find_slot (get_eh_throw_stmt_table (ifun
), &dummy
,
158 htab_clear_slot (get_eh_throw_stmt_table (ifun
), slot
);
166 /* Remove statement T in the current function (cfun) from its
170 remove_stmt_from_eh_lp (gimple t
)
172 return remove_stmt_from_eh_lp_fn (cfun
, t
);
175 /* Determine if statement T is inside an EH region in function IFUN.
176 Positive numbers indicate a landing pad index; negative numbers
177 indicate a MUST_NOT_THROW region index; zero indicates that the
178 statement is not recorded in the region table. */
181 lookup_stmt_eh_lp_fn (struct function
*ifun
, gimple t
)
183 struct throw_stmt_node
*p
, n
;
185 if (ifun
->eh
->throw_stmt_table
== NULL
)
189 p
= (struct throw_stmt_node
*) htab_find (ifun
->eh
->throw_stmt_table
, &n
);
190 return p
? p
->lp_nr
: 0;
193 /* Likewise, but always use the current function. */
196 lookup_stmt_eh_lp (gimple t
)
198 /* We can get called from initialized data when -fnon-call-exceptions
199 is on; prevent crash. */
202 return lookup_stmt_eh_lp_fn (cfun
, t
);
205 /* First pass of EH node decomposition. Build up a tree of GIMPLE_TRY_FINALLY
206 nodes and LABEL_DECL nodes. We will use this during the second phase to
207 determine if a goto leaves the body of a TRY_FINALLY_EXPR node. */
209 struct finally_tree_node
211 /* When storing a GIMPLE_TRY, we have to record a gimple. However
212 when deciding whether a GOTO to a certain LABEL_DECL (which is a
213 tree) leaves the TRY block, its necessary to record a tree in
214 this field. Thus a treemple is used. */
219 /* Note that this table is *not* marked GTY. It is short-lived. */
220 static htab_t finally_tree
;
223 record_in_finally_tree (treemple child
, gimple parent
)
225 struct finally_tree_node
*n
;
228 n
= XNEW (struct finally_tree_node
);
232 slot
= htab_find_slot (finally_tree
, n
, INSERT
);
238 collect_finally_tree (gimple stmt
, gimple region
);
240 /* Go through the gimple sequence. Works with collect_finally_tree to
241 record all GIMPLE_LABEL and GIMPLE_TRY statements. */
244 collect_finally_tree_1 (gimple_seq seq
, gimple region
)
246 gimple_stmt_iterator gsi
;
248 for (gsi
= gsi_start (seq
); !gsi_end_p (gsi
); gsi_next (&gsi
))
249 collect_finally_tree (gsi_stmt (gsi
), region
);
253 collect_finally_tree (gimple stmt
, gimple region
)
257 switch (gimple_code (stmt
))
260 temp
.t
= gimple_label_label (stmt
);
261 record_in_finally_tree (temp
, region
);
265 if (gimple_try_kind (stmt
) == GIMPLE_TRY_FINALLY
)
268 record_in_finally_tree (temp
, region
);
269 collect_finally_tree_1 (gimple_try_eval (stmt
), stmt
);
270 collect_finally_tree_1 (gimple_try_cleanup (stmt
), region
);
272 else if (gimple_try_kind (stmt
) == GIMPLE_TRY_CATCH
)
274 collect_finally_tree_1 (gimple_try_eval (stmt
), region
);
275 collect_finally_tree_1 (gimple_try_cleanup (stmt
), region
);
280 collect_finally_tree_1 (gimple_catch_handler (stmt
), region
);
283 case GIMPLE_EH_FILTER
:
284 collect_finally_tree_1 (gimple_eh_filter_failure (stmt
), region
);
288 /* A type, a decl, or some kind of statement that we're not
289 interested in. Don't walk them. */
295 /* Use the finally tree to determine if a jump from START to TARGET
296 would leave the try_finally node that START lives in. */
299 outside_finally_tree (treemple start
, gimple target
)
301 struct finally_tree_node n
, *p
;
306 p
= (struct finally_tree_node
*) htab_find (finally_tree
, &n
);
311 while (start
.g
!= target
);
316 /* Second pass of EH node decomposition. Actually transform the GIMPLE_TRY
317 nodes into a set of gotos, magic labels, and eh regions.
318 The eh region creation is straight-forward, but frobbing all the gotos
319 and such into shape isn't. */
321 /* The sequence into which we record all EH stuff. This will be
322 placed at the end of the function when we're all done. */
323 static gimple_seq eh_seq
;
325 /* Record whether an EH region contains something that can throw,
326 indexed by EH region number. */
327 static bitmap eh_region_may_contain_throw_map
;
329 /* The GOTO_QUEUE is is an array of GIMPLE_GOTO and GIMPLE_RETURN
330 statements that are seen to escape this GIMPLE_TRY_FINALLY node.
331 The idea is to record a gimple statement for everything except for
332 the conditionals, which get their labels recorded. Since labels are
333 of type 'tree', we need this node to store both gimple and tree
334 objects. REPL_STMT is the sequence used to replace the goto/return
335 statement. CONT_STMT is used to store the statement that allows
336 the return/goto to jump to the original destination. */
338 struct goto_queue_node
341 gimple_seq repl_stmt
;
344 /* This is used when index >= 0 to indicate that stmt is a label (as
345 opposed to a goto stmt). */
349 /* State of the world while lowering. */
353 /* What's "current" while constructing the eh region tree. These
354 correspond to variables of the same name in cfun->eh, which we
355 don't have easy access to. */
356 eh_region cur_region
;
358 /* What's "current" for the purposes of __builtin_eh_pointer. For
359 a CATCH, this is the associated TRY. For an EH_FILTER, this is
360 the associated ALLOWED_EXCEPTIONS, etc. */
361 eh_region ehp_region
;
363 /* Processing of TRY_FINALLY requires a bit more state. This is
364 split out into a separate structure so that we don't have to
365 copy so much when processing other nodes. */
366 struct leh_tf_state
*tf
;
371 /* Pointer to the GIMPLE_TRY_FINALLY node under discussion. The
372 try_finally_expr is the original GIMPLE_TRY_FINALLY. We need to retain
373 this so that outside_finally_tree can reliably reference the tree used
374 in the collect_finally_tree data structures. */
375 gimple try_finally_expr
;
378 /* While lowering a top_p usually it is expanded into multiple statements,
379 thus we need the following field to store them. */
380 gimple_seq top_p_seq
;
382 /* The state outside this try_finally node. */
383 struct leh_state
*outer
;
385 /* The exception region created for it. */
388 /* The goto queue. */
389 struct goto_queue_node
*goto_queue
;
390 size_t goto_queue_size
;
391 size_t goto_queue_active
;
393 /* Pointer map to help in searching goto_queue when it is large. */
394 struct pointer_map_t
*goto_queue_map
;
396 /* The set of unique labels seen as entries in the goto queue. */
397 VEC(tree
,heap
) *dest_array
;
399 /* A label to be added at the end of the completed transformed
400 sequence. It will be set if may_fallthru was true *at one time*,
401 though subsequent transformations may have cleared that flag. */
404 /* True if it is possible to fall out the bottom of the try block.
405 Cleared if the fallthru is converted to a goto. */
408 /* True if any entry in goto_queue is a GIMPLE_RETURN. */
411 /* True if the finally block can receive an exception edge.
412 Cleared if the exception case is handled by code duplication. */
416 static gimple_seq
lower_eh_must_not_throw (struct leh_state
*, gimple
);
418 /* Search for STMT in the goto queue. Return the replacement,
419 or null if the statement isn't in the queue. */
421 #define LARGE_GOTO_QUEUE 20
423 static void lower_eh_constructs_1 (struct leh_state
*state
, gimple_seq seq
);
426 find_goto_replacement (struct leh_tf_state
*tf
, treemple stmt
)
431 if (tf
->goto_queue_active
< LARGE_GOTO_QUEUE
)
433 for (i
= 0; i
< tf
->goto_queue_active
; i
++)
434 if ( tf
->goto_queue
[i
].stmt
.g
== stmt
.g
)
435 return tf
->goto_queue
[i
].repl_stmt
;
439 /* If we have a large number of entries in the goto_queue, create a
440 pointer map and use that for searching. */
442 if (!tf
->goto_queue_map
)
444 tf
->goto_queue_map
= pointer_map_create ();
445 for (i
= 0; i
< tf
->goto_queue_active
; i
++)
447 slot
= pointer_map_insert (tf
->goto_queue_map
,
448 tf
->goto_queue
[i
].stmt
.g
);
449 gcc_assert (*slot
== NULL
);
450 *slot
= &tf
->goto_queue
[i
];
454 slot
= pointer_map_contains (tf
->goto_queue_map
, stmt
.g
);
456 return (((struct goto_queue_node
*) *slot
)->repl_stmt
);
461 /* A subroutine of replace_goto_queue_1. Handles the sub-clauses of a
462 lowered GIMPLE_COND. If, by chance, the replacement is a simple goto,
463 then we can just splat it in, otherwise we add the new stmts immediately
464 after the GIMPLE_COND and redirect. */
467 replace_goto_queue_cond_clause (tree
*tp
, struct leh_tf_state
*tf
,
468 gimple_stmt_iterator
*gsi
)
473 location_t loc
= gimple_location (gsi_stmt (*gsi
));
476 new_seq
= find_goto_replacement (tf
, temp
);
480 if (gimple_seq_singleton_p (new_seq
)
481 && gimple_code (gimple_seq_first_stmt (new_seq
)) == GIMPLE_GOTO
)
483 *tp
= gimple_goto_dest (gimple_seq_first_stmt (new_seq
));
487 label
= create_artificial_label (loc
);
488 /* Set the new label for the GIMPLE_COND */
491 gsi_insert_after (gsi
, gimple_build_label (label
), GSI_CONTINUE_LINKING
);
492 gsi_insert_seq_after (gsi
, gimple_seq_copy (new_seq
), GSI_CONTINUE_LINKING
);
495 /* The real work of replace_goto_queue. Returns with TSI updated to
496 point to the next statement. */
498 static void replace_goto_queue_stmt_list (gimple_seq
, struct leh_tf_state
*);
501 replace_goto_queue_1 (gimple stmt
, struct leh_tf_state
*tf
,
502 gimple_stmt_iterator
*gsi
)
508 switch (gimple_code (stmt
))
513 seq
= find_goto_replacement (tf
, temp
);
516 gsi_insert_seq_before (gsi
, gimple_seq_copy (seq
), GSI_SAME_STMT
);
517 gsi_remove (gsi
, false);
523 replace_goto_queue_cond_clause (gimple_op_ptr (stmt
, 2), tf
, gsi
);
524 replace_goto_queue_cond_clause (gimple_op_ptr (stmt
, 3), tf
, gsi
);
528 replace_goto_queue_stmt_list (gimple_try_eval (stmt
), tf
);
529 replace_goto_queue_stmt_list (gimple_try_cleanup (stmt
), tf
);
532 replace_goto_queue_stmt_list (gimple_catch_handler (stmt
), tf
);
534 case GIMPLE_EH_FILTER
:
535 replace_goto_queue_stmt_list (gimple_eh_filter_failure (stmt
), tf
);
539 /* These won't have gotos in them. */
546 /* A subroutine of replace_goto_queue. Handles GIMPLE_SEQ. */
549 replace_goto_queue_stmt_list (gimple_seq seq
, struct leh_tf_state
*tf
)
551 gimple_stmt_iterator gsi
= gsi_start (seq
);
553 while (!gsi_end_p (gsi
))
554 replace_goto_queue_1 (gsi_stmt (gsi
), tf
, &gsi
);
557 /* Replace all goto queue members. */
560 replace_goto_queue (struct leh_tf_state
*tf
)
562 if (tf
->goto_queue_active
== 0)
564 replace_goto_queue_stmt_list (tf
->top_p_seq
, tf
);
565 replace_goto_queue_stmt_list (eh_seq
, tf
);
568 /* Add a new record to the goto queue contained in TF. NEW_STMT is the
569 data to be added, IS_LABEL indicates whether NEW_STMT is a label or
573 record_in_goto_queue (struct leh_tf_state
*tf
,
579 struct goto_queue_node
*q
;
581 gcc_assert (!tf
->goto_queue_map
);
583 active
= tf
->goto_queue_active
;
584 size
= tf
->goto_queue_size
;
587 size
= (size
? size
* 2 : 32);
588 tf
->goto_queue_size
= size
;
590 = XRESIZEVEC (struct goto_queue_node
, tf
->goto_queue
, size
);
593 q
= &tf
->goto_queue
[active
];
594 tf
->goto_queue_active
= active
+ 1;
596 memset (q
, 0, sizeof (*q
));
599 q
->is_label
= is_label
;
602 /* Record the LABEL label in the goto queue contained in TF.
606 record_in_goto_queue_label (struct leh_tf_state
*tf
, treemple stmt
, tree label
)
609 treemple temp
, new_stmt
;
614 /* Computed and non-local gotos do not get processed. Given
615 their nature we can neither tell whether we've escaped the
616 finally block nor redirect them if we knew. */
617 if (TREE_CODE (label
) != LABEL_DECL
)
620 /* No need to record gotos that don't leave the try block. */
622 if (!outside_finally_tree (temp
, tf
->try_finally_expr
))
625 if (! tf
->dest_array
)
627 tf
->dest_array
= VEC_alloc (tree
, heap
, 10);
628 VEC_quick_push (tree
, tf
->dest_array
, label
);
633 int n
= VEC_length (tree
, tf
->dest_array
);
634 for (index
= 0; index
< n
; ++index
)
635 if (VEC_index (tree
, tf
->dest_array
, index
) == label
)
638 VEC_safe_push (tree
, heap
, tf
->dest_array
, label
);
641 /* In the case of a GOTO we want to record the destination label,
642 since with a GIMPLE_COND we have an easy access to the then/else
645 record_in_goto_queue (tf
, new_stmt
, index
, true);
648 /* For any GIMPLE_GOTO or GIMPLE_RETURN, decide whether it leaves a try_finally
649 node, and if so record that fact in the goto queue associated with that
653 maybe_record_in_goto_queue (struct leh_state
*state
, gimple stmt
)
655 struct leh_tf_state
*tf
= state
->tf
;
661 switch (gimple_code (stmt
))
664 new_stmt
.tp
= gimple_op_ptr (stmt
, 2);
665 record_in_goto_queue_label (tf
, new_stmt
, gimple_cond_true_label (stmt
));
666 new_stmt
.tp
= gimple_op_ptr (stmt
, 3);
667 record_in_goto_queue_label (tf
, new_stmt
, gimple_cond_false_label (stmt
));
671 record_in_goto_queue_label (tf
, new_stmt
, gimple_goto_dest (stmt
));
675 tf
->may_return
= true;
677 record_in_goto_queue (tf
, new_stmt
, -1, false);
686 #ifdef ENABLE_CHECKING
687 /* We do not process GIMPLE_SWITCHes for now. As long as the original source
688 was in fact structured, and we've not yet done jump threading, then none
689 of the labels will leave outer GIMPLE_TRY_FINALLY nodes. Verify this. */
692 verify_norecord_switch_expr (struct leh_state
*state
, gimple switch_expr
)
694 struct leh_tf_state
*tf
= state
->tf
;
700 n
= gimple_switch_num_labels (switch_expr
);
702 for (i
= 0; i
< n
; ++i
)
705 tree lab
= CASE_LABEL (gimple_switch_label (switch_expr
, i
));
707 gcc_assert (!outside_finally_tree (temp
, tf
->try_finally_expr
));
711 #define verify_norecord_switch_expr(state, switch_expr)
714 /* Redirect a RETURN_EXPR pointed to by STMT_P to FINLAB. Place in CONT_P
715 whatever is needed to finish the return. If MOD is non-null, insert it
716 before the new branch. RETURN_VALUE_P is a cache containing a temporary
717 variable to be used in manipulating the value returned from the function. */
720 do_return_redirection (struct goto_queue_node
*q
, tree finlab
, gimple_seq mod
,
721 tree
*return_value_p
)
726 /* In the case of a return, the queue node must be a gimple statement. */
727 gcc_assert (!q
->is_label
);
729 ret_expr
= gimple_return_retval (q
->stmt
.g
);
733 if (!*return_value_p
)
734 *return_value_p
= ret_expr
;
736 gcc_assert (*return_value_p
== ret_expr
);
737 q
->cont_stmt
= q
->stmt
.g
;
738 /* The nasty part about redirecting the return value is that the
739 return value itself is to be computed before the FINALLY block
753 should return 0, not 1. Arrange for this to happen by copying
754 computed the return value into a local temporary. This also
755 allows us to redirect multiple return statements through the
756 same destination block; whether this is a net win or not really
757 depends, I guess, but it does make generation of the switch in
758 lower_try_finally_switch easier. */
760 if (TREE_CODE (ret_expr
) == RESULT_DECL
)
762 if (!*return_value_p
)
763 *return_value_p
= ret_expr
;
765 gcc_assert (*return_value_p
== ret_expr
);
766 q
->cont_stmt
= q
->stmt
.g
;
772 /* If we don't return a value, all return statements are the same. */
773 q
->cont_stmt
= q
->stmt
.g
;
776 q
->repl_stmt
= gimple_seq_alloc ();
779 gimple_seq_add_seq (&q
->repl_stmt
, mod
);
781 x
= gimple_build_goto (finlab
);
782 gimple_seq_add_stmt (&q
->repl_stmt
, x
);
785 /* Similar, but easier, for GIMPLE_GOTO. */
788 do_goto_redirection (struct goto_queue_node
*q
, tree finlab
, gimple_seq mod
,
789 struct leh_tf_state
*tf
)
793 gcc_assert (q
->is_label
);
795 q
->repl_stmt
= gimple_seq_alloc ();
797 q
->cont_stmt
= gimple_build_goto (VEC_index (tree
, tf
->dest_array
, q
->index
));
800 gimple_seq_add_seq (&q
->repl_stmt
, mod
);
802 x
= gimple_build_goto (finlab
);
803 gimple_seq_add_stmt (&q
->repl_stmt
, x
);
806 /* Emit a standard landing pad sequence into SEQ for REGION. */
809 emit_post_landing_pad (gimple_seq
*seq
, eh_region region
)
811 eh_landing_pad lp
= region
->landing_pads
;
815 lp
= gen_eh_landing_pad (region
);
817 lp
->post_landing_pad
= create_artificial_label (UNKNOWN_LOCATION
);
818 EH_LANDING_PAD_NR (lp
->post_landing_pad
) = lp
->index
;
820 x
= gimple_build_label (lp
->post_landing_pad
);
821 gimple_seq_add_stmt (seq
, x
);
824 /* Emit a RESX statement into SEQ for REGION. */
827 emit_resx (gimple_seq
*seq
, eh_region region
)
829 gimple x
= gimple_build_resx (region
->index
);
830 gimple_seq_add_stmt (seq
, x
);
832 record_stmt_eh_region (region
->outer
, x
);
835 /* Emit an EH_DISPATCH statement into SEQ for REGION. */
838 emit_eh_dispatch (gimple_seq
*seq
, eh_region region
)
840 gimple x
= gimple_build_eh_dispatch (region
->index
);
841 gimple_seq_add_stmt (seq
, x
);
844 /* Note that the current EH region may contain a throw, or a
845 call to a function which itself may contain a throw. */
848 note_eh_region_may_contain_throw (eh_region region
)
850 while (bitmap_set_bit (eh_region_may_contain_throw_map
, region
->index
))
852 if (region
->type
== ERT_MUST_NOT_THROW
)
854 region
= region
->outer
;
860 /* Check if REGION has been marked as containing a throw. If REGION is
861 NULL, this predicate is false. */
864 eh_region_may_contain_throw (eh_region r
)
866 return r
&& bitmap_bit_p (eh_region_may_contain_throw_map
, r
->index
);
869 /* We want to transform
870 try { body; } catch { stuff; }
880 TP is a GIMPLE_TRY node. REGION is the region whose post_landing_pad
881 should be placed before the second operand, or NULL. OVER is
882 an existing label that should be put at the exit, or NULL. */
885 frob_into_branch_around (gimple tp
, eh_region region
, tree over
)
888 gimple_seq cleanup
, result
;
889 location_t loc
= gimple_location (tp
);
891 cleanup
= gimple_try_cleanup (tp
);
892 result
= gimple_try_eval (tp
);
895 emit_post_landing_pad (&eh_seq
, region
);
897 if (gimple_seq_may_fallthru (cleanup
))
900 over
= create_artificial_label (loc
);
901 x
= gimple_build_goto (over
);
902 gimple_seq_add_stmt (&cleanup
, x
);
904 gimple_seq_add_seq (&eh_seq
, cleanup
);
908 x
= gimple_build_label (over
);
909 gimple_seq_add_stmt (&result
, x
);
914 /* A subroutine of lower_try_finally. Duplicate the tree rooted at T.
915 Make sure to record all new labels found. */
918 lower_try_finally_dup_block (gimple_seq seq
, struct leh_state
*outer_state
)
920 gimple region
= NULL
;
923 new_seq
= copy_gimple_seq_and_replace_locals (seq
);
926 region
= outer_state
->tf
->try_finally_expr
;
927 collect_finally_tree_1 (new_seq
, region
);
932 /* A subroutine of lower_try_finally. Create a fallthru label for
933 the given try_finally state. The only tricky bit here is that
934 we have to make sure to record the label in our outer context. */
937 lower_try_finally_fallthru_label (struct leh_tf_state
*tf
)
939 tree label
= tf
->fallthru_label
;
944 label
= create_artificial_label (gimple_location (tf
->try_finally_expr
));
945 tf
->fallthru_label
= label
;
949 record_in_finally_tree (temp
, tf
->outer
->tf
->try_finally_expr
);
955 /* A subroutine of lower_try_finally. If the eh_protect_cleanup_actions
956 langhook returns non-null, then the language requires that the exception
957 path out of a try_finally be treated specially. To wit: the code within
958 the finally block may not itself throw an exception. We have two choices
959 here. First we can duplicate the finally block and wrap it in a
960 must_not_throw region. Second, we can generate code like
965 if (fintmp == eh_edge)
966 protect_cleanup_actions;
969 where "fintmp" is the temporary used in the switch statement generation
970 alternative considered below. For the nonce, we always choose the first
973 THIS_STATE may be null if this is a try-cleanup, not a try-finally. */
976 honor_protect_cleanup_actions (struct leh_state
*outer_state
,
977 struct leh_state
*this_state
,
978 struct leh_tf_state
*tf
)
980 tree protect_cleanup_actions
;
981 gimple_stmt_iterator gsi
;
982 bool finally_may_fallthru
;
986 /* First check for nothing to do. */
987 if (lang_hooks
.eh_protect_cleanup_actions
== NULL
)
989 protect_cleanup_actions
= lang_hooks
.eh_protect_cleanup_actions ();
990 if (protect_cleanup_actions
== NULL
)
993 finally
= gimple_try_cleanup (tf
->top_p
);
994 finally_may_fallthru
= gimple_seq_may_fallthru (finally
);
996 /* Duplicate the FINALLY block. Only need to do this for try-finally,
997 and not for cleanups. */
999 finally
= lower_try_finally_dup_block (finally
, outer_state
);
1001 /* If this cleanup consists of a TRY_CATCH_EXPR with TRY_CATCH_IS_CLEANUP
1002 set, the handler of the TRY_CATCH_EXPR is another cleanup which ought
1003 to be in an enclosing scope, but needs to be implemented at this level
1004 to avoid a nesting violation (see wrap_temporary_cleanups in
1005 cp/decl.c). Since it's logically at an outer level, we should call
1006 terminate before we get to it, so strip it away before adding the
1007 MUST_NOT_THROW filter. */
1008 gsi
= gsi_start (finally
);
1010 if (gimple_code (x
) == GIMPLE_TRY
1011 && gimple_try_kind (x
) == GIMPLE_TRY_CATCH
1012 && gimple_try_catch_is_cleanup (x
))
1014 gsi_insert_seq_before (&gsi
, gimple_try_eval (x
), GSI_SAME_STMT
);
1015 gsi_remove (&gsi
, false);
1018 /* Wrap the block with protect_cleanup_actions as the action. */
1019 x
= gimple_build_eh_must_not_throw (protect_cleanup_actions
);
1020 x
= gimple_build_try (finally
, gimple_seq_alloc_with_stmt (x
),
1022 finally
= lower_eh_must_not_throw (outer_state
, x
);
1024 /* Drop all of this into the exception sequence. */
1025 emit_post_landing_pad (&eh_seq
, tf
->region
);
1026 gimple_seq_add_seq (&eh_seq
, finally
);
1027 if (finally_may_fallthru
)
1028 emit_resx (&eh_seq
, tf
->region
);
1030 /* Having now been handled, EH isn't to be considered with
1031 the rest of the outgoing edges. */
1032 tf
->may_throw
= false;
1035 /* A subroutine of lower_try_finally. We have determined that there is
1036 no fallthru edge out of the finally block. This means that there is
1037 no outgoing edge corresponding to any incoming edge. Restructure the
1038 try_finally node for this special case. */
1041 lower_try_finally_nofallthru (struct leh_state
*state
,
1042 struct leh_tf_state
*tf
)
1044 tree lab
, return_val
;
1047 struct goto_queue_node
*q
, *qe
;
1049 lab
= create_artificial_label (gimple_location (tf
->try_finally_expr
));
1051 /* We expect that tf->top_p is a GIMPLE_TRY. */
1052 finally
= gimple_try_cleanup (tf
->top_p
);
1053 tf
->top_p_seq
= gimple_try_eval (tf
->top_p
);
1055 x
= gimple_build_label (lab
);
1056 gimple_seq_add_stmt (&tf
->top_p_seq
, x
);
1060 qe
= q
+ tf
->goto_queue_active
;
1063 do_return_redirection (q
, lab
, NULL
, &return_val
);
1065 do_goto_redirection (q
, lab
, NULL
, tf
);
1067 replace_goto_queue (tf
);
1069 lower_eh_constructs_1 (state
, finally
);
1070 gimple_seq_add_seq (&tf
->top_p_seq
, finally
);
1074 emit_post_landing_pad (&eh_seq
, tf
->region
);
1076 x
= gimple_build_goto (lab
);
1077 gimple_seq_add_stmt (&eh_seq
, x
);
1081 /* A subroutine of lower_try_finally. We have determined that there is
1082 exactly one destination of the finally block. Restructure the
1083 try_finally node for this special case. */
1086 lower_try_finally_onedest (struct leh_state
*state
, struct leh_tf_state
*tf
)
1088 struct goto_queue_node
*q
, *qe
;
1092 location_t loc
= gimple_location (tf
->try_finally_expr
);
1094 finally
= gimple_try_cleanup (tf
->top_p
);
1095 tf
->top_p_seq
= gimple_try_eval (tf
->top_p
);
1097 lower_eh_constructs_1 (state
, finally
);
1101 /* Only reachable via the exception edge. Add the given label to
1102 the head of the FINALLY block. Append a RESX at the end. */
1103 emit_post_landing_pad (&eh_seq
, tf
->region
);
1104 gimple_seq_add_seq (&eh_seq
, finally
);
1105 emit_resx (&eh_seq
, tf
->region
);
1109 if (tf
->may_fallthru
)
1111 /* Only reachable via the fallthru edge. Do nothing but let
1112 the two blocks run together; we'll fall out the bottom. */
1113 gimple_seq_add_seq (&tf
->top_p_seq
, finally
);
1117 finally_label
= create_artificial_label (loc
);
1118 x
= gimple_build_label (finally_label
);
1119 gimple_seq_add_stmt (&tf
->top_p_seq
, x
);
1121 gimple_seq_add_seq (&tf
->top_p_seq
, finally
);
1124 qe
= q
+ tf
->goto_queue_active
;
1128 /* Reachable by return expressions only. Redirect them. */
1129 tree return_val
= NULL
;
1131 do_return_redirection (q
, finally_label
, NULL
, &return_val
);
1132 replace_goto_queue (tf
);
1136 /* Reachable by goto expressions only. Redirect them. */
1138 do_goto_redirection (q
, finally_label
, NULL
, tf
);
1139 replace_goto_queue (tf
);
1141 if (VEC_index (tree
, tf
->dest_array
, 0) == tf
->fallthru_label
)
1143 /* Reachable by goto to fallthru label only. Redirect it
1144 to the new label (already created, sadly), and do not
1145 emit the final branch out, or the fallthru label. */
1146 tf
->fallthru_label
= NULL
;
1151 /* Place the original return/goto to the original destination
1152 immediately after the finally block. */
1153 x
= tf
->goto_queue
[0].cont_stmt
;
1154 gimple_seq_add_stmt (&tf
->top_p_seq
, x
);
1155 maybe_record_in_goto_queue (state
, x
);
1158 /* A subroutine of lower_try_finally. There are multiple edges incoming
1159 and outgoing from the finally block. Implement this by duplicating the
1160 finally block for every destination. */
1163 lower_try_finally_copy (struct leh_state
*state
, struct leh_tf_state
*tf
)
1166 gimple_seq new_stmt
;
1170 location_t tf_loc
= gimple_location (tf
->try_finally_expr
);
1172 finally
= gimple_try_cleanup (tf
->top_p
);
1173 tf
->top_p_seq
= gimple_try_eval (tf
->top_p
);
1176 if (tf
->may_fallthru
)
1178 seq
= lower_try_finally_dup_block (finally
, state
);
1179 lower_eh_constructs_1 (state
, seq
);
1180 gimple_seq_add_seq (&new_stmt
, seq
);
1182 tmp
= lower_try_finally_fallthru_label (tf
);
1183 x
= gimple_build_goto (tmp
);
1184 gimple_seq_add_stmt (&new_stmt
, x
);
1189 seq
= lower_try_finally_dup_block (finally
, state
);
1190 lower_eh_constructs_1 (state
, seq
);
1192 emit_post_landing_pad (&eh_seq
, tf
->region
);
1193 gimple_seq_add_seq (&eh_seq
, seq
);
1194 emit_resx (&eh_seq
, tf
->region
);
1199 struct goto_queue_node
*q
, *qe
;
1200 tree return_val
= NULL
;
1201 int return_index
, index
;
1204 struct goto_queue_node
*q
;
1208 return_index
= VEC_length (tree
, tf
->dest_array
);
1209 labels
= XCNEWVEC (struct labels_s
, return_index
+ 1);
1212 qe
= q
+ tf
->goto_queue_active
;
1215 index
= q
->index
< 0 ? return_index
: q
->index
;
1217 if (!labels
[index
].q
)
1218 labels
[index
].q
= q
;
1221 for (index
= 0; index
< return_index
+ 1; index
++)
1225 q
= labels
[index
].q
;
1229 lab
= labels
[index
].label
1230 = create_artificial_label (tf_loc
);
1232 if (index
== return_index
)
1233 do_return_redirection (q
, lab
, NULL
, &return_val
);
1235 do_goto_redirection (q
, lab
, NULL
, tf
);
1237 x
= gimple_build_label (lab
);
1238 gimple_seq_add_stmt (&new_stmt
, x
);
1240 seq
= lower_try_finally_dup_block (finally
, state
);
1241 lower_eh_constructs_1 (state
, seq
);
1242 gimple_seq_add_seq (&new_stmt
, seq
);
1244 gimple_seq_add_stmt (&new_stmt
, q
->cont_stmt
);
1245 maybe_record_in_goto_queue (state
, q
->cont_stmt
);
1248 for (q
= tf
->goto_queue
; q
< qe
; q
++)
1252 index
= q
->index
< 0 ? return_index
: q
->index
;
1254 if (labels
[index
].q
== q
)
1257 lab
= labels
[index
].label
;
1259 if (index
== return_index
)
1260 do_return_redirection (q
, lab
, NULL
, &return_val
);
1262 do_goto_redirection (q
, lab
, NULL
, tf
);
1265 replace_goto_queue (tf
);
1269 /* Need to link new stmts after running replace_goto_queue due
1270 to not wanting to process the same goto stmts twice. */
1271 gimple_seq_add_seq (&tf
->top_p_seq
, new_stmt
);
1274 /* A subroutine of lower_try_finally. There are multiple edges incoming
1275 and outgoing from the finally block. Implement this by instrumenting
1276 each incoming edge and creating a switch statement at the end of the
1277 finally block that branches to the appropriate destination. */
1280 lower_try_finally_switch (struct leh_state
*state
, struct leh_tf_state
*tf
)
1282 struct goto_queue_node
*q
, *qe
;
1283 tree return_val
= NULL
;
1284 tree finally_tmp
, finally_label
;
1285 int return_index
, eh_index
, fallthru_index
;
1286 int nlabels
, ndests
, j
, last_case_index
;
1288 VEC (tree
,heap
) *case_label_vec
;
1289 gimple_seq switch_body
;
1294 struct pointer_map_t
*cont_map
= NULL
;
1295 /* The location of the TRY_FINALLY stmt. */
1296 location_t tf_loc
= gimple_location (tf
->try_finally_expr
);
1297 /* The location of the finally block. */
1298 location_t finally_loc
;
1300 switch_body
= gimple_seq_alloc ();
1302 /* Mash the TRY block to the head of the chain. */
1303 finally
= gimple_try_cleanup (tf
->top_p
);
1304 tf
->top_p_seq
= gimple_try_eval (tf
->top_p
);
1306 /* The location of the finally is either the last stmt in the finally
1307 block or the location of the TRY_FINALLY itself. */
1308 finally_loc
= gimple_seq_last_stmt (tf
->top_p_seq
) != NULL
?
1309 gimple_location (gimple_seq_last_stmt (tf
->top_p_seq
))
1312 /* Lower the finally block itself. */
1313 lower_eh_constructs_1 (state
, finally
);
1315 /* Prepare for switch statement generation. */
1316 nlabels
= VEC_length (tree
, tf
->dest_array
);
1317 return_index
= nlabels
;
1318 eh_index
= return_index
+ tf
->may_return
;
1319 fallthru_index
= eh_index
+ tf
->may_throw
;
1320 ndests
= fallthru_index
+ tf
->may_fallthru
;
1322 finally_tmp
= create_tmp_var (integer_type_node
, "finally_tmp");
1323 finally_label
= create_artificial_label (finally_loc
);
1325 /* We use VEC_quick_push on case_label_vec throughout this function,
1326 since we know the size in advance and allocate precisely as muce
1328 case_label_vec
= VEC_alloc (tree
, heap
, ndests
);
1330 last_case_index
= 0;
1332 /* Begin inserting code for getting to the finally block. Things
1333 are done in this order to correspond to the sequence the code is
1336 if (tf
->may_fallthru
)
1338 x
= gimple_build_assign (finally_tmp
,
1339 build_int_cst (NULL
, fallthru_index
));
1340 gimple_seq_add_stmt (&tf
->top_p_seq
, x
);
1342 last_case
= build3 (CASE_LABEL_EXPR
, void_type_node
,
1343 build_int_cst (NULL
, fallthru_index
),
1344 NULL
, create_artificial_label (tf_loc
));
1345 VEC_quick_push (tree
, case_label_vec
, last_case
);
1348 x
= gimple_build_label (CASE_LABEL (last_case
));
1349 gimple_seq_add_stmt (&switch_body
, x
);
1351 tmp
= lower_try_finally_fallthru_label (tf
);
1352 x
= gimple_build_goto (tmp
);
1353 gimple_seq_add_stmt (&switch_body
, x
);
1358 emit_post_landing_pad (&eh_seq
, tf
->region
);
1360 x
= gimple_build_assign (finally_tmp
,
1361 build_int_cst (NULL
, eh_index
));
1362 gimple_seq_add_stmt (&eh_seq
, x
);
1364 x
= gimple_build_goto (finally_label
);
1365 gimple_seq_add_stmt (&eh_seq
, x
);
1367 last_case
= build3 (CASE_LABEL_EXPR
, void_type_node
,
1368 build_int_cst (NULL
, eh_index
),
1369 NULL
, create_artificial_label (tf_loc
));
1370 VEC_quick_push (tree
, case_label_vec
, last_case
);
1373 x
= gimple_build_label (CASE_LABEL (last_case
));
1374 gimple_seq_add_stmt (&eh_seq
, x
);
1375 emit_resx (&eh_seq
, tf
->region
);
1378 x
= gimple_build_label (finally_label
);
1379 gimple_seq_add_stmt (&tf
->top_p_seq
, x
);
1381 gimple_seq_add_seq (&tf
->top_p_seq
, finally
);
1383 /* Redirect each incoming goto edge. */
1385 qe
= q
+ tf
->goto_queue_active
;
1386 j
= last_case_index
+ tf
->may_return
;
1387 /* Prepare the assignments to finally_tmp that are executed upon the
1388 entrance through a particular edge. */
1393 unsigned int case_index
;
1395 mod
= gimple_seq_alloc ();
1399 x
= gimple_build_assign (finally_tmp
,
1400 build_int_cst (NULL
, return_index
));
1401 gimple_seq_add_stmt (&mod
, x
);
1402 do_return_redirection (q
, finally_label
, mod
, &return_val
);
1403 switch_id
= return_index
;
1407 x
= gimple_build_assign (finally_tmp
,
1408 build_int_cst (NULL
, q
->index
));
1409 gimple_seq_add_stmt (&mod
, x
);
1410 do_goto_redirection (q
, finally_label
, mod
, tf
);
1411 switch_id
= q
->index
;
1414 case_index
= j
+ q
->index
;
1415 if (VEC_length (tree
, case_label_vec
) <= case_index
1416 || !VEC_index (tree
, case_label_vec
, case_index
))
1420 case_lab
= build3 (CASE_LABEL_EXPR
, void_type_node
,
1421 build_int_cst (NULL
, switch_id
),
1423 /* We store the cont_stmt in the pointer map, so that we can recover
1424 it in the loop below. We don't create the new label while
1425 walking the goto_queue because pointers don't offer a stable
1428 cont_map
= pointer_map_create ();
1429 slot
= pointer_map_insert (cont_map
, case_lab
);
1430 *slot
= q
->cont_stmt
;
1431 VEC_quick_push (tree
, case_label_vec
, case_lab
);
1434 for (j
= last_case_index
; j
< last_case_index
+ nlabels
; j
++)
1440 last_case
= VEC_index (tree
, case_label_vec
, j
);
1442 gcc_assert (last_case
);
1443 gcc_assert (cont_map
);
1445 slot
= pointer_map_contains (cont_map
, last_case
);
1446 /* As the comment above suggests, CASE_LABEL (last_case) was just a
1447 placeholder, it does not store an actual label, yet. */
1449 cont_stmt
= *(gimple
*) slot
;
1451 label
= create_artificial_label (tf_loc
);
1452 CASE_LABEL (last_case
) = label
;
1454 x
= gimple_build_label (label
);
1455 gimple_seq_add_stmt (&switch_body
, x
);
1456 gimple_seq_add_stmt (&switch_body
, cont_stmt
);
1457 maybe_record_in_goto_queue (state
, cont_stmt
);
1460 pointer_map_destroy (cont_map
);
1462 replace_goto_queue (tf
);
1464 /* Make sure that the last case is the default label, as one is required.
1465 Then sort the labels, which is also required in GIMPLE. */
1466 CASE_LOW (last_case
) = NULL
;
1467 sort_case_labels (case_label_vec
);
1469 /* Build the switch statement, setting last_case to be the default
1471 switch_stmt
= gimple_build_switch_vec (finally_tmp
, last_case
,
1473 gimple_set_location (switch_stmt
, finally_loc
);
1475 /* Need to link SWITCH_STMT after running replace_goto_queue
1476 due to not wanting to process the same goto stmts twice. */
1477 gimple_seq_add_stmt (&tf
->top_p_seq
, switch_stmt
);
1478 gimple_seq_add_seq (&tf
->top_p_seq
, switch_body
);
1481 /* Decide whether or not we are going to duplicate the finally block.
1482 There are several considerations.
1484 First, if this is Java, then the finally block contains code
1485 written by the user. It has line numbers associated with it,
1486 so duplicating the block means it's difficult to set a breakpoint.
1487 Since controlling code generation via -g is verboten, we simply
1488 never duplicate code without optimization.
1490 Second, we'd like to prevent egregious code growth. One way to
1491 do this is to estimate the size of the finally block, multiply
1492 that by the number of copies we'd need to make, and compare against
1493 the estimate of the size of the switch machinery we'd have to add. */
1496 decide_copy_try_finally (int ndests
, gimple_seq finally
)
1498 int f_estimate
, sw_estimate
;
1503 /* Finally estimate N times, plus N gotos. */
1504 f_estimate
= count_insns_seq (finally
, &eni_size_weights
);
1505 f_estimate
= (f_estimate
+ 1) * ndests
;
1507 /* Switch statement (cost 10), N variable assignments, N gotos. */
1508 sw_estimate
= 10 + 2 * ndests
;
1510 /* Optimize for size clearly wants our best guess. */
1511 if (optimize_function_for_size_p (cfun
))
1512 return f_estimate
< sw_estimate
;
1514 /* ??? These numbers are completely made up so far. */
1516 return f_estimate
< 100 || f_estimate
< sw_estimate
* 2;
1518 return f_estimate
< 40 || f_estimate
* 2 < sw_estimate
* 3;
1521 /* REG is the enclosing region for a possible cleanup region, or the region
1522 itself. Returns TRUE if such a region would be unreachable.
1524 Cleanup regions within a must-not-throw region aren't actually reachable
1525 even if there are throwing stmts within them, because the personality
1526 routine will call terminate before unwinding. */
1529 cleanup_is_dead_in (eh_region reg
)
1531 while (reg
&& reg
->type
== ERT_CLEANUP
)
1533 return (reg
&& reg
->type
== ERT_MUST_NOT_THROW
);
1536 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY_FINALLY nodes
1537 to a sequence of labels and blocks, plus the exception region trees
1538 that record all the magic. This is complicated by the need to
1539 arrange for the FINALLY block to be executed on all exits. */
1542 lower_try_finally (struct leh_state
*state
, gimple tp
)
1544 struct leh_tf_state this_tf
;
1545 struct leh_state this_state
;
1547 gimple_seq old_eh_seq
;
1549 /* Process the try block. */
1551 memset (&this_tf
, 0, sizeof (this_tf
));
1552 this_tf
.try_finally_expr
= tp
;
1554 this_tf
.outer
= state
;
1555 if (using_eh_for_cleanups_p
&& !cleanup_is_dead_in (state
->cur_region
))
1557 this_tf
.region
= gen_eh_region_cleanup (state
->cur_region
);
1558 this_state
.cur_region
= this_tf
.region
;
1562 this_tf
.region
= NULL
;
1563 this_state
.cur_region
= state
->cur_region
;
1566 this_state
.ehp_region
= state
->ehp_region
;
1567 this_state
.tf
= &this_tf
;
1569 old_eh_seq
= eh_seq
;
1572 lower_eh_constructs_1 (&this_state
, gimple_try_eval(tp
));
1574 /* Determine if the try block is escaped through the bottom. */
1575 this_tf
.may_fallthru
= gimple_seq_may_fallthru (gimple_try_eval (tp
));
1577 /* Determine if any exceptions are possible within the try block. */
1579 this_tf
.may_throw
= eh_region_may_contain_throw (this_tf
.region
);
1580 if (this_tf
.may_throw
)
1581 honor_protect_cleanup_actions (state
, &this_state
, &this_tf
);
1583 /* Determine how many edges (still) reach the finally block. Or rather,
1584 how many destinations are reached by the finally block. Use this to
1585 determine how we process the finally block itself. */
1587 ndests
= VEC_length (tree
, this_tf
.dest_array
);
1588 ndests
+= this_tf
.may_fallthru
;
1589 ndests
+= this_tf
.may_return
;
1590 ndests
+= this_tf
.may_throw
;
1592 /* If the FINALLY block is not reachable, dike it out. */
1595 gimple_seq_add_seq (&this_tf
.top_p_seq
, gimple_try_eval (tp
));
1596 gimple_try_set_cleanup (tp
, NULL
);
1598 /* If the finally block doesn't fall through, then any destination
1599 we might try to impose there isn't reached either. There may be
1600 some minor amount of cleanup and redirection still needed. */
1601 else if (!gimple_seq_may_fallthru (gimple_try_cleanup (tp
)))
1602 lower_try_finally_nofallthru (state
, &this_tf
);
1604 /* We can easily special-case redirection to a single destination. */
1605 else if (ndests
== 1)
1606 lower_try_finally_onedest (state
, &this_tf
);
1607 else if (decide_copy_try_finally (ndests
, gimple_try_cleanup (tp
)))
1608 lower_try_finally_copy (state
, &this_tf
);
1610 lower_try_finally_switch (state
, &this_tf
);
1612 /* If someone requested we add a label at the end of the transformed
1614 if (this_tf
.fallthru_label
)
1616 /* This must be reached only if ndests == 0. */
1617 gimple x
= gimple_build_label (this_tf
.fallthru_label
);
1618 gimple_seq_add_stmt (&this_tf
.top_p_seq
, x
);
1621 VEC_free (tree
, heap
, this_tf
.dest_array
);
1622 free (this_tf
.goto_queue
);
1623 if (this_tf
.goto_queue_map
)
1624 pointer_map_destroy (this_tf
.goto_queue_map
);
1626 /* If there was an old (aka outer) eh_seq, append the current eh_seq.
1627 If there was no old eh_seq, then the append is trivially already done. */
1631 eh_seq
= old_eh_seq
;
1634 gimple_seq new_eh_seq
= eh_seq
;
1635 eh_seq
= old_eh_seq
;
1636 gimple_seq_add_seq(&eh_seq
, new_eh_seq
);
1640 return this_tf
.top_p_seq
;
1643 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY_CATCH with a
1644 list of GIMPLE_CATCH to a sequence of labels and blocks, plus the
1645 exception region trees that records all the magic. */
1648 lower_catch (struct leh_state
*state
, gimple tp
)
1650 eh_region try_region
= NULL
;
1651 struct leh_state this_state
= *state
;
1652 gimple_stmt_iterator gsi
;
1656 location_t try_catch_loc
= gimple_location (tp
);
1658 if (flag_exceptions
)
1660 try_region
= gen_eh_region_try (state
->cur_region
);
1661 this_state
.cur_region
= try_region
;
1664 lower_eh_constructs_1 (&this_state
, gimple_try_eval (tp
));
1666 if (!eh_region_may_contain_throw (try_region
))
1667 return gimple_try_eval (tp
);
1670 emit_eh_dispatch (&new_seq
, try_region
);
1671 emit_resx (&new_seq
, try_region
);
1673 this_state
.cur_region
= state
->cur_region
;
1674 this_state
.ehp_region
= try_region
;
1677 for (gsi
= gsi_start (gimple_try_cleanup (tp
));
1685 gcatch
= gsi_stmt (gsi
);
1686 c
= gen_eh_region_catch (try_region
, gimple_catch_types (gcatch
));
1688 handler
= gimple_catch_handler (gcatch
);
1689 lower_eh_constructs_1 (&this_state
, handler
);
1691 c
->label
= create_artificial_label (UNKNOWN_LOCATION
);
1692 x
= gimple_build_label (c
->label
);
1693 gimple_seq_add_stmt (&new_seq
, x
);
1695 gimple_seq_add_seq (&new_seq
, handler
);
1697 if (gimple_seq_may_fallthru (new_seq
))
1700 out_label
= create_artificial_label (try_catch_loc
);
1702 x
= gimple_build_goto (out_label
);
1703 gimple_seq_add_stmt (&new_seq
, x
);
1709 gimple_try_set_cleanup (tp
, new_seq
);
1711 return frob_into_branch_around (tp
, try_region
, out_label
);
1714 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY with a
1715 GIMPLE_EH_FILTER to a sequence of labels and blocks, plus the exception
1716 region trees that record all the magic. */
1719 lower_eh_filter (struct leh_state
*state
, gimple tp
)
1721 struct leh_state this_state
= *state
;
1722 eh_region this_region
= NULL
;
1726 inner
= gimple_seq_first_stmt (gimple_try_cleanup (tp
));
1728 if (flag_exceptions
)
1730 this_region
= gen_eh_region_allowed (state
->cur_region
,
1731 gimple_eh_filter_types (inner
));
1732 this_state
.cur_region
= this_region
;
1735 lower_eh_constructs_1 (&this_state
, gimple_try_eval (tp
));
1737 if (!eh_region_may_contain_throw (this_region
))
1738 return gimple_try_eval (tp
);
1741 this_state
.cur_region
= state
->cur_region
;
1742 this_state
.ehp_region
= this_region
;
1744 emit_eh_dispatch (&new_seq
, this_region
);
1745 emit_resx (&new_seq
, this_region
);
1747 this_region
->u
.allowed
.label
= create_artificial_label (UNKNOWN_LOCATION
);
1748 x
= gimple_build_label (this_region
->u
.allowed
.label
);
1749 gimple_seq_add_stmt (&new_seq
, x
);
1751 lower_eh_constructs_1 (&this_state
, gimple_eh_filter_failure (inner
));
1752 gimple_seq_add_seq (&new_seq
, gimple_eh_filter_failure (inner
));
1754 gimple_try_set_cleanup (tp
, new_seq
);
1756 return frob_into_branch_around (tp
, this_region
, NULL
);
1759 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY with
1760 an GIMPLE_EH_MUST_NOT_THROW to a sequence of labels and blocks,
1761 plus the exception region trees that record all the magic. */
1764 lower_eh_must_not_throw (struct leh_state
*state
, gimple tp
)
1766 struct leh_state this_state
= *state
;
1768 if (flag_exceptions
)
1770 gimple inner
= gimple_seq_first_stmt (gimple_try_cleanup (tp
));
1771 eh_region this_region
;
1773 this_region
= gen_eh_region_must_not_throw (state
->cur_region
);
1774 this_region
->u
.must_not_throw
.failure_decl
1775 = gimple_eh_must_not_throw_fndecl (inner
);
1776 this_region
->u
.must_not_throw
.failure_loc
= gimple_location (tp
);
1778 /* In order to get mangling applied to this decl, we must mark it
1779 used now. Otherwise, pass_ipa_free_lang_data won't think it
1781 TREE_USED (this_region
->u
.must_not_throw
.failure_decl
) = 1;
1783 this_state
.cur_region
= this_region
;
1786 lower_eh_constructs_1 (&this_state
, gimple_try_eval (tp
));
1788 return gimple_try_eval (tp
);
1791 /* Implement a cleanup expression. This is similar to try-finally,
1792 except that we only execute the cleanup block for exception edges. */
1795 lower_cleanup (struct leh_state
*state
, gimple tp
)
1797 struct leh_state this_state
= *state
;
1798 eh_region this_region
= NULL
;
1799 struct leh_tf_state fake_tf
;
1801 bool cleanup_dead
= cleanup_is_dead_in (state
->cur_region
);
1803 if (flag_exceptions
&& !cleanup_dead
)
1805 this_region
= gen_eh_region_cleanup (state
->cur_region
);
1806 this_state
.cur_region
= this_region
;
1809 lower_eh_constructs_1 (&this_state
, gimple_try_eval (tp
));
1811 if (cleanup_dead
|| !eh_region_may_contain_throw (this_region
))
1812 return gimple_try_eval (tp
);
1814 /* Build enough of a try-finally state so that we can reuse
1815 honor_protect_cleanup_actions. */
1816 memset (&fake_tf
, 0, sizeof (fake_tf
));
1817 fake_tf
.top_p
= fake_tf
.try_finally_expr
= tp
;
1818 fake_tf
.outer
= state
;
1819 fake_tf
.region
= this_region
;
1820 fake_tf
.may_fallthru
= gimple_seq_may_fallthru (gimple_try_eval (tp
));
1821 fake_tf
.may_throw
= true;
1823 honor_protect_cleanup_actions (state
, NULL
, &fake_tf
);
1825 if (fake_tf
.may_throw
)
1827 /* In this case honor_protect_cleanup_actions had nothing to do,
1828 and we should process this normally. */
1829 lower_eh_constructs_1 (state
, gimple_try_cleanup (tp
));
1830 result
= frob_into_branch_around (tp
, this_region
,
1831 fake_tf
.fallthru_label
);
1835 /* In this case honor_protect_cleanup_actions did nearly all of
1836 the work. All we have left is to append the fallthru_label. */
1838 result
= gimple_try_eval (tp
);
1839 if (fake_tf
.fallthru_label
)
1841 gimple x
= gimple_build_label (fake_tf
.fallthru_label
);
1842 gimple_seq_add_stmt (&result
, x
);
1848 /* Main loop for lowering eh constructs. Also moves gsi to the next
1852 lower_eh_constructs_2 (struct leh_state
*state
, gimple_stmt_iterator
*gsi
)
1856 gimple stmt
= gsi_stmt (*gsi
);
1858 switch (gimple_code (stmt
))
1862 tree fndecl
= gimple_call_fndecl (stmt
);
1865 if (fndecl
&& DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
)
1866 switch (DECL_FUNCTION_CODE (fndecl
))
1868 case BUILT_IN_EH_POINTER
:
1869 /* The front end may have generated a call to
1870 __builtin_eh_pointer (0) within a catch region. Replace
1871 this zero argument with the current catch region number. */
1872 if (state
->ehp_region
)
1874 tree nr
= build_int_cst (NULL
, state
->ehp_region
->index
);
1875 gimple_call_set_arg (stmt
, 0, nr
);
1879 /* The user has dome something silly. Remove it. */
1880 rhs
= null_pointer_node
;
1885 case BUILT_IN_EH_FILTER
:
1886 /* ??? This should never appear, but since it's a builtin it
1887 is accessible to abuse by users. Just remove it and
1888 replace the use with the arbitrary value zero. */
1889 rhs
= build_int_cst (TREE_TYPE (TREE_TYPE (fndecl
)), 0);
1891 lhs
= gimple_call_lhs (stmt
);
1892 x
= gimple_build_assign (lhs
, rhs
);
1893 gsi_insert_before (gsi
, x
, GSI_SAME_STMT
);
1896 case BUILT_IN_EH_COPY_VALUES
:
1897 /* Likewise this should not appear. Remove it. */
1898 gsi_remove (gsi
, true);
1908 /* If the stmt can throw use a new temporary for the assignment
1909 to a LHS. This makes sure the old value of the LHS is
1910 available on the EH edge. Only do so for statements that
1911 potentially fall thru (no noreturn calls e.g.), otherwise
1912 this new assignment might create fake fallthru regions. */
1913 if (stmt_could_throw_p (stmt
)
1914 && gimple_has_lhs (stmt
)
1915 && gimple_stmt_may_fallthru (stmt
)
1916 && !tree_could_throw_p (gimple_get_lhs (stmt
))
1917 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt
))))
1919 tree lhs
= gimple_get_lhs (stmt
);
1920 tree tmp
= create_tmp_var (TREE_TYPE (lhs
), NULL
);
1921 gimple s
= gimple_build_assign (lhs
, tmp
);
1922 gimple_set_location (s
, gimple_location (stmt
));
1923 gimple_set_block (s
, gimple_block (stmt
));
1924 gimple_set_lhs (stmt
, tmp
);
1925 if (TREE_CODE (TREE_TYPE (tmp
)) == COMPLEX_TYPE
1926 || TREE_CODE (TREE_TYPE (tmp
)) == VECTOR_TYPE
)
1927 DECL_GIMPLE_REG_P (tmp
) = 1;
1928 gsi_insert_after (gsi
, s
, GSI_SAME_STMT
);
1930 /* Look for things that can throw exceptions, and record them. */
1931 if (state
->cur_region
&& stmt_could_throw_p (stmt
))
1933 record_stmt_eh_region (state
->cur_region
, stmt
);
1934 note_eh_region_may_contain_throw (state
->cur_region
);
1941 maybe_record_in_goto_queue (state
, stmt
);
1945 verify_norecord_switch_expr (state
, stmt
);
1949 if (gimple_try_kind (stmt
) == GIMPLE_TRY_FINALLY
)
1950 replace
= lower_try_finally (state
, stmt
);
1953 x
= gimple_seq_first_stmt (gimple_try_cleanup (stmt
));
1956 replace
= gimple_try_eval (stmt
);
1957 lower_eh_constructs_1 (state
, replace
);
1960 switch (gimple_code (x
))
1963 replace
= lower_catch (state
, stmt
);
1965 case GIMPLE_EH_FILTER
:
1966 replace
= lower_eh_filter (state
, stmt
);
1968 case GIMPLE_EH_MUST_NOT_THROW
:
1969 replace
= lower_eh_must_not_throw (state
, stmt
);
1972 replace
= lower_cleanup (state
, stmt
);
1977 /* Remove the old stmt and insert the transformed sequence
1979 gsi_insert_seq_before (gsi
, replace
, GSI_SAME_STMT
);
1980 gsi_remove (gsi
, true);
1982 /* Return since we don't want gsi_next () */
1986 /* A type, a decl, or some kind of statement that we're not
1987 interested in. Don't walk them. */
1994 /* A helper to unwrap a gimple_seq and feed stmts to lower_eh_constructs_2. */
1997 lower_eh_constructs_1 (struct leh_state
*state
, gimple_seq seq
)
1999 gimple_stmt_iterator gsi
;
2000 for (gsi
= gsi_start (seq
); !gsi_end_p (gsi
);)
2001 lower_eh_constructs_2 (state
, &gsi
);
2005 lower_eh_constructs (void)
2007 struct leh_state null_state
;
2010 bodyp
= gimple_body (current_function_decl
);
2014 finally_tree
= htab_create (31, struct_ptr_hash
, struct_ptr_eq
, free
);
2015 eh_region_may_contain_throw_map
= BITMAP_ALLOC (NULL
);
2016 memset (&null_state
, 0, sizeof (null_state
));
2018 collect_finally_tree_1 (bodyp
, NULL
);
2019 lower_eh_constructs_1 (&null_state
, bodyp
);
2021 /* We assume there's a return statement, or something, at the end of
2022 the function, and thus ploping the EH sequence afterward won't
2024 gcc_assert (!gimple_seq_may_fallthru (bodyp
));
2025 gimple_seq_add_seq (&bodyp
, eh_seq
);
2027 /* We assume that since BODYP already existed, adding EH_SEQ to it
2028 didn't change its value, and we don't have to re-set the function. */
2029 gcc_assert (bodyp
== gimple_body (current_function_decl
));
2031 htab_delete (finally_tree
);
2032 BITMAP_FREE (eh_region_may_contain_throw_map
);
2035 /* If this function needs a language specific EH personality routine
2036 and the frontend didn't already set one do so now. */
2037 if (function_needs_eh_personality (cfun
) == eh_personality_lang
2038 && !DECL_FUNCTION_PERSONALITY (current_function_decl
))
2039 DECL_FUNCTION_PERSONALITY (current_function_decl
)
2040 = lang_hooks
.eh_personality ();
2045 struct gimple_opt_pass pass_lower_eh
=
2051 lower_eh_constructs
, /* execute */
2054 0, /* static_pass_number */
2055 TV_TREE_EH
, /* tv_id */
2056 PROP_gimple_lcf
, /* properties_required */
2057 PROP_gimple_leh
, /* properties_provided */
2058 0, /* properties_destroyed */
2059 0, /* todo_flags_start */
2060 TODO_dump_func
/* todo_flags_finish */
2064 /* Create the multiple edges from an EH_DISPATCH statement to all of
2065 the possible handlers for its EH region. Return true if there's
2066 no fallthru edge; false if there is. */
2069 make_eh_dispatch_edges (gimple stmt
)
2073 basic_block src
, dst
;
2075 r
= get_eh_region_from_number (gimple_eh_dispatch_region (stmt
));
2076 src
= gimple_bb (stmt
);
2081 for (c
= r
->u
.eh_try
.first_catch
; c
; c
= c
->next_catch
)
2083 dst
= label_to_block (c
->label
);
2084 make_edge (src
, dst
, 0);
2086 /* A catch-all handler doesn't have a fallthru. */
2087 if (c
->type_list
== NULL
)
2092 case ERT_ALLOWED_EXCEPTIONS
:
2093 dst
= label_to_block (r
->u
.allowed
.label
);
2094 make_edge (src
, dst
, 0);
2104 /* Create the single EH edge from STMT to its nearest landing pad,
2105 if there is such a landing pad within the current function. */
2108 make_eh_edges (gimple stmt
)
2110 basic_block src
, dst
;
2114 lp_nr
= lookup_stmt_eh_lp (stmt
);
2118 lp
= get_eh_landing_pad_from_number (lp_nr
);
2119 gcc_assert (lp
!= NULL
);
2121 src
= gimple_bb (stmt
);
2122 dst
= label_to_block (lp
->post_landing_pad
);
2123 make_edge (src
, dst
, EDGE_EH
);
2126 /* Do the work in redirecting EDGE_IN to NEW_BB within the EH region tree;
2127 do not actually perform the final edge redirection.
2129 CHANGE_REGION is true when we're being called from cleanup_empty_eh and
2130 we intend to change the destination EH region as well; this means
2131 EH_LANDING_PAD_NR must already be set on the destination block label.
2132 If false, we're being called from generic cfg manipulation code and we
2133 should preserve our place within the region tree. */
2136 redirect_eh_edge_1 (edge edge_in
, basic_block new_bb
, bool change_region
)
2138 eh_landing_pad old_lp
, new_lp
;
2141 int old_lp_nr
, new_lp_nr
;
2142 tree old_label
, new_label
;
2146 old_bb
= edge_in
->dest
;
2147 old_label
= gimple_block_label (old_bb
);
2148 old_lp_nr
= EH_LANDING_PAD_NR (old_label
);
2149 gcc_assert (old_lp_nr
> 0);
2150 old_lp
= get_eh_landing_pad_from_number (old_lp_nr
);
2152 throw_stmt
= last_stmt (edge_in
->src
);
2153 gcc_assert (lookup_stmt_eh_lp (throw_stmt
) == old_lp_nr
);
2155 new_label
= gimple_block_label (new_bb
);
2157 /* Look for an existing region that might be using NEW_BB already. */
2158 new_lp_nr
= EH_LANDING_PAD_NR (new_label
);
2161 new_lp
= get_eh_landing_pad_from_number (new_lp_nr
);
2162 gcc_assert (new_lp
);
2164 /* Unless CHANGE_REGION is true, the new and old landing pad
2165 had better be associated with the same EH region. */
2166 gcc_assert (change_region
|| new_lp
->region
== old_lp
->region
);
2171 gcc_assert (!change_region
);
2174 /* Notice when we redirect the last EH edge away from OLD_BB. */
2175 FOR_EACH_EDGE (e
, ei
, old_bb
->preds
)
2176 if (e
!= edge_in
&& (e
->flags
& EDGE_EH
))
2181 /* NEW_LP already exists. If there are still edges into OLD_LP,
2182 there's nothing to do with the EH tree. If there are no more
2183 edges into OLD_LP, then we want to remove OLD_LP as it is unused.
2184 If CHANGE_REGION is true, then our caller is expecting to remove
2186 if (e
== NULL
&& !change_region
)
2187 remove_eh_landing_pad (old_lp
);
2191 /* No correct landing pad exists. If there are no more edges
2192 into OLD_LP, then we can simply re-use the existing landing pad.
2193 Otherwise, we have to create a new landing pad. */
2196 EH_LANDING_PAD_NR (old_lp
->post_landing_pad
) = 0;
2200 new_lp
= gen_eh_landing_pad (old_lp
->region
);
2201 new_lp
->post_landing_pad
= new_label
;
2202 EH_LANDING_PAD_NR (new_label
) = new_lp
->index
;
2205 /* Maybe move the throwing statement to the new region. */
2206 if (old_lp
!= new_lp
)
2208 remove_stmt_from_eh_lp (throw_stmt
);
2209 add_stmt_to_eh_lp (throw_stmt
, new_lp
->index
);
2213 /* Redirect EH edge E to NEW_BB. */
2216 redirect_eh_edge (edge edge_in
, basic_block new_bb
)
2218 redirect_eh_edge_1 (edge_in
, new_bb
, false);
2219 return ssa_redirect_edge (edge_in
, new_bb
);
2222 /* This is a subroutine of gimple_redirect_edge_and_branch. Update the
2223 labels for redirecting a non-fallthru EH_DISPATCH edge E to NEW_BB.
2224 The actual edge update will happen in the caller. */
2227 redirect_eh_dispatch_edge (gimple stmt
, edge e
, basic_block new_bb
)
2229 tree new_lab
= gimple_block_label (new_bb
);
2230 bool any_changed
= false;
2235 r
= get_eh_region_from_number (gimple_eh_dispatch_region (stmt
));
2239 for (c
= r
->u
.eh_try
.first_catch
; c
; c
= c
->next_catch
)
2241 old_bb
= label_to_block (c
->label
);
2242 if (old_bb
== e
->dest
)
2250 case ERT_ALLOWED_EXCEPTIONS
:
2251 old_bb
= label_to_block (r
->u
.allowed
.label
);
2252 gcc_assert (old_bb
== e
->dest
);
2253 r
->u
.allowed
.label
= new_lab
;
2261 gcc_assert (any_changed
);
2264 /* Helper function for operation_could_trap_p and stmt_could_throw_p. */
2267 operation_could_trap_helper_p (enum tree_code op
,
2278 case TRUNC_DIV_EXPR
:
2280 case FLOOR_DIV_EXPR
:
2281 case ROUND_DIV_EXPR
:
2282 case EXACT_DIV_EXPR
:
2284 case FLOOR_MOD_EXPR
:
2285 case ROUND_MOD_EXPR
:
2286 case TRUNC_MOD_EXPR
:
2288 if (honor_snans
|| honor_trapv
)
2291 return flag_trapping_math
;
2292 if (!TREE_CONSTANT (divisor
) || integer_zerop (divisor
))
2301 /* Some floating point comparisons may trap. */
2306 case UNORDERED_EXPR
:
2316 case FIX_TRUNC_EXPR
:
2317 /* Conversion of floating point might trap. */
2323 /* These operations don't trap with floating point. */
2331 /* Any floating arithmetic may trap. */
2332 if (fp_operation
&& flag_trapping_math
)
2340 /* Constructing an object cannot trap. */
2344 /* Any floating arithmetic may trap. */
2345 if (fp_operation
&& flag_trapping_math
)
2353 /* Return true if operation OP may trap. FP_OPERATION is true if OP is applied
2354 on floating-point values. HONOR_TRAPV is true if OP is applied on integer
2355 type operands that may trap. If OP is a division operator, DIVISOR contains
2356 the value of the divisor. */
2359 operation_could_trap_p (enum tree_code op
, bool fp_operation
, bool honor_trapv
,
2362 bool honor_nans
= (fp_operation
&& flag_trapping_math
2363 && !flag_finite_math_only
);
2364 bool honor_snans
= fp_operation
&& flag_signaling_nans
!= 0;
2367 if (TREE_CODE_CLASS (op
) != tcc_comparison
2368 && TREE_CODE_CLASS (op
) != tcc_unary
2369 && TREE_CODE_CLASS (op
) != tcc_binary
)
2372 return operation_could_trap_helper_p (op
, fp_operation
, honor_trapv
,
2373 honor_nans
, honor_snans
, divisor
,
2377 /* Return true if EXPR can trap, as in dereferencing an invalid pointer
2378 location or floating point arithmetic. C.f. the rtl version, may_trap_p.
2379 This routine expects only GIMPLE lhs or rhs input. */
2382 tree_could_trap_p (tree expr
)
2384 enum tree_code code
;
2385 bool fp_operation
= false;
2386 bool honor_trapv
= false;
2387 tree t
, base
, div
= NULL_TREE
;
2392 code
= TREE_CODE (expr
);
2393 t
= TREE_TYPE (expr
);
2397 if (COMPARISON_CLASS_P (expr
))
2398 fp_operation
= FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr
, 0)));
2400 fp_operation
= FLOAT_TYPE_P (t
);
2401 honor_trapv
= INTEGRAL_TYPE_P (t
) && TYPE_OVERFLOW_TRAPS (t
);
2404 if (TREE_CODE_CLASS (code
) == tcc_binary
)
2405 div
= TREE_OPERAND (expr
, 1);
2406 if (operation_could_trap_p (code
, fp_operation
, honor_trapv
, div
))
2412 case TARGET_MEM_REF
:
2413 if (TREE_CODE (TMR_BASE (expr
)) == ADDR_EXPR
2414 && !TMR_INDEX (expr
) && !TMR_INDEX2 (expr
))
2416 return !TREE_THIS_NOTRAP (expr
);
2422 case VIEW_CONVERT_EXPR
:
2423 case WITH_SIZE_EXPR
:
2424 expr
= TREE_OPERAND (expr
, 0);
2425 code
= TREE_CODE (expr
);
2428 case ARRAY_RANGE_REF
:
2429 base
= TREE_OPERAND (expr
, 0);
2430 if (tree_could_trap_p (base
))
2432 if (TREE_THIS_NOTRAP (expr
))
2434 return !range_in_array_bounds_p (expr
);
2437 base
= TREE_OPERAND (expr
, 0);
2438 if (tree_could_trap_p (base
))
2440 if (TREE_THIS_NOTRAP (expr
))
2442 return !in_array_bounds_p (expr
);
2445 if (TREE_CODE (TREE_OPERAND (expr
, 0)) == ADDR_EXPR
)
2449 return !TREE_THIS_NOTRAP (expr
);
2452 return TREE_THIS_VOLATILE (expr
);
2455 t
= get_callee_fndecl (expr
);
2456 /* Assume that calls to weak functions may trap. */
2457 if (!t
|| !DECL_P (t
) || DECL_WEAK (t
))
2467 /* Helper for stmt_could_throw_p. Return true if STMT (assumed to be a
2468 an assignment or a conditional) may throw. */
2471 stmt_could_throw_1_p (gimple stmt
)
2473 enum tree_code code
= gimple_expr_code (stmt
);
2474 bool honor_nans
= false;
2475 bool honor_snans
= false;
2476 bool fp_operation
= false;
2477 bool honor_trapv
= false;
2482 if (TREE_CODE_CLASS (code
) == tcc_comparison
2483 || TREE_CODE_CLASS (code
) == tcc_unary
2484 || TREE_CODE_CLASS (code
) == tcc_binary
)
2486 t
= gimple_expr_type (stmt
);
2487 fp_operation
= FLOAT_TYPE_P (t
);
2490 honor_nans
= flag_trapping_math
&& !flag_finite_math_only
;
2491 honor_snans
= flag_signaling_nans
!= 0;
2493 else if (INTEGRAL_TYPE_P (t
) && TYPE_OVERFLOW_TRAPS (t
))
2497 /* Check if the main expression may trap. */
2498 t
= is_gimple_assign (stmt
) ? gimple_assign_rhs2 (stmt
) : NULL
;
2499 ret
= operation_could_trap_helper_p (code
, fp_operation
, honor_trapv
,
2500 honor_nans
, honor_snans
, t
,
2505 /* If the expression does not trap, see if any of the individual operands may
2507 for (i
= 0; i
< gimple_num_ops (stmt
); i
++)
2508 if (tree_could_trap_p (gimple_op (stmt
, i
)))
2515 /* Return true if statement STMT could throw an exception. */
2518 stmt_could_throw_p (gimple stmt
)
2520 if (!flag_exceptions
)
2523 /* The only statements that can throw an exception are assignments,
2524 conditionals, calls, resx, and asms. */
2525 switch (gimple_code (stmt
))
2531 return !gimple_call_nothrow_p (stmt
);
2535 if (!cfun
->can_throw_non_call_exceptions
)
2537 return stmt_could_throw_1_p (stmt
);
2540 if (!cfun
->can_throw_non_call_exceptions
)
2542 return gimple_asm_volatile_p (stmt
);
2550 /* Return true if expression T could throw an exception. */
2553 tree_could_throw_p (tree t
)
2555 if (!flag_exceptions
)
2557 if (TREE_CODE (t
) == MODIFY_EXPR
)
2559 if (cfun
->can_throw_non_call_exceptions
2560 && tree_could_trap_p (TREE_OPERAND (t
, 0)))
2562 t
= TREE_OPERAND (t
, 1);
2565 if (TREE_CODE (t
) == WITH_SIZE_EXPR
)
2566 t
= TREE_OPERAND (t
, 0);
2567 if (TREE_CODE (t
) == CALL_EXPR
)
2568 return (call_expr_flags (t
) & ECF_NOTHROW
) == 0;
2569 if (cfun
->can_throw_non_call_exceptions
)
2570 return tree_could_trap_p (t
);
2574 /* Return true if STMT can throw an exception that is not caught within
2575 the current function (CFUN). */
2578 stmt_can_throw_external (gimple stmt
)
2582 if (!stmt_could_throw_p (stmt
))
2585 lp_nr
= lookup_stmt_eh_lp (stmt
);
2589 /* Return true if STMT can throw an exception that is caught within
2590 the current function (CFUN). */
2593 stmt_can_throw_internal (gimple stmt
)
2597 if (!stmt_could_throw_p (stmt
))
2600 lp_nr
= lookup_stmt_eh_lp (stmt
);
2604 /* Given a statement STMT in IFUN, if STMT can no longer throw, then
2605 remove any entry it might have from the EH table. Return true if
2606 any change was made. */
2609 maybe_clean_eh_stmt_fn (struct function
*ifun
, gimple stmt
)
2611 if (stmt_could_throw_p (stmt
))
2613 return remove_stmt_from_eh_lp_fn (ifun
, stmt
);
2616 /* Likewise, but always use the current function. */
2619 maybe_clean_eh_stmt (gimple stmt
)
2621 return maybe_clean_eh_stmt_fn (cfun
, stmt
);
2624 /* Given a statement OLD_STMT and a new statement NEW_STMT that has replaced
2625 OLD_STMT in the function, remove OLD_STMT from the EH table and put NEW_STMT
2626 in the table if it should be in there. Return TRUE if a replacement was
2627 done that my require an EH edge purge. */
2630 maybe_clean_or_replace_eh_stmt (gimple old_stmt
, gimple new_stmt
)
2632 int lp_nr
= lookup_stmt_eh_lp (old_stmt
);
2636 bool new_stmt_could_throw
= stmt_could_throw_p (new_stmt
);
2638 if (new_stmt
== old_stmt
&& new_stmt_could_throw
)
2641 remove_stmt_from_eh_lp (old_stmt
);
2642 if (new_stmt_could_throw
)
2644 add_stmt_to_eh_lp (new_stmt
, lp_nr
);
2654 /* Given a statement OLD_STMT in OLD_FUN and a duplicate statment NEW_STMT
2655 in NEW_FUN, copy the EH table data from OLD_STMT to NEW_STMT. The MAP
2656 operand is the return value of duplicate_eh_regions. */
2659 maybe_duplicate_eh_stmt_fn (struct function
*new_fun
, gimple new_stmt
,
2660 struct function
*old_fun
, gimple old_stmt
,
2661 struct pointer_map_t
*map
, int default_lp_nr
)
2663 int old_lp_nr
, new_lp_nr
;
2666 if (!stmt_could_throw_p (new_stmt
))
2669 old_lp_nr
= lookup_stmt_eh_lp_fn (old_fun
, old_stmt
);
2672 if (default_lp_nr
== 0)
2674 new_lp_nr
= default_lp_nr
;
2676 else if (old_lp_nr
> 0)
2678 eh_landing_pad old_lp
, new_lp
;
2680 old_lp
= VEC_index (eh_landing_pad
, old_fun
->eh
->lp_array
, old_lp_nr
);
2681 slot
= pointer_map_contains (map
, old_lp
);
2682 new_lp
= (eh_landing_pad
) *slot
;
2683 new_lp_nr
= new_lp
->index
;
2687 eh_region old_r
, new_r
;
2689 old_r
= VEC_index (eh_region
, old_fun
->eh
->region_array
, -old_lp_nr
);
2690 slot
= pointer_map_contains (map
, old_r
);
2691 new_r
= (eh_region
) *slot
;
2692 new_lp_nr
= -new_r
->index
;
2695 add_stmt_to_eh_lp_fn (new_fun
, new_stmt
, new_lp_nr
);
2699 /* Similar, but both OLD_STMT and NEW_STMT are within the current function,
2700 and thus no remapping is required. */
2703 maybe_duplicate_eh_stmt (gimple new_stmt
, gimple old_stmt
)
2707 if (!stmt_could_throw_p (new_stmt
))
2710 lp_nr
= lookup_stmt_eh_lp (old_stmt
);
2714 add_stmt_to_eh_lp (new_stmt
, lp_nr
);
2718 /* Returns TRUE if oneh and twoh are exception handlers (gimple_try_cleanup of
2719 GIMPLE_TRY) that are similar enough to be considered the same. Currently
2720 this only handles handlers consisting of a single call, as that's the
2721 important case for C++: a destructor call for a particular object showing
2722 up in multiple handlers. */
2725 same_handler_p (gimple_seq oneh
, gimple_seq twoh
)
2727 gimple_stmt_iterator gsi
;
2731 gsi
= gsi_start (oneh
);
2732 if (!gsi_one_before_end_p (gsi
))
2734 ones
= gsi_stmt (gsi
);
2736 gsi
= gsi_start (twoh
);
2737 if (!gsi_one_before_end_p (gsi
))
2739 twos
= gsi_stmt (gsi
);
2741 if (!is_gimple_call (ones
)
2742 || !is_gimple_call (twos
)
2743 || gimple_call_lhs (ones
)
2744 || gimple_call_lhs (twos
)
2745 || gimple_call_chain (ones
)
2746 || gimple_call_chain (twos
)
2747 || !gimple_call_same_target_p (ones
, twos
)
2748 || gimple_call_num_args (ones
) != gimple_call_num_args (twos
))
2751 for (ai
= 0; ai
< gimple_call_num_args (ones
); ++ai
)
2752 if (!operand_equal_p (gimple_call_arg (ones
, ai
),
2753 gimple_call_arg (twos
, ai
), 0))
2760 try { A() } finally { try { ~B() } catch { ~A() } }
2761 try { ... } finally { ~A() }
2763 try { A() } catch { ~B() }
2764 try { ~B() ... } finally { ~A() }
2766 This occurs frequently in C++, where A is a local variable and B is a
2767 temporary used in the initializer for A. */
2770 optimize_double_finally (gimple one
, gimple two
)
2773 gimple_stmt_iterator gsi
;
2775 gsi
= gsi_start (gimple_try_cleanup (one
));
2776 if (!gsi_one_before_end_p (gsi
))
2779 oneh
= gsi_stmt (gsi
);
2780 if (gimple_code (oneh
) != GIMPLE_TRY
2781 || gimple_try_kind (oneh
) != GIMPLE_TRY_CATCH
)
2784 if (same_handler_p (gimple_try_cleanup (oneh
), gimple_try_cleanup (two
)))
2786 gimple_seq seq
= gimple_try_eval (oneh
);
2788 gimple_try_set_cleanup (one
, seq
);
2789 gimple_try_set_kind (one
, GIMPLE_TRY_CATCH
);
2790 seq
= copy_gimple_seq_and_replace_locals (seq
);
2791 gimple_seq_add_seq (&seq
, gimple_try_eval (two
));
2792 gimple_try_set_eval (two
, seq
);
2796 /* Perform EH refactoring optimizations that are simpler to do when code
2797 flow has been lowered but EH structures haven't. */
2800 refactor_eh_r (gimple_seq seq
)
2802 gimple_stmt_iterator gsi
;
2807 gsi
= gsi_start (seq
);
2811 if (gsi_end_p (gsi
))
2814 two
= gsi_stmt (gsi
);
2817 && gimple_code (one
) == GIMPLE_TRY
2818 && gimple_code (two
) == GIMPLE_TRY
2819 && gimple_try_kind (one
) == GIMPLE_TRY_FINALLY
2820 && gimple_try_kind (two
) == GIMPLE_TRY_FINALLY
)
2821 optimize_double_finally (one
, two
);
2823 switch (gimple_code (one
))
2826 refactor_eh_r (gimple_try_eval (one
));
2827 refactor_eh_r (gimple_try_cleanup (one
));
2830 refactor_eh_r (gimple_catch_handler (one
));
2832 case GIMPLE_EH_FILTER
:
2833 refactor_eh_r (gimple_eh_filter_failure (one
));
2848 refactor_eh_r (gimple_body (current_function_decl
));
2853 gate_refactor_eh (void)
2855 return flag_exceptions
!= 0;
2858 struct gimple_opt_pass pass_refactor_eh
=
2863 gate_refactor_eh
, /* gate */
2864 refactor_eh
, /* execute */
2867 0, /* static_pass_number */
2868 TV_TREE_EH
, /* tv_id */
2869 PROP_gimple_lcf
, /* properties_required */
2870 0, /* properties_provided */
2871 0, /* properties_destroyed */
2872 0, /* todo_flags_start */
2873 TODO_dump_func
/* todo_flags_finish */
2877 /* At the end of gimple optimization, we can lower RESX. */
2880 lower_resx (basic_block bb
, gimple stmt
, struct pointer_map_t
*mnt_map
)
2883 eh_region src_r
, dst_r
;
2884 gimple_stmt_iterator gsi
;
2889 lp_nr
= lookup_stmt_eh_lp (stmt
);
2891 dst_r
= get_eh_region_from_lp_number (lp_nr
);
2895 src_r
= get_eh_region_from_number (gimple_resx_region (stmt
));
2896 gsi
= gsi_last_bb (bb
);
2900 /* We can wind up with no source region when pass_cleanup_eh shows
2901 that there are no entries into an eh region and deletes it, but
2902 then the block that contains the resx isn't removed. This can
2903 happen without optimization when the switch statement created by
2904 lower_try_finally_switch isn't simplified to remove the eh case.
2906 Resolve this by expanding the resx node to an abort. */
2908 fn
= implicit_built_in_decls
[BUILT_IN_TRAP
];
2909 x
= gimple_build_call (fn
, 0);
2910 gsi_insert_before (&gsi
, x
, GSI_SAME_STMT
);
2912 while (EDGE_COUNT (bb
->succs
) > 0)
2913 remove_edge (EDGE_SUCC (bb
, 0));
2917 /* When we have a destination region, we resolve this by copying
2918 the excptr and filter values into place, and changing the edge
2919 to immediately after the landing pad. */
2928 /* We are resuming into a MUST_NOT_CALL region. Expand a call to
2929 the failure decl into a new block, if needed. */
2930 gcc_assert (dst_r
->type
== ERT_MUST_NOT_THROW
);
2932 slot
= pointer_map_contains (mnt_map
, dst_r
);
2935 gimple_stmt_iterator gsi2
;
2937 new_bb
= create_empty_bb (bb
);
2938 lab
= gimple_block_label (new_bb
);
2939 gsi2
= gsi_start_bb (new_bb
);
2941 fn
= dst_r
->u
.must_not_throw
.failure_decl
;
2942 x
= gimple_build_call (fn
, 0);
2943 gimple_set_location (x
, dst_r
->u
.must_not_throw
.failure_loc
);
2944 gsi_insert_after (&gsi2
, x
, GSI_CONTINUE_LINKING
);
2946 slot
= pointer_map_insert (mnt_map
, dst_r
);
2952 new_bb
= label_to_block (lab
);
2955 gcc_assert (EDGE_COUNT (bb
->succs
) == 0);
2956 e
= make_edge (bb
, new_bb
, EDGE_FALLTHRU
);
2957 e
->count
= bb
->count
;
2958 e
->probability
= REG_BR_PROB_BASE
;
2963 tree dst_nr
= build_int_cst (NULL
, dst_r
->index
);
2965 fn
= implicit_built_in_decls
[BUILT_IN_EH_COPY_VALUES
];
2966 src_nr
= build_int_cst (NULL
, src_r
->index
);
2967 x
= gimple_build_call (fn
, 2, dst_nr
, src_nr
);
2968 gsi_insert_before (&gsi
, x
, GSI_SAME_STMT
);
2970 /* Update the flags for the outgoing edge. */
2971 e
= single_succ_edge (bb
);
2972 gcc_assert (e
->flags
& EDGE_EH
);
2973 e
->flags
= (e
->flags
& ~EDGE_EH
) | EDGE_FALLTHRU
;
2975 /* If there are no more EH users of the landing pad, delete it. */
2976 FOR_EACH_EDGE (e
, ei
, e
->dest
->preds
)
2977 if (e
->flags
& EDGE_EH
)
2981 eh_landing_pad lp
= get_eh_landing_pad_from_number (lp_nr
);
2982 remove_eh_landing_pad (lp
);
2992 /* When we don't have a destination region, this exception escapes
2993 up the call chain. We resolve this by generating a call to the
2994 _Unwind_Resume library function. */
2996 /* The ARM EABI redefines _Unwind_Resume as __cxa_end_cleanup
2997 with no arguments for C++ and Java. Check for that. */
2998 if (src_r
->use_cxa_end_cleanup
)
3000 fn
= implicit_built_in_decls
[BUILT_IN_CXA_END_CLEANUP
];
3001 x
= gimple_build_call (fn
, 0);
3002 gsi_insert_before (&gsi
, x
, GSI_SAME_STMT
);
3006 fn
= implicit_built_in_decls
[BUILT_IN_EH_POINTER
];
3007 src_nr
= build_int_cst (NULL
, src_r
->index
);
3008 x
= gimple_build_call (fn
, 1, src_nr
);
3009 var
= create_tmp_var (ptr_type_node
, NULL
);
3010 var
= make_ssa_name (var
, x
);
3011 gimple_call_set_lhs (x
, var
);
3012 gsi_insert_before (&gsi
, x
, GSI_SAME_STMT
);
3014 fn
= implicit_built_in_decls
[BUILT_IN_UNWIND_RESUME
];
3015 x
= gimple_build_call (fn
, 1, var
);
3016 gsi_insert_before (&gsi
, x
, GSI_SAME_STMT
);
3019 gcc_assert (EDGE_COUNT (bb
->succs
) == 0);
3022 gsi_remove (&gsi
, true);
3028 execute_lower_resx (void)
3031 struct pointer_map_t
*mnt_map
;
3032 bool dominance_invalidated
= false;
3033 bool any_rewritten
= false;
3035 mnt_map
= pointer_map_create ();
3039 gimple last
= last_stmt (bb
);
3040 if (last
&& is_gimple_resx (last
))
3042 dominance_invalidated
|= lower_resx (bb
, last
, mnt_map
);
3043 any_rewritten
= true;
3047 pointer_map_destroy (mnt_map
);
3049 if (dominance_invalidated
)
3051 free_dominance_info (CDI_DOMINATORS
);
3052 free_dominance_info (CDI_POST_DOMINATORS
);
3055 return any_rewritten
? TODO_update_ssa_only_virtuals
: 0;
3059 gate_lower_resx (void)
3061 return flag_exceptions
!= 0;
3064 struct gimple_opt_pass pass_lower_resx
=
3069 gate_lower_resx
, /* gate */
3070 execute_lower_resx
, /* execute */
3073 0, /* static_pass_number */
3074 TV_TREE_EH
, /* tv_id */
3075 PROP_gimple_lcf
, /* properties_required */
3076 0, /* properties_provided */
3077 0, /* properties_destroyed */
3078 0, /* todo_flags_start */
3079 TODO_dump_func
| TODO_verify_flow
/* todo_flags_finish */
3084 /* At the end of inlining, we can lower EH_DISPATCH. Return true when
3085 we have found some duplicate labels and removed some edges. */
3088 lower_eh_dispatch (basic_block src
, gimple stmt
)
3090 gimple_stmt_iterator gsi
;
3095 bool redirected
= false;
3097 region_nr
= gimple_eh_dispatch_region (stmt
);
3098 r
= get_eh_region_from_number (region_nr
);
3100 gsi
= gsi_last_bb (src
);
3106 VEC (tree
, heap
) *labels
= NULL
;
3107 tree default_label
= NULL
;
3111 struct pointer_set_t
*seen_values
= pointer_set_create ();
3113 /* Collect the labels for a switch. Zero the post_landing_pad
3114 field becase we'll no longer have anything keeping these labels
3115 in existance and the optimizer will be free to merge these
3117 for (c
= r
->u
.eh_try
.first_catch
; c
; c
= c
->next_catch
)
3119 tree tp_node
, flt_node
, lab
= c
->label
;
3120 bool have_label
= false;
3123 tp_node
= c
->type_list
;
3124 flt_node
= c
->filter_list
;
3126 if (tp_node
== NULL
)
3128 default_label
= lab
;
3133 /* Filter out duplicate labels that arise when this handler
3134 is shadowed by an earlier one. When no labels are
3135 attached to the handler anymore, we remove
3136 the corresponding edge and then we delete unreachable
3137 blocks at the end of this pass. */
3138 if (! pointer_set_contains (seen_values
, TREE_VALUE (flt_node
)))
3140 tree t
= build3 (CASE_LABEL_EXPR
, void_type_node
,
3141 TREE_VALUE (flt_node
), NULL
, lab
);
3142 VEC_safe_push (tree
, heap
, labels
, t
);
3143 pointer_set_insert (seen_values
, TREE_VALUE (flt_node
));
3147 tp_node
= TREE_CHAIN (tp_node
);
3148 flt_node
= TREE_CHAIN (flt_node
);
3153 remove_edge (find_edge (src
, label_to_block (lab
)));
3158 /* Clean up the edge flags. */
3159 FOR_EACH_EDGE (e
, ei
, src
->succs
)
3161 if (e
->flags
& EDGE_FALLTHRU
)
3163 /* If there was no catch-all, use the fallthru edge. */
3164 if (default_label
== NULL
)
3165 default_label
= gimple_block_label (e
->dest
);
3166 e
->flags
&= ~EDGE_FALLTHRU
;
3169 gcc_assert (default_label
!= NULL
);
3171 /* Don't generate a switch if there's only a default case.
3172 This is common in the form of try { A; } catch (...) { B; }. */
3175 e
= single_succ_edge (src
);
3176 e
->flags
|= EDGE_FALLTHRU
;
3180 fn
= implicit_built_in_decls
[BUILT_IN_EH_FILTER
];
3181 x
= gimple_build_call (fn
, 1, build_int_cst (NULL
, region_nr
));
3182 filter
= create_tmp_var (TREE_TYPE (TREE_TYPE (fn
)), NULL
);
3183 filter
= make_ssa_name (filter
, x
);
3184 gimple_call_set_lhs (x
, filter
);
3185 gsi_insert_before (&gsi
, x
, GSI_SAME_STMT
);
3187 /* Turn the default label into a default case. */
3188 default_label
= build3 (CASE_LABEL_EXPR
, void_type_node
,
3189 NULL
, NULL
, default_label
);
3190 sort_case_labels (labels
);
3192 x
= gimple_build_switch_vec (filter
, default_label
, labels
);
3193 gsi_insert_before (&gsi
, x
, GSI_SAME_STMT
);
3195 VEC_free (tree
, heap
, labels
);
3197 pointer_set_destroy (seen_values
);
3201 case ERT_ALLOWED_EXCEPTIONS
:
3203 edge b_e
= BRANCH_EDGE (src
);
3204 edge f_e
= FALLTHRU_EDGE (src
);
3206 fn
= implicit_built_in_decls
[BUILT_IN_EH_FILTER
];
3207 x
= gimple_build_call (fn
, 1, build_int_cst (NULL
, region_nr
));
3208 filter
= create_tmp_var (TREE_TYPE (TREE_TYPE (fn
)), NULL
);
3209 filter
= make_ssa_name (filter
, x
);
3210 gimple_call_set_lhs (x
, filter
);
3211 gsi_insert_before (&gsi
, x
, GSI_SAME_STMT
);
3213 r
->u
.allowed
.label
= NULL
;
3214 x
= gimple_build_cond (EQ_EXPR
, filter
,
3215 build_int_cst (TREE_TYPE (filter
),
3216 r
->u
.allowed
.filter
),
3217 NULL_TREE
, NULL_TREE
);
3218 gsi_insert_before (&gsi
, x
, GSI_SAME_STMT
);
3220 b_e
->flags
= b_e
->flags
| EDGE_TRUE_VALUE
;
3221 f_e
->flags
= (f_e
->flags
& ~EDGE_FALLTHRU
) | EDGE_FALSE_VALUE
;
3229 /* Replace the EH_DISPATCH with the SWITCH or COND generated above. */
3230 gsi_remove (&gsi
, true);
3235 execute_lower_eh_dispatch (void)
3238 bool any_rewritten
= false;
3239 bool redirected
= false;
3241 assign_filter_values ();
3245 gimple last
= last_stmt (bb
);
3246 if (last
&& gimple_code (last
) == GIMPLE_EH_DISPATCH
)
3248 redirected
|= lower_eh_dispatch (bb
, last
);
3249 any_rewritten
= true;
3254 delete_unreachable_blocks ();
3255 return any_rewritten
? TODO_update_ssa_only_virtuals
: 0;
3259 gate_lower_eh_dispatch (void)
3261 return cfun
->eh
->region_tree
!= NULL
;
3264 struct gimple_opt_pass pass_lower_eh_dispatch
=
3268 "ehdisp", /* name */
3269 gate_lower_eh_dispatch
, /* gate */
3270 execute_lower_eh_dispatch
, /* execute */
3273 0, /* static_pass_number */
3274 TV_TREE_EH
, /* tv_id */
3275 PROP_gimple_lcf
, /* properties_required */
3276 0, /* properties_provided */
3277 0, /* properties_destroyed */
3278 0, /* todo_flags_start */
3279 TODO_dump_func
| TODO_verify_flow
/* todo_flags_finish */
3283 /* Walk statements, see what regions are really referenced and remove
3284 those that are unused. */
3287 remove_unreachable_handlers (void)
3289 sbitmap r_reachable
, lp_reachable
;
3295 r_reachable
= sbitmap_alloc (VEC_length (eh_region
, cfun
->eh
->region_array
));
3297 = sbitmap_alloc (VEC_length (eh_landing_pad
, cfun
->eh
->lp_array
));
3298 sbitmap_zero (r_reachable
);
3299 sbitmap_zero (lp_reachable
);
3303 gimple_stmt_iterator gsi
= gsi_start_bb (bb
);
3305 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
3307 gimple stmt
= gsi_stmt (gsi
);
3308 lp_nr
= lookup_stmt_eh_lp (stmt
);
3310 /* Negative LP numbers are MUST_NOT_THROW regions which
3311 are not considered BB enders. */
3313 SET_BIT (r_reachable
, -lp_nr
);
3315 /* Positive LP numbers are real landing pads, are are BB enders. */
3318 gcc_assert (gsi_one_before_end_p (gsi
));
3319 region
= get_eh_region_from_lp_number (lp_nr
);
3320 SET_BIT (r_reachable
, region
->index
);
3321 SET_BIT (lp_reachable
, lp_nr
);
3328 fprintf (dump_file
, "Before removal of unreachable regions:\n");
3329 dump_eh_tree (dump_file
, cfun
);
3330 fprintf (dump_file
, "Reachable regions: ");
3331 dump_sbitmap_file (dump_file
, r_reachable
);
3332 fprintf (dump_file
, "Reachable landing pads: ");
3333 dump_sbitmap_file (dump_file
, lp_reachable
);
3337 VEC_iterate (eh_region
, cfun
->eh
->region_array
, r_nr
, region
); ++r_nr
)
3338 if (region
&& !TEST_BIT (r_reachable
, r_nr
))
3341 fprintf (dump_file
, "Removing unreachable region %d\n", r_nr
);
3342 remove_eh_handler (region
);
3346 VEC_iterate (eh_landing_pad
, cfun
->eh
->lp_array
, lp_nr
, lp
); ++lp_nr
)
3347 if (lp
&& !TEST_BIT (lp_reachable
, lp_nr
))
3350 fprintf (dump_file
, "Removing unreachable landing pad %d\n", lp_nr
);
3351 remove_eh_landing_pad (lp
);
3356 fprintf (dump_file
, "\n\nAfter removal of unreachable regions:\n");
3357 dump_eh_tree (dump_file
, cfun
);
3358 fprintf (dump_file
, "\n\n");
3361 sbitmap_free (r_reachable
);
3362 sbitmap_free (lp_reachable
);
3364 #ifdef ENABLE_CHECKING
3365 verify_eh_tree (cfun
);
3369 /* Remove regions that do not have landing pads. This assumes
3370 that remove_unreachable_handlers has already been run, and
3371 that we've just manipulated the landing pads since then. */
3374 remove_unreachable_handlers_no_lp (void)
3379 for (i
= 1; VEC_iterate (eh_region
, cfun
->eh
->region_array
, i
, r
); ++i
)
3380 if (r
&& r
->landing_pads
== NULL
&& r
->type
!= ERT_MUST_NOT_THROW
)
3383 fprintf (dump_file
, "Removing unreachable region %d\n", i
);
3384 remove_eh_handler (r
);
3388 /* Undo critical edge splitting on an EH landing pad. Earlier, we
3389 optimisticaly split all sorts of edges, including EH edges. The
3390 optimization passes in between may not have needed them; if not,
3391 we should undo the split.
3393 Recognize this case by having one EH edge incoming to the BB and
3394 one normal edge outgoing; BB should be empty apart from the
3395 post_landing_pad label.
3397 Note that this is slightly different from the empty handler case
3398 handled by cleanup_empty_eh, in that the actual handler may yet
3399 have actual code but the landing pad has been separated from the
3400 handler. As such, cleanup_empty_eh relies on this transformation
3401 having been done first. */
3404 unsplit_eh (eh_landing_pad lp
)
3406 basic_block bb
= label_to_block (lp
->post_landing_pad
);
3407 gimple_stmt_iterator gsi
;
3410 /* Quickly check the edge counts on BB for singularity. */
3411 if (EDGE_COUNT (bb
->preds
) != 1 || EDGE_COUNT (bb
->succs
) != 1)
3413 e_in
= EDGE_PRED (bb
, 0);
3414 e_out
= EDGE_SUCC (bb
, 0);
3416 /* Input edge must be EH and output edge must be normal. */
3417 if ((e_in
->flags
& EDGE_EH
) == 0 || (e_out
->flags
& EDGE_EH
) != 0)
3420 /* The block must be empty except for the labels and debug insns. */
3421 gsi
= gsi_after_labels (bb
);
3422 if (!gsi_end_p (gsi
) && is_gimple_debug (gsi_stmt (gsi
)))
3423 gsi_next_nondebug (&gsi
);
3424 if (!gsi_end_p (gsi
))
3427 /* The destination block must not already have a landing pad
3428 for a different region. */
3429 for (gsi
= gsi_start_bb (e_out
->dest
); !gsi_end_p (gsi
); gsi_next (&gsi
))
3431 gimple stmt
= gsi_stmt (gsi
);
3435 if (gimple_code (stmt
) != GIMPLE_LABEL
)
3437 lab
= gimple_label_label (stmt
);
3438 lp_nr
= EH_LANDING_PAD_NR (lab
);
3439 if (lp_nr
&& get_eh_region_from_lp_number (lp_nr
) != lp
->region
)
3443 /* The new destination block must not already be a destination of
3444 the source block, lest we merge fallthru and eh edges and get
3445 all sorts of confused. */
3446 if (find_edge (e_in
->src
, e_out
->dest
))
3449 /* ??? We can get degenerate phis due to cfg cleanups. I would have
3450 thought this should have been cleaned up by a phicprop pass, but
3451 that doesn't appear to handle virtuals. Propagate by hand. */
3452 if (!gimple_seq_empty_p (phi_nodes (bb
)))
3454 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); )
3456 gimple use_stmt
, phi
= gsi_stmt (gsi
);
3457 tree lhs
= gimple_phi_result (phi
);
3458 tree rhs
= gimple_phi_arg_def (phi
, 0);
3459 use_operand_p use_p
;
3460 imm_use_iterator iter
;
3462 FOR_EACH_IMM_USE_STMT (use_stmt
, iter
, lhs
)
3464 FOR_EACH_IMM_USE_ON_STMT (use_p
, iter
)
3465 SET_USE (use_p
, rhs
);
3468 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs
))
3469 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs
) = 1;
3471 remove_phi_node (&gsi
, true);
3475 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3476 fprintf (dump_file
, "Unsplit EH landing pad %d to block %i.\n",
3477 lp
->index
, e_out
->dest
->index
);
3479 /* Redirect the edge. Since redirect_eh_edge_1 expects to be moving
3480 a successor edge, humor it. But do the real CFG change with the
3481 predecessor of E_OUT in order to preserve the ordering of arguments
3482 to the PHI nodes in E_OUT->DEST. */
3483 redirect_eh_edge_1 (e_in
, e_out
->dest
, false);
3484 redirect_edge_pred (e_out
, e_in
->src
);
3485 e_out
->flags
= e_in
->flags
;
3486 e_out
->probability
= e_in
->probability
;
3487 e_out
->count
= e_in
->count
;
3493 /* Examine each landing pad block and see if it matches unsplit_eh. */
3496 unsplit_all_eh (void)
3498 bool changed
= false;
3502 for (i
= 1; VEC_iterate (eh_landing_pad
, cfun
->eh
->lp_array
, i
, lp
); ++i
)
3504 changed
|= unsplit_eh (lp
);
3509 /* A subroutine of cleanup_empty_eh. Redirect all EH edges incoming
3510 to OLD_BB to NEW_BB; return true on success, false on failure.
3512 OLD_BB_OUT is the edge into NEW_BB from OLD_BB, so if we miss any
3513 PHI variables from OLD_BB we can pick them up from OLD_BB_OUT.
3514 Virtual PHIs may be deleted and marked for renaming. */
3517 cleanup_empty_eh_merge_phis (basic_block new_bb
, basic_block old_bb
,
3518 edge old_bb_out
, bool change_region
)
3520 gimple_stmt_iterator ngsi
, ogsi
;
3523 bitmap rename_virts
;
3524 bitmap ophi_handled
;
3526 FOR_EACH_EDGE (e
, ei
, old_bb
->preds
)
3527 redirect_edge_var_map_clear (e
);
3529 ophi_handled
= BITMAP_ALLOC (NULL
);
3530 rename_virts
= BITMAP_ALLOC (NULL
);
3532 /* First, iterate through the PHIs on NEW_BB and set up the edge_var_map
3533 for the edges we're going to move. */
3534 for (ngsi
= gsi_start_phis (new_bb
); !gsi_end_p (ngsi
); gsi_next (&ngsi
))
3536 gimple ophi
, nphi
= gsi_stmt (ngsi
);
3539 nresult
= gimple_phi_result (nphi
);
3540 nop
= gimple_phi_arg_def (nphi
, old_bb_out
->dest_idx
);
3542 /* Find the corresponding PHI in OLD_BB so we can forward-propagate
3543 the source ssa_name. */
3545 for (ogsi
= gsi_start_phis (old_bb
); !gsi_end_p (ogsi
); gsi_next (&ogsi
))
3547 ophi
= gsi_stmt (ogsi
);
3548 if (gimple_phi_result (ophi
) == nop
)
3553 /* If we did find the corresponding PHI, copy those inputs. */
3556 /* If NOP is used somewhere else beyond phis in new_bb, give up. */
3557 if (!has_single_use (nop
))
3559 imm_use_iterator imm_iter
;
3560 use_operand_p use_p
;
3562 FOR_EACH_IMM_USE_FAST (use_p
, imm_iter
, nop
)
3564 if (!gimple_debug_bind_p (USE_STMT (use_p
))
3565 && (gimple_code (USE_STMT (use_p
)) != GIMPLE_PHI
3566 || gimple_bb (USE_STMT (use_p
)) != new_bb
))
3570 bitmap_set_bit (ophi_handled
, SSA_NAME_VERSION (nop
));
3571 FOR_EACH_EDGE (e
, ei
, old_bb
->preds
)
3576 if ((e
->flags
& EDGE_EH
) == 0)
3578 oop
= gimple_phi_arg_def (ophi
, e
->dest_idx
);
3579 oloc
= gimple_phi_arg_location (ophi
, e
->dest_idx
);
3580 redirect_edge_var_map_add (e
, nresult
, oop
, oloc
);
3583 /* If we didn't find the PHI, but it's a VOP, remember to rename
3584 it later, assuming all other tests succeed. */
3585 else if (!is_gimple_reg (nresult
))
3586 bitmap_set_bit (rename_virts
, SSA_NAME_VERSION (nresult
));
3587 /* If we didn't find the PHI, and it's a real variable, we know
3588 from the fact that OLD_BB is tree_empty_eh_handler_p that the
3589 variable is unchanged from input to the block and we can simply
3590 re-use the input to NEW_BB from the OLD_BB_OUT edge. */
3594 = gimple_phi_arg_location (nphi
, old_bb_out
->dest_idx
);
3595 FOR_EACH_EDGE (e
, ei
, old_bb
->preds
)
3596 redirect_edge_var_map_add (e
, nresult
, nop
, nloc
);
3600 /* Second, verify that all PHIs from OLD_BB have been handled. If not,
3601 we don't know what values from the other edges into NEW_BB to use. */
3602 for (ogsi
= gsi_start_phis (old_bb
); !gsi_end_p (ogsi
); gsi_next (&ogsi
))
3604 gimple ophi
= gsi_stmt (ogsi
);
3605 tree oresult
= gimple_phi_result (ophi
);
3606 if (!bitmap_bit_p (ophi_handled
, SSA_NAME_VERSION (oresult
)))
3610 /* At this point we know that the merge will succeed. Remove the PHI
3611 nodes for the virtuals that we want to rename. */
3612 if (!bitmap_empty_p (rename_virts
))
3614 for (ngsi
= gsi_start_phis (new_bb
); !gsi_end_p (ngsi
); )
3616 gimple nphi
= gsi_stmt (ngsi
);
3617 tree nresult
= gimple_phi_result (nphi
);
3618 if (bitmap_bit_p (rename_virts
, SSA_NAME_VERSION (nresult
)))
3620 mark_virtual_phi_result_for_renaming (nphi
);
3621 remove_phi_node (&ngsi
, true);
3628 /* Finally, move the edges and update the PHIs. */
3629 for (ei
= ei_start (old_bb
->preds
); (e
= ei_safe_edge (ei
)); )
3630 if (e
->flags
& EDGE_EH
)
3632 redirect_eh_edge_1 (e
, new_bb
, change_region
);
3633 redirect_edge_succ (e
, new_bb
);
3634 flush_pending_stmts (e
);
3639 BITMAP_FREE (ophi_handled
);
3640 BITMAP_FREE (rename_virts
);
3644 FOR_EACH_EDGE (e
, ei
, old_bb
->preds
)
3645 redirect_edge_var_map_clear (e
);
3646 BITMAP_FREE (ophi_handled
);
3647 BITMAP_FREE (rename_virts
);
3651 /* A subroutine of cleanup_empty_eh. Move a landing pad LP from its
3652 old region to NEW_REGION at BB. */
3655 cleanup_empty_eh_move_lp (basic_block bb
, edge e_out
,
3656 eh_landing_pad lp
, eh_region new_region
)
3658 gimple_stmt_iterator gsi
;
3661 for (pp
= &lp
->region
->landing_pads
; *pp
!= lp
; pp
= &(*pp
)->next_lp
)
3665 lp
->region
= new_region
;
3666 lp
->next_lp
= new_region
->landing_pads
;
3667 new_region
->landing_pads
= lp
;
3669 /* Delete the RESX that was matched within the empty handler block. */
3670 gsi
= gsi_last_bb (bb
);
3671 mark_virtual_ops_for_renaming (gsi_stmt (gsi
));
3672 gsi_remove (&gsi
, true);
3674 /* Clean up E_OUT for the fallthru. */
3675 e_out
->flags
= (e_out
->flags
& ~EDGE_EH
) | EDGE_FALLTHRU
;
3676 e_out
->probability
= REG_BR_PROB_BASE
;
3679 /* A subroutine of cleanup_empty_eh. Handle more complex cases of
3680 unsplitting than unsplit_eh was prepared to handle, e.g. when
3681 multiple incoming edges and phis are involved. */
3684 cleanup_empty_eh_unsplit (basic_block bb
, edge e_out
, eh_landing_pad lp
)
3686 gimple_stmt_iterator gsi
;
3691 /* We really ought not have totally lost everything following
3692 a landing pad label. Given that BB is empty, there had better
3694 gcc_assert (e_out
!= NULL
);
3696 /* The destination block must not already have a landing pad
3697 for a different region. */
3699 for (gsi
= gsi_start_bb (e_out
->dest
); !gsi_end_p (gsi
); gsi_next (&gsi
))
3701 gimple stmt
= gsi_stmt (gsi
);
3704 if (gimple_code (stmt
) != GIMPLE_LABEL
)
3706 lab
= gimple_label_label (stmt
);
3707 lp_nr
= EH_LANDING_PAD_NR (lab
);
3708 if (lp_nr
&& get_eh_region_from_lp_number (lp_nr
) != lp
->region
)
3712 /* The destination block must not be a regular successor for any
3713 of the preds of the landing pad. Thus, avoid turning
3723 which CFG verification would choke on. See PR45172. */
3724 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
3725 if (find_edge (e
->src
, e_out
->dest
))
3728 /* Attempt to move the PHIs into the successor block. */
3729 if (cleanup_empty_eh_merge_phis (e_out
->dest
, bb
, e_out
, false))
3731 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3733 "Unsplit EH landing pad %d to block %i "
3734 "(via cleanup_empty_eh).\n",
3735 lp
->index
, e_out
->dest
->index
);
3742 /* Return true if edge E_FIRST is part of an empty infinite loop
3743 or leads to such a loop through a series of single successor
3747 infinite_empty_loop_p (edge e_first
)
3749 bool inf_loop
= false;
3752 if (e_first
->dest
== e_first
->src
)
3755 e_first
->src
->aux
= (void *) 1;
3756 for (e
= e_first
; single_succ_p (e
->dest
); e
= single_succ_edge (e
->dest
))
3758 gimple_stmt_iterator gsi
;
3764 e
->dest
->aux
= (void *) 1;
3765 gsi
= gsi_after_labels (e
->dest
);
3766 if (!gsi_end_p (gsi
) && is_gimple_debug (gsi_stmt (gsi
)))
3767 gsi_next_nondebug (&gsi
);
3768 if (!gsi_end_p (gsi
))
3771 e_first
->src
->aux
= NULL
;
3772 for (e
= e_first
; e
->dest
->aux
; e
= single_succ_edge (e
->dest
))
3773 e
->dest
->aux
= NULL
;
3778 /* Examine the block associated with LP to determine if it's an empty
3779 handler for its EH region. If so, attempt to redirect EH edges to
3780 an outer region. Return true the CFG was updated in any way. This
3781 is similar to jump forwarding, just across EH edges. */
3784 cleanup_empty_eh (eh_landing_pad lp
)
3786 basic_block bb
= label_to_block (lp
->post_landing_pad
);
3787 gimple_stmt_iterator gsi
;
3789 eh_region new_region
;
3792 bool has_non_eh_pred
;
3795 /* There can be zero or one edges out of BB. This is the quickest test. */
3796 switch (EDGE_COUNT (bb
->succs
))
3802 e_out
= EDGE_SUCC (bb
, 0);
3807 gsi
= gsi_after_labels (bb
);
3809 /* Make sure to skip debug statements. */
3810 if (!gsi_end_p (gsi
) && is_gimple_debug (gsi_stmt (gsi
)))
3811 gsi_next_nondebug (&gsi
);
3813 /* If the block is totally empty, look for more unsplitting cases. */
3814 if (gsi_end_p (gsi
))
3816 /* For the degenerate case of an infinite loop bail out. */
3817 if (infinite_empty_loop_p (e_out
))
3820 return cleanup_empty_eh_unsplit (bb
, e_out
, lp
);
3823 /* The block should consist only of a single RESX statement. */
3824 resx
= gsi_stmt (gsi
);
3825 if (!is_gimple_resx (resx
))
3827 gcc_assert (gsi_one_before_end_p (gsi
));
3829 /* Determine if there are non-EH edges, or resx edges into the handler. */
3830 has_non_eh_pred
= false;
3831 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
3832 if (!(e
->flags
& EDGE_EH
))
3833 has_non_eh_pred
= true;
3835 /* Find the handler that's outer of the empty handler by looking at
3836 where the RESX instruction was vectored. */
3837 new_lp_nr
= lookup_stmt_eh_lp (resx
);
3838 new_region
= get_eh_region_from_lp_number (new_lp_nr
);
3840 /* If there's no destination region within the current function,
3841 redirection is trivial via removing the throwing statements from
3842 the EH region, removing the EH edges, and allowing the block
3843 to go unreachable. */
3844 if (new_region
== NULL
)
3846 gcc_assert (e_out
== NULL
);
3847 for (ei
= ei_start (bb
->preds
); (e
= ei_safe_edge (ei
)); )
3848 if (e
->flags
& EDGE_EH
)
3850 gimple stmt
= last_stmt (e
->src
);
3851 remove_stmt_from_eh_lp (stmt
);
3859 /* If the destination region is a MUST_NOT_THROW, allow the runtime
3860 to handle the abort and allow the blocks to go unreachable. */
3861 if (new_region
->type
== ERT_MUST_NOT_THROW
)
3863 for (ei
= ei_start (bb
->preds
); (e
= ei_safe_edge (ei
)); )
3864 if (e
->flags
& EDGE_EH
)
3866 gimple stmt
= last_stmt (e
->src
);
3867 remove_stmt_from_eh_lp (stmt
);
3868 add_stmt_to_eh_lp (stmt
, new_lp_nr
);
3876 /* Try to redirect the EH edges and merge the PHIs into the destination
3877 landing pad block. If the merge succeeds, we'll already have redirected
3878 all the EH edges. The handler itself will go unreachable if there were
3880 if (cleanup_empty_eh_merge_phis (e_out
->dest
, bb
, e_out
, true))
3883 /* Finally, if all input edges are EH edges, then we can (potentially)
3884 reduce the number of transfers from the runtime by moving the landing
3885 pad from the original region to the new region. This is a win when
3886 we remove the last CLEANUP region along a particular exception
3887 propagation path. Since nothing changes except for the region with
3888 which the landing pad is associated, the PHI nodes do not need to be
3890 if (!has_non_eh_pred
)
3892 cleanup_empty_eh_move_lp (bb
, e_out
, lp
, new_region
);
3893 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3894 fprintf (dump_file
, "Empty EH handler %i moved to EH region %i.\n",
3895 lp
->index
, new_region
->index
);
3897 /* ??? The CFG didn't change, but we may have rendered the
3898 old EH region unreachable. Trigger a cleanup there. */
3905 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3906 fprintf (dump_file
, "Empty EH handler %i removed.\n", lp
->index
);
3907 remove_eh_landing_pad (lp
);
3911 /* Do a post-order traversal of the EH region tree. Examine each
3912 post_landing_pad block and see if we can eliminate it as empty. */
3915 cleanup_all_empty_eh (void)
3917 bool changed
= false;
3921 for (i
= 1; VEC_iterate (eh_landing_pad
, cfun
->eh
->lp_array
, i
, lp
); ++i
)
3923 changed
|= cleanup_empty_eh (lp
);
3928 /* Perform cleanups and lowering of exception handling
3929 1) cleanups regions with handlers doing nothing are optimized out
3930 2) MUST_NOT_THROW regions that became dead because of 1) are optimized out
3931 3) Info about regions that are containing instructions, and regions
3932 reachable via local EH edges is collected
3933 4) Eh tree is pruned for regions no longer neccesary.
3935 TODO: Push MUST_NOT_THROW regions to the root of the EH tree.
3936 Unify those that have the same failure decl and locus.
3940 execute_cleanup_eh_1 (void)
3942 /* Do this first: unsplit_all_eh and cleanup_all_empty_eh can die
3943 looking up unreachable landing pads. */
3944 remove_unreachable_handlers ();
3946 /* Watch out for the region tree vanishing due to all unreachable. */
3947 if (cfun
->eh
->region_tree
&& optimize
)
3949 bool changed
= false;
3951 changed
|= unsplit_all_eh ();
3952 changed
|= cleanup_all_empty_eh ();
3956 free_dominance_info (CDI_DOMINATORS
);
3957 free_dominance_info (CDI_POST_DOMINATORS
);
3959 /* We delayed all basic block deletion, as we may have performed
3960 cleanups on EH edges while non-EH edges were still present. */
3961 delete_unreachable_blocks ();
3963 /* We manipulated the landing pads. Remove any region that no
3964 longer has a landing pad. */
3965 remove_unreachable_handlers_no_lp ();
3967 return TODO_cleanup_cfg
| TODO_update_ssa_only_virtuals
;
3975 execute_cleanup_eh (void)
3977 int ret
= execute_cleanup_eh_1 ();
3979 /* If the function no longer needs an EH personality routine
3980 clear it. This exposes cross-language inlining opportunities
3981 and avoids references to a never defined personality routine. */
3982 if (DECL_FUNCTION_PERSONALITY (current_function_decl
)
3983 && function_needs_eh_personality (cfun
) != eh_personality_lang
)
3984 DECL_FUNCTION_PERSONALITY (current_function_decl
) = NULL_TREE
;
3990 gate_cleanup_eh (void)
3992 return cfun
->eh
!= NULL
&& cfun
->eh
->region_tree
!= NULL
;
3995 struct gimple_opt_pass pass_cleanup_eh
= {
3998 "ehcleanup", /* name */
3999 gate_cleanup_eh
, /* gate */
4000 execute_cleanup_eh
, /* execute */
4003 0, /* static_pass_number */
4004 TV_TREE_EH
, /* tv_id */
4005 PROP_gimple_lcf
, /* properties_required */
4006 0, /* properties_provided */
4007 0, /* properties_destroyed */
4008 0, /* todo_flags_start */
4009 TODO_dump_func
/* todo_flags_finish */
4013 /* Verify that BB containing STMT as the last statement, has precisely the
4014 edge that make_eh_edges would create. */
4017 verify_eh_edges (gimple stmt
)
4019 basic_block bb
= gimple_bb (stmt
);
4020 eh_landing_pad lp
= NULL
;
4025 lp_nr
= lookup_stmt_eh_lp (stmt
);
4027 lp
= get_eh_landing_pad_from_number (lp_nr
);
4030 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
4032 if (e
->flags
& EDGE_EH
)
4036 error ("BB %i has multiple EH edges", bb
->index
);
4048 error ("BB %i can not throw but has an EH edge", bb
->index
);
4054 if (!stmt_could_throw_p (stmt
))
4056 error ("BB %i last statement has incorrectly set lp", bb
->index
);
4060 if (eh_edge
== NULL
)
4062 error ("BB %i is missing an EH edge", bb
->index
);
4066 if (eh_edge
->dest
!= label_to_block (lp
->post_landing_pad
))
4068 error ("Incorrect EH edge %i->%i", bb
->index
, eh_edge
->dest
->index
);
4075 /* Similarly, but handle GIMPLE_EH_DISPATCH specifically. */
4078 verify_eh_dispatch_edge (gimple stmt
)
4082 basic_block src
, dst
;
4083 bool want_fallthru
= true;
4087 r
= get_eh_region_from_number (gimple_eh_dispatch_region (stmt
));
4088 src
= gimple_bb (stmt
);
4090 FOR_EACH_EDGE (e
, ei
, src
->succs
)
4091 gcc_assert (e
->aux
== NULL
);
4096 for (c
= r
->u
.eh_try
.first_catch
; c
; c
= c
->next_catch
)
4098 dst
= label_to_block (c
->label
);
4099 e
= find_edge (src
, dst
);
4102 error ("BB %i is missing an edge", src
->index
);
4107 /* A catch-all handler doesn't have a fallthru. */
4108 if (c
->type_list
== NULL
)
4110 want_fallthru
= false;
4116 case ERT_ALLOWED_EXCEPTIONS
:
4117 dst
= label_to_block (r
->u
.allowed
.label
);
4118 e
= find_edge (src
, dst
);
4121 error ("BB %i is missing an edge", src
->index
);
4132 FOR_EACH_EDGE (e
, ei
, src
->succs
)
4134 if (e
->flags
& EDGE_FALLTHRU
)
4136 if (fall_edge
!= NULL
)
4138 error ("BB %i too many fallthru edges", src
->index
);
4147 error ("BB %i has incorrect edge", src
->index
);
4151 if ((fall_edge
!= NULL
) ^ want_fallthru
)
4153 error ("BB %i has incorrect fallthru edge", src
->index
);