PR tree-optimization/48734
[official-gcc.git] / gcc / emit-rtl.c
blob9b57aeab47ae6738f2547e9c30f155af08622ea1
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
4 2010, 2011
5 Free Software Foundation, Inc.
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
24 /* Middle-to-low level generation of rtx code and insns.
26 This file contains support functions for creating rtl expressions
27 and manipulating them in the doubly-linked chain of insns.
29 The patterns of the insns are created by machine-dependent
30 routines in insn-emit.c, which is generated automatically from
31 the machine description. These routines make the individual rtx's
32 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
33 which are automatically generated from rtl.def; what is machine
34 dependent is the kind of rtx's they make and what arguments they
35 use. */
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "diagnostic-core.h"
42 #include "rtl.h"
43 #include "tree.h"
44 #include "tm_p.h"
45 #include "flags.h"
46 #include "function.h"
47 #include "expr.h"
48 #include "regs.h"
49 #include "hard-reg-set.h"
50 #include "hashtab.h"
51 #include "insn-config.h"
52 #include "recog.h"
53 #include "bitmap.h"
54 #include "basic-block.h"
55 #include "ggc.h"
56 #include "debug.h"
57 #include "langhooks.h"
58 #include "tree-pass.h"
59 #include "df.h"
60 #include "params.h"
61 #include "target.h"
62 #include "tree-flow.h"
64 struct target_rtl default_target_rtl;
65 #if SWITCHABLE_TARGET
66 struct target_rtl *this_target_rtl = &default_target_rtl;
67 #endif
69 #define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
71 /* Commonly used modes. */
73 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
74 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
75 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
76 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
78 /* Datastructures maintained for currently processed function in RTL form. */
80 struct rtl_data x_rtl;
82 /* Indexed by pseudo register number, gives the rtx for that pseudo.
83 Allocated in parallel with regno_pointer_align.
84 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
85 with length attribute nested in top level structures. */
87 rtx * regno_reg_rtx;
89 /* This is *not* reset after each function. It gives each CODE_LABEL
90 in the entire compilation a unique label number. */
92 static GTY(()) int label_num = 1;
94 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
95 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
96 record a copy of const[012]_rtx. */
98 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
100 rtx const_true_rtx;
102 REAL_VALUE_TYPE dconst0;
103 REAL_VALUE_TYPE dconst1;
104 REAL_VALUE_TYPE dconst2;
105 REAL_VALUE_TYPE dconstm1;
106 REAL_VALUE_TYPE dconsthalf;
108 /* Record fixed-point constant 0 and 1. */
109 FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
110 FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
112 /* We make one copy of (const_int C) where C is in
113 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
114 to save space during the compilation and simplify comparisons of
115 integers. */
117 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
119 /* A hash table storing CONST_INTs whose absolute value is greater
120 than MAX_SAVED_CONST_INT. */
122 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
123 htab_t const_int_htab;
125 /* A hash table storing memory attribute structures. */
126 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
127 htab_t mem_attrs_htab;
129 /* A hash table storing register attribute structures. */
130 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
131 htab_t reg_attrs_htab;
133 /* A hash table storing all CONST_DOUBLEs. */
134 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
135 htab_t const_double_htab;
137 /* A hash table storing all CONST_FIXEDs. */
138 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
139 htab_t const_fixed_htab;
141 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
142 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
143 #define last_location (crtl->emit.x_last_location)
144 #define first_label_num (crtl->emit.x_first_label_num)
146 static rtx make_call_insn_raw (rtx);
147 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
148 static void set_used_decls (tree);
149 static void mark_label_nuses (rtx);
150 static hashval_t const_int_htab_hash (const void *);
151 static int const_int_htab_eq (const void *, const void *);
152 static hashval_t const_double_htab_hash (const void *);
153 static int const_double_htab_eq (const void *, const void *);
154 static rtx lookup_const_double (rtx);
155 static hashval_t const_fixed_htab_hash (const void *);
156 static int const_fixed_htab_eq (const void *, const void *);
157 static rtx lookup_const_fixed (rtx);
158 static hashval_t mem_attrs_htab_hash (const void *);
159 static int mem_attrs_htab_eq (const void *, const void *);
160 static mem_attrs *get_mem_attrs (alias_set_type, tree, rtx, rtx, unsigned int,
161 addr_space_t, enum machine_mode);
162 static hashval_t reg_attrs_htab_hash (const void *);
163 static int reg_attrs_htab_eq (const void *, const void *);
164 static reg_attrs *get_reg_attrs (tree, int);
165 static rtx gen_const_vector (enum machine_mode, int);
166 static void copy_rtx_if_shared_1 (rtx *orig);
168 /* Probability of the conditional branch currently proceeded by try_split.
169 Set to -1 otherwise. */
170 int split_branch_probability = -1;
172 /* Returns a hash code for X (which is a really a CONST_INT). */
174 static hashval_t
175 const_int_htab_hash (const void *x)
177 return (hashval_t) INTVAL ((const_rtx) x);
180 /* Returns nonzero if the value represented by X (which is really a
181 CONST_INT) is the same as that given by Y (which is really a
182 HOST_WIDE_INT *). */
184 static int
185 const_int_htab_eq (const void *x, const void *y)
187 return (INTVAL ((const_rtx) x) == *((const HOST_WIDE_INT *) y));
190 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
191 static hashval_t
192 const_double_htab_hash (const void *x)
194 const_rtx const value = (const_rtx) x;
195 hashval_t h;
197 if (GET_MODE (value) == VOIDmode)
198 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
199 else
201 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
202 /* MODE is used in the comparison, so it should be in the hash. */
203 h ^= GET_MODE (value);
205 return h;
208 /* Returns nonzero if the value represented by X (really a ...)
209 is the same as that represented by Y (really a ...) */
210 static int
211 const_double_htab_eq (const void *x, const void *y)
213 const_rtx const a = (const_rtx)x, b = (const_rtx)y;
215 if (GET_MODE (a) != GET_MODE (b))
216 return 0;
217 if (GET_MODE (a) == VOIDmode)
218 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
219 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
220 else
221 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
222 CONST_DOUBLE_REAL_VALUE (b));
225 /* Returns a hash code for X (which is really a CONST_FIXED). */
227 static hashval_t
228 const_fixed_htab_hash (const void *x)
230 const_rtx const value = (const_rtx) x;
231 hashval_t h;
233 h = fixed_hash (CONST_FIXED_VALUE (value));
234 /* MODE is used in the comparison, so it should be in the hash. */
235 h ^= GET_MODE (value);
236 return h;
239 /* Returns nonzero if the value represented by X (really a ...)
240 is the same as that represented by Y (really a ...). */
242 static int
243 const_fixed_htab_eq (const void *x, const void *y)
245 const_rtx const a = (const_rtx) x, b = (const_rtx) y;
247 if (GET_MODE (a) != GET_MODE (b))
248 return 0;
249 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
252 /* Returns a hash code for X (which is a really a mem_attrs *). */
254 static hashval_t
255 mem_attrs_htab_hash (const void *x)
257 const mem_attrs *const p = (const mem_attrs *) x;
259 return (p->alias ^ (p->align * 1000)
260 ^ (p->addrspace * 4000)
261 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
262 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
263 ^ (size_t) iterative_hash_expr (p->expr, 0));
266 /* Returns nonzero if the value represented by X (which is really a
267 mem_attrs *) is the same as that given by Y (which is also really a
268 mem_attrs *). */
270 static int
271 mem_attrs_htab_eq (const void *x, const void *y)
273 const mem_attrs *const p = (const mem_attrs *) x;
274 const mem_attrs *const q = (const mem_attrs *) y;
276 return (p->alias == q->alias && p->offset == q->offset
277 && p->size == q->size && p->align == q->align
278 && p->addrspace == q->addrspace
279 && (p->expr == q->expr
280 || (p->expr != NULL_TREE && q->expr != NULL_TREE
281 && operand_equal_p (p->expr, q->expr, 0))));
284 /* Allocate a new mem_attrs structure and insert it into the hash table if
285 one identical to it is not already in the table. We are doing this for
286 MEM of mode MODE. */
288 static mem_attrs *
289 get_mem_attrs (alias_set_type alias, tree expr, rtx offset, rtx size,
290 unsigned int align, addr_space_t addrspace, enum machine_mode mode)
292 mem_attrs attrs;
293 void **slot;
295 /* If everything is the default, we can just return zero.
296 This must match what the corresponding MEM_* macros return when the
297 field is not present. */
298 if (alias == 0 && expr == 0 && offset == 0 && addrspace == 0
299 && (size == 0
300 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
301 && (STRICT_ALIGNMENT && mode != BLKmode
302 ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
303 return 0;
305 attrs.alias = alias;
306 attrs.expr = expr;
307 attrs.offset = offset;
308 attrs.size = size;
309 attrs.align = align;
310 attrs.addrspace = addrspace;
312 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
313 if (*slot == 0)
315 *slot = ggc_alloc_mem_attrs ();
316 memcpy (*slot, &attrs, sizeof (mem_attrs));
319 return (mem_attrs *) *slot;
322 /* Returns a hash code for X (which is a really a reg_attrs *). */
324 static hashval_t
325 reg_attrs_htab_hash (const void *x)
327 const reg_attrs *const p = (const reg_attrs *) x;
329 return ((p->offset * 1000) ^ (intptr_t) p->decl);
332 /* Returns nonzero if the value represented by X (which is really a
333 reg_attrs *) is the same as that given by Y (which is also really a
334 reg_attrs *). */
336 static int
337 reg_attrs_htab_eq (const void *x, const void *y)
339 const reg_attrs *const p = (const reg_attrs *) x;
340 const reg_attrs *const q = (const reg_attrs *) y;
342 return (p->decl == q->decl && p->offset == q->offset);
344 /* Allocate a new reg_attrs structure and insert it into the hash table if
345 one identical to it is not already in the table. We are doing this for
346 MEM of mode MODE. */
348 static reg_attrs *
349 get_reg_attrs (tree decl, int offset)
351 reg_attrs attrs;
352 void **slot;
354 /* If everything is the default, we can just return zero. */
355 if (decl == 0 && offset == 0)
356 return 0;
358 attrs.decl = decl;
359 attrs.offset = offset;
361 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
362 if (*slot == 0)
364 *slot = ggc_alloc_reg_attrs ();
365 memcpy (*slot, &attrs, sizeof (reg_attrs));
368 return (reg_attrs *) *slot;
372 #if !HAVE_blockage
373 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule
374 across this insn. */
377 gen_blockage (void)
379 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
380 MEM_VOLATILE_P (x) = true;
381 return x;
383 #endif
386 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
387 don't attempt to share with the various global pieces of rtl (such as
388 frame_pointer_rtx). */
391 gen_raw_REG (enum machine_mode mode, int regno)
393 rtx x = gen_rtx_raw_REG (mode, regno);
394 ORIGINAL_REGNO (x) = regno;
395 return x;
398 /* There are some RTL codes that require special attention; the generation
399 functions do the raw handling. If you add to this list, modify
400 special_rtx in gengenrtl.c as well. */
403 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
405 void **slot;
407 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
408 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
410 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
411 if (const_true_rtx && arg == STORE_FLAG_VALUE)
412 return const_true_rtx;
413 #endif
415 /* Look up the CONST_INT in the hash table. */
416 slot = htab_find_slot_with_hash (const_int_htab, &arg,
417 (hashval_t) arg, INSERT);
418 if (*slot == 0)
419 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
421 return (rtx) *slot;
425 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
427 return GEN_INT (trunc_int_for_mode (c, mode));
430 /* CONST_DOUBLEs might be created from pairs of integers, or from
431 REAL_VALUE_TYPEs. Also, their length is known only at run time,
432 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
434 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
435 hash table. If so, return its counterpart; otherwise add it
436 to the hash table and return it. */
437 static rtx
438 lookup_const_double (rtx real)
440 void **slot = htab_find_slot (const_double_htab, real, INSERT);
441 if (*slot == 0)
442 *slot = real;
444 return (rtx) *slot;
447 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
448 VALUE in mode MODE. */
450 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
452 rtx real = rtx_alloc (CONST_DOUBLE);
453 PUT_MODE (real, mode);
455 real->u.rv = value;
457 return lookup_const_double (real);
460 /* Determine whether FIXED, a CONST_FIXED, already exists in the
461 hash table. If so, return its counterpart; otherwise add it
462 to the hash table and return it. */
464 static rtx
465 lookup_const_fixed (rtx fixed)
467 void **slot = htab_find_slot (const_fixed_htab, fixed, INSERT);
468 if (*slot == 0)
469 *slot = fixed;
471 return (rtx) *slot;
474 /* Return a CONST_FIXED rtx for a fixed-point value specified by
475 VALUE in mode MODE. */
478 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, enum machine_mode mode)
480 rtx fixed = rtx_alloc (CONST_FIXED);
481 PUT_MODE (fixed, mode);
483 fixed->u.fv = value;
485 return lookup_const_fixed (fixed);
488 /* Constructs double_int from rtx CST. */
490 double_int
491 rtx_to_double_int (const_rtx cst)
493 double_int r;
495 if (CONST_INT_P (cst))
496 r = shwi_to_double_int (INTVAL (cst));
497 else if (CONST_DOUBLE_P (cst) && GET_MODE (cst) == VOIDmode)
499 r.low = CONST_DOUBLE_LOW (cst);
500 r.high = CONST_DOUBLE_HIGH (cst);
502 else
503 gcc_unreachable ();
505 return r;
509 /* Return a CONST_DOUBLE or CONST_INT for a value specified as
510 a double_int. */
513 immed_double_int_const (double_int i, enum machine_mode mode)
515 return immed_double_const (i.low, i.high, mode);
518 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
519 of ints: I0 is the low-order word and I1 is the high-order word.
520 Do not use this routine for non-integer modes; convert to
521 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
524 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
526 rtx value;
527 unsigned int i;
529 /* There are the following cases (note that there are no modes with
530 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < 2 * HOST_BITS_PER_WIDE_INT):
532 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
533 gen_int_mode.
534 2) GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT, but the value of
535 the integer fits into HOST_WIDE_INT anyway (i.e., i1 consists only
536 from copies of the sign bit, and sign of i0 and i1 are the same), then
537 we return a CONST_INT for i0.
538 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
539 if (mode != VOIDmode)
541 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
542 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
543 /* We can get a 0 for an error mark. */
544 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
545 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
547 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
548 return gen_int_mode (i0, mode);
550 gcc_assert (GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT);
553 /* If this integer fits in one word, return a CONST_INT. */
554 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
555 return GEN_INT (i0);
557 /* We use VOIDmode for integers. */
558 value = rtx_alloc (CONST_DOUBLE);
559 PUT_MODE (value, VOIDmode);
561 CONST_DOUBLE_LOW (value) = i0;
562 CONST_DOUBLE_HIGH (value) = i1;
564 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
565 XWINT (value, i) = 0;
567 return lookup_const_double (value);
571 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
573 /* In case the MD file explicitly references the frame pointer, have
574 all such references point to the same frame pointer. This is
575 used during frame pointer elimination to distinguish the explicit
576 references to these registers from pseudos that happened to be
577 assigned to them.
579 If we have eliminated the frame pointer or arg pointer, we will
580 be using it as a normal register, for example as a spill
581 register. In such cases, we might be accessing it in a mode that
582 is not Pmode and therefore cannot use the pre-allocated rtx.
584 Also don't do this when we are making new REGs in reload, since
585 we don't want to get confused with the real pointers. */
587 if (mode == Pmode && !reload_in_progress)
589 if (regno == FRAME_POINTER_REGNUM
590 && (!reload_completed || frame_pointer_needed))
591 return frame_pointer_rtx;
592 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
593 if (regno == HARD_FRAME_POINTER_REGNUM
594 && (!reload_completed || frame_pointer_needed))
595 return hard_frame_pointer_rtx;
596 #endif
597 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && !HARD_FRAME_POINTER_IS_ARG_POINTER
598 if (regno == ARG_POINTER_REGNUM)
599 return arg_pointer_rtx;
600 #endif
601 #ifdef RETURN_ADDRESS_POINTER_REGNUM
602 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
603 return return_address_pointer_rtx;
604 #endif
605 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
606 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
607 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
608 return pic_offset_table_rtx;
609 if (regno == STACK_POINTER_REGNUM)
610 return stack_pointer_rtx;
613 #if 0
614 /* If the per-function register table has been set up, try to re-use
615 an existing entry in that table to avoid useless generation of RTL.
617 This code is disabled for now until we can fix the various backends
618 which depend on having non-shared hard registers in some cases. Long
619 term we want to re-enable this code as it can significantly cut down
620 on the amount of useless RTL that gets generated.
622 We'll also need to fix some code that runs after reload that wants to
623 set ORIGINAL_REGNO. */
625 if (cfun
626 && cfun->emit
627 && regno_reg_rtx
628 && regno < FIRST_PSEUDO_REGISTER
629 && reg_raw_mode[regno] == mode)
630 return regno_reg_rtx[regno];
631 #endif
633 return gen_raw_REG (mode, regno);
637 gen_rtx_MEM (enum machine_mode mode, rtx addr)
639 rtx rt = gen_rtx_raw_MEM (mode, addr);
641 /* This field is not cleared by the mere allocation of the rtx, so
642 we clear it here. */
643 MEM_ATTRS (rt) = 0;
645 return rt;
648 /* Generate a memory referring to non-trapping constant memory. */
651 gen_const_mem (enum machine_mode mode, rtx addr)
653 rtx mem = gen_rtx_MEM (mode, addr);
654 MEM_READONLY_P (mem) = 1;
655 MEM_NOTRAP_P (mem) = 1;
656 return mem;
659 /* Generate a MEM referring to fixed portions of the frame, e.g., register
660 save areas. */
663 gen_frame_mem (enum machine_mode mode, rtx addr)
665 rtx mem = gen_rtx_MEM (mode, addr);
666 MEM_NOTRAP_P (mem) = 1;
667 set_mem_alias_set (mem, get_frame_alias_set ());
668 return mem;
671 /* Generate a MEM referring to a temporary use of the stack, not part
672 of the fixed stack frame. For example, something which is pushed
673 by a target splitter. */
675 gen_tmp_stack_mem (enum machine_mode mode, rtx addr)
677 rtx mem = gen_rtx_MEM (mode, addr);
678 MEM_NOTRAP_P (mem) = 1;
679 if (!cfun->calls_alloca)
680 set_mem_alias_set (mem, get_frame_alias_set ());
681 return mem;
684 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
685 this construct would be valid, and false otherwise. */
687 bool
688 validate_subreg (enum machine_mode omode, enum machine_mode imode,
689 const_rtx reg, unsigned int offset)
691 unsigned int isize = GET_MODE_SIZE (imode);
692 unsigned int osize = GET_MODE_SIZE (omode);
694 /* All subregs must be aligned. */
695 if (offset % osize != 0)
696 return false;
698 /* The subreg offset cannot be outside the inner object. */
699 if (offset >= isize)
700 return false;
702 /* ??? This should not be here. Temporarily continue to allow word_mode
703 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
704 Generally, backends are doing something sketchy but it'll take time to
705 fix them all. */
706 if (omode == word_mode)
708 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
709 is the culprit here, and not the backends. */
710 else if (osize >= UNITS_PER_WORD && isize >= osize)
712 /* Allow component subregs of complex and vector. Though given the below
713 extraction rules, it's not always clear what that means. */
714 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
715 && GET_MODE_INNER (imode) == omode)
717 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
718 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
719 represent this. It's questionable if this ought to be represented at
720 all -- why can't this all be hidden in post-reload splitters that make
721 arbitrarily mode changes to the registers themselves. */
722 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
724 /* Subregs involving floating point modes are not allowed to
725 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
726 (subreg:SI (reg:DF) 0) isn't. */
727 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
729 if (isize != osize)
730 return false;
733 /* Paradoxical subregs must have offset zero. */
734 if (osize > isize)
735 return offset == 0;
737 /* This is a normal subreg. Verify that the offset is representable. */
739 /* For hard registers, we already have most of these rules collected in
740 subreg_offset_representable_p. */
741 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
743 unsigned int regno = REGNO (reg);
745 #ifdef CANNOT_CHANGE_MODE_CLASS
746 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
747 && GET_MODE_INNER (imode) == omode)
749 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
750 return false;
751 #endif
753 return subreg_offset_representable_p (regno, imode, offset, omode);
756 /* For pseudo registers, we want most of the same checks. Namely:
757 If the register no larger than a word, the subreg must be lowpart.
758 If the register is larger than a word, the subreg must be the lowpart
759 of a subword. A subreg does *not* perform arbitrary bit extraction.
760 Given that we've already checked mode/offset alignment, we only have
761 to check subword subregs here. */
762 if (osize < UNITS_PER_WORD)
764 enum machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
765 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
766 if (offset % UNITS_PER_WORD != low_off)
767 return false;
769 return true;
773 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
775 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
776 return gen_rtx_raw_SUBREG (mode, reg, offset);
779 /* Generate a SUBREG representing the least-significant part of REG if MODE
780 is smaller than mode of REG, otherwise paradoxical SUBREG. */
783 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
785 enum machine_mode inmode;
787 inmode = GET_MODE (reg);
788 if (inmode == VOIDmode)
789 inmode = mode;
790 return gen_rtx_SUBREG (mode, reg,
791 subreg_lowpart_offset (mode, inmode));
795 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
797 rtvec
798 gen_rtvec (int n, ...)
800 int i;
801 rtvec rt_val;
802 va_list p;
804 va_start (p, n);
806 /* Don't allocate an empty rtvec... */
807 if (n == 0)
809 va_end (p);
810 return NULL_RTVEC;
813 rt_val = rtvec_alloc (n);
815 for (i = 0; i < n; i++)
816 rt_val->elem[i] = va_arg (p, rtx);
818 va_end (p);
819 return rt_val;
822 rtvec
823 gen_rtvec_v (int n, rtx *argp)
825 int i;
826 rtvec rt_val;
828 /* Don't allocate an empty rtvec... */
829 if (n == 0)
830 return NULL_RTVEC;
832 rt_val = rtvec_alloc (n);
834 for (i = 0; i < n; i++)
835 rt_val->elem[i] = *argp++;
837 return rt_val;
840 /* Return the number of bytes between the start of an OUTER_MODE
841 in-memory value and the start of an INNER_MODE in-memory value,
842 given that the former is a lowpart of the latter. It may be a
843 paradoxical lowpart, in which case the offset will be negative
844 on big-endian targets. */
847 byte_lowpart_offset (enum machine_mode outer_mode,
848 enum machine_mode inner_mode)
850 if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode))
851 return subreg_lowpart_offset (outer_mode, inner_mode);
852 else
853 return -subreg_lowpart_offset (inner_mode, outer_mode);
856 /* Generate a REG rtx for a new pseudo register of mode MODE.
857 This pseudo is assigned the next sequential register number. */
860 gen_reg_rtx (enum machine_mode mode)
862 rtx val;
863 unsigned int align = GET_MODE_ALIGNMENT (mode);
865 gcc_assert (can_create_pseudo_p ());
867 /* If a virtual register with bigger mode alignment is generated,
868 increase stack alignment estimation because it might be spilled
869 to stack later. */
870 if (SUPPORTS_STACK_ALIGNMENT
871 && crtl->stack_alignment_estimated < align
872 && !crtl->stack_realign_processed)
874 unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
875 if (crtl->stack_alignment_estimated < min_align)
876 crtl->stack_alignment_estimated = min_align;
879 if (generating_concat_p
880 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
881 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
883 /* For complex modes, don't make a single pseudo.
884 Instead, make a CONCAT of two pseudos.
885 This allows noncontiguous allocation of the real and imaginary parts,
886 which makes much better code. Besides, allocating DCmode
887 pseudos overstrains reload on some machines like the 386. */
888 rtx realpart, imagpart;
889 enum machine_mode partmode = GET_MODE_INNER (mode);
891 realpart = gen_reg_rtx (partmode);
892 imagpart = gen_reg_rtx (partmode);
893 return gen_rtx_CONCAT (mode, realpart, imagpart);
896 /* Make sure regno_pointer_align, and regno_reg_rtx are large
897 enough to have an element for this pseudo reg number. */
899 if (reg_rtx_no == crtl->emit.regno_pointer_align_length)
901 int old_size = crtl->emit.regno_pointer_align_length;
902 char *tmp;
903 rtx *new1;
905 tmp = XRESIZEVEC (char, crtl->emit.regno_pointer_align, old_size * 2);
906 memset (tmp + old_size, 0, old_size);
907 crtl->emit.regno_pointer_align = (unsigned char *) tmp;
909 new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, old_size * 2);
910 memset (new1 + old_size, 0, old_size * sizeof (rtx));
911 regno_reg_rtx = new1;
913 crtl->emit.regno_pointer_align_length = old_size * 2;
916 val = gen_raw_REG (mode, reg_rtx_no);
917 regno_reg_rtx[reg_rtx_no++] = val;
918 return val;
921 /* Update NEW with the same attributes as REG, but with OFFSET added
922 to the REG_OFFSET. */
924 static void
925 update_reg_offset (rtx new_rtx, rtx reg, int offset)
927 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
928 REG_OFFSET (reg) + offset);
931 /* Generate a register with same attributes as REG, but with OFFSET
932 added to the REG_OFFSET. */
935 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno,
936 int offset)
938 rtx new_rtx = gen_rtx_REG (mode, regno);
940 update_reg_offset (new_rtx, reg, offset);
941 return new_rtx;
944 /* Generate a new pseudo-register with the same attributes as REG, but
945 with OFFSET added to the REG_OFFSET. */
948 gen_reg_rtx_offset (rtx reg, enum machine_mode mode, int offset)
950 rtx new_rtx = gen_reg_rtx (mode);
952 update_reg_offset (new_rtx, reg, offset);
953 return new_rtx;
956 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
957 new register is a (possibly paradoxical) lowpart of the old one. */
959 void
960 adjust_reg_mode (rtx reg, enum machine_mode mode)
962 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
963 PUT_MODE (reg, mode);
966 /* Copy REG's attributes from X, if X has any attributes. If REG and X
967 have different modes, REG is a (possibly paradoxical) lowpart of X. */
969 void
970 set_reg_attrs_from_value (rtx reg, rtx x)
972 int offset;
974 /* Hard registers can be reused for multiple purposes within the same
975 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
976 on them is wrong. */
977 if (HARD_REGISTER_P (reg))
978 return;
980 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
981 if (MEM_P (x))
983 if (MEM_OFFSET (x) && CONST_INT_P (MEM_OFFSET (x)))
984 REG_ATTRS (reg)
985 = get_reg_attrs (MEM_EXPR (x), INTVAL (MEM_OFFSET (x)) + offset);
986 if (MEM_POINTER (x))
987 mark_reg_pointer (reg, 0);
989 else if (REG_P (x))
991 if (REG_ATTRS (x))
992 update_reg_offset (reg, x, offset);
993 if (REG_POINTER (x))
994 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
998 /* Generate a REG rtx for a new pseudo register, copying the mode
999 and attributes from X. */
1002 gen_reg_rtx_and_attrs (rtx x)
1004 rtx reg = gen_reg_rtx (GET_MODE (x));
1005 set_reg_attrs_from_value (reg, x);
1006 return reg;
1009 /* Set the register attributes for registers contained in PARM_RTX.
1010 Use needed values from memory attributes of MEM. */
1012 void
1013 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
1015 if (REG_P (parm_rtx))
1016 set_reg_attrs_from_value (parm_rtx, mem);
1017 else if (GET_CODE (parm_rtx) == PARALLEL)
1019 /* Check for a NULL entry in the first slot, used to indicate that the
1020 parameter goes both on the stack and in registers. */
1021 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1022 for (; i < XVECLEN (parm_rtx, 0); i++)
1024 rtx x = XVECEXP (parm_rtx, 0, i);
1025 if (REG_P (XEXP (x, 0)))
1026 REG_ATTRS (XEXP (x, 0))
1027 = get_reg_attrs (MEM_EXPR (mem),
1028 INTVAL (XEXP (x, 1)));
1033 /* Set the REG_ATTRS for registers in value X, given that X represents
1034 decl T. */
1036 void
1037 set_reg_attrs_for_decl_rtl (tree t, rtx x)
1039 if (GET_CODE (x) == SUBREG)
1041 gcc_assert (subreg_lowpart_p (x));
1042 x = SUBREG_REG (x);
1044 if (REG_P (x))
1045 REG_ATTRS (x)
1046 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1047 DECL_MODE (t)));
1048 if (GET_CODE (x) == CONCAT)
1050 if (REG_P (XEXP (x, 0)))
1051 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1052 if (REG_P (XEXP (x, 1)))
1053 REG_ATTRS (XEXP (x, 1))
1054 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1056 if (GET_CODE (x) == PARALLEL)
1058 int i, start;
1060 /* Check for a NULL entry, used to indicate that the parameter goes
1061 both on the stack and in registers. */
1062 if (XEXP (XVECEXP (x, 0, 0), 0))
1063 start = 0;
1064 else
1065 start = 1;
1067 for (i = start; i < XVECLEN (x, 0); i++)
1069 rtx y = XVECEXP (x, 0, i);
1070 if (REG_P (XEXP (y, 0)))
1071 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1076 /* Assign the RTX X to declaration T. */
1078 void
1079 set_decl_rtl (tree t, rtx x)
1081 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1082 if (x)
1083 set_reg_attrs_for_decl_rtl (t, x);
1086 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1087 if the ABI requires the parameter to be passed by reference. */
1089 void
1090 set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
1092 DECL_INCOMING_RTL (t) = x;
1093 if (x && !by_reference_p)
1094 set_reg_attrs_for_decl_rtl (t, x);
1097 /* Identify REG (which may be a CONCAT) as a user register. */
1099 void
1100 mark_user_reg (rtx reg)
1102 if (GET_CODE (reg) == CONCAT)
1104 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1105 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1107 else
1109 gcc_assert (REG_P (reg));
1110 REG_USERVAR_P (reg) = 1;
1114 /* Identify REG as a probable pointer register and show its alignment
1115 as ALIGN, if nonzero. */
1117 void
1118 mark_reg_pointer (rtx reg, int align)
1120 if (! REG_POINTER (reg))
1122 REG_POINTER (reg) = 1;
1124 if (align)
1125 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1127 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1128 /* We can no-longer be sure just how aligned this pointer is. */
1129 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1132 /* Return 1 plus largest pseudo reg number used in the current function. */
1135 max_reg_num (void)
1137 return reg_rtx_no;
1140 /* Return 1 + the largest label number used so far in the current function. */
1143 max_label_num (void)
1145 return label_num;
1148 /* Return first label number used in this function (if any were used). */
1151 get_first_label_num (void)
1153 return first_label_num;
1156 /* If the rtx for label was created during the expansion of a nested
1157 function, then first_label_num won't include this label number.
1158 Fix this now so that array indices work later. */
1160 void
1161 maybe_set_first_label_num (rtx x)
1163 if (CODE_LABEL_NUMBER (x) < first_label_num)
1164 first_label_num = CODE_LABEL_NUMBER (x);
1167 /* Return a value representing some low-order bits of X, where the number
1168 of low-order bits is given by MODE. Note that no conversion is done
1169 between floating-point and fixed-point values, rather, the bit
1170 representation is returned.
1172 This function handles the cases in common between gen_lowpart, below,
1173 and two variants in cse.c and combine.c. These are the cases that can
1174 be safely handled at all points in the compilation.
1176 If this is not a case we can handle, return 0. */
1179 gen_lowpart_common (enum machine_mode mode, rtx x)
1181 int msize = GET_MODE_SIZE (mode);
1182 int xsize;
1183 int offset = 0;
1184 enum machine_mode innermode;
1186 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1187 so we have to make one up. Yuk. */
1188 innermode = GET_MODE (x);
1189 if (CONST_INT_P (x)
1190 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1191 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1192 else if (innermode == VOIDmode)
1193 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT * 2, MODE_INT, 0);
1195 xsize = GET_MODE_SIZE (innermode);
1197 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1199 if (innermode == mode)
1200 return x;
1202 /* MODE must occupy no more words than the mode of X. */
1203 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1204 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1205 return 0;
1207 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1208 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
1209 return 0;
1211 offset = subreg_lowpart_offset (mode, innermode);
1213 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1214 && (GET_MODE_CLASS (mode) == MODE_INT
1215 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1217 /* If we are getting the low-order part of something that has been
1218 sign- or zero-extended, we can either just use the object being
1219 extended or make a narrower extension. If we want an even smaller
1220 piece than the size of the object being extended, call ourselves
1221 recursively.
1223 This case is used mostly by combine and cse. */
1225 if (GET_MODE (XEXP (x, 0)) == mode)
1226 return XEXP (x, 0);
1227 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1228 return gen_lowpart_common (mode, XEXP (x, 0));
1229 else if (msize < xsize)
1230 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1232 else if (GET_CODE (x) == SUBREG || REG_P (x)
1233 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1234 || GET_CODE (x) == CONST_DOUBLE || CONST_INT_P (x))
1235 return simplify_gen_subreg (mode, x, innermode, offset);
1237 /* Otherwise, we can't do this. */
1238 return 0;
1242 gen_highpart (enum machine_mode mode, rtx x)
1244 unsigned int msize = GET_MODE_SIZE (mode);
1245 rtx result;
1247 /* This case loses if X is a subreg. To catch bugs early,
1248 complain if an invalid MODE is used even in other cases. */
1249 gcc_assert (msize <= UNITS_PER_WORD
1250 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1252 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1253 subreg_highpart_offset (mode, GET_MODE (x)));
1254 gcc_assert (result);
1256 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1257 the target if we have a MEM. gen_highpart must return a valid operand,
1258 emitting code if necessary to do so. */
1259 if (MEM_P (result))
1261 result = validize_mem (result);
1262 gcc_assert (result);
1265 return result;
1268 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1269 be VOIDmode constant. */
1271 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1273 if (GET_MODE (exp) != VOIDmode)
1275 gcc_assert (GET_MODE (exp) == innermode);
1276 return gen_highpart (outermode, exp);
1278 return simplify_gen_subreg (outermode, exp, innermode,
1279 subreg_highpart_offset (outermode, innermode));
1282 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
1284 unsigned int
1285 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1287 unsigned int offset = 0;
1288 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1290 if (difference > 0)
1292 if (WORDS_BIG_ENDIAN)
1293 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1294 if (BYTES_BIG_ENDIAN)
1295 offset += difference % UNITS_PER_WORD;
1298 return offset;
1301 /* Return offset in bytes to get OUTERMODE high part
1302 of the value in mode INNERMODE stored in memory in target format. */
1303 unsigned int
1304 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1306 unsigned int offset = 0;
1307 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1309 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1311 if (difference > 0)
1313 if (! WORDS_BIG_ENDIAN)
1314 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1315 if (! BYTES_BIG_ENDIAN)
1316 offset += difference % UNITS_PER_WORD;
1319 return offset;
1322 /* Return 1 iff X, assumed to be a SUBREG,
1323 refers to the least significant part of its containing reg.
1324 If X is not a SUBREG, always return 1 (it is its own low part!). */
1327 subreg_lowpart_p (const_rtx x)
1329 if (GET_CODE (x) != SUBREG)
1330 return 1;
1331 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1332 return 0;
1334 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1335 == SUBREG_BYTE (x));
1338 /* Return subword OFFSET of operand OP.
1339 The word number, OFFSET, is interpreted as the word number starting
1340 at the low-order address. OFFSET 0 is the low-order word if not
1341 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1343 If we cannot extract the required word, we return zero. Otherwise,
1344 an rtx corresponding to the requested word will be returned.
1346 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1347 reload has completed, a valid address will always be returned. After
1348 reload, if a valid address cannot be returned, we return zero.
1350 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1351 it is the responsibility of the caller.
1353 MODE is the mode of OP in case it is a CONST_INT.
1355 ??? This is still rather broken for some cases. The problem for the
1356 moment is that all callers of this thing provide no 'goal mode' to
1357 tell us to work with. This exists because all callers were written
1358 in a word based SUBREG world.
1359 Now use of this function can be deprecated by simplify_subreg in most
1360 cases.
1364 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1366 if (mode == VOIDmode)
1367 mode = GET_MODE (op);
1369 gcc_assert (mode != VOIDmode);
1371 /* If OP is narrower than a word, fail. */
1372 if (mode != BLKmode
1373 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1374 return 0;
1376 /* If we want a word outside OP, return zero. */
1377 if (mode != BLKmode
1378 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1379 return const0_rtx;
1381 /* Form a new MEM at the requested address. */
1382 if (MEM_P (op))
1384 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1386 if (! validate_address)
1387 return new_rtx;
1389 else if (reload_completed)
1391 if (! strict_memory_address_addr_space_p (word_mode,
1392 XEXP (new_rtx, 0),
1393 MEM_ADDR_SPACE (op)))
1394 return 0;
1396 else
1397 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
1400 /* Rest can be handled by simplify_subreg. */
1401 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1404 /* Similar to `operand_subword', but never return 0. If we can't
1405 extract the required subword, put OP into a register and try again.
1406 The second attempt must succeed. We always validate the address in
1407 this case.
1409 MODE is the mode of OP, in case it is CONST_INT. */
1412 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1414 rtx result = operand_subword (op, offset, 1, mode);
1416 if (result)
1417 return result;
1419 if (mode != BLKmode && mode != VOIDmode)
1421 /* If this is a register which can not be accessed by words, copy it
1422 to a pseudo register. */
1423 if (REG_P (op))
1424 op = copy_to_reg (op);
1425 else
1426 op = force_reg (mode, op);
1429 result = operand_subword (op, offset, 1, mode);
1430 gcc_assert (result);
1432 return result;
1435 /* Returns 1 if both MEM_EXPR can be considered equal
1436 and 0 otherwise. */
1439 mem_expr_equal_p (const_tree expr1, const_tree expr2)
1441 if (expr1 == expr2)
1442 return 1;
1444 if (! expr1 || ! expr2)
1445 return 0;
1447 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1448 return 0;
1450 return operand_equal_p (expr1, expr2, 0);
1453 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1454 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1455 -1 if not known. */
1458 get_mem_align_offset (rtx mem, unsigned int align)
1460 tree expr;
1461 unsigned HOST_WIDE_INT offset;
1463 /* This function can't use
1464 if (!MEM_EXPR (mem) || !MEM_OFFSET (mem)
1465 || !CONST_INT_P (MEM_OFFSET (mem))
1466 || (MAX (MEM_ALIGN (mem),
1467 get_object_alignment (MEM_EXPR (mem), align))
1468 < align))
1469 return -1;
1470 else
1471 return (- INTVAL (MEM_OFFSET (mem))) & (align / BITS_PER_UNIT - 1);
1472 for two reasons:
1473 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1474 for <variable>. get_inner_reference doesn't handle it and
1475 even if it did, the alignment in that case needs to be determined
1476 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1477 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1478 isn't sufficiently aligned, the object it is in might be. */
1479 gcc_assert (MEM_P (mem));
1480 expr = MEM_EXPR (mem);
1481 if (expr == NULL_TREE
1482 || MEM_OFFSET (mem) == NULL_RTX
1483 || !CONST_INT_P (MEM_OFFSET (mem)))
1484 return -1;
1486 offset = INTVAL (MEM_OFFSET (mem));
1487 if (DECL_P (expr))
1489 if (DECL_ALIGN (expr) < align)
1490 return -1;
1492 else if (INDIRECT_REF_P (expr))
1494 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1495 return -1;
1497 else if (TREE_CODE (expr) == COMPONENT_REF)
1499 while (1)
1501 tree inner = TREE_OPERAND (expr, 0);
1502 tree field = TREE_OPERAND (expr, 1);
1503 tree byte_offset = component_ref_field_offset (expr);
1504 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1506 if (!byte_offset
1507 || !host_integerp (byte_offset, 1)
1508 || !host_integerp (bit_offset, 1))
1509 return -1;
1511 offset += tree_low_cst (byte_offset, 1);
1512 offset += tree_low_cst (bit_offset, 1) / BITS_PER_UNIT;
1514 if (inner == NULL_TREE)
1516 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1517 < (unsigned int) align)
1518 return -1;
1519 break;
1521 else if (DECL_P (inner))
1523 if (DECL_ALIGN (inner) < align)
1524 return -1;
1525 break;
1527 else if (TREE_CODE (inner) != COMPONENT_REF)
1528 return -1;
1529 expr = inner;
1532 else
1533 return -1;
1535 return offset & ((align / BITS_PER_UNIT) - 1);
1538 /* Given REF (a MEM) and T, either the type of X or the expression
1539 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1540 if we are making a new object of this type. BITPOS is nonzero if
1541 there is an offset outstanding on T that will be applied later. */
1543 void
1544 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1545 HOST_WIDE_INT bitpos)
1547 alias_set_type alias;
1548 tree expr = NULL;
1549 rtx offset = NULL_RTX;
1550 rtx size = NULL_RTX;
1551 unsigned int align = BITS_PER_UNIT;
1552 HOST_WIDE_INT apply_bitpos = 0;
1553 tree type;
1555 /* It can happen that type_for_mode was given a mode for which there
1556 is no language-level type. In which case it returns NULL, which
1557 we can see here. */
1558 if (t == NULL_TREE)
1559 return;
1561 type = TYPE_P (t) ? t : TREE_TYPE (t);
1562 if (type == error_mark_node)
1563 return;
1565 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1566 wrong answer, as it assumes that DECL_RTL already has the right alias
1567 info. Callers should not set DECL_RTL until after the call to
1568 set_mem_attributes. */
1569 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1571 /* Get the alias set from the expression or type (perhaps using a
1572 front-end routine) and use it. */
1573 alias = get_alias_set (t);
1575 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1576 MEM_IN_STRUCT_P (ref)
1577 = AGGREGATE_TYPE_P (type) || TREE_CODE (type) == COMPLEX_TYPE;
1578 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1580 /* If we are making an object of this type, or if this is a DECL, we know
1581 that it is a scalar if the type is not an aggregate. */
1582 if ((objectp || DECL_P (t))
1583 && ! AGGREGATE_TYPE_P (type)
1584 && TREE_CODE (type) != COMPLEX_TYPE)
1585 MEM_SCALAR_P (ref) = 1;
1587 /* Default values from pre-existing memory attributes if present. */
1588 if (MEM_ATTRS (ref))
1590 /* ??? Can this ever happen? Calling this routine on a MEM that
1591 already carries memory attributes should probably be invalid. */
1592 expr = MEM_EXPR (ref);
1593 offset = MEM_OFFSET (ref);
1594 size = MEM_SIZE (ref);
1595 align = MEM_ALIGN (ref);
1598 /* Otherwise, default values from the mode of the MEM reference. */
1599 else if (GET_MODE (ref) != BLKmode)
1601 /* Respect mode size. */
1602 size = GEN_INT (GET_MODE_SIZE (GET_MODE (ref)));
1603 /* ??? Is this really necessary? We probably should always get
1604 the size from the type below. */
1606 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1607 if T is an object, always compute the object alignment below. */
1608 if (STRICT_ALIGNMENT && TYPE_P (t))
1609 align = GET_MODE_ALIGNMENT (GET_MODE (ref));
1610 /* ??? If T is a type, respecting mode alignment may *also* be wrong
1611 e.g. if the type carries an alignment attribute. Should we be
1612 able to simply always use TYPE_ALIGN? */
1615 /* We can set the alignment from the type if we are making an object,
1616 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1617 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1618 align = MAX (align, TYPE_ALIGN (type));
1620 else if (TREE_CODE (t) == MEM_REF)
1622 tree op0 = TREE_OPERAND (t, 0);
1623 if (TREE_CODE (op0) == ADDR_EXPR
1624 && (DECL_P (TREE_OPERAND (op0, 0))
1625 || CONSTANT_CLASS_P (TREE_OPERAND (op0, 0))))
1627 if (DECL_P (TREE_OPERAND (op0, 0)))
1628 align = DECL_ALIGN (TREE_OPERAND (op0, 0));
1629 else if (CONSTANT_CLASS_P (TREE_OPERAND (op0, 0)))
1631 align = TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (op0, 0)));
1632 #ifdef CONSTANT_ALIGNMENT
1633 align = CONSTANT_ALIGNMENT (TREE_OPERAND (op0, 0), align);
1634 #endif
1636 if (TREE_INT_CST_LOW (TREE_OPERAND (t, 1)) != 0)
1638 unsigned HOST_WIDE_INT ioff
1639 = TREE_INT_CST_LOW (TREE_OPERAND (t, 1));
1640 unsigned HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1641 align = MIN (aoff, align);
1644 else
1645 /* ??? This isn't fully correct, we can't set the alignment from the
1646 type in all cases. */
1647 align = MAX (align, TYPE_ALIGN (type));
1650 else if (TREE_CODE (t) == TARGET_MEM_REF)
1651 /* ??? This isn't fully correct, we can't set the alignment from the
1652 type in all cases. */
1653 align = MAX (align, TYPE_ALIGN (type));
1655 /* If the size is known, we can set that. */
1656 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1657 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1659 /* If T is not a type, we may be able to deduce some more information about
1660 the expression. */
1661 if (! TYPE_P (t))
1663 tree base;
1664 bool align_computed = false;
1666 if (TREE_THIS_VOLATILE (t))
1667 MEM_VOLATILE_P (ref) = 1;
1669 /* Now remove any conversions: they don't change what the underlying
1670 object is. Likewise for SAVE_EXPR. */
1671 while (CONVERT_EXPR_P (t)
1672 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1673 || TREE_CODE (t) == SAVE_EXPR)
1674 t = TREE_OPERAND (t, 0);
1676 /* Note whether this expression can trap. */
1677 MEM_NOTRAP_P (ref) = !tree_could_trap_p (t);
1679 base = get_base_address (t);
1680 if (base && DECL_P (base)
1681 && TREE_READONLY (base)
1682 && (TREE_STATIC (base) || DECL_EXTERNAL (base))
1683 && !TREE_THIS_VOLATILE (base))
1684 MEM_READONLY_P (ref) = 1;
1686 /* If this expression uses it's parent's alias set, mark it such
1687 that we won't change it. */
1688 if (component_uses_parent_alias_set (t))
1689 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1691 /* If this is a decl, set the attributes of the MEM from it. */
1692 if (DECL_P (t))
1694 expr = t;
1695 offset = const0_rtx;
1696 apply_bitpos = bitpos;
1697 size = (DECL_SIZE_UNIT (t)
1698 && host_integerp (DECL_SIZE_UNIT (t), 1)
1699 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1700 align = DECL_ALIGN (t);
1701 align_computed = true;
1704 /* If this is a constant, we know the alignment. */
1705 else if (CONSTANT_CLASS_P (t))
1707 align = TYPE_ALIGN (type);
1708 #ifdef CONSTANT_ALIGNMENT
1709 align = CONSTANT_ALIGNMENT (t, align);
1710 #endif
1711 align_computed = true;
1714 /* If this is a field reference and not a bit-field, record it. */
1715 /* ??? There is some information that can be gleaned from bit-fields,
1716 such as the word offset in the structure that might be modified.
1717 But skip it for now. */
1718 else if (TREE_CODE (t) == COMPONENT_REF
1719 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1721 expr = t;
1722 offset = const0_rtx;
1723 apply_bitpos = bitpos;
1724 /* ??? Any reason the field size would be different than
1725 the size we got from the type? */
1728 /* If this is an array reference, look for an outer field reference. */
1729 else if (TREE_CODE (t) == ARRAY_REF)
1731 tree off_tree = size_zero_node;
1732 /* We can't modify t, because we use it at the end of the
1733 function. */
1734 tree t2 = t;
1738 tree index = TREE_OPERAND (t2, 1);
1739 tree low_bound = array_ref_low_bound (t2);
1740 tree unit_size = array_ref_element_size (t2);
1742 /* We assume all arrays have sizes that are a multiple of a byte.
1743 First subtract the lower bound, if any, in the type of the
1744 index, then convert to sizetype and multiply by the size of
1745 the array element. */
1746 if (! integer_zerop (low_bound))
1747 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1748 index, low_bound);
1750 off_tree = size_binop (PLUS_EXPR,
1751 size_binop (MULT_EXPR,
1752 fold_convert (sizetype,
1753 index),
1754 unit_size),
1755 off_tree);
1756 t2 = TREE_OPERAND (t2, 0);
1758 while (TREE_CODE (t2) == ARRAY_REF);
1760 if (DECL_P (t2))
1762 expr = t2;
1763 offset = NULL;
1764 if (host_integerp (off_tree, 1))
1766 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1767 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1768 align = DECL_ALIGN (t2);
1769 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
1770 align = aoff;
1771 align_computed = true;
1772 offset = GEN_INT (ioff);
1773 apply_bitpos = bitpos;
1776 else if (TREE_CODE (t2) == COMPONENT_REF)
1778 expr = t2;
1779 offset = NULL;
1780 if (host_integerp (off_tree, 1))
1782 offset = GEN_INT (tree_low_cst (off_tree, 1));
1783 apply_bitpos = bitpos;
1785 /* ??? Any reason the field size would be different than
1786 the size we got from the type? */
1789 /* If this is an indirect reference, record it. */
1790 else if (TREE_CODE (t) == MEM_REF)
1792 expr = t;
1793 offset = const0_rtx;
1794 apply_bitpos = bitpos;
1798 /* If this is an indirect reference, record it. */
1799 else if (TREE_CODE (t) == MEM_REF
1800 || TREE_CODE (t) == TARGET_MEM_REF)
1802 expr = t;
1803 offset = const0_rtx;
1804 apply_bitpos = bitpos;
1807 if (!align_computed && !INDIRECT_REF_P (t))
1809 unsigned int obj_align = get_object_alignment (t, BIGGEST_ALIGNMENT);
1810 align = MAX (align, obj_align);
1814 /* If we modified OFFSET based on T, then subtract the outstanding
1815 bit position offset. Similarly, increase the size of the accessed
1816 object to contain the negative offset. */
1817 if (apply_bitpos)
1819 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1820 if (size)
1821 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
1824 /* Now set the attributes we computed above. */
1825 MEM_ATTRS (ref)
1826 = get_mem_attrs (alias, expr, offset, size, align,
1827 TYPE_ADDR_SPACE (type), GET_MODE (ref));
1829 /* If this is already known to be a scalar or aggregate, we are done. */
1830 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1831 return;
1833 /* If it is a reference into an aggregate, this is part of an aggregate.
1834 Otherwise we don't know. */
1835 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1836 || TREE_CODE (t) == ARRAY_RANGE_REF
1837 || TREE_CODE (t) == BIT_FIELD_REF)
1838 MEM_IN_STRUCT_P (ref) = 1;
1841 void
1842 set_mem_attributes (rtx ref, tree t, int objectp)
1844 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1847 /* Set the alias set of MEM to SET. */
1849 void
1850 set_mem_alias_set (rtx mem, alias_set_type set)
1852 /* If the new and old alias sets don't conflict, something is wrong. */
1853 gcc_checking_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
1855 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
1856 MEM_SIZE (mem), MEM_ALIGN (mem),
1857 MEM_ADDR_SPACE (mem), GET_MODE (mem));
1860 /* Set the address space of MEM to ADDRSPACE (target-defined). */
1862 void
1863 set_mem_addr_space (rtx mem, addr_space_t addrspace)
1865 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1866 MEM_OFFSET (mem), MEM_SIZE (mem),
1867 MEM_ALIGN (mem), addrspace, GET_MODE (mem));
1870 /* Set the alignment of MEM to ALIGN bits. */
1872 void
1873 set_mem_align (rtx mem, unsigned int align)
1875 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1876 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1877 MEM_ADDR_SPACE (mem), GET_MODE (mem));
1880 /* Set the expr for MEM to EXPR. */
1882 void
1883 set_mem_expr (rtx mem, tree expr)
1885 MEM_ATTRS (mem)
1886 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1887 MEM_SIZE (mem), MEM_ALIGN (mem),
1888 MEM_ADDR_SPACE (mem), GET_MODE (mem));
1891 /* Set the offset of MEM to OFFSET. */
1893 void
1894 set_mem_offset (rtx mem, rtx offset)
1896 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1897 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1898 MEM_ADDR_SPACE (mem), GET_MODE (mem));
1901 /* Set the size of MEM to SIZE. */
1903 void
1904 set_mem_size (rtx mem, rtx size)
1906 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1907 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
1908 MEM_ADDR_SPACE (mem), GET_MODE (mem));
1911 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1912 and its address changed to ADDR. (VOIDmode means don't change the mode.
1913 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1914 returned memory location is required to be valid. The memory
1915 attributes are not changed. */
1917 static rtx
1918 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1920 addr_space_t as;
1921 rtx new_rtx;
1923 gcc_assert (MEM_P (memref));
1924 as = MEM_ADDR_SPACE (memref);
1925 if (mode == VOIDmode)
1926 mode = GET_MODE (memref);
1927 if (addr == 0)
1928 addr = XEXP (memref, 0);
1929 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
1930 && (!validate || memory_address_addr_space_p (mode, addr, as)))
1931 return memref;
1933 if (validate)
1935 if (reload_in_progress || reload_completed)
1936 gcc_assert (memory_address_addr_space_p (mode, addr, as));
1937 else
1938 addr = memory_address_addr_space (mode, addr, as);
1941 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1942 return memref;
1944 new_rtx = gen_rtx_MEM (mode, addr);
1945 MEM_COPY_ATTRIBUTES (new_rtx, memref);
1946 return new_rtx;
1949 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1950 way we are changing MEMREF, so we only preserve the alias set. */
1953 change_address (rtx memref, enum machine_mode mode, rtx addr)
1955 rtx new_rtx = change_address_1 (memref, mode, addr, 1), size;
1956 enum machine_mode mmode = GET_MODE (new_rtx);
1957 unsigned int align;
1959 size = mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode));
1960 align = mmode == BLKmode ? BITS_PER_UNIT : GET_MODE_ALIGNMENT (mmode);
1962 /* If there are no changes, just return the original memory reference. */
1963 if (new_rtx == memref)
1965 if (MEM_ATTRS (memref) == 0
1966 || (MEM_EXPR (memref) == NULL
1967 && MEM_OFFSET (memref) == NULL
1968 && MEM_SIZE (memref) == size
1969 && MEM_ALIGN (memref) == align))
1970 return new_rtx;
1972 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
1973 MEM_COPY_ATTRIBUTES (new_rtx, memref);
1976 MEM_ATTRS (new_rtx)
1977 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0, size, align,
1978 MEM_ADDR_SPACE (memref), mmode);
1980 return new_rtx;
1983 /* Return a memory reference like MEMREF, but with its mode changed
1984 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1985 nonzero, the memory address is forced to be valid.
1986 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1987 and caller is responsible for adjusting MEMREF base register. */
1990 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
1991 int validate, int adjust)
1993 rtx addr = XEXP (memref, 0);
1994 rtx new_rtx;
1995 rtx memoffset = MEM_OFFSET (memref);
1996 rtx size = 0;
1997 unsigned int memalign = MEM_ALIGN (memref);
1998 addr_space_t as = MEM_ADDR_SPACE (memref);
1999 enum machine_mode address_mode = targetm.addr_space.address_mode (as);
2000 int pbits;
2002 /* If there are no changes, just return the original memory reference. */
2003 if (mode == GET_MODE (memref) && !offset
2004 && (!validate || memory_address_addr_space_p (mode, addr, as)))
2005 return memref;
2007 /* ??? Prefer to create garbage instead of creating shared rtl.
2008 This may happen even if offset is nonzero -- consider
2009 (plus (plus reg reg) const_int) -- so do this always. */
2010 addr = copy_rtx (addr);
2012 /* Convert a possibly large offset to a signed value within the
2013 range of the target address space. */
2014 pbits = GET_MODE_BITSIZE (address_mode);
2015 if (HOST_BITS_PER_WIDE_INT > pbits)
2017 int shift = HOST_BITS_PER_WIDE_INT - pbits;
2018 offset = (((HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) offset << shift))
2019 >> shift);
2022 if (adjust)
2024 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2025 object, we can merge it into the LO_SUM. */
2026 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2027 && offset >= 0
2028 && (unsigned HOST_WIDE_INT) offset
2029 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
2030 addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0),
2031 plus_constant (XEXP (addr, 1), offset));
2032 else
2033 addr = plus_constant (addr, offset);
2036 new_rtx = change_address_1 (memref, mode, addr, validate);
2038 /* If the address is a REG, change_address_1 rightfully returns memref,
2039 but this would destroy memref's MEM_ATTRS. */
2040 if (new_rtx == memref && offset != 0)
2041 new_rtx = copy_rtx (new_rtx);
2043 /* Compute the new values of the memory attributes due to this adjustment.
2044 We add the offsets and update the alignment. */
2045 if (memoffset)
2046 memoffset = GEN_INT (offset + INTVAL (memoffset));
2048 /* Compute the new alignment by taking the MIN of the alignment and the
2049 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2050 if zero. */
2051 if (offset != 0)
2052 memalign
2053 = MIN (memalign,
2054 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
2056 /* We can compute the size in a number of ways. */
2057 if (GET_MODE (new_rtx) != BLKmode)
2058 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new_rtx)));
2059 else if (MEM_SIZE (memref))
2060 size = plus_constant (MEM_SIZE (memref), -offset);
2062 MEM_ATTRS (new_rtx) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
2063 memoffset, size, memalign, as,
2064 GET_MODE (new_rtx));
2066 /* At some point, we should validate that this offset is within the object,
2067 if all the appropriate values are known. */
2068 return new_rtx;
2071 /* Return a memory reference like MEMREF, but with its mode changed
2072 to MODE and its address changed to ADDR, which is assumed to be
2073 MEMREF offset by OFFSET bytes. If VALIDATE is
2074 nonzero, the memory address is forced to be valid. */
2077 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
2078 HOST_WIDE_INT offset, int validate)
2080 memref = change_address_1 (memref, VOIDmode, addr, validate);
2081 return adjust_address_1 (memref, mode, offset, validate, 0);
2084 /* Return a memory reference like MEMREF, but whose address is changed by
2085 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2086 known to be in OFFSET (possibly 1). */
2089 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2091 rtx new_rtx, addr = XEXP (memref, 0);
2092 addr_space_t as = MEM_ADDR_SPACE (memref);
2093 enum machine_mode address_mode = targetm.addr_space.address_mode (as);
2095 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2097 /* At this point we don't know _why_ the address is invalid. It
2098 could have secondary memory references, multiplies or anything.
2100 However, if we did go and rearrange things, we can wind up not
2101 being able to recognize the magic around pic_offset_table_rtx.
2102 This stuff is fragile, and is yet another example of why it is
2103 bad to expose PIC machinery too early. */
2104 if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx, as)
2105 && GET_CODE (addr) == PLUS
2106 && XEXP (addr, 0) == pic_offset_table_rtx)
2108 addr = force_reg (GET_MODE (addr), addr);
2109 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2112 update_temp_slot_address (XEXP (memref, 0), new_rtx);
2113 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1);
2115 /* If there are no changes, just return the original memory reference. */
2116 if (new_rtx == memref)
2117 return new_rtx;
2119 /* Update the alignment to reflect the offset. Reset the offset, which
2120 we don't know. */
2121 MEM_ATTRS (new_rtx)
2122 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
2123 MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
2124 as, GET_MODE (new_rtx));
2125 return new_rtx;
2128 /* Return a memory reference like MEMREF, but with its address changed to
2129 ADDR. The caller is asserting that the actual piece of memory pointed
2130 to is the same, just the form of the address is being changed, such as
2131 by putting something into a register. */
2134 replace_equiv_address (rtx memref, rtx addr)
2136 /* change_address_1 copies the memory attribute structure without change
2137 and that's exactly what we want here. */
2138 update_temp_slot_address (XEXP (memref, 0), addr);
2139 return change_address_1 (memref, VOIDmode, addr, 1);
2142 /* Likewise, but the reference is not required to be valid. */
2145 replace_equiv_address_nv (rtx memref, rtx addr)
2147 return change_address_1 (memref, VOIDmode, addr, 0);
2150 /* Return a memory reference like MEMREF, but with its mode widened to
2151 MODE and offset by OFFSET. This would be used by targets that e.g.
2152 cannot issue QImode memory operations and have to use SImode memory
2153 operations plus masking logic. */
2156 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2158 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1);
2159 tree expr = MEM_EXPR (new_rtx);
2160 rtx memoffset = MEM_OFFSET (new_rtx);
2161 unsigned int size = GET_MODE_SIZE (mode);
2163 /* If there are no changes, just return the original memory reference. */
2164 if (new_rtx == memref)
2165 return new_rtx;
2167 /* If we don't know what offset we were at within the expression, then
2168 we can't know if we've overstepped the bounds. */
2169 if (! memoffset)
2170 expr = NULL_TREE;
2172 while (expr)
2174 if (TREE_CODE (expr) == COMPONENT_REF)
2176 tree field = TREE_OPERAND (expr, 1);
2177 tree offset = component_ref_field_offset (expr);
2179 if (! DECL_SIZE_UNIT (field))
2181 expr = NULL_TREE;
2182 break;
2185 /* Is the field at least as large as the access? If so, ok,
2186 otherwise strip back to the containing structure. */
2187 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2188 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2189 && INTVAL (memoffset) >= 0)
2190 break;
2192 if (! host_integerp (offset, 1))
2194 expr = NULL_TREE;
2195 break;
2198 expr = TREE_OPERAND (expr, 0);
2199 memoffset
2200 = (GEN_INT (INTVAL (memoffset)
2201 + tree_low_cst (offset, 1)
2202 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2203 / BITS_PER_UNIT)));
2205 /* Similarly for the decl. */
2206 else if (DECL_P (expr)
2207 && DECL_SIZE_UNIT (expr)
2208 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2209 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2210 && (! memoffset || INTVAL (memoffset) >= 0))
2211 break;
2212 else
2214 /* The widened memory access overflows the expression, which means
2215 that it could alias another expression. Zap it. */
2216 expr = NULL_TREE;
2217 break;
2221 if (! expr)
2222 memoffset = NULL_RTX;
2224 /* The widened memory may alias other stuff, so zap the alias set. */
2225 /* ??? Maybe use get_alias_set on any remaining expression. */
2227 MEM_ATTRS (new_rtx) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2228 MEM_ALIGN (new_rtx),
2229 MEM_ADDR_SPACE (new_rtx), mode);
2231 return new_rtx;
2234 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2235 static GTY(()) tree spill_slot_decl;
2237 tree
2238 get_spill_slot_decl (bool force_build_p)
2240 tree d = spill_slot_decl;
2241 rtx rd;
2243 if (d || !force_build_p)
2244 return d;
2246 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2247 VAR_DECL, get_identifier ("%sfp"), void_type_node);
2248 DECL_ARTIFICIAL (d) = 1;
2249 DECL_IGNORED_P (d) = 1;
2250 TREE_USED (d) = 1;
2251 spill_slot_decl = d;
2253 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2254 MEM_NOTRAP_P (rd) = 1;
2255 MEM_ATTRS (rd) = get_mem_attrs (new_alias_set (), d, const0_rtx,
2256 NULL_RTX, 0, ADDR_SPACE_GENERIC, BLKmode);
2257 SET_DECL_RTL (d, rd);
2259 return d;
2262 /* Given MEM, a result from assign_stack_local, fill in the memory
2263 attributes as appropriate for a register allocator spill slot.
2264 These slots are not aliasable by other memory. We arrange for
2265 them all to use a single MEM_EXPR, so that the aliasing code can
2266 work properly in the case of shared spill slots. */
2268 void
2269 set_mem_attrs_for_spill (rtx mem)
2271 alias_set_type alias;
2272 rtx addr, offset;
2273 tree expr;
2275 expr = get_spill_slot_decl (true);
2276 alias = MEM_ALIAS_SET (DECL_RTL (expr));
2278 /* We expect the incoming memory to be of the form:
2279 (mem:MODE (plus (reg sfp) (const_int offset)))
2280 with perhaps the plus missing for offset = 0. */
2281 addr = XEXP (mem, 0);
2282 offset = const0_rtx;
2283 if (GET_CODE (addr) == PLUS
2284 && CONST_INT_P (XEXP (addr, 1)))
2285 offset = XEXP (addr, 1);
2287 MEM_ATTRS (mem) = get_mem_attrs (alias, expr, offset,
2288 MEM_SIZE (mem), MEM_ALIGN (mem),
2289 ADDR_SPACE_GENERIC, GET_MODE (mem));
2290 MEM_NOTRAP_P (mem) = 1;
2293 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2296 gen_label_rtx (void)
2298 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2299 NULL, label_num++, NULL);
2302 /* For procedure integration. */
2304 /* Install new pointers to the first and last insns in the chain.
2305 Also, set cur_insn_uid to one higher than the last in use.
2306 Used for an inline-procedure after copying the insn chain. */
2308 void
2309 set_new_first_and_last_insn (rtx first, rtx last)
2311 rtx insn;
2313 set_first_insn (first);
2314 set_last_insn (last);
2315 cur_insn_uid = 0;
2317 if (MIN_NONDEBUG_INSN_UID || MAY_HAVE_DEBUG_INSNS)
2319 int debug_count = 0;
2321 cur_insn_uid = MIN_NONDEBUG_INSN_UID - 1;
2322 cur_debug_insn_uid = 0;
2324 for (insn = first; insn; insn = NEXT_INSN (insn))
2325 if (INSN_UID (insn) < MIN_NONDEBUG_INSN_UID)
2326 cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn));
2327 else
2329 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2330 if (DEBUG_INSN_P (insn))
2331 debug_count++;
2334 if (debug_count)
2335 cur_debug_insn_uid = MIN_NONDEBUG_INSN_UID + debug_count;
2336 else
2337 cur_debug_insn_uid++;
2339 else
2340 for (insn = first; insn; insn = NEXT_INSN (insn))
2341 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2343 cur_insn_uid++;
2346 /* Go through all the RTL insn bodies and copy any invalid shared
2347 structure. This routine should only be called once. */
2349 static void
2350 unshare_all_rtl_1 (rtx insn)
2352 /* Unshare just about everything else. */
2353 unshare_all_rtl_in_chain (insn);
2355 /* Make sure the addresses of stack slots found outside the insn chain
2356 (such as, in DECL_RTL of a variable) are not shared
2357 with the insn chain.
2359 This special care is necessary when the stack slot MEM does not
2360 actually appear in the insn chain. If it does appear, its address
2361 is unshared from all else at that point. */
2362 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2365 /* Go through all the RTL insn bodies and copy any invalid shared
2366 structure, again. This is a fairly expensive thing to do so it
2367 should be done sparingly. */
2369 void
2370 unshare_all_rtl_again (rtx insn)
2372 rtx p;
2373 tree decl;
2375 for (p = insn; p; p = NEXT_INSN (p))
2376 if (INSN_P (p))
2378 reset_used_flags (PATTERN (p));
2379 reset_used_flags (REG_NOTES (p));
2382 /* Make sure that virtual stack slots are not shared. */
2383 set_used_decls (DECL_INITIAL (cfun->decl));
2385 /* Make sure that virtual parameters are not shared. */
2386 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
2387 set_used_flags (DECL_RTL (decl));
2389 reset_used_flags (stack_slot_list);
2391 unshare_all_rtl_1 (insn);
2394 unsigned int
2395 unshare_all_rtl (void)
2397 unshare_all_rtl_1 (get_insns ());
2398 return 0;
2401 struct rtl_opt_pass pass_unshare_all_rtl =
2404 RTL_PASS,
2405 "unshare", /* name */
2406 NULL, /* gate */
2407 unshare_all_rtl, /* execute */
2408 NULL, /* sub */
2409 NULL, /* next */
2410 0, /* static_pass_number */
2411 TV_NONE, /* tv_id */
2412 0, /* properties_required */
2413 0, /* properties_provided */
2414 0, /* properties_destroyed */
2415 0, /* todo_flags_start */
2416 TODO_dump_func | TODO_verify_rtl_sharing /* todo_flags_finish */
2421 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2422 Recursively does the same for subexpressions. */
2424 static void
2425 verify_rtx_sharing (rtx orig, rtx insn)
2427 rtx x = orig;
2428 int i;
2429 enum rtx_code code;
2430 const char *format_ptr;
2432 if (x == 0)
2433 return;
2435 code = GET_CODE (x);
2437 /* These types may be freely shared. */
2439 switch (code)
2441 case REG:
2442 case DEBUG_EXPR:
2443 case VALUE:
2444 case CONST_INT:
2445 case CONST_DOUBLE:
2446 case CONST_FIXED:
2447 case CONST_VECTOR:
2448 case SYMBOL_REF:
2449 case LABEL_REF:
2450 case CODE_LABEL:
2451 case PC:
2452 case CC0:
2453 case SCRATCH:
2454 return;
2455 /* SCRATCH must be shared because they represent distinct values. */
2456 case CLOBBER:
2457 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2458 return;
2459 break;
2461 case CONST:
2462 if (shared_const_p (orig))
2463 return;
2464 break;
2466 case MEM:
2467 /* A MEM is allowed to be shared if its address is constant. */
2468 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2469 || reload_completed || reload_in_progress)
2470 return;
2472 break;
2474 default:
2475 break;
2478 /* This rtx may not be shared. If it has already been seen,
2479 replace it with a copy of itself. */
2480 #ifdef ENABLE_CHECKING
2481 if (RTX_FLAG (x, used))
2483 error ("invalid rtl sharing found in the insn");
2484 debug_rtx (insn);
2485 error ("shared rtx");
2486 debug_rtx (x);
2487 internal_error ("internal consistency failure");
2489 #endif
2490 gcc_assert (!RTX_FLAG (x, used));
2492 RTX_FLAG (x, used) = 1;
2494 /* Now scan the subexpressions recursively. */
2496 format_ptr = GET_RTX_FORMAT (code);
2498 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2500 switch (*format_ptr++)
2502 case 'e':
2503 verify_rtx_sharing (XEXP (x, i), insn);
2504 break;
2506 case 'E':
2507 if (XVEC (x, i) != NULL)
2509 int j;
2510 int len = XVECLEN (x, i);
2512 for (j = 0; j < len; j++)
2514 /* We allow sharing of ASM_OPERANDS inside single
2515 instruction. */
2516 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2517 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2518 == ASM_OPERANDS))
2519 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2520 else
2521 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2524 break;
2527 return;
2530 /* Go through all the RTL insn bodies and check that there is no unexpected
2531 sharing in between the subexpressions. */
2533 DEBUG_FUNCTION void
2534 verify_rtl_sharing (void)
2536 rtx p;
2538 timevar_push (TV_VERIFY_RTL_SHARING);
2540 for (p = get_insns (); p; p = NEXT_INSN (p))
2541 if (INSN_P (p))
2543 reset_used_flags (PATTERN (p));
2544 reset_used_flags (REG_NOTES (p));
2545 if (GET_CODE (PATTERN (p)) == SEQUENCE)
2547 int i;
2548 rtx q, sequence = PATTERN (p);
2550 for (i = 0; i < XVECLEN (sequence, 0); i++)
2552 q = XVECEXP (sequence, 0, i);
2553 gcc_assert (INSN_P (q));
2554 reset_used_flags (PATTERN (q));
2555 reset_used_flags (REG_NOTES (q));
2560 for (p = get_insns (); p; p = NEXT_INSN (p))
2561 if (INSN_P (p))
2563 verify_rtx_sharing (PATTERN (p), p);
2564 verify_rtx_sharing (REG_NOTES (p), p);
2567 timevar_pop (TV_VERIFY_RTL_SHARING);
2570 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2571 Assumes the mark bits are cleared at entry. */
2573 void
2574 unshare_all_rtl_in_chain (rtx insn)
2576 for (; insn; insn = NEXT_INSN (insn))
2577 if (INSN_P (insn))
2579 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2580 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2584 /* Go through all virtual stack slots of a function and mark them as
2585 shared. We never replace the DECL_RTLs themselves with a copy,
2586 but expressions mentioned into a DECL_RTL cannot be shared with
2587 expressions in the instruction stream.
2589 Note that reload may convert pseudo registers into memories in-place.
2590 Pseudo registers are always shared, but MEMs never are. Thus if we
2591 reset the used flags on MEMs in the instruction stream, we must set
2592 them again on MEMs that appear in DECL_RTLs. */
2594 static void
2595 set_used_decls (tree blk)
2597 tree t;
2599 /* Mark decls. */
2600 for (t = BLOCK_VARS (blk); t; t = DECL_CHAIN (t))
2601 if (DECL_RTL_SET_P (t))
2602 set_used_flags (DECL_RTL (t));
2604 /* Now process sub-blocks. */
2605 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
2606 set_used_decls (t);
2609 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2610 Recursively does the same for subexpressions. Uses
2611 copy_rtx_if_shared_1 to reduce stack space. */
2614 copy_rtx_if_shared (rtx orig)
2616 copy_rtx_if_shared_1 (&orig);
2617 return orig;
2620 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2621 use. Recursively does the same for subexpressions. */
2623 static void
2624 copy_rtx_if_shared_1 (rtx *orig1)
2626 rtx x;
2627 int i;
2628 enum rtx_code code;
2629 rtx *last_ptr;
2630 const char *format_ptr;
2631 int copied = 0;
2632 int length;
2634 /* Repeat is used to turn tail-recursion into iteration. */
2635 repeat:
2636 x = *orig1;
2638 if (x == 0)
2639 return;
2641 code = GET_CODE (x);
2643 /* These types may be freely shared. */
2645 switch (code)
2647 case REG:
2648 case DEBUG_EXPR:
2649 case VALUE:
2650 case CONST_INT:
2651 case CONST_DOUBLE:
2652 case CONST_FIXED:
2653 case CONST_VECTOR:
2654 case SYMBOL_REF:
2655 case LABEL_REF:
2656 case CODE_LABEL:
2657 case PC:
2658 case CC0:
2659 case SCRATCH:
2660 /* SCRATCH must be shared because they represent distinct values. */
2661 return;
2662 case CLOBBER:
2663 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2664 return;
2665 break;
2667 case CONST:
2668 if (shared_const_p (x))
2669 return;
2670 break;
2672 case DEBUG_INSN:
2673 case INSN:
2674 case JUMP_INSN:
2675 case CALL_INSN:
2676 case NOTE:
2677 case BARRIER:
2678 /* The chain of insns is not being copied. */
2679 return;
2681 default:
2682 break;
2685 /* This rtx may not be shared. If it has already been seen,
2686 replace it with a copy of itself. */
2688 if (RTX_FLAG (x, used))
2690 x = shallow_copy_rtx (x);
2691 copied = 1;
2693 RTX_FLAG (x, used) = 1;
2695 /* Now scan the subexpressions recursively.
2696 We can store any replaced subexpressions directly into X
2697 since we know X is not shared! Any vectors in X
2698 must be copied if X was copied. */
2700 format_ptr = GET_RTX_FORMAT (code);
2701 length = GET_RTX_LENGTH (code);
2702 last_ptr = NULL;
2704 for (i = 0; i < length; i++)
2706 switch (*format_ptr++)
2708 case 'e':
2709 if (last_ptr)
2710 copy_rtx_if_shared_1 (last_ptr);
2711 last_ptr = &XEXP (x, i);
2712 break;
2714 case 'E':
2715 if (XVEC (x, i) != NULL)
2717 int j;
2718 int len = XVECLEN (x, i);
2720 /* Copy the vector iff I copied the rtx and the length
2721 is nonzero. */
2722 if (copied && len > 0)
2723 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2725 /* Call recursively on all inside the vector. */
2726 for (j = 0; j < len; j++)
2728 if (last_ptr)
2729 copy_rtx_if_shared_1 (last_ptr);
2730 last_ptr = &XVECEXP (x, i, j);
2733 break;
2736 *orig1 = x;
2737 if (last_ptr)
2739 orig1 = last_ptr;
2740 goto repeat;
2742 return;
2745 /* Set the USED bit in X and its non-shareable subparts to FLAG. */
2747 static void
2748 mark_used_flags (rtx x, int flag)
2750 int i, j;
2751 enum rtx_code code;
2752 const char *format_ptr;
2753 int length;
2755 /* Repeat is used to turn tail-recursion into iteration. */
2756 repeat:
2757 if (x == 0)
2758 return;
2760 code = GET_CODE (x);
2762 /* These types may be freely shared so we needn't do any resetting
2763 for them. */
2765 switch (code)
2767 case REG:
2768 case DEBUG_EXPR:
2769 case VALUE:
2770 case CONST_INT:
2771 case CONST_DOUBLE:
2772 case CONST_FIXED:
2773 case CONST_VECTOR:
2774 case SYMBOL_REF:
2775 case CODE_LABEL:
2776 case PC:
2777 case CC0:
2778 return;
2780 case DEBUG_INSN:
2781 case INSN:
2782 case JUMP_INSN:
2783 case CALL_INSN:
2784 case NOTE:
2785 case LABEL_REF:
2786 case BARRIER:
2787 /* The chain of insns is not being copied. */
2788 return;
2790 default:
2791 break;
2794 RTX_FLAG (x, used) = flag;
2796 format_ptr = GET_RTX_FORMAT (code);
2797 length = GET_RTX_LENGTH (code);
2799 for (i = 0; i < length; i++)
2801 switch (*format_ptr++)
2803 case 'e':
2804 if (i == length-1)
2806 x = XEXP (x, i);
2807 goto repeat;
2809 mark_used_flags (XEXP (x, i), flag);
2810 break;
2812 case 'E':
2813 for (j = 0; j < XVECLEN (x, i); j++)
2814 mark_used_flags (XVECEXP (x, i, j), flag);
2815 break;
2820 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2821 to look for shared sub-parts. */
2823 void
2824 reset_used_flags (rtx x)
2826 mark_used_flags (x, 0);
2829 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2830 to look for shared sub-parts. */
2832 void
2833 set_used_flags (rtx x)
2835 mark_used_flags (x, 1);
2838 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2839 Return X or the rtx for the pseudo reg the value of X was copied into.
2840 OTHER must be valid as a SET_DEST. */
2843 make_safe_from (rtx x, rtx other)
2845 while (1)
2846 switch (GET_CODE (other))
2848 case SUBREG:
2849 other = SUBREG_REG (other);
2850 break;
2851 case STRICT_LOW_PART:
2852 case SIGN_EXTEND:
2853 case ZERO_EXTEND:
2854 other = XEXP (other, 0);
2855 break;
2856 default:
2857 goto done;
2859 done:
2860 if ((MEM_P (other)
2861 && ! CONSTANT_P (x)
2862 && !REG_P (x)
2863 && GET_CODE (x) != SUBREG)
2864 || (REG_P (other)
2865 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2866 || reg_mentioned_p (other, x))))
2868 rtx temp = gen_reg_rtx (GET_MODE (x));
2869 emit_move_insn (temp, x);
2870 return temp;
2872 return x;
2875 /* Emission of insns (adding them to the doubly-linked list). */
2877 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2880 get_last_insn_anywhere (void)
2882 struct sequence_stack *stack;
2883 if (get_last_insn ())
2884 return get_last_insn ();
2885 for (stack = seq_stack; stack; stack = stack->next)
2886 if (stack->last != 0)
2887 return stack->last;
2888 return 0;
2891 /* Return the first nonnote insn emitted in current sequence or current
2892 function. This routine looks inside SEQUENCEs. */
2895 get_first_nonnote_insn (void)
2897 rtx insn = get_insns ();
2899 if (insn)
2901 if (NOTE_P (insn))
2902 for (insn = next_insn (insn);
2903 insn && NOTE_P (insn);
2904 insn = next_insn (insn))
2905 continue;
2906 else
2908 if (NONJUMP_INSN_P (insn)
2909 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2910 insn = XVECEXP (PATTERN (insn), 0, 0);
2914 return insn;
2917 /* Return the last nonnote insn emitted in current sequence or current
2918 function. This routine looks inside SEQUENCEs. */
2921 get_last_nonnote_insn (void)
2923 rtx insn = get_last_insn ();
2925 if (insn)
2927 if (NOTE_P (insn))
2928 for (insn = previous_insn (insn);
2929 insn && NOTE_P (insn);
2930 insn = previous_insn (insn))
2931 continue;
2932 else
2934 if (NONJUMP_INSN_P (insn)
2935 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2936 insn = XVECEXP (PATTERN (insn), 0,
2937 XVECLEN (PATTERN (insn), 0) - 1);
2941 return insn;
2944 /* Return the number of actual (non-debug) insns emitted in this
2945 function. */
2948 get_max_insn_count (void)
2950 int n = cur_insn_uid;
2952 /* The table size must be stable across -g, to avoid codegen
2953 differences due to debug insns, and not be affected by
2954 -fmin-insn-uid, to avoid excessive table size and to simplify
2955 debugging of -fcompare-debug failures. */
2956 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
2957 n -= cur_debug_insn_uid;
2958 else
2959 n -= MIN_NONDEBUG_INSN_UID;
2961 return n;
2965 /* Return the next insn. If it is a SEQUENCE, return the first insn
2966 of the sequence. */
2969 next_insn (rtx insn)
2971 if (insn)
2973 insn = NEXT_INSN (insn);
2974 if (insn && NONJUMP_INSN_P (insn)
2975 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2976 insn = XVECEXP (PATTERN (insn), 0, 0);
2979 return insn;
2982 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2983 of the sequence. */
2986 previous_insn (rtx insn)
2988 if (insn)
2990 insn = PREV_INSN (insn);
2991 if (insn && NONJUMP_INSN_P (insn)
2992 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2993 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2996 return insn;
2999 /* Return the next insn after INSN that is not a NOTE. This routine does not
3000 look inside SEQUENCEs. */
3003 next_nonnote_insn (rtx insn)
3005 while (insn)
3007 insn = NEXT_INSN (insn);
3008 if (insn == 0 || !NOTE_P (insn))
3009 break;
3012 return insn;
3015 /* Return the next insn after INSN that is not a NOTE, but stop the
3016 search before we enter another basic block. This routine does not
3017 look inside SEQUENCEs. */
3020 next_nonnote_insn_bb (rtx insn)
3022 while (insn)
3024 insn = NEXT_INSN (insn);
3025 if (insn == 0 || !NOTE_P (insn))
3026 break;
3027 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3028 return NULL_RTX;
3031 return insn;
3034 /* Return the previous insn before INSN that is not a NOTE. This routine does
3035 not look inside SEQUENCEs. */
3038 prev_nonnote_insn (rtx insn)
3040 while (insn)
3042 insn = PREV_INSN (insn);
3043 if (insn == 0 || !NOTE_P (insn))
3044 break;
3047 return insn;
3050 /* Return the previous insn before INSN that is not a NOTE, but stop
3051 the search before we enter another basic block. This routine does
3052 not look inside SEQUENCEs. */
3055 prev_nonnote_insn_bb (rtx insn)
3057 while (insn)
3059 insn = PREV_INSN (insn);
3060 if (insn == 0 || !NOTE_P (insn))
3061 break;
3062 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3063 return NULL_RTX;
3066 return insn;
3069 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3070 routine does not look inside SEQUENCEs. */
3073 next_nondebug_insn (rtx insn)
3075 while (insn)
3077 insn = NEXT_INSN (insn);
3078 if (insn == 0 || !DEBUG_INSN_P (insn))
3079 break;
3082 return insn;
3085 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3086 This routine does not look inside SEQUENCEs. */
3089 prev_nondebug_insn (rtx insn)
3091 while (insn)
3093 insn = PREV_INSN (insn);
3094 if (insn == 0 || !DEBUG_INSN_P (insn))
3095 break;
3098 return insn;
3101 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3102 This routine does not look inside SEQUENCEs. */
3105 next_nonnote_nondebug_insn (rtx insn)
3107 while (insn)
3109 insn = NEXT_INSN (insn);
3110 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3111 break;
3114 return insn;
3117 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3118 This routine does not look inside SEQUENCEs. */
3121 prev_nonnote_nondebug_insn (rtx insn)
3123 while (insn)
3125 insn = PREV_INSN (insn);
3126 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3127 break;
3130 return insn;
3133 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3134 or 0, if there is none. This routine does not look inside
3135 SEQUENCEs. */
3138 next_real_insn (rtx insn)
3140 while (insn)
3142 insn = NEXT_INSN (insn);
3143 if (insn == 0 || INSN_P (insn))
3144 break;
3147 return insn;
3150 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3151 or 0, if there is none. This routine does not look inside
3152 SEQUENCEs. */
3155 prev_real_insn (rtx insn)
3157 while (insn)
3159 insn = PREV_INSN (insn);
3160 if (insn == 0 || INSN_P (insn))
3161 break;
3164 return insn;
3167 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3168 This routine does not look inside SEQUENCEs. */
3171 last_call_insn (void)
3173 rtx insn;
3175 for (insn = get_last_insn ();
3176 insn && !CALL_P (insn);
3177 insn = PREV_INSN (insn))
3180 return insn;
3183 /* Find the next insn after INSN that really does something. This routine
3184 does not look inside SEQUENCEs. After reload this also skips over
3185 standalone USE and CLOBBER insn. */
3188 active_insn_p (const_rtx insn)
3190 return (CALL_P (insn) || JUMP_P (insn)
3191 || (NONJUMP_INSN_P (insn)
3192 && (! reload_completed
3193 || (GET_CODE (PATTERN (insn)) != USE
3194 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3198 next_active_insn (rtx insn)
3200 while (insn)
3202 insn = NEXT_INSN (insn);
3203 if (insn == 0 || active_insn_p (insn))
3204 break;
3207 return insn;
3210 /* Find the last insn before INSN that really does something. This routine
3211 does not look inside SEQUENCEs. After reload this also skips over
3212 standalone USE and CLOBBER insn. */
3215 prev_active_insn (rtx insn)
3217 while (insn)
3219 insn = PREV_INSN (insn);
3220 if (insn == 0 || active_insn_p (insn))
3221 break;
3224 return insn;
3227 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3230 next_label (rtx insn)
3232 while (insn)
3234 insn = NEXT_INSN (insn);
3235 if (insn == 0 || LABEL_P (insn))
3236 break;
3239 return insn;
3242 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3245 prev_label (rtx insn)
3247 while (insn)
3249 insn = PREV_INSN (insn);
3250 if (insn == 0 || LABEL_P (insn))
3251 break;
3254 return insn;
3257 /* Return the last label to mark the same position as LABEL. Return null
3258 if LABEL itself is null. */
3261 skip_consecutive_labels (rtx label)
3263 rtx insn;
3265 for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn))
3266 if (LABEL_P (insn))
3267 label = insn;
3269 return label;
3272 #ifdef HAVE_cc0
3273 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3274 and REG_CC_USER notes so we can find it. */
3276 void
3277 link_cc0_insns (rtx insn)
3279 rtx user = next_nonnote_insn (insn);
3281 if (NONJUMP_INSN_P (user) && GET_CODE (PATTERN (user)) == SEQUENCE)
3282 user = XVECEXP (PATTERN (user), 0, 0);
3284 add_reg_note (user, REG_CC_SETTER, insn);
3285 add_reg_note (insn, REG_CC_USER, user);
3288 /* Return the next insn that uses CC0 after INSN, which is assumed to
3289 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3290 applied to the result of this function should yield INSN).
3292 Normally, this is simply the next insn. However, if a REG_CC_USER note
3293 is present, it contains the insn that uses CC0.
3295 Return 0 if we can't find the insn. */
3298 next_cc0_user (rtx insn)
3300 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3302 if (note)
3303 return XEXP (note, 0);
3305 insn = next_nonnote_insn (insn);
3306 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3307 insn = XVECEXP (PATTERN (insn), 0, 0);
3309 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3310 return insn;
3312 return 0;
3315 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3316 note, it is the previous insn. */
3319 prev_cc0_setter (rtx insn)
3321 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3323 if (note)
3324 return XEXP (note, 0);
3326 insn = prev_nonnote_insn (insn);
3327 gcc_assert (sets_cc0_p (PATTERN (insn)));
3329 return insn;
3331 #endif
3333 #ifdef AUTO_INC_DEC
3334 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3336 static int
3337 find_auto_inc (rtx *xp, void *data)
3339 rtx x = *xp;
3340 rtx reg = (rtx) data;
3342 if (GET_RTX_CLASS (GET_CODE (x)) != RTX_AUTOINC)
3343 return 0;
3345 switch (GET_CODE (x))
3347 case PRE_DEC:
3348 case PRE_INC:
3349 case POST_DEC:
3350 case POST_INC:
3351 case PRE_MODIFY:
3352 case POST_MODIFY:
3353 if (rtx_equal_p (reg, XEXP (x, 0)))
3354 return 1;
3355 break;
3357 default:
3358 gcc_unreachable ();
3360 return -1;
3362 #endif
3364 /* Increment the label uses for all labels present in rtx. */
3366 static void
3367 mark_label_nuses (rtx x)
3369 enum rtx_code code;
3370 int i, j;
3371 const char *fmt;
3373 code = GET_CODE (x);
3374 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3375 LABEL_NUSES (XEXP (x, 0))++;
3377 fmt = GET_RTX_FORMAT (code);
3378 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3380 if (fmt[i] == 'e')
3381 mark_label_nuses (XEXP (x, i));
3382 else if (fmt[i] == 'E')
3383 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3384 mark_label_nuses (XVECEXP (x, i, j));
3389 /* Try splitting insns that can be split for better scheduling.
3390 PAT is the pattern which might split.
3391 TRIAL is the insn providing PAT.
3392 LAST is nonzero if we should return the last insn of the sequence produced.
3394 If this routine succeeds in splitting, it returns the first or last
3395 replacement insn depending on the value of LAST. Otherwise, it
3396 returns TRIAL. If the insn to be returned can be split, it will be. */
3399 try_split (rtx pat, rtx trial, int last)
3401 rtx before = PREV_INSN (trial);
3402 rtx after = NEXT_INSN (trial);
3403 int has_barrier = 0;
3404 rtx note, seq, tem;
3405 int probability;
3406 rtx insn_last, insn;
3407 int njumps = 0;
3409 /* We're not good at redistributing frame information. */
3410 if (RTX_FRAME_RELATED_P (trial))
3411 return trial;
3413 if (any_condjump_p (trial)
3414 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3415 split_branch_probability = INTVAL (XEXP (note, 0));
3416 probability = split_branch_probability;
3418 seq = split_insns (pat, trial);
3420 split_branch_probability = -1;
3422 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3423 We may need to handle this specially. */
3424 if (after && BARRIER_P (after))
3426 has_barrier = 1;
3427 after = NEXT_INSN (after);
3430 if (!seq)
3431 return trial;
3433 /* Avoid infinite loop if any insn of the result matches
3434 the original pattern. */
3435 insn_last = seq;
3436 while (1)
3438 if (INSN_P (insn_last)
3439 && rtx_equal_p (PATTERN (insn_last), pat))
3440 return trial;
3441 if (!NEXT_INSN (insn_last))
3442 break;
3443 insn_last = NEXT_INSN (insn_last);
3446 /* We will be adding the new sequence to the function. The splitters
3447 may have introduced invalid RTL sharing, so unshare the sequence now. */
3448 unshare_all_rtl_in_chain (seq);
3450 /* Mark labels. */
3451 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3453 if (JUMP_P (insn))
3455 mark_jump_label (PATTERN (insn), insn, 0);
3456 njumps++;
3457 if (probability != -1
3458 && any_condjump_p (insn)
3459 && !find_reg_note (insn, REG_BR_PROB, 0))
3461 /* We can preserve the REG_BR_PROB notes only if exactly
3462 one jump is created, otherwise the machine description
3463 is responsible for this step using
3464 split_branch_probability variable. */
3465 gcc_assert (njumps == 1);
3466 add_reg_note (insn, REG_BR_PROB, GEN_INT (probability));
3471 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3472 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3473 if (CALL_P (trial))
3475 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3476 if (CALL_P (insn))
3478 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3479 while (*p)
3480 p = &XEXP (*p, 1);
3481 *p = CALL_INSN_FUNCTION_USAGE (trial);
3482 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3486 /* Copy notes, particularly those related to the CFG. */
3487 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3489 switch (REG_NOTE_KIND (note))
3491 case REG_EH_REGION:
3492 copy_reg_eh_region_note_backward (note, insn_last, NULL);
3493 break;
3495 case REG_NORETURN:
3496 case REG_SETJMP:
3497 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3499 if (CALL_P (insn))
3500 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3502 break;
3504 case REG_NON_LOCAL_GOTO:
3505 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3507 if (JUMP_P (insn))
3508 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3510 break;
3512 #ifdef AUTO_INC_DEC
3513 case REG_INC:
3514 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3516 rtx reg = XEXP (note, 0);
3517 if (!FIND_REG_INC_NOTE (insn, reg)
3518 && for_each_rtx (&PATTERN (insn), find_auto_inc, reg) > 0)
3519 add_reg_note (insn, REG_INC, reg);
3521 break;
3522 #endif
3524 default:
3525 break;
3529 /* If there are LABELS inside the split insns increment the
3530 usage count so we don't delete the label. */
3531 if (INSN_P (trial))
3533 insn = insn_last;
3534 while (insn != NULL_RTX)
3536 /* JUMP_P insns have already been "marked" above. */
3537 if (NONJUMP_INSN_P (insn))
3538 mark_label_nuses (PATTERN (insn));
3540 insn = PREV_INSN (insn);
3544 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3546 delete_insn (trial);
3547 if (has_barrier)
3548 emit_barrier_after (tem);
3550 /* Recursively call try_split for each new insn created; by the
3551 time control returns here that insn will be fully split, so
3552 set LAST and continue from the insn after the one returned.
3553 We can't use next_active_insn here since AFTER may be a note.
3554 Ignore deleted insns, which can be occur if not optimizing. */
3555 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3556 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3557 tem = try_split (PATTERN (tem), tem, 1);
3559 /* Return either the first or the last insn, depending on which was
3560 requested. */
3561 return last
3562 ? (after ? PREV_INSN (after) : get_last_insn ())
3563 : NEXT_INSN (before);
3566 /* Make and return an INSN rtx, initializing all its slots.
3567 Store PATTERN in the pattern slots. */
3570 make_insn_raw (rtx pattern)
3572 rtx insn;
3574 insn = rtx_alloc (INSN);
3576 INSN_UID (insn) = cur_insn_uid++;
3577 PATTERN (insn) = pattern;
3578 INSN_CODE (insn) = -1;
3579 REG_NOTES (insn) = NULL;
3580 INSN_LOCATOR (insn) = curr_insn_locator ();
3581 BLOCK_FOR_INSN (insn) = NULL;
3583 #ifdef ENABLE_RTL_CHECKING
3584 if (insn
3585 && INSN_P (insn)
3586 && (returnjump_p (insn)
3587 || (GET_CODE (insn) == SET
3588 && SET_DEST (insn) == pc_rtx)))
3590 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3591 debug_rtx (insn);
3593 #endif
3595 return insn;
3598 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3601 make_debug_insn_raw (rtx pattern)
3603 rtx insn;
3605 insn = rtx_alloc (DEBUG_INSN);
3606 INSN_UID (insn) = cur_debug_insn_uid++;
3607 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3608 INSN_UID (insn) = cur_insn_uid++;
3610 PATTERN (insn) = pattern;
3611 INSN_CODE (insn) = -1;
3612 REG_NOTES (insn) = NULL;
3613 INSN_LOCATOR (insn) = curr_insn_locator ();
3614 BLOCK_FOR_INSN (insn) = NULL;
3616 return insn;
3619 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3622 make_jump_insn_raw (rtx pattern)
3624 rtx insn;
3626 insn = rtx_alloc (JUMP_INSN);
3627 INSN_UID (insn) = cur_insn_uid++;
3629 PATTERN (insn) = pattern;
3630 INSN_CODE (insn) = -1;
3631 REG_NOTES (insn) = NULL;
3632 JUMP_LABEL (insn) = NULL;
3633 INSN_LOCATOR (insn) = curr_insn_locator ();
3634 BLOCK_FOR_INSN (insn) = NULL;
3636 return insn;
3639 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3641 static rtx
3642 make_call_insn_raw (rtx pattern)
3644 rtx insn;
3646 insn = rtx_alloc (CALL_INSN);
3647 INSN_UID (insn) = cur_insn_uid++;
3649 PATTERN (insn) = pattern;
3650 INSN_CODE (insn) = -1;
3651 REG_NOTES (insn) = NULL;
3652 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3653 INSN_LOCATOR (insn) = curr_insn_locator ();
3654 BLOCK_FOR_INSN (insn) = NULL;
3656 return insn;
3659 /* Add INSN to the end of the doubly-linked list.
3660 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3662 void
3663 add_insn (rtx insn)
3665 PREV_INSN (insn) = get_last_insn();
3666 NEXT_INSN (insn) = 0;
3668 if (NULL != get_last_insn())
3669 NEXT_INSN (get_last_insn ()) = insn;
3671 if (NULL == get_insns ())
3672 set_first_insn (insn);
3674 set_last_insn (insn);
3677 /* Add INSN into the doubly-linked list after insn AFTER. This and
3678 the next should be the only functions called to insert an insn once
3679 delay slots have been filled since only they know how to update a
3680 SEQUENCE. */
3682 void
3683 add_insn_after (rtx insn, rtx after, basic_block bb)
3685 rtx next = NEXT_INSN (after);
3687 gcc_assert (!optimize || !INSN_DELETED_P (after));
3689 NEXT_INSN (insn) = next;
3690 PREV_INSN (insn) = after;
3692 if (next)
3694 PREV_INSN (next) = insn;
3695 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3696 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3698 else if (get_last_insn () == after)
3699 set_last_insn (insn);
3700 else
3702 struct sequence_stack *stack = seq_stack;
3703 /* Scan all pending sequences too. */
3704 for (; stack; stack = stack->next)
3705 if (after == stack->last)
3707 stack->last = insn;
3708 break;
3711 gcc_assert (stack);
3714 if (!BARRIER_P (after)
3715 && !BARRIER_P (insn)
3716 && (bb = BLOCK_FOR_INSN (after)))
3718 set_block_for_insn (insn, bb);
3719 if (INSN_P (insn))
3720 df_insn_rescan (insn);
3721 /* Should not happen as first in the BB is always
3722 either NOTE or LABEL. */
3723 if (BB_END (bb) == after
3724 /* Avoid clobbering of structure when creating new BB. */
3725 && !BARRIER_P (insn)
3726 && !NOTE_INSN_BASIC_BLOCK_P (insn))
3727 BB_END (bb) = insn;
3730 NEXT_INSN (after) = insn;
3731 if (NONJUMP_INSN_P (after) && GET_CODE (PATTERN (after)) == SEQUENCE)
3733 rtx sequence = PATTERN (after);
3734 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3738 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3739 the previous should be the only functions called to insert an insn
3740 once delay slots have been filled since only they know how to
3741 update a SEQUENCE. If BB is NULL, an attempt is made to infer the
3742 bb from before. */
3744 void
3745 add_insn_before (rtx insn, rtx before, basic_block bb)
3747 rtx prev = PREV_INSN (before);
3749 gcc_assert (!optimize || !INSN_DELETED_P (before));
3751 PREV_INSN (insn) = prev;
3752 NEXT_INSN (insn) = before;
3754 if (prev)
3756 NEXT_INSN (prev) = insn;
3757 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3759 rtx sequence = PATTERN (prev);
3760 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3763 else if (get_insns () == before)
3764 set_first_insn (insn);
3765 else
3767 struct sequence_stack *stack = seq_stack;
3768 /* Scan all pending sequences too. */
3769 for (; stack; stack = stack->next)
3770 if (before == stack->first)
3772 stack->first = insn;
3773 break;
3776 gcc_assert (stack);
3779 if (!bb
3780 && !BARRIER_P (before)
3781 && !BARRIER_P (insn))
3782 bb = BLOCK_FOR_INSN (before);
3784 if (bb)
3786 set_block_for_insn (insn, bb);
3787 if (INSN_P (insn))
3788 df_insn_rescan (insn);
3789 /* Should not happen as first in the BB is always either NOTE or
3790 LABEL. */
3791 gcc_assert (BB_HEAD (bb) != insn
3792 /* Avoid clobbering of structure when creating new BB. */
3793 || BARRIER_P (insn)
3794 || NOTE_INSN_BASIC_BLOCK_P (insn));
3797 PREV_INSN (before) = insn;
3798 if (NONJUMP_INSN_P (before) && GET_CODE (PATTERN (before)) == SEQUENCE)
3799 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3803 /* Replace insn with an deleted instruction note. */
3805 void
3806 set_insn_deleted (rtx insn)
3808 df_insn_delete (BLOCK_FOR_INSN (insn), INSN_UID (insn));
3809 PUT_CODE (insn, NOTE);
3810 NOTE_KIND (insn) = NOTE_INSN_DELETED;
3814 /* Remove an insn from its doubly-linked list. This function knows how
3815 to handle sequences. */
3816 void
3817 remove_insn (rtx insn)
3819 rtx next = NEXT_INSN (insn);
3820 rtx prev = PREV_INSN (insn);
3821 basic_block bb;
3823 /* Later in the code, the block will be marked dirty. */
3824 df_insn_delete (NULL, INSN_UID (insn));
3826 if (prev)
3828 NEXT_INSN (prev) = next;
3829 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3831 rtx sequence = PATTERN (prev);
3832 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3835 else if (get_insns () == insn)
3837 if (next)
3838 PREV_INSN (next) = NULL;
3839 set_first_insn (next);
3841 else
3843 struct sequence_stack *stack = seq_stack;
3844 /* Scan all pending sequences too. */
3845 for (; stack; stack = stack->next)
3846 if (insn == stack->first)
3848 stack->first = next;
3849 break;
3852 gcc_assert (stack);
3855 if (next)
3857 PREV_INSN (next) = prev;
3858 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3859 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3861 else if (get_last_insn () == insn)
3862 set_last_insn (prev);
3863 else
3865 struct sequence_stack *stack = seq_stack;
3866 /* Scan all pending sequences too. */
3867 for (; stack; stack = stack->next)
3868 if (insn == stack->last)
3870 stack->last = prev;
3871 break;
3874 gcc_assert (stack);
3876 if (!BARRIER_P (insn)
3877 && (bb = BLOCK_FOR_INSN (insn)))
3879 if (NONDEBUG_INSN_P (insn))
3880 df_set_bb_dirty (bb);
3881 if (BB_HEAD (bb) == insn)
3883 /* Never ever delete the basic block note without deleting whole
3884 basic block. */
3885 gcc_assert (!NOTE_P (insn));
3886 BB_HEAD (bb) = next;
3888 if (BB_END (bb) == insn)
3889 BB_END (bb) = prev;
3893 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3895 void
3896 add_function_usage_to (rtx call_insn, rtx call_fusage)
3898 gcc_assert (call_insn && CALL_P (call_insn));
3900 /* Put the register usage information on the CALL. If there is already
3901 some usage information, put ours at the end. */
3902 if (CALL_INSN_FUNCTION_USAGE (call_insn))
3904 rtx link;
3906 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3907 link = XEXP (link, 1))
3910 XEXP (link, 1) = call_fusage;
3912 else
3913 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3916 /* Delete all insns made since FROM.
3917 FROM becomes the new last instruction. */
3919 void
3920 delete_insns_since (rtx from)
3922 if (from == 0)
3923 set_first_insn (0);
3924 else
3925 NEXT_INSN (from) = 0;
3926 set_last_insn (from);
3929 /* This function is deprecated, please use sequences instead.
3931 Move a consecutive bunch of insns to a different place in the chain.
3932 The insns to be moved are those between FROM and TO.
3933 They are moved to a new position after the insn AFTER.
3934 AFTER must not be FROM or TO or any insn in between.
3936 This function does not know about SEQUENCEs and hence should not be
3937 called after delay-slot filling has been done. */
3939 void
3940 reorder_insns_nobb (rtx from, rtx to, rtx after)
3942 #ifdef ENABLE_CHECKING
3943 rtx x;
3944 for (x = from; x != to; x = NEXT_INSN (x))
3945 gcc_assert (after != x);
3946 gcc_assert (after != to);
3947 #endif
3949 /* Splice this bunch out of where it is now. */
3950 if (PREV_INSN (from))
3951 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3952 if (NEXT_INSN (to))
3953 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3954 if (get_last_insn () == to)
3955 set_last_insn (PREV_INSN (from));
3956 if (get_insns () == from)
3957 set_first_insn (NEXT_INSN (to));
3959 /* Make the new neighbors point to it and it to them. */
3960 if (NEXT_INSN (after))
3961 PREV_INSN (NEXT_INSN (after)) = to;
3963 NEXT_INSN (to) = NEXT_INSN (after);
3964 PREV_INSN (from) = after;
3965 NEXT_INSN (after) = from;
3966 if (after == get_last_insn())
3967 set_last_insn (to);
3970 /* Same as function above, but take care to update BB boundaries. */
3971 void
3972 reorder_insns (rtx from, rtx to, rtx after)
3974 rtx prev = PREV_INSN (from);
3975 basic_block bb, bb2;
3977 reorder_insns_nobb (from, to, after);
3979 if (!BARRIER_P (after)
3980 && (bb = BLOCK_FOR_INSN (after)))
3982 rtx x;
3983 df_set_bb_dirty (bb);
3985 if (!BARRIER_P (from)
3986 && (bb2 = BLOCK_FOR_INSN (from)))
3988 if (BB_END (bb2) == to)
3989 BB_END (bb2) = prev;
3990 df_set_bb_dirty (bb2);
3993 if (BB_END (bb) == after)
3994 BB_END (bb) = to;
3996 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3997 if (!BARRIER_P (x))
3998 df_insn_change_bb (x, bb);
4003 /* Emit insn(s) of given code and pattern
4004 at a specified place within the doubly-linked list.
4006 All of the emit_foo global entry points accept an object
4007 X which is either an insn list or a PATTERN of a single
4008 instruction.
4010 There are thus a few canonical ways to generate code and
4011 emit it at a specific place in the instruction stream. For
4012 example, consider the instruction named SPOT and the fact that
4013 we would like to emit some instructions before SPOT. We might
4014 do it like this:
4016 start_sequence ();
4017 ... emit the new instructions ...
4018 insns_head = get_insns ();
4019 end_sequence ();
4021 emit_insn_before (insns_head, SPOT);
4023 It used to be common to generate SEQUENCE rtl instead, but that
4024 is a relic of the past which no longer occurs. The reason is that
4025 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4026 generated would almost certainly die right after it was created. */
4028 static rtx
4029 emit_pattern_before_noloc (rtx x, rtx before, rtx last, basic_block bb,
4030 rtx (*make_raw) (rtx))
4032 rtx insn;
4034 gcc_assert (before);
4036 if (x == NULL_RTX)
4037 return last;
4039 switch (GET_CODE (x))
4041 case DEBUG_INSN:
4042 case INSN:
4043 case JUMP_INSN:
4044 case CALL_INSN:
4045 case CODE_LABEL:
4046 case BARRIER:
4047 case NOTE:
4048 insn = x;
4049 while (insn)
4051 rtx next = NEXT_INSN (insn);
4052 add_insn_before (insn, before, bb);
4053 last = insn;
4054 insn = next;
4056 break;
4058 #ifdef ENABLE_RTL_CHECKING
4059 case SEQUENCE:
4060 gcc_unreachable ();
4061 break;
4062 #endif
4064 default:
4065 last = (*make_raw) (x);
4066 add_insn_before (last, before, bb);
4067 break;
4070 return last;
4073 /* Make X be output before the instruction BEFORE. */
4076 emit_insn_before_noloc (rtx x, rtx before, basic_block bb)
4078 return emit_pattern_before_noloc (x, before, before, bb, make_insn_raw);
4081 /* Make an instruction with body X and code JUMP_INSN
4082 and output it before the instruction BEFORE. */
4085 emit_jump_insn_before_noloc (rtx x, rtx before)
4087 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4088 make_jump_insn_raw);
4091 /* Make an instruction with body X and code CALL_INSN
4092 and output it before the instruction BEFORE. */
4095 emit_call_insn_before_noloc (rtx x, rtx before)
4097 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4098 make_call_insn_raw);
4101 /* Make an instruction with body X and code DEBUG_INSN
4102 and output it before the instruction BEFORE. */
4105 emit_debug_insn_before_noloc (rtx x, rtx before)
4107 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4108 make_debug_insn_raw);
4111 /* Make an insn of code BARRIER
4112 and output it before the insn BEFORE. */
4115 emit_barrier_before (rtx before)
4117 rtx insn = rtx_alloc (BARRIER);
4119 INSN_UID (insn) = cur_insn_uid++;
4121 add_insn_before (insn, before, NULL);
4122 return insn;
4125 /* Emit the label LABEL before the insn BEFORE. */
4128 emit_label_before (rtx label, rtx before)
4130 /* This can be called twice for the same label as a result of the
4131 confusion that follows a syntax error! So make it harmless. */
4132 if (INSN_UID (label) == 0)
4134 INSN_UID (label) = cur_insn_uid++;
4135 add_insn_before (label, before, NULL);
4138 return label;
4141 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4144 emit_note_before (enum insn_note subtype, rtx before)
4146 rtx note = rtx_alloc (NOTE);
4147 INSN_UID (note) = cur_insn_uid++;
4148 NOTE_KIND (note) = subtype;
4149 BLOCK_FOR_INSN (note) = NULL;
4150 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4152 add_insn_before (note, before, NULL);
4153 return note;
4156 /* Helper for emit_insn_after, handles lists of instructions
4157 efficiently. */
4159 static rtx
4160 emit_insn_after_1 (rtx first, rtx after, basic_block bb)
4162 rtx last;
4163 rtx after_after;
4164 if (!bb && !BARRIER_P (after))
4165 bb = BLOCK_FOR_INSN (after);
4167 if (bb)
4169 df_set_bb_dirty (bb);
4170 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4171 if (!BARRIER_P (last))
4173 set_block_for_insn (last, bb);
4174 df_insn_rescan (last);
4176 if (!BARRIER_P (last))
4178 set_block_for_insn (last, bb);
4179 df_insn_rescan (last);
4181 if (BB_END (bb) == after)
4182 BB_END (bb) = last;
4184 else
4185 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4186 continue;
4188 after_after = NEXT_INSN (after);
4190 NEXT_INSN (after) = first;
4191 PREV_INSN (first) = after;
4192 NEXT_INSN (last) = after_after;
4193 if (after_after)
4194 PREV_INSN (after_after) = last;
4196 if (after == get_last_insn())
4197 set_last_insn (last);
4199 return last;
4202 static rtx
4203 emit_pattern_after_noloc (rtx x, rtx after, basic_block bb,
4204 rtx (*make_raw)(rtx))
4206 rtx last = after;
4208 gcc_assert (after);
4210 if (x == NULL_RTX)
4211 return last;
4213 switch (GET_CODE (x))
4215 case DEBUG_INSN:
4216 case INSN:
4217 case JUMP_INSN:
4218 case CALL_INSN:
4219 case CODE_LABEL:
4220 case BARRIER:
4221 case NOTE:
4222 last = emit_insn_after_1 (x, after, bb);
4223 break;
4225 #ifdef ENABLE_RTL_CHECKING
4226 case SEQUENCE:
4227 gcc_unreachable ();
4228 break;
4229 #endif
4231 default:
4232 last = (*make_raw) (x);
4233 add_insn_after (last, after, bb);
4234 break;
4237 return last;
4240 /* Make X be output after the insn AFTER and set the BB of insn. If
4241 BB is NULL, an attempt is made to infer the BB from AFTER. */
4244 emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
4246 return emit_pattern_after_noloc (x, after, bb, make_insn_raw);
4250 /* Make an insn of code JUMP_INSN with body X
4251 and output it after the insn AFTER. */
4254 emit_jump_insn_after_noloc (rtx x, rtx after)
4256 return emit_pattern_after_noloc (x, after, NULL, make_jump_insn_raw);
4259 /* Make an instruction with body X and code CALL_INSN
4260 and output it after the instruction AFTER. */
4263 emit_call_insn_after_noloc (rtx x, rtx after)
4265 return emit_pattern_after_noloc (x, after, NULL, make_call_insn_raw);
4268 /* Make an instruction with body X and code CALL_INSN
4269 and output it after the instruction AFTER. */
4272 emit_debug_insn_after_noloc (rtx x, rtx after)
4274 return emit_pattern_after_noloc (x, after, NULL, make_debug_insn_raw);
4277 /* Make an insn of code BARRIER
4278 and output it after the insn AFTER. */
4281 emit_barrier_after (rtx after)
4283 rtx insn = rtx_alloc (BARRIER);
4285 INSN_UID (insn) = cur_insn_uid++;
4287 add_insn_after (insn, after, NULL);
4288 return insn;
4291 /* Emit the label LABEL after the insn AFTER. */
4294 emit_label_after (rtx label, rtx after)
4296 /* This can be called twice for the same label
4297 as a result of the confusion that follows a syntax error!
4298 So make it harmless. */
4299 if (INSN_UID (label) == 0)
4301 INSN_UID (label) = cur_insn_uid++;
4302 add_insn_after (label, after, NULL);
4305 return label;
4308 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4311 emit_note_after (enum insn_note subtype, rtx after)
4313 rtx note = rtx_alloc (NOTE);
4314 INSN_UID (note) = cur_insn_uid++;
4315 NOTE_KIND (note) = subtype;
4316 BLOCK_FOR_INSN (note) = NULL;
4317 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4318 add_insn_after (note, after, NULL);
4319 return note;
4322 /* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4323 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4325 static rtx
4326 emit_pattern_after_setloc (rtx pattern, rtx after, int loc,
4327 rtx (*make_raw) (rtx))
4329 rtx last = emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4331 if (pattern == NULL_RTX || !loc)
4332 return last;
4334 after = NEXT_INSN (after);
4335 while (1)
4337 if (active_insn_p (after) && !INSN_LOCATOR (after))
4338 INSN_LOCATOR (after) = loc;
4339 if (after == last)
4340 break;
4341 after = NEXT_INSN (after);
4343 return last;
4346 /* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4347 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4348 any DEBUG_INSNs. */
4350 static rtx
4351 emit_pattern_after (rtx pattern, rtx after, bool skip_debug_insns,
4352 rtx (*make_raw) (rtx))
4354 rtx prev = after;
4356 if (skip_debug_insns)
4357 while (DEBUG_INSN_P (prev))
4358 prev = PREV_INSN (prev);
4360 if (INSN_P (prev))
4361 return emit_pattern_after_setloc (pattern, after, INSN_LOCATOR (prev),
4362 make_raw);
4363 else
4364 return emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4367 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to LOC. */
4369 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4371 return emit_pattern_after_setloc (pattern, after, loc, make_insn_raw);
4374 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4376 emit_insn_after (rtx pattern, rtx after)
4378 return emit_pattern_after (pattern, after, true, make_insn_raw);
4381 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to LOC. */
4383 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4385 return emit_pattern_after_setloc (pattern, after, loc, make_jump_insn_raw);
4388 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4390 emit_jump_insn_after (rtx pattern, rtx after)
4392 return emit_pattern_after (pattern, after, true, make_jump_insn_raw);
4395 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to LOC. */
4397 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4399 return emit_pattern_after_setloc (pattern, after, loc, make_call_insn_raw);
4402 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4404 emit_call_insn_after (rtx pattern, rtx after)
4406 return emit_pattern_after (pattern, after, true, make_call_insn_raw);
4409 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATOR according to LOC. */
4411 emit_debug_insn_after_setloc (rtx pattern, rtx after, int loc)
4413 return emit_pattern_after_setloc (pattern, after, loc, make_debug_insn_raw);
4416 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4418 emit_debug_insn_after (rtx pattern, rtx after)
4420 return emit_pattern_after (pattern, after, false, make_debug_insn_raw);
4423 /* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4424 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
4425 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4426 CALL_INSN, etc. */
4428 static rtx
4429 emit_pattern_before_setloc (rtx pattern, rtx before, int loc, bool insnp,
4430 rtx (*make_raw) (rtx))
4432 rtx first = PREV_INSN (before);
4433 rtx last = emit_pattern_before_noloc (pattern, before,
4434 insnp ? before : NULL_RTX,
4435 NULL, make_raw);
4437 if (pattern == NULL_RTX || !loc)
4438 return last;
4440 if (!first)
4441 first = get_insns ();
4442 else
4443 first = NEXT_INSN (first);
4444 while (1)
4446 if (active_insn_p (first) && !INSN_LOCATOR (first))
4447 INSN_LOCATOR (first) = loc;
4448 if (first == last)
4449 break;
4450 first = NEXT_INSN (first);
4452 return last;
4455 /* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN
4456 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
4457 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
4458 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
4460 static rtx
4461 emit_pattern_before (rtx pattern, rtx before, bool skip_debug_insns,
4462 bool insnp, rtx (*make_raw) (rtx))
4464 rtx next = before;
4466 if (skip_debug_insns)
4467 while (DEBUG_INSN_P (next))
4468 next = PREV_INSN (next);
4470 if (INSN_P (next))
4471 return emit_pattern_before_setloc (pattern, before, INSN_LOCATOR (next),
4472 insnp, make_raw);
4473 else
4474 return emit_pattern_before_noloc (pattern, before,
4475 insnp ? before : NULL_RTX,
4476 NULL, make_raw);
4479 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to LOC. */
4481 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4483 return emit_pattern_before_setloc (pattern, before, loc, true,
4484 make_insn_raw);
4487 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4489 emit_insn_before (rtx pattern, rtx before)
4491 return emit_pattern_before (pattern, before, true, true, make_insn_raw);
4494 /* like emit_insn_before_noloc, but set INSN_LOCATOR according to LOC. */
4496 emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4498 return emit_pattern_before_setloc (pattern, before, loc, false,
4499 make_jump_insn_raw);
4502 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4504 emit_jump_insn_before (rtx pattern, rtx before)
4506 return emit_pattern_before (pattern, before, true, false,
4507 make_jump_insn_raw);
4510 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to LOC. */
4512 emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4514 return emit_pattern_before_setloc (pattern, before, loc, false,
4515 make_call_insn_raw);
4518 /* Like emit_call_insn_before_noloc,
4519 but set insn_locator according to BEFORE. */
4521 emit_call_insn_before (rtx pattern, rtx before)
4523 return emit_pattern_before (pattern, before, true, false,
4524 make_call_insn_raw);
4527 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to LOC. */
4529 emit_debug_insn_before_setloc (rtx pattern, rtx before, int loc)
4531 return emit_pattern_before_setloc (pattern, before, loc, false,
4532 make_debug_insn_raw);
4535 /* Like emit_debug_insn_before_noloc,
4536 but set insn_locator according to BEFORE. */
4538 emit_debug_insn_before (rtx pattern, rtx before)
4540 return emit_pattern_before (pattern, before, false, false,
4541 make_debug_insn_raw);
4544 /* Take X and emit it at the end of the doubly-linked
4545 INSN list.
4547 Returns the last insn emitted. */
4550 emit_insn (rtx x)
4552 rtx last = get_last_insn();
4553 rtx insn;
4555 if (x == NULL_RTX)
4556 return last;
4558 switch (GET_CODE (x))
4560 case DEBUG_INSN:
4561 case INSN:
4562 case JUMP_INSN:
4563 case CALL_INSN:
4564 case CODE_LABEL:
4565 case BARRIER:
4566 case NOTE:
4567 insn = x;
4568 while (insn)
4570 rtx next = NEXT_INSN (insn);
4571 add_insn (insn);
4572 last = insn;
4573 insn = next;
4575 break;
4577 #ifdef ENABLE_RTL_CHECKING
4578 case SEQUENCE:
4579 gcc_unreachable ();
4580 break;
4581 #endif
4583 default:
4584 last = make_insn_raw (x);
4585 add_insn (last);
4586 break;
4589 return last;
4592 /* Make an insn of code DEBUG_INSN with pattern X
4593 and add it to the end of the doubly-linked list. */
4596 emit_debug_insn (rtx x)
4598 rtx last = get_last_insn();
4599 rtx insn;
4601 if (x == NULL_RTX)
4602 return last;
4604 switch (GET_CODE (x))
4606 case DEBUG_INSN:
4607 case INSN:
4608 case JUMP_INSN:
4609 case CALL_INSN:
4610 case CODE_LABEL:
4611 case BARRIER:
4612 case NOTE:
4613 insn = x;
4614 while (insn)
4616 rtx next = NEXT_INSN (insn);
4617 add_insn (insn);
4618 last = insn;
4619 insn = next;
4621 break;
4623 #ifdef ENABLE_RTL_CHECKING
4624 case SEQUENCE:
4625 gcc_unreachable ();
4626 break;
4627 #endif
4629 default:
4630 last = make_debug_insn_raw (x);
4631 add_insn (last);
4632 break;
4635 return last;
4638 /* Make an insn of code JUMP_INSN with pattern X
4639 and add it to the end of the doubly-linked list. */
4642 emit_jump_insn (rtx x)
4644 rtx last = NULL_RTX, insn;
4646 switch (GET_CODE (x))
4648 case DEBUG_INSN:
4649 case INSN:
4650 case JUMP_INSN:
4651 case CALL_INSN:
4652 case CODE_LABEL:
4653 case BARRIER:
4654 case NOTE:
4655 insn = x;
4656 while (insn)
4658 rtx next = NEXT_INSN (insn);
4659 add_insn (insn);
4660 last = insn;
4661 insn = next;
4663 break;
4665 #ifdef ENABLE_RTL_CHECKING
4666 case SEQUENCE:
4667 gcc_unreachable ();
4668 break;
4669 #endif
4671 default:
4672 last = make_jump_insn_raw (x);
4673 add_insn (last);
4674 break;
4677 return last;
4680 /* Make an insn of code CALL_INSN with pattern X
4681 and add it to the end of the doubly-linked list. */
4684 emit_call_insn (rtx x)
4686 rtx insn;
4688 switch (GET_CODE (x))
4690 case DEBUG_INSN:
4691 case INSN:
4692 case JUMP_INSN:
4693 case CALL_INSN:
4694 case CODE_LABEL:
4695 case BARRIER:
4696 case NOTE:
4697 insn = emit_insn (x);
4698 break;
4700 #ifdef ENABLE_RTL_CHECKING
4701 case SEQUENCE:
4702 gcc_unreachable ();
4703 break;
4704 #endif
4706 default:
4707 insn = make_call_insn_raw (x);
4708 add_insn (insn);
4709 break;
4712 return insn;
4715 /* Add the label LABEL to the end of the doubly-linked list. */
4718 emit_label (rtx label)
4720 /* This can be called twice for the same label
4721 as a result of the confusion that follows a syntax error!
4722 So make it harmless. */
4723 if (INSN_UID (label) == 0)
4725 INSN_UID (label) = cur_insn_uid++;
4726 add_insn (label);
4728 return label;
4731 /* Make an insn of code BARRIER
4732 and add it to the end of the doubly-linked list. */
4735 emit_barrier (void)
4737 rtx barrier = rtx_alloc (BARRIER);
4738 INSN_UID (barrier) = cur_insn_uid++;
4739 add_insn (barrier);
4740 return barrier;
4743 /* Emit a copy of note ORIG. */
4746 emit_note_copy (rtx orig)
4748 rtx note;
4750 note = rtx_alloc (NOTE);
4752 INSN_UID (note) = cur_insn_uid++;
4753 NOTE_DATA (note) = NOTE_DATA (orig);
4754 NOTE_KIND (note) = NOTE_KIND (orig);
4755 BLOCK_FOR_INSN (note) = NULL;
4756 add_insn (note);
4758 return note;
4761 /* Make an insn of code NOTE or type NOTE_NO
4762 and add it to the end of the doubly-linked list. */
4765 emit_note (enum insn_note kind)
4767 rtx note;
4769 note = rtx_alloc (NOTE);
4770 INSN_UID (note) = cur_insn_uid++;
4771 NOTE_KIND (note) = kind;
4772 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4773 BLOCK_FOR_INSN (note) = NULL;
4774 add_insn (note);
4775 return note;
4778 /* Emit a clobber of lvalue X. */
4781 emit_clobber (rtx x)
4783 /* CONCATs should not appear in the insn stream. */
4784 if (GET_CODE (x) == CONCAT)
4786 emit_clobber (XEXP (x, 0));
4787 return emit_clobber (XEXP (x, 1));
4789 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
4792 /* Return a sequence of insns to clobber lvalue X. */
4795 gen_clobber (rtx x)
4797 rtx seq;
4799 start_sequence ();
4800 emit_clobber (x);
4801 seq = get_insns ();
4802 end_sequence ();
4803 return seq;
4806 /* Emit a use of rvalue X. */
4809 emit_use (rtx x)
4811 /* CONCATs should not appear in the insn stream. */
4812 if (GET_CODE (x) == CONCAT)
4814 emit_use (XEXP (x, 0));
4815 return emit_use (XEXP (x, 1));
4817 return emit_insn (gen_rtx_USE (VOIDmode, x));
4820 /* Return a sequence of insns to use rvalue X. */
4823 gen_use (rtx x)
4825 rtx seq;
4827 start_sequence ();
4828 emit_use (x);
4829 seq = get_insns ();
4830 end_sequence ();
4831 return seq;
4834 /* Cause next statement to emit a line note even if the line number
4835 has not changed. */
4837 void
4838 force_next_line_note (void)
4840 last_location = -1;
4843 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4844 note of this type already exists, remove it first. */
4847 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
4849 rtx note = find_reg_note (insn, kind, NULL_RTX);
4851 switch (kind)
4853 case REG_EQUAL:
4854 case REG_EQUIV:
4855 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4856 has multiple sets (some callers assume single_set
4857 means the insn only has one set, when in fact it
4858 means the insn only has one * useful * set). */
4859 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4861 gcc_assert (!note);
4862 return NULL_RTX;
4865 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4866 It serves no useful purpose and breaks eliminate_regs. */
4867 if (GET_CODE (datum) == ASM_OPERANDS)
4868 return NULL_RTX;
4870 if (note)
4872 XEXP (note, 0) = datum;
4873 df_notes_rescan (insn);
4874 return note;
4876 break;
4878 default:
4879 if (note)
4881 XEXP (note, 0) = datum;
4882 return note;
4884 break;
4887 add_reg_note (insn, kind, datum);
4889 switch (kind)
4891 case REG_EQUAL:
4892 case REG_EQUIV:
4893 df_notes_rescan (insn);
4894 break;
4895 default:
4896 break;
4899 return REG_NOTES (insn);
4902 /* Return an indication of which type of insn should have X as a body.
4903 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4905 static enum rtx_code
4906 classify_insn (rtx x)
4908 if (LABEL_P (x))
4909 return CODE_LABEL;
4910 if (GET_CODE (x) == CALL)
4911 return CALL_INSN;
4912 if (GET_CODE (x) == RETURN)
4913 return JUMP_INSN;
4914 if (GET_CODE (x) == SET)
4916 if (SET_DEST (x) == pc_rtx)
4917 return JUMP_INSN;
4918 else if (GET_CODE (SET_SRC (x)) == CALL)
4919 return CALL_INSN;
4920 else
4921 return INSN;
4923 if (GET_CODE (x) == PARALLEL)
4925 int j;
4926 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4927 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4928 return CALL_INSN;
4929 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4930 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
4931 return JUMP_INSN;
4932 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4933 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
4934 return CALL_INSN;
4936 return INSN;
4939 /* Emit the rtl pattern X as an appropriate kind of insn.
4940 If X is a label, it is simply added into the insn chain. */
4943 emit (rtx x)
4945 enum rtx_code code = classify_insn (x);
4947 switch (code)
4949 case CODE_LABEL:
4950 return emit_label (x);
4951 case INSN:
4952 return emit_insn (x);
4953 case JUMP_INSN:
4955 rtx insn = emit_jump_insn (x);
4956 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
4957 return emit_barrier ();
4958 return insn;
4960 case CALL_INSN:
4961 return emit_call_insn (x);
4962 case DEBUG_INSN:
4963 return emit_debug_insn (x);
4964 default:
4965 gcc_unreachable ();
4969 /* Space for free sequence stack entries. */
4970 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
4972 /* Begin emitting insns to a sequence. If this sequence will contain
4973 something that might cause the compiler to pop arguments to function
4974 calls (because those pops have previously been deferred; see
4975 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
4976 before calling this function. That will ensure that the deferred
4977 pops are not accidentally emitted in the middle of this sequence. */
4979 void
4980 start_sequence (void)
4982 struct sequence_stack *tem;
4984 if (free_sequence_stack != NULL)
4986 tem = free_sequence_stack;
4987 free_sequence_stack = tem->next;
4989 else
4990 tem = ggc_alloc_sequence_stack ();
4992 tem->next = seq_stack;
4993 tem->first = get_insns ();
4994 tem->last = get_last_insn ();
4996 seq_stack = tem;
4998 set_first_insn (0);
4999 set_last_insn (0);
5002 /* Set up the insn chain starting with FIRST as the current sequence,
5003 saving the previously current one. See the documentation for
5004 start_sequence for more information about how to use this function. */
5006 void
5007 push_to_sequence (rtx first)
5009 rtx last;
5011 start_sequence ();
5013 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
5015 set_first_insn (first);
5016 set_last_insn (last);
5019 /* Like push_to_sequence, but take the last insn as an argument to avoid
5020 looping through the list. */
5022 void
5023 push_to_sequence2 (rtx first, rtx last)
5025 start_sequence ();
5027 set_first_insn (first);
5028 set_last_insn (last);
5031 /* Set up the outer-level insn chain
5032 as the current sequence, saving the previously current one. */
5034 void
5035 push_topmost_sequence (void)
5037 struct sequence_stack *stack, *top = NULL;
5039 start_sequence ();
5041 for (stack = seq_stack; stack; stack = stack->next)
5042 top = stack;
5044 set_first_insn (top->first);
5045 set_last_insn (top->last);
5048 /* After emitting to the outer-level insn chain, update the outer-level
5049 insn chain, and restore the previous saved state. */
5051 void
5052 pop_topmost_sequence (void)
5054 struct sequence_stack *stack, *top = NULL;
5056 for (stack = seq_stack; stack; stack = stack->next)
5057 top = stack;
5059 top->first = get_insns ();
5060 top->last = get_last_insn ();
5062 end_sequence ();
5065 /* After emitting to a sequence, restore previous saved state.
5067 To get the contents of the sequence just made, you must call
5068 `get_insns' *before* calling here.
5070 If the compiler might have deferred popping arguments while
5071 generating this sequence, and this sequence will not be immediately
5072 inserted into the instruction stream, use do_pending_stack_adjust
5073 before calling get_insns. That will ensure that the deferred
5074 pops are inserted into this sequence, and not into some random
5075 location in the instruction stream. See INHIBIT_DEFER_POP for more
5076 information about deferred popping of arguments. */
5078 void
5079 end_sequence (void)
5081 struct sequence_stack *tem = seq_stack;
5083 set_first_insn (tem->first);
5084 set_last_insn (tem->last);
5085 seq_stack = tem->next;
5087 memset (tem, 0, sizeof (*tem));
5088 tem->next = free_sequence_stack;
5089 free_sequence_stack = tem;
5092 /* Return 1 if currently emitting into a sequence. */
5095 in_sequence_p (void)
5097 return seq_stack != 0;
5100 /* Put the various virtual registers into REGNO_REG_RTX. */
5102 static void
5103 init_virtual_regs (void)
5105 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5106 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5107 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5108 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5109 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5110 regno_reg_rtx[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM]
5111 = virtual_preferred_stack_boundary_rtx;
5115 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5116 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5117 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5118 static int copy_insn_n_scratches;
5120 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5121 copied an ASM_OPERANDS.
5122 In that case, it is the original input-operand vector. */
5123 static rtvec orig_asm_operands_vector;
5125 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5126 copied an ASM_OPERANDS.
5127 In that case, it is the copied input-operand vector. */
5128 static rtvec copy_asm_operands_vector;
5130 /* Likewise for the constraints vector. */
5131 static rtvec orig_asm_constraints_vector;
5132 static rtvec copy_asm_constraints_vector;
5134 /* Recursively create a new copy of an rtx for copy_insn.
5135 This function differs from copy_rtx in that it handles SCRATCHes and
5136 ASM_OPERANDs properly.
5137 Normally, this function is not used directly; use copy_insn as front end.
5138 However, you could first copy an insn pattern with copy_insn and then use
5139 this function afterwards to properly copy any REG_NOTEs containing
5140 SCRATCHes. */
5143 copy_insn_1 (rtx orig)
5145 rtx copy;
5146 int i, j;
5147 RTX_CODE code;
5148 const char *format_ptr;
5150 if (orig == NULL)
5151 return NULL;
5153 code = GET_CODE (orig);
5155 switch (code)
5157 case REG:
5158 case CONST_INT:
5159 case CONST_DOUBLE:
5160 case CONST_FIXED:
5161 case CONST_VECTOR:
5162 case SYMBOL_REF:
5163 case CODE_LABEL:
5164 case PC:
5165 case CC0:
5166 return orig;
5167 case CLOBBER:
5168 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
5169 return orig;
5170 break;
5172 case SCRATCH:
5173 for (i = 0; i < copy_insn_n_scratches; i++)
5174 if (copy_insn_scratch_in[i] == orig)
5175 return copy_insn_scratch_out[i];
5176 break;
5178 case CONST:
5179 if (shared_const_p (orig))
5180 return orig;
5181 break;
5183 /* A MEM with a constant address is not sharable. The problem is that
5184 the constant address may need to be reloaded. If the mem is shared,
5185 then reloading one copy of this mem will cause all copies to appear
5186 to have been reloaded. */
5188 default:
5189 break;
5192 /* Copy the various flags, fields, and other information. We assume
5193 that all fields need copying, and then clear the fields that should
5194 not be copied. That is the sensible default behavior, and forces
5195 us to explicitly document why we are *not* copying a flag. */
5196 copy = shallow_copy_rtx (orig);
5198 /* We do not copy the USED flag, which is used as a mark bit during
5199 walks over the RTL. */
5200 RTX_FLAG (copy, used) = 0;
5202 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5203 if (INSN_P (orig))
5205 RTX_FLAG (copy, jump) = 0;
5206 RTX_FLAG (copy, call) = 0;
5207 RTX_FLAG (copy, frame_related) = 0;
5210 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5212 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5213 switch (*format_ptr++)
5215 case 'e':
5216 if (XEXP (orig, i) != NULL)
5217 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5218 break;
5220 case 'E':
5221 case 'V':
5222 if (XVEC (orig, i) == orig_asm_constraints_vector)
5223 XVEC (copy, i) = copy_asm_constraints_vector;
5224 else if (XVEC (orig, i) == orig_asm_operands_vector)
5225 XVEC (copy, i) = copy_asm_operands_vector;
5226 else if (XVEC (orig, i) != NULL)
5228 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5229 for (j = 0; j < XVECLEN (copy, i); j++)
5230 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5232 break;
5234 case 't':
5235 case 'w':
5236 case 'i':
5237 case 's':
5238 case 'S':
5239 case 'u':
5240 case '0':
5241 /* These are left unchanged. */
5242 break;
5244 default:
5245 gcc_unreachable ();
5248 if (code == SCRATCH)
5250 i = copy_insn_n_scratches++;
5251 gcc_assert (i < MAX_RECOG_OPERANDS);
5252 copy_insn_scratch_in[i] = orig;
5253 copy_insn_scratch_out[i] = copy;
5255 else if (code == ASM_OPERANDS)
5257 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5258 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5259 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5260 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5263 return copy;
5266 /* Create a new copy of an rtx.
5267 This function differs from copy_rtx in that it handles SCRATCHes and
5268 ASM_OPERANDs properly.
5269 INSN doesn't really have to be a full INSN; it could be just the
5270 pattern. */
5272 copy_insn (rtx insn)
5274 copy_insn_n_scratches = 0;
5275 orig_asm_operands_vector = 0;
5276 orig_asm_constraints_vector = 0;
5277 copy_asm_operands_vector = 0;
5278 copy_asm_constraints_vector = 0;
5279 return copy_insn_1 (insn);
5282 /* Initialize data structures and variables in this file
5283 before generating rtl for each function. */
5285 void
5286 init_emit (void)
5288 set_first_insn (NULL);
5289 set_last_insn (NULL);
5290 if (MIN_NONDEBUG_INSN_UID)
5291 cur_insn_uid = MIN_NONDEBUG_INSN_UID;
5292 else
5293 cur_insn_uid = 1;
5294 cur_debug_insn_uid = 1;
5295 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5296 last_location = UNKNOWN_LOCATION;
5297 first_label_num = label_num;
5298 seq_stack = NULL;
5300 /* Init the tables that describe all the pseudo regs. */
5302 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5304 crtl->emit.regno_pointer_align
5305 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
5307 regno_reg_rtx = ggc_alloc_vec_rtx (crtl->emit.regno_pointer_align_length);
5309 /* Put copies of all the hard registers into regno_reg_rtx. */
5310 memcpy (regno_reg_rtx,
5311 initial_regno_reg_rtx,
5312 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5314 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5315 init_virtual_regs ();
5317 /* Indicate that the virtual registers and stack locations are
5318 all pointers. */
5319 REG_POINTER (stack_pointer_rtx) = 1;
5320 REG_POINTER (frame_pointer_rtx) = 1;
5321 REG_POINTER (hard_frame_pointer_rtx) = 1;
5322 REG_POINTER (arg_pointer_rtx) = 1;
5324 REG_POINTER (virtual_incoming_args_rtx) = 1;
5325 REG_POINTER (virtual_stack_vars_rtx) = 1;
5326 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5327 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5328 REG_POINTER (virtual_cfa_rtx) = 1;
5330 #ifdef STACK_BOUNDARY
5331 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5332 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5333 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5334 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5336 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5337 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5338 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5339 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5340 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5341 #endif
5343 #ifdef INIT_EXPANDERS
5344 INIT_EXPANDERS;
5345 #endif
5348 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5350 static rtx
5351 gen_const_vector (enum machine_mode mode, int constant)
5353 rtx tem;
5354 rtvec v;
5355 int units, i;
5356 enum machine_mode inner;
5358 units = GET_MODE_NUNITS (mode);
5359 inner = GET_MODE_INNER (mode);
5361 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5363 v = rtvec_alloc (units);
5365 /* We need to call this function after we set the scalar const_tiny_rtx
5366 entries. */
5367 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5369 for (i = 0; i < units; ++i)
5370 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5372 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5373 return tem;
5376 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5377 all elements are zero, and the one vector when all elements are one. */
5379 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5381 enum machine_mode inner = GET_MODE_INNER (mode);
5382 int nunits = GET_MODE_NUNITS (mode);
5383 rtx x;
5384 int i;
5386 /* Check to see if all of the elements have the same value. */
5387 x = RTVEC_ELT (v, nunits - 1);
5388 for (i = nunits - 2; i >= 0; i--)
5389 if (RTVEC_ELT (v, i) != x)
5390 break;
5392 /* If the values are all the same, check to see if we can use one of the
5393 standard constant vectors. */
5394 if (i == -1)
5396 if (x == CONST0_RTX (inner))
5397 return CONST0_RTX (mode);
5398 else if (x == CONST1_RTX (inner))
5399 return CONST1_RTX (mode);
5402 return gen_rtx_raw_CONST_VECTOR (mode, v);
5405 /* Initialise global register information required by all functions. */
5407 void
5408 init_emit_regs (void)
5410 int i;
5412 /* Reset register attributes */
5413 htab_empty (reg_attrs_htab);
5415 /* We need reg_raw_mode, so initialize the modes now. */
5416 init_reg_modes_target ();
5418 /* Assign register numbers to the globally defined register rtx. */
5419 pc_rtx = gen_rtx_PC (VOIDmode);
5420 cc0_rtx = gen_rtx_CC0 (VOIDmode);
5421 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5422 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5423 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5424 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5425 virtual_incoming_args_rtx =
5426 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5427 virtual_stack_vars_rtx =
5428 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5429 virtual_stack_dynamic_rtx =
5430 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5431 virtual_outgoing_args_rtx =
5432 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5433 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5434 virtual_preferred_stack_boundary_rtx =
5435 gen_raw_REG (Pmode, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM);
5437 /* Initialize RTL for commonly used hard registers. These are
5438 copied into regno_reg_rtx as we begin to compile each function. */
5439 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5440 initial_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5442 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5443 return_address_pointer_rtx
5444 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5445 #endif
5447 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5448 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5449 else
5450 pic_offset_table_rtx = NULL_RTX;
5453 /* Create some permanent unique rtl objects shared between all functions. */
5455 void
5456 init_emit_once (void)
5458 int i;
5459 enum machine_mode mode;
5460 enum machine_mode double_mode;
5462 /* Initialize the CONST_INT, CONST_DOUBLE, CONST_FIXED, and memory attribute
5463 hash tables. */
5464 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5465 const_int_htab_eq, NULL);
5467 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5468 const_double_htab_eq, NULL);
5470 const_fixed_htab = htab_create_ggc (37, const_fixed_htab_hash,
5471 const_fixed_htab_eq, NULL);
5473 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5474 mem_attrs_htab_eq, NULL);
5475 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5476 reg_attrs_htab_eq, NULL);
5478 /* Compute the word and byte modes. */
5480 byte_mode = VOIDmode;
5481 word_mode = VOIDmode;
5482 double_mode = VOIDmode;
5484 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5485 mode != VOIDmode;
5486 mode = GET_MODE_WIDER_MODE (mode))
5488 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5489 && byte_mode == VOIDmode)
5490 byte_mode = mode;
5492 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5493 && word_mode == VOIDmode)
5494 word_mode = mode;
5497 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5498 mode != VOIDmode;
5499 mode = GET_MODE_WIDER_MODE (mode))
5501 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5502 && double_mode == VOIDmode)
5503 double_mode = mode;
5506 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5508 #ifdef INIT_EXPANDERS
5509 /* This is to initialize {init|mark|free}_machine_status before the first
5510 call to push_function_context_to. This is needed by the Chill front
5511 end which calls push_function_context_to before the first call to
5512 init_function_start. */
5513 INIT_EXPANDERS;
5514 #endif
5516 /* Create the unique rtx's for certain rtx codes and operand values. */
5518 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5519 tries to use these variables. */
5520 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5521 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5522 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5524 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5525 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5526 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5527 else
5528 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5530 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5531 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5532 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5534 dconstm1 = dconst1;
5535 dconstm1.sign = 1;
5537 dconsthalf = dconst1;
5538 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5540 for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
5542 const REAL_VALUE_TYPE *const r =
5543 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5545 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5546 mode != VOIDmode;
5547 mode = GET_MODE_WIDER_MODE (mode))
5548 const_tiny_rtx[i][(int) mode] =
5549 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5551 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5552 mode != VOIDmode;
5553 mode = GET_MODE_WIDER_MODE (mode))
5554 const_tiny_rtx[i][(int) mode] =
5555 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5557 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5559 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5560 mode != VOIDmode;
5561 mode = GET_MODE_WIDER_MODE (mode))
5562 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5564 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5565 mode != VOIDmode;
5566 mode = GET_MODE_WIDER_MODE (mode))
5567 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5570 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT);
5571 mode != VOIDmode;
5572 mode = GET_MODE_WIDER_MODE (mode))
5574 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5575 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5578 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
5579 mode != VOIDmode;
5580 mode = GET_MODE_WIDER_MODE (mode))
5582 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5583 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5586 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5587 mode != VOIDmode;
5588 mode = GET_MODE_WIDER_MODE (mode))
5590 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5591 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5594 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5595 mode != VOIDmode;
5596 mode = GET_MODE_WIDER_MODE (mode))
5598 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5599 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5602 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FRACT);
5603 mode != VOIDmode;
5604 mode = GET_MODE_WIDER_MODE (mode))
5606 FCONST0(mode).data.high = 0;
5607 FCONST0(mode).data.low = 0;
5608 FCONST0(mode).mode = mode;
5609 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5610 FCONST0 (mode), mode);
5613 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UFRACT);
5614 mode != VOIDmode;
5615 mode = GET_MODE_WIDER_MODE (mode))
5617 FCONST0(mode).data.high = 0;
5618 FCONST0(mode).data.low = 0;
5619 FCONST0(mode).mode = mode;
5620 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5621 FCONST0 (mode), mode);
5624 for (mode = GET_CLASS_NARROWEST_MODE (MODE_ACCUM);
5625 mode != VOIDmode;
5626 mode = GET_MODE_WIDER_MODE (mode))
5628 FCONST0(mode).data.high = 0;
5629 FCONST0(mode).data.low = 0;
5630 FCONST0(mode).mode = mode;
5631 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5632 FCONST0 (mode), mode);
5634 /* We store the value 1. */
5635 FCONST1(mode).data.high = 0;
5636 FCONST1(mode).data.low = 0;
5637 FCONST1(mode).mode = mode;
5638 lshift_double (1, 0, GET_MODE_FBIT (mode),
5639 2 * HOST_BITS_PER_WIDE_INT,
5640 &FCONST1(mode).data.low,
5641 &FCONST1(mode).data.high,
5642 SIGNED_FIXED_POINT_MODE_P (mode));
5643 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5644 FCONST1 (mode), mode);
5647 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UACCUM);
5648 mode != VOIDmode;
5649 mode = GET_MODE_WIDER_MODE (mode))
5651 FCONST0(mode).data.high = 0;
5652 FCONST0(mode).data.low = 0;
5653 FCONST0(mode).mode = mode;
5654 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5655 FCONST0 (mode), mode);
5657 /* We store the value 1. */
5658 FCONST1(mode).data.high = 0;
5659 FCONST1(mode).data.low = 0;
5660 FCONST1(mode).mode = mode;
5661 lshift_double (1, 0, GET_MODE_FBIT (mode),
5662 2 * HOST_BITS_PER_WIDE_INT,
5663 &FCONST1(mode).data.low,
5664 &FCONST1(mode).data.high,
5665 SIGNED_FIXED_POINT_MODE_P (mode));
5666 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5667 FCONST1 (mode), mode);
5670 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT);
5671 mode != VOIDmode;
5672 mode = GET_MODE_WIDER_MODE (mode))
5674 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5677 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT);
5678 mode != VOIDmode;
5679 mode = GET_MODE_WIDER_MODE (mode))
5681 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5684 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM);
5685 mode != VOIDmode;
5686 mode = GET_MODE_WIDER_MODE (mode))
5688 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5689 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5692 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM);
5693 mode != VOIDmode;
5694 mode = GET_MODE_WIDER_MODE (mode))
5696 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5697 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5700 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5701 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5702 const_tiny_rtx[0][i] = const0_rtx;
5704 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5705 if (STORE_FLAG_VALUE == 1)
5706 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5709 /* Produce exact duplicate of insn INSN after AFTER.
5710 Care updating of libcall regions if present. */
5713 emit_copy_of_insn_after (rtx insn, rtx after)
5715 rtx new_rtx, link;
5717 switch (GET_CODE (insn))
5719 case INSN:
5720 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
5721 break;
5723 case JUMP_INSN:
5724 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5725 break;
5727 case DEBUG_INSN:
5728 new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after);
5729 break;
5731 case CALL_INSN:
5732 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5733 if (CALL_INSN_FUNCTION_USAGE (insn))
5734 CALL_INSN_FUNCTION_USAGE (new_rtx)
5735 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5736 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
5737 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
5738 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
5739 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
5740 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
5741 break;
5743 default:
5744 gcc_unreachable ();
5747 /* Update LABEL_NUSES. */
5748 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
5750 INSN_LOCATOR (new_rtx) = INSN_LOCATOR (insn);
5752 /* If the old insn is frame related, then so is the new one. This is
5753 primarily needed for IA-64 unwind info which marks epilogue insns,
5754 which may be duplicated by the basic block reordering code. */
5755 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
5757 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
5758 will make them. REG_LABEL_TARGETs are created there too, but are
5759 supposed to be sticky, so we copy them. */
5760 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5761 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
5763 if (GET_CODE (link) == EXPR_LIST)
5764 add_reg_note (new_rtx, REG_NOTE_KIND (link),
5765 copy_insn_1 (XEXP (link, 0)));
5766 else
5767 add_reg_note (new_rtx, REG_NOTE_KIND (link), XEXP (link, 0));
5770 INSN_CODE (new_rtx) = INSN_CODE (insn);
5771 return new_rtx;
5774 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
5776 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
5778 if (hard_reg_clobbers[mode][regno])
5779 return hard_reg_clobbers[mode][regno];
5780 else
5781 return (hard_reg_clobbers[mode][regno] =
5782 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
5785 #include "gt-emit-rtl.h"