Skip -fwhole-program when merging LTO options.
[official-gcc.git] / gcc / tree-switch-conversion.cc
blob1d75d7c7fc734ffd9549e57b0b6c98540710a033
1 /* Lower GIMPLE_SWITCH expressions to something more efficient than
2 a jump table.
3 Copyright (C) 2006-2022 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 /* This file handles the lowering of GIMPLE_SWITCH to an indexed
23 load, or a series of bit-test-and-branch expressions. */
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "backend.h"
29 #include "insn-codes.h"
30 #include "rtl.h"
31 #include "tree.h"
32 #include "gimple.h"
33 #include "cfghooks.h"
34 #include "tree-pass.h"
35 #include "ssa.h"
36 #include "optabs-tree.h"
37 #include "cgraph.h"
38 #include "gimple-pretty-print.h"
39 #include "fold-const.h"
40 #include "varasm.h"
41 #include "stor-layout.h"
42 #include "cfganal.h"
43 #include "gimplify.h"
44 #include "gimple-iterator.h"
45 #include "gimplify-me.h"
46 #include "gimple-fold.h"
47 #include "tree-cfg.h"
48 #include "cfgloop.h"
49 #include "alloc-pool.h"
50 #include "target.h"
51 #include "tree-into-ssa.h"
52 #include "omp-general.h"
53 #include "gimple-range.h"
55 /* ??? For lang_hooks.types.type_for_mode, but is there a word_mode
56 type in the GIMPLE type system that is language-independent? */
57 #include "langhooks.h"
59 #include "tree-switch-conversion.h"
61 using namespace tree_switch_conversion;
63 /* Constructor. */
65 switch_conversion::switch_conversion (): m_final_bb (NULL),
66 m_constructors (NULL), m_default_values (NULL),
67 m_arr_ref_first (NULL), m_arr_ref_last (NULL),
68 m_reason (NULL), m_default_case_nonstandard (false), m_cfg_altered (false)
72 /* Collection information about SWTCH statement. */
74 void
75 switch_conversion::collect (gswitch *swtch)
77 unsigned int branch_num = gimple_switch_num_labels (swtch);
78 tree min_case, max_case;
79 unsigned int i;
80 edge e, e_default, e_first;
81 edge_iterator ei;
83 m_switch = swtch;
85 /* The gimplifier has already sorted the cases by CASE_LOW and ensured there
86 is a default label which is the first in the vector.
87 Collect the bits we can deduce from the CFG. */
88 m_index_expr = gimple_switch_index (swtch);
89 m_switch_bb = gimple_bb (swtch);
90 e_default = gimple_switch_default_edge (cfun, swtch);
91 m_default_bb = e_default->dest;
92 m_default_prob = e_default->probability;
94 /* Get upper and lower bounds of case values, and the covered range. */
95 min_case = gimple_switch_label (swtch, 1);
96 max_case = gimple_switch_label (swtch, branch_num - 1);
98 m_range_min = CASE_LOW (min_case);
99 if (CASE_HIGH (max_case) != NULL_TREE)
100 m_range_max = CASE_HIGH (max_case);
101 else
102 m_range_max = CASE_LOW (max_case);
104 m_contiguous_range = true;
105 tree last = CASE_HIGH (min_case) ? CASE_HIGH (min_case) : m_range_min;
106 for (i = 2; i < branch_num; i++)
108 tree elt = gimple_switch_label (swtch, i);
109 if (wi::to_wide (last) + 1 != wi::to_wide (CASE_LOW (elt)))
111 m_contiguous_range = false;
112 break;
114 last = CASE_HIGH (elt) ? CASE_HIGH (elt) : CASE_LOW (elt);
117 if (m_contiguous_range)
118 e_first = gimple_switch_edge (cfun, swtch, 1);
119 else
120 e_first = e_default;
122 /* See if there is one common successor block for all branch
123 targets. If it exists, record it in FINAL_BB.
124 Start with the destination of the first non-default case
125 if the range is contiguous and default case otherwise as
126 guess or its destination in case it is a forwarder block. */
127 if (! single_pred_p (e_first->dest))
128 m_final_bb = e_first->dest;
129 else if (single_succ_p (e_first->dest)
130 && ! single_pred_p (single_succ (e_first->dest)))
131 m_final_bb = single_succ (e_first->dest);
132 /* Require that all switch destinations are either that common
133 FINAL_BB or a forwarder to it, except for the default
134 case if contiguous range. */
135 if (m_final_bb)
136 FOR_EACH_EDGE (e, ei, m_switch_bb->succs)
138 if (e->dest == m_final_bb)
139 continue;
141 if (single_pred_p (e->dest)
142 && single_succ_p (e->dest)
143 && single_succ (e->dest) == m_final_bb)
144 continue;
146 if (e == e_default && m_contiguous_range)
148 m_default_case_nonstandard = true;
149 continue;
152 m_final_bb = NULL;
153 break;
156 m_range_size
157 = int_const_binop (MINUS_EXPR, m_range_max, m_range_min);
159 /* Get a count of the number of case labels. Single-valued case labels
160 simply count as one, but a case range counts double, since it may
161 require two compares if it gets lowered as a branching tree. */
162 m_count = 0;
163 for (i = 1; i < branch_num; i++)
165 tree elt = gimple_switch_label (swtch, i);
166 m_count++;
167 if (CASE_HIGH (elt)
168 && ! tree_int_cst_equal (CASE_LOW (elt), CASE_HIGH (elt)))
169 m_count++;
172 /* Get the number of unique non-default targets out of the GIMPLE_SWITCH
173 block. Assume a CFG cleanup would have already removed degenerate
174 switch statements, this allows us to just use EDGE_COUNT. */
175 m_uniq = EDGE_COUNT (gimple_bb (swtch)->succs) - 1;
178 /* Checks whether the range given by individual case statements of the switch
179 switch statement isn't too big and whether the number of branches actually
180 satisfies the size of the new array. */
182 bool
183 switch_conversion::check_range ()
185 gcc_assert (m_range_size);
186 if (!tree_fits_uhwi_p (m_range_size))
188 m_reason = "index range way too large or otherwise unusable";
189 return false;
192 if (tree_to_uhwi (m_range_size)
193 > ((unsigned) m_count * param_switch_conversion_branch_ratio))
195 m_reason = "the maximum range-branch ratio exceeded";
196 return false;
199 return true;
202 /* Checks whether all but the final BB basic blocks are empty. */
204 bool
205 switch_conversion::check_all_empty_except_final ()
207 edge e, e_default = find_edge (m_switch_bb, m_default_bb);
208 edge_iterator ei;
210 FOR_EACH_EDGE (e, ei, m_switch_bb->succs)
212 if (e->dest == m_final_bb)
213 continue;
215 if (!empty_block_p (e->dest))
217 if (m_contiguous_range && e == e_default)
219 m_default_case_nonstandard = true;
220 continue;
223 m_reason = "bad case - a non-final BB not empty";
224 return false;
228 return true;
231 /* This function checks whether all required values in phi nodes in final_bb
232 are constants. Required values are those that correspond to a basic block
233 which is a part of the examined switch statement. It returns true if the
234 phi nodes are OK, otherwise false. */
236 bool
237 switch_conversion::check_final_bb ()
239 gphi_iterator gsi;
241 m_phi_count = 0;
242 for (gsi = gsi_start_phis (m_final_bb); !gsi_end_p (gsi); gsi_next (&gsi))
244 gphi *phi = gsi.phi ();
245 unsigned int i;
247 if (virtual_operand_p (gimple_phi_result (phi)))
248 continue;
250 m_phi_count++;
252 for (i = 0; i < gimple_phi_num_args (phi); i++)
254 basic_block bb = gimple_phi_arg_edge (phi, i)->src;
256 if (bb == m_switch_bb
257 || (single_pred_p (bb)
258 && single_pred (bb) == m_switch_bb
259 && (!m_default_case_nonstandard
260 || empty_block_p (bb))))
262 tree reloc, val;
263 const char *reason = NULL;
265 val = gimple_phi_arg_def (phi, i);
266 if (!is_gimple_ip_invariant (val))
267 reason = "non-invariant value from a case";
268 else
270 reloc = initializer_constant_valid_p (val, TREE_TYPE (val));
271 if ((flag_pic && reloc != null_pointer_node)
272 || (!flag_pic && reloc == NULL_TREE))
274 if (reloc)
275 reason
276 = "value from a case would need runtime relocations";
277 else
278 reason
279 = "value from a case is not a valid initializer";
282 if (reason)
284 /* For contiguous range, we can allow non-constant
285 or one that needs relocation, as long as it is
286 only reachable from the default case. */
287 if (bb == m_switch_bb)
288 bb = m_final_bb;
289 if (!m_contiguous_range || bb != m_default_bb)
291 m_reason = reason;
292 return false;
295 unsigned int branch_num = gimple_switch_num_labels (m_switch);
296 for (unsigned int i = 1; i < branch_num; i++)
298 if (gimple_switch_label_bb (cfun, m_switch, i) == bb)
300 m_reason = reason;
301 return false;
304 m_default_case_nonstandard = true;
310 return true;
313 /* The following function allocates default_values, target_{in,out}_names and
314 constructors arrays. The last one is also populated with pointers to
315 vectors that will become constructors of new arrays. */
317 void
318 switch_conversion::create_temp_arrays ()
320 int i;
322 m_default_values = XCNEWVEC (tree, m_phi_count * 3);
323 /* ??? Macros do not support multi argument templates in their
324 argument list. We create a typedef to work around that problem. */
325 typedef vec<constructor_elt, va_gc> *vec_constructor_elt_gc;
326 m_constructors = XCNEWVEC (vec_constructor_elt_gc, m_phi_count);
327 m_target_inbound_names = m_default_values + m_phi_count;
328 m_target_outbound_names = m_target_inbound_names + m_phi_count;
329 for (i = 0; i < m_phi_count; i++)
330 vec_alloc (m_constructors[i], tree_to_uhwi (m_range_size) + 1);
333 /* Populate the array of default values in the order of phi nodes.
334 DEFAULT_CASE is the CASE_LABEL_EXPR for the default switch branch
335 if the range is non-contiguous or the default case has standard
336 structure, otherwise it is the first non-default case instead. */
338 void
339 switch_conversion::gather_default_values (tree default_case)
341 gphi_iterator gsi;
342 basic_block bb = label_to_block (cfun, CASE_LABEL (default_case));
343 edge e;
344 int i = 0;
346 gcc_assert (CASE_LOW (default_case) == NULL_TREE
347 || m_default_case_nonstandard);
349 if (bb == m_final_bb)
350 e = find_edge (m_switch_bb, bb);
351 else
352 e = single_succ_edge (bb);
354 for (gsi = gsi_start_phis (m_final_bb); !gsi_end_p (gsi); gsi_next (&gsi))
356 gphi *phi = gsi.phi ();
357 if (virtual_operand_p (gimple_phi_result (phi)))
358 continue;
359 tree val = PHI_ARG_DEF_FROM_EDGE (phi, e);
360 gcc_assert (val);
361 m_default_values[i++] = val;
365 /* The following function populates the vectors in the constructors array with
366 future contents of the static arrays. The vectors are populated in the
367 order of phi nodes. */
369 void
370 switch_conversion::build_constructors ()
372 unsigned i, branch_num = gimple_switch_num_labels (m_switch);
373 tree pos = m_range_min;
374 tree pos_one = build_int_cst (TREE_TYPE (pos), 1);
376 for (i = 1; i < branch_num; i++)
378 tree cs = gimple_switch_label (m_switch, i);
379 basic_block bb = label_to_block (cfun, CASE_LABEL (cs));
380 edge e;
381 tree high;
382 gphi_iterator gsi;
383 int j;
385 if (bb == m_final_bb)
386 e = find_edge (m_switch_bb, bb);
387 else
388 e = single_succ_edge (bb);
389 gcc_assert (e);
391 while (tree_int_cst_lt (pos, CASE_LOW (cs)))
393 int k;
394 for (k = 0; k < m_phi_count; k++)
396 constructor_elt elt;
398 elt.index = int_const_binop (MINUS_EXPR, pos, m_range_min);
399 elt.value
400 = unshare_expr_without_location (m_default_values[k]);
401 m_constructors[k]->quick_push (elt);
404 pos = int_const_binop (PLUS_EXPR, pos, pos_one);
406 gcc_assert (tree_int_cst_equal (pos, CASE_LOW (cs)));
408 j = 0;
409 if (CASE_HIGH (cs))
410 high = CASE_HIGH (cs);
411 else
412 high = CASE_LOW (cs);
413 for (gsi = gsi_start_phis (m_final_bb);
414 !gsi_end_p (gsi); gsi_next (&gsi))
416 gphi *phi = gsi.phi ();
417 if (virtual_operand_p (gimple_phi_result (phi)))
418 continue;
419 tree val = PHI_ARG_DEF_FROM_EDGE (phi, e);
420 tree low = CASE_LOW (cs);
421 pos = CASE_LOW (cs);
425 constructor_elt elt;
427 elt.index = int_const_binop (MINUS_EXPR, pos, m_range_min);
428 elt.value = unshare_expr_without_location (val);
429 m_constructors[j]->quick_push (elt);
431 pos = int_const_binop (PLUS_EXPR, pos, pos_one);
432 } while (!tree_int_cst_lt (high, pos)
433 && tree_int_cst_lt (low, pos));
434 j++;
439 /* If all values in the constructor vector are products of a linear function
440 a * x + b, then return true. When true, COEFF_A and COEFF_B and
441 coefficients of the linear function. Note that equal values are special
442 case of a linear function with a and b equal to zero. */
444 bool
445 switch_conversion::contains_linear_function_p (vec<constructor_elt, va_gc> *vec,
446 wide_int *coeff_a,
447 wide_int *coeff_b)
449 unsigned int i;
450 constructor_elt *elt;
452 gcc_assert (vec->length () >= 2);
454 /* Let's try to find any linear function a * x + y that can apply to
455 given values. 'a' can be calculated as follows:
457 a = (y2 - y1) / (x2 - x1) where x2 - x1 = 1 (consecutive case indices)
458 a = y2 - y1
462 b = y2 - a * x2
466 tree elt0 = (*vec)[0].value;
467 tree elt1 = (*vec)[1].value;
469 if (TREE_CODE (elt0) != INTEGER_CST || TREE_CODE (elt1) != INTEGER_CST)
470 return false;
472 wide_int range_min
473 = wide_int::from (wi::to_wide (m_range_min),
474 TYPE_PRECISION (TREE_TYPE (elt0)),
475 TYPE_SIGN (TREE_TYPE (m_range_min)));
476 wide_int y1 = wi::to_wide (elt0);
477 wide_int y2 = wi::to_wide (elt1);
478 wide_int a = y2 - y1;
479 wide_int b = y2 - a * (range_min + 1);
481 /* Verify that all values fulfill the linear function. */
482 FOR_EACH_VEC_SAFE_ELT (vec, i, elt)
484 if (TREE_CODE (elt->value) != INTEGER_CST)
485 return false;
487 wide_int value = wi::to_wide (elt->value);
488 if (a * range_min + b != value)
489 return false;
491 ++range_min;
494 *coeff_a = a;
495 *coeff_b = b;
497 return true;
500 /* Return type which should be used for array elements, either TYPE's
501 main variant or, for integral types, some smaller integral type
502 that can still hold all the constants. */
504 tree
505 switch_conversion::array_value_type (tree type, int num)
507 unsigned int i, len = vec_safe_length (m_constructors[num]);
508 constructor_elt *elt;
509 int sign = 0;
510 tree smaller_type;
512 /* Types with alignments greater than their size can reach here, e.g. out of
513 SRA. We couldn't use these as an array component type so get back to the
514 main variant first, which, for our purposes, is fine for other types as
515 well. */
517 type = TYPE_MAIN_VARIANT (type);
519 if (!INTEGRAL_TYPE_P (type))
520 return type;
522 scalar_int_mode type_mode = SCALAR_INT_TYPE_MODE (type);
523 scalar_int_mode mode = get_narrowest_mode (type_mode);
524 if (GET_MODE_SIZE (type_mode) <= GET_MODE_SIZE (mode))
525 return type;
527 if (len < (optimize_bb_for_size_p (gimple_bb (m_switch)) ? 2 : 32))
528 return type;
530 FOR_EACH_VEC_SAFE_ELT (m_constructors[num], i, elt)
532 wide_int cst;
534 if (TREE_CODE (elt->value) != INTEGER_CST)
535 return type;
537 cst = wi::to_wide (elt->value);
538 while (1)
540 unsigned int prec = GET_MODE_BITSIZE (mode);
541 if (prec > HOST_BITS_PER_WIDE_INT)
542 return type;
544 if (sign >= 0 && cst == wi::zext (cst, prec))
546 if (sign == 0 && cst == wi::sext (cst, prec))
547 break;
548 sign = 1;
549 break;
551 if (sign <= 0 && cst == wi::sext (cst, prec))
553 sign = -1;
554 break;
557 if (sign == 1)
558 sign = 0;
560 if (!GET_MODE_WIDER_MODE (mode).exists (&mode)
561 || GET_MODE_SIZE (mode) >= GET_MODE_SIZE (type_mode))
562 return type;
566 if (sign == 0)
567 sign = TYPE_UNSIGNED (type) ? 1 : -1;
568 smaller_type = lang_hooks.types.type_for_mode (mode, sign >= 0);
569 if (GET_MODE_SIZE (type_mode)
570 <= GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (smaller_type)))
571 return type;
573 return smaller_type;
576 /* Create an appropriate array type and declaration and assemble a static
577 array variable. Also create a load statement that initializes
578 the variable in question with a value from the static array. SWTCH is
579 the switch statement being converted, NUM is the index to
580 arrays of constructors, default values and target SSA names
581 for this particular array. ARR_INDEX_TYPE is the type of the index
582 of the new array, PHI is the phi node of the final BB that corresponds
583 to the value that will be loaded from the created array. TIDX
584 is an ssa name of a temporary variable holding the index for loads from the
585 new array. */
587 void
588 switch_conversion::build_one_array (int num, tree arr_index_type,
589 gphi *phi, tree tidx)
591 tree name;
592 gimple *load;
593 gimple_stmt_iterator gsi = gsi_for_stmt (m_switch);
594 location_t loc = gimple_location (m_switch);
596 gcc_assert (m_default_values[num]);
598 name = copy_ssa_name (PHI_RESULT (phi));
599 m_target_inbound_names[num] = name;
601 vec<constructor_elt, va_gc> *constructor = m_constructors[num];
602 wide_int coeff_a, coeff_b;
603 bool linear_p = contains_linear_function_p (constructor, &coeff_a, &coeff_b);
604 tree type;
605 if (linear_p
606 && (type = range_check_type (TREE_TYPE ((*constructor)[0].value))))
608 if (dump_file && coeff_a.to_uhwi () > 0)
609 fprintf (dump_file, "Linear transformation with A = %" PRId64
610 " and B = %" PRId64 "\n", coeff_a.to_shwi (),
611 coeff_b.to_shwi ());
613 /* We must use type of constructor values. */
614 gimple_seq seq = NULL;
615 tree tmp = gimple_convert (&seq, type, m_index_expr);
616 tree tmp2 = gimple_build (&seq, MULT_EXPR, type,
617 wide_int_to_tree (type, coeff_a), tmp);
618 tree tmp3 = gimple_build (&seq, PLUS_EXPR, type, tmp2,
619 wide_int_to_tree (type, coeff_b));
620 tree tmp4 = gimple_convert (&seq, TREE_TYPE (name), tmp3);
621 gsi_insert_seq_before (&gsi, seq, GSI_SAME_STMT);
622 load = gimple_build_assign (name, tmp4);
624 else
626 tree array_type, ctor, decl, value_type, fetch, default_type;
628 default_type = TREE_TYPE (m_default_values[num]);
629 value_type = array_value_type (default_type, num);
630 array_type = build_array_type (value_type, arr_index_type);
631 if (default_type != value_type)
633 unsigned int i;
634 constructor_elt *elt;
636 FOR_EACH_VEC_SAFE_ELT (constructor, i, elt)
637 elt->value = fold_convert (value_type, elt->value);
639 ctor = build_constructor (array_type, constructor);
640 TREE_CONSTANT (ctor) = true;
641 TREE_STATIC (ctor) = true;
643 decl = build_decl (loc, VAR_DECL, NULL_TREE, array_type);
644 TREE_STATIC (decl) = 1;
645 DECL_INITIAL (decl) = ctor;
647 DECL_NAME (decl) = create_tmp_var_name ("CSWTCH");
648 DECL_ARTIFICIAL (decl) = 1;
649 DECL_IGNORED_P (decl) = 1;
650 TREE_CONSTANT (decl) = 1;
651 TREE_READONLY (decl) = 1;
652 DECL_IGNORED_P (decl) = 1;
653 if (offloading_function_p (cfun->decl))
654 DECL_ATTRIBUTES (decl)
655 = tree_cons (get_identifier ("omp declare target"), NULL_TREE,
656 NULL_TREE);
657 varpool_node::finalize_decl (decl);
659 fetch = build4 (ARRAY_REF, value_type, decl, tidx, NULL_TREE,
660 NULL_TREE);
661 if (default_type != value_type)
663 fetch = fold_convert (default_type, fetch);
664 fetch = force_gimple_operand_gsi (&gsi, fetch, true, NULL_TREE,
665 true, GSI_SAME_STMT);
667 load = gimple_build_assign (name, fetch);
670 gsi_insert_before (&gsi, load, GSI_SAME_STMT);
671 update_stmt (load);
672 m_arr_ref_last = load;
675 /* Builds and initializes static arrays initialized with values gathered from
676 the switch statement. Also creates statements that load values from
677 them. */
679 void
680 switch_conversion::build_arrays ()
682 tree arr_index_type;
683 tree tidx, sub, utype;
684 gimple *stmt;
685 gimple_stmt_iterator gsi;
686 gphi_iterator gpi;
687 int i;
688 location_t loc = gimple_location (m_switch);
690 gsi = gsi_for_stmt (m_switch);
692 /* Make sure we do not generate arithmetics in a subrange. */
693 utype = TREE_TYPE (m_index_expr);
694 if (TREE_TYPE (utype))
695 utype = lang_hooks.types.type_for_mode (TYPE_MODE (TREE_TYPE (utype)), 1);
696 else
697 utype = lang_hooks.types.type_for_mode (TYPE_MODE (utype), 1);
699 arr_index_type = build_index_type (m_range_size);
700 tidx = make_ssa_name (utype);
701 sub = fold_build2_loc (loc, MINUS_EXPR, utype,
702 fold_convert_loc (loc, utype, m_index_expr),
703 fold_convert_loc (loc, utype, m_range_min));
704 sub = force_gimple_operand_gsi (&gsi, sub,
705 false, NULL, true, GSI_SAME_STMT);
706 stmt = gimple_build_assign (tidx, sub);
708 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
709 update_stmt (stmt);
710 m_arr_ref_first = stmt;
712 for (gpi = gsi_start_phis (m_final_bb), i = 0;
713 !gsi_end_p (gpi); gsi_next (&gpi))
715 gphi *phi = gpi.phi ();
716 if (!virtual_operand_p (gimple_phi_result (phi)))
717 build_one_array (i++, arr_index_type, phi, tidx);
718 else
720 edge e;
721 edge_iterator ei;
722 FOR_EACH_EDGE (e, ei, m_switch_bb->succs)
724 if (e->dest == m_final_bb)
725 break;
726 if (!m_default_case_nonstandard
727 || e->dest != m_default_bb)
729 e = single_succ_edge (e->dest);
730 break;
733 gcc_assert (e && e->dest == m_final_bb);
734 m_target_vop = PHI_ARG_DEF_FROM_EDGE (phi, e);
739 /* Generates and appropriately inserts loads of default values at the position
740 given by GSI. Returns the last inserted statement. */
742 gassign *
743 switch_conversion::gen_def_assigns (gimple_stmt_iterator *gsi)
745 int i;
746 gassign *assign = NULL;
748 for (i = 0; i < m_phi_count; i++)
750 tree name = copy_ssa_name (m_target_inbound_names[i]);
751 m_target_outbound_names[i] = name;
752 assign = gimple_build_assign (name, m_default_values[i]);
753 gsi_insert_before (gsi, assign, GSI_SAME_STMT);
754 update_stmt (assign);
756 return assign;
759 /* Deletes the unused bbs and edges that now contain the switch statement and
760 its empty branch bbs. BBD is the now dead BB containing
761 the original switch statement, FINAL is the last BB of the converted
762 switch statement (in terms of succession). */
764 void
765 switch_conversion::prune_bbs (basic_block bbd, basic_block final,
766 basic_block default_bb)
768 edge_iterator ei;
769 edge e;
771 for (ei = ei_start (bbd->succs); (e = ei_safe_edge (ei)); )
773 basic_block bb;
774 bb = e->dest;
775 remove_edge (e);
776 if (bb != final && bb != default_bb)
777 delete_basic_block (bb);
779 delete_basic_block (bbd);
782 /* Add values to phi nodes in final_bb for the two new edges. E1F is the edge
783 from the basic block loading values from an array and E2F from the basic
784 block loading default values. BBF is the last switch basic block (see the
785 bbf description in the comment below). */
787 void
788 switch_conversion::fix_phi_nodes (edge e1f, edge e2f, basic_block bbf)
790 gphi_iterator gsi;
791 int i;
793 for (gsi = gsi_start_phis (bbf), i = 0;
794 !gsi_end_p (gsi); gsi_next (&gsi))
796 gphi *phi = gsi.phi ();
797 tree inbound, outbound;
798 if (virtual_operand_p (gimple_phi_result (phi)))
799 inbound = outbound = m_target_vop;
800 else
802 inbound = m_target_inbound_names[i];
803 outbound = m_target_outbound_names[i++];
805 add_phi_arg (phi, inbound, e1f, UNKNOWN_LOCATION);
806 if (!m_default_case_nonstandard)
807 add_phi_arg (phi, outbound, e2f, UNKNOWN_LOCATION);
811 /* Creates a check whether the switch expression value actually falls into the
812 range given by all the cases. If it does not, the temporaries are loaded
813 with default values instead. */
815 void
816 switch_conversion::gen_inbound_check ()
818 tree label_decl1 = create_artificial_label (UNKNOWN_LOCATION);
819 tree label_decl2 = create_artificial_label (UNKNOWN_LOCATION);
820 tree label_decl3 = create_artificial_label (UNKNOWN_LOCATION);
821 glabel *label1, *label2, *label3;
822 tree utype, tidx;
823 tree bound;
825 gcond *cond_stmt;
827 gassign *last_assign = NULL;
828 gimple_stmt_iterator gsi;
829 basic_block bb0, bb1, bb2, bbf, bbd;
830 edge e01 = NULL, e02, e21, e1d, e1f, e2f;
831 location_t loc = gimple_location (m_switch);
833 gcc_assert (m_default_values);
835 bb0 = gimple_bb (m_switch);
837 tidx = gimple_assign_lhs (m_arr_ref_first);
838 utype = TREE_TYPE (tidx);
840 /* (end of) block 0 */
841 gsi = gsi_for_stmt (m_arr_ref_first);
842 gsi_next (&gsi);
844 bound = fold_convert_loc (loc, utype, m_range_size);
845 cond_stmt = gimple_build_cond (LE_EXPR, tidx, bound, NULL_TREE, NULL_TREE);
846 gsi_insert_before (&gsi, cond_stmt, GSI_SAME_STMT);
847 update_stmt (cond_stmt);
849 /* block 2 */
850 if (!m_default_case_nonstandard)
852 label2 = gimple_build_label (label_decl2);
853 gsi_insert_before (&gsi, label2, GSI_SAME_STMT);
854 last_assign = gen_def_assigns (&gsi);
857 /* block 1 */
858 label1 = gimple_build_label (label_decl1);
859 gsi_insert_before (&gsi, label1, GSI_SAME_STMT);
861 /* block F */
862 gsi = gsi_start_bb (m_final_bb);
863 label3 = gimple_build_label (label_decl3);
864 gsi_insert_before (&gsi, label3, GSI_SAME_STMT);
866 /* cfg fix */
867 e02 = split_block (bb0, cond_stmt);
868 bb2 = e02->dest;
870 if (m_default_case_nonstandard)
872 bb1 = bb2;
873 bb2 = m_default_bb;
874 e01 = e02;
875 e01->flags = EDGE_TRUE_VALUE;
876 e02 = make_edge (bb0, bb2, EDGE_FALSE_VALUE);
877 edge e_default = find_edge (bb1, bb2);
878 for (gphi_iterator gsi = gsi_start_phis (bb2);
879 !gsi_end_p (gsi); gsi_next (&gsi))
881 gphi *phi = gsi.phi ();
882 tree arg = PHI_ARG_DEF_FROM_EDGE (phi, e_default);
883 add_phi_arg (phi, arg, e02,
884 gimple_phi_arg_location_from_edge (phi, e_default));
886 /* Partially fix the dominator tree, if it is available. */
887 if (dom_info_available_p (CDI_DOMINATORS))
888 redirect_immediate_dominators (CDI_DOMINATORS, bb1, bb0);
890 else
892 e21 = split_block (bb2, last_assign);
893 bb1 = e21->dest;
894 remove_edge (e21);
897 e1d = split_block (bb1, m_arr_ref_last);
898 bbd = e1d->dest;
899 remove_edge (e1d);
901 /* Flags and profiles of the edge for in-range values. */
902 if (!m_default_case_nonstandard)
903 e01 = make_edge (bb0, bb1, EDGE_TRUE_VALUE);
904 e01->probability = m_default_prob.invert ();
906 /* Flags and profiles of the edge taking care of out-of-range values. */
907 e02->flags &= ~EDGE_FALLTHRU;
908 e02->flags |= EDGE_FALSE_VALUE;
909 e02->probability = m_default_prob;
911 bbf = m_final_bb;
913 e1f = make_edge (bb1, bbf, EDGE_FALLTHRU);
914 e1f->probability = profile_probability::always ();
916 if (m_default_case_nonstandard)
917 e2f = NULL;
918 else
920 e2f = make_edge (bb2, bbf, EDGE_FALLTHRU);
921 e2f->probability = profile_probability::always ();
924 /* frequencies of the new BBs */
925 bb1->count = e01->count ();
926 bb2->count = e02->count ();
927 if (!m_default_case_nonstandard)
928 bbf->count = e1f->count () + e2f->count ();
930 /* Tidy blocks that have become unreachable. */
931 prune_bbs (bbd, m_final_bb,
932 m_default_case_nonstandard ? m_default_bb : NULL);
934 /* Fixup the PHI nodes in bbF. */
935 fix_phi_nodes (e1f, e2f, bbf);
937 /* Fix the dominator tree, if it is available. */
938 if (dom_info_available_p (CDI_DOMINATORS))
940 vec<basic_block> bbs_to_fix_dom;
942 set_immediate_dominator (CDI_DOMINATORS, bb1, bb0);
943 if (!m_default_case_nonstandard)
944 set_immediate_dominator (CDI_DOMINATORS, bb2, bb0);
945 if (! get_immediate_dominator (CDI_DOMINATORS, bbf))
946 /* If bbD was the immediate dominator ... */
947 set_immediate_dominator (CDI_DOMINATORS, bbf, bb0);
949 bbs_to_fix_dom.create (3 + (bb2 != bbf));
950 bbs_to_fix_dom.quick_push (bb0);
951 bbs_to_fix_dom.quick_push (bb1);
952 if (bb2 != bbf)
953 bbs_to_fix_dom.quick_push (bb2);
954 bbs_to_fix_dom.quick_push (bbf);
956 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
957 bbs_to_fix_dom.release ();
961 /* The following function is invoked on every switch statement (the current
962 one is given in SWTCH) and runs the individual phases of switch
963 conversion on it one after another until one fails or the conversion
964 is completed. On success, NULL is in m_reason, otherwise points
965 to a string with the reason why the conversion failed. */
967 void
968 switch_conversion::expand (gswitch *swtch)
970 /* Group case labels so that we get the right results from the heuristics
971 that decide on the code generation approach for this switch. */
972 m_cfg_altered |= group_case_labels_stmt (swtch);
974 /* If this switch is now a degenerate case with only a default label,
975 there is nothing left for us to do. */
976 if (gimple_switch_num_labels (swtch) < 2)
978 m_reason = "switch is a degenerate case";
979 return;
982 collect (swtch);
984 /* No error markers should reach here (they should be filtered out
985 during gimplification). */
986 gcc_checking_assert (TREE_TYPE (m_index_expr) != error_mark_node);
988 /* Prefer bit test if possible. */
989 if (tree_fits_uhwi_p (m_range_size)
990 && bit_test_cluster::can_be_handled (tree_to_uhwi (m_range_size), m_uniq)
991 && bit_test_cluster::is_beneficial (m_count, m_uniq))
993 m_reason = "expanding as bit test is preferable";
994 return;
997 if (m_uniq <= 2)
999 /* This will be expanded as a decision tree . */
1000 m_reason = "expanding as jumps is preferable";
1001 return;
1004 /* If there is no common successor, we cannot do the transformation. */
1005 if (!m_final_bb)
1007 m_reason = "no common successor to all case label target blocks found";
1008 return;
1011 /* Check the case label values are within reasonable range: */
1012 if (!check_range ())
1014 gcc_assert (m_reason);
1015 return;
1018 /* For all the cases, see whether they are empty, the assignments they
1019 represent constant and so on... */
1020 if (!check_all_empty_except_final ())
1022 gcc_assert (m_reason);
1023 return;
1025 if (!check_final_bb ())
1027 gcc_assert (m_reason);
1028 return;
1031 /* At this point all checks have passed and we can proceed with the
1032 transformation. */
1034 create_temp_arrays ();
1035 gather_default_values (m_default_case_nonstandard
1036 ? gimple_switch_label (swtch, 1)
1037 : gimple_switch_default_label (swtch));
1038 build_constructors ();
1040 build_arrays (); /* Build the static arrays and assignments. */
1041 gen_inbound_check (); /* Build the bounds check. */
1043 m_cfg_altered = true;
1046 /* Destructor. */
1048 switch_conversion::~switch_conversion ()
1050 XDELETEVEC (m_constructors);
1051 XDELETEVEC (m_default_values);
1054 /* Constructor. */
1056 group_cluster::group_cluster (vec<cluster *> &clusters,
1057 unsigned start, unsigned end)
1059 gcc_checking_assert (end - start + 1 >= 1);
1060 m_prob = profile_probability::never ();
1061 m_cases.create (end - start + 1);
1062 for (unsigned i = start; i <= end; i++)
1064 m_cases.quick_push (static_cast<simple_cluster *> (clusters[i]));
1065 m_prob += clusters[i]->m_prob;
1067 m_subtree_prob = m_prob;
1070 /* Destructor. */
1072 group_cluster::~group_cluster ()
1074 for (unsigned i = 0; i < m_cases.length (); i++)
1075 delete m_cases[i];
1077 m_cases.release ();
1080 /* Dump content of a cluster. */
1082 void
1083 group_cluster::dump (FILE *f, bool details)
1085 unsigned total_values = 0;
1086 for (unsigned i = 0; i < m_cases.length (); i++)
1087 total_values += m_cases[i]->get_range (m_cases[i]->get_low (),
1088 m_cases[i]->get_high ());
1090 unsigned comparison_count = 0;
1091 for (unsigned i = 0; i < m_cases.length (); i++)
1093 simple_cluster *sc = static_cast<simple_cluster *> (m_cases[i]);
1094 comparison_count += sc->get_comparison_count ();
1097 unsigned HOST_WIDE_INT range = get_range (get_low (), get_high ());
1098 fprintf (f, "%s", get_type () == JUMP_TABLE ? "JT" : "BT");
1100 if (details)
1101 fprintf (f, "(values:%d comparisons:%d range:" HOST_WIDE_INT_PRINT_DEC
1102 " density: %.2f%%)", total_values, comparison_count, range,
1103 100.0f * comparison_count / range);
1105 fprintf (f, ":");
1106 PRINT_CASE (f, get_low ());
1107 fprintf (f, "-");
1108 PRINT_CASE (f, get_high ());
1109 fprintf (f, " ");
1112 /* Emit GIMPLE code to handle the cluster. */
1114 void
1115 jump_table_cluster::emit (tree index_expr, tree,
1116 tree default_label_expr, basic_block default_bb,
1117 location_t loc)
1119 unsigned HOST_WIDE_INT range = get_range (get_low (), get_high ());
1120 unsigned HOST_WIDE_INT nondefault_range = 0;
1122 /* For jump table we just emit a new gswitch statement that will
1123 be latter lowered to jump table. */
1124 auto_vec <tree> labels;
1125 labels.create (m_cases.length ());
1127 make_edge (m_case_bb, default_bb, 0);
1128 for (unsigned i = 0; i < m_cases.length (); i++)
1130 labels.quick_push (unshare_expr (m_cases[i]->m_case_label_expr));
1131 make_edge (m_case_bb, m_cases[i]->m_case_bb, 0);
1134 gswitch *s = gimple_build_switch (index_expr,
1135 unshare_expr (default_label_expr), labels);
1136 gimple_set_location (s, loc);
1137 gimple_stmt_iterator gsi = gsi_start_bb (m_case_bb);
1138 gsi_insert_after (&gsi, s, GSI_NEW_STMT);
1140 /* Set up even probabilities for all cases. */
1141 for (unsigned i = 0; i < m_cases.length (); i++)
1143 simple_cluster *sc = static_cast<simple_cluster *> (m_cases[i]);
1144 edge case_edge = find_edge (m_case_bb, sc->m_case_bb);
1145 unsigned HOST_WIDE_INT case_range
1146 = sc->get_range (sc->get_low (), sc->get_high ());
1147 nondefault_range += case_range;
1149 /* case_edge->aux is number of values in a jump-table that are covered
1150 by the case_edge. */
1151 case_edge->aux = (void *) ((intptr_t) (case_edge->aux) + case_range);
1154 edge default_edge = gimple_switch_default_edge (cfun, s);
1155 default_edge->probability = profile_probability::never ();
1157 for (unsigned i = 0; i < m_cases.length (); i++)
1159 simple_cluster *sc = static_cast<simple_cluster *> (m_cases[i]);
1160 edge case_edge = find_edge (m_case_bb, sc->m_case_bb);
1161 case_edge->probability
1162 = profile_probability::always ().apply_scale ((intptr_t)case_edge->aux,
1163 range);
1166 /* Number of non-default values is probability of default edge. */
1167 default_edge->probability
1168 += profile_probability::always ().apply_scale (nondefault_range,
1169 range).invert ();
1171 switch_decision_tree::reset_out_edges_aux (s);
1174 /* Find jump tables of given CLUSTERS, where all members of the vector
1175 are of type simple_cluster. New clusters are returned. */
1177 vec<cluster *>
1178 jump_table_cluster::find_jump_tables (vec<cluster *> &clusters)
1180 if (!is_enabled ())
1181 return clusters.copy ();
1183 unsigned l = clusters.length ();
1184 auto_vec<min_cluster_item> min;
1185 min.reserve (l + 1);
1187 min.quick_push (min_cluster_item (0, 0, 0));
1189 unsigned HOST_WIDE_INT max_ratio
1190 = (optimize_insn_for_size_p ()
1191 ? param_jump_table_max_growth_ratio_for_size
1192 : param_jump_table_max_growth_ratio_for_speed);
1194 for (unsigned i = 1; i <= l; i++)
1196 /* Set minimal # of clusters with i-th item to infinite. */
1197 min.quick_push (min_cluster_item (INT_MAX, INT_MAX, INT_MAX));
1199 /* Pre-calculate number of comparisons for the clusters. */
1200 HOST_WIDE_INT comparison_count = 0;
1201 for (unsigned k = 0; k <= i - 1; k++)
1203 simple_cluster *sc = static_cast<simple_cluster *> (clusters[k]);
1204 comparison_count += sc->get_comparison_count ();
1207 for (unsigned j = 0; j < i; j++)
1209 unsigned HOST_WIDE_INT s = min[j].m_non_jt_cases;
1210 if (i - j < case_values_threshold ())
1211 s += i - j;
1213 /* Prefer clusters with smaller number of numbers covered. */
1214 if ((min[j].m_count + 1 < min[i].m_count
1215 || (min[j].m_count + 1 == min[i].m_count
1216 && s < min[i].m_non_jt_cases))
1217 && can_be_handled (clusters, j, i - 1, max_ratio,
1218 comparison_count))
1219 min[i] = min_cluster_item (min[j].m_count + 1, j, s);
1221 simple_cluster *sc = static_cast<simple_cluster *> (clusters[j]);
1222 comparison_count -= sc->get_comparison_count ();
1225 gcc_checking_assert (comparison_count == 0);
1226 gcc_checking_assert (min[i].m_count != INT_MAX);
1229 /* No result. */
1230 if (min[l].m_count == l)
1231 return clusters.copy ();
1233 vec<cluster *> output;
1234 output.create (4);
1236 /* Find and build the clusters. */
1237 for (unsigned int end = l;;)
1239 int start = min[end].m_start;
1241 /* Do not allow clusters with small number of cases. */
1242 if (is_beneficial (clusters, start, end - 1))
1243 output.safe_push (new jump_table_cluster (clusters, start, end - 1));
1244 else
1245 for (int i = end - 1; i >= start; i--)
1246 output.safe_push (clusters[i]);
1248 end = start;
1250 if (start <= 0)
1251 break;
1254 output.reverse ();
1255 return output;
1258 /* Return true when cluster starting at START and ending at END (inclusive)
1259 can build a jump-table. */
1261 bool
1262 jump_table_cluster::can_be_handled (const vec<cluster *> &clusters,
1263 unsigned start, unsigned end,
1264 unsigned HOST_WIDE_INT max_ratio,
1265 unsigned HOST_WIDE_INT comparison_count)
1267 /* If the switch is relatively small such that the cost of one
1268 indirect jump on the target are higher than the cost of a
1269 decision tree, go with the decision tree.
1271 If range of values is much bigger than number of values,
1272 or if it is too large to represent in a HOST_WIDE_INT,
1273 make a sequence of conditional branches instead of a dispatch.
1275 The definition of "much bigger" depends on whether we are
1276 optimizing for size or for speed.
1278 For algorithm correctness, jump table for a single case must return
1279 true. We bail out in is_beneficial if it's called just for
1280 a single case. */
1281 if (start == end)
1282 return true;
1284 unsigned HOST_WIDE_INT range = get_range (clusters[start]->get_low (),
1285 clusters[end]->get_high ());
1286 /* Check overflow. */
1287 if (range == 0)
1288 return false;
1290 if (range > HOST_WIDE_INT_M1U / 100)
1291 return false;
1293 unsigned HOST_WIDE_INT lhs = 100 * range;
1294 if (lhs < range)
1295 return false;
1297 return lhs <= max_ratio * comparison_count;
1300 /* Return true if cluster starting at START and ending at END (inclusive)
1301 is profitable transformation. */
1303 bool
1304 jump_table_cluster::is_beneficial (const vec<cluster *> &,
1305 unsigned start, unsigned end)
1307 /* Single case bail out. */
1308 if (start == end)
1309 return false;
1311 return end - start + 1 >= case_values_threshold ();
1314 /* Find bit tests of given CLUSTERS, where all members of the vector
1315 are of type simple_cluster. New clusters are returned. */
1317 vec<cluster *>
1318 bit_test_cluster::find_bit_tests (vec<cluster *> &clusters)
1320 if (!is_enabled ())
1321 return clusters.copy ();
1323 unsigned l = clusters.length ();
1324 auto_vec<min_cluster_item> min;
1325 min.reserve (l + 1);
1327 min.quick_push (min_cluster_item (0, 0, 0));
1329 for (unsigned i = 1; i <= l; i++)
1331 /* Set minimal # of clusters with i-th item to infinite. */
1332 min.quick_push (min_cluster_item (INT_MAX, INT_MAX, INT_MAX));
1334 for (unsigned j = 0; j < i; j++)
1336 if (min[j].m_count + 1 < min[i].m_count
1337 && can_be_handled (clusters, j, i - 1))
1338 min[i] = min_cluster_item (min[j].m_count + 1, j, INT_MAX);
1341 gcc_checking_assert (min[i].m_count != INT_MAX);
1344 /* No result. */
1345 if (min[l].m_count == l)
1346 return clusters.copy ();
1348 vec<cluster *> output;
1349 output.create (4);
1351 /* Find and build the clusters. */
1352 for (unsigned end = l;;)
1354 int start = min[end].m_start;
1356 if (is_beneficial (clusters, start, end - 1))
1358 bool entire = start == 0 && end == clusters.length ();
1359 output.safe_push (new bit_test_cluster (clusters, start, end - 1,
1360 entire));
1362 else
1363 for (int i = end - 1; i >= start; i--)
1364 output.safe_push (clusters[i]);
1366 end = start;
1368 if (start <= 0)
1369 break;
1372 output.reverse ();
1373 return output;
1376 /* Return true when RANGE of case values with UNIQ labels
1377 can build a bit test. */
1379 bool
1380 bit_test_cluster::can_be_handled (unsigned HOST_WIDE_INT range,
1381 unsigned int uniq)
1383 /* Check overflow. */
1384 if (range == 0)
1385 return false;
1387 if (range >= GET_MODE_BITSIZE (word_mode))
1388 return false;
1390 return uniq <= m_max_case_bit_tests;
1393 /* Return true when cluster starting at START and ending at END (inclusive)
1394 can build a bit test. */
1396 bool
1397 bit_test_cluster::can_be_handled (const vec<cluster *> &clusters,
1398 unsigned start, unsigned end)
1400 auto_vec<int, m_max_case_bit_tests> dest_bbs;
1401 /* For algorithm correctness, bit test for a single case must return
1402 true. We bail out in is_beneficial if it's called just for
1403 a single case. */
1404 if (start == end)
1405 return true;
1407 unsigned HOST_WIDE_INT range = get_range (clusters[start]->get_low (),
1408 clusters[end]->get_high ());
1410 /* Make a guess first. */
1411 if (!can_be_handled (range, m_max_case_bit_tests))
1412 return false;
1414 for (unsigned i = start; i <= end; i++)
1416 simple_cluster *sc = static_cast<simple_cluster *> (clusters[i]);
1417 /* m_max_case_bit_tests is very small integer, thus the operation
1418 is constant. */
1419 if (!dest_bbs.contains (sc->m_case_bb->index))
1421 if (dest_bbs.length () >= m_max_case_bit_tests)
1422 return false;
1423 dest_bbs.quick_push (sc->m_case_bb->index);
1427 return true;
1430 /* Return true when COUNT of cases of UNIQ labels is beneficial for bit test
1431 transformation. */
1433 bool
1434 bit_test_cluster::is_beneficial (unsigned count, unsigned uniq)
1436 return (((uniq == 1 && count >= 3)
1437 || (uniq == 2 && count >= 5)
1438 || (uniq == 3 && count >= 6)));
1441 /* Return true if cluster starting at START and ending at END (inclusive)
1442 is profitable transformation. */
1444 bool
1445 bit_test_cluster::is_beneficial (const vec<cluster *> &clusters,
1446 unsigned start, unsigned end)
1448 /* Single case bail out. */
1449 if (start == end)
1450 return false;
1452 auto_bitmap dest_bbs;
1454 for (unsigned i = start; i <= end; i++)
1456 simple_cluster *sc = static_cast<simple_cluster *> (clusters[i]);
1457 bitmap_set_bit (dest_bbs, sc->m_case_bb->index);
1460 unsigned uniq = bitmap_count_bits (dest_bbs);
1461 unsigned count = end - start + 1;
1462 return is_beneficial (count, uniq);
1465 /* Comparison function for qsort to order bit tests by decreasing
1466 probability of execution. */
1469 case_bit_test::cmp (const void *p1, const void *p2)
1471 const case_bit_test *const d1 = (const case_bit_test *) p1;
1472 const case_bit_test *const d2 = (const case_bit_test *) p2;
1474 if (d2->bits != d1->bits)
1475 return d2->bits - d1->bits;
1477 /* Stabilize the sort. */
1478 return (LABEL_DECL_UID (CASE_LABEL (d2->label))
1479 - LABEL_DECL_UID (CASE_LABEL (d1->label)));
1482 /* Expand a switch statement by a short sequence of bit-wise
1483 comparisons. "switch(x)" is effectively converted into
1484 "if ((1 << (x-MINVAL)) & CST)" where CST and MINVAL are
1485 integer constants.
1487 INDEX_EXPR is the value being switched on.
1489 MINVAL is the lowest case value of in the case nodes,
1490 and RANGE is highest value minus MINVAL. MINVAL and RANGE
1491 are not guaranteed to be of the same type as INDEX_EXPR
1492 (the gimplifier doesn't change the type of case label values,
1493 and MINVAL and RANGE are derived from those values).
1494 MAXVAL is MINVAL + RANGE.
1496 There *MUST* be max_case_bit_tests or less unique case
1497 node targets. */
1499 void
1500 bit_test_cluster::emit (tree index_expr, tree index_type,
1501 tree, basic_block default_bb, location_t loc)
1503 case_bit_test test[m_max_case_bit_tests] = { {} };
1504 unsigned int i, j, k;
1505 unsigned int count;
1507 tree unsigned_index_type = range_check_type (index_type);
1509 gimple_stmt_iterator gsi;
1510 gassign *shift_stmt;
1512 tree idx, tmp, csui;
1513 tree word_type_node = lang_hooks.types.type_for_mode (word_mode, 1);
1514 tree word_mode_zero = fold_convert (word_type_node, integer_zero_node);
1515 tree word_mode_one = fold_convert (word_type_node, integer_one_node);
1516 int prec = TYPE_PRECISION (word_type_node);
1517 wide_int wone = wi::one (prec);
1519 tree minval = get_low ();
1520 tree maxval = get_high ();
1522 /* Go through all case labels, and collect the case labels, profile
1523 counts, and other information we need to build the branch tests. */
1524 count = 0;
1525 for (i = 0; i < m_cases.length (); i++)
1527 unsigned int lo, hi;
1528 simple_cluster *n = static_cast<simple_cluster *> (m_cases[i]);
1529 for (k = 0; k < count; k++)
1530 if (n->m_case_bb == test[k].target_bb)
1531 break;
1533 if (k == count)
1535 gcc_checking_assert (count < m_max_case_bit_tests);
1536 test[k].mask = wi::zero (prec);
1537 test[k].target_bb = n->m_case_bb;
1538 test[k].label = n->m_case_label_expr;
1539 test[k].bits = 0;
1540 test[k].prob = profile_probability::never ();
1541 count++;
1544 test[k].bits += n->get_range (n->get_low (), n->get_high ());
1545 test[k].prob += n->m_prob;
1547 lo = tree_to_uhwi (int_const_binop (MINUS_EXPR, n->get_low (), minval));
1548 if (n->get_high () == NULL_TREE)
1549 hi = lo;
1550 else
1551 hi = tree_to_uhwi (int_const_binop (MINUS_EXPR, n->get_high (),
1552 minval));
1554 for (j = lo; j <= hi; j++)
1555 test[k].mask |= wi::lshift (wone, j);
1558 qsort (test, count, sizeof (*test), case_bit_test::cmp);
1560 /* If every possible relative value of the index expression is a valid shift
1561 amount, then we can merge the entry test in the bit test. */
1562 bool entry_test_needed;
1563 value_range r;
1564 if (TREE_CODE (index_expr) == SSA_NAME
1565 && get_range_query (cfun)->range_of_expr (r, index_expr)
1566 && r.kind () == VR_RANGE
1567 && wi::leu_p (r.upper_bound () - r.lower_bound (), prec - 1))
1569 wide_int min = r.lower_bound ();
1570 wide_int max = r.upper_bound ();
1571 tree index_type = TREE_TYPE (index_expr);
1572 minval = fold_convert (index_type, minval);
1573 wide_int iminval = wi::to_wide (minval);
1574 if (wi::lt_p (min, iminval, TYPE_SIGN (index_type)))
1576 minval = wide_int_to_tree (index_type, min);
1577 for (i = 0; i < count; i++)
1578 test[i].mask = wi::lshift (test[i].mask, iminval - min);
1580 else if (wi::gt_p (min, iminval, TYPE_SIGN (index_type)))
1582 minval = wide_int_to_tree (index_type, min);
1583 for (i = 0; i < count; i++)
1584 test[i].mask = wi::lrshift (test[i].mask, min - iminval);
1586 maxval = wide_int_to_tree (index_type, max);
1587 entry_test_needed = false;
1589 else
1590 entry_test_needed = true;
1592 /* If all values are in the 0 .. BITS_PER_WORD-1 range, we can get rid of
1593 the minval subtractions, but it might make the mask constants more
1594 expensive. So, compare the costs. */
1595 if (compare_tree_int (minval, 0) > 0 && compare_tree_int (maxval, prec) < 0)
1597 int cost_diff;
1598 HOST_WIDE_INT m = tree_to_uhwi (minval);
1599 rtx reg = gen_raw_REG (word_mode, 10000);
1600 bool speed_p = optimize_insn_for_speed_p ();
1601 cost_diff = set_src_cost (gen_rtx_PLUS (word_mode, reg,
1602 GEN_INT (-m)),
1603 word_mode, speed_p);
1604 for (i = 0; i < count; i++)
1606 rtx r = immed_wide_int_const (test[i].mask, word_mode);
1607 cost_diff += set_src_cost (gen_rtx_AND (word_mode, reg, r),
1608 word_mode, speed_p);
1609 r = immed_wide_int_const (wi::lshift (test[i].mask, m), word_mode);
1610 cost_diff -= set_src_cost (gen_rtx_AND (word_mode, reg, r),
1611 word_mode, speed_p);
1613 if (cost_diff > 0)
1615 for (i = 0; i < count; i++)
1616 test[i].mask = wi::lshift (test[i].mask, m);
1617 minval = build_zero_cst (TREE_TYPE (minval));
1621 /* Now build the test-and-branch code. */
1623 gsi = gsi_last_bb (m_case_bb);
1625 /* idx = (unsigned)x - minval. */
1626 idx = fold_convert_loc (loc, unsigned_index_type, index_expr);
1627 idx = fold_build2_loc (loc, MINUS_EXPR, unsigned_index_type, idx,
1628 fold_convert_loc (loc, unsigned_index_type, minval));
1629 idx = force_gimple_operand_gsi (&gsi, idx,
1630 /*simple=*/true, NULL_TREE,
1631 /*before=*/true, GSI_SAME_STMT);
1633 profile_probability subtree_prob = m_subtree_prob;
1634 profile_probability default_prob = m_default_prob;
1635 if (!default_prob.initialized_p ())
1636 default_prob = m_subtree_prob.invert ();
1638 if (m_handles_entire_switch && entry_test_needed)
1640 tree range = int_const_binop (MINUS_EXPR, maxval, minval);
1641 /* if (idx > range) goto default */
1642 range
1643 = force_gimple_operand_gsi (&gsi,
1644 fold_convert (unsigned_index_type, range),
1645 /*simple=*/true, NULL_TREE,
1646 /*before=*/true, GSI_SAME_STMT);
1647 tmp = fold_build2 (GT_EXPR, boolean_type_node, idx, range);
1648 default_prob = default_prob / 2;
1649 basic_block new_bb
1650 = hoist_edge_and_branch_if_true (&gsi, tmp, default_bb,
1651 default_prob, loc);
1652 gsi = gsi_last_bb (new_bb);
1655 tmp = fold_build2_loc (loc, LSHIFT_EXPR, word_type_node, word_mode_one,
1656 fold_convert_loc (loc, word_type_node, idx));
1658 /* csui = (1 << (word_mode) idx) */
1659 if (count > 1)
1661 csui = make_ssa_name (word_type_node);
1662 tmp = force_gimple_operand_gsi (&gsi, tmp,
1663 /*simple=*/false, NULL_TREE,
1664 /*before=*/true, GSI_SAME_STMT);
1665 shift_stmt = gimple_build_assign (csui, tmp);
1666 gsi_insert_before (&gsi, shift_stmt, GSI_SAME_STMT);
1667 update_stmt (shift_stmt);
1669 else
1670 csui = tmp;
1672 /* for each unique set of cases:
1673 if (const & csui) goto target */
1674 for (k = 0; k < count; k++)
1676 profile_probability prob = test[k].prob / (subtree_prob + default_prob);
1677 subtree_prob -= test[k].prob;
1678 tmp = wide_int_to_tree (word_type_node, test[k].mask);
1679 tmp = fold_build2_loc (loc, BIT_AND_EXPR, word_type_node, csui, tmp);
1680 tmp = fold_build2_loc (loc, NE_EXPR, boolean_type_node,
1681 tmp, word_mode_zero);
1682 tmp = force_gimple_operand_gsi (&gsi, tmp,
1683 /*simple=*/true, NULL_TREE,
1684 /*before=*/true, GSI_SAME_STMT);
1685 basic_block new_bb
1686 = hoist_edge_and_branch_if_true (&gsi, tmp, test[k].target_bb,
1687 prob, loc);
1688 gsi = gsi_last_bb (new_bb);
1691 /* We should have removed all edges now. */
1692 gcc_assert (EDGE_COUNT (gsi_bb (gsi)->succs) == 0);
1694 /* If nothing matched, go to the default label. */
1695 edge e = make_edge (gsi_bb (gsi), default_bb, EDGE_FALLTHRU);
1696 e->probability = profile_probability::always ();
1699 /* Split the basic block at the statement pointed to by GSIP, and insert
1700 a branch to the target basic block of E_TRUE conditional on tree
1701 expression COND.
1703 It is assumed that there is already an edge from the to-be-split
1704 basic block to E_TRUE->dest block. This edge is removed, and the
1705 profile information on the edge is re-used for the new conditional
1706 jump.
1708 The CFG is updated. The dominator tree will not be valid after
1709 this transformation, but the immediate dominators are updated if
1710 UPDATE_DOMINATORS is true.
1712 Returns the newly created basic block. */
1714 basic_block
1715 bit_test_cluster::hoist_edge_and_branch_if_true (gimple_stmt_iterator *gsip,
1716 tree cond, basic_block case_bb,
1717 profile_probability prob,
1718 location_t loc)
1720 tree tmp;
1721 gcond *cond_stmt;
1722 edge e_false;
1723 basic_block new_bb, split_bb = gsi_bb (*gsip);
1725 edge e_true = make_edge (split_bb, case_bb, EDGE_TRUE_VALUE);
1726 e_true->probability = prob;
1727 gcc_assert (e_true->src == split_bb);
1729 tmp = force_gimple_operand_gsi (gsip, cond, /*simple=*/true, NULL,
1730 /*before=*/true, GSI_SAME_STMT);
1731 cond_stmt = gimple_build_cond_from_tree (tmp, NULL_TREE, NULL_TREE);
1732 gimple_set_location (cond_stmt, loc);
1733 gsi_insert_before (gsip, cond_stmt, GSI_SAME_STMT);
1735 e_false = split_block (split_bb, cond_stmt);
1736 new_bb = e_false->dest;
1737 redirect_edge_pred (e_true, split_bb);
1739 e_false->flags &= ~EDGE_FALLTHRU;
1740 e_false->flags |= EDGE_FALSE_VALUE;
1741 e_false->probability = e_true->probability.invert ();
1742 new_bb->count = e_false->count ();
1744 return new_bb;
1747 /* Compute the number of case labels that correspond to each outgoing edge of
1748 switch statement. Record this information in the aux field of the edge. */
1750 void
1751 switch_decision_tree::compute_cases_per_edge ()
1753 reset_out_edges_aux (m_switch);
1754 int ncases = gimple_switch_num_labels (m_switch);
1755 for (int i = ncases - 1; i >= 1; --i)
1757 edge case_edge = gimple_switch_edge (cfun, m_switch, i);
1758 case_edge->aux = (void *) ((intptr_t) (case_edge->aux) + 1);
1762 /* Analyze switch statement and return true when the statement is expanded
1763 as decision tree. */
1765 bool
1766 switch_decision_tree::analyze_switch_statement ()
1768 unsigned l = gimple_switch_num_labels (m_switch);
1769 basic_block bb = gimple_bb (m_switch);
1770 auto_vec<cluster *> clusters;
1771 clusters.create (l - 1);
1773 basic_block default_bb = gimple_switch_default_bb (cfun, m_switch);
1774 m_case_bbs.reserve (l);
1775 m_case_bbs.quick_push (default_bb);
1777 compute_cases_per_edge ();
1779 for (unsigned i = 1; i < l; i++)
1781 tree elt = gimple_switch_label (m_switch, i);
1782 tree lab = CASE_LABEL (elt);
1783 basic_block case_bb = label_to_block (cfun, lab);
1784 edge case_edge = find_edge (bb, case_bb);
1785 tree low = CASE_LOW (elt);
1786 tree high = CASE_HIGH (elt);
1788 profile_probability p
1789 = case_edge->probability / ((intptr_t) (case_edge->aux));
1790 clusters.quick_push (new simple_cluster (low, high, elt, case_edge->dest,
1791 p));
1792 m_case_bbs.quick_push (case_edge->dest);
1795 reset_out_edges_aux (m_switch);
1797 /* Find bit-test clusters. */
1798 vec<cluster *> output = bit_test_cluster::find_bit_tests (clusters);
1800 /* Find jump table clusters. */
1801 vec<cluster *> output2;
1802 auto_vec<cluster *> tmp;
1803 output2.create (1);
1804 tmp.create (1);
1806 for (unsigned i = 0; i < output.length (); i++)
1808 cluster *c = output[i];
1809 if (c->get_type () != SIMPLE_CASE)
1811 if (!tmp.is_empty ())
1813 vec<cluster *> n = jump_table_cluster::find_jump_tables (tmp);
1814 output2.safe_splice (n);
1815 n.release ();
1816 tmp.truncate (0);
1818 output2.safe_push (c);
1820 else
1821 tmp.safe_push (c);
1824 /* We still can have a temporary vector to test. */
1825 if (!tmp.is_empty ())
1827 vec<cluster *> n = jump_table_cluster::find_jump_tables (tmp);
1828 output2.safe_splice (n);
1829 n.release ();
1832 if (dump_file)
1834 fprintf (dump_file, ";; GIMPLE switch case clusters: ");
1835 for (unsigned i = 0; i < output2.length (); i++)
1836 output2[i]->dump (dump_file, dump_flags & TDF_DETAILS);
1837 fprintf (dump_file, "\n");
1840 output.release ();
1842 bool expanded = try_switch_expansion (output2);
1843 release_clusters (output2);
1844 return expanded;
1847 /* Attempt to expand CLUSTERS as a decision tree. Return true when
1848 expanded. */
1850 bool
1851 switch_decision_tree::try_switch_expansion (vec<cluster *> &clusters)
1853 tree index_expr = gimple_switch_index (m_switch);
1854 tree index_type = TREE_TYPE (index_expr);
1855 basic_block bb = gimple_bb (m_switch);
1857 if (gimple_switch_num_labels (m_switch) == 1
1858 || range_check_type (index_type) == NULL_TREE)
1859 return false;
1861 /* Find the default case target label. */
1862 edge default_edge = gimple_switch_default_edge (cfun, m_switch);
1863 m_default_bb = default_edge->dest;
1865 /* Do the insertion of a case label into m_case_list. The labels are
1866 fed to us in descending order from the sorted vector of case labels used
1867 in the tree part of the middle end. So the list we construct is
1868 sorted in ascending order. */
1870 for (int i = clusters.length () - 1; i >= 0; i--)
1872 case_tree_node *r = m_case_list;
1873 m_case_list = m_case_node_pool.allocate ();
1874 m_case_list->m_right = r;
1875 m_case_list->m_c = clusters[i];
1878 record_phi_operand_mapping ();
1880 /* Split basic block that contains the gswitch statement. */
1881 gimple_stmt_iterator gsi = gsi_last_bb (bb);
1882 edge e;
1883 if (gsi_end_p (gsi))
1884 e = split_block_after_labels (bb);
1885 else
1887 gsi_prev (&gsi);
1888 e = split_block (bb, gsi_stmt (gsi));
1890 bb = split_edge (e);
1892 /* Create new basic blocks for non-case clusters where specific expansion
1893 needs to happen. */
1894 for (unsigned i = 0; i < clusters.length (); i++)
1895 if (clusters[i]->get_type () != SIMPLE_CASE)
1897 clusters[i]->m_case_bb = create_empty_bb (bb);
1898 clusters[i]->m_case_bb->count = bb->count;
1899 clusters[i]->m_case_bb->loop_father = bb->loop_father;
1902 /* Do not do an extra work for a single cluster. */
1903 if (clusters.length () == 1
1904 && clusters[0]->get_type () != SIMPLE_CASE)
1906 cluster *c = clusters[0];
1907 c->emit (index_expr, index_type,
1908 gimple_switch_default_label (m_switch), m_default_bb,
1909 gimple_location (m_switch));
1910 redirect_edge_succ (single_succ_edge (bb), c->m_case_bb);
1912 else
1914 emit (bb, index_expr, default_edge->probability, index_type);
1916 /* Emit cluster-specific switch handling. */
1917 for (unsigned i = 0; i < clusters.length (); i++)
1918 if (clusters[i]->get_type () != SIMPLE_CASE)
1920 edge e = single_pred_edge (clusters[i]->m_case_bb);
1921 e->dest->count = e->src->count.apply_probability (e->probability);
1922 clusters[i]->emit (index_expr, index_type,
1923 gimple_switch_default_label (m_switch),
1924 m_default_bb, gimple_location (m_switch));
1928 fix_phi_operands_for_edges ();
1930 return true;
1933 /* Before switch transformation, record all SSA_NAMEs defined in switch BB
1934 and used in a label basic block. */
1936 void
1937 switch_decision_tree::record_phi_operand_mapping ()
1939 basic_block switch_bb = gimple_bb (m_switch);
1940 /* Record all PHI nodes that have to be fixed after conversion. */
1941 for (unsigned i = 0; i < m_case_bbs.length (); i++)
1943 gphi_iterator gsi;
1944 basic_block bb = m_case_bbs[i];
1945 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1947 gphi *phi = gsi.phi ();
1949 for (unsigned i = 0; i < gimple_phi_num_args (phi); i++)
1951 basic_block phi_src_bb = gimple_phi_arg_edge (phi, i)->src;
1952 if (phi_src_bb == switch_bb)
1954 tree def = gimple_phi_arg_def (phi, i);
1955 tree result = gimple_phi_result (phi);
1956 m_phi_mapping.put (result, def);
1957 break;
1964 /* Append new operands to PHI statements that were introduced due to
1965 addition of new edges to case labels. */
1967 void
1968 switch_decision_tree::fix_phi_operands_for_edges ()
1970 gphi_iterator gsi;
1972 for (unsigned i = 0; i < m_case_bbs.length (); i++)
1974 basic_block bb = m_case_bbs[i];
1975 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1977 gphi *phi = gsi.phi ();
1978 for (unsigned j = 0; j < gimple_phi_num_args (phi); j++)
1980 tree def = gimple_phi_arg_def (phi, j);
1981 if (def == NULL_TREE)
1983 edge e = gimple_phi_arg_edge (phi, j);
1984 tree *definition
1985 = m_phi_mapping.get (gimple_phi_result (phi));
1986 gcc_assert (definition);
1987 add_phi_arg (phi, *definition, e, UNKNOWN_LOCATION);
1994 /* Generate a decision tree, switching on INDEX_EXPR and jumping to
1995 one of the labels in CASE_LIST or to the DEFAULT_LABEL.
1997 We generate a binary decision tree to select the appropriate target
1998 code. */
2000 void
2001 switch_decision_tree::emit (basic_block bb, tree index_expr,
2002 profile_probability default_prob, tree index_type)
2004 balance_case_nodes (&m_case_list, NULL);
2006 if (dump_file)
2007 dump_function_to_file (current_function_decl, dump_file, dump_flags);
2008 if (dump_file && (dump_flags & TDF_DETAILS))
2010 int indent_step = ceil_log2 (TYPE_PRECISION (index_type)) + 2;
2011 fprintf (dump_file, ";; Expanding GIMPLE switch as decision tree:\n");
2012 gcc_assert (m_case_list != NULL);
2013 dump_case_nodes (dump_file, m_case_list, indent_step, 0);
2016 bb = emit_case_nodes (bb, index_expr, m_case_list, default_prob, index_type,
2017 gimple_location (m_switch));
2019 if (bb)
2020 emit_jump (bb, m_default_bb);
2022 /* Remove all edges and do just an edge that will reach default_bb. */
2023 bb = gimple_bb (m_switch);
2024 gimple_stmt_iterator gsi = gsi_last_bb (bb);
2025 gsi_remove (&gsi, true);
2027 delete_basic_block (bb);
2030 /* Take an ordered list of case nodes
2031 and transform them into a near optimal binary tree,
2032 on the assumption that any target code selection value is as
2033 likely as any other.
2035 The transformation is performed by splitting the ordered
2036 list into two equal sections plus a pivot. The parts are
2037 then attached to the pivot as left and right branches. Each
2038 branch is then transformed recursively. */
2040 void
2041 switch_decision_tree::balance_case_nodes (case_tree_node **head,
2042 case_tree_node *parent)
2044 case_tree_node *np;
2046 np = *head;
2047 if (np)
2049 int i = 0;
2050 case_tree_node **npp;
2051 case_tree_node *left;
2052 profile_probability prob = profile_probability::never ();
2054 /* Count the number of entries on branch. */
2056 while (np)
2058 i++;
2059 prob += np->m_c->m_prob;
2060 np = np->m_right;
2063 if (i > 2)
2065 /* Split this list if it is long enough for that to help. */
2066 npp = head;
2067 left = *npp;
2068 profile_probability pivot_prob = prob / 2;
2070 /* Find the place in the list that bisects the list's total cost
2071 by probability. */
2072 while (1)
2074 /* Skip nodes while their probability does not reach
2075 that amount. */
2076 prob -= (*npp)->m_c->m_prob;
2077 if ((prob.initialized_p () && prob < pivot_prob)
2078 || ! (*npp)->m_right)
2079 break;
2080 npp = &(*npp)->m_right;
2083 np = *npp;
2084 *npp = 0;
2085 *head = np;
2086 np->m_parent = parent;
2087 np->m_left = left == np ? NULL : left;
2089 /* Optimize each of the two split parts. */
2090 balance_case_nodes (&np->m_left, np);
2091 balance_case_nodes (&np->m_right, np);
2092 np->m_c->m_subtree_prob = np->m_c->m_prob;
2093 if (np->m_left)
2094 np->m_c->m_subtree_prob += np->m_left->m_c->m_subtree_prob;
2095 if (np->m_right)
2096 np->m_c->m_subtree_prob += np->m_right->m_c->m_subtree_prob;
2098 else
2100 /* Else leave this branch as one level,
2101 but fill in `parent' fields. */
2102 np = *head;
2103 np->m_parent = parent;
2104 np->m_c->m_subtree_prob = np->m_c->m_prob;
2105 for (; np->m_right; np = np->m_right)
2107 np->m_right->m_parent = np;
2108 (*head)->m_c->m_subtree_prob += np->m_right->m_c->m_subtree_prob;
2114 /* Dump ROOT, a list or tree of case nodes, to file. */
2116 void
2117 switch_decision_tree::dump_case_nodes (FILE *f, case_tree_node *root,
2118 int indent_step, int indent_level)
2120 if (root == 0)
2121 return;
2122 indent_level++;
2124 dump_case_nodes (f, root->m_left, indent_step, indent_level);
2126 fputs (";; ", f);
2127 fprintf (f, "%*s", indent_step * indent_level, "");
2128 root->m_c->dump (f);
2129 root->m_c->m_prob.dump (f);
2130 fputs (" subtree: ", f);
2131 root->m_c->m_subtree_prob.dump (f);
2132 fputs (")\n", f);
2134 dump_case_nodes (f, root->m_right, indent_step, indent_level);
2138 /* Add an unconditional jump to CASE_BB that happens in basic block BB. */
2140 void
2141 switch_decision_tree::emit_jump (basic_block bb, basic_block case_bb)
2143 edge e = single_succ_edge (bb);
2144 redirect_edge_succ (e, case_bb);
2147 /* Generate code to compare OP0 with OP1 so that the condition codes are
2148 set and to jump to LABEL_BB if the condition is true.
2149 COMPARISON is the GIMPLE comparison (EQ, NE, GT, etc.).
2150 PROB is the probability of jumping to LABEL_BB. */
2152 basic_block
2153 switch_decision_tree::emit_cmp_and_jump_insns (basic_block bb, tree op0,
2154 tree op1, tree_code comparison,
2155 basic_block label_bb,
2156 profile_probability prob,
2157 location_t loc)
2159 // TODO: it's once called with lhs != index.
2160 op1 = fold_convert (TREE_TYPE (op0), op1);
2162 gcond *cond = gimple_build_cond (comparison, op0, op1, NULL_TREE, NULL_TREE);
2163 gimple_set_location (cond, loc);
2164 gimple_stmt_iterator gsi = gsi_last_bb (bb);
2165 gsi_insert_after (&gsi, cond, GSI_NEW_STMT);
2167 gcc_assert (single_succ_p (bb));
2169 /* Make a new basic block where false branch will take place. */
2170 edge false_edge = split_block (bb, cond);
2171 false_edge->flags = EDGE_FALSE_VALUE;
2172 false_edge->probability = prob.invert ();
2173 false_edge->dest->count = bb->count.apply_probability (prob.invert ());
2175 edge true_edge = make_edge (bb, label_bb, EDGE_TRUE_VALUE);
2176 true_edge->probability = prob;
2178 return false_edge->dest;
2181 /* Generate code to jump to LABEL if OP0 and OP1 are equal.
2182 PROB is the probability of jumping to LABEL_BB.
2183 BB is a basic block where the new condition will be placed. */
2185 basic_block
2186 switch_decision_tree::do_jump_if_equal (basic_block bb, tree op0, tree op1,
2187 basic_block label_bb,
2188 profile_probability prob,
2189 location_t loc)
2191 op1 = fold_convert (TREE_TYPE (op0), op1);
2193 gcond *cond = gimple_build_cond (EQ_EXPR, op0, op1, NULL_TREE, NULL_TREE);
2194 gimple_set_location (cond, loc);
2195 gimple_stmt_iterator gsi = gsi_last_bb (bb);
2196 gsi_insert_before (&gsi, cond, GSI_SAME_STMT);
2198 gcc_assert (single_succ_p (bb));
2200 /* Make a new basic block where false branch will take place. */
2201 edge false_edge = split_block (bb, cond);
2202 false_edge->flags = EDGE_FALSE_VALUE;
2203 false_edge->probability = prob.invert ();
2204 false_edge->dest->count = bb->count.apply_probability (prob.invert ());
2206 edge true_edge = make_edge (bb, label_bb, EDGE_TRUE_VALUE);
2207 true_edge->probability = prob;
2209 return false_edge->dest;
2212 /* Emit step-by-step code to select a case for the value of INDEX.
2213 The thus generated decision tree follows the form of the
2214 case-node binary tree NODE, whose nodes represent test conditions.
2215 DEFAULT_PROB is probability of cases leading to default BB.
2216 INDEX_TYPE is the type of the index of the switch. */
2218 basic_block
2219 switch_decision_tree::emit_case_nodes (basic_block bb, tree index,
2220 case_tree_node *node,
2221 profile_probability default_prob,
2222 tree index_type, location_t loc)
2224 profile_probability p;
2226 /* If node is null, we are done. */
2227 if (node == NULL)
2228 return bb;
2230 /* Single value case. */
2231 if (node->m_c->is_single_value_p ())
2233 /* Node is single valued. First see if the index expression matches
2234 this node and then check our children, if any. */
2235 p = node->m_c->m_prob / (node->m_c->m_subtree_prob + default_prob);
2236 bb = do_jump_if_equal (bb, index, node->m_c->get_low (),
2237 node->m_c->m_case_bb, p, loc);
2238 /* Since this case is taken at this point, reduce its weight from
2239 subtree_weight. */
2240 node->m_c->m_subtree_prob -= node->m_c->m_prob;
2242 if (node->m_left != NULL && node->m_right != NULL)
2244 /* 1) the node has both children
2246 If both children are single-valued cases with no
2247 children, finish up all the work. This way, we can save
2248 one ordered comparison. */
2250 if (!node->m_left->has_child ()
2251 && node->m_left->m_c->is_single_value_p ()
2252 && !node->m_right->has_child ()
2253 && node->m_right->m_c->is_single_value_p ())
2255 p = (node->m_right->m_c->m_prob
2256 / (node->m_c->m_subtree_prob + default_prob));
2257 bb = do_jump_if_equal (bb, index, node->m_right->m_c->get_low (),
2258 node->m_right->m_c->m_case_bb, p, loc);
2259 node->m_c->m_subtree_prob -= node->m_right->m_c->m_prob;
2261 p = (node->m_left->m_c->m_prob
2262 / (node->m_c->m_subtree_prob + default_prob));
2263 bb = do_jump_if_equal (bb, index, node->m_left->m_c->get_low (),
2264 node->m_left->m_c->m_case_bb, p, loc);
2266 else
2268 /* Branch to a label where we will handle it later. */
2269 basic_block test_bb = split_edge (single_succ_edge (bb));
2270 redirect_edge_succ (single_pred_edge (test_bb),
2271 single_succ_edge (bb)->dest);
2273 p = ((node->m_right->m_c->m_subtree_prob + default_prob / 2)
2274 / (node->m_c->m_subtree_prob + default_prob));
2275 test_bb->count = bb->count.apply_probability (p);
2276 bb = emit_cmp_and_jump_insns (bb, index, node->m_c->get_high (),
2277 GT_EXPR, test_bb, p, loc);
2278 default_prob /= 2;
2280 /* Handle the left-hand subtree. */
2281 bb = emit_case_nodes (bb, index, node->m_left,
2282 default_prob, index_type, loc);
2284 /* If the left-hand subtree fell through,
2285 don't let it fall into the right-hand subtree. */
2286 if (bb && m_default_bb)
2287 emit_jump (bb, m_default_bb);
2289 bb = emit_case_nodes (test_bb, index, node->m_right,
2290 default_prob, index_type, loc);
2293 else if (node->m_left == NULL && node->m_right != NULL)
2295 /* 2) the node has only right child. */
2297 /* Here we have a right child but no left so we issue a conditional
2298 branch to default and process the right child.
2300 Omit the conditional branch to default if the right child
2301 does not have any children and is single valued; it would
2302 cost too much space to save so little time. */
2304 if (node->m_right->has_child ()
2305 || !node->m_right->m_c->is_single_value_p ())
2307 p = ((default_prob / 2)
2308 / (node->m_c->m_subtree_prob + default_prob));
2309 bb = emit_cmp_and_jump_insns (bb, index, node->m_c->get_low (),
2310 LT_EXPR, m_default_bb, p, loc);
2311 default_prob /= 2;
2313 bb = emit_case_nodes (bb, index, node->m_right, default_prob,
2314 index_type, loc);
2316 else
2318 /* We cannot process node->right normally
2319 since we haven't ruled out the numbers less than
2320 this node's value. So handle node->right explicitly. */
2321 p = (node->m_right->m_c->m_subtree_prob
2322 / (node->m_c->m_subtree_prob + default_prob));
2323 bb = do_jump_if_equal (bb, index, node->m_right->m_c->get_low (),
2324 node->m_right->m_c->m_case_bb, p, loc);
2327 else if (node->m_left != NULL && node->m_right == NULL)
2329 /* 3) just one subtree, on the left. Similar case as previous. */
2331 if (node->m_left->has_child ()
2332 || !node->m_left->m_c->is_single_value_p ())
2334 p = ((default_prob / 2)
2335 / (node->m_c->m_subtree_prob + default_prob));
2336 bb = emit_cmp_and_jump_insns (bb, index, node->m_c->get_high (),
2337 GT_EXPR, m_default_bb, p, loc);
2338 default_prob /= 2;
2340 bb = emit_case_nodes (bb, index, node->m_left, default_prob,
2341 index_type, loc);
2343 else
2345 /* We cannot process node->left normally
2346 since we haven't ruled out the numbers less than
2347 this node's value. So handle node->left explicitly. */
2348 p = (node->m_left->m_c->m_subtree_prob
2349 / (node->m_c->m_subtree_prob + default_prob));
2350 bb = do_jump_if_equal (bb, index, node->m_left->m_c->get_low (),
2351 node->m_left->m_c->m_case_bb, p, loc);
2355 else
2357 /* Node is a range. These cases are very similar to those for a single
2358 value, except that we do not start by testing whether this node
2359 is the one to branch to. */
2360 if (node->has_child () || node->m_c->get_type () != SIMPLE_CASE)
2362 bool is_bt = node->m_c->get_type () == BIT_TEST;
2363 int parts = is_bt ? 3 : 2;
2365 /* Branch to a label where we will handle it later. */
2366 basic_block test_bb = split_edge (single_succ_edge (bb));
2367 redirect_edge_succ (single_pred_edge (test_bb),
2368 single_succ_edge (bb)->dest);
2370 profile_probability right_prob = profile_probability::never ();
2371 if (node->m_right)
2372 right_prob = node->m_right->m_c->m_subtree_prob;
2373 p = ((right_prob + default_prob / parts)
2374 / (node->m_c->m_subtree_prob + default_prob));
2375 test_bb->count = bb->count.apply_probability (p);
2377 bb = emit_cmp_and_jump_insns (bb, index, node->m_c->get_high (),
2378 GT_EXPR, test_bb, p, loc);
2380 default_prob /= parts;
2381 node->m_c->m_subtree_prob -= right_prob;
2382 if (is_bt)
2383 node->m_c->m_default_prob = default_prob;
2385 /* Value belongs to this node or to the left-hand subtree. */
2386 p = node->m_c->m_prob / (node->m_c->m_subtree_prob + default_prob);
2387 bb = emit_cmp_and_jump_insns (bb, index, node->m_c->get_low (),
2388 GE_EXPR, node->m_c->m_case_bb, p, loc);
2390 /* Handle the left-hand subtree. */
2391 bb = emit_case_nodes (bb, index, node->m_left, default_prob,
2392 index_type, loc);
2394 /* If the left-hand subtree fell through,
2395 don't let it fall into the right-hand subtree. */
2396 if (bb && m_default_bb)
2397 emit_jump (bb, m_default_bb);
2399 bb = emit_case_nodes (test_bb, index, node->m_right, default_prob,
2400 index_type, loc);
2402 else
2404 /* Node has no children so we check low and high bounds to remove
2405 redundant tests. Only one of the bounds can exist,
2406 since otherwise this node is bounded--a case tested already. */
2407 tree lhs, rhs;
2408 generate_range_test (bb, index, node->m_c->get_low (),
2409 node->m_c->get_high (), &lhs, &rhs);
2410 p = default_prob / (node->m_c->m_subtree_prob + default_prob);
2412 bb = emit_cmp_and_jump_insns (bb, lhs, rhs, GT_EXPR,
2413 m_default_bb, p, loc);
2415 emit_jump (bb, node->m_c->m_case_bb);
2416 return NULL;
2420 return bb;
2423 /* The main function of the pass scans statements for switches and invokes
2424 process_switch on them. */
2426 namespace {
2428 const pass_data pass_data_convert_switch =
2430 GIMPLE_PASS, /* type */
2431 "switchconv", /* name */
2432 OPTGROUP_NONE, /* optinfo_flags */
2433 TV_TREE_SWITCH_CONVERSION, /* tv_id */
2434 ( PROP_cfg | PROP_ssa ), /* properties_required */
2435 0, /* properties_provided */
2436 0, /* properties_destroyed */
2437 0, /* todo_flags_start */
2438 TODO_update_ssa, /* todo_flags_finish */
2441 class pass_convert_switch : public gimple_opt_pass
2443 public:
2444 pass_convert_switch (gcc::context *ctxt)
2445 : gimple_opt_pass (pass_data_convert_switch, ctxt)
2448 /* opt_pass methods: */
2449 bool gate (function *) final override
2451 return flag_tree_switch_conversion != 0;
2453 unsigned int execute (function *) final override;
2455 }; // class pass_convert_switch
2457 unsigned int
2458 pass_convert_switch::execute (function *fun)
2460 basic_block bb;
2461 bool cfg_altered = false;
2463 FOR_EACH_BB_FN (bb, fun)
2465 gimple *stmt = last_stmt (bb);
2466 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
2468 if (dump_file)
2470 expanded_location loc = expand_location (gimple_location (stmt));
2472 fprintf (dump_file, "beginning to process the following "
2473 "SWITCH statement (%s:%d) : ------- \n",
2474 loc.file, loc.line);
2475 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
2476 putc ('\n', dump_file);
2479 switch_conversion sconv;
2480 sconv.expand (as_a <gswitch *> (stmt));
2481 cfg_altered |= sconv.m_cfg_altered;
2482 if (!sconv.m_reason)
2484 if (dump_file)
2486 fputs ("Switch converted\n", dump_file);
2487 fputs ("--------------------------------\n", dump_file);
2490 /* Make no effort to update the post-dominator tree.
2491 It is actually not that hard for the transformations
2492 we have performed, but it is not supported
2493 by iterate_fix_dominators. */
2494 free_dominance_info (CDI_POST_DOMINATORS);
2496 else
2498 if (dump_file)
2500 fputs ("Bailing out - ", dump_file);
2501 fputs (sconv.m_reason, dump_file);
2502 fputs ("\n--------------------------------\n", dump_file);
2508 return cfg_altered ? TODO_cleanup_cfg : 0;;
2511 } // anon namespace
2513 gimple_opt_pass *
2514 make_pass_convert_switch (gcc::context *ctxt)
2516 return new pass_convert_switch (ctxt);
2519 /* The main function of the pass scans statements for switches and invokes
2520 process_switch on them. */
2522 namespace {
2524 template <bool O0> class pass_lower_switch: public gimple_opt_pass
2526 public:
2527 pass_lower_switch (gcc::context *ctxt) : gimple_opt_pass (data, ctxt) {}
2529 static const pass_data data;
2530 opt_pass *
2531 clone () final override
2533 return new pass_lower_switch<O0> (m_ctxt);
2536 bool
2537 gate (function *) final override
2539 return !O0 || !optimize;
2542 unsigned int execute (function *fun) final override;
2543 }; // class pass_lower_switch
2545 template <bool O0>
2546 const pass_data pass_lower_switch<O0>::data = {
2547 GIMPLE_PASS, /* type */
2548 O0 ? "switchlower_O0" : "switchlower", /* name */
2549 OPTGROUP_NONE, /* optinfo_flags */
2550 TV_TREE_SWITCH_LOWERING, /* tv_id */
2551 ( PROP_cfg | PROP_ssa ), /* properties_required */
2552 0, /* properties_provided */
2553 0, /* properties_destroyed */
2554 0, /* todo_flags_start */
2555 TODO_update_ssa | TODO_cleanup_cfg, /* todo_flags_finish */
2558 template <bool O0>
2559 unsigned int
2560 pass_lower_switch<O0>::execute (function *fun)
2562 basic_block bb;
2563 bool expanded = false;
2565 auto_vec<gimple *> switch_statements;
2566 switch_statements.create (1);
2568 FOR_EACH_BB_FN (bb, fun)
2570 gimple *stmt = last_stmt (bb);
2571 gswitch *swtch;
2572 if (stmt && (swtch = dyn_cast<gswitch *> (stmt)))
2574 if (!O0)
2575 group_case_labels_stmt (swtch);
2576 switch_statements.safe_push (swtch);
2580 for (unsigned i = 0; i < switch_statements.length (); i++)
2582 gimple *stmt = switch_statements[i];
2583 if (dump_file)
2585 expanded_location loc = expand_location (gimple_location (stmt));
2587 fprintf (dump_file, "beginning to process the following "
2588 "SWITCH statement (%s:%d) : ------- \n",
2589 loc.file, loc.line);
2590 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
2591 putc ('\n', dump_file);
2594 gswitch *swtch = dyn_cast<gswitch *> (stmt);
2595 if (swtch)
2597 switch_decision_tree dt (swtch);
2598 expanded |= dt.analyze_switch_statement ();
2602 if (expanded)
2604 free_dominance_info (CDI_DOMINATORS);
2605 free_dominance_info (CDI_POST_DOMINATORS);
2606 mark_virtual_operands_for_renaming (cfun);
2609 return 0;
2612 } // anon namespace
2614 gimple_opt_pass *
2615 make_pass_lower_switch_O0 (gcc::context *ctxt)
2617 return new pass_lower_switch<true> (ctxt);
2619 gimple_opt_pass *
2620 make_pass_lower_switch (gcc::context *ctxt)
2622 return new pass_lower_switch<false> (ctxt);