Skip -fwhole-program when merging LTO options.
[official-gcc.git] / gcc / rtlanal.cc
blob56da7435a283682359580a4d822183937a0205d7
1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987-2022 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "rtlanal.h"
28 #include "tree.h"
29 #include "predict.h"
30 #include "df.h"
31 #include "memmodel.h"
32 #include "tm_p.h"
33 #include "insn-config.h"
34 #include "regs.h"
35 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
36 #include "recog.h"
37 #include "addresses.h"
38 #include "rtl-iter.h"
39 #include "hard-reg-set.h"
40 #include "function-abi.h"
42 /* Forward declarations */
43 static void set_of_1 (rtx, const_rtx, void *);
44 static bool covers_regno_p (const_rtx, unsigned int);
45 static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
46 static int computed_jump_p_1 (const_rtx);
47 static void parms_set (rtx, const_rtx, void *);
49 static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, scalar_int_mode,
50 const_rtx, machine_mode,
51 unsigned HOST_WIDE_INT);
52 static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, scalar_int_mode,
53 const_rtx, machine_mode,
54 unsigned HOST_WIDE_INT);
55 static unsigned int cached_num_sign_bit_copies (const_rtx, scalar_int_mode,
56 const_rtx, machine_mode,
57 unsigned int);
58 static unsigned int num_sign_bit_copies1 (const_rtx, scalar_int_mode,
59 const_rtx, machine_mode,
60 unsigned int);
62 rtx_subrtx_bound_info rtx_all_subrtx_bounds[NUM_RTX_CODE];
63 rtx_subrtx_bound_info rtx_nonconst_subrtx_bounds[NUM_RTX_CODE];
65 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
66 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
67 SIGN_EXTEND then while narrowing we also have to enforce the
68 representation and sign-extend the value to mode DESTINATION_REP.
70 If the value is already sign-extended to DESTINATION_REP mode we
71 can just switch to DESTINATION mode on it. For each pair of
72 integral modes SOURCE and DESTINATION, when truncating from SOURCE
73 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
74 contains the number of high-order bits in SOURCE that have to be
75 copies of the sign-bit so that we can do this mode-switch to
76 DESTINATION. */
78 static unsigned int
79 num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
81 /* Store X into index I of ARRAY. ARRAY is known to have at least I
82 elements. Return the new base of ARRAY. */
84 template <typename T>
85 typename T::value_type *
86 generic_subrtx_iterator <T>::add_single_to_queue (array_type &array,
87 value_type *base,
88 size_t i, value_type x)
90 if (base == array.stack)
92 if (i < LOCAL_ELEMS)
94 base[i] = x;
95 return base;
97 gcc_checking_assert (i == LOCAL_ELEMS);
98 /* A previous iteration might also have moved from the stack to the
99 heap, in which case the heap array will already be big enough. */
100 if (vec_safe_length (array.heap) <= i)
101 vec_safe_grow (array.heap, i + 1, true);
102 base = array.heap->address ();
103 memcpy (base, array.stack, sizeof (array.stack));
104 base[LOCAL_ELEMS] = x;
105 return base;
107 unsigned int length = array.heap->length ();
108 if (length > i)
110 gcc_checking_assert (base == array.heap->address ());
111 base[i] = x;
112 return base;
114 else
116 gcc_checking_assert (i == length);
117 vec_safe_push (array.heap, x);
118 return array.heap->address ();
122 /* Add the subrtxes of X to worklist ARRAY, starting at END. Return the
123 number of elements added to the worklist. */
125 template <typename T>
126 size_t
127 generic_subrtx_iterator <T>::add_subrtxes_to_queue (array_type &array,
128 value_type *base,
129 size_t end, rtx_type x)
131 enum rtx_code code = GET_CODE (x);
132 const char *format = GET_RTX_FORMAT (code);
133 size_t orig_end = end;
134 if (UNLIKELY (INSN_P (x)))
136 /* Put the pattern at the top of the queue, since that's what
137 we're likely to want most. It also allows for the SEQUENCE
138 code below. */
139 for (int i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; --i)
140 if (format[i] == 'e')
142 value_type subx = T::get_value (x->u.fld[i].rt_rtx);
143 if (LIKELY (end < LOCAL_ELEMS))
144 base[end++] = subx;
145 else
146 base = add_single_to_queue (array, base, end++, subx);
149 else
150 for (int i = 0; format[i]; ++i)
151 if (format[i] == 'e')
153 value_type subx = T::get_value (x->u.fld[i].rt_rtx);
154 if (LIKELY (end < LOCAL_ELEMS))
155 base[end++] = subx;
156 else
157 base = add_single_to_queue (array, base, end++, subx);
159 else if (format[i] == 'E')
161 unsigned int length = GET_NUM_ELEM (x->u.fld[i].rt_rtvec);
162 rtx *vec = x->u.fld[i].rt_rtvec->elem;
163 if (LIKELY (end + length <= LOCAL_ELEMS))
164 for (unsigned int j = 0; j < length; j++)
165 base[end++] = T::get_value (vec[j]);
166 else
167 for (unsigned int j = 0; j < length; j++)
168 base = add_single_to_queue (array, base, end++,
169 T::get_value (vec[j]));
170 if (code == SEQUENCE && end == length)
171 /* If the subrtxes of the sequence fill the entire array then
172 we know that no other parts of a containing insn are queued.
173 The caller is therefore iterating over the sequence as a
174 PATTERN (...), so we also want the patterns of the
175 subinstructions. */
176 for (unsigned int j = 0; j < length; j++)
178 typename T::rtx_type x = T::get_rtx (base[j]);
179 if (INSN_P (x))
180 base[j] = T::get_value (PATTERN (x));
183 return end - orig_end;
186 template <typename T>
187 void
188 generic_subrtx_iterator <T>::free_array (array_type &array)
190 vec_free (array.heap);
193 template <typename T>
194 const size_t generic_subrtx_iterator <T>::LOCAL_ELEMS;
196 template class generic_subrtx_iterator <const_rtx_accessor>;
197 template class generic_subrtx_iterator <rtx_var_accessor>;
198 template class generic_subrtx_iterator <rtx_ptr_accessor>;
200 /* Return 1 if the value of X is unstable
201 (would be different at a different point in the program).
202 The frame pointer, arg pointer, etc. are considered stable
203 (within one function) and so is anything marked `unchanging'. */
206 rtx_unstable_p (const_rtx x)
208 const RTX_CODE code = GET_CODE (x);
209 int i;
210 const char *fmt;
212 switch (code)
214 case MEM:
215 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
217 case CONST:
218 CASE_CONST_ANY:
219 case SYMBOL_REF:
220 case LABEL_REF:
221 return 0;
223 case REG:
224 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
225 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
226 /* The arg pointer varies if it is not a fixed register. */
227 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
228 return 0;
229 /* ??? When call-clobbered, the value is stable modulo the restore
230 that must happen after a call. This currently screws up local-alloc
231 into believing that the restore is not needed. */
232 if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED && x == pic_offset_table_rtx)
233 return 0;
234 return 1;
236 case ASM_OPERANDS:
237 if (MEM_VOLATILE_P (x))
238 return 1;
240 /* Fall through. */
242 default:
243 break;
246 fmt = GET_RTX_FORMAT (code);
247 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
248 if (fmt[i] == 'e')
250 if (rtx_unstable_p (XEXP (x, i)))
251 return 1;
253 else if (fmt[i] == 'E')
255 int j;
256 for (j = 0; j < XVECLEN (x, i); j++)
257 if (rtx_unstable_p (XVECEXP (x, i, j)))
258 return 1;
261 return 0;
264 /* Return 1 if X has a value that can vary even between two
265 executions of the program. 0 means X can be compared reliably
266 against certain constants or near-constants.
267 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
268 zero, we are slightly more conservative.
269 The frame pointer and the arg pointer are considered constant. */
271 bool
272 rtx_varies_p (const_rtx x, bool for_alias)
274 RTX_CODE code;
275 int i;
276 const char *fmt;
278 if (!x)
279 return 0;
281 code = GET_CODE (x);
282 switch (code)
284 case MEM:
285 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
287 case CONST:
288 CASE_CONST_ANY:
289 case SYMBOL_REF:
290 case LABEL_REF:
291 return 0;
293 case REG:
294 /* Note that we have to test for the actual rtx used for the frame
295 and arg pointers and not just the register number in case we have
296 eliminated the frame and/or arg pointer and are using it
297 for pseudos. */
298 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
299 /* The arg pointer varies if it is not a fixed register. */
300 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
301 return 0;
302 if (x == pic_offset_table_rtx
303 /* ??? When call-clobbered, the value is stable modulo the restore
304 that must happen after a call. This currently screws up
305 local-alloc into believing that the restore is not needed, so we
306 must return 0 only if we are called from alias analysis. */
307 && (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED || for_alias))
308 return 0;
309 return 1;
311 case LO_SUM:
312 /* The operand 0 of a LO_SUM is considered constant
313 (in fact it is related specifically to operand 1)
314 during alias analysis. */
315 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
316 || rtx_varies_p (XEXP (x, 1), for_alias);
318 case ASM_OPERANDS:
319 if (MEM_VOLATILE_P (x))
320 return 1;
322 /* Fall through. */
324 default:
325 break;
328 fmt = GET_RTX_FORMAT (code);
329 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
330 if (fmt[i] == 'e')
332 if (rtx_varies_p (XEXP (x, i), for_alias))
333 return 1;
335 else if (fmt[i] == 'E')
337 int j;
338 for (j = 0; j < XVECLEN (x, i); j++)
339 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
340 return 1;
343 return 0;
346 /* Compute an approximation for the offset between the register
347 FROM and TO for the current function, as it was at the start
348 of the routine. */
350 static poly_int64
351 get_initial_register_offset (int from, int to)
353 static const struct elim_table_t
355 const int from;
356 const int to;
357 } table[] = ELIMINABLE_REGS;
358 poly_int64 offset1, offset2;
359 unsigned int i, j;
361 if (to == from)
362 return 0;
364 /* It is not safe to call INITIAL_ELIMINATION_OFFSET before the epilogue
365 is completed, but we need to give at least an estimate for the stack
366 pointer based on the frame size. */
367 if (!epilogue_completed)
369 offset1 = crtl->outgoing_args_size + get_frame_size ();
370 #if !STACK_GROWS_DOWNWARD
371 offset1 = - offset1;
372 #endif
373 if (to == STACK_POINTER_REGNUM)
374 return offset1;
375 else if (from == STACK_POINTER_REGNUM)
376 return - offset1;
377 else
378 return 0;
381 for (i = 0; i < ARRAY_SIZE (table); i++)
382 if (table[i].from == from)
384 if (table[i].to == to)
386 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
387 offset1);
388 return offset1;
390 for (j = 0; j < ARRAY_SIZE (table); j++)
392 if (table[j].to == to
393 && table[j].from == table[i].to)
395 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
396 offset1);
397 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
398 offset2);
399 return offset1 + offset2;
401 if (table[j].from == to
402 && table[j].to == table[i].to)
404 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
405 offset1);
406 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
407 offset2);
408 return offset1 - offset2;
412 else if (table[i].to == from)
414 if (table[i].from == to)
416 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
417 offset1);
418 return - offset1;
420 for (j = 0; j < ARRAY_SIZE (table); j++)
422 if (table[j].to == to
423 && table[j].from == table[i].from)
425 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
426 offset1);
427 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
428 offset2);
429 return - offset1 + offset2;
431 if (table[j].from == to
432 && table[j].to == table[i].from)
434 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
435 offset1);
436 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
437 offset2);
438 return - offset1 - offset2;
443 /* If the requested register combination was not found,
444 try a different more simple combination. */
445 if (from == ARG_POINTER_REGNUM)
446 return get_initial_register_offset (HARD_FRAME_POINTER_REGNUM, to);
447 else if (to == ARG_POINTER_REGNUM)
448 return get_initial_register_offset (from, HARD_FRAME_POINTER_REGNUM);
449 else if (from == HARD_FRAME_POINTER_REGNUM)
450 return get_initial_register_offset (FRAME_POINTER_REGNUM, to);
451 else if (to == HARD_FRAME_POINTER_REGNUM)
452 return get_initial_register_offset (from, FRAME_POINTER_REGNUM);
453 else
454 return 0;
457 /* Return nonzero if the use of X+OFFSET as an address in a MEM with SIZE
458 bytes can cause a trap. MODE is the mode of the MEM (not that of X) and
459 UNALIGNED_MEMS controls whether nonzero is returned for unaligned memory
460 references on strict alignment machines. */
462 static int
463 rtx_addr_can_trap_p_1 (const_rtx x, poly_int64 offset, poly_int64 size,
464 machine_mode mode, bool unaligned_mems)
466 enum rtx_code code = GET_CODE (x);
467 gcc_checking_assert (mode == BLKmode
468 || mode == VOIDmode
469 || known_size_p (size));
470 poly_int64 const_x1;
472 /* The offset must be a multiple of the mode size if we are considering
473 unaligned memory references on strict alignment machines. */
474 if (STRICT_ALIGNMENT
475 && unaligned_mems
476 && mode != BLKmode
477 && mode != VOIDmode)
479 poly_int64 actual_offset = offset;
481 #ifdef SPARC_STACK_BOUNDARY_HACK
482 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
483 the real alignment of %sp. However, when it does this, the
484 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
485 if (SPARC_STACK_BOUNDARY_HACK
486 && (x == stack_pointer_rtx || x == hard_frame_pointer_rtx))
487 actual_offset -= STACK_POINTER_OFFSET;
488 #endif
490 if (!multiple_p (actual_offset, GET_MODE_SIZE (mode)))
491 return 1;
494 switch (code)
496 case SYMBOL_REF:
497 if (SYMBOL_REF_WEAK (x))
498 return 1;
499 if (!CONSTANT_POOL_ADDRESS_P (x) && !SYMBOL_REF_FUNCTION_P (x))
501 tree decl;
502 poly_int64 decl_size;
504 if (maybe_lt (offset, 0))
505 return 1;
506 if (!known_size_p (size))
507 return maybe_ne (offset, 0);
509 /* If the size of the access or of the symbol is unknown,
510 assume the worst. */
511 decl = SYMBOL_REF_DECL (x);
513 /* Else check that the access is in bounds. TODO: restructure
514 expr_size/tree_expr_size/int_expr_size and just use the latter. */
515 if (!decl)
516 decl_size = -1;
517 else if (DECL_P (decl) && DECL_SIZE_UNIT (decl))
519 if (!poly_int_tree_p (DECL_SIZE_UNIT (decl), &decl_size))
520 decl_size = -1;
522 else if (TREE_CODE (decl) == STRING_CST)
523 decl_size = TREE_STRING_LENGTH (decl);
524 else if (TYPE_SIZE_UNIT (TREE_TYPE (decl)))
525 decl_size = int_size_in_bytes (TREE_TYPE (decl));
526 else
527 decl_size = -1;
529 return (!known_size_p (decl_size) || known_eq (decl_size, 0)
530 ? maybe_ne (offset, 0)
531 : !known_subrange_p (offset, size, 0, decl_size));
534 return 0;
536 case LABEL_REF:
537 return 0;
539 case REG:
540 /* Stack references are assumed not to trap, but we need to deal with
541 nonsensical offsets. */
542 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
543 || x == stack_pointer_rtx
544 /* The arg pointer varies if it is not a fixed register. */
545 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
547 #ifdef RED_ZONE_SIZE
548 poly_int64 red_zone_size = RED_ZONE_SIZE;
549 #else
550 poly_int64 red_zone_size = 0;
551 #endif
552 poly_int64 stack_boundary = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
553 poly_int64 low_bound, high_bound;
555 if (!known_size_p (size))
556 return 1;
558 if (x == frame_pointer_rtx)
560 if (FRAME_GROWS_DOWNWARD)
562 high_bound = targetm.starting_frame_offset ();
563 low_bound = high_bound - get_frame_size ();
565 else
567 low_bound = targetm.starting_frame_offset ();
568 high_bound = low_bound + get_frame_size ();
571 else if (x == hard_frame_pointer_rtx)
573 poly_int64 sp_offset
574 = get_initial_register_offset (STACK_POINTER_REGNUM,
575 HARD_FRAME_POINTER_REGNUM);
576 poly_int64 ap_offset
577 = get_initial_register_offset (ARG_POINTER_REGNUM,
578 HARD_FRAME_POINTER_REGNUM);
580 #if STACK_GROWS_DOWNWARD
581 low_bound = sp_offset - red_zone_size - stack_boundary;
582 high_bound = ap_offset
583 + FIRST_PARM_OFFSET (current_function_decl)
584 #if !ARGS_GROW_DOWNWARD
585 + crtl->args.size
586 #endif
587 + stack_boundary;
588 #else
589 high_bound = sp_offset + red_zone_size + stack_boundary;
590 low_bound = ap_offset
591 + FIRST_PARM_OFFSET (current_function_decl)
592 #if ARGS_GROW_DOWNWARD
593 - crtl->args.size
594 #endif
595 - stack_boundary;
596 #endif
598 else if (x == stack_pointer_rtx)
600 poly_int64 ap_offset
601 = get_initial_register_offset (ARG_POINTER_REGNUM,
602 STACK_POINTER_REGNUM);
604 #if STACK_GROWS_DOWNWARD
605 low_bound = - red_zone_size - stack_boundary;
606 high_bound = ap_offset
607 + FIRST_PARM_OFFSET (current_function_decl)
608 #if !ARGS_GROW_DOWNWARD
609 + crtl->args.size
610 #endif
611 + stack_boundary;
612 #else
613 high_bound = red_zone_size + stack_boundary;
614 low_bound = ap_offset
615 + FIRST_PARM_OFFSET (current_function_decl)
616 #if ARGS_GROW_DOWNWARD
617 - crtl->args.size
618 #endif
619 - stack_boundary;
620 #endif
622 else
624 /* We assume that accesses are safe to at least the
625 next stack boundary.
626 Examples are varargs and __builtin_return_address. */
627 #if ARGS_GROW_DOWNWARD
628 high_bound = FIRST_PARM_OFFSET (current_function_decl)
629 + stack_boundary;
630 low_bound = FIRST_PARM_OFFSET (current_function_decl)
631 - crtl->args.size - stack_boundary;
632 #else
633 low_bound = FIRST_PARM_OFFSET (current_function_decl)
634 - stack_boundary;
635 high_bound = FIRST_PARM_OFFSET (current_function_decl)
636 + crtl->args.size + stack_boundary;
637 #endif
640 if (known_ge (offset, low_bound)
641 && known_le (offset, high_bound - size))
642 return 0;
643 return 1;
645 /* All of the virtual frame registers are stack references. */
646 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
647 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
648 return 0;
649 return 1;
651 case CONST:
652 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
653 mode, unaligned_mems);
655 case PLUS:
656 /* An address is assumed not to trap if:
657 - it is the pic register plus a const unspec without offset. */
658 if (XEXP (x, 0) == pic_offset_table_rtx
659 && GET_CODE (XEXP (x, 1)) == CONST
660 && GET_CODE (XEXP (XEXP (x, 1), 0)) == UNSPEC
661 && known_eq (offset, 0))
662 return 0;
664 /* - or it is an address that can't trap plus a constant integer. */
665 if (poly_int_rtx_p (XEXP (x, 1), &const_x1)
666 && !rtx_addr_can_trap_p_1 (XEXP (x, 0), offset + const_x1,
667 size, mode, unaligned_mems))
668 return 0;
670 return 1;
672 case LO_SUM:
673 case PRE_MODIFY:
674 return rtx_addr_can_trap_p_1 (XEXP (x, 1), offset, size,
675 mode, unaligned_mems);
677 case PRE_DEC:
678 case PRE_INC:
679 case POST_DEC:
680 case POST_INC:
681 case POST_MODIFY:
682 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
683 mode, unaligned_mems);
685 default:
686 break;
689 /* If it isn't one of the case above, it can cause a trap. */
690 return 1;
693 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
696 rtx_addr_can_trap_p (const_rtx x)
698 return rtx_addr_can_trap_p_1 (x, 0, -1, BLKmode, false);
701 /* Return true if X contains a MEM subrtx. */
703 bool
704 contains_mem_rtx_p (rtx x)
706 subrtx_iterator::array_type array;
707 FOR_EACH_SUBRTX (iter, array, x, ALL)
708 if (MEM_P (*iter))
709 return true;
711 return false;
714 /* Return true if X is an address that is known to not be zero. */
716 bool
717 nonzero_address_p (const_rtx x)
719 const enum rtx_code code = GET_CODE (x);
721 switch (code)
723 case SYMBOL_REF:
724 return flag_delete_null_pointer_checks && !SYMBOL_REF_WEAK (x);
726 case LABEL_REF:
727 return true;
729 case REG:
730 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
731 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
732 || x == stack_pointer_rtx
733 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
734 return true;
735 /* All of the virtual frame registers are stack references. */
736 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
737 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
738 return true;
739 return false;
741 case CONST:
742 return nonzero_address_p (XEXP (x, 0));
744 case PLUS:
745 /* Handle PIC references. */
746 if (XEXP (x, 0) == pic_offset_table_rtx
747 && CONSTANT_P (XEXP (x, 1)))
748 return true;
749 return false;
751 case PRE_MODIFY:
752 /* Similar to the above; allow positive offsets. Further, since
753 auto-inc is only allowed in memories, the register must be a
754 pointer. */
755 if (CONST_INT_P (XEXP (x, 1))
756 && INTVAL (XEXP (x, 1)) > 0)
757 return true;
758 return nonzero_address_p (XEXP (x, 0));
760 case PRE_INC:
761 /* Similarly. Further, the offset is always positive. */
762 return true;
764 case PRE_DEC:
765 case POST_DEC:
766 case POST_INC:
767 case POST_MODIFY:
768 return nonzero_address_p (XEXP (x, 0));
770 case LO_SUM:
771 return nonzero_address_p (XEXP (x, 1));
773 default:
774 break;
777 /* If it isn't one of the case above, might be zero. */
778 return false;
781 /* Return 1 if X refers to a memory location whose address
782 cannot be compared reliably with constant addresses,
783 or if X refers to a BLKmode memory object.
784 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
785 zero, we are slightly more conservative. */
787 bool
788 rtx_addr_varies_p (const_rtx x, bool for_alias)
790 enum rtx_code code;
791 int i;
792 const char *fmt;
794 if (x == 0)
795 return 0;
797 code = GET_CODE (x);
798 if (code == MEM)
799 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
801 fmt = GET_RTX_FORMAT (code);
802 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
803 if (fmt[i] == 'e')
805 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
806 return 1;
808 else if (fmt[i] == 'E')
810 int j;
811 for (j = 0; j < XVECLEN (x, i); j++)
812 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
813 return 1;
815 return 0;
818 /* Return the CALL in X if there is one. */
821 get_call_rtx_from (const rtx_insn *insn)
823 rtx x = PATTERN (insn);
824 if (GET_CODE (x) == PARALLEL)
825 x = XVECEXP (x, 0, 0);
826 if (GET_CODE (x) == SET)
827 x = SET_SRC (x);
828 if (GET_CODE (x) == CALL && MEM_P (XEXP (x, 0)))
829 return x;
830 return NULL_RTX;
833 /* Get the declaration of the function called by INSN. */
835 tree
836 get_call_fndecl (const rtx_insn *insn)
838 rtx note, datum;
840 note = find_reg_note (insn, REG_CALL_DECL, NULL_RTX);
841 if (note == NULL_RTX)
842 return NULL_TREE;
844 datum = XEXP (note, 0);
845 if (datum != NULL_RTX)
846 return SYMBOL_REF_DECL (datum);
848 return NULL_TREE;
851 /* Return the value of the integer term in X, if one is apparent;
852 otherwise return 0.
853 Only obvious integer terms are detected.
854 This is used in cse.cc with the `related_value' field. */
856 HOST_WIDE_INT
857 get_integer_term (const_rtx x)
859 if (GET_CODE (x) == CONST)
860 x = XEXP (x, 0);
862 if (GET_CODE (x) == MINUS
863 && CONST_INT_P (XEXP (x, 1)))
864 return - INTVAL (XEXP (x, 1));
865 if (GET_CODE (x) == PLUS
866 && CONST_INT_P (XEXP (x, 1)))
867 return INTVAL (XEXP (x, 1));
868 return 0;
871 /* If X is a constant, return the value sans apparent integer term;
872 otherwise return 0.
873 Only obvious integer terms are detected. */
876 get_related_value (const_rtx x)
878 if (GET_CODE (x) != CONST)
879 return 0;
880 x = XEXP (x, 0);
881 if (GET_CODE (x) == PLUS
882 && CONST_INT_P (XEXP (x, 1)))
883 return XEXP (x, 0);
884 else if (GET_CODE (x) == MINUS
885 && CONST_INT_P (XEXP (x, 1)))
886 return XEXP (x, 0);
887 return 0;
890 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
891 to somewhere in the same object or object_block as SYMBOL. */
893 bool
894 offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
896 tree decl;
898 if (GET_CODE (symbol) != SYMBOL_REF)
899 return false;
901 if (offset == 0)
902 return true;
904 if (offset > 0)
906 if (CONSTANT_POOL_ADDRESS_P (symbol)
907 && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
908 return true;
910 decl = SYMBOL_REF_DECL (symbol);
911 if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
912 return true;
915 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
916 && SYMBOL_REF_BLOCK (symbol)
917 && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
918 && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
919 < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
920 return true;
922 return false;
925 /* Split X into a base and a constant offset, storing them in *BASE_OUT
926 and *OFFSET_OUT respectively. */
928 void
929 split_const (rtx x, rtx *base_out, rtx *offset_out)
931 if (GET_CODE (x) == CONST)
933 x = XEXP (x, 0);
934 if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
936 *base_out = XEXP (x, 0);
937 *offset_out = XEXP (x, 1);
938 return;
941 *base_out = x;
942 *offset_out = const0_rtx;
945 /* Express integer value X as some value Y plus a polynomial offset,
946 where Y is either const0_rtx, X or something within X (as opposed
947 to a new rtx). Return the Y and store the offset in *OFFSET_OUT. */
950 strip_offset (rtx x, poly_int64_pod *offset_out)
952 rtx base = const0_rtx;
953 rtx test = x;
954 if (GET_CODE (test) == CONST)
955 test = XEXP (test, 0);
956 if (GET_CODE (test) == PLUS)
958 base = XEXP (test, 0);
959 test = XEXP (test, 1);
961 if (poly_int_rtx_p (test, offset_out))
962 return base;
963 *offset_out = 0;
964 return x;
967 /* Return the argument size in REG_ARGS_SIZE note X. */
969 poly_int64
970 get_args_size (const_rtx x)
972 gcc_checking_assert (REG_NOTE_KIND (x) == REG_ARGS_SIZE);
973 return rtx_to_poly_int64 (XEXP (x, 0));
976 /* Return the number of places FIND appears within X. If COUNT_DEST is
977 zero, we do not count occurrences inside the destination of a SET. */
980 count_occurrences (const_rtx x, const_rtx find, int count_dest)
982 int i, j;
983 enum rtx_code code;
984 const char *format_ptr;
985 int count;
987 if (x == find)
988 return 1;
990 code = GET_CODE (x);
992 switch (code)
994 case REG:
995 CASE_CONST_ANY:
996 case SYMBOL_REF:
997 case CODE_LABEL:
998 case PC:
999 return 0;
1001 case EXPR_LIST:
1002 count = count_occurrences (XEXP (x, 0), find, count_dest);
1003 if (XEXP (x, 1))
1004 count += count_occurrences (XEXP (x, 1), find, count_dest);
1005 return count;
1007 case MEM:
1008 if (MEM_P (find) && rtx_equal_p (x, find))
1009 return 1;
1010 break;
1012 case SET:
1013 if (SET_DEST (x) == find && ! count_dest)
1014 return count_occurrences (SET_SRC (x), find, count_dest);
1015 break;
1017 default:
1018 break;
1021 format_ptr = GET_RTX_FORMAT (code);
1022 count = 0;
1024 for (i = 0; i < GET_RTX_LENGTH (code); i++)
1026 switch (*format_ptr++)
1028 case 'e':
1029 count += count_occurrences (XEXP (x, i), find, count_dest);
1030 break;
1032 case 'E':
1033 for (j = 0; j < XVECLEN (x, i); j++)
1034 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
1035 break;
1038 return count;
1042 /* Return TRUE if OP is a register or subreg of a register that
1043 holds an unsigned quantity. Otherwise, return FALSE. */
1045 bool
1046 unsigned_reg_p (rtx op)
1048 if (REG_P (op)
1049 && REG_EXPR (op)
1050 && TYPE_UNSIGNED (TREE_TYPE (REG_EXPR (op))))
1051 return true;
1053 if (GET_CODE (op) == SUBREG
1054 && SUBREG_PROMOTED_SIGN (op))
1055 return true;
1057 return false;
1061 /* Nonzero if register REG appears somewhere within IN.
1062 Also works if REG is not a register; in this case it checks
1063 for a subexpression of IN that is Lisp "equal" to REG. */
1066 reg_mentioned_p (const_rtx reg, const_rtx in)
1068 const char *fmt;
1069 int i;
1070 enum rtx_code code;
1072 if (in == 0)
1073 return 0;
1075 if (reg == in)
1076 return 1;
1078 if (GET_CODE (in) == LABEL_REF)
1079 return reg == label_ref_label (in);
1081 code = GET_CODE (in);
1083 switch (code)
1085 /* Compare registers by number. */
1086 case REG:
1087 return REG_P (reg) && REGNO (in) == REGNO (reg);
1089 /* These codes have no constituent expressions
1090 and are unique. */
1091 case SCRATCH:
1092 case PC:
1093 return 0;
1095 CASE_CONST_ANY:
1096 /* These are kept unique for a given value. */
1097 return 0;
1099 default:
1100 break;
1103 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
1104 return 1;
1106 fmt = GET_RTX_FORMAT (code);
1108 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1110 if (fmt[i] == 'E')
1112 int j;
1113 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
1114 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
1115 return 1;
1117 else if (fmt[i] == 'e'
1118 && reg_mentioned_p (reg, XEXP (in, i)))
1119 return 1;
1121 return 0;
1124 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
1125 no CODE_LABEL insn. */
1128 no_labels_between_p (const rtx_insn *beg, const rtx_insn *end)
1130 rtx_insn *p;
1131 if (beg == end)
1132 return 0;
1133 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
1134 if (LABEL_P (p))
1135 return 0;
1136 return 1;
1139 /* Nonzero if register REG is used in an insn between
1140 FROM_INSN and TO_INSN (exclusive of those two). */
1143 reg_used_between_p (const_rtx reg, const rtx_insn *from_insn,
1144 const rtx_insn *to_insn)
1146 rtx_insn *insn;
1148 if (from_insn == to_insn)
1149 return 0;
1151 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
1152 if (NONDEBUG_INSN_P (insn)
1153 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
1154 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
1155 return 1;
1156 return 0;
1159 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
1160 is entirely replaced by a new value and the only use is as a SET_DEST,
1161 we do not consider it a reference. */
1164 reg_referenced_p (const_rtx x, const_rtx body)
1166 int i;
1168 switch (GET_CODE (body))
1170 case SET:
1171 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
1172 return 1;
1174 /* If the destination is anything other than PC, a REG or a SUBREG
1175 of a REG that occupies all of the REG, the insn references X if
1176 it is mentioned in the destination. */
1177 if (GET_CODE (SET_DEST (body)) != PC
1178 && !REG_P (SET_DEST (body))
1179 && ! (GET_CODE (SET_DEST (body)) == SUBREG
1180 && REG_P (SUBREG_REG (SET_DEST (body)))
1181 && !read_modify_subreg_p (SET_DEST (body)))
1182 && reg_overlap_mentioned_p (x, SET_DEST (body)))
1183 return 1;
1184 return 0;
1186 case ASM_OPERANDS:
1187 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1188 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
1189 return 1;
1190 return 0;
1192 case CALL:
1193 case USE:
1194 case IF_THEN_ELSE:
1195 return reg_overlap_mentioned_p (x, body);
1197 case TRAP_IF:
1198 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
1200 case PREFETCH:
1201 return reg_overlap_mentioned_p (x, XEXP (body, 0));
1203 case UNSPEC:
1204 case UNSPEC_VOLATILE:
1205 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1206 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
1207 return 1;
1208 return 0;
1210 case PARALLEL:
1211 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1212 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
1213 return 1;
1214 return 0;
1216 case CLOBBER:
1217 if (MEM_P (XEXP (body, 0)))
1218 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
1219 return 1;
1220 return 0;
1222 case COND_EXEC:
1223 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
1224 return 1;
1225 return reg_referenced_p (x, COND_EXEC_CODE (body));
1227 default:
1228 return 0;
1232 /* Nonzero if register REG is set or clobbered in an insn between
1233 FROM_INSN and TO_INSN (exclusive of those two). */
1236 reg_set_between_p (const_rtx reg, const rtx_insn *from_insn,
1237 const rtx_insn *to_insn)
1239 const rtx_insn *insn;
1241 if (from_insn == to_insn)
1242 return 0;
1244 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
1245 if (INSN_P (insn) && reg_set_p (reg, insn))
1246 return 1;
1247 return 0;
1250 /* Return true if REG is set or clobbered inside INSN. */
1253 reg_set_p (const_rtx reg, const_rtx insn)
1255 /* After delay slot handling, call and branch insns might be in a
1256 sequence. Check all the elements there. */
1257 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1259 for (int i = 0; i < XVECLEN (PATTERN (insn), 0); ++i)
1260 if (reg_set_p (reg, XVECEXP (PATTERN (insn), 0, i)))
1261 return true;
1263 return false;
1266 /* We can be passed an insn or part of one. If we are passed an insn,
1267 check if a side-effect of the insn clobbers REG. */
1268 if (INSN_P (insn)
1269 && (FIND_REG_INC_NOTE (insn, reg)
1270 || (CALL_P (insn)
1271 && ((REG_P (reg)
1272 && REGNO (reg) < FIRST_PSEUDO_REGISTER
1273 && (insn_callee_abi (as_a<const rtx_insn *> (insn))
1274 .clobbers_reg_p (GET_MODE (reg), REGNO (reg))))
1275 || MEM_P (reg)
1276 || find_reg_fusage (insn, CLOBBER, reg)))))
1277 return true;
1279 /* There are no REG_INC notes for SP autoinc. */
1280 if (reg == stack_pointer_rtx && INSN_P (insn))
1282 subrtx_var_iterator::array_type array;
1283 FOR_EACH_SUBRTX_VAR (iter, array, PATTERN (insn), NONCONST)
1285 rtx mem = *iter;
1286 if (mem
1287 && MEM_P (mem)
1288 && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC)
1290 if (XEXP (XEXP (mem, 0), 0) == stack_pointer_rtx)
1291 return true;
1292 iter.skip_subrtxes ();
1297 return set_of (reg, insn) != NULL_RTX;
1300 /* Similar to reg_set_between_p, but check all registers in X. Return 0
1301 only if none of them are modified between START and END. Return 1 if
1302 X contains a MEM; this routine does use memory aliasing. */
1305 modified_between_p (const_rtx x, const rtx_insn *start, const rtx_insn *end)
1307 const enum rtx_code code = GET_CODE (x);
1308 const char *fmt;
1309 int i, j;
1310 rtx_insn *insn;
1312 if (start == end)
1313 return 0;
1315 switch (code)
1317 CASE_CONST_ANY:
1318 case CONST:
1319 case SYMBOL_REF:
1320 case LABEL_REF:
1321 return 0;
1323 case PC:
1324 return 1;
1326 case MEM:
1327 if (modified_between_p (XEXP (x, 0), start, end))
1328 return 1;
1329 if (MEM_READONLY_P (x))
1330 return 0;
1331 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
1332 if (memory_modified_in_insn_p (x, insn))
1333 return 1;
1334 return 0;
1336 case REG:
1337 return reg_set_between_p (x, start, end);
1339 default:
1340 break;
1343 fmt = GET_RTX_FORMAT (code);
1344 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1346 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
1347 return 1;
1349 else if (fmt[i] == 'E')
1350 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1351 if (modified_between_p (XVECEXP (x, i, j), start, end))
1352 return 1;
1355 return 0;
1358 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
1359 of them are modified in INSN. Return 1 if X contains a MEM; this routine
1360 does use memory aliasing. */
1363 modified_in_p (const_rtx x, const_rtx insn)
1365 const enum rtx_code code = GET_CODE (x);
1366 const char *fmt;
1367 int i, j;
1369 switch (code)
1371 CASE_CONST_ANY:
1372 case CONST:
1373 case SYMBOL_REF:
1374 case LABEL_REF:
1375 return 0;
1377 case PC:
1378 return 1;
1380 case MEM:
1381 if (modified_in_p (XEXP (x, 0), insn))
1382 return 1;
1383 if (MEM_READONLY_P (x))
1384 return 0;
1385 if (memory_modified_in_insn_p (x, insn))
1386 return 1;
1387 return 0;
1389 case REG:
1390 return reg_set_p (x, insn);
1392 default:
1393 break;
1396 fmt = GET_RTX_FORMAT (code);
1397 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1399 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
1400 return 1;
1402 else if (fmt[i] == 'E')
1403 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1404 if (modified_in_p (XVECEXP (x, i, j), insn))
1405 return 1;
1408 return 0;
1411 /* Return true if X is a SUBREG and if storing a value to X would
1412 preserve some of its SUBREG_REG. For example, on a normal 32-bit
1413 target, using a SUBREG to store to one half of a DImode REG would
1414 preserve the other half. */
1416 bool
1417 read_modify_subreg_p (const_rtx x)
1419 if (GET_CODE (x) != SUBREG)
1420 return false;
1421 poly_uint64 isize = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
1422 poly_uint64 osize = GET_MODE_SIZE (GET_MODE (x));
1423 poly_uint64 regsize = REGMODE_NATURAL_SIZE (GET_MODE (SUBREG_REG (x)));
1424 /* The inner and outer modes of a subreg must be ordered, so that we
1425 can tell whether they're paradoxical or partial. */
1426 gcc_checking_assert (ordered_p (isize, osize));
1427 return (maybe_gt (isize, osize) && maybe_gt (isize, regsize));
1430 /* Helper function for set_of. */
1431 struct set_of_data
1433 const_rtx found;
1434 const_rtx pat;
1437 static void
1438 set_of_1 (rtx x, const_rtx pat, void *data1)
1440 struct set_of_data *const data = (struct set_of_data *) (data1);
1441 if (rtx_equal_p (x, data->pat)
1442 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
1443 data->found = pat;
1446 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
1447 (either directly or via STRICT_LOW_PART and similar modifiers). */
1448 const_rtx
1449 set_of (const_rtx pat, const_rtx insn)
1451 struct set_of_data data;
1452 data.found = NULL_RTX;
1453 data.pat = pat;
1454 note_pattern_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
1455 return data.found;
1458 /* Check whether instruction pattern PAT contains a SET with the following
1459 properties:
1461 - the SET is executed unconditionally; and
1462 - either:
1463 - the destination of the SET is a REG that contains REGNO; or
1464 - both:
1465 - the destination of the SET is a SUBREG of such a REG; and
1466 - writing to the subreg clobbers all of the SUBREG_REG
1467 (in other words, read_modify_subreg_p is false).
1469 If PAT does have a SET like that, return the set, otherwise return null.
1471 This is intended to be an alternative to single_set for passes that
1472 can handle patterns with multiple_sets. */
1474 simple_regno_set (rtx pat, unsigned int regno)
1476 if (GET_CODE (pat) == PARALLEL)
1478 int last = XVECLEN (pat, 0) - 1;
1479 for (int i = 0; i < last; ++i)
1480 if (rtx set = simple_regno_set (XVECEXP (pat, 0, i), regno))
1481 return set;
1483 pat = XVECEXP (pat, 0, last);
1486 if (GET_CODE (pat) == SET
1487 && covers_regno_no_parallel_p (SET_DEST (pat), regno))
1488 return pat;
1490 return nullptr;
1493 /* Add all hard register in X to *PSET. */
1494 void
1495 find_all_hard_regs (const_rtx x, HARD_REG_SET *pset)
1497 subrtx_iterator::array_type array;
1498 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
1500 const_rtx x = *iter;
1501 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1502 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1506 /* This function, called through note_stores, collects sets and
1507 clobbers of hard registers in a HARD_REG_SET, which is pointed to
1508 by DATA. */
1509 void
1510 record_hard_reg_sets (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1512 HARD_REG_SET *pset = (HARD_REG_SET *)data;
1513 if (REG_P (x) && HARD_REGISTER_P (x))
1514 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1517 /* Examine INSN, and compute the set of hard registers written by it.
1518 Store it in *PSET. Should only be called after reload.
1520 IMPLICIT is true if we should include registers that are fully-clobbered
1521 by calls. This should be used with caution, since it doesn't include
1522 partially-clobbered registers. */
1523 void
1524 find_all_hard_reg_sets (const rtx_insn *insn, HARD_REG_SET *pset, bool implicit)
1526 rtx link;
1528 CLEAR_HARD_REG_SET (*pset);
1529 note_stores (insn, record_hard_reg_sets, pset);
1530 if (CALL_P (insn) && implicit)
1531 *pset |= insn_callee_abi (insn).full_reg_clobbers ();
1532 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1533 if (REG_NOTE_KIND (link) == REG_INC)
1534 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1537 /* Like record_hard_reg_sets, but called through note_uses. */
1538 void
1539 record_hard_reg_uses (rtx *px, void *data)
1541 find_all_hard_regs (*px, (HARD_REG_SET *) data);
1544 /* Given an INSN, return a SET expression if this insn has only a single SET.
1545 It may also have CLOBBERs, USEs, or SET whose output
1546 will not be used, which we ignore. */
1549 single_set_2 (const rtx_insn *insn, const_rtx pat)
1551 rtx set = NULL;
1552 int set_verified = 1;
1553 int i;
1555 if (GET_CODE (pat) == PARALLEL)
1557 for (i = 0; i < XVECLEN (pat, 0); i++)
1559 rtx sub = XVECEXP (pat, 0, i);
1560 switch (GET_CODE (sub))
1562 case USE:
1563 case CLOBBER:
1564 break;
1566 case SET:
1567 /* We can consider insns having multiple sets, where all
1568 but one are dead as single set insns. In common case
1569 only single set is present in the pattern so we want
1570 to avoid checking for REG_UNUSED notes unless necessary.
1572 When we reach set first time, we just expect this is
1573 the single set we are looking for and only when more
1574 sets are found in the insn, we check them. */
1575 if (!set_verified)
1577 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1578 && !side_effects_p (set))
1579 set = NULL;
1580 else
1581 set_verified = 1;
1583 if (!set)
1584 set = sub, set_verified = 0;
1585 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1586 || side_effects_p (sub))
1587 return NULL_RTX;
1588 break;
1590 default:
1591 return NULL_RTX;
1595 return set;
1598 /* Given an INSN, return nonzero if it has more than one SET, else return
1599 zero. */
1602 multiple_sets (const_rtx insn)
1604 int found;
1605 int i;
1607 /* INSN must be an insn. */
1608 if (! INSN_P (insn))
1609 return 0;
1611 /* Only a PARALLEL can have multiple SETs. */
1612 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1614 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1615 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1617 /* If we have already found a SET, then return now. */
1618 if (found)
1619 return 1;
1620 else
1621 found = 1;
1625 /* Either zero or one SET. */
1626 return 0;
1629 /* Return nonzero if the destination of SET equals the source
1630 and there are no side effects. */
1633 set_noop_p (const_rtx set)
1635 rtx src = SET_SRC (set);
1636 rtx dst = SET_DEST (set);
1638 if (dst == pc_rtx && src == pc_rtx)
1639 return 1;
1641 if (MEM_P (dst) && MEM_P (src))
1642 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1644 if (GET_CODE (dst) == ZERO_EXTRACT)
1645 return rtx_equal_p (XEXP (dst, 0), src)
1646 && !BITS_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1647 && !side_effects_p (src);
1649 if (GET_CODE (dst) == STRICT_LOW_PART)
1650 dst = XEXP (dst, 0);
1652 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1654 if (maybe_ne (SUBREG_BYTE (src), SUBREG_BYTE (dst)))
1655 return 0;
1656 src = SUBREG_REG (src);
1657 dst = SUBREG_REG (dst);
1658 if (GET_MODE (src) != GET_MODE (dst))
1659 /* It is hard to tell whether subregs refer to the same bits, so act
1660 conservatively and return 0. */
1661 return 0;
1664 /* It is a NOOP if destination overlaps with selected src vector
1665 elements. */
1666 if (GET_CODE (src) == VEC_SELECT
1667 && REG_P (XEXP (src, 0)) && REG_P (dst)
1668 && HARD_REGISTER_P (XEXP (src, 0))
1669 && HARD_REGISTER_P (dst))
1671 int i;
1672 rtx par = XEXP (src, 1);
1673 rtx src0 = XEXP (src, 0);
1674 poly_int64 c0;
1675 if (!poly_int_rtx_p (XVECEXP (par, 0, 0), &c0))
1676 return 0;
1677 poly_int64 offset = GET_MODE_UNIT_SIZE (GET_MODE (src0)) * c0;
1679 for (i = 1; i < XVECLEN (par, 0); i++)
1681 poly_int64 c0i;
1682 if (!poly_int_rtx_p (XVECEXP (par, 0, i), &c0i)
1683 || maybe_ne (c0i, c0 + i))
1684 return 0;
1686 return
1687 REG_CAN_CHANGE_MODE_P (REGNO (dst), GET_MODE (src0), GET_MODE (dst))
1688 && simplify_subreg_regno (REGNO (src0), GET_MODE (src0),
1689 offset, GET_MODE (dst)) == (int) REGNO (dst);
1692 return (REG_P (src) && REG_P (dst)
1693 && REGNO (src) == REGNO (dst));
1696 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1697 value to itself. */
1700 noop_move_p (const rtx_insn *insn)
1702 rtx pat = PATTERN (insn);
1704 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1705 return 1;
1707 /* Check the code to be executed for COND_EXEC. */
1708 if (GET_CODE (pat) == COND_EXEC)
1709 pat = COND_EXEC_CODE (pat);
1711 if (GET_CODE (pat) == SET && set_noop_p (pat))
1712 return 1;
1714 if (GET_CODE (pat) == PARALLEL)
1716 int i;
1717 /* If nothing but SETs of registers to themselves,
1718 this insn can also be deleted. */
1719 for (i = 0; i < XVECLEN (pat, 0); i++)
1721 rtx tem = XVECEXP (pat, 0, i);
1723 if (GET_CODE (tem) == USE || GET_CODE (tem) == CLOBBER)
1724 continue;
1726 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1727 return 0;
1730 return 1;
1732 return 0;
1736 /* Return nonzero if register in range [REGNO, ENDREGNO)
1737 appears either explicitly or implicitly in X
1738 other than being stored into.
1740 References contained within the substructure at LOC do not count.
1741 LOC may be zero, meaning don't ignore anything. */
1743 bool
1744 refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
1745 rtx *loc)
1747 int i;
1748 unsigned int x_regno;
1749 RTX_CODE code;
1750 const char *fmt;
1752 repeat:
1753 /* The contents of a REG_NONNEG note is always zero, so we must come here
1754 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1755 if (x == 0)
1756 return false;
1758 code = GET_CODE (x);
1760 switch (code)
1762 case REG:
1763 x_regno = REGNO (x);
1765 /* If we modifying the stack, frame, or argument pointer, it will
1766 clobber a virtual register. In fact, we could be more precise,
1767 but it isn't worth it. */
1768 if ((x_regno == STACK_POINTER_REGNUM
1769 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1770 && x_regno == ARG_POINTER_REGNUM)
1771 || x_regno == FRAME_POINTER_REGNUM)
1772 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1773 return true;
1775 return endregno > x_regno && regno < END_REGNO (x);
1777 case SUBREG:
1778 /* If this is a SUBREG of a hard reg, we can see exactly which
1779 registers are being modified. Otherwise, handle normally. */
1780 if (REG_P (SUBREG_REG (x))
1781 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1783 unsigned int inner_regno = subreg_regno (x);
1784 unsigned int inner_endregno
1785 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1786 ? subreg_nregs (x) : 1);
1788 return endregno > inner_regno && regno < inner_endregno;
1790 break;
1792 case CLOBBER:
1793 case SET:
1794 if (&SET_DEST (x) != loc
1795 /* Note setting a SUBREG counts as referring to the REG it is in for
1796 a pseudo but not for hard registers since we can
1797 treat each word individually. */
1798 && ((GET_CODE (SET_DEST (x)) == SUBREG
1799 && loc != &SUBREG_REG (SET_DEST (x))
1800 && REG_P (SUBREG_REG (SET_DEST (x)))
1801 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1802 && refers_to_regno_p (regno, endregno,
1803 SUBREG_REG (SET_DEST (x)), loc))
1804 || (!REG_P (SET_DEST (x))
1805 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1806 return true;
1808 if (code == CLOBBER || loc == &SET_SRC (x))
1809 return false;
1810 x = SET_SRC (x);
1811 goto repeat;
1813 default:
1814 break;
1817 /* X does not match, so try its subexpressions. */
1819 fmt = GET_RTX_FORMAT (code);
1820 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1822 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1824 if (i == 0)
1826 x = XEXP (x, 0);
1827 goto repeat;
1829 else
1830 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1831 return true;
1833 else if (fmt[i] == 'E')
1835 int j;
1836 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1837 if (loc != &XVECEXP (x, i, j)
1838 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1839 return true;
1842 return false;
1845 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1846 we check if any register number in X conflicts with the relevant register
1847 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1848 contains a MEM (we don't bother checking for memory addresses that can't
1849 conflict because we expect this to be a rare case. */
1852 reg_overlap_mentioned_p (const_rtx x, const_rtx in)
1854 unsigned int regno, endregno;
1856 /* If either argument is a constant, then modifying X cannot
1857 affect IN. Here we look at IN, we can profitably combine
1858 CONSTANT_P (x) with the switch statement below. */
1859 if (CONSTANT_P (in))
1860 return 0;
1862 recurse:
1863 switch (GET_CODE (x))
1865 case CLOBBER:
1866 case STRICT_LOW_PART:
1867 case ZERO_EXTRACT:
1868 case SIGN_EXTRACT:
1869 /* Overly conservative. */
1870 x = XEXP (x, 0);
1871 goto recurse;
1873 case SUBREG:
1874 regno = REGNO (SUBREG_REG (x));
1875 if (regno < FIRST_PSEUDO_REGISTER)
1876 regno = subreg_regno (x);
1877 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1878 ? subreg_nregs (x) : 1);
1879 goto do_reg;
1881 case REG:
1882 regno = REGNO (x);
1883 endregno = END_REGNO (x);
1884 do_reg:
1885 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1887 case MEM:
1889 const char *fmt;
1890 int i;
1892 if (MEM_P (in))
1893 return 1;
1895 fmt = GET_RTX_FORMAT (GET_CODE (in));
1896 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1897 if (fmt[i] == 'e')
1899 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1900 return 1;
1902 else if (fmt[i] == 'E')
1904 int j;
1905 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1906 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1907 return 1;
1910 return 0;
1913 case SCRATCH:
1914 case PC:
1915 return reg_mentioned_p (x, in);
1917 case PARALLEL:
1919 int i;
1921 /* If any register in here refers to it we return true. */
1922 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1923 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1924 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1925 return 1;
1926 return 0;
1929 default:
1930 gcc_assert (CONSTANT_P (x));
1931 return 0;
1935 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1936 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1937 ignored by note_stores, but passed to FUN.
1939 FUN receives three arguments:
1940 1. the REG, MEM or PC being stored in or clobbered,
1941 2. the SET or CLOBBER rtx that does the store,
1942 3. the pointer DATA provided to note_stores.
1944 If the item being stored in or clobbered is a SUBREG of a hard register,
1945 the SUBREG will be passed. */
1947 void
1948 note_pattern_stores (const_rtx x,
1949 void (*fun) (rtx, const_rtx, void *), void *data)
1951 int i;
1953 if (GET_CODE (x) == COND_EXEC)
1954 x = COND_EXEC_CODE (x);
1956 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1958 rtx dest = SET_DEST (x);
1960 while ((GET_CODE (dest) == SUBREG
1961 && (!REG_P (SUBREG_REG (dest))
1962 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1963 || GET_CODE (dest) == ZERO_EXTRACT
1964 || GET_CODE (dest) == STRICT_LOW_PART)
1965 dest = XEXP (dest, 0);
1967 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1968 each of whose first operand is a register. */
1969 if (GET_CODE (dest) == PARALLEL)
1971 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1972 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1973 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1975 else
1976 (*fun) (dest, x, data);
1979 else if (GET_CODE (x) == PARALLEL)
1980 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1981 note_pattern_stores (XVECEXP (x, 0, i), fun, data);
1984 /* Same, but for an instruction. If the instruction is a call, include
1985 any CLOBBERs in its CALL_INSN_FUNCTION_USAGE. */
1987 void
1988 note_stores (const rtx_insn *insn,
1989 void (*fun) (rtx, const_rtx, void *), void *data)
1991 if (CALL_P (insn))
1992 for (rtx link = CALL_INSN_FUNCTION_USAGE (insn);
1993 link; link = XEXP (link, 1))
1994 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
1995 note_pattern_stores (XEXP (link, 0), fun, data);
1996 note_pattern_stores (PATTERN (insn), fun, data);
1999 /* Like notes_stores, but call FUN for each expression that is being
2000 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
2001 FUN for each expression, not any interior subexpressions. FUN receives a
2002 pointer to the expression and the DATA passed to this function.
2004 Note that this is not quite the same test as that done in reg_referenced_p
2005 since that considers something as being referenced if it is being
2006 partially set, while we do not. */
2008 void
2009 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
2011 rtx body = *pbody;
2012 int i;
2014 switch (GET_CODE (body))
2016 case COND_EXEC:
2017 (*fun) (&COND_EXEC_TEST (body), data);
2018 note_uses (&COND_EXEC_CODE (body), fun, data);
2019 return;
2021 case PARALLEL:
2022 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
2023 note_uses (&XVECEXP (body, 0, i), fun, data);
2024 return;
2026 case SEQUENCE:
2027 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
2028 note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
2029 return;
2031 case USE:
2032 (*fun) (&XEXP (body, 0), data);
2033 return;
2035 case ASM_OPERANDS:
2036 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
2037 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
2038 return;
2040 case TRAP_IF:
2041 (*fun) (&TRAP_CONDITION (body), data);
2042 return;
2044 case PREFETCH:
2045 (*fun) (&XEXP (body, 0), data);
2046 return;
2048 case UNSPEC:
2049 case UNSPEC_VOLATILE:
2050 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
2051 (*fun) (&XVECEXP (body, 0, i), data);
2052 return;
2054 case CLOBBER:
2055 if (MEM_P (XEXP (body, 0)))
2056 (*fun) (&XEXP (XEXP (body, 0), 0), data);
2057 return;
2059 case SET:
2061 rtx dest = SET_DEST (body);
2063 /* For sets we replace everything in source plus registers in memory
2064 expression in store and operands of a ZERO_EXTRACT. */
2065 (*fun) (&SET_SRC (body), data);
2067 if (GET_CODE (dest) == ZERO_EXTRACT)
2069 (*fun) (&XEXP (dest, 1), data);
2070 (*fun) (&XEXP (dest, 2), data);
2073 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
2074 dest = XEXP (dest, 0);
2076 if (MEM_P (dest))
2077 (*fun) (&XEXP (dest, 0), data);
2079 return;
2081 default:
2082 /* All the other possibilities never store. */
2083 (*fun) (pbody, data);
2084 return;
2088 /* Try to add a description of REG X to this object, stopping once
2089 the REF_END limit has been reached. FLAGS is a bitmask of
2090 rtx_obj_reference flags that describe the context. */
2092 void
2093 rtx_properties::try_to_add_reg (const_rtx x, unsigned int flags)
2095 if (REG_NREGS (x) != 1)
2096 flags |= rtx_obj_flags::IS_MULTIREG;
2097 machine_mode mode = GET_MODE (x);
2098 unsigned int start_regno = REGNO (x);
2099 unsigned int end_regno = END_REGNO (x);
2100 for (unsigned int regno = start_regno; regno < end_regno; ++regno)
2101 if (ref_iter != ref_end)
2102 *ref_iter++ = rtx_obj_reference (regno, flags, mode,
2103 regno - start_regno);
2106 /* Add a description of destination X to this object. FLAGS is a bitmask
2107 of rtx_obj_reference flags that describe the context.
2109 This routine accepts all rtxes that can legitimately appear in a
2110 SET_DEST. */
2112 void
2113 rtx_properties::try_to_add_dest (const_rtx x, unsigned int flags)
2115 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
2116 each of whose first operand is a register. */
2117 if (UNLIKELY (GET_CODE (x) == PARALLEL))
2119 for (int i = XVECLEN (x, 0) - 1; i >= 0; --i)
2120 if (rtx dest = XEXP (XVECEXP (x, 0, i), 0))
2121 try_to_add_dest (dest, flags);
2122 return;
2125 unsigned int base_flags = flags & rtx_obj_flags::STICKY_FLAGS;
2126 flags |= rtx_obj_flags::IS_WRITE;
2127 for (;;)
2128 if (GET_CODE (x) == ZERO_EXTRACT)
2130 try_to_add_src (XEXP (x, 1), base_flags);
2131 try_to_add_src (XEXP (x, 2), base_flags);
2132 flags |= rtx_obj_flags::IS_READ;
2133 x = XEXP (x, 0);
2135 else if (GET_CODE (x) == STRICT_LOW_PART)
2137 flags |= rtx_obj_flags::IS_READ;
2138 x = XEXP (x, 0);
2140 else if (GET_CODE (x) == SUBREG)
2142 flags |= rtx_obj_flags::IN_SUBREG;
2143 if (read_modify_subreg_p (x))
2144 flags |= rtx_obj_flags::IS_READ;
2145 x = SUBREG_REG (x);
2147 else
2148 break;
2150 if (MEM_P (x))
2152 if (ref_iter != ref_end)
2153 *ref_iter++ = rtx_obj_reference (MEM_REGNO, flags, GET_MODE (x));
2155 unsigned int addr_flags = base_flags | rtx_obj_flags::IN_MEM_STORE;
2156 if (flags & rtx_obj_flags::IS_READ)
2157 addr_flags |= rtx_obj_flags::IN_MEM_LOAD;
2158 try_to_add_src (XEXP (x, 0), addr_flags);
2159 return;
2162 if (LIKELY (REG_P (x)))
2164 /* We want to keep sp alive everywhere - by making all
2165 writes to sp also use sp. */
2166 if (REGNO (x) == STACK_POINTER_REGNUM)
2167 flags |= rtx_obj_flags::IS_READ;
2168 try_to_add_reg (x, flags);
2169 return;
2173 /* Try to add a description of source X to this object, stopping once
2174 the REF_END limit has been reached. FLAGS is a bitmask of
2175 rtx_obj_reference flags that describe the context.
2177 This routine accepts all rtxes that can legitimately appear in a SET_SRC. */
2179 void
2180 rtx_properties::try_to_add_src (const_rtx x, unsigned int flags)
2182 unsigned int base_flags = flags & rtx_obj_flags::STICKY_FLAGS;
2183 subrtx_iterator::array_type array;
2184 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
2186 const_rtx x = *iter;
2187 rtx_code code = GET_CODE (x);
2188 if (code == REG)
2189 try_to_add_reg (x, flags | rtx_obj_flags::IS_READ);
2190 else if (code == MEM)
2192 if (MEM_VOLATILE_P (x))
2193 has_volatile_refs = true;
2195 if (!MEM_READONLY_P (x) && ref_iter != ref_end)
2197 auto mem_flags = flags | rtx_obj_flags::IS_READ;
2198 *ref_iter++ = rtx_obj_reference (MEM_REGNO, mem_flags,
2199 GET_MODE (x));
2202 try_to_add_src (XEXP (x, 0),
2203 base_flags | rtx_obj_flags::IN_MEM_LOAD);
2204 iter.skip_subrtxes ();
2206 else if (code == SUBREG)
2208 try_to_add_src (SUBREG_REG (x), flags | rtx_obj_flags::IN_SUBREG);
2209 iter.skip_subrtxes ();
2211 else if (code == UNSPEC_VOLATILE)
2212 has_volatile_refs = true;
2213 else if (code == ASM_INPUT || code == ASM_OPERANDS)
2215 has_asm = true;
2216 if (MEM_VOLATILE_P (x))
2217 has_volatile_refs = true;
2219 else if (code == PRE_INC
2220 || code == PRE_DEC
2221 || code == POST_INC
2222 || code == POST_DEC
2223 || code == PRE_MODIFY
2224 || code == POST_MODIFY)
2226 has_pre_post_modify = true;
2228 unsigned int addr_flags = (base_flags
2229 | rtx_obj_flags::IS_PRE_POST_MODIFY
2230 | rtx_obj_flags::IS_READ);
2231 try_to_add_dest (XEXP (x, 0), addr_flags);
2232 if (code == PRE_MODIFY || code == POST_MODIFY)
2233 iter.substitute (XEXP (XEXP (x, 1), 1));
2234 else
2235 iter.skip_subrtxes ();
2237 else if (code == CALL)
2238 has_call = true;
2242 /* Try to add a description of instruction pattern PAT to this object,
2243 stopping once the REF_END limit has been reached. */
2245 void
2246 rtx_properties::try_to_add_pattern (const_rtx pat)
2248 switch (GET_CODE (pat))
2250 case COND_EXEC:
2251 try_to_add_src (COND_EXEC_TEST (pat));
2252 try_to_add_pattern (COND_EXEC_CODE (pat));
2253 break;
2255 case PARALLEL:
2257 int last = XVECLEN (pat, 0) - 1;
2258 for (int i = 0; i < last; ++i)
2259 try_to_add_pattern (XVECEXP (pat, 0, i));
2260 try_to_add_pattern (XVECEXP (pat, 0, last));
2261 break;
2264 case ASM_OPERANDS:
2265 for (int i = 0, len = ASM_OPERANDS_INPUT_LENGTH (pat); i < len; ++i)
2266 try_to_add_src (ASM_OPERANDS_INPUT (pat, i));
2267 break;
2269 case CLOBBER:
2270 try_to_add_dest (XEXP (pat, 0), rtx_obj_flags::IS_CLOBBER);
2271 break;
2273 case SET:
2274 try_to_add_dest (SET_DEST (pat));
2275 try_to_add_src (SET_SRC (pat));
2276 break;
2278 default:
2279 /* All the other possibilities never store and can use a normal
2280 rtx walk. This includes:
2282 - USE
2283 - TRAP_IF
2284 - PREFETCH
2285 - UNSPEC
2286 - UNSPEC_VOLATILE. */
2287 try_to_add_src (pat);
2288 break;
2292 /* Try to add a description of INSN to this object, stopping once
2293 the REF_END limit has been reached. INCLUDE_NOTES is true if the
2294 description should include REG_EQUAL and REG_EQUIV notes; all such
2295 references will then be marked with rtx_obj_flags::IN_NOTE.
2297 For calls, this description includes all accesses in
2298 CALL_INSN_FUNCTION_USAGE. It also include all implicit accesses
2299 to global registers by the target function. However, it does not
2300 include clobbers performed by the target function; callers that want
2301 this information should instead use the function_abi interface. */
2303 void
2304 rtx_properties::try_to_add_insn (const rtx_insn *insn, bool include_notes)
2306 if (CALL_P (insn))
2308 /* Non-const functions can read from global registers. Impure
2309 functions can also set them.
2311 Adding the global registers first removes a situation in which
2312 a fixed-form clobber of register R could come before a real set
2313 of register R. */
2314 if (!hard_reg_set_empty_p (global_reg_set)
2315 && !RTL_CONST_CALL_P (insn))
2317 unsigned int flags = rtx_obj_flags::IS_READ;
2318 if (!RTL_PURE_CALL_P (insn))
2319 flags |= rtx_obj_flags::IS_WRITE;
2320 for (unsigned int regno = 0; regno < FIRST_PSEUDO_REGISTER; ++regno)
2321 /* As a special case, the stack pointer is invariant across calls
2322 even if it has been marked global; see the corresponding
2323 handling in df_get_call_refs. */
2324 if (regno != STACK_POINTER_REGNUM
2325 && global_regs[regno]
2326 && ref_iter != ref_end)
2327 *ref_iter++ = rtx_obj_reference (regno, flags,
2328 reg_raw_mode[regno], 0);
2330 /* Untyped calls implicitly set all function value registers.
2331 Again, we add them first in case the main pattern contains
2332 a fixed-form clobber. */
2333 if (find_reg_note (insn, REG_UNTYPED_CALL, NULL_RTX))
2334 for (unsigned int regno = 0; regno < FIRST_PSEUDO_REGISTER; ++regno)
2335 if (targetm.calls.function_value_regno_p (regno)
2336 && ref_iter != ref_end)
2337 *ref_iter++ = rtx_obj_reference (regno, rtx_obj_flags::IS_WRITE,
2338 reg_raw_mode[regno], 0);
2339 if (ref_iter != ref_end && !RTL_CONST_CALL_P (insn))
2341 auto mem_flags = rtx_obj_flags::IS_READ;
2342 if (!RTL_PURE_CALL_P (insn))
2343 mem_flags |= rtx_obj_flags::IS_WRITE;
2344 *ref_iter++ = rtx_obj_reference (MEM_REGNO, mem_flags, BLKmode);
2346 try_to_add_pattern (PATTERN (insn));
2347 for (rtx link = CALL_INSN_FUNCTION_USAGE (insn); link;
2348 link = XEXP (link, 1))
2350 rtx x = XEXP (link, 0);
2351 if (GET_CODE (x) == CLOBBER)
2352 try_to_add_dest (XEXP (x, 0), rtx_obj_flags::IS_CLOBBER);
2353 else if (GET_CODE (x) == USE)
2354 try_to_add_src (XEXP (x, 0));
2357 else
2358 try_to_add_pattern (PATTERN (insn));
2360 if (include_notes)
2361 for (rtx note = REG_NOTES (insn); note; note = XEXP (note, 1))
2362 if (REG_NOTE_KIND (note) == REG_EQUAL
2363 || REG_NOTE_KIND (note) == REG_EQUIV)
2364 try_to_add_note (XEXP (note, 0));
2367 /* Grow the storage by a bit while keeping the contents of the first
2368 START elements. */
2370 void
2371 vec_rtx_properties_base::grow (ptrdiff_t start)
2373 /* The same heuristic that vec uses. */
2374 ptrdiff_t new_elems = (ref_end - ref_begin) * 3 / 2;
2375 if (ref_begin == m_storage)
2377 ref_begin = XNEWVEC (rtx_obj_reference, new_elems);
2378 if (start)
2379 memcpy (ref_begin, m_storage, start * sizeof (rtx_obj_reference));
2381 else
2382 ref_begin = reinterpret_cast<rtx_obj_reference *>
2383 (xrealloc (ref_begin, new_elems * sizeof (rtx_obj_reference)));
2384 ref_iter = ref_begin + start;
2385 ref_end = ref_begin + new_elems;
2388 /* Return nonzero if X's old contents don't survive after INSN.
2389 This will be true if X is a register and X dies in INSN or because
2390 INSN entirely sets X.
2392 "Entirely set" means set directly and not through a SUBREG, or
2393 ZERO_EXTRACT, so no trace of the old contents remains.
2394 Likewise, REG_INC does not count.
2396 REG may be a hard or pseudo reg. Renumbering is not taken into account,
2397 but for this use that makes no difference, since regs don't overlap
2398 during their lifetimes. Therefore, this function may be used
2399 at any time after deaths have been computed.
2401 If REG is a hard reg that occupies multiple machine registers, this
2402 function will only return 1 if each of those registers will be replaced
2403 by INSN. */
2406 dead_or_set_p (const rtx_insn *insn, const_rtx x)
2408 unsigned int regno, end_regno;
2409 unsigned int i;
2411 gcc_assert (REG_P (x));
2413 regno = REGNO (x);
2414 end_regno = END_REGNO (x);
2415 for (i = regno; i < end_regno; i++)
2416 if (! dead_or_set_regno_p (insn, i))
2417 return 0;
2419 return 1;
2422 /* Return TRUE iff DEST is a register or subreg of a register, is a
2423 complete rather than read-modify-write destination, and contains
2424 register TEST_REGNO. */
2426 static bool
2427 covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
2429 unsigned int regno, endregno;
2431 if (GET_CODE (dest) == SUBREG && !read_modify_subreg_p (dest))
2432 dest = SUBREG_REG (dest);
2434 if (!REG_P (dest))
2435 return false;
2437 regno = REGNO (dest);
2438 endregno = END_REGNO (dest);
2439 return (test_regno >= regno && test_regno < endregno);
2442 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
2443 any member matches the covers_regno_no_parallel_p criteria. */
2445 static bool
2446 covers_regno_p (const_rtx dest, unsigned int test_regno)
2448 if (GET_CODE (dest) == PARALLEL)
2450 /* Some targets place small structures in registers for return
2451 values of functions, and those registers are wrapped in
2452 PARALLELs that we may see as the destination of a SET. */
2453 int i;
2455 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
2457 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
2458 if (inner != NULL_RTX
2459 && covers_regno_no_parallel_p (inner, test_regno))
2460 return true;
2463 return false;
2465 else
2466 return covers_regno_no_parallel_p (dest, test_regno);
2469 /* Utility function for dead_or_set_p to check an individual register. */
2472 dead_or_set_regno_p (const rtx_insn *insn, unsigned int test_regno)
2474 const_rtx pattern;
2476 /* See if there is a death note for something that includes TEST_REGNO. */
2477 if (find_regno_note (insn, REG_DEAD, test_regno))
2478 return 1;
2480 if (CALL_P (insn)
2481 && find_regno_fusage (insn, CLOBBER, test_regno))
2482 return 1;
2484 pattern = PATTERN (insn);
2486 /* If a COND_EXEC is not executed, the value survives. */
2487 if (GET_CODE (pattern) == COND_EXEC)
2488 return 0;
2490 if (GET_CODE (pattern) == SET || GET_CODE (pattern) == CLOBBER)
2491 return covers_regno_p (SET_DEST (pattern), test_regno);
2492 else if (GET_CODE (pattern) == PARALLEL)
2494 int i;
2496 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
2498 rtx body = XVECEXP (pattern, 0, i);
2500 if (GET_CODE (body) == COND_EXEC)
2501 body = COND_EXEC_CODE (body);
2503 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
2504 && covers_regno_p (SET_DEST (body), test_regno))
2505 return 1;
2509 return 0;
2512 /* Return the reg-note of kind KIND in insn INSN, if there is one.
2513 If DATUM is nonzero, look for one whose datum is DATUM. */
2516 find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
2518 rtx link;
2520 gcc_checking_assert (insn);
2522 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
2523 if (! INSN_P (insn))
2524 return 0;
2525 if (datum == 0)
2527 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2528 if (REG_NOTE_KIND (link) == kind)
2529 return link;
2530 return 0;
2533 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2534 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
2535 return link;
2536 return 0;
2539 /* Return the reg-note of kind KIND in insn INSN which applies to register
2540 number REGNO, if any. Return 0 if there is no such reg-note. Note that
2541 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
2542 it might be the case that the note overlaps REGNO. */
2545 find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
2547 rtx link;
2549 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
2550 if (! INSN_P (insn))
2551 return 0;
2553 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2554 if (REG_NOTE_KIND (link) == kind
2555 /* Verify that it is a register, so that scratch and MEM won't cause a
2556 problem here. */
2557 && REG_P (XEXP (link, 0))
2558 && REGNO (XEXP (link, 0)) <= regno
2559 && END_REGNO (XEXP (link, 0)) > regno)
2560 return link;
2561 return 0;
2564 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
2565 has such a note. */
2568 find_reg_equal_equiv_note (const_rtx insn)
2570 rtx link;
2572 if (!INSN_P (insn))
2573 return 0;
2575 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2576 if (REG_NOTE_KIND (link) == REG_EQUAL
2577 || REG_NOTE_KIND (link) == REG_EQUIV)
2579 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
2580 insns that have multiple sets. Checking single_set to
2581 make sure of this is not the proper check, as explained
2582 in the comment in set_unique_reg_note.
2584 This should be changed into an assert. */
2585 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
2586 return 0;
2587 return link;
2589 return NULL;
2592 /* Check whether INSN is a single_set whose source is known to be
2593 equivalent to a constant. Return that constant if so, otherwise
2594 return null. */
2597 find_constant_src (const rtx_insn *insn)
2599 rtx note, set, x;
2601 set = single_set (insn);
2602 if (set)
2604 x = avoid_constant_pool_reference (SET_SRC (set));
2605 if (CONSTANT_P (x))
2606 return x;
2609 note = find_reg_equal_equiv_note (insn);
2610 if (note && CONSTANT_P (XEXP (note, 0)))
2611 return XEXP (note, 0);
2613 return NULL_RTX;
2616 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
2617 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
2620 find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
2622 /* If it's not a CALL_INSN, it can't possibly have a
2623 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
2624 if (!CALL_P (insn))
2625 return 0;
2627 gcc_assert (datum);
2629 if (!REG_P (datum))
2631 rtx link;
2633 for (link = CALL_INSN_FUNCTION_USAGE (insn);
2634 link;
2635 link = XEXP (link, 1))
2636 if (GET_CODE (XEXP (link, 0)) == code
2637 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
2638 return 1;
2640 else
2642 unsigned int regno = REGNO (datum);
2644 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2645 to pseudo registers, so don't bother checking. */
2647 if (regno < FIRST_PSEUDO_REGISTER)
2649 unsigned int end_regno = END_REGNO (datum);
2650 unsigned int i;
2652 for (i = regno; i < end_regno; i++)
2653 if (find_regno_fusage (insn, code, i))
2654 return 1;
2658 return 0;
2661 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
2662 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
2665 find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
2667 rtx link;
2669 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2670 to pseudo registers, so don't bother checking. */
2672 if (regno >= FIRST_PSEUDO_REGISTER
2673 || !CALL_P (insn) )
2674 return 0;
2676 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
2678 rtx op, reg;
2680 if (GET_CODE (op = XEXP (link, 0)) == code
2681 && REG_P (reg = XEXP (op, 0))
2682 && REGNO (reg) <= regno
2683 && END_REGNO (reg) > regno)
2684 return 1;
2687 return 0;
2691 /* Return true if KIND is an integer REG_NOTE. */
2693 static bool
2694 int_reg_note_p (enum reg_note kind)
2696 return kind == REG_BR_PROB;
2699 /* Allocate a register note with kind KIND and datum DATUM. LIST is
2700 stored as the pointer to the next register note. */
2703 alloc_reg_note (enum reg_note kind, rtx datum, rtx list)
2705 rtx note;
2707 gcc_checking_assert (!int_reg_note_p (kind));
2708 switch (kind)
2710 case REG_LABEL_TARGET:
2711 case REG_LABEL_OPERAND:
2712 case REG_TM:
2713 /* These types of register notes use an INSN_LIST rather than an
2714 EXPR_LIST, so that copying is done right and dumps look
2715 better. */
2716 note = alloc_INSN_LIST (datum, list);
2717 PUT_REG_NOTE_KIND (note, kind);
2718 break;
2720 default:
2721 note = alloc_EXPR_LIST (kind, datum, list);
2722 break;
2725 return note;
2728 /* Add register note with kind KIND and datum DATUM to INSN. */
2730 void
2731 add_reg_note (rtx insn, enum reg_note kind, rtx datum)
2733 REG_NOTES (insn) = alloc_reg_note (kind, datum, REG_NOTES (insn));
2736 /* Add an integer register note with kind KIND and datum DATUM to INSN. */
2738 void
2739 add_int_reg_note (rtx_insn *insn, enum reg_note kind, int datum)
2741 gcc_checking_assert (int_reg_note_p (kind));
2742 REG_NOTES (insn) = gen_rtx_INT_LIST ((machine_mode) kind,
2743 datum, REG_NOTES (insn));
2746 /* Add a REG_ARGS_SIZE note to INSN with value VALUE. */
2748 void
2749 add_args_size_note (rtx_insn *insn, poly_int64 value)
2751 gcc_checking_assert (!find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX));
2752 add_reg_note (insn, REG_ARGS_SIZE, gen_int_mode (value, Pmode));
2755 /* Add a register note like NOTE to INSN. */
2757 void
2758 add_shallow_copy_of_reg_note (rtx_insn *insn, rtx note)
2760 if (GET_CODE (note) == INT_LIST)
2761 add_int_reg_note (insn, REG_NOTE_KIND (note), XINT (note, 0));
2762 else
2763 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
2766 /* Duplicate NOTE and return the copy. */
2768 duplicate_reg_note (rtx note)
2770 reg_note kind = REG_NOTE_KIND (note);
2772 if (GET_CODE (note) == INT_LIST)
2773 return gen_rtx_INT_LIST ((machine_mode) kind, XINT (note, 0), NULL_RTX);
2774 else if (GET_CODE (note) == EXPR_LIST)
2775 return alloc_reg_note (kind, copy_insn_1 (XEXP (note, 0)), NULL_RTX);
2776 else
2777 return alloc_reg_note (kind, XEXP (note, 0), NULL_RTX);
2780 /* Remove register note NOTE from the REG_NOTES of INSN. */
2782 void
2783 remove_note (rtx_insn *insn, const_rtx note)
2785 rtx link;
2787 if (note == NULL_RTX)
2788 return;
2790 if (REG_NOTES (insn) == note)
2791 REG_NOTES (insn) = XEXP (note, 1);
2792 else
2793 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2794 if (XEXP (link, 1) == note)
2796 XEXP (link, 1) = XEXP (note, 1);
2797 break;
2800 switch (REG_NOTE_KIND (note))
2802 case REG_EQUAL:
2803 case REG_EQUIV:
2804 df_notes_rescan (insn);
2805 break;
2806 default:
2807 break;
2811 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes.
2812 If NO_RESCAN is false and any notes were removed, call
2813 df_notes_rescan. Return true if any note has been removed. */
2815 bool
2816 remove_reg_equal_equiv_notes (rtx_insn *insn, bool no_rescan)
2818 rtx *loc;
2819 bool ret = false;
2821 loc = &REG_NOTES (insn);
2822 while (*loc)
2824 enum reg_note kind = REG_NOTE_KIND (*loc);
2825 if (kind == REG_EQUAL || kind == REG_EQUIV)
2827 *loc = XEXP (*loc, 1);
2828 ret = true;
2830 else
2831 loc = &XEXP (*loc, 1);
2833 if (ret && !no_rescan)
2834 df_notes_rescan (insn);
2835 return ret;
2838 /* Remove all REG_EQUAL and REG_EQUIV notes referring to REGNO. */
2840 void
2841 remove_reg_equal_equiv_notes_for_regno (unsigned int regno)
2843 df_ref eq_use;
2845 if (!df)
2846 return;
2848 /* This loop is a little tricky. We cannot just go down the chain because
2849 it is being modified by some actions in the loop. So we just iterate
2850 over the head. We plan to drain the list anyway. */
2851 while ((eq_use = DF_REG_EQ_USE_CHAIN (regno)) != NULL)
2853 rtx_insn *insn = DF_REF_INSN (eq_use);
2854 rtx note = find_reg_equal_equiv_note (insn);
2856 /* This assert is generally triggered when someone deletes a REG_EQUAL
2857 or REG_EQUIV note by hacking the list manually rather than calling
2858 remove_note. */
2859 gcc_assert (note);
2861 remove_note (insn, note);
2865 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2866 return 1 if it is found. A simple equality test is used to determine if
2867 NODE matches. */
2869 bool
2870 in_insn_list_p (const rtx_insn_list *listp, const rtx_insn *node)
2872 const_rtx x;
2874 for (x = listp; x; x = XEXP (x, 1))
2875 if (node == XEXP (x, 0))
2876 return true;
2878 return false;
2881 /* Search LISTP (an INSN_LIST) for an entry whose first operand is NODE and
2882 remove that entry from the list if it is found.
2884 A simple equality test is used to determine if NODE matches. */
2886 void
2887 remove_node_from_insn_list (const rtx_insn *node, rtx_insn_list **listp)
2889 rtx_insn_list *temp = *listp;
2890 rtx_insn_list *prev = NULL;
2892 while (temp)
2894 if (node == temp->insn ())
2896 /* Splice the node out of the list. */
2897 if (prev)
2898 XEXP (prev, 1) = temp->next ();
2899 else
2900 *listp = temp->next ();
2902 gcc_checking_assert (!in_insn_list_p (temp->next (), node));
2903 return;
2906 prev = temp;
2907 temp = temp->next ();
2911 /* Nonzero if X contains any volatile instructions. These are instructions
2912 which may cause unpredictable machine state instructions, and thus no
2913 instructions or register uses should be moved or combined across them.
2914 This includes only volatile asms and UNSPEC_VOLATILE instructions. */
2917 volatile_insn_p (const_rtx x)
2919 const RTX_CODE code = GET_CODE (x);
2920 switch (code)
2922 case LABEL_REF:
2923 case SYMBOL_REF:
2924 case CONST:
2925 CASE_CONST_ANY:
2926 case PC:
2927 case REG:
2928 case SCRATCH:
2929 case CLOBBER:
2930 case ADDR_VEC:
2931 case ADDR_DIFF_VEC:
2932 case CALL:
2933 case MEM:
2934 return 0;
2936 case UNSPEC_VOLATILE:
2937 return 1;
2939 case ASM_INPUT:
2940 case ASM_OPERANDS:
2941 if (MEM_VOLATILE_P (x))
2942 return 1;
2944 default:
2945 break;
2948 /* Recursively scan the operands of this expression. */
2951 const char *const fmt = GET_RTX_FORMAT (code);
2952 int i;
2954 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2956 if (fmt[i] == 'e')
2958 if (volatile_insn_p (XEXP (x, i)))
2959 return 1;
2961 else if (fmt[i] == 'E')
2963 int j;
2964 for (j = 0; j < XVECLEN (x, i); j++)
2965 if (volatile_insn_p (XVECEXP (x, i, j)))
2966 return 1;
2970 return 0;
2973 /* Nonzero if X contains any volatile memory references
2974 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2977 volatile_refs_p (const_rtx x)
2979 const RTX_CODE code = GET_CODE (x);
2980 switch (code)
2982 case LABEL_REF:
2983 case SYMBOL_REF:
2984 case CONST:
2985 CASE_CONST_ANY:
2986 case PC:
2987 case REG:
2988 case SCRATCH:
2989 case CLOBBER:
2990 case ADDR_VEC:
2991 case ADDR_DIFF_VEC:
2992 return 0;
2994 case UNSPEC_VOLATILE:
2995 return 1;
2997 case MEM:
2998 case ASM_INPUT:
2999 case ASM_OPERANDS:
3000 if (MEM_VOLATILE_P (x))
3001 return 1;
3003 default:
3004 break;
3007 /* Recursively scan the operands of this expression. */
3010 const char *const fmt = GET_RTX_FORMAT (code);
3011 int i;
3013 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3015 if (fmt[i] == 'e')
3017 if (volatile_refs_p (XEXP (x, i)))
3018 return 1;
3020 else if (fmt[i] == 'E')
3022 int j;
3023 for (j = 0; j < XVECLEN (x, i); j++)
3024 if (volatile_refs_p (XVECEXP (x, i, j)))
3025 return 1;
3029 return 0;
3032 /* Similar to above, except that it also rejects register pre- and post-
3033 incrementing. */
3036 side_effects_p (const_rtx x)
3038 const RTX_CODE code = GET_CODE (x);
3039 switch (code)
3041 case LABEL_REF:
3042 case SYMBOL_REF:
3043 case CONST:
3044 CASE_CONST_ANY:
3045 case PC:
3046 case REG:
3047 case SCRATCH:
3048 case ADDR_VEC:
3049 case ADDR_DIFF_VEC:
3050 case VAR_LOCATION:
3051 return 0;
3053 case CLOBBER:
3054 /* Reject CLOBBER with a non-VOID mode. These are made by combine.cc
3055 when some combination can't be done. If we see one, don't think
3056 that we can simplify the expression. */
3057 return (GET_MODE (x) != VOIDmode);
3059 case PRE_INC:
3060 case PRE_DEC:
3061 case POST_INC:
3062 case POST_DEC:
3063 case PRE_MODIFY:
3064 case POST_MODIFY:
3065 case CALL:
3066 case UNSPEC_VOLATILE:
3067 return 1;
3069 case MEM:
3070 case ASM_INPUT:
3071 case ASM_OPERANDS:
3072 if (MEM_VOLATILE_P (x))
3073 return 1;
3075 default:
3076 break;
3079 /* Recursively scan the operands of this expression. */
3082 const char *fmt = GET_RTX_FORMAT (code);
3083 int i;
3085 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3087 if (fmt[i] == 'e')
3089 if (side_effects_p (XEXP (x, i)))
3090 return 1;
3092 else if (fmt[i] == 'E')
3094 int j;
3095 for (j = 0; j < XVECLEN (x, i); j++)
3096 if (side_effects_p (XVECEXP (x, i, j)))
3097 return 1;
3101 return 0;
3104 /* Return nonzero if evaluating rtx X might cause a trap.
3105 FLAGS controls how to consider MEMs. A nonzero means the context
3106 of the access may have changed from the original, such that the
3107 address may have become invalid. */
3110 may_trap_p_1 (const_rtx x, unsigned flags)
3112 int i;
3113 enum rtx_code code;
3114 const char *fmt;
3116 /* We make no distinction currently, but this function is part of
3117 the internal target-hooks ABI so we keep the parameter as
3118 "unsigned flags". */
3119 bool code_changed = flags != 0;
3121 if (x == 0)
3122 return 0;
3123 code = GET_CODE (x);
3124 switch (code)
3126 /* Handle these cases quickly. */
3127 CASE_CONST_ANY:
3128 case SYMBOL_REF:
3129 case LABEL_REF:
3130 case CONST:
3131 case PC:
3132 case REG:
3133 case SCRATCH:
3134 return 0;
3136 case UNSPEC:
3137 return targetm.unspec_may_trap_p (x, flags);
3139 case UNSPEC_VOLATILE:
3140 case ASM_INPUT:
3141 case TRAP_IF:
3142 return 1;
3144 case ASM_OPERANDS:
3145 return MEM_VOLATILE_P (x);
3147 /* Memory ref can trap unless it's a static var or a stack slot. */
3148 case MEM:
3149 /* Recognize specific pattern of stack checking probes. */
3150 if (flag_stack_check
3151 && MEM_VOLATILE_P (x)
3152 && XEXP (x, 0) == stack_pointer_rtx)
3153 return 1;
3154 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
3155 reference; moving it out of context such as when moving code
3156 when optimizing, might cause its address to become invalid. */
3157 code_changed
3158 || !MEM_NOTRAP_P (x))
3160 poly_int64 size = MEM_SIZE_KNOWN_P (x) ? MEM_SIZE (x) : -1;
3161 return rtx_addr_can_trap_p_1 (XEXP (x, 0), 0, size,
3162 GET_MODE (x), code_changed);
3165 return 0;
3167 /* Division by a non-constant might trap. */
3168 case DIV:
3169 case MOD:
3170 case UDIV:
3171 case UMOD:
3172 if (HONOR_SNANS (x))
3173 return 1;
3174 if (FLOAT_MODE_P (GET_MODE (x)))
3175 return flag_trapping_math;
3176 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
3177 return 1;
3178 if (GET_CODE (XEXP (x, 1)) == CONST_VECTOR)
3180 /* For CONST_VECTOR, return 1 if any element is or might be zero. */
3181 unsigned int n_elts;
3182 rtx op = XEXP (x, 1);
3183 if (!GET_MODE_NUNITS (GET_MODE (op)).is_constant (&n_elts))
3185 if (!CONST_VECTOR_DUPLICATE_P (op))
3186 return 1;
3187 for (unsigned i = 0; i < (unsigned int) XVECLEN (op, 0); i++)
3188 if (CONST_VECTOR_ENCODED_ELT (op, i) == const0_rtx)
3189 return 1;
3191 else
3192 for (unsigned i = 0; i < n_elts; i++)
3193 if (CONST_VECTOR_ELT (op, i) == const0_rtx)
3194 return 1;
3196 break;
3198 case EXPR_LIST:
3199 /* An EXPR_LIST is used to represent a function call. This
3200 certainly may trap. */
3201 return 1;
3203 case GE:
3204 case GT:
3205 case LE:
3206 case LT:
3207 case LTGT:
3208 case COMPARE:
3209 /* Some floating point comparisons may trap. */
3210 if (!flag_trapping_math)
3211 break;
3212 /* ??? There is no machine independent way to check for tests that trap
3213 when COMPARE is used, though many targets do make this distinction.
3214 For instance, sparc uses CCFPE for compares which generate exceptions
3215 and CCFP for compares which do not generate exceptions. */
3216 if (HONOR_NANS (x))
3217 return 1;
3218 /* But often the compare has some CC mode, so check operand
3219 modes as well. */
3220 if (HONOR_NANS (XEXP (x, 0))
3221 || HONOR_NANS (XEXP (x, 1)))
3222 return 1;
3223 break;
3225 case EQ:
3226 case NE:
3227 if (HONOR_SNANS (x))
3228 return 1;
3229 /* Often comparison is CC mode, so check operand modes. */
3230 if (HONOR_SNANS (XEXP (x, 0))
3231 || HONOR_SNANS (XEXP (x, 1)))
3232 return 1;
3233 break;
3235 case FIX:
3236 case UNSIGNED_FIX:
3237 /* Conversion of floating point might trap. */
3238 if (flag_trapping_math && HONOR_NANS (XEXP (x, 0)))
3239 return 1;
3240 break;
3242 case NEG:
3243 case ABS:
3244 case SUBREG:
3245 case VEC_MERGE:
3246 case VEC_SELECT:
3247 case VEC_CONCAT:
3248 case VEC_DUPLICATE:
3249 /* These operations don't trap even with floating point. */
3250 break;
3252 default:
3253 /* Any floating arithmetic may trap. */
3254 if (FLOAT_MODE_P (GET_MODE (x)) && flag_trapping_math)
3255 return 1;
3258 fmt = GET_RTX_FORMAT (code);
3259 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3261 if (fmt[i] == 'e')
3263 if (may_trap_p_1 (XEXP (x, i), flags))
3264 return 1;
3266 else if (fmt[i] == 'E')
3268 int j;
3269 for (j = 0; j < XVECLEN (x, i); j++)
3270 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
3271 return 1;
3274 return 0;
3277 /* Return nonzero if evaluating rtx X might cause a trap. */
3280 may_trap_p (const_rtx x)
3282 return may_trap_p_1 (x, 0);
3285 /* Same as above, but additionally return nonzero if evaluating rtx X might
3286 cause a fault. We define a fault for the purpose of this function as a
3287 erroneous execution condition that cannot be encountered during the normal
3288 execution of a valid program; the typical example is an unaligned memory
3289 access on a strict alignment machine. The compiler guarantees that it
3290 doesn't generate code that will fault from a valid program, but this
3291 guarantee doesn't mean anything for individual instructions. Consider
3292 the following example:
3294 struct S { int d; union { char *cp; int *ip; }; };
3296 int foo(struct S *s)
3298 if (s->d == 1)
3299 return *s->ip;
3300 else
3301 return *s->cp;
3304 on a strict alignment machine. In a valid program, foo will never be
3305 invoked on a structure for which d is equal to 1 and the underlying
3306 unique field of the union not aligned on a 4-byte boundary, but the
3307 expression *s->ip might cause a fault if considered individually.
3309 At the RTL level, potentially problematic expressions will almost always
3310 verify may_trap_p; for example, the above dereference can be emitted as
3311 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
3312 However, suppose that foo is inlined in a caller that causes s->cp to
3313 point to a local character variable and guarantees that s->d is not set
3314 to 1; foo may have been effectively translated into pseudo-RTL as:
3316 if ((reg:SI) == 1)
3317 (set (reg:SI) (mem:SI (%fp - 7)))
3318 else
3319 (set (reg:QI) (mem:QI (%fp - 7)))
3321 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
3322 memory reference to a stack slot, but it will certainly cause a fault
3323 on a strict alignment machine. */
3326 may_trap_or_fault_p (const_rtx x)
3328 return may_trap_p_1 (x, 1);
3331 /* Replace any occurrence of FROM in X with TO. The function does
3332 not enter into CONST_DOUBLE for the replace.
3334 Note that copying is not done so X must not be shared unless all copies
3335 are to be modified.
3337 ALL_REGS is true if we want to replace all REGs equal to FROM, not just
3338 those pointer-equal ones. */
3341 replace_rtx (rtx x, rtx from, rtx to, bool all_regs)
3343 int i, j;
3344 const char *fmt;
3346 if (x == from)
3347 return to;
3349 /* Allow this function to make replacements in EXPR_LISTs. */
3350 if (x == 0)
3351 return 0;
3353 if (all_regs
3354 && REG_P (x)
3355 && REG_P (from)
3356 && REGNO (x) == REGNO (from))
3358 gcc_assert (GET_MODE (x) == GET_MODE (from));
3359 return to;
3361 else if (GET_CODE (x) == SUBREG)
3363 rtx new_rtx = replace_rtx (SUBREG_REG (x), from, to, all_regs);
3365 if (CONST_SCALAR_INT_P (new_rtx))
3367 x = simplify_subreg (GET_MODE (x), new_rtx,
3368 GET_MODE (SUBREG_REG (x)),
3369 SUBREG_BYTE (x));
3370 gcc_assert (x);
3372 else
3373 SUBREG_REG (x) = new_rtx;
3375 return x;
3377 else if (GET_CODE (x) == ZERO_EXTEND)
3379 rtx new_rtx = replace_rtx (XEXP (x, 0), from, to, all_regs);
3381 if (CONST_SCALAR_INT_P (new_rtx))
3383 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
3384 new_rtx, GET_MODE (XEXP (x, 0)));
3385 gcc_assert (x);
3387 else
3388 XEXP (x, 0) = new_rtx;
3390 return x;
3393 fmt = GET_RTX_FORMAT (GET_CODE (x));
3394 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3396 if (fmt[i] == 'e')
3397 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to, all_regs);
3398 else if (fmt[i] == 'E')
3399 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3400 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j),
3401 from, to, all_regs);
3404 return x;
3407 /* Replace occurrences of the OLD_LABEL in *LOC with NEW_LABEL. Also track
3408 the change in LABEL_NUSES if UPDATE_LABEL_NUSES. */
3410 void
3411 replace_label (rtx *loc, rtx old_label, rtx new_label, bool update_label_nuses)
3413 /* Handle jump tables specially, since ADDR_{DIFF_,}VECs can be long. */
3414 rtx x = *loc;
3415 if (JUMP_TABLE_DATA_P (x))
3417 x = PATTERN (x);
3418 rtvec vec = XVEC (x, GET_CODE (x) == ADDR_DIFF_VEC);
3419 int len = GET_NUM_ELEM (vec);
3420 for (int i = 0; i < len; ++i)
3422 rtx ref = RTVEC_ELT (vec, i);
3423 if (XEXP (ref, 0) == old_label)
3425 XEXP (ref, 0) = new_label;
3426 if (update_label_nuses)
3428 ++LABEL_NUSES (new_label);
3429 --LABEL_NUSES (old_label);
3433 return;
3436 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
3437 field. This is not handled by the iterator because it doesn't
3438 handle unprinted ('0') fields. */
3439 if (JUMP_P (x) && JUMP_LABEL (x) == old_label)
3440 JUMP_LABEL (x) = new_label;
3442 subrtx_ptr_iterator::array_type array;
3443 FOR_EACH_SUBRTX_PTR (iter, array, loc, ALL)
3445 rtx *loc = *iter;
3446 if (rtx x = *loc)
3448 if (GET_CODE (x) == SYMBOL_REF
3449 && CONSTANT_POOL_ADDRESS_P (x))
3451 rtx c = get_pool_constant (x);
3452 if (rtx_referenced_p (old_label, c))
3454 /* Create a copy of constant C; replace the label inside
3455 but do not update LABEL_NUSES because uses in constant pool
3456 are not counted. */
3457 rtx new_c = copy_rtx (c);
3458 replace_label (&new_c, old_label, new_label, false);
3460 /* Add the new constant NEW_C to constant pool and replace
3461 the old reference to constant by new reference. */
3462 rtx new_mem = force_const_mem (get_pool_mode (x), new_c);
3463 *loc = replace_rtx (x, x, XEXP (new_mem, 0));
3467 if ((GET_CODE (x) == LABEL_REF
3468 || GET_CODE (x) == INSN_LIST)
3469 && XEXP (x, 0) == old_label)
3471 XEXP (x, 0) = new_label;
3472 if (update_label_nuses)
3474 ++LABEL_NUSES (new_label);
3475 --LABEL_NUSES (old_label);
3482 void
3483 replace_label_in_insn (rtx_insn *insn, rtx_insn *old_label,
3484 rtx_insn *new_label, bool update_label_nuses)
3486 rtx insn_as_rtx = insn;
3487 replace_label (&insn_as_rtx, old_label, new_label, update_label_nuses);
3488 gcc_checking_assert (insn_as_rtx == insn);
3491 /* Return true if X is referenced in BODY. */
3493 bool
3494 rtx_referenced_p (const_rtx x, const_rtx body)
3496 subrtx_iterator::array_type array;
3497 FOR_EACH_SUBRTX (iter, array, body, ALL)
3498 if (const_rtx y = *iter)
3500 /* Check if a label_ref Y refers to label X. */
3501 if (GET_CODE (y) == LABEL_REF
3502 && LABEL_P (x)
3503 && label_ref_label (y) == x)
3504 return true;
3506 if (rtx_equal_p (x, y))
3507 return true;
3509 /* If Y is a reference to pool constant traverse the constant. */
3510 if (GET_CODE (y) == SYMBOL_REF
3511 && CONSTANT_POOL_ADDRESS_P (y))
3512 iter.substitute (get_pool_constant (y));
3514 return false;
3517 /* If INSN is a tablejump return true and store the label (before jump table) to
3518 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
3520 bool
3521 tablejump_p (const rtx_insn *insn, rtx_insn **labelp,
3522 rtx_jump_table_data **tablep)
3524 if (!JUMP_P (insn))
3525 return false;
3527 rtx target = JUMP_LABEL (insn);
3528 if (target == NULL_RTX || ANY_RETURN_P (target))
3529 return false;
3531 rtx_insn *label = as_a<rtx_insn *> (target);
3532 rtx_insn *table = next_insn (label);
3533 if (table == NULL_RTX || !JUMP_TABLE_DATA_P (table))
3534 return false;
3536 if (labelp)
3537 *labelp = label;
3538 if (tablep)
3539 *tablep = as_a <rtx_jump_table_data *> (table);
3540 return true;
3543 /* For INSN known to satisfy tablejump_p, determine if it actually is a
3544 CASESI. Return the insn pattern if so, NULL_RTX otherwise. */
3547 tablejump_casesi_pattern (const rtx_insn *insn)
3549 rtx tmp;
3551 if ((tmp = single_set (insn)) != NULL
3552 && SET_DEST (tmp) == pc_rtx
3553 && GET_CODE (SET_SRC (tmp)) == IF_THEN_ELSE
3554 && GET_CODE (XEXP (SET_SRC (tmp), 2)) == LABEL_REF)
3555 return tmp;
3557 return NULL_RTX;
3560 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
3561 constant that is not in the constant pool and not in the condition
3562 of an IF_THEN_ELSE. */
3564 static int
3565 computed_jump_p_1 (const_rtx x)
3567 const enum rtx_code code = GET_CODE (x);
3568 int i, j;
3569 const char *fmt;
3571 switch (code)
3573 case LABEL_REF:
3574 case PC:
3575 return 0;
3577 case CONST:
3578 CASE_CONST_ANY:
3579 case SYMBOL_REF:
3580 case REG:
3581 return 1;
3583 case MEM:
3584 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
3585 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
3587 case IF_THEN_ELSE:
3588 return (computed_jump_p_1 (XEXP (x, 1))
3589 || computed_jump_p_1 (XEXP (x, 2)));
3591 default:
3592 break;
3595 fmt = GET_RTX_FORMAT (code);
3596 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3598 if (fmt[i] == 'e'
3599 && computed_jump_p_1 (XEXP (x, i)))
3600 return 1;
3602 else if (fmt[i] == 'E')
3603 for (j = 0; j < XVECLEN (x, i); j++)
3604 if (computed_jump_p_1 (XVECEXP (x, i, j)))
3605 return 1;
3608 return 0;
3611 /* Return nonzero if INSN is an indirect jump (aka computed jump).
3613 Tablejumps and casesi insns are not considered indirect jumps;
3614 we can recognize them by a (use (label_ref)). */
3617 computed_jump_p (const rtx_insn *insn)
3619 int i;
3620 if (JUMP_P (insn))
3622 rtx pat = PATTERN (insn);
3624 /* If we have a JUMP_LABEL set, we're not a computed jump. */
3625 if (JUMP_LABEL (insn) != NULL)
3626 return 0;
3628 if (GET_CODE (pat) == PARALLEL)
3630 int len = XVECLEN (pat, 0);
3631 int has_use_labelref = 0;
3633 for (i = len - 1; i >= 0; i--)
3634 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
3635 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
3636 == LABEL_REF))
3638 has_use_labelref = 1;
3639 break;
3642 if (! has_use_labelref)
3643 for (i = len - 1; i >= 0; i--)
3644 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
3645 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
3646 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
3647 return 1;
3649 else if (GET_CODE (pat) == SET
3650 && SET_DEST (pat) == pc_rtx
3651 && computed_jump_p_1 (SET_SRC (pat)))
3652 return 1;
3654 return 0;
3659 /* MEM has a PRE/POST-INC/DEC/MODIFY address X. Extract the operands of
3660 the equivalent add insn and pass the result to FN, using DATA as the
3661 final argument. */
3663 static int
3664 for_each_inc_dec_find_inc_dec (rtx mem, for_each_inc_dec_fn fn, void *data)
3666 rtx x = XEXP (mem, 0);
3667 switch (GET_CODE (x))
3669 case PRE_INC:
3670 case POST_INC:
3672 poly_int64 size = GET_MODE_SIZE (GET_MODE (mem));
3673 rtx r1 = XEXP (x, 0);
3674 rtx c = gen_int_mode (size, GET_MODE (r1));
3675 return fn (mem, x, r1, r1, c, data);
3678 case PRE_DEC:
3679 case POST_DEC:
3681 poly_int64 size = GET_MODE_SIZE (GET_MODE (mem));
3682 rtx r1 = XEXP (x, 0);
3683 rtx c = gen_int_mode (-size, GET_MODE (r1));
3684 return fn (mem, x, r1, r1, c, data);
3687 case PRE_MODIFY:
3688 case POST_MODIFY:
3690 rtx r1 = XEXP (x, 0);
3691 rtx add = XEXP (x, 1);
3692 return fn (mem, x, r1, add, NULL, data);
3695 default:
3696 gcc_unreachable ();
3700 /* Traverse *LOC looking for MEMs that have autoinc addresses.
3701 For each such autoinc operation found, call FN, passing it
3702 the innermost enclosing MEM, the operation itself, the RTX modified
3703 by the operation, two RTXs (the second may be NULL) that, once
3704 added, represent the value to be held by the modified RTX
3705 afterwards, and DATA. FN is to return 0 to continue the
3706 traversal or any other value to have it returned to the caller of
3707 for_each_inc_dec. */
3710 for_each_inc_dec (rtx x,
3711 for_each_inc_dec_fn fn,
3712 void *data)
3714 subrtx_var_iterator::array_type array;
3715 FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
3717 rtx mem = *iter;
3718 if (mem
3719 && MEM_P (mem)
3720 && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC)
3722 int res = for_each_inc_dec_find_inc_dec (mem, fn, data);
3723 if (res != 0)
3724 return res;
3725 iter.skip_subrtxes ();
3728 return 0;
3732 /* Searches X for any reference to REGNO, returning the rtx of the
3733 reference found if any. Otherwise, returns NULL_RTX. */
3736 regno_use_in (unsigned int regno, rtx x)
3738 const char *fmt;
3739 int i, j;
3740 rtx tem;
3742 if (REG_P (x) && REGNO (x) == regno)
3743 return x;
3745 fmt = GET_RTX_FORMAT (GET_CODE (x));
3746 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3748 if (fmt[i] == 'e')
3750 if ((tem = regno_use_in (regno, XEXP (x, i))))
3751 return tem;
3753 else if (fmt[i] == 'E')
3754 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3755 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
3756 return tem;
3759 return NULL_RTX;
3762 /* Return a value indicating whether OP, an operand of a commutative
3763 operation, is preferred as the first or second operand. The more
3764 positive the value, the stronger the preference for being the first
3765 operand. */
3768 commutative_operand_precedence (rtx op)
3770 enum rtx_code code = GET_CODE (op);
3772 /* Constants always become the second operand. Prefer "nice" constants. */
3773 if (code == CONST_INT)
3774 return -10;
3775 if (code == CONST_WIDE_INT)
3776 return -9;
3777 if (code == CONST_POLY_INT)
3778 return -8;
3779 if (code == CONST_DOUBLE)
3780 return -8;
3781 if (code == CONST_FIXED)
3782 return -8;
3783 op = avoid_constant_pool_reference (op);
3784 code = GET_CODE (op);
3786 switch (GET_RTX_CLASS (code))
3788 case RTX_CONST_OBJ:
3789 if (code == CONST_INT)
3790 return -7;
3791 if (code == CONST_WIDE_INT)
3792 return -6;
3793 if (code == CONST_POLY_INT)
3794 return -5;
3795 if (code == CONST_DOUBLE)
3796 return -5;
3797 if (code == CONST_FIXED)
3798 return -5;
3799 return -4;
3801 case RTX_EXTRA:
3802 /* SUBREGs of objects should come second. */
3803 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
3804 return -3;
3805 return 0;
3807 case RTX_OBJ:
3808 /* Complex expressions should be the first, so decrease priority
3809 of objects. Prefer pointer objects over non pointer objects. */
3810 if ((REG_P (op) && REG_POINTER (op))
3811 || (MEM_P (op) && MEM_POINTER (op)))
3812 return -1;
3813 return -2;
3815 case RTX_COMM_ARITH:
3816 /* Prefer operands that are themselves commutative to be first.
3817 This helps to make things linear. In particular,
3818 (and (and (reg) (reg)) (not (reg))) is canonical. */
3819 return 4;
3821 case RTX_BIN_ARITH:
3822 /* If only one operand is a binary expression, it will be the first
3823 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
3824 is canonical, although it will usually be further simplified. */
3825 return 2;
3827 case RTX_UNARY:
3828 /* Then prefer NEG and NOT. */
3829 if (code == NEG || code == NOT)
3830 return 1;
3831 /* FALLTHRU */
3833 default:
3834 return 0;
3838 /* Return 1 iff it is necessary to swap operands of commutative operation
3839 in order to canonicalize expression. */
3841 bool
3842 swap_commutative_operands_p (rtx x, rtx y)
3844 return (commutative_operand_precedence (x)
3845 < commutative_operand_precedence (y));
3848 /* Return 1 if X is an autoincrement side effect and the register is
3849 not the stack pointer. */
3851 auto_inc_p (const_rtx x)
3853 switch (GET_CODE (x))
3855 case PRE_INC:
3856 case POST_INC:
3857 case PRE_DEC:
3858 case POST_DEC:
3859 case PRE_MODIFY:
3860 case POST_MODIFY:
3861 /* There are no REG_INC notes for SP. */
3862 if (XEXP (x, 0) != stack_pointer_rtx)
3863 return 1;
3864 default:
3865 break;
3867 return 0;
3870 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
3872 loc_mentioned_in_p (rtx *loc, const_rtx in)
3874 enum rtx_code code;
3875 const char *fmt;
3876 int i, j;
3878 if (!in)
3879 return 0;
3881 code = GET_CODE (in);
3882 fmt = GET_RTX_FORMAT (code);
3883 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3885 if (fmt[i] == 'e')
3887 if (loc == &XEXP (in, i) || loc_mentioned_in_p (loc, XEXP (in, i)))
3888 return 1;
3890 else if (fmt[i] == 'E')
3891 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
3892 if (loc == &XVECEXP (in, i, j)
3893 || loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
3894 return 1;
3896 return 0;
3899 /* Reinterpret a subreg as a bit extraction from an integer and return
3900 the position of the least significant bit of the extracted value.
3901 In other words, if the extraction were performed as a shift right
3902 and mask, return the number of bits to shift right.
3904 The outer value of the subreg has OUTER_BYTES bytes and starts at
3905 byte offset SUBREG_BYTE within an inner value of INNER_BYTES bytes. */
3907 poly_uint64
3908 subreg_size_lsb (poly_uint64 outer_bytes,
3909 poly_uint64 inner_bytes,
3910 poly_uint64 subreg_byte)
3912 poly_uint64 subreg_end, trailing_bytes, byte_pos;
3914 /* A paradoxical subreg begins at bit position 0. */
3915 gcc_checking_assert (ordered_p (outer_bytes, inner_bytes));
3916 if (maybe_gt (outer_bytes, inner_bytes))
3918 gcc_checking_assert (known_eq (subreg_byte, 0U));
3919 return 0;
3922 subreg_end = subreg_byte + outer_bytes;
3923 trailing_bytes = inner_bytes - subreg_end;
3924 if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
3925 byte_pos = trailing_bytes;
3926 else if (!WORDS_BIG_ENDIAN && !BYTES_BIG_ENDIAN)
3927 byte_pos = subreg_byte;
3928 else
3930 /* When bytes and words have opposite endianness, we must be able
3931 to split offsets into words and bytes at compile time. */
3932 poly_uint64 leading_word_part
3933 = force_align_down (subreg_byte, UNITS_PER_WORD);
3934 poly_uint64 trailing_word_part
3935 = force_align_down (trailing_bytes, UNITS_PER_WORD);
3936 /* If the subreg crosses a word boundary ensure that
3937 it also begins and ends on a word boundary. */
3938 gcc_assert (known_le (subreg_end - leading_word_part,
3939 (unsigned int) UNITS_PER_WORD)
3940 || (known_eq (leading_word_part, subreg_byte)
3941 && known_eq (trailing_word_part, trailing_bytes)));
3942 if (WORDS_BIG_ENDIAN)
3943 byte_pos = trailing_word_part + (subreg_byte - leading_word_part);
3944 else
3945 byte_pos = leading_word_part + (trailing_bytes - trailing_word_part);
3948 return byte_pos * BITS_PER_UNIT;
3951 /* Given a subreg X, return the bit offset where the subreg begins
3952 (counting from the least significant bit of the reg). */
3954 poly_uint64
3955 subreg_lsb (const_rtx x)
3957 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3958 SUBREG_BYTE (x));
3961 /* Return the subreg byte offset for a subreg whose outer value has
3962 OUTER_BYTES bytes, whose inner value has INNER_BYTES bytes, and where
3963 there are LSB_SHIFT *bits* between the lsb of the outer value and the
3964 lsb of the inner value. This is the inverse of the calculation
3965 performed by subreg_lsb_1 (which converts byte offsets to bit shifts). */
3967 poly_uint64
3968 subreg_size_offset_from_lsb (poly_uint64 outer_bytes, poly_uint64 inner_bytes,
3969 poly_uint64 lsb_shift)
3971 /* A paradoxical subreg begins at bit position 0. */
3972 gcc_checking_assert (ordered_p (outer_bytes, inner_bytes));
3973 if (maybe_gt (outer_bytes, inner_bytes))
3975 gcc_checking_assert (known_eq (lsb_shift, 0U));
3976 return 0;
3979 poly_uint64 lower_bytes = exact_div (lsb_shift, BITS_PER_UNIT);
3980 poly_uint64 upper_bytes = inner_bytes - (lower_bytes + outer_bytes);
3981 if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
3982 return upper_bytes;
3983 else if (!WORDS_BIG_ENDIAN && !BYTES_BIG_ENDIAN)
3984 return lower_bytes;
3985 else
3987 /* When bytes and words have opposite endianness, we must be able
3988 to split offsets into words and bytes at compile time. */
3989 poly_uint64 lower_word_part = force_align_down (lower_bytes,
3990 UNITS_PER_WORD);
3991 poly_uint64 upper_word_part = force_align_down (upper_bytes,
3992 UNITS_PER_WORD);
3993 if (WORDS_BIG_ENDIAN)
3994 return upper_word_part + (lower_bytes - lower_word_part);
3995 else
3996 return lower_word_part + (upper_bytes - upper_word_part);
4000 /* Fill in information about a subreg of a hard register.
4001 xregno - A regno of an inner hard subreg_reg (or what will become one).
4002 xmode - The mode of xregno.
4003 offset - The byte offset.
4004 ymode - The mode of a top level SUBREG (or what may become one).
4005 info - Pointer to structure to fill in.
4007 Rather than considering one particular inner register (and thus one
4008 particular "outer" register) in isolation, this function really uses
4009 XREGNO as a model for a sequence of isomorphic hard registers. Thus the
4010 function does not check whether adding INFO->offset to XREGNO gives
4011 a valid hard register; even if INFO->offset + XREGNO is out of range,
4012 there might be another register of the same type that is in range.
4013 Likewise it doesn't check whether targetm.hard_regno_mode_ok accepts
4014 the new register, since that can depend on things like whether the final
4015 register number is even or odd. Callers that want to check whether
4016 this particular subreg can be replaced by a simple (reg ...) should
4017 use simplify_subreg_regno. */
4019 void
4020 subreg_get_info (unsigned int xregno, machine_mode xmode,
4021 poly_uint64 offset, machine_mode ymode,
4022 struct subreg_info *info)
4024 unsigned int nregs_xmode, nregs_ymode;
4026 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
4028 poly_uint64 xsize = GET_MODE_SIZE (xmode);
4029 poly_uint64 ysize = GET_MODE_SIZE (ymode);
4031 bool rknown = false;
4033 /* If the register representation of a non-scalar mode has holes in it,
4034 we expect the scalar units to be concatenated together, with the holes
4035 distributed evenly among the scalar units. Each scalar unit must occupy
4036 at least one register. */
4037 if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
4039 /* As a consequence, we must be dealing with a constant number of
4040 scalars, and thus a constant offset and number of units. */
4041 HOST_WIDE_INT coffset = offset.to_constant ();
4042 HOST_WIDE_INT cysize = ysize.to_constant ();
4043 nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
4044 unsigned int nunits = GET_MODE_NUNITS (xmode).to_constant ();
4045 scalar_mode xmode_unit = GET_MODE_INNER (xmode);
4046 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
4047 gcc_assert (nregs_xmode
4048 == (nunits
4049 * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
4050 gcc_assert (hard_regno_nregs (xregno, xmode)
4051 == hard_regno_nregs (xregno, xmode_unit) * nunits);
4053 /* You can only ask for a SUBREG of a value with holes in the middle
4054 if you don't cross the holes. (Such a SUBREG should be done by
4055 picking a different register class, or doing it in memory if
4056 necessary.) An example of a value with holes is XCmode on 32-bit
4057 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
4058 3 for each part, but in memory it's two 128-bit parts.
4059 Padding is assumed to be at the end (not necessarily the 'high part')
4060 of each unit. */
4061 if ((coffset / GET_MODE_SIZE (xmode_unit) + 1 < nunits)
4062 && (coffset / GET_MODE_SIZE (xmode_unit)
4063 != ((coffset + cysize - 1) / GET_MODE_SIZE (xmode_unit))))
4065 info->representable_p = false;
4066 rknown = true;
4069 else
4070 nregs_xmode = hard_regno_nregs (xregno, xmode);
4072 nregs_ymode = hard_regno_nregs (xregno, ymode);
4074 /* Subreg sizes must be ordered, so that we can tell whether they are
4075 partial, paradoxical or complete. */
4076 gcc_checking_assert (ordered_p (xsize, ysize));
4078 /* Paradoxical subregs are otherwise valid. */
4079 if (!rknown && known_eq (offset, 0U) && maybe_gt (ysize, xsize))
4081 info->representable_p = true;
4082 /* If this is a big endian paradoxical subreg, which uses more
4083 actual hard registers than the original register, we must
4084 return a negative offset so that we find the proper highpart
4085 of the register.
4087 We assume that the ordering of registers within a multi-register
4088 value has a consistent endianness: if bytes and register words
4089 have different endianness, the hard registers that make up a
4090 multi-register value must be at least word-sized. */
4091 if (REG_WORDS_BIG_ENDIAN)
4092 info->offset = (int) nregs_xmode - (int) nregs_ymode;
4093 else
4094 info->offset = 0;
4095 info->nregs = nregs_ymode;
4096 return;
4099 /* If registers store different numbers of bits in the different
4100 modes, we cannot generally form this subreg. */
4101 poly_uint64 regsize_xmode, regsize_ymode;
4102 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
4103 && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
4104 && multiple_p (xsize, nregs_xmode, &regsize_xmode)
4105 && multiple_p (ysize, nregs_ymode, &regsize_ymode))
4107 if (!rknown
4108 && ((nregs_ymode > 1 && maybe_gt (regsize_xmode, regsize_ymode))
4109 || (nregs_xmode > 1 && maybe_gt (regsize_ymode, regsize_xmode))))
4111 info->representable_p = false;
4112 if (!can_div_away_from_zero_p (ysize, regsize_xmode, &info->nregs)
4113 || !can_div_trunc_p (offset, regsize_xmode, &info->offset))
4114 /* Checked by validate_subreg. We must know at compile time
4115 which inner registers are being accessed. */
4116 gcc_unreachable ();
4117 return;
4119 /* It's not valid to extract a subreg of mode YMODE at OFFSET that
4120 would go outside of XMODE. */
4121 if (!rknown && maybe_gt (ysize + offset, xsize))
4123 info->representable_p = false;
4124 info->nregs = nregs_ymode;
4125 if (!can_div_trunc_p (offset, regsize_xmode, &info->offset))
4126 /* Checked by validate_subreg. We must know at compile time
4127 which inner registers are being accessed. */
4128 gcc_unreachable ();
4129 return;
4131 /* Quick exit for the simple and common case of extracting whole
4132 subregisters from a multiregister value. */
4133 /* ??? It would be better to integrate this into the code below,
4134 if we can generalize the concept enough and figure out how
4135 odd-sized modes can coexist with the other weird cases we support. */
4136 HOST_WIDE_INT count;
4137 if (!rknown
4138 && WORDS_BIG_ENDIAN == REG_WORDS_BIG_ENDIAN
4139 && known_eq (regsize_xmode, regsize_ymode)
4140 && constant_multiple_p (offset, regsize_ymode, &count))
4142 info->representable_p = true;
4143 info->nregs = nregs_ymode;
4144 info->offset = count;
4145 gcc_assert (info->offset + info->nregs <= (int) nregs_xmode);
4146 return;
4150 /* Lowpart subregs are otherwise valid. */
4151 if (!rknown && known_eq (offset, subreg_lowpart_offset (ymode, xmode)))
4153 info->representable_p = true;
4154 rknown = true;
4156 if (known_eq (offset, 0U) || nregs_xmode == nregs_ymode)
4158 info->offset = 0;
4159 info->nregs = nregs_ymode;
4160 return;
4164 /* Set NUM_BLOCKS to the number of independently-representable YMODE
4165 values there are in (reg:XMODE XREGNO). We can view the register
4166 as consisting of this number of independent "blocks", where each
4167 block occupies NREGS_YMODE registers and contains exactly one
4168 representable YMODE value. */
4169 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
4170 unsigned int num_blocks = nregs_xmode / nregs_ymode;
4172 /* Calculate the number of bytes in each block. This must always
4173 be exact, otherwise we don't know how to verify the constraint.
4174 These conditions may be relaxed but subreg_regno_offset would
4175 need to be redesigned. */
4176 poly_uint64 bytes_per_block = exact_div (xsize, num_blocks);
4178 /* Get the number of the first block that contains the subreg and the byte
4179 offset of the subreg from the start of that block. */
4180 unsigned int block_number;
4181 poly_uint64 subblock_offset;
4182 if (!can_div_trunc_p (offset, bytes_per_block, &block_number,
4183 &subblock_offset))
4184 /* Checked by validate_subreg. We must know at compile time which
4185 inner registers are being accessed. */
4186 gcc_unreachable ();
4188 if (!rknown)
4190 /* Only the lowpart of each block is representable. */
4191 info->representable_p
4192 = known_eq (subblock_offset,
4193 subreg_size_lowpart_offset (ysize, bytes_per_block));
4194 rknown = true;
4197 /* We assume that the ordering of registers within a multi-register
4198 value has a consistent endianness: if bytes and register words
4199 have different endianness, the hard registers that make up a
4200 multi-register value must be at least word-sized. */
4201 if (WORDS_BIG_ENDIAN != REG_WORDS_BIG_ENDIAN)
4202 /* The block number we calculated above followed memory endianness.
4203 Convert it to register endianness by counting back from the end.
4204 (Note that, because of the assumption above, each block must be
4205 at least word-sized.) */
4206 info->offset = (num_blocks - block_number - 1) * nregs_ymode;
4207 else
4208 info->offset = block_number * nregs_ymode;
4209 info->nregs = nregs_ymode;
4212 /* This function returns the regno offset of a subreg expression.
4213 xregno - A regno of an inner hard subreg_reg (or what will become one).
4214 xmode - The mode of xregno.
4215 offset - The byte offset.
4216 ymode - The mode of a top level SUBREG (or what may become one).
4217 RETURN - The regno offset which would be used. */
4218 unsigned int
4219 subreg_regno_offset (unsigned int xregno, machine_mode xmode,
4220 poly_uint64 offset, machine_mode ymode)
4222 struct subreg_info info;
4223 subreg_get_info (xregno, xmode, offset, ymode, &info);
4224 return info.offset;
4227 /* This function returns true when the offset is representable via
4228 subreg_offset in the given regno.
4229 xregno - A regno of an inner hard subreg_reg (or what will become one).
4230 xmode - The mode of xregno.
4231 offset - The byte offset.
4232 ymode - The mode of a top level SUBREG (or what may become one).
4233 RETURN - Whether the offset is representable. */
4234 bool
4235 subreg_offset_representable_p (unsigned int xregno, machine_mode xmode,
4236 poly_uint64 offset, machine_mode ymode)
4238 struct subreg_info info;
4239 subreg_get_info (xregno, xmode, offset, ymode, &info);
4240 return info.representable_p;
4243 /* Return the number of a YMODE register to which
4245 (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
4247 can be simplified. Return -1 if the subreg can't be simplified.
4249 XREGNO is a hard register number. */
4252 simplify_subreg_regno (unsigned int xregno, machine_mode xmode,
4253 poly_uint64 offset, machine_mode ymode)
4255 struct subreg_info info;
4256 unsigned int yregno;
4258 /* Give the backend a chance to disallow the mode change. */
4259 if (GET_MODE_CLASS (xmode) != MODE_COMPLEX_INT
4260 && GET_MODE_CLASS (xmode) != MODE_COMPLEX_FLOAT
4261 && !REG_CAN_CHANGE_MODE_P (xregno, xmode, ymode))
4262 return -1;
4264 /* We shouldn't simplify stack-related registers. */
4265 if ((!reload_completed || frame_pointer_needed)
4266 && xregno == FRAME_POINTER_REGNUM)
4267 return -1;
4269 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4270 && xregno == ARG_POINTER_REGNUM)
4271 return -1;
4273 if (xregno == STACK_POINTER_REGNUM
4274 /* We should convert hard stack register in LRA if it is
4275 possible. */
4276 && ! lra_in_progress)
4277 return -1;
4279 /* Try to get the register offset. */
4280 subreg_get_info (xregno, xmode, offset, ymode, &info);
4281 if (!info.representable_p)
4282 return -1;
4284 /* Make sure that the offsetted register value is in range. */
4285 yregno = xregno + info.offset;
4286 if (!HARD_REGISTER_NUM_P (yregno))
4287 return -1;
4289 /* See whether (reg:YMODE YREGNO) is valid.
4291 ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
4292 This is a kludge to work around how complex FP arguments are passed
4293 on IA-64 and should be fixed. See PR target/49226. */
4294 if (!targetm.hard_regno_mode_ok (yregno, ymode)
4295 && targetm.hard_regno_mode_ok (xregno, xmode))
4296 return -1;
4298 return (int) yregno;
4301 /* A wrapper around simplify_subreg_regno that uses subreg_lowpart_offset
4302 (xmode, ymode) as the offset. */
4305 lowpart_subreg_regno (unsigned int regno, machine_mode xmode,
4306 machine_mode ymode)
4308 poly_uint64 offset = subreg_lowpart_offset (xmode, ymode);
4309 return simplify_subreg_regno (regno, xmode, offset, ymode);
4312 /* Return the final regno that a subreg expression refers to. */
4313 unsigned int
4314 subreg_regno (const_rtx x)
4316 unsigned int ret;
4317 rtx subreg = SUBREG_REG (x);
4318 int regno = REGNO (subreg);
4320 ret = regno + subreg_regno_offset (regno,
4321 GET_MODE (subreg),
4322 SUBREG_BYTE (x),
4323 GET_MODE (x));
4324 return ret;
4328 /* Return the number of registers that a subreg expression refers
4329 to. */
4330 unsigned int
4331 subreg_nregs (const_rtx x)
4333 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x)), x);
4336 /* Return the number of registers that a subreg REG with REGNO
4337 expression refers to. This is a copy of the rtlanal.cc:subreg_nregs
4338 changed so that the regno can be passed in. */
4340 unsigned int
4341 subreg_nregs_with_regno (unsigned int regno, const_rtx x)
4343 struct subreg_info info;
4344 rtx subreg = SUBREG_REG (x);
4346 subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
4347 &info);
4348 return info.nregs;
4351 struct parms_set_data
4353 int nregs;
4354 HARD_REG_SET regs;
4357 /* Helper function for noticing stores to parameter registers. */
4358 static void
4359 parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
4361 struct parms_set_data *const d = (struct parms_set_data *) data;
4362 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
4363 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
4365 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
4366 d->nregs--;
4370 /* Look backward for first parameter to be loaded.
4371 Note that loads of all parameters will not necessarily be
4372 found if CSE has eliminated some of them (e.g., an argument
4373 to the outer function is passed down as a parameter).
4374 Do not skip BOUNDARY. */
4375 rtx_insn *
4376 find_first_parameter_load (rtx_insn *call_insn, rtx_insn *boundary)
4378 struct parms_set_data parm;
4379 rtx p;
4380 rtx_insn *before, *first_set;
4382 /* Since different machines initialize their parameter registers
4383 in different orders, assume nothing. Collect the set of all
4384 parameter registers. */
4385 CLEAR_HARD_REG_SET (parm.regs);
4386 parm.nregs = 0;
4387 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
4388 if (GET_CODE (XEXP (p, 0)) == USE
4389 && REG_P (XEXP (XEXP (p, 0), 0))
4390 && !STATIC_CHAIN_REG_P (XEXP (XEXP (p, 0), 0)))
4392 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
4394 /* We only care about registers which can hold function
4395 arguments. */
4396 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
4397 continue;
4399 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
4400 parm.nregs++;
4402 before = call_insn;
4403 first_set = call_insn;
4405 /* Search backward for the first set of a register in this set. */
4406 while (parm.nregs && before != boundary)
4408 before = PREV_INSN (before);
4410 /* It is possible that some loads got CSEed from one call to
4411 another. Stop in that case. */
4412 if (CALL_P (before))
4413 break;
4415 /* Our caller needs either ensure that we will find all sets
4416 (in case code has not been optimized yet), or take care
4417 for possible labels in a way by setting boundary to preceding
4418 CODE_LABEL. */
4419 if (LABEL_P (before))
4421 gcc_assert (before == boundary);
4422 break;
4425 if (INSN_P (before))
4427 int nregs_old = parm.nregs;
4428 note_stores (before, parms_set, &parm);
4429 /* If we found something that did not set a parameter reg,
4430 we're done. Do not keep going, as that might result
4431 in hoisting an insn before the setting of a pseudo
4432 that is used by the hoisted insn. */
4433 if (nregs_old != parm.nregs)
4434 first_set = before;
4435 else
4436 break;
4439 return first_set;
4442 /* Return true if we should avoid inserting code between INSN and preceding
4443 call instruction. */
4445 bool
4446 keep_with_call_p (const rtx_insn *insn)
4448 rtx set;
4450 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
4452 if (REG_P (SET_DEST (set))
4453 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
4454 && fixed_regs[REGNO (SET_DEST (set))]
4455 && general_operand (SET_SRC (set), VOIDmode))
4456 return true;
4457 if (REG_P (SET_SRC (set))
4458 && targetm.calls.function_value_regno_p (REGNO (SET_SRC (set)))
4459 && REG_P (SET_DEST (set))
4460 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
4461 return true;
4462 /* There may be a stack pop just after the call and before the store
4463 of the return register. Search for the actual store when deciding
4464 if we can break or not. */
4465 if (SET_DEST (set) == stack_pointer_rtx)
4467 /* This CONST_CAST is okay because next_nonnote_insn just
4468 returns its argument and we assign it to a const_rtx
4469 variable. */
4470 const rtx_insn *i2
4471 = next_nonnote_insn (const_cast<rtx_insn *> (insn));
4472 if (i2 && keep_with_call_p (i2))
4473 return true;
4476 return false;
4479 /* Return true if LABEL is a target of JUMP_INSN. This applies only
4480 to non-complex jumps. That is, direct unconditional, conditional,
4481 and tablejumps, but not computed jumps or returns. It also does
4482 not apply to the fallthru case of a conditional jump. */
4484 bool
4485 label_is_jump_target_p (const_rtx label, const rtx_insn *jump_insn)
4487 rtx tmp = JUMP_LABEL (jump_insn);
4488 rtx_jump_table_data *table;
4490 if (label == tmp)
4491 return true;
4493 if (tablejump_p (jump_insn, NULL, &table))
4495 rtvec vec = table->get_labels ();
4496 int i, veclen = GET_NUM_ELEM (vec);
4498 for (i = 0; i < veclen; ++i)
4499 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
4500 return true;
4503 if (find_reg_note (jump_insn, REG_LABEL_TARGET, label))
4504 return true;
4506 return false;
4510 /* Return an estimate of the cost of computing rtx X.
4511 One use is in cse, to decide which expression to keep in the hash table.
4512 Another is in rtl generation, to pick the cheapest way to multiply.
4513 Other uses like the latter are expected in the future.
4515 X appears as operand OPNO in an expression with code OUTER_CODE.
4516 SPEED specifies whether costs optimized for speed or size should
4517 be returned. */
4520 rtx_cost (rtx x, machine_mode mode, enum rtx_code outer_code,
4521 int opno, bool speed)
4523 int i, j;
4524 enum rtx_code code;
4525 const char *fmt;
4526 int total;
4527 int factor;
4528 unsigned mode_size;
4530 if (x == 0)
4531 return 0;
4533 if (GET_CODE (x) == SET)
4534 /* A SET doesn't have a mode, so let's look at the SET_DEST to get
4535 the mode for the factor. */
4536 mode = GET_MODE (SET_DEST (x));
4537 else if (GET_MODE (x) != VOIDmode)
4538 mode = GET_MODE (x);
4540 mode_size = estimated_poly_value (GET_MODE_SIZE (mode));
4542 /* A size N times larger than UNITS_PER_WORD likely needs N times as
4543 many insns, taking N times as long. */
4544 factor = mode_size > UNITS_PER_WORD ? mode_size / UNITS_PER_WORD : 1;
4546 /* Compute the default costs of certain things.
4547 Note that targetm.rtx_costs can override the defaults. */
4549 code = GET_CODE (x);
4550 switch (code)
4552 case MULT:
4553 case FMA:
4554 case SS_MULT:
4555 case US_MULT:
4556 case SMUL_HIGHPART:
4557 case UMUL_HIGHPART:
4558 /* Multiplication has time-complexity O(N*N), where N is the
4559 number of units (translated from digits) when using
4560 schoolbook long multiplication. */
4561 total = factor * factor * COSTS_N_INSNS (5);
4562 break;
4563 case DIV:
4564 case UDIV:
4565 case MOD:
4566 case UMOD:
4567 case SS_DIV:
4568 case US_DIV:
4569 /* Similarly, complexity for schoolbook long division. */
4570 total = factor * factor * COSTS_N_INSNS (7);
4571 break;
4572 case USE:
4573 /* Used in combine.cc as a marker. */
4574 total = 0;
4575 break;
4576 default:
4577 total = factor * COSTS_N_INSNS (1);
4580 switch (code)
4582 case REG:
4583 return 0;
4585 case SUBREG:
4586 total = 0;
4587 /* If we can't tie these modes, make this expensive. The larger
4588 the mode, the more expensive it is. */
4589 if (!targetm.modes_tieable_p (mode, GET_MODE (SUBREG_REG (x))))
4590 return COSTS_N_INSNS (2 + factor);
4591 break;
4593 case TRUNCATE:
4594 if (targetm.modes_tieable_p (mode, GET_MODE (XEXP (x, 0))))
4596 total = 0;
4597 break;
4599 /* FALLTHRU */
4600 default:
4601 if (targetm.rtx_costs (x, mode, outer_code, opno, &total, speed))
4602 return total;
4603 break;
4606 /* Sum the costs of the sub-rtx's, plus cost of this operation,
4607 which is already in total. */
4609 fmt = GET_RTX_FORMAT (code);
4610 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4611 if (fmt[i] == 'e')
4612 total += rtx_cost (XEXP (x, i), mode, code, i, speed);
4613 else if (fmt[i] == 'E')
4614 for (j = 0; j < XVECLEN (x, i); j++)
4615 total += rtx_cost (XVECEXP (x, i, j), mode, code, i, speed);
4617 return total;
4620 /* Fill in the structure C with information about both speed and size rtx
4621 costs for X, which is operand OPNO in an expression with code OUTER. */
4623 void
4624 get_full_rtx_cost (rtx x, machine_mode mode, enum rtx_code outer, int opno,
4625 struct full_rtx_costs *c)
4627 c->speed = rtx_cost (x, mode, outer, opno, true);
4628 c->size = rtx_cost (x, mode, outer, opno, false);
4632 /* Return cost of address expression X.
4633 Expect that X is properly formed address reference.
4635 SPEED parameter specify whether costs optimized for speed or size should
4636 be returned. */
4639 address_cost (rtx x, machine_mode mode, addr_space_t as, bool speed)
4641 /* We may be asked for cost of various unusual addresses, such as operands
4642 of push instruction. It is not worthwhile to complicate writing
4643 of the target hook by such cases. */
4645 if (!memory_address_addr_space_p (mode, x, as))
4646 return 1000;
4648 return targetm.address_cost (x, mode, as, speed);
4651 /* If the target doesn't override, compute the cost as with arithmetic. */
4654 default_address_cost (rtx x, machine_mode, addr_space_t, bool speed)
4656 return rtx_cost (x, Pmode, MEM, 0, speed);
4660 unsigned HOST_WIDE_INT
4661 nonzero_bits (const_rtx x, machine_mode mode)
4663 if (mode == VOIDmode)
4664 mode = GET_MODE (x);
4665 scalar_int_mode int_mode;
4666 if (!is_a <scalar_int_mode> (mode, &int_mode))
4667 return GET_MODE_MASK (mode);
4668 return cached_nonzero_bits (x, int_mode, NULL_RTX, VOIDmode, 0);
4671 unsigned int
4672 num_sign_bit_copies (const_rtx x, machine_mode mode)
4674 if (mode == VOIDmode)
4675 mode = GET_MODE (x);
4676 scalar_int_mode int_mode;
4677 if (!is_a <scalar_int_mode> (mode, &int_mode))
4678 return 1;
4679 return cached_num_sign_bit_copies (x, int_mode, NULL_RTX, VOIDmode, 0);
4682 /* Return true if nonzero_bits1 might recurse into both operands
4683 of X. */
4685 static inline bool
4686 nonzero_bits_binary_arith_p (const_rtx x)
4688 if (!ARITHMETIC_P (x))
4689 return false;
4690 switch (GET_CODE (x))
4692 case AND:
4693 case XOR:
4694 case IOR:
4695 case UMIN:
4696 case UMAX:
4697 case SMIN:
4698 case SMAX:
4699 case PLUS:
4700 case MINUS:
4701 case MULT:
4702 case DIV:
4703 case UDIV:
4704 case MOD:
4705 case UMOD:
4706 return true;
4707 default:
4708 return false;
4712 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
4713 It avoids exponential behavior in nonzero_bits1 when X has
4714 identical subexpressions on the first or the second level. */
4716 static unsigned HOST_WIDE_INT
4717 cached_nonzero_bits (const_rtx x, scalar_int_mode mode, const_rtx known_x,
4718 machine_mode known_mode,
4719 unsigned HOST_WIDE_INT known_ret)
4721 if (x == known_x && mode == known_mode)
4722 return known_ret;
4724 /* Try to find identical subexpressions. If found call
4725 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
4726 precomputed value for the subexpression as KNOWN_RET. */
4728 if (nonzero_bits_binary_arith_p (x))
4730 rtx x0 = XEXP (x, 0);
4731 rtx x1 = XEXP (x, 1);
4733 /* Check the first level. */
4734 if (x0 == x1)
4735 return nonzero_bits1 (x, mode, x0, mode,
4736 cached_nonzero_bits (x0, mode, known_x,
4737 known_mode, known_ret));
4739 /* Check the second level. */
4740 if (nonzero_bits_binary_arith_p (x0)
4741 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4742 return nonzero_bits1 (x, mode, x1, mode,
4743 cached_nonzero_bits (x1, mode, known_x,
4744 known_mode, known_ret));
4746 if (nonzero_bits_binary_arith_p (x1)
4747 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4748 return nonzero_bits1 (x, mode, x0, mode,
4749 cached_nonzero_bits (x0, mode, known_x,
4750 known_mode, known_ret));
4753 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
4756 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
4757 We don't let nonzero_bits recur into num_sign_bit_copies, because that
4758 is less useful. We can't allow both, because that results in exponential
4759 run time recursion. There is a nullstone testcase that triggered
4760 this. This macro avoids accidental uses of num_sign_bit_copies. */
4761 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
4763 /* Given an expression, X, compute which bits in X can be nonzero.
4764 We don't care about bits outside of those defined in MODE.
4766 For most X this is simply GET_MODE_MASK (GET_MODE (X)), but if X is
4767 an arithmetic operation, we can do better. */
4769 static unsigned HOST_WIDE_INT
4770 nonzero_bits1 (const_rtx x, scalar_int_mode mode, const_rtx known_x,
4771 machine_mode known_mode,
4772 unsigned HOST_WIDE_INT known_ret)
4774 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
4775 unsigned HOST_WIDE_INT inner_nz;
4776 enum rtx_code code = GET_CODE (x);
4777 machine_mode inner_mode;
4778 unsigned int inner_width;
4779 scalar_int_mode xmode;
4781 unsigned int mode_width = GET_MODE_PRECISION (mode);
4783 if (CONST_INT_P (x))
4785 if (SHORT_IMMEDIATES_SIGN_EXTEND
4786 && INTVAL (x) > 0
4787 && mode_width < BITS_PER_WORD
4788 && (UINTVAL (x) & (HOST_WIDE_INT_1U << (mode_width - 1))) != 0)
4789 return UINTVAL (x) | (HOST_WIDE_INT_M1U << mode_width);
4791 return UINTVAL (x);
4794 if (!is_a <scalar_int_mode> (GET_MODE (x), &xmode))
4795 return nonzero;
4796 unsigned int xmode_width = GET_MODE_PRECISION (xmode);
4798 /* If X is wider than MODE, use its mode instead. */
4799 if (xmode_width > mode_width)
4801 mode = xmode;
4802 nonzero = GET_MODE_MASK (mode);
4803 mode_width = xmode_width;
4806 if (mode_width > HOST_BITS_PER_WIDE_INT)
4807 /* Our only callers in this case look for single bit values. So
4808 just return the mode mask. Those tests will then be false. */
4809 return nonzero;
4811 /* If MODE is wider than X, but both are a single word for both the host
4812 and target machines, we can compute this from which bits of the object
4813 might be nonzero in its own mode, taking into account the fact that, on
4814 CISC machines, accessing an object in a wider mode generally causes the
4815 high-order bits to become undefined, so they are not known to be zero.
4816 We extend this reasoning to RISC machines for operations that might not
4817 operate on the full registers. */
4818 if (mode_width > xmode_width
4819 && xmode_width <= BITS_PER_WORD
4820 && xmode_width <= HOST_BITS_PER_WIDE_INT
4821 && !(WORD_REGISTER_OPERATIONS && word_register_operation_p (x)))
4823 nonzero &= cached_nonzero_bits (x, xmode,
4824 known_x, known_mode, known_ret);
4825 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (xmode);
4826 return nonzero;
4829 /* Please keep nonzero_bits_binary_arith_p above in sync with
4830 the code in the switch below. */
4831 switch (code)
4833 case REG:
4834 #if defined(POINTERS_EXTEND_UNSIGNED)
4835 /* If pointers extend unsigned and this is a pointer in Pmode, say that
4836 all the bits above ptr_mode are known to be zero. */
4837 /* As we do not know which address space the pointer is referring to,
4838 we can do this only if the target does not support different pointer
4839 or address modes depending on the address space. */
4840 if (target_default_pointer_address_modes_p ()
4841 && POINTERS_EXTEND_UNSIGNED
4842 && xmode == Pmode
4843 && REG_POINTER (x)
4844 && !targetm.have_ptr_extend ())
4845 nonzero &= GET_MODE_MASK (ptr_mode);
4846 #endif
4848 /* Include declared information about alignment of pointers. */
4849 /* ??? We don't properly preserve REG_POINTER changes across
4850 pointer-to-integer casts, so we can't trust it except for
4851 things that we know must be pointers. See execute/960116-1.c. */
4852 if ((x == stack_pointer_rtx
4853 || x == frame_pointer_rtx
4854 || x == arg_pointer_rtx)
4855 && REGNO_POINTER_ALIGN (REGNO (x)))
4857 unsigned HOST_WIDE_INT alignment
4858 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
4860 #ifdef PUSH_ROUNDING
4861 /* If PUSH_ROUNDING is defined, it is possible for the
4862 stack to be momentarily aligned only to that amount,
4863 so we pick the least alignment. */
4864 if (x == stack_pointer_rtx && targetm.calls.push_argument (0))
4866 poly_uint64 rounded_1 = PUSH_ROUNDING (poly_int64 (1));
4867 alignment = MIN (known_alignment (rounded_1), alignment);
4869 #endif
4871 nonzero &= ~(alignment - 1);
4875 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
4876 rtx new_rtx = rtl_hooks.reg_nonzero_bits (x, xmode, mode,
4877 &nonzero_for_hook);
4879 if (new_rtx)
4880 nonzero_for_hook &= cached_nonzero_bits (new_rtx, mode, known_x,
4881 known_mode, known_ret);
4883 return nonzero_for_hook;
4886 case MEM:
4887 /* In many, if not most, RISC machines, reading a byte from memory
4888 zeros the rest of the register. Noticing that fact saves a lot
4889 of extra zero-extends. */
4890 if (load_extend_op (xmode) == ZERO_EXTEND)
4891 nonzero &= GET_MODE_MASK (xmode);
4892 break;
4894 case EQ: case NE:
4895 case UNEQ: case LTGT:
4896 case GT: case GTU: case UNGT:
4897 case LT: case LTU: case UNLT:
4898 case GE: case GEU: case UNGE:
4899 case LE: case LEU: case UNLE:
4900 case UNORDERED: case ORDERED:
4901 /* If this produces an integer result, we know which bits are set.
4902 Code here used to clear bits outside the mode of X, but that is
4903 now done above. */
4904 /* Mind that MODE is the mode the caller wants to look at this
4905 operation in, and not the actual operation mode. We can wind
4906 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
4907 that describes the results of a vector compare. */
4908 if (GET_MODE_CLASS (xmode) == MODE_INT
4909 && mode_width <= HOST_BITS_PER_WIDE_INT)
4910 nonzero = STORE_FLAG_VALUE;
4911 break;
4913 case NEG:
4914 #if 0
4915 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4916 and num_sign_bit_copies. */
4917 if (num_sign_bit_copies (XEXP (x, 0), xmode) == xmode_width)
4918 nonzero = 1;
4919 #endif
4921 if (xmode_width < mode_width)
4922 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (xmode));
4923 break;
4925 case ABS:
4926 #if 0
4927 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4928 and num_sign_bit_copies. */
4929 if (num_sign_bit_copies (XEXP (x, 0), xmode) == xmode_width)
4930 nonzero = 1;
4931 #endif
4932 break;
4934 case TRUNCATE:
4935 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
4936 known_x, known_mode, known_ret)
4937 & GET_MODE_MASK (mode));
4938 break;
4940 case ZERO_EXTEND:
4941 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4942 known_x, known_mode, known_ret);
4943 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4944 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4945 break;
4947 case SIGN_EXTEND:
4948 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
4949 Otherwise, show all the bits in the outer mode but not the inner
4950 may be nonzero. */
4951 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
4952 known_x, known_mode, known_ret);
4953 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4955 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4956 if (val_signbit_known_set_p (GET_MODE (XEXP (x, 0)), inner_nz))
4957 inner_nz |= (GET_MODE_MASK (mode)
4958 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
4961 nonzero &= inner_nz;
4962 break;
4964 case AND:
4965 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4966 known_x, known_mode, known_ret)
4967 & cached_nonzero_bits (XEXP (x, 1), mode,
4968 known_x, known_mode, known_ret);
4969 break;
4971 case XOR: case IOR:
4972 case UMIN: case UMAX: case SMIN: case SMAX:
4974 unsigned HOST_WIDE_INT nonzero0
4975 = cached_nonzero_bits (XEXP (x, 0), mode,
4976 known_x, known_mode, known_ret);
4978 /* Don't call nonzero_bits for the second time if it cannot change
4979 anything. */
4980 if ((nonzero & nonzero0) != nonzero)
4981 nonzero &= nonzero0
4982 | cached_nonzero_bits (XEXP (x, 1), mode,
4983 known_x, known_mode, known_ret);
4985 break;
4987 case PLUS: case MINUS:
4988 case MULT:
4989 case DIV: case UDIV:
4990 case MOD: case UMOD:
4991 /* We can apply the rules of arithmetic to compute the number of
4992 high- and low-order zero bits of these operations. We start by
4993 computing the width (position of the highest-order nonzero bit)
4994 and the number of low-order zero bits for each value. */
4996 unsigned HOST_WIDE_INT nz0
4997 = cached_nonzero_bits (XEXP (x, 0), mode,
4998 known_x, known_mode, known_ret);
4999 unsigned HOST_WIDE_INT nz1
5000 = cached_nonzero_bits (XEXP (x, 1), mode,
5001 known_x, known_mode, known_ret);
5002 int sign_index = xmode_width - 1;
5003 int width0 = floor_log2 (nz0) + 1;
5004 int width1 = floor_log2 (nz1) + 1;
5005 int low0 = ctz_or_zero (nz0);
5006 int low1 = ctz_or_zero (nz1);
5007 unsigned HOST_WIDE_INT op0_maybe_minusp
5008 = nz0 & (HOST_WIDE_INT_1U << sign_index);
5009 unsigned HOST_WIDE_INT op1_maybe_minusp
5010 = nz1 & (HOST_WIDE_INT_1U << sign_index);
5011 unsigned int result_width = mode_width;
5012 int result_low = 0;
5014 switch (code)
5016 case PLUS:
5017 result_width = MAX (width0, width1) + 1;
5018 result_low = MIN (low0, low1);
5019 break;
5020 case MINUS:
5021 result_low = MIN (low0, low1);
5022 break;
5023 case MULT:
5024 result_width = width0 + width1;
5025 result_low = low0 + low1;
5026 break;
5027 case DIV:
5028 if (width1 == 0)
5029 break;
5030 if (!op0_maybe_minusp && !op1_maybe_minusp)
5031 result_width = width0;
5032 break;
5033 case UDIV:
5034 if (width1 == 0)
5035 break;
5036 result_width = width0;
5037 break;
5038 case MOD:
5039 if (width1 == 0)
5040 break;
5041 if (!op0_maybe_minusp && !op1_maybe_minusp)
5042 result_width = MIN (width0, width1);
5043 result_low = MIN (low0, low1);
5044 break;
5045 case UMOD:
5046 if (width1 == 0)
5047 break;
5048 result_width = MIN (width0, width1);
5049 result_low = MIN (low0, low1);
5050 break;
5051 default:
5052 gcc_unreachable ();
5055 /* Note that mode_width <= HOST_BITS_PER_WIDE_INT, see above. */
5056 if (result_width < mode_width)
5057 nonzero &= (HOST_WIDE_INT_1U << result_width) - 1;
5059 if (result_low > 0)
5061 if (result_low < HOST_BITS_PER_WIDE_INT)
5062 nonzero &= ~((HOST_WIDE_INT_1U << result_low) - 1);
5063 else
5064 nonzero = 0;
5067 break;
5069 case ZERO_EXTRACT:
5070 if (CONST_INT_P (XEXP (x, 1))
5071 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
5072 nonzero &= (HOST_WIDE_INT_1U << INTVAL (XEXP (x, 1))) - 1;
5073 break;
5075 case SUBREG:
5076 /* If this is a SUBREG formed for a promoted variable that has
5077 been zero-extended, we know that at least the high-order bits
5078 are zero, though others might be too. */
5079 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x))
5080 nonzero = GET_MODE_MASK (xmode)
5081 & cached_nonzero_bits (SUBREG_REG (x), xmode,
5082 known_x, known_mode, known_ret);
5084 /* If the inner mode is a single word for both the host and target
5085 machines, we can compute this from which bits of the inner
5086 object might be nonzero. */
5087 inner_mode = GET_MODE (SUBREG_REG (x));
5088 if (GET_MODE_PRECISION (inner_mode).is_constant (&inner_width)
5089 && inner_width <= BITS_PER_WORD
5090 && inner_width <= HOST_BITS_PER_WIDE_INT)
5092 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
5093 known_x, known_mode, known_ret);
5095 /* On a typical CISC machine, accessing an object in a wider mode
5096 causes the high-order bits to become undefined. So they are
5097 not known to be zero.
5099 On a typical RISC machine, we only have to worry about the way
5100 loads are extended. Otherwise, if we get a reload for the inner
5101 part, it may be loaded from the stack, and then we may lose all
5102 the zero bits that existed before the store to the stack. */
5103 rtx_code extend_op;
5104 if ((!WORD_REGISTER_OPERATIONS
5105 || ((extend_op = load_extend_op (inner_mode)) == SIGN_EXTEND
5106 ? val_signbit_known_set_p (inner_mode, nonzero)
5107 : extend_op != ZERO_EXTEND)
5108 || !MEM_P (SUBREG_REG (x)))
5109 && xmode_width > inner_width)
5110 nonzero
5111 |= (GET_MODE_MASK (GET_MODE (x)) & ~GET_MODE_MASK (inner_mode));
5113 break;
5115 case ASHIFT:
5116 case ASHIFTRT:
5117 case LSHIFTRT:
5118 case ROTATE:
5119 case ROTATERT:
5120 /* The nonzero bits are in two classes: any bits within MODE
5121 that aren't in xmode are always significant. The rest of the
5122 nonzero bits are those that are significant in the operand of
5123 the shift when shifted the appropriate number of bits. This
5124 shows that high-order bits are cleared by the right shift and
5125 low-order bits by left shifts. */
5126 if (CONST_INT_P (XEXP (x, 1))
5127 && INTVAL (XEXP (x, 1)) >= 0
5128 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
5129 && INTVAL (XEXP (x, 1)) < xmode_width)
5131 int count = INTVAL (XEXP (x, 1));
5132 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (xmode);
5133 unsigned HOST_WIDE_INT op_nonzero
5134 = cached_nonzero_bits (XEXP (x, 0), mode,
5135 known_x, known_mode, known_ret);
5136 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
5137 unsigned HOST_WIDE_INT outer = 0;
5139 if (mode_width > xmode_width)
5140 outer = (op_nonzero & nonzero & ~mode_mask);
5142 switch (code)
5144 case ASHIFT:
5145 inner <<= count;
5146 break;
5148 case LSHIFTRT:
5149 inner >>= count;
5150 break;
5152 case ASHIFTRT:
5153 inner >>= count;
5155 /* If the sign bit may have been nonzero before the shift, we
5156 need to mark all the places it could have been copied to
5157 by the shift as possibly nonzero. */
5158 if (inner & (HOST_WIDE_INT_1U << (xmode_width - 1 - count)))
5159 inner |= (((HOST_WIDE_INT_1U << count) - 1)
5160 << (xmode_width - count));
5161 break;
5163 case ROTATE:
5164 inner = (inner << (count % xmode_width)
5165 | (inner >> (xmode_width - (count % xmode_width))))
5166 & mode_mask;
5167 break;
5169 case ROTATERT:
5170 inner = (inner >> (count % xmode_width)
5171 | (inner << (xmode_width - (count % xmode_width))))
5172 & mode_mask;
5173 break;
5175 default:
5176 gcc_unreachable ();
5179 nonzero &= (outer | inner);
5181 break;
5183 case FFS:
5184 case POPCOUNT:
5185 /* This is at most the number of bits in the mode. */
5186 nonzero = ((unsigned HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
5187 break;
5189 case CLZ:
5190 /* If CLZ has a known value at zero, then the nonzero bits are
5191 that value, plus the number of bits in the mode minus one. */
5192 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
5193 nonzero
5194 |= (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1;
5195 else
5196 nonzero = -1;
5197 break;
5199 case CTZ:
5200 /* If CTZ has a known value at zero, then the nonzero bits are
5201 that value, plus the number of bits in the mode minus one. */
5202 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
5203 nonzero
5204 |= (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1;
5205 else
5206 nonzero = -1;
5207 break;
5209 case CLRSB:
5210 /* This is at most the number of bits in the mode minus 1. */
5211 nonzero = (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1;
5212 break;
5214 case PARITY:
5215 nonzero = 1;
5216 break;
5218 case IF_THEN_ELSE:
5220 unsigned HOST_WIDE_INT nonzero_true
5221 = cached_nonzero_bits (XEXP (x, 1), mode,
5222 known_x, known_mode, known_ret);
5224 /* Don't call nonzero_bits for the second time if it cannot change
5225 anything. */
5226 if ((nonzero & nonzero_true) != nonzero)
5227 nonzero &= nonzero_true
5228 | cached_nonzero_bits (XEXP (x, 2), mode,
5229 known_x, known_mode, known_ret);
5231 break;
5233 default:
5234 break;
5237 return nonzero;
5240 /* See the macro definition above. */
5241 #undef cached_num_sign_bit_copies
5244 /* Return true if num_sign_bit_copies1 might recurse into both operands
5245 of X. */
5247 static inline bool
5248 num_sign_bit_copies_binary_arith_p (const_rtx x)
5250 if (!ARITHMETIC_P (x))
5251 return false;
5252 switch (GET_CODE (x))
5254 case IOR:
5255 case AND:
5256 case XOR:
5257 case SMIN:
5258 case SMAX:
5259 case UMIN:
5260 case UMAX:
5261 case PLUS:
5262 case MINUS:
5263 case MULT:
5264 return true;
5265 default:
5266 return false;
5270 /* The function cached_num_sign_bit_copies is a wrapper around
5271 num_sign_bit_copies1. It avoids exponential behavior in
5272 num_sign_bit_copies1 when X has identical subexpressions on the
5273 first or the second level. */
5275 static unsigned int
5276 cached_num_sign_bit_copies (const_rtx x, scalar_int_mode mode,
5277 const_rtx known_x, machine_mode known_mode,
5278 unsigned int known_ret)
5280 if (x == known_x && mode == known_mode)
5281 return known_ret;
5283 /* Try to find identical subexpressions. If found call
5284 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
5285 the precomputed value for the subexpression as KNOWN_RET. */
5287 if (num_sign_bit_copies_binary_arith_p (x))
5289 rtx x0 = XEXP (x, 0);
5290 rtx x1 = XEXP (x, 1);
5292 /* Check the first level. */
5293 if (x0 == x1)
5294 return
5295 num_sign_bit_copies1 (x, mode, x0, mode,
5296 cached_num_sign_bit_copies (x0, mode, known_x,
5297 known_mode,
5298 known_ret));
5300 /* Check the second level. */
5301 if (num_sign_bit_copies_binary_arith_p (x0)
5302 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
5303 return
5304 num_sign_bit_copies1 (x, mode, x1, mode,
5305 cached_num_sign_bit_copies (x1, mode, known_x,
5306 known_mode,
5307 known_ret));
5309 if (num_sign_bit_copies_binary_arith_p (x1)
5310 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
5311 return
5312 num_sign_bit_copies1 (x, mode, x0, mode,
5313 cached_num_sign_bit_copies (x0, mode, known_x,
5314 known_mode,
5315 known_ret));
5318 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
5321 /* Return the number of bits at the high-order end of X that are known to
5322 be equal to the sign bit. X will be used in mode MODE. The returned
5323 value will always be between 1 and the number of bits in MODE. */
5325 static unsigned int
5326 num_sign_bit_copies1 (const_rtx x, scalar_int_mode mode, const_rtx known_x,
5327 machine_mode known_mode,
5328 unsigned int known_ret)
5330 enum rtx_code code = GET_CODE (x);
5331 unsigned int bitwidth = GET_MODE_PRECISION (mode);
5332 int num0, num1, result;
5333 unsigned HOST_WIDE_INT nonzero;
5335 if (CONST_INT_P (x))
5337 /* If the constant is negative, take its 1's complement and remask.
5338 Then see how many zero bits we have. */
5339 nonzero = UINTVAL (x) & GET_MODE_MASK (mode);
5340 if (bitwidth <= HOST_BITS_PER_WIDE_INT
5341 && (nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5342 nonzero = (~nonzero) & GET_MODE_MASK (mode);
5344 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
5347 scalar_int_mode xmode, inner_mode;
5348 if (!is_a <scalar_int_mode> (GET_MODE (x), &xmode))
5349 return 1;
5351 unsigned int xmode_width = GET_MODE_PRECISION (xmode);
5353 /* For a smaller mode, just ignore the high bits. */
5354 if (bitwidth < xmode_width)
5356 num0 = cached_num_sign_bit_copies (x, xmode,
5357 known_x, known_mode, known_ret);
5358 return MAX (1, num0 - (int) (xmode_width - bitwidth));
5361 if (bitwidth > xmode_width)
5363 /* If this machine does not do all register operations on the entire
5364 register and MODE is wider than the mode of X, we can say nothing
5365 at all about the high-order bits. We extend this reasoning to RISC
5366 machines for operations that might not operate on full registers. */
5367 if (!(WORD_REGISTER_OPERATIONS && word_register_operation_p (x)))
5368 return 1;
5370 /* Likewise on machines that do, if the mode of the object is smaller
5371 than a word and loads of that size don't sign extend, we can say
5372 nothing about the high order bits. */
5373 if (xmode_width < BITS_PER_WORD
5374 && load_extend_op (xmode) != SIGN_EXTEND)
5375 return 1;
5378 /* Please keep num_sign_bit_copies_binary_arith_p above in sync with
5379 the code in the switch below. */
5380 switch (code)
5382 case REG:
5384 #if defined(POINTERS_EXTEND_UNSIGNED)
5385 /* If pointers extend signed and this is a pointer in Pmode, say that
5386 all the bits above ptr_mode are known to be sign bit copies. */
5387 /* As we do not know which address space the pointer is referring to,
5388 we can do this only if the target does not support different pointer
5389 or address modes depending on the address space. */
5390 if (target_default_pointer_address_modes_p ()
5391 && ! POINTERS_EXTEND_UNSIGNED && xmode == Pmode
5392 && mode == Pmode && REG_POINTER (x)
5393 && !targetm.have_ptr_extend ())
5394 return GET_MODE_PRECISION (Pmode) - GET_MODE_PRECISION (ptr_mode) + 1;
5395 #endif
5398 unsigned int copies_for_hook = 1, copies = 1;
5399 rtx new_rtx = rtl_hooks.reg_num_sign_bit_copies (x, xmode, mode,
5400 &copies_for_hook);
5402 if (new_rtx)
5403 copies = cached_num_sign_bit_copies (new_rtx, mode, known_x,
5404 known_mode, known_ret);
5406 if (copies > 1 || copies_for_hook > 1)
5407 return MAX (copies, copies_for_hook);
5409 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
5411 break;
5413 case MEM:
5414 /* Some RISC machines sign-extend all loads of smaller than a word. */
5415 if (load_extend_op (xmode) == SIGN_EXTEND)
5416 return MAX (1, ((int) bitwidth - (int) xmode_width + 1));
5417 break;
5419 case SUBREG:
5420 /* If this is a SUBREG for a promoted object that is sign-extended
5421 and we are looking at it in a wider mode, we know that at least the
5422 high-order bits are known to be sign bit copies. */
5424 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_SIGNED_P (x))
5426 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
5427 known_x, known_mode, known_ret);
5428 return MAX ((int) bitwidth - (int) xmode_width + 1, num0);
5431 if (is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (x)), &inner_mode))
5433 /* For a smaller object, just ignore the high bits. */
5434 if (bitwidth <= GET_MODE_PRECISION (inner_mode))
5436 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), inner_mode,
5437 known_x, known_mode,
5438 known_ret);
5439 return MAX (1, num0 - (int) (GET_MODE_PRECISION (inner_mode)
5440 - bitwidth));
5443 /* For paradoxical SUBREGs on machines where all register operations
5444 affect the entire register, just look inside. Note that we are
5445 passing MODE to the recursive call, so the number of sign bit
5446 copies will remain relative to that mode, not the inner mode.
5448 This works only if loads sign extend. Otherwise, if we get a
5449 reload for the inner part, it may be loaded from the stack, and
5450 then we lose all sign bit copies that existed before the store
5451 to the stack. */
5452 if (WORD_REGISTER_OPERATIONS
5453 && load_extend_op (inner_mode) == SIGN_EXTEND
5454 && paradoxical_subreg_p (x)
5455 && MEM_P (SUBREG_REG (x)))
5456 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
5457 known_x, known_mode, known_ret);
5459 break;
5461 case SIGN_EXTRACT:
5462 if (CONST_INT_P (XEXP (x, 1)))
5463 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
5464 break;
5466 case SIGN_EXTEND:
5467 if (is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode))
5468 return (bitwidth - GET_MODE_PRECISION (inner_mode)
5469 + cached_num_sign_bit_copies (XEXP (x, 0), inner_mode,
5470 known_x, known_mode, known_ret));
5471 break;
5473 case TRUNCATE:
5474 /* For a smaller object, just ignore the high bits. */
5475 inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
5476 num0 = cached_num_sign_bit_copies (XEXP (x, 0), inner_mode,
5477 known_x, known_mode, known_ret);
5478 return MAX (1, (num0 - (int) (GET_MODE_PRECISION (inner_mode)
5479 - bitwidth)));
5481 case NOT:
5482 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
5483 known_x, known_mode, known_ret);
5485 case ROTATE: case ROTATERT:
5486 /* If we are rotating left by a number of bits less than the number
5487 of sign bit copies, we can just subtract that amount from the
5488 number. */
5489 if (CONST_INT_P (XEXP (x, 1))
5490 && INTVAL (XEXP (x, 1)) >= 0
5491 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
5493 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5494 known_x, known_mode, known_ret);
5495 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
5496 : (int) bitwidth - INTVAL (XEXP (x, 1))));
5498 break;
5500 case NEG:
5501 /* In general, this subtracts one sign bit copy. But if the value
5502 is known to be positive, the number of sign bit copies is the
5503 same as that of the input. Finally, if the input has just one bit
5504 that might be nonzero, all the bits are copies of the sign bit. */
5505 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5506 known_x, known_mode, known_ret);
5507 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5508 return num0 > 1 ? num0 - 1 : 1;
5510 nonzero = nonzero_bits (XEXP (x, 0), mode);
5511 if (nonzero == 1)
5512 return bitwidth;
5514 if (num0 > 1
5515 && ((HOST_WIDE_INT_1U << (bitwidth - 1)) & nonzero))
5516 num0--;
5518 return num0;
5520 case IOR: case AND: case XOR:
5521 case SMIN: case SMAX: case UMIN: case UMAX:
5522 /* Logical operations will preserve the number of sign-bit copies.
5523 MIN and MAX operations always return one of the operands. */
5524 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5525 known_x, known_mode, known_ret);
5526 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5527 known_x, known_mode, known_ret);
5529 /* If num1 is clearing some of the top bits then regardless of
5530 the other term, we are guaranteed to have at least that many
5531 high-order zero bits. */
5532 if (code == AND
5533 && num1 > 1
5534 && bitwidth <= HOST_BITS_PER_WIDE_INT
5535 && CONST_INT_P (XEXP (x, 1))
5536 && (UINTVAL (XEXP (x, 1))
5537 & (HOST_WIDE_INT_1U << (bitwidth - 1))) == 0)
5538 return num1;
5540 /* Similarly for IOR when setting high-order bits. */
5541 if (code == IOR
5542 && num1 > 1
5543 && bitwidth <= HOST_BITS_PER_WIDE_INT
5544 && CONST_INT_P (XEXP (x, 1))
5545 && (UINTVAL (XEXP (x, 1))
5546 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5547 return num1;
5549 return MIN (num0, num1);
5551 case PLUS: case MINUS:
5552 /* For addition and subtraction, we can have a 1-bit carry. However,
5553 if we are subtracting 1 from a positive number, there will not
5554 be such a carry. Furthermore, if the positive number is known to
5555 be 0 or 1, we know the result is either -1 or 0. */
5557 if (code == PLUS && XEXP (x, 1) == constm1_rtx
5558 && bitwidth <= HOST_BITS_PER_WIDE_INT)
5560 nonzero = nonzero_bits (XEXP (x, 0), mode);
5561 if (((HOST_WIDE_INT_1U << (bitwidth - 1)) & nonzero) == 0)
5562 return (nonzero == 1 || nonzero == 0 ? bitwidth
5563 : bitwidth - floor_log2 (nonzero) - 1);
5566 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5567 known_x, known_mode, known_ret);
5568 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5569 known_x, known_mode, known_ret);
5570 result = MAX (1, MIN (num0, num1) - 1);
5572 return result;
5574 case MULT:
5575 /* The number of bits of the product is the sum of the number of
5576 bits of both terms. However, unless one of the terms if known
5577 to be positive, we must allow for an additional bit since negating
5578 a negative number can remove one sign bit copy. */
5580 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5581 known_x, known_mode, known_ret);
5582 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5583 known_x, known_mode, known_ret);
5585 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
5586 if (result > 0
5587 && (bitwidth > HOST_BITS_PER_WIDE_INT
5588 || (((nonzero_bits (XEXP (x, 0), mode)
5589 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5590 && ((nonzero_bits (XEXP (x, 1), mode)
5591 & (HOST_WIDE_INT_1U << (bitwidth - 1)))
5592 != 0))))
5593 result--;
5595 return MAX (1, result);
5597 case UDIV:
5598 /* The result must be <= the first operand. If the first operand
5599 has the high bit set, we know nothing about the number of sign
5600 bit copies. */
5601 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5602 return 1;
5603 else if ((nonzero_bits (XEXP (x, 0), mode)
5604 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5605 return 1;
5606 else
5607 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
5608 known_x, known_mode, known_ret);
5610 case UMOD:
5611 /* The result must be <= the second operand. If the second operand
5612 has (or just might have) the high bit set, we know nothing about
5613 the number of sign bit copies. */
5614 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5615 return 1;
5616 else if ((nonzero_bits (XEXP (x, 1), mode)
5617 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5618 return 1;
5619 else
5620 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
5621 known_x, known_mode, known_ret);
5623 case DIV:
5624 /* Similar to unsigned division, except that we have to worry about
5625 the case where the divisor is negative, in which case we have
5626 to add 1. */
5627 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5628 known_x, known_mode, known_ret);
5629 if (result > 1
5630 && (bitwidth > HOST_BITS_PER_WIDE_INT
5631 || (nonzero_bits (XEXP (x, 1), mode)
5632 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0))
5633 result--;
5635 return result;
5637 case MOD:
5638 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5639 known_x, known_mode, known_ret);
5640 if (result > 1
5641 && (bitwidth > HOST_BITS_PER_WIDE_INT
5642 || (nonzero_bits (XEXP (x, 1), mode)
5643 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0))
5644 result--;
5646 return result;
5648 case ASHIFTRT:
5649 /* Shifts by a constant add to the number of bits equal to the
5650 sign bit. */
5651 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5652 known_x, known_mode, known_ret);
5653 if (CONST_INT_P (XEXP (x, 1))
5654 && INTVAL (XEXP (x, 1)) > 0
5655 && INTVAL (XEXP (x, 1)) < xmode_width)
5656 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
5658 return num0;
5660 case ASHIFT:
5661 /* Left shifts destroy copies. */
5662 if (!CONST_INT_P (XEXP (x, 1))
5663 || INTVAL (XEXP (x, 1)) < 0
5664 || INTVAL (XEXP (x, 1)) >= (int) bitwidth
5665 || INTVAL (XEXP (x, 1)) >= xmode_width)
5666 return 1;
5668 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5669 known_x, known_mode, known_ret);
5670 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
5672 case IF_THEN_ELSE:
5673 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5674 known_x, known_mode, known_ret);
5675 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
5676 known_x, known_mode, known_ret);
5677 return MIN (num0, num1);
5679 case EQ: case NE: case GE: case GT: case LE: case LT:
5680 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
5681 case GEU: case GTU: case LEU: case LTU:
5682 case UNORDERED: case ORDERED:
5683 /* If the constant is negative, take its 1's complement and remask.
5684 Then see how many zero bits we have. */
5685 nonzero = STORE_FLAG_VALUE;
5686 if (bitwidth <= HOST_BITS_PER_WIDE_INT
5687 && (nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5688 nonzero = (~nonzero) & GET_MODE_MASK (mode);
5690 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
5692 default:
5693 break;
5696 /* If we haven't been able to figure it out by one of the above rules,
5697 see if some of the high-order bits are known to be zero. If so,
5698 count those bits and return one less than that amount. If we can't
5699 safely compute the mask for this mode, always return BITWIDTH. */
5701 bitwidth = GET_MODE_PRECISION (mode);
5702 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5703 return 1;
5705 nonzero = nonzero_bits (x, mode);
5706 return nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))
5707 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
5710 /* Calculate the rtx_cost of a single instruction pattern. A return value of
5711 zero indicates an instruction pattern without a known cost. */
5714 pattern_cost (rtx pat, bool speed)
5716 int i, cost;
5717 rtx set;
5719 /* Extract the single set rtx from the instruction pattern. We
5720 can't use single_set since we only have the pattern. We also
5721 consider PARALLELs of a normal set and a single comparison. In
5722 that case we use the cost of the non-comparison SET operation,
5723 which is most-likely to be the real cost of this operation. */
5724 if (GET_CODE (pat) == SET)
5725 set = pat;
5726 else if (GET_CODE (pat) == PARALLEL)
5728 set = NULL_RTX;
5729 rtx comparison = NULL_RTX;
5731 for (i = 0; i < XVECLEN (pat, 0); i++)
5733 rtx x = XVECEXP (pat, 0, i);
5734 if (GET_CODE (x) == SET)
5736 if (GET_CODE (SET_SRC (x)) == COMPARE)
5738 if (comparison)
5739 return 0;
5740 comparison = x;
5742 else
5744 if (set)
5745 return 0;
5746 set = x;
5751 if (!set && comparison)
5752 set = comparison;
5754 if (!set)
5755 return 0;
5757 else
5758 return 0;
5760 cost = set_src_cost (SET_SRC (set), GET_MODE (SET_DEST (set)), speed);
5761 return cost > 0 ? cost : COSTS_N_INSNS (1);
5764 /* Calculate the cost of a single instruction. A return value of zero
5765 indicates an instruction pattern without a known cost. */
5768 insn_cost (rtx_insn *insn, bool speed)
5770 if (targetm.insn_cost)
5771 return targetm.insn_cost (insn, speed);
5773 return pattern_cost (PATTERN (insn), speed);
5776 /* Returns estimate on cost of computing SEQ. */
5778 unsigned
5779 seq_cost (const rtx_insn *seq, bool speed)
5781 unsigned cost = 0;
5782 rtx set;
5784 for (; seq; seq = NEXT_INSN (seq))
5786 set = single_set (seq);
5787 if (set)
5788 cost += set_rtx_cost (set, speed);
5789 else if (NONDEBUG_INSN_P (seq))
5791 int this_cost = insn_cost (CONST_CAST_RTX_INSN (seq), speed);
5792 if (this_cost > 0)
5793 cost += this_cost;
5794 else
5795 cost++;
5799 return cost;
5802 /* Given an insn INSN and condition COND, return the condition in a
5803 canonical form to simplify testing by callers. Specifically:
5805 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
5806 (2) Both operands will be machine operands.
5807 (3) If an operand is a constant, it will be the second operand.
5808 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
5809 for GE, GEU, and LEU.
5811 If the condition cannot be understood, or is an inequality floating-point
5812 comparison which needs to be reversed, 0 will be returned.
5814 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
5816 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5817 insn used in locating the condition was found. If a replacement test
5818 of the condition is desired, it should be placed in front of that
5819 insn and we will be sure that the inputs are still valid.
5821 If WANT_REG is nonzero, we wish the condition to be relative to that
5822 register, if possible. Therefore, do not canonicalize the condition
5823 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
5824 to be a compare to a CC mode register.
5826 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
5827 and at INSN. */
5830 canonicalize_condition (rtx_insn *insn, rtx cond, int reverse,
5831 rtx_insn **earliest,
5832 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
5834 enum rtx_code code;
5835 rtx_insn *prev = insn;
5836 const_rtx set;
5837 rtx tem;
5838 rtx op0, op1;
5839 int reverse_code = 0;
5840 machine_mode mode;
5841 basic_block bb = BLOCK_FOR_INSN (insn);
5843 code = GET_CODE (cond);
5844 mode = GET_MODE (cond);
5845 op0 = XEXP (cond, 0);
5846 op1 = XEXP (cond, 1);
5848 if (reverse)
5849 code = reversed_comparison_code (cond, insn);
5850 if (code == UNKNOWN)
5851 return 0;
5853 if (earliest)
5854 *earliest = insn;
5856 /* If we are comparing a register with zero, see if the register is set
5857 in the previous insn to a COMPARE or a comparison operation. Perform
5858 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
5859 in cse.cc */
5861 while ((GET_RTX_CLASS (code) == RTX_COMPARE
5862 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
5863 && op1 == CONST0_RTX (GET_MODE (op0))
5864 && op0 != want_reg)
5866 /* Set nonzero when we find something of interest. */
5867 rtx x = 0;
5869 /* If this is a COMPARE, pick up the two things being compared. */
5870 if (GET_CODE (op0) == COMPARE)
5872 op1 = XEXP (op0, 1);
5873 op0 = XEXP (op0, 0);
5874 continue;
5876 else if (!REG_P (op0))
5877 break;
5879 /* Go back to the previous insn. Stop if it is not an INSN. We also
5880 stop if it isn't a single set or if it has a REG_INC note because
5881 we don't want to bother dealing with it. */
5883 prev = prev_nonnote_nondebug_insn (prev);
5885 if (prev == 0
5886 || !NONJUMP_INSN_P (prev)
5887 || FIND_REG_INC_NOTE (prev, NULL_RTX)
5888 /* In cfglayout mode, there do not have to be labels at the
5889 beginning of a block, or jumps at the end, so the previous
5890 conditions would not stop us when we reach bb boundary. */
5891 || BLOCK_FOR_INSN (prev) != bb)
5892 break;
5894 set = set_of (op0, prev);
5896 if (set
5897 && (GET_CODE (set) != SET
5898 || !rtx_equal_p (SET_DEST (set), op0)))
5899 break;
5901 /* If this is setting OP0, get what it sets it to if it looks
5902 relevant. */
5903 if (set)
5905 machine_mode inner_mode = GET_MODE (SET_DEST (set));
5906 #ifdef FLOAT_STORE_FLAG_VALUE
5907 REAL_VALUE_TYPE fsfv;
5908 #endif
5910 /* ??? We may not combine comparisons done in a CCmode with
5911 comparisons not done in a CCmode. This is to aid targets
5912 like Alpha that have an IEEE compliant EQ instruction, and
5913 a non-IEEE compliant BEQ instruction. The use of CCmode is
5914 actually artificial, simply to prevent the combination, but
5915 should not affect other platforms.
5917 However, we must allow VOIDmode comparisons to match either
5918 CCmode or non-CCmode comparison, because some ports have
5919 modeless comparisons inside branch patterns.
5921 ??? This mode check should perhaps look more like the mode check
5922 in simplify_comparison in combine. */
5923 if (((GET_MODE_CLASS (mode) == MODE_CC)
5924 != (GET_MODE_CLASS (inner_mode) == MODE_CC))
5925 && mode != VOIDmode
5926 && inner_mode != VOIDmode)
5927 break;
5928 if (GET_CODE (SET_SRC (set)) == COMPARE
5929 || (((code == NE
5930 || (code == LT
5931 && val_signbit_known_set_p (inner_mode,
5932 STORE_FLAG_VALUE))
5933 #ifdef FLOAT_STORE_FLAG_VALUE
5934 || (code == LT
5935 && SCALAR_FLOAT_MODE_P (inner_mode)
5936 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5937 REAL_VALUE_NEGATIVE (fsfv)))
5938 #endif
5940 && COMPARISON_P (SET_SRC (set))))
5941 x = SET_SRC (set);
5942 else if (((code == EQ
5943 || (code == GE
5944 && val_signbit_known_set_p (inner_mode,
5945 STORE_FLAG_VALUE))
5946 #ifdef FLOAT_STORE_FLAG_VALUE
5947 || (code == GE
5948 && SCALAR_FLOAT_MODE_P (inner_mode)
5949 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5950 REAL_VALUE_NEGATIVE (fsfv)))
5951 #endif
5953 && COMPARISON_P (SET_SRC (set)))
5955 reverse_code = 1;
5956 x = SET_SRC (set);
5958 else if ((code == EQ || code == NE)
5959 && GET_CODE (SET_SRC (set)) == XOR)
5960 /* Handle sequences like:
5962 (set op0 (xor X Y))
5963 ...(eq|ne op0 (const_int 0))...
5965 in which case:
5967 (eq op0 (const_int 0)) reduces to (eq X Y)
5968 (ne op0 (const_int 0)) reduces to (ne X Y)
5970 This is the form used by MIPS16, for example. */
5971 x = SET_SRC (set);
5972 else
5973 break;
5976 else if (reg_set_p (op0, prev))
5977 /* If this sets OP0, but not directly, we have to give up. */
5978 break;
5980 if (x)
5982 /* If the caller is expecting the condition to be valid at INSN,
5983 make sure X doesn't change before INSN. */
5984 if (valid_at_insn_p)
5985 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
5986 break;
5987 if (COMPARISON_P (x))
5988 code = GET_CODE (x);
5989 if (reverse_code)
5991 code = reversed_comparison_code (x, prev);
5992 if (code == UNKNOWN)
5993 return 0;
5994 reverse_code = 0;
5997 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5998 if (earliest)
5999 *earliest = prev;
6003 /* If constant is first, put it last. */
6004 if (CONSTANT_P (op0))
6005 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
6007 /* If OP0 is the result of a comparison, we weren't able to find what
6008 was really being compared, so fail. */
6009 if (!allow_cc_mode
6010 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6011 return 0;
6013 /* Canonicalize any ordered comparison with integers involving equality
6014 if we can do computations in the relevant mode and we do not
6015 overflow. */
6017 scalar_int_mode op0_mode;
6018 if (CONST_INT_P (op1)
6019 && is_a <scalar_int_mode> (GET_MODE (op0), &op0_mode)
6020 && GET_MODE_PRECISION (op0_mode) <= HOST_BITS_PER_WIDE_INT)
6022 HOST_WIDE_INT const_val = INTVAL (op1);
6023 unsigned HOST_WIDE_INT uconst_val = const_val;
6024 unsigned HOST_WIDE_INT max_val
6025 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (op0_mode);
6027 switch (code)
6029 case LE:
6030 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
6031 code = LT, op1 = gen_int_mode (const_val + 1, op0_mode);
6032 break;
6034 /* When cross-compiling, const_val might be sign-extended from
6035 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
6036 case GE:
6037 if ((const_val & max_val)
6038 != (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (op0_mode) - 1)))
6039 code = GT, op1 = gen_int_mode (const_val - 1, op0_mode);
6040 break;
6042 case LEU:
6043 if (uconst_val < max_val)
6044 code = LTU, op1 = gen_int_mode (uconst_val + 1, op0_mode);
6045 break;
6047 case GEU:
6048 if (uconst_val != 0)
6049 code = GTU, op1 = gen_int_mode (uconst_val - 1, op0_mode);
6050 break;
6052 default:
6053 break;
6057 /* We promised to return a comparison. */
6058 rtx ret = gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
6059 if (COMPARISON_P (ret))
6060 return ret;
6061 return 0;
6064 /* Given a jump insn JUMP, return the condition that will cause it to branch
6065 to its JUMP_LABEL. If the condition cannot be understood, or is an
6066 inequality floating-point comparison which needs to be reversed, 0 will
6067 be returned.
6069 If EARLIEST is nonzero, it is a pointer to a place where the earliest
6070 insn used in locating the condition was found. If a replacement test
6071 of the condition is desired, it should be placed in front of that
6072 insn and we will be sure that the inputs are still valid. If EARLIEST
6073 is null, the returned condition will be valid at INSN.
6075 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
6076 compare CC mode register.
6078 VALID_AT_INSN_P is the same as for canonicalize_condition. */
6081 get_condition (rtx_insn *jump, rtx_insn **earliest, int allow_cc_mode,
6082 int valid_at_insn_p)
6084 rtx cond;
6085 int reverse;
6086 rtx set;
6088 /* If this is not a standard conditional jump, we can't parse it. */
6089 if (!JUMP_P (jump)
6090 || ! any_condjump_p (jump))
6091 return 0;
6092 set = pc_set (jump);
6094 cond = XEXP (SET_SRC (set), 0);
6096 /* If this branches to JUMP_LABEL when the condition is false, reverse
6097 the condition. */
6098 reverse
6099 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
6100 && label_ref_label (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (jump);
6102 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
6103 allow_cc_mode, valid_at_insn_p);
6106 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
6107 TARGET_MODE_REP_EXTENDED.
6109 Note that we assume that the property of
6110 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
6111 narrower than mode B. I.e., if A is a mode narrower than B then in
6112 order to be able to operate on it in mode B, mode A needs to
6113 satisfy the requirements set by the representation of mode B. */
6115 static void
6116 init_num_sign_bit_copies_in_rep (void)
6118 opt_scalar_int_mode in_mode_iter;
6119 scalar_int_mode mode;
6121 FOR_EACH_MODE_IN_CLASS (in_mode_iter, MODE_INT)
6122 FOR_EACH_MODE_UNTIL (mode, in_mode_iter.require ())
6124 scalar_int_mode in_mode = in_mode_iter.require ();
6125 scalar_int_mode i;
6127 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
6128 extends to the next widest mode. */
6129 gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
6130 || GET_MODE_WIDER_MODE (mode).require () == in_mode);
6132 /* We are in in_mode. Count how many bits outside of mode
6133 have to be copies of the sign-bit. */
6134 FOR_EACH_MODE (i, mode, in_mode)
6136 /* This must always exist (for the last iteration it will be
6137 IN_MODE). */
6138 scalar_int_mode wider = GET_MODE_WIDER_MODE (i).require ();
6140 if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
6141 /* We can only check sign-bit copies starting from the
6142 top-bit. In order to be able to check the bits we
6143 have already seen we pretend that subsequent bits
6144 have to be sign-bit copies too. */
6145 || num_sign_bit_copies_in_rep [in_mode][mode])
6146 num_sign_bit_copies_in_rep [in_mode][mode]
6147 += GET_MODE_PRECISION (wider) - GET_MODE_PRECISION (i);
6152 /* Suppose that truncation from the machine mode of X to MODE is not a
6153 no-op. See if there is anything special about X so that we can
6154 assume it already contains a truncated value of MODE. */
6156 bool
6157 truncated_to_mode (machine_mode mode, const_rtx x)
6159 /* This register has already been used in MODE without explicit
6160 truncation. */
6161 if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
6162 return true;
6164 /* See if we already satisfy the requirements of MODE. If yes we
6165 can just switch to MODE. */
6166 if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
6167 && (num_sign_bit_copies (x, GET_MODE (x))
6168 >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
6169 return true;
6171 return false;
6174 /* Return true if RTX code CODE has a single sequence of zero or more
6175 "e" operands and no rtvec operands. Initialize its rtx_all_subrtx_bounds
6176 entry in that case. */
6178 static bool
6179 setup_reg_subrtx_bounds (unsigned int code)
6181 const char *format = GET_RTX_FORMAT ((enum rtx_code) code);
6182 unsigned int i = 0;
6183 for (; format[i] != 'e'; ++i)
6185 if (!format[i])
6186 /* No subrtxes. Leave start and count as 0. */
6187 return true;
6188 if (format[i] == 'E' || format[i] == 'V')
6189 return false;
6192 /* Record the sequence of 'e's. */
6193 rtx_all_subrtx_bounds[code].start = i;
6195 ++i;
6196 while (format[i] == 'e');
6197 rtx_all_subrtx_bounds[code].count = i - rtx_all_subrtx_bounds[code].start;
6198 /* rtl-iter.h relies on this. */
6199 gcc_checking_assert (rtx_all_subrtx_bounds[code].count <= 3);
6201 for (; format[i]; ++i)
6202 if (format[i] == 'E' || format[i] == 'V' || format[i] == 'e')
6203 return false;
6205 return true;
6208 /* Initialize rtx_all_subrtx_bounds. */
6209 void
6210 init_rtlanal (void)
6212 int i;
6213 for (i = 0; i < NUM_RTX_CODE; i++)
6215 if (!setup_reg_subrtx_bounds (i))
6216 rtx_all_subrtx_bounds[i].count = UCHAR_MAX;
6217 if (GET_RTX_CLASS (i) != RTX_CONST_OBJ)
6218 rtx_nonconst_subrtx_bounds[i] = rtx_all_subrtx_bounds[i];
6221 init_num_sign_bit_copies_in_rep ();
6224 /* Check whether this is a constant pool constant. */
6225 bool
6226 constant_pool_constant_p (rtx x)
6228 x = avoid_constant_pool_reference (x);
6229 return CONST_DOUBLE_P (x);
6232 /* If M is a bitmask that selects a field of low-order bits within an item but
6233 not the entire word, return the length of the field. Return -1 otherwise.
6234 M is used in machine mode MODE. */
6237 low_bitmask_len (machine_mode mode, unsigned HOST_WIDE_INT m)
6239 if (mode != VOIDmode)
6241 if (!HWI_COMPUTABLE_MODE_P (mode))
6242 return -1;
6243 m &= GET_MODE_MASK (mode);
6246 return exact_log2 (m + 1);
6249 /* Return the mode of MEM's address. */
6251 scalar_int_mode
6252 get_address_mode (rtx mem)
6254 machine_mode mode;
6256 gcc_assert (MEM_P (mem));
6257 mode = GET_MODE (XEXP (mem, 0));
6258 if (mode != VOIDmode)
6259 return as_a <scalar_int_mode> (mode);
6260 return targetm.addr_space.address_mode (MEM_ADDR_SPACE (mem));
6263 /* Split up a CONST_DOUBLE or integer constant rtx
6264 into two rtx's for single words,
6265 storing in *FIRST the word that comes first in memory in the target
6266 and in *SECOND the other.
6268 TODO: This function needs to be rewritten to work on any size
6269 integer. */
6271 void
6272 split_double (rtx value, rtx *first, rtx *second)
6274 if (CONST_INT_P (value))
6276 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
6278 /* In this case the CONST_INT holds both target words.
6279 Extract the bits from it into two word-sized pieces.
6280 Sign extend each half to HOST_WIDE_INT. */
6281 unsigned HOST_WIDE_INT low, high;
6282 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
6283 unsigned bits_per_word = BITS_PER_WORD;
6285 /* Set sign_bit to the most significant bit of a word. */
6286 sign_bit = 1;
6287 sign_bit <<= bits_per_word - 1;
6289 /* Set mask so that all bits of the word are set. We could
6290 have used 1 << BITS_PER_WORD instead of basing the
6291 calculation on sign_bit. However, on machines where
6292 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
6293 compiler warning, even though the code would never be
6294 executed. */
6295 mask = sign_bit << 1;
6296 mask--;
6298 /* Set sign_extend as any remaining bits. */
6299 sign_extend = ~mask;
6301 /* Pick the lower word and sign-extend it. */
6302 low = INTVAL (value);
6303 low &= mask;
6304 if (low & sign_bit)
6305 low |= sign_extend;
6307 /* Pick the higher word, shifted to the least significant
6308 bits, and sign-extend it. */
6309 high = INTVAL (value);
6310 high >>= bits_per_word - 1;
6311 high >>= 1;
6312 high &= mask;
6313 if (high & sign_bit)
6314 high |= sign_extend;
6316 /* Store the words in the target machine order. */
6317 if (WORDS_BIG_ENDIAN)
6319 *first = GEN_INT (high);
6320 *second = GEN_INT (low);
6322 else
6324 *first = GEN_INT (low);
6325 *second = GEN_INT (high);
6328 else
6330 /* The rule for using CONST_INT for a wider mode
6331 is that we regard the value as signed.
6332 So sign-extend it. */
6333 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
6334 if (WORDS_BIG_ENDIAN)
6336 *first = high;
6337 *second = value;
6339 else
6341 *first = value;
6342 *second = high;
6346 else if (GET_CODE (value) == CONST_WIDE_INT)
6348 /* All of this is scary code and needs to be converted to
6349 properly work with any size integer. */
6350 gcc_assert (CONST_WIDE_INT_NUNITS (value) == 2);
6351 if (WORDS_BIG_ENDIAN)
6353 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
6354 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
6356 else
6358 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
6359 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
6362 else if (!CONST_DOUBLE_P (value))
6364 if (WORDS_BIG_ENDIAN)
6366 *first = const0_rtx;
6367 *second = value;
6369 else
6371 *first = value;
6372 *second = const0_rtx;
6375 else if (GET_MODE (value) == VOIDmode
6376 /* This is the old way we did CONST_DOUBLE integers. */
6377 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
6379 /* In an integer, the words are defined as most and least significant.
6380 So order them by the target's convention. */
6381 if (WORDS_BIG_ENDIAN)
6383 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
6384 *second = GEN_INT (CONST_DOUBLE_LOW (value));
6386 else
6388 *first = GEN_INT (CONST_DOUBLE_LOW (value));
6389 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
6392 else
6394 long l[2];
6396 /* Note, this converts the REAL_VALUE_TYPE to the target's
6397 format, splits up the floating point double and outputs
6398 exactly 32 bits of it into each of l[0] and l[1] --
6399 not necessarily BITS_PER_WORD bits. */
6400 REAL_VALUE_TO_TARGET_DOUBLE (*CONST_DOUBLE_REAL_VALUE (value), l);
6402 /* If 32 bits is an entire word for the target, but not for the host,
6403 then sign-extend on the host so that the number will look the same
6404 way on the host that it would on the target. See for instance
6405 simplify_unary_operation. The #if is needed to avoid compiler
6406 warnings. */
6408 #if HOST_BITS_PER_LONG > 32
6409 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
6411 if (l[0] & ((long) 1 << 31))
6412 l[0] |= ((unsigned long) (-1) << 32);
6413 if (l[1] & ((long) 1 << 31))
6414 l[1] |= ((unsigned long) (-1) << 32);
6416 #endif
6418 *first = GEN_INT (l[0]);
6419 *second = GEN_INT (l[1]);
6423 /* Return true if X is a sign_extract or zero_extract from the least
6424 significant bit. */
6426 static bool
6427 lsb_bitfield_op_p (rtx x)
6429 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_BITFIELD_OPS)
6431 machine_mode mode = GET_MODE (XEXP (x, 0));
6432 HOST_WIDE_INT len = INTVAL (XEXP (x, 1));
6433 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
6434 poly_int64 remaining_bits = GET_MODE_PRECISION (mode) - len;
6436 return known_eq (pos, BITS_BIG_ENDIAN ? remaining_bits : 0);
6438 return false;
6441 /* Strip outer address "mutations" from LOC and return a pointer to the
6442 inner value. If OUTER_CODE is nonnull, store the code of the innermost
6443 stripped expression there.
6445 "Mutations" either convert between modes or apply some kind of
6446 extension, truncation or alignment. */
6448 rtx *
6449 strip_address_mutations (rtx *loc, enum rtx_code *outer_code)
6451 for (;;)
6453 enum rtx_code code = GET_CODE (*loc);
6454 if (GET_RTX_CLASS (code) == RTX_UNARY)
6455 /* Things like SIGN_EXTEND, ZERO_EXTEND and TRUNCATE can be
6456 used to convert between pointer sizes. */
6457 loc = &XEXP (*loc, 0);
6458 else if (lsb_bitfield_op_p (*loc))
6459 /* A [SIGN|ZERO]_EXTRACT from the least significant bit effectively
6460 acts as a combined truncation and extension. */
6461 loc = &XEXP (*loc, 0);
6462 else if (code == AND && CONST_INT_P (XEXP (*loc, 1)))
6463 /* (and ... (const_int -X)) is used to align to X bytes. */
6464 loc = &XEXP (*loc, 0);
6465 else if (code == SUBREG
6466 && !OBJECT_P (SUBREG_REG (*loc))
6467 && subreg_lowpart_p (*loc))
6468 /* (subreg (operator ...) ...) inside and is used for mode
6469 conversion too. */
6470 loc = &SUBREG_REG (*loc);
6471 else
6472 return loc;
6473 if (outer_code)
6474 *outer_code = code;
6478 /* Return true if CODE applies some kind of scale. The scaled value is
6479 is the first operand and the scale is the second. */
6481 static bool
6482 binary_scale_code_p (enum rtx_code code)
6484 return (code == MULT
6485 || code == ASHIFT
6486 /* Needed by ARM targets. */
6487 || code == ASHIFTRT
6488 || code == LSHIFTRT
6489 || code == ROTATE
6490 || code == ROTATERT);
6493 /* If *INNER can be interpreted as a base, return a pointer to the inner term
6494 (see address_info). Return null otherwise. */
6496 static rtx *
6497 get_base_term (rtx *inner)
6499 if (GET_CODE (*inner) == LO_SUM)
6500 inner = strip_address_mutations (&XEXP (*inner, 0));
6501 if (REG_P (*inner)
6502 || MEM_P (*inner)
6503 || GET_CODE (*inner) == SUBREG
6504 || GET_CODE (*inner) == SCRATCH)
6505 return inner;
6506 return 0;
6509 /* If *INNER can be interpreted as an index, return a pointer to the inner term
6510 (see address_info). Return null otherwise. */
6512 static rtx *
6513 get_index_term (rtx *inner)
6515 /* At present, only constant scales are allowed. */
6516 if (binary_scale_code_p (GET_CODE (*inner)) && CONSTANT_P (XEXP (*inner, 1)))
6517 inner = strip_address_mutations (&XEXP (*inner, 0));
6518 if (REG_P (*inner)
6519 || MEM_P (*inner)
6520 || GET_CODE (*inner) == SUBREG
6521 || GET_CODE (*inner) == SCRATCH)
6522 return inner;
6523 return 0;
6526 /* Set the segment part of address INFO to LOC, given that INNER is the
6527 unmutated value. */
6529 static void
6530 set_address_segment (struct address_info *info, rtx *loc, rtx *inner)
6532 gcc_assert (!info->segment);
6533 info->segment = loc;
6534 info->segment_term = inner;
6537 /* Set the base part of address INFO to LOC, given that INNER is the
6538 unmutated value. */
6540 static void
6541 set_address_base (struct address_info *info, rtx *loc, rtx *inner)
6543 gcc_assert (!info->base);
6544 info->base = loc;
6545 info->base_term = inner;
6548 /* Set the index part of address INFO to LOC, given that INNER is the
6549 unmutated value. */
6551 static void
6552 set_address_index (struct address_info *info, rtx *loc, rtx *inner)
6554 gcc_assert (!info->index);
6555 info->index = loc;
6556 info->index_term = inner;
6559 /* Set the displacement part of address INFO to LOC, given that INNER
6560 is the constant term. */
6562 static void
6563 set_address_disp (struct address_info *info, rtx *loc, rtx *inner)
6565 gcc_assert (!info->disp);
6566 info->disp = loc;
6567 info->disp_term = inner;
6570 /* INFO->INNER describes a {PRE,POST}_{INC,DEC} address. Set up the
6571 rest of INFO accordingly. */
6573 static void
6574 decompose_incdec_address (struct address_info *info)
6576 info->autoinc_p = true;
6578 rtx *base = &XEXP (*info->inner, 0);
6579 set_address_base (info, base, base);
6580 gcc_checking_assert (info->base == info->base_term);
6582 /* These addresses are only valid when the size of the addressed
6583 value is known. */
6584 gcc_checking_assert (info->mode != VOIDmode);
6587 /* INFO->INNER describes a {PRE,POST}_MODIFY address. Set up the rest
6588 of INFO accordingly. */
6590 static void
6591 decompose_automod_address (struct address_info *info)
6593 info->autoinc_p = true;
6595 rtx *base = &XEXP (*info->inner, 0);
6596 set_address_base (info, base, base);
6597 gcc_checking_assert (info->base == info->base_term);
6599 rtx plus = XEXP (*info->inner, 1);
6600 gcc_assert (GET_CODE (plus) == PLUS);
6602 info->base_term2 = &XEXP (plus, 0);
6603 gcc_checking_assert (rtx_equal_p (*info->base_term, *info->base_term2));
6605 rtx *step = &XEXP (plus, 1);
6606 rtx *inner_step = strip_address_mutations (step);
6607 if (CONSTANT_P (*inner_step))
6608 set_address_disp (info, step, inner_step);
6609 else
6610 set_address_index (info, step, inner_step);
6613 /* Treat *LOC as a tree of PLUS operands and store pointers to the summed
6614 values in [PTR, END). Return a pointer to the end of the used array. */
6616 static rtx **
6617 extract_plus_operands (rtx *loc, rtx **ptr, rtx **end)
6619 rtx x = *loc;
6620 if (GET_CODE (x) == PLUS)
6622 ptr = extract_plus_operands (&XEXP (x, 0), ptr, end);
6623 ptr = extract_plus_operands (&XEXP (x, 1), ptr, end);
6625 else
6627 gcc_assert (ptr != end);
6628 *ptr++ = loc;
6630 return ptr;
6633 /* Evaluate the likelihood of X being a base or index value, returning
6634 positive if it is likely to be a base, negative if it is likely to be
6635 an index, and 0 if we can't tell. Make the magnitude of the return
6636 value reflect the amount of confidence we have in the answer.
6638 MODE, AS, OUTER_CODE and INDEX_CODE are as for ok_for_base_p_1. */
6640 static int
6641 baseness (rtx x, machine_mode mode, addr_space_t as,
6642 enum rtx_code outer_code, enum rtx_code index_code)
6644 /* Believe *_POINTER unless the address shape requires otherwise. */
6645 if (REG_P (x) && REG_POINTER (x))
6646 return 2;
6647 if (MEM_P (x) && MEM_POINTER (x))
6648 return 2;
6650 if (REG_P (x) && HARD_REGISTER_P (x))
6652 /* X is a hard register. If it only fits one of the base
6653 or index classes, choose that interpretation. */
6654 int regno = REGNO (x);
6655 bool base_p = ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
6656 bool index_p = REGNO_OK_FOR_INDEX_P (regno);
6657 if (base_p != index_p)
6658 return base_p ? 1 : -1;
6660 return 0;
6663 /* INFO->INNER describes a normal, non-automodified address.
6664 Fill in the rest of INFO accordingly. */
6666 static void
6667 decompose_normal_address (struct address_info *info)
6669 /* Treat the address as the sum of up to four values. */
6670 rtx *ops[4];
6671 size_t n_ops = extract_plus_operands (info->inner, ops,
6672 ops + ARRAY_SIZE (ops)) - ops;
6674 /* If there is more than one component, any base component is in a PLUS. */
6675 if (n_ops > 1)
6676 info->base_outer_code = PLUS;
6678 /* Try to classify each sum operand now. Leave those that could be
6679 either a base or an index in OPS. */
6680 rtx *inner_ops[4];
6681 size_t out = 0;
6682 for (size_t in = 0; in < n_ops; ++in)
6684 rtx *loc = ops[in];
6685 rtx *inner = strip_address_mutations (loc);
6686 if (CONSTANT_P (*inner))
6687 set_address_disp (info, loc, inner);
6688 else if (GET_CODE (*inner) == UNSPEC)
6689 set_address_segment (info, loc, inner);
6690 else
6692 /* The only other possibilities are a base or an index. */
6693 rtx *base_term = get_base_term (inner);
6694 rtx *index_term = get_index_term (inner);
6695 gcc_assert (base_term || index_term);
6696 if (!base_term)
6697 set_address_index (info, loc, index_term);
6698 else if (!index_term)
6699 set_address_base (info, loc, base_term);
6700 else
6702 gcc_assert (base_term == index_term);
6703 ops[out] = loc;
6704 inner_ops[out] = base_term;
6705 ++out;
6710 /* Classify the remaining OPS members as bases and indexes. */
6711 if (out == 1)
6713 /* If we haven't seen a base or an index yet, assume that this is
6714 the base. If we were confident that another term was the base
6715 or index, treat the remaining operand as the other kind. */
6716 if (!info->base)
6717 set_address_base (info, ops[0], inner_ops[0]);
6718 else
6719 set_address_index (info, ops[0], inner_ops[0]);
6721 else if (out == 2)
6723 /* In the event of a tie, assume the base comes first. */
6724 if (baseness (*inner_ops[0], info->mode, info->as, PLUS,
6725 GET_CODE (*ops[1]))
6726 >= baseness (*inner_ops[1], info->mode, info->as, PLUS,
6727 GET_CODE (*ops[0])))
6729 set_address_base (info, ops[0], inner_ops[0]);
6730 set_address_index (info, ops[1], inner_ops[1]);
6732 else
6734 set_address_base (info, ops[1], inner_ops[1]);
6735 set_address_index (info, ops[0], inner_ops[0]);
6738 else
6739 gcc_assert (out == 0);
6742 /* Describe address *LOC in *INFO. MODE is the mode of the addressed value,
6743 or VOIDmode if not known. AS is the address space associated with LOC.
6744 OUTER_CODE is MEM if *LOC is a MEM address and ADDRESS otherwise. */
6746 void
6747 decompose_address (struct address_info *info, rtx *loc, machine_mode mode,
6748 addr_space_t as, enum rtx_code outer_code)
6750 memset (info, 0, sizeof (*info));
6751 info->mode = mode;
6752 info->as = as;
6753 info->addr_outer_code = outer_code;
6754 info->outer = loc;
6755 info->inner = strip_address_mutations (loc, &outer_code);
6756 info->base_outer_code = outer_code;
6757 switch (GET_CODE (*info->inner))
6759 case PRE_DEC:
6760 case PRE_INC:
6761 case POST_DEC:
6762 case POST_INC:
6763 decompose_incdec_address (info);
6764 break;
6766 case PRE_MODIFY:
6767 case POST_MODIFY:
6768 decompose_automod_address (info);
6769 break;
6771 default:
6772 decompose_normal_address (info);
6773 break;
6777 /* Describe address operand LOC in INFO. */
6779 void
6780 decompose_lea_address (struct address_info *info, rtx *loc)
6782 decompose_address (info, loc, VOIDmode, ADDR_SPACE_GENERIC, ADDRESS);
6785 /* Describe the address of MEM X in INFO. */
6787 void
6788 decompose_mem_address (struct address_info *info, rtx x)
6790 gcc_assert (MEM_P (x));
6791 decompose_address (info, &XEXP (x, 0), GET_MODE (x),
6792 MEM_ADDR_SPACE (x), MEM);
6795 /* Update INFO after a change to the address it describes. */
6797 void
6798 update_address (struct address_info *info)
6800 decompose_address (info, info->outer, info->mode, info->as,
6801 info->addr_outer_code);
6804 /* Return the scale applied to *INFO->INDEX_TERM, or 0 if the index is
6805 more complicated than that. */
6807 HOST_WIDE_INT
6808 get_index_scale (const struct address_info *info)
6810 rtx index = *info->index;
6811 if (GET_CODE (index) == MULT
6812 && CONST_INT_P (XEXP (index, 1))
6813 && info->index_term == &XEXP (index, 0))
6814 return INTVAL (XEXP (index, 1));
6816 if (GET_CODE (index) == ASHIFT
6817 && CONST_INT_P (XEXP (index, 1))
6818 && info->index_term == &XEXP (index, 0))
6819 return HOST_WIDE_INT_1 << INTVAL (XEXP (index, 1));
6821 if (info->index == info->index_term)
6822 return 1;
6824 return 0;
6827 /* Return the "index code" of INFO, in the form required by
6828 ok_for_base_p_1. */
6830 enum rtx_code
6831 get_index_code (const struct address_info *info)
6833 if (info->index)
6834 return GET_CODE (*info->index);
6836 if (info->disp)
6837 return GET_CODE (*info->disp);
6839 return SCRATCH;
6842 /* Return true if RTL X contains a SYMBOL_REF. */
6844 bool
6845 contains_symbol_ref_p (const_rtx x)
6847 subrtx_iterator::array_type array;
6848 FOR_EACH_SUBRTX (iter, array, x, ALL)
6849 if (SYMBOL_REF_P (*iter))
6850 return true;
6852 return false;
6855 /* Return true if RTL X contains a SYMBOL_REF or LABEL_REF. */
6857 bool
6858 contains_symbolic_reference_p (const_rtx x)
6860 subrtx_iterator::array_type array;
6861 FOR_EACH_SUBRTX (iter, array, x, ALL)
6862 if (SYMBOL_REF_P (*iter) || GET_CODE (*iter) == LABEL_REF)
6863 return true;
6865 return false;
6868 /* Return true if RTL X contains a constant pool address. */
6870 bool
6871 contains_constant_pool_address_p (const_rtx x)
6873 subrtx_iterator::array_type array;
6874 FOR_EACH_SUBRTX (iter, array, x, ALL)
6875 if (SYMBOL_REF_P (*iter) && CONSTANT_POOL_ADDRESS_P (*iter))
6876 return true;
6878 return false;
6882 /* Return true if X contains a thread-local symbol. */
6884 bool
6885 tls_referenced_p (const_rtx x)
6887 if (!targetm.have_tls)
6888 return false;
6890 subrtx_iterator::array_type array;
6891 FOR_EACH_SUBRTX (iter, array, x, ALL)
6892 if (GET_CODE (*iter) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (*iter) != 0)
6893 return true;
6894 return false;
6897 /* Process recursively X of INSN and add REG_INC notes if necessary. */
6898 void
6899 add_auto_inc_notes (rtx_insn *insn, rtx x)
6901 enum rtx_code code = GET_CODE (x);
6902 const char *fmt;
6903 int i, j;
6905 if (code == MEM && auto_inc_p (XEXP (x, 0)))
6907 add_reg_note (insn, REG_INC, XEXP (XEXP (x, 0), 0));
6908 return;
6911 /* Scan all X sub-expressions. */
6912 fmt = GET_RTX_FORMAT (code);
6913 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6915 if (fmt[i] == 'e')
6916 add_auto_inc_notes (insn, XEXP (x, i));
6917 else if (fmt[i] == 'E')
6918 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6919 add_auto_inc_notes (insn, XVECEXP (x, i, j));
6923 /* Return true if X is register asm. */
6925 bool
6926 register_asm_p (const_rtx x)
6928 return (REG_P (x)
6929 && REG_EXPR (x) != NULL_TREE
6930 && HAS_DECL_ASSEMBLER_NAME_P (REG_EXPR (x))
6931 && DECL_ASSEMBLER_NAME_SET_P (REG_EXPR (x))
6932 && DECL_REGISTER (REG_EXPR (x)));
6935 /* Return true if, for all OP of mode OP_MODE:
6937 (vec_select:RESULT_MODE OP SEL)
6939 is equivalent to the highpart RESULT_MODE of OP. */
6941 bool
6942 vec_series_highpart_p (machine_mode result_mode, machine_mode op_mode, rtx sel)
6944 int nunits;
6945 if (GET_MODE_NUNITS (op_mode).is_constant (&nunits)
6946 && targetm.can_change_mode_class (op_mode, result_mode, ALL_REGS))
6948 int offset = BYTES_BIG_ENDIAN ? 0 : nunits - XVECLEN (sel, 0);
6949 return rtvec_series_p (XVEC (sel, 0), offset);
6951 return false;
6954 /* Return true if, for all OP of mode OP_MODE:
6956 (vec_select:RESULT_MODE OP SEL)
6958 is equivalent to the lowpart RESULT_MODE of OP. */
6960 bool
6961 vec_series_lowpart_p (machine_mode result_mode, machine_mode op_mode, rtx sel)
6963 int nunits;
6964 if (GET_MODE_NUNITS (op_mode).is_constant (&nunits)
6965 && targetm.can_change_mode_class (op_mode, result_mode, ALL_REGS))
6967 int offset = BYTES_BIG_ENDIAN ? nunits - XVECLEN (sel, 0) : 0;
6968 return rtvec_series_p (XVEC (sel, 0), offset);
6970 return false;