Skip -fwhole-program when merging LTO options.
[official-gcc.git] / gcc / cfgloopmanip.cc
blobdb07fd65dc91b45ec56868f478b8c5a0fdfb2268
1 /* Loop manipulation code for GNU compiler.
2 Copyright (C) 2002-2022 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "cfghooks.h"
28 #include "cfganal.h"
29 #include "cfgloop.h"
30 #include "gimple-iterator.h"
31 #include "gimplify-me.h"
32 #include "tree-ssa-loop-manip.h"
33 #include "dumpfile.h"
35 static void copy_loops_to (class loop **, int,
36 class loop *);
37 static void loop_redirect_edge (edge, basic_block);
38 static void remove_bbs (basic_block *, int);
39 static bool rpe_enum_p (const_basic_block, const void *);
40 static int find_path (edge, basic_block **);
41 static void fix_loop_placements (class loop *, bool *);
42 static bool fix_bb_placement (basic_block);
43 static void fix_bb_placements (basic_block, bool *, bitmap);
45 /* Checks whether basic block BB is dominated by DATA. */
46 static bool
47 rpe_enum_p (const_basic_block bb, const void *data)
49 return dominated_by_p (CDI_DOMINATORS, bb, (const_basic_block) data);
52 /* Remove basic blocks BBS. NBBS is the number of the basic blocks. */
54 static void
55 remove_bbs (basic_block *bbs, int nbbs)
57 int i;
59 for (i = 0; i < nbbs; i++)
60 delete_basic_block (bbs[i]);
63 /* Find path -- i.e. the basic blocks dominated by edge E and put them
64 into array BBS, that will be allocated large enough to contain them.
65 E->dest must have exactly one predecessor for this to work (it is
66 easy to achieve and we do not put it here because we do not want to
67 alter anything by this function). The number of basic blocks in the
68 path is returned. */
69 static int
70 find_path (edge e, basic_block **bbs)
72 gcc_assert (EDGE_COUNT (e->dest->preds) <= 1);
74 /* Find bbs in the path. */
75 *bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
76 return dfs_enumerate_from (e->dest, 0, rpe_enum_p, *bbs,
77 n_basic_blocks_for_fn (cfun), e->dest);
80 /* Fix placement of basic block BB inside loop hierarchy --
81 Let L be a loop to that BB belongs. Then every successor of BB must either
82 1) belong to some superloop of loop L, or
83 2) be a header of loop K such that K->outer is superloop of L
84 Returns true if we had to move BB into other loop to enforce this condition,
85 false if the placement of BB was already correct (provided that placements
86 of its successors are correct). */
87 static bool
88 fix_bb_placement (basic_block bb)
90 edge e;
91 edge_iterator ei;
92 class loop *loop = current_loops->tree_root, *act;
94 FOR_EACH_EDGE (e, ei, bb->succs)
96 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
97 continue;
99 act = e->dest->loop_father;
100 if (act->header == e->dest)
101 act = loop_outer (act);
103 if (flow_loop_nested_p (loop, act))
104 loop = act;
107 if (loop == bb->loop_father)
108 return false;
110 remove_bb_from_loops (bb);
111 add_bb_to_loop (bb, loop);
113 return true;
116 /* Fix placement of LOOP inside loop tree, i.e. find the innermost superloop
117 of LOOP to that leads at least one exit edge of LOOP, and set it
118 as the immediate superloop of LOOP. Return true if the immediate superloop
119 of LOOP changed.
121 IRRED_INVALIDATED is set to true if a change in the loop structures might
122 invalidate the information about irreducible regions. */
124 static bool
125 fix_loop_placement (class loop *loop, bool *irred_invalidated)
127 unsigned i;
128 edge e;
129 auto_vec<edge> exits = get_loop_exit_edges (loop);
130 class loop *father = current_loops->tree_root, *act;
131 bool ret = false;
133 FOR_EACH_VEC_ELT (exits, i, e)
135 act = find_common_loop (loop, e->dest->loop_father);
136 if (flow_loop_nested_p (father, act))
137 father = act;
140 if (father != loop_outer (loop))
142 for (act = loop_outer (loop); act != father; act = loop_outer (act))
143 act->num_nodes -= loop->num_nodes;
144 flow_loop_tree_node_remove (loop);
145 flow_loop_tree_node_add (father, loop);
147 /* The exit edges of LOOP no longer exits its original immediate
148 superloops; remove them from the appropriate exit lists. */
149 FOR_EACH_VEC_ELT (exits, i, e)
151 /* We may need to recompute irreducible loops. */
152 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
153 *irred_invalidated = true;
154 rescan_loop_exit (e, false, false);
157 ret = true;
160 return ret;
163 /* Fix placements of basic blocks inside loop hierarchy stored in loops; i.e.
164 enforce condition stated in description of fix_bb_placement. We
165 start from basic block FROM that had some of its successors removed, so that
166 his placement no longer has to be correct, and iteratively fix placement of
167 its predecessors that may change if placement of FROM changed. Also fix
168 placement of subloops of FROM->loop_father, that might also be altered due
169 to this change; the condition for them is similar, except that instead of
170 successors we consider edges coming out of the loops.
172 If the changes may invalidate the information about irreducible regions,
173 IRRED_INVALIDATED is set to true.
175 If LOOP_CLOSED_SSA_INVLIDATED is non-zero then all basic blocks with
176 changed loop_father are collected there. */
178 static void
179 fix_bb_placements (basic_block from,
180 bool *irred_invalidated,
181 bitmap loop_closed_ssa_invalidated)
183 basic_block *queue, *qtop, *qbeg, *qend;
184 class loop *base_loop, *target_loop;
185 edge e;
187 /* We pass through blocks back-reachable from FROM, testing whether some
188 of their successors moved to outer loop. It may be necessary to
189 iterate several times, but it is finite, as we stop unless we move
190 the basic block up the loop structure. The whole story is a bit
191 more complicated due to presence of subloops, those are moved using
192 fix_loop_placement. */
194 base_loop = from->loop_father;
195 /* If we are already in the outermost loop, the basic blocks cannot be moved
196 outside of it. If FROM is the header of the base loop, it cannot be moved
197 outside of it, either. In both cases, we can end now. */
198 if (base_loop == current_loops->tree_root
199 || from == base_loop->header)
200 return;
202 auto_sbitmap in_queue (last_basic_block_for_fn (cfun));
203 bitmap_clear (in_queue);
204 bitmap_set_bit (in_queue, from->index);
205 /* Prevent us from going out of the base_loop. */
206 bitmap_set_bit (in_queue, base_loop->header->index);
208 queue = XNEWVEC (basic_block, base_loop->num_nodes + 1);
209 qtop = queue + base_loop->num_nodes + 1;
210 qbeg = queue;
211 qend = queue + 1;
212 *qbeg = from;
214 while (qbeg != qend)
216 edge_iterator ei;
217 from = *qbeg;
218 qbeg++;
219 if (qbeg == qtop)
220 qbeg = queue;
221 bitmap_clear_bit (in_queue, from->index);
223 if (from->loop_father->header == from)
225 /* Subloop header, maybe move the loop upward. */
226 if (!fix_loop_placement (from->loop_father, irred_invalidated))
227 continue;
228 target_loop = loop_outer (from->loop_father);
229 if (loop_closed_ssa_invalidated)
231 basic_block *bbs = get_loop_body (from->loop_father);
232 for (unsigned i = 0; i < from->loop_father->num_nodes; ++i)
233 bitmap_set_bit (loop_closed_ssa_invalidated, bbs[i]->index);
234 free (bbs);
237 else
239 /* Ordinary basic block. */
240 if (!fix_bb_placement (from))
241 continue;
242 target_loop = from->loop_father;
243 if (loop_closed_ssa_invalidated)
244 bitmap_set_bit (loop_closed_ssa_invalidated, from->index);
247 FOR_EACH_EDGE (e, ei, from->succs)
249 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
250 *irred_invalidated = true;
253 /* Something has changed, insert predecessors into queue. */
254 FOR_EACH_EDGE (e, ei, from->preds)
256 basic_block pred = e->src;
257 class loop *nca;
259 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
260 *irred_invalidated = true;
262 if (bitmap_bit_p (in_queue, pred->index))
263 continue;
265 /* If it is subloop, then it either was not moved, or
266 the path up the loop tree from base_loop do not contain
267 it. */
268 nca = find_common_loop (pred->loop_father, base_loop);
269 if (pred->loop_father != base_loop
270 && (nca == base_loop
271 || nca != pred->loop_father))
272 pred = pred->loop_father->header;
273 else if (!flow_loop_nested_p (target_loop, pred->loop_father))
275 /* If PRED is already higher in the loop hierarchy than the
276 TARGET_LOOP to that we moved FROM, the change of the position
277 of FROM does not affect the position of PRED, so there is no
278 point in processing it. */
279 continue;
282 if (bitmap_bit_p (in_queue, pred->index))
283 continue;
285 /* Schedule the basic block. */
286 *qend = pred;
287 qend++;
288 if (qend == qtop)
289 qend = queue;
290 bitmap_set_bit (in_queue, pred->index);
293 free (queue);
296 /* Removes path beginning at edge E, i.e. remove basic blocks dominated by E
297 and update loop structures and dominators. Return true if we were able
298 to remove the path, false otherwise (and nothing is affected then). */
299 bool
300 remove_path (edge e, bool *irred_invalidated,
301 bitmap loop_closed_ssa_invalidated)
303 edge ae;
304 basic_block *rem_bbs, *bord_bbs, from, bb;
305 vec<basic_block> dom_bbs;
306 int i, nrem, n_bord_bbs;
307 bool local_irred_invalidated = false;
308 edge_iterator ei;
309 class loop *l, *f;
311 if (! irred_invalidated)
312 irred_invalidated = &local_irred_invalidated;
314 if (!can_remove_branch_p (e))
315 return false;
317 /* Keep track of whether we need to update information about irreducible
318 regions. This is the case if the removed area is a part of the
319 irreducible region, or if the set of basic blocks that belong to a loop
320 that is inside an irreducible region is changed, or if such a loop is
321 removed. */
322 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
323 *irred_invalidated = true;
325 /* We need to check whether basic blocks are dominated by the edge
326 e, but we only have basic block dominators. This is easy to
327 fix -- when e->dest has exactly one predecessor, this corresponds
328 to blocks dominated by e->dest, if not, split the edge. */
329 if (!single_pred_p (e->dest))
330 e = single_pred_edge (split_edge (e));
332 /* It may happen that by removing path we remove one or more loops
333 we belong to. In this case first unloop the loops, then proceed
334 normally. We may assume that e->dest is not a header of any loop,
335 as it now has exactly one predecessor. */
336 for (l = e->src->loop_father; loop_outer (l); l = f)
338 f = loop_outer (l);
339 if (dominated_by_p (CDI_DOMINATORS, l->latch, e->dest))
340 unloop (l, irred_invalidated, loop_closed_ssa_invalidated);
343 /* Identify the path. */
344 nrem = find_path (e, &rem_bbs);
346 n_bord_bbs = 0;
347 bord_bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
348 auto_sbitmap seen (last_basic_block_for_fn (cfun));
349 bitmap_clear (seen);
351 /* Find "border" hexes -- i.e. those with predecessor in removed path. */
352 for (i = 0; i < nrem; i++)
353 bitmap_set_bit (seen, rem_bbs[i]->index);
354 if (!*irred_invalidated)
355 FOR_EACH_EDGE (ae, ei, e->src->succs)
356 if (ae != e && ae->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
357 && !bitmap_bit_p (seen, ae->dest->index)
358 && ae->flags & EDGE_IRREDUCIBLE_LOOP)
360 *irred_invalidated = true;
361 break;
364 for (i = 0; i < nrem; i++)
366 FOR_EACH_EDGE (ae, ei, rem_bbs[i]->succs)
367 if (ae->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
368 && !bitmap_bit_p (seen, ae->dest->index))
370 bitmap_set_bit (seen, ae->dest->index);
371 bord_bbs[n_bord_bbs++] = ae->dest;
373 if (ae->flags & EDGE_IRREDUCIBLE_LOOP)
374 *irred_invalidated = true;
378 /* Remove the path. */
379 from = e->src;
380 remove_branch (e);
381 dom_bbs.create (0);
383 /* Cancel loops contained in the path. */
384 for (i = 0; i < nrem; i++)
385 if (rem_bbs[i]->loop_father->header == rem_bbs[i])
386 cancel_loop_tree (rem_bbs[i]->loop_father);
388 remove_bbs (rem_bbs, nrem);
389 free (rem_bbs);
391 /* Find blocks whose dominators may be affected. */
392 bitmap_clear (seen);
393 for (i = 0; i < n_bord_bbs; i++)
395 basic_block ldom;
397 bb = get_immediate_dominator (CDI_DOMINATORS, bord_bbs[i]);
398 if (bitmap_bit_p (seen, bb->index))
399 continue;
400 bitmap_set_bit (seen, bb->index);
402 for (ldom = first_dom_son (CDI_DOMINATORS, bb);
403 ldom;
404 ldom = next_dom_son (CDI_DOMINATORS, ldom))
405 if (!dominated_by_p (CDI_DOMINATORS, from, ldom))
406 dom_bbs.safe_push (ldom);
409 /* Recount dominators. */
410 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, true);
411 dom_bbs.release ();
412 free (bord_bbs);
414 /* Fix placements of basic blocks inside loops and the placement of
415 loops in the loop tree. */
416 fix_bb_placements (from, irred_invalidated, loop_closed_ssa_invalidated);
417 fix_loop_placements (from->loop_father, irred_invalidated);
419 if (local_irred_invalidated
420 && loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
421 mark_irreducible_loops ();
423 return true;
426 /* Creates place for a new LOOP in loops structure of FN. */
428 void
429 place_new_loop (struct function *fn, class loop *loop)
431 loop->num = number_of_loops (fn);
432 vec_safe_push (loops_for_fn (fn)->larray, loop);
435 /* Given LOOP structure with filled header and latch, find the body of the
436 corresponding loop and add it to loops tree. Insert the LOOP as a son of
437 outer. */
439 void
440 add_loop (class loop *loop, class loop *outer)
442 basic_block *bbs;
443 int i, n;
444 class loop *subloop;
445 edge e;
446 edge_iterator ei;
448 /* Add it to loop structure. */
449 place_new_loop (cfun, loop);
450 flow_loop_tree_node_add (outer, loop);
452 /* Find its nodes. */
453 bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
454 n = get_loop_body_with_size (loop, bbs, n_basic_blocks_for_fn (cfun));
456 for (i = 0; i < n; i++)
458 if (bbs[i]->loop_father == outer)
460 remove_bb_from_loops (bbs[i]);
461 add_bb_to_loop (bbs[i], loop);
462 continue;
465 loop->num_nodes++;
467 /* If we find a direct subloop of OUTER, move it to LOOP. */
468 subloop = bbs[i]->loop_father;
469 if (loop_outer (subloop) == outer
470 && subloop->header == bbs[i])
472 flow_loop_tree_node_remove (subloop);
473 flow_loop_tree_node_add (loop, subloop);
477 /* Update the information about loop exit edges. */
478 for (i = 0; i < n; i++)
480 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
482 rescan_loop_exit (e, false, false);
486 free (bbs);
489 /* Scale profile of loop by P. */
491 void
492 scale_loop_frequencies (class loop *loop, profile_probability p)
494 basic_block *bbs;
496 bbs = get_loop_body (loop);
497 scale_bbs_frequencies (bbs, loop->num_nodes, p);
498 free (bbs);
501 /* Scale profile in LOOP by P.
502 If ITERATION_BOUND is non-zero, scale even further if loop is predicted
503 to iterate too many times.
504 Before caling this function, preheader block profile should be already
505 scaled to final count. This is necessary because loop iterations are
506 determined by comparing header edge count to latch ege count and thus
507 they need to be scaled synchronously. */
509 void
510 scale_loop_profile (class loop *loop, profile_probability p,
511 gcov_type iteration_bound)
513 edge e, preheader_e;
514 edge_iterator ei;
516 if (dump_file && (dump_flags & TDF_DETAILS))
518 fprintf (dump_file, ";; Scaling loop %i with scale ",
519 loop->num);
520 p.dump (dump_file);
521 fprintf (dump_file, " bounding iterations to %i\n",
522 (int)iteration_bound);
525 /* Scale the probabilities. */
526 scale_loop_frequencies (loop, p);
528 if (iteration_bound == 0)
529 return;
531 gcov_type iterations = expected_loop_iterations_unbounded (loop, NULL, true);
533 if (dump_file && (dump_flags & TDF_DETAILS))
535 fprintf (dump_file, ";; guessed iterations after scaling %i\n",
536 (int)iterations);
539 /* See if loop is predicted to iterate too many times. */
540 if (iterations <= iteration_bound)
541 return;
543 preheader_e = loop_preheader_edge (loop);
545 /* We could handle also loops without preheaders, but bounding is
546 currently used only by optimizers that have preheaders constructed. */
547 gcc_checking_assert (preheader_e);
548 profile_count count_in = preheader_e->count ();
550 if (count_in > profile_count::zero ()
551 && loop->header->count.initialized_p ())
553 profile_count count_delta = profile_count::zero ();
555 e = single_exit (loop);
556 if (e)
558 edge other_e;
559 FOR_EACH_EDGE (other_e, ei, e->src->succs)
560 if (!(other_e->flags & (EDGE_ABNORMAL | EDGE_FAKE))
561 && e != other_e)
562 break;
564 /* Probability of exit must be 1/iterations. */
565 count_delta = e->count ();
566 e->probability = profile_probability::always () / iteration_bound;
567 other_e->probability = e->probability.invert ();
569 /* In code below we only handle the following two updates. */
570 if (other_e->dest != loop->header
571 && other_e->dest != loop->latch
572 && (dump_file && (dump_flags & TDF_DETAILS)))
574 fprintf (dump_file, ";; giving up on update of paths from "
575 "exit condition to latch\n");
578 else
579 if (dump_file && (dump_flags & TDF_DETAILS))
580 fprintf (dump_file, ";; Loop has multiple exit edges; "
581 "giving up on exit condition update\n");
583 /* Roughly speaking we want to reduce the loop body profile by the
584 difference of loop iterations. We however can do better if
585 we look at the actual profile, if it is available. */
586 p = profile_probability::always ();
588 count_in *= iteration_bound;
589 p = count_in.probability_in (loop->header->count);
590 if (!(p > profile_probability::never ()))
591 p = profile_probability::very_unlikely ();
593 if (p == profile_probability::always ()
594 || !p.initialized_p ())
595 return;
597 /* If latch exists, change its count, since we changed
598 probability of exit. Theoretically we should update everything from
599 source of exit edge to latch, but for vectorizer this is enough. */
600 if (loop->latch && loop->latch != e->src)
601 loop->latch->count += count_delta;
603 /* Scale the probabilities. */
604 scale_loop_frequencies (loop, p);
606 /* Change latch's count back. */
607 if (loop->latch && loop->latch != e->src)
608 loop->latch->count -= count_delta;
610 if (dump_file && (dump_flags & TDF_DETAILS))
611 fprintf (dump_file, ";; guessed iterations are now %i\n",
612 (int)expected_loop_iterations_unbounded (loop, NULL, true));
616 /* Recompute dominance information for basic blocks outside LOOP. */
618 static void
619 update_dominators_in_loop (class loop *loop)
621 vec<basic_block> dom_bbs = vNULL;
622 basic_block *body;
623 unsigned i;
625 auto_sbitmap seen (last_basic_block_for_fn (cfun));
626 bitmap_clear (seen);
627 body = get_loop_body (loop);
629 for (i = 0; i < loop->num_nodes; i++)
630 bitmap_set_bit (seen, body[i]->index);
632 for (i = 0; i < loop->num_nodes; i++)
634 basic_block ldom;
636 for (ldom = first_dom_son (CDI_DOMINATORS, body[i]);
637 ldom;
638 ldom = next_dom_son (CDI_DOMINATORS, ldom))
639 if (!bitmap_bit_p (seen, ldom->index))
641 bitmap_set_bit (seen, ldom->index);
642 dom_bbs.safe_push (ldom);
646 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
647 free (body);
648 dom_bbs.release ();
651 /* Creates an if region as shown above. CONDITION is used to create
652 the test for the if.
655 | ------------- -------------
656 | | pred_bb | | pred_bb |
657 | ------------- -------------
658 | | |
659 | | | ENTRY_EDGE
660 | | ENTRY_EDGE V
661 | | ====> -------------
662 | | | cond_bb |
663 | | | CONDITION |
664 | | -------------
665 | V / \
666 | ------------- e_false / \ e_true
667 | | succ_bb | V V
668 | ------------- ----------- -----------
669 | | false_bb | | true_bb |
670 | ----------- -----------
671 | \ /
672 | \ /
673 | V V
674 | -------------
675 | | join_bb |
676 | -------------
677 | | exit_edge (result)
679 | -----------
680 | | succ_bb |
681 | -----------
685 edge
686 create_empty_if_region_on_edge (edge entry_edge, tree condition)
689 basic_block cond_bb, true_bb, false_bb, join_bb;
690 edge e_true, e_false, exit_edge;
691 gcond *cond_stmt;
692 tree simple_cond;
693 gimple_stmt_iterator gsi;
695 cond_bb = split_edge (entry_edge);
697 /* Insert condition in cond_bb. */
698 gsi = gsi_last_bb (cond_bb);
699 simple_cond =
700 force_gimple_operand_gsi (&gsi, condition, true, NULL,
701 false, GSI_NEW_STMT);
702 cond_stmt = gimple_build_cond_from_tree (simple_cond, NULL_TREE, NULL_TREE);
703 gsi = gsi_last_bb (cond_bb);
704 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
706 join_bb = split_edge (single_succ_edge (cond_bb));
708 e_true = single_succ_edge (cond_bb);
709 true_bb = split_edge (e_true);
711 e_false = make_edge (cond_bb, join_bb, 0);
712 false_bb = split_edge (e_false);
714 e_true->flags &= ~EDGE_FALLTHRU;
715 e_true->flags |= EDGE_TRUE_VALUE;
716 e_false->flags &= ~EDGE_FALLTHRU;
717 e_false->flags |= EDGE_FALSE_VALUE;
719 set_immediate_dominator (CDI_DOMINATORS, cond_bb, entry_edge->src);
720 set_immediate_dominator (CDI_DOMINATORS, true_bb, cond_bb);
721 set_immediate_dominator (CDI_DOMINATORS, false_bb, cond_bb);
722 set_immediate_dominator (CDI_DOMINATORS, join_bb, cond_bb);
724 exit_edge = single_succ_edge (join_bb);
726 if (single_pred_p (exit_edge->dest))
727 set_immediate_dominator (CDI_DOMINATORS, exit_edge->dest, join_bb);
729 return exit_edge;
732 /* create_empty_loop_on_edge
734 | - pred_bb - ------ pred_bb ------
735 | | | | iv0 = initial_value |
736 | -----|----- ---------|-----------
737 | | ______ | entry_edge
738 | | entry_edge / | |
739 | | ====> | -V---V- loop_header -------------
740 | V | | iv_before = phi (iv0, iv_after) |
741 | - succ_bb - | ---|-----------------------------
742 | | | | |
743 | ----------- | ---V--- loop_body ---------------
744 | | | iv_after = iv_before + stride |
745 | | | if (iv_before < upper_bound) |
746 | | ---|--------------\--------------
747 | | | \ exit_e
748 | | V \
749 | | - loop_latch - V- succ_bb -
750 | | | | | |
751 | | /------------- -----------
752 | \ ___ /
754 Creates an empty loop as shown above, the IV_BEFORE is the SSA_NAME
755 that is used before the increment of IV. IV_BEFORE should be used for
756 adding code to the body that uses the IV. OUTER is the outer loop in
757 which the new loop should be inserted.
759 Both INITIAL_VALUE and UPPER_BOUND expressions are gimplified and
760 inserted on the loop entry edge. This implies that this function
761 should be used only when the UPPER_BOUND expression is a loop
762 invariant. */
764 class loop *
765 create_empty_loop_on_edge (edge entry_edge,
766 tree initial_value,
767 tree stride, tree upper_bound,
768 tree iv,
769 tree *iv_before,
770 tree *iv_after,
771 class loop *outer)
773 basic_block loop_header, loop_latch, succ_bb, pred_bb;
774 class loop *loop;
775 gimple_stmt_iterator gsi;
776 gimple_seq stmts;
777 gcond *cond_expr;
778 tree exit_test;
779 edge exit_e;
781 gcc_assert (entry_edge && initial_value && stride && upper_bound && iv);
783 /* Create header, latch and wire up the loop. */
784 pred_bb = entry_edge->src;
785 loop_header = split_edge (entry_edge);
786 loop_latch = split_edge (single_succ_edge (loop_header));
787 succ_bb = single_succ (loop_latch);
788 make_edge (loop_header, succ_bb, 0);
789 redirect_edge_succ_nodup (single_succ_edge (loop_latch), loop_header);
791 /* Set immediate dominator information. */
792 set_immediate_dominator (CDI_DOMINATORS, loop_header, pred_bb);
793 set_immediate_dominator (CDI_DOMINATORS, loop_latch, loop_header);
794 set_immediate_dominator (CDI_DOMINATORS, succ_bb, loop_header);
796 /* Initialize a loop structure and put it in a loop hierarchy. */
797 loop = alloc_loop ();
798 loop->header = loop_header;
799 loop->latch = loop_latch;
800 add_loop (loop, outer);
802 /* TODO: Fix counts. */
803 scale_loop_frequencies (loop, profile_probability::even ());
805 /* Update dominators. */
806 update_dominators_in_loop (loop);
808 /* Modify edge flags. */
809 exit_e = single_exit (loop);
810 exit_e->flags = EDGE_LOOP_EXIT | EDGE_FALSE_VALUE;
811 single_pred_edge (loop_latch)->flags = EDGE_TRUE_VALUE;
813 /* Construct IV code in loop. */
814 initial_value = force_gimple_operand (initial_value, &stmts, true, iv);
815 if (stmts)
817 gsi_insert_seq_on_edge (loop_preheader_edge (loop), stmts);
818 gsi_commit_edge_inserts ();
821 upper_bound = force_gimple_operand (upper_bound, &stmts, true, NULL);
822 if (stmts)
824 gsi_insert_seq_on_edge (loop_preheader_edge (loop), stmts);
825 gsi_commit_edge_inserts ();
828 gsi = gsi_last_bb (loop_header);
829 create_iv (initial_value, stride, iv, loop, &gsi, false,
830 iv_before, iv_after);
832 /* Insert loop exit condition. */
833 cond_expr = gimple_build_cond
834 (LT_EXPR, *iv_before, upper_bound, NULL_TREE, NULL_TREE);
836 exit_test = gimple_cond_lhs (cond_expr);
837 exit_test = force_gimple_operand_gsi (&gsi, exit_test, true, NULL,
838 false, GSI_NEW_STMT);
839 gimple_cond_set_lhs (cond_expr, exit_test);
840 gsi = gsi_last_bb (exit_e->src);
841 gsi_insert_after (&gsi, cond_expr, GSI_NEW_STMT);
843 split_block_after_labels (loop_header);
845 return loop;
848 /* Remove the latch edge of a LOOP and update loops to indicate that
849 the LOOP was removed. After this function, original loop latch will
850 have no successor, which caller is expected to fix somehow.
852 If this may cause the information about irreducible regions to become
853 invalid, IRRED_INVALIDATED is set to true.
855 LOOP_CLOSED_SSA_INVALIDATED, if non-NULL, is a bitmap where we store
856 basic blocks that had non-trivial update on their loop_father.*/
858 void
859 unloop (class loop *loop, bool *irred_invalidated,
860 bitmap loop_closed_ssa_invalidated)
862 basic_block *body;
863 class loop *ploop;
864 unsigned i, n;
865 basic_block latch = loop->latch;
866 bool dummy = false;
868 if (loop_preheader_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP)
869 *irred_invalidated = true;
871 /* This is relatively straightforward. The dominators are unchanged, as
872 loop header dominates loop latch, so the only thing we have to care of
873 is the placement of loops and basic blocks inside the loop tree. We
874 move them all to the loop->outer, and then let fix_bb_placements do
875 its work. */
877 body = get_loop_body (loop);
878 n = loop->num_nodes;
879 for (i = 0; i < n; i++)
880 if (body[i]->loop_father == loop)
882 remove_bb_from_loops (body[i]);
883 add_bb_to_loop (body[i], loop_outer (loop));
885 free (body);
887 while (loop->inner)
889 ploop = loop->inner;
890 flow_loop_tree_node_remove (ploop);
891 flow_loop_tree_node_add (loop_outer (loop), ploop);
894 /* Remove the loop and free its data. */
895 delete_loop (loop);
897 remove_edge (single_succ_edge (latch));
899 /* We do not pass IRRED_INVALIDATED to fix_bb_placements here, as even if
900 there is an irreducible region inside the cancelled loop, the flags will
901 be still correct. */
902 fix_bb_placements (latch, &dummy, loop_closed_ssa_invalidated);
905 /* Fix placement of superloops of LOOP inside loop tree, i.e. ensure that
906 condition stated in description of fix_loop_placement holds for them.
907 It is used in case when we removed some edges coming out of LOOP, which
908 may cause the right placement of LOOP inside loop tree to change.
910 IRRED_INVALIDATED is set to true if a change in the loop structures might
911 invalidate the information about irreducible regions. */
913 static void
914 fix_loop_placements (class loop *loop, bool *irred_invalidated)
916 class loop *outer;
918 while (loop_outer (loop))
920 outer = loop_outer (loop);
921 if (!fix_loop_placement (loop, irred_invalidated))
922 break;
924 /* Changing the placement of a loop in the loop tree may alter the
925 validity of condition 2) of the description of fix_bb_placement
926 for its preheader, because the successor is the header and belongs
927 to the loop. So call fix_bb_placements to fix up the placement
928 of the preheader and (possibly) of its predecessors. */
929 fix_bb_placements (loop_preheader_edge (loop)->src,
930 irred_invalidated, NULL);
931 loop = outer;
935 /* Duplicate loop bounds and other information we store about
936 the loop into its duplicate. */
938 void
939 copy_loop_info (class loop *loop, class loop *target)
941 gcc_checking_assert (!target->any_upper_bound && !target->any_estimate);
942 target->any_upper_bound = loop->any_upper_bound;
943 target->nb_iterations_upper_bound = loop->nb_iterations_upper_bound;
944 target->any_likely_upper_bound = loop->any_likely_upper_bound;
945 target->nb_iterations_likely_upper_bound
946 = loop->nb_iterations_likely_upper_bound;
947 target->any_estimate = loop->any_estimate;
948 target->nb_iterations_estimate = loop->nb_iterations_estimate;
949 target->estimate_state = loop->estimate_state;
950 target->safelen = loop->safelen;
951 target->simdlen = loop->simdlen;
952 target->constraints = loop->constraints;
953 target->can_be_parallel = loop->can_be_parallel;
954 target->warned_aggressive_loop_optimizations
955 |= loop->warned_aggressive_loop_optimizations;
956 target->dont_vectorize = loop->dont_vectorize;
957 target->force_vectorize = loop->force_vectorize;
958 target->in_oacc_kernels_region = loop->in_oacc_kernels_region;
959 target->finite_p = loop->finite_p;
960 target->unroll = loop->unroll;
961 target->owned_clique = loop->owned_clique;
964 /* Copies copy of LOOP as subloop of TARGET loop, placing newly
965 created loop into loops structure. If AFTER is non-null
966 the new loop is added at AFTER->next, otherwise in front of TARGETs
967 sibling list. */
968 class loop *
969 duplicate_loop (class loop *loop, class loop *target, class loop *after)
971 class loop *cloop;
972 cloop = alloc_loop ();
973 place_new_loop (cfun, cloop);
975 copy_loop_info (loop, cloop);
977 /* Mark the new loop as copy of LOOP. */
978 set_loop_copy (loop, cloop);
980 /* Add it to target. */
981 flow_loop_tree_node_add (target, cloop, after);
983 return cloop;
986 /* Copies structure of subloops of LOOP into TARGET loop, placing
987 newly created loops into loop tree at the end of TARGETs sibling
988 list in the original order. */
989 void
990 duplicate_subloops (class loop *loop, class loop *target)
992 class loop *aloop, *cloop, *tail;
994 for (tail = target->inner; tail && tail->next; tail = tail->next)
996 for (aloop = loop->inner; aloop; aloop = aloop->next)
998 cloop = duplicate_loop (aloop, target, tail);
999 tail = cloop;
1000 gcc_assert(!tail->next);
1001 duplicate_subloops (aloop, cloop);
1005 /* Copies structure of subloops of N loops, stored in array COPIED_LOOPS,
1006 into TARGET loop, placing newly created loops into loop tree adding
1007 them to TARGETs sibling list at the end in order. */
1008 static void
1009 copy_loops_to (class loop **copied_loops, int n, class loop *target)
1011 class loop *aloop, *tail;
1012 int i;
1014 for (tail = target->inner; tail && tail->next; tail = tail->next)
1016 for (i = 0; i < n; i++)
1018 aloop = duplicate_loop (copied_loops[i], target, tail);
1019 tail = aloop;
1020 gcc_assert(!tail->next);
1021 duplicate_subloops (copied_loops[i], aloop);
1025 /* Redirects edge E to basic block DEST. */
1026 static void
1027 loop_redirect_edge (edge e, basic_block dest)
1029 if (e->dest == dest)
1030 return;
1032 redirect_edge_and_branch_force (e, dest);
1035 /* Check whether LOOP's body can be duplicated. */
1036 bool
1037 can_duplicate_loop_p (const class loop *loop)
1039 int ret;
1040 basic_block *bbs = get_loop_body (loop);
1042 ret = can_copy_bbs_p (bbs, loop->num_nodes);
1043 free (bbs);
1045 return ret;
1048 /* Duplicates body of LOOP to given edge E NDUPL times. Takes care of updating
1049 loop structure and dominators (order of inner subloops is retained).
1050 E's destination must be LOOP header for this to work, i.e. it must be entry
1051 or latch edge of this loop; these are unique, as the loops must have
1052 preheaders for this function to work correctly (in case E is latch, the
1053 function unrolls the loop, if E is entry edge, it peels the loop). Store
1054 edges created by copying ORIG edge from copies corresponding to set bits in
1055 WONT_EXIT bitmap (bit 0 corresponds to original LOOP body, the other copies
1056 are numbered in order given by control flow through them) into TO_REMOVE
1057 array. Returns false if duplication is
1058 impossible. */
1060 bool
1061 duplicate_loop_body_to_header_edge (class loop *loop, edge e,
1062 unsigned int ndupl, sbitmap wont_exit,
1063 edge orig, vec<edge> *to_remove, int flags)
1065 class loop *target, *aloop;
1066 class loop **orig_loops;
1067 unsigned n_orig_loops;
1068 basic_block header = loop->header, latch = loop->latch;
1069 basic_block *new_bbs, *bbs, *first_active;
1070 basic_block new_bb, bb, first_active_latch = NULL;
1071 edge ae, latch_edge;
1072 edge spec_edges[2], new_spec_edges[2];
1073 const int SE_LATCH = 0;
1074 const int SE_ORIG = 1;
1075 unsigned i, j, n;
1076 int is_latch = (latch == e->src);
1077 profile_probability *scale_step = NULL;
1078 profile_probability scale_main = profile_probability::always ();
1079 profile_probability scale_act = profile_probability::always ();
1080 profile_count after_exit_num = profile_count::zero (),
1081 after_exit_den = profile_count::zero ();
1082 bool scale_after_exit = false;
1083 int add_irreducible_flag;
1084 basic_block place_after;
1085 bitmap bbs_to_scale = NULL;
1086 bitmap_iterator bi;
1088 gcc_assert (e->dest == loop->header);
1089 gcc_assert (ndupl > 0);
1091 if (orig)
1093 /* Orig must be edge out of the loop. */
1094 gcc_assert (flow_bb_inside_loop_p (loop, orig->src));
1095 gcc_assert (!flow_bb_inside_loop_p (loop, orig->dest));
1098 n = loop->num_nodes;
1099 bbs = get_loop_body_in_dom_order (loop);
1100 gcc_assert (bbs[0] == loop->header);
1101 gcc_assert (bbs[n - 1] == loop->latch);
1103 /* Check whether duplication is possible. */
1104 if (!can_copy_bbs_p (bbs, loop->num_nodes))
1106 free (bbs);
1107 return false;
1109 new_bbs = XNEWVEC (basic_block, loop->num_nodes);
1111 /* In case we are doing loop peeling and the loop is in the middle of
1112 irreducible region, the peeled copies will be inside it too. */
1113 add_irreducible_flag = e->flags & EDGE_IRREDUCIBLE_LOOP;
1114 gcc_assert (!is_latch || !add_irreducible_flag);
1116 /* Find edge from latch. */
1117 latch_edge = loop_latch_edge (loop);
1119 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1121 /* Calculate coefficients by that we have to scale counts
1122 of duplicated loop bodies. */
1123 profile_count count_in = header->count;
1124 profile_count count_le = latch_edge->count ();
1125 profile_count count_out_orig = orig ? orig->count () : count_in - count_le;
1126 profile_probability prob_pass_thru = count_le.probability_in (count_in);
1127 profile_probability prob_pass_wont_exit =
1128 (count_le + count_out_orig).probability_in (count_in);
1130 if (orig && orig->probability.initialized_p ()
1131 && !(orig->probability == profile_probability::always ()))
1133 /* The blocks that are dominated by a removed exit edge ORIG have
1134 frequencies scaled by this. */
1135 if (orig->count ().initialized_p ())
1137 after_exit_num = orig->src->count;
1138 after_exit_den = after_exit_num - orig->count ();
1139 scale_after_exit = true;
1141 bbs_to_scale = BITMAP_ALLOC (NULL);
1142 for (i = 0; i < n; i++)
1144 if (bbs[i] != orig->src
1145 && dominated_by_p (CDI_DOMINATORS, bbs[i], orig->src))
1146 bitmap_set_bit (bbs_to_scale, i);
1150 scale_step = XNEWVEC (profile_probability, ndupl);
1152 for (i = 1; i <= ndupl; i++)
1153 scale_step[i - 1] = bitmap_bit_p (wont_exit, i)
1154 ? prob_pass_wont_exit
1155 : prob_pass_thru;
1157 /* Complete peeling is special as the probability of exit in last
1158 copy becomes 1. */
1159 if (flags & DLTHE_FLAG_COMPLETTE_PEEL)
1161 profile_count wanted_count = e->count ();
1163 gcc_assert (!is_latch);
1164 /* First copy has count of incoming edge. Each subsequent
1165 count should be reduced by prob_pass_wont_exit. Caller
1166 should've managed the flags so all except for original loop
1167 has won't exist set. */
1168 scale_act = wanted_count.probability_in (count_in);
1169 /* Now simulate the duplication adjustments and compute header
1170 frequency of the last copy. */
1171 for (i = 0; i < ndupl; i++)
1172 wanted_count = wanted_count.apply_probability (scale_step [i]);
1173 scale_main = wanted_count.probability_in (count_in);
1175 /* Here we insert loop bodies inside the loop itself (for loop unrolling).
1176 First iteration will be original loop followed by duplicated bodies.
1177 It is necessary to scale down the original so we get right overall
1178 number of iterations. */
1179 else if (is_latch)
1181 profile_probability prob_pass_main = bitmap_bit_p (wont_exit, 0)
1182 ? prob_pass_wont_exit
1183 : prob_pass_thru;
1184 profile_probability p = prob_pass_main;
1185 profile_count scale_main_den = count_in;
1186 for (i = 0; i < ndupl; i++)
1188 scale_main_den += count_in.apply_probability (p);
1189 p = p * scale_step[i];
1191 /* If original loop is executed COUNT_IN times, the unrolled
1192 loop will account SCALE_MAIN_DEN times. */
1193 scale_main = count_in.probability_in (scale_main_den);
1194 scale_act = scale_main * prob_pass_main;
1196 else
1198 profile_count preheader_count = e->count ();
1199 for (i = 0; i < ndupl; i++)
1200 scale_main = scale_main * scale_step[i];
1201 scale_act = preheader_count.probability_in (count_in);
1205 /* Loop the new bbs will belong to. */
1206 target = e->src->loop_father;
1208 /* Original loops. */
1209 n_orig_loops = 0;
1210 for (aloop = loop->inner; aloop; aloop = aloop->next)
1211 n_orig_loops++;
1212 orig_loops = XNEWVEC (class loop *, n_orig_loops);
1213 for (aloop = loop->inner, i = 0; aloop; aloop = aloop->next, i++)
1214 orig_loops[i] = aloop;
1216 set_loop_copy (loop, target);
1218 first_active = XNEWVEC (basic_block, n);
1219 if (is_latch)
1221 memcpy (first_active, bbs, n * sizeof (basic_block));
1222 first_active_latch = latch;
1225 spec_edges[SE_ORIG] = orig;
1226 spec_edges[SE_LATCH] = latch_edge;
1228 place_after = e->src;
1229 for (j = 0; j < ndupl; j++)
1231 /* Copy loops. */
1232 copy_loops_to (orig_loops, n_orig_loops, target);
1234 /* Copy bbs. */
1235 copy_bbs (bbs, n, new_bbs, spec_edges, 2, new_spec_edges, loop,
1236 place_after, true);
1237 place_after = new_spec_edges[SE_LATCH]->src;
1239 if (flags & DLTHE_RECORD_COPY_NUMBER)
1240 for (i = 0; i < n; i++)
1242 gcc_assert (!new_bbs[i]->aux);
1243 new_bbs[i]->aux = (void *)(size_t)(j + 1);
1246 /* Note whether the blocks and edges belong to an irreducible loop. */
1247 if (add_irreducible_flag)
1249 for (i = 0; i < n; i++)
1250 new_bbs[i]->flags |= BB_DUPLICATED;
1251 for (i = 0; i < n; i++)
1253 edge_iterator ei;
1254 new_bb = new_bbs[i];
1255 if (new_bb->loop_father == target)
1256 new_bb->flags |= BB_IRREDUCIBLE_LOOP;
1258 FOR_EACH_EDGE (ae, ei, new_bb->succs)
1259 if ((ae->dest->flags & BB_DUPLICATED)
1260 && (ae->src->loop_father == target
1261 || ae->dest->loop_father == target))
1262 ae->flags |= EDGE_IRREDUCIBLE_LOOP;
1264 for (i = 0; i < n; i++)
1265 new_bbs[i]->flags &= ~BB_DUPLICATED;
1268 /* Redirect the special edges. */
1269 if (is_latch)
1271 redirect_edge_and_branch_force (latch_edge, new_bbs[0]);
1272 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1273 loop->header);
1274 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], latch);
1275 latch = loop->latch = new_bbs[n - 1];
1276 e = latch_edge = new_spec_edges[SE_LATCH];
1278 else
1280 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1281 loop->header);
1282 redirect_edge_and_branch_force (e, new_bbs[0]);
1283 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], e->src);
1284 e = new_spec_edges[SE_LATCH];
1287 /* Record exit edge in this copy. */
1288 if (orig && bitmap_bit_p (wont_exit, j + 1))
1290 if (to_remove)
1291 to_remove->safe_push (new_spec_edges[SE_ORIG]);
1292 force_edge_cold (new_spec_edges[SE_ORIG], true);
1294 /* Scale the frequencies of the blocks dominated by the exit. */
1295 if (bbs_to_scale && scale_after_exit)
1297 EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
1298 scale_bbs_frequencies_profile_count (new_bbs + i, 1, after_exit_num,
1299 after_exit_den);
1303 /* Record the first copy in the control flow order if it is not
1304 the original loop (i.e. in case of peeling). */
1305 if (!first_active_latch)
1307 memcpy (first_active, new_bbs, n * sizeof (basic_block));
1308 first_active_latch = new_bbs[n - 1];
1311 /* Set counts and frequencies. */
1312 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1314 scale_bbs_frequencies (new_bbs, n, scale_act);
1315 scale_act = scale_act * scale_step[j];
1318 free (new_bbs);
1319 free (orig_loops);
1321 /* Record the exit edge in the original loop body, and update the frequencies. */
1322 if (orig && bitmap_bit_p (wont_exit, 0))
1324 if (to_remove)
1325 to_remove->safe_push (orig);
1326 force_edge_cold (orig, true);
1328 /* Scale the frequencies of the blocks dominated by the exit. */
1329 if (bbs_to_scale && scale_after_exit)
1331 EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
1332 scale_bbs_frequencies_profile_count (bbs + i, 1, after_exit_num,
1333 after_exit_den);
1337 /* Update the original loop. */
1338 if (!is_latch)
1339 set_immediate_dominator (CDI_DOMINATORS, e->dest, e->src);
1340 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1342 scale_bbs_frequencies (bbs, n, scale_main);
1343 free (scale_step);
1346 /* Update dominators of outer blocks if affected. */
1347 for (i = 0; i < n; i++)
1349 basic_block dominated, dom_bb;
1350 unsigned j;
1352 bb = bbs[i];
1354 auto_vec<basic_block> dom_bbs = get_dominated_by (CDI_DOMINATORS, bb);
1355 FOR_EACH_VEC_ELT (dom_bbs, j, dominated)
1357 if (flow_bb_inside_loop_p (loop, dominated))
1358 continue;
1359 dom_bb = nearest_common_dominator (
1360 CDI_DOMINATORS, first_active[i], first_active_latch);
1361 set_immediate_dominator (CDI_DOMINATORS, dominated, dom_bb);
1364 free (first_active);
1366 free (bbs);
1367 BITMAP_FREE (bbs_to_scale);
1369 return true;
1372 /* A callback for make_forwarder block, to redirect all edges except for
1373 MFB_KJ_EDGE to the entry part. E is the edge for that we should decide
1374 whether to redirect it. */
1376 edge mfb_kj_edge;
1377 bool
1378 mfb_keep_just (edge e)
1380 return e != mfb_kj_edge;
1383 /* True when a candidate preheader BLOCK has predecessors from LOOP. */
1385 static bool
1386 has_preds_from_loop (basic_block block, class loop *loop)
1388 edge e;
1389 edge_iterator ei;
1391 FOR_EACH_EDGE (e, ei, block->preds)
1392 if (e->src->loop_father == loop)
1393 return true;
1394 return false;
1397 /* Creates a pre-header for a LOOP. Returns newly created block. Unless
1398 CP_SIMPLE_PREHEADERS is set in FLAGS, we only force LOOP to have single
1399 entry; otherwise we also force preheader block to have only one successor.
1400 When CP_FALLTHRU_PREHEADERS is set in FLAGS, we force the preheader block
1401 to be a fallthru predecessor to the loop header and to have only
1402 predecessors from outside of the loop.
1403 The function also updates dominators. */
1405 basic_block
1406 create_preheader (class loop *loop, int flags)
1408 edge e;
1409 basic_block dummy;
1410 int nentry = 0;
1411 bool irred = false;
1412 bool latch_edge_was_fallthru;
1413 edge one_succ_pred = NULL, single_entry = NULL;
1414 edge_iterator ei;
1416 FOR_EACH_EDGE (e, ei, loop->header->preds)
1418 if (e->src == loop->latch)
1419 continue;
1420 irred |= (e->flags & EDGE_IRREDUCIBLE_LOOP) != 0;
1421 nentry++;
1422 single_entry = e;
1423 if (single_succ_p (e->src))
1424 one_succ_pred = e;
1426 gcc_assert (nentry);
1427 if (nentry == 1)
1429 bool need_forwarder_block = false;
1431 /* We do not allow entry block to be the loop preheader, since we
1432 cannot emit code there. */
1433 if (single_entry->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1434 need_forwarder_block = true;
1435 else
1437 /* If we want simple preheaders, also force the preheader to have
1438 just a single successor and a normal edge. */
1439 if ((flags & CP_SIMPLE_PREHEADERS)
1440 && ((single_entry->flags & EDGE_COMPLEX)
1441 || !single_succ_p (single_entry->src)))
1442 need_forwarder_block = true;
1443 /* If we want fallthru preheaders, also create forwarder block when
1444 preheader ends with a jump or has predecessors from loop. */
1445 else if ((flags & CP_FALLTHRU_PREHEADERS)
1446 && (JUMP_P (BB_END (single_entry->src))
1447 || has_preds_from_loop (single_entry->src, loop)))
1448 need_forwarder_block = true;
1450 if (! need_forwarder_block)
1451 return NULL;
1454 mfb_kj_edge = loop_latch_edge (loop);
1455 latch_edge_was_fallthru = (mfb_kj_edge->flags & EDGE_FALLTHRU) != 0;
1456 if (nentry == 1
1457 && ((flags & CP_FALLTHRU_PREHEADERS) == 0
1458 || (single_entry->flags & EDGE_CROSSING) == 0))
1459 dummy = split_edge (single_entry);
1460 else
1462 edge fallthru = make_forwarder_block (loop->header, mfb_keep_just, NULL);
1463 dummy = fallthru->src;
1464 loop->header = fallthru->dest;
1467 /* Try to be clever in placing the newly created preheader. The idea is to
1468 avoid breaking any "fallthruness" relationship between blocks.
1470 The preheader was created just before the header and all incoming edges
1471 to the header were redirected to the preheader, except the latch edge.
1472 So the only problematic case is when this latch edge was a fallthru
1473 edge: it is not anymore after the preheader creation so we have broken
1474 the fallthruness. We're therefore going to look for a better place. */
1475 if (latch_edge_was_fallthru)
1477 if (one_succ_pred)
1478 e = one_succ_pred;
1479 else
1480 e = EDGE_PRED (dummy, 0);
1482 move_block_after (dummy, e->src);
1485 if (irred)
1487 dummy->flags |= BB_IRREDUCIBLE_LOOP;
1488 single_succ_edge (dummy)->flags |= EDGE_IRREDUCIBLE_LOOP;
1491 if (dump_file)
1492 fprintf (dump_file, "Created preheader block for loop %i\n",
1493 loop->num);
1495 if (flags & CP_FALLTHRU_PREHEADERS)
1496 gcc_assert ((single_succ_edge (dummy)->flags & EDGE_FALLTHRU)
1497 && !JUMP_P (BB_END (dummy)));
1499 return dummy;
1502 /* Create preheaders for each loop; for meaning of FLAGS see create_preheader. */
1504 void
1505 create_preheaders (int flags)
1507 if (!current_loops)
1508 return;
1510 for (auto loop : loops_list (cfun, 0))
1511 create_preheader (loop, flags);
1512 loops_state_set (LOOPS_HAVE_PREHEADERS);
1515 /* Forces all loop latches to have only single successor. */
1517 void
1518 force_single_succ_latches (void)
1520 edge e;
1522 for (auto loop : loops_list (cfun, 0))
1524 if (loop->latch != loop->header && single_succ_p (loop->latch))
1525 continue;
1527 e = find_edge (loop->latch, loop->header);
1528 gcc_checking_assert (e != NULL);
1530 split_edge (e);
1532 loops_state_set (LOOPS_HAVE_SIMPLE_LATCHES);
1535 /* This function is called from loop_version. It splits the entry edge
1536 of the loop we want to version, adds the versioning condition, and
1537 adjust the edges to the two versions of the loop appropriately.
1538 e is an incoming edge. Returns the basic block containing the
1539 condition.
1541 --- edge e ---- > [second_head]
1543 Split it and insert new conditional expression and adjust edges.
1545 --- edge e ---> [cond expr] ---> [first_head]
1547 +---------> [second_head]
1549 THEN_PROB is the probability of then branch of the condition.
1550 ELSE_PROB is the probability of else branch. Note that they may be both
1551 REG_BR_PROB_BASE when condition is IFN_LOOP_VECTORIZED or
1552 IFN_LOOP_DIST_ALIAS. */
1554 static basic_block
1555 lv_adjust_loop_entry_edge (basic_block first_head, basic_block second_head,
1556 edge e, void *cond_expr,
1557 profile_probability then_prob,
1558 profile_probability else_prob)
1560 basic_block new_head = NULL;
1561 edge e1;
1563 gcc_assert (e->dest == second_head);
1565 /* Split edge 'e'. This will create a new basic block, where we can
1566 insert conditional expr. */
1567 new_head = split_edge (e);
1569 lv_add_condition_to_bb (first_head, second_head, new_head,
1570 cond_expr);
1572 /* Don't set EDGE_TRUE_VALUE in RTL mode, as it's invalid there. */
1573 e = single_succ_edge (new_head);
1574 e1 = make_edge (new_head, first_head,
1575 current_ir_type () == IR_GIMPLE ? EDGE_TRUE_VALUE : 0);
1576 e1->probability = then_prob;
1577 e->probability = else_prob;
1579 set_immediate_dominator (CDI_DOMINATORS, first_head, new_head);
1580 set_immediate_dominator (CDI_DOMINATORS, second_head, new_head);
1582 /* Adjust loop header phi nodes. */
1583 lv_adjust_loop_header_phi (first_head, second_head, new_head, e1);
1585 return new_head;
1588 /* Main entry point for Loop Versioning transformation.
1590 This transformation given a condition and a loop, creates
1591 -if (condition) { loop_copy1 } else { loop_copy2 },
1592 where loop_copy1 is the loop transformed in one way, and loop_copy2
1593 is the loop transformed in another way (or unchanged). COND_EXPR
1594 may be a run time test for things that were not resolved by static
1595 analysis (overlapping ranges (anti-aliasing), alignment, etc.).
1597 If non-NULL, CONDITION_BB is set to the basic block containing the
1598 condition.
1600 THEN_PROB is the probability of the then edge of the if. THEN_SCALE
1601 is the ratio by that the frequencies in the original loop should
1602 be scaled. ELSE_SCALE is the ratio by that the frequencies in the
1603 new loop should be scaled.
1605 If PLACE_AFTER is true, we place the new loop after LOOP in the
1606 instruction stream, otherwise it is placed before LOOP. */
1608 class loop *
1609 loop_version (class loop *loop,
1610 void *cond_expr, basic_block *condition_bb,
1611 profile_probability then_prob, profile_probability else_prob,
1612 profile_probability then_scale, profile_probability else_scale,
1613 bool place_after)
1615 basic_block first_head, second_head;
1616 edge entry, latch_edge;
1617 int irred_flag;
1618 class loop *nloop;
1619 basic_block cond_bb;
1621 /* Record entry and latch edges for the loop */
1622 entry = loop_preheader_edge (loop);
1623 irred_flag = entry->flags & EDGE_IRREDUCIBLE_LOOP;
1624 entry->flags &= ~EDGE_IRREDUCIBLE_LOOP;
1626 /* Note down head of loop as first_head. */
1627 first_head = entry->dest;
1629 /* 1) Duplicate loop on the entry edge. */
1630 if (!cfg_hook_duplicate_loop_body_to_header_edge (loop, entry, 1, NULL, NULL,
1631 NULL, 0))
1633 entry->flags |= irred_flag;
1634 return NULL;
1637 /* 2) loopify the duplicated new loop. */
1638 latch_edge = single_succ_edge (get_bb_copy (loop->latch));
1639 nloop = alloc_loop ();
1640 class loop *outer = loop_outer (latch_edge->dest->loop_father);
1641 edge new_header_edge = single_pred_edge (get_bb_copy (loop->header));
1642 nloop->header = new_header_edge->dest;
1643 nloop->latch = latch_edge->src;
1644 loop_redirect_edge (latch_edge, nloop->header);
1646 /* Compute new loop. */
1647 add_loop (nloop, outer);
1648 copy_loop_info (loop, nloop);
1649 set_loop_copy (loop, nloop);
1651 /* loopify redirected latch_edge. Update its PENDING_STMTS. */
1652 lv_flush_pending_stmts (latch_edge);
1654 /* After duplication entry edge now points to new loop head block.
1655 Note down new head as second_head. */
1656 second_head = entry->dest;
1658 /* 3) Split loop entry edge and insert new block with cond expr. */
1659 cond_bb = lv_adjust_loop_entry_edge (first_head, second_head,
1660 entry, cond_expr, then_prob, else_prob);
1661 if (condition_bb)
1662 *condition_bb = cond_bb;
1664 if (!cond_bb)
1666 entry->flags |= irred_flag;
1667 return NULL;
1670 /* Add cond_bb to appropriate loop. */
1671 if (cond_bb->loop_father)
1672 remove_bb_from_loops (cond_bb);
1673 add_bb_to_loop (cond_bb, outer);
1675 /* 4) Scale the original loop and new loop frequency. */
1676 scale_loop_frequencies (loop, then_scale);
1677 scale_loop_frequencies (nloop, else_scale);
1678 update_dominators_in_loop (loop);
1679 update_dominators_in_loop (nloop);
1681 /* Adjust irreducible flag. */
1682 if (irred_flag)
1684 cond_bb->flags |= BB_IRREDUCIBLE_LOOP;
1685 loop_preheader_edge (loop)->flags |= EDGE_IRREDUCIBLE_LOOP;
1686 loop_preheader_edge (nloop)->flags |= EDGE_IRREDUCIBLE_LOOP;
1687 single_pred_edge (cond_bb)->flags |= EDGE_IRREDUCIBLE_LOOP;
1690 if (place_after)
1692 basic_block *bbs = get_loop_body_in_dom_order (nloop), after;
1693 unsigned i;
1695 after = loop->latch;
1697 for (i = 0; i < nloop->num_nodes; i++)
1699 move_block_after (bbs[i], after);
1700 after = bbs[i];
1702 free (bbs);
1705 /* At this point condition_bb is loop preheader with two successors,
1706 first_head and second_head. Make sure that loop preheader has only
1707 one successor. */
1708 split_edge (loop_preheader_edge (loop));
1709 split_edge (loop_preheader_edge (nloop));
1711 return nloop;