tree-optimization/113126 - vector extension compare optimization
[official-gcc.git] / gcc / tree-vect-loop-manip.cc
blob8aa7575a0e39b51215610d21e5ba81dd271bdd47
1 /* Vectorizer Specific Loop Manipulations
2 Copyright (C) 2003-2024 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
4 and Ira Rosen <irar@il.ibm.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "cfghooks.h"
29 #include "tree-pass.h"
30 #include "ssa.h"
31 #include "fold-const.h"
32 #include "cfganal.h"
33 #include "gimplify.h"
34 #include "gimple-iterator.h"
35 #include "gimplify-me.h"
36 #include "tree-cfg.h"
37 #include "tree-ssa-loop-manip.h"
38 #include "tree-into-ssa.h"
39 #include "tree-ssa.h"
40 #include "cfgloop.h"
41 #include "tree-scalar-evolution.h"
42 #include "tree-vectorizer.h"
43 #include "tree-ssa-loop-ivopts.h"
44 #include "gimple-fold.h"
45 #include "tree-ssa-loop-niter.h"
46 #include "internal-fn.h"
47 #include "stor-layout.h"
48 #include "optabs-query.h"
49 #include "vec-perm-indices.h"
50 #include "insn-config.h"
51 #include "rtl.h"
52 #include "recog.h"
53 #include "langhooks.h"
54 #include "tree-vector-builder.h"
55 #include "optabs-tree.h"
57 /*************************************************************************
58 Simple Loop Peeling Utilities
60 Utilities to support loop peeling for vectorization purposes.
61 *************************************************************************/
64 /* Renames the use *OP_P. */
66 static void
67 rename_use_op (use_operand_p op_p)
69 tree new_name;
71 if (TREE_CODE (USE_FROM_PTR (op_p)) != SSA_NAME)
72 return;
74 new_name = get_current_def (USE_FROM_PTR (op_p));
76 /* Something defined outside of the loop. */
77 if (!new_name)
78 return;
80 /* An ordinary ssa name defined in the loop. */
82 SET_USE (op_p, new_name);
86 /* Renames the variables in basic block BB. Allow renaming of PHI arguments
87 on edges incoming from outer-block header if RENAME_FROM_OUTER_LOOP is
88 true. */
90 static void
91 rename_variables_in_bb (basic_block bb, bool rename_from_outer_loop)
93 gimple *stmt;
94 use_operand_p use_p;
95 ssa_op_iter iter;
96 edge e;
97 edge_iterator ei;
98 class loop *loop = bb->loop_father;
99 class loop *outer_loop = NULL;
101 if (rename_from_outer_loop)
103 gcc_assert (loop);
104 outer_loop = loop_outer (loop);
107 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
108 gsi_next (&gsi))
110 stmt = gsi_stmt (gsi);
111 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
112 rename_use_op (use_p);
115 FOR_EACH_EDGE (e, ei, bb->preds)
117 if (!flow_bb_inside_loop_p (loop, e->src))
119 if (!rename_from_outer_loop)
120 continue;
121 if (e->src != outer_loop->header)
123 if (outer_loop->inner->next)
125 /* If outer_loop has 2 inner loops, allow there to
126 be an extra basic block which decides which of the
127 two loops to use using LOOP_VECTORIZED. */
128 if (!single_pred_p (e->src)
129 || single_pred (e->src) != outer_loop->header)
130 continue;
134 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
135 gsi_next (&gsi))
136 rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (gsi.phi (), e));
141 struct adjust_info
143 tree from, to;
144 basic_block bb;
147 /* A stack of values to be adjusted in debug stmts. We have to
148 process them LIFO, so that the closest substitution applies. If we
149 processed them FIFO, without the stack, we might substitute uses
150 with a PHI DEF that would soon become non-dominant, and when we got
151 to the suitable one, it wouldn't have anything to substitute any
152 more. */
153 static vec<adjust_info, va_heap> adjust_vec;
155 /* Adjust any debug stmts that referenced AI->from values to use the
156 loop-closed AI->to, if the references are dominated by AI->bb and
157 not by the definition of AI->from. */
159 static void
160 adjust_debug_stmts_now (adjust_info *ai)
162 basic_block bbphi = ai->bb;
163 tree orig_def = ai->from;
164 tree new_def = ai->to;
165 imm_use_iterator imm_iter;
166 gimple *stmt;
167 basic_block bbdef = gimple_bb (SSA_NAME_DEF_STMT (orig_def));
169 gcc_assert (dom_info_available_p (CDI_DOMINATORS));
171 /* Adjust any debug stmts that held onto non-loop-closed
172 references. */
173 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, orig_def)
175 use_operand_p use_p;
176 basic_block bbuse;
178 if (!is_gimple_debug (stmt))
179 continue;
181 gcc_assert (gimple_debug_bind_p (stmt));
183 bbuse = gimple_bb (stmt);
185 if ((bbuse == bbphi
186 || dominated_by_p (CDI_DOMINATORS, bbuse, bbphi))
187 && !(bbuse == bbdef
188 || dominated_by_p (CDI_DOMINATORS, bbuse, bbdef)))
190 if (new_def)
191 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
192 SET_USE (use_p, new_def);
193 else
195 gimple_debug_bind_reset_value (stmt);
196 update_stmt (stmt);
202 /* Adjust debug stmts as scheduled before. */
204 static void
205 adjust_vec_debug_stmts (void)
207 if (!MAY_HAVE_DEBUG_BIND_STMTS)
208 return;
210 gcc_assert (adjust_vec.exists ());
212 while (!adjust_vec.is_empty ())
214 adjust_debug_stmts_now (&adjust_vec.last ());
215 adjust_vec.pop ();
219 /* Adjust any debug stmts that referenced FROM values to use the
220 loop-closed TO, if the references are dominated by BB and not by
221 the definition of FROM. If adjust_vec is non-NULL, adjustments
222 will be postponed until adjust_vec_debug_stmts is called. */
224 static void
225 adjust_debug_stmts (tree from, tree to, basic_block bb)
227 adjust_info ai;
229 if (MAY_HAVE_DEBUG_BIND_STMTS
230 && TREE_CODE (from) == SSA_NAME
231 && ! SSA_NAME_IS_DEFAULT_DEF (from)
232 && ! virtual_operand_p (from))
234 ai.from = from;
235 ai.to = to;
236 ai.bb = bb;
238 if (adjust_vec.exists ())
239 adjust_vec.safe_push (ai);
240 else
241 adjust_debug_stmts_now (&ai);
245 /* Change E's phi arg in UPDATE_PHI to NEW_DEF, and record information
246 to adjust any debug stmts that referenced the old phi arg,
247 presumably non-loop-closed references left over from other
248 transformations. */
250 static void
251 adjust_phi_and_debug_stmts (gimple *update_phi, edge e, tree new_def)
253 tree orig_def = PHI_ARG_DEF_FROM_EDGE (update_phi, e);
255 gcc_assert (TREE_CODE (orig_def) != SSA_NAME
256 || orig_def != new_def);
258 SET_PHI_ARG_DEF (update_phi, e->dest_idx, new_def);
260 if (MAY_HAVE_DEBUG_BIND_STMTS)
261 adjust_debug_stmts (orig_def, PHI_RESULT (update_phi),
262 gimple_bb (update_phi));
265 /* Define one loop rgroup control CTRL from loop LOOP. INIT_CTRL is the value
266 that the control should have during the first iteration and NEXT_CTRL is the
267 value that it should have on subsequent iterations. */
269 static void
270 vect_set_loop_control (class loop *loop, tree ctrl, tree init_ctrl,
271 tree next_ctrl)
273 gphi *phi = create_phi_node (ctrl, loop->header);
274 add_phi_arg (phi, init_ctrl, loop_preheader_edge (loop), UNKNOWN_LOCATION);
275 add_phi_arg (phi, next_ctrl, loop_latch_edge (loop), UNKNOWN_LOCATION);
278 /* Add SEQ to the end of LOOP's preheader block. */
280 static void
281 add_preheader_seq (class loop *loop, gimple_seq seq)
283 if (seq)
285 edge pe = loop_preheader_edge (loop);
286 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
287 gcc_assert (!new_bb);
291 /* Add SEQ to the beginning of LOOP's header block. */
293 static void
294 add_header_seq (class loop *loop, gimple_seq seq)
296 if (seq)
298 gimple_stmt_iterator gsi = gsi_after_labels (loop->header);
299 gsi_insert_seq_before (&gsi, seq, GSI_SAME_STMT);
303 /* Return true if the target can interleave elements of two vectors.
304 OFFSET is 0 if the first half of the vectors should be interleaved
305 or 1 if the second half should. When returning true, store the
306 associated permutation in INDICES. */
308 static bool
309 interleave_supported_p (vec_perm_indices *indices, tree vectype,
310 unsigned int offset)
312 poly_uint64 nelts = TYPE_VECTOR_SUBPARTS (vectype);
313 poly_uint64 base = exact_div (nelts, 2) * offset;
314 vec_perm_builder sel (nelts, 2, 3);
315 for (unsigned int i = 0; i < 3; ++i)
317 sel.quick_push (base + i);
318 sel.quick_push (base + i + nelts);
320 indices->new_vector (sel, 2, nelts);
321 return can_vec_perm_const_p (TYPE_MODE (vectype), TYPE_MODE (vectype),
322 *indices);
325 /* Try to use permutes to define the masks in DEST_RGM using the masks
326 in SRC_RGM, given that the former has twice as many masks as the
327 latter. Return true on success, adding any new statements to SEQ. */
329 static bool
330 vect_maybe_permute_loop_masks (gimple_seq *seq, rgroup_controls *dest_rgm,
331 rgroup_controls *src_rgm)
333 tree src_masktype = src_rgm->type;
334 tree dest_masktype = dest_rgm->type;
335 machine_mode src_mode = TYPE_MODE (src_masktype);
336 insn_code icode1, icode2;
337 if (dest_rgm->max_nscalars_per_iter <= src_rgm->max_nscalars_per_iter
338 && (icode1 = optab_handler (vec_unpacku_hi_optab,
339 src_mode)) != CODE_FOR_nothing
340 && (icode2 = optab_handler (vec_unpacku_lo_optab,
341 src_mode)) != CODE_FOR_nothing)
343 /* Unpacking the source masks gives at least as many mask bits as
344 we need. We can then VIEW_CONVERT any excess bits away. */
345 machine_mode dest_mode = insn_data[icode1].operand[0].mode;
346 gcc_assert (dest_mode == insn_data[icode2].operand[0].mode);
347 tree unpack_masktype = vect_halve_mask_nunits (src_masktype, dest_mode);
348 for (unsigned int i = 0; i < dest_rgm->controls.length (); ++i)
350 tree src = src_rgm->controls[i / 2];
351 tree dest = dest_rgm->controls[i];
352 tree_code code = ((i & 1) == (BYTES_BIG_ENDIAN ? 0 : 1)
353 ? VEC_UNPACK_HI_EXPR
354 : VEC_UNPACK_LO_EXPR);
355 gassign *stmt;
356 if (dest_masktype == unpack_masktype)
357 stmt = gimple_build_assign (dest, code, src);
358 else
360 tree temp = make_ssa_name (unpack_masktype);
361 stmt = gimple_build_assign (temp, code, src);
362 gimple_seq_add_stmt (seq, stmt);
363 stmt = gimple_build_assign (dest, VIEW_CONVERT_EXPR,
364 build1 (VIEW_CONVERT_EXPR,
365 dest_masktype, temp));
367 gimple_seq_add_stmt (seq, stmt);
369 return true;
371 vec_perm_indices indices[2];
372 if (dest_masktype == src_masktype
373 && interleave_supported_p (&indices[0], src_masktype, 0)
374 && interleave_supported_p (&indices[1], src_masktype, 1))
376 /* The destination requires twice as many mask bits as the source, so
377 we can use interleaving permutes to double up the number of bits. */
378 tree masks[2];
379 for (unsigned int i = 0; i < 2; ++i)
380 masks[i] = vect_gen_perm_mask_checked (src_masktype, indices[i]);
381 for (unsigned int i = 0; i < dest_rgm->controls.length (); ++i)
383 tree src = src_rgm->controls[i / 2];
384 tree dest = dest_rgm->controls[i];
385 gimple *stmt = gimple_build_assign (dest, VEC_PERM_EXPR,
386 src, src, masks[i & 1]);
387 gimple_seq_add_stmt (seq, stmt);
389 return true;
391 return false;
394 /* Populate DEST_RGM->controls, given that they should add up to STEP.
396 STEP = MIN_EXPR <ivtmp_34, VF>;
398 First length (MIN (X, VF/N)):
399 loop_len_15 = MIN_EXPR <STEP, VF/N>;
401 Second length:
402 tmp = STEP - loop_len_15;
403 loop_len_16 = MIN (tmp, VF/N);
405 Third length:
406 tmp2 = tmp - loop_len_16;
407 loop_len_17 = MIN (tmp2, VF/N);
409 Last length:
410 loop_len_18 = tmp2 - loop_len_17;
413 static void
414 vect_adjust_loop_lens_control (tree iv_type, gimple_seq *seq,
415 rgroup_controls *dest_rgm, tree step)
417 tree ctrl_type = dest_rgm->type;
418 poly_uint64 nitems_per_ctrl
419 = TYPE_VECTOR_SUBPARTS (ctrl_type) * dest_rgm->factor;
420 tree length_limit = build_int_cst (iv_type, nitems_per_ctrl);
422 for (unsigned int i = 0; i < dest_rgm->controls.length (); ++i)
424 tree ctrl = dest_rgm->controls[i];
425 if (i == 0)
427 /* First iteration: MIN (X, VF/N) capped to the range [0, VF/N]. */
428 gassign *assign
429 = gimple_build_assign (ctrl, MIN_EXPR, step, length_limit);
430 gimple_seq_add_stmt (seq, assign);
432 else if (i == dest_rgm->controls.length () - 1)
434 /* Last iteration: Remain capped to the range [0, VF/N]. */
435 gassign *assign = gimple_build_assign (ctrl, MINUS_EXPR, step,
436 dest_rgm->controls[i - 1]);
437 gimple_seq_add_stmt (seq, assign);
439 else
441 /* (MIN (remain, VF*I/N)) capped to the range [0, VF/N]. */
442 step = gimple_build (seq, MINUS_EXPR, iv_type, step,
443 dest_rgm->controls[i - 1]);
444 gassign *assign
445 = gimple_build_assign (ctrl, MIN_EXPR, step, length_limit);
446 gimple_seq_add_stmt (seq, assign);
451 /* Stores the standard position for induction variable increment in belonging to
452 LOOP_EXIT (just before the exit condition of the given exit to BSI.
453 INSERT_AFTER is set to true if the increment should be inserted after
454 *BSI. */
456 void
457 vect_iv_increment_position (edge loop_exit, gimple_stmt_iterator *bsi,
458 bool *insert_after)
460 basic_block bb = loop_exit->src;
461 *bsi = gsi_last_bb (bb);
462 *insert_after = false;
465 /* Helper for vect_set_loop_condition_partial_vectors. Generate definitions
466 for all the rgroup controls in RGC and return a control that is nonzero
467 when the loop needs to iterate. Add any new preheader statements to
468 PREHEADER_SEQ. Use LOOP_COND_GSI to insert code before the exit gcond.
470 RGC belongs to loop LOOP. The loop originally iterated NITERS
471 times and has been vectorized according to LOOP_VINFO.
473 If NITERS_SKIP is nonnull, the first iteration of the vectorized loop
474 starts with NITERS_SKIP dummy iterations of the scalar loop before
475 the real work starts. The mask elements for these dummy iterations
476 must be 0, to ensure that the extra iterations do not have an effect.
478 It is known that:
480 NITERS * RGC->max_nscalars_per_iter * RGC->factor
482 does not overflow. However, MIGHT_WRAP_P says whether an induction
483 variable that starts at 0 and has step:
485 VF * RGC->max_nscalars_per_iter * RGC->factor
487 might overflow before hitting a value above:
489 (NITERS + NITERS_SKIP) * RGC->max_nscalars_per_iter * RGC->factor
491 This means that we cannot guarantee that such an induction variable
492 would ever hit a value that produces a set of all-false masks or zero
493 lengths for RGC.
495 Note: the cost of the code generated by this function is modeled
496 by vect_estimate_min_profitable_iters, so changes here may need
497 corresponding changes there. */
499 static tree
500 vect_set_loop_controls_directly (class loop *loop, loop_vec_info loop_vinfo,
501 gimple_seq *preheader_seq,
502 gimple_seq *header_seq,
503 gimple_stmt_iterator loop_cond_gsi,
504 rgroup_controls *rgc, tree niters,
505 tree niters_skip, bool might_wrap_p,
506 tree *iv_step, tree *compare_step)
508 tree compare_type = LOOP_VINFO_RGROUP_COMPARE_TYPE (loop_vinfo);
509 tree iv_type = LOOP_VINFO_RGROUP_IV_TYPE (loop_vinfo);
510 bool use_masks_p = LOOP_VINFO_FULLY_MASKED_P (loop_vinfo);
512 tree ctrl_type = rgc->type;
513 unsigned int nitems_per_iter = rgc->max_nscalars_per_iter * rgc->factor;
514 poly_uint64 nitems_per_ctrl = TYPE_VECTOR_SUBPARTS (ctrl_type) * rgc->factor;
515 poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
516 tree length_limit = NULL_TREE;
517 /* For length, we need length_limit to ensure length in range. */
518 if (!use_masks_p)
519 length_limit = build_int_cst (compare_type, nitems_per_ctrl);
521 /* Calculate the maximum number of item values that the rgroup
522 handles in total, the number that it handles for each iteration
523 of the vector loop, and the number that it should skip during the
524 first iteration of the vector loop. */
525 tree nitems_total = niters;
526 tree nitems_step = build_int_cst (iv_type, vf);
527 tree nitems_skip = niters_skip;
528 if (nitems_per_iter != 1)
530 /* We checked before setting LOOP_VINFO_USING_PARTIAL_VECTORS_P that
531 these multiplications don't overflow. */
532 tree compare_factor = build_int_cst (compare_type, nitems_per_iter);
533 tree iv_factor = build_int_cst (iv_type, nitems_per_iter);
534 nitems_total = gimple_build (preheader_seq, MULT_EXPR, compare_type,
535 nitems_total, compare_factor);
536 nitems_step = gimple_build (preheader_seq, MULT_EXPR, iv_type,
537 nitems_step, iv_factor);
538 if (nitems_skip)
539 nitems_skip = gimple_build (preheader_seq, MULT_EXPR, compare_type,
540 nitems_skip, compare_factor);
543 /* Create an induction variable that counts the number of items
544 processed. */
545 tree index_before_incr, index_after_incr;
546 gimple_stmt_iterator incr_gsi;
547 bool insert_after;
548 edge exit_e = LOOP_VINFO_IV_EXIT (loop_vinfo);
549 vect_iv_increment_position (exit_e, &incr_gsi, &insert_after);
550 if (LOOP_VINFO_USING_DECREMENTING_IV_P (loop_vinfo))
552 /* Create an IV that counts down from niters_total and whose step
553 is the (variable) amount processed in the current iteration:
555 _10 = (unsigned long) count_12(D);
557 # ivtmp_9 = PHI <ivtmp_35(6), _10(5)>
558 _36 = (MIN_EXPR | SELECT_VL) <ivtmp_9, POLY_INT_CST [4, 4]>;
560 vect__4.8_28 = .LEN_LOAD (_17, 32B, _36, 0);
562 ivtmp_35 = ivtmp_9 - POLY_INT_CST [4, 4];
564 if (ivtmp_9 > POLY_INT_CST [4, 4])
565 goto <bb 4>; [83.33%]
566 else
567 goto <bb 5>; [16.67%]
569 nitems_total = gimple_convert (preheader_seq, iv_type, nitems_total);
570 tree step = rgc->controls.length () == 1 ? rgc->controls[0]
571 : make_ssa_name (iv_type);
572 /* Create decrement IV. */
573 if (LOOP_VINFO_USING_SELECT_VL_P (loop_vinfo))
575 create_iv (nitems_total, MINUS_EXPR, step, NULL_TREE, loop, &incr_gsi,
576 insert_after, &index_before_incr, &index_after_incr);
577 tree len = gimple_build (header_seq, IFN_SELECT_VL, iv_type,
578 index_before_incr, nitems_step);
579 gimple_seq_add_stmt (header_seq, gimple_build_assign (step, len));
581 else
583 create_iv (nitems_total, MINUS_EXPR, nitems_step, NULL_TREE, loop,
584 &incr_gsi, insert_after, &index_before_incr,
585 &index_after_incr);
586 gimple_seq_add_stmt (header_seq,
587 gimple_build_assign (step, MIN_EXPR,
588 index_before_incr,
589 nitems_step));
591 *iv_step = step;
592 *compare_step = nitems_step;
593 return LOOP_VINFO_USING_SELECT_VL_P (loop_vinfo) ? index_after_incr
594 : index_before_incr;
597 /* Create increment IV. */
598 create_iv (build_int_cst (iv_type, 0), PLUS_EXPR, nitems_step, NULL_TREE,
599 loop, &incr_gsi, insert_after, &index_before_incr,
600 &index_after_incr);
602 tree zero_index = build_int_cst (compare_type, 0);
603 tree test_index, test_limit, first_limit;
604 gimple_stmt_iterator *test_gsi;
605 if (might_wrap_p)
607 /* In principle the loop should stop iterating once the incremented
608 IV reaches a value greater than or equal to:
610 NITEMS_TOTAL +[infinite-prec] NITEMS_SKIP
612 However, there's no guarantee that this addition doesn't overflow
613 the comparison type, or that the IV hits a value above it before
614 wrapping around. We therefore adjust the limit down by one
615 IV step:
617 (NITEMS_TOTAL +[infinite-prec] NITEMS_SKIP)
618 -[infinite-prec] NITEMS_STEP
620 and compare the IV against this limit _before_ incrementing it.
621 Since the comparison type is unsigned, we actually want the
622 subtraction to saturate at zero:
624 (NITEMS_TOTAL +[infinite-prec] NITEMS_SKIP)
625 -[sat] NITEMS_STEP
627 And since NITEMS_SKIP < NITEMS_STEP, we can reassociate this as:
629 NITEMS_TOTAL -[sat] (NITEMS_STEP - NITEMS_SKIP)
631 where the rightmost subtraction can be done directly in
632 COMPARE_TYPE. */
633 test_index = index_before_incr;
634 tree adjust = gimple_convert (preheader_seq, compare_type,
635 nitems_step);
636 if (nitems_skip)
637 adjust = gimple_build (preheader_seq, MINUS_EXPR, compare_type,
638 adjust, nitems_skip);
639 test_limit = gimple_build (preheader_seq, MAX_EXPR, compare_type,
640 nitems_total, adjust);
641 test_limit = gimple_build (preheader_seq, MINUS_EXPR, compare_type,
642 test_limit, adjust);
643 test_gsi = &incr_gsi;
645 /* Get a safe limit for the first iteration. */
646 if (nitems_skip)
648 /* The first vector iteration can handle at most NITEMS_STEP
649 items. NITEMS_STEP <= CONST_LIMIT, and adding
650 NITEMS_SKIP to that cannot overflow. */
651 tree const_limit = build_int_cst (compare_type,
652 LOOP_VINFO_VECT_FACTOR (loop_vinfo)
653 * nitems_per_iter);
654 first_limit = gimple_build (preheader_seq, MIN_EXPR, compare_type,
655 nitems_total, const_limit);
656 first_limit = gimple_build (preheader_seq, PLUS_EXPR, compare_type,
657 first_limit, nitems_skip);
659 else
660 /* For the first iteration it doesn't matter whether the IV hits
661 a value above NITEMS_TOTAL. That only matters for the latch
662 condition. */
663 first_limit = nitems_total;
665 else
667 /* Test the incremented IV, which will always hit a value above
668 the bound before wrapping. */
669 test_index = index_after_incr;
670 test_limit = nitems_total;
671 if (nitems_skip)
672 test_limit = gimple_build (preheader_seq, PLUS_EXPR, compare_type,
673 test_limit, nitems_skip);
674 test_gsi = &loop_cond_gsi;
676 first_limit = test_limit;
679 /* Convert the IV value to the comparison type (either a no-op or
680 a demotion). */
681 gimple_seq test_seq = NULL;
682 test_index = gimple_convert (&test_seq, compare_type, test_index);
683 gsi_insert_seq_before (test_gsi, test_seq, GSI_SAME_STMT);
685 /* Provide a definition of each control in the group. */
686 tree next_ctrl = NULL_TREE;
687 tree ctrl;
688 unsigned int i;
689 FOR_EACH_VEC_ELT_REVERSE (rgc->controls, i, ctrl)
691 /* Previous controls will cover BIAS items. This control covers the
692 next batch. */
693 poly_uint64 bias = nitems_per_ctrl * i;
694 tree bias_tree = build_int_cst (compare_type, bias);
696 /* See whether the first iteration of the vector loop is known
697 to have a full control. */
698 poly_uint64 const_limit;
699 bool first_iteration_full
700 = (poly_int_tree_p (first_limit, &const_limit)
701 && known_ge (const_limit, (i + 1) * nitems_per_ctrl));
703 /* Rather than have a new IV that starts at BIAS and goes up to
704 TEST_LIMIT, prefer to use the same 0-based IV for each control
705 and adjust the bound down by BIAS. */
706 tree this_test_limit = test_limit;
707 if (i != 0)
709 this_test_limit = gimple_build (preheader_seq, MAX_EXPR,
710 compare_type, this_test_limit,
711 bias_tree);
712 this_test_limit = gimple_build (preheader_seq, MINUS_EXPR,
713 compare_type, this_test_limit,
714 bias_tree);
717 /* Create the initial control. First include all items that
718 are within the loop limit. */
719 tree init_ctrl = NULL_TREE;
720 if (!first_iteration_full)
722 tree start, end;
723 if (first_limit == test_limit)
725 /* Use a natural test between zero (the initial IV value)
726 and the loop limit. The "else" block would be valid too,
727 but this choice can avoid the need to load BIAS_TREE into
728 a register. */
729 start = zero_index;
730 end = this_test_limit;
732 else
734 /* FIRST_LIMIT is the maximum number of items handled by the
735 first iteration of the vector loop. Test the portion
736 associated with this control. */
737 start = bias_tree;
738 end = first_limit;
741 if (use_masks_p)
742 init_ctrl = vect_gen_while (preheader_seq, ctrl_type,
743 start, end, "max_mask");
744 else
746 init_ctrl = make_temp_ssa_name (compare_type, NULL, "max_len");
747 gimple_seq seq = vect_gen_len (init_ctrl, start,
748 end, length_limit);
749 gimple_seq_add_seq (preheader_seq, seq);
753 /* Now AND out the bits that are within the number of skipped
754 items. */
755 poly_uint64 const_skip;
756 if (nitems_skip
757 && !(poly_int_tree_p (nitems_skip, &const_skip)
758 && known_le (const_skip, bias)))
760 gcc_assert (use_masks_p);
761 tree unskipped_mask = vect_gen_while_not (preheader_seq, ctrl_type,
762 bias_tree, nitems_skip);
763 if (init_ctrl)
764 init_ctrl = gimple_build (preheader_seq, BIT_AND_EXPR, ctrl_type,
765 init_ctrl, unskipped_mask);
766 else
767 init_ctrl = unskipped_mask;
770 if (!init_ctrl)
772 /* First iteration is full. */
773 if (use_masks_p)
774 init_ctrl = build_minus_one_cst (ctrl_type);
775 else
776 init_ctrl = length_limit;
779 /* Get the control value for the next iteration of the loop. */
780 if (use_masks_p)
782 gimple_seq stmts = NULL;
783 next_ctrl = vect_gen_while (&stmts, ctrl_type, test_index,
784 this_test_limit, "next_mask");
785 gsi_insert_seq_before (test_gsi, stmts, GSI_SAME_STMT);
787 else
789 next_ctrl = make_temp_ssa_name (compare_type, NULL, "next_len");
790 gimple_seq seq = vect_gen_len (next_ctrl, test_index, this_test_limit,
791 length_limit);
792 gsi_insert_seq_before (test_gsi, seq, GSI_SAME_STMT);
795 vect_set_loop_control (loop, ctrl, init_ctrl, next_ctrl);
798 int partial_load_bias = LOOP_VINFO_PARTIAL_LOAD_STORE_BIAS (loop_vinfo);
799 if (partial_load_bias != 0)
801 tree adjusted_len = rgc->bias_adjusted_ctrl;
802 gassign *minus = gimple_build_assign (adjusted_len, PLUS_EXPR,
803 rgc->controls[0],
804 build_int_cst
805 (TREE_TYPE (rgc->controls[0]),
806 partial_load_bias));
807 gimple_seq_add_stmt (header_seq, minus);
810 return next_ctrl;
813 /* Set up the iteration condition and rgroup controls for LOOP, given
814 that LOOP_VINFO_USING_PARTIAL_VECTORS_P is true for the vectorized
815 loop. LOOP_VINFO describes the vectorization of LOOP. NITERS is
816 the number of iterations of the original scalar loop that should be
817 handled by the vector loop. NITERS_MAYBE_ZERO and FINAL_IV are as
818 for vect_set_loop_condition.
820 Insert the branch-back condition before LOOP_COND_GSI and return the
821 final gcond. */
823 static gcond *
824 vect_set_loop_condition_partial_vectors (class loop *loop, edge exit_edge,
825 loop_vec_info loop_vinfo, tree niters,
826 tree final_iv, bool niters_maybe_zero,
827 gimple_stmt_iterator loop_cond_gsi)
829 gimple_seq preheader_seq = NULL;
830 gimple_seq header_seq = NULL;
832 bool use_masks_p = LOOP_VINFO_FULLY_MASKED_P (loop_vinfo);
833 tree compare_type = LOOP_VINFO_RGROUP_COMPARE_TYPE (loop_vinfo);
834 unsigned int compare_precision = TYPE_PRECISION (compare_type);
835 tree orig_niters = niters;
837 /* Type of the initial value of NITERS. */
838 tree ni_actual_type = TREE_TYPE (niters);
839 unsigned int ni_actual_precision = TYPE_PRECISION (ni_actual_type);
840 tree niters_skip = LOOP_VINFO_MASK_SKIP_NITERS (loop_vinfo);
841 if (niters_skip)
842 niters_skip = gimple_convert (&preheader_seq, compare_type, niters_skip);
844 /* Convert NITERS to the same size as the compare. */
845 if (compare_precision > ni_actual_precision
846 && niters_maybe_zero)
848 /* We know that there is always at least one iteration, so if the
849 count is zero then it must have wrapped. Cope with this by
850 subtracting 1 before the conversion and adding 1 to the result. */
851 gcc_assert (TYPE_UNSIGNED (ni_actual_type));
852 niters = gimple_build (&preheader_seq, PLUS_EXPR, ni_actual_type,
853 niters, build_minus_one_cst (ni_actual_type));
854 niters = gimple_convert (&preheader_seq, compare_type, niters);
855 niters = gimple_build (&preheader_seq, PLUS_EXPR, compare_type,
856 niters, build_one_cst (compare_type));
858 else
859 niters = gimple_convert (&preheader_seq, compare_type, niters);
861 /* Iterate over all the rgroups and fill in their controls. We could use
862 the first control from any rgroup for the loop condition; here we
863 arbitrarily pick the last. */
864 tree test_ctrl = NULL_TREE;
865 tree iv_step = NULL_TREE;
866 tree compare_step = NULL_TREE;
867 rgroup_controls *rgc;
868 rgroup_controls *iv_rgc = nullptr;
869 unsigned int i;
870 auto_vec<rgroup_controls> *controls = use_masks_p
871 ? &LOOP_VINFO_MASKS (loop_vinfo).rgc_vec
872 : &LOOP_VINFO_LENS (loop_vinfo);
873 FOR_EACH_VEC_ELT (*controls, i, rgc)
874 if (!rgc->controls.is_empty ())
876 /* First try using permutes. This adds a single vector
877 instruction to the loop for each mask, but needs no extra
878 loop invariants or IVs. */
879 unsigned int nmasks = i + 1;
880 if (use_masks_p && (nmasks & 1) == 0)
882 rgroup_controls *half_rgc = &(*controls)[nmasks / 2 - 1];
883 if (!half_rgc->controls.is_empty ()
884 && vect_maybe_permute_loop_masks (&header_seq, rgc, half_rgc))
885 continue;
888 if (!LOOP_VINFO_USING_DECREMENTING_IV_P (loop_vinfo)
889 || !iv_rgc
890 || (iv_rgc->max_nscalars_per_iter * iv_rgc->factor
891 != rgc->max_nscalars_per_iter * rgc->factor))
893 /* See whether zero-based IV would ever generate all-false masks
894 or zero length before wrapping around. */
895 bool might_wrap_p = vect_rgroup_iv_might_wrap_p (loop_vinfo, rgc);
897 /* Set up all controls for this group. */
898 test_ctrl
899 = vect_set_loop_controls_directly (loop, loop_vinfo,
900 &preheader_seq, &header_seq,
901 loop_cond_gsi, rgc, niters,
902 niters_skip, might_wrap_p,
903 &iv_step, &compare_step);
905 iv_rgc = rgc;
908 if (LOOP_VINFO_USING_DECREMENTING_IV_P (loop_vinfo)
909 && rgc->controls.length () > 1)
911 /* vect_set_loop_controls_directly creates an IV whose step
912 is equal to the expected sum of RGC->controls. Use that
913 information to populate RGC->controls. */
914 tree iv_type = LOOP_VINFO_RGROUP_IV_TYPE (loop_vinfo);
915 gcc_assert (iv_step);
916 vect_adjust_loop_lens_control (iv_type, &header_seq, rgc, iv_step);
920 /* Emit all accumulated statements. */
921 add_preheader_seq (loop, preheader_seq);
922 add_header_seq (loop, header_seq);
924 /* Get a boolean result that tells us whether to iterate. */
925 gcond *cond_stmt;
926 if (LOOP_VINFO_USING_DECREMENTING_IV_P (loop_vinfo)
927 && !LOOP_VINFO_USING_SELECT_VL_P (loop_vinfo))
929 gcc_assert (compare_step);
930 tree_code code = (exit_edge->flags & EDGE_TRUE_VALUE) ? LE_EXPR : GT_EXPR;
931 cond_stmt = gimple_build_cond (code, test_ctrl, compare_step, NULL_TREE,
932 NULL_TREE);
934 else
936 tree_code code = (exit_edge->flags & EDGE_TRUE_VALUE) ? EQ_EXPR : NE_EXPR;
937 tree zero_ctrl = build_zero_cst (TREE_TYPE (test_ctrl));
938 cond_stmt
939 = gimple_build_cond (code, test_ctrl, zero_ctrl, NULL_TREE, NULL_TREE);
941 gsi_insert_before (&loop_cond_gsi, cond_stmt, GSI_SAME_STMT);
943 /* The loop iterates (NITERS - 1) / VF + 1 times.
944 Subtract one from this to get the latch count. */
945 tree step = build_int_cst (compare_type,
946 LOOP_VINFO_VECT_FACTOR (loop_vinfo));
947 tree niters_minus_one = fold_build2 (PLUS_EXPR, compare_type, niters,
948 build_minus_one_cst (compare_type));
949 loop->nb_iterations = fold_build2 (TRUNC_DIV_EXPR, compare_type,
950 niters_minus_one, step);
952 if (final_iv)
954 gassign *assign;
955 /* If vectorizing an inverted early break loop we have to restart the
956 scalar loop at niters - vf. This matches what we do in
957 vect_gen_vector_loop_niters_mult_vf for non-masked loops. */
958 if (LOOP_VINFO_EARLY_BREAKS_VECT_PEELED (loop_vinfo))
960 tree ftype = TREE_TYPE (orig_niters);
961 tree vf = build_int_cst (ftype, LOOP_VINFO_VECT_FACTOR (loop_vinfo));
962 assign = gimple_build_assign (final_iv, MINUS_EXPR, orig_niters, vf);
964 else
965 assign = gimple_build_assign (final_iv, orig_niters);
966 gsi_insert_on_edge_immediate (exit_edge, assign);
969 return cond_stmt;
972 /* Set up the iteration condition and rgroup controls for LOOP in AVX512
973 style, given that LOOP_VINFO_USING_PARTIAL_VECTORS_P is true for the
974 vectorized loop. LOOP_VINFO describes the vectorization of LOOP. NITERS is
975 the number of iterations of the original scalar loop that should be
976 handled by the vector loop. NITERS_MAYBE_ZERO and FINAL_IV are as
977 for vect_set_loop_condition.
979 Insert the branch-back condition before LOOP_COND_GSI and return the
980 final gcond. */
982 static gcond *
983 vect_set_loop_condition_partial_vectors_avx512 (class loop *loop,
984 edge exit_edge,
985 loop_vec_info loop_vinfo, tree niters,
986 tree final_iv,
987 bool niters_maybe_zero,
988 gimple_stmt_iterator loop_cond_gsi)
990 tree niters_skip = LOOP_VINFO_MASK_SKIP_NITERS (loop_vinfo);
991 tree iv_type = LOOP_VINFO_RGROUP_IV_TYPE (loop_vinfo);
992 poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
993 tree orig_niters = niters;
994 gimple_seq preheader_seq = NULL;
996 /* Create an IV that counts down from niters and whose step
997 is the number of iterations processed in the current iteration.
998 Produce the controls with compares like the following.
1000 # iv_2 = PHI <niters, iv_3>
1001 rem_4 = MIN <iv_2, VF>;
1002 remv_6 = { rem_4, rem_4, rem_4, ... }
1003 mask_5 = { 0, 0, 1, 1, 2, 2, ... } < remv6;
1004 iv_3 = iv_2 - VF;
1005 if (iv_2 > VF)
1006 continue;
1008 Where the constant is built with elements at most VF - 1 and
1009 repetitions according to max_nscalars_per_iter which is guarnateed
1010 to be the same within a group. */
1012 /* Convert NITERS to the determined IV type. */
1013 if (TYPE_PRECISION (iv_type) > TYPE_PRECISION (TREE_TYPE (niters))
1014 && niters_maybe_zero)
1016 /* We know that there is always at least one iteration, so if the
1017 count is zero then it must have wrapped. Cope with this by
1018 subtracting 1 before the conversion and adding 1 to the result. */
1019 gcc_assert (TYPE_UNSIGNED (TREE_TYPE (niters)));
1020 niters = gimple_build (&preheader_seq, PLUS_EXPR, TREE_TYPE (niters),
1021 niters, build_minus_one_cst (TREE_TYPE (niters)));
1022 niters = gimple_convert (&preheader_seq, iv_type, niters);
1023 niters = gimple_build (&preheader_seq, PLUS_EXPR, iv_type,
1024 niters, build_one_cst (iv_type));
1026 else
1027 niters = gimple_convert (&preheader_seq, iv_type, niters);
1029 /* Bias the initial value of the IV in case we need to skip iterations
1030 at the beginning. */
1031 tree niters_adj = niters;
1032 if (niters_skip)
1034 tree skip = gimple_convert (&preheader_seq, iv_type, niters_skip);
1035 niters_adj = gimple_build (&preheader_seq, PLUS_EXPR,
1036 iv_type, niters, skip);
1039 /* The iteration step is the vectorization factor. */
1040 tree iv_step = build_int_cst (iv_type, vf);
1042 /* Create the decrement IV. */
1043 tree index_before_incr, index_after_incr;
1044 gimple_stmt_iterator incr_gsi;
1045 bool insert_after;
1046 vect_iv_increment_position (exit_edge, &incr_gsi, &insert_after);
1047 create_iv (niters_adj, MINUS_EXPR, iv_step, NULL_TREE, loop,
1048 &incr_gsi, insert_after, &index_before_incr,
1049 &index_after_incr);
1051 /* Iterate over all the rgroups and fill in their controls. */
1052 for (auto &rgc : LOOP_VINFO_MASKS (loop_vinfo).rgc_vec)
1054 if (rgc.controls.is_empty ())
1055 continue;
1057 tree ctrl_type = rgc.type;
1058 poly_uint64 nitems_per_ctrl = TYPE_VECTOR_SUBPARTS (ctrl_type);
1060 tree vectype = rgc.compare_type;
1062 /* index_after_incr is the IV specifying the remaining iterations in
1063 the next iteration. */
1064 tree rem = index_after_incr;
1065 /* When the data type for the compare to produce the mask is
1066 smaller than the IV type we need to saturate. Saturate to
1067 the smallest possible value (IV_TYPE) so we only have to
1068 saturate once (CSE will catch redundant ones we add). */
1069 if (TYPE_PRECISION (TREE_TYPE (vectype)) < TYPE_PRECISION (iv_type))
1070 rem = gimple_build (&incr_gsi, false, GSI_CONTINUE_LINKING,
1071 UNKNOWN_LOCATION,
1072 MIN_EXPR, TREE_TYPE (rem), rem, iv_step);
1073 rem = gimple_convert (&incr_gsi, false, GSI_CONTINUE_LINKING,
1074 UNKNOWN_LOCATION, TREE_TYPE (vectype), rem);
1076 /* Build a data vector composed of the remaining iterations. */
1077 rem = gimple_build_vector_from_val (&incr_gsi, false, GSI_CONTINUE_LINKING,
1078 UNKNOWN_LOCATION, vectype, rem);
1080 /* Provide a definition of each vector in the control group. */
1081 tree next_ctrl = NULL_TREE;
1082 tree first_rem = NULL_TREE;
1083 tree ctrl;
1084 unsigned int i;
1085 FOR_EACH_VEC_ELT_REVERSE (rgc.controls, i, ctrl)
1087 /* Previous controls will cover BIAS items. This control covers the
1088 next batch. */
1089 poly_uint64 bias = nitems_per_ctrl * i;
1091 /* Build the constant to compare the remaining iters against,
1092 this is sth like { 0, 0, 1, 1, 2, 2, 3, 3, ... } appropriately
1093 split into pieces. */
1094 unsigned n = TYPE_VECTOR_SUBPARTS (ctrl_type).to_constant ();
1095 tree_vector_builder builder (vectype, n, 1);
1096 for (unsigned i = 0; i < n; ++i)
1098 unsigned HOST_WIDE_INT val
1099 = (i + bias.to_constant ()) / rgc.max_nscalars_per_iter;
1100 gcc_assert (val < vf.to_constant ());
1101 builder.quick_push (build_int_cst (TREE_TYPE (vectype), val));
1103 tree cmp_series = builder.build ();
1105 /* Create the initial control. First include all items that
1106 are within the loop limit. */
1107 tree init_ctrl = NULL_TREE;
1108 poly_uint64 const_limit;
1109 /* See whether the first iteration of the vector loop is known
1110 to have a full control. */
1111 if (poly_int_tree_p (niters, &const_limit)
1112 && known_ge (const_limit, (i + 1) * nitems_per_ctrl))
1113 init_ctrl = build_minus_one_cst (ctrl_type);
1114 else
1116 /* The remaining work items initially are niters. Saturate,
1117 splat and compare. */
1118 if (!first_rem)
1120 first_rem = niters;
1121 if (TYPE_PRECISION (TREE_TYPE (vectype))
1122 < TYPE_PRECISION (iv_type))
1123 first_rem = gimple_build (&preheader_seq,
1124 MIN_EXPR, TREE_TYPE (first_rem),
1125 first_rem, iv_step);
1126 first_rem = gimple_convert (&preheader_seq, TREE_TYPE (vectype),
1127 first_rem);
1128 first_rem = gimple_build_vector_from_val (&preheader_seq,
1129 vectype, first_rem);
1131 init_ctrl = gimple_build (&preheader_seq, LT_EXPR, ctrl_type,
1132 cmp_series, first_rem);
1135 /* Now AND out the bits that are within the number of skipped
1136 items. */
1137 poly_uint64 const_skip;
1138 if (niters_skip
1139 && !(poly_int_tree_p (niters_skip, &const_skip)
1140 && known_le (const_skip, bias)))
1142 /* For integer mode masks it's cheaper to shift out the bits
1143 since that avoids loading a constant. */
1144 gcc_assert (GET_MODE_CLASS (TYPE_MODE (ctrl_type)) == MODE_INT);
1145 init_ctrl = gimple_build (&preheader_seq, VIEW_CONVERT_EXPR,
1146 lang_hooks.types.type_for_mode
1147 (TYPE_MODE (ctrl_type), 1),
1148 init_ctrl);
1149 /* ??? But when the shift amount isn't constant this requires
1150 a round-trip to GRPs. We could apply the bias to either
1151 side of the compare instead. */
1152 tree shift = gimple_build (&preheader_seq, MULT_EXPR,
1153 TREE_TYPE (niters_skip), niters_skip,
1154 build_int_cst (TREE_TYPE (niters_skip),
1155 rgc.max_nscalars_per_iter));
1156 init_ctrl = gimple_build (&preheader_seq, LSHIFT_EXPR,
1157 TREE_TYPE (init_ctrl),
1158 init_ctrl, shift);
1159 init_ctrl = gimple_build (&preheader_seq, VIEW_CONVERT_EXPR,
1160 ctrl_type, init_ctrl);
1163 /* Get the control value for the next iteration of the loop. */
1164 next_ctrl = gimple_build (&incr_gsi, false, GSI_CONTINUE_LINKING,
1165 UNKNOWN_LOCATION,
1166 LT_EXPR, ctrl_type, cmp_series, rem);
1168 vect_set_loop_control (loop, ctrl, init_ctrl, next_ctrl);
1172 /* Emit all accumulated statements. */
1173 add_preheader_seq (loop, preheader_seq);
1175 /* Adjust the exit test using the decrementing IV. */
1176 tree_code code = (exit_edge->flags & EDGE_TRUE_VALUE) ? LE_EXPR : GT_EXPR;
1177 /* When we peel for alignment with niter_skip != 0 this can
1178 cause niter + niter_skip to wrap and since we are comparing the
1179 value before the decrement here we get a false early exit.
1180 We can't compare the value after decrement either because that
1181 decrement could wrap as well as we're not doing a saturating
1182 decrement. To avoid this situation we force a larger
1183 iv_type. */
1184 gcond *cond_stmt = gimple_build_cond (code, index_before_incr, iv_step,
1185 NULL_TREE, NULL_TREE);
1186 gsi_insert_before (&loop_cond_gsi, cond_stmt, GSI_SAME_STMT);
1188 /* The loop iterates (NITERS - 1 + NITERS_SKIP) / VF + 1 times.
1189 Subtract one from this to get the latch count. */
1190 tree niters_minus_one
1191 = fold_build2 (PLUS_EXPR, TREE_TYPE (orig_niters), orig_niters,
1192 build_minus_one_cst (TREE_TYPE (orig_niters)));
1193 tree niters_adj2 = fold_convert (iv_type, niters_minus_one);
1194 if (niters_skip)
1195 niters_adj2 = fold_build2 (PLUS_EXPR, iv_type, niters_minus_one,
1196 fold_convert (iv_type, niters_skip));
1197 loop->nb_iterations = fold_build2 (TRUNC_DIV_EXPR, iv_type,
1198 niters_adj2, iv_step);
1200 if (final_iv)
1202 gassign *assign;
1203 /* If vectorizing an inverted early break loop we have to restart the
1204 scalar loop at niters - vf. This matches what we do in
1205 vect_gen_vector_loop_niters_mult_vf for non-masked loops. */
1206 if (LOOP_VINFO_EARLY_BREAKS_VECT_PEELED (loop_vinfo))
1208 tree ftype = TREE_TYPE (orig_niters);
1209 tree vf = build_int_cst (ftype, LOOP_VINFO_VECT_FACTOR (loop_vinfo));
1210 assign = gimple_build_assign (final_iv, MINUS_EXPR, orig_niters, vf);
1212 else
1213 assign = gimple_build_assign (final_iv, orig_niters);
1214 gsi_insert_on_edge_immediate (exit_edge, assign);
1217 return cond_stmt;
1221 /* Like vect_set_loop_condition, but handle the case in which the vector
1222 loop handles exactly VF scalars per iteration. */
1224 static gcond *
1225 vect_set_loop_condition_normal (loop_vec_info /* loop_vinfo */, edge exit_edge,
1226 class loop *loop, tree niters, tree step,
1227 tree final_iv, bool niters_maybe_zero,
1228 gimple_stmt_iterator loop_cond_gsi)
1230 tree indx_before_incr, indx_after_incr;
1231 gcond *cond_stmt;
1232 gcond *orig_cond;
1233 edge pe = loop_preheader_edge (loop);
1234 gimple_stmt_iterator incr_gsi;
1235 bool insert_after;
1236 enum tree_code code;
1237 tree niters_type = TREE_TYPE (niters);
1239 orig_cond = get_loop_exit_condition (exit_edge);
1240 gcc_assert (orig_cond);
1241 loop_cond_gsi = gsi_for_stmt (orig_cond);
1243 tree init, limit;
1244 if (!niters_maybe_zero && integer_onep (step))
1246 /* In this case we can use a simple 0-based IV:
1249 x = 0;
1253 x += 1;
1255 while (x < NITERS); */
1256 code = (exit_edge->flags & EDGE_TRUE_VALUE) ? GE_EXPR : LT_EXPR;
1257 init = build_zero_cst (niters_type);
1258 limit = niters;
1260 else
1262 /* The following works for all values of NITERS except 0:
1265 x = 0;
1269 x += STEP;
1271 while (x <= NITERS - STEP);
1273 so that the loop continues to iterate if x + STEP - 1 < NITERS
1274 but stops if x + STEP - 1 >= NITERS.
1276 However, if NITERS is zero, x never hits a value above NITERS - STEP
1277 before wrapping around. There are two obvious ways of dealing with
1278 this:
1280 - start at STEP - 1 and compare x before incrementing it
1281 - start at -1 and compare x after incrementing it
1283 The latter is simpler and is what we use. The loop in this case
1284 looks like:
1287 x = -1;
1291 x += STEP;
1293 while (x < NITERS - STEP);
1295 In both cases the loop limit is NITERS - STEP. */
1296 gimple_seq seq = NULL;
1297 limit = force_gimple_operand (niters, &seq, true, NULL_TREE);
1298 limit = gimple_build (&seq, MINUS_EXPR, TREE_TYPE (limit), limit, step);
1299 if (seq)
1301 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
1302 gcc_assert (!new_bb);
1304 if (niters_maybe_zero)
1306 /* Case C. */
1307 code = (exit_edge->flags & EDGE_TRUE_VALUE) ? GE_EXPR : LT_EXPR;
1308 init = build_all_ones_cst (niters_type);
1310 else
1312 /* Case B. */
1313 code = (exit_edge->flags & EDGE_TRUE_VALUE) ? GT_EXPR : LE_EXPR;
1314 init = build_zero_cst (niters_type);
1318 vect_iv_increment_position (exit_edge, &incr_gsi, &insert_after);
1319 create_iv (init, PLUS_EXPR, step, NULL_TREE, loop,
1320 &incr_gsi, insert_after, &indx_before_incr, &indx_after_incr);
1321 indx_after_incr = force_gimple_operand_gsi (&loop_cond_gsi, indx_after_incr,
1322 true, NULL_TREE, true,
1323 GSI_SAME_STMT);
1324 limit = force_gimple_operand_gsi (&loop_cond_gsi, limit, true, NULL_TREE,
1325 true, GSI_SAME_STMT);
1327 cond_stmt = gimple_build_cond (code, indx_after_incr, limit, NULL_TREE,
1328 NULL_TREE);
1330 gsi_insert_before (&loop_cond_gsi, cond_stmt, GSI_SAME_STMT);
1332 /* Record the number of latch iterations. */
1333 if (limit == niters)
1334 /* Case A: the loop iterates NITERS times. Subtract one to get the
1335 latch count. */
1336 loop->nb_iterations = fold_build2 (MINUS_EXPR, niters_type, niters,
1337 build_int_cst (niters_type, 1));
1338 else
1339 /* Case B or C: the loop iterates (NITERS - STEP) / STEP + 1 times.
1340 Subtract one from this to get the latch count. */
1341 loop->nb_iterations = fold_build2 (TRUNC_DIV_EXPR, niters_type,
1342 limit, step);
1344 if (final_iv)
1346 gassign *assign;
1347 gcc_assert (single_pred_p (exit_edge->dest));
1348 tree phi_dest
1349 = integer_zerop (init) ? final_iv : copy_ssa_name (indx_after_incr);
1350 /* Make sure to maintain LC SSA form here and elide the subtraction
1351 if the value is zero. */
1352 gphi *phi = create_phi_node (phi_dest, exit_edge->dest);
1353 add_phi_arg (phi, indx_after_incr, exit_edge, UNKNOWN_LOCATION);
1354 if (!integer_zerop (init))
1356 assign = gimple_build_assign (final_iv, MINUS_EXPR,
1357 phi_dest, init);
1358 gimple_stmt_iterator gsi = gsi_after_labels (exit_edge->dest);
1359 gsi_insert_before (&gsi, assign, GSI_SAME_STMT);
1363 return cond_stmt;
1366 /* If we're using fully-masked loops, make LOOP iterate:
1368 N == (NITERS - 1) / STEP + 1
1370 times. When NITERS is zero, this is equivalent to making the loop
1371 execute (1 << M) / STEP times, where M is the precision of NITERS.
1372 NITERS_MAYBE_ZERO is true if this last case might occur.
1374 If we're not using fully-masked loops, make LOOP iterate:
1376 N == (NITERS - STEP) / STEP + 1
1378 times, where NITERS is known to be outside the range [1, STEP - 1].
1379 This is equivalent to making the loop execute NITERS / STEP times
1380 when NITERS is nonzero and (1 << M) / STEP times otherwise.
1381 NITERS_MAYBE_ZERO again indicates whether this last case might occur.
1383 If FINAL_IV is nonnull, it is an SSA name that should be set to
1384 N * STEP on exit from the loop.
1386 Assumption: the exit-condition of LOOP is the last stmt in the loop. */
1388 void
1389 vect_set_loop_condition (class loop *loop, edge loop_e, loop_vec_info loop_vinfo,
1390 tree niters, tree step, tree final_iv,
1391 bool niters_maybe_zero)
1393 gcond *cond_stmt;
1394 gcond *orig_cond = get_loop_exit_condition (loop_e);
1395 gimple_stmt_iterator loop_cond_gsi = gsi_for_stmt (orig_cond);
1397 if (loop_vinfo && LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo))
1399 if (LOOP_VINFO_PARTIAL_VECTORS_STYLE (loop_vinfo) == vect_partial_vectors_avx512)
1400 cond_stmt = vect_set_loop_condition_partial_vectors_avx512 (loop, loop_e,
1401 loop_vinfo,
1402 niters, final_iv,
1403 niters_maybe_zero,
1404 loop_cond_gsi);
1405 else
1406 cond_stmt = vect_set_loop_condition_partial_vectors (loop, loop_e,
1407 loop_vinfo,
1408 niters, final_iv,
1409 niters_maybe_zero,
1410 loop_cond_gsi);
1412 else
1413 cond_stmt = vect_set_loop_condition_normal (loop_vinfo, loop_e, loop,
1414 niters,
1415 step, final_iv,
1416 niters_maybe_zero,
1417 loop_cond_gsi);
1419 /* Remove old loop exit test. */
1420 stmt_vec_info orig_cond_info;
1421 if (loop_vinfo
1422 && (orig_cond_info = loop_vinfo->lookup_stmt (orig_cond)))
1423 loop_vinfo->remove_stmt (orig_cond_info);
1424 else
1425 gsi_remove (&loop_cond_gsi, true);
1427 if (dump_enabled_p ())
1428 dump_printf_loc (MSG_NOTE, vect_location, "New loop exit condition: %G",
1429 (gimple *) cond_stmt);
1432 /* Given LOOP this function generates a new copy of it and puts it
1433 on E which is either the entry or exit of LOOP. If SCALAR_LOOP is
1434 non-NULL, assume LOOP and SCALAR_LOOP are equivalent and copy the
1435 basic blocks from SCALAR_LOOP instead of LOOP, but to either the
1436 entry or exit of LOOP. If FLOW_LOOPS then connect LOOP to SCALAR_LOOP as a
1437 continuation. This is correct for cases where one loop continues from the
1438 other like in the vectorizer, but not true for uses in e.g. loop distribution
1439 where the contents of the loop body are split but the iteration space of both
1440 copies remains the same.
1442 If UPDATED_DOMS is not NULL it is update with the list of basic blocks whoms
1443 dominators were updated during the peeling. When doing early break vectorization
1444 then LOOP_VINFO needs to be provided and is used to keep track of any newly created
1445 memory references that need to be updated should we decide to vectorize. */
1447 class loop *
1448 slpeel_tree_duplicate_loop_to_edge_cfg (class loop *loop, edge loop_exit,
1449 class loop *scalar_loop,
1450 edge scalar_exit, edge e, edge *new_e,
1451 bool flow_loops,
1452 vec<basic_block> *updated_doms)
1454 class loop *new_loop;
1455 basic_block *new_bbs, *bbs, *pbbs;
1456 bool at_exit;
1457 bool was_imm_dom;
1458 basic_block exit_dest;
1459 edge exit, new_exit;
1460 bool duplicate_outer_loop = false;
1462 exit = loop_exit;
1463 at_exit = (e == exit);
1464 if (!at_exit && e != loop_preheader_edge (loop))
1465 return NULL;
1467 if (scalar_loop == NULL)
1469 scalar_loop = loop;
1470 scalar_exit = loop_exit;
1472 else if (scalar_loop == loop)
1473 scalar_exit = loop_exit;
1474 else
1476 /* Loop has been version, match exits up using the aux index. */
1477 for (edge exit : get_loop_exit_edges (scalar_loop))
1478 if (exit->aux == loop_exit->aux)
1480 scalar_exit = exit;
1481 break;
1484 gcc_assert (scalar_exit);
1487 bbs = XNEWVEC (basic_block, scalar_loop->num_nodes + 1);
1488 pbbs = bbs + 1;
1489 get_loop_body_with_size (scalar_loop, pbbs, scalar_loop->num_nodes);
1490 /* Allow duplication of outer loops. */
1491 if (scalar_loop->inner)
1492 duplicate_outer_loop = true;
1494 /* Generate new loop structure. */
1495 new_loop = duplicate_loop (scalar_loop, loop_outer (scalar_loop));
1496 duplicate_subloops (scalar_loop, new_loop);
1498 exit_dest = exit->dest;
1499 was_imm_dom = (get_immediate_dominator (CDI_DOMINATORS,
1500 exit_dest) == loop->header ?
1501 true : false);
1503 /* Also copy the pre-header, this avoids jumping through hoops to
1504 duplicate the loop entry PHI arguments. Create an empty
1505 pre-header unconditionally for this. */
1506 basic_block preheader = split_edge (loop_preheader_edge (scalar_loop));
1507 edge entry_e = single_pred_edge (preheader);
1508 bbs[0] = preheader;
1509 new_bbs = XNEWVEC (basic_block, scalar_loop->num_nodes + 1);
1511 copy_bbs (bbs, scalar_loop->num_nodes + 1, new_bbs,
1512 &scalar_exit, 1, &new_exit, NULL,
1513 at_exit ? loop->latch : e->src, true);
1514 exit = loop_exit;
1515 basic_block new_preheader = new_bbs[0];
1517 gcc_assert (new_exit);
1519 /* Record the new loop exit information. new_loop doesn't have SCEV data and
1520 so we must initialize the exit information. */
1521 if (new_e)
1522 *new_e = new_exit;
1524 /* Before installing PHI arguments make sure that the edges
1525 into them match that of the scalar loop we analyzed. This
1526 makes sure the SLP tree matches up between the main vectorized
1527 loop and the epilogue vectorized copies. */
1528 if (single_succ_edge (preheader)->dest_idx
1529 != single_succ_edge (new_bbs[0])->dest_idx)
1531 basic_block swap_bb = new_bbs[1];
1532 gcc_assert (EDGE_COUNT (swap_bb->preds) == 2);
1533 std::swap (EDGE_PRED (swap_bb, 0), EDGE_PRED (swap_bb, 1));
1534 EDGE_PRED (swap_bb, 0)->dest_idx = 0;
1535 EDGE_PRED (swap_bb, 1)->dest_idx = 1;
1537 if (duplicate_outer_loop)
1539 class loop *new_inner_loop = get_loop_copy (scalar_loop->inner);
1540 if (loop_preheader_edge (scalar_loop)->dest_idx
1541 != loop_preheader_edge (new_inner_loop)->dest_idx)
1543 basic_block swap_bb = new_inner_loop->header;
1544 gcc_assert (EDGE_COUNT (swap_bb->preds) == 2);
1545 std::swap (EDGE_PRED (swap_bb, 0), EDGE_PRED (swap_bb, 1));
1546 EDGE_PRED (swap_bb, 0)->dest_idx = 0;
1547 EDGE_PRED (swap_bb, 1)->dest_idx = 1;
1551 add_phi_args_after_copy (new_bbs, scalar_loop->num_nodes + 1, NULL);
1553 /* Skip new preheader since it's deleted if copy loop is added at entry. */
1554 for (unsigned i = (at_exit ? 0 : 1); i < scalar_loop->num_nodes + 1; i++)
1555 rename_variables_in_bb (new_bbs[i], duplicate_outer_loop);
1557 /* Rename the exit uses. */
1558 for (edge exit : get_loop_exit_edges (new_loop))
1559 for (auto gsi = gsi_start_phis (exit->dest);
1560 !gsi_end_p (gsi); gsi_next (&gsi))
1562 tree orig_def = PHI_ARG_DEF_FROM_EDGE (gsi.phi (), exit);
1563 rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (gsi.phi (), exit));
1564 if (MAY_HAVE_DEBUG_BIND_STMTS)
1565 adjust_debug_stmts (orig_def, PHI_RESULT (gsi.phi ()), exit->dest);
1568 auto loop_exits = get_loop_exit_edges (loop);
1569 bool multiple_exits_p = loop_exits.length () > 1;
1570 auto_vec<basic_block> doms;
1571 class loop *update_loop = NULL;
1573 if (at_exit) /* Add the loop copy at exit. */
1575 if (scalar_loop != loop && new_exit->dest != exit_dest)
1577 new_exit = redirect_edge_and_branch (new_exit, exit_dest);
1578 flush_pending_stmts (new_exit);
1581 bool multiple_exits_p = loop_exits.length () > 1;
1582 basic_block main_loop_exit_block = new_preheader;
1583 basic_block alt_loop_exit_block = NULL;
1584 /* Create intermediate edge for main exit. But only useful for early
1585 exits. */
1586 if (multiple_exits_p)
1588 edge loop_e = single_succ_edge (new_preheader);
1589 new_preheader = split_edge (loop_e);
1592 auto_vec <gimple *> new_phis;
1593 hash_map <tree, tree> new_phi_args;
1594 /* First create the empty phi nodes so that when we flush the
1595 statements they can be filled in. However because there is no order
1596 between the PHI nodes in the exits and the loop headers we need to
1597 order them base on the order of the two headers. First record the new
1598 phi nodes. Then redirect the edges and flush the changes. This writes
1599 out the new SSA names. */
1600 for (auto gsi_from = gsi_start_phis (loop_exit->dest);
1601 !gsi_end_p (gsi_from); gsi_next (&gsi_from))
1603 gimple *from_phi = gsi_stmt (gsi_from);
1604 tree new_res = copy_ssa_name (gimple_phi_result (from_phi));
1605 gphi *res = create_phi_node (new_res, main_loop_exit_block);
1606 new_phis.safe_push (res);
1609 for (auto exit : loop_exits)
1611 basic_block dest = main_loop_exit_block;
1612 if (exit != loop_exit)
1614 if (!alt_loop_exit_block)
1616 alt_loop_exit_block = split_edge (exit);
1617 edge res = redirect_edge_and_branch (
1618 single_succ_edge (alt_loop_exit_block),
1619 new_preheader);
1620 flush_pending_stmts (res);
1621 continue;
1623 dest = alt_loop_exit_block;
1625 edge e = redirect_edge_and_branch (exit, dest);
1626 flush_pending_stmts (e);
1629 /* Record the new SSA names in the cache so that we can skip materializing
1630 them again when we fill in the rest of the LCSSA variables. */
1631 for (auto phi : new_phis)
1633 tree new_arg = gimple_phi_arg (phi, loop_exit->dest_idx)->def;
1635 if (!SSA_VAR_P (new_arg))
1636 continue;
1638 /* If the PHI MEM node dominates the loop then we shouldn't create
1639 a new LC-SSSA PHI for it in the intermediate block. */
1640 /* A MEM phi that consitutes a new DEF for the vUSE chain can either
1641 be a .VDEF or a PHI that operates on MEM. And said definition
1642 must not be inside the main loop. Or we must be a parameter.
1643 In the last two cases we may remove a non-MEM PHI node, but since
1644 they dominate both loops the removal is unlikely to cause trouble
1645 as the exits must already be using them. */
1646 if (virtual_operand_p (new_arg)
1647 && (SSA_NAME_IS_DEFAULT_DEF (new_arg)
1648 || !flow_bb_inside_loop_p (loop,
1649 gimple_bb (SSA_NAME_DEF_STMT (new_arg)))))
1651 auto gsi = gsi_for_stmt (phi);
1652 remove_phi_node (&gsi, true);
1653 continue;
1656 /* If we decide to remove the PHI node we should also not
1657 rematerialize it later on. */
1658 new_phi_args.put (new_arg, gimple_phi_result (phi));
1660 if (TREE_CODE (new_arg) != SSA_NAME)
1661 continue;
1664 /* Copy the current loop LC PHI nodes between the original loop exit
1665 block and the new loop header. This allows us to later split the
1666 preheader block and still find the right LC nodes. */
1667 edge loop_entry = single_succ_edge (new_preheader);
1668 if (flow_loops)
1670 bool peeled_iters = single_pred (loop->latch) != loop_exit->src;
1671 /* Link through the main exit first. */
1672 for (auto gsi_from = gsi_start_phis (loop->header),
1673 gsi_to = gsi_start_phis (new_loop->header);
1674 !gsi_end_p (gsi_from) && !gsi_end_p (gsi_to);
1675 gsi_next (&gsi_from), gsi_next (&gsi_to))
1677 gimple *from_phi = gsi_stmt (gsi_from);
1678 gimple *to_phi = gsi_stmt (gsi_to);
1679 tree new_arg = PHI_ARG_DEF_FROM_EDGE (from_phi,
1680 loop_latch_edge (loop));
1682 /* Check if we've already created a new phi node during edge
1683 redirection. If we have, only propagate the value
1684 downwards. */
1685 if (tree *res = new_phi_args.get (new_arg))
1687 if (multiple_exits_p)
1688 new_arg = *res;
1689 else
1691 adjust_phi_and_debug_stmts (to_phi, loop_entry, *res);
1692 continue;
1695 /* If we have multiple exits and the vector loop is peeled then we
1696 need to use the value at start of loop. */
1697 if (peeled_iters)
1699 tree tmp_arg = gimple_phi_result (from_phi);
1700 if (!new_phi_args.get (tmp_arg))
1701 new_arg = tmp_arg;
1704 tree new_res = copy_ssa_name (gimple_phi_result (from_phi));
1705 gphi *lcssa_phi = create_phi_node (new_res, new_preheader);
1707 /* Otherwise, main loop exit should use the final iter value. */
1708 SET_PHI_ARG_DEF (lcssa_phi, loop_exit->dest_idx, new_arg);
1710 adjust_phi_and_debug_stmts (to_phi, loop_entry, new_res);
1713 set_immediate_dominator (CDI_DOMINATORS, main_loop_exit_block,
1714 loop_exit->src);
1716 /* Now link the alternative exits. */
1717 if (multiple_exits_p)
1719 for (auto gsi_from = gsi_start_phis (loop->header),
1720 gsi_to = gsi_start_phis (new_preheader);
1721 !gsi_end_p (gsi_from) && !gsi_end_p (gsi_to);
1722 gsi_next (&gsi_from), gsi_next (&gsi_to))
1724 gimple *from_phi = gsi_stmt (gsi_from);
1725 gimple *to_phi = gsi_stmt (gsi_to);
1727 tree alt_arg = gimple_phi_result (from_phi);
1728 edge main_e = single_succ_edge (alt_loop_exit_block);
1729 for (edge e : loop_exits)
1730 if (e != loop_exit)
1731 SET_PHI_ARG_DEF (to_phi, main_e->dest_idx, alt_arg);
1734 set_immediate_dominator (CDI_DOMINATORS, new_preheader,
1735 loop->header);
1739 if (was_imm_dom || duplicate_outer_loop)
1740 set_immediate_dominator (CDI_DOMINATORS, exit_dest, new_exit->src);
1742 /* And remove the non-necessary forwarder again. Keep the other
1743 one so we have a proper pre-header for the loop at the exit edge. */
1744 redirect_edge_pred (single_succ_edge (preheader),
1745 single_pred (preheader));
1746 delete_basic_block (preheader);
1747 set_immediate_dominator (CDI_DOMINATORS, scalar_loop->header,
1748 loop_preheader_edge (scalar_loop)->src);
1750 /* Finally after wiring the new epilogue we need to update its main exit
1751 to the original function exit we recorded. Other exits are already
1752 correct. */
1753 if (multiple_exits_p)
1755 update_loop = new_loop;
1756 doms = get_all_dominated_blocks (CDI_DOMINATORS, loop->header);
1757 for (unsigned i = 0; i < doms.length (); ++i)
1758 if (flow_bb_inside_loop_p (loop, doms[i]))
1759 doms.unordered_remove (i);
1762 else /* Add the copy at entry. */
1764 /* Copy the current loop LC PHI nodes between the original loop exit
1765 block and the new loop header. This allows us to later split the
1766 preheader block and still find the right LC nodes. */
1767 if (flow_loops)
1768 for (auto gsi_from = gsi_start_phis (new_loop->header),
1769 gsi_to = gsi_start_phis (loop->header);
1770 !gsi_end_p (gsi_from) && !gsi_end_p (gsi_to);
1771 gsi_next (&gsi_from), gsi_next (&gsi_to))
1773 gimple *from_phi = gsi_stmt (gsi_from);
1774 gimple *to_phi = gsi_stmt (gsi_to);
1775 tree new_arg = PHI_ARG_DEF_FROM_EDGE (from_phi,
1776 loop_latch_edge (new_loop));
1777 adjust_phi_and_debug_stmts (to_phi, loop_preheader_edge (loop),
1778 new_arg);
1781 if (scalar_loop != loop)
1783 /* Remove the non-necessary forwarder of scalar_loop again. */
1784 redirect_edge_pred (single_succ_edge (preheader),
1785 single_pred (preheader));
1786 delete_basic_block (preheader);
1787 set_immediate_dominator (CDI_DOMINATORS, scalar_loop->header,
1788 loop_preheader_edge (scalar_loop)->src);
1789 preheader = split_edge (loop_preheader_edge (loop));
1790 entry_e = single_pred_edge (preheader);
1793 redirect_edge_and_branch_force (entry_e, new_preheader);
1794 flush_pending_stmts (entry_e);
1795 set_immediate_dominator (CDI_DOMINATORS, new_preheader, entry_e->src);
1797 redirect_edge_and_branch_force (new_exit, preheader);
1798 flush_pending_stmts (new_exit);
1799 set_immediate_dominator (CDI_DOMINATORS, preheader, new_exit->src);
1801 /* And remove the non-necessary forwarder again. Keep the other
1802 one so we have a proper pre-header for the loop at the exit edge. */
1803 redirect_edge_pred (single_succ_edge (new_preheader),
1804 single_pred (new_preheader));
1805 delete_basic_block (new_preheader);
1806 set_immediate_dominator (CDI_DOMINATORS, new_loop->header,
1807 loop_preheader_edge (new_loop)->src);
1809 if (multiple_exits_p)
1810 update_loop = loop;
1813 if (multiple_exits_p)
1815 for (edge e : get_loop_exit_edges (update_loop))
1817 edge ex;
1818 edge_iterator ei;
1819 FOR_EACH_EDGE (ex, ei, e->dest->succs)
1821 /* Find the first non-fallthrough block as fall-throughs can't
1822 dominate other blocks. */
1823 if (single_succ_p (ex->dest))
1825 doms.safe_push (ex->dest);
1826 ex = single_succ_edge (ex->dest);
1828 doms.safe_push (ex->dest);
1830 doms.safe_push (e->dest);
1833 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
1834 if (updated_doms)
1835 updated_doms->safe_splice (doms);
1838 free (new_bbs);
1839 free (bbs);
1841 checking_verify_dominators (CDI_DOMINATORS);
1843 return new_loop;
1847 /* Given the condition expression COND, put it as the last statement of
1848 GUARD_BB; set both edges' probability; set dominator of GUARD_TO to
1849 DOM_BB; return the skip edge. GUARD_TO is the target basic block to
1850 skip the loop. PROBABILITY is the skip edge's probability. Mark the
1851 new edge as irreducible if IRREDUCIBLE_P is true. */
1853 static edge
1854 slpeel_add_loop_guard (basic_block guard_bb, tree cond,
1855 basic_block guard_to, basic_block dom_bb,
1856 profile_probability probability, bool irreducible_p)
1858 gimple_stmt_iterator gsi;
1859 edge new_e, enter_e;
1860 gcond *cond_stmt;
1861 gimple_seq gimplify_stmt_list = NULL;
1863 enter_e = EDGE_SUCC (guard_bb, 0);
1864 enter_e->flags &= ~EDGE_FALLTHRU;
1865 enter_e->flags |= EDGE_FALSE_VALUE;
1866 gsi = gsi_last_bb (guard_bb);
1868 cond = force_gimple_operand_1 (cond, &gimplify_stmt_list,
1869 is_gimple_condexpr_for_cond, NULL_TREE);
1870 if (gimplify_stmt_list)
1871 gsi_insert_seq_after (&gsi, gimplify_stmt_list, GSI_NEW_STMT);
1873 cond_stmt = gimple_build_cond_from_tree (cond, NULL_TREE, NULL_TREE);
1874 gsi = gsi_last_bb (guard_bb);
1875 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
1877 /* Add new edge to connect guard block to the merge/loop-exit block. */
1878 new_e = make_edge (guard_bb, guard_to, EDGE_TRUE_VALUE);
1880 new_e->probability = probability;
1881 if (irreducible_p)
1882 new_e->flags |= EDGE_IRREDUCIBLE_LOOP;
1884 enter_e->probability = probability.invert ();
1885 set_immediate_dominator (CDI_DOMINATORS, guard_to, dom_bb);
1887 /* Split enter_e to preserve LOOPS_HAVE_PREHEADERS. */
1888 if (enter_e->dest->loop_father->header == enter_e->dest)
1889 split_edge (enter_e);
1891 return new_e;
1895 /* This function verifies that the following restrictions apply to LOOP:
1896 (1) it consists of exactly 2 basic blocks - header, and an empty latch
1897 for innermost loop and 5 basic blocks for outer-loop.
1898 (2) it is single entry, single exit
1899 (3) its exit condition is the last stmt in the header
1900 (4) E is the entry/exit edge of LOOP.
1903 bool
1904 slpeel_can_duplicate_loop_p (const class loop *loop, const_edge exit_e,
1905 const_edge e)
1907 edge entry_e = loop_preheader_edge (loop);
1908 gcond *orig_cond = get_loop_exit_condition (exit_e);
1909 gimple_stmt_iterator loop_exit_gsi = gsi_last_bb (exit_e->src);
1911 /* All loops have an outer scope; the only case loop->outer is NULL is for
1912 the function itself. */
1913 if (!loop_outer (loop)
1914 || !empty_block_p (loop->latch)
1915 || !exit_e
1916 /* Verify that new loop exit condition can be trivially modified. */
1917 || (!orig_cond || orig_cond != gsi_stmt (loop_exit_gsi))
1918 || (e != exit_e && e != entry_e))
1919 return false;
1921 basic_block *bbs = XNEWVEC (basic_block, loop->num_nodes);
1922 get_loop_body_with_size (loop, bbs, loop->num_nodes);
1923 bool ret = can_copy_bbs_p (bbs, loop->num_nodes);
1924 free (bbs);
1925 return ret;
1928 /* Function find_loop_location.
1930 Extract the location of the loop in the source code.
1931 If the loop is not well formed for vectorization, an estimated
1932 location is calculated.
1933 Return the loop location if succeed and NULL if not. */
1935 dump_user_location_t
1936 find_loop_location (class loop *loop)
1938 gimple *stmt = NULL;
1939 basic_block bb;
1940 gimple_stmt_iterator si;
1942 if (!loop)
1943 return dump_user_location_t ();
1945 /* For the root of the loop tree return the function location. */
1946 if (!loop_outer (loop))
1947 return dump_user_location_t::from_function_decl (cfun->decl);
1949 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1951 /* We only care about the loop location, so use any exit with location
1952 information. */
1953 for (edge e : get_loop_exit_edges (loop))
1955 stmt = get_loop_exit_condition (e);
1957 if (stmt
1958 && LOCATION_LOCUS (gimple_location (stmt)) > BUILTINS_LOCATION)
1959 return stmt;
1963 /* If we got here the loop is probably not "well formed",
1964 try to estimate the loop location */
1966 if (!loop->header)
1967 return dump_user_location_t ();
1969 bb = loop->header;
1971 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1973 stmt = gsi_stmt (si);
1974 if (LOCATION_LOCUS (gimple_location (stmt)) > BUILTINS_LOCATION)
1975 return stmt;
1978 return dump_user_location_t ();
1981 /* Return true if the phi described by STMT_INFO defines an IV of the
1982 loop to be vectorized. */
1984 static bool
1985 iv_phi_p (stmt_vec_info stmt_info)
1987 gphi *phi = as_a <gphi *> (stmt_info->stmt);
1988 if (virtual_operand_p (PHI_RESULT (phi)))
1989 return false;
1991 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def
1992 || STMT_VINFO_DEF_TYPE (stmt_info) == vect_double_reduction_def)
1993 return false;
1995 return true;
1998 /* Return true if vectorizer can peel for nonlinear iv. */
1999 static bool
2000 vect_can_peel_nonlinear_iv_p (loop_vec_info loop_vinfo,
2001 stmt_vec_info stmt_info)
2003 enum vect_induction_op_type induction_type
2004 = STMT_VINFO_LOOP_PHI_EVOLUTION_TYPE (stmt_info);
2005 tree niters_skip;
2006 /* Init_expr will be update by vect_update_ivs_after_vectorizer,
2007 if niters or vf is unkown:
2008 For shift, when shift mount >= precision, there would be UD.
2009 For mult, don't known how to generate
2010 init_expr * pow (step, niters) for variable niters.
2011 For neg, it should be ok, since niters of vectorized main loop
2012 will always be multiple of 2. */
2013 if ((!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
2014 || !LOOP_VINFO_VECT_FACTOR (loop_vinfo).is_constant ())
2015 && induction_type != vect_step_op_neg)
2017 if (dump_enabled_p ())
2018 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2019 "Peeling for epilogue is not supported"
2020 " for nonlinear induction except neg"
2021 " when iteration count is unknown.\n");
2022 return false;
2025 /* Avoid compile time hog on vect_peel_nonlinear_iv_init. */
2026 if (induction_type == vect_step_op_mul)
2028 tree step_expr = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_info);
2029 tree type = TREE_TYPE (step_expr);
2031 if (wi::exact_log2 (wi::to_wide (step_expr)) == -1
2032 && LOOP_VINFO_INT_NITERS(loop_vinfo) >= TYPE_PRECISION (type))
2034 if (dump_enabled_p ())
2035 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2036 "Avoid compile time hog on"
2037 " vect_peel_nonlinear_iv_init"
2038 " for nonlinear induction vec_step_op_mul"
2039 " when iteration count is too big.\n");
2040 return false;
2044 /* Also doens't support peel for neg when niter is variable.
2045 ??? generate something like niter_expr & 1 ? init_expr : -init_expr? */
2046 niters_skip = LOOP_VINFO_MASK_SKIP_NITERS (loop_vinfo);
2047 if ((niters_skip != NULL_TREE
2048 && (TREE_CODE (niters_skip) != INTEGER_CST
2049 || (HOST_WIDE_INT) TREE_INT_CST_LOW (niters_skip) < 0))
2050 || (!vect_use_loop_mask_for_alignment_p (loop_vinfo)
2051 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) < 0))
2053 if (dump_enabled_p ())
2054 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2055 "Peeling for alignement is not supported"
2056 " for nonlinear induction when niters_skip"
2057 " is not constant.\n");
2058 return false;
2061 /* We can't support partial vectors and early breaks with an induction
2062 type other than add or neg since we require the epilog and can't
2063 perform the peeling. The below condition mirrors that of
2064 vect_gen_vector_loop_niters where niters_vector_mult_vf_var then sets
2065 step_vector to VF rather than 1. This is what creates the nonlinear
2066 IV. PR113163. */
2067 if (LOOP_VINFO_EARLY_BREAKS (loop_vinfo)
2068 && LOOP_VINFO_VECT_FACTOR (loop_vinfo).is_constant ()
2069 && LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo)
2070 && induction_type != vect_step_op_neg)
2072 if (dump_enabled_p ())
2073 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2074 "Peeling for epilogue is not supported"
2075 " for nonlinear induction except neg"
2076 " when VF is known and early breaks.\n");
2077 return false;
2080 return true;
2083 /* Function vect_can_advance_ivs_p
2085 In case the number of iterations that LOOP iterates is unknown at compile
2086 time, an epilog loop will be generated, and the loop induction variables
2087 (IVs) will be "advanced" to the value they are supposed to take just before
2088 the epilog loop. Here we check that the access function of the loop IVs
2089 and the expression that represents the loop bound are simple enough.
2090 These restrictions will be relaxed in the future. */
2092 bool
2093 vect_can_advance_ivs_p (loop_vec_info loop_vinfo)
2095 class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2096 basic_block bb = loop->header;
2097 gphi_iterator gsi;
2099 /* Analyze phi functions of the loop header. */
2101 if (dump_enabled_p ())
2102 dump_printf_loc (MSG_NOTE, vect_location, "vect_can_advance_ivs_p:\n");
2103 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2105 tree evolution_part;
2106 enum vect_induction_op_type induction_type;
2108 gphi *phi = gsi.phi ();
2109 stmt_vec_info phi_info = loop_vinfo->lookup_stmt (phi);
2110 if (dump_enabled_p ())
2111 dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: %G",
2112 phi_info->stmt);
2114 /* Skip virtual phi's. The data dependences that are associated with
2115 virtual defs/uses (i.e., memory accesses) are analyzed elsewhere.
2117 Skip reduction phis. */
2118 if (!iv_phi_p (phi_info))
2120 if (dump_enabled_p ())
2121 dump_printf_loc (MSG_NOTE, vect_location,
2122 "reduc or virtual phi. skip.\n");
2123 continue;
2126 induction_type = STMT_VINFO_LOOP_PHI_EVOLUTION_TYPE (phi_info);
2127 if (induction_type != vect_step_op_add)
2129 if (!vect_can_peel_nonlinear_iv_p (loop_vinfo, phi_info))
2130 return false;
2132 continue;
2135 /* Analyze the evolution function. */
2137 evolution_part = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (phi_info);
2138 if (evolution_part == NULL_TREE)
2140 if (dump_enabled_p ())
2141 dump_printf (MSG_MISSED_OPTIMIZATION,
2142 "No access function or evolution.\n");
2143 return false;
2146 /* FORNOW: We do not transform initial conditions of IVs
2147 which evolution functions are not invariants in the loop. */
2149 if (!expr_invariant_in_loop_p (loop, evolution_part))
2151 if (dump_enabled_p ())
2152 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2153 "evolution not invariant in loop.\n");
2154 return false;
2157 /* FORNOW: We do not transform initial conditions of IVs
2158 which evolution functions are a polynomial of degree >= 2. */
2160 if (tree_is_chrec (evolution_part))
2162 if (dump_enabled_p ())
2163 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2164 "evolution is chrec.\n");
2165 return false;
2169 return true;
2173 /* Function vect_update_ivs_after_vectorizer.
2175 "Advance" the induction variables of LOOP to the value they should take
2176 after the execution of LOOP. This is currently necessary because the
2177 vectorizer does not handle induction variables that are used after the
2178 loop. Such a situation occurs when the last iterations of LOOP are
2179 peeled, because:
2180 1. We introduced new uses after LOOP for IVs that were not originally used
2181 after LOOP: the IVs of LOOP are now used by an epilog loop.
2182 2. LOOP is going to be vectorized; this means that it will iterate N/VF
2183 times, whereas the loop IVs should be bumped N times.
2185 Input:
2186 - LOOP - a loop that is going to be vectorized. The last few iterations
2187 of LOOP were peeled.
2188 - NITERS - the number of iterations that LOOP executes (before it is
2189 vectorized). i.e, the number of times the ivs should be bumped.
2190 - UPDATE_E - a successor edge of LOOP->exit that is on the (only) path
2191 coming out from LOOP on which there are uses of the LOOP ivs
2192 (this is the path from LOOP->exit to epilog_loop->preheader).
2194 The new definitions of the ivs are placed in LOOP->exit.
2195 The phi args associated with the edge UPDATE_E in the bb
2196 UPDATE_E->dest are updated accordingly.
2198 Assumption 1: Like the rest of the vectorizer, this function assumes
2199 a single loop exit that has a single predecessor.
2201 Assumption 2: The phi nodes in the LOOP header and in update_bb are
2202 organized in the same order.
2204 Assumption 3: The access function of the ivs is simple enough (see
2205 vect_can_advance_ivs_p). This assumption will be relaxed in the future.
2207 Assumption 4: Exactly one of the successors of LOOP exit-bb is on a path
2208 coming out of LOOP on which the ivs of LOOP are used (this is the path
2209 that leads to the epilog loop; other paths skip the epilog loop). This
2210 path starts with the edge UPDATE_E, and its destination (denoted update_bb)
2211 needs to have its phis updated.
2214 static void
2215 vect_update_ivs_after_vectorizer (loop_vec_info loop_vinfo,
2216 tree niters, edge update_e)
2218 gphi_iterator gsi, gsi1;
2219 class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2220 basic_block update_bb = update_e->dest;
2221 basic_block exit_bb = LOOP_VINFO_IV_EXIT (loop_vinfo)->dest;
2222 gimple_stmt_iterator last_gsi = gsi_last_bb (exit_bb);
2224 for (gsi = gsi_start_phis (loop->header), gsi1 = gsi_start_phis (update_bb);
2225 !gsi_end_p (gsi) && !gsi_end_p (gsi1);
2226 gsi_next (&gsi), gsi_next (&gsi1))
2228 tree init_expr;
2229 tree step_expr, off;
2230 tree type;
2231 tree var, ni, ni_name;
2233 gphi *phi = gsi.phi ();
2234 gphi *phi1 = gsi1.phi ();
2235 stmt_vec_info phi_info = loop_vinfo->lookup_stmt (phi);
2236 if (dump_enabled_p ())
2237 dump_printf_loc (MSG_NOTE, vect_location,
2238 "vect_update_ivs_after_vectorizer: phi: %G",
2239 (gimple *) phi);
2241 /* Skip reduction and virtual phis. */
2242 if (!iv_phi_p (phi_info))
2244 if (dump_enabled_p ())
2245 dump_printf_loc (MSG_NOTE, vect_location,
2246 "reduc or virtual phi. skip.\n");
2247 continue;
2250 type = TREE_TYPE (gimple_phi_result (phi));
2251 step_expr = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (phi_info);
2252 step_expr = unshare_expr (step_expr);
2254 /* FORNOW: We do not support IVs whose evolution function is a polynomial
2255 of degree >= 2 or exponential. */
2256 gcc_assert (!tree_is_chrec (step_expr));
2258 init_expr = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
2259 gimple_seq stmts = NULL;
2260 enum vect_induction_op_type induction_type
2261 = STMT_VINFO_LOOP_PHI_EVOLUTION_TYPE (phi_info);
2263 if (induction_type == vect_step_op_add)
2265 tree stype = TREE_TYPE (step_expr);
2266 off = fold_build2 (MULT_EXPR, stype,
2267 fold_convert (stype, niters), step_expr);
2269 if (POINTER_TYPE_P (type))
2270 ni = fold_build_pointer_plus (init_expr, off);
2271 else
2272 ni = fold_convert (type,
2273 fold_build2 (PLUS_EXPR, stype,
2274 fold_convert (stype, init_expr),
2275 off));
2277 /* Don't bother call vect_peel_nonlinear_iv_init. */
2278 else if (induction_type == vect_step_op_neg)
2279 ni = init_expr;
2280 else
2281 ni = vect_peel_nonlinear_iv_init (&stmts, init_expr,
2282 niters, step_expr,
2283 induction_type);
2285 var = create_tmp_var (type, "tmp");
2287 gimple_seq new_stmts = NULL;
2288 ni_name = force_gimple_operand (ni, &new_stmts, false, var);
2290 /* Exit_bb shouldn't be empty. */
2291 if (!gsi_end_p (last_gsi))
2293 gsi_insert_seq_after (&last_gsi, stmts, GSI_SAME_STMT);
2294 gsi_insert_seq_after (&last_gsi, new_stmts, GSI_SAME_STMT);
2296 else
2298 gsi_insert_seq_before (&last_gsi, stmts, GSI_SAME_STMT);
2299 gsi_insert_seq_before (&last_gsi, new_stmts, GSI_SAME_STMT);
2302 /* Fix phi expressions in the successor bb. */
2303 adjust_phi_and_debug_stmts (phi1, update_e, ni_name);
2307 /* Return a gimple value containing the misalignment (measured in vector
2308 elements) for the loop described by LOOP_VINFO, i.e. how many elements
2309 it is away from a perfectly aligned address. Add any new statements
2310 to SEQ. */
2312 static tree
2313 get_misalign_in_elems (gimple **seq, loop_vec_info loop_vinfo)
2315 dr_vec_info *dr_info = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
2316 stmt_vec_info stmt_info = dr_info->stmt;
2317 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
2319 poly_uint64 target_align = DR_TARGET_ALIGNMENT (dr_info);
2320 unsigned HOST_WIDE_INT target_align_c;
2321 tree target_align_minus_1;
2323 bool negative = tree_int_cst_compare (DR_STEP (dr_info->dr),
2324 size_zero_node) < 0;
2325 tree offset = (negative
2326 ? size_int ((-TYPE_VECTOR_SUBPARTS (vectype) + 1)
2327 * TREE_INT_CST_LOW
2328 (TYPE_SIZE_UNIT (TREE_TYPE (vectype))))
2329 : size_zero_node);
2330 tree start_addr = vect_create_addr_base_for_vector_ref (loop_vinfo,
2331 stmt_info, seq,
2332 offset);
2333 tree type = unsigned_type_for (TREE_TYPE (start_addr));
2334 if (target_align.is_constant (&target_align_c))
2335 target_align_minus_1 = build_int_cst (type, target_align_c - 1);
2336 else
2338 tree vla = build_int_cst (type, target_align);
2339 tree vla_align = fold_build2 (BIT_AND_EXPR, type, vla,
2340 fold_build2 (MINUS_EXPR, type,
2341 build_int_cst (type, 0), vla));
2342 target_align_minus_1 = fold_build2 (MINUS_EXPR, type, vla_align,
2343 build_int_cst (type, 1));
2346 HOST_WIDE_INT elem_size
2347 = int_cst_value (TYPE_SIZE_UNIT (TREE_TYPE (vectype)));
2348 tree elem_size_log = build_int_cst (type, exact_log2 (elem_size));
2350 /* Create: misalign_in_bytes = addr & (target_align - 1). */
2351 tree int_start_addr = fold_convert (type, start_addr);
2352 tree misalign_in_bytes = fold_build2 (BIT_AND_EXPR, type, int_start_addr,
2353 target_align_minus_1);
2355 /* Create: misalign_in_elems = misalign_in_bytes / element_size. */
2356 tree misalign_in_elems = fold_build2 (RSHIFT_EXPR, type, misalign_in_bytes,
2357 elem_size_log);
2359 return misalign_in_elems;
2362 /* Function vect_gen_prolog_loop_niters
2364 Generate the number of iterations which should be peeled as prolog for the
2365 loop represented by LOOP_VINFO. It is calculated as the misalignment of
2366 DR - the data reference recorded in LOOP_VINFO_UNALIGNED_DR (LOOP_VINFO).
2367 As a result, after the execution of this loop, the data reference DR will
2368 refer to an aligned location. The following computation is generated:
2370 If the misalignment of DR is known at compile time:
2371 addr_mis = int mis = DR_MISALIGNMENT (dr);
2372 Else, compute address misalignment in bytes:
2373 addr_mis = addr & (target_align - 1)
2375 prolog_niters = ((VF - addr_mis/elem_size)&(VF-1))/step
2377 (elem_size = element type size; an element is the scalar element whose type
2378 is the inner type of the vectype)
2380 The computations will be emitted at the end of BB. We also compute and
2381 store upper bound (included) of the result in BOUND.
2383 When the step of the data-ref in the loop is not 1 (as in interleaved data
2384 and SLP), the number of iterations of the prolog must be divided by the step
2385 (which is equal to the size of interleaved group).
2387 The above formulas assume that VF == number of elements in the vector. This
2388 may not hold when there are multiple-types in the loop.
2389 In this case, for some data-references in the loop the VF does not represent
2390 the number of elements that fit in the vector. Therefore, instead of VF we
2391 use TYPE_VECTOR_SUBPARTS. */
2393 static tree
2394 vect_gen_prolog_loop_niters (loop_vec_info loop_vinfo,
2395 basic_block bb, int *bound)
2397 dr_vec_info *dr_info = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
2398 tree var;
2399 tree niters_type = TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo));
2400 gimple_seq stmts = NULL, new_stmts = NULL;
2401 tree iters, iters_name;
2402 stmt_vec_info stmt_info = dr_info->stmt;
2403 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
2404 poly_uint64 target_align = DR_TARGET_ALIGNMENT (dr_info);
2406 if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
2408 int npeel = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
2410 if (dump_enabled_p ())
2411 dump_printf_loc (MSG_NOTE, vect_location,
2412 "known peeling = %d.\n", npeel);
2414 iters = build_int_cst (niters_type, npeel);
2415 *bound = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
2417 else
2419 tree misalign_in_elems = get_misalign_in_elems (&stmts, loop_vinfo);
2420 tree type = TREE_TYPE (misalign_in_elems);
2421 HOST_WIDE_INT elem_size
2422 = int_cst_value (TYPE_SIZE_UNIT (TREE_TYPE (vectype)));
2423 /* We only do prolog peeling if the target alignment is known at compile
2424 time. */
2425 poly_uint64 align_in_elems =
2426 exact_div (target_align, elem_size);
2427 tree align_in_elems_minus_1 =
2428 build_int_cst (type, align_in_elems - 1);
2429 tree align_in_elems_tree = build_int_cst (type, align_in_elems);
2431 /* Create: (niters_type) ((align_in_elems - misalign_in_elems)
2432 & (align_in_elems - 1)). */
2433 bool negative = tree_int_cst_compare (DR_STEP (dr_info->dr),
2434 size_zero_node) < 0;
2435 if (negative)
2436 iters = fold_build2 (MINUS_EXPR, type, misalign_in_elems,
2437 align_in_elems_tree);
2438 else
2439 iters = fold_build2 (MINUS_EXPR, type, align_in_elems_tree,
2440 misalign_in_elems);
2441 iters = fold_build2 (BIT_AND_EXPR, type, iters, align_in_elems_minus_1);
2442 iters = fold_convert (niters_type, iters);
2443 unsigned HOST_WIDE_INT align_in_elems_c;
2444 if (align_in_elems.is_constant (&align_in_elems_c))
2445 *bound = align_in_elems_c - 1;
2446 else
2447 *bound = -1;
2450 if (dump_enabled_p ())
2451 dump_printf_loc (MSG_NOTE, vect_location,
2452 "niters for prolog loop: %T\n", iters);
2454 var = create_tmp_var (niters_type, "prolog_loop_niters");
2455 iters_name = force_gimple_operand (iters, &new_stmts, false, var);
2457 if (new_stmts)
2458 gimple_seq_add_seq (&stmts, new_stmts);
2459 if (stmts)
2461 gcc_assert (single_succ_p (bb));
2462 gimple_stmt_iterator gsi = gsi_last_bb (bb);
2463 if (gsi_end_p (gsi))
2464 gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
2465 else
2466 gsi_insert_seq_after (&gsi, stmts, GSI_SAME_STMT);
2468 return iters_name;
2472 /* Function vect_update_init_of_dr
2474 If CODE is PLUS, the vector loop starts NITERS iterations after the
2475 scalar one, otherwise CODE is MINUS and the vector loop starts NITERS
2476 iterations before the scalar one (using masking to skip inactive
2477 elements). This function updates the information recorded in DR to
2478 account for the difference. Specifically, it updates the OFFSET
2479 field of DR_INFO. */
2481 static void
2482 vect_update_init_of_dr (dr_vec_info *dr_info, tree niters, tree_code code)
2484 struct data_reference *dr = dr_info->dr;
2485 tree offset = dr_info->offset;
2486 if (!offset)
2487 offset = build_zero_cst (sizetype);
2489 niters = fold_build2 (MULT_EXPR, sizetype,
2490 fold_convert (sizetype, niters),
2491 fold_convert (sizetype, DR_STEP (dr)));
2492 offset = fold_build2 (code, sizetype,
2493 fold_convert (sizetype, offset), niters);
2494 dr_info->offset = offset;
2498 /* Function vect_update_inits_of_drs
2500 Apply vect_update_inits_of_dr to all accesses in LOOP_VINFO.
2501 CODE and NITERS are as for vect_update_inits_of_dr. */
2503 void
2504 vect_update_inits_of_drs (loop_vec_info loop_vinfo, tree niters,
2505 tree_code code)
2507 unsigned int i;
2508 vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
2509 struct data_reference *dr;
2511 DUMP_VECT_SCOPE ("vect_update_inits_of_dr");
2513 /* Adjust niters to sizetype. We used to insert the stmts on loop preheader
2514 here, but since we might use these niters to update the epilogues niters
2515 and data references we can't insert them here as this definition might not
2516 always dominate its uses. */
2517 if (!types_compatible_p (sizetype, TREE_TYPE (niters)))
2518 niters = fold_convert (sizetype, niters);
2520 FOR_EACH_VEC_ELT (datarefs, i, dr)
2522 dr_vec_info *dr_info = loop_vinfo->lookup_dr (dr);
2523 if (!STMT_VINFO_GATHER_SCATTER_P (dr_info->stmt)
2524 && !STMT_VINFO_SIMD_LANE_ACCESS_P (dr_info->stmt))
2525 vect_update_init_of_dr (dr_info, niters, code);
2529 /* For the information recorded in LOOP_VINFO prepare the loop for peeling
2530 by masking. This involves calculating the number of iterations to
2531 be peeled and then aligning all memory references appropriately. */
2533 void
2534 vect_prepare_for_masked_peels (loop_vec_info loop_vinfo)
2536 tree misalign_in_elems;
2537 tree type = TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo));
2539 gcc_assert (vect_use_loop_mask_for_alignment_p (loop_vinfo));
2541 /* From the information recorded in LOOP_VINFO get the number of iterations
2542 that need to be skipped via masking. */
2543 if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
2545 poly_int64 misalign = (LOOP_VINFO_VECT_FACTOR (loop_vinfo)
2546 - LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo));
2547 misalign_in_elems = build_int_cst (type, misalign);
2549 else
2551 gimple_seq seq1 = NULL, seq2 = NULL;
2552 misalign_in_elems = get_misalign_in_elems (&seq1, loop_vinfo);
2553 misalign_in_elems = fold_convert (type, misalign_in_elems);
2554 misalign_in_elems = force_gimple_operand (misalign_in_elems,
2555 &seq2, true, NULL_TREE);
2556 gimple_seq_add_seq (&seq1, seq2);
2557 if (seq1)
2559 edge pe = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
2560 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, seq1);
2561 gcc_assert (!new_bb);
2565 if (dump_enabled_p ())
2566 dump_printf_loc (MSG_NOTE, vect_location,
2567 "misalignment for fully-masked loop: %T\n",
2568 misalign_in_elems);
2570 LOOP_VINFO_MASK_SKIP_NITERS (loop_vinfo) = misalign_in_elems;
2572 vect_update_inits_of_drs (loop_vinfo, misalign_in_elems, MINUS_EXPR);
2575 /* This function builds ni_name = number of iterations. Statements
2576 are emitted on the loop preheader edge. If NEW_VAR_P is not NULL, set
2577 it to TRUE if new ssa_var is generated. */
2579 tree
2580 vect_build_loop_niters (loop_vec_info loop_vinfo, bool *new_var_p)
2582 tree ni = unshare_expr (LOOP_VINFO_NITERS (loop_vinfo));
2583 if (TREE_CODE (ni) == INTEGER_CST)
2584 return ni;
2585 else
2587 tree ni_name, var;
2588 gimple_seq stmts = NULL;
2589 edge pe = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
2591 var = create_tmp_var (TREE_TYPE (ni), "niters");
2592 ni_name = force_gimple_operand (ni, &stmts, false, var);
2593 if (stmts)
2595 gsi_insert_seq_on_edge_immediate (pe, stmts);
2596 if (new_var_p != NULL)
2597 *new_var_p = true;
2600 return ni_name;
2604 /* Calculate the number of iterations above which vectorized loop will be
2605 preferred than scalar loop. NITERS_PROLOG is the number of iterations
2606 of prolog loop. If it's integer const, the integer number is also passed
2607 in INT_NITERS_PROLOG. BOUND_PROLOG is the upper bound (inclusive) of the
2608 number of iterations of the prolog loop. BOUND_EPILOG is the corresponding
2609 value for the epilog loop. If CHECK_PROFITABILITY is true, TH is the
2610 threshold below which the scalar (rather than vectorized) loop will be
2611 executed. This function stores the upper bound (inclusive) of the result
2612 in BOUND_SCALAR. */
2614 static tree
2615 vect_gen_scalar_loop_niters (tree niters_prolog, int int_niters_prolog,
2616 int bound_prolog, poly_int64 bound_epilog, int th,
2617 poly_uint64 *bound_scalar,
2618 bool check_profitability)
2620 tree type = TREE_TYPE (niters_prolog);
2621 tree niters = fold_build2 (PLUS_EXPR, type, niters_prolog,
2622 build_int_cst (type, bound_epilog));
2624 *bound_scalar = bound_prolog + bound_epilog;
2625 if (check_profitability)
2627 /* TH indicates the minimum niters of vectorized loop, while we
2628 compute the maximum niters of scalar loop. */
2629 th--;
2630 /* Peeling for constant times. */
2631 if (int_niters_prolog >= 0)
2633 *bound_scalar = upper_bound (int_niters_prolog + bound_epilog, th);
2634 return build_int_cst (type, *bound_scalar);
2636 /* Peeling an unknown number of times. Note that both BOUND_PROLOG
2637 and BOUND_EPILOG are inclusive upper bounds. */
2638 if (known_ge (th, bound_prolog + bound_epilog))
2640 *bound_scalar = th;
2641 return build_int_cst (type, th);
2643 /* Need to do runtime comparison. */
2644 else if (maybe_gt (th, bound_epilog))
2646 *bound_scalar = upper_bound (*bound_scalar, th);
2647 return fold_build2 (MAX_EXPR, type,
2648 build_int_cst (type, th), niters);
2651 return niters;
2654 /* NITERS is the number of times that the original scalar loop executes
2655 after peeling. Work out the maximum number of iterations N that can
2656 be handled by the vectorized form of the loop and then either:
2658 a) set *STEP_VECTOR_PTR to the vectorization factor and generate:
2660 niters_vector = N
2662 b) set *STEP_VECTOR_PTR to one and generate:
2664 niters_vector = N / vf
2666 In both cases, store niters_vector in *NITERS_VECTOR_PTR and add
2667 any new statements on the loop preheader edge. NITERS_NO_OVERFLOW
2668 is true if NITERS doesn't overflow (i.e. if NITERS is always nonzero). */
2670 void
2671 vect_gen_vector_loop_niters (loop_vec_info loop_vinfo, tree niters,
2672 tree *niters_vector_ptr, tree *step_vector_ptr,
2673 bool niters_no_overflow)
2675 tree ni_minus_gap, var;
2676 tree niters_vector, step_vector, type = TREE_TYPE (niters);
2677 poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2678 edge pe = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
2679 tree log_vf = NULL_TREE;
2681 /* If epilogue loop is required because of data accesses with gaps, we
2682 subtract one iteration from the total number of iterations here for
2683 correct calculation of RATIO. */
2684 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
2686 ni_minus_gap = fold_build2 (MINUS_EXPR, type, niters,
2687 build_one_cst (type));
2688 if (!is_gimple_val (ni_minus_gap))
2690 var = create_tmp_var (type, "ni_gap");
2691 gimple *stmts = NULL;
2692 ni_minus_gap = force_gimple_operand (ni_minus_gap, &stmts,
2693 true, var);
2694 gsi_insert_seq_on_edge_immediate (pe, stmts);
2697 else
2698 ni_minus_gap = niters;
2700 /* To silence some unexpected warnings, simply initialize to 0. */
2701 unsigned HOST_WIDE_INT const_vf = 0;
2702 if (vf.is_constant (&const_vf)
2703 && !LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo))
2705 /* Create: niters >> log2(vf) */
2706 /* If it's known that niters == number of latch executions + 1 doesn't
2707 overflow, we can generate niters >> log2(vf); otherwise we generate
2708 (niters - vf) >> log2(vf) + 1 by using the fact that we know ratio
2709 will be at least one. */
2710 log_vf = build_int_cst (type, exact_log2 (const_vf));
2711 if (niters_no_overflow)
2712 niters_vector = fold_build2 (RSHIFT_EXPR, type, ni_minus_gap, log_vf);
2713 else
2714 niters_vector
2715 = fold_build2 (PLUS_EXPR, type,
2716 fold_build2 (RSHIFT_EXPR, type,
2717 fold_build2 (MINUS_EXPR, type,
2718 ni_minus_gap,
2719 build_int_cst (type, vf)),
2720 log_vf),
2721 build_int_cst (type, 1));
2722 step_vector = build_one_cst (type);
2724 else
2726 niters_vector = ni_minus_gap;
2727 step_vector = build_int_cst (type, vf);
2730 if (!is_gimple_val (niters_vector))
2732 var = create_tmp_var (type, "bnd");
2733 gimple_seq stmts = NULL;
2734 niters_vector = force_gimple_operand (niters_vector, &stmts, true, var);
2735 gsi_insert_seq_on_edge_immediate (pe, stmts);
2736 /* Peeling algorithm guarantees that vector loop bound is at least ONE,
2737 we set range information to make niters analyzer's life easier.
2738 Note the number of latch iteration value can be TYPE_MAX_VALUE so
2739 we have to represent the vector niter TYPE_MAX_VALUE + 1 >> log_vf. */
2740 if (stmts != NULL && log_vf)
2742 if (niters_no_overflow)
2744 value_range vr (type,
2745 wi::one (TYPE_PRECISION (type)),
2746 wi::rshift (wi::max_value (TYPE_PRECISION (type),
2747 TYPE_SIGN (type)),
2748 exact_log2 (const_vf),
2749 TYPE_SIGN (type)));
2750 set_range_info (niters_vector, vr);
2752 /* For VF == 1 the vector IV might also overflow so we cannot
2753 assert a minimum value of 1. */
2754 else if (const_vf > 1)
2756 value_range vr (type,
2757 wi::one (TYPE_PRECISION (type)),
2758 wi::rshift (wi::max_value (TYPE_PRECISION (type),
2759 TYPE_SIGN (type))
2760 - (const_vf - 1),
2761 exact_log2 (const_vf), TYPE_SIGN (type))
2762 + 1);
2763 set_range_info (niters_vector, vr);
2767 *niters_vector_ptr = niters_vector;
2768 *step_vector_ptr = step_vector;
2770 return;
2773 /* Given NITERS_VECTOR which is the number of iterations for vectorized
2774 loop specified by LOOP_VINFO after vectorization, compute the number
2775 of iterations before vectorization (niters_vector * vf) and store it
2776 to NITERS_VECTOR_MULT_VF_PTR. */
2778 static void
2779 vect_gen_vector_loop_niters_mult_vf (loop_vec_info loop_vinfo,
2780 tree niters_vector,
2781 tree *niters_vector_mult_vf_ptr)
2783 /* We should be using a step_vector of VF if VF is variable. */
2784 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo).to_constant ();
2785 tree type = TREE_TYPE (niters_vector);
2786 tree log_vf = build_int_cst (type, exact_log2 (vf));
2787 tree tree_vf = build_int_cst (type, vf);
2788 basic_block exit_bb = LOOP_VINFO_IV_EXIT (loop_vinfo)->dest;
2790 gcc_assert (niters_vector_mult_vf_ptr != NULL);
2791 tree niters_vector_mult_vf = fold_build2 (LSHIFT_EXPR, type,
2792 niters_vector, log_vf);
2794 /* If we've peeled a vector iteration then subtract one full vector
2795 iteration. */
2796 if (LOOP_VINFO_EARLY_BREAKS_VECT_PEELED (loop_vinfo))
2797 niters_vector_mult_vf = fold_build2 (MINUS_EXPR, type,
2798 niters_vector_mult_vf, tree_vf);
2800 if (!is_gimple_val (niters_vector_mult_vf))
2802 tree var = create_tmp_var (type, "niters_vector_mult_vf");
2803 gimple_seq stmts = NULL;
2804 niters_vector_mult_vf = force_gimple_operand (niters_vector_mult_vf,
2805 &stmts, true, var);
2806 gimple_stmt_iterator gsi = gsi_start_bb (exit_bb);
2807 gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
2809 *niters_vector_mult_vf_ptr = niters_vector_mult_vf;
2812 /* Function slpeel_add_loop_guard adds guard skipping from the beginning
2813 of SKIP_LOOP to the beginning of UPDATE_LOOP. GUARD_EDGE and MERGE_EDGE
2814 are two pred edges of the merge point before UPDATE_LOOP. The two loops
2815 appear like below:
2817 guard_bb:
2818 if (cond)
2819 goto merge_bb;
2820 else
2821 goto skip_loop;
2823 skip_loop:
2824 header_a:
2825 i_1 = PHI<i_0, i_2>;
2827 i_2 = i_1 + 1;
2828 if (cond_a)
2829 goto latch_a;
2830 else
2831 goto exit_a;
2832 latch_a:
2833 goto header_a;
2835 exit_a:
2836 i_5 = PHI<i_2>;
2838 merge_bb:
2839 ;; PHI (i_x = PHI<i_0, i_5>) to be created at merge point.
2841 update_loop:
2842 header_b:
2843 i_3 = PHI<i_5, i_4>; ;; Use of i_5 to be replaced with i_x.
2845 i_4 = i_3 + 1;
2846 if (cond_b)
2847 goto latch_b;
2848 else
2849 goto exit_bb;
2850 latch_b:
2851 goto header_b;
2853 exit_bb:
2855 This function creates PHI nodes at merge_bb and replaces the use of i_5
2856 in the update_loop's PHI node with the result of new PHI result. */
2858 static void
2859 slpeel_update_phi_nodes_for_guard1 (class loop *skip_loop,
2860 class loop *update_loop,
2861 edge guard_edge, edge merge_edge)
2863 location_t merge_loc, guard_loc;
2864 edge orig_e = loop_preheader_edge (skip_loop);
2865 edge update_e = loop_preheader_edge (update_loop);
2866 gphi_iterator gsi_orig, gsi_update;
2868 for ((gsi_orig = gsi_start_phis (skip_loop->header),
2869 gsi_update = gsi_start_phis (update_loop->header));
2870 !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_update);
2871 gsi_next (&gsi_orig), gsi_next (&gsi_update))
2873 gphi *orig_phi = gsi_orig.phi ();
2874 gphi *update_phi = gsi_update.phi ();
2876 /* Generate new phi node at merge bb of the guard. */
2877 tree new_res = copy_ssa_name (PHI_RESULT (orig_phi));
2878 gphi *new_phi = create_phi_node (new_res, guard_edge->dest);
2880 /* Merge bb has two incoming edges: GUARD_EDGE and MERGE_EDGE. Set the
2881 args in NEW_PHI for these edges. */
2882 tree merge_arg = PHI_ARG_DEF_FROM_EDGE (update_phi, update_e);
2883 tree guard_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, orig_e);
2884 merge_loc = gimple_phi_arg_location_from_edge (update_phi, update_e);
2885 guard_loc = gimple_phi_arg_location_from_edge (orig_phi, orig_e);
2886 add_phi_arg (new_phi, merge_arg, merge_edge, merge_loc);
2887 add_phi_arg (new_phi, guard_arg, guard_edge, guard_loc);
2889 /* Update phi in UPDATE_PHI. */
2890 adjust_phi_and_debug_stmts (update_phi, update_e, new_res);
2894 /* LOOP_VINFO is an epilogue loop whose corresponding main loop can be skipped.
2895 Return a value that equals:
2897 - MAIN_LOOP_VALUE when LOOP_VINFO is entered from the main loop and
2898 - SKIP_VALUE when the main loop is skipped. */
2900 tree
2901 vect_get_main_loop_result (loop_vec_info loop_vinfo, tree main_loop_value,
2902 tree skip_value)
2904 gcc_assert (loop_vinfo->main_loop_edge);
2906 tree phi_result = make_ssa_name (TREE_TYPE (main_loop_value));
2907 basic_block bb = loop_vinfo->main_loop_edge->dest;
2908 gphi *new_phi = create_phi_node (phi_result, bb);
2909 add_phi_arg (new_phi, main_loop_value, loop_vinfo->main_loop_edge,
2910 UNKNOWN_LOCATION);
2911 add_phi_arg (new_phi, skip_value,
2912 loop_vinfo->skip_main_loop_edge, UNKNOWN_LOCATION);
2913 return phi_result;
2916 /* Function vect_do_peeling.
2918 Input:
2919 - LOOP_VINFO: Represent a loop to be vectorized, which looks like:
2921 preheader:
2922 LOOP:
2923 header_bb:
2924 loop_body
2925 if (exit_loop_cond) goto exit_bb
2926 else goto header_bb
2927 exit_bb:
2929 - NITERS: The number of iterations of the loop.
2930 - NITERSM1: The number of iterations of the loop's latch.
2931 - NITERS_NO_OVERFLOW: No overflow in computing NITERS.
2932 - TH, CHECK_PROFITABILITY: Threshold of niters to vectorize loop if
2933 CHECK_PROFITABILITY is true.
2934 Output:
2935 - *NITERS_VECTOR and *STEP_VECTOR describe how the main loop should
2936 iterate after vectorization; see vect_set_loop_condition for details.
2937 - *NITERS_VECTOR_MULT_VF_VAR is either null or an SSA name that
2938 should be set to the number of scalar iterations handled by the
2939 vector loop. The SSA name is only used on exit from the loop.
2941 This function peels prolog and epilog from the loop, adds guards skipping
2942 PROLOG and EPILOG for various conditions. As a result, the changed CFG
2943 would look like:
2945 guard_bb_1:
2946 if (prefer_scalar_loop) goto merge_bb_1
2947 else goto guard_bb_2
2949 guard_bb_2:
2950 if (skip_prolog) goto merge_bb_2
2951 else goto prolog_preheader
2953 prolog_preheader:
2954 PROLOG:
2955 prolog_header_bb:
2956 prolog_body
2957 if (exit_prolog_cond) goto prolog_exit_bb
2958 else goto prolog_header_bb
2959 prolog_exit_bb:
2961 merge_bb_2:
2963 vector_preheader:
2964 VECTOR LOOP:
2965 vector_header_bb:
2966 vector_body
2967 if (exit_vector_cond) goto vector_exit_bb
2968 else goto vector_header_bb
2969 vector_exit_bb:
2971 guard_bb_3:
2972 if (skip_epilog) goto merge_bb_3
2973 else goto epilog_preheader
2975 merge_bb_1:
2977 epilog_preheader:
2978 EPILOG:
2979 epilog_header_bb:
2980 epilog_body
2981 if (exit_epilog_cond) goto merge_bb_3
2982 else goto epilog_header_bb
2984 merge_bb_3:
2986 Note this function peels prolog and epilog only if it's necessary,
2987 as well as guards.
2988 This function returns the epilogue loop if a decision was made to vectorize
2989 it, otherwise NULL.
2991 The analysis resulting in this epilogue loop's loop_vec_info was performed
2992 in the same vect_analyze_loop call as the main loop's. At that time
2993 vect_analyze_loop constructs a list of accepted loop_vec_info's for lower
2994 vectorization factors than the main loop. This list is stored in the main
2995 loop's loop_vec_info in the 'epilogue_vinfos' member. Everytime we decide to
2996 vectorize the epilogue loop for a lower vectorization factor, the
2997 loop_vec_info sitting at the top of the epilogue_vinfos list is removed,
2998 updated and linked to the epilogue loop. This is later used to vectorize
2999 the epilogue. The reason the loop_vec_info needs updating is that it was
3000 constructed based on the original main loop, and the epilogue loop is a
3001 copy of this loop, so all links pointing to statements in the original loop
3002 need updating. Furthermore, these loop_vec_infos share the
3003 data_reference's records, which will also need to be updated.
3005 TODO: Guard for prefer_scalar_loop should be emitted along with
3006 versioning conditions if loop versioning is needed. */
3009 class loop *
3010 vect_do_peeling (loop_vec_info loop_vinfo, tree niters, tree nitersm1,
3011 tree *niters_vector, tree *step_vector,
3012 tree *niters_vector_mult_vf_var, int th,
3013 bool check_profitability, bool niters_no_overflow,
3014 tree *advance)
3016 edge e, guard_e;
3017 tree type = TREE_TYPE (niters), guard_cond;
3018 basic_block guard_bb, guard_to;
3019 profile_probability prob_prolog, prob_vector, prob_epilog;
3020 int estimated_vf;
3021 int prolog_peeling = 0;
3022 bool vect_epilogues = loop_vinfo->epilogue_vinfos.length () > 0;
3023 /* We currently do not support prolog peeling if the target alignment is not
3024 known at compile time. 'vect_gen_prolog_loop_niters' depends on the
3025 target alignment being constant. */
3026 dr_vec_info *dr_info = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
3027 if (dr_info && !DR_TARGET_ALIGNMENT (dr_info).is_constant ())
3028 return NULL;
3030 if (!vect_use_loop_mask_for_alignment_p (loop_vinfo))
3031 prolog_peeling = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
3033 poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
3034 poly_uint64 bound_epilog = 0;
3035 if (!LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo)
3036 && LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo))
3037 bound_epilog += vf - 1;
3038 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
3039 bound_epilog += 1;
3041 /* For early breaks the scalar loop needs to execute at most VF times
3042 to find the element that caused the break. */
3043 if (LOOP_VINFO_EARLY_BREAKS (loop_vinfo))
3044 bound_epilog = vf;
3046 bool epilog_peeling = maybe_ne (bound_epilog, 0U);
3047 poly_uint64 bound_scalar = bound_epilog;
3049 if (!prolog_peeling && !epilog_peeling)
3050 return NULL;
3052 /* Before doing any peeling make sure to reset debug binds outside of
3053 the loop refering to defs not in LC SSA. */
3054 class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
3055 for (unsigned i = 0; i < loop->num_nodes; ++i)
3057 basic_block bb = LOOP_VINFO_BBS (loop_vinfo)[i];
3058 imm_use_iterator ui;
3059 gimple *use_stmt;
3060 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
3061 gsi_next (&gsi))
3063 FOR_EACH_IMM_USE_STMT (use_stmt, ui, gimple_phi_result (gsi.phi ()))
3064 if (gimple_debug_bind_p (use_stmt)
3065 && loop != gimple_bb (use_stmt)->loop_father
3066 && !flow_loop_nested_p (loop,
3067 gimple_bb (use_stmt)->loop_father))
3069 gimple_debug_bind_reset_value (use_stmt);
3070 update_stmt (use_stmt);
3073 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
3074 gsi_next (&gsi))
3076 ssa_op_iter op_iter;
3077 def_operand_p def_p;
3078 FOR_EACH_SSA_DEF_OPERAND (def_p, gsi_stmt (gsi), op_iter, SSA_OP_DEF)
3079 FOR_EACH_IMM_USE_STMT (use_stmt, ui, DEF_FROM_PTR (def_p))
3080 if (gimple_debug_bind_p (use_stmt)
3081 && loop != gimple_bb (use_stmt)->loop_father
3082 && !flow_loop_nested_p (loop,
3083 gimple_bb (use_stmt)->loop_father))
3085 gimple_debug_bind_reset_value (use_stmt);
3086 update_stmt (use_stmt);
3091 prob_vector = profile_probability::guessed_always ().apply_scale (9, 10);
3092 estimated_vf = vect_vf_for_cost (loop_vinfo);
3093 if (estimated_vf == 2)
3094 estimated_vf = 3;
3095 prob_prolog = prob_epilog = profile_probability::guessed_always ()
3096 .apply_scale (estimated_vf - 1, estimated_vf);
3098 class loop *prolog, *epilog = NULL;
3099 class loop *first_loop = loop;
3100 bool irred_flag = loop_preheader_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP;
3102 /* SSA form needs to be up-to-date since we are going to manually
3103 update SSA form in slpeel_tree_duplicate_loop_to_edge_cfg and delete all
3104 update SSA state after that, so we have to make sure to not lose any
3105 pending update needs. */
3106 gcc_assert (!need_ssa_update_p (cfun));
3108 /* If we're vectorizing an epilogue loop, we have ensured that the
3109 virtual operand is in SSA form throughout the vectorized main loop.
3110 Normally it is possible to trace the updated
3111 vector-stmt vdefs back to scalar-stmt vdefs and vector-stmt vuses
3112 back to scalar-stmt vuses, meaning that the effect of the SSA update
3113 remains local to the main loop. However, there are rare cases in
3114 which the vectorized loop should have vdefs even when the original scalar
3115 loop didn't. For example, vectorizing a load with IFN_LOAD_LANES
3116 introduces clobbers of the temporary vector array, which in turn
3117 needs new vdefs. If the scalar loop doesn't write to memory, these
3118 new vdefs will be the only ones in the vector loop.
3119 We are currently defering updating virtual SSA form and creating
3120 of a virtual PHI for this case so we do not have to make sure the
3121 newly introduced virtual def is in LCSSA form. */
3123 if (MAY_HAVE_DEBUG_BIND_STMTS)
3125 gcc_assert (!adjust_vec.exists ());
3126 adjust_vec.create (32);
3128 initialize_original_copy_tables ();
3130 /* Record the anchor bb at which the guard should be placed if the scalar
3131 loop might be preferred. */
3132 basic_block anchor = loop_preheader_edge (loop)->src;
3134 /* Generate the number of iterations for the prolog loop. We do this here
3135 so that we can also get the upper bound on the number of iterations. */
3136 tree niters_prolog;
3137 int bound_prolog = 0;
3138 if (prolog_peeling)
3140 niters_prolog = vect_gen_prolog_loop_niters (loop_vinfo, anchor,
3141 &bound_prolog);
3142 /* If algonment peeling is known, we will always execute prolog. */
3143 if (TREE_CODE (niters_prolog) == INTEGER_CST)
3144 prob_prolog = profile_probability::always ();
3146 else
3147 niters_prolog = build_int_cst (type, 0);
3149 loop_vec_info epilogue_vinfo = NULL;
3150 if (vect_epilogues)
3152 epilogue_vinfo = loop_vinfo->epilogue_vinfos[0];
3153 loop_vinfo->epilogue_vinfos.ordered_remove (0);
3156 tree niters_vector_mult_vf = NULL_TREE;
3157 /* Saving NITERs before the loop, as this may be changed by prologue. */
3158 tree before_loop_niters = LOOP_VINFO_NITERS (loop_vinfo);
3159 edge update_e = NULL, skip_e = NULL;
3160 unsigned int lowest_vf = constant_lower_bound (vf);
3161 /* Prolog loop may be skipped. */
3162 bool skip_prolog = (prolog_peeling != 0);
3163 /* Skip this loop to epilog when there are not enough iterations to enter this
3164 vectorized loop. If true we should perform runtime checks on the NITERS
3165 to check whether we should skip the current vectorized loop. If we know
3166 the number of scalar iterations we may choose to add a runtime check if
3167 this number "maybe" smaller than the number of iterations required
3168 when we know the number of scalar iterations may potentially
3169 be smaller than the number of iterations required to enter this loop, for
3170 this we use the upper bounds on the prolog and epilog peeling. When we
3171 don't know the number of iterations and don't require versioning it is
3172 because we have asserted that there are enough scalar iterations to enter
3173 the main loop, so this skip is not necessary. When we are versioning then
3174 we only add such a skip if we have chosen to vectorize the epilogue. */
3175 bool skip_vector = (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
3176 ? maybe_lt (LOOP_VINFO_INT_NITERS (loop_vinfo),
3177 bound_prolog + bound_epilog)
3178 : (!LOOP_REQUIRES_VERSIONING (loop_vinfo)
3179 || vect_epilogues));
3181 /* Epilog loop must be executed if the number of iterations for epilog
3182 loop is known at compile time, otherwise we need to add a check at
3183 the end of vector loop and skip to the end of epilog loop. */
3184 bool skip_epilog = (prolog_peeling < 0
3185 || !LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
3186 || !vf.is_constant ());
3187 /* PEELING_FOR_GAPS and peeling for early breaks are special because epilog
3188 loop must be executed. */
3189 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
3190 || LOOP_VINFO_EARLY_BREAKS (loop_vinfo))
3191 skip_epilog = false;
3193 class loop *scalar_loop = LOOP_VINFO_SCALAR_LOOP (loop_vinfo);
3194 auto_vec<profile_count> original_counts;
3195 basic_block *original_bbs = NULL;
3197 if (skip_vector)
3199 split_edge (loop_preheader_edge (loop));
3201 if (epilog_peeling && (vect_epilogues || scalar_loop == NULL))
3203 original_bbs = get_loop_body (loop);
3204 for (unsigned int i = 0; i < loop->num_nodes; i++)
3205 original_counts.safe_push(original_bbs[i]->count);
3208 /* Due to the order in which we peel prolog and epilog, we first
3209 propagate probability to the whole loop. The purpose is to
3210 avoid adjusting probabilities of both prolog and vector loops
3211 separately. Note in this case, the probability of epilog loop
3212 needs to be scaled back later. */
3213 basic_block bb_before_loop = loop_preheader_edge (loop)->src;
3214 if (prob_vector.initialized_p ())
3216 scale_bbs_frequencies (&bb_before_loop, 1, prob_vector);
3217 scale_loop_profile (loop, prob_vector, -1);
3221 if (vect_epilogues)
3223 /* Make sure to set the epilogue's epilogue scalar loop, such that we can
3224 use the original scalar loop as remaining epilogue if necessary. */
3225 LOOP_VINFO_SCALAR_LOOP (epilogue_vinfo)
3226 = LOOP_VINFO_SCALAR_LOOP (loop_vinfo);
3227 LOOP_VINFO_SCALAR_IV_EXIT (epilogue_vinfo)
3228 = LOOP_VINFO_SCALAR_IV_EXIT (loop_vinfo);
3231 if (prolog_peeling)
3233 e = loop_preheader_edge (loop);
3234 edge exit_e = LOOP_VINFO_IV_EXIT (loop_vinfo);
3235 gcc_checking_assert (slpeel_can_duplicate_loop_p (loop, exit_e, e));
3237 /* Peel prolog and put it on preheader edge of loop. */
3238 edge scalar_e = LOOP_VINFO_SCALAR_IV_EXIT (loop_vinfo);
3239 edge prolog_e = NULL;
3240 prolog = slpeel_tree_duplicate_loop_to_edge_cfg (loop, exit_e,
3241 scalar_loop, scalar_e,
3242 e, &prolog_e);
3243 gcc_assert (prolog);
3244 prolog->force_vectorize = false;
3246 first_loop = prolog;
3247 reset_original_copy_tables ();
3249 /* Update the number of iterations for prolog loop. */
3250 tree step_prolog = build_one_cst (TREE_TYPE (niters_prolog));
3251 vect_set_loop_condition (prolog, prolog_e, NULL, niters_prolog,
3252 step_prolog, NULL_TREE, false);
3254 /* Skip the prolog loop. */
3255 if (skip_prolog)
3257 guard_cond = fold_build2 (EQ_EXPR, boolean_type_node,
3258 niters_prolog, build_int_cst (type, 0));
3259 guard_bb = loop_preheader_edge (prolog)->src;
3260 basic_block bb_after_prolog = loop_preheader_edge (loop)->src;
3261 guard_to = split_edge (loop_preheader_edge (loop));
3262 guard_e = slpeel_add_loop_guard (guard_bb, guard_cond,
3263 guard_to, guard_bb,
3264 prob_prolog.invert (),
3265 irred_flag);
3266 e = EDGE_PRED (guard_to, 0);
3267 e = (e != guard_e ? e : EDGE_PRED (guard_to, 1));
3268 slpeel_update_phi_nodes_for_guard1 (prolog, loop, guard_e, e);
3270 scale_bbs_frequencies (&bb_after_prolog, 1, prob_prolog);
3271 scale_loop_profile (prolog, prob_prolog, bound_prolog - 1);
3274 /* Update init address of DRs. */
3275 vect_update_inits_of_drs (loop_vinfo, niters_prolog, PLUS_EXPR);
3276 /* Update niters for vector loop. */
3277 LOOP_VINFO_NITERS (loop_vinfo)
3278 = fold_build2 (MINUS_EXPR, type, niters, niters_prolog);
3279 LOOP_VINFO_NITERSM1 (loop_vinfo)
3280 = fold_build2 (MINUS_EXPR, type,
3281 LOOP_VINFO_NITERSM1 (loop_vinfo), niters_prolog);
3282 bool new_var_p = false;
3283 niters = vect_build_loop_niters (loop_vinfo, &new_var_p);
3284 /* It's guaranteed that vector loop bound before vectorization is at
3285 least VF, so set range information for newly generated var. */
3286 if (new_var_p)
3288 value_range vr (type,
3289 wi::to_wide (build_int_cst (type, lowest_vf)),
3290 wi::to_wide (TYPE_MAX_VALUE (type)));
3291 set_range_info (niters, vr);
3294 /* Prolog iterates at most bound_prolog times, latch iterates at
3295 most bound_prolog - 1 times. */
3296 record_niter_bound (prolog, bound_prolog - 1, false, true);
3297 delete_update_ssa ();
3298 adjust_vec_debug_stmts ();
3299 scev_reset ();
3301 basic_block bb_before_epilog = NULL;
3303 if (epilog_peeling)
3305 e = LOOP_VINFO_IV_EXIT (loop_vinfo);
3306 gcc_checking_assert (slpeel_can_duplicate_loop_p (loop, e, e));
3308 /* Peel epilog and put it on exit edge of loop. If we are vectorizing
3309 said epilog then we should use a copy of the main loop as a starting
3310 point. This loop may have already had some preliminary transformations
3311 to allow for more optimal vectorization, for example if-conversion.
3312 If we are not vectorizing the epilog then we should use the scalar loop
3313 as the transformations mentioned above make less or no sense when not
3314 vectorizing. */
3315 edge scalar_e = LOOP_VINFO_SCALAR_IV_EXIT (loop_vinfo);
3316 epilog = vect_epilogues ? get_loop_copy (loop) : scalar_loop;
3317 edge epilog_e = vect_epilogues ? e : scalar_e;
3318 edge new_epilog_e = NULL;
3319 auto_vec<basic_block> doms;
3320 epilog
3321 = slpeel_tree_duplicate_loop_to_edge_cfg (loop, e, epilog, epilog_e, e,
3322 &new_epilog_e, true, &doms);
3324 LOOP_VINFO_EPILOGUE_IV_EXIT (loop_vinfo) = new_epilog_e;
3325 gcc_assert (epilog);
3326 gcc_assert (new_epilog_e);
3327 epilog->force_vectorize = false;
3328 bb_before_epilog = loop_preheader_edge (epilog)->src;
3330 /* Scalar version loop may be preferred. In this case, add guard
3331 and skip to epilog. Note this only happens when the number of
3332 iterations of loop is unknown at compile time, otherwise this
3333 won't be vectorized. */
3334 if (skip_vector)
3336 /* Additional epilogue iteration is peeled if gap exists. */
3337 tree t = vect_gen_scalar_loop_niters (niters_prolog, prolog_peeling,
3338 bound_prolog, bound_epilog,
3339 th, &bound_scalar,
3340 check_profitability);
3341 /* Build guard against NITERSM1 since NITERS may overflow. */
3342 guard_cond = fold_build2 (LT_EXPR, boolean_type_node, nitersm1, t);
3343 guard_bb = anchor;
3344 guard_to = split_edge (loop_preheader_edge (epilog));
3345 guard_e = slpeel_add_loop_guard (guard_bb, guard_cond,
3346 guard_to, guard_bb,
3347 prob_vector.invert (),
3348 irred_flag);
3349 skip_e = guard_e;
3350 e = EDGE_PRED (guard_to, 0);
3351 e = (e != guard_e ? e : EDGE_PRED (guard_to, 1));
3352 slpeel_update_phi_nodes_for_guard1 (first_loop, epilog, guard_e, e);
3354 /* Simply propagate profile info from guard_bb to guard_to which is
3355 a merge point of control flow. */
3356 profile_count old_count = guard_to->count;
3357 guard_to->count = guard_bb->count;
3359 /* Restore the counts of the epilog loop if we didn't use the scalar loop. */
3360 if (vect_epilogues || scalar_loop == NULL)
3362 gcc_assert(epilog->num_nodes == loop->num_nodes);
3363 basic_block *bbs = get_loop_body (epilog);
3364 for (unsigned int i = 0; i < epilog->num_nodes; i++)
3366 gcc_assert(get_bb_original (bbs[i]) == original_bbs[i]);
3367 bbs[i]->count = original_counts[i];
3369 free (bbs);
3370 free (original_bbs);
3372 else if (old_count.nonzero_p ())
3373 scale_loop_profile (epilog, guard_to->count.probability_in (old_count), -1);
3375 /* Only need to handle basic block before epilog loop if it's not
3376 the guard_bb, which is the case when skip_vector is true. */
3377 if (guard_bb != bb_before_epilog && single_pred_p (bb_before_epilog))
3378 bb_before_epilog->count = single_pred_edge (bb_before_epilog)->count ();
3379 bb_before_epilog = loop_preheader_edge (epilog)->src;
3382 /* If loop is peeled for non-zero constant times, now niters refers to
3383 orig_niters - prolog_peeling, it won't overflow even the orig_niters
3384 overflows. */
3385 niters_no_overflow |= (prolog_peeling > 0);
3386 vect_gen_vector_loop_niters (loop_vinfo, niters,
3387 niters_vector, step_vector,
3388 niters_no_overflow);
3389 if (!integer_onep (*step_vector))
3391 /* On exit from the loop we will have an easy way of calcalating
3392 NITERS_VECTOR / STEP * STEP. Install a dummy definition
3393 until then. */
3394 niters_vector_mult_vf = make_ssa_name (TREE_TYPE (*niters_vector));
3395 SSA_NAME_DEF_STMT (niters_vector_mult_vf) = gimple_build_nop ();
3396 *niters_vector_mult_vf_var = niters_vector_mult_vf;
3398 else
3399 vect_gen_vector_loop_niters_mult_vf (loop_vinfo, *niters_vector,
3400 &niters_vector_mult_vf);
3401 /* Update IVs of original loop as if they were advanced by
3402 niters_vector_mult_vf steps. */
3403 gcc_checking_assert (vect_can_advance_ivs_p (loop_vinfo));
3404 update_e = skip_vector ? e : loop_preheader_edge (epilog);
3405 if (LOOP_VINFO_EARLY_BREAKS (loop_vinfo))
3406 update_e = single_succ_edge (LOOP_VINFO_IV_EXIT (loop_vinfo)->dest);
3408 /* If we have a peeled vector iteration, all exits are the same, leave it
3409 and so the main exit needs to be treated the same as the alternative
3410 exits in that we leave their updates to vectorizable_live_operations.
3412 if (!LOOP_VINFO_EARLY_BREAKS_VECT_PEELED (loop_vinfo))
3413 vect_update_ivs_after_vectorizer (loop_vinfo, niters_vector_mult_vf,
3414 update_e);
3416 if (skip_epilog || LOOP_VINFO_EARLY_BREAKS (loop_vinfo))
3418 guard_cond = fold_build2 (EQ_EXPR, boolean_type_node,
3419 niters, niters_vector_mult_vf);
3421 guard_bb = LOOP_VINFO_IV_EXIT (loop_vinfo)->dest;
3422 edge epilog_e = LOOP_VINFO_EPILOGUE_IV_EXIT (loop_vinfo);
3423 guard_to = epilog_e->dest;
3424 guard_e = slpeel_add_loop_guard (guard_bb, guard_cond, guard_to,
3425 skip_vector ? anchor : guard_bb,
3426 prob_epilog.invert (),
3427 irred_flag);
3428 doms.safe_push (guard_to);
3429 if (vect_epilogues)
3430 epilogue_vinfo->skip_this_loop_edge = guard_e;
3431 edge main_iv = LOOP_VINFO_IV_EXIT (loop_vinfo);
3432 gphi_iterator gsi2 = gsi_start_phis (main_iv->dest);
3433 for (gphi_iterator gsi = gsi_start_phis (guard_to);
3434 !gsi_end_p (gsi); gsi_next (&gsi))
3436 /* We are expecting all of the PHIs we have on epilog_e
3437 to be also on the main loop exit. But sometimes
3438 a stray virtual definition can appear at epilog_e
3439 which we can then take as the same on all exits,
3440 we've removed the LC SSA PHI on the main exit before
3441 so we wouldn't need to create a loop PHI for it. */
3442 if (virtual_operand_p (gimple_phi_result (*gsi))
3443 && (gsi_end_p (gsi2)
3444 || !virtual_operand_p (gimple_phi_result (*gsi2))))
3445 add_phi_arg (*gsi,
3446 gimple_phi_arg_def_from_edge (*gsi, epilog_e),
3447 guard_e, UNKNOWN_LOCATION);
3448 else
3450 add_phi_arg (*gsi, gimple_phi_result (*gsi2), guard_e,
3451 UNKNOWN_LOCATION);
3452 gsi_next (&gsi2);
3456 /* Only need to handle basic block before epilog loop if it's not
3457 the guard_bb, which is the case when skip_vector is true. */
3458 if (guard_bb != bb_before_epilog)
3460 prob_epilog = prob_vector * prob_epilog + prob_vector.invert ();
3462 scale_bbs_frequencies (&bb_before_epilog, 1, prob_epilog);
3464 scale_loop_profile (epilog, prob_epilog, -1);
3467 /* Recalculate the dominators after adding the guard edge. */
3468 if (LOOP_VINFO_EARLY_BREAKS (loop_vinfo))
3469 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
3471 /* When we do not have a loop-around edge to the epilog we know
3472 the vector loop covered at least VF scalar iterations unless
3473 we have early breaks.
3474 Update any known upper bound with this knowledge. */
3475 if (! skip_vector
3476 && ! LOOP_VINFO_EARLY_BREAKS (loop_vinfo))
3478 if (epilog->any_upper_bound)
3479 epilog->nb_iterations_upper_bound -= lowest_vf;
3480 if (epilog->any_likely_upper_bound)
3481 epilog->nb_iterations_likely_upper_bound -= lowest_vf;
3482 if (epilog->any_estimate)
3483 epilog->nb_iterations_estimate -= lowest_vf;
3486 unsigned HOST_WIDE_INT bound;
3487 if (bound_scalar.is_constant (&bound))
3489 gcc_assert (bound != 0);
3490 /* Adjust the upper bound by the extra peeled vector iteration if we
3491 are an epilogue of an peeled vect loop and not VLA. For VLA the
3492 loop bounds are unknown. */
3493 if (LOOP_VINFO_EARLY_BREAKS_VECT_PEELED (loop_vinfo)
3494 && vf.is_constant ())
3495 bound += vf.to_constant ();
3496 /* -1 to convert loop iterations to latch iterations. */
3497 record_niter_bound (epilog, bound - 1, false, true);
3498 scale_loop_profile (epilog, profile_probability::always (),
3499 bound - 1);
3502 delete_update_ssa ();
3503 adjust_vec_debug_stmts ();
3504 scev_reset ();
3507 if (vect_epilogues)
3509 epilog->aux = epilogue_vinfo;
3510 LOOP_VINFO_LOOP (epilogue_vinfo) = epilog;
3511 LOOP_VINFO_IV_EXIT (epilogue_vinfo)
3512 = LOOP_VINFO_EPILOGUE_IV_EXIT (loop_vinfo);
3514 loop_constraint_clear (epilog, LOOP_C_INFINITE);
3516 /* We now must calculate the number of NITERS performed by the previous
3517 loop and EPILOGUE_NITERS to be performed by the epilogue. */
3518 tree niters = fold_build2 (PLUS_EXPR, TREE_TYPE (niters_vector_mult_vf),
3519 niters_prolog, niters_vector_mult_vf);
3521 /* If skip_vector we may skip the previous loop, we insert a phi-node to
3522 determine whether we are coming from the previous vectorized loop
3523 using the update_e edge or the skip_vector basic block using the
3524 skip_e edge. */
3525 if (skip_vector)
3527 gcc_assert (update_e != NULL && skip_e != NULL);
3528 gphi *new_phi = create_phi_node (make_ssa_name (TREE_TYPE (niters)),
3529 update_e->dest);
3530 tree new_ssa = make_ssa_name (TREE_TYPE (niters));
3531 gimple *stmt = gimple_build_assign (new_ssa, niters);
3532 gimple_stmt_iterator gsi;
3533 if (TREE_CODE (niters_vector_mult_vf) == SSA_NAME
3534 && SSA_NAME_DEF_STMT (niters_vector_mult_vf)->bb != NULL)
3536 gsi = gsi_for_stmt (SSA_NAME_DEF_STMT (niters_vector_mult_vf));
3537 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
3539 else
3541 gsi = gsi_last_bb (update_e->src);
3542 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
3545 niters = new_ssa;
3546 add_phi_arg (new_phi, niters, update_e, UNKNOWN_LOCATION);
3547 add_phi_arg (new_phi, build_zero_cst (TREE_TYPE (niters)), skip_e,
3548 UNKNOWN_LOCATION);
3549 niters = PHI_RESULT (new_phi);
3550 epilogue_vinfo->main_loop_edge = update_e;
3551 epilogue_vinfo->skip_main_loop_edge = skip_e;
3554 /* Set ADVANCE to the number of iterations performed by the previous
3555 loop and its prologue. */
3556 *advance = niters;
3558 /* Subtract the number of iterations performed by the vectorized loop
3559 from the number of total iterations. */
3560 tree epilogue_niters = fold_build2 (MINUS_EXPR, TREE_TYPE (niters),
3561 before_loop_niters,
3562 niters);
3564 LOOP_VINFO_NITERS (epilogue_vinfo) = epilogue_niters;
3565 LOOP_VINFO_NITERSM1 (epilogue_vinfo)
3566 = fold_build2 (MINUS_EXPR, TREE_TYPE (epilogue_niters),
3567 epilogue_niters,
3568 build_one_cst (TREE_TYPE (epilogue_niters)));
3570 /* Decide what to do if the number of epilogue iterations is not
3571 a multiple of the epilogue loop's vectorization factor.
3572 We should have rejected the loop during the analysis phase
3573 if this fails. */
3574 bool res = vect_determine_partial_vectors_and_peeling (epilogue_vinfo);
3575 gcc_assert (res);
3578 adjust_vec.release ();
3579 free_original_copy_tables ();
3581 return vect_epilogues ? epilog : NULL;
3584 /* Function vect_create_cond_for_niters_checks.
3586 Create a conditional expression that represents the run-time checks for
3587 loop's niter. The loop is guaranteed to terminate if the run-time
3588 checks hold.
3590 Input:
3591 COND_EXPR - input conditional expression. New conditions will be chained
3592 with logical AND operation. If it is NULL, then the function
3593 is used to return the number of alias checks.
3594 LOOP_VINFO - field LOOP_VINFO_MAY_ALIAS_STMTS contains the list of ddrs
3595 to be checked.
3597 Output:
3598 COND_EXPR - conditional expression.
3600 The returned COND_EXPR is the conditional expression to be used in the
3601 if statement that controls which version of the loop gets executed at
3602 runtime. */
3604 static void
3605 vect_create_cond_for_niters_checks (loop_vec_info loop_vinfo, tree *cond_expr)
3607 tree part_cond_expr = LOOP_VINFO_NITERS_ASSUMPTIONS (loop_vinfo);
3609 if (*cond_expr)
3610 *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
3611 *cond_expr, part_cond_expr);
3612 else
3613 *cond_expr = part_cond_expr;
3616 /* Set *COND_EXPR to a tree that is true when both the original *COND_EXPR
3617 and PART_COND_EXPR are true. Treat a null *COND_EXPR as "true". */
3619 static void
3620 chain_cond_expr (tree *cond_expr, tree part_cond_expr)
3622 if (*cond_expr)
3623 *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
3624 *cond_expr, part_cond_expr);
3625 else
3626 *cond_expr = part_cond_expr;
3629 /* Function vect_create_cond_for_align_checks.
3631 Create a conditional expression that represents the alignment checks for
3632 all of data references (array element references) whose alignment must be
3633 checked at runtime.
3635 Input:
3636 COND_EXPR - input conditional expression. New conditions will be chained
3637 with logical AND operation.
3638 LOOP_VINFO - two fields of the loop information are used.
3639 LOOP_VINFO_PTR_MASK is the mask used to check the alignment.
3640 LOOP_VINFO_MAY_MISALIGN_STMTS contains the refs to be checked.
3642 Output:
3643 COND_EXPR_STMT_LIST - statements needed to construct the conditional
3644 expression.
3645 The returned value is the conditional expression to be used in the if
3646 statement that controls which version of the loop gets executed at runtime.
3648 The algorithm makes two assumptions:
3649 1) The number of bytes "n" in a vector is a power of 2.
3650 2) An address "a" is aligned if a%n is zero and that this
3651 test can be done as a&(n-1) == 0. For example, for 16
3652 byte vectors the test is a&0xf == 0. */
3654 static void
3655 vect_create_cond_for_align_checks (loop_vec_info loop_vinfo,
3656 tree *cond_expr,
3657 gimple_seq *cond_expr_stmt_list)
3659 const vec<stmt_vec_info> &may_misalign_stmts
3660 = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo);
3661 stmt_vec_info stmt_info;
3662 int mask = LOOP_VINFO_PTR_MASK (loop_vinfo);
3663 tree mask_cst;
3664 unsigned int i;
3665 tree int_ptrsize_type;
3666 char tmp_name[20];
3667 tree or_tmp_name = NULL_TREE;
3668 tree and_tmp_name;
3669 gimple *and_stmt;
3670 tree ptrsize_zero;
3671 tree part_cond_expr;
3673 /* Check that mask is one less than a power of 2, i.e., mask is
3674 all zeros followed by all ones. */
3675 gcc_assert ((mask != 0) && ((mask & (mask+1)) == 0));
3677 int_ptrsize_type = signed_type_for (ptr_type_node);
3679 /* Create expression (mask & (dr_1 || ... || dr_n)) where dr_i is the address
3680 of the first vector of the i'th data reference. */
3682 FOR_EACH_VEC_ELT (may_misalign_stmts, i, stmt_info)
3684 gimple_seq new_stmt_list = NULL;
3685 tree addr_base;
3686 tree addr_tmp_name;
3687 tree new_or_tmp_name;
3688 gimple *addr_stmt, *or_stmt;
3689 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
3690 bool negative = tree_int_cst_compare
3691 (DR_STEP (STMT_VINFO_DATA_REF (stmt_info)), size_zero_node) < 0;
3692 tree offset = negative
3693 ? size_int ((-TYPE_VECTOR_SUBPARTS (vectype) + 1)
3694 * TREE_INT_CST_LOW (TYPE_SIZE_UNIT (TREE_TYPE (vectype))))
3695 : size_zero_node;
3697 /* create: addr_tmp = (int)(address_of_first_vector) */
3698 addr_base =
3699 vect_create_addr_base_for_vector_ref (loop_vinfo,
3700 stmt_info, &new_stmt_list,
3701 offset);
3702 if (new_stmt_list != NULL)
3703 gimple_seq_add_seq (cond_expr_stmt_list, new_stmt_list);
3705 sprintf (tmp_name, "addr2int%d", i);
3706 addr_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, tmp_name);
3707 addr_stmt = gimple_build_assign (addr_tmp_name, NOP_EXPR, addr_base);
3708 gimple_seq_add_stmt (cond_expr_stmt_list, addr_stmt);
3710 /* The addresses are OR together. */
3712 if (or_tmp_name != NULL_TREE)
3714 /* create: or_tmp = or_tmp | addr_tmp */
3715 sprintf (tmp_name, "orptrs%d", i);
3716 new_or_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, tmp_name);
3717 or_stmt = gimple_build_assign (new_or_tmp_name, BIT_IOR_EXPR,
3718 or_tmp_name, addr_tmp_name);
3719 gimple_seq_add_stmt (cond_expr_stmt_list, or_stmt);
3720 or_tmp_name = new_or_tmp_name;
3722 else
3723 or_tmp_name = addr_tmp_name;
3725 } /* end for i */
3727 mask_cst = build_int_cst (int_ptrsize_type, mask);
3729 /* create: and_tmp = or_tmp & mask */
3730 and_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, "andmask");
3732 and_stmt = gimple_build_assign (and_tmp_name, BIT_AND_EXPR,
3733 or_tmp_name, mask_cst);
3734 gimple_seq_add_stmt (cond_expr_stmt_list, and_stmt);
3736 /* Make and_tmp the left operand of the conditional test against zero.
3737 if and_tmp has a nonzero bit then some address is unaligned. */
3738 ptrsize_zero = build_int_cst (int_ptrsize_type, 0);
3739 part_cond_expr = fold_build2 (EQ_EXPR, boolean_type_node,
3740 and_tmp_name, ptrsize_zero);
3741 chain_cond_expr (cond_expr, part_cond_expr);
3744 /* If LOOP_VINFO_CHECK_UNEQUAL_ADDRS contains <A1, B1>, ..., <An, Bn>,
3745 create a tree representation of: (&A1 != &B1) && ... && (&An != &Bn).
3746 Set *COND_EXPR to a tree that is true when both the original *COND_EXPR
3747 and this new condition are true. Treat a null *COND_EXPR as "true". */
3749 static void
3750 vect_create_cond_for_unequal_addrs (loop_vec_info loop_vinfo, tree *cond_expr)
3752 const vec<vec_object_pair> &pairs
3753 = LOOP_VINFO_CHECK_UNEQUAL_ADDRS (loop_vinfo);
3754 unsigned int i;
3755 vec_object_pair *pair;
3756 FOR_EACH_VEC_ELT (pairs, i, pair)
3758 tree addr1 = build_fold_addr_expr (pair->first);
3759 tree addr2 = build_fold_addr_expr (pair->second);
3760 tree part_cond_expr = fold_build2 (NE_EXPR, boolean_type_node,
3761 addr1, addr2);
3762 chain_cond_expr (cond_expr, part_cond_expr);
3766 /* Create an expression that is true when all lower-bound conditions for
3767 the vectorized loop are met. Chain this condition with *COND_EXPR. */
3769 static void
3770 vect_create_cond_for_lower_bounds (loop_vec_info loop_vinfo, tree *cond_expr)
3772 const vec<vec_lower_bound> &lower_bounds
3773 = LOOP_VINFO_LOWER_BOUNDS (loop_vinfo);
3774 for (unsigned int i = 0; i < lower_bounds.length (); ++i)
3776 tree expr = lower_bounds[i].expr;
3777 tree type = unsigned_type_for (TREE_TYPE (expr));
3778 expr = fold_convert (type, expr);
3779 poly_uint64 bound = lower_bounds[i].min_value;
3780 if (!lower_bounds[i].unsigned_p)
3782 expr = fold_build2 (PLUS_EXPR, type, expr,
3783 build_int_cstu (type, bound - 1));
3784 bound += bound - 1;
3786 tree part_cond_expr = fold_build2 (GE_EXPR, boolean_type_node, expr,
3787 build_int_cstu (type, bound));
3788 chain_cond_expr (cond_expr, part_cond_expr);
3792 /* Function vect_create_cond_for_alias_checks.
3794 Create a conditional expression that represents the run-time checks for
3795 overlapping of address ranges represented by a list of data references
3796 relations passed as input.
3798 Input:
3799 COND_EXPR - input conditional expression. New conditions will be chained
3800 with logical AND operation. If it is NULL, then the function
3801 is used to return the number of alias checks.
3802 LOOP_VINFO - field LOOP_VINFO_MAY_ALIAS_STMTS contains the list of ddrs
3803 to be checked.
3805 Output:
3806 COND_EXPR - conditional expression.
3808 The returned COND_EXPR is the conditional expression to be used in the if
3809 statement that controls which version of the loop gets executed at runtime.
3812 void
3813 vect_create_cond_for_alias_checks (loop_vec_info loop_vinfo, tree * cond_expr)
3815 const vec<dr_with_seg_len_pair_t> &comp_alias_ddrs =
3816 LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo);
3818 if (comp_alias_ddrs.is_empty ())
3819 return;
3821 create_runtime_alias_checks (LOOP_VINFO_LOOP (loop_vinfo),
3822 &comp_alias_ddrs, cond_expr);
3823 if (dump_enabled_p ())
3824 dump_printf_loc (MSG_NOTE, vect_location,
3825 "created %u versioning for alias checks.\n",
3826 comp_alias_ddrs.length ());
3830 /* Function vect_loop_versioning.
3832 If the loop has data references that may or may not be aligned or/and
3833 has data reference relations whose independence was not proven then
3834 two versions of the loop need to be generated, one which is vectorized
3835 and one which isn't. A test is then generated to control which of the
3836 loops is executed. The test checks for the alignment of all of the
3837 data references that may or may not be aligned. An additional
3838 sequence of runtime tests is generated for each pairs of DDRs whose
3839 independence was not proven. The vectorized version of loop is
3840 executed only if both alias and alignment tests are passed.
3842 The test generated to check which version of loop is executed
3843 is modified to also check for profitability as indicated by the
3844 cost model threshold TH.
3846 The versioning precondition(s) are placed in *COND_EXPR and
3847 *COND_EXPR_STMT_LIST. */
3849 class loop *
3850 vect_loop_versioning (loop_vec_info loop_vinfo,
3851 gimple *loop_vectorized_call)
3853 class loop *loop = LOOP_VINFO_LOOP (loop_vinfo), *nloop;
3854 class loop *scalar_loop = LOOP_VINFO_SCALAR_LOOP (loop_vinfo);
3855 basic_block condition_bb;
3856 gphi_iterator gsi;
3857 gimple_stmt_iterator cond_exp_gsi;
3858 basic_block merge_bb;
3859 basic_block new_exit_bb;
3860 edge new_exit_e, e;
3861 gphi *orig_phi, *new_phi;
3862 tree cond_expr = NULL_TREE;
3863 gimple_seq cond_expr_stmt_list = NULL;
3864 tree arg;
3865 profile_probability prob = profile_probability::likely ();
3866 gimple_seq gimplify_stmt_list = NULL;
3867 tree scalar_loop_iters = LOOP_VINFO_NITERSM1 (loop_vinfo);
3868 bool version_align = LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo);
3869 bool version_alias = LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo);
3870 bool version_niter = LOOP_REQUIRES_VERSIONING_FOR_NITERS (loop_vinfo);
3871 poly_uint64 versioning_threshold
3872 = LOOP_VINFO_VERSIONING_THRESHOLD (loop_vinfo);
3873 tree version_simd_if_cond
3874 = LOOP_REQUIRES_VERSIONING_FOR_SIMD_IF_COND (loop_vinfo);
3875 unsigned th = LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo);
3877 if (vect_apply_runtime_profitability_check_p (loop_vinfo)
3878 && !ordered_p (th, versioning_threshold))
3879 cond_expr = fold_build2 (GE_EXPR, boolean_type_node, scalar_loop_iters,
3880 build_int_cst (TREE_TYPE (scalar_loop_iters),
3881 th - 1));
3882 if (maybe_ne (versioning_threshold, 0U))
3884 tree expr = fold_build2 (GE_EXPR, boolean_type_node, scalar_loop_iters,
3885 build_int_cst (TREE_TYPE (scalar_loop_iters),
3886 versioning_threshold - 1));
3887 if (cond_expr)
3888 cond_expr = fold_build2 (BIT_AND_EXPR, boolean_type_node,
3889 expr, cond_expr);
3890 else
3891 cond_expr = expr;
3894 tree cost_name = NULL_TREE;
3895 profile_probability prob2 = profile_probability::always ();
3896 if (cond_expr
3897 && EXPR_P (cond_expr)
3898 && (version_niter
3899 || version_align
3900 || version_alias
3901 || version_simd_if_cond))
3903 cost_name = cond_expr = force_gimple_operand_1 (unshare_expr (cond_expr),
3904 &cond_expr_stmt_list,
3905 is_gimple_val, NULL_TREE);
3906 /* Split prob () into two so that the overall probability of passing
3907 both the cost-model and versioning checks is the orig prob. */
3908 prob2 = prob = prob.sqrt ();
3911 if (version_niter)
3912 vect_create_cond_for_niters_checks (loop_vinfo, &cond_expr);
3914 if (cond_expr)
3916 gimple_seq tem = NULL;
3917 cond_expr = force_gimple_operand_1 (unshare_expr (cond_expr),
3918 &tem, is_gimple_condexpr_for_cond,
3919 NULL_TREE);
3920 gimple_seq_add_seq (&cond_expr_stmt_list, tem);
3923 if (version_align)
3924 vect_create_cond_for_align_checks (loop_vinfo, &cond_expr,
3925 &cond_expr_stmt_list);
3927 if (version_alias)
3929 vect_create_cond_for_unequal_addrs (loop_vinfo, &cond_expr);
3930 vect_create_cond_for_lower_bounds (loop_vinfo, &cond_expr);
3931 vect_create_cond_for_alias_checks (loop_vinfo, &cond_expr);
3934 if (version_simd_if_cond)
3936 gcc_assert (dom_info_available_p (CDI_DOMINATORS));
3937 if (flag_checking)
3938 if (basic_block bb
3939 = gimple_bb (SSA_NAME_DEF_STMT (version_simd_if_cond)))
3940 gcc_assert (bb != loop->header
3941 && dominated_by_p (CDI_DOMINATORS, loop->header, bb)
3942 && (scalar_loop == NULL
3943 || (bb != scalar_loop->header
3944 && dominated_by_p (CDI_DOMINATORS,
3945 scalar_loop->header, bb))));
3946 tree zero = build_zero_cst (TREE_TYPE (version_simd_if_cond));
3947 tree c = fold_build2 (NE_EXPR, boolean_type_node,
3948 version_simd_if_cond, zero);
3949 if (cond_expr)
3950 cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
3951 c, cond_expr);
3952 else
3953 cond_expr = c;
3954 if (dump_enabled_p ())
3955 dump_printf_loc (MSG_NOTE, vect_location,
3956 "created versioning for simd if condition check.\n");
3959 cond_expr = force_gimple_operand_1 (unshare_expr (cond_expr),
3960 &gimplify_stmt_list,
3961 is_gimple_condexpr_for_cond, NULL_TREE);
3962 gimple_seq_add_seq (&cond_expr_stmt_list, gimplify_stmt_list);
3964 /* Compute the outermost loop cond_expr and cond_expr_stmt_list are
3965 invariant in. */
3966 class loop *outermost = outermost_invariant_loop_for_expr (loop, cond_expr);
3967 for (gimple_stmt_iterator gsi = gsi_start (cond_expr_stmt_list);
3968 !gsi_end_p (gsi); gsi_next (&gsi))
3970 gimple *stmt = gsi_stmt (gsi);
3971 update_stmt (stmt);
3972 ssa_op_iter iter;
3973 use_operand_p use_p;
3974 basic_block def_bb;
3975 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
3976 if ((def_bb = gimple_bb (SSA_NAME_DEF_STMT (USE_FROM_PTR (use_p))))
3977 && flow_bb_inside_loop_p (outermost, def_bb))
3978 outermost = superloop_at_depth (loop, bb_loop_depth (def_bb) + 1);
3981 /* Search for the outermost loop we can version. Avoid versioning of
3982 non-perfect nests but allow if-conversion versioned loops inside. */
3983 class loop *loop_to_version = loop;
3984 if (flow_loop_nested_p (outermost, loop))
3986 if (dump_enabled_p ())
3987 dump_printf_loc (MSG_NOTE, vect_location,
3988 "trying to apply versioning to outer loop %d\n",
3989 outermost->num);
3990 if (outermost->num == 0)
3991 outermost = superloop_at_depth (loop, 1);
3992 /* And avoid applying versioning on non-perfect nests. */
3993 while (loop_to_version != outermost
3994 && (e = single_exit (loop_outer (loop_to_version)))
3995 && !(e->flags & EDGE_COMPLEX)
3996 && (!loop_outer (loop_to_version)->inner->next
3997 || vect_loop_vectorized_call (loop_to_version))
3998 && (!loop_outer (loop_to_version)->inner->next
3999 || !loop_outer (loop_to_version)->inner->next->next))
4000 loop_to_version = loop_outer (loop_to_version);
4003 /* Apply versioning. If there is already a scalar version created by
4004 if-conversion re-use that. Note we cannot re-use the copy of
4005 an if-converted outer-loop when vectorizing the inner loop only. */
4006 gcond *cond;
4007 if ((!loop_to_version->inner || loop == loop_to_version)
4008 && loop_vectorized_call)
4010 gcc_assert (scalar_loop);
4011 condition_bb = gimple_bb (loop_vectorized_call);
4012 cond = as_a <gcond *> (*gsi_last_bb (condition_bb));
4013 gimple_cond_set_condition_from_tree (cond, cond_expr);
4014 update_stmt (cond);
4016 if (cond_expr_stmt_list)
4018 cond_exp_gsi = gsi_for_stmt (loop_vectorized_call);
4019 gsi_insert_seq_before (&cond_exp_gsi, cond_expr_stmt_list,
4020 GSI_SAME_STMT);
4023 /* if-conversion uses profile_probability::always () for both paths,
4024 reset the paths probabilities appropriately. */
4025 edge te, fe;
4026 extract_true_false_edges_from_block (condition_bb, &te, &fe);
4027 te->probability = prob;
4028 fe->probability = prob.invert ();
4029 /* We can scale loops counts immediately but have to postpone
4030 scaling the scalar loop because we re-use it during peeling.
4032 Ifcvt duplicates loop preheader, loop body and produces an basic
4033 block after loop exit. We need to scale all that. */
4034 basic_block preheader = loop_preheader_edge (loop_to_version)->src;
4035 preheader->count = preheader->count.apply_probability (prob * prob2);
4036 scale_loop_frequencies (loop_to_version, prob * prob2);
4037 single_exit (loop_to_version)->dest->count = preheader->count;
4038 LOOP_VINFO_SCALAR_LOOP_SCALING (loop_vinfo) = (prob * prob2).invert ();
4040 nloop = scalar_loop;
4041 if (dump_enabled_p ())
4042 dump_printf_loc (MSG_NOTE, vect_location,
4043 "reusing %sloop version created by if conversion\n",
4044 loop_to_version != loop ? "outer " : "");
4046 else
4048 if (loop_to_version != loop
4049 && dump_enabled_p ())
4050 dump_printf_loc (MSG_NOTE, vect_location,
4051 "applying loop versioning to outer loop %d\n",
4052 loop_to_version->num);
4054 unsigned orig_pe_idx = loop_preheader_edge (loop)->dest_idx;
4056 initialize_original_copy_tables ();
4057 nloop = loop_version (loop_to_version, cond_expr, &condition_bb,
4058 prob * prob2, (prob * prob2).invert (),
4059 prob * prob2, (prob * prob2).invert (),
4060 true);
4061 /* We will later insert second conditional so overall outcome of
4062 both is prob * prob2. */
4063 edge true_e, false_e;
4064 extract_true_false_edges_from_block (condition_bb, &true_e, &false_e);
4065 true_e->probability = prob;
4066 false_e->probability = prob.invert ();
4067 gcc_assert (nloop);
4068 nloop = get_loop_copy (loop);
4070 /* For cycle vectorization with SLP we rely on the PHI arguments
4071 appearing in the same order as the SLP node operands which for the
4072 loop PHI nodes means the preheader edge dest index needs to remain
4073 the same for the analyzed loop which also becomes the vectorized one.
4074 Make it so in case the state after versioning differs by redirecting
4075 the first edge into the header to the same destination which moves
4076 it last. */
4077 if (loop_preheader_edge (loop)->dest_idx != orig_pe_idx)
4079 edge e = EDGE_PRED (loop->header, 0);
4080 ssa_redirect_edge (e, e->dest);
4081 flush_pending_stmts (e);
4083 gcc_assert (loop_preheader_edge (loop)->dest_idx == orig_pe_idx);
4085 /* Kill off IFN_LOOP_VECTORIZED_CALL in the copy, nobody will
4086 reap those otherwise; they also refer to the original
4087 loops. */
4088 class loop *l = loop;
4089 while (gimple *call = vect_loop_vectorized_call (l))
4091 call = SSA_NAME_DEF_STMT (get_current_def (gimple_call_lhs (call)));
4092 fold_loop_internal_call (call, boolean_false_node);
4093 l = loop_outer (l);
4095 free_original_copy_tables ();
4097 if (cond_expr_stmt_list)
4099 cond_exp_gsi = gsi_last_bb (condition_bb);
4100 gsi_insert_seq_before (&cond_exp_gsi, cond_expr_stmt_list,
4101 GSI_SAME_STMT);
4104 /* Loop versioning violates an assumption we try to maintain during
4105 vectorization - that the loop exit block has a single predecessor.
4106 After versioning, the exit block of both loop versions is the same
4107 basic block (i.e. it has two predecessors). Just in order to simplify
4108 following transformations in the vectorizer, we fix this situation
4109 here by adding a new (empty) block on the exit-edge of the loop,
4110 with the proper loop-exit phis to maintain loop-closed-form.
4111 If loop versioning wasn't done from loop, but scalar_loop instead,
4112 merge_bb will have already just a single successor. */
4114 /* When the loop has multiple exits then we can only version itself.
4115 This is denoted by loop_to_version == loop. In this case we can
4116 do the versioning by selecting the exit edge the vectorizer is
4117 currently using. */
4118 edge exit_edge;
4119 if (loop_to_version == loop)
4120 exit_edge = LOOP_VINFO_IV_EXIT (loop_vinfo);
4121 else
4122 exit_edge = single_exit (loop_to_version);
4124 gcc_assert (exit_edge);
4125 merge_bb = exit_edge->dest;
4126 if (EDGE_COUNT (merge_bb->preds) >= 2)
4128 gcc_assert (EDGE_COUNT (merge_bb->preds) >= 2);
4129 new_exit_bb = split_edge (exit_edge);
4130 new_exit_e = exit_edge;
4131 e = EDGE_SUCC (new_exit_bb, 0);
4133 for (gsi = gsi_start_phis (merge_bb); !gsi_end_p (gsi);
4134 gsi_next (&gsi))
4136 tree new_res;
4137 orig_phi = gsi.phi ();
4138 new_res = copy_ssa_name (PHI_RESULT (orig_phi));
4139 new_phi = create_phi_node (new_res, new_exit_bb);
4140 arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
4141 add_phi_arg (new_phi, arg, new_exit_e,
4142 gimple_phi_arg_location_from_edge (orig_phi, e));
4143 adjust_phi_and_debug_stmts (orig_phi, e, PHI_RESULT (new_phi));
4147 update_ssa (TODO_update_ssa_no_phi);
4150 /* Split the cost model check off to a separate BB. Costing assumes
4151 this is the only thing we perform when we enter the scalar loop
4152 from a failed cost decision. */
4153 if (cost_name && TREE_CODE (cost_name) == SSA_NAME)
4155 gimple *def = SSA_NAME_DEF_STMT (cost_name);
4156 gcc_assert (gimple_bb (def) == condition_bb);
4157 /* All uses of the cost check are 'true' after the check we
4158 are going to insert. */
4159 replace_uses_by (cost_name, boolean_true_node);
4160 /* And we're going to build the new single use of it. */
4161 gcond *cond = gimple_build_cond (NE_EXPR, cost_name, boolean_false_node,
4162 NULL_TREE, NULL_TREE);
4163 edge e = split_block (gimple_bb (def), def);
4164 gimple_stmt_iterator gsi = gsi_for_stmt (def);
4165 gsi_insert_after (&gsi, cond, GSI_NEW_STMT);
4166 edge true_e, false_e;
4167 extract_true_false_edges_from_block (e->dest, &true_e, &false_e);
4168 e->flags &= ~EDGE_FALLTHRU;
4169 e->flags |= EDGE_TRUE_VALUE;
4170 edge e2 = make_edge (e->src, false_e->dest, EDGE_FALSE_VALUE);
4171 e->probability = prob2;
4172 e2->probability = prob2.invert ();
4173 e->dest->count = e->count ();
4174 set_immediate_dominator (CDI_DOMINATORS, false_e->dest, e->src);
4175 auto_vec<basic_block, 3> adj;
4176 for (basic_block son = first_dom_son (CDI_DOMINATORS, e->dest);
4177 son;
4178 son = next_dom_son (CDI_DOMINATORS, son))
4179 if (EDGE_COUNT (son->preds) > 1)
4180 adj.safe_push (son);
4181 for (auto son : adj)
4182 set_immediate_dominator (CDI_DOMINATORS, son, e->src);
4183 //debug_bb (condition_bb);
4184 //debug_bb (e->src);
4187 if (version_niter)
4189 /* The versioned loop could be infinite, we need to clear existing
4190 niter information which is copied from the original loop. */
4191 gcc_assert (loop_constraint_set_p (loop, LOOP_C_FINITE));
4192 vect_free_loop_info_assumptions (nloop);
4195 if (LOCATION_LOCUS (vect_location.get_location_t ()) != UNKNOWN_LOCATION
4196 && dump_enabled_p ())
4198 if (version_alias)
4199 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS | MSG_PRIORITY_USER_FACING,
4200 vect_location,
4201 "loop versioned for vectorization because of "
4202 "possible aliasing\n");
4203 if (version_align)
4204 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS | MSG_PRIORITY_USER_FACING,
4205 vect_location,
4206 "loop versioned for vectorization to enhance "
4207 "alignment\n");
4211 return nloop;