tree-optimization/113126 - vector extension compare optimization
[official-gcc.git] / gcc / function.cc
blobde356f7fba3c9e87e287fc2d7f0f567a3644b0d9
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987-2024 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file handles the generation of rtl code from tree structure
21 at the level of the function as a whole.
22 It creates the rtl expressions for parameters and auto variables
23 and has full responsibility for allocating stack slots.
25 `expand_function_start' is called at the beginning of a function,
26 before the function body is parsed, and `expand_function_end' is
27 called after parsing the body.
29 Call `assign_stack_local' to allocate a stack slot for a local variable.
30 This is usually done during the RTL generation for the function body,
31 but it can also be done in the reload pass when a pseudo-register does
32 not get a hard register. */
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "backend.h"
38 #include "target.h"
39 #include "rtl.h"
40 #include "tree.h"
41 #include "gimple-expr.h"
42 #include "cfghooks.h"
43 #include "df.h"
44 #include "memmodel.h"
45 #include "tm_p.h"
46 #include "stringpool.h"
47 #include "expmed.h"
48 #include "optabs.h"
49 #include "opts.h"
50 #include "regs.h"
51 #include "emit-rtl.h"
52 #include "recog.h"
53 #include "rtl-error.h"
54 #include "hard-reg-set.h"
55 #include "alias.h"
56 #include "fold-const.h"
57 #include "stor-layout.h"
58 #include "varasm.h"
59 #include "except.h"
60 #include "dojump.h"
61 #include "explow.h"
62 #include "calls.h"
63 #include "expr.h"
64 #include "optabs-tree.h"
65 #include "output.h"
66 #include "langhooks.h"
67 #include "common/common-target.h"
68 #include "gimplify.h"
69 #include "tree-pass.h"
70 #include "cfgrtl.h"
71 #include "cfganal.h"
72 #include "cfgbuild.h"
73 #include "cfgcleanup.h"
74 #include "cfgexpand.h"
75 #include "shrink-wrap.h"
76 #include "toplev.h"
77 #include "rtl-iter.h"
78 #include "tree-dfa.h"
79 #include "tree-ssa.h"
80 #include "stringpool.h"
81 #include "attribs.h"
82 #include "gimple.h"
83 #include "options.h"
84 #include "function-abi.h"
85 #include "value-range.h"
86 #include "gimple-range.h"
87 #include "insn-attr.h"
89 /* So we can assign to cfun in this file. */
90 #undef cfun
92 #ifndef STACK_ALIGNMENT_NEEDED
93 #define STACK_ALIGNMENT_NEEDED 1
94 #endif
96 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
98 /* Round a value to the lowest integer less than it that is a multiple of
99 the required alignment. Avoid using division in case the value is
100 negative. Assume the alignment is a power of two. */
101 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
103 /* Similar, but round to the next highest integer that meets the
104 alignment. */
105 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
107 /* Nonzero once virtual register instantiation has been done.
108 assign_stack_local uses frame_pointer_rtx when this is nonzero.
109 calls.cc:emit_library_call_value_1 uses it to set up
110 post-instantiation libcalls. */
111 int virtuals_instantiated;
113 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
114 static GTY(()) int funcdef_no;
116 /* These variables hold pointers to functions to create and destroy
117 target specific, per-function data structures. */
118 struct machine_function * (*init_machine_status) (void);
120 /* The currently compiled function. */
121 struct function *cfun = 0;
123 /* These hashes record the prologue and epilogue insns. */
125 struct insn_cache_hasher : ggc_cache_ptr_hash<rtx_def>
127 static hashval_t hash (rtx x) { return htab_hash_pointer (x); }
128 static bool equal (rtx a, rtx b) { return a == b; }
131 static GTY((cache))
132 hash_table<insn_cache_hasher> *prologue_insn_hash;
133 static GTY((cache))
134 hash_table<insn_cache_hasher> *epilogue_insn_hash;
137 hash_table<used_type_hasher> *types_used_by_vars_hash = NULL;
138 vec<tree, va_gc> *types_used_by_cur_var_decl;
140 /* Forward declarations. */
142 static class temp_slot *find_temp_slot_from_address (rtx);
143 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
144 static void pad_below (struct args_size *, machine_mode, tree);
145 static void reorder_blocks_1 (rtx_insn *, tree, vec<tree> *);
146 static int all_blocks (tree, tree *);
147 static tree *get_block_vector (tree, int *);
148 extern tree debug_find_var_in_block_tree (tree, tree);
149 /* We always define `record_insns' even if it's not used so that we
150 can always export `prologue_epilogue_contains'. */
151 static void record_insns (rtx_insn *, rtx, hash_table<insn_cache_hasher> **)
152 ATTRIBUTE_UNUSED;
153 static bool contains (const rtx_insn *, hash_table<insn_cache_hasher> *);
154 static void prepare_function_start (void);
155 static void do_clobber_return_reg (rtx, void *);
156 static void do_use_return_reg (rtx, void *);
159 /* Stack of nested functions. */
160 /* Keep track of the cfun stack. */
162 static vec<function *> function_context_stack;
164 /* Save the current context for compilation of a nested function.
165 This is called from language-specific code. */
167 void
168 push_function_context (void)
170 if (cfun == 0)
171 allocate_struct_function (NULL, false);
173 function_context_stack.safe_push (cfun);
174 set_cfun (NULL);
177 /* Restore the last saved context, at the end of a nested function.
178 This function is called from language-specific code. */
180 void
181 pop_function_context (void)
183 struct function *p = function_context_stack.pop ();
184 set_cfun (p);
185 current_function_decl = p->decl;
187 /* Reset variables that have known state during rtx generation. */
188 virtuals_instantiated = 0;
189 generating_concat_p = 1;
192 /* Clear out all parts of the state in F that can safely be discarded
193 after the function has been parsed, but not compiled, to let
194 garbage collection reclaim the memory. */
196 void
197 free_after_parsing (struct function *f)
199 f->language = 0;
202 /* Clear out all parts of the state in F that can safely be discarded
203 after the function has been compiled, to let garbage collection
204 reclaim the memory. */
206 void
207 free_after_compilation (struct function *f)
209 prologue_insn_hash = NULL;
210 epilogue_insn_hash = NULL;
212 free (crtl->emit.regno_pointer_align);
214 memset (crtl, 0, sizeof (struct rtl_data));
215 f->eh = NULL;
216 f->machine = NULL;
217 f->cfg = NULL;
218 f->curr_properties &= ~PROP_cfg;
220 regno_reg_rtx = NULL;
223 /* Return size needed for stack frame based on slots so far allocated.
224 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
225 the caller may have to do that. */
227 poly_int64
228 get_frame_size (void)
230 if (FRAME_GROWS_DOWNWARD)
231 return -frame_offset;
232 else
233 return frame_offset;
236 /* Issue an error message and return TRUE if frame OFFSET overflows in
237 the signed target pointer arithmetics for function FUNC. Otherwise
238 return FALSE. */
240 bool
241 frame_offset_overflow (poly_int64 offset, tree func)
243 poly_uint64 size = FRAME_GROWS_DOWNWARD ? -offset : offset;
244 unsigned HOST_WIDE_INT limit
245 = ((HOST_WIDE_INT_1U << (GET_MODE_BITSIZE (Pmode) - 1))
246 /* Leave room for the fixed part of the frame. */
247 - 64 * UNITS_PER_WORD);
249 if (!coeffs_in_range_p (size, 0U, limit))
251 unsigned HOST_WIDE_INT hwisize;
252 if (size.is_constant (&hwisize))
253 error_at (DECL_SOURCE_LOCATION (func),
254 "total size of local objects %wu exceeds maximum %wu",
255 hwisize, limit);
256 else
257 error_at (DECL_SOURCE_LOCATION (func),
258 "total size of local objects exceeds maximum %wu",
259 limit);
260 return true;
263 return false;
266 /* Return the minimum spill slot alignment for a register of mode MODE. */
268 unsigned int
269 spill_slot_alignment (machine_mode mode ATTRIBUTE_UNUSED)
271 return STACK_SLOT_ALIGNMENT (NULL_TREE, mode, GET_MODE_ALIGNMENT (mode));
274 /* Return stack slot alignment in bits for TYPE and MODE. */
276 static unsigned int
277 get_stack_local_alignment (tree type, machine_mode mode)
279 unsigned int alignment;
281 if (mode == BLKmode)
282 alignment = BIGGEST_ALIGNMENT;
283 else
284 alignment = GET_MODE_ALIGNMENT (mode);
286 /* Allow the frond-end to (possibly) increase the alignment of this
287 stack slot. */
288 if (! type)
289 type = lang_hooks.types.type_for_mode (mode, 0);
291 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
294 /* Determine whether it is possible to fit a stack slot of size SIZE and
295 alignment ALIGNMENT into an area in the stack frame that starts at
296 frame offset START and has a length of LENGTH. If so, store the frame
297 offset to be used for the stack slot in *POFFSET and return true;
298 return false otherwise. This function will extend the frame size when
299 given a start/length pair that lies at the end of the frame. */
301 static bool
302 try_fit_stack_local (poly_int64 start, poly_int64 length,
303 poly_int64 size, unsigned int alignment,
304 poly_int64 *poffset)
306 poly_int64 this_frame_offset;
307 int frame_off, frame_alignment, frame_phase;
309 /* Calculate how many bytes the start of local variables is off from
310 stack alignment. */
311 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
312 frame_off = targetm.starting_frame_offset () % frame_alignment;
313 frame_phase = frame_off ? frame_alignment - frame_off : 0;
315 /* Round the frame offset to the specified alignment. */
317 if (FRAME_GROWS_DOWNWARD)
318 this_frame_offset
319 = (aligned_lower_bound (start + length - size - frame_phase, alignment)
320 + frame_phase);
321 else
322 this_frame_offset
323 = aligned_upper_bound (start - frame_phase, alignment) + frame_phase;
325 /* See if it fits. If this space is at the edge of the frame,
326 consider extending the frame to make it fit. Our caller relies on
327 this when allocating a new slot. */
328 if (maybe_lt (this_frame_offset, start))
330 if (known_eq (frame_offset, start))
331 frame_offset = this_frame_offset;
332 else
333 return false;
335 else if (maybe_gt (this_frame_offset + size, start + length))
337 if (known_eq (frame_offset, start + length))
338 frame_offset = this_frame_offset + size;
339 else
340 return false;
343 *poffset = this_frame_offset;
344 return true;
347 /* Create a new frame_space structure describing free space in the stack
348 frame beginning at START and ending at END, and chain it into the
349 function's frame_space_list. */
351 static void
352 add_frame_space (poly_int64 start, poly_int64 end)
354 class frame_space *space = ggc_alloc<frame_space> ();
355 space->next = crtl->frame_space_list;
356 crtl->frame_space_list = space;
357 space->start = start;
358 space->length = end - start;
361 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
362 with machine mode MODE.
364 ALIGN controls the amount of alignment for the address of the slot:
365 0 means according to MODE,
366 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
367 -2 means use BITS_PER_UNIT,
368 positive specifies alignment boundary in bits.
370 KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce
371 alignment and ASLK_RECORD_PAD bit set if we should remember
372 extra space we allocated for alignment purposes. When we are
373 called from assign_stack_temp_for_type, it is not set so we don't
374 track the same stack slot in two independent lists.
376 We do not round to stack_boundary here. */
379 assign_stack_local_1 (machine_mode mode, poly_int64 size,
380 int align, int kind)
382 rtx x, addr;
383 poly_int64 bigend_correction = 0;
384 poly_int64 slot_offset = 0, old_frame_offset;
385 unsigned int alignment, alignment_in_bits;
387 if (align == 0)
389 alignment = get_stack_local_alignment (NULL, mode);
390 alignment /= BITS_PER_UNIT;
392 else if (align == -1)
394 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
395 size = aligned_upper_bound (size, alignment);
397 else if (align == -2)
398 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
399 else
400 alignment = align / BITS_PER_UNIT;
402 alignment_in_bits = alignment * BITS_PER_UNIT;
404 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
405 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
407 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
408 alignment = MAX_SUPPORTED_STACK_ALIGNMENT / BITS_PER_UNIT;
411 if (SUPPORTS_STACK_ALIGNMENT)
413 if (crtl->stack_alignment_estimated < alignment_in_bits)
415 if (!crtl->stack_realign_processed)
416 crtl->stack_alignment_estimated = alignment_in_bits;
417 else
419 /* If stack is realigned and stack alignment value
420 hasn't been finalized, it is OK not to increase
421 stack_alignment_estimated. The bigger alignment
422 requirement is recorded in stack_alignment_needed
423 below. */
424 gcc_assert (!crtl->stack_realign_finalized);
425 if (!crtl->stack_realign_needed)
427 /* It is OK to reduce the alignment as long as the
428 requested size is 0 or the estimated stack
429 alignment >= mode alignment. */
430 gcc_assert ((kind & ASLK_REDUCE_ALIGN)
431 || known_eq (size, 0)
432 || (crtl->stack_alignment_estimated
433 >= GET_MODE_ALIGNMENT (mode)));
434 alignment_in_bits = crtl->stack_alignment_estimated;
435 alignment = alignment_in_bits / BITS_PER_UNIT;
441 if (crtl->stack_alignment_needed < alignment_in_bits)
442 crtl->stack_alignment_needed = alignment_in_bits;
443 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
444 crtl->max_used_stack_slot_alignment = alignment_in_bits;
446 if (mode != BLKmode || maybe_ne (size, 0))
448 if (kind & ASLK_RECORD_PAD)
450 class frame_space **psp;
452 for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next)
454 class frame_space *space = *psp;
455 if (!try_fit_stack_local (space->start, space->length, size,
456 alignment, &slot_offset))
457 continue;
458 *psp = space->next;
459 if (known_gt (slot_offset, space->start))
460 add_frame_space (space->start, slot_offset);
461 if (known_lt (slot_offset + size, space->start + space->length))
462 add_frame_space (slot_offset + size,
463 space->start + space->length);
464 goto found_space;
468 else if (!STACK_ALIGNMENT_NEEDED)
470 slot_offset = frame_offset;
471 goto found_space;
474 old_frame_offset = frame_offset;
476 if (FRAME_GROWS_DOWNWARD)
478 frame_offset -= size;
479 try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset);
481 if (kind & ASLK_RECORD_PAD)
483 if (known_gt (slot_offset, frame_offset))
484 add_frame_space (frame_offset, slot_offset);
485 if (known_lt (slot_offset + size, old_frame_offset))
486 add_frame_space (slot_offset + size, old_frame_offset);
489 else
491 frame_offset += size;
492 try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset);
494 if (kind & ASLK_RECORD_PAD)
496 if (known_gt (slot_offset, old_frame_offset))
497 add_frame_space (old_frame_offset, slot_offset);
498 if (known_lt (slot_offset + size, frame_offset))
499 add_frame_space (slot_offset + size, frame_offset);
503 found_space:
504 /* On a big-endian machine, if we are allocating more space than we will use,
505 use the least significant bytes of those that are allocated. */
506 if (mode != BLKmode)
508 /* The slot size can sometimes be smaller than the mode size;
509 e.g. the rs6000 port allocates slots with a vector mode
510 that have the size of only one element. However, the slot
511 size must always be ordered wrt to the mode size, in the
512 same way as for a subreg. */
513 gcc_checking_assert (ordered_p (GET_MODE_SIZE (mode), size));
514 if (BYTES_BIG_ENDIAN && maybe_lt (GET_MODE_SIZE (mode), size))
515 bigend_correction = size - GET_MODE_SIZE (mode);
518 /* If we have already instantiated virtual registers, return the actual
519 address relative to the frame pointer. */
520 if (virtuals_instantiated)
521 addr = plus_constant (Pmode, frame_pointer_rtx,
522 trunc_int_for_mode
523 (slot_offset + bigend_correction
524 + targetm.starting_frame_offset (), Pmode));
525 else
526 addr = plus_constant (Pmode, virtual_stack_vars_rtx,
527 trunc_int_for_mode
528 (slot_offset + bigend_correction,
529 Pmode));
531 x = gen_rtx_MEM (mode, addr);
532 set_mem_align (x, alignment_in_bits);
533 MEM_NOTRAP_P (x) = 1;
535 vec_safe_push (stack_slot_list, x);
537 if (frame_offset_overflow (frame_offset, current_function_decl))
538 frame_offset = 0;
540 return x;
543 /* Wrap up assign_stack_local_1 with last parameter as false. */
546 assign_stack_local (machine_mode mode, poly_int64 size, int align)
548 return assign_stack_local_1 (mode, size, align, ASLK_RECORD_PAD);
551 /* In order to evaluate some expressions, such as function calls returning
552 structures in memory, we need to temporarily allocate stack locations.
553 We record each allocated temporary in the following structure.
555 Associated with each temporary slot is a nesting level. When we pop up
556 one level, all temporaries associated with the previous level are freed.
557 Normally, all temporaries are freed after the execution of the statement
558 in which they were created. However, if we are inside a ({...}) grouping,
559 the result may be in a temporary and hence must be preserved. If the
560 result could be in a temporary, we preserve it if we can determine which
561 one it is in. If we cannot determine which temporary may contain the
562 result, all temporaries are preserved. A temporary is preserved by
563 pretending it was allocated at the previous nesting level. */
565 class GTY(()) temp_slot {
566 public:
567 /* Points to next temporary slot. */
568 class temp_slot *next;
569 /* Points to previous temporary slot. */
570 class temp_slot *prev;
571 /* The rtx to used to reference the slot. */
572 rtx slot;
573 /* The size, in units, of the slot. */
574 poly_int64 size;
575 /* The type of the object in the slot, or zero if it doesn't correspond
576 to a type. We use this to determine whether a slot can be reused.
577 It can be reused if objects of the type of the new slot will always
578 conflict with objects of the type of the old slot. */
579 tree type;
580 /* The alignment (in bits) of the slot. */
581 unsigned int align;
582 /* True if this temporary is currently in use. */
583 bool in_use;
584 /* Nesting level at which this slot is being used. */
585 int level;
586 /* The offset of the slot from the frame_pointer, including extra space
587 for alignment. This info is for combine_temp_slots. */
588 poly_int64 base_offset;
589 /* The size of the slot, including extra space for alignment. This
590 info is for combine_temp_slots. */
591 poly_int64 full_size;
594 /* Entry for the below hash table. */
595 struct GTY((for_user)) temp_slot_address_entry {
596 hashval_t hash;
597 rtx address;
598 class temp_slot *temp_slot;
601 struct temp_address_hasher : ggc_ptr_hash<temp_slot_address_entry>
603 static hashval_t hash (temp_slot_address_entry *);
604 static bool equal (temp_slot_address_entry *, temp_slot_address_entry *);
607 /* A table of addresses that represent a stack slot. The table is a mapping
608 from address RTXen to a temp slot. */
609 static GTY(()) hash_table<temp_address_hasher> *temp_slot_address_table;
610 static size_t n_temp_slots_in_use;
612 /* Removes temporary slot TEMP from LIST. */
614 static void
615 cut_slot_from_list (class temp_slot *temp, class temp_slot **list)
617 if (temp->next)
618 temp->next->prev = temp->prev;
619 if (temp->prev)
620 temp->prev->next = temp->next;
621 else
622 *list = temp->next;
624 temp->prev = temp->next = NULL;
627 /* Inserts temporary slot TEMP to LIST. */
629 static void
630 insert_slot_to_list (class temp_slot *temp, class temp_slot **list)
632 temp->next = *list;
633 if (*list)
634 (*list)->prev = temp;
635 temp->prev = NULL;
636 *list = temp;
639 /* Returns the list of used temp slots at LEVEL. */
641 static class temp_slot **
642 temp_slots_at_level (int level)
644 if (level >= (int) vec_safe_length (used_temp_slots))
645 vec_safe_grow_cleared (used_temp_slots, level + 1, true);
647 return &(*used_temp_slots)[level];
650 /* Returns the maximal temporary slot level. */
652 static int
653 max_slot_level (void)
655 if (!used_temp_slots)
656 return -1;
658 return used_temp_slots->length () - 1;
661 /* Moves temporary slot TEMP to LEVEL. */
663 static void
664 move_slot_to_level (class temp_slot *temp, int level)
666 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
667 insert_slot_to_list (temp, temp_slots_at_level (level));
668 temp->level = level;
671 /* Make temporary slot TEMP available. */
673 static void
674 make_slot_available (class temp_slot *temp)
676 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
677 insert_slot_to_list (temp, &avail_temp_slots);
678 temp->in_use = false;
679 temp->level = -1;
680 n_temp_slots_in_use--;
683 /* Compute the hash value for an address -> temp slot mapping.
684 The value is cached on the mapping entry. */
685 static hashval_t
686 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
688 int do_not_record = 0;
689 return hash_rtx (t->address, GET_MODE (t->address),
690 &do_not_record, NULL, false);
693 /* Return the hash value for an address -> temp slot mapping. */
694 hashval_t
695 temp_address_hasher::hash (temp_slot_address_entry *t)
697 return t->hash;
700 /* Compare two address -> temp slot mapping entries. */
701 bool
702 temp_address_hasher::equal (temp_slot_address_entry *t1,
703 temp_slot_address_entry *t2)
705 return exp_equiv_p (t1->address, t2->address, 0, true);
708 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
709 static void
710 insert_temp_slot_address (rtx address, class temp_slot *temp_slot)
712 struct temp_slot_address_entry *t = ggc_alloc<temp_slot_address_entry> ();
713 t->address = copy_rtx (address);
714 t->temp_slot = temp_slot;
715 t->hash = temp_slot_address_compute_hash (t);
716 *temp_slot_address_table->find_slot_with_hash (t, t->hash, INSERT) = t;
719 /* Remove an address -> temp slot mapping entry if the temp slot is
720 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
722 remove_unused_temp_slot_addresses_1 (temp_slot_address_entry **slot, void *)
724 const struct temp_slot_address_entry *t = *slot;
725 if (! t->temp_slot->in_use)
726 temp_slot_address_table->clear_slot (slot);
727 return 1;
730 /* Remove all mappings of addresses to unused temp slots. */
731 static void
732 remove_unused_temp_slot_addresses (void)
734 /* Use quicker clearing if there aren't any active temp slots. */
735 if (n_temp_slots_in_use)
736 temp_slot_address_table->traverse
737 <void *, remove_unused_temp_slot_addresses_1> (NULL);
738 else
739 temp_slot_address_table->empty ();
742 /* Find the temp slot corresponding to the object at address X. */
744 static class temp_slot *
745 find_temp_slot_from_address (rtx x)
747 class temp_slot *p;
748 struct temp_slot_address_entry tmp, *t;
750 /* First try the easy way:
751 See if X exists in the address -> temp slot mapping. */
752 tmp.address = x;
753 tmp.temp_slot = NULL;
754 tmp.hash = temp_slot_address_compute_hash (&tmp);
755 t = temp_slot_address_table->find_with_hash (&tmp, tmp.hash);
756 if (t)
757 return t->temp_slot;
759 /* If we have a sum involving a register, see if it points to a temp
760 slot. */
761 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
762 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
763 return p;
764 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
765 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
766 return p;
768 /* Last resort: Address is a virtual stack var address. */
769 poly_int64 offset;
770 if (strip_offset (x, &offset) == virtual_stack_vars_rtx)
772 int i;
773 for (i = max_slot_level (); i >= 0; i--)
774 for (p = *temp_slots_at_level (i); p; p = p->next)
775 if (known_in_range_p (offset, p->base_offset, p->full_size))
776 return p;
779 return NULL;
782 /* Allocate a temporary stack slot and record it for possible later
783 reuse.
785 MODE is the machine mode to be given to the returned rtx.
787 SIZE is the size in units of the space required. We do no rounding here
788 since assign_stack_local will do any required rounding.
790 TYPE is the type that will be used for the stack slot. */
793 assign_stack_temp_for_type (machine_mode mode, poly_int64 size, tree type)
795 unsigned int align;
796 class temp_slot *p, *best_p = 0, *selected = NULL, **pp;
797 rtx slot;
799 gcc_assert (known_size_p (size));
801 align = get_stack_local_alignment (type, mode);
803 /* Try to find an available, already-allocated temporary of the proper
804 mode which meets the size and alignment requirements. Choose the
805 smallest one with the closest alignment.
807 If assign_stack_temp is called outside of the tree->rtl expansion,
808 we cannot reuse the stack slots (that may still refer to
809 VIRTUAL_STACK_VARS_REGNUM). */
810 if (!virtuals_instantiated)
812 for (p = avail_temp_slots; p; p = p->next)
814 if (p->align >= align
815 && known_ge (p->size, size)
816 && GET_MODE (p->slot) == mode
817 && objects_must_conflict_p (p->type, type)
818 && (best_p == 0
819 || (known_eq (best_p->size, p->size)
820 ? best_p->align > p->align
821 : known_ge (best_p->size, p->size))))
823 if (p->align == align && known_eq (p->size, size))
825 selected = p;
826 cut_slot_from_list (selected, &avail_temp_slots);
827 best_p = 0;
828 break;
830 best_p = p;
835 /* Make our best, if any, the one to use. */
836 if (best_p)
838 selected = best_p;
839 cut_slot_from_list (selected, &avail_temp_slots);
841 /* If there are enough aligned bytes left over, make them into a new
842 temp_slot so that the extra bytes don't get wasted. Do this only
843 for BLKmode slots, so that we can be sure of the alignment. */
844 if (GET_MODE (best_p->slot) == BLKmode)
846 int alignment = best_p->align / BITS_PER_UNIT;
847 poly_int64 rounded_size = aligned_upper_bound (size, alignment);
849 if (known_ge (best_p->size - rounded_size, alignment))
851 p = ggc_alloc<temp_slot> ();
852 p->in_use = false;
853 p->size = best_p->size - rounded_size;
854 p->base_offset = best_p->base_offset + rounded_size;
855 p->full_size = best_p->full_size - rounded_size;
856 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
857 p->align = best_p->align;
858 p->type = best_p->type;
859 insert_slot_to_list (p, &avail_temp_slots);
861 vec_safe_push (stack_slot_list, p->slot);
863 best_p->size = rounded_size;
864 best_p->full_size = rounded_size;
869 /* If we still didn't find one, make a new temporary. */
870 if (selected == 0)
872 poly_int64 frame_offset_old = frame_offset;
874 p = ggc_alloc<temp_slot> ();
876 /* We are passing an explicit alignment request to assign_stack_local.
877 One side effect of that is assign_stack_local will not round SIZE
878 to ensure the frame offset remains suitably aligned.
880 So for requests which depended on the rounding of SIZE, we go ahead
881 and round it now. We also make sure ALIGNMENT is at least
882 BIGGEST_ALIGNMENT. */
883 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
884 p->slot = assign_stack_local_1 (mode,
885 (mode == BLKmode
886 ? aligned_upper_bound (size,
887 (int) align
888 / BITS_PER_UNIT)
889 : size),
890 align, 0);
892 p->align = align;
894 /* The following slot size computation is necessary because we don't
895 know the actual size of the temporary slot until assign_stack_local
896 has performed all the frame alignment and size rounding for the
897 requested temporary. Note that extra space added for alignment
898 can be either above or below this stack slot depending on which
899 way the frame grows. We include the extra space if and only if it
900 is above this slot. */
901 if (FRAME_GROWS_DOWNWARD)
902 p->size = frame_offset_old - frame_offset;
903 else
904 p->size = size;
906 /* Now define the fields used by combine_temp_slots. */
907 if (FRAME_GROWS_DOWNWARD)
909 p->base_offset = frame_offset;
910 p->full_size = frame_offset_old - frame_offset;
912 else
914 p->base_offset = frame_offset_old;
915 p->full_size = frame_offset - frame_offset_old;
918 selected = p;
921 p = selected;
922 p->in_use = true;
923 p->type = type;
924 p->level = temp_slot_level;
925 n_temp_slots_in_use++;
927 pp = temp_slots_at_level (p->level);
928 insert_slot_to_list (p, pp);
929 insert_temp_slot_address (XEXP (p->slot, 0), p);
931 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
932 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
933 vec_safe_push (stack_slot_list, slot);
935 /* If we know the alias set for the memory that will be used, use
936 it. If there's no TYPE, then we don't know anything about the
937 alias set for the memory. */
938 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
939 set_mem_align (slot, align);
941 /* If a type is specified, set the relevant flags. */
942 if (type != 0)
943 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
944 MEM_NOTRAP_P (slot) = 1;
946 return slot;
949 /* Allocate a temporary stack slot and record it for possible later
950 reuse. First two arguments are same as in preceding function. */
953 assign_stack_temp (machine_mode mode, poly_int64 size)
955 return assign_stack_temp_for_type (mode, size, NULL_TREE);
958 /* Assign a temporary.
959 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
960 and so that should be used in error messages. In either case, we
961 allocate of the given type.
962 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
963 it is 0 if a register is OK.
964 DONT_PROMOTE is 1 if we should not promote values in register
965 to wider modes. */
968 assign_temp (tree type_or_decl, int memory_required,
969 int dont_promote ATTRIBUTE_UNUSED)
971 tree type, decl;
972 machine_mode mode;
973 #ifdef PROMOTE_MODE
974 int unsignedp;
975 #endif
977 if (DECL_P (type_or_decl))
978 decl = type_or_decl, type = TREE_TYPE (decl);
979 else
980 decl = NULL, type = type_or_decl;
982 mode = TYPE_MODE (type);
983 #ifdef PROMOTE_MODE
984 unsignedp = TYPE_UNSIGNED (type);
985 #endif
987 /* Allocating temporaries of TREE_ADDRESSABLE type must be done in the front
988 end. See also create_tmp_var for the gimplification-time check. */
989 gcc_assert (!TREE_ADDRESSABLE (type) && COMPLETE_TYPE_P (type));
991 if (mode == BLKmode || memory_required)
993 poly_int64 size;
994 rtx tmp;
996 /* Unfortunately, we don't yet know how to allocate variable-sized
997 temporaries. However, sometimes we can find a fixed upper limit on
998 the size, so try that instead. */
999 if (!poly_int_tree_p (TYPE_SIZE_UNIT (type), &size))
1000 size = max_int_size_in_bytes (type);
1002 /* Zero sized arrays are a GNU C extension. Set size to 1 to avoid
1003 problems with allocating the stack space. */
1004 if (known_eq (size, 0))
1005 size = 1;
1007 /* The size of the temporary may be too large to fit into an integer. */
1008 /* ??? Not sure this should happen except for user silliness, so limit
1009 this to things that aren't compiler-generated temporaries. The
1010 rest of the time we'll die in assign_stack_temp_for_type. */
1011 if (decl
1012 && !known_size_p (size)
1013 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
1015 error ("size of variable %q+D is too large", decl);
1016 size = 1;
1019 tmp = assign_stack_temp_for_type (mode, size, type);
1020 return tmp;
1023 #ifdef PROMOTE_MODE
1024 if (! dont_promote)
1025 mode = promote_mode (type, mode, &unsignedp);
1026 #endif
1028 return gen_reg_rtx (mode);
1031 /* Combine temporary stack slots which are adjacent on the stack.
1033 This allows for better use of already allocated stack space. This is only
1034 done for BLKmode slots because we can be sure that we won't have alignment
1035 problems in this case. */
1037 static void
1038 combine_temp_slots (void)
1040 class temp_slot *p, *q, *next, *next_q;
1041 int num_slots;
1043 /* We can't combine slots, because the information about which slot
1044 is in which alias set will be lost. */
1045 if (flag_strict_aliasing)
1046 return;
1048 /* If there are a lot of temp slots, don't do anything unless
1049 high levels of optimization. */
1050 if (! flag_expensive_optimizations)
1051 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
1052 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
1053 return;
1055 for (p = avail_temp_slots; p; p = next)
1057 int delete_p = 0;
1059 next = p->next;
1061 if (GET_MODE (p->slot) != BLKmode)
1062 continue;
1064 for (q = p->next; q; q = next_q)
1066 int delete_q = 0;
1068 next_q = q->next;
1070 if (GET_MODE (q->slot) != BLKmode)
1071 continue;
1073 if (known_eq (p->base_offset + p->full_size, q->base_offset))
1075 /* Q comes after P; combine Q into P. */
1076 p->size += q->size;
1077 p->full_size += q->full_size;
1078 delete_q = 1;
1080 else if (known_eq (q->base_offset + q->full_size, p->base_offset))
1082 /* P comes after Q; combine P into Q. */
1083 q->size += p->size;
1084 q->full_size += p->full_size;
1085 delete_p = 1;
1086 break;
1088 if (delete_q)
1089 cut_slot_from_list (q, &avail_temp_slots);
1092 /* Either delete P or advance past it. */
1093 if (delete_p)
1094 cut_slot_from_list (p, &avail_temp_slots);
1098 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1099 slot that previously was known by OLD_RTX. */
1101 void
1102 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1104 class temp_slot *p;
1106 if (rtx_equal_p (old_rtx, new_rtx))
1107 return;
1109 p = find_temp_slot_from_address (old_rtx);
1111 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1112 NEW_RTX is a register, see if one operand of the PLUS is a
1113 temporary location. If so, NEW_RTX points into it. Otherwise,
1114 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1115 in common between them. If so, try a recursive call on those
1116 values. */
1117 if (p == 0)
1119 if (GET_CODE (old_rtx) != PLUS)
1120 return;
1122 if (REG_P (new_rtx))
1124 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1125 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1126 return;
1128 else if (GET_CODE (new_rtx) != PLUS)
1129 return;
1131 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1132 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1133 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1134 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1135 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1136 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1137 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1138 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1140 return;
1143 /* Otherwise add an alias for the temp's address. */
1144 insert_temp_slot_address (new_rtx, p);
1147 /* If X could be a reference to a temporary slot, mark that slot as
1148 belonging to the to one level higher than the current level. If X
1149 matched one of our slots, just mark that one. Otherwise, we can't
1150 easily predict which it is, so upgrade all of them.
1152 This is called when an ({...}) construct occurs and a statement
1153 returns a value in memory. */
1155 void
1156 preserve_temp_slots (rtx x)
1158 class temp_slot *p = 0, *next;
1160 if (x == 0)
1161 return;
1163 /* If X is a register that is being used as a pointer, see if we have
1164 a temporary slot we know it points to. */
1165 if (REG_P (x) && REG_POINTER (x))
1166 p = find_temp_slot_from_address (x);
1168 /* If X is not in memory or is at a constant address, it cannot be in
1169 a temporary slot. */
1170 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1171 return;
1173 /* First see if we can find a match. */
1174 if (p == 0)
1175 p = find_temp_slot_from_address (XEXP (x, 0));
1177 if (p != 0)
1179 if (p->level == temp_slot_level)
1180 move_slot_to_level (p, temp_slot_level - 1);
1181 return;
1184 /* Otherwise, preserve all non-kept slots at this level. */
1185 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1187 next = p->next;
1188 move_slot_to_level (p, temp_slot_level - 1);
1192 /* Free all temporaries used so far. This is normally called at the
1193 end of generating code for a statement. */
1195 void
1196 free_temp_slots (void)
1198 class temp_slot *p, *next;
1199 bool some_available = false;
1201 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1203 next = p->next;
1204 make_slot_available (p);
1205 some_available = true;
1208 if (some_available)
1210 remove_unused_temp_slot_addresses ();
1211 combine_temp_slots ();
1215 /* Push deeper into the nesting level for stack temporaries. */
1217 void
1218 push_temp_slots (void)
1220 temp_slot_level++;
1223 /* Pop a temporary nesting level. All slots in use in the current level
1224 are freed. */
1226 void
1227 pop_temp_slots (void)
1229 free_temp_slots ();
1230 temp_slot_level--;
1233 /* Initialize temporary slots. */
1235 void
1236 init_temp_slots (void)
1238 /* We have not allocated any temporaries yet. */
1239 avail_temp_slots = 0;
1240 vec_alloc (used_temp_slots, 0);
1241 temp_slot_level = 0;
1242 n_temp_slots_in_use = 0;
1244 /* Set up the table to map addresses to temp slots. */
1245 if (! temp_slot_address_table)
1246 temp_slot_address_table = hash_table<temp_address_hasher>::create_ggc (32);
1247 else
1248 temp_slot_address_table->empty ();
1251 /* Functions and data structures to keep track of the values hard regs
1252 had at the start of the function. */
1254 /* Private type used by get_hard_reg_initial_reg, get_hard_reg_initial_val,
1255 and has_hard_reg_initial_val.. */
1256 struct GTY(()) initial_value_pair {
1257 rtx hard_reg;
1258 rtx pseudo;
1260 /* ??? This could be a VEC but there is currently no way to define an
1261 opaque VEC type. This could be worked around by defining struct
1262 initial_value_pair in function.h. */
1263 struct GTY(()) initial_value_struct {
1264 int num_entries;
1265 int max_entries;
1266 initial_value_pair * GTY ((length ("%h.num_entries"))) entries;
1269 /* If a pseudo represents an initial hard reg (or expression), return
1270 it, else return NULL_RTX. */
1273 get_hard_reg_initial_reg (rtx reg)
1275 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1276 int i;
1278 if (ivs == 0)
1279 return NULL_RTX;
1281 for (i = 0; i < ivs->num_entries; i++)
1282 if (rtx_equal_p (ivs->entries[i].pseudo, reg))
1283 return ivs->entries[i].hard_reg;
1285 return NULL_RTX;
1288 /* Make sure that there's a pseudo register of mode MODE that stores the
1289 initial value of hard register REGNO. Return an rtx for such a pseudo. */
1292 get_hard_reg_initial_val (machine_mode mode, unsigned int regno)
1294 struct initial_value_struct *ivs;
1295 rtx rv;
1297 rv = has_hard_reg_initial_val (mode, regno);
1298 if (rv)
1299 return rv;
1301 ivs = crtl->hard_reg_initial_vals;
1302 if (ivs == 0)
1304 ivs = ggc_alloc<initial_value_struct> ();
1305 ivs->num_entries = 0;
1306 ivs->max_entries = 5;
1307 ivs->entries = ggc_vec_alloc<initial_value_pair> (5);
1308 crtl->hard_reg_initial_vals = ivs;
1311 if (ivs->num_entries >= ivs->max_entries)
1313 ivs->max_entries += 5;
1314 ivs->entries = GGC_RESIZEVEC (initial_value_pair, ivs->entries,
1315 ivs->max_entries);
1318 ivs->entries[ivs->num_entries].hard_reg = gen_rtx_REG (mode, regno);
1319 ivs->entries[ivs->num_entries].pseudo = gen_reg_rtx (mode);
1321 return ivs->entries[ivs->num_entries++].pseudo;
1324 /* See if get_hard_reg_initial_val has been used to create a pseudo
1325 for the initial value of hard register REGNO in mode MODE. Return
1326 the associated pseudo if so, otherwise return NULL. */
1329 has_hard_reg_initial_val (machine_mode mode, unsigned int regno)
1331 struct initial_value_struct *ivs;
1332 int i;
1334 ivs = crtl->hard_reg_initial_vals;
1335 if (ivs != 0)
1336 for (i = 0; i < ivs->num_entries; i++)
1337 if (GET_MODE (ivs->entries[i].hard_reg) == mode
1338 && REGNO (ivs->entries[i].hard_reg) == regno)
1339 return ivs->entries[i].pseudo;
1341 return NULL_RTX;
1344 void
1345 emit_initial_value_sets (void)
1347 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1348 int i;
1349 rtx_insn *seq;
1351 if (ivs == 0)
1352 return;
1354 start_sequence ();
1355 for (i = 0; i < ivs->num_entries; i++)
1356 emit_move_insn (ivs->entries[i].pseudo, ivs->entries[i].hard_reg);
1357 seq = get_insns ();
1358 end_sequence ();
1360 emit_insn_at_entry (seq);
1363 /* Return the hardreg-pseudoreg initial values pair entry I and
1364 TRUE if I is a valid entry, or FALSE if I is not a valid entry. */
1365 bool
1366 initial_value_entry (int i, rtx *hreg, rtx *preg)
1368 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1369 if (!ivs || i >= ivs->num_entries)
1370 return false;
1372 *hreg = ivs->entries[i].hard_reg;
1373 *preg = ivs->entries[i].pseudo;
1374 return true;
1377 /* These routines are responsible for converting virtual register references
1378 to the actual hard register references once RTL generation is complete.
1380 The following four variables are used for communication between the
1381 routines. They contain the offsets of the virtual registers from their
1382 respective hard registers. */
1384 static poly_int64 in_arg_offset;
1385 static poly_int64 var_offset;
1386 static poly_int64 dynamic_offset;
1387 static poly_int64 out_arg_offset;
1388 static poly_int64 cfa_offset;
1390 /* In most machines, the stack pointer register is equivalent to the bottom
1391 of the stack. */
1393 #ifndef STACK_POINTER_OFFSET
1394 #define STACK_POINTER_OFFSET 0
1395 #endif
1397 #if defined (REG_PARM_STACK_SPACE) && !defined (INCOMING_REG_PARM_STACK_SPACE)
1398 #define INCOMING_REG_PARM_STACK_SPACE REG_PARM_STACK_SPACE
1399 #endif
1401 /* If not defined, pick an appropriate default for the offset of dynamically
1402 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1403 INCOMING_REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1405 #ifndef STACK_DYNAMIC_OFFSET
1407 /* The bottom of the stack points to the actual arguments. If
1408 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1409 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1410 stack space for register parameters is not pushed by the caller, but
1411 rather part of the fixed stack areas and hence not included in
1412 `crtl->outgoing_args_size'. Nevertheless, we must allow
1413 for it when allocating stack dynamic objects. */
1415 #ifdef INCOMING_REG_PARM_STACK_SPACE
1416 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1417 ((ACCUMULATE_OUTGOING_ARGS \
1418 ? (crtl->outgoing_args_size \
1419 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1420 : INCOMING_REG_PARM_STACK_SPACE (FNDECL))) \
1421 : 0) + (STACK_POINTER_OFFSET))
1422 #else
1423 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1424 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : poly_int64 (0)) \
1425 + (STACK_POINTER_OFFSET))
1426 #endif
1427 #endif
1430 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1431 is a virtual register, return the equivalent hard register and set the
1432 offset indirectly through the pointer. Otherwise, return 0. */
1434 static rtx
1435 instantiate_new_reg (rtx x, poly_int64 *poffset)
1437 rtx new_rtx;
1438 poly_int64 offset;
1440 if (x == virtual_incoming_args_rtx)
1442 if (stack_realign_drap)
1444 /* Replace virtual_incoming_args_rtx with internal arg
1445 pointer if DRAP is used to realign stack. */
1446 new_rtx = crtl->args.internal_arg_pointer;
1447 offset = 0;
1449 else
1450 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1452 else if (x == virtual_stack_vars_rtx)
1453 new_rtx = frame_pointer_rtx, offset = var_offset;
1454 else if (x == virtual_stack_dynamic_rtx)
1455 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1456 else if (x == virtual_outgoing_args_rtx)
1457 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1458 else if (x == virtual_cfa_rtx)
1460 #ifdef FRAME_POINTER_CFA_OFFSET
1461 new_rtx = frame_pointer_rtx;
1462 #else
1463 new_rtx = arg_pointer_rtx;
1464 #endif
1465 offset = cfa_offset;
1467 else if (x == virtual_preferred_stack_boundary_rtx)
1469 new_rtx = GEN_INT (crtl->preferred_stack_boundary / BITS_PER_UNIT);
1470 offset = 0;
1472 else
1473 return NULL_RTX;
1475 *poffset = offset;
1476 return new_rtx;
1479 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1480 registers present inside of *LOC. The expression is simplified,
1481 as much as possible, but is not to be considered "valid" in any sense
1482 implied by the target. Return true if any change is made. */
1484 static bool
1485 instantiate_virtual_regs_in_rtx (rtx *loc)
1487 if (!*loc)
1488 return false;
1489 bool changed = false;
1490 subrtx_ptr_iterator::array_type array;
1491 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
1493 rtx *loc = *iter;
1494 if (rtx x = *loc)
1496 rtx new_rtx;
1497 poly_int64 offset;
1498 switch (GET_CODE (x))
1500 case REG:
1501 new_rtx = instantiate_new_reg (x, &offset);
1502 if (new_rtx)
1504 *loc = plus_constant (GET_MODE (x), new_rtx, offset);
1505 changed = true;
1507 iter.skip_subrtxes ();
1508 break;
1510 case PLUS:
1511 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1512 if (new_rtx)
1514 XEXP (x, 0) = new_rtx;
1515 *loc = plus_constant (GET_MODE (x), x, offset, true);
1516 changed = true;
1517 iter.skip_subrtxes ();
1518 break;
1521 /* FIXME -- from old code */
1522 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1523 we can commute the PLUS and SUBREG because pointers into the
1524 frame are well-behaved. */
1525 break;
1527 default:
1528 break;
1532 return changed;
1535 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1536 matches the predicate for insn CODE operand OPERAND. */
1538 static bool
1539 safe_insn_predicate (int code, int operand, rtx x)
1541 return code < 0 || insn_operand_matches ((enum insn_code) code, operand, x);
1544 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1545 registers present inside of insn. The result will be a valid insn. */
1547 static void
1548 instantiate_virtual_regs_in_insn (rtx_insn *insn)
1550 poly_int64 offset;
1551 int insn_code, i;
1552 bool any_change = false;
1553 rtx set, new_rtx, x;
1554 rtx_insn *seq;
1556 /* There are some special cases to be handled first. */
1557 set = single_set (insn);
1558 if (set)
1560 /* We're allowed to assign to a virtual register. This is interpreted
1561 to mean that the underlying register gets assigned the inverse
1562 transformation. This is used, for example, in the handling of
1563 non-local gotos. */
1564 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1565 if (new_rtx)
1567 start_sequence ();
1569 instantiate_virtual_regs_in_rtx (&SET_SRC (set));
1570 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1571 gen_int_mode (-offset, GET_MODE (new_rtx)));
1572 x = force_operand (x, new_rtx);
1573 if (x != new_rtx)
1574 emit_move_insn (new_rtx, x);
1576 seq = get_insns ();
1577 end_sequence ();
1579 emit_insn_before (seq, insn);
1580 delete_insn (insn);
1581 return;
1584 /* Handle a straight copy from a virtual register by generating a
1585 new add insn. The difference between this and falling through
1586 to the generic case is avoiding a new pseudo and eliminating a
1587 move insn in the initial rtl stream. */
1588 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1589 if (new_rtx
1590 && maybe_ne (offset, 0)
1591 && REG_P (SET_DEST (set))
1592 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1594 start_sequence ();
1596 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS, new_rtx,
1597 gen_int_mode (offset,
1598 GET_MODE (SET_DEST (set))),
1599 SET_DEST (set), 1, OPTAB_LIB_WIDEN);
1600 if (x != SET_DEST (set))
1601 emit_move_insn (SET_DEST (set), x);
1603 seq = get_insns ();
1604 end_sequence ();
1606 emit_insn_before (seq, insn);
1607 delete_insn (insn);
1608 return;
1611 extract_insn (insn);
1612 insn_code = INSN_CODE (insn);
1614 /* Handle a plus involving a virtual register by determining if the
1615 operands remain valid if they're modified in place. */
1616 poly_int64 delta;
1617 if (GET_CODE (SET_SRC (set)) == PLUS
1618 && recog_data.n_operands >= 3
1619 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1620 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1621 && poly_int_rtx_p (recog_data.operand[2], &delta)
1622 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1624 offset += delta;
1626 /* If the sum is zero, then replace with a plain move. */
1627 if (known_eq (offset, 0)
1628 && REG_P (SET_DEST (set))
1629 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1631 start_sequence ();
1632 emit_move_insn (SET_DEST (set), new_rtx);
1633 seq = get_insns ();
1634 end_sequence ();
1636 emit_insn_before (seq, insn);
1637 delete_insn (insn);
1638 return;
1641 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1643 /* Using validate_change and apply_change_group here leaves
1644 recog_data in an invalid state. Since we know exactly what
1645 we want to check, do those two by hand. */
1646 if (safe_insn_predicate (insn_code, 1, new_rtx)
1647 && safe_insn_predicate (insn_code, 2, x))
1649 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1650 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1651 any_change = true;
1653 /* Fall through into the regular operand fixup loop in
1654 order to take care of operands other than 1 and 2. */
1658 else
1660 extract_insn (insn);
1661 insn_code = INSN_CODE (insn);
1664 /* In the general case, we expect virtual registers to appear only in
1665 operands, and then only as either bare registers or inside memories. */
1666 for (i = 0; i < recog_data.n_operands; ++i)
1668 x = recog_data.operand[i];
1669 switch (GET_CODE (x))
1671 case MEM:
1673 rtx addr = XEXP (x, 0);
1675 if (!instantiate_virtual_regs_in_rtx (&addr))
1676 continue;
1678 start_sequence ();
1679 x = replace_equiv_address (x, addr, true);
1680 /* It may happen that the address with the virtual reg
1681 was valid (e.g. based on the virtual stack reg, which might
1682 be acceptable to the predicates with all offsets), whereas
1683 the address now isn't anymore, for instance when the address
1684 is still offsetted, but the base reg isn't virtual-stack-reg
1685 anymore. Below we would do a force_reg on the whole operand,
1686 but this insn might actually only accept memory. Hence,
1687 before doing that last resort, try to reload the address into
1688 a register, so this operand stays a MEM. */
1689 if (!safe_insn_predicate (insn_code, i, x))
1691 addr = force_reg (GET_MODE (addr), addr);
1692 x = replace_equiv_address (x, addr, true);
1694 seq = get_insns ();
1695 end_sequence ();
1696 if (seq)
1697 emit_insn_before (seq, insn);
1699 break;
1701 case REG:
1702 new_rtx = instantiate_new_reg (x, &offset);
1703 if (new_rtx == NULL)
1704 continue;
1705 if (known_eq (offset, 0))
1706 x = new_rtx;
1707 else
1709 start_sequence ();
1711 /* Careful, special mode predicates may have stuff in
1712 insn_data[insn_code].operand[i].mode that isn't useful
1713 to us for computing a new value. */
1714 /* ??? Recognize address_operand and/or "p" constraints
1715 to see if (plus new offset) is a valid before we put
1716 this through expand_simple_binop. */
1717 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1718 gen_int_mode (offset, GET_MODE (x)),
1719 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1720 seq = get_insns ();
1721 end_sequence ();
1722 emit_insn_before (seq, insn);
1724 break;
1726 case SUBREG:
1727 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1728 if (new_rtx == NULL)
1729 continue;
1730 if (maybe_ne (offset, 0))
1732 start_sequence ();
1733 new_rtx = expand_simple_binop
1734 (GET_MODE (new_rtx), PLUS, new_rtx,
1735 gen_int_mode (offset, GET_MODE (new_rtx)),
1736 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1737 seq = get_insns ();
1738 end_sequence ();
1739 emit_insn_before (seq, insn);
1741 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1742 GET_MODE (new_rtx), SUBREG_BYTE (x));
1743 gcc_assert (x);
1744 break;
1746 default:
1747 continue;
1750 /* At this point, X contains the new value for the operand.
1751 Validate the new value vs the insn predicate. Note that
1752 asm insns will have insn_code -1 here. */
1753 if (!safe_insn_predicate (insn_code, i, x))
1755 start_sequence ();
1756 if (REG_P (x))
1758 gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
1759 x = copy_to_reg (x);
1761 else
1762 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1763 seq = get_insns ();
1764 end_sequence ();
1765 if (seq)
1766 emit_insn_before (seq, insn);
1769 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1770 any_change = true;
1773 if (any_change)
1775 /* Propagate operand changes into the duplicates. */
1776 for (i = 0; i < recog_data.n_dups; ++i)
1777 *recog_data.dup_loc[i]
1778 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1780 /* Force re-recognition of the instruction for validation. */
1781 INSN_CODE (insn) = -1;
1784 if (asm_noperands (PATTERN (insn)) >= 0)
1786 if (!check_asm_operands (PATTERN (insn)))
1788 error_for_asm (insn, "impossible constraint in %<asm%>");
1789 /* For asm goto, instead of fixing up all the edges
1790 just clear the template and clear input and output operands
1791 and strip away clobbers. */
1792 if (JUMP_P (insn))
1794 rtx asm_op = extract_asm_operands (PATTERN (insn));
1795 PATTERN (insn) = asm_op;
1796 PUT_MODE (asm_op, VOIDmode);
1797 ASM_OPERANDS_TEMPLATE (asm_op) = ggc_strdup ("");
1798 ASM_OPERANDS_OUTPUT_CONSTRAINT (asm_op) = "";
1799 ASM_OPERANDS_OUTPUT_IDX (asm_op) = 0;
1800 ASM_OPERANDS_INPUT_VEC (asm_op) = rtvec_alloc (0);
1801 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (asm_op) = rtvec_alloc (0);
1803 else
1804 delete_insn (insn);
1807 else
1809 if (recog_memoized (insn) < 0)
1810 fatal_insn_not_found (insn);
1814 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1815 do any instantiation required. */
1817 void
1818 instantiate_decl_rtl (rtx x)
1820 rtx addr;
1822 if (x == 0)
1823 return;
1825 /* If this is a CONCAT, recurse for the pieces. */
1826 if (GET_CODE (x) == CONCAT)
1828 instantiate_decl_rtl (XEXP (x, 0));
1829 instantiate_decl_rtl (XEXP (x, 1));
1830 return;
1833 /* If this is not a MEM, no need to do anything. Similarly if the
1834 address is a constant or a register that is not a virtual register. */
1835 if (!MEM_P (x))
1836 return;
1838 addr = XEXP (x, 0);
1839 if (CONSTANT_P (addr)
1840 || (REG_P (addr)
1841 && !VIRTUAL_REGISTER_P (addr)))
1842 return;
1844 instantiate_virtual_regs_in_rtx (&XEXP (x, 0));
1847 /* Helper for instantiate_decls called via walk_tree: Process all decls
1848 in the given DECL_VALUE_EXPR. */
1850 static tree
1851 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1853 tree t = *tp;
1854 if (! EXPR_P (t))
1856 *walk_subtrees = 0;
1857 if (DECL_P (t))
1859 if (DECL_RTL_SET_P (t))
1860 instantiate_decl_rtl (DECL_RTL (t));
1861 if (TREE_CODE (t) == PARM_DECL && DECL_NAMELESS (t)
1862 && DECL_INCOMING_RTL (t))
1863 instantiate_decl_rtl (DECL_INCOMING_RTL (t));
1864 if ((VAR_P (t) || TREE_CODE (t) == RESULT_DECL)
1865 && DECL_HAS_VALUE_EXPR_P (t))
1867 tree v = DECL_VALUE_EXPR (t);
1868 walk_tree (&v, instantiate_expr, NULL, NULL);
1872 return NULL;
1875 /* Subroutine of instantiate_decls: Process all decls in the given
1876 BLOCK node and all its subblocks. */
1878 static void
1879 instantiate_decls_1 (tree let)
1881 tree t;
1883 for (t = BLOCK_VARS (let); t; t = DECL_CHAIN (t))
1885 if (DECL_RTL_SET_P (t))
1886 instantiate_decl_rtl (DECL_RTL (t));
1887 if (VAR_P (t) && DECL_HAS_VALUE_EXPR_P (t))
1889 tree v = DECL_VALUE_EXPR (t);
1890 walk_tree (&v, instantiate_expr, NULL, NULL);
1894 /* Process all subblocks. */
1895 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1896 instantiate_decls_1 (t);
1899 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1900 all virtual registers in their DECL_RTL's. */
1902 static void
1903 instantiate_decls (tree fndecl)
1905 tree decl;
1906 unsigned ix;
1908 /* Process all parameters of the function. */
1909 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = DECL_CHAIN (decl))
1911 instantiate_decl_rtl (DECL_RTL (decl));
1912 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1913 if (DECL_HAS_VALUE_EXPR_P (decl))
1915 tree v = DECL_VALUE_EXPR (decl);
1916 walk_tree (&v, instantiate_expr, NULL, NULL);
1920 if ((decl = DECL_RESULT (fndecl))
1921 && TREE_CODE (decl) == RESULT_DECL)
1923 if (DECL_RTL_SET_P (decl))
1924 instantiate_decl_rtl (DECL_RTL (decl));
1925 if (DECL_HAS_VALUE_EXPR_P (decl))
1927 tree v = DECL_VALUE_EXPR (decl);
1928 walk_tree (&v, instantiate_expr, NULL, NULL);
1932 /* Process the saved static chain if it exists. */
1933 decl = DECL_STRUCT_FUNCTION (fndecl)->static_chain_decl;
1934 if (decl && DECL_HAS_VALUE_EXPR_P (decl))
1935 instantiate_decl_rtl (DECL_RTL (DECL_VALUE_EXPR (decl)));
1937 /* Now process all variables defined in the function or its subblocks. */
1938 if (DECL_INITIAL (fndecl))
1939 instantiate_decls_1 (DECL_INITIAL (fndecl));
1941 FOR_EACH_LOCAL_DECL (cfun, ix, decl)
1942 if (DECL_RTL_SET_P (decl))
1943 instantiate_decl_rtl (DECL_RTL (decl));
1944 vec_free (cfun->local_decls);
1947 /* Return the value of STACK_DYNAMIC_OFFSET for the current function.
1948 This is done through a function wrapper so that the macro sees a
1949 predictable set of included files. */
1951 poly_int64
1952 get_stack_dynamic_offset ()
1954 return STACK_DYNAMIC_OFFSET (current_function_decl);
1957 /* Pass through the INSNS of function FNDECL and convert virtual register
1958 references to hard register references. */
1960 static void
1961 instantiate_virtual_regs (void)
1963 rtx_insn *insn;
1965 /* Compute the offsets to use for this function. */
1966 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1967 var_offset = targetm.starting_frame_offset ();
1968 dynamic_offset = get_stack_dynamic_offset ();
1969 out_arg_offset = STACK_POINTER_OFFSET;
1970 #ifdef FRAME_POINTER_CFA_OFFSET
1971 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1972 #else
1973 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1974 #endif
1976 /* Initialize recognition, indicating that volatile is OK. */
1977 init_recog ();
1979 /* Scan through all the insns, instantiating every virtual register still
1980 present. */
1981 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1982 if (INSN_P (insn))
1984 /* These patterns in the instruction stream can never be recognized.
1985 Fortunately, they shouldn't contain virtual registers either. */
1986 if (GET_CODE (PATTERN (insn)) == USE
1987 || GET_CODE (PATTERN (insn)) == CLOBBER
1988 || GET_CODE (PATTERN (insn)) == ASM_INPUT
1989 || DEBUG_MARKER_INSN_P (insn))
1990 continue;
1991 else if (DEBUG_BIND_INSN_P (insn))
1992 instantiate_virtual_regs_in_rtx (INSN_VAR_LOCATION_PTR (insn));
1993 else
1994 instantiate_virtual_regs_in_insn (insn);
1996 if (insn->deleted ())
1997 continue;
1999 instantiate_virtual_regs_in_rtx (&REG_NOTES (insn));
2001 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
2002 if (CALL_P (insn))
2003 instantiate_virtual_regs_in_rtx (&CALL_INSN_FUNCTION_USAGE (insn));
2006 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
2007 instantiate_decls (current_function_decl);
2009 targetm.instantiate_decls ();
2011 /* Indicate that, from now on, assign_stack_local should use
2012 frame_pointer_rtx. */
2013 virtuals_instantiated = 1;
2016 namespace {
2018 const pass_data pass_data_instantiate_virtual_regs =
2020 RTL_PASS, /* type */
2021 "vregs", /* name */
2022 OPTGROUP_NONE, /* optinfo_flags */
2023 TV_NONE, /* tv_id */
2024 0, /* properties_required */
2025 0, /* properties_provided */
2026 0, /* properties_destroyed */
2027 0, /* todo_flags_start */
2028 0, /* todo_flags_finish */
2031 class pass_instantiate_virtual_regs : public rtl_opt_pass
2033 public:
2034 pass_instantiate_virtual_regs (gcc::context *ctxt)
2035 : rtl_opt_pass (pass_data_instantiate_virtual_regs, ctxt)
2038 /* opt_pass methods: */
2039 unsigned int execute (function *) final override
2041 instantiate_virtual_regs ();
2042 return 0;
2045 }; // class pass_instantiate_virtual_regs
2047 } // anon namespace
2049 rtl_opt_pass *
2050 make_pass_instantiate_virtual_regs (gcc::context *ctxt)
2052 return new pass_instantiate_virtual_regs (ctxt);
2056 /* Return true if EXP is an aggregate type (or a value with aggregate type).
2057 This means a type for which function calls must pass an address to the
2058 function or get an address back from the function.
2059 EXP may be a type node or an expression (whose type is tested). */
2061 bool
2062 aggregate_value_p (const_tree exp, const_tree fntype)
2064 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
2065 int i, regno, nregs;
2066 rtx reg;
2068 if (fntype)
2069 switch (TREE_CODE (fntype))
2071 case CALL_EXPR:
2073 tree fndecl = get_callee_fndecl (fntype);
2074 if (fndecl)
2075 fntype = TREE_TYPE (fndecl);
2076 else if (CALL_EXPR_FN (fntype))
2077 fntype = TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype)));
2078 else
2079 /* For internal functions, assume nothing needs to be
2080 returned in memory. */
2081 return false;
2083 break;
2084 case FUNCTION_DECL:
2085 fntype = TREE_TYPE (fntype);
2086 break;
2087 case FUNCTION_TYPE:
2088 case METHOD_TYPE:
2089 break;
2090 case IDENTIFIER_NODE:
2091 fntype = NULL_TREE;
2092 break;
2093 default:
2094 /* We don't expect other tree types here. */
2095 gcc_unreachable ();
2098 if (VOID_TYPE_P (type))
2099 return false;
2101 if (error_operand_p (fntype))
2102 return false;
2104 /* If a record should be passed the same as its first (and only) member
2105 don't pass it as an aggregate. */
2106 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2107 return aggregate_value_p (first_field (type), fntype);
2109 /* If the front end has decided that this needs to be passed by
2110 reference, do so. */
2111 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
2112 && DECL_BY_REFERENCE (exp))
2113 return true;
2115 /* Function types that are TREE_ADDRESSABLE force return in memory. */
2116 if (fntype && TREE_ADDRESSABLE (fntype))
2117 return true;
2119 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
2120 and thus can't be returned in registers. */
2121 if (TREE_ADDRESSABLE (type))
2122 return true;
2124 if (TYPE_EMPTY_P (type))
2125 return false;
2127 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
2128 return true;
2130 if (targetm.calls.return_in_memory (type, fntype))
2131 return true;
2133 /* Make sure we have suitable call-clobbered regs to return
2134 the value in; if not, we must return it in memory. */
2135 reg = hard_function_value (type, 0, fntype, 0);
2137 /* If we have something other than a REG (e.g. a PARALLEL), then assume
2138 it is OK. */
2139 if (!REG_P (reg))
2140 return false;
2142 /* Use the default ABI if the type of the function isn't known.
2143 The scheme for handling interoperability between different ABIs
2144 requires us to be able to tell when we're calling a function with
2145 a nondefault ABI. */
2146 const predefined_function_abi &abi = (fntype
2147 ? fntype_abi (fntype)
2148 : default_function_abi);
2149 regno = REGNO (reg);
2150 nregs = hard_regno_nregs (regno, TYPE_MODE (type));
2151 for (i = 0; i < nregs; i++)
2152 if (!fixed_regs[regno + i] && !abi.clobbers_full_reg_p (regno + i))
2153 return true;
2155 return false;
2158 /* Return true if we should assign DECL a pseudo register; false if it
2159 should live on the local stack. */
2161 bool
2162 use_register_for_decl (const_tree decl)
2164 if (TREE_CODE (decl) == SSA_NAME)
2166 /* We often try to use the SSA_NAME, instead of its underlying
2167 decl, to get type information and guide decisions, to avoid
2168 differences of behavior between anonymous and named
2169 variables, but in this one case we have to go for the actual
2170 variable if there is one. The main reason is that, at least
2171 at -O0, we want to place user variables on the stack, but we
2172 don't mind using pseudos for anonymous or ignored temps.
2173 Should we take the SSA_NAME, we'd conclude all SSA_NAMEs
2174 should go in pseudos, whereas their corresponding variables
2175 might have to go on the stack. So, disregarding the decl
2176 here would negatively impact debug info at -O0, enable
2177 coalescing between SSA_NAMEs that ought to get different
2178 stack/pseudo assignments, and get the incoming argument
2179 processing thoroughly confused by PARM_DECLs expected to live
2180 in stack slots but assigned to pseudos. */
2181 if (!SSA_NAME_VAR (decl))
2182 return TYPE_MODE (TREE_TYPE (decl)) != BLKmode
2183 && !(flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)));
2185 decl = SSA_NAME_VAR (decl);
2188 /* Honor volatile. */
2189 if (TREE_SIDE_EFFECTS (decl))
2190 return false;
2192 /* Honor addressability. */
2193 if (TREE_ADDRESSABLE (decl))
2194 return false;
2196 /* RESULT_DECLs are a bit special in that they're assigned without
2197 regard to use_register_for_decl, but we generally only store in
2198 them. If we coalesce their SSA NAMEs, we'd better return a
2199 result that matches the assignment in expand_function_start. */
2200 if (TREE_CODE (decl) == RESULT_DECL)
2202 /* If it's not an aggregate, we're going to use a REG or a
2203 PARALLEL containing a REG. */
2204 if (!aggregate_value_p (decl, current_function_decl))
2205 return true;
2207 /* If expand_function_start determines the return value, we'll
2208 use MEM if it's not by reference. */
2209 if (cfun->returns_pcc_struct
2210 || (targetm.calls.struct_value_rtx
2211 (TREE_TYPE (current_function_decl), 1)))
2212 return DECL_BY_REFERENCE (decl);
2214 /* Otherwise, we're taking an extra all.function_result_decl
2215 argument. It's set up in assign_parms_augmented_arg_list,
2216 under the (negated) conditions above, and then it's used to
2217 set up the RESULT_DECL rtl in assign_params, after looping
2218 over all parameters. Now, if the RESULT_DECL is not by
2219 reference, we'll use a MEM either way. */
2220 if (!DECL_BY_REFERENCE (decl))
2221 return false;
2223 /* Otherwise, if RESULT_DECL is DECL_BY_REFERENCE, it will take
2224 the function_result_decl's assignment. Since it's a pointer,
2225 we can short-circuit a number of the tests below, and we must
2226 duplicate them because we don't have the function_result_decl
2227 to test. */
2228 if (!targetm.calls.allocate_stack_slots_for_args ())
2229 return true;
2230 /* We don't set DECL_IGNORED_P for the function_result_decl. */
2231 if (optimize)
2232 return true;
2233 if (cfun->tail_call_marked)
2234 return true;
2235 /* We don't set DECL_REGISTER for the function_result_decl. */
2236 return false;
2239 /* Only register-like things go in registers. */
2240 if (DECL_MODE (decl) == BLKmode)
2241 return false;
2243 /* If -ffloat-store specified, don't put explicit float variables
2244 into registers. */
2245 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2246 propagates values across these stores, and it probably shouldn't. */
2247 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
2248 return false;
2250 if (!targetm.calls.allocate_stack_slots_for_args ())
2251 return true;
2253 /* If we're not interested in tracking debugging information for
2254 this decl, then we can certainly put it in a register. */
2255 if (DECL_IGNORED_P (decl))
2256 return true;
2258 if (optimize)
2259 return true;
2261 /* Thunks force a tail call even at -O0 so we need to avoid creating a
2262 dangling reference in case the parameter is passed by reference. */
2263 if (TREE_CODE (decl) == PARM_DECL && cfun->tail_call_marked)
2264 return true;
2266 if (!DECL_REGISTER (decl))
2267 return false;
2269 /* When not optimizing, disregard register keyword for types that
2270 could have methods, otherwise the methods won't be callable from
2271 the debugger. */
2272 if (RECORD_OR_UNION_TYPE_P (TREE_TYPE (decl)))
2273 return false;
2275 return true;
2278 /* Structures to communicate between the subroutines of assign_parms.
2279 The first holds data persistent across all parameters, the second
2280 is cleared out for each parameter. */
2282 struct assign_parm_data_all
2284 /* When INIT_CUMULATIVE_ARGS gets revamped, allocating CUMULATIVE_ARGS
2285 should become a job of the target or otherwise encapsulated. */
2286 CUMULATIVE_ARGS args_so_far_v;
2287 cumulative_args_t args_so_far;
2288 struct args_size stack_args_size;
2289 tree function_result_decl;
2290 tree orig_fnargs;
2291 rtx_insn *first_conversion_insn;
2292 rtx_insn *last_conversion_insn;
2293 HOST_WIDE_INT pretend_args_size;
2294 HOST_WIDE_INT extra_pretend_bytes;
2295 int reg_parm_stack_space;
2298 struct assign_parm_data_one
2300 tree nominal_type;
2301 function_arg_info arg;
2302 rtx entry_parm;
2303 rtx stack_parm;
2304 machine_mode nominal_mode;
2305 machine_mode passed_mode;
2306 struct locate_and_pad_arg_data locate;
2307 int partial;
2310 /* A subroutine of assign_parms. Initialize ALL. */
2312 static void
2313 assign_parms_initialize_all (struct assign_parm_data_all *all)
2315 tree fntype ATTRIBUTE_UNUSED;
2317 memset (all, 0, sizeof (*all));
2319 fntype = TREE_TYPE (current_function_decl);
2321 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2322 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far_v, fntype, NULL_RTX);
2323 #else
2324 INIT_CUMULATIVE_ARGS (all->args_so_far_v, fntype, NULL_RTX,
2325 current_function_decl, -1);
2326 #endif
2327 all->args_so_far = pack_cumulative_args (&all->args_so_far_v);
2329 #ifdef INCOMING_REG_PARM_STACK_SPACE
2330 all->reg_parm_stack_space
2331 = INCOMING_REG_PARM_STACK_SPACE (current_function_decl);
2332 #endif
2335 /* If ARGS contains entries with complex types, split the entry into two
2336 entries of the component type. Return a new list of substitutions are
2337 needed, else the old list. */
2339 static void
2340 split_complex_args (vec<tree> *args)
2342 unsigned i;
2343 tree p;
2345 FOR_EACH_VEC_ELT (*args, i, p)
2347 tree type = TREE_TYPE (p);
2348 if (TREE_CODE (type) == COMPLEX_TYPE
2349 && targetm.calls.split_complex_arg (type))
2351 tree decl;
2352 tree subtype = TREE_TYPE (type);
2353 bool addressable = TREE_ADDRESSABLE (p);
2355 /* Rewrite the PARM_DECL's type with its component. */
2356 p = copy_node (p);
2357 TREE_TYPE (p) = subtype;
2358 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2359 SET_DECL_MODE (p, VOIDmode);
2360 DECL_SIZE (p) = NULL;
2361 DECL_SIZE_UNIT (p) = NULL;
2362 /* If this arg must go in memory, put it in a pseudo here.
2363 We can't allow it to go in memory as per normal parms,
2364 because the usual place might not have the imag part
2365 adjacent to the real part. */
2366 DECL_ARTIFICIAL (p) = addressable;
2367 DECL_IGNORED_P (p) = addressable;
2368 TREE_ADDRESSABLE (p) = 0;
2369 layout_decl (p, 0);
2370 (*args)[i] = p;
2372 /* Build a second synthetic decl. */
2373 decl = build_decl (EXPR_LOCATION (p),
2374 PARM_DECL, NULL_TREE, subtype);
2375 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2376 DECL_ARTIFICIAL (decl) = addressable;
2377 DECL_IGNORED_P (decl) = addressable;
2378 layout_decl (decl, 0);
2379 args->safe_insert (++i, decl);
2384 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2385 the hidden struct return argument, and (abi willing) complex args.
2386 Return the new parameter list. */
2388 static vec<tree>
2389 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2391 tree fndecl = current_function_decl;
2392 tree fntype = TREE_TYPE (fndecl);
2393 vec<tree> fnargs = vNULL;
2394 tree arg;
2396 for (arg = DECL_ARGUMENTS (fndecl); arg; arg = DECL_CHAIN (arg))
2397 fnargs.safe_push (arg);
2399 all->orig_fnargs = DECL_ARGUMENTS (fndecl);
2401 /* If struct value address is treated as the first argument, make it so. */
2402 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2403 && ! cfun->returns_pcc_struct
2404 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2406 tree type = build_pointer_type (TREE_TYPE (fntype));
2407 tree decl;
2409 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2410 PARM_DECL, get_identifier (".result_ptr"), type);
2411 DECL_ARG_TYPE (decl) = type;
2412 DECL_ARTIFICIAL (decl) = 1;
2413 DECL_NAMELESS (decl) = 1;
2414 TREE_CONSTANT (decl) = 1;
2415 /* We don't set DECL_IGNORED_P or DECL_REGISTER here. If this
2416 changes, the end of the RESULT_DECL handling block in
2417 use_register_for_decl must be adjusted to match. */
2419 DECL_CHAIN (decl) = all->orig_fnargs;
2420 all->orig_fnargs = decl;
2421 fnargs.safe_insert (0, decl);
2423 all->function_result_decl = decl;
2426 /* If the target wants to split complex arguments into scalars, do so. */
2427 if (targetm.calls.split_complex_arg)
2428 split_complex_args (&fnargs);
2430 return fnargs;
2433 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2434 data for the parameter. Incorporate ABI specifics such as pass-by-
2435 reference and type promotion. */
2437 static void
2438 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2439 struct assign_parm_data_one *data)
2441 int unsignedp;
2443 *data = assign_parm_data_one ();
2445 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2446 if (!cfun->stdarg)
2447 data->arg.named = 1; /* No variadic parms. */
2448 else if (DECL_CHAIN (parm))
2449 data->arg.named = 1; /* Not the last non-variadic parm. */
2450 else if (targetm.calls.strict_argument_naming (all->args_so_far))
2451 data->arg.named = 1; /* Only variadic ones are unnamed. */
2452 else
2453 data->arg.named = 0; /* Treat as variadic. */
2455 data->nominal_type = TREE_TYPE (parm);
2456 data->arg.type = DECL_ARG_TYPE (parm);
2458 /* Look out for errors propagating this far. Also, if the parameter's
2459 type is void then its value doesn't matter. */
2460 if (TREE_TYPE (parm) == error_mark_node
2461 /* This can happen after weird syntax errors
2462 or if an enum type is defined among the parms. */
2463 || TREE_CODE (parm) != PARM_DECL
2464 || data->arg.type == NULL
2465 || VOID_TYPE_P (data->nominal_type))
2467 data->nominal_type = data->arg.type = void_type_node;
2468 data->nominal_mode = data->passed_mode = data->arg.mode = VOIDmode;
2469 return;
2472 /* Find mode of arg as it is passed, and mode of arg as it should be
2473 during execution of this function. */
2474 data->passed_mode = data->arg.mode = TYPE_MODE (data->arg.type);
2475 data->nominal_mode = TYPE_MODE (data->nominal_type);
2477 /* If the parm is to be passed as a transparent union or record, use the
2478 type of the first field for the tests below. We have already verified
2479 that the modes are the same. */
2480 if (RECORD_OR_UNION_TYPE_P (data->arg.type)
2481 && TYPE_TRANSPARENT_AGGR (data->arg.type))
2482 data->arg.type = TREE_TYPE (first_field (data->arg.type));
2484 /* See if this arg was passed by invisible reference. */
2485 if (apply_pass_by_reference_rules (&all->args_so_far_v, data->arg))
2487 data->nominal_type = data->arg.type;
2488 data->passed_mode = data->nominal_mode = data->arg.mode;
2491 /* Find mode as it is passed by the ABI. */
2492 unsignedp = TYPE_UNSIGNED (data->arg.type);
2493 data->arg.mode
2494 = promote_function_mode (data->arg.type, data->arg.mode, &unsignedp,
2495 TREE_TYPE (current_function_decl), 0);
2498 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2500 static void
2501 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2502 struct assign_parm_data_one *data, bool no_rtl)
2504 int varargs_pretend_bytes = 0;
2506 function_arg_info last_named_arg = data->arg;
2507 last_named_arg.named = true;
2508 targetm.calls.setup_incoming_varargs (all->args_so_far, last_named_arg,
2509 &varargs_pretend_bytes, no_rtl);
2511 /* If the back-end has requested extra stack space, record how much is
2512 needed. Do not change pretend_args_size otherwise since it may be
2513 nonzero from an earlier partial argument. */
2514 if (varargs_pretend_bytes > 0)
2515 all->pretend_args_size = varargs_pretend_bytes;
2518 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2519 the incoming location of the current parameter. */
2521 static void
2522 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2523 struct assign_parm_data_one *data)
2525 HOST_WIDE_INT pretend_bytes = 0;
2526 rtx entry_parm;
2527 bool in_regs;
2529 if (data->arg.mode == VOIDmode)
2531 data->entry_parm = data->stack_parm = const0_rtx;
2532 return;
2535 targetm.calls.warn_parameter_passing_abi (all->args_so_far,
2536 data->arg.type);
2538 entry_parm = targetm.calls.function_incoming_arg (all->args_so_far,
2539 data->arg);
2540 if (entry_parm == 0)
2541 data->arg.mode = data->passed_mode;
2543 /* Determine parm's home in the stack, in case it arrives in the stack
2544 or we should pretend it did. Compute the stack position and rtx where
2545 the argument arrives and its size.
2547 There is one complexity here: If this was a parameter that would
2548 have been passed in registers, but wasn't only because it is
2549 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2550 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2551 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2552 as it was the previous time. */
2553 in_regs = (entry_parm != 0);
2554 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2555 in_regs = true;
2556 #endif
2557 if (!in_regs && !data->arg.named)
2559 if (targetm.calls.pretend_outgoing_varargs_named (all->args_so_far))
2561 rtx tem;
2562 function_arg_info named_arg = data->arg;
2563 named_arg.named = true;
2564 tem = targetm.calls.function_incoming_arg (all->args_so_far,
2565 named_arg);
2566 in_regs = tem != NULL;
2570 /* If this parameter was passed both in registers and in the stack, use
2571 the copy on the stack. */
2572 if (targetm.calls.must_pass_in_stack (data->arg))
2573 entry_parm = 0;
2575 if (entry_parm)
2577 int partial;
2579 partial = targetm.calls.arg_partial_bytes (all->args_so_far, data->arg);
2580 data->partial = partial;
2582 /* The caller might already have allocated stack space for the
2583 register parameters. */
2584 if (partial != 0 && all->reg_parm_stack_space == 0)
2586 /* Part of this argument is passed in registers and part
2587 is passed on the stack. Ask the prologue code to extend
2588 the stack part so that we can recreate the full value.
2590 PRETEND_BYTES is the size of the registers we need to store.
2591 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2592 stack space that the prologue should allocate.
2594 Internally, gcc assumes that the argument pointer is aligned
2595 to STACK_BOUNDARY bits. This is used both for alignment
2596 optimizations (see init_emit) and to locate arguments that are
2597 aligned to more than PARM_BOUNDARY bits. We must preserve this
2598 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2599 a stack boundary. */
2601 /* We assume at most one partial arg, and it must be the first
2602 argument on the stack. */
2603 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2605 pretend_bytes = partial;
2606 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2608 /* We want to align relative to the actual stack pointer, so
2609 don't include this in the stack size until later. */
2610 all->extra_pretend_bytes = all->pretend_args_size;
2614 locate_and_pad_parm (data->arg.mode, data->arg.type, in_regs,
2615 all->reg_parm_stack_space,
2616 entry_parm ? data->partial : 0, current_function_decl,
2617 &all->stack_args_size, &data->locate);
2619 /* Update parm_stack_boundary if this parameter is passed in the
2620 stack. */
2621 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2622 crtl->parm_stack_boundary = data->locate.boundary;
2624 /* Adjust offsets to include the pretend args. */
2625 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2626 data->locate.slot_offset.constant += pretend_bytes;
2627 data->locate.offset.constant += pretend_bytes;
2629 data->entry_parm = entry_parm;
2632 /* A subroutine of assign_parms. If there is actually space on the stack
2633 for this parm, count it in stack_args_size and return true. */
2635 static bool
2636 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2637 struct assign_parm_data_one *data)
2639 /* Trivially true if we've no incoming register. */
2640 if (data->entry_parm == NULL)
2642 /* Also true if we're partially in registers and partially not,
2643 since we've arranged to drop the entire argument on the stack. */
2644 else if (data->partial != 0)
2646 /* Also true if the target says that it's passed in both registers
2647 and on the stack. */
2648 else if (GET_CODE (data->entry_parm) == PARALLEL
2649 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2651 /* Also true if the target says that there's stack allocated for
2652 all register parameters. */
2653 else if (all->reg_parm_stack_space > 0)
2655 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2656 else
2657 return false;
2659 all->stack_args_size.constant += data->locate.size.constant;
2660 if (data->locate.size.var)
2661 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2663 return true;
2666 /* A subroutine of assign_parms. Given that this parameter is allocated
2667 stack space by the ABI, find it. */
2669 static void
2670 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2672 rtx offset_rtx, stack_parm;
2673 unsigned int align, boundary;
2675 /* If we're passing this arg using a reg, make its stack home the
2676 aligned stack slot. */
2677 if (data->entry_parm)
2678 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2679 else
2680 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2682 stack_parm = crtl->args.internal_arg_pointer;
2683 if (offset_rtx != const0_rtx)
2684 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2685 stack_parm = gen_rtx_MEM (data->arg.mode, stack_parm);
2687 if (!data->arg.pass_by_reference)
2689 set_mem_attributes (stack_parm, parm, 1);
2690 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2691 while promoted mode's size is needed. */
2692 if (data->arg.mode != BLKmode
2693 && data->arg.mode != DECL_MODE (parm))
2695 set_mem_size (stack_parm, GET_MODE_SIZE (data->arg.mode));
2696 if (MEM_EXPR (stack_parm) && MEM_OFFSET_KNOWN_P (stack_parm))
2698 poly_int64 offset = subreg_lowpart_offset (DECL_MODE (parm),
2699 data->arg.mode);
2700 if (maybe_ne (offset, 0))
2701 set_mem_offset (stack_parm, MEM_OFFSET (stack_parm) - offset);
2706 boundary = data->locate.boundary;
2707 align = BITS_PER_UNIT;
2709 /* If we're padding upward, we know that the alignment of the slot
2710 is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2711 intentionally forcing upward padding. Otherwise we have to come
2712 up with a guess at the alignment based on OFFSET_RTX. */
2713 poly_int64 offset;
2714 if (data->locate.where_pad == PAD_NONE || data->entry_parm)
2715 align = boundary;
2716 else if (data->locate.where_pad == PAD_UPWARD)
2718 align = boundary;
2719 /* If the argument offset is actually more aligned than the nominal
2720 stack slot boundary, take advantage of that excess alignment.
2721 Don't make any assumptions if STACK_POINTER_OFFSET is in use. */
2722 if (poly_int_rtx_p (offset_rtx, &offset)
2723 && known_eq (STACK_POINTER_OFFSET, 0))
2725 unsigned int offset_align = known_alignment (offset) * BITS_PER_UNIT;
2726 if (offset_align == 0 || offset_align > STACK_BOUNDARY)
2727 offset_align = STACK_BOUNDARY;
2728 align = MAX (align, offset_align);
2731 else if (poly_int_rtx_p (offset_rtx, &offset))
2733 align = least_bit_hwi (boundary);
2734 unsigned int offset_align = known_alignment (offset) * BITS_PER_UNIT;
2735 if (offset_align != 0)
2736 align = MIN (align, offset_align);
2738 set_mem_align (stack_parm, align);
2740 if (data->entry_parm)
2741 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2743 data->stack_parm = stack_parm;
2746 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2747 always valid and contiguous. */
2749 static void
2750 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2752 rtx entry_parm = data->entry_parm;
2753 rtx stack_parm = data->stack_parm;
2755 /* If this parm was passed part in regs and part in memory, pretend it
2756 arrived entirely in memory by pushing the register-part onto the stack.
2757 In the special case of a DImode or DFmode that is split, we could put
2758 it together in a pseudoreg directly, but for now that's not worth
2759 bothering with. */
2760 if (data->partial != 0)
2762 /* Handle calls that pass values in multiple non-contiguous
2763 locations. The Irix 6 ABI has examples of this. */
2764 if (GET_CODE (entry_parm) == PARALLEL)
2765 emit_group_store (validize_mem (copy_rtx (stack_parm)), entry_parm,
2766 data->arg.type, int_size_in_bytes (data->arg.type));
2767 else
2769 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2770 move_block_from_reg (REGNO (entry_parm),
2771 validize_mem (copy_rtx (stack_parm)),
2772 data->partial / UNITS_PER_WORD);
2775 entry_parm = stack_parm;
2778 /* If we didn't decide this parm came in a register, by default it came
2779 on the stack. */
2780 else if (entry_parm == NULL)
2781 entry_parm = stack_parm;
2783 /* When an argument is passed in multiple locations, we can't make use
2784 of this information, but we can save some copying if the whole argument
2785 is passed in a single register. */
2786 else if (GET_CODE (entry_parm) == PARALLEL
2787 && data->nominal_mode != BLKmode
2788 && data->passed_mode != BLKmode)
2790 size_t i, len = XVECLEN (entry_parm, 0);
2792 for (i = 0; i < len; i++)
2793 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2794 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2795 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2796 == data->passed_mode)
2797 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2799 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2800 break;
2804 data->entry_parm = entry_parm;
2807 /* A subroutine of assign_parms. Reconstitute any values which were
2808 passed in multiple registers and would fit in a single register. */
2810 static void
2811 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2813 rtx entry_parm = data->entry_parm;
2815 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2816 This can be done with register operations rather than on the
2817 stack, even if we will store the reconstituted parameter on the
2818 stack later. */
2819 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2821 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2822 emit_group_store (parmreg, entry_parm, data->arg.type,
2823 GET_MODE_SIZE (GET_MODE (entry_parm)));
2824 entry_parm = parmreg;
2827 data->entry_parm = entry_parm;
2830 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2831 always valid and properly aligned. */
2833 static void
2834 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2836 rtx stack_parm = data->stack_parm;
2838 /* If we can't trust the parm stack slot to be aligned enough for its
2839 ultimate type, don't use that slot after entry. We'll make another
2840 stack slot, if we need one. */
2841 if (stack_parm
2842 && ((GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm)
2843 && ((optab_handler (movmisalign_optab, data->nominal_mode)
2844 != CODE_FOR_nothing)
2845 || targetm.slow_unaligned_access (data->nominal_mode,
2846 MEM_ALIGN (stack_parm))))
2847 || (data->nominal_type
2848 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2849 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2850 stack_parm = NULL;
2852 /* If parm was passed in memory, and we need to convert it on entry,
2853 don't store it back in that same slot. */
2854 else if (data->entry_parm == stack_parm
2855 && data->nominal_mode != BLKmode
2856 && data->nominal_mode != data->passed_mode)
2857 stack_parm = NULL;
2859 /* If stack protection is in effect for this function, don't leave any
2860 pointers in their passed stack slots. */
2861 else if (crtl->stack_protect_guard
2862 && (flag_stack_protect == SPCT_FLAG_ALL
2863 || data->arg.pass_by_reference
2864 || POINTER_TYPE_P (data->nominal_type)))
2865 stack_parm = NULL;
2867 data->stack_parm = stack_parm;
2870 /* A subroutine of assign_parms. Return true if the current parameter
2871 should be stored as a BLKmode in the current frame. */
2873 static bool
2874 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2876 if (data->nominal_mode == BLKmode)
2877 return true;
2878 if (GET_MODE (data->entry_parm) == BLKmode)
2879 return true;
2881 #ifdef BLOCK_REG_PADDING
2882 /* Only assign_parm_setup_block knows how to deal with register arguments
2883 that are padded at the least significant end. */
2884 if (REG_P (data->entry_parm)
2885 && known_lt (GET_MODE_SIZE (data->arg.mode), UNITS_PER_WORD)
2886 && (BLOCK_REG_PADDING (data->passed_mode, data->arg.type, 1)
2887 == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)))
2888 return true;
2889 #endif
2891 return false;
2894 /* A subroutine of assign_parms. Arrange for the parameter to be
2895 present and valid in DATA->STACK_RTL. */
2897 static void
2898 assign_parm_setup_block (struct assign_parm_data_all *all,
2899 tree parm, struct assign_parm_data_one *data)
2901 rtx entry_parm = data->entry_parm;
2902 rtx stack_parm = data->stack_parm;
2903 rtx target_reg = NULL_RTX;
2904 bool in_conversion_seq = false;
2905 HOST_WIDE_INT size;
2906 HOST_WIDE_INT size_stored;
2908 if (GET_CODE (entry_parm) == PARALLEL)
2909 entry_parm = emit_group_move_into_temps (entry_parm);
2911 /* If we want the parameter in a pseudo, don't use a stack slot. */
2912 if (is_gimple_reg (parm) && use_register_for_decl (parm))
2914 tree def = ssa_default_def (cfun, parm);
2915 gcc_assert (def);
2916 machine_mode mode = promote_ssa_mode (def, NULL);
2917 rtx reg = gen_reg_rtx (mode);
2918 if (GET_CODE (reg) != CONCAT)
2919 stack_parm = reg;
2920 else
2922 target_reg = reg;
2923 /* Avoid allocating a stack slot, if there isn't one
2924 preallocated by the ABI. It might seem like we should
2925 always prefer a pseudo, but converting between
2926 floating-point and integer modes goes through the stack
2927 on various machines, so it's better to use the reserved
2928 stack slot than to risk wasting it and allocating more
2929 for the conversion. */
2930 if (stack_parm == NULL_RTX)
2932 int save = generating_concat_p;
2933 generating_concat_p = 0;
2934 stack_parm = gen_reg_rtx (mode);
2935 generating_concat_p = save;
2938 data->stack_parm = NULL;
2941 size = int_size_in_bytes (data->arg.type);
2942 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2943 if (stack_parm == 0)
2945 HOST_WIDE_INT parm_align
2946 = (STRICT_ALIGNMENT
2947 ? MAX (DECL_ALIGN (parm), BITS_PER_WORD) : DECL_ALIGN (parm));
2949 SET_DECL_ALIGN (parm, parm_align);
2950 if (DECL_ALIGN (parm) > MAX_SUPPORTED_STACK_ALIGNMENT)
2952 rtx allocsize = gen_int_mode (size_stored, Pmode);
2953 get_dynamic_stack_size (&allocsize, 0, DECL_ALIGN (parm), NULL);
2954 stack_parm = assign_stack_local (BLKmode, UINTVAL (allocsize),
2955 MAX_SUPPORTED_STACK_ALIGNMENT);
2956 rtx addr = align_dynamic_address (XEXP (stack_parm, 0),
2957 DECL_ALIGN (parm));
2958 mark_reg_pointer (addr, DECL_ALIGN (parm));
2959 stack_parm = gen_rtx_MEM (GET_MODE (stack_parm), addr);
2960 MEM_NOTRAP_P (stack_parm) = 1;
2962 else
2963 stack_parm = assign_stack_local (BLKmode, size_stored,
2964 DECL_ALIGN (parm));
2965 if (known_eq (GET_MODE_SIZE (GET_MODE (entry_parm)), size))
2966 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2967 set_mem_attributes (stack_parm, parm, 1);
2970 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2971 calls that pass values in multiple non-contiguous locations. */
2972 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2974 rtx mem;
2976 /* Note that we will be storing an integral number of words.
2977 So we have to be careful to ensure that we allocate an
2978 integral number of words. We do this above when we call
2979 assign_stack_local if space was not allocated in the argument
2980 list. If it was, this will not work if PARM_BOUNDARY is not
2981 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2982 if it becomes a problem. Exception is when BLKmode arrives
2983 with arguments not conforming to word_mode. */
2985 if (data->stack_parm == 0)
2987 else if (GET_CODE (entry_parm) == PARALLEL)
2989 else
2990 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2992 mem = validize_mem (copy_rtx (stack_parm));
2994 /* Handle values in multiple non-contiguous locations. */
2995 if (GET_CODE (entry_parm) == PARALLEL && !MEM_P (mem))
2996 emit_group_store (mem, entry_parm, data->arg.type, size);
2997 else if (GET_CODE (entry_parm) == PARALLEL)
2999 push_to_sequence2 (all->first_conversion_insn,
3000 all->last_conversion_insn);
3001 emit_group_store (mem, entry_parm, data->arg.type, size);
3002 all->first_conversion_insn = get_insns ();
3003 all->last_conversion_insn = get_last_insn ();
3004 end_sequence ();
3005 in_conversion_seq = true;
3008 else if (size == 0)
3011 /* If SIZE is that of a mode no bigger than a word, just use
3012 that mode's store operation. */
3013 else if (size <= UNITS_PER_WORD)
3015 unsigned int bits = size * BITS_PER_UNIT;
3016 machine_mode mode = int_mode_for_size (bits, 0).else_blk ();
3018 if (mode != BLKmode
3019 #ifdef BLOCK_REG_PADDING
3020 && (size == UNITS_PER_WORD
3021 || (BLOCK_REG_PADDING (mode, data->arg.type, 1)
3022 != (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)))
3023 #endif
3026 rtx reg;
3028 /* We are really truncating a word_mode value containing
3029 SIZE bytes into a value of mode MODE. If such an
3030 operation requires no actual instructions, we can refer
3031 to the value directly in mode MODE, otherwise we must
3032 start with the register in word_mode and explicitly
3033 convert it. */
3034 if (mode == word_mode
3035 || TRULY_NOOP_TRUNCATION_MODES_P (mode, word_mode))
3036 reg = gen_rtx_REG (mode, REGNO (entry_parm));
3037 else
3039 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
3040 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
3043 /* We use adjust_address to get a new MEM with the mode
3044 changed. adjust_address is better than change_address
3045 for this purpose because adjust_address does not lose
3046 the MEM_EXPR associated with the MEM.
3048 If the MEM_EXPR is lost, then optimizations like DSE
3049 assume the MEM escapes and thus is not subject to DSE. */
3050 emit_move_insn (adjust_address (mem, mode, 0), reg);
3053 #ifdef BLOCK_REG_PADDING
3054 /* Storing the register in memory as a full word, as
3055 move_block_from_reg below would do, and then using the
3056 MEM in a smaller mode, has the effect of shifting right
3057 if BYTES_BIG_ENDIAN. If we're bypassing memory, the
3058 shifting must be explicit. */
3059 else if (!MEM_P (mem))
3061 rtx x;
3063 /* If the assert below fails, we should have taken the
3064 mode != BLKmode path above, unless we have downward
3065 padding of smaller-than-word arguments on a machine
3066 with little-endian bytes, which would likely require
3067 additional changes to work correctly. */
3068 gcc_checking_assert (BYTES_BIG_ENDIAN
3069 && (BLOCK_REG_PADDING (mode,
3070 data->arg.type, 1)
3071 == PAD_UPWARD));
3073 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
3075 x = gen_rtx_REG (word_mode, REGNO (entry_parm));
3076 x = expand_shift (RSHIFT_EXPR, word_mode, x, by,
3077 NULL_RTX, 1);
3078 x = force_reg (word_mode, x);
3079 x = gen_lowpart_SUBREG (GET_MODE (mem), x);
3081 emit_move_insn (mem, x);
3083 #endif
3085 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
3086 machine must be aligned to the left before storing
3087 to memory. Note that the previous test doesn't
3088 handle all cases (e.g. SIZE == 3). */
3089 else if (size != UNITS_PER_WORD
3090 #ifdef BLOCK_REG_PADDING
3091 && (BLOCK_REG_PADDING (mode, data->arg.type, 1)
3092 == PAD_DOWNWARD)
3093 #else
3094 && BYTES_BIG_ENDIAN
3095 #endif
3098 rtx tem, x;
3099 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
3100 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
3102 x = expand_shift (LSHIFT_EXPR, word_mode, reg, by, NULL_RTX, 1);
3103 tem = change_address (mem, word_mode, 0);
3104 emit_move_insn (tem, x);
3106 else
3107 move_block_from_reg (REGNO (entry_parm), mem,
3108 size_stored / UNITS_PER_WORD);
3110 else if (!MEM_P (mem))
3112 gcc_checking_assert (size > UNITS_PER_WORD);
3113 #ifdef BLOCK_REG_PADDING
3114 gcc_checking_assert (BLOCK_REG_PADDING (GET_MODE (mem),
3115 data->arg.type, 0)
3116 == PAD_UPWARD);
3117 #endif
3118 emit_move_insn (mem, entry_parm);
3120 else
3121 move_block_from_reg (REGNO (entry_parm), mem,
3122 size_stored / UNITS_PER_WORD);
3124 else if (data->stack_parm == 0 && !TYPE_EMPTY_P (data->arg.type))
3126 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3127 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
3128 BLOCK_OP_NORMAL);
3129 all->first_conversion_insn = get_insns ();
3130 all->last_conversion_insn = get_last_insn ();
3131 end_sequence ();
3132 in_conversion_seq = true;
3135 if (target_reg)
3137 if (!in_conversion_seq)
3138 emit_move_insn (target_reg, stack_parm);
3139 else
3141 push_to_sequence2 (all->first_conversion_insn,
3142 all->last_conversion_insn);
3143 emit_move_insn (target_reg, stack_parm);
3144 all->first_conversion_insn = get_insns ();
3145 all->last_conversion_insn = get_last_insn ();
3146 end_sequence ();
3148 stack_parm = target_reg;
3151 data->stack_parm = stack_parm;
3152 set_parm_rtl (parm, stack_parm);
3155 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
3156 parameter. Get it there. Perform all ABI specified conversions. */
3158 static void
3159 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
3160 struct assign_parm_data_one *data)
3162 rtx parmreg, validated_mem;
3163 rtx equiv_stack_parm;
3164 machine_mode promoted_nominal_mode;
3165 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
3166 bool did_conversion = false;
3167 bool need_conversion, moved;
3168 enum insn_code icode;
3169 rtx rtl;
3171 /* Store the parm in a pseudoregister during the function, but we may
3172 need to do it in a wider mode. Using 2 here makes the result
3173 consistent with promote_decl_mode and thus expand_expr_real_1. */
3174 promoted_nominal_mode
3175 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
3176 TREE_TYPE (current_function_decl), 2);
3178 parmreg = gen_reg_rtx (promoted_nominal_mode);
3179 if (!DECL_ARTIFICIAL (parm))
3180 mark_user_reg (parmreg);
3182 /* If this was an item that we received a pointer to,
3183 set rtl appropriately. */
3184 if (data->arg.pass_by_reference)
3186 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->arg.type)), parmreg);
3187 set_mem_attributes (rtl, parm, 1);
3189 else
3190 rtl = parmreg;
3192 assign_parm_remove_parallels (data);
3194 /* Copy the value into the register, thus bridging between
3195 assign_parm_find_data_types and expand_expr_real_1. */
3197 equiv_stack_parm = data->stack_parm;
3198 validated_mem = validize_mem (copy_rtx (data->entry_parm));
3200 need_conversion = (data->nominal_mode != data->passed_mode
3201 || promoted_nominal_mode != data->arg.mode);
3202 moved = false;
3204 if (need_conversion
3205 && GET_MODE_CLASS (data->nominal_mode) == MODE_INT
3206 && data->nominal_mode == data->passed_mode
3207 && data->nominal_mode == GET_MODE (data->entry_parm))
3209 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
3210 mode, by the caller. We now have to convert it to
3211 NOMINAL_MODE, if different. However, PARMREG may be in
3212 a different mode than NOMINAL_MODE if it is being stored
3213 promoted.
3215 If ENTRY_PARM is a hard register, it might be in a register
3216 not valid for operating in its mode (e.g., an odd-numbered
3217 register for a DFmode). In that case, moves are the only
3218 thing valid, so we can't do a convert from there. This
3219 occurs when the calling sequence allow such misaligned
3220 usages.
3222 In addition, the conversion may involve a call, which could
3223 clobber parameters which haven't been copied to pseudo
3224 registers yet.
3226 First, we try to emit an insn which performs the necessary
3227 conversion. We verify that this insn does not clobber any
3228 hard registers. */
3230 rtx op0, op1;
3232 icode = can_extend_p (promoted_nominal_mode, data->passed_mode,
3233 unsignedp);
3235 op0 = parmreg;
3236 op1 = validated_mem;
3237 if (icode != CODE_FOR_nothing
3238 && insn_operand_matches (icode, 0, op0)
3239 && insn_operand_matches (icode, 1, op1))
3241 enum rtx_code code = unsignedp ? ZERO_EXTEND : SIGN_EXTEND;
3242 rtx_insn *insn, *insns;
3243 rtx t = op1;
3244 HARD_REG_SET hardregs;
3246 start_sequence ();
3247 /* If op1 is a hard register that is likely spilled, first
3248 force it into a pseudo, otherwise combiner might extend
3249 its lifetime too much. */
3250 if (GET_CODE (t) == SUBREG)
3251 t = SUBREG_REG (t);
3252 if (REG_P (t)
3253 && HARD_REGISTER_P (t)
3254 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (t))
3255 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (t))))
3257 t = gen_reg_rtx (GET_MODE (op1));
3258 emit_move_insn (t, op1);
3260 else
3261 t = op1;
3262 rtx_insn *pat = gen_extend_insn (op0, t, promoted_nominal_mode,
3263 data->passed_mode, unsignedp);
3264 emit_insn (pat);
3265 insns = get_insns ();
3267 moved = true;
3268 CLEAR_HARD_REG_SET (hardregs);
3269 for (insn = insns; insn && moved; insn = NEXT_INSN (insn))
3271 if (INSN_P (insn))
3272 note_stores (insn, record_hard_reg_sets, &hardregs);
3273 if (!hard_reg_set_empty_p (hardregs))
3274 moved = false;
3277 end_sequence ();
3279 if (moved)
3281 emit_insn (insns);
3282 if (equiv_stack_parm != NULL_RTX)
3283 equiv_stack_parm = gen_rtx_fmt_e (code, GET_MODE (parmreg),
3284 equiv_stack_parm);
3289 if (moved)
3290 /* Nothing to do. */
3292 else if (need_conversion)
3294 /* We did not have an insn to convert directly, or the sequence
3295 generated appeared unsafe. We must first copy the parm to a
3296 pseudo reg, and save the conversion until after all
3297 parameters have been moved. */
3299 int save_tree_used;
3300 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3302 emit_move_insn (tempreg, validated_mem);
3304 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3305 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
3307 if (partial_subreg_p (tempreg)
3308 && GET_MODE (tempreg) == data->nominal_mode
3309 && REG_P (SUBREG_REG (tempreg))
3310 && data->nominal_mode == data->passed_mode
3311 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm))
3313 /* The argument is already sign/zero extended, so note it
3314 into the subreg. */
3315 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
3316 SUBREG_PROMOTED_SET (tempreg, unsignedp);
3319 /* TREE_USED gets set erroneously during expand_assignment. */
3320 save_tree_used = TREE_USED (parm);
3321 SET_DECL_RTL (parm, rtl);
3322 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
3323 SET_DECL_RTL (parm, NULL_RTX);
3324 TREE_USED (parm) = save_tree_used;
3325 all->first_conversion_insn = get_insns ();
3326 all->last_conversion_insn = get_last_insn ();
3327 end_sequence ();
3329 did_conversion = true;
3331 else if (MEM_P (data->entry_parm)
3332 && GET_MODE_ALIGNMENT (promoted_nominal_mode)
3333 > MEM_ALIGN (data->entry_parm)
3334 && (((icode = optab_handler (movmisalign_optab,
3335 promoted_nominal_mode))
3336 != CODE_FOR_nothing)
3337 || targetm.slow_unaligned_access (promoted_nominal_mode,
3338 MEM_ALIGN (data->entry_parm))))
3340 if (icode != CODE_FOR_nothing)
3341 emit_insn (GEN_FCN (icode) (parmreg, validated_mem));
3342 else
3343 rtl = parmreg = extract_bit_field (validated_mem,
3344 GET_MODE_BITSIZE (promoted_nominal_mode), 0,
3345 unsignedp, parmreg,
3346 promoted_nominal_mode, VOIDmode, false, NULL);
3348 else
3349 emit_move_insn (parmreg, validated_mem);
3351 /* If we were passed a pointer but the actual value can live in a register,
3352 retrieve it and use it directly. Note that we cannot use nominal_mode,
3353 because it will have been set to Pmode above, we must use the actual mode
3354 of the parameter instead. */
3355 if (data->arg.pass_by_reference && TYPE_MODE (TREE_TYPE (parm)) != BLKmode)
3357 /* Use a stack slot for debugging purposes if possible. */
3358 if (use_register_for_decl (parm))
3360 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
3361 mark_user_reg (parmreg);
3363 else
3365 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3366 TYPE_MODE (TREE_TYPE (parm)),
3367 TYPE_ALIGN (TREE_TYPE (parm)));
3368 parmreg
3369 = assign_stack_local (TYPE_MODE (TREE_TYPE (parm)),
3370 GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (parm))),
3371 align);
3372 set_mem_attributes (parmreg, parm, 1);
3375 /* We need to preserve an address based on VIRTUAL_STACK_VARS_REGNUM for
3376 the debug info in case it is not legitimate. */
3377 if (GET_MODE (parmreg) != GET_MODE (rtl))
3379 rtx tempreg = gen_reg_rtx (GET_MODE (rtl));
3380 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
3382 push_to_sequence2 (all->first_conversion_insn,
3383 all->last_conversion_insn);
3384 emit_move_insn (tempreg, rtl);
3385 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
3386 emit_move_insn (MEM_P (parmreg) ? copy_rtx (parmreg) : parmreg,
3387 tempreg);
3388 all->first_conversion_insn = get_insns ();
3389 all->last_conversion_insn = get_last_insn ();
3390 end_sequence ();
3392 did_conversion = true;
3394 else
3395 emit_move_insn (MEM_P (parmreg) ? copy_rtx (parmreg) : parmreg, rtl);
3397 rtl = parmreg;
3399 /* STACK_PARM is the pointer, not the parm, and PARMREG is
3400 now the parm. */
3401 data->stack_parm = NULL;
3404 set_parm_rtl (parm, rtl);
3406 /* Mark the register as eliminable if we did no conversion and it was
3407 copied from memory at a fixed offset, and the arg pointer was not
3408 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
3409 offset formed an invalid address, such memory-equivalences as we
3410 make here would screw up life analysis for it. */
3411 if (data->nominal_mode == data->passed_mode
3412 && !did_conversion
3413 && data->stack_parm != 0
3414 && MEM_P (data->stack_parm)
3415 && data->locate.offset.var == 0
3416 && reg_mentioned_p (virtual_incoming_args_rtx,
3417 XEXP (data->stack_parm, 0)))
3419 rtx_insn *linsn = get_last_insn ();
3420 rtx_insn *sinsn;
3421 rtx set;
3423 /* Mark complex types separately. */
3424 if (GET_CODE (parmreg) == CONCAT)
3426 scalar_mode submode = GET_MODE_INNER (GET_MODE (parmreg));
3427 int regnor = REGNO (XEXP (parmreg, 0));
3428 int regnoi = REGNO (XEXP (parmreg, 1));
3429 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
3430 rtx stacki = adjust_address_nv (data->stack_parm, submode,
3431 GET_MODE_SIZE (submode));
3433 /* Scan backwards for the set of the real and
3434 imaginary parts. */
3435 for (sinsn = linsn; sinsn != 0;
3436 sinsn = prev_nonnote_insn (sinsn))
3438 set = single_set (sinsn);
3439 if (set == 0)
3440 continue;
3442 if (SET_DEST (set) == regno_reg_rtx [regnoi])
3443 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
3444 else if (SET_DEST (set) == regno_reg_rtx [regnor])
3445 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
3448 else
3449 set_dst_reg_note (linsn, REG_EQUIV, equiv_stack_parm, parmreg);
3452 /* For pointer data type, suggest pointer register. */
3453 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3454 mark_reg_pointer (parmreg,
3455 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
3458 /* A subroutine of assign_parms. Allocate stack space to hold the current
3459 parameter. Get it there. Perform all ABI specified conversions. */
3461 static void
3462 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
3463 struct assign_parm_data_one *data)
3465 /* Value must be stored in the stack slot STACK_PARM during function
3466 execution. */
3467 bool to_conversion = false;
3469 assign_parm_remove_parallels (data);
3471 if (data->arg.mode != data->nominal_mode)
3473 /* Conversion is required. */
3474 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3476 emit_move_insn (tempreg, validize_mem (copy_rtx (data->entry_parm)));
3478 /* Some ABIs require scalar floating point modes to be passed
3479 in a wider scalar integer mode. We need to explicitly
3480 truncate to an integer mode of the correct precision before
3481 using a SUBREG to reinterpret as a floating point value. */
3482 if (SCALAR_FLOAT_MODE_P (data->nominal_mode)
3483 && SCALAR_INT_MODE_P (data->arg.mode)
3484 && known_lt (GET_MODE_SIZE (data->nominal_mode),
3485 GET_MODE_SIZE (data->arg.mode)))
3486 tempreg = convert_wider_int_to_float (data->nominal_mode,
3487 data->arg.mode, tempreg);
3489 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3490 to_conversion = true;
3492 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
3493 TYPE_UNSIGNED (TREE_TYPE (parm)));
3495 if (data->stack_parm)
3497 poly_int64 offset
3498 = subreg_lowpart_offset (data->nominal_mode,
3499 GET_MODE (data->stack_parm));
3500 /* ??? This may need a big-endian conversion on sparc64. */
3501 data->stack_parm
3502 = adjust_address (data->stack_parm, data->nominal_mode, 0);
3503 if (maybe_ne (offset, 0) && MEM_OFFSET_KNOWN_P (data->stack_parm))
3504 set_mem_offset (data->stack_parm,
3505 MEM_OFFSET (data->stack_parm) + offset);
3509 if (data->entry_parm != data->stack_parm)
3511 rtx src, dest;
3513 if (data->stack_parm == 0)
3515 int align = STACK_SLOT_ALIGNMENT (data->arg.type,
3516 GET_MODE (data->entry_parm),
3517 TYPE_ALIGN (data->arg.type));
3518 if (align < (int)GET_MODE_ALIGNMENT (GET_MODE (data->entry_parm))
3519 && ((optab_handler (movmisalign_optab,
3520 GET_MODE (data->entry_parm))
3521 != CODE_FOR_nothing)
3522 || targetm.slow_unaligned_access (GET_MODE (data->entry_parm),
3523 align)))
3524 align = GET_MODE_ALIGNMENT (GET_MODE (data->entry_parm));
3525 data->stack_parm
3526 = assign_stack_local (GET_MODE (data->entry_parm),
3527 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3528 align);
3529 align = MEM_ALIGN (data->stack_parm);
3530 set_mem_attributes (data->stack_parm, parm, 1);
3531 set_mem_align (data->stack_parm, align);
3534 dest = validize_mem (copy_rtx (data->stack_parm));
3535 src = validize_mem (copy_rtx (data->entry_parm));
3537 if (TYPE_EMPTY_P (data->arg.type))
3538 /* Empty types don't really need to be copied. */;
3539 else if (MEM_P (src))
3541 /* Use a block move to handle potentially misaligned entry_parm. */
3542 if (!to_conversion)
3543 push_to_sequence2 (all->first_conversion_insn,
3544 all->last_conversion_insn);
3545 to_conversion = true;
3547 emit_block_move (dest, src,
3548 GEN_INT (int_size_in_bytes (data->arg.type)),
3549 BLOCK_OP_NORMAL);
3551 else
3553 if (!REG_P (src))
3554 src = force_reg (GET_MODE (src), src);
3555 emit_move_insn (dest, src);
3559 if (to_conversion)
3561 all->first_conversion_insn = get_insns ();
3562 all->last_conversion_insn = get_last_insn ();
3563 end_sequence ();
3566 set_parm_rtl (parm, data->stack_parm);
3569 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3570 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3572 static void
3573 assign_parms_unsplit_complex (struct assign_parm_data_all *all,
3574 vec<tree> fnargs)
3576 tree parm;
3577 tree orig_fnargs = all->orig_fnargs;
3578 unsigned i = 0;
3580 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i)
3582 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3583 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3585 rtx tmp, real, imag;
3586 scalar_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3588 real = DECL_RTL (fnargs[i]);
3589 imag = DECL_RTL (fnargs[i + 1]);
3590 if (inner != GET_MODE (real))
3592 real = gen_lowpart_SUBREG (inner, real);
3593 imag = gen_lowpart_SUBREG (inner, imag);
3596 if (TREE_ADDRESSABLE (parm))
3598 rtx rmem, imem;
3599 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3600 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3601 DECL_MODE (parm),
3602 TYPE_ALIGN (TREE_TYPE (parm)));
3604 /* split_complex_arg put the real and imag parts in
3605 pseudos. Move them to memory. */
3606 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3607 set_mem_attributes (tmp, parm, 1);
3608 rmem = adjust_address_nv (tmp, inner, 0);
3609 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3610 push_to_sequence2 (all->first_conversion_insn,
3611 all->last_conversion_insn);
3612 emit_move_insn (rmem, real);
3613 emit_move_insn (imem, imag);
3614 all->first_conversion_insn = get_insns ();
3615 all->last_conversion_insn = get_last_insn ();
3616 end_sequence ();
3618 else
3619 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3620 set_parm_rtl (parm, tmp);
3622 real = DECL_INCOMING_RTL (fnargs[i]);
3623 imag = DECL_INCOMING_RTL (fnargs[i + 1]);
3624 if (inner != GET_MODE (real))
3626 real = gen_lowpart_SUBREG (inner, real);
3627 imag = gen_lowpart_SUBREG (inner, imag);
3629 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3630 set_decl_incoming_rtl (parm, tmp, false);
3631 i++;
3636 /* Assign RTL expressions to the function's parameters. This may involve
3637 copying them into registers and using those registers as the DECL_RTL. */
3639 static void
3640 assign_parms (tree fndecl)
3642 struct assign_parm_data_all all;
3643 tree parm;
3644 vec<tree> fnargs;
3645 unsigned i;
3647 crtl->args.internal_arg_pointer
3648 = targetm.calls.internal_arg_pointer ();
3650 assign_parms_initialize_all (&all);
3651 fnargs = assign_parms_augmented_arg_list (&all);
3653 if (TYPE_NO_NAMED_ARGS_STDARG_P (TREE_TYPE (fndecl)))
3655 struct assign_parm_data_one data = {};
3656 assign_parms_setup_varargs (&all, &data, false);
3659 FOR_EACH_VEC_ELT (fnargs, i, parm)
3661 struct assign_parm_data_one data;
3663 /* Extract the type of PARM; adjust it according to ABI. */
3664 assign_parm_find_data_types (&all, parm, &data);
3666 /* Early out for errors and void parameters. */
3667 if (data.passed_mode == VOIDmode)
3669 SET_DECL_RTL (parm, const0_rtx);
3670 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3671 continue;
3674 /* Estimate stack alignment from parameter alignment. */
3675 if (SUPPORTS_STACK_ALIGNMENT)
3677 unsigned int align
3678 = targetm.calls.function_arg_boundary (data.arg.mode,
3679 data.arg.type);
3680 align = MINIMUM_ALIGNMENT (data.arg.type, data.arg.mode, align);
3681 if (TYPE_ALIGN (data.nominal_type) > align)
3682 align = MINIMUM_ALIGNMENT (data.nominal_type,
3683 TYPE_MODE (data.nominal_type),
3684 TYPE_ALIGN (data.nominal_type));
3685 if (crtl->stack_alignment_estimated < align)
3687 gcc_assert (!crtl->stack_realign_processed);
3688 crtl->stack_alignment_estimated = align;
3692 /* Find out where the parameter arrives in this function. */
3693 assign_parm_find_entry_rtl (&all, &data);
3695 /* Find out where stack space for this parameter might be. */
3696 if (assign_parm_is_stack_parm (&all, &data))
3698 assign_parm_find_stack_rtl (parm, &data);
3699 assign_parm_adjust_entry_rtl (&data);
3700 /* For arguments that occupy no space in the parameter
3701 passing area, have non-zero size and have address taken,
3702 force creation of a stack slot so that they have distinct
3703 address from other parameters. */
3704 if (TYPE_EMPTY_P (data.arg.type)
3705 && TREE_ADDRESSABLE (parm)
3706 && data.entry_parm == data.stack_parm
3707 && MEM_P (data.entry_parm)
3708 && int_size_in_bytes (data.arg.type))
3709 data.stack_parm = NULL_RTX;
3711 /* Record permanently how this parm was passed. */
3712 if (data.arg.pass_by_reference)
3714 rtx incoming_rtl
3715 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data.arg.type)),
3716 data.entry_parm);
3717 set_decl_incoming_rtl (parm, incoming_rtl, true);
3719 else
3720 set_decl_incoming_rtl (parm, data.entry_parm, false);
3722 assign_parm_adjust_stack_rtl (&data);
3724 if (assign_parm_setup_block_p (&data))
3725 assign_parm_setup_block (&all, parm, &data);
3726 else if (data.arg.pass_by_reference || use_register_for_decl (parm))
3727 assign_parm_setup_reg (&all, parm, &data);
3728 else
3729 assign_parm_setup_stack (&all, parm, &data);
3731 if (cfun->stdarg && !DECL_CHAIN (parm))
3732 assign_parms_setup_varargs (&all, &data, false);
3734 /* Update info on where next arg arrives in registers. */
3735 targetm.calls.function_arg_advance (all.args_so_far, data.arg);
3738 if (targetm.calls.split_complex_arg)
3739 assign_parms_unsplit_complex (&all, fnargs);
3741 fnargs.release ();
3743 /* Output all parameter conversion instructions (possibly including calls)
3744 now that all parameters have been copied out of hard registers. */
3745 emit_insn (all.first_conversion_insn);
3747 /* Estimate reload stack alignment from scalar return mode. */
3748 if (SUPPORTS_STACK_ALIGNMENT)
3750 if (DECL_RESULT (fndecl))
3752 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3753 machine_mode mode = TYPE_MODE (type);
3755 if (mode != BLKmode
3756 && mode != VOIDmode
3757 && !AGGREGATE_TYPE_P (type))
3759 unsigned int align = GET_MODE_ALIGNMENT (mode);
3760 if (crtl->stack_alignment_estimated < align)
3762 gcc_assert (!crtl->stack_realign_processed);
3763 crtl->stack_alignment_estimated = align;
3769 /* If we are receiving a struct value address as the first argument, set up
3770 the RTL for the function result. As this might require code to convert
3771 the transmitted address to Pmode, we do this here to ensure that possible
3772 preliminary conversions of the address have been emitted already. */
3773 if (all.function_result_decl)
3775 tree result = DECL_RESULT (current_function_decl);
3776 rtx addr = DECL_RTL (all.function_result_decl);
3777 rtx x;
3779 if (DECL_BY_REFERENCE (result))
3781 SET_DECL_VALUE_EXPR (result, all.function_result_decl);
3782 x = addr;
3784 else
3786 SET_DECL_VALUE_EXPR (result,
3787 build1 (INDIRECT_REF, TREE_TYPE (result),
3788 all.function_result_decl));
3789 addr = convert_memory_address (Pmode, addr);
3790 x = gen_rtx_MEM (DECL_MODE (result), addr);
3791 set_mem_attributes (x, result, 1);
3794 DECL_HAS_VALUE_EXPR_P (result) = 1;
3796 set_parm_rtl (result, x);
3799 /* We have aligned all the args, so add space for the pretend args. */
3800 crtl->args.pretend_args_size = all.pretend_args_size;
3801 all.stack_args_size.constant += all.extra_pretend_bytes;
3802 crtl->args.size = all.stack_args_size.constant;
3804 /* Adjust function incoming argument size for alignment and
3805 minimum length. */
3807 crtl->args.size = upper_bound (crtl->args.size, all.reg_parm_stack_space);
3808 crtl->args.size = aligned_upper_bound (crtl->args.size,
3809 PARM_BOUNDARY / BITS_PER_UNIT);
3811 if (ARGS_GROW_DOWNWARD)
3813 crtl->args.arg_offset_rtx
3814 = (all.stack_args_size.var == 0
3815 ? gen_int_mode (-all.stack_args_size.constant, Pmode)
3816 : expand_expr (size_diffop (all.stack_args_size.var,
3817 size_int (-all.stack_args_size.constant)),
3818 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3820 else
3821 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3823 /* See how many bytes, if any, of its args a function should try to pop
3824 on return. */
3826 crtl->args.pops_args = targetm.calls.return_pops_args (fndecl,
3827 TREE_TYPE (fndecl),
3828 crtl->args.size);
3830 /* For stdarg.h function, save info about
3831 regs and stack space used by the named args. */
3833 crtl->args.info = all.args_so_far_v;
3835 /* Set the rtx used for the function return value. Put this in its
3836 own variable so any optimizers that need this information don't have
3837 to include tree.h. Do this here so it gets done when an inlined
3838 function gets output. */
3840 crtl->return_rtx
3841 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3842 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3844 /* If scalar return value was computed in a pseudo-reg, or was a named
3845 return value that got dumped to the stack, copy that to the hard
3846 return register. */
3847 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3849 tree decl_result = DECL_RESULT (fndecl);
3850 rtx decl_rtl = DECL_RTL (decl_result);
3852 if (REG_P (decl_rtl)
3853 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3854 : DECL_REGISTER (decl_result))
3856 rtx real_decl_rtl;
3858 /* Unless the psABI says not to. */
3859 if (TYPE_EMPTY_P (TREE_TYPE (decl_result)))
3860 real_decl_rtl = NULL_RTX;
3861 else
3863 real_decl_rtl
3864 = targetm.calls.function_value (TREE_TYPE (decl_result),
3865 fndecl, true);
3866 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3868 /* The delay slot scheduler assumes that crtl->return_rtx
3869 holds the hard register containing the return value, not a
3870 temporary pseudo. */
3871 crtl->return_rtx = real_decl_rtl;
3876 /* Gimplify the parameter list for current_function_decl. This involves
3877 evaluating SAVE_EXPRs of variable sized parameters and generating code
3878 to implement callee-copies reference parameters. Returns a sequence of
3879 statements to add to the beginning of the function. */
3881 gimple_seq
3882 gimplify_parameters (gimple_seq *cleanup)
3884 struct assign_parm_data_all all;
3885 tree parm;
3886 gimple_seq stmts = NULL;
3887 vec<tree> fnargs;
3888 unsigned i;
3890 assign_parms_initialize_all (&all);
3891 fnargs = assign_parms_augmented_arg_list (&all);
3893 FOR_EACH_VEC_ELT (fnargs, i, parm)
3895 struct assign_parm_data_one data;
3897 /* Extract the type of PARM; adjust it according to ABI. */
3898 assign_parm_find_data_types (&all, parm, &data);
3900 /* Early out for errors and void parameters. */
3901 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3902 continue;
3904 /* Update info on where next arg arrives in registers. */
3905 targetm.calls.function_arg_advance (all.args_so_far, data.arg);
3907 /* ??? Once upon a time variable_size stuffed parameter list
3908 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3909 turned out to be less than manageable in the gimple world.
3910 Now we have to hunt them down ourselves. */
3911 gimplify_type_sizes (TREE_TYPE (parm), &stmts);
3913 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
3915 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3916 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3919 if (data.arg.pass_by_reference)
3921 tree type = TREE_TYPE (data.arg.type);
3922 function_arg_info orig_arg (type, data.arg.named);
3923 if (reference_callee_copied (&all.args_so_far_v, orig_arg))
3925 tree local, t;
3927 /* For constant-sized objects, this is trivial; for
3928 variable-sized objects, we have to play games. */
3929 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3930 && !(flag_stack_check == GENERIC_STACK_CHECK
3931 && compare_tree_int (DECL_SIZE_UNIT (parm),
3932 STACK_CHECK_MAX_VAR_SIZE) > 0))
3934 local = create_tmp_var (type, get_name (parm));
3935 DECL_IGNORED_P (local) = 0;
3936 /* If PARM was addressable, move that flag over
3937 to the local copy, as its address will be taken,
3938 not the PARMs. Keep the parms address taken
3939 as we'll query that flag during gimplification. */
3940 if (TREE_ADDRESSABLE (parm))
3941 TREE_ADDRESSABLE (local) = 1;
3942 if (DECL_NOT_GIMPLE_REG_P (parm))
3943 DECL_NOT_GIMPLE_REG_P (local) = 1;
3945 if (!is_gimple_reg (local)
3946 && flag_stack_reuse != SR_NONE)
3948 tree clobber = build_clobber (type);
3949 gimple *clobber_stmt;
3950 clobber_stmt = gimple_build_assign (local, clobber);
3951 gimple_seq_add_stmt (cleanup, clobber_stmt);
3954 else
3956 tree ptr_type, addr;
3958 ptr_type = build_pointer_type (type);
3959 addr = create_tmp_reg (ptr_type, get_name (parm));
3960 DECL_IGNORED_P (addr) = 0;
3961 local = build_fold_indirect_ref (addr);
3963 t = build_alloca_call_expr (DECL_SIZE_UNIT (parm),
3964 DECL_ALIGN (parm),
3965 max_int_size_in_bytes (type));
3966 /* The call has been built for a variable-sized object. */
3967 CALL_ALLOCA_FOR_VAR_P (t) = 1;
3968 t = fold_convert (ptr_type, t);
3969 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
3970 gimplify_and_add (t, &stmts);
3973 gimplify_assign (local, parm, &stmts);
3975 SET_DECL_VALUE_EXPR (parm, local);
3976 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3981 fnargs.release ();
3983 return stmts;
3986 /* Compute the size and offset from the start of the stacked arguments for a
3987 parm passed in mode PASSED_MODE and with type TYPE.
3989 INITIAL_OFFSET_PTR points to the current offset into the stacked
3990 arguments.
3992 The starting offset and size for this parm are returned in
3993 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3994 nonzero, the offset is that of stack slot, which is returned in
3995 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3996 padding required from the initial offset ptr to the stack slot.
3998 IN_REGS is nonzero if the argument will be passed in registers. It will
3999 never be set if REG_PARM_STACK_SPACE is not defined.
4001 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
4002 for arguments which are passed in registers.
4004 FNDECL is the function in which the argument was defined.
4006 There are two types of rounding that are done. The first, controlled by
4007 TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the
4008 argument list to be aligned to the specific boundary (in bits). This
4009 rounding affects the initial and starting offsets, but not the argument
4010 size.
4012 The second, controlled by TARGET_FUNCTION_ARG_PADDING and PARM_BOUNDARY,
4013 optionally rounds the size of the parm to PARM_BOUNDARY. The
4014 initial offset is not affected by this rounding, while the size always
4015 is and the starting offset may be. */
4017 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
4018 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
4019 callers pass in the total size of args so far as
4020 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
4022 void
4023 locate_and_pad_parm (machine_mode passed_mode, tree type, int in_regs,
4024 int reg_parm_stack_space, int partial,
4025 tree fndecl ATTRIBUTE_UNUSED,
4026 struct args_size *initial_offset_ptr,
4027 struct locate_and_pad_arg_data *locate)
4029 tree sizetree;
4030 pad_direction where_pad;
4031 unsigned int boundary, round_boundary;
4032 int part_size_in_regs;
4034 /* If we have found a stack parm before we reach the end of the
4035 area reserved for registers, skip that area. */
4036 if (! in_regs)
4038 if (reg_parm_stack_space > 0)
4040 if (initial_offset_ptr->var
4041 || !ordered_p (initial_offset_ptr->constant,
4042 reg_parm_stack_space))
4044 initial_offset_ptr->var
4045 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
4046 ssize_int (reg_parm_stack_space));
4047 initial_offset_ptr->constant = 0;
4049 else
4050 initial_offset_ptr->constant
4051 = ordered_max (initial_offset_ptr->constant,
4052 reg_parm_stack_space);
4056 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
4058 sizetree = (type
4059 ? arg_size_in_bytes (type)
4060 : size_int (GET_MODE_SIZE (passed_mode)));
4061 where_pad = targetm.calls.function_arg_padding (passed_mode, type);
4062 boundary = targetm.calls.function_arg_boundary (passed_mode, type);
4063 round_boundary = targetm.calls.function_arg_round_boundary (passed_mode,
4064 type);
4065 locate->where_pad = where_pad;
4067 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
4068 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
4069 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
4071 locate->boundary = boundary;
4073 if (SUPPORTS_STACK_ALIGNMENT)
4075 /* stack_alignment_estimated can't change after stack has been
4076 realigned. */
4077 if (crtl->stack_alignment_estimated < boundary)
4079 if (!crtl->stack_realign_processed)
4080 crtl->stack_alignment_estimated = boundary;
4081 else
4083 /* If stack is realigned and stack alignment value
4084 hasn't been finalized, it is OK not to increase
4085 stack_alignment_estimated. The bigger alignment
4086 requirement is recorded in stack_alignment_needed
4087 below. */
4088 gcc_assert (!crtl->stack_realign_finalized
4089 && crtl->stack_realign_needed);
4094 if (ARGS_GROW_DOWNWARD)
4096 locate->slot_offset.constant = -initial_offset_ptr->constant;
4097 if (initial_offset_ptr->var)
4098 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
4099 initial_offset_ptr->var);
4102 tree s2 = sizetree;
4103 if (where_pad != PAD_NONE
4104 && (!tree_fits_uhwi_p (sizetree)
4105 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
4106 s2 = round_up (s2, round_boundary / BITS_PER_UNIT);
4107 SUB_PARM_SIZE (locate->slot_offset, s2);
4110 locate->slot_offset.constant += part_size_in_regs;
4112 if (!in_regs || reg_parm_stack_space > 0)
4113 pad_to_arg_alignment (&locate->slot_offset, boundary,
4114 &locate->alignment_pad);
4116 locate->size.constant = (-initial_offset_ptr->constant
4117 - locate->slot_offset.constant);
4118 if (initial_offset_ptr->var)
4119 locate->size.var = size_binop (MINUS_EXPR,
4120 size_binop (MINUS_EXPR,
4121 ssize_int (0),
4122 initial_offset_ptr->var),
4123 locate->slot_offset.var);
4125 /* Pad_below needs the pre-rounded size to know how much to pad
4126 below. */
4127 locate->offset = locate->slot_offset;
4128 if (where_pad == PAD_DOWNWARD)
4129 pad_below (&locate->offset, passed_mode, sizetree);
4132 else
4134 if (!in_regs || reg_parm_stack_space > 0)
4135 pad_to_arg_alignment (initial_offset_ptr, boundary,
4136 &locate->alignment_pad);
4137 locate->slot_offset = *initial_offset_ptr;
4139 #ifdef PUSH_ROUNDING
4140 if (passed_mode != BLKmode)
4141 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
4142 #endif
4144 /* Pad_below needs the pre-rounded size to know how much to pad below
4145 so this must be done before rounding up. */
4146 locate->offset = locate->slot_offset;
4147 if (where_pad == PAD_DOWNWARD)
4148 pad_below (&locate->offset, passed_mode, sizetree);
4150 if (where_pad != PAD_NONE
4151 && (!tree_fits_uhwi_p (sizetree)
4152 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
4153 sizetree = round_up (sizetree, round_boundary / BITS_PER_UNIT);
4155 ADD_PARM_SIZE (locate->size, sizetree);
4157 locate->size.constant -= part_size_in_regs;
4160 locate->offset.constant
4161 += targetm.calls.function_arg_offset (passed_mode, type);
4164 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
4165 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
4167 static void
4168 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
4169 struct args_size *alignment_pad)
4171 tree save_var = NULL_TREE;
4172 poly_int64 save_constant = 0;
4173 int boundary_in_bytes = boundary / BITS_PER_UNIT;
4174 poly_int64 sp_offset = STACK_POINTER_OFFSET;
4176 #ifdef SPARC_STACK_BOUNDARY_HACK
4177 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
4178 the real alignment of %sp. However, when it does this, the
4179 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
4180 if (SPARC_STACK_BOUNDARY_HACK)
4181 sp_offset = 0;
4182 #endif
4184 if (boundary > PARM_BOUNDARY)
4186 save_var = offset_ptr->var;
4187 save_constant = offset_ptr->constant;
4190 alignment_pad->var = NULL_TREE;
4191 alignment_pad->constant = 0;
4193 if (boundary > BITS_PER_UNIT)
4195 int misalign;
4196 if (offset_ptr->var
4197 || !known_misalignment (offset_ptr->constant + sp_offset,
4198 boundary_in_bytes, &misalign))
4200 tree sp_offset_tree = ssize_int (sp_offset);
4201 tree offset = size_binop (PLUS_EXPR,
4202 ARGS_SIZE_TREE (*offset_ptr),
4203 sp_offset_tree);
4204 tree rounded;
4205 if (ARGS_GROW_DOWNWARD)
4206 rounded = round_down (offset, boundary / BITS_PER_UNIT);
4207 else
4208 rounded = round_up (offset, boundary / BITS_PER_UNIT);
4210 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
4211 /* ARGS_SIZE_TREE includes constant term. */
4212 offset_ptr->constant = 0;
4213 if (boundary > PARM_BOUNDARY)
4214 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
4215 save_var);
4217 else
4219 if (ARGS_GROW_DOWNWARD)
4220 offset_ptr->constant -= misalign;
4221 else
4222 offset_ptr->constant += -misalign & (boundary_in_bytes - 1);
4224 if (boundary > PARM_BOUNDARY)
4225 alignment_pad->constant = offset_ptr->constant - save_constant;
4230 static void
4231 pad_below (struct args_size *offset_ptr, machine_mode passed_mode, tree sizetree)
4233 unsigned int align = PARM_BOUNDARY / BITS_PER_UNIT;
4234 int misalign;
4235 if (passed_mode != BLKmode
4236 && known_misalignment (GET_MODE_SIZE (passed_mode), align, &misalign))
4237 offset_ptr->constant += -misalign & (align - 1);
4238 else
4240 if (TREE_CODE (sizetree) != INTEGER_CST
4241 || (TREE_INT_CST_LOW (sizetree) & (align - 1)) != 0)
4243 /* Round the size up to multiple of PARM_BOUNDARY bits. */
4244 tree s2 = round_up (sizetree, align);
4245 /* Add it in. */
4246 ADD_PARM_SIZE (*offset_ptr, s2);
4247 SUB_PARM_SIZE (*offset_ptr, sizetree);
4253 /* True if register REGNO was alive at a place where `setjmp' was
4254 called and was set more than once or is an argument. Such regs may
4255 be clobbered by `longjmp'. */
4257 static bool
4258 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
4260 /* There appear to be cases where some local vars never reach the
4261 backend but have bogus regnos. */
4262 if (regno >= max_reg_num ())
4263 return false;
4265 return ((REG_N_SETS (regno) > 1
4266 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
4267 regno))
4268 && REGNO_REG_SET_P (setjmp_crosses, regno));
4271 /* Walk the tree of blocks describing the binding levels within a
4272 function and warn about variables the might be killed by setjmp or
4273 vfork. This is done after calling flow_analysis before register
4274 allocation since that will clobber the pseudo-regs to hard
4275 regs. */
4277 static void
4278 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
4280 tree decl, sub;
4282 for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
4284 if (VAR_P (decl)
4285 && DECL_RTL_SET_P (decl)
4286 && REG_P (DECL_RTL (decl))
4287 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4288 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
4289 " %<longjmp%> or %<vfork%>", decl);
4292 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
4293 setjmp_vars_warning (setjmp_crosses, sub);
4296 /* Do the appropriate part of setjmp_vars_warning
4297 but for arguments instead of local variables. */
4299 static void
4300 setjmp_args_warning (bitmap setjmp_crosses)
4302 tree decl;
4303 for (decl = DECL_ARGUMENTS (current_function_decl);
4304 decl; decl = DECL_CHAIN (decl))
4305 if (DECL_RTL (decl) != 0
4306 && REG_P (DECL_RTL (decl))
4307 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4308 warning (OPT_Wclobbered,
4309 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
4310 decl);
4313 /* Generate warning messages for variables live across setjmp. */
4315 void
4316 generate_setjmp_warnings (void)
4318 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
4320 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS
4321 || bitmap_empty_p (setjmp_crosses))
4322 return;
4324 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
4325 setjmp_args_warning (setjmp_crosses);
4329 /* Reverse the order of elements in the fragment chain T of blocks,
4330 and return the new head of the chain (old last element).
4331 In addition to that clear BLOCK_SAME_RANGE flags when needed
4332 and adjust BLOCK_SUPERCONTEXT from the super fragment to
4333 its super fragment origin. */
4335 static tree
4336 block_fragments_nreverse (tree t)
4338 tree prev = 0, block, next, prev_super = 0;
4339 tree super = BLOCK_SUPERCONTEXT (t);
4340 if (BLOCK_FRAGMENT_ORIGIN (super))
4341 super = BLOCK_FRAGMENT_ORIGIN (super);
4342 for (block = t; block; block = next)
4344 next = BLOCK_FRAGMENT_CHAIN (block);
4345 BLOCK_FRAGMENT_CHAIN (block) = prev;
4346 if ((prev && !BLOCK_SAME_RANGE (prev))
4347 || (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (block))
4348 != prev_super))
4349 BLOCK_SAME_RANGE (block) = 0;
4350 prev_super = BLOCK_SUPERCONTEXT (block);
4351 BLOCK_SUPERCONTEXT (block) = super;
4352 prev = block;
4354 t = BLOCK_FRAGMENT_ORIGIN (t);
4355 if (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (t))
4356 != prev_super)
4357 BLOCK_SAME_RANGE (t) = 0;
4358 BLOCK_SUPERCONTEXT (t) = super;
4359 return prev;
4362 /* Reverse the order of elements in the chain T of blocks,
4363 and return the new head of the chain (old last element).
4364 Also do the same on subblocks and reverse the order of elements
4365 in BLOCK_FRAGMENT_CHAIN as well. */
4367 static tree
4368 blocks_nreverse_all (tree t)
4370 tree prev = 0, block, next;
4371 for (block = t; block; block = next)
4373 next = BLOCK_CHAIN (block);
4374 BLOCK_CHAIN (block) = prev;
4375 if (BLOCK_FRAGMENT_CHAIN (block)
4376 && BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE)
4378 BLOCK_FRAGMENT_CHAIN (block)
4379 = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block));
4380 if (!BLOCK_SAME_RANGE (BLOCK_FRAGMENT_CHAIN (block)))
4381 BLOCK_SAME_RANGE (block) = 0;
4383 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4384 prev = block;
4386 return prev;
4390 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
4391 and create duplicate blocks. */
4392 /* ??? Need an option to either create block fragments or to create
4393 abstract origin duplicates of a source block. It really depends
4394 on what optimization has been performed. */
4396 void
4397 reorder_blocks (void)
4399 tree block = DECL_INITIAL (current_function_decl);
4401 if (block == NULL_TREE)
4402 return;
4404 auto_vec<tree, 10> block_stack;
4406 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
4407 clear_block_marks (block);
4409 /* Prune the old trees away, so that they don't get in the way. */
4410 BLOCK_SUBBLOCKS (block) = NULL_TREE;
4411 BLOCK_CHAIN (block) = NULL_TREE;
4413 /* Recreate the block tree from the note nesting. */
4414 reorder_blocks_1 (get_insns (), block, &block_stack);
4415 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4418 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
4420 void
4421 clear_block_marks (tree block)
4423 while (block)
4425 TREE_ASM_WRITTEN (block) = 0;
4426 clear_block_marks (BLOCK_SUBBLOCKS (block));
4427 block = BLOCK_CHAIN (block);
4431 static void
4432 reorder_blocks_1 (rtx_insn *insns, tree current_block,
4433 vec<tree> *p_block_stack)
4435 rtx_insn *insn;
4436 tree prev_beg = NULL_TREE, prev_end = NULL_TREE;
4438 for (insn = insns; insn; insn = NEXT_INSN (insn))
4440 if (NOTE_P (insn))
4442 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
4444 tree block = NOTE_BLOCK (insn);
4445 tree origin;
4447 gcc_assert (BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE);
4448 origin = block;
4450 if (prev_end)
4451 BLOCK_SAME_RANGE (prev_end) = 0;
4452 prev_end = NULL_TREE;
4454 /* If we have seen this block before, that means it now
4455 spans multiple address regions. Create a new fragment. */
4456 if (TREE_ASM_WRITTEN (block))
4458 tree new_block = copy_node (block);
4460 BLOCK_SAME_RANGE (new_block) = 0;
4461 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
4462 BLOCK_FRAGMENT_CHAIN (new_block)
4463 = BLOCK_FRAGMENT_CHAIN (origin);
4464 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
4466 NOTE_BLOCK (insn) = new_block;
4467 block = new_block;
4470 if (prev_beg == current_block && prev_beg)
4471 BLOCK_SAME_RANGE (block) = 1;
4473 prev_beg = origin;
4475 BLOCK_SUBBLOCKS (block) = 0;
4476 TREE_ASM_WRITTEN (block) = 1;
4477 /* When there's only one block for the entire function,
4478 current_block == block and we mustn't do this, it
4479 will cause infinite recursion. */
4480 if (block != current_block)
4482 tree super;
4483 if (block != origin)
4484 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block
4485 || BLOCK_FRAGMENT_ORIGIN (BLOCK_SUPERCONTEXT
4486 (origin))
4487 == current_block);
4488 if (p_block_stack->is_empty ())
4489 super = current_block;
4490 else
4492 super = p_block_stack->last ();
4493 gcc_assert (super == current_block
4494 || BLOCK_FRAGMENT_ORIGIN (super)
4495 == current_block);
4497 BLOCK_SUPERCONTEXT (block) = super;
4498 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
4499 BLOCK_SUBBLOCKS (current_block) = block;
4500 current_block = origin;
4502 p_block_stack->safe_push (block);
4504 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
4506 NOTE_BLOCK (insn) = p_block_stack->pop ();
4507 current_block = BLOCK_SUPERCONTEXT (current_block);
4508 if (BLOCK_FRAGMENT_ORIGIN (current_block))
4509 current_block = BLOCK_FRAGMENT_ORIGIN (current_block);
4510 prev_beg = NULL_TREE;
4511 prev_end = BLOCK_SAME_RANGE (NOTE_BLOCK (insn))
4512 ? NOTE_BLOCK (insn) : NULL_TREE;
4515 else
4517 prev_beg = NULL_TREE;
4518 if (prev_end)
4519 BLOCK_SAME_RANGE (prev_end) = 0;
4520 prev_end = NULL_TREE;
4525 /* Reverse the order of elements in the chain T of blocks,
4526 and return the new head of the chain (old last element). */
4528 tree
4529 blocks_nreverse (tree t)
4531 tree prev = 0, block, next;
4532 for (block = t; block; block = next)
4534 next = BLOCK_CHAIN (block);
4535 BLOCK_CHAIN (block) = prev;
4536 prev = block;
4538 return prev;
4541 /* Concatenate two chains of blocks (chained through BLOCK_CHAIN)
4542 by modifying the last node in chain 1 to point to chain 2. */
4544 tree
4545 block_chainon (tree op1, tree op2)
4547 tree t1;
4549 if (!op1)
4550 return op2;
4551 if (!op2)
4552 return op1;
4554 for (t1 = op1; BLOCK_CHAIN (t1); t1 = BLOCK_CHAIN (t1))
4555 continue;
4556 BLOCK_CHAIN (t1) = op2;
4558 #ifdef ENABLE_TREE_CHECKING
4560 tree t2;
4561 for (t2 = op2; t2; t2 = BLOCK_CHAIN (t2))
4562 gcc_assert (t2 != t1);
4564 #endif
4566 return op1;
4569 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
4570 non-NULL, list them all into VECTOR, in a depth-first preorder
4571 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
4572 blocks. */
4574 static int
4575 all_blocks (tree block, tree *vector)
4577 int n_blocks = 0;
4579 while (block)
4581 TREE_ASM_WRITTEN (block) = 0;
4583 /* Record this block. */
4584 if (vector)
4585 vector[n_blocks] = block;
4587 ++n_blocks;
4589 /* Record the subblocks, and their subblocks... */
4590 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
4591 vector ? vector + n_blocks : 0);
4592 block = BLOCK_CHAIN (block);
4595 return n_blocks;
4598 /* Return a vector containing all the blocks rooted at BLOCK. The
4599 number of elements in the vector is stored in N_BLOCKS_P. The
4600 vector is dynamically allocated; it is the caller's responsibility
4601 to call `free' on the pointer returned. */
4603 static tree *
4604 get_block_vector (tree block, int *n_blocks_p)
4606 tree *block_vector;
4608 *n_blocks_p = all_blocks (block, NULL);
4609 block_vector = XNEWVEC (tree, *n_blocks_p);
4610 all_blocks (block, block_vector);
4612 return block_vector;
4615 static GTY(()) int next_block_index = 2;
4617 /* Set BLOCK_NUMBER for all the blocks in FN. */
4619 void
4620 number_blocks (tree fn)
4622 int i;
4623 int n_blocks;
4624 tree *block_vector;
4626 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
4628 /* The top-level BLOCK isn't numbered at all. */
4629 for (i = 1; i < n_blocks; ++i)
4630 /* We number the blocks from two. */
4631 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
4633 free (block_vector);
4635 return;
4638 /* If VAR is present in a subblock of BLOCK, return the subblock. */
4640 DEBUG_FUNCTION tree
4641 debug_find_var_in_block_tree (tree var, tree block)
4643 tree t;
4645 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
4646 if (t == var)
4647 return block;
4649 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
4651 tree ret = debug_find_var_in_block_tree (var, t);
4652 if (ret)
4653 return ret;
4656 return NULL_TREE;
4659 /* Keep track of whether we're in a dummy function context. If we are,
4660 we don't want to invoke the set_current_function hook, because we'll
4661 get into trouble if the hook calls target_reinit () recursively or
4662 when the initial initialization is not yet complete. */
4664 static bool in_dummy_function;
4666 /* Invoke the target hook when setting cfun. Update the optimization options
4667 if the function uses different options than the default. */
4669 static void
4670 invoke_set_current_function_hook (tree fndecl)
4672 if (!in_dummy_function)
4674 tree opts = ((fndecl)
4675 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4676 : optimization_default_node);
4678 if (!opts)
4679 opts = optimization_default_node;
4681 /* Change optimization options if needed. */
4682 if (optimization_current_node != opts)
4684 optimization_current_node = opts;
4685 cl_optimization_restore (&global_options, &global_options_set,
4686 TREE_OPTIMIZATION (opts));
4689 targetm.set_current_function (fndecl);
4690 this_fn_optabs = this_target_optabs;
4692 /* Initialize global alignment variables after op. */
4693 parse_alignment_opts ();
4695 if (opts != optimization_default_node)
4697 init_tree_optimization_optabs (opts);
4698 if (TREE_OPTIMIZATION_OPTABS (opts))
4699 this_fn_optabs = (struct target_optabs *)
4700 TREE_OPTIMIZATION_OPTABS (opts);
4705 /* cfun should never be set directly; use this function. */
4707 void
4708 set_cfun (struct function *new_cfun, bool force)
4710 if (cfun != new_cfun || force)
4712 cfun = new_cfun;
4713 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4714 redirect_edge_var_map_empty ();
4718 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4720 static vec<function *> cfun_stack;
4722 /* Push the current cfun onto the stack, and set cfun to new_cfun. Also set
4723 current_function_decl accordingly. */
4725 void
4726 push_cfun (struct function *new_cfun)
4728 gcc_assert ((!cfun && !current_function_decl)
4729 || (cfun && current_function_decl == cfun->decl));
4730 cfun_stack.safe_push (cfun);
4731 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4732 set_cfun (new_cfun);
4735 /* Pop cfun from the stack. Also set current_function_decl accordingly. */
4737 void
4738 pop_cfun (void)
4740 struct function *new_cfun = cfun_stack.pop ();
4741 /* When in_dummy_function, we do have a cfun but current_function_decl is
4742 NULL. We also allow pushing NULL cfun and subsequently changing
4743 current_function_decl to something else and have both restored by
4744 pop_cfun. */
4745 gcc_checking_assert (in_dummy_function
4746 || !cfun
4747 || current_function_decl == cfun->decl);
4748 set_cfun (new_cfun);
4749 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4752 /* Return value of funcdef and increase it. */
4754 get_next_funcdef_no (void)
4756 return funcdef_no++;
4759 /* Return value of funcdef. */
4761 get_last_funcdef_no (void)
4763 return funcdef_no;
4766 /* Allocate and initialize the stack usage info data structure for the
4767 current function. */
4768 static void
4769 allocate_stack_usage_info (void)
4771 gcc_assert (!cfun->su);
4772 cfun->su = ggc_cleared_alloc<stack_usage> ();
4773 cfun->su->static_stack_size = -1;
4776 /* Allocate a function structure for FNDECL and set its contents
4777 to the defaults. Set cfun to the newly-allocated object.
4778 Some of the helper functions invoked during initialization assume
4779 that cfun has already been set. Therefore, assign the new object
4780 directly into cfun and invoke the back end hook explicitly at the
4781 very end, rather than initializing a temporary and calling set_cfun
4782 on it.
4784 ABSTRACT_P is true if this is a function that will never be seen by
4785 the middle-end. Such functions are front-end concepts (like C++
4786 function templates) that do not correspond directly to functions
4787 placed in object files. */
4789 void
4790 allocate_struct_function (tree fndecl, bool abstract_p)
4792 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4794 cfun = ggc_cleared_alloc<function> ();
4796 init_eh_for_function ();
4798 if (init_machine_status)
4799 cfun->machine = (*init_machine_status) ();
4801 #ifdef OVERRIDE_ABI_FORMAT
4802 OVERRIDE_ABI_FORMAT (fndecl);
4803 #endif
4805 if (fndecl != NULL_TREE)
4807 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4808 cfun->decl = fndecl;
4809 current_function_funcdef_no = get_next_funcdef_no ();
4812 invoke_set_current_function_hook (fndecl);
4814 if (fndecl != NULL_TREE)
4816 tree result = DECL_RESULT (fndecl);
4818 if (!abstract_p)
4820 /* Now that we have activated any function-specific attributes
4821 that might affect layout, particularly vector modes, relayout
4822 each of the parameters and the result. */
4823 relayout_decl (result);
4824 for (tree parm = DECL_ARGUMENTS (fndecl); parm;
4825 parm = DECL_CHAIN (parm))
4826 relayout_decl (parm);
4828 /* Similarly relayout the function decl. */
4829 targetm.target_option.relayout_function (fndecl);
4832 if (!abstract_p && aggregate_value_p (result, fndecl))
4834 #ifdef PCC_STATIC_STRUCT_RETURN
4835 cfun->returns_pcc_struct = 1;
4836 #endif
4837 cfun->returns_struct = 1;
4840 cfun->stdarg = stdarg_p (fntype);
4842 /* Assume all registers in stdarg functions need to be saved. */
4843 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4844 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4846 /* ??? This could be set on a per-function basis by the front-end
4847 but is this worth the hassle? */
4848 cfun->can_throw_non_call_exceptions = flag_non_call_exceptions;
4849 cfun->can_delete_dead_exceptions = flag_delete_dead_exceptions;
4851 if (!profile_flag && !flag_instrument_function_entry_exit)
4852 DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (fndecl) = 1;
4854 if (flag_callgraph_info)
4855 allocate_stack_usage_info ();
4858 /* Don't enable begin stmt markers if var-tracking at assignments is
4859 disabled. The markers make little sense without the variable
4860 binding annotations among them. */
4861 cfun->debug_nonbind_markers = lang_hooks.emits_begin_stmt
4862 && MAY_HAVE_DEBUG_MARKER_STMTS;
4865 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4866 instead of just setting it. */
4868 void
4869 push_struct_function (tree fndecl, bool abstract_p)
4871 /* When in_dummy_function we might be in the middle of a pop_cfun and
4872 current_function_decl and cfun may not match. */
4873 gcc_assert (in_dummy_function
4874 || (!cfun && !current_function_decl)
4875 || (cfun && current_function_decl == cfun->decl));
4876 cfun_stack.safe_push (cfun);
4877 current_function_decl = fndecl;
4878 allocate_struct_function (fndecl, abstract_p);
4881 /* Reset crtl and other non-struct-function variables to defaults as
4882 appropriate for emitting rtl at the start of a function. */
4884 static void
4885 prepare_function_start (void)
4887 gcc_assert (!get_last_insn ());
4889 if (in_dummy_function)
4890 crtl->abi = &default_function_abi;
4891 else
4892 crtl->abi = &fndecl_abi (cfun->decl).base_abi ();
4894 init_temp_slots ();
4895 init_emit ();
4896 init_varasm_status ();
4897 init_expr ();
4898 default_rtl_profile ();
4900 if (flag_stack_usage_info && !flag_callgraph_info)
4901 allocate_stack_usage_info ();
4903 cse_not_expected = ! optimize;
4905 /* Caller save not needed yet. */
4906 caller_save_needed = 0;
4908 /* We haven't done register allocation yet. */
4909 reg_renumber = 0;
4911 /* Indicate that we have not instantiated virtual registers yet. */
4912 virtuals_instantiated = 0;
4914 /* Indicate that we want CONCATs now. */
4915 generating_concat_p = 1;
4917 /* Indicate we have no need of a frame pointer yet. */
4918 frame_pointer_needed = 0;
4921 void
4922 push_dummy_function (bool with_decl)
4924 tree fn_decl, fn_type, fn_result_decl;
4926 gcc_assert (!in_dummy_function);
4927 in_dummy_function = true;
4929 if (with_decl)
4931 fn_type = build_function_type_list (void_type_node, NULL_TREE);
4932 fn_decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, NULL_TREE,
4933 fn_type);
4934 fn_result_decl = build_decl (UNKNOWN_LOCATION, RESULT_DECL,
4935 NULL_TREE, void_type_node);
4936 DECL_RESULT (fn_decl) = fn_result_decl;
4937 DECL_ARTIFICIAL (fn_decl) = 1;
4938 tree fn_name = get_identifier (" ");
4939 SET_DECL_ASSEMBLER_NAME (fn_decl, fn_name);
4941 else
4942 fn_decl = NULL_TREE;
4944 push_struct_function (fn_decl);
4947 /* Initialize the rtl expansion mechanism so that we can do simple things
4948 like generate sequences. This is used to provide a context during global
4949 initialization of some passes. You must call expand_dummy_function_end
4950 to exit this context. */
4952 void
4953 init_dummy_function_start (void)
4955 push_dummy_function (false);
4956 prepare_function_start ();
4959 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4960 and initialize static variables for generating RTL for the statements
4961 of the function. */
4963 void
4964 init_function_start (tree subr)
4966 /* Initialize backend, if needed. */
4967 initialize_rtl ();
4969 prepare_function_start ();
4970 decide_function_section (subr);
4972 /* Warn if this value is an aggregate type,
4973 regardless of which calling convention we are using for it. */
4974 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4975 warning_at (DECL_SOURCE_LOCATION (DECL_RESULT (subr)),
4976 OPT_Waggregate_return, "function returns an aggregate");
4979 /* Expand code to verify the stack_protect_guard. This is invoked at
4980 the end of a function to be protected. */
4982 void
4983 stack_protect_epilogue (void)
4985 tree guard_decl = crtl->stack_protect_guard_decl;
4986 rtx_code_label *label = gen_label_rtx ();
4987 rtx x, y;
4988 rtx_insn *seq = NULL;
4990 x = expand_normal (crtl->stack_protect_guard);
4992 if (targetm.have_stack_protect_combined_test () && guard_decl)
4994 gcc_assert (DECL_P (guard_decl));
4995 y = DECL_RTL (guard_decl);
4996 /* Allow the target to compute address of Y and compare it with X without
4997 leaking Y into a register. This combined address + compare pattern
4998 allows the target to prevent spilling of any intermediate results by
4999 splitting it after register allocator. */
5000 seq = targetm.gen_stack_protect_combined_test (x, y, label);
5002 else
5004 if (guard_decl)
5005 y = expand_normal (guard_decl);
5006 else
5007 y = const0_rtx;
5009 /* Allow the target to compare Y with X without leaking either into
5010 a register. */
5011 if (targetm.have_stack_protect_test ())
5012 seq = targetm.gen_stack_protect_test (x, y, label);
5015 if (seq)
5016 emit_insn (seq);
5017 else
5018 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
5020 /* The noreturn predictor has been moved to the tree level. The rtl-level
5021 predictors estimate this branch about 20%, which isn't enough to get
5022 things moved out of line. Since this is the only extant case of adding
5023 a noreturn function at the rtl level, it doesn't seem worth doing ought
5024 except adding the prediction by hand. */
5025 rtx_insn *tmp = get_last_insn ();
5026 if (JUMP_P (tmp))
5027 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
5029 expand_call (targetm.stack_protect_fail (), NULL_RTX, /*ignore=*/true);
5030 free_temp_slots ();
5031 emit_label (label);
5034 /* Start the RTL for a new function, and set variables used for
5035 emitting RTL.
5036 SUBR is the FUNCTION_DECL node.
5037 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
5038 the function's parameters, which must be run at any return statement. */
5040 bool currently_expanding_function_start;
5041 void
5042 expand_function_start (tree subr)
5044 currently_expanding_function_start = true;
5046 /* Make sure volatile mem refs aren't considered
5047 valid operands of arithmetic insns. */
5048 init_recog_no_volatile ();
5050 crtl->profile
5051 = (profile_flag
5052 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
5054 crtl->limit_stack
5055 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
5057 /* Make the label for return statements to jump to. Do not special
5058 case machines with special return instructions -- they will be
5059 handled later during jump, ifcvt, or epilogue creation. */
5060 return_label = gen_label_rtx ();
5062 /* Initialize rtx used to return the value. */
5063 /* Do this before assign_parms so that we copy the struct value address
5064 before any library calls that assign parms might generate. */
5066 /* Decide whether to return the value in memory or in a register. */
5067 tree res = DECL_RESULT (subr);
5068 if (aggregate_value_p (res, subr))
5070 /* Returning something that won't go in a register. */
5071 rtx value_address = 0;
5073 #ifdef PCC_STATIC_STRUCT_RETURN
5074 if (cfun->returns_pcc_struct)
5076 int size = int_size_in_bytes (TREE_TYPE (res));
5077 value_address = assemble_static_space (size);
5079 else
5080 #endif
5082 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
5083 /* Expect to be passed the address of a place to store the value.
5084 If it is passed as an argument, assign_parms will take care of
5085 it. */
5086 if (sv)
5088 value_address = gen_reg_rtx (Pmode);
5089 emit_move_insn (value_address, sv);
5092 if (value_address)
5094 rtx x = value_address;
5095 if (!DECL_BY_REFERENCE (res))
5097 x = gen_rtx_MEM (DECL_MODE (res), x);
5098 set_mem_attributes (x, res, 1);
5100 set_parm_rtl (res, x);
5103 else if (DECL_MODE (res) == VOIDmode)
5104 /* If return mode is void, this decl rtl should not be used. */
5105 set_parm_rtl (res, NULL_RTX);
5106 else
5108 /* Compute the return values into a pseudo reg, which we will copy
5109 into the true return register after the cleanups are done. */
5110 tree return_type = TREE_TYPE (res);
5112 /* If we may coalesce this result, make sure it has the expected mode
5113 in case it was promoted. But we need not bother about BLKmode. */
5114 machine_mode promoted_mode
5115 = flag_tree_coalesce_vars && is_gimple_reg (res)
5116 ? promote_ssa_mode (ssa_default_def (cfun, res), NULL)
5117 : BLKmode;
5119 if (promoted_mode != BLKmode)
5120 set_parm_rtl (res, gen_reg_rtx (promoted_mode));
5121 else if (TYPE_MODE (return_type) != BLKmode
5122 && targetm.calls.return_in_msb (return_type))
5123 /* expand_function_end will insert the appropriate padding in
5124 this case. Use the return value's natural (unpadded) mode
5125 within the function proper. */
5126 set_parm_rtl (res, gen_reg_rtx (TYPE_MODE (return_type)));
5127 else
5129 /* In order to figure out what mode to use for the pseudo, we
5130 figure out what the mode of the eventual return register will
5131 actually be, and use that. */
5132 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
5134 /* Structures that are returned in registers are not
5135 aggregate_value_p, so we may see a PARALLEL or a REG. */
5136 if (REG_P (hard_reg))
5137 set_parm_rtl (res, gen_reg_rtx (GET_MODE (hard_reg)));
5138 else
5140 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
5141 set_parm_rtl (res, gen_group_rtx (hard_reg));
5145 /* Set DECL_REGISTER flag so that expand_function_end will copy the
5146 result to the real return register(s). */
5147 DECL_REGISTER (res) = 1;
5150 /* Initialize rtx for parameters and local variables.
5151 In some cases this requires emitting insns. */
5152 assign_parms (subr);
5154 /* If function gets a static chain arg, store it. */
5155 if (cfun->static_chain_decl)
5157 tree parm = cfun->static_chain_decl;
5158 rtx local, chain;
5159 rtx_insn *insn;
5160 int unsignedp;
5162 local = gen_reg_rtx (promote_decl_mode (parm, &unsignedp));
5163 chain = targetm.calls.static_chain (current_function_decl, true);
5165 set_decl_incoming_rtl (parm, chain, false);
5166 set_parm_rtl (parm, local);
5167 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
5169 if (GET_MODE (local) != GET_MODE (chain))
5171 convert_move (local, chain, unsignedp);
5172 insn = get_last_insn ();
5174 else
5175 insn = emit_move_insn (local, chain);
5177 /* Mark the register as eliminable, similar to parameters. */
5178 if (MEM_P (chain)
5179 && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
5180 set_dst_reg_note (insn, REG_EQUIV, chain, local);
5182 /* If we aren't optimizing, save the static chain onto the stack. */
5183 if (!optimize)
5185 tree saved_static_chain_decl
5186 = build_decl (DECL_SOURCE_LOCATION (parm), VAR_DECL,
5187 DECL_NAME (parm), TREE_TYPE (parm));
5188 rtx saved_static_chain_rtx
5189 = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5190 SET_DECL_RTL (saved_static_chain_decl, saved_static_chain_rtx);
5191 emit_move_insn (saved_static_chain_rtx, chain);
5192 SET_DECL_VALUE_EXPR (parm, saved_static_chain_decl);
5193 DECL_HAS_VALUE_EXPR_P (parm) = 1;
5197 /* The following was moved from init_function_start.
5198 The move was supposed to make sdb output more accurate. */
5199 /* Indicate the beginning of the function body,
5200 as opposed to parm setup. */
5201 emit_note (NOTE_INSN_FUNCTION_BEG);
5203 gcc_assert (NOTE_P (get_last_insn ()));
5205 parm_birth_insn = get_last_insn ();
5207 /* If the function receives a non-local goto, then store the
5208 bits we need to restore the frame pointer. */
5209 if (cfun->nonlocal_goto_save_area)
5211 tree t_save;
5212 rtx r_save;
5214 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
5215 gcc_assert (DECL_RTL_SET_P (var));
5217 t_save = build4 (ARRAY_REF,
5218 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
5219 cfun->nonlocal_goto_save_area,
5220 integer_zero_node, NULL_TREE, NULL_TREE);
5221 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
5222 gcc_assert (GET_MODE (r_save) == Pmode);
5224 emit_move_insn (r_save, hard_frame_pointer_rtx);
5225 update_nonlocal_goto_save_area ();
5228 if (crtl->profile)
5230 #ifdef PROFILE_HOOK
5231 PROFILE_HOOK (current_function_funcdef_no);
5232 #endif
5235 /* If we are doing generic stack checking, the probe should go here. */
5236 if (flag_stack_check == GENERIC_STACK_CHECK)
5237 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
5239 currently_expanding_function_start = false;
5242 void
5243 pop_dummy_function (void)
5245 pop_cfun ();
5246 in_dummy_function = false;
5249 /* Undo the effects of init_dummy_function_start. */
5250 void
5251 expand_dummy_function_end (void)
5253 gcc_assert (in_dummy_function);
5255 /* End any sequences that failed to be closed due to syntax errors. */
5256 while (in_sequence_p ())
5257 end_sequence ();
5259 /* Outside function body, can't compute type's actual size
5260 until next function's body starts. */
5262 free_after_parsing (cfun);
5263 free_after_compilation (cfun);
5264 pop_dummy_function ();
5267 /* Helper for diddle_return_value. */
5269 void
5270 diddle_return_value_1 (void (*doit) (rtx, void *), void *arg, rtx outgoing)
5272 if (! outgoing)
5273 return;
5275 if (REG_P (outgoing))
5276 (*doit) (outgoing, arg);
5277 else if (GET_CODE (outgoing) == PARALLEL)
5279 int i;
5281 for (i = 0; i < XVECLEN (outgoing, 0); i++)
5283 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
5285 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
5286 (*doit) (x, arg);
5291 /* Call DOIT for each hard register used as a return value from
5292 the current function. */
5294 void
5295 diddle_return_value (void (*doit) (rtx, void *), void *arg)
5297 diddle_return_value_1 (doit, arg, crtl->return_rtx);
5300 static void
5301 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
5303 emit_clobber (reg);
5306 void
5307 clobber_return_register (void)
5309 diddle_return_value (do_clobber_return_reg, NULL);
5311 /* In case we do use pseudo to return value, clobber it too. */
5312 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5314 tree decl_result = DECL_RESULT (current_function_decl);
5315 rtx decl_rtl = DECL_RTL (decl_result);
5316 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
5318 do_clobber_return_reg (decl_rtl, NULL);
5323 static void
5324 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
5326 emit_use (reg);
5329 static void
5330 use_return_register (void)
5332 diddle_return_value (do_use_return_reg, NULL);
5335 /* Generate RTL for the end of the current function. */
5337 void
5338 expand_function_end (void)
5340 /* If arg_pointer_save_area was referenced only from a nested
5341 function, we will not have initialized it yet. Do that now. */
5342 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
5343 get_arg_pointer_save_area ();
5345 /* If we are doing generic stack checking and this function makes calls,
5346 do a stack probe at the start of the function to ensure we have enough
5347 space for another stack frame. */
5348 if (flag_stack_check == GENERIC_STACK_CHECK)
5350 rtx_insn *insn, *seq;
5352 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5353 if (CALL_P (insn))
5355 rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
5356 start_sequence ();
5357 if (STACK_CHECK_MOVING_SP)
5358 anti_adjust_stack_and_probe (max_frame_size, true);
5359 else
5360 probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
5361 seq = get_insns ();
5362 end_sequence ();
5363 set_insn_locations (seq, prologue_location);
5364 emit_insn_before (seq, stack_check_probe_note);
5365 break;
5369 /* End any sequences that failed to be closed due to syntax errors. */
5370 while (in_sequence_p ())
5371 end_sequence ();
5373 clear_pending_stack_adjust ();
5374 do_pending_stack_adjust ();
5376 /* Output a linenumber for the end of the function.
5377 SDB depended on this. */
5378 set_curr_insn_location (input_location);
5380 /* Before the return label (if any), clobber the return
5381 registers so that they are not propagated live to the rest of
5382 the function. This can only happen with functions that drop
5383 through; if there had been a return statement, there would
5384 have either been a return rtx, or a jump to the return label.
5386 We delay actual code generation after the current_function_value_rtx
5387 is computed. */
5388 rtx_insn *clobber_after = get_last_insn ();
5390 /* Output the label for the actual return from the function. */
5391 emit_label (return_label);
5393 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
5395 /* Let except.cc know where it should emit the call to unregister
5396 the function context for sjlj exceptions. */
5397 if (flag_exceptions)
5398 sjlj_emit_function_exit_after (get_last_insn ());
5401 /* If this is an implementation of throw, do what's necessary to
5402 communicate between __builtin_eh_return and the epilogue. */
5403 expand_eh_return ();
5405 /* If stack protection is enabled for this function, check the guard. */
5406 if (crtl->stack_protect_guard
5407 && targetm.stack_protect_runtime_enabled_p ()
5408 && naked_return_label == NULL_RTX)
5409 stack_protect_epilogue ();
5411 /* If scalar return value was computed in a pseudo-reg, or was a named
5412 return value that got dumped to the stack, copy that to the hard
5413 return register. */
5414 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5416 tree decl_result = DECL_RESULT (current_function_decl);
5417 rtx decl_rtl = DECL_RTL (decl_result);
5419 if ((REG_P (decl_rtl)
5420 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
5421 : DECL_REGISTER (decl_result))
5422 /* Unless the psABI says not to. */
5423 && !TYPE_EMPTY_P (TREE_TYPE (decl_result)))
5425 rtx real_decl_rtl = crtl->return_rtx;
5426 complex_mode cmode;
5428 /* This should be set in assign_parms. */
5429 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
5431 /* If this is a BLKmode structure being returned in registers,
5432 then use the mode computed in expand_return. Note that if
5433 decl_rtl is memory, then its mode may have been changed,
5434 but that crtl->return_rtx has not. */
5435 if (GET_MODE (real_decl_rtl) == BLKmode)
5436 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
5438 /* If a non-BLKmode return value should be padded at the least
5439 significant end of the register, shift it left by the appropriate
5440 amount. BLKmode results are handled using the group load/store
5441 machinery. */
5442 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
5443 && REG_P (real_decl_rtl)
5444 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
5446 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
5447 REGNO (real_decl_rtl)),
5448 decl_rtl);
5449 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
5451 else if (GET_CODE (real_decl_rtl) == PARALLEL)
5453 /* If expand_function_start has created a PARALLEL for decl_rtl,
5454 move the result to the real return registers. Otherwise, do
5455 a group load from decl_rtl for a named return. */
5456 if (GET_CODE (decl_rtl) == PARALLEL)
5457 emit_group_move (real_decl_rtl, decl_rtl);
5458 else
5459 emit_group_load (real_decl_rtl, decl_rtl,
5460 TREE_TYPE (decl_result),
5461 int_size_in_bytes (TREE_TYPE (decl_result)));
5463 /* In the case of complex integer modes smaller than a word, we'll
5464 need to generate some non-trivial bitfield insertions. Do that
5465 on a pseudo and not the hard register. */
5466 else if (GET_CODE (decl_rtl) == CONCAT
5467 && is_complex_int_mode (GET_MODE (decl_rtl), &cmode)
5468 && GET_MODE_BITSIZE (cmode) <= BITS_PER_WORD)
5470 int old_generating_concat_p;
5471 rtx tmp;
5473 old_generating_concat_p = generating_concat_p;
5474 generating_concat_p = 0;
5475 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
5476 generating_concat_p = old_generating_concat_p;
5478 emit_move_insn (tmp, decl_rtl);
5479 emit_move_insn (real_decl_rtl, tmp);
5481 /* If a named return value dumped decl_return to memory, then
5482 we may need to re-do the PROMOTE_MODE signed/unsigned
5483 extension. */
5484 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
5486 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
5487 promote_function_mode (TREE_TYPE (decl_result),
5488 GET_MODE (decl_rtl), &unsignedp,
5489 TREE_TYPE (current_function_decl), 1);
5491 convert_move (real_decl_rtl, decl_rtl, unsignedp);
5493 else
5494 emit_move_insn (real_decl_rtl, decl_rtl);
5498 /* If returning a structure, arrange to return the address of the value
5499 in a place where debuggers expect to find it.
5501 If returning a structure PCC style,
5502 the caller also depends on this value.
5503 And cfun->returns_pcc_struct is not necessarily set. */
5504 if ((cfun->returns_struct || cfun->returns_pcc_struct)
5505 && !targetm.calls.omit_struct_return_reg)
5507 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
5508 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
5509 rtx outgoing;
5511 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
5512 type = TREE_TYPE (type);
5513 else
5514 value_address = XEXP (value_address, 0);
5516 outgoing = targetm.calls.function_value (build_pointer_type (type),
5517 current_function_decl, true);
5519 /* Mark this as a function return value so integrate will delete the
5520 assignment and USE below when inlining this function. */
5521 REG_FUNCTION_VALUE_P (outgoing) = 1;
5523 /* The address may be ptr_mode and OUTGOING may be Pmode. */
5524 scalar_int_mode mode = as_a <scalar_int_mode> (GET_MODE (outgoing));
5525 value_address = convert_memory_address (mode, value_address);
5527 emit_move_insn (outgoing, value_address);
5529 /* Show return register used to hold result (in this case the address
5530 of the result. */
5531 crtl->return_rtx = outgoing;
5534 /* Emit the actual code to clobber return register. Don't emit
5535 it if clobber_after is a barrier, then the previous basic block
5536 certainly doesn't fall thru into the exit block. */
5537 if (!BARRIER_P (clobber_after))
5539 start_sequence ();
5540 clobber_return_register ();
5541 rtx_insn *seq = get_insns ();
5542 end_sequence ();
5544 emit_insn_after (seq, clobber_after);
5547 /* Output the label for the naked return from the function. */
5548 if (naked_return_label)
5549 emit_label (naked_return_label);
5551 /* @@@ This is a kludge. We want to ensure that instructions that
5552 may trap are not moved into the epilogue by scheduling, because
5553 we don't always emit unwind information for the epilogue. */
5554 if (cfun->can_throw_non_call_exceptions
5555 && targetm_common.except_unwind_info (&global_options) != UI_SJLJ)
5556 emit_insn (gen_blockage ());
5558 /* If stack protection is enabled for this function, check the guard. */
5559 if (crtl->stack_protect_guard
5560 && targetm.stack_protect_runtime_enabled_p ()
5561 && naked_return_label)
5562 stack_protect_epilogue ();
5564 /* If we had calls to alloca, and this machine needs
5565 an accurate stack pointer to exit the function,
5566 insert some code to save and restore the stack pointer. */
5567 if (! EXIT_IGNORE_STACK
5568 && cfun->calls_alloca)
5570 rtx tem = 0;
5572 start_sequence ();
5573 emit_stack_save (SAVE_FUNCTION, &tem);
5574 rtx_insn *seq = get_insns ();
5575 end_sequence ();
5576 emit_insn_before (seq, parm_birth_insn);
5578 emit_stack_restore (SAVE_FUNCTION, tem);
5581 /* ??? This should no longer be necessary since stupid is no longer with
5582 us, but there are some parts of the compiler (eg reload_combine, and
5583 sh mach_dep_reorg) that still try and compute their own lifetime info
5584 instead of using the general framework. */
5585 use_return_register ();
5589 get_arg_pointer_save_area (void)
5591 rtx ret = arg_pointer_save_area;
5593 if (! ret)
5595 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5596 arg_pointer_save_area = ret;
5599 if (! crtl->arg_pointer_save_area_init)
5601 /* Save the arg pointer at the beginning of the function. The
5602 generated stack slot may not be a valid memory address, so we
5603 have to check it and fix it if necessary. */
5604 start_sequence ();
5605 emit_move_insn (validize_mem (copy_rtx (ret)),
5606 crtl->args.internal_arg_pointer);
5607 rtx_insn *seq = get_insns ();
5608 end_sequence ();
5610 push_topmost_sequence ();
5611 emit_insn_after (seq, entry_of_function ());
5612 pop_topmost_sequence ();
5614 crtl->arg_pointer_save_area_init = true;
5617 return ret;
5621 /* If debugging dumps are requested, dump information about how the
5622 target handled -fstack-check=clash for the prologue.
5624 PROBES describes what if any probes were emitted.
5626 RESIDUALS indicates if the prologue had any residual allocation
5627 (i.e. total allocation was not a multiple of PROBE_INTERVAL). */
5629 void
5630 dump_stack_clash_frame_info (enum stack_clash_probes probes, bool residuals)
5632 if (!dump_file)
5633 return;
5635 switch (probes)
5637 case NO_PROBE_NO_FRAME:
5638 fprintf (dump_file,
5639 "Stack clash no probe no stack adjustment in prologue.\n");
5640 break;
5641 case NO_PROBE_SMALL_FRAME:
5642 fprintf (dump_file,
5643 "Stack clash no probe small stack adjustment in prologue.\n");
5644 break;
5645 case PROBE_INLINE:
5646 fprintf (dump_file, "Stack clash inline probes in prologue.\n");
5647 break;
5648 case PROBE_LOOP:
5649 fprintf (dump_file, "Stack clash probe loop in prologue.\n");
5650 break;
5653 if (residuals)
5654 fprintf (dump_file, "Stack clash residual allocation in prologue.\n");
5655 else
5656 fprintf (dump_file, "Stack clash no residual allocation in prologue.\n");
5658 if (frame_pointer_needed)
5659 fprintf (dump_file, "Stack clash frame pointer needed.\n");
5660 else
5661 fprintf (dump_file, "Stack clash no frame pointer needed.\n");
5663 if (TREE_THIS_VOLATILE (cfun->decl))
5664 fprintf (dump_file,
5665 "Stack clash noreturn prologue, assuming no implicit"
5666 " probes in caller.\n");
5667 else
5668 fprintf (dump_file,
5669 "Stack clash not noreturn prologue.\n");
5672 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
5673 for the first time. */
5675 static void
5676 record_insns (rtx_insn *insns, rtx end, hash_table<insn_cache_hasher> **hashp)
5678 rtx_insn *tmp;
5679 hash_table<insn_cache_hasher> *hash = *hashp;
5681 if (hash == NULL)
5682 *hashp = hash = hash_table<insn_cache_hasher>::create_ggc (17);
5684 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
5686 rtx *slot = hash->find_slot (tmp, INSERT);
5687 gcc_assert (*slot == NULL);
5688 *slot = tmp;
5692 /* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a
5693 basic block, splitting or peepholes. If INSN is a prologue or epilogue
5694 insn, then record COPY as well. */
5696 void
5697 maybe_copy_prologue_epilogue_insn (rtx insn, rtx copy)
5699 hash_table<insn_cache_hasher> *hash;
5700 rtx *slot;
5702 hash = epilogue_insn_hash;
5703 if (!hash || !hash->find (insn))
5705 hash = prologue_insn_hash;
5706 if (!hash || !hash->find (insn))
5707 return;
5710 slot = hash->find_slot (copy, INSERT);
5711 gcc_assert (*slot == NULL);
5712 *slot = copy;
5715 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
5716 we can be running after reorg, SEQUENCE rtl is possible. */
5718 static bool
5719 contains (const rtx_insn *insn, hash_table<insn_cache_hasher> *hash)
5721 if (hash == NULL)
5722 return false;
5724 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
5726 rtx_sequence *seq = as_a <rtx_sequence *> (PATTERN (insn));
5727 int i;
5728 for (i = seq->len () - 1; i >= 0; i--)
5729 if (hash->find (seq->element (i)))
5730 return true;
5731 return false;
5734 return hash->find (const_cast<rtx_insn *> (insn)) != NULL;
5737 bool
5738 prologue_contains (const rtx_insn *insn)
5740 return contains (insn, prologue_insn_hash);
5743 bool
5744 epilogue_contains (const rtx_insn *insn)
5746 return contains (insn, epilogue_insn_hash);
5749 bool
5750 prologue_epilogue_contains (const rtx_insn *insn)
5752 if (contains (insn, prologue_insn_hash))
5753 return true;
5754 if (contains (insn, epilogue_insn_hash))
5755 return true;
5756 return false;
5759 void
5760 record_prologue_seq (rtx_insn *seq)
5762 record_insns (seq, NULL, &prologue_insn_hash);
5765 void
5766 record_epilogue_seq (rtx_insn *seq)
5768 record_insns (seq, NULL, &epilogue_insn_hash);
5771 /* Set JUMP_LABEL for a return insn. */
5773 void
5774 set_return_jump_label (rtx_insn *returnjump)
5776 rtx pat = PATTERN (returnjump);
5777 if (GET_CODE (pat) == PARALLEL)
5778 pat = XVECEXP (pat, 0, 0);
5779 if (ANY_RETURN_P (pat))
5780 JUMP_LABEL (returnjump) = pat;
5781 else
5782 JUMP_LABEL (returnjump) = ret_rtx;
5785 /* Return a sequence to be used as the split prologue for the current
5786 function, or NULL. */
5788 static rtx_insn *
5789 make_split_prologue_seq (void)
5791 if (!flag_split_stack
5792 || lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun->decl)))
5793 return NULL;
5795 start_sequence ();
5796 emit_insn (targetm.gen_split_stack_prologue ());
5797 rtx_insn *seq = get_insns ();
5798 end_sequence ();
5800 record_insns (seq, NULL, &prologue_insn_hash);
5801 set_insn_locations (seq, prologue_location);
5803 return seq;
5806 /* Return a sequence to be used as the prologue for the current function,
5807 or NULL. */
5809 static rtx_insn *
5810 make_prologue_seq (void)
5812 if (!targetm.have_prologue ())
5813 return NULL;
5815 start_sequence ();
5816 rtx_insn *seq = targetm.gen_prologue ();
5817 emit_insn (seq);
5819 /* Insert an explicit USE for the frame pointer
5820 if the profiling is on and the frame pointer is required. */
5821 if (crtl->profile && frame_pointer_needed)
5822 emit_use (hard_frame_pointer_rtx);
5824 /* Retain a map of the prologue insns. */
5825 record_insns (seq, NULL, &prologue_insn_hash);
5826 emit_note (NOTE_INSN_PROLOGUE_END);
5828 /* Ensure that instructions are not moved into the prologue when
5829 profiling is on. The call to the profiling routine can be
5830 emitted within the live range of a call-clobbered register. */
5831 if (!targetm.profile_before_prologue () && crtl->profile)
5832 emit_insn (gen_blockage ());
5834 seq = get_insns ();
5835 end_sequence ();
5836 set_insn_locations (seq, prologue_location);
5838 return seq;
5841 /* Emit a sequence of insns to zero the call-used registers before RET
5842 according to ZERO_REGS_TYPE. */
5844 static void
5845 gen_call_used_regs_seq (rtx_insn *ret, unsigned int zero_regs_type)
5847 bool only_gpr = true;
5848 bool only_used = true;
5849 bool only_arg = true;
5851 /* No need to zero call-used-regs in main (). */
5852 if (MAIN_NAME_P (DECL_NAME (current_function_decl)))
5853 return;
5855 /* No need to zero call-used-regs if __builtin_eh_return is called
5856 since it isn't a normal function return. */
5857 if (crtl->calls_eh_return)
5858 return;
5860 /* If only_gpr is true, only zero call-used registers that are
5861 general-purpose registers; if only_used is true, only zero
5862 call-used registers that are used in the current function;
5863 if only_arg is true, only zero call-used registers that pass
5864 parameters defined by the flatform's calling conversion. */
5866 using namespace zero_regs_flags;
5868 only_gpr = zero_regs_type & ONLY_GPR;
5869 only_used = zero_regs_type & ONLY_USED;
5870 only_arg = zero_regs_type & ONLY_ARG;
5872 if ((zero_regs_type & LEAFY_MODE) && leaf_function_p ())
5873 only_used = true;
5875 /* For each of the hard registers, we should zero it if:
5876 1. it is a call-used register;
5877 and 2. it is not a fixed register;
5878 and 3. it is not live at the return of the routine;
5879 and 4. it is general registor if only_gpr is true;
5880 and 5. it is used in the routine if only_used is true;
5881 and 6. it is a register that passes parameter if only_arg is true. */
5883 /* First, prepare the data flow information. */
5884 basic_block bb = BLOCK_FOR_INSN (ret);
5885 auto_bitmap live_out;
5886 bitmap_copy (live_out, df_get_live_out (bb));
5887 df_simulate_initialize_backwards (bb, live_out);
5888 df_simulate_one_insn_backwards (bb, ret, live_out);
5890 HARD_REG_SET selected_hardregs;
5891 HARD_REG_SET all_call_used_regs;
5892 CLEAR_HARD_REG_SET (selected_hardregs);
5893 CLEAR_HARD_REG_SET (all_call_used_regs);
5894 for (unsigned int regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5896 if (!crtl->abi->clobbers_full_reg_p (regno))
5897 continue;
5898 if (fixed_regs[regno])
5899 continue;
5900 if (REGNO_REG_SET_P (live_out, regno))
5901 continue;
5902 #ifdef LEAF_REG_REMAP
5903 if (crtl->uses_only_leaf_regs && LEAF_REG_REMAP (regno) < 0)
5904 continue;
5905 #endif
5906 /* This is a call used register that is dead at return. */
5907 SET_HARD_REG_BIT (all_call_used_regs, regno);
5909 if (only_gpr
5910 && !TEST_HARD_REG_BIT (reg_class_contents[GENERAL_REGS], regno))
5911 continue;
5912 if (only_used && !df_regs_ever_live_p (regno))
5913 continue;
5914 if (only_arg && !FUNCTION_ARG_REGNO_P (regno))
5915 continue;
5917 /* Now this is a register that we might want to zero. */
5918 SET_HARD_REG_BIT (selected_hardregs, regno);
5921 if (hard_reg_set_empty_p (selected_hardregs))
5922 return;
5924 /* Now that we have a hard register set that needs to be zeroed, pass it to
5925 target to generate zeroing sequence. */
5926 HARD_REG_SET zeroed_hardregs;
5927 start_sequence ();
5928 zeroed_hardregs = targetm.calls.zero_call_used_regs (selected_hardregs);
5930 /* For most targets, the returned set of registers is a subset of
5931 selected_hardregs, however, for some of the targets (for example MIPS),
5932 clearing some registers that are in selected_hardregs requires clearing
5933 other call used registers that are not in the selected_hardregs, under
5934 such situation, the returned set of registers must be a subset of
5935 all call used registers. */
5936 gcc_assert (hard_reg_set_subset_p (zeroed_hardregs, all_call_used_regs));
5938 rtx_insn *seq = get_insns ();
5939 end_sequence ();
5940 if (seq)
5942 /* Emit the memory blockage and register clobber asm volatile before
5943 the whole sequence. */
5944 start_sequence ();
5945 expand_asm_reg_clobber_mem_blockage (zeroed_hardregs);
5946 rtx_insn *seq_barrier = get_insns ();
5947 end_sequence ();
5949 emit_insn_before (seq_barrier, ret);
5950 emit_insn_before (seq, ret);
5952 /* Update the data flow information. */
5953 crtl->must_be_zero_on_return |= zeroed_hardregs;
5954 df_update_exit_block_uses ();
5959 /* Return a sequence to be used as the epilogue for the current function,
5960 or NULL. */
5962 static rtx_insn *
5963 make_epilogue_seq (void)
5965 if (!targetm.have_epilogue ())
5966 return NULL;
5968 start_sequence ();
5969 emit_note (NOTE_INSN_EPILOGUE_BEG);
5970 rtx_insn *seq = targetm.gen_epilogue ();
5971 if (seq)
5972 emit_jump_insn (seq);
5974 /* Retain a map of the epilogue insns. */
5975 record_insns (seq, NULL, &epilogue_insn_hash);
5976 set_insn_locations (seq, epilogue_location);
5978 seq = get_insns ();
5979 rtx_insn *returnjump = get_last_insn ();
5980 end_sequence ();
5982 if (JUMP_P (returnjump))
5983 set_return_jump_label (returnjump);
5985 return seq;
5989 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5990 this into place with notes indicating where the prologue ends and where
5991 the epilogue begins. Update the basic block information when possible.
5993 Notes on epilogue placement:
5994 There are several kinds of edges to the exit block:
5995 * a single fallthru edge from LAST_BB
5996 * possibly, edges from blocks containing sibcalls
5997 * possibly, fake edges from infinite loops
5999 The epilogue is always emitted on the fallthru edge from the last basic
6000 block in the function, LAST_BB, into the exit block.
6002 If LAST_BB is empty except for a label, it is the target of every
6003 other basic block in the function that ends in a return. If a
6004 target has a return or simple_return pattern (possibly with
6005 conditional variants), these basic blocks can be changed so that a
6006 return insn is emitted into them, and their target is adjusted to
6007 the real exit block.
6009 Notes on shrink wrapping: We implement a fairly conservative
6010 version of shrink-wrapping rather than the textbook one. We only
6011 generate a single prologue and a single epilogue. This is
6012 sufficient to catch a number of interesting cases involving early
6013 exits.
6015 First, we identify the blocks that require the prologue to occur before
6016 them. These are the ones that modify a call-saved register, or reference
6017 any of the stack or frame pointer registers. To simplify things, we then
6018 mark everything reachable from these blocks as also requiring a prologue.
6019 This takes care of loops automatically, and avoids the need to examine
6020 whether MEMs reference the frame, since it is sufficient to check for
6021 occurrences of the stack or frame pointer.
6023 We then compute the set of blocks for which the need for a prologue
6024 is anticipatable (borrowing terminology from the shrink-wrapping
6025 description in Muchnick's book). These are the blocks which either
6026 require a prologue themselves, or those that have only successors
6027 where the prologue is anticipatable. The prologue needs to be
6028 inserted on all edges from BB1->BB2 where BB2 is in ANTIC and BB1
6029 is not. For the moment, we ensure that only one such edge exists.
6031 The epilogue is placed as described above, but we make a
6032 distinction between inserting return and simple_return patterns
6033 when modifying other blocks that end in a return. Blocks that end
6034 in a sibcall omit the sibcall_epilogue if the block is not in
6035 ANTIC. */
6037 void
6038 thread_prologue_and_epilogue_insns (void)
6040 df_analyze ();
6042 /* Can't deal with multiple successors of the entry block at the
6043 moment. Function should always have at least one entry
6044 point. */
6045 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
6047 edge entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
6048 edge orig_entry_edge = entry_edge;
6050 rtx_insn *split_prologue_seq = make_split_prologue_seq ();
6051 rtx_insn *prologue_seq = make_prologue_seq ();
6052 rtx_insn *epilogue_seq = make_epilogue_seq ();
6054 /* Try to perform a kind of shrink-wrapping, making sure the
6055 prologue/epilogue is emitted only around those parts of the
6056 function that require it. */
6057 try_shrink_wrapping (&entry_edge, prologue_seq);
6059 /* If the target can handle splitting the prologue/epilogue into separate
6060 components, try to shrink-wrap these components separately. */
6061 try_shrink_wrapping_separate (entry_edge->dest);
6063 /* If that did anything for any component we now need the generate the
6064 "main" prologue again. Because some targets require some of these
6065 to be called in a specific order (i386 requires the split prologue
6066 to be first, for example), we create all three sequences again here.
6067 If this does not work for some target, that target should not enable
6068 separate shrink-wrapping. */
6069 if (crtl->shrink_wrapped_separate)
6071 split_prologue_seq = make_split_prologue_seq ();
6072 prologue_seq = make_prologue_seq ();
6073 epilogue_seq = make_epilogue_seq ();
6076 rtl_profile_for_bb (EXIT_BLOCK_PTR_FOR_FN (cfun));
6078 /* A small fib -- epilogue is not yet completed, but we wish to re-use
6079 this marker for the splits of EH_RETURN patterns, and nothing else
6080 uses the flag in the meantime. */
6081 epilogue_completed = 1;
6083 /* Find non-fallthru edges that end with EH_RETURN instructions. On
6084 some targets, these get split to a special version of the epilogue
6085 code. In order to be able to properly annotate these with unwind
6086 info, try to split them now. If we get a valid split, drop an
6087 EPILOGUE_BEG note and mark the insns as epilogue insns. */
6088 edge e;
6089 edge_iterator ei;
6090 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6092 rtx_insn *prev, *last, *trial;
6094 if (e->flags & EDGE_FALLTHRU)
6095 continue;
6096 last = BB_END (e->src);
6097 if (!eh_returnjump_p (last))
6098 continue;
6100 prev = PREV_INSN (last);
6101 trial = try_split (PATTERN (last), last, 1);
6102 if (trial == last)
6103 continue;
6105 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
6106 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
6109 edge exit_fallthru_edge = find_fallthru_edge (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
6111 if (exit_fallthru_edge)
6113 if (epilogue_seq)
6115 insert_insn_on_edge (epilogue_seq, exit_fallthru_edge);
6116 commit_edge_insertions ();
6118 /* The epilogue insns we inserted may cause the exit edge to no longer
6119 be fallthru. */
6120 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6122 if (((e->flags & EDGE_FALLTHRU) != 0)
6123 && returnjump_p (BB_END (e->src)))
6124 e->flags &= ~EDGE_FALLTHRU;
6127 find_sub_basic_blocks (BLOCK_FOR_INSN (epilogue_seq));
6129 else if (next_active_insn (BB_END (exit_fallthru_edge->src)))
6131 /* We have a fall-through edge to the exit block, the source is not
6132 at the end of the function, and there will be an assembler epilogue
6133 at the end of the function.
6134 We can't use force_nonfallthru here, because that would try to
6135 use return. Inserting a jump 'by hand' is extremely messy, so
6136 we take advantage of cfg_layout_finalize using
6137 fixup_fallthru_exit_predecessor. */
6138 cfg_layout_initialize (0);
6139 basic_block cur_bb;
6140 FOR_EACH_BB_FN (cur_bb, cfun)
6141 if (cur_bb->index >= NUM_FIXED_BLOCKS
6142 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
6143 cur_bb->aux = cur_bb->next_bb;
6144 cfg_layout_finalize ();
6148 /* Insert the prologue. */
6150 rtl_profile_for_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
6152 if (split_prologue_seq || prologue_seq)
6154 rtx_insn *split_prologue_insn = split_prologue_seq;
6155 if (split_prologue_seq)
6157 while (split_prologue_insn && !NONDEBUG_INSN_P (split_prologue_insn))
6158 split_prologue_insn = NEXT_INSN (split_prologue_insn);
6159 insert_insn_on_edge (split_prologue_seq, orig_entry_edge);
6162 rtx_insn *prologue_insn = prologue_seq;
6163 if (prologue_seq)
6165 while (prologue_insn && !NONDEBUG_INSN_P (prologue_insn))
6166 prologue_insn = NEXT_INSN (prologue_insn);
6167 insert_insn_on_edge (prologue_seq, entry_edge);
6170 commit_edge_insertions ();
6172 /* Look for basic blocks within the prologue insns. */
6173 if (split_prologue_insn
6174 && BLOCK_FOR_INSN (split_prologue_insn) == NULL)
6175 split_prologue_insn = NULL;
6176 if (prologue_insn
6177 && BLOCK_FOR_INSN (prologue_insn) == NULL)
6178 prologue_insn = NULL;
6179 if (split_prologue_insn || prologue_insn)
6181 auto_sbitmap blocks (last_basic_block_for_fn (cfun));
6182 bitmap_clear (blocks);
6183 if (split_prologue_insn)
6184 bitmap_set_bit (blocks,
6185 BLOCK_FOR_INSN (split_prologue_insn)->index);
6186 if (prologue_insn)
6187 bitmap_set_bit (blocks, BLOCK_FOR_INSN (prologue_insn)->index);
6188 find_many_sub_basic_blocks (blocks);
6192 default_rtl_profile ();
6194 /* Emit sibling epilogues before any sibling call sites. */
6195 for (ei = ei_start (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
6196 (e = ei_safe_edge (ei));
6197 ei_next (&ei))
6199 /* Skip those already handled, the ones that run without prologue. */
6200 if (e->flags & EDGE_IGNORE)
6202 e->flags &= ~EDGE_IGNORE;
6203 continue;
6206 rtx_insn *insn = BB_END (e->src);
6208 if (!(CALL_P (insn) && SIBLING_CALL_P (insn)))
6209 continue;
6211 rtx_insn *ep_seq;
6212 if (targetm.emit_epilogue_for_sibcall)
6214 start_sequence ();
6215 targetm.emit_epilogue_for_sibcall (as_a<rtx_call_insn *> (insn));
6216 ep_seq = get_insns ();
6217 end_sequence ();
6219 else
6220 ep_seq = targetm.gen_sibcall_epilogue ();
6221 if (ep_seq)
6223 start_sequence ();
6224 emit_note (NOTE_INSN_EPILOGUE_BEG);
6225 emit_insn (ep_seq);
6226 rtx_insn *seq = get_insns ();
6227 end_sequence ();
6229 /* Retain a map of the epilogue insns. Used in life analysis to
6230 avoid getting rid of sibcall epilogue insns. Do this before we
6231 actually emit the sequence. */
6232 record_insns (seq, NULL, &epilogue_insn_hash);
6233 set_insn_locations (seq, epilogue_location);
6235 emit_insn_before (seq, insn);
6237 find_sub_basic_blocks (BLOCK_FOR_INSN (insn));
6241 if (epilogue_seq)
6243 rtx_insn *insn, *next;
6245 /* Similarly, move any line notes that appear after the epilogue.
6246 There is no need, however, to be quite so anal about the existence
6247 of such a note. Also possibly move
6248 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
6249 info generation. */
6250 for (insn = epilogue_seq; insn; insn = next)
6252 next = NEXT_INSN (insn);
6253 if (NOTE_P (insn)
6254 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
6255 reorder_insns (insn, insn, PREV_INSN (epilogue_seq));
6259 /* Threading the prologue and epilogue changes the artificial refs in the
6260 entry and exit blocks, and may invalidate DF info for tail calls. */
6261 if (optimize
6262 || flag_optimize_sibling_calls
6263 || flag_ipa_icf_functions
6264 || in_lto_p)
6265 df_update_entry_exit_and_calls ();
6266 else
6268 df_update_entry_block_defs ();
6269 df_update_exit_block_uses ();
6273 /* Reposition the prologue-end and epilogue-begin notes after
6274 instruction scheduling. */
6276 void
6277 reposition_prologue_and_epilogue_notes (void)
6279 if (!targetm.have_prologue ()
6280 && !targetm.have_epilogue ()
6281 && !targetm.have_sibcall_epilogue ()
6282 && !targetm.emit_epilogue_for_sibcall)
6283 return;
6285 /* Since the hash table is created on demand, the fact that it is
6286 non-null is a signal that it is non-empty. */
6287 if (prologue_insn_hash != NULL)
6289 size_t len = prologue_insn_hash->elements ();
6290 rtx_insn *insn, *last = NULL, *note = NULL;
6292 /* Scan from the beginning until we reach the last prologue insn. */
6293 /* ??? While we do have the CFG intact, there are two problems:
6294 (1) The prologue can contain loops (typically probing the stack),
6295 which means that the end of the prologue isn't in the first bb.
6296 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
6297 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6299 if (NOTE_P (insn))
6301 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
6302 note = insn;
6304 else if (contains (insn, prologue_insn_hash))
6306 last = insn;
6307 if (--len == 0)
6308 break;
6312 if (last)
6314 if (note == NULL)
6316 /* Scan forward looking for the PROLOGUE_END note. It should
6317 be right at the beginning of the block, possibly with other
6318 insn notes that got moved there. */
6319 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
6321 if (NOTE_P (note)
6322 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
6323 break;
6327 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
6328 if (LABEL_P (last))
6329 last = NEXT_INSN (last);
6330 reorder_insns (note, note, last);
6334 if (epilogue_insn_hash != NULL)
6336 edge_iterator ei;
6337 edge e;
6339 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6341 rtx_insn *insn, *first = NULL, *note = NULL;
6342 basic_block bb = e->src;
6344 /* Scan from the beginning until we reach the first epilogue insn. */
6345 FOR_BB_INSNS (bb, insn)
6347 if (NOTE_P (insn))
6349 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
6351 note = insn;
6352 if (first != NULL)
6353 break;
6356 else if (first == NULL && contains (insn, epilogue_insn_hash))
6358 first = insn;
6359 if (note != NULL)
6360 break;
6364 if (note)
6366 /* If the function has a single basic block, and no real
6367 epilogue insns (e.g. sibcall with no cleanup), the
6368 epilogue note can get scheduled before the prologue
6369 note. If we have frame related prologue insns, having
6370 them scanned during the epilogue will result in a crash.
6371 In this case re-order the epilogue note to just before
6372 the last insn in the block. */
6373 if (first == NULL)
6374 first = BB_END (bb);
6376 if (PREV_INSN (first) != note)
6377 reorder_insns (note, note, PREV_INSN (first));
6383 /* Returns the name of function declared by FNDECL. */
6384 const char *
6385 fndecl_name (tree fndecl)
6387 if (fndecl == NULL)
6388 return "(nofn)";
6389 return lang_hooks.decl_printable_name (fndecl, 1);
6392 /* Returns the name of function FN. */
6393 const char *
6394 function_name (struct function *fn)
6396 tree fndecl = (fn == NULL) ? NULL : fn->decl;
6397 return fndecl_name (fndecl);
6400 /* Returns the name of the current function. */
6401 const char *
6402 current_function_name (void)
6404 return function_name (cfun);
6408 static void
6409 rest_of_handle_check_leaf_regs (void)
6411 #ifdef LEAF_REGISTERS
6412 crtl->uses_only_leaf_regs
6413 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
6414 #endif
6417 /* Insert a TYPE into the used types hash table of CFUN. */
6419 static void
6420 used_types_insert_helper (tree type, struct function *func)
6422 if (type != NULL && func != NULL)
6424 if (func->used_types_hash == NULL)
6425 func->used_types_hash = hash_set<tree>::create_ggc (37);
6427 func->used_types_hash->add (type);
6431 /* Given a type, insert it into the used hash table in cfun. */
6432 void
6433 used_types_insert (tree t)
6435 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
6436 if (TYPE_NAME (t))
6437 break;
6438 else
6439 t = TREE_TYPE (t);
6440 if (TREE_CODE (t) == ERROR_MARK)
6441 return;
6442 if (TYPE_NAME (t) == NULL_TREE
6443 || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t)))
6444 t = TYPE_MAIN_VARIANT (t);
6445 if (debug_info_level > DINFO_LEVEL_NONE)
6447 if (cfun)
6448 used_types_insert_helper (t, cfun);
6449 else
6451 /* So this might be a type referenced by a global variable.
6452 Record that type so that we can later decide to emit its
6453 debug information. */
6454 vec_safe_push (types_used_by_cur_var_decl, t);
6459 /* Helper to Hash a struct types_used_by_vars_entry. */
6461 static hashval_t
6462 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
6464 gcc_assert (entry && entry->var_decl && entry->type);
6466 return iterative_hash_object (entry->type,
6467 iterative_hash_object (entry->var_decl, 0));
6470 /* Hash function of the types_used_by_vars_entry hash table. */
6472 hashval_t
6473 used_type_hasher::hash (types_used_by_vars_entry *entry)
6475 return hash_types_used_by_vars_entry (entry);
6478 /*Equality function of the types_used_by_vars_entry hash table. */
6480 bool
6481 used_type_hasher::equal (types_used_by_vars_entry *e1,
6482 types_used_by_vars_entry *e2)
6484 return (e1->var_decl == e2->var_decl && e1->type == e2->type);
6487 /* Inserts an entry into the types_used_by_vars_hash hash table. */
6489 void
6490 types_used_by_var_decl_insert (tree type, tree var_decl)
6492 if (type != NULL && var_decl != NULL)
6494 types_used_by_vars_entry **slot;
6495 struct types_used_by_vars_entry e;
6496 e.var_decl = var_decl;
6497 e.type = type;
6498 if (types_used_by_vars_hash == NULL)
6499 types_used_by_vars_hash
6500 = hash_table<used_type_hasher>::create_ggc (37);
6502 slot = types_used_by_vars_hash->find_slot (&e, INSERT);
6503 if (*slot == NULL)
6505 struct types_used_by_vars_entry *entry;
6506 entry = ggc_alloc<types_used_by_vars_entry> ();
6507 entry->type = type;
6508 entry->var_decl = var_decl;
6509 *slot = entry;
6514 namespace {
6516 const pass_data pass_data_leaf_regs =
6518 RTL_PASS, /* type */
6519 "*leaf_regs", /* name */
6520 OPTGROUP_NONE, /* optinfo_flags */
6521 TV_NONE, /* tv_id */
6522 0, /* properties_required */
6523 0, /* properties_provided */
6524 0, /* properties_destroyed */
6525 0, /* todo_flags_start */
6526 0, /* todo_flags_finish */
6529 class pass_leaf_regs : public rtl_opt_pass
6531 public:
6532 pass_leaf_regs (gcc::context *ctxt)
6533 : rtl_opt_pass (pass_data_leaf_regs, ctxt)
6536 /* opt_pass methods: */
6537 unsigned int execute (function *) final override
6539 rest_of_handle_check_leaf_regs ();
6540 return 0;
6543 }; // class pass_leaf_regs
6545 } // anon namespace
6547 rtl_opt_pass *
6548 make_pass_leaf_regs (gcc::context *ctxt)
6550 return new pass_leaf_regs (ctxt);
6553 static void
6554 rest_of_handle_thread_prologue_and_epilogue (function *fun)
6556 /* prepare_shrink_wrap is sensitive to the block structure of the control
6557 flow graph, so clean it up first. */
6558 if (optimize)
6559 cleanup_cfg (0);
6561 /* On some machines, the prologue and epilogue code, or parts thereof,
6562 can be represented as RTL. Doing so lets us schedule insns between
6563 it and the rest of the code and also allows delayed branch
6564 scheduling to operate in the epilogue. */
6565 thread_prologue_and_epilogue_insns ();
6567 /* Some non-cold blocks may now be only reachable from cold blocks.
6568 Fix that up. */
6569 fixup_partitions ();
6571 /* After prologue and epilogue generation, the judgement on whether
6572 one memory access onto stack frame may trap or not could change,
6573 since we get more exact stack information by now. So try to
6574 remove any EH edges here, see PR90259. */
6575 if (fun->can_throw_non_call_exceptions)
6576 purge_all_dead_edges ();
6578 /* Shrink-wrapping can result in unreachable edges in the epilogue,
6579 see PR57320. */
6580 cleanup_cfg (optimize ? CLEANUP_EXPENSIVE : 0);
6582 /* The stack usage info is finalized during prologue expansion. */
6583 if (flag_stack_usage_info || flag_callgraph_info)
6584 output_stack_usage ();
6587 /* Record a final call to CALLEE at LOCATION. */
6589 void
6590 record_final_call (tree callee, location_t location)
6592 struct callinfo_callee datum = { location, callee };
6593 vec_safe_push (cfun->su->callees, datum);
6596 /* Record a dynamic allocation made for DECL_OR_EXP. */
6598 void
6599 record_dynamic_alloc (tree decl_or_exp)
6601 struct callinfo_dalloc datum;
6603 if (DECL_P (decl_or_exp))
6605 datum.location = DECL_SOURCE_LOCATION (decl_or_exp);
6606 const char *name = lang_hooks.decl_printable_name (decl_or_exp, 2);
6607 const char *dot = strrchr (name, '.');
6608 if (dot)
6609 name = dot + 1;
6610 datum.name = ggc_strdup (name);
6612 else
6614 datum.location = EXPR_LOCATION (decl_or_exp);
6615 datum.name = NULL;
6618 vec_safe_push (cfun->su->dallocs, datum);
6621 namespace {
6623 const pass_data pass_data_thread_prologue_and_epilogue =
6625 RTL_PASS, /* type */
6626 "pro_and_epilogue", /* name */
6627 OPTGROUP_NONE, /* optinfo_flags */
6628 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
6629 0, /* properties_required */
6630 0, /* properties_provided */
6631 0, /* properties_destroyed */
6632 0, /* todo_flags_start */
6633 ( TODO_df_verify | TODO_df_finish ), /* todo_flags_finish */
6636 class pass_thread_prologue_and_epilogue : public rtl_opt_pass
6638 public:
6639 pass_thread_prologue_and_epilogue (gcc::context *ctxt)
6640 : rtl_opt_pass (pass_data_thread_prologue_and_epilogue, ctxt)
6643 /* opt_pass methods: */
6644 bool gate (function *) final override
6646 return !targetm.use_late_prologue_epilogue ();
6649 unsigned int execute (function * fun) final override
6651 rest_of_handle_thread_prologue_and_epilogue (fun);
6652 return 0;
6655 }; // class pass_thread_prologue_and_epilogue
6657 const pass_data pass_data_late_thread_prologue_and_epilogue =
6659 RTL_PASS, /* type */
6660 "late_pro_and_epilogue", /* name */
6661 OPTGROUP_NONE, /* optinfo_flags */
6662 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
6663 0, /* properties_required */
6664 0, /* properties_provided */
6665 0, /* properties_destroyed */
6666 0, /* todo_flags_start */
6667 ( TODO_df_verify | TODO_df_finish ), /* todo_flags_finish */
6670 class pass_late_thread_prologue_and_epilogue : public rtl_opt_pass
6672 public:
6673 pass_late_thread_prologue_and_epilogue (gcc::context *ctxt)
6674 : rtl_opt_pass (pass_data_late_thread_prologue_and_epilogue, ctxt)
6677 /* opt_pass methods: */
6678 bool gate (function *) final override
6680 return targetm.use_late_prologue_epilogue ();
6683 unsigned int execute (function *fn) final override
6685 /* It's not currently possible to have both delay slots and
6686 late prologue/epilogue, since the latter has to run before
6687 the former, and the former won't honor whatever restrictions
6688 the latter is trying to enforce. */
6689 gcc_assert (!DELAY_SLOTS);
6690 rest_of_handle_thread_prologue_and_epilogue (fn);
6691 return 0;
6693 }; // class pass_late_thread_prologue_and_epilogue
6695 } // anon namespace
6697 rtl_opt_pass *
6698 make_pass_thread_prologue_and_epilogue (gcc::context *ctxt)
6700 return new pass_thread_prologue_and_epilogue (ctxt);
6703 rtl_opt_pass *
6704 make_pass_late_thread_prologue_and_epilogue (gcc::context *ctxt)
6706 return new pass_late_thread_prologue_and_epilogue (ctxt);
6709 namespace {
6711 const pass_data pass_data_zero_call_used_regs =
6713 RTL_PASS, /* type */
6714 "zero_call_used_regs", /* name */
6715 OPTGROUP_NONE, /* optinfo_flags */
6716 TV_NONE, /* tv_id */
6717 0, /* properties_required */
6718 0, /* properties_provided */
6719 0, /* properties_destroyed */
6720 0, /* todo_flags_start */
6721 0, /* todo_flags_finish */
6724 class pass_zero_call_used_regs: public rtl_opt_pass
6726 public:
6727 pass_zero_call_used_regs (gcc::context *ctxt)
6728 : rtl_opt_pass (pass_data_zero_call_used_regs, ctxt)
6731 /* opt_pass methods: */
6732 unsigned int execute (function *) final override;
6734 }; // class pass_zero_call_used_regs
6736 unsigned int
6737 pass_zero_call_used_regs::execute (function *fun)
6739 using namespace zero_regs_flags;
6740 unsigned int zero_regs_type = UNSET;
6742 tree attr_zero_regs = lookup_attribute ("zero_call_used_regs",
6743 DECL_ATTRIBUTES (fun->decl));
6745 /* Get the type of zero_call_used_regs from function attribute.
6746 We have filtered out invalid attribute values already at this point. */
6747 if (attr_zero_regs)
6749 /* The TREE_VALUE of an attribute is a TREE_LIST whose TREE_VALUE
6750 is the attribute argument's value. */
6751 attr_zero_regs = TREE_VALUE (attr_zero_regs);
6752 gcc_assert (TREE_CODE (attr_zero_regs) == TREE_LIST);
6753 attr_zero_regs = TREE_VALUE (attr_zero_regs);
6754 gcc_assert (TREE_CODE (attr_zero_regs) == STRING_CST);
6756 for (unsigned int i = 0; zero_call_used_regs_opts[i].name != NULL; ++i)
6757 if (strcmp (TREE_STRING_POINTER (attr_zero_regs),
6758 zero_call_used_regs_opts[i].name) == 0)
6760 zero_regs_type = zero_call_used_regs_opts[i].flag;
6761 break;
6765 if (!zero_regs_type)
6766 zero_regs_type = flag_zero_call_used_regs;
6768 /* No need to zero call-used-regs when no user request is present. */
6769 if (!(zero_regs_type & ENABLED))
6770 return 0;
6772 edge_iterator ei;
6773 edge e;
6775 /* This pass needs data flow information. */
6776 df_analyze ();
6778 /* Iterate over the function's return instructions and insert any
6779 register zeroing required by the -fzero-call-used-regs command-line
6780 option or the "zero_call_used_regs" function attribute. */
6781 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6783 rtx_insn *insn = BB_END (e->src);
6784 if (JUMP_P (insn) && ANY_RETURN_P (JUMP_LABEL (insn)))
6785 gen_call_used_regs_seq (insn, zero_regs_type);
6788 return 0;
6791 } // anon namespace
6793 rtl_opt_pass *
6794 make_pass_zero_call_used_regs (gcc::context *ctxt)
6796 return new pass_zero_call_used_regs (ctxt);
6799 /* If CONSTRAINT is a matching constraint, then return its number.
6800 Otherwise, return -1. */
6802 static int
6803 matching_constraint_num (const char *constraint)
6805 if (*constraint == '%')
6806 constraint++;
6808 if (IN_RANGE (*constraint, '0', '9'))
6809 return strtoul (constraint, NULL, 10);
6811 return -1;
6814 /* This mini-pass fixes fall-out from SSA in asm statements that have
6815 in-out constraints. Say you start with
6817 orig = inout;
6818 asm ("": "+mr" (inout));
6819 use (orig);
6821 which is transformed very early to use explicit output and match operands:
6823 orig = inout;
6824 asm ("": "=mr" (inout) : "0" (inout));
6825 use (orig);
6827 Or, after SSA and copyprop,
6829 asm ("": "=mr" (inout_2) : "0" (inout_1));
6830 use (inout_1);
6832 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
6833 they represent two separate values, so they will get different pseudo
6834 registers during expansion. Then, since the two operands need to match
6835 per the constraints, but use different pseudo registers, reload can
6836 only register a reload for these operands. But reloads can only be
6837 satisfied by hardregs, not by memory, so we need a register for this
6838 reload, just because we are presented with non-matching operands.
6839 So, even though we allow memory for this operand, no memory can be
6840 used for it, just because the two operands don't match. This can
6841 cause reload failures on register-starved targets.
6843 So it's a symptom of reload not being able to use memory for reloads
6844 or, alternatively it's also a symptom of both operands not coming into
6845 reload as matching (in which case the pseudo could go to memory just
6846 fine, as the alternative allows it, and no reload would be necessary).
6847 We fix the latter problem here, by transforming
6849 asm ("": "=mr" (inout_2) : "0" (inout_1));
6851 back to
6853 inout_2 = inout_1;
6854 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
6856 static void
6857 match_asm_constraints_1 (rtx_insn *insn, rtx *p_sets, int noutputs)
6859 int i;
6860 bool changed = false;
6861 rtx op = SET_SRC (p_sets[0]);
6862 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
6863 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
6864 bool *output_matched = XALLOCAVEC (bool, noutputs);
6866 memset (output_matched, 0, noutputs * sizeof (bool));
6867 for (i = 0; i < ninputs; i++)
6869 rtx input, output;
6870 rtx_insn *insns;
6871 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
6872 int match, j;
6874 match = matching_constraint_num (constraint);
6875 if (match < 0)
6876 continue;
6878 gcc_assert (match < noutputs);
6879 output = SET_DEST (p_sets[match]);
6880 input = RTVEC_ELT (inputs, i);
6881 /* Only do the transformation for pseudos. */
6882 if (! REG_P (output)
6883 || rtx_equal_p (output, input)
6884 || !(REG_P (input) || SUBREG_P (input)
6885 || MEM_P (input) || CONSTANT_P (input))
6886 || !general_operand (input, GET_MODE (output)))
6887 continue;
6889 /* We can't do anything if the output is also used as input,
6890 as we're going to overwrite it. */
6891 for (j = 0; j < ninputs; j++)
6892 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
6893 break;
6894 if (j != ninputs)
6895 continue;
6897 /* Avoid changing the same input several times. For
6898 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
6899 only change it once (to out1), rather than changing it
6900 first to out1 and afterwards to out2. */
6901 if (i > 0)
6903 for (j = 0; j < noutputs; j++)
6904 if (output_matched[j] && input == SET_DEST (p_sets[j]))
6905 break;
6906 if (j != noutputs)
6907 continue;
6909 output_matched[match] = true;
6911 start_sequence ();
6912 emit_move_insn (output, copy_rtx (input));
6913 insns = get_insns ();
6914 end_sequence ();
6915 emit_insn_before (insns, insn);
6917 constraint = ASM_OPERANDS_OUTPUT_CONSTRAINT(SET_SRC(p_sets[match]));
6918 bool early_clobber_p = strchr (constraint, '&') != NULL;
6920 /* Now replace all mentions of the input with output. We can't
6921 just replace the occurrence in inputs[i], as the register might
6922 also be used in some other input (or even in an address of an
6923 output), which would mean possibly increasing the number of
6924 inputs by one (namely 'output' in addition), which might pose
6925 a too complicated problem for reload to solve. E.g. this situation:
6927 asm ("" : "=r" (output), "=m" (input) : "0" (input))
6929 Here 'input' is used in two occurrences as input (once for the
6930 input operand, once for the address in the second output operand).
6931 If we would replace only the occurrence of the input operand (to
6932 make the matching) we would be left with this:
6934 output = input
6935 asm ("" : "=r" (output), "=m" (input) : "0" (output))
6937 Now we suddenly have two different input values (containing the same
6938 value, but different pseudos) where we formerly had only one.
6939 With more complicated asms this might lead to reload failures
6940 which wouldn't have happen without this pass. So, iterate over
6941 all operands and replace all occurrences of the register used.
6943 However, if one or more of the 'input' uses have a non-matching
6944 constraint and the matched output operand is an early clobber
6945 operand, then do not replace the input operand, since by definition
6946 it conflicts with the output operand and cannot share the same
6947 register. See PR89313 for details. */
6949 for (j = 0; j < noutputs; j++)
6950 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
6951 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
6952 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
6953 input, output);
6954 for (j = 0; j < ninputs; j++)
6955 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
6957 if (!early_clobber_p
6958 || match == matching_constraint_num
6959 (ASM_OPERANDS_INPUT_CONSTRAINT (op, j)))
6960 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
6961 input, output);
6964 changed = true;
6967 if (changed)
6968 df_insn_rescan (insn);
6971 /* Add the decl D to the local_decls list of FUN. */
6973 void
6974 add_local_decl (struct function *fun, tree d)
6976 gcc_assert (VAR_P (d));
6977 vec_safe_push (fun->local_decls, d);
6980 namespace {
6982 const pass_data pass_data_match_asm_constraints =
6984 RTL_PASS, /* type */
6985 "asmcons", /* name */
6986 OPTGROUP_NONE, /* optinfo_flags */
6987 TV_NONE, /* tv_id */
6988 0, /* properties_required */
6989 0, /* properties_provided */
6990 0, /* properties_destroyed */
6991 0, /* todo_flags_start */
6992 0, /* todo_flags_finish */
6995 class pass_match_asm_constraints : public rtl_opt_pass
6997 public:
6998 pass_match_asm_constraints (gcc::context *ctxt)
6999 : rtl_opt_pass (pass_data_match_asm_constraints, ctxt)
7002 /* opt_pass methods: */
7003 unsigned int execute (function *) final override;
7005 }; // class pass_match_asm_constraints
7007 unsigned
7008 pass_match_asm_constraints::execute (function *fun)
7010 basic_block bb;
7011 rtx_insn *insn;
7012 rtx pat, *p_sets;
7013 int noutputs;
7015 if (!crtl->has_asm_statement)
7016 return 0;
7018 df_set_flags (DF_DEFER_INSN_RESCAN);
7019 FOR_EACH_BB_FN (bb, fun)
7021 FOR_BB_INSNS (bb, insn)
7023 if (!INSN_P (insn))
7024 continue;
7026 pat = PATTERN (insn);
7027 if (GET_CODE (pat) == PARALLEL)
7028 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
7029 else if (GET_CODE (pat) == SET)
7030 p_sets = &PATTERN (insn), noutputs = 1;
7031 else
7032 continue;
7034 if (GET_CODE (*p_sets) == SET
7035 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
7036 match_asm_constraints_1 (insn, p_sets, noutputs);
7040 return TODO_df_finish;
7043 } // anon namespace
7045 rtl_opt_pass *
7046 make_pass_match_asm_constraints (gcc::context *ctxt)
7048 return new pass_match_asm_constraints (ctxt);
7052 #include "gt-function.h"