1 /* Alias analysis for GNU C
2 Copyright (C) 1997-2016 Free Software Foundation, Inc.
3 Contributed by John Carr (jfc@mit.edu).
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
31 #include "gimple-ssa.h"
34 #include "fold-const.h"
37 #include "langhooks.h"
42 /* The aliasing API provided here solves related but different problems:
44 Say there exists (in c)
58 Consider the four questions:
60 Can a store to x1 interfere with px2->y1?
61 Can a store to x1 interfere with px2->z2?
62 Can a store to x1 change the value pointed to by with py?
63 Can a store to x1 change the value pointed to by with pz?
65 The answer to these questions can be yes, yes, yes, and maybe.
67 The first two questions can be answered with a simple examination
68 of the type system. If structure X contains a field of type Y then
69 a store through a pointer to an X can overwrite any field that is
70 contained (recursively) in an X (unless we know that px1 != px2).
72 The last two questions can be solved in the same way as the first
73 two questions but this is too conservative. The observation is
74 that in some cases we can know which (if any) fields are addressed
75 and if those addresses are used in bad ways. This analysis may be
76 language specific. In C, arbitrary operations may be applied to
77 pointers. However, there is some indication that this may be too
78 conservative for some C++ types.
80 The pass ipa-type-escape does this analysis for the types whose
81 instances do not escape across the compilation boundary.
83 Historically in GCC, these two problems were combined and a single
84 data structure that was used to represent the solution to these
85 problems. We now have two similar but different data structures,
86 The data structure to solve the last two questions is similar to
87 the first, but does not contain the fields whose address are never
88 taken. For types that do escape the compilation unit, the data
89 structures will have identical information.
92 /* The alias sets assigned to MEMs assist the back-end in determining
93 which MEMs can alias which other MEMs. In general, two MEMs in
94 different alias sets cannot alias each other, with one important
95 exception. Consider something like:
97 struct S { int i; double d; };
99 a store to an `S' can alias something of either type `int' or type
100 `double'. (However, a store to an `int' cannot alias a `double'
101 and vice versa.) We indicate this via a tree structure that looks
109 (The arrows are directed and point downwards.)
110 In this situation we say the alias set for `struct S' is the
111 `superset' and that those for `int' and `double' are `subsets'.
113 To see whether two alias sets can point to the same memory, we must
114 see if either alias set is a subset of the other. We need not trace
115 past immediate descendants, however, since we propagate all
116 grandchildren up one level.
118 Alias set zero is implicitly a superset of all other alias sets.
119 However, this is no actual entry for alias set zero. It is an
120 error to attempt to explicitly construct a subset of zero. */
122 struct alias_set_hash
: int_hash
<int, INT_MIN
, INT_MIN
+ 1> {};
124 struct GTY(()) alias_set_entry
{
125 /* The alias set number, as stored in MEM_ALIAS_SET. */
126 alias_set_type alias_set
;
128 /* The children of the alias set. These are not just the immediate
129 children, but, in fact, all descendants. So, if we have:
131 struct T { struct S s; float f; }
133 continuing our example above, the children here will be all of
134 `int', `double', `float', and `struct S'. */
135 hash_map
<alias_set_hash
, int> *children
;
137 /* Nonzero if would have a child of zero: this effectively makes this
138 alias set the same as alias set zero. */
140 /* Nonzero if alias set corresponds to pointer type itself (i.e. not to
141 aggregate contaiing pointer.
142 This is used for a special case where we need an universal pointer type
143 compatible with all other pointer types. */
145 /* Nonzero if is_pointer or if one of childs have has_pointer set. */
149 static int rtx_equal_for_memref_p (const_rtx
, const_rtx
);
150 static int memrefs_conflict_p (int, rtx
, int, rtx
, HOST_WIDE_INT
);
151 static void record_set (rtx
, const_rtx
, void *);
152 static int base_alias_check (rtx
, rtx
, rtx
, rtx
, machine_mode
,
154 static rtx
find_base_value (rtx
);
155 static int mems_in_disjoint_alias_sets_p (const_rtx
, const_rtx
);
156 static alias_set_entry
*get_alias_set_entry (alias_set_type
);
157 static tree
decl_for_component_ref (tree
);
158 static int write_dependence_p (const_rtx
,
159 const_rtx
, machine_mode
, rtx
,
161 static int compare_base_symbol_refs (const_rtx
, const_rtx
);
163 static void memory_modified_1 (rtx
, const_rtx
, void *);
165 /* Query statistics for the different low-level disambiguators.
166 A high-level query may trigger multiple of them. */
169 unsigned long long num_alias_zero
;
170 unsigned long long num_same_alias_set
;
171 unsigned long long num_same_objects
;
172 unsigned long long num_volatile
;
173 unsigned long long num_dag
;
174 unsigned long long num_universal
;
175 unsigned long long num_disambiguated
;
179 /* Set up all info needed to perform alias analysis on memory references. */
181 /* Returns the size in bytes of the mode of X. */
182 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
184 /* Cap the number of passes we make over the insns propagating alias
185 information through set chains.
186 ??? 10 is a completely arbitrary choice. This should be based on the
187 maximum loop depth in the CFG, but we do not have this information
188 available (even if current_loops _is_ available). */
189 #define MAX_ALIAS_LOOP_PASSES 10
191 /* reg_base_value[N] gives an address to which register N is related.
192 If all sets after the first add or subtract to the current value
193 or otherwise modify it so it does not point to a different top level
194 object, reg_base_value[N] is equal to the address part of the source
197 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
198 expressions represent three types of base:
200 1. incoming arguments. There is just one ADDRESS to represent all
201 arguments, since we do not know at this level whether accesses
202 based on different arguments can alias. The ADDRESS has id 0.
204 2. stack_pointer_rtx, frame_pointer_rtx, hard_frame_pointer_rtx
205 (if distinct from frame_pointer_rtx) and arg_pointer_rtx.
206 Each of these rtxes has a separate ADDRESS associated with it,
207 each with a negative id.
209 GCC is (and is required to be) precise in which register it
210 chooses to access a particular region of stack. We can therefore
211 assume that accesses based on one of these rtxes do not alias
212 accesses based on another of these rtxes.
214 3. bases that are derived from malloc()ed memory (REG_NOALIAS).
215 Each such piece of memory has a separate ADDRESS associated
216 with it, each with an id greater than 0.
218 Accesses based on one ADDRESS do not alias accesses based on other
219 ADDRESSes. Accesses based on ADDRESSes in groups (2) and (3) do not
220 alias globals either; the ADDRESSes have Pmode to indicate this.
221 The ADDRESS in group (1) _may_ alias globals; it has VOIDmode to
224 static GTY(()) vec
<rtx
, va_gc
> *reg_base_value
;
225 static rtx
*new_reg_base_value
;
227 /* The single VOIDmode ADDRESS that represents all argument bases.
229 static GTY(()) rtx arg_base_value
;
231 /* Used to allocate unique ids to each REG_NOALIAS ADDRESS. */
232 static int unique_id
;
234 /* We preserve the copy of old array around to avoid amount of garbage
235 produced. About 8% of garbage produced were attributed to this
237 static GTY((deletable
)) vec
<rtx
, va_gc
> *old_reg_base_value
;
239 /* Values of XINT (address, 0) of Pmode ADDRESS rtxes for special
241 #define UNIQUE_BASE_VALUE_SP -1
242 #define UNIQUE_BASE_VALUE_ARGP -2
243 #define UNIQUE_BASE_VALUE_FP -3
244 #define UNIQUE_BASE_VALUE_HFP -4
246 #define static_reg_base_value \
247 (this_target_rtl->x_static_reg_base_value)
249 #define REG_BASE_VALUE(X) \
250 (REGNO (X) < vec_safe_length (reg_base_value) \
251 ? (*reg_base_value)[REGNO (X)] : 0)
253 /* Vector indexed by N giving the initial (unchanging) value known for
254 pseudo-register N. This vector is initialized in init_alias_analysis,
255 and does not change until end_alias_analysis is called. */
256 static GTY(()) vec
<rtx
, va_gc
> *reg_known_value
;
258 /* Vector recording for each reg_known_value whether it is due to a
259 REG_EQUIV note. Future passes (viz., reload) may replace the
260 pseudo with the equivalent expression and so we account for the
261 dependences that would be introduced if that happens.
263 The REG_EQUIV notes created in assign_parms may mention the arg
264 pointer, and there are explicit insns in the RTL that modify the
265 arg pointer. Thus we must ensure that such insns don't get
266 scheduled across each other because that would invalidate the
267 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
268 wrong, but solving the problem in the scheduler will likely give
269 better code, so we do it here. */
270 static sbitmap reg_known_equiv_p
;
272 /* True when scanning insns from the start of the rtl to the
273 NOTE_INSN_FUNCTION_BEG note. */
274 static bool copying_arguments
;
277 /* The splay-tree used to store the various alias set entries. */
278 static GTY (()) vec
<alias_set_entry
*, va_gc
> *alias_sets
;
280 /* Build a decomposed reference object for querying the alias-oracle
281 from the MEM rtx and store it in *REF.
282 Returns false if MEM is not suitable for the alias-oracle. */
285 ao_ref_from_mem (ao_ref
*ref
, const_rtx mem
)
287 tree expr
= MEM_EXPR (mem
);
293 ao_ref_init (ref
, expr
);
295 /* Get the base of the reference and see if we have to reject or
297 base
= ao_ref_base (ref
);
298 if (base
== NULL_TREE
)
301 /* The tree oracle doesn't like bases that are neither decls
302 nor indirect references of SSA names. */
304 || (TREE_CODE (base
) == MEM_REF
305 && TREE_CODE (TREE_OPERAND (base
, 0)) == SSA_NAME
)
306 || (TREE_CODE (base
) == TARGET_MEM_REF
307 && TREE_CODE (TMR_BASE (base
)) == SSA_NAME
)))
310 /* If this is a reference based on a partitioned decl replace the
311 base with a MEM_REF of the pointer representative we
312 created during stack slot partitioning. */
313 if (TREE_CODE (base
) == VAR_DECL
314 && ! is_global_var (base
)
315 && cfun
->gimple_df
->decls_to_pointers
!= NULL
)
317 tree
*namep
= cfun
->gimple_df
->decls_to_pointers
->get (base
);
319 ref
->base
= build_simple_mem_ref (*namep
);
322 ref
->ref_alias_set
= MEM_ALIAS_SET (mem
);
324 /* If MEM_OFFSET or MEM_SIZE are unknown what we got from MEM_EXPR
325 is conservative, so trust it. */
326 if (!MEM_OFFSET_KNOWN_P (mem
)
327 || !MEM_SIZE_KNOWN_P (mem
))
330 /* If MEM_OFFSET/MEM_SIZE get us outside of ref->offset/ref->max_size
332 if (MEM_OFFSET (mem
) < 0
333 || (ref
->max_size
!= -1
334 && ((MEM_OFFSET (mem
) + MEM_SIZE (mem
)) * BITS_PER_UNIT
336 ref
->ref
= NULL_TREE
;
338 /* Refine size and offset we got from analyzing MEM_EXPR by using
339 MEM_SIZE and MEM_OFFSET. */
341 ref
->offset
+= MEM_OFFSET (mem
) * BITS_PER_UNIT
;
342 ref
->size
= MEM_SIZE (mem
) * BITS_PER_UNIT
;
344 /* The MEM may extend into adjacent fields, so adjust max_size if
346 if (ref
->max_size
!= -1
347 && ref
->size
> ref
->max_size
)
348 ref
->max_size
= ref
->size
;
350 /* If MEM_OFFSET and MEM_SIZE get us outside of the base object of
351 the MEM_EXPR punt. This happens for STRICT_ALIGNMENT targets a lot. */
352 if (MEM_EXPR (mem
) != get_spill_slot_decl (false)
354 || (DECL_P (ref
->base
)
355 && (DECL_SIZE (ref
->base
) == NULL_TREE
356 || TREE_CODE (DECL_SIZE (ref
->base
)) != INTEGER_CST
357 || wi::ltu_p (wi::to_offset (DECL_SIZE (ref
->base
)),
358 ref
->offset
+ ref
->size
)))))
364 /* Query the alias-oracle on whether the two memory rtx X and MEM may
365 alias. If TBAA_P is set also apply TBAA. Returns true if the
366 two rtxen may alias, false otherwise. */
369 rtx_refs_may_alias_p (const_rtx x
, const_rtx mem
, bool tbaa_p
)
373 if (!ao_ref_from_mem (&ref1
, x
)
374 || !ao_ref_from_mem (&ref2
, mem
))
377 return refs_may_alias_p_1 (&ref1
, &ref2
,
379 && MEM_ALIAS_SET (x
) != 0
380 && MEM_ALIAS_SET (mem
) != 0);
383 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
384 such an entry, or NULL otherwise. */
386 static inline alias_set_entry
*
387 get_alias_set_entry (alias_set_type alias_set
)
389 return (*alias_sets
)[alias_set
];
392 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
393 the two MEMs cannot alias each other. */
396 mems_in_disjoint_alias_sets_p (const_rtx mem1
, const_rtx mem2
)
398 return (flag_strict_aliasing
399 && ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1
),
400 MEM_ALIAS_SET (mem2
)));
403 /* Return true if the first alias set is a subset of the second. */
406 alias_set_subset_of (alias_set_type set1
, alias_set_type set2
)
408 alias_set_entry
*ase2
;
410 /* Disable TBAA oracle with !flag_strict_aliasing. */
411 if (!flag_strict_aliasing
)
414 /* Everything is a subset of the "aliases everything" set. */
418 /* Check if set1 is a subset of set2. */
419 ase2
= get_alias_set_entry (set2
);
421 && (ase2
->has_zero_child
422 || (ase2
->children
&& ase2
->children
->get (set1
))))
425 /* As a special case we consider alias set of "void *" to be both subset
426 and superset of every alias set of a pointer. This extra symmetry does
427 not matter for alias_sets_conflict_p but it makes aliasing_component_refs_p
428 to return true on the following testcase:
431 char **ptr2=(char **)&ptr;
434 Additionally if a set contains universal pointer, we consider every pointer
435 to be a subset of it, but we do not represent this explicitely - doing so
436 would require us to update transitive closure each time we introduce new
437 pointer type. This makes aliasing_component_refs_p to return true
438 on the following testcase:
440 struct a {void *ptr;}
441 char **ptr = (char **)&a.ptr;
444 This makes void * truly universal pointer type. See pointer handling in
445 get_alias_set for more details. */
446 if (ase2
&& ase2
->has_pointer
)
448 alias_set_entry
*ase1
= get_alias_set_entry (set1
);
450 if (ase1
&& ase1
->is_pointer
)
452 alias_set_type voidptr_set
= TYPE_ALIAS_SET (ptr_type_node
);
453 /* If one is ptr_type_node and other is pointer, then we consider
454 them subset of each other. */
455 if (set1
== voidptr_set
|| set2
== voidptr_set
)
457 /* If SET2 contains universal pointer's alias set, then we consdier
458 every (non-universal) pointer. */
459 if (ase2
->children
&& set1
!= voidptr_set
460 && ase2
->children
->get (voidptr_set
))
467 /* Return 1 if the two specified alias sets may conflict. */
470 alias_sets_conflict_p (alias_set_type set1
, alias_set_type set2
)
472 alias_set_entry
*ase1
;
473 alias_set_entry
*ase2
;
476 if (alias_sets_must_conflict_p (set1
, set2
))
479 /* See if the first alias set is a subset of the second. */
480 ase1
= get_alias_set_entry (set1
);
482 && ase1
->children
&& ase1
->children
->get (set2
))
484 ++alias_stats
.num_dag
;
488 /* Now do the same, but with the alias sets reversed. */
489 ase2
= get_alias_set_entry (set2
);
491 && ase2
->children
&& ase2
->children
->get (set1
))
493 ++alias_stats
.num_dag
;
497 /* We want void * to be compatible with any other pointer without
498 really dropping it to alias set 0. Doing so would make it
499 compatible with all non-pointer types too.
501 This is not strictly necessary by the C/C++ language
502 standards, but avoids common type punning mistakes. In
503 addition to that, we need the existence of such universal
504 pointer to implement Fortran's C_PTR type (which is defined as
505 type compatible with all C pointers). */
506 if (ase1
&& ase2
&& ase1
->has_pointer
&& ase2
->has_pointer
)
508 alias_set_type voidptr_set
= TYPE_ALIAS_SET (ptr_type_node
);
510 /* If one of the sets corresponds to universal pointer,
511 we consider it to conflict with anything that is
512 or contains pointer. */
513 if (set1
== voidptr_set
|| set2
== voidptr_set
)
515 ++alias_stats
.num_universal
;
518 /* If one of sets is (non-universal) pointer and the other
519 contains universal pointer, we also get conflict. */
520 if (ase1
->is_pointer
&& set2
!= voidptr_set
521 && ase2
->children
&& ase2
->children
->get (voidptr_set
))
523 ++alias_stats
.num_universal
;
526 if (ase2
->is_pointer
&& set1
!= voidptr_set
527 && ase1
->children
&& ase1
->children
->get (voidptr_set
))
529 ++alias_stats
.num_universal
;
534 ++alias_stats
.num_disambiguated
;
536 /* The two alias sets are distinct and neither one is the
537 child of the other. Therefore, they cannot conflict. */
541 /* Return 1 if the two specified alias sets will always conflict. */
544 alias_sets_must_conflict_p (alias_set_type set1
, alias_set_type set2
)
546 /* Disable TBAA oracle with !flag_strict_aliasing. */
547 if (!flag_strict_aliasing
)
549 if (set1
== 0 || set2
== 0)
551 ++alias_stats
.num_alias_zero
;
556 ++alias_stats
.num_same_alias_set
;
563 /* Return 1 if any MEM object of type T1 will always conflict (using the
564 dependency routines in this file) with any MEM object of type T2.
565 This is used when allocating temporary storage. If T1 and/or T2 are
566 NULL_TREE, it means we know nothing about the storage. */
569 objects_must_conflict_p (tree t1
, tree t2
)
571 alias_set_type set1
, set2
;
573 /* If neither has a type specified, we don't know if they'll conflict
574 because we may be using them to store objects of various types, for
575 example the argument and local variables areas of inlined functions. */
576 if (t1
== 0 && t2
== 0)
579 /* If they are the same type, they must conflict. */
582 ++alias_stats
.num_same_objects
;
585 /* Likewise if both are volatile. */
586 if (t1
!= 0 && TYPE_VOLATILE (t1
) && t2
!= 0 && TYPE_VOLATILE (t2
))
588 ++alias_stats
.num_volatile
;
592 set1
= t1
? get_alias_set (t1
) : 0;
593 set2
= t2
? get_alias_set (t2
) : 0;
595 /* We can't use alias_sets_conflict_p because we must make sure
596 that every subtype of t1 will conflict with every subtype of
597 t2 for which a pair of subobjects of these respective subtypes
598 overlaps on the stack. */
599 return alias_sets_must_conflict_p (set1
, set2
);
602 /* Return the outermost parent of component present in the chain of
603 component references handled by get_inner_reference in T with the
605 - the component is non-addressable, or
606 - the parent has alias set zero,
607 or NULL_TREE if no such parent exists. In the former cases, the alias
608 set of this parent is the alias set that must be used for T itself. */
611 component_uses_parent_alias_set_from (const_tree t
)
613 const_tree found
= NULL_TREE
;
615 while (handled_component_p (t
))
617 switch (TREE_CODE (t
))
620 if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t
, 1)))
625 case ARRAY_RANGE_REF
:
626 if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t
, 0))))
635 case VIEW_CONVERT_EXPR
:
636 /* Bitfields and casts are never addressable. */
644 if (get_alias_set (TREE_TYPE (TREE_OPERAND (t
, 0))) == 0)
647 t
= TREE_OPERAND (t
, 0);
651 return TREE_OPERAND (found
, 0);
657 /* Return whether the pointer-type T effective for aliasing may
658 access everything and thus the reference has to be assigned
662 ref_all_alias_ptr_type_p (const_tree t
)
664 return (TREE_CODE (TREE_TYPE (t
)) == VOID_TYPE
665 || TYPE_REF_CAN_ALIAS_ALL (t
));
668 /* Return the alias set for the memory pointed to by T, which may be
669 either a type or an expression. Return -1 if there is nothing
670 special about dereferencing T. */
672 static alias_set_type
673 get_deref_alias_set_1 (tree t
)
675 /* All we care about is the type. */
679 /* If we have an INDIRECT_REF via a void pointer, we don't
680 know anything about what that might alias. Likewise if the
681 pointer is marked that way. */
682 if (ref_all_alias_ptr_type_p (t
))
688 /* Return the alias set for the memory pointed to by T, which may be
689 either a type or an expression. */
692 get_deref_alias_set (tree t
)
694 /* If we're not doing any alias analysis, just assume everything
695 aliases everything else. */
696 if (!flag_strict_aliasing
)
699 alias_set_type set
= get_deref_alias_set_1 (t
);
701 /* Fall back to the alias-set of the pointed-to type. */
706 set
= get_alias_set (TREE_TYPE (t
));
712 /* Return the pointer-type relevant for TBAA purposes from the
713 memory reference tree *T or NULL_TREE in which case *T is
714 adjusted to point to the outermost component reference that
715 can be used for assigning an alias set. */
718 reference_alias_ptr_type_1 (tree
*t
)
722 /* Get the base object of the reference. */
724 while (handled_component_p (inner
))
726 /* If there is a VIEW_CONVERT_EXPR in the chain we cannot use
727 the type of any component references that wrap it to
728 determine the alias-set. */
729 if (TREE_CODE (inner
) == VIEW_CONVERT_EXPR
)
730 *t
= TREE_OPERAND (inner
, 0);
731 inner
= TREE_OPERAND (inner
, 0);
734 /* Handle pointer dereferences here, they can override the
736 if (INDIRECT_REF_P (inner
)
737 && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner
, 0))))
738 return TREE_TYPE (TREE_OPERAND (inner
, 0));
739 else if (TREE_CODE (inner
) == TARGET_MEM_REF
)
740 return TREE_TYPE (TMR_OFFSET (inner
));
741 else if (TREE_CODE (inner
) == MEM_REF
742 && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner
, 1))))
743 return TREE_TYPE (TREE_OPERAND (inner
, 1));
745 /* If the innermost reference is a MEM_REF that has a
746 conversion embedded treat it like a VIEW_CONVERT_EXPR above,
747 using the memory access type for determining the alias-set. */
748 if (TREE_CODE (inner
) == MEM_REF
749 && (TYPE_MAIN_VARIANT (TREE_TYPE (inner
))
751 (TREE_TYPE (TREE_TYPE (TREE_OPERAND (inner
, 1))))))
752 return TREE_TYPE (TREE_OPERAND (inner
, 1));
754 /* Otherwise, pick up the outermost object that we could have
756 tree tem
= component_uses_parent_alias_set_from (*t
);
763 /* Return the pointer-type relevant for TBAA purposes from the
764 gimple memory reference tree T. This is the type to be used for
765 the offset operand of MEM_REF or TARGET_MEM_REF replacements of T
766 and guarantees that get_alias_set will return the same alias
767 set for T and the replacement. */
770 reference_alias_ptr_type (tree t
)
772 tree ptype
= reference_alias_ptr_type_1 (&t
);
773 /* If there is a given pointer type for aliasing purposes, return it. */
774 if (ptype
!= NULL_TREE
)
777 /* Otherwise build one from the outermost component reference we
779 if (TREE_CODE (t
) == MEM_REF
780 || TREE_CODE (t
) == TARGET_MEM_REF
)
781 return TREE_TYPE (TREE_OPERAND (t
, 1));
783 return build_pointer_type (TYPE_MAIN_VARIANT (TREE_TYPE (t
)));
786 /* Return whether the pointer-types T1 and T2 used to determine
787 two alias sets of two references will yield the same answer
788 from get_deref_alias_set. */
791 alias_ptr_types_compatible_p (tree t1
, tree t2
)
793 if (TYPE_MAIN_VARIANT (t1
) == TYPE_MAIN_VARIANT (t2
))
796 if (ref_all_alias_ptr_type_p (t1
)
797 || ref_all_alias_ptr_type_p (t2
))
800 return (TYPE_MAIN_VARIANT (TREE_TYPE (t1
))
801 == TYPE_MAIN_VARIANT (TREE_TYPE (t2
)));
804 /* Create emptry alias set entry. */
807 init_alias_set_entry (alias_set_type set
)
809 alias_set_entry
*ase
= ggc_alloc
<alias_set_entry
> ();
810 ase
->alias_set
= set
;
811 ase
->children
= NULL
;
812 ase
->has_zero_child
= false;
813 ase
->is_pointer
= false;
814 ase
->has_pointer
= false;
815 gcc_checking_assert (!get_alias_set_entry (set
));
816 (*alias_sets
)[set
] = ase
;
820 /* Return the alias set for T, which may be either a type or an
821 expression. Call language-specific routine for help, if needed. */
824 get_alias_set (tree t
)
828 /* We can not give up with -fno-strict-aliasing because we need to build
829 proper type representation for possible functions which are build with
830 -fstirct-aliasing. */
832 /* return 0 if this or its type is an error. */
833 if (t
== error_mark_node
835 && (TREE_TYPE (t
) == 0 || TREE_TYPE (t
) == error_mark_node
)))
838 /* We can be passed either an expression or a type. This and the
839 language-specific routine may make mutually-recursive calls to each other
840 to figure out what to do. At each juncture, we see if this is a tree
841 that the language may need to handle specially. First handle things that
845 /* Give the language a chance to do something with this tree
846 before we look at it. */
848 set
= lang_hooks
.get_alias_set (t
);
852 /* Get the alias pointer-type to use or the outermost object
853 that we could have a pointer to. */
854 tree ptype
= reference_alias_ptr_type_1 (&t
);
856 return get_deref_alias_set (ptype
);
858 /* If we've already determined the alias set for a decl, just return
859 it. This is necessary for C++ anonymous unions, whose component
860 variables don't look like union members (boo!). */
861 if (TREE_CODE (t
) == VAR_DECL
862 && DECL_RTL_SET_P (t
) && MEM_P (DECL_RTL (t
)))
863 return MEM_ALIAS_SET (DECL_RTL (t
));
865 /* Now all we care about is the type. */
869 /* Variant qualifiers don't affect the alias set, so get the main
871 t
= TYPE_MAIN_VARIANT (t
);
873 /* Always use the canonical type as well. If this is a type that
874 requires structural comparisons to identify compatible types
875 use alias set zero. */
876 if (TYPE_STRUCTURAL_EQUALITY_P (t
))
878 /* Allow the language to specify another alias set for this
880 set
= lang_hooks
.get_alias_set (t
);
883 /* Handle structure type equality for pointer types, arrays and vectors.
884 This is easy to do, because the code bellow ignore canonical types on
885 these anyway. This is important for LTO, where TYPE_CANONICAL for
886 pointers can not be meaningfuly computed by the frotnend. */
887 if (canonical_type_used_p (t
))
889 /* In LTO we set canonical types for all types where it makes
890 sense to do so. Double check we did not miss some type. */
891 gcc_checking_assert (!in_lto_p
|| !type_with_alias_set_p (t
));
897 t
= TYPE_CANONICAL (t
);
898 gcc_checking_assert (!TYPE_STRUCTURAL_EQUALITY_P (t
));
901 /* If this is a type with a known alias set, return it. */
902 gcc_checking_assert (t
== TYPE_MAIN_VARIANT (t
));
903 if (TYPE_ALIAS_SET_KNOWN_P (t
))
904 return TYPE_ALIAS_SET (t
);
906 /* We don't want to set TYPE_ALIAS_SET for incomplete types. */
907 if (!COMPLETE_TYPE_P (t
))
909 /* For arrays with unknown size the conservative answer is the
910 alias set of the element type. */
911 if (TREE_CODE (t
) == ARRAY_TYPE
)
912 return get_alias_set (TREE_TYPE (t
));
914 /* But return zero as a conservative answer for incomplete types. */
918 /* See if the language has special handling for this type. */
919 set
= lang_hooks
.get_alias_set (t
);
923 /* There are no objects of FUNCTION_TYPE, so there's no point in
924 using up an alias set for them. (There are, of course, pointers
925 and references to functions, but that's different.) */
926 else if (TREE_CODE (t
) == FUNCTION_TYPE
|| TREE_CODE (t
) == METHOD_TYPE
)
929 /* Unless the language specifies otherwise, let vector types alias
930 their components. This avoids some nasty type punning issues in
931 normal usage. And indeed lets vectors be treated more like an
933 else if (TREE_CODE (t
) == VECTOR_TYPE
)
934 set
= get_alias_set (TREE_TYPE (t
));
936 /* Unless the language specifies otherwise, treat array types the
937 same as their components. This avoids the asymmetry we get
938 through recording the components. Consider accessing a
939 character(kind=1) through a reference to a character(kind=1)[1:1].
940 Or consider if we want to assign integer(kind=4)[0:D.1387] and
941 integer(kind=4)[4] the same alias set or not.
942 Just be pragmatic here and make sure the array and its element
943 type get the same alias set assigned. */
944 else if (TREE_CODE (t
) == ARRAY_TYPE
945 && (!TYPE_NONALIASED_COMPONENT (t
)
946 || TYPE_STRUCTURAL_EQUALITY_P (t
)))
947 set
= get_alias_set (TREE_TYPE (t
));
949 /* From the former common C and C++ langhook implementation:
951 Unfortunately, there is no canonical form of a pointer type.
952 In particular, if we have `typedef int I', then `int *', and
953 `I *' are different types. So, we have to pick a canonical
954 representative. We do this below.
956 Technically, this approach is actually more conservative that
957 it needs to be. In particular, `const int *' and `int *'
958 should be in different alias sets, according to the C and C++
959 standard, since their types are not the same, and so,
960 technically, an `int **' and `const int **' cannot point at
963 But, the standard is wrong. In particular, this code is
968 const int* const* cipp = ipp;
969 And, it doesn't make sense for that to be legal unless you
970 can dereference IPP and CIPP. So, we ignore cv-qualifiers on
971 the pointed-to types. This issue has been reported to the
974 For this reason go to canonical type of the unqalified pointer type.
975 Until GCC 6 this code set all pointers sets to have alias set of
976 ptr_type_node but that is a bad idea, because it prevents disabiguations
977 in between pointers. For Firefox this accounts about 20% of all
978 disambiguations in the program. */
979 else if (POINTER_TYPE_P (t
) && t
!= ptr_type_node
)
982 auto_vec
<bool, 8> reference
;
984 /* Unnest all pointers and references.
985 We also want to make pointer to array/vector equivalent to pointer to
986 its element (see the reasoning above). Skip all those types, too. */
987 for (p
= t
; POINTER_TYPE_P (p
)
988 || (TREE_CODE (p
) == ARRAY_TYPE
989 && (!TYPE_NONALIASED_COMPONENT (p
)
990 || !COMPLETE_TYPE_P (p
)
991 || TYPE_STRUCTURAL_EQUALITY_P (p
)))
992 || TREE_CODE (p
) == VECTOR_TYPE
;
995 /* Ada supports recusive pointers. Instead of doing recrusion check
996 just give up once the preallocated space of 8 elements is up.
997 In this case just punt to void * alias set. */
998 if (reference
.length () == 8)
1003 if (TREE_CODE (p
) == REFERENCE_TYPE
)
1004 /* In LTO we want languages that use references to be compatible
1005 with languages that use pointers. */
1006 reference
.safe_push (true && !in_lto_p
);
1007 if (TREE_CODE (p
) == POINTER_TYPE
)
1008 reference
.safe_push (false);
1010 p
= TYPE_MAIN_VARIANT (p
);
1012 /* Make void * compatible with char * and also void **.
1013 Programs are commonly violating TBAA by this.
1015 We also make void * to conflict with every pointer
1016 (see record_component_aliases) and thus it is safe it to use it for
1017 pointers to types with TYPE_STRUCTURAL_EQUALITY_P. */
1018 if (TREE_CODE (p
) == VOID_TYPE
|| TYPE_STRUCTURAL_EQUALITY_P (p
))
1019 set
= get_alias_set (ptr_type_node
);
1022 /* Rebuild pointer type starting from canonical types using
1023 unqualified pointers and references only. This way all such
1024 pointers will have the same alias set and will conflict with
1027 Most of time we already have pointers or references of a given type.
1028 If not we build new one just to be sure that if someone later
1029 (probably only middle-end can, as we should assign all alias
1030 classes only after finishing translation unit) builds the pointer
1031 type, the canonical type will match. */
1032 p
= TYPE_CANONICAL (p
);
1033 while (!reference
.is_empty ())
1035 if (reference
.pop ())
1036 p
= build_reference_type (p
);
1038 p
= build_pointer_type (p
);
1039 gcc_checking_assert (p
== TYPE_MAIN_VARIANT (p
));
1040 /* build_pointer_type should always return the canonical type.
1041 For LTO TYPE_CANOINCAL may be NULL, because we do not compute
1042 them. Be sure that frontends do not glob canonical types of
1043 pointers in unexpected way and that p == TYPE_CANONICAL (p)
1044 in all other cases. */
1045 gcc_checking_assert (!TYPE_CANONICAL (p
)
1046 || p
== TYPE_CANONICAL (p
));
1049 /* Assign the alias set to both p and t.
1050 We can not call get_alias_set (p) here as that would trigger
1051 infinite recursion when p == t. In other cases it would just
1052 trigger unnecesary legwork of rebuilding the pointer again. */
1053 gcc_checking_assert (p
== TYPE_MAIN_VARIANT (p
));
1054 if (TYPE_ALIAS_SET_KNOWN_P (p
))
1055 set
= TYPE_ALIAS_SET (p
);
1058 set
= new_alias_set ();
1059 TYPE_ALIAS_SET (p
) = set
;
1063 /* Alias set of ptr_type_node is special and serve as universal pointer which
1064 is TBAA compatible with every other pointer type. Be sure we have the
1065 alias set built even for LTO which otherwise keeps all TYPE_CANONICAL
1066 of pointer types NULL. */
1067 else if (t
== ptr_type_node
)
1068 set
= new_alias_set ();
1070 /* Otherwise make a new alias set for this type. */
1073 /* Each canonical type gets its own alias set, so canonical types
1074 shouldn't form a tree. It doesn't really matter for types
1075 we handle specially above, so only check it where it possibly
1076 would result in a bogus alias set. */
1077 gcc_checking_assert (TYPE_CANONICAL (t
) == t
);
1079 set
= new_alias_set ();
1082 TYPE_ALIAS_SET (t
) = set
;
1084 /* If this is an aggregate type or a complex type, we must record any
1085 component aliasing information. */
1086 if (AGGREGATE_TYPE_P (t
) || TREE_CODE (t
) == COMPLEX_TYPE
)
1087 record_component_aliases (t
);
1089 /* We treat pointer types specially in alias_set_subset_of. */
1090 if (POINTER_TYPE_P (t
) && set
)
1092 alias_set_entry
*ase
= get_alias_set_entry (set
);
1094 ase
= init_alias_set_entry (set
);
1095 ase
->is_pointer
= true;
1096 ase
->has_pointer
= true;
1102 /* Return a brand-new alias set. */
1105 new_alias_set (void)
1107 if (alias_sets
== 0)
1108 vec_safe_push (alias_sets
, (alias_set_entry
*) NULL
);
1109 vec_safe_push (alias_sets
, (alias_set_entry
*) NULL
);
1110 return alias_sets
->length () - 1;
1113 /* Indicate that things in SUBSET can alias things in SUPERSET, but that
1114 not everything that aliases SUPERSET also aliases SUBSET. For example,
1115 in C, a store to an `int' can alias a load of a structure containing an
1116 `int', and vice versa. But it can't alias a load of a 'double' member
1117 of the same structure. Here, the structure would be the SUPERSET and
1118 `int' the SUBSET. This relationship is also described in the comment at
1119 the beginning of this file.
1121 This function should be called only once per SUPERSET/SUBSET pair.
1123 It is illegal for SUPERSET to be zero; everything is implicitly a
1124 subset of alias set zero. */
1127 record_alias_subset (alias_set_type superset
, alias_set_type subset
)
1129 alias_set_entry
*superset_entry
;
1130 alias_set_entry
*subset_entry
;
1132 /* It is possible in complex type situations for both sets to be the same,
1133 in which case we can ignore this operation. */
1134 if (superset
== subset
)
1137 gcc_assert (superset
);
1139 superset_entry
= get_alias_set_entry (superset
);
1140 if (superset_entry
== 0)
1142 /* Create an entry for the SUPERSET, so that we have a place to
1143 attach the SUBSET. */
1144 superset_entry
= init_alias_set_entry (superset
);
1148 superset_entry
->has_zero_child
= 1;
1151 subset_entry
= get_alias_set_entry (subset
);
1152 if (!superset_entry
->children
)
1153 superset_entry
->children
1154 = hash_map
<alias_set_hash
, int>::create_ggc (64);
1155 /* If there is an entry for the subset, enter all of its children
1156 (if they are not already present) as children of the SUPERSET. */
1159 if (subset_entry
->has_zero_child
)
1160 superset_entry
->has_zero_child
= true;
1161 if (subset_entry
->has_pointer
)
1162 superset_entry
->has_pointer
= true;
1164 if (subset_entry
->children
)
1166 hash_map
<alias_set_hash
, int>::iterator iter
1167 = subset_entry
->children
->begin ();
1168 for (; iter
!= subset_entry
->children
->end (); ++iter
)
1169 superset_entry
->children
->put ((*iter
).first
, (*iter
).second
);
1173 /* Enter the SUBSET itself as a child of the SUPERSET. */
1174 superset_entry
->children
->put (subset
, 0);
1178 /* Record that component types of TYPE, if any, are part of that type for
1179 aliasing purposes. For record types, we only record component types
1180 for fields that are not marked non-addressable. For array types, we
1181 only record the component type if it is not marked non-aliased. */
1184 record_component_aliases (tree type
)
1186 alias_set_type superset
= get_alias_set (type
);
1192 switch (TREE_CODE (type
))
1196 case QUAL_UNION_TYPE
:
1197 for (field
= TYPE_FIELDS (type
); field
!= 0; field
= DECL_CHAIN (field
))
1198 if (TREE_CODE (field
) == FIELD_DECL
&& !DECL_NONADDRESSABLE_P (field
))
1200 /* LTO type merging does not make any difference between
1201 component pointer types. We may have
1203 struct foo {int *a;};
1205 as TYPE_CANONICAL of
1207 struct bar {float *a;};
1209 Because accesses to int * and float * do not alias, we would get
1210 false negative when accessing the same memory location by
1211 float ** and bar *. We thus record the canonical type as:
1215 void * is special cased and works as a universal pointer type.
1216 Accesses to it conflicts with accesses to any other pointer
1218 tree t
= TREE_TYPE (field
);
1221 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
1222 element type and that type has to be normalized to void *,
1223 too, in the case it is a pointer. */
1224 while (!canonical_type_used_p (t
) && !POINTER_TYPE_P (t
))
1226 gcc_checking_assert (TYPE_STRUCTURAL_EQUALITY_P (t
));
1229 if (POINTER_TYPE_P (t
))
1231 else if (flag_checking
)
1232 gcc_checking_assert (get_alias_set (t
)
1233 == get_alias_set (TREE_TYPE (field
)));
1236 record_alias_subset (superset
, get_alias_set (t
));
1241 record_alias_subset (superset
, get_alias_set (TREE_TYPE (type
)));
1244 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
1252 /* Allocate an alias set for use in storing and reading from the varargs
1255 static GTY(()) alias_set_type varargs_set
= -1;
1258 get_varargs_alias_set (void)
1261 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
1262 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
1263 consistently use the varargs alias set for loads from the varargs
1264 area. So don't use it anywhere. */
1267 if (varargs_set
== -1)
1268 varargs_set
= new_alias_set ();
1274 /* Likewise, but used for the fixed portions of the frame, e.g., register
1277 static GTY(()) alias_set_type frame_set
= -1;
1280 get_frame_alias_set (void)
1282 if (frame_set
== -1)
1283 frame_set
= new_alias_set ();
1288 /* Create a new, unique base with id ID. */
1291 unique_base_value (HOST_WIDE_INT id
)
1293 return gen_rtx_ADDRESS (Pmode
, id
);
1296 /* Return true if accesses based on any other base value cannot alias
1297 those based on X. */
1300 unique_base_value_p (rtx x
)
1302 return GET_CODE (x
) == ADDRESS
&& GET_MODE (x
) == Pmode
;
1305 /* Return true if X is known to be a base value. */
1308 known_base_value_p (rtx x
)
1310 switch (GET_CODE (x
))
1317 /* Arguments may or may not be bases; we don't know for sure. */
1318 return GET_MODE (x
) != VOIDmode
;
1325 /* Inside SRC, the source of a SET, find a base address. */
1328 find_base_value (rtx src
)
1332 #if defined (FIND_BASE_TERM)
1333 /* Try machine-dependent ways to find the base term. */
1334 src
= FIND_BASE_TERM (src
);
1337 switch (GET_CODE (src
))
1344 regno
= REGNO (src
);
1345 /* At the start of a function, argument registers have known base
1346 values which may be lost later. Returning an ADDRESS
1347 expression here allows optimization based on argument values
1348 even when the argument registers are used for other purposes. */
1349 if (regno
< FIRST_PSEUDO_REGISTER
&& copying_arguments
)
1350 return new_reg_base_value
[regno
];
1352 /* If a pseudo has a known base value, return it. Do not do this
1353 for non-fixed hard regs since it can result in a circular
1354 dependency chain for registers which have values at function entry.
1356 The test above is not sufficient because the scheduler may move
1357 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
1358 if ((regno
>= FIRST_PSEUDO_REGISTER
|| fixed_regs
[regno
])
1359 && regno
< vec_safe_length (reg_base_value
))
1361 /* If we're inside init_alias_analysis, use new_reg_base_value
1362 to reduce the number of relaxation iterations. */
1363 if (new_reg_base_value
&& new_reg_base_value
[regno
]
1364 && DF_REG_DEF_COUNT (regno
) == 1)
1365 return new_reg_base_value
[regno
];
1367 if ((*reg_base_value
)[regno
])
1368 return (*reg_base_value
)[regno
];
1374 /* Check for an argument passed in memory. Only record in the
1375 copying-arguments block; it is too hard to track changes
1377 if (copying_arguments
1378 && (XEXP (src
, 0) == arg_pointer_rtx
1379 || (GET_CODE (XEXP (src
, 0)) == PLUS
1380 && XEXP (XEXP (src
, 0), 0) == arg_pointer_rtx
)))
1381 return arg_base_value
;
1385 src
= XEXP (src
, 0);
1386 if (GET_CODE (src
) != PLUS
&& GET_CODE (src
) != MINUS
)
1389 /* ... fall through ... */
1394 rtx temp
, src_0
= XEXP (src
, 0), src_1
= XEXP (src
, 1);
1396 /* If either operand is a REG that is a known pointer, then it
1398 if (REG_P (src_0
) && REG_POINTER (src_0
))
1399 return find_base_value (src_0
);
1400 if (REG_P (src_1
) && REG_POINTER (src_1
))
1401 return find_base_value (src_1
);
1403 /* If either operand is a REG, then see if we already have
1404 a known value for it. */
1407 temp
= find_base_value (src_0
);
1414 temp
= find_base_value (src_1
);
1419 /* If either base is named object or a special address
1420 (like an argument or stack reference), then use it for the
1422 if (src_0
!= 0 && known_base_value_p (src_0
))
1425 if (src_1
!= 0 && known_base_value_p (src_1
))
1428 /* Guess which operand is the base address:
1429 If either operand is a symbol, then it is the base. If
1430 either operand is a CONST_INT, then the other is the base. */
1431 if (CONST_INT_P (src_1
) || CONSTANT_P (src_0
))
1432 return find_base_value (src_0
);
1433 else if (CONST_INT_P (src_0
) || CONSTANT_P (src_1
))
1434 return find_base_value (src_1
);
1440 /* The standard form is (lo_sum reg sym) so look only at the
1442 return find_base_value (XEXP (src
, 1));
1445 /* If the second operand is constant set the base
1446 address to the first operand. */
1447 if (CONST_INT_P (XEXP (src
, 1)) && INTVAL (XEXP (src
, 1)) != 0)
1448 return find_base_value (XEXP (src
, 0));
1452 /* As we do not know which address space the pointer is referring to, we can
1453 handle this only if the target does not support different pointer or
1454 address modes depending on the address space. */
1455 if (!target_default_pointer_address_modes_p ())
1457 if (GET_MODE_SIZE (GET_MODE (src
)) < GET_MODE_SIZE (Pmode
))
1467 return find_base_value (XEXP (src
, 0));
1470 case SIGN_EXTEND
: /* used for NT/Alpha pointers */
1471 /* As we do not know which address space the pointer is referring to, we can
1472 handle this only if the target does not support different pointer or
1473 address modes depending on the address space. */
1474 if (!target_default_pointer_address_modes_p ())
1478 rtx temp
= find_base_value (XEXP (src
, 0));
1480 if (temp
!= 0 && CONSTANT_P (temp
))
1481 temp
= convert_memory_address (Pmode
, temp
);
1493 /* Called from init_alias_analysis indirectly through note_stores,
1494 or directly if DEST is a register with a REG_NOALIAS note attached.
1495 SET is null in the latter case. */
1497 /* While scanning insns to find base values, reg_seen[N] is nonzero if
1498 register N has been set in this function. */
1499 static sbitmap reg_seen
;
1502 record_set (rtx dest
, const_rtx set
, void *data ATTRIBUTE_UNUSED
)
1511 regno
= REGNO (dest
);
1513 gcc_checking_assert (regno
< reg_base_value
->length ());
1515 n
= REG_NREGS (dest
);
1520 bitmap_set_bit (reg_seen
, regno
+ n
);
1521 new_reg_base_value
[regno
+ n
] = 0;
1528 /* A CLOBBER wipes out any old value but does not prevent a previously
1529 unset register from acquiring a base address (i.e. reg_seen is not
1531 if (GET_CODE (set
) == CLOBBER
)
1533 new_reg_base_value
[regno
] = 0;
1536 src
= SET_SRC (set
);
1540 /* There's a REG_NOALIAS note against DEST. */
1541 if (bitmap_bit_p (reg_seen
, regno
))
1543 new_reg_base_value
[regno
] = 0;
1546 bitmap_set_bit (reg_seen
, regno
);
1547 new_reg_base_value
[regno
] = unique_base_value (unique_id
++);
1551 /* If this is not the first set of REGNO, see whether the new value
1552 is related to the old one. There are two cases of interest:
1554 (1) The register might be assigned an entirely new value
1555 that has the same base term as the original set.
1557 (2) The set might be a simple self-modification that
1558 cannot change REGNO's base value.
1560 If neither case holds, reject the original base value as invalid.
1561 Note that the following situation is not detected:
1563 extern int x, y; int *p = &x; p += (&y-&x);
1565 ANSI C does not allow computing the difference of addresses
1566 of distinct top level objects. */
1567 if (new_reg_base_value
[regno
] != 0
1568 && find_base_value (src
) != new_reg_base_value
[regno
])
1569 switch (GET_CODE (src
))
1573 if (XEXP (src
, 0) != dest
&& XEXP (src
, 1) != dest
)
1574 new_reg_base_value
[regno
] = 0;
1577 /* If the value we add in the PLUS is also a valid base value,
1578 this might be the actual base value, and the original value
1581 rtx other
= NULL_RTX
;
1583 if (XEXP (src
, 0) == dest
)
1584 other
= XEXP (src
, 1);
1585 else if (XEXP (src
, 1) == dest
)
1586 other
= XEXP (src
, 0);
1588 if (! other
|| find_base_value (other
))
1589 new_reg_base_value
[regno
] = 0;
1593 if (XEXP (src
, 0) != dest
|| !CONST_INT_P (XEXP (src
, 1)))
1594 new_reg_base_value
[regno
] = 0;
1597 new_reg_base_value
[regno
] = 0;
1600 /* If this is the first set of a register, record the value. */
1601 else if ((regno
>= FIRST_PSEUDO_REGISTER
|| ! fixed_regs
[regno
])
1602 && ! bitmap_bit_p (reg_seen
, regno
) && new_reg_base_value
[regno
] == 0)
1603 new_reg_base_value
[regno
] = find_base_value (src
);
1605 bitmap_set_bit (reg_seen
, regno
);
1608 /* Return REG_BASE_VALUE for REGNO. Selective scheduler uses this to avoid
1609 using hard registers with non-null REG_BASE_VALUE for renaming. */
1611 get_reg_base_value (unsigned int regno
)
1613 return (*reg_base_value
)[regno
];
1616 /* If a value is known for REGNO, return it. */
1619 get_reg_known_value (unsigned int regno
)
1621 if (regno
>= FIRST_PSEUDO_REGISTER
)
1623 regno
-= FIRST_PSEUDO_REGISTER
;
1624 if (regno
< vec_safe_length (reg_known_value
))
1625 return (*reg_known_value
)[regno
];
1633 set_reg_known_value (unsigned int regno
, rtx val
)
1635 if (regno
>= FIRST_PSEUDO_REGISTER
)
1637 regno
-= FIRST_PSEUDO_REGISTER
;
1638 if (regno
< vec_safe_length (reg_known_value
))
1639 (*reg_known_value
)[regno
] = val
;
1643 /* Similarly for reg_known_equiv_p. */
1646 get_reg_known_equiv_p (unsigned int regno
)
1648 if (regno
>= FIRST_PSEUDO_REGISTER
)
1650 regno
-= FIRST_PSEUDO_REGISTER
;
1651 if (regno
< vec_safe_length (reg_known_value
))
1652 return bitmap_bit_p (reg_known_equiv_p
, regno
);
1658 set_reg_known_equiv_p (unsigned int regno
, bool val
)
1660 if (regno
>= FIRST_PSEUDO_REGISTER
)
1662 regno
-= FIRST_PSEUDO_REGISTER
;
1663 if (regno
< vec_safe_length (reg_known_value
))
1666 bitmap_set_bit (reg_known_equiv_p
, regno
);
1668 bitmap_clear_bit (reg_known_equiv_p
, regno
);
1674 /* Returns a canonical version of X, from the point of view alias
1675 analysis. (For example, if X is a MEM whose address is a register,
1676 and the register has a known value (say a SYMBOL_REF), then a MEM
1677 whose address is the SYMBOL_REF is returned.) */
1682 /* Recursively look for equivalences. */
1683 if (REG_P (x
) && REGNO (x
) >= FIRST_PSEUDO_REGISTER
)
1685 rtx t
= get_reg_known_value (REGNO (x
));
1689 return canon_rtx (t
);
1692 if (GET_CODE (x
) == PLUS
)
1694 rtx x0
= canon_rtx (XEXP (x
, 0));
1695 rtx x1
= canon_rtx (XEXP (x
, 1));
1697 if (x0
!= XEXP (x
, 0) || x1
!= XEXP (x
, 1))
1699 if (CONST_INT_P (x0
))
1700 return plus_constant (GET_MODE (x
), x1
, INTVAL (x0
));
1701 else if (CONST_INT_P (x1
))
1702 return plus_constant (GET_MODE (x
), x0
, INTVAL (x1
));
1703 return gen_rtx_PLUS (GET_MODE (x
), x0
, x1
);
1707 /* This gives us much better alias analysis when called from
1708 the loop optimizer. Note we want to leave the original
1709 MEM alone, but need to return the canonicalized MEM with
1710 all the flags with their original values. */
1712 x
= replace_equiv_address_nv (x
, canon_rtx (XEXP (x
, 0)));
1717 /* Return 1 if X and Y are identical-looking rtx's.
1718 Expect that X and Y has been already canonicalized.
1720 We use the data in reg_known_value above to see if two registers with
1721 different numbers are, in fact, equivalent. */
1724 rtx_equal_for_memref_p (const_rtx x
, const_rtx y
)
1731 if (x
== 0 && y
== 0)
1733 if (x
== 0 || y
== 0)
1739 code
= GET_CODE (x
);
1740 /* Rtx's of different codes cannot be equal. */
1741 if (code
!= GET_CODE (y
))
1744 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1745 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1747 if (GET_MODE (x
) != GET_MODE (y
))
1750 /* Some RTL can be compared without a recursive examination. */
1754 return REGNO (x
) == REGNO (y
);
1757 return LABEL_REF_LABEL (x
) == LABEL_REF_LABEL (y
);
1760 return compare_base_symbol_refs (x
, y
) == 1;
1763 /* This is magic, don't go through canonicalization et al. */
1764 return rtx_equal_p (ENTRY_VALUE_EXP (x
), ENTRY_VALUE_EXP (y
));
1768 /* Pointer equality guarantees equality for these nodes. */
1775 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1777 return ((rtx_equal_for_memref_p (XEXP (x
, 0), XEXP (y
, 0))
1778 && rtx_equal_for_memref_p (XEXP (x
, 1), XEXP (y
, 1)))
1779 || (rtx_equal_for_memref_p (XEXP (x
, 0), XEXP (y
, 1))
1780 && rtx_equal_for_memref_p (XEXP (x
, 1), XEXP (y
, 0))));
1781 /* For commutative operations, the RTX match if the operand match in any
1782 order. Also handle the simple binary and unary cases without a loop. */
1783 if (COMMUTATIVE_P (x
))
1785 rtx xop0
= canon_rtx (XEXP (x
, 0));
1786 rtx yop0
= canon_rtx (XEXP (y
, 0));
1787 rtx yop1
= canon_rtx (XEXP (y
, 1));
1789 return ((rtx_equal_for_memref_p (xop0
, yop0
)
1790 && rtx_equal_for_memref_p (canon_rtx (XEXP (x
, 1)), yop1
))
1791 || (rtx_equal_for_memref_p (xop0
, yop1
)
1792 && rtx_equal_for_memref_p (canon_rtx (XEXP (x
, 1)), yop0
)));
1794 else if (NON_COMMUTATIVE_P (x
))
1796 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x
, 0)),
1797 canon_rtx (XEXP (y
, 0)))
1798 && rtx_equal_for_memref_p (canon_rtx (XEXP (x
, 1)),
1799 canon_rtx (XEXP (y
, 1))));
1801 else if (UNARY_P (x
))
1802 return rtx_equal_for_memref_p (canon_rtx (XEXP (x
, 0)),
1803 canon_rtx (XEXP (y
, 0)));
1805 /* Compare the elements. If any pair of corresponding elements
1806 fail to match, return 0 for the whole things.
1808 Limit cases to types which actually appear in addresses. */
1810 fmt
= GET_RTX_FORMAT (code
);
1811 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1816 if (XINT (x
, i
) != XINT (y
, i
))
1821 /* Two vectors must have the same length. */
1822 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
1825 /* And the corresponding elements must match. */
1826 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1827 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x
, i
, j
)),
1828 canon_rtx (XVECEXP (y
, i
, j
))) == 0)
1833 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x
, i
)),
1834 canon_rtx (XEXP (y
, i
))) == 0)
1838 /* This can happen for asm operands. */
1840 if (strcmp (XSTR (x
, i
), XSTR (y
, i
)))
1844 /* This can happen for an asm which clobbers memory. */
1848 /* It is believed that rtx's at this level will never
1849 contain anything but integers and other rtx's,
1850 except for within LABEL_REFs and SYMBOL_REFs. */
1859 find_base_term (rtx x
)
1862 struct elt_loc_list
*l
, *f
;
1865 #if defined (FIND_BASE_TERM)
1866 /* Try machine-dependent ways to find the base term. */
1867 x
= FIND_BASE_TERM (x
);
1870 switch (GET_CODE (x
))
1873 return REG_BASE_VALUE (x
);
1876 /* As we do not know which address space the pointer is referring to, we can
1877 handle this only if the target does not support different pointer or
1878 address modes depending on the address space. */
1879 if (!target_default_pointer_address_modes_p ())
1881 if (GET_MODE_SIZE (GET_MODE (x
)) < GET_MODE_SIZE (Pmode
))
1891 return find_base_term (XEXP (x
, 0));
1894 case SIGN_EXTEND
: /* Used for Alpha/NT pointers */
1895 /* As we do not know which address space the pointer is referring to, we can
1896 handle this only if the target does not support different pointer or
1897 address modes depending on the address space. */
1898 if (!target_default_pointer_address_modes_p ())
1902 rtx temp
= find_base_term (XEXP (x
, 0));
1904 if (temp
!= 0 && CONSTANT_P (temp
))
1905 temp
= convert_memory_address (Pmode
, temp
);
1911 val
= CSELIB_VAL_PTR (x
);
1917 if (cselib_sp_based_value_p (val
))
1918 return static_reg_base_value
[STACK_POINTER_REGNUM
];
1921 /* Temporarily reset val->locs to avoid infinite recursion. */
1924 for (l
= f
; l
; l
= l
->next
)
1925 if (GET_CODE (l
->loc
) == VALUE
1926 && CSELIB_VAL_PTR (l
->loc
)->locs
1927 && !CSELIB_VAL_PTR (l
->loc
)->locs
->next
1928 && CSELIB_VAL_PTR (l
->loc
)->locs
->loc
== x
)
1930 else if ((ret
= find_base_term (l
->loc
)) != 0)
1937 /* The standard form is (lo_sum reg sym) so look only at the
1939 return find_base_term (XEXP (x
, 1));
1943 if (GET_CODE (x
) != PLUS
&& GET_CODE (x
) != MINUS
)
1949 rtx tmp1
= XEXP (x
, 0);
1950 rtx tmp2
= XEXP (x
, 1);
1952 /* This is a little bit tricky since we have to determine which of
1953 the two operands represents the real base address. Otherwise this
1954 routine may return the index register instead of the base register.
1956 That may cause us to believe no aliasing was possible, when in
1957 fact aliasing is possible.
1959 We use a few simple tests to guess the base register. Additional
1960 tests can certainly be added. For example, if one of the operands
1961 is a shift or multiply, then it must be the index register and the
1962 other operand is the base register. */
1964 if (tmp1
== pic_offset_table_rtx
&& CONSTANT_P (tmp2
))
1965 return find_base_term (tmp2
);
1967 /* If either operand is known to be a pointer, then prefer it
1968 to determine the base term. */
1969 if (REG_P (tmp1
) && REG_POINTER (tmp1
))
1971 else if (REG_P (tmp2
) && REG_POINTER (tmp2
))
1972 std::swap (tmp1
, tmp2
);
1973 /* If second argument is constant which has base term, prefer it
1974 over variable tmp1. See PR64025. */
1975 else if (CONSTANT_P (tmp2
) && !CONST_INT_P (tmp2
))
1976 std::swap (tmp1
, tmp2
);
1978 /* Go ahead and find the base term for both operands. If either base
1979 term is from a pointer or is a named object or a special address
1980 (like an argument or stack reference), then use it for the
1982 rtx base
= find_base_term (tmp1
);
1983 if (base
!= NULL_RTX
1984 && ((REG_P (tmp1
) && REG_POINTER (tmp1
))
1985 || known_base_value_p (base
)))
1987 base
= find_base_term (tmp2
);
1988 if (base
!= NULL_RTX
1989 && ((REG_P (tmp2
) && REG_POINTER (tmp2
))
1990 || known_base_value_p (base
)))
1993 /* We could not determine which of the two operands was the
1994 base register and which was the index. So we can determine
1995 nothing from the base alias check. */
2000 if (CONST_INT_P (XEXP (x
, 1)) && INTVAL (XEXP (x
, 1)) != 0)
2001 return find_base_term (XEXP (x
, 0));
2013 /* Return true if accesses to address X may alias accesses based
2014 on the stack pointer. */
2017 may_be_sp_based_p (rtx x
)
2019 rtx base
= find_base_term (x
);
2020 return !base
|| base
== static_reg_base_value
[STACK_POINTER_REGNUM
];
2023 /* BASE1 and BASE2 are decls. Return 1 if they refer to same object, 0
2024 if they refer to different objects and -1 if we can not decide. */
2027 compare_base_decls (tree base1
, tree base2
)
2030 gcc_checking_assert (DECL_P (base1
) && DECL_P (base2
));
2034 /* Declarations of non-automatic variables may have aliases. All other
2035 decls are unique. */
2036 if (!decl_in_symtab_p (base1
)
2037 || !decl_in_symtab_p (base2
))
2040 /* Don't cause symbols to be inserted by the act of checking. */
2041 symtab_node
*node1
= symtab_node::get (base1
);
2044 symtab_node
*node2
= symtab_node::get (base2
);
2048 ret
= node1
->equal_address_to (node2
, true);
2052 /* Same as compare_base_decls but for SYMBOL_REF. */
2055 compare_base_symbol_refs (const_rtx x_base
, const_rtx y_base
)
2057 tree x_decl
= SYMBOL_REF_DECL (x_base
);
2058 tree y_decl
= SYMBOL_REF_DECL (y_base
);
2059 bool binds_def
= true;
2061 if (XSTR (x_base
, 0) == XSTR (y_base
, 0))
2063 if (x_decl
&& y_decl
)
2064 return compare_base_decls (x_decl
, y_decl
);
2065 if (x_decl
|| y_decl
)
2069 std::swap (x_decl
, y_decl
);
2070 std::swap (x_base
, y_base
);
2072 /* We handle specially only section anchors and assume that other
2073 labels may overlap with user variables in an arbitrary way. */
2074 if (!SYMBOL_REF_HAS_BLOCK_INFO_P (y_base
))
2076 /* Anchors contains static VAR_DECLs and CONST_DECLs. We are safe
2077 to ignore CONST_DECLs because they are readonly. */
2078 if (TREE_CODE (x_decl
) != VAR_DECL
2079 || (!TREE_STATIC (x_decl
) && !TREE_PUBLIC (x_decl
)))
2082 symtab_node
*x_node
= symtab_node::get_create (x_decl
)
2083 ->ultimate_alias_target ();
2084 /* External variable can not be in section anchor. */
2085 if (!x_node
->definition
)
2087 x_base
= XEXP (DECL_RTL (x_node
->decl
), 0);
2088 /* If not in anchor, we can disambiguate. */
2089 if (!SYMBOL_REF_HAS_BLOCK_INFO_P (x_base
))
2092 /* We have an alias of anchored variable. If it can be interposed;
2093 we must assume it may or may not alias its anchor. */
2094 binds_def
= decl_binds_to_current_def_p (x_decl
);
2096 /* If we have variable in section anchor, we can compare by offset. */
2097 if (SYMBOL_REF_HAS_BLOCK_INFO_P (x_base
)
2098 && SYMBOL_REF_HAS_BLOCK_INFO_P (y_base
))
2100 if (SYMBOL_REF_BLOCK (x_base
) != SYMBOL_REF_BLOCK (y_base
))
2102 if (SYMBOL_REF_BLOCK_OFFSET (x_base
) == SYMBOL_REF_BLOCK_OFFSET (y_base
))
2103 return binds_def
? 1 : -1;
2104 if (SYMBOL_REF_ANCHOR_P (x_base
) != SYMBOL_REF_ANCHOR_P (y_base
))
2108 /* In general we assume that memory locations pointed to by different labels
2109 may overlap in undefined ways. */
2113 /* Return 0 if the addresses X and Y are known to point to different
2114 objects, 1 if they might be pointers to the same object. */
2117 base_alias_check (rtx x
, rtx x_base
, rtx y
, rtx y_base
,
2118 machine_mode x_mode
, machine_mode y_mode
)
2120 /* If the address itself has no known base see if a known equivalent
2121 value has one. If either address still has no known base, nothing
2122 is known about aliasing. */
2127 if (! flag_expensive_optimizations
|| (x_c
= canon_rtx (x
)) == x
)
2130 x_base
= find_base_term (x_c
);
2138 if (! flag_expensive_optimizations
|| (y_c
= canon_rtx (y
)) == y
)
2141 y_base
= find_base_term (y_c
);
2146 /* If the base addresses are equal nothing is known about aliasing. */
2147 if (rtx_equal_p (x_base
, y_base
))
2150 /* The base addresses are different expressions. If they are not accessed
2151 via AND, there is no conflict. We can bring knowledge of object
2152 alignment into play here. For example, on alpha, "char a, b;" can
2153 alias one another, though "char a; long b;" cannot. AND addesses may
2154 implicitly alias surrounding objects; i.e. unaligned access in DImode
2155 via AND address can alias all surrounding object types except those
2156 with aligment 8 or higher. */
2157 if (GET_CODE (x
) == AND
&& GET_CODE (y
) == AND
)
2159 if (GET_CODE (x
) == AND
2160 && (!CONST_INT_P (XEXP (x
, 1))
2161 || (int) GET_MODE_UNIT_SIZE (y_mode
) < -INTVAL (XEXP (x
, 1))))
2163 if (GET_CODE (y
) == AND
2164 && (!CONST_INT_P (XEXP (y
, 1))
2165 || (int) GET_MODE_UNIT_SIZE (x_mode
) < -INTVAL (XEXP (y
, 1))))
2168 /* Differing symbols not accessed via AND never alias. */
2169 if (GET_CODE (x_base
) == SYMBOL_REF
&& GET_CODE (y_base
) == SYMBOL_REF
)
2170 return compare_base_symbol_refs (x_base
, y_base
) != 0;
2172 if (GET_CODE (x_base
) != ADDRESS
&& GET_CODE (y_base
) != ADDRESS
)
2175 if (unique_base_value_p (x_base
) || unique_base_value_p (y_base
))
2181 /* Return TRUE if EXPR refers to a VALUE whose uid is greater than
2182 (or equal to) that of V. */
2185 refs_newer_value_p (const_rtx expr
, rtx v
)
2187 int minuid
= CSELIB_VAL_PTR (v
)->uid
;
2188 subrtx_iterator::array_type array
;
2189 FOR_EACH_SUBRTX (iter
, array
, expr
, NONCONST
)
2190 if (GET_CODE (*iter
) == VALUE
&& CSELIB_VAL_PTR (*iter
)->uid
>= minuid
)
2195 /* Convert the address X into something we can use. This is done by returning
2196 it unchanged unless it is a VALUE or VALUE +/- constant; for VALUE
2197 we call cselib to get a more useful rtx. */
2203 struct elt_loc_list
*l
;
2205 if (GET_CODE (x
) != VALUE
)
2207 if ((GET_CODE (x
) == PLUS
|| GET_CODE (x
) == MINUS
)
2208 && GET_CODE (XEXP (x
, 0)) == VALUE
2209 && CONST_SCALAR_INT_P (XEXP (x
, 1)))
2211 rtx op0
= get_addr (XEXP (x
, 0));
2212 if (op0
!= XEXP (x
, 0))
2214 if (GET_CODE (x
) == PLUS
2215 && GET_CODE (XEXP (x
, 1)) == CONST_INT
)
2216 return plus_constant (GET_MODE (x
), op0
, INTVAL (XEXP (x
, 1)));
2217 return simplify_gen_binary (GET_CODE (x
), GET_MODE (x
),
2223 v
= CSELIB_VAL_PTR (x
);
2226 bool have_equivs
= cselib_have_permanent_equivalences ();
2228 v
= canonical_cselib_val (v
);
2229 for (l
= v
->locs
; l
; l
= l
->next
)
2230 if (CONSTANT_P (l
->loc
))
2232 for (l
= v
->locs
; l
; l
= l
->next
)
2233 if (!REG_P (l
->loc
) && !MEM_P (l
->loc
)
2234 /* Avoid infinite recursion when potentially dealing with
2235 var-tracking artificial equivalences, by skipping the
2236 equivalences themselves, and not choosing expressions
2237 that refer to newer VALUEs. */
2239 || (GET_CODE (l
->loc
) != VALUE
2240 && !refs_newer_value_p (l
->loc
, x
))))
2244 for (l
= v
->locs
; l
; l
= l
->next
)
2246 || (GET_CODE (l
->loc
) != VALUE
2247 && !refs_newer_value_p (l
->loc
, x
)))
2249 /* Return the canonical value. */
2253 return v
->locs
->loc
;
2258 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
2259 where SIZE is the size in bytes of the memory reference. If ADDR
2260 is not modified by the memory reference then ADDR is returned. */
2263 addr_side_effect_eval (rtx addr
, int size
, int n_refs
)
2267 switch (GET_CODE (addr
))
2270 offset
= (n_refs
+ 1) * size
;
2273 offset
= -(n_refs
+ 1) * size
;
2276 offset
= n_refs
* size
;
2279 offset
= -n_refs
* size
;
2287 addr
= gen_rtx_PLUS (GET_MODE (addr
), XEXP (addr
, 0),
2288 gen_int_mode (offset
, GET_MODE (addr
)));
2290 addr
= XEXP (addr
, 0);
2291 addr
= canon_rtx (addr
);
2296 /* Return TRUE if an object X sized at XSIZE bytes and another object
2297 Y sized at YSIZE bytes, starting C bytes after X, may overlap. If
2298 any of the sizes is zero, assume an overlap, otherwise use the
2299 absolute value of the sizes as the actual sizes. */
2302 offset_overlap_p (HOST_WIDE_INT c
, int xsize
, int ysize
)
2304 return (xsize
== 0 || ysize
== 0
2307 : (abs (ysize
) > -c
)));
2310 /* Return one if X and Y (memory addresses) reference the
2311 same location in memory or if the references overlap.
2312 Return zero if they do not overlap, else return
2313 minus one in which case they still might reference the same location.
2315 C is an offset accumulator. When
2316 C is nonzero, we are testing aliases between X and Y + C.
2317 XSIZE is the size in bytes of the X reference,
2318 similarly YSIZE is the size in bytes for Y.
2319 Expect that canon_rtx has been already called for X and Y.
2321 If XSIZE or YSIZE is zero, we do not know the amount of memory being
2322 referenced (the reference was BLKmode), so make the most pessimistic
2325 If XSIZE or YSIZE is negative, we may access memory outside the object
2326 being referenced as a side effect. This can happen when using AND to
2327 align memory references, as is done on the Alpha.
2329 Nice to notice that varying addresses cannot conflict with fp if no
2330 local variables had their addresses taken, but that's too hard now.
2332 ??? Contrary to the tree alias oracle this does not return
2333 one for X + non-constant and Y + non-constant when X and Y are equal.
2334 If that is fixed the TBAA hack for union type-punning can be removed. */
2337 memrefs_conflict_p (int xsize
, rtx x
, int ysize
, rtx y
, HOST_WIDE_INT c
)
2339 if (GET_CODE (x
) == VALUE
)
2343 struct elt_loc_list
*l
= NULL
;
2344 if (CSELIB_VAL_PTR (x
))
2345 for (l
= canonical_cselib_val (CSELIB_VAL_PTR (x
))->locs
;
2347 if (REG_P (l
->loc
) && rtx_equal_for_memref_p (l
->loc
, y
))
2354 /* Don't call get_addr if y is the same VALUE. */
2358 if (GET_CODE (y
) == VALUE
)
2362 struct elt_loc_list
*l
= NULL
;
2363 if (CSELIB_VAL_PTR (y
))
2364 for (l
= canonical_cselib_val (CSELIB_VAL_PTR (y
))->locs
;
2366 if (REG_P (l
->loc
) && rtx_equal_for_memref_p (l
->loc
, x
))
2373 /* Don't call get_addr if x is the same VALUE. */
2377 if (GET_CODE (x
) == HIGH
)
2379 else if (GET_CODE (x
) == LO_SUM
)
2382 x
= addr_side_effect_eval (x
, abs (xsize
), 0);
2383 if (GET_CODE (y
) == HIGH
)
2385 else if (GET_CODE (y
) == LO_SUM
)
2388 y
= addr_side_effect_eval (y
, abs (ysize
), 0);
2390 if (GET_CODE (x
) == SYMBOL_REF
&& GET_CODE (y
) == SYMBOL_REF
)
2392 int cmp
= compare_base_symbol_refs (x
,y
);
2394 /* If both decls are the same, decide by offsets. */
2396 return offset_overlap_p (c
, xsize
, ysize
);
2397 /* Assume a potential overlap for symbolic addresses that went
2398 through alignment adjustments (i.e., that have negative
2399 sizes), because we can't know how far they are from each
2401 if (xsize
< 0 || ysize
< 0)
2403 /* If decls are different or we know by offsets that there is no overlap,
2405 if (!cmp
|| !offset_overlap_p (c
, xsize
, ysize
))
2407 /* Decls may or may not be different and offsets overlap....*/
2410 else if (rtx_equal_for_memref_p (x
, y
))
2412 return offset_overlap_p (c
, xsize
, ysize
);
2415 /* This code used to check for conflicts involving stack references and
2416 globals but the base address alias code now handles these cases. */
2418 if (GET_CODE (x
) == PLUS
)
2420 /* The fact that X is canonicalized means that this
2421 PLUS rtx is canonicalized. */
2422 rtx x0
= XEXP (x
, 0);
2423 rtx x1
= XEXP (x
, 1);
2425 /* However, VALUEs might end up in different positions even in
2426 canonical PLUSes. Comparing their addresses is enough. */
2428 return memrefs_conflict_p (xsize
, x1
, ysize
, const0_rtx
, c
);
2430 return memrefs_conflict_p (xsize
, x0
, ysize
, const0_rtx
, c
);
2432 if (GET_CODE (y
) == PLUS
)
2434 /* The fact that Y is canonicalized means that this
2435 PLUS rtx is canonicalized. */
2436 rtx y0
= XEXP (y
, 0);
2437 rtx y1
= XEXP (y
, 1);
2440 return memrefs_conflict_p (xsize
, x1
, ysize
, y0
, c
);
2442 return memrefs_conflict_p (xsize
, x0
, ysize
, y1
, c
);
2444 if (rtx_equal_for_memref_p (x1
, y1
))
2445 return memrefs_conflict_p (xsize
, x0
, ysize
, y0
, c
);
2446 if (rtx_equal_for_memref_p (x0
, y0
))
2447 return memrefs_conflict_p (xsize
, x1
, ysize
, y1
, c
);
2448 if (CONST_INT_P (x1
))
2450 if (CONST_INT_P (y1
))
2451 return memrefs_conflict_p (xsize
, x0
, ysize
, y0
,
2452 c
- INTVAL (x1
) + INTVAL (y1
));
2454 return memrefs_conflict_p (xsize
, x0
, ysize
, y
,
2457 else if (CONST_INT_P (y1
))
2458 return memrefs_conflict_p (xsize
, x
, ysize
, y0
, c
+ INTVAL (y1
));
2462 else if (CONST_INT_P (x1
))
2463 return memrefs_conflict_p (xsize
, x0
, ysize
, y
, c
- INTVAL (x1
));
2465 else if (GET_CODE (y
) == PLUS
)
2467 /* The fact that Y is canonicalized means that this
2468 PLUS rtx is canonicalized. */
2469 rtx y0
= XEXP (y
, 0);
2470 rtx y1
= XEXP (y
, 1);
2473 return memrefs_conflict_p (xsize
, const0_rtx
, ysize
, y1
, c
);
2475 return memrefs_conflict_p (xsize
, const0_rtx
, ysize
, y0
, c
);
2477 if (CONST_INT_P (y1
))
2478 return memrefs_conflict_p (xsize
, x
, ysize
, y0
, c
+ INTVAL (y1
));
2483 if (GET_CODE (x
) == GET_CODE (y
))
2484 switch (GET_CODE (x
))
2488 /* Handle cases where we expect the second operands to be the
2489 same, and check only whether the first operand would conflict
2492 rtx x1
= canon_rtx (XEXP (x
, 1));
2493 rtx y1
= canon_rtx (XEXP (y
, 1));
2494 if (! rtx_equal_for_memref_p (x1
, y1
))
2496 x0
= canon_rtx (XEXP (x
, 0));
2497 y0
= canon_rtx (XEXP (y
, 0));
2498 if (rtx_equal_for_memref_p (x0
, y0
))
2499 return offset_overlap_p (c
, xsize
, ysize
);
2501 /* Can't properly adjust our sizes. */
2502 if (!CONST_INT_P (x1
))
2504 xsize
/= INTVAL (x1
);
2505 ysize
/= INTVAL (x1
);
2507 return memrefs_conflict_p (xsize
, x0
, ysize
, y0
, c
);
2514 /* Deal with alignment ANDs by adjusting offset and size so as to
2515 cover the maximum range, without taking any previously known
2516 alignment into account. Make a size negative after such an
2517 adjustments, so that, if we end up with e.g. two SYMBOL_REFs, we
2518 assume a potential overlap, because they may end up in contiguous
2519 memory locations and the stricter-alignment access may span over
2521 if (GET_CODE (x
) == AND
&& CONST_INT_P (XEXP (x
, 1)))
2523 HOST_WIDE_INT sc
= INTVAL (XEXP (x
, 1));
2524 unsigned HOST_WIDE_INT uc
= sc
;
2525 if (sc
< 0 && -uc
== (uc
& -uc
))
2532 return memrefs_conflict_p (xsize
, canon_rtx (XEXP (x
, 0)),
2536 if (GET_CODE (y
) == AND
&& CONST_INT_P (XEXP (y
, 1)))
2538 HOST_WIDE_INT sc
= INTVAL (XEXP (y
, 1));
2539 unsigned HOST_WIDE_INT uc
= sc
;
2540 if (sc
< 0 && -uc
== (uc
& -uc
))
2547 return memrefs_conflict_p (xsize
, x
,
2548 ysize
, canon_rtx (XEXP (y
, 0)), c
);
2554 if (CONST_INT_P (x
) && CONST_INT_P (y
))
2556 c
+= (INTVAL (y
) - INTVAL (x
));
2557 return offset_overlap_p (c
, xsize
, ysize
);
2560 if (GET_CODE (x
) == CONST
)
2562 if (GET_CODE (y
) == CONST
)
2563 return memrefs_conflict_p (xsize
, canon_rtx (XEXP (x
, 0)),
2564 ysize
, canon_rtx (XEXP (y
, 0)), c
);
2566 return memrefs_conflict_p (xsize
, canon_rtx (XEXP (x
, 0)),
2569 if (GET_CODE (y
) == CONST
)
2570 return memrefs_conflict_p (xsize
, x
, ysize
,
2571 canon_rtx (XEXP (y
, 0)), c
);
2573 /* Assume a potential overlap for symbolic addresses that went
2574 through alignment adjustments (i.e., that have negative
2575 sizes), because we can't know how far they are from each
2578 return (xsize
< 0 || ysize
< 0 || offset_overlap_p (c
, xsize
, ysize
));
2586 /* Functions to compute memory dependencies.
2588 Since we process the insns in execution order, we can build tables
2589 to keep track of what registers are fixed (and not aliased), what registers
2590 are varying in known ways, and what registers are varying in unknown
2593 If both memory references are volatile, then there must always be a
2594 dependence between the two references, since their order can not be
2595 changed. A volatile and non-volatile reference can be interchanged
2598 We also must allow AND addresses, because they may generate accesses
2599 outside the object being referenced. This is used to generate aligned
2600 addresses from unaligned addresses, for instance, the alpha
2601 storeqi_unaligned pattern. */
2603 /* Read dependence: X is read after read in MEM takes place. There can
2604 only be a dependence here if both reads are volatile, or if either is
2605 an explicit barrier. */
2608 read_dependence (const_rtx mem
, const_rtx x
)
2610 if (MEM_VOLATILE_P (x
) && MEM_VOLATILE_P (mem
))
2612 if (MEM_ALIAS_SET (x
) == ALIAS_SET_MEMORY_BARRIER
2613 || MEM_ALIAS_SET (mem
) == ALIAS_SET_MEMORY_BARRIER
)
2618 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
2621 decl_for_component_ref (tree x
)
2625 x
= TREE_OPERAND (x
, 0);
2627 while (x
&& TREE_CODE (x
) == COMPONENT_REF
);
2629 return x
&& DECL_P (x
) ? x
: NULL_TREE
;
2632 /* Walk up the COMPONENT_REF list in X and adjust *OFFSET to compensate
2633 for the offset of the field reference. *KNOWN_P says whether the
2637 adjust_offset_for_component_ref (tree x
, bool *known_p
,
2638 HOST_WIDE_INT
*offset
)
2644 tree xoffset
= component_ref_field_offset (x
);
2645 tree field
= TREE_OPERAND (x
, 1);
2646 if (TREE_CODE (xoffset
) != INTEGER_CST
)
2653 = (wi::to_offset (xoffset
)
2654 + wi::lrshift (wi::to_offset (DECL_FIELD_BIT_OFFSET (field
)),
2655 LOG2_BITS_PER_UNIT
));
2656 if (!wi::fits_uhwi_p (woffset
))
2661 *offset
+= woffset
.to_uhwi ();
2663 x
= TREE_OPERAND (x
, 0);
2665 while (x
&& TREE_CODE (x
) == COMPONENT_REF
);
2668 /* Return nonzero if we can determine the exprs corresponding to memrefs
2669 X and Y and they do not overlap.
2670 If LOOP_VARIANT is set, skip offset-based disambiguation */
2673 nonoverlapping_memrefs_p (const_rtx x
, const_rtx y
, bool loop_invariant
)
2675 tree exprx
= MEM_EXPR (x
), expry
= MEM_EXPR (y
);
2678 bool moffsetx_known_p
, moffsety_known_p
;
2679 HOST_WIDE_INT moffsetx
= 0, moffsety
= 0;
2680 HOST_WIDE_INT offsetx
= 0, offsety
= 0, sizex
, sizey
;
2682 /* Unless both have exprs, we can't tell anything. */
2683 if (exprx
== 0 || expry
== 0)
2686 /* For spill-slot accesses make sure we have valid offsets. */
2687 if ((exprx
== get_spill_slot_decl (false)
2688 && ! MEM_OFFSET_KNOWN_P (x
))
2689 || (expry
== get_spill_slot_decl (false)
2690 && ! MEM_OFFSET_KNOWN_P (y
)))
2693 /* If the field reference test failed, look at the DECLs involved. */
2694 moffsetx_known_p
= MEM_OFFSET_KNOWN_P (x
);
2695 if (moffsetx_known_p
)
2696 moffsetx
= MEM_OFFSET (x
);
2697 if (TREE_CODE (exprx
) == COMPONENT_REF
)
2699 tree t
= decl_for_component_ref (exprx
);
2702 adjust_offset_for_component_ref (exprx
, &moffsetx_known_p
, &moffsetx
);
2706 moffsety_known_p
= MEM_OFFSET_KNOWN_P (y
);
2707 if (moffsety_known_p
)
2708 moffsety
= MEM_OFFSET (y
);
2709 if (TREE_CODE (expry
) == COMPONENT_REF
)
2711 tree t
= decl_for_component_ref (expry
);
2714 adjust_offset_for_component_ref (expry
, &moffsety_known_p
, &moffsety
);
2718 if (! DECL_P (exprx
) || ! DECL_P (expry
))
2721 /* If we refer to different gimple registers, or one gimple register
2722 and one non-gimple-register, we know they can't overlap. First,
2723 gimple registers don't have their addresses taken. Now, there
2724 could be more than one stack slot for (different versions of) the
2725 same gimple register, but we can presumably tell they don't
2726 overlap based on offsets from stack base addresses elsewhere.
2727 It's important that we don't proceed to DECL_RTL, because gimple
2728 registers may not pass DECL_RTL_SET_P, and make_decl_rtl won't be
2729 able to do anything about them since no SSA information will have
2730 remained to guide it. */
2731 if (is_gimple_reg (exprx
) || is_gimple_reg (expry
))
2732 return exprx
!= expry
2733 || (moffsetx_known_p
&& moffsety_known_p
2734 && MEM_SIZE_KNOWN_P (x
) && MEM_SIZE_KNOWN_P (y
)
2735 && !offset_overlap_p (moffsety
- moffsetx
,
2736 MEM_SIZE (x
), MEM_SIZE (y
)));
2738 /* With invalid code we can end up storing into the constant pool.
2739 Bail out to avoid ICEing when creating RTL for this.
2740 See gfortran.dg/lto/20091028-2_0.f90. */
2741 if (TREE_CODE (exprx
) == CONST_DECL
2742 || TREE_CODE (expry
) == CONST_DECL
)
2745 rtlx
= DECL_RTL (exprx
);
2746 rtly
= DECL_RTL (expry
);
2748 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2749 can't overlap unless they are the same because we never reuse that part
2750 of the stack frame used for locals for spilled pseudos. */
2751 if ((!MEM_P (rtlx
) || !MEM_P (rtly
))
2752 && ! rtx_equal_p (rtlx
, rtly
))
2755 /* If we have MEMs referring to different address spaces (which can
2756 potentially overlap), we cannot easily tell from the addresses
2757 whether the references overlap. */
2758 if (MEM_P (rtlx
) && MEM_P (rtly
)
2759 && MEM_ADDR_SPACE (rtlx
) != MEM_ADDR_SPACE (rtly
))
2762 /* Get the base and offsets of both decls. If either is a register, we
2763 know both are and are the same, so use that as the base. The only
2764 we can avoid overlap is if we can deduce that they are nonoverlapping
2765 pieces of that decl, which is very rare. */
2766 basex
= MEM_P (rtlx
) ? XEXP (rtlx
, 0) : rtlx
;
2767 if (GET_CODE (basex
) == PLUS
&& CONST_INT_P (XEXP (basex
, 1)))
2768 offsetx
= INTVAL (XEXP (basex
, 1)), basex
= XEXP (basex
, 0);
2770 basey
= MEM_P (rtly
) ? XEXP (rtly
, 0) : rtly
;
2771 if (GET_CODE (basey
) == PLUS
&& CONST_INT_P (XEXP (basey
, 1)))
2772 offsety
= INTVAL (XEXP (basey
, 1)), basey
= XEXP (basey
, 0);
2774 /* If the bases are different, we know they do not overlap if both
2775 are constants or if one is a constant and the other a pointer into the
2776 stack frame. Otherwise a different base means we can't tell if they
2778 if (compare_base_decls (exprx
, expry
) == 0)
2779 return ((CONSTANT_P (basex
) && CONSTANT_P (basey
))
2780 || (CONSTANT_P (basex
) && REG_P (basey
)
2781 && REGNO_PTR_FRAME_P (REGNO (basey
)))
2782 || (CONSTANT_P (basey
) && REG_P (basex
)
2783 && REGNO_PTR_FRAME_P (REGNO (basex
))));
2785 /* Offset based disambiguation not appropriate for loop invariant */
2789 /* Offset based disambiguation is OK even if we do not know that the
2790 declarations are necessarily different
2791 (i.e. compare_base_decls (exprx, expry) == -1) */
2793 sizex
= (!MEM_P (rtlx
) ? (int) GET_MODE_SIZE (GET_MODE (rtlx
))
2794 : MEM_SIZE_KNOWN_P (rtlx
) ? MEM_SIZE (rtlx
)
2796 sizey
= (!MEM_P (rtly
) ? (int) GET_MODE_SIZE (GET_MODE (rtly
))
2797 : MEM_SIZE_KNOWN_P (rtly
) ? MEM_SIZE (rtly
)
2800 /* If we have an offset for either memref, it can update the values computed
2802 if (moffsetx_known_p
)
2803 offsetx
+= moffsetx
, sizex
-= moffsetx
;
2804 if (moffsety_known_p
)
2805 offsety
+= moffsety
, sizey
-= moffsety
;
2807 /* If a memref has both a size and an offset, we can use the smaller size.
2808 We can't do this if the offset isn't known because we must view this
2809 memref as being anywhere inside the DECL's MEM. */
2810 if (MEM_SIZE_KNOWN_P (x
) && moffsetx_known_p
)
2811 sizex
= MEM_SIZE (x
);
2812 if (MEM_SIZE_KNOWN_P (y
) && moffsety_known_p
)
2813 sizey
= MEM_SIZE (y
);
2815 /* Put the values of the memref with the lower offset in X's values. */
2816 if (offsetx
> offsety
)
2818 std::swap (offsetx
, offsety
);
2819 std::swap (sizex
, sizey
);
2822 /* If we don't know the size of the lower-offset value, we can't tell
2823 if they conflict. Otherwise, we do the test. */
2824 return sizex
>= 0 && offsety
>= offsetx
+ sizex
;
2827 /* Helper for true_dependence and canon_true_dependence.
2828 Checks for true dependence: X is read after store in MEM takes place.
2830 If MEM_CANONICALIZED is FALSE, then X_ADDR and MEM_ADDR should be
2831 NULL_RTX, and the canonical addresses of MEM and X are both computed
2832 here. If MEM_CANONICALIZED, then MEM must be already canonicalized.
2834 If X_ADDR is non-NULL, it is used in preference of XEXP (x, 0).
2836 Returns 1 if there is a true dependence, 0 otherwise. */
2839 true_dependence_1 (const_rtx mem
, machine_mode mem_mode
, rtx mem_addr
,
2840 const_rtx x
, rtx x_addr
, bool mem_canonicalized
)
2846 gcc_checking_assert (mem_canonicalized
? (mem_addr
!= NULL_RTX
)
2847 : (mem_addr
== NULL_RTX
&& x_addr
== NULL_RTX
));
2849 if (MEM_VOLATILE_P (x
) && MEM_VOLATILE_P (mem
))
2852 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2853 This is used in epilogue deallocation functions, and in cselib. */
2854 if (GET_MODE (x
) == BLKmode
&& GET_CODE (XEXP (x
, 0)) == SCRATCH
)
2856 if (GET_MODE (mem
) == BLKmode
&& GET_CODE (XEXP (mem
, 0)) == SCRATCH
)
2858 if (MEM_ALIAS_SET (x
) == ALIAS_SET_MEMORY_BARRIER
2859 || MEM_ALIAS_SET (mem
) == ALIAS_SET_MEMORY_BARRIER
)
2863 x_addr
= XEXP (x
, 0);
2864 x_addr
= get_addr (x_addr
);
2868 mem_addr
= XEXP (mem
, 0);
2869 if (mem_mode
== VOIDmode
)
2870 mem_mode
= GET_MODE (mem
);
2872 true_mem_addr
= get_addr (mem_addr
);
2874 /* Read-only memory is by definition never modified, and therefore can't
2875 conflict with anything. However, don't assume anything when AND
2876 addresses are involved and leave to the code below to determine
2877 dependence. We don't expect to find read-only set on MEM, but
2878 stupid user tricks can produce them, so don't die. */
2879 if (MEM_READONLY_P (x
)
2880 && GET_CODE (x_addr
) != AND
2881 && GET_CODE (true_mem_addr
) != AND
)
2884 /* If we have MEMs referring to different address spaces (which can
2885 potentially overlap), we cannot easily tell from the addresses
2886 whether the references overlap. */
2887 if (MEM_ADDR_SPACE (mem
) != MEM_ADDR_SPACE (x
))
2890 base
= find_base_term (x_addr
);
2891 if (base
&& (GET_CODE (base
) == LABEL_REF
2892 || (GET_CODE (base
) == SYMBOL_REF
2893 && CONSTANT_POOL_ADDRESS_P (base
))))
2896 rtx mem_base
= find_base_term (true_mem_addr
);
2897 if (! base_alias_check (x_addr
, base
, true_mem_addr
, mem_base
,
2898 GET_MODE (x
), mem_mode
))
2901 x_addr
= canon_rtx (x_addr
);
2902 if (!mem_canonicalized
)
2903 mem_addr
= canon_rtx (true_mem_addr
);
2905 if ((ret
= memrefs_conflict_p (GET_MODE_SIZE (mem_mode
), mem_addr
,
2906 SIZE_FOR_MODE (x
), x_addr
, 0)) != -1)
2909 if (mems_in_disjoint_alias_sets_p (x
, mem
))
2912 if (nonoverlapping_memrefs_p (mem
, x
, false))
2915 return rtx_refs_may_alias_p (x
, mem
, true);
2918 /* True dependence: X is read after store in MEM takes place. */
2921 true_dependence (const_rtx mem
, machine_mode mem_mode
, const_rtx x
)
2923 return true_dependence_1 (mem
, mem_mode
, NULL_RTX
,
2924 x
, NULL_RTX
, /*mem_canonicalized=*/false);
2927 /* Canonical true dependence: X is read after store in MEM takes place.
2928 Variant of true_dependence which assumes MEM has already been
2929 canonicalized (hence we no longer do that here).
2930 The mem_addr argument has been added, since true_dependence_1 computed
2931 this value prior to canonicalizing. */
2934 canon_true_dependence (const_rtx mem
, machine_mode mem_mode
, rtx mem_addr
,
2935 const_rtx x
, rtx x_addr
)
2937 return true_dependence_1 (mem
, mem_mode
, mem_addr
,
2938 x
, x_addr
, /*mem_canonicalized=*/true);
2941 /* Returns nonzero if a write to X might alias a previous read from
2942 (or, if WRITEP is true, a write to) MEM.
2943 If X_CANONCALIZED is true, then X_ADDR is the canonicalized address of X,
2944 and X_MODE the mode for that access.
2945 If MEM_CANONICALIZED is true, MEM is canonicalized. */
2948 write_dependence_p (const_rtx mem
,
2949 const_rtx x
, machine_mode x_mode
, rtx x_addr
,
2950 bool mem_canonicalized
, bool x_canonicalized
, bool writep
)
2953 rtx true_mem_addr
, true_x_addr
;
2957 gcc_checking_assert (x_canonicalized
2958 ? (x_addr
!= NULL_RTX
&& x_mode
!= VOIDmode
)
2959 : (x_addr
== NULL_RTX
&& x_mode
== VOIDmode
));
2961 if (MEM_VOLATILE_P (x
) && MEM_VOLATILE_P (mem
))
2964 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2965 This is used in epilogue deallocation functions. */
2966 if (GET_MODE (x
) == BLKmode
&& GET_CODE (XEXP (x
, 0)) == SCRATCH
)
2968 if (GET_MODE (mem
) == BLKmode
&& GET_CODE (XEXP (mem
, 0)) == SCRATCH
)
2970 if (MEM_ALIAS_SET (x
) == ALIAS_SET_MEMORY_BARRIER
2971 || MEM_ALIAS_SET (mem
) == ALIAS_SET_MEMORY_BARRIER
)
2975 x_addr
= XEXP (x
, 0);
2976 true_x_addr
= get_addr (x_addr
);
2978 mem_addr
= XEXP (mem
, 0);
2979 true_mem_addr
= get_addr (mem_addr
);
2981 /* A read from read-only memory can't conflict with read-write memory.
2982 Don't assume anything when AND addresses are involved and leave to
2983 the code below to determine dependence. */
2985 && MEM_READONLY_P (mem
)
2986 && GET_CODE (true_x_addr
) != AND
2987 && GET_CODE (true_mem_addr
) != AND
)
2990 /* If we have MEMs referring to different address spaces (which can
2991 potentially overlap), we cannot easily tell from the addresses
2992 whether the references overlap. */
2993 if (MEM_ADDR_SPACE (mem
) != MEM_ADDR_SPACE (x
))
2996 base
= find_base_term (true_mem_addr
);
2999 && (GET_CODE (base
) == LABEL_REF
3000 || (GET_CODE (base
) == SYMBOL_REF
3001 && CONSTANT_POOL_ADDRESS_P (base
))))
3004 rtx x_base
= find_base_term (true_x_addr
);
3005 if (! base_alias_check (true_x_addr
, x_base
, true_mem_addr
, base
,
3006 GET_MODE (x
), GET_MODE (mem
)))
3009 if (!x_canonicalized
)
3011 x_addr
= canon_rtx (true_x_addr
);
3012 x_mode
= GET_MODE (x
);
3014 if (!mem_canonicalized
)
3015 mem_addr
= canon_rtx (true_mem_addr
);
3017 if ((ret
= memrefs_conflict_p (SIZE_FOR_MODE (mem
), mem_addr
,
3018 GET_MODE_SIZE (x_mode
), x_addr
, 0)) != -1)
3021 if (nonoverlapping_memrefs_p (x
, mem
, false))
3024 return rtx_refs_may_alias_p (x
, mem
, false);
3027 /* Anti dependence: X is written after read in MEM takes place. */
3030 anti_dependence (const_rtx mem
, const_rtx x
)
3032 return write_dependence_p (mem
, x
, VOIDmode
, NULL_RTX
,
3033 /*mem_canonicalized=*/false,
3034 /*x_canonicalized*/false, /*writep=*/false);
3037 /* Likewise, but we already have a canonicalized MEM, and X_ADDR for X.
3038 Also, consider X in X_MODE (which might be from an enclosing
3039 STRICT_LOW_PART / ZERO_EXTRACT).
3040 If MEM_CANONICALIZED is true, MEM is canonicalized. */
3043 canon_anti_dependence (const_rtx mem
, bool mem_canonicalized
,
3044 const_rtx x
, machine_mode x_mode
, rtx x_addr
)
3046 return write_dependence_p (mem
, x
, x_mode
, x_addr
,
3047 mem_canonicalized
, /*x_canonicalized=*/true,
3051 /* Output dependence: X is written after store in MEM takes place. */
3054 output_dependence (const_rtx mem
, const_rtx x
)
3056 return write_dependence_p (mem
, x
, VOIDmode
, NULL_RTX
,
3057 /*mem_canonicalized=*/false,
3058 /*x_canonicalized*/false, /*writep=*/true);
3063 /* Check whether X may be aliased with MEM. Don't do offset-based
3064 memory disambiguation & TBAA. */
3066 may_alias_p (const_rtx mem
, const_rtx x
)
3068 rtx x_addr
, mem_addr
;
3070 if (MEM_VOLATILE_P (x
) && MEM_VOLATILE_P (mem
))
3073 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
3074 This is used in epilogue deallocation functions. */
3075 if (GET_MODE (x
) == BLKmode
&& GET_CODE (XEXP (x
, 0)) == SCRATCH
)
3077 if (GET_MODE (mem
) == BLKmode
&& GET_CODE (XEXP (mem
, 0)) == SCRATCH
)
3079 if (MEM_ALIAS_SET (x
) == ALIAS_SET_MEMORY_BARRIER
3080 || MEM_ALIAS_SET (mem
) == ALIAS_SET_MEMORY_BARRIER
)
3083 x_addr
= XEXP (x
, 0);
3084 x_addr
= get_addr (x_addr
);
3086 mem_addr
= XEXP (mem
, 0);
3087 mem_addr
= get_addr (mem_addr
);
3089 /* Read-only memory is by definition never modified, and therefore can't
3090 conflict with anything. However, don't assume anything when AND
3091 addresses are involved and leave to the code below to determine
3092 dependence. We don't expect to find read-only set on MEM, but
3093 stupid user tricks can produce them, so don't die. */
3094 if (MEM_READONLY_P (x
)
3095 && GET_CODE (x_addr
) != AND
3096 && GET_CODE (mem_addr
) != AND
)
3099 /* If we have MEMs referring to different address spaces (which can
3100 potentially overlap), we cannot easily tell from the addresses
3101 whether the references overlap. */
3102 if (MEM_ADDR_SPACE (mem
) != MEM_ADDR_SPACE (x
))
3105 rtx x_base
= find_base_term (x_addr
);
3106 rtx mem_base
= find_base_term (mem_addr
);
3107 if (! base_alias_check (x_addr
, x_base
, mem_addr
, mem_base
,
3108 GET_MODE (x
), GET_MODE (mem_addr
)))
3111 if (nonoverlapping_memrefs_p (mem
, x
, true))
3114 /* TBAA not valid for loop_invarint */
3115 return rtx_refs_may_alias_p (x
, mem
, false);
3119 init_alias_target (void)
3123 if (!arg_base_value
)
3124 arg_base_value
= gen_rtx_ADDRESS (VOIDmode
, 0);
3126 memset (static_reg_base_value
, 0, sizeof static_reg_base_value
);
3128 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
3129 /* Check whether this register can hold an incoming pointer
3130 argument. FUNCTION_ARG_REGNO_P tests outgoing register
3131 numbers, so translate if necessary due to register windows. */
3132 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i
))
3133 && HARD_REGNO_MODE_OK (i
, Pmode
))
3134 static_reg_base_value
[i
] = arg_base_value
;
3136 static_reg_base_value
[STACK_POINTER_REGNUM
]
3137 = unique_base_value (UNIQUE_BASE_VALUE_SP
);
3138 static_reg_base_value
[ARG_POINTER_REGNUM
]
3139 = unique_base_value (UNIQUE_BASE_VALUE_ARGP
);
3140 static_reg_base_value
[FRAME_POINTER_REGNUM
]
3141 = unique_base_value (UNIQUE_BASE_VALUE_FP
);
3142 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER
)
3143 static_reg_base_value
[HARD_FRAME_POINTER_REGNUM
]
3144 = unique_base_value (UNIQUE_BASE_VALUE_HFP
);
3147 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
3148 to be memory reference. */
3149 static bool memory_modified
;
3151 memory_modified_1 (rtx x
, const_rtx pat ATTRIBUTE_UNUSED
, void *data
)
3155 if (anti_dependence (x
, (const_rtx
)data
) || output_dependence (x
, (const_rtx
)data
))
3156 memory_modified
= true;
3161 /* Return true when INSN possibly modify memory contents of MEM
3162 (i.e. address can be modified). */
3164 memory_modified_in_insn_p (const_rtx mem
, const_rtx insn
)
3168 memory_modified
= false;
3169 note_stores (PATTERN (insn
), memory_modified_1
, CONST_CAST_RTX(mem
));
3170 return memory_modified
;
3173 /* Return TRUE if the destination of a set is rtx identical to
3176 set_dest_equal_p (const_rtx set
, const_rtx item
)
3178 rtx dest
= SET_DEST (set
);
3179 return rtx_equal_p (dest
, item
);
3182 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
3186 init_alias_analysis (void)
3188 unsigned int maxreg
= max_reg_num ();
3197 timevar_push (TV_ALIAS_ANALYSIS
);
3199 vec_safe_grow_cleared (reg_known_value
, maxreg
- FIRST_PSEUDO_REGISTER
);
3200 reg_known_equiv_p
= sbitmap_alloc (maxreg
- FIRST_PSEUDO_REGISTER
);
3201 bitmap_clear (reg_known_equiv_p
);
3203 /* If we have memory allocated from the previous run, use it. */
3204 if (old_reg_base_value
)
3205 reg_base_value
= old_reg_base_value
;
3208 reg_base_value
->truncate (0);
3210 vec_safe_grow_cleared (reg_base_value
, maxreg
);
3212 new_reg_base_value
= XNEWVEC (rtx
, maxreg
);
3213 reg_seen
= sbitmap_alloc (maxreg
);
3215 /* The basic idea is that each pass through this loop will use the
3216 "constant" information from the previous pass to propagate alias
3217 information through another level of assignments.
3219 The propagation is done on the CFG in reverse post-order, to propagate
3220 things forward as far as possible in each iteration.
3222 This could get expensive if the assignment chains are long. Maybe
3223 we should throttle the number of iterations, possibly based on
3224 the optimization level or flag_expensive_optimizations.
3226 We could propagate more information in the first pass by making use
3227 of DF_REG_DEF_COUNT to determine immediately that the alias information
3228 for a pseudo is "constant".
3230 A program with an uninitialized variable can cause an infinite loop
3231 here. Instead of doing a full dataflow analysis to detect such problems
3232 we just cap the number of iterations for the loop.
3234 The state of the arrays for the set chain in question does not matter
3235 since the program has undefined behavior. */
3237 rpo
= XNEWVEC (int, n_basic_blocks_for_fn (cfun
));
3238 rpo_cnt
= pre_and_rev_post_order_compute (NULL
, rpo
, false);
3240 /* The prologue/epilogue insns are not threaded onto the
3241 insn chain until after reload has completed. Thus,
3242 there is no sense wasting time checking if INSN is in
3243 the prologue/epilogue until after reload has completed. */
3244 bool could_be_prologue_epilogue
= ((targetm
.have_prologue ()
3245 || targetm
.have_epilogue ())
3246 && reload_completed
);
3251 /* Assume nothing will change this iteration of the loop. */
3254 /* We want to assign the same IDs each iteration of this loop, so
3255 start counting from one each iteration of the loop. */
3258 /* We're at the start of the function each iteration through the
3259 loop, so we're copying arguments. */
3260 copying_arguments
= true;
3262 /* Wipe the potential alias information clean for this pass. */
3263 memset (new_reg_base_value
, 0, maxreg
* sizeof (rtx
));
3265 /* Wipe the reg_seen array clean. */
3266 bitmap_clear (reg_seen
);
3268 /* Initialize the alias information for this pass. */
3269 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
3270 if (static_reg_base_value
[i
])
3272 new_reg_base_value
[i
] = static_reg_base_value
[i
];
3273 bitmap_set_bit (reg_seen
, i
);
3276 /* Walk the insns adding values to the new_reg_base_value array. */
3277 for (i
= 0; i
< rpo_cnt
; i
++)
3279 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, rpo
[i
]);
3280 FOR_BB_INSNS (bb
, insn
)
3282 if (NONDEBUG_INSN_P (insn
))
3286 if (could_be_prologue_epilogue
3287 && prologue_epilogue_contains (insn
))
3290 /* If this insn has a noalias note, process it, Otherwise,
3291 scan for sets. A simple set will have no side effects
3292 which could change the base value of any other register. */
3294 if (GET_CODE (PATTERN (insn
)) == SET
3295 && REG_NOTES (insn
) != 0
3296 && find_reg_note (insn
, REG_NOALIAS
, NULL_RTX
))
3297 record_set (SET_DEST (PATTERN (insn
)), NULL_RTX
, NULL
);
3299 note_stores (PATTERN (insn
), record_set
, NULL
);
3301 set
= single_set (insn
);
3304 && REG_P (SET_DEST (set
))
3305 && REGNO (SET_DEST (set
)) >= FIRST_PSEUDO_REGISTER
)
3307 unsigned int regno
= REGNO (SET_DEST (set
));
3308 rtx src
= SET_SRC (set
);
3311 note
= find_reg_equal_equiv_note (insn
);
3312 if (note
&& REG_NOTE_KIND (note
) == REG_EQUAL
3313 && DF_REG_DEF_COUNT (regno
) != 1)
3316 if (note
!= NULL_RTX
3317 && GET_CODE (XEXP (note
, 0)) != EXPR_LIST
3318 && ! rtx_varies_p (XEXP (note
, 0), 1)
3319 && ! reg_overlap_mentioned_p (SET_DEST (set
),
3322 set_reg_known_value (regno
, XEXP (note
, 0));
3323 set_reg_known_equiv_p (regno
,
3324 REG_NOTE_KIND (note
) == REG_EQUIV
);
3326 else if (DF_REG_DEF_COUNT (regno
) == 1
3327 && GET_CODE (src
) == PLUS
3328 && REG_P (XEXP (src
, 0))
3329 && (t
= get_reg_known_value (REGNO (XEXP (src
, 0))))
3330 && CONST_INT_P (XEXP (src
, 1)))
3332 t
= plus_constant (GET_MODE (src
), t
,
3333 INTVAL (XEXP (src
, 1)));
3334 set_reg_known_value (regno
, t
);
3335 set_reg_known_equiv_p (regno
, false);
3337 else if (DF_REG_DEF_COUNT (regno
) == 1
3338 && ! rtx_varies_p (src
, 1))
3340 set_reg_known_value (regno
, src
);
3341 set_reg_known_equiv_p (regno
, false);
3345 else if (NOTE_P (insn
)
3346 && NOTE_KIND (insn
) == NOTE_INSN_FUNCTION_BEG
)
3347 copying_arguments
= false;
3351 /* Now propagate values from new_reg_base_value to reg_base_value. */
3352 gcc_assert (maxreg
== (unsigned int) max_reg_num ());
3354 for (ui
= 0; ui
< maxreg
; ui
++)
3356 if (new_reg_base_value
[ui
]
3357 && new_reg_base_value
[ui
] != (*reg_base_value
)[ui
]
3358 && ! rtx_equal_p (new_reg_base_value
[ui
], (*reg_base_value
)[ui
]))
3360 (*reg_base_value
)[ui
] = new_reg_base_value
[ui
];
3365 while (changed
&& ++pass
< MAX_ALIAS_LOOP_PASSES
);
3368 /* Fill in the remaining entries. */
3369 FOR_EACH_VEC_ELT (*reg_known_value
, i
, val
)
3371 int regno
= i
+ FIRST_PSEUDO_REGISTER
;
3373 set_reg_known_value (regno
, regno_reg_rtx
[regno
]);
3377 free (new_reg_base_value
);
3378 new_reg_base_value
= 0;
3379 sbitmap_free (reg_seen
);
3381 timevar_pop (TV_ALIAS_ANALYSIS
);
3384 /* Equate REG_BASE_VALUE (reg1) to REG_BASE_VALUE (reg2).
3385 Special API for var-tracking pass purposes. */
3388 vt_equate_reg_base_value (const_rtx reg1
, const_rtx reg2
)
3390 (*reg_base_value
)[REGNO (reg1
)] = REG_BASE_VALUE (reg2
);
3394 end_alias_analysis (void)
3396 old_reg_base_value
= reg_base_value
;
3397 vec_free (reg_known_value
);
3398 sbitmap_free (reg_known_equiv_p
);
3402 dump_alias_stats_in_alias_c (FILE *s
)
3404 fprintf (s
, " TBAA oracle: %llu disambiguations %llu queries\n"
3405 " %llu are in alias set 0\n"
3406 " %llu queries asked about the same object\n"
3407 " %llu queries asked about the same alias set\n"
3408 " %llu access volatile\n"
3409 " %llu are dependent in the DAG\n"
3410 " %llu are aritificially in conflict with void *\n",
3411 alias_stats
.num_disambiguated
,
3412 alias_stats
.num_alias_zero
+ alias_stats
.num_same_alias_set
3413 + alias_stats
.num_same_objects
+ alias_stats
.num_volatile
3414 + alias_stats
.num_dag
+ alias_stats
.num_disambiguated
3415 + alias_stats
.num_universal
,
3416 alias_stats
.num_alias_zero
, alias_stats
.num_same_alias_set
,
3417 alias_stats
.num_same_objects
, alias_stats
.num_volatile
,
3418 alias_stats
.num_dag
, alias_stats
.num_universal
);
3420 #include "gt-alias.h"