libgo: Irix portability fixes (no declaration for getaddrinfo).
[official-gcc.git] / gcc / tree-vrp.c
blob2d3a6fcad703f2a22039d63145c9d32a690fe5fb
1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "ggc.h"
27 #include "flags.h"
28 #include "tree.h"
29 #include "basic-block.h"
30 #include "tree-flow.h"
31 #include "tree-pass.h"
32 #include "tree-dump.h"
33 #include "timevar.h"
34 #include "tree-pretty-print.h"
35 #include "gimple-pretty-print.h"
36 #include "diagnostic-core.h"
37 #include "intl.h"
38 #include "cfgloop.h"
39 #include "tree-scalar-evolution.h"
40 #include "tree-ssa-propagate.h"
41 #include "tree-chrec.h"
42 #include "gimple-fold.h"
45 /* Type of value ranges. See value_range_d for a description of these
46 types. */
47 enum value_range_type { VR_UNDEFINED, VR_RANGE, VR_ANTI_RANGE, VR_VARYING };
49 /* Range of values that can be associated with an SSA_NAME after VRP
50 has executed. */
51 struct value_range_d
53 /* Lattice value represented by this range. */
54 enum value_range_type type;
56 /* Minimum and maximum values represented by this range. These
57 values should be interpreted as follows:
59 - If TYPE is VR_UNDEFINED or VR_VARYING then MIN and MAX must
60 be NULL.
62 - If TYPE == VR_RANGE then MIN holds the minimum value and
63 MAX holds the maximum value of the range [MIN, MAX].
65 - If TYPE == ANTI_RANGE the variable is known to NOT
66 take any values in the range [MIN, MAX]. */
67 tree min;
68 tree max;
70 /* Set of SSA names whose value ranges are equivalent to this one.
71 This set is only valid when TYPE is VR_RANGE or VR_ANTI_RANGE. */
72 bitmap equiv;
75 typedef struct value_range_d value_range_t;
77 /* Set of SSA names found live during the RPO traversal of the function
78 for still active basic-blocks. */
79 static sbitmap *live;
81 /* Return true if the SSA name NAME is live on the edge E. */
83 static bool
84 live_on_edge (edge e, tree name)
86 return (live[e->dest->index]
87 && TEST_BIT (live[e->dest->index], SSA_NAME_VERSION (name)));
90 /* Local functions. */
91 static int compare_values (tree val1, tree val2);
92 static int compare_values_warnv (tree val1, tree val2, bool *);
93 static void vrp_meet (value_range_t *, value_range_t *);
94 static tree vrp_evaluate_conditional_warnv_with_ops (enum tree_code,
95 tree, tree, bool, bool *,
96 bool *);
98 /* Location information for ASSERT_EXPRs. Each instance of this
99 structure describes an ASSERT_EXPR for an SSA name. Since a single
100 SSA name may have more than one assertion associated with it, these
101 locations are kept in a linked list attached to the corresponding
102 SSA name. */
103 struct assert_locus_d
105 /* Basic block where the assertion would be inserted. */
106 basic_block bb;
108 /* Some assertions need to be inserted on an edge (e.g., assertions
109 generated by COND_EXPRs). In those cases, BB will be NULL. */
110 edge e;
112 /* Pointer to the statement that generated this assertion. */
113 gimple_stmt_iterator si;
115 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
116 enum tree_code comp_code;
118 /* Value being compared against. */
119 tree val;
121 /* Expression to compare. */
122 tree expr;
124 /* Next node in the linked list. */
125 struct assert_locus_d *next;
128 typedef struct assert_locus_d *assert_locus_t;
130 /* If bit I is present, it means that SSA name N_i has a list of
131 assertions that should be inserted in the IL. */
132 static bitmap need_assert_for;
134 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
135 holds a list of ASSERT_LOCUS_T nodes that describe where
136 ASSERT_EXPRs for SSA name N_I should be inserted. */
137 static assert_locus_t *asserts_for;
139 /* Value range array. After propagation, VR_VALUE[I] holds the range
140 of values that SSA name N_I may take. */
141 static value_range_t **vr_value;
143 /* For a PHI node which sets SSA name N_I, VR_COUNTS[I] holds the
144 number of executable edges we saw the last time we visited the
145 node. */
146 static int *vr_phi_edge_counts;
148 typedef struct {
149 gimple stmt;
150 tree vec;
151 } switch_update;
153 static VEC (edge, heap) *to_remove_edges;
154 DEF_VEC_O(switch_update);
155 DEF_VEC_ALLOC_O(switch_update, heap);
156 static VEC (switch_update, heap) *to_update_switch_stmts;
159 /* Return the maximum value for TYPE. */
161 static inline tree
162 vrp_val_max (const_tree type)
164 if (!INTEGRAL_TYPE_P (type))
165 return NULL_TREE;
167 return TYPE_MAX_VALUE (type);
170 /* Return the minimum value for TYPE. */
172 static inline tree
173 vrp_val_min (const_tree type)
175 if (!INTEGRAL_TYPE_P (type))
176 return NULL_TREE;
178 return TYPE_MIN_VALUE (type);
181 /* Return whether VAL is equal to the maximum value of its type. This
182 will be true for a positive overflow infinity. We can't do a
183 simple equality comparison with TYPE_MAX_VALUE because C typedefs
184 and Ada subtypes can produce types whose TYPE_MAX_VALUE is not ==
185 to the integer constant with the same value in the type. */
187 static inline bool
188 vrp_val_is_max (const_tree val)
190 tree type_max = vrp_val_max (TREE_TYPE (val));
191 return (val == type_max
192 || (type_max != NULL_TREE
193 && operand_equal_p (val, type_max, 0)));
196 /* Return whether VAL is equal to the minimum value of its type. This
197 will be true for a negative overflow infinity. */
199 static inline bool
200 vrp_val_is_min (const_tree val)
202 tree type_min = vrp_val_min (TREE_TYPE (val));
203 return (val == type_min
204 || (type_min != NULL_TREE
205 && operand_equal_p (val, type_min, 0)));
209 /* Return whether TYPE should use an overflow infinity distinct from
210 TYPE_{MIN,MAX}_VALUE. We use an overflow infinity value to
211 represent a signed overflow during VRP computations. An infinity
212 is distinct from a half-range, which will go from some number to
213 TYPE_{MIN,MAX}_VALUE. */
215 static inline bool
216 needs_overflow_infinity (const_tree type)
218 return INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type);
221 /* Return whether TYPE can support our overflow infinity
222 representation: we use the TREE_OVERFLOW flag, which only exists
223 for constants. If TYPE doesn't support this, we don't optimize
224 cases which would require signed overflow--we drop them to
225 VARYING. */
227 static inline bool
228 supports_overflow_infinity (const_tree type)
230 tree min = vrp_val_min (type), max = vrp_val_max (type);
231 #ifdef ENABLE_CHECKING
232 gcc_assert (needs_overflow_infinity (type));
233 #endif
234 return (min != NULL_TREE
235 && CONSTANT_CLASS_P (min)
236 && max != NULL_TREE
237 && CONSTANT_CLASS_P (max));
240 /* VAL is the maximum or minimum value of a type. Return a
241 corresponding overflow infinity. */
243 static inline tree
244 make_overflow_infinity (tree val)
246 gcc_checking_assert (val != NULL_TREE && CONSTANT_CLASS_P (val));
247 val = copy_node (val);
248 TREE_OVERFLOW (val) = 1;
249 return val;
252 /* Return a negative overflow infinity for TYPE. */
254 static inline tree
255 negative_overflow_infinity (tree type)
257 gcc_checking_assert (supports_overflow_infinity (type));
258 return make_overflow_infinity (vrp_val_min (type));
261 /* Return a positive overflow infinity for TYPE. */
263 static inline tree
264 positive_overflow_infinity (tree type)
266 gcc_checking_assert (supports_overflow_infinity (type));
267 return make_overflow_infinity (vrp_val_max (type));
270 /* Return whether VAL is a negative overflow infinity. */
272 static inline bool
273 is_negative_overflow_infinity (const_tree val)
275 return (needs_overflow_infinity (TREE_TYPE (val))
276 && CONSTANT_CLASS_P (val)
277 && TREE_OVERFLOW (val)
278 && vrp_val_is_min (val));
281 /* Return whether VAL is a positive overflow infinity. */
283 static inline bool
284 is_positive_overflow_infinity (const_tree val)
286 return (needs_overflow_infinity (TREE_TYPE (val))
287 && CONSTANT_CLASS_P (val)
288 && TREE_OVERFLOW (val)
289 && vrp_val_is_max (val));
292 /* Return whether VAL is a positive or negative overflow infinity. */
294 static inline bool
295 is_overflow_infinity (const_tree val)
297 return (needs_overflow_infinity (TREE_TYPE (val))
298 && CONSTANT_CLASS_P (val)
299 && TREE_OVERFLOW (val)
300 && (vrp_val_is_min (val) || vrp_val_is_max (val)));
303 /* Return whether STMT has a constant rhs that is_overflow_infinity. */
305 static inline bool
306 stmt_overflow_infinity (gimple stmt)
308 if (is_gimple_assign (stmt)
309 && get_gimple_rhs_class (gimple_assign_rhs_code (stmt)) ==
310 GIMPLE_SINGLE_RHS)
311 return is_overflow_infinity (gimple_assign_rhs1 (stmt));
312 return false;
315 /* If VAL is now an overflow infinity, return VAL. Otherwise, return
316 the same value with TREE_OVERFLOW clear. This can be used to avoid
317 confusing a regular value with an overflow value. */
319 static inline tree
320 avoid_overflow_infinity (tree val)
322 if (!is_overflow_infinity (val))
323 return val;
325 if (vrp_val_is_max (val))
326 return vrp_val_max (TREE_TYPE (val));
327 else
329 gcc_checking_assert (vrp_val_is_min (val));
330 return vrp_val_min (TREE_TYPE (val));
335 /* Return true if ARG is marked with the nonnull attribute in the
336 current function signature. */
338 static bool
339 nonnull_arg_p (const_tree arg)
341 tree t, attrs, fntype;
342 unsigned HOST_WIDE_INT arg_num;
344 gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
346 /* The static chain decl is always non null. */
347 if (arg == cfun->static_chain_decl)
348 return true;
350 fntype = TREE_TYPE (current_function_decl);
351 attrs = lookup_attribute ("nonnull", TYPE_ATTRIBUTES (fntype));
353 /* If "nonnull" wasn't specified, we know nothing about the argument. */
354 if (attrs == NULL_TREE)
355 return false;
357 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
358 if (TREE_VALUE (attrs) == NULL_TREE)
359 return true;
361 /* Get the position number for ARG in the function signature. */
362 for (arg_num = 1, t = DECL_ARGUMENTS (current_function_decl);
364 t = DECL_CHAIN (t), arg_num++)
366 if (t == arg)
367 break;
370 gcc_assert (t == arg);
372 /* Now see if ARG_NUM is mentioned in the nonnull list. */
373 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
375 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
376 return true;
379 return false;
383 /* Set value range VR to VR_VARYING. */
385 static inline void
386 set_value_range_to_varying (value_range_t *vr)
388 vr->type = VR_VARYING;
389 vr->min = vr->max = NULL_TREE;
390 if (vr->equiv)
391 bitmap_clear (vr->equiv);
395 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
397 static void
398 set_value_range (value_range_t *vr, enum value_range_type t, tree min,
399 tree max, bitmap equiv)
401 #if defined ENABLE_CHECKING
402 /* Check the validity of the range. */
403 if (t == VR_RANGE || t == VR_ANTI_RANGE)
405 int cmp;
407 gcc_assert (min && max);
409 if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
410 gcc_assert (!vrp_val_is_min (min) || !vrp_val_is_max (max));
412 cmp = compare_values (min, max);
413 gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
415 if (needs_overflow_infinity (TREE_TYPE (min)))
416 gcc_assert (!is_overflow_infinity (min)
417 || !is_overflow_infinity (max));
420 if (t == VR_UNDEFINED || t == VR_VARYING)
421 gcc_assert (min == NULL_TREE && max == NULL_TREE);
423 if (t == VR_UNDEFINED || t == VR_VARYING)
424 gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
425 #endif
427 vr->type = t;
428 vr->min = min;
429 vr->max = max;
431 /* Since updating the equivalence set involves deep copying the
432 bitmaps, only do it if absolutely necessary. */
433 if (vr->equiv == NULL
434 && equiv != NULL)
435 vr->equiv = BITMAP_ALLOC (NULL);
437 if (equiv != vr->equiv)
439 if (equiv && !bitmap_empty_p (equiv))
440 bitmap_copy (vr->equiv, equiv);
441 else
442 bitmap_clear (vr->equiv);
447 /* Set value range VR to the canonical form of {T, MIN, MAX, EQUIV}.
448 This means adjusting T, MIN and MAX representing the case of a
449 wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
450 as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges.
451 In corner cases where MAX+1 or MIN-1 wraps this will fall back
452 to varying.
453 This routine exists to ease canonicalization in the case where we
454 extract ranges from var + CST op limit. */
456 static void
457 set_and_canonicalize_value_range (value_range_t *vr, enum value_range_type t,
458 tree min, tree max, bitmap equiv)
460 /* Nothing to canonicalize for symbolic or unknown or varying ranges. */
461 if ((t != VR_RANGE
462 && t != VR_ANTI_RANGE)
463 || TREE_CODE (min) != INTEGER_CST
464 || TREE_CODE (max) != INTEGER_CST)
466 set_value_range (vr, t, min, max, equiv);
467 return;
470 /* Wrong order for min and max, to swap them and the VR type we need
471 to adjust them. */
472 if (tree_int_cst_lt (max, min))
474 tree one = build_int_cst (TREE_TYPE (min), 1);
475 tree tmp = int_const_binop (PLUS_EXPR, max, one);
476 max = int_const_binop (MINUS_EXPR, min, one);
477 min = tmp;
479 /* There's one corner case, if we had [C+1, C] before we now have
480 that again. But this represents an empty value range, so drop
481 to varying in this case. */
482 if (tree_int_cst_lt (max, min))
484 set_value_range_to_varying (vr);
485 return;
488 t = t == VR_RANGE ? VR_ANTI_RANGE : VR_RANGE;
491 /* Anti-ranges that can be represented as ranges should be so. */
492 if (t == VR_ANTI_RANGE)
494 bool is_min = vrp_val_is_min (min);
495 bool is_max = vrp_val_is_max (max);
497 if (is_min && is_max)
499 /* We cannot deal with empty ranges, drop to varying. */
500 set_value_range_to_varying (vr);
501 return;
503 else if (is_min
504 /* As a special exception preserve non-null ranges. */
505 && !(TYPE_UNSIGNED (TREE_TYPE (min))
506 && integer_zerop (max)))
508 tree one = build_int_cst (TREE_TYPE (max), 1);
509 min = int_const_binop (PLUS_EXPR, max, one);
510 max = vrp_val_max (TREE_TYPE (max));
511 t = VR_RANGE;
513 else if (is_max)
515 tree one = build_int_cst (TREE_TYPE (min), 1);
516 max = int_const_binop (MINUS_EXPR, min, one);
517 min = vrp_val_min (TREE_TYPE (min));
518 t = VR_RANGE;
522 set_value_range (vr, t, min, max, equiv);
525 /* Copy value range FROM into value range TO. */
527 static inline void
528 copy_value_range (value_range_t *to, value_range_t *from)
530 set_value_range (to, from->type, from->min, from->max, from->equiv);
533 /* Set value range VR to a single value. This function is only called
534 with values we get from statements, and exists to clear the
535 TREE_OVERFLOW flag so that we don't think we have an overflow
536 infinity when we shouldn't. */
538 static inline void
539 set_value_range_to_value (value_range_t *vr, tree val, bitmap equiv)
541 gcc_assert (is_gimple_min_invariant (val));
542 val = avoid_overflow_infinity (val);
543 set_value_range (vr, VR_RANGE, val, val, equiv);
546 /* Set value range VR to a non-negative range of type TYPE.
547 OVERFLOW_INFINITY indicates whether to use an overflow infinity
548 rather than TYPE_MAX_VALUE; this should be true if we determine
549 that the range is nonnegative based on the assumption that signed
550 overflow does not occur. */
552 static inline void
553 set_value_range_to_nonnegative (value_range_t *vr, tree type,
554 bool overflow_infinity)
556 tree zero;
558 if (overflow_infinity && !supports_overflow_infinity (type))
560 set_value_range_to_varying (vr);
561 return;
564 zero = build_int_cst (type, 0);
565 set_value_range (vr, VR_RANGE, zero,
566 (overflow_infinity
567 ? positive_overflow_infinity (type)
568 : TYPE_MAX_VALUE (type)),
569 vr->equiv);
572 /* Set value range VR to a non-NULL range of type TYPE. */
574 static inline void
575 set_value_range_to_nonnull (value_range_t *vr, tree type)
577 tree zero = build_int_cst (type, 0);
578 set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
582 /* Set value range VR to a NULL range of type TYPE. */
584 static inline void
585 set_value_range_to_null (value_range_t *vr, tree type)
587 set_value_range_to_value (vr, build_int_cst (type, 0), vr->equiv);
591 /* Set value range VR to a range of a truthvalue of type TYPE. */
593 static inline void
594 set_value_range_to_truthvalue (value_range_t *vr, tree type)
596 if (TYPE_PRECISION (type) == 1)
597 set_value_range_to_varying (vr);
598 else
599 set_value_range (vr, VR_RANGE,
600 build_int_cst (type, 0), build_int_cst (type, 1),
601 vr->equiv);
605 /* Set value range VR to VR_UNDEFINED. */
607 static inline void
608 set_value_range_to_undefined (value_range_t *vr)
610 vr->type = VR_UNDEFINED;
611 vr->min = vr->max = NULL_TREE;
612 if (vr->equiv)
613 bitmap_clear (vr->equiv);
617 /* If abs (min) < abs (max), set VR to [-max, max], if
618 abs (min) >= abs (max), set VR to [-min, min]. */
620 static void
621 abs_extent_range (value_range_t *vr, tree min, tree max)
623 int cmp;
625 gcc_assert (TREE_CODE (min) == INTEGER_CST);
626 gcc_assert (TREE_CODE (max) == INTEGER_CST);
627 gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (min)));
628 gcc_assert (!TYPE_UNSIGNED (TREE_TYPE (min)));
629 min = fold_unary (ABS_EXPR, TREE_TYPE (min), min);
630 max = fold_unary (ABS_EXPR, TREE_TYPE (max), max);
631 if (TREE_OVERFLOW (min) || TREE_OVERFLOW (max))
633 set_value_range_to_varying (vr);
634 return;
636 cmp = compare_values (min, max);
637 if (cmp == -1)
638 min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), max);
639 else if (cmp == 0 || cmp == 1)
641 max = min;
642 min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), min);
644 else
646 set_value_range_to_varying (vr);
647 return;
649 set_and_canonicalize_value_range (vr, VR_RANGE, min, max, NULL);
653 /* Return value range information for VAR.
655 If we have no values ranges recorded (ie, VRP is not running), then
656 return NULL. Otherwise create an empty range if none existed for VAR. */
658 static value_range_t *
659 get_value_range (const_tree var)
661 value_range_t *vr;
662 tree sym;
663 unsigned ver = SSA_NAME_VERSION (var);
665 /* If we have no recorded ranges, then return NULL. */
666 if (! vr_value)
667 return NULL;
669 vr = vr_value[ver];
670 if (vr)
671 return vr;
673 /* Create a default value range. */
674 vr_value[ver] = vr = XCNEW (value_range_t);
676 /* Defer allocating the equivalence set. */
677 vr->equiv = NULL;
679 /* If VAR is a default definition, the variable can take any value
680 in VAR's type. */
681 sym = SSA_NAME_VAR (var);
682 if (SSA_NAME_IS_DEFAULT_DEF (var))
684 /* Try to use the "nonnull" attribute to create ~[0, 0]
685 anti-ranges for pointers. Note that this is only valid with
686 default definitions of PARM_DECLs. */
687 if (TREE_CODE (sym) == PARM_DECL
688 && POINTER_TYPE_P (TREE_TYPE (sym))
689 && nonnull_arg_p (sym))
690 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
691 else
692 set_value_range_to_varying (vr);
695 return vr;
698 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
700 static inline bool
701 vrp_operand_equal_p (const_tree val1, const_tree val2)
703 if (val1 == val2)
704 return true;
705 if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
706 return false;
707 if (is_overflow_infinity (val1))
708 return is_overflow_infinity (val2);
709 return true;
712 /* Return true, if the bitmaps B1 and B2 are equal. */
714 static inline bool
715 vrp_bitmap_equal_p (const_bitmap b1, const_bitmap b2)
717 return (b1 == b2
718 || ((!b1 || bitmap_empty_p (b1))
719 && (!b2 || bitmap_empty_p (b2)))
720 || (b1 && b2
721 && bitmap_equal_p (b1, b2)));
724 /* Update the value range and equivalence set for variable VAR to
725 NEW_VR. Return true if NEW_VR is different from VAR's previous
726 value.
728 NOTE: This function assumes that NEW_VR is a temporary value range
729 object created for the sole purpose of updating VAR's range. The
730 storage used by the equivalence set from NEW_VR will be freed by
731 this function. Do not call update_value_range when NEW_VR
732 is the range object associated with another SSA name. */
734 static inline bool
735 update_value_range (const_tree var, value_range_t *new_vr)
737 value_range_t *old_vr;
738 bool is_new;
740 /* Update the value range, if necessary. */
741 old_vr = get_value_range (var);
742 is_new = old_vr->type != new_vr->type
743 || !vrp_operand_equal_p (old_vr->min, new_vr->min)
744 || !vrp_operand_equal_p (old_vr->max, new_vr->max)
745 || !vrp_bitmap_equal_p (old_vr->equiv, new_vr->equiv);
747 if (is_new)
748 set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
749 new_vr->equiv);
751 BITMAP_FREE (new_vr->equiv);
753 return is_new;
757 /* Add VAR and VAR's equivalence set to EQUIV. This is the central
758 point where equivalence processing can be turned on/off. */
760 static void
761 add_equivalence (bitmap *equiv, const_tree var)
763 unsigned ver = SSA_NAME_VERSION (var);
764 value_range_t *vr = vr_value[ver];
766 if (*equiv == NULL)
767 *equiv = BITMAP_ALLOC (NULL);
768 bitmap_set_bit (*equiv, ver);
769 if (vr && vr->equiv)
770 bitmap_ior_into (*equiv, vr->equiv);
774 /* Return true if VR is ~[0, 0]. */
776 static inline bool
777 range_is_nonnull (value_range_t *vr)
779 return vr->type == VR_ANTI_RANGE
780 && integer_zerop (vr->min)
781 && integer_zerop (vr->max);
785 /* Return true if VR is [0, 0]. */
787 static inline bool
788 range_is_null (value_range_t *vr)
790 return vr->type == VR_RANGE
791 && integer_zerop (vr->min)
792 && integer_zerop (vr->max);
795 /* Return true if max and min of VR are INTEGER_CST. It's not necessary
796 a singleton. */
798 static inline bool
799 range_int_cst_p (value_range_t *vr)
801 return (vr->type == VR_RANGE
802 && TREE_CODE (vr->max) == INTEGER_CST
803 && TREE_CODE (vr->min) == INTEGER_CST
804 && !TREE_OVERFLOW (vr->max)
805 && !TREE_OVERFLOW (vr->min));
808 /* Return true if VR is a INTEGER_CST singleton. */
810 static inline bool
811 range_int_cst_singleton_p (value_range_t *vr)
813 return (range_int_cst_p (vr)
814 && tree_int_cst_equal (vr->min, vr->max));
817 /* Return true if value range VR involves at least one symbol. */
819 static inline bool
820 symbolic_range_p (value_range_t *vr)
822 return (!is_gimple_min_invariant (vr->min)
823 || !is_gimple_min_invariant (vr->max));
826 /* Return true if value range VR uses an overflow infinity. */
828 static inline bool
829 overflow_infinity_range_p (value_range_t *vr)
831 return (vr->type == VR_RANGE
832 && (is_overflow_infinity (vr->min)
833 || is_overflow_infinity (vr->max)));
836 /* Return false if we can not make a valid comparison based on VR;
837 this will be the case if it uses an overflow infinity and overflow
838 is not undefined (i.e., -fno-strict-overflow is in effect).
839 Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
840 uses an overflow infinity. */
842 static bool
843 usable_range_p (value_range_t *vr, bool *strict_overflow_p)
845 gcc_assert (vr->type == VR_RANGE);
846 if (is_overflow_infinity (vr->min))
848 *strict_overflow_p = true;
849 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->min)))
850 return false;
852 if (is_overflow_infinity (vr->max))
854 *strict_overflow_p = true;
855 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->max)))
856 return false;
858 return true;
862 /* Like tree_expr_nonnegative_warnv_p, but this function uses value
863 ranges obtained so far. */
865 static bool
866 vrp_expr_computes_nonnegative (tree expr, bool *strict_overflow_p)
868 return (tree_expr_nonnegative_warnv_p (expr, strict_overflow_p)
869 || (TREE_CODE (expr) == SSA_NAME
870 && ssa_name_nonnegative_p (expr)));
873 /* Return true if the result of assignment STMT is know to be non-negative.
874 If the return value is based on the assumption that signed overflow is
875 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
876 *STRICT_OVERFLOW_P.*/
878 static bool
879 gimple_assign_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
881 enum tree_code code = gimple_assign_rhs_code (stmt);
882 switch (get_gimple_rhs_class (code))
884 case GIMPLE_UNARY_RHS:
885 return tree_unary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
886 gimple_expr_type (stmt),
887 gimple_assign_rhs1 (stmt),
888 strict_overflow_p);
889 case GIMPLE_BINARY_RHS:
890 return tree_binary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
891 gimple_expr_type (stmt),
892 gimple_assign_rhs1 (stmt),
893 gimple_assign_rhs2 (stmt),
894 strict_overflow_p);
895 case GIMPLE_TERNARY_RHS:
896 return false;
897 case GIMPLE_SINGLE_RHS:
898 return tree_single_nonnegative_warnv_p (gimple_assign_rhs1 (stmt),
899 strict_overflow_p);
900 case GIMPLE_INVALID_RHS:
901 gcc_unreachable ();
902 default:
903 gcc_unreachable ();
907 /* Return true if return value of call STMT is know to be non-negative.
908 If the return value is based on the assumption that signed overflow is
909 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
910 *STRICT_OVERFLOW_P.*/
912 static bool
913 gimple_call_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
915 tree arg0 = gimple_call_num_args (stmt) > 0 ?
916 gimple_call_arg (stmt, 0) : NULL_TREE;
917 tree arg1 = gimple_call_num_args (stmt) > 1 ?
918 gimple_call_arg (stmt, 1) : NULL_TREE;
920 return tree_call_nonnegative_warnv_p (gimple_expr_type (stmt),
921 gimple_call_fndecl (stmt),
922 arg0,
923 arg1,
924 strict_overflow_p);
927 /* Return true if STMT is know to to compute a non-negative value.
928 If the return value is based on the assumption that signed overflow is
929 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
930 *STRICT_OVERFLOW_P.*/
932 static bool
933 gimple_stmt_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
935 switch (gimple_code (stmt))
937 case GIMPLE_ASSIGN:
938 return gimple_assign_nonnegative_warnv_p (stmt, strict_overflow_p);
939 case GIMPLE_CALL:
940 return gimple_call_nonnegative_warnv_p (stmt, strict_overflow_p);
941 default:
942 gcc_unreachable ();
946 /* Return true if the result of assignment STMT is know to be non-zero.
947 If the return value is based on the assumption that signed overflow is
948 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
949 *STRICT_OVERFLOW_P.*/
951 static bool
952 gimple_assign_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
954 enum tree_code code = gimple_assign_rhs_code (stmt);
955 switch (get_gimple_rhs_class (code))
957 case GIMPLE_UNARY_RHS:
958 return tree_unary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
959 gimple_expr_type (stmt),
960 gimple_assign_rhs1 (stmt),
961 strict_overflow_p);
962 case GIMPLE_BINARY_RHS:
963 return tree_binary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
964 gimple_expr_type (stmt),
965 gimple_assign_rhs1 (stmt),
966 gimple_assign_rhs2 (stmt),
967 strict_overflow_p);
968 case GIMPLE_TERNARY_RHS:
969 return false;
970 case GIMPLE_SINGLE_RHS:
971 return tree_single_nonzero_warnv_p (gimple_assign_rhs1 (stmt),
972 strict_overflow_p);
973 case GIMPLE_INVALID_RHS:
974 gcc_unreachable ();
975 default:
976 gcc_unreachable ();
980 /* Return true if STMT is know to to compute a non-zero value.
981 If the return value is based on the assumption that signed overflow is
982 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
983 *STRICT_OVERFLOW_P.*/
985 static bool
986 gimple_stmt_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
988 switch (gimple_code (stmt))
990 case GIMPLE_ASSIGN:
991 return gimple_assign_nonzero_warnv_p (stmt, strict_overflow_p);
992 case GIMPLE_CALL:
993 return gimple_alloca_call_p (stmt);
994 default:
995 gcc_unreachable ();
999 /* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
1000 obtained so far. */
1002 static bool
1003 vrp_stmt_computes_nonzero (gimple stmt, bool *strict_overflow_p)
1005 if (gimple_stmt_nonzero_warnv_p (stmt, strict_overflow_p))
1006 return true;
1008 /* If we have an expression of the form &X->a, then the expression
1009 is nonnull if X is nonnull. */
1010 if (is_gimple_assign (stmt)
1011 && gimple_assign_rhs_code (stmt) == ADDR_EXPR)
1013 tree expr = gimple_assign_rhs1 (stmt);
1014 tree base = get_base_address (TREE_OPERAND (expr, 0));
1016 if (base != NULL_TREE
1017 && TREE_CODE (base) == MEM_REF
1018 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
1020 value_range_t *vr = get_value_range (TREE_OPERAND (base, 0));
1021 if (range_is_nonnull (vr))
1022 return true;
1026 return false;
1029 /* Returns true if EXPR is a valid value (as expected by compare_values) --
1030 a gimple invariant, or SSA_NAME +- CST. */
1032 static bool
1033 valid_value_p (tree expr)
1035 if (TREE_CODE (expr) == SSA_NAME)
1036 return true;
1038 if (TREE_CODE (expr) == PLUS_EXPR
1039 || TREE_CODE (expr) == MINUS_EXPR)
1040 return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
1041 && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
1043 return is_gimple_min_invariant (expr);
1046 /* Return
1047 1 if VAL < VAL2
1048 0 if !(VAL < VAL2)
1049 -2 if those are incomparable. */
1050 static inline int
1051 operand_less_p (tree val, tree val2)
1053 /* LT is folded faster than GE and others. Inline the common case. */
1054 if (TREE_CODE (val) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST)
1056 if (TYPE_UNSIGNED (TREE_TYPE (val)))
1057 return INT_CST_LT_UNSIGNED (val, val2);
1058 else
1060 if (INT_CST_LT (val, val2))
1061 return 1;
1064 else
1066 tree tcmp;
1068 fold_defer_overflow_warnings ();
1070 tcmp = fold_binary_to_constant (LT_EXPR, boolean_type_node, val, val2);
1072 fold_undefer_and_ignore_overflow_warnings ();
1074 if (!tcmp
1075 || TREE_CODE (tcmp) != INTEGER_CST)
1076 return -2;
1078 if (!integer_zerop (tcmp))
1079 return 1;
1082 /* val >= val2, not considering overflow infinity. */
1083 if (is_negative_overflow_infinity (val))
1084 return is_negative_overflow_infinity (val2) ? 0 : 1;
1085 else if (is_positive_overflow_infinity (val2))
1086 return is_positive_overflow_infinity (val) ? 0 : 1;
1088 return 0;
1091 /* Compare two values VAL1 and VAL2. Return
1093 -2 if VAL1 and VAL2 cannot be compared at compile-time,
1094 -1 if VAL1 < VAL2,
1095 0 if VAL1 == VAL2,
1096 +1 if VAL1 > VAL2, and
1097 +2 if VAL1 != VAL2
1099 This is similar to tree_int_cst_compare but supports pointer values
1100 and values that cannot be compared at compile time.
1102 If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
1103 true if the return value is only valid if we assume that signed
1104 overflow is undefined. */
1106 static int
1107 compare_values_warnv (tree val1, tree val2, bool *strict_overflow_p)
1109 if (val1 == val2)
1110 return 0;
1112 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
1113 both integers. */
1114 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
1115 == POINTER_TYPE_P (TREE_TYPE (val2)));
1116 /* Convert the two values into the same type. This is needed because
1117 sizetype causes sign extension even for unsigned types. */
1118 val2 = fold_convert (TREE_TYPE (val1), val2);
1119 STRIP_USELESS_TYPE_CONVERSION (val2);
1121 if ((TREE_CODE (val1) == SSA_NAME
1122 || TREE_CODE (val1) == PLUS_EXPR
1123 || TREE_CODE (val1) == MINUS_EXPR)
1124 && (TREE_CODE (val2) == SSA_NAME
1125 || TREE_CODE (val2) == PLUS_EXPR
1126 || TREE_CODE (val2) == MINUS_EXPR))
1128 tree n1, c1, n2, c2;
1129 enum tree_code code1, code2;
1131 /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
1132 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
1133 same name, return -2. */
1134 if (TREE_CODE (val1) == SSA_NAME)
1136 code1 = SSA_NAME;
1137 n1 = val1;
1138 c1 = NULL_TREE;
1140 else
1142 code1 = TREE_CODE (val1);
1143 n1 = TREE_OPERAND (val1, 0);
1144 c1 = TREE_OPERAND (val1, 1);
1145 if (tree_int_cst_sgn (c1) == -1)
1147 if (is_negative_overflow_infinity (c1))
1148 return -2;
1149 c1 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c1), c1);
1150 if (!c1)
1151 return -2;
1152 code1 = code1 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
1156 if (TREE_CODE (val2) == SSA_NAME)
1158 code2 = SSA_NAME;
1159 n2 = val2;
1160 c2 = NULL_TREE;
1162 else
1164 code2 = TREE_CODE (val2);
1165 n2 = TREE_OPERAND (val2, 0);
1166 c2 = TREE_OPERAND (val2, 1);
1167 if (tree_int_cst_sgn (c2) == -1)
1169 if (is_negative_overflow_infinity (c2))
1170 return -2;
1171 c2 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c2), c2);
1172 if (!c2)
1173 return -2;
1174 code2 = code2 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
1178 /* Both values must use the same name. */
1179 if (n1 != n2)
1180 return -2;
1182 if (code1 == SSA_NAME
1183 && code2 == SSA_NAME)
1184 /* NAME == NAME */
1185 return 0;
1187 /* If overflow is defined we cannot simplify more. */
1188 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1)))
1189 return -2;
1191 if (strict_overflow_p != NULL
1192 && (code1 == SSA_NAME || !TREE_NO_WARNING (val1))
1193 && (code2 == SSA_NAME || !TREE_NO_WARNING (val2)))
1194 *strict_overflow_p = true;
1196 if (code1 == SSA_NAME)
1198 if (code2 == PLUS_EXPR)
1199 /* NAME < NAME + CST */
1200 return -1;
1201 else if (code2 == MINUS_EXPR)
1202 /* NAME > NAME - CST */
1203 return 1;
1205 else if (code1 == PLUS_EXPR)
1207 if (code2 == SSA_NAME)
1208 /* NAME + CST > NAME */
1209 return 1;
1210 else if (code2 == PLUS_EXPR)
1211 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
1212 return compare_values_warnv (c1, c2, strict_overflow_p);
1213 else if (code2 == MINUS_EXPR)
1214 /* NAME + CST1 > NAME - CST2 */
1215 return 1;
1217 else if (code1 == MINUS_EXPR)
1219 if (code2 == SSA_NAME)
1220 /* NAME - CST < NAME */
1221 return -1;
1222 else if (code2 == PLUS_EXPR)
1223 /* NAME - CST1 < NAME + CST2 */
1224 return -1;
1225 else if (code2 == MINUS_EXPR)
1226 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
1227 C1 and C2 are swapped in the call to compare_values. */
1228 return compare_values_warnv (c2, c1, strict_overflow_p);
1231 gcc_unreachable ();
1234 /* We cannot compare non-constants. */
1235 if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
1236 return -2;
1238 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
1240 /* We cannot compare overflowed values, except for overflow
1241 infinities. */
1242 if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
1244 if (strict_overflow_p != NULL)
1245 *strict_overflow_p = true;
1246 if (is_negative_overflow_infinity (val1))
1247 return is_negative_overflow_infinity (val2) ? 0 : -1;
1248 else if (is_negative_overflow_infinity (val2))
1249 return 1;
1250 else if (is_positive_overflow_infinity (val1))
1251 return is_positive_overflow_infinity (val2) ? 0 : 1;
1252 else if (is_positive_overflow_infinity (val2))
1253 return -1;
1254 return -2;
1257 return tree_int_cst_compare (val1, val2);
1259 else
1261 tree t;
1263 /* First see if VAL1 and VAL2 are not the same. */
1264 if (val1 == val2 || operand_equal_p (val1, val2, 0))
1265 return 0;
1267 /* If VAL1 is a lower address than VAL2, return -1. */
1268 if (operand_less_p (val1, val2) == 1)
1269 return -1;
1271 /* If VAL1 is a higher address than VAL2, return +1. */
1272 if (operand_less_p (val2, val1) == 1)
1273 return 1;
1275 /* If VAL1 is different than VAL2, return +2.
1276 For integer constants we either have already returned -1 or 1
1277 or they are equivalent. We still might succeed in proving
1278 something about non-trivial operands. */
1279 if (TREE_CODE (val1) != INTEGER_CST
1280 || TREE_CODE (val2) != INTEGER_CST)
1282 t = fold_binary_to_constant (NE_EXPR, boolean_type_node, val1, val2);
1283 if (t && integer_onep (t))
1284 return 2;
1287 return -2;
1291 /* Compare values like compare_values_warnv, but treat comparisons of
1292 nonconstants which rely on undefined overflow as incomparable. */
1294 static int
1295 compare_values (tree val1, tree val2)
1297 bool sop;
1298 int ret;
1300 sop = false;
1301 ret = compare_values_warnv (val1, val2, &sop);
1302 if (sop
1303 && (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2)))
1304 ret = -2;
1305 return ret;
1309 /* Return 1 if VAL is inside value range VR (VR->MIN <= VAL <= VR->MAX),
1310 0 if VAL is not inside VR,
1311 -2 if we cannot tell either way.
1313 FIXME, the current semantics of this functions are a bit quirky
1314 when taken in the context of VRP. In here we do not care
1315 about VR's type. If VR is the anti-range ~[3, 5] the call
1316 value_inside_range (4, VR) will return 1.
1318 This is counter-intuitive in a strict sense, but the callers
1319 currently expect this. They are calling the function
1320 merely to determine whether VR->MIN <= VAL <= VR->MAX. The
1321 callers are applying the VR_RANGE/VR_ANTI_RANGE semantics
1322 themselves.
1324 This also applies to value_ranges_intersect_p and
1325 range_includes_zero_p. The semantics of VR_RANGE and
1326 VR_ANTI_RANGE should be encoded here, but that also means
1327 adapting the users of these functions to the new semantics.
1329 Benchmark compile/20001226-1.c compilation time after changing this
1330 function. */
1332 static inline int
1333 value_inside_range (tree val, value_range_t * vr)
1335 int cmp1, cmp2;
1337 cmp1 = operand_less_p (val, vr->min);
1338 if (cmp1 == -2)
1339 return -2;
1340 if (cmp1 == 1)
1341 return 0;
1343 cmp2 = operand_less_p (vr->max, val);
1344 if (cmp2 == -2)
1345 return -2;
1347 return !cmp2;
1351 /* Return true if value ranges VR0 and VR1 have a non-empty
1352 intersection.
1354 Benchmark compile/20001226-1.c compilation time after changing this
1355 function.
1358 static inline bool
1359 value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
1361 /* The value ranges do not intersect if the maximum of the first range is
1362 less than the minimum of the second range or vice versa.
1363 When those relations are unknown, we can't do any better. */
1364 if (operand_less_p (vr0->max, vr1->min) != 0)
1365 return false;
1366 if (operand_less_p (vr1->max, vr0->min) != 0)
1367 return false;
1368 return true;
1372 /* Return true if VR includes the value zero, false otherwise. FIXME,
1373 currently this will return false for an anti-range like ~[-4, 3].
1374 This will be wrong when the semantics of value_inside_range are
1375 modified (currently the users of this function expect these
1376 semantics). */
1378 static inline bool
1379 range_includes_zero_p (value_range_t *vr)
1381 tree zero;
1383 gcc_assert (vr->type != VR_UNDEFINED
1384 && vr->type != VR_VARYING
1385 && !symbolic_range_p (vr));
1387 zero = build_int_cst (TREE_TYPE (vr->min), 0);
1388 return (value_inside_range (zero, vr) == 1);
1391 /* Return true if T, an SSA_NAME, is known to be nonnegative. Return
1392 false otherwise or if no value range information is available. */
1394 bool
1395 ssa_name_nonnegative_p (const_tree t)
1397 value_range_t *vr = get_value_range (t);
1399 if (INTEGRAL_TYPE_P (t)
1400 && TYPE_UNSIGNED (t))
1401 return true;
1403 if (!vr)
1404 return false;
1406 /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
1407 which would return a useful value should be encoded as a VR_RANGE. */
1408 if (vr->type == VR_RANGE)
1410 int result = compare_values (vr->min, integer_zero_node);
1412 return (result == 0 || result == 1);
1414 return false;
1417 /* If OP has a value range with a single constant value return that,
1418 otherwise return NULL_TREE. This returns OP itself if OP is a
1419 constant. */
1421 static tree
1422 op_with_constant_singleton_value_range (tree op)
1424 value_range_t *vr;
1426 if (is_gimple_min_invariant (op))
1427 return op;
1429 if (TREE_CODE (op) != SSA_NAME)
1430 return NULL_TREE;
1432 vr = get_value_range (op);
1433 if (vr->type == VR_RANGE
1434 && operand_equal_p (vr->min, vr->max, 0)
1435 && is_gimple_min_invariant (vr->min))
1436 return vr->min;
1438 return NULL_TREE;
1442 /* Extract value range information from an ASSERT_EXPR EXPR and store
1443 it in *VR_P. */
1445 static void
1446 extract_range_from_assert (value_range_t *vr_p, tree expr)
1448 tree var, cond, limit, min, max, type;
1449 value_range_t *var_vr, *limit_vr;
1450 enum tree_code cond_code;
1452 var = ASSERT_EXPR_VAR (expr);
1453 cond = ASSERT_EXPR_COND (expr);
1455 gcc_assert (COMPARISON_CLASS_P (cond));
1457 /* Find VAR in the ASSERT_EXPR conditional. */
1458 if (var == TREE_OPERAND (cond, 0)
1459 || TREE_CODE (TREE_OPERAND (cond, 0)) == PLUS_EXPR
1460 || TREE_CODE (TREE_OPERAND (cond, 0)) == NOP_EXPR)
1462 /* If the predicate is of the form VAR COMP LIMIT, then we just
1463 take LIMIT from the RHS and use the same comparison code. */
1464 cond_code = TREE_CODE (cond);
1465 limit = TREE_OPERAND (cond, 1);
1466 cond = TREE_OPERAND (cond, 0);
1468 else
1470 /* If the predicate is of the form LIMIT COMP VAR, then we need
1471 to flip around the comparison code to create the proper range
1472 for VAR. */
1473 cond_code = swap_tree_comparison (TREE_CODE (cond));
1474 limit = TREE_OPERAND (cond, 0);
1475 cond = TREE_OPERAND (cond, 1);
1478 limit = avoid_overflow_infinity (limit);
1480 type = TREE_TYPE (limit);
1481 gcc_assert (limit != var);
1483 /* For pointer arithmetic, we only keep track of pointer equality
1484 and inequality. */
1485 if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
1487 set_value_range_to_varying (vr_p);
1488 return;
1491 /* If LIMIT is another SSA name and LIMIT has a range of its own,
1492 try to use LIMIT's range to avoid creating symbolic ranges
1493 unnecessarily. */
1494 limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
1496 /* LIMIT's range is only interesting if it has any useful information. */
1497 if (limit_vr
1498 && (limit_vr->type == VR_UNDEFINED
1499 || limit_vr->type == VR_VARYING
1500 || symbolic_range_p (limit_vr)))
1501 limit_vr = NULL;
1503 /* Initially, the new range has the same set of equivalences of
1504 VAR's range. This will be revised before returning the final
1505 value. Since assertions may be chained via mutually exclusive
1506 predicates, we will need to trim the set of equivalences before
1507 we are done. */
1508 gcc_assert (vr_p->equiv == NULL);
1509 add_equivalence (&vr_p->equiv, var);
1511 /* Extract a new range based on the asserted comparison for VAR and
1512 LIMIT's value range. Notice that if LIMIT has an anti-range, we
1513 will only use it for equality comparisons (EQ_EXPR). For any
1514 other kind of assertion, we cannot derive a range from LIMIT's
1515 anti-range that can be used to describe the new range. For
1516 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
1517 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
1518 no single range for x_2 that could describe LE_EXPR, so we might
1519 as well build the range [b_4, +INF] for it.
1520 One special case we handle is extracting a range from a
1521 range test encoded as (unsigned)var + CST <= limit. */
1522 if (TREE_CODE (cond) == NOP_EXPR
1523 || TREE_CODE (cond) == PLUS_EXPR)
1525 if (TREE_CODE (cond) == PLUS_EXPR)
1527 min = fold_build1 (NEGATE_EXPR, TREE_TYPE (TREE_OPERAND (cond, 1)),
1528 TREE_OPERAND (cond, 1));
1529 max = int_const_binop (PLUS_EXPR, limit, min);
1530 cond = TREE_OPERAND (cond, 0);
1532 else
1534 min = build_int_cst (TREE_TYPE (var), 0);
1535 max = limit;
1538 /* Make sure to not set TREE_OVERFLOW on the final type
1539 conversion. We are willingly interpreting large positive
1540 unsigned values as negative singed values here. */
1541 min = force_fit_type_double (TREE_TYPE (var), tree_to_double_int (min),
1542 0, false);
1543 max = force_fit_type_double (TREE_TYPE (var), tree_to_double_int (max),
1544 0, false);
1546 /* We can transform a max, min range to an anti-range or
1547 vice-versa. Use set_and_canonicalize_value_range which does
1548 this for us. */
1549 if (cond_code == LE_EXPR)
1550 set_and_canonicalize_value_range (vr_p, VR_RANGE,
1551 min, max, vr_p->equiv);
1552 else if (cond_code == GT_EXPR)
1553 set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE,
1554 min, max, vr_p->equiv);
1555 else
1556 gcc_unreachable ();
1558 else if (cond_code == EQ_EXPR)
1560 enum value_range_type range_type;
1562 if (limit_vr)
1564 range_type = limit_vr->type;
1565 min = limit_vr->min;
1566 max = limit_vr->max;
1568 else
1570 range_type = VR_RANGE;
1571 min = limit;
1572 max = limit;
1575 set_value_range (vr_p, range_type, min, max, vr_p->equiv);
1577 /* When asserting the equality VAR == LIMIT and LIMIT is another
1578 SSA name, the new range will also inherit the equivalence set
1579 from LIMIT. */
1580 if (TREE_CODE (limit) == SSA_NAME)
1581 add_equivalence (&vr_p->equiv, limit);
1583 else if (cond_code == NE_EXPR)
1585 /* As described above, when LIMIT's range is an anti-range and
1586 this assertion is an inequality (NE_EXPR), then we cannot
1587 derive anything from the anti-range. For instance, if
1588 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
1589 not imply that VAR's range is [0, 0]. So, in the case of
1590 anti-ranges, we just assert the inequality using LIMIT and
1591 not its anti-range.
1593 If LIMIT_VR is a range, we can only use it to build a new
1594 anti-range if LIMIT_VR is a single-valued range. For
1595 instance, if LIMIT_VR is [0, 1], the predicate
1596 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
1597 Rather, it means that for value 0 VAR should be ~[0, 0]
1598 and for value 1, VAR should be ~[1, 1]. We cannot
1599 represent these ranges.
1601 The only situation in which we can build a valid
1602 anti-range is when LIMIT_VR is a single-valued range
1603 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
1604 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
1605 if (limit_vr
1606 && limit_vr->type == VR_RANGE
1607 && compare_values (limit_vr->min, limit_vr->max) == 0)
1609 min = limit_vr->min;
1610 max = limit_vr->max;
1612 else
1614 /* In any other case, we cannot use LIMIT's range to build a
1615 valid anti-range. */
1616 min = max = limit;
1619 /* If MIN and MAX cover the whole range for their type, then
1620 just use the original LIMIT. */
1621 if (INTEGRAL_TYPE_P (type)
1622 && vrp_val_is_min (min)
1623 && vrp_val_is_max (max))
1624 min = max = limit;
1626 set_value_range (vr_p, VR_ANTI_RANGE, min, max, vr_p->equiv);
1628 else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
1630 min = TYPE_MIN_VALUE (type);
1632 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1633 max = limit;
1634 else
1636 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1637 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
1638 LT_EXPR. */
1639 max = limit_vr->max;
1642 /* If the maximum value forces us to be out of bounds, simply punt.
1643 It would be pointless to try and do anything more since this
1644 all should be optimized away above us. */
1645 if ((cond_code == LT_EXPR
1646 && compare_values (max, min) == 0)
1647 || (CONSTANT_CLASS_P (max) && TREE_OVERFLOW (max)))
1648 set_value_range_to_varying (vr_p);
1649 else
1651 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
1652 if (cond_code == LT_EXPR)
1654 tree one = build_int_cst (type, 1);
1655 max = fold_build2 (MINUS_EXPR, type, max, one);
1656 if (EXPR_P (max))
1657 TREE_NO_WARNING (max) = 1;
1660 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1663 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
1665 max = TYPE_MAX_VALUE (type);
1667 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1668 min = limit;
1669 else
1671 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1672 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
1673 GT_EXPR. */
1674 min = limit_vr->min;
1677 /* If the minimum value forces us to be out of bounds, simply punt.
1678 It would be pointless to try and do anything more since this
1679 all should be optimized away above us. */
1680 if ((cond_code == GT_EXPR
1681 && compare_values (min, max) == 0)
1682 || (CONSTANT_CLASS_P (min) && TREE_OVERFLOW (min)))
1683 set_value_range_to_varying (vr_p);
1684 else
1686 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
1687 if (cond_code == GT_EXPR)
1689 tree one = build_int_cst (type, 1);
1690 min = fold_build2 (PLUS_EXPR, type, min, one);
1691 if (EXPR_P (min))
1692 TREE_NO_WARNING (min) = 1;
1695 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1698 else
1699 gcc_unreachable ();
1701 /* If VAR already had a known range, it may happen that the new
1702 range we have computed and VAR's range are not compatible. For
1703 instance,
1705 if (p_5 == NULL)
1706 p_6 = ASSERT_EXPR <p_5, p_5 == NULL>;
1707 x_7 = p_6->fld;
1708 p_8 = ASSERT_EXPR <p_6, p_6 != NULL>;
1710 While the above comes from a faulty program, it will cause an ICE
1711 later because p_8 and p_6 will have incompatible ranges and at
1712 the same time will be considered equivalent. A similar situation
1713 would arise from
1715 if (i_5 > 10)
1716 i_6 = ASSERT_EXPR <i_5, i_5 > 10>;
1717 if (i_5 < 5)
1718 i_7 = ASSERT_EXPR <i_6, i_6 < 5>;
1720 Again i_6 and i_7 will have incompatible ranges. It would be
1721 pointless to try and do anything with i_7's range because
1722 anything dominated by 'if (i_5 < 5)' will be optimized away.
1723 Note, due to the wa in which simulation proceeds, the statement
1724 i_7 = ASSERT_EXPR <...> we would never be visited because the
1725 conditional 'if (i_5 < 5)' always evaluates to false. However,
1726 this extra check does not hurt and may protect against future
1727 changes to VRP that may get into a situation similar to the
1728 NULL pointer dereference example.
1730 Note that these compatibility tests are only needed when dealing
1731 with ranges or a mix of range and anti-range. If VAR_VR and VR_P
1732 are both anti-ranges, they will always be compatible, because two
1733 anti-ranges will always have a non-empty intersection. */
1735 var_vr = get_value_range (var);
1737 /* We may need to make adjustments when VR_P and VAR_VR are numeric
1738 ranges or anti-ranges. */
1739 if (vr_p->type == VR_VARYING
1740 || vr_p->type == VR_UNDEFINED
1741 || var_vr->type == VR_VARYING
1742 || var_vr->type == VR_UNDEFINED
1743 || symbolic_range_p (vr_p)
1744 || symbolic_range_p (var_vr))
1745 return;
1747 if (var_vr->type == VR_RANGE && vr_p->type == VR_RANGE)
1749 /* If the two ranges have a non-empty intersection, we can
1750 refine the resulting range. Since the assert expression
1751 creates an equivalency and at the same time it asserts a
1752 predicate, we can take the intersection of the two ranges to
1753 get better precision. */
1754 if (value_ranges_intersect_p (var_vr, vr_p))
1756 /* Use the larger of the two minimums. */
1757 if (compare_values (vr_p->min, var_vr->min) == -1)
1758 min = var_vr->min;
1759 else
1760 min = vr_p->min;
1762 /* Use the smaller of the two maximums. */
1763 if (compare_values (vr_p->max, var_vr->max) == 1)
1764 max = var_vr->max;
1765 else
1766 max = vr_p->max;
1768 set_value_range (vr_p, vr_p->type, min, max, vr_p->equiv);
1770 else
1772 /* The two ranges do not intersect, set the new range to
1773 VARYING, because we will not be able to do anything
1774 meaningful with it. */
1775 set_value_range_to_varying (vr_p);
1778 else if ((var_vr->type == VR_RANGE && vr_p->type == VR_ANTI_RANGE)
1779 || (var_vr->type == VR_ANTI_RANGE && vr_p->type == VR_RANGE))
1781 /* A range and an anti-range will cancel each other only if
1782 their ends are the same. For instance, in the example above,
1783 p_8's range ~[0, 0] and p_6's range [0, 0] are incompatible,
1784 so VR_P should be set to VR_VARYING. */
1785 if (compare_values (var_vr->min, vr_p->min) == 0
1786 && compare_values (var_vr->max, vr_p->max) == 0)
1787 set_value_range_to_varying (vr_p);
1788 else
1790 tree min, max, anti_min, anti_max, real_min, real_max;
1791 int cmp;
1793 /* We want to compute the logical AND of the two ranges;
1794 there are three cases to consider.
1797 1. The VR_ANTI_RANGE range is completely within the
1798 VR_RANGE and the endpoints of the ranges are
1799 different. In that case the resulting range
1800 should be whichever range is more precise.
1801 Typically that will be the VR_RANGE.
1803 2. The VR_ANTI_RANGE is completely disjoint from
1804 the VR_RANGE. In this case the resulting range
1805 should be the VR_RANGE.
1807 3. There is some overlap between the VR_ANTI_RANGE
1808 and the VR_RANGE.
1810 3a. If the high limit of the VR_ANTI_RANGE resides
1811 within the VR_RANGE, then the result is a new
1812 VR_RANGE starting at the high limit of the
1813 VR_ANTI_RANGE + 1 and extending to the
1814 high limit of the original VR_RANGE.
1816 3b. If the low limit of the VR_ANTI_RANGE resides
1817 within the VR_RANGE, then the result is a new
1818 VR_RANGE starting at the low limit of the original
1819 VR_RANGE and extending to the low limit of the
1820 VR_ANTI_RANGE - 1. */
1821 if (vr_p->type == VR_ANTI_RANGE)
1823 anti_min = vr_p->min;
1824 anti_max = vr_p->max;
1825 real_min = var_vr->min;
1826 real_max = var_vr->max;
1828 else
1830 anti_min = var_vr->min;
1831 anti_max = var_vr->max;
1832 real_min = vr_p->min;
1833 real_max = vr_p->max;
1837 /* Case 1, VR_ANTI_RANGE completely within VR_RANGE,
1838 not including any endpoints. */
1839 if (compare_values (anti_max, real_max) == -1
1840 && compare_values (anti_min, real_min) == 1)
1842 /* If the range is covering the whole valid range of
1843 the type keep the anti-range. */
1844 if (!vrp_val_is_min (real_min)
1845 || !vrp_val_is_max (real_max))
1846 set_value_range (vr_p, VR_RANGE, real_min,
1847 real_max, vr_p->equiv);
1849 /* Case 2, VR_ANTI_RANGE completely disjoint from
1850 VR_RANGE. */
1851 else if (compare_values (anti_min, real_max) == 1
1852 || compare_values (anti_max, real_min) == -1)
1854 set_value_range (vr_p, VR_RANGE, real_min,
1855 real_max, vr_p->equiv);
1857 /* Case 3a, the anti-range extends into the low
1858 part of the real range. Thus creating a new
1859 low for the real range. */
1860 else if (((cmp = compare_values (anti_max, real_min)) == 1
1861 || cmp == 0)
1862 && compare_values (anti_max, real_max) == -1)
1864 gcc_assert (!is_positive_overflow_infinity (anti_max));
1865 if (needs_overflow_infinity (TREE_TYPE (anti_max))
1866 && vrp_val_is_max (anti_max))
1868 if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
1870 set_value_range_to_varying (vr_p);
1871 return;
1873 min = positive_overflow_infinity (TREE_TYPE (var_vr->min));
1875 else if (!POINTER_TYPE_P (TREE_TYPE (var_vr->min)))
1876 min = fold_build2 (PLUS_EXPR, TREE_TYPE (var_vr->min),
1877 anti_max,
1878 build_int_cst (TREE_TYPE (var_vr->min), 1));
1879 else
1880 min = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (var_vr->min),
1881 anti_max, size_int (1));
1882 max = real_max;
1883 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1885 /* Case 3b, the anti-range extends into the high
1886 part of the real range. Thus creating a new
1887 higher for the real range. */
1888 else if (compare_values (anti_min, real_min) == 1
1889 && ((cmp = compare_values (anti_min, real_max)) == -1
1890 || cmp == 0))
1892 gcc_assert (!is_negative_overflow_infinity (anti_min));
1893 if (needs_overflow_infinity (TREE_TYPE (anti_min))
1894 && vrp_val_is_min (anti_min))
1896 if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
1898 set_value_range_to_varying (vr_p);
1899 return;
1901 max = negative_overflow_infinity (TREE_TYPE (var_vr->min));
1903 else if (!POINTER_TYPE_P (TREE_TYPE (var_vr->min)))
1904 max = fold_build2 (MINUS_EXPR, TREE_TYPE (var_vr->min),
1905 anti_min,
1906 build_int_cst (TREE_TYPE (var_vr->min), 1));
1907 else
1908 max = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (var_vr->min),
1909 anti_min,
1910 size_int (-1));
1911 min = real_min;
1912 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1919 /* Extract range information from SSA name VAR and store it in VR. If
1920 VAR has an interesting range, use it. Otherwise, create the
1921 range [VAR, VAR] and return it. This is useful in situations where
1922 we may have conditionals testing values of VARYING names. For
1923 instance,
1925 x_3 = y_5;
1926 if (x_3 > y_5)
1929 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1930 always false. */
1932 static void
1933 extract_range_from_ssa_name (value_range_t *vr, tree var)
1935 value_range_t *var_vr = get_value_range (var);
1937 if (var_vr->type != VR_UNDEFINED && var_vr->type != VR_VARYING)
1938 copy_value_range (vr, var_vr);
1939 else
1940 set_value_range (vr, VR_RANGE, var, var, NULL);
1942 add_equivalence (&vr->equiv, var);
1946 /* Wrapper around int_const_binop. If the operation overflows and we
1947 are not using wrapping arithmetic, then adjust the result to be
1948 -INF or +INF depending on CODE, VAL1 and VAL2. This can return
1949 NULL_TREE if we need to use an overflow infinity representation but
1950 the type does not support it. */
1952 static tree
1953 vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
1955 tree res;
1957 res = int_const_binop (code, val1, val2);
1959 /* If we are using unsigned arithmetic, operate symbolically
1960 on -INF and +INF as int_const_binop only handles signed overflow. */
1961 if (TYPE_UNSIGNED (TREE_TYPE (val1)))
1963 int checkz = compare_values (res, val1);
1964 bool overflow = false;
1966 /* Ensure that res = val1 [+*] val2 >= val1
1967 or that res = val1 - val2 <= val1. */
1968 if ((code == PLUS_EXPR
1969 && !(checkz == 1 || checkz == 0))
1970 || (code == MINUS_EXPR
1971 && !(checkz == 0 || checkz == -1)))
1973 overflow = true;
1975 /* Checking for multiplication overflow is done by dividing the
1976 output of the multiplication by the first input of the
1977 multiplication. If the result of that division operation is
1978 not equal to the second input of the multiplication, then the
1979 multiplication overflowed. */
1980 else if (code == MULT_EXPR && !integer_zerop (val1))
1982 tree tmp = int_const_binop (TRUNC_DIV_EXPR,
1983 res,
1984 val1);
1985 int check = compare_values (tmp, val2);
1987 if (check != 0)
1988 overflow = true;
1991 if (overflow)
1993 res = copy_node (res);
1994 TREE_OVERFLOW (res) = 1;
1998 else if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1)))
1999 /* If the singed operation wraps then int_const_binop has done
2000 everything we want. */
2002 else if ((TREE_OVERFLOW (res)
2003 && !TREE_OVERFLOW (val1)
2004 && !TREE_OVERFLOW (val2))
2005 || is_overflow_infinity (val1)
2006 || is_overflow_infinity (val2))
2008 /* If the operation overflowed but neither VAL1 nor VAL2 are
2009 overflown, return -INF or +INF depending on the operation
2010 and the combination of signs of the operands. */
2011 int sgn1 = tree_int_cst_sgn (val1);
2012 int sgn2 = tree_int_cst_sgn (val2);
2014 if (needs_overflow_infinity (TREE_TYPE (res))
2015 && !supports_overflow_infinity (TREE_TYPE (res)))
2016 return NULL_TREE;
2018 /* We have to punt on adding infinities of different signs,
2019 since we can't tell what the sign of the result should be.
2020 Likewise for subtracting infinities of the same sign. */
2021 if (((code == PLUS_EXPR && sgn1 != sgn2)
2022 || (code == MINUS_EXPR && sgn1 == sgn2))
2023 && is_overflow_infinity (val1)
2024 && is_overflow_infinity (val2))
2025 return NULL_TREE;
2027 /* Don't try to handle division or shifting of infinities. */
2028 if ((code == TRUNC_DIV_EXPR
2029 || code == FLOOR_DIV_EXPR
2030 || code == CEIL_DIV_EXPR
2031 || code == EXACT_DIV_EXPR
2032 || code == ROUND_DIV_EXPR
2033 || code == RSHIFT_EXPR)
2034 && (is_overflow_infinity (val1)
2035 || is_overflow_infinity (val2)))
2036 return NULL_TREE;
2038 /* Notice that we only need to handle the restricted set of
2039 operations handled by extract_range_from_binary_expr.
2040 Among them, only multiplication, addition and subtraction
2041 can yield overflow without overflown operands because we
2042 are working with integral types only... except in the
2043 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
2044 for division too. */
2046 /* For multiplication, the sign of the overflow is given
2047 by the comparison of the signs of the operands. */
2048 if ((code == MULT_EXPR && sgn1 == sgn2)
2049 /* For addition, the operands must be of the same sign
2050 to yield an overflow. Its sign is therefore that
2051 of one of the operands, for example the first. For
2052 infinite operands X + -INF is negative, not positive. */
2053 || (code == PLUS_EXPR
2054 && (sgn1 >= 0
2055 ? !is_negative_overflow_infinity (val2)
2056 : is_positive_overflow_infinity (val2)))
2057 /* For subtraction, non-infinite operands must be of
2058 different signs to yield an overflow. Its sign is
2059 therefore that of the first operand or the opposite of
2060 that of the second operand. A first operand of 0 counts
2061 as positive here, for the corner case 0 - (-INF), which
2062 overflows, but must yield +INF. For infinite operands 0
2063 - INF is negative, not positive. */
2064 || (code == MINUS_EXPR
2065 && (sgn1 >= 0
2066 ? !is_positive_overflow_infinity (val2)
2067 : is_negative_overflow_infinity (val2)))
2068 /* We only get in here with positive shift count, so the
2069 overflow direction is the same as the sign of val1.
2070 Actually rshift does not overflow at all, but we only
2071 handle the case of shifting overflowed -INF and +INF. */
2072 || (code == RSHIFT_EXPR
2073 && sgn1 >= 0)
2074 /* For division, the only case is -INF / -1 = +INF. */
2075 || code == TRUNC_DIV_EXPR
2076 || code == FLOOR_DIV_EXPR
2077 || code == CEIL_DIV_EXPR
2078 || code == EXACT_DIV_EXPR
2079 || code == ROUND_DIV_EXPR)
2080 return (needs_overflow_infinity (TREE_TYPE (res))
2081 ? positive_overflow_infinity (TREE_TYPE (res))
2082 : TYPE_MAX_VALUE (TREE_TYPE (res)));
2083 else
2084 return (needs_overflow_infinity (TREE_TYPE (res))
2085 ? negative_overflow_infinity (TREE_TYPE (res))
2086 : TYPE_MIN_VALUE (TREE_TYPE (res)));
2089 return res;
2093 /* For range VR compute two double_int bitmasks. In *MAY_BE_NONZERO
2094 bitmask if some bit is unset, it means for all numbers in the range
2095 the bit is 0, otherwise it might be 0 or 1. In *MUST_BE_NONZERO
2096 bitmask if some bit is set, it means for all numbers in the range
2097 the bit is 1, otherwise it might be 0 or 1. */
2099 static bool
2100 zero_nonzero_bits_from_vr (value_range_t *vr, double_int *may_be_nonzero,
2101 double_int *must_be_nonzero)
2103 if (range_int_cst_p (vr))
2105 if (range_int_cst_singleton_p (vr))
2107 *may_be_nonzero = tree_to_double_int (vr->min);
2108 *must_be_nonzero = *may_be_nonzero;
2109 return true;
2111 if (tree_int_cst_sgn (vr->min) >= 0)
2113 double_int dmin = tree_to_double_int (vr->min);
2114 double_int dmax = tree_to_double_int (vr->max);
2115 double_int xor_mask = double_int_xor (dmin, dmax);
2116 *may_be_nonzero = double_int_ior (dmin, dmax);
2117 *must_be_nonzero = double_int_and (dmin, dmax);
2118 if (xor_mask.high != 0)
2120 unsigned HOST_WIDE_INT mask
2121 = ((unsigned HOST_WIDE_INT) 1
2122 << floor_log2 (xor_mask.high)) - 1;
2123 may_be_nonzero->low = ALL_ONES;
2124 may_be_nonzero->high |= mask;
2125 must_be_nonzero->low = 0;
2126 must_be_nonzero->high &= ~mask;
2128 else if (xor_mask.low != 0)
2130 unsigned HOST_WIDE_INT mask
2131 = ((unsigned HOST_WIDE_INT) 1
2132 << floor_log2 (xor_mask.low)) - 1;
2133 may_be_nonzero->low |= mask;
2134 must_be_nonzero->low &= ~mask;
2136 return true;
2139 may_be_nonzero->low = ALL_ONES;
2140 may_be_nonzero->high = ALL_ONES;
2141 must_be_nonzero->low = 0;
2142 must_be_nonzero->high = 0;
2143 return false;
2147 /* Extract range information from a binary expression EXPR based on
2148 the ranges of each of its operands and the expression code. */
2150 static void
2151 extract_range_from_binary_expr (value_range_t *vr,
2152 enum tree_code code,
2153 tree expr_type, tree op0, tree op1)
2155 enum value_range_type type;
2156 tree min, max;
2157 int cmp;
2158 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2159 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2161 /* Not all binary expressions can be applied to ranges in a
2162 meaningful way. Handle only arithmetic operations. */
2163 if (code != PLUS_EXPR
2164 && code != MINUS_EXPR
2165 && code != POINTER_PLUS_EXPR
2166 && code != MULT_EXPR
2167 && code != TRUNC_DIV_EXPR
2168 && code != FLOOR_DIV_EXPR
2169 && code != CEIL_DIV_EXPR
2170 && code != EXACT_DIV_EXPR
2171 && code != ROUND_DIV_EXPR
2172 && code != TRUNC_MOD_EXPR
2173 && code != RSHIFT_EXPR
2174 && code != MIN_EXPR
2175 && code != MAX_EXPR
2176 && code != BIT_AND_EXPR
2177 && code != BIT_IOR_EXPR
2178 && code != TRUTH_AND_EXPR
2179 && code != TRUTH_OR_EXPR)
2181 /* We can still do constant propagation here. */
2182 tree const_op0 = op_with_constant_singleton_value_range (op0);
2183 tree const_op1 = op_with_constant_singleton_value_range (op1);
2184 if (const_op0 || const_op1)
2186 tree tem = fold_binary (code, expr_type,
2187 const_op0 ? const_op0 : op0,
2188 const_op1 ? const_op1 : op1);
2189 if (tem
2190 && is_gimple_min_invariant (tem)
2191 && !is_overflow_infinity (tem))
2193 set_value_range (vr, VR_RANGE, tem, tem, NULL);
2194 return;
2197 set_value_range_to_varying (vr);
2198 return;
2201 /* Get value ranges for each operand. For constant operands, create
2202 a new value range with the operand to simplify processing. */
2203 if (TREE_CODE (op0) == SSA_NAME)
2204 vr0 = *(get_value_range (op0));
2205 else if (is_gimple_min_invariant (op0))
2206 set_value_range_to_value (&vr0, op0, NULL);
2207 else
2208 set_value_range_to_varying (&vr0);
2210 if (TREE_CODE (op1) == SSA_NAME)
2211 vr1 = *(get_value_range (op1));
2212 else if (is_gimple_min_invariant (op1))
2213 set_value_range_to_value (&vr1, op1, NULL);
2214 else
2215 set_value_range_to_varying (&vr1);
2217 /* If either range is UNDEFINED, so is the result. */
2218 if (vr0.type == VR_UNDEFINED || vr1.type == VR_UNDEFINED)
2220 set_value_range_to_undefined (vr);
2221 return;
2224 /* The type of the resulting value range defaults to VR0.TYPE. */
2225 type = vr0.type;
2227 /* Refuse to operate on VARYING ranges, ranges of different kinds
2228 and symbolic ranges. As an exception, we allow BIT_AND_EXPR
2229 because we may be able to derive a useful range even if one of
2230 the operands is VR_VARYING or symbolic range. Similarly for
2231 divisions. TODO, we may be able to derive anti-ranges in
2232 some cases. */
2233 if (code != BIT_AND_EXPR
2234 && code != TRUTH_AND_EXPR
2235 && code != TRUTH_OR_EXPR
2236 && code != TRUNC_DIV_EXPR
2237 && code != FLOOR_DIV_EXPR
2238 && code != CEIL_DIV_EXPR
2239 && code != EXACT_DIV_EXPR
2240 && code != ROUND_DIV_EXPR
2241 && code != TRUNC_MOD_EXPR
2242 && (vr0.type == VR_VARYING
2243 || vr1.type == VR_VARYING
2244 || vr0.type != vr1.type
2245 || symbolic_range_p (&vr0)
2246 || symbolic_range_p (&vr1)))
2248 set_value_range_to_varying (vr);
2249 return;
2252 /* Now evaluate the expression to determine the new range. */
2253 if (POINTER_TYPE_P (expr_type)
2254 || POINTER_TYPE_P (TREE_TYPE (op0))
2255 || POINTER_TYPE_P (TREE_TYPE (op1)))
2257 if (code == MIN_EXPR || code == MAX_EXPR)
2259 /* For MIN/MAX expressions with pointers, we only care about
2260 nullness, if both are non null, then the result is nonnull.
2261 If both are null, then the result is null. Otherwise they
2262 are varying. */
2263 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
2264 set_value_range_to_nonnull (vr, expr_type);
2265 else if (range_is_null (&vr0) && range_is_null (&vr1))
2266 set_value_range_to_null (vr, expr_type);
2267 else
2268 set_value_range_to_varying (vr);
2270 return;
2272 if (code == POINTER_PLUS_EXPR)
2274 /* For pointer types, we are really only interested in asserting
2275 whether the expression evaluates to non-NULL. */
2276 if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
2277 set_value_range_to_nonnull (vr, expr_type);
2278 else if (range_is_null (&vr0) && range_is_null (&vr1))
2279 set_value_range_to_null (vr, expr_type);
2280 else
2281 set_value_range_to_varying (vr);
2283 else if (code == BIT_AND_EXPR)
2285 /* For pointer types, we are really only interested in asserting
2286 whether the expression evaluates to non-NULL. */
2287 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
2288 set_value_range_to_nonnull (vr, expr_type);
2289 else if (range_is_null (&vr0) || range_is_null (&vr1))
2290 set_value_range_to_null (vr, expr_type);
2291 else
2292 set_value_range_to_varying (vr);
2294 else
2295 gcc_unreachable ();
2297 return;
2300 /* For integer ranges, apply the operation to each end of the
2301 range and see what we end up with. */
2302 if (code == TRUTH_AND_EXPR
2303 || code == TRUTH_OR_EXPR)
2305 /* If one of the operands is zero, we know that the whole
2306 expression evaluates zero. */
2307 if (code == TRUTH_AND_EXPR
2308 && ((vr0.type == VR_RANGE
2309 && integer_zerop (vr0.min)
2310 && integer_zerop (vr0.max))
2311 || (vr1.type == VR_RANGE
2312 && integer_zerop (vr1.min)
2313 && integer_zerop (vr1.max))))
2315 type = VR_RANGE;
2316 min = max = build_int_cst (expr_type, 0);
2318 /* If one of the operands is one, we know that the whole
2319 expression evaluates one. */
2320 else if (code == TRUTH_OR_EXPR
2321 && ((vr0.type == VR_RANGE
2322 && integer_onep (vr0.min)
2323 && integer_onep (vr0.max))
2324 || (vr1.type == VR_RANGE
2325 && integer_onep (vr1.min)
2326 && integer_onep (vr1.max))))
2328 type = VR_RANGE;
2329 min = max = build_int_cst (expr_type, 1);
2331 else if (vr0.type != VR_VARYING
2332 && vr1.type != VR_VARYING
2333 && vr0.type == vr1.type
2334 && !symbolic_range_p (&vr0)
2335 && !overflow_infinity_range_p (&vr0)
2336 && !symbolic_range_p (&vr1)
2337 && !overflow_infinity_range_p (&vr1))
2339 /* Boolean expressions cannot be folded with int_const_binop. */
2340 min = fold_binary (code, expr_type, vr0.min, vr1.min);
2341 max = fold_binary (code, expr_type, vr0.max, vr1.max);
2343 else
2345 /* The result of a TRUTH_*_EXPR is always true or false. */
2346 set_value_range_to_truthvalue (vr, expr_type);
2347 return;
2350 else if (code == PLUS_EXPR
2351 || code == MIN_EXPR
2352 || code == MAX_EXPR)
2354 /* If we have a PLUS_EXPR with two VR_ANTI_RANGEs, drop to
2355 VR_VARYING. It would take more effort to compute a precise
2356 range for such a case. For example, if we have op0 == 1 and
2357 op1 == -1 with their ranges both being ~[0,0], we would have
2358 op0 + op1 == 0, so we cannot claim that the sum is in ~[0,0].
2359 Note that we are guaranteed to have vr0.type == vr1.type at
2360 this point. */
2361 if (vr0.type == VR_ANTI_RANGE)
2363 if (code == PLUS_EXPR)
2365 set_value_range_to_varying (vr);
2366 return;
2368 /* For MIN_EXPR and MAX_EXPR with two VR_ANTI_RANGEs,
2369 the resulting VR_ANTI_RANGE is the same - intersection
2370 of the two ranges. */
2371 min = vrp_int_const_binop (MAX_EXPR, vr0.min, vr1.min);
2372 max = vrp_int_const_binop (MIN_EXPR, vr0.max, vr1.max);
2374 else
2376 /* For operations that make the resulting range directly
2377 proportional to the original ranges, apply the operation to
2378 the same end of each range. */
2379 min = vrp_int_const_binop (code, vr0.min, vr1.min);
2380 max = vrp_int_const_binop (code, vr0.max, vr1.max);
2383 /* If both additions overflowed the range kind is still correct.
2384 This happens regularly with subtracting something in unsigned
2385 arithmetic.
2386 ??? See PR30318 for all the cases we do not handle. */
2387 if (code == PLUS_EXPR
2388 && (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2389 && (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2391 min = build_int_cst_wide (TREE_TYPE (min),
2392 TREE_INT_CST_LOW (min),
2393 TREE_INT_CST_HIGH (min));
2394 max = build_int_cst_wide (TREE_TYPE (max),
2395 TREE_INT_CST_LOW (max),
2396 TREE_INT_CST_HIGH (max));
2399 else if (code == MULT_EXPR
2400 || code == TRUNC_DIV_EXPR
2401 || code == FLOOR_DIV_EXPR
2402 || code == CEIL_DIV_EXPR
2403 || code == EXACT_DIV_EXPR
2404 || code == ROUND_DIV_EXPR
2405 || code == RSHIFT_EXPR)
2407 tree val[4];
2408 size_t i;
2409 bool sop;
2411 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
2412 drop to VR_VARYING. It would take more effort to compute a
2413 precise range for such a case. For example, if we have
2414 op0 == 65536 and op1 == 65536 with their ranges both being
2415 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
2416 we cannot claim that the product is in ~[0,0]. Note that we
2417 are guaranteed to have vr0.type == vr1.type at this
2418 point. */
2419 if (code == MULT_EXPR
2420 && vr0.type == VR_ANTI_RANGE
2421 && !TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0)))
2423 set_value_range_to_varying (vr);
2424 return;
2427 /* If we have a RSHIFT_EXPR with any shift values outside [0..prec-1],
2428 then drop to VR_VARYING. Outside of this range we get undefined
2429 behavior from the shift operation. We cannot even trust
2430 SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
2431 shifts, and the operation at the tree level may be widened. */
2432 if (code == RSHIFT_EXPR)
2434 if (vr1.type == VR_ANTI_RANGE
2435 || !vrp_expr_computes_nonnegative (op1, &sop)
2436 || (operand_less_p
2437 (build_int_cst (TREE_TYPE (vr1.max),
2438 TYPE_PRECISION (expr_type) - 1),
2439 vr1.max) != 0))
2441 set_value_range_to_varying (vr);
2442 return;
2446 else if ((code == TRUNC_DIV_EXPR
2447 || code == FLOOR_DIV_EXPR
2448 || code == CEIL_DIV_EXPR
2449 || code == EXACT_DIV_EXPR
2450 || code == ROUND_DIV_EXPR)
2451 && (vr0.type != VR_RANGE || symbolic_range_p (&vr0)))
2453 /* For division, if op1 has VR_RANGE but op0 does not, something
2454 can be deduced just from that range. Say [min, max] / [4, max]
2455 gives [min / 4, max / 4] range. */
2456 if (vr1.type == VR_RANGE
2457 && !symbolic_range_p (&vr1)
2458 && !range_includes_zero_p (&vr1))
2460 vr0.type = type = VR_RANGE;
2461 vr0.min = vrp_val_min (TREE_TYPE (op0));
2462 vr0.max = vrp_val_max (TREE_TYPE (op1));
2464 else
2466 set_value_range_to_varying (vr);
2467 return;
2471 /* For divisions, if flag_non_call_exceptions is true, we must
2472 not eliminate a division by zero. */
2473 if ((code == TRUNC_DIV_EXPR
2474 || code == FLOOR_DIV_EXPR
2475 || code == CEIL_DIV_EXPR
2476 || code == EXACT_DIV_EXPR
2477 || code == ROUND_DIV_EXPR)
2478 && cfun->can_throw_non_call_exceptions
2479 && (vr1.type != VR_RANGE
2480 || symbolic_range_p (&vr1)
2481 || range_includes_zero_p (&vr1)))
2483 set_value_range_to_varying (vr);
2484 return;
2487 /* For divisions, if op0 is VR_RANGE, we can deduce a range
2488 even if op1 is VR_VARYING, VR_ANTI_RANGE, symbolic or can
2489 include 0. */
2490 if ((code == TRUNC_DIV_EXPR
2491 || code == FLOOR_DIV_EXPR
2492 || code == CEIL_DIV_EXPR
2493 || code == EXACT_DIV_EXPR
2494 || code == ROUND_DIV_EXPR)
2495 && vr0.type == VR_RANGE
2496 && (vr1.type != VR_RANGE
2497 || symbolic_range_p (&vr1)
2498 || range_includes_zero_p (&vr1)))
2500 tree zero = build_int_cst (TREE_TYPE (vr0.min), 0);
2501 int cmp;
2503 sop = false;
2504 min = NULL_TREE;
2505 max = NULL_TREE;
2506 if (vrp_expr_computes_nonnegative (op1, &sop) && !sop)
2508 /* For unsigned division or when divisor is known
2509 to be non-negative, the range has to cover
2510 all numbers from 0 to max for positive max
2511 and all numbers from min to 0 for negative min. */
2512 cmp = compare_values (vr0.max, zero);
2513 if (cmp == -1)
2514 max = zero;
2515 else if (cmp == 0 || cmp == 1)
2516 max = vr0.max;
2517 else
2518 type = VR_VARYING;
2519 cmp = compare_values (vr0.min, zero);
2520 if (cmp == 1)
2521 min = zero;
2522 else if (cmp == 0 || cmp == -1)
2523 min = vr0.min;
2524 else
2525 type = VR_VARYING;
2527 else
2529 /* Otherwise the range is -max .. max or min .. -min
2530 depending on which bound is bigger in absolute value,
2531 as the division can change the sign. */
2532 abs_extent_range (vr, vr0.min, vr0.max);
2533 return;
2535 if (type == VR_VARYING)
2537 set_value_range_to_varying (vr);
2538 return;
2542 /* Multiplications and divisions are a bit tricky to handle,
2543 depending on the mix of signs we have in the two ranges, we
2544 need to operate on different values to get the minimum and
2545 maximum values for the new range. One approach is to figure
2546 out all the variations of range combinations and do the
2547 operations.
2549 However, this involves several calls to compare_values and it
2550 is pretty convoluted. It's simpler to do the 4 operations
2551 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
2552 MAX1) and then figure the smallest and largest values to form
2553 the new range. */
2554 else
2556 gcc_assert ((vr0.type == VR_RANGE
2557 || (code == MULT_EXPR && vr0.type == VR_ANTI_RANGE))
2558 && vr0.type == vr1.type);
2560 /* Compute the 4 cross operations. */
2561 sop = false;
2562 val[0] = vrp_int_const_binop (code, vr0.min, vr1.min);
2563 if (val[0] == NULL_TREE)
2564 sop = true;
2566 if (vr1.max == vr1.min)
2567 val[1] = NULL_TREE;
2568 else
2570 val[1] = vrp_int_const_binop (code, vr0.min, vr1.max);
2571 if (val[1] == NULL_TREE)
2572 sop = true;
2575 if (vr0.max == vr0.min)
2576 val[2] = NULL_TREE;
2577 else
2579 val[2] = vrp_int_const_binop (code, vr0.max, vr1.min);
2580 if (val[2] == NULL_TREE)
2581 sop = true;
2584 if (vr0.min == vr0.max || vr1.min == vr1.max)
2585 val[3] = NULL_TREE;
2586 else
2588 val[3] = vrp_int_const_binop (code, vr0.max, vr1.max);
2589 if (val[3] == NULL_TREE)
2590 sop = true;
2593 if (sop)
2595 set_value_range_to_varying (vr);
2596 return;
2599 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
2600 of VAL[i]. */
2601 min = val[0];
2602 max = val[0];
2603 for (i = 1; i < 4; i++)
2605 if (!is_gimple_min_invariant (min)
2606 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2607 || !is_gimple_min_invariant (max)
2608 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2609 break;
2611 if (val[i])
2613 if (!is_gimple_min_invariant (val[i])
2614 || (TREE_OVERFLOW (val[i])
2615 && !is_overflow_infinity (val[i])))
2617 /* If we found an overflowed value, set MIN and MAX
2618 to it so that we set the resulting range to
2619 VARYING. */
2620 min = max = val[i];
2621 break;
2624 if (compare_values (val[i], min) == -1)
2625 min = val[i];
2627 if (compare_values (val[i], max) == 1)
2628 max = val[i];
2633 else if (code == TRUNC_MOD_EXPR)
2635 bool sop = false;
2636 if (vr1.type != VR_RANGE
2637 || symbolic_range_p (&vr1)
2638 || range_includes_zero_p (&vr1)
2639 || vrp_val_is_min (vr1.min))
2641 set_value_range_to_varying (vr);
2642 return;
2644 type = VR_RANGE;
2645 /* Compute MAX <|vr1.min|, |vr1.max|> - 1. */
2646 max = fold_unary_to_constant (ABS_EXPR, TREE_TYPE (vr1.min), vr1.min);
2647 if (tree_int_cst_lt (max, vr1.max))
2648 max = vr1.max;
2649 max = int_const_binop (MINUS_EXPR, max, integer_one_node);
2650 /* If the dividend is non-negative the modulus will be
2651 non-negative as well. */
2652 if (TYPE_UNSIGNED (TREE_TYPE (max))
2653 || (vrp_expr_computes_nonnegative (op0, &sop) && !sop))
2654 min = build_int_cst (TREE_TYPE (max), 0);
2655 else
2656 min = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (max), max);
2658 else if (code == MINUS_EXPR)
2660 /* If we have a MINUS_EXPR with two VR_ANTI_RANGEs, drop to
2661 VR_VARYING. It would take more effort to compute a precise
2662 range for such a case. For example, if we have op0 == 1 and
2663 op1 == 1 with their ranges both being ~[0,0], we would have
2664 op0 - op1 == 0, so we cannot claim that the difference is in
2665 ~[0,0]. Note that we are guaranteed to have
2666 vr0.type == vr1.type at this point. */
2667 if (vr0.type == VR_ANTI_RANGE)
2669 set_value_range_to_varying (vr);
2670 return;
2673 /* For MINUS_EXPR, apply the operation to the opposite ends of
2674 each range. */
2675 min = vrp_int_const_binop (code, vr0.min, vr1.max);
2676 max = vrp_int_const_binop (code, vr0.max, vr1.min);
2678 else if (code == BIT_AND_EXPR || code == BIT_IOR_EXPR)
2680 bool vr0_int_cst_singleton_p, vr1_int_cst_singleton_p;
2681 bool int_cst_range0, int_cst_range1;
2682 double_int may_be_nonzero0, may_be_nonzero1;
2683 double_int must_be_nonzero0, must_be_nonzero1;
2685 vr0_int_cst_singleton_p = range_int_cst_singleton_p (&vr0);
2686 vr1_int_cst_singleton_p = range_int_cst_singleton_p (&vr1);
2687 int_cst_range0 = zero_nonzero_bits_from_vr (&vr0, &may_be_nonzero0,
2688 &must_be_nonzero0);
2689 int_cst_range1 = zero_nonzero_bits_from_vr (&vr1, &may_be_nonzero1,
2690 &must_be_nonzero1);
2692 type = VR_RANGE;
2693 if (vr0_int_cst_singleton_p && vr1_int_cst_singleton_p)
2694 min = max = int_const_binop (code, vr0.max, vr1.max);
2695 else if (!int_cst_range0 && !int_cst_range1)
2697 set_value_range_to_varying (vr);
2698 return;
2700 else if (code == BIT_AND_EXPR)
2702 min = double_int_to_tree (expr_type,
2703 double_int_and (must_be_nonzero0,
2704 must_be_nonzero1));
2705 max = double_int_to_tree (expr_type,
2706 double_int_and (may_be_nonzero0,
2707 may_be_nonzero1));
2708 if (TREE_OVERFLOW (min) || tree_int_cst_sgn (min) < 0)
2709 min = NULL_TREE;
2710 if (TREE_OVERFLOW (max) || tree_int_cst_sgn (max) < 0)
2711 max = NULL_TREE;
2712 if (int_cst_range0 && tree_int_cst_sgn (vr0.min) >= 0)
2714 if (min == NULL_TREE)
2715 min = build_int_cst (expr_type, 0);
2716 if (max == NULL_TREE || tree_int_cst_lt (vr0.max, max))
2717 max = vr0.max;
2719 if (int_cst_range1 && tree_int_cst_sgn (vr1.min) >= 0)
2721 if (min == NULL_TREE)
2722 min = build_int_cst (expr_type, 0);
2723 if (max == NULL_TREE || tree_int_cst_lt (vr1.max, max))
2724 max = vr1.max;
2727 else if (!int_cst_range0
2728 || !int_cst_range1
2729 || tree_int_cst_sgn (vr0.min) < 0
2730 || tree_int_cst_sgn (vr1.min) < 0)
2732 set_value_range_to_varying (vr);
2733 return;
2735 else
2737 min = double_int_to_tree (expr_type,
2738 double_int_ior (must_be_nonzero0,
2739 must_be_nonzero1));
2740 max = double_int_to_tree (expr_type,
2741 double_int_ior (may_be_nonzero0,
2742 may_be_nonzero1));
2743 if (TREE_OVERFLOW (min) || tree_int_cst_sgn (min) < 0)
2744 min = vr0.min;
2745 else
2746 min = vrp_int_const_binop (MAX_EXPR, min, vr0.min);
2747 if (TREE_OVERFLOW (max) || tree_int_cst_sgn (max) < 0)
2748 max = NULL_TREE;
2749 min = vrp_int_const_binop (MAX_EXPR, min, vr1.min);
2752 else
2753 gcc_unreachable ();
2755 /* If either MIN or MAX overflowed, then set the resulting range to
2756 VARYING. But we do accept an overflow infinity
2757 representation. */
2758 if (min == NULL_TREE
2759 || !is_gimple_min_invariant (min)
2760 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2761 || max == NULL_TREE
2762 || !is_gimple_min_invariant (max)
2763 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2765 set_value_range_to_varying (vr);
2766 return;
2769 /* We punt if:
2770 1) [-INF, +INF]
2771 2) [-INF, +-INF(OVF)]
2772 3) [+-INF(OVF), +INF]
2773 4) [+-INF(OVF), +-INF(OVF)]
2774 We learn nothing when we have INF and INF(OVF) on both sides.
2775 Note that we do accept [-INF, -INF] and [+INF, +INF] without
2776 overflow. */
2777 if ((vrp_val_is_min (min) || is_overflow_infinity (min))
2778 && (vrp_val_is_max (max) || is_overflow_infinity (max)))
2780 set_value_range_to_varying (vr);
2781 return;
2784 cmp = compare_values (min, max);
2785 if (cmp == -2 || cmp == 1)
2787 /* If the new range has its limits swapped around (MIN > MAX),
2788 then the operation caused one of them to wrap around, mark
2789 the new range VARYING. */
2790 set_value_range_to_varying (vr);
2792 else
2793 set_value_range (vr, type, min, max, NULL);
2797 /* Extract range information from a unary expression EXPR based on
2798 the range of its operand and the expression code. */
2800 static void
2801 extract_range_from_unary_expr (value_range_t *vr, enum tree_code code,
2802 tree type, tree op0)
2804 tree min, max;
2805 int cmp;
2806 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2808 /* Refuse to operate on certain unary expressions for which we
2809 cannot easily determine a resulting range. */
2810 if (code == FIX_TRUNC_EXPR
2811 || code == FLOAT_EXPR
2812 || code == BIT_NOT_EXPR
2813 || code == CONJ_EXPR)
2815 /* We can still do constant propagation here. */
2816 if ((op0 = op_with_constant_singleton_value_range (op0)) != NULL_TREE)
2818 tree tem = fold_unary (code, type, op0);
2819 if (tem
2820 && is_gimple_min_invariant (tem)
2821 && !is_overflow_infinity (tem))
2823 set_value_range (vr, VR_RANGE, tem, tem, NULL);
2824 return;
2827 set_value_range_to_varying (vr);
2828 return;
2831 /* Get value ranges for the operand. For constant operands, create
2832 a new value range with the operand to simplify processing. */
2833 if (TREE_CODE (op0) == SSA_NAME)
2834 vr0 = *(get_value_range (op0));
2835 else if (is_gimple_min_invariant (op0))
2836 set_value_range_to_value (&vr0, op0, NULL);
2837 else
2838 set_value_range_to_varying (&vr0);
2840 /* If VR0 is UNDEFINED, so is the result. */
2841 if (vr0.type == VR_UNDEFINED)
2843 set_value_range_to_undefined (vr);
2844 return;
2847 /* Refuse to operate on symbolic ranges, or if neither operand is
2848 a pointer or integral type. */
2849 if ((!INTEGRAL_TYPE_P (TREE_TYPE (op0))
2850 && !POINTER_TYPE_P (TREE_TYPE (op0)))
2851 || (vr0.type != VR_VARYING
2852 && symbolic_range_p (&vr0)))
2854 set_value_range_to_varying (vr);
2855 return;
2858 /* If the expression involves pointers, we are only interested in
2859 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
2860 if (POINTER_TYPE_P (type) || POINTER_TYPE_P (TREE_TYPE (op0)))
2862 bool sop;
2864 sop = false;
2865 if (range_is_nonnull (&vr0)
2866 || (tree_unary_nonzero_warnv_p (code, type, op0, &sop)
2867 && !sop))
2868 set_value_range_to_nonnull (vr, type);
2869 else if (range_is_null (&vr0))
2870 set_value_range_to_null (vr, type);
2871 else
2872 set_value_range_to_varying (vr);
2874 return;
2877 /* Handle unary expressions on integer ranges. */
2878 if (CONVERT_EXPR_CODE_P (code)
2879 && INTEGRAL_TYPE_P (type)
2880 && INTEGRAL_TYPE_P (TREE_TYPE (op0)))
2882 tree inner_type = TREE_TYPE (op0);
2883 tree outer_type = type;
2885 /* If VR0 is varying and we increase the type precision, assume
2886 a full range for the following transformation. */
2887 if (vr0.type == VR_VARYING
2888 && TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type))
2890 vr0.type = VR_RANGE;
2891 vr0.min = TYPE_MIN_VALUE (inner_type);
2892 vr0.max = TYPE_MAX_VALUE (inner_type);
2895 /* If VR0 is a constant range or anti-range and the conversion is
2896 not truncating we can convert the min and max values and
2897 canonicalize the resulting range. Otherwise we can do the
2898 conversion if the size of the range is less than what the
2899 precision of the target type can represent and the range is
2900 not an anti-range. */
2901 if ((vr0.type == VR_RANGE
2902 || vr0.type == VR_ANTI_RANGE)
2903 && TREE_CODE (vr0.min) == INTEGER_CST
2904 && TREE_CODE (vr0.max) == INTEGER_CST
2905 && (!is_overflow_infinity (vr0.min)
2906 || (vr0.type == VR_RANGE
2907 && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)
2908 && needs_overflow_infinity (outer_type)
2909 && supports_overflow_infinity (outer_type)))
2910 && (!is_overflow_infinity (vr0.max)
2911 || (vr0.type == VR_RANGE
2912 && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)
2913 && needs_overflow_infinity (outer_type)
2914 && supports_overflow_infinity (outer_type)))
2915 && (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
2916 || (vr0.type == VR_RANGE
2917 && integer_zerop (int_const_binop (RSHIFT_EXPR,
2918 int_const_binop (MINUS_EXPR, vr0.max, vr0.min),
2919 size_int (TYPE_PRECISION (outer_type)))))))
2921 tree new_min, new_max;
2922 new_min = force_fit_type_double (outer_type,
2923 tree_to_double_int (vr0.min),
2924 0, false);
2925 new_max = force_fit_type_double (outer_type,
2926 tree_to_double_int (vr0.max),
2927 0, false);
2928 if (is_overflow_infinity (vr0.min))
2929 new_min = negative_overflow_infinity (outer_type);
2930 if (is_overflow_infinity (vr0.max))
2931 new_max = positive_overflow_infinity (outer_type);
2932 set_and_canonicalize_value_range (vr, vr0.type,
2933 new_min, new_max, NULL);
2934 return;
2937 set_value_range_to_varying (vr);
2938 return;
2941 /* Conversion of a VR_VARYING value to a wider type can result
2942 in a usable range. So wait until after we've handled conversions
2943 before dropping the result to VR_VARYING if we had a source
2944 operand that is VR_VARYING. */
2945 if (vr0.type == VR_VARYING)
2947 set_value_range_to_varying (vr);
2948 return;
2951 /* Apply the operation to each end of the range and see what we end
2952 up with. */
2953 if (code == NEGATE_EXPR
2954 && !TYPE_UNSIGNED (type))
2956 /* NEGATE_EXPR flips the range around. We need to treat
2957 TYPE_MIN_VALUE specially. */
2958 if (is_positive_overflow_infinity (vr0.max))
2959 min = negative_overflow_infinity (type);
2960 else if (is_negative_overflow_infinity (vr0.max))
2961 min = positive_overflow_infinity (type);
2962 else if (!vrp_val_is_min (vr0.max))
2963 min = fold_unary_to_constant (code, type, vr0.max);
2964 else if (needs_overflow_infinity (type))
2966 if (supports_overflow_infinity (type)
2967 && !is_overflow_infinity (vr0.min)
2968 && !vrp_val_is_min (vr0.min))
2969 min = positive_overflow_infinity (type);
2970 else
2972 set_value_range_to_varying (vr);
2973 return;
2976 else
2977 min = TYPE_MIN_VALUE (type);
2979 if (is_positive_overflow_infinity (vr0.min))
2980 max = negative_overflow_infinity (type);
2981 else if (is_negative_overflow_infinity (vr0.min))
2982 max = positive_overflow_infinity (type);
2983 else if (!vrp_val_is_min (vr0.min))
2984 max = fold_unary_to_constant (code, type, vr0.min);
2985 else if (needs_overflow_infinity (type))
2987 if (supports_overflow_infinity (type))
2988 max = positive_overflow_infinity (type);
2989 else
2991 set_value_range_to_varying (vr);
2992 return;
2995 else
2996 max = TYPE_MIN_VALUE (type);
2998 else if (code == NEGATE_EXPR
2999 && TYPE_UNSIGNED (type))
3001 if (!range_includes_zero_p (&vr0))
3003 max = fold_unary_to_constant (code, type, vr0.min);
3004 min = fold_unary_to_constant (code, type, vr0.max);
3006 else
3008 if (range_is_null (&vr0))
3009 set_value_range_to_null (vr, type);
3010 else
3011 set_value_range_to_varying (vr);
3012 return;
3015 else if (code == ABS_EXPR
3016 && !TYPE_UNSIGNED (type))
3018 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
3019 useful range. */
3020 if (!TYPE_OVERFLOW_UNDEFINED (type)
3021 && ((vr0.type == VR_RANGE
3022 && vrp_val_is_min (vr0.min))
3023 || (vr0.type == VR_ANTI_RANGE
3024 && !vrp_val_is_min (vr0.min)
3025 && !range_includes_zero_p (&vr0))))
3027 set_value_range_to_varying (vr);
3028 return;
3031 /* ABS_EXPR may flip the range around, if the original range
3032 included negative values. */
3033 if (is_overflow_infinity (vr0.min))
3034 min = positive_overflow_infinity (type);
3035 else if (!vrp_val_is_min (vr0.min))
3036 min = fold_unary_to_constant (code, type, vr0.min);
3037 else if (!needs_overflow_infinity (type))
3038 min = TYPE_MAX_VALUE (type);
3039 else if (supports_overflow_infinity (type))
3040 min = positive_overflow_infinity (type);
3041 else
3043 set_value_range_to_varying (vr);
3044 return;
3047 if (is_overflow_infinity (vr0.max))
3048 max = positive_overflow_infinity (type);
3049 else if (!vrp_val_is_min (vr0.max))
3050 max = fold_unary_to_constant (code, type, vr0.max);
3051 else if (!needs_overflow_infinity (type))
3052 max = TYPE_MAX_VALUE (type);
3053 else if (supports_overflow_infinity (type)
3054 /* We shouldn't generate [+INF, +INF] as set_value_range
3055 doesn't like this and ICEs. */
3056 && !is_positive_overflow_infinity (min))
3057 max = positive_overflow_infinity (type);
3058 else
3060 set_value_range_to_varying (vr);
3061 return;
3064 cmp = compare_values (min, max);
3066 /* If a VR_ANTI_RANGEs contains zero, then we have
3067 ~[-INF, min(MIN, MAX)]. */
3068 if (vr0.type == VR_ANTI_RANGE)
3070 if (range_includes_zero_p (&vr0))
3072 /* Take the lower of the two values. */
3073 if (cmp != 1)
3074 max = min;
3076 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
3077 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
3078 flag_wrapv is set and the original anti-range doesn't include
3079 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
3080 if (TYPE_OVERFLOW_WRAPS (type))
3082 tree type_min_value = TYPE_MIN_VALUE (type);
3084 min = (vr0.min != type_min_value
3085 ? int_const_binop (PLUS_EXPR, type_min_value,
3086 integer_one_node)
3087 : type_min_value);
3089 else
3091 if (overflow_infinity_range_p (&vr0))
3092 min = negative_overflow_infinity (type);
3093 else
3094 min = TYPE_MIN_VALUE (type);
3097 else
3099 /* All else has failed, so create the range [0, INF], even for
3100 flag_wrapv since TYPE_MIN_VALUE is in the original
3101 anti-range. */
3102 vr0.type = VR_RANGE;
3103 min = build_int_cst (type, 0);
3104 if (needs_overflow_infinity (type))
3106 if (supports_overflow_infinity (type))
3107 max = positive_overflow_infinity (type);
3108 else
3110 set_value_range_to_varying (vr);
3111 return;
3114 else
3115 max = TYPE_MAX_VALUE (type);
3119 /* If the range contains zero then we know that the minimum value in the
3120 range will be zero. */
3121 else if (range_includes_zero_p (&vr0))
3123 if (cmp == 1)
3124 max = min;
3125 min = build_int_cst (type, 0);
3127 else
3129 /* If the range was reversed, swap MIN and MAX. */
3130 if (cmp == 1)
3132 tree t = min;
3133 min = max;
3134 max = t;
3138 else
3140 /* Otherwise, operate on each end of the range. */
3141 min = fold_unary_to_constant (code, type, vr0.min);
3142 max = fold_unary_to_constant (code, type, vr0.max);
3144 if (needs_overflow_infinity (type))
3146 gcc_assert (code != NEGATE_EXPR && code != ABS_EXPR);
3148 /* If both sides have overflowed, we don't know
3149 anything. */
3150 if ((is_overflow_infinity (vr0.min)
3151 || TREE_OVERFLOW (min))
3152 && (is_overflow_infinity (vr0.max)
3153 || TREE_OVERFLOW (max)))
3155 set_value_range_to_varying (vr);
3156 return;
3159 if (is_overflow_infinity (vr0.min))
3160 min = vr0.min;
3161 else if (TREE_OVERFLOW (min))
3163 if (supports_overflow_infinity (type))
3164 min = (tree_int_cst_sgn (min) >= 0
3165 ? positive_overflow_infinity (TREE_TYPE (min))
3166 : negative_overflow_infinity (TREE_TYPE (min)));
3167 else
3169 set_value_range_to_varying (vr);
3170 return;
3174 if (is_overflow_infinity (vr0.max))
3175 max = vr0.max;
3176 else if (TREE_OVERFLOW (max))
3178 if (supports_overflow_infinity (type))
3179 max = (tree_int_cst_sgn (max) >= 0
3180 ? positive_overflow_infinity (TREE_TYPE (max))
3181 : negative_overflow_infinity (TREE_TYPE (max)));
3182 else
3184 set_value_range_to_varying (vr);
3185 return;
3191 cmp = compare_values (min, max);
3192 if (cmp == -2 || cmp == 1)
3194 /* If the new range has its limits swapped around (MIN > MAX),
3195 then the operation caused one of them to wrap around, mark
3196 the new range VARYING. */
3197 set_value_range_to_varying (vr);
3199 else
3200 set_value_range (vr, vr0.type, min, max, NULL);
3204 /* Extract range information from a conditional expression EXPR based on
3205 the ranges of each of its operands and the expression code. */
3207 static void
3208 extract_range_from_cond_expr (value_range_t *vr, tree expr)
3210 tree op0, op1;
3211 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3212 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3214 /* Get value ranges for each operand. For constant operands, create
3215 a new value range with the operand to simplify processing. */
3216 op0 = COND_EXPR_THEN (expr);
3217 if (TREE_CODE (op0) == SSA_NAME)
3218 vr0 = *(get_value_range (op0));
3219 else if (is_gimple_min_invariant (op0))
3220 set_value_range_to_value (&vr0, op0, NULL);
3221 else
3222 set_value_range_to_varying (&vr0);
3224 op1 = COND_EXPR_ELSE (expr);
3225 if (TREE_CODE (op1) == SSA_NAME)
3226 vr1 = *(get_value_range (op1));
3227 else if (is_gimple_min_invariant (op1))
3228 set_value_range_to_value (&vr1, op1, NULL);
3229 else
3230 set_value_range_to_varying (&vr1);
3232 /* The resulting value range is the union of the operand ranges */
3233 vrp_meet (&vr0, &vr1);
3234 copy_value_range (vr, &vr0);
3238 /* Extract range information from a comparison expression EXPR based
3239 on the range of its operand and the expression code. */
3241 static void
3242 extract_range_from_comparison (value_range_t *vr, enum tree_code code,
3243 tree type, tree op0, tree op1)
3245 bool sop = false;
3246 tree val;
3248 val = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, false, &sop,
3249 NULL);
3251 /* A disadvantage of using a special infinity as an overflow
3252 representation is that we lose the ability to record overflow
3253 when we don't have an infinity. So we have to ignore a result
3254 which relies on overflow. */
3256 if (val && !is_overflow_infinity (val) && !sop)
3258 /* Since this expression was found on the RHS of an assignment,
3259 its type may be different from _Bool. Convert VAL to EXPR's
3260 type. */
3261 val = fold_convert (type, val);
3262 if (is_gimple_min_invariant (val))
3263 set_value_range_to_value (vr, val, vr->equiv);
3264 else
3265 set_value_range (vr, VR_RANGE, val, val, vr->equiv);
3267 else
3268 /* The result of a comparison is always true or false. */
3269 set_value_range_to_truthvalue (vr, type);
3272 /* Try to derive a nonnegative or nonzero range out of STMT relying
3273 primarily on generic routines in fold in conjunction with range data.
3274 Store the result in *VR */
3276 static void
3277 extract_range_basic (value_range_t *vr, gimple stmt)
3279 bool sop = false;
3280 tree type = gimple_expr_type (stmt);
3282 if (INTEGRAL_TYPE_P (type)
3283 && gimple_stmt_nonnegative_warnv_p (stmt, &sop))
3284 set_value_range_to_nonnegative (vr, type,
3285 sop || stmt_overflow_infinity (stmt));
3286 else if (vrp_stmt_computes_nonzero (stmt, &sop)
3287 && !sop)
3288 set_value_range_to_nonnull (vr, type);
3289 else
3290 set_value_range_to_varying (vr);
3294 /* Try to compute a useful range out of assignment STMT and store it
3295 in *VR. */
3297 static void
3298 extract_range_from_assignment (value_range_t *vr, gimple stmt)
3300 enum tree_code code = gimple_assign_rhs_code (stmt);
3302 if (code == ASSERT_EXPR)
3303 extract_range_from_assert (vr, gimple_assign_rhs1 (stmt));
3304 else if (code == SSA_NAME)
3305 extract_range_from_ssa_name (vr, gimple_assign_rhs1 (stmt));
3306 else if (TREE_CODE_CLASS (code) == tcc_binary
3307 || code == TRUTH_AND_EXPR
3308 || code == TRUTH_OR_EXPR
3309 || code == TRUTH_XOR_EXPR)
3310 extract_range_from_binary_expr (vr, gimple_assign_rhs_code (stmt),
3311 gimple_expr_type (stmt),
3312 gimple_assign_rhs1 (stmt),
3313 gimple_assign_rhs2 (stmt));
3314 else if (TREE_CODE_CLASS (code) == tcc_unary)
3315 extract_range_from_unary_expr (vr, gimple_assign_rhs_code (stmt),
3316 gimple_expr_type (stmt),
3317 gimple_assign_rhs1 (stmt));
3318 else if (code == COND_EXPR)
3319 extract_range_from_cond_expr (vr, gimple_assign_rhs1 (stmt));
3320 else if (TREE_CODE_CLASS (code) == tcc_comparison)
3321 extract_range_from_comparison (vr, gimple_assign_rhs_code (stmt),
3322 gimple_expr_type (stmt),
3323 gimple_assign_rhs1 (stmt),
3324 gimple_assign_rhs2 (stmt));
3325 else if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS
3326 && is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
3327 set_value_range_to_value (vr, gimple_assign_rhs1 (stmt), NULL);
3328 else
3329 set_value_range_to_varying (vr);
3331 if (vr->type == VR_VARYING)
3332 extract_range_basic (vr, stmt);
3335 /* Given a range VR, a LOOP and a variable VAR, determine whether it
3336 would be profitable to adjust VR using scalar evolution information
3337 for VAR. If so, update VR with the new limits. */
3339 static void
3340 adjust_range_with_scev (value_range_t *vr, struct loop *loop,
3341 gimple stmt, tree var)
3343 tree init, step, chrec, tmin, tmax, min, max, type, tem;
3344 enum ev_direction dir;
3346 /* TODO. Don't adjust anti-ranges. An anti-range may provide
3347 better opportunities than a regular range, but I'm not sure. */
3348 if (vr->type == VR_ANTI_RANGE)
3349 return;
3351 chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
3353 /* Like in PR19590, scev can return a constant function. */
3354 if (is_gimple_min_invariant (chrec))
3356 set_value_range_to_value (vr, chrec, vr->equiv);
3357 return;
3360 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
3361 return;
3363 init = initial_condition_in_loop_num (chrec, loop->num);
3364 tem = op_with_constant_singleton_value_range (init);
3365 if (tem)
3366 init = tem;
3367 step = evolution_part_in_loop_num (chrec, loop->num);
3368 tem = op_with_constant_singleton_value_range (step);
3369 if (tem)
3370 step = tem;
3372 /* If STEP is symbolic, we can't know whether INIT will be the
3373 minimum or maximum value in the range. Also, unless INIT is
3374 a simple expression, compare_values and possibly other functions
3375 in tree-vrp won't be able to handle it. */
3376 if (step == NULL_TREE
3377 || !is_gimple_min_invariant (step)
3378 || !valid_value_p (init))
3379 return;
3381 dir = scev_direction (chrec);
3382 if (/* Do not adjust ranges if we do not know whether the iv increases
3383 or decreases, ... */
3384 dir == EV_DIR_UNKNOWN
3385 /* ... or if it may wrap. */
3386 || scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
3387 true))
3388 return;
3390 /* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
3391 negative_overflow_infinity and positive_overflow_infinity,
3392 because we have concluded that the loop probably does not
3393 wrap. */
3395 type = TREE_TYPE (var);
3396 if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
3397 tmin = lower_bound_in_type (type, type);
3398 else
3399 tmin = TYPE_MIN_VALUE (type);
3400 if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
3401 tmax = upper_bound_in_type (type, type);
3402 else
3403 tmax = TYPE_MAX_VALUE (type);
3405 /* Try to use estimated number of iterations for the loop to constrain the
3406 final value in the evolution.
3407 We are interested in the number of executions of the latch, while
3408 nb_iterations_upper_bound includes the last execution of the exit test. */
3409 if (TREE_CODE (step) == INTEGER_CST
3410 && loop->any_upper_bound
3411 && !double_int_zero_p (loop->nb_iterations_upper_bound)
3412 && is_gimple_val (init)
3413 && (TREE_CODE (init) != SSA_NAME
3414 || get_value_range (init)->type == VR_RANGE))
3416 value_range_t maxvr = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3417 double_int dtmp;
3418 bool unsigned_p = TYPE_UNSIGNED (TREE_TYPE (step));
3419 int overflow = 0;
3421 dtmp = double_int_mul_with_sign (tree_to_double_int (step),
3422 double_int_sub (
3423 loop->nb_iterations_upper_bound,
3424 double_int_one),
3425 unsigned_p, &overflow);
3426 tem = double_int_to_tree (TREE_TYPE (init), dtmp);
3427 /* If the multiplication overflowed we can't do a meaningful
3428 adjustment. */
3429 if (!overflow && double_int_equal_p (dtmp, tree_to_double_int (tem)))
3431 extract_range_from_binary_expr (&maxvr, PLUS_EXPR,
3432 TREE_TYPE (init), init, tem);
3433 /* Likewise if the addition did. */
3434 if (maxvr.type == VR_RANGE)
3436 tmin = maxvr.min;
3437 tmax = maxvr.max;
3442 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
3444 min = tmin;
3445 max = tmax;
3447 /* For VARYING or UNDEFINED ranges, just about anything we get
3448 from scalar evolutions should be better. */
3450 if (dir == EV_DIR_DECREASES)
3451 max = init;
3452 else
3453 min = init;
3455 /* If we would create an invalid range, then just assume we
3456 know absolutely nothing. This may be over-conservative,
3457 but it's clearly safe, and should happen only in unreachable
3458 parts of code, or for invalid programs. */
3459 if (compare_values (min, max) == 1)
3460 return;
3462 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
3464 else if (vr->type == VR_RANGE)
3466 min = vr->min;
3467 max = vr->max;
3469 if (dir == EV_DIR_DECREASES)
3471 /* INIT is the maximum value. If INIT is lower than VR->MAX
3472 but no smaller than VR->MIN, set VR->MAX to INIT. */
3473 if (compare_values (init, max) == -1)
3474 max = init;
3476 /* According to the loop information, the variable does not
3477 overflow. If we think it does, probably because of an
3478 overflow due to arithmetic on a different INF value,
3479 reset now. */
3480 if (is_negative_overflow_infinity (min)
3481 || compare_values (min, tmin) == -1)
3482 min = tmin;
3485 else
3487 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
3488 if (compare_values (init, min) == 1)
3489 min = init;
3491 if (is_positive_overflow_infinity (max)
3492 || compare_values (tmax, max) == -1)
3493 max = tmax;
3496 /* If we just created an invalid range with the minimum
3497 greater than the maximum, we fail conservatively.
3498 This should happen only in unreachable
3499 parts of code, or for invalid programs. */
3500 if (compare_values (min, max) == 1)
3501 return;
3503 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
3507 /* Return true if VAR may overflow at STMT. This checks any available
3508 loop information to see if we can determine that VAR does not
3509 overflow. */
3511 static bool
3512 vrp_var_may_overflow (tree var, gimple stmt)
3514 struct loop *l;
3515 tree chrec, init, step;
3517 if (current_loops == NULL)
3518 return true;
3520 l = loop_containing_stmt (stmt);
3521 if (l == NULL
3522 || !loop_outer (l))
3523 return true;
3525 chrec = instantiate_parameters (l, analyze_scalar_evolution (l, var));
3526 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
3527 return true;
3529 init = initial_condition_in_loop_num (chrec, l->num);
3530 step = evolution_part_in_loop_num (chrec, l->num);
3532 if (step == NULL_TREE
3533 || !is_gimple_min_invariant (step)
3534 || !valid_value_p (init))
3535 return true;
3537 /* If we get here, we know something useful about VAR based on the
3538 loop information. If it wraps, it may overflow. */
3540 if (scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
3541 true))
3542 return true;
3544 if (dump_file && (dump_flags & TDF_DETAILS) != 0)
3546 print_generic_expr (dump_file, var, 0);
3547 fprintf (dump_file, ": loop information indicates does not overflow\n");
3550 return false;
3554 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
3556 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
3557 all the values in the ranges.
3559 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
3561 - Return NULL_TREE if it is not always possible to determine the
3562 value of the comparison.
3564 Also set *STRICT_OVERFLOW_P to indicate whether a range with an
3565 overflow infinity was used in the test. */
3568 static tree
3569 compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1,
3570 bool *strict_overflow_p)
3572 /* VARYING or UNDEFINED ranges cannot be compared. */
3573 if (vr0->type == VR_VARYING
3574 || vr0->type == VR_UNDEFINED
3575 || vr1->type == VR_VARYING
3576 || vr1->type == VR_UNDEFINED)
3577 return NULL_TREE;
3579 /* Anti-ranges need to be handled separately. */
3580 if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
3582 /* If both are anti-ranges, then we cannot compute any
3583 comparison. */
3584 if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
3585 return NULL_TREE;
3587 /* These comparisons are never statically computable. */
3588 if (comp == GT_EXPR
3589 || comp == GE_EXPR
3590 || comp == LT_EXPR
3591 || comp == LE_EXPR)
3592 return NULL_TREE;
3594 /* Equality can be computed only between a range and an
3595 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
3596 if (vr0->type == VR_RANGE)
3598 /* To simplify processing, make VR0 the anti-range. */
3599 value_range_t *tmp = vr0;
3600 vr0 = vr1;
3601 vr1 = tmp;
3604 gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
3606 if (compare_values_warnv (vr0->min, vr1->min, strict_overflow_p) == 0
3607 && compare_values_warnv (vr0->max, vr1->max, strict_overflow_p) == 0)
3608 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
3610 return NULL_TREE;
3613 if (!usable_range_p (vr0, strict_overflow_p)
3614 || !usable_range_p (vr1, strict_overflow_p))
3615 return NULL_TREE;
3617 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
3618 operands around and change the comparison code. */
3619 if (comp == GT_EXPR || comp == GE_EXPR)
3621 value_range_t *tmp;
3622 comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
3623 tmp = vr0;
3624 vr0 = vr1;
3625 vr1 = tmp;
3628 if (comp == EQ_EXPR)
3630 /* Equality may only be computed if both ranges represent
3631 exactly one value. */
3632 if (compare_values_warnv (vr0->min, vr0->max, strict_overflow_p) == 0
3633 && compare_values_warnv (vr1->min, vr1->max, strict_overflow_p) == 0)
3635 int cmp_min = compare_values_warnv (vr0->min, vr1->min,
3636 strict_overflow_p);
3637 int cmp_max = compare_values_warnv (vr0->max, vr1->max,
3638 strict_overflow_p);
3639 if (cmp_min == 0 && cmp_max == 0)
3640 return boolean_true_node;
3641 else if (cmp_min != -2 && cmp_max != -2)
3642 return boolean_false_node;
3644 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
3645 else if (compare_values_warnv (vr0->min, vr1->max,
3646 strict_overflow_p) == 1
3647 || compare_values_warnv (vr1->min, vr0->max,
3648 strict_overflow_p) == 1)
3649 return boolean_false_node;
3651 return NULL_TREE;
3653 else if (comp == NE_EXPR)
3655 int cmp1, cmp2;
3657 /* If VR0 is completely to the left or completely to the right
3658 of VR1, they are always different. Notice that we need to
3659 make sure that both comparisons yield similar results to
3660 avoid comparing values that cannot be compared at
3661 compile-time. */
3662 cmp1 = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
3663 cmp2 = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
3664 if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
3665 return boolean_true_node;
3667 /* If VR0 and VR1 represent a single value and are identical,
3668 return false. */
3669 else if (compare_values_warnv (vr0->min, vr0->max,
3670 strict_overflow_p) == 0
3671 && compare_values_warnv (vr1->min, vr1->max,
3672 strict_overflow_p) == 0
3673 && compare_values_warnv (vr0->min, vr1->min,
3674 strict_overflow_p) == 0
3675 && compare_values_warnv (vr0->max, vr1->max,
3676 strict_overflow_p) == 0)
3677 return boolean_false_node;
3679 /* Otherwise, they may or may not be different. */
3680 else
3681 return NULL_TREE;
3683 else if (comp == LT_EXPR || comp == LE_EXPR)
3685 int tst;
3687 /* If VR0 is to the left of VR1, return true. */
3688 tst = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
3689 if ((comp == LT_EXPR && tst == -1)
3690 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
3692 if (overflow_infinity_range_p (vr0)
3693 || overflow_infinity_range_p (vr1))
3694 *strict_overflow_p = true;
3695 return boolean_true_node;
3698 /* If VR0 is to the right of VR1, return false. */
3699 tst = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
3700 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
3701 || (comp == LE_EXPR && tst == 1))
3703 if (overflow_infinity_range_p (vr0)
3704 || overflow_infinity_range_p (vr1))
3705 *strict_overflow_p = true;
3706 return boolean_false_node;
3709 /* Otherwise, we don't know. */
3710 return NULL_TREE;
3713 gcc_unreachable ();
3717 /* Given a value range VR, a value VAL and a comparison code COMP, return
3718 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
3719 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
3720 always returns false. Return NULL_TREE if it is not always
3721 possible to determine the value of the comparison. Also set
3722 *STRICT_OVERFLOW_P to indicate whether a range with an overflow
3723 infinity was used in the test. */
3725 static tree
3726 compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val,
3727 bool *strict_overflow_p)
3729 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
3730 return NULL_TREE;
3732 /* Anti-ranges need to be handled separately. */
3733 if (vr->type == VR_ANTI_RANGE)
3735 /* For anti-ranges, the only predicates that we can compute at
3736 compile time are equality and inequality. */
3737 if (comp == GT_EXPR
3738 || comp == GE_EXPR
3739 || comp == LT_EXPR
3740 || comp == LE_EXPR)
3741 return NULL_TREE;
3743 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
3744 if (value_inside_range (val, vr) == 1)
3745 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
3747 return NULL_TREE;
3750 if (!usable_range_p (vr, strict_overflow_p))
3751 return NULL_TREE;
3753 if (comp == EQ_EXPR)
3755 /* EQ_EXPR may only be computed if VR represents exactly
3756 one value. */
3757 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0)
3759 int cmp = compare_values_warnv (vr->min, val, strict_overflow_p);
3760 if (cmp == 0)
3761 return boolean_true_node;
3762 else if (cmp == -1 || cmp == 1 || cmp == 2)
3763 return boolean_false_node;
3765 else if (compare_values_warnv (val, vr->min, strict_overflow_p) == -1
3766 || compare_values_warnv (vr->max, val, strict_overflow_p) == -1)
3767 return boolean_false_node;
3769 return NULL_TREE;
3771 else if (comp == NE_EXPR)
3773 /* If VAL is not inside VR, then they are always different. */
3774 if (compare_values_warnv (vr->max, val, strict_overflow_p) == -1
3775 || compare_values_warnv (vr->min, val, strict_overflow_p) == 1)
3776 return boolean_true_node;
3778 /* If VR represents exactly one value equal to VAL, then return
3779 false. */
3780 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0
3781 && compare_values_warnv (vr->min, val, strict_overflow_p) == 0)
3782 return boolean_false_node;
3784 /* Otherwise, they may or may not be different. */
3785 return NULL_TREE;
3787 else if (comp == LT_EXPR || comp == LE_EXPR)
3789 int tst;
3791 /* If VR is to the left of VAL, return true. */
3792 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
3793 if ((comp == LT_EXPR && tst == -1)
3794 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
3796 if (overflow_infinity_range_p (vr))
3797 *strict_overflow_p = true;
3798 return boolean_true_node;
3801 /* If VR is to the right of VAL, return false. */
3802 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
3803 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
3804 || (comp == LE_EXPR && tst == 1))
3806 if (overflow_infinity_range_p (vr))
3807 *strict_overflow_p = true;
3808 return boolean_false_node;
3811 /* Otherwise, we don't know. */
3812 return NULL_TREE;
3814 else if (comp == GT_EXPR || comp == GE_EXPR)
3816 int tst;
3818 /* If VR is to the right of VAL, return true. */
3819 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
3820 if ((comp == GT_EXPR && tst == 1)
3821 || (comp == GE_EXPR && (tst == 0 || tst == 1)))
3823 if (overflow_infinity_range_p (vr))
3824 *strict_overflow_p = true;
3825 return boolean_true_node;
3828 /* If VR is to the left of VAL, return false. */
3829 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
3830 if ((comp == GT_EXPR && (tst == -1 || tst == 0))
3831 || (comp == GE_EXPR && tst == -1))
3833 if (overflow_infinity_range_p (vr))
3834 *strict_overflow_p = true;
3835 return boolean_false_node;
3838 /* Otherwise, we don't know. */
3839 return NULL_TREE;
3842 gcc_unreachable ();
3846 /* Debugging dumps. */
3848 void dump_value_range (FILE *, value_range_t *);
3849 void debug_value_range (value_range_t *);
3850 void dump_all_value_ranges (FILE *);
3851 void debug_all_value_ranges (void);
3852 void dump_vr_equiv (FILE *, bitmap);
3853 void debug_vr_equiv (bitmap);
3856 /* Dump value range VR to FILE. */
3858 void
3859 dump_value_range (FILE *file, value_range_t *vr)
3861 if (vr == NULL)
3862 fprintf (file, "[]");
3863 else if (vr->type == VR_UNDEFINED)
3864 fprintf (file, "UNDEFINED");
3865 else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
3867 tree type = TREE_TYPE (vr->min);
3869 fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
3871 if (is_negative_overflow_infinity (vr->min))
3872 fprintf (file, "-INF(OVF)");
3873 else if (INTEGRAL_TYPE_P (type)
3874 && !TYPE_UNSIGNED (type)
3875 && vrp_val_is_min (vr->min))
3876 fprintf (file, "-INF");
3877 else
3878 print_generic_expr (file, vr->min, 0);
3880 fprintf (file, ", ");
3882 if (is_positive_overflow_infinity (vr->max))
3883 fprintf (file, "+INF(OVF)");
3884 else if (INTEGRAL_TYPE_P (type)
3885 && vrp_val_is_max (vr->max))
3886 fprintf (file, "+INF");
3887 else
3888 print_generic_expr (file, vr->max, 0);
3890 fprintf (file, "]");
3892 if (vr->equiv)
3894 bitmap_iterator bi;
3895 unsigned i, c = 0;
3897 fprintf (file, " EQUIVALENCES: { ");
3899 EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
3901 print_generic_expr (file, ssa_name (i), 0);
3902 fprintf (file, " ");
3903 c++;
3906 fprintf (file, "} (%u elements)", c);
3909 else if (vr->type == VR_VARYING)
3910 fprintf (file, "VARYING");
3911 else
3912 fprintf (file, "INVALID RANGE");
3916 /* Dump value range VR to stderr. */
3918 DEBUG_FUNCTION void
3919 debug_value_range (value_range_t *vr)
3921 dump_value_range (stderr, vr);
3922 fprintf (stderr, "\n");
3926 /* Dump value ranges of all SSA_NAMEs to FILE. */
3928 void
3929 dump_all_value_ranges (FILE *file)
3931 size_t i;
3933 for (i = 0; i < num_ssa_names; i++)
3935 if (vr_value[i])
3937 print_generic_expr (file, ssa_name (i), 0);
3938 fprintf (file, ": ");
3939 dump_value_range (file, vr_value[i]);
3940 fprintf (file, "\n");
3944 fprintf (file, "\n");
3948 /* Dump all value ranges to stderr. */
3950 DEBUG_FUNCTION void
3951 debug_all_value_ranges (void)
3953 dump_all_value_ranges (stderr);
3957 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
3958 create a new SSA name N and return the assertion assignment
3959 'V = ASSERT_EXPR <V, V OP W>'. */
3961 static gimple
3962 build_assert_expr_for (tree cond, tree v)
3964 tree n;
3965 gimple assertion;
3967 gcc_assert (TREE_CODE (v) == SSA_NAME);
3968 n = duplicate_ssa_name (v, NULL);
3970 if (COMPARISON_CLASS_P (cond))
3972 tree a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
3973 assertion = gimple_build_assign (n, a);
3975 else if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
3977 /* Given !V, build the assignment N = false. */
3978 tree op0 = TREE_OPERAND (cond, 0);
3979 gcc_assert (op0 == v);
3980 assertion = gimple_build_assign (n, boolean_false_node);
3982 else if (TREE_CODE (cond) == SSA_NAME)
3984 /* Given V, build the assignment N = true. */
3985 gcc_assert (v == cond);
3986 assertion = gimple_build_assign (n, boolean_true_node);
3988 else
3989 gcc_unreachable ();
3991 SSA_NAME_DEF_STMT (n) = assertion;
3993 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
3994 operand of the ASSERT_EXPR. Register the new name and the old one
3995 in the replacement table so that we can fix the SSA web after
3996 adding all the ASSERT_EXPRs. */
3997 register_new_name_mapping (n, v);
3999 return assertion;
4003 /* Return false if EXPR is a predicate expression involving floating
4004 point values. */
4006 static inline bool
4007 fp_predicate (gimple stmt)
4009 GIMPLE_CHECK (stmt, GIMPLE_COND);
4011 return FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt)));
4015 /* If the range of values taken by OP can be inferred after STMT executes,
4016 return the comparison code (COMP_CODE_P) and value (VAL_P) that
4017 describes the inferred range. Return true if a range could be
4018 inferred. */
4020 static bool
4021 infer_value_range (gimple stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
4023 *val_p = NULL_TREE;
4024 *comp_code_p = ERROR_MARK;
4026 /* Do not attempt to infer anything in names that flow through
4027 abnormal edges. */
4028 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
4029 return false;
4031 /* Similarly, don't infer anything from statements that may throw
4032 exceptions. */
4033 if (stmt_could_throw_p (stmt))
4034 return false;
4036 /* If STMT is the last statement of a basic block with no
4037 successors, there is no point inferring anything about any of its
4038 operands. We would not be able to find a proper insertion point
4039 for the assertion, anyway. */
4040 if (stmt_ends_bb_p (stmt) && EDGE_COUNT (gimple_bb (stmt)->succs) == 0)
4041 return false;
4043 /* We can only assume that a pointer dereference will yield
4044 non-NULL if -fdelete-null-pointer-checks is enabled. */
4045 if (flag_delete_null_pointer_checks
4046 && POINTER_TYPE_P (TREE_TYPE (op))
4047 && gimple_code (stmt) != GIMPLE_ASM)
4049 unsigned num_uses, num_loads, num_stores;
4051 count_uses_and_derefs (op, stmt, &num_uses, &num_loads, &num_stores);
4052 if (num_loads + num_stores > 0)
4054 *val_p = build_int_cst (TREE_TYPE (op), 0);
4055 *comp_code_p = NE_EXPR;
4056 return true;
4060 return false;
4064 void dump_asserts_for (FILE *, tree);
4065 void debug_asserts_for (tree);
4066 void dump_all_asserts (FILE *);
4067 void debug_all_asserts (void);
4069 /* Dump all the registered assertions for NAME to FILE. */
4071 void
4072 dump_asserts_for (FILE *file, tree name)
4074 assert_locus_t loc;
4076 fprintf (file, "Assertions to be inserted for ");
4077 print_generic_expr (file, name, 0);
4078 fprintf (file, "\n");
4080 loc = asserts_for[SSA_NAME_VERSION (name)];
4081 while (loc)
4083 fprintf (file, "\t");
4084 print_gimple_stmt (file, gsi_stmt (loc->si), 0, 0);
4085 fprintf (file, "\n\tBB #%d", loc->bb->index);
4086 if (loc->e)
4088 fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
4089 loc->e->dest->index);
4090 dump_edge_info (file, loc->e, 0);
4092 fprintf (file, "\n\tPREDICATE: ");
4093 print_generic_expr (file, name, 0);
4094 fprintf (file, " %s ", tree_code_name[(int)loc->comp_code]);
4095 print_generic_expr (file, loc->val, 0);
4096 fprintf (file, "\n\n");
4097 loc = loc->next;
4100 fprintf (file, "\n");
4104 /* Dump all the registered assertions for NAME to stderr. */
4106 DEBUG_FUNCTION void
4107 debug_asserts_for (tree name)
4109 dump_asserts_for (stderr, name);
4113 /* Dump all the registered assertions for all the names to FILE. */
4115 void
4116 dump_all_asserts (FILE *file)
4118 unsigned i;
4119 bitmap_iterator bi;
4121 fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
4122 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
4123 dump_asserts_for (file, ssa_name (i));
4124 fprintf (file, "\n");
4128 /* Dump all the registered assertions for all the names to stderr. */
4130 DEBUG_FUNCTION void
4131 debug_all_asserts (void)
4133 dump_all_asserts (stderr);
4137 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
4138 'EXPR COMP_CODE VAL' at a location that dominates block BB or
4139 E->DEST, then register this location as a possible insertion point
4140 for ASSERT_EXPR <NAME, EXPR COMP_CODE VAL>.
4142 BB, E and SI provide the exact insertion point for the new
4143 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
4144 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
4145 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
4146 must not be NULL. */
4148 static void
4149 register_new_assert_for (tree name, tree expr,
4150 enum tree_code comp_code,
4151 tree val,
4152 basic_block bb,
4153 edge e,
4154 gimple_stmt_iterator si)
4156 assert_locus_t n, loc, last_loc;
4157 basic_block dest_bb;
4159 gcc_checking_assert (bb == NULL || e == NULL);
4161 if (e == NULL)
4162 gcc_checking_assert (gimple_code (gsi_stmt (si)) != GIMPLE_COND
4163 && gimple_code (gsi_stmt (si)) != GIMPLE_SWITCH);
4165 /* Never build an assert comparing against an integer constant with
4166 TREE_OVERFLOW set. This confuses our undefined overflow warning
4167 machinery. */
4168 if (TREE_CODE (val) == INTEGER_CST
4169 && TREE_OVERFLOW (val))
4170 val = build_int_cst_wide (TREE_TYPE (val),
4171 TREE_INT_CST_LOW (val), TREE_INT_CST_HIGH (val));
4173 /* The new assertion A will be inserted at BB or E. We need to
4174 determine if the new location is dominated by a previously
4175 registered location for A. If we are doing an edge insertion,
4176 assume that A will be inserted at E->DEST. Note that this is not
4177 necessarily true.
4179 If E is a critical edge, it will be split. But even if E is
4180 split, the new block will dominate the same set of blocks that
4181 E->DEST dominates.
4183 The reverse, however, is not true, blocks dominated by E->DEST
4184 will not be dominated by the new block created to split E. So,
4185 if the insertion location is on a critical edge, we will not use
4186 the new location to move another assertion previously registered
4187 at a block dominated by E->DEST. */
4188 dest_bb = (bb) ? bb : e->dest;
4190 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
4191 VAL at a block dominating DEST_BB, then we don't need to insert a new
4192 one. Similarly, if the same assertion already exists at a block
4193 dominated by DEST_BB and the new location is not on a critical
4194 edge, then update the existing location for the assertion (i.e.,
4195 move the assertion up in the dominance tree).
4197 Note, this is implemented as a simple linked list because there
4198 should not be more than a handful of assertions registered per
4199 name. If this becomes a performance problem, a table hashed by
4200 COMP_CODE and VAL could be implemented. */
4201 loc = asserts_for[SSA_NAME_VERSION (name)];
4202 last_loc = loc;
4203 while (loc)
4205 if (loc->comp_code == comp_code
4206 && (loc->val == val
4207 || operand_equal_p (loc->val, val, 0))
4208 && (loc->expr == expr
4209 || operand_equal_p (loc->expr, expr, 0)))
4211 /* If the assertion NAME COMP_CODE VAL has already been
4212 registered at a basic block that dominates DEST_BB, then
4213 we don't need to insert the same assertion again. Note
4214 that we don't check strict dominance here to avoid
4215 replicating the same assertion inside the same basic
4216 block more than once (e.g., when a pointer is
4217 dereferenced several times inside a block).
4219 An exception to this rule are edge insertions. If the
4220 new assertion is to be inserted on edge E, then it will
4221 dominate all the other insertions that we may want to
4222 insert in DEST_BB. So, if we are doing an edge
4223 insertion, don't do this dominance check. */
4224 if (e == NULL
4225 && dominated_by_p (CDI_DOMINATORS, dest_bb, loc->bb))
4226 return;
4228 /* Otherwise, if E is not a critical edge and DEST_BB
4229 dominates the existing location for the assertion, move
4230 the assertion up in the dominance tree by updating its
4231 location information. */
4232 if ((e == NULL || !EDGE_CRITICAL_P (e))
4233 && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
4235 loc->bb = dest_bb;
4236 loc->e = e;
4237 loc->si = si;
4238 return;
4242 /* Update the last node of the list and move to the next one. */
4243 last_loc = loc;
4244 loc = loc->next;
4247 /* If we didn't find an assertion already registered for
4248 NAME COMP_CODE VAL, add a new one at the end of the list of
4249 assertions associated with NAME. */
4250 n = XNEW (struct assert_locus_d);
4251 n->bb = dest_bb;
4252 n->e = e;
4253 n->si = si;
4254 n->comp_code = comp_code;
4255 n->val = val;
4256 n->expr = expr;
4257 n->next = NULL;
4259 if (last_loc)
4260 last_loc->next = n;
4261 else
4262 asserts_for[SSA_NAME_VERSION (name)] = n;
4264 bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
4267 /* (COND_OP0 COND_CODE COND_OP1) is a predicate which uses NAME.
4268 Extract a suitable test code and value and store them into *CODE_P and
4269 *VAL_P so the predicate is normalized to NAME *CODE_P *VAL_P.
4271 If no extraction was possible, return FALSE, otherwise return TRUE.
4273 If INVERT is true, then we invert the result stored into *CODE_P. */
4275 static bool
4276 extract_code_and_val_from_cond_with_ops (tree name, enum tree_code cond_code,
4277 tree cond_op0, tree cond_op1,
4278 bool invert, enum tree_code *code_p,
4279 tree *val_p)
4281 enum tree_code comp_code;
4282 tree val;
4284 /* Otherwise, we have a comparison of the form NAME COMP VAL
4285 or VAL COMP NAME. */
4286 if (name == cond_op1)
4288 /* If the predicate is of the form VAL COMP NAME, flip
4289 COMP around because we need to register NAME as the
4290 first operand in the predicate. */
4291 comp_code = swap_tree_comparison (cond_code);
4292 val = cond_op0;
4294 else
4296 /* The comparison is of the form NAME COMP VAL, so the
4297 comparison code remains unchanged. */
4298 comp_code = cond_code;
4299 val = cond_op1;
4302 /* Invert the comparison code as necessary. */
4303 if (invert)
4304 comp_code = invert_tree_comparison (comp_code, 0);
4306 /* VRP does not handle float types. */
4307 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (val)))
4308 return false;
4310 /* Do not register always-false predicates.
4311 FIXME: this works around a limitation in fold() when dealing with
4312 enumerations. Given 'enum { N1, N2 } x;', fold will not
4313 fold 'if (x > N2)' to 'if (0)'. */
4314 if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
4315 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
4317 tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
4318 tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
4320 if (comp_code == GT_EXPR
4321 && (!max
4322 || compare_values (val, max) == 0))
4323 return false;
4325 if (comp_code == LT_EXPR
4326 && (!min
4327 || compare_values (val, min) == 0))
4328 return false;
4330 *code_p = comp_code;
4331 *val_p = val;
4332 return true;
4335 /* Try to register an edge assertion for SSA name NAME on edge E for
4336 the condition COND contributing to the conditional jump pointed to by BSI.
4337 Invert the condition COND if INVERT is true.
4338 Return true if an assertion for NAME could be registered. */
4340 static bool
4341 register_edge_assert_for_2 (tree name, edge e, gimple_stmt_iterator bsi,
4342 enum tree_code cond_code,
4343 tree cond_op0, tree cond_op1, bool invert)
4345 tree val;
4346 enum tree_code comp_code;
4347 bool retval = false;
4349 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
4350 cond_op0,
4351 cond_op1,
4352 invert, &comp_code, &val))
4353 return false;
4355 /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
4356 reachable from E. */
4357 if (live_on_edge (e, name)
4358 && !has_single_use (name))
4360 register_new_assert_for (name, name, comp_code, val, NULL, e, bsi);
4361 retval = true;
4364 /* In the case of NAME <= CST and NAME being defined as
4365 NAME = (unsigned) NAME2 + CST2 we can assert NAME2 >= -CST2
4366 and NAME2 <= CST - CST2. We can do the same for NAME > CST.
4367 This catches range and anti-range tests. */
4368 if ((comp_code == LE_EXPR
4369 || comp_code == GT_EXPR)
4370 && TREE_CODE (val) == INTEGER_CST
4371 && TYPE_UNSIGNED (TREE_TYPE (val)))
4373 gimple def_stmt = SSA_NAME_DEF_STMT (name);
4374 tree cst2 = NULL_TREE, name2 = NULL_TREE, name3 = NULL_TREE;
4376 /* Extract CST2 from the (optional) addition. */
4377 if (is_gimple_assign (def_stmt)
4378 && gimple_assign_rhs_code (def_stmt) == PLUS_EXPR)
4380 name2 = gimple_assign_rhs1 (def_stmt);
4381 cst2 = gimple_assign_rhs2 (def_stmt);
4382 if (TREE_CODE (name2) == SSA_NAME
4383 && TREE_CODE (cst2) == INTEGER_CST)
4384 def_stmt = SSA_NAME_DEF_STMT (name2);
4387 /* Extract NAME2 from the (optional) sign-changing cast. */
4388 if (gimple_assign_cast_p (def_stmt))
4390 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt))
4391 && ! TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
4392 && (TYPE_PRECISION (gimple_expr_type (def_stmt))
4393 == TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))))
4394 name3 = gimple_assign_rhs1 (def_stmt);
4397 /* If name3 is used later, create an ASSERT_EXPR for it. */
4398 if (name3 != NULL_TREE
4399 && TREE_CODE (name3) == SSA_NAME
4400 && (cst2 == NULL_TREE
4401 || TREE_CODE (cst2) == INTEGER_CST)
4402 && INTEGRAL_TYPE_P (TREE_TYPE (name3))
4403 && live_on_edge (e, name3)
4404 && !has_single_use (name3))
4406 tree tmp;
4408 /* Build an expression for the range test. */
4409 tmp = build1 (NOP_EXPR, TREE_TYPE (name), name3);
4410 if (cst2 != NULL_TREE)
4411 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
4413 if (dump_file)
4415 fprintf (dump_file, "Adding assert for ");
4416 print_generic_expr (dump_file, name3, 0);
4417 fprintf (dump_file, " from ");
4418 print_generic_expr (dump_file, tmp, 0);
4419 fprintf (dump_file, "\n");
4422 register_new_assert_for (name3, tmp, comp_code, val, NULL, e, bsi);
4424 retval = true;
4427 /* If name2 is used later, create an ASSERT_EXPR for it. */
4428 if (name2 != NULL_TREE
4429 && TREE_CODE (name2) == SSA_NAME
4430 && TREE_CODE (cst2) == INTEGER_CST
4431 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
4432 && live_on_edge (e, name2)
4433 && !has_single_use (name2))
4435 tree tmp;
4437 /* Build an expression for the range test. */
4438 tmp = name2;
4439 if (TREE_TYPE (name) != TREE_TYPE (name2))
4440 tmp = build1 (NOP_EXPR, TREE_TYPE (name), tmp);
4441 if (cst2 != NULL_TREE)
4442 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
4444 if (dump_file)
4446 fprintf (dump_file, "Adding assert for ");
4447 print_generic_expr (dump_file, name2, 0);
4448 fprintf (dump_file, " from ");
4449 print_generic_expr (dump_file, tmp, 0);
4450 fprintf (dump_file, "\n");
4453 register_new_assert_for (name2, tmp, comp_code, val, NULL, e, bsi);
4455 retval = true;
4459 return retval;
4462 /* OP is an operand of a truth value expression which is known to have
4463 a particular value. Register any asserts for OP and for any
4464 operands in OP's defining statement.
4466 If CODE is EQ_EXPR, then we want to register OP is zero (false),
4467 if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
4469 static bool
4470 register_edge_assert_for_1 (tree op, enum tree_code code,
4471 edge e, gimple_stmt_iterator bsi)
4473 bool retval = false;
4474 gimple op_def;
4475 tree val;
4476 enum tree_code rhs_code;
4478 /* We only care about SSA_NAMEs. */
4479 if (TREE_CODE (op) != SSA_NAME)
4480 return false;
4482 /* We know that OP will have a zero or nonzero value. If OP is used
4483 more than once go ahead and register an assert for OP.
4485 The FOUND_IN_SUBGRAPH support is not helpful in this situation as
4486 it will always be set for OP (because OP is used in a COND_EXPR in
4487 the subgraph). */
4488 if (!has_single_use (op))
4490 val = build_int_cst (TREE_TYPE (op), 0);
4491 register_new_assert_for (op, op, code, val, NULL, e, bsi);
4492 retval = true;
4495 /* Now look at how OP is set. If it's set from a comparison,
4496 a truth operation or some bit operations, then we may be able
4497 to register information about the operands of that assignment. */
4498 op_def = SSA_NAME_DEF_STMT (op);
4499 if (gimple_code (op_def) != GIMPLE_ASSIGN)
4500 return retval;
4502 rhs_code = gimple_assign_rhs_code (op_def);
4504 if (TREE_CODE_CLASS (rhs_code) == tcc_comparison)
4506 bool invert = (code == EQ_EXPR ? true : false);
4507 tree op0 = gimple_assign_rhs1 (op_def);
4508 tree op1 = gimple_assign_rhs2 (op_def);
4510 if (TREE_CODE (op0) == SSA_NAME)
4511 retval |= register_edge_assert_for_2 (op0, e, bsi, rhs_code, op0, op1,
4512 invert);
4513 if (TREE_CODE (op1) == SSA_NAME)
4514 retval |= register_edge_assert_for_2 (op1, e, bsi, rhs_code, op0, op1,
4515 invert);
4517 else if ((code == NE_EXPR
4518 && (gimple_assign_rhs_code (op_def) == TRUTH_AND_EXPR
4519 || gimple_assign_rhs_code (op_def) == BIT_AND_EXPR))
4520 || (code == EQ_EXPR
4521 && (gimple_assign_rhs_code (op_def) == TRUTH_OR_EXPR
4522 || gimple_assign_rhs_code (op_def) == BIT_IOR_EXPR)))
4524 /* Recurse on each operand. */
4525 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
4526 code, e, bsi);
4527 retval |= register_edge_assert_for_1 (gimple_assign_rhs2 (op_def),
4528 code, e, bsi);
4530 else if (gimple_assign_rhs_code (op_def) == TRUTH_NOT_EXPR)
4532 /* Recurse, flipping CODE. */
4533 code = invert_tree_comparison (code, false);
4534 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
4535 code, e, bsi);
4537 else if (gimple_assign_rhs_code (op_def) == SSA_NAME)
4539 /* Recurse through the copy. */
4540 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
4541 code, e, bsi);
4543 else if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (op_def)))
4545 /* Recurse through the type conversion. */
4546 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
4547 code, e, bsi);
4550 return retval;
4553 /* Try to register an edge assertion for SSA name NAME on edge E for
4554 the condition COND contributing to the conditional jump pointed to by SI.
4555 Return true if an assertion for NAME could be registered. */
4557 static bool
4558 register_edge_assert_for (tree name, edge e, gimple_stmt_iterator si,
4559 enum tree_code cond_code, tree cond_op0,
4560 tree cond_op1)
4562 tree val;
4563 enum tree_code comp_code;
4564 bool retval = false;
4565 bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
4567 /* Do not attempt to infer anything in names that flow through
4568 abnormal edges. */
4569 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
4570 return false;
4572 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
4573 cond_op0, cond_op1,
4574 is_else_edge,
4575 &comp_code, &val))
4576 return false;
4578 /* Register ASSERT_EXPRs for name. */
4579 retval |= register_edge_assert_for_2 (name, e, si, cond_code, cond_op0,
4580 cond_op1, is_else_edge);
4583 /* If COND is effectively an equality test of an SSA_NAME against
4584 the value zero or one, then we may be able to assert values
4585 for SSA_NAMEs which flow into COND. */
4587 /* In the case of NAME == 1 or NAME != 0, for TRUTH_AND_EXPR defining
4588 statement of NAME we can assert both operands of the TRUTH_AND_EXPR
4589 have nonzero value. */
4590 if (((comp_code == EQ_EXPR && integer_onep (val))
4591 || (comp_code == NE_EXPR && integer_zerop (val))))
4593 gimple def_stmt = SSA_NAME_DEF_STMT (name);
4595 if (is_gimple_assign (def_stmt)
4596 && (gimple_assign_rhs_code (def_stmt) == TRUTH_AND_EXPR
4597 || gimple_assign_rhs_code (def_stmt) == BIT_AND_EXPR))
4599 tree op0 = gimple_assign_rhs1 (def_stmt);
4600 tree op1 = gimple_assign_rhs2 (def_stmt);
4601 retval |= register_edge_assert_for_1 (op0, NE_EXPR, e, si);
4602 retval |= register_edge_assert_for_1 (op1, NE_EXPR, e, si);
4606 /* In the case of NAME == 0 or NAME != 1, for TRUTH_OR_EXPR defining
4607 statement of NAME we can assert both operands of the TRUTH_OR_EXPR
4608 have zero value. */
4609 if (((comp_code == EQ_EXPR && integer_zerop (val))
4610 || (comp_code == NE_EXPR && integer_onep (val))))
4612 gimple def_stmt = SSA_NAME_DEF_STMT (name);
4614 if (is_gimple_assign (def_stmt)
4615 && (gimple_assign_rhs_code (def_stmt) == TRUTH_OR_EXPR
4616 /* For BIT_IOR_EXPR only if NAME == 0 both operands have
4617 necessarily zero value. */
4618 || (comp_code == EQ_EXPR
4619 && (gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR))))
4621 tree op0 = gimple_assign_rhs1 (def_stmt);
4622 tree op1 = gimple_assign_rhs2 (def_stmt);
4623 retval |= register_edge_assert_for_1 (op0, EQ_EXPR, e, si);
4624 retval |= register_edge_assert_for_1 (op1, EQ_EXPR, e, si);
4628 return retval;
4632 /* Determine whether the outgoing edges of BB should receive an
4633 ASSERT_EXPR for each of the operands of BB's LAST statement.
4634 The last statement of BB must be a COND_EXPR.
4636 If any of the sub-graphs rooted at BB have an interesting use of
4637 the predicate operands, an assert location node is added to the
4638 list of assertions for the corresponding operands. */
4640 static bool
4641 find_conditional_asserts (basic_block bb, gimple last)
4643 bool need_assert;
4644 gimple_stmt_iterator bsi;
4645 tree op;
4646 edge_iterator ei;
4647 edge e;
4648 ssa_op_iter iter;
4650 need_assert = false;
4651 bsi = gsi_for_stmt (last);
4653 /* Look for uses of the operands in each of the sub-graphs
4654 rooted at BB. We need to check each of the outgoing edges
4655 separately, so that we know what kind of ASSERT_EXPR to
4656 insert. */
4657 FOR_EACH_EDGE (e, ei, bb->succs)
4659 if (e->dest == bb)
4660 continue;
4662 /* Register the necessary assertions for each operand in the
4663 conditional predicate. */
4664 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
4666 need_assert |= register_edge_assert_for (op, e, bsi,
4667 gimple_cond_code (last),
4668 gimple_cond_lhs (last),
4669 gimple_cond_rhs (last));
4673 return need_assert;
4676 /* Compare two case labels sorting first by the destination label uid
4677 and then by the case value. */
4679 static int
4680 compare_case_labels (const void *p1, const void *p2)
4682 const_tree const case1 = *(const_tree const*)p1;
4683 const_tree const case2 = *(const_tree const*)p2;
4684 unsigned int uid1 = DECL_UID (CASE_LABEL (case1));
4685 unsigned int uid2 = DECL_UID (CASE_LABEL (case2));
4687 if (uid1 < uid2)
4688 return -1;
4689 else if (uid1 == uid2)
4691 /* Make sure the default label is first in a group. */
4692 if (!CASE_LOW (case1))
4693 return -1;
4694 else if (!CASE_LOW (case2))
4695 return 1;
4696 else
4697 return tree_int_cst_compare (CASE_LOW (case1), CASE_LOW (case2));
4699 else
4700 return 1;
4703 /* Determine whether the outgoing edges of BB should receive an
4704 ASSERT_EXPR for each of the operands of BB's LAST statement.
4705 The last statement of BB must be a SWITCH_EXPR.
4707 If any of the sub-graphs rooted at BB have an interesting use of
4708 the predicate operands, an assert location node is added to the
4709 list of assertions for the corresponding operands. */
4711 static bool
4712 find_switch_asserts (basic_block bb, gimple last)
4714 bool need_assert;
4715 gimple_stmt_iterator bsi;
4716 tree op;
4717 edge e;
4718 tree vec2;
4719 size_t n = gimple_switch_num_labels(last);
4720 #if GCC_VERSION >= 4000
4721 unsigned int idx;
4722 #else
4723 /* Work around GCC 3.4 bug (PR 37086). */
4724 volatile unsigned int idx;
4725 #endif
4727 need_assert = false;
4728 bsi = gsi_for_stmt (last);
4729 op = gimple_switch_index (last);
4730 if (TREE_CODE (op) != SSA_NAME)
4731 return false;
4733 /* Build a vector of case labels sorted by destination label. */
4734 vec2 = make_tree_vec (n);
4735 for (idx = 0; idx < n; ++idx)
4736 TREE_VEC_ELT (vec2, idx) = gimple_switch_label (last, idx);
4737 qsort (&TREE_VEC_ELT (vec2, 0), n, sizeof (tree), compare_case_labels);
4739 for (idx = 0; idx < n; ++idx)
4741 tree min, max;
4742 tree cl = TREE_VEC_ELT (vec2, idx);
4744 min = CASE_LOW (cl);
4745 max = CASE_HIGH (cl);
4747 /* If there are multiple case labels with the same destination
4748 we need to combine them to a single value range for the edge. */
4749 if (idx + 1 < n
4750 && CASE_LABEL (cl) == CASE_LABEL (TREE_VEC_ELT (vec2, idx + 1)))
4752 /* Skip labels until the last of the group. */
4753 do {
4754 ++idx;
4755 } while (idx < n
4756 && CASE_LABEL (cl) == CASE_LABEL (TREE_VEC_ELT (vec2, idx)));
4757 --idx;
4759 /* Pick up the maximum of the case label range. */
4760 if (CASE_HIGH (TREE_VEC_ELT (vec2, idx)))
4761 max = CASE_HIGH (TREE_VEC_ELT (vec2, idx));
4762 else
4763 max = CASE_LOW (TREE_VEC_ELT (vec2, idx));
4766 /* Nothing to do if the range includes the default label until we
4767 can register anti-ranges. */
4768 if (min == NULL_TREE)
4769 continue;
4771 /* Find the edge to register the assert expr on. */
4772 e = find_edge (bb, label_to_block (CASE_LABEL (cl)));
4774 /* Register the necessary assertions for the operand in the
4775 SWITCH_EXPR. */
4776 need_assert |= register_edge_assert_for (op, e, bsi,
4777 max ? GE_EXPR : EQ_EXPR,
4779 fold_convert (TREE_TYPE (op),
4780 min));
4781 if (max)
4783 need_assert |= register_edge_assert_for (op, e, bsi, LE_EXPR,
4785 fold_convert (TREE_TYPE (op),
4786 max));
4790 return need_assert;
4794 /* Traverse all the statements in block BB looking for statements that
4795 may generate useful assertions for the SSA names in their operand.
4796 If a statement produces a useful assertion A for name N_i, then the
4797 list of assertions already generated for N_i is scanned to
4798 determine if A is actually needed.
4800 If N_i already had the assertion A at a location dominating the
4801 current location, then nothing needs to be done. Otherwise, the
4802 new location for A is recorded instead.
4804 1- For every statement S in BB, all the variables used by S are
4805 added to bitmap FOUND_IN_SUBGRAPH.
4807 2- If statement S uses an operand N in a way that exposes a known
4808 value range for N, then if N was not already generated by an
4809 ASSERT_EXPR, create a new assert location for N. For instance,
4810 if N is a pointer and the statement dereferences it, we can
4811 assume that N is not NULL.
4813 3- COND_EXPRs are a special case of #2. We can derive range
4814 information from the predicate but need to insert different
4815 ASSERT_EXPRs for each of the sub-graphs rooted at the
4816 conditional block. If the last statement of BB is a conditional
4817 expression of the form 'X op Y', then
4819 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
4821 b) If the conditional is the only entry point to the sub-graph
4822 corresponding to the THEN_CLAUSE, recurse into it. On
4823 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
4824 an ASSERT_EXPR is added for the corresponding variable.
4826 c) Repeat step (b) on the ELSE_CLAUSE.
4828 d) Mark X and Y in FOUND_IN_SUBGRAPH.
4830 For instance,
4832 if (a == 9)
4833 b = a;
4834 else
4835 b = c + 1;
4837 In this case, an assertion on the THEN clause is useful to
4838 determine that 'a' is always 9 on that edge. However, an assertion
4839 on the ELSE clause would be unnecessary.
4841 4- If BB does not end in a conditional expression, then we recurse
4842 into BB's dominator children.
4844 At the end of the recursive traversal, every SSA name will have a
4845 list of locations where ASSERT_EXPRs should be added. When a new
4846 location for name N is found, it is registered by calling
4847 register_new_assert_for. That function keeps track of all the
4848 registered assertions to prevent adding unnecessary assertions.
4849 For instance, if a pointer P_4 is dereferenced more than once in a
4850 dominator tree, only the location dominating all the dereference of
4851 P_4 will receive an ASSERT_EXPR.
4853 If this function returns true, then it means that there are names
4854 for which we need to generate ASSERT_EXPRs. Those assertions are
4855 inserted by process_assert_insertions. */
4857 static bool
4858 find_assert_locations_1 (basic_block bb, sbitmap live)
4860 gimple_stmt_iterator si;
4861 gimple last;
4862 gimple phi;
4863 bool need_assert;
4865 need_assert = false;
4866 last = last_stmt (bb);
4868 /* If BB's last statement is a conditional statement involving integer
4869 operands, determine if we need to add ASSERT_EXPRs. */
4870 if (last
4871 && gimple_code (last) == GIMPLE_COND
4872 && !fp_predicate (last)
4873 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
4874 need_assert |= find_conditional_asserts (bb, last);
4876 /* If BB's last statement is a switch statement involving integer
4877 operands, determine if we need to add ASSERT_EXPRs. */
4878 if (last
4879 && gimple_code (last) == GIMPLE_SWITCH
4880 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
4881 need_assert |= find_switch_asserts (bb, last);
4883 /* Traverse all the statements in BB marking used names and looking
4884 for statements that may infer assertions for their used operands. */
4885 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
4887 gimple stmt;
4888 tree op;
4889 ssa_op_iter i;
4891 stmt = gsi_stmt (si);
4893 if (is_gimple_debug (stmt))
4894 continue;
4896 /* See if we can derive an assertion for any of STMT's operands. */
4897 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
4899 tree value;
4900 enum tree_code comp_code;
4902 /* Mark OP in our live bitmap. */
4903 SET_BIT (live, SSA_NAME_VERSION (op));
4905 /* If OP is used in such a way that we can infer a value
4906 range for it, and we don't find a previous assertion for
4907 it, create a new assertion location node for OP. */
4908 if (infer_value_range (stmt, op, &comp_code, &value))
4910 /* If we are able to infer a nonzero value range for OP,
4911 then walk backwards through the use-def chain to see if OP
4912 was set via a typecast.
4914 If so, then we can also infer a nonzero value range
4915 for the operand of the NOP_EXPR. */
4916 if (comp_code == NE_EXPR && integer_zerop (value))
4918 tree t = op;
4919 gimple def_stmt = SSA_NAME_DEF_STMT (t);
4921 while (is_gimple_assign (def_stmt)
4922 && gimple_assign_rhs_code (def_stmt) == NOP_EXPR
4923 && TREE_CODE
4924 (gimple_assign_rhs1 (def_stmt)) == SSA_NAME
4925 && POINTER_TYPE_P
4926 (TREE_TYPE (gimple_assign_rhs1 (def_stmt))))
4928 t = gimple_assign_rhs1 (def_stmt);
4929 def_stmt = SSA_NAME_DEF_STMT (t);
4931 /* Note we want to register the assert for the
4932 operand of the NOP_EXPR after SI, not after the
4933 conversion. */
4934 if (! has_single_use (t))
4936 register_new_assert_for (t, t, comp_code, value,
4937 bb, NULL, si);
4938 need_assert = true;
4943 /* If OP is used only once, namely in this STMT, don't
4944 bother creating an ASSERT_EXPR for it. Such an
4945 ASSERT_EXPR would do nothing but increase compile time. */
4946 if (!has_single_use (op))
4948 register_new_assert_for (op, op, comp_code, value,
4949 bb, NULL, si);
4950 need_assert = true;
4956 /* Traverse all PHI nodes in BB marking used operands. */
4957 for (si = gsi_start_phis (bb); !gsi_end_p(si); gsi_next (&si))
4959 use_operand_p arg_p;
4960 ssa_op_iter i;
4961 phi = gsi_stmt (si);
4963 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
4965 tree arg = USE_FROM_PTR (arg_p);
4966 if (TREE_CODE (arg) == SSA_NAME)
4967 SET_BIT (live, SSA_NAME_VERSION (arg));
4971 return need_assert;
4974 /* Do an RPO walk over the function computing SSA name liveness
4975 on-the-fly and deciding on assert expressions to insert.
4976 Returns true if there are assert expressions to be inserted. */
4978 static bool
4979 find_assert_locations (void)
4981 int *rpo = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
4982 int *bb_rpo = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
4983 int *last_rpo = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
4984 int rpo_cnt, i;
4985 bool need_asserts;
4987 live = XCNEWVEC (sbitmap, last_basic_block + NUM_FIXED_BLOCKS);
4988 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
4989 for (i = 0; i < rpo_cnt; ++i)
4990 bb_rpo[rpo[i]] = i;
4992 need_asserts = false;
4993 for (i = rpo_cnt-1; i >= 0; --i)
4995 basic_block bb = BASIC_BLOCK (rpo[i]);
4996 edge e;
4997 edge_iterator ei;
4999 if (!live[rpo[i]])
5001 live[rpo[i]] = sbitmap_alloc (num_ssa_names);
5002 sbitmap_zero (live[rpo[i]]);
5005 /* Process BB and update the live information with uses in
5006 this block. */
5007 need_asserts |= find_assert_locations_1 (bb, live[rpo[i]]);
5009 /* Merge liveness into the predecessor blocks and free it. */
5010 if (!sbitmap_empty_p (live[rpo[i]]))
5012 int pred_rpo = i;
5013 FOR_EACH_EDGE (e, ei, bb->preds)
5015 int pred = e->src->index;
5016 if (e->flags & EDGE_DFS_BACK)
5017 continue;
5019 if (!live[pred])
5021 live[pred] = sbitmap_alloc (num_ssa_names);
5022 sbitmap_zero (live[pred]);
5024 sbitmap_a_or_b (live[pred], live[pred], live[rpo[i]]);
5026 if (bb_rpo[pred] < pred_rpo)
5027 pred_rpo = bb_rpo[pred];
5030 /* Record the RPO number of the last visited block that needs
5031 live information from this block. */
5032 last_rpo[rpo[i]] = pred_rpo;
5034 else
5036 sbitmap_free (live[rpo[i]]);
5037 live[rpo[i]] = NULL;
5040 /* We can free all successors live bitmaps if all their
5041 predecessors have been visited already. */
5042 FOR_EACH_EDGE (e, ei, bb->succs)
5043 if (last_rpo[e->dest->index] == i
5044 && live[e->dest->index])
5046 sbitmap_free (live[e->dest->index]);
5047 live[e->dest->index] = NULL;
5051 XDELETEVEC (rpo);
5052 XDELETEVEC (bb_rpo);
5053 XDELETEVEC (last_rpo);
5054 for (i = 0; i < last_basic_block + NUM_FIXED_BLOCKS; ++i)
5055 if (live[i])
5056 sbitmap_free (live[i]);
5057 XDELETEVEC (live);
5059 return need_asserts;
5062 /* Create an ASSERT_EXPR for NAME and insert it in the location
5063 indicated by LOC. Return true if we made any edge insertions. */
5065 static bool
5066 process_assert_insertions_for (tree name, assert_locus_t loc)
5068 /* Build the comparison expression NAME_i COMP_CODE VAL. */
5069 gimple stmt;
5070 tree cond;
5071 gimple assert_stmt;
5072 edge_iterator ei;
5073 edge e;
5075 /* If we have X <=> X do not insert an assert expr for that. */
5076 if (loc->expr == loc->val)
5077 return false;
5079 cond = build2 (loc->comp_code, boolean_type_node, loc->expr, loc->val);
5080 assert_stmt = build_assert_expr_for (cond, name);
5081 if (loc->e)
5083 /* We have been asked to insert the assertion on an edge. This
5084 is used only by COND_EXPR and SWITCH_EXPR assertions. */
5085 gcc_checking_assert (gimple_code (gsi_stmt (loc->si)) == GIMPLE_COND
5086 || (gimple_code (gsi_stmt (loc->si))
5087 == GIMPLE_SWITCH));
5089 gsi_insert_on_edge (loc->e, assert_stmt);
5090 return true;
5093 /* Otherwise, we can insert right after LOC->SI iff the
5094 statement must not be the last statement in the block. */
5095 stmt = gsi_stmt (loc->si);
5096 if (!stmt_ends_bb_p (stmt))
5098 gsi_insert_after (&loc->si, assert_stmt, GSI_SAME_STMT);
5099 return false;
5102 /* If STMT must be the last statement in BB, we can only insert new
5103 assertions on the non-abnormal edge out of BB. Note that since
5104 STMT is not control flow, there may only be one non-abnormal edge
5105 out of BB. */
5106 FOR_EACH_EDGE (e, ei, loc->bb->succs)
5107 if (!(e->flags & EDGE_ABNORMAL))
5109 gsi_insert_on_edge (e, assert_stmt);
5110 return true;
5113 gcc_unreachable ();
5117 /* Process all the insertions registered for every name N_i registered
5118 in NEED_ASSERT_FOR. The list of assertions to be inserted are
5119 found in ASSERTS_FOR[i]. */
5121 static void
5122 process_assert_insertions (void)
5124 unsigned i;
5125 bitmap_iterator bi;
5126 bool update_edges_p = false;
5127 int num_asserts = 0;
5129 if (dump_file && (dump_flags & TDF_DETAILS))
5130 dump_all_asserts (dump_file);
5132 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
5134 assert_locus_t loc = asserts_for[i];
5135 gcc_assert (loc);
5137 while (loc)
5139 assert_locus_t next = loc->next;
5140 update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
5141 free (loc);
5142 loc = next;
5143 num_asserts++;
5147 if (update_edges_p)
5148 gsi_commit_edge_inserts ();
5150 statistics_counter_event (cfun, "Number of ASSERT_EXPR expressions inserted",
5151 num_asserts);
5155 /* Traverse the flowgraph looking for conditional jumps to insert range
5156 expressions. These range expressions are meant to provide information
5157 to optimizations that need to reason in terms of value ranges. They
5158 will not be expanded into RTL. For instance, given:
5160 x = ...
5161 y = ...
5162 if (x < y)
5163 y = x - 2;
5164 else
5165 x = y + 3;
5167 this pass will transform the code into:
5169 x = ...
5170 y = ...
5171 if (x < y)
5173 x = ASSERT_EXPR <x, x < y>
5174 y = x - 2
5176 else
5178 y = ASSERT_EXPR <y, x <= y>
5179 x = y + 3
5182 The idea is that once copy and constant propagation have run, other
5183 optimizations will be able to determine what ranges of values can 'x'
5184 take in different paths of the code, simply by checking the reaching
5185 definition of 'x'. */
5187 static void
5188 insert_range_assertions (void)
5190 need_assert_for = BITMAP_ALLOC (NULL);
5191 asserts_for = XCNEWVEC (assert_locus_t, num_ssa_names);
5193 calculate_dominance_info (CDI_DOMINATORS);
5195 if (find_assert_locations ())
5197 process_assert_insertions ();
5198 update_ssa (TODO_update_ssa_no_phi);
5201 if (dump_file && (dump_flags & TDF_DETAILS))
5203 fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
5204 dump_function_to_file (current_function_decl, dump_file, dump_flags);
5207 free (asserts_for);
5208 BITMAP_FREE (need_assert_for);
5211 /* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
5212 and "struct" hacks. If VRP can determine that the
5213 array subscript is a constant, check if it is outside valid
5214 range. If the array subscript is a RANGE, warn if it is
5215 non-overlapping with valid range.
5216 IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
5218 static void
5219 check_array_ref (location_t location, tree ref, bool ignore_off_by_one)
5221 value_range_t* vr = NULL;
5222 tree low_sub, up_sub;
5223 tree low_bound, up_bound, up_bound_p1;
5224 tree base;
5226 if (TREE_NO_WARNING (ref))
5227 return;
5229 low_sub = up_sub = TREE_OPERAND (ref, 1);
5230 up_bound = array_ref_up_bound (ref);
5232 /* Can not check flexible arrays. */
5233 if (!up_bound
5234 || TREE_CODE (up_bound) != INTEGER_CST)
5235 return;
5237 /* Accesses to trailing arrays via pointers may access storage
5238 beyond the types array bounds. */
5239 base = get_base_address (ref);
5240 if (base && TREE_CODE (base) == MEM_REF)
5242 tree cref, next = NULL_TREE;
5244 if (TREE_CODE (TREE_OPERAND (ref, 0)) != COMPONENT_REF)
5245 return;
5247 cref = TREE_OPERAND (ref, 0);
5248 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (cref, 0))) == RECORD_TYPE)
5249 for (next = DECL_CHAIN (TREE_OPERAND (cref, 1));
5250 next && TREE_CODE (next) != FIELD_DECL;
5251 next = DECL_CHAIN (next))
5254 /* If this is the last field in a struct type or a field in a
5255 union type do not warn. */
5256 if (!next)
5257 return;
5260 low_bound = array_ref_low_bound (ref);
5261 up_bound_p1 = int_const_binop (PLUS_EXPR, up_bound, integer_one_node);
5263 if (TREE_CODE (low_sub) == SSA_NAME)
5265 vr = get_value_range (low_sub);
5266 if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
5268 low_sub = vr->type == VR_RANGE ? vr->max : vr->min;
5269 up_sub = vr->type == VR_RANGE ? vr->min : vr->max;
5273 if (vr && vr->type == VR_ANTI_RANGE)
5275 if (TREE_CODE (up_sub) == INTEGER_CST
5276 && tree_int_cst_lt (up_bound, up_sub)
5277 && TREE_CODE (low_sub) == INTEGER_CST
5278 && tree_int_cst_lt (low_sub, low_bound))
5280 warning_at (location, OPT_Warray_bounds,
5281 "array subscript is outside array bounds");
5282 TREE_NO_WARNING (ref) = 1;
5285 else if (TREE_CODE (up_sub) == INTEGER_CST
5286 && (ignore_off_by_one
5287 ? (tree_int_cst_lt (up_bound, up_sub)
5288 && !tree_int_cst_equal (up_bound_p1, up_sub))
5289 : (tree_int_cst_lt (up_bound, up_sub)
5290 || tree_int_cst_equal (up_bound_p1, up_sub))))
5292 warning_at (location, OPT_Warray_bounds,
5293 "array subscript is above array bounds");
5294 TREE_NO_WARNING (ref) = 1;
5296 else if (TREE_CODE (low_sub) == INTEGER_CST
5297 && tree_int_cst_lt (low_sub, low_bound))
5299 warning_at (location, OPT_Warray_bounds,
5300 "array subscript is below array bounds");
5301 TREE_NO_WARNING (ref) = 1;
5305 /* Searches if the expr T, located at LOCATION computes
5306 address of an ARRAY_REF, and call check_array_ref on it. */
5308 static void
5309 search_for_addr_array (tree t, location_t location)
5311 while (TREE_CODE (t) == SSA_NAME)
5313 gimple g = SSA_NAME_DEF_STMT (t);
5315 if (gimple_code (g) != GIMPLE_ASSIGN)
5316 return;
5318 if (get_gimple_rhs_class (gimple_assign_rhs_code (g))
5319 != GIMPLE_SINGLE_RHS)
5320 return;
5322 t = gimple_assign_rhs1 (g);
5326 /* We are only interested in addresses of ARRAY_REF's. */
5327 if (TREE_CODE (t) != ADDR_EXPR)
5328 return;
5330 /* Check each ARRAY_REFs in the reference chain. */
5333 if (TREE_CODE (t) == ARRAY_REF)
5334 check_array_ref (location, t, true /*ignore_off_by_one*/);
5336 t = TREE_OPERAND (t, 0);
5338 while (handled_component_p (t));
5340 if (TREE_CODE (t) == MEM_REF
5341 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR
5342 && !TREE_NO_WARNING (t))
5344 tree tem = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
5345 tree low_bound, up_bound, el_sz;
5346 double_int idx;
5347 if (TREE_CODE (TREE_TYPE (tem)) != ARRAY_TYPE
5348 || TREE_CODE (TREE_TYPE (TREE_TYPE (tem))) == ARRAY_TYPE
5349 || !TYPE_DOMAIN (TREE_TYPE (tem)))
5350 return;
5352 low_bound = TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
5353 up_bound = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
5354 el_sz = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (tem)));
5355 if (!low_bound
5356 || TREE_CODE (low_bound) != INTEGER_CST
5357 || !up_bound
5358 || TREE_CODE (up_bound) != INTEGER_CST
5359 || !el_sz
5360 || TREE_CODE (el_sz) != INTEGER_CST)
5361 return;
5363 idx = mem_ref_offset (t);
5364 idx = double_int_sdiv (idx, tree_to_double_int (el_sz), TRUNC_DIV_EXPR);
5365 if (double_int_scmp (idx, double_int_zero) < 0)
5367 warning_at (location, OPT_Warray_bounds,
5368 "array subscript is below array bounds");
5369 TREE_NO_WARNING (t) = 1;
5371 else if (double_int_scmp (idx,
5372 double_int_add
5373 (double_int_add
5374 (tree_to_double_int (up_bound),
5375 double_int_neg
5376 (tree_to_double_int (low_bound))),
5377 double_int_one)) > 0)
5379 warning_at (location, OPT_Warray_bounds,
5380 "array subscript is above array bounds");
5381 TREE_NO_WARNING (t) = 1;
5386 /* walk_tree() callback that checks if *TP is
5387 an ARRAY_REF inside an ADDR_EXPR (in which an array
5388 subscript one outside the valid range is allowed). Call
5389 check_array_ref for each ARRAY_REF found. The location is
5390 passed in DATA. */
5392 static tree
5393 check_array_bounds (tree *tp, int *walk_subtree, void *data)
5395 tree t = *tp;
5396 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5397 location_t location;
5399 if (EXPR_HAS_LOCATION (t))
5400 location = EXPR_LOCATION (t);
5401 else
5403 location_t *locp = (location_t *) wi->info;
5404 location = *locp;
5407 *walk_subtree = TRUE;
5409 if (TREE_CODE (t) == ARRAY_REF)
5410 check_array_ref (location, t, false /*ignore_off_by_one*/);
5412 if (TREE_CODE (t) == MEM_REF
5413 || (TREE_CODE (t) == RETURN_EXPR && TREE_OPERAND (t, 0)))
5414 search_for_addr_array (TREE_OPERAND (t, 0), location);
5416 if (TREE_CODE (t) == ADDR_EXPR)
5417 *walk_subtree = FALSE;
5419 return NULL_TREE;
5422 /* Walk over all statements of all reachable BBs and call check_array_bounds
5423 on them. */
5425 static void
5426 check_all_array_refs (void)
5428 basic_block bb;
5429 gimple_stmt_iterator si;
5431 FOR_EACH_BB (bb)
5433 edge_iterator ei;
5434 edge e;
5435 bool executable = false;
5437 /* Skip blocks that were found to be unreachable. */
5438 FOR_EACH_EDGE (e, ei, bb->preds)
5439 executable |= !!(e->flags & EDGE_EXECUTABLE);
5440 if (!executable)
5441 continue;
5443 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5445 gimple stmt = gsi_stmt (si);
5446 struct walk_stmt_info wi;
5447 if (!gimple_has_location (stmt))
5448 continue;
5450 if (is_gimple_call (stmt))
5452 size_t i;
5453 size_t n = gimple_call_num_args (stmt);
5454 for (i = 0; i < n; i++)
5456 tree arg = gimple_call_arg (stmt, i);
5457 search_for_addr_array (arg, gimple_location (stmt));
5460 else
5462 memset (&wi, 0, sizeof (wi));
5463 wi.info = CONST_CAST (void *, (const void *)
5464 gimple_location_ptr (stmt));
5466 walk_gimple_op (gsi_stmt (si),
5467 check_array_bounds,
5468 &wi);
5474 /* Convert range assertion expressions into the implied copies and
5475 copy propagate away the copies. Doing the trivial copy propagation
5476 here avoids the need to run the full copy propagation pass after
5477 VRP.
5479 FIXME, this will eventually lead to copy propagation removing the
5480 names that had useful range information attached to them. For
5481 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
5482 then N_i will have the range [3, +INF].
5484 However, by converting the assertion into the implied copy
5485 operation N_i = N_j, we will then copy-propagate N_j into the uses
5486 of N_i and lose the range information. We may want to hold on to
5487 ASSERT_EXPRs a little while longer as the ranges could be used in
5488 things like jump threading.
5490 The problem with keeping ASSERT_EXPRs around is that passes after
5491 VRP need to handle them appropriately.
5493 Another approach would be to make the range information a first
5494 class property of the SSA_NAME so that it can be queried from
5495 any pass. This is made somewhat more complex by the need for
5496 multiple ranges to be associated with one SSA_NAME. */
5498 static void
5499 remove_range_assertions (void)
5501 basic_block bb;
5502 gimple_stmt_iterator si;
5504 /* Note that the BSI iterator bump happens at the bottom of the
5505 loop and no bump is necessary if we're removing the statement
5506 referenced by the current BSI. */
5507 FOR_EACH_BB (bb)
5508 for (si = gsi_start_bb (bb); !gsi_end_p (si);)
5510 gimple stmt = gsi_stmt (si);
5511 gimple use_stmt;
5513 if (is_gimple_assign (stmt)
5514 && gimple_assign_rhs_code (stmt) == ASSERT_EXPR)
5516 tree rhs = gimple_assign_rhs1 (stmt);
5517 tree var;
5518 tree cond = fold (ASSERT_EXPR_COND (rhs));
5519 use_operand_p use_p;
5520 imm_use_iterator iter;
5522 gcc_assert (cond != boolean_false_node);
5524 /* Propagate the RHS into every use of the LHS. */
5525 var = ASSERT_EXPR_VAR (rhs);
5526 FOR_EACH_IMM_USE_STMT (use_stmt, iter,
5527 gimple_assign_lhs (stmt))
5528 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
5530 SET_USE (use_p, var);
5531 gcc_assert (TREE_CODE (var) == SSA_NAME);
5534 /* And finally, remove the copy, it is not needed. */
5535 gsi_remove (&si, true);
5536 release_defs (stmt);
5538 else
5539 gsi_next (&si);
5544 /* Return true if STMT is interesting for VRP. */
5546 static bool
5547 stmt_interesting_for_vrp (gimple stmt)
5549 if (gimple_code (stmt) == GIMPLE_PHI
5550 && is_gimple_reg (gimple_phi_result (stmt))
5551 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_phi_result (stmt)))
5552 || POINTER_TYPE_P (TREE_TYPE (gimple_phi_result (stmt)))))
5553 return true;
5554 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
5556 tree lhs = gimple_get_lhs (stmt);
5558 /* In general, assignments with virtual operands are not useful
5559 for deriving ranges, with the obvious exception of calls to
5560 builtin functions. */
5561 if (lhs && TREE_CODE (lhs) == SSA_NAME
5562 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
5563 || POINTER_TYPE_P (TREE_TYPE (lhs)))
5564 && ((is_gimple_call (stmt)
5565 && gimple_call_fndecl (stmt) != NULL_TREE
5566 && DECL_IS_BUILTIN (gimple_call_fndecl (stmt)))
5567 || !gimple_vuse (stmt)))
5568 return true;
5570 else if (gimple_code (stmt) == GIMPLE_COND
5571 || gimple_code (stmt) == GIMPLE_SWITCH)
5572 return true;
5574 return false;
5578 /* Initialize local data structures for VRP. */
5580 static void
5581 vrp_initialize (void)
5583 basic_block bb;
5585 vr_value = XCNEWVEC (value_range_t *, num_ssa_names);
5586 vr_phi_edge_counts = XCNEWVEC (int, num_ssa_names);
5588 FOR_EACH_BB (bb)
5590 gimple_stmt_iterator si;
5592 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
5594 gimple phi = gsi_stmt (si);
5595 if (!stmt_interesting_for_vrp (phi))
5597 tree lhs = PHI_RESULT (phi);
5598 set_value_range_to_varying (get_value_range (lhs));
5599 prop_set_simulate_again (phi, false);
5601 else
5602 prop_set_simulate_again (phi, true);
5605 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5607 gimple stmt = gsi_stmt (si);
5609 /* If the statement is a control insn, then we do not
5610 want to avoid simulating the statement once. Failure
5611 to do so means that those edges will never get added. */
5612 if (stmt_ends_bb_p (stmt))
5613 prop_set_simulate_again (stmt, true);
5614 else if (!stmt_interesting_for_vrp (stmt))
5616 ssa_op_iter i;
5617 tree def;
5618 FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
5619 set_value_range_to_varying (get_value_range (def));
5620 prop_set_simulate_again (stmt, false);
5622 else
5623 prop_set_simulate_again (stmt, true);
5628 /* Return the singleton value-range for NAME or NAME. */
5630 static inline tree
5631 vrp_valueize (tree name)
5633 if (TREE_CODE (name) == SSA_NAME)
5635 value_range_t *vr = get_value_range (name);
5636 if (vr->type == VR_RANGE
5637 && (vr->min == vr->max
5638 || operand_equal_p (vr->min, vr->max, 0)))
5639 return vr->min;
5641 return name;
5644 /* Visit assignment STMT. If it produces an interesting range, record
5645 the SSA name in *OUTPUT_P. */
5647 static enum ssa_prop_result
5648 vrp_visit_assignment_or_call (gimple stmt, tree *output_p)
5650 tree def, lhs;
5651 ssa_op_iter iter;
5652 enum gimple_code code = gimple_code (stmt);
5653 lhs = gimple_get_lhs (stmt);
5655 /* We only keep track of ranges in integral and pointer types. */
5656 if (TREE_CODE (lhs) == SSA_NAME
5657 && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
5658 /* It is valid to have NULL MIN/MAX values on a type. See
5659 build_range_type. */
5660 && TYPE_MIN_VALUE (TREE_TYPE (lhs))
5661 && TYPE_MAX_VALUE (TREE_TYPE (lhs)))
5662 || POINTER_TYPE_P (TREE_TYPE (lhs))))
5664 value_range_t new_vr = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
5666 /* Try folding the statement to a constant first. */
5667 tree tem = gimple_fold_stmt_to_constant (stmt, vrp_valueize);
5668 if (tem && !is_overflow_infinity (tem))
5669 set_value_range (&new_vr, VR_RANGE, tem, tem, NULL);
5670 /* Then dispatch to value-range extracting functions. */
5671 else if (code == GIMPLE_CALL)
5672 extract_range_basic (&new_vr, stmt);
5673 else
5674 extract_range_from_assignment (&new_vr, stmt);
5676 if (update_value_range (lhs, &new_vr))
5678 *output_p = lhs;
5680 if (dump_file && (dump_flags & TDF_DETAILS))
5682 fprintf (dump_file, "Found new range for ");
5683 print_generic_expr (dump_file, lhs, 0);
5684 fprintf (dump_file, ": ");
5685 dump_value_range (dump_file, &new_vr);
5686 fprintf (dump_file, "\n\n");
5689 if (new_vr.type == VR_VARYING)
5690 return SSA_PROP_VARYING;
5692 return SSA_PROP_INTERESTING;
5695 return SSA_PROP_NOT_INTERESTING;
5698 /* Every other statement produces no useful ranges. */
5699 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
5700 set_value_range_to_varying (get_value_range (def));
5702 return SSA_PROP_VARYING;
5705 /* Helper that gets the value range of the SSA_NAME with version I
5706 or a symbolic range containing the SSA_NAME only if the value range
5707 is varying or undefined. */
5709 static inline value_range_t
5710 get_vr_for_comparison (int i)
5712 value_range_t vr = *(vr_value[i]);
5714 /* If name N_i does not have a valid range, use N_i as its own
5715 range. This allows us to compare against names that may
5716 have N_i in their ranges. */
5717 if (vr.type == VR_VARYING || vr.type == VR_UNDEFINED)
5719 vr.type = VR_RANGE;
5720 vr.min = ssa_name (i);
5721 vr.max = ssa_name (i);
5724 return vr;
5727 /* Compare all the value ranges for names equivalent to VAR with VAL
5728 using comparison code COMP. Return the same value returned by
5729 compare_range_with_value, including the setting of
5730 *STRICT_OVERFLOW_P. */
5732 static tree
5733 compare_name_with_value (enum tree_code comp, tree var, tree val,
5734 bool *strict_overflow_p)
5736 bitmap_iterator bi;
5737 unsigned i;
5738 bitmap e;
5739 tree retval, t;
5740 int used_strict_overflow;
5741 bool sop;
5742 value_range_t equiv_vr;
5744 /* Get the set of equivalences for VAR. */
5745 e = get_value_range (var)->equiv;
5747 /* Start at -1. Set it to 0 if we do a comparison without relying
5748 on overflow, or 1 if all comparisons rely on overflow. */
5749 used_strict_overflow = -1;
5751 /* Compare vars' value range with val. */
5752 equiv_vr = get_vr_for_comparison (SSA_NAME_VERSION (var));
5753 sop = false;
5754 retval = compare_range_with_value (comp, &equiv_vr, val, &sop);
5755 if (retval)
5756 used_strict_overflow = sop ? 1 : 0;
5758 /* If the equiv set is empty we have done all work we need to do. */
5759 if (e == NULL)
5761 if (retval
5762 && used_strict_overflow > 0)
5763 *strict_overflow_p = true;
5764 return retval;
5767 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
5769 equiv_vr = get_vr_for_comparison (i);
5770 sop = false;
5771 t = compare_range_with_value (comp, &equiv_vr, val, &sop);
5772 if (t)
5774 /* If we get different answers from different members
5775 of the equivalence set this check must be in a dead
5776 code region. Folding it to a trap representation
5777 would be correct here. For now just return don't-know. */
5778 if (retval != NULL
5779 && t != retval)
5781 retval = NULL_TREE;
5782 break;
5784 retval = t;
5786 if (!sop)
5787 used_strict_overflow = 0;
5788 else if (used_strict_overflow < 0)
5789 used_strict_overflow = 1;
5793 if (retval
5794 && used_strict_overflow > 0)
5795 *strict_overflow_p = true;
5797 return retval;
5801 /* Given a comparison code COMP and names N1 and N2, compare all the
5802 ranges equivalent to N1 against all the ranges equivalent to N2
5803 to determine the value of N1 COMP N2. Return the same value
5804 returned by compare_ranges. Set *STRICT_OVERFLOW_P to indicate
5805 whether we relied on an overflow infinity in the comparison. */
5808 static tree
5809 compare_names (enum tree_code comp, tree n1, tree n2,
5810 bool *strict_overflow_p)
5812 tree t, retval;
5813 bitmap e1, e2;
5814 bitmap_iterator bi1, bi2;
5815 unsigned i1, i2;
5816 int used_strict_overflow;
5817 static bitmap_obstack *s_obstack = NULL;
5818 static bitmap s_e1 = NULL, s_e2 = NULL;
5820 /* Compare the ranges of every name equivalent to N1 against the
5821 ranges of every name equivalent to N2. */
5822 e1 = get_value_range (n1)->equiv;
5823 e2 = get_value_range (n2)->equiv;
5825 /* Use the fake bitmaps if e1 or e2 are not available. */
5826 if (s_obstack == NULL)
5828 s_obstack = XNEW (bitmap_obstack);
5829 bitmap_obstack_initialize (s_obstack);
5830 s_e1 = BITMAP_ALLOC (s_obstack);
5831 s_e2 = BITMAP_ALLOC (s_obstack);
5833 if (e1 == NULL)
5834 e1 = s_e1;
5835 if (e2 == NULL)
5836 e2 = s_e2;
5838 /* Add N1 and N2 to their own set of equivalences to avoid
5839 duplicating the body of the loop just to check N1 and N2
5840 ranges. */
5841 bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
5842 bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
5844 /* If the equivalence sets have a common intersection, then the two
5845 names can be compared without checking their ranges. */
5846 if (bitmap_intersect_p (e1, e2))
5848 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5849 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5851 return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
5852 ? boolean_true_node
5853 : boolean_false_node;
5856 /* Start at -1. Set it to 0 if we do a comparison without relying
5857 on overflow, or 1 if all comparisons rely on overflow. */
5858 used_strict_overflow = -1;
5860 /* Otherwise, compare all the equivalent ranges. First, add N1 and
5861 N2 to their own set of equivalences to avoid duplicating the body
5862 of the loop just to check N1 and N2 ranges. */
5863 EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
5865 value_range_t vr1 = get_vr_for_comparison (i1);
5867 t = retval = NULL_TREE;
5868 EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
5870 bool sop = false;
5872 value_range_t vr2 = get_vr_for_comparison (i2);
5874 t = compare_ranges (comp, &vr1, &vr2, &sop);
5875 if (t)
5877 /* If we get different answers from different members
5878 of the equivalence set this check must be in a dead
5879 code region. Folding it to a trap representation
5880 would be correct here. For now just return don't-know. */
5881 if (retval != NULL
5882 && t != retval)
5884 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5885 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5886 return NULL_TREE;
5888 retval = t;
5890 if (!sop)
5891 used_strict_overflow = 0;
5892 else if (used_strict_overflow < 0)
5893 used_strict_overflow = 1;
5897 if (retval)
5899 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5900 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5901 if (used_strict_overflow > 0)
5902 *strict_overflow_p = true;
5903 return retval;
5907 /* None of the equivalent ranges are useful in computing this
5908 comparison. */
5909 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5910 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5911 return NULL_TREE;
5914 /* Helper function for vrp_evaluate_conditional_warnv. */
5916 static tree
5917 vrp_evaluate_conditional_warnv_with_ops_using_ranges (enum tree_code code,
5918 tree op0, tree op1,
5919 bool * strict_overflow_p)
5921 value_range_t *vr0, *vr1;
5923 vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
5924 vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
5926 if (vr0 && vr1)
5927 return compare_ranges (code, vr0, vr1, strict_overflow_p);
5928 else if (vr0 && vr1 == NULL)
5929 return compare_range_with_value (code, vr0, op1, strict_overflow_p);
5930 else if (vr0 == NULL && vr1)
5931 return (compare_range_with_value
5932 (swap_tree_comparison (code), vr1, op0, strict_overflow_p));
5933 return NULL;
5936 /* Helper function for vrp_evaluate_conditional_warnv. */
5938 static tree
5939 vrp_evaluate_conditional_warnv_with_ops (enum tree_code code, tree op0,
5940 tree op1, bool use_equiv_p,
5941 bool *strict_overflow_p, bool *only_ranges)
5943 tree ret;
5944 if (only_ranges)
5945 *only_ranges = true;
5947 /* We only deal with integral and pointer types. */
5948 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
5949 && !POINTER_TYPE_P (TREE_TYPE (op0)))
5950 return NULL_TREE;
5952 if (use_equiv_p)
5954 if (only_ranges
5955 && (ret = vrp_evaluate_conditional_warnv_with_ops_using_ranges
5956 (code, op0, op1, strict_overflow_p)))
5957 return ret;
5958 *only_ranges = false;
5959 if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
5960 return compare_names (code, op0, op1, strict_overflow_p);
5961 else if (TREE_CODE (op0) == SSA_NAME)
5962 return compare_name_with_value (code, op0, op1, strict_overflow_p);
5963 else if (TREE_CODE (op1) == SSA_NAME)
5964 return (compare_name_with_value
5965 (swap_tree_comparison (code), op1, op0, strict_overflow_p));
5967 else
5968 return vrp_evaluate_conditional_warnv_with_ops_using_ranges (code, op0, op1,
5969 strict_overflow_p);
5970 return NULL_TREE;
5973 /* Given (CODE OP0 OP1) within STMT, try to simplify it based on value range
5974 information. Return NULL if the conditional can not be evaluated.
5975 The ranges of all the names equivalent with the operands in COND
5976 will be used when trying to compute the value. If the result is
5977 based on undefined signed overflow, issue a warning if
5978 appropriate. */
5980 static tree
5981 vrp_evaluate_conditional (enum tree_code code, tree op0, tree op1, gimple stmt)
5983 bool sop;
5984 tree ret;
5985 bool only_ranges;
5987 /* Some passes and foldings leak constants with overflow flag set
5988 into the IL. Avoid doing wrong things with these and bail out. */
5989 if ((TREE_CODE (op0) == INTEGER_CST
5990 && TREE_OVERFLOW (op0))
5991 || (TREE_CODE (op1) == INTEGER_CST
5992 && TREE_OVERFLOW (op1)))
5993 return NULL_TREE;
5995 sop = false;
5996 ret = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, true, &sop,
5997 &only_ranges);
5999 if (ret && sop)
6001 enum warn_strict_overflow_code wc;
6002 const char* warnmsg;
6004 if (is_gimple_min_invariant (ret))
6006 wc = WARN_STRICT_OVERFLOW_CONDITIONAL;
6007 warnmsg = G_("assuming signed overflow does not occur when "
6008 "simplifying conditional to constant");
6010 else
6012 wc = WARN_STRICT_OVERFLOW_COMPARISON;
6013 warnmsg = G_("assuming signed overflow does not occur when "
6014 "simplifying conditional");
6017 if (issue_strict_overflow_warning (wc))
6019 location_t location;
6021 if (!gimple_has_location (stmt))
6022 location = input_location;
6023 else
6024 location = gimple_location (stmt);
6025 warning_at (location, OPT_Wstrict_overflow, "%s", warnmsg);
6029 if (warn_type_limits
6030 && ret && only_ranges
6031 && TREE_CODE_CLASS (code) == tcc_comparison
6032 && TREE_CODE (op0) == SSA_NAME)
6034 /* If the comparison is being folded and the operand on the LHS
6035 is being compared against a constant value that is outside of
6036 the natural range of OP0's type, then the predicate will
6037 always fold regardless of the value of OP0. If -Wtype-limits
6038 was specified, emit a warning. */
6039 tree type = TREE_TYPE (op0);
6040 value_range_t *vr0 = get_value_range (op0);
6042 if (vr0->type != VR_VARYING
6043 && INTEGRAL_TYPE_P (type)
6044 && vrp_val_is_min (vr0->min)
6045 && vrp_val_is_max (vr0->max)
6046 && is_gimple_min_invariant (op1))
6048 location_t location;
6050 if (!gimple_has_location (stmt))
6051 location = input_location;
6052 else
6053 location = gimple_location (stmt);
6055 warning_at (location, OPT_Wtype_limits,
6056 integer_zerop (ret)
6057 ? G_("comparison always false "
6058 "due to limited range of data type")
6059 : G_("comparison always true "
6060 "due to limited range of data type"));
6064 return ret;
6068 /* Visit conditional statement STMT. If we can determine which edge
6069 will be taken out of STMT's basic block, record it in
6070 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
6071 SSA_PROP_VARYING. */
6073 static enum ssa_prop_result
6074 vrp_visit_cond_stmt (gimple stmt, edge *taken_edge_p)
6076 tree val;
6077 bool sop;
6079 *taken_edge_p = NULL;
6081 if (dump_file && (dump_flags & TDF_DETAILS))
6083 tree use;
6084 ssa_op_iter i;
6086 fprintf (dump_file, "\nVisiting conditional with predicate: ");
6087 print_gimple_stmt (dump_file, stmt, 0, 0);
6088 fprintf (dump_file, "\nWith known ranges\n");
6090 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
6092 fprintf (dump_file, "\t");
6093 print_generic_expr (dump_file, use, 0);
6094 fprintf (dump_file, ": ");
6095 dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
6098 fprintf (dump_file, "\n");
6101 /* Compute the value of the predicate COND by checking the known
6102 ranges of each of its operands.
6104 Note that we cannot evaluate all the equivalent ranges here
6105 because those ranges may not yet be final and with the current
6106 propagation strategy, we cannot determine when the value ranges
6107 of the names in the equivalence set have changed.
6109 For instance, given the following code fragment
6111 i_5 = PHI <8, i_13>
6113 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
6114 if (i_14 == 1)
6117 Assume that on the first visit to i_14, i_5 has the temporary
6118 range [8, 8] because the second argument to the PHI function is
6119 not yet executable. We derive the range ~[0, 0] for i_14 and the
6120 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
6121 the first time, since i_14 is equivalent to the range [8, 8], we
6122 determine that the predicate is always false.
6124 On the next round of propagation, i_13 is determined to be
6125 VARYING, which causes i_5 to drop down to VARYING. So, another
6126 visit to i_14 is scheduled. In this second visit, we compute the
6127 exact same range and equivalence set for i_14, namely ~[0, 0] and
6128 { i_5 }. But we did not have the previous range for i_5
6129 registered, so vrp_visit_assignment thinks that the range for
6130 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
6131 is not visited again, which stops propagation from visiting
6132 statements in the THEN clause of that if().
6134 To properly fix this we would need to keep the previous range
6135 value for the names in the equivalence set. This way we would've
6136 discovered that from one visit to the other i_5 changed from
6137 range [8, 8] to VR_VARYING.
6139 However, fixing this apparent limitation may not be worth the
6140 additional checking. Testing on several code bases (GCC, DLV,
6141 MICO, TRAMP3D and SPEC2000) showed that doing this results in
6142 4 more predicates folded in SPEC. */
6143 sop = false;
6145 val = vrp_evaluate_conditional_warnv_with_ops (gimple_cond_code (stmt),
6146 gimple_cond_lhs (stmt),
6147 gimple_cond_rhs (stmt),
6148 false, &sop, NULL);
6149 if (val)
6151 if (!sop)
6152 *taken_edge_p = find_taken_edge (gimple_bb (stmt), val);
6153 else
6155 if (dump_file && (dump_flags & TDF_DETAILS))
6156 fprintf (dump_file,
6157 "\nIgnoring predicate evaluation because "
6158 "it assumes that signed overflow is undefined");
6159 val = NULL_TREE;
6163 if (dump_file && (dump_flags & TDF_DETAILS))
6165 fprintf (dump_file, "\nPredicate evaluates to: ");
6166 if (val == NULL_TREE)
6167 fprintf (dump_file, "DON'T KNOW\n");
6168 else
6169 print_generic_stmt (dump_file, val, 0);
6172 return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
6175 /* Searches the case label vector VEC for the index *IDX of the CASE_LABEL
6176 that includes the value VAL. The search is restricted to the range
6177 [START_IDX, n - 1] where n is the size of VEC.
6179 If there is a CASE_LABEL for VAL, its index is placed in IDX and true is
6180 returned.
6182 If there is no CASE_LABEL for VAL and there is one that is larger than VAL,
6183 it is placed in IDX and false is returned.
6185 If VAL is larger than any CASE_LABEL, n is placed on IDX and false is
6186 returned. */
6188 static bool
6189 find_case_label_index (gimple stmt, size_t start_idx, tree val, size_t *idx)
6191 size_t n = gimple_switch_num_labels (stmt);
6192 size_t low, high;
6194 /* Find case label for minimum of the value range or the next one.
6195 At each iteration we are searching in [low, high - 1]. */
6197 for (low = start_idx, high = n; high != low; )
6199 tree t;
6200 int cmp;
6201 /* Note that i != high, so we never ask for n. */
6202 size_t i = (high + low) / 2;
6203 t = gimple_switch_label (stmt, i);
6205 /* Cache the result of comparing CASE_LOW and val. */
6206 cmp = tree_int_cst_compare (CASE_LOW (t), val);
6208 if (cmp == 0)
6210 /* Ranges cannot be empty. */
6211 *idx = i;
6212 return true;
6214 else if (cmp > 0)
6215 high = i;
6216 else
6218 low = i + 1;
6219 if (CASE_HIGH (t) != NULL
6220 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
6222 *idx = i;
6223 return true;
6228 *idx = high;
6229 return false;
6232 /* Searches the case label vector VEC for the range of CASE_LABELs that is used
6233 for values between MIN and MAX. The first index is placed in MIN_IDX. The
6234 last index is placed in MAX_IDX. If the range of CASE_LABELs is empty
6235 then MAX_IDX < MIN_IDX.
6236 Returns true if the default label is not needed. */
6238 static bool
6239 find_case_label_range (gimple stmt, tree min, tree max, size_t *min_idx,
6240 size_t *max_idx)
6242 size_t i, j;
6243 bool min_take_default = !find_case_label_index (stmt, 1, min, &i);
6244 bool max_take_default = !find_case_label_index (stmt, i, max, &j);
6246 if (i == j
6247 && min_take_default
6248 && max_take_default)
6250 /* Only the default case label reached.
6251 Return an empty range. */
6252 *min_idx = 1;
6253 *max_idx = 0;
6254 return false;
6256 else
6258 bool take_default = min_take_default || max_take_default;
6259 tree low, high;
6260 size_t k;
6262 if (max_take_default)
6263 j--;
6265 /* If the case label range is continuous, we do not need
6266 the default case label. Verify that. */
6267 high = CASE_LOW (gimple_switch_label (stmt, i));
6268 if (CASE_HIGH (gimple_switch_label (stmt, i)))
6269 high = CASE_HIGH (gimple_switch_label (stmt, i));
6270 for (k = i + 1; k <= j; ++k)
6272 low = CASE_LOW (gimple_switch_label (stmt, k));
6273 if (!integer_onep (int_const_binop (MINUS_EXPR, low, high)))
6275 take_default = true;
6276 break;
6278 high = low;
6279 if (CASE_HIGH (gimple_switch_label (stmt, k)))
6280 high = CASE_HIGH (gimple_switch_label (stmt, k));
6283 *min_idx = i;
6284 *max_idx = j;
6285 return !take_default;
6289 /* Visit switch statement STMT. If we can determine which edge
6290 will be taken out of STMT's basic block, record it in
6291 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
6292 SSA_PROP_VARYING. */
6294 static enum ssa_prop_result
6295 vrp_visit_switch_stmt (gimple stmt, edge *taken_edge_p)
6297 tree op, val;
6298 value_range_t *vr;
6299 size_t i = 0, j = 0;
6300 bool take_default;
6302 *taken_edge_p = NULL;
6303 op = gimple_switch_index (stmt);
6304 if (TREE_CODE (op) != SSA_NAME)
6305 return SSA_PROP_VARYING;
6307 vr = get_value_range (op);
6308 if (dump_file && (dump_flags & TDF_DETAILS))
6310 fprintf (dump_file, "\nVisiting switch expression with operand ");
6311 print_generic_expr (dump_file, op, 0);
6312 fprintf (dump_file, " with known range ");
6313 dump_value_range (dump_file, vr);
6314 fprintf (dump_file, "\n");
6317 if (vr->type != VR_RANGE
6318 || symbolic_range_p (vr))
6319 return SSA_PROP_VARYING;
6321 /* Find the single edge that is taken from the switch expression. */
6322 take_default = !find_case_label_range (stmt, vr->min, vr->max, &i, &j);
6324 /* Check if the range spans no CASE_LABEL. If so, we only reach the default
6325 label */
6326 if (j < i)
6328 gcc_assert (take_default);
6329 val = gimple_switch_default_label (stmt);
6331 else
6333 /* Check if labels with index i to j and maybe the default label
6334 are all reaching the same label. */
6336 val = gimple_switch_label (stmt, i);
6337 if (take_default
6338 && CASE_LABEL (gimple_switch_default_label (stmt))
6339 != CASE_LABEL (val))
6341 if (dump_file && (dump_flags & TDF_DETAILS))
6342 fprintf (dump_file, " not a single destination for this "
6343 "range\n");
6344 return SSA_PROP_VARYING;
6346 for (++i; i <= j; ++i)
6348 if (CASE_LABEL (gimple_switch_label (stmt, i)) != CASE_LABEL (val))
6350 if (dump_file && (dump_flags & TDF_DETAILS))
6351 fprintf (dump_file, " not a single destination for this "
6352 "range\n");
6353 return SSA_PROP_VARYING;
6358 *taken_edge_p = find_edge (gimple_bb (stmt),
6359 label_to_block (CASE_LABEL (val)));
6361 if (dump_file && (dump_flags & TDF_DETAILS))
6363 fprintf (dump_file, " will take edge to ");
6364 print_generic_stmt (dump_file, CASE_LABEL (val), 0);
6367 return SSA_PROP_INTERESTING;
6371 /* Evaluate statement STMT. If the statement produces a useful range,
6372 return SSA_PROP_INTERESTING and record the SSA name with the
6373 interesting range into *OUTPUT_P.
6375 If STMT is a conditional branch and we can determine its truth
6376 value, the taken edge is recorded in *TAKEN_EDGE_P.
6378 If STMT produces a varying value, return SSA_PROP_VARYING. */
6380 static enum ssa_prop_result
6381 vrp_visit_stmt (gimple stmt, edge *taken_edge_p, tree *output_p)
6383 tree def;
6384 ssa_op_iter iter;
6386 if (dump_file && (dump_flags & TDF_DETAILS))
6388 fprintf (dump_file, "\nVisiting statement:\n");
6389 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
6390 fprintf (dump_file, "\n");
6393 if (!stmt_interesting_for_vrp (stmt))
6394 gcc_assert (stmt_ends_bb_p (stmt));
6395 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
6397 /* In general, assignments with virtual operands are not useful
6398 for deriving ranges, with the obvious exception of calls to
6399 builtin functions. */
6400 if ((is_gimple_call (stmt)
6401 && gimple_call_fndecl (stmt) != NULL_TREE
6402 && DECL_IS_BUILTIN (gimple_call_fndecl (stmt)))
6403 || !gimple_vuse (stmt))
6404 return vrp_visit_assignment_or_call (stmt, output_p);
6406 else if (gimple_code (stmt) == GIMPLE_COND)
6407 return vrp_visit_cond_stmt (stmt, taken_edge_p);
6408 else if (gimple_code (stmt) == GIMPLE_SWITCH)
6409 return vrp_visit_switch_stmt (stmt, taken_edge_p);
6411 /* All other statements produce nothing of interest for VRP, so mark
6412 their outputs varying and prevent further simulation. */
6413 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
6414 set_value_range_to_varying (get_value_range (def));
6416 return SSA_PROP_VARYING;
6420 /* Meet operation for value ranges. Given two value ranges VR0 and
6421 VR1, store in VR0 a range that contains both VR0 and VR1. This
6422 may not be the smallest possible such range. */
6424 static void
6425 vrp_meet (value_range_t *vr0, value_range_t *vr1)
6427 if (vr0->type == VR_UNDEFINED)
6429 copy_value_range (vr0, vr1);
6430 return;
6433 if (vr1->type == VR_UNDEFINED)
6435 /* Nothing to do. VR0 already has the resulting range. */
6436 return;
6439 if (vr0->type == VR_VARYING)
6441 /* Nothing to do. VR0 already has the resulting range. */
6442 return;
6445 if (vr1->type == VR_VARYING)
6447 set_value_range_to_varying (vr0);
6448 return;
6451 if (vr0->type == VR_RANGE && vr1->type == VR_RANGE)
6453 int cmp;
6454 tree min, max;
6456 /* Compute the convex hull of the ranges. The lower limit of
6457 the new range is the minimum of the two ranges. If they
6458 cannot be compared, then give up. */
6459 cmp = compare_values (vr0->min, vr1->min);
6460 if (cmp == 0 || cmp == 1)
6461 min = vr1->min;
6462 else if (cmp == -1)
6463 min = vr0->min;
6464 else
6465 goto give_up;
6467 /* Similarly, the upper limit of the new range is the maximum
6468 of the two ranges. If they cannot be compared, then
6469 give up. */
6470 cmp = compare_values (vr0->max, vr1->max);
6471 if (cmp == 0 || cmp == -1)
6472 max = vr1->max;
6473 else if (cmp == 1)
6474 max = vr0->max;
6475 else
6476 goto give_up;
6478 /* Check for useless ranges. */
6479 if (INTEGRAL_TYPE_P (TREE_TYPE (min))
6480 && ((vrp_val_is_min (min) || is_overflow_infinity (min))
6481 && (vrp_val_is_max (max) || is_overflow_infinity (max))))
6482 goto give_up;
6484 /* The resulting set of equivalences is the intersection of
6485 the two sets. */
6486 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
6487 bitmap_and_into (vr0->equiv, vr1->equiv);
6488 else if (vr0->equiv && !vr1->equiv)
6489 bitmap_clear (vr0->equiv);
6491 set_value_range (vr0, vr0->type, min, max, vr0->equiv);
6493 else if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
6495 /* Two anti-ranges meet only if their complements intersect.
6496 Only handle the case of identical ranges. */
6497 if (compare_values (vr0->min, vr1->min) == 0
6498 && compare_values (vr0->max, vr1->max) == 0
6499 && compare_values (vr0->min, vr0->max) == 0)
6501 /* The resulting set of equivalences is the intersection of
6502 the two sets. */
6503 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
6504 bitmap_and_into (vr0->equiv, vr1->equiv);
6505 else if (vr0->equiv && !vr1->equiv)
6506 bitmap_clear (vr0->equiv);
6508 else
6509 goto give_up;
6511 else if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
6513 /* For a numeric range [VAL1, VAL2] and an anti-range ~[VAL3, VAL4],
6514 only handle the case where the ranges have an empty intersection.
6515 The result of the meet operation is the anti-range. */
6516 if (!symbolic_range_p (vr0)
6517 && !symbolic_range_p (vr1)
6518 && !value_ranges_intersect_p (vr0, vr1))
6520 /* Copy most of VR1 into VR0. Don't copy VR1's equivalence
6521 set. We need to compute the intersection of the two
6522 equivalence sets. */
6523 if (vr1->type == VR_ANTI_RANGE)
6524 set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr0->equiv);
6526 /* The resulting set of equivalences is the intersection of
6527 the two sets. */
6528 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
6529 bitmap_and_into (vr0->equiv, vr1->equiv);
6530 else if (vr0->equiv && !vr1->equiv)
6531 bitmap_clear (vr0->equiv);
6533 else
6534 goto give_up;
6536 else
6537 gcc_unreachable ();
6539 return;
6541 give_up:
6542 /* Failed to find an efficient meet. Before giving up and setting
6543 the result to VARYING, see if we can at least derive a useful
6544 anti-range. FIXME, all this nonsense about distinguishing
6545 anti-ranges from ranges is necessary because of the odd
6546 semantics of range_includes_zero_p and friends. */
6547 if (!symbolic_range_p (vr0)
6548 && ((vr0->type == VR_RANGE && !range_includes_zero_p (vr0))
6549 || (vr0->type == VR_ANTI_RANGE && range_includes_zero_p (vr0)))
6550 && !symbolic_range_p (vr1)
6551 && ((vr1->type == VR_RANGE && !range_includes_zero_p (vr1))
6552 || (vr1->type == VR_ANTI_RANGE && range_includes_zero_p (vr1))))
6554 set_value_range_to_nonnull (vr0, TREE_TYPE (vr0->min));
6556 /* Since this meet operation did not result from the meeting of
6557 two equivalent names, VR0 cannot have any equivalences. */
6558 if (vr0->equiv)
6559 bitmap_clear (vr0->equiv);
6561 else
6562 set_value_range_to_varying (vr0);
6566 /* Visit all arguments for PHI node PHI that flow through executable
6567 edges. If a valid value range can be derived from all the incoming
6568 value ranges, set a new range for the LHS of PHI. */
6570 static enum ssa_prop_result
6571 vrp_visit_phi_node (gimple phi)
6573 size_t i;
6574 tree lhs = PHI_RESULT (phi);
6575 value_range_t *lhs_vr = get_value_range (lhs);
6576 value_range_t vr_result = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
6577 int edges, old_edges;
6578 struct loop *l;
6580 if (dump_file && (dump_flags & TDF_DETAILS))
6582 fprintf (dump_file, "\nVisiting PHI node: ");
6583 print_gimple_stmt (dump_file, phi, 0, dump_flags);
6586 edges = 0;
6587 for (i = 0; i < gimple_phi_num_args (phi); i++)
6589 edge e = gimple_phi_arg_edge (phi, i);
6591 if (dump_file && (dump_flags & TDF_DETAILS))
6593 fprintf (dump_file,
6594 "\n Argument #%d (%d -> %d %sexecutable)\n",
6595 (int) i, e->src->index, e->dest->index,
6596 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
6599 if (e->flags & EDGE_EXECUTABLE)
6601 tree arg = PHI_ARG_DEF (phi, i);
6602 value_range_t vr_arg;
6604 ++edges;
6606 if (TREE_CODE (arg) == SSA_NAME)
6608 vr_arg = *(get_value_range (arg));
6610 else
6612 if (is_overflow_infinity (arg))
6614 arg = copy_node (arg);
6615 TREE_OVERFLOW (arg) = 0;
6618 vr_arg.type = VR_RANGE;
6619 vr_arg.min = arg;
6620 vr_arg.max = arg;
6621 vr_arg.equiv = NULL;
6624 if (dump_file && (dump_flags & TDF_DETAILS))
6626 fprintf (dump_file, "\t");
6627 print_generic_expr (dump_file, arg, dump_flags);
6628 fprintf (dump_file, "\n\tValue: ");
6629 dump_value_range (dump_file, &vr_arg);
6630 fprintf (dump_file, "\n");
6633 vrp_meet (&vr_result, &vr_arg);
6635 if (vr_result.type == VR_VARYING)
6636 break;
6640 if (vr_result.type == VR_VARYING)
6641 goto varying;
6643 old_edges = vr_phi_edge_counts[SSA_NAME_VERSION (lhs)];
6644 vr_phi_edge_counts[SSA_NAME_VERSION (lhs)] = edges;
6646 /* To prevent infinite iterations in the algorithm, derive ranges
6647 when the new value is slightly bigger or smaller than the
6648 previous one. We don't do this if we have seen a new executable
6649 edge; this helps us avoid an overflow infinity for conditionals
6650 which are not in a loop. */
6651 if (edges > 0
6652 && gimple_phi_num_args (phi) > 1
6653 && edges == old_edges)
6655 int cmp_min = compare_values (lhs_vr->min, vr_result.min);
6656 int cmp_max = compare_values (lhs_vr->max, vr_result.max);
6658 /* For non VR_RANGE or for pointers fall back to varying if
6659 the range changed. */
6660 if ((lhs_vr->type != VR_RANGE || vr_result.type != VR_RANGE
6661 || POINTER_TYPE_P (TREE_TYPE (lhs)))
6662 && (cmp_min != 0 || cmp_max != 0))
6663 goto varying;
6665 /* If the new minimum is smaller or larger than the previous
6666 one, go all the way to -INF. In the first case, to avoid
6667 iterating millions of times to reach -INF, and in the
6668 other case to avoid infinite bouncing between different
6669 minimums. */
6670 if (cmp_min > 0 || cmp_min < 0)
6672 if (!needs_overflow_infinity (TREE_TYPE (vr_result.min))
6673 || !vrp_var_may_overflow (lhs, phi))
6674 vr_result.min = TYPE_MIN_VALUE (TREE_TYPE (vr_result.min));
6675 else if (supports_overflow_infinity (TREE_TYPE (vr_result.min)))
6676 vr_result.min =
6677 negative_overflow_infinity (TREE_TYPE (vr_result.min));
6680 /* Similarly, if the new maximum is smaller or larger than
6681 the previous one, go all the way to +INF. */
6682 if (cmp_max < 0 || cmp_max > 0)
6684 if (!needs_overflow_infinity (TREE_TYPE (vr_result.max))
6685 || !vrp_var_may_overflow (lhs, phi))
6686 vr_result.max = TYPE_MAX_VALUE (TREE_TYPE (vr_result.max));
6687 else if (supports_overflow_infinity (TREE_TYPE (vr_result.max)))
6688 vr_result.max =
6689 positive_overflow_infinity (TREE_TYPE (vr_result.max));
6692 /* If we dropped either bound to +-INF then if this is a loop
6693 PHI node SCEV may known more about its value-range. */
6694 if ((cmp_min > 0 || cmp_min < 0
6695 || cmp_max < 0 || cmp_max > 0)
6696 && current_loops
6697 && (l = loop_containing_stmt (phi))
6698 && l->header == gimple_bb (phi))
6699 adjust_range_with_scev (&vr_result, l, phi, lhs);
6701 /* If we will end up with a (-INF, +INF) range, set it to
6702 VARYING. Same if the previous max value was invalid for
6703 the type and we end up with vr_result.min > vr_result.max. */
6704 if ((vrp_val_is_max (vr_result.max)
6705 && vrp_val_is_min (vr_result.min))
6706 || compare_values (vr_result.min,
6707 vr_result.max) > 0)
6708 goto varying;
6711 /* If the new range is different than the previous value, keep
6712 iterating. */
6713 if (update_value_range (lhs, &vr_result))
6715 if (dump_file && (dump_flags & TDF_DETAILS))
6717 fprintf (dump_file, "Found new range for ");
6718 print_generic_expr (dump_file, lhs, 0);
6719 fprintf (dump_file, ": ");
6720 dump_value_range (dump_file, &vr_result);
6721 fprintf (dump_file, "\n\n");
6724 return SSA_PROP_INTERESTING;
6727 /* Nothing changed, don't add outgoing edges. */
6728 return SSA_PROP_NOT_INTERESTING;
6730 /* No match found. Set the LHS to VARYING. */
6731 varying:
6732 set_value_range_to_varying (lhs_vr);
6733 return SSA_PROP_VARYING;
6736 /* Simplify boolean operations if the source is known
6737 to be already a boolean. */
6738 static bool
6739 simplify_truth_ops_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
6741 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
6742 tree val = NULL;
6743 tree op0, op1;
6744 value_range_t *vr;
6745 bool sop = false;
6746 bool need_conversion;
6748 op0 = gimple_assign_rhs1 (stmt);
6749 if (TYPE_PRECISION (TREE_TYPE (op0)) != 1)
6751 if (TREE_CODE (op0) != SSA_NAME)
6752 return false;
6753 vr = get_value_range (op0);
6755 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
6756 if (!val || !integer_onep (val))
6757 return false;
6759 val = compare_range_with_value (LE_EXPR, vr, integer_one_node, &sop);
6760 if (!val || !integer_onep (val))
6761 return false;
6764 if (rhs_code == TRUTH_NOT_EXPR)
6766 rhs_code = NE_EXPR;
6767 op1 = build_int_cst (TREE_TYPE (op0), 1);
6769 else
6771 op1 = gimple_assign_rhs2 (stmt);
6773 /* Reduce number of cases to handle. */
6774 if (is_gimple_min_invariant (op1))
6776 /* Exclude anything that should have been already folded. */
6777 if (rhs_code != EQ_EXPR
6778 && rhs_code != NE_EXPR
6779 && rhs_code != TRUTH_XOR_EXPR)
6780 return false;
6782 if (!integer_zerop (op1)
6783 && !integer_onep (op1)
6784 && !integer_all_onesp (op1))
6785 return false;
6787 /* Limit the number of cases we have to consider. */
6788 if (rhs_code == EQ_EXPR)
6790 rhs_code = NE_EXPR;
6791 op1 = fold_unary (TRUTH_NOT_EXPR, TREE_TYPE (op1), op1);
6794 else
6796 /* Punt on A == B as there is no BIT_XNOR_EXPR. */
6797 if (rhs_code == EQ_EXPR)
6798 return false;
6800 if (TYPE_PRECISION (TREE_TYPE (op1)) != 1)
6802 vr = get_value_range (op1);
6803 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
6804 if (!val || !integer_onep (val))
6805 return false;
6807 val = compare_range_with_value (LE_EXPR, vr, integer_one_node, &sop);
6808 if (!val || !integer_onep (val))
6809 return false;
6814 if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
6816 location_t location;
6818 if (!gimple_has_location (stmt))
6819 location = input_location;
6820 else
6821 location = gimple_location (stmt);
6823 if (rhs_code == TRUTH_AND_EXPR || rhs_code == TRUTH_OR_EXPR)
6824 warning_at (location, OPT_Wstrict_overflow,
6825 _("assuming signed overflow does not occur when "
6826 "simplifying && or || to & or |"));
6827 else
6828 warning_at (location, OPT_Wstrict_overflow,
6829 _("assuming signed overflow does not occur when "
6830 "simplifying ==, != or ! to identity or ^"));
6833 need_conversion =
6834 !useless_type_conversion_p (TREE_TYPE (gimple_assign_lhs (stmt)),
6835 TREE_TYPE (op0));
6837 /* Make sure to not sign-extend -1 as a boolean value. */
6838 if (need_conversion
6839 && !TYPE_UNSIGNED (TREE_TYPE (op0))
6840 && TYPE_PRECISION (TREE_TYPE (op0)) == 1)
6841 return false;
6843 switch (rhs_code)
6845 case TRUTH_AND_EXPR:
6846 rhs_code = BIT_AND_EXPR;
6847 break;
6848 case TRUTH_OR_EXPR:
6849 rhs_code = BIT_IOR_EXPR;
6850 break;
6851 case TRUTH_XOR_EXPR:
6852 case NE_EXPR:
6853 if (integer_zerop (op1))
6855 gimple_assign_set_rhs_with_ops (gsi,
6856 need_conversion ? NOP_EXPR : SSA_NAME,
6857 op0, NULL);
6858 update_stmt (gsi_stmt (*gsi));
6859 return true;
6862 rhs_code = BIT_XOR_EXPR;
6863 break;
6864 default:
6865 gcc_unreachable ();
6868 if (need_conversion)
6869 return false;
6871 gimple_assign_set_rhs_with_ops (gsi, rhs_code, op0, op1);
6872 update_stmt (gsi_stmt (*gsi));
6873 return true;
6876 /* Simplify a division or modulo operator to a right shift or
6877 bitwise and if the first operand is unsigned or is greater
6878 than zero and the second operand is an exact power of two. */
6880 static bool
6881 simplify_div_or_mod_using_ranges (gimple stmt)
6883 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
6884 tree val = NULL;
6885 tree op0 = gimple_assign_rhs1 (stmt);
6886 tree op1 = gimple_assign_rhs2 (stmt);
6887 value_range_t *vr = get_value_range (gimple_assign_rhs1 (stmt));
6889 if (TYPE_UNSIGNED (TREE_TYPE (op0)))
6891 val = integer_one_node;
6893 else
6895 bool sop = false;
6897 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
6899 if (val
6900 && sop
6901 && integer_onep (val)
6902 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
6904 location_t location;
6906 if (!gimple_has_location (stmt))
6907 location = input_location;
6908 else
6909 location = gimple_location (stmt);
6910 warning_at (location, OPT_Wstrict_overflow,
6911 "assuming signed overflow does not occur when "
6912 "simplifying %</%> or %<%%%> to %<>>%> or %<&%>");
6916 if (val && integer_onep (val))
6918 tree t;
6920 if (rhs_code == TRUNC_DIV_EXPR)
6922 t = build_int_cst (integer_type_node, tree_log2 (op1));
6923 gimple_assign_set_rhs_code (stmt, RSHIFT_EXPR);
6924 gimple_assign_set_rhs1 (stmt, op0);
6925 gimple_assign_set_rhs2 (stmt, t);
6927 else
6929 t = build_int_cst (TREE_TYPE (op1), 1);
6930 t = int_const_binop (MINUS_EXPR, op1, t);
6931 t = fold_convert (TREE_TYPE (op0), t);
6933 gimple_assign_set_rhs_code (stmt, BIT_AND_EXPR);
6934 gimple_assign_set_rhs1 (stmt, op0);
6935 gimple_assign_set_rhs2 (stmt, t);
6938 update_stmt (stmt);
6939 return true;
6942 return false;
6945 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
6946 ABS_EXPR. If the operand is <= 0, then simplify the
6947 ABS_EXPR into a NEGATE_EXPR. */
6949 static bool
6950 simplify_abs_using_ranges (gimple stmt)
6952 tree val = NULL;
6953 tree op = gimple_assign_rhs1 (stmt);
6954 tree type = TREE_TYPE (op);
6955 value_range_t *vr = get_value_range (op);
6957 if (TYPE_UNSIGNED (type))
6959 val = integer_zero_node;
6961 else if (vr)
6963 bool sop = false;
6965 val = compare_range_with_value (LE_EXPR, vr, integer_zero_node, &sop);
6966 if (!val)
6968 sop = false;
6969 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node,
6970 &sop);
6972 if (val)
6974 if (integer_zerop (val))
6975 val = integer_one_node;
6976 else if (integer_onep (val))
6977 val = integer_zero_node;
6981 if (val
6982 && (integer_onep (val) || integer_zerop (val)))
6984 if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
6986 location_t location;
6988 if (!gimple_has_location (stmt))
6989 location = input_location;
6990 else
6991 location = gimple_location (stmt);
6992 warning_at (location, OPT_Wstrict_overflow,
6993 "assuming signed overflow does not occur when "
6994 "simplifying %<abs (X)%> to %<X%> or %<-X%>");
6997 gimple_assign_set_rhs1 (stmt, op);
6998 if (integer_onep (val))
6999 gimple_assign_set_rhs_code (stmt, NEGATE_EXPR);
7000 else
7001 gimple_assign_set_rhs_code (stmt, SSA_NAME);
7002 update_stmt (stmt);
7003 return true;
7007 return false;
7010 /* Optimize away redundant BIT_AND_EXPR and BIT_IOR_EXPR.
7011 If all the bits that are being cleared by & are already
7012 known to be zero from VR, or all the bits that are being
7013 set by | are already known to be one from VR, the bit
7014 operation is redundant. */
7016 static bool
7017 simplify_bit_ops_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
7019 tree op0 = gimple_assign_rhs1 (stmt);
7020 tree op1 = gimple_assign_rhs2 (stmt);
7021 tree op = NULL_TREE;
7022 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
7023 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
7024 double_int may_be_nonzero0, may_be_nonzero1;
7025 double_int must_be_nonzero0, must_be_nonzero1;
7026 double_int mask;
7028 if (TREE_CODE (op0) == SSA_NAME)
7029 vr0 = *(get_value_range (op0));
7030 else if (is_gimple_min_invariant (op0))
7031 set_value_range_to_value (&vr0, op0, NULL);
7032 else
7033 return false;
7035 if (TREE_CODE (op1) == SSA_NAME)
7036 vr1 = *(get_value_range (op1));
7037 else if (is_gimple_min_invariant (op1))
7038 set_value_range_to_value (&vr1, op1, NULL);
7039 else
7040 return false;
7042 if (!zero_nonzero_bits_from_vr (&vr0, &may_be_nonzero0, &must_be_nonzero0))
7043 return false;
7044 if (!zero_nonzero_bits_from_vr (&vr1, &may_be_nonzero1, &must_be_nonzero1))
7045 return false;
7047 switch (gimple_assign_rhs_code (stmt))
7049 case BIT_AND_EXPR:
7050 mask = double_int_and_not (may_be_nonzero0, must_be_nonzero1);
7051 if (double_int_zero_p (mask))
7053 op = op0;
7054 break;
7056 mask = double_int_and_not (may_be_nonzero1, must_be_nonzero0);
7057 if (double_int_zero_p (mask))
7059 op = op1;
7060 break;
7062 break;
7063 case BIT_IOR_EXPR:
7064 mask = double_int_and_not (may_be_nonzero0, must_be_nonzero1);
7065 if (double_int_zero_p (mask))
7067 op = op1;
7068 break;
7070 mask = double_int_and_not (may_be_nonzero1, must_be_nonzero0);
7071 if (double_int_zero_p (mask))
7073 op = op0;
7074 break;
7076 break;
7077 default:
7078 gcc_unreachable ();
7081 if (op == NULL_TREE)
7082 return false;
7084 gimple_assign_set_rhs_with_ops (gsi, TREE_CODE (op), op, NULL);
7085 update_stmt (gsi_stmt (*gsi));
7086 return true;
7089 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
7090 a known value range VR.
7092 If there is one and only one value which will satisfy the
7093 conditional, then return that value. Else return NULL. */
7095 static tree
7096 test_for_singularity (enum tree_code cond_code, tree op0,
7097 tree op1, value_range_t *vr)
7099 tree min = NULL;
7100 tree max = NULL;
7102 /* Extract minimum/maximum values which satisfy the
7103 the conditional as it was written. */
7104 if (cond_code == LE_EXPR || cond_code == LT_EXPR)
7106 /* This should not be negative infinity; there is no overflow
7107 here. */
7108 min = TYPE_MIN_VALUE (TREE_TYPE (op0));
7110 max = op1;
7111 if (cond_code == LT_EXPR && !is_overflow_infinity (max))
7113 tree one = build_int_cst (TREE_TYPE (op0), 1);
7114 max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
7115 if (EXPR_P (max))
7116 TREE_NO_WARNING (max) = 1;
7119 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
7121 /* This should not be positive infinity; there is no overflow
7122 here. */
7123 max = TYPE_MAX_VALUE (TREE_TYPE (op0));
7125 min = op1;
7126 if (cond_code == GT_EXPR && !is_overflow_infinity (min))
7128 tree one = build_int_cst (TREE_TYPE (op0), 1);
7129 min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
7130 if (EXPR_P (min))
7131 TREE_NO_WARNING (min) = 1;
7135 /* Now refine the minimum and maximum values using any
7136 value range information we have for op0. */
7137 if (min && max)
7139 if (compare_values (vr->min, min) == 1)
7140 min = vr->min;
7141 if (compare_values (vr->max, max) == -1)
7142 max = vr->max;
7144 /* If the new min/max values have converged to a single value,
7145 then there is only one value which can satisfy the condition,
7146 return that value. */
7147 if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
7148 return min;
7150 return NULL;
7153 /* Simplify a conditional using a relational operator to an equality
7154 test if the range information indicates only one value can satisfy
7155 the original conditional. */
7157 static bool
7158 simplify_cond_using_ranges (gimple stmt)
7160 tree op0 = gimple_cond_lhs (stmt);
7161 tree op1 = gimple_cond_rhs (stmt);
7162 enum tree_code cond_code = gimple_cond_code (stmt);
7164 if (cond_code != NE_EXPR
7165 && cond_code != EQ_EXPR
7166 && TREE_CODE (op0) == SSA_NAME
7167 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
7168 && is_gimple_min_invariant (op1))
7170 value_range_t *vr = get_value_range (op0);
7172 /* If we have range information for OP0, then we might be
7173 able to simplify this conditional. */
7174 if (vr->type == VR_RANGE)
7176 tree new_tree = test_for_singularity (cond_code, op0, op1, vr);
7178 if (new_tree)
7180 if (dump_file)
7182 fprintf (dump_file, "Simplified relational ");
7183 print_gimple_stmt (dump_file, stmt, 0, 0);
7184 fprintf (dump_file, " into ");
7187 gimple_cond_set_code (stmt, EQ_EXPR);
7188 gimple_cond_set_lhs (stmt, op0);
7189 gimple_cond_set_rhs (stmt, new_tree);
7191 update_stmt (stmt);
7193 if (dump_file)
7195 print_gimple_stmt (dump_file, stmt, 0, 0);
7196 fprintf (dump_file, "\n");
7199 return true;
7202 /* Try again after inverting the condition. We only deal
7203 with integral types here, so no need to worry about
7204 issues with inverting FP comparisons. */
7205 cond_code = invert_tree_comparison (cond_code, false);
7206 new_tree = test_for_singularity (cond_code, op0, op1, vr);
7208 if (new_tree)
7210 if (dump_file)
7212 fprintf (dump_file, "Simplified relational ");
7213 print_gimple_stmt (dump_file, stmt, 0, 0);
7214 fprintf (dump_file, " into ");
7217 gimple_cond_set_code (stmt, NE_EXPR);
7218 gimple_cond_set_lhs (stmt, op0);
7219 gimple_cond_set_rhs (stmt, new_tree);
7221 update_stmt (stmt);
7223 if (dump_file)
7225 print_gimple_stmt (dump_file, stmt, 0, 0);
7226 fprintf (dump_file, "\n");
7229 return true;
7234 return false;
7237 /* Simplify a switch statement using the value range of the switch
7238 argument. */
7240 static bool
7241 simplify_switch_using_ranges (gimple stmt)
7243 tree op = gimple_switch_index (stmt);
7244 value_range_t *vr;
7245 bool take_default;
7246 edge e;
7247 edge_iterator ei;
7248 size_t i = 0, j = 0, n, n2;
7249 tree vec2;
7250 switch_update su;
7252 if (TREE_CODE (op) == SSA_NAME)
7254 vr = get_value_range (op);
7256 /* We can only handle integer ranges. */
7257 if (vr->type != VR_RANGE
7258 || symbolic_range_p (vr))
7259 return false;
7261 /* Find case label for min/max of the value range. */
7262 take_default = !find_case_label_range (stmt, vr->min, vr->max, &i, &j);
7264 else if (TREE_CODE (op) == INTEGER_CST)
7266 take_default = !find_case_label_index (stmt, 1, op, &i);
7267 if (take_default)
7269 i = 1;
7270 j = 0;
7272 else
7274 j = i;
7277 else
7278 return false;
7280 n = gimple_switch_num_labels (stmt);
7282 /* Bail out if this is just all edges taken. */
7283 if (i == 1
7284 && j == n - 1
7285 && take_default)
7286 return false;
7288 /* Build a new vector of taken case labels. */
7289 vec2 = make_tree_vec (j - i + 1 + (int)take_default);
7290 n2 = 0;
7292 /* Add the default edge, if necessary. */
7293 if (take_default)
7294 TREE_VEC_ELT (vec2, n2++) = gimple_switch_default_label (stmt);
7296 for (; i <= j; ++i, ++n2)
7297 TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, i);
7299 /* Mark needed edges. */
7300 for (i = 0; i < n2; ++i)
7302 e = find_edge (gimple_bb (stmt),
7303 label_to_block (CASE_LABEL (TREE_VEC_ELT (vec2, i))));
7304 e->aux = (void *)-1;
7307 /* Queue not needed edges for later removal. */
7308 FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
7310 if (e->aux == (void *)-1)
7312 e->aux = NULL;
7313 continue;
7316 if (dump_file && (dump_flags & TDF_DETAILS))
7318 fprintf (dump_file, "removing unreachable case label\n");
7320 VEC_safe_push (edge, heap, to_remove_edges, e);
7321 e->flags &= ~EDGE_EXECUTABLE;
7324 /* And queue an update for the stmt. */
7325 su.stmt = stmt;
7326 su.vec = vec2;
7327 VEC_safe_push (switch_update, heap, to_update_switch_stmts, &su);
7328 return false;
7331 /* Simplify STMT using ranges if possible. */
7333 static bool
7334 simplify_stmt_using_ranges (gimple_stmt_iterator *gsi)
7336 gimple stmt = gsi_stmt (*gsi);
7337 if (is_gimple_assign (stmt))
7339 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
7341 switch (rhs_code)
7343 case EQ_EXPR:
7344 case NE_EXPR:
7345 case TRUTH_NOT_EXPR:
7346 case TRUTH_AND_EXPR:
7347 case TRUTH_OR_EXPR:
7348 case TRUTH_XOR_EXPR:
7349 /* Transform EQ_EXPR, NE_EXPR, TRUTH_NOT_EXPR into BIT_XOR_EXPR
7350 or identity if the RHS is zero or one, and the LHS are known
7351 to be boolean values. Transform all TRUTH_*_EXPR into
7352 BIT_*_EXPR if both arguments are known to be boolean values. */
7353 if (INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (stmt))))
7354 return simplify_truth_ops_using_ranges (gsi, stmt);
7355 break;
7357 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
7358 and BIT_AND_EXPR respectively if the first operand is greater
7359 than zero and the second operand is an exact power of two. */
7360 case TRUNC_DIV_EXPR:
7361 case TRUNC_MOD_EXPR:
7362 if (INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (stmt)))
7363 && integer_pow2p (gimple_assign_rhs2 (stmt)))
7364 return simplify_div_or_mod_using_ranges (stmt);
7365 break;
7367 /* Transform ABS (X) into X or -X as appropriate. */
7368 case ABS_EXPR:
7369 if (TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME
7370 && INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (stmt))))
7371 return simplify_abs_using_ranges (stmt);
7372 break;
7374 case BIT_AND_EXPR:
7375 case BIT_IOR_EXPR:
7376 /* Optimize away BIT_AND_EXPR and BIT_IOR_EXPR
7377 if all the bits being cleared are already cleared or
7378 all the bits being set are already set. */
7379 if (INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (stmt))))
7380 return simplify_bit_ops_using_ranges (gsi, stmt);
7381 break;
7383 default:
7384 break;
7387 else if (gimple_code (stmt) == GIMPLE_COND)
7388 return simplify_cond_using_ranges (stmt);
7389 else if (gimple_code (stmt) == GIMPLE_SWITCH)
7390 return simplify_switch_using_ranges (stmt);
7392 return false;
7395 /* If the statement pointed by SI has a predicate whose value can be
7396 computed using the value range information computed by VRP, compute
7397 its value and return true. Otherwise, return false. */
7399 static bool
7400 fold_predicate_in (gimple_stmt_iterator *si)
7402 bool assignment_p = false;
7403 tree val;
7404 gimple stmt = gsi_stmt (*si);
7406 if (is_gimple_assign (stmt)
7407 && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)) == tcc_comparison)
7409 assignment_p = true;
7410 val = vrp_evaluate_conditional (gimple_assign_rhs_code (stmt),
7411 gimple_assign_rhs1 (stmt),
7412 gimple_assign_rhs2 (stmt),
7413 stmt);
7415 else if (gimple_code (stmt) == GIMPLE_COND)
7416 val = vrp_evaluate_conditional (gimple_cond_code (stmt),
7417 gimple_cond_lhs (stmt),
7418 gimple_cond_rhs (stmt),
7419 stmt);
7420 else
7421 return false;
7423 if (val)
7425 if (assignment_p)
7426 val = fold_convert (gimple_expr_type (stmt), val);
7428 if (dump_file)
7430 fprintf (dump_file, "Folding predicate ");
7431 print_gimple_expr (dump_file, stmt, 0, 0);
7432 fprintf (dump_file, " to ");
7433 print_generic_expr (dump_file, val, 0);
7434 fprintf (dump_file, "\n");
7437 if (is_gimple_assign (stmt))
7438 gimple_assign_set_rhs_from_tree (si, val);
7439 else
7441 gcc_assert (gimple_code (stmt) == GIMPLE_COND);
7442 if (integer_zerop (val))
7443 gimple_cond_make_false (stmt);
7444 else if (integer_onep (val))
7445 gimple_cond_make_true (stmt);
7446 else
7447 gcc_unreachable ();
7450 return true;
7453 return false;
7456 /* Callback for substitute_and_fold folding the stmt at *SI. */
7458 static bool
7459 vrp_fold_stmt (gimple_stmt_iterator *si)
7461 if (fold_predicate_in (si))
7462 return true;
7464 return simplify_stmt_using_ranges (si);
7467 /* Stack of dest,src equivalency pairs that need to be restored after
7468 each attempt to thread a block's incoming edge to an outgoing edge.
7470 A NULL entry is used to mark the end of pairs which need to be
7471 restored. */
7472 static VEC(tree,heap) *stack;
7474 /* A trivial wrapper so that we can present the generic jump threading
7475 code with a simple API for simplifying statements. STMT is the
7476 statement we want to simplify, WITHIN_STMT provides the location
7477 for any overflow warnings. */
7479 static tree
7480 simplify_stmt_for_jump_threading (gimple stmt, gimple within_stmt)
7482 /* We only use VRP information to simplify conditionals. This is
7483 overly conservative, but it's unclear if doing more would be
7484 worth the compile time cost. */
7485 if (gimple_code (stmt) != GIMPLE_COND)
7486 return NULL;
7488 return vrp_evaluate_conditional (gimple_cond_code (stmt),
7489 gimple_cond_lhs (stmt),
7490 gimple_cond_rhs (stmt), within_stmt);
7493 /* Blocks which have more than one predecessor and more than
7494 one successor present jump threading opportunities, i.e.,
7495 when the block is reached from a specific predecessor, we
7496 may be able to determine which of the outgoing edges will
7497 be traversed. When this optimization applies, we are able
7498 to avoid conditionals at runtime and we may expose secondary
7499 optimization opportunities.
7501 This routine is effectively a driver for the generic jump
7502 threading code. It basically just presents the generic code
7503 with edges that may be suitable for jump threading.
7505 Unlike DOM, we do not iterate VRP if jump threading was successful.
7506 While iterating may expose new opportunities for VRP, it is expected
7507 those opportunities would be very limited and the compile time cost
7508 to expose those opportunities would be significant.
7510 As jump threading opportunities are discovered, they are registered
7511 for later realization. */
7513 static void
7514 identify_jump_threads (void)
7516 basic_block bb;
7517 gimple dummy;
7518 int i;
7519 edge e;
7521 /* Ugh. When substituting values earlier in this pass we can
7522 wipe the dominance information. So rebuild the dominator
7523 information as we need it within the jump threading code. */
7524 calculate_dominance_info (CDI_DOMINATORS);
7526 /* We do not allow VRP information to be used for jump threading
7527 across a back edge in the CFG. Otherwise it becomes too
7528 difficult to avoid eliminating loop exit tests. Of course
7529 EDGE_DFS_BACK is not accurate at this time so we have to
7530 recompute it. */
7531 mark_dfs_back_edges ();
7533 /* Do not thread across edges we are about to remove. Just marking
7534 them as EDGE_DFS_BACK will do. */
7535 FOR_EACH_VEC_ELT (edge, to_remove_edges, i, e)
7536 e->flags |= EDGE_DFS_BACK;
7538 /* Allocate our unwinder stack to unwind any temporary equivalences
7539 that might be recorded. */
7540 stack = VEC_alloc (tree, heap, 20);
7542 /* To avoid lots of silly node creation, we create a single
7543 conditional and just modify it in-place when attempting to
7544 thread jumps. */
7545 dummy = gimple_build_cond (EQ_EXPR,
7546 integer_zero_node, integer_zero_node,
7547 NULL, NULL);
7549 /* Walk through all the blocks finding those which present a
7550 potential jump threading opportunity. We could set this up
7551 as a dominator walker and record data during the walk, but
7552 I doubt it's worth the effort for the classes of jump
7553 threading opportunities we are trying to identify at this
7554 point in compilation. */
7555 FOR_EACH_BB (bb)
7557 gimple last;
7559 /* If the generic jump threading code does not find this block
7560 interesting, then there is nothing to do. */
7561 if (! potentially_threadable_block (bb))
7562 continue;
7564 /* We only care about blocks ending in a COND_EXPR. While there
7565 may be some value in handling SWITCH_EXPR here, I doubt it's
7566 terribly important. */
7567 last = gsi_stmt (gsi_last_bb (bb));
7569 /* We're basically looking for a switch or any kind of conditional with
7570 integral or pointer type arguments. Note the type of the second
7571 argument will be the same as the first argument, so no need to
7572 check it explicitly. */
7573 if (gimple_code (last) == GIMPLE_SWITCH
7574 || (gimple_code (last) == GIMPLE_COND
7575 && TREE_CODE (gimple_cond_lhs (last)) == SSA_NAME
7576 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_lhs (last)))
7577 || POINTER_TYPE_P (TREE_TYPE (gimple_cond_lhs (last))))
7578 && (TREE_CODE (gimple_cond_rhs (last)) == SSA_NAME
7579 || is_gimple_min_invariant (gimple_cond_rhs (last)))))
7581 edge_iterator ei;
7583 /* We've got a block with multiple predecessors and multiple
7584 successors which also ends in a suitable conditional or
7585 switch statement. For each predecessor, see if we can thread
7586 it to a specific successor. */
7587 FOR_EACH_EDGE (e, ei, bb->preds)
7589 /* Do not thread across back edges or abnormal edges
7590 in the CFG. */
7591 if (e->flags & (EDGE_DFS_BACK | EDGE_COMPLEX))
7592 continue;
7594 thread_across_edge (dummy, e, true, &stack,
7595 simplify_stmt_for_jump_threading);
7600 /* We do not actually update the CFG or SSA graphs at this point as
7601 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
7602 handle ASSERT_EXPRs gracefully. */
7605 /* We identified all the jump threading opportunities earlier, but could
7606 not transform the CFG at that time. This routine transforms the
7607 CFG and arranges for the dominator tree to be rebuilt if necessary.
7609 Note the SSA graph update will occur during the normal TODO
7610 processing by the pass manager. */
7611 static void
7612 finalize_jump_threads (void)
7614 thread_through_all_blocks (false);
7615 VEC_free (tree, heap, stack);
7619 /* Traverse all the blocks folding conditionals with known ranges. */
7621 static void
7622 vrp_finalize (void)
7624 size_t i;
7625 unsigned num = num_ssa_names;
7627 if (dump_file)
7629 fprintf (dump_file, "\nValue ranges after VRP:\n\n");
7630 dump_all_value_ranges (dump_file);
7631 fprintf (dump_file, "\n");
7634 substitute_and_fold (op_with_constant_singleton_value_range,
7635 vrp_fold_stmt, false);
7637 if (warn_array_bounds)
7638 check_all_array_refs ();
7640 /* We must identify jump threading opportunities before we release
7641 the datastructures built by VRP. */
7642 identify_jump_threads ();
7644 /* Free allocated memory. */
7645 for (i = 0; i < num; i++)
7646 if (vr_value[i])
7648 BITMAP_FREE (vr_value[i]->equiv);
7649 free (vr_value[i]);
7652 free (vr_value);
7653 free (vr_phi_edge_counts);
7655 /* So that we can distinguish between VRP data being available
7656 and not available. */
7657 vr_value = NULL;
7658 vr_phi_edge_counts = NULL;
7662 /* Main entry point to VRP (Value Range Propagation). This pass is
7663 loosely based on J. R. C. Patterson, ``Accurate Static Branch
7664 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
7665 Programming Language Design and Implementation, pp. 67-78, 1995.
7666 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
7668 This is essentially an SSA-CCP pass modified to deal with ranges
7669 instead of constants.
7671 While propagating ranges, we may find that two or more SSA name
7672 have equivalent, though distinct ranges. For instance,
7674 1 x_9 = p_3->a;
7675 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
7676 3 if (p_4 == q_2)
7677 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
7678 5 endif
7679 6 if (q_2)
7681 In the code above, pointer p_5 has range [q_2, q_2], but from the
7682 code we can also determine that p_5 cannot be NULL and, if q_2 had
7683 a non-varying range, p_5's range should also be compatible with it.
7685 These equivalences are created by two expressions: ASSERT_EXPR and
7686 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
7687 result of another assertion, then we can use the fact that p_5 and
7688 p_4 are equivalent when evaluating p_5's range.
7690 Together with value ranges, we also propagate these equivalences
7691 between names so that we can take advantage of information from
7692 multiple ranges when doing final replacement. Note that this
7693 equivalency relation is transitive but not symmetric.
7695 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
7696 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
7697 in contexts where that assertion does not hold (e.g., in line 6).
7699 TODO, the main difference between this pass and Patterson's is that
7700 we do not propagate edge probabilities. We only compute whether
7701 edges can be taken or not. That is, instead of having a spectrum
7702 of jump probabilities between 0 and 1, we only deal with 0, 1 and
7703 DON'T KNOW. In the future, it may be worthwhile to propagate
7704 probabilities to aid branch prediction. */
7706 static unsigned int
7707 execute_vrp (void)
7709 int i;
7710 edge e;
7711 switch_update *su;
7713 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
7714 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
7715 scev_initialize ();
7717 /* Estimate number of iterations - but do not use undefined behavior
7718 for this. We can't do this lazily as other functions may compute
7719 this using undefined behavior. */
7720 free_numbers_of_iterations_estimates ();
7721 estimate_numbers_of_iterations (false);
7723 insert_range_assertions ();
7725 to_remove_edges = VEC_alloc (edge, heap, 10);
7726 to_update_switch_stmts = VEC_alloc (switch_update, heap, 5);
7727 threadedge_initialize_values ();
7729 vrp_initialize ();
7730 ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
7731 vrp_finalize ();
7733 /* ASSERT_EXPRs must be removed before finalizing jump threads
7734 as finalizing jump threads calls the CFG cleanup code which
7735 does not properly handle ASSERT_EXPRs. */
7736 remove_range_assertions ();
7738 /* If we exposed any new variables, go ahead and put them into
7739 SSA form now, before we handle jump threading. This simplifies
7740 interactions between rewriting of _DECL nodes into SSA form
7741 and rewriting SSA_NAME nodes into SSA form after block
7742 duplication and CFG manipulation. */
7743 update_ssa (TODO_update_ssa);
7745 finalize_jump_threads ();
7747 /* Remove dead edges from SWITCH_EXPR optimization. This leaves the
7748 CFG in a broken state and requires a cfg_cleanup run. */
7749 FOR_EACH_VEC_ELT (edge, to_remove_edges, i, e)
7750 remove_edge (e);
7751 /* Update SWITCH_EXPR case label vector. */
7752 FOR_EACH_VEC_ELT (switch_update, to_update_switch_stmts, i, su)
7754 size_t j;
7755 size_t n = TREE_VEC_LENGTH (su->vec);
7756 tree label;
7757 gimple_switch_set_num_labels (su->stmt, n);
7758 for (j = 0; j < n; j++)
7759 gimple_switch_set_label (su->stmt, j, TREE_VEC_ELT (su->vec, j));
7760 /* As we may have replaced the default label with a regular one
7761 make sure to make it a real default label again. This ensures
7762 optimal expansion. */
7763 label = gimple_switch_default_label (su->stmt);
7764 CASE_LOW (label) = NULL_TREE;
7765 CASE_HIGH (label) = NULL_TREE;
7768 if (VEC_length (edge, to_remove_edges) > 0)
7769 free_dominance_info (CDI_DOMINATORS);
7771 VEC_free (edge, heap, to_remove_edges);
7772 VEC_free (switch_update, heap, to_update_switch_stmts);
7773 threadedge_finalize_values ();
7775 scev_finalize ();
7776 loop_optimizer_finalize ();
7777 return 0;
7780 static bool
7781 gate_vrp (void)
7783 return flag_tree_vrp != 0;
7786 struct gimple_opt_pass pass_vrp =
7789 GIMPLE_PASS,
7790 "vrp", /* name */
7791 gate_vrp, /* gate */
7792 execute_vrp, /* execute */
7793 NULL, /* sub */
7794 NULL, /* next */
7795 0, /* static_pass_number */
7796 TV_TREE_VRP, /* tv_id */
7797 PROP_ssa, /* properties_required */
7798 0, /* properties_provided */
7799 0, /* properties_destroyed */
7800 0, /* todo_flags_start */
7801 TODO_cleanup_cfg
7802 | TODO_update_ssa
7803 | TODO_verify_ssa
7804 | TODO_verify_flow
7805 | TODO_dump_func
7806 | TODO_ggc_collect /* todo_flags_finish */