ada: Fix wrong resolution for hidden discriminant in predicate
[official-gcc.git] / gcc / tree-ssa-loop-im.cc
blobf5b01e986aeb283f22c568642ace052ceb12579c
1 /* Loop invariant motion.
2 Copyright (C) 2003-2023 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "tree.h"
25 #include "gimple.h"
26 #include "cfghooks.h"
27 #include "tree-pass.h"
28 #include "ssa.h"
29 #include "gimple-pretty-print.h"
30 #include "fold-const.h"
31 #include "cfganal.h"
32 #include "tree-eh.h"
33 #include "gimplify.h"
34 #include "gimple-iterator.h"
35 #include "tree-cfg.h"
36 #include "tree-ssa-loop-manip.h"
37 #include "tree-ssa-loop.h"
38 #include "tree-into-ssa.h"
39 #include "cfgloop.h"
40 #include "tree-affine.h"
41 #include "tree-ssa-propagate.h"
42 #include "trans-mem.h"
43 #include "gimple-fold.h"
44 #include "tree-scalar-evolution.h"
45 #include "tree-ssa-loop-niter.h"
46 #include "alias.h"
47 #include "builtins.h"
48 #include "tree-dfa.h"
49 #include "tree-ssa.h"
50 #include "dbgcnt.h"
52 /* TODO: Support for predicated code motion. I.e.
54 while (1)
56 if (cond)
58 a = inv;
59 something;
63 Where COND and INV are invariants, but evaluating INV may trap or be
64 invalid from some other reason if !COND. This may be transformed to
66 if (cond)
67 a = inv;
68 while (1)
70 if (cond)
71 something;
72 } */
74 /* The auxiliary data kept for each statement. */
76 struct lim_aux_data
78 class loop *max_loop; /* The outermost loop in that the statement
79 is invariant. */
81 class loop *tgt_loop; /* The loop out of that we want to move the
82 invariant. */
84 class loop *always_executed_in;
85 /* The outermost loop for that we are sure
86 the statement is executed if the loop
87 is entered. */
89 unsigned cost; /* Cost of the computation performed by the
90 statement. */
92 unsigned ref; /* The simple_mem_ref in this stmt or 0. */
94 vec<gimple *> depends; /* Vector of statements that must be also
95 hoisted out of the loop when this statement
96 is hoisted; i.e. those that define the
97 operands of the statement and are inside of
98 the MAX_LOOP loop. */
101 /* Maps statements to their lim_aux_data. */
103 static hash_map<gimple *, lim_aux_data *> *lim_aux_data_map;
105 /* Description of a memory reference location. */
107 struct mem_ref_loc
109 tree *ref; /* The reference itself. */
110 gimple *stmt; /* The statement in that it occurs. */
114 /* Description of a memory reference. */
116 class im_mem_ref
118 public:
119 unsigned id : 30; /* ID assigned to the memory reference
120 (its index in memory_accesses.refs_list) */
121 unsigned ref_canonical : 1; /* Whether mem.ref was canonicalized. */
122 unsigned ref_decomposed : 1; /* Whether the ref was hashed from mem. */
123 hashval_t hash; /* Its hash value. */
125 /* The memory access itself and associated caching of alias-oracle
126 query meta-data. We are using mem.ref == error_mark_node for the
127 case the reference is represented by its single access stmt
128 in accesses_in_loop[0]. */
129 ao_ref mem;
131 bitmap stored; /* The set of loops in that this memory location
132 is stored to. */
133 bitmap loaded; /* The set of loops in that this memory location
134 is loaded from. */
135 vec<mem_ref_loc> accesses_in_loop;
136 /* The locations of the accesses. */
138 /* The following set is computed on demand. */
139 bitmap_head dep_loop; /* The set of loops in that the memory
140 reference is {in,}dependent in
141 different modes. */
144 /* We use six bits per loop in the ref->dep_loop bitmap to record
145 the dep_kind x dep_state combinations. */
147 enum dep_kind { lim_raw, sm_war, sm_waw };
148 enum dep_state { dep_unknown, dep_independent, dep_dependent };
150 /* coldest outermost loop for given loop. */
151 vec<class loop *> coldest_outermost_loop;
152 /* hotter outer loop nearest to given loop. */
153 vec<class loop *> hotter_than_inner_loop;
155 /* Populate the loop dependence cache of REF for LOOP, KIND with STATE. */
157 static void
158 record_loop_dependence (class loop *loop, im_mem_ref *ref,
159 dep_kind kind, dep_state state)
161 gcc_assert (state != dep_unknown);
162 unsigned bit = 6 * loop->num + kind * 2 + state == dep_dependent ? 1 : 0;
163 bitmap_set_bit (&ref->dep_loop, bit);
166 /* Query the loop dependence cache of REF for LOOP, KIND. */
168 static dep_state
169 query_loop_dependence (class loop *loop, im_mem_ref *ref, dep_kind kind)
171 unsigned first_bit = 6 * loop->num + kind * 2;
172 if (bitmap_bit_p (&ref->dep_loop, first_bit))
173 return dep_independent;
174 else if (bitmap_bit_p (&ref->dep_loop, first_bit + 1))
175 return dep_dependent;
176 return dep_unknown;
179 /* Mem_ref hashtable helpers. */
181 struct mem_ref_hasher : nofree_ptr_hash <im_mem_ref>
183 typedef ao_ref *compare_type;
184 static inline hashval_t hash (const im_mem_ref *);
185 static inline bool equal (const im_mem_ref *, const ao_ref *);
188 /* A hash function for class im_mem_ref object OBJ. */
190 inline hashval_t
191 mem_ref_hasher::hash (const im_mem_ref *mem)
193 return mem->hash;
196 /* An equality function for class im_mem_ref object MEM1 with
197 memory reference OBJ2. */
199 inline bool
200 mem_ref_hasher::equal (const im_mem_ref *mem1, const ao_ref *obj2)
202 if (obj2->max_size_known_p ())
203 return (mem1->ref_decomposed
204 && ((TREE_CODE (mem1->mem.base) == MEM_REF
205 && TREE_CODE (obj2->base) == MEM_REF
206 && operand_equal_p (TREE_OPERAND (mem1->mem.base, 0),
207 TREE_OPERAND (obj2->base, 0), 0)
208 && known_eq (mem_ref_offset (mem1->mem.base) * BITS_PER_UNIT + mem1->mem.offset,
209 mem_ref_offset (obj2->base) * BITS_PER_UNIT + obj2->offset))
210 || (operand_equal_p (mem1->mem.base, obj2->base, 0)
211 && known_eq (mem1->mem.offset, obj2->offset)))
212 && known_eq (mem1->mem.size, obj2->size)
213 && known_eq (mem1->mem.max_size, obj2->max_size)
214 && mem1->mem.volatile_p == obj2->volatile_p
215 && (mem1->mem.ref_alias_set == obj2->ref_alias_set
216 /* We are not canonicalizing alias-sets but for the
217 special-case we didn't canonicalize yet and the
218 incoming ref is a alias-set zero MEM we pick
219 the correct one already. */
220 || (!mem1->ref_canonical
221 && (TREE_CODE (obj2->ref) == MEM_REF
222 || TREE_CODE (obj2->ref) == TARGET_MEM_REF)
223 && obj2->ref_alias_set == 0)
224 /* Likewise if there's a canonical ref with alias-set zero. */
225 || (mem1->ref_canonical && mem1->mem.ref_alias_set == 0))
226 && types_compatible_p (TREE_TYPE (mem1->mem.ref),
227 TREE_TYPE (obj2->ref)));
228 else
229 return operand_equal_p (mem1->mem.ref, obj2->ref, 0);
233 /* Description of memory accesses in loops. */
235 static struct
237 /* The hash table of memory references accessed in loops. */
238 hash_table<mem_ref_hasher> *refs;
240 /* The list of memory references. */
241 vec<im_mem_ref *> refs_list;
243 /* The set of memory references accessed in each loop. */
244 vec<bitmap_head> refs_loaded_in_loop;
246 /* The set of memory references stored in each loop. */
247 vec<bitmap_head> refs_stored_in_loop;
249 /* The set of memory references stored in each loop, including subloops . */
250 vec<bitmap_head> all_refs_stored_in_loop;
252 /* Cache for expanding memory addresses. */
253 hash_map<tree, name_expansion *> *ttae_cache;
254 } memory_accesses;
256 /* Obstack for the bitmaps in the above data structures. */
257 static bitmap_obstack lim_bitmap_obstack;
258 static obstack mem_ref_obstack;
260 static bool ref_indep_loop_p (class loop *, im_mem_ref *, dep_kind);
261 static bool ref_always_accessed_p (class loop *, im_mem_ref *, bool);
262 static bool refs_independent_p (im_mem_ref *, im_mem_ref *, bool = true);
264 /* Minimum cost of an expensive expression. */
265 #define LIM_EXPENSIVE ((unsigned) param_lim_expensive)
267 /* The outermost loop for which execution of the header guarantees that the
268 block will be executed. */
269 #define ALWAYS_EXECUTED_IN(BB) ((class loop *) (BB)->aux)
270 #define SET_ALWAYS_EXECUTED_IN(BB, VAL) ((BB)->aux = (void *) (VAL))
272 /* ID of the shared unanalyzable mem. */
273 #define UNANALYZABLE_MEM_ID 0
275 /* Whether the reference was analyzable. */
276 #define MEM_ANALYZABLE(REF) ((REF)->id != UNANALYZABLE_MEM_ID)
278 static struct lim_aux_data *
279 init_lim_data (gimple *stmt)
281 lim_aux_data *p = XCNEW (struct lim_aux_data);
282 lim_aux_data_map->put (stmt, p);
284 return p;
287 static struct lim_aux_data *
288 get_lim_data (gimple *stmt)
290 lim_aux_data **p = lim_aux_data_map->get (stmt);
291 if (!p)
292 return NULL;
294 return *p;
297 /* Releases the memory occupied by DATA. */
299 static void
300 free_lim_aux_data (struct lim_aux_data *data)
302 data->depends.release ();
303 free (data);
306 static void
307 clear_lim_data (gimple *stmt)
309 lim_aux_data **p = lim_aux_data_map->get (stmt);
310 if (!p)
311 return;
313 free_lim_aux_data (*p);
314 *p = NULL;
318 /* The possibilities of statement movement. */
319 enum move_pos
321 MOVE_IMPOSSIBLE, /* No movement -- side effect expression. */
322 MOVE_PRESERVE_EXECUTION, /* Must not cause the non-executed statement
323 become executed -- memory accesses, ... */
324 MOVE_POSSIBLE /* Unlimited movement. */
328 /* If it is possible to hoist the statement STMT unconditionally,
329 returns MOVE_POSSIBLE.
330 If it is possible to hoist the statement STMT, but we must avoid making
331 it executed if it would not be executed in the original program (e.g.
332 because it may trap), return MOVE_PRESERVE_EXECUTION.
333 Otherwise return MOVE_IMPOSSIBLE. */
335 static enum move_pos
336 movement_possibility_1 (gimple *stmt)
338 tree lhs;
339 enum move_pos ret = MOVE_POSSIBLE;
341 if (flag_unswitch_loops
342 && gimple_code (stmt) == GIMPLE_COND)
344 /* If we perform unswitching, force the operands of the invariant
345 condition to be moved out of the loop. */
346 return MOVE_POSSIBLE;
349 if (gimple_code (stmt) == GIMPLE_PHI
350 && gimple_phi_num_args (stmt) <= 2
351 && !virtual_operand_p (gimple_phi_result (stmt))
352 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_phi_result (stmt)))
353 return MOVE_POSSIBLE;
355 if (gimple_get_lhs (stmt) == NULL_TREE)
356 return MOVE_IMPOSSIBLE;
358 if (gimple_vdef (stmt))
359 return MOVE_IMPOSSIBLE;
361 if (stmt_ends_bb_p (stmt)
362 || gimple_has_volatile_ops (stmt)
363 || gimple_has_side_effects (stmt)
364 || stmt_could_throw_p (cfun, stmt))
365 return MOVE_IMPOSSIBLE;
367 if (is_gimple_call (stmt))
369 /* While pure or const call is guaranteed to have no side effects, we
370 cannot move it arbitrarily. Consider code like
372 char *s = something ();
374 while (1)
376 if (s)
377 t = strlen (s);
378 else
379 t = 0;
382 Here the strlen call cannot be moved out of the loop, even though
383 s is invariant. In addition to possibly creating a call with
384 invalid arguments, moving out a function call that is not executed
385 may cause performance regressions in case the call is costly and
386 not executed at all. */
387 ret = MOVE_PRESERVE_EXECUTION;
388 lhs = gimple_call_lhs (stmt);
390 else if (is_gimple_assign (stmt))
391 lhs = gimple_assign_lhs (stmt);
392 else
393 return MOVE_IMPOSSIBLE;
395 if (TREE_CODE (lhs) == SSA_NAME
396 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
397 return MOVE_IMPOSSIBLE;
399 if (TREE_CODE (lhs) != SSA_NAME
400 || gimple_could_trap_p (stmt))
401 return MOVE_PRESERVE_EXECUTION;
403 /* Non local loads in a transaction cannot be hoisted out. Well,
404 unless the load happens on every path out of the loop, but we
405 don't take this into account yet. */
406 if (flag_tm
407 && gimple_in_transaction (stmt)
408 && gimple_assign_single_p (stmt))
410 tree rhs = gimple_assign_rhs1 (stmt);
411 if (DECL_P (rhs) && is_global_var (rhs))
413 if (dump_file)
415 fprintf (dump_file, "Cannot hoist conditional load of ");
416 print_generic_expr (dump_file, rhs, TDF_SLIM);
417 fprintf (dump_file, " because it is in a transaction.\n");
419 return MOVE_IMPOSSIBLE;
423 return ret;
426 static enum move_pos
427 movement_possibility (gimple *stmt)
429 enum move_pos pos = movement_possibility_1 (stmt);
430 if (pos == MOVE_POSSIBLE)
432 use_operand_p use_p;
433 ssa_op_iter ssa_iter;
434 FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, ssa_iter, SSA_OP_USE)
435 if (TREE_CODE (USE_FROM_PTR (use_p)) == SSA_NAME
436 && ssa_name_maybe_undef_p (USE_FROM_PTR (use_p)))
437 return MOVE_PRESERVE_EXECUTION;
439 return pos;
443 /* Compare the profile count inequality of bb and loop's preheader, it is
444 three-state as stated in profile-count.h, FALSE is returned if inequality
445 cannot be decided. */
446 bool
447 bb_colder_than_loop_preheader (basic_block bb, class loop *loop)
449 gcc_assert (bb && loop);
450 return bb->count < loop_preheader_edge (loop)->src->count;
453 /* Check coldest loop between OUTERMOST_LOOP and LOOP by comparing profile
454 count.
455 It does three steps check:
456 1) Check whether CURR_BB is cold in it's own loop_father, if it is cold, just
457 return NULL which means it should not be moved out at all;
458 2) CURR_BB is NOT cold, check if pre-computed COLDEST_LOOP is outside of
459 OUTERMOST_LOOP, if it is inside of OUTERMOST_LOOP, return the COLDEST_LOOP;
460 3) If COLDEST_LOOP is outside of OUTERMOST_LOOP, check whether there is a
461 hotter loop between OUTERMOST_LOOP and loop in pre-computed
462 HOTTER_THAN_INNER_LOOP, return it's nested inner loop, otherwise return
463 OUTERMOST_LOOP.
464 At last, the coldest_loop is inside of OUTERMOST_LOOP, just return it as
465 the hoist target. */
467 static class loop *
468 get_coldest_out_loop (class loop *outermost_loop, class loop *loop,
469 basic_block curr_bb)
471 gcc_assert (outermost_loop == loop
472 || flow_loop_nested_p (outermost_loop, loop));
474 /* If bb_colder_than_loop_preheader returns false due to three-state
475 comparision, OUTERMOST_LOOP is returned finally to preserve the behavior.
476 Otherwise, return the coldest loop between OUTERMOST_LOOP and LOOP. */
477 if (curr_bb && bb_colder_than_loop_preheader (curr_bb, loop))
478 return NULL;
480 class loop *coldest_loop = coldest_outermost_loop[loop->num];
481 if (loop_depth (coldest_loop) < loop_depth (outermost_loop))
483 class loop *hotter_loop = hotter_than_inner_loop[loop->num];
484 if (!hotter_loop
485 || loop_depth (hotter_loop) < loop_depth (outermost_loop))
486 return outermost_loop;
488 /* hotter_loop is between OUTERMOST_LOOP and LOOP like:
489 [loop tree root, ..., coldest_loop, ..., outermost_loop, ...,
490 hotter_loop, second_coldest_loop, ..., loop]
491 return second_coldest_loop to be the hoist target. */
492 class loop *aloop;
493 for (aloop = hotter_loop->inner; aloop; aloop = aloop->next)
494 if (aloop == loop || flow_loop_nested_p (aloop, loop))
495 return aloop;
497 return coldest_loop;
500 /* Suppose that operand DEF is used inside the LOOP. Returns the outermost
501 loop to that we could move the expression using DEF if it did not have
502 other operands, i.e. the outermost loop enclosing LOOP in that the value
503 of DEF is invariant. */
505 static class loop *
506 outermost_invariant_loop (tree def, class loop *loop)
508 gimple *def_stmt;
509 basic_block def_bb;
510 class loop *max_loop;
511 struct lim_aux_data *lim_data;
513 if (!def)
514 return superloop_at_depth (loop, 1);
516 if (TREE_CODE (def) != SSA_NAME)
518 gcc_assert (is_gimple_min_invariant (def));
519 return superloop_at_depth (loop, 1);
522 def_stmt = SSA_NAME_DEF_STMT (def);
523 def_bb = gimple_bb (def_stmt);
524 if (!def_bb)
525 return superloop_at_depth (loop, 1);
527 max_loop = find_common_loop (loop, def_bb->loop_father);
529 lim_data = get_lim_data (def_stmt);
530 if (lim_data != NULL && lim_data->max_loop != NULL)
531 max_loop = find_common_loop (max_loop,
532 loop_outer (lim_data->max_loop));
533 if (max_loop == loop)
534 return NULL;
535 max_loop = superloop_at_depth (loop, loop_depth (max_loop) + 1);
537 return max_loop;
540 /* DATA is a structure containing information associated with a statement
541 inside LOOP. DEF is one of the operands of this statement.
543 Find the outermost loop enclosing LOOP in that value of DEF is invariant
544 and record this in DATA->max_loop field. If DEF itself is defined inside
545 this loop as well (i.e. we need to hoist it out of the loop if we want
546 to hoist the statement represented by DATA), record the statement in that
547 DEF is defined to the DATA->depends list. Additionally if ADD_COST is true,
548 add the cost of the computation of DEF to the DATA->cost.
550 If DEF is not invariant in LOOP, return false. Otherwise return TRUE. */
552 static bool
553 add_dependency (tree def, struct lim_aux_data *data, class loop *loop,
554 bool add_cost)
556 gimple *def_stmt = SSA_NAME_DEF_STMT (def);
557 basic_block def_bb = gimple_bb (def_stmt);
558 class loop *max_loop;
559 struct lim_aux_data *def_data;
561 if (!def_bb)
562 return true;
564 max_loop = outermost_invariant_loop (def, loop);
565 if (!max_loop)
566 return false;
568 if (flow_loop_nested_p (data->max_loop, max_loop))
569 data->max_loop = max_loop;
571 def_data = get_lim_data (def_stmt);
572 if (!def_data)
573 return true;
575 if (add_cost
576 /* Only add the cost if the statement defining DEF is inside LOOP,
577 i.e. if it is likely that by moving the invariants dependent
578 on it, we will be able to avoid creating a new register for
579 it (since it will be only used in these dependent invariants). */
580 && def_bb->loop_father == loop)
581 data->cost += def_data->cost;
583 data->depends.safe_push (def_stmt);
585 return true;
588 /* Returns an estimate for a cost of statement STMT. The values here
589 are just ad-hoc constants, similar to costs for inlining. */
591 static unsigned
592 stmt_cost (gimple *stmt)
594 /* Always try to create possibilities for unswitching. */
595 if (gimple_code (stmt) == GIMPLE_COND
596 || gimple_code (stmt) == GIMPLE_PHI)
597 return LIM_EXPENSIVE;
599 /* We should be hoisting calls if possible. */
600 if (is_gimple_call (stmt))
602 tree fndecl;
604 /* Unless the call is a builtin_constant_p; this always folds to a
605 constant, so moving it is useless. */
606 fndecl = gimple_call_fndecl (stmt);
607 if (fndecl && fndecl_built_in_p (fndecl, BUILT_IN_CONSTANT_P))
608 return 0;
610 return LIM_EXPENSIVE;
613 /* Hoisting memory references out should almost surely be a win. */
614 if (gimple_references_memory_p (stmt))
615 return LIM_EXPENSIVE;
617 if (gimple_code (stmt) != GIMPLE_ASSIGN)
618 return 1;
620 enum tree_code code = gimple_assign_rhs_code (stmt);
621 switch (code)
623 case MULT_EXPR:
624 case WIDEN_MULT_EXPR:
625 case WIDEN_MULT_PLUS_EXPR:
626 case WIDEN_MULT_MINUS_EXPR:
627 case DOT_PROD_EXPR:
628 case TRUNC_DIV_EXPR:
629 case CEIL_DIV_EXPR:
630 case FLOOR_DIV_EXPR:
631 case ROUND_DIV_EXPR:
632 case EXACT_DIV_EXPR:
633 case CEIL_MOD_EXPR:
634 case FLOOR_MOD_EXPR:
635 case ROUND_MOD_EXPR:
636 case TRUNC_MOD_EXPR:
637 case RDIV_EXPR:
638 /* Division and multiplication are usually expensive. */
639 return LIM_EXPENSIVE;
641 case LSHIFT_EXPR:
642 case RSHIFT_EXPR:
643 case WIDEN_LSHIFT_EXPR:
644 case LROTATE_EXPR:
645 case RROTATE_EXPR:
646 /* Shifts and rotates are usually expensive. */
647 return LIM_EXPENSIVE;
649 case COND_EXPR:
650 case VEC_COND_EXPR:
651 /* Conditionals are expensive. */
652 return LIM_EXPENSIVE;
654 case CONSTRUCTOR:
655 /* Make vector construction cost proportional to the number
656 of elements. */
657 return CONSTRUCTOR_NELTS (gimple_assign_rhs1 (stmt));
659 case SSA_NAME:
660 case PAREN_EXPR:
661 /* Whether or not something is wrapped inside a PAREN_EXPR
662 should not change move cost. Nor should an intermediate
663 unpropagated SSA name copy. */
664 return 0;
666 default:
667 /* Comparisons are usually expensive. */
668 if (TREE_CODE_CLASS (code) == tcc_comparison)
669 return LIM_EXPENSIVE;
670 return 1;
674 /* Finds the outermost loop between OUTER and LOOP in that the memory reference
675 REF is independent. If REF is not independent in LOOP, NULL is returned
676 instead. */
678 static class loop *
679 outermost_indep_loop (class loop *outer, class loop *loop, im_mem_ref *ref)
681 class loop *aloop;
683 if (ref->stored && bitmap_bit_p (ref->stored, loop->num))
684 return NULL;
686 for (aloop = outer;
687 aloop != loop;
688 aloop = superloop_at_depth (loop, loop_depth (aloop) + 1))
689 if ((!ref->stored || !bitmap_bit_p (ref->stored, aloop->num))
690 && ref_indep_loop_p (aloop, ref, lim_raw))
691 return aloop;
693 if (ref_indep_loop_p (loop, ref, lim_raw))
694 return loop;
695 else
696 return NULL;
699 /* If there is a simple load or store to a memory reference in STMT, returns
700 the location of the memory reference, and sets IS_STORE according to whether
701 it is a store or load. Otherwise, returns NULL. */
703 static tree *
704 simple_mem_ref_in_stmt (gimple *stmt, bool *is_store)
706 tree *lhs, *rhs;
708 /* Recognize SSA_NAME = MEM and MEM = (SSA_NAME | invariant) patterns. */
709 if (!gimple_assign_single_p (stmt))
710 return NULL;
712 lhs = gimple_assign_lhs_ptr (stmt);
713 rhs = gimple_assign_rhs1_ptr (stmt);
715 if (TREE_CODE (*lhs) == SSA_NAME && gimple_vuse (stmt))
717 *is_store = false;
718 return rhs;
720 else if (gimple_vdef (stmt)
721 && (TREE_CODE (*rhs) == SSA_NAME || is_gimple_min_invariant (*rhs)))
723 *is_store = true;
724 return lhs;
726 else
727 return NULL;
730 /* From a controlling predicate in DOM determine the arguments from
731 the PHI node PHI that are chosen if the predicate evaluates to
732 true and false and store them to *TRUE_ARG_P and *FALSE_ARG_P if
733 they are non-NULL. Returns true if the arguments can be determined,
734 else return false. */
736 static bool
737 extract_true_false_args_from_phi (basic_block dom, gphi *phi,
738 tree *true_arg_p, tree *false_arg_p)
740 edge te, fe;
741 if (! extract_true_false_controlled_edges (dom, gimple_bb (phi),
742 &te, &fe))
743 return false;
745 if (true_arg_p)
746 *true_arg_p = PHI_ARG_DEF (phi, te->dest_idx);
747 if (false_arg_p)
748 *false_arg_p = PHI_ARG_DEF (phi, fe->dest_idx);
750 return true;
753 /* Determine the outermost loop to that it is possible to hoist a statement
754 STMT and store it to LIM_DATA (STMT)->max_loop. To do this we determine
755 the outermost loop in that the value computed by STMT is invariant.
756 If MUST_PRESERVE_EXEC is true, additionally choose such a loop that
757 we preserve the fact whether STMT is executed. It also fills other related
758 information to LIM_DATA (STMT).
760 The function returns false if STMT cannot be hoisted outside of the loop it
761 is defined in, and true otherwise. */
763 static bool
764 determine_max_movement (gimple *stmt, bool must_preserve_exec)
766 basic_block bb = gimple_bb (stmt);
767 class loop *loop = bb->loop_father;
768 class loop *level;
769 struct lim_aux_data *lim_data = get_lim_data (stmt);
770 tree val;
771 ssa_op_iter iter;
773 if (must_preserve_exec)
774 level = ALWAYS_EXECUTED_IN (bb);
775 else
776 level = superloop_at_depth (loop, 1);
777 lim_data->max_loop = get_coldest_out_loop (level, loop, bb);
778 if (!lim_data->max_loop)
779 return false;
781 if (gphi *phi = dyn_cast <gphi *> (stmt))
783 use_operand_p use_p;
784 unsigned min_cost = UINT_MAX;
785 unsigned total_cost = 0;
786 struct lim_aux_data *def_data;
788 /* We will end up promoting dependencies to be unconditionally
789 evaluated. For this reason the PHI cost (and thus the
790 cost we remove from the loop by doing the invariant motion)
791 is that of the cheapest PHI argument dependency chain. */
792 FOR_EACH_PHI_ARG (use_p, phi, iter, SSA_OP_USE)
794 val = USE_FROM_PTR (use_p);
796 if (TREE_CODE (val) != SSA_NAME)
798 /* Assign const 1 to constants. */
799 min_cost = MIN (min_cost, 1);
800 total_cost += 1;
801 continue;
803 if (!add_dependency (val, lim_data, loop, false))
804 return false;
806 gimple *def_stmt = SSA_NAME_DEF_STMT (val);
807 if (gimple_bb (def_stmt)
808 && gimple_bb (def_stmt)->loop_father == loop)
810 def_data = get_lim_data (def_stmt);
811 if (def_data)
813 min_cost = MIN (min_cost, def_data->cost);
814 total_cost += def_data->cost;
819 min_cost = MIN (min_cost, total_cost);
820 lim_data->cost += min_cost;
822 if (gimple_phi_num_args (phi) > 1)
824 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
825 gimple *cond;
826 if (gsi_end_p (gsi_last_bb (dom)))
827 return false;
828 cond = gsi_stmt (gsi_last_bb (dom));
829 if (gimple_code (cond) != GIMPLE_COND)
830 return false;
831 /* Verify that this is an extended form of a diamond and
832 the PHI arguments are completely controlled by the
833 predicate in DOM. */
834 if (!extract_true_false_args_from_phi (dom, phi, NULL, NULL))
835 return false;
837 /* Fold in dependencies and cost of the condition. */
838 FOR_EACH_SSA_TREE_OPERAND (val, cond, iter, SSA_OP_USE)
840 if (!add_dependency (val, lim_data, loop, false))
841 return false;
842 def_data = get_lim_data (SSA_NAME_DEF_STMT (val));
843 if (def_data)
844 lim_data->cost += def_data->cost;
847 /* We want to avoid unconditionally executing very expensive
848 operations. As costs for our dependencies cannot be
849 negative just claim we are not invariand for this case.
850 We also are not sure whether the control-flow inside the
851 loop will vanish. */
852 if (total_cost - min_cost >= 2 * LIM_EXPENSIVE
853 && !(min_cost != 0
854 && total_cost / min_cost <= 2))
855 return false;
857 /* Assume that the control-flow in the loop will vanish.
858 ??? We should verify this and not artificially increase
859 the cost if that is not the case. */
860 lim_data->cost += stmt_cost (stmt);
863 return true;
866 /* A stmt that receives abnormal edges cannot be hoisted. */
867 if (is_a <gcall *> (stmt)
868 && (gimple_call_flags (stmt) & ECF_RETURNS_TWICE))
869 return false;
871 FOR_EACH_SSA_TREE_OPERAND (val, stmt, iter, SSA_OP_USE)
872 if (!add_dependency (val, lim_data, loop, true))
873 return false;
875 if (gimple_vuse (stmt))
877 im_mem_ref *ref
878 = lim_data ? memory_accesses.refs_list[lim_data->ref] : NULL;
879 if (ref
880 && MEM_ANALYZABLE (ref))
882 lim_data->max_loop = outermost_indep_loop (lim_data->max_loop,
883 loop, ref);
884 if (!lim_data->max_loop)
885 return false;
887 else if (! add_dependency (gimple_vuse (stmt), lim_data, loop, false))
888 return false;
891 lim_data->cost += stmt_cost (stmt);
893 return true;
896 /* Suppose that some statement in ORIG_LOOP is hoisted to the loop LEVEL,
897 and that one of the operands of this statement is computed by STMT.
898 Ensure that STMT (together with all the statements that define its
899 operands) is hoisted at least out of the loop LEVEL. */
901 static void
902 set_level (gimple *stmt, class loop *orig_loop, class loop *level)
904 class loop *stmt_loop = gimple_bb (stmt)->loop_father;
905 struct lim_aux_data *lim_data;
906 gimple *dep_stmt;
907 unsigned i;
909 stmt_loop = find_common_loop (orig_loop, stmt_loop);
910 lim_data = get_lim_data (stmt);
911 if (lim_data != NULL && lim_data->tgt_loop != NULL)
912 stmt_loop = find_common_loop (stmt_loop,
913 loop_outer (lim_data->tgt_loop));
914 if (flow_loop_nested_p (stmt_loop, level))
915 return;
917 gcc_assert (level == lim_data->max_loop
918 || flow_loop_nested_p (lim_data->max_loop, level));
920 lim_data->tgt_loop = level;
921 FOR_EACH_VEC_ELT (lim_data->depends, i, dep_stmt)
922 set_level (dep_stmt, orig_loop, level);
925 /* Determines an outermost loop from that we want to hoist the statement STMT.
926 For now we chose the outermost possible loop. TODO -- use profiling
927 information to set it more sanely. */
929 static void
930 set_profitable_level (gimple *stmt)
932 set_level (stmt, gimple_bb (stmt)->loop_father, get_lim_data (stmt)->max_loop);
935 /* Returns true if STMT is a call that has side effects. */
937 static bool
938 nonpure_call_p (gimple *stmt)
940 if (gimple_code (stmt) != GIMPLE_CALL)
941 return false;
943 return gimple_has_side_effects (stmt);
946 /* Rewrite a/b to a*(1/b). Return the invariant stmt to process. */
948 static gimple *
949 rewrite_reciprocal (gimple_stmt_iterator *bsi)
951 gassign *stmt, *stmt1, *stmt2;
952 tree name, lhs, type;
953 tree real_one;
954 gimple_stmt_iterator gsi;
956 stmt = as_a <gassign *> (gsi_stmt (*bsi));
957 lhs = gimple_assign_lhs (stmt);
958 type = TREE_TYPE (lhs);
960 real_one = build_one_cst (type);
962 name = make_temp_ssa_name (type, NULL, "reciptmp");
963 stmt1 = gimple_build_assign (name, RDIV_EXPR, real_one,
964 gimple_assign_rhs2 (stmt));
965 stmt2 = gimple_build_assign (lhs, MULT_EXPR, name,
966 gimple_assign_rhs1 (stmt));
968 /* Replace division stmt with reciprocal and multiply stmts.
969 The multiply stmt is not invariant, so update iterator
970 and avoid rescanning. */
971 gsi = *bsi;
972 gsi_insert_before (bsi, stmt1, GSI_NEW_STMT);
973 gsi_replace (&gsi, stmt2, true);
975 /* Continue processing with invariant reciprocal statement. */
976 return stmt1;
979 /* Check if the pattern at *BSI is a bittest of the form
980 (A >> B) & 1 != 0 and in this case rewrite it to A & (1 << B) != 0. */
982 static gimple *
983 rewrite_bittest (gimple_stmt_iterator *bsi)
985 gassign *stmt;
986 gimple *stmt1;
987 gassign *stmt2;
988 gimple *use_stmt;
989 gcond *cond_stmt;
990 tree lhs, name, t, a, b;
991 use_operand_p use;
993 stmt = as_a <gassign *> (gsi_stmt (*bsi));
994 lhs = gimple_assign_lhs (stmt);
996 /* Verify that the single use of lhs is a comparison against zero. */
997 if (TREE_CODE (lhs) != SSA_NAME
998 || !single_imm_use (lhs, &use, &use_stmt))
999 return stmt;
1000 cond_stmt = dyn_cast <gcond *> (use_stmt);
1001 if (!cond_stmt)
1002 return stmt;
1003 if (gimple_cond_lhs (cond_stmt) != lhs
1004 || (gimple_cond_code (cond_stmt) != NE_EXPR
1005 && gimple_cond_code (cond_stmt) != EQ_EXPR)
1006 || !integer_zerop (gimple_cond_rhs (cond_stmt)))
1007 return stmt;
1009 /* Get at the operands of the shift. The rhs is TMP1 & 1. */
1010 stmt1 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
1011 if (gimple_code (stmt1) != GIMPLE_ASSIGN)
1012 return stmt;
1014 /* There is a conversion in between possibly inserted by fold. */
1015 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt1)))
1017 t = gimple_assign_rhs1 (stmt1);
1018 if (TREE_CODE (t) != SSA_NAME
1019 || !has_single_use (t))
1020 return stmt;
1021 stmt1 = SSA_NAME_DEF_STMT (t);
1022 if (gimple_code (stmt1) != GIMPLE_ASSIGN)
1023 return stmt;
1026 /* Verify that B is loop invariant but A is not. Verify that with
1027 all the stmt walking we are still in the same loop. */
1028 if (gimple_assign_rhs_code (stmt1) != RSHIFT_EXPR
1029 || loop_containing_stmt (stmt1) != loop_containing_stmt (stmt))
1030 return stmt;
1032 a = gimple_assign_rhs1 (stmt1);
1033 b = gimple_assign_rhs2 (stmt1);
1035 if (outermost_invariant_loop (b, loop_containing_stmt (stmt1)) != NULL
1036 && outermost_invariant_loop (a, loop_containing_stmt (stmt1)) == NULL)
1038 gimple_stmt_iterator rsi;
1040 /* 1 << B */
1041 t = fold_build2 (LSHIFT_EXPR, TREE_TYPE (a),
1042 build_int_cst (TREE_TYPE (a), 1), b);
1043 name = make_temp_ssa_name (TREE_TYPE (a), NULL, "shifttmp");
1044 stmt1 = gimple_build_assign (name, t);
1046 /* A & (1 << B) */
1047 t = fold_build2 (BIT_AND_EXPR, TREE_TYPE (a), a, name);
1048 name = make_temp_ssa_name (TREE_TYPE (a), NULL, "shifttmp");
1049 stmt2 = gimple_build_assign (name, t);
1051 /* Replace the SSA_NAME we compare against zero. Adjust
1052 the type of zero accordingly. */
1053 SET_USE (use, name);
1054 gimple_cond_set_rhs (cond_stmt,
1055 build_int_cst_type (TREE_TYPE (name),
1056 0));
1058 /* Don't use gsi_replace here, none of the new assignments sets
1059 the variable originally set in stmt. Move bsi to stmt1, and
1060 then remove the original stmt, so that we get a chance to
1061 retain debug info for it. */
1062 rsi = *bsi;
1063 gsi_insert_before (bsi, stmt1, GSI_NEW_STMT);
1064 gsi_insert_before (&rsi, stmt2, GSI_SAME_STMT);
1065 gimple *to_release = gsi_stmt (rsi);
1066 gsi_remove (&rsi, true);
1067 release_defs (to_release);
1069 return stmt1;
1072 return stmt;
1075 /* Determine the outermost loops in that statements in basic block BB are
1076 invariant, and record them to the LIM_DATA associated with the
1077 statements. */
1079 static void
1080 compute_invariantness (basic_block bb)
1082 enum move_pos pos;
1083 gimple_stmt_iterator bsi;
1084 gimple *stmt;
1085 bool maybe_never = ALWAYS_EXECUTED_IN (bb) == NULL;
1086 class loop *outermost = ALWAYS_EXECUTED_IN (bb);
1087 struct lim_aux_data *lim_data;
1089 if (!loop_outer (bb->loop_father))
1090 return;
1092 if (dump_file && (dump_flags & TDF_DETAILS))
1093 fprintf (dump_file, "Basic block %d (loop %d -- depth %d):\n\n",
1094 bb->index, bb->loop_father->num, loop_depth (bb->loop_father));
1096 /* Look at PHI nodes, but only if there is at most two.
1097 ??? We could relax this further by post-processing the inserted
1098 code and transforming adjacent cond-exprs with the same predicate
1099 to control flow again. */
1100 bsi = gsi_start_phis (bb);
1101 if (!gsi_end_p (bsi)
1102 && ((gsi_next (&bsi), gsi_end_p (bsi))
1103 || (gsi_next (&bsi), gsi_end_p (bsi))))
1104 for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1106 stmt = gsi_stmt (bsi);
1108 pos = movement_possibility (stmt);
1109 if (pos == MOVE_IMPOSSIBLE)
1110 continue;
1112 lim_data = get_lim_data (stmt);
1113 if (! lim_data)
1114 lim_data = init_lim_data (stmt);
1115 lim_data->always_executed_in = outermost;
1117 if (!determine_max_movement (stmt, false))
1119 lim_data->max_loop = NULL;
1120 continue;
1123 if (dump_file && (dump_flags & TDF_DETAILS))
1125 print_gimple_stmt (dump_file, stmt, 2);
1126 fprintf (dump_file, " invariant up to level %d, cost %d.\n\n",
1127 loop_depth (lim_data->max_loop),
1128 lim_data->cost);
1131 if (lim_data->cost >= LIM_EXPENSIVE)
1132 set_profitable_level (stmt);
1135 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1137 stmt = gsi_stmt (bsi);
1139 pos = movement_possibility (stmt);
1140 if (pos == MOVE_IMPOSSIBLE)
1142 if (nonpure_call_p (stmt))
1144 maybe_never = true;
1145 outermost = NULL;
1147 /* Make sure to note always_executed_in for stores to make
1148 store-motion work. */
1149 else if (stmt_makes_single_store (stmt))
1151 struct lim_aux_data *lim_data = get_lim_data (stmt);
1152 if (! lim_data)
1153 lim_data = init_lim_data (stmt);
1154 lim_data->always_executed_in = outermost;
1156 continue;
1159 if (is_gimple_assign (stmt)
1160 && (get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
1161 == GIMPLE_BINARY_RHS))
1163 tree op0 = gimple_assign_rhs1 (stmt);
1164 tree op1 = gimple_assign_rhs2 (stmt);
1165 class loop *ol1 = outermost_invariant_loop (op1,
1166 loop_containing_stmt (stmt));
1168 /* If divisor is invariant, convert a/b to a*(1/b), allowing reciprocal
1169 to be hoisted out of loop, saving expensive divide. */
1170 if (pos == MOVE_POSSIBLE
1171 && gimple_assign_rhs_code (stmt) == RDIV_EXPR
1172 && flag_unsafe_math_optimizations
1173 && !flag_trapping_math
1174 && ol1 != NULL
1175 && outermost_invariant_loop (op0, ol1) == NULL)
1176 stmt = rewrite_reciprocal (&bsi);
1178 /* If the shift count is invariant, convert (A >> B) & 1 to
1179 A & (1 << B) allowing the bit mask to be hoisted out of the loop
1180 saving an expensive shift. */
1181 if (pos == MOVE_POSSIBLE
1182 && gimple_assign_rhs_code (stmt) == BIT_AND_EXPR
1183 && integer_onep (op1)
1184 && TREE_CODE (op0) == SSA_NAME
1185 && has_single_use (op0))
1186 stmt = rewrite_bittest (&bsi);
1189 lim_data = get_lim_data (stmt);
1190 if (! lim_data)
1191 lim_data = init_lim_data (stmt);
1192 lim_data->always_executed_in = outermost;
1194 if (maybe_never && pos == MOVE_PRESERVE_EXECUTION)
1195 continue;
1197 if (!determine_max_movement (stmt, pos == MOVE_PRESERVE_EXECUTION))
1199 lim_data->max_loop = NULL;
1200 continue;
1203 if (dump_file && (dump_flags & TDF_DETAILS))
1205 print_gimple_stmt (dump_file, stmt, 2);
1206 fprintf (dump_file, " invariant up to level %d, cost %d.\n\n",
1207 loop_depth (lim_data->max_loop),
1208 lim_data->cost);
1211 if (lim_data->cost >= LIM_EXPENSIVE)
1212 set_profitable_level (stmt);
1216 /* Hoist the statements in basic block BB out of the loops prescribed by
1217 data stored in LIM_DATA structures associated with each statement. Callback
1218 for walk_dominator_tree. */
1220 unsigned int
1221 move_computations_worker (basic_block bb)
1223 class loop *level;
1224 unsigned cost = 0;
1225 struct lim_aux_data *lim_data;
1226 unsigned int todo = 0;
1228 if (!loop_outer (bb->loop_father))
1229 return todo;
1231 for (gphi_iterator bsi = gsi_start_phis (bb); !gsi_end_p (bsi); )
1233 gassign *new_stmt;
1234 gphi *stmt = bsi.phi ();
1236 lim_data = get_lim_data (stmt);
1237 if (lim_data == NULL)
1239 gsi_next (&bsi);
1240 continue;
1243 cost = lim_data->cost;
1244 level = lim_data->tgt_loop;
1245 clear_lim_data (stmt);
1247 if (!level)
1249 gsi_next (&bsi);
1250 continue;
1253 if (dump_file && (dump_flags & TDF_DETAILS))
1255 fprintf (dump_file, "Moving PHI node\n");
1256 print_gimple_stmt (dump_file, stmt, 0);
1257 fprintf (dump_file, "(cost %u) out of loop %d.\n\n",
1258 cost, level->num);
1261 if (gimple_phi_num_args (stmt) == 1)
1263 tree arg = PHI_ARG_DEF (stmt, 0);
1264 new_stmt = gimple_build_assign (gimple_phi_result (stmt),
1265 TREE_CODE (arg), arg);
1267 else
1269 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
1270 gimple *cond = gsi_stmt (gsi_last_bb (dom));
1271 tree arg0 = NULL_TREE, arg1 = NULL_TREE, t;
1272 /* Get the PHI arguments corresponding to the true and false
1273 edges of COND. */
1274 extract_true_false_args_from_phi (dom, stmt, &arg0, &arg1);
1275 gcc_assert (arg0 && arg1);
1276 t = make_ssa_name (boolean_type_node);
1277 new_stmt = gimple_build_assign (t, gimple_cond_code (cond),
1278 gimple_cond_lhs (cond),
1279 gimple_cond_rhs (cond));
1280 gsi_insert_on_edge (loop_preheader_edge (level), new_stmt);
1281 new_stmt = gimple_build_assign (gimple_phi_result (stmt),
1282 COND_EXPR, t, arg0, arg1);
1283 todo |= TODO_cleanup_cfg;
1285 if (!ALWAYS_EXECUTED_IN (bb)
1286 || (ALWAYS_EXECUTED_IN (bb) != level
1287 && !flow_loop_nested_p (ALWAYS_EXECUTED_IN (bb), level)))
1288 reset_flow_sensitive_info (gimple_assign_lhs (new_stmt));
1289 gsi_insert_on_edge (loop_preheader_edge (level), new_stmt);
1290 remove_phi_node (&bsi, false);
1293 for (gimple_stmt_iterator bsi = gsi_start_bb (bb); !gsi_end_p (bsi); )
1295 edge e;
1297 gimple *stmt = gsi_stmt (bsi);
1299 lim_data = get_lim_data (stmt);
1300 if (lim_data == NULL)
1302 gsi_next (&bsi);
1303 continue;
1306 cost = lim_data->cost;
1307 level = lim_data->tgt_loop;
1308 clear_lim_data (stmt);
1310 if (!level)
1312 gsi_next (&bsi);
1313 continue;
1316 /* We do not really want to move conditionals out of the loop; we just
1317 placed it here to force its operands to be moved if necessary. */
1318 if (gimple_code (stmt) == GIMPLE_COND)
1320 gsi_next (&bsi);
1321 continue;
1324 if (dump_file && (dump_flags & TDF_DETAILS))
1326 fprintf (dump_file, "Moving statement\n");
1327 print_gimple_stmt (dump_file, stmt, 0);
1328 fprintf (dump_file, "(cost %u) out of loop %d.\n\n",
1329 cost, level->num);
1332 e = loop_preheader_edge (level);
1333 gcc_assert (!gimple_vdef (stmt));
1334 if (gimple_vuse (stmt))
1336 /* The new VUSE is the one from the virtual PHI in the loop
1337 header or the one already present. */
1338 gphi_iterator gsi2;
1339 for (gsi2 = gsi_start_phis (e->dest);
1340 !gsi_end_p (gsi2); gsi_next (&gsi2))
1342 gphi *phi = gsi2.phi ();
1343 if (virtual_operand_p (gimple_phi_result (phi)))
1345 SET_USE (gimple_vuse_op (stmt),
1346 PHI_ARG_DEF_FROM_EDGE (phi, e));
1347 break;
1351 gsi_remove (&bsi, false);
1352 if (gimple_has_lhs (stmt)
1353 && TREE_CODE (gimple_get_lhs (stmt)) == SSA_NAME
1354 && (!ALWAYS_EXECUTED_IN (bb)
1355 || !(ALWAYS_EXECUTED_IN (bb) == level
1356 || flow_loop_nested_p (ALWAYS_EXECUTED_IN (bb), level))))
1357 reset_flow_sensitive_info (gimple_get_lhs (stmt));
1358 /* In case this is a stmt that is not unconditionally executed
1359 when the target loop header is executed and the stmt may
1360 invoke undefined integer or pointer overflow rewrite it to
1361 unsigned arithmetic. */
1362 if (is_gimple_assign (stmt)
1363 && INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_lhs (stmt)))
1364 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (gimple_assign_lhs (stmt)))
1365 && arith_code_with_undefined_signed_overflow
1366 (gimple_assign_rhs_code (stmt))
1367 && (!ALWAYS_EXECUTED_IN (bb)
1368 || !(ALWAYS_EXECUTED_IN (bb) == level
1369 || flow_loop_nested_p (ALWAYS_EXECUTED_IN (bb), level))))
1370 gsi_insert_seq_on_edge (e, rewrite_to_defined_overflow (stmt));
1371 else
1372 gsi_insert_on_edge (e, stmt);
1375 return todo;
1378 /* Checks whether the statement defining variable *INDEX can be hoisted
1379 out of the loop passed in DATA. Callback for for_each_index. */
1381 static bool
1382 may_move_till (tree ref, tree *index, void *data)
1384 class loop *loop = (class loop *) data, *max_loop;
1386 /* If REF is an array reference, check also that the step and the lower
1387 bound is invariant in LOOP. */
1388 if (TREE_CODE (ref) == ARRAY_REF)
1390 tree step = TREE_OPERAND (ref, 3);
1391 tree lbound = TREE_OPERAND (ref, 2);
1393 max_loop = outermost_invariant_loop (step, loop);
1394 if (!max_loop)
1395 return false;
1397 max_loop = outermost_invariant_loop (lbound, loop);
1398 if (!max_loop)
1399 return false;
1402 max_loop = outermost_invariant_loop (*index, loop);
1403 if (!max_loop)
1404 return false;
1406 return true;
1409 /* If OP is SSA NAME, force the statement that defines it to be
1410 moved out of the LOOP. ORIG_LOOP is the loop in that EXPR is used. */
1412 static void
1413 force_move_till_op (tree op, class loop *orig_loop, class loop *loop)
1415 gimple *stmt;
1417 if (!op
1418 || is_gimple_min_invariant (op))
1419 return;
1421 gcc_assert (TREE_CODE (op) == SSA_NAME);
1423 stmt = SSA_NAME_DEF_STMT (op);
1424 if (gimple_nop_p (stmt))
1425 return;
1427 set_level (stmt, orig_loop, loop);
1430 /* Forces statement defining invariants in REF (and *INDEX) to be moved out of
1431 the LOOP. The reference REF is used in the loop ORIG_LOOP. Callback for
1432 for_each_index. */
1434 struct fmt_data
1436 class loop *loop;
1437 class loop *orig_loop;
1440 static bool
1441 force_move_till (tree ref, tree *index, void *data)
1443 struct fmt_data *fmt_data = (struct fmt_data *) data;
1445 if (TREE_CODE (ref) == ARRAY_REF)
1447 tree step = TREE_OPERAND (ref, 3);
1448 tree lbound = TREE_OPERAND (ref, 2);
1450 force_move_till_op (step, fmt_data->orig_loop, fmt_data->loop);
1451 force_move_till_op (lbound, fmt_data->orig_loop, fmt_data->loop);
1454 force_move_till_op (*index, fmt_data->orig_loop, fmt_data->loop);
1456 return true;
1459 /* A function to free the mem_ref object OBJ. */
1461 static void
1462 memref_free (class im_mem_ref *mem)
1464 mem->accesses_in_loop.release ();
1467 /* Allocates and returns a memory reference description for MEM whose hash
1468 value is HASH and id is ID. */
1470 static im_mem_ref *
1471 mem_ref_alloc (ao_ref *mem, unsigned hash, unsigned id)
1473 im_mem_ref *ref = XOBNEW (&mem_ref_obstack, class im_mem_ref);
1474 if (mem)
1475 ref->mem = *mem;
1476 else
1477 ao_ref_init (&ref->mem, error_mark_node);
1478 ref->id = id;
1479 ref->ref_canonical = false;
1480 ref->ref_decomposed = false;
1481 ref->hash = hash;
1482 ref->stored = NULL;
1483 ref->loaded = NULL;
1484 bitmap_initialize (&ref->dep_loop, &lim_bitmap_obstack);
1485 ref->accesses_in_loop.create (1);
1487 return ref;
1490 /* Records memory reference location *LOC in LOOP to the memory reference
1491 description REF. The reference occurs in statement STMT. */
1493 static void
1494 record_mem_ref_loc (im_mem_ref *ref, gimple *stmt, tree *loc)
1496 mem_ref_loc aref;
1497 aref.stmt = stmt;
1498 aref.ref = loc;
1499 ref->accesses_in_loop.safe_push (aref);
1502 /* Set the LOOP bit in REF stored bitmap and allocate that if
1503 necessary. Return whether a bit was changed. */
1505 static bool
1506 set_ref_stored_in_loop (im_mem_ref *ref, class loop *loop)
1508 if (!ref->stored)
1509 ref->stored = BITMAP_ALLOC (&lim_bitmap_obstack);
1510 return bitmap_set_bit (ref->stored, loop->num);
1513 /* Marks reference REF as stored in LOOP. */
1515 static void
1516 mark_ref_stored (im_mem_ref *ref, class loop *loop)
1518 while (loop != current_loops->tree_root
1519 && set_ref_stored_in_loop (ref, loop))
1520 loop = loop_outer (loop);
1523 /* Set the LOOP bit in REF loaded bitmap and allocate that if
1524 necessary. Return whether a bit was changed. */
1526 static bool
1527 set_ref_loaded_in_loop (im_mem_ref *ref, class loop *loop)
1529 if (!ref->loaded)
1530 ref->loaded = BITMAP_ALLOC (&lim_bitmap_obstack);
1531 return bitmap_set_bit (ref->loaded, loop->num);
1534 /* Marks reference REF as loaded in LOOP. */
1536 static void
1537 mark_ref_loaded (im_mem_ref *ref, class loop *loop)
1539 while (loop != current_loops->tree_root
1540 && set_ref_loaded_in_loop (ref, loop))
1541 loop = loop_outer (loop);
1544 /* Gathers memory references in statement STMT in LOOP, storing the
1545 information about them in the memory_accesses structure. Marks
1546 the vops accessed through unrecognized statements there as
1547 well. */
1549 static void
1550 gather_mem_refs_stmt (class loop *loop, gimple *stmt)
1552 tree *mem = NULL;
1553 hashval_t hash;
1554 im_mem_ref **slot;
1555 im_mem_ref *ref;
1556 bool is_stored;
1557 unsigned id;
1559 if (!gimple_vuse (stmt))
1560 return;
1562 mem = simple_mem_ref_in_stmt (stmt, &is_stored);
1563 if (!mem && is_gimple_assign (stmt))
1565 /* For aggregate copies record distinct references but use them
1566 only for disambiguation purposes. */
1567 id = memory_accesses.refs_list.length ();
1568 ref = mem_ref_alloc (NULL, 0, id);
1569 memory_accesses.refs_list.safe_push (ref);
1570 if (dump_file && (dump_flags & TDF_DETAILS))
1572 fprintf (dump_file, "Unhandled memory reference %u: ", id);
1573 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1575 record_mem_ref_loc (ref, stmt, mem);
1576 is_stored = gimple_vdef (stmt);
1578 else if (!mem)
1580 /* We use the shared mem_ref for all unanalyzable refs. */
1581 id = UNANALYZABLE_MEM_ID;
1582 ref = memory_accesses.refs_list[id];
1583 if (dump_file && (dump_flags & TDF_DETAILS))
1585 fprintf (dump_file, "Unanalyzed memory reference %u: ", id);
1586 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1588 is_stored = gimple_vdef (stmt);
1590 else
1592 /* We are looking for equal refs that might differ in structure
1593 such as a.b vs. MEM[&a + 4]. So we key off the ao_ref but
1594 make sure we can canonicalize the ref in the hashtable if
1595 non-operand_equal_p refs are found. For the lookup we mark
1596 the case we want strict equality with aor.max_size == -1. */
1597 ao_ref aor;
1598 ao_ref_init (&aor, *mem);
1599 ao_ref_base (&aor);
1600 ao_ref_alias_set (&aor);
1601 HOST_WIDE_INT offset, size, max_size;
1602 poly_int64 saved_maxsize = aor.max_size, mem_off;
1603 tree mem_base;
1604 bool ref_decomposed;
1605 if (aor.max_size_known_p ()
1606 && aor.offset.is_constant (&offset)
1607 && aor.size.is_constant (&size)
1608 && aor.max_size.is_constant (&max_size)
1609 && size == max_size
1610 && (size % BITS_PER_UNIT) == 0
1611 /* We're canonicalizing to a MEM where TYPE_SIZE specifies the
1612 size. Make sure this is consistent with the extraction. */
1613 && poly_int_tree_p (TYPE_SIZE (TREE_TYPE (*mem)))
1614 && known_eq (wi::to_poly_offset (TYPE_SIZE (TREE_TYPE (*mem))),
1615 aor.size)
1616 && (mem_base = get_addr_base_and_unit_offset (aor.ref, &mem_off)))
1618 ref_decomposed = true;
1619 tree base = ao_ref_base (&aor);
1620 poly_int64 moffset;
1621 HOST_WIDE_INT mcoffset;
1622 if (TREE_CODE (base) == MEM_REF
1623 && (mem_ref_offset (base) * BITS_PER_UNIT + offset).to_shwi (&moffset)
1624 && moffset.is_constant (&mcoffset))
1626 hash = iterative_hash_expr (TREE_OPERAND (base, 0), 0);
1627 hash = iterative_hash_host_wide_int (mcoffset, hash);
1629 else
1631 hash = iterative_hash_expr (base, 0);
1632 hash = iterative_hash_host_wide_int (offset, hash);
1634 hash = iterative_hash_host_wide_int (size, hash);
1636 else
1638 ref_decomposed = false;
1639 hash = iterative_hash_expr (aor.ref, 0);
1640 aor.max_size = -1;
1642 slot = memory_accesses.refs->find_slot_with_hash (&aor, hash, INSERT);
1643 aor.max_size = saved_maxsize;
1644 if (*slot)
1646 if (!(*slot)->ref_canonical
1647 && !operand_equal_p (*mem, (*slot)->mem.ref, 0))
1649 /* If we didn't yet canonicalize the hashtable ref (which
1650 we'll end up using for code insertion) and hit a second
1651 equal ref that is not structurally equivalent create
1652 a canonical ref which is a bare MEM_REF. */
1653 if (TREE_CODE (*mem) == MEM_REF
1654 || TREE_CODE (*mem) == TARGET_MEM_REF)
1656 (*slot)->mem.ref = *mem;
1657 (*slot)->mem.base_alias_set = ao_ref_base_alias_set (&aor);
1659 else
1661 tree ref_alias_type = reference_alias_ptr_type (*mem);
1662 unsigned int ref_align = get_object_alignment (*mem);
1663 tree ref_type = TREE_TYPE (*mem);
1664 tree tmp = build1 (ADDR_EXPR, ptr_type_node,
1665 unshare_expr (mem_base));
1666 if (TYPE_ALIGN (ref_type) != ref_align)
1667 ref_type = build_aligned_type (ref_type, ref_align);
1668 (*slot)->mem.ref
1669 = fold_build2 (MEM_REF, ref_type, tmp,
1670 build_int_cst (ref_alias_type, mem_off));
1671 if ((*slot)->mem.volatile_p)
1672 TREE_THIS_VOLATILE ((*slot)->mem.ref) = 1;
1673 gcc_checking_assert (TREE_CODE ((*slot)->mem.ref) == MEM_REF
1674 && is_gimple_mem_ref_addr
1675 (TREE_OPERAND ((*slot)->mem.ref,
1676 0)));
1677 (*slot)->mem.base_alias_set = (*slot)->mem.ref_alias_set;
1679 (*slot)->ref_canonical = true;
1681 ref = *slot;
1682 id = ref->id;
1684 else
1686 id = memory_accesses.refs_list.length ();
1687 ref = mem_ref_alloc (&aor, hash, id);
1688 ref->ref_decomposed = ref_decomposed;
1689 memory_accesses.refs_list.safe_push (ref);
1690 *slot = ref;
1692 if (dump_file && (dump_flags & TDF_DETAILS))
1694 fprintf (dump_file, "Memory reference %u: ", id);
1695 print_generic_expr (dump_file, ref->mem.ref, TDF_SLIM);
1696 fprintf (dump_file, "\n");
1700 record_mem_ref_loc (ref, stmt, mem);
1702 if (is_stored)
1704 bitmap_set_bit (&memory_accesses.refs_stored_in_loop[loop->num], ref->id);
1705 mark_ref_stored (ref, loop);
1707 /* A not simple memory op is also a read when it is a write. */
1708 if (!is_stored || id == UNANALYZABLE_MEM_ID
1709 || ref->mem.ref == error_mark_node)
1711 bitmap_set_bit (&memory_accesses.refs_loaded_in_loop[loop->num], ref->id);
1712 mark_ref_loaded (ref, loop);
1714 init_lim_data (stmt)->ref = ref->id;
1715 return;
1718 static unsigned *bb_loop_postorder;
1720 /* qsort sort function to sort blocks after their loop fathers postorder. */
1722 static int
1723 sort_bbs_in_loop_postorder_cmp (const void *bb1_, const void *bb2_,
1724 void *bb_loop_postorder_)
1726 unsigned *bb_loop_postorder = (unsigned *)bb_loop_postorder_;
1727 basic_block bb1 = *(const basic_block *)bb1_;
1728 basic_block bb2 = *(const basic_block *)bb2_;
1729 class loop *loop1 = bb1->loop_father;
1730 class loop *loop2 = bb2->loop_father;
1731 if (loop1->num == loop2->num)
1732 return bb1->index - bb2->index;
1733 return bb_loop_postorder[loop1->num] < bb_loop_postorder[loop2->num] ? -1 : 1;
1736 /* qsort sort function to sort ref locs after their loop fathers postorder. */
1738 static int
1739 sort_locs_in_loop_postorder_cmp (const void *loc1_, const void *loc2_,
1740 void *bb_loop_postorder_)
1742 unsigned *bb_loop_postorder = (unsigned *)bb_loop_postorder_;
1743 const mem_ref_loc *loc1 = (const mem_ref_loc *)loc1_;
1744 const mem_ref_loc *loc2 = (const mem_ref_loc *)loc2_;
1745 class loop *loop1 = gimple_bb (loc1->stmt)->loop_father;
1746 class loop *loop2 = gimple_bb (loc2->stmt)->loop_father;
1747 if (loop1->num == loop2->num)
1748 return 0;
1749 return bb_loop_postorder[loop1->num] < bb_loop_postorder[loop2->num] ? -1 : 1;
1752 /* Gathers memory references in loops. */
1754 static void
1755 analyze_memory_references (bool store_motion)
1757 gimple_stmt_iterator bsi;
1758 basic_block bb, *bbs;
1759 class loop *outer;
1760 unsigned i, n;
1762 /* Collect all basic-blocks in loops and sort them after their
1763 loops postorder. */
1764 i = 0;
1765 bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
1766 FOR_EACH_BB_FN (bb, cfun)
1767 if (bb->loop_father != current_loops->tree_root)
1768 bbs[i++] = bb;
1769 n = i;
1770 gcc_sort_r (bbs, n, sizeof (basic_block), sort_bbs_in_loop_postorder_cmp,
1771 bb_loop_postorder);
1773 /* Visit blocks in loop postorder and assign mem-ref IDs in that order.
1774 That results in better locality for all the bitmaps. It also
1775 automatically sorts the location list of gathered memory references
1776 after their loop postorder number allowing to binary-search it. */
1777 for (i = 0; i < n; ++i)
1779 basic_block bb = bbs[i];
1780 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1781 gather_mem_refs_stmt (bb->loop_father, gsi_stmt (bsi));
1784 /* Verify the list of gathered memory references is sorted after their
1785 loop postorder number. */
1786 if (flag_checking)
1788 im_mem_ref *ref;
1789 FOR_EACH_VEC_ELT (memory_accesses.refs_list, i, ref)
1790 for (unsigned j = 1; j < ref->accesses_in_loop.length (); ++j)
1791 gcc_assert (sort_locs_in_loop_postorder_cmp
1792 (&ref->accesses_in_loop[j-1], &ref->accesses_in_loop[j],
1793 bb_loop_postorder) <= 0);
1796 free (bbs);
1798 if (!store_motion)
1799 return;
1801 /* Propagate the information about accessed memory references up
1802 the loop hierarchy. */
1803 for (auto loop : loops_list (cfun, LI_FROM_INNERMOST))
1805 /* Finalize the overall touched references (including subloops). */
1806 bitmap_ior_into (&memory_accesses.all_refs_stored_in_loop[loop->num],
1807 &memory_accesses.refs_stored_in_loop[loop->num]);
1809 /* Propagate the information about accessed memory references up
1810 the loop hierarchy. */
1811 outer = loop_outer (loop);
1812 if (outer == current_loops->tree_root)
1813 continue;
1815 bitmap_ior_into (&memory_accesses.all_refs_stored_in_loop[outer->num],
1816 &memory_accesses.all_refs_stored_in_loop[loop->num]);
1820 /* Returns true if MEM1 and MEM2 may alias. TTAE_CACHE is used as a cache in
1821 tree_to_aff_combination_expand. */
1823 static bool
1824 mem_refs_may_alias_p (im_mem_ref *mem1, im_mem_ref *mem2,
1825 hash_map<tree, name_expansion *> **ttae_cache,
1826 bool tbaa_p)
1828 gcc_checking_assert (mem1->mem.ref != error_mark_node
1829 && mem2->mem.ref != error_mark_node);
1831 /* Perform BASE + OFFSET analysis -- if MEM1 and MEM2 are based on the same
1832 object and their offset differ in such a way that the locations cannot
1833 overlap, then they cannot alias. */
1834 poly_widest_int size1, size2;
1835 aff_tree off1, off2;
1837 /* Perform basic offset and type-based disambiguation. */
1838 if (!refs_may_alias_p_1 (&mem1->mem, &mem2->mem, tbaa_p))
1839 return false;
1841 /* The expansion of addresses may be a bit expensive, thus we only do
1842 the check at -O2 and higher optimization levels. */
1843 if (optimize < 2)
1844 return true;
1846 get_inner_reference_aff (mem1->mem.ref, &off1, &size1);
1847 get_inner_reference_aff (mem2->mem.ref, &off2, &size2);
1848 aff_combination_expand (&off1, ttae_cache);
1849 aff_combination_expand (&off2, ttae_cache);
1850 aff_combination_scale (&off1, -1);
1851 aff_combination_add (&off2, &off1);
1853 if (aff_comb_cannot_overlap_p (&off2, size1, size2))
1854 return false;
1856 return true;
1859 /* Compare function for bsearch searching for reference locations
1860 in a loop. */
1862 static int
1863 find_ref_loc_in_loop_cmp (const void *loop_, const void *loc_,
1864 void *bb_loop_postorder_)
1866 unsigned *bb_loop_postorder = (unsigned *)bb_loop_postorder_;
1867 class loop *loop = (class loop *)const_cast<void *>(loop_);
1868 mem_ref_loc *loc = (mem_ref_loc *)const_cast<void *>(loc_);
1869 class loop *loc_loop = gimple_bb (loc->stmt)->loop_father;
1870 if (loop->num == loc_loop->num
1871 || flow_loop_nested_p (loop, loc_loop))
1872 return 0;
1873 return (bb_loop_postorder[loop->num] < bb_loop_postorder[loc_loop->num]
1874 ? -1 : 1);
1877 /* Iterates over all locations of REF in LOOP and its subloops calling
1878 fn.operator() with the location as argument. When that operator
1879 returns true the iteration is stopped and true is returned.
1880 Otherwise false is returned. */
1882 template <typename FN>
1883 static bool
1884 for_all_locs_in_loop (class loop *loop, im_mem_ref *ref, FN fn)
1886 unsigned i;
1887 mem_ref_loc *loc;
1889 /* Search for the cluster of locs in the accesses_in_loop vector
1890 which is sorted after postorder index of the loop father. */
1891 loc = ref->accesses_in_loop.bsearch (loop, find_ref_loc_in_loop_cmp,
1892 bb_loop_postorder);
1893 if (!loc)
1894 return false;
1896 /* We have found one location inside loop or its sub-loops. Iterate
1897 both forward and backward to cover the whole cluster. */
1898 i = loc - ref->accesses_in_loop.address ();
1899 while (i > 0)
1901 --i;
1902 mem_ref_loc *l = &ref->accesses_in_loop[i];
1903 if (!flow_bb_inside_loop_p (loop, gimple_bb (l->stmt)))
1904 break;
1905 if (fn (l))
1906 return true;
1908 for (i = loc - ref->accesses_in_loop.address ();
1909 i < ref->accesses_in_loop.length (); ++i)
1911 mem_ref_loc *l = &ref->accesses_in_loop[i];
1912 if (!flow_bb_inside_loop_p (loop, gimple_bb (l->stmt)))
1913 break;
1914 if (fn (l))
1915 return true;
1918 return false;
1921 /* Rewrites location LOC by TMP_VAR. */
1923 class rewrite_mem_ref_loc
1925 public:
1926 rewrite_mem_ref_loc (tree tmp_var_) : tmp_var (tmp_var_) {}
1927 bool operator () (mem_ref_loc *loc);
1928 tree tmp_var;
1931 bool
1932 rewrite_mem_ref_loc::operator () (mem_ref_loc *loc)
1934 *loc->ref = tmp_var;
1935 update_stmt (loc->stmt);
1936 return false;
1939 /* Rewrites all references to REF in LOOP by variable TMP_VAR. */
1941 static void
1942 rewrite_mem_refs (class loop *loop, im_mem_ref *ref, tree tmp_var)
1944 for_all_locs_in_loop (loop, ref, rewrite_mem_ref_loc (tmp_var));
1947 /* Stores the first reference location in LOCP. */
1949 class first_mem_ref_loc_1
1951 public:
1952 first_mem_ref_loc_1 (mem_ref_loc **locp_) : locp (locp_) {}
1953 bool operator () (mem_ref_loc *loc);
1954 mem_ref_loc **locp;
1957 bool
1958 first_mem_ref_loc_1::operator () (mem_ref_loc *loc)
1960 *locp = loc;
1961 return true;
1964 /* Returns the first reference location to REF in LOOP. */
1966 static mem_ref_loc *
1967 first_mem_ref_loc (class loop *loop, im_mem_ref *ref)
1969 mem_ref_loc *locp = NULL;
1970 for_all_locs_in_loop (loop, ref, first_mem_ref_loc_1 (&locp));
1971 return locp;
1974 /* Helper function for execute_sm. Emit code to store TMP_VAR into
1975 MEM along edge EX.
1977 The store is only done if MEM has changed. We do this so no
1978 changes to MEM occur on code paths that did not originally store
1979 into it.
1981 The common case for execute_sm will transform:
1983 for (...) {
1984 if (foo)
1985 stuff;
1986 else
1987 MEM = TMP_VAR;
1990 into:
1992 lsm = MEM;
1993 for (...) {
1994 if (foo)
1995 stuff;
1996 else
1997 lsm = TMP_VAR;
1999 MEM = lsm;
2001 This function will generate:
2003 lsm = MEM;
2005 lsm_flag = false;
2007 for (...) {
2008 if (foo)
2009 stuff;
2010 else {
2011 lsm = TMP_VAR;
2012 lsm_flag = true;
2015 if (lsm_flag) <--
2016 MEM = lsm; <-- (X)
2018 In case MEM and TMP_VAR are NULL the function will return the then
2019 block so the caller can insert (X) and other related stmts.
2022 static basic_block
2023 execute_sm_if_changed (edge ex, tree mem, tree tmp_var, tree flag,
2024 edge preheader, hash_set <basic_block> *flag_bbs,
2025 edge &append_cond_position, edge &last_cond_fallthru)
2027 basic_block new_bb, then_bb, old_dest;
2028 bool loop_has_only_one_exit;
2029 edge then_old_edge;
2030 gimple_stmt_iterator gsi;
2031 gimple *stmt;
2032 bool irr = ex->flags & EDGE_IRREDUCIBLE_LOOP;
2034 profile_count count_sum = profile_count::zero ();
2035 int nbbs = 0, ncount = 0;
2036 profile_probability flag_probability = profile_probability::uninitialized ();
2038 /* Flag is set in FLAG_BBS. Determine probability that flag will be true
2039 at loop exit.
2041 This code may look fancy, but it cannot update profile very realistically
2042 because we do not know the probability that flag will be true at given
2043 loop exit.
2045 We look for two interesting extremes
2046 - when exit is dominated by block setting the flag, we know it will
2047 always be true. This is a common case.
2048 - when all blocks setting the flag have very low frequency we know
2049 it will likely be false.
2050 In all other cases we default to 2/3 for flag being true. */
2052 for (hash_set<basic_block>::iterator it = flag_bbs->begin ();
2053 it != flag_bbs->end (); ++it)
2055 if ((*it)->count.initialized_p ())
2056 count_sum += (*it)->count, ncount ++;
2057 if (dominated_by_p (CDI_DOMINATORS, ex->src, *it))
2058 flag_probability = profile_probability::always ();
2059 nbbs++;
2062 profile_probability cap = profile_probability::always ().apply_scale (2, 3);
2064 if (flag_probability.initialized_p ())
2066 else if (ncount == nbbs
2067 && preheader->count () >= count_sum && preheader->count ().nonzero_p ())
2069 flag_probability = count_sum.probability_in (preheader->count ());
2070 if (flag_probability > cap)
2071 flag_probability = cap;
2074 if (!flag_probability.initialized_p ())
2075 flag_probability = cap;
2077 /* ?? Insert store after previous store if applicable. See note
2078 below. */
2079 if (append_cond_position)
2080 ex = append_cond_position;
2082 loop_has_only_one_exit = single_pred_p (ex->dest);
2084 if (loop_has_only_one_exit)
2085 ex = split_block_after_labels (ex->dest);
2086 else
2088 for (gphi_iterator gpi = gsi_start_phis (ex->dest);
2089 !gsi_end_p (gpi); gsi_next (&gpi))
2091 gphi *phi = gpi.phi ();
2092 if (virtual_operand_p (gimple_phi_result (phi)))
2093 continue;
2095 /* When the destination has a non-virtual PHI node with multiple
2096 predecessors make sure we preserve the PHI structure by
2097 forcing a forwarder block so that hoisting of that PHI will
2098 still work. */
2099 split_edge (ex);
2100 break;
2104 old_dest = ex->dest;
2105 new_bb = split_edge (ex);
2106 then_bb = create_empty_bb (new_bb);
2107 then_bb->count = new_bb->count.apply_probability (flag_probability);
2108 if (irr)
2109 then_bb->flags = BB_IRREDUCIBLE_LOOP;
2110 add_bb_to_loop (then_bb, new_bb->loop_father);
2112 gsi = gsi_start_bb (new_bb);
2113 stmt = gimple_build_cond (NE_EXPR, flag, boolean_false_node,
2114 NULL_TREE, NULL_TREE);
2115 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2117 /* Insert actual store. */
2118 if (mem)
2120 gsi = gsi_start_bb (then_bb);
2121 stmt = gimple_build_assign (unshare_expr (mem), tmp_var);
2122 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2125 edge e1 = single_succ_edge (new_bb);
2126 edge e2 = make_edge (new_bb, then_bb,
2127 EDGE_TRUE_VALUE | (irr ? EDGE_IRREDUCIBLE_LOOP : 0));
2128 e2->probability = flag_probability;
2130 e1->flags |= EDGE_FALSE_VALUE | (irr ? EDGE_IRREDUCIBLE_LOOP : 0);
2131 e1->flags &= ~EDGE_FALLTHRU;
2133 e1->probability = flag_probability.invert ();
2135 then_old_edge = make_single_succ_edge (then_bb, old_dest,
2136 EDGE_FALLTHRU | (irr ? EDGE_IRREDUCIBLE_LOOP : 0));
2138 set_immediate_dominator (CDI_DOMINATORS, then_bb, new_bb);
2140 if (append_cond_position)
2142 basic_block prevbb = last_cond_fallthru->src;
2143 redirect_edge_succ (last_cond_fallthru, new_bb);
2144 set_immediate_dominator (CDI_DOMINATORS, new_bb, prevbb);
2145 set_immediate_dominator (CDI_DOMINATORS, old_dest,
2146 recompute_dominator (CDI_DOMINATORS, old_dest));
2149 /* ?? Because stores may alias, they must happen in the exact
2150 sequence they originally happened. Save the position right after
2151 the (_lsm) store we just created so we can continue appending after
2152 it and maintain the original order. */
2153 append_cond_position = then_old_edge;
2154 last_cond_fallthru = find_edge (new_bb, old_dest);
2156 if (!loop_has_only_one_exit)
2157 for (gphi_iterator gpi = gsi_start_phis (old_dest);
2158 !gsi_end_p (gpi); gsi_next (&gpi))
2160 gphi *phi = gpi.phi ();
2161 unsigned i;
2163 for (i = 0; i < gimple_phi_num_args (phi); i++)
2164 if (gimple_phi_arg_edge (phi, i)->src == new_bb)
2166 tree arg = gimple_phi_arg_def (phi, i);
2167 add_phi_arg (phi, arg, then_old_edge, UNKNOWN_LOCATION);
2168 update_stmt (phi);
2172 return then_bb;
2175 /* When REF is set on the location, set flag indicating the store. */
2177 class sm_set_flag_if_changed
2179 public:
2180 sm_set_flag_if_changed (tree flag_, hash_set <basic_block> *bbs_)
2181 : flag (flag_), bbs (bbs_) {}
2182 bool operator () (mem_ref_loc *loc);
2183 tree flag;
2184 hash_set <basic_block> *bbs;
2187 bool
2188 sm_set_flag_if_changed::operator () (mem_ref_loc *loc)
2190 /* Only set the flag for writes. */
2191 if (is_gimple_assign (loc->stmt)
2192 && gimple_assign_lhs_ptr (loc->stmt) == loc->ref)
2194 gimple_stmt_iterator gsi = gsi_for_stmt (loc->stmt);
2195 gimple *stmt = gimple_build_assign (flag, boolean_true_node);
2196 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2197 bbs->add (gimple_bb (stmt));
2199 return false;
2202 /* Helper function for execute_sm. On every location where REF is
2203 set, set an appropriate flag indicating the store. */
2205 static tree
2206 execute_sm_if_changed_flag_set (class loop *loop, im_mem_ref *ref,
2207 hash_set <basic_block> *bbs)
2209 tree flag;
2210 char *str = get_lsm_tmp_name (ref->mem.ref, ~0, "_flag");
2211 flag = create_tmp_reg (boolean_type_node, str);
2212 for_all_locs_in_loop (loop, ref, sm_set_flag_if_changed (flag, bbs));
2213 return flag;
2216 struct sm_aux
2218 tree tmp_var;
2219 tree store_flag;
2220 hash_set <basic_block> flag_bbs;
2223 /* Executes store motion of memory reference REF from LOOP.
2224 Exits from the LOOP are stored in EXITS. The initialization of the
2225 temporary variable is put to the preheader of the loop, and assignments
2226 to the reference from the temporary variable are emitted to exits. */
2228 static void
2229 execute_sm (class loop *loop, im_mem_ref *ref,
2230 hash_map<im_mem_ref *, sm_aux *> &aux_map, bool maybe_mt,
2231 bool use_other_flag_var)
2233 gassign *load;
2234 struct fmt_data fmt_data;
2235 struct lim_aux_data *lim_data;
2236 bool multi_threaded_model_p = false;
2237 gimple_stmt_iterator gsi;
2238 sm_aux *aux = new sm_aux;
2240 if (dump_file && (dump_flags & TDF_DETAILS))
2242 fprintf (dump_file, "Executing store motion of ");
2243 print_generic_expr (dump_file, ref->mem.ref);
2244 fprintf (dump_file, " from loop %d\n", loop->num);
2247 aux->tmp_var = create_tmp_reg (TREE_TYPE (ref->mem.ref),
2248 get_lsm_tmp_name (ref->mem.ref, ~0));
2250 fmt_data.loop = loop;
2251 fmt_data.orig_loop = loop;
2252 for_each_index (&ref->mem.ref, force_move_till, &fmt_data);
2254 bool always_stored = ref_always_accessed_p (loop, ref, true);
2255 if (maybe_mt
2256 && (bb_in_transaction (loop_preheader_edge (loop)->src)
2257 || (! flag_store_data_races && ! always_stored)))
2258 multi_threaded_model_p = true;
2260 if (multi_threaded_model_p && !use_other_flag_var)
2261 aux->store_flag
2262 = execute_sm_if_changed_flag_set (loop, ref, &aux->flag_bbs);
2263 else
2264 aux->store_flag = NULL_TREE;
2266 /* Remember variable setup. */
2267 aux_map.put (ref, aux);
2269 rewrite_mem_refs (loop, ref, aux->tmp_var);
2271 /* Emit the load code on a random exit edge or into the latch if
2272 the loop does not exit, so that we are sure it will be processed
2273 by move_computations after all dependencies. */
2274 gsi = gsi_for_stmt (first_mem_ref_loc (loop, ref)->stmt);
2276 /* Avoid doing a load if there was no load of the ref in the loop.
2277 Esp. when the ref is not always stored we cannot optimize it
2278 away later. But when it is not always stored we must use a conditional
2279 store then. */
2280 if ((!always_stored && !multi_threaded_model_p)
2281 || (ref->loaded && bitmap_bit_p (ref->loaded, loop->num)))
2282 load = gimple_build_assign (aux->tmp_var, unshare_expr (ref->mem.ref));
2283 else
2285 /* If not emitting a load mark the uninitialized state on the
2286 loop entry as not to be warned for. */
2287 tree uninit = create_tmp_reg (TREE_TYPE (aux->tmp_var));
2288 suppress_warning (uninit, OPT_Wuninitialized);
2289 load = gimple_build_assign (aux->tmp_var, uninit);
2291 lim_data = init_lim_data (load);
2292 lim_data->max_loop = loop;
2293 lim_data->tgt_loop = loop;
2294 gsi_insert_before (&gsi, load, GSI_SAME_STMT);
2296 if (aux->store_flag)
2298 load = gimple_build_assign (aux->store_flag, boolean_false_node);
2299 lim_data = init_lim_data (load);
2300 lim_data->max_loop = loop;
2301 lim_data->tgt_loop = loop;
2302 gsi_insert_before (&gsi, load, GSI_SAME_STMT);
2306 /* sm_ord is used for ordinary stores we can retain order with respect
2307 to other stores
2308 sm_unord is used for conditional executed stores which need to be
2309 able to execute in arbitrary order with respect to other stores
2310 sm_other is used for stores we do not try to apply store motion to. */
2311 enum sm_kind { sm_ord, sm_unord, sm_other };
2312 struct seq_entry
2314 seq_entry () {}
2315 seq_entry (unsigned f, sm_kind k, tree fr = NULL)
2316 : first (f), second (k), from (fr) {}
2317 unsigned first;
2318 sm_kind second;
2319 tree from;
2322 static void
2323 execute_sm_exit (class loop *loop, edge ex, vec<seq_entry> &seq,
2324 hash_map<im_mem_ref *, sm_aux *> &aux_map, sm_kind kind,
2325 edge &append_cond_position, edge &last_cond_fallthru)
2327 /* Sink the stores to exit from the loop. */
2328 for (unsigned i = seq.length (); i > 0; --i)
2330 im_mem_ref *ref = memory_accesses.refs_list[seq[i-1].first];
2331 if (seq[i-1].second == sm_other)
2333 gcc_assert (kind == sm_ord && seq[i-1].from != NULL_TREE);
2334 if (dump_file && (dump_flags & TDF_DETAILS))
2336 fprintf (dump_file, "Re-issueing dependent store of ");
2337 print_generic_expr (dump_file, ref->mem.ref);
2338 fprintf (dump_file, " from loop %d on exit %d -> %d\n",
2339 loop->num, ex->src->index, ex->dest->index);
2341 gassign *store = gimple_build_assign (unshare_expr (ref->mem.ref),
2342 seq[i-1].from);
2343 gsi_insert_on_edge (ex, store);
2345 else
2347 sm_aux *aux = *aux_map.get (ref);
2348 if (!aux->store_flag || kind == sm_ord)
2350 gassign *store;
2351 store = gimple_build_assign (unshare_expr (ref->mem.ref),
2352 aux->tmp_var);
2353 gsi_insert_on_edge (ex, store);
2355 else
2356 execute_sm_if_changed (ex, ref->mem.ref, aux->tmp_var,
2357 aux->store_flag,
2358 loop_preheader_edge (loop), &aux->flag_bbs,
2359 append_cond_position, last_cond_fallthru);
2364 /* Push the SM candidate at index PTR in the sequence SEQ down until
2365 we hit the next SM candidate. Return true if that went OK and
2366 false if we could not disambiguate agains another unrelated ref.
2367 Update *AT to the index where the candidate now resides. */
2369 static bool
2370 sm_seq_push_down (vec<seq_entry> &seq, unsigned ptr, unsigned *at)
2372 *at = ptr;
2373 for (; ptr > 0; --ptr)
2375 seq_entry &new_cand = seq[ptr];
2376 seq_entry &against = seq[ptr-1];
2377 if (against.second == sm_ord
2378 || (against.second == sm_other && against.from != NULL_TREE))
2379 /* Found the tail of the sequence. */
2380 break;
2381 /* We may not ignore self-dependences here. */
2382 if (new_cand.first == against.first
2383 || !refs_independent_p (memory_accesses.refs_list[new_cand.first],
2384 memory_accesses.refs_list[against.first],
2385 false))
2386 /* ??? Prune new_cand from the list of refs to apply SM to. */
2387 return false;
2388 std::swap (new_cand, against);
2389 *at = ptr - 1;
2391 return true;
2394 /* Computes the sequence of stores from candidates in REFS_NOT_IN_SEQ to SEQ
2395 walking backwards from VDEF (or the end of BB if VDEF is NULL). */
2397 static int
2398 sm_seq_valid_bb (class loop *loop, basic_block bb, tree vdef,
2399 vec<seq_entry> &seq, bitmap refs_not_in_seq,
2400 bitmap refs_not_supported, bool forked,
2401 bitmap fully_visited)
2403 if (!vdef)
2404 for (gimple_stmt_iterator gsi = gsi_last_bb (bb); !gsi_end_p (gsi);
2405 gsi_prev (&gsi))
2407 vdef = gimple_vdef (gsi_stmt (gsi));
2408 if (vdef)
2409 break;
2411 if (!vdef)
2413 gphi *vphi = get_virtual_phi (bb);
2414 if (vphi)
2415 vdef = gimple_phi_result (vphi);
2417 if (!vdef)
2419 if (single_pred_p (bb))
2420 /* This handles the perfect nest case. */
2421 return sm_seq_valid_bb (loop, single_pred (bb), vdef,
2422 seq, refs_not_in_seq, refs_not_supported,
2423 forked, fully_visited);
2424 return 0;
2428 gimple *def = SSA_NAME_DEF_STMT (vdef);
2429 if (gimple_bb (def) != bb)
2431 /* If we forked by processing a PHI do not allow our walk to
2432 merge again until we handle that robustly. */
2433 if (forked)
2435 /* Mark refs_not_in_seq as unsupported. */
2436 bitmap_ior_into (refs_not_supported, refs_not_in_seq);
2437 return 1;
2439 /* Otherwise it doesn't really matter if we end up in different
2440 BBs. */
2441 bb = gimple_bb (def);
2443 if (gphi *phi = dyn_cast <gphi *> (def))
2445 /* Handle CFG merges. Until we handle forks (gimple_bb (def) != bb)
2446 this is still linear.
2447 Eventually we want to cache intermediate results per BB
2448 (but we can't easily cache for different exits?). */
2449 /* Stop at PHIs with possible backedges. */
2450 if (bb == bb->loop_father->header
2451 || bb->flags & BB_IRREDUCIBLE_LOOP)
2453 /* Mark refs_not_in_seq as unsupported. */
2454 bitmap_ior_into (refs_not_supported, refs_not_in_seq);
2455 return 1;
2457 if (gimple_phi_num_args (phi) == 1)
2458 return sm_seq_valid_bb (loop, gimple_phi_arg_edge (phi, 0)->src,
2459 gimple_phi_arg_def (phi, 0), seq,
2460 refs_not_in_seq, refs_not_supported,
2461 false, fully_visited);
2462 if (bitmap_bit_p (fully_visited,
2463 SSA_NAME_VERSION (gimple_phi_result (phi))))
2464 return 1;
2465 auto_vec<seq_entry> first_edge_seq;
2466 auto_bitmap tem_refs_not_in_seq (&lim_bitmap_obstack);
2467 int eret;
2468 bitmap_copy (tem_refs_not_in_seq, refs_not_in_seq);
2469 eret = sm_seq_valid_bb (loop, gimple_phi_arg_edge (phi, 0)->src,
2470 gimple_phi_arg_def (phi, 0),
2471 first_edge_seq,
2472 tem_refs_not_in_seq, refs_not_supported,
2473 true, fully_visited);
2474 if (eret != 1)
2475 return -1;
2476 /* Simplify our lives by pruning the sequence of !sm_ord. */
2477 while (!first_edge_seq.is_empty ()
2478 && first_edge_seq.last ().second != sm_ord)
2479 first_edge_seq.pop ();
2480 for (unsigned int i = 1; i < gimple_phi_num_args (phi); ++i)
2482 tree vuse = gimple_phi_arg_def (phi, i);
2483 edge e = gimple_phi_arg_edge (phi, i);
2484 auto_vec<seq_entry> edge_seq;
2485 bitmap_and_compl (tem_refs_not_in_seq,
2486 refs_not_in_seq, refs_not_supported);
2487 /* If we've marked all refs we search for as unsupported
2488 we can stop processing and use the sequence as before
2489 the PHI. */
2490 if (bitmap_empty_p (tem_refs_not_in_seq))
2491 return 1;
2492 eret = sm_seq_valid_bb (loop, e->src, vuse, edge_seq,
2493 tem_refs_not_in_seq, refs_not_supported,
2494 true, fully_visited);
2495 if (eret != 1)
2496 return -1;
2497 /* Simplify our lives by pruning the sequence of !sm_ord. */
2498 while (!edge_seq.is_empty ()
2499 && edge_seq.last ().second != sm_ord)
2500 edge_seq.pop ();
2501 unsigned min_len = MIN(first_edge_seq.length (),
2502 edge_seq.length ());
2503 /* Incrementally merge seqs into first_edge_seq. */
2504 int first_uneq = -1;
2505 auto_vec<seq_entry, 2> extra_refs;
2506 for (unsigned int i = 0; i < min_len; ++i)
2508 /* ??? We can more intelligently merge when we face different
2509 order by additional sinking operations in one sequence.
2510 For now we simply mark them as to be processed by the
2511 not order-preserving SM code. */
2512 if (first_edge_seq[i].first != edge_seq[i].first)
2514 if (first_edge_seq[i].second == sm_ord)
2515 bitmap_set_bit (refs_not_supported,
2516 first_edge_seq[i].first);
2517 if (edge_seq[i].second == sm_ord)
2518 bitmap_set_bit (refs_not_supported, edge_seq[i].first);
2519 first_edge_seq[i].second = sm_other;
2520 first_edge_seq[i].from = NULL_TREE;
2521 /* Record the dropped refs for later processing. */
2522 if (first_uneq == -1)
2523 first_uneq = i;
2524 extra_refs.safe_push (seq_entry (edge_seq[i].first,
2525 sm_other, NULL_TREE));
2527 /* sm_other prevails. */
2528 else if (first_edge_seq[i].second != edge_seq[i].second)
2530 /* Make sure the ref is marked as not supported. */
2531 bitmap_set_bit (refs_not_supported,
2532 first_edge_seq[i].first);
2533 first_edge_seq[i].second = sm_other;
2534 first_edge_seq[i].from = NULL_TREE;
2536 else if (first_edge_seq[i].second == sm_other
2537 && first_edge_seq[i].from != NULL_TREE
2538 && (edge_seq[i].from == NULL_TREE
2539 || !operand_equal_p (first_edge_seq[i].from,
2540 edge_seq[i].from, 0)))
2541 first_edge_seq[i].from = NULL_TREE;
2543 /* Any excess elements become sm_other since they are now
2544 coonditionally executed. */
2545 if (first_edge_seq.length () > edge_seq.length ())
2547 for (unsigned i = edge_seq.length ();
2548 i < first_edge_seq.length (); ++i)
2550 if (first_edge_seq[i].second == sm_ord)
2551 bitmap_set_bit (refs_not_supported,
2552 first_edge_seq[i].first);
2553 first_edge_seq[i].second = sm_other;
2556 else if (edge_seq.length () > first_edge_seq.length ())
2558 if (first_uneq == -1)
2559 first_uneq = first_edge_seq.length ();
2560 for (unsigned i = first_edge_seq.length ();
2561 i < edge_seq.length (); ++i)
2563 if (edge_seq[i].second == sm_ord)
2564 bitmap_set_bit (refs_not_supported, edge_seq[i].first);
2565 extra_refs.safe_push (seq_entry (edge_seq[i].first,
2566 sm_other, NULL_TREE));
2569 /* Put unmerged refs at first_uneq to force dependence checking
2570 on them. */
2571 if (first_uneq != -1)
2573 /* Missing ordered_splice_at. */
2574 if ((unsigned)first_uneq == first_edge_seq.length ())
2575 first_edge_seq.safe_splice (extra_refs);
2576 else
2578 unsigned fes_length = first_edge_seq.length ();
2579 first_edge_seq.safe_grow (fes_length
2580 + extra_refs.length ());
2581 memmove (&first_edge_seq[first_uneq + extra_refs.length ()],
2582 &first_edge_seq[first_uneq],
2583 (fes_length - first_uneq) * sizeof (seq_entry));
2584 memcpy (&first_edge_seq[first_uneq],
2585 extra_refs.address (),
2586 extra_refs.length () * sizeof (seq_entry));
2590 /* Use the sequence from the first edge and push SMs down. */
2591 for (unsigned i = 0; i < first_edge_seq.length (); ++i)
2593 unsigned id = first_edge_seq[i].first;
2594 seq.safe_push (first_edge_seq[i]);
2595 unsigned new_idx;
2596 if ((first_edge_seq[i].second == sm_ord
2597 || (first_edge_seq[i].second == sm_other
2598 && first_edge_seq[i].from != NULL_TREE))
2599 && !sm_seq_push_down (seq, seq.length () - 1, &new_idx))
2601 if (first_edge_seq[i].second == sm_ord)
2602 bitmap_set_bit (refs_not_supported, id);
2603 /* Mark it sm_other. */
2604 seq[new_idx].second = sm_other;
2605 seq[new_idx].from = NULL_TREE;
2608 bitmap_set_bit (fully_visited,
2609 SSA_NAME_VERSION (gimple_phi_result (phi)));
2610 return 1;
2612 lim_aux_data *data = get_lim_data (def);
2613 gcc_assert (data);
2614 if (data->ref == UNANALYZABLE_MEM_ID)
2615 return -1;
2616 /* Stop at memory references which we can't move. */
2617 else if (memory_accesses.refs_list[data->ref]->mem.ref == error_mark_node
2618 || TREE_THIS_VOLATILE
2619 (memory_accesses.refs_list[data->ref]->mem.ref))
2621 /* Mark refs_not_in_seq as unsupported. */
2622 bitmap_ior_into (refs_not_supported, refs_not_in_seq);
2623 return 1;
2625 /* One of the stores we want to apply SM to and we've not yet seen. */
2626 else if (bitmap_clear_bit (refs_not_in_seq, data->ref))
2628 seq.safe_push (seq_entry (data->ref, sm_ord));
2630 /* 1) push it down the queue until a SMed
2631 and not ignored ref is reached, skipping all not SMed refs
2632 and ignored refs via non-TBAA disambiguation. */
2633 unsigned new_idx;
2634 if (!sm_seq_push_down (seq, seq.length () - 1, &new_idx)
2635 /* If that fails but we did not fork yet continue, we'll see
2636 to re-materialize all of the stores in the sequence then.
2637 Further stores will only be pushed up to this one. */
2638 && forked)
2640 bitmap_set_bit (refs_not_supported, data->ref);
2641 /* Mark it sm_other. */
2642 seq[new_idx].second = sm_other;
2645 /* 2) check whether we've seen all refs we want to SM and if so
2646 declare success for the active exit */
2647 if (bitmap_empty_p (refs_not_in_seq))
2648 return 1;
2650 else
2651 /* Another store not part of the final sequence. Simply push it. */
2652 seq.safe_push (seq_entry (data->ref, sm_other,
2653 gimple_assign_rhs1 (def)));
2655 vdef = gimple_vuse (def);
2657 while (1);
2660 /* Hoists memory references MEM_REFS out of LOOP. EXITS is the list of exit
2661 edges of the LOOP. */
2663 static void
2664 hoist_memory_references (class loop *loop, bitmap mem_refs,
2665 const vec<edge> &exits)
2667 im_mem_ref *ref;
2668 unsigned i;
2669 bitmap_iterator bi;
2671 /* There's a special case we can use ordered re-materialization for
2672 conditionally excuted stores which is when all stores in the loop
2673 happen in the same basic-block. In that case we know we'll reach
2674 all stores and thus can simply process that BB and emit a single
2675 conditional block of ordered materializations. See PR102436. */
2676 basic_block single_store_bb = NULL;
2677 EXECUTE_IF_SET_IN_BITMAP (&memory_accesses.all_refs_stored_in_loop[loop->num],
2678 0, i, bi)
2680 bool fail = false;
2681 ref = memory_accesses.refs_list[i];
2682 for (auto loc : ref->accesses_in_loop)
2683 if (!gimple_vdef (loc.stmt))
2685 else if (!single_store_bb)
2687 single_store_bb = gimple_bb (loc.stmt);
2688 bool conditional = false;
2689 for (edge e : exits)
2690 if (!dominated_by_p (CDI_DOMINATORS, e->src, single_store_bb))
2692 /* Conditional as seen from e. */
2693 conditional = true;
2694 break;
2696 if (!conditional)
2698 fail = true;
2699 break;
2702 else if (single_store_bb != gimple_bb (loc.stmt))
2704 fail = true;
2705 break;
2707 if (fail)
2709 single_store_bb = NULL;
2710 break;
2713 if (single_store_bb)
2715 /* Analyze the single block with stores. */
2716 auto_bitmap fully_visited;
2717 auto_bitmap refs_not_supported;
2718 auto_bitmap refs_not_in_seq;
2719 auto_vec<seq_entry> seq;
2720 bitmap_copy (refs_not_in_seq, mem_refs);
2721 int res = sm_seq_valid_bb (loop, single_store_bb, NULL_TREE,
2722 seq, refs_not_in_seq, refs_not_supported,
2723 false, fully_visited);
2724 if (res != 1)
2726 /* Unhandled refs can still fail this. */
2727 bitmap_clear (mem_refs);
2728 return;
2731 /* We cannot handle sm_other since we neither remember the
2732 stored location nor the value at the point we execute them. */
2733 for (unsigned i = 0; i < seq.length (); ++i)
2735 unsigned new_i;
2736 if (seq[i].second == sm_other
2737 && seq[i].from != NULL_TREE)
2738 seq[i].from = NULL_TREE;
2739 else if ((seq[i].second == sm_ord
2740 || (seq[i].second == sm_other
2741 && seq[i].from != NULL_TREE))
2742 && !sm_seq_push_down (seq, i, &new_i))
2744 bitmap_set_bit (refs_not_supported, seq[new_i].first);
2745 seq[new_i].second = sm_other;
2746 seq[new_i].from = NULL_TREE;
2749 bitmap_and_compl_into (mem_refs, refs_not_supported);
2750 if (bitmap_empty_p (mem_refs))
2751 return;
2753 /* Prune seq. */
2754 while (seq.last ().second == sm_other
2755 && seq.last ().from == NULL_TREE)
2756 seq.pop ();
2758 hash_map<im_mem_ref *, sm_aux *> aux_map;
2760 /* Execute SM but delay the store materialization for ordered
2761 sequences on exit. */
2762 bool first_p = true;
2763 EXECUTE_IF_SET_IN_BITMAP (mem_refs, 0, i, bi)
2765 ref = memory_accesses.refs_list[i];
2766 execute_sm (loop, ref, aux_map, true, !first_p);
2767 first_p = false;
2770 /* Get at the single flag variable we eventually produced. */
2771 im_mem_ref *ref
2772 = memory_accesses.refs_list[bitmap_first_set_bit (mem_refs)];
2773 sm_aux *aux = *aux_map.get (ref);
2775 /* Materialize ordered store sequences on exits. */
2776 edge e;
2777 FOR_EACH_VEC_ELT (exits, i, e)
2779 edge append_cond_position = NULL;
2780 edge last_cond_fallthru = NULL;
2781 edge insert_e = e;
2782 /* Construct the single flag variable control flow and insert
2783 the ordered seq of stores in the then block. With
2784 -fstore-data-races we can do the stores unconditionally. */
2785 if (aux->store_flag)
2786 insert_e
2787 = single_pred_edge
2788 (execute_sm_if_changed (e, NULL_TREE, NULL_TREE,
2789 aux->store_flag,
2790 loop_preheader_edge (loop),
2791 &aux->flag_bbs, append_cond_position,
2792 last_cond_fallthru));
2793 execute_sm_exit (loop, insert_e, seq, aux_map, sm_ord,
2794 append_cond_position, last_cond_fallthru);
2795 gsi_commit_one_edge_insert (insert_e, NULL);
2798 for (hash_map<im_mem_ref *, sm_aux *>::iterator iter = aux_map.begin ();
2799 iter != aux_map.end (); ++iter)
2800 delete (*iter).second;
2802 return;
2805 /* To address PR57359 before actually applying store-motion check
2806 the candidates found for validity with regards to reordering
2807 relative to other stores which we until here disambiguated using
2808 TBAA which isn't valid.
2809 What matters is the order of the last stores to the mem_refs
2810 with respect to the other stores of the loop at the point of the
2811 loop exits. */
2813 /* For each exit compute the store order, pruning from mem_refs
2814 on the fly. */
2815 /* The complexity of this is at least
2816 O(number of exits * number of SM refs) but more approaching
2817 O(number of exits * number of SM refs * number of stores). */
2818 /* ??? Somehow do this in a single sweep over the loop body. */
2819 auto_vec<std::pair<edge, vec<seq_entry> > > sms;
2820 auto_bitmap refs_not_supported (&lim_bitmap_obstack);
2821 edge e;
2822 FOR_EACH_VEC_ELT (exits, i, e)
2824 vec<seq_entry> seq;
2825 seq.create (4);
2826 auto_bitmap refs_not_in_seq (&lim_bitmap_obstack);
2827 bitmap_and_compl (refs_not_in_seq, mem_refs, refs_not_supported);
2828 if (bitmap_empty_p (refs_not_in_seq))
2830 seq.release ();
2831 break;
2833 auto_bitmap fully_visited;
2834 int res = sm_seq_valid_bb (loop, e->src, NULL_TREE,
2835 seq, refs_not_in_seq,
2836 refs_not_supported, false,
2837 fully_visited);
2838 if (res != 1)
2840 bitmap_copy (refs_not_supported, mem_refs);
2841 seq.release ();
2842 break;
2844 sms.safe_push (std::make_pair (e, seq));
2847 /* Prune pruned mem_refs from earlier processed exits. */
2848 bool changed = !bitmap_empty_p (refs_not_supported);
2849 while (changed)
2851 changed = false;
2852 std::pair<edge, vec<seq_entry> > *seq;
2853 FOR_EACH_VEC_ELT (sms, i, seq)
2855 bool need_to_push = false;
2856 for (unsigned i = 0; i < seq->second.length (); ++i)
2858 sm_kind kind = seq->second[i].second;
2859 if (kind == sm_other && seq->second[i].from == NULL_TREE)
2860 break;
2861 unsigned id = seq->second[i].first;
2862 unsigned new_idx;
2863 if (kind == sm_ord
2864 && bitmap_bit_p (refs_not_supported, id))
2866 seq->second[i].second = sm_other;
2867 gcc_assert (seq->second[i].from == NULL_TREE);
2868 need_to_push = true;
2870 else if (need_to_push
2871 && !sm_seq_push_down (seq->second, i, &new_idx))
2873 /* We need to push down both sm_ord and sm_other
2874 but for the latter we need to disqualify all
2875 following refs. */
2876 if (kind == sm_ord)
2878 if (bitmap_set_bit (refs_not_supported, id))
2879 changed = true;
2880 seq->second[new_idx].second = sm_other;
2882 else
2884 for (unsigned j = seq->second.length () - 1;
2885 j > new_idx; --j)
2886 if (seq->second[j].second == sm_ord
2887 && bitmap_set_bit (refs_not_supported,
2888 seq->second[j].first))
2889 changed = true;
2890 seq->second.truncate (new_idx);
2891 break;
2897 std::pair<edge, vec<seq_entry> > *seq;
2898 FOR_EACH_VEC_ELT (sms, i, seq)
2900 /* Prune sm_other from the end. */
2901 while (!seq->second.is_empty ()
2902 && seq->second.last ().second == sm_other)
2903 seq->second.pop ();
2904 /* Prune duplicates from the start. */
2905 auto_bitmap seen (&lim_bitmap_obstack);
2906 unsigned j, k;
2907 for (j = k = 0; j < seq->second.length (); ++j)
2908 if (bitmap_set_bit (seen, seq->second[j].first))
2910 if (k != j)
2911 seq->second[k] = seq->second[j];
2912 ++k;
2914 seq->second.truncate (k);
2915 /* And verify. */
2916 seq_entry *e;
2917 FOR_EACH_VEC_ELT (seq->second, j, e)
2918 gcc_assert (e->second == sm_ord
2919 || (e->second == sm_other && e->from != NULL_TREE));
2922 /* Verify dependence for refs we cannot handle with the order preserving
2923 code (refs_not_supported) or prune them from mem_refs. */
2924 auto_vec<seq_entry> unord_refs;
2925 EXECUTE_IF_SET_IN_BITMAP (refs_not_supported, 0, i, bi)
2927 ref = memory_accesses.refs_list[i];
2928 if (!ref_indep_loop_p (loop, ref, sm_waw))
2929 bitmap_clear_bit (mem_refs, i);
2930 /* We've now verified store order for ref with respect to all other
2931 stores in the loop does not matter. */
2932 else
2933 unord_refs.safe_push (seq_entry (i, sm_unord));
2936 hash_map<im_mem_ref *, sm_aux *> aux_map;
2938 /* Execute SM but delay the store materialization for ordered
2939 sequences on exit. */
2940 EXECUTE_IF_SET_IN_BITMAP (mem_refs, 0, i, bi)
2942 ref = memory_accesses.refs_list[i];
2943 execute_sm (loop, ref, aux_map, bitmap_bit_p (refs_not_supported, i),
2944 false);
2947 /* Materialize ordered store sequences on exits. */
2948 FOR_EACH_VEC_ELT (exits, i, e)
2950 edge append_cond_position = NULL;
2951 edge last_cond_fallthru = NULL;
2952 if (i < sms.length ())
2954 gcc_assert (sms[i].first == e);
2955 execute_sm_exit (loop, e, sms[i].second, aux_map, sm_ord,
2956 append_cond_position, last_cond_fallthru);
2957 sms[i].second.release ();
2959 if (!unord_refs.is_empty ())
2960 execute_sm_exit (loop, e, unord_refs, aux_map, sm_unord,
2961 append_cond_position, last_cond_fallthru);
2962 /* Commit edge inserts here to preserve the order of stores
2963 when an exit exits multiple loops. */
2964 gsi_commit_one_edge_insert (e, NULL);
2967 for (hash_map<im_mem_ref *, sm_aux *>::iterator iter = aux_map.begin ();
2968 iter != aux_map.end (); ++iter)
2969 delete (*iter).second;
2972 class ref_always_accessed
2974 public:
2975 ref_always_accessed (class loop *loop_, bool stored_p_)
2976 : loop (loop_), stored_p (stored_p_) {}
2977 bool operator () (mem_ref_loc *loc);
2978 class loop *loop;
2979 bool stored_p;
2982 bool
2983 ref_always_accessed::operator () (mem_ref_loc *loc)
2985 class loop *must_exec;
2987 struct lim_aux_data *lim_data = get_lim_data (loc->stmt);
2988 if (!lim_data)
2989 return false;
2991 /* If we require an always executed store make sure the statement
2992 is a store. */
2993 if (stored_p)
2995 tree lhs = gimple_get_lhs (loc->stmt);
2996 if (!lhs
2997 || !(DECL_P (lhs) || REFERENCE_CLASS_P (lhs)))
2998 return false;
3001 must_exec = lim_data->always_executed_in;
3002 if (!must_exec)
3003 return false;
3005 if (must_exec == loop
3006 || flow_loop_nested_p (must_exec, loop))
3007 return true;
3009 return false;
3012 /* Returns true if REF is always accessed in LOOP. If STORED_P is true
3013 make sure REF is always stored to in LOOP. */
3015 static bool
3016 ref_always_accessed_p (class loop *loop, im_mem_ref *ref, bool stored_p)
3018 return for_all_locs_in_loop (loop, ref,
3019 ref_always_accessed (loop, stored_p));
3022 /* Returns true if REF1 and REF2 are independent. */
3024 static bool
3025 refs_independent_p (im_mem_ref *ref1, im_mem_ref *ref2, bool tbaa_p)
3027 if (ref1 == ref2)
3028 return true;
3030 if (dump_file && (dump_flags & TDF_DETAILS))
3031 fprintf (dump_file, "Querying dependency of refs %u and %u: ",
3032 ref1->id, ref2->id);
3034 if (mem_refs_may_alias_p (ref1, ref2, &memory_accesses.ttae_cache, tbaa_p))
3036 if (dump_file && (dump_flags & TDF_DETAILS))
3037 fprintf (dump_file, "dependent.\n");
3038 return false;
3040 else
3042 if (dump_file && (dump_flags & TDF_DETAILS))
3043 fprintf (dump_file, "independent.\n");
3044 return true;
3048 /* Returns true if REF is independent on all other accessess in LOOP.
3049 KIND specifies the kind of dependence to consider.
3050 lim_raw assumes REF is not stored in LOOP and disambiguates RAW
3051 dependences so if true REF can be hoisted out of LOOP
3052 sm_war disambiguates a store REF against all other loads to see
3053 whether the store can be sunk across loads out of LOOP
3054 sm_waw disambiguates a store REF against all other stores to see
3055 whether the store can be sunk across stores out of LOOP. */
3057 static bool
3058 ref_indep_loop_p (class loop *loop, im_mem_ref *ref, dep_kind kind)
3060 bool indep_p = true;
3061 bitmap refs_to_check;
3063 if (kind == sm_war)
3064 refs_to_check = &memory_accesses.refs_loaded_in_loop[loop->num];
3065 else
3066 refs_to_check = &memory_accesses.refs_stored_in_loop[loop->num];
3068 if (bitmap_bit_p (refs_to_check, UNANALYZABLE_MEM_ID)
3069 || ref->mem.ref == error_mark_node)
3070 indep_p = false;
3071 else
3073 /* tri-state, { unknown, independent, dependent } */
3074 dep_state state = query_loop_dependence (loop, ref, kind);
3075 if (state != dep_unknown)
3076 return state == dep_independent ? true : false;
3078 class loop *inner = loop->inner;
3079 while (inner)
3081 if (!ref_indep_loop_p (inner, ref, kind))
3083 indep_p = false;
3084 break;
3086 inner = inner->next;
3089 if (indep_p)
3091 unsigned i;
3092 bitmap_iterator bi;
3093 EXECUTE_IF_SET_IN_BITMAP (refs_to_check, 0, i, bi)
3095 im_mem_ref *aref = memory_accesses.refs_list[i];
3096 if (aref->mem.ref == error_mark_node)
3098 gimple *stmt = aref->accesses_in_loop[0].stmt;
3099 if ((kind == sm_war
3100 && ref_maybe_used_by_stmt_p (stmt, &ref->mem,
3101 kind != sm_waw))
3102 || stmt_may_clobber_ref_p_1 (stmt, &ref->mem,
3103 kind != sm_waw))
3105 indep_p = false;
3106 break;
3109 else if (!refs_independent_p (ref, aref, kind != sm_waw))
3111 indep_p = false;
3112 break;
3118 if (dump_file && (dump_flags & TDF_DETAILS))
3119 fprintf (dump_file, "Querying %s dependencies of ref %u in loop %d: %s\n",
3120 kind == lim_raw ? "RAW" : (kind == sm_war ? "SM WAR" : "SM WAW"),
3121 ref->id, loop->num, indep_p ? "independent" : "dependent");
3123 /* Record the computed result in the cache. */
3124 record_loop_dependence (loop, ref, kind,
3125 indep_p ? dep_independent : dep_dependent);
3127 return indep_p;
3130 class ref_in_loop_hot_body
3132 public:
3133 ref_in_loop_hot_body (class loop *loop_) : l (loop_) {}
3134 bool operator () (mem_ref_loc *loc);
3135 class loop *l;
3138 /* Check the coldest loop between loop L and innermost loop. If there is one
3139 cold loop between L and INNER_LOOP, store motion can be performed, otherwise
3140 no cold loop means no store motion. get_coldest_out_loop also handles cases
3141 when l is inner_loop. */
3142 bool
3143 ref_in_loop_hot_body::operator () (mem_ref_loc *loc)
3145 basic_block curr_bb = gimple_bb (loc->stmt);
3146 class loop *inner_loop = curr_bb->loop_father;
3147 return get_coldest_out_loop (l, inner_loop, curr_bb);
3151 /* Returns true if we can perform store motion of REF from LOOP. */
3153 static bool
3154 can_sm_ref_p (class loop *loop, im_mem_ref *ref)
3156 tree base;
3158 /* Can't hoist unanalyzable refs. */
3159 if (!MEM_ANALYZABLE (ref))
3160 return false;
3162 /* Can't hoist/sink aggregate copies. */
3163 if (ref->mem.ref == error_mark_node)
3164 return false;
3166 /* It should be movable. */
3167 if (!is_gimple_reg_type (TREE_TYPE (ref->mem.ref))
3168 || TREE_THIS_VOLATILE (ref->mem.ref)
3169 || !for_each_index (&ref->mem.ref, may_move_till, loop))
3170 return false;
3172 /* If it can throw fail, we do not properly update EH info. */
3173 if (tree_could_throw_p (ref->mem.ref))
3174 return false;
3176 /* If it can trap, it must be always executed in LOOP.
3177 Readonly memory locations may trap when storing to them, but
3178 tree_could_trap_p is a predicate for rvalues, so check that
3179 explicitly. */
3180 base = get_base_address (ref->mem.ref);
3181 if ((tree_could_trap_p (ref->mem.ref)
3182 || (DECL_P (base) && TREE_READONLY (base)))
3183 /* ??? We can at least use false here, allowing loads? We
3184 are forcing conditional stores if the ref is not always
3185 stored to later anyway. So this would only guard
3186 the load we need to emit. Thus when the ref is not
3187 loaded we can elide this completely? */
3188 && !ref_always_accessed_p (loop, ref, true))
3189 return false;
3191 /* Verify all loads of ref can be hoisted. */
3192 if (ref->loaded
3193 && bitmap_bit_p (ref->loaded, loop->num)
3194 && !ref_indep_loop_p (loop, ref, lim_raw))
3195 return false;
3197 /* Verify the candidate can be disambiguated against all loads,
3198 that is, we can elide all in-loop stores. Disambiguation
3199 against stores is done later when we cannot guarantee preserving
3200 the order of stores. */
3201 if (!ref_indep_loop_p (loop, ref, sm_war))
3202 return false;
3204 /* Verify whether the candidate is hot for LOOP. Only do store motion if the
3205 candidate's profile count is hot. Statement in cold BB shouldn't be moved
3206 out of it's loop_father. */
3207 if (!for_all_locs_in_loop (loop, ref, ref_in_loop_hot_body (loop)))
3208 return false;
3210 return true;
3213 /* Marks the references in LOOP for that store motion should be performed
3214 in REFS_TO_SM. SM_EXECUTED is the set of references for that store
3215 motion was performed in one of the outer loops. */
3217 static void
3218 find_refs_for_sm (class loop *loop, bitmap sm_executed, bitmap refs_to_sm)
3220 bitmap refs = &memory_accesses.all_refs_stored_in_loop[loop->num];
3221 unsigned i;
3222 bitmap_iterator bi;
3223 im_mem_ref *ref;
3225 EXECUTE_IF_AND_COMPL_IN_BITMAP (refs, sm_executed, 0, i, bi)
3227 ref = memory_accesses.refs_list[i];
3228 if (can_sm_ref_p (loop, ref) && dbg_cnt (lim))
3229 bitmap_set_bit (refs_to_sm, i);
3233 /* Checks whether LOOP (with exits stored in EXITS array) is suitable
3234 for a store motion optimization (i.e. whether we can insert statement
3235 on its exits). */
3237 static bool
3238 loop_suitable_for_sm (class loop *loop ATTRIBUTE_UNUSED,
3239 const vec<edge> &exits)
3241 unsigned i;
3242 edge ex;
3244 FOR_EACH_VEC_ELT (exits, i, ex)
3245 if (ex->flags & (EDGE_ABNORMAL | EDGE_EH))
3246 return false;
3248 return true;
3251 /* Try to perform store motion for all memory references modified inside
3252 LOOP. SM_EXECUTED is the bitmap of the memory references for that
3253 store motion was executed in one of the outer loops. */
3255 static void
3256 store_motion_loop (class loop *loop, bitmap sm_executed)
3258 auto_vec<edge> exits = get_loop_exit_edges (loop);
3259 class loop *subloop;
3260 bitmap sm_in_loop = BITMAP_ALLOC (&lim_bitmap_obstack);
3262 if (loop_suitable_for_sm (loop, exits))
3264 find_refs_for_sm (loop, sm_executed, sm_in_loop);
3265 if (!bitmap_empty_p (sm_in_loop))
3266 hoist_memory_references (loop, sm_in_loop, exits);
3269 bitmap_ior_into (sm_executed, sm_in_loop);
3270 for (subloop = loop->inner; subloop != NULL; subloop = subloop->next)
3271 store_motion_loop (subloop, sm_executed);
3272 bitmap_and_compl_into (sm_executed, sm_in_loop);
3273 BITMAP_FREE (sm_in_loop);
3276 /* Try to perform store motion for all memory references modified inside
3277 loops. */
3279 static void
3280 do_store_motion (void)
3282 class loop *loop;
3283 bitmap sm_executed = BITMAP_ALLOC (&lim_bitmap_obstack);
3285 for (loop = current_loops->tree_root->inner; loop != NULL; loop = loop->next)
3286 store_motion_loop (loop, sm_executed);
3288 BITMAP_FREE (sm_executed);
3291 /* Fills ALWAYS_EXECUTED_IN information for basic blocks of LOOP, i.e.
3292 for each such basic block bb records the outermost loop for that execution
3293 of its header implies execution of bb. CONTAINS_CALL is the bitmap of
3294 blocks that contain a nonpure call. */
3296 static void
3297 fill_always_executed_in_1 (class loop *loop, sbitmap contains_call)
3299 basic_block bb = NULL, last = NULL;
3300 edge e;
3301 class loop *inn_loop = loop;
3303 if (ALWAYS_EXECUTED_IN (loop->header) == NULL)
3305 auto_vec<basic_block, 64> worklist;
3306 worklist.reserve_exact (loop->num_nodes);
3307 worklist.quick_push (loop->header);
3310 edge_iterator ei;
3311 bb = worklist.pop ();
3313 if (!flow_bb_inside_loop_p (inn_loop, bb))
3315 /* When we are leaving a possibly infinite inner loop
3316 we have to stop processing. */
3317 if (!finite_loop_p (inn_loop))
3318 break;
3319 /* If the loop was finite we can continue with processing
3320 the loop we exited to. */
3321 inn_loop = bb->loop_father;
3324 if (dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
3325 last = bb;
3327 if (bitmap_bit_p (contains_call, bb->index))
3328 break;
3330 /* If LOOP exits from this BB stop processing. */
3331 FOR_EACH_EDGE (e, ei, bb->succs)
3332 if (!flow_bb_inside_loop_p (loop, e->dest))
3333 break;
3334 if (e)
3335 break;
3337 /* A loop might be infinite (TODO use simple loop analysis
3338 to disprove this if possible). */
3339 if (bb->flags & BB_IRREDUCIBLE_LOOP)
3340 break;
3342 if (bb->loop_father->header == bb)
3343 /* Record that we enter into a subloop since it might not
3344 be finite. */
3345 /* ??? Entering into a not always executed subloop makes
3346 fill_always_executed_in quadratic in loop depth since
3347 we walk those loops N times. This is not a problem
3348 in practice though, see PR102253 for a worst-case testcase. */
3349 inn_loop = bb->loop_father;
3351 /* Walk the body of LOOP sorted by dominance relation. Additionally,
3352 if a basic block S dominates the latch, then only blocks dominated
3353 by S are after it.
3354 This is get_loop_body_in_dom_order using a worklist algorithm and
3355 stopping once we are no longer interested in visiting further
3356 blocks. */
3357 unsigned old_len = worklist.length ();
3358 unsigned postpone = 0;
3359 for (basic_block son = first_dom_son (CDI_DOMINATORS, bb);
3360 son;
3361 son = next_dom_son (CDI_DOMINATORS, son))
3363 if (!flow_bb_inside_loop_p (loop, son))
3364 continue;
3365 if (dominated_by_p (CDI_DOMINATORS, loop->latch, son))
3366 postpone = worklist.length ();
3367 worklist.quick_push (son);
3369 if (postpone)
3370 /* Postponing the block that dominates the latch means
3371 processing it last and thus putting it earliest in the
3372 worklist. */
3373 std::swap (worklist[old_len], worklist[postpone]);
3375 while (!worklist.is_empty ());
3377 while (1)
3379 if (dump_enabled_p ())
3380 dump_printf (MSG_NOTE, "BB %d is always executed in loop %d\n",
3381 last->index, loop->num);
3382 SET_ALWAYS_EXECUTED_IN (last, loop);
3383 if (last == loop->header)
3384 break;
3385 last = get_immediate_dominator (CDI_DOMINATORS, last);
3389 for (loop = loop->inner; loop; loop = loop->next)
3390 fill_always_executed_in_1 (loop, contains_call);
3393 /* Fills ALWAYS_EXECUTED_IN information for basic blocks, i.e.
3394 for each such basic block bb records the outermost loop for that execution
3395 of its header implies execution of bb. */
3397 static void
3398 fill_always_executed_in (void)
3400 basic_block bb;
3401 class loop *loop;
3403 auto_sbitmap contains_call (last_basic_block_for_fn (cfun));
3404 bitmap_clear (contains_call);
3405 FOR_EACH_BB_FN (bb, cfun)
3407 gimple_stmt_iterator gsi;
3408 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3410 if (nonpure_call_p (gsi_stmt (gsi)))
3411 break;
3414 if (!gsi_end_p (gsi))
3415 bitmap_set_bit (contains_call, bb->index);
3418 for (loop = current_loops->tree_root->inner; loop; loop = loop->next)
3419 fill_always_executed_in_1 (loop, contains_call);
3422 /* Find the coldest loop preheader for LOOP, also find the nearest hotter loop
3423 to LOOP. Then recursively iterate each inner loop. */
3425 void
3426 fill_coldest_and_hotter_out_loop (class loop *coldest_loop,
3427 class loop *hotter_loop, class loop *loop)
3429 if (bb_colder_than_loop_preheader (loop_preheader_edge (loop)->src,
3430 coldest_loop))
3431 coldest_loop = loop;
3433 coldest_outermost_loop[loop->num] = coldest_loop;
3435 hotter_than_inner_loop[loop->num] = NULL;
3436 class loop *outer_loop = loop_outer (loop);
3437 if (hotter_loop
3438 && bb_colder_than_loop_preheader (loop_preheader_edge (loop)->src,
3439 hotter_loop))
3440 hotter_than_inner_loop[loop->num] = hotter_loop;
3442 if (outer_loop && outer_loop != current_loops->tree_root
3443 && bb_colder_than_loop_preheader (loop_preheader_edge (loop)->src,
3444 outer_loop))
3445 hotter_than_inner_loop[loop->num] = outer_loop;
3447 if (dump_enabled_p ())
3449 dump_printf (MSG_NOTE, "loop %d's coldest_outermost_loop is %d, ",
3450 loop->num, coldest_loop->num);
3451 if (hotter_than_inner_loop[loop->num])
3452 dump_printf (MSG_NOTE, "hotter_than_inner_loop is %d\n",
3453 hotter_than_inner_loop[loop->num]->num);
3454 else
3455 dump_printf (MSG_NOTE, "hotter_than_inner_loop is NULL\n");
3458 class loop *inner_loop;
3459 for (inner_loop = loop->inner; inner_loop; inner_loop = inner_loop->next)
3460 fill_coldest_and_hotter_out_loop (coldest_loop,
3461 hotter_than_inner_loop[loop->num],
3462 inner_loop);
3465 /* Compute the global information needed by the loop invariant motion pass. */
3467 static void
3468 tree_ssa_lim_initialize (bool store_motion)
3470 unsigned i;
3472 bitmap_obstack_initialize (&lim_bitmap_obstack);
3473 gcc_obstack_init (&mem_ref_obstack);
3474 lim_aux_data_map = new hash_map<gimple *, lim_aux_data *>;
3476 if (flag_tm)
3477 compute_transaction_bits ();
3479 memory_accesses.refs = new hash_table<mem_ref_hasher> (100);
3480 memory_accesses.refs_list.create (100);
3481 /* Allocate a special, unanalyzable mem-ref with ID zero. */
3482 memory_accesses.refs_list.quick_push
3483 (mem_ref_alloc (NULL, 0, UNANALYZABLE_MEM_ID));
3485 memory_accesses.refs_loaded_in_loop.create (number_of_loops (cfun));
3486 memory_accesses.refs_loaded_in_loop.quick_grow (number_of_loops (cfun));
3487 memory_accesses.refs_stored_in_loop.create (number_of_loops (cfun));
3488 memory_accesses.refs_stored_in_loop.quick_grow (number_of_loops (cfun));
3489 if (store_motion)
3491 memory_accesses.all_refs_stored_in_loop.create (number_of_loops (cfun));
3492 memory_accesses.all_refs_stored_in_loop.quick_grow
3493 (number_of_loops (cfun));
3496 for (i = 0; i < number_of_loops (cfun); i++)
3498 bitmap_initialize (&memory_accesses.refs_loaded_in_loop[i],
3499 &lim_bitmap_obstack);
3500 bitmap_initialize (&memory_accesses.refs_stored_in_loop[i],
3501 &lim_bitmap_obstack);
3502 if (store_motion)
3503 bitmap_initialize (&memory_accesses.all_refs_stored_in_loop[i],
3504 &lim_bitmap_obstack);
3507 memory_accesses.ttae_cache = NULL;
3509 /* Initialize bb_loop_postorder with a mapping from loop->num to
3510 its postorder index. */
3511 i = 0;
3512 bb_loop_postorder = XNEWVEC (unsigned, number_of_loops (cfun));
3513 for (auto loop : loops_list (cfun, LI_FROM_INNERMOST))
3514 bb_loop_postorder[loop->num] = i++;
3517 /* Cleans up after the invariant motion pass. */
3519 static void
3520 tree_ssa_lim_finalize (void)
3522 basic_block bb;
3523 unsigned i;
3524 im_mem_ref *ref;
3526 FOR_EACH_BB_FN (bb, cfun)
3527 SET_ALWAYS_EXECUTED_IN (bb, NULL);
3529 bitmap_obstack_release (&lim_bitmap_obstack);
3530 delete lim_aux_data_map;
3532 delete memory_accesses.refs;
3533 memory_accesses.refs = NULL;
3535 FOR_EACH_VEC_ELT (memory_accesses.refs_list, i, ref)
3536 memref_free (ref);
3537 memory_accesses.refs_list.release ();
3538 obstack_free (&mem_ref_obstack, NULL);
3540 memory_accesses.refs_loaded_in_loop.release ();
3541 memory_accesses.refs_stored_in_loop.release ();
3542 memory_accesses.all_refs_stored_in_loop.release ();
3544 if (memory_accesses.ttae_cache)
3545 free_affine_expand_cache (&memory_accesses.ttae_cache);
3547 free (bb_loop_postorder);
3549 coldest_outermost_loop.release ();
3550 hotter_than_inner_loop.release ();
3553 /* Moves invariants from loops. Only "expensive" invariants are moved out --
3554 i.e. those that are likely to be win regardless of the register pressure.
3555 Only perform store motion if STORE_MOTION is true. */
3557 unsigned int
3558 loop_invariant_motion_in_fun (function *fun, bool store_motion)
3560 unsigned int todo = 0;
3562 tree_ssa_lim_initialize (store_motion);
3564 mark_ssa_maybe_undefs ();
3566 /* Gathers information about memory accesses in the loops. */
3567 analyze_memory_references (store_motion);
3569 /* Fills ALWAYS_EXECUTED_IN information for basic blocks. */
3570 fill_always_executed_in ();
3572 /* Pre-compute coldest outermost loop and nearest hotter loop of each loop.
3574 class loop *loop;
3575 coldest_outermost_loop.create (number_of_loops (cfun));
3576 coldest_outermost_loop.safe_grow_cleared (number_of_loops (cfun));
3577 hotter_than_inner_loop.create (number_of_loops (cfun));
3578 hotter_than_inner_loop.safe_grow_cleared (number_of_loops (cfun));
3579 for (loop = current_loops->tree_root->inner; loop != NULL; loop = loop->next)
3580 fill_coldest_and_hotter_out_loop (loop, NULL, loop);
3582 int *rpo = XNEWVEC (int, last_basic_block_for_fn (fun));
3583 int n = pre_and_rev_post_order_compute_fn (fun, NULL, rpo, false);
3585 /* For each statement determine the outermost loop in that it is
3586 invariant and cost for computing the invariant. */
3587 for (int i = 0; i < n; ++i)
3588 compute_invariantness (BASIC_BLOCK_FOR_FN (fun, rpo[i]));
3590 /* Execute store motion. Force the necessary invariants to be moved
3591 out of the loops as well. */
3592 if (store_motion)
3593 do_store_motion ();
3595 free (rpo);
3596 rpo = XNEWVEC (int, last_basic_block_for_fn (fun));
3597 n = pre_and_rev_post_order_compute_fn (fun, NULL, rpo, false);
3599 /* Move the expressions that are expensive enough. */
3600 for (int i = 0; i < n; ++i)
3601 todo |= move_computations_worker (BASIC_BLOCK_FOR_FN (fun, rpo[i]));
3603 free (rpo);
3605 gsi_commit_edge_inserts ();
3606 if (need_ssa_update_p (fun))
3607 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
3609 tree_ssa_lim_finalize ();
3611 return todo;
3614 /* Loop invariant motion pass. */
3616 namespace {
3618 const pass_data pass_data_lim =
3620 GIMPLE_PASS, /* type */
3621 "lim", /* name */
3622 OPTGROUP_LOOP, /* optinfo_flags */
3623 TV_LIM, /* tv_id */
3624 PROP_cfg, /* properties_required */
3625 0, /* properties_provided */
3626 0, /* properties_destroyed */
3627 0, /* todo_flags_start */
3628 0, /* todo_flags_finish */
3631 class pass_lim : public gimple_opt_pass
3633 public:
3634 pass_lim (gcc::context *ctxt)
3635 : gimple_opt_pass (pass_data_lim, ctxt)
3638 /* opt_pass methods: */
3639 opt_pass * clone () final override { return new pass_lim (m_ctxt); }
3640 bool gate (function *) final override { return flag_tree_loop_im != 0; }
3641 unsigned int execute (function *) final override;
3643 }; // class pass_lim
3645 unsigned int
3646 pass_lim::execute (function *fun)
3648 bool in_loop_pipeline = scev_initialized_p ();
3649 if (!in_loop_pipeline)
3650 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
3652 if (number_of_loops (fun) <= 1)
3653 return 0;
3654 unsigned int todo = loop_invariant_motion_in_fun (fun, flag_move_loop_stores);
3656 if (!in_loop_pipeline)
3657 loop_optimizer_finalize ();
3658 else
3659 scev_reset ();
3660 return todo;
3663 } // anon namespace
3665 gimple_opt_pass *
3666 make_pass_lim (gcc::context *ctxt)
3668 return new pass_lim (ctxt);