1 /* Control flow functions for trees.
2 Copyright (C) 2001-2023 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
30 #include "tree-pass.h"
33 #include "gimple-pretty-print.h"
34 #include "diagnostic-core.h"
35 #include "fold-const.h"
36 #include "trans-mem.h"
37 #include "stor-layout.h"
38 #include "print-tree.h"
40 #include "gimple-iterator.h"
41 #include "gimple-fold.h"
43 #include "gimplify-me.h"
44 #include "gimple-walk.h"
46 #include "tree-ssa-loop-manip.h"
47 #include "tree-ssa-loop-niter.h"
48 #include "tree-into-ssa.h"
53 #include "tree-ssa-propagate.h"
54 #include "value-prof.h"
55 #include "tree-inline.h"
56 #include "tree-ssa-live.h"
57 #include "tree-ssa-dce.h"
58 #include "omp-general.h"
59 #include "omp-expand.h"
60 #include "tree-cfgcleanup.h"
69 /* This file contains functions for building the Control Flow Graph (CFG)
70 for a function tree. */
72 /* Local declarations. */
74 /* Initial capacity for the basic block array. */
75 static const int initial_cfg_capacity
= 20;
77 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
78 which use a particular edge. The CASE_LABEL_EXPRs are chained together
79 via their CASE_CHAIN field, which we clear after we're done with the
80 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
82 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
83 update the case vector in response to edge redirections.
85 Right now this table is set up and torn down at key points in the
86 compilation process. It would be nice if we could make the table
87 more persistent. The key is getting notification of changes to
88 the CFG (particularly edge removal, creation and redirection). */
90 static hash_map
<edge
, tree
> *edge_to_cases
;
92 /* If we record edge_to_cases, this bitmap will hold indexes
93 of basic blocks that end in a GIMPLE_SWITCH which we touched
94 due to edge manipulations. */
96 static bitmap touched_switch_bbs
;
98 /* OpenMP region idxs for blocks during cfg pass. */
99 static vec
<int> bb_to_omp_idx
;
101 /* CFG statistics. */
104 long num_merged_labels
;
107 static struct cfg_stats_d cfg_stats
;
109 /* Data to pass to replace_block_vars_by_duplicates_1. */
110 struct replace_decls_d
112 hash_map
<tree
, tree
> *vars_map
;
116 /* Hash table to store last discriminator assigned for each locus. */
117 struct locus_discrim_map
123 /* Hashtable helpers. */
125 struct locus_discrim_hasher
: free_ptr_hash
<locus_discrim_map
>
127 static inline hashval_t
hash (const locus_discrim_map
*);
128 static inline bool equal (const locus_discrim_map
*,
129 const locus_discrim_map
*);
132 /* Trivial hash function for a location_t. ITEM is a pointer to
133 a hash table entry that maps a location_t to a discriminator. */
136 locus_discrim_hasher::hash (const locus_discrim_map
*item
)
138 return item
->location_line
;
141 /* Equality function for the locus-to-discriminator map. A and B
142 point to the two hash table entries to compare. */
145 locus_discrim_hasher::equal (const locus_discrim_map
*a
,
146 const locus_discrim_map
*b
)
148 return a
->location_line
== b
->location_line
;
151 static hash_table
<locus_discrim_hasher
> *discriminator_per_locus
;
153 /* Basic blocks and flowgraphs. */
154 static void make_blocks (gimple_seq
);
157 static void make_edges (void);
158 static void assign_discriminators (void);
159 static void make_cond_expr_edges (basic_block
);
160 static void make_gimple_switch_edges (gswitch
*, basic_block
);
161 static bool make_goto_expr_edges (basic_block
);
162 static void make_gimple_asm_edges (basic_block
);
163 static edge
gimple_redirect_edge_and_branch (edge
, basic_block
);
164 static edge
gimple_try_redirect_by_replacing_jump (edge
, basic_block
);
166 /* Various helpers. */
167 static inline bool stmt_starts_bb_p (gimple
*, gimple
*);
168 static int gimple_verify_flow_info (void);
169 static void gimple_make_forwarder_block (edge
);
170 static gimple
*first_non_label_stmt (basic_block
);
171 static bool verify_gimple_transaction (gtransaction
*);
172 static bool call_can_make_abnormal_goto (gimple
*);
174 /* Flowgraph optimization and cleanup. */
175 static void gimple_merge_blocks (basic_block
, basic_block
);
176 static bool gimple_can_merge_blocks_p (basic_block
, basic_block
);
177 static void remove_bb (basic_block
);
178 static edge
find_taken_edge_computed_goto (basic_block
, tree
);
179 static edge
find_taken_edge_cond_expr (const gcond
*, tree
);
182 init_empty_tree_cfg_for_function (struct function
*fn
)
184 /* Initialize the basic block array. */
186 profile_status_for_fn (fn
) = PROFILE_ABSENT
;
187 n_basic_blocks_for_fn (fn
) = NUM_FIXED_BLOCKS
;
188 last_basic_block_for_fn (fn
) = NUM_FIXED_BLOCKS
;
189 vec_safe_grow_cleared (basic_block_info_for_fn (fn
),
190 initial_cfg_capacity
, true);
192 /* Build a mapping of labels to their associated blocks. */
193 vec_safe_grow_cleared (label_to_block_map_for_fn (fn
),
194 initial_cfg_capacity
, true);
196 SET_BASIC_BLOCK_FOR_FN (fn
, ENTRY_BLOCK
, ENTRY_BLOCK_PTR_FOR_FN (fn
));
197 SET_BASIC_BLOCK_FOR_FN (fn
, EXIT_BLOCK
, EXIT_BLOCK_PTR_FOR_FN (fn
));
199 ENTRY_BLOCK_PTR_FOR_FN (fn
)->next_bb
200 = EXIT_BLOCK_PTR_FOR_FN (fn
);
201 EXIT_BLOCK_PTR_FOR_FN (fn
)->prev_bb
202 = ENTRY_BLOCK_PTR_FOR_FN (fn
);
206 init_empty_tree_cfg (void)
208 init_empty_tree_cfg_for_function (cfun
);
211 /*---------------------------------------------------------------------------
213 ---------------------------------------------------------------------------*/
215 /* Entry point to the CFG builder for trees. SEQ is the sequence of
216 statements to be added to the flowgraph. */
219 build_gimple_cfg (gimple_seq seq
)
221 /* Register specific gimple functions. */
222 gimple_register_cfg_hooks ();
224 memset ((void *) &cfg_stats
, 0, sizeof (cfg_stats
));
226 init_empty_tree_cfg ();
230 /* Make sure there is always at least one block, even if it's empty. */
231 if (n_basic_blocks_for_fn (cfun
) == NUM_FIXED_BLOCKS
)
232 create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun
));
234 /* Adjust the size of the array. */
235 if (basic_block_info_for_fn (cfun
)->length ()
236 < (size_t) n_basic_blocks_for_fn (cfun
))
237 vec_safe_grow_cleared (basic_block_info_for_fn (cfun
),
238 n_basic_blocks_for_fn (cfun
));
240 /* To speed up statement iterator walks, we first purge dead labels. */
241 cleanup_dead_labels ();
243 /* Group case nodes to reduce the number of edges.
244 We do this after cleaning up dead labels because otherwise we miss
245 a lot of obvious case merging opportunities. */
246 group_case_labels ();
248 /* Create the edges of the flowgraph. */
249 discriminator_per_locus
= new hash_table
<locus_discrim_hasher
> (13);
251 assign_discriminators ();
252 cleanup_dead_labels ();
253 delete discriminator_per_locus
;
254 discriminator_per_locus
= NULL
;
257 /* Look for ANNOTATE calls with loop annotation kind in BB; if found, remove
258 them and propagate the information to LOOP. We assume that the annotations
259 come immediately before the condition in BB, if any. */
262 replace_loop_annotate_in_block (basic_block bb
, class loop
*loop
)
264 gimple_stmt_iterator gsi
= gsi_last_bb (bb
);
265 gimple
*stmt
= gsi_stmt (gsi
);
267 if (!(stmt
&& gimple_code (stmt
) == GIMPLE_COND
))
270 for (gsi_prev_nondebug (&gsi
); !gsi_end_p (gsi
); gsi_prev (&gsi
))
272 stmt
= gsi_stmt (gsi
);
273 if (gimple_code (stmt
) != GIMPLE_CALL
)
275 if (!gimple_call_internal_p (stmt
)
276 || gimple_call_internal_fn (stmt
) != IFN_ANNOTATE
)
279 switch ((annot_expr_kind
) tree_to_shwi (gimple_call_arg (stmt
, 1)))
281 case annot_expr_ivdep_kind
:
282 loop
->safelen
= INT_MAX
;
284 case annot_expr_unroll_kind
:
286 = (unsigned short) tree_to_shwi (gimple_call_arg (stmt
, 2));
287 cfun
->has_unroll
= true;
289 case annot_expr_no_vector_kind
:
290 loop
->dont_vectorize
= true;
292 case annot_expr_vector_kind
:
293 loop
->force_vectorize
= true;
294 cfun
->has_force_vectorize_loops
= true;
296 case annot_expr_parallel_kind
:
297 loop
->can_be_parallel
= true;
298 loop
->safelen
= INT_MAX
;
304 stmt
= gimple_build_assign (gimple_call_lhs (stmt
),
305 gimple_call_arg (stmt
, 0));
306 gsi_replace (&gsi
, stmt
, true);
310 /* Look for ANNOTATE calls with loop annotation kind; if found, remove
311 them and propagate the information to the loop. We assume that the
312 annotations come immediately before the condition of the loop. */
315 replace_loop_annotate (void)
318 gimple_stmt_iterator gsi
;
321 for (auto loop
: loops_list (cfun
, 0))
323 /* First look into the header. */
324 replace_loop_annotate_in_block (loop
->header
, loop
);
326 /* Then look into the latch, if any. */
328 replace_loop_annotate_in_block (loop
->latch
, loop
);
330 /* Push the global flag_finite_loops state down to individual loops. */
331 loop
->finite_p
= flag_finite_loops
;
334 /* Remove IFN_ANNOTATE. Safeguard for the case loop->latch == NULL. */
335 FOR_EACH_BB_FN (bb
, cfun
)
337 for (gsi
= gsi_last_bb (bb
); !gsi_end_p (gsi
); gsi_prev (&gsi
))
339 stmt
= gsi_stmt (gsi
);
340 if (gimple_code (stmt
) != GIMPLE_CALL
)
342 if (!gimple_call_internal_p (stmt
)
343 || gimple_call_internal_fn (stmt
) != IFN_ANNOTATE
)
346 switch ((annot_expr_kind
) tree_to_shwi (gimple_call_arg (stmt
, 1)))
348 case annot_expr_ivdep_kind
:
349 case annot_expr_unroll_kind
:
350 case annot_expr_no_vector_kind
:
351 case annot_expr_vector_kind
:
352 case annot_expr_parallel_kind
:
358 warning_at (gimple_location (stmt
), 0, "ignoring loop annotation");
359 stmt
= gimple_build_assign (gimple_call_lhs (stmt
),
360 gimple_call_arg (stmt
, 0));
361 gsi_replace (&gsi
, stmt
, true);
367 execute_build_cfg (void)
369 gimple_seq body
= gimple_body (current_function_decl
);
371 build_gimple_cfg (body
);
372 gimple_set_body (current_function_decl
, NULL
);
373 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
375 fprintf (dump_file
, "Scope blocks:\n");
376 dump_scope_blocks (dump_file
, dump_flags
);
380 bb_to_omp_idx
.release ();
382 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
);
383 replace_loop_annotate ();
389 const pass_data pass_data_build_cfg
=
391 GIMPLE_PASS
, /* type */
393 OPTGROUP_NONE
, /* optinfo_flags */
394 TV_TREE_CFG
, /* tv_id */
395 PROP_gimple_leh
, /* properties_required */
396 ( PROP_cfg
| PROP_loops
), /* properties_provided */
397 0, /* properties_destroyed */
398 0, /* todo_flags_start */
399 0, /* todo_flags_finish */
402 class pass_build_cfg
: public gimple_opt_pass
405 pass_build_cfg (gcc::context
*ctxt
)
406 : gimple_opt_pass (pass_data_build_cfg
, ctxt
)
409 /* opt_pass methods: */
410 unsigned int execute (function
*) final override
412 return execute_build_cfg ();
415 }; // class pass_build_cfg
420 make_pass_build_cfg (gcc::context
*ctxt
)
422 return new pass_build_cfg (ctxt
);
426 /* Return true if T is a computed goto. */
429 computed_goto_p (gimple
*t
)
431 return (gimple_code (t
) == GIMPLE_GOTO
432 && TREE_CODE (gimple_goto_dest (t
)) != LABEL_DECL
);
435 /* Returns true if the sequence of statements STMTS only contains
436 a call to __builtin_unreachable (). */
439 gimple_seq_unreachable_p (gimple_seq stmts
)
442 /* Return false if -fsanitize=unreachable, we don't want to
443 optimize away those calls, but rather turn them into
444 __ubsan_handle_builtin_unreachable () or __builtin_trap ()
446 || sanitize_flags_p (SANITIZE_UNREACHABLE
))
449 gimple_stmt_iterator gsi
= gsi_last (stmts
);
451 if (!gimple_call_builtin_p (gsi_stmt (gsi
), BUILT_IN_UNREACHABLE
))
454 for (gsi_prev (&gsi
); !gsi_end_p (gsi
); gsi_prev (&gsi
))
456 gimple
*stmt
= gsi_stmt (gsi
);
457 if (gimple_code (stmt
) != GIMPLE_LABEL
458 && !is_gimple_debug (stmt
)
459 && !gimple_clobber_p (stmt
))
465 /* Returns true for edge E where e->src ends with a GIMPLE_COND and
466 the other edge points to a bb with just __builtin_unreachable ().
467 I.e. return true for C->M edge in:
475 __builtin_unreachable ();
479 assert_unreachable_fallthru_edge_p (edge e
)
481 basic_block pred_bb
= e
->src
;
482 if (safe_is_a
<gcond
*> (*gsi_last_bb (pred_bb
)))
484 basic_block other_bb
= EDGE_SUCC (pred_bb
, 0)->dest
;
485 if (other_bb
== e
->dest
)
486 other_bb
= EDGE_SUCC (pred_bb
, 1)->dest
;
487 if (EDGE_COUNT (other_bb
->succs
) == 0)
488 return gimple_seq_unreachable_p (bb_seq (other_bb
));
494 /* Initialize GF_CALL_CTRL_ALTERING flag, which indicates the call
495 could alter control flow except via eh. We initialize the flag at
496 CFG build time and only ever clear it later. */
499 gimple_call_initialize_ctrl_altering (gimple
*stmt
)
501 int flags
= gimple_call_flags (stmt
);
503 /* A call alters control flow if it can make an abnormal goto. */
504 if (call_can_make_abnormal_goto (stmt
)
505 /* A call also alters control flow if it does not return. */
506 || flags
& ECF_NORETURN
507 /* TM ending statements have backedges out of the transaction.
508 Return true so we split the basic block containing them.
509 Note that the TM_BUILTIN test is merely an optimization. */
510 || ((flags
& ECF_TM_BUILTIN
)
511 && is_tm_ending_fndecl (gimple_call_fndecl (stmt
)))
512 /* BUILT_IN_RETURN call is same as return statement. */
513 || gimple_call_builtin_p (stmt
, BUILT_IN_RETURN
)
514 /* IFN_UNIQUE should be the last insn, to make checking for it
515 as cheap as possible. */
516 || (gimple_call_internal_p (stmt
)
517 && gimple_call_internal_unique_p (stmt
)))
518 gimple_call_set_ctrl_altering (stmt
, true);
520 gimple_call_set_ctrl_altering (stmt
, false);
524 /* Insert SEQ after BB and build a flowgraph. */
527 make_blocks_1 (gimple_seq seq
, basic_block bb
)
529 gimple_stmt_iterator i
= gsi_start (seq
);
531 gimple
*prev_stmt
= NULL
;
532 bool start_new_block
= true;
533 bool first_stmt_of_seq
= true;
535 while (!gsi_end_p (i
))
537 /* PREV_STMT should only be set to a debug stmt if the debug
538 stmt is before nondebug stmts. Once stmt reaches a nondebug
539 nonlabel, prev_stmt will be set to it, so that
540 stmt_starts_bb_p will know to start a new block if a label is
541 found. However, if stmt was a label after debug stmts only,
542 keep the label in prev_stmt even if we find further debug
543 stmts, for there may be other labels after them, and they
544 should land in the same block. */
545 if (!prev_stmt
|| !stmt
|| !is_gimple_debug (stmt
))
549 if (stmt
&& is_gimple_call (stmt
))
550 gimple_call_initialize_ctrl_altering (stmt
);
552 /* If the statement starts a new basic block or if we have determined
553 in a previous pass that we need to create a new block for STMT, do
555 if (start_new_block
|| stmt_starts_bb_p (stmt
, prev_stmt
))
557 if (!first_stmt_of_seq
)
558 gsi_split_seq_before (&i
, &seq
);
559 bb
= create_basic_block (seq
, bb
);
560 start_new_block
= false;
564 /* Now add STMT to BB and create the subgraphs for special statement
566 gimple_set_bb (stmt
, bb
);
568 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
570 if (stmt_ends_bb_p (stmt
))
572 /* If the stmt can make abnormal goto use a new temporary
573 for the assignment to the LHS. This makes sure the old value
574 of the LHS is available on the abnormal edge. Otherwise
575 we will end up with overlapping life-ranges for abnormal
577 if (gimple_has_lhs (stmt
)
578 && stmt_can_make_abnormal_goto (stmt
)
579 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt
))))
581 tree lhs
= gimple_get_lhs (stmt
);
582 tree tmp
= create_tmp_var (TREE_TYPE (lhs
));
583 gimple
*s
= gimple_build_assign (lhs
, tmp
);
584 gimple_set_location (s
, gimple_location (stmt
));
585 gimple_set_block (s
, gimple_block (stmt
));
586 gimple_set_lhs (stmt
, tmp
);
587 gsi_insert_after (&i
, s
, GSI_SAME_STMT
);
589 start_new_block
= true;
593 first_stmt_of_seq
= false;
598 /* Build a flowgraph for the sequence of stmts SEQ. */
601 make_blocks (gimple_seq seq
)
603 /* Look for debug markers right before labels, and move the debug
604 stmts after the labels. Accepting labels among debug markers
605 adds no value, just complexity; if we wanted to annotate labels
606 with view numbers (so sequencing among markers would matter) or
607 somesuch, we're probably better off still moving the labels, but
608 adding other debug annotations in their original positions or
609 emitting nonbind or bind markers associated with the labels in
610 the original position of the labels.
612 Moving labels would probably be simpler, but we can't do that:
613 moving labels assigns label ids to them, and doing so because of
614 debug markers makes for -fcompare-debug and possibly even codegen
615 differences. So, we have to move the debug stmts instead. To
616 that end, we scan SEQ backwards, marking the position of the
617 latest (earliest we find) label, and moving debug stmts that are
618 not separated from it by nondebug nonlabel stmts after the
620 if (MAY_HAVE_DEBUG_MARKER_STMTS
)
622 gimple_stmt_iterator label
= gsi_none ();
624 for (gimple_stmt_iterator i
= gsi_last (seq
); !gsi_end_p (i
); gsi_prev (&i
))
626 gimple
*stmt
= gsi_stmt (i
);
628 /* If this is the first label we encounter (latest in SEQ)
629 before nondebug stmts, record its position. */
630 if (is_a
<glabel
*> (stmt
))
632 if (gsi_end_p (label
))
637 /* Without a recorded label position to move debug stmts to,
638 there's nothing to do. */
639 if (gsi_end_p (label
))
642 /* Move the debug stmt at I after LABEL. */
643 if (is_gimple_debug (stmt
))
645 gcc_assert (gimple_debug_nonbind_marker_p (stmt
));
646 /* As STMT is removed, I advances to the stmt after
647 STMT, so the gsi_prev in the for "increment"
648 expression gets us to the stmt we're to visit after
649 STMT. LABEL, however, would advance to the moved
650 stmt if we passed it to gsi_move_after, so pass it a
651 copy instead, so as to keep LABEL pointing to the
653 gimple_stmt_iterator copy
= label
;
654 gsi_move_after (&i
, ©
);
658 /* There aren't any (more?) debug stmts before label, so
659 there isn't anything else to move after it. */
664 make_blocks_1 (seq
, ENTRY_BLOCK_PTR_FOR_FN (cfun
));
667 /* Create and return a new empty basic block after bb AFTER. */
670 create_bb (void *h
, void *e
, basic_block after
)
676 /* Create and initialize a new basic block. Since alloc_block uses
677 GC allocation that clears memory to allocate a basic block, we do
678 not have to clear the newly allocated basic block here. */
681 bb
->index
= last_basic_block_for_fn (cfun
);
683 set_bb_seq (bb
, h
? (gimple_seq
) h
: NULL
);
685 /* Add the new block to the linked list of blocks. */
686 link_block (bb
, after
);
688 /* Grow the basic block array if needed. */
689 if ((size_t) last_basic_block_for_fn (cfun
)
690 == basic_block_info_for_fn (cfun
)->length ())
691 vec_safe_grow_cleared (basic_block_info_for_fn (cfun
),
692 last_basic_block_for_fn (cfun
) + 1);
694 /* Add the newly created block to the array. */
695 SET_BASIC_BLOCK_FOR_FN (cfun
, last_basic_block_for_fn (cfun
), bb
);
697 n_basic_blocks_for_fn (cfun
)++;
698 last_basic_block_for_fn (cfun
)++;
704 /*---------------------------------------------------------------------------
706 ---------------------------------------------------------------------------*/
708 /* If basic block BB has an abnormal edge to a basic block
709 containing IFN_ABNORMAL_DISPATCHER internal call, return
710 that the dispatcher's basic block, otherwise return NULL. */
713 get_abnormal_succ_dispatcher (basic_block bb
)
718 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
719 if ((e
->flags
& (EDGE_ABNORMAL
| EDGE_EH
)) == EDGE_ABNORMAL
)
721 gimple_stmt_iterator gsi
722 = gsi_start_nondebug_after_labels_bb (e
->dest
);
723 gimple
*g
= gsi_stmt (gsi
);
724 if (g
&& gimple_call_internal_p (g
, IFN_ABNORMAL_DISPATCHER
))
730 /* Helper function for make_edges. Create a basic block with
731 with ABNORMAL_DISPATCHER internal call in it if needed, and
732 create abnormal edges from BBS to it and from it to FOR_BB
733 if COMPUTED_GOTO is false, otherwise factor the computed gotos. */
736 handle_abnormal_edges (basic_block
*dispatcher_bbs
, basic_block for_bb
,
737 auto_vec
<basic_block
> *bbs
, bool computed_goto
)
739 basic_block
*dispatcher
= dispatcher_bbs
+ (computed_goto
? 1 : 0);
740 unsigned int idx
= 0;
744 if (!bb_to_omp_idx
.is_empty ())
746 dispatcher
= dispatcher_bbs
+ 2 * bb_to_omp_idx
[for_bb
->index
];
747 if (bb_to_omp_idx
[for_bb
->index
] != 0)
751 /* If the dispatcher has been created already, then there are basic
752 blocks with abnormal edges to it, so just make a new edge to
754 if (*dispatcher
== NULL
)
756 /* Check if there are any basic blocks that need to have
757 abnormal edges to this dispatcher. If there are none, return
759 if (bb_to_omp_idx
.is_empty ())
761 if (bbs
->is_empty ())
766 FOR_EACH_VEC_ELT (*bbs
, idx
, bb
)
767 if (bb_to_omp_idx
[bb
->index
] == bb_to_omp_idx
[for_bb
->index
])
773 /* Create the dispatcher bb. */
774 *dispatcher
= create_basic_block (NULL
, for_bb
);
777 /* Factor computed gotos into a common computed goto site. Also
778 record the location of that site so that we can un-factor the
779 gotos after we have converted back to normal form. */
780 gimple_stmt_iterator gsi
= gsi_start_bb (*dispatcher
);
782 /* Create the destination of the factored goto. Each original
783 computed goto will put its desired destination into this
784 variable and jump to the label we create immediately below. */
785 tree var
= create_tmp_var (ptr_type_node
, "gotovar");
787 /* Build a label for the new block which will contain the
788 factored computed goto. */
789 tree factored_label_decl
790 = create_artificial_label (UNKNOWN_LOCATION
);
791 gimple
*factored_computed_goto_label
792 = gimple_build_label (factored_label_decl
);
793 gsi_insert_after (&gsi
, factored_computed_goto_label
, GSI_NEW_STMT
);
795 /* Build our new computed goto. */
796 gimple
*factored_computed_goto
= gimple_build_goto (var
);
797 gsi_insert_after (&gsi
, factored_computed_goto
, GSI_NEW_STMT
);
799 FOR_EACH_VEC_ELT (*bbs
, idx
, bb
)
801 if (!bb_to_omp_idx
.is_empty ()
802 && bb_to_omp_idx
[bb
->index
] != bb_to_omp_idx
[for_bb
->index
])
805 gsi
= gsi_last_bb (bb
);
806 gimple
*last
= gsi_stmt (gsi
);
808 gcc_assert (computed_goto_p (last
));
810 /* Copy the original computed goto's destination into VAR. */
812 = gimple_build_assign (var
, gimple_goto_dest (last
));
813 gsi_insert_before (&gsi
, assignment
, GSI_SAME_STMT
);
815 edge e
= make_edge (bb
, *dispatcher
, EDGE_FALLTHRU
);
816 e
->goto_locus
= gimple_location (last
);
817 gsi_remove (&gsi
, true);
822 tree arg
= inner
? boolean_true_node
: boolean_false_node
;
823 gcall
*g
= gimple_build_call_internal (IFN_ABNORMAL_DISPATCHER
,
825 gimple_call_set_ctrl_altering (g
, true);
826 gimple_stmt_iterator gsi
= gsi_after_labels (*dispatcher
);
827 gsi_insert_after (&gsi
, g
, GSI_NEW_STMT
);
829 /* Create predecessor edges of the dispatcher. */
830 FOR_EACH_VEC_ELT (*bbs
, idx
, bb
)
832 if (!bb_to_omp_idx
.is_empty ()
833 && bb_to_omp_idx
[bb
->index
] != bb_to_omp_idx
[for_bb
->index
])
835 make_edge (bb
, *dispatcher
, EDGE_ABNORMAL
);
840 make_edge (*dispatcher
, for_bb
, EDGE_ABNORMAL
);
843 /* Creates outgoing edges for BB. Returns 1 when it ends with an
844 computed goto, returns 2 when it ends with a statement that
845 might return to this function via an nonlocal goto, otherwise
846 return 0. Updates *PCUR_REGION with the OMP region this BB is in. */
849 make_edges_bb (basic_block bb
, struct omp_region
**pcur_region
, int *pomp_index
)
851 gimple
*last
= *gsi_last_bb (bb
);
852 bool fallthru
= false;
858 switch (gimple_code (last
))
861 if (make_goto_expr_edges (bb
))
867 edge e
= make_edge (bb
, EXIT_BLOCK_PTR_FOR_FN (cfun
), 0);
868 e
->goto_locus
= gimple_location (last
);
873 make_cond_expr_edges (bb
);
877 make_gimple_switch_edges (as_a
<gswitch
*> (last
), bb
);
881 make_eh_edges (last
);
884 case GIMPLE_EH_DISPATCH
:
885 fallthru
= make_eh_dispatch_edges (as_a
<geh_dispatch
*> (last
));
889 /* If this function receives a nonlocal goto, then we need to
890 make edges from this call site to all the nonlocal goto
892 if (stmt_can_make_abnormal_goto (last
))
895 /* If this statement has reachable exception handlers, then
896 create abnormal edges to them. */
897 make_eh_edges (last
);
899 /* BUILTIN_RETURN is really a return statement. */
900 if (gimple_call_builtin_p (last
, BUILT_IN_RETURN
))
902 make_edge (bb
, EXIT_BLOCK_PTR_FOR_FN (cfun
), 0);
905 /* Some calls are known not to return. */
907 fallthru
= !gimple_call_noreturn_p (last
);
911 /* A GIMPLE_ASSIGN may throw internally and thus be considered
913 if (is_ctrl_altering_stmt (last
))
914 make_eh_edges (last
);
919 make_gimple_asm_edges (bb
);
924 fallthru
= omp_make_gimple_edges (bb
, pcur_region
, pomp_index
);
927 case GIMPLE_TRANSACTION
:
929 gtransaction
*txn
= as_a
<gtransaction
*> (last
);
930 tree label1
= gimple_transaction_label_norm (txn
);
931 tree label2
= gimple_transaction_label_uninst (txn
);
934 make_edge (bb
, label_to_block (cfun
, label1
), EDGE_FALLTHRU
);
936 make_edge (bb
, label_to_block (cfun
, label2
),
937 EDGE_TM_UNINSTRUMENTED
| (label1
? 0 : EDGE_FALLTHRU
));
939 tree label3
= gimple_transaction_label_over (txn
);
940 if (gimple_transaction_subcode (txn
)
941 & (GTMA_HAVE_ABORT
| GTMA_IS_OUTER
))
942 make_edge (bb
, label_to_block (cfun
, label3
), EDGE_TM_ABORT
);
949 gcc_assert (!stmt_ends_bb_p (last
));
955 make_edge (bb
, bb
->next_bb
, EDGE_FALLTHRU
);
960 /* Join all the blocks in the flowgraph. */
966 struct omp_region
*cur_region
= NULL
;
967 auto_vec
<basic_block
> ab_edge_goto
;
968 auto_vec
<basic_block
> ab_edge_call
;
969 int cur_omp_region_idx
= 0;
971 /* Create an edge from entry to the first block with executable
973 make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun
),
974 BASIC_BLOCK_FOR_FN (cfun
, NUM_FIXED_BLOCKS
),
977 /* Traverse the basic block array placing edges. */
978 FOR_EACH_BB_FN (bb
, cfun
)
982 if (!bb_to_omp_idx
.is_empty ())
983 bb_to_omp_idx
[bb
->index
] = cur_omp_region_idx
;
985 mer
= make_edges_bb (bb
, &cur_region
, &cur_omp_region_idx
);
987 ab_edge_goto
.safe_push (bb
);
989 ab_edge_call
.safe_push (bb
);
991 if (cur_region
&& bb_to_omp_idx
.is_empty ())
992 bb_to_omp_idx
.safe_grow_cleared (n_basic_blocks_for_fn (cfun
), true);
995 /* Computed gotos are hell to deal with, especially if there are
996 lots of them with a large number of destinations. So we factor
997 them to a common computed goto location before we build the
998 edge list. After we convert back to normal form, we will un-factor
999 the computed gotos since factoring introduces an unwanted jump.
1000 For non-local gotos and abnormal edges from calls to calls that return
1001 twice or forced labels, factor the abnormal edges too, by having all
1002 abnormal edges from the calls go to a common artificial basic block
1003 with ABNORMAL_DISPATCHER internal call and abnormal edges from that
1004 basic block to all forced labels and calls returning twice.
1005 We do this per-OpenMP structured block, because those regions
1006 are guaranteed to be single entry single exit by the standard,
1007 so it is not allowed to enter or exit such regions abnormally this way,
1008 thus all computed gotos, non-local gotos and setjmp/longjmp calls
1009 must not transfer control across SESE region boundaries. */
1010 if (!ab_edge_goto
.is_empty () || !ab_edge_call
.is_empty ())
1012 gimple_stmt_iterator gsi
;
1013 basic_block dispatcher_bb_array
[2] = { NULL
, NULL
};
1014 basic_block
*dispatcher_bbs
= dispatcher_bb_array
;
1015 int count
= n_basic_blocks_for_fn (cfun
);
1017 if (!bb_to_omp_idx
.is_empty ())
1018 dispatcher_bbs
= XCNEWVEC (basic_block
, 2 * count
);
1020 FOR_EACH_BB_FN (bb
, cfun
)
1022 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1024 glabel
*label_stmt
= dyn_cast
<glabel
*> (gsi_stmt (gsi
));
1030 target
= gimple_label_label (label_stmt
);
1032 /* Make an edge to every label block that has been marked as a
1033 potential target for a computed goto or a non-local goto. */
1034 if (FORCED_LABEL (target
))
1035 handle_abnormal_edges (dispatcher_bbs
, bb
, &ab_edge_goto
,
1037 if (DECL_NONLOCAL (target
))
1039 handle_abnormal_edges (dispatcher_bbs
, bb
, &ab_edge_call
,
1045 if (!gsi_end_p (gsi
) && is_gimple_debug (gsi_stmt (gsi
)))
1046 gsi_next_nondebug (&gsi
);
1047 if (!gsi_end_p (gsi
))
1049 /* Make an edge to every setjmp-like call. */
1050 gimple
*call_stmt
= gsi_stmt (gsi
);
1051 if (is_gimple_call (call_stmt
)
1052 && ((gimple_call_flags (call_stmt
) & ECF_RETURNS_TWICE
)
1053 || gimple_call_builtin_p (call_stmt
,
1054 BUILT_IN_SETJMP_RECEIVER
)))
1055 handle_abnormal_edges (dispatcher_bbs
, bb
, &ab_edge_call
,
1060 if (!bb_to_omp_idx
.is_empty ())
1061 XDELETE (dispatcher_bbs
);
1064 omp_free_regions ();
1067 /* Add SEQ after GSI. Start new bb after GSI, and created further bbs as
1068 needed. Returns true if new bbs were created.
1069 Note: This is transitional code, and should not be used for new code. We
1070 should be able to get rid of this by rewriting all target va-arg
1071 gimplification hooks to use an interface gimple_build_cond_value as described
1072 in https://gcc.gnu.org/ml/gcc-patches/2015-02/msg01194.html. */
1075 gimple_find_sub_bbs (gimple_seq seq
, gimple_stmt_iterator
*gsi
)
1077 gimple
*stmt
= gsi_stmt (*gsi
);
1078 basic_block bb
= gimple_bb (stmt
);
1079 basic_block lastbb
, afterbb
;
1080 int old_num_bbs
= n_basic_blocks_for_fn (cfun
);
1082 lastbb
= make_blocks_1 (seq
, bb
);
1083 if (old_num_bbs
== n_basic_blocks_for_fn (cfun
))
1085 e
= split_block (bb
, stmt
);
1086 /* Move e->dest to come after the new basic blocks. */
1088 unlink_block (afterbb
);
1089 link_block (afterbb
, lastbb
);
1090 redirect_edge_succ (e
, bb
->next_bb
);
1092 while (bb
!= afterbb
)
1094 struct omp_region
*cur_region
= NULL
;
1095 profile_count cnt
= profile_count::zero ();
1098 int cur_omp_region_idx
= 0;
1099 int mer
= make_edges_bb (bb
, &cur_region
, &cur_omp_region_idx
);
1100 gcc_assert (!mer
&& !cur_region
);
1101 add_bb_to_loop (bb
, afterbb
->loop_father
);
1105 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
1107 if (e
->count ().initialized_p ())
1112 tree_guess_outgoing_edge_probabilities (bb
);
1113 if (all
|| profile_status_for_fn (cfun
) == PROFILE_READ
)
1121 /* Find the next available discriminator value for LOCUS. The
1122 discriminator distinguishes among several basic blocks that
1123 share a common locus, allowing for more accurate sample-based
1127 next_discriminator_for_locus (int line
)
1129 struct locus_discrim_map item
;
1130 struct locus_discrim_map
**slot
;
1132 item
.location_line
= line
;
1133 item
.discriminator
= 0;
1134 slot
= discriminator_per_locus
->find_slot_with_hash (&item
, line
, INSERT
);
1136 if (*slot
== HTAB_EMPTY_ENTRY
)
1138 *slot
= XNEW (struct locus_discrim_map
);
1140 (*slot
)->location_line
= line
;
1141 (*slot
)->discriminator
= 0;
1143 (*slot
)->discriminator
++;
1144 return (*slot
)->discriminator
;
1147 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
1150 same_line_p (location_t locus1
, expanded_location
*from
, location_t locus2
)
1152 expanded_location to
;
1154 if (locus1
== locus2
)
1157 to
= expand_location (locus2
);
1159 if (from
->line
!= to
.line
)
1161 if (from
->file
== to
.file
)
1163 return (from
->file
!= NULL
1165 && filename_cmp (from
->file
, to
.file
) == 0);
1168 /* Assign a unique discriminator value to all statements in block bb that
1169 have the same line number as locus. */
1172 assign_discriminator (location_t locus
, basic_block bb
)
1174 gimple_stmt_iterator gsi
;
1177 if (locus
== UNKNOWN_LOCATION
)
1180 expanded_location locus_e
= expand_location (locus
);
1182 discriminator
= next_discriminator_for_locus (locus_e
.line
);
1184 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1186 gimple
*stmt
= gsi_stmt (gsi
);
1187 location_t stmt_locus
= gimple_location (stmt
);
1188 if (same_line_p (locus
, &locus_e
, stmt_locus
))
1189 gimple_set_location (stmt
,
1190 location_with_discriminator (stmt_locus
, discriminator
));
1194 /* Assign discriminators to statement locations. */
1197 assign_discriminators (void)
1201 FOR_EACH_BB_FN (bb
, cfun
)
1205 gimple_stmt_iterator gsi
;
1206 location_t curr_locus
= UNKNOWN_LOCATION
;
1207 expanded_location curr_locus_e
= {};
1210 /* Traverse the basic block, if two function calls within a basic block
1211 are mapped to the same line, assign a new discriminator because a call
1212 stmt could be a split point of a basic block. */
1213 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1215 gimple
*stmt
= gsi_stmt (gsi
);
1217 if (curr_locus
== UNKNOWN_LOCATION
)
1219 curr_locus
= gimple_location (stmt
);
1220 curr_locus_e
= expand_location (curr_locus
);
1222 else if (!same_line_p (curr_locus
, &curr_locus_e
, gimple_location (stmt
)))
1224 curr_locus
= gimple_location (stmt
);
1225 curr_locus_e
= expand_location (curr_locus
);
1228 else if (curr_discr
!= 0)
1230 location_t loc
= gimple_location (stmt
);
1231 location_t dloc
= location_with_discriminator (loc
, curr_discr
);
1232 gimple_set_location (stmt
, dloc
);
1234 /* Allocate a new discriminator for CALL stmt. */
1235 if (gimple_code (stmt
) == GIMPLE_CALL
)
1236 curr_discr
= next_discriminator_for_locus (curr_locus
);
1239 gimple
*last
= last_nondebug_stmt (bb
);
1240 location_t locus
= last
? gimple_location (last
) : UNKNOWN_LOCATION
;
1241 if (locus
== UNKNOWN_LOCATION
)
1244 expanded_location locus_e
= expand_location (locus
);
1246 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
1248 gimple
*first
= first_non_label_stmt (e
->dest
);
1249 gimple
*last
= last_nondebug_stmt (e
->dest
);
1251 gimple
*stmt_on_same_line
= NULL
;
1252 if (first
&& same_line_p (locus
, &locus_e
,
1253 gimple_location (first
)))
1254 stmt_on_same_line
= first
;
1255 else if (last
&& same_line_p (locus
, &locus_e
,
1256 gimple_location (last
)))
1257 stmt_on_same_line
= last
;
1259 if (stmt_on_same_line
)
1261 if (has_discriminator (gimple_location (stmt_on_same_line
))
1262 && !has_discriminator (locus
))
1263 assign_discriminator (locus
, bb
);
1265 assign_discriminator (locus
, e
->dest
);
1271 /* Create the edges for a GIMPLE_COND starting at block BB. */
1274 make_cond_expr_edges (basic_block bb
)
1276 gcond
*entry
= as_a
<gcond
*> (*gsi_last_bb (bb
));
1277 gimple
*then_stmt
, *else_stmt
;
1278 basic_block then_bb
, else_bb
;
1279 tree then_label
, else_label
;
1284 /* Entry basic blocks for each component. */
1285 then_label
= gimple_cond_true_label (entry
);
1286 else_label
= gimple_cond_false_label (entry
);
1287 then_bb
= label_to_block (cfun
, then_label
);
1288 else_bb
= label_to_block (cfun
, else_label
);
1289 then_stmt
= first_stmt (then_bb
);
1290 else_stmt
= first_stmt (else_bb
);
1292 e
= make_edge (bb
, then_bb
, EDGE_TRUE_VALUE
);
1293 e
->goto_locus
= gimple_location (then_stmt
);
1294 e
= make_edge (bb
, else_bb
, EDGE_FALSE_VALUE
);
1296 e
->goto_locus
= gimple_location (else_stmt
);
1298 /* We do not need the labels anymore. */
1299 gimple_cond_set_true_label (entry
, NULL_TREE
);
1300 gimple_cond_set_false_label (entry
, NULL_TREE
);
1304 /* Called for each element in the hash table (P) as we delete the
1305 edge to cases hash table.
1307 Clear all the CASE_CHAINs to prevent problems with copying of
1308 SWITCH_EXPRs and structure sharing rules, then free the hash table
1312 edge_to_cases_cleanup (edge
const &, tree
const &value
, void *)
1316 for (t
= value
; t
; t
= next
)
1318 next
= CASE_CHAIN (t
);
1319 CASE_CHAIN (t
) = NULL
;
1325 /* Start recording information mapping edges to case labels. */
1328 start_recording_case_labels (void)
1330 gcc_assert (edge_to_cases
== NULL
);
1331 edge_to_cases
= new hash_map
<edge
, tree
>;
1332 touched_switch_bbs
= BITMAP_ALLOC (NULL
);
1335 /* Return nonzero if we are recording information for case labels. */
1338 recording_case_labels_p (void)
1340 return (edge_to_cases
!= NULL
);
1343 /* Stop recording information mapping edges to case labels and
1344 remove any information we have recorded. */
1346 end_recording_case_labels (void)
1350 edge_to_cases
->traverse
<void *, edge_to_cases_cleanup
> (NULL
);
1351 delete edge_to_cases
;
1352 edge_to_cases
= NULL
;
1353 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs
, 0, i
, bi
)
1355 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
1358 if (gswitch
*stmt
= safe_dyn_cast
<gswitch
*> (*gsi_last_bb (bb
)))
1359 group_case_labels_stmt (stmt
);
1362 BITMAP_FREE (touched_switch_bbs
);
1365 /* If we are inside a {start,end}_recording_cases block, then return
1366 a chain of CASE_LABEL_EXPRs from T which reference E.
1368 Otherwise return NULL. */
1371 get_cases_for_edge (edge e
, gswitch
*t
)
1376 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
1377 chains available. Return NULL so the caller can detect this case. */
1378 if (!recording_case_labels_p ())
1381 slot
= edge_to_cases
->get (e
);
1385 /* If we did not find E in the hash table, then this must be the first
1386 time we have been queried for information about E & T. Add all the
1387 elements from T to the hash table then perform the query again. */
1389 n
= gimple_switch_num_labels (t
);
1390 for (i
= 0; i
< n
; i
++)
1392 tree elt
= gimple_switch_label (t
, i
);
1393 tree lab
= CASE_LABEL (elt
);
1394 basic_block label_bb
= label_to_block (cfun
, lab
);
1395 edge this_edge
= find_edge (e
->src
, label_bb
);
1397 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
1399 tree
&s
= edge_to_cases
->get_or_insert (this_edge
);
1400 CASE_CHAIN (elt
) = s
;
1404 return *edge_to_cases
->get (e
);
1407 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
1410 make_gimple_switch_edges (gswitch
*entry
, basic_block bb
)
1414 n
= gimple_switch_num_labels (entry
);
1416 for (i
= 0; i
< n
; ++i
)
1418 basic_block label_bb
= gimple_switch_label_bb (cfun
, entry
, i
);
1419 make_edge (bb
, label_bb
, 0);
1424 /* Return the basic block holding label DEST. */
1427 label_to_block (struct function
*ifun
, tree dest
)
1429 int uid
= LABEL_DECL_UID (dest
);
1431 /* We would die hard when faced by an undefined label. Emit a label to
1432 the very first basic block. This will hopefully make even the dataflow
1433 and undefined variable warnings quite right. */
1434 if (seen_error () && uid
< 0)
1436 gimple_stmt_iterator gsi
=
1437 gsi_start_bb (BASIC_BLOCK_FOR_FN (cfun
, NUM_FIXED_BLOCKS
));
1440 stmt
= gimple_build_label (dest
);
1441 gsi_insert_before (&gsi
, stmt
, GSI_NEW_STMT
);
1442 uid
= LABEL_DECL_UID (dest
);
1444 if (vec_safe_length (ifun
->cfg
->x_label_to_block_map
) <= (unsigned int) uid
)
1446 return (*ifun
->cfg
->x_label_to_block_map
)[uid
];
1449 /* Create edges for a goto statement at block BB. Returns true
1450 if abnormal edges should be created. */
1453 make_goto_expr_edges (basic_block bb
)
1455 gimple_stmt_iterator last
= gsi_last_bb (bb
);
1456 gimple
*goto_t
= gsi_stmt (last
);
1458 /* A simple GOTO creates normal edges. */
1459 if (simple_goto_p (goto_t
))
1461 tree dest
= gimple_goto_dest (goto_t
);
1462 basic_block label_bb
= label_to_block (cfun
, dest
);
1463 edge e
= make_edge (bb
, label_bb
, EDGE_FALLTHRU
);
1464 e
->goto_locus
= gimple_location (goto_t
);
1465 gsi_remove (&last
, true);
1469 /* A computed GOTO creates abnormal edges. */
1473 /* Create edges for an asm statement with labels at block BB. */
1476 make_gimple_asm_edges (basic_block bb
)
1478 gasm
*stmt
= as_a
<gasm
*> (*gsi_last_bb (bb
));
1479 int i
, n
= gimple_asm_nlabels (stmt
);
1481 for (i
= 0; i
< n
; ++i
)
1483 tree label
= TREE_VALUE (gimple_asm_label_op (stmt
, i
));
1484 basic_block label_bb
= label_to_block (cfun
, label
);
1485 make_edge (bb
, label_bb
, 0);
1489 /*---------------------------------------------------------------------------
1491 ---------------------------------------------------------------------------*/
1493 /* Cleanup useless labels in basic blocks. This is something we wish
1494 to do early because it allows us to group case labels before creating
1495 the edges for the CFG, and it speeds up block statement iterators in
1496 all passes later on.
1497 We rerun this pass after CFG is created, to get rid of the labels that
1498 are no longer referenced. After then we do not run it any more, since
1499 (almost) no new labels should be created. */
1501 /* A map from basic block index to the leading label of that block. */
1507 /* True if the label is referenced from somewhere. */
1511 /* Given LABEL return the first label in the same basic block. */
1514 main_block_label (tree label
, label_record
*label_for_bb
)
1516 basic_block bb
= label_to_block (cfun
, label
);
1517 tree main_label
= label_for_bb
[bb
->index
].label
;
1519 /* label_to_block possibly inserted undefined label into the chain. */
1522 label_for_bb
[bb
->index
].label
= label
;
1526 label_for_bb
[bb
->index
].used
= true;
1530 /* Clean up redundant labels within the exception tree. */
1533 cleanup_dead_labels_eh (label_record
*label_for_bb
)
1540 if (cfun
->eh
== NULL
)
1543 for (i
= 1; vec_safe_iterate (cfun
->eh
->lp_array
, i
, &lp
); ++i
)
1544 if (lp
&& lp
->post_landing_pad
)
1546 lab
= main_block_label (lp
->post_landing_pad
, label_for_bb
);
1547 if (lab
!= lp
->post_landing_pad
)
1549 EH_LANDING_PAD_NR (lp
->post_landing_pad
) = 0;
1550 lp
->post_landing_pad
= lab
;
1551 EH_LANDING_PAD_NR (lab
) = lp
->index
;
1555 FOR_ALL_EH_REGION (r
)
1559 case ERT_MUST_NOT_THROW
:
1565 for (c
= r
->u
.eh_try
.first_catch
; c
; c
= c
->next_catch
)
1569 c
->label
= main_block_label (lab
, label_for_bb
);
1574 case ERT_ALLOWED_EXCEPTIONS
:
1575 lab
= r
->u
.allowed
.label
;
1577 r
->u
.allowed
.label
= main_block_label (lab
, label_for_bb
);
1583 /* Cleanup redundant labels. This is a three-step process:
1584 1) Find the leading label for each block.
1585 2) Redirect all references to labels to the leading labels.
1586 3) Cleanup all useless labels. */
1589 cleanup_dead_labels (void)
1592 label_record
*label_for_bb
= XCNEWVEC (struct label_record
,
1593 last_basic_block_for_fn (cfun
));
1595 /* Find a suitable label for each block. We use the first user-defined
1596 label if there is one, or otherwise just the first label we see. */
1597 FOR_EACH_BB_FN (bb
, cfun
)
1599 gimple_stmt_iterator i
;
1601 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); gsi_next (&i
))
1604 glabel
*label_stmt
= dyn_cast
<glabel
*> (gsi_stmt (i
));
1609 label
= gimple_label_label (label_stmt
);
1611 /* If we have not yet seen a label for the current block,
1612 remember this one and see if there are more labels. */
1613 if (!label_for_bb
[bb
->index
].label
)
1615 label_for_bb
[bb
->index
].label
= label
;
1619 /* If we did see a label for the current block already, but it
1620 is an artificially created label, replace it if the current
1621 label is a user defined label. */
1622 if (!DECL_ARTIFICIAL (label
)
1623 && DECL_ARTIFICIAL (label_for_bb
[bb
->index
].label
))
1625 label_for_bb
[bb
->index
].label
= label
;
1631 /* Now redirect all jumps/branches to the selected label.
1632 First do so for each block ending in a control statement. */
1633 FOR_EACH_BB_FN (bb
, cfun
)
1635 gimple
*stmt
= *gsi_last_bb (bb
);
1636 tree label
, new_label
;
1641 switch (gimple_code (stmt
))
1645 gcond
*cond_stmt
= as_a
<gcond
*> (stmt
);
1646 label
= gimple_cond_true_label (cond_stmt
);
1649 new_label
= main_block_label (label
, label_for_bb
);
1650 if (new_label
!= label
)
1651 gimple_cond_set_true_label (cond_stmt
, new_label
);
1654 label
= gimple_cond_false_label (cond_stmt
);
1657 new_label
= main_block_label (label
, label_for_bb
);
1658 if (new_label
!= label
)
1659 gimple_cond_set_false_label (cond_stmt
, new_label
);
1666 gswitch
*switch_stmt
= as_a
<gswitch
*> (stmt
);
1667 size_t i
, n
= gimple_switch_num_labels (switch_stmt
);
1669 /* Replace all destination labels. */
1670 for (i
= 0; i
< n
; ++i
)
1672 tree case_label
= gimple_switch_label (switch_stmt
, i
);
1673 label
= CASE_LABEL (case_label
);
1674 new_label
= main_block_label (label
, label_for_bb
);
1675 if (new_label
!= label
)
1676 CASE_LABEL (case_label
) = new_label
;
1683 gasm
*asm_stmt
= as_a
<gasm
*> (stmt
);
1684 int i
, n
= gimple_asm_nlabels (asm_stmt
);
1686 for (i
= 0; i
< n
; ++i
)
1688 tree cons
= gimple_asm_label_op (asm_stmt
, i
);
1689 tree label
= main_block_label (TREE_VALUE (cons
), label_for_bb
);
1690 TREE_VALUE (cons
) = label
;
1695 /* We have to handle gotos until they're removed, and we don't
1696 remove them until after we've created the CFG edges. */
1698 if (!computed_goto_p (stmt
))
1700 ggoto
*goto_stmt
= as_a
<ggoto
*> (stmt
);
1701 label
= gimple_goto_dest (goto_stmt
);
1702 new_label
= main_block_label (label
, label_for_bb
);
1703 if (new_label
!= label
)
1704 gimple_goto_set_dest (goto_stmt
, new_label
);
1708 case GIMPLE_TRANSACTION
:
1710 gtransaction
*txn
= as_a
<gtransaction
*> (stmt
);
1712 label
= gimple_transaction_label_norm (txn
);
1715 new_label
= main_block_label (label
, label_for_bb
);
1716 if (new_label
!= label
)
1717 gimple_transaction_set_label_norm (txn
, new_label
);
1720 label
= gimple_transaction_label_uninst (txn
);
1723 new_label
= main_block_label (label
, label_for_bb
);
1724 if (new_label
!= label
)
1725 gimple_transaction_set_label_uninst (txn
, new_label
);
1728 label
= gimple_transaction_label_over (txn
);
1731 new_label
= main_block_label (label
, label_for_bb
);
1732 if (new_label
!= label
)
1733 gimple_transaction_set_label_over (txn
, new_label
);
1743 /* Do the same for the exception region tree labels. */
1744 cleanup_dead_labels_eh (label_for_bb
);
1746 /* Finally, purge dead labels. All user-defined labels and labels that
1747 can be the target of non-local gotos and labels which have their
1748 address taken are preserved. */
1749 FOR_EACH_BB_FN (bb
, cfun
)
1751 gimple_stmt_iterator i
;
1752 tree label_for_this_bb
= label_for_bb
[bb
->index
].label
;
1754 if (!label_for_this_bb
)
1757 /* If the main label of the block is unused, we may still remove it. */
1758 if (!label_for_bb
[bb
->index
].used
)
1759 label_for_this_bb
= NULL
;
1761 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); )
1764 glabel
*label_stmt
= dyn_cast
<glabel
*> (gsi_stmt (i
));
1769 label
= gimple_label_label (label_stmt
);
1771 if (label
== label_for_this_bb
1772 || !DECL_ARTIFICIAL (label
)
1773 || DECL_NONLOCAL (label
)
1774 || FORCED_LABEL (label
))
1778 gcc_checking_assert (EH_LANDING_PAD_NR (label
) == 0);
1779 gsi_remove (&i
, true);
1784 free (label_for_bb
);
1787 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1788 the ones jumping to the same label.
1789 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1792 group_case_labels_stmt (gswitch
*stmt
)
1794 int old_size
= gimple_switch_num_labels (stmt
);
1795 int i
, next_index
, new_size
;
1796 basic_block default_bb
= NULL
;
1797 hash_set
<tree
> *removed_labels
= NULL
;
1799 default_bb
= gimple_switch_default_bb (cfun
, stmt
);
1801 /* Look for possible opportunities to merge cases. */
1803 while (i
< old_size
)
1805 tree base_case
, base_high
;
1806 basic_block base_bb
;
1808 base_case
= gimple_switch_label (stmt
, i
);
1810 gcc_assert (base_case
);
1811 base_bb
= label_to_block (cfun
, CASE_LABEL (base_case
));
1813 /* Discard cases that have the same destination as the default case or
1814 whose destination blocks have already been removed as unreachable. */
1816 || base_bb
== default_bb
1818 && removed_labels
->contains (CASE_LABEL (base_case
))))
1824 base_high
= CASE_HIGH (base_case
)
1825 ? CASE_HIGH (base_case
)
1826 : CASE_LOW (base_case
);
1829 /* Try to merge case labels. Break out when we reach the end
1830 of the label vector or when we cannot merge the next case
1831 label with the current one. */
1832 while (next_index
< old_size
)
1834 tree merge_case
= gimple_switch_label (stmt
, next_index
);
1835 basic_block merge_bb
= label_to_block (cfun
, CASE_LABEL (merge_case
));
1836 wide_int bhp1
= wi::to_wide (base_high
) + 1;
1838 /* Merge the cases if they jump to the same place,
1839 and their ranges are consecutive. */
1840 if (merge_bb
== base_bb
1841 && (removed_labels
== NULL
1842 || !removed_labels
->contains (CASE_LABEL (merge_case
)))
1843 && wi::to_wide (CASE_LOW (merge_case
)) == bhp1
)
1846 = (CASE_HIGH (merge_case
)
1847 ? CASE_HIGH (merge_case
) : CASE_LOW (merge_case
));
1848 CASE_HIGH (base_case
) = base_high
;
1855 /* Discard cases that have an unreachable destination block. */
1856 if (EDGE_COUNT (base_bb
->succs
) == 0
1857 && gimple_seq_unreachable_p (bb_seq (base_bb
))
1858 /* Don't optimize this if __builtin_unreachable () is the
1859 implicitly added one by the C++ FE too early, before
1860 -Wreturn-type can be diagnosed. We'll optimize it later
1861 during switchconv pass or any other cfg cleanup. */
1862 && (gimple_in_ssa_p (cfun
)
1863 || (LOCATION_LOCUS (gimple_location (last_nondebug_stmt (base_bb
)))
1864 != BUILTINS_LOCATION
)))
1866 edge base_edge
= find_edge (gimple_bb (stmt
), base_bb
);
1867 if (base_edge
!= NULL
)
1869 for (gimple_stmt_iterator gsi
= gsi_start_bb (base_bb
);
1870 !gsi_end_p (gsi
); gsi_next (&gsi
))
1871 if (glabel
*stmt
= dyn_cast
<glabel
*> (gsi_stmt (gsi
)))
1873 if (FORCED_LABEL (gimple_label_label (stmt
))
1874 || DECL_NONLOCAL (gimple_label_label (stmt
)))
1876 /* Forced/non-local labels aren't going to be removed,
1877 but they will be moved to some neighbouring basic
1878 block. If some later case label refers to one of
1879 those labels, we should throw that case away rather
1880 than keeping it around and refering to some random
1881 other basic block without an edge to it. */
1882 if (removed_labels
== NULL
)
1883 removed_labels
= new hash_set
<tree
>;
1884 removed_labels
->add (gimple_label_label (stmt
));
1889 remove_edge_and_dominated_blocks (base_edge
);
1896 gimple_switch_set_label (stmt
, new_size
,
1897 gimple_switch_label (stmt
, i
));
1902 gcc_assert (new_size
<= old_size
);
1904 if (new_size
< old_size
)
1905 gimple_switch_set_num_labels (stmt
, new_size
);
1907 delete removed_labels
;
1908 return new_size
< old_size
;
1911 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1912 and scan the sorted vector of cases. Combine the ones jumping to the
1916 group_case_labels (void)
1919 bool changed
= false;
1921 FOR_EACH_BB_FN (bb
, cfun
)
1923 if (gswitch
*stmt
= safe_dyn_cast
<gswitch
*> (*gsi_last_bb (bb
)))
1924 changed
|= group_case_labels_stmt (stmt
);
1930 /* Checks whether we can merge block B into block A. */
1933 gimple_can_merge_blocks_p (basic_block a
, basic_block b
)
1937 if (!single_succ_p (a
))
1940 if (single_succ_edge (a
)->flags
& EDGE_COMPLEX
)
1943 if (single_succ (a
) != b
)
1946 if (!single_pred_p (b
))
1949 if (a
== ENTRY_BLOCK_PTR_FOR_FN (cfun
)
1950 || b
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
1953 /* If A ends by a statement causing exceptions or something similar, we
1954 cannot merge the blocks. */
1955 stmt
= *gsi_last_bb (a
);
1956 if (stmt
&& stmt_ends_bb_p (stmt
))
1959 /* Examine the labels at the beginning of B. */
1960 for (gimple_stmt_iterator gsi
= gsi_start_bb (b
); !gsi_end_p (gsi
);
1964 glabel
*label_stmt
= dyn_cast
<glabel
*> (gsi_stmt (gsi
));
1967 lab
= gimple_label_label (label_stmt
);
1969 /* Do not remove user forced labels or for -O0 any user labels. */
1970 if (!DECL_ARTIFICIAL (lab
) && (!optimize
|| FORCED_LABEL (lab
)))
1974 /* Protect simple loop latches. We only want to avoid merging
1975 the latch with the loop header or with a block in another
1976 loop in this case. */
1978 && b
->loop_father
->latch
== b
1979 && loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES
)
1980 && (b
->loop_father
->header
== a
1981 || b
->loop_father
!= a
->loop_father
))
1984 /* It must be possible to eliminate all phi nodes in B. If ssa form
1985 is not up-to-date and a name-mapping is registered, we cannot eliminate
1986 any phis. Symbols marked for renaming are never a problem though. */
1987 for (gphi_iterator gsi
= gsi_start_phis (b
); !gsi_end_p (gsi
);
1990 gphi
*phi
= gsi
.phi ();
1991 /* Technically only new names matter. */
1992 if (name_registered_for_update_p (PHI_RESULT (phi
)))
1996 /* When not optimizing, don't merge if we'd lose goto_locus. */
1998 && single_succ_edge (a
)->goto_locus
!= UNKNOWN_LOCATION
)
2000 location_t goto_locus
= single_succ_edge (a
)->goto_locus
;
2001 gimple_stmt_iterator prev
, next
;
2002 prev
= gsi_last_nondebug_bb (a
);
2003 next
= gsi_after_labels (b
);
2004 if (!gsi_end_p (next
) && is_gimple_debug (gsi_stmt (next
)))
2005 gsi_next_nondebug (&next
);
2006 if ((gsi_end_p (prev
)
2007 || gimple_location (gsi_stmt (prev
)) != goto_locus
)
2008 && (gsi_end_p (next
)
2009 || gimple_location (gsi_stmt (next
)) != goto_locus
))
2016 /* Replaces all uses of NAME by VAL. */
2019 replace_uses_by (tree name
, tree val
)
2021 imm_use_iterator imm_iter
;
2026 FOR_EACH_IMM_USE_STMT (stmt
, imm_iter
, name
)
2028 /* Mark the block if we change the last stmt in it. */
2029 if (cfgcleanup_altered_bbs
2030 && stmt_ends_bb_p (stmt
))
2031 bitmap_set_bit (cfgcleanup_altered_bbs
, gimple_bb (stmt
)->index
);
2033 FOR_EACH_IMM_USE_ON_STMT (use
, imm_iter
)
2035 replace_exp (use
, val
);
2037 if (gimple_code (stmt
) == GIMPLE_PHI
)
2039 e
= gimple_phi_arg_edge (as_a
<gphi
*> (stmt
),
2040 PHI_ARG_INDEX_FROM_USE (use
));
2041 if (e
->flags
& EDGE_ABNORMAL
2042 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val
))
2044 /* This can only occur for virtual operands, since
2045 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
2046 would prevent replacement. */
2047 gcc_checking_assert (virtual_operand_p (name
));
2048 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val
) = 1;
2053 if (gimple_code (stmt
) != GIMPLE_PHI
)
2055 gimple_stmt_iterator gsi
= gsi_for_stmt (stmt
);
2056 gimple
*orig_stmt
= stmt
;
2059 /* FIXME. It shouldn't be required to keep TREE_CONSTANT
2060 on ADDR_EXPRs up-to-date on GIMPLE. Propagation will
2061 only change sth from non-invariant to invariant, and only
2062 when propagating constants. */
2063 if (is_gimple_min_invariant (val
))
2064 for (i
= 0; i
< gimple_num_ops (stmt
); i
++)
2066 tree op
= gimple_op (stmt
, i
);
2067 /* Operands may be empty here. For example, the labels
2068 of a GIMPLE_COND are nulled out following the creation
2069 of the corresponding CFG edges. */
2070 if (op
&& TREE_CODE (op
) == ADDR_EXPR
)
2071 recompute_tree_invariant_for_addr_expr (op
);
2074 if (fold_stmt (&gsi
))
2075 stmt
= gsi_stmt (gsi
);
2077 if (maybe_clean_or_replace_eh_stmt (orig_stmt
, stmt
))
2078 gimple_purge_dead_eh_edges (gimple_bb (stmt
));
2084 gcc_checking_assert (has_zero_uses (name
));
2086 /* Also update the trees stored in loop structures. */
2089 for (auto loop
: loops_list (cfun
, 0))
2090 substitute_in_loop_info (loop
, name
, val
);
2094 /* Merge block B into block A. */
2097 gimple_merge_blocks (basic_block a
, basic_block b
)
2099 gimple_stmt_iterator last
, gsi
;
2103 fprintf (dump_file
, "Merging blocks %d and %d\n", a
->index
, b
->index
);
2105 /* Remove all single-valued PHI nodes from block B of the form
2106 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
2107 gsi
= gsi_last_bb (a
);
2108 for (psi
= gsi_start_phis (b
); !gsi_end_p (psi
); )
2110 gimple
*phi
= gsi_stmt (psi
);
2111 tree def
= gimple_phi_result (phi
), use
= gimple_phi_arg_def (phi
, 0);
2113 bool may_replace_uses
= (virtual_operand_p (def
)
2114 || may_propagate_copy (def
, use
));
2116 /* In case we maintain loop closed ssa form, do not propagate arguments
2117 of loop exit phi nodes. */
2119 && loops_state_satisfies_p (LOOP_CLOSED_SSA
)
2120 && !virtual_operand_p (def
)
2121 && TREE_CODE (use
) == SSA_NAME
2122 && a
->loop_father
!= b
->loop_father
)
2123 may_replace_uses
= false;
2125 if (!may_replace_uses
)
2127 gcc_assert (!virtual_operand_p (def
));
2129 /* Note that just emitting the copies is fine -- there is no problem
2130 with ordering of phi nodes. This is because A is the single
2131 predecessor of B, therefore results of the phi nodes cannot
2132 appear as arguments of the phi nodes. */
2133 copy
= gimple_build_assign (def
, use
);
2134 gsi_insert_after (&gsi
, copy
, GSI_NEW_STMT
);
2135 remove_phi_node (&psi
, false);
2139 /* If we deal with a PHI for virtual operands, we can simply
2140 propagate these without fussing with folding or updating
2142 if (virtual_operand_p (def
))
2144 imm_use_iterator iter
;
2145 use_operand_p use_p
;
2148 FOR_EACH_IMM_USE_STMT (stmt
, iter
, def
)
2149 FOR_EACH_IMM_USE_ON_STMT (use_p
, iter
)
2150 SET_USE (use_p
, use
);
2152 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def
))
2153 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use
) = 1;
2156 replace_uses_by (def
, use
);
2158 remove_phi_node (&psi
, true);
2162 /* Ensure that B follows A. */
2163 move_block_after (b
, a
);
2165 gcc_assert (single_succ_edge (a
)->flags
& EDGE_FALLTHRU
);
2166 gcc_assert (!*gsi_last_bb (a
)
2167 || !stmt_ends_bb_p (*gsi_last_bb (a
)));
2169 /* Remove labels from B and set gimple_bb to A for other statements. */
2170 for (gsi
= gsi_start_bb (b
); !gsi_end_p (gsi
);)
2172 gimple
*stmt
= gsi_stmt (gsi
);
2173 if (glabel
*label_stmt
= dyn_cast
<glabel
*> (stmt
))
2175 tree label
= gimple_label_label (label_stmt
);
2178 gsi_remove (&gsi
, false);
2180 /* Now that we can thread computed gotos, we might have
2181 a situation where we have a forced label in block B
2182 However, the label at the start of block B might still be
2183 used in other ways (think about the runtime checking for
2184 Fortran assigned gotos). So we cannot just delete the
2185 label. Instead we move the label to the start of block A. */
2186 if (FORCED_LABEL (label
))
2188 gimple_stmt_iterator dest_gsi
= gsi_start_bb (a
);
2189 tree first_label
= NULL_TREE
;
2190 if (!gsi_end_p (dest_gsi
))
2191 if (glabel
*first_label_stmt
2192 = dyn_cast
<glabel
*> (gsi_stmt (dest_gsi
)))
2193 first_label
= gimple_label_label (first_label_stmt
);
2195 && (DECL_NONLOCAL (first_label
)
2196 || EH_LANDING_PAD_NR (first_label
) != 0))
2197 gsi_insert_after (&dest_gsi
, stmt
, GSI_NEW_STMT
);
2199 gsi_insert_before (&dest_gsi
, stmt
, GSI_NEW_STMT
);
2201 /* Other user labels keep around in a form of a debug stmt. */
2202 else if (!DECL_ARTIFICIAL (label
) && MAY_HAVE_DEBUG_BIND_STMTS
)
2204 gimple
*dbg
= gimple_build_debug_bind (label
,
2207 gimple_debug_bind_reset_value (dbg
);
2208 gsi_insert_before (&gsi
, dbg
, GSI_SAME_STMT
);
2211 lp_nr
= EH_LANDING_PAD_NR (label
);
2214 eh_landing_pad lp
= get_eh_landing_pad_from_number (lp_nr
);
2215 lp
->post_landing_pad
= NULL
;
2220 gimple_set_bb (stmt
, a
);
2225 /* When merging two BBs, if their counts are different, the larger count
2226 is selected as the new bb count. This is to handle inconsistent
2228 if (a
->loop_father
== b
->loop_father
)
2230 a
->count
= a
->count
.merge (b
->count
);
2233 /* Merge the sequences. */
2234 last
= gsi_last_bb (a
);
2235 gsi_insert_seq_after (&last
, bb_seq (b
), GSI_NEW_STMT
);
2236 set_bb_seq (b
, NULL
);
2238 if (cfgcleanup_altered_bbs
)
2239 bitmap_set_bit (cfgcleanup_altered_bbs
, a
->index
);
2243 /* Return the one of two successors of BB that is not reachable by a
2244 complex edge, if there is one. Else, return BB. We use
2245 this in optimizations that use post-dominators for their heuristics,
2246 to catch the cases in C++ where function calls are involved. */
2249 single_noncomplex_succ (basic_block bb
)
2252 if (EDGE_COUNT (bb
->succs
) != 2)
2255 e0
= EDGE_SUCC (bb
, 0);
2256 e1
= EDGE_SUCC (bb
, 1);
2257 if (e0
->flags
& EDGE_COMPLEX
)
2259 if (e1
->flags
& EDGE_COMPLEX
)
2265 /* T is CALL_EXPR. Set current_function_calls_* flags. */
2268 notice_special_calls (gcall
*call
)
2270 int flags
= gimple_call_flags (call
);
2272 if (flags
& ECF_MAY_BE_ALLOCA
)
2273 cfun
->calls_alloca
= true;
2274 if (flags
& ECF_RETURNS_TWICE
)
2275 cfun
->calls_setjmp
= true;
2279 /* Clear flags set by notice_special_calls. Used by dead code removal
2280 to update the flags. */
2283 clear_special_calls (void)
2285 cfun
->calls_alloca
= false;
2286 cfun
->calls_setjmp
= false;
2289 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
2292 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb
)
2294 /* Since this block is no longer reachable, we can just delete all
2295 of its PHI nodes. */
2296 remove_phi_nodes (bb
);
2298 /* Remove edges to BB's successors. */
2299 while (EDGE_COUNT (bb
->succs
) > 0)
2300 remove_edge (EDGE_SUCC (bb
, 0));
2304 /* Remove statements of basic block BB. */
2307 remove_bb (basic_block bb
)
2309 gimple_stmt_iterator i
;
2313 fprintf (dump_file
, "Removing basic block %d\n", bb
->index
);
2314 if (dump_flags
& TDF_DETAILS
)
2316 dump_bb (dump_file
, bb
, 0, TDF_BLOCKS
);
2317 fprintf (dump_file
, "\n");
2323 class loop
*loop
= bb
->loop_father
;
2325 /* If a loop gets removed, clean up the information associated
2327 if (loop
->latch
== bb
2328 || loop
->header
== bb
)
2329 free_numbers_of_iterations_estimates (loop
);
2332 /* Remove all the instructions in the block. */
2333 if (bb_seq (bb
) != NULL
)
2335 /* Walk backwards so as to get a chance to substitute all
2336 released DEFs into debug stmts. See
2337 eliminate_unnecessary_stmts() in tree-ssa-dce.cc for more
2339 for (i
= gsi_last_bb (bb
); !gsi_end_p (i
);)
2341 gimple
*stmt
= gsi_stmt (i
);
2342 glabel
*label_stmt
= dyn_cast
<glabel
*> (stmt
);
2344 && (FORCED_LABEL (gimple_label_label (label_stmt
))
2345 || DECL_NONLOCAL (gimple_label_label (label_stmt
))))
2348 gimple_stmt_iterator new_gsi
;
2350 /* A non-reachable non-local label may still be referenced.
2351 But it no longer needs to carry the extra semantics of
2353 if (DECL_NONLOCAL (gimple_label_label (label_stmt
)))
2355 DECL_NONLOCAL (gimple_label_label (label_stmt
)) = 0;
2356 FORCED_LABEL (gimple_label_label (label_stmt
)) = 1;
2359 new_bb
= bb
->prev_bb
;
2360 /* Don't move any labels into ENTRY block. */
2361 if (new_bb
== ENTRY_BLOCK_PTR_FOR_FN (cfun
))
2363 new_bb
= single_succ (new_bb
);
2364 gcc_assert (new_bb
!= bb
);
2366 if ((unsigned) bb
->index
< bb_to_omp_idx
.length ()
2367 && ((unsigned) new_bb
->index
>= bb_to_omp_idx
.length ()
2368 || (bb_to_omp_idx
[bb
->index
]
2369 != bb_to_omp_idx
[new_bb
->index
])))
2371 /* During cfg pass make sure to put orphaned labels
2372 into the right OMP region. */
2376 FOR_EACH_VEC_ELT (bb_to_omp_idx
, i
, idx
)
2377 if (i
>= NUM_FIXED_BLOCKS
2378 && idx
== bb_to_omp_idx
[bb
->index
]
2379 && i
!= (unsigned) bb
->index
)
2381 new_bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
2386 new_bb
= single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun
));
2387 gcc_assert (new_bb
!= bb
);
2390 new_gsi
= gsi_after_labels (new_bb
);
2391 gsi_remove (&i
, false);
2392 gsi_insert_before (&new_gsi
, stmt
, GSI_NEW_STMT
);
2396 /* Release SSA definitions. */
2397 release_defs (stmt
);
2398 gsi_remove (&i
, true);
2402 i
= gsi_last_bb (bb
);
2408 if ((unsigned) bb
->index
< bb_to_omp_idx
.length ())
2409 bb_to_omp_idx
[bb
->index
] = -1;
2410 remove_phi_nodes_and_edges_for_unreachable_block (bb
);
2411 bb
->il
.gimple
.seq
= NULL
;
2412 bb
->il
.gimple
.phi_nodes
= NULL
;
2416 /* Given a basic block BB and a value VAL for use in the final statement
2417 of the block (if a GIMPLE_COND, GIMPLE_SWITCH, or computed goto), return
2418 the edge that will be taken out of the block.
2419 If VAL is NULL_TREE, then the current value of the final statement's
2420 predicate or index is used.
2421 If the value does not match a unique edge, NULL is returned. */
2424 find_taken_edge (basic_block bb
, tree val
)
2428 stmt
= *gsi_last_bb (bb
);
2430 /* Handle ENTRY and EXIT. */
2434 else if (gimple_code (stmt
) == GIMPLE_COND
)
2435 return find_taken_edge_cond_expr (as_a
<gcond
*> (stmt
), val
);
2437 else if (gimple_code (stmt
) == GIMPLE_SWITCH
)
2438 return find_taken_edge_switch_expr (as_a
<gswitch
*> (stmt
), val
);
2440 else if (computed_goto_p (stmt
))
2442 /* Only optimize if the argument is a label, if the argument is
2443 not a label then we cannot construct a proper CFG.
2445 It may be the case that we only need to allow the LABEL_REF to
2446 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
2447 appear inside a LABEL_EXPR just to be safe. */
2449 && (TREE_CODE (val
) == ADDR_EXPR
|| TREE_CODE (val
) == LABEL_EXPR
)
2450 && TREE_CODE (TREE_OPERAND (val
, 0)) == LABEL_DECL
)
2451 return find_taken_edge_computed_goto (bb
, TREE_OPERAND (val
, 0));
2454 /* Otherwise we only know the taken successor edge if it's unique. */
2455 return single_succ_p (bb
) ? single_succ_edge (bb
) : NULL
;
2458 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
2459 statement, determine which of the outgoing edges will be taken out of the
2460 block. Return NULL if either edge may be taken. */
2463 find_taken_edge_computed_goto (basic_block bb
, tree val
)
2468 dest
= label_to_block (cfun
, val
);
2470 e
= find_edge (bb
, dest
);
2472 /* It's possible for find_edge to return NULL here on invalid code
2473 that abuses the labels-as-values extension (e.g. code that attempts to
2474 jump *between* functions via stored labels-as-values; PR 84136).
2475 If so, then we simply return that NULL for the edge.
2476 We don't currently have a way of detecting such invalid code, so we
2477 can't assert that it was the case when a NULL edge occurs here. */
2482 /* Given COND_STMT and a constant value VAL for use as the predicate,
2483 determine which of the two edges will be taken out of
2484 the statement's block. Return NULL if either edge may be taken.
2485 If VAL is NULL_TREE, then the current value of COND_STMT's predicate
2489 find_taken_edge_cond_expr (const gcond
*cond_stmt
, tree val
)
2491 edge true_edge
, false_edge
;
2493 if (val
== NULL_TREE
)
2495 /* Use the current value of the predicate. */
2496 if (gimple_cond_true_p (cond_stmt
))
2497 val
= integer_one_node
;
2498 else if (gimple_cond_false_p (cond_stmt
))
2499 val
= integer_zero_node
;
2503 else if (TREE_CODE (val
) != INTEGER_CST
)
2506 extract_true_false_edges_from_block (gimple_bb (cond_stmt
),
2507 &true_edge
, &false_edge
);
2509 return (integer_zerop (val
) ? false_edge
: true_edge
);
2512 /* Given SWITCH_STMT and an INTEGER_CST VAL for use as the index, determine
2513 which edge will be taken out of the statement's block. Return NULL if any
2515 If VAL is NULL_TREE, then the current value of SWITCH_STMT's index
2519 find_taken_edge_switch_expr (const gswitch
*switch_stmt
, tree val
)
2521 basic_block dest_bb
;
2525 if (gimple_switch_num_labels (switch_stmt
) == 1)
2526 taken_case
= gimple_switch_default_label (switch_stmt
);
2529 if (val
== NULL_TREE
)
2530 val
= gimple_switch_index (switch_stmt
);
2531 if (TREE_CODE (val
) != INTEGER_CST
)
2534 taken_case
= find_case_label_for_value (switch_stmt
, val
);
2536 dest_bb
= label_to_block (cfun
, CASE_LABEL (taken_case
));
2538 e
= find_edge (gimple_bb (switch_stmt
), dest_bb
);
2544 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
2545 We can make optimal use here of the fact that the case labels are
2546 sorted: We can do a binary search for a case matching VAL. */
2549 find_case_label_for_value (const gswitch
*switch_stmt
, tree val
)
2551 size_t low
, high
, n
= gimple_switch_num_labels (switch_stmt
);
2552 tree default_case
= gimple_switch_default_label (switch_stmt
);
2554 for (low
= 0, high
= n
; high
- low
> 1; )
2556 size_t i
= (high
+ low
) / 2;
2557 tree t
= gimple_switch_label (switch_stmt
, i
);
2560 /* Cache the result of comparing CASE_LOW and val. */
2561 cmp
= tree_int_cst_compare (CASE_LOW (t
), val
);
2568 if (CASE_HIGH (t
) == NULL
)
2570 /* A singe-valued case label. */
2576 /* A case range. We can only handle integer ranges. */
2577 if (cmp
<= 0 && tree_int_cst_compare (CASE_HIGH (t
), val
) >= 0)
2582 return default_case
;
2586 /* Dump a basic block on stderr. */
2589 gimple_debug_bb (basic_block bb
)
2591 dump_bb (stderr
, bb
, 0, TDF_VOPS
|TDF_MEMSYMS
|TDF_BLOCKS
);
2595 /* Dump basic block with index N on stderr. */
2598 gimple_debug_bb_n (int n
)
2600 gimple_debug_bb (BASIC_BLOCK_FOR_FN (cfun
, n
));
2601 return BASIC_BLOCK_FOR_FN (cfun
, n
);
2605 /* Dump the CFG on stderr.
2607 FLAGS are the same used by the tree dumping functions
2608 (see TDF_* in dumpfile.h). */
2611 gimple_debug_cfg (dump_flags_t flags
)
2613 gimple_dump_cfg (stderr
, flags
);
2617 /* Dump the program showing basic block boundaries on the given FILE.
2619 FLAGS are the same used by the tree dumping functions (see TDF_* in
2623 gimple_dump_cfg (FILE *file
, dump_flags_t flags
)
2625 if (flags
& TDF_DETAILS
)
2627 dump_function_header (file
, current_function_decl
, flags
);
2628 fprintf (file
, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2629 n_basic_blocks_for_fn (cfun
), n_edges_for_fn (cfun
),
2630 last_basic_block_for_fn (cfun
));
2632 brief_dump_cfg (file
, flags
);
2633 fprintf (file
, "\n");
2636 if (flags
& TDF_STATS
)
2637 dump_cfg_stats (file
);
2639 dump_function_to_file (current_function_decl
, file
, flags
| TDF_BLOCKS
);
2643 /* Dump CFG statistics on FILE. */
2646 dump_cfg_stats (FILE *file
)
2648 static long max_num_merged_labels
= 0;
2649 unsigned long size
, total
= 0;
2652 const char * const fmt_str
= "%-30s%-13s%12s\n";
2653 const char * const fmt_str_1
= "%-30s%13d" PRsa (11) "\n";
2654 const char * const fmt_str_2
= "%-30s%13ld" PRsa (11) "\n";
2655 const char * const fmt_str_3
= "%-43s" PRsa (11) "\n";
2656 const char *funcname
= current_function_name ();
2658 fprintf (file
, "\nCFG Statistics for %s\n\n", funcname
);
2660 fprintf (file
, "---------------------------------------------------------\n");
2661 fprintf (file
, fmt_str
, "", " Number of ", "Memory");
2662 fprintf (file
, fmt_str
, "", " instances ", "used ");
2663 fprintf (file
, "---------------------------------------------------------\n");
2665 size
= n_basic_blocks_for_fn (cfun
) * sizeof (struct basic_block_def
);
2667 fprintf (file
, fmt_str_1
, "Basic blocks", n_basic_blocks_for_fn (cfun
),
2668 SIZE_AMOUNT (size
));
2671 FOR_EACH_BB_FN (bb
, cfun
)
2672 num_edges
+= EDGE_COUNT (bb
->succs
);
2673 size
= num_edges
* sizeof (class edge_def
);
2675 fprintf (file
, fmt_str_2
, "Edges", num_edges
, SIZE_AMOUNT (size
));
2677 fprintf (file
, "---------------------------------------------------------\n");
2678 fprintf (file
, fmt_str_3
, "Total memory used by CFG data",
2679 SIZE_AMOUNT (total
));
2680 fprintf (file
, "---------------------------------------------------------\n");
2681 fprintf (file
, "\n");
2683 if (cfg_stats
.num_merged_labels
> max_num_merged_labels
)
2684 max_num_merged_labels
= cfg_stats
.num_merged_labels
;
2686 fprintf (file
, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2687 cfg_stats
.num_merged_labels
, max_num_merged_labels
);
2689 fprintf (file
, "\n");
2693 /* Dump CFG statistics on stderr. Keep extern so that it's always
2694 linked in the final executable. */
2697 debug_cfg_stats (void)
2699 dump_cfg_stats (stderr
);
2702 /*---------------------------------------------------------------------------
2703 Miscellaneous helpers
2704 ---------------------------------------------------------------------------*/
2706 /* Return true if T, a GIMPLE_CALL, can make an abnormal transfer of control
2707 flow. Transfers of control flow associated with EH are excluded. */
2710 call_can_make_abnormal_goto (gimple
*t
)
2712 /* If the function has no non-local labels, then a call cannot make an
2713 abnormal transfer of control. */
2714 if (!cfun
->has_nonlocal_label
2715 && !cfun
->calls_setjmp
)
2718 /* Likewise if the call has no side effects. */
2719 if (!gimple_has_side_effects (t
))
2722 /* Likewise if the called function is leaf. */
2723 if (gimple_call_flags (t
) & ECF_LEAF
)
2730 /* Return true if T can make an abnormal transfer of control flow.
2731 Transfers of control flow associated with EH are excluded. */
2734 stmt_can_make_abnormal_goto (gimple
*t
)
2736 if (computed_goto_p (t
))
2738 if (is_gimple_call (t
))
2739 return call_can_make_abnormal_goto (t
);
2744 /* Return true if T represents a stmt that always transfers control. */
2747 is_ctrl_stmt (gimple
*t
)
2749 switch (gimple_code (t
))
2763 /* Return true if T is a statement that may alter the flow of control
2764 (e.g., a call to a non-returning function). */
2767 is_ctrl_altering_stmt (gimple
*t
)
2771 switch (gimple_code (t
))
2774 /* Per stmt call flag indicates whether the call could alter
2776 if (gimple_call_ctrl_altering_p (t
))
2780 case GIMPLE_EH_DISPATCH
:
2781 /* EH_DISPATCH branches to the individual catch handlers at
2782 this level of a try or allowed-exceptions region. It can
2783 fallthru to the next statement as well. */
2787 if (gimple_asm_nlabels (as_a
<gasm
*> (t
)) > 0)
2792 /* OpenMP directives alter control flow. */
2795 case GIMPLE_TRANSACTION
:
2796 /* A transaction start alters control flow. */
2803 /* If a statement can throw, it alters control flow. */
2804 return stmt_can_throw_internal (cfun
, t
);
2808 /* Return true if T is a simple local goto. */
2811 simple_goto_p (gimple
*t
)
2813 return (gimple_code (t
) == GIMPLE_GOTO
2814 && TREE_CODE (gimple_goto_dest (t
)) == LABEL_DECL
);
2818 /* Return true if STMT should start a new basic block. PREV_STMT is
2819 the statement preceding STMT. It is used when STMT is a label or a
2820 case label. Labels should only start a new basic block if their
2821 previous statement wasn't a label. Otherwise, sequence of labels
2822 would generate unnecessary basic blocks that only contain a single
2826 stmt_starts_bb_p (gimple
*stmt
, gimple
*prev_stmt
)
2831 /* PREV_STMT is only set to a debug stmt if the debug stmt is before
2832 any nondebug stmts in the block. We don't want to start another
2833 block in this case: the debug stmt will already have started the
2834 one STMT would start if we weren't outputting debug stmts. */
2835 if (prev_stmt
&& is_gimple_debug (prev_stmt
))
2838 /* Labels start a new basic block only if the preceding statement
2839 wasn't a label of the same type. This prevents the creation of
2840 consecutive blocks that have nothing but a single label. */
2841 if (glabel
*label_stmt
= dyn_cast
<glabel
*> (stmt
))
2843 /* Nonlocal and computed GOTO targets always start a new block. */
2844 if (DECL_NONLOCAL (gimple_label_label (label_stmt
))
2845 || FORCED_LABEL (gimple_label_label (label_stmt
)))
2848 if (glabel
*plabel
= safe_dyn_cast
<glabel
*> (prev_stmt
))
2850 if (DECL_NONLOCAL (gimple_label_label (plabel
))
2851 || !DECL_ARTIFICIAL (gimple_label_label (plabel
)))
2854 cfg_stats
.num_merged_labels
++;
2860 else if (gimple_code (stmt
) == GIMPLE_CALL
)
2862 if (gimple_call_flags (stmt
) & ECF_RETURNS_TWICE
)
2863 /* setjmp acts similar to a nonlocal GOTO target and thus should
2864 start a new block. */
2866 if (gimple_call_internal_p (stmt
, IFN_PHI
)
2868 && gimple_code (prev_stmt
) != GIMPLE_LABEL
2869 && (gimple_code (prev_stmt
) != GIMPLE_CALL
2870 || ! gimple_call_internal_p (prev_stmt
, IFN_PHI
)))
2871 /* PHI nodes start a new block unless preceeded by a label
2880 /* Return true if T should end a basic block. */
2883 stmt_ends_bb_p (gimple
*t
)
2885 return is_ctrl_stmt (t
) || is_ctrl_altering_stmt (t
);
2888 /* Remove block annotations and other data structures. */
2891 delete_tree_cfg_annotations (struct function
*fn
)
2893 vec_free (label_to_block_map_for_fn (fn
));
2896 /* Return the virtual phi in BB. */
2899 get_virtual_phi (basic_block bb
)
2901 for (gphi_iterator gsi
= gsi_start_phis (bb
);
2905 gphi
*phi
= gsi
.phi ();
2907 if (virtual_operand_p (PHI_RESULT (phi
)))
2914 /* Return the first statement in basic block BB. */
2917 first_stmt (basic_block bb
)
2919 gimple_stmt_iterator i
= gsi_start_bb (bb
);
2920 gimple
*stmt
= NULL
;
2922 while (!gsi_end_p (i
) && is_gimple_debug ((stmt
= gsi_stmt (i
))))
2930 /* Return the first non-label statement in basic block BB. */
2933 first_non_label_stmt (basic_block bb
)
2935 gimple_stmt_iterator i
= gsi_start_bb (bb
);
2936 while (!gsi_end_p (i
) && gimple_code (gsi_stmt (i
)) == GIMPLE_LABEL
)
2938 return !gsi_end_p (i
) ? gsi_stmt (i
) : NULL
;
2941 /* Return the last statement in basic block BB. */
2944 last_nondebug_stmt (basic_block bb
)
2946 gimple_stmt_iterator i
= gsi_last_bb (bb
);
2947 gimple
*stmt
= NULL
;
2949 while (!gsi_end_p (i
) && is_gimple_debug ((stmt
= gsi_stmt (i
))))
2957 /* Return the last statement of an otherwise empty block. Return NULL
2958 if the block is totally empty, or if it contains more than one
2962 last_and_only_stmt (basic_block bb
)
2964 gimple_stmt_iterator i
= gsi_last_nondebug_bb (bb
);
2965 gimple
*last
, *prev
;
2970 last
= gsi_stmt (i
);
2971 gsi_prev_nondebug (&i
);
2975 /* Empty statements should no longer appear in the instruction stream.
2976 Everything that might have appeared before should be deleted by
2977 remove_useless_stmts, and the optimizers should just gsi_remove
2978 instead of smashing with build_empty_stmt.
2980 Thus the only thing that should appear here in a block containing
2981 one executable statement is a label. */
2982 prev
= gsi_stmt (i
);
2983 if (gimple_code (prev
) == GIMPLE_LABEL
)
2989 /* Returns the basic block after which the new basic block created
2990 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2991 near its "logical" location. This is of most help to humans looking
2992 at debugging dumps. */
2995 split_edge_bb_loc (edge edge_in
)
2997 basic_block dest
= edge_in
->dest
;
2998 basic_block dest_prev
= dest
->prev_bb
;
3002 edge e
= find_edge (dest_prev
, dest
);
3003 if (e
&& !(e
->flags
& EDGE_COMPLEX
))
3004 return edge_in
->src
;
3009 /* Split a (typically critical) edge EDGE_IN. Return the new block.
3010 Abort on abnormal edges. */
3013 gimple_split_edge (edge edge_in
)
3015 basic_block new_bb
, after_bb
, dest
;
3018 /* Abnormal edges cannot be split. */
3019 gcc_assert (!(edge_in
->flags
& EDGE_ABNORMAL
));
3021 dest
= edge_in
->dest
;
3023 after_bb
= split_edge_bb_loc (edge_in
);
3025 new_bb
= create_empty_bb (after_bb
);
3026 new_bb
->count
= edge_in
->count ();
3028 /* We want to avoid re-allocating PHIs when we first
3029 add the fallthru edge from new_bb to dest but we also
3030 want to avoid changing PHI argument order when
3031 first redirecting edge_in away from dest. The former
3032 avoids changing PHI argument order by adding them
3033 last and then the redirection swapping it back into
3034 place by means of unordered remove.
3035 So hack around things by temporarily removing all PHIs
3036 from the destination during the edge redirection and then
3037 making sure the edges stay in order. */
3038 gimple_seq saved_phis
= phi_nodes (dest
);
3039 unsigned old_dest_idx
= edge_in
->dest_idx
;
3040 set_phi_nodes (dest
, NULL
);
3041 new_edge
= make_single_succ_edge (new_bb
, dest
, EDGE_FALLTHRU
);
3042 e
= redirect_edge_and_branch (edge_in
, new_bb
);
3043 gcc_assert (e
== edge_in
&& new_edge
->dest_idx
== old_dest_idx
);
3044 /* set_phi_nodes sets the BB of the PHI nodes, so do it manually here. */
3045 dest
->il
.gimple
.phi_nodes
= saved_phis
;
3051 /* Verify properties of the address expression T whose base should be
3052 TREE_ADDRESSABLE if VERIFY_ADDRESSABLE is true. */
3055 verify_address (tree t
, bool verify_addressable
)
3058 bool old_side_effects
;
3060 bool new_side_effects
;
3062 old_constant
= TREE_CONSTANT (t
);
3063 old_side_effects
= TREE_SIDE_EFFECTS (t
);
3065 recompute_tree_invariant_for_addr_expr (t
);
3066 new_side_effects
= TREE_SIDE_EFFECTS (t
);
3067 new_constant
= TREE_CONSTANT (t
);
3069 if (old_constant
!= new_constant
)
3071 error ("constant not recomputed when %<ADDR_EXPR%> changed");
3074 if (old_side_effects
!= new_side_effects
)
3076 error ("side effects not recomputed when %<ADDR_EXPR%> changed");
3080 tree base
= TREE_OPERAND (t
, 0);
3081 while (handled_component_p (base
))
3082 base
= TREE_OPERAND (base
, 0);
3085 || TREE_CODE (base
) == PARM_DECL
3086 || TREE_CODE (base
) == RESULT_DECL
))
3089 if (verify_addressable
&& !TREE_ADDRESSABLE (base
))
3091 error ("address taken but %<TREE_ADDRESSABLE%> bit not set");
3099 /* Verify if EXPR is a valid GIMPLE reference expression. If
3100 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
3101 if there is an error, otherwise false. */
3104 verify_types_in_gimple_reference (tree expr
, bool require_lvalue
)
3106 const char *code_name
= get_tree_code_name (TREE_CODE (expr
));
3108 if (TREE_CODE (expr
) == REALPART_EXPR
3109 || TREE_CODE (expr
) == IMAGPART_EXPR
3110 || TREE_CODE (expr
) == BIT_FIELD_REF
3111 || TREE_CODE (expr
) == VIEW_CONVERT_EXPR
)
3113 tree op
= TREE_OPERAND (expr
, 0);
3114 if (TREE_CODE (expr
) != VIEW_CONVERT_EXPR
3115 && !is_gimple_reg_type (TREE_TYPE (expr
)))
3117 error ("non-scalar %qs", code_name
);
3121 if (TREE_CODE (expr
) == BIT_FIELD_REF
)
3123 tree t1
= TREE_OPERAND (expr
, 1);
3124 tree t2
= TREE_OPERAND (expr
, 2);
3125 poly_uint64 size
, bitpos
;
3126 if (!poly_int_tree_p (t1
, &size
)
3127 || !poly_int_tree_p (t2
, &bitpos
)
3128 || !types_compatible_p (bitsizetype
, TREE_TYPE (t1
))
3129 || !types_compatible_p (bitsizetype
, TREE_TYPE (t2
)))
3131 error ("invalid position or size operand to %qs", code_name
);
3134 if (INTEGRAL_TYPE_P (TREE_TYPE (expr
))
3135 && maybe_ne (TYPE_PRECISION (TREE_TYPE (expr
)), size
))
3137 error ("integral result type precision does not match "
3138 "field size of %qs", code_name
);
3141 else if (!INTEGRAL_TYPE_P (TREE_TYPE (expr
))
3142 && TYPE_MODE (TREE_TYPE (expr
)) != BLKmode
3143 && maybe_ne (GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr
))),
3146 error ("mode size of non-integral result does not "
3147 "match field size of %qs",
3151 if (INTEGRAL_TYPE_P (TREE_TYPE (op
))
3152 && !type_has_mode_precision_p (TREE_TYPE (op
)))
3154 error ("%qs of non-mode-precision operand", code_name
);
3157 if (!AGGREGATE_TYPE_P (TREE_TYPE (op
))
3158 && maybe_gt (size
+ bitpos
,
3159 tree_to_poly_uint64 (TYPE_SIZE (TREE_TYPE (op
)))))
3161 error ("position plus size exceeds size of referenced object in "
3167 if ((TREE_CODE (expr
) == REALPART_EXPR
3168 || TREE_CODE (expr
) == IMAGPART_EXPR
)
3169 && !useless_type_conversion_p (TREE_TYPE (expr
),
3170 TREE_TYPE (TREE_TYPE (op
))))
3172 error ("type mismatch in %qs reference", code_name
);
3173 debug_generic_stmt (TREE_TYPE (expr
));
3174 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op
)));
3178 if (TREE_CODE (expr
) == VIEW_CONVERT_EXPR
)
3180 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
3181 that their operand is not a register an invariant when
3182 requiring an lvalue (this usually means there is a SRA or IPA-SRA
3183 bug). Otherwise there is nothing to verify, gross mismatches at
3184 most invoke undefined behavior. */
3186 && (is_gimple_reg (op
) || is_gimple_min_invariant (op
)))
3188 error ("conversion of %qs on the left hand side of %qs",
3189 get_tree_code_name (TREE_CODE (op
)), code_name
);
3190 debug_generic_stmt (expr
);
3193 else if (is_gimple_reg (op
)
3194 && TYPE_SIZE (TREE_TYPE (expr
)) != TYPE_SIZE (TREE_TYPE (op
)))
3196 error ("conversion of register to a different size in %qs",
3198 debug_generic_stmt (expr
);
3206 bool require_non_reg
= false;
3207 while (handled_component_p (expr
))
3209 require_non_reg
= true;
3210 code_name
= get_tree_code_name (TREE_CODE (expr
));
3212 if (TREE_CODE (expr
) == REALPART_EXPR
3213 || TREE_CODE (expr
) == IMAGPART_EXPR
3214 || TREE_CODE (expr
) == BIT_FIELD_REF
)
3216 error ("non-top-level %qs", code_name
);
3220 tree op
= TREE_OPERAND (expr
, 0);
3222 if (TREE_CODE (expr
) == ARRAY_REF
3223 || TREE_CODE (expr
) == ARRAY_RANGE_REF
)
3225 if (!is_gimple_val (TREE_OPERAND (expr
, 1))
3226 || (TREE_OPERAND (expr
, 2)
3227 && !is_gimple_val (TREE_OPERAND (expr
, 2)))
3228 || (TREE_OPERAND (expr
, 3)
3229 && !is_gimple_val (TREE_OPERAND (expr
, 3))))
3231 error ("invalid operands to %qs", code_name
);
3232 debug_generic_stmt (expr
);
3237 /* Verify if the reference array element types are compatible. */
3238 if (TREE_CODE (expr
) == ARRAY_REF
3239 && !useless_type_conversion_p (TREE_TYPE (expr
),
3240 TREE_TYPE (TREE_TYPE (op
))))
3242 error ("type mismatch in %qs", code_name
);
3243 debug_generic_stmt (TREE_TYPE (expr
));
3244 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op
)));
3247 if (TREE_CODE (expr
) == ARRAY_RANGE_REF
3248 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr
)),
3249 TREE_TYPE (TREE_TYPE (op
))))
3251 error ("type mismatch in %qs", code_name
);
3252 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr
)));
3253 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op
)));
3257 if (TREE_CODE (expr
) == COMPONENT_REF
)
3259 if (TREE_OPERAND (expr
, 2)
3260 && !is_gimple_val (TREE_OPERAND (expr
, 2)))
3262 error ("invalid %qs offset operator", code_name
);
3265 if (!useless_type_conversion_p (TREE_TYPE (expr
),
3266 TREE_TYPE (TREE_OPERAND (expr
, 1))))
3268 error ("type mismatch in %qs", code_name
);
3269 debug_generic_stmt (TREE_TYPE (expr
));
3270 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr
, 1)));
3278 code_name
= get_tree_code_name (TREE_CODE (expr
));
3280 if (TREE_CODE (expr
) == MEM_REF
)
3282 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr
, 0))
3283 || (TREE_CODE (TREE_OPERAND (expr
, 0)) == ADDR_EXPR
3284 && verify_address (TREE_OPERAND (expr
, 0), false)))
3286 error ("invalid address operand in %qs", code_name
);
3287 debug_generic_stmt (expr
);
3290 if (!poly_int_tree_p (TREE_OPERAND (expr
, 1))
3291 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr
, 1))))
3293 error ("invalid offset operand in %qs", code_name
);
3294 debug_generic_stmt (expr
);
3297 if (MR_DEPENDENCE_CLIQUE (expr
) != 0
3298 && MR_DEPENDENCE_CLIQUE (expr
) > cfun
->last_clique
)
3300 error ("invalid clique in %qs", code_name
);
3301 debug_generic_stmt (expr
);
3305 else if (TREE_CODE (expr
) == TARGET_MEM_REF
)
3307 if (!TMR_BASE (expr
)
3308 || !is_gimple_mem_ref_addr (TMR_BASE (expr
))
3309 || (TREE_CODE (TMR_BASE (expr
)) == ADDR_EXPR
3310 && verify_address (TMR_BASE (expr
), false)))
3312 error ("invalid address operand in %qs", code_name
);
3315 if (!TMR_OFFSET (expr
)
3316 || !poly_int_tree_p (TMR_OFFSET (expr
))
3317 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr
))))
3319 error ("invalid offset operand in %qs", code_name
);
3320 debug_generic_stmt (expr
);
3323 if (MR_DEPENDENCE_CLIQUE (expr
) != 0
3324 && MR_DEPENDENCE_CLIQUE (expr
) > cfun
->last_clique
)
3326 error ("invalid clique in %qs", code_name
);
3327 debug_generic_stmt (expr
);
3331 else if (INDIRECT_REF_P (expr
))
3333 error ("%qs in gimple IL", code_name
);
3334 debug_generic_stmt (expr
);
3337 else if (require_non_reg
3338 && (is_gimple_reg (expr
)
3339 || (is_gimple_min_invariant (expr
)
3340 /* STRING_CSTs are representatives of the string table
3341 entry which lives in memory. */
3342 && TREE_CODE (expr
) != STRING_CST
)))
3344 error ("%qs as base where non-register is required", code_name
);
3345 debug_generic_stmt (expr
);
3350 && (is_gimple_reg (expr
) || is_gimple_min_invariant (expr
)))
3353 if (TREE_CODE (expr
) != SSA_NAME
&& is_gimple_id (expr
))
3356 if (TREE_CODE (expr
) != TARGET_MEM_REF
3357 && TREE_CODE (expr
) != MEM_REF
)
3359 error ("invalid expression for min lvalue");
3366 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3367 list of pointer-to types that is trivially convertible to DEST. */
3370 one_pointer_to_useless_type_conversion_p (tree dest
, tree src_obj
)
3374 if (!TYPE_POINTER_TO (src_obj
))
3377 for (src
= TYPE_POINTER_TO (src_obj
); src
; src
= TYPE_NEXT_PTR_TO (src
))
3378 if (useless_type_conversion_p (dest
, src
))
3384 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3385 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3388 valid_fixed_convert_types_p (tree type1
, tree type2
)
3390 return (FIXED_POINT_TYPE_P (type1
)
3391 && (INTEGRAL_TYPE_P (type2
)
3392 || SCALAR_FLOAT_TYPE_P (type2
)
3393 || FIXED_POINT_TYPE_P (type2
)));
3396 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3397 is a problem, otherwise false. */
3400 verify_gimple_call (gcall
*stmt
)
3402 tree fn
= gimple_call_fn (stmt
);
3403 tree fntype
, fndecl
;
3406 if (gimple_call_internal_p (stmt
))
3410 error ("gimple call has two targets");
3411 debug_generic_stmt (fn
);
3419 error ("gimple call has no target");
3424 if (fn
&& !is_gimple_call_addr (fn
))
3426 error ("invalid function in gimple call");
3427 debug_generic_stmt (fn
);
3432 && (!POINTER_TYPE_P (TREE_TYPE (fn
))
3433 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn
))) != FUNCTION_TYPE
3434 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn
))) != METHOD_TYPE
)))
3436 error ("non-function in gimple call");
3440 fndecl
= gimple_call_fndecl (stmt
);
3442 && TREE_CODE (fndecl
) == FUNCTION_DECL
3443 && DECL_LOOPING_CONST_OR_PURE_P (fndecl
)
3444 && !DECL_PURE_P (fndecl
)
3445 && !TREE_READONLY (fndecl
))
3447 error ("invalid pure const state for function");
3451 tree lhs
= gimple_call_lhs (stmt
);
3453 && (!is_gimple_reg (lhs
)
3454 && (!is_gimple_lvalue (lhs
)
3455 || verify_types_in_gimple_reference
3456 (TREE_CODE (lhs
) == WITH_SIZE_EXPR
3457 ? TREE_OPERAND (lhs
, 0) : lhs
, true))))
3459 error ("invalid LHS in gimple call");
3463 if (gimple_call_ctrl_altering_p (stmt
)
3464 && gimple_call_noreturn_p (stmt
)
3465 && should_remove_lhs_p (lhs
))
3467 error ("LHS in %<noreturn%> call");
3471 fntype
= gimple_call_fntype (stmt
);
3474 && !useless_type_conversion_p (TREE_TYPE (lhs
), TREE_TYPE (fntype
))
3475 /* ??? At least C++ misses conversions at assignments from
3476 void * call results.
3477 For now simply allow arbitrary pointer type conversions. */
3478 && !(POINTER_TYPE_P (TREE_TYPE (lhs
))
3479 && POINTER_TYPE_P (TREE_TYPE (fntype
))))
3481 error ("invalid conversion in gimple call");
3482 debug_generic_stmt (TREE_TYPE (lhs
));
3483 debug_generic_stmt (TREE_TYPE (fntype
));
3487 if (gimple_call_chain (stmt
)
3488 && !is_gimple_val (gimple_call_chain (stmt
)))
3490 error ("invalid static chain in gimple call");
3491 debug_generic_stmt (gimple_call_chain (stmt
));
3495 /* If there is a static chain argument, the call should either be
3496 indirect, or the decl should have DECL_STATIC_CHAIN set. */
3497 if (gimple_call_chain (stmt
)
3499 && !DECL_STATIC_CHAIN (fndecl
))
3501 error ("static chain with function that doesn%'t use one");
3505 if (fndecl
&& fndecl_built_in_p (fndecl
, BUILT_IN_NORMAL
))
3507 switch (DECL_FUNCTION_CODE (fndecl
))
3509 case BUILT_IN_UNREACHABLE
:
3510 case BUILT_IN_UNREACHABLE_TRAP
:
3512 if (gimple_call_num_args (stmt
) > 0)
3514 /* Built-in unreachable with parameters might not be caught by
3515 undefined behavior sanitizer. Front-ends do check users do not
3516 call them that way but we also produce calls to
3517 __builtin_unreachable internally, for example when IPA figures
3518 out a call cannot happen in a legal program. In such cases,
3519 we must make sure arguments are stripped off. */
3520 error ("%<__builtin_unreachable%> or %<__builtin_trap%> call "
3530 /* For a call to .DEFERRED_INIT,
3531 LHS = DEFERRED_INIT (SIZE of the DECL, INIT_TYPE, NAME of the DECL)
3532 we should guarantee that when the 1st argument is a constant, it should
3533 be the same as the size of the LHS. */
3535 if (gimple_call_internal_p (stmt
, IFN_DEFERRED_INIT
))
3537 tree size_of_arg0
= gimple_call_arg (stmt
, 0);
3538 tree size_of_lhs
= TYPE_SIZE_UNIT (TREE_TYPE (lhs
));
3540 if (TREE_CODE (lhs
) == SSA_NAME
)
3541 lhs
= SSA_NAME_VAR (lhs
);
3543 poly_uint64 size_from_arg0
, size_from_lhs
;
3544 bool is_constant_size_arg0
= poly_int_tree_p (size_of_arg0
,
3546 bool is_constant_size_lhs
= poly_int_tree_p (size_of_lhs
,
3548 if (is_constant_size_arg0
&& is_constant_size_lhs
)
3549 if (maybe_ne (size_from_arg0
, size_from_lhs
))
3551 error ("%<DEFERRED_INIT%> calls should have same "
3552 "constant size for the first argument and LHS");
3557 /* ??? The C frontend passes unpromoted arguments in case it
3558 didn't see a function declaration before the call. So for now
3559 leave the call arguments mostly unverified. Once we gimplify
3560 unit-at-a-time we have a chance to fix this. */
3561 for (i
= 0; i
< gimple_call_num_args (stmt
); ++i
)
3563 tree arg
= gimple_call_arg (stmt
, i
);
3564 if ((is_gimple_reg_type (TREE_TYPE (arg
))
3565 && !is_gimple_val (arg
))
3566 || (!is_gimple_reg_type (TREE_TYPE (arg
))
3567 && !is_gimple_lvalue (arg
)))
3569 error ("invalid argument to gimple call");
3570 debug_generic_expr (arg
);
3573 if (!is_gimple_reg (arg
))
3575 if (TREE_CODE (arg
) == WITH_SIZE_EXPR
)
3576 arg
= TREE_OPERAND (arg
, 0);
3577 if (verify_types_in_gimple_reference (arg
, false))
3585 /* Verifies the gimple comparison with the result type TYPE and
3586 the operands OP0 and OP1, comparison code is CODE. */
3589 verify_gimple_comparison (tree type
, tree op0
, tree op1
, enum tree_code code
)
3591 tree op0_type
= TREE_TYPE (op0
);
3592 tree op1_type
= TREE_TYPE (op1
);
3594 if (!is_gimple_val (op0
) || !is_gimple_val (op1
))
3596 error ("invalid operands in gimple comparison");
3600 /* For comparisons we do not have the operations type as the
3601 effective type the comparison is carried out in. Instead
3602 we require that either the first operand is trivially
3603 convertible into the second, or the other way around. */
3604 if (!useless_type_conversion_p (op0_type
, op1_type
)
3605 && !useless_type_conversion_p (op1_type
, op0_type
))
3607 error ("mismatching comparison operand types");
3608 debug_generic_expr (op0_type
);
3609 debug_generic_expr (op1_type
);
3613 /* The resulting type of a comparison may be an effective boolean type. */
3614 if (INTEGRAL_TYPE_P (type
)
3615 && (TREE_CODE (type
) == BOOLEAN_TYPE
3616 || TYPE_PRECISION (type
) == 1))
3618 if ((VECTOR_TYPE_P (op0_type
)
3619 || VECTOR_TYPE_P (op1_type
))
3620 && code
!= EQ_EXPR
&& code
!= NE_EXPR
3621 && !VECTOR_BOOLEAN_TYPE_P (op0_type
)
3622 && !VECTOR_INTEGER_TYPE_P (op0_type
))
3624 error ("unsupported operation or type for vector comparison"
3625 " returning a boolean");
3626 debug_generic_expr (op0_type
);
3627 debug_generic_expr (op1_type
);
3631 /* Or a boolean vector type with the same element count
3632 as the comparison operand types. */
3633 else if (VECTOR_TYPE_P (type
)
3634 && TREE_CODE (TREE_TYPE (type
)) == BOOLEAN_TYPE
)
3636 if (TREE_CODE (op0_type
) != VECTOR_TYPE
3637 || TREE_CODE (op1_type
) != VECTOR_TYPE
)
3639 error ("non-vector operands in vector comparison");
3640 debug_generic_expr (op0_type
);
3641 debug_generic_expr (op1_type
);
3645 if (maybe_ne (TYPE_VECTOR_SUBPARTS (type
),
3646 TYPE_VECTOR_SUBPARTS (op0_type
)))
3648 error ("invalid vector comparison resulting type");
3649 debug_generic_expr (type
);
3655 error ("bogus comparison result type");
3656 debug_generic_expr (type
);
3663 /* Verify a gimple assignment statement STMT with an unary rhs.
3664 Returns true if anything is wrong. */
3667 verify_gimple_assign_unary (gassign
*stmt
)
3669 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
3670 tree lhs
= gimple_assign_lhs (stmt
);
3671 tree lhs_type
= TREE_TYPE (lhs
);
3672 tree rhs1
= gimple_assign_rhs1 (stmt
);
3673 tree rhs1_type
= TREE_TYPE (rhs1
);
3675 if (!is_gimple_reg (lhs
))
3677 error ("non-register as LHS of unary operation");
3681 if (!is_gimple_val (rhs1
))
3683 error ("invalid operand in unary operation");
3687 const char* const code_name
= get_tree_code_name (rhs_code
);
3689 /* First handle conversions. */
3694 /* Allow conversions between vectors with the same number of elements,
3695 provided that the conversion is OK for the element types too. */
3696 if (VECTOR_TYPE_P (lhs_type
)
3697 && VECTOR_TYPE_P (rhs1_type
)
3698 && known_eq (TYPE_VECTOR_SUBPARTS (lhs_type
),
3699 TYPE_VECTOR_SUBPARTS (rhs1_type
)))
3701 lhs_type
= TREE_TYPE (lhs_type
);
3702 rhs1_type
= TREE_TYPE (rhs1_type
);
3704 else if (VECTOR_TYPE_P (lhs_type
) || VECTOR_TYPE_P (rhs1_type
))
3706 error ("invalid vector types in nop conversion");
3707 debug_generic_expr (lhs_type
);
3708 debug_generic_expr (rhs1_type
);
3712 /* Allow conversions from pointer type to integral type only if
3713 there is no sign or zero extension involved.
3714 For targets were the precision of ptrofftype doesn't match that
3715 of pointers we allow conversions to types where
3716 POINTERS_EXTEND_UNSIGNED specifies how that works. */
3717 if ((POINTER_TYPE_P (lhs_type
)
3718 && INTEGRAL_TYPE_P (rhs1_type
))
3719 || (POINTER_TYPE_P (rhs1_type
)
3720 && INTEGRAL_TYPE_P (lhs_type
)
3721 && (TYPE_PRECISION (rhs1_type
) >= TYPE_PRECISION (lhs_type
)
3722 #if defined(POINTERS_EXTEND_UNSIGNED)
3723 || (TYPE_MODE (rhs1_type
) == ptr_mode
3724 && (TYPE_PRECISION (lhs_type
)
3725 == BITS_PER_WORD
/* word_mode */
3726 || (TYPE_PRECISION (lhs_type
)
3727 == GET_MODE_PRECISION (Pmode
))))
3732 /* Allow conversion from integral to offset type and vice versa. */
3733 if ((TREE_CODE (lhs_type
) == OFFSET_TYPE
3734 && INTEGRAL_TYPE_P (rhs1_type
))
3735 || (INTEGRAL_TYPE_P (lhs_type
)
3736 && TREE_CODE (rhs1_type
) == OFFSET_TYPE
))
3739 /* Otherwise assert we are converting between types of the
3741 if (INTEGRAL_TYPE_P (lhs_type
) != INTEGRAL_TYPE_P (rhs1_type
))
3743 error ("invalid types in nop conversion");
3744 debug_generic_expr (lhs_type
);
3745 debug_generic_expr (rhs1_type
);
3752 case ADDR_SPACE_CONVERT_EXPR
:
3754 if (!POINTER_TYPE_P (rhs1_type
) || !POINTER_TYPE_P (lhs_type
)
3755 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type
))
3756 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type
))))
3758 error ("invalid types in address space conversion");
3759 debug_generic_expr (lhs_type
);
3760 debug_generic_expr (rhs1_type
);
3767 case FIXED_CONVERT_EXPR
:
3769 if (!valid_fixed_convert_types_p (lhs_type
, rhs1_type
)
3770 && !valid_fixed_convert_types_p (rhs1_type
, lhs_type
))
3772 error ("invalid types in fixed-point conversion");
3773 debug_generic_expr (lhs_type
);
3774 debug_generic_expr (rhs1_type
);
3783 if ((!INTEGRAL_TYPE_P (rhs1_type
) || !SCALAR_FLOAT_TYPE_P (lhs_type
))
3784 && (!VECTOR_INTEGER_TYPE_P (rhs1_type
)
3785 || !VECTOR_FLOAT_TYPE_P (lhs_type
)))
3787 error ("invalid types in conversion to floating-point");
3788 debug_generic_expr (lhs_type
);
3789 debug_generic_expr (rhs1_type
);
3796 case FIX_TRUNC_EXPR
:
3798 if ((!INTEGRAL_TYPE_P (lhs_type
) || !SCALAR_FLOAT_TYPE_P (rhs1_type
))
3799 && (!VECTOR_INTEGER_TYPE_P (lhs_type
)
3800 || !VECTOR_FLOAT_TYPE_P (rhs1_type
)))
3802 error ("invalid types in conversion to integer");
3803 debug_generic_expr (lhs_type
);
3804 debug_generic_expr (rhs1_type
);
3811 case VEC_UNPACK_HI_EXPR
:
3812 case VEC_UNPACK_LO_EXPR
:
3813 case VEC_UNPACK_FLOAT_HI_EXPR
:
3814 case VEC_UNPACK_FLOAT_LO_EXPR
:
3815 case VEC_UNPACK_FIX_TRUNC_HI_EXPR
:
3816 case VEC_UNPACK_FIX_TRUNC_LO_EXPR
:
3817 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
3818 || TREE_CODE (lhs_type
) != VECTOR_TYPE
3819 || (!INTEGRAL_TYPE_P (TREE_TYPE (lhs_type
))
3820 && !SCALAR_FLOAT_TYPE_P (TREE_TYPE (lhs_type
)))
3821 || (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
3822 && !SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type
)))
3823 || ((rhs_code
== VEC_UNPACK_HI_EXPR
3824 || rhs_code
== VEC_UNPACK_LO_EXPR
)
3825 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs_type
))
3826 != INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))))
3827 || ((rhs_code
== VEC_UNPACK_FLOAT_HI_EXPR
3828 || rhs_code
== VEC_UNPACK_FLOAT_LO_EXPR
)
3829 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs_type
))
3830 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type
))))
3831 || ((rhs_code
== VEC_UNPACK_FIX_TRUNC_HI_EXPR
3832 || rhs_code
== VEC_UNPACK_FIX_TRUNC_LO_EXPR
)
3833 && (INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
3834 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (lhs_type
))))
3835 || (maybe_ne (GET_MODE_SIZE (element_mode (lhs_type
)),
3836 2 * GET_MODE_SIZE (element_mode (rhs1_type
)))
3837 && (!VECTOR_BOOLEAN_TYPE_P (lhs_type
)
3838 || !VECTOR_BOOLEAN_TYPE_P (rhs1_type
)))
3839 || maybe_ne (2 * TYPE_VECTOR_SUBPARTS (lhs_type
),
3840 TYPE_VECTOR_SUBPARTS (rhs1_type
)))
3842 error ("type mismatch in %qs expression", code_name
);
3843 debug_generic_expr (lhs_type
);
3844 debug_generic_expr (rhs1_type
);
3855 /* Disallow pointer and offset types for many of the unary gimple. */
3856 if (POINTER_TYPE_P (lhs_type
)
3857 || TREE_CODE (lhs_type
) == OFFSET_TYPE
)
3859 error ("invalid types for %qs", code_name
);
3860 debug_generic_expr (lhs_type
);
3861 debug_generic_expr (rhs1_type
);
3867 if (!ANY_INTEGRAL_TYPE_P (lhs_type
)
3868 || !TYPE_UNSIGNED (lhs_type
)
3869 || !ANY_INTEGRAL_TYPE_P (rhs1_type
)
3870 || TYPE_UNSIGNED (rhs1_type
)
3871 || element_precision (lhs_type
) != element_precision (rhs1_type
))
3873 error ("invalid types for %qs", code_name
);
3874 debug_generic_expr (lhs_type
);
3875 debug_generic_expr (rhs1_type
);
3880 case VEC_DUPLICATE_EXPR
:
3881 if (TREE_CODE (lhs_type
) != VECTOR_TYPE
3882 || !useless_type_conversion_p (TREE_TYPE (lhs_type
), rhs1_type
))
3884 error ("%qs should be from a scalar to a like vector", code_name
);
3885 debug_generic_expr (lhs_type
);
3886 debug_generic_expr (rhs1_type
);
3895 /* For the remaining codes assert there is no conversion involved. */
3896 if (!useless_type_conversion_p (lhs_type
, rhs1_type
))
3898 error ("non-trivial conversion in unary operation");
3899 debug_generic_expr (lhs_type
);
3900 debug_generic_expr (rhs1_type
);
3907 /* Verify a gimple assignment statement STMT with a binary rhs.
3908 Returns true if anything is wrong. */
3911 verify_gimple_assign_binary (gassign
*stmt
)
3913 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
3914 tree lhs
= gimple_assign_lhs (stmt
);
3915 tree lhs_type
= TREE_TYPE (lhs
);
3916 tree rhs1
= gimple_assign_rhs1 (stmt
);
3917 tree rhs1_type
= TREE_TYPE (rhs1
);
3918 tree rhs2
= gimple_assign_rhs2 (stmt
);
3919 tree rhs2_type
= TREE_TYPE (rhs2
);
3921 if (!is_gimple_reg (lhs
))
3923 error ("non-register as LHS of binary operation");
3927 if (!is_gimple_val (rhs1
)
3928 || !is_gimple_val (rhs2
))
3930 error ("invalid operands in binary operation");
3934 const char* const code_name
= get_tree_code_name (rhs_code
);
3936 /* First handle operations that involve different types. */
3941 if (TREE_CODE (lhs_type
) != COMPLEX_TYPE
3942 || !(INTEGRAL_TYPE_P (rhs1_type
)
3943 || SCALAR_FLOAT_TYPE_P (rhs1_type
))
3944 || !(INTEGRAL_TYPE_P (rhs2_type
)
3945 || SCALAR_FLOAT_TYPE_P (rhs2_type
)))
3947 error ("type mismatch in %qs", code_name
);
3948 debug_generic_expr (lhs_type
);
3949 debug_generic_expr (rhs1_type
);
3950 debug_generic_expr (rhs2_type
);
3962 /* Shifts and rotates are ok on integral types, fixed point
3963 types and integer vector types. */
3964 if ((!INTEGRAL_TYPE_P (rhs1_type
)
3965 && !FIXED_POINT_TYPE_P (rhs1_type
)
3966 && ! (VECTOR_TYPE_P (rhs1_type
)
3967 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))))
3968 || (!INTEGRAL_TYPE_P (rhs2_type
)
3969 /* Vector shifts of vectors are also ok. */
3970 && ! (VECTOR_TYPE_P (rhs1_type
)
3971 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
3972 && VECTOR_TYPE_P (rhs2_type
)
3973 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type
))))
3974 || !useless_type_conversion_p (lhs_type
, rhs1_type
))
3976 error ("type mismatch in %qs", code_name
);
3977 debug_generic_expr (lhs_type
);
3978 debug_generic_expr (rhs1_type
);
3979 debug_generic_expr (rhs2_type
);
3986 case WIDEN_LSHIFT_EXPR
:
3988 if (!INTEGRAL_TYPE_P (lhs_type
)
3989 || !INTEGRAL_TYPE_P (rhs1_type
)
3990 || TREE_CODE (rhs2
) != INTEGER_CST
3991 || (2 * TYPE_PRECISION (rhs1_type
) > TYPE_PRECISION (lhs_type
)))
3993 error ("type mismatch in %qs", code_name
);
3994 debug_generic_expr (lhs_type
);
3995 debug_generic_expr (rhs1_type
);
3996 debug_generic_expr (rhs2_type
);
4003 case VEC_WIDEN_LSHIFT_HI_EXPR
:
4004 case VEC_WIDEN_LSHIFT_LO_EXPR
:
4006 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
4007 || TREE_CODE (lhs_type
) != VECTOR_TYPE
4008 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
4009 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type
))
4010 || TREE_CODE (rhs2
) != INTEGER_CST
4011 || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type
))
4012 > TYPE_PRECISION (TREE_TYPE (lhs_type
))))
4014 error ("type mismatch in %qs", code_name
);
4015 debug_generic_expr (lhs_type
);
4016 debug_generic_expr (rhs1_type
);
4017 debug_generic_expr (rhs2_type
);
4027 tree lhs_etype
= lhs_type
;
4028 tree rhs1_etype
= rhs1_type
;
4029 tree rhs2_etype
= rhs2_type
;
4030 if (VECTOR_TYPE_P (lhs_type
))
4032 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
4033 || TREE_CODE (rhs2_type
) != VECTOR_TYPE
)
4035 error ("invalid non-vector operands to %qs", code_name
);
4038 lhs_etype
= TREE_TYPE (lhs_type
);
4039 rhs1_etype
= TREE_TYPE (rhs1_type
);
4040 rhs2_etype
= TREE_TYPE (rhs2_type
);
4042 if (POINTER_TYPE_P (lhs_etype
)
4043 || POINTER_TYPE_P (rhs1_etype
)
4044 || POINTER_TYPE_P (rhs2_etype
))
4046 error ("invalid (pointer) operands %qs", code_name
);
4050 /* Continue with generic binary expression handling. */
4054 case POINTER_PLUS_EXPR
:
4056 if (!POINTER_TYPE_P (rhs1_type
)
4057 || !useless_type_conversion_p (lhs_type
, rhs1_type
)
4058 || !ptrofftype_p (rhs2_type
))
4060 error ("type mismatch in %qs", code_name
);
4061 debug_generic_stmt (lhs_type
);
4062 debug_generic_stmt (rhs1_type
);
4063 debug_generic_stmt (rhs2_type
);
4070 case POINTER_DIFF_EXPR
:
4072 if (!POINTER_TYPE_P (rhs1_type
)
4073 || !POINTER_TYPE_P (rhs2_type
)
4074 /* Because we special-case pointers to void we allow difference
4075 of arbitrary pointers with the same mode. */
4076 || TYPE_MODE (rhs1_type
) != TYPE_MODE (rhs2_type
)
4077 || !INTEGRAL_TYPE_P (lhs_type
)
4078 || TYPE_UNSIGNED (lhs_type
)
4079 || TYPE_PRECISION (lhs_type
) != TYPE_PRECISION (rhs1_type
))
4081 error ("type mismatch in %qs", code_name
);
4082 debug_generic_stmt (lhs_type
);
4083 debug_generic_stmt (rhs1_type
);
4084 debug_generic_stmt (rhs2_type
);
4091 case TRUTH_ANDIF_EXPR
:
4092 case TRUTH_ORIF_EXPR
:
4093 case TRUTH_AND_EXPR
:
4095 case TRUTH_XOR_EXPR
:
4105 case UNORDERED_EXPR
:
4113 /* Comparisons are also binary, but the result type is not
4114 connected to the operand types. */
4115 return verify_gimple_comparison (lhs_type
, rhs1
, rhs2
, rhs_code
);
4117 case WIDEN_MULT_EXPR
:
4118 if (TREE_CODE (lhs_type
) != INTEGER_TYPE
)
4120 return ((2 * TYPE_PRECISION (rhs1_type
) > TYPE_PRECISION (lhs_type
))
4121 || (TYPE_PRECISION (rhs1_type
) != TYPE_PRECISION (rhs2_type
)));
4123 case WIDEN_SUM_EXPR
:
4125 if (((TREE_CODE (rhs1_type
) != VECTOR_TYPE
4126 || TREE_CODE (lhs_type
) != VECTOR_TYPE
)
4127 && ((!INTEGRAL_TYPE_P (rhs1_type
)
4128 && !SCALAR_FLOAT_TYPE_P (rhs1_type
))
4129 || (!INTEGRAL_TYPE_P (lhs_type
)
4130 && !SCALAR_FLOAT_TYPE_P (lhs_type
))))
4131 || !useless_type_conversion_p (lhs_type
, rhs2_type
)
4132 || maybe_lt (GET_MODE_SIZE (element_mode (rhs2_type
)),
4133 2 * GET_MODE_SIZE (element_mode (rhs1_type
))))
4135 error ("type mismatch in %qs", code_name
);
4136 debug_generic_expr (lhs_type
);
4137 debug_generic_expr (rhs1_type
);
4138 debug_generic_expr (rhs2_type
);
4144 case VEC_WIDEN_MULT_HI_EXPR
:
4145 case VEC_WIDEN_MULT_LO_EXPR
:
4146 case VEC_WIDEN_MULT_EVEN_EXPR
:
4147 case VEC_WIDEN_MULT_ODD_EXPR
:
4149 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
4150 || TREE_CODE (lhs_type
) != VECTOR_TYPE
4151 || !types_compatible_p (rhs1_type
, rhs2_type
)
4152 || maybe_ne (GET_MODE_SIZE (element_mode (lhs_type
)),
4153 2 * GET_MODE_SIZE (element_mode (rhs1_type
))))
4155 error ("type mismatch in %qs", code_name
);
4156 debug_generic_expr (lhs_type
);
4157 debug_generic_expr (rhs1_type
);
4158 debug_generic_expr (rhs2_type
);
4164 case VEC_PACK_TRUNC_EXPR
:
4165 /* ??? We currently use VEC_PACK_TRUNC_EXPR to simply concat
4166 vector boolean types. */
4167 if (VECTOR_BOOLEAN_TYPE_P (lhs_type
)
4168 && VECTOR_BOOLEAN_TYPE_P (rhs1_type
)
4169 && types_compatible_p (rhs1_type
, rhs2_type
)
4170 && known_eq (TYPE_VECTOR_SUBPARTS (lhs_type
),
4171 2 * TYPE_VECTOR_SUBPARTS (rhs1_type
)))
4175 case VEC_PACK_SAT_EXPR
:
4176 case VEC_PACK_FIX_TRUNC_EXPR
:
4178 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
4179 || TREE_CODE (lhs_type
) != VECTOR_TYPE
4180 || !((rhs_code
== VEC_PACK_FIX_TRUNC_EXPR
4181 && SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type
))
4182 && INTEGRAL_TYPE_P (TREE_TYPE (lhs_type
)))
4183 || (INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
4184 == INTEGRAL_TYPE_P (TREE_TYPE (lhs_type
))))
4185 || !types_compatible_p (rhs1_type
, rhs2_type
)
4186 || maybe_ne (GET_MODE_SIZE (element_mode (rhs1_type
)),
4187 2 * GET_MODE_SIZE (element_mode (lhs_type
)))
4188 || maybe_ne (2 * TYPE_VECTOR_SUBPARTS (rhs1_type
),
4189 TYPE_VECTOR_SUBPARTS (lhs_type
)))
4191 error ("type mismatch in %qs", code_name
);
4192 debug_generic_expr (lhs_type
);
4193 debug_generic_expr (rhs1_type
);
4194 debug_generic_expr (rhs2_type
);
4201 case VEC_PACK_FLOAT_EXPR
:
4202 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
4203 || TREE_CODE (lhs_type
) != VECTOR_TYPE
4204 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
4205 || !SCALAR_FLOAT_TYPE_P (TREE_TYPE (lhs_type
))
4206 || !types_compatible_p (rhs1_type
, rhs2_type
)
4207 || maybe_ne (GET_MODE_SIZE (element_mode (rhs1_type
)),
4208 2 * GET_MODE_SIZE (element_mode (lhs_type
)))
4209 || maybe_ne (2 * TYPE_VECTOR_SUBPARTS (rhs1_type
),
4210 TYPE_VECTOR_SUBPARTS (lhs_type
)))
4212 error ("type mismatch in %qs", code_name
);
4213 debug_generic_expr (lhs_type
);
4214 debug_generic_expr (rhs1_type
);
4215 debug_generic_expr (rhs2_type
);
4222 case MULT_HIGHPART_EXPR
:
4223 case TRUNC_DIV_EXPR
:
4225 case FLOOR_DIV_EXPR
:
4226 case ROUND_DIV_EXPR
:
4227 case TRUNC_MOD_EXPR
:
4229 case FLOOR_MOD_EXPR
:
4230 case ROUND_MOD_EXPR
:
4232 case EXACT_DIV_EXPR
:
4235 /* Disallow pointer and offset types for many of the binary gimple. */
4236 if (POINTER_TYPE_P (lhs_type
)
4237 || TREE_CODE (lhs_type
) == OFFSET_TYPE
)
4239 error ("invalid types for %qs", code_name
);
4240 debug_generic_expr (lhs_type
);
4241 debug_generic_expr (rhs1_type
);
4242 debug_generic_expr (rhs2_type
);
4245 /* Continue with generic binary expression handling. */
4250 /* Continue with generic binary expression handling. */
4254 if (POINTER_TYPE_P (lhs_type
)
4255 && TREE_CODE (rhs2
) == INTEGER_CST
)
4257 /* Disallow pointer and offset types for many of the binary gimple. */
4258 if (POINTER_TYPE_P (lhs_type
)
4259 || TREE_CODE (lhs_type
) == OFFSET_TYPE
)
4261 error ("invalid types for %qs", code_name
);
4262 debug_generic_expr (lhs_type
);
4263 debug_generic_expr (rhs1_type
);
4264 debug_generic_expr (rhs2_type
);
4267 /* Continue with generic binary expression handling. */
4270 case VEC_SERIES_EXPR
:
4271 if (!useless_type_conversion_p (rhs1_type
, rhs2_type
))
4273 error ("type mismatch in %qs", code_name
);
4274 debug_generic_expr (rhs1_type
);
4275 debug_generic_expr (rhs2_type
);
4278 if (TREE_CODE (lhs_type
) != VECTOR_TYPE
4279 || !useless_type_conversion_p (TREE_TYPE (lhs_type
), rhs1_type
))
4281 error ("vector type expected in %qs", code_name
);
4282 debug_generic_expr (lhs_type
);
4291 if (!useless_type_conversion_p (lhs_type
, rhs1_type
)
4292 || !useless_type_conversion_p (lhs_type
, rhs2_type
))
4294 error ("type mismatch in binary expression");
4295 debug_generic_stmt (lhs_type
);
4296 debug_generic_stmt (rhs1_type
);
4297 debug_generic_stmt (rhs2_type
);
4304 /* Verify a gimple assignment statement STMT with a ternary rhs.
4305 Returns true if anything is wrong. */
4308 verify_gimple_assign_ternary (gassign
*stmt
)
4310 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
4311 tree lhs
= gimple_assign_lhs (stmt
);
4312 tree lhs_type
= TREE_TYPE (lhs
);
4313 tree rhs1
= gimple_assign_rhs1 (stmt
);
4314 tree rhs1_type
= TREE_TYPE (rhs1
);
4315 tree rhs2
= gimple_assign_rhs2 (stmt
);
4316 tree rhs2_type
= TREE_TYPE (rhs2
);
4317 tree rhs3
= gimple_assign_rhs3 (stmt
);
4318 tree rhs3_type
= TREE_TYPE (rhs3
);
4320 if (!is_gimple_reg (lhs
))
4322 error ("non-register as LHS of ternary operation");
4326 if (!is_gimple_val (rhs1
)
4327 || !is_gimple_val (rhs2
)
4328 || !is_gimple_val (rhs3
))
4330 error ("invalid operands in ternary operation");
4334 const char* const code_name
= get_tree_code_name (rhs_code
);
4336 /* First handle operations that involve different types. */
4339 case WIDEN_MULT_PLUS_EXPR
:
4340 case WIDEN_MULT_MINUS_EXPR
:
4341 if ((!INTEGRAL_TYPE_P (rhs1_type
)
4342 && !FIXED_POINT_TYPE_P (rhs1_type
))
4343 || !useless_type_conversion_p (rhs1_type
, rhs2_type
)
4344 || !useless_type_conversion_p (lhs_type
, rhs3_type
)
4345 || 2 * TYPE_PRECISION (rhs1_type
) > TYPE_PRECISION (lhs_type
)
4346 || TYPE_PRECISION (rhs1_type
) != TYPE_PRECISION (rhs2_type
))
4348 error ("type mismatch in %qs", code_name
);
4349 debug_generic_expr (lhs_type
);
4350 debug_generic_expr (rhs1_type
);
4351 debug_generic_expr (rhs2_type
);
4352 debug_generic_expr (rhs3_type
);
4358 if (!VECTOR_BOOLEAN_TYPE_P (rhs1_type
)
4359 || maybe_ne (TYPE_VECTOR_SUBPARTS (rhs1_type
),
4360 TYPE_VECTOR_SUBPARTS (lhs_type
)))
4362 error ("the first argument of a %qs must be of a "
4363 "boolean vector type of the same number of elements "
4364 "as the result", code_name
);
4365 debug_generic_expr (lhs_type
);
4366 debug_generic_expr (rhs1_type
);
4371 if (!useless_type_conversion_p (lhs_type
, rhs2_type
)
4372 || !useless_type_conversion_p (lhs_type
, rhs3_type
))
4374 error ("type mismatch in %qs", code_name
);
4375 debug_generic_expr (lhs_type
);
4376 debug_generic_expr (rhs2_type
);
4377 debug_generic_expr (rhs3_type
);
4383 /* If permute is constant, then we allow for lhs and rhs
4384 to have different vector types, provided:
4385 (1) lhs, rhs1, rhs2 have same element type.
4386 (2) rhs3 vector is constant and has integer element type.
4387 (3) len(lhs) == len(rhs3) && len(rhs1) == len(rhs2). */
4389 if (TREE_CODE (lhs_type
) != VECTOR_TYPE
4390 || TREE_CODE (rhs1_type
) != VECTOR_TYPE
4391 || TREE_CODE (rhs2_type
) != VECTOR_TYPE
4392 || TREE_CODE (rhs3_type
) != VECTOR_TYPE
)
4394 error ("vector types expected in %qs", code_name
);
4395 debug_generic_expr (lhs_type
);
4396 debug_generic_expr (rhs1_type
);
4397 debug_generic_expr (rhs2_type
);
4398 debug_generic_expr (rhs3_type
);
4402 /* If rhs3 is constant, we allow lhs, rhs1 and rhs2 to be different vector types,
4403 as long as lhs, rhs1 and rhs2 have same element type. */
4404 if (TREE_CONSTANT (rhs3
)
4405 ? (!useless_type_conversion_p (TREE_TYPE (lhs_type
), TREE_TYPE (rhs1_type
))
4406 || !useless_type_conversion_p (TREE_TYPE (lhs_type
), TREE_TYPE (rhs2_type
)))
4407 : (!useless_type_conversion_p (lhs_type
, rhs1_type
)
4408 || !useless_type_conversion_p (lhs_type
, rhs2_type
)))
4410 error ("type mismatch in %qs", code_name
);
4411 debug_generic_expr (lhs_type
);
4412 debug_generic_expr (rhs1_type
);
4413 debug_generic_expr (rhs2_type
);
4414 debug_generic_expr (rhs3_type
);
4418 /* If rhs3 is constant, relax the check len(rhs2) == len(rhs3). */
4419 if (maybe_ne (TYPE_VECTOR_SUBPARTS (rhs1_type
),
4420 TYPE_VECTOR_SUBPARTS (rhs2_type
))
4421 || (!TREE_CONSTANT(rhs3
)
4422 && maybe_ne (TYPE_VECTOR_SUBPARTS (rhs2_type
),
4423 TYPE_VECTOR_SUBPARTS (rhs3_type
)))
4424 || maybe_ne (TYPE_VECTOR_SUBPARTS (rhs3_type
),
4425 TYPE_VECTOR_SUBPARTS (lhs_type
)))
4427 error ("vectors with different element number found in %qs",
4429 debug_generic_expr (lhs_type
);
4430 debug_generic_expr (rhs1_type
);
4431 debug_generic_expr (rhs2_type
);
4432 debug_generic_expr (rhs3_type
);
4436 if (TREE_CODE (TREE_TYPE (rhs3_type
)) != INTEGER_TYPE
4437 || (TREE_CODE (rhs3
) != VECTOR_CST
4438 && (GET_MODE_BITSIZE (SCALAR_INT_TYPE_MODE
4439 (TREE_TYPE (rhs3_type
)))
4440 != GET_MODE_BITSIZE (SCALAR_TYPE_MODE
4441 (TREE_TYPE (rhs1_type
))))))
4443 error ("invalid mask type in %qs", code_name
);
4444 debug_generic_expr (lhs_type
);
4445 debug_generic_expr (rhs1_type
);
4446 debug_generic_expr (rhs2_type
);
4447 debug_generic_expr (rhs3_type
);
4454 if (!useless_type_conversion_p (rhs1_type
, rhs2_type
)
4455 || !useless_type_conversion_p (lhs_type
, rhs3_type
)
4456 || 2 * GET_MODE_UNIT_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type
)))
4457 > GET_MODE_UNIT_BITSIZE (TYPE_MODE (TREE_TYPE (lhs_type
))))
4459 error ("type mismatch in %qs", code_name
);
4460 debug_generic_expr (lhs_type
);
4461 debug_generic_expr (rhs1_type
);
4462 debug_generic_expr (rhs2_type
);
4463 debug_generic_expr (rhs3_type
);
4467 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
4468 || TREE_CODE (rhs2_type
) != VECTOR_TYPE
4469 || TREE_CODE (rhs3_type
) != VECTOR_TYPE
)
4471 error ("vector types expected in %qs", code_name
);
4472 debug_generic_expr (lhs_type
);
4473 debug_generic_expr (rhs1_type
);
4474 debug_generic_expr (rhs2_type
);
4475 debug_generic_expr (rhs3_type
);
4481 case BIT_INSERT_EXPR
:
4482 if (! useless_type_conversion_p (lhs_type
, rhs1_type
))
4484 error ("type mismatch in %qs", code_name
);
4485 debug_generic_expr (lhs_type
);
4486 debug_generic_expr (rhs1_type
);
4489 if (! ((INTEGRAL_TYPE_P (rhs1_type
)
4490 && INTEGRAL_TYPE_P (rhs2_type
))
4491 /* Vector element insert. */
4492 || (VECTOR_TYPE_P (rhs1_type
)
4493 && types_compatible_p (TREE_TYPE (rhs1_type
), rhs2_type
))
4494 /* Aligned sub-vector insert. */
4495 || (VECTOR_TYPE_P (rhs1_type
)
4496 && VECTOR_TYPE_P (rhs2_type
)
4497 && types_compatible_p (TREE_TYPE (rhs1_type
),
4498 TREE_TYPE (rhs2_type
))
4499 && multiple_p (TYPE_VECTOR_SUBPARTS (rhs1_type
),
4500 TYPE_VECTOR_SUBPARTS (rhs2_type
))
4501 && multiple_p (wi::to_poly_offset (rhs3
),
4502 wi::to_poly_offset (TYPE_SIZE (rhs2_type
))))))
4504 error ("not allowed type combination in %qs", code_name
);
4505 debug_generic_expr (rhs1_type
);
4506 debug_generic_expr (rhs2_type
);
4509 if (! tree_fits_uhwi_p (rhs3
)
4510 || ! types_compatible_p (bitsizetype
, TREE_TYPE (rhs3
))
4511 || ! tree_fits_uhwi_p (TYPE_SIZE (rhs2_type
)))
4513 error ("invalid position or size in %qs", code_name
);
4516 if (INTEGRAL_TYPE_P (rhs1_type
)
4517 && !type_has_mode_precision_p (rhs1_type
))
4519 error ("%qs into non-mode-precision operand", code_name
);
4522 if (INTEGRAL_TYPE_P (rhs1_type
))
4524 unsigned HOST_WIDE_INT bitpos
= tree_to_uhwi (rhs3
);
4525 if (bitpos
>= TYPE_PRECISION (rhs1_type
)
4526 || (bitpos
+ TYPE_PRECISION (rhs2_type
)
4527 > TYPE_PRECISION (rhs1_type
)))
4529 error ("insertion out of range in %qs", code_name
);
4533 else if (VECTOR_TYPE_P (rhs1_type
))
4535 unsigned HOST_WIDE_INT bitpos
= tree_to_uhwi (rhs3
);
4536 unsigned HOST_WIDE_INT bitsize
= tree_to_uhwi (TYPE_SIZE (rhs2_type
));
4537 if (bitpos
% bitsize
!= 0)
4539 error ("%qs not at element boundary", code_name
);
4547 if (((TREE_CODE (rhs1_type
) != VECTOR_TYPE
4548 || TREE_CODE (lhs_type
) != VECTOR_TYPE
)
4549 && ((!INTEGRAL_TYPE_P (rhs1_type
)
4550 && !SCALAR_FLOAT_TYPE_P (rhs1_type
))
4551 || (!INTEGRAL_TYPE_P (lhs_type
)
4552 && !SCALAR_FLOAT_TYPE_P (lhs_type
))))
4553 /* rhs1_type and rhs2_type may differ in sign. */
4554 || !tree_nop_conversion_p (rhs1_type
, rhs2_type
)
4555 || !useless_type_conversion_p (lhs_type
, rhs3_type
)
4556 || maybe_lt (GET_MODE_SIZE (element_mode (rhs3_type
)),
4557 2 * GET_MODE_SIZE (element_mode (rhs1_type
))))
4559 error ("type mismatch in %qs", code_name
);
4560 debug_generic_expr (lhs_type
);
4561 debug_generic_expr (rhs1_type
);
4562 debug_generic_expr (rhs2_type
);
4568 case REALIGN_LOAD_EXPR
:
4578 /* Verify a gimple assignment statement STMT with a single rhs.
4579 Returns true if anything is wrong. */
4582 verify_gimple_assign_single (gassign
*stmt
)
4584 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
4585 tree lhs
= gimple_assign_lhs (stmt
);
4586 tree lhs_type
= TREE_TYPE (lhs
);
4587 tree rhs1
= gimple_assign_rhs1 (stmt
);
4588 tree rhs1_type
= TREE_TYPE (rhs1
);
4591 const char* const code_name
= get_tree_code_name (rhs_code
);
4593 if (!useless_type_conversion_p (lhs_type
, rhs1_type
))
4595 error ("non-trivial conversion in %qs", code_name
);
4596 debug_generic_expr (lhs_type
);
4597 debug_generic_expr (rhs1_type
);
4601 if (gimple_clobber_p (stmt
)
4602 && !(DECL_P (lhs
) || TREE_CODE (lhs
) == MEM_REF
))
4604 error ("%qs LHS in clobber statement",
4605 get_tree_code_name (TREE_CODE (lhs
)));
4606 debug_generic_expr (lhs
);
4610 if (TREE_CODE (lhs
) == WITH_SIZE_EXPR
)
4612 error ("%qs LHS in assignment statement",
4613 get_tree_code_name (TREE_CODE (lhs
)));
4614 debug_generic_expr (lhs
);
4618 if (handled_component_p (lhs
)
4619 || TREE_CODE (lhs
) == MEM_REF
4620 || TREE_CODE (lhs
) == TARGET_MEM_REF
)
4621 res
|= verify_types_in_gimple_reference (lhs
, true);
4623 /* Special codes we cannot handle via their class. */
4628 tree op
= TREE_OPERAND (rhs1
, 0);
4629 if (!is_gimple_addressable (op
))
4631 error ("invalid operand in %qs", code_name
);
4635 /* Technically there is no longer a need for matching types, but
4636 gimple hygiene asks for this check. In LTO we can end up
4637 combining incompatible units and thus end up with addresses
4638 of globals that change their type to a common one. */
4640 && !types_compatible_p (TREE_TYPE (op
),
4641 TREE_TYPE (TREE_TYPE (rhs1
)))
4642 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1
),
4645 error ("type mismatch in %qs", code_name
);
4646 debug_generic_stmt (TREE_TYPE (rhs1
));
4647 debug_generic_stmt (TREE_TYPE (op
));
4651 return (verify_address (rhs1
, true)
4652 || verify_types_in_gimple_reference (op
, true));
4657 error ("%qs in gimple IL", code_name
);
4663 case ARRAY_RANGE_REF
:
4664 case VIEW_CONVERT_EXPR
:
4667 case TARGET_MEM_REF
:
4669 if (!is_gimple_reg (lhs
)
4670 && is_gimple_reg_type (TREE_TYPE (lhs
)))
4672 error ("invalid RHS for gimple memory store: %qs", code_name
);
4673 debug_generic_stmt (lhs
);
4674 debug_generic_stmt (rhs1
);
4677 return res
|| verify_types_in_gimple_reference (rhs1
, false);
4689 /* tcc_declaration */
4694 if (!is_gimple_reg (lhs
)
4695 && !is_gimple_reg (rhs1
)
4696 && is_gimple_reg_type (TREE_TYPE (lhs
)))
4698 error ("invalid RHS for gimple memory store: %qs", code_name
);
4699 debug_generic_stmt (lhs
);
4700 debug_generic_stmt (rhs1
);
4706 if (VECTOR_TYPE_P (rhs1_type
))
4709 tree elt_i
, elt_v
, elt_t
= NULL_TREE
;
4711 if (CONSTRUCTOR_NELTS (rhs1
) == 0)
4713 /* For vector CONSTRUCTORs we require that either it is empty
4714 CONSTRUCTOR, or it is a CONSTRUCTOR of smaller vector elements
4715 (then the element count must be correct to cover the whole
4716 outer vector and index must be NULL on all elements, or it is
4717 a CONSTRUCTOR of scalar elements, where we as an exception allow
4718 smaller number of elements (assuming zero filling) and
4719 consecutive indexes as compared to NULL indexes (such
4720 CONSTRUCTORs can appear in the IL from FEs). */
4721 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (rhs1
), i
, elt_i
, elt_v
)
4723 if (elt_t
== NULL_TREE
)
4725 elt_t
= TREE_TYPE (elt_v
);
4726 if (VECTOR_TYPE_P (elt_t
))
4728 tree elt_t
= TREE_TYPE (elt_v
);
4729 if (!useless_type_conversion_p (TREE_TYPE (rhs1_type
),
4732 error ("incorrect type of vector %qs elements",
4734 debug_generic_stmt (rhs1
);
4737 else if (maybe_ne (CONSTRUCTOR_NELTS (rhs1
)
4738 * TYPE_VECTOR_SUBPARTS (elt_t
),
4739 TYPE_VECTOR_SUBPARTS (rhs1_type
)))
4741 error ("incorrect number of vector %qs elements",
4743 debug_generic_stmt (rhs1
);
4747 else if (!useless_type_conversion_p (TREE_TYPE (rhs1_type
),
4750 error ("incorrect type of vector %qs elements",
4752 debug_generic_stmt (rhs1
);
4755 else if (maybe_gt (CONSTRUCTOR_NELTS (rhs1
),
4756 TYPE_VECTOR_SUBPARTS (rhs1_type
)))
4758 error ("incorrect number of vector %qs elements",
4760 debug_generic_stmt (rhs1
);
4764 else if (!useless_type_conversion_p (elt_t
, TREE_TYPE (elt_v
)))
4766 error ("incorrect type of vector CONSTRUCTOR elements");
4767 debug_generic_stmt (rhs1
);
4770 if (elt_i
!= NULL_TREE
4771 && (VECTOR_TYPE_P (elt_t
)
4772 || TREE_CODE (elt_i
) != INTEGER_CST
4773 || compare_tree_int (elt_i
, i
) != 0))
4775 error ("vector %qs with non-NULL element index",
4777 debug_generic_stmt (rhs1
);
4780 if (!is_gimple_val (elt_v
))
4782 error ("vector %qs element is not a GIMPLE value",
4784 debug_generic_stmt (rhs1
);
4789 else if (CONSTRUCTOR_NELTS (rhs1
) != 0)
4791 error ("non-vector %qs with elements", code_name
);
4792 debug_generic_stmt (rhs1
);
4797 case WITH_SIZE_EXPR
:
4798 error ("%qs RHS in assignment statement",
4799 get_tree_code_name (rhs_code
));
4800 debug_generic_expr (rhs1
);
4813 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
4814 is a problem, otherwise false. */
4817 verify_gimple_assign (gassign
*stmt
)
4819 switch (gimple_assign_rhs_class (stmt
))
4821 case GIMPLE_SINGLE_RHS
:
4822 return verify_gimple_assign_single (stmt
);
4824 case GIMPLE_UNARY_RHS
:
4825 return verify_gimple_assign_unary (stmt
);
4827 case GIMPLE_BINARY_RHS
:
4828 return verify_gimple_assign_binary (stmt
);
4830 case GIMPLE_TERNARY_RHS
:
4831 return verify_gimple_assign_ternary (stmt
);
4838 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
4839 is a problem, otherwise false. */
4842 verify_gimple_return (greturn
*stmt
)
4844 tree op
= gimple_return_retval (stmt
);
4845 tree restype
= TREE_TYPE (TREE_TYPE (cfun
->decl
));
4847 /* We cannot test for present return values as we do not fix up missing
4848 return values from the original source. */
4852 if (!is_gimple_val (op
)
4853 && TREE_CODE (op
) != RESULT_DECL
)
4855 error ("invalid operand in return statement");
4856 debug_generic_stmt (op
);
4860 if ((TREE_CODE (op
) == RESULT_DECL
4861 && DECL_BY_REFERENCE (op
))
4862 || (TREE_CODE (op
) == SSA_NAME
4863 && SSA_NAME_VAR (op
)
4864 && TREE_CODE (SSA_NAME_VAR (op
)) == RESULT_DECL
4865 && DECL_BY_REFERENCE (SSA_NAME_VAR (op
))))
4866 op
= TREE_TYPE (op
);
4868 if (!useless_type_conversion_p (restype
, TREE_TYPE (op
)))
4870 error ("invalid conversion in return statement");
4871 debug_generic_stmt (restype
);
4872 debug_generic_stmt (TREE_TYPE (op
));
4880 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
4881 is a problem, otherwise false. */
4884 verify_gimple_goto (ggoto
*stmt
)
4886 tree dest
= gimple_goto_dest (stmt
);
4888 /* ??? We have two canonical forms of direct goto destinations, a
4889 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
4890 if (TREE_CODE (dest
) != LABEL_DECL
4891 && (!is_gimple_val (dest
)
4892 || !POINTER_TYPE_P (TREE_TYPE (dest
))))
4894 error ("goto destination is neither a label nor a pointer");
4901 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
4902 is a problem, otherwise false. */
4905 verify_gimple_switch (gswitch
*stmt
)
4908 tree elt
, prev_upper_bound
= NULL_TREE
;
4909 tree index_type
, elt_type
= NULL_TREE
;
4911 if (!is_gimple_val (gimple_switch_index (stmt
)))
4913 error ("invalid operand to switch statement");
4914 debug_generic_stmt (gimple_switch_index (stmt
));
4918 index_type
= TREE_TYPE (gimple_switch_index (stmt
));
4919 if (! INTEGRAL_TYPE_P (index_type
))
4921 error ("non-integral type switch statement");
4922 debug_generic_expr (index_type
);
4926 elt
= gimple_switch_label (stmt
, 0);
4927 if (CASE_LOW (elt
) != NULL_TREE
4928 || CASE_HIGH (elt
) != NULL_TREE
4929 || CASE_CHAIN (elt
) != NULL_TREE
)
4931 error ("invalid default case label in switch statement");
4932 debug_generic_expr (elt
);
4936 n
= gimple_switch_num_labels (stmt
);
4937 for (i
= 1; i
< n
; i
++)
4939 elt
= gimple_switch_label (stmt
, i
);
4941 if (CASE_CHAIN (elt
))
4943 error ("invalid %<CASE_CHAIN%>");
4944 debug_generic_expr (elt
);
4947 if (! CASE_LOW (elt
))
4949 error ("invalid case label in switch statement");
4950 debug_generic_expr (elt
);
4954 && ! tree_int_cst_lt (CASE_LOW (elt
), CASE_HIGH (elt
)))
4956 error ("invalid case range in switch statement");
4957 debug_generic_expr (elt
);
4963 elt_type
= TREE_TYPE (CASE_LOW (elt
));
4964 if (TYPE_PRECISION (index_type
) < TYPE_PRECISION (elt_type
))
4966 error ("type precision mismatch in switch statement");
4970 if (TREE_TYPE (CASE_LOW (elt
)) != elt_type
4971 || (CASE_HIGH (elt
) && TREE_TYPE (CASE_HIGH (elt
)) != elt_type
))
4973 error ("type mismatch for case label in switch statement");
4974 debug_generic_expr (elt
);
4978 if (prev_upper_bound
)
4980 if (! tree_int_cst_lt (prev_upper_bound
, CASE_LOW (elt
)))
4982 error ("case labels not sorted in switch statement");
4987 prev_upper_bound
= CASE_HIGH (elt
);
4988 if (! prev_upper_bound
)
4989 prev_upper_bound
= CASE_LOW (elt
);
4995 /* Verify a gimple debug statement STMT.
4996 Returns true if anything is wrong. */
4999 verify_gimple_debug (gimple
*stmt ATTRIBUTE_UNUSED
)
5001 /* There isn't much that could be wrong in a gimple debug stmt. A
5002 gimple debug bind stmt, for example, maps a tree, that's usually
5003 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
5004 component or member of an aggregate type, to another tree, that
5005 can be an arbitrary expression. These stmts expand into debug
5006 insns, and are converted to debug notes by var-tracking.cc. */
5010 /* Verify a gimple label statement STMT.
5011 Returns true if anything is wrong. */
5014 verify_gimple_label (glabel
*stmt
)
5016 tree decl
= gimple_label_label (stmt
);
5020 if (TREE_CODE (decl
) != LABEL_DECL
)
5022 if (!DECL_NONLOCAL (decl
) && !FORCED_LABEL (decl
)
5023 && DECL_CONTEXT (decl
) != current_function_decl
)
5025 error ("label context is not the current function declaration");
5029 uid
= LABEL_DECL_UID (decl
);
5032 || (*label_to_block_map_for_fn (cfun
))[uid
] != gimple_bb (stmt
)))
5034 error ("incorrect entry in %<label_to_block_map%>");
5038 uid
= EH_LANDING_PAD_NR (decl
);
5041 eh_landing_pad lp
= get_eh_landing_pad_from_number (uid
);
5042 if (decl
!= lp
->post_landing_pad
)
5044 error ("incorrect setting of landing pad number");
5052 /* Verify a gimple cond statement STMT.
5053 Returns true if anything is wrong. */
5056 verify_gimple_cond (gcond
*stmt
)
5058 if (TREE_CODE_CLASS (gimple_cond_code (stmt
)) != tcc_comparison
)
5060 error ("invalid comparison code in gimple cond");
5063 if (!(!gimple_cond_true_label (stmt
)
5064 || TREE_CODE (gimple_cond_true_label (stmt
)) == LABEL_DECL
)
5065 || !(!gimple_cond_false_label (stmt
)
5066 || TREE_CODE (gimple_cond_false_label (stmt
)) == LABEL_DECL
))
5068 error ("invalid labels in gimple cond");
5072 return verify_gimple_comparison (boolean_type_node
,
5073 gimple_cond_lhs (stmt
),
5074 gimple_cond_rhs (stmt
),
5075 gimple_cond_code (stmt
));
5078 /* Verify the GIMPLE statement STMT. Returns true if there is an
5079 error, otherwise false. */
5082 verify_gimple_stmt (gimple
*stmt
)
5084 switch (gimple_code (stmt
))
5087 return verify_gimple_assign (as_a
<gassign
*> (stmt
));
5090 return verify_gimple_label (as_a
<glabel
*> (stmt
));
5093 return verify_gimple_call (as_a
<gcall
*> (stmt
));
5096 return verify_gimple_cond (as_a
<gcond
*> (stmt
));
5099 return verify_gimple_goto (as_a
<ggoto
*> (stmt
));
5102 return verify_gimple_switch (as_a
<gswitch
*> (stmt
));
5105 return verify_gimple_return (as_a
<greturn
*> (stmt
));
5110 case GIMPLE_TRANSACTION
:
5111 return verify_gimple_transaction (as_a
<gtransaction
*> (stmt
));
5113 /* Tuples that do not have tree operands. */
5115 case GIMPLE_PREDICT
:
5117 case GIMPLE_EH_DISPATCH
:
5118 case GIMPLE_EH_MUST_NOT_THROW
:
5122 /* OpenMP directives are validated by the FE and never operated
5123 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
5124 non-gimple expressions when the main index variable has had
5125 its address taken. This does not affect the loop itself
5126 because the header of an GIMPLE_OMP_FOR is merely used to determine
5127 how to setup the parallel iteration. */
5134 return verify_gimple_debug (stmt
);
5141 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
5142 and false otherwise. */
5145 verify_gimple_phi (gphi
*phi
)
5149 tree phi_result
= gimple_phi_result (phi
);
5154 error ("invalid %<PHI%> result");
5158 virtual_p
= virtual_operand_p (phi_result
);
5159 if (TREE_CODE (phi_result
) != SSA_NAME
5161 && SSA_NAME_VAR (phi_result
) != gimple_vop (cfun
)))
5163 error ("invalid %<PHI%> result");
5167 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
5169 tree t
= gimple_phi_arg_def (phi
, i
);
5173 error ("missing %<PHI%> def");
5177 /* Addressable variables do have SSA_NAMEs but they
5178 are not considered gimple values. */
5179 else if ((TREE_CODE (t
) == SSA_NAME
5180 && virtual_p
!= virtual_operand_p (t
))
5182 && (TREE_CODE (t
) != SSA_NAME
5183 || SSA_NAME_VAR (t
) != gimple_vop (cfun
)))
5185 && !is_gimple_val (t
)))
5187 error ("invalid %<PHI%> argument");
5188 debug_generic_expr (t
);
5191 #ifdef ENABLE_TYPES_CHECKING
5192 if (!useless_type_conversion_p (TREE_TYPE (phi_result
), TREE_TYPE (t
)))
5194 error ("incompatible types in %<PHI%> argument %u", i
);
5195 debug_generic_stmt (TREE_TYPE (phi_result
));
5196 debug_generic_stmt (TREE_TYPE (t
));
5205 /* Verify the GIMPLE statements inside the sequence STMTS. */
5208 verify_gimple_in_seq_2 (gimple_seq stmts
)
5210 gimple_stmt_iterator ittr
;
5213 for (ittr
= gsi_start (stmts
); !gsi_end_p (ittr
); gsi_next (&ittr
))
5215 gimple
*stmt
= gsi_stmt (ittr
);
5217 switch (gimple_code (stmt
))
5220 err
|= verify_gimple_in_seq_2 (
5221 gimple_bind_body (as_a
<gbind
*> (stmt
)));
5225 err
|= verify_gimple_in_seq_2 (gimple_try_eval (stmt
));
5226 err
|= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt
));
5229 case GIMPLE_EH_FILTER
:
5230 err
|= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt
));
5233 case GIMPLE_EH_ELSE
:
5235 geh_else
*eh_else
= as_a
<geh_else
*> (stmt
);
5236 err
|= verify_gimple_in_seq_2 (gimple_eh_else_n_body (eh_else
));
5237 err
|= verify_gimple_in_seq_2 (gimple_eh_else_e_body (eh_else
));
5242 err
|= verify_gimple_in_seq_2 (gimple_catch_handler (
5243 as_a
<gcatch
*> (stmt
)));
5247 err
|= verify_gimple_in_seq_2 (gimple_assume_body (stmt
));
5250 case GIMPLE_TRANSACTION
:
5251 err
|= verify_gimple_transaction (as_a
<gtransaction
*> (stmt
));
5256 bool err2
= verify_gimple_stmt (stmt
);
5258 debug_gimple_stmt (stmt
);
5267 /* Verify the contents of a GIMPLE_TRANSACTION. Returns true if there
5268 is a problem, otherwise false. */
5271 verify_gimple_transaction (gtransaction
*stmt
)
5275 lab
= gimple_transaction_label_norm (stmt
);
5276 if (lab
!= NULL
&& TREE_CODE (lab
) != LABEL_DECL
)
5278 lab
= gimple_transaction_label_uninst (stmt
);
5279 if (lab
!= NULL
&& TREE_CODE (lab
) != LABEL_DECL
)
5281 lab
= gimple_transaction_label_over (stmt
);
5282 if (lab
!= NULL
&& TREE_CODE (lab
) != LABEL_DECL
)
5285 return verify_gimple_in_seq_2 (gimple_transaction_body (stmt
));
5289 /* Verify the GIMPLE statements inside the statement list STMTS. */
5292 verify_gimple_in_seq (gimple_seq stmts
, bool ice
)
5294 timevar_push (TV_TREE_STMT_VERIFY
);
5295 bool res
= verify_gimple_in_seq_2 (stmts
);
5297 internal_error ("%<verify_gimple%> failed");
5298 timevar_pop (TV_TREE_STMT_VERIFY
);
5302 /* Return true when the T can be shared. */
5305 tree_node_can_be_shared (tree t
)
5307 if (IS_TYPE_OR_DECL_P (t
)
5308 || TREE_CODE (t
) == SSA_NAME
5309 || TREE_CODE (t
) == IDENTIFIER_NODE
5310 || TREE_CODE (t
) == CASE_LABEL_EXPR
5311 || is_gimple_min_invariant (t
))
5314 if (t
== error_mark_node
)
5320 /* Called via walk_tree. Verify tree sharing. */
5323 verify_node_sharing_1 (tree
*tp
, int *walk_subtrees
, void *data
)
5325 hash_set
<void *> *visited
= (hash_set
<void *> *) data
;
5327 if (tree_node_can_be_shared (*tp
))
5329 *walk_subtrees
= false;
5333 if (visited
->add (*tp
))
5339 /* Called via walk_gimple_stmt. Verify tree sharing. */
5342 verify_node_sharing (tree
*tp
, int *walk_subtrees
, void *data
)
5344 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
5345 return verify_node_sharing_1 (tp
, walk_subtrees
, wi
->info
);
5348 static bool eh_error_found
;
5350 verify_eh_throw_stmt_node (gimple
*const &stmt
, const int &,
5351 hash_set
<gimple
*> *visited
)
5353 if (!visited
->contains (stmt
))
5355 error ("dead statement in EH table");
5356 debug_gimple_stmt (stmt
);
5357 eh_error_found
= true;
5362 /* Verify if the location LOCs block is in BLOCKS. */
5365 verify_location (hash_set
<tree
> *blocks
, location_t loc
)
5367 tree block
= LOCATION_BLOCK (loc
);
5368 if (block
!= NULL_TREE
5369 && !blocks
->contains (block
))
5371 error ("location references block not in block tree");
5374 if (block
!= NULL_TREE
)
5375 return verify_location (blocks
, BLOCK_SOURCE_LOCATION (block
));
5379 /* Called via walk_tree. Verify that expressions have no blocks. */
5382 verify_expr_no_block (tree
*tp
, int *walk_subtrees
, void *)
5386 *walk_subtrees
= false;
5390 location_t loc
= EXPR_LOCATION (*tp
);
5391 if (LOCATION_BLOCK (loc
) != NULL
)
5397 /* Called via walk_tree. Verify locations of expressions. */
5400 verify_expr_location_1 (tree
*tp
, int *walk_subtrees
, void *data
)
5402 hash_set
<tree
> *blocks
= (hash_set
<tree
> *) data
;
5405 /* ??? This doesn't really belong here but there's no good place to
5406 stick this remainder of old verify_expr. */
5407 /* ??? This barfs on debug stmts which contain binds to vars with
5408 different function context. */
5411 || TREE_CODE (t
) == PARM_DECL
5412 || TREE_CODE (t
) == RESULT_DECL
)
5414 tree context
= decl_function_context (t
);
5415 if (context
!= cfun
->decl
5416 && !SCOPE_FILE_SCOPE_P (context
)
5418 && !DECL_EXTERNAL (t
))
5420 error ("local declaration from a different function");
5426 if (VAR_P (t
) && DECL_HAS_DEBUG_EXPR_P (t
))
5428 tree x
= DECL_DEBUG_EXPR (t
);
5429 tree addr
= walk_tree (&x
, verify_expr_no_block
, NULL
, NULL
);
5434 || TREE_CODE (t
) == PARM_DECL
5435 || TREE_CODE (t
) == RESULT_DECL
)
5436 && DECL_HAS_VALUE_EXPR_P (t
))
5438 tree x
= DECL_VALUE_EXPR (t
);
5439 tree addr
= walk_tree (&x
, verify_expr_no_block
, NULL
, NULL
);
5446 *walk_subtrees
= false;
5450 location_t loc
= EXPR_LOCATION (t
);
5451 if (verify_location (blocks
, loc
))
5457 /* Called via walk_gimple_op. Verify locations of expressions. */
5460 verify_expr_location (tree
*tp
, int *walk_subtrees
, void *data
)
5462 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
5463 return verify_expr_location_1 (tp
, walk_subtrees
, wi
->info
);
5466 /* Insert all subblocks of BLOCK into BLOCKS and recurse. */
5469 collect_subblocks (hash_set
<tree
> *blocks
, tree block
)
5472 for (t
= BLOCK_SUBBLOCKS (block
); t
; t
= BLOCK_CHAIN (t
))
5475 collect_subblocks (blocks
, t
);
5479 /* Disable warnings about missing quoting in GCC diagnostics for
5480 the verification errors. Their format strings don't follow
5481 GCC diagnostic conventions and trigger an ICE in the end. */
5483 # pragma GCC diagnostic push
5484 # pragma GCC diagnostic ignored "-Wformat-diag"
5487 /* Verify the GIMPLE statements in the CFG of FN. */
5490 verify_gimple_in_cfg (struct function
*fn
, bool verify_nothrow
, bool ice
)
5495 timevar_push (TV_TREE_STMT_VERIFY
);
5496 hash_set
<void *> visited
;
5497 hash_set
<gimple
*> visited_throwing_stmts
;
5499 /* Collect all BLOCKs referenced by the BLOCK tree of FN. */
5500 hash_set
<tree
> blocks
;
5501 if (DECL_INITIAL (fn
->decl
))
5503 blocks
.add (DECL_INITIAL (fn
->decl
));
5504 collect_subblocks (&blocks
, DECL_INITIAL (fn
->decl
));
5507 FOR_EACH_BB_FN (bb
, fn
)
5509 gimple_stmt_iterator gsi
;
5513 for (gphi_iterator gpi
= gsi_start_phis (bb
);
5517 gphi
*phi
= gpi
.phi ();
5521 if (gimple_bb (phi
) != bb
)
5523 error ("gimple_bb (phi) is set to a wrong basic block");
5527 err2
|= verify_gimple_phi (phi
);
5529 /* Only PHI arguments have locations. */
5530 if (gimple_location (phi
) != UNKNOWN_LOCATION
)
5532 error ("PHI node with location");
5536 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
5538 tree arg
= gimple_phi_arg_def (phi
, i
);
5539 tree addr
= walk_tree (&arg
, verify_node_sharing_1
,
5543 error ("incorrect sharing of tree nodes");
5544 debug_generic_expr (addr
);
5547 location_t loc
= gimple_phi_arg_location (phi
, i
);
5548 if (virtual_operand_p (gimple_phi_result (phi
))
5549 && loc
!= UNKNOWN_LOCATION
)
5551 error ("virtual PHI with argument locations");
5554 addr
= walk_tree (&arg
, verify_expr_location_1
, &blocks
, NULL
);
5557 debug_generic_expr (addr
);
5560 err2
|= verify_location (&blocks
, loc
);
5564 debug_gimple_stmt (phi
);
5568 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5570 gimple
*stmt
= gsi_stmt (gsi
);
5572 struct walk_stmt_info wi
;
5576 if (gimple_bb (stmt
) != bb
)
5578 error ("gimple_bb (stmt) is set to a wrong basic block");
5582 err2
|= verify_gimple_stmt (stmt
);
5583 err2
|= verify_location (&blocks
, gimple_location (stmt
));
5585 memset (&wi
, 0, sizeof (wi
));
5586 wi
.info
= (void *) &visited
;
5587 addr
= walk_gimple_op (stmt
, verify_node_sharing
, &wi
);
5590 error ("incorrect sharing of tree nodes");
5591 debug_generic_expr (addr
);
5595 memset (&wi
, 0, sizeof (wi
));
5596 wi
.info
= (void *) &blocks
;
5597 addr
= walk_gimple_op (stmt
, verify_expr_location
, &wi
);
5600 debug_generic_expr (addr
);
5604 /* If the statement is marked as part of an EH region, then it is
5605 expected that the statement could throw. Verify that when we
5606 have optimizations that simplify statements such that we prove
5607 that they cannot throw, that we update other data structures
5609 lp_nr
= lookup_stmt_eh_lp (stmt
);
5611 visited_throwing_stmts
.add (stmt
);
5614 if (!stmt_could_throw_p (cfun
, stmt
))
5618 error ("statement marked for throw, but doesn%'t");
5622 else if (!gsi_one_before_end_p (gsi
))
5624 error ("statement marked for throw in middle of block");
5630 debug_gimple_stmt (stmt
);
5634 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5635 if (e
->goto_locus
!= UNKNOWN_LOCATION
)
5636 err
|= verify_location (&blocks
, e
->goto_locus
);
5639 hash_map
<gimple
*, int> *eh_table
= get_eh_throw_stmt_table (cfun
);
5640 eh_error_found
= false;
5642 eh_table
->traverse
<hash_set
<gimple
*> *, verify_eh_throw_stmt_node
>
5643 (&visited_throwing_stmts
);
5645 if (ice
&& (err
|| eh_error_found
))
5646 internal_error ("verify_gimple failed");
5648 verify_histograms ();
5649 timevar_pop (TV_TREE_STMT_VERIFY
);
5651 return (err
|| eh_error_found
);
5655 /* Verifies that the flow information is OK. */
5658 gimple_verify_flow_info (void)
5662 gimple_stmt_iterator gsi
;
5667 if (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->il
.gimple
.seq
5668 || ENTRY_BLOCK_PTR_FOR_FN (cfun
)->il
.gimple
.phi_nodes
)
5670 error ("ENTRY_BLOCK has IL associated with it");
5674 if (EXIT_BLOCK_PTR_FOR_FN (cfun
)->il
.gimple
.seq
5675 || EXIT_BLOCK_PTR_FOR_FN (cfun
)->il
.gimple
.phi_nodes
)
5677 error ("EXIT_BLOCK has IL associated with it");
5681 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR_FOR_FN (cfun
)->preds
)
5682 if (e
->flags
& EDGE_FALLTHRU
)
5684 error ("fallthru to exit from bb %d", e
->src
->index
);
5688 FOR_EACH_BB_FN (bb
, cfun
)
5690 bool found_ctrl_stmt
= false;
5694 /* Skip labels on the start of basic block. */
5695 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5698 gimple
*prev_stmt
= stmt
;
5700 stmt
= gsi_stmt (gsi
);
5702 if (gimple_code (stmt
) != GIMPLE_LABEL
)
5705 label
= gimple_label_label (as_a
<glabel
*> (stmt
));
5706 if (prev_stmt
&& DECL_NONLOCAL (label
))
5708 error ("nonlocal label %qD is not first in a sequence "
5709 "of labels in bb %d", label
, bb
->index
);
5713 if (prev_stmt
&& EH_LANDING_PAD_NR (label
) != 0)
5715 error ("EH landing pad label %qD is not first in a sequence "
5716 "of labels in bb %d", label
, bb
->index
);
5720 if (label_to_block (cfun
, label
) != bb
)
5722 error ("label %qD to block does not match in bb %d",
5727 if (decl_function_context (label
) != current_function_decl
)
5729 error ("label %qD has incorrect context in bb %d",
5735 /* Verify that body of basic block BB is free of control flow. */
5736 bool seen_nondebug_stmt
= false;
5737 for (; !gsi_end_p (gsi
); gsi_next (&gsi
))
5739 gimple
*stmt
= gsi_stmt (gsi
);
5741 if (found_ctrl_stmt
)
5743 error ("control flow in the middle of basic block %d",
5748 if (stmt_ends_bb_p (stmt
))
5749 found_ctrl_stmt
= true;
5751 if (glabel
*label_stmt
= dyn_cast
<glabel
*> (stmt
))
5753 error ("label %qD in the middle of basic block %d",
5754 gimple_label_label (label_stmt
), bb
->index
);
5758 /* Check that no statements appear between a returns_twice call
5759 and its associated abnormal edge. */
5760 if (gimple_code (stmt
) == GIMPLE_CALL
5761 && gimple_call_flags (stmt
) & ECF_RETURNS_TWICE
)
5763 const char *misplaced
= NULL
;
5764 /* TM is an exception: it points abnormal edges just after the
5765 call that starts a transaction, i.e. it must end the BB. */
5766 if (gimple_call_builtin_p (stmt
, BUILT_IN_TM_START
))
5768 if (single_succ_p (bb
)
5769 && bb_has_abnormal_pred (single_succ (bb
))
5770 && !gsi_one_nondebug_before_end_p (gsi
))
5771 misplaced
= "not last";
5775 if (seen_nondebug_stmt
5776 && bb_has_abnormal_pred (bb
))
5777 misplaced
= "not first";
5781 error ("returns_twice call is %s in basic block %d",
5782 misplaced
, bb
->index
);
5783 print_gimple_stmt (stderr
, stmt
, 0, TDF_SLIM
);
5787 if (!is_gimple_debug (stmt
))
5788 seen_nondebug_stmt
= true;
5791 gsi
= gsi_last_nondebug_bb (bb
);
5792 if (gsi_end_p (gsi
))
5795 stmt
= gsi_stmt (gsi
);
5797 if (gimple_code (stmt
) == GIMPLE_LABEL
)
5800 err
|= verify_eh_edges (stmt
);
5802 if (is_ctrl_stmt (stmt
))
5804 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5805 if (e
->flags
& EDGE_FALLTHRU
)
5807 error ("fallthru edge after a control statement in bb %d",
5813 if (gimple_code (stmt
) != GIMPLE_COND
)
5815 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
5816 after anything else but if statement. */
5817 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5818 if (e
->flags
& (EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
))
5820 error ("true/false edge after a non-GIMPLE_COND in bb %d",
5826 switch (gimple_code (stmt
))
5833 extract_true_false_edges_from_block (bb
, &true_edge
, &false_edge
);
5837 || !(true_edge
->flags
& EDGE_TRUE_VALUE
)
5838 || !(false_edge
->flags
& EDGE_FALSE_VALUE
)
5839 || (true_edge
->flags
& (EDGE_FALLTHRU
| EDGE_ABNORMAL
))
5840 || (false_edge
->flags
& (EDGE_FALLTHRU
| EDGE_ABNORMAL
))
5841 || EDGE_COUNT (bb
->succs
) >= 3)
5843 error ("wrong outgoing edge flags at end of bb %d",
5851 if (simple_goto_p (stmt
))
5853 error ("explicit goto at end of bb %d", bb
->index
);
5858 /* FIXME. We should double check that the labels in the
5859 destination blocks have their address taken. */
5860 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5861 if ((e
->flags
& (EDGE_FALLTHRU
| EDGE_TRUE_VALUE
5862 | EDGE_FALSE_VALUE
))
5863 || !(e
->flags
& EDGE_ABNORMAL
))
5865 error ("wrong outgoing edge flags at end of bb %d",
5873 if (!gimple_call_builtin_p (stmt
, BUILT_IN_RETURN
))
5877 if (!single_succ_p (bb
)
5878 || (single_succ_edge (bb
)->flags
5879 & (EDGE_FALLTHRU
| EDGE_ABNORMAL
5880 | EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
)))
5882 error ("wrong outgoing edge flags at end of bb %d", bb
->index
);
5885 if (single_succ (bb
) != EXIT_BLOCK_PTR_FOR_FN (cfun
))
5887 error ("return edge does not point to exit in bb %d",
5895 gswitch
*switch_stmt
= as_a
<gswitch
*> (stmt
);
5900 n
= gimple_switch_num_labels (switch_stmt
);
5902 /* Mark all the destination basic blocks. */
5903 for (i
= 0; i
< n
; ++i
)
5905 basic_block label_bb
= gimple_switch_label_bb (cfun
, switch_stmt
, i
);
5906 gcc_assert (!label_bb
->aux
|| label_bb
->aux
== (void *)1);
5907 label_bb
->aux
= (void *)1;
5910 /* Verify that the case labels are sorted. */
5911 prev
= gimple_switch_label (switch_stmt
, 0);
5912 for (i
= 1; i
< n
; ++i
)
5914 tree c
= gimple_switch_label (switch_stmt
, i
);
5917 error ("found default case not at the start of "
5923 && !tree_int_cst_lt (CASE_LOW (prev
), CASE_LOW (c
)))
5925 error ("case labels not sorted: ");
5926 print_generic_expr (stderr
, prev
);
5927 fprintf (stderr
," is greater than ");
5928 print_generic_expr (stderr
, c
);
5929 fprintf (stderr
," but comes before it.\n");
5934 /* VRP will remove the default case if it can prove it will
5935 never be executed. So do not verify there always exists
5936 a default case here. */
5938 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5942 error ("extra outgoing edge %d->%d",
5943 bb
->index
, e
->dest
->index
);
5947 e
->dest
->aux
= (void *)2;
5948 if ((e
->flags
& (EDGE_FALLTHRU
| EDGE_ABNORMAL
5949 | EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
)))
5951 error ("wrong outgoing edge flags at end of bb %d",
5957 /* Check that we have all of them. */
5958 for (i
= 0; i
< n
; ++i
)
5960 basic_block label_bb
= gimple_switch_label_bb (cfun
,
5963 if (label_bb
->aux
!= (void *)2)
5965 error ("missing edge %i->%i", bb
->index
, label_bb
->index
);
5970 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5971 e
->dest
->aux
= (void *)0;
5975 case GIMPLE_EH_DISPATCH
:
5976 err
|= verify_eh_dispatch_edge (as_a
<geh_dispatch
*> (stmt
));
5984 if (dom_info_state (CDI_DOMINATORS
) >= DOM_NO_FAST_QUERY
)
5985 verify_dominators (CDI_DOMINATORS
);
5991 # pragma GCC diagnostic pop
5994 /* Updates phi nodes after creating a forwarder block joined
5995 by edge FALLTHRU. */
5998 gimple_make_forwarder_block (edge fallthru
)
6002 basic_block dummy
, bb
;
6005 bool forward_location_p
;
6007 dummy
= fallthru
->src
;
6008 bb
= fallthru
->dest
;
6010 if (single_pred_p (bb
))
6013 /* We can forward location info if we have only one predecessor. */
6014 forward_location_p
= single_pred_p (dummy
);
6016 /* If we redirected a branch we must create new PHI nodes at the
6018 for (gsi
= gsi_start_phis (dummy
); !gsi_end_p (gsi
); gsi_next (&gsi
))
6020 gphi
*phi
, *new_phi
;
6023 var
= gimple_phi_result (phi
);
6024 new_phi
= create_phi_node (var
, bb
);
6025 gimple_phi_set_result (phi
, copy_ssa_name (var
, phi
));
6026 add_phi_arg (new_phi
, gimple_phi_result (phi
), fallthru
,
6028 ? gimple_phi_arg_location (phi
, 0) : UNKNOWN_LOCATION
);
6031 /* Add the arguments we have stored on edges. */
6032 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
6037 flush_pending_stmts (e
);
6042 /* Return a non-special label in the head of basic block BLOCK.
6043 Create one if it doesn't exist. */
6046 gimple_block_label (basic_block bb
)
6048 gimple_stmt_iterator i
, s
= gsi_start_bb (bb
);
6053 for (i
= s
; !gsi_end_p (i
); first
= false, gsi_next (&i
))
6055 stmt
= dyn_cast
<glabel
*> (gsi_stmt (i
));
6058 label
= gimple_label_label (stmt
);
6059 if (!DECL_NONLOCAL (label
))
6062 gsi_move_before (&i
, &s
);
6067 label
= create_artificial_label (UNKNOWN_LOCATION
);
6068 stmt
= gimple_build_label (label
);
6069 gsi_insert_before (&s
, stmt
, GSI_NEW_STMT
);
6074 /* Attempt to perform edge redirection by replacing a possibly complex
6075 jump instruction by a goto or by removing the jump completely.
6076 This can apply only if all edges now point to the same block. The
6077 parameters and return values are equivalent to
6078 redirect_edge_and_branch. */
6081 gimple_try_redirect_by_replacing_jump (edge e
, basic_block target
)
6083 basic_block src
= e
->src
;
6084 gimple_stmt_iterator i
;
6087 /* We can replace or remove a complex jump only when we have exactly
6089 if (EDGE_COUNT (src
->succs
) != 2
6090 /* Verify that all targets will be TARGET. Specifically, the
6091 edge that is not E must also go to TARGET. */
6092 || EDGE_SUCC (src
, EDGE_SUCC (src
, 0) == e
)->dest
!= target
)
6095 i
= gsi_last_bb (src
);
6099 stmt
= gsi_stmt (i
);
6101 if (gimple_code (stmt
) == GIMPLE_COND
|| gimple_code (stmt
) == GIMPLE_SWITCH
)
6103 gsi_remove (&i
, true);
6104 e
= ssa_redirect_edge (e
, target
);
6105 e
->flags
= EDGE_FALLTHRU
;
6113 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
6114 edge representing the redirected branch. */
6117 gimple_redirect_edge_and_branch (edge e
, basic_block dest
)
6119 basic_block bb
= e
->src
;
6120 gimple_stmt_iterator gsi
;
6124 if (e
->flags
& EDGE_ABNORMAL
)
6127 if (e
->dest
== dest
)
6130 if (e
->flags
& EDGE_EH
)
6131 return redirect_eh_edge (e
, dest
);
6133 if (e
->src
!= ENTRY_BLOCK_PTR_FOR_FN (cfun
))
6135 ret
= gimple_try_redirect_by_replacing_jump (e
, dest
);
6140 gsi
= gsi_last_nondebug_bb (bb
);
6141 stmt
= gsi_end_p (gsi
) ? NULL
: gsi_stmt (gsi
);
6143 switch (stmt
? gimple_code (stmt
) : GIMPLE_ERROR_MARK
)
6146 /* For COND_EXPR, we only need to redirect the edge. */
6150 /* No non-abnormal edges should lead from a non-simple goto, and
6151 simple ones should be represented implicitly. */
6156 gswitch
*switch_stmt
= as_a
<gswitch
*> (stmt
);
6157 tree label
= gimple_block_label (dest
);
6158 tree cases
= get_cases_for_edge (e
, switch_stmt
);
6160 /* If we have a list of cases associated with E, then use it
6161 as it's a lot faster than walking the entire case vector. */
6164 edge e2
= find_edge (e
->src
, dest
);
6171 CASE_LABEL (cases
) = label
;
6172 cases
= CASE_CHAIN (cases
);
6175 /* If there was already an edge in the CFG, then we need
6176 to move all the cases associated with E to E2. */
6179 tree cases2
= get_cases_for_edge (e2
, switch_stmt
);
6181 CASE_CHAIN (last
) = CASE_CHAIN (cases2
);
6182 CASE_CHAIN (cases2
) = first
;
6184 bitmap_set_bit (touched_switch_bbs
, gimple_bb (stmt
)->index
);
6188 size_t i
, n
= gimple_switch_num_labels (switch_stmt
);
6190 for (i
= 0; i
< n
; i
++)
6192 tree elt
= gimple_switch_label (switch_stmt
, i
);
6193 if (label_to_block (cfun
, CASE_LABEL (elt
)) == e
->dest
)
6194 CASE_LABEL (elt
) = label
;
6202 gasm
*asm_stmt
= as_a
<gasm
*> (stmt
);
6203 int i
, n
= gimple_asm_nlabels (asm_stmt
);
6206 for (i
= 0; i
< n
; ++i
)
6208 tree cons
= gimple_asm_label_op (asm_stmt
, i
);
6209 if (label_to_block (cfun
, TREE_VALUE (cons
)) == e
->dest
)
6212 label
= gimple_block_label (dest
);
6213 TREE_VALUE (cons
) = label
;
6217 /* If we didn't find any label matching the former edge in the
6218 asm labels, we must be redirecting the fallthrough
6220 gcc_assert (label
|| (e
->flags
& EDGE_FALLTHRU
));
6225 gsi_remove (&gsi
, true);
6226 e
->flags
|= EDGE_FALLTHRU
;
6229 case GIMPLE_OMP_RETURN
:
6230 case GIMPLE_OMP_CONTINUE
:
6231 case GIMPLE_OMP_SECTIONS_SWITCH
:
6232 case GIMPLE_OMP_FOR
:
6233 /* The edges from OMP constructs can be simply redirected. */
6236 case GIMPLE_EH_DISPATCH
:
6237 if (!(e
->flags
& EDGE_FALLTHRU
))
6238 redirect_eh_dispatch_edge (as_a
<geh_dispatch
*> (stmt
), e
, dest
);
6241 case GIMPLE_TRANSACTION
:
6242 if (e
->flags
& EDGE_TM_ABORT
)
6243 gimple_transaction_set_label_over (as_a
<gtransaction
*> (stmt
),
6244 gimple_block_label (dest
));
6245 else if (e
->flags
& EDGE_TM_UNINSTRUMENTED
)
6246 gimple_transaction_set_label_uninst (as_a
<gtransaction
*> (stmt
),
6247 gimple_block_label (dest
));
6249 gimple_transaction_set_label_norm (as_a
<gtransaction
*> (stmt
),
6250 gimple_block_label (dest
));
6254 /* Otherwise it must be a fallthru edge, and we don't need to
6255 do anything besides redirecting it. */
6256 gcc_assert (e
->flags
& EDGE_FALLTHRU
);
6260 /* Update/insert PHI nodes as necessary. */
6262 /* Now update the edges in the CFG. */
6263 e
= ssa_redirect_edge (e
, dest
);
6268 /* Returns true if it is possible to remove edge E by redirecting
6269 it to the destination of the other edge from E->src. */
6272 gimple_can_remove_branch_p (const_edge e
)
6274 if (e
->flags
& (EDGE_ABNORMAL
| EDGE_EH
))
6280 /* Simple wrapper, as we can always redirect fallthru edges. */
6283 gimple_redirect_edge_and_branch_force (edge e
, basic_block dest
)
6285 e
= gimple_redirect_edge_and_branch (e
, dest
);
6292 /* Splits basic block BB after statement STMT (but at least after the
6293 labels). If STMT is NULL, BB is split just after the labels. */
6296 gimple_split_block (basic_block bb
, void *stmt
)
6298 gimple_stmt_iterator gsi
;
6299 gimple_stmt_iterator gsi_tgt
;
6305 new_bb
= create_empty_bb (bb
);
6307 /* Redirect the outgoing edges. */
6308 new_bb
->succs
= bb
->succs
;
6310 FOR_EACH_EDGE (e
, ei
, new_bb
->succs
)
6313 /* Get a stmt iterator pointing to the first stmt to move. */
6314 if (!stmt
|| gimple_code ((gimple
*) stmt
) == GIMPLE_LABEL
)
6315 gsi
= gsi_after_labels (bb
);
6318 gsi
= gsi_for_stmt ((gimple
*) stmt
);
6322 /* Move everything from GSI to the new basic block. */
6323 if (gsi_end_p (gsi
))
6326 /* Split the statement list - avoid re-creating new containers as this
6327 brings ugly quadratic memory consumption in the inliner.
6328 (We are still quadratic since we need to update stmt BB pointers,
6330 gsi_split_seq_before (&gsi
, &list
);
6331 set_bb_seq (new_bb
, list
);
6332 for (gsi_tgt
= gsi_start (list
);
6333 !gsi_end_p (gsi_tgt
); gsi_next (&gsi_tgt
))
6334 gimple_set_bb (gsi_stmt (gsi_tgt
), new_bb
);
6340 /* Moves basic block BB after block AFTER. */
6343 gimple_move_block_after (basic_block bb
, basic_block after
)
6345 if (bb
->prev_bb
== after
)
6349 link_block (bb
, after
);
6355 /* Return TRUE if block BB has no executable statements, otherwise return
6359 gimple_empty_block_p (basic_block bb
)
6361 /* BB must have no executable statements. */
6362 gimple_stmt_iterator gsi
= gsi_after_labels (bb
);
6365 while (!gsi_end_p (gsi
))
6367 gimple
*stmt
= gsi_stmt (gsi
);
6368 if (is_gimple_debug (stmt
))
6370 else if (gimple_code (stmt
) == GIMPLE_NOP
6371 || gimple_code (stmt
) == GIMPLE_PREDICT
)
6381 /* Split a basic block if it ends with a conditional branch and if the
6382 other part of the block is not empty. */
6385 gimple_split_block_before_cond_jump (basic_block bb
)
6387 gimple
*last
, *split_point
;
6388 gimple_stmt_iterator gsi
= gsi_last_nondebug_bb (bb
);
6389 if (gsi_end_p (gsi
))
6391 last
= gsi_stmt (gsi
);
6392 if (gimple_code (last
) != GIMPLE_COND
6393 && gimple_code (last
) != GIMPLE_SWITCH
)
6396 split_point
= gsi_stmt (gsi
);
6397 return split_block (bb
, split_point
)->dest
;
6401 /* Return true if basic_block can be duplicated. */
6404 gimple_can_duplicate_bb_p (const_basic_block bb
)
6406 gimple
*last
= last_nondebug_stmt (CONST_CAST_BB (bb
));
6408 /* Do checks that can only fail for the last stmt, to minimize the work in the
6411 /* A transaction is a single entry multiple exit region. It
6412 must be duplicated in its entirety or not at all. */
6413 if (gimple_code (last
) == GIMPLE_TRANSACTION
)
6416 /* An IFN_UNIQUE call must be duplicated as part of its group,
6418 if (is_gimple_call (last
)
6419 && gimple_call_internal_p (last
)
6420 && gimple_call_internal_unique_p (last
))
6424 for (gimple_stmt_iterator gsi
= gsi_start_bb (CONST_CAST_BB (bb
));
6425 !gsi_end_p (gsi
); gsi_next (&gsi
))
6427 gimple
*g
= gsi_stmt (gsi
);
6429 /* Prohibit duplication of returns_twice calls, otherwise associated
6430 abnormal edges also need to be duplicated properly.
6431 An IFN_GOMP_SIMT_ENTER_ALLOC/IFN_GOMP_SIMT_EXIT call must be
6432 duplicated as part of its group, or not at all.
6433 The IFN_GOMP_SIMT_VOTE_ANY and IFN_GOMP_SIMT_XCHG_* are part of such a
6434 group, so the same holds there. */
6435 if (is_gimple_call (g
)
6436 && (gimple_call_flags (g
) & ECF_RETURNS_TWICE
6437 || gimple_call_internal_p (g
, IFN_GOMP_SIMT_ENTER_ALLOC
)
6438 || gimple_call_internal_p (g
, IFN_GOMP_SIMT_EXIT
)
6439 || gimple_call_internal_p (g
, IFN_GOMP_SIMT_VOTE_ANY
)
6440 || gimple_call_internal_p (g
, IFN_GOMP_SIMT_XCHG_BFLY
)
6441 || gimple_call_internal_p (g
, IFN_GOMP_SIMT_XCHG_IDX
)))
6448 /* Create a duplicate of the basic block BB. NOTE: This does not
6449 preserve SSA form. */
6452 gimple_duplicate_bb (basic_block bb
, copy_bb_data
*id
)
6455 gimple_stmt_iterator gsi_tgt
;
6457 new_bb
= create_empty_bb (EXIT_BLOCK_PTR_FOR_FN (cfun
)->prev_bb
);
6459 /* Copy the PHI nodes. We ignore PHI node arguments here because
6460 the incoming edges have not been setup yet. */
6461 for (gphi_iterator gpi
= gsi_start_phis (bb
);
6467 copy
= create_phi_node (NULL_TREE
, new_bb
);
6468 create_new_def_for (gimple_phi_result (phi
), copy
,
6469 gimple_phi_result_ptr (copy
));
6470 gimple_set_uid (copy
, gimple_uid (phi
));
6473 gsi_tgt
= gsi_start_bb (new_bb
);
6474 for (gimple_stmt_iterator gsi
= gsi_start_bb (bb
);
6478 def_operand_p def_p
;
6479 ssa_op_iter op_iter
;
6481 gimple
*stmt
, *copy
;
6483 stmt
= gsi_stmt (gsi
);
6484 if (gimple_code (stmt
) == GIMPLE_LABEL
)
6487 /* Don't duplicate label debug stmts. */
6488 if (gimple_debug_bind_p (stmt
)
6489 && TREE_CODE (gimple_debug_bind_get_var (stmt
))
6493 /* Create a new copy of STMT and duplicate STMT's virtual
6495 copy
= gimple_copy (stmt
);
6496 gsi_insert_after (&gsi_tgt
, copy
, GSI_NEW_STMT
);
6498 maybe_duplicate_eh_stmt (copy
, stmt
);
6499 gimple_duplicate_stmt_histograms (cfun
, copy
, cfun
, stmt
);
6501 /* When copying around a stmt writing into a local non-user
6502 aggregate, make sure it won't share stack slot with other
6504 lhs
= gimple_get_lhs (stmt
);
6505 if (lhs
&& TREE_CODE (lhs
) != SSA_NAME
)
6507 tree base
= get_base_address (lhs
);
6509 && (VAR_P (base
) || TREE_CODE (base
) == RESULT_DECL
)
6510 && DECL_IGNORED_P (base
)
6511 && !TREE_STATIC (base
)
6512 && !DECL_EXTERNAL (base
)
6513 && (!VAR_P (base
) || !DECL_HAS_VALUE_EXPR_P (base
)))
6514 DECL_NONSHAREABLE (base
) = 1;
6517 /* If requested remap dependence info of cliques brought in
6520 for (unsigned i
= 0; i
< gimple_num_ops (copy
); ++i
)
6522 tree op
= gimple_op (copy
, i
);
6525 if (TREE_CODE (op
) == ADDR_EXPR
6526 || TREE_CODE (op
) == WITH_SIZE_EXPR
)
6527 op
= TREE_OPERAND (op
, 0);
6528 while (handled_component_p (op
))
6529 op
= TREE_OPERAND (op
, 0);
6530 if ((TREE_CODE (op
) == MEM_REF
6531 || TREE_CODE (op
) == TARGET_MEM_REF
)
6532 && MR_DEPENDENCE_CLIQUE (op
) > 1
6533 && MR_DEPENDENCE_CLIQUE (op
) != bb
->loop_father
->owned_clique
)
6535 if (!id
->dependence_map
)
6536 id
->dependence_map
= new hash_map
<dependence_hash
,
6539 unsigned short &newc
= id
->dependence_map
->get_or_insert
6540 (MR_DEPENDENCE_CLIQUE (op
), &existed
);
6543 gcc_assert (MR_DEPENDENCE_CLIQUE (op
) <= cfun
->last_clique
);
6544 newc
= ++cfun
->last_clique
;
6546 MR_DEPENDENCE_CLIQUE (op
) = newc
;
6550 /* Create new names for all the definitions created by COPY and
6551 add replacement mappings for each new name. */
6552 FOR_EACH_SSA_DEF_OPERAND (def_p
, copy
, op_iter
, SSA_OP_ALL_DEFS
)
6553 create_new_def_for (DEF_FROM_PTR (def_p
), copy
, def_p
);
6559 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
6562 add_phi_args_after_copy_edge (edge e_copy
)
6564 basic_block bb
, bb_copy
= e_copy
->src
, dest
;
6567 gphi
*phi
, *phi_copy
;
6569 gphi_iterator psi
, psi_copy
;
6571 if (gimple_seq_empty_p (phi_nodes (e_copy
->dest
)))
6574 bb
= bb_copy
->flags
& BB_DUPLICATED
? get_bb_original (bb_copy
) : bb_copy
;
6576 if (e_copy
->dest
->flags
& BB_DUPLICATED
)
6577 dest
= get_bb_original (e_copy
->dest
);
6579 dest
= e_copy
->dest
;
6581 e
= find_edge (bb
, dest
);
6584 /* During loop unrolling the target of the latch edge is copied.
6585 In this case we are not looking for edge to dest, but to
6586 duplicated block whose original was dest. */
6587 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
6589 if ((e
->dest
->flags
& BB_DUPLICATED
)
6590 && get_bb_original (e
->dest
) == dest
)
6594 gcc_assert (e
!= NULL
);
6597 for (psi
= gsi_start_phis (e
->dest
),
6598 psi_copy
= gsi_start_phis (e_copy
->dest
);
6600 gsi_next (&psi
), gsi_next (&psi_copy
))
6603 phi_copy
= psi_copy
.phi ();
6604 def
= PHI_ARG_DEF_FROM_EDGE (phi
, e
);
6605 add_phi_arg (phi_copy
, def
, e_copy
,
6606 gimple_phi_arg_location_from_edge (phi
, e
));
6611 /* Basic block BB_COPY was created by code duplication. Add phi node
6612 arguments for edges going out of BB_COPY. The blocks that were
6613 duplicated have BB_DUPLICATED set. */
6616 add_phi_args_after_copy_bb (basic_block bb_copy
)
6621 FOR_EACH_EDGE (e_copy
, ei
, bb_copy
->succs
)
6623 add_phi_args_after_copy_edge (e_copy
);
6627 /* Blocks in REGION_COPY array of length N_REGION were created by
6628 duplication of basic blocks. Add phi node arguments for edges
6629 going from these blocks. If E_COPY is not NULL, also add
6630 phi node arguments for its destination.*/
6633 add_phi_args_after_copy (basic_block
*region_copy
, unsigned n_region
,
6638 for (i
= 0; i
< n_region
; i
++)
6639 region_copy
[i
]->flags
|= BB_DUPLICATED
;
6641 for (i
= 0; i
< n_region
; i
++)
6642 add_phi_args_after_copy_bb (region_copy
[i
]);
6644 add_phi_args_after_copy_edge (e_copy
);
6646 for (i
= 0; i
< n_region
; i
++)
6647 region_copy
[i
]->flags
&= ~BB_DUPLICATED
;
6650 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
6651 important exit edge EXIT. By important we mean that no SSA name defined
6652 inside region is live over the other exit edges of the region. All entry
6653 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
6654 to the duplicate of the region. Dominance and loop information is
6655 updated if UPDATE_DOMINANCE is true, but not the SSA web. If
6656 UPDATE_DOMINANCE is false then we assume that the caller will update the
6657 dominance information after calling this function. The new basic
6658 blocks are stored to REGION_COPY in the same order as they had in REGION,
6659 provided that REGION_COPY is not NULL.
6660 The function returns false if it is unable to copy the region,
6663 ELIMINATED_EDGE is an edge that is known to be removed in the dupicated
6667 gimple_duplicate_sese_region (edge entry
, edge exit
,
6668 basic_block
*region
, unsigned n_region
,
6669 basic_block
*region_copy
,
6670 bool update_dominance
,
6671 edge eliminated_edge
)
6674 bool free_region_copy
= false, copying_header
= false;
6675 class loop
*loop
= entry
->dest
->loop_father
;
6678 profile_count total_count
= profile_count::uninitialized ();
6679 profile_count entry_count
= profile_count::uninitialized ();
6681 if (!can_copy_bbs_p (region
, n_region
))
6684 /* Some sanity checking. Note that we do not check for all possible
6685 missuses of the functions. I.e. if you ask to copy something weird,
6686 it will work, but the state of structures probably will not be
6688 for (i
= 0; i
< n_region
; i
++)
6690 /* We do not handle subloops, i.e. all the blocks must belong to the
6692 if (region
[i
]->loop_father
!= loop
)
6695 if (region
[i
] != entry
->dest
6696 && region
[i
] == loop
->header
)
6700 /* In case the function is used for loop header copying (which is the primary
6701 use), ensure that EXIT and its copy will be new latch and entry edges. */
6702 if (loop
->header
== entry
->dest
)
6704 copying_header
= true;
6706 if (!dominated_by_p (CDI_DOMINATORS
, loop
->latch
, exit
->src
))
6709 for (i
= 0; i
< n_region
; i
++)
6710 if (region
[i
] != exit
->src
6711 && dominated_by_p (CDI_DOMINATORS
, region
[i
], exit
->src
))
6715 initialize_original_copy_tables ();
6718 set_loop_copy (loop
, loop_outer (loop
));
6720 set_loop_copy (loop
, loop
);
6724 region_copy
= XNEWVEC (basic_block
, n_region
);
6725 free_region_copy
= true;
6728 /* Record blocks outside the region that are dominated by something
6730 auto_vec
<basic_block
> doms
;
6731 if (update_dominance
)
6733 doms
= get_dominated_by_region (CDI_DOMINATORS
, region
, n_region
);
6736 if (entry
->dest
->count
.initialized_p ())
6738 total_count
= entry
->dest
->count
;
6739 entry_count
= entry
->count ();
6740 /* Fix up corner cases, to avoid division by zero or creation of negative
6742 if (entry_count
> total_count
)
6743 entry_count
= total_count
;
6746 copy_bbs (region
, n_region
, region_copy
, &exit
, 1, &exit_copy
, loop
,
6747 split_edge_bb_loc (entry
), update_dominance
);
6748 if (total_count
.initialized_p () && entry_count
.initialized_p ())
6750 if (!eliminated_edge
)
6752 scale_bbs_frequencies_profile_count (region
, n_region
,
6753 total_count
- entry_count
,
6755 scale_bbs_frequencies_profile_count (region_copy
, n_region
,
6756 entry_count
, total_count
);
6760 /* We only support only case where eliminated_edge is one and it
6761 exists first BB. We also assume that the duplicated region is
6762 acyclic. So we expect the following:
6764 // region_copy_start entry will be scaled to entry_count
6765 if (cond1) <- this condition will become false
6766 and we update probabilities
6770 goto loop_header <- this will be redirected to loop.
6776 if (cond1) <- we need to update probabbility here
6778 if (cond2) <- and determine scaling factor here.
6784 Adding support for more exits can be done similarly,
6785 but only consumer so far is tree-ssa-loop-ch and it uses only this
6786 to handle the common case of peeling headers which have
6787 conditionals known to be always true upon entry. */
6788 gcc_assert (eliminated_edge
->src
== region
[0]
6789 && EDGE_COUNT (region
[0]->succs
) == 2
6792 edge e
, e_copy
, eliminated_edge_copy
;
6793 if (EDGE_SUCC (region
[0], 0) == eliminated_edge
)
6795 e
= EDGE_SUCC (region
[0], 1);
6796 e_copy
= EDGE_SUCC (region_copy
[0], 1);
6797 eliminated_edge_copy
= EDGE_SUCC (region_copy
[0], 0);
6801 e
= EDGE_SUCC (region
[0], 0);
6802 e_copy
= EDGE_SUCC (region_copy
[0], 0);
6803 eliminated_edge_copy
= EDGE_SUCC (region_copy
[0], 1);
6805 gcc_checking_assert (e
!= e_copy
6806 && eliminated_edge_copy
!= eliminated_edge
6807 && eliminated_edge_copy
->dest
6808 == eliminated_edge
->dest
);
6811 /* Handle first basic block in duplicated region as in the
6812 non-eliminating case. */
6813 scale_bbs_frequencies_profile_count (region_copy
, n_region
,
6814 entry_count
, total_count
);
6815 /* Now update redirecting eliminated edge to the other edge.
6816 Actual CFG update is done by caller. */
6817 e_copy
->probability
= profile_probability::always ();
6818 eliminated_edge_copy
->probability
= profile_probability::never ();
6819 /* Header copying is a special case of jump threading, so use
6820 common code to update loop body exit condition. */
6821 update_bb_profile_for_threading (region
[0], e_copy
->count (), e
);
6822 /* If we duplicated more conditionals first scale the profile of
6823 rest of the preheader. Then work out the probability of
6824 entering the loop and scale rest of the loop. */
6827 scale_bbs_frequencies_profile_count (region_copy
+ 1,
6830 region_copy
[1]->count
);
6831 scale_bbs_frequencies_profile_count (region
+ 1, n_region
- 1,
6840 loop
->header
= exit
->dest
;
6841 loop
->latch
= exit
->src
;
6844 /* Redirect the entry and add the phi node arguments. */
6845 redirected
= redirect_edge_and_branch (entry
, get_bb_copy (entry
->dest
));
6846 gcc_assert (redirected
!= NULL
);
6847 flush_pending_stmts (entry
);
6849 /* Concerning updating of dominators: We must recount dominators
6850 for entry block and its copy. Anything that is outside of the
6851 region, but was dominated by something inside needs recounting as
6853 if (update_dominance
)
6855 set_immediate_dominator (CDI_DOMINATORS
, entry
->dest
, entry
->src
);
6856 doms
.safe_push (get_bb_original (entry
->dest
));
6857 iterate_fix_dominators (CDI_DOMINATORS
, doms
, false);
6860 /* Add the other PHI node arguments. */
6861 add_phi_args_after_copy (region_copy
, n_region
, NULL
);
6863 if (free_region_copy
)
6866 free_original_copy_tables ();
6870 /* Checks if BB is part of the region defined by N_REGION BBS. */
6872 bb_part_of_region_p (basic_block bb
, basic_block
* bbs
, unsigned n_region
)
6876 for (n
= 0; n
< n_region
; n
++)
6885 /* For each PHI in BB, copy the argument associated with SRC_E to TGT_E.
6886 Assuming the argument exists, just does not have a value. */
6889 copy_phi_arg_into_existing_phi (edge src_e
, edge tgt_e
)
6891 int src_idx
= src_e
->dest_idx
;
6892 int tgt_idx
= tgt_e
->dest_idx
;
6894 /* Iterate over each PHI in e->dest. */
6895 for (gphi_iterator gsi
= gsi_start_phis (src_e
->dest
),
6896 gsi2
= gsi_start_phis (tgt_e
->dest
);
6898 gsi_next (&gsi
), gsi_next (&gsi2
))
6900 gphi
*src_phi
= gsi
.phi ();
6901 gphi
*dest_phi
= gsi2
.phi ();
6902 tree val
= gimple_phi_arg_def (src_phi
, src_idx
);
6903 location_t locus
= gimple_phi_arg_location (src_phi
, src_idx
);
6905 SET_PHI_ARG_DEF (dest_phi
, tgt_idx
, val
);
6906 gimple_phi_arg_set_location (dest_phi
, tgt_idx
, locus
);
6910 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
6911 are stored to REGION_COPY in the same order in that they appear
6912 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
6913 the region, EXIT an exit from it. The condition guarding EXIT
6914 is moved to ENTRY. Returns true if duplication succeeds, false
6940 gimple_duplicate_sese_tail (edge entry
, edge exit
,
6941 basic_block
*region
, unsigned n_region
,
6942 basic_block
*region_copy
)
6945 bool free_region_copy
= false;
6946 class loop
*loop
= exit
->dest
->loop_father
;
6947 class loop
*orig_loop
= entry
->dest
->loop_father
;
6948 basic_block switch_bb
, entry_bb
, nentry_bb
;
6949 profile_count total_count
= profile_count::uninitialized (),
6950 exit_count
= profile_count::uninitialized ();
6951 edge exits
[2], nexits
[2], e
;
6952 gimple_stmt_iterator gsi
;
6954 basic_block exit_bb
;
6955 class loop
*target
, *aloop
, *cloop
;
6957 gcc_assert (EDGE_COUNT (exit
->src
->succs
) == 2);
6959 exits
[1] = EDGE_SUCC (exit
->src
, EDGE_SUCC (exit
->src
, 0) == exit
);
6961 if (!can_copy_bbs_p (region
, n_region
))
6964 initialize_original_copy_tables ();
6965 set_loop_copy (orig_loop
, loop
);
6968 for (aloop
= orig_loop
->inner
; aloop
; aloop
= aloop
->next
)
6970 if (bb_part_of_region_p (aloop
->header
, region
, n_region
))
6972 cloop
= duplicate_loop (aloop
, target
);
6973 duplicate_subloops (aloop
, cloop
);
6979 region_copy
= XNEWVEC (basic_block
, n_region
);
6980 free_region_copy
= true;
6983 gcc_assert (!need_ssa_update_p (cfun
));
6985 /* Record blocks outside the region that are dominated by something
6987 auto_vec
<basic_block
> doms
= get_dominated_by_region (CDI_DOMINATORS
, region
,
6990 total_count
= exit
->src
->count
;
6991 exit_count
= exit
->count ();
6992 /* Fix up corner cases, to avoid division by zero or creation of negative
6994 if (exit_count
> total_count
)
6995 exit_count
= total_count
;
6997 copy_bbs (region
, n_region
, region_copy
, exits
, 2, nexits
, orig_loop
,
6998 split_edge_bb_loc (exit
), true);
6999 if (total_count
.initialized_p () && exit_count
.initialized_p ())
7001 scale_bbs_frequencies_profile_count (region
, n_region
,
7002 total_count
- exit_count
,
7004 scale_bbs_frequencies_profile_count (region_copy
, n_region
, exit_count
,
7008 /* Create the switch block, and put the exit condition to it. */
7009 entry_bb
= entry
->dest
;
7010 nentry_bb
= get_bb_copy (entry_bb
);
7011 if (!*gsi_last_bb (entry
->src
)
7012 || !stmt_ends_bb_p (*gsi_last_bb (entry
->src
)))
7013 switch_bb
= entry
->src
;
7015 switch_bb
= split_edge (entry
);
7016 set_immediate_dominator (CDI_DOMINATORS
, nentry_bb
, switch_bb
);
7018 gcond
*cond_stmt
= as_a
<gcond
*> (*gsi_last_bb (exit
->src
));
7019 cond_stmt
= as_a
<gcond
*> (gimple_copy (cond_stmt
));
7021 gsi
= gsi_last_bb (switch_bb
);
7022 gsi_insert_after (&gsi
, cond_stmt
, GSI_NEW_STMT
);
7024 sorig
= single_succ_edge (switch_bb
);
7025 sorig
->flags
= exits
[1]->flags
;
7026 sorig
->probability
= exits
[1]->probability
;
7027 snew
= make_edge (switch_bb
, nentry_bb
, exits
[0]->flags
);
7028 snew
->probability
= exits
[0]->probability
;
7031 /* Register the new edge from SWITCH_BB in loop exit lists. */
7032 rescan_loop_exit (snew
, true, false);
7034 /* Add the PHI node arguments. */
7035 add_phi_args_after_copy (region_copy
, n_region
, snew
);
7037 /* Get rid of now superfluous conditions and associated edges (and phi node
7039 exit_bb
= exit
->dest
;
7041 e
= redirect_edge_and_branch (exits
[0], exits
[1]->dest
);
7042 PENDING_STMT (e
) = NULL
;
7044 /* The latch of ORIG_LOOP was copied, and so was the backedge
7045 to the original header. We redirect this backedge to EXIT_BB. */
7046 for (i
= 0; i
< n_region
; i
++)
7047 if (get_bb_original (region_copy
[i
]) == orig_loop
->latch
)
7049 gcc_assert (single_succ_edge (region_copy
[i
]));
7050 e
= redirect_edge_and_branch (single_succ_edge (region_copy
[i
]), exit_bb
);
7051 PENDING_STMT (e
) = NULL
;
7052 copy_phi_arg_into_existing_phi (nexits
[0], e
);
7054 e
= redirect_edge_and_branch (nexits
[1], nexits
[0]->dest
);
7055 PENDING_STMT (e
) = NULL
;
7057 /* Anything that is outside of the region, but was dominated by something
7058 inside needs to update dominance info. */
7059 iterate_fix_dominators (CDI_DOMINATORS
, doms
, false);
7061 if (free_region_copy
)
7064 free_original_copy_tables ();
7068 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
7069 adding blocks when the dominator traversal reaches EXIT. This
7070 function silently assumes that ENTRY strictly dominates EXIT. */
7073 gather_blocks_in_sese_region (basic_block entry
, basic_block exit
,
7074 vec
<basic_block
> *bbs_p
)
7078 for (son
= first_dom_son (CDI_DOMINATORS
, entry
);
7080 son
= next_dom_son (CDI_DOMINATORS
, son
))
7082 bbs_p
->safe_push (son
);
7084 gather_blocks_in_sese_region (son
, exit
, bbs_p
);
7088 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
7089 The duplicates are recorded in VARS_MAP. */
7092 replace_by_duplicate_decl (tree
*tp
, hash_map
<tree
, tree
> *vars_map
,
7095 tree t
= *tp
, new_t
;
7096 struct function
*f
= DECL_STRUCT_FUNCTION (to_context
);
7098 if (DECL_CONTEXT (t
) == to_context
)
7102 tree
&loc
= vars_map
->get_or_insert (t
, &existed
);
7108 new_t
= copy_var_decl (t
, DECL_NAME (t
), TREE_TYPE (t
));
7109 add_local_decl (f
, new_t
);
7113 gcc_assert (TREE_CODE (t
) == CONST_DECL
);
7114 new_t
= copy_node (t
);
7116 DECL_CONTEXT (new_t
) = to_context
;
7127 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
7128 VARS_MAP maps old ssa names and var_decls to the new ones. */
7131 replace_ssa_name (tree name
, hash_map
<tree
, tree
> *vars_map
,
7136 gcc_assert (!virtual_operand_p (name
));
7138 tree
*loc
= vars_map
->get (name
);
7142 tree decl
= SSA_NAME_VAR (name
);
7145 gcc_assert (!SSA_NAME_IS_DEFAULT_DEF (name
));
7146 replace_by_duplicate_decl (&decl
, vars_map
, to_context
);
7147 new_name
= make_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context
),
7148 decl
, SSA_NAME_DEF_STMT (name
));
7151 new_name
= copy_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context
),
7152 name
, SSA_NAME_DEF_STMT (name
));
7154 /* Now that we've used the def stmt to define new_name, make sure it
7155 doesn't define name anymore. */
7156 SSA_NAME_DEF_STMT (name
) = NULL
;
7158 vars_map
->put (name
, new_name
);
7172 hash_map
<tree
, tree
> *vars_map
;
7173 htab_t new_label_map
;
7174 hash_map
<void *, void *> *eh_map
;
7178 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
7179 contained in *TP if it has been ORIG_BLOCK previously and change the
7180 DECL_CONTEXT of every local variable referenced in *TP. */
7183 move_stmt_op (tree
*tp
, int *walk_subtrees
, void *data
)
7185 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
7186 struct move_stmt_d
*p
= (struct move_stmt_d
*) wi
->info
;
7191 tree block
= TREE_BLOCK (t
);
7192 if (block
== NULL_TREE
)
7194 else if (block
== p
->orig_block
7195 || p
->orig_block
== NULL_TREE
)
7197 /* tree_node_can_be_shared says we can share invariant
7198 addresses but unshare_expr copies them anyways. Make sure
7199 to unshare before adjusting the block in place - we do not
7200 always see a copy here. */
7201 if (TREE_CODE (t
) == ADDR_EXPR
7202 && is_gimple_min_invariant (t
))
7203 *tp
= t
= unshare_expr (t
);
7204 TREE_SET_BLOCK (t
, p
->new_block
);
7206 else if (flag_checking
)
7208 while (block
&& TREE_CODE (block
) == BLOCK
&& block
!= p
->orig_block
)
7209 block
= BLOCK_SUPERCONTEXT (block
);
7210 gcc_assert (block
== p
->orig_block
);
7213 else if (DECL_P (t
) || TREE_CODE (t
) == SSA_NAME
)
7215 if (TREE_CODE (t
) == SSA_NAME
)
7216 *tp
= replace_ssa_name (t
, p
->vars_map
, p
->to_context
);
7217 else if (TREE_CODE (t
) == PARM_DECL
7218 && gimple_in_ssa_p (cfun
))
7219 *tp
= *(p
->vars_map
->get (t
));
7220 else if (TREE_CODE (t
) == LABEL_DECL
)
7222 if (p
->new_label_map
)
7224 struct tree_map in
, *out
;
7226 out
= (struct tree_map
*)
7227 htab_find_with_hash (p
->new_label_map
, &in
, DECL_UID (t
));
7232 /* For FORCED_LABELs we can end up with references from other
7233 functions if some SESE regions are outlined. It is UB to
7234 jump in between them, but they could be used just for printing
7235 addresses etc. In that case, DECL_CONTEXT on the label should
7236 be the function containing the glabel stmt with that LABEL_DECL,
7237 rather than whatever function a reference to the label was seen
7239 if (!FORCED_LABEL (t
) && !DECL_NONLOCAL (t
))
7240 DECL_CONTEXT (t
) = p
->to_context
;
7242 else if (p
->remap_decls_p
)
7244 /* Replace T with its duplicate. T should no longer appear in the
7245 parent function, so this looks wasteful; however, it may appear
7246 in referenced_vars, and more importantly, as virtual operands of
7247 statements, and in alias lists of other variables. It would be
7248 quite difficult to expunge it from all those places. ??? It might
7249 suffice to do this for addressable variables. */
7250 if ((VAR_P (t
) && !is_global_var (t
))
7251 || TREE_CODE (t
) == CONST_DECL
)
7252 replace_by_duplicate_decl (tp
, p
->vars_map
, p
->to_context
);
7256 else if (TYPE_P (t
))
7262 /* Helper for move_stmt_r. Given an EH region number for the source
7263 function, map that to the duplicate EH regio number in the dest. */
7266 move_stmt_eh_region_nr (int old_nr
, struct move_stmt_d
*p
)
7268 eh_region old_r
, new_r
;
7270 old_r
= get_eh_region_from_number (old_nr
);
7271 new_r
= static_cast<eh_region
> (*p
->eh_map
->get (old_r
));
7273 return new_r
->index
;
7276 /* Similar, but operate on INTEGER_CSTs. */
7279 move_stmt_eh_region_tree_nr (tree old_t_nr
, struct move_stmt_d
*p
)
7283 old_nr
= tree_to_shwi (old_t_nr
);
7284 new_nr
= move_stmt_eh_region_nr (old_nr
, p
);
7286 return build_int_cst (integer_type_node
, new_nr
);
7289 /* Like move_stmt_op, but for gimple statements.
7291 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
7292 contained in the current statement in *GSI_P and change the
7293 DECL_CONTEXT of every local variable referenced in the current
7297 move_stmt_r (gimple_stmt_iterator
*gsi_p
, bool *handled_ops_p
,
7298 struct walk_stmt_info
*wi
)
7300 struct move_stmt_d
*p
= (struct move_stmt_d
*) wi
->info
;
7301 gimple
*stmt
= gsi_stmt (*gsi_p
);
7302 tree block
= gimple_block (stmt
);
7304 if (block
== p
->orig_block
7305 || (p
->orig_block
== NULL_TREE
7306 && block
!= NULL_TREE
))
7307 gimple_set_block (stmt
, p
->new_block
);
7309 switch (gimple_code (stmt
))
7312 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
7314 tree r
, fndecl
= gimple_call_fndecl (stmt
);
7315 if (fndecl
&& fndecl_built_in_p (fndecl
, BUILT_IN_NORMAL
))
7316 switch (DECL_FUNCTION_CODE (fndecl
))
7318 case BUILT_IN_EH_COPY_VALUES
:
7319 r
= gimple_call_arg (stmt
, 1);
7320 r
= move_stmt_eh_region_tree_nr (r
, p
);
7321 gimple_call_set_arg (stmt
, 1, r
);
7324 case BUILT_IN_EH_POINTER
:
7325 case BUILT_IN_EH_FILTER
:
7326 r
= gimple_call_arg (stmt
, 0);
7327 r
= move_stmt_eh_region_tree_nr (r
, p
);
7328 gimple_call_set_arg (stmt
, 0, r
);
7339 gresx
*resx_stmt
= as_a
<gresx
*> (stmt
);
7340 int r
= gimple_resx_region (resx_stmt
);
7341 r
= move_stmt_eh_region_nr (r
, p
);
7342 gimple_resx_set_region (resx_stmt
, r
);
7346 case GIMPLE_EH_DISPATCH
:
7348 geh_dispatch
*eh_dispatch_stmt
= as_a
<geh_dispatch
*> (stmt
);
7349 int r
= gimple_eh_dispatch_region (eh_dispatch_stmt
);
7350 r
= move_stmt_eh_region_nr (r
, p
);
7351 gimple_eh_dispatch_set_region (eh_dispatch_stmt
, r
);
7355 case GIMPLE_OMP_RETURN
:
7356 case GIMPLE_OMP_CONTINUE
:
7361 /* For FORCED_LABEL, move_stmt_op doesn't adjust DECL_CONTEXT,
7362 so that such labels can be referenced from other regions.
7363 Make sure to update it when seeing a GIMPLE_LABEL though,
7364 that is the owner of the label. */
7365 walk_gimple_op (stmt
, move_stmt_op
, wi
);
7366 *handled_ops_p
= true;
7367 tree label
= gimple_label_label (as_a
<glabel
*> (stmt
));
7368 if (FORCED_LABEL (label
) || DECL_NONLOCAL (label
))
7369 DECL_CONTEXT (label
) = p
->to_context
;
7374 if (is_gimple_omp (stmt
))
7376 /* Do not remap variables inside OMP directives. Variables
7377 referenced in clauses and directive header belong to the
7378 parent function and should not be moved into the child
7380 bool save_remap_decls_p
= p
->remap_decls_p
;
7381 p
->remap_decls_p
= false;
7382 *handled_ops_p
= true;
7384 walk_gimple_seq_mod (gimple_omp_body_ptr (stmt
), move_stmt_r
,
7387 p
->remap_decls_p
= save_remap_decls_p
;
7395 /* Move basic block BB from function CFUN to function DEST_FN. The
7396 block is moved out of the original linked list and placed after
7397 block AFTER in the new list. Also, the block is removed from the
7398 original array of blocks and placed in DEST_FN's array of blocks.
7399 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
7400 updated to reflect the moved edges.
7402 The local variables are remapped to new instances, VARS_MAP is used
7403 to record the mapping. */
7406 move_block_to_fn (struct function
*dest_cfun
, basic_block bb
,
7407 basic_block after
, bool update_edge_count_p
,
7408 struct move_stmt_d
*d
)
7410 struct control_flow_graph
*cfg
;
7413 gimple_stmt_iterator si
;
7416 /* Remove BB from dominance structures. */
7417 delete_from_dominance_info (CDI_DOMINATORS
, bb
);
7419 /* Move BB from its current loop to the copy in the new function. */
7422 class loop
*new_loop
= (class loop
*)bb
->loop_father
->aux
;
7424 bb
->loop_father
= new_loop
;
7427 /* Link BB to the new linked list. */
7428 move_block_after (bb
, after
);
7430 /* Update the edge count in the corresponding flowgraphs. */
7431 if (update_edge_count_p
)
7432 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
7434 cfun
->cfg
->x_n_edges
--;
7435 dest_cfun
->cfg
->x_n_edges
++;
7438 /* Remove BB from the original basic block array. */
7439 (*cfun
->cfg
->x_basic_block_info
)[bb
->index
] = NULL
;
7440 cfun
->cfg
->x_n_basic_blocks
--;
7442 /* Grow DEST_CFUN's basic block array if needed. */
7443 cfg
= dest_cfun
->cfg
;
7444 cfg
->x_n_basic_blocks
++;
7445 if (bb
->index
>= cfg
->x_last_basic_block
)
7446 cfg
->x_last_basic_block
= bb
->index
+ 1;
7448 old_len
= vec_safe_length (cfg
->x_basic_block_info
);
7449 if ((unsigned) cfg
->x_last_basic_block
>= old_len
)
7450 vec_safe_grow_cleared (cfg
->x_basic_block_info
,
7451 cfg
->x_last_basic_block
+ 1);
7453 (*cfg
->x_basic_block_info
)[bb
->index
] = bb
;
7455 /* Remap the variables in phi nodes. */
7456 for (gphi_iterator psi
= gsi_start_phis (bb
);
7459 gphi
*phi
= psi
.phi ();
7461 tree op
= PHI_RESULT (phi
);
7465 if (virtual_operand_p (op
))
7467 /* Remove the phi nodes for virtual operands (alias analysis will be
7468 run for the new function, anyway). But replace all uses that
7469 might be outside of the region we move. */
7470 use_operand_p use_p
;
7471 imm_use_iterator iter
;
7473 FOR_EACH_IMM_USE_STMT (use_stmt
, iter
, op
)
7474 FOR_EACH_IMM_USE_ON_STMT (use_p
, iter
)
7475 SET_USE (use_p
, SSA_NAME_VAR (op
));
7476 remove_phi_node (&psi
, true);
7480 SET_PHI_RESULT (phi
,
7481 replace_ssa_name (op
, d
->vars_map
, dest_cfun
->decl
));
7482 FOR_EACH_PHI_ARG (use
, phi
, oi
, SSA_OP_USE
)
7484 op
= USE_FROM_PTR (use
);
7485 if (TREE_CODE (op
) == SSA_NAME
)
7486 SET_USE (use
, replace_ssa_name (op
, d
->vars_map
, dest_cfun
->decl
));
7489 for (i
= 0; i
< EDGE_COUNT (bb
->preds
); i
++)
7491 location_t locus
= gimple_phi_arg_location (phi
, i
);
7492 tree block
= LOCATION_BLOCK (locus
);
7494 if (locus
== UNKNOWN_LOCATION
)
7496 if (d
->orig_block
== NULL_TREE
|| block
== d
->orig_block
)
7498 locus
= set_block (locus
, d
->new_block
);
7499 gimple_phi_arg_set_location (phi
, i
, locus
);
7506 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
7508 gimple
*stmt
= gsi_stmt (si
);
7509 struct walk_stmt_info wi
;
7511 memset (&wi
, 0, sizeof (wi
));
7513 walk_gimple_stmt (&si
, move_stmt_r
, move_stmt_op
, &wi
);
7515 if (glabel
*label_stmt
= dyn_cast
<glabel
*> (stmt
))
7517 tree label
= gimple_label_label (label_stmt
);
7518 int uid
= LABEL_DECL_UID (label
);
7520 gcc_assert (uid
> -1);
7522 old_len
= vec_safe_length (cfg
->x_label_to_block_map
);
7523 if (old_len
<= (unsigned) uid
)
7524 vec_safe_grow_cleared (cfg
->x_label_to_block_map
, uid
+ 1);
7526 (*cfg
->x_label_to_block_map
)[uid
] = bb
;
7527 (*cfun
->cfg
->x_label_to_block_map
)[uid
] = NULL
;
7529 gcc_assert (DECL_CONTEXT (label
) == dest_cfun
->decl
);
7531 if (uid
>= dest_cfun
->cfg
->last_label_uid
)
7532 dest_cfun
->cfg
->last_label_uid
= uid
+ 1;
7535 maybe_duplicate_eh_stmt_fn (dest_cfun
, stmt
, cfun
, stmt
, d
->eh_map
, 0);
7536 remove_stmt_from_eh_lp_fn (cfun
, stmt
);
7538 gimple_duplicate_stmt_histograms (dest_cfun
, stmt
, cfun
, stmt
);
7539 gimple_remove_stmt_histograms (cfun
, stmt
);
7541 /* We cannot leave any operands allocated from the operand caches of
7542 the current function. */
7543 free_stmt_operands (cfun
, stmt
);
7544 push_cfun (dest_cfun
);
7546 if (is_gimple_call (stmt
))
7547 notice_special_calls (as_a
<gcall
*> (stmt
));
7551 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
7552 if (e
->goto_locus
!= UNKNOWN_LOCATION
)
7554 tree block
= LOCATION_BLOCK (e
->goto_locus
);
7555 if (d
->orig_block
== NULL_TREE
7556 || block
== d
->orig_block
)
7557 e
->goto_locus
= set_block (e
->goto_locus
, d
->new_block
);
7561 /* Examine the statements in BB (which is in SRC_CFUN); find and return
7562 the outermost EH region. Use REGION as the incoming base EH region.
7563 If there is no single outermost region, return NULL and set *ALL to
7567 find_outermost_region_in_block (struct function
*src_cfun
,
7568 basic_block bb
, eh_region region
,
7571 gimple_stmt_iterator si
;
7573 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
7575 gimple
*stmt
= gsi_stmt (si
);
7576 eh_region stmt_region
;
7579 lp_nr
= lookup_stmt_eh_lp_fn (src_cfun
, stmt
);
7580 stmt_region
= get_eh_region_from_lp_number_fn (src_cfun
, lp_nr
);
7584 region
= stmt_region
;
7585 else if (stmt_region
!= region
)
7587 region
= eh_region_outermost (src_cfun
, stmt_region
, region
);
7601 new_label_mapper (tree decl
, void *data
)
7603 htab_t hash
= (htab_t
) data
;
7607 gcc_assert (TREE_CODE (decl
) == LABEL_DECL
);
7609 m
= XNEW (struct tree_map
);
7610 m
->hash
= DECL_UID (decl
);
7611 m
->base
.from
= decl
;
7612 m
->to
= create_artificial_label (UNKNOWN_LOCATION
);
7613 LABEL_DECL_UID (m
->to
) = LABEL_DECL_UID (decl
);
7614 if (LABEL_DECL_UID (m
->to
) >= cfun
->cfg
->last_label_uid
)
7615 cfun
->cfg
->last_label_uid
= LABEL_DECL_UID (m
->to
) + 1;
7617 slot
= htab_find_slot_with_hash (hash
, m
, m
->hash
, INSERT
);
7618 gcc_assert (*slot
== NULL
);
7625 /* Tree walker to replace the decls used inside value expressions by
7629 replace_block_vars_by_duplicates_1 (tree
*tp
, int *walk_subtrees
, void *data
)
7631 struct replace_decls_d
*rd
= (struct replace_decls_d
*)data
;
7633 switch (TREE_CODE (*tp
))
7638 replace_by_duplicate_decl (tp
, rd
->vars_map
, rd
->to_context
);
7644 if (IS_TYPE_OR_DECL_P (*tp
))
7645 *walk_subtrees
= false;
7650 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
7654 replace_block_vars_by_duplicates (tree block
, hash_map
<tree
, tree
> *vars_map
,
7659 for (tp
= &BLOCK_VARS (block
); *tp
; tp
= &DECL_CHAIN (*tp
))
7662 if (!VAR_P (t
) && TREE_CODE (t
) != CONST_DECL
)
7664 replace_by_duplicate_decl (&t
, vars_map
, to_context
);
7667 if (VAR_P (*tp
) && DECL_HAS_VALUE_EXPR_P (*tp
))
7669 tree x
= DECL_VALUE_EXPR (*tp
);
7670 struct replace_decls_d rd
= { vars_map
, to_context
};
7672 walk_tree (&x
, replace_block_vars_by_duplicates_1
, &rd
, NULL
);
7673 SET_DECL_VALUE_EXPR (t
, x
);
7674 DECL_HAS_VALUE_EXPR_P (t
) = 1;
7676 DECL_CHAIN (t
) = DECL_CHAIN (*tp
);
7681 for (block
= BLOCK_SUBBLOCKS (block
); block
; block
= BLOCK_CHAIN (block
))
7682 replace_block_vars_by_duplicates (block
, vars_map
, to_context
);
7685 /* Fixup the loop arrays and numbers after moving LOOP and its subloops
7689 fixup_loop_arrays_after_move (struct function
*fn1
, struct function
*fn2
,
7692 /* Discard it from the old loop array. */
7693 (*get_loops (fn1
))[loop
->num
] = NULL
;
7695 /* Place it in the new loop array, assigning it a new number. */
7696 loop
->num
= number_of_loops (fn2
);
7697 vec_safe_push (loops_for_fn (fn2
)->larray
, loop
);
7699 /* Recurse to children. */
7700 for (loop
= loop
->inner
; loop
; loop
= loop
->next
)
7701 fixup_loop_arrays_after_move (fn1
, fn2
, loop
);
7704 /* Verify that the blocks in BBS_P are a single-entry, single-exit region
7705 delimited by ENTRY_BB and EXIT_BB, possibly containing noreturn blocks. */
7708 verify_sese (basic_block entry
, basic_block exit
, vec
<basic_block
> *bbs_p
)
7713 bitmap bbs
= BITMAP_ALLOC (NULL
);
7716 gcc_assert (entry
!= NULL
);
7717 gcc_assert (entry
!= exit
);
7718 gcc_assert (bbs_p
!= NULL
);
7720 gcc_assert (bbs_p
->length () > 0);
7722 FOR_EACH_VEC_ELT (*bbs_p
, i
, bb
)
7723 bitmap_set_bit (bbs
, bb
->index
);
7725 gcc_assert (bitmap_bit_p (bbs
, entry
->index
));
7726 gcc_assert (exit
== NULL
|| bitmap_bit_p (bbs
, exit
->index
));
7728 FOR_EACH_VEC_ELT (*bbs_p
, i
, bb
)
7732 gcc_assert (single_pred_p (entry
));
7733 gcc_assert (!bitmap_bit_p (bbs
, single_pred (entry
)->index
));
7736 for (ei
= ei_start (bb
->preds
); !ei_end_p (ei
); ei_next (&ei
))
7739 gcc_assert (bitmap_bit_p (bbs
, e
->src
->index
));
7744 gcc_assert (single_succ_p (exit
));
7745 gcc_assert (!bitmap_bit_p (bbs
, single_succ (exit
)->index
));
7748 for (ei
= ei_start (bb
->succs
); !ei_end_p (ei
); ei_next (&ei
))
7751 gcc_assert (bitmap_bit_p (bbs
, e
->dest
->index
));
7758 /* If FROM is an SSA_NAME, mark the version in bitmap DATA. */
7761 gather_ssa_name_hash_map_from (tree
const &from
, tree
const &, void *data
)
7763 bitmap release_names
= (bitmap
)data
;
7765 if (TREE_CODE (from
) != SSA_NAME
)
7768 bitmap_set_bit (release_names
, SSA_NAME_VERSION (from
));
7772 /* Return LOOP_DIST_ALIAS call if present in BB. */
7775 find_loop_dist_alias (basic_block bb
)
7777 gimple_stmt_iterator gsi
= gsi_last_bb (bb
);
7778 if (!safe_is_a
<gcond
*> (*gsi
))
7782 if (gsi_end_p (gsi
))
7785 gimple
*g
= gsi_stmt (gsi
);
7786 if (gimple_call_internal_p (g
, IFN_LOOP_DIST_ALIAS
))
7791 /* Fold loop internal call G like IFN_LOOP_VECTORIZED/IFN_LOOP_DIST_ALIAS
7792 to VALUE and update any immediate uses of it's LHS. */
7795 fold_loop_internal_call (gimple
*g
, tree value
)
7797 tree lhs
= gimple_call_lhs (g
);
7798 use_operand_p use_p
;
7799 imm_use_iterator iter
;
7801 gimple_stmt_iterator gsi
= gsi_for_stmt (g
);
7803 replace_call_with_value (&gsi
, value
);
7804 FOR_EACH_IMM_USE_STMT (use_stmt
, iter
, lhs
)
7806 FOR_EACH_IMM_USE_ON_STMT (use_p
, iter
)
7807 SET_USE (use_p
, value
);
7808 update_stmt (use_stmt
);
7812 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
7813 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
7814 single basic block in the original CFG and the new basic block is
7815 returned. DEST_CFUN must not have a CFG yet.
7817 Note that the region need not be a pure SESE region. Blocks inside
7818 the region may contain calls to abort/exit. The only restriction
7819 is that ENTRY_BB should be the only entry point and it must
7822 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
7823 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
7824 to the new function.
7826 All local variables referenced in the region are assumed to be in
7827 the corresponding BLOCK_VARS and unexpanded variable lists
7828 associated with DEST_CFUN.
7830 TODO: investigate whether we can reuse gimple_duplicate_sese_region to
7831 reimplement move_sese_region_to_fn by duplicating the region rather than
7835 move_sese_region_to_fn (struct function
*dest_cfun
, basic_block entry_bb
,
7836 basic_block exit_bb
, tree orig_block
)
7838 vec
<basic_block
> bbs
;
7839 basic_block dom_entry
= get_immediate_dominator (CDI_DOMINATORS
, entry_bb
);
7840 basic_block after
, bb
, *entry_pred
, *exit_succ
, abb
;
7841 struct function
*saved_cfun
= cfun
;
7842 int *entry_flag
, *exit_flag
;
7843 profile_probability
*entry_prob
, *exit_prob
;
7844 unsigned i
, num_entry_edges
, num_exit_edges
, num_nodes
;
7847 htab_t new_label_map
;
7848 hash_map
<void *, void *> *eh_map
;
7849 class loop
*loop
= entry_bb
->loop_father
;
7850 class loop
*loop0
= get_loop (saved_cfun
, 0);
7851 struct move_stmt_d d
;
7853 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
7855 gcc_assert (entry_bb
!= exit_bb
7857 || dominated_by_p (CDI_DOMINATORS
, exit_bb
, entry_bb
)));
7859 /* Collect all the blocks in the region. Manually add ENTRY_BB
7860 because it won't be added by dfs_enumerate_from. */
7862 bbs
.safe_push (entry_bb
);
7863 gather_blocks_in_sese_region (entry_bb
, exit_bb
, &bbs
);
7866 verify_sese (entry_bb
, exit_bb
, &bbs
);
7868 /* The blocks that used to be dominated by something in BBS will now be
7869 dominated by the new block. */
7870 auto_vec
<basic_block
> dom_bbs
= get_dominated_by_region (CDI_DOMINATORS
,
7874 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
7875 the predecessor edges to ENTRY_BB and the successor edges to
7876 EXIT_BB so that we can re-attach them to the new basic block that
7877 will replace the region. */
7878 num_entry_edges
= EDGE_COUNT (entry_bb
->preds
);
7879 entry_pred
= XNEWVEC (basic_block
, num_entry_edges
);
7880 entry_flag
= XNEWVEC (int, num_entry_edges
);
7881 entry_prob
= XNEWVEC (profile_probability
, num_entry_edges
);
7883 for (ei
= ei_start (entry_bb
->preds
); (e
= ei_safe_edge (ei
)) != NULL
;)
7885 entry_prob
[i
] = e
->probability
;
7886 entry_flag
[i
] = e
->flags
;
7887 entry_pred
[i
++] = e
->src
;
7893 num_exit_edges
= EDGE_COUNT (exit_bb
->succs
);
7894 exit_succ
= XNEWVEC (basic_block
, num_exit_edges
);
7895 exit_flag
= XNEWVEC (int, num_exit_edges
);
7896 exit_prob
= XNEWVEC (profile_probability
, num_exit_edges
);
7898 for (ei
= ei_start (exit_bb
->succs
); (e
= ei_safe_edge (ei
)) != NULL
;)
7900 exit_prob
[i
] = e
->probability
;
7901 exit_flag
[i
] = e
->flags
;
7902 exit_succ
[i
++] = e
->dest
;
7914 /* Switch context to the child function to initialize DEST_FN's CFG. */
7915 gcc_assert (dest_cfun
->cfg
== NULL
);
7916 push_cfun (dest_cfun
);
7918 init_empty_tree_cfg ();
7920 /* Initialize EH information for the new function. */
7922 new_label_map
= NULL
;
7925 eh_region region
= NULL
;
7928 FOR_EACH_VEC_ELT (bbs
, i
, bb
)
7930 region
= find_outermost_region_in_block (saved_cfun
, bb
, region
, &all
);
7935 init_eh_for_function ();
7936 if (region
!= NULL
|| all
)
7938 new_label_map
= htab_create (17, tree_map_hash
, tree_map_eq
, free
);
7939 eh_map
= duplicate_eh_regions (saved_cfun
, region
, 0,
7940 new_label_mapper
, new_label_map
);
7944 /* Initialize an empty loop tree. */
7945 struct loops
*loops
= ggc_cleared_alloc
<struct loops
> ();
7946 init_loops_structure (dest_cfun
, loops
, 1);
7947 loops
->state
= LOOPS_MAY_HAVE_MULTIPLE_LATCHES
;
7948 set_loops_for_fn (dest_cfun
, loops
);
7950 vec
<loop_p
, va_gc
> *larray
= get_loops (saved_cfun
)->copy ();
7952 /* Move the outlined loop tree part. */
7953 num_nodes
= bbs
.length ();
7954 FOR_EACH_VEC_ELT (bbs
, i
, bb
)
7956 if (bb
->loop_father
->header
== bb
)
7958 class loop
*this_loop
= bb
->loop_father
;
7959 /* Avoid the need to remap SSA names used in nb_iterations. */
7960 free_numbers_of_iterations_estimates (this_loop
);
7961 class loop
*outer
= loop_outer (this_loop
);
7963 /* If the SESE region contains some bbs ending with
7964 a noreturn call, those are considered to belong
7965 to the outermost loop in saved_cfun, rather than
7966 the entry_bb's loop_father. */
7970 num_nodes
-= this_loop
->num_nodes
;
7971 flow_loop_tree_node_remove (bb
->loop_father
);
7972 flow_loop_tree_node_add (get_loop (dest_cfun
, 0), this_loop
);
7973 fixup_loop_arrays_after_move (saved_cfun
, cfun
, this_loop
);
7976 else if (bb
->loop_father
== loop0
&& loop0
!= loop
)
7979 /* Remove loop exits from the outlined region. */
7980 if (loops_for_fn (saved_cfun
)->exits
)
7981 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
7983 struct loops
*l
= loops_for_fn (saved_cfun
);
7985 = l
->exits
->find_slot_with_hash (e
, htab_hash_pointer (e
),
7988 l
->exits
->clear_slot (slot
);
7992 /* Adjust the number of blocks in the tree root of the outlined part. */
7993 get_loop (dest_cfun
, 0)->num_nodes
= bbs
.length () + 2;
7995 /* Setup a mapping to be used by move_block_to_fn. */
7996 loop
->aux
= current_loops
->tree_root
;
7997 loop0
->aux
= current_loops
->tree_root
;
7999 /* Fix up orig_loop_num. If the block referenced in it has been moved
8000 to dest_cfun, update orig_loop_num field, otherwise clear it. */
8001 signed char *moved_orig_loop_num
= NULL
;
8002 for (auto dloop
: loops_list (dest_cfun
, 0))
8003 if (dloop
->orig_loop_num
)
8005 if (moved_orig_loop_num
== NULL
)
8007 = XCNEWVEC (signed char, vec_safe_length (larray
));
8008 if ((*larray
)[dloop
->orig_loop_num
] != NULL
8009 && get_loop (saved_cfun
, dloop
->orig_loop_num
) == NULL
)
8011 if (moved_orig_loop_num
[dloop
->orig_loop_num
] >= 0
8012 && moved_orig_loop_num
[dloop
->orig_loop_num
] < 2)
8013 moved_orig_loop_num
[dloop
->orig_loop_num
]++;
8014 dloop
->orig_loop_num
= (*larray
)[dloop
->orig_loop_num
]->num
;
8018 moved_orig_loop_num
[dloop
->orig_loop_num
] = -1;
8019 dloop
->orig_loop_num
= 0;
8024 if (moved_orig_loop_num
)
8026 FOR_EACH_VEC_ELT (bbs
, i
, bb
)
8028 gimple
*g
= find_loop_dist_alias (bb
);
8032 int orig_loop_num
= tree_to_shwi (gimple_call_arg (g
, 0));
8033 gcc_assert (orig_loop_num
8034 && (unsigned) orig_loop_num
< vec_safe_length (larray
));
8035 if (moved_orig_loop_num
[orig_loop_num
] == 2)
8037 /* If we have moved both loops with this orig_loop_num into
8038 dest_cfun and the LOOP_DIST_ALIAS call is being moved there
8039 too, update the first argument. */
8040 gcc_assert ((*larray
)[orig_loop_num
] != NULL
8041 && (get_loop (saved_cfun
, orig_loop_num
) == NULL
));
8042 tree t
= build_int_cst (integer_type_node
,
8043 (*larray
)[orig_loop_num
]->num
);
8044 gimple_call_set_arg (g
, 0, t
);
8046 /* Make sure the following loop will not update it. */
8047 moved_orig_loop_num
[orig_loop_num
] = 0;
8050 /* Otherwise at least one of the loops stayed in saved_cfun.
8051 Remove the LOOP_DIST_ALIAS call. */
8052 fold_loop_internal_call (g
, gimple_call_arg (g
, 1));
8054 FOR_EACH_BB_FN (bb
, saved_cfun
)
8056 gimple
*g
= find_loop_dist_alias (bb
);
8059 int orig_loop_num
= tree_to_shwi (gimple_call_arg (g
, 0));
8060 gcc_assert (orig_loop_num
8061 && (unsigned) orig_loop_num
< vec_safe_length (larray
));
8062 if (moved_orig_loop_num
[orig_loop_num
])
8063 /* LOOP_DIST_ALIAS call remained in saved_cfun, if at least one
8064 of the corresponding loops was moved, remove it. */
8065 fold_loop_internal_call (g
, gimple_call_arg (g
, 1));
8067 XDELETEVEC (moved_orig_loop_num
);
8071 /* Move blocks from BBS into DEST_CFUN. */
8072 gcc_assert (bbs
.length () >= 2);
8073 after
= dest_cfun
->cfg
->x_entry_block_ptr
;
8074 hash_map
<tree
, tree
> vars_map
;
8076 memset (&d
, 0, sizeof (d
));
8077 d
.orig_block
= orig_block
;
8078 d
.new_block
= DECL_INITIAL (dest_cfun
->decl
);
8079 d
.from_context
= cfun
->decl
;
8080 d
.to_context
= dest_cfun
->decl
;
8081 d
.vars_map
= &vars_map
;
8082 d
.new_label_map
= new_label_map
;
8084 d
.remap_decls_p
= true;
8086 if (gimple_in_ssa_p (cfun
))
8087 for (tree arg
= DECL_ARGUMENTS (d
.to_context
); arg
; arg
= DECL_CHAIN (arg
))
8089 tree narg
= make_ssa_name_fn (dest_cfun
, arg
, gimple_build_nop ());
8090 set_ssa_default_def (dest_cfun
, arg
, narg
);
8091 vars_map
.put (arg
, narg
);
8094 FOR_EACH_VEC_ELT (bbs
, i
, bb
)
8096 /* No need to update edge counts on the last block. It has
8097 already been updated earlier when we detached the region from
8098 the original CFG. */
8099 move_block_to_fn (dest_cfun
, bb
, after
, bb
!= exit_bb
, &d
);
8103 /* Adjust the maximum clique used. */
8104 dest_cfun
->last_clique
= saved_cfun
->last_clique
;
8108 /* Loop sizes are no longer correct, fix them up. */
8109 loop
->num_nodes
-= num_nodes
;
8110 for (class loop
*outer
= loop_outer (loop
);
8111 outer
; outer
= loop_outer (outer
))
8112 outer
->num_nodes
-= num_nodes
;
8113 loop0
->num_nodes
-= bbs
.length () - num_nodes
;
8115 if (saved_cfun
->has_simduid_loops
|| saved_cfun
->has_force_vectorize_loops
)
8118 for (i
= 0; vec_safe_iterate (loops
->larray
, i
, &aloop
); i
++)
8123 replace_by_duplicate_decl (&aloop
->simduid
, d
.vars_map
,
8125 dest_cfun
->has_simduid_loops
= true;
8127 if (aloop
->force_vectorize
)
8128 dest_cfun
->has_force_vectorize_loops
= true;
8132 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
8136 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun
->decl
))
8138 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun
->decl
))
8139 = BLOCK_SUBBLOCKS (orig_block
);
8140 for (block
= BLOCK_SUBBLOCKS (orig_block
);
8141 block
; block
= BLOCK_CHAIN (block
))
8142 BLOCK_SUPERCONTEXT (block
) = DECL_INITIAL (dest_cfun
->decl
);
8143 BLOCK_SUBBLOCKS (orig_block
) = NULL_TREE
;
8146 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun
->decl
),
8147 &vars_map
, dest_cfun
->decl
);
8150 htab_delete (new_label_map
);
8154 /* We need to release ssa-names in a defined order, so first find them,
8155 and then iterate in ascending version order. */
8156 bitmap release_names
= BITMAP_ALLOC (NULL
);
8157 vars_map
.traverse
<void *, gather_ssa_name_hash_map_from
> (release_names
);
8159 EXECUTE_IF_SET_IN_BITMAP (release_names
, 0, i
, bi
)
8160 release_ssa_name (ssa_name (i
));
8161 BITMAP_FREE (release_names
);
8163 /* Rewire the entry and exit blocks. The successor to the entry
8164 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
8165 the child function. Similarly, the predecessor of DEST_FN's
8166 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
8167 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
8168 various CFG manipulation function get to the right CFG.
8170 FIXME, this is silly. The CFG ought to become a parameter to
8172 push_cfun (dest_cfun
);
8173 ENTRY_BLOCK_PTR_FOR_FN (cfun
)->count
= entry_bb
->count
;
8174 make_single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun
), entry_bb
, EDGE_FALLTHRU
);
8177 make_single_succ_edge (exit_bb
, EXIT_BLOCK_PTR_FOR_FN (cfun
), 0);
8178 EXIT_BLOCK_PTR_FOR_FN (cfun
)->count
= exit_bb
->count
;
8181 EXIT_BLOCK_PTR_FOR_FN (cfun
)->count
= profile_count::zero ();
8184 /* Back in the original function, the SESE region has disappeared,
8185 create a new basic block in its place. */
8186 bb
= create_empty_bb (entry_pred
[0]);
8188 add_bb_to_loop (bb
, loop
);
8189 for (i
= 0; i
< num_entry_edges
; i
++)
8191 e
= make_edge (entry_pred
[i
], bb
, entry_flag
[i
]);
8192 e
->probability
= entry_prob
[i
];
8195 for (i
= 0; i
< num_exit_edges
; i
++)
8197 e
= make_edge (bb
, exit_succ
[i
], exit_flag
[i
]);
8198 e
->probability
= exit_prob
[i
];
8201 set_immediate_dominator (CDI_DOMINATORS
, bb
, dom_entry
);
8202 FOR_EACH_VEC_ELT (dom_bbs
, i
, abb
)
8203 set_immediate_dominator (CDI_DOMINATORS
, abb
, bb
);
8219 /* Dump default def DEF to file FILE using FLAGS and indentation
8223 dump_default_def (FILE *file
, tree def
, int spc
, dump_flags_t flags
)
8225 for (int i
= 0; i
< spc
; ++i
)
8226 fprintf (file
, " ");
8227 dump_ssaname_info_to_file (file
, def
, spc
);
8229 print_generic_expr (file
, TREE_TYPE (def
), flags
);
8230 fprintf (file
, " ");
8231 print_generic_expr (file
, def
, flags
);
8232 fprintf (file
, " = ");
8233 print_generic_expr (file
, SSA_NAME_VAR (def
), flags
);
8234 fprintf (file
, ";\n");
8237 /* Print no_sanitize attribute to FILE for a given attribute VALUE. */
8240 print_no_sanitize_attr_value (FILE *file
, tree value
)
8242 unsigned int flags
= tree_to_uhwi (value
);
8244 for (int i
= 0; sanitizer_opts
[i
].name
!= NULL
; ++i
)
8246 if ((sanitizer_opts
[i
].flag
& flags
) == sanitizer_opts
[i
].flag
)
8249 fprintf (file
, " | ");
8250 fprintf (file
, "%s", sanitizer_opts
[i
].name
);
8256 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in dumpfile.h)
8260 dump_function_to_file (tree fndecl
, FILE *file
, dump_flags_t flags
)
8262 tree arg
, var
, old_current_fndecl
= current_function_decl
;
8263 struct function
*dsf
;
8264 bool ignore_topmost_bind
= false, any_var
= false;
8267 bool tmclone
= (TREE_CODE (fndecl
) == FUNCTION_DECL
8268 && decl_is_tm_clone (fndecl
));
8269 struct function
*fun
= DECL_STRUCT_FUNCTION (fndecl
);
8271 tree fntype
= TREE_TYPE (fndecl
);
8272 tree attrs
[] = { DECL_ATTRIBUTES (fndecl
), TYPE_ATTRIBUTES (fntype
) };
8274 for (int i
= 0; i
!= 2; ++i
)
8279 fprintf (file
, "__attribute__((");
8283 for (chain
= attrs
[i
]; chain
; first
= false, chain
= TREE_CHAIN (chain
))
8286 fprintf (file
, ", ");
8288 tree name
= get_attribute_name (chain
);
8289 print_generic_expr (file
, name
, dump_flags
);
8290 if (TREE_VALUE (chain
) != NULL_TREE
)
8292 fprintf (file
, " (");
8294 if (strstr (IDENTIFIER_POINTER (name
), "no_sanitize"))
8295 print_no_sanitize_attr_value (file
, TREE_VALUE (chain
));
8297 print_generic_expr (file
, TREE_VALUE (chain
), dump_flags
);
8298 fprintf (file
, ")");
8302 fprintf (file
, "))\n");
8305 current_function_decl
= fndecl
;
8306 if (flags
& TDF_GIMPLE
)
8308 static bool hotness_bb_param_printed
= false;
8309 if (profile_info
!= NULL
8310 && !hotness_bb_param_printed
)
8312 hotness_bb_param_printed
= true;
8314 "/* --param=gimple-fe-computed-hot-bb-threshold=%" PRId64
8315 " */\n", get_hot_bb_threshold ());
8318 print_generic_expr (file
, TREE_TYPE (TREE_TYPE (fndecl
)),
8319 dump_flags
| TDF_SLIM
);
8320 fprintf (file
, " __GIMPLE (%s",
8321 (fun
->curr_properties
& PROP_ssa
) ? "ssa"
8322 : (fun
->curr_properties
& PROP_cfg
) ? "cfg"
8325 if (fun
&& fun
->cfg
)
8327 basic_block bb
= ENTRY_BLOCK_PTR_FOR_FN (fun
);
8328 if (bb
->count
.initialized_p ())
8329 fprintf (file
, ",%s(%" PRIu64
")",
8330 profile_quality_as_string (bb
->count
.quality ()),
8331 bb
->count
.value ());
8332 if (dump_flags
& TDF_UID
)
8333 fprintf (file
, ")\n%sD_%u (", function_name (fun
),
8336 fprintf (file
, ")\n%s (", function_name (fun
));
8341 print_generic_expr (file
, TREE_TYPE (fntype
), dump_flags
);
8342 if (dump_flags
& TDF_UID
)
8343 fprintf (file
, " %sD.%u %s(", function_name (fun
), DECL_UID (fndecl
),
8344 tmclone
? "[tm-clone] " : "");
8346 fprintf (file
, " %s %s(", function_name (fun
),
8347 tmclone
? "[tm-clone] " : "");
8350 arg
= DECL_ARGUMENTS (fndecl
);
8353 print_generic_expr (file
, TREE_TYPE (arg
), dump_flags
);
8354 fprintf (file
, " ");
8355 print_generic_expr (file
, arg
, dump_flags
);
8356 if (DECL_CHAIN (arg
))
8357 fprintf (file
, ", ");
8358 arg
= DECL_CHAIN (arg
);
8360 fprintf (file
, ")\n");
8362 dsf
= DECL_STRUCT_FUNCTION (fndecl
);
8363 if (dsf
&& (flags
& TDF_EH
))
8364 dump_eh_tree (file
, dsf
);
8366 if (flags
& TDF_RAW
&& !gimple_has_body_p (fndecl
))
8368 dump_node (fndecl
, TDF_SLIM
| flags
, file
);
8369 current_function_decl
= old_current_fndecl
;
8373 /* When GIMPLE is lowered, the variables are no longer available in
8374 BIND_EXPRs, so display them separately. */
8375 if (fun
&& fun
->decl
== fndecl
&& (fun
->curr_properties
& PROP_gimple_lcf
))
8378 ignore_topmost_bind
= true;
8380 fprintf (file
, "{\n");
8381 if (gimple_in_ssa_p (fun
)
8382 && (flags
& TDF_ALIAS
))
8384 for (arg
= DECL_ARGUMENTS (fndecl
); arg
!= NULL
;
8385 arg
= DECL_CHAIN (arg
))
8387 tree def
= ssa_default_def (fun
, arg
);
8389 dump_default_def (file
, def
, 2, flags
);
8392 tree res
= DECL_RESULT (fun
->decl
);
8393 if (res
!= NULL_TREE
8394 && DECL_BY_REFERENCE (res
))
8396 tree def
= ssa_default_def (fun
, res
);
8398 dump_default_def (file
, def
, 2, flags
);
8401 tree static_chain
= fun
->static_chain_decl
;
8402 if (static_chain
!= NULL_TREE
)
8404 tree def
= ssa_default_def (fun
, static_chain
);
8406 dump_default_def (file
, def
, 2, flags
);
8410 if (!vec_safe_is_empty (fun
->local_decls
))
8411 FOR_EACH_LOCAL_DECL (fun
, ix
, var
)
8413 print_generic_decl (file
, var
, flags
);
8414 fprintf (file
, "\n");
8421 if (gimple_in_ssa_p (fun
))
8422 FOR_EACH_SSA_NAME (ix
, name
, fun
)
8424 if (!SSA_NAME_VAR (name
)
8425 /* SSA name with decls without a name still get
8426 dumped as _N, list those explicitely as well even
8427 though we've dumped the decl declaration as D.xxx
8429 || !SSA_NAME_IDENTIFIER (name
))
8431 fprintf (file
, " ");
8432 print_generic_expr (file
, TREE_TYPE (name
), flags
);
8433 fprintf (file
, " ");
8434 print_generic_expr (file
, name
, flags
);
8435 fprintf (file
, ";\n");
8442 if (fun
&& fun
->decl
== fndecl
8444 && basic_block_info_for_fn (fun
))
8446 /* If the CFG has been built, emit a CFG-based dump. */
8447 if (!ignore_topmost_bind
)
8448 fprintf (file
, "{\n");
8450 if (any_var
&& n_basic_blocks_for_fn (fun
))
8451 fprintf (file
, "\n");
8453 FOR_EACH_BB_FN (bb
, fun
)
8454 dump_bb (file
, bb
, 2, flags
);
8456 fprintf (file
, "}\n");
8458 else if (fun
&& (fun
->curr_properties
& PROP_gimple_any
))
8460 /* The function is now in GIMPLE form but the CFG has not been
8461 built yet. Emit the single sequence of GIMPLE statements
8462 that make up its body. */
8463 gimple_seq body
= gimple_body (fndecl
);
8465 if (gimple_seq_first_stmt (body
)
8466 && gimple_seq_first_stmt (body
) == gimple_seq_last_stmt (body
)
8467 && gimple_code (gimple_seq_first_stmt (body
)) == GIMPLE_BIND
)
8468 print_gimple_seq (file
, body
, 0, flags
);
8471 if (!ignore_topmost_bind
)
8472 fprintf (file
, "{\n");
8475 fprintf (file
, "\n");
8477 print_gimple_seq (file
, body
, 2, flags
);
8478 fprintf (file
, "}\n");
8485 /* Make a tree based dump. */
8486 chain
= DECL_SAVED_TREE (fndecl
);
8487 if (chain
&& TREE_CODE (chain
) == BIND_EXPR
)
8489 if (ignore_topmost_bind
)
8491 chain
= BIND_EXPR_BODY (chain
);
8499 if (!ignore_topmost_bind
)
8501 fprintf (file
, "{\n");
8502 /* No topmost bind, pretend it's ignored for later. */
8503 ignore_topmost_bind
= true;
8509 fprintf (file
, "\n");
8511 print_generic_stmt_indented (file
, chain
, flags
, indent
);
8512 if (ignore_topmost_bind
)
8513 fprintf (file
, "}\n");
8516 if (flags
& TDF_ENUMERATE_LOCALS
)
8517 dump_enumerated_decls (file
, flags
);
8518 fprintf (file
, "\n\n");
8520 current_function_decl
= old_current_fndecl
;
8523 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
8526 debug_function (tree fn
, dump_flags_t flags
)
8528 dump_function_to_file (fn
, stderr
, flags
);
8532 /* Print on FILE the indexes for the predecessors of basic_block BB. */
8535 print_pred_bbs (FILE *file
, basic_block bb
)
8540 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
8541 fprintf (file
, "bb_%d ", e
->src
->index
);
8545 /* Print on FILE the indexes for the successors of basic_block BB. */
8548 print_succ_bbs (FILE *file
, basic_block bb
)
8553 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
8554 fprintf (file
, "bb_%d ", e
->dest
->index
);
8557 /* Print to FILE the basic block BB following the VERBOSITY level. */
8560 print_loops_bb (FILE *file
, basic_block bb
, int indent
, int verbosity
)
8562 char *s_indent
= (char *) alloca ((size_t) indent
+ 1);
8563 memset ((void *) s_indent
, ' ', (size_t) indent
);
8564 s_indent
[indent
] = '\0';
8566 /* Print basic_block's header. */
8569 fprintf (file
, "%s bb_%d (preds = {", s_indent
, bb
->index
);
8570 print_pred_bbs (file
, bb
);
8571 fprintf (file
, "}, succs = {");
8572 print_succ_bbs (file
, bb
);
8573 fprintf (file
, "})\n");
8576 /* Print basic_block's body. */
8579 fprintf (file
, "%s {\n", s_indent
);
8580 dump_bb (file
, bb
, indent
+ 4, TDF_VOPS
|TDF_MEMSYMS
);
8581 fprintf (file
, "%s }\n", s_indent
);
8585 static void print_loop_and_siblings (FILE *, class loop
*, int, int);
8587 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
8588 VERBOSITY level this outputs the contents of the loop, or just its
8592 print_loop (FILE *file
, class loop
*loop
, int indent
, int verbosity
)
8600 s_indent
= (char *) alloca ((size_t) indent
+ 1);
8601 memset ((void *) s_indent
, ' ', (size_t) indent
);
8602 s_indent
[indent
] = '\0';
8604 /* Print loop's header. */
8605 fprintf (file
, "%sloop_%d (", s_indent
, loop
->num
);
8607 fprintf (file
, "header = %d", loop
->header
->index
);
8610 fprintf (file
, "deleted)\n");
8614 fprintf (file
, ", latch = %d", loop
->latch
->index
);
8616 fprintf (file
, ", multiple latches");
8617 fprintf (file
, ", niter = ");
8618 print_generic_expr (file
, loop
->nb_iterations
);
8620 if (loop
->any_upper_bound
)
8622 fprintf (file
, ", upper_bound = ");
8623 print_decu (loop
->nb_iterations_upper_bound
, file
);
8625 if (loop
->any_likely_upper_bound
)
8627 fprintf (file
, ", likely_upper_bound = ");
8628 print_decu (loop
->nb_iterations_likely_upper_bound
, file
);
8631 if (loop
->any_estimate
)
8633 fprintf (file
, ", estimate = ");
8634 print_decu (loop
->nb_iterations_estimate
, file
);
8637 fprintf (file
, ", unroll = %d", loop
->unroll
);
8638 fprintf (file
, ")\n");
8640 /* Print loop's body. */
8643 fprintf (file
, "%s{\n", s_indent
);
8644 FOR_EACH_BB_FN (bb
, cfun
)
8645 if (bb
->loop_father
== loop
)
8646 print_loops_bb (file
, bb
, indent
, verbosity
);
8648 print_loop_and_siblings (file
, loop
->inner
, indent
+ 2, verbosity
);
8649 fprintf (file
, "%s}\n", s_indent
);
8653 /* Print the LOOP and its sibling loops on FILE, indented INDENT
8654 spaces. Following VERBOSITY level this outputs the contents of the
8655 loop, or just its structure. */
8658 print_loop_and_siblings (FILE *file
, class loop
*loop
, int indent
,
8664 print_loop (file
, loop
, indent
, verbosity
);
8665 print_loop_and_siblings (file
, loop
->next
, indent
, verbosity
);
8668 /* Follow a CFG edge from the entry point of the program, and on entry
8669 of a loop, pretty print the loop structure on FILE. */
8672 print_loops (FILE *file
, int verbosity
)
8676 bb
= ENTRY_BLOCK_PTR_FOR_FN (cfun
);
8677 fprintf (file
, "\nLoops in function: %s\n", current_function_name ());
8678 if (bb
&& bb
->loop_father
)
8679 print_loop_and_siblings (file
, bb
->loop_father
, 0, verbosity
);
8685 debug (class loop
&ref
)
8687 print_loop (stderr
, &ref
, 0, /*verbosity*/0);
8691 debug (class loop
*ptr
)
8696 fprintf (stderr
, "<nil>\n");
8699 /* Dump a loop verbosely. */
8702 debug_verbose (class loop
&ref
)
8704 print_loop (stderr
, &ref
, 0, /*verbosity*/3);
8708 debug_verbose (class loop
*ptr
)
8713 fprintf (stderr
, "<nil>\n");
8717 /* Debugging loops structure at tree level, at some VERBOSITY level. */
8720 debug_loops (int verbosity
)
8722 print_loops (stderr
, verbosity
);
8725 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
8728 debug_loop (class loop
*loop
, int verbosity
)
8730 print_loop (stderr
, loop
, 0, verbosity
);
8733 /* Print on stderr the code of loop number NUM, at some VERBOSITY
8737 debug_loop_num (unsigned num
, int verbosity
)
8739 debug_loop (get_loop (cfun
, num
), verbosity
);
8742 /* Return true if BB ends with a call, possibly followed by some
8743 instructions that must stay with the call. Return false,
8747 gimple_block_ends_with_call_p (basic_block bb
)
8749 gimple_stmt_iterator gsi
= gsi_last_nondebug_bb (bb
);
8750 return !gsi_end_p (gsi
) && is_gimple_call (gsi_stmt (gsi
));
8754 /* Return true if BB ends with a conditional branch. Return false,
8758 gimple_block_ends_with_condjump_p (const_basic_block bb
)
8760 return safe_is_a
<gcond
*> (*gsi_last_bb (const_cast <basic_block
> (bb
)));
8764 /* Return true if statement T may terminate execution of BB in ways not
8765 explicitly represtented in the CFG. */
8768 stmt_can_terminate_bb_p (gimple
*t
)
8770 tree fndecl
= NULL_TREE
;
8773 /* Eh exception not handled internally terminates execution of the whole
8775 if (stmt_can_throw_external (cfun
, t
))
8778 /* NORETURN and LONGJMP calls already have an edge to exit.
8779 CONST and PURE calls do not need one.
8780 We don't currently check for CONST and PURE here, although
8781 it would be a good idea, because those attributes are
8782 figured out from the RTL in mark_constant_function, and
8783 the counter incrementation code from -fprofile-arcs
8784 leads to different results from -fbranch-probabilities. */
8785 if (is_gimple_call (t
))
8787 fndecl
= gimple_call_fndecl (t
);
8788 call_flags
= gimple_call_flags (t
);
8791 if (is_gimple_call (t
)
8793 && fndecl_built_in_p (fndecl
)
8794 && (call_flags
& ECF_NOTHROW
)
8795 && !(call_flags
& ECF_RETURNS_TWICE
)
8796 /* fork() doesn't really return twice, but the effect of
8797 wrapping it in __gcov_fork() which calls __gcov_dump() and
8798 __gcov_reset() and clears the counters before forking has the same
8799 effect as returning twice. Force a fake edge. */
8800 && !fndecl_built_in_p (fndecl
, BUILT_IN_FORK
))
8803 if (is_gimple_call (t
))
8809 if (call_flags
& (ECF_PURE
| ECF_CONST
)
8810 && !(call_flags
& ECF_LOOPING_CONST_OR_PURE
))
8813 /* Function call may do longjmp, terminate program or do other things.
8814 Special case noreturn that have non-abnormal edges out as in this case
8815 the fact is sufficiently represented by lack of edges out of T. */
8816 if (!(call_flags
& ECF_NORETURN
))
8820 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
8821 if ((e
->flags
& EDGE_FAKE
) == 0)
8825 if (gasm
*asm_stmt
= dyn_cast
<gasm
*> (t
))
8826 if (gimple_asm_volatile_p (asm_stmt
) || gimple_asm_input_p (asm_stmt
))
8833 /* Add fake edges to the function exit for any non constant and non
8834 noreturn calls (or noreturn calls with EH/abnormal edges),
8835 volatile inline assembly in the bitmap of blocks specified by BLOCKS
8836 or to the whole CFG if BLOCKS is zero. Return the number of blocks
8839 The goal is to expose cases in which entering a basic block does
8840 not imply that all subsequent instructions must be executed. */
8843 gimple_flow_call_edges_add (sbitmap blocks
)
8846 int blocks_split
= 0;
8847 int last_bb
= last_basic_block_for_fn (cfun
);
8848 bool check_last_block
= false;
8850 if (n_basic_blocks_for_fn (cfun
) == NUM_FIXED_BLOCKS
)
8854 check_last_block
= true;
8856 check_last_block
= bitmap_bit_p (blocks
,
8857 EXIT_BLOCK_PTR_FOR_FN (cfun
)->prev_bb
->index
);
8859 /* In the last basic block, before epilogue generation, there will be
8860 a fallthru edge to EXIT. Special care is required if the last insn
8861 of the last basic block is a call because make_edge folds duplicate
8862 edges, which would result in the fallthru edge also being marked
8863 fake, which would result in the fallthru edge being removed by
8864 remove_fake_edges, which would result in an invalid CFG.
8866 Moreover, we can't elide the outgoing fake edge, since the block
8867 profiler needs to take this into account in order to solve the minimal
8868 spanning tree in the case that the call doesn't return.
8870 Handle this by adding a dummy instruction in a new last basic block. */
8871 if (check_last_block
)
8873 basic_block bb
= EXIT_BLOCK_PTR_FOR_FN (cfun
)->prev_bb
;
8874 gimple_stmt_iterator gsi
= gsi_last_nondebug_bb (bb
);
8877 if (!gsi_end_p (gsi
))
8880 if (t
&& stmt_can_terminate_bb_p (t
))
8884 e
= find_edge (bb
, EXIT_BLOCK_PTR_FOR_FN (cfun
));
8887 gsi_insert_on_edge (e
, gimple_build_nop ());
8888 gsi_commit_edge_inserts ();
8893 /* Now add fake edges to the function exit for any non constant
8894 calls since there is no way that we can determine if they will
8896 for (i
= 0; i
< last_bb
; i
++)
8898 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
8899 gimple_stmt_iterator gsi
;
8900 gimple
*stmt
, *last_stmt
;
8905 if (blocks
&& !bitmap_bit_p (blocks
, i
))
8908 gsi
= gsi_last_nondebug_bb (bb
);
8909 if (!gsi_end_p (gsi
))
8911 last_stmt
= gsi_stmt (gsi
);
8914 stmt
= gsi_stmt (gsi
);
8915 if (stmt_can_terminate_bb_p (stmt
))
8919 /* The handling above of the final block before the
8920 epilogue should be enough to verify that there is
8921 no edge to the exit block in CFG already.
8922 Calling make_edge in such case would cause us to
8923 mark that edge as fake and remove it later. */
8924 if (flag_checking
&& stmt
== last_stmt
)
8926 e
= find_edge (bb
, EXIT_BLOCK_PTR_FOR_FN (cfun
));
8927 gcc_assert (e
== NULL
);
8930 /* Note that the following may create a new basic block
8931 and renumber the existing basic blocks. */
8932 if (stmt
!= last_stmt
)
8934 e
= split_block (bb
, stmt
);
8938 e
= make_edge (bb
, EXIT_BLOCK_PTR_FOR_FN (cfun
), EDGE_FAKE
);
8939 e
->probability
= profile_probability::guessed_never ();
8943 while (!gsi_end_p (gsi
));
8948 checking_verify_flow_info ();
8950 return blocks_split
;
8953 /* Removes edge E and all the blocks dominated by it, and updates dominance
8954 information. The IL in E->src needs to be updated separately.
8955 If dominance info is not available, only the edge E is removed.*/
8958 remove_edge_and_dominated_blocks (edge e
)
8960 vec
<basic_block
> bbs_to_fix_dom
= vNULL
;
8963 bool none_removed
= false;
8965 basic_block bb
, dbb
;
8968 /* If we are removing a path inside a non-root loop that may change
8969 loop ownership of blocks or remove loops. Mark loops for fixup. */
8971 && loop_outer (e
->src
->loop_father
) != NULL
8972 && e
->src
->loop_father
== e
->dest
->loop_father
)
8973 loops_state_set (LOOPS_NEED_FIXUP
);
8975 if (!dom_info_available_p (CDI_DOMINATORS
))
8981 /* No updating is needed for edges to exit. */
8982 if (e
->dest
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
8984 if (cfgcleanup_altered_bbs
)
8985 bitmap_set_bit (cfgcleanup_altered_bbs
, e
->src
->index
);
8990 /* First, we find the basic blocks to remove. If E->dest has a predecessor
8991 that is not dominated by E->dest, then this set is empty. Otherwise,
8992 all the basic blocks dominated by E->dest are removed.
8994 Also, to DF_IDOM we store the immediate dominators of the blocks in
8995 the dominance frontier of E (i.e., of the successors of the
8996 removed blocks, if there are any, and of E->dest otherwise). */
8997 FOR_EACH_EDGE (f
, ei
, e
->dest
->preds
)
9002 if (!dominated_by_p (CDI_DOMINATORS
, f
->src
, e
->dest
))
9004 none_removed
= true;
9009 auto_bitmap df
, df_idom
;
9010 auto_vec
<basic_block
> bbs_to_remove
;
9012 bitmap_set_bit (df_idom
,
9013 get_immediate_dominator (CDI_DOMINATORS
, e
->dest
)->index
);
9016 bbs_to_remove
= get_all_dominated_blocks (CDI_DOMINATORS
, e
->dest
);
9017 FOR_EACH_VEC_ELT (bbs_to_remove
, i
, bb
)
9019 FOR_EACH_EDGE (f
, ei
, bb
->succs
)
9021 if (f
->dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
))
9022 bitmap_set_bit (df
, f
->dest
->index
);
9025 FOR_EACH_VEC_ELT (bbs_to_remove
, i
, bb
)
9026 bitmap_clear_bit (df
, bb
->index
);
9028 EXECUTE_IF_SET_IN_BITMAP (df
, 0, i
, bi
)
9030 bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
9031 bitmap_set_bit (df_idom
,
9032 get_immediate_dominator (CDI_DOMINATORS
, bb
)->index
);
9036 if (cfgcleanup_altered_bbs
)
9038 /* Record the set of the altered basic blocks. */
9039 bitmap_set_bit (cfgcleanup_altered_bbs
, e
->src
->index
);
9040 bitmap_ior_into (cfgcleanup_altered_bbs
, df
);
9043 /* Remove E and the cancelled blocks. */
9048 /* Walk backwards so as to get a chance to substitute all
9049 released DEFs into debug stmts. See
9050 eliminate_unnecessary_stmts() in tree-ssa-dce.cc for more
9052 for (i
= bbs_to_remove
.length (); i
-- > 0; )
9053 delete_basic_block (bbs_to_remove
[i
]);
9056 /* Update the dominance information. The immediate dominator may change only
9057 for blocks whose immediate dominator belongs to DF_IDOM:
9059 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
9060 removal. Let Z the arbitrary block such that idom(Z) = Y and
9061 Z dominates X after the removal. Before removal, there exists a path P
9062 from Y to X that avoids Z. Let F be the last edge on P that is
9063 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
9064 dominates W, and because of P, Z does not dominate W), and W belongs to
9065 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
9066 EXECUTE_IF_SET_IN_BITMAP (df_idom
, 0, i
, bi
)
9068 bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
9069 for (dbb
= first_dom_son (CDI_DOMINATORS
, bb
);
9071 dbb
= next_dom_son (CDI_DOMINATORS
, dbb
))
9072 bbs_to_fix_dom
.safe_push (dbb
);
9075 iterate_fix_dominators (CDI_DOMINATORS
, bbs_to_fix_dom
, true);
9077 bbs_to_fix_dom
.release ();
9080 /* Purge dead EH edges from basic block BB. */
9083 gimple_purge_dead_eh_edges (basic_block bb
)
9085 bool changed
= false;
9088 gimple
*stmt
= *gsi_last_bb (bb
);
9090 if (stmt
&& stmt_can_throw_internal (cfun
, stmt
))
9093 for (ei
= ei_start (bb
->succs
); (e
= ei_safe_edge (ei
)); )
9095 if (e
->flags
& EDGE_EH
)
9097 remove_edge_and_dominated_blocks (e
);
9107 /* Purge dead EH edges from basic block listed in BLOCKS. */
9110 gimple_purge_all_dead_eh_edges (const_bitmap blocks
)
9112 bool changed
= false;
9116 EXECUTE_IF_SET_IN_BITMAP (blocks
, 0, i
, bi
)
9118 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
9120 /* Earlier gimple_purge_dead_eh_edges could have removed
9121 this basic block already. */
9122 gcc_assert (bb
|| changed
);
9124 changed
|= gimple_purge_dead_eh_edges (bb
);
9130 /* Purge dead abnormal call edges from basic block BB. */
9133 gimple_purge_dead_abnormal_call_edges (basic_block bb
)
9135 bool changed
= false;
9138 gimple
*stmt
= *gsi_last_bb (bb
);
9140 if (stmt
&& stmt_can_make_abnormal_goto (stmt
))
9143 for (ei
= ei_start (bb
->succs
); (e
= ei_safe_edge (ei
)); )
9145 if (e
->flags
& EDGE_ABNORMAL
)
9147 if (e
->flags
& EDGE_FALLTHRU
)
9148 e
->flags
&= ~EDGE_ABNORMAL
;
9150 remove_edge_and_dominated_blocks (e
);
9160 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
9163 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks
)
9165 bool changed
= false;
9169 EXECUTE_IF_SET_IN_BITMAP (blocks
, 0, i
, bi
)
9171 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
9173 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
9174 this basic block already. */
9175 gcc_assert (bb
|| changed
);
9177 changed
|= gimple_purge_dead_abnormal_call_edges (bb
);
9183 /* This function is called whenever a new edge is created or
9187 gimple_execute_on_growing_pred (edge e
)
9189 basic_block bb
= e
->dest
;
9191 if (!gimple_seq_empty_p (phi_nodes (bb
)))
9192 reserve_phi_args_for_new_edge (bb
);
9195 /* This function is called immediately before edge E is removed from
9196 the edge vector E->dest->preds. */
9199 gimple_execute_on_shrinking_pred (edge e
)
9201 if (!gimple_seq_empty_p (phi_nodes (e
->dest
)))
9202 remove_phi_args (e
);
9205 /*---------------------------------------------------------------------------
9206 Helper functions for Loop versioning
9207 ---------------------------------------------------------------------------*/
9209 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
9210 of 'first'. Both of them are dominated by 'new_head' basic block. When
9211 'new_head' was created by 'second's incoming edge it received phi arguments
9212 on the edge by split_edge(). Later, additional edge 'e' was created to
9213 connect 'new_head' and 'first'. Now this routine adds phi args on this
9214 additional edge 'e' that new_head to second edge received as part of edge
9218 gimple_lv_adjust_loop_header_phi (basic_block first
, basic_block second
,
9219 basic_block new_head
, edge e
)
9222 gphi_iterator psi1
, psi2
;
9224 edge e2
= find_edge (new_head
, second
);
9226 /* Because NEW_HEAD has been created by splitting SECOND's incoming
9227 edge, we should always have an edge from NEW_HEAD to SECOND. */
9228 gcc_assert (e2
!= NULL
);
9230 /* Browse all 'second' basic block phi nodes and add phi args to
9231 edge 'e' for 'first' head. PHI args are always in correct order. */
9233 for (psi2
= gsi_start_phis (second
),
9234 psi1
= gsi_start_phis (first
);
9235 !gsi_end_p (psi2
) && !gsi_end_p (psi1
);
9236 gsi_next (&psi2
), gsi_next (&psi1
))
9240 def
= PHI_ARG_DEF (phi2
, e2
->dest_idx
);
9241 add_phi_arg (phi1
, def
, e
, gimple_phi_arg_location_from_edge (phi2
, e2
));
9246 /* Adds a if else statement to COND_BB with condition COND_EXPR.
9247 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
9248 the destination of the ELSE part. */
9251 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED
,
9252 basic_block second_head ATTRIBUTE_UNUSED
,
9253 basic_block cond_bb
, void *cond_e
)
9255 gimple_stmt_iterator gsi
;
9256 gimple
*new_cond_expr
;
9257 tree cond_expr
= (tree
) cond_e
;
9260 /* Build new conditional expr */
9261 gsi
= gsi_last_bb (cond_bb
);
9263 cond_expr
= force_gimple_operand_gsi_1 (&gsi
, cond_expr
,
9264 is_gimple_condexpr_for_cond
,
9266 GSI_CONTINUE_LINKING
);
9267 new_cond_expr
= gimple_build_cond_from_tree (cond_expr
,
9268 NULL_TREE
, NULL_TREE
);
9270 /* Add new cond in cond_bb. */
9271 gsi_insert_after (&gsi
, new_cond_expr
, GSI_NEW_STMT
);
9273 /* Adjust edges appropriately to connect new head with first head
9274 as well as second head. */
9275 e0
= single_succ_edge (cond_bb
);
9276 e0
->flags
&= ~EDGE_FALLTHRU
;
9277 e0
->flags
|= EDGE_FALSE_VALUE
;
9281 /* Do book-keeping of basic block BB for the profile consistency checker.
9282 Store the counting in RECORD. */
9284 gimple_account_profile_record (basic_block bb
,
9285 struct profile_record
*record
)
9287 gimple_stmt_iterator i
;
9288 for (i
= gsi_start_nondebug_after_labels_bb (bb
); !gsi_end_p (i
);
9289 gsi_next_nondebug (&i
))
9292 += estimate_num_insns (gsi_stmt (i
), &eni_size_weights
);
9295 if (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->count
.ipa ().initialized_p ()
9296 && ENTRY_BLOCK_PTR_FOR_FN (cfun
)->count
.ipa ().nonzero_p ()
9297 && bb
->count
.ipa ().initialized_p ())
9299 += estimate_num_insns (gsi_stmt (i
),
9301 * bb
->count
.ipa ().to_gcov_type ();
9303 else if (bb
->count
.initialized_p ()
9304 && ENTRY_BLOCK_PTR_FOR_FN (cfun
)->count
.initialized_p ())
9306 += estimate_num_insns
9309 * bb
->count
.to_sreal_scale
9310 (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->count
).to_double ();
9313 += estimate_num_insns (gsi_stmt (i
), &eni_time_weights
);
9317 struct cfg_hooks gimple_cfg_hooks
= {
9319 gimple_verify_flow_info
,
9320 gimple_dump_bb
, /* dump_bb */
9321 gimple_dump_bb_for_graph
, /* dump_bb_for_graph */
9322 create_bb
, /* create_basic_block */
9323 gimple_redirect_edge_and_branch
, /* redirect_edge_and_branch */
9324 gimple_redirect_edge_and_branch_force
, /* redirect_edge_and_branch_force */
9325 gimple_can_remove_branch_p
, /* can_remove_branch_p */
9326 remove_bb
, /* delete_basic_block */
9327 gimple_split_block
, /* split_block */
9328 gimple_move_block_after
, /* move_block_after */
9329 gimple_can_merge_blocks_p
, /* can_merge_blocks_p */
9330 gimple_merge_blocks
, /* merge_blocks */
9331 gimple_predict_edge
, /* predict_edge */
9332 gimple_predicted_by_p
, /* predicted_by_p */
9333 gimple_can_duplicate_bb_p
, /* can_duplicate_block_p */
9334 gimple_duplicate_bb
, /* duplicate_block */
9335 gimple_split_edge
, /* split_edge */
9336 gimple_make_forwarder_block
, /* make_forward_block */
9337 NULL
, /* tidy_fallthru_edge */
9338 NULL
, /* force_nonfallthru */
9339 gimple_block_ends_with_call_p
,/* block_ends_with_call_p */
9340 gimple_block_ends_with_condjump_p
, /* block_ends_with_condjump_p */
9341 gimple_flow_call_edges_add
, /* flow_call_edges_add */
9342 gimple_execute_on_growing_pred
, /* execute_on_growing_pred */
9343 gimple_execute_on_shrinking_pred
, /* execute_on_shrinking_pred */
9344 gimple_duplicate_loop_body_to_header_edge
, /* duplicate loop for trees */
9345 gimple_lv_add_condition_to_bb
, /* lv_add_condition_to_bb */
9346 gimple_lv_adjust_loop_header_phi
, /* lv_adjust_loop_header_phi*/
9347 extract_true_false_edges_from_block
, /* extract_cond_bb_edges */
9348 flush_pending_stmts
, /* flush_pending_stmts */
9349 gimple_empty_block_p
, /* block_empty_p */
9350 gimple_split_block_before_cond_jump
, /* split_block_before_cond_jump */
9351 gimple_account_profile_record
,
9355 /* Split all critical edges. Split some extra (not necessarily critical) edges
9356 if FOR_EDGE_INSERTION_P is true. */
9359 split_critical_edges (bool for_edge_insertion_p
/* = false */)
9365 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
9366 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
9367 mappings around the calls to split_edge. */
9368 start_recording_case_labels ();
9369 FOR_ALL_BB_FN (bb
, cfun
)
9371 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
9373 if (EDGE_CRITICAL_P (e
) && !(e
->flags
& EDGE_ABNORMAL
))
9375 /* PRE inserts statements to edges and expects that
9376 since split_critical_edges was done beforehand, committing edge
9377 insertions will not split more edges. In addition to critical
9378 edges we must split edges that have multiple successors and
9379 end by control flow statements, such as RESX.
9380 Go ahead and split them too. This matches the logic in
9381 gimple_find_edge_insert_loc. */
9382 else if (for_edge_insertion_p
9383 && (!single_pred_p (e
->dest
)
9384 || !gimple_seq_empty_p (phi_nodes (e
->dest
))
9385 || e
->dest
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
9386 && e
->src
!= ENTRY_BLOCK_PTR_FOR_FN (cfun
)
9387 && !(e
->flags
& EDGE_ABNORMAL
))
9389 gimple_stmt_iterator gsi
;
9391 gsi
= gsi_last_bb (e
->src
);
9392 if (!gsi_end_p (gsi
)
9393 && stmt_ends_bb_p (gsi_stmt (gsi
))
9394 && (gimple_code (gsi_stmt (gsi
)) != GIMPLE_RETURN
9395 && !gimple_call_builtin_p (gsi_stmt (gsi
),
9401 end_recording_case_labels ();
9407 const pass_data pass_data_split_crit_edges
=
9409 GIMPLE_PASS
, /* type */
9410 "crited", /* name */
9411 OPTGROUP_NONE
, /* optinfo_flags */
9412 TV_TREE_SPLIT_EDGES
, /* tv_id */
9413 PROP_cfg
, /* properties_required */
9414 PROP_no_crit_edges
, /* properties_provided */
9415 0, /* properties_destroyed */
9416 0, /* todo_flags_start */
9417 0, /* todo_flags_finish */
9420 class pass_split_crit_edges
: public gimple_opt_pass
9423 pass_split_crit_edges (gcc::context
*ctxt
)
9424 : gimple_opt_pass (pass_data_split_crit_edges
, ctxt
)
9427 /* opt_pass methods: */
9428 unsigned int execute (function
*) final override
9430 return split_critical_edges ();
9433 opt_pass
* clone () final override
9435 return new pass_split_crit_edges (m_ctxt
);
9437 }; // class pass_split_crit_edges
9442 make_pass_split_crit_edges (gcc::context
*ctxt
)
9444 return new pass_split_crit_edges (ctxt
);
9448 /* Insert COND expression which is GIMPLE_COND after STMT
9449 in basic block BB with appropriate basic block split
9450 and creation of a new conditionally executed basic block.
9451 Update profile so the new bb is visited with probability PROB.
9452 Return created basic block. */
9454 insert_cond_bb (basic_block bb
, gimple
*stmt
, gimple
*cond
,
9455 profile_probability prob
)
9457 edge fall
= split_block (bb
, stmt
);
9458 gimple_stmt_iterator iter
= gsi_last_bb (bb
);
9461 /* Insert cond statement. */
9462 gcc_assert (gimple_code (cond
) == GIMPLE_COND
);
9463 if (gsi_end_p (iter
))
9464 gsi_insert_before (&iter
, cond
, GSI_CONTINUE_LINKING
);
9466 gsi_insert_after (&iter
, cond
, GSI_CONTINUE_LINKING
);
9468 /* Create conditionally executed block. */
9469 new_bb
= create_empty_bb (bb
);
9470 edge e
= make_edge (bb
, new_bb
, EDGE_TRUE_VALUE
);
9471 e
->probability
= prob
;
9472 new_bb
->count
= e
->count ();
9473 make_single_succ_edge (new_bb
, fall
->dest
, EDGE_FALLTHRU
);
9475 /* Fix edge for split bb. */
9476 fall
->flags
= EDGE_FALSE_VALUE
;
9477 fall
->probability
-= e
->probability
;
9479 /* Update dominance info. */
9480 if (dom_info_available_p (CDI_DOMINATORS
))
9482 set_immediate_dominator (CDI_DOMINATORS
, new_bb
, bb
);
9483 set_immediate_dominator (CDI_DOMINATORS
, fall
->dest
, bb
);
9486 /* Update loop info. */
9488 add_bb_to_loop (new_bb
, bb
->loop_father
);
9495 /* Given a basic block B which ends with a conditional and has
9496 precisely two successors, determine which of the edges is taken if
9497 the conditional is true and which is taken if the conditional is
9498 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
9501 extract_true_false_edges_from_block (basic_block b
,
9505 edge e
= EDGE_SUCC (b
, 0);
9507 if (e
->flags
& EDGE_TRUE_VALUE
)
9510 *false_edge
= EDGE_SUCC (b
, 1);
9515 *true_edge
= EDGE_SUCC (b
, 1);
9520 /* From a controlling predicate in the immediate dominator DOM of
9521 PHIBLOCK determine the edges into PHIBLOCK that are chosen if the
9522 predicate evaluates to true and false and store them to
9523 *TRUE_CONTROLLED_EDGE and *FALSE_CONTROLLED_EDGE if
9524 they are non-NULL. Returns true if the edges can be determined,
9525 else return false. */
9528 extract_true_false_controlled_edges (basic_block dom
, basic_block phiblock
,
9529 edge
*true_controlled_edge
,
9530 edge
*false_controlled_edge
)
9532 basic_block bb
= phiblock
;
9533 edge true_edge
, false_edge
, tem
;
9534 edge e0
= NULL
, e1
= NULL
;
9536 /* We have to verify that one edge into the PHI node is dominated
9537 by the true edge of the predicate block and the other edge
9538 dominated by the false edge. This ensures that the PHI argument
9539 we are going to take is completely determined by the path we
9540 take from the predicate block.
9541 We can only use BB dominance checks below if the destination of
9542 the true/false edges are dominated by their edge, thus only
9543 have a single predecessor. */
9544 extract_true_false_edges_from_block (dom
, &true_edge
, &false_edge
);
9545 tem
= EDGE_PRED (bb
, 0);
9546 if (tem
== true_edge
9547 || (single_pred_p (true_edge
->dest
)
9548 && (tem
->src
== true_edge
->dest
9549 || dominated_by_p (CDI_DOMINATORS
,
9550 tem
->src
, true_edge
->dest
))))
9552 else if (tem
== false_edge
9553 || (single_pred_p (false_edge
->dest
)
9554 && (tem
->src
== false_edge
->dest
9555 || dominated_by_p (CDI_DOMINATORS
,
9556 tem
->src
, false_edge
->dest
))))
9560 tem
= EDGE_PRED (bb
, 1);
9561 if (tem
== true_edge
9562 || (single_pred_p (true_edge
->dest
)
9563 && (tem
->src
== true_edge
->dest
9564 || dominated_by_p (CDI_DOMINATORS
,
9565 tem
->src
, true_edge
->dest
))))
9567 else if (tem
== false_edge
9568 || (single_pred_p (false_edge
->dest
)
9569 && (tem
->src
== false_edge
->dest
9570 || dominated_by_p (CDI_DOMINATORS
,
9571 tem
->src
, false_edge
->dest
))))
9578 if (true_controlled_edge
)
9579 *true_controlled_edge
= e0
;
9580 if (false_controlled_edge
)
9581 *false_controlled_edge
= e1
;
9586 /* Generate a range test LHS CODE RHS that determines whether INDEX is in the
9587 range [low, high]. Place associated stmts before *GSI. */
9590 generate_range_test (basic_block bb
, tree index
, tree low
, tree high
,
9591 tree
*lhs
, tree
*rhs
)
9593 tree type
= TREE_TYPE (index
);
9594 tree utype
= range_check_type (type
);
9596 low
= fold_convert (utype
, low
);
9597 high
= fold_convert (utype
, high
);
9599 gimple_seq seq
= NULL
;
9600 index
= gimple_convert (&seq
, utype
, index
);
9601 *lhs
= gimple_build (&seq
, MINUS_EXPR
, utype
, index
, low
);
9602 *rhs
= const_binop (MINUS_EXPR
, utype
, high
, low
);
9604 gimple_stmt_iterator gsi
= gsi_last_bb (bb
);
9605 gsi_insert_seq_before (&gsi
, seq
, GSI_SAME_STMT
);
9608 /* Return the basic block that belongs to label numbered INDEX
9609 of a switch statement. */
9612 gimple_switch_label_bb (function
*ifun
, gswitch
*gs
, unsigned index
)
9614 return label_to_block (ifun
, CASE_LABEL (gimple_switch_label (gs
, index
)));
9617 /* Return the default basic block of a switch statement. */
9620 gimple_switch_default_bb (function
*ifun
, gswitch
*gs
)
9622 return gimple_switch_label_bb (ifun
, gs
, 0);
9625 /* Return the edge that belongs to label numbered INDEX
9626 of a switch statement. */
9629 gimple_switch_edge (function
*ifun
, gswitch
*gs
, unsigned index
)
9631 return find_edge (gimple_bb (gs
), gimple_switch_label_bb (ifun
, gs
, index
));
9634 /* Return the default edge of a switch statement. */
9637 gimple_switch_default_edge (function
*ifun
, gswitch
*gs
)
9639 return gimple_switch_edge (ifun
, gs
, 0);
9642 /* Return true if the only executable statement in BB is a GIMPLE_COND. */
9645 cond_only_block_p (basic_block bb
)
9647 /* BB must have no executable statements. */
9648 gimple_stmt_iterator gsi
= gsi_after_labels (bb
);
9651 while (!gsi_end_p (gsi
))
9653 gimple
*stmt
= gsi_stmt (gsi
);
9654 if (is_gimple_debug (stmt
))
9656 else if (gimple_code (stmt
) == GIMPLE_NOP
9657 || gimple_code (stmt
) == GIMPLE_PREDICT
9658 || gimple_code (stmt
) == GIMPLE_COND
)
9668 /* Emit return warnings. */
9672 const pass_data pass_data_warn_function_return
=
9674 GIMPLE_PASS
, /* type */
9675 "*warn_function_return", /* name */
9676 OPTGROUP_NONE
, /* optinfo_flags */
9677 TV_NONE
, /* tv_id */
9678 PROP_cfg
, /* properties_required */
9679 0, /* properties_provided */
9680 0, /* properties_destroyed */
9681 0, /* todo_flags_start */
9682 0, /* todo_flags_finish */
9685 class pass_warn_function_return
: public gimple_opt_pass
9688 pass_warn_function_return (gcc::context
*ctxt
)
9689 : gimple_opt_pass (pass_data_warn_function_return
, ctxt
)
9692 /* opt_pass methods: */
9693 unsigned int execute (function
*) final override
;
9695 }; // class pass_warn_function_return
9698 pass_warn_function_return::execute (function
*fun
)
9700 location_t location
;
9705 if (!targetm
.warn_func_return (fun
->decl
))
9708 /* If we have a path to EXIT, then we do return. */
9709 if (TREE_THIS_VOLATILE (fun
->decl
)
9710 && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (fun
)->preds
) > 0)
9712 location
= UNKNOWN_LOCATION
;
9713 for (ei
= ei_start (EXIT_BLOCK_PTR_FOR_FN (fun
)->preds
);
9714 (e
= ei_safe_edge (ei
)); )
9716 last
= *gsi_last_bb (e
->src
);
9717 if ((gimple_code (last
) == GIMPLE_RETURN
9718 || gimple_call_builtin_p (last
, BUILT_IN_RETURN
))
9719 && location
== UNKNOWN_LOCATION
9720 && ((location
= LOCATION_LOCUS (gimple_location (last
)))
9721 != UNKNOWN_LOCATION
)
9724 /* When optimizing, replace return stmts in noreturn functions
9725 with __builtin_unreachable () call. */
9726 if (optimize
&& gimple_code (last
) == GIMPLE_RETURN
)
9728 location_t loc
= gimple_location (last
);
9729 gimple
*new_stmt
= gimple_build_builtin_unreachable (loc
);
9730 gimple_stmt_iterator gsi
= gsi_for_stmt (last
);
9731 gsi_replace (&gsi
, new_stmt
, true);
9737 if (location
== UNKNOWN_LOCATION
)
9738 location
= cfun
->function_end_locus
;
9739 warning_at (location
, 0, "%<noreturn%> function does return");
9742 /* If we see "return;" in some basic block, then we do reach the end
9743 without returning a value. */
9744 else if (warn_return_type
> 0
9745 && !warning_suppressed_p (fun
->decl
, OPT_Wreturn_type
)
9746 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (fun
->decl
))))
9748 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR_FOR_FN (fun
)->preds
)
9750 greturn
*return_stmt
= dyn_cast
<greturn
*> (*gsi_last_bb (e
->src
));
9752 && gimple_return_retval (return_stmt
) == NULL
9753 && !warning_suppressed_p (return_stmt
, OPT_Wreturn_type
))
9755 location
= gimple_location (return_stmt
);
9756 if (LOCATION_LOCUS (location
) == UNKNOWN_LOCATION
)
9757 location
= fun
->function_end_locus
;
9758 if (warning_at (location
, OPT_Wreturn_type
,
9759 "control reaches end of non-void function"))
9760 suppress_warning (fun
->decl
, OPT_Wreturn_type
);
9764 /* The C++ FE turns fallthrough from the end of non-void function
9765 into __builtin_unreachable () call with BUILTINS_LOCATION.
9766 Recognize those as well as calls from ubsan_instrument_return. */
9768 if (!warning_suppressed_p (fun
->decl
, OPT_Wreturn_type
))
9769 FOR_EACH_BB_FN (bb
, fun
)
9770 if (EDGE_COUNT (bb
->succs
) == 0)
9772 gimple
*last
= *gsi_last_bb (bb
);
9773 const enum built_in_function ubsan_missing_ret
9774 = BUILT_IN_UBSAN_HANDLE_MISSING_RETURN
;
9776 && ((LOCATION_LOCUS (gimple_location (last
))
9777 == BUILTINS_LOCATION
9778 && (gimple_call_builtin_p (last
, BUILT_IN_UNREACHABLE
)
9779 || gimple_call_builtin_p (last
,
9780 BUILT_IN_UNREACHABLE_TRAP
)
9781 || gimple_call_builtin_p (last
, BUILT_IN_TRAP
)))
9782 || gimple_call_builtin_p (last
, ubsan_missing_ret
)))
9784 gimple_stmt_iterator gsi
= gsi_for_stmt (last
);
9785 gsi_prev_nondebug (&gsi
);
9786 gimple
*prev
= gsi_stmt (gsi
);
9788 location
= UNKNOWN_LOCATION
;
9790 location
= gimple_location (prev
);
9791 if (LOCATION_LOCUS (location
) == UNKNOWN_LOCATION
)
9792 location
= fun
->function_end_locus
;
9793 if (warning_at (location
, OPT_Wreturn_type
,
9794 "control reaches end of non-void function"))
9795 suppress_warning (fun
->decl
, OPT_Wreturn_type
);
9806 make_pass_warn_function_return (gcc::context
*ctxt
)
9808 return new pass_warn_function_return (ctxt
);
9811 /* Walk a gimplified function and warn for functions whose return value is
9812 ignored and attribute((warn_unused_result)) is set. This is done before
9813 inlining, so we don't have to worry about that. */
9816 do_warn_unused_result (gimple_seq seq
)
9819 gimple_stmt_iterator i
;
9821 for (i
= gsi_start (seq
); !gsi_end_p (i
); gsi_next (&i
))
9823 gimple
*g
= gsi_stmt (i
);
9825 switch (gimple_code (g
))
9828 do_warn_unused_result (gimple_bind_body (as_a
<gbind
*>(g
)));
9831 do_warn_unused_result (gimple_try_eval (g
));
9832 do_warn_unused_result (gimple_try_cleanup (g
));
9835 do_warn_unused_result (gimple_catch_handler (
9836 as_a
<gcatch
*> (g
)));
9838 case GIMPLE_EH_FILTER
:
9839 do_warn_unused_result (gimple_eh_filter_failure (g
));
9843 if (gimple_call_lhs (g
))
9845 if (gimple_call_internal_p (g
))
9848 /* This is a naked call, as opposed to a GIMPLE_CALL with an
9849 LHS. All calls whose value is ignored should be
9850 represented like this. Look for the attribute. */
9851 fdecl
= gimple_call_fndecl (g
);
9852 ftype
= gimple_call_fntype (g
);
9854 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype
)))
9856 location_t loc
= gimple_location (g
);
9859 warning_at (loc
, OPT_Wunused_result
,
9860 "ignoring return value of %qD "
9861 "declared with attribute %<warn_unused_result%>",
9864 warning_at (loc
, OPT_Wunused_result
,
9865 "ignoring return value of function "
9866 "declared with attribute %<warn_unused_result%>");
9871 /* Not a container, not a call, or a call whose value is used. */
9879 const pass_data pass_data_warn_unused_result
=
9881 GIMPLE_PASS
, /* type */
9882 "*warn_unused_result", /* name */
9883 OPTGROUP_NONE
, /* optinfo_flags */
9884 TV_NONE
, /* tv_id */
9885 PROP_gimple_any
, /* properties_required */
9886 0, /* properties_provided */
9887 0, /* properties_destroyed */
9888 0, /* todo_flags_start */
9889 0, /* todo_flags_finish */
9892 class pass_warn_unused_result
: public gimple_opt_pass
9895 pass_warn_unused_result (gcc::context
*ctxt
)
9896 : gimple_opt_pass (pass_data_warn_unused_result
, ctxt
)
9899 /* opt_pass methods: */
9900 bool gate (function
*) final override
{ return flag_warn_unused_result
; }
9901 unsigned int execute (function
*) final override
9903 do_warn_unused_result (gimple_body (current_function_decl
));
9907 }; // class pass_warn_unused_result
9912 make_pass_warn_unused_result (gcc::context
*ctxt
)
9914 return new pass_warn_unused_result (ctxt
);
9917 /* Maybe Remove stores to variables we marked write-only.
9918 Return true if a store was removed. */
9920 maybe_remove_writeonly_store (gimple_stmt_iterator
&gsi
, gimple
*stmt
,
9921 bitmap dce_ssa_names
)
9923 /* Keep access when store has side effect, i.e. in case when source
9925 if (!gimple_store_p (stmt
)
9926 || gimple_has_side_effects (stmt
)
9930 tree lhs
= get_base_address (gimple_get_lhs (stmt
));
9933 || (!TREE_STATIC (lhs
) && !DECL_EXTERNAL (lhs
))
9934 || !varpool_node::get (lhs
)->writeonly
)
9937 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
9939 fprintf (dump_file
, "Removing statement, writes"
9940 " to write only var:\n");
9941 print_gimple_stmt (dump_file
, stmt
, 0,
9942 TDF_VOPS
|TDF_MEMSYMS
);
9945 /* Mark ssa name defining to be checked for simple dce. */
9946 if (gimple_assign_single_p (stmt
))
9948 tree rhs
= gimple_assign_rhs1 (stmt
);
9949 if (TREE_CODE (rhs
) == SSA_NAME
9950 && !SSA_NAME_IS_DEFAULT_DEF (rhs
))
9951 bitmap_set_bit (dce_ssa_names
, SSA_NAME_VERSION (rhs
));
9953 unlink_stmt_vdef (stmt
);
9954 gsi_remove (&gsi
, true);
9955 release_defs (stmt
);
9959 /* IPA passes, compilation of earlier functions or inlining
9960 might have changed some properties, such as marked functions nothrow,
9961 pure, const or noreturn.
9962 Remove redundant edges and basic blocks, and create new ones if necessary. */
9965 execute_fixup_cfg (void)
9968 gimple_stmt_iterator gsi
;
9970 cgraph_node
*node
= cgraph_node::get (current_function_decl
);
9971 /* Same scaling is also done by ipa_merge_profiles. */
9972 profile_count num
= node
->count
;
9973 profile_count den
= ENTRY_BLOCK_PTR_FOR_FN (cfun
)->count
;
9974 bool scale
= num
.initialized_p () && !(num
== den
);
9975 auto_bitmap dce_ssa_names
;
9979 profile_count::adjust_for_ipa_scaling (&num
, &den
);
9980 ENTRY_BLOCK_PTR_FOR_FN (cfun
)->count
= node
->count
;
9981 EXIT_BLOCK_PTR_FOR_FN (cfun
)->count
9982 = EXIT_BLOCK_PTR_FOR_FN (cfun
)->count
.apply_scale (num
, den
);
9985 FOR_EACH_BB_FN (bb
, cfun
)
9988 bb
->count
= bb
->count
.apply_scale (num
, den
);
9989 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
);)
9991 gimple
*stmt
= gsi_stmt (gsi
);
9992 tree decl
= is_gimple_call (stmt
)
9993 ? gimple_call_fndecl (stmt
)
9997 int flags
= gimple_call_flags (stmt
);
9998 if (flags
& (ECF_CONST
| ECF_PURE
| ECF_LOOPING_CONST_OR_PURE
))
10000 if (gimple_in_ssa_p (cfun
))
10002 todo
|= TODO_update_ssa
| TODO_cleanup_cfg
;
10003 update_stmt (stmt
);
10006 if (flags
& ECF_NORETURN
10007 && fixup_noreturn_call (stmt
))
10008 todo
|= TODO_cleanup_cfg
;
10011 /* Remove stores to variables we marked write-only. */
10012 if (maybe_remove_writeonly_store (gsi
, stmt
, dce_ssa_names
))
10014 todo
|= TODO_update_ssa
| TODO_cleanup_cfg
;
10018 /* For calls we can simply remove LHS when it is known
10019 to be write-only. */
10020 if (is_gimple_call (stmt
)
10021 && gimple_get_lhs (stmt
))
10023 tree lhs
= get_base_address (gimple_get_lhs (stmt
));
10026 && (TREE_STATIC (lhs
) || DECL_EXTERNAL (lhs
))
10027 && varpool_node::get (lhs
)->writeonly
)
10029 gimple_call_set_lhs (stmt
, NULL
);
10030 update_stmt (stmt
);
10031 todo
|= TODO_update_ssa
| TODO_cleanup_cfg
;
10037 if (gimple
*last
= *gsi_last_bb (bb
))
10039 if (maybe_clean_eh_stmt (last
)
10040 && gimple_purge_dead_eh_edges (bb
))
10041 todo
|= TODO_cleanup_cfg
;
10042 if (gimple_purge_dead_abnormal_call_edges (bb
))
10043 todo
|= TODO_cleanup_cfg
;
10046 /* If we have a basic block with no successors that does not
10047 end with a control statement or a noreturn call end it with
10048 a call to __builtin_unreachable. This situation can occur
10049 when inlining a noreturn call that does in fact return. */
10050 if (EDGE_COUNT (bb
->succs
) == 0)
10052 gimple
*stmt
= last_nondebug_stmt (bb
);
10054 || (!is_ctrl_stmt (stmt
)
10055 && (!is_gimple_call (stmt
)
10056 || !gimple_call_noreturn_p (stmt
))))
10058 if (stmt
&& is_gimple_call (stmt
))
10059 gimple_call_set_ctrl_altering (stmt
, false);
10060 stmt
= gimple_build_builtin_unreachable (UNKNOWN_LOCATION
);
10061 gimple_stmt_iterator gsi
= gsi_last_bb (bb
);
10062 gsi_insert_after (&gsi
, stmt
, GSI_NEW_STMT
);
10063 if (!cfun
->after_inlining
)
10064 if (tree fndecl
= gimple_call_fndecl (stmt
))
10066 gcall
*call_stmt
= dyn_cast
<gcall
*> (stmt
);
10067 node
->create_edge (cgraph_node::get_create (fndecl
),
10068 call_stmt
, bb
->count
);
10075 update_max_bb_count ();
10076 compute_function_frequency ();
10080 && (todo
& TODO_cleanup_cfg
))
10081 loops_state_set (LOOPS_NEED_FIXUP
);
10083 simple_dce_from_worklist (dce_ssa_names
);
10090 const pass_data pass_data_fixup_cfg
=
10092 GIMPLE_PASS
, /* type */
10093 "fixup_cfg", /* name */
10094 OPTGROUP_NONE
, /* optinfo_flags */
10095 TV_NONE
, /* tv_id */
10096 PROP_cfg
, /* properties_required */
10097 0, /* properties_provided */
10098 0, /* properties_destroyed */
10099 0, /* todo_flags_start */
10100 0, /* todo_flags_finish */
10103 class pass_fixup_cfg
: public gimple_opt_pass
10106 pass_fixup_cfg (gcc::context
*ctxt
)
10107 : gimple_opt_pass (pass_data_fixup_cfg
, ctxt
)
10110 /* opt_pass methods: */
10111 opt_pass
* clone () final override
{ return new pass_fixup_cfg (m_ctxt
); }
10112 unsigned int execute (function
*) final override
10114 return execute_fixup_cfg ();
10117 }; // class pass_fixup_cfg
10119 } // anon namespace
10122 make_pass_fixup_cfg (gcc::context
*ctxt
)
10124 return new pass_fixup_cfg (ctxt
);
10127 /* Garbage collection support for edge_def. */
10129 extern void gt_ggc_mx (tree
&);
10130 extern void gt_ggc_mx (gimple
*&);
10131 extern void gt_ggc_mx (rtx
&);
10132 extern void gt_ggc_mx (basic_block
&);
10135 gt_ggc_mx (rtx_insn
*& x
)
10138 gt_ggc_mx_rtx_def ((void *) x
);
10142 gt_ggc_mx (edge_def
*e
)
10144 tree block
= LOCATION_BLOCK (e
->goto_locus
);
10145 gt_ggc_mx (e
->src
);
10146 gt_ggc_mx (e
->dest
);
10147 if (current_ir_type () == IR_GIMPLE
)
10148 gt_ggc_mx (e
->insns
.g
);
10150 gt_ggc_mx (e
->insns
.r
);
10154 /* PCH support for edge_def. */
10156 extern void gt_pch_nx (tree
&);
10157 extern void gt_pch_nx (gimple
*&);
10158 extern void gt_pch_nx (rtx
&);
10159 extern void gt_pch_nx (basic_block
&);
10162 gt_pch_nx (rtx_insn
*& x
)
10165 gt_pch_nx_rtx_def ((void *) x
);
10169 gt_pch_nx (edge_def
*e
)
10171 tree block
= LOCATION_BLOCK (e
->goto_locus
);
10172 gt_pch_nx (e
->src
);
10173 gt_pch_nx (e
->dest
);
10174 if (current_ir_type () == IR_GIMPLE
)
10175 gt_pch_nx (e
->insns
.g
);
10177 gt_pch_nx (e
->insns
.r
);
10182 gt_pch_nx (edge_def
*e
, gt_pointer_operator op
, void *cookie
)
10184 tree block
= LOCATION_BLOCK (e
->goto_locus
);
10185 op (&(e
->src
), NULL
, cookie
);
10186 op (&(e
->dest
), NULL
, cookie
);
10187 if (current_ir_type () == IR_GIMPLE
)
10188 op (&(e
->insns
.g
), NULL
, cookie
);
10190 op (&(e
->insns
.r
), NULL
, cookie
);
10191 op (&(block
), &(block
), cookie
);
10196 namespace selftest
{
10198 /* Helper function for CFG selftests: create a dummy function decl
10199 and push it as cfun. */
10202 push_fndecl (const char *name
)
10204 tree fn_type
= build_function_type_array (integer_type_node
, 0, NULL
);
10205 /* FIXME: this uses input_location: */
10206 tree fndecl
= build_fn_decl (name
, fn_type
);
10207 tree retval
= build_decl (UNKNOWN_LOCATION
, RESULT_DECL
,
10208 NULL_TREE
, integer_type_node
);
10209 DECL_RESULT (fndecl
) = retval
;
10210 push_struct_function (fndecl
);
10211 function
*fun
= DECL_STRUCT_FUNCTION (fndecl
);
10212 ASSERT_TRUE (fun
!= NULL
);
10213 init_empty_tree_cfg_for_function (fun
);
10214 ASSERT_EQ (2, n_basic_blocks_for_fn (fun
));
10215 ASSERT_EQ (0, n_edges_for_fn (fun
));
10219 /* These tests directly create CFGs.
10220 Compare with the static fns within tree-cfg.cc:
10222 - make_blocks: calls create_basic_block (seq, bb);
10225 /* Verify a simple cfg of the form:
10226 ENTRY -> A -> B -> C -> EXIT. */
10229 test_linear_chain ()
10231 gimple_register_cfg_hooks ();
10233 tree fndecl
= push_fndecl ("cfg_test_linear_chain");
10234 function
*fun
= DECL_STRUCT_FUNCTION (fndecl
);
10236 /* Create some empty blocks. */
10237 basic_block bb_a
= create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun
));
10238 basic_block bb_b
= create_empty_bb (bb_a
);
10239 basic_block bb_c
= create_empty_bb (bb_b
);
10241 ASSERT_EQ (5, n_basic_blocks_for_fn (fun
));
10242 ASSERT_EQ (0, n_edges_for_fn (fun
));
10244 /* Create some edges: a simple linear chain of BBs. */
10245 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun
), bb_a
, EDGE_FALLTHRU
);
10246 make_edge (bb_a
, bb_b
, 0);
10247 make_edge (bb_b
, bb_c
, 0);
10248 make_edge (bb_c
, EXIT_BLOCK_PTR_FOR_FN (fun
), 0);
10250 /* Verify the edges. */
10251 ASSERT_EQ (4, n_edges_for_fn (fun
));
10252 ASSERT_EQ (NULL
, ENTRY_BLOCK_PTR_FOR_FN (fun
)->preds
);
10253 ASSERT_EQ (1, ENTRY_BLOCK_PTR_FOR_FN (fun
)->succs
->length ());
10254 ASSERT_EQ (1, bb_a
->preds
->length ());
10255 ASSERT_EQ (1, bb_a
->succs
->length ());
10256 ASSERT_EQ (1, bb_b
->preds
->length ());
10257 ASSERT_EQ (1, bb_b
->succs
->length ());
10258 ASSERT_EQ (1, bb_c
->preds
->length ());
10259 ASSERT_EQ (1, bb_c
->succs
->length ());
10260 ASSERT_EQ (1, EXIT_BLOCK_PTR_FOR_FN (fun
)->preds
->length ());
10261 ASSERT_EQ (NULL
, EXIT_BLOCK_PTR_FOR_FN (fun
)->succs
);
10263 /* Verify the dominance information
10264 Each BB in our simple chain should be dominated by the one before
10266 calculate_dominance_info (CDI_DOMINATORS
);
10267 ASSERT_EQ (bb_a
, get_immediate_dominator (CDI_DOMINATORS
, bb_b
));
10268 ASSERT_EQ (bb_b
, get_immediate_dominator (CDI_DOMINATORS
, bb_c
));
10269 auto_vec
<basic_block
> dom_by_b
= get_dominated_by (CDI_DOMINATORS
, bb_b
);
10270 ASSERT_EQ (1, dom_by_b
.length ());
10271 ASSERT_EQ (bb_c
, dom_by_b
[0]);
10272 free_dominance_info (CDI_DOMINATORS
);
10274 /* Similarly for post-dominance: each BB in our chain is post-dominated
10275 by the one after it. */
10276 calculate_dominance_info (CDI_POST_DOMINATORS
);
10277 ASSERT_EQ (bb_b
, get_immediate_dominator (CDI_POST_DOMINATORS
, bb_a
));
10278 ASSERT_EQ (bb_c
, get_immediate_dominator (CDI_POST_DOMINATORS
, bb_b
));
10279 auto_vec
<basic_block
> postdom_by_b
= get_dominated_by (CDI_POST_DOMINATORS
, bb_b
);
10280 ASSERT_EQ (1, postdom_by_b
.length ());
10281 ASSERT_EQ (bb_a
, postdom_by_b
[0]);
10282 free_dominance_info (CDI_POST_DOMINATORS
);
10287 /* Verify a simple CFG of the form:
10303 gimple_register_cfg_hooks ();
10305 tree fndecl
= push_fndecl ("cfg_test_diamond");
10306 function
*fun
= DECL_STRUCT_FUNCTION (fndecl
);
10308 /* Create some empty blocks. */
10309 basic_block bb_a
= create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun
));
10310 basic_block bb_b
= create_empty_bb (bb_a
);
10311 basic_block bb_c
= create_empty_bb (bb_a
);
10312 basic_block bb_d
= create_empty_bb (bb_b
);
10314 ASSERT_EQ (6, n_basic_blocks_for_fn (fun
));
10315 ASSERT_EQ (0, n_edges_for_fn (fun
));
10317 /* Create the edges. */
10318 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun
), bb_a
, EDGE_FALLTHRU
);
10319 make_edge (bb_a
, bb_b
, EDGE_TRUE_VALUE
);
10320 make_edge (bb_a
, bb_c
, EDGE_FALSE_VALUE
);
10321 make_edge (bb_b
, bb_d
, 0);
10322 make_edge (bb_c
, bb_d
, 0);
10323 make_edge (bb_d
, EXIT_BLOCK_PTR_FOR_FN (fun
), 0);
10325 /* Verify the edges. */
10326 ASSERT_EQ (6, n_edges_for_fn (fun
));
10327 ASSERT_EQ (1, bb_a
->preds
->length ());
10328 ASSERT_EQ (2, bb_a
->succs
->length ());
10329 ASSERT_EQ (1, bb_b
->preds
->length ());
10330 ASSERT_EQ (1, bb_b
->succs
->length ());
10331 ASSERT_EQ (1, bb_c
->preds
->length ());
10332 ASSERT_EQ (1, bb_c
->succs
->length ());
10333 ASSERT_EQ (2, bb_d
->preds
->length ());
10334 ASSERT_EQ (1, bb_d
->succs
->length ());
10336 /* Verify the dominance information. */
10337 calculate_dominance_info (CDI_DOMINATORS
);
10338 ASSERT_EQ (bb_a
, get_immediate_dominator (CDI_DOMINATORS
, bb_b
));
10339 ASSERT_EQ (bb_a
, get_immediate_dominator (CDI_DOMINATORS
, bb_c
));
10340 ASSERT_EQ (bb_a
, get_immediate_dominator (CDI_DOMINATORS
, bb_d
));
10341 auto_vec
<basic_block
> dom_by_a
= get_dominated_by (CDI_DOMINATORS
, bb_a
);
10342 ASSERT_EQ (3, dom_by_a
.length ()); /* B, C, D, in some order. */
10343 dom_by_a
.release ();
10344 auto_vec
<basic_block
> dom_by_b
= get_dominated_by (CDI_DOMINATORS
, bb_b
);
10345 ASSERT_EQ (0, dom_by_b
.length ());
10346 dom_by_b
.release ();
10347 free_dominance_info (CDI_DOMINATORS
);
10349 /* Similarly for post-dominance. */
10350 calculate_dominance_info (CDI_POST_DOMINATORS
);
10351 ASSERT_EQ (bb_d
, get_immediate_dominator (CDI_POST_DOMINATORS
, bb_a
));
10352 ASSERT_EQ (bb_d
, get_immediate_dominator (CDI_POST_DOMINATORS
, bb_b
));
10353 ASSERT_EQ (bb_d
, get_immediate_dominator (CDI_POST_DOMINATORS
, bb_c
));
10354 auto_vec
<basic_block
> postdom_by_d
= get_dominated_by (CDI_POST_DOMINATORS
, bb_d
);
10355 ASSERT_EQ (3, postdom_by_d
.length ()); /* A, B, C in some order. */
10356 postdom_by_d
.release ();
10357 auto_vec
<basic_block
> postdom_by_b
= get_dominated_by (CDI_POST_DOMINATORS
, bb_b
);
10358 ASSERT_EQ (0, postdom_by_b
.length ());
10359 postdom_by_b
.release ();
10360 free_dominance_info (CDI_POST_DOMINATORS
);
10365 /* Verify that we can handle a CFG containing a "complete" aka
10366 fully-connected subgraph (where A B C D below all have edges
10367 pointing to each other node, also to themselves).
10385 test_fully_connected ()
10387 gimple_register_cfg_hooks ();
10389 tree fndecl
= push_fndecl ("cfg_fully_connected");
10390 function
*fun
= DECL_STRUCT_FUNCTION (fndecl
);
10394 /* Create some empty blocks. */
10395 auto_vec
<basic_block
> subgraph_nodes
;
10396 for (int i
= 0; i
< n
; i
++)
10397 subgraph_nodes
.safe_push (create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun
)));
10399 ASSERT_EQ (n
+ 2, n_basic_blocks_for_fn (fun
));
10400 ASSERT_EQ (0, n_edges_for_fn (fun
));
10402 /* Create the edges. */
10403 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun
), subgraph_nodes
[0], EDGE_FALLTHRU
);
10404 make_edge (subgraph_nodes
[0], EXIT_BLOCK_PTR_FOR_FN (fun
), 0);
10405 for (int i
= 0; i
< n
; i
++)
10406 for (int j
= 0; j
< n
; j
++)
10407 make_edge (subgraph_nodes
[i
], subgraph_nodes
[j
], 0);
10409 /* Verify the edges. */
10410 ASSERT_EQ (2 + (n
* n
), n_edges_for_fn (fun
));
10411 /* The first one is linked to ENTRY/EXIT as well as itself and
10412 everything else. */
10413 ASSERT_EQ (n
+ 1, subgraph_nodes
[0]->preds
->length ());
10414 ASSERT_EQ (n
+ 1, subgraph_nodes
[0]->succs
->length ());
10415 /* The other ones in the subgraph are linked to everything in
10416 the subgraph (including themselves). */
10417 for (int i
= 1; i
< n
; i
++)
10419 ASSERT_EQ (n
, subgraph_nodes
[i
]->preds
->length ());
10420 ASSERT_EQ (n
, subgraph_nodes
[i
]->succs
->length ());
10423 /* Verify the dominance information. */
10424 calculate_dominance_info (CDI_DOMINATORS
);
10425 /* The initial block in the subgraph should be dominated by ENTRY. */
10426 ASSERT_EQ (ENTRY_BLOCK_PTR_FOR_FN (fun
),
10427 get_immediate_dominator (CDI_DOMINATORS
,
10428 subgraph_nodes
[0]));
10429 /* Every other block in the subgraph should be dominated by the
10431 for (int i
= 1; i
< n
; i
++)
10432 ASSERT_EQ (subgraph_nodes
[0],
10433 get_immediate_dominator (CDI_DOMINATORS
,
10434 subgraph_nodes
[i
]));
10435 free_dominance_info (CDI_DOMINATORS
);
10437 /* Similarly for post-dominance. */
10438 calculate_dominance_info (CDI_POST_DOMINATORS
);
10439 /* The initial block in the subgraph should be postdominated by EXIT. */
10440 ASSERT_EQ (EXIT_BLOCK_PTR_FOR_FN (fun
),
10441 get_immediate_dominator (CDI_POST_DOMINATORS
,
10442 subgraph_nodes
[0]));
10443 /* Every other block in the subgraph should be postdominated by the
10444 initial block, since that leads to EXIT. */
10445 for (int i
= 1; i
< n
; i
++)
10446 ASSERT_EQ (subgraph_nodes
[0],
10447 get_immediate_dominator (CDI_POST_DOMINATORS
,
10448 subgraph_nodes
[i
]));
10449 free_dominance_info (CDI_POST_DOMINATORS
);
10454 /* Run all of the selftests within this file. */
10457 tree_cfg_cc_tests ()
10459 test_linear_chain ();
10461 test_fully_connected ();
10464 } // namespace selftest
10466 /* TODO: test the dominator/postdominator logic with various graphs/nodes:
10469 - switch statement (a block with many out-edges)
10470 - something that jumps to itself
10473 #endif /* CHECKING_P */