1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987-2023 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This module is essentially the "combiner" phase of the U. of Arizona
21 Portable Optimizer, but redone to work on our list-structured
22 representation for RTL instead of their string representation.
24 The LOG_LINKS of each insn identify the most recent assignment
25 to each REG used in the insn. It is a list of previous insns,
26 each of which contains a SET for a REG that is used in this insn
27 and not used or set in between. LOG_LINKs never cross basic blocks.
28 They were set up by the preceding pass (lifetime analysis).
30 We try to combine each pair of insns joined by a logical link.
31 We also try to combine triplets of insns A, B and C when C has
32 a link back to B and B has a link back to A. Likewise for a
33 small number of quadruplets of insns A, B, C and D for which
34 there's high likelihood of success.
36 We check (with modified_between_p) to avoid combining in such a way
37 as to move a computation to a place where its value would be different.
39 Combination is done by mathematically substituting the previous
40 insn(s) values for the regs they set into the expressions in
41 the later insns that refer to these regs. If the result is a valid insn
42 for our target machine, according to the machine description,
43 we install it, delete the earlier insns, and update the data flow
44 information (LOG_LINKS and REG_NOTES) for what we did.
46 There are a few exceptions where the dataflow information isn't
47 completely updated (however this is only a local issue since it is
48 regenerated before the next pass that uses it):
50 - reg_live_length is not updated
51 - reg_n_refs is not adjusted in the rare case when a register is
52 no longer required in a computation
53 - there are extremely rare cases (see distribute_notes) when a
55 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
56 removed because there is no way to know which register it was
59 To simplify substitution, we combine only when the earlier insn(s)
60 consist of only a single assignment. To simplify updating afterward,
61 we never combine when a subroutine call appears in the middle. */
65 #include "coretypes.h"
80 #include "stor-layout.h"
82 #include "cfgcleanup.h"
83 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
85 #include "insn-attr.h"
86 #include "rtlhooks-def.h"
88 #include "tree-pass.h"
91 #include "print-rtl.h"
92 #include "function-abi.h"
95 /* Number of attempts to combine instructions in this function. */
97 static int combine_attempts
;
99 /* Number of attempts that got as far as substitution in this function. */
101 static int combine_merges
;
103 /* Number of instructions combined with added SETs in this function. */
105 static int combine_extras
;
107 /* Number of instructions combined in this function. */
109 static int combine_successes
;
111 /* Totals over entire compilation. */
113 static int total_attempts
, total_merges
, total_extras
, total_successes
;
115 /* combine_instructions may try to replace the right hand side of the
116 second instruction with the value of an associated REG_EQUAL note
117 before throwing it at try_combine. That is problematic when there
118 is a REG_DEAD note for a register used in the old right hand side
119 and can cause distribute_notes to do wrong things. This is the
120 second instruction if it has been so modified, null otherwise. */
122 static rtx_insn
*i2mod
;
124 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
126 static rtx i2mod_old_rhs
;
128 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
130 static rtx i2mod_new_rhs
;
132 struct reg_stat_type
{
133 /* Record last point of death of (hard or pseudo) register n. */
134 rtx_insn
*last_death
;
136 /* Record last point of modification of (hard or pseudo) register n. */
139 /* The next group of fields allows the recording of the last value assigned
140 to (hard or pseudo) register n. We use this information to see if an
141 operation being processed is redundant given a prior operation performed
142 on the register. For example, an `and' with a constant is redundant if
143 all the zero bits are already known to be turned off.
145 We use an approach similar to that used by cse, but change it in the
148 (1) We do not want to reinitialize at each label.
149 (2) It is useful, but not critical, to know the actual value assigned
150 to a register. Often just its form is helpful.
152 Therefore, we maintain the following fields:
154 last_set_value the last value assigned
155 last_set_label records the value of label_tick when the
156 register was assigned
157 last_set_table_tick records the value of label_tick when a
158 value using the register is assigned
159 last_set_invalid set to nonzero when it is not valid
160 to use the value of this register in some
163 To understand the usage of these tables, it is important to understand
164 the distinction between the value in last_set_value being valid and
165 the register being validly contained in some other expression in the
168 (The next two parameters are out of date).
170 reg_stat[i].last_set_value is valid if it is nonzero, and either
171 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
173 Register I may validly appear in any expression returned for the value
174 of another register if reg_n_sets[i] is 1. It may also appear in the
175 value for register J if reg_stat[j].last_set_invalid is zero, or
176 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
178 If an expression is found in the table containing a register which may
179 not validly appear in an expression, the register is replaced by
180 something that won't match, (clobber (const_int 0)). */
182 /* Record last value assigned to (hard or pseudo) register n. */
186 /* Record the value of label_tick when an expression involving register n
187 is placed in last_set_value. */
189 int last_set_table_tick
;
191 /* Record the value of label_tick when the value for register n is placed in
196 /* These fields are maintained in parallel with last_set_value and are
197 used to store the mode in which the register was last set, the bits
198 that were known to be zero when it was last set, and the number of
199 sign bits copies it was known to have when it was last set. */
201 unsigned HOST_WIDE_INT last_set_nonzero_bits
;
202 char last_set_sign_bit_copies
;
203 ENUM_BITFIELD(machine_mode
) last_set_mode
: 8;
205 /* Set nonzero if references to register n in expressions should not be
206 used. last_set_invalid is set nonzero when this register is being
207 assigned to and last_set_table_tick == label_tick. */
209 char last_set_invalid
;
211 /* Some registers that are set more than once and used in more than one
212 basic block are nevertheless always set in similar ways. For example,
213 a QImode register may be loaded from memory in two places on a machine
214 where byte loads zero extend.
216 We record in the following fields if a register has some leading bits
217 that are always equal to the sign bit, and what we know about the
218 nonzero bits of a register, specifically which bits are known to be
221 If an entry is zero, it means that we don't know anything special. */
223 unsigned char sign_bit_copies
;
225 unsigned HOST_WIDE_INT nonzero_bits
;
227 /* Record the value of the label_tick when the last truncation
228 happened. The field truncated_to_mode is only valid if
229 truncation_label == label_tick. */
231 int truncation_label
;
233 /* Record the last truncation seen for this register. If truncation
234 is not a nop to this mode we might be able to save an explicit
235 truncation if we know that value already contains a truncated
238 ENUM_BITFIELD(machine_mode
) truncated_to_mode
: 8;
242 static vec
<reg_stat_type
> reg_stat
;
244 /* One plus the highest pseudo for which we track REG_N_SETS.
245 regstat_init_n_sets_and_refs allocates the array for REG_N_SETS just once,
246 but during combine_split_insns new pseudos can be created. As we don't have
247 updated DF information in that case, it is hard to initialize the array
248 after growing. The combiner only cares about REG_N_SETS (regno) == 1,
249 so instead of growing the arrays, just assume all newly created pseudos
250 during combine might be set multiple times. */
252 static unsigned int reg_n_sets_max
;
254 /* Record the luid of the last insn that invalidated memory
255 (anything that writes memory, and subroutine calls, but not pushes). */
257 static int mem_last_set
;
259 /* Record the luid of the last CALL_INSN
260 so we can tell whether a potential combination crosses any calls. */
262 static int last_call_luid
;
264 /* When `subst' is called, this is the insn that is being modified
265 (by combining in a previous insn). The PATTERN of this insn
266 is still the old pattern partially modified and it should not be
267 looked at, but this may be used to examine the successors of the insn
268 to judge whether a simplification is valid. */
270 static rtx_insn
*subst_insn
;
272 /* This is the lowest LUID that `subst' is currently dealing with.
273 get_last_value will not return a value if the register was set at or
274 after this LUID. If not for this mechanism, we could get confused if
275 I2 or I1 in try_combine were an insn that used the old value of a register
276 to obtain a new value. In that case, we might erroneously get the
277 new value of the register when we wanted the old one. */
279 static int subst_low_luid
;
281 /* This contains any hard registers that are used in newpat; reg_dead_at_p
282 must consider all these registers to be always live. */
284 static HARD_REG_SET newpat_used_regs
;
286 /* This is an insn to which a LOG_LINKS entry has been added. If this
287 insn is the earlier than I2 or I3, combine should rescan starting at
290 static rtx_insn
*added_links_insn
;
292 /* And similarly, for notes. */
294 static rtx_insn
*added_notes_insn
;
296 /* Basic block in which we are performing combines. */
297 static basic_block this_basic_block
;
298 static bool optimize_this_for_speed_p
;
301 /* Length of the currently allocated uid_insn_cost array. */
303 static int max_uid_known
;
305 /* The following array records the insn_cost for every insn
306 in the instruction stream. */
308 static int *uid_insn_cost
;
310 /* The following array records the LOG_LINKS for every insn in the
311 instruction stream as struct insn_link pointers. */
316 struct insn_link
*next
;
319 static struct insn_link
**uid_log_links
;
322 insn_uid_check (const_rtx insn
)
324 int uid
= INSN_UID (insn
);
325 gcc_checking_assert (uid
<= max_uid_known
);
329 #define INSN_COST(INSN) (uid_insn_cost[insn_uid_check (INSN)])
330 #define LOG_LINKS(INSN) (uid_log_links[insn_uid_check (INSN)])
332 #define FOR_EACH_LOG_LINK(L, INSN) \
333 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
335 /* Links for LOG_LINKS are allocated from this obstack. */
337 static struct obstack insn_link_obstack
;
339 /* Allocate a link. */
341 static inline struct insn_link
*
342 alloc_insn_link (rtx_insn
*insn
, unsigned int regno
, struct insn_link
*next
)
345 = (struct insn_link
*) obstack_alloc (&insn_link_obstack
,
346 sizeof (struct insn_link
));
353 /* Incremented for each basic block. */
355 static int label_tick
;
357 /* Reset to label_tick for each extended basic block in scanning order. */
359 static int label_tick_ebb_start
;
361 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
362 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
364 static scalar_int_mode nonzero_bits_mode
;
366 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
367 be safely used. It is zero while computing them and after combine has
368 completed. This former test prevents propagating values based on
369 previously set values, which can be incorrect if a variable is modified
372 static int nonzero_sign_valid
;
375 /* Record one modification to rtl structure
376 to be undone by storing old_contents into *where. */
378 enum undo_kind
{ UNDO_RTX
, UNDO_INT
, UNDO_MODE
, UNDO_LINKS
};
384 union { rtx r
; int i
; machine_mode m
; struct insn_link
*l
; } old_contents
;
385 union { rtx
*r
; int *i
; int regno
; struct insn_link
**l
; } where
;
388 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
389 num_undo says how many are currently recorded.
391 other_insn is nonzero if we have modified some other insn in the process
392 of working on subst_insn. It must be verified too. */
398 rtx_insn
*other_insn
;
401 static struct undobuf undobuf
;
403 /* Number of times the pseudo being substituted for
404 was found and replaced. */
406 static int n_occurrences
;
408 static rtx
reg_nonzero_bits_for_combine (const_rtx
, scalar_int_mode
,
410 unsigned HOST_WIDE_INT
*);
411 static rtx
reg_num_sign_bit_copies_for_combine (const_rtx
, scalar_int_mode
,
414 static void do_SUBST (rtx
*, rtx
);
415 static void do_SUBST_INT (int *, int);
416 static void init_reg_last (void);
417 static void setup_incoming_promotions (rtx_insn
*);
418 static void set_nonzero_bits_and_sign_copies (rtx
, const_rtx
, void *);
419 static int cant_combine_insn_p (rtx_insn
*);
420 static int can_combine_p (rtx_insn
*, rtx_insn
*, rtx_insn
*, rtx_insn
*,
421 rtx_insn
*, rtx_insn
*, rtx
*, rtx
*);
422 static int combinable_i3pat (rtx_insn
*, rtx
*, rtx
, rtx
, rtx
, int, int, rtx
*);
423 static int contains_muldiv (rtx
);
424 static rtx_insn
*try_combine (rtx_insn
*, rtx_insn
*, rtx_insn
*, rtx_insn
*,
426 static void undo_all (void);
427 static void undo_commit (void);
428 static rtx
*find_split_point (rtx
*, rtx_insn
*, bool);
429 static rtx
subst (rtx
, rtx
, rtx
, int, int, int);
430 static rtx
combine_simplify_rtx (rtx
, machine_mode
, int, int);
431 static rtx
simplify_if_then_else (rtx
);
432 static rtx
simplify_set (rtx
);
433 static rtx
simplify_logical (rtx
);
434 static rtx
expand_compound_operation (rtx
);
435 static const_rtx
expand_field_assignment (const_rtx
);
436 static rtx
make_extraction (machine_mode
, rtx
, HOST_WIDE_INT
,
437 rtx
, unsigned HOST_WIDE_INT
, int, int, int);
438 static int get_pos_from_mask (unsigned HOST_WIDE_INT
,
439 unsigned HOST_WIDE_INT
*);
440 static rtx
canon_reg_for_combine (rtx
, rtx
);
441 static rtx
force_int_to_mode (rtx
, scalar_int_mode
, scalar_int_mode
,
442 scalar_int_mode
, unsigned HOST_WIDE_INT
, int);
443 static rtx
force_to_mode (rtx
, machine_mode
,
444 unsigned HOST_WIDE_INT
, int);
445 static rtx
if_then_else_cond (rtx
, rtx
*, rtx
*);
446 static rtx
known_cond (rtx
, enum rtx_code
, rtx
, rtx
);
447 static int rtx_equal_for_field_assignment_p (rtx
, rtx
, bool = false);
448 static rtx
make_field_assignment (rtx
);
449 static rtx
apply_distributive_law (rtx
);
450 static rtx
distribute_and_simplify_rtx (rtx
, int);
451 static rtx
simplify_and_const_int_1 (scalar_int_mode
, rtx
,
452 unsigned HOST_WIDE_INT
);
453 static rtx
simplify_and_const_int (rtx
, scalar_int_mode
, rtx
,
454 unsigned HOST_WIDE_INT
);
455 static int merge_outer_ops (enum rtx_code
*, HOST_WIDE_INT
*, enum rtx_code
,
456 HOST_WIDE_INT
, machine_mode
, int *);
457 static rtx
simplify_shift_const_1 (enum rtx_code
, machine_mode
, rtx
, int);
458 static rtx
simplify_shift_const (rtx
, enum rtx_code
, machine_mode
, rtx
,
460 static int recog_for_combine (rtx
*, rtx_insn
*, rtx
*);
461 static rtx
gen_lowpart_for_combine (machine_mode
, rtx
);
462 static enum rtx_code
simplify_compare_const (enum rtx_code
, machine_mode
,
464 static enum rtx_code
simplify_comparison (enum rtx_code
, rtx
*, rtx
*);
465 static void update_table_tick (rtx
);
466 static void record_value_for_reg (rtx
, rtx_insn
*, rtx
);
467 static void check_promoted_subreg (rtx_insn
*, rtx
);
468 static void record_dead_and_set_regs_1 (rtx
, const_rtx
, void *);
469 static void record_dead_and_set_regs (rtx_insn
*);
470 static int get_last_value_validate (rtx
*, rtx_insn
*, int, int);
471 static rtx
get_last_value (const_rtx
);
472 static void reg_dead_at_p_1 (rtx
, const_rtx
, void *);
473 static int reg_dead_at_p (rtx
, rtx_insn
*);
474 static void move_deaths (rtx
, rtx
, int, rtx_insn
*, rtx
*);
475 static int reg_bitfield_target_p (rtx
, rtx
);
476 static void distribute_notes (rtx
, rtx_insn
*, rtx_insn
*, rtx_insn
*, rtx
, rtx
, rtx
);
477 static void distribute_links (struct insn_link
*);
478 static void mark_used_regs_combine (rtx
);
479 static void record_promoted_value (rtx_insn
*, rtx
);
480 static bool unmentioned_reg_p (rtx
, rtx
);
481 static void record_truncated_values (rtx
*, void *);
482 static bool reg_truncated_to_mode (machine_mode
, const_rtx
);
483 static rtx
gen_lowpart_or_truncate (machine_mode
, rtx
);
486 /* It is not safe to use ordinary gen_lowpart in combine.
487 See comments in gen_lowpart_for_combine. */
488 #undef RTL_HOOKS_GEN_LOWPART
489 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
491 /* Our implementation of gen_lowpart never emits a new pseudo. */
492 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
493 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
495 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
496 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
498 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
499 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
501 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
502 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
504 static const struct rtl_hooks combine_rtl_hooks
= RTL_HOOKS_INITIALIZER
;
507 /* Convenience wrapper for the canonicalize_comparison target hook.
508 Target hooks cannot use enum rtx_code. */
510 target_canonicalize_comparison (enum rtx_code
*code
, rtx
*op0
, rtx
*op1
,
511 bool op0_preserve_value
)
513 int code_int
= (int)*code
;
514 targetm
.canonicalize_comparison (&code_int
, op0
, op1
, op0_preserve_value
);
515 *code
= (enum rtx_code
)code_int
;
518 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
519 PATTERN cannot be split. Otherwise, it returns an insn sequence.
520 This is a wrapper around split_insns which ensures that the
521 reg_stat vector is made larger if the splitter creates a new
525 combine_split_insns (rtx pattern
, rtx_insn
*insn
)
530 ret
= split_insns (pattern
, insn
);
531 nregs
= max_reg_num ();
532 if (nregs
> reg_stat
.length ())
533 reg_stat
.safe_grow_cleared (nregs
, true);
537 /* This is used by find_single_use to locate an rtx in LOC that
538 contains exactly one use of DEST, which is typically a REG.
539 It returns a pointer to the innermost rtx expression
540 containing DEST. Appearances of DEST that are being used to
541 totally replace it are not counted. */
544 find_single_use_1 (rtx dest
, rtx
*loc
)
547 enum rtx_code code
= GET_CODE (x
);
563 /* If the destination is anything other than PC, a REG or a SUBREG
564 of a REG that occupies all of the REG, the insn uses DEST if
565 it is mentioned in the destination or the source. Otherwise, we
566 need just check the source. */
567 if (GET_CODE (SET_DEST (x
)) != PC
568 && !REG_P (SET_DEST (x
))
569 && ! (GET_CODE (SET_DEST (x
)) == SUBREG
570 && REG_P (SUBREG_REG (SET_DEST (x
)))
571 && !read_modify_subreg_p (SET_DEST (x
))))
574 return find_single_use_1 (dest
, &SET_SRC (x
));
578 return find_single_use_1 (dest
, &XEXP (x
, 0));
584 /* If it wasn't one of the common cases above, check each expression and
585 vector of this code. Look for a unique usage of DEST. */
587 fmt
= GET_RTX_FORMAT (code
);
588 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
592 if (dest
== XEXP (x
, i
)
593 || (REG_P (dest
) && REG_P (XEXP (x
, i
))
594 && REGNO (dest
) == REGNO (XEXP (x
, i
))))
597 this_result
= find_single_use_1 (dest
, &XEXP (x
, i
));
600 result
= this_result
;
601 else if (this_result
)
602 /* Duplicate usage. */
605 else if (fmt
[i
] == 'E')
609 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
611 if (XVECEXP (x
, i
, j
) == dest
613 && REG_P (XVECEXP (x
, i
, j
))
614 && REGNO (XVECEXP (x
, i
, j
)) == REGNO (dest
)))
617 this_result
= find_single_use_1 (dest
, &XVECEXP (x
, i
, j
));
620 result
= this_result
;
621 else if (this_result
)
631 /* See if DEST, produced in INSN, is used only a single time in the
632 sequel. If so, return a pointer to the innermost rtx expression in which
635 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
637 Otherwise, we find the single use by finding an insn that has a
638 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
639 only referenced once in that insn, we know that it must be the first
640 and last insn referencing DEST. */
643 find_single_use (rtx dest
, rtx_insn
*insn
, rtx_insn
**ploc
)
648 struct insn_link
*link
;
653 bb
= BLOCK_FOR_INSN (insn
);
654 for (next
= NEXT_INSN (insn
);
655 next
&& BLOCK_FOR_INSN (next
) == bb
;
656 next
= NEXT_INSN (next
))
657 if (NONDEBUG_INSN_P (next
) && dead_or_set_p (next
, dest
))
659 FOR_EACH_LOG_LINK (link
, next
)
660 if (link
->insn
== insn
&& link
->regno
== REGNO (dest
))
665 result
= find_single_use_1 (dest
, &PATTERN (next
));
675 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
676 insn. The substitution can be undone by undo_all. If INTO is already
677 set to NEWVAL, do not record this change. Because computing NEWVAL might
678 also call SUBST, we have to compute it before we put anything into
682 do_SUBST (rtx
*into
, rtx newval
)
687 if (oldval
== newval
)
690 /* We'd like to catch as many invalid transformations here as
691 possible. Unfortunately, there are way too many mode changes
692 that are perfectly valid, so we'd waste too much effort for
693 little gain doing the checks here. Focus on catching invalid
694 transformations involving integer constants. */
695 if (GET_MODE_CLASS (GET_MODE (oldval
)) == MODE_INT
696 && CONST_INT_P (newval
))
698 /* Sanity check that we're replacing oldval with a CONST_INT
699 that is a valid sign-extension for the original mode. */
700 gcc_assert (INTVAL (newval
)
701 == trunc_int_for_mode (INTVAL (newval
), GET_MODE (oldval
)));
703 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
704 CONST_INT is not valid, because after the replacement, the
705 original mode would be gone. Unfortunately, we can't tell
706 when do_SUBST is called to replace the operand thereof, so we
707 perform this test on oldval instead, checking whether an
708 invalid replacement took place before we got here. */
709 gcc_assert (!(GET_CODE (oldval
) == SUBREG
710 && CONST_INT_P (SUBREG_REG (oldval
))));
711 gcc_assert (!(GET_CODE (oldval
) == ZERO_EXTEND
712 && CONST_INT_P (XEXP (oldval
, 0))));
716 buf
= undobuf
.frees
, undobuf
.frees
= buf
->next
;
718 buf
= XNEW (struct undo
);
720 buf
->kind
= UNDO_RTX
;
722 buf
->old_contents
.r
= oldval
;
725 buf
->next
= undobuf
.undos
, undobuf
.undos
= buf
;
728 #define SUBST(INTO, NEWVAL) do_SUBST (&(INTO), (NEWVAL))
730 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
731 for the value of a HOST_WIDE_INT value (including CONST_INT) is
735 do_SUBST_INT (int *into
, int newval
)
740 if (oldval
== newval
)
744 buf
= undobuf
.frees
, undobuf
.frees
= buf
->next
;
746 buf
= XNEW (struct undo
);
748 buf
->kind
= UNDO_INT
;
750 buf
->old_contents
.i
= oldval
;
753 buf
->next
= undobuf
.undos
, undobuf
.undos
= buf
;
756 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT (&(INTO), (NEWVAL))
758 /* Similar to SUBST, but just substitute the mode. This is used when
759 changing the mode of a pseudo-register, so that any other
760 references to the entry in the regno_reg_rtx array will change as
764 subst_mode (int regno
, machine_mode newval
)
767 rtx reg
= regno_reg_rtx
[regno
];
768 machine_mode oldval
= GET_MODE (reg
);
770 if (oldval
== newval
)
774 buf
= undobuf
.frees
, undobuf
.frees
= buf
->next
;
776 buf
= XNEW (struct undo
);
778 buf
->kind
= UNDO_MODE
;
779 buf
->where
.regno
= regno
;
780 buf
->old_contents
.m
= oldval
;
781 adjust_reg_mode (reg
, newval
);
783 buf
->next
= undobuf
.undos
, undobuf
.undos
= buf
;
786 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */
789 do_SUBST_LINK (struct insn_link
**into
, struct insn_link
*newval
)
792 struct insn_link
* oldval
= *into
;
794 if (oldval
== newval
)
798 buf
= undobuf
.frees
, undobuf
.frees
= buf
->next
;
800 buf
= XNEW (struct undo
);
802 buf
->kind
= UNDO_LINKS
;
804 buf
->old_contents
.l
= oldval
;
807 buf
->next
= undobuf
.undos
, undobuf
.undos
= buf
;
810 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
812 /* Subroutine of try_combine. Determine whether the replacement patterns
813 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_cost
814 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
815 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
816 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
817 of all the instructions can be estimated and the replacements are more
818 expensive than the original sequence. */
821 combine_validate_cost (rtx_insn
*i0
, rtx_insn
*i1
, rtx_insn
*i2
, rtx_insn
*i3
,
822 rtx newpat
, rtx newi2pat
, rtx newotherpat
)
824 int i0_cost
, i1_cost
, i2_cost
, i3_cost
;
825 int new_i2_cost
, new_i3_cost
;
826 int old_cost
, new_cost
;
828 /* Lookup the original insn_costs. */
829 i2_cost
= INSN_COST (i2
);
830 i3_cost
= INSN_COST (i3
);
834 i1_cost
= INSN_COST (i1
);
837 i0_cost
= INSN_COST (i0
);
838 old_cost
= (i0_cost
> 0 && i1_cost
> 0 && i2_cost
> 0 && i3_cost
> 0
839 ? i0_cost
+ i1_cost
+ i2_cost
+ i3_cost
: 0);
843 old_cost
= (i1_cost
> 0 && i2_cost
> 0 && i3_cost
> 0
844 ? i1_cost
+ i2_cost
+ i3_cost
: 0);
850 old_cost
= (i2_cost
> 0 && i3_cost
> 0) ? i2_cost
+ i3_cost
: 0;
851 i1_cost
= i0_cost
= 0;
854 /* If we have split a PARALLEL I2 to I1,I2, we have counted its cost twice;
856 if (old_cost
&& i1
&& INSN_UID (i1
) == INSN_UID (i2
))
860 /* Calculate the replacement insn_costs. */
861 rtx tmp
= PATTERN (i3
);
862 PATTERN (i3
) = newpat
;
863 int tmpi
= INSN_CODE (i3
);
865 new_i3_cost
= insn_cost (i3
, optimize_this_for_speed_p
);
867 INSN_CODE (i3
) = tmpi
;
871 PATTERN (i2
) = newi2pat
;
872 tmpi
= INSN_CODE (i2
);
874 new_i2_cost
= insn_cost (i2
, optimize_this_for_speed_p
);
876 INSN_CODE (i2
) = tmpi
;
877 new_cost
= (new_i2_cost
> 0 && new_i3_cost
> 0)
878 ? new_i2_cost
+ new_i3_cost
: 0;
882 new_cost
= new_i3_cost
;
886 if (undobuf
.other_insn
)
888 int old_other_cost
, new_other_cost
;
890 old_other_cost
= INSN_COST (undobuf
.other_insn
);
891 tmp
= PATTERN (undobuf
.other_insn
);
892 PATTERN (undobuf
.other_insn
) = newotherpat
;
893 tmpi
= INSN_CODE (undobuf
.other_insn
);
894 INSN_CODE (undobuf
.other_insn
) = -1;
895 new_other_cost
= insn_cost (undobuf
.other_insn
,
896 optimize_this_for_speed_p
);
897 PATTERN (undobuf
.other_insn
) = tmp
;
898 INSN_CODE (undobuf
.other_insn
) = tmpi
;
899 if (old_other_cost
> 0 && new_other_cost
> 0)
901 old_cost
+= old_other_cost
;
902 new_cost
+= new_other_cost
;
908 /* Disallow this combination if both new_cost and old_cost are greater than
909 zero, and new_cost is greater than old cost. */
910 int reject
= old_cost
> 0 && new_cost
> old_cost
;
914 fprintf (dump_file
, "%s combination of insns ",
915 reject
? "rejecting" : "allowing");
917 fprintf (dump_file
, "%d, ", INSN_UID (i0
));
918 if (i1
&& INSN_UID (i1
) != INSN_UID (i2
))
919 fprintf (dump_file
, "%d, ", INSN_UID (i1
));
920 fprintf (dump_file
, "%d and %d\n", INSN_UID (i2
), INSN_UID (i3
));
922 fprintf (dump_file
, "original costs ");
924 fprintf (dump_file
, "%d + ", i0_cost
);
925 if (i1
&& INSN_UID (i1
) != INSN_UID (i2
))
926 fprintf (dump_file
, "%d + ", i1_cost
);
927 fprintf (dump_file
, "%d + %d = %d\n", i2_cost
, i3_cost
, old_cost
);
930 fprintf (dump_file
, "replacement costs %d + %d = %d\n",
931 new_i2_cost
, new_i3_cost
, new_cost
);
933 fprintf (dump_file
, "replacement cost %d\n", new_cost
);
939 /* Update the uid_insn_cost array with the replacement costs. */
940 INSN_COST (i2
) = new_i2_cost
;
941 INSN_COST (i3
) = new_i3_cost
;
953 /* Delete any insns that copy a register to itself.
954 Return true if the CFG was changed. */
957 delete_noop_moves (void)
959 rtx_insn
*insn
, *next
;
962 bool edges_deleted
= false;
964 FOR_EACH_BB_FN (bb
, cfun
)
966 for (insn
= BB_HEAD (bb
); insn
!= NEXT_INSN (BB_END (bb
)); insn
= next
)
968 next
= NEXT_INSN (insn
);
969 if (INSN_P (insn
) && noop_move_p (insn
))
972 fprintf (dump_file
, "deleting noop move %d\n", INSN_UID (insn
));
974 edges_deleted
|= delete_insn_and_edges (insn
);
979 return edges_deleted
;
983 /* Return false if we do not want to (or cannot) combine DEF. */
985 can_combine_def_p (df_ref def
)
987 /* Do not consider if it is pre/post modification in MEM. */
988 if (DF_REF_FLAGS (def
) & DF_REF_PRE_POST_MODIFY
)
991 unsigned int regno
= DF_REF_REGNO (def
);
993 /* Do not combine frame pointer adjustments. */
994 if ((regno
== FRAME_POINTER_REGNUM
995 && (!reload_completed
|| frame_pointer_needed
))
996 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
997 && regno
== HARD_FRAME_POINTER_REGNUM
998 && (!reload_completed
|| frame_pointer_needed
))
999 || (FRAME_POINTER_REGNUM
!= ARG_POINTER_REGNUM
1000 && regno
== ARG_POINTER_REGNUM
&& fixed_regs
[regno
]))
1006 /* Return false if we do not want to (or cannot) combine USE. */
1008 can_combine_use_p (df_ref use
)
1010 /* Do not consider the usage of the stack pointer by function call. */
1011 if (DF_REF_FLAGS (use
) & DF_REF_CALL_STACK_USAGE
)
1017 /* Fill in log links field for all insns. */
1020 create_log_links (void)
1023 rtx_insn
**next_use
;
1027 next_use
= XCNEWVEC (rtx_insn
*, max_reg_num ());
1029 /* Pass through each block from the end, recording the uses of each
1030 register and establishing log links when def is encountered.
1031 Note that we do not clear next_use array in order to save time,
1032 so we have to test whether the use is in the same basic block as def.
1034 There are a few cases below when we do not consider the definition or
1035 usage -- these are taken from original flow.c did. Don't ask me why it is
1036 done this way; I don't know and if it works, I don't want to know. */
1038 FOR_EACH_BB_FN (bb
, cfun
)
1040 FOR_BB_INSNS_REVERSE (bb
, insn
)
1042 if (!NONDEBUG_INSN_P (insn
))
1045 /* Log links are created only once. */
1046 gcc_assert (!LOG_LINKS (insn
));
1048 FOR_EACH_INSN_DEF (def
, insn
)
1050 unsigned int regno
= DF_REF_REGNO (def
);
1053 if (!next_use
[regno
])
1056 if (!can_combine_def_p (def
))
1059 use_insn
= next_use
[regno
];
1060 next_use
[regno
] = NULL
;
1062 if (BLOCK_FOR_INSN (use_insn
) != bb
)
1067 We don't build a LOG_LINK for hard registers contained
1068 in ASM_OPERANDs. If these registers get replaced,
1069 we might wind up changing the semantics of the insn,
1070 even if reload can make what appear to be valid
1071 assignments later. */
1072 if (regno
< FIRST_PSEUDO_REGISTER
1073 && asm_noperands (PATTERN (use_insn
)) >= 0)
1076 /* Don't add duplicate links between instructions. */
1077 struct insn_link
*links
;
1078 FOR_EACH_LOG_LINK (links
, use_insn
)
1079 if (insn
== links
->insn
&& regno
== links
->regno
)
1083 LOG_LINKS (use_insn
)
1084 = alloc_insn_link (insn
, regno
, LOG_LINKS (use_insn
));
1087 FOR_EACH_INSN_USE (use
, insn
)
1088 if (can_combine_use_p (use
))
1089 next_use
[DF_REF_REGNO (use
)] = insn
;
1096 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1097 true if we found a LOG_LINK that proves that A feeds B. This only works
1098 if there are no instructions between A and B which could have a link
1099 depending on A, since in that case we would not record a link for B. */
1102 insn_a_feeds_b (rtx_insn
*a
, rtx_insn
*b
)
1104 struct insn_link
*links
;
1105 FOR_EACH_LOG_LINK (links
, b
)
1106 if (links
->insn
== a
)
1111 /* Main entry point for combiner. F is the first insn of the function.
1112 NREGS is the first unused pseudo-reg number.
1114 Return nonzero if the CFG was changed (e.g. if the combiner has
1115 turned an indirect jump instruction into a direct jump). */
1117 combine_instructions (rtx_insn
*f
, unsigned int nregs
)
1119 rtx_insn
*insn
, *next
;
1120 struct insn_link
*links
, *nextlinks
;
1122 basic_block last_bb
;
1124 int new_direct_jump_p
= 0;
1126 for (first
= f
; first
&& !NONDEBUG_INSN_P (first
); )
1127 first
= NEXT_INSN (first
);
1131 combine_attempts
= 0;
1134 combine_successes
= 0;
1136 rtl_hooks
= combine_rtl_hooks
;
1138 reg_stat
.safe_grow_cleared (nregs
, true);
1140 init_recog_no_volatile ();
1142 /* Allocate array for insn info. */
1143 max_uid_known
= get_max_uid ();
1144 uid_log_links
= XCNEWVEC (struct insn_link
*, max_uid_known
+ 1);
1145 uid_insn_cost
= XCNEWVEC (int, max_uid_known
+ 1);
1146 gcc_obstack_init (&insn_link_obstack
);
1148 nonzero_bits_mode
= int_mode_for_size (HOST_BITS_PER_WIDE_INT
, 0).require ();
1150 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1151 problems when, for example, we have j <<= 1 in a loop. */
1153 nonzero_sign_valid
= 0;
1154 label_tick
= label_tick_ebb_start
= 1;
1156 /* Scan all SETs and see if we can deduce anything about what
1157 bits are known to be zero for some registers and how many copies
1158 of the sign bit are known to exist for those registers.
1160 Also set any known values so that we can use it while searching
1161 for what bits are known to be set. */
1163 setup_incoming_promotions (first
);
1164 /* Allow the entry block and the first block to fall into the same EBB.
1165 Conceptually the incoming promotions are assigned to the entry block. */
1166 last_bb
= ENTRY_BLOCK_PTR_FOR_FN (cfun
);
1168 create_log_links ();
1169 FOR_EACH_BB_FN (this_basic_block
, cfun
)
1171 optimize_this_for_speed_p
= optimize_bb_for_speed_p (this_basic_block
);
1176 if (!single_pred_p (this_basic_block
)
1177 || single_pred (this_basic_block
) != last_bb
)
1178 label_tick_ebb_start
= label_tick
;
1179 last_bb
= this_basic_block
;
1181 FOR_BB_INSNS (this_basic_block
, insn
)
1182 if (INSN_P (insn
) && BLOCK_FOR_INSN (insn
))
1186 subst_low_luid
= DF_INSN_LUID (insn
);
1189 note_stores (insn
, set_nonzero_bits_and_sign_copies
, insn
);
1190 record_dead_and_set_regs (insn
);
1193 for (links
= REG_NOTES (insn
); links
; links
= XEXP (links
, 1))
1194 if (REG_NOTE_KIND (links
) == REG_INC
)
1195 set_nonzero_bits_and_sign_copies (XEXP (links
, 0), NULL_RTX
,
1198 /* Record the current insn_cost of this instruction. */
1199 INSN_COST (insn
) = insn_cost (insn
, optimize_this_for_speed_p
);
1202 fprintf (dump_file
, "insn_cost %d for ", INSN_COST (insn
));
1203 dump_insn_slim (dump_file
, insn
);
1208 nonzero_sign_valid
= 1;
1210 /* Now scan all the insns in forward order. */
1211 label_tick
= label_tick_ebb_start
= 1;
1213 setup_incoming_promotions (first
);
1214 last_bb
= ENTRY_BLOCK_PTR_FOR_FN (cfun
);
1215 int max_combine
= param_max_combine_insns
;
1217 FOR_EACH_BB_FN (this_basic_block
, cfun
)
1219 rtx_insn
*last_combined_insn
= NULL
;
1221 /* Ignore instruction combination in basic blocks that are going to
1222 be removed as unreachable anyway. See PR82386. */
1223 if (EDGE_COUNT (this_basic_block
->preds
) == 0)
1226 optimize_this_for_speed_p
= optimize_bb_for_speed_p (this_basic_block
);
1231 if (!single_pred_p (this_basic_block
)
1232 || single_pred (this_basic_block
) != last_bb
)
1233 label_tick_ebb_start
= label_tick
;
1234 last_bb
= this_basic_block
;
1236 rtl_profile_for_bb (this_basic_block
);
1237 for (insn
= BB_HEAD (this_basic_block
);
1238 insn
!= NEXT_INSN (BB_END (this_basic_block
));
1239 insn
= next
? next
: NEXT_INSN (insn
))
1242 if (!NONDEBUG_INSN_P (insn
))
1245 while (last_combined_insn
1246 && (!NONDEBUG_INSN_P (last_combined_insn
)
1247 || last_combined_insn
->deleted ()))
1248 last_combined_insn
= PREV_INSN (last_combined_insn
);
1249 if (last_combined_insn
== NULL_RTX
1250 || BLOCK_FOR_INSN (last_combined_insn
) != this_basic_block
1251 || DF_INSN_LUID (last_combined_insn
) <= DF_INSN_LUID (insn
))
1252 last_combined_insn
= insn
;
1254 /* See if we know about function return values before this
1255 insn based upon SUBREG flags. */
1256 check_promoted_subreg (insn
, PATTERN (insn
));
1258 /* See if we can find hardregs and subreg of pseudos in
1259 narrower modes. This could help turning TRUNCATEs
1261 note_uses (&PATTERN (insn
), record_truncated_values
, NULL
);
1263 /* Try this insn with each insn it links back to. */
1265 FOR_EACH_LOG_LINK (links
, insn
)
1266 if ((next
= try_combine (insn
, links
->insn
, NULL
,
1267 NULL
, &new_direct_jump_p
,
1268 last_combined_insn
)) != 0)
1270 statistics_counter_event (cfun
, "two-insn combine", 1);
1274 /* Try each sequence of three linked insns ending with this one. */
1276 if (max_combine
>= 3)
1277 FOR_EACH_LOG_LINK (links
, insn
)
1279 rtx_insn
*link
= links
->insn
;
1281 /* If the linked insn has been replaced by a note, then there
1282 is no point in pursuing this chain any further. */
1286 FOR_EACH_LOG_LINK (nextlinks
, link
)
1287 if ((next
= try_combine (insn
, link
, nextlinks
->insn
,
1288 NULL
, &new_direct_jump_p
,
1289 last_combined_insn
)) != 0)
1291 statistics_counter_event (cfun
, "three-insn combine", 1);
1296 /* Try combining an insn with two different insns whose results it
1298 if (max_combine
>= 3)
1299 FOR_EACH_LOG_LINK (links
, insn
)
1300 for (nextlinks
= links
->next
; nextlinks
;
1301 nextlinks
= nextlinks
->next
)
1302 if ((next
= try_combine (insn
, links
->insn
,
1303 nextlinks
->insn
, NULL
,
1305 last_combined_insn
)) != 0)
1308 statistics_counter_event (cfun
, "three-insn combine", 1);
1312 /* Try four-instruction combinations. */
1313 if (max_combine
>= 4)
1314 FOR_EACH_LOG_LINK (links
, insn
)
1316 struct insn_link
*next1
;
1317 rtx_insn
*link
= links
->insn
;
1319 /* If the linked insn has been replaced by a note, then there
1320 is no point in pursuing this chain any further. */
1324 FOR_EACH_LOG_LINK (next1
, link
)
1326 rtx_insn
*link1
= next1
->insn
;
1329 /* I0 -> I1 -> I2 -> I3. */
1330 FOR_EACH_LOG_LINK (nextlinks
, link1
)
1331 if ((next
= try_combine (insn
, link
, link1
,
1334 last_combined_insn
)) != 0)
1336 statistics_counter_event (cfun
, "four-insn combine", 1);
1339 /* I0, I1 -> I2, I2 -> I3. */
1340 for (nextlinks
= next1
->next
; nextlinks
;
1341 nextlinks
= nextlinks
->next
)
1342 if ((next
= try_combine (insn
, link
, link1
,
1345 last_combined_insn
)) != 0)
1347 statistics_counter_event (cfun
, "four-insn combine", 1);
1352 for (next1
= links
->next
; next1
; next1
= next1
->next
)
1354 rtx_insn
*link1
= next1
->insn
;
1357 /* I0 -> I2; I1, I2 -> I3. */
1358 FOR_EACH_LOG_LINK (nextlinks
, link
)
1359 if ((next
= try_combine (insn
, link
, link1
,
1362 last_combined_insn
)) != 0)
1364 statistics_counter_event (cfun
, "four-insn combine", 1);
1367 /* I0 -> I1; I1, I2 -> I3. */
1368 FOR_EACH_LOG_LINK (nextlinks
, link1
)
1369 if ((next
= try_combine (insn
, link
, link1
,
1372 last_combined_insn
)) != 0)
1374 statistics_counter_event (cfun
, "four-insn combine", 1);
1380 /* Try this insn with each REG_EQUAL note it links back to. */
1381 FOR_EACH_LOG_LINK (links
, insn
)
1384 rtx_insn
*temp
= links
->insn
;
1385 if ((set
= single_set (temp
)) != 0
1386 && (note
= find_reg_equal_equiv_note (temp
)) != 0
1387 && (note
= XEXP (note
, 0), GET_CODE (note
)) != EXPR_LIST
1388 && ! side_effects_p (SET_SRC (set
))
1389 /* Avoid using a register that may already been marked
1390 dead by an earlier instruction. */
1391 && ! unmentioned_reg_p (note
, SET_SRC (set
))
1392 && (GET_MODE (note
) == VOIDmode
1393 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set
)))
1394 : (GET_MODE (SET_DEST (set
)) == GET_MODE (note
)
1395 && (GET_CODE (SET_DEST (set
)) != ZERO_EXTRACT
1396 || (GET_MODE (XEXP (SET_DEST (set
), 0))
1397 == GET_MODE (note
))))))
1399 /* Temporarily replace the set's source with the
1400 contents of the REG_EQUAL note. The insn will
1401 be deleted or recognized by try_combine. */
1402 rtx orig_src
= SET_SRC (set
);
1403 rtx orig_dest
= SET_DEST (set
);
1404 if (GET_CODE (SET_DEST (set
)) == ZERO_EXTRACT
)
1405 SET_DEST (set
) = XEXP (SET_DEST (set
), 0);
1406 SET_SRC (set
) = note
;
1408 i2mod_old_rhs
= copy_rtx (orig_src
);
1409 i2mod_new_rhs
= copy_rtx (note
);
1410 next
= try_combine (insn
, i2mod
, NULL
, NULL
,
1412 last_combined_insn
);
1416 statistics_counter_event (cfun
, "insn-with-note combine", 1);
1419 SET_SRC (set
) = orig_src
;
1420 SET_DEST (set
) = orig_dest
;
1425 record_dead_and_set_regs (insn
);
1432 default_rtl_profile ();
1434 new_direct_jump_p
|= purge_all_dead_edges ();
1435 new_direct_jump_p
|= delete_noop_moves ();
1438 obstack_free (&insn_link_obstack
, NULL
);
1439 free (uid_log_links
);
1440 free (uid_insn_cost
);
1441 reg_stat
.release ();
1444 struct undo
*undo
, *next
;
1445 for (undo
= undobuf
.frees
; undo
; undo
= next
)
1453 total_attempts
+= combine_attempts
;
1454 total_merges
+= combine_merges
;
1455 total_extras
+= combine_extras
;
1456 total_successes
+= combine_successes
;
1458 nonzero_sign_valid
= 0;
1459 rtl_hooks
= general_rtl_hooks
;
1461 /* Make recognizer allow volatile MEMs again. */
1464 return new_direct_jump_p
;
1467 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1470 init_reg_last (void)
1475 FOR_EACH_VEC_ELT (reg_stat
, i
, p
)
1476 memset (p
, 0, offsetof (reg_stat_type
, sign_bit_copies
));
1479 /* Set up any promoted values for incoming argument registers. */
1482 setup_incoming_promotions (rtx_insn
*first
)
1485 bool strictly_local
= false;
1487 for (arg
= DECL_ARGUMENTS (current_function_decl
); arg
;
1488 arg
= DECL_CHAIN (arg
))
1490 rtx x
, reg
= DECL_INCOMING_RTL (arg
);
1492 machine_mode mode1
, mode2
, mode3
, mode4
;
1494 /* Only continue if the incoming argument is in a register. */
1498 /* Determine, if possible, whether all call sites of the current
1499 function lie within the current compilation unit. (This does
1500 take into account the exporting of a function via taking its
1501 address, and so forth.) */
1503 = cgraph_node::local_info_node (current_function_decl
)->local
;
1505 /* The mode and signedness of the argument before any promotions happen
1506 (equal to the mode of the pseudo holding it at that stage). */
1507 mode1
= TYPE_MODE (TREE_TYPE (arg
));
1508 uns1
= TYPE_UNSIGNED (TREE_TYPE (arg
));
1510 /* The mode and signedness of the argument after any source language and
1511 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1512 mode2
= TYPE_MODE (DECL_ARG_TYPE (arg
));
1513 uns3
= TYPE_UNSIGNED (DECL_ARG_TYPE (arg
));
1515 /* The mode and signedness of the argument as it is actually passed,
1516 see assign_parm_setup_reg in function.cc. */
1517 mode3
= promote_function_mode (TREE_TYPE (arg
), mode1
, &uns3
,
1518 TREE_TYPE (cfun
->decl
), 0);
1520 /* The mode of the register in which the argument is being passed. */
1521 mode4
= GET_MODE (reg
);
1523 /* Eliminate sign extensions in the callee when:
1524 (a) A mode promotion has occurred; */
1527 /* (b) The mode of the register is the same as the mode of
1528 the argument as it is passed; */
1531 /* (c) There's no language level extension; */
1534 /* (c.1) All callers are from the current compilation unit. If that's
1535 the case we don't have to rely on an ABI, we only have to know
1536 what we're generating right now, and we know that we will do the
1537 mode1 to mode2 promotion with the given sign. */
1538 else if (!strictly_local
)
1540 /* (c.2) The combination of the two promotions is useful. This is
1541 true when the signs match, or if the first promotion is unsigned.
1542 In the later case, (sign_extend (zero_extend x)) is the same as
1543 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1549 /* Record that the value was promoted from mode1 to mode3,
1550 so that any sign extension at the head of the current
1551 function may be eliminated. */
1552 x
= gen_rtx_CLOBBER (mode1
, const0_rtx
);
1553 x
= gen_rtx_fmt_e ((uns3
? ZERO_EXTEND
: SIGN_EXTEND
), mode3
, x
);
1554 record_value_for_reg (reg
, first
, x
);
1558 /* If MODE has a precision lower than PREC and SRC is a non-negative constant
1559 that would appear negative in MODE, sign-extend SRC for use in nonzero_bits
1560 because some machines (maybe most) will actually do the sign-extension and
1561 this is the conservative approach.
1563 ??? For 2.5, try to tighten up the MD files in this regard instead of this
1567 sign_extend_short_imm (rtx src
, machine_mode mode
, unsigned int prec
)
1569 scalar_int_mode int_mode
;
1570 if (CONST_INT_P (src
)
1571 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
1572 && GET_MODE_PRECISION (int_mode
) < prec
1574 && val_signbit_known_set_p (int_mode
, INTVAL (src
)))
1575 src
= GEN_INT (INTVAL (src
) | ~GET_MODE_MASK (int_mode
));
1580 /* Update RSP for pseudo-register X from INSN's REG_EQUAL note (if one exists)
1584 update_rsp_from_reg_equal (reg_stat_type
*rsp
, rtx_insn
*insn
, const_rtx set
,
1587 rtx reg_equal_note
= insn
? find_reg_equal_equiv_note (insn
) : NULL_RTX
;
1588 unsigned HOST_WIDE_INT bits
= 0;
1589 rtx reg_equal
= NULL
, src
= SET_SRC (set
);
1590 unsigned int num
= 0;
1593 reg_equal
= XEXP (reg_equal_note
, 0);
1595 if (SHORT_IMMEDIATES_SIGN_EXTEND
)
1597 src
= sign_extend_short_imm (src
, GET_MODE (x
), BITS_PER_WORD
);
1599 reg_equal
= sign_extend_short_imm (reg_equal
, GET_MODE (x
), BITS_PER_WORD
);
1602 /* Don't call nonzero_bits if it cannot change anything. */
1603 if (rsp
->nonzero_bits
!= HOST_WIDE_INT_M1U
)
1605 machine_mode mode
= GET_MODE (x
);
1606 if (GET_MODE_CLASS (mode
) == MODE_INT
1607 && HWI_COMPUTABLE_MODE_P (mode
))
1608 mode
= nonzero_bits_mode
;
1609 bits
= nonzero_bits (src
, mode
);
1610 if (reg_equal
&& bits
)
1611 bits
&= nonzero_bits (reg_equal
, mode
);
1612 rsp
->nonzero_bits
|= bits
;
1615 /* Don't call num_sign_bit_copies if it cannot change anything. */
1616 if (rsp
->sign_bit_copies
!= 1)
1618 num
= num_sign_bit_copies (SET_SRC (set
), GET_MODE (x
));
1619 if (reg_equal
&& maybe_ne (num
, GET_MODE_PRECISION (GET_MODE (x
))))
1621 unsigned int numeq
= num_sign_bit_copies (reg_equal
, GET_MODE (x
));
1622 if (num
== 0 || numeq
> num
)
1625 if (rsp
->sign_bit_copies
== 0 || num
< rsp
->sign_bit_copies
)
1626 rsp
->sign_bit_copies
= num
;
1630 /* Called via note_stores. If X is a pseudo that is narrower than
1631 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1633 If we are setting only a portion of X and we can't figure out what
1634 portion, assume all bits will be used since we don't know what will
1637 Similarly, set how many bits of X are known to be copies of the sign bit
1638 at all locations in the function. This is the smallest number implied
1642 set_nonzero_bits_and_sign_copies (rtx x
, const_rtx set
, void *data
)
1644 rtx_insn
*insn
= (rtx_insn
*) data
;
1645 scalar_int_mode mode
;
1648 && REGNO (x
) >= FIRST_PSEUDO_REGISTER
1649 /* If this register is undefined at the start of the file, we can't
1650 say what its contents were. */
1651 && ! REGNO_REG_SET_P
1652 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
), REGNO (x
))
1653 && is_a
<scalar_int_mode
> (GET_MODE (x
), &mode
)
1654 && HWI_COMPUTABLE_MODE_P (mode
))
1656 reg_stat_type
*rsp
= ®_stat
[REGNO (x
)];
1658 if (set
== 0 || GET_CODE (set
) == CLOBBER
)
1660 rsp
->nonzero_bits
= GET_MODE_MASK (mode
);
1661 rsp
->sign_bit_copies
= 1;
1665 /* If this register is being initialized using itself, and the
1666 register is uninitialized in this basic block, and there are
1667 no LOG_LINKS which set the register, then part of the
1668 register is uninitialized. In that case we can't assume
1669 anything about the number of nonzero bits.
1671 ??? We could do better if we checked this in
1672 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1673 could avoid making assumptions about the insn which initially
1674 sets the register, while still using the information in other
1675 insns. We would have to be careful to check every insn
1676 involved in the combination. */
1679 && reg_referenced_p (x
, PATTERN (insn
))
1680 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn
)),
1683 struct insn_link
*link
;
1685 FOR_EACH_LOG_LINK (link
, insn
)
1686 if (dead_or_set_p (link
->insn
, x
))
1690 rsp
->nonzero_bits
= GET_MODE_MASK (mode
);
1691 rsp
->sign_bit_copies
= 1;
1696 /* If this is a complex assignment, see if we can convert it into a
1697 simple assignment. */
1698 set
= expand_field_assignment (set
);
1700 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1701 set what we know about X. */
1703 if (SET_DEST (set
) == x
1704 || (paradoxical_subreg_p (SET_DEST (set
))
1705 && SUBREG_REG (SET_DEST (set
)) == x
))
1706 update_rsp_from_reg_equal (rsp
, insn
, set
, x
);
1709 rsp
->nonzero_bits
= GET_MODE_MASK (mode
);
1710 rsp
->sign_bit_copies
= 1;
1715 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1716 optionally insns that were previously combined into I3 or that will be
1717 combined into the merger of INSN and I3. The order is PRED, PRED2,
1718 INSN, SUCC, SUCC2, I3.
1720 Return 0 if the combination is not allowed for any reason.
1722 If the combination is allowed, *PDEST will be set to the single
1723 destination of INSN and *PSRC to the single source, and this function
1727 can_combine_p (rtx_insn
*insn
, rtx_insn
*i3
, rtx_insn
*pred ATTRIBUTE_UNUSED
,
1728 rtx_insn
*pred2 ATTRIBUTE_UNUSED
, rtx_insn
*succ
, rtx_insn
*succ2
,
1729 rtx
*pdest
, rtx
*psrc
)
1736 bool all_adjacent
= true;
1737 int (*is_volatile_p
) (const_rtx
);
1743 if (next_active_insn (succ2
) != i3
)
1744 all_adjacent
= false;
1745 if (next_active_insn (succ
) != succ2
)
1746 all_adjacent
= false;
1748 else if (next_active_insn (succ
) != i3
)
1749 all_adjacent
= false;
1750 if (next_active_insn (insn
) != succ
)
1751 all_adjacent
= false;
1753 else if (next_active_insn (insn
) != i3
)
1754 all_adjacent
= false;
1756 /* Can combine only if previous insn is a SET of a REG or a SUBREG,
1757 or a PARALLEL consisting of such a SET and CLOBBERs.
1759 If INSN has CLOBBER parallel parts, ignore them for our processing.
1760 By definition, these happen during the execution of the insn. When it
1761 is merged with another insn, all bets are off. If they are, in fact,
1762 needed and aren't also supplied in I3, they may be added by
1763 recog_for_combine. Otherwise, it won't match.
1765 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1768 Get the source and destination of INSN. If more than one, can't
1771 if (GET_CODE (PATTERN (insn
)) == SET
)
1772 set
= PATTERN (insn
);
1773 else if (GET_CODE (PATTERN (insn
)) == PARALLEL
1774 && GET_CODE (XVECEXP (PATTERN (insn
), 0, 0)) == SET
)
1776 for (i
= 0; i
< XVECLEN (PATTERN (insn
), 0); i
++)
1778 rtx elt
= XVECEXP (PATTERN (insn
), 0, i
);
1780 switch (GET_CODE (elt
))
1782 /* This is important to combine floating point insns
1783 for the SH4 port. */
1785 /* Combining an isolated USE doesn't make sense.
1786 We depend here on combinable_i3pat to reject them. */
1787 /* The code below this loop only verifies that the inputs of
1788 the SET in INSN do not change. We call reg_set_between_p
1789 to verify that the REG in the USE does not change between
1791 If the USE in INSN was for a pseudo register, the matching
1792 insn pattern will likely match any register; combining this
1793 with any other USE would only be safe if we knew that the
1794 used registers have identical values, or if there was
1795 something to tell them apart, e.g. different modes. For
1796 now, we forgo such complicated tests and simply disallow
1797 combining of USES of pseudo registers with any other USE. */
1798 if (REG_P (XEXP (elt
, 0))
1799 && GET_CODE (PATTERN (i3
)) == PARALLEL
)
1801 rtx i3pat
= PATTERN (i3
);
1802 int i
= XVECLEN (i3pat
, 0) - 1;
1803 unsigned int regno
= REGNO (XEXP (elt
, 0));
1807 rtx i3elt
= XVECEXP (i3pat
, 0, i
);
1809 if (GET_CODE (i3elt
) == USE
1810 && REG_P (XEXP (i3elt
, 0))
1811 && (REGNO (XEXP (i3elt
, 0)) == regno
1812 ? reg_set_between_p (XEXP (elt
, 0),
1813 PREV_INSN (insn
), i3
)
1814 : regno
>= FIRST_PSEUDO_REGISTER
))
1821 /* We can ignore CLOBBERs. */
1826 /* Ignore SETs whose result isn't used but not those that
1827 have side-effects. */
1828 if (find_reg_note (insn
, REG_UNUSED
, SET_DEST (elt
))
1829 && insn_nothrow_p (insn
)
1830 && !side_effects_p (elt
))
1833 /* If we have already found a SET, this is a second one and
1834 so we cannot combine with this insn. */
1842 /* Anything else means we can't combine. */
1848 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1849 so don't do anything with it. */
1850 || GET_CODE (SET_SRC (set
)) == ASM_OPERANDS
)
1859 /* The simplification in expand_field_assignment may call back to
1860 get_last_value, so set safe guard here. */
1861 subst_low_luid
= DF_INSN_LUID (insn
);
1863 set
= expand_field_assignment (set
);
1864 src
= SET_SRC (set
), dest
= SET_DEST (set
);
1866 /* Do not eliminate user-specified register if it is in an
1867 asm input because we may break the register asm usage defined
1868 in GCC manual if allow to do so.
1869 Be aware that this may cover more cases than we expect but this
1870 should be harmless. */
1871 if (REG_P (dest
) && REG_USERVAR_P (dest
) && HARD_REGISTER_P (dest
)
1872 && extract_asm_operands (PATTERN (i3
)))
1875 /* Don't eliminate a store in the stack pointer. */
1876 if (dest
== stack_pointer_rtx
1877 /* Don't combine with an insn that sets a register to itself if it has
1878 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1879 || (rtx_equal_p (src
, dest
) && find_reg_note (insn
, REG_EQUAL
, NULL_RTX
))
1880 /* Can't merge an ASM_OPERANDS. */
1881 || GET_CODE (src
) == ASM_OPERANDS
1882 /* Can't merge a function call. */
1883 || GET_CODE (src
) == CALL
1884 /* Don't eliminate a function call argument. */
1886 && (find_reg_fusage (i3
, USE
, dest
)
1888 && REGNO (dest
) < FIRST_PSEUDO_REGISTER
1889 && global_regs
[REGNO (dest
)])))
1890 /* Don't substitute into an incremented register. */
1891 || FIND_REG_INC_NOTE (i3
, dest
)
1892 || (succ
&& FIND_REG_INC_NOTE (succ
, dest
))
1893 || (succ2
&& FIND_REG_INC_NOTE (succ2
, dest
))
1894 /* Don't substitute into a non-local goto, this confuses CFG. */
1895 || (JUMP_P (i3
) && find_reg_note (i3
, REG_NON_LOCAL_GOTO
, NULL_RTX
))
1896 /* Make sure that DEST is not used after INSN but before SUCC, or
1897 after SUCC and before SUCC2, or after SUCC2 but before I3. */
1900 && (reg_used_between_p (dest
, succ2
, i3
)
1901 || reg_used_between_p (dest
, succ
, succ2
)))
1902 || (!succ2
&& succ
&& reg_used_between_p (dest
, succ
, i3
))
1903 || (!succ2
&& !succ
&& reg_used_between_p (dest
, insn
, i3
))
1905 /* SUCC and SUCC2 can be split halves from a PARALLEL; in
1906 that case SUCC is not in the insn stream, so use SUCC2
1907 instead for this test. */
1908 && reg_used_between_p (dest
, insn
,
1910 && INSN_UID (succ
) == INSN_UID (succ2
)
1912 /* Make sure that the value that is to be substituted for the register
1913 does not use any registers whose values alter in between. However,
1914 If the insns are adjacent, a use can't cross a set even though we
1915 think it might (this can happen for a sequence of insns each setting
1916 the same destination; last_set of that register might point to
1917 a NOTE). If INSN has a REG_EQUIV note, the register is always
1918 equivalent to the memory so the substitution is valid even if there
1919 are intervening stores. Also, don't move a volatile asm or
1920 UNSPEC_VOLATILE across any other insns. */
1923 || ! find_reg_note (insn
, REG_EQUIV
, src
))
1924 && modified_between_p (src
, insn
, i3
))
1925 || (GET_CODE (src
) == ASM_OPERANDS
&& MEM_VOLATILE_P (src
))
1926 || GET_CODE (src
) == UNSPEC_VOLATILE
))
1927 /* Don't combine across a CALL_INSN, because that would possibly
1928 change whether the life span of some REGs crosses calls or not,
1929 and it is a pain to update that information.
1930 Exception: if source is a constant, moving it later can't hurt.
1931 Accept that as a special case. */
1932 || (DF_INSN_LUID (insn
) < last_call_luid
&& ! CONSTANT_P (src
)))
1935 /* DEST must be a REG. */
1938 /* If register alignment is being enforced for multi-word items in all
1939 cases except for parameters, it is possible to have a register copy
1940 insn referencing a hard register that is not allowed to contain the
1941 mode being copied and which would not be valid as an operand of most
1942 insns. Eliminate this problem by not combining with such an insn.
1944 Also, on some machines we don't want to extend the life of a hard
1948 && ((REGNO (dest
) < FIRST_PSEUDO_REGISTER
1949 && !targetm
.hard_regno_mode_ok (REGNO (dest
), GET_MODE (dest
)))
1950 /* Don't extend the life of a hard register unless it is
1951 user variable (if we have few registers) or it can't
1952 fit into the desired register (meaning something special
1954 Also avoid substituting a return register into I3, because
1955 reload can't handle a conflict with constraints of other
1957 || (REGNO (src
) < FIRST_PSEUDO_REGISTER
1958 && !targetm
.hard_regno_mode_ok (REGNO (src
),
1966 if (GET_CODE (PATTERN (i3
)) == PARALLEL
)
1967 for (i
= XVECLEN (PATTERN (i3
), 0) - 1; i
>= 0; i
--)
1968 if (GET_CODE (XVECEXP (PATTERN (i3
), 0, i
)) == CLOBBER
)
1970 rtx reg
= XEXP (XVECEXP (PATTERN (i3
), 0, i
), 0);
1972 /* If the clobber represents an earlyclobber operand, we must not
1973 substitute an expression containing the clobbered register.
1974 As we do not analyze the constraint strings here, we have to
1975 make the conservative assumption. However, if the register is
1976 a fixed hard reg, the clobber cannot represent any operand;
1977 we leave it up to the machine description to either accept or
1978 reject use-and-clobber patterns. */
1980 || REGNO (reg
) >= FIRST_PSEUDO_REGISTER
1981 || !fixed_regs
[REGNO (reg
)])
1982 if (reg_overlap_mentioned_p (reg
, src
))
1986 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1987 or not), reject, unless nothing volatile comes between it and I3 */
1989 if (GET_CODE (src
) == ASM_OPERANDS
|| volatile_refs_p (src
))
1991 /* Make sure neither succ nor succ2 contains a volatile reference. */
1992 if (succ2
!= 0 && volatile_refs_p (PATTERN (succ2
)))
1994 if (succ
!= 0 && volatile_refs_p (PATTERN (succ
)))
1996 /* We'll check insns between INSN and I3 below. */
1999 /* If INSN is an asm, and DEST is a hard register, reject, since it has
2000 to be an explicit register variable, and was chosen for a reason. */
2002 if (GET_CODE (src
) == ASM_OPERANDS
2003 && REG_P (dest
) && REGNO (dest
) < FIRST_PSEUDO_REGISTER
)
2006 /* If INSN contains volatile references (specifically volatile MEMs),
2007 we cannot combine across any other volatile references.
2008 Even if INSN doesn't contain volatile references, any intervening
2009 volatile insn might affect machine state. */
2011 is_volatile_p
= volatile_refs_p (PATTERN (insn
))
2015 for (p
= NEXT_INSN (insn
); p
!= i3
; p
= NEXT_INSN (p
))
2016 if (INSN_P (p
) && p
!= succ
&& p
!= succ2
&& is_volatile_p (PATTERN (p
)))
2019 /* If INSN contains an autoincrement or autodecrement, make sure that
2020 register is not used between there and I3, and not already used in
2021 I3 either. Neither must it be used in PRED or SUCC, if they exist.
2022 Also insist that I3 not be a jump if using LRA; if it were one
2023 and the incremented register were spilled, we would lose.
2024 Reload handles this correctly. */
2027 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
2028 if (REG_NOTE_KIND (link
) == REG_INC
2029 && ((JUMP_P (i3
) && targetm
.lra_p ())
2030 || reg_used_between_p (XEXP (link
, 0), insn
, i3
)
2031 || (pred
!= NULL_RTX
2032 && reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (pred
)))
2033 || (pred2
!= NULL_RTX
2034 && reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (pred2
)))
2035 || (succ
!= NULL_RTX
2036 && reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (succ
)))
2037 || (succ2
!= NULL_RTX
2038 && reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (succ2
)))
2039 || reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (i3
))))
2042 /* If we get here, we have passed all the tests and the combination is
2051 /* LOC is the location within I3 that contains its pattern or the component
2052 of a PARALLEL of the pattern. We validate that it is valid for combining.
2054 One problem is if I3 modifies its output, as opposed to replacing it
2055 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2056 doing so would produce an insn that is not equivalent to the original insns.
2060 (set (reg:DI 101) (reg:DI 100))
2061 (set (subreg:SI (reg:DI 101) 0) <foo>)
2063 This is NOT equivalent to:
2065 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2066 (set (reg:DI 101) (reg:DI 100))])
2068 Not only does this modify 100 (in which case it might still be valid
2069 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2071 We can also run into a problem if I2 sets a register that I1
2072 uses and I1 gets directly substituted into I3 (not via I2). In that
2073 case, we would be getting the wrong value of I2DEST into I3, so we
2074 must reject the combination. This case occurs when I2 and I1 both
2075 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2076 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2077 of a SET must prevent combination from occurring. The same situation
2078 can occur for I0, in which case I0_NOT_IN_SRC is set.
2080 Before doing the above check, we first try to expand a field assignment
2081 into a set of logical operations.
2083 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2084 we place a register that is both set and used within I3. If more than one
2085 such register is detected, we fail.
2087 Return 1 if the combination is valid, zero otherwise. */
2090 combinable_i3pat (rtx_insn
*i3
, rtx
*loc
, rtx i2dest
, rtx i1dest
, rtx i0dest
,
2091 int i1_not_in_src
, int i0_not_in_src
, rtx
*pi3dest_killed
)
2095 if (GET_CODE (x
) == SET
)
2098 rtx dest
= SET_DEST (set
);
2099 rtx src
= SET_SRC (set
);
2100 rtx inner_dest
= dest
;
2103 while (GET_CODE (inner_dest
) == STRICT_LOW_PART
2104 || GET_CODE (inner_dest
) == SUBREG
2105 || GET_CODE (inner_dest
) == ZERO_EXTRACT
)
2106 inner_dest
= XEXP (inner_dest
, 0);
2108 /* Check for the case where I3 modifies its output, as discussed
2109 above. We don't want to prevent pseudos from being combined
2110 into the address of a MEM, so only prevent the combination if
2111 i1 or i2 set the same MEM. */
2112 if ((inner_dest
!= dest
&&
2113 (!MEM_P (inner_dest
)
2114 || rtx_equal_p (i2dest
, inner_dest
)
2115 || (i1dest
&& rtx_equal_p (i1dest
, inner_dest
))
2116 || (i0dest
&& rtx_equal_p (i0dest
, inner_dest
)))
2117 && (reg_overlap_mentioned_p (i2dest
, inner_dest
)
2118 || (i1dest
&& reg_overlap_mentioned_p (i1dest
, inner_dest
))
2119 || (i0dest
&& reg_overlap_mentioned_p (i0dest
, inner_dest
))))
2121 /* This is the same test done in can_combine_p except we can't test
2122 all_adjacent; we don't have to, since this instruction will stay
2123 in place, thus we are not considering increasing the lifetime of
2126 Also, if this insn sets a function argument, combining it with
2127 something that might need a spill could clobber a previous
2128 function argument; the all_adjacent test in can_combine_p also
2129 checks this; here, we do a more specific test for this case. */
2131 || (REG_P (inner_dest
)
2132 && REGNO (inner_dest
) < FIRST_PSEUDO_REGISTER
2133 && !targetm
.hard_regno_mode_ok (REGNO (inner_dest
),
2134 GET_MODE (inner_dest
)))
2135 || (i1_not_in_src
&& reg_overlap_mentioned_p (i1dest
, src
))
2136 || (i0_not_in_src
&& reg_overlap_mentioned_p (i0dest
, src
)))
2139 /* If DEST is used in I3, it is being killed in this insn, so
2140 record that for later. We have to consider paradoxical
2141 subregs here, since they kill the whole register, but we
2142 ignore partial subregs, STRICT_LOW_PART, etc.
2143 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2144 STACK_POINTER_REGNUM, since these are always considered to be
2145 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2147 if (GET_CODE (subdest
) == SUBREG
&& !partial_subreg_p (subdest
))
2148 subdest
= SUBREG_REG (subdest
);
2151 && reg_referenced_p (subdest
, PATTERN (i3
))
2152 && REGNO (subdest
) != FRAME_POINTER_REGNUM
2153 && (HARD_FRAME_POINTER_IS_FRAME_POINTER
2154 || REGNO (subdest
) != HARD_FRAME_POINTER_REGNUM
)
2155 && (FRAME_POINTER_REGNUM
== ARG_POINTER_REGNUM
2156 || (REGNO (subdest
) != ARG_POINTER_REGNUM
2157 || ! fixed_regs
[REGNO (subdest
)]))
2158 && REGNO (subdest
) != STACK_POINTER_REGNUM
)
2160 if (*pi3dest_killed
)
2163 *pi3dest_killed
= subdest
;
2167 else if (GET_CODE (x
) == PARALLEL
)
2171 for (i
= 0; i
< XVECLEN (x
, 0); i
++)
2172 if (! combinable_i3pat (i3
, &XVECEXP (x
, 0, i
), i2dest
, i1dest
, i0dest
,
2173 i1_not_in_src
, i0_not_in_src
, pi3dest_killed
))
2180 /* Return 1 if X is an arithmetic expression that contains a multiplication
2181 and division. We don't count multiplications by powers of two here. */
2184 contains_muldiv (rtx x
)
2186 switch (GET_CODE (x
))
2188 case MOD
: case DIV
: case UMOD
: case UDIV
:
2192 return ! (CONST_INT_P (XEXP (x
, 1))
2193 && pow2p_hwi (UINTVAL (XEXP (x
, 1))));
2196 return contains_muldiv (XEXP (x
, 0))
2197 || contains_muldiv (XEXP (x
, 1));
2200 return contains_muldiv (XEXP (x
, 0));
2206 /* Determine whether INSN can be used in a combination. Return nonzero if
2207 not. This is used in try_combine to detect early some cases where we
2208 can't perform combinations. */
2211 cant_combine_insn_p (rtx_insn
*insn
)
2216 /* If this isn't really an insn, we can't do anything.
2217 This can occur when flow deletes an insn that it has merged into an
2218 auto-increment address. */
2219 if (!NONDEBUG_INSN_P (insn
))
2222 /* Never combine loads and stores involving hard regs that are likely
2223 to be spilled. The register allocator can usually handle such
2224 reg-reg moves by tying. If we allow the combiner to make
2225 substitutions of likely-spilled regs, reload might die.
2226 As an exception, we allow combinations involving fixed regs; these are
2227 not available to the register allocator so there's no risk involved. */
2229 set
= single_set (insn
);
2232 src
= SET_SRC (set
);
2233 dest
= SET_DEST (set
);
2234 if (GET_CODE (src
) == SUBREG
)
2235 src
= SUBREG_REG (src
);
2236 if (GET_CODE (dest
) == SUBREG
)
2237 dest
= SUBREG_REG (dest
);
2238 if (REG_P (src
) && REG_P (dest
)
2239 && ((HARD_REGISTER_P (src
)
2240 && ! TEST_HARD_REG_BIT (fixed_reg_set
, REGNO (src
))
2241 #ifdef LEAF_REGISTERS
2242 && ! LEAF_REGISTERS
[REGNO (src
)])
2246 || (HARD_REGISTER_P (dest
)
2247 && ! TEST_HARD_REG_BIT (fixed_reg_set
, REGNO (dest
))
2248 && targetm
.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest
))))))
2254 struct likely_spilled_retval_info
2256 unsigned regno
, nregs
;
2260 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2261 hard registers that are known to be written to / clobbered in full. */
2263 likely_spilled_retval_1 (rtx x
, const_rtx set
, void *data
)
2265 struct likely_spilled_retval_info
*const info
=
2266 (struct likely_spilled_retval_info
*) data
;
2267 unsigned regno
, nregs
;
2270 if (!REG_P (XEXP (set
, 0)))
2273 if (regno
>= info
->regno
+ info
->nregs
)
2275 nregs
= REG_NREGS (x
);
2276 if (regno
+ nregs
<= info
->regno
)
2278 new_mask
= (2U << (nregs
- 1)) - 1;
2279 if (regno
< info
->regno
)
2280 new_mask
>>= info
->regno
- regno
;
2282 new_mask
<<= regno
- info
->regno
;
2283 info
->mask
&= ~new_mask
;
2286 /* Return nonzero iff part of the return value is live during INSN, and
2287 it is likely spilled. This can happen when more than one insn is needed
2288 to copy the return value, e.g. when we consider to combine into the
2289 second copy insn for a complex value. */
2292 likely_spilled_retval_p (rtx_insn
*insn
)
2294 rtx_insn
*use
= BB_END (this_basic_block
);
2297 unsigned regno
, nregs
;
2298 /* We assume here that no machine mode needs more than
2299 32 hard registers when the value overlaps with a register
2300 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2302 struct likely_spilled_retval_info info
;
2304 if (!NONJUMP_INSN_P (use
) || GET_CODE (PATTERN (use
)) != USE
|| insn
== use
)
2306 reg
= XEXP (PATTERN (use
), 0);
2307 if (!REG_P (reg
) || !targetm
.calls
.function_value_regno_p (REGNO (reg
)))
2309 regno
= REGNO (reg
);
2310 nregs
= REG_NREGS (reg
);
2313 mask
= (2U << (nregs
- 1)) - 1;
2315 /* Disregard parts of the return value that are set later. */
2319 for (p
= PREV_INSN (use
); info
.mask
&& p
!= insn
; p
= PREV_INSN (p
))
2321 note_stores (p
, likely_spilled_retval_1
, &info
);
2324 /* Check if any of the (probably) live return value registers is
2329 if ((mask
& 1 << nregs
)
2330 && targetm
.class_likely_spilled_p (REGNO_REG_CLASS (regno
+ nregs
)))
2336 /* Adjust INSN after we made a change to its destination.
2338 Changing the destination can invalidate notes that say something about
2339 the results of the insn and a LOG_LINK pointing to the insn. */
2342 adjust_for_new_dest (rtx_insn
*insn
)
2344 /* For notes, be conservative and simply remove them. */
2345 remove_reg_equal_equiv_notes (insn
, true);
2347 /* The new insn will have a destination that was previously the destination
2348 of an insn just above it. Call distribute_links to make a LOG_LINK from
2349 the next use of that destination. */
2351 rtx set
= single_set (insn
);
2354 rtx reg
= SET_DEST (set
);
2356 while (GET_CODE (reg
) == ZERO_EXTRACT
2357 || GET_CODE (reg
) == STRICT_LOW_PART
2358 || GET_CODE (reg
) == SUBREG
)
2359 reg
= XEXP (reg
, 0);
2360 gcc_assert (REG_P (reg
));
2362 distribute_links (alloc_insn_link (insn
, REGNO (reg
), NULL
));
2364 df_insn_rescan (insn
);
2367 /* Return TRUE if combine can reuse reg X in mode MODE.
2368 ADDED_SETS is nonzero if the original set is still required. */
2370 can_change_dest_mode (rtx x
, int added_sets
, machine_mode mode
)
2377 /* Don't change between modes with different underlying register sizes,
2378 since this could lead to invalid subregs. */
2379 if (maybe_ne (REGMODE_NATURAL_SIZE (mode
),
2380 REGMODE_NATURAL_SIZE (GET_MODE (x
))))
2384 /* Allow hard registers if the new mode is legal, and occupies no more
2385 registers than the old mode. */
2386 if (regno
< FIRST_PSEUDO_REGISTER
)
2387 return (targetm
.hard_regno_mode_ok (regno
, mode
)
2388 && REG_NREGS (x
) >= hard_regno_nregs (regno
, mode
));
2390 /* Or a pseudo that is only used once. */
2391 return (regno
< reg_n_sets_max
2392 && REG_N_SETS (regno
) == 1
2394 && !REG_USERVAR_P (x
));
2398 /* Check whether X, the destination of a set, refers to part of
2399 the register specified by REG. */
2402 reg_subword_p (rtx x
, rtx reg
)
2404 /* Check that reg is an integer mode register. */
2405 if (!REG_P (reg
) || GET_MODE_CLASS (GET_MODE (reg
)) != MODE_INT
)
2408 if (GET_CODE (x
) == STRICT_LOW_PART
2409 || GET_CODE (x
) == ZERO_EXTRACT
)
2412 return GET_CODE (x
) == SUBREG
2413 && !paradoxical_subreg_p (x
)
2414 && SUBREG_REG (x
) == reg
2415 && GET_MODE_CLASS (GET_MODE (x
)) == MODE_INT
;
2418 /* Return whether PAT is a PARALLEL of exactly N register SETs followed
2419 by an arbitrary number of CLOBBERs. */
2421 is_parallel_of_n_reg_sets (rtx pat
, int n
)
2423 if (GET_CODE (pat
) != PARALLEL
)
2426 int len
= XVECLEN (pat
, 0);
2431 for (i
= 0; i
< n
; i
++)
2432 if (GET_CODE (XVECEXP (pat
, 0, i
)) != SET
2433 || !REG_P (SET_DEST (XVECEXP (pat
, 0, i
))))
2435 for ( ; i
< len
; i
++)
2436 switch (GET_CODE (XVECEXP (pat
, 0, i
)))
2439 if (XEXP (XVECEXP (pat
, 0, i
), 0) == const0_rtx
)
2448 /* Return whether INSN, a PARALLEL of N register SETs (and maybe some
2449 CLOBBERs), can be split into individual SETs in that order, without
2450 changing semantics. */
2452 can_split_parallel_of_n_reg_sets (rtx_insn
*insn
, int n
)
2454 if (!insn_nothrow_p (insn
))
2457 rtx pat
= PATTERN (insn
);
2460 for (i
= 0; i
< n
; i
++)
2462 if (side_effects_p (SET_SRC (XVECEXP (pat
, 0, i
))))
2465 rtx reg
= SET_DEST (XVECEXP (pat
, 0, i
));
2467 for (j
= i
+ 1; j
< n
; j
++)
2468 if (reg_referenced_p (reg
, XVECEXP (pat
, 0, j
)))
2475 /* Return whether X is just a single_set, with the source
2476 a general_operand. */
2478 is_just_move (rtx_insn
*x
)
2480 rtx set
= single_set (x
);
2484 return general_operand (SET_SRC (set
), VOIDmode
);
2487 /* Callback function to count autoincs. */
2490 count_auto_inc (rtx
, rtx
, rtx
, rtx
, rtx
, void *arg
)
2497 /* Try to combine the insns I0, I1 and I2 into I3.
2498 Here I0, I1 and I2 appear earlier than I3.
2499 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2502 If we are combining more than two insns and the resulting insn is not
2503 recognized, try splitting it into two insns. If that happens, I2 and I3
2504 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2505 Otherwise, I0, I1 and I2 are pseudo-deleted.
2507 Return 0 if the combination does not work. Then nothing is changed.
2508 If we did the combination, return the insn at which combine should
2511 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2512 new direct jump instruction.
2514 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2515 been I3 passed to an earlier try_combine within the same basic
2519 try_combine (rtx_insn
*i3
, rtx_insn
*i2
, rtx_insn
*i1
, rtx_insn
*i0
,
2520 int *new_direct_jump_p
, rtx_insn
*last_combined_insn
)
2522 /* New patterns for I3 and I2, respectively. */
2523 rtx newpat
, newi2pat
= 0;
2524 rtvec newpat_vec_with_clobbers
= 0;
2525 int substed_i2
= 0, substed_i1
= 0, substed_i0
= 0;
2526 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2528 int added_sets_0
, added_sets_1
, added_sets_2
;
2529 /* Total number of SETs to put into I3. */
2531 /* Nonzero if I2's or I1's body now appears in I3. */
2532 int i2_is_used
= 0, i1_is_used
= 0;
2533 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2534 int insn_code_number
, i2_code_number
= 0, other_code_number
= 0;
2535 /* Contains I3 if the destination of I3 is used in its source, which means
2536 that the old life of I3 is being killed. If that usage is placed into
2537 I2 and not in I3, a REG_DEAD note must be made. */
2538 rtx i3dest_killed
= 0;
2539 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2540 rtx i2dest
= 0, i2src
= 0, i1dest
= 0, i1src
= 0, i0dest
= 0, i0src
= 0;
2541 /* Copy of SET_SRC of I1 and I0, if needed. */
2542 rtx i1src_copy
= 0, i0src_copy
= 0, i0src_copy2
= 0;
2543 /* Set if I2DEST was reused as a scratch register. */
2544 bool i2scratch
= false;
2545 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2546 rtx i0pat
= 0, i1pat
= 0, i2pat
= 0;
2547 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2548 int i2dest_in_i2src
= 0, i1dest_in_i1src
= 0, i2dest_in_i1src
= 0;
2549 int i0dest_in_i0src
= 0, i1dest_in_i0src
= 0, i2dest_in_i0src
= 0;
2550 int i2dest_killed
= 0, i1dest_killed
= 0, i0dest_killed
= 0;
2551 int i1_feeds_i2_n
= 0, i0_feeds_i2_n
= 0, i0_feeds_i1_n
= 0;
2552 /* Notes that must be added to REG_NOTES in I3 and I2. */
2553 rtx new_i3_notes
, new_i2_notes
;
2554 /* Notes that we substituted I3 into I2 instead of the normal case. */
2555 int i3_subst_into_i2
= 0;
2556 /* Notes that I1, I2 or I3 is a MULT operation. */
2560 int changed_i3_dest
= 0;
2561 bool i2_was_move
= false, i3_was_move
= false;
2565 rtx_insn
*temp_insn
;
2567 struct insn_link
*link
;
2569 rtx new_other_notes
;
2571 scalar_int_mode dest_mode
, temp_mode
;
2572 bool has_non_call_exception
= false;
2574 /* Immediately return if any of I0,I1,I2 are the same insn (I3 can
2576 if (i1
== i2
|| i0
== i2
|| (i0
&& i0
== i1
))
2579 /* Only try four-insn combinations when there's high likelihood of
2580 success. Look for simple insns, such as loads of constants or
2581 binary operations involving a constant. */
2589 if (!flag_expensive_optimizations
)
2592 for (i
= 0; i
< 4; i
++)
2594 rtx_insn
*insn
= i
== 0 ? i0
: i
== 1 ? i1
: i
== 2 ? i2
: i3
;
2595 rtx set
= single_set (insn
);
2599 src
= SET_SRC (set
);
2600 if (CONSTANT_P (src
))
2605 else if (BINARY_P (src
) && CONSTANT_P (XEXP (src
, 1)))
2607 else if (GET_CODE (src
) == ASHIFT
|| GET_CODE (src
) == ASHIFTRT
2608 || GET_CODE (src
) == LSHIFTRT
)
2612 /* If I0 loads a memory and I3 sets the same memory, then I1 and I2
2613 are likely manipulating its value. Ideally we'll be able to combine
2614 all four insns into a bitfield insertion of some kind.
2616 Note the source in I0 might be inside a sign/zero extension and the
2617 memory modes in I0 and I3 might be different. So extract the address
2618 from the destination of I3 and search for it in the source of I0.
2620 In the event that there's a match but the source/dest do not actually
2621 refer to the same memory, the worst that happens is we try some
2622 combinations that we wouldn't have otherwise. */
2623 if ((set0
= single_set (i0
))
2624 /* Ensure the source of SET0 is a MEM, possibly buried inside
2626 && (GET_CODE (SET_SRC (set0
)) == MEM
2627 || ((GET_CODE (SET_SRC (set0
)) == ZERO_EXTEND
2628 || GET_CODE (SET_SRC (set0
)) == SIGN_EXTEND
)
2629 && GET_CODE (XEXP (SET_SRC (set0
), 0)) == MEM
))
2630 && (set3
= single_set (i3
))
2631 /* Ensure the destination of SET3 is a MEM. */
2632 && GET_CODE (SET_DEST (set3
)) == MEM
2633 /* Would it be better to extract the base address for the MEM
2634 in SET3 and look for that? I don't have cases where it matters
2635 but I could envision such cases. */
2636 && rtx_referenced_p (XEXP (SET_DEST (set3
), 0), SET_SRC (set0
)))
2639 if (ngood
< 2 && nshift
< 2)
2643 /* Exit early if one of the insns involved can't be used for
2646 || (i1
&& CALL_P (i1
))
2647 || (i0
&& CALL_P (i0
))
2648 || cant_combine_insn_p (i3
)
2649 || cant_combine_insn_p (i2
)
2650 || (i1
&& cant_combine_insn_p (i1
))
2651 || (i0
&& cant_combine_insn_p (i0
))
2652 || likely_spilled_retval_p (i3
))
2656 undobuf
.other_insn
= 0;
2658 /* Reset the hard register usage information. */
2659 CLEAR_HARD_REG_SET (newpat_used_regs
);
2661 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2664 fprintf (dump_file
, "\nTrying %d, %d, %d -> %d:\n",
2665 INSN_UID (i0
), INSN_UID (i1
), INSN_UID (i2
), INSN_UID (i3
));
2667 fprintf (dump_file
, "\nTrying %d, %d -> %d:\n",
2668 INSN_UID (i1
), INSN_UID (i2
), INSN_UID (i3
));
2670 fprintf (dump_file
, "\nTrying %d -> %d:\n",
2671 INSN_UID (i2
), INSN_UID (i3
));
2674 dump_insn_slim (dump_file
, i0
);
2676 dump_insn_slim (dump_file
, i1
);
2677 dump_insn_slim (dump_file
, i2
);
2678 dump_insn_slim (dump_file
, i3
);
2681 /* If multiple insns feed into one of I2 or I3, they can be in any
2682 order. To simplify the code below, reorder them in sequence. */
2683 if (i0
&& DF_INSN_LUID (i0
) > DF_INSN_LUID (i2
))
2685 if (i0
&& DF_INSN_LUID (i0
) > DF_INSN_LUID (i1
))
2687 if (i1
&& DF_INSN_LUID (i1
) > DF_INSN_LUID (i2
))
2690 added_links_insn
= 0;
2691 added_notes_insn
= 0;
2693 /* First check for one important special case that the code below will
2694 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2695 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2696 we may be able to replace that destination with the destination of I3.
2697 This occurs in the common code where we compute both a quotient and
2698 remainder into a structure, in which case we want to do the computation
2699 directly into the structure to avoid register-register copies.
2701 Note that this case handles both multiple sets in I2 and also cases
2702 where I2 has a number of CLOBBERs inside the PARALLEL.
2704 We make very conservative checks below and only try to handle the
2705 most common cases of this. For example, we only handle the case
2706 where I2 and I3 are adjacent to avoid making difficult register
2709 if (i1
== 0 && NONJUMP_INSN_P (i3
) && GET_CODE (PATTERN (i3
)) == SET
2710 && REG_P (SET_SRC (PATTERN (i3
)))
2711 && REGNO (SET_SRC (PATTERN (i3
))) >= FIRST_PSEUDO_REGISTER
2712 && find_reg_note (i3
, REG_DEAD
, SET_SRC (PATTERN (i3
)))
2713 && GET_CODE (PATTERN (i2
)) == PARALLEL
2714 && ! side_effects_p (SET_DEST (PATTERN (i3
)))
2715 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2716 below would need to check what is inside (and reg_overlap_mentioned_p
2717 doesn't support those codes anyway). Don't allow those destinations;
2718 the resulting insn isn't likely to be recognized anyway. */
2719 && GET_CODE (SET_DEST (PATTERN (i3
))) != ZERO_EXTRACT
2720 && GET_CODE (SET_DEST (PATTERN (i3
))) != STRICT_LOW_PART
2721 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3
)),
2722 SET_DEST (PATTERN (i3
)))
2723 && next_active_insn (i2
) == i3
)
2725 rtx p2
= PATTERN (i2
);
2727 /* Make sure that the destination of I3,
2728 which we are going to substitute into one output of I2,
2729 is not used within another output of I2. We must avoid making this:
2730 (parallel [(set (mem (reg 69)) ...)
2731 (set (reg 69) ...)])
2732 which is not well-defined as to order of actions.
2733 (Besides, reload can't handle output reloads for this.)
2735 The problem can also happen if the dest of I3 is a memory ref,
2736 if another dest in I2 is an indirect memory ref.
2738 Neither can this PARALLEL be an asm. We do not allow combining
2739 that usually (see can_combine_p), so do not here either. */
2741 for (i
= 0; ok
&& i
< XVECLEN (p2
, 0); i
++)
2743 if ((GET_CODE (XVECEXP (p2
, 0, i
)) == SET
2744 || GET_CODE (XVECEXP (p2
, 0, i
)) == CLOBBER
)
2745 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3
)),
2746 SET_DEST (XVECEXP (p2
, 0, i
))))
2748 else if (GET_CODE (XVECEXP (p2
, 0, i
)) == SET
2749 && GET_CODE (SET_SRC (XVECEXP (p2
, 0, i
))) == ASM_OPERANDS
)
2754 for (i
= 0; i
< XVECLEN (p2
, 0); i
++)
2755 if (GET_CODE (XVECEXP (p2
, 0, i
)) == SET
2756 && SET_DEST (XVECEXP (p2
, 0, i
)) == SET_SRC (PATTERN (i3
)))
2761 subst_low_luid
= DF_INSN_LUID (i2
);
2763 added_sets_2
= added_sets_1
= added_sets_0
= 0;
2764 i2src
= SET_SRC (XVECEXP (p2
, 0, i
));
2765 i2dest
= SET_DEST (XVECEXP (p2
, 0, i
));
2766 i2dest_killed
= dead_or_set_p (i2
, i2dest
);
2768 /* Replace the dest in I2 with our dest and make the resulting
2769 insn the new pattern for I3. Then skip to where we validate
2770 the pattern. Everything was set up above. */
2771 SUBST (SET_DEST (XVECEXP (p2
, 0, i
)), SET_DEST (PATTERN (i3
)));
2773 i3_subst_into_i2
= 1;
2774 goto validate_replacement
;
2778 /* If I2 is setting a pseudo to a constant and I3 is setting some
2779 sub-part of it to another constant, merge them by making a new
2782 && (temp_expr
= single_set (i2
)) != 0
2783 && is_a
<scalar_int_mode
> (GET_MODE (SET_DEST (temp_expr
)), &temp_mode
)
2784 && CONST_SCALAR_INT_P (SET_SRC (temp_expr
))
2785 && GET_CODE (PATTERN (i3
)) == SET
2786 && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3
)))
2787 && reg_subword_p (SET_DEST (PATTERN (i3
)), SET_DEST (temp_expr
)))
2789 rtx dest
= SET_DEST (PATTERN (i3
));
2790 rtx temp_dest
= SET_DEST (temp_expr
);
2794 if (GET_CODE (dest
) == ZERO_EXTRACT
)
2796 if (CONST_INT_P (XEXP (dest
, 1))
2797 && CONST_INT_P (XEXP (dest
, 2))
2798 && is_a
<scalar_int_mode
> (GET_MODE (XEXP (dest
, 0)),
2801 width
= INTVAL (XEXP (dest
, 1));
2802 offset
= INTVAL (XEXP (dest
, 2));
2803 dest
= XEXP (dest
, 0);
2804 if (BITS_BIG_ENDIAN
)
2805 offset
= GET_MODE_PRECISION (dest_mode
) - width
- offset
;
2810 if (GET_CODE (dest
) == STRICT_LOW_PART
)
2811 dest
= XEXP (dest
, 0);
2812 if (is_a
<scalar_int_mode
> (GET_MODE (dest
), &dest_mode
))
2814 width
= GET_MODE_PRECISION (dest_mode
);
2821 /* If this is the low part, we're done. */
2822 if (subreg_lowpart_p (dest
))
2824 /* Handle the case where inner is twice the size of outer. */
2825 else if (GET_MODE_PRECISION (temp_mode
)
2826 == 2 * GET_MODE_PRECISION (dest_mode
))
2827 offset
+= GET_MODE_PRECISION (dest_mode
);
2828 /* Otherwise give up for now. */
2835 rtx inner
= SET_SRC (PATTERN (i3
));
2836 rtx outer
= SET_SRC (temp_expr
);
2838 wide_int o
= wi::insert (rtx_mode_t (outer
, temp_mode
),
2839 rtx_mode_t (inner
, dest_mode
),
2844 subst_low_luid
= DF_INSN_LUID (i2
);
2845 added_sets_2
= added_sets_1
= added_sets_0
= 0;
2847 i2dest_killed
= dead_or_set_p (i2
, i2dest
);
2849 /* Replace the source in I2 with the new constant and make the
2850 resulting insn the new pattern for I3. Then skip to where we
2851 validate the pattern. Everything was set up above. */
2852 SUBST (SET_SRC (temp_expr
),
2853 immed_wide_int_const (o
, temp_mode
));
2855 newpat
= PATTERN (i2
);
2857 /* The dest of I3 has been replaced with the dest of I2. */
2858 changed_i3_dest
= 1;
2859 goto validate_replacement
;
2863 /* If we have no I1 and I2 looks like:
2864 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2866 make up a dummy I1 that is
2869 (set (reg:CC X) (compare:CC Y (const_int 0)))
2871 (We can ignore any trailing CLOBBERs.)
2873 This undoes a previous combination and allows us to match a branch-and-
2877 && is_parallel_of_n_reg_sets (PATTERN (i2
), 2)
2878 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2
), 0, 0))))
2880 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2
), 0, 0))) == COMPARE
2881 && XEXP (SET_SRC (XVECEXP (PATTERN (i2
), 0, 0)), 1) == const0_rtx
2882 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2
), 0, 0)), 0),
2883 SET_SRC (XVECEXP (PATTERN (i2
), 0, 1)))
2884 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2
), 0, 0)), i2
, i3
)
2885 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2
), 0, 1)), i2
, i3
))
2887 /* We make I1 with the same INSN_UID as I2. This gives it
2888 the same DF_INSN_LUID for value tracking. Our fake I1 will
2889 never appear in the insn stream so giving it the same INSN_UID
2890 as I2 will not cause a problem. */
2892 i1
= gen_rtx_INSN (VOIDmode
, NULL
, i2
, BLOCK_FOR_INSN (i2
),
2893 XVECEXP (PATTERN (i2
), 0, 1), INSN_LOCATION (i2
),
2895 INSN_UID (i1
) = INSN_UID (i2
);
2897 SUBST (PATTERN (i2
), XVECEXP (PATTERN (i2
), 0, 0));
2898 SUBST (XEXP (SET_SRC (PATTERN (i2
)), 0),
2899 SET_DEST (PATTERN (i1
)));
2900 unsigned int regno
= REGNO (SET_DEST (PATTERN (i1
)));
2901 SUBST_LINK (LOG_LINKS (i2
),
2902 alloc_insn_link (i1
, regno
, LOG_LINKS (i2
)));
2905 /* If I2 is a PARALLEL of two SETs of REGs (and perhaps some CLOBBERs),
2906 make those two SETs separate I1 and I2 insns, and make an I0 that is
2909 && is_parallel_of_n_reg_sets (PATTERN (i2
), 2)
2910 && can_split_parallel_of_n_reg_sets (i2
, 2)
2911 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2
), 0, 0)), i2
, i3
)
2912 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2
), 0, 1)), i2
, i3
)
2913 && !reg_set_between_p (SET_DEST (XVECEXP (PATTERN (i2
), 0, 0)), i2
, i3
)
2914 && !reg_set_between_p (SET_DEST (XVECEXP (PATTERN (i2
), 0, 1)), i2
, i3
))
2916 /* If there is no I1, there is no I0 either. */
2919 /* We make I1 with the same INSN_UID as I2. This gives it
2920 the same DF_INSN_LUID for value tracking. Our fake I1 will
2921 never appear in the insn stream so giving it the same INSN_UID
2922 as I2 will not cause a problem. */
2924 i1
= gen_rtx_INSN (VOIDmode
, NULL
, i2
, BLOCK_FOR_INSN (i2
),
2925 XVECEXP (PATTERN (i2
), 0, 0), INSN_LOCATION (i2
),
2927 INSN_UID (i1
) = INSN_UID (i2
);
2929 SUBST (PATTERN (i2
), XVECEXP (PATTERN (i2
), 0, 1));
2932 /* Verify that I2 and maybe I1 and I0 can be combined into I3. */
2933 if (!can_combine_p (i2
, i3
, i0
, i1
, NULL
, NULL
, &i2dest
, &i2src
))
2935 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2936 fprintf (dump_file
, "Can't combine i2 into i3\n");
2940 if (i1
&& !can_combine_p (i1
, i3
, i0
, NULL
, i2
, NULL
, &i1dest
, &i1src
))
2942 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2943 fprintf (dump_file
, "Can't combine i1 into i3\n");
2947 if (i0
&& !can_combine_p (i0
, i3
, NULL
, NULL
, i1
, i2
, &i0dest
, &i0src
))
2949 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2950 fprintf (dump_file
, "Can't combine i0 into i3\n");
2955 /* With non-call exceptions we can end up trying to combine multiple
2956 insns with possible EH side effects. Make sure we can combine
2957 that to a single insn which means there must be at most one insn
2958 in the combination with an EH side effect. */
2959 if (cfun
->can_throw_non_call_exceptions
)
2961 if (find_reg_note (i3
, REG_EH_REGION
, NULL_RTX
)
2962 || find_reg_note (i2
, REG_EH_REGION
, NULL_RTX
)
2963 || (i1
&& find_reg_note (i1
, REG_EH_REGION
, NULL_RTX
))
2964 || (i0
&& find_reg_note (i0
, REG_EH_REGION
, NULL_RTX
)))
2966 has_non_call_exception
= true;
2967 if (insn_could_throw_p (i3
)
2968 + insn_could_throw_p (i2
)
2969 + (i1
? insn_could_throw_p (i1
) : 0)
2970 + (i0
? insn_could_throw_p (i0
) : 0) > 1)
2972 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2973 fprintf (dump_file
, "Can't combine multiple insns with EH "
2981 /* Record whether i2 and i3 are trivial moves. */
2982 i2_was_move
= is_just_move (i2
);
2983 i3_was_move
= is_just_move (i3
);
2985 /* Record whether I2DEST is used in I2SRC and similarly for the other
2986 cases. Knowing this will help in register status updating below. */
2987 i2dest_in_i2src
= reg_overlap_mentioned_p (i2dest
, i2src
);
2988 i1dest_in_i1src
= i1
&& reg_overlap_mentioned_p (i1dest
, i1src
);
2989 i2dest_in_i1src
= i1
&& reg_overlap_mentioned_p (i2dest
, i1src
);
2990 i0dest_in_i0src
= i0
&& reg_overlap_mentioned_p (i0dest
, i0src
);
2991 i1dest_in_i0src
= i0
&& reg_overlap_mentioned_p (i1dest
, i0src
);
2992 i2dest_in_i0src
= i0
&& reg_overlap_mentioned_p (i2dest
, i0src
);
2993 i2dest_killed
= dead_or_set_p (i2
, i2dest
);
2994 i1dest_killed
= i1
&& dead_or_set_p (i1
, i1dest
);
2995 i0dest_killed
= i0
&& dead_or_set_p (i0
, i0dest
);
2997 /* For the earlier insns, determine which of the subsequent ones they
2999 i1_feeds_i2_n
= i1
&& insn_a_feeds_b (i1
, i2
);
3000 i0_feeds_i1_n
= i0
&& insn_a_feeds_b (i0
, i1
);
3001 i0_feeds_i2_n
= (i0
&& (!i0_feeds_i1_n
? insn_a_feeds_b (i0
, i2
)
3002 : (!reg_overlap_mentioned_p (i1dest
, i0dest
)
3003 && reg_overlap_mentioned_p (i0dest
, i2src
))));
3005 /* Ensure that I3's pattern can be the destination of combines. */
3006 if (! combinable_i3pat (i3
, &PATTERN (i3
), i2dest
, i1dest
, i0dest
,
3007 i1
&& i2dest_in_i1src
&& !i1_feeds_i2_n
,
3008 i0
&& ((i2dest_in_i0src
&& !i0_feeds_i2_n
)
3009 || (i1dest_in_i0src
&& !i0_feeds_i1_n
)),
3016 /* See if any of the insns is a MULT operation. Unless one is, we will
3017 reject a combination that is, since it must be slower. Be conservative
3019 if (GET_CODE (i2src
) == MULT
3020 || (i1
!= 0 && GET_CODE (i1src
) == MULT
)
3021 || (i0
!= 0 && GET_CODE (i0src
) == MULT
)
3022 || (GET_CODE (PATTERN (i3
)) == SET
3023 && GET_CODE (SET_SRC (PATTERN (i3
))) == MULT
))
3026 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
3027 We used to do this EXCEPT in one case: I3 has a post-inc in an
3028 output operand. However, that exception can give rise to insns like
3030 which is a famous insn on the PDP-11 where the value of r3 used as the
3031 source was model-dependent. Avoid this sort of thing. */
3034 if (!(GET_CODE (PATTERN (i3
)) == SET
3035 && REG_P (SET_SRC (PATTERN (i3
)))
3036 && MEM_P (SET_DEST (PATTERN (i3
)))
3037 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3
)), 0)) == POST_INC
3038 || GET_CODE (XEXP (SET_DEST (PATTERN (i3
)), 0)) == POST_DEC
)))
3039 /* It's not the exception. */
3044 for (link
= REG_NOTES (i3
); link
; link
= XEXP (link
, 1))
3045 if (REG_NOTE_KIND (link
) == REG_INC
3046 && (reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (i2
))
3048 && reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (i1
)))))
3055 /* See if the SETs in I1 or I2 need to be kept around in the merged
3056 instruction: whenever the value set there is still needed past I3.
3057 For the SET in I2, this is easy: we see if I2DEST dies or is set in I3.
3059 For the SET in I1, we have two cases: if I1 and I2 independently feed
3060 into I3, the set in I1 needs to be kept around unless I1DEST dies
3061 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
3062 in I1 needs to be kept around unless I1DEST dies or is set in either
3063 I2 or I3. The same considerations apply to I0. */
3065 added_sets_2
= !dead_or_set_p (i3
, i2dest
);
3068 added_sets_1
= !(dead_or_set_p (i3
, i1dest
)
3069 || (i1_feeds_i2_n
&& dead_or_set_p (i2
, i1dest
)));
3074 added_sets_0
= !(dead_or_set_p (i3
, i0dest
)
3075 || (i0_feeds_i1_n
&& dead_or_set_p (i1
, i0dest
))
3076 || ((i0_feeds_i2_n
|| (i0_feeds_i1_n
&& i1_feeds_i2_n
))
3077 && dead_or_set_p (i2
, i0dest
)));
3081 /* We are about to copy insns for the case where they need to be kept
3082 around. Check that they can be copied in the merged instruction. */
3084 if (targetm
.cannot_copy_insn_p
3085 && ((added_sets_2
&& targetm
.cannot_copy_insn_p (i2
))
3086 || (i1
&& added_sets_1
&& targetm
.cannot_copy_insn_p (i1
))
3087 || (i0
&& added_sets_0
&& targetm
.cannot_copy_insn_p (i0
))))
3093 /* We cannot safely duplicate volatile references in any case. */
3095 if ((added_sets_2
&& volatile_refs_p (PATTERN (i2
)))
3096 || (added_sets_1
&& volatile_refs_p (PATTERN (i1
)))
3097 || (added_sets_0
&& volatile_refs_p (PATTERN (i0
))))
3103 /* Count how many auto_inc expressions there were in the original insns;
3104 we need to have the same number in the resulting patterns. */
3107 for_each_inc_dec (PATTERN (i0
), count_auto_inc
, &n_auto_inc
);
3109 for_each_inc_dec (PATTERN (i1
), count_auto_inc
, &n_auto_inc
);
3110 for_each_inc_dec (PATTERN (i2
), count_auto_inc
, &n_auto_inc
);
3111 for_each_inc_dec (PATTERN (i3
), count_auto_inc
, &n_auto_inc
);
3113 /* If the set in I2 needs to be kept around, we must make a copy of
3114 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
3115 PATTERN (I2), we are only substituting for the original I1DEST, not into
3116 an already-substituted copy. This also prevents making self-referential
3117 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
3122 if (GET_CODE (PATTERN (i2
)) == PARALLEL
)
3123 i2pat
= gen_rtx_SET (i2dest
, copy_rtx (i2src
));
3125 i2pat
= copy_rtx (PATTERN (i2
));
3130 if (GET_CODE (PATTERN (i1
)) == PARALLEL
)
3131 i1pat
= gen_rtx_SET (i1dest
, copy_rtx (i1src
));
3133 i1pat
= copy_rtx (PATTERN (i1
));
3138 if (GET_CODE (PATTERN (i0
)) == PARALLEL
)
3139 i0pat
= gen_rtx_SET (i0dest
, copy_rtx (i0src
));
3141 i0pat
= copy_rtx (PATTERN (i0
));
3146 /* Substitute in the latest insn for the regs set by the earlier ones. */
3148 maxreg
= max_reg_num ();
3152 /* Many machines have insns that can both perform an
3153 arithmetic operation and set the condition code. These operations will
3154 be represented as a PARALLEL with the first element of the vector
3155 being a COMPARE of an arithmetic operation with the constant zero.
3156 The second element of the vector will set some pseudo to the result
3157 of the same arithmetic operation. If we simplify the COMPARE, we won't
3158 match such a pattern and so will generate an extra insn. Here we test
3159 for this case, where both the comparison and the operation result are
3160 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
3161 I2SRC. Later we will make the PARALLEL that contains I2. */
3163 if (i1
== 0 && added_sets_2
&& GET_CODE (PATTERN (i3
)) == SET
3164 && GET_CODE (SET_SRC (PATTERN (i3
))) == COMPARE
3165 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3
)), 1))
3166 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3
)), 0), i2dest
))
3169 rtx
*cc_use_loc
= NULL
;
3170 rtx_insn
*cc_use_insn
= NULL
;
3171 rtx op0
= i2src
, op1
= XEXP (SET_SRC (PATTERN (i3
)), 1);
3172 machine_mode compare_mode
, orig_compare_mode
;
3173 enum rtx_code compare_code
= UNKNOWN
, orig_compare_code
= UNKNOWN
;
3174 scalar_int_mode mode
;
3176 newpat
= PATTERN (i3
);
3177 newpat_dest
= SET_DEST (newpat
);
3178 compare_mode
= orig_compare_mode
= GET_MODE (newpat_dest
);
3180 if (undobuf
.other_insn
== 0
3181 && (cc_use_loc
= find_single_use (SET_DEST (newpat
), i3
,
3184 compare_code
= orig_compare_code
= GET_CODE (*cc_use_loc
);
3185 if (is_a
<scalar_int_mode
> (GET_MODE (i2dest
), &mode
))
3186 compare_code
= simplify_compare_const (compare_code
, mode
,
3188 target_canonicalize_comparison (&compare_code
, &op0
, &op1
, 1);
3191 /* Do the rest only if op1 is const0_rtx, which may be the
3192 result of simplification. */
3193 if (op1
== const0_rtx
)
3195 /* If a single use of the CC is found, prepare to modify it
3196 when SELECT_CC_MODE returns a new CC-class mode, or when
3197 the above simplify_compare_const() returned a new comparison
3198 operator. undobuf.other_insn is assigned the CC use insn
3199 when modifying it. */
3202 #ifdef SELECT_CC_MODE
3203 machine_mode new_mode
3204 = SELECT_CC_MODE (compare_code
, op0
, op1
);
3205 if (new_mode
!= orig_compare_mode
3206 && can_change_dest_mode (SET_DEST (newpat
),
3207 added_sets_2
, new_mode
))
3209 unsigned int regno
= REGNO (newpat_dest
);
3210 compare_mode
= new_mode
;
3211 if (regno
< FIRST_PSEUDO_REGISTER
)
3212 newpat_dest
= gen_rtx_REG (compare_mode
, regno
);
3215 subst_mode (regno
, compare_mode
);
3216 newpat_dest
= regno_reg_rtx
[regno
];
3220 /* Cases for modifying the CC-using comparison. */
3221 if (compare_code
!= orig_compare_code
3222 /* ??? Do we need to verify the zero rtx? */
3223 && XEXP (*cc_use_loc
, 1) == const0_rtx
)
3225 /* Replace cc_use_loc with entire new RTX. */
3227 gen_rtx_fmt_ee (compare_code
, GET_MODE (*cc_use_loc
),
3228 newpat_dest
, const0_rtx
));
3229 undobuf
.other_insn
= cc_use_insn
;
3231 else if (compare_mode
!= orig_compare_mode
)
3233 /* Just replace the CC reg with a new mode. */
3234 SUBST (XEXP (*cc_use_loc
, 0), newpat_dest
);
3235 undobuf
.other_insn
= cc_use_insn
;
3239 /* Now we modify the current newpat:
3240 First, SET_DEST(newpat) is updated if the CC mode has been
3241 altered. For targets without SELECT_CC_MODE, this should be
3243 if (compare_mode
!= orig_compare_mode
)
3244 SUBST (SET_DEST (newpat
), newpat_dest
);
3245 /* This is always done to propagate i2src into newpat. */
3246 SUBST (SET_SRC (newpat
),
3247 gen_rtx_COMPARE (compare_mode
, op0
, op1
));
3248 /* Create new version of i2pat if needed; the below PARALLEL
3249 creation needs this to work correctly. */
3250 if (! rtx_equal_p (i2src
, op0
))
3251 i2pat
= gen_rtx_SET (i2dest
, op0
);
3256 if (i2_is_used
== 0)
3258 /* It is possible that the source of I2 or I1 may be performing
3259 an unneeded operation, such as a ZERO_EXTEND of something
3260 that is known to have the high part zero. Handle that case
3261 by letting subst look at the inner insns.
3263 Another way to do this would be to have a function that tries
3264 to simplify a single insn instead of merging two or more
3265 insns. We don't do this because of the potential of infinite
3266 loops and because of the potential extra memory required.
3267 However, doing it the way we are is a bit of a kludge and
3268 doesn't catch all cases.
3270 But only do this if -fexpensive-optimizations since it slows
3271 things down and doesn't usually win.
3273 This is not done in the COMPARE case above because the
3274 unmodified I2PAT is used in the PARALLEL and so a pattern
3275 with a modified I2SRC would not match. */
3277 if (flag_expensive_optimizations
)
3279 /* Pass pc_rtx so no substitutions are done, just
3283 subst_low_luid
= DF_INSN_LUID (i1
);
3284 i1src
= subst (i1src
, pc_rtx
, pc_rtx
, 0, 0, 0);
3287 subst_low_luid
= DF_INSN_LUID (i2
);
3288 i2src
= subst (i2src
, pc_rtx
, pc_rtx
, 0, 0, 0);
3291 n_occurrences
= 0; /* `subst' counts here */
3292 subst_low_luid
= DF_INSN_LUID (i2
);
3294 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3295 copy of I2SRC each time we substitute it, in order to avoid creating
3296 self-referential RTL when we will be substituting I1SRC for I1DEST
3297 later. Likewise if I0 feeds into I2, either directly or indirectly
3298 through I1, and I0DEST is in I0SRC. */
3299 newpat
= subst (PATTERN (i3
), i2dest
, i2src
, 0, 0,
3300 (i1_feeds_i2_n
&& i1dest_in_i1src
)
3301 || ((i0_feeds_i2_n
|| (i0_feeds_i1_n
&& i1_feeds_i2_n
))
3302 && i0dest_in_i0src
));
3305 /* Record whether I2's body now appears within I3's body. */
3306 i2_is_used
= n_occurrences
;
3309 /* If we already got a failure, don't try to do more. Otherwise, try to
3310 substitute I1 if we have it. */
3312 if (i1
&& GET_CODE (newpat
) != CLOBBER
)
3314 /* Before we can do this substitution, we must redo the test done
3315 above (see detailed comments there) that ensures I1DEST isn't
3316 mentioned in any SETs in NEWPAT that are field assignments. */
3317 if (!combinable_i3pat (NULL
, &newpat
, i1dest
, NULL_RTX
, NULL_RTX
,
3325 subst_low_luid
= DF_INSN_LUID (i1
);
3327 /* If the following substitution will modify I1SRC, make a copy of it
3328 for the case where it is substituted for I1DEST in I2PAT later. */
3329 if (added_sets_2
&& i1_feeds_i2_n
)
3330 i1src_copy
= copy_rtx (i1src
);
3332 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3333 copy of I1SRC each time we substitute it, in order to avoid creating
3334 self-referential RTL when we will be substituting I0SRC for I0DEST
3336 newpat
= subst (newpat
, i1dest
, i1src
, 0, 0,
3337 i0_feeds_i1_n
&& i0dest_in_i0src
);
3340 /* Record whether I1's body now appears within I3's body. */
3341 i1_is_used
= n_occurrences
;
3344 /* Likewise for I0 if we have it. */
3346 if (i0
&& GET_CODE (newpat
) != CLOBBER
)
3348 if (!combinable_i3pat (NULL
, &newpat
, i0dest
, NULL_RTX
, NULL_RTX
,
3355 /* If the following substitution will modify I0SRC, make a copy of it
3356 for the case where it is substituted for I0DEST in I1PAT later. */
3357 if (added_sets_1
&& i0_feeds_i1_n
)
3358 i0src_copy
= copy_rtx (i0src
);
3359 /* And a copy for I0DEST in I2PAT substitution. */
3360 if (added_sets_2
&& ((i0_feeds_i1_n
&& i1_feeds_i2_n
)
3361 || (i0_feeds_i2_n
)))
3362 i0src_copy2
= copy_rtx (i0src
);
3365 subst_low_luid
= DF_INSN_LUID (i0
);
3366 newpat
= subst (newpat
, i0dest
, i0src
, 0, 0, 0);
3372 int new_n_auto_inc
= 0;
3373 for_each_inc_dec (newpat
, count_auto_inc
, &new_n_auto_inc
);
3375 if (n_auto_inc
!= new_n_auto_inc
)
3377 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3378 fprintf (dump_file
, "Number of auto_inc expressions changed\n");
3384 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3385 to count all the ways that I2SRC and I1SRC can be used. */
3386 if ((FIND_REG_INC_NOTE (i2
, NULL_RTX
) != 0
3387 && i2_is_used
+ added_sets_2
> 1)
3388 || (i1
!= 0 && FIND_REG_INC_NOTE (i1
, NULL_RTX
) != 0
3389 && (i1_is_used
+ added_sets_1
+ (added_sets_2
&& i1_feeds_i2_n
)
3391 || (i0
!= 0 && FIND_REG_INC_NOTE (i0
, NULL_RTX
) != 0
3392 && (n_occurrences
+ added_sets_0
3393 + (added_sets_1
&& i0_feeds_i1_n
)
3394 + (added_sets_2
&& i0_feeds_i2_n
)
3396 /* Fail if we tried to make a new register. */
3397 || max_reg_num () != maxreg
3398 /* Fail if we couldn't do something and have a CLOBBER. */
3399 || GET_CODE (newpat
) == CLOBBER
3400 /* Fail if this new pattern is a MULT and we didn't have one before
3401 at the outer level. */
3402 || (GET_CODE (newpat
) == SET
&& GET_CODE (SET_SRC (newpat
)) == MULT
3409 /* If the actions of the earlier insns must be kept
3410 in addition to substituting them into the latest one,
3411 we must make a new PARALLEL for the latest insn
3412 to hold additional the SETs. */
3414 if (added_sets_0
|| added_sets_1
|| added_sets_2
)
3416 int extra_sets
= added_sets_0
+ added_sets_1
+ added_sets_2
;
3419 if (GET_CODE (newpat
) == PARALLEL
)
3421 rtvec old
= XVEC (newpat
, 0);
3422 total_sets
= XVECLEN (newpat
, 0) + extra_sets
;
3423 newpat
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (total_sets
));
3424 memcpy (XVEC (newpat
, 0)->elem
, &old
->elem
[0],
3425 sizeof (old
->elem
[0]) * old
->num_elem
);
3430 total_sets
= 1 + extra_sets
;
3431 newpat
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (total_sets
));
3432 XVECEXP (newpat
, 0, 0) = old
;
3436 XVECEXP (newpat
, 0, --total_sets
) = i0pat
;
3442 t
= subst (t
, i0dest
, i0src_copy
? i0src_copy
: i0src
, 0, 0, 0);
3444 XVECEXP (newpat
, 0, --total_sets
) = t
;
3450 t
= subst (t
, i1dest
, i1src_copy
? i1src_copy
: i1src
, 0, 0,
3451 i0_feeds_i1_n
&& i0dest_in_i0src
);
3452 if ((i0_feeds_i1_n
&& i1_feeds_i2_n
) || i0_feeds_i2_n
)
3453 t
= subst (t
, i0dest
, i0src_copy2
? i0src_copy2
: i0src
, 0, 0, 0);
3455 XVECEXP (newpat
, 0, --total_sets
) = t
;
3459 validate_replacement
:
3461 /* Note which hard regs this insn has as inputs. */
3462 mark_used_regs_combine (newpat
);
3464 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3465 consider splitting this pattern, we might need these clobbers. */
3466 if (i1
&& GET_CODE (newpat
) == PARALLEL
3467 && GET_CODE (XVECEXP (newpat
, 0, XVECLEN (newpat
, 0) - 1)) == CLOBBER
)
3469 int len
= XVECLEN (newpat
, 0);
3471 newpat_vec_with_clobbers
= rtvec_alloc (len
);
3472 for (i
= 0; i
< len
; i
++)
3473 RTVEC_ELT (newpat_vec_with_clobbers
, i
) = XVECEXP (newpat
, 0, i
);
3476 /* We have recognized nothing yet. */
3477 insn_code_number
= -1;
3479 /* See if this is a PARALLEL of two SETs where one SET's destination is
3480 a register that is unused and this isn't marked as an instruction that
3481 might trap in an EH region. In that case, we just need the other SET.
3482 We prefer this over the PARALLEL.
3484 This can occur when simplifying a divmod insn. We *must* test for this
3485 case here because the code below that splits two independent SETs doesn't
3486 handle this case correctly when it updates the register status.
3488 It's pointless doing this if we originally had two sets, one from
3489 i3, and one from i2. Combining then splitting the parallel results
3490 in the original i2 again plus an invalid insn (which we delete).
3491 The net effect is only to move instructions around, which makes
3492 debug info less accurate.
3494 If the remaining SET came from I2 its destination should not be used
3495 between I2 and I3. See PR82024. */
3497 if (!(added_sets_2
&& i1
== 0)
3498 && is_parallel_of_n_reg_sets (newpat
, 2)
3499 && asm_noperands (newpat
) < 0)
3501 rtx set0
= XVECEXP (newpat
, 0, 0);
3502 rtx set1
= XVECEXP (newpat
, 0, 1);
3503 rtx oldpat
= newpat
;
3505 if (((REG_P (SET_DEST (set1
))
3506 && find_reg_note (i3
, REG_UNUSED
, SET_DEST (set1
)))
3507 || (GET_CODE (SET_DEST (set1
)) == SUBREG
3508 && find_reg_note (i3
, REG_UNUSED
, SUBREG_REG (SET_DEST (set1
)))))
3509 && insn_nothrow_p (i3
)
3510 && !side_effects_p (SET_SRC (set1
)))
3513 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
3516 else if (((REG_P (SET_DEST (set0
))
3517 && find_reg_note (i3
, REG_UNUSED
, SET_DEST (set0
)))
3518 || (GET_CODE (SET_DEST (set0
)) == SUBREG
3519 && find_reg_note (i3
, REG_UNUSED
,
3520 SUBREG_REG (SET_DEST (set0
)))))
3521 && insn_nothrow_p (i3
)
3522 && !side_effects_p (SET_SRC (set0
)))
3524 rtx dest
= SET_DEST (set1
);
3525 if (GET_CODE (dest
) == SUBREG
)
3526 dest
= SUBREG_REG (dest
);
3527 if (!reg_used_between_p (dest
, i2
, i3
))
3530 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
3532 if (insn_code_number
>= 0)
3533 changed_i3_dest
= 1;
3537 if (insn_code_number
< 0)
3541 /* Is the result of combination a valid instruction? */
3542 if (insn_code_number
< 0)
3543 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
3545 /* If we were combining three insns and the result is a simple SET
3546 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3547 insns. There are two ways to do this. It can be split using a
3548 machine-specific method (like when you have an addition of a large
3549 constant) or by combine in the function find_split_point. */
3551 if (i1
&& insn_code_number
< 0 && GET_CODE (newpat
) == SET
3552 && asm_noperands (newpat
) < 0)
3554 rtx parallel
, *split
;
3555 rtx_insn
*m_split_insn
;
3557 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3558 use I2DEST as a scratch register will help. In the latter case,
3559 convert I2DEST to the mode of the source of NEWPAT if we can. */
3561 m_split_insn
= combine_split_insns (newpat
, i3
);
3563 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3564 inputs of NEWPAT. */
3566 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3567 possible to try that as a scratch reg. This would require adding
3568 more code to make it work though. */
3570 if (m_split_insn
== 0 && ! reg_overlap_mentioned_p (i2dest
, newpat
))
3572 machine_mode new_mode
= GET_MODE (SET_DEST (newpat
));
3574 /* ??? Reusing i2dest without resetting the reg_stat entry for it
3575 (temporarily, until we are committed to this instruction
3576 combination) does not work: for example, any call to nonzero_bits
3577 on the register (from a splitter in the MD file, for example)
3578 will get the old information, which is invalid.
3580 Since nowadays we can create registers during combine just fine,
3581 we should just create a new one here, not reuse i2dest. */
3583 /* First try to split using the original register as a
3584 scratch register. */
3585 parallel
= gen_rtx_PARALLEL (VOIDmode
,
3586 gen_rtvec (2, newpat
,
3587 gen_rtx_CLOBBER (VOIDmode
,
3589 m_split_insn
= combine_split_insns (parallel
, i3
);
3591 /* If that didn't work, try changing the mode of I2DEST if
3593 if (m_split_insn
== 0
3594 && new_mode
!= GET_MODE (i2dest
)
3595 && new_mode
!= VOIDmode
3596 && can_change_dest_mode (i2dest
, added_sets_2
, new_mode
))
3598 machine_mode old_mode
= GET_MODE (i2dest
);
3601 if (REGNO (i2dest
) < FIRST_PSEUDO_REGISTER
)
3602 ni2dest
= gen_rtx_REG (new_mode
, REGNO (i2dest
));
3605 subst_mode (REGNO (i2dest
), new_mode
);
3606 ni2dest
= regno_reg_rtx
[REGNO (i2dest
)];
3609 parallel
= (gen_rtx_PARALLEL
3611 gen_rtvec (2, newpat
,
3612 gen_rtx_CLOBBER (VOIDmode
,
3614 m_split_insn
= combine_split_insns (parallel
, i3
);
3616 if (m_split_insn
== 0
3617 && REGNO (i2dest
) >= FIRST_PSEUDO_REGISTER
)
3621 adjust_reg_mode (regno_reg_rtx
[REGNO (i2dest
)], old_mode
);
3622 buf
= undobuf
.undos
;
3623 undobuf
.undos
= buf
->next
;
3624 buf
->next
= undobuf
.frees
;
3625 undobuf
.frees
= buf
;
3629 i2scratch
= m_split_insn
!= 0;
3632 /* If recog_for_combine has discarded clobbers, try to use them
3633 again for the split. */
3634 if (m_split_insn
== 0 && newpat_vec_with_clobbers
)
3636 parallel
= gen_rtx_PARALLEL (VOIDmode
, newpat_vec_with_clobbers
);
3637 m_split_insn
= combine_split_insns (parallel
, i3
);
3640 if (m_split_insn
&& NEXT_INSN (m_split_insn
) == NULL_RTX
)
3642 rtx m_split_pat
= PATTERN (m_split_insn
);
3643 insn_code_number
= recog_for_combine (&m_split_pat
, i3
, &new_i3_notes
);
3644 if (insn_code_number
>= 0)
3645 newpat
= m_split_pat
;
3647 else if (m_split_insn
&& NEXT_INSN (NEXT_INSN (m_split_insn
)) == NULL_RTX
3648 && (next_nonnote_nondebug_insn (i2
) == i3
3649 || !modified_between_p (PATTERN (m_split_insn
), i2
, i3
)))
3652 rtx newi3pat
= PATTERN (NEXT_INSN (m_split_insn
));
3653 newi2pat
= PATTERN (m_split_insn
);
3655 i3set
= single_set (NEXT_INSN (m_split_insn
));
3656 i2set
= single_set (m_split_insn
);
3658 i2_code_number
= recog_for_combine (&newi2pat
, i2
, &new_i2_notes
);
3660 /* If I2 or I3 has multiple SETs, we won't know how to track
3661 register status, so don't use these insns. If I2's destination
3662 is used between I2 and I3, we also can't use these insns. */
3664 if (i2_code_number
>= 0 && i2set
&& i3set
3665 && (next_nonnote_nondebug_insn (i2
) == i3
3666 || ! reg_used_between_p (SET_DEST (i2set
), i2
, i3
)))
3667 insn_code_number
= recog_for_combine (&newi3pat
, i3
,
3669 if (insn_code_number
>= 0)
3672 /* It is possible that both insns now set the destination of I3.
3673 If so, we must show an extra use of it. */
3675 if (insn_code_number
>= 0)
3677 rtx new_i3_dest
= SET_DEST (i3set
);
3678 rtx new_i2_dest
= SET_DEST (i2set
);
3680 while (GET_CODE (new_i3_dest
) == ZERO_EXTRACT
3681 || GET_CODE (new_i3_dest
) == STRICT_LOW_PART
3682 || GET_CODE (new_i3_dest
) == SUBREG
)
3683 new_i3_dest
= XEXP (new_i3_dest
, 0);
3685 while (GET_CODE (new_i2_dest
) == ZERO_EXTRACT
3686 || GET_CODE (new_i2_dest
) == STRICT_LOW_PART
3687 || GET_CODE (new_i2_dest
) == SUBREG
)
3688 new_i2_dest
= XEXP (new_i2_dest
, 0);
3690 if (REG_P (new_i3_dest
)
3691 && REG_P (new_i2_dest
)
3692 && REGNO (new_i3_dest
) == REGNO (new_i2_dest
)
3693 && REGNO (new_i2_dest
) < reg_n_sets_max
)
3694 INC_REG_N_SETS (REGNO (new_i2_dest
), 1);
3698 /* If we can split it and use I2DEST, go ahead and see if that
3699 helps things be recognized. Verify that none of the registers
3700 are set between I2 and I3. */
3701 if (insn_code_number
< 0
3702 && (split
= find_split_point (&newpat
, i3
, false)) != 0
3703 /* We need I2DEST in the proper mode. If it is a hard register
3704 or the only use of a pseudo, we can change its mode.
3705 Make sure we don't change a hard register to have a mode that
3706 isn't valid for it, or change the number of registers. */
3707 && (GET_MODE (*split
) == GET_MODE (i2dest
)
3708 || GET_MODE (*split
) == VOIDmode
3709 || can_change_dest_mode (i2dest
, added_sets_2
,
3711 && (next_nonnote_nondebug_insn (i2
) == i3
3712 || !modified_between_p (*split
, i2
, i3
))
3713 /* We can't overwrite I2DEST if its value is still used by
3715 && ! reg_referenced_p (i2dest
, newpat
)
3716 /* We should not split a possibly trapping part when we
3717 care about non-call EH and have REG_EH_REGION notes
3719 && ! (cfun
->can_throw_non_call_exceptions
3720 && has_non_call_exception
3721 && may_trap_p (*split
)))
3723 rtx newdest
= i2dest
;
3724 enum rtx_code split_code
= GET_CODE (*split
);
3725 machine_mode split_mode
= GET_MODE (*split
);
3726 bool subst_done
= false;
3727 newi2pat
= NULL_RTX
;
3731 /* *SPLIT may be part of I2SRC, so make sure we have the
3732 original expression around for later debug processing.
3733 We should not need I2SRC any more in other cases. */
3734 if (MAY_HAVE_DEBUG_BIND_INSNS
)
3735 i2src
= copy_rtx (i2src
);
3739 /* Get NEWDEST as a register in the proper mode. We have already
3740 validated that we can do this. */
3741 if (GET_MODE (i2dest
) != split_mode
&& split_mode
!= VOIDmode
)
3743 if (REGNO (i2dest
) < FIRST_PSEUDO_REGISTER
)
3744 newdest
= gen_rtx_REG (split_mode
, REGNO (i2dest
));
3747 subst_mode (REGNO (i2dest
), split_mode
);
3748 newdest
= regno_reg_rtx
[REGNO (i2dest
)];
3752 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3753 an ASHIFT. This can occur if it was inside a PLUS and hence
3754 appeared to be a memory address. This is a kludge. */
3755 if (split_code
== MULT
3756 && CONST_INT_P (XEXP (*split
, 1))
3757 && INTVAL (XEXP (*split
, 1)) > 0
3758 && (i
= exact_log2 (UINTVAL (XEXP (*split
, 1)))) >= 0)
3760 rtx i_rtx
= gen_int_shift_amount (split_mode
, i
);
3761 SUBST (*split
, gen_rtx_ASHIFT (split_mode
,
3762 XEXP (*split
, 0), i_rtx
));
3763 /* Update split_code because we may not have a multiply
3765 split_code
= GET_CODE (*split
);
3768 /* Similarly for (plus (mult FOO (const_int pow2))). */
3769 if (split_code
== PLUS
3770 && GET_CODE (XEXP (*split
, 0)) == MULT
3771 && CONST_INT_P (XEXP (XEXP (*split
, 0), 1))
3772 && INTVAL (XEXP (XEXP (*split
, 0), 1)) > 0
3773 && (i
= exact_log2 (UINTVAL (XEXP (XEXP (*split
, 0), 1)))) >= 0)
3775 rtx nsplit
= XEXP (*split
, 0);
3776 rtx i_rtx
= gen_int_shift_amount (GET_MODE (nsplit
), i
);
3777 SUBST (XEXP (*split
, 0), gen_rtx_ASHIFT (GET_MODE (nsplit
),
3780 /* Update split_code because we may not have a multiply
3782 split_code
= GET_CODE (*split
);
3785 #ifdef INSN_SCHEDULING
3786 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3787 be written as a ZERO_EXTEND. */
3788 if (split_code
== SUBREG
&& MEM_P (SUBREG_REG (*split
)))
3790 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3791 what it really is. */
3792 if (load_extend_op (GET_MODE (SUBREG_REG (*split
)))
3794 SUBST (*split
, gen_rtx_SIGN_EXTEND (split_mode
,
3795 SUBREG_REG (*split
)));
3797 SUBST (*split
, gen_rtx_ZERO_EXTEND (split_mode
,
3798 SUBREG_REG (*split
)));
3802 /* Attempt to split binary operators using arithmetic identities. */
3803 if (BINARY_P (SET_SRC (newpat
))
3804 && split_mode
== GET_MODE (SET_SRC (newpat
))
3805 && ! side_effects_p (SET_SRC (newpat
)))
3807 rtx setsrc
= SET_SRC (newpat
);
3808 machine_mode mode
= GET_MODE (setsrc
);
3809 enum rtx_code code
= GET_CODE (setsrc
);
3810 rtx src_op0
= XEXP (setsrc
, 0);
3811 rtx src_op1
= XEXP (setsrc
, 1);
3813 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3814 if (rtx_equal_p (src_op0
, src_op1
))
3816 newi2pat
= gen_rtx_SET (newdest
, src_op0
);
3817 SUBST (XEXP (setsrc
, 0), newdest
);
3818 SUBST (XEXP (setsrc
, 1), newdest
);
3821 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3822 else if ((code
== PLUS
|| code
== MULT
)
3823 && GET_CODE (src_op0
) == code
3824 && GET_CODE (XEXP (src_op0
, 0)) == code
3825 && (INTEGRAL_MODE_P (mode
)
3826 || (FLOAT_MODE_P (mode
)
3827 && flag_unsafe_math_optimizations
)))
3829 rtx p
= XEXP (XEXP (src_op0
, 0), 0);
3830 rtx q
= XEXP (XEXP (src_op0
, 0), 1);
3831 rtx r
= XEXP (src_op0
, 1);
3834 /* Split both "((X op Y) op X) op Y" and
3835 "((X op Y) op Y) op X" as "T op T" where T is
3837 if ((rtx_equal_p (p
,r
) && rtx_equal_p (q
,s
))
3838 || (rtx_equal_p (p
,s
) && rtx_equal_p (q
,r
)))
3840 newi2pat
= gen_rtx_SET (newdest
, XEXP (src_op0
, 0));
3841 SUBST (XEXP (setsrc
, 0), newdest
);
3842 SUBST (XEXP (setsrc
, 1), newdest
);
3845 /* Split "((X op X) op Y) op Y)" as "T op T" where
3847 else if (rtx_equal_p (p
,q
) && rtx_equal_p (r
,s
))
3849 rtx tmp
= simplify_gen_binary (code
, mode
, p
, r
);
3850 newi2pat
= gen_rtx_SET (newdest
, tmp
);
3851 SUBST (XEXP (setsrc
, 0), newdest
);
3852 SUBST (XEXP (setsrc
, 1), newdest
);
3860 newi2pat
= gen_rtx_SET (newdest
, *split
);
3861 SUBST (*split
, newdest
);
3864 i2_code_number
= recog_for_combine (&newi2pat
, i2
, &new_i2_notes
);
3866 /* recog_for_combine might have added CLOBBERs to newi2pat.
3867 Make sure NEWPAT does not depend on the clobbered regs. */
3868 if (GET_CODE (newi2pat
) == PARALLEL
)
3869 for (i
= XVECLEN (newi2pat
, 0) - 1; i
>= 0; i
--)
3870 if (GET_CODE (XVECEXP (newi2pat
, 0, i
)) == CLOBBER
)
3872 rtx reg
= XEXP (XVECEXP (newi2pat
, 0, i
), 0);
3873 if (reg_overlap_mentioned_p (reg
, newpat
))
3880 /* If the split point was a MULT and we didn't have one before,
3881 don't use one now. */
3882 if (i2_code_number
>= 0 && ! (split_code
== MULT
&& ! have_mult
))
3883 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
3887 /* Check for a case where we loaded from memory in a narrow mode and
3888 then sign extended it, but we need both registers. In that case,
3889 we have a PARALLEL with both loads from the same memory location.
3890 We can split this into a load from memory followed by a register-register
3891 copy. This saves at least one insn, more if register allocation can
3894 We cannot do this if the destination of the first assignment is a
3895 condition code register. We eliminate this case by making sure
3896 the SET_DEST and SET_SRC have the same mode.
3898 We cannot do this if the destination of the second assignment is
3899 a register that we have already assumed is zero-extended. Similarly
3900 for a SUBREG of such a register. */
3902 else if (i1
&& insn_code_number
< 0 && asm_noperands (newpat
) < 0
3903 && GET_CODE (newpat
) == PARALLEL
3904 && XVECLEN (newpat
, 0) == 2
3905 && GET_CODE (XVECEXP (newpat
, 0, 0)) == SET
3906 && GET_CODE (SET_SRC (XVECEXP (newpat
, 0, 0))) == SIGN_EXTEND
3907 && (GET_MODE (SET_DEST (XVECEXP (newpat
, 0, 0)))
3908 == GET_MODE (SET_SRC (XVECEXP (newpat
, 0, 0))))
3909 && GET_CODE (XVECEXP (newpat
, 0, 1)) == SET
3910 && rtx_equal_p (SET_SRC (XVECEXP (newpat
, 0, 1)),
3911 XEXP (SET_SRC (XVECEXP (newpat
, 0, 0)), 0))
3912 && !modified_between_p (SET_SRC (XVECEXP (newpat
, 0, 1)), i2
, i3
)
3913 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != ZERO_EXTRACT
3914 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != STRICT_LOW_PART
3915 && ! (temp_expr
= SET_DEST (XVECEXP (newpat
, 0, 1)),
3917 && reg_stat
[REGNO (temp_expr
)].nonzero_bits
!= 0
3918 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr
)),
3920 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr
)),
3922 && (reg_stat
[REGNO (temp_expr
)].nonzero_bits
3923 != GET_MODE_MASK (word_mode
))))
3924 && ! (GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) == SUBREG
3925 && (temp_expr
= SUBREG_REG (SET_DEST (XVECEXP (newpat
, 0, 1))),
3927 && reg_stat
[REGNO (temp_expr
)].nonzero_bits
!= 0
3928 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr
)),
3930 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr
)),
3932 && (reg_stat
[REGNO (temp_expr
)].nonzero_bits
3933 != GET_MODE_MASK (word_mode
)))))
3934 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat
, 0, 1)),
3935 SET_SRC (XVECEXP (newpat
, 0, 1)))
3936 && ! find_reg_note (i3
, REG_UNUSED
,
3937 SET_DEST (XVECEXP (newpat
, 0, 0))))
3941 newi2pat
= XVECEXP (newpat
, 0, 0);
3942 ni2dest
= SET_DEST (XVECEXP (newpat
, 0, 0));
3943 newpat
= XVECEXP (newpat
, 0, 1);
3944 SUBST (SET_SRC (newpat
),
3945 gen_lowpart (GET_MODE (SET_SRC (newpat
)), ni2dest
));
3946 i2_code_number
= recog_for_combine (&newi2pat
, i2
, &new_i2_notes
);
3948 if (i2_code_number
>= 0)
3949 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
3951 if (insn_code_number
>= 0)
3955 /* Similarly, check for a case where we have a PARALLEL of two independent
3956 SETs but we started with three insns. In this case, we can do the sets
3957 as two separate insns. This case occurs when some SET allows two
3958 other insns to combine, but the destination of that SET is still live.
3960 Also do this if we started with two insns and (at least) one of the
3961 resulting sets is a noop; this noop will be deleted later.
3963 Also do this if we started with two insns neither of which was a simple
3966 else if (insn_code_number
< 0 && asm_noperands (newpat
) < 0
3967 && GET_CODE (newpat
) == PARALLEL
3968 && XVECLEN (newpat
, 0) == 2
3969 && GET_CODE (XVECEXP (newpat
, 0, 0)) == SET
3970 && GET_CODE (XVECEXP (newpat
, 0, 1)) == SET
3972 || set_noop_p (XVECEXP (newpat
, 0, 0))
3973 || set_noop_p (XVECEXP (newpat
, 0, 1))
3974 || (!i2_was_move
&& !i3_was_move
))
3975 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 0))) != ZERO_EXTRACT
3976 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 0))) != STRICT_LOW_PART
3977 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != ZERO_EXTRACT
3978 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != STRICT_LOW_PART
3979 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat
, 0, 1)),
3980 XVECEXP (newpat
, 0, 0))
3981 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat
, 0, 0)),
3982 XVECEXP (newpat
, 0, 1))
3983 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat
, 0, 0)))
3984 && contains_muldiv (SET_SRC (XVECEXP (newpat
, 0, 1)))))
3986 rtx set0
= XVECEXP (newpat
, 0, 0);
3987 rtx set1
= XVECEXP (newpat
, 0, 1);
3989 /* Normally, it doesn't matter which of the two is done first, but
3990 one which uses any regs/memory set in between i2 and i3 can't
3991 be first. The PARALLEL might also have been pre-existing in i3,
3992 so we need to make sure that we won't wrongly hoist a SET to i2
3993 that would conflict with a death note present in there, or would
3994 have its dest modified between i2 and i3. */
3995 if (!modified_between_p (SET_SRC (set1
), i2
, i3
)
3996 && !(REG_P (SET_DEST (set1
))
3997 && find_reg_note (i2
, REG_DEAD
, SET_DEST (set1
)))
3998 && !(GET_CODE (SET_DEST (set1
)) == SUBREG
3999 && find_reg_note (i2
, REG_DEAD
,
4000 SUBREG_REG (SET_DEST (set1
))))
4001 && !modified_between_p (SET_DEST (set1
), i2
, i3
)
4002 /* If I3 is a jump, ensure that set0 is a jump so that
4003 we do not create invalid RTL. */
4004 && (!JUMP_P (i3
) || SET_DEST (set0
) == pc_rtx
)
4010 else if (!modified_between_p (SET_SRC (set0
), i2
, i3
)
4011 && !(REG_P (SET_DEST (set0
))
4012 && find_reg_note (i2
, REG_DEAD
, SET_DEST (set0
)))
4013 && !(GET_CODE (SET_DEST (set0
)) == SUBREG
4014 && find_reg_note (i2
, REG_DEAD
,
4015 SUBREG_REG (SET_DEST (set0
))))
4016 && !modified_between_p (SET_DEST (set0
), i2
, i3
)
4017 /* If I3 is a jump, ensure that set1 is a jump so that
4018 we do not create invalid RTL. */
4019 && (!JUMP_P (i3
) || SET_DEST (set1
) == pc_rtx
)
4031 i2_code_number
= recog_for_combine (&newi2pat
, i2
, &new_i2_notes
);
4033 if (i2_code_number
>= 0)
4035 /* recog_for_combine might have added CLOBBERs to newi2pat.
4036 Make sure NEWPAT does not depend on the clobbered regs. */
4037 if (GET_CODE (newi2pat
) == PARALLEL
)
4039 for (i
= XVECLEN (newi2pat
, 0) - 1; i
>= 0; i
--)
4040 if (GET_CODE (XVECEXP (newi2pat
, 0, i
)) == CLOBBER
)
4042 rtx reg
= XEXP (XVECEXP (newi2pat
, 0, i
), 0);
4043 if (reg_overlap_mentioned_p (reg
, newpat
))
4051 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
4053 /* Likewise, recog_for_combine might have added clobbers to NEWPAT.
4054 Checking that the SET0's SET_DEST and SET1's SET_DEST aren't
4055 mentioned/clobbered, ensures NEWI2PAT's SET_DEST is live. */
4056 if (insn_code_number
>= 0 && GET_CODE (newpat
) == PARALLEL
)
4058 for (i
= XVECLEN (newpat
, 0) - 1; i
>= 0; i
--)
4059 if (GET_CODE (XVECEXP (newpat
, 0, i
)) == CLOBBER
)
4061 rtx reg
= XEXP (XVECEXP (newpat
, 0, i
), 0);
4062 if (reg_overlap_mentioned_p (reg
, SET_DEST (set0
))
4063 || reg_overlap_mentioned_p (reg
, SET_DEST (set1
)))
4071 if (insn_code_number
>= 0)
4076 /* If it still isn't recognized, fail and change things back the way they
4078 if ((insn_code_number
< 0
4079 /* Is the result a reasonable ASM_OPERANDS? */
4080 && (! check_asm_operands (newpat
) || added_sets_1
|| added_sets_2
)))
4086 /* If we had to change another insn, make sure it is valid also. */
4087 if (undobuf
.other_insn
)
4089 CLEAR_HARD_REG_SET (newpat_used_regs
);
4091 other_pat
= PATTERN (undobuf
.other_insn
);
4092 other_code_number
= recog_for_combine (&other_pat
, undobuf
.other_insn
,
4095 if (other_code_number
< 0 && ! check_asm_operands (other_pat
))
4102 /* Only allow this combination if insn_cost reports that the
4103 replacement instructions are cheaper than the originals. */
4104 if (!combine_validate_cost (i0
, i1
, i2
, i3
, newpat
, newi2pat
, other_pat
))
4110 if (MAY_HAVE_DEBUG_BIND_INSNS
)
4114 for (undo
= undobuf
.undos
; undo
; undo
= undo
->next
)
4115 if (undo
->kind
== UNDO_MODE
)
4117 rtx reg
= regno_reg_rtx
[undo
->where
.regno
];
4118 machine_mode new_mode
= GET_MODE (reg
);
4119 machine_mode old_mode
= undo
->old_contents
.m
;
4121 /* Temporarily revert mode back. */
4122 adjust_reg_mode (reg
, old_mode
);
4124 if (reg
== i2dest
&& i2scratch
)
4126 /* If we used i2dest as a scratch register with a
4127 different mode, substitute it for the original
4128 i2src while its original mode is temporarily
4129 restored, and then clear i2scratch so that we don't
4130 do it again later. */
4131 propagate_for_debug (i2
, last_combined_insn
, reg
, i2src
,
4134 /* Put back the new mode. */
4135 adjust_reg_mode (reg
, new_mode
);
4139 rtx tempreg
= gen_raw_REG (old_mode
, REGNO (reg
));
4140 rtx_insn
*first
, *last
;
4145 last
= last_combined_insn
;
4150 last
= undobuf
.other_insn
;
4152 if (DF_INSN_LUID (last
)
4153 < DF_INSN_LUID (last_combined_insn
))
4154 last
= last_combined_insn
;
4157 /* We're dealing with a reg that changed mode but not
4158 meaning, so we want to turn it into a subreg for
4159 the new mode. However, because of REG sharing and
4160 because its mode had already changed, we have to do
4161 it in two steps. First, replace any debug uses of
4162 reg, with its original mode temporarily restored,
4163 with this copy we have created; then, replace the
4164 copy with the SUBREG of the original shared reg,
4165 once again changed to the new mode. */
4166 propagate_for_debug (first
, last
, reg
, tempreg
,
4168 adjust_reg_mode (reg
, new_mode
);
4169 propagate_for_debug (first
, last
, tempreg
,
4170 lowpart_subreg (old_mode
, reg
, new_mode
),
4176 /* If we will be able to accept this, we have made a
4177 change to the destination of I3. This requires us to
4178 do a few adjustments. */
4180 if (changed_i3_dest
)
4182 PATTERN (i3
) = newpat
;
4183 adjust_for_new_dest (i3
);
4186 /* We now know that we can do this combination. Merge the insns and
4187 update the status of registers and LOG_LINKS. */
4189 if (undobuf
.other_insn
)
4193 PATTERN (undobuf
.other_insn
) = other_pat
;
4195 /* If any of the notes in OTHER_INSN were REG_DEAD or REG_UNUSED,
4196 ensure that they are still valid. Then add any non-duplicate
4197 notes added by recog_for_combine. */
4198 for (note
= REG_NOTES (undobuf
.other_insn
); note
; note
= next
)
4200 next
= XEXP (note
, 1);
4202 if ((REG_NOTE_KIND (note
) == REG_DEAD
4203 && !reg_referenced_p (XEXP (note
, 0),
4204 PATTERN (undobuf
.other_insn
)))
4205 ||(REG_NOTE_KIND (note
) == REG_UNUSED
4206 && !reg_set_p (XEXP (note
, 0),
4207 PATTERN (undobuf
.other_insn
)))
4208 /* Simply drop equal note since it may be no longer valid
4209 for other_insn. It may be possible to record that CC
4210 register is changed and only discard those notes, but
4211 in practice it's unnecessary complication and doesn't
4212 give any meaningful improvement.
4215 || REG_NOTE_KIND (note
) == REG_EQUAL
4216 || REG_NOTE_KIND (note
) == REG_EQUIV
)
4217 remove_note (undobuf
.other_insn
, note
);
4220 distribute_notes (new_other_notes
, undobuf
.other_insn
,
4221 undobuf
.other_insn
, NULL
, NULL_RTX
, NULL_RTX
,
4227 /* I3 now uses what used to be its destination and which is now
4228 I2's destination. This requires us to do a few adjustments. */
4229 PATTERN (i3
) = newpat
;
4230 adjust_for_new_dest (i3
);
4233 if (swap_i2i3
|| split_i2i3
)
4235 /* We might need a LOG_LINK from I3 to I2. But then we used to
4236 have one, so we still will.
4238 However, some later insn might be using I2's dest and have
4239 a LOG_LINK pointing at I3. We should change it to point at
4242 /* newi2pat is usually a SET here; however, recog_for_combine might
4243 have added some clobbers. */
4245 if (GET_CODE (x
) == PARALLEL
)
4246 x
= XVECEXP (newi2pat
, 0, 0);
4248 if (REG_P (SET_DEST (x
))
4249 || (GET_CODE (SET_DEST (x
)) == SUBREG
4250 && REG_P (SUBREG_REG (SET_DEST (x
)))))
4252 unsigned int regno
= reg_or_subregno (SET_DEST (x
));
4255 for (rtx_insn
*insn
= NEXT_INSN (i3
);
4259 && BLOCK_FOR_INSN (insn
) == this_basic_block
;
4260 insn
= NEXT_INSN (insn
))
4262 if (DEBUG_INSN_P (insn
))
4264 struct insn_link
*link
;
4265 FOR_EACH_LOG_LINK (link
, insn
)
4266 if (link
->insn
== i3
&& link
->regno
== regno
)
4277 rtx i3notes
, i2notes
, i1notes
= 0, i0notes
= 0;
4278 struct insn_link
*i3links
, *i2links
, *i1links
= 0, *i0links
= 0;
4281 /* Compute which registers we expect to eliminate. newi2pat may be setting
4282 either i3dest or i2dest, so we must check it. */
4283 rtx elim_i2
= ((newi2pat
&& reg_set_p (i2dest
, newi2pat
))
4284 || i2dest_in_i2src
|| i2dest_in_i1src
|| i2dest_in_i0src
4287 /* For i1, we need to compute both local elimination and global
4288 elimination information with respect to newi2pat because i1dest
4289 may be the same as i3dest, in which case newi2pat may be setting
4290 i1dest. Global information is used when distributing REG_DEAD
4291 note for i2 and i3, in which case it does matter if newi2pat sets
4294 Local information is used when distributing REG_DEAD note for i1,
4295 in which case it doesn't matter if newi2pat sets i1dest or not.
4296 See PR62151, if we have four insns combination:
4298 i1: r1 <- i1src (using r0)
4300 i2: r0 <- i2src (using r1)
4301 i3: r3 <- i3src (using r0)
4303 From i1's point of view, r0 is eliminated, no matter if it is set
4304 by newi2pat or not. In other words, REG_DEAD info for r0 in i1
4305 should be discarded.
4307 Note local information only affects cases in forms like "I1->I2->I3",
4308 "I0->I1->I2->I3" or "I0&I1->I2, I2->I3". For other cases like
4309 "I0->I1, I1&I2->I3" or "I1&I2->I3", newi2pat won't set i1dest or
4311 rtx local_elim_i1
= (i1
== 0 || i1dest_in_i1src
|| i1dest_in_i0src
4314 rtx elim_i1
= (local_elim_i1
== 0
4315 || (newi2pat
&& reg_set_p (i1dest
, newi2pat
))
4317 /* Same case as i1. */
4318 rtx local_elim_i0
= (i0
== 0 || i0dest_in_i0src
|| !i0dest_killed
4320 rtx elim_i0
= (local_elim_i0
== 0
4321 || (newi2pat
&& reg_set_p (i0dest
, newi2pat
))
4324 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
4326 i3notes
= REG_NOTES (i3
), i3links
= LOG_LINKS (i3
);
4327 i2notes
= REG_NOTES (i2
), i2links
= LOG_LINKS (i2
);
4329 i1notes
= REG_NOTES (i1
), i1links
= LOG_LINKS (i1
);
4331 i0notes
= REG_NOTES (i0
), i0links
= LOG_LINKS (i0
);
4333 /* Ensure that we do not have something that should not be shared but
4334 occurs multiple times in the new insns. Check this by first
4335 resetting all the `used' flags and then copying anything is shared. */
4337 reset_used_flags (i3notes
);
4338 reset_used_flags (i2notes
);
4339 reset_used_flags (i1notes
);
4340 reset_used_flags (i0notes
);
4341 reset_used_flags (newpat
);
4342 reset_used_flags (newi2pat
);
4343 if (undobuf
.other_insn
)
4344 reset_used_flags (PATTERN (undobuf
.other_insn
));
4346 i3notes
= copy_rtx_if_shared (i3notes
);
4347 i2notes
= copy_rtx_if_shared (i2notes
);
4348 i1notes
= copy_rtx_if_shared (i1notes
);
4349 i0notes
= copy_rtx_if_shared (i0notes
);
4350 newpat
= copy_rtx_if_shared (newpat
);
4351 newi2pat
= copy_rtx_if_shared (newi2pat
);
4352 if (undobuf
.other_insn
)
4353 reset_used_flags (PATTERN (undobuf
.other_insn
));
4355 INSN_CODE (i3
) = insn_code_number
;
4356 PATTERN (i3
) = newpat
;
4358 if (CALL_P (i3
) && CALL_INSN_FUNCTION_USAGE (i3
))
4360 for (rtx link
= CALL_INSN_FUNCTION_USAGE (i3
); link
;
4361 link
= XEXP (link
, 1))
4365 /* I2SRC must still be meaningful at this point. Some
4366 splitting operations can invalidate I2SRC, but those
4367 operations do not apply to calls. */
4369 XEXP (link
, 0) = simplify_replace_rtx (XEXP (link
, 0),
4373 XEXP (link
, 0) = simplify_replace_rtx (XEXP (link
, 0),
4376 XEXP (link
, 0) = simplify_replace_rtx (XEXP (link
, 0),
4381 if (undobuf
.other_insn
)
4382 INSN_CODE (undobuf
.other_insn
) = other_code_number
;
4384 /* We had one special case above where I2 had more than one set and
4385 we replaced a destination of one of those sets with the destination
4386 of I3. In that case, we have to update LOG_LINKS of insns later
4387 in this basic block. Note that this (expensive) case is rare.
4389 Also, in this case, we must pretend that all REG_NOTEs for I2
4390 actually came from I3, so that REG_UNUSED notes from I2 will be
4391 properly handled. */
4393 if (i3_subst_into_i2
)
4395 for (i
= 0; i
< XVECLEN (PATTERN (i2
), 0); i
++)
4396 if ((GET_CODE (XVECEXP (PATTERN (i2
), 0, i
)) == SET
4397 || GET_CODE (XVECEXP (PATTERN (i2
), 0, i
)) == CLOBBER
)
4398 && REG_P (SET_DEST (XVECEXP (PATTERN (i2
), 0, i
)))
4399 && SET_DEST (XVECEXP (PATTERN (i2
), 0, i
)) != i2dest
4400 && ! find_reg_note (i2
, REG_UNUSED
,
4401 SET_DEST (XVECEXP (PATTERN (i2
), 0, i
))))
4402 for (temp_insn
= NEXT_INSN (i2
);
4404 && (this_basic_block
->next_bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
)
4405 || BB_HEAD (this_basic_block
) != temp_insn
);
4406 temp_insn
= NEXT_INSN (temp_insn
))
4407 if (temp_insn
!= i3
&& NONDEBUG_INSN_P (temp_insn
))
4408 FOR_EACH_LOG_LINK (link
, temp_insn
)
4409 if (link
->insn
== i2
)
4415 while (XEXP (link
, 1))
4416 link
= XEXP (link
, 1);
4417 XEXP (link
, 1) = i2notes
;
4424 LOG_LINKS (i3
) = NULL
;
4426 LOG_LINKS (i2
) = NULL
;
4431 if (MAY_HAVE_DEBUG_BIND_INSNS
&& i2scratch
)
4432 propagate_for_debug (i2
, last_combined_insn
, i2dest
, i2src
,
4434 INSN_CODE (i2
) = i2_code_number
;
4435 PATTERN (i2
) = newi2pat
;
4439 if (MAY_HAVE_DEBUG_BIND_INSNS
&& i2src
)
4440 propagate_for_debug (i2
, last_combined_insn
, i2dest
, i2src
,
4442 SET_INSN_DELETED (i2
);
4447 LOG_LINKS (i1
) = NULL
;
4449 if (MAY_HAVE_DEBUG_BIND_INSNS
)
4450 propagate_for_debug (i1
, last_combined_insn
, i1dest
, i1src
,
4452 SET_INSN_DELETED (i1
);
4457 LOG_LINKS (i0
) = NULL
;
4459 if (MAY_HAVE_DEBUG_BIND_INSNS
)
4460 propagate_for_debug (i0
, last_combined_insn
, i0dest
, i0src
,
4462 SET_INSN_DELETED (i0
);
4465 /* Get death notes for everything that is now used in either I3 or
4466 I2 and used to die in a previous insn. If we built two new
4467 patterns, move from I1 to I2 then I2 to I3 so that we get the
4468 proper movement on registers that I2 modifies. */
4471 from_luid
= DF_INSN_LUID (i0
);
4473 from_luid
= DF_INSN_LUID (i1
);
4475 from_luid
= DF_INSN_LUID (i2
);
4477 move_deaths (newi2pat
, NULL_RTX
, from_luid
, i2
, &midnotes
);
4478 move_deaths (newpat
, newi2pat
, from_luid
, i3
, &midnotes
);
4480 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4482 distribute_notes (i3notes
, i3
, i3
, newi2pat
? i2
: NULL
,
4483 elim_i2
, elim_i1
, elim_i0
);
4485 distribute_notes (i2notes
, i2
, i3
, newi2pat
? i2
: NULL
,
4486 elim_i2
, elim_i1
, elim_i0
);
4488 distribute_notes (i1notes
, i1
, i3
, newi2pat
? i2
: NULL
,
4489 elim_i2
, local_elim_i1
, local_elim_i0
);
4491 distribute_notes (i0notes
, i0
, i3
, newi2pat
? i2
: NULL
,
4492 elim_i2
, elim_i1
, local_elim_i0
);
4494 distribute_notes (midnotes
, NULL
, i3
, newi2pat
? i2
: NULL
,
4495 elim_i2
, elim_i1
, elim_i0
);
4497 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4498 know these are REG_UNUSED and want them to go to the desired insn,
4499 so we always pass it as i3. */
4501 if (newi2pat
&& new_i2_notes
)
4502 distribute_notes (new_i2_notes
, i2
, i2
, NULL
, NULL_RTX
, NULL_RTX
,
4506 distribute_notes (new_i3_notes
, i3
, i3
, NULL
, NULL_RTX
, NULL_RTX
,
4509 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4510 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4511 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4512 in that case, it might delete I2. Similarly for I2 and I1.
4513 Show an additional death due to the REG_DEAD note we make here. If
4514 we discard it in distribute_notes, we will decrement it again. */
4518 rtx new_note
= alloc_reg_note (REG_DEAD
, i3dest_killed
, NULL_RTX
);
4519 if (newi2pat
&& reg_set_p (i3dest_killed
, newi2pat
))
4520 distribute_notes (new_note
, NULL
, i2
, NULL
, elim_i2
,
4523 distribute_notes (new_note
, NULL
, i3
, newi2pat
? i2
: NULL
,
4524 elim_i2
, elim_i1
, elim_i0
);
4527 if (i2dest_in_i2src
)
4529 rtx new_note
= alloc_reg_note (REG_DEAD
, i2dest
, NULL_RTX
);
4530 if (newi2pat
&& reg_set_p (i2dest
, newi2pat
))
4531 distribute_notes (new_note
, NULL
, i2
, NULL
, NULL_RTX
,
4532 NULL_RTX
, NULL_RTX
);
4534 distribute_notes (new_note
, NULL
, i3
, newi2pat
? i2
: NULL
,
4535 NULL_RTX
, NULL_RTX
, NULL_RTX
);
4538 if (i1dest_in_i1src
)
4540 rtx new_note
= alloc_reg_note (REG_DEAD
, i1dest
, NULL_RTX
);
4541 if (newi2pat
&& reg_set_p (i1dest
, newi2pat
))
4542 distribute_notes (new_note
, NULL
, i2
, NULL
, NULL_RTX
,
4543 NULL_RTX
, NULL_RTX
);
4545 distribute_notes (new_note
, NULL
, i3
, newi2pat
? i2
: NULL
,
4546 NULL_RTX
, NULL_RTX
, NULL_RTX
);
4549 if (i0dest_in_i0src
)
4551 rtx new_note
= alloc_reg_note (REG_DEAD
, i0dest
, NULL_RTX
);
4552 if (newi2pat
&& reg_set_p (i0dest
, newi2pat
))
4553 distribute_notes (new_note
, NULL
, i2
, NULL
, NULL_RTX
,
4554 NULL_RTX
, NULL_RTX
);
4556 distribute_notes (new_note
, NULL
, i3
, newi2pat
? i2
: NULL
,
4557 NULL_RTX
, NULL_RTX
, NULL_RTX
);
4560 distribute_links (i3links
);
4561 distribute_links (i2links
);
4562 distribute_links (i1links
);
4563 distribute_links (i0links
);
4567 struct insn_link
*link
;
4568 rtx_insn
*i2_insn
= 0;
4569 rtx i2_val
= 0, set
;
4571 /* The insn that used to set this register doesn't exist, and
4572 this life of the register may not exist either. See if one of
4573 I3's links points to an insn that sets I2DEST. If it does,
4574 that is now the last known value for I2DEST. If we don't update
4575 this and I2 set the register to a value that depended on its old
4576 contents, we will get confused. If this insn is used, thing
4577 will be set correctly in combine_instructions. */
4578 FOR_EACH_LOG_LINK (link
, i3
)
4579 if ((set
= single_set (link
->insn
)) != 0
4580 && rtx_equal_p (i2dest
, SET_DEST (set
)))
4581 i2_insn
= link
->insn
, i2_val
= SET_SRC (set
);
4583 record_value_for_reg (i2dest
, i2_insn
, i2_val
);
4585 /* If the reg formerly set in I2 died only once and that was in I3,
4586 zero its use count so it won't make `reload' do any work. */
4588 && (newi2pat
== 0 || ! reg_mentioned_p (i2dest
, newi2pat
))
4589 && ! i2dest_in_i2src
4590 && REGNO (i2dest
) < reg_n_sets_max
)
4591 INC_REG_N_SETS (REGNO (i2dest
), -1);
4594 if (i1
&& REG_P (i1dest
))
4596 struct insn_link
*link
;
4597 rtx_insn
*i1_insn
= 0;
4598 rtx i1_val
= 0, set
;
4600 FOR_EACH_LOG_LINK (link
, i3
)
4601 if ((set
= single_set (link
->insn
)) != 0
4602 && rtx_equal_p (i1dest
, SET_DEST (set
)))
4603 i1_insn
= link
->insn
, i1_val
= SET_SRC (set
);
4605 record_value_for_reg (i1dest
, i1_insn
, i1_val
);
4608 && ! i1dest_in_i1src
4609 && REGNO (i1dest
) < reg_n_sets_max
)
4610 INC_REG_N_SETS (REGNO (i1dest
), -1);
4613 if (i0
&& REG_P (i0dest
))
4615 struct insn_link
*link
;
4616 rtx_insn
*i0_insn
= 0;
4617 rtx i0_val
= 0, set
;
4619 FOR_EACH_LOG_LINK (link
, i3
)
4620 if ((set
= single_set (link
->insn
)) != 0
4621 && rtx_equal_p (i0dest
, SET_DEST (set
)))
4622 i0_insn
= link
->insn
, i0_val
= SET_SRC (set
);
4624 record_value_for_reg (i0dest
, i0_insn
, i0_val
);
4627 && ! i0dest_in_i0src
4628 && REGNO (i0dest
) < reg_n_sets_max
)
4629 INC_REG_N_SETS (REGNO (i0dest
), -1);
4632 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4633 been made to this insn. The order is important, because newi2pat
4634 can affect nonzero_bits of newpat. */
4636 note_pattern_stores (newi2pat
, set_nonzero_bits_and_sign_copies
, NULL
);
4637 note_pattern_stores (newpat
, set_nonzero_bits_and_sign_copies
, NULL
);
4640 if (undobuf
.other_insn
!= NULL_RTX
)
4644 fprintf (dump_file
, "modifying other_insn ");
4645 dump_insn_slim (dump_file
, undobuf
.other_insn
);
4647 df_insn_rescan (undobuf
.other_insn
);
4650 if (i0
&& !(NOTE_P (i0
) && (NOTE_KIND (i0
) == NOTE_INSN_DELETED
)))
4654 fprintf (dump_file
, "modifying insn i0 ");
4655 dump_insn_slim (dump_file
, i0
);
4657 df_insn_rescan (i0
);
4660 if (i1
&& !(NOTE_P (i1
) && (NOTE_KIND (i1
) == NOTE_INSN_DELETED
)))
4664 fprintf (dump_file
, "modifying insn i1 ");
4665 dump_insn_slim (dump_file
, i1
);
4667 df_insn_rescan (i1
);
4670 if (i2
&& !(NOTE_P (i2
) && (NOTE_KIND (i2
) == NOTE_INSN_DELETED
)))
4674 fprintf (dump_file
, "modifying insn i2 ");
4675 dump_insn_slim (dump_file
, i2
);
4677 df_insn_rescan (i2
);
4680 if (i3
&& !(NOTE_P (i3
) && (NOTE_KIND (i3
) == NOTE_INSN_DELETED
)))
4684 fprintf (dump_file
, "modifying insn i3 ");
4685 dump_insn_slim (dump_file
, i3
);
4687 df_insn_rescan (i3
);
4690 /* Set new_direct_jump_p if a new return or simple jump instruction
4691 has been created. Adjust the CFG accordingly. */
4692 if (returnjump_p (i3
) || any_uncondjump_p (i3
))
4694 *new_direct_jump_p
= 1;
4695 mark_jump_label (PATTERN (i3
), i3
, 0);
4696 update_cfg_for_uncondjump (i3
);
4699 if (undobuf
.other_insn
!= NULL_RTX
4700 && (returnjump_p (undobuf
.other_insn
)
4701 || any_uncondjump_p (undobuf
.other_insn
)))
4703 *new_direct_jump_p
= 1;
4704 update_cfg_for_uncondjump (undobuf
.other_insn
);
4707 if (GET_CODE (PATTERN (i3
)) == TRAP_IF
4708 && XEXP (PATTERN (i3
), 0) == const1_rtx
)
4710 basic_block bb
= BLOCK_FOR_INSN (i3
);
4712 remove_edge (split_block (bb
, i3
));
4713 emit_barrier_after_bb (bb
);
4714 *new_direct_jump_p
= 1;
4717 if (undobuf
.other_insn
4718 && GET_CODE (PATTERN (undobuf
.other_insn
)) == TRAP_IF
4719 && XEXP (PATTERN (undobuf
.other_insn
), 0) == const1_rtx
)
4721 basic_block bb
= BLOCK_FOR_INSN (undobuf
.other_insn
);
4723 remove_edge (split_block (bb
, undobuf
.other_insn
));
4724 emit_barrier_after_bb (bb
);
4725 *new_direct_jump_p
= 1;
4728 /* A noop might also need cleaning up of CFG, if it comes from the
4729 simplification of a jump. */
4731 && GET_CODE (newpat
) == SET
4732 && SET_SRC (newpat
) == pc_rtx
4733 && SET_DEST (newpat
) == pc_rtx
)
4735 *new_direct_jump_p
= 1;
4736 update_cfg_for_uncondjump (i3
);
4739 if (undobuf
.other_insn
!= NULL_RTX
4740 && JUMP_P (undobuf
.other_insn
)
4741 && GET_CODE (PATTERN (undobuf
.other_insn
)) == SET
4742 && SET_SRC (PATTERN (undobuf
.other_insn
)) == pc_rtx
4743 && SET_DEST (PATTERN (undobuf
.other_insn
)) == pc_rtx
)
4745 *new_direct_jump_p
= 1;
4746 update_cfg_for_uncondjump (undobuf
.other_insn
);
4749 combine_successes
++;
4752 rtx_insn
*ret
= newi2pat
? i2
: i3
;
4753 if (added_links_insn
&& DF_INSN_LUID (added_links_insn
) < DF_INSN_LUID (ret
))
4754 ret
= added_links_insn
;
4755 if (added_notes_insn
&& DF_INSN_LUID (added_notes_insn
) < DF_INSN_LUID (ret
))
4756 ret
= added_notes_insn
;
4761 /* Get a marker for undoing to the current state. */
4764 get_undo_marker (void)
4766 return undobuf
.undos
;
4769 /* Undo the modifications up to the marker. */
4772 undo_to_marker (void *marker
)
4774 struct undo
*undo
, *next
;
4776 for (undo
= undobuf
.undos
; undo
!= marker
; undo
= next
)
4784 *undo
->where
.r
= undo
->old_contents
.r
;
4787 *undo
->where
.i
= undo
->old_contents
.i
;
4790 adjust_reg_mode (regno_reg_rtx
[undo
->where
.regno
],
4791 undo
->old_contents
.m
);
4794 *undo
->where
.l
= undo
->old_contents
.l
;
4800 undo
->next
= undobuf
.frees
;
4801 undobuf
.frees
= undo
;
4804 undobuf
.undos
= (struct undo
*) marker
;
4807 /* Undo all the modifications recorded in undobuf. */
4815 /* We've committed to accepting the changes we made. Move all
4816 of the undos to the free list. */
4821 struct undo
*undo
, *next
;
4823 for (undo
= undobuf
.undos
; undo
; undo
= next
)
4826 undo
->next
= undobuf
.frees
;
4827 undobuf
.frees
= undo
;
4832 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4833 where we have an arithmetic expression and return that point. LOC will
4836 try_combine will call this function to see if an insn can be split into
4840 find_split_point (rtx
*loc
, rtx_insn
*insn
, bool set_src
)
4843 enum rtx_code code
= GET_CODE (x
);
4845 unsigned HOST_WIDE_INT len
= 0;
4846 HOST_WIDE_INT pos
= 0;
4848 rtx inner
= NULL_RTX
;
4849 scalar_int_mode mode
, inner_mode
;
4851 /* First special-case some codes. */
4855 #ifdef INSN_SCHEDULING
4856 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4858 if (MEM_P (SUBREG_REG (x
)))
4861 return find_split_point (&SUBREG_REG (x
), insn
, false);
4864 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4865 using LO_SUM and HIGH. */
4866 if (HAVE_lo_sum
&& (GET_CODE (XEXP (x
, 0)) == CONST
4867 || GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
))
4869 machine_mode address_mode
= get_address_mode (x
);
4872 gen_rtx_LO_SUM (address_mode
,
4873 gen_rtx_HIGH (address_mode
, XEXP (x
, 0)),
4875 return &XEXP (XEXP (x
, 0), 0);
4878 /* If we have a PLUS whose second operand is a constant and the
4879 address is not valid, perhaps we can split it up using
4880 the machine-specific way to split large constants. We use
4881 the first pseudo-reg (one of the virtual regs) as a placeholder;
4882 it will not remain in the result. */
4883 if (GET_CODE (XEXP (x
, 0)) == PLUS
4884 && CONST_INT_P (XEXP (XEXP (x
, 0), 1))
4885 && ! memory_address_addr_space_p (GET_MODE (x
), XEXP (x
, 0),
4886 MEM_ADDR_SPACE (x
)))
4888 rtx reg
= regno_reg_rtx
[FIRST_PSEUDO_REGISTER
];
4889 rtx_insn
*seq
= combine_split_insns (gen_rtx_SET (reg
, XEXP (x
, 0)),
4892 /* This should have produced two insns, each of which sets our
4893 placeholder. If the source of the second is a valid address,
4894 we can put both sources together and make a split point
4898 && NEXT_INSN (seq
) != NULL_RTX
4899 && NEXT_INSN (NEXT_INSN (seq
)) == NULL_RTX
4900 && NONJUMP_INSN_P (seq
)
4901 && GET_CODE (PATTERN (seq
)) == SET
4902 && SET_DEST (PATTERN (seq
)) == reg
4903 && ! reg_mentioned_p (reg
,
4904 SET_SRC (PATTERN (seq
)))
4905 && NONJUMP_INSN_P (NEXT_INSN (seq
))
4906 && GET_CODE (PATTERN (NEXT_INSN (seq
))) == SET
4907 && SET_DEST (PATTERN (NEXT_INSN (seq
))) == reg
4908 && memory_address_addr_space_p
4909 (GET_MODE (x
), SET_SRC (PATTERN (NEXT_INSN (seq
))),
4910 MEM_ADDR_SPACE (x
)))
4912 rtx src1
= SET_SRC (PATTERN (seq
));
4913 rtx src2
= SET_SRC (PATTERN (NEXT_INSN (seq
)));
4915 /* Replace the placeholder in SRC2 with SRC1. If we can
4916 find where in SRC2 it was placed, that can become our
4917 split point and we can replace this address with SRC2.
4918 Just try two obvious places. */
4920 src2
= replace_rtx (src2
, reg
, src1
);
4922 if (XEXP (src2
, 0) == src1
)
4923 split
= &XEXP (src2
, 0);
4924 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2
, 0)))[0] == 'e'
4925 && XEXP (XEXP (src2
, 0), 0) == src1
)
4926 split
= &XEXP (XEXP (src2
, 0), 0);
4930 SUBST (XEXP (x
, 0), src2
);
4935 /* If that didn't work and we have a nested plus, like:
4936 ((REG1 * CONST1) + REG2) + CONST2 and (REG1 + REG2) + CONST2
4937 is valid address, try to split (REG1 * CONST1). */
4938 if (GET_CODE (XEXP (XEXP (x
, 0), 0)) == PLUS
4939 && !OBJECT_P (XEXP (XEXP (XEXP (x
, 0), 0), 0))
4940 && OBJECT_P (XEXP (XEXP (XEXP (x
, 0), 0), 1))
4941 && ! (GET_CODE (XEXP (XEXP (XEXP (x
, 0), 0), 0)) == SUBREG
4942 && OBJECT_P (SUBREG_REG (XEXP (XEXP (XEXP (x
, 0),
4945 rtx tem
= XEXP (XEXP (XEXP (x
, 0), 0), 0);
4946 XEXP (XEXP (XEXP (x
, 0), 0), 0) = reg
;
4947 if (memory_address_addr_space_p (GET_MODE (x
), XEXP (x
, 0),
4948 MEM_ADDR_SPACE (x
)))
4950 XEXP (XEXP (XEXP (x
, 0), 0), 0) = tem
;
4951 return &XEXP (XEXP (XEXP (x
, 0), 0), 0);
4953 XEXP (XEXP (XEXP (x
, 0), 0), 0) = tem
;
4955 else if (GET_CODE (XEXP (XEXP (x
, 0), 0)) == PLUS
4956 && OBJECT_P (XEXP (XEXP (XEXP (x
, 0), 0), 0))
4957 && !OBJECT_P (XEXP (XEXP (XEXP (x
, 0), 0), 1))
4958 && ! (GET_CODE (XEXP (XEXP (XEXP (x
, 0), 0), 1)) == SUBREG
4959 && OBJECT_P (SUBREG_REG (XEXP (XEXP (XEXP (x
, 0),
4962 rtx tem
= XEXP (XEXP (XEXP (x
, 0), 0), 1);
4963 XEXP (XEXP (XEXP (x
, 0), 0), 1) = reg
;
4964 if (memory_address_addr_space_p (GET_MODE (x
), XEXP (x
, 0),
4965 MEM_ADDR_SPACE (x
)))
4967 XEXP (XEXP (XEXP (x
, 0), 0), 1) = tem
;
4968 return &XEXP (XEXP (XEXP (x
, 0), 0), 1);
4970 XEXP (XEXP (XEXP (x
, 0), 0), 1) = tem
;
4973 /* If that didn't work, perhaps the first operand is complex and
4974 needs to be computed separately, so make a split point there.
4975 This will occur on machines that just support REG + CONST
4976 and have a constant moved through some previous computation. */
4977 if (!OBJECT_P (XEXP (XEXP (x
, 0), 0))
4978 && ! (GET_CODE (XEXP (XEXP (x
, 0), 0)) == SUBREG
4979 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x
, 0), 0)))))
4980 return &XEXP (XEXP (x
, 0), 0);
4983 /* If we have a PLUS whose first operand is complex, try computing it
4984 separately by making a split there. */
4985 if (GET_CODE (XEXP (x
, 0)) == PLUS
4986 && ! memory_address_addr_space_p (GET_MODE (x
), XEXP (x
, 0),
4988 && ! OBJECT_P (XEXP (XEXP (x
, 0), 0))
4989 && ! (GET_CODE (XEXP (XEXP (x
, 0), 0)) == SUBREG
4990 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x
, 0), 0)))))
4991 return &XEXP (XEXP (x
, 0), 0);
4995 /* See if we can split SET_SRC as it stands. */
4996 split
= find_split_point (&SET_SRC (x
), insn
, true);
4997 if (split
&& split
!= &SET_SRC (x
))
5000 /* See if we can split SET_DEST as it stands. */
5001 split
= find_split_point (&SET_DEST (x
), insn
, false);
5002 if (split
&& split
!= &SET_DEST (x
))
5005 /* See if this is a bitfield assignment with everything constant. If
5006 so, this is an IOR of an AND, so split it into that. */
5007 if (GET_CODE (SET_DEST (x
)) == ZERO_EXTRACT
5008 && is_a
<scalar_int_mode
> (GET_MODE (XEXP (SET_DEST (x
), 0)),
5010 && HWI_COMPUTABLE_MODE_P (inner_mode
)
5011 && CONST_INT_P (XEXP (SET_DEST (x
), 1))
5012 && CONST_INT_P (XEXP (SET_DEST (x
), 2))
5013 && CONST_INT_P (SET_SRC (x
))
5014 && ((INTVAL (XEXP (SET_DEST (x
), 1))
5015 + INTVAL (XEXP (SET_DEST (x
), 2)))
5016 <= GET_MODE_PRECISION (inner_mode
))
5017 && ! side_effects_p (XEXP (SET_DEST (x
), 0)))
5019 HOST_WIDE_INT pos
= INTVAL (XEXP (SET_DEST (x
), 2));
5020 unsigned HOST_WIDE_INT len
= INTVAL (XEXP (SET_DEST (x
), 1));
5021 rtx dest
= XEXP (SET_DEST (x
), 0);
5022 unsigned HOST_WIDE_INT mask
= (HOST_WIDE_INT_1U
<< len
) - 1;
5023 unsigned HOST_WIDE_INT src
= INTVAL (SET_SRC (x
)) & mask
;
5026 if (BITS_BIG_ENDIAN
)
5027 pos
= GET_MODE_PRECISION (inner_mode
) - len
- pos
;
5029 or_mask
= gen_int_mode (src
<< pos
, inner_mode
);
5032 simplify_gen_binary (IOR
, inner_mode
, dest
, or_mask
));
5035 rtx negmask
= gen_int_mode (~(mask
<< pos
), inner_mode
);
5037 simplify_gen_binary (IOR
, inner_mode
,
5038 simplify_gen_binary (AND
, inner_mode
,
5043 SUBST (SET_DEST (x
), dest
);
5045 split
= find_split_point (&SET_SRC (x
), insn
, true);
5046 if (split
&& split
!= &SET_SRC (x
))
5050 /* Otherwise, see if this is an operation that we can split into two.
5051 If so, try to split that. */
5052 code
= GET_CODE (SET_SRC (x
));
5057 /* If we are AND'ing with a large constant that is only a single
5058 bit and the result is only being used in a context where we
5059 need to know if it is zero or nonzero, replace it with a bit
5060 extraction. This will avoid the large constant, which might
5061 have taken more than one insn to make. If the constant were
5062 not a valid argument to the AND but took only one insn to make,
5063 this is no worse, but if it took more than one insn, it will
5066 if (CONST_INT_P (XEXP (SET_SRC (x
), 1))
5067 && REG_P (XEXP (SET_SRC (x
), 0))
5068 && (pos
= exact_log2 (UINTVAL (XEXP (SET_SRC (x
), 1)))) >= 7
5069 && REG_P (SET_DEST (x
))
5070 && (split
= find_single_use (SET_DEST (x
), insn
, NULL
)) != 0
5071 && (GET_CODE (*split
) == EQ
|| GET_CODE (*split
) == NE
)
5072 && XEXP (*split
, 0) == SET_DEST (x
)
5073 && XEXP (*split
, 1) == const0_rtx
)
5075 rtx extraction
= make_extraction (GET_MODE (SET_DEST (x
)),
5076 XEXP (SET_SRC (x
), 0),
5077 pos
, NULL_RTX
, 1, 1, 0, 0);
5078 if (extraction
!= 0)
5080 SUBST (SET_SRC (x
), extraction
);
5081 return find_split_point (loc
, insn
, false);
5087 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
5088 is known to be on, this can be converted into a NEG of a shift. */
5089 if (STORE_FLAG_VALUE
== -1 && XEXP (SET_SRC (x
), 1) == const0_rtx
5090 && GET_MODE (SET_SRC (x
)) == GET_MODE (XEXP (SET_SRC (x
), 0))
5091 && ((pos
= exact_log2 (nonzero_bits (XEXP (SET_SRC (x
), 0),
5092 GET_MODE (XEXP (SET_SRC (x
),
5095 machine_mode mode
= GET_MODE (XEXP (SET_SRC (x
), 0));
5096 rtx pos_rtx
= gen_int_shift_amount (mode
, pos
);
5099 gen_rtx_LSHIFTRT (mode
,
5100 XEXP (SET_SRC (x
), 0),
5103 split
= find_split_point (&SET_SRC (x
), insn
, true);
5104 if (split
&& split
!= &SET_SRC (x
))
5110 inner
= XEXP (SET_SRC (x
), 0);
5112 /* We can't optimize if either mode is a partial integer
5113 mode as we don't know how many bits are significant
5115 if (!is_int_mode (GET_MODE (inner
), &inner_mode
)
5116 || GET_MODE_CLASS (GET_MODE (SET_SRC (x
))) == MODE_PARTIAL_INT
)
5120 len
= GET_MODE_PRECISION (inner_mode
);
5126 if (is_a
<scalar_int_mode
> (GET_MODE (XEXP (SET_SRC (x
), 0)),
5128 && CONST_INT_P (XEXP (SET_SRC (x
), 1))
5129 && CONST_INT_P (XEXP (SET_SRC (x
), 2)))
5131 inner
= XEXP (SET_SRC (x
), 0);
5132 len
= INTVAL (XEXP (SET_SRC (x
), 1));
5133 pos
= INTVAL (XEXP (SET_SRC (x
), 2));
5135 if (BITS_BIG_ENDIAN
)
5136 pos
= GET_MODE_PRECISION (inner_mode
) - len
- pos
;
5137 unsignedp
= (code
== ZERO_EXTRACT
);
5146 && known_subrange_p (pos
, len
,
5147 0, GET_MODE_PRECISION (GET_MODE (inner
)))
5148 && is_a
<scalar_int_mode
> (GET_MODE (SET_SRC (x
)), &mode
))
5150 /* For unsigned, we have a choice of a shift followed by an
5151 AND or two shifts. Use two shifts for field sizes where the
5152 constant might be too large. We assume here that we can
5153 always at least get 8-bit constants in an AND insn, which is
5154 true for every current RISC. */
5156 if (unsignedp
&& len
<= 8)
5158 unsigned HOST_WIDE_INT mask
5159 = (HOST_WIDE_INT_1U
<< len
) - 1;
5160 rtx pos_rtx
= gen_int_shift_amount (mode
, pos
);
5164 (mode
, gen_lowpart (mode
, inner
), pos_rtx
),
5165 gen_int_mode (mask
, mode
)));
5167 split
= find_split_point (&SET_SRC (x
), insn
, true);
5168 if (split
&& split
!= &SET_SRC (x
))
5173 int left_bits
= GET_MODE_PRECISION (mode
) - len
- pos
;
5174 int right_bits
= GET_MODE_PRECISION (mode
) - len
;
5177 (unsignedp
? LSHIFTRT
: ASHIFTRT
, mode
,
5178 gen_rtx_ASHIFT (mode
,
5179 gen_lowpart (mode
, inner
),
5180 gen_int_shift_amount (mode
, left_bits
)),
5181 gen_int_shift_amount (mode
, right_bits
)));
5183 split
= find_split_point (&SET_SRC (x
), insn
, true);
5184 if (split
&& split
!= &SET_SRC (x
))
5189 /* See if this is a simple operation with a constant as the second
5190 operand. It might be that this constant is out of range and hence
5191 could be used as a split point. */
5192 if (BINARY_P (SET_SRC (x
))
5193 && CONSTANT_P (XEXP (SET_SRC (x
), 1))
5194 && (OBJECT_P (XEXP (SET_SRC (x
), 0))
5195 || (GET_CODE (XEXP (SET_SRC (x
), 0)) == SUBREG
5196 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x
), 0))))))
5197 return &XEXP (SET_SRC (x
), 1);
5199 /* Finally, see if this is a simple operation with its first operand
5200 not in a register. The operation might require this operand in a
5201 register, so return it as a split point. We can always do this
5202 because if the first operand were another operation, we would have
5203 already found it as a split point. */
5204 if ((BINARY_P (SET_SRC (x
)) || UNARY_P (SET_SRC (x
)))
5205 && ! register_operand (XEXP (SET_SRC (x
), 0), VOIDmode
))
5206 return &XEXP (SET_SRC (x
), 0);
5212 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
5213 it is better to write this as (not (ior A B)) so we can split it.
5214 Similarly for IOR. */
5215 if (GET_CODE (XEXP (x
, 0)) == NOT
&& GET_CODE (XEXP (x
, 1)) == NOT
)
5218 gen_rtx_NOT (GET_MODE (x
),
5219 gen_rtx_fmt_ee (code
== IOR
? AND
: IOR
,
5221 XEXP (XEXP (x
, 0), 0),
5222 XEXP (XEXP (x
, 1), 0))));
5223 return find_split_point (loc
, insn
, set_src
);
5226 /* Many RISC machines have a large set of logical insns. If the
5227 second operand is a NOT, put it first so we will try to split the
5228 other operand first. */
5229 if (GET_CODE (XEXP (x
, 1)) == NOT
)
5231 rtx tem
= XEXP (x
, 0);
5232 SUBST (XEXP (x
, 0), XEXP (x
, 1));
5233 SUBST (XEXP (x
, 1), tem
);
5239 /* Canonicalization can produce (minus A (mult B C)), where C is a
5240 constant. It may be better to try splitting (plus (mult B -C) A)
5241 instead if this isn't a multiply by a power of two. */
5242 if (set_src
&& code
== MINUS
&& GET_CODE (XEXP (x
, 1)) == MULT
5243 && GET_CODE (XEXP (XEXP (x
, 1), 1)) == CONST_INT
5244 && !pow2p_hwi (INTVAL (XEXP (XEXP (x
, 1), 1))))
5246 machine_mode mode
= GET_MODE (x
);
5247 unsigned HOST_WIDE_INT this_int
= INTVAL (XEXP (XEXP (x
, 1), 1));
5248 HOST_WIDE_INT other_int
= trunc_int_for_mode (-this_int
, mode
);
5249 SUBST (*loc
, gen_rtx_PLUS (mode
,
5251 XEXP (XEXP (x
, 1), 0),
5252 gen_int_mode (other_int
,
5255 return find_split_point (loc
, insn
, set_src
);
5258 /* Split at a multiply-accumulate instruction. However if this is
5259 the SET_SRC, we likely do not have such an instruction and it's
5260 worthless to try this split. */
5262 && (GET_CODE (XEXP (x
, 0)) == MULT
5263 || (GET_CODE (XEXP (x
, 0)) == ASHIFT
5264 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
)))
5271 /* Otherwise, select our actions depending on our rtx class. */
5272 switch (GET_RTX_CLASS (code
))
5274 case RTX_BITFIELD_OPS
: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
5276 split
= find_split_point (&XEXP (x
, 2), insn
, false);
5281 case RTX_COMM_ARITH
:
5283 case RTX_COMM_COMPARE
:
5284 split
= find_split_point (&XEXP (x
, 1), insn
, false);
5289 /* Some machines have (and (shift ...) ...) insns. If X is not
5290 an AND, but XEXP (X, 0) is, use it as our split point. */
5291 if (GET_CODE (x
) != AND
&& GET_CODE (XEXP (x
, 0)) == AND
)
5292 return &XEXP (x
, 0);
5294 split
= find_split_point (&XEXP (x
, 0), insn
, false);
5300 /* Otherwise, we don't have a split point. */
5305 /* Throughout X, replace FROM with TO, and return the result.
5306 The result is TO if X is FROM;
5307 otherwise the result is X, but its contents may have been modified.
5308 If they were modified, a record was made in undobuf so that
5309 undo_all will (among other things) return X to its original state.
5311 If the number of changes necessary is too much to record to undo,
5312 the excess changes are not made, so the result is invalid.
5313 The changes already made can still be undone.
5314 undobuf.num_undo is incremented for such changes, so by testing that
5315 the caller can tell whether the result is valid.
5317 `n_occurrences' is incremented each time FROM is replaced.
5319 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
5321 IN_COND is nonzero if we are at the top level of a condition.
5323 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
5324 by copying if `n_occurrences' is nonzero. */
5327 subst (rtx x
, rtx from
, rtx to
, int in_dest
, int in_cond
, int unique_copy
)
5329 enum rtx_code code
= GET_CODE (x
);
5330 machine_mode op0_mode
= VOIDmode
;
5335 /* Two expressions are equal if they are identical copies of a shared
5336 RTX or if they are both registers with the same register number
5339 #define COMBINE_RTX_EQUAL_P(X,Y) \
5341 || (REG_P (X) && REG_P (Y) \
5342 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
5344 /* Do not substitute into clobbers of regs -- this will never result in
5346 if (GET_CODE (x
) == CLOBBER
&& REG_P (XEXP (x
, 0)))
5349 if (! in_dest
&& COMBINE_RTX_EQUAL_P (x
, from
))
5352 return (unique_copy
&& n_occurrences
> 1 ? copy_rtx (to
) : to
);
5355 /* If X and FROM are the same register but different modes, they
5356 will not have been seen as equal above. However, the log links code
5357 will make a LOG_LINKS entry for that case. If we do nothing, we
5358 will try to rerecognize our original insn and, when it succeeds,
5359 we will delete the feeding insn, which is incorrect.
5361 So force this insn not to match in this (rare) case. */
5362 if (! in_dest
&& code
== REG
&& REG_P (from
)
5363 && reg_overlap_mentioned_p (x
, from
))
5364 return gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
5366 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
5367 of which may contain things that can be combined. */
5368 if (code
!= MEM
&& code
!= LO_SUM
&& OBJECT_P (x
))
5371 /* It is possible to have a subexpression appear twice in the insn.
5372 Suppose that FROM is a register that appears within TO.
5373 Then, after that subexpression has been scanned once by `subst',
5374 the second time it is scanned, TO may be found. If we were
5375 to scan TO here, we would find FROM within it and create a
5376 self-referent rtl structure which is completely wrong. */
5377 if (COMBINE_RTX_EQUAL_P (x
, to
))
5380 /* Parallel asm_operands need special attention because all of the
5381 inputs are shared across the arms. Furthermore, unsharing the
5382 rtl results in recognition failures. Failure to handle this case
5383 specially can result in circular rtl.
5385 Solve this by doing a normal pass across the first entry of the
5386 parallel, and only processing the SET_DESTs of the subsequent
5389 if (code
== PARALLEL
5390 && GET_CODE (XVECEXP (x
, 0, 0)) == SET
5391 && GET_CODE (SET_SRC (XVECEXP (x
, 0, 0))) == ASM_OPERANDS
)
5393 new_rtx
= subst (XVECEXP (x
, 0, 0), from
, to
, 0, 0, unique_copy
);
5395 /* If this substitution failed, this whole thing fails. */
5396 if (GET_CODE (new_rtx
) == CLOBBER
5397 && XEXP (new_rtx
, 0) == const0_rtx
)
5400 SUBST (XVECEXP (x
, 0, 0), new_rtx
);
5402 for (i
= XVECLEN (x
, 0) - 1; i
>= 1; i
--)
5404 rtx dest
= SET_DEST (XVECEXP (x
, 0, i
));
5406 if (!REG_P (dest
) && GET_CODE (dest
) != PC
)
5408 new_rtx
= subst (dest
, from
, to
, 0, 0, unique_copy
);
5410 /* If this substitution failed, this whole thing fails. */
5411 if (GET_CODE (new_rtx
) == CLOBBER
5412 && XEXP (new_rtx
, 0) == const0_rtx
)
5415 SUBST (SET_DEST (XVECEXP (x
, 0, i
)), new_rtx
);
5421 len
= GET_RTX_LENGTH (code
);
5422 fmt
= GET_RTX_FORMAT (code
);
5424 /* We don't need to process a SET_DEST that is a register or PC, so
5425 set up to skip this common case. All other cases where we want
5426 to suppress replacing something inside a SET_SRC are handled via
5427 the IN_DEST operand. */
5429 && (REG_P (SET_DEST (x
))
5430 || GET_CODE (SET_DEST (x
)) == PC
))
5433 /* Trying to simplify the operands of a widening MULT is not likely
5434 to create RTL matching a machine insn. */
5436 && (GET_CODE (XEXP (x
, 0)) == ZERO_EXTEND
5437 || GET_CODE (XEXP (x
, 0)) == SIGN_EXTEND
)
5438 && (GET_CODE (XEXP (x
, 1)) == ZERO_EXTEND
5439 || GET_CODE (XEXP (x
, 1)) == SIGN_EXTEND
)
5440 && REG_P (XEXP (XEXP (x
, 0), 0))
5441 && REG_P (XEXP (XEXP (x
, 1), 0))
5446 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5449 op0_mode
= GET_MODE (XEXP (x
, 0));
5451 for (i
= 0; i
< len
; i
++)
5456 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
5458 if (COMBINE_RTX_EQUAL_P (XVECEXP (x
, i
, j
), from
))
5460 new_rtx
= (unique_copy
&& n_occurrences
5461 ? copy_rtx (to
) : to
);
5466 new_rtx
= subst (XVECEXP (x
, i
, j
), from
, to
, 0, 0,
5469 /* If this substitution failed, this whole thing
5471 if (GET_CODE (new_rtx
) == CLOBBER
5472 && XEXP (new_rtx
, 0) == const0_rtx
)
5476 SUBST (XVECEXP (x
, i
, j
), new_rtx
);
5479 else if (fmt
[i
] == 'e')
5481 /* If this is a register being set, ignore it. */
5482 new_rtx
= XEXP (x
, i
);
5485 && (((code
== SUBREG
|| code
== ZERO_EXTRACT
)
5487 || code
== STRICT_LOW_PART
))
5490 else if (COMBINE_RTX_EQUAL_P (XEXP (x
, i
), from
))
5492 /* In general, don't install a subreg involving two
5493 modes not tieable. It can worsen register
5494 allocation, and can even make invalid reload
5495 insns, since the reg inside may need to be copied
5496 from in the outside mode, and that may be invalid
5497 if it is an fp reg copied in integer mode.
5499 We allow an exception to this: It is valid if
5500 it is inside another SUBREG and the mode of that
5501 SUBREG and the mode of the inside of TO is
5504 if (GET_CODE (to
) == SUBREG
5505 && !targetm
.modes_tieable_p (GET_MODE (to
),
5506 GET_MODE (SUBREG_REG (to
)))
5507 && ! (code
== SUBREG
5508 && (targetm
.modes_tieable_p
5509 (GET_MODE (x
), GET_MODE (SUBREG_REG (to
))))))
5510 return gen_rtx_CLOBBER (VOIDmode
, const0_rtx
);
5514 && REGNO (to
) < FIRST_PSEUDO_REGISTER
5515 && simplify_subreg_regno (REGNO (to
), GET_MODE (to
),
5518 return gen_rtx_CLOBBER (VOIDmode
, const0_rtx
);
5520 new_rtx
= (unique_copy
&& n_occurrences
? copy_rtx (to
) : to
);
5524 /* If we are in a SET_DEST, suppress most cases unless we
5525 have gone inside a MEM, in which case we want to
5526 simplify the address. We assume here that things that
5527 are actually part of the destination have their inner
5528 parts in the first expression. This is true for SUBREG,
5529 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5530 things aside from REG and MEM that should appear in a
5532 new_rtx
= subst (XEXP (x
, i
), from
, to
,
5534 && (code
== SUBREG
|| code
== STRICT_LOW_PART
5535 || code
== ZERO_EXTRACT
))
5538 code
== IF_THEN_ELSE
&& i
== 0,
5541 /* If we found that we will have to reject this combination,
5542 indicate that by returning the CLOBBER ourselves, rather than
5543 an expression containing it. This will speed things up as
5544 well as prevent accidents where two CLOBBERs are considered
5545 to be equal, thus producing an incorrect simplification. */
5547 if (GET_CODE (new_rtx
) == CLOBBER
&& XEXP (new_rtx
, 0) == const0_rtx
)
5550 if (GET_CODE (x
) == SUBREG
&& CONST_SCALAR_INT_P (new_rtx
))
5552 machine_mode mode
= GET_MODE (x
);
5554 x
= simplify_subreg (GET_MODE (x
), new_rtx
,
5555 GET_MODE (SUBREG_REG (x
)),
5558 x
= gen_rtx_CLOBBER (mode
, const0_rtx
);
5560 else if (CONST_SCALAR_INT_P (new_rtx
)
5561 && (GET_CODE (x
) == ZERO_EXTEND
5562 || GET_CODE (x
) == SIGN_EXTEND
5563 || GET_CODE (x
) == FLOAT
5564 || GET_CODE (x
) == UNSIGNED_FLOAT
))
5566 x
= simplify_unary_operation (GET_CODE (x
), GET_MODE (x
),
5568 GET_MODE (XEXP (x
, 0)));
5570 return gen_rtx_CLOBBER (VOIDmode
, const0_rtx
);
5572 /* CONST_INTs shouldn't be substituted into PRE_DEC, PRE_MODIFY
5573 etc. arguments, otherwise we can ICE before trying to recog
5574 it. See PR104446. */
5575 else if (CONST_SCALAR_INT_P (new_rtx
)
5576 && GET_RTX_CLASS (GET_CODE (x
)) == RTX_AUTOINC
)
5577 return gen_rtx_CLOBBER (VOIDmode
, const0_rtx
);
5579 SUBST (XEXP (x
, i
), new_rtx
);
5584 /* Check if we are loading something from the constant pool via float
5585 extension; in this case we would undo compress_float_constant
5586 optimization and degenerate constant load to an immediate value. */
5587 if (GET_CODE (x
) == FLOAT_EXTEND
5588 && MEM_P (XEXP (x
, 0))
5589 && MEM_READONLY_P (XEXP (x
, 0)))
5591 rtx tmp
= avoid_constant_pool_reference (x
);
5596 /* Try to simplify X. If the simplification changed the code, it is likely
5597 that further simplification will help, so loop, but limit the number
5598 of repetitions that will be performed. */
5600 for (i
= 0; i
< 4; i
++)
5602 /* If X is sufficiently simple, don't bother trying to do anything
5604 if (code
!= CONST_INT
&& code
!= REG
&& code
!= CLOBBER
)
5605 x
= combine_simplify_rtx (x
, op0_mode
, in_dest
, in_cond
);
5607 if (GET_CODE (x
) == code
)
5610 code
= GET_CODE (x
);
5612 /* We no longer know the original mode of operand 0 since we
5613 have changed the form of X) */
5614 op0_mode
= VOIDmode
;
5620 /* If X is a commutative operation whose operands are not in the canonical
5621 order, use substitutions to swap them. */
5624 maybe_swap_commutative_operands (rtx x
)
5626 if (COMMUTATIVE_ARITH_P (x
)
5627 && swap_commutative_operands_p (XEXP (x
, 0), XEXP (x
, 1)))
5629 rtx temp
= XEXP (x
, 0);
5630 SUBST (XEXP (x
, 0), XEXP (x
, 1));
5631 SUBST (XEXP (x
, 1), temp
);
5635 /* Simplify X, a piece of RTL. We just operate on the expression at the
5636 outer level; call `subst' to simplify recursively. Return the new
5639 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5640 if we are inside a SET_DEST. IN_COND is nonzero if we are at the top level
5644 combine_simplify_rtx (rtx x
, machine_mode op0_mode
, int in_dest
,
5647 enum rtx_code code
= GET_CODE (x
);
5648 machine_mode mode
= GET_MODE (x
);
5649 scalar_int_mode int_mode
;
5653 /* If this is a commutative operation, put a constant last and a complex
5654 expression first. We don't need to do this for comparisons here. */
5655 maybe_swap_commutative_operands (x
);
5657 /* Try to fold this expression in case we have constants that weren't
5660 switch (GET_RTX_CLASS (code
))
5663 if (op0_mode
== VOIDmode
)
5664 op0_mode
= GET_MODE (XEXP (x
, 0));
5665 temp
= simplify_unary_operation (code
, mode
, XEXP (x
, 0), op0_mode
);
5668 case RTX_COMM_COMPARE
:
5670 machine_mode cmp_mode
= GET_MODE (XEXP (x
, 0));
5671 if (cmp_mode
== VOIDmode
)
5673 cmp_mode
= GET_MODE (XEXP (x
, 1));
5674 if (cmp_mode
== VOIDmode
)
5675 cmp_mode
= op0_mode
;
5677 temp
= simplify_relational_operation (code
, mode
, cmp_mode
,
5678 XEXP (x
, 0), XEXP (x
, 1));
5681 case RTX_COMM_ARITH
:
5683 temp
= simplify_binary_operation (code
, mode
, XEXP (x
, 0), XEXP (x
, 1));
5685 case RTX_BITFIELD_OPS
:
5687 temp
= simplify_ternary_operation (code
, mode
, op0_mode
, XEXP (x
, 0),
5688 XEXP (x
, 1), XEXP (x
, 2));
5697 code
= GET_CODE (temp
);
5698 op0_mode
= VOIDmode
;
5699 mode
= GET_MODE (temp
);
5702 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5703 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5704 things. Check for cases where both arms are testing the same
5707 Don't do anything if all operands are very simple. */
5710 && ((!OBJECT_P (XEXP (x
, 0))
5711 && ! (GET_CODE (XEXP (x
, 0)) == SUBREG
5712 && OBJECT_P (SUBREG_REG (XEXP (x
, 0)))))
5713 || (!OBJECT_P (XEXP (x
, 1))
5714 && ! (GET_CODE (XEXP (x
, 1)) == SUBREG
5715 && OBJECT_P (SUBREG_REG (XEXP (x
, 1)))))))
5717 && (!OBJECT_P (XEXP (x
, 0))
5718 && ! (GET_CODE (XEXP (x
, 0)) == SUBREG
5719 && OBJECT_P (SUBREG_REG (XEXP (x
, 0)))))))
5721 rtx cond
, true_rtx
, false_rtx
;
5723 cond
= if_then_else_cond (x
, &true_rtx
, &false_rtx
);
5725 /* If everything is a comparison, what we have is highly unlikely
5726 to be simpler, so don't use it. */
5727 && ! (COMPARISON_P (x
)
5728 && (COMPARISON_P (true_rtx
) || COMPARISON_P (false_rtx
)))
5729 /* Similarly, if we end up with one of the expressions the same
5730 as the original, it is certainly not simpler. */
5731 && ! rtx_equal_p (x
, true_rtx
)
5732 && ! rtx_equal_p (x
, false_rtx
))
5734 rtx cop1
= const0_rtx
;
5735 enum rtx_code cond_code
= simplify_comparison (NE
, &cond
, &cop1
);
5737 if (cond_code
== NE
&& COMPARISON_P (cond
))
5740 /* Simplify the alternative arms; this may collapse the true and
5741 false arms to store-flag values. Be careful to use copy_rtx
5742 here since true_rtx or false_rtx might share RTL with x as a
5743 result of the if_then_else_cond call above. */
5744 true_rtx
= subst (copy_rtx (true_rtx
), pc_rtx
, pc_rtx
, 0, 0, 0);
5745 false_rtx
= subst (copy_rtx (false_rtx
), pc_rtx
, pc_rtx
, 0, 0, 0);
5747 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5748 is unlikely to be simpler. */
5749 if (general_operand (true_rtx
, VOIDmode
)
5750 && general_operand (false_rtx
, VOIDmode
))
5752 enum rtx_code reversed
;
5754 /* Restarting if we generate a store-flag expression will cause
5755 us to loop. Just drop through in this case. */
5757 /* If the result values are STORE_FLAG_VALUE and zero, we can
5758 just make the comparison operation. */
5759 if (true_rtx
== const_true_rtx
&& false_rtx
== const0_rtx
)
5760 x
= simplify_gen_relational (cond_code
, mode
, VOIDmode
,
5762 else if (true_rtx
== const0_rtx
&& false_rtx
== const_true_rtx
5763 && ((reversed
= reversed_comparison_code_parts
5764 (cond_code
, cond
, cop1
, NULL
))
5766 x
= simplify_gen_relational (reversed
, mode
, VOIDmode
,
5769 /* Likewise, we can make the negate of a comparison operation
5770 if the result values are - STORE_FLAG_VALUE and zero. */
5771 else if (CONST_INT_P (true_rtx
)
5772 && INTVAL (true_rtx
) == - STORE_FLAG_VALUE
5773 && false_rtx
== const0_rtx
)
5774 x
= simplify_gen_unary (NEG
, mode
,
5775 simplify_gen_relational (cond_code
,
5779 else if (CONST_INT_P (false_rtx
)
5780 && INTVAL (false_rtx
) == - STORE_FLAG_VALUE
5781 && true_rtx
== const0_rtx
5782 && ((reversed
= reversed_comparison_code_parts
5783 (cond_code
, cond
, cop1
, NULL
))
5785 x
= simplify_gen_unary (NEG
, mode
,
5786 simplify_gen_relational (reversed
,
5791 code
= GET_CODE (x
);
5792 op0_mode
= VOIDmode
;
5797 /* First see if we can apply the inverse distributive law. */
5798 if (code
== PLUS
|| code
== MINUS
5799 || code
== AND
|| code
== IOR
|| code
== XOR
)
5801 x
= apply_distributive_law (x
);
5802 code
= GET_CODE (x
);
5803 op0_mode
= VOIDmode
;
5806 /* If CODE is an associative operation not otherwise handled, see if we
5807 can associate some operands. This can win if they are constants or
5808 if they are logically related (i.e. (a & b) & a). */
5809 if ((code
== PLUS
|| code
== MINUS
|| code
== MULT
|| code
== DIV
5810 || code
== AND
|| code
== IOR
|| code
== XOR
5811 || code
== SMAX
|| code
== SMIN
|| code
== UMAX
|| code
== UMIN
)
5812 && ((INTEGRAL_MODE_P (mode
) && code
!= DIV
)
5813 || (flag_associative_math
&& FLOAT_MODE_P (mode
))))
5815 if (GET_CODE (XEXP (x
, 0)) == code
)
5817 rtx other
= XEXP (XEXP (x
, 0), 0);
5818 rtx inner_op0
= XEXP (XEXP (x
, 0), 1);
5819 rtx inner_op1
= XEXP (x
, 1);
5822 /* Make sure we pass the constant operand if any as the second
5823 one if this is a commutative operation. */
5824 if (CONSTANT_P (inner_op0
) && COMMUTATIVE_ARITH_P (x
))
5825 std::swap (inner_op0
, inner_op1
);
5826 inner
= simplify_binary_operation (code
== MINUS
? PLUS
5827 : code
== DIV
? MULT
5829 mode
, inner_op0
, inner_op1
);
5831 /* For commutative operations, try the other pair if that one
5833 if (inner
== 0 && COMMUTATIVE_ARITH_P (x
))
5835 other
= XEXP (XEXP (x
, 0), 1);
5836 inner
= simplify_binary_operation (code
, mode
,
5837 XEXP (XEXP (x
, 0), 0),
5842 return simplify_gen_binary (code
, mode
, other
, inner
);
5846 /* A little bit of algebraic simplification here. */
5850 /* Ensure that our address has any ASHIFTs converted to MULT in case
5851 address-recognizing predicates are called later. */
5852 temp
= make_compound_operation (XEXP (x
, 0), MEM
);
5853 SUBST (XEXP (x
, 0), temp
);
5857 if (op0_mode
== VOIDmode
)
5858 op0_mode
= GET_MODE (SUBREG_REG (x
));
5860 /* See if this can be moved to simplify_subreg. */
5861 if (CONSTANT_P (SUBREG_REG (x
))
5862 && known_eq (subreg_lowpart_offset (mode
, op0_mode
), SUBREG_BYTE (x
))
5863 /* Don't call gen_lowpart if the inner mode
5864 is VOIDmode and we cannot simplify it, as SUBREG without
5865 inner mode is invalid. */
5866 && (GET_MODE (SUBREG_REG (x
)) != VOIDmode
5867 || gen_lowpart_common (mode
, SUBREG_REG (x
))))
5868 return gen_lowpart (mode
, SUBREG_REG (x
));
5870 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x
))) == MODE_CC
)
5874 temp
= simplify_subreg (mode
, SUBREG_REG (x
), op0_mode
,
5879 /* If op is known to have all lower bits zero, the result is zero. */
5880 scalar_int_mode int_mode
, int_op0_mode
;
5882 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
5883 && is_a
<scalar_int_mode
> (op0_mode
, &int_op0_mode
)
5884 && (GET_MODE_PRECISION (int_mode
)
5885 < GET_MODE_PRECISION (int_op0_mode
))
5886 && known_eq (subreg_lowpart_offset (int_mode
, int_op0_mode
),
5888 && HWI_COMPUTABLE_MODE_P (int_op0_mode
)
5889 && ((nonzero_bits (SUBREG_REG (x
), int_op0_mode
)
5890 & GET_MODE_MASK (int_mode
)) == 0)
5891 && !side_effects_p (SUBREG_REG (x
)))
5892 return CONST0_RTX (int_mode
);
5895 /* Don't change the mode of the MEM if that would change the meaning
5897 if (MEM_P (SUBREG_REG (x
))
5898 && (MEM_VOLATILE_P (SUBREG_REG (x
))
5899 || mode_dependent_address_p (XEXP (SUBREG_REG (x
), 0),
5900 MEM_ADDR_SPACE (SUBREG_REG (x
)))))
5901 return gen_rtx_CLOBBER (mode
, const0_rtx
);
5903 /* Note that we cannot do any narrowing for non-constants since
5904 we might have been counting on using the fact that some bits were
5905 zero. We now do this in the SET. */
5910 temp
= expand_compound_operation (XEXP (x
, 0));
5912 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5913 replaced by (lshiftrt X C). This will convert
5914 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5916 if (GET_CODE (temp
) == ASHIFTRT
5917 && CONST_INT_P (XEXP (temp
, 1))
5918 && INTVAL (XEXP (temp
, 1)) == GET_MODE_UNIT_PRECISION (mode
) - 1)
5919 return simplify_shift_const (NULL_RTX
, LSHIFTRT
, mode
, XEXP (temp
, 0),
5920 INTVAL (XEXP (temp
, 1)));
5922 /* If X has only a single bit that might be nonzero, say, bit I, convert
5923 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5924 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5925 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5926 or a SUBREG of one since we'd be making the expression more
5927 complex if it was just a register. */
5930 && ! (GET_CODE (temp
) == SUBREG
5931 && REG_P (SUBREG_REG (temp
)))
5932 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
5933 && (i
= exact_log2 (nonzero_bits (temp
, int_mode
))) >= 0)
5935 rtx temp1
= simplify_shift_const
5936 (NULL_RTX
, ASHIFTRT
, int_mode
,
5937 simplify_shift_const (NULL_RTX
, ASHIFT
, int_mode
, temp
,
5938 GET_MODE_PRECISION (int_mode
) - 1 - i
),
5939 GET_MODE_PRECISION (int_mode
) - 1 - i
);
5941 /* If all we did was surround TEMP with the two shifts, we
5942 haven't improved anything, so don't use it. Otherwise,
5943 we are better off with TEMP1. */
5944 if (GET_CODE (temp1
) != ASHIFTRT
5945 || GET_CODE (XEXP (temp1
, 0)) != ASHIFT
5946 || XEXP (XEXP (temp1
, 0), 0) != temp
)
5952 /* We can't handle truncation to a partial integer mode here
5953 because we don't know the real bitsize of the partial
5955 if (GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
)
5958 if (HWI_COMPUTABLE_MODE_P (mode
))
5960 force_to_mode (XEXP (x
, 0), GET_MODE (XEXP (x
, 0)),
5961 GET_MODE_MASK (mode
), 0));
5963 /* We can truncate a constant value and return it. */
5966 if (poly_int_rtx_p (XEXP (x
, 0), &c
))
5967 return gen_int_mode (c
, mode
);
5970 /* Similarly to what we do in simplify-rtx.cc, a truncate of a register
5971 whose value is a comparison can be replaced with a subreg if
5972 STORE_FLAG_VALUE permits. */
5973 if (HWI_COMPUTABLE_MODE_P (mode
)
5974 && (STORE_FLAG_VALUE
& ~GET_MODE_MASK (mode
)) == 0
5975 && (temp
= get_last_value (XEXP (x
, 0)))
5976 && COMPARISON_P (temp
)
5977 && TRULY_NOOP_TRUNCATION_MODES_P (mode
, GET_MODE (XEXP (x
, 0))))
5978 return gen_lowpart (mode
, XEXP (x
, 0));
5982 /* (const (const X)) can become (const X). Do it this way rather than
5983 returning the inner CONST since CONST can be shared with a
5985 if (GET_CODE (XEXP (x
, 0)) == CONST
)
5986 SUBST (XEXP (x
, 0), XEXP (XEXP (x
, 0), 0));
5990 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
5991 can add in an offset. find_split_point will split this address up
5992 again if it doesn't match. */
5993 if (HAVE_lo_sum
&& GET_CODE (XEXP (x
, 0)) == HIGH
5994 && rtx_equal_p (XEXP (XEXP (x
, 0), 0), XEXP (x
, 1)))
5999 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
6000 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
6001 bit-field and can be replaced by either a sign_extend or a
6002 sign_extract. The `and' may be a zero_extend and the two
6003 <c>, -<c> constants may be reversed. */
6004 if (GET_CODE (XEXP (x
, 0)) == XOR
6005 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
6006 && CONST_INT_P (XEXP (x
, 1))
6007 && CONST_INT_P (XEXP (XEXP (x
, 0), 1))
6008 && INTVAL (XEXP (x
, 1)) == -INTVAL (XEXP (XEXP (x
, 0), 1))
6009 && ((i
= exact_log2 (UINTVAL (XEXP (XEXP (x
, 0), 1)))) >= 0
6010 || (i
= exact_log2 (UINTVAL (XEXP (x
, 1)))) >= 0)
6011 && HWI_COMPUTABLE_MODE_P (int_mode
)
6012 && ((GET_CODE (XEXP (XEXP (x
, 0), 0)) == AND
6013 && CONST_INT_P (XEXP (XEXP (XEXP (x
, 0), 0), 1))
6014 && (UINTVAL (XEXP (XEXP (XEXP (x
, 0), 0), 1))
6015 == (HOST_WIDE_INT_1U
<< (i
+ 1)) - 1))
6016 || (GET_CODE (XEXP (XEXP (x
, 0), 0)) == ZERO_EXTEND
6017 && known_eq ((GET_MODE_PRECISION
6018 (GET_MODE (XEXP (XEXP (XEXP (x
, 0), 0), 0)))),
6019 (unsigned int) i
+ 1))))
6020 return simplify_shift_const
6021 (NULL_RTX
, ASHIFTRT
, int_mode
,
6022 simplify_shift_const (NULL_RTX
, ASHIFT
, int_mode
,
6023 XEXP (XEXP (XEXP (x
, 0), 0), 0),
6024 GET_MODE_PRECISION (int_mode
) - (i
+ 1)),
6025 GET_MODE_PRECISION (int_mode
) - (i
+ 1));
6027 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
6028 can become (ashiftrt (ashift (xor x 1) C) C) where C is
6029 the bitsize of the mode - 1. This allows simplification of
6030 "a = (b & 8) == 0;" */
6031 if (XEXP (x
, 1) == constm1_rtx
6032 && !REG_P (XEXP (x
, 0))
6033 && ! (GET_CODE (XEXP (x
, 0)) == SUBREG
6034 && REG_P (SUBREG_REG (XEXP (x
, 0))))
6035 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
6036 && nonzero_bits (XEXP (x
, 0), int_mode
) == 1)
6037 return simplify_shift_const
6038 (NULL_RTX
, ASHIFTRT
, int_mode
,
6039 simplify_shift_const (NULL_RTX
, ASHIFT
, int_mode
,
6040 gen_rtx_XOR (int_mode
, XEXP (x
, 0),
6042 GET_MODE_PRECISION (int_mode
) - 1),
6043 GET_MODE_PRECISION (int_mode
) - 1);
6045 /* If we are adding two things that have no bits in common, convert
6046 the addition into an IOR. This will often be further simplified,
6047 for example in cases like ((a & 1) + (a & 2)), which can
6050 if (HWI_COMPUTABLE_MODE_P (mode
)
6051 && (nonzero_bits (XEXP (x
, 0), mode
)
6052 & nonzero_bits (XEXP (x
, 1), mode
)) == 0)
6054 /* Try to simplify the expression further. */
6055 rtx tor
= simplify_gen_binary (IOR
, mode
, XEXP (x
, 0), XEXP (x
, 1));
6056 temp
= combine_simplify_rtx (tor
, VOIDmode
, in_dest
, 0);
6058 /* If we could, great. If not, do not go ahead with the IOR
6059 replacement, since PLUS appears in many special purpose
6060 address arithmetic instructions. */
6061 if (GET_CODE (temp
) != CLOBBER
6062 && (GET_CODE (temp
) != IOR
6063 || ((XEXP (temp
, 0) != XEXP (x
, 0)
6064 || XEXP (temp
, 1) != XEXP (x
, 1))
6065 && (XEXP (temp
, 0) != XEXP (x
, 1)
6066 || XEXP (temp
, 1) != XEXP (x
, 0)))))
6070 /* Canonicalize x + x into x << 1. */
6071 if (GET_MODE_CLASS (mode
) == MODE_INT
6072 && rtx_equal_p (XEXP (x
, 0), XEXP (x
, 1))
6073 && !side_effects_p (XEXP (x
, 0)))
6074 return simplify_gen_binary (ASHIFT
, mode
, XEXP (x
, 0), const1_rtx
);
6079 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
6080 (and <foo> (const_int pow2-1)) */
6081 if (is_a
<scalar_int_mode
> (mode
, &int_mode
)
6082 && GET_CODE (XEXP (x
, 1)) == AND
6083 && CONST_INT_P (XEXP (XEXP (x
, 1), 1))
6084 && pow2p_hwi (-UINTVAL (XEXP (XEXP (x
, 1), 1)))
6085 && rtx_equal_p (XEXP (XEXP (x
, 1), 0), XEXP (x
, 0)))
6086 return simplify_and_const_int (NULL_RTX
, int_mode
, XEXP (x
, 0),
6087 -INTVAL (XEXP (XEXP (x
, 1), 1)) - 1);
6091 /* If we have (mult (plus A B) C), apply the distributive law and then
6092 the inverse distributive law to see if things simplify. This
6093 occurs mostly in addresses, often when unrolling loops. */
6095 if (GET_CODE (XEXP (x
, 0)) == PLUS
)
6097 rtx result
= distribute_and_simplify_rtx (x
, 0);
6102 /* Try simplify a*(b/c) as (a*b)/c. */
6103 if (FLOAT_MODE_P (mode
) && flag_associative_math
6104 && GET_CODE (XEXP (x
, 0)) == DIV
)
6106 rtx tem
= simplify_binary_operation (MULT
, mode
,
6107 XEXP (XEXP (x
, 0), 0),
6110 return simplify_gen_binary (DIV
, mode
, tem
, XEXP (XEXP (x
, 0), 1));
6115 /* If this is a divide by a power of two, treat it as a shift if
6116 its first operand is a shift. */
6117 if (is_a
<scalar_int_mode
> (mode
, &int_mode
)
6118 && CONST_INT_P (XEXP (x
, 1))
6119 && (i
= exact_log2 (UINTVAL (XEXP (x
, 1)))) >= 0
6120 && (GET_CODE (XEXP (x
, 0)) == ASHIFT
6121 || GET_CODE (XEXP (x
, 0)) == LSHIFTRT
6122 || GET_CODE (XEXP (x
, 0)) == ASHIFTRT
6123 || GET_CODE (XEXP (x
, 0)) == ROTATE
6124 || GET_CODE (XEXP (x
, 0)) == ROTATERT
))
6125 return simplify_shift_const (NULL_RTX
, LSHIFTRT
, int_mode
,
6130 case GT
: case GTU
: case GE
: case GEU
:
6131 case LT
: case LTU
: case LE
: case LEU
:
6132 case UNEQ
: case LTGT
:
6133 case UNGT
: case UNGE
:
6134 case UNLT
: case UNLE
:
6135 case UNORDERED
: case ORDERED
:
6136 /* If the first operand is a condition code, we can't do anything
6138 if (GET_CODE (XEXP (x
, 0)) == COMPARE
6139 || GET_MODE_CLASS (GET_MODE (XEXP (x
, 0))) != MODE_CC
)
6141 rtx op0
= XEXP (x
, 0);
6142 rtx op1
= XEXP (x
, 1);
6143 enum rtx_code new_code
;
6145 if (GET_CODE (op0
) == COMPARE
)
6146 op1
= XEXP (op0
, 1), op0
= XEXP (op0
, 0);
6148 /* Simplify our comparison, if possible. */
6149 new_code
= simplify_comparison (code
, &op0
, &op1
);
6151 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
6152 if only the low-order bit is possibly nonzero in X (such as when
6153 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
6154 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
6155 known to be either 0 or -1, NE becomes a NEG and EQ becomes
6158 Remove any ZERO_EXTRACT we made when thinking this was a
6159 comparison. It may now be simpler to use, e.g., an AND. If a
6160 ZERO_EXTRACT is indeed appropriate, it will be placed back by
6161 the call to make_compound_operation in the SET case.
6163 Don't apply these optimizations if the caller would
6164 prefer a comparison rather than a value.
6165 E.g., for the condition in an IF_THEN_ELSE most targets need
6166 an explicit comparison. */
6171 else if (STORE_FLAG_VALUE
== 1
6173 && is_int_mode (mode
, &int_mode
)
6174 && op1
== const0_rtx
6175 && int_mode
== GET_MODE (op0
)
6176 && nonzero_bits (op0
, int_mode
) == 1)
6177 return gen_lowpart (int_mode
,
6178 expand_compound_operation (op0
));
6180 else if (STORE_FLAG_VALUE
== 1
6182 && is_int_mode (mode
, &int_mode
)
6183 && op1
== const0_rtx
6184 && int_mode
== GET_MODE (op0
)
6185 && (num_sign_bit_copies (op0
, int_mode
)
6186 == GET_MODE_PRECISION (int_mode
)))
6188 op0
= expand_compound_operation (op0
);
6189 return simplify_gen_unary (NEG
, int_mode
,
6190 gen_lowpart (int_mode
, op0
),
6194 else if (STORE_FLAG_VALUE
== 1
6196 && is_int_mode (mode
, &int_mode
)
6197 && op1
== const0_rtx
6198 && int_mode
== GET_MODE (op0
)
6199 && nonzero_bits (op0
, int_mode
) == 1)
6201 op0
= expand_compound_operation (op0
);
6202 return simplify_gen_binary (XOR
, int_mode
,
6203 gen_lowpart (int_mode
, op0
),
6207 else if (STORE_FLAG_VALUE
== 1
6209 && is_int_mode (mode
, &int_mode
)
6210 && op1
== const0_rtx
6211 && int_mode
== GET_MODE (op0
)
6212 && (num_sign_bit_copies (op0
, int_mode
)
6213 == GET_MODE_PRECISION (int_mode
)))
6215 op0
= expand_compound_operation (op0
);
6216 return plus_constant (int_mode
, gen_lowpart (int_mode
, op0
), 1);
6219 /* If STORE_FLAG_VALUE is -1, we have cases similar to
6224 else if (STORE_FLAG_VALUE
== -1
6226 && is_int_mode (mode
, &int_mode
)
6227 && op1
== const0_rtx
6228 && int_mode
== GET_MODE (op0
)
6229 && (num_sign_bit_copies (op0
, int_mode
)
6230 == GET_MODE_PRECISION (int_mode
)))
6231 return gen_lowpart (int_mode
, expand_compound_operation (op0
));
6233 else if (STORE_FLAG_VALUE
== -1
6235 && is_int_mode (mode
, &int_mode
)
6236 && op1
== const0_rtx
6237 && int_mode
== GET_MODE (op0
)
6238 && nonzero_bits (op0
, int_mode
) == 1)
6240 op0
= expand_compound_operation (op0
);
6241 return simplify_gen_unary (NEG
, int_mode
,
6242 gen_lowpart (int_mode
, op0
),
6246 else if (STORE_FLAG_VALUE
== -1
6248 && is_int_mode (mode
, &int_mode
)
6249 && op1
== const0_rtx
6250 && int_mode
== GET_MODE (op0
)
6251 && (num_sign_bit_copies (op0
, int_mode
)
6252 == GET_MODE_PRECISION (int_mode
)))
6254 op0
= expand_compound_operation (op0
);
6255 return simplify_gen_unary (NOT
, int_mode
,
6256 gen_lowpart (int_mode
, op0
),
6260 /* If X is 0/1, (eq X 0) is X-1. */
6261 else if (STORE_FLAG_VALUE
== -1
6263 && is_int_mode (mode
, &int_mode
)
6264 && op1
== const0_rtx
6265 && int_mode
== GET_MODE (op0
)
6266 && nonzero_bits (op0
, int_mode
) == 1)
6268 op0
= expand_compound_operation (op0
);
6269 return plus_constant (int_mode
, gen_lowpart (int_mode
, op0
), -1);
6272 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
6273 one bit that might be nonzero, we can convert (ne x 0) to
6274 (ashift x c) where C puts the bit in the sign bit. Remove any
6275 AND with STORE_FLAG_VALUE when we are done, since we are only
6276 going to test the sign bit. */
6278 && is_int_mode (mode
, &int_mode
)
6279 && HWI_COMPUTABLE_MODE_P (int_mode
)
6280 && val_signbit_p (int_mode
, STORE_FLAG_VALUE
)
6281 && op1
== const0_rtx
6282 && int_mode
== GET_MODE (op0
)
6283 && (i
= exact_log2 (nonzero_bits (op0
, int_mode
))) >= 0)
6285 x
= simplify_shift_const (NULL_RTX
, ASHIFT
, int_mode
,
6286 expand_compound_operation (op0
),
6287 GET_MODE_PRECISION (int_mode
) - 1 - i
);
6288 if (GET_CODE (x
) == AND
&& XEXP (x
, 1) == const_true_rtx
)
6294 /* If the code changed, return a whole new comparison.
6295 We also need to avoid using SUBST in cases where
6296 simplify_comparison has widened a comparison with a CONST_INT,
6297 since in that case the wider CONST_INT may fail the sanity
6298 checks in do_SUBST. */
6299 if (new_code
!= code
6300 || (CONST_INT_P (op1
)
6301 && GET_MODE (op0
) != GET_MODE (XEXP (x
, 0))
6302 && GET_MODE (op0
) != GET_MODE (XEXP (x
, 1))))
6303 return gen_rtx_fmt_ee (new_code
, mode
, op0
, op1
);
6305 /* Otherwise, keep this operation, but maybe change its operands.
6306 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
6307 SUBST (XEXP (x
, 0), op0
);
6308 SUBST (XEXP (x
, 1), op1
);
6313 return simplify_if_then_else (x
);
6319 /* If we are processing SET_DEST, we are done. */
6323 return expand_compound_operation (x
);
6326 return simplify_set (x
);
6330 return simplify_logical (x
);
6337 /* If this is a shift by a constant amount, simplify it. */
6338 if (CONST_INT_P (XEXP (x
, 1)))
6339 return simplify_shift_const (x
, code
, mode
, XEXP (x
, 0),
6340 INTVAL (XEXP (x
, 1)));
6342 else if (SHIFT_COUNT_TRUNCATED
&& !REG_P (XEXP (x
, 1)))
6344 force_to_mode (XEXP (x
, 1), GET_MODE (XEXP (x
, 1)),
6346 << exact_log2 (GET_MODE_UNIT_BITSIZE
6353 rtx trueop0
= XEXP (x
, 0);
6354 mode
= GET_MODE (trueop0
);
6355 rtx trueop1
= XEXP (x
, 1);
6356 /* If we select a low-part subreg, return that. */
6357 if (vec_series_lowpart_p (GET_MODE (x
), mode
, trueop1
))
6359 rtx new_rtx
= lowpart_subreg (GET_MODE (x
), trueop0
, mode
);
6360 if (new_rtx
!= NULL_RTX
)
6372 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
6375 simplify_if_then_else (rtx x
)
6377 machine_mode mode
= GET_MODE (x
);
6378 rtx cond
= XEXP (x
, 0);
6379 rtx true_rtx
= XEXP (x
, 1);
6380 rtx false_rtx
= XEXP (x
, 2);
6381 enum rtx_code true_code
= GET_CODE (cond
);
6382 int comparison_p
= COMPARISON_P (cond
);
6385 enum rtx_code false_code
;
6387 scalar_int_mode int_mode
, inner_mode
;
6389 /* Simplify storing of the truth value. */
6390 if (comparison_p
&& true_rtx
== const_true_rtx
&& false_rtx
== const0_rtx
)
6391 return simplify_gen_relational (true_code
, mode
, VOIDmode
,
6392 XEXP (cond
, 0), XEXP (cond
, 1));
6394 /* Also when the truth value has to be reversed. */
6396 && true_rtx
== const0_rtx
&& false_rtx
== const_true_rtx
6397 && (reversed
= reversed_comparison (cond
, mode
)))
6400 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
6401 in it is being compared against certain values. Get the true and false
6402 comparisons and see if that says anything about the value of each arm. */
6405 && ((false_code
= reversed_comparison_code (cond
, NULL
))
6407 && REG_P (XEXP (cond
, 0)))
6410 rtx from
= XEXP (cond
, 0);
6411 rtx true_val
= XEXP (cond
, 1);
6412 rtx false_val
= true_val
;
6415 /* If FALSE_CODE is EQ, swap the codes and arms. */
6417 if (false_code
== EQ
)
6419 swapped
= 1, true_code
= EQ
, false_code
= NE
;
6420 std::swap (true_rtx
, false_rtx
);
6423 scalar_int_mode from_mode
;
6424 if (is_a
<scalar_int_mode
> (GET_MODE (from
), &from_mode
))
6426 /* If we are comparing against zero and the expression being
6427 tested has only a single bit that might be nonzero, that is
6428 its value when it is not equal to zero. Similarly if it is
6429 known to be -1 or 0. */
6431 && true_val
== const0_rtx
6432 && pow2p_hwi (nzb
= nonzero_bits (from
, from_mode
)))
6435 false_val
= gen_int_mode (nzb
, from_mode
);
6437 else if (true_code
== EQ
6438 && true_val
== const0_rtx
6439 && (num_sign_bit_copies (from
, from_mode
)
6440 == GET_MODE_PRECISION (from_mode
)))
6443 false_val
= constm1_rtx
;
6447 /* Now simplify an arm if we know the value of the register in the
6448 branch and it is used in the arm. Be careful due to the potential
6449 of locally-shared RTL. */
6451 if (reg_mentioned_p (from
, true_rtx
))
6452 true_rtx
= subst (known_cond (copy_rtx (true_rtx
), true_code
,
6454 pc_rtx
, pc_rtx
, 0, 0, 0);
6455 if (reg_mentioned_p (from
, false_rtx
))
6456 false_rtx
= subst (known_cond (copy_rtx (false_rtx
), false_code
,
6458 pc_rtx
, pc_rtx
, 0, 0, 0);
6460 SUBST (XEXP (x
, 1), swapped
? false_rtx
: true_rtx
);
6461 SUBST (XEXP (x
, 2), swapped
? true_rtx
: false_rtx
);
6463 true_rtx
= XEXP (x
, 1);
6464 false_rtx
= XEXP (x
, 2);
6465 true_code
= GET_CODE (cond
);
6468 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
6469 reversed, do so to avoid needing two sets of patterns for
6470 subtract-and-branch insns. Similarly if we have a constant in the true
6471 arm, the false arm is the same as the first operand of the comparison, or
6472 the false arm is more complicated than the true arm. */
6475 && reversed_comparison_code (cond
, NULL
) != UNKNOWN
6476 && (true_rtx
== pc_rtx
6477 || (CONSTANT_P (true_rtx
)
6478 && !CONST_INT_P (false_rtx
) && false_rtx
!= pc_rtx
)
6479 || true_rtx
== const0_rtx
6480 || (OBJECT_P (true_rtx
) && !OBJECT_P (false_rtx
))
6481 || (GET_CODE (true_rtx
) == SUBREG
&& OBJECT_P (SUBREG_REG (true_rtx
))
6482 && !OBJECT_P (false_rtx
))
6483 || reg_mentioned_p (true_rtx
, false_rtx
)
6484 || rtx_equal_p (false_rtx
, XEXP (cond
, 0))))
6486 SUBST (XEXP (x
, 0), reversed_comparison (cond
, GET_MODE (cond
)));
6487 SUBST (XEXP (x
, 1), false_rtx
);
6488 SUBST (XEXP (x
, 2), true_rtx
);
6490 std::swap (true_rtx
, false_rtx
);
6493 /* It is possible that the conditional has been simplified out. */
6494 true_code
= GET_CODE (cond
);
6495 comparison_p
= COMPARISON_P (cond
);
6498 /* If the two arms are identical, we don't need the comparison. */
6500 if (rtx_equal_p (true_rtx
, false_rtx
) && ! side_effects_p (cond
))
6503 /* Convert a == b ? b : a to "a". */
6504 if (true_code
== EQ
&& ! side_effects_p (cond
)
6505 && !HONOR_NANS (mode
)
6506 && rtx_equal_p (XEXP (cond
, 0), false_rtx
)
6507 && rtx_equal_p (XEXP (cond
, 1), true_rtx
))
6509 else if (true_code
== NE
&& ! side_effects_p (cond
)
6510 && !HONOR_NANS (mode
)
6511 && rtx_equal_p (XEXP (cond
, 0), true_rtx
)
6512 && rtx_equal_p (XEXP (cond
, 1), false_rtx
))
6515 /* Look for cases where we have (abs x) or (neg (abs X)). */
6517 if (GET_MODE_CLASS (mode
) == MODE_INT
6519 && XEXP (cond
, 1) == const0_rtx
6520 && GET_CODE (false_rtx
) == NEG
6521 && rtx_equal_p (true_rtx
, XEXP (false_rtx
, 0))
6522 && rtx_equal_p (true_rtx
, XEXP (cond
, 0))
6523 && ! side_effects_p (true_rtx
))
6528 return simplify_gen_unary (ABS
, mode
, true_rtx
, mode
);
6532 simplify_gen_unary (NEG
, mode
,
6533 simplify_gen_unary (ABS
, mode
, true_rtx
, mode
),
6539 /* Look for MIN or MAX. */
6541 if ((! FLOAT_MODE_P (mode
)
6542 || (flag_unsafe_math_optimizations
6543 && !HONOR_NANS (mode
)
6544 && !HONOR_SIGNED_ZEROS (mode
)))
6546 && rtx_equal_p (XEXP (cond
, 0), true_rtx
)
6547 && rtx_equal_p (XEXP (cond
, 1), false_rtx
)
6548 && ! side_effects_p (cond
))
6553 return simplify_gen_binary (SMAX
, mode
, true_rtx
, false_rtx
);
6556 return simplify_gen_binary (SMIN
, mode
, true_rtx
, false_rtx
);
6559 return simplify_gen_binary (UMAX
, mode
, true_rtx
, false_rtx
);
6562 return simplify_gen_binary (UMIN
, mode
, true_rtx
, false_rtx
);
6567 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6568 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6569 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6570 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6571 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6572 neither 1 or -1, but it isn't worth checking for. */
6574 if ((STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
6576 && is_int_mode (mode
, &int_mode
)
6577 && ! side_effects_p (x
))
6579 rtx t
= make_compound_operation (true_rtx
, SET
);
6580 rtx f
= make_compound_operation (false_rtx
, SET
);
6581 rtx cond_op0
= XEXP (cond
, 0);
6582 rtx cond_op1
= XEXP (cond
, 1);
6583 enum rtx_code op
= UNKNOWN
, extend_op
= UNKNOWN
;
6584 scalar_int_mode m
= int_mode
;
6585 rtx z
= 0, c1
= NULL_RTX
;
6587 if ((GET_CODE (t
) == PLUS
|| GET_CODE (t
) == MINUS
6588 || GET_CODE (t
) == IOR
|| GET_CODE (t
) == XOR
6589 || GET_CODE (t
) == ASHIFT
6590 || GET_CODE (t
) == LSHIFTRT
|| GET_CODE (t
) == ASHIFTRT
)
6591 && rtx_equal_p (XEXP (t
, 0), f
))
6592 c1
= XEXP (t
, 1), op
= GET_CODE (t
), z
= f
;
6594 /* If an identity-zero op is commutative, check whether there
6595 would be a match if we swapped the operands. */
6596 else if ((GET_CODE (t
) == PLUS
|| GET_CODE (t
) == IOR
6597 || GET_CODE (t
) == XOR
)
6598 && rtx_equal_p (XEXP (t
, 1), f
))
6599 c1
= XEXP (t
, 0), op
= GET_CODE (t
), z
= f
;
6600 else if (GET_CODE (t
) == SIGN_EXTEND
6601 && is_a
<scalar_int_mode
> (GET_MODE (XEXP (t
, 0)), &inner_mode
)
6602 && (GET_CODE (XEXP (t
, 0)) == PLUS
6603 || GET_CODE (XEXP (t
, 0)) == MINUS
6604 || GET_CODE (XEXP (t
, 0)) == IOR
6605 || GET_CODE (XEXP (t
, 0)) == XOR
6606 || GET_CODE (XEXP (t
, 0)) == ASHIFT
6607 || GET_CODE (XEXP (t
, 0)) == LSHIFTRT
6608 || GET_CODE (XEXP (t
, 0)) == ASHIFTRT
)
6609 && GET_CODE (XEXP (XEXP (t
, 0), 0)) == SUBREG
6610 && subreg_lowpart_p (XEXP (XEXP (t
, 0), 0))
6611 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t
, 0), 0)), f
)
6612 && (num_sign_bit_copies (f
, GET_MODE (f
))
6614 (GET_MODE_PRECISION (int_mode
)
6615 - GET_MODE_PRECISION (inner_mode
))))
6617 c1
= XEXP (XEXP (t
, 0), 1); z
= f
; op
= GET_CODE (XEXP (t
, 0));
6618 extend_op
= SIGN_EXTEND
;
6621 else if (GET_CODE (t
) == SIGN_EXTEND
6622 && is_a
<scalar_int_mode
> (GET_MODE (XEXP (t
, 0)), &inner_mode
)
6623 && (GET_CODE (XEXP (t
, 0)) == PLUS
6624 || GET_CODE (XEXP (t
, 0)) == IOR
6625 || GET_CODE (XEXP (t
, 0)) == XOR
)
6626 && GET_CODE (XEXP (XEXP (t
, 0), 1)) == SUBREG
6627 && subreg_lowpart_p (XEXP (XEXP (t
, 0), 1))
6628 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t
, 0), 1)), f
)
6629 && (num_sign_bit_copies (f
, GET_MODE (f
))
6631 (GET_MODE_PRECISION (int_mode
)
6632 - GET_MODE_PRECISION (inner_mode
))))
6634 c1
= XEXP (XEXP (t
, 0), 0); z
= f
; op
= GET_CODE (XEXP (t
, 0));
6635 extend_op
= SIGN_EXTEND
;
6638 else if (GET_CODE (t
) == ZERO_EXTEND
6639 && is_a
<scalar_int_mode
> (GET_MODE (XEXP (t
, 0)), &inner_mode
)
6640 && (GET_CODE (XEXP (t
, 0)) == PLUS
6641 || GET_CODE (XEXP (t
, 0)) == MINUS
6642 || GET_CODE (XEXP (t
, 0)) == IOR
6643 || GET_CODE (XEXP (t
, 0)) == XOR
6644 || GET_CODE (XEXP (t
, 0)) == ASHIFT
6645 || GET_CODE (XEXP (t
, 0)) == LSHIFTRT
6646 || GET_CODE (XEXP (t
, 0)) == ASHIFTRT
)
6647 && GET_CODE (XEXP (XEXP (t
, 0), 0)) == SUBREG
6648 && HWI_COMPUTABLE_MODE_P (int_mode
)
6649 && subreg_lowpart_p (XEXP (XEXP (t
, 0), 0))
6650 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t
, 0), 0)), f
)
6651 && ((nonzero_bits (f
, GET_MODE (f
))
6652 & ~GET_MODE_MASK (inner_mode
))
6655 c1
= XEXP (XEXP (t
, 0), 1); z
= f
; op
= GET_CODE (XEXP (t
, 0));
6656 extend_op
= ZERO_EXTEND
;
6659 else if (GET_CODE (t
) == ZERO_EXTEND
6660 && is_a
<scalar_int_mode
> (GET_MODE (XEXP (t
, 0)), &inner_mode
)
6661 && (GET_CODE (XEXP (t
, 0)) == PLUS
6662 || GET_CODE (XEXP (t
, 0)) == IOR
6663 || GET_CODE (XEXP (t
, 0)) == XOR
)
6664 && GET_CODE (XEXP (XEXP (t
, 0), 1)) == SUBREG
6665 && HWI_COMPUTABLE_MODE_P (int_mode
)
6666 && subreg_lowpart_p (XEXP (XEXP (t
, 0), 1))
6667 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t
, 0), 1)), f
)
6668 && ((nonzero_bits (f
, GET_MODE (f
))
6669 & ~GET_MODE_MASK (inner_mode
))
6672 c1
= XEXP (XEXP (t
, 0), 0); z
= f
; op
= GET_CODE (XEXP (t
, 0));
6673 extend_op
= ZERO_EXTEND
;
6679 machine_mode cm
= m
;
6680 if ((op
== ASHIFT
|| op
== LSHIFTRT
|| op
== ASHIFTRT
)
6681 && GET_MODE (c1
) != VOIDmode
)
6683 temp
= subst (simplify_gen_relational (true_code
, cm
, VOIDmode
,
6684 cond_op0
, cond_op1
),
6685 pc_rtx
, pc_rtx
, 0, 0, 0);
6686 temp
= simplify_gen_binary (MULT
, cm
, temp
,
6687 simplify_gen_binary (MULT
, cm
, c1
,
6689 temp
= subst (temp
, pc_rtx
, pc_rtx
, 0, 0, 0);
6690 temp
= simplify_gen_binary (op
, m
, gen_lowpart (m
, z
), temp
);
6692 if (extend_op
!= UNKNOWN
)
6693 temp
= simplify_gen_unary (extend_op
, int_mode
, temp
, m
);
6699 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6700 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6701 negation of a single bit, we can convert this operation to a shift. We
6702 can actually do this more generally, but it doesn't seem worth it. */
6705 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
6706 && XEXP (cond
, 1) == const0_rtx
6707 && false_rtx
== const0_rtx
6708 && CONST_INT_P (true_rtx
)
6709 && ((nonzero_bits (XEXP (cond
, 0), int_mode
) == 1
6710 && (i
= exact_log2 (UINTVAL (true_rtx
))) >= 0)
6711 || ((num_sign_bit_copies (XEXP (cond
, 0), int_mode
)
6712 == GET_MODE_PRECISION (int_mode
))
6713 && (i
= exact_log2 (-UINTVAL (true_rtx
))) >= 0)))
6715 simplify_shift_const (NULL_RTX
, ASHIFT
, int_mode
,
6716 gen_lowpart (int_mode
, XEXP (cond
, 0)), i
);
6718 /* (IF_THEN_ELSE (NE A 0) C1 0) is A or a zero-extend of A if the only
6719 non-zero bit in A is C1. */
6720 if (true_code
== NE
&& XEXP (cond
, 1) == const0_rtx
6721 && false_rtx
== const0_rtx
&& CONST_INT_P (true_rtx
)
6722 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
6723 && is_a
<scalar_int_mode
> (GET_MODE (XEXP (cond
, 0)), &inner_mode
)
6724 && (UINTVAL (true_rtx
) & GET_MODE_MASK (int_mode
))
6725 == nonzero_bits (XEXP (cond
, 0), inner_mode
)
6726 && (i
= exact_log2 (UINTVAL (true_rtx
) & GET_MODE_MASK (int_mode
))) >= 0)
6728 rtx val
= XEXP (cond
, 0);
6729 if (inner_mode
== int_mode
)
6731 else if (GET_MODE_PRECISION (inner_mode
) < GET_MODE_PRECISION (int_mode
))
6732 return simplify_gen_unary (ZERO_EXTEND
, int_mode
, val
, inner_mode
);
6738 /* Simplify X, a SET expression. Return the new expression. */
6741 simplify_set (rtx x
)
6743 rtx src
= SET_SRC (x
);
6744 rtx dest
= SET_DEST (x
);
6746 = GET_MODE (src
) != VOIDmode
? GET_MODE (src
) : GET_MODE (dest
);
6747 rtx_insn
*other_insn
;
6749 scalar_int_mode int_mode
;
6751 /* (set (pc) (return)) gets written as (return). */
6752 if (GET_CODE (dest
) == PC
&& ANY_RETURN_P (src
))
6755 /* Now that we know for sure which bits of SRC we are using, see if we can
6756 simplify the expression for the object knowing that we only need the
6759 if (GET_MODE_CLASS (mode
) == MODE_INT
&& HWI_COMPUTABLE_MODE_P (mode
))
6761 src
= force_to_mode (src
, mode
, HOST_WIDE_INT_M1U
, 0);
6762 SUBST (SET_SRC (x
), src
);
6765 /* If the source is a COMPARE, look for the use of the comparison result
6766 and try to simplify it unless we already have used undobuf.other_insn. */
6767 if ((GET_MODE_CLASS (mode
) == MODE_CC
|| GET_CODE (src
) == COMPARE
)
6768 && (cc_use
= find_single_use (dest
, subst_insn
, &other_insn
)) != 0
6769 && (undobuf
.other_insn
== 0 || other_insn
== undobuf
.other_insn
)
6770 && COMPARISON_P (*cc_use
)
6771 && rtx_equal_p (XEXP (*cc_use
, 0), dest
))
6773 enum rtx_code old_code
= GET_CODE (*cc_use
);
6774 enum rtx_code new_code
;
6776 int other_changed
= 0;
6777 rtx inner_compare
= NULL_RTX
;
6778 machine_mode compare_mode
= GET_MODE (dest
);
6780 if (GET_CODE (src
) == COMPARE
)
6782 op0
= XEXP (src
, 0), op1
= XEXP (src
, 1);
6783 if (GET_CODE (op0
) == COMPARE
&& op1
== const0_rtx
)
6785 inner_compare
= op0
;
6786 op0
= XEXP (inner_compare
, 0), op1
= XEXP (inner_compare
, 1);
6790 op0
= src
, op1
= CONST0_RTX (GET_MODE (src
));
6792 tmp
= simplify_relational_operation (old_code
, compare_mode
, VOIDmode
,
6795 new_code
= old_code
;
6796 else if (!CONSTANT_P (tmp
))
6798 new_code
= GET_CODE (tmp
);
6799 op0
= XEXP (tmp
, 0);
6800 op1
= XEXP (tmp
, 1);
6804 rtx pat
= PATTERN (other_insn
);
6805 undobuf
.other_insn
= other_insn
;
6806 SUBST (*cc_use
, tmp
);
6808 /* Attempt to simplify CC user. */
6809 if (GET_CODE (pat
) == SET
)
6811 rtx new_rtx
= simplify_rtx (SET_SRC (pat
));
6812 if (new_rtx
!= NULL_RTX
)
6813 SUBST (SET_SRC (pat
), new_rtx
);
6816 /* Convert X into a no-op move. */
6817 SUBST (SET_DEST (x
), pc_rtx
);
6818 SUBST (SET_SRC (x
), pc_rtx
);
6822 /* Simplify our comparison, if possible. */
6823 new_code
= simplify_comparison (new_code
, &op0
, &op1
);
6825 #ifdef SELECT_CC_MODE
6826 /* If this machine has CC modes other than CCmode, check to see if we
6827 need to use a different CC mode here. */
6828 if (GET_MODE_CLASS (GET_MODE (op0
)) == MODE_CC
)
6829 compare_mode
= GET_MODE (op0
);
6830 else if (inner_compare
6831 && GET_MODE_CLASS (GET_MODE (inner_compare
)) == MODE_CC
6832 && new_code
== old_code
6833 && op0
== XEXP (inner_compare
, 0)
6834 && op1
== XEXP (inner_compare
, 1))
6835 compare_mode
= GET_MODE (inner_compare
);
6837 compare_mode
= SELECT_CC_MODE (new_code
, op0
, op1
);
6839 /* If the mode changed, we have to change SET_DEST, the mode in the
6840 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6841 a hard register, just build new versions with the proper mode. If it
6842 is a pseudo, we lose unless it is only time we set the pseudo, in
6843 which case we can safely change its mode. */
6844 if (compare_mode
!= GET_MODE (dest
))
6846 if (can_change_dest_mode (dest
, 0, compare_mode
))
6848 unsigned int regno
= REGNO (dest
);
6851 if (regno
< FIRST_PSEUDO_REGISTER
)
6852 new_dest
= gen_rtx_REG (compare_mode
, regno
);
6855 subst_mode (regno
, compare_mode
);
6856 new_dest
= regno_reg_rtx
[regno
];
6859 SUBST (SET_DEST (x
), new_dest
);
6860 SUBST (XEXP (*cc_use
, 0), new_dest
);
6866 #endif /* SELECT_CC_MODE */
6868 /* If the code changed, we have to build a new comparison in
6869 undobuf.other_insn. */
6870 if (new_code
!= old_code
)
6872 int other_changed_previously
= other_changed
;
6873 unsigned HOST_WIDE_INT mask
;
6874 rtx old_cc_use
= *cc_use
;
6876 SUBST (*cc_use
, gen_rtx_fmt_ee (new_code
, GET_MODE (*cc_use
),
6880 /* If the only change we made was to change an EQ into an NE or
6881 vice versa, OP0 has only one bit that might be nonzero, and OP1
6882 is zero, check if changing the user of the condition code will
6883 produce a valid insn. If it won't, we can keep the original code
6884 in that insn by surrounding our operation with an XOR. */
6886 if (((old_code
== NE
&& new_code
== EQ
)
6887 || (old_code
== EQ
&& new_code
== NE
))
6888 && ! other_changed_previously
&& op1
== const0_rtx
6889 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0
))
6890 && pow2p_hwi (mask
= nonzero_bits (op0
, GET_MODE (op0
))))
6892 rtx pat
= PATTERN (other_insn
), note
= 0;
6894 if ((recog_for_combine (&pat
, other_insn
, ¬e
) < 0
6895 && ! check_asm_operands (pat
)))
6897 *cc_use
= old_cc_use
;
6900 op0
= simplify_gen_binary (XOR
, GET_MODE (op0
), op0
,
6908 undobuf
.other_insn
= other_insn
;
6910 /* Don't generate a compare of a CC with 0, just use that CC. */
6911 if (GET_MODE (op0
) == compare_mode
&& op1
== const0_rtx
)
6913 SUBST (SET_SRC (x
), op0
);
6916 /* Otherwise, if we didn't previously have the same COMPARE we
6917 want, create it from scratch. */
6918 else if (GET_CODE (src
) != COMPARE
|| GET_MODE (src
) != compare_mode
6919 || XEXP (src
, 0) != op0
|| XEXP (src
, 1) != op1
)
6921 SUBST (SET_SRC (x
), gen_rtx_COMPARE (compare_mode
, op0
, op1
));
6927 /* Get SET_SRC in a form where we have placed back any
6928 compound expressions. Then do the checks below. */
6929 src
= make_compound_operation (src
, SET
);
6930 SUBST (SET_SRC (x
), src
);
6933 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6934 and X being a REG or (subreg (reg)), we may be able to convert this to
6935 (set (subreg:m2 x) (op)).
6937 We can always do this if M1 is narrower than M2 because that means that
6938 we only care about the low bits of the result.
6940 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6941 perform a narrower operation than requested since the high-order bits will
6942 be undefined. On machine where it is defined, this transformation is safe
6943 as long as M1 and M2 have the same number of words. */
6945 if (GET_CODE (src
) == SUBREG
&& subreg_lowpart_p (src
)
6946 && !OBJECT_P (SUBREG_REG (src
))
6947 && (known_equal_after_align_up
6948 (GET_MODE_SIZE (GET_MODE (src
)),
6949 GET_MODE_SIZE (GET_MODE (SUBREG_REG (src
))),
6951 && (WORD_REGISTER_OPERATIONS
|| !paradoxical_subreg_p (src
))
6952 && ! (REG_P (dest
) && REGNO (dest
) < FIRST_PSEUDO_REGISTER
6953 && !REG_CAN_CHANGE_MODE_P (REGNO (dest
),
6954 GET_MODE (SUBREG_REG (src
)),
6957 || (GET_CODE (dest
) == SUBREG
6958 && REG_P (SUBREG_REG (dest
)))))
6960 SUBST (SET_DEST (x
),
6961 gen_lowpart (GET_MODE (SUBREG_REG (src
)),
6963 SUBST (SET_SRC (x
), SUBREG_REG (src
));
6965 src
= SET_SRC (x
), dest
= SET_DEST (x
);
6968 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6969 would require a paradoxical subreg. Replace the subreg with a
6970 zero_extend to avoid the reload that would otherwise be required.
6971 Don't do this unless we have a scalar integer mode, otherwise the
6972 transformation is incorrect. */
6974 enum rtx_code extend_op
;
6975 if (paradoxical_subreg_p (src
)
6976 && MEM_P (SUBREG_REG (src
))
6977 && SCALAR_INT_MODE_P (GET_MODE (src
))
6978 && (extend_op
= load_extend_op (GET_MODE (SUBREG_REG (src
)))) != UNKNOWN
)
6981 gen_rtx_fmt_e (extend_op
, GET_MODE (src
), SUBREG_REG (src
)));
6986 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
6987 are comparing an item known to be 0 or -1 against 0, use a logical
6988 operation instead. Check for one of the arms being an IOR of the other
6989 arm with some value. We compute three terms to be IOR'ed together. In
6990 practice, at most two will be nonzero. Then we do the IOR's. */
6992 if (GET_CODE (dest
) != PC
6993 && GET_CODE (src
) == IF_THEN_ELSE
6994 && is_int_mode (GET_MODE (src
), &int_mode
)
6995 && (GET_CODE (XEXP (src
, 0)) == EQ
|| GET_CODE (XEXP (src
, 0)) == NE
)
6996 && XEXP (XEXP (src
, 0), 1) == const0_rtx
6997 && int_mode
== GET_MODE (XEXP (XEXP (src
, 0), 0))
6998 && (!HAVE_conditional_move
6999 || ! can_conditionally_move_p (int_mode
))
7000 && (num_sign_bit_copies (XEXP (XEXP (src
, 0), 0), int_mode
)
7001 == GET_MODE_PRECISION (int_mode
))
7002 && ! side_effects_p (src
))
7004 rtx true_rtx
= (GET_CODE (XEXP (src
, 0)) == NE
7005 ? XEXP (src
, 1) : XEXP (src
, 2));
7006 rtx false_rtx
= (GET_CODE (XEXP (src
, 0)) == NE
7007 ? XEXP (src
, 2) : XEXP (src
, 1));
7008 rtx term1
= const0_rtx
, term2
, term3
;
7010 if (GET_CODE (true_rtx
) == IOR
7011 && rtx_equal_p (XEXP (true_rtx
, 0), false_rtx
))
7012 term1
= false_rtx
, true_rtx
= XEXP (true_rtx
, 1), false_rtx
= const0_rtx
;
7013 else if (GET_CODE (true_rtx
) == IOR
7014 && rtx_equal_p (XEXP (true_rtx
, 1), false_rtx
))
7015 term1
= false_rtx
, true_rtx
= XEXP (true_rtx
, 0), false_rtx
= const0_rtx
;
7016 else if (GET_CODE (false_rtx
) == IOR
7017 && rtx_equal_p (XEXP (false_rtx
, 0), true_rtx
))
7018 term1
= true_rtx
, false_rtx
= XEXP (false_rtx
, 1), true_rtx
= const0_rtx
;
7019 else if (GET_CODE (false_rtx
) == IOR
7020 && rtx_equal_p (XEXP (false_rtx
, 1), true_rtx
))
7021 term1
= true_rtx
, false_rtx
= XEXP (false_rtx
, 0), true_rtx
= const0_rtx
;
7023 term2
= simplify_gen_binary (AND
, int_mode
,
7024 XEXP (XEXP (src
, 0), 0), true_rtx
);
7025 term3
= simplify_gen_binary (AND
, int_mode
,
7026 simplify_gen_unary (NOT
, int_mode
,
7027 XEXP (XEXP (src
, 0), 0),
7032 simplify_gen_binary (IOR
, int_mode
,
7033 simplify_gen_binary (IOR
, int_mode
,
7040 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
7041 whole thing fail. */
7042 if (GET_CODE (src
) == CLOBBER
&& XEXP (src
, 0) == const0_rtx
)
7044 else if (GET_CODE (dest
) == CLOBBER
&& XEXP (dest
, 0) == const0_rtx
)
7047 /* Convert this into a field assignment operation, if possible. */
7048 return make_field_assignment (x
);
7051 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
7055 simplify_logical (rtx x
)
7057 rtx op0
= XEXP (x
, 0);
7058 rtx op1
= XEXP (x
, 1);
7059 scalar_int_mode mode
;
7061 switch (GET_CODE (x
))
7064 /* We can call simplify_and_const_int only if we don't lose
7065 any (sign) bits when converting INTVAL (op1) to
7066 "unsigned HOST_WIDE_INT". */
7067 if (is_a
<scalar_int_mode
> (GET_MODE (x
), &mode
)
7068 && CONST_INT_P (op1
)
7069 && (HWI_COMPUTABLE_MODE_P (mode
)
7070 || INTVAL (op1
) > 0))
7072 x
= simplify_and_const_int (x
, mode
, op0
, INTVAL (op1
));
7073 if (GET_CODE (x
) != AND
)
7080 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
7081 apply the distributive law and then the inverse distributive
7082 law to see if things simplify. */
7083 if (GET_CODE (op0
) == IOR
|| GET_CODE (op0
) == XOR
)
7085 rtx result
= distribute_and_simplify_rtx (x
, 0);
7089 if (GET_CODE (op1
) == IOR
|| GET_CODE (op1
) == XOR
)
7091 rtx result
= distribute_and_simplify_rtx (x
, 1);
7098 /* If we have (ior (and A B) C), apply the distributive law and then
7099 the inverse distributive law to see if things simplify. */
7101 if (GET_CODE (op0
) == AND
)
7103 rtx result
= distribute_and_simplify_rtx (x
, 0);
7108 if (GET_CODE (op1
) == AND
)
7110 rtx result
= distribute_and_simplify_rtx (x
, 1);
7123 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
7124 operations" because they can be replaced with two more basic operations.
7125 ZERO_EXTEND is also considered "compound" because it can be replaced with
7126 an AND operation, which is simpler, though only one operation.
7128 The function expand_compound_operation is called with an rtx expression
7129 and will convert it to the appropriate shifts and AND operations,
7130 simplifying at each stage.
7132 The function make_compound_operation is called to convert an expression
7133 consisting of shifts and ANDs into the equivalent compound expression.
7134 It is the inverse of this function, loosely speaking. */
7137 expand_compound_operation (rtx x
)
7139 unsigned HOST_WIDE_INT pos
= 0, len
;
7141 unsigned int modewidth
;
7143 scalar_int_mode inner_mode
;
7145 switch (GET_CODE (x
))
7151 /* We can't necessarily use a const_int for a multiword mode;
7152 it depends on implicitly extending the value.
7153 Since we don't know the right way to extend it,
7154 we can't tell whether the implicit way is right.
7156 Even for a mode that is no wider than a const_int,
7157 we can't win, because we need to sign extend one of its bits through
7158 the rest of it, and we don't know which bit. */
7159 if (CONST_INT_P (XEXP (x
, 0)))
7162 /* Reject modes that aren't scalar integers because turning vector
7163 or complex modes into shifts causes problems. */
7164 if (!is_a
<scalar_int_mode
> (GET_MODE (XEXP (x
, 0)), &inner_mode
))
7167 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
7168 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
7169 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
7170 reloaded. If not for that, MEM's would very rarely be safe.
7172 Reject modes bigger than a word, because we might not be able
7173 to reference a two-register group starting with an arbitrary register
7174 (and currently gen_lowpart might crash for a SUBREG). */
7176 if (GET_MODE_SIZE (inner_mode
) > UNITS_PER_WORD
)
7179 len
= GET_MODE_PRECISION (inner_mode
);
7180 /* If the inner object has VOIDmode (the only way this can happen
7181 is if it is an ASM_OPERANDS), we can't do anything since we don't
7182 know how much masking to do. */
7194 /* If the operand is a CLOBBER, just return it. */
7195 if (GET_CODE (XEXP (x
, 0)) == CLOBBER
)
7198 if (!CONST_INT_P (XEXP (x
, 1))
7199 || !CONST_INT_P (XEXP (x
, 2)))
7202 /* Reject modes that aren't scalar integers because turning vector
7203 or complex modes into shifts causes problems. */
7204 if (!is_a
<scalar_int_mode
> (GET_MODE (XEXP (x
, 0)), &inner_mode
))
7207 len
= INTVAL (XEXP (x
, 1));
7208 pos
= INTVAL (XEXP (x
, 2));
7210 /* This should stay within the object being extracted, fail otherwise. */
7211 if (len
+ pos
> GET_MODE_PRECISION (inner_mode
))
7214 if (BITS_BIG_ENDIAN
)
7215 pos
= GET_MODE_PRECISION (inner_mode
) - len
- pos
;
7223 /* We've rejected non-scalar operations by now. */
7224 scalar_int_mode mode
= as_a
<scalar_int_mode
> (GET_MODE (x
));
7226 /* Convert sign extension to zero extension, if we know that the high
7227 bit is not set, as this is easier to optimize. It will be converted
7228 back to cheaper alternative in make_extraction. */
7229 if (GET_CODE (x
) == SIGN_EXTEND
7230 && HWI_COMPUTABLE_MODE_P (mode
)
7231 && ((nonzero_bits (XEXP (x
, 0), inner_mode
)
7232 & ~(((unsigned HOST_WIDE_INT
) GET_MODE_MASK (inner_mode
)) >> 1))
7235 rtx temp
= gen_rtx_ZERO_EXTEND (mode
, XEXP (x
, 0));
7236 rtx temp2
= expand_compound_operation (temp
);
7238 /* Make sure this is a profitable operation. */
7239 if (set_src_cost (x
, mode
, optimize_this_for_speed_p
)
7240 > set_src_cost (temp2
, mode
, optimize_this_for_speed_p
))
7242 else if (set_src_cost (x
, mode
, optimize_this_for_speed_p
)
7243 > set_src_cost (temp
, mode
, optimize_this_for_speed_p
))
7249 /* We can optimize some special cases of ZERO_EXTEND. */
7250 if (GET_CODE (x
) == ZERO_EXTEND
)
7252 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
7253 know that the last value didn't have any inappropriate bits
7255 if (GET_CODE (XEXP (x
, 0)) == TRUNCATE
7256 && GET_MODE (XEXP (XEXP (x
, 0), 0)) == mode
7257 && HWI_COMPUTABLE_MODE_P (mode
)
7258 && (nonzero_bits (XEXP (XEXP (x
, 0), 0), mode
)
7259 & ~GET_MODE_MASK (inner_mode
)) == 0)
7260 return XEXP (XEXP (x
, 0), 0);
7262 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7263 if (GET_CODE (XEXP (x
, 0)) == SUBREG
7264 && GET_MODE (SUBREG_REG (XEXP (x
, 0))) == mode
7265 && subreg_lowpart_p (XEXP (x
, 0))
7266 && HWI_COMPUTABLE_MODE_P (mode
)
7267 && (nonzero_bits (SUBREG_REG (XEXP (x
, 0)), mode
)
7268 & ~GET_MODE_MASK (inner_mode
)) == 0)
7269 return SUBREG_REG (XEXP (x
, 0));
7271 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
7272 is a comparison and STORE_FLAG_VALUE permits. This is like
7273 the first case, but it works even when MODE is larger
7274 than HOST_WIDE_INT. */
7275 if (GET_CODE (XEXP (x
, 0)) == TRUNCATE
7276 && GET_MODE (XEXP (XEXP (x
, 0), 0)) == mode
7277 && COMPARISON_P (XEXP (XEXP (x
, 0), 0))
7278 && GET_MODE_PRECISION (inner_mode
) <= HOST_BITS_PER_WIDE_INT
7279 && (STORE_FLAG_VALUE
& ~GET_MODE_MASK (inner_mode
)) == 0)
7280 return XEXP (XEXP (x
, 0), 0);
7282 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7283 if (GET_CODE (XEXP (x
, 0)) == SUBREG
7284 && GET_MODE (SUBREG_REG (XEXP (x
, 0))) == mode
7285 && subreg_lowpart_p (XEXP (x
, 0))
7286 && COMPARISON_P (SUBREG_REG (XEXP (x
, 0)))
7287 && GET_MODE_PRECISION (inner_mode
) <= HOST_BITS_PER_WIDE_INT
7288 && (STORE_FLAG_VALUE
& ~GET_MODE_MASK (inner_mode
)) == 0)
7289 return SUBREG_REG (XEXP (x
, 0));
7293 /* If we reach here, we want to return a pair of shifts. The inner
7294 shift is a left shift of BITSIZE - POS - LEN bits. The outer
7295 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
7296 logical depending on the value of UNSIGNEDP.
7298 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
7299 converted into an AND of a shift.
7301 We must check for the case where the left shift would have a negative
7302 count. This can happen in a case like (x >> 31) & 255 on machines
7303 that can't shift by a constant. On those machines, we would first
7304 combine the shift with the AND to produce a variable-position
7305 extraction. Then the constant of 31 would be substituted in
7306 to produce such a position. */
7308 modewidth
= GET_MODE_PRECISION (mode
);
7309 if (modewidth
>= pos
+ len
)
7311 tem
= gen_lowpart (mode
, XEXP (x
, 0));
7312 if (!tem
|| GET_CODE (tem
) == CLOBBER
)
7314 tem
= simplify_shift_const (NULL_RTX
, ASHIFT
, mode
,
7315 tem
, modewidth
- pos
- len
);
7316 tem
= simplify_shift_const (NULL_RTX
, unsignedp
? LSHIFTRT
: ASHIFTRT
,
7317 mode
, tem
, modewidth
- len
);
7319 else if (unsignedp
&& len
< HOST_BITS_PER_WIDE_INT
)
7321 tem
= simplify_shift_const (NULL_RTX
, LSHIFTRT
, inner_mode
,
7323 tem
= gen_lowpart (mode
, tem
);
7324 if (!tem
|| GET_CODE (tem
) == CLOBBER
)
7326 tem
= simplify_and_const_int (NULL_RTX
, mode
, tem
,
7327 (HOST_WIDE_INT_1U
<< len
) - 1);
7330 /* Any other cases we can't handle. */
7333 /* If we couldn't do this for some reason, return the original
7335 if (GET_CODE (tem
) == CLOBBER
)
7341 /* X is a SET which contains an assignment of one object into
7342 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
7343 or certain SUBREGS). If possible, convert it into a series of
7346 We half-heartedly support variable positions, but do not at all
7347 support variable lengths. */
7350 expand_field_assignment (const_rtx x
)
7353 rtx pos
; /* Always counts from low bit. */
7355 rtx mask
, cleared
, masked
;
7356 scalar_int_mode compute_mode
;
7358 /* Loop until we find something we can't simplify. */
7361 if (GET_CODE (SET_DEST (x
)) == STRICT_LOW_PART
7362 && GET_CODE (XEXP (SET_DEST (x
), 0)) == SUBREG
)
7364 rtx x0
= XEXP (SET_DEST (x
), 0);
7365 if (!GET_MODE_PRECISION (GET_MODE (x0
)).is_constant (&len
))
7367 inner
= SUBREG_REG (XEXP (SET_DEST (x
), 0));
7368 pos
= gen_int_mode (subreg_lsb (XEXP (SET_DEST (x
), 0)),
7371 else if (GET_CODE (SET_DEST (x
)) == ZERO_EXTRACT
7372 && CONST_INT_P (XEXP (SET_DEST (x
), 1)))
7374 inner
= XEXP (SET_DEST (x
), 0);
7375 if (!GET_MODE_PRECISION (GET_MODE (inner
)).is_constant (&inner_len
))
7378 len
= INTVAL (XEXP (SET_DEST (x
), 1));
7379 pos
= XEXP (SET_DEST (x
), 2);
7381 /* A constant position should stay within the width of INNER. */
7382 if (CONST_INT_P (pos
) && INTVAL (pos
) + len
> inner_len
)
7385 if (BITS_BIG_ENDIAN
)
7387 if (CONST_INT_P (pos
))
7388 pos
= GEN_INT (inner_len
- len
- INTVAL (pos
));
7389 else if (GET_CODE (pos
) == MINUS
7390 && CONST_INT_P (XEXP (pos
, 1))
7391 && INTVAL (XEXP (pos
, 1)) == inner_len
- len
)
7392 /* If position is ADJUST - X, new position is X. */
7393 pos
= XEXP (pos
, 0);
7395 pos
= simplify_gen_binary (MINUS
, GET_MODE (pos
),
7396 gen_int_mode (inner_len
- len
,
7402 /* If the destination is a subreg that overwrites the whole of the inner
7403 register, we can move the subreg to the source. */
7404 else if (GET_CODE (SET_DEST (x
)) == SUBREG
7405 /* We need SUBREGs to compute nonzero_bits properly. */
7406 && nonzero_sign_valid
7407 && !read_modify_subreg_p (SET_DEST (x
)))
7409 x
= gen_rtx_SET (SUBREG_REG (SET_DEST (x
)),
7411 (GET_MODE (SUBREG_REG (SET_DEST (x
))),
7418 while (GET_CODE (inner
) == SUBREG
&& subreg_lowpart_p (inner
))
7419 inner
= SUBREG_REG (inner
);
7421 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
7422 if (!is_a
<scalar_int_mode
> (GET_MODE (inner
), &compute_mode
))
7424 /* Don't do anything for vector or complex integral types. */
7425 if (! FLOAT_MODE_P (GET_MODE (inner
)))
7428 /* Try to find an integral mode to pun with. */
7429 if (!int_mode_for_size (GET_MODE_BITSIZE (GET_MODE (inner
)), 0)
7430 .exists (&compute_mode
))
7433 inner
= gen_lowpart (compute_mode
, inner
);
7436 /* Compute a mask of LEN bits, if we can do this on the host machine. */
7437 if (len
>= HOST_BITS_PER_WIDE_INT
)
7440 /* Don't try to compute in too wide unsupported modes. */
7441 if (!targetm
.scalar_mode_supported_p (compute_mode
))
7444 /* Now compute the equivalent expression. Make a copy of INNER
7445 for the SET_DEST in case it is a MEM into which we will substitute;
7446 we don't want shared RTL in that case. */
7447 mask
= gen_int_mode ((HOST_WIDE_INT_1U
<< len
) - 1,
7449 cleared
= simplify_gen_binary (AND
, compute_mode
,
7450 simplify_gen_unary (NOT
, compute_mode
,
7451 simplify_gen_binary (ASHIFT
,
7456 masked
= simplify_gen_binary (ASHIFT
, compute_mode
,
7457 simplify_gen_binary (
7459 gen_lowpart (compute_mode
, SET_SRC (x
)),
7463 x
= gen_rtx_SET (copy_rtx (inner
),
7464 simplify_gen_binary (IOR
, compute_mode
,
7471 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
7472 it is an RTX that represents the (variable) starting position; otherwise,
7473 POS is the (constant) starting bit position. Both are counted from the LSB.
7475 UNSIGNEDP is nonzero for an unsigned reference and zero for a signed one.
7477 IN_DEST is nonzero if this is a reference in the destination of a SET.
7478 This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
7479 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7482 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
7483 ZERO_EXTRACT should be built even for bits starting at bit 0.
7485 MODE is the desired mode of the result (if IN_DEST == 0).
7487 The result is an RTX for the extraction or NULL_RTX if the target
7491 make_extraction (machine_mode mode
, rtx inner
, HOST_WIDE_INT pos
,
7492 rtx pos_rtx
, unsigned HOST_WIDE_INT len
, int unsignedp
,
7493 int in_dest
, int in_compare
)
7495 /* This mode describes the size of the storage area
7496 to fetch the overall value from. Within that, we
7497 ignore the POS lowest bits, etc. */
7498 machine_mode is_mode
= GET_MODE (inner
);
7499 machine_mode inner_mode
;
7500 scalar_int_mode wanted_inner_mode
;
7501 scalar_int_mode wanted_inner_reg_mode
= word_mode
;
7502 scalar_int_mode pos_mode
= word_mode
;
7503 machine_mode extraction_mode
= word_mode
;
7505 rtx orig_pos_rtx
= pos_rtx
;
7506 HOST_WIDE_INT orig_pos
;
7508 if (pos_rtx
&& CONST_INT_P (pos_rtx
))
7509 pos
= INTVAL (pos_rtx
), pos_rtx
= 0;
7511 if (GET_CODE (inner
) == SUBREG
7512 && subreg_lowpart_p (inner
)
7513 && (paradoxical_subreg_p (inner
)
7514 /* If trying or potentionally trying to extract
7515 bits outside of is_mode, don't look through
7516 non-paradoxical SUBREGs. See PR82192. */
7517 || (pos_rtx
== NULL_RTX
7518 && known_le (pos
+ len
, GET_MODE_PRECISION (is_mode
)))))
7520 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7521 consider just the QI as the memory to extract from.
7522 The subreg adds or removes high bits; its mode is
7523 irrelevant to the meaning of this extraction,
7524 since POS and LEN count from the lsb. */
7525 if (MEM_P (SUBREG_REG (inner
)))
7526 is_mode
= GET_MODE (SUBREG_REG (inner
));
7527 inner
= SUBREG_REG (inner
);
7529 else if (GET_CODE (inner
) == ASHIFT
7530 && CONST_INT_P (XEXP (inner
, 1))
7531 && pos_rtx
== 0 && pos
== 0
7532 && len
> UINTVAL (XEXP (inner
, 1)))
7534 /* We're extracting the least significant bits of an rtx
7535 (ashift X (const_int C)), where LEN > C. Extract the
7536 least significant (LEN - C) bits of X, giving an rtx
7537 whose mode is MODE, then shift it left C times. */
7538 new_rtx
= make_extraction (mode
, XEXP (inner
, 0),
7539 0, 0, len
- INTVAL (XEXP (inner
, 1)),
7540 unsignedp
, in_dest
, in_compare
);
7542 return gen_rtx_ASHIFT (mode
, new_rtx
, XEXP (inner
, 1));
7544 else if (GET_CODE (inner
) == MULT
7545 && CONST_INT_P (XEXP (inner
, 1))
7546 && pos_rtx
== 0 && pos
== 0)
7548 /* We're extracting the least significant bits of an rtx
7549 (mult X (const_int 2^C)), where LEN > C. Extract the
7550 least significant (LEN - C) bits of X, giving an rtx
7551 whose mode is MODE, then multiply it by 2^C. */
7552 const HOST_WIDE_INT shift_amt
= exact_log2 (INTVAL (XEXP (inner
, 1)));
7553 if (IN_RANGE (shift_amt
, 1, len
- 1))
7555 new_rtx
= make_extraction (mode
, XEXP (inner
, 0),
7556 0, 0, len
- shift_amt
,
7557 unsignedp
, in_dest
, in_compare
);
7559 return gen_rtx_MULT (mode
, new_rtx
, XEXP (inner
, 1));
7562 else if (GET_CODE (inner
) == TRUNCATE
7563 /* If trying or potentionally trying to extract
7564 bits outside of is_mode, don't look through
7565 TRUNCATE. See PR82192. */
7566 && pos_rtx
== NULL_RTX
7567 && known_le (pos
+ len
, GET_MODE_PRECISION (is_mode
)))
7568 inner
= XEXP (inner
, 0);
7570 inner_mode
= GET_MODE (inner
);
7572 /* See if this can be done without an extraction. We never can if the
7573 width of the field is not the same as that of some integer mode. For
7574 registers, we can only avoid the extraction if the position is at the
7575 low-order bit and this is either not in the destination or we have the
7576 appropriate STRICT_LOW_PART operation available.
7578 For MEM, we can avoid an extract if the field starts on an appropriate
7579 boundary and we can change the mode of the memory reference. */
7581 scalar_int_mode tmode
;
7582 if (int_mode_for_size (len
, 1).exists (&tmode
)
7583 && ((pos_rtx
== 0 && (pos
% BITS_PER_WORD
) == 0
7585 && (pos
== 0 || REG_P (inner
))
7586 && (inner_mode
== tmode
7588 || TRULY_NOOP_TRUNCATION_MODES_P (tmode
, inner_mode
)
7589 || reg_truncated_to_mode (tmode
, inner
))
7592 && have_insn_for (STRICT_LOW_PART
, tmode
))))
7593 || (MEM_P (inner
) && pos_rtx
== 0
7595 % (STRICT_ALIGNMENT
? GET_MODE_ALIGNMENT (tmode
)
7596 : BITS_PER_UNIT
)) == 0
7597 /* We can't do this if we are widening INNER_MODE (it
7598 may not be aligned, for one thing). */
7599 && !paradoxical_subreg_p (tmode
, inner_mode
)
7600 && known_le (pos
+ len
, GET_MODE_PRECISION (is_mode
))
7601 && (inner_mode
== tmode
7602 || (! mode_dependent_address_p (XEXP (inner
, 0),
7603 MEM_ADDR_SPACE (inner
))
7604 && ! MEM_VOLATILE_P (inner
))))))
7606 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7607 field. If the original and current mode are the same, we need not
7608 adjust the offset. Otherwise, we do if bytes big endian.
7610 If INNER is not a MEM, get a piece consisting of just the field
7611 of interest (in this case POS % BITS_PER_WORD must be 0). */
7617 /* POS counts from lsb, but make OFFSET count in memory order. */
7618 if (BYTES_BIG_ENDIAN
)
7619 offset
= bits_to_bytes_round_down (GET_MODE_PRECISION (is_mode
)
7622 offset
= pos
/ BITS_PER_UNIT
;
7624 new_rtx
= adjust_address_nv (inner
, tmode
, offset
);
7626 else if (REG_P (inner
))
7628 if (tmode
!= inner_mode
)
7630 /* We can't call gen_lowpart in a DEST since we
7631 always want a SUBREG (see below) and it would sometimes
7632 return a new hard register. */
7636 = subreg_offset_from_lsb (tmode
, inner_mode
, pos
);
7638 /* Avoid creating invalid subregs, for example when
7639 simplifying (x>>32)&255. */
7640 if (!validate_subreg (tmode
, inner_mode
, inner
, offset
))
7643 new_rtx
= gen_rtx_SUBREG (tmode
, inner
, offset
);
7646 new_rtx
= gen_lowpart (tmode
, inner
);
7652 new_rtx
= force_to_mode (inner
, tmode
,
7653 len
>= HOST_BITS_PER_WIDE_INT
7655 : (HOST_WIDE_INT_1U
<< len
) - 1, 0);
7657 /* If this extraction is going into the destination of a SET,
7658 make a STRICT_LOW_PART unless we made a MEM. */
7661 return (MEM_P (new_rtx
) ? new_rtx
7662 : (GET_CODE (new_rtx
) != SUBREG
7663 ? gen_rtx_CLOBBER (tmode
, const0_rtx
)
7664 : gen_rtx_STRICT_LOW_PART (VOIDmode
, new_rtx
)));
7669 if (CONST_SCALAR_INT_P (new_rtx
))
7670 return simplify_unary_operation (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
,
7671 mode
, new_rtx
, tmode
);
7673 /* If we know that no extraneous bits are set, and that the high
7674 bit is not set, convert the extraction to the cheaper of
7675 sign and zero extension, that are equivalent in these cases. */
7676 if (flag_expensive_optimizations
7677 && (HWI_COMPUTABLE_MODE_P (tmode
)
7678 && ((nonzero_bits (new_rtx
, tmode
)
7679 & ~(((unsigned HOST_WIDE_INT
)GET_MODE_MASK (tmode
)) >> 1))
7682 rtx temp
= gen_rtx_ZERO_EXTEND (mode
, new_rtx
);
7683 rtx temp1
= gen_rtx_SIGN_EXTEND (mode
, new_rtx
);
7685 /* Prefer ZERO_EXTENSION, since it gives more information to
7687 if (set_src_cost (temp
, mode
, optimize_this_for_speed_p
)
7688 <= set_src_cost (temp1
, mode
, optimize_this_for_speed_p
))
7693 /* Otherwise, sign- or zero-extend unless we already are in the
7696 return (gen_rtx_fmt_e (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
,
7700 /* Unless this is a COMPARE or we have a funny memory reference,
7701 don't do anything with zero-extending field extracts starting at
7702 the low-order bit since they are simple AND operations. */
7703 if (pos_rtx
== 0 && pos
== 0 && ! in_dest
7704 && ! in_compare
&& unsignedp
)
7707 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7708 if the position is not a constant and the length is not 1. In all
7709 other cases, we would only be going outside our object in cases when
7710 an original shift would have been undefined. */
7712 && ((pos_rtx
== 0 && maybe_gt (pos
+ len
, GET_MODE_PRECISION (is_mode
)))
7713 || (pos_rtx
!= 0 && len
!= 1)))
7716 enum extraction_pattern pattern
= (in_dest
? EP_insv
7717 : unsignedp
? EP_extzv
: EP_extv
);
7719 /* If INNER is not from memory, we want it to have the mode of a register
7720 extraction pattern's structure operand, or word_mode if there is no
7721 such pattern. The same applies to extraction_mode and pos_mode
7722 and their respective operands.
7724 For memory, assume that the desired extraction_mode and pos_mode
7725 are the same as for a register operation, since at present we don't
7726 have named patterns for aligned memory structures. */
7727 class extraction_insn insn
;
7728 unsigned int inner_size
;
7729 if (GET_MODE_BITSIZE (inner_mode
).is_constant (&inner_size
)
7730 && get_best_reg_extraction_insn (&insn
, pattern
, inner_size
, mode
))
7732 wanted_inner_reg_mode
= insn
.struct_mode
.require ();
7733 pos_mode
= insn
.pos_mode
;
7734 extraction_mode
= insn
.field_mode
;
7737 /* Never narrow an object, since that might not be safe. */
7739 if (mode
!= VOIDmode
7740 && partial_subreg_p (extraction_mode
, mode
))
7741 extraction_mode
= mode
;
7743 /* Punt if len is too large for extraction_mode. */
7744 if (maybe_gt (len
, GET_MODE_PRECISION (extraction_mode
)))
7748 wanted_inner_mode
= wanted_inner_reg_mode
;
7751 /* Be careful not to go beyond the extracted object and maintain the
7752 natural alignment of the memory. */
7753 wanted_inner_mode
= smallest_int_mode_for_size (len
);
7754 while (pos
% GET_MODE_BITSIZE (wanted_inner_mode
) + len
7755 > GET_MODE_BITSIZE (wanted_inner_mode
))
7756 wanted_inner_mode
= GET_MODE_WIDER_MODE (wanted_inner_mode
).require ();
7761 if (BITS_BIG_ENDIAN
)
7763 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7764 BITS_BIG_ENDIAN style. If position is constant, compute new
7765 position. Otherwise, build subtraction.
7766 Note that POS is relative to the mode of the original argument.
7767 If it's a MEM we need to recompute POS relative to that.
7768 However, if we're extracting from (or inserting into) a register,
7769 we want to recompute POS relative to wanted_inner_mode. */
7772 width
= GET_MODE_BITSIZE (wanted_inner_mode
);
7773 else if (!GET_MODE_BITSIZE (is_mode
).is_constant (&width
))
7777 pos
= width
- len
- pos
;
7780 = gen_rtx_MINUS (GET_MODE (pos_rtx
),
7781 gen_int_mode (width
- len
, GET_MODE (pos_rtx
)),
7783 /* POS may be less than 0 now, but we check for that below.
7784 Note that it can only be less than 0 if !MEM_P (inner). */
7787 /* If INNER has a wider mode, and this is a constant extraction, try to
7788 make it smaller and adjust the byte to point to the byte containing
7790 if (wanted_inner_mode
!= VOIDmode
7791 && inner_mode
!= wanted_inner_mode
7793 && partial_subreg_p (wanted_inner_mode
, is_mode
)
7795 && ! mode_dependent_address_p (XEXP (inner
, 0), MEM_ADDR_SPACE (inner
))
7796 && ! MEM_VOLATILE_P (inner
))
7798 poly_int64 offset
= 0;
7800 /* The computations below will be correct if the machine is big
7801 endian in both bits and bytes or little endian in bits and bytes.
7802 If it is mixed, we must adjust. */
7804 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7805 adjust OFFSET to compensate. */
7806 if (BYTES_BIG_ENDIAN
7807 && paradoxical_subreg_p (is_mode
, inner_mode
))
7808 offset
-= GET_MODE_SIZE (is_mode
) - GET_MODE_SIZE (inner_mode
);
7810 /* We can now move to the desired byte. */
7811 offset
+= (pos
/ GET_MODE_BITSIZE (wanted_inner_mode
))
7812 * GET_MODE_SIZE (wanted_inner_mode
);
7813 pos
%= GET_MODE_BITSIZE (wanted_inner_mode
);
7815 if (BYTES_BIG_ENDIAN
!= BITS_BIG_ENDIAN
7816 && is_mode
!= wanted_inner_mode
)
7817 offset
= (GET_MODE_SIZE (is_mode
)
7818 - GET_MODE_SIZE (wanted_inner_mode
) - offset
);
7820 inner
= adjust_address_nv (inner
, wanted_inner_mode
, offset
);
7823 /* If INNER is not memory, get it into the proper mode. If we are changing
7824 its mode, POS must be a constant and smaller than the size of the new
7826 else if (!MEM_P (inner
))
7828 /* On the LHS, don't create paradoxical subregs implicitely truncating
7829 the register unless TARGET_TRULY_NOOP_TRUNCATION. */
7831 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner
),
7835 if (GET_MODE (inner
) != wanted_inner_mode
7837 || orig_pos
+ len
> GET_MODE_BITSIZE (wanted_inner_mode
)))
7843 inner
= force_to_mode (inner
, wanted_inner_mode
,
7845 || len
+ orig_pos
>= HOST_BITS_PER_WIDE_INT
7847 : (((HOST_WIDE_INT_1U
<< len
) - 1)
7852 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7853 have to zero extend. Otherwise, we can just use a SUBREG.
7855 We dealt with constant rtxes earlier, so pos_rtx cannot
7856 have VOIDmode at this point. */
7858 && (GET_MODE_SIZE (pos_mode
)
7859 > GET_MODE_SIZE (as_a
<scalar_int_mode
> (GET_MODE (pos_rtx
)))))
7861 rtx temp
= simplify_gen_unary (ZERO_EXTEND
, pos_mode
, pos_rtx
,
7862 GET_MODE (pos_rtx
));
7864 /* If we know that no extraneous bits are set, and that the high
7865 bit is not set, convert extraction to cheaper one - either
7866 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7868 if (flag_expensive_optimizations
7869 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx
))
7870 && ((nonzero_bits (pos_rtx
, GET_MODE (pos_rtx
))
7871 & ~(((unsigned HOST_WIDE_INT
)
7872 GET_MODE_MASK (GET_MODE (pos_rtx
)))
7876 rtx temp1
= simplify_gen_unary (SIGN_EXTEND
, pos_mode
, pos_rtx
,
7877 GET_MODE (pos_rtx
));
7879 /* Prefer ZERO_EXTENSION, since it gives more information to
7881 if (set_src_cost (temp1
, pos_mode
, optimize_this_for_speed_p
)
7882 < set_src_cost (temp
, pos_mode
, optimize_this_for_speed_p
))
7888 /* Make POS_RTX unless we already have it and it is correct. If we don't
7889 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7891 if (pos_rtx
== 0 && orig_pos_rtx
!= 0 && INTVAL (orig_pos_rtx
) == pos
)
7892 pos_rtx
= orig_pos_rtx
;
7894 else if (pos_rtx
== 0)
7895 pos_rtx
= GEN_INT (pos
);
7897 /* Make the required operation. See if we can use existing rtx. */
7898 new_rtx
= gen_rtx_fmt_eee (unsignedp
? ZERO_EXTRACT
: SIGN_EXTRACT
,
7899 extraction_mode
, inner
, GEN_INT (len
), pos_rtx
);
7901 new_rtx
= gen_lowpart (mode
, new_rtx
);
7906 /* See if X (of mode MODE) contains an ASHIFT of COUNT or more bits that
7907 can be commuted with any other operations in X. Return X without
7908 that shift if so. */
7911 extract_left_shift (scalar_int_mode mode
, rtx x
, int count
)
7913 enum rtx_code code
= GET_CODE (x
);
7919 /* This is the shift itself. If it is wide enough, we will return
7920 either the value being shifted if the shift count is equal to
7921 COUNT or a shift for the difference. */
7922 if (CONST_INT_P (XEXP (x
, 1))
7923 && INTVAL (XEXP (x
, 1)) >= count
)
7924 return simplify_shift_const (NULL_RTX
, ASHIFT
, mode
, XEXP (x
, 0),
7925 INTVAL (XEXP (x
, 1)) - count
);
7929 if ((tem
= extract_left_shift (mode
, XEXP (x
, 0), count
)) != 0)
7930 return simplify_gen_unary (code
, mode
, tem
, mode
);
7934 case PLUS
: case IOR
: case XOR
: case AND
:
7935 /* If we can safely shift this constant and we find the inner shift,
7936 make a new operation. */
7937 if (CONST_INT_P (XEXP (x
, 1))
7938 && (UINTVAL (XEXP (x
, 1))
7939 & (((HOST_WIDE_INT_1U
<< count
)) - 1)) == 0
7940 && (tem
= extract_left_shift (mode
, XEXP (x
, 0), count
)) != 0)
7942 HOST_WIDE_INT val
= INTVAL (XEXP (x
, 1)) >> count
;
7943 return simplify_gen_binary (code
, mode
, tem
,
7944 gen_int_mode (val
, mode
));
7955 /* Subroutine of make_compound_operation. *X_PTR is the rtx at the current
7956 level of the expression and MODE is its mode. IN_CODE is as for
7957 make_compound_operation. *NEXT_CODE_PTR is the value of IN_CODE
7958 that should be used when recursing on operands of *X_PTR.
7960 There are two possible actions:
7962 - Return null. This tells the caller to recurse on *X_PTR with IN_CODE
7963 equal to *NEXT_CODE_PTR, after which *X_PTR holds the final value.
7965 - Return a new rtx, which the caller returns directly. */
7968 make_compound_operation_int (scalar_int_mode mode
, rtx
*x_ptr
,
7969 enum rtx_code in_code
,
7970 enum rtx_code
*next_code_ptr
)
7973 enum rtx_code next_code
= *next_code_ptr
;
7974 enum rtx_code code
= GET_CODE (x
);
7975 int mode_width
= GET_MODE_PRECISION (mode
);
7980 scalar_int_mode inner_mode
;
7981 bool equality_comparison
= false;
7985 equality_comparison
= true;
7989 /* Process depending on the code of this operation. If NEW is set
7990 nonzero, it will be returned. */
7995 /* Convert shifts by constants into multiplications if inside
7997 if (in_code
== MEM
&& CONST_INT_P (XEXP (x
, 1))
7998 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
7999 && INTVAL (XEXP (x
, 1)) >= 0)
8001 HOST_WIDE_INT count
= INTVAL (XEXP (x
, 1));
8002 HOST_WIDE_INT multval
= HOST_WIDE_INT_1
<< count
;
8004 new_rtx
= make_compound_operation (XEXP (x
, 0), next_code
);
8005 if (GET_CODE (new_rtx
) == NEG
)
8007 new_rtx
= XEXP (new_rtx
, 0);
8010 multval
= trunc_int_for_mode (multval
, mode
);
8011 new_rtx
= gen_rtx_MULT (mode
, new_rtx
, gen_int_mode (multval
, mode
));
8018 lhs
= make_compound_operation (lhs
, next_code
);
8019 rhs
= make_compound_operation (rhs
, next_code
);
8020 if (GET_CODE (lhs
) == MULT
&& GET_CODE (XEXP (lhs
, 0)) == NEG
)
8022 tem
= simplify_gen_binary (MULT
, mode
, XEXP (XEXP (lhs
, 0), 0),
8024 new_rtx
= simplify_gen_binary (MINUS
, mode
, rhs
, tem
);
8026 else if (GET_CODE (lhs
) == MULT
8027 && (CONST_INT_P (XEXP (lhs
, 1)) && INTVAL (XEXP (lhs
, 1)) < 0))
8029 tem
= simplify_gen_binary (MULT
, mode
, XEXP (lhs
, 0),
8030 simplify_gen_unary (NEG
, mode
,
8033 new_rtx
= simplify_gen_binary (MINUS
, mode
, rhs
, tem
);
8037 SUBST (XEXP (x
, 0), lhs
);
8038 SUBST (XEXP (x
, 1), rhs
);
8040 maybe_swap_commutative_operands (x
);
8046 lhs
= make_compound_operation (lhs
, next_code
);
8047 rhs
= make_compound_operation (rhs
, next_code
);
8048 if (GET_CODE (rhs
) == MULT
&& GET_CODE (XEXP (rhs
, 0)) == NEG
)
8050 tem
= simplify_gen_binary (MULT
, mode
, XEXP (XEXP (rhs
, 0), 0),
8052 return simplify_gen_binary (PLUS
, mode
, tem
, lhs
);
8054 else if (GET_CODE (rhs
) == MULT
8055 && (CONST_INT_P (XEXP (rhs
, 1)) && INTVAL (XEXP (rhs
, 1)) < 0))
8057 tem
= simplify_gen_binary (MULT
, mode
, XEXP (rhs
, 0),
8058 simplify_gen_unary (NEG
, mode
,
8061 return simplify_gen_binary (PLUS
, mode
, tem
, lhs
);
8065 SUBST (XEXP (x
, 0), lhs
);
8066 SUBST (XEXP (x
, 1), rhs
);
8071 /* If the second operand is not a constant, we can't do anything
8073 if (!CONST_INT_P (XEXP (x
, 1)))
8076 /* If the constant is a power of two minus one and the first operand
8077 is a logical right shift, make an extraction. */
8078 if (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
8079 && (i
= exact_log2 (UINTVAL (XEXP (x
, 1)) + 1)) >= 0)
8081 new_rtx
= make_compound_operation (XEXP (XEXP (x
, 0), 0), next_code
);
8082 new_rtx
= make_extraction (mode
, new_rtx
, 0, XEXP (XEXP (x
, 0), 1),
8083 i
, 1, 0, in_code
== COMPARE
);
8086 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
8087 else if (GET_CODE (XEXP (x
, 0)) == SUBREG
8088 && subreg_lowpart_p (XEXP (x
, 0))
8089 && is_a
<scalar_int_mode
> (GET_MODE (SUBREG_REG (XEXP (x
, 0))),
8091 && GET_CODE (SUBREG_REG (XEXP (x
, 0))) == LSHIFTRT
8092 && (i
= exact_log2 (UINTVAL (XEXP (x
, 1)) + 1)) >= 0)
8094 rtx inner_x0
= SUBREG_REG (XEXP (x
, 0));
8095 new_rtx
= make_compound_operation (XEXP (inner_x0
, 0), next_code
);
8096 new_rtx
= make_extraction (inner_mode
, new_rtx
, 0,
8098 i
, 1, 0, in_code
== COMPARE
);
8100 /* If we narrowed the mode when dropping the subreg, then we lose. */
8101 if (GET_MODE_SIZE (inner_mode
) < GET_MODE_SIZE (mode
))
8104 /* If that didn't give anything, see if the AND simplifies on
8106 if (!new_rtx
&& i
>= 0)
8108 new_rtx
= make_compound_operation (XEXP (x
, 0), next_code
);
8109 new_rtx
= make_extraction (mode
, new_rtx
, 0, NULL_RTX
, i
, 1,
8110 0, in_code
== COMPARE
);
8113 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
8114 else if ((GET_CODE (XEXP (x
, 0)) == XOR
8115 || GET_CODE (XEXP (x
, 0)) == IOR
)
8116 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == LSHIFTRT
8117 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == LSHIFTRT
8118 && (i
= exact_log2 (UINTVAL (XEXP (x
, 1)) + 1)) >= 0)
8120 /* Apply the distributive law, and then try to make extractions. */
8121 new_rtx
= gen_rtx_fmt_ee (GET_CODE (XEXP (x
, 0)), mode
,
8122 gen_rtx_AND (mode
, XEXP (XEXP (x
, 0), 0),
8124 gen_rtx_AND (mode
, XEXP (XEXP (x
, 0), 1),
8126 new_rtx
= make_compound_operation (new_rtx
, in_code
);
8129 /* If we are have (and (rotate X C) M) and C is larger than the number
8130 of bits in M, this is an extraction. */
8132 else if (GET_CODE (XEXP (x
, 0)) == ROTATE
8133 && CONST_INT_P (XEXP (XEXP (x
, 0), 1))
8134 && (i
= exact_log2 (UINTVAL (XEXP (x
, 1)) + 1)) >= 0
8135 && i
<= INTVAL (XEXP (XEXP (x
, 0), 1)))
8137 new_rtx
= make_compound_operation (XEXP (XEXP (x
, 0), 0), next_code
);
8138 new_rtx
= make_extraction (mode
, new_rtx
,
8139 (GET_MODE_PRECISION (mode
)
8140 - INTVAL (XEXP (XEXP (x
, 0), 1))),
8141 NULL_RTX
, i
, 1, 0, in_code
== COMPARE
);
8144 /* On machines without logical shifts, if the operand of the AND is
8145 a logical shift and our mask turns off all the propagated sign
8146 bits, we can replace the logical shift with an arithmetic shift. */
8147 else if (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
8148 && !have_insn_for (LSHIFTRT
, mode
)
8149 && have_insn_for (ASHIFTRT
, mode
)
8150 && CONST_INT_P (XEXP (XEXP (x
, 0), 1))
8151 && INTVAL (XEXP (XEXP (x
, 0), 1)) >= 0
8152 && INTVAL (XEXP (XEXP (x
, 0), 1)) < HOST_BITS_PER_WIDE_INT
8153 && mode_width
<= HOST_BITS_PER_WIDE_INT
)
8155 unsigned HOST_WIDE_INT mask
= GET_MODE_MASK (mode
);
8157 mask
>>= INTVAL (XEXP (XEXP (x
, 0), 1));
8158 if ((INTVAL (XEXP (x
, 1)) & ~mask
) == 0)
8160 gen_rtx_ASHIFTRT (mode
,
8161 make_compound_operation (XEXP (XEXP (x
,
8165 XEXP (XEXP (x
, 0), 1)));
8168 /* If the constant is one less than a power of two, this might be
8169 representable by an extraction even if no shift is present.
8170 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
8171 we are in a COMPARE. */
8172 else if ((i
= exact_log2 (UINTVAL (XEXP (x
, 1)) + 1)) >= 0)
8173 new_rtx
= make_extraction (mode
,
8174 make_compound_operation (XEXP (x
, 0),
8176 0, NULL_RTX
, i
, 1, 0, in_code
== COMPARE
);
8178 /* If we are in a comparison and this is an AND with a power of two,
8179 convert this into the appropriate bit extract. */
8180 else if (in_code
== COMPARE
8181 && (i
= exact_log2 (UINTVAL (XEXP (x
, 1)))) >= 0
8182 && (equality_comparison
|| i
< GET_MODE_PRECISION (mode
) - 1))
8183 new_rtx
= make_extraction (mode
,
8184 make_compound_operation (XEXP (x
, 0),
8186 i
, NULL_RTX
, 1, 1, 0, 1);
8188 /* If the one operand is a paradoxical subreg of a register or memory and
8189 the constant (limited to the smaller mode) has only zero bits where
8190 the sub expression has known zero bits, this can be expressed as
8192 else if (GET_CODE (XEXP (x
, 0)) == SUBREG
)
8196 sub
= XEXP (XEXP (x
, 0), 0);
8197 machine_mode sub_mode
= GET_MODE (sub
);
8199 if ((REG_P (sub
) || MEM_P (sub
))
8200 && GET_MODE_PRECISION (sub_mode
).is_constant (&sub_width
)
8201 && sub_width
< mode_width
)
8203 unsigned HOST_WIDE_INT mode_mask
= GET_MODE_MASK (sub_mode
);
8204 unsigned HOST_WIDE_INT mask
;
8206 /* original AND constant with all the known zero bits set */
8207 mask
= UINTVAL (XEXP (x
, 1)) | (~nonzero_bits (sub
, sub_mode
));
8208 if ((mask
& mode_mask
) == mode_mask
)
8210 new_rtx
= make_compound_operation (sub
, next_code
);
8211 new_rtx
= make_extraction (mode
, new_rtx
, 0, 0, sub_width
,
8212 1, 0, in_code
== COMPARE
);
8220 /* If the sign bit is known to be zero, replace this with an
8221 arithmetic shift. */
8222 if (have_insn_for (ASHIFTRT
, mode
)
8223 && ! have_insn_for (LSHIFTRT
, mode
)
8224 && mode_width
<= HOST_BITS_PER_WIDE_INT
8225 && (nonzero_bits (XEXP (x
, 0), mode
) & (1 << (mode_width
- 1))) == 0)
8227 new_rtx
= gen_rtx_ASHIFTRT (mode
,
8228 make_compound_operation (XEXP (x
, 0),
8240 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
8241 this is a SIGN_EXTRACT. */
8242 if (CONST_INT_P (rhs
)
8243 && GET_CODE (lhs
) == ASHIFT
8244 && CONST_INT_P (XEXP (lhs
, 1))
8245 && INTVAL (rhs
) >= INTVAL (XEXP (lhs
, 1))
8246 && INTVAL (XEXP (lhs
, 1)) >= 0
8247 && INTVAL (rhs
) < mode_width
)
8249 new_rtx
= make_compound_operation (XEXP (lhs
, 0), next_code
);
8250 new_rtx
= make_extraction (mode
, new_rtx
,
8251 INTVAL (rhs
) - INTVAL (XEXP (lhs
, 1)),
8252 NULL_RTX
, mode_width
- INTVAL (rhs
),
8253 code
== LSHIFTRT
, 0, in_code
== COMPARE
);
8257 /* See if we have operations between an ASHIFTRT and an ASHIFT.
8258 If so, try to merge the shifts into a SIGN_EXTEND. We could
8259 also do this for some cases of SIGN_EXTRACT, but it doesn't
8260 seem worth the effort; the case checked for occurs on Alpha. */
8263 && ! (GET_CODE (lhs
) == SUBREG
8264 && (OBJECT_P (SUBREG_REG (lhs
))))
8265 && CONST_INT_P (rhs
)
8266 && INTVAL (rhs
) >= 0
8267 && INTVAL (rhs
) < HOST_BITS_PER_WIDE_INT
8268 && INTVAL (rhs
) < mode_width
8269 && (new_rtx
= extract_left_shift (mode
, lhs
, INTVAL (rhs
))) != 0)
8270 new_rtx
= make_extraction (mode
, make_compound_operation (new_rtx
,
8272 0, NULL_RTX
, mode_width
- INTVAL (rhs
),
8273 code
== LSHIFTRT
, 0, in_code
== COMPARE
);
8278 /* Call ourselves recursively on the inner expression. If we are
8279 narrowing the object and it has a different RTL code from
8280 what it originally did, do this SUBREG as a force_to_mode. */
8282 rtx inner
= SUBREG_REG (x
), simplified
;
8283 enum rtx_code subreg_code
= in_code
;
8285 /* If the SUBREG is masking of a logical right shift,
8286 make an extraction. */
8287 if (GET_CODE (inner
) == LSHIFTRT
8288 && is_a
<scalar_int_mode
> (GET_MODE (inner
), &inner_mode
)
8289 && GET_MODE_SIZE (mode
) < GET_MODE_SIZE (inner_mode
)
8290 && CONST_INT_P (XEXP (inner
, 1))
8291 && UINTVAL (XEXP (inner
, 1)) < GET_MODE_PRECISION (inner_mode
)
8292 && subreg_lowpart_p (x
))
8294 new_rtx
= make_compound_operation (XEXP (inner
, 0), next_code
);
8295 int width
= GET_MODE_PRECISION (inner_mode
)
8296 - INTVAL (XEXP (inner
, 1));
8297 if (width
> mode_width
)
8299 new_rtx
= make_extraction (mode
, new_rtx
, 0, XEXP (inner
, 1),
8300 width
, 1, 0, in_code
== COMPARE
);
8304 /* If in_code is COMPARE, it isn't always safe to pass it through
8305 to the recursive make_compound_operation call. */
8306 if (subreg_code
== COMPARE
8307 && (!subreg_lowpart_p (x
)
8308 || GET_CODE (inner
) == SUBREG
8309 /* (subreg:SI (and:DI (reg:DI) (const_int 0x800000000)) 0)
8310 is (const_int 0), rather than
8311 (subreg:SI (lshiftrt:DI (reg:DI) (const_int 35)) 0).
8312 Similarly (subreg:QI (and:SI (reg:SI) (const_int 0x80)) 0)
8313 for non-equality comparisons against 0 is not equivalent
8314 to (subreg:QI (lshiftrt:SI (reg:SI) (const_int 7)) 0). */
8315 || (GET_CODE (inner
) == AND
8316 && CONST_INT_P (XEXP (inner
, 1))
8317 && partial_subreg_p (x
)
8318 && exact_log2 (UINTVAL (XEXP (inner
, 1)))
8319 >= GET_MODE_BITSIZE (mode
) - 1)))
8322 tem
= make_compound_operation (inner
, subreg_code
);
8325 = simplify_subreg (mode
, tem
, GET_MODE (inner
), SUBREG_BYTE (x
));
8329 if (GET_CODE (tem
) != GET_CODE (inner
)
8330 && partial_subreg_p (x
)
8331 && subreg_lowpart_p (x
))
8334 = force_to_mode (tem
, mode
, HOST_WIDE_INT_M1U
, 0);
8336 /* If we have something other than a SUBREG, we might have
8337 done an expansion, so rerun ourselves. */
8338 if (GET_CODE (newer
) != SUBREG
)
8339 newer
= make_compound_operation (newer
, in_code
);
8341 /* force_to_mode can expand compounds. If it just re-expanded
8342 the compound, use gen_lowpart to convert to the desired
8344 if (rtx_equal_p (newer
, x
)
8345 /* Likewise if it re-expanded the compound only partially.
8346 This happens for SUBREG of ZERO_EXTRACT if they extract
8347 the same number of bits. */
8348 || (GET_CODE (newer
) == SUBREG
8349 && (GET_CODE (SUBREG_REG (newer
)) == LSHIFTRT
8350 || GET_CODE (SUBREG_REG (newer
)) == ASHIFTRT
)
8351 && GET_CODE (inner
) == AND
8352 && rtx_equal_p (SUBREG_REG (newer
), XEXP (inner
, 0))))
8353 return gen_lowpart (GET_MODE (x
), tem
);
8368 *x_ptr
= gen_lowpart (mode
, new_rtx
);
8369 *next_code_ptr
= next_code
;
8373 /* Look at the expression rooted at X. Look for expressions
8374 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
8375 Form these expressions.
8377 Return the new rtx, usually just X.
8379 Also, for machines like the VAX that don't have logical shift insns,
8380 try to convert logical to arithmetic shift operations in cases where
8381 they are equivalent. This undoes the canonicalizations to logical
8382 shifts done elsewhere.
8384 We try, as much as possible, to re-use rtl expressions to save memory.
8386 IN_CODE says what kind of expression we are processing. Normally, it is
8387 SET. In a memory address it is MEM. When processing the arguments of
8388 a comparison or a COMPARE against zero, it is COMPARE, or EQ if more
8389 precisely it is an equality comparison against zero. */
8392 make_compound_operation (rtx x
, enum rtx_code in_code
)
8394 enum rtx_code code
= GET_CODE (x
);
8397 enum rtx_code next_code
;
8400 /* Select the code to be used in recursive calls. Once we are inside an
8401 address, we stay there. If we have a comparison, set to COMPARE,
8402 but once inside, go back to our default of SET. */
8404 next_code
= (code
== MEM
? MEM
8405 : ((code
== COMPARE
|| COMPARISON_P (x
))
8406 && XEXP (x
, 1) == const0_rtx
) ? COMPARE
8407 : in_code
== COMPARE
|| in_code
== EQ
? SET
: in_code
);
8409 scalar_int_mode mode
;
8410 if (is_a
<scalar_int_mode
> (GET_MODE (x
), &mode
))
8412 rtx new_rtx
= make_compound_operation_int (mode
, &x
, in_code
,
8416 code
= GET_CODE (x
);
8419 /* Now recursively process each operand of this operation. We need to
8420 handle ZERO_EXTEND specially so that we don't lose track of the
8422 if (code
== ZERO_EXTEND
)
8424 new_rtx
= make_compound_operation (XEXP (x
, 0), next_code
);
8425 tem
= simplify_const_unary_operation (ZERO_EXTEND
, GET_MODE (x
),
8426 new_rtx
, GET_MODE (XEXP (x
, 0)));
8429 SUBST (XEXP (x
, 0), new_rtx
);
8433 fmt
= GET_RTX_FORMAT (code
);
8434 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
8437 new_rtx
= make_compound_operation (XEXP (x
, i
), next_code
);
8438 SUBST (XEXP (x
, i
), new_rtx
);
8440 else if (fmt
[i
] == 'E')
8441 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
8443 new_rtx
= make_compound_operation (XVECEXP (x
, i
, j
), next_code
);
8444 SUBST (XVECEXP (x
, i
, j
), new_rtx
);
8447 maybe_swap_commutative_operands (x
);
8451 /* Given M see if it is a value that would select a field of bits
8452 within an item, but not the entire word. Return -1 if not.
8453 Otherwise, return the starting position of the field, where 0 is the
8456 *PLEN is set to the length of the field. */
8459 get_pos_from_mask (unsigned HOST_WIDE_INT m
, unsigned HOST_WIDE_INT
*plen
)
8461 /* Get the bit number of the first 1 bit from the right, -1 if none. */
8462 int pos
= m
? ctz_hwi (m
) : -1;
8466 /* Now shift off the low-order zero bits and see if we have a
8467 power of two minus 1. */
8468 len
= exact_log2 ((m
>> pos
) + 1);
8477 /* If X refers to a register that equals REG in value, replace these
8478 references with REG. */
8480 canon_reg_for_combine (rtx x
, rtx reg
)
8487 enum rtx_code code
= GET_CODE (x
);
8488 switch (GET_RTX_CLASS (code
))
8491 op0
= canon_reg_for_combine (XEXP (x
, 0), reg
);
8492 if (op0
!= XEXP (x
, 0))
8493 return simplify_gen_unary (GET_CODE (x
), GET_MODE (x
), op0
,
8498 case RTX_COMM_ARITH
:
8499 op0
= canon_reg_for_combine (XEXP (x
, 0), reg
);
8500 op1
= canon_reg_for_combine (XEXP (x
, 1), reg
);
8501 if (op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1))
8502 return simplify_gen_binary (GET_CODE (x
), GET_MODE (x
), op0
, op1
);
8506 case RTX_COMM_COMPARE
:
8507 op0
= canon_reg_for_combine (XEXP (x
, 0), reg
);
8508 op1
= canon_reg_for_combine (XEXP (x
, 1), reg
);
8509 if (op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1))
8510 return simplify_gen_relational (GET_CODE (x
), GET_MODE (x
),
8511 GET_MODE (op0
), op0
, op1
);
8515 case RTX_BITFIELD_OPS
:
8516 op0
= canon_reg_for_combine (XEXP (x
, 0), reg
);
8517 op1
= canon_reg_for_combine (XEXP (x
, 1), reg
);
8518 op2
= canon_reg_for_combine (XEXP (x
, 2), reg
);
8519 if (op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1) || op2
!= XEXP (x
, 2))
8520 return simplify_gen_ternary (GET_CODE (x
), GET_MODE (x
),
8521 GET_MODE (op0
), op0
, op1
, op2
);
8527 if (rtx_equal_p (get_last_value (reg
), x
)
8528 || rtx_equal_p (reg
, get_last_value (x
)))
8537 fmt
= GET_RTX_FORMAT (code
);
8539 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
8542 rtx op
= canon_reg_for_combine (XEXP (x
, i
), reg
);
8543 if (op
!= XEXP (x
, i
))
8553 else if (fmt
[i
] == 'E')
8556 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
8558 rtx op
= canon_reg_for_combine (XVECEXP (x
, i
, j
), reg
);
8559 if (op
!= XVECEXP (x
, i
, j
))
8566 XVECEXP (x
, i
, j
) = op
;
8577 /* Return X converted to MODE. If the value is already truncated to
8578 MODE we can just return a subreg even though in the general case we
8579 would need an explicit truncation. */
8582 gen_lowpart_or_truncate (machine_mode mode
, rtx x
)
8584 if (!CONST_INT_P (x
)
8585 && partial_subreg_p (mode
, GET_MODE (x
))
8586 && !TRULY_NOOP_TRUNCATION_MODES_P (mode
, GET_MODE (x
))
8587 && !(REG_P (x
) && reg_truncated_to_mode (mode
, x
)))
8589 /* Bit-cast X into an integer mode. */
8590 if (!SCALAR_INT_MODE_P (GET_MODE (x
)))
8591 x
= gen_lowpart (int_mode_for_mode (GET_MODE (x
)).require (), x
);
8592 x
= simplify_gen_unary (TRUNCATE
, int_mode_for_mode (mode
).require (),
8596 return gen_lowpart (mode
, x
);
8599 /* See if X can be simplified knowing that we will only refer to it in
8600 MODE and will only refer to those bits that are nonzero in MASK.
8601 If other bits are being computed or if masking operations are done
8602 that select a superset of the bits in MASK, they can sometimes be
8605 Return a possibly simplified expression, but always convert X to
8606 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
8608 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
8609 are all off in X. This is used when X will be complemented, by either
8610 NOT, NEG, or XOR. */
8613 force_to_mode (rtx x
, machine_mode mode
, unsigned HOST_WIDE_INT mask
,
8616 enum rtx_code code
= GET_CODE (x
);
8617 int next_select
= just_select
|| code
== XOR
|| code
== NOT
|| code
== NEG
;
8618 machine_mode op_mode
;
8619 unsigned HOST_WIDE_INT nonzero
;
8621 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
8622 code below will do the wrong thing since the mode of such an
8623 expression is VOIDmode.
8625 Also do nothing if X is a CLOBBER; this can happen if X was
8626 the return value from a call to gen_lowpart. */
8627 if (code
== CALL
|| code
== ASM_OPERANDS
|| code
== CLOBBER
)
8630 /* We want to perform the operation in its present mode unless we know
8631 that the operation is valid in MODE, in which case we do the operation
8633 op_mode
= ((GET_MODE_CLASS (mode
) == GET_MODE_CLASS (GET_MODE (x
))
8634 && have_insn_for (code
, mode
))
8635 ? mode
: GET_MODE (x
));
8637 /* It is not valid to do a right-shift in a narrower mode
8638 than the one it came in with. */
8639 if ((code
== LSHIFTRT
|| code
== ASHIFTRT
)
8640 && partial_subreg_p (mode
, GET_MODE (x
)))
8641 op_mode
= GET_MODE (x
);
8643 /* Truncate MASK to fit OP_MODE. */
8645 mask
&= GET_MODE_MASK (op_mode
);
8647 /* Determine what bits of X are guaranteed to be (non)zero. */
8648 nonzero
= nonzero_bits (x
, mode
);
8650 /* If none of the bits in X are needed, return a zero. */
8651 if (!just_select
&& (nonzero
& mask
) == 0 && !side_effects_p (x
))
8654 /* If X is a CONST_INT, return a new one. Do this here since the
8655 test below will fail. */
8656 if (CONST_INT_P (x
))
8658 if (SCALAR_INT_MODE_P (mode
))
8659 return gen_int_mode (INTVAL (x
) & mask
, mode
);
8662 x
= GEN_INT (INTVAL (x
) & mask
);
8663 return gen_lowpart_common (mode
, x
);
8667 /* If X is narrower than MODE and we want all the bits in X's mode, just
8668 get X in the proper mode. */
8669 if (paradoxical_subreg_p (mode
, GET_MODE (x
))
8670 && (GET_MODE_MASK (GET_MODE (x
)) & ~mask
) == 0)
8671 return gen_lowpart (mode
, x
);
8673 /* We can ignore the effect of a SUBREG if it narrows the mode or
8674 if the constant masks to zero all the bits the mode doesn't have. */
8675 if (GET_CODE (x
) == SUBREG
8676 && subreg_lowpart_p (x
)
8677 && (partial_subreg_p (x
)
8679 & GET_MODE_MASK (GET_MODE (x
))
8680 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x
)))) == 0))
8681 return force_to_mode (SUBREG_REG (x
), mode
, mask
, next_select
);
8683 scalar_int_mode int_mode
, xmode
;
8684 if (is_a
<scalar_int_mode
> (mode
, &int_mode
)
8685 && is_a
<scalar_int_mode
> (GET_MODE (x
), &xmode
))
8686 /* OP_MODE is either MODE or XMODE, so it must be a scalar
8688 return force_int_to_mode (x
, int_mode
, xmode
,
8689 as_a
<scalar_int_mode
> (op_mode
),
8692 return gen_lowpart_or_truncate (mode
, x
);
8695 /* Subroutine of force_to_mode that handles cases in which both X and
8696 the result are scalar integers. MODE is the mode of the result,
8697 XMODE is the mode of X, and OP_MODE says which of MODE or XMODE
8698 is preferred for simplified versions of X. The other arguments
8699 are as for force_to_mode. */
8702 force_int_to_mode (rtx x
, scalar_int_mode mode
, scalar_int_mode xmode
,
8703 scalar_int_mode op_mode
, unsigned HOST_WIDE_INT mask
,
8706 enum rtx_code code
= GET_CODE (x
);
8707 int next_select
= just_select
|| code
== XOR
|| code
== NOT
|| code
== NEG
;
8708 unsigned HOST_WIDE_INT fuller_mask
;
8710 poly_int64 const_op0
;
8712 /* When we have an arithmetic operation, or a shift whose count we
8713 do not know, we need to assume that all bits up to the highest-order
8714 bit in MASK will be needed. This is how we form such a mask. */
8715 if (mask
& (HOST_WIDE_INT_1U
<< (HOST_BITS_PER_WIDE_INT
- 1)))
8716 fuller_mask
= HOST_WIDE_INT_M1U
;
8718 fuller_mask
= ((HOST_WIDE_INT_1U
<< (floor_log2 (mask
) + 1))
8724 /* If X is a (clobber (const_int)), return it since we know we are
8725 generating something that won't match. */
8732 x
= expand_compound_operation (x
);
8733 if (GET_CODE (x
) != code
)
8734 return force_to_mode (x
, mode
, mask
, next_select
);
8738 /* Similarly for a truncate. */
8739 return force_to_mode (XEXP (x
, 0), mode
, mask
, next_select
);
8742 /* If this is an AND with a constant, convert it into an AND
8743 whose constant is the AND of that constant with MASK. If it
8744 remains an AND of MASK, delete it since it is redundant. */
8746 if (CONST_INT_P (XEXP (x
, 1)))
8748 x
= simplify_and_const_int (x
, op_mode
, XEXP (x
, 0),
8749 mask
& INTVAL (XEXP (x
, 1)));
8752 /* If X is still an AND, see if it is an AND with a mask that
8753 is just some low-order bits. If so, and it is MASK, we don't
8756 if (GET_CODE (x
) == AND
&& CONST_INT_P (XEXP (x
, 1))
8757 && (INTVAL (XEXP (x
, 1)) & GET_MODE_MASK (xmode
)) == mask
)
8760 /* If it remains an AND, try making another AND with the bits
8761 in the mode mask that aren't in MASK turned on. If the
8762 constant in the AND is wide enough, this might make a
8763 cheaper constant. */
8765 if (GET_CODE (x
) == AND
&& CONST_INT_P (XEXP (x
, 1))
8766 && GET_MODE_MASK (xmode
) != mask
8767 && HWI_COMPUTABLE_MODE_P (xmode
))
8769 unsigned HOST_WIDE_INT cval
8770 = UINTVAL (XEXP (x
, 1)) | (GET_MODE_MASK (xmode
) & ~mask
);
8773 y
= simplify_gen_binary (AND
, xmode
, XEXP (x
, 0),
8774 gen_int_mode (cval
, xmode
));
8775 if (set_src_cost (y
, xmode
, optimize_this_for_speed_p
)
8776 < set_src_cost (x
, xmode
, optimize_this_for_speed_p
))
8786 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8787 low-order bits (as in an alignment operation) and FOO is already
8788 aligned to that boundary, mask C1 to that boundary as well.
8789 This may eliminate that PLUS and, later, the AND. */
8792 unsigned int width
= GET_MODE_PRECISION (mode
);
8793 unsigned HOST_WIDE_INT smask
= mask
;
8795 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8796 number, sign extend it. */
8798 if (width
< HOST_BITS_PER_WIDE_INT
8799 && (smask
& (HOST_WIDE_INT_1U
<< (width
- 1))) != 0)
8800 smask
|= HOST_WIDE_INT_M1U
<< width
;
8802 if (CONST_INT_P (XEXP (x
, 1))
8803 && pow2p_hwi (- smask
)
8804 && (nonzero_bits (XEXP (x
, 0), mode
) & ~smask
) == 0
8805 && (INTVAL (XEXP (x
, 1)) & ~smask
) != 0)
8806 return force_to_mode (plus_constant (xmode
, XEXP (x
, 0),
8807 (INTVAL (XEXP (x
, 1)) & smask
)),
8808 mode
, smask
, next_select
);
8814 /* Substituting into the operands of a widening MULT is not likely to
8815 create RTL matching a machine insn. */
8817 && (GET_CODE (XEXP (x
, 0)) == ZERO_EXTEND
8818 || GET_CODE (XEXP (x
, 0)) == SIGN_EXTEND
)
8819 && (GET_CODE (XEXP (x
, 1)) == ZERO_EXTEND
8820 || GET_CODE (XEXP (x
, 1)) == SIGN_EXTEND
)
8821 && REG_P (XEXP (XEXP (x
, 0), 0))
8822 && REG_P (XEXP (XEXP (x
, 1), 0)))
8823 return gen_lowpart_or_truncate (mode
, x
);
8825 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8826 most significant bit in MASK since carries from those bits will
8827 affect the bits we are interested in. */
8832 /* If X is (minus C Y) where C's least set bit is larger than any bit
8833 in the mask, then we may replace with (neg Y). */
8834 if (poly_int_rtx_p (XEXP (x
, 0), &const_op0
)
8835 && known_alignment (poly_uint64 (const_op0
)) > mask
)
8837 x
= simplify_gen_unary (NEG
, xmode
, XEXP (x
, 1), xmode
);
8838 return force_to_mode (x
, mode
, mask
, next_select
);
8841 /* Similarly, if C contains every bit in the fuller_mask, then we may
8842 replace with (not Y). */
8843 if (CONST_INT_P (XEXP (x
, 0))
8844 && ((UINTVAL (XEXP (x
, 0)) | fuller_mask
) == UINTVAL (XEXP (x
, 0))))
8846 x
= simplify_gen_unary (NOT
, xmode
, XEXP (x
, 1), xmode
);
8847 return force_to_mode (x
, mode
, mask
, next_select
);
8855 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8856 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8857 operation which may be a bitfield extraction. Ensure that the
8858 constant we form is not wider than the mode of X. */
8860 if (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
8861 && CONST_INT_P (XEXP (XEXP (x
, 0), 1))
8862 && INTVAL (XEXP (XEXP (x
, 0), 1)) >= 0
8863 && INTVAL (XEXP (XEXP (x
, 0), 1)) < HOST_BITS_PER_WIDE_INT
8864 && CONST_INT_P (XEXP (x
, 1))
8865 && ((INTVAL (XEXP (XEXP (x
, 0), 1))
8866 + floor_log2 (INTVAL (XEXP (x
, 1))))
8867 < GET_MODE_PRECISION (xmode
))
8868 && (UINTVAL (XEXP (x
, 1))
8869 & ~nonzero_bits (XEXP (x
, 0), xmode
)) == 0)
8871 temp
= gen_int_mode ((INTVAL (XEXP (x
, 1)) & mask
)
8872 << INTVAL (XEXP (XEXP (x
, 0), 1)),
8874 temp
= simplify_gen_binary (GET_CODE (x
), xmode
,
8875 XEXP (XEXP (x
, 0), 0), temp
);
8876 x
= simplify_gen_binary (LSHIFTRT
, xmode
, temp
,
8877 XEXP (XEXP (x
, 0), 1));
8878 return force_to_mode (x
, mode
, mask
, next_select
);
8882 /* For most binary operations, just propagate into the operation and
8883 change the mode if we have an operation of that mode. */
8885 op0
= force_to_mode (XEXP (x
, 0), mode
, mask
, next_select
);
8886 op1
= force_to_mode (XEXP (x
, 1), mode
, mask
, next_select
);
8888 /* If we ended up truncating both operands, truncate the result of the
8889 operation instead. */
8890 if (GET_CODE (op0
) == TRUNCATE
8891 && GET_CODE (op1
) == TRUNCATE
)
8893 op0
= XEXP (op0
, 0);
8894 op1
= XEXP (op1
, 0);
8897 op0
= gen_lowpart_or_truncate (op_mode
, op0
);
8898 op1
= gen_lowpart_or_truncate (op_mode
, op1
);
8900 if (op_mode
!= xmode
|| op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1))
8902 x
= simplify_gen_binary (code
, op_mode
, op0
, op1
);
8908 /* For left shifts, do the same, but just for the first operand.
8909 However, we cannot do anything with shifts where we cannot
8910 guarantee that the counts are smaller than the size of the mode
8911 because such a count will have a different meaning in a
8914 if (! (CONST_INT_P (XEXP (x
, 1))
8915 && INTVAL (XEXP (x
, 1)) >= 0
8916 && INTVAL (XEXP (x
, 1)) < GET_MODE_PRECISION (mode
))
8917 && ! (GET_MODE (XEXP (x
, 1)) != VOIDmode
8918 && (nonzero_bits (XEXP (x
, 1), GET_MODE (XEXP (x
, 1)))
8919 < (unsigned HOST_WIDE_INT
) GET_MODE_PRECISION (mode
))))
8922 /* If the shift count is a constant and we can do arithmetic in
8923 the mode of the shift, refine which bits we need. Otherwise, use the
8924 conservative form of the mask. */
8925 if (CONST_INT_P (XEXP (x
, 1))
8926 && INTVAL (XEXP (x
, 1)) >= 0
8927 && INTVAL (XEXP (x
, 1)) < GET_MODE_PRECISION (op_mode
)
8928 && HWI_COMPUTABLE_MODE_P (op_mode
))
8929 mask
>>= INTVAL (XEXP (x
, 1));
8933 op0
= gen_lowpart_or_truncate (op_mode
,
8934 force_to_mode (XEXP (x
, 0), mode
,
8935 mask
, next_select
));
8937 if (op_mode
!= xmode
|| op0
!= XEXP (x
, 0))
8939 x
= simplify_gen_binary (code
, op_mode
, op0
, XEXP (x
, 1));
8945 /* Here we can only do something if the shift count is a constant,
8946 this shift constant is valid for the host, and we can do arithmetic
8949 if (CONST_INT_P (XEXP (x
, 1))
8950 && INTVAL (XEXP (x
, 1)) >= 0
8951 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
8952 && HWI_COMPUTABLE_MODE_P (op_mode
))
8954 rtx inner
= XEXP (x
, 0);
8955 unsigned HOST_WIDE_INT inner_mask
;
8957 /* Select the mask of the bits we need for the shift operand. */
8958 inner_mask
= mask
<< INTVAL (XEXP (x
, 1));
8960 /* We can only change the mode of the shift if we can do arithmetic
8961 in the mode of the shift and INNER_MASK is no wider than the
8962 width of X's mode. */
8963 if ((inner_mask
& ~GET_MODE_MASK (xmode
)) != 0)
8966 inner
= force_to_mode (inner
, op_mode
, inner_mask
, next_select
);
8968 if (xmode
!= op_mode
|| inner
!= XEXP (x
, 0))
8970 x
= simplify_gen_binary (LSHIFTRT
, op_mode
, inner
, XEXP (x
, 1));
8975 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
8976 shift and AND produces only copies of the sign bit (C2 is one less
8977 than a power of two), we can do this with just a shift. */
8979 if (GET_CODE (x
) == LSHIFTRT
8980 && CONST_INT_P (XEXP (x
, 1))
8981 /* The shift puts one of the sign bit copies in the least significant
8983 && ((INTVAL (XEXP (x
, 1))
8984 + num_sign_bit_copies (XEXP (x
, 0), GET_MODE (XEXP (x
, 0))))
8985 >= GET_MODE_PRECISION (xmode
))
8986 && pow2p_hwi (mask
+ 1)
8987 /* Number of bits left after the shift must be more than the mask
8989 && ((INTVAL (XEXP (x
, 1)) + exact_log2 (mask
+ 1))
8990 <= GET_MODE_PRECISION (xmode
))
8991 /* Must be more sign bit copies than the mask needs. */
8992 && ((int) num_sign_bit_copies (XEXP (x
, 0), GET_MODE (XEXP (x
, 0)))
8993 >= exact_log2 (mask
+ 1)))
8995 int nbits
= GET_MODE_PRECISION (xmode
) - exact_log2 (mask
+ 1);
8996 x
= simplify_gen_binary (LSHIFTRT
, xmode
, XEXP (x
, 0),
8997 gen_int_shift_amount (xmode
, nbits
));
9002 /* If we are just looking for the sign bit, we don't need this shift at
9003 all, even if it has a variable count. */
9004 if (val_signbit_p (xmode
, mask
))
9005 return force_to_mode (XEXP (x
, 0), mode
, mask
, next_select
);
9007 /* If this is a shift by a constant, get a mask that contains those bits
9008 that are not copies of the sign bit. We then have two cases: If
9009 MASK only includes those bits, this can be a logical shift, which may
9010 allow simplifications. If MASK is a single-bit field not within
9011 those bits, we are requesting a copy of the sign bit and hence can
9012 shift the sign bit to the appropriate location. */
9014 if (CONST_INT_P (XEXP (x
, 1)) && INTVAL (XEXP (x
, 1)) >= 0
9015 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
)
9017 unsigned HOST_WIDE_INT nonzero
;
9020 /* If the considered data is wider than HOST_WIDE_INT, we can't
9021 represent a mask for all its bits in a single scalar.
9022 But we only care about the lower bits, so calculate these. */
9024 if (GET_MODE_PRECISION (xmode
) > HOST_BITS_PER_WIDE_INT
)
9026 nonzero
= HOST_WIDE_INT_M1U
;
9028 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
9029 is the number of bits a full-width mask would have set.
9030 We need only shift if these are fewer than nonzero can
9031 hold. If not, we must keep all bits set in nonzero. */
9033 if (GET_MODE_PRECISION (xmode
) - INTVAL (XEXP (x
, 1))
9034 < HOST_BITS_PER_WIDE_INT
)
9035 nonzero
>>= INTVAL (XEXP (x
, 1))
9036 + HOST_BITS_PER_WIDE_INT
9037 - GET_MODE_PRECISION (xmode
);
9041 nonzero
= GET_MODE_MASK (xmode
);
9042 nonzero
>>= INTVAL (XEXP (x
, 1));
9045 if ((mask
& ~nonzero
) == 0)
9047 x
= simplify_shift_const (NULL_RTX
, LSHIFTRT
, xmode
,
9048 XEXP (x
, 0), INTVAL (XEXP (x
, 1)));
9049 if (GET_CODE (x
) != ASHIFTRT
)
9050 return force_to_mode (x
, mode
, mask
, next_select
);
9053 else if ((i
= exact_log2 (mask
)) >= 0)
9055 x
= simplify_shift_const
9056 (NULL_RTX
, LSHIFTRT
, xmode
, XEXP (x
, 0),
9057 GET_MODE_PRECISION (xmode
) - 1 - i
);
9059 if (GET_CODE (x
) != ASHIFTRT
)
9060 return force_to_mode (x
, mode
, mask
, next_select
);
9064 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
9065 even if the shift count isn't a constant. */
9067 x
= simplify_gen_binary (LSHIFTRT
, xmode
, XEXP (x
, 0), XEXP (x
, 1));
9071 /* If this is a zero- or sign-extension operation that just affects bits
9072 we don't care about, remove it. Be sure the call above returned
9073 something that is still a shift. */
9075 if ((GET_CODE (x
) == LSHIFTRT
|| GET_CODE (x
) == ASHIFTRT
)
9076 && CONST_INT_P (XEXP (x
, 1))
9077 && INTVAL (XEXP (x
, 1)) >= 0
9078 && (INTVAL (XEXP (x
, 1))
9079 <= GET_MODE_PRECISION (xmode
) - (floor_log2 (mask
) + 1))
9080 && GET_CODE (XEXP (x
, 0)) == ASHIFT
9081 && XEXP (XEXP (x
, 0), 1) == XEXP (x
, 1))
9082 return force_to_mode (XEXP (XEXP (x
, 0), 0), mode
, mask
,
9089 /* If the shift count is constant and we can do computations
9090 in the mode of X, compute where the bits we care about are.
9091 Otherwise, we can't do anything. Don't change the mode of
9092 the shift or propagate MODE into the shift, though. */
9093 if (CONST_INT_P (XEXP (x
, 1))
9094 && INTVAL (XEXP (x
, 1)) >= 0)
9096 temp
= simplify_binary_operation (code
== ROTATE
? ROTATERT
: ROTATE
,
9097 xmode
, gen_int_mode (mask
, xmode
),
9099 if (temp
&& CONST_INT_P (temp
))
9100 x
= simplify_gen_binary (code
, xmode
,
9101 force_to_mode (XEXP (x
, 0), xmode
,
9102 INTVAL (temp
), next_select
),
9108 /* If we just want the low-order bit, the NEG isn't needed since it
9109 won't change the low-order bit. */
9111 return force_to_mode (XEXP (x
, 0), mode
, mask
, just_select
);
9113 /* We need any bits less significant than the most significant bit in
9114 MASK since carries from those bits will affect the bits we are
9120 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
9121 same as the XOR case above. Ensure that the constant we form is not
9122 wider than the mode of X. */
9124 if (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
9125 && CONST_INT_P (XEXP (XEXP (x
, 0), 1))
9126 && INTVAL (XEXP (XEXP (x
, 0), 1)) >= 0
9127 && (INTVAL (XEXP (XEXP (x
, 0), 1)) + floor_log2 (mask
)
9128 < GET_MODE_PRECISION (xmode
))
9129 && INTVAL (XEXP (XEXP (x
, 0), 1)) < HOST_BITS_PER_WIDE_INT
)
9131 temp
= gen_int_mode (mask
<< INTVAL (XEXP (XEXP (x
, 0), 1)), xmode
);
9132 temp
= simplify_gen_binary (XOR
, xmode
, XEXP (XEXP (x
, 0), 0), temp
);
9133 x
= simplify_gen_binary (LSHIFTRT
, xmode
,
9134 temp
, XEXP (XEXP (x
, 0), 1));
9136 return force_to_mode (x
, mode
, mask
, next_select
);
9139 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
9140 use the full mask inside the NOT. */
9144 op0
= gen_lowpart_or_truncate (op_mode
,
9145 force_to_mode (XEXP (x
, 0), mode
, mask
,
9147 if (op_mode
!= xmode
|| op0
!= XEXP (x
, 0))
9149 x
= simplify_gen_unary (code
, op_mode
, op0
, op_mode
);
9155 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
9156 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
9157 which is equal to STORE_FLAG_VALUE. */
9158 if ((mask
& ~STORE_FLAG_VALUE
) == 0
9159 && XEXP (x
, 1) == const0_rtx
9160 && GET_MODE (XEXP (x
, 0)) == mode
9161 && pow2p_hwi (nonzero_bits (XEXP (x
, 0), mode
))
9162 && (nonzero_bits (XEXP (x
, 0), mode
)
9163 == (unsigned HOST_WIDE_INT
) STORE_FLAG_VALUE
))
9164 return force_to_mode (XEXP (x
, 0), mode
, mask
, next_select
);
9169 /* We have no way of knowing if the IF_THEN_ELSE can itself be
9170 written in a narrower mode. We play it safe and do not do so. */
9172 op0
= gen_lowpart_or_truncate (xmode
,
9173 force_to_mode (XEXP (x
, 1), mode
,
9174 mask
, next_select
));
9175 op1
= gen_lowpart_or_truncate (xmode
,
9176 force_to_mode (XEXP (x
, 2), mode
,
9177 mask
, next_select
));
9178 if (op0
!= XEXP (x
, 1) || op1
!= XEXP (x
, 2))
9179 x
= simplify_gen_ternary (IF_THEN_ELSE
, xmode
,
9180 GET_MODE (XEXP (x
, 0)), XEXP (x
, 0),
9188 /* Ensure we return a value of the proper mode. */
9189 return gen_lowpart_or_truncate (mode
, x
);
9192 /* Return nonzero if X is an expression that has one of two values depending on
9193 whether some other value is zero or nonzero. In that case, we return the
9194 value that is being tested, *PTRUE is set to the value if the rtx being
9195 returned has a nonzero value, and *PFALSE is set to the other alternative.
9197 If we return zero, we set *PTRUE and *PFALSE to X. */
9200 if_then_else_cond (rtx x
, rtx
*ptrue
, rtx
*pfalse
)
9202 machine_mode mode
= GET_MODE (x
);
9203 enum rtx_code code
= GET_CODE (x
);
9204 rtx cond0
, cond1
, true0
, true1
, false0
, false1
;
9205 unsigned HOST_WIDE_INT nz
;
9206 scalar_int_mode int_mode
;
9208 /* If we are comparing a value against zero, we are done. */
9209 if ((code
== NE
|| code
== EQ
)
9210 && XEXP (x
, 1) == const0_rtx
)
9212 *ptrue
= (code
== NE
) ? const_true_rtx
: const0_rtx
;
9213 *pfalse
= (code
== NE
) ? const0_rtx
: const_true_rtx
;
9217 /* If this is a unary operation whose operand has one of two values, apply
9218 our opcode to compute those values. */
9219 else if (UNARY_P (x
)
9220 && (cond0
= if_then_else_cond (XEXP (x
, 0), &true0
, &false0
)) != 0)
9222 *ptrue
= simplify_gen_unary (code
, mode
, true0
, GET_MODE (XEXP (x
, 0)));
9223 *pfalse
= simplify_gen_unary (code
, mode
, false0
,
9224 GET_MODE (XEXP (x
, 0)));
9228 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
9229 make can't possibly match and would suppress other optimizations. */
9230 else if (code
== COMPARE
)
9233 /* If this is a binary operation, see if either side has only one of two
9234 values. If either one does or if both do and they are conditional on
9235 the same value, compute the new true and false values. */
9236 else if (BINARY_P (x
))
9238 rtx op0
= XEXP (x
, 0);
9239 rtx op1
= XEXP (x
, 1);
9240 cond0
= if_then_else_cond (op0
, &true0
, &false0
);
9241 cond1
= if_then_else_cond (op1
, &true1
, &false1
);
9243 if ((cond0
!= 0 && cond1
!= 0 && !rtx_equal_p (cond0
, cond1
))
9244 && (REG_P (op0
) || REG_P (op1
)))
9246 /* Try to enable a simplification by undoing work done by
9247 if_then_else_cond if it converted a REG into something more
9252 true0
= false0
= op0
;
9257 true1
= false1
= op1
;
9261 if ((cond0
!= 0 || cond1
!= 0)
9262 && ! (cond0
!= 0 && cond1
!= 0 && !rtx_equal_p (cond0
, cond1
)))
9264 /* If if_then_else_cond returned zero, then true/false are the
9265 same rtl. We must copy one of them to prevent invalid rtl
9268 true0
= copy_rtx (true0
);
9269 else if (cond1
== 0)
9270 true1
= copy_rtx (true1
);
9272 if (COMPARISON_P (x
))
9274 *ptrue
= simplify_gen_relational (code
, mode
, VOIDmode
,
9276 *pfalse
= simplify_gen_relational (code
, mode
, VOIDmode
,
9281 *ptrue
= simplify_gen_binary (code
, mode
, true0
, true1
);
9282 *pfalse
= simplify_gen_binary (code
, mode
, false0
, false1
);
9285 return cond0
? cond0
: cond1
;
9288 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
9289 operands is zero when the other is nonzero, and vice-versa,
9290 and STORE_FLAG_VALUE is 1 or -1. */
9292 if ((STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
9293 && (code
== PLUS
|| code
== IOR
|| code
== XOR
|| code
== MINUS
9295 && GET_CODE (XEXP (x
, 0)) == MULT
&& GET_CODE (XEXP (x
, 1)) == MULT
)
9297 rtx op0
= XEXP (XEXP (x
, 0), 1);
9298 rtx op1
= XEXP (XEXP (x
, 1), 1);
9300 cond0
= XEXP (XEXP (x
, 0), 0);
9301 cond1
= XEXP (XEXP (x
, 1), 0);
9303 if (COMPARISON_P (cond0
)
9304 && COMPARISON_P (cond1
)
9305 && SCALAR_INT_MODE_P (mode
)
9306 && ((GET_CODE (cond0
) == reversed_comparison_code (cond1
, NULL
)
9307 && rtx_equal_p (XEXP (cond0
, 0), XEXP (cond1
, 0))
9308 && rtx_equal_p (XEXP (cond0
, 1), XEXP (cond1
, 1)))
9309 || ((swap_condition (GET_CODE (cond0
))
9310 == reversed_comparison_code (cond1
, NULL
))
9311 && rtx_equal_p (XEXP (cond0
, 0), XEXP (cond1
, 1))
9312 && rtx_equal_p (XEXP (cond0
, 1), XEXP (cond1
, 0))))
9313 && ! side_effects_p (x
))
9315 *ptrue
= simplify_gen_binary (MULT
, mode
, op0
, const_true_rtx
);
9316 *pfalse
= simplify_gen_binary (MULT
, mode
,
9318 ? simplify_gen_unary (NEG
, mode
,
9326 /* Similarly for MULT, AND and UMIN, except that for these the result
9328 if ((STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
9329 && (code
== MULT
|| code
== AND
|| code
== UMIN
)
9330 && GET_CODE (XEXP (x
, 0)) == MULT
&& GET_CODE (XEXP (x
, 1)) == MULT
)
9332 cond0
= XEXP (XEXP (x
, 0), 0);
9333 cond1
= XEXP (XEXP (x
, 1), 0);
9335 if (COMPARISON_P (cond0
)
9336 && COMPARISON_P (cond1
)
9337 && ((GET_CODE (cond0
) == reversed_comparison_code (cond1
, NULL
)
9338 && rtx_equal_p (XEXP (cond0
, 0), XEXP (cond1
, 0))
9339 && rtx_equal_p (XEXP (cond0
, 1), XEXP (cond1
, 1)))
9340 || ((swap_condition (GET_CODE (cond0
))
9341 == reversed_comparison_code (cond1
, NULL
))
9342 && rtx_equal_p (XEXP (cond0
, 0), XEXP (cond1
, 1))
9343 && rtx_equal_p (XEXP (cond0
, 1), XEXP (cond1
, 0))))
9344 && ! side_effects_p (x
))
9346 *ptrue
= *pfalse
= const0_rtx
;
9352 else if (code
== IF_THEN_ELSE
)
9354 /* If we have IF_THEN_ELSE already, extract the condition and
9355 canonicalize it if it is NE or EQ. */
9356 cond0
= XEXP (x
, 0);
9357 *ptrue
= XEXP (x
, 1), *pfalse
= XEXP (x
, 2);
9358 if (GET_CODE (cond0
) == NE
&& XEXP (cond0
, 1) == const0_rtx
)
9359 return XEXP (cond0
, 0);
9360 else if (GET_CODE (cond0
) == EQ
&& XEXP (cond0
, 1) == const0_rtx
)
9362 *ptrue
= XEXP (x
, 2), *pfalse
= XEXP (x
, 1);
9363 return XEXP (cond0
, 0);
9369 /* If X is a SUBREG, we can narrow both the true and false values
9370 if the inner expression, if there is a condition. */
9371 else if (code
== SUBREG
9372 && (cond0
= if_then_else_cond (SUBREG_REG (x
), &true0
,
9375 true0
= simplify_gen_subreg (mode
, true0
,
9376 GET_MODE (SUBREG_REG (x
)), SUBREG_BYTE (x
));
9377 false0
= simplify_gen_subreg (mode
, false0
,
9378 GET_MODE (SUBREG_REG (x
)), SUBREG_BYTE (x
));
9379 if (true0
&& false0
)
9387 /* If X is a constant, this isn't special and will cause confusions
9388 if we treat it as such. Likewise if it is equivalent to a constant. */
9389 else if (CONSTANT_P (x
)
9390 || ((cond0
= get_last_value (x
)) != 0 && CONSTANT_P (cond0
)))
9393 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
9394 will be least confusing to the rest of the compiler. */
9395 else if (mode
== BImode
)
9397 *ptrue
= GEN_INT (STORE_FLAG_VALUE
), *pfalse
= const0_rtx
;
9401 /* If X is known to be either 0 or -1, those are the true and
9402 false values when testing X. */
9403 else if (x
== constm1_rtx
|| x
== const0_rtx
9404 || (is_a
<scalar_int_mode
> (mode
, &int_mode
)
9405 && (num_sign_bit_copies (x
, int_mode
)
9406 == GET_MODE_PRECISION (int_mode
))))
9408 *ptrue
= constm1_rtx
, *pfalse
= const0_rtx
;
9412 /* Likewise for 0 or a single bit. */
9413 else if (HWI_COMPUTABLE_MODE_P (mode
)
9414 && pow2p_hwi (nz
= nonzero_bits (x
, mode
)))
9416 *ptrue
= gen_int_mode (nz
, mode
), *pfalse
= const0_rtx
;
9420 /* Otherwise fail; show no condition with true and false values the same. */
9421 *ptrue
= *pfalse
= x
;
9425 /* Return the value of expression X given the fact that condition COND
9426 is known to be true when applied to REG as its first operand and VAL
9427 as its second. X is known to not be shared and so can be modified in
9430 We only handle the simplest cases, and specifically those cases that
9431 arise with IF_THEN_ELSE expressions. */
9434 known_cond (rtx x
, enum rtx_code cond
, rtx reg
, rtx val
)
9436 enum rtx_code code
= GET_CODE (x
);
9440 if (side_effects_p (x
))
9443 /* If either operand of the condition is a floating point value,
9444 then we have to avoid collapsing an EQ comparison. */
9446 && rtx_equal_p (x
, reg
)
9447 && ! FLOAT_MODE_P (GET_MODE (x
))
9448 && ! FLOAT_MODE_P (GET_MODE (val
)))
9451 if (cond
== UNEQ
&& rtx_equal_p (x
, reg
))
9454 /* If X is (abs REG) and we know something about REG's relationship
9455 with zero, we may be able to simplify this. */
9457 if (code
== ABS
&& rtx_equal_p (XEXP (x
, 0), reg
) && val
== const0_rtx
)
9460 case GE
: case GT
: case EQ
:
9463 return simplify_gen_unary (NEG
, GET_MODE (XEXP (x
, 0)),
9465 GET_MODE (XEXP (x
, 0)));
9470 /* The only other cases we handle are MIN, MAX, and comparisons if the
9471 operands are the same as REG and VAL. */
9473 else if (COMPARISON_P (x
) || COMMUTATIVE_ARITH_P (x
))
9475 if (rtx_equal_p (XEXP (x
, 0), val
))
9477 std::swap (val
, reg
);
9478 cond
= swap_condition (cond
);
9481 if (rtx_equal_p (XEXP (x
, 0), reg
) && rtx_equal_p (XEXP (x
, 1), val
))
9483 if (COMPARISON_P (x
))
9485 if (comparison_dominates_p (cond
, code
))
9486 return VECTOR_MODE_P (GET_MODE (x
)) ? x
: const_true_rtx
;
9488 code
= reversed_comparison_code (x
, NULL
);
9490 && comparison_dominates_p (cond
, code
))
9491 return CONST0_RTX (GET_MODE (x
));
9495 else if (code
== SMAX
|| code
== SMIN
9496 || code
== UMIN
|| code
== UMAX
)
9498 int unsignedp
= (code
== UMIN
|| code
== UMAX
);
9500 /* Do not reverse the condition when it is NE or EQ.
9501 This is because we cannot conclude anything about
9502 the value of 'SMAX (x, y)' when x is not equal to y,
9503 but we can when x equals y. */
9504 if ((code
== SMAX
|| code
== UMAX
)
9505 && ! (cond
== EQ
|| cond
== NE
))
9506 cond
= reverse_condition (cond
);
9511 return unsignedp
? x
: XEXP (x
, 1);
9513 return unsignedp
? x
: XEXP (x
, 0);
9515 return unsignedp
? XEXP (x
, 1) : x
;
9517 return unsignedp
? XEXP (x
, 0) : x
;
9524 else if (code
== SUBREG
)
9526 machine_mode inner_mode
= GET_MODE (SUBREG_REG (x
));
9527 rtx new_rtx
, r
= known_cond (SUBREG_REG (x
), cond
, reg
, val
);
9529 if (SUBREG_REG (x
) != r
)
9531 /* We must simplify subreg here, before we lose track of the
9532 original inner_mode. */
9533 new_rtx
= simplify_subreg (GET_MODE (x
), r
,
9534 inner_mode
, SUBREG_BYTE (x
));
9538 SUBST (SUBREG_REG (x
), r
);
9543 /* We don't have to handle SIGN_EXTEND here, because even in the
9544 case of replacing something with a modeless CONST_INT, a
9545 CONST_INT is already (supposed to be) a valid sign extension for
9546 its narrower mode, which implies it's already properly
9547 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
9548 story is different. */
9549 else if (code
== ZERO_EXTEND
)
9551 machine_mode inner_mode
= GET_MODE (XEXP (x
, 0));
9552 rtx new_rtx
, r
= known_cond (XEXP (x
, 0), cond
, reg
, val
);
9554 if (XEXP (x
, 0) != r
)
9556 /* We must simplify the zero_extend here, before we lose
9557 track of the original inner_mode. */
9558 new_rtx
= simplify_unary_operation (ZERO_EXTEND
, GET_MODE (x
),
9563 SUBST (XEXP (x
, 0), r
);
9569 fmt
= GET_RTX_FORMAT (code
);
9570 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
9573 SUBST (XEXP (x
, i
), known_cond (XEXP (x
, i
), cond
, reg
, val
));
9574 else if (fmt
[i
] == 'E')
9575 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
9576 SUBST (XVECEXP (x
, i
, j
), known_cond (XVECEXP (x
, i
, j
),
9583 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
9584 assignment as a field assignment. */
9587 rtx_equal_for_field_assignment_p (rtx x
, rtx y
, bool widen_x
)
9589 if (widen_x
&& GET_MODE (x
) != GET_MODE (y
))
9591 if (paradoxical_subreg_p (GET_MODE (x
), GET_MODE (y
)))
9593 if (BYTES_BIG_ENDIAN
!= WORDS_BIG_ENDIAN
)
9595 x
= adjust_address_nv (x
, GET_MODE (y
),
9596 byte_lowpart_offset (GET_MODE (y
),
9600 if (x
== y
|| rtx_equal_p (x
, y
))
9603 if (x
== 0 || y
== 0 || GET_MODE (x
) != GET_MODE (y
))
9606 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
9607 Note that all SUBREGs of MEM are paradoxical; otherwise they
9608 would have been rewritten. */
9609 if (MEM_P (x
) && GET_CODE (y
) == SUBREG
9610 && MEM_P (SUBREG_REG (y
))
9611 && rtx_equal_p (SUBREG_REG (y
),
9612 gen_lowpart (GET_MODE (SUBREG_REG (y
)), x
)))
9615 if (MEM_P (y
) && GET_CODE (x
) == SUBREG
9616 && MEM_P (SUBREG_REG (x
))
9617 && rtx_equal_p (SUBREG_REG (x
),
9618 gen_lowpart (GET_MODE (SUBREG_REG (x
)), y
)))
9621 /* We used to see if get_last_value of X and Y were the same but that's
9622 not correct. In one direction, we'll cause the assignment to have
9623 the wrong destination and in the case, we'll import a register into this
9624 insn that might have already have been dead. So fail if none of the
9625 above cases are true. */
9629 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
9630 Return that assignment if so.
9632 We only handle the most common cases. */
9635 make_field_assignment (rtx x
)
9637 rtx dest
= SET_DEST (x
);
9638 rtx src
= SET_SRC (x
);
9643 unsigned HOST_WIDE_INT len
;
9646 /* All the rules in this function are specific to scalar integers. */
9647 scalar_int_mode mode
;
9648 if (!is_a
<scalar_int_mode
> (GET_MODE (dest
), &mode
))
9651 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
9652 a clear of a one-bit field. We will have changed it to
9653 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
9656 if (GET_CODE (src
) == AND
&& GET_CODE (XEXP (src
, 0)) == ROTATE
9657 && CONST_INT_P (XEXP (XEXP (src
, 0), 0))
9658 && INTVAL (XEXP (XEXP (src
, 0), 0)) == -2
9659 && rtx_equal_for_field_assignment_p (dest
, XEXP (src
, 1)))
9661 assign
= make_extraction (VOIDmode
, dest
, 0, XEXP (XEXP (src
, 0), 1),
9664 return gen_rtx_SET (assign
, const0_rtx
);
9668 if (GET_CODE (src
) == AND
&& GET_CODE (XEXP (src
, 0)) == SUBREG
9669 && subreg_lowpart_p (XEXP (src
, 0))
9670 && partial_subreg_p (XEXP (src
, 0))
9671 && GET_CODE (SUBREG_REG (XEXP (src
, 0))) == ROTATE
9672 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src
, 0)), 0))
9673 && INTVAL (XEXP (SUBREG_REG (XEXP (src
, 0)), 0)) == -2
9674 && rtx_equal_for_field_assignment_p (dest
, XEXP (src
, 1)))
9676 assign
= make_extraction (VOIDmode
, dest
, 0,
9677 XEXP (SUBREG_REG (XEXP (src
, 0)), 1),
9680 return gen_rtx_SET (assign
, const0_rtx
);
9684 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9686 if (GET_CODE (src
) == IOR
&& GET_CODE (XEXP (src
, 0)) == ASHIFT
9687 && XEXP (XEXP (src
, 0), 0) == const1_rtx
9688 && rtx_equal_for_field_assignment_p (dest
, XEXP (src
, 1)))
9690 assign
= make_extraction (VOIDmode
, dest
, 0, XEXP (XEXP (src
, 0), 1),
9693 return gen_rtx_SET (assign
, const1_rtx
);
9697 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9698 SRC is an AND with all bits of that field set, then we can discard
9700 if (GET_CODE (dest
) == ZERO_EXTRACT
9701 && CONST_INT_P (XEXP (dest
, 1))
9702 && GET_CODE (src
) == AND
9703 && CONST_INT_P (XEXP (src
, 1)))
9705 HOST_WIDE_INT width
= INTVAL (XEXP (dest
, 1));
9706 unsigned HOST_WIDE_INT and_mask
= INTVAL (XEXP (src
, 1));
9707 unsigned HOST_WIDE_INT ze_mask
;
9709 if (width
>= HOST_BITS_PER_WIDE_INT
)
9712 ze_mask
= ((unsigned HOST_WIDE_INT
)1 << width
) - 1;
9714 /* Complete overlap. We can remove the source AND. */
9715 if ((and_mask
& ze_mask
) == ze_mask
)
9716 return gen_rtx_SET (dest
, XEXP (src
, 0));
9718 /* Partial overlap. We can reduce the source AND. */
9719 if ((and_mask
& ze_mask
) != and_mask
)
9721 src
= gen_rtx_AND (mode
, XEXP (src
, 0),
9722 gen_int_mode (and_mask
& ze_mask
, mode
));
9723 return gen_rtx_SET (dest
, src
);
9727 /* The other case we handle is assignments into a constant-position
9728 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9729 a mask that has all one bits except for a group of zero bits and
9730 OTHER is known to have zeros where C1 has ones, this is such an
9731 assignment. Compute the position and length from C1. Shift OTHER
9732 to the appropriate position, force it to the required mode, and
9733 make the extraction. Check for the AND in both operands. */
9735 /* One or more SUBREGs might obscure the constant-position field
9736 assignment. The first one we are likely to encounter is an outer
9737 narrowing SUBREG, which we can just strip for the purposes of
9738 identifying the constant-field assignment. */
9739 scalar_int_mode src_mode
= mode
;
9740 if (GET_CODE (src
) == SUBREG
9741 && subreg_lowpart_p (src
)
9742 && is_a
<scalar_int_mode
> (GET_MODE (SUBREG_REG (src
)), &src_mode
))
9743 src
= SUBREG_REG (src
);
9745 if (GET_CODE (src
) != IOR
&& GET_CODE (src
) != XOR
)
9748 rhs
= expand_compound_operation (XEXP (src
, 0));
9749 lhs
= expand_compound_operation (XEXP (src
, 1));
9751 if (GET_CODE (rhs
) == AND
9752 && CONST_INT_P (XEXP (rhs
, 1))
9753 && rtx_equal_for_field_assignment_p (XEXP (rhs
, 0), dest
))
9754 c1
= INTVAL (XEXP (rhs
, 1)), other
= lhs
;
9755 /* The second SUBREG that might get in the way is a paradoxical
9756 SUBREG around the first operand of the AND. We want to
9757 pretend the operand is as wide as the destination here. We
9758 do this by adjusting the MEM to wider mode for the sole
9759 purpose of the call to rtx_equal_for_field_assignment_p. Also
9760 note this trick only works for MEMs. */
9761 else if (GET_CODE (rhs
) == AND
9762 && paradoxical_subreg_p (XEXP (rhs
, 0))
9763 && MEM_P (SUBREG_REG (XEXP (rhs
, 0)))
9764 && CONST_INT_P (XEXP (rhs
, 1))
9765 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (rhs
, 0)),
9767 c1
= INTVAL (XEXP (rhs
, 1)), other
= lhs
;
9768 else if (GET_CODE (lhs
) == AND
9769 && CONST_INT_P (XEXP (lhs
, 1))
9770 && rtx_equal_for_field_assignment_p (XEXP (lhs
, 0), dest
))
9771 c1
= INTVAL (XEXP (lhs
, 1)), other
= rhs
;
9772 /* The second SUBREG that might get in the way is a paradoxical
9773 SUBREG around the first operand of the AND. We want to
9774 pretend the operand is as wide as the destination here. We
9775 do this by adjusting the MEM to wider mode for the sole
9776 purpose of the call to rtx_equal_for_field_assignment_p. Also
9777 note this trick only works for MEMs. */
9778 else if (GET_CODE (lhs
) == AND
9779 && paradoxical_subreg_p (XEXP (lhs
, 0))
9780 && MEM_P (SUBREG_REG (XEXP (lhs
, 0)))
9781 && CONST_INT_P (XEXP (lhs
, 1))
9782 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (lhs
, 0)),
9784 c1
= INTVAL (XEXP (lhs
, 1)), other
= rhs
;
9788 pos
= get_pos_from_mask ((~c1
) & GET_MODE_MASK (mode
), &len
);
9790 || pos
+ len
> GET_MODE_PRECISION (mode
)
9791 || GET_MODE_PRECISION (mode
) > HOST_BITS_PER_WIDE_INT
9792 || (c1
& nonzero_bits (other
, mode
)) != 0)
9795 assign
= make_extraction (VOIDmode
, dest
, pos
, NULL_RTX
, len
, 1, 1, 0);
9799 /* The mode to use for the source is the mode of the assignment, or of
9800 what is inside a possible STRICT_LOW_PART. */
9801 machine_mode new_mode
= (GET_CODE (assign
) == STRICT_LOW_PART
9802 ? GET_MODE (XEXP (assign
, 0)) : GET_MODE (assign
));
9804 /* Shift OTHER right POS places and make it the source, restricting it
9805 to the proper length and mode. */
9807 src
= canon_reg_for_combine (simplify_shift_const (NULL_RTX
, LSHIFTRT
,
9808 src_mode
, other
, pos
),
9810 src
= force_to_mode (src
, new_mode
,
9811 len
>= HOST_BITS_PER_WIDE_INT
9813 : (HOST_WIDE_INT_1U
<< len
) - 1,
9816 /* If SRC is masked by an AND that does not make a difference in
9817 the value being stored, strip it. */
9818 if (GET_CODE (assign
) == ZERO_EXTRACT
9819 && CONST_INT_P (XEXP (assign
, 1))
9820 && INTVAL (XEXP (assign
, 1)) < HOST_BITS_PER_WIDE_INT
9821 && GET_CODE (src
) == AND
9822 && CONST_INT_P (XEXP (src
, 1))
9823 && UINTVAL (XEXP (src
, 1))
9824 == (HOST_WIDE_INT_1U
<< INTVAL (XEXP (assign
, 1))) - 1)
9825 src
= XEXP (src
, 0);
9827 return gen_rtx_SET (assign
, src
);
9830 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9834 apply_distributive_law (rtx x
)
9836 enum rtx_code code
= GET_CODE (x
);
9837 enum rtx_code inner_code
;
9838 rtx lhs
, rhs
, other
;
9841 /* Distributivity is not true for floating point as it can change the
9842 value. So we don't do it unless -funsafe-math-optimizations. */
9843 if (FLOAT_MODE_P (GET_MODE (x
))
9844 && ! flag_unsafe_math_optimizations
)
9847 /* The outer operation can only be one of the following: */
9848 if (code
!= IOR
&& code
!= AND
&& code
!= XOR
9849 && code
!= PLUS
&& code
!= MINUS
)
9855 /* If either operand is a primitive we can't do anything, so get out
9857 if (OBJECT_P (lhs
) || OBJECT_P (rhs
))
9860 lhs
= expand_compound_operation (lhs
);
9861 rhs
= expand_compound_operation (rhs
);
9862 inner_code
= GET_CODE (lhs
);
9863 if (inner_code
!= GET_CODE (rhs
))
9866 /* See if the inner and outer operations distribute. */
9873 /* These all distribute except over PLUS. */
9874 if (code
== PLUS
|| code
== MINUS
)
9879 if (code
!= PLUS
&& code
!= MINUS
)
9884 /* This is also a multiply, so it distributes over everything. */
9887 /* This used to handle SUBREG, but this turned out to be counter-
9888 productive, since (subreg (op ...)) usually is not handled by
9889 insn patterns, and this "optimization" therefore transformed
9890 recognizable patterns into unrecognizable ones. Therefore the
9891 SUBREG case was removed from here.
9893 It is possible that distributing SUBREG over arithmetic operations
9894 leads to an intermediate result than can then be optimized further,
9895 e.g. by moving the outer SUBREG to the other side of a SET as done
9896 in simplify_set. This seems to have been the original intent of
9897 handling SUBREGs here.
9899 However, with current GCC this does not appear to actually happen,
9900 at least on major platforms. If some case is found where removing
9901 the SUBREG case here prevents follow-on optimizations, distributing
9902 SUBREGs ought to be re-added at that place, e.g. in simplify_set. */
9908 /* Set LHS and RHS to the inner operands (A and B in the example
9909 above) and set OTHER to the common operand (C in the example).
9910 There is only one way to do this unless the inner operation is
9912 if (COMMUTATIVE_ARITH_P (lhs
)
9913 && rtx_equal_p (XEXP (lhs
, 0), XEXP (rhs
, 0)))
9914 other
= XEXP (lhs
, 0), lhs
= XEXP (lhs
, 1), rhs
= XEXP (rhs
, 1);
9915 else if (COMMUTATIVE_ARITH_P (lhs
)
9916 && rtx_equal_p (XEXP (lhs
, 0), XEXP (rhs
, 1)))
9917 other
= XEXP (lhs
, 0), lhs
= XEXP (lhs
, 1), rhs
= XEXP (rhs
, 0);
9918 else if (COMMUTATIVE_ARITH_P (lhs
)
9919 && rtx_equal_p (XEXP (lhs
, 1), XEXP (rhs
, 0)))
9920 other
= XEXP (lhs
, 1), lhs
= XEXP (lhs
, 0), rhs
= XEXP (rhs
, 1);
9921 else if (rtx_equal_p (XEXP (lhs
, 1), XEXP (rhs
, 1)))
9922 other
= XEXP (lhs
, 1), lhs
= XEXP (lhs
, 0), rhs
= XEXP (rhs
, 0);
9926 /* Form the new inner operation, seeing if it simplifies first. */
9927 tem
= simplify_gen_binary (code
, GET_MODE (x
), lhs
, rhs
);
9929 /* There is one exception to the general way of distributing:
9930 (a | c) ^ (b | c) -> (a ^ b) & ~c */
9931 if (code
== XOR
&& inner_code
== IOR
)
9934 other
= simplify_gen_unary (NOT
, GET_MODE (x
), other
, GET_MODE (x
));
9937 /* We may be able to continuing distributing the result, so call
9938 ourselves recursively on the inner operation before forming the
9939 outer operation, which we return. */
9940 return simplify_gen_binary (inner_code
, GET_MODE (x
),
9941 apply_distributive_law (tem
), other
);
9944 /* See if X is of the form (* (+ A B) C), and if so convert to
9945 (+ (* A C) (* B C)) and try to simplify.
9947 Most of the time, this results in no change. However, if some of
9948 the operands are the same or inverses of each other, simplifications
9951 For example, (and (ior A B) (not B)) can occur as the result of
9952 expanding a bit field assignment. When we apply the distributive
9953 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9954 which then simplifies to (and (A (not B))).
9956 Note that no checks happen on the validity of applying the inverse
9957 distributive law. This is pointless since we can do it in the
9958 few places where this routine is called.
9960 N is the index of the term that is decomposed (the arithmetic operation,
9961 i.e. (+ A B) in the first example above). !N is the index of the term that
9962 is distributed, i.e. of C in the first example above. */
9964 distribute_and_simplify_rtx (rtx x
, int n
)
9967 enum rtx_code outer_code
, inner_code
;
9968 rtx decomposed
, distributed
, inner_op0
, inner_op1
, new_op0
, new_op1
, tmp
;
9970 /* Distributivity is not true for floating point as it can change the
9971 value. So we don't do it unless -funsafe-math-optimizations. */
9972 if (FLOAT_MODE_P (GET_MODE (x
))
9973 && ! flag_unsafe_math_optimizations
)
9976 decomposed
= XEXP (x
, n
);
9977 if (!ARITHMETIC_P (decomposed
))
9980 mode
= GET_MODE (x
);
9981 outer_code
= GET_CODE (x
);
9982 distributed
= XEXP (x
, !n
);
9984 inner_code
= GET_CODE (decomposed
);
9985 inner_op0
= XEXP (decomposed
, 0);
9986 inner_op1
= XEXP (decomposed
, 1);
9988 /* Special case (and (xor B C) (not A)), which is equivalent to
9989 (xor (ior A B) (ior A C)) */
9990 if (outer_code
== AND
&& inner_code
== XOR
&& GET_CODE (distributed
) == NOT
)
9992 distributed
= XEXP (distributed
, 0);
9998 /* Distribute the second term. */
9999 new_op0
= simplify_gen_binary (outer_code
, mode
, inner_op0
, distributed
);
10000 new_op1
= simplify_gen_binary (outer_code
, mode
, inner_op1
, distributed
);
10004 /* Distribute the first term. */
10005 new_op0
= simplify_gen_binary (outer_code
, mode
, distributed
, inner_op0
);
10006 new_op1
= simplify_gen_binary (outer_code
, mode
, distributed
, inner_op1
);
10009 tmp
= apply_distributive_law (simplify_gen_binary (inner_code
, mode
,
10010 new_op0
, new_op1
));
10011 if (GET_CODE (tmp
) != outer_code
10012 && (set_src_cost (tmp
, mode
, optimize_this_for_speed_p
)
10013 < set_src_cost (x
, mode
, optimize_this_for_speed_p
)))
10019 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
10020 in MODE. Return an equivalent form, if different from (and VAROP
10021 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
10024 simplify_and_const_int_1 (scalar_int_mode mode
, rtx varop
,
10025 unsigned HOST_WIDE_INT constop
)
10027 unsigned HOST_WIDE_INT nonzero
;
10028 unsigned HOST_WIDE_INT orig_constop
;
10032 orig_varop
= varop
;
10033 orig_constop
= constop
;
10034 if (GET_CODE (varop
) == CLOBBER
)
10037 /* Simplify VAROP knowing that we will be only looking at some of the
10040 Note by passing in CONSTOP, we guarantee that the bits not set in
10041 CONSTOP are not significant and will never be examined. We must
10042 ensure that is the case by explicitly masking out those bits
10043 before returning. */
10044 varop
= force_to_mode (varop
, mode
, constop
, 0);
10046 /* If VAROP is a CLOBBER, we will fail so return it. */
10047 if (GET_CODE (varop
) == CLOBBER
)
10050 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
10051 to VAROP and return the new constant. */
10052 if (CONST_INT_P (varop
))
10053 return gen_int_mode (INTVAL (varop
) & constop
, mode
);
10055 /* See what bits may be nonzero in VAROP. Unlike the general case of
10056 a call to nonzero_bits, here we don't care about bits outside
10059 nonzero
= nonzero_bits (varop
, mode
) & GET_MODE_MASK (mode
);
10061 /* Turn off all bits in the constant that are known to already be zero.
10062 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
10063 which is tested below. */
10065 constop
&= nonzero
;
10067 /* If we don't have any bits left, return zero. */
10068 if (constop
== 0 && !side_effects_p (varop
))
10071 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
10072 a power of two, we can replace this with an ASHIFT. */
10073 if (GET_CODE (varop
) == NEG
&& nonzero_bits (XEXP (varop
, 0), mode
) == 1
10074 && (i
= exact_log2 (constop
)) >= 0)
10075 return simplify_shift_const (NULL_RTX
, ASHIFT
, mode
, XEXP (varop
, 0), i
);
10077 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
10078 or XOR, then try to apply the distributive law. This may eliminate
10079 operations if either branch can be simplified because of the AND.
10080 It may also make some cases more complex, but those cases probably
10081 won't match a pattern either with or without this. */
10083 if (GET_CODE (varop
) == IOR
|| GET_CODE (varop
) == XOR
)
10085 scalar_int_mode varop_mode
= as_a
<scalar_int_mode
> (GET_MODE (varop
));
10089 apply_distributive_law
10090 (simplify_gen_binary (GET_CODE (varop
), varop_mode
,
10091 simplify_and_const_int (NULL_RTX
, varop_mode
,
10094 simplify_and_const_int (NULL_RTX
, varop_mode
,
10099 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
10100 the AND and see if one of the operands simplifies to zero. If so, we
10101 may eliminate it. */
10103 if (GET_CODE (varop
) == PLUS
10104 && pow2p_hwi (constop
+ 1))
10108 o0
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (varop
, 0), constop
);
10109 o1
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (varop
, 1), constop
);
10110 if (o0
== const0_rtx
)
10112 if (o1
== const0_rtx
)
10116 /* Make a SUBREG if necessary. If we can't make it, fail. */
10117 varop
= gen_lowpart (mode
, varop
);
10118 if (varop
== NULL_RTX
|| GET_CODE (varop
) == CLOBBER
)
10121 /* If we are only masking insignificant bits, return VAROP. */
10122 if (constop
== nonzero
)
10125 if (varop
== orig_varop
&& constop
== orig_constop
)
10128 /* Otherwise, return an AND. */
10129 return simplify_gen_binary (AND
, mode
, varop
, gen_int_mode (constop
, mode
));
10133 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
10136 Return an equivalent form, if different from X. Otherwise, return X. If
10137 X is zero, we are to always construct the equivalent form. */
10140 simplify_and_const_int (rtx x
, scalar_int_mode mode
, rtx varop
,
10141 unsigned HOST_WIDE_INT constop
)
10143 rtx tem
= simplify_and_const_int_1 (mode
, varop
, constop
);
10148 x
= simplify_gen_binary (AND
, GET_MODE (varop
), varop
,
10149 gen_int_mode (constop
, mode
));
10150 if (GET_MODE (x
) != mode
)
10151 x
= gen_lowpart (mode
, x
);
10155 /* Given a REG X of mode XMODE, compute which bits in X can be nonzero.
10156 We don't care about bits outside of those defined in MODE.
10157 We DO care about all the bits in MODE, even if XMODE is smaller than MODE.
10159 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
10160 a shift, AND, or zero_extract, we can do better. */
10163 reg_nonzero_bits_for_combine (const_rtx x
, scalar_int_mode xmode
,
10164 scalar_int_mode mode
,
10165 unsigned HOST_WIDE_INT
*nonzero
)
10168 reg_stat_type
*rsp
;
10170 /* If X is a register whose nonzero bits value is current, use it.
10171 Otherwise, if X is a register whose value we can find, use that
10172 value. Otherwise, use the previously-computed global nonzero bits
10173 for this register. */
10175 rsp
= ®_stat
[REGNO (x
)];
10176 if (rsp
->last_set_value
!= 0
10177 && (rsp
->last_set_mode
== mode
10178 || (REGNO (x
) >= FIRST_PSEUDO_REGISTER
10179 && GET_MODE_CLASS (rsp
->last_set_mode
) == MODE_INT
10180 && GET_MODE_CLASS (mode
) == MODE_INT
))
10181 && ((rsp
->last_set_label
>= label_tick_ebb_start
10182 && rsp
->last_set_label
< label_tick
)
10183 || (rsp
->last_set_label
== label_tick
10184 && DF_INSN_LUID (rsp
->last_set
) < subst_low_luid
)
10185 || (REGNO (x
) >= FIRST_PSEUDO_REGISTER
10186 && REGNO (x
) < reg_n_sets_max
10187 && REG_N_SETS (REGNO (x
)) == 1
10188 && !REGNO_REG_SET_P
10189 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
),
10192 /* Note that, even if the precision of last_set_mode is lower than that
10193 of mode, record_value_for_reg invoked nonzero_bits on the register
10194 with nonzero_bits_mode (because last_set_mode is necessarily integral
10195 and HWI_COMPUTABLE_MODE_P in this case) so bits in nonzero_bits_mode
10196 are all valid, hence in mode too since nonzero_bits_mode is defined
10197 to the largest HWI_COMPUTABLE_MODE_P mode. */
10198 *nonzero
&= rsp
->last_set_nonzero_bits
;
10202 tem
= get_last_value (x
);
10205 if (SHORT_IMMEDIATES_SIGN_EXTEND
)
10206 tem
= sign_extend_short_imm (tem
, xmode
, GET_MODE_PRECISION (mode
));
10211 if (nonzero_sign_valid
&& rsp
->nonzero_bits
)
10213 unsigned HOST_WIDE_INT mask
= rsp
->nonzero_bits
;
10215 if (GET_MODE_PRECISION (xmode
) < GET_MODE_PRECISION (mode
))
10216 /* We don't know anything about the upper bits. */
10217 mask
|= GET_MODE_MASK (mode
) ^ GET_MODE_MASK (xmode
);
10225 /* Given a reg X of mode XMODE, return the number of bits at the high-order
10226 end of X that are known to be equal to the sign bit. X will be used
10227 in mode MODE; the returned value will always be between 1 and the
10228 number of bits in MODE. */
10231 reg_num_sign_bit_copies_for_combine (const_rtx x
, scalar_int_mode xmode
,
10232 scalar_int_mode mode
,
10233 unsigned int *result
)
10236 reg_stat_type
*rsp
;
10238 rsp
= ®_stat
[REGNO (x
)];
10239 if (rsp
->last_set_value
!= 0
10240 && rsp
->last_set_mode
== mode
10241 && ((rsp
->last_set_label
>= label_tick_ebb_start
10242 && rsp
->last_set_label
< label_tick
)
10243 || (rsp
->last_set_label
== label_tick
10244 && DF_INSN_LUID (rsp
->last_set
) < subst_low_luid
)
10245 || (REGNO (x
) >= FIRST_PSEUDO_REGISTER
10246 && REGNO (x
) < reg_n_sets_max
10247 && REG_N_SETS (REGNO (x
)) == 1
10248 && !REGNO_REG_SET_P
10249 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
),
10252 *result
= rsp
->last_set_sign_bit_copies
;
10256 tem
= get_last_value (x
);
10260 if (nonzero_sign_valid
&& rsp
->sign_bit_copies
!= 0
10261 && GET_MODE_PRECISION (xmode
) == GET_MODE_PRECISION (mode
))
10262 *result
= rsp
->sign_bit_copies
;
10267 /* Return the number of "extended" bits there are in X, when interpreted
10268 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
10269 unsigned quantities, this is the number of high-order zero bits.
10270 For signed quantities, this is the number of copies of the sign bit
10271 minus 1. In both case, this function returns the number of "spare"
10272 bits. For example, if two quantities for which this function returns
10273 at least 1 are added, the addition is known not to overflow.
10275 This function will always return 0 unless called during combine, which
10276 implies that it must be called from a define_split. */
10279 extended_count (const_rtx x
, machine_mode mode
, int unsignedp
)
10281 if (nonzero_sign_valid
== 0)
10284 scalar_int_mode int_mode
;
10286 ? (is_a
<scalar_int_mode
> (mode
, &int_mode
)
10287 && HWI_COMPUTABLE_MODE_P (int_mode
)
10288 ? (unsigned int) (GET_MODE_PRECISION (int_mode
) - 1
10289 - floor_log2 (nonzero_bits (x
, int_mode
)))
10291 : num_sign_bit_copies (x
, mode
) - 1);
10294 /* This function is called from `simplify_shift_const' to merge two
10295 outer operations. Specifically, we have already found that we need
10296 to perform operation *POP0 with constant *PCONST0 at the outermost
10297 position. We would now like to also perform OP1 with constant CONST1
10298 (with *POP0 being done last).
10300 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
10301 the resulting operation. *PCOMP_P is set to 1 if we would need to
10302 complement the innermost operand, otherwise it is unchanged.
10304 MODE is the mode in which the operation will be done. No bits outside
10305 the width of this mode matter. It is assumed that the width of this mode
10306 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
10308 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
10309 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
10310 result is simply *PCONST0.
10312 If the resulting operation cannot be expressed as one operation, we
10313 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
10316 merge_outer_ops (enum rtx_code
*pop0
, HOST_WIDE_INT
*pconst0
, enum rtx_code op1
, HOST_WIDE_INT const1
, machine_mode mode
, int *pcomp_p
)
10318 enum rtx_code op0
= *pop0
;
10319 HOST_WIDE_INT const0
= *pconst0
;
10321 const0
&= GET_MODE_MASK (mode
);
10322 const1
&= GET_MODE_MASK (mode
);
10324 /* If OP0 is an AND, clear unimportant bits in CONST1. */
10328 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
10331 if (op1
== UNKNOWN
|| op0
== SET
)
10334 else if (op0
== UNKNOWN
)
10335 op0
= op1
, const0
= const1
;
10337 else if (op0
== op1
)
10361 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
10362 else if (op0
== PLUS
|| op1
== PLUS
|| op0
== NEG
|| op1
== NEG
)
10365 /* If the two constants aren't the same, we can't do anything. The
10366 remaining six cases can all be done. */
10367 else if (const0
!= const1
)
10375 /* (a & b) | b == b */
10377 else /* op1 == XOR */
10378 /* (a ^ b) | b == a | b */
10384 /* (a & b) ^ b == (~a) & b */
10385 op0
= AND
, *pcomp_p
= 1;
10386 else /* op1 == IOR */
10387 /* (a | b) ^ b == a & ~b */
10388 op0
= AND
, const0
= ~const0
;
10393 /* (a | b) & b == b */
10395 else /* op1 == XOR */
10396 /* (a ^ b) & b) == (~a) & b */
10403 /* Check for NO-OP cases. */
10404 const0
&= GET_MODE_MASK (mode
);
10406 && (op0
== IOR
|| op0
== XOR
|| op0
== PLUS
))
10408 else if (const0
== 0 && op0
== AND
)
10410 else if ((unsigned HOST_WIDE_INT
) const0
== GET_MODE_MASK (mode
)
10416 /* ??? Slightly redundant with the above mask, but not entirely.
10417 Moving this above means we'd have to sign-extend the mode mask
10418 for the final test. */
10419 if (op0
!= UNKNOWN
&& op0
!= NEG
)
10420 *pconst0
= trunc_int_for_mode (const0
, mode
);
10425 /* A helper to simplify_shift_const_1 to determine the mode we can perform
10426 the shift in. The original shift operation CODE is performed on OP in
10427 ORIG_MODE. Return the wider mode MODE if we can perform the operation
10428 in that mode. Return ORIG_MODE otherwise. We can also assume that the
10429 result of the shift is subject to operation OUTER_CODE with operand
10432 static scalar_int_mode
10433 try_widen_shift_mode (enum rtx_code code
, rtx op
, int count
,
10434 scalar_int_mode orig_mode
, scalar_int_mode mode
,
10435 enum rtx_code outer_code
, HOST_WIDE_INT outer_const
)
10437 gcc_assert (GET_MODE_PRECISION (mode
) > GET_MODE_PRECISION (orig_mode
));
10439 /* In general we can't perform in wider mode for right shift and rotate. */
10443 /* We can still widen if the bits brought in from the left are identical
10444 to the sign bit of ORIG_MODE. */
10445 if (num_sign_bit_copies (op
, mode
)
10446 > (unsigned) (GET_MODE_PRECISION (mode
)
10447 - GET_MODE_PRECISION (orig_mode
)))
10452 /* Similarly here but with zero bits. */
10453 if (HWI_COMPUTABLE_MODE_P (mode
)
10454 && (nonzero_bits (op
, mode
) & ~GET_MODE_MASK (orig_mode
)) == 0)
10457 /* We can also widen if the bits brought in will be masked off. This
10458 operation is performed in ORIG_MODE. */
10459 if (outer_code
== AND
)
10461 int care_bits
= low_bitmask_len (orig_mode
, outer_const
);
10464 && GET_MODE_PRECISION (orig_mode
) - care_bits
>= count
)
10473 gcc_unreachable ();
10480 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
10481 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
10482 if we cannot simplify it. Otherwise, return a simplified value.
10484 The shift is normally computed in the widest mode we find in VAROP, as
10485 long as it isn't a different number of words than RESULT_MODE. Exceptions
10486 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10489 simplify_shift_const_1 (enum rtx_code code
, machine_mode result_mode
,
10490 rtx varop
, int orig_count
)
10492 enum rtx_code orig_code
= code
;
10493 rtx orig_varop
= varop
;
10495 machine_mode mode
= result_mode
;
10496 machine_mode shift_mode
;
10497 scalar_int_mode tmode
, inner_mode
, int_mode
, int_varop_mode
, int_result_mode
;
10498 /* We form (outer_op (code varop count) (outer_const)). */
10499 enum rtx_code outer_op
= UNKNOWN
;
10500 HOST_WIDE_INT outer_const
= 0;
10501 int complement_p
= 0;
10504 /* Make sure and truncate the "natural" shift on the way in. We don't
10505 want to do this inside the loop as it makes it more difficult to
10507 if (SHIFT_COUNT_TRUNCATED
)
10508 orig_count
&= GET_MODE_UNIT_BITSIZE (mode
) - 1;
10510 /* If we were given an invalid count, don't do anything except exactly
10511 what was requested. */
10513 if (orig_count
< 0 || orig_count
>= (int) GET_MODE_UNIT_PRECISION (mode
))
10516 count
= orig_count
;
10518 /* Unless one of the branches of the `if' in this loop does a `continue',
10519 we will `break' the loop after the `if'. */
10523 /* If we have an operand of (clobber (const_int 0)), fail. */
10524 if (GET_CODE (varop
) == CLOBBER
)
10527 /* Convert ROTATERT to ROTATE. */
10528 if (code
== ROTATERT
)
10530 unsigned int bitsize
= GET_MODE_UNIT_PRECISION (result_mode
);
10532 count
= bitsize
- count
;
10535 shift_mode
= result_mode
;
10536 if (shift_mode
!= mode
)
10538 /* We only change the modes of scalar shifts. */
10539 int_mode
= as_a
<scalar_int_mode
> (mode
);
10540 int_result_mode
= as_a
<scalar_int_mode
> (result_mode
);
10541 shift_mode
= try_widen_shift_mode (code
, varop
, count
,
10542 int_result_mode
, int_mode
,
10543 outer_op
, outer_const
);
10546 scalar_int_mode shift_unit_mode
10547 = as_a
<scalar_int_mode
> (GET_MODE_INNER (shift_mode
));
10549 /* Handle cases where the count is greater than the size of the mode
10550 minus 1. For ASHIFT, use the size minus one as the count (this can
10551 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
10552 take the count modulo the size. For other shifts, the result is
10555 Since these shifts are being produced by the compiler by combining
10556 multiple operations, each of which are defined, we know what the
10557 result is supposed to be. */
10559 if (count
> (GET_MODE_PRECISION (shift_unit_mode
) - 1))
10561 if (code
== ASHIFTRT
)
10562 count
= GET_MODE_PRECISION (shift_unit_mode
) - 1;
10563 else if (code
== ROTATE
|| code
== ROTATERT
)
10564 count
%= GET_MODE_PRECISION (shift_unit_mode
);
10567 /* We can't simply return zero because there may be an
10569 varop
= const0_rtx
;
10575 /* If we discovered we had to complement VAROP, leave. Making a NOT
10576 here would cause an infinite loop. */
10580 if (shift_mode
== shift_unit_mode
)
10582 /* An arithmetic right shift of a quantity known to be -1 or 0
10584 if (code
== ASHIFTRT
10585 && (num_sign_bit_copies (varop
, shift_unit_mode
)
10586 == GET_MODE_PRECISION (shift_unit_mode
)))
10592 /* If we are doing an arithmetic right shift and discarding all but
10593 the sign bit copies, this is equivalent to doing a shift by the
10594 bitsize minus one. Convert it into that shift because it will
10595 often allow other simplifications. */
10597 if (code
== ASHIFTRT
10598 && (count
+ num_sign_bit_copies (varop
, shift_unit_mode
)
10599 >= GET_MODE_PRECISION (shift_unit_mode
)))
10600 count
= GET_MODE_PRECISION (shift_unit_mode
) - 1;
10602 /* We simplify the tests below and elsewhere by converting
10603 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
10604 `make_compound_operation' will convert it to an ASHIFTRT for
10605 those machines (such as VAX) that don't have an LSHIFTRT. */
10606 if (code
== ASHIFTRT
10607 && HWI_COMPUTABLE_MODE_P (shift_unit_mode
)
10608 && val_signbit_known_clear_p (shift_unit_mode
,
10609 nonzero_bits (varop
,
10613 if (((code
== LSHIFTRT
10614 && HWI_COMPUTABLE_MODE_P (shift_unit_mode
)
10615 && !(nonzero_bits (varop
, shift_unit_mode
) >> count
))
10617 && HWI_COMPUTABLE_MODE_P (shift_unit_mode
)
10618 && !((nonzero_bits (varop
, shift_unit_mode
) << count
)
10619 & GET_MODE_MASK (shift_unit_mode
))))
10620 && !side_effects_p (varop
))
10621 varop
= const0_rtx
;
10624 switch (GET_CODE (varop
))
10630 new_rtx
= expand_compound_operation (varop
);
10631 if (new_rtx
!= varop
)
10639 /* The following rules apply only to scalars. */
10640 if (shift_mode
!= shift_unit_mode
)
10642 int_mode
= as_a
<scalar_int_mode
> (mode
);
10644 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
10645 minus the width of a smaller mode, we can do this with a
10646 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
10647 if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
10648 && ! mode_dependent_address_p (XEXP (varop
, 0),
10649 MEM_ADDR_SPACE (varop
))
10650 && ! MEM_VOLATILE_P (varop
)
10651 && (int_mode_for_size (GET_MODE_BITSIZE (int_mode
) - count
, 1)
10654 new_rtx
= adjust_address_nv (varop
, tmode
,
10655 BYTES_BIG_ENDIAN
? 0
10656 : count
/ BITS_PER_UNIT
);
10658 varop
= gen_rtx_fmt_e (code
== ASHIFTRT
? SIGN_EXTEND
10659 : ZERO_EXTEND
, int_mode
, new_rtx
);
10666 /* The following rules apply only to scalars. */
10667 if (shift_mode
!= shift_unit_mode
)
10669 int_mode
= as_a
<scalar_int_mode
> (mode
);
10670 int_varop_mode
= as_a
<scalar_int_mode
> (GET_MODE (varop
));
10672 /* If VAROP is a SUBREG, strip it as long as the inner operand has
10673 the same number of words as what we've seen so far. Then store
10674 the widest mode in MODE. */
10675 if (subreg_lowpart_p (varop
)
10676 && is_int_mode (GET_MODE (SUBREG_REG (varop
)), &inner_mode
)
10677 && GET_MODE_SIZE (inner_mode
) > GET_MODE_SIZE (int_varop_mode
)
10678 && (CEIL (GET_MODE_SIZE (inner_mode
), UNITS_PER_WORD
)
10679 == CEIL (GET_MODE_SIZE (int_mode
), UNITS_PER_WORD
))
10680 && GET_MODE_CLASS (int_varop_mode
) == MODE_INT
)
10682 varop
= SUBREG_REG (varop
);
10683 if (GET_MODE_SIZE (inner_mode
) > GET_MODE_SIZE (int_mode
))
10690 /* Some machines use MULT instead of ASHIFT because MULT
10691 is cheaper. But it is still better on those machines to
10692 merge two shifts into one. */
10693 if (CONST_INT_P (XEXP (varop
, 1))
10694 && (log2
= exact_log2 (UINTVAL (XEXP (varop
, 1)))) >= 0)
10696 rtx log2_rtx
= gen_int_shift_amount (GET_MODE (varop
), log2
);
10697 varop
= simplify_gen_binary (ASHIFT
, GET_MODE (varop
),
10698 XEXP (varop
, 0), log2_rtx
);
10704 /* Similar, for when divides are cheaper. */
10705 if (CONST_INT_P (XEXP (varop
, 1))
10706 && (log2
= exact_log2 (UINTVAL (XEXP (varop
, 1)))) >= 0)
10708 rtx log2_rtx
= gen_int_shift_amount (GET_MODE (varop
), log2
);
10709 varop
= simplify_gen_binary (LSHIFTRT
, GET_MODE (varop
),
10710 XEXP (varop
, 0), log2_rtx
);
10716 /* If we are extracting just the sign bit of an arithmetic
10717 right shift, that shift is not needed. However, the sign
10718 bit of a wider mode may be different from what would be
10719 interpreted as the sign bit in a narrower mode, so, if
10720 the result is narrower, don't discard the shift. */
10721 if (code
== LSHIFTRT
10722 && count
== (GET_MODE_UNIT_BITSIZE (result_mode
) - 1)
10723 && (GET_MODE_UNIT_BITSIZE (result_mode
)
10724 >= GET_MODE_UNIT_BITSIZE (GET_MODE (varop
))))
10726 varop
= XEXP (varop
, 0);
10735 /* The following rules apply only to scalars. */
10736 if (shift_mode
!= shift_unit_mode
)
10738 int_mode
= as_a
<scalar_int_mode
> (mode
);
10739 int_varop_mode
= as_a
<scalar_int_mode
> (GET_MODE (varop
));
10740 int_result_mode
= as_a
<scalar_int_mode
> (result_mode
);
10742 /* Here we have two nested shifts. The result is usually the
10743 AND of a new shift with a mask. We compute the result below. */
10744 if (CONST_INT_P (XEXP (varop
, 1))
10745 && INTVAL (XEXP (varop
, 1)) >= 0
10746 && INTVAL (XEXP (varop
, 1)) < GET_MODE_PRECISION (int_varop_mode
)
10747 && HWI_COMPUTABLE_MODE_P (int_result_mode
)
10748 && HWI_COMPUTABLE_MODE_P (int_mode
))
10750 enum rtx_code first_code
= GET_CODE (varop
);
10751 unsigned int first_count
= INTVAL (XEXP (varop
, 1));
10752 unsigned HOST_WIDE_INT mask
;
10755 /* We have one common special case. We can't do any merging if
10756 the inner code is an ASHIFTRT of a smaller mode. However, if
10757 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10758 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10759 we can convert it to
10760 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10761 This simplifies certain SIGN_EXTEND operations. */
10762 if (code
== ASHIFT
&& first_code
== ASHIFTRT
10763 && count
== (GET_MODE_PRECISION (int_result_mode
)
10764 - GET_MODE_PRECISION (int_varop_mode
)))
10766 /* C3 has the low-order C1 bits zero. */
10768 mask
= GET_MODE_MASK (int_mode
)
10769 & ~((HOST_WIDE_INT_1U
<< first_count
) - 1);
10771 varop
= simplify_and_const_int (NULL_RTX
, int_result_mode
,
10772 XEXP (varop
, 0), mask
);
10773 varop
= simplify_shift_const (NULL_RTX
, ASHIFT
,
10774 int_result_mode
, varop
, count
);
10775 count
= first_count
;
10780 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10781 than C1 high-order bits equal to the sign bit, we can convert
10782 this to either an ASHIFT or an ASHIFTRT depending on the
10785 We cannot do this if VAROP's mode is not SHIFT_UNIT_MODE. */
10787 if (code
== ASHIFTRT
&& first_code
== ASHIFT
10788 && int_varop_mode
== shift_unit_mode
10789 && (num_sign_bit_copies (XEXP (varop
, 0), shift_unit_mode
)
10792 varop
= XEXP (varop
, 0);
10793 count
-= first_count
;
10803 /* There are some cases we can't do. If CODE is ASHIFTRT,
10804 we can only do this if FIRST_CODE is also ASHIFTRT.
10806 We can't do the case when CODE is ROTATE and FIRST_CODE is
10809 If the mode of this shift is not the mode of the outer shift,
10810 we can't do this if either shift is a right shift or ROTATE.
10812 Finally, we can't do any of these if the mode is too wide
10813 unless the codes are the same.
10815 Handle the case where the shift codes are the same
10818 if (code
== first_code
)
10820 if (int_varop_mode
!= int_result_mode
10821 && (code
== ASHIFTRT
|| code
== LSHIFTRT
10822 || code
== ROTATE
))
10825 count
+= first_count
;
10826 varop
= XEXP (varop
, 0);
10830 if (code
== ASHIFTRT
10831 || (code
== ROTATE
&& first_code
== ASHIFTRT
)
10832 || GET_MODE_PRECISION (int_mode
) > HOST_BITS_PER_WIDE_INT
10833 || (int_varop_mode
!= int_result_mode
10834 && (first_code
== ASHIFTRT
|| first_code
== LSHIFTRT
10835 || first_code
== ROTATE
10836 || code
== ROTATE
)))
10839 /* To compute the mask to apply after the shift, shift the
10840 nonzero bits of the inner shift the same way the
10841 outer shift will. */
10843 mask_rtx
= gen_int_mode (nonzero_bits (varop
, int_varop_mode
),
10845 rtx count_rtx
= gen_int_shift_amount (int_result_mode
, count
);
10847 = simplify_const_binary_operation (code
, int_result_mode
,
10848 mask_rtx
, count_rtx
);
10850 /* Give up if we can't compute an outer operation to use. */
10852 || !CONST_INT_P (mask_rtx
)
10853 || ! merge_outer_ops (&outer_op
, &outer_const
, AND
,
10855 int_result_mode
, &complement_p
))
10858 /* If the shifts are in the same direction, we add the
10859 counts. Otherwise, we subtract them. */
10860 if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
10861 == (first_code
== ASHIFTRT
|| first_code
== LSHIFTRT
))
10862 count
+= first_count
;
10864 count
-= first_count
;
10866 /* If COUNT is positive, the new shift is usually CODE,
10867 except for the two exceptions below, in which case it is
10868 FIRST_CODE. If the count is negative, FIRST_CODE should
10871 && ((first_code
== ROTATE
&& code
== ASHIFT
)
10872 || (first_code
== ASHIFTRT
&& code
== LSHIFTRT
)))
10874 else if (count
< 0)
10875 code
= first_code
, count
= -count
;
10877 varop
= XEXP (varop
, 0);
10881 /* If we have (A << B << C) for any shift, we can convert this to
10882 (A << C << B). This wins if A is a constant. Only try this if
10883 B is not a constant. */
10885 else if (GET_CODE (varop
) == code
10886 && CONST_INT_P (XEXP (varop
, 0))
10887 && !CONST_INT_P (XEXP (varop
, 1)))
10889 /* For ((unsigned) (cstULL >> count)) >> cst2 we have to make
10890 sure the result will be masked. See PR70222. */
10891 if (code
== LSHIFTRT
10892 && int_mode
!= int_result_mode
10893 && !merge_outer_ops (&outer_op
, &outer_const
, AND
,
10894 GET_MODE_MASK (int_result_mode
)
10895 >> orig_count
, int_result_mode
,
10898 /* For ((int) (cstLL >> count)) >> cst2 just give up. Queuing
10899 up outer sign extension (often left and right shift) is
10900 hardly more efficient than the original. See PR70429.
10901 Similarly punt for rotates with different modes.
10903 if ((code
== ASHIFTRT
|| code
== ROTATE
)
10904 && int_mode
!= int_result_mode
)
10907 rtx count_rtx
= gen_int_shift_amount (int_result_mode
, count
);
10908 rtx new_rtx
= simplify_const_binary_operation (code
, int_mode
,
10911 varop
= gen_rtx_fmt_ee (code
, int_mode
, new_rtx
, XEXP (varop
, 1));
10918 /* The following rules apply only to scalars. */
10919 if (shift_mode
!= shift_unit_mode
)
10922 /* Make this fit the case below. */
10923 varop
= gen_rtx_XOR (mode
, XEXP (varop
, 0), constm1_rtx
);
10929 /* The following rules apply only to scalars. */
10930 if (shift_mode
!= shift_unit_mode
)
10932 int_varop_mode
= as_a
<scalar_int_mode
> (GET_MODE (varop
));
10933 int_result_mode
= as_a
<scalar_int_mode
> (result_mode
);
10935 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10936 with C the size of VAROP - 1 and the shift is logical if
10937 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10938 we have an (le X 0) operation. If we have an arithmetic shift
10939 and STORE_FLAG_VALUE is 1 or we have a logical shift with
10940 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
10942 if (GET_CODE (varop
) == IOR
&& GET_CODE (XEXP (varop
, 0)) == PLUS
10943 && XEXP (XEXP (varop
, 0), 1) == constm1_rtx
10944 && (STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
10945 && (code
== LSHIFTRT
|| code
== ASHIFTRT
)
10946 && count
== (GET_MODE_PRECISION (int_varop_mode
) - 1)
10947 && rtx_equal_p (XEXP (XEXP (varop
, 0), 0), XEXP (varop
, 1)))
10950 varop
= gen_rtx_LE (int_varop_mode
, XEXP (varop
, 1),
10953 if (STORE_FLAG_VALUE
== 1 ? code
== ASHIFTRT
: code
== LSHIFTRT
)
10954 varop
= gen_rtx_NEG (int_varop_mode
, varop
);
10959 /* If we have (shift (logical)), move the logical to the outside
10960 to allow it to possibly combine with another logical and the
10961 shift to combine with another shift. This also canonicalizes to
10962 what a ZERO_EXTRACT looks like. Also, some machines have
10963 (and (shift)) insns. */
10965 if (CONST_INT_P (XEXP (varop
, 1))
10966 /* We can't do this if we have (ashiftrt (xor)) and the
10967 constant has its sign bit set in shift_unit_mode with
10968 shift_unit_mode wider than result_mode. */
10969 && !(code
== ASHIFTRT
&& GET_CODE (varop
) == XOR
10970 && int_result_mode
!= shift_unit_mode
10971 && trunc_int_for_mode (INTVAL (XEXP (varop
, 1)),
10972 shift_unit_mode
) < 0)
10973 && (new_rtx
= simplify_const_binary_operation
10974 (code
, int_result_mode
,
10975 gen_int_mode (INTVAL (XEXP (varop
, 1)), int_result_mode
),
10976 gen_int_shift_amount (int_result_mode
, count
))) != 0
10977 && CONST_INT_P (new_rtx
)
10978 && merge_outer_ops (&outer_op
, &outer_const
, GET_CODE (varop
),
10979 INTVAL (new_rtx
), int_result_mode
,
10982 varop
= XEXP (varop
, 0);
10986 /* If we can't do that, try to simplify the shift in each arm of the
10987 logical expression, make a new logical expression, and apply
10988 the inverse distributive law. This also can't be done for
10989 (ashiftrt (xor)) where we've widened the shift and the constant
10990 changes the sign bit. */
10991 if (CONST_INT_P (XEXP (varop
, 1))
10992 && !(code
== ASHIFTRT
&& GET_CODE (varop
) == XOR
10993 && int_result_mode
!= shift_unit_mode
10994 && trunc_int_for_mode (INTVAL (XEXP (varop
, 1)),
10995 shift_unit_mode
) < 0))
10997 rtx lhs
= simplify_shift_const (NULL_RTX
, code
, shift_unit_mode
,
10998 XEXP (varop
, 0), count
);
10999 rtx rhs
= simplify_shift_const (NULL_RTX
, code
, shift_unit_mode
,
11000 XEXP (varop
, 1), count
);
11002 varop
= simplify_gen_binary (GET_CODE (varop
), shift_unit_mode
,
11004 varop
= apply_distributive_law (varop
);
11012 /* The following rules apply only to scalars. */
11013 if (shift_mode
!= shift_unit_mode
)
11015 int_result_mode
= as_a
<scalar_int_mode
> (result_mode
);
11017 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
11018 says that the sign bit can be tested, FOO has mode MODE, C is
11019 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
11020 that may be nonzero. */
11021 if (code
== LSHIFTRT
11022 && XEXP (varop
, 1) == const0_rtx
11023 && GET_MODE (XEXP (varop
, 0)) == int_result_mode
11024 && count
== (GET_MODE_PRECISION (int_result_mode
) - 1)
11025 && HWI_COMPUTABLE_MODE_P (int_result_mode
)
11026 && STORE_FLAG_VALUE
== -1
11027 && nonzero_bits (XEXP (varop
, 0), int_result_mode
) == 1
11028 && merge_outer_ops (&outer_op
, &outer_const
, XOR
, 1,
11029 int_result_mode
, &complement_p
))
11031 varop
= XEXP (varop
, 0);
11038 /* The following rules apply only to scalars. */
11039 if (shift_mode
!= shift_unit_mode
)
11041 int_result_mode
= as_a
<scalar_int_mode
> (result_mode
);
11043 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
11044 than the number of bits in the mode is equivalent to A. */
11045 if (code
== LSHIFTRT
11046 && count
== (GET_MODE_PRECISION (int_result_mode
) - 1)
11047 && nonzero_bits (XEXP (varop
, 0), int_result_mode
) == 1)
11049 varop
= XEXP (varop
, 0);
11054 /* NEG commutes with ASHIFT since it is multiplication. Move the
11055 NEG outside to allow shifts to combine. */
11057 && merge_outer_ops (&outer_op
, &outer_const
, NEG
, 0,
11058 int_result_mode
, &complement_p
))
11060 varop
= XEXP (varop
, 0);
11066 /* The following rules apply only to scalars. */
11067 if (shift_mode
!= shift_unit_mode
)
11069 int_result_mode
= as_a
<scalar_int_mode
> (result_mode
);
11071 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
11072 is one less than the number of bits in the mode is
11073 equivalent to (xor A 1). */
11074 if (code
== LSHIFTRT
11075 && count
== (GET_MODE_PRECISION (int_result_mode
) - 1)
11076 && XEXP (varop
, 1) == constm1_rtx
11077 && nonzero_bits (XEXP (varop
, 0), int_result_mode
) == 1
11078 && merge_outer_ops (&outer_op
, &outer_const
, XOR
, 1,
11079 int_result_mode
, &complement_p
))
11082 varop
= XEXP (varop
, 0);
11086 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
11087 that might be nonzero in BAR are those being shifted out and those
11088 bits are known zero in FOO, we can replace the PLUS with FOO.
11089 Similarly in the other operand order. This code occurs when
11090 we are computing the size of a variable-size array. */
11092 if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
11093 && count
< HOST_BITS_PER_WIDE_INT
11094 && nonzero_bits (XEXP (varop
, 1), int_result_mode
) >> count
== 0
11095 && (nonzero_bits (XEXP (varop
, 1), int_result_mode
)
11096 & nonzero_bits (XEXP (varop
, 0), int_result_mode
)) == 0)
11098 varop
= XEXP (varop
, 0);
11101 else if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
11102 && count
< HOST_BITS_PER_WIDE_INT
11103 && HWI_COMPUTABLE_MODE_P (int_result_mode
)
11104 && (nonzero_bits (XEXP (varop
, 0), int_result_mode
)
11106 && (nonzero_bits (XEXP (varop
, 0), int_result_mode
)
11107 & nonzero_bits (XEXP (varop
, 1), int_result_mode
)) == 0)
11109 varop
= XEXP (varop
, 1);
11113 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
11115 && CONST_INT_P (XEXP (varop
, 1))
11116 && (new_rtx
= simplify_const_binary_operation
11117 (ASHIFT
, int_result_mode
,
11118 gen_int_mode (INTVAL (XEXP (varop
, 1)), int_result_mode
),
11119 gen_int_shift_amount (int_result_mode
, count
))) != 0
11120 && CONST_INT_P (new_rtx
)
11121 && merge_outer_ops (&outer_op
, &outer_const
, PLUS
,
11122 INTVAL (new_rtx
), int_result_mode
,
11125 varop
= XEXP (varop
, 0);
11129 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
11130 signbit', and attempt to change the PLUS to an XOR and move it to
11131 the outer operation as is done above in the AND/IOR/XOR case
11132 leg for shift(logical). See details in logical handling above
11133 for reasoning in doing so. */
11134 if (code
== LSHIFTRT
11135 && CONST_INT_P (XEXP (varop
, 1))
11136 && mode_signbit_p (int_result_mode
, XEXP (varop
, 1))
11137 && (new_rtx
= simplify_const_binary_operation
11138 (code
, int_result_mode
,
11139 gen_int_mode (INTVAL (XEXP (varop
, 1)), int_result_mode
),
11140 gen_int_shift_amount (int_result_mode
, count
))) != 0
11141 && CONST_INT_P (new_rtx
)
11142 && merge_outer_ops (&outer_op
, &outer_const
, XOR
,
11143 INTVAL (new_rtx
), int_result_mode
,
11146 varop
= XEXP (varop
, 0);
11153 /* The following rules apply only to scalars. */
11154 if (shift_mode
!= shift_unit_mode
)
11156 int_varop_mode
= as_a
<scalar_int_mode
> (GET_MODE (varop
));
11158 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
11159 with C the size of VAROP - 1 and the shift is logical if
11160 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
11161 we have a (gt X 0) operation. If the shift is arithmetic with
11162 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
11163 we have a (neg (gt X 0)) operation. */
11165 if ((STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
11166 && GET_CODE (XEXP (varop
, 0)) == ASHIFTRT
11167 && count
== (GET_MODE_PRECISION (int_varop_mode
) - 1)
11168 && (code
== LSHIFTRT
|| code
== ASHIFTRT
)
11169 && CONST_INT_P (XEXP (XEXP (varop
, 0), 1))
11170 && INTVAL (XEXP (XEXP (varop
, 0), 1)) == count
11171 && rtx_equal_p (XEXP (XEXP (varop
, 0), 0), XEXP (varop
, 1)))
11174 varop
= gen_rtx_GT (int_varop_mode
, XEXP (varop
, 1),
11177 if (STORE_FLAG_VALUE
== 1 ? code
== ASHIFTRT
: code
== LSHIFTRT
)
11178 varop
= gen_rtx_NEG (int_varop_mode
, varop
);
11185 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
11186 if the truncate does not affect the value. */
11187 if (code
== LSHIFTRT
11188 && GET_CODE (XEXP (varop
, 0)) == LSHIFTRT
11189 && CONST_INT_P (XEXP (XEXP (varop
, 0), 1))
11190 && (INTVAL (XEXP (XEXP (varop
, 0), 1))
11191 >= (GET_MODE_UNIT_PRECISION (GET_MODE (XEXP (varop
, 0)))
11192 - GET_MODE_UNIT_PRECISION (GET_MODE (varop
)))))
11194 rtx varop_inner
= XEXP (varop
, 0);
11195 int new_count
= count
+ INTVAL (XEXP (varop_inner
, 1));
11196 rtx new_count_rtx
= gen_int_shift_amount (GET_MODE (varop_inner
),
11198 varop_inner
= gen_rtx_LSHIFTRT (GET_MODE (varop_inner
),
11199 XEXP (varop_inner
, 0),
11201 varop
= gen_rtx_TRUNCATE (GET_MODE (varop
), varop_inner
);
11214 shift_mode
= result_mode
;
11215 if (shift_mode
!= mode
)
11217 /* We only change the modes of scalar shifts. */
11218 int_mode
= as_a
<scalar_int_mode
> (mode
);
11219 int_result_mode
= as_a
<scalar_int_mode
> (result_mode
);
11220 shift_mode
= try_widen_shift_mode (code
, varop
, count
, int_result_mode
,
11221 int_mode
, outer_op
, outer_const
);
11224 /* We have now finished analyzing the shift. The result should be
11225 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
11226 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
11227 to the result of the shift. OUTER_CONST is the relevant constant,
11228 but we must turn off all bits turned off in the shift. */
11230 if (outer_op
== UNKNOWN
11231 && orig_code
== code
&& orig_count
== count
11232 && varop
== orig_varop
11233 && shift_mode
== GET_MODE (varop
))
11236 /* Make a SUBREG if necessary. If we can't make it, fail. */
11237 varop
= gen_lowpart (shift_mode
, varop
);
11238 if (varop
== NULL_RTX
|| GET_CODE (varop
) == CLOBBER
)
11241 /* If we have an outer operation and we just made a shift, it is
11242 possible that we could have simplified the shift were it not
11243 for the outer operation. So try to do the simplification
11246 if (outer_op
!= UNKNOWN
)
11247 x
= simplify_shift_const_1 (code
, shift_mode
, varop
, count
);
11252 x
= simplify_gen_binary (code
, shift_mode
, varop
,
11253 gen_int_shift_amount (shift_mode
, count
));
11255 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
11256 turn off all the bits that the shift would have turned off. */
11257 if (orig_code
== LSHIFTRT
&& result_mode
!= shift_mode
)
11258 /* We only change the modes of scalar shifts. */
11259 x
= simplify_and_const_int (NULL_RTX
, as_a
<scalar_int_mode
> (shift_mode
),
11260 x
, GET_MODE_MASK (result_mode
) >> orig_count
);
11262 /* Do the remainder of the processing in RESULT_MODE. */
11263 x
= gen_lowpart_or_truncate (result_mode
, x
);
11265 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
11268 x
= simplify_gen_unary (NOT
, result_mode
, x
, result_mode
);
11270 if (outer_op
!= UNKNOWN
)
11272 int_result_mode
= as_a
<scalar_int_mode
> (result_mode
);
11274 if (GET_RTX_CLASS (outer_op
) != RTX_UNARY
11275 && GET_MODE_PRECISION (int_result_mode
) < HOST_BITS_PER_WIDE_INT
)
11276 outer_const
= trunc_int_for_mode (outer_const
, int_result_mode
);
11278 if (outer_op
== AND
)
11279 x
= simplify_and_const_int (NULL_RTX
, int_result_mode
, x
, outer_const
);
11280 else if (outer_op
== SET
)
11282 /* This means that we have determined that the result is
11283 equivalent to a constant. This should be rare. */
11284 if (!side_effects_p (x
))
11285 x
= GEN_INT (outer_const
);
11287 else if (GET_RTX_CLASS (outer_op
) == RTX_UNARY
)
11288 x
= simplify_gen_unary (outer_op
, int_result_mode
, x
, int_result_mode
);
11290 x
= simplify_gen_binary (outer_op
, int_result_mode
, x
,
11291 GEN_INT (outer_const
));
11297 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
11298 The result of the shift is RESULT_MODE. If we cannot simplify it,
11299 return X or, if it is NULL, synthesize the expression with
11300 simplify_gen_binary. Otherwise, return a simplified value.
11302 The shift is normally computed in the widest mode we find in VAROP, as
11303 long as it isn't a different number of words than RESULT_MODE. Exceptions
11304 are ASHIFTRT and ROTATE, which are always done in their original mode. */
11307 simplify_shift_const (rtx x
, enum rtx_code code
, machine_mode result_mode
,
11308 rtx varop
, int count
)
11310 rtx tem
= simplify_shift_const_1 (code
, result_mode
, varop
, count
);
11315 x
= simplify_gen_binary (code
, GET_MODE (varop
), varop
,
11316 gen_int_shift_amount (GET_MODE (varop
), count
));
11317 if (GET_MODE (x
) != result_mode
)
11318 x
= gen_lowpart (result_mode
, x
);
11323 /* A subroutine of recog_for_combine. See there for arguments and
11327 recog_for_combine_1 (rtx
*pnewpat
, rtx_insn
*insn
, rtx
*pnotes
)
11329 rtx pat
= *pnewpat
;
11330 rtx pat_without_clobbers
;
11331 int insn_code_number
;
11332 int num_clobbers_to_add
= 0;
11334 rtx notes
= NULL_RTX
;
11335 rtx old_notes
, old_pat
;
11338 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
11339 we use to indicate that something didn't match. If we find such a
11340 thing, force rejection. */
11341 if (GET_CODE (pat
) == PARALLEL
)
11342 for (i
= XVECLEN (pat
, 0) - 1; i
>= 0; i
--)
11343 if (GET_CODE (XVECEXP (pat
, 0, i
)) == CLOBBER
11344 && XEXP (XVECEXP (pat
, 0, i
), 0) == const0_rtx
)
11347 old_pat
= PATTERN (insn
);
11348 old_notes
= REG_NOTES (insn
);
11349 PATTERN (insn
) = pat
;
11350 REG_NOTES (insn
) = NULL_RTX
;
11352 insn_code_number
= recog (pat
, insn
, &num_clobbers_to_add
);
11353 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
11355 if (insn_code_number
< 0)
11356 fputs ("Failed to match this instruction:\n", dump_file
);
11358 fputs ("Successfully matched this instruction:\n", dump_file
);
11359 print_rtl_single (dump_file
, pat
);
11362 /* If it isn't, there is the possibility that we previously had an insn
11363 that clobbered some register as a side effect, but the combined
11364 insn doesn't need to do that. So try once more without the clobbers
11365 unless this represents an ASM insn. */
11367 if (insn_code_number
< 0 && ! check_asm_operands (pat
)
11368 && GET_CODE (pat
) == PARALLEL
)
11372 for (pos
= 0, i
= 0; i
< XVECLEN (pat
, 0); i
++)
11373 if (GET_CODE (XVECEXP (pat
, 0, i
)) != CLOBBER
)
11376 SUBST (XVECEXP (pat
, 0, pos
), XVECEXP (pat
, 0, i
));
11380 SUBST_INT (XVECLEN (pat
, 0), pos
);
11383 pat
= XVECEXP (pat
, 0, 0);
11385 PATTERN (insn
) = pat
;
11386 insn_code_number
= recog (pat
, insn
, &num_clobbers_to_add
);
11387 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
11389 if (insn_code_number
< 0)
11390 fputs ("Failed to match this instruction:\n", dump_file
);
11392 fputs ("Successfully matched this instruction:\n", dump_file
);
11393 print_rtl_single (dump_file
, pat
);
11397 pat_without_clobbers
= pat
;
11399 PATTERN (insn
) = old_pat
;
11400 REG_NOTES (insn
) = old_notes
;
11402 /* Recognize all noop sets, these will be killed by followup pass. */
11403 if (insn_code_number
< 0 && GET_CODE (pat
) == SET
&& set_noop_p (pat
))
11404 insn_code_number
= NOOP_MOVE_INSN_CODE
, num_clobbers_to_add
= 0;
11406 /* If we had any clobbers to add, make a new pattern than contains
11407 them. Then check to make sure that all of them are dead. */
11408 if (num_clobbers_to_add
)
11410 rtx newpat
= gen_rtx_PARALLEL (VOIDmode
,
11411 rtvec_alloc (GET_CODE (pat
) == PARALLEL
11412 ? (XVECLEN (pat
, 0)
11413 + num_clobbers_to_add
)
11414 : num_clobbers_to_add
+ 1));
11416 if (GET_CODE (pat
) == PARALLEL
)
11417 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
11418 XVECEXP (newpat
, 0, i
) = XVECEXP (pat
, 0, i
);
11420 XVECEXP (newpat
, 0, 0) = pat
;
11422 add_clobbers (newpat
, insn_code_number
);
11424 for (i
= XVECLEN (newpat
, 0) - num_clobbers_to_add
;
11425 i
< XVECLEN (newpat
, 0); i
++)
11427 if (REG_P (XEXP (XVECEXP (newpat
, 0, i
), 0))
11428 && ! reg_dead_at_p (XEXP (XVECEXP (newpat
, 0, i
), 0), insn
))
11430 if (GET_CODE (XEXP (XVECEXP (newpat
, 0, i
), 0)) != SCRATCH
)
11432 gcc_assert (REG_P (XEXP (XVECEXP (newpat
, 0, i
), 0)));
11433 notes
= alloc_reg_note (REG_UNUSED
,
11434 XEXP (XVECEXP (newpat
, 0, i
), 0), notes
);
11440 if (insn_code_number
>= 0
11441 && insn_code_number
!= NOOP_MOVE_INSN_CODE
)
11443 old_pat
= PATTERN (insn
);
11444 old_notes
= REG_NOTES (insn
);
11445 old_icode
= INSN_CODE (insn
);
11446 PATTERN (insn
) = pat
;
11447 REG_NOTES (insn
) = notes
;
11448 INSN_CODE (insn
) = insn_code_number
;
11450 /* Allow targets to reject combined insn. */
11451 if (!targetm
.legitimate_combined_insn (insn
))
11453 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
11454 fputs ("Instruction not appropriate for target.",
11457 /* Callers expect recog_for_combine to strip
11458 clobbers from the pattern on failure. */
11459 pat
= pat_without_clobbers
;
11462 insn_code_number
= -1;
11465 PATTERN (insn
) = old_pat
;
11466 REG_NOTES (insn
) = old_notes
;
11467 INSN_CODE (insn
) = old_icode
;
11473 return insn_code_number
;
11476 /* Change every ZERO_EXTRACT and ZERO_EXTEND of a SUBREG that can be
11477 expressed as an AND and maybe an LSHIFTRT, to that formulation.
11478 Return whether anything was so changed. */
11481 change_zero_ext (rtx pat
)
11483 bool changed
= false;
11484 rtx
*src
= &SET_SRC (pat
);
11486 subrtx_ptr_iterator::array_type array
;
11487 FOR_EACH_SUBRTX_PTR (iter
, array
, src
, NONCONST
)
11490 scalar_int_mode mode
, inner_mode
;
11491 if (!is_a
<scalar_int_mode
> (GET_MODE (x
), &mode
))
11495 if (GET_CODE (x
) == ZERO_EXTRACT
11496 && CONST_INT_P (XEXP (x
, 1))
11497 && CONST_INT_P (XEXP (x
, 2))
11498 && is_a
<scalar_int_mode
> (GET_MODE (XEXP (x
, 0)), &inner_mode
)
11499 && GET_MODE_PRECISION (inner_mode
) <= GET_MODE_PRECISION (mode
))
11501 size
= INTVAL (XEXP (x
, 1));
11503 int start
= INTVAL (XEXP (x
, 2));
11504 if (BITS_BIG_ENDIAN
)
11505 start
= GET_MODE_PRECISION (inner_mode
) - size
- start
;
11508 x
= gen_rtx_LSHIFTRT (inner_mode
, XEXP (x
, 0),
11509 gen_int_shift_amount (inner_mode
, start
));
11513 if (mode
!= inner_mode
)
11515 if (REG_P (x
) && HARD_REGISTER_P (x
)
11516 && !can_change_dest_mode (x
, 0, mode
))
11519 x
= gen_lowpart_SUBREG (mode
, x
);
11522 else if (GET_CODE (x
) == ZERO_EXTEND
11523 && GET_CODE (XEXP (x
, 0)) == SUBREG
11524 && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (XEXP (x
, 0))))
11525 && !paradoxical_subreg_p (XEXP (x
, 0))
11526 && subreg_lowpart_p (XEXP (x
, 0)))
11528 inner_mode
= as_a
<scalar_int_mode
> (GET_MODE (XEXP (x
, 0)));
11529 size
= GET_MODE_PRECISION (inner_mode
);
11530 x
= SUBREG_REG (XEXP (x
, 0));
11531 if (GET_MODE (x
) != mode
)
11533 if (REG_P (x
) && HARD_REGISTER_P (x
)
11534 && !can_change_dest_mode (x
, 0, mode
))
11537 x
= gen_lowpart_SUBREG (mode
, x
);
11540 else if (GET_CODE (x
) == ZERO_EXTEND
11541 && REG_P (XEXP (x
, 0))
11542 && HARD_REGISTER_P (XEXP (x
, 0))
11543 && can_change_dest_mode (XEXP (x
, 0), 0, mode
))
11545 inner_mode
= as_a
<scalar_int_mode
> (GET_MODE (XEXP (x
, 0)));
11546 size
= GET_MODE_PRECISION (inner_mode
);
11547 x
= gen_rtx_REG (mode
, REGNO (XEXP (x
, 0)));
11552 if (!(GET_CODE (x
) == LSHIFTRT
11553 && CONST_INT_P (XEXP (x
, 1))
11554 && size
+ INTVAL (XEXP (x
, 1)) == GET_MODE_PRECISION (mode
)))
11556 wide_int mask
= wi::mask (size
, false, GET_MODE_PRECISION (mode
));
11557 x
= gen_rtx_AND (mode
, x
, immed_wide_int_const (mask
, mode
));
11565 FOR_EACH_SUBRTX_PTR (iter
, array
, src
, NONCONST
)
11566 maybe_swap_commutative_operands (**iter
);
11568 rtx
*dst
= &SET_DEST (pat
);
11569 scalar_int_mode mode
;
11570 if (GET_CODE (*dst
) == ZERO_EXTRACT
11571 && REG_P (XEXP (*dst
, 0))
11572 && is_a
<scalar_int_mode
> (GET_MODE (XEXP (*dst
, 0)), &mode
)
11573 && CONST_INT_P (XEXP (*dst
, 1))
11574 && CONST_INT_P (XEXP (*dst
, 2)))
11576 rtx reg
= XEXP (*dst
, 0);
11577 int width
= INTVAL (XEXP (*dst
, 1));
11578 int offset
= INTVAL (XEXP (*dst
, 2));
11579 int reg_width
= GET_MODE_PRECISION (mode
);
11580 if (BITS_BIG_ENDIAN
)
11581 offset
= reg_width
- width
- offset
;
11584 wide_int mask
= wi::shifted_mask (offset
, width
, true, reg_width
);
11585 wide_int mask2
= wi::shifted_mask (offset
, width
, false, reg_width
);
11586 x
= gen_rtx_AND (mode
, reg
, immed_wide_int_const (mask
, mode
));
11588 y
= gen_rtx_ASHIFT (mode
, SET_SRC (pat
), GEN_INT (offset
));
11591 z
= gen_rtx_AND (mode
, y
, immed_wide_int_const (mask2
, mode
));
11592 w
= gen_rtx_IOR (mode
, x
, z
);
11593 SUBST (SET_DEST (pat
), reg
);
11594 SUBST (SET_SRC (pat
), w
);
11602 /* Like recog, but we receive the address of a pointer to a new pattern.
11603 We try to match the rtx that the pointer points to.
11604 If that fails, we may try to modify or replace the pattern,
11605 storing the replacement into the same pointer object.
11607 Modifications include deletion or addition of CLOBBERs. If the
11608 instruction will still not match, we change ZERO_EXTEND and ZERO_EXTRACT
11609 to the equivalent AND and perhaps LSHIFTRT patterns, and try with that
11610 (and undo if that fails).
11612 PNOTES is a pointer to a location where any REG_UNUSED notes added for
11613 the CLOBBERs are placed.
11615 The value is the final insn code from the pattern ultimately matched,
11619 recog_for_combine (rtx
*pnewpat
, rtx_insn
*insn
, rtx
*pnotes
)
11621 rtx pat
= *pnewpat
;
11622 int insn_code_number
= recog_for_combine_1 (pnewpat
, insn
, pnotes
);
11623 if (insn_code_number
>= 0 || check_asm_operands (pat
))
11624 return insn_code_number
;
11626 void *marker
= get_undo_marker ();
11627 bool changed
= false;
11629 if (GET_CODE (pat
) == SET
)
11631 /* For an unrecognized single set of a constant, try placing it in
11632 the constant pool, if this function already uses one. */
11633 rtx src
= SET_SRC (pat
);
11634 if (CONSTANT_P (src
)
11635 && !CONST_INT_P (src
)
11636 && crtl
->uses_const_pool
)
11638 machine_mode mode
= GET_MODE (src
);
11639 if (mode
== VOIDmode
)
11640 mode
= GET_MODE (SET_DEST (pat
));
11641 src
= force_const_mem (mode
, src
);
11644 SUBST (SET_SRC (pat
), src
);
11649 changed
= change_zero_ext (pat
);
11651 else if (GET_CODE (pat
) == PARALLEL
)
11654 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
11656 rtx set
= XVECEXP (pat
, 0, i
);
11657 if (GET_CODE (set
) == SET
)
11658 changed
|= change_zero_ext (set
);
11664 insn_code_number
= recog_for_combine_1 (pnewpat
, insn
, pnotes
);
11666 if (insn_code_number
< 0)
11667 undo_to_marker (marker
);
11670 return insn_code_number
;
11673 /* Like gen_lowpart_general but for use by combine. In combine it
11674 is not possible to create any new pseudoregs. However, it is
11675 safe to create invalid memory addresses, because combine will
11676 try to recognize them and all they will do is make the combine
11679 If for some reason this cannot do its job, an rtx
11680 (clobber (const_int 0)) is returned.
11681 An insn containing that will not be recognized. */
11684 gen_lowpart_for_combine (machine_mode omode
, rtx x
)
11686 machine_mode imode
= GET_MODE (x
);
11689 if (omode
== imode
)
11692 /* We can only support MODE being wider than a word if X is a
11693 constant integer or has a mode the same size. */
11694 if (maybe_gt (GET_MODE_SIZE (omode
), UNITS_PER_WORD
)
11695 && ! (CONST_SCALAR_INT_P (x
)
11696 || known_eq (GET_MODE_SIZE (imode
), GET_MODE_SIZE (omode
))))
11699 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
11700 won't know what to do. So we will strip off the SUBREG here and
11701 process normally. */
11702 if (GET_CODE (x
) == SUBREG
&& MEM_P (SUBREG_REG (x
)))
11704 x
= SUBREG_REG (x
);
11706 /* For use in case we fall down into the address adjustments
11707 further below, we need to adjust the known mode and size of
11708 x; imode and isize, since we just adjusted x. */
11709 imode
= GET_MODE (x
);
11711 if (imode
== omode
)
11715 result
= gen_lowpart_common (omode
, x
);
11722 /* Refuse to work on a volatile memory ref or one with a mode-dependent
11724 if (MEM_VOLATILE_P (x
)
11725 || mode_dependent_address_p (XEXP (x
, 0), MEM_ADDR_SPACE (x
)))
11728 /* If we want to refer to something bigger than the original memref,
11729 generate a paradoxical subreg instead. That will force a reload
11730 of the original memref X. */
11731 if (paradoxical_subreg_p (omode
, imode
))
11732 return gen_rtx_SUBREG (omode
, x
, 0);
11734 poly_int64 offset
= byte_lowpart_offset (omode
, imode
);
11735 return adjust_address_nv (x
, omode
, offset
);
11738 /* If X is a comparison operator, rewrite it in a new mode. This
11739 probably won't match, but may allow further simplifications. */
11740 else if (COMPARISON_P (x
)
11741 && SCALAR_INT_MODE_P (imode
)
11742 && SCALAR_INT_MODE_P (omode
))
11743 return gen_rtx_fmt_ee (GET_CODE (x
), omode
, XEXP (x
, 0), XEXP (x
, 1));
11745 /* If we couldn't simplify X any other way, just enclose it in a
11746 SUBREG. Normally, this SUBREG won't match, but some patterns may
11747 include an explicit SUBREG or we may simplify it further in combine. */
11752 if (imode
== VOIDmode
)
11754 imode
= int_mode_for_mode (omode
).require ();
11755 x
= gen_lowpart_common (imode
, x
);
11759 res
= lowpart_subreg (omode
, x
, imode
);
11765 return gen_rtx_CLOBBER (omode
, const0_rtx
);
11768 /* Try to simplify a comparison between OP0 and a constant OP1,
11769 where CODE is the comparison code that will be tested, into a
11770 (CODE OP0 const0_rtx) form.
11772 The result is a possibly different comparison code to use.
11773 *POP1 may be updated. */
11775 static enum rtx_code
11776 simplify_compare_const (enum rtx_code code
, machine_mode mode
,
11777 rtx op0
, rtx
*pop1
)
11779 scalar_int_mode int_mode
;
11780 HOST_WIDE_INT const_op
= INTVAL (*pop1
);
11782 /* Get the constant we are comparing against and turn off all bits
11783 not on in our mode. */
11784 if (mode
!= VOIDmode
)
11785 const_op
= trunc_int_for_mode (const_op
, mode
);
11787 /* If we are comparing against a constant power of two and the value
11788 being compared can only have that single bit nonzero (e.g., it was
11789 `and'ed with that bit), we can replace this with a comparison
11792 && (code
== EQ
|| code
== NE
|| code
== GE
|| code
== GEU
11793 || code
== LT
|| code
== LTU
)
11794 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
11795 && GET_MODE_PRECISION (int_mode
) - 1 < HOST_BITS_PER_WIDE_INT
11796 && pow2p_hwi (const_op
& GET_MODE_MASK (int_mode
))
11797 && (nonzero_bits (op0
, int_mode
)
11798 == (unsigned HOST_WIDE_INT
) (const_op
& GET_MODE_MASK (int_mode
))))
11800 code
= (code
== EQ
|| code
== GE
|| code
== GEU
? NE
: EQ
);
11804 /* Similarly, if we are comparing a value known to be either -1 or
11805 0 with -1, change it to the opposite comparison against zero. */
11807 && (code
== EQ
|| code
== NE
|| code
== GT
|| code
== LE
11808 || code
== GEU
|| code
== LTU
)
11809 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
11810 && num_sign_bit_copies (op0
, int_mode
) == GET_MODE_PRECISION (int_mode
))
11812 code
= (code
== EQ
|| code
== LE
|| code
== GEU
? NE
: EQ
);
11816 /* Do some canonicalizations based on the comparison code. We prefer
11817 comparisons against zero and then prefer equality comparisons.
11818 If we can reduce the size of a constant, we will do that too. */
11822 /* < C is equivalent to <= (C - 1) */
11827 /* ... fall through to LE case below. */
11828 gcc_fallthrough ();
11834 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
11841 /* If we are doing a <= 0 comparison on a value known to have
11842 a zero sign bit, we can replace this with == 0. */
11843 else if (const_op
== 0
11844 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
11845 && GET_MODE_PRECISION (int_mode
) - 1 < HOST_BITS_PER_WIDE_INT
11846 && (nonzero_bits (op0
, int_mode
)
11847 & (HOST_WIDE_INT_1U
<< (GET_MODE_PRECISION (int_mode
) - 1)))
11853 /* >= C is equivalent to > (C - 1). */
11858 /* ... fall through to GT below. */
11859 gcc_fallthrough ();
11865 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
11872 /* If we are doing a > 0 comparison on a value known to have
11873 a zero sign bit, we can replace this with != 0. */
11874 else if (const_op
== 0
11875 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
11876 && GET_MODE_PRECISION (int_mode
) - 1 < HOST_BITS_PER_WIDE_INT
11877 && (nonzero_bits (op0
, int_mode
)
11878 & (HOST_WIDE_INT_1U
<< (GET_MODE_PRECISION (int_mode
) - 1)))
11884 /* < C is equivalent to <= (C - 1). */
11889 /* ... fall through ... */
11890 gcc_fallthrough ();
11892 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
11893 else if (is_a
<scalar_int_mode
> (mode
, &int_mode
)
11894 && GET_MODE_PRECISION (int_mode
) - 1 < HOST_BITS_PER_WIDE_INT
11895 && ((unsigned HOST_WIDE_INT
) const_op
11896 == HOST_WIDE_INT_1U
<< (GET_MODE_PRECISION (int_mode
) - 1)))
11906 /* unsigned <= 0 is equivalent to == 0 */
11909 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
11910 else if (is_a
<scalar_int_mode
> (mode
, &int_mode
)
11911 && GET_MODE_PRECISION (int_mode
) - 1 < HOST_BITS_PER_WIDE_INT
11912 && ((unsigned HOST_WIDE_INT
) const_op
11913 == ((HOST_WIDE_INT_1U
11914 << (GET_MODE_PRECISION (int_mode
) - 1)) - 1)))
11922 /* >= C is equivalent to > (C - 1). */
11927 /* ... fall through ... */
11928 gcc_fallthrough ();
11931 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
11932 else if (is_a
<scalar_int_mode
> (mode
, &int_mode
)
11933 && GET_MODE_PRECISION (int_mode
) - 1 < HOST_BITS_PER_WIDE_INT
11934 && ((unsigned HOST_WIDE_INT
) const_op
11935 == HOST_WIDE_INT_1U
<< (GET_MODE_PRECISION (int_mode
) - 1)))
11945 /* unsigned > 0 is equivalent to != 0 */
11948 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
11949 else if (is_a
<scalar_int_mode
> (mode
, &int_mode
)
11950 && GET_MODE_PRECISION (int_mode
) - 1 < HOST_BITS_PER_WIDE_INT
11951 && ((unsigned HOST_WIDE_INT
) const_op
11952 == (HOST_WIDE_INT_1U
11953 << (GET_MODE_PRECISION (int_mode
) - 1)) - 1))
11964 *pop1
= GEN_INT (const_op
);
11968 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
11969 comparison code that will be tested.
11971 The result is a possibly different comparison code to use. *POP0 and
11972 *POP1 may be updated.
11974 It is possible that we might detect that a comparison is either always
11975 true or always false. However, we do not perform general constant
11976 folding in combine, so this knowledge isn't useful. Such tautologies
11977 should have been detected earlier. Hence we ignore all such cases. */
11979 static enum rtx_code
11980 simplify_comparison (enum rtx_code code
, rtx
*pop0
, rtx
*pop1
)
11986 scalar_int_mode mode
, inner_mode
, tmode
;
11987 opt_scalar_int_mode tmode_iter
;
11989 /* Try a few ways of applying the same transformation to both operands. */
11992 /* The test below this one won't handle SIGN_EXTENDs on these machines,
11993 so check specially. */
11994 if (!WORD_REGISTER_OPERATIONS
11995 && code
!= GTU
&& code
!= GEU
&& code
!= LTU
&& code
!= LEU
11996 && GET_CODE (op0
) == ASHIFTRT
&& GET_CODE (op1
) == ASHIFTRT
11997 && GET_CODE (XEXP (op0
, 0)) == ASHIFT
11998 && GET_CODE (XEXP (op1
, 0)) == ASHIFT
11999 && GET_CODE (XEXP (XEXP (op0
, 0), 0)) == SUBREG
12000 && GET_CODE (XEXP (XEXP (op1
, 0), 0)) == SUBREG
12001 && is_a
<scalar_int_mode
> (GET_MODE (op0
), &mode
)
12002 && (is_a
<scalar_int_mode
>
12003 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0
, 0), 0))), &inner_mode
))
12004 && inner_mode
== GET_MODE (SUBREG_REG (XEXP (XEXP (op1
, 0), 0)))
12005 && CONST_INT_P (XEXP (op0
, 1))
12006 && XEXP (op0
, 1) == XEXP (op1
, 1)
12007 && XEXP (op0
, 1) == XEXP (XEXP (op0
, 0), 1)
12008 && XEXP (op0
, 1) == XEXP (XEXP (op1
, 0), 1)
12009 && (INTVAL (XEXP (op0
, 1))
12010 == (GET_MODE_PRECISION (mode
)
12011 - GET_MODE_PRECISION (inner_mode
))))
12013 op0
= SUBREG_REG (XEXP (XEXP (op0
, 0), 0));
12014 op1
= SUBREG_REG (XEXP (XEXP (op1
, 0), 0));
12017 /* If both operands are the same constant shift, see if we can ignore the
12018 shift. We can if the shift is a rotate or if the bits shifted out of
12019 this shift are known to be zero for both inputs and if the type of
12020 comparison is compatible with the shift. */
12021 if (GET_CODE (op0
) == GET_CODE (op1
)
12022 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0
))
12023 && ((GET_CODE (op0
) == ROTATE
&& (code
== NE
|| code
== EQ
))
12024 || ((GET_CODE (op0
) == LSHIFTRT
|| GET_CODE (op0
) == ASHIFT
)
12025 && (code
!= GT
&& code
!= LT
&& code
!= GE
&& code
!= LE
))
12026 || (GET_CODE (op0
) == ASHIFTRT
12027 && (code
!= GTU
&& code
!= LTU
12028 && code
!= GEU
&& code
!= LEU
)))
12029 && CONST_INT_P (XEXP (op0
, 1))
12030 && INTVAL (XEXP (op0
, 1)) >= 0
12031 && INTVAL (XEXP (op0
, 1)) < HOST_BITS_PER_WIDE_INT
12032 && XEXP (op0
, 1) == XEXP (op1
, 1))
12034 machine_mode mode
= GET_MODE (op0
);
12035 unsigned HOST_WIDE_INT mask
= GET_MODE_MASK (mode
);
12036 int shift_count
= INTVAL (XEXP (op0
, 1));
12038 if (GET_CODE (op0
) == LSHIFTRT
|| GET_CODE (op0
) == ASHIFTRT
)
12039 mask
&= (mask
>> shift_count
) << shift_count
;
12040 else if (GET_CODE (op0
) == ASHIFT
)
12041 mask
= (mask
& (mask
<< shift_count
)) >> shift_count
;
12043 if ((nonzero_bits (XEXP (op0
, 0), mode
) & ~mask
) == 0
12044 && (nonzero_bits (XEXP (op1
, 0), mode
) & ~mask
) == 0)
12045 op0
= XEXP (op0
, 0), op1
= XEXP (op1
, 0);
12050 /* If both operands are AND's of a paradoxical SUBREG by constant, the
12051 SUBREGs are of the same mode, and, in both cases, the AND would
12052 be redundant if the comparison was done in the narrower mode,
12053 do the comparison in the narrower mode (e.g., we are AND'ing with 1
12054 and the operand's possibly nonzero bits are 0xffffff01; in that case
12055 if we only care about QImode, we don't need the AND). This case
12056 occurs if the output mode of an scc insn is not SImode and
12057 STORE_FLAG_VALUE == 1 (e.g., the 386).
12059 Similarly, check for a case where the AND's are ZERO_EXTEND
12060 operations from some narrower mode even though a SUBREG is not
12063 else if (GET_CODE (op0
) == AND
&& GET_CODE (op1
) == AND
12064 && CONST_INT_P (XEXP (op0
, 1))
12065 && CONST_INT_P (XEXP (op1
, 1)))
12067 rtx inner_op0
= XEXP (op0
, 0);
12068 rtx inner_op1
= XEXP (op1
, 0);
12069 HOST_WIDE_INT c0
= INTVAL (XEXP (op0
, 1));
12070 HOST_WIDE_INT c1
= INTVAL (XEXP (op1
, 1));
12073 if (paradoxical_subreg_p (inner_op0
)
12074 && GET_CODE (inner_op1
) == SUBREG
12075 && HWI_COMPUTABLE_MODE_P (GET_MODE (SUBREG_REG (inner_op0
)))
12076 && (GET_MODE (SUBREG_REG (inner_op0
))
12077 == GET_MODE (SUBREG_REG (inner_op1
)))
12078 && ((~c0
) & nonzero_bits (SUBREG_REG (inner_op0
),
12079 GET_MODE (SUBREG_REG (inner_op0
)))) == 0
12080 && ((~c1
) & nonzero_bits (SUBREG_REG (inner_op1
),
12081 GET_MODE (SUBREG_REG (inner_op1
)))) == 0)
12083 op0
= SUBREG_REG (inner_op0
);
12084 op1
= SUBREG_REG (inner_op1
);
12086 /* The resulting comparison is always unsigned since we masked
12087 off the original sign bit. */
12088 code
= unsigned_condition (code
);
12094 FOR_EACH_MODE_UNTIL (tmode
,
12095 as_a
<scalar_int_mode
> (GET_MODE (op0
)))
12096 if ((unsigned HOST_WIDE_INT
) c0
== GET_MODE_MASK (tmode
))
12098 op0
= gen_lowpart_or_truncate (tmode
, inner_op0
);
12099 op1
= gen_lowpart_or_truncate (tmode
, inner_op1
);
12100 code
= unsigned_condition (code
);
12109 /* If both operands are NOT, we can strip off the outer operation
12110 and adjust the comparison code for swapped operands; similarly for
12111 NEG, except that this must be an equality comparison. */
12112 else if ((GET_CODE (op0
) == NOT
&& GET_CODE (op1
) == NOT
)
12113 || (GET_CODE (op0
) == NEG
&& GET_CODE (op1
) == NEG
12114 && (code
== EQ
|| code
== NE
)))
12115 op0
= XEXP (op0
, 0), op1
= XEXP (op1
, 0), code
= swap_condition (code
);
12121 /* If the first operand is a constant, swap the operands and adjust the
12122 comparison code appropriately, but don't do this if the second operand
12123 is already a constant integer. */
12124 if (swap_commutative_operands_p (op0
, op1
))
12126 std::swap (op0
, op1
);
12127 code
= swap_condition (code
);
12130 /* We now enter a loop during which we will try to simplify the comparison.
12131 For the most part, we only are concerned with comparisons with zero,
12132 but some things may really be comparisons with zero but not start
12133 out looking that way. */
12135 while (CONST_INT_P (op1
))
12137 machine_mode raw_mode
= GET_MODE (op0
);
12138 scalar_int_mode int_mode
;
12139 int equality_comparison_p
;
12140 int sign_bit_comparison_p
;
12141 int unsigned_comparison_p
;
12142 HOST_WIDE_INT const_op
;
12144 /* We only want to handle integral modes. This catches VOIDmode,
12145 CCmode, and the floating-point modes. An exception is that we
12146 can handle VOIDmode if OP0 is a COMPARE or a comparison
12149 if (GET_MODE_CLASS (raw_mode
) != MODE_INT
12150 && ! (raw_mode
== VOIDmode
12151 && (GET_CODE (op0
) == COMPARE
|| COMPARISON_P (op0
))))
12154 /* Try to simplify the compare to constant, possibly changing the
12155 comparison op, and/or changing op1 to zero. */
12156 code
= simplify_compare_const (code
, raw_mode
, op0
, &op1
);
12157 const_op
= INTVAL (op1
);
12159 /* Compute some predicates to simplify code below. */
12161 equality_comparison_p
= (code
== EQ
|| code
== NE
);
12162 sign_bit_comparison_p
= ((code
== LT
|| code
== GE
) && const_op
== 0);
12163 unsigned_comparison_p
= (code
== LTU
|| code
== LEU
|| code
== GTU
12166 /* If this is a sign bit comparison and we can do arithmetic in
12167 MODE, say that we will only be needing the sign bit of OP0. */
12168 if (sign_bit_comparison_p
12169 && is_a
<scalar_int_mode
> (raw_mode
, &int_mode
)
12170 && HWI_COMPUTABLE_MODE_P (int_mode
))
12171 op0
= force_to_mode (op0
, int_mode
,
12173 << (GET_MODE_PRECISION (int_mode
) - 1),
12176 if (COMPARISON_P (op0
))
12178 /* We can't do anything if OP0 is a condition code value, rather
12179 than an actual data value. */
12181 || GET_MODE_CLASS (GET_MODE (XEXP (op0
, 0))) == MODE_CC
)
12184 /* Get the two operands being compared. */
12185 if (GET_CODE (XEXP (op0
, 0)) == COMPARE
)
12186 tem
= XEXP (XEXP (op0
, 0), 0), tem1
= XEXP (XEXP (op0
, 0), 1);
12188 tem
= XEXP (op0
, 0), tem1
= XEXP (op0
, 1);
12190 /* Check for the cases where we simply want the result of the
12191 earlier test or the opposite of that result. */
12192 if (code
== NE
|| code
== EQ
12193 || (val_signbit_known_set_p (raw_mode
, STORE_FLAG_VALUE
)
12194 && (code
== LT
|| code
== GE
)))
12196 enum rtx_code new_code
;
12197 if (code
== LT
|| code
== NE
)
12198 new_code
= GET_CODE (op0
);
12200 new_code
= reversed_comparison_code (op0
, NULL
);
12202 if (new_code
!= UNKNOWN
)
12213 if (raw_mode
== VOIDmode
)
12215 scalar_int_mode mode
= as_a
<scalar_int_mode
> (raw_mode
);
12217 /* Now try cases based on the opcode of OP0. If none of the cases
12218 does a "continue", we exit this loop immediately after the
12221 unsigned int mode_width
= GET_MODE_PRECISION (mode
);
12222 unsigned HOST_WIDE_INT mask
= GET_MODE_MASK (mode
);
12223 switch (GET_CODE (op0
))
12226 /* If we are extracting a single bit from a variable position in
12227 a constant that has only a single bit set and are comparing it
12228 with zero, we can convert this into an equality comparison
12229 between the position and the location of the single bit. */
12230 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
12231 have already reduced the shift count modulo the word size. */
12232 if (!SHIFT_COUNT_TRUNCATED
12233 && CONST_INT_P (XEXP (op0
, 0))
12234 && XEXP (op0
, 1) == const1_rtx
12235 && equality_comparison_p
&& const_op
== 0
12236 && (i
= exact_log2 (UINTVAL (XEXP (op0
, 0)))) >= 0)
12238 if (BITS_BIG_ENDIAN
)
12239 i
= BITS_PER_WORD
- 1 - i
;
12241 op0
= XEXP (op0
, 2);
12245 /* Result is nonzero iff shift count is equal to I. */
12246 code
= reverse_condition (code
);
12253 tem
= expand_compound_operation (op0
);
12262 /* If testing for equality, we can take the NOT of the constant. */
12263 if (equality_comparison_p
12264 && (tem
= simplify_unary_operation (NOT
, mode
, op1
, mode
)) != 0)
12266 op0
= XEXP (op0
, 0);
12271 /* If just looking at the sign bit, reverse the sense of the
12273 if (sign_bit_comparison_p
)
12275 op0
= XEXP (op0
, 0);
12276 code
= (code
== GE
? LT
: GE
);
12282 /* If testing for equality, we can take the NEG of the constant. */
12283 if (equality_comparison_p
12284 && (tem
= simplify_unary_operation (NEG
, mode
, op1
, mode
)) != 0)
12286 op0
= XEXP (op0
, 0);
12291 /* The remaining cases only apply to comparisons with zero. */
12295 /* When X is ABS or is known positive,
12296 (neg X) is < 0 if and only if X != 0. */
12298 if (sign_bit_comparison_p
12299 && (GET_CODE (XEXP (op0
, 0)) == ABS
12300 || (mode_width
<= HOST_BITS_PER_WIDE_INT
12301 && (nonzero_bits (XEXP (op0
, 0), mode
)
12302 & (HOST_WIDE_INT_1U
<< (mode_width
- 1)))
12305 op0
= XEXP (op0
, 0);
12306 code
= (code
== LT
? NE
: EQ
);
12310 /* If we have NEG of something whose two high-order bits are the
12311 same, we know that "(-a) < 0" is equivalent to "a > 0". */
12312 if (num_sign_bit_copies (op0
, mode
) >= 2)
12314 op0
= XEXP (op0
, 0);
12315 code
= swap_condition (code
);
12321 /* If we are testing equality and our count is a constant, we
12322 can perform the inverse operation on our RHS. */
12323 if (equality_comparison_p
&& CONST_INT_P (XEXP (op0
, 1))
12324 && (tem
= simplify_binary_operation (ROTATERT
, mode
,
12325 op1
, XEXP (op0
, 1))) != 0)
12327 op0
= XEXP (op0
, 0);
12332 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
12333 a particular bit. Convert it to an AND of a constant of that
12334 bit. This will be converted into a ZERO_EXTRACT. */
12335 if (const_op
== 0 && sign_bit_comparison_p
12336 && CONST_INT_P (XEXP (op0
, 1))
12337 && mode_width
<= HOST_BITS_PER_WIDE_INT
12338 && UINTVAL (XEXP (op0
, 1)) < mode_width
)
12340 op0
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (op0
, 0),
12343 - INTVAL (XEXP (op0
, 1)))));
12344 code
= (code
== LT
? NE
: EQ
);
12348 /* Fall through. */
12351 /* ABS is ignorable inside an equality comparison with zero. */
12352 if (const_op
== 0 && equality_comparison_p
)
12354 op0
= XEXP (op0
, 0);
12360 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
12361 (compare FOO CONST) if CONST fits in FOO's mode and we
12362 are either testing inequality or have an unsigned
12363 comparison with ZERO_EXTEND or a signed comparison with
12364 SIGN_EXTEND. But don't do it if we don't have a compare
12365 insn of the given mode, since we'd have to revert it
12366 later on, and then we wouldn't know whether to sign- or
12368 if (is_int_mode (GET_MODE (XEXP (op0
, 0)), &mode
)
12369 && ! unsigned_comparison_p
12370 && HWI_COMPUTABLE_MODE_P (mode
)
12371 && trunc_int_for_mode (const_op
, mode
) == const_op
12372 && have_insn_for (COMPARE
, mode
))
12374 op0
= XEXP (op0
, 0);
12380 /* Check for the case where we are comparing A - C1 with C2, that is
12382 (subreg:MODE (plus (A) (-C1))) op (C2)
12384 with C1 a constant, and try to lift the SUBREG, i.e. to do the
12385 comparison in the wider mode. One of the following two conditions
12386 must be true in order for this to be valid:
12388 1. The mode extension results in the same bit pattern being added
12389 on both sides and the comparison is equality or unsigned. As
12390 C2 has been truncated to fit in MODE, the pattern can only be
12393 2. The mode extension results in the sign bit being copied on
12396 The difficulty here is that we have predicates for A but not for
12397 (A - C1) so we need to check that C1 is within proper bounds so
12398 as to perturbate A as little as possible. */
12400 if (mode_width
<= HOST_BITS_PER_WIDE_INT
12401 && subreg_lowpart_p (op0
)
12402 && is_a
<scalar_int_mode
> (GET_MODE (SUBREG_REG (op0
)),
12404 && GET_MODE_PRECISION (inner_mode
) > mode_width
12405 && GET_CODE (SUBREG_REG (op0
)) == PLUS
12406 && CONST_INT_P (XEXP (SUBREG_REG (op0
), 1)))
12408 rtx a
= XEXP (SUBREG_REG (op0
), 0);
12409 HOST_WIDE_INT c1
= -INTVAL (XEXP (SUBREG_REG (op0
), 1));
12412 && (unsigned HOST_WIDE_INT
) c1
12413 < HOST_WIDE_INT_1U
<< (mode_width
- 1)
12414 && (equality_comparison_p
|| unsigned_comparison_p
)
12415 /* (A - C1) zero-extends if it is positive and sign-extends
12416 if it is negative, C2 both zero- and sign-extends. */
12417 && (((nonzero_bits (a
, inner_mode
)
12418 & ~GET_MODE_MASK (mode
)) == 0
12420 /* (A - C1) sign-extends if it is positive and 1-extends
12421 if it is negative, C2 both sign- and 1-extends. */
12422 || (num_sign_bit_copies (a
, inner_mode
)
12423 > (unsigned int) (GET_MODE_PRECISION (inner_mode
)
12426 || ((unsigned HOST_WIDE_INT
) c1
12427 < HOST_WIDE_INT_1U
<< (mode_width
- 2)
12428 /* (A - C1) always sign-extends, like C2. */
12429 && num_sign_bit_copies (a
, inner_mode
)
12430 > (unsigned int) (GET_MODE_PRECISION (inner_mode
)
12431 - (mode_width
- 1))))
12433 op0
= SUBREG_REG (op0
);
12438 /* If the inner mode is narrower and we are extracting the low part,
12439 we can treat the SUBREG as if it were a ZERO_EXTEND. */
12440 if (paradoxical_subreg_p (op0
))
12442 else if (subreg_lowpart_p (op0
)
12443 && GET_MODE_CLASS (mode
) == MODE_INT
12444 && is_int_mode (GET_MODE (SUBREG_REG (op0
)), &inner_mode
)
12445 && (code
== NE
|| code
== EQ
)
12446 && GET_MODE_PRECISION (inner_mode
) <= HOST_BITS_PER_WIDE_INT
12447 && !paradoxical_subreg_p (op0
)
12448 && (nonzero_bits (SUBREG_REG (op0
), inner_mode
)
12449 & ~GET_MODE_MASK (mode
)) == 0)
12451 /* Remove outer subregs that don't do anything. */
12452 tem
= gen_lowpart (inner_mode
, op1
);
12454 if ((nonzero_bits (tem
, inner_mode
)
12455 & ~GET_MODE_MASK (mode
)) == 0)
12457 op0
= SUBREG_REG (op0
);
12469 if (is_int_mode (GET_MODE (XEXP (op0
, 0)), &mode
)
12470 && (unsigned_comparison_p
|| equality_comparison_p
)
12471 && HWI_COMPUTABLE_MODE_P (mode
)
12472 && (unsigned HOST_WIDE_INT
) const_op
<= GET_MODE_MASK (mode
)
12474 && have_insn_for (COMPARE
, mode
))
12476 op0
= XEXP (op0
, 0);
12482 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
12483 this for equality comparisons due to pathological cases involving
12485 if (equality_comparison_p
12486 && (tem
= simplify_binary_operation (MINUS
, mode
,
12487 op1
, XEXP (op0
, 1))) != 0)
12489 op0
= XEXP (op0
, 0);
12494 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
12495 if (const_op
== 0 && XEXP (op0
, 1) == constm1_rtx
12496 && GET_CODE (XEXP (op0
, 0)) == ABS
&& sign_bit_comparison_p
)
12498 op0
= XEXP (XEXP (op0
, 0), 0);
12499 code
= (code
== LT
? EQ
: NE
);
12505 /* We used to optimize signed comparisons against zero, but that
12506 was incorrect. Unsigned comparisons against zero (GTU, LEU)
12507 arrive here as equality comparisons, or (GEU, LTU) are
12508 optimized away. No need to special-case them. */
12510 /* (eq (minus A B) C) -> (eq A (plus B C)) or
12511 (eq B (minus A C)), whichever simplifies. We can only do
12512 this for equality comparisons due to pathological cases involving
12514 if (equality_comparison_p
12515 && (tem
= simplify_binary_operation (PLUS
, mode
,
12516 XEXP (op0
, 1), op1
)) != 0)
12518 op0
= XEXP (op0
, 0);
12523 if (equality_comparison_p
12524 && (tem
= simplify_binary_operation (MINUS
, mode
,
12525 XEXP (op0
, 0), op1
)) != 0)
12527 op0
= XEXP (op0
, 1);
12532 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
12533 of bits in X minus 1, is one iff X > 0. */
12534 if (sign_bit_comparison_p
&& GET_CODE (XEXP (op0
, 0)) == ASHIFTRT
12535 && CONST_INT_P (XEXP (XEXP (op0
, 0), 1))
12536 && UINTVAL (XEXP (XEXP (op0
, 0), 1)) == mode_width
- 1
12537 && rtx_equal_p (XEXP (XEXP (op0
, 0), 0), XEXP (op0
, 1)))
12539 op0
= XEXP (op0
, 1);
12540 code
= (code
== GE
? LE
: GT
);
12546 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
12547 if C is zero or B is a constant. */
12548 if (equality_comparison_p
12549 && (tem
= simplify_binary_operation (XOR
, mode
,
12550 XEXP (op0
, 1), op1
)) != 0)
12552 op0
= XEXP (op0
, 0);
12560 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
12562 if (sign_bit_comparison_p
&& GET_CODE (XEXP (op0
, 0)) == PLUS
12563 && XEXP (XEXP (op0
, 0), 1) == constm1_rtx
12564 && rtx_equal_p (XEXP (XEXP (op0
, 0), 0), XEXP (op0
, 1)))
12566 op0
= XEXP (op0
, 1);
12567 code
= (code
== GE
? GT
: LE
);
12573 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
12574 will be converted to a ZERO_EXTRACT later. */
12575 if (const_op
== 0 && equality_comparison_p
12576 && GET_CODE (XEXP (op0
, 0)) == ASHIFT
12577 && XEXP (XEXP (op0
, 0), 0) == const1_rtx
)
12579 op0
= gen_rtx_LSHIFTRT (mode
, XEXP (op0
, 1),
12580 XEXP (XEXP (op0
, 0), 1));
12581 op0
= simplify_and_const_int (NULL_RTX
, mode
, op0
, 1);
12585 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
12586 zero and X is a comparison and C1 and C2 describe only bits set
12587 in STORE_FLAG_VALUE, we can compare with X. */
12588 if (const_op
== 0 && equality_comparison_p
12589 && mode_width
<= HOST_BITS_PER_WIDE_INT
12590 && CONST_INT_P (XEXP (op0
, 1))
12591 && GET_CODE (XEXP (op0
, 0)) == LSHIFTRT
12592 && CONST_INT_P (XEXP (XEXP (op0
, 0), 1))
12593 && INTVAL (XEXP (XEXP (op0
, 0), 1)) >= 0
12594 && INTVAL (XEXP (XEXP (op0
, 0), 1)) < HOST_BITS_PER_WIDE_INT
)
12596 mask
= ((INTVAL (XEXP (op0
, 1)) & GET_MODE_MASK (mode
))
12597 << INTVAL (XEXP (XEXP (op0
, 0), 1)));
12598 if ((~STORE_FLAG_VALUE
& mask
) == 0
12599 && (COMPARISON_P (XEXP (XEXP (op0
, 0), 0))
12600 || ((tem
= get_last_value (XEXP (XEXP (op0
, 0), 0))) != 0
12601 && COMPARISON_P (tem
))))
12603 op0
= XEXP (XEXP (op0
, 0), 0);
12608 /* If we are doing an equality comparison of an AND of a bit equal
12609 to the sign bit, replace this with a LT or GE comparison of
12610 the underlying value. */
12611 if (equality_comparison_p
12613 && CONST_INT_P (XEXP (op0
, 1))
12614 && mode_width
<= HOST_BITS_PER_WIDE_INT
12615 && ((INTVAL (XEXP (op0
, 1)) & GET_MODE_MASK (mode
))
12616 == HOST_WIDE_INT_1U
<< (mode_width
- 1)))
12618 op0
= XEXP (op0
, 0);
12619 code
= (code
== EQ
? GE
: LT
);
12623 /* If this AND operation is really a ZERO_EXTEND from a narrower
12624 mode, the constant fits within that mode, and this is either an
12625 equality or unsigned comparison, try to do this comparison in
12630 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
12631 -> (ne:DI (reg:SI 4) (const_int 0))
12633 unless TARGET_TRULY_NOOP_TRUNCATION allows it or the register is
12634 known to hold a value of the required mode the
12635 transformation is invalid. */
12636 if ((equality_comparison_p
|| unsigned_comparison_p
)
12637 && CONST_INT_P (XEXP (op0
, 1))
12638 && (i
= exact_log2 ((UINTVAL (XEXP (op0
, 1))
12639 & GET_MODE_MASK (mode
))
12641 && const_op
>> i
== 0
12642 && int_mode_for_size (i
, 1).exists (&tmode
))
12644 op0
= gen_lowpart_or_truncate (tmode
, XEXP (op0
, 0));
12648 /* If this is (and:M1 (subreg:M1 X:M2 0) (const_int C1)) where C1
12649 fits in both M1 and M2 and the SUBREG is either paradoxical
12650 or represents the low part, permute the SUBREG and the AND
12652 if (GET_CODE (XEXP (op0
, 0)) == SUBREG
12653 && CONST_INT_P (XEXP (op0
, 1)))
12655 unsigned HOST_WIDE_INT c1
= INTVAL (XEXP (op0
, 1));
12656 /* Require an integral mode, to avoid creating something like
12658 if ((is_a
<scalar_int_mode
>
12659 (GET_MODE (SUBREG_REG (XEXP (op0
, 0))), &tmode
))
12660 /* It is unsafe to commute the AND into the SUBREG if the
12661 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
12662 not defined. As originally written the upper bits
12663 have a defined value due to the AND operation.
12664 However, if we commute the AND inside the SUBREG then
12665 they no longer have defined values and the meaning of
12666 the code has been changed.
12667 Also C1 should not change value in the smaller mode,
12668 see PR67028 (a positive C1 can become negative in the
12669 smaller mode, so that the AND does no longer mask the
12671 && ((WORD_REGISTER_OPERATIONS
12672 && mode_width
> GET_MODE_PRECISION (tmode
)
12673 && mode_width
<= BITS_PER_WORD
12674 && trunc_int_for_mode (c1
, tmode
) == (HOST_WIDE_INT
) c1
)
12675 || (mode_width
<= GET_MODE_PRECISION (tmode
)
12676 && subreg_lowpart_p (XEXP (op0
, 0))))
12677 && mode_width
<= HOST_BITS_PER_WIDE_INT
12678 && HWI_COMPUTABLE_MODE_P (tmode
)
12679 && (c1
& ~mask
) == 0
12680 && (c1
& ~GET_MODE_MASK (tmode
)) == 0
12682 && c1
!= GET_MODE_MASK (tmode
))
12684 op0
= simplify_gen_binary (AND
, tmode
,
12685 SUBREG_REG (XEXP (op0
, 0)),
12686 gen_int_mode (c1
, tmode
));
12687 op0
= gen_lowpart (mode
, op0
);
12692 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
12693 if (const_op
== 0 && equality_comparison_p
12694 && XEXP (op0
, 1) == const1_rtx
12695 && GET_CODE (XEXP (op0
, 0)) == NOT
)
12697 op0
= simplify_and_const_int (NULL_RTX
, mode
,
12698 XEXP (XEXP (op0
, 0), 0), 1);
12699 code
= (code
== NE
? EQ
: NE
);
12703 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
12704 (eq (and (lshiftrt X) 1) 0).
12705 Also handle the case where (not X) is expressed using xor. */
12706 if (const_op
== 0 && equality_comparison_p
12707 && XEXP (op0
, 1) == const1_rtx
12708 && GET_CODE (XEXP (op0
, 0)) == LSHIFTRT
)
12710 rtx shift_op
= XEXP (XEXP (op0
, 0), 0);
12711 rtx shift_count
= XEXP (XEXP (op0
, 0), 1);
12713 if (GET_CODE (shift_op
) == NOT
12714 || (GET_CODE (shift_op
) == XOR
12715 && CONST_INT_P (XEXP (shift_op
, 1))
12716 && CONST_INT_P (shift_count
)
12717 && HWI_COMPUTABLE_MODE_P (mode
)
12718 && (UINTVAL (XEXP (shift_op
, 1))
12719 == HOST_WIDE_INT_1U
12720 << INTVAL (shift_count
))))
12723 = gen_rtx_LSHIFTRT (mode
, XEXP (shift_op
, 0), shift_count
);
12724 op0
= simplify_and_const_int (NULL_RTX
, mode
, op0
, 1);
12725 code
= (code
== NE
? EQ
: NE
);
12732 /* If we have (compare (ashift FOO N) (const_int C)) and
12733 the high order N bits of FOO (N+1 if an inequality comparison)
12734 are known to be zero, we can do this by comparing FOO with C
12735 shifted right N bits so long as the low-order N bits of C are
12737 if (CONST_INT_P (XEXP (op0
, 1))
12738 && INTVAL (XEXP (op0
, 1)) >= 0
12739 && ((INTVAL (XEXP (op0
, 1)) + ! equality_comparison_p
)
12740 < HOST_BITS_PER_WIDE_INT
)
12741 && (((unsigned HOST_WIDE_INT
) const_op
12742 & ((HOST_WIDE_INT_1U
<< INTVAL (XEXP (op0
, 1)))
12744 && mode_width
<= HOST_BITS_PER_WIDE_INT
12745 && (nonzero_bits (XEXP (op0
, 0), mode
)
12746 & ~(mask
>> (INTVAL (XEXP (op0
, 1))
12747 + ! equality_comparison_p
))) == 0)
12749 /* We must perform a logical shift, not an arithmetic one,
12750 as we want the top N bits of C to be zero. */
12751 unsigned HOST_WIDE_INT temp
= const_op
& GET_MODE_MASK (mode
);
12753 temp
>>= INTVAL (XEXP (op0
, 1));
12754 op1
= gen_int_mode (temp
, mode
);
12755 op0
= XEXP (op0
, 0);
12759 /* If we are doing a sign bit comparison, it means we are testing
12760 a particular bit. Convert it to the appropriate AND. */
12761 if (sign_bit_comparison_p
&& CONST_INT_P (XEXP (op0
, 1))
12762 && mode_width
<= HOST_BITS_PER_WIDE_INT
)
12764 op0
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (op0
, 0),
12767 - INTVAL (XEXP (op0
, 1)))));
12768 code
= (code
== LT
? NE
: EQ
);
12772 /* If this an equality comparison with zero and we are shifting
12773 the low bit to the sign bit, we can convert this to an AND of the
12775 if (const_op
== 0 && equality_comparison_p
12776 && CONST_INT_P (XEXP (op0
, 1))
12777 && UINTVAL (XEXP (op0
, 1)) == mode_width
- 1)
12779 op0
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (op0
, 0), 1);
12785 /* If this is an equality comparison with zero, we can do this
12786 as a logical shift, which might be much simpler. */
12787 if (equality_comparison_p
&& const_op
== 0
12788 && CONST_INT_P (XEXP (op0
, 1)))
12790 op0
= simplify_shift_const (NULL_RTX
, LSHIFTRT
, mode
,
12792 INTVAL (XEXP (op0
, 1)));
12796 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
12797 do the comparison in a narrower mode. */
12798 if (! unsigned_comparison_p
12799 && CONST_INT_P (XEXP (op0
, 1))
12800 && GET_CODE (XEXP (op0
, 0)) == ASHIFT
12801 && XEXP (op0
, 1) == XEXP (XEXP (op0
, 0), 1)
12802 && (int_mode_for_size (mode_width
- INTVAL (XEXP (op0
, 1)), 1)
12804 && (((unsigned HOST_WIDE_INT
) const_op
12805 + (GET_MODE_MASK (tmode
) >> 1) + 1)
12806 <= GET_MODE_MASK (tmode
)))
12808 op0
= gen_lowpart (tmode
, XEXP (XEXP (op0
, 0), 0));
12812 /* Likewise if OP0 is a PLUS of a sign extension with a
12813 constant, which is usually represented with the PLUS
12814 between the shifts. */
12815 if (! unsigned_comparison_p
12816 && CONST_INT_P (XEXP (op0
, 1))
12817 && GET_CODE (XEXP (op0
, 0)) == PLUS
12818 && CONST_INT_P (XEXP (XEXP (op0
, 0), 1))
12819 && GET_CODE (XEXP (XEXP (op0
, 0), 0)) == ASHIFT
12820 && XEXP (op0
, 1) == XEXP (XEXP (XEXP (op0
, 0), 0), 1)
12821 && (int_mode_for_size (mode_width
- INTVAL (XEXP (op0
, 1)), 1)
12823 && (((unsigned HOST_WIDE_INT
) const_op
12824 + (GET_MODE_MASK (tmode
) >> 1) + 1)
12825 <= GET_MODE_MASK (tmode
)))
12827 rtx inner
= XEXP (XEXP (XEXP (op0
, 0), 0), 0);
12828 rtx add_const
= XEXP (XEXP (op0
, 0), 1);
12829 rtx new_const
= simplify_gen_binary (ASHIFTRT
, mode
,
12830 add_const
, XEXP (op0
, 1));
12832 op0
= simplify_gen_binary (PLUS
, tmode
,
12833 gen_lowpart (tmode
, inner
),
12840 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
12841 the low order N bits of FOO are known to be zero, we can do this
12842 by comparing FOO with C shifted left N bits so long as no
12843 overflow occurs. Even if the low order N bits of FOO aren't known
12844 to be zero, if the comparison is >= or < we can use the same
12845 optimization and for > or <= by setting all the low
12846 order N bits in the comparison constant. */
12847 if (CONST_INT_P (XEXP (op0
, 1))
12848 && INTVAL (XEXP (op0
, 1)) > 0
12849 && INTVAL (XEXP (op0
, 1)) < HOST_BITS_PER_WIDE_INT
12850 && mode_width
<= HOST_BITS_PER_WIDE_INT
12851 && (((unsigned HOST_WIDE_INT
) const_op
12852 + (GET_CODE (op0
) != LSHIFTRT
12853 ? ((GET_MODE_MASK (mode
) >> INTVAL (XEXP (op0
, 1)) >> 1)
12856 <= GET_MODE_MASK (mode
) >> INTVAL (XEXP (op0
, 1))))
12858 unsigned HOST_WIDE_INT low_bits
12859 = (nonzero_bits (XEXP (op0
, 0), mode
)
12860 & ((HOST_WIDE_INT_1U
12861 << INTVAL (XEXP (op0
, 1))) - 1));
12862 if (low_bits
== 0 || !equality_comparison_p
)
12864 /* If the shift was logical, then we must make the condition
12866 if (GET_CODE (op0
) == LSHIFTRT
)
12867 code
= unsigned_condition (code
);
12869 const_op
= (unsigned HOST_WIDE_INT
) const_op
12870 << INTVAL (XEXP (op0
, 1));
12872 && (code
== GT
|| code
== GTU
12873 || code
== LE
|| code
== LEU
))
12875 |= ((HOST_WIDE_INT_1
<< INTVAL (XEXP (op0
, 1))) - 1);
12876 op1
= GEN_INT (const_op
);
12877 op0
= XEXP (op0
, 0);
12882 /* If we are using this shift to extract just the sign bit, we
12883 can replace this with an LT or GE comparison. */
12885 && (equality_comparison_p
|| sign_bit_comparison_p
)
12886 && CONST_INT_P (XEXP (op0
, 1))
12887 && UINTVAL (XEXP (op0
, 1)) == mode_width
- 1)
12889 op0
= XEXP (op0
, 0);
12890 code
= (code
== NE
|| code
== GT
? LT
: GE
);
12902 /* Now make any compound operations involved in this comparison. Then,
12903 check for an outmost SUBREG on OP0 that is not doing anything or is
12904 paradoxical. The latter transformation must only be performed when
12905 it is known that the "extra" bits will be the same in op0 and op1 or
12906 that they don't matter. There are three cases to consider:
12908 1. SUBREG_REG (op0) is a register. In this case the bits are don't
12909 care bits and we can assume they have any convenient value. So
12910 making the transformation is safe.
12912 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is UNKNOWN.
12913 In this case the upper bits of op0 are undefined. We should not make
12914 the simplification in that case as we do not know the contents of
12917 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not UNKNOWN.
12918 In that case we know those bits are zeros or ones. We must also be
12919 sure that they are the same as the upper bits of op1.
12921 We can never remove a SUBREG for a non-equality comparison because
12922 the sign bit is in a different place in the underlying object. */
12924 rtx_code op0_mco_code
= SET
;
12925 if (op1
== const0_rtx
)
12926 op0_mco_code
= code
== NE
|| code
== EQ
? EQ
: COMPARE
;
12928 op0
= make_compound_operation (op0
, op0_mco_code
);
12929 op1
= make_compound_operation (op1
, SET
);
12931 if (GET_CODE (op0
) == SUBREG
&& subreg_lowpart_p (op0
)
12932 && is_int_mode (GET_MODE (op0
), &mode
)
12933 && is_int_mode (GET_MODE (SUBREG_REG (op0
)), &inner_mode
)
12934 && (code
== NE
|| code
== EQ
))
12936 if (paradoxical_subreg_p (op0
))
12938 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
12940 if (REG_P (SUBREG_REG (op0
)))
12942 op0
= SUBREG_REG (op0
);
12943 op1
= gen_lowpart (inner_mode
, op1
);
12946 else if (GET_MODE_PRECISION (inner_mode
) <= HOST_BITS_PER_WIDE_INT
12947 && (nonzero_bits (SUBREG_REG (op0
), inner_mode
)
12948 & ~GET_MODE_MASK (mode
)) == 0)
12950 tem
= gen_lowpart (inner_mode
, op1
);
12952 if ((nonzero_bits (tem
, inner_mode
) & ~GET_MODE_MASK (mode
)) == 0)
12953 op0
= SUBREG_REG (op0
), op1
= tem
;
12957 /* We now do the opposite procedure: Some machines don't have compare
12958 insns in all modes. If OP0's mode is an integer mode smaller than a
12959 word and we can't do a compare in that mode, see if there is a larger
12960 mode for which we can do the compare. There are a number of cases in
12961 which we can use the wider mode. */
12963 if (is_int_mode (GET_MODE (op0
), &mode
)
12964 && GET_MODE_SIZE (mode
) < UNITS_PER_WORD
12965 && ! have_insn_for (COMPARE
, mode
))
12966 FOR_EACH_WIDER_MODE (tmode_iter
, mode
)
12968 tmode
= tmode_iter
.require ();
12969 if (!HWI_COMPUTABLE_MODE_P (tmode
))
12971 if (have_insn_for (COMPARE
, tmode
))
12975 /* If this is a test for negative, we can make an explicit
12976 test of the sign bit. Test this first so we can use
12977 a paradoxical subreg to extend OP0. */
12979 if (op1
== const0_rtx
&& (code
== LT
|| code
== GE
)
12980 && HWI_COMPUTABLE_MODE_P (mode
))
12982 unsigned HOST_WIDE_INT sign
12983 = HOST_WIDE_INT_1U
<< (GET_MODE_BITSIZE (mode
) - 1);
12984 op0
= simplify_gen_binary (AND
, tmode
,
12985 gen_lowpart (tmode
, op0
),
12986 gen_int_mode (sign
, tmode
));
12987 code
= (code
== LT
) ? NE
: EQ
;
12991 /* If the only nonzero bits in OP0 and OP1 are those in the
12992 narrower mode and this is an equality or unsigned comparison,
12993 we can use the wider mode. Similarly for sign-extended
12994 values, in which case it is true for all comparisons. */
12995 zero_extended
= ((code
== EQ
|| code
== NE
12996 || code
== GEU
|| code
== GTU
12997 || code
== LEU
|| code
== LTU
)
12998 && (nonzero_bits (op0
, tmode
)
12999 & ~GET_MODE_MASK (mode
)) == 0
13000 && ((CONST_INT_P (op1
)
13001 || (nonzero_bits (op1
, tmode
)
13002 & ~GET_MODE_MASK (mode
)) == 0)));
13005 || ((num_sign_bit_copies (op0
, tmode
)
13006 > (unsigned int) (GET_MODE_PRECISION (tmode
)
13007 - GET_MODE_PRECISION (mode
)))
13008 && (num_sign_bit_copies (op1
, tmode
)
13009 > (unsigned int) (GET_MODE_PRECISION (tmode
)
13010 - GET_MODE_PRECISION (mode
)))))
13012 /* If OP0 is an AND and we don't have an AND in MODE either,
13013 make a new AND in the proper mode. */
13014 if (GET_CODE (op0
) == AND
13015 && !have_insn_for (AND
, mode
))
13016 op0
= simplify_gen_binary (AND
, tmode
,
13017 gen_lowpart (tmode
,
13019 gen_lowpart (tmode
,
13025 op0
= simplify_gen_unary (ZERO_EXTEND
, tmode
,
13027 op1
= simplify_gen_unary (ZERO_EXTEND
, tmode
,
13032 op0
= simplify_gen_unary (SIGN_EXTEND
, tmode
,
13034 op1
= simplify_gen_unary (SIGN_EXTEND
, tmode
,
13043 /* We may have changed the comparison operands. Re-canonicalize. */
13044 if (swap_commutative_operands_p (op0
, op1
))
13046 std::swap (op0
, op1
);
13047 code
= swap_condition (code
);
13050 /* If this machine only supports a subset of valid comparisons, see if we
13051 can convert an unsupported one into a supported one. */
13052 target_canonicalize_comparison (&code
, &op0
, &op1
, 0);
13060 /* Utility function for record_value_for_reg. Count number of
13065 enum rtx_code code
= GET_CODE (x
);
13069 if (GET_RTX_CLASS (code
) == RTX_BIN_ARITH
13070 || GET_RTX_CLASS (code
) == RTX_COMM_ARITH
)
13072 rtx x0
= XEXP (x
, 0);
13073 rtx x1
= XEXP (x
, 1);
13076 return 1 + 2 * count_rtxs (x0
);
13078 if ((GET_RTX_CLASS (GET_CODE (x1
)) == RTX_BIN_ARITH
13079 || GET_RTX_CLASS (GET_CODE (x1
)) == RTX_COMM_ARITH
)
13080 && (x0
== XEXP (x1
, 0) || x0
== XEXP (x1
, 1)))
13081 return 2 + 2 * count_rtxs (x0
)
13082 + count_rtxs (x
== XEXP (x1
, 0)
13083 ? XEXP (x1
, 1) : XEXP (x1
, 0));
13085 if ((GET_RTX_CLASS (GET_CODE (x0
)) == RTX_BIN_ARITH
13086 || GET_RTX_CLASS (GET_CODE (x0
)) == RTX_COMM_ARITH
)
13087 && (x1
== XEXP (x0
, 0) || x1
== XEXP (x0
, 1)))
13088 return 2 + 2 * count_rtxs (x1
)
13089 + count_rtxs (x
== XEXP (x0
, 0)
13090 ? XEXP (x0
, 1) : XEXP (x0
, 0));
13093 fmt
= GET_RTX_FORMAT (code
);
13094 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
13096 ret
+= count_rtxs (XEXP (x
, i
));
13097 else if (fmt
[i
] == 'E')
13098 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
13099 ret
+= count_rtxs (XVECEXP (x
, i
, j
));
13104 /* Utility function for following routine. Called when X is part of a value
13105 being stored into last_set_value. Sets last_set_table_tick
13106 for each register mentioned. Similar to mention_regs in cse.cc */
13109 update_table_tick (rtx x
)
13111 enum rtx_code code
= GET_CODE (x
);
13112 const char *fmt
= GET_RTX_FORMAT (code
);
13117 unsigned int regno
= REGNO (x
);
13118 unsigned int endregno
= END_REGNO (x
);
13121 for (r
= regno
; r
< endregno
; r
++)
13123 reg_stat_type
*rsp
= ®_stat
[r
];
13124 rsp
->last_set_table_tick
= label_tick
;
13130 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
13133 /* Check for identical subexpressions. If x contains
13134 identical subexpression we only have to traverse one of
13136 if (i
== 0 && ARITHMETIC_P (x
))
13138 /* Note that at this point x1 has already been
13140 rtx x0
= XEXP (x
, 0);
13141 rtx x1
= XEXP (x
, 1);
13143 /* If x0 and x1 are identical then there is no need to
13148 /* If x0 is identical to a subexpression of x1 then while
13149 processing x1, x0 has already been processed. Thus we
13150 are done with x. */
13151 if (ARITHMETIC_P (x1
)
13152 && (x0
== XEXP (x1
, 0) || x0
== XEXP (x1
, 1)))
13155 /* If x1 is identical to a subexpression of x0 then we
13156 still have to process the rest of x0. */
13157 if (ARITHMETIC_P (x0
)
13158 && (x1
== XEXP (x0
, 0) || x1
== XEXP (x0
, 1)))
13160 update_table_tick (XEXP (x0
, x1
== XEXP (x0
, 0) ? 1 : 0));
13165 update_table_tick (XEXP (x
, i
));
13167 else if (fmt
[i
] == 'E')
13168 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
13169 update_table_tick (XVECEXP (x
, i
, j
));
13172 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
13173 are saying that the register is clobbered and we no longer know its
13174 value. If INSN is zero, don't update reg_stat[].last_set; this is
13175 only permitted with VALUE also zero and is used to invalidate the
13179 record_value_for_reg (rtx reg
, rtx_insn
*insn
, rtx value
)
13181 unsigned int regno
= REGNO (reg
);
13182 unsigned int endregno
= END_REGNO (reg
);
13184 reg_stat_type
*rsp
;
13186 /* If VALUE contains REG and we have a previous value for REG, substitute
13187 the previous value. */
13188 if (value
&& insn
&& reg_overlap_mentioned_p (reg
, value
))
13192 /* Set things up so get_last_value is allowed to see anything set up to
13194 subst_low_luid
= DF_INSN_LUID (insn
);
13195 tem
= get_last_value (reg
);
13197 /* If TEM is simply a binary operation with two CLOBBERs as operands,
13198 it isn't going to be useful and will take a lot of time to process,
13199 so just use the CLOBBER. */
13203 if (ARITHMETIC_P (tem
)
13204 && GET_CODE (XEXP (tem
, 0)) == CLOBBER
13205 && GET_CODE (XEXP (tem
, 1)) == CLOBBER
)
13206 tem
= XEXP (tem
, 0);
13207 else if (count_occurrences (value
, reg
, 1) >= 2)
13209 /* If there are two or more occurrences of REG in VALUE,
13210 prevent the value from growing too much. */
13211 if (count_rtxs (tem
) > param_max_last_value_rtl
)
13212 tem
= gen_rtx_CLOBBER (GET_MODE (tem
), const0_rtx
);
13215 value
= replace_rtx (copy_rtx (value
), reg
, tem
);
13219 /* For each register modified, show we don't know its value, that
13220 we don't know about its bitwise content, that its value has been
13221 updated, and that we don't know the location of the death of the
13223 for (i
= regno
; i
< endregno
; i
++)
13225 rsp
= ®_stat
[i
];
13228 rsp
->last_set
= insn
;
13230 rsp
->last_set_value
= 0;
13231 rsp
->last_set_mode
= VOIDmode
;
13232 rsp
->last_set_nonzero_bits
= 0;
13233 rsp
->last_set_sign_bit_copies
= 0;
13234 rsp
->last_death
= 0;
13235 rsp
->truncated_to_mode
= VOIDmode
;
13238 /* Mark registers that are being referenced in this value. */
13240 update_table_tick (value
);
13242 /* Now update the status of each register being set.
13243 If someone is using this register in this block, set this register
13244 to invalid since we will get confused between the two lives in this
13245 basic block. This makes using this register always invalid. In cse, we
13246 scan the table to invalidate all entries using this register, but this
13247 is too much work for us. */
13249 for (i
= regno
; i
< endregno
; i
++)
13251 rsp
= ®_stat
[i
];
13252 rsp
->last_set_label
= label_tick
;
13254 || (value
&& rsp
->last_set_table_tick
>= label_tick_ebb_start
))
13255 rsp
->last_set_invalid
= 1;
13257 rsp
->last_set_invalid
= 0;
13260 /* The value being assigned might refer to X (like in "x++;"). In that
13261 case, we must replace it with (clobber (const_int 0)) to prevent
13263 rsp
= ®_stat
[regno
];
13264 if (value
&& !get_last_value_validate (&value
, insn
, label_tick
, 0))
13266 value
= copy_rtx (value
);
13267 if (!get_last_value_validate (&value
, insn
, label_tick
, 1))
13271 /* For the main register being modified, update the value, the mode, the
13272 nonzero bits, and the number of sign bit copies. */
13274 rsp
->last_set_value
= value
;
13278 machine_mode mode
= GET_MODE (reg
);
13279 subst_low_luid
= DF_INSN_LUID (insn
);
13280 rsp
->last_set_mode
= mode
;
13281 if (GET_MODE_CLASS (mode
) == MODE_INT
13282 && HWI_COMPUTABLE_MODE_P (mode
))
13283 mode
= nonzero_bits_mode
;
13284 rsp
->last_set_nonzero_bits
= nonzero_bits (value
, mode
);
13285 rsp
->last_set_sign_bit_copies
13286 = num_sign_bit_copies (value
, GET_MODE (reg
));
13290 /* Called via note_stores from record_dead_and_set_regs to handle one
13291 SET or CLOBBER in an insn. DATA is the instruction in which the
13292 set is occurring. */
13295 record_dead_and_set_regs_1 (rtx dest
, const_rtx setter
, void *data
)
13297 rtx_insn
*record_dead_insn
= (rtx_insn
*) data
;
13299 if (GET_CODE (dest
) == SUBREG
)
13300 dest
= SUBREG_REG (dest
);
13302 if (!record_dead_insn
)
13305 record_value_for_reg (dest
, NULL
, NULL_RTX
);
13311 /* If we are setting the whole register, we know its value. Otherwise
13312 show that we don't know the value. We can handle a SUBREG if it's
13313 the low part, but we must be careful with paradoxical SUBREGs on
13314 RISC architectures because we cannot strip e.g. an extension around
13315 a load and record the naked load since the RTL middle-end considers
13316 that the upper bits are defined according to LOAD_EXTEND_OP. */
13317 if (GET_CODE (setter
) == SET
&& dest
== SET_DEST (setter
))
13318 record_value_for_reg (dest
, record_dead_insn
, SET_SRC (setter
));
13319 else if (GET_CODE (setter
) == SET
13320 && GET_CODE (SET_DEST (setter
)) == SUBREG
13321 && SUBREG_REG (SET_DEST (setter
)) == dest
13322 && known_le (GET_MODE_PRECISION (GET_MODE (dest
)),
13324 && subreg_lowpart_p (SET_DEST (setter
)))
13325 record_value_for_reg (dest
, record_dead_insn
,
13326 WORD_REGISTER_OPERATIONS
13327 && word_register_operation_p (SET_SRC (setter
))
13328 && paradoxical_subreg_p (SET_DEST (setter
))
13330 : gen_lowpart (GET_MODE (dest
),
13331 SET_SRC (setter
)));
13333 record_value_for_reg (dest
, record_dead_insn
, NULL_RTX
);
13335 else if (MEM_P (dest
)
13336 /* Ignore pushes, they clobber nothing. */
13337 && ! push_operand (dest
, GET_MODE (dest
)))
13338 mem_last_set
= DF_INSN_LUID (record_dead_insn
);
13341 /* Update the records of when each REG was most recently set or killed
13342 for the things done by INSN. This is the last thing done in processing
13343 INSN in the combiner loop.
13345 We update reg_stat[], in particular fields last_set, last_set_value,
13346 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
13347 last_death, and also the similar information mem_last_set (which insn
13348 most recently modified memory) and last_call_luid (which insn was the
13349 most recent subroutine call). */
13352 record_dead_and_set_regs (rtx_insn
*insn
)
13357 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
13359 if (REG_NOTE_KIND (link
) == REG_DEAD
13360 && REG_P (XEXP (link
, 0)))
13362 unsigned int regno
= REGNO (XEXP (link
, 0));
13363 unsigned int endregno
= END_REGNO (XEXP (link
, 0));
13365 for (i
= regno
; i
< endregno
; i
++)
13367 reg_stat_type
*rsp
;
13369 rsp
= ®_stat
[i
];
13370 rsp
->last_death
= insn
;
13373 else if (REG_NOTE_KIND (link
) == REG_INC
)
13374 record_value_for_reg (XEXP (link
, 0), insn
, NULL_RTX
);
13379 HARD_REG_SET callee_clobbers
13380 = insn_callee_abi (insn
).full_and_partial_reg_clobbers ();
13381 hard_reg_set_iterator hrsi
;
13382 EXECUTE_IF_SET_IN_HARD_REG_SET (callee_clobbers
, 0, i
, hrsi
)
13384 reg_stat_type
*rsp
;
13386 /* ??? We could try to preserve some information from the last
13387 set of register I if the call doesn't actually clobber
13388 (reg:last_set_mode I), which might be true for ABIs with
13389 partial clobbers. However, it would be difficult to
13390 update last_set_nonzero_bits and last_sign_bit_copies
13391 to account for the part of I that actually was clobbered.
13392 It wouldn't help much anyway, since we rarely see this
13393 situation before RA. */
13394 rsp
= ®_stat
[i
];
13395 rsp
->last_set_invalid
= 1;
13396 rsp
->last_set
= insn
;
13397 rsp
->last_set_value
= 0;
13398 rsp
->last_set_mode
= VOIDmode
;
13399 rsp
->last_set_nonzero_bits
= 0;
13400 rsp
->last_set_sign_bit_copies
= 0;
13401 rsp
->last_death
= 0;
13402 rsp
->truncated_to_mode
= VOIDmode
;
13405 last_call_luid
= mem_last_set
= DF_INSN_LUID (insn
);
13407 /* We can't combine into a call pattern. Remember, though, that
13408 the return value register is set at this LUID. We could
13409 still replace a register with the return value from the
13410 wrong subroutine call! */
13411 note_stores (insn
, record_dead_and_set_regs_1
, NULL_RTX
);
13414 note_stores (insn
, record_dead_and_set_regs_1
, insn
);
13417 /* If a SUBREG has the promoted bit set, it is in fact a property of the
13418 register present in the SUBREG, so for each such SUBREG go back and
13419 adjust nonzero and sign bit information of the registers that are
13420 known to have some zero/sign bits set.
13422 This is needed because when combine blows the SUBREGs away, the
13423 information on zero/sign bits is lost and further combines can be
13424 missed because of that. */
13427 record_promoted_value (rtx_insn
*insn
, rtx subreg
)
13429 struct insn_link
*links
;
13431 unsigned int regno
= REGNO (SUBREG_REG (subreg
));
13432 machine_mode mode
= GET_MODE (subreg
);
13434 if (!HWI_COMPUTABLE_MODE_P (mode
))
13437 for (links
= LOG_LINKS (insn
); links
;)
13439 reg_stat_type
*rsp
;
13441 insn
= links
->insn
;
13442 set
= single_set (insn
);
13444 if (! set
|| !REG_P (SET_DEST (set
))
13445 || REGNO (SET_DEST (set
)) != regno
13446 || GET_MODE (SET_DEST (set
)) != GET_MODE (SUBREG_REG (subreg
)))
13448 links
= links
->next
;
13452 rsp
= ®_stat
[regno
];
13453 if (rsp
->last_set
== insn
)
13455 if (SUBREG_PROMOTED_UNSIGNED_P (subreg
))
13456 rsp
->last_set_nonzero_bits
&= GET_MODE_MASK (mode
);
13459 if (REG_P (SET_SRC (set
)))
13461 regno
= REGNO (SET_SRC (set
));
13462 links
= LOG_LINKS (insn
);
13469 /* Check if X, a register, is known to contain a value already
13470 truncated to MODE. In this case we can use a subreg to refer to
13471 the truncated value even though in the generic case we would need
13472 an explicit truncation. */
13475 reg_truncated_to_mode (machine_mode mode
, const_rtx x
)
13477 reg_stat_type
*rsp
= ®_stat
[REGNO (x
)];
13478 machine_mode truncated
= rsp
->truncated_to_mode
;
13481 || rsp
->truncation_label
< label_tick_ebb_start
)
13483 if (!partial_subreg_p (mode
, truncated
))
13485 if (TRULY_NOOP_TRUNCATION_MODES_P (mode
, truncated
))
13490 /* If X is a hard reg or a subreg record the mode that the register is
13491 accessed in. For non-TARGET_TRULY_NOOP_TRUNCATION targets we might be
13492 able to turn a truncate into a subreg using this information. Return true
13493 if traversing X is complete. */
13496 record_truncated_value (rtx x
)
13498 machine_mode truncated_mode
;
13499 reg_stat_type
*rsp
;
13501 if (GET_CODE (x
) == SUBREG
&& REG_P (SUBREG_REG (x
)))
13503 machine_mode original_mode
= GET_MODE (SUBREG_REG (x
));
13504 truncated_mode
= GET_MODE (x
);
13506 if (!partial_subreg_p (truncated_mode
, original_mode
))
13509 truncated_mode
= GET_MODE (x
);
13510 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode
, original_mode
))
13513 x
= SUBREG_REG (x
);
13515 /* ??? For hard-regs we now record everything. We might be able to
13516 optimize this using last_set_mode. */
13517 else if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
13518 truncated_mode
= GET_MODE (x
);
13522 rsp
= ®_stat
[REGNO (x
)];
13523 if (rsp
->truncated_to_mode
== 0
13524 || rsp
->truncation_label
< label_tick_ebb_start
13525 || partial_subreg_p (truncated_mode
, rsp
->truncated_to_mode
))
13527 rsp
->truncated_to_mode
= truncated_mode
;
13528 rsp
->truncation_label
= label_tick
;
13534 /* Callback for note_uses. Find hardregs and subregs of pseudos and
13535 the modes they are used in. This can help truning TRUNCATEs into
13539 record_truncated_values (rtx
*loc
, void *data ATTRIBUTE_UNUSED
)
13541 subrtx_var_iterator::array_type array
;
13542 FOR_EACH_SUBRTX_VAR (iter
, array
, *loc
, NONCONST
)
13543 if (record_truncated_value (*iter
))
13544 iter
.skip_subrtxes ();
13547 /* Scan X for promoted SUBREGs. For each one found,
13548 note what it implies to the registers used in it. */
13551 check_promoted_subreg (rtx_insn
*insn
, rtx x
)
13553 if (GET_CODE (x
) == SUBREG
13554 && SUBREG_PROMOTED_VAR_P (x
)
13555 && REG_P (SUBREG_REG (x
)))
13556 record_promoted_value (insn
, x
);
13559 const char *format
= GET_RTX_FORMAT (GET_CODE (x
));
13562 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (x
)); i
++)
13566 check_promoted_subreg (insn
, XEXP (x
, i
));
13570 if (XVEC (x
, i
) != 0)
13571 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
13572 check_promoted_subreg (insn
, XVECEXP (x
, i
, j
));
13578 /* Verify that all the registers and memory references mentioned in *LOC are
13579 still valid. *LOC was part of a value set in INSN when label_tick was
13580 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
13581 the invalid references with (clobber (const_int 0)) and return 1. This
13582 replacement is useful because we often can get useful information about
13583 the form of a value (e.g., if it was produced by a shift that always
13584 produces -1 or 0) even though we don't know exactly what registers it
13585 was produced from. */
13588 get_last_value_validate (rtx
*loc
, rtx_insn
*insn
, int tick
, int replace
)
13591 const char *fmt
= GET_RTX_FORMAT (GET_CODE (x
));
13592 int len
= GET_RTX_LENGTH (GET_CODE (x
));
13597 unsigned int regno
= REGNO (x
);
13598 unsigned int endregno
= END_REGNO (x
);
13601 for (j
= regno
; j
< endregno
; j
++)
13603 reg_stat_type
*rsp
= ®_stat
[j
];
13604 if (rsp
->last_set_invalid
13605 /* If this is a pseudo-register that was only set once and not
13606 live at the beginning of the function, it is always valid. */
13607 || (! (regno
>= FIRST_PSEUDO_REGISTER
13608 && regno
< reg_n_sets_max
13609 && REG_N_SETS (regno
) == 1
13610 && (!REGNO_REG_SET_P
13611 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
),
13613 && rsp
->last_set_label
> tick
))
13616 *loc
= gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
13623 /* If this is a memory reference, make sure that there were no stores after
13624 it that might have clobbered the value. We don't have alias info, so we
13625 assume any store invalidates it. Moreover, we only have local UIDs, so
13626 we also assume that there were stores in the intervening basic blocks. */
13627 else if (MEM_P (x
) && !MEM_READONLY_P (x
)
13628 && (tick
!= label_tick
|| DF_INSN_LUID (insn
) <= mem_last_set
))
13631 *loc
= gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
13635 for (i
= 0; i
< len
; i
++)
13639 /* Check for identical subexpressions. If x contains
13640 identical subexpression we only have to traverse one of
13642 if (i
== 1 && ARITHMETIC_P (x
))
13644 /* Note that at this point x0 has already been checked
13645 and found valid. */
13646 rtx x0
= XEXP (x
, 0);
13647 rtx x1
= XEXP (x
, 1);
13649 /* If x0 and x1 are identical then x is also valid. */
13653 /* If x1 is identical to a subexpression of x0 then
13654 while checking x0, x1 has already been checked. Thus
13655 it is valid and so as x. */
13656 if (ARITHMETIC_P (x0
)
13657 && (x1
== XEXP (x0
, 0) || x1
== XEXP (x0
, 1)))
13660 /* If x0 is identical to a subexpression of x1 then x is
13661 valid iff the rest of x1 is valid. */
13662 if (ARITHMETIC_P (x1
)
13663 && (x0
== XEXP (x1
, 0) || x0
== XEXP (x1
, 1)))
13665 get_last_value_validate (&XEXP (x1
,
13666 x0
== XEXP (x1
, 0) ? 1 : 0),
13667 insn
, tick
, replace
);
13670 if (get_last_value_validate (&XEXP (x
, i
), insn
, tick
,
13674 else if (fmt
[i
] == 'E')
13675 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
13676 if (get_last_value_validate (&XVECEXP (x
, i
, j
),
13677 insn
, tick
, replace
) == 0)
13681 /* If we haven't found a reason for it to be invalid, it is valid. */
13685 /* Get the last value assigned to X, if known. Some registers
13686 in the value may be replaced with (clobber (const_int 0)) if their value
13687 is known longer known reliably. */
13690 get_last_value (const_rtx x
)
13692 unsigned int regno
;
13694 reg_stat_type
*rsp
;
13696 /* If this is a non-paradoxical SUBREG, get the value of its operand and
13697 then convert it to the desired mode. If this is a paradoxical SUBREG,
13698 we cannot predict what values the "extra" bits might have. */
13699 if (GET_CODE (x
) == SUBREG
13700 && subreg_lowpart_p (x
)
13701 && !paradoxical_subreg_p (x
)
13702 && (value
= get_last_value (SUBREG_REG (x
))) != 0)
13703 return gen_lowpart (GET_MODE (x
), value
);
13709 rsp
= ®_stat
[regno
];
13710 value
= rsp
->last_set_value
;
13712 /* If we don't have a value, or if it isn't for this basic block and
13713 it's either a hard register, set more than once, or it's a live
13714 at the beginning of the function, return 0.
13716 Because if it's not live at the beginning of the function then the reg
13717 is always set before being used (is never used without being set).
13718 And, if it's set only once, and it's always set before use, then all
13719 uses must have the same last value, even if it's not from this basic
13723 || (rsp
->last_set_label
< label_tick_ebb_start
13724 && (regno
< FIRST_PSEUDO_REGISTER
13725 || regno
>= reg_n_sets_max
13726 || REG_N_SETS (regno
) != 1
13728 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
), regno
))))
13731 /* If the value was set in a later insn than the ones we are processing,
13732 we can't use it even if the register was only set once. */
13733 if (rsp
->last_set_label
== label_tick
13734 && DF_INSN_LUID (rsp
->last_set
) >= subst_low_luid
)
13737 /* If fewer bits were set than what we are asked for now, we cannot use
13739 if (maybe_lt (GET_MODE_PRECISION (rsp
->last_set_mode
),
13740 GET_MODE_PRECISION (GET_MODE (x
))))
13743 /* If the value has all its registers valid, return it. */
13744 if (get_last_value_validate (&value
, rsp
->last_set
, rsp
->last_set_label
, 0))
13747 /* Otherwise, make a copy and replace any invalid register with
13748 (clobber (const_int 0)). If that fails for some reason, return 0. */
13750 value
= copy_rtx (value
);
13751 if (get_last_value_validate (&value
, rsp
->last_set
, rsp
->last_set_label
, 1))
13757 /* Define three variables used for communication between the following
13760 static unsigned int reg_dead_regno
, reg_dead_endregno
;
13761 static int reg_dead_flag
;
13764 /* Function called via note_stores from reg_dead_at_p.
13766 If DEST is within [reg_dead_regno, reg_dead_endregno), set
13767 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
13770 reg_dead_at_p_1 (rtx dest
, const_rtx x
, void *data ATTRIBUTE_UNUSED
)
13772 unsigned int regno
, endregno
;
13777 regno
= REGNO (dest
);
13778 endregno
= END_REGNO (dest
);
13779 if (reg_dead_endregno
> regno
&& reg_dead_regno
< endregno
)
13780 reg_dead_flag
= (GET_CODE (x
) == CLOBBER
) ? 1 : -1;
13783 /* Return nonzero if REG is known to be dead at INSN.
13785 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
13786 referencing REG, it is dead. If we hit a SET referencing REG, it is
13787 live. Otherwise, see if it is live or dead at the start of the basic
13788 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
13789 must be assumed to be always live. */
13792 reg_dead_at_p (rtx reg
, rtx_insn
*insn
)
13797 /* Set variables for reg_dead_at_p_1. */
13798 reg_dead_regno
= REGNO (reg
);
13799 reg_dead_endregno
= END_REGNO (reg
);
13800 reg_dead_reg
= reg
;
13804 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
13805 we allow the machine description to decide whether use-and-clobber
13806 patterns are OK. */
13807 if (reg_dead_regno
< FIRST_PSEUDO_REGISTER
)
13809 for (i
= reg_dead_regno
; i
< reg_dead_endregno
; i
++)
13810 if (!fixed_regs
[i
] && TEST_HARD_REG_BIT (newpat_used_regs
, i
))
13814 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
13815 beginning of basic block. */
13816 block
= BLOCK_FOR_INSN (insn
);
13821 if (find_regno_note (insn
, REG_UNUSED
, reg_dead_regno
))
13824 note_stores (insn
, reg_dead_at_p_1
, NULL
);
13826 return reg_dead_flag
== 1 ? 1 : 0;
13828 if (find_regno_note (insn
, REG_DEAD
, reg_dead_regno
))
13832 if (insn
== BB_HEAD (block
))
13835 insn
= PREV_INSN (insn
);
13838 /* Look at live-in sets for the basic block that we were in. */
13839 for (i
= reg_dead_regno
; i
< reg_dead_endregno
; i
++)
13840 if (REGNO_REG_SET_P (df_get_live_in (block
), i
))
13846 /* Note hard registers in X that are used. */
13849 mark_used_regs_combine (rtx x
)
13851 RTX_CODE code
= GET_CODE (x
);
13852 unsigned int regno
;
13863 case ADDR_DIFF_VEC
:
13868 /* If we are clobbering a MEM, mark any hard registers inside the
13869 address as used. */
13870 if (MEM_P (XEXP (x
, 0)))
13871 mark_used_regs_combine (XEXP (XEXP (x
, 0), 0));
13876 /* A hard reg in a wide mode may really be multiple registers.
13877 If so, mark all of them just like the first. */
13878 if (regno
< FIRST_PSEUDO_REGISTER
)
13880 /* None of this applies to the stack, frame or arg pointers. */
13881 if (regno
== STACK_POINTER_REGNUM
13882 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
13883 && regno
== HARD_FRAME_POINTER_REGNUM
)
13884 || (FRAME_POINTER_REGNUM
!= ARG_POINTER_REGNUM
13885 && regno
== ARG_POINTER_REGNUM
&& fixed_regs
[regno
])
13886 || regno
== FRAME_POINTER_REGNUM
)
13889 add_to_hard_reg_set (&newpat_used_regs
, GET_MODE (x
), regno
);
13895 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
13897 rtx testreg
= SET_DEST (x
);
13899 while (GET_CODE (testreg
) == SUBREG
13900 || GET_CODE (testreg
) == ZERO_EXTRACT
13901 || GET_CODE (testreg
) == STRICT_LOW_PART
)
13902 testreg
= XEXP (testreg
, 0);
13904 if (MEM_P (testreg
))
13905 mark_used_regs_combine (XEXP (testreg
, 0));
13907 mark_used_regs_combine (SET_SRC (x
));
13915 /* Recursively scan the operands of this expression. */
13918 const char *fmt
= GET_RTX_FORMAT (code
);
13920 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
13923 mark_used_regs_combine (XEXP (x
, i
));
13924 else if (fmt
[i
] == 'E')
13928 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
13929 mark_used_regs_combine (XVECEXP (x
, i
, j
));
13935 /* Remove register number REGNO from the dead registers list of INSN.
13937 Return the note used to record the death, if there was one. */
13940 remove_death (unsigned int regno
, rtx_insn
*insn
)
13942 rtx note
= find_regno_note (insn
, REG_DEAD
, regno
);
13945 remove_note (insn
, note
);
13950 /* For each register (hardware or pseudo) used within expression X, if its
13951 death is in an instruction with luid between FROM_LUID (inclusive) and
13952 TO_INSN (exclusive), put a REG_DEAD note for that register in the
13953 list headed by PNOTES.
13955 That said, don't move registers killed by maybe_kill_insn.
13957 This is done when X is being merged by combination into TO_INSN. These
13958 notes will then be distributed as needed. */
13961 move_deaths (rtx x
, rtx maybe_kill_insn
, int from_luid
, rtx_insn
*to_insn
,
13966 enum rtx_code code
= GET_CODE (x
);
13970 unsigned int regno
= REGNO (x
);
13971 rtx_insn
*where_dead
= reg_stat
[regno
].last_death
;
13973 /* If we do not know where the register died, it may still die between
13974 FROM_LUID and TO_INSN. If so, find it. This is PR83304. */
13975 if (!where_dead
|| DF_INSN_LUID (where_dead
) >= DF_INSN_LUID (to_insn
))
13977 rtx_insn
*insn
= prev_real_nondebug_insn (to_insn
);
13979 && BLOCK_FOR_INSN (insn
) == BLOCK_FOR_INSN (to_insn
)
13980 && DF_INSN_LUID (insn
) >= from_luid
)
13982 if (dead_or_set_regno_p (insn
, regno
))
13984 if (find_regno_note (insn
, REG_DEAD
, regno
))
13989 insn
= prev_real_nondebug_insn (insn
);
13993 /* Don't move the register if it gets killed in between from and to. */
13994 if (maybe_kill_insn
&& reg_set_p (x
, maybe_kill_insn
)
13995 && ! reg_referenced_p (x
, maybe_kill_insn
))
13999 && BLOCK_FOR_INSN (where_dead
) == BLOCK_FOR_INSN (to_insn
)
14000 && DF_INSN_LUID (where_dead
) >= from_luid
14001 && DF_INSN_LUID (where_dead
) < DF_INSN_LUID (to_insn
))
14003 rtx note
= remove_death (regno
, where_dead
);
14005 /* It is possible for the call above to return 0. This can occur
14006 when last_death points to I2 or I1 that we combined with.
14007 In that case make a new note.
14009 We must also check for the case where X is a hard register
14010 and NOTE is a death note for a range of hard registers
14011 including X. In that case, we must put REG_DEAD notes for
14012 the remaining registers in place of NOTE. */
14014 if (note
!= 0 && regno
< FIRST_PSEUDO_REGISTER
14015 && partial_subreg_p (GET_MODE (x
), GET_MODE (XEXP (note
, 0))))
14017 unsigned int deadregno
= REGNO (XEXP (note
, 0));
14018 unsigned int deadend
= END_REGNO (XEXP (note
, 0));
14019 unsigned int ourend
= END_REGNO (x
);
14022 for (i
= deadregno
; i
< deadend
; i
++)
14023 if (i
< regno
|| i
>= ourend
)
14024 add_reg_note (where_dead
, REG_DEAD
, regno_reg_rtx
[i
]);
14027 /* If we didn't find any note, or if we found a REG_DEAD note that
14028 covers only part of the given reg, and we have a multi-reg hard
14029 register, then to be safe we must check for REG_DEAD notes
14030 for each register other than the first. They could have
14031 their own REG_DEAD notes lying around. */
14032 else if ((note
== 0
14034 && partial_subreg_p (GET_MODE (XEXP (note
, 0)),
14036 && regno
< FIRST_PSEUDO_REGISTER
14037 && REG_NREGS (x
) > 1)
14039 unsigned int ourend
= END_REGNO (x
);
14040 unsigned int i
, offset
;
14044 offset
= hard_regno_nregs (regno
, GET_MODE (XEXP (note
, 0)));
14048 for (i
= regno
+ offset
; i
< ourend
; i
++)
14049 move_deaths (regno_reg_rtx
[i
],
14050 maybe_kill_insn
, from_luid
, to_insn
, &oldnotes
);
14053 if (note
!= 0 && GET_MODE (XEXP (note
, 0)) == GET_MODE (x
))
14055 XEXP (note
, 1) = *pnotes
;
14059 *pnotes
= alloc_reg_note (REG_DEAD
, x
, *pnotes
);
14065 else if (GET_CODE (x
) == SET
)
14067 rtx dest
= SET_DEST (x
);
14069 move_deaths (SET_SRC (x
), maybe_kill_insn
, from_luid
, to_insn
, pnotes
);
14071 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
14072 that accesses one word of a multi-word item, some
14073 piece of everything register in the expression is used by
14074 this insn, so remove any old death. */
14075 /* ??? So why do we test for equality of the sizes? */
14077 if (GET_CODE (dest
) == ZERO_EXTRACT
14078 || GET_CODE (dest
) == STRICT_LOW_PART
14079 || (GET_CODE (dest
) == SUBREG
14080 && !read_modify_subreg_p (dest
)))
14082 move_deaths (dest
, maybe_kill_insn
, from_luid
, to_insn
, pnotes
);
14086 /* If this is some other SUBREG, we know it replaces the entire
14087 value, so use that as the destination. */
14088 if (GET_CODE (dest
) == SUBREG
)
14089 dest
= SUBREG_REG (dest
);
14091 /* If this is a MEM, adjust deaths of anything used in the address.
14092 For a REG (the only other possibility), the entire value is
14093 being replaced so the old value is not used in this insn. */
14096 move_deaths (XEXP (dest
, 0), maybe_kill_insn
, from_luid
,
14101 else if (GET_CODE (x
) == CLOBBER
)
14104 len
= GET_RTX_LENGTH (code
);
14105 fmt
= GET_RTX_FORMAT (code
);
14107 for (i
= 0; i
< len
; i
++)
14112 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
14113 move_deaths (XVECEXP (x
, i
, j
), maybe_kill_insn
, from_luid
,
14116 else if (fmt
[i
] == 'e')
14117 move_deaths (XEXP (x
, i
), maybe_kill_insn
, from_luid
, to_insn
, pnotes
);
14121 /* Return 1 if X is the target of a bit-field assignment in BODY, the
14122 pattern of an insn. X must be a REG. */
14125 reg_bitfield_target_p (rtx x
, rtx body
)
14129 if (GET_CODE (body
) == SET
)
14131 rtx dest
= SET_DEST (body
);
14133 unsigned int regno
, tregno
, endregno
, endtregno
;
14135 if (GET_CODE (dest
) == ZERO_EXTRACT
)
14136 target
= XEXP (dest
, 0);
14137 else if (GET_CODE (dest
) == STRICT_LOW_PART
)
14138 target
= SUBREG_REG (XEXP (dest
, 0));
14142 if (GET_CODE (target
) == SUBREG
)
14143 target
= SUBREG_REG (target
);
14145 if (!REG_P (target
))
14148 tregno
= REGNO (target
), regno
= REGNO (x
);
14149 if (tregno
>= FIRST_PSEUDO_REGISTER
|| regno
>= FIRST_PSEUDO_REGISTER
)
14150 return target
== x
;
14152 endtregno
= end_hard_regno (GET_MODE (target
), tregno
);
14153 endregno
= end_hard_regno (GET_MODE (x
), regno
);
14155 return endregno
> tregno
&& regno
< endtregno
;
14158 else if (GET_CODE (body
) == PARALLEL
)
14159 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
14160 if (reg_bitfield_target_p (x
, XVECEXP (body
, 0, i
)))
14166 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
14167 as appropriate. I3 and I2 are the insns resulting from the combination
14168 insns including FROM (I2 may be zero).
14170 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
14171 not need REG_DEAD notes because they are being substituted for. This
14172 saves searching in the most common cases.
14174 Each note in the list is either ignored or placed on some insns, depending
14175 on the type of note. */
14178 distribute_notes (rtx notes
, rtx_insn
*from_insn
, rtx_insn
*i3
, rtx_insn
*i2
,
14179 rtx elim_i2
, rtx elim_i1
, rtx elim_i0
)
14181 rtx note
, next_note
;
14183 rtx_insn
*tem_insn
;
14185 for (note
= notes
; note
; note
= next_note
)
14187 rtx_insn
*place
= 0, *place2
= 0;
14189 next_note
= XEXP (note
, 1);
14190 switch (REG_NOTE_KIND (note
))
14194 /* Doesn't matter much where we put this, as long as it's somewhere.
14195 It is preferable to keep these notes on branches, which is most
14196 likely to be i3. */
14200 case REG_NON_LOCAL_GOTO
:
14205 gcc_assert (i2
&& JUMP_P (i2
));
14210 case REG_EH_REGION
:
14212 /* The landing pad handling needs to be kept in sync with the
14213 prerequisite checking in try_combine. */
14214 int lp_nr
= INTVAL (XEXP (note
, 0));
14215 /* A REG_EH_REGION note transfering control can only ever come
14218 gcc_assert (from_insn
== i3
);
14219 /* We are making sure there is a single effective REG_EH_REGION
14220 note and it's valid to put it on i3. */
14221 if (!insn_could_throw_p (from_insn
)
14222 && !(lp_nr
== INT_MIN
&& can_nonlocal_goto (from_insn
)))
14223 /* Throw away stray notes on insns that can never throw or
14224 make a nonlocal goto. */
14232 gcc_assert (cfun
->can_throw_non_call_exceptions
);
14233 /* If i3 can still trap preserve the note, otherwise we've
14234 combined things such that we can now prove that the
14235 instructions can't trap. Drop the note in this case. */
14236 if (may_trap_p (i3
))
14243 case REG_ARGS_SIZE
:
14244 /* ??? How to distribute between i3-i1. Assume i3 contains the
14245 entire adjustment. Assert i3 contains at least some adjust. */
14246 if (!noop_move_p (i3
))
14248 poly_int64 old_size
, args_size
= get_args_size (note
);
14249 /* fixup_args_size_notes looks at REG_NORETURN note,
14250 so ensure the note is placed there first. */
14254 for (np
= &next_note
; *np
; np
= &XEXP (*np
, 1))
14255 if (REG_NOTE_KIND (*np
) == REG_NORETURN
)
14259 XEXP (n
, 1) = REG_NOTES (i3
);
14260 REG_NOTES (i3
) = n
;
14264 old_size
= fixup_args_size_notes (PREV_INSN (i3
), i3
, args_size
);
14265 /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
14266 REG_ARGS_SIZE note to all noreturn calls, allow that here. */
14267 gcc_assert (maybe_ne (old_size
, args_size
)
14269 && !ACCUMULATE_OUTGOING_ARGS
14270 && find_reg_note (i3
, REG_NORETURN
, NULL_RTX
)));
14277 case REG_CALL_DECL
:
14278 case REG_UNTYPED_CALL
:
14279 case REG_CALL_NOCF_CHECK
:
14280 /* These notes must remain with the call. It should not be
14281 possible for both I2 and I3 to be a call. */
14286 gcc_assert (i2
&& CALL_P (i2
));
14292 /* Any clobbers for i3 may still exist, and so we must process
14293 REG_UNUSED notes from that insn.
14295 Any clobbers from i2 or i1 can only exist if they were added by
14296 recog_for_combine. In that case, recog_for_combine created the
14297 necessary REG_UNUSED notes. Trying to keep any original
14298 REG_UNUSED notes from these insns can cause incorrect output
14299 if it is for the same register as the original i3 dest.
14300 In that case, we will notice that the register is set in i3,
14301 and then add a REG_UNUSED note for the destination of i3, which
14302 is wrong. However, it is possible to have REG_UNUSED notes from
14303 i2 or i1 for register which were both used and clobbered, so
14304 we keep notes from i2 or i1 if they will turn into REG_DEAD
14307 /* If this register is set or clobbered between FROM_INSN and I3,
14308 we should not create a note for it. */
14309 if (reg_set_between_p (XEXP (note
, 0), from_insn
, i3
))
14312 /* If this register is set or clobbered in I3, put the note there
14313 unless there is one already. */
14314 if (reg_set_p (XEXP (note
, 0), PATTERN (i3
)))
14316 if (from_insn
!= i3
)
14319 if (! (REG_P (XEXP (note
, 0))
14320 ? find_regno_note (i3
, REG_UNUSED
, REGNO (XEXP (note
, 0)))
14321 : find_reg_note (i3
, REG_UNUSED
, XEXP (note
, 0))))
14324 /* Otherwise, if this register is used by I3, then this register
14325 now dies here, so we must put a REG_DEAD note here unless there
14327 else if (reg_referenced_p (XEXP (note
, 0), PATTERN (i3
))
14328 && ! (REG_P (XEXP (note
, 0))
14329 ? find_regno_note (i3
, REG_DEAD
,
14330 REGNO (XEXP (note
, 0)))
14331 : find_reg_note (i3
, REG_DEAD
, XEXP (note
, 0))))
14333 PUT_REG_NOTE_KIND (note
, REG_DEAD
);
14337 /* A SET or CLOBBER of the REG_UNUSED reg has been removed,
14338 but we can't tell which at this point. We must reset any
14339 expectations we had about the value that was previously
14340 stored in the reg. ??? Ideally, we'd adjust REG_N_SETS
14341 and, if appropriate, restore its previous value, but we
14342 don't have enough information for that at this point. */
14345 record_value_for_reg (XEXP (note
, 0), NULL
, NULL_RTX
);
14347 /* Otherwise, if this register is now referenced in i2
14348 then the register used to be modified in one of the
14349 original insns. If it was i3 (say, in an unused
14350 parallel), it's now completely gone, so the note can
14351 be discarded. But if it was modified in i2, i1 or i0
14352 and we still reference it in i2, then we're
14353 referencing the previous value, and since the
14354 register was modified and REG_UNUSED, we know that
14355 the previous value is now dead. So, if we only
14356 reference the register in i2, we change the note to
14357 REG_DEAD, to reflect the previous value. However, if
14358 we're also setting or clobbering the register as
14359 scratch, we know (because the register was not
14360 referenced in i3) that it's unused, just as it was
14361 unused before, and we place the note in i2. */
14362 if (from_insn
!= i3
&& i2
&& INSN_P (i2
)
14363 && reg_referenced_p (XEXP (note
, 0), PATTERN (i2
)))
14365 if (!reg_set_p (XEXP (note
, 0), PATTERN (i2
)))
14366 PUT_REG_NOTE_KIND (note
, REG_DEAD
);
14367 if (! (REG_P (XEXP (note
, 0))
14368 ? find_regno_note (i2
, REG_NOTE_KIND (note
),
14369 REGNO (XEXP (note
, 0)))
14370 : find_reg_note (i2
, REG_NOTE_KIND (note
),
14381 /* These notes say something about results of an insn. We can
14382 only support them if they used to be on I3 in which case they
14383 remain on I3. Otherwise they are ignored.
14385 If the note refers to an expression that is not a constant, we
14386 must also ignore the note since we cannot tell whether the
14387 equivalence is still true. It might be possible to do
14388 slightly better than this (we only have a problem if I2DEST
14389 or I1DEST is present in the expression), but it doesn't
14390 seem worth the trouble. */
14392 if (from_insn
== i3
14393 && (XEXP (note
, 0) == 0 || CONSTANT_P (XEXP (note
, 0))))
14398 /* These notes say something about how a register is used. They must
14399 be present on any use of the register in I2 or I3. */
14400 if (reg_mentioned_p (XEXP (note
, 0), PATTERN (i3
)))
14403 if (i2
&& reg_mentioned_p (XEXP (note
, 0), PATTERN (i2
)))
14412 case REG_LABEL_TARGET
:
14413 case REG_LABEL_OPERAND
:
14414 /* This can show up in several ways -- either directly in the
14415 pattern, or hidden off in the constant pool with (or without?)
14416 a REG_EQUAL note. */
14417 /* ??? Ignore the without-reg_equal-note problem for now. */
14418 if (reg_mentioned_p (XEXP (note
, 0), PATTERN (i3
))
14419 || ((tem_note
= find_reg_note (i3
, REG_EQUAL
, NULL_RTX
))
14420 && GET_CODE (XEXP (tem_note
, 0)) == LABEL_REF
14421 && label_ref_label (XEXP (tem_note
, 0)) == XEXP (note
, 0)))
14425 && (reg_mentioned_p (XEXP (note
, 0), PATTERN (i2
))
14426 || ((tem_note
= find_reg_note (i2
, REG_EQUAL
, NULL_RTX
))
14427 && GET_CODE (XEXP (tem_note
, 0)) == LABEL_REF
14428 && label_ref_label (XEXP (tem_note
, 0)) == XEXP (note
, 0))))
14436 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
14437 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
14439 if (place
&& JUMP_P (place
)
14440 && REG_NOTE_KIND (note
) == REG_LABEL_TARGET
14441 && (JUMP_LABEL (place
) == NULL
14442 || JUMP_LABEL (place
) == XEXP (note
, 0)))
14444 rtx label
= JUMP_LABEL (place
);
14447 JUMP_LABEL (place
) = XEXP (note
, 0);
14448 else if (LABEL_P (label
))
14449 LABEL_NUSES (label
)--;
14452 if (place2
&& JUMP_P (place2
)
14453 && REG_NOTE_KIND (note
) == REG_LABEL_TARGET
14454 && (JUMP_LABEL (place2
) == NULL
14455 || JUMP_LABEL (place2
) == XEXP (note
, 0)))
14457 rtx label
= JUMP_LABEL (place2
);
14460 JUMP_LABEL (place2
) = XEXP (note
, 0);
14461 else if (LABEL_P (label
))
14462 LABEL_NUSES (label
)--;
14468 /* This note says something about the value of a register prior
14469 to the execution of an insn. It is too much trouble to see
14470 if the note is still correct in all situations. It is better
14471 to simply delete it. */
14475 /* If we replaced the right hand side of FROM_INSN with a
14476 REG_EQUAL note, the original use of the dying register
14477 will not have been combined into I3 and I2. In such cases,
14478 FROM_INSN is guaranteed to be the first of the combined
14479 instructions, so we simply need to search back before
14480 FROM_INSN for the previous use or set of this register,
14481 then alter the notes there appropriately.
14483 If the register is used as an input in I3, it dies there.
14484 Similarly for I2, if it is nonzero and adjacent to I3.
14486 If the register is not used as an input in either I3 or I2
14487 and it is not one of the registers we were supposed to eliminate,
14488 there are two possibilities. We might have a non-adjacent I2
14489 or we might have somehow eliminated an additional register
14490 from a computation. For example, we might have had A & B where
14491 we discover that B will always be zero. In this case we will
14492 eliminate the reference to A.
14494 In both cases, we must search to see if we can find a previous
14495 use of A and put the death note there. */
14498 && from_insn
== i2mod
14499 && !reg_overlap_mentioned_p (XEXP (note
, 0), i2mod_new_rhs
))
14500 tem_insn
= from_insn
;
14504 && CALL_P (from_insn
)
14505 && find_reg_fusage (from_insn
, USE
, XEXP (note
, 0)))
14507 else if (i2
&& reg_set_p (XEXP (note
, 0), PATTERN (i2
)))
14509 /* If the new I2 sets the same register that is marked
14510 dead in the note, we do not in general know where to
14511 put the note. One important case we _can_ handle is
14512 when the note comes from I3. */
14513 if (from_insn
== i3
)
14518 else if (reg_referenced_p (XEXP (note
, 0), PATTERN (i3
)))
14520 else if (i2
!= 0 && next_nonnote_nondebug_insn (i2
) == i3
14521 && reg_referenced_p (XEXP (note
, 0), PATTERN (i2
)))
14523 else if ((rtx_equal_p (XEXP (note
, 0), elim_i2
)
14525 && reg_overlap_mentioned_p (XEXP (note
, 0),
14527 || rtx_equal_p (XEXP (note
, 0), elim_i1
)
14528 || rtx_equal_p (XEXP (note
, 0), elim_i0
))
14535 basic_block bb
= this_basic_block
;
14537 for (tem_insn
= PREV_INSN (tem_insn
); place
== 0; tem_insn
= PREV_INSN (tem_insn
))
14539 if (!NONDEBUG_INSN_P (tem_insn
))
14541 if (tem_insn
== BB_HEAD (bb
))
14546 /* If the register is being set at TEM_INSN, see if that is all
14547 TEM_INSN is doing. If so, delete TEM_INSN. Otherwise, make this
14548 into a REG_UNUSED note instead. Don't delete sets to
14549 global register vars. */
14550 if ((REGNO (XEXP (note
, 0)) >= FIRST_PSEUDO_REGISTER
14551 || !global_regs
[REGNO (XEXP (note
, 0))])
14552 && reg_set_p (XEXP (note
, 0), PATTERN (tem_insn
)))
14554 rtx set
= single_set (tem_insn
);
14555 rtx inner_dest
= 0;
14558 for (inner_dest
= SET_DEST (set
);
14559 (GET_CODE (inner_dest
) == STRICT_LOW_PART
14560 || GET_CODE (inner_dest
) == SUBREG
14561 || GET_CODE (inner_dest
) == ZERO_EXTRACT
);
14562 inner_dest
= XEXP (inner_dest
, 0))
14565 /* Verify that it was the set, and not a clobber that
14566 modified the register.
14568 If we cannot delete the setter due to side
14569 effects, mark the user with an UNUSED note instead
14572 if (set
!= 0 && ! side_effects_p (SET_SRC (set
))
14573 && rtx_equal_p (XEXP (note
, 0), inner_dest
))
14575 /* Move the notes and links of TEM_INSN elsewhere.
14576 This might delete other dead insns recursively.
14577 First set the pattern to something that won't use
14579 rtx old_notes
= REG_NOTES (tem_insn
);
14581 PATTERN (tem_insn
) = pc_rtx
;
14582 REG_NOTES (tem_insn
) = NULL
;
14584 distribute_notes (old_notes
, tem_insn
, tem_insn
, NULL
,
14585 NULL_RTX
, NULL_RTX
, NULL_RTX
);
14586 distribute_links (LOG_LINKS (tem_insn
));
14588 unsigned int regno
= REGNO (XEXP (note
, 0));
14589 reg_stat_type
*rsp
= ®_stat
[regno
];
14590 if (rsp
->last_set
== tem_insn
)
14591 record_value_for_reg (XEXP (note
, 0), NULL
, NULL_RTX
);
14593 SET_INSN_DELETED (tem_insn
);
14594 if (tem_insn
== i2
)
14599 PUT_REG_NOTE_KIND (note
, REG_UNUSED
);
14601 /* If there isn't already a REG_UNUSED note, put one
14602 here. Do not place a REG_DEAD note, even if
14603 the register is also used here; that would not
14604 match the algorithm used in lifetime analysis
14605 and can cause the consistency check in the
14606 scheduler to fail. */
14607 if (! find_regno_note (tem_insn
, REG_UNUSED
,
14608 REGNO (XEXP (note
, 0))))
14613 else if (reg_referenced_p (XEXP (note
, 0), PATTERN (tem_insn
))
14614 || (CALL_P (tem_insn
)
14615 && find_reg_fusage (tem_insn
, USE
, XEXP (note
, 0))))
14619 /* If we are doing a 3->2 combination, and we have a
14620 register which formerly died in i3 and was not used
14621 by i2, which now no longer dies in i3 and is used in
14622 i2 but does not die in i2, and place is between i2
14623 and i3, then we may need to move a link from place to
14625 if (i2
&& DF_INSN_LUID (place
) > DF_INSN_LUID (i2
)
14627 && DF_INSN_LUID (from_insn
) > DF_INSN_LUID (i2
)
14628 && reg_referenced_p (XEXP (note
, 0), PATTERN (i2
)))
14630 struct insn_link
*links
= LOG_LINKS (place
);
14631 LOG_LINKS (place
) = NULL
;
14632 distribute_links (links
);
14637 if (tem_insn
== BB_HEAD (bb
))
14643 /* If the register is set or already dead at PLACE, we needn't do
14644 anything with this note if it is still a REG_DEAD note.
14645 We check here if it is set at all, not if is it totally replaced,
14646 which is what `dead_or_set_p' checks, so also check for it being
14649 if (place
&& REG_NOTE_KIND (note
) == REG_DEAD
)
14651 unsigned int regno
= REGNO (XEXP (note
, 0));
14652 reg_stat_type
*rsp
= ®_stat
[regno
];
14654 if (dead_or_set_p (place
, XEXP (note
, 0))
14655 || reg_bitfield_target_p (XEXP (note
, 0), PATTERN (place
)))
14657 /* Unless the register previously died in PLACE, clear
14658 last_death. [I no longer understand why this is
14660 if (rsp
->last_death
!= place
)
14661 rsp
->last_death
= 0;
14665 rsp
->last_death
= place
;
14667 /* If this is a death note for a hard reg that is occupying
14668 multiple registers, ensure that we are still using all
14669 parts of the object. If we find a piece of the object
14670 that is unused, we must arrange for an appropriate REG_DEAD
14671 note to be added for it. However, we can't just emit a USE
14672 and tag the note to it, since the register might actually
14673 be dead; so we recourse, and the recursive call then finds
14674 the previous insn that used this register. */
14676 if (place
&& REG_NREGS (XEXP (note
, 0)) > 1)
14678 unsigned int endregno
= END_REGNO (XEXP (note
, 0));
14679 bool all_used
= true;
14682 for (i
= regno
; i
< endregno
; i
++)
14683 if ((! refers_to_regno_p (i
, PATTERN (place
))
14684 && ! find_regno_fusage (place
, USE
, i
))
14685 || dead_or_set_regno_p (place
, i
))
14693 /* Put only REG_DEAD notes for pieces that are
14694 not already dead or set. */
14696 for (i
= regno
; i
< endregno
;
14697 i
+= hard_regno_nregs (i
, reg_raw_mode
[i
]))
14699 rtx piece
= regno_reg_rtx
[i
];
14700 basic_block bb
= this_basic_block
;
14702 if (! dead_or_set_p (place
, piece
)
14703 && ! reg_bitfield_target_p (piece
,
14706 rtx new_note
= alloc_reg_note (REG_DEAD
, piece
,
14709 distribute_notes (new_note
, place
, place
,
14710 NULL
, NULL_RTX
, NULL_RTX
,
14713 else if (! refers_to_regno_p (i
, PATTERN (place
))
14714 && ! find_regno_fusage (place
, USE
, i
))
14715 for (tem_insn
= PREV_INSN (place
); ;
14716 tem_insn
= PREV_INSN (tem_insn
))
14718 if (!NONDEBUG_INSN_P (tem_insn
))
14720 if (tem_insn
== BB_HEAD (bb
))
14724 if (dead_or_set_p (tem_insn
, piece
)
14725 || reg_bitfield_target_p (piece
,
14726 PATTERN (tem_insn
)))
14728 add_reg_note (tem_insn
, REG_UNUSED
, piece
);
14741 /* Any other notes should not be present at this point in the
14743 gcc_unreachable ();
14748 XEXP (note
, 1) = REG_NOTES (place
);
14749 REG_NOTES (place
) = note
;
14751 /* Set added_notes_insn to the earliest insn we added a note to. */
14752 if (added_notes_insn
== 0
14753 || DF_INSN_LUID (added_notes_insn
) > DF_INSN_LUID (place
))
14754 added_notes_insn
= place
;
14759 add_shallow_copy_of_reg_note (place2
, note
);
14761 /* Set added_notes_insn to the earliest insn we added a note to. */
14762 if (added_notes_insn
== 0
14763 || DF_INSN_LUID (added_notes_insn
) > DF_INSN_LUID (place2
))
14764 added_notes_insn
= place2
;
14769 /* Similarly to above, distribute the LOG_LINKS that used to be present on
14770 I3, I2, and I1 to new locations. This is also called to add a link
14771 pointing at I3 when I3's destination is changed. */
14774 distribute_links (struct insn_link
*links
)
14776 struct insn_link
*link
, *next_link
;
14778 for (link
= links
; link
; link
= next_link
)
14780 rtx_insn
*place
= 0;
14784 next_link
= link
->next
;
14786 /* If the insn that this link points to is a NOTE, ignore it. */
14787 if (NOTE_P (link
->insn
))
14791 rtx pat
= PATTERN (link
->insn
);
14792 if (GET_CODE (pat
) == SET
)
14794 else if (GET_CODE (pat
) == PARALLEL
)
14797 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
14799 set
= XVECEXP (pat
, 0, i
);
14800 if (GET_CODE (set
) != SET
)
14803 reg
= SET_DEST (set
);
14804 while (GET_CODE (reg
) == ZERO_EXTRACT
14805 || GET_CODE (reg
) == STRICT_LOW_PART
14806 || GET_CODE (reg
) == SUBREG
)
14807 reg
= XEXP (reg
, 0);
14812 if (REGNO (reg
) == link
->regno
)
14815 if (i
== XVECLEN (pat
, 0))
14821 reg
= SET_DEST (set
);
14823 while (GET_CODE (reg
) == ZERO_EXTRACT
14824 || GET_CODE (reg
) == STRICT_LOW_PART
14825 || GET_CODE (reg
) == SUBREG
)
14826 reg
= XEXP (reg
, 0);
14831 /* A LOG_LINK is defined as being placed on the first insn that uses
14832 a register and points to the insn that sets the register. Start
14833 searching at the next insn after the target of the link and stop
14834 when we reach a set of the register or the end of the basic block.
14836 Note that this correctly handles the link that used to point from
14837 I3 to I2. Also note that not much searching is typically done here
14838 since most links don't point very far away. */
14840 for (insn
= NEXT_INSN (link
->insn
);
14841 (insn
&& (this_basic_block
->next_bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
)
14842 || BB_HEAD (this_basic_block
->next_bb
) != insn
));
14843 insn
= NEXT_INSN (insn
))
14844 if (DEBUG_INSN_P (insn
))
14846 else if (INSN_P (insn
) && reg_overlap_mentioned_p (reg
, PATTERN (insn
)))
14848 if (reg_referenced_p (reg
, PATTERN (insn
)))
14852 else if (CALL_P (insn
)
14853 && find_reg_fusage (insn
, USE
, reg
))
14858 else if (INSN_P (insn
) && reg_set_p (reg
, insn
))
14861 /* If we found a place to put the link, place it there unless there
14862 is already a link to the same insn as LINK at that point. */
14866 struct insn_link
*link2
;
14868 FOR_EACH_LOG_LINK (link2
, place
)
14869 if (link2
->insn
== link
->insn
&& link2
->regno
== link
->regno
)
14874 link
->next
= LOG_LINKS (place
);
14875 LOG_LINKS (place
) = link
;
14877 /* Set added_links_insn to the earliest insn we added a
14879 if (added_links_insn
== 0
14880 || DF_INSN_LUID (added_links_insn
) > DF_INSN_LUID (place
))
14881 added_links_insn
= place
;
14887 /* Check for any register or memory mentioned in EQUIV that is not
14888 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
14889 of EXPR where some registers may have been replaced by constants. */
14892 unmentioned_reg_p (rtx equiv
, rtx expr
)
14894 subrtx_iterator::array_type array
;
14895 FOR_EACH_SUBRTX (iter
, array
, equiv
, NONCONST
)
14897 const_rtx x
= *iter
;
14898 if ((REG_P (x
) || MEM_P (x
))
14899 && !reg_mentioned_p (x
, expr
))
14905 DEBUG_FUNCTION
void
14906 dump_combine_stats (FILE *file
)
14910 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
14911 combine_attempts
, combine_merges
, combine_extras
, combine_successes
);
14915 dump_combine_total_stats (FILE *file
)
14919 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
14920 total_attempts
, total_merges
, total_extras
, total_successes
);
14923 /* Make pseudo-to-pseudo copies after every hard-reg-to-pseudo-copy, because
14924 the reg-to-reg copy can usefully combine with later instructions, but we
14925 do not want to combine the hard reg into later instructions, for that
14926 restricts register allocation. */
14928 make_more_copies (void)
14932 FOR_EACH_BB_FN (bb
, cfun
)
14936 FOR_BB_INSNS (bb
, insn
)
14938 if (!NONDEBUG_INSN_P (insn
))
14941 rtx set
= single_set (insn
);
14945 rtx dest
= SET_DEST (set
);
14946 if (!(REG_P (dest
) && !HARD_REGISTER_P (dest
)))
14949 rtx src
= SET_SRC (set
);
14950 if (!(REG_P (src
) && HARD_REGISTER_P (src
)))
14952 if (TEST_HARD_REG_BIT (fixed_reg_set
, REGNO (src
)))
14955 rtx new_reg
= gen_reg_rtx (GET_MODE (dest
));
14956 rtx_insn
*new_insn
= gen_move_insn (new_reg
, src
);
14957 SET_SRC (set
) = new_reg
;
14958 emit_insn_before (new_insn
, insn
);
14959 df_insn_rescan (insn
);
14964 /* Try combining insns through substitution. */
14965 static unsigned int
14966 rest_of_handle_combine (void)
14968 make_more_copies ();
14970 df_set_flags (DF_LR_RUN_DCE
+ DF_DEFER_INSN_RESCAN
);
14971 df_note_add_problem ();
14974 regstat_init_n_sets_and_refs ();
14975 reg_n_sets_max
= max_reg_num ();
14977 int rebuild_jump_labels_after_combine
14978 = combine_instructions (get_insns (), max_reg_num ());
14980 /* Combining insns may have turned an indirect jump into a
14981 direct jump. Rebuild the JUMP_LABEL fields of jumping
14983 if (rebuild_jump_labels_after_combine
)
14985 if (dom_info_available_p (CDI_DOMINATORS
))
14986 free_dominance_info (CDI_DOMINATORS
);
14987 timevar_push (TV_JUMP
);
14988 rebuild_jump_labels (get_insns ());
14990 timevar_pop (TV_JUMP
);
14993 regstat_free_n_sets_and_refs ();
14999 const pass_data pass_data_combine
=
15001 RTL_PASS
, /* type */
15002 "combine", /* name */
15003 OPTGROUP_NONE
, /* optinfo_flags */
15004 TV_COMBINE
, /* tv_id */
15005 PROP_cfglayout
, /* properties_required */
15006 0, /* properties_provided */
15007 0, /* properties_destroyed */
15008 0, /* todo_flags_start */
15009 TODO_df_finish
, /* todo_flags_finish */
15012 class pass_combine
: public rtl_opt_pass
15015 pass_combine (gcc::context
*ctxt
)
15016 : rtl_opt_pass (pass_data_combine
, ctxt
)
15019 /* opt_pass methods: */
15020 bool gate (function
*) final override
{ return (optimize
> 0); }
15021 unsigned int execute (function
*) final override
15023 return rest_of_handle_combine ();
15026 }; // class pass_combine
15028 } // anon namespace
15031 make_pass_combine (gcc::context
*ctxt
)
15033 return new pass_combine (ctxt
);