ChangeLog:
[official-gcc.git] / gcc / fold-const.c
blob571a7e84612a0126cf248b871fbe86b8c355c727
1 /* Fold a constant sub-tree into a single node for C-compiler
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 /*@@ This file should be rewritten to use an arbitrary precision
23 @@ representation for "struct tree_int_cst" and "struct tree_real_cst".
24 @@ Perhaps the routines could also be used for bc/dc, and made a lib.
25 @@ The routines that translate from the ap rep should
26 @@ warn if precision et. al. is lost.
27 @@ This would also make life easier when this technology is used
28 @@ for cross-compilers. */
30 /* The entry points in this file are fold, size_int_wide, size_binop
31 and force_fit_type.
33 fold takes a tree as argument and returns a simplified tree.
35 size_binop takes a tree code for an arithmetic operation
36 and two operands that are trees, and produces a tree for the
37 result, assuming the type comes from `sizetype'.
39 size_int takes an integer value, and creates a tree constant
40 with type from `sizetype'.
42 force_fit_type takes a constant, an overflowable flag and prior
43 overflow indicators. It forces the value to fit the type and sets
44 TREE_OVERFLOW and TREE_CONSTANT_OVERFLOW as appropriate. */
46 #include "config.h"
47 #include "system.h"
48 #include "coretypes.h"
49 #include "tm.h"
50 #include "flags.h"
51 #include "tree.h"
52 #include "real.h"
53 #include "rtl.h"
54 #include "expr.h"
55 #include "tm_p.h"
56 #include "toplev.h"
57 #include "ggc.h"
58 #include "hashtab.h"
59 #include "langhooks.h"
60 #include "md5.h"
62 /* Non-zero if we are folding constants inside an initializer; zero
63 otherwise. */
64 int folding_initializer = 0;
66 /* The following constants represent a bit based encoding of GCC's
67 comparison operators. This encoding simplifies transformations
68 on relational comparison operators, such as AND and OR. */
69 enum comparison_code {
70 COMPCODE_FALSE = 0,
71 COMPCODE_LT = 1,
72 COMPCODE_EQ = 2,
73 COMPCODE_LE = 3,
74 COMPCODE_GT = 4,
75 COMPCODE_LTGT = 5,
76 COMPCODE_GE = 6,
77 COMPCODE_ORD = 7,
78 COMPCODE_UNORD = 8,
79 COMPCODE_UNLT = 9,
80 COMPCODE_UNEQ = 10,
81 COMPCODE_UNLE = 11,
82 COMPCODE_UNGT = 12,
83 COMPCODE_NE = 13,
84 COMPCODE_UNGE = 14,
85 COMPCODE_TRUE = 15
88 static void encode (HOST_WIDE_INT *, unsigned HOST_WIDE_INT, HOST_WIDE_INT);
89 static void decode (HOST_WIDE_INT *, unsigned HOST_WIDE_INT *, HOST_WIDE_INT *);
90 static bool negate_mathfn_p (enum built_in_function);
91 static bool negate_expr_p (tree);
92 static tree negate_expr (tree);
93 static tree split_tree (tree, enum tree_code, tree *, tree *, tree *, int);
94 static tree associate_trees (tree, tree, enum tree_code, tree);
95 static tree const_binop (enum tree_code, tree, tree, int);
96 static enum comparison_code comparison_to_compcode (enum tree_code);
97 static enum tree_code compcode_to_comparison (enum comparison_code);
98 static tree combine_comparisons (enum tree_code, enum tree_code,
99 enum tree_code, tree, tree, tree);
100 static int truth_value_p (enum tree_code);
101 static int operand_equal_for_comparison_p (tree, tree, tree);
102 static int twoval_comparison_p (tree, tree *, tree *, int *);
103 static tree eval_subst (tree, tree, tree, tree, tree);
104 static tree pedantic_omit_one_operand (tree, tree, tree);
105 static tree distribute_bit_expr (enum tree_code, tree, tree, tree);
106 static tree make_bit_field_ref (tree, tree, int, int, int);
107 static tree optimize_bit_field_compare (enum tree_code, tree, tree, tree);
108 static tree decode_field_reference (tree, HOST_WIDE_INT *, HOST_WIDE_INT *,
109 enum machine_mode *, int *, int *,
110 tree *, tree *);
111 static int all_ones_mask_p (tree, int);
112 static tree sign_bit_p (tree, tree);
113 static int simple_operand_p (tree);
114 static tree range_binop (enum tree_code, tree, tree, int, tree, int);
115 static tree range_predecessor (tree);
116 static tree range_successor (tree);
117 static tree make_range (tree, int *, tree *, tree *);
118 static tree build_range_check (tree, tree, int, tree, tree);
119 static int merge_ranges (int *, tree *, tree *, int, tree, tree, int, tree,
120 tree);
121 static tree fold_range_test (enum tree_code, tree, tree, tree);
122 static tree fold_cond_expr_with_comparison (tree, tree, tree, tree);
123 static tree unextend (tree, int, int, tree);
124 static tree fold_truthop (enum tree_code, tree, tree, tree);
125 static tree optimize_minmax_comparison (enum tree_code, tree, tree, tree);
126 static tree extract_muldiv (tree, tree, enum tree_code, tree);
127 static tree extract_muldiv_1 (tree, tree, enum tree_code, tree);
128 static int multiple_of_p (tree, tree, tree);
129 static tree fold_binary_op_with_conditional_arg (enum tree_code, tree,
130 tree, tree,
131 tree, tree, int);
132 static bool fold_real_zero_addition_p (tree, tree, int);
133 static tree fold_mathfn_compare (enum built_in_function, enum tree_code,
134 tree, tree, tree);
135 static tree fold_inf_compare (enum tree_code, tree, tree, tree);
136 static tree fold_div_compare (enum tree_code, tree, tree, tree);
137 static bool reorder_operands_p (tree, tree);
138 static tree fold_negate_const (tree, tree);
139 static tree fold_not_const (tree, tree);
140 static tree fold_relational_const (enum tree_code, tree, tree, tree);
141 static int native_encode_expr (tree, unsigned char *, int);
142 static tree native_interpret_expr (tree, unsigned char *, int);
145 /* We know that A1 + B1 = SUM1, using 2's complement arithmetic and ignoring
146 overflow. Suppose A, B and SUM have the same respective signs as A1, B1,
147 and SUM1. Then this yields nonzero if overflow occurred during the
148 addition.
150 Overflow occurs if A and B have the same sign, but A and SUM differ in
151 sign. Use `^' to test whether signs differ, and `< 0' to isolate the
152 sign. */
153 #define OVERFLOW_SUM_SIGN(a, b, sum) ((~((a) ^ (b)) & ((a) ^ (sum))) < 0)
155 /* To do constant folding on INTEGER_CST nodes requires two-word arithmetic.
156 We do that by representing the two-word integer in 4 words, with only
157 HOST_BITS_PER_WIDE_INT / 2 bits stored in each word, as a positive
158 number. The value of the word is LOWPART + HIGHPART * BASE. */
160 #define LOWPART(x) \
161 ((x) & (((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)) - 1))
162 #define HIGHPART(x) \
163 ((unsigned HOST_WIDE_INT) (x) >> HOST_BITS_PER_WIDE_INT / 2)
164 #define BASE ((unsigned HOST_WIDE_INT) 1 << HOST_BITS_PER_WIDE_INT / 2)
166 /* Unpack a two-word integer into 4 words.
167 LOW and HI are the integer, as two `HOST_WIDE_INT' pieces.
168 WORDS points to the array of HOST_WIDE_INTs. */
170 static void
171 encode (HOST_WIDE_INT *words, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
173 words[0] = LOWPART (low);
174 words[1] = HIGHPART (low);
175 words[2] = LOWPART (hi);
176 words[3] = HIGHPART (hi);
179 /* Pack an array of 4 words into a two-word integer.
180 WORDS points to the array of words.
181 The integer is stored into *LOW and *HI as two `HOST_WIDE_INT' pieces. */
183 static void
184 decode (HOST_WIDE_INT *words, unsigned HOST_WIDE_INT *low,
185 HOST_WIDE_INT *hi)
187 *low = words[0] + words[1] * BASE;
188 *hi = words[2] + words[3] * BASE;
191 /* T is an INT_CST node. OVERFLOWABLE indicates if we are interested
192 in overflow of the value, when >0 we are only interested in signed
193 overflow, for <0 we are interested in any overflow. OVERFLOWED
194 indicates whether overflow has already occurred. CONST_OVERFLOWED
195 indicates whether constant overflow has already occurred. We force
196 T's value to be within range of T's type (by setting to 0 or 1 all
197 the bits outside the type's range). We set TREE_OVERFLOWED if,
198 OVERFLOWED is nonzero,
199 or OVERFLOWABLE is >0 and signed overflow occurs
200 or OVERFLOWABLE is <0 and any overflow occurs
201 We set TREE_CONSTANT_OVERFLOWED if,
202 CONST_OVERFLOWED is nonzero
203 or we set TREE_OVERFLOWED.
204 We return either the original T, or a copy. */
206 tree
207 force_fit_type (tree t, int overflowable,
208 bool overflowed, bool overflowed_const)
210 unsigned HOST_WIDE_INT low;
211 HOST_WIDE_INT high;
212 unsigned int prec;
213 int sign_extended_type;
215 gcc_assert (TREE_CODE (t) == INTEGER_CST);
217 low = TREE_INT_CST_LOW (t);
218 high = TREE_INT_CST_HIGH (t);
220 if (POINTER_TYPE_P (TREE_TYPE (t))
221 || TREE_CODE (TREE_TYPE (t)) == OFFSET_TYPE)
222 prec = POINTER_SIZE;
223 else
224 prec = TYPE_PRECISION (TREE_TYPE (t));
225 /* Size types *are* sign extended. */
226 sign_extended_type = (!TYPE_UNSIGNED (TREE_TYPE (t))
227 || (TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE
228 && TYPE_IS_SIZETYPE (TREE_TYPE (t))));
230 /* First clear all bits that are beyond the type's precision. */
232 if (prec >= 2 * HOST_BITS_PER_WIDE_INT)
234 else if (prec > HOST_BITS_PER_WIDE_INT)
235 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
236 else
238 high = 0;
239 if (prec < HOST_BITS_PER_WIDE_INT)
240 low &= ~((HOST_WIDE_INT) (-1) << prec);
243 if (!sign_extended_type)
244 /* No sign extension */;
245 else if (prec >= 2 * HOST_BITS_PER_WIDE_INT)
246 /* Correct width already. */;
247 else if (prec > HOST_BITS_PER_WIDE_INT)
249 /* Sign extend top half? */
250 if (high & ((unsigned HOST_WIDE_INT)1
251 << (prec - HOST_BITS_PER_WIDE_INT - 1)))
252 high |= (HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT);
254 else if (prec == HOST_BITS_PER_WIDE_INT)
256 if ((HOST_WIDE_INT)low < 0)
257 high = -1;
259 else
261 /* Sign extend bottom half? */
262 if (low & ((unsigned HOST_WIDE_INT)1 << (prec - 1)))
264 high = -1;
265 low |= (HOST_WIDE_INT)(-1) << prec;
269 /* If the value changed, return a new node. */
270 if (overflowed || overflowed_const
271 || low != TREE_INT_CST_LOW (t) || high != TREE_INT_CST_HIGH (t))
273 t = build_int_cst_wide (TREE_TYPE (t), low, high);
275 if (overflowed
276 || overflowable < 0
277 || (overflowable > 0 && sign_extended_type))
279 t = copy_node (t);
280 TREE_OVERFLOW (t) = 1;
281 TREE_CONSTANT_OVERFLOW (t) = 1;
283 else if (overflowed_const)
285 t = copy_node (t);
286 TREE_CONSTANT_OVERFLOW (t) = 1;
290 return t;
293 /* Add two doubleword integers with doubleword result.
294 Return nonzero if the operation overflows according to UNSIGNED_P.
295 Each argument is given as two `HOST_WIDE_INT' pieces.
296 One argument is L1 and H1; the other, L2 and H2.
297 The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
300 add_double_with_sign (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
301 unsigned HOST_WIDE_INT l2, HOST_WIDE_INT h2,
302 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv,
303 bool unsigned_p)
305 unsigned HOST_WIDE_INT l;
306 HOST_WIDE_INT h;
308 l = l1 + l2;
309 h = h1 + h2 + (l < l1);
311 *lv = l;
312 *hv = h;
314 if (unsigned_p)
315 return (unsigned HOST_WIDE_INT) h < (unsigned HOST_WIDE_INT) h1;
316 else
317 return OVERFLOW_SUM_SIGN (h1, h2, h);
320 /* Negate a doubleword integer with doubleword result.
321 Return nonzero if the operation overflows, assuming it's signed.
322 The argument is given as two `HOST_WIDE_INT' pieces in L1 and H1.
323 The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
326 neg_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
327 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
329 if (l1 == 0)
331 *lv = 0;
332 *hv = - h1;
333 return (*hv & h1) < 0;
335 else
337 *lv = -l1;
338 *hv = ~h1;
339 return 0;
343 /* Multiply two doubleword integers with doubleword result.
344 Return nonzero if the operation overflows according to UNSIGNED_P.
345 Each argument is given as two `HOST_WIDE_INT' pieces.
346 One argument is L1 and H1; the other, L2 and H2.
347 The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
350 mul_double_with_sign (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
351 unsigned HOST_WIDE_INT l2, HOST_WIDE_INT h2,
352 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv,
353 bool unsigned_p)
355 HOST_WIDE_INT arg1[4];
356 HOST_WIDE_INT arg2[4];
357 HOST_WIDE_INT prod[4 * 2];
358 unsigned HOST_WIDE_INT carry;
359 int i, j, k;
360 unsigned HOST_WIDE_INT toplow, neglow;
361 HOST_WIDE_INT tophigh, neghigh;
363 encode (arg1, l1, h1);
364 encode (arg2, l2, h2);
366 memset (prod, 0, sizeof prod);
368 for (i = 0; i < 4; i++)
370 carry = 0;
371 for (j = 0; j < 4; j++)
373 k = i + j;
374 /* This product is <= 0xFFFE0001, the sum <= 0xFFFF0000. */
375 carry += arg1[i] * arg2[j];
376 /* Since prod[p] < 0xFFFF, this sum <= 0xFFFFFFFF. */
377 carry += prod[k];
378 prod[k] = LOWPART (carry);
379 carry = HIGHPART (carry);
381 prod[i + 4] = carry;
384 decode (prod, lv, hv);
385 decode (prod + 4, &toplow, &tophigh);
387 /* Unsigned overflow is immediate. */
388 if (unsigned_p)
389 return (toplow | tophigh) != 0;
391 /* Check for signed overflow by calculating the signed representation of the
392 top half of the result; it should agree with the low half's sign bit. */
393 if (h1 < 0)
395 neg_double (l2, h2, &neglow, &neghigh);
396 add_double (neglow, neghigh, toplow, tophigh, &toplow, &tophigh);
398 if (h2 < 0)
400 neg_double (l1, h1, &neglow, &neghigh);
401 add_double (neglow, neghigh, toplow, tophigh, &toplow, &tophigh);
403 return (*hv < 0 ? ~(toplow & tophigh) : toplow | tophigh) != 0;
406 /* Shift the doubleword integer in L1, H1 left by COUNT places
407 keeping only PREC bits of result.
408 Shift right if COUNT is negative.
409 ARITH nonzero specifies arithmetic shifting; otherwise use logical shift.
410 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
412 void
413 lshift_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
414 HOST_WIDE_INT count, unsigned int prec,
415 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv, int arith)
417 unsigned HOST_WIDE_INT signmask;
419 if (count < 0)
421 rshift_double (l1, h1, -count, prec, lv, hv, arith);
422 return;
425 if (SHIFT_COUNT_TRUNCATED)
426 count %= prec;
428 if (count >= 2 * HOST_BITS_PER_WIDE_INT)
430 /* Shifting by the host word size is undefined according to the
431 ANSI standard, so we must handle this as a special case. */
432 *hv = 0;
433 *lv = 0;
435 else if (count >= HOST_BITS_PER_WIDE_INT)
437 *hv = l1 << (count - HOST_BITS_PER_WIDE_INT);
438 *lv = 0;
440 else
442 *hv = (((unsigned HOST_WIDE_INT) h1 << count)
443 | (l1 >> (HOST_BITS_PER_WIDE_INT - count - 1) >> 1));
444 *lv = l1 << count;
447 /* Sign extend all bits that are beyond the precision. */
449 signmask = -((prec > HOST_BITS_PER_WIDE_INT
450 ? ((unsigned HOST_WIDE_INT) *hv
451 >> (prec - HOST_BITS_PER_WIDE_INT - 1))
452 : (*lv >> (prec - 1))) & 1);
454 if (prec >= 2 * HOST_BITS_PER_WIDE_INT)
456 else if (prec >= HOST_BITS_PER_WIDE_INT)
458 *hv &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
459 *hv |= signmask << (prec - HOST_BITS_PER_WIDE_INT);
461 else
463 *hv = signmask;
464 *lv &= ~((unsigned HOST_WIDE_INT) (-1) << prec);
465 *lv |= signmask << prec;
469 /* Shift the doubleword integer in L1, H1 right by COUNT places
470 keeping only PREC bits of result. COUNT must be positive.
471 ARITH nonzero specifies arithmetic shifting; otherwise use logical shift.
472 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
474 void
475 rshift_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
476 HOST_WIDE_INT count, unsigned int prec,
477 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv,
478 int arith)
480 unsigned HOST_WIDE_INT signmask;
482 signmask = (arith
483 ? -((unsigned HOST_WIDE_INT) h1 >> (HOST_BITS_PER_WIDE_INT - 1))
484 : 0);
486 if (SHIFT_COUNT_TRUNCATED)
487 count %= prec;
489 if (count >= 2 * HOST_BITS_PER_WIDE_INT)
491 /* Shifting by the host word size is undefined according to the
492 ANSI standard, so we must handle this as a special case. */
493 *hv = 0;
494 *lv = 0;
496 else if (count >= HOST_BITS_PER_WIDE_INT)
498 *hv = 0;
499 *lv = (unsigned HOST_WIDE_INT) h1 >> (count - HOST_BITS_PER_WIDE_INT);
501 else
503 *hv = (unsigned HOST_WIDE_INT) h1 >> count;
504 *lv = ((l1 >> count)
505 | ((unsigned HOST_WIDE_INT) h1 << (HOST_BITS_PER_WIDE_INT - count - 1) << 1));
508 /* Zero / sign extend all bits that are beyond the precision. */
510 if (count >= (HOST_WIDE_INT)prec)
512 *hv = signmask;
513 *lv = signmask;
515 else if ((prec - count) >= 2 * HOST_BITS_PER_WIDE_INT)
517 else if ((prec - count) >= HOST_BITS_PER_WIDE_INT)
519 *hv &= ~((HOST_WIDE_INT) (-1) << (prec - count - HOST_BITS_PER_WIDE_INT));
520 *hv |= signmask << (prec - count - HOST_BITS_PER_WIDE_INT);
522 else
524 *hv = signmask;
525 *lv &= ~((unsigned HOST_WIDE_INT) (-1) << (prec - count));
526 *lv |= signmask << (prec - count);
530 /* Rotate the doubleword integer in L1, H1 left by COUNT places
531 keeping only PREC bits of result.
532 Rotate right if COUNT is negative.
533 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
535 void
536 lrotate_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
537 HOST_WIDE_INT count, unsigned int prec,
538 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
540 unsigned HOST_WIDE_INT s1l, s2l;
541 HOST_WIDE_INT s1h, s2h;
543 count %= prec;
544 if (count < 0)
545 count += prec;
547 lshift_double (l1, h1, count, prec, &s1l, &s1h, 0);
548 rshift_double (l1, h1, prec - count, prec, &s2l, &s2h, 0);
549 *lv = s1l | s2l;
550 *hv = s1h | s2h;
553 /* Rotate the doubleword integer in L1, H1 left by COUNT places
554 keeping only PREC bits of result. COUNT must be positive.
555 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
557 void
558 rrotate_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
559 HOST_WIDE_INT count, unsigned int prec,
560 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
562 unsigned HOST_WIDE_INT s1l, s2l;
563 HOST_WIDE_INT s1h, s2h;
565 count %= prec;
566 if (count < 0)
567 count += prec;
569 rshift_double (l1, h1, count, prec, &s1l, &s1h, 0);
570 lshift_double (l1, h1, prec - count, prec, &s2l, &s2h, 0);
571 *lv = s1l | s2l;
572 *hv = s1h | s2h;
575 /* Divide doubleword integer LNUM, HNUM by doubleword integer LDEN, HDEN
576 for a quotient (stored in *LQUO, *HQUO) and remainder (in *LREM, *HREM).
577 CODE is a tree code for a kind of division, one of
578 TRUNC_DIV_EXPR, FLOOR_DIV_EXPR, CEIL_DIV_EXPR, ROUND_DIV_EXPR
579 or EXACT_DIV_EXPR
580 It controls how the quotient is rounded to an integer.
581 Return nonzero if the operation overflows.
582 UNS nonzero says do unsigned division. */
585 div_and_round_double (enum tree_code code, int uns,
586 unsigned HOST_WIDE_INT lnum_orig, /* num == numerator == dividend */
587 HOST_WIDE_INT hnum_orig,
588 unsigned HOST_WIDE_INT lden_orig, /* den == denominator == divisor */
589 HOST_WIDE_INT hden_orig,
590 unsigned HOST_WIDE_INT *lquo,
591 HOST_WIDE_INT *hquo, unsigned HOST_WIDE_INT *lrem,
592 HOST_WIDE_INT *hrem)
594 int quo_neg = 0;
595 HOST_WIDE_INT num[4 + 1]; /* extra element for scaling. */
596 HOST_WIDE_INT den[4], quo[4];
597 int i, j;
598 unsigned HOST_WIDE_INT work;
599 unsigned HOST_WIDE_INT carry = 0;
600 unsigned HOST_WIDE_INT lnum = lnum_orig;
601 HOST_WIDE_INT hnum = hnum_orig;
602 unsigned HOST_WIDE_INT lden = lden_orig;
603 HOST_WIDE_INT hden = hden_orig;
604 int overflow = 0;
606 if (hden == 0 && lden == 0)
607 overflow = 1, lden = 1;
609 /* Calculate quotient sign and convert operands to unsigned. */
610 if (!uns)
612 if (hnum < 0)
614 quo_neg = ~ quo_neg;
615 /* (minimum integer) / (-1) is the only overflow case. */
616 if (neg_double (lnum, hnum, &lnum, &hnum)
617 && ((HOST_WIDE_INT) lden & hden) == -1)
618 overflow = 1;
620 if (hden < 0)
622 quo_neg = ~ quo_neg;
623 neg_double (lden, hden, &lden, &hden);
627 if (hnum == 0 && hden == 0)
628 { /* single precision */
629 *hquo = *hrem = 0;
630 /* This unsigned division rounds toward zero. */
631 *lquo = lnum / lden;
632 goto finish_up;
635 if (hnum == 0)
636 { /* trivial case: dividend < divisor */
637 /* hden != 0 already checked. */
638 *hquo = *lquo = 0;
639 *hrem = hnum;
640 *lrem = lnum;
641 goto finish_up;
644 memset (quo, 0, sizeof quo);
646 memset (num, 0, sizeof num); /* to zero 9th element */
647 memset (den, 0, sizeof den);
649 encode (num, lnum, hnum);
650 encode (den, lden, hden);
652 /* Special code for when the divisor < BASE. */
653 if (hden == 0 && lden < (unsigned HOST_WIDE_INT) BASE)
655 /* hnum != 0 already checked. */
656 for (i = 4 - 1; i >= 0; i--)
658 work = num[i] + carry * BASE;
659 quo[i] = work / lden;
660 carry = work % lden;
663 else
665 /* Full double precision division,
666 with thanks to Don Knuth's "Seminumerical Algorithms". */
667 int num_hi_sig, den_hi_sig;
668 unsigned HOST_WIDE_INT quo_est, scale;
670 /* Find the highest nonzero divisor digit. */
671 for (i = 4 - 1;; i--)
672 if (den[i] != 0)
674 den_hi_sig = i;
675 break;
678 /* Insure that the first digit of the divisor is at least BASE/2.
679 This is required by the quotient digit estimation algorithm. */
681 scale = BASE / (den[den_hi_sig] + 1);
682 if (scale > 1)
683 { /* scale divisor and dividend */
684 carry = 0;
685 for (i = 0; i <= 4 - 1; i++)
687 work = (num[i] * scale) + carry;
688 num[i] = LOWPART (work);
689 carry = HIGHPART (work);
692 num[4] = carry;
693 carry = 0;
694 for (i = 0; i <= 4 - 1; i++)
696 work = (den[i] * scale) + carry;
697 den[i] = LOWPART (work);
698 carry = HIGHPART (work);
699 if (den[i] != 0) den_hi_sig = i;
703 num_hi_sig = 4;
705 /* Main loop */
706 for (i = num_hi_sig - den_hi_sig - 1; i >= 0; i--)
708 /* Guess the next quotient digit, quo_est, by dividing the first
709 two remaining dividend digits by the high order quotient digit.
710 quo_est is never low and is at most 2 high. */
711 unsigned HOST_WIDE_INT tmp;
713 num_hi_sig = i + den_hi_sig + 1;
714 work = num[num_hi_sig] * BASE + num[num_hi_sig - 1];
715 if (num[num_hi_sig] != den[den_hi_sig])
716 quo_est = work / den[den_hi_sig];
717 else
718 quo_est = BASE - 1;
720 /* Refine quo_est so it's usually correct, and at most one high. */
721 tmp = work - quo_est * den[den_hi_sig];
722 if (tmp < BASE
723 && (den[den_hi_sig - 1] * quo_est
724 > (tmp * BASE + num[num_hi_sig - 2])))
725 quo_est--;
727 /* Try QUO_EST as the quotient digit, by multiplying the
728 divisor by QUO_EST and subtracting from the remaining dividend.
729 Keep in mind that QUO_EST is the I - 1st digit. */
731 carry = 0;
732 for (j = 0; j <= den_hi_sig; j++)
734 work = quo_est * den[j] + carry;
735 carry = HIGHPART (work);
736 work = num[i + j] - LOWPART (work);
737 num[i + j] = LOWPART (work);
738 carry += HIGHPART (work) != 0;
741 /* If quo_est was high by one, then num[i] went negative and
742 we need to correct things. */
743 if (num[num_hi_sig] < (HOST_WIDE_INT) carry)
745 quo_est--;
746 carry = 0; /* add divisor back in */
747 for (j = 0; j <= den_hi_sig; j++)
749 work = num[i + j] + den[j] + carry;
750 carry = HIGHPART (work);
751 num[i + j] = LOWPART (work);
754 num [num_hi_sig] += carry;
757 /* Store the quotient digit. */
758 quo[i] = quo_est;
762 decode (quo, lquo, hquo);
764 finish_up:
765 /* If result is negative, make it so. */
766 if (quo_neg)
767 neg_double (*lquo, *hquo, lquo, hquo);
769 /* Compute trial remainder: rem = num - (quo * den) */
770 mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem);
771 neg_double (*lrem, *hrem, lrem, hrem);
772 add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem);
774 switch (code)
776 case TRUNC_DIV_EXPR:
777 case TRUNC_MOD_EXPR: /* round toward zero */
778 case EXACT_DIV_EXPR: /* for this one, it shouldn't matter */
779 return overflow;
781 case FLOOR_DIV_EXPR:
782 case FLOOR_MOD_EXPR: /* round toward negative infinity */
783 if (quo_neg && (*lrem != 0 || *hrem != 0)) /* ratio < 0 && rem != 0 */
785 /* quo = quo - 1; */
786 add_double (*lquo, *hquo, (HOST_WIDE_INT) -1, (HOST_WIDE_INT) -1,
787 lquo, hquo);
789 else
790 return overflow;
791 break;
793 case CEIL_DIV_EXPR:
794 case CEIL_MOD_EXPR: /* round toward positive infinity */
795 if (!quo_neg && (*lrem != 0 || *hrem != 0)) /* ratio > 0 && rem != 0 */
797 add_double (*lquo, *hquo, (HOST_WIDE_INT) 1, (HOST_WIDE_INT) 0,
798 lquo, hquo);
800 else
801 return overflow;
802 break;
804 case ROUND_DIV_EXPR:
805 case ROUND_MOD_EXPR: /* round to closest integer */
807 unsigned HOST_WIDE_INT labs_rem = *lrem;
808 HOST_WIDE_INT habs_rem = *hrem;
809 unsigned HOST_WIDE_INT labs_den = lden, ltwice;
810 HOST_WIDE_INT habs_den = hden, htwice;
812 /* Get absolute values. */
813 if (*hrem < 0)
814 neg_double (*lrem, *hrem, &labs_rem, &habs_rem);
815 if (hden < 0)
816 neg_double (lden, hden, &labs_den, &habs_den);
818 /* If (2 * abs (lrem) >= abs (lden)) */
819 mul_double ((HOST_WIDE_INT) 2, (HOST_WIDE_INT) 0,
820 labs_rem, habs_rem, &ltwice, &htwice);
822 if (((unsigned HOST_WIDE_INT) habs_den
823 < (unsigned HOST_WIDE_INT) htwice)
824 || (((unsigned HOST_WIDE_INT) habs_den
825 == (unsigned HOST_WIDE_INT) htwice)
826 && (labs_den < ltwice)))
828 if (*hquo < 0)
829 /* quo = quo - 1; */
830 add_double (*lquo, *hquo,
831 (HOST_WIDE_INT) -1, (HOST_WIDE_INT) -1, lquo, hquo);
832 else
833 /* quo = quo + 1; */
834 add_double (*lquo, *hquo, (HOST_WIDE_INT) 1, (HOST_WIDE_INT) 0,
835 lquo, hquo);
837 else
838 return overflow;
840 break;
842 default:
843 gcc_unreachable ();
846 /* Compute true remainder: rem = num - (quo * den) */
847 mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem);
848 neg_double (*lrem, *hrem, lrem, hrem);
849 add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem);
850 return overflow;
853 /* If ARG2 divides ARG1 with zero remainder, carries out the division
854 of type CODE and returns the quotient.
855 Otherwise returns NULL_TREE. */
857 static tree
858 div_if_zero_remainder (enum tree_code code, tree arg1, tree arg2)
860 unsigned HOST_WIDE_INT int1l, int2l;
861 HOST_WIDE_INT int1h, int2h;
862 unsigned HOST_WIDE_INT quol, reml;
863 HOST_WIDE_INT quoh, remh;
864 tree type = TREE_TYPE (arg1);
865 int uns = TYPE_UNSIGNED (type);
867 int1l = TREE_INT_CST_LOW (arg1);
868 int1h = TREE_INT_CST_HIGH (arg1);
869 int2l = TREE_INT_CST_LOW (arg2);
870 int2h = TREE_INT_CST_HIGH (arg2);
872 div_and_round_double (code, uns, int1l, int1h, int2l, int2h,
873 &quol, &quoh, &reml, &remh);
874 if (remh != 0 || reml != 0)
875 return NULL_TREE;
877 return build_int_cst_wide (type, quol, quoh);
880 /* Return true if the built-in mathematical function specified by CODE
881 is odd, i.e. -f(x) == f(-x). */
883 static bool
884 negate_mathfn_p (enum built_in_function code)
886 switch (code)
888 CASE_FLT_FN (BUILT_IN_ASIN):
889 CASE_FLT_FN (BUILT_IN_ASINH):
890 CASE_FLT_FN (BUILT_IN_ATAN):
891 CASE_FLT_FN (BUILT_IN_ATANH):
892 CASE_FLT_FN (BUILT_IN_CBRT):
893 CASE_FLT_FN (BUILT_IN_SIN):
894 CASE_FLT_FN (BUILT_IN_SINH):
895 CASE_FLT_FN (BUILT_IN_TAN):
896 CASE_FLT_FN (BUILT_IN_TANH):
897 return true;
899 default:
900 break;
902 return false;
905 /* Check whether we may negate an integer constant T without causing
906 overflow. */
908 bool
909 may_negate_without_overflow_p (tree t)
911 unsigned HOST_WIDE_INT val;
912 unsigned int prec;
913 tree type;
915 gcc_assert (TREE_CODE (t) == INTEGER_CST);
917 type = TREE_TYPE (t);
918 if (TYPE_UNSIGNED (type))
919 return false;
921 prec = TYPE_PRECISION (type);
922 if (prec > HOST_BITS_PER_WIDE_INT)
924 if (TREE_INT_CST_LOW (t) != 0)
925 return true;
926 prec -= HOST_BITS_PER_WIDE_INT;
927 val = TREE_INT_CST_HIGH (t);
929 else
930 val = TREE_INT_CST_LOW (t);
931 if (prec < HOST_BITS_PER_WIDE_INT)
932 val &= ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
933 return val != ((unsigned HOST_WIDE_INT) 1 << (prec - 1));
936 /* Determine whether an expression T can be cheaply negated using
937 the function negate_expr without introducing undefined overflow. */
939 static bool
940 negate_expr_p (tree t)
942 tree type;
944 if (t == 0)
945 return false;
947 type = TREE_TYPE (t);
949 STRIP_SIGN_NOPS (t);
950 switch (TREE_CODE (t))
952 case INTEGER_CST:
953 if (TYPE_UNSIGNED (type)
954 || (flag_wrapv && ! flag_trapv))
955 return true;
957 /* Check that -CST will not overflow type. */
958 return may_negate_without_overflow_p (t);
959 case BIT_NOT_EXPR:
960 return INTEGRAL_TYPE_P (type)
961 && (TYPE_UNSIGNED (type)
962 || (flag_wrapv && !flag_trapv));
964 case REAL_CST:
965 case NEGATE_EXPR:
966 return true;
968 case COMPLEX_CST:
969 return negate_expr_p (TREE_REALPART (t))
970 && negate_expr_p (TREE_IMAGPART (t));
972 case PLUS_EXPR:
973 if (FLOAT_TYPE_P (type) && !flag_unsafe_math_optimizations)
974 return false;
975 /* -(A + B) -> (-B) - A. */
976 if (negate_expr_p (TREE_OPERAND (t, 1))
977 && reorder_operands_p (TREE_OPERAND (t, 0),
978 TREE_OPERAND (t, 1)))
979 return true;
980 /* -(A + B) -> (-A) - B. */
981 return negate_expr_p (TREE_OPERAND (t, 0));
983 case MINUS_EXPR:
984 /* We can't turn -(A-B) into B-A when we honor signed zeros. */
985 return (! FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations)
986 && reorder_operands_p (TREE_OPERAND (t, 0),
987 TREE_OPERAND (t, 1));
989 case MULT_EXPR:
990 if (TYPE_UNSIGNED (TREE_TYPE (t)))
991 break;
993 /* Fall through. */
995 case RDIV_EXPR:
996 if (! HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (TREE_TYPE (t))))
997 return negate_expr_p (TREE_OPERAND (t, 1))
998 || negate_expr_p (TREE_OPERAND (t, 0));
999 break;
1001 case TRUNC_DIV_EXPR:
1002 case ROUND_DIV_EXPR:
1003 case FLOOR_DIV_EXPR:
1004 case CEIL_DIV_EXPR:
1005 case EXACT_DIV_EXPR:
1006 if (TYPE_UNSIGNED (TREE_TYPE (t)) || flag_wrapv)
1007 break;
1008 return negate_expr_p (TREE_OPERAND (t, 1))
1009 || negate_expr_p (TREE_OPERAND (t, 0));
1011 case NOP_EXPR:
1012 /* Negate -((double)float) as (double)(-float). */
1013 if (TREE_CODE (type) == REAL_TYPE)
1015 tree tem = strip_float_extensions (t);
1016 if (tem != t)
1017 return negate_expr_p (tem);
1019 break;
1021 case CALL_EXPR:
1022 /* Negate -f(x) as f(-x). */
1023 if (negate_mathfn_p (builtin_mathfn_code (t)))
1024 return negate_expr_p (TREE_VALUE (TREE_OPERAND (t, 1)));
1025 break;
1027 case RSHIFT_EXPR:
1028 /* Optimize -((int)x >> 31) into (unsigned)x >> 31. */
1029 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
1031 tree op1 = TREE_OPERAND (t, 1);
1032 if (TREE_INT_CST_HIGH (op1) == 0
1033 && (unsigned HOST_WIDE_INT) (TYPE_PRECISION (type) - 1)
1034 == TREE_INT_CST_LOW (op1))
1035 return true;
1037 break;
1039 default:
1040 break;
1042 return false;
1045 /* Given T, an expression, return a folded tree for -T or NULL_TREE, if no
1046 simplification is possible.
1047 If negate_expr_p would return true for T, NULL_TREE will never be
1048 returned. */
1050 static tree
1051 fold_negate_expr (tree t)
1053 tree type = TREE_TYPE (t);
1054 tree tem;
1056 switch (TREE_CODE (t))
1058 /* Convert - (~A) to A + 1. */
1059 case BIT_NOT_EXPR:
1060 if (INTEGRAL_TYPE_P (type))
1061 return fold_build2 (PLUS_EXPR, type, TREE_OPERAND (t, 0),
1062 build_int_cst (type, 1));
1063 break;
1065 case INTEGER_CST:
1066 tem = fold_negate_const (t, type);
1067 if (! TREE_OVERFLOW (tem)
1068 || TYPE_UNSIGNED (type)
1069 || ! flag_trapv)
1070 return tem;
1071 break;
1073 case REAL_CST:
1074 tem = fold_negate_const (t, type);
1075 /* Two's complement FP formats, such as c4x, may overflow. */
1076 if (! TREE_OVERFLOW (tem) || ! flag_trapping_math)
1077 return tem;
1078 break;
1080 case COMPLEX_CST:
1082 tree rpart = negate_expr (TREE_REALPART (t));
1083 tree ipart = negate_expr (TREE_IMAGPART (t));
1085 if ((TREE_CODE (rpart) == REAL_CST
1086 && TREE_CODE (ipart) == REAL_CST)
1087 || (TREE_CODE (rpart) == INTEGER_CST
1088 && TREE_CODE (ipart) == INTEGER_CST))
1089 return build_complex (type, rpart, ipart);
1091 break;
1093 case NEGATE_EXPR:
1094 return TREE_OPERAND (t, 0);
1096 case PLUS_EXPR:
1097 if (! FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations)
1099 /* -(A + B) -> (-B) - A. */
1100 if (negate_expr_p (TREE_OPERAND (t, 1))
1101 && reorder_operands_p (TREE_OPERAND (t, 0),
1102 TREE_OPERAND (t, 1)))
1104 tem = negate_expr (TREE_OPERAND (t, 1));
1105 return fold_build2 (MINUS_EXPR, type,
1106 tem, TREE_OPERAND (t, 0));
1109 /* -(A + B) -> (-A) - B. */
1110 if (negate_expr_p (TREE_OPERAND (t, 0)))
1112 tem = negate_expr (TREE_OPERAND (t, 0));
1113 return fold_build2 (MINUS_EXPR, type,
1114 tem, TREE_OPERAND (t, 1));
1117 break;
1119 case MINUS_EXPR:
1120 /* - (A - B) -> B - A */
1121 if ((! FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations)
1122 && reorder_operands_p (TREE_OPERAND (t, 0), TREE_OPERAND (t, 1)))
1123 return fold_build2 (MINUS_EXPR, type,
1124 TREE_OPERAND (t, 1), TREE_OPERAND (t, 0));
1125 break;
1127 case MULT_EXPR:
1128 if (TYPE_UNSIGNED (type))
1129 break;
1131 /* Fall through. */
1133 case RDIV_EXPR:
1134 if (! HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type)))
1136 tem = TREE_OPERAND (t, 1);
1137 if (negate_expr_p (tem))
1138 return fold_build2 (TREE_CODE (t), type,
1139 TREE_OPERAND (t, 0), negate_expr (tem));
1140 tem = TREE_OPERAND (t, 0);
1141 if (negate_expr_p (tem))
1142 return fold_build2 (TREE_CODE (t), type,
1143 negate_expr (tem), TREE_OPERAND (t, 1));
1145 break;
1147 case TRUNC_DIV_EXPR:
1148 case ROUND_DIV_EXPR:
1149 case FLOOR_DIV_EXPR:
1150 case CEIL_DIV_EXPR:
1151 case EXACT_DIV_EXPR:
1152 if (!TYPE_UNSIGNED (type) && !flag_wrapv)
1154 tem = TREE_OPERAND (t, 1);
1155 if (negate_expr_p (tem))
1156 return fold_build2 (TREE_CODE (t), type,
1157 TREE_OPERAND (t, 0), negate_expr (tem));
1158 tem = TREE_OPERAND (t, 0);
1159 if (negate_expr_p (tem))
1160 return fold_build2 (TREE_CODE (t), type,
1161 negate_expr (tem), TREE_OPERAND (t, 1));
1163 break;
1165 case NOP_EXPR:
1166 /* Convert -((double)float) into (double)(-float). */
1167 if (TREE_CODE (type) == REAL_TYPE)
1169 tem = strip_float_extensions (t);
1170 if (tem != t && negate_expr_p (tem))
1171 return negate_expr (tem);
1173 break;
1175 case CALL_EXPR:
1176 /* Negate -f(x) as f(-x). */
1177 if (negate_mathfn_p (builtin_mathfn_code (t))
1178 && negate_expr_p (TREE_VALUE (TREE_OPERAND (t, 1))))
1180 tree fndecl, arg, arglist;
1182 fndecl = get_callee_fndecl (t);
1183 arg = negate_expr (TREE_VALUE (TREE_OPERAND (t, 1)));
1184 arglist = build_tree_list (NULL_TREE, arg);
1185 return build_function_call_expr (fndecl, arglist);
1187 break;
1189 case RSHIFT_EXPR:
1190 /* Optimize -((int)x >> 31) into (unsigned)x >> 31. */
1191 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
1193 tree op1 = TREE_OPERAND (t, 1);
1194 if (TREE_INT_CST_HIGH (op1) == 0
1195 && (unsigned HOST_WIDE_INT) (TYPE_PRECISION (type) - 1)
1196 == TREE_INT_CST_LOW (op1))
1198 tree ntype = TYPE_UNSIGNED (type)
1199 ? lang_hooks.types.signed_type (type)
1200 : lang_hooks.types.unsigned_type (type);
1201 tree temp = fold_convert (ntype, TREE_OPERAND (t, 0));
1202 temp = fold_build2 (RSHIFT_EXPR, ntype, temp, op1);
1203 return fold_convert (type, temp);
1206 break;
1208 default:
1209 break;
1212 return NULL_TREE;
1215 /* Like fold_negate_expr, but return a NEGATE_EXPR tree, if T can not be
1216 negated in a simpler way. Also allow for T to be NULL_TREE, in which case
1217 return NULL_TREE. */
1219 static tree
1220 negate_expr (tree t)
1222 tree type, tem;
1224 if (t == NULL_TREE)
1225 return NULL_TREE;
1227 type = TREE_TYPE (t);
1228 STRIP_SIGN_NOPS (t);
1230 tem = fold_negate_expr (t);
1231 if (!tem)
1232 tem = build1 (NEGATE_EXPR, TREE_TYPE (t), t);
1233 return fold_convert (type, tem);
1236 /* Split a tree IN into a constant, literal and variable parts that could be
1237 combined with CODE to make IN. "constant" means an expression with
1238 TREE_CONSTANT but that isn't an actual constant. CODE must be a
1239 commutative arithmetic operation. Store the constant part into *CONP,
1240 the literal in *LITP and return the variable part. If a part isn't
1241 present, set it to null. If the tree does not decompose in this way,
1242 return the entire tree as the variable part and the other parts as null.
1244 If CODE is PLUS_EXPR we also split trees that use MINUS_EXPR. In that
1245 case, we negate an operand that was subtracted. Except if it is a
1246 literal for which we use *MINUS_LITP instead.
1248 If NEGATE_P is true, we are negating all of IN, again except a literal
1249 for which we use *MINUS_LITP instead.
1251 If IN is itself a literal or constant, return it as appropriate.
1253 Note that we do not guarantee that any of the three values will be the
1254 same type as IN, but they will have the same signedness and mode. */
1256 static tree
1257 split_tree (tree in, enum tree_code code, tree *conp, tree *litp,
1258 tree *minus_litp, int negate_p)
1260 tree var = 0;
1262 *conp = 0;
1263 *litp = 0;
1264 *minus_litp = 0;
1266 /* Strip any conversions that don't change the machine mode or signedness. */
1267 STRIP_SIGN_NOPS (in);
1269 if (TREE_CODE (in) == INTEGER_CST || TREE_CODE (in) == REAL_CST)
1270 *litp = in;
1271 else if (TREE_CODE (in) == code
1272 || (! FLOAT_TYPE_P (TREE_TYPE (in))
1273 /* We can associate addition and subtraction together (even
1274 though the C standard doesn't say so) for integers because
1275 the value is not affected. For reals, the value might be
1276 affected, so we can't. */
1277 && ((code == PLUS_EXPR && TREE_CODE (in) == MINUS_EXPR)
1278 || (code == MINUS_EXPR && TREE_CODE (in) == PLUS_EXPR))))
1280 tree op0 = TREE_OPERAND (in, 0);
1281 tree op1 = TREE_OPERAND (in, 1);
1282 int neg1_p = TREE_CODE (in) == MINUS_EXPR;
1283 int neg_litp_p = 0, neg_conp_p = 0, neg_var_p = 0;
1285 /* First see if either of the operands is a literal, then a constant. */
1286 if (TREE_CODE (op0) == INTEGER_CST || TREE_CODE (op0) == REAL_CST)
1287 *litp = op0, op0 = 0;
1288 else if (TREE_CODE (op1) == INTEGER_CST || TREE_CODE (op1) == REAL_CST)
1289 *litp = op1, neg_litp_p = neg1_p, op1 = 0;
1291 if (op0 != 0 && TREE_CONSTANT (op0))
1292 *conp = op0, op0 = 0;
1293 else if (op1 != 0 && TREE_CONSTANT (op1))
1294 *conp = op1, neg_conp_p = neg1_p, op1 = 0;
1296 /* If we haven't dealt with either operand, this is not a case we can
1297 decompose. Otherwise, VAR is either of the ones remaining, if any. */
1298 if (op0 != 0 && op1 != 0)
1299 var = in;
1300 else if (op0 != 0)
1301 var = op0;
1302 else
1303 var = op1, neg_var_p = neg1_p;
1305 /* Now do any needed negations. */
1306 if (neg_litp_p)
1307 *minus_litp = *litp, *litp = 0;
1308 if (neg_conp_p)
1309 *conp = negate_expr (*conp);
1310 if (neg_var_p)
1311 var = negate_expr (var);
1313 else if (TREE_CONSTANT (in))
1314 *conp = in;
1315 else
1316 var = in;
1318 if (negate_p)
1320 if (*litp)
1321 *minus_litp = *litp, *litp = 0;
1322 else if (*minus_litp)
1323 *litp = *minus_litp, *minus_litp = 0;
1324 *conp = negate_expr (*conp);
1325 var = negate_expr (var);
1328 return var;
1331 /* Re-associate trees split by the above function. T1 and T2 are either
1332 expressions to associate or null. Return the new expression, if any. If
1333 we build an operation, do it in TYPE and with CODE. */
1335 static tree
1336 associate_trees (tree t1, tree t2, enum tree_code code, tree type)
1338 if (t1 == 0)
1339 return t2;
1340 else if (t2 == 0)
1341 return t1;
1343 /* If either input is CODE, a PLUS_EXPR, or a MINUS_EXPR, don't
1344 try to fold this since we will have infinite recursion. But do
1345 deal with any NEGATE_EXPRs. */
1346 if (TREE_CODE (t1) == code || TREE_CODE (t2) == code
1347 || TREE_CODE (t1) == MINUS_EXPR || TREE_CODE (t2) == MINUS_EXPR)
1349 if (code == PLUS_EXPR)
1351 if (TREE_CODE (t1) == NEGATE_EXPR)
1352 return build2 (MINUS_EXPR, type, fold_convert (type, t2),
1353 fold_convert (type, TREE_OPERAND (t1, 0)));
1354 else if (TREE_CODE (t2) == NEGATE_EXPR)
1355 return build2 (MINUS_EXPR, type, fold_convert (type, t1),
1356 fold_convert (type, TREE_OPERAND (t2, 0)));
1357 else if (integer_zerop (t2))
1358 return fold_convert (type, t1);
1360 else if (code == MINUS_EXPR)
1362 if (integer_zerop (t2))
1363 return fold_convert (type, t1);
1366 return build2 (code, type, fold_convert (type, t1),
1367 fold_convert (type, t2));
1370 return fold_build2 (code, type, fold_convert (type, t1),
1371 fold_convert (type, t2));
1374 /* Combine two integer constants ARG1 and ARG2 under operation CODE
1375 to produce a new constant. Return NULL_TREE if we don't know how
1376 to evaluate CODE at compile-time.
1378 If NOTRUNC is nonzero, do not truncate the result to fit the data type. */
1380 tree
1381 int_const_binop (enum tree_code code, tree arg1, tree arg2, int notrunc)
1383 unsigned HOST_WIDE_INT int1l, int2l;
1384 HOST_WIDE_INT int1h, int2h;
1385 unsigned HOST_WIDE_INT low;
1386 HOST_WIDE_INT hi;
1387 unsigned HOST_WIDE_INT garbagel;
1388 HOST_WIDE_INT garbageh;
1389 tree t;
1390 tree type = TREE_TYPE (arg1);
1391 int uns = TYPE_UNSIGNED (type);
1392 int is_sizetype
1393 = (TREE_CODE (type) == INTEGER_TYPE && TYPE_IS_SIZETYPE (type));
1394 int overflow = 0;
1396 int1l = TREE_INT_CST_LOW (arg1);
1397 int1h = TREE_INT_CST_HIGH (arg1);
1398 int2l = TREE_INT_CST_LOW (arg2);
1399 int2h = TREE_INT_CST_HIGH (arg2);
1401 switch (code)
1403 case BIT_IOR_EXPR:
1404 low = int1l | int2l, hi = int1h | int2h;
1405 break;
1407 case BIT_XOR_EXPR:
1408 low = int1l ^ int2l, hi = int1h ^ int2h;
1409 break;
1411 case BIT_AND_EXPR:
1412 low = int1l & int2l, hi = int1h & int2h;
1413 break;
1415 case RSHIFT_EXPR:
1416 int2l = -int2l;
1417 case LSHIFT_EXPR:
1418 /* It's unclear from the C standard whether shifts can overflow.
1419 The following code ignores overflow; perhaps a C standard
1420 interpretation ruling is needed. */
1421 lshift_double (int1l, int1h, int2l, TYPE_PRECISION (type),
1422 &low, &hi, !uns);
1423 break;
1425 case RROTATE_EXPR:
1426 int2l = - int2l;
1427 case LROTATE_EXPR:
1428 lrotate_double (int1l, int1h, int2l, TYPE_PRECISION (type),
1429 &low, &hi);
1430 break;
1432 case PLUS_EXPR:
1433 overflow = add_double (int1l, int1h, int2l, int2h, &low, &hi);
1434 break;
1436 case MINUS_EXPR:
1437 neg_double (int2l, int2h, &low, &hi);
1438 add_double (int1l, int1h, low, hi, &low, &hi);
1439 overflow = OVERFLOW_SUM_SIGN (hi, int2h, int1h);
1440 break;
1442 case MULT_EXPR:
1443 overflow = mul_double (int1l, int1h, int2l, int2h, &low, &hi);
1444 break;
1446 case TRUNC_DIV_EXPR:
1447 case FLOOR_DIV_EXPR: case CEIL_DIV_EXPR:
1448 case EXACT_DIV_EXPR:
1449 /* This is a shortcut for a common special case. */
1450 if (int2h == 0 && (HOST_WIDE_INT) int2l > 0
1451 && ! TREE_CONSTANT_OVERFLOW (arg1)
1452 && ! TREE_CONSTANT_OVERFLOW (arg2)
1453 && int1h == 0 && (HOST_WIDE_INT) int1l >= 0)
1455 if (code == CEIL_DIV_EXPR)
1456 int1l += int2l - 1;
1458 low = int1l / int2l, hi = 0;
1459 break;
1462 /* ... fall through ... */
1464 case ROUND_DIV_EXPR:
1465 if (int2h == 0 && int2l == 0)
1466 return NULL_TREE;
1467 if (int2h == 0 && int2l == 1)
1469 low = int1l, hi = int1h;
1470 break;
1472 if (int1l == int2l && int1h == int2h
1473 && ! (int1l == 0 && int1h == 0))
1475 low = 1, hi = 0;
1476 break;
1478 overflow = div_and_round_double (code, uns, int1l, int1h, int2l, int2h,
1479 &low, &hi, &garbagel, &garbageh);
1480 break;
1482 case TRUNC_MOD_EXPR:
1483 case FLOOR_MOD_EXPR: case CEIL_MOD_EXPR:
1484 /* This is a shortcut for a common special case. */
1485 if (int2h == 0 && (HOST_WIDE_INT) int2l > 0
1486 && ! TREE_CONSTANT_OVERFLOW (arg1)
1487 && ! TREE_CONSTANT_OVERFLOW (arg2)
1488 && int1h == 0 && (HOST_WIDE_INT) int1l >= 0)
1490 if (code == CEIL_MOD_EXPR)
1491 int1l += int2l - 1;
1492 low = int1l % int2l, hi = 0;
1493 break;
1496 /* ... fall through ... */
1498 case ROUND_MOD_EXPR:
1499 if (int2h == 0 && int2l == 0)
1500 return NULL_TREE;
1501 overflow = div_and_round_double (code, uns,
1502 int1l, int1h, int2l, int2h,
1503 &garbagel, &garbageh, &low, &hi);
1504 break;
1506 case MIN_EXPR:
1507 case MAX_EXPR:
1508 if (uns)
1509 low = (((unsigned HOST_WIDE_INT) int1h
1510 < (unsigned HOST_WIDE_INT) int2h)
1511 || (((unsigned HOST_WIDE_INT) int1h
1512 == (unsigned HOST_WIDE_INT) int2h)
1513 && int1l < int2l));
1514 else
1515 low = (int1h < int2h
1516 || (int1h == int2h && int1l < int2l));
1518 if (low == (code == MIN_EXPR))
1519 low = int1l, hi = int1h;
1520 else
1521 low = int2l, hi = int2h;
1522 break;
1524 default:
1525 return NULL_TREE;
1528 t = build_int_cst_wide (TREE_TYPE (arg1), low, hi);
1530 if (notrunc)
1532 /* Propagate overflow flags ourselves. */
1533 if (((!uns || is_sizetype) && overflow)
1534 | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2))
1536 t = copy_node (t);
1537 TREE_OVERFLOW (t) = 1;
1538 TREE_CONSTANT_OVERFLOW (t) = 1;
1540 else if (TREE_CONSTANT_OVERFLOW (arg1) | TREE_CONSTANT_OVERFLOW (arg2))
1542 t = copy_node (t);
1543 TREE_CONSTANT_OVERFLOW (t) = 1;
1546 else
1547 t = force_fit_type (t, 1,
1548 ((!uns || is_sizetype) && overflow)
1549 | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2),
1550 TREE_CONSTANT_OVERFLOW (arg1)
1551 | TREE_CONSTANT_OVERFLOW (arg2));
1553 return t;
1556 /* Combine two constants ARG1 and ARG2 under operation CODE to produce a new
1557 constant. We assume ARG1 and ARG2 have the same data type, or at least
1558 are the same kind of constant and the same machine mode. Return zero if
1559 combining the constants is not allowed in the current operating mode.
1561 If NOTRUNC is nonzero, do not truncate the result to fit the data type. */
1563 static tree
1564 const_binop (enum tree_code code, tree arg1, tree arg2, int notrunc)
1566 /* Sanity check for the recursive cases. */
1567 if (!arg1 || !arg2)
1568 return NULL_TREE;
1570 STRIP_NOPS (arg1);
1571 STRIP_NOPS (arg2);
1573 if (TREE_CODE (arg1) == INTEGER_CST)
1574 return int_const_binop (code, arg1, arg2, notrunc);
1576 if (TREE_CODE (arg1) == REAL_CST)
1578 enum machine_mode mode;
1579 REAL_VALUE_TYPE d1;
1580 REAL_VALUE_TYPE d2;
1581 REAL_VALUE_TYPE value;
1582 REAL_VALUE_TYPE result;
1583 bool inexact;
1584 tree t, type;
1586 /* The following codes are handled by real_arithmetic. */
1587 switch (code)
1589 case PLUS_EXPR:
1590 case MINUS_EXPR:
1591 case MULT_EXPR:
1592 case RDIV_EXPR:
1593 case MIN_EXPR:
1594 case MAX_EXPR:
1595 break;
1597 default:
1598 return NULL_TREE;
1601 d1 = TREE_REAL_CST (arg1);
1602 d2 = TREE_REAL_CST (arg2);
1604 type = TREE_TYPE (arg1);
1605 mode = TYPE_MODE (type);
1607 /* Don't perform operation if we honor signaling NaNs and
1608 either operand is a NaN. */
1609 if (HONOR_SNANS (mode)
1610 && (REAL_VALUE_ISNAN (d1) || REAL_VALUE_ISNAN (d2)))
1611 return NULL_TREE;
1613 /* Don't perform operation if it would raise a division
1614 by zero exception. */
1615 if (code == RDIV_EXPR
1616 && REAL_VALUES_EQUAL (d2, dconst0)
1617 && (flag_trapping_math || ! MODE_HAS_INFINITIES (mode)))
1618 return NULL_TREE;
1620 /* If either operand is a NaN, just return it. Otherwise, set up
1621 for floating-point trap; we return an overflow. */
1622 if (REAL_VALUE_ISNAN (d1))
1623 return arg1;
1624 else if (REAL_VALUE_ISNAN (d2))
1625 return arg2;
1627 inexact = real_arithmetic (&value, code, &d1, &d2);
1628 real_convert (&result, mode, &value);
1630 /* Don't constant fold this floating point operation if
1631 the result has overflowed and flag_trapping_math. */
1632 if (flag_trapping_math
1633 && MODE_HAS_INFINITIES (mode)
1634 && REAL_VALUE_ISINF (result)
1635 && !REAL_VALUE_ISINF (d1)
1636 && !REAL_VALUE_ISINF (d2))
1637 return NULL_TREE;
1639 /* Don't constant fold this floating point operation if the
1640 result may dependent upon the run-time rounding mode and
1641 flag_rounding_math is set, or if GCC's software emulation
1642 is unable to accurately represent the result. */
1643 if ((flag_rounding_math
1644 || (REAL_MODE_FORMAT_COMPOSITE_P (mode)
1645 && !flag_unsafe_math_optimizations))
1646 && (inexact || !real_identical (&result, &value)))
1647 return NULL_TREE;
1649 t = build_real (type, result);
1651 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2);
1652 TREE_CONSTANT_OVERFLOW (t)
1653 = TREE_OVERFLOW (t)
1654 | TREE_CONSTANT_OVERFLOW (arg1)
1655 | TREE_CONSTANT_OVERFLOW (arg2);
1656 return t;
1659 if (TREE_CODE (arg1) == COMPLEX_CST)
1661 tree type = TREE_TYPE (arg1);
1662 tree r1 = TREE_REALPART (arg1);
1663 tree i1 = TREE_IMAGPART (arg1);
1664 tree r2 = TREE_REALPART (arg2);
1665 tree i2 = TREE_IMAGPART (arg2);
1666 tree real, imag;
1668 switch (code)
1670 case PLUS_EXPR:
1671 case MINUS_EXPR:
1672 real = const_binop (code, r1, r2, notrunc);
1673 imag = const_binop (code, i1, i2, notrunc);
1674 break;
1676 case MULT_EXPR:
1677 real = const_binop (MINUS_EXPR,
1678 const_binop (MULT_EXPR, r1, r2, notrunc),
1679 const_binop (MULT_EXPR, i1, i2, notrunc),
1680 notrunc);
1681 imag = const_binop (PLUS_EXPR,
1682 const_binop (MULT_EXPR, r1, i2, notrunc),
1683 const_binop (MULT_EXPR, i1, r2, notrunc),
1684 notrunc);
1685 break;
1687 case RDIV_EXPR:
1689 tree magsquared
1690 = const_binop (PLUS_EXPR,
1691 const_binop (MULT_EXPR, r2, r2, notrunc),
1692 const_binop (MULT_EXPR, i2, i2, notrunc),
1693 notrunc);
1694 tree t1
1695 = const_binop (PLUS_EXPR,
1696 const_binop (MULT_EXPR, r1, r2, notrunc),
1697 const_binop (MULT_EXPR, i1, i2, notrunc),
1698 notrunc);
1699 tree t2
1700 = const_binop (MINUS_EXPR,
1701 const_binop (MULT_EXPR, i1, r2, notrunc),
1702 const_binop (MULT_EXPR, r1, i2, notrunc),
1703 notrunc);
1705 if (INTEGRAL_TYPE_P (TREE_TYPE (r1)))
1706 code = TRUNC_DIV_EXPR;
1708 real = const_binop (code, t1, magsquared, notrunc);
1709 imag = const_binop (code, t2, magsquared, notrunc);
1711 break;
1713 default:
1714 return NULL_TREE;
1717 if (real && imag)
1718 return build_complex (type, real, imag);
1721 return NULL_TREE;
1724 /* Create a size type INT_CST node with NUMBER sign extended. KIND
1725 indicates which particular sizetype to create. */
1727 tree
1728 size_int_kind (HOST_WIDE_INT number, enum size_type_kind kind)
1730 return build_int_cst (sizetype_tab[(int) kind], number);
1733 /* Combine operands OP1 and OP2 with arithmetic operation CODE. CODE
1734 is a tree code. The type of the result is taken from the operands.
1735 Both must be the same type integer type and it must be a size type.
1736 If the operands are constant, so is the result. */
1738 tree
1739 size_binop (enum tree_code code, tree arg0, tree arg1)
1741 tree type = TREE_TYPE (arg0);
1743 if (arg0 == error_mark_node || arg1 == error_mark_node)
1744 return error_mark_node;
1746 gcc_assert (TREE_CODE (type) == INTEGER_TYPE && TYPE_IS_SIZETYPE (type)
1747 && type == TREE_TYPE (arg1));
1749 /* Handle the special case of two integer constants faster. */
1750 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
1752 /* And some specific cases even faster than that. */
1753 if (code == PLUS_EXPR && integer_zerop (arg0))
1754 return arg1;
1755 else if ((code == MINUS_EXPR || code == PLUS_EXPR)
1756 && integer_zerop (arg1))
1757 return arg0;
1758 else if (code == MULT_EXPR && integer_onep (arg0))
1759 return arg1;
1761 /* Handle general case of two integer constants. */
1762 return int_const_binop (code, arg0, arg1, 0);
1765 return fold_build2 (code, type, arg0, arg1);
1768 /* Given two values, either both of sizetype or both of bitsizetype,
1769 compute the difference between the two values. Return the value
1770 in signed type corresponding to the type of the operands. */
1772 tree
1773 size_diffop (tree arg0, tree arg1)
1775 tree type = TREE_TYPE (arg0);
1776 tree ctype;
1778 gcc_assert (TREE_CODE (type) == INTEGER_TYPE && TYPE_IS_SIZETYPE (type)
1779 && type == TREE_TYPE (arg1));
1781 /* If the type is already signed, just do the simple thing. */
1782 if (!TYPE_UNSIGNED (type))
1783 return size_binop (MINUS_EXPR, arg0, arg1);
1785 ctype = type == bitsizetype ? sbitsizetype : ssizetype;
1787 /* If either operand is not a constant, do the conversions to the signed
1788 type and subtract. The hardware will do the right thing with any
1789 overflow in the subtraction. */
1790 if (TREE_CODE (arg0) != INTEGER_CST || TREE_CODE (arg1) != INTEGER_CST)
1791 return size_binop (MINUS_EXPR, fold_convert (ctype, arg0),
1792 fold_convert (ctype, arg1));
1794 /* If ARG0 is larger than ARG1, subtract and return the result in CTYPE.
1795 Otherwise, subtract the other way, convert to CTYPE (we know that can't
1796 overflow) and negate (which can't either). Special-case a result
1797 of zero while we're here. */
1798 if (tree_int_cst_equal (arg0, arg1))
1799 return build_int_cst (ctype, 0);
1800 else if (tree_int_cst_lt (arg1, arg0))
1801 return fold_convert (ctype, size_binop (MINUS_EXPR, arg0, arg1));
1802 else
1803 return size_binop (MINUS_EXPR, build_int_cst (ctype, 0),
1804 fold_convert (ctype, size_binop (MINUS_EXPR,
1805 arg1, arg0)));
1808 /* A subroutine of fold_convert_const handling conversions of an
1809 INTEGER_CST to another integer type. */
1811 static tree
1812 fold_convert_const_int_from_int (tree type, tree arg1)
1814 tree t;
1816 /* Given an integer constant, make new constant with new type,
1817 appropriately sign-extended or truncated. */
1818 t = build_int_cst_wide (type, TREE_INT_CST_LOW (arg1),
1819 TREE_INT_CST_HIGH (arg1));
1821 t = force_fit_type (t,
1822 /* Don't set the overflow when
1823 converting a pointer */
1824 !POINTER_TYPE_P (TREE_TYPE (arg1)),
1825 (TREE_INT_CST_HIGH (arg1) < 0
1826 && (TYPE_UNSIGNED (type)
1827 < TYPE_UNSIGNED (TREE_TYPE (arg1))))
1828 | TREE_OVERFLOW (arg1),
1829 TREE_CONSTANT_OVERFLOW (arg1));
1831 return t;
1834 /* A subroutine of fold_convert_const handling conversions a REAL_CST
1835 to an integer type. */
1837 static tree
1838 fold_convert_const_int_from_real (enum tree_code code, tree type, tree arg1)
1840 int overflow = 0;
1841 tree t;
1843 /* The following code implements the floating point to integer
1844 conversion rules required by the Java Language Specification,
1845 that IEEE NaNs are mapped to zero and values that overflow
1846 the target precision saturate, i.e. values greater than
1847 INT_MAX are mapped to INT_MAX, and values less than INT_MIN
1848 are mapped to INT_MIN. These semantics are allowed by the
1849 C and C++ standards that simply state that the behavior of
1850 FP-to-integer conversion is unspecified upon overflow. */
1852 HOST_WIDE_INT high, low;
1853 REAL_VALUE_TYPE r;
1854 REAL_VALUE_TYPE x = TREE_REAL_CST (arg1);
1856 switch (code)
1858 case FIX_TRUNC_EXPR:
1859 real_trunc (&r, VOIDmode, &x);
1860 break;
1862 case FIX_CEIL_EXPR:
1863 real_ceil (&r, VOIDmode, &x);
1864 break;
1866 case FIX_FLOOR_EXPR:
1867 real_floor (&r, VOIDmode, &x);
1868 break;
1870 case FIX_ROUND_EXPR:
1871 real_round (&r, VOIDmode, &x);
1872 break;
1874 default:
1875 gcc_unreachable ();
1878 /* If R is NaN, return zero and show we have an overflow. */
1879 if (REAL_VALUE_ISNAN (r))
1881 overflow = 1;
1882 high = 0;
1883 low = 0;
1886 /* See if R is less than the lower bound or greater than the
1887 upper bound. */
1889 if (! overflow)
1891 tree lt = TYPE_MIN_VALUE (type);
1892 REAL_VALUE_TYPE l = real_value_from_int_cst (NULL_TREE, lt);
1893 if (REAL_VALUES_LESS (r, l))
1895 overflow = 1;
1896 high = TREE_INT_CST_HIGH (lt);
1897 low = TREE_INT_CST_LOW (lt);
1901 if (! overflow)
1903 tree ut = TYPE_MAX_VALUE (type);
1904 if (ut)
1906 REAL_VALUE_TYPE u = real_value_from_int_cst (NULL_TREE, ut);
1907 if (REAL_VALUES_LESS (u, r))
1909 overflow = 1;
1910 high = TREE_INT_CST_HIGH (ut);
1911 low = TREE_INT_CST_LOW (ut);
1916 if (! overflow)
1917 REAL_VALUE_TO_INT (&low, &high, r);
1919 t = build_int_cst_wide (type, low, high);
1921 t = force_fit_type (t, -1, overflow | TREE_OVERFLOW (arg1),
1922 TREE_CONSTANT_OVERFLOW (arg1));
1923 return t;
1926 /* A subroutine of fold_convert_const handling conversions a REAL_CST
1927 to another floating point type. */
1929 static tree
1930 fold_convert_const_real_from_real (tree type, tree arg1)
1932 REAL_VALUE_TYPE value;
1933 tree t;
1935 real_convert (&value, TYPE_MODE (type), &TREE_REAL_CST (arg1));
1936 t = build_real (type, value);
1938 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1);
1939 TREE_CONSTANT_OVERFLOW (t)
1940 = TREE_OVERFLOW (t) | TREE_CONSTANT_OVERFLOW (arg1);
1941 return t;
1944 /* Attempt to fold type conversion operation CODE of expression ARG1 to
1945 type TYPE. If no simplification can be done return NULL_TREE. */
1947 static tree
1948 fold_convert_const (enum tree_code code, tree type, tree arg1)
1950 if (TREE_TYPE (arg1) == type)
1951 return arg1;
1953 if (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type))
1955 if (TREE_CODE (arg1) == INTEGER_CST)
1956 return fold_convert_const_int_from_int (type, arg1);
1957 else if (TREE_CODE (arg1) == REAL_CST)
1958 return fold_convert_const_int_from_real (code, type, arg1);
1960 else if (TREE_CODE (type) == REAL_TYPE)
1962 if (TREE_CODE (arg1) == INTEGER_CST)
1963 return build_real_from_int_cst (type, arg1);
1964 if (TREE_CODE (arg1) == REAL_CST)
1965 return fold_convert_const_real_from_real (type, arg1);
1967 return NULL_TREE;
1970 /* Construct a vector of zero elements of vector type TYPE. */
1972 static tree
1973 build_zero_vector (tree type)
1975 tree elem, list;
1976 int i, units;
1978 elem = fold_convert_const (NOP_EXPR, TREE_TYPE (type), integer_zero_node);
1979 units = TYPE_VECTOR_SUBPARTS (type);
1981 list = NULL_TREE;
1982 for (i = 0; i < units; i++)
1983 list = tree_cons (NULL_TREE, elem, list);
1984 return build_vector (type, list);
1987 /* Convert expression ARG to type TYPE. Used by the middle-end for
1988 simple conversions in preference to calling the front-end's convert. */
1990 tree
1991 fold_convert (tree type, tree arg)
1993 tree orig = TREE_TYPE (arg);
1994 tree tem;
1996 if (type == orig)
1997 return arg;
1999 if (TREE_CODE (arg) == ERROR_MARK
2000 || TREE_CODE (type) == ERROR_MARK
2001 || TREE_CODE (orig) == ERROR_MARK)
2002 return error_mark_node;
2004 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig)
2005 || lang_hooks.types_compatible_p (TYPE_MAIN_VARIANT (type),
2006 TYPE_MAIN_VARIANT (orig)))
2007 return fold_build1 (NOP_EXPR, type, arg);
2009 switch (TREE_CODE (type))
2011 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2012 case POINTER_TYPE: case REFERENCE_TYPE:
2013 case OFFSET_TYPE:
2014 if (TREE_CODE (arg) == INTEGER_CST)
2016 tem = fold_convert_const (NOP_EXPR, type, arg);
2017 if (tem != NULL_TREE)
2018 return tem;
2020 if (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2021 || TREE_CODE (orig) == OFFSET_TYPE)
2022 return fold_build1 (NOP_EXPR, type, arg);
2023 if (TREE_CODE (orig) == COMPLEX_TYPE)
2025 tem = fold_build1 (REALPART_EXPR, TREE_TYPE (orig), arg);
2026 return fold_convert (type, tem);
2028 gcc_assert (TREE_CODE (orig) == VECTOR_TYPE
2029 && tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2030 return fold_build1 (NOP_EXPR, type, arg);
2032 case REAL_TYPE:
2033 if (TREE_CODE (arg) == INTEGER_CST)
2035 tem = fold_convert_const (FLOAT_EXPR, type, arg);
2036 if (tem != NULL_TREE)
2037 return tem;
2039 else if (TREE_CODE (arg) == REAL_CST)
2041 tem = fold_convert_const (NOP_EXPR, type, arg);
2042 if (tem != NULL_TREE)
2043 return tem;
2046 switch (TREE_CODE (orig))
2048 case INTEGER_TYPE:
2049 case BOOLEAN_TYPE: case ENUMERAL_TYPE:
2050 case POINTER_TYPE: case REFERENCE_TYPE:
2051 return fold_build1 (FLOAT_EXPR, type, arg);
2053 case REAL_TYPE:
2054 return fold_build1 (NOP_EXPR, type, arg);
2056 case COMPLEX_TYPE:
2057 tem = fold_build1 (REALPART_EXPR, TREE_TYPE (orig), arg);
2058 return fold_convert (type, tem);
2060 default:
2061 gcc_unreachable ();
2064 case COMPLEX_TYPE:
2065 switch (TREE_CODE (orig))
2067 case INTEGER_TYPE:
2068 case BOOLEAN_TYPE: case ENUMERAL_TYPE:
2069 case POINTER_TYPE: case REFERENCE_TYPE:
2070 case REAL_TYPE:
2071 return build2 (COMPLEX_EXPR, type,
2072 fold_convert (TREE_TYPE (type), arg),
2073 fold_convert (TREE_TYPE (type), integer_zero_node));
2074 case COMPLEX_TYPE:
2076 tree rpart, ipart;
2078 if (TREE_CODE (arg) == COMPLEX_EXPR)
2080 rpart = fold_convert (TREE_TYPE (type), TREE_OPERAND (arg, 0));
2081 ipart = fold_convert (TREE_TYPE (type), TREE_OPERAND (arg, 1));
2082 return fold_build2 (COMPLEX_EXPR, type, rpart, ipart);
2085 arg = save_expr (arg);
2086 rpart = fold_build1 (REALPART_EXPR, TREE_TYPE (orig), arg);
2087 ipart = fold_build1 (IMAGPART_EXPR, TREE_TYPE (orig), arg);
2088 rpart = fold_convert (TREE_TYPE (type), rpart);
2089 ipart = fold_convert (TREE_TYPE (type), ipart);
2090 return fold_build2 (COMPLEX_EXPR, type, rpart, ipart);
2093 default:
2094 gcc_unreachable ();
2097 case VECTOR_TYPE:
2098 if (integer_zerop (arg))
2099 return build_zero_vector (type);
2100 gcc_assert (tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2101 gcc_assert (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2102 || TREE_CODE (orig) == VECTOR_TYPE);
2103 return fold_build1 (VIEW_CONVERT_EXPR, type, arg);
2105 case VOID_TYPE:
2106 return fold_build1 (NOP_EXPR, type, fold_ignored_result (arg));
2108 default:
2109 gcc_unreachable ();
2113 /* Return false if expr can be assumed not to be an lvalue, true
2114 otherwise. */
2116 static bool
2117 maybe_lvalue_p (tree x)
2119 /* We only need to wrap lvalue tree codes. */
2120 switch (TREE_CODE (x))
2122 case VAR_DECL:
2123 case PARM_DECL:
2124 case RESULT_DECL:
2125 case LABEL_DECL:
2126 case FUNCTION_DECL:
2127 case SSA_NAME:
2129 case COMPONENT_REF:
2130 case INDIRECT_REF:
2131 case ALIGN_INDIRECT_REF:
2132 case MISALIGNED_INDIRECT_REF:
2133 case ARRAY_REF:
2134 case ARRAY_RANGE_REF:
2135 case BIT_FIELD_REF:
2136 case OBJ_TYPE_REF:
2138 case REALPART_EXPR:
2139 case IMAGPART_EXPR:
2140 case PREINCREMENT_EXPR:
2141 case PREDECREMENT_EXPR:
2142 case SAVE_EXPR:
2143 case TRY_CATCH_EXPR:
2144 case WITH_CLEANUP_EXPR:
2145 case COMPOUND_EXPR:
2146 case MODIFY_EXPR:
2147 case TARGET_EXPR:
2148 case COND_EXPR:
2149 case BIND_EXPR:
2150 case MIN_EXPR:
2151 case MAX_EXPR:
2152 break;
2154 default:
2155 /* Assume the worst for front-end tree codes. */
2156 if ((int)TREE_CODE (x) >= NUM_TREE_CODES)
2157 break;
2158 return false;
2161 return true;
2164 /* Return an expr equal to X but certainly not valid as an lvalue. */
2166 tree
2167 non_lvalue (tree x)
2169 /* While we are in GIMPLE, NON_LVALUE_EXPR doesn't mean anything to
2170 us. */
2171 if (in_gimple_form)
2172 return x;
2174 if (! maybe_lvalue_p (x))
2175 return x;
2176 return build1 (NON_LVALUE_EXPR, TREE_TYPE (x), x);
2179 /* Nonzero means lvalues are limited to those valid in pedantic ANSI C.
2180 Zero means allow extended lvalues. */
2182 int pedantic_lvalues;
2184 /* When pedantic, return an expr equal to X but certainly not valid as a
2185 pedantic lvalue. Otherwise, return X. */
2187 static tree
2188 pedantic_non_lvalue (tree x)
2190 if (pedantic_lvalues)
2191 return non_lvalue (x);
2192 else
2193 return x;
2196 /* Given a tree comparison code, return the code that is the logical inverse
2197 of the given code. It is not safe to do this for floating-point
2198 comparisons, except for NE_EXPR and EQ_EXPR, so we receive a machine mode
2199 as well: if reversing the comparison is unsafe, return ERROR_MARK. */
2201 enum tree_code
2202 invert_tree_comparison (enum tree_code code, bool honor_nans)
2204 if (honor_nans && flag_trapping_math)
2205 return ERROR_MARK;
2207 switch (code)
2209 case EQ_EXPR:
2210 return NE_EXPR;
2211 case NE_EXPR:
2212 return EQ_EXPR;
2213 case GT_EXPR:
2214 return honor_nans ? UNLE_EXPR : LE_EXPR;
2215 case GE_EXPR:
2216 return honor_nans ? UNLT_EXPR : LT_EXPR;
2217 case LT_EXPR:
2218 return honor_nans ? UNGE_EXPR : GE_EXPR;
2219 case LE_EXPR:
2220 return honor_nans ? UNGT_EXPR : GT_EXPR;
2221 case LTGT_EXPR:
2222 return UNEQ_EXPR;
2223 case UNEQ_EXPR:
2224 return LTGT_EXPR;
2225 case UNGT_EXPR:
2226 return LE_EXPR;
2227 case UNGE_EXPR:
2228 return LT_EXPR;
2229 case UNLT_EXPR:
2230 return GE_EXPR;
2231 case UNLE_EXPR:
2232 return GT_EXPR;
2233 case ORDERED_EXPR:
2234 return UNORDERED_EXPR;
2235 case UNORDERED_EXPR:
2236 return ORDERED_EXPR;
2237 default:
2238 gcc_unreachable ();
2242 /* Similar, but return the comparison that results if the operands are
2243 swapped. This is safe for floating-point. */
2245 enum tree_code
2246 swap_tree_comparison (enum tree_code code)
2248 switch (code)
2250 case EQ_EXPR:
2251 case NE_EXPR:
2252 case ORDERED_EXPR:
2253 case UNORDERED_EXPR:
2254 case LTGT_EXPR:
2255 case UNEQ_EXPR:
2256 return code;
2257 case GT_EXPR:
2258 return LT_EXPR;
2259 case GE_EXPR:
2260 return LE_EXPR;
2261 case LT_EXPR:
2262 return GT_EXPR;
2263 case LE_EXPR:
2264 return GE_EXPR;
2265 case UNGT_EXPR:
2266 return UNLT_EXPR;
2267 case UNGE_EXPR:
2268 return UNLE_EXPR;
2269 case UNLT_EXPR:
2270 return UNGT_EXPR;
2271 case UNLE_EXPR:
2272 return UNGE_EXPR;
2273 default:
2274 gcc_unreachable ();
2279 /* Convert a comparison tree code from an enum tree_code representation
2280 into a compcode bit-based encoding. This function is the inverse of
2281 compcode_to_comparison. */
2283 static enum comparison_code
2284 comparison_to_compcode (enum tree_code code)
2286 switch (code)
2288 case LT_EXPR:
2289 return COMPCODE_LT;
2290 case EQ_EXPR:
2291 return COMPCODE_EQ;
2292 case LE_EXPR:
2293 return COMPCODE_LE;
2294 case GT_EXPR:
2295 return COMPCODE_GT;
2296 case NE_EXPR:
2297 return COMPCODE_NE;
2298 case GE_EXPR:
2299 return COMPCODE_GE;
2300 case ORDERED_EXPR:
2301 return COMPCODE_ORD;
2302 case UNORDERED_EXPR:
2303 return COMPCODE_UNORD;
2304 case UNLT_EXPR:
2305 return COMPCODE_UNLT;
2306 case UNEQ_EXPR:
2307 return COMPCODE_UNEQ;
2308 case UNLE_EXPR:
2309 return COMPCODE_UNLE;
2310 case UNGT_EXPR:
2311 return COMPCODE_UNGT;
2312 case LTGT_EXPR:
2313 return COMPCODE_LTGT;
2314 case UNGE_EXPR:
2315 return COMPCODE_UNGE;
2316 default:
2317 gcc_unreachable ();
2321 /* Convert a compcode bit-based encoding of a comparison operator back
2322 to GCC's enum tree_code representation. This function is the
2323 inverse of comparison_to_compcode. */
2325 static enum tree_code
2326 compcode_to_comparison (enum comparison_code code)
2328 switch (code)
2330 case COMPCODE_LT:
2331 return LT_EXPR;
2332 case COMPCODE_EQ:
2333 return EQ_EXPR;
2334 case COMPCODE_LE:
2335 return LE_EXPR;
2336 case COMPCODE_GT:
2337 return GT_EXPR;
2338 case COMPCODE_NE:
2339 return NE_EXPR;
2340 case COMPCODE_GE:
2341 return GE_EXPR;
2342 case COMPCODE_ORD:
2343 return ORDERED_EXPR;
2344 case COMPCODE_UNORD:
2345 return UNORDERED_EXPR;
2346 case COMPCODE_UNLT:
2347 return UNLT_EXPR;
2348 case COMPCODE_UNEQ:
2349 return UNEQ_EXPR;
2350 case COMPCODE_UNLE:
2351 return UNLE_EXPR;
2352 case COMPCODE_UNGT:
2353 return UNGT_EXPR;
2354 case COMPCODE_LTGT:
2355 return LTGT_EXPR;
2356 case COMPCODE_UNGE:
2357 return UNGE_EXPR;
2358 default:
2359 gcc_unreachable ();
2363 /* Return a tree for the comparison which is the combination of
2364 doing the AND or OR (depending on CODE) of the two operations LCODE
2365 and RCODE on the identical operands LL_ARG and LR_ARG. Take into account
2366 the possibility of trapping if the mode has NaNs, and return NULL_TREE
2367 if this makes the transformation invalid. */
2369 tree
2370 combine_comparisons (enum tree_code code, enum tree_code lcode,
2371 enum tree_code rcode, tree truth_type,
2372 tree ll_arg, tree lr_arg)
2374 bool honor_nans = HONOR_NANS (TYPE_MODE (TREE_TYPE (ll_arg)));
2375 enum comparison_code lcompcode = comparison_to_compcode (lcode);
2376 enum comparison_code rcompcode = comparison_to_compcode (rcode);
2377 enum comparison_code compcode;
2379 switch (code)
2381 case TRUTH_AND_EXPR: case TRUTH_ANDIF_EXPR:
2382 compcode = lcompcode & rcompcode;
2383 break;
2385 case TRUTH_OR_EXPR: case TRUTH_ORIF_EXPR:
2386 compcode = lcompcode | rcompcode;
2387 break;
2389 default:
2390 return NULL_TREE;
2393 if (!honor_nans)
2395 /* Eliminate unordered comparisons, as well as LTGT and ORD
2396 which are not used unless the mode has NaNs. */
2397 compcode &= ~COMPCODE_UNORD;
2398 if (compcode == COMPCODE_LTGT)
2399 compcode = COMPCODE_NE;
2400 else if (compcode == COMPCODE_ORD)
2401 compcode = COMPCODE_TRUE;
2403 else if (flag_trapping_math)
2405 /* Check that the original operation and the optimized ones will trap
2406 under the same condition. */
2407 bool ltrap = (lcompcode & COMPCODE_UNORD) == 0
2408 && (lcompcode != COMPCODE_EQ)
2409 && (lcompcode != COMPCODE_ORD);
2410 bool rtrap = (rcompcode & COMPCODE_UNORD) == 0
2411 && (rcompcode != COMPCODE_EQ)
2412 && (rcompcode != COMPCODE_ORD);
2413 bool trap = (compcode & COMPCODE_UNORD) == 0
2414 && (compcode != COMPCODE_EQ)
2415 && (compcode != COMPCODE_ORD);
2417 /* In a short-circuited boolean expression the LHS might be
2418 such that the RHS, if evaluated, will never trap. For
2419 example, in ORD (x, y) && (x < y), we evaluate the RHS only
2420 if neither x nor y is NaN. (This is a mixed blessing: for
2421 example, the expression above will never trap, hence
2422 optimizing it to x < y would be invalid). */
2423 if ((code == TRUTH_ORIF_EXPR && (lcompcode & COMPCODE_UNORD))
2424 || (code == TRUTH_ANDIF_EXPR && !(lcompcode & COMPCODE_UNORD)))
2425 rtrap = false;
2427 /* If the comparison was short-circuited, and only the RHS
2428 trapped, we may now generate a spurious trap. */
2429 if (rtrap && !ltrap
2430 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
2431 return NULL_TREE;
2433 /* If we changed the conditions that cause a trap, we lose. */
2434 if ((ltrap || rtrap) != trap)
2435 return NULL_TREE;
2438 if (compcode == COMPCODE_TRUE)
2439 return constant_boolean_node (true, truth_type);
2440 else if (compcode == COMPCODE_FALSE)
2441 return constant_boolean_node (false, truth_type);
2442 else
2443 return fold_build2 (compcode_to_comparison (compcode),
2444 truth_type, ll_arg, lr_arg);
2447 /* Return nonzero if CODE is a tree code that represents a truth value. */
2449 static int
2450 truth_value_p (enum tree_code code)
2452 return (TREE_CODE_CLASS (code) == tcc_comparison
2453 || code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR
2454 || code == TRUTH_OR_EXPR || code == TRUTH_ORIF_EXPR
2455 || code == TRUTH_XOR_EXPR || code == TRUTH_NOT_EXPR);
2458 /* Return nonzero if two operands (typically of the same tree node)
2459 are necessarily equal. If either argument has side-effects this
2460 function returns zero. FLAGS modifies behavior as follows:
2462 If OEP_ONLY_CONST is set, only return nonzero for constants.
2463 This function tests whether the operands are indistinguishable;
2464 it does not test whether they are equal using C's == operation.
2465 The distinction is important for IEEE floating point, because
2466 (1) -0.0 and 0.0 are distinguishable, but -0.0==0.0, and
2467 (2) two NaNs may be indistinguishable, but NaN!=NaN.
2469 If OEP_ONLY_CONST is unset, a VAR_DECL is considered equal to itself
2470 even though it may hold multiple values during a function.
2471 This is because a GCC tree node guarantees that nothing else is
2472 executed between the evaluation of its "operands" (which may often
2473 be evaluated in arbitrary order). Hence if the operands themselves
2474 don't side-effect, the VAR_DECLs, PARM_DECLs etc... must hold the
2475 same value in each operand/subexpression. Hence leaving OEP_ONLY_CONST
2476 unset means assuming isochronic (or instantaneous) tree equivalence.
2477 Unless comparing arbitrary expression trees, such as from different
2478 statements, this flag can usually be left unset.
2480 If OEP_PURE_SAME is set, then pure functions with identical arguments
2481 are considered the same. It is used when the caller has other ways
2482 to ensure that global memory is unchanged in between. */
2485 operand_equal_p (tree arg0, tree arg1, unsigned int flags)
2487 /* If either is ERROR_MARK, they aren't equal. */
2488 if (TREE_CODE (arg0) == ERROR_MARK || TREE_CODE (arg1) == ERROR_MARK)
2489 return 0;
2491 /* If both types don't have the same signedness, then we can't consider
2492 them equal. We must check this before the STRIP_NOPS calls
2493 because they may change the signedness of the arguments. */
2494 if (TYPE_UNSIGNED (TREE_TYPE (arg0)) != TYPE_UNSIGNED (TREE_TYPE (arg1)))
2495 return 0;
2497 /* If both types don't have the same precision, then it is not safe
2498 to strip NOPs. */
2499 if (TYPE_PRECISION (TREE_TYPE (arg0)) != TYPE_PRECISION (TREE_TYPE (arg1)))
2500 return 0;
2502 STRIP_NOPS (arg0);
2503 STRIP_NOPS (arg1);
2505 /* In case both args are comparisons but with different comparison
2506 code, try to swap the comparison operands of one arg to produce
2507 a match and compare that variant. */
2508 if (TREE_CODE (arg0) != TREE_CODE (arg1)
2509 && COMPARISON_CLASS_P (arg0)
2510 && COMPARISON_CLASS_P (arg1))
2512 enum tree_code swap_code = swap_tree_comparison (TREE_CODE (arg1));
2514 if (TREE_CODE (arg0) == swap_code)
2515 return operand_equal_p (TREE_OPERAND (arg0, 0),
2516 TREE_OPERAND (arg1, 1), flags)
2517 && operand_equal_p (TREE_OPERAND (arg0, 1),
2518 TREE_OPERAND (arg1, 0), flags);
2521 if (TREE_CODE (arg0) != TREE_CODE (arg1)
2522 /* This is needed for conversions and for COMPONENT_REF.
2523 Might as well play it safe and always test this. */
2524 || TREE_CODE (TREE_TYPE (arg0)) == ERROR_MARK
2525 || TREE_CODE (TREE_TYPE (arg1)) == ERROR_MARK
2526 || TYPE_MODE (TREE_TYPE (arg0)) != TYPE_MODE (TREE_TYPE (arg1)))
2527 return 0;
2529 /* If ARG0 and ARG1 are the same SAVE_EXPR, they are necessarily equal.
2530 We don't care about side effects in that case because the SAVE_EXPR
2531 takes care of that for us. In all other cases, two expressions are
2532 equal if they have no side effects. If we have two identical
2533 expressions with side effects that should be treated the same due
2534 to the only side effects being identical SAVE_EXPR's, that will
2535 be detected in the recursive calls below. */
2536 if (arg0 == arg1 && ! (flags & OEP_ONLY_CONST)
2537 && (TREE_CODE (arg0) == SAVE_EXPR
2538 || (! TREE_SIDE_EFFECTS (arg0) && ! TREE_SIDE_EFFECTS (arg1))))
2539 return 1;
2541 /* Next handle constant cases, those for which we can return 1 even
2542 if ONLY_CONST is set. */
2543 if (TREE_CONSTANT (arg0) && TREE_CONSTANT (arg1))
2544 switch (TREE_CODE (arg0))
2546 case INTEGER_CST:
2547 return (! TREE_CONSTANT_OVERFLOW (arg0)
2548 && ! TREE_CONSTANT_OVERFLOW (arg1)
2549 && tree_int_cst_equal (arg0, arg1));
2551 case REAL_CST:
2552 return (! TREE_CONSTANT_OVERFLOW (arg0)
2553 && ! TREE_CONSTANT_OVERFLOW (arg1)
2554 && REAL_VALUES_IDENTICAL (TREE_REAL_CST (arg0),
2555 TREE_REAL_CST (arg1)));
2557 case VECTOR_CST:
2559 tree v1, v2;
2561 if (TREE_CONSTANT_OVERFLOW (arg0)
2562 || TREE_CONSTANT_OVERFLOW (arg1))
2563 return 0;
2565 v1 = TREE_VECTOR_CST_ELTS (arg0);
2566 v2 = TREE_VECTOR_CST_ELTS (arg1);
2567 while (v1 && v2)
2569 if (!operand_equal_p (TREE_VALUE (v1), TREE_VALUE (v2),
2570 flags))
2571 return 0;
2572 v1 = TREE_CHAIN (v1);
2573 v2 = TREE_CHAIN (v2);
2576 return v1 == v2;
2579 case COMPLEX_CST:
2580 return (operand_equal_p (TREE_REALPART (arg0), TREE_REALPART (arg1),
2581 flags)
2582 && operand_equal_p (TREE_IMAGPART (arg0), TREE_IMAGPART (arg1),
2583 flags));
2585 case STRING_CST:
2586 return (TREE_STRING_LENGTH (arg0) == TREE_STRING_LENGTH (arg1)
2587 && ! memcmp (TREE_STRING_POINTER (arg0),
2588 TREE_STRING_POINTER (arg1),
2589 TREE_STRING_LENGTH (arg0)));
2591 case ADDR_EXPR:
2592 return operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0),
2594 default:
2595 break;
2598 if (flags & OEP_ONLY_CONST)
2599 return 0;
2601 /* Define macros to test an operand from arg0 and arg1 for equality and a
2602 variant that allows null and views null as being different from any
2603 non-null value. In the latter case, if either is null, the both
2604 must be; otherwise, do the normal comparison. */
2605 #define OP_SAME(N) operand_equal_p (TREE_OPERAND (arg0, N), \
2606 TREE_OPERAND (arg1, N), flags)
2608 #define OP_SAME_WITH_NULL(N) \
2609 ((!TREE_OPERAND (arg0, N) || !TREE_OPERAND (arg1, N)) \
2610 ? TREE_OPERAND (arg0, N) == TREE_OPERAND (arg1, N) : OP_SAME (N))
2612 switch (TREE_CODE_CLASS (TREE_CODE (arg0)))
2614 case tcc_unary:
2615 /* Two conversions are equal only if signedness and modes match. */
2616 switch (TREE_CODE (arg0))
2618 case NOP_EXPR:
2619 case CONVERT_EXPR:
2620 case FIX_CEIL_EXPR:
2621 case FIX_TRUNC_EXPR:
2622 case FIX_FLOOR_EXPR:
2623 case FIX_ROUND_EXPR:
2624 if (TYPE_UNSIGNED (TREE_TYPE (arg0))
2625 != TYPE_UNSIGNED (TREE_TYPE (arg1)))
2626 return 0;
2627 break;
2628 default:
2629 break;
2632 return OP_SAME (0);
2635 case tcc_comparison:
2636 case tcc_binary:
2637 if (OP_SAME (0) && OP_SAME (1))
2638 return 1;
2640 /* For commutative ops, allow the other order. */
2641 return (commutative_tree_code (TREE_CODE (arg0))
2642 && operand_equal_p (TREE_OPERAND (arg0, 0),
2643 TREE_OPERAND (arg1, 1), flags)
2644 && operand_equal_p (TREE_OPERAND (arg0, 1),
2645 TREE_OPERAND (arg1, 0), flags));
2647 case tcc_reference:
2648 /* If either of the pointer (or reference) expressions we are
2649 dereferencing contain a side effect, these cannot be equal. */
2650 if (TREE_SIDE_EFFECTS (arg0)
2651 || TREE_SIDE_EFFECTS (arg1))
2652 return 0;
2654 switch (TREE_CODE (arg0))
2656 case INDIRECT_REF:
2657 case ALIGN_INDIRECT_REF:
2658 case MISALIGNED_INDIRECT_REF:
2659 case REALPART_EXPR:
2660 case IMAGPART_EXPR:
2661 return OP_SAME (0);
2663 case ARRAY_REF:
2664 case ARRAY_RANGE_REF:
2665 /* Operands 2 and 3 may be null. */
2666 return (OP_SAME (0)
2667 && OP_SAME (1)
2668 && OP_SAME_WITH_NULL (2)
2669 && OP_SAME_WITH_NULL (3));
2671 case COMPONENT_REF:
2672 /* Handle operand 2 the same as for ARRAY_REF. Operand 0
2673 may be NULL when we're called to compare MEM_EXPRs. */
2674 return OP_SAME_WITH_NULL (0)
2675 && OP_SAME (1)
2676 && OP_SAME_WITH_NULL (2);
2678 case BIT_FIELD_REF:
2679 return OP_SAME (0) && OP_SAME (1) && OP_SAME (2);
2681 default:
2682 return 0;
2685 case tcc_expression:
2686 switch (TREE_CODE (arg0))
2688 case ADDR_EXPR:
2689 case TRUTH_NOT_EXPR:
2690 return OP_SAME (0);
2692 case TRUTH_ANDIF_EXPR:
2693 case TRUTH_ORIF_EXPR:
2694 return OP_SAME (0) && OP_SAME (1);
2696 case TRUTH_AND_EXPR:
2697 case TRUTH_OR_EXPR:
2698 case TRUTH_XOR_EXPR:
2699 if (OP_SAME (0) && OP_SAME (1))
2700 return 1;
2702 /* Otherwise take into account this is a commutative operation. */
2703 return (operand_equal_p (TREE_OPERAND (arg0, 0),
2704 TREE_OPERAND (arg1, 1), flags)
2705 && operand_equal_p (TREE_OPERAND (arg0, 1),
2706 TREE_OPERAND (arg1, 0), flags));
2708 case CALL_EXPR:
2709 /* If the CALL_EXPRs call different functions, then they
2710 clearly can not be equal. */
2711 if (!OP_SAME (0))
2712 return 0;
2715 unsigned int cef = call_expr_flags (arg0);
2716 if (flags & OEP_PURE_SAME)
2717 cef &= ECF_CONST | ECF_PURE;
2718 else
2719 cef &= ECF_CONST;
2720 if (!cef)
2721 return 0;
2724 /* Now see if all the arguments are the same. operand_equal_p
2725 does not handle TREE_LIST, so we walk the operands here
2726 feeding them to operand_equal_p. */
2727 arg0 = TREE_OPERAND (arg0, 1);
2728 arg1 = TREE_OPERAND (arg1, 1);
2729 while (arg0 && arg1)
2731 if (! operand_equal_p (TREE_VALUE (arg0), TREE_VALUE (arg1),
2732 flags))
2733 return 0;
2735 arg0 = TREE_CHAIN (arg0);
2736 arg1 = TREE_CHAIN (arg1);
2739 /* If we get here and both argument lists are exhausted
2740 then the CALL_EXPRs are equal. */
2741 return ! (arg0 || arg1);
2743 default:
2744 return 0;
2747 case tcc_declaration:
2748 /* Consider __builtin_sqrt equal to sqrt. */
2749 return (TREE_CODE (arg0) == FUNCTION_DECL
2750 && DECL_BUILT_IN (arg0) && DECL_BUILT_IN (arg1)
2751 && DECL_BUILT_IN_CLASS (arg0) == DECL_BUILT_IN_CLASS (arg1)
2752 && DECL_FUNCTION_CODE (arg0) == DECL_FUNCTION_CODE (arg1));
2754 default:
2755 return 0;
2758 #undef OP_SAME
2759 #undef OP_SAME_WITH_NULL
2762 /* Similar to operand_equal_p, but see if ARG0 might have been made by
2763 shorten_compare from ARG1 when ARG1 was being compared with OTHER.
2765 When in doubt, return 0. */
2767 static int
2768 operand_equal_for_comparison_p (tree arg0, tree arg1, tree other)
2770 int unsignedp1, unsignedpo;
2771 tree primarg0, primarg1, primother;
2772 unsigned int correct_width;
2774 if (operand_equal_p (arg0, arg1, 0))
2775 return 1;
2777 if (! INTEGRAL_TYPE_P (TREE_TYPE (arg0))
2778 || ! INTEGRAL_TYPE_P (TREE_TYPE (arg1)))
2779 return 0;
2781 /* Discard any conversions that don't change the modes of ARG0 and ARG1
2782 and see if the inner values are the same. This removes any
2783 signedness comparison, which doesn't matter here. */
2784 primarg0 = arg0, primarg1 = arg1;
2785 STRIP_NOPS (primarg0);
2786 STRIP_NOPS (primarg1);
2787 if (operand_equal_p (primarg0, primarg1, 0))
2788 return 1;
2790 /* Duplicate what shorten_compare does to ARG1 and see if that gives the
2791 actual comparison operand, ARG0.
2793 First throw away any conversions to wider types
2794 already present in the operands. */
2796 primarg1 = get_narrower (arg1, &unsignedp1);
2797 primother = get_narrower (other, &unsignedpo);
2799 correct_width = TYPE_PRECISION (TREE_TYPE (arg1));
2800 if (unsignedp1 == unsignedpo
2801 && TYPE_PRECISION (TREE_TYPE (primarg1)) < correct_width
2802 && TYPE_PRECISION (TREE_TYPE (primother)) < correct_width)
2804 tree type = TREE_TYPE (arg0);
2806 /* Make sure shorter operand is extended the right way
2807 to match the longer operand. */
2808 primarg1 = fold_convert (lang_hooks.types.signed_or_unsigned_type
2809 (unsignedp1, TREE_TYPE (primarg1)), primarg1);
2811 if (operand_equal_p (arg0, fold_convert (type, primarg1), 0))
2812 return 1;
2815 return 0;
2818 /* See if ARG is an expression that is either a comparison or is performing
2819 arithmetic on comparisons. The comparisons must only be comparing
2820 two different values, which will be stored in *CVAL1 and *CVAL2; if
2821 they are nonzero it means that some operands have already been found.
2822 No variables may be used anywhere else in the expression except in the
2823 comparisons. If SAVE_P is true it means we removed a SAVE_EXPR around
2824 the expression and save_expr needs to be called with CVAL1 and CVAL2.
2826 If this is true, return 1. Otherwise, return zero. */
2828 static int
2829 twoval_comparison_p (tree arg, tree *cval1, tree *cval2, int *save_p)
2831 enum tree_code code = TREE_CODE (arg);
2832 enum tree_code_class class = TREE_CODE_CLASS (code);
2834 /* We can handle some of the tcc_expression cases here. */
2835 if (class == tcc_expression && code == TRUTH_NOT_EXPR)
2836 class = tcc_unary;
2837 else if (class == tcc_expression
2838 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR
2839 || code == COMPOUND_EXPR))
2840 class = tcc_binary;
2842 else if (class == tcc_expression && code == SAVE_EXPR
2843 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg, 0)))
2845 /* If we've already found a CVAL1 or CVAL2, this expression is
2846 two complex to handle. */
2847 if (*cval1 || *cval2)
2848 return 0;
2850 class = tcc_unary;
2851 *save_p = 1;
2854 switch (class)
2856 case tcc_unary:
2857 return twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p);
2859 case tcc_binary:
2860 return (twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p)
2861 && twoval_comparison_p (TREE_OPERAND (arg, 1),
2862 cval1, cval2, save_p));
2864 case tcc_constant:
2865 return 1;
2867 case tcc_expression:
2868 if (code == COND_EXPR)
2869 return (twoval_comparison_p (TREE_OPERAND (arg, 0),
2870 cval1, cval2, save_p)
2871 && twoval_comparison_p (TREE_OPERAND (arg, 1),
2872 cval1, cval2, save_p)
2873 && twoval_comparison_p (TREE_OPERAND (arg, 2),
2874 cval1, cval2, save_p));
2875 return 0;
2877 case tcc_comparison:
2878 /* First see if we can handle the first operand, then the second. For
2879 the second operand, we know *CVAL1 can't be zero. It must be that
2880 one side of the comparison is each of the values; test for the
2881 case where this isn't true by failing if the two operands
2882 are the same. */
2884 if (operand_equal_p (TREE_OPERAND (arg, 0),
2885 TREE_OPERAND (arg, 1), 0))
2886 return 0;
2888 if (*cval1 == 0)
2889 *cval1 = TREE_OPERAND (arg, 0);
2890 else if (operand_equal_p (*cval1, TREE_OPERAND (arg, 0), 0))
2892 else if (*cval2 == 0)
2893 *cval2 = TREE_OPERAND (arg, 0);
2894 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 0), 0))
2896 else
2897 return 0;
2899 if (operand_equal_p (*cval1, TREE_OPERAND (arg, 1), 0))
2901 else if (*cval2 == 0)
2902 *cval2 = TREE_OPERAND (arg, 1);
2903 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 1), 0))
2905 else
2906 return 0;
2908 return 1;
2910 default:
2911 return 0;
2915 /* ARG is a tree that is known to contain just arithmetic operations and
2916 comparisons. Evaluate the operations in the tree substituting NEW0 for
2917 any occurrence of OLD0 as an operand of a comparison and likewise for
2918 NEW1 and OLD1. */
2920 static tree
2921 eval_subst (tree arg, tree old0, tree new0, tree old1, tree new1)
2923 tree type = TREE_TYPE (arg);
2924 enum tree_code code = TREE_CODE (arg);
2925 enum tree_code_class class = TREE_CODE_CLASS (code);
2927 /* We can handle some of the tcc_expression cases here. */
2928 if (class == tcc_expression && code == TRUTH_NOT_EXPR)
2929 class = tcc_unary;
2930 else if (class == tcc_expression
2931 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
2932 class = tcc_binary;
2934 switch (class)
2936 case tcc_unary:
2937 return fold_build1 (code, type,
2938 eval_subst (TREE_OPERAND (arg, 0),
2939 old0, new0, old1, new1));
2941 case tcc_binary:
2942 return fold_build2 (code, type,
2943 eval_subst (TREE_OPERAND (arg, 0),
2944 old0, new0, old1, new1),
2945 eval_subst (TREE_OPERAND (arg, 1),
2946 old0, new0, old1, new1));
2948 case tcc_expression:
2949 switch (code)
2951 case SAVE_EXPR:
2952 return eval_subst (TREE_OPERAND (arg, 0), old0, new0, old1, new1);
2954 case COMPOUND_EXPR:
2955 return eval_subst (TREE_OPERAND (arg, 1), old0, new0, old1, new1);
2957 case COND_EXPR:
2958 return fold_build3 (code, type,
2959 eval_subst (TREE_OPERAND (arg, 0),
2960 old0, new0, old1, new1),
2961 eval_subst (TREE_OPERAND (arg, 1),
2962 old0, new0, old1, new1),
2963 eval_subst (TREE_OPERAND (arg, 2),
2964 old0, new0, old1, new1));
2965 default:
2966 break;
2968 /* Fall through - ??? */
2970 case tcc_comparison:
2972 tree arg0 = TREE_OPERAND (arg, 0);
2973 tree arg1 = TREE_OPERAND (arg, 1);
2975 /* We need to check both for exact equality and tree equality. The
2976 former will be true if the operand has a side-effect. In that
2977 case, we know the operand occurred exactly once. */
2979 if (arg0 == old0 || operand_equal_p (arg0, old0, 0))
2980 arg0 = new0;
2981 else if (arg0 == old1 || operand_equal_p (arg0, old1, 0))
2982 arg0 = new1;
2984 if (arg1 == old0 || operand_equal_p (arg1, old0, 0))
2985 arg1 = new0;
2986 else if (arg1 == old1 || operand_equal_p (arg1, old1, 0))
2987 arg1 = new1;
2989 return fold_build2 (code, type, arg0, arg1);
2992 default:
2993 return arg;
2997 /* Return a tree for the case when the result of an expression is RESULT
2998 converted to TYPE and OMITTED was previously an operand of the expression
2999 but is now not needed (e.g., we folded OMITTED * 0).
3001 If OMITTED has side effects, we must evaluate it. Otherwise, just do
3002 the conversion of RESULT to TYPE. */
3004 tree
3005 omit_one_operand (tree type, tree result, tree omitted)
3007 tree t = fold_convert (type, result);
3009 if (TREE_SIDE_EFFECTS (omitted))
3010 return build2 (COMPOUND_EXPR, type, fold_ignored_result (omitted), t);
3012 return non_lvalue (t);
3015 /* Similar, but call pedantic_non_lvalue instead of non_lvalue. */
3017 static tree
3018 pedantic_omit_one_operand (tree type, tree result, tree omitted)
3020 tree t = fold_convert (type, result);
3022 if (TREE_SIDE_EFFECTS (omitted))
3023 return build2 (COMPOUND_EXPR, type, fold_ignored_result (omitted), t);
3025 return pedantic_non_lvalue (t);
3028 /* Return a tree for the case when the result of an expression is RESULT
3029 converted to TYPE and OMITTED1 and OMITTED2 were previously operands
3030 of the expression but are now not needed.
3032 If OMITTED1 or OMITTED2 has side effects, they must be evaluated.
3033 If both OMITTED1 and OMITTED2 have side effects, OMITTED1 is
3034 evaluated before OMITTED2. Otherwise, if neither has side effects,
3035 just do the conversion of RESULT to TYPE. */
3037 tree
3038 omit_two_operands (tree type, tree result, tree omitted1, tree omitted2)
3040 tree t = fold_convert (type, result);
3042 if (TREE_SIDE_EFFECTS (omitted2))
3043 t = build2 (COMPOUND_EXPR, type, omitted2, t);
3044 if (TREE_SIDE_EFFECTS (omitted1))
3045 t = build2 (COMPOUND_EXPR, type, omitted1, t);
3047 return TREE_CODE (t) != COMPOUND_EXPR ? non_lvalue (t) : t;
3051 /* Return a simplified tree node for the truth-negation of ARG. This
3052 never alters ARG itself. We assume that ARG is an operation that
3053 returns a truth value (0 or 1).
3055 FIXME: one would think we would fold the result, but it causes
3056 problems with the dominator optimizer. */
3058 tree
3059 fold_truth_not_expr (tree arg)
3061 tree type = TREE_TYPE (arg);
3062 enum tree_code code = TREE_CODE (arg);
3064 /* If this is a comparison, we can simply invert it, except for
3065 floating-point non-equality comparisons, in which case we just
3066 enclose a TRUTH_NOT_EXPR around what we have. */
3068 if (TREE_CODE_CLASS (code) == tcc_comparison)
3070 tree op_type = TREE_TYPE (TREE_OPERAND (arg, 0));
3071 if (FLOAT_TYPE_P (op_type)
3072 && flag_trapping_math
3073 && code != ORDERED_EXPR && code != UNORDERED_EXPR
3074 && code != NE_EXPR && code != EQ_EXPR)
3075 return NULL_TREE;
3076 else
3078 code = invert_tree_comparison (code,
3079 HONOR_NANS (TYPE_MODE (op_type)));
3080 if (code == ERROR_MARK)
3081 return NULL_TREE;
3082 else
3083 return build2 (code, type,
3084 TREE_OPERAND (arg, 0), TREE_OPERAND (arg, 1));
3088 switch (code)
3090 case INTEGER_CST:
3091 return constant_boolean_node (integer_zerop (arg), type);
3093 case TRUTH_AND_EXPR:
3094 return build2 (TRUTH_OR_EXPR, type,
3095 invert_truthvalue (TREE_OPERAND (arg, 0)),
3096 invert_truthvalue (TREE_OPERAND (arg, 1)));
3098 case TRUTH_OR_EXPR:
3099 return build2 (TRUTH_AND_EXPR, type,
3100 invert_truthvalue (TREE_OPERAND (arg, 0)),
3101 invert_truthvalue (TREE_OPERAND (arg, 1)));
3103 case TRUTH_XOR_EXPR:
3104 /* Here we can invert either operand. We invert the first operand
3105 unless the second operand is a TRUTH_NOT_EXPR in which case our
3106 result is the XOR of the first operand with the inside of the
3107 negation of the second operand. */
3109 if (TREE_CODE (TREE_OPERAND (arg, 1)) == TRUTH_NOT_EXPR)
3110 return build2 (TRUTH_XOR_EXPR, type, TREE_OPERAND (arg, 0),
3111 TREE_OPERAND (TREE_OPERAND (arg, 1), 0));
3112 else
3113 return build2 (TRUTH_XOR_EXPR, type,
3114 invert_truthvalue (TREE_OPERAND (arg, 0)),
3115 TREE_OPERAND (arg, 1));
3117 case TRUTH_ANDIF_EXPR:
3118 return build2 (TRUTH_ORIF_EXPR, type,
3119 invert_truthvalue (TREE_OPERAND (arg, 0)),
3120 invert_truthvalue (TREE_OPERAND (arg, 1)));
3122 case TRUTH_ORIF_EXPR:
3123 return build2 (TRUTH_ANDIF_EXPR, type,
3124 invert_truthvalue (TREE_OPERAND (arg, 0)),
3125 invert_truthvalue (TREE_OPERAND (arg, 1)));
3127 case TRUTH_NOT_EXPR:
3128 return TREE_OPERAND (arg, 0);
3130 case COND_EXPR:
3132 tree arg1 = TREE_OPERAND (arg, 1);
3133 tree arg2 = TREE_OPERAND (arg, 2);
3134 /* A COND_EXPR may have a throw as one operand, which
3135 then has void type. Just leave void operands
3136 as they are. */
3137 return build3 (COND_EXPR, type, TREE_OPERAND (arg, 0),
3138 VOID_TYPE_P (TREE_TYPE (arg1))
3139 ? arg1 : invert_truthvalue (arg1),
3140 VOID_TYPE_P (TREE_TYPE (arg2))
3141 ? arg2 : invert_truthvalue (arg2));
3144 case COMPOUND_EXPR:
3145 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg, 0),
3146 invert_truthvalue (TREE_OPERAND (arg, 1)));
3148 case NON_LVALUE_EXPR:
3149 return invert_truthvalue (TREE_OPERAND (arg, 0));
3151 case NOP_EXPR:
3152 if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
3153 return build1 (TRUTH_NOT_EXPR, type, arg);
3155 case CONVERT_EXPR:
3156 case FLOAT_EXPR:
3157 return build1 (TREE_CODE (arg), type,
3158 invert_truthvalue (TREE_OPERAND (arg, 0)));
3160 case BIT_AND_EXPR:
3161 if (!integer_onep (TREE_OPERAND (arg, 1)))
3162 break;
3163 return build2 (EQ_EXPR, type, arg,
3164 build_int_cst (type, 0));
3166 case SAVE_EXPR:
3167 return build1 (TRUTH_NOT_EXPR, type, arg);
3169 case CLEANUP_POINT_EXPR:
3170 return build1 (CLEANUP_POINT_EXPR, type,
3171 invert_truthvalue (TREE_OPERAND (arg, 0)));
3173 default:
3174 break;
3177 return NULL_TREE;
3180 /* Return a simplified tree node for the truth-negation of ARG. This
3181 never alters ARG itself. We assume that ARG is an operation that
3182 returns a truth value (0 or 1).
3184 FIXME: one would think we would fold the result, but it causes
3185 problems with the dominator optimizer. */
3187 tree
3188 invert_truthvalue (tree arg)
3190 tree tem;
3192 if (TREE_CODE (arg) == ERROR_MARK)
3193 return arg;
3195 tem = fold_truth_not_expr (arg);
3196 if (!tem)
3197 tem = build1 (TRUTH_NOT_EXPR, TREE_TYPE (arg), arg);
3199 return tem;
3202 /* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
3203 operands are another bit-wise operation with a common input. If so,
3204 distribute the bit operations to save an operation and possibly two if
3205 constants are involved. For example, convert
3206 (A | B) & (A | C) into A | (B & C)
3207 Further simplification will occur if B and C are constants.
3209 If this optimization cannot be done, 0 will be returned. */
3211 static tree
3212 distribute_bit_expr (enum tree_code code, tree type, tree arg0, tree arg1)
3214 tree common;
3215 tree left, right;
3217 if (TREE_CODE (arg0) != TREE_CODE (arg1)
3218 || TREE_CODE (arg0) == code
3219 || (TREE_CODE (arg0) != BIT_AND_EXPR
3220 && TREE_CODE (arg0) != BIT_IOR_EXPR))
3221 return 0;
3223 if (operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0), 0))
3225 common = TREE_OPERAND (arg0, 0);
3226 left = TREE_OPERAND (arg0, 1);
3227 right = TREE_OPERAND (arg1, 1);
3229 else if (operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 1), 0))
3231 common = TREE_OPERAND (arg0, 0);
3232 left = TREE_OPERAND (arg0, 1);
3233 right = TREE_OPERAND (arg1, 0);
3235 else if (operand_equal_p (TREE_OPERAND (arg0, 1), TREE_OPERAND (arg1, 0), 0))
3237 common = TREE_OPERAND (arg0, 1);
3238 left = TREE_OPERAND (arg0, 0);
3239 right = TREE_OPERAND (arg1, 1);
3241 else if (operand_equal_p (TREE_OPERAND (arg0, 1), TREE_OPERAND (arg1, 1), 0))
3243 common = TREE_OPERAND (arg0, 1);
3244 left = TREE_OPERAND (arg0, 0);
3245 right = TREE_OPERAND (arg1, 0);
3247 else
3248 return 0;
3250 return fold_build2 (TREE_CODE (arg0), type, common,
3251 fold_build2 (code, type, left, right));
3254 /* Knowing that ARG0 and ARG1 are both RDIV_EXPRs, simplify a binary operation
3255 with code CODE. This optimization is unsafe. */
3256 static tree
3257 distribute_real_division (enum tree_code code, tree type, tree arg0, tree arg1)
3259 bool mul0 = TREE_CODE (arg0) == MULT_EXPR;
3260 bool mul1 = TREE_CODE (arg1) == MULT_EXPR;
3262 /* (A / C) +- (B / C) -> (A +- B) / C. */
3263 if (mul0 == mul1
3264 && operand_equal_p (TREE_OPERAND (arg0, 1),
3265 TREE_OPERAND (arg1, 1), 0))
3266 return fold_build2 (mul0 ? MULT_EXPR : RDIV_EXPR, type,
3267 fold_build2 (code, type,
3268 TREE_OPERAND (arg0, 0),
3269 TREE_OPERAND (arg1, 0)),
3270 TREE_OPERAND (arg0, 1));
3272 /* (A / C1) +- (A / C2) -> A * (1 / C1 +- 1 / C2). */
3273 if (operand_equal_p (TREE_OPERAND (arg0, 0),
3274 TREE_OPERAND (arg1, 0), 0)
3275 && TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
3276 && TREE_CODE (TREE_OPERAND (arg1, 1)) == REAL_CST)
3278 REAL_VALUE_TYPE r0, r1;
3279 r0 = TREE_REAL_CST (TREE_OPERAND (arg0, 1));
3280 r1 = TREE_REAL_CST (TREE_OPERAND (arg1, 1));
3281 if (!mul0)
3282 real_arithmetic (&r0, RDIV_EXPR, &dconst1, &r0);
3283 if (!mul1)
3284 real_arithmetic (&r1, RDIV_EXPR, &dconst1, &r1);
3285 real_arithmetic (&r0, code, &r0, &r1);
3286 return fold_build2 (MULT_EXPR, type,
3287 TREE_OPERAND (arg0, 0),
3288 build_real (type, r0));
3291 return NULL_TREE;
3294 /* Return a BIT_FIELD_REF of type TYPE to refer to BITSIZE bits of INNER
3295 starting at BITPOS. The field is unsigned if UNSIGNEDP is nonzero. */
3297 static tree
3298 make_bit_field_ref (tree inner, tree type, int bitsize, int bitpos,
3299 int unsignedp)
3301 tree result;
3303 if (bitpos == 0)
3305 tree size = TYPE_SIZE (TREE_TYPE (inner));
3306 if ((INTEGRAL_TYPE_P (TREE_TYPE (inner))
3307 || POINTER_TYPE_P (TREE_TYPE (inner)))
3308 && host_integerp (size, 0)
3309 && tree_low_cst (size, 0) == bitsize)
3310 return fold_convert (type, inner);
3313 result = build3 (BIT_FIELD_REF, type, inner,
3314 size_int (bitsize), bitsize_int (bitpos));
3316 BIT_FIELD_REF_UNSIGNED (result) = unsignedp;
3318 return result;
3321 /* Optimize a bit-field compare.
3323 There are two cases: First is a compare against a constant and the
3324 second is a comparison of two items where the fields are at the same
3325 bit position relative to the start of a chunk (byte, halfword, word)
3326 large enough to contain it. In these cases we can avoid the shift
3327 implicit in bitfield extractions.
3329 For constants, we emit a compare of the shifted constant with the
3330 BIT_AND_EXPR of a mask and a byte, halfword, or word of the operand being
3331 compared. For two fields at the same position, we do the ANDs with the
3332 similar mask and compare the result of the ANDs.
3334 CODE is the comparison code, known to be either NE_EXPR or EQ_EXPR.
3335 COMPARE_TYPE is the type of the comparison, and LHS and RHS
3336 are the left and right operands of the comparison, respectively.
3338 If the optimization described above can be done, we return the resulting
3339 tree. Otherwise we return zero. */
3341 static tree
3342 optimize_bit_field_compare (enum tree_code code, tree compare_type,
3343 tree lhs, tree rhs)
3345 HOST_WIDE_INT lbitpos, lbitsize, rbitpos, rbitsize, nbitpos, nbitsize;
3346 tree type = TREE_TYPE (lhs);
3347 tree signed_type, unsigned_type;
3348 int const_p = TREE_CODE (rhs) == INTEGER_CST;
3349 enum machine_mode lmode, rmode, nmode;
3350 int lunsignedp, runsignedp;
3351 int lvolatilep = 0, rvolatilep = 0;
3352 tree linner, rinner = NULL_TREE;
3353 tree mask;
3354 tree offset;
3356 /* Get all the information about the extractions being done. If the bit size
3357 if the same as the size of the underlying object, we aren't doing an
3358 extraction at all and so can do nothing. We also don't want to
3359 do anything if the inner expression is a PLACEHOLDER_EXPR since we
3360 then will no longer be able to replace it. */
3361 linner = get_inner_reference (lhs, &lbitsize, &lbitpos, &offset, &lmode,
3362 &lunsignedp, &lvolatilep, false);
3363 if (linner == lhs || lbitsize == GET_MODE_BITSIZE (lmode) || lbitsize < 0
3364 || offset != 0 || TREE_CODE (linner) == PLACEHOLDER_EXPR)
3365 return 0;
3367 if (!const_p)
3369 /* If this is not a constant, we can only do something if bit positions,
3370 sizes, and signedness are the same. */
3371 rinner = get_inner_reference (rhs, &rbitsize, &rbitpos, &offset, &rmode,
3372 &runsignedp, &rvolatilep, false);
3374 if (rinner == rhs || lbitpos != rbitpos || lbitsize != rbitsize
3375 || lunsignedp != runsignedp || offset != 0
3376 || TREE_CODE (rinner) == PLACEHOLDER_EXPR)
3377 return 0;
3380 /* See if we can find a mode to refer to this field. We should be able to,
3381 but fail if we can't. */
3382 nmode = get_best_mode (lbitsize, lbitpos,
3383 const_p ? TYPE_ALIGN (TREE_TYPE (linner))
3384 : MIN (TYPE_ALIGN (TREE_TYPE (linner)),
3385 TYPE_ALIGN (TREE_TYPE (rinner))),
3386 word_mode, lvolatilep || rvolatilep);
3387 if (nmode == VOIDmode)
3388 return 0;
3390 /* Set signed and unsigned types of the precision of this mode for the
3391 shifts below. */
3392 signed_type = lang_hooks.types.type_for_mode (nmode, 0);
3393 unsigned_type = lang_hooks.types.type_for_mode (nmode, 1);
3395 /* Compute the bit position and size for the new reference and our offset
3396 within it. If the new reference is the same size as the original, we
3397 won't optimize anything, so return zero. */
3398 nbitsize = GET_MODE_BITSIZE (nmode);
3399 nbitpos = lbitpos & ~ (nbitsize - 1);
3400 lbitpos -= nbitpos;
3401 if (nbitsize == lbitsize)
3402 return 0;
3404 if (BYTES_BIG_ENDIAN)
3405 lbitpos = nbitsize - lbitsize - lbitpos;
3407 /* Make the mask to be used against the extracted field. */
3408 mask = build_int_cst (unsigned_type, -1);
3409 mask = force_fit_type (mask, 0, false, false);
3410 mask = fold_convert (unsigned_type, mask);
3411 mask = const_binop (LSHIFT_EXPR, mask, size_int (nbitsize - lbitsize), 0);
3412 mask = const_binop (RSHIFT_EXPR, mask,
3413 size_int (nbitsize - lbitsize - lbitpos), 0);
3415 if (! const_p)
3416 /* If not comparing with constant, just rework the comparison
3417 and return. */
3418 return build2 (code, compare_type,
3419 build2 (BIT_AND_EXPR, unsigned_type,
3420 make_bit_field_ref (linner, unsigned_type,
3421 nbitsize, nbitpos, 1),
3422 mask),
3423 build2 (BIT_AND_EXPR, unsigned_type,
3424 make_bit_field_ref (rinner, unsigned_type,
3425 nbitsize, nbitpos, 1),
3426 mask));
3428 /* Otherwise, we are handling the constant case. See if the constant is too
3429 big for the field. Warn and return a tree of for 0 (false) if so. We do
3430 this not only for its own sake, but to avoid having to test for this
3431 error case below. If we didn't, we might generate wrong code.
3433 For unsigned fields, the constant shifted right by the field length should
3434 be all zero. For signed fields, the high-order bits should agree with
3435 the sign bit. */
3437 if (lunsignedp)
3439 if (! integer_zerop (const_binop (RSHIFT_EXPR,
3440 fold_convert (unsigned_type, rhs),
3441 size_int (lbitsize), 0)))
3443 warning (0, "comparison is always %d due to width of bit-field",
3444 code == NE_EXPR);
3445 return constant_boolean_node (code == NE_EXPR, compare_type);
3448 else
3450 tree tem = const_binop (RSHIFT_EXPR, fold_convert (signed_type, rhs),
3451 size_int (lbitsize - 1), 0);
3452 if (! integer_zerop (tem) && ! integer_all_onesp (tem))
3454 warning (0, "comparison is always %d due to width of bit-field",
3455 code == NE_EXPR);
3456 return constant_boolean_node (code == NE_EXPR, compare_type);
3460 /* Single-bit compares should always be against zero. */
3461 if (lbitsize == 1 && ! integer_zerop (rhs))
3463 code = code == EQ_EXPR ? NE_EXPR : EQ_EXPR;
3464 rhs = build_int_cst (type, 0);
3467 /* Make a new bitfield reference, shift the constant over the
3468 appropriate number of bits and mask it with the computed mask
3469 (in case this was a signed field). If we changed it, make a new one. */
3470 lhs = make_bit_field_ref (linner, unsigned_type, nbitsize, nbitpos, 1);
3471 if (lvolatilep)
3473 TREE_SIDE_EFFECTS (lhs) = 1;
3474 TREE_THIS_VOLATILE (lhs) = 1;
3477 rhs = const_binop (BIT_AND_EXPR,
3478 const_binop (LSHIFT_EXPR,
3479 fold_convert (unsigned_type, rhs),
3480 size_int (lbitpos), 0),
3481 mask, 0);
3483 return build2 (code, compare_type,
3484 build2 (BIT_AND_EXPR, unsigned_type, lhs, mask),
3485 rhs);
3488 /* Subroutine for fold_truthop: decode a field reference.
3490 If EXP is a comparison reference, we return the innermost reference.
3492 *PBITSIZE is set to the number of bits in the reference, *PBITPOS is
3493 set to the starting bit number.
3495 If the innermost field can be completely contained in a mode-sized
3496 unit, *PMODE is set to that mode. Otherwise, it is set to VOIDmode.
3498 *PVOLATILEP is set to 1 if the any expression encountered is volatile;
3499 otherwise it is not changed.
3501 *PUNSIGNEDP is set to the signedness of the field.
3503 *PMASK is set to the mask used. This is either contained in a
3504 BIT_AND_EXPR or derived from the width of the field.
3506 *PAND_MASK is set to the mask found in a BIT_AND_EXPR, if any.
3508 Return 0 if this is not a component reference or is one that we can't
3509 do anything with. */
3511 static tree
3512 decode_field_reference (tree exp, HOST_WIDE_INT *pbitsize,
3513 HOST_WIDE_INT *pbitpos, enum machine_mode *pmode,
3514 int *punsignedp, int *pvolatilep,
3515 tree *pmask, tree *pand_mask)
3517 tree outer_type = 0;
3518 tree and_mask = 0;
3519 tree mask, inner, offset;
3520 tree unsigned_type;
3521 unsigned int precision;
3523 /* All the optimizations using this function assume integer fields.
3524 There are problems with FP fields since the type_for_size call
3525 below can fail for, e.g., XFmode. */
3526 if (! INTEGRAL_TYPE_P (TREE_TYPE (exp)))
3527 return 0;
3529 /* We are interested in the bare arrangement of bits, so strip everything
3530 that doesn't affect the machine mode. However, record the type of the
3531 outermost expression if it may matter below. */
3532 if (TREE_CODE (exp) == NOP_EXPR
3533 || TREE_CODE (exp) == CONVERT_EXPR
3534 || TREE_CODE (exp) == NON_LVALUE_EXPR)
3535 outer_type = TREE_TYPE (exp);
3536 STRIP_NOPS (exp);
3538 if (TREE_CODE (exp) == BIT_AND_EXPR)
3540 and_mask = TREE_OPERAND (exp, 1);
3541 exp = TREE_OPERAND (exp, 0);
3542 STRIP_NOPS (exp); STRIP_NOPS (and_mask);
3543 if (TREE_CODE (and_mask) != INTEGER_CST)
3544 return 0;
3547 inner = get_inner_reference (exp, pbitsize, pbitpos, &offset, pmode,
3548 punsignedp, pvolatilep, false);
3549 if ((inner == exp && and_mask == 0)
3550 || *pbitsize < 0 || offset != 0
3551 || TREE_CODE (inner) == PLACEHOLDER_EXPR)
3552 return 0;
3554 /* If the number of bits in the reference is the same as the bitsize of
3555 the outer type, then the outer type gives the signedness. Otherwise
3556 (in case of a small bitfield) the signedness is unchanged. */
3557 if (outer_type && *pbitsize == TYPE_PRECISION (outer_type))
3558 *punsignedp = TYPE_UNSIGNED (outer_type);
3560 /* Compute the mask to access the bitfield. */
3561 unsigned_type = lang_hooks.types.type_for_size (*pbitsize, 1);
3562 precision = TYPE_PRECISION (unsigned_type);
3564 mask = build_int_cst (unsigned_type, -1);
3565 mask = force_fit_type (mask, 0, false, false);
3567 mask = const_binop (LSHIFT_EXPR, mask, size_int (precision - *pbitsize), 0);
3568 mask = const_binop (RSHIFT_EXPR, mask, size_int (precision - *pbitsize), 0);
3570 /* Merge it with the mask we found in the BIT_AND_EXPR, if any. */
3571 if (and_mask != 0)
3572 mask = fold_build2 (BIT_AND_EXPR, unsigned_type,
3573 fold_convert (unsigned_type, and_mask), mask);
3575 *pmask = mask;
3576 *pand_mask = and_mask;
3577 return inner;
3580 /* Return nonzero if MASK represents a mask of SIZE ones in the low-order
3581 bit positions. */
3583 static int
3584 all_ones_mask_p (tree mask, int size)
3586 tree type = TREE_TYPE (mask);
3587 unsigned int precision = TYPE_PRECISION (type);
3588 tree tmask;
3590 tmask = build_int_cst (lang_hooks.types.signed_type (type), -1);
3591 tmask = force_fit_type (tmask, 0, false, false);
3593 return
3594 tree_int_cst_equal (mask,
3595 const_binop (RSHIFT_EXPR,
3596 const_binop (LSHIFT_EXPR, tmask,
3597 size_int (precision - size),
3599 size_int (precision - size), 0));
3602 /* Subroutine for fold: determine if VAL is the INTEGER_CONST that
3603 represents the sign bit of EXP's type. If EXP represents a sign
3604 or zero extension, also test VAL against the unextended type.
3605 The return value is the (sub)expression whose sign bit is VAL,
3606 or NULL_TREE otherwise. */
3608 static tree
3609 sign_bit_p (tree exp, tree val)
3611 unsigned HOST_WIDE_INT mask_lo, lo;
3612 HOST_WIDE_INT mask_hi, hi;
3613 int width;
3614 tree t;
3616 /* Tree EXP must have an integral type. */
3617 t = TREE_TYPE (exp);
3618 if (! INTEGRAL_TYPE_P (t))
3619 return NULL_TREE;
3621 /* Tree VAL must be an integer constant. */
3622 if (TREE_CODE (val) != INTEGER_CST
3623 || TREE_CONSTANT_OVERFLOW (val))
3624 return NULL_TREE;
3626 width = TYPE_PRECISION (t);
3627 if (width > HOST_BITS_PER_WIDE_INT)
3629 hi = (unsigned HOST_WIDE_INT) 1 << (width - HOST_BITS_PER_WIDE_INT - 1);
3630 lo = 0;
3632 mask_hi = ((unsigned HOST_WIDE_INT) -1
3633 >> (2 * HOST_BITS_PER_WIDE_INT - width));
3634 mask_lo = -1;
3636 else
3638 hi = 0;
3639 lo = (unsigned HOST_WIDE_INT) 1 << (width - 1);
3641 mask_hi = 0;
3642 mask_lo = ((unsigned HOST_WIDE_INT) -1
3643 >> (HOST_BITS_PER_WIDE_INT - width));
3646 /* We mask off those bits beyond TREE_TYPE (exp) so that we can
3647 treat VAL as if it were unsigned. */
3648 if ((TREE_INT_CST_HIGH (val) & mask_hi) == hi
3649 && (TREE_INT_CST_LOW (val) & mask_lo) == lo)
3650 return exp;
3652 /* Handle extension from a narrower type. */
3653 if (TREE_CODE (exp) == NOP_EXPR
3654 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))) < width)
3655 return sign_bit_p (TREE_OPERAND (exp, 0), val);
3657 return NULL_TREE;
3660 /* Subroutine for fold_truthop: determine if an operand is simple enough
3661 to be evaluated unconditionally. */
3663 static int
3664 simple_operand_p (tree exp)
3666 /* Strip any conversions that don't change the machine mode. */
3667 STRIP_NOPS (exp);
3669 return (CONSTANT_CLASS_P (exp)
3670 || TREE_CODE (exp) == SSA_NAME
3671 || (DECL_P (exp)
3672 && ! TREE_ADDRESSABLE (exp)
3673 && ! TREE_THIS_VOLATILE (exp)
3674 && ! DECL_NONLOCAL (exp)
3675 /* Don't regard global variables as simple. They may be
3676 allocated in ways unknown to the compiler (shared memory,
3677 #pragma weak, etc). */
3678 && ! TREE_PUBLIC (exp)
3679 && ! DECL_EXTERNAL (exp)
3680 /* Loading a static variable is unduly expensive, but global
3681 registers aren't expensive. */
3682 && (! TREE_STATIC (exp) || DECL_REGISTER (exp))));
3685 /* The following functions are subroutines to fold_range_test and allow it to
3686 try to change a logical combination of comparisons into a range test.
3688 For example, both
3689 X == 2 || X == 3 || X == 4 || X == 5
3691 X >= 2 && X <= 5
3692 are converted to
3693 (unsigned) (X - 2) <= 3
3695 We describe each set of comparisons as being either inside or outside
3696 a range, using a variable named like IN_P, and then describe the
3697 range with a lower and upper bound. If one of the bounds is omitted,
3698 it represents either the highest or lowest value of the type.
3700 In the comments below, we represent a range by two numbers in brackets
3701 preceded by a "+" to designate being inside that range, or a "-" to
3702 designate being outside that range, so the condition can be inverted by
3703 flipping the prefix. An omitted bound is represented by a "-". For
3704 example, "- [-, 10]" means being outside the range starting at the lowest
3705 possible value and ending at 10, in other words, being greater than 10.
3706 The range "+ [-, -]" is always true and hence the range "- [-, -]" is
3707 always false.
3709 We set up things so that the missing bounds are handled in a consistent
3710 manner so neither a missing bound nor "true" and "false" need to be
3711 handled using a special case. */
3713 /* Return the result of applying CODE to ARG0 and ARG1, but handle the case
3714 of ARG0 and/or ARG1 being omitted, meaning an unlimited range. UPPER0_P
3715 and UPPER1_P are nonzero if the respective argument is an upper bound
3716 and zero for a lower. TYPE, if nonzero, is the type of the result; it
3717 must be specified for a comparison. ARG1 will be converted to ARG0's
3718 type if both are specified. */
3720 static tree
3721 range_binop (enum tree_code code, tree type, tree arg0, int upper0_p,
3722 tree arg1, int upper1_p)
3724 tree tem;
3725 int result;
3726 int sgn0, sgn1;
3728 /* If neither arg represents infinity, do the normal operation.
3729 Else, if not a comparison, return infinity. Else handle the special
3730 comparison rules. Note that most of the cases below won't occur, but
3731 are handled for consistency. */
3733 if (arg0 != 0 && arg1 != 0)
3735 tem = fold_build2 (code, type != 0 ? type : TREE_TYPE (arg0),
3736 arg0, fold_convert (TREE_TYPE (arg0), arg1));
3737 STRIP_NOPS (tem);
3738 return TREE_CODE (tem) == INTEGER_CST ? tem : 0;
3741 if (TREE_CODE_CLASS (code) != tcc_comparison)
3742 return 0;
3744 /* Set SGN[01] to -1 if ARG[01] is a lower bound, 1 for upper, and 0
3745 for neither. In real maths, we cannot assume open ended ranges are
3746 the same. But, this is computer arithmetic, where numbers are finite.
3747 We can therefore make the transformation of any unbounded range with
3748 the value Z, Z being greater than any representable number. This permits
3749 us to treat unbounded ranges as equal. */
3750 sgn0 = arg0 != 0 ? 0 : (upper0_p ? 1 : -1);
3751 sgn1 = arg1 != 0 ? 0 : (upper1_p ? 1 : -1);
3752 switch (code)
3754 case EQ_EXPR:
3755 result = sgn0 == sgn1;
3756 break;
3757 case NE_EXPR:
3758 result = sgn0 != sgn1;
3759 break;
3760 case LT_EXPR:
3761 result = sgn0 < sgn1;
3762 break;
3763 case LE_EXPR:
3764 result = sgn0 <= sgn1;
3765 break;
3766 case GT_EXPR:
3767 result = sgn0 > sgn1;
3768 break;
3769 case GE_EXPR:
3770 result = sgn0 >= sgn1;
3771 break;
3772 default:
3773 gcc_unreachable ();
3776 return constant_boolean_node (result, type);
3779 /* Given EXP, a logical expression, set the range it is testing into
3780 variables denoted by PIN_P, PLOW, and PHIGH. Return the expression
3781 actually being tested. *PLOW and *PHIGH will be made of the same type
3782 as the returned expression. If EXP is not a comparison, we will most
3783 likely not be returning a useful value and range. */
3785 static tree
3786 make_range (tree exp, int *pin_p, tree *plow, tree *phigh)
3788 enum tree_code code;
3789 tree arg0 = NULL_TREE, arg1 = NULL_TREE;
3790 tree exp_type = NULL_TREE, arg0_type = NULL_TREE;
3791 int in_p, n_in_p;
3792 tree low, high, n_low, n_high;
3794 /* Start with simply saying "EXP != 0" and then look at the code of EXP
3795 and see if we can refine the range. Some of the cases below may not
3796 happen, but it doesn't seem worth worrying about this. We "continue"
3797 the outer loop when we've changed something; otherwise we "break"
3798 the switch, which will "break" the while. */
3800 in_p = 0;
3801 low = high = build_int_cst (TREE_TYPE (exp), 0);
3803 while (1)
3805 code = TREE_CODE (exp);
3806 exp_type = TREE_TYPE (exp);
3808 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
3810 if (TREE_CODE_LENGTH (code) > 0)
3811 arg0 = TREE_OPERAND (exp, 0);
3812 if (TREE_CODE_CLASS (code) == tcc_comparison
3813 || TREE_CODE_CLASS (code) == tcc_unary
3814 || TREE_CODE_CLASS (code) == tcc_binary)
3815 arg0_type = TREE_TYPE (arg0);
3816 if (TREE_CODE_CLASS (code) == tcc_binary
3817 || TREE_CODE_CLASS (code) == tcc_comparison
3818 || (TREE_CODE_CLASS (code) == tcc_expression
3819 && TREE_CODE_LENGTH (code) > 1))
3820 arg1 = TREE_OPERAND (exp, 1);
3823 switch (code)
3825 case TRUTH_NOT_EXPR:
3826 in_p = ! in_p, exp = arg0;
3827 continue;
3829 case EQ_EXPR: case NE_EXPR:
3830 case LT_EXPR: case LE_EXPR: case GE_EXPR: case GT_EXPR:
3831 /* We can only do something if the range is testing for zero
3832 and if the second operand is an integer constant. Note that
3833 saying something is "in" the range we make is done by
3834 complementing IN_P since it will set in the initial case of
3835 being not equal to zero; "out" is leaving it alone. */
3836 if (low == 0 || high == 0
3837 || ! integer_zerop (low) || ! integer_zerop (high)
3838 || TREE_CODE (arg1) != INTEGER_CST)
3839 break;
3841 switch (code)
3843 case NE_EXPR: /* - [c, c] */
3844 low = high = arg1;
3845 break;
3846 case EQ_EXPR: /* + [c, c] */
3847 in_p = ! in_p, low = high = arg1;
3848 break;
3849 case GT_EXPR: /* - [-, c] */
3850 low = 0, high = arg1;
3851 break;
3852 case GE_EXPR: /* + [c, -] */
3853 in_p = ! in_p, low = arg1, high = 0;
3854 break;
3855 case LT_EXPR: /* - [c, -] */
3856 low = arg1, high = 0;
3857 break;
3858 case LE_EXPR: /* + [-, c] */
3859 in_p = ! in_p, low = 0, high = arg1;
3860 break;
3861 default:
3862 gcc_unreachable ();
3865 /* If this is an unsigned comparison, we also know that EXP is
3866 greater than or equal to zero. We base the range tests we make
3867 on that fact, so we record it here so we can parse existing
3868 range tests. We test arg0_type since often the return type
3869 of, e.g. EQ_EXPR, is boolean. */
3870 if (TYPE_UNSIGNED (arg0_type) && (low == 0 || high == 0))
3872 if (! merge_ranges (&n_in_p, &n_low, &n_high,
3873 in_p, low, high, 1,
3874 build_int_cst (arg0_type, 0),
3875 NULL_TREE))
3876 break;
3878 in_p = n_in_p, low = n_low, high = n_high;
3880 /* If the high bound is missing, but we have a nonzero low
3881 bound, reverse the range so it goes from zero to the low bound
3882 minus 1. */
3883 if (high == 0 && low && ! integer_zerop (low))
3885 in_p = ! in_p;
3886 high = range_binop (MINUS_EXPR, NULL_TREE, low, 0,
3887 integer_one_node, 0);
3888 low = build_int_cst (arg0_type, 0);
3892 exp = arg0;
3893 continue;
3895 case NEGATE_EXPR:
3896 /* (-x) IN [a,b] -> x in [-b, -a] */
3897 n_low = range_binop (MINUS_EXPR, exp_type,
3898 build_int_cst (exp_type, 0),
3899 0, high, 1);
3900 n_high = range_binop (MINUS_EXPR, exp_type,
3901 build_int_cst (exp_type, 0),
3902 0, low, 0);
3903 low = n_low, high = n_high;
3904 exp = arg0;
3905 continue;
3907 case BIT_NOT_EXPR:
3908 /* ~ X -> -X - 1 */
3909 exp = build2 (MINUS_EXPR, exp_type, negate_expr (arg0),
3910 build_int_cst (exp_type, 1));
3911 continue;
3913 case PLUS_EXPR: case MINUS_EXPR:
3914 if (TREE_CODE (arg1) != INTEGER_CST)
3915 break;
3917 /* If flag_wrapv and ARG0_TYPE is signed, then we cannot
3918 move a constant to the other side. */
3919 if (flag_wrapv && !TYPE_UNSIGNED (arg0_type))
3920 break;
3922 /* If EXP is signed, any overflow in the computation is undefined,
3923 so we don't worry about it so long as our computations on
3924 the bounds don't overflow. For unsigned, overflow is defined
3925 and this is exactly the right thing. */
3926 n_low = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
3927 arg0_type, low, 0, arg1, 0);
3928 n_high = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
3929 arg0_type, high, 1, arg1, 0);
3930 if ((n_low != 0 && TREE_OVERFLOW (n_low))
3931 || (n_high != 0 && TREE_OVERFLOW (n_high)))
3932 break;
3934 /* Check for an unsigned range which has wrapped around the maximum
3935 value thus making n_high < n_low, and normalize it. */
3936 if (n_low && n_high && tree_int_cst_lt (n_high, n_low))
3938 low = range_binop (PLUS_EXPR, arg0_type, n_high, 0,
3939 integer_one_node, 0);
3940 high = range_binop (MINUS_EXPR, arg0_type, n_low, 0,
3941 integer_one_node, 0);
3943 /* If the range is of the form +/- [ x+1, x ], we won't
3944 be able to normalize it. But then, it represents the
3945 whole range or the empty set, so make it
3946 +/- [ -, - ]. */
3947 if (tree_int_cst_equal (n_low, low)
3948 && tree_int_cst_equal (n_high, high))
3949 low = high = 0;
3950 else
3951 in_p = ! in_p;
3953 else
3954 low = n_low, high = n_high;
3956 exp = arg0;
3957 continue;
3959 case NOP_EXPR: case NON_LVALUE_EXPR: case CONVERT_EXPR:
3960 if (TYPE_PRECISION (arg0_type) > TYPE_PRECISION (exp_type))
3961 break;
3963 if (! INTEGRAL_TYPE_P (arg0_type)
3964 || (low != 0 && ! int_fits_type_p (low, arg0_type))
3965 || (high != 0 && ! int_fits_type_p (high, arg0_type)))
3966 break;
3968 n_low = low, n_high = high;
3970 if (n_low != 0)
3971 n_low = fold_convert (arg0_type, n_low);
3973 if (n_high != 0)
3974 n_high = fold_convert (arg0_type, n_high);
3977 /* If we're converting arg0 from an unsigned type, to exp,
3978 a signed type, we will be doing the comparison as unsigned.
3979 The tests above have already verified that LOW and HIGH
3980 are both positive.
3982 So we have to ensure that we will handle large unsigned
3983 values the same way that the current signed bounds treat
3984 negative values. */
3986 if (!TYPE_UNSIGNED (exp_type) && TYPE_UNSIGNED (arg0_type))
3988 tree high_positive;
3989 tree equiv_type = lang_hooks.types.type_for_mode
3990 (TYPE_MODE (arg0_type), 1);
3992 /* A range without an upper bound is, naturally, unbounded.
3993 Since convert would have cropped a very large value, use
3994 the max value for the destination type. */
3995 high_positive
3996 = TYPE_MAX_VALUE (equiv_type) ? TYPE_MAX_VALUE (equiv_type)
3997 : TYPE_MAX_VALUE (arg0_type);
3999 if (TYPE_PRECISION (exp_type) == TYPE_PRECISION (arg0_type))
4000 high_positive = fold_build2 (RSHIFT_EXPR, arg0_type,
4001 fold_convert (arg0_type,
4002 high_positive),
4003 fold_convert (arg0_type,
4004 integer_one_node));
4006 /* If the low bound is specified, "and" the range with the
4007 range for which the original unsigned value will be
4008 positive. */
4009 if (low != 0)
4011 if (! merge_ranges (&n_in_p, &n_low, &n_high,
4012 1, n_low, n_high, 1,
4013 fold_convert (arg0_type,
4014 integer_zero_node),
4015 high_positive))
4016 break;
4018 in_p = (n_in_p == in_p);
4020 else
4022 /* Otherwise, "or" the range with the range of the input
4023 that will be interpreted as negative. */
4024 if (! merge_ranges (&n_in_p, &n_low, &n_high,
4025 0, n_low, n_high, 1,
4026 fold_convert (arg0_type,
4027 integer_zero_node),
4028 high_positive))
4029 break;
4031 in_p = (in_p != n_in_p);
4035 exp = arg0;
4036 low = n_low, high = n_high;
4037 continue;
4039 default:
4040 break;
4043 break;
4046 /* If EXP is a constant, we can evaluate whether this is true or false. */
4047 if (TREE_CODE (exp) == INTEGER_CST)
4049 in_p = in_p == (integer_onep (range_binop (GE_EXPR, integer_type_node,
4050 exp, 0, low, 0))
4051 && integer_onep (range_binop (LE_EXPR, integer_type_node,
4052 exp, 1, high, 1)));
4053 low = high = 0;
4054 exp = 0;
4057 *pin_p = in_p, *plow = low, *phigh = high;
4058 return exp;
4061 /* Given a range, LOW, HIGH, and IN_P, an expression, EXP, and a result
4062 type, TYPE, return an expression to test if EXP is in (or out of, depending
4063 on IN_P) the range. Return 0 if the test couldn't be created. */
4065 static tree
4066 build_range_check (tree type, tree exp, int in_p, tree low, tree high)
4068 tree etype = TREE_TYPE (exp);
4069 tree value;
4071 #ifdef HAVE_canonicalize_funcptr_for_compare
4072 /* Disable this optimization for function pointer expressions
4073 on targets that require function pointer canonicalization. */
4074 if (HAVE_canonicalize_funcptr_for_compare
4075 && TREE_CODE (etype) == POINTER_TYPE
4076 && TREE_CODE (TREE_TYPE (etype)) == FUNCTION_TYPE)
4077 return NULL_TREE;
4078 #endif
4080 if (! in_p)
4082 value = build_range_check (type, exp, 1, low, high);
4083 if (value != 0)
4084 return invert_truthvalue (value);
4086 return 0;
4089 if (low == 0 && high == 0)
4090 return build_int_cst (type, 1);
4092 if (low == 0)
4093 return fold_build2 (LE_EXPR, type, exp,
4094 fold_convert (etype, high));
4096 if (high == 0)
4097 return fold_build2 (GE_EXPR, type, exp,
4098 fold_convert (etype, low));
4100 if (operand_equal_p (low, high, 0))
4101 return fold_build2 (EQ_EXPR, type, exp,
4102 fold_convert (etype, low));
4104 if (integer_zerop (low))
4106 if (! TYPE_UNSIGNED (etype))
4108 etype = lang_hooks.types.unsigned_type (etype);
4109 high = fold_convert (etype, high);
4110 exp = fold_convert (etype, exp);
4112 return build_range_check (type, exp, 1, 0, high);
4115 /* Optimize (c>=1) && (c<=127) into (signed char)c > 0. */
4116 if (integer_onep (low) && TREE_CODE (high) == INTEGER_CST)
4118 unsigned HOST_WIDE_INT lo;
4119 HOST_WIDE_INT hi;
4120 int prec;
4122 prec = TYPE_PRECISION (etype);
4123 if (prec <= HOST_BITS_PER_WIDE_INT)
4125 hi = 0;
4126 lo = ((unsigned HOST_WIDE_INT) 1 << (prec - 1)) - 1;
4128 else
4130 hi = ((HOST_WIDE_INT) 1 << (prec - HOST_BITS_PER_WIDE_INT - 1)) - 1;
4131 lo = (unsigned HOST_WIDE_INT) -1;
4134 if (TREE_INT_CST_HIGH (high) == hi && TREE_INT_CST_LOW (high) == lo)
4136 if (TYPE_UNSIGNED (etype))
4138 etype = lang_hooks.types.signed_type (etype);
4139 exp = fold_convert (etype, exp);
4141 return fold_build2 (GT_EXPR, type, exp,
4142 build_int_cst (etype, 0));
4146 /* Optimize (c>=low) && (c<=high) into (c-low>=0) && (c-low<=high-low).
4147 This requires wrap-around arithmetics for the type of the expression. */
4148 switch (TREE_CODE (etype))
4150 case INTEGER_TYPE:
4151 /* There is no requirement that LOW be within the range of ETYPE
4152 if the latter is a subtype. It must, however, be within the base
4153 type of ETYPE. So be sure we do the subtraction in that type. */
4154 if (TREE_TYPE (etype))
4155 etype = TREE_TYPE (etype);
4156 break;
4158 case ENUMERAL_TYPE:
4159 case BOOLEAN_TYPE:
4160 etype = lang_hooks.types.type_for_size (TYPE_PRECISION (etype),
4161 TYPE_UNSIGNED (etype));
4162 break;
4164 default:
4165 break;
4168 /* If we don't have wrap-around arithmetics upfront, try to force it. */
4169 if (TREE_CODE (etype) == INTEGER_TYPE
4170 && !TYPE_UNSIGNED (etype) && !flag_wrapv)
4172 tree utype, minv, maxv;
4174 /* Check if (unsigned) INT_MAX + 1 == (unsigned) INT_MIN
4175 for the type in question, as we rely on this here. */
4176 utype = lang_hooks.types.unsigned_type (etype);
4177 maxv = fold_convert (utype, TYPE_MAX_VALUE (etype));
4178 maxv = range_binop (PLUS_EXPR, NULL_TREE, maxv, 1,
4179 integer_one_node, 1);
4180 minv = fold_convert (utype, TYPE_MIN_VALUE (etype));
4182 if (integer_zerop (range_binop (NE_EXPR, integer_type_node,
4183 minv, 1, maxv, 1)))
4184 etype = utype;
4185 else
4186 return 0;
4189 high = fold_convert (etype, high);
4190 low = fold_convert (etype, low);
4191 exp = fold_convert (etype, exp);
4193 value = const_binop (MINUS_EXPR, high, low, 0);
4195 if (value != 0 && !TREE_OVERFLOW (value))
4196 return build_range_check (type,
4197 fold_build2 (MINUS_EXPR, etype, exp, low),
4198 1, build_int_cst (etype, 0), value);
4200 return 0;
4203 /* Return the predecessor of VAL in its type, handling the infinite case. */
4205 static tree
4206 range_predecessor (tree val)
4208 tree type = TREE_TYPE (val);
4210 if (INTEGRAL_TYPE_P (type)
4211 && operand_equal_p (val, TYPE_MIN_VALUE (type), 0))
4212 return 0;
4213 else
4214 return range_binop (MINUS_EXPR, NULL_TREE, val, 0, integer_one_node, 0);
4217 /* Return the successor of VAL in its type, handling the infinite case. */
4219 static tree
4220 range_successor (tree val)
4222 tree type = TREE_TYPE (val);
4224 if (INTEGRAL_TYPE_P (type)
4225 && operand_equal_p (val, TYPE_MAX_VALUE (type), 0))
4226 return 0;
4227 else
4228 return range_binop (PLUS_EXPR, NULL_TREE, val, 0, integer_one_node, 0);
4231 /* Given two ranges, see if we can merge them into one. Return 1 if we
4232 can, 0 if we can't. Set the output range into the specified parameters. */
4234 static int
4235 merge_ranges (int *pin_p, tree *plow, tree *phigh, int in0_p, tree low0,
4236 tree high0, int in1_p, tree low1, tree high1)
4238 int no_overlap;
4239 int subset;
4240 int temp;
4241 tree tem;
4242 int in_p;
4243 tree low, high;
4244 int lowequal = ((low0 == 0 && low1 == 0)
4245 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
4246 low0, 0, low1, 0)));
4247 int highequal = ((high0 == 0 && high1 == 0)
4248 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
4249 high0, 1, high1, 1)));
4251 /* Make range 0 be the range that starts first, or ends last if they
4252 start at the same value. Swap them if it isn't. */
4253 if (integer_onep (range_binop (GT_EXPR, integer_type_node,
4254 low0, 0, low1, 0))
4255 || (lowequal
4256 && integer_onep (range_binop (GT_EXPR, integer_type_node,
4257 high1, 1, high0, 1))))
4259 temp = in0_p, in0_p = in1_p, in1_p = temp;
4260 tem = low0, low0 = low1, low1 = tem;
4261 tem = high0, high0 = high1, high1 = tem;
4264 /* Now flag two cases, whether the ranges are disjoint or whether the
4265 second range is totally subsumed in the first. Note that the tests
4266 below are simplified by the ones above. */
4267 no_overlap = integer_onep (range_binop (LT_EXPR, integer_type_node,
4268 high0, 1, low1, 0));
4269 subset = integer_onep (range_binop (LE_EXPR, integer_type_node,
4270 high1, 1, high0, 1));
4272 /* We now have four cases, depending on whether we are including or
4273 excluding the two ranges. */
4274 if (in0_p && in1_p)
4276 /* If they don't overlap, the result is false. If the second range
4277 is a subset it is the result. Otherwise, the range is from the start
4278 of the second to the end of the first. */
4279 if (no_overlap)
4280 in_p = 0, low = high = 0;
4281 else if (subset)
4282 in_p = 1, low = low1, high = high1;
4283 else
4284 in_p = 1, low = low1, high = high0;
4287 else if (in0_p && ! in1_p)
4289 /* If they don't overlap, the result is the first range. If they are
4290 equal, the result is false. If the second range is a subset of the
4291 first, and the ranges begin at the same place, we go from just after
4292 the end of the second range to the end of the first. If the second
4293 range is not a subset of the first, or if it is a subset and both
4294 ranges end at the same place, the range starts at the start of the
4295 first range and ends just before the second range.
4296 Otherwise, we can't describe this as a single range. */
4297 if (no_overlap)
4298 in_p = 1, low = low0, high = high0;
4299 else if (lowequal && highequal)
4300 in_p = 0, low = high = 0;
4301 else if (subset && lowequal)
4303 low = range_successor (high1);
4304 high = high0;
4305 in_p = (low != 0);
4307 else if (! subset || highequal)
4309 low = low0;
4310 high = range_predecessor (low1);
4311 in_p = (high != 0);
4313 else
4314 return 0;
4317 else if (! in0_p && in1_p)
4319 /* If they don't overlap, the result is the second range. If the second
4320 is a subset of the first, the result is false. Otherwise,
4321 the range starts just after the first range and ends at the
4322 end of the second. */
4323 if (no_overlap)
4324 in_p = 1, low = low1, high = high1;
4325 else if (subset || highequal)
4326 in_p = 0, low = high = 0;
4327 else
4329 low = range_successor (high0);
4330 high = high1;
4331 in_p = (low != 0);
4335 else
4337 /* The case where we are excluding both ranges. Here the complex case
4338 is if they don't overlap. In that case, the only time we have a
4339 range is if they are adjacent. If the second is a subset of the
4340 first, the result is the first. Otherwise, the range to exclude
4341 starts at the beginning of the first range and ends at the end of the
4342 second. */
4343 if (no_overlap)
4345 if (integer_onep (range_binop (EQ_EXPR, integer_type_node,
4346 range_successor (high0),
4347 1, low1, 0)))
4348 in_p = 0, low = low0, high = high1;
4349 else
4351 /* Canonicalize - [min, x] into - [-, x]. */
4352 if (low0 && TREE_CODE (low0) == INTEGER_CST)
4353 switch (TREE_CODE (TREE_TYPE (low0)))
4355 case ENUMERAL_TYPE:
4356 if (TYPE_PRECISION (TREE_TYPE (low0))
4357 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (low0))))
4358 break;
4359 /* FALLTHROUGH */
4360 case INTEGER_TYPE:
4361 if (tree_int_cst_equal (low0,
4362 TYPE_MIN_VALUE (TREE_TYPE (low0))))
4363 low0 = 0;
4364 break;
4365 case POINTER_TYPE:
4366 if (TYPE_UNSIGNED (TREE_TYPE (low0))
4367 && integer_zerop (low0))
4368 low0 = 0;
4369 break;
4370 default:
4371 break;
4374 /* Canonicalize - [x, max] into - [x, -]. */
4375 if (high1 && TREE_CODE (high1) == INTEGER_CST)
4376 switch (TREE_CODE (TREE_TYPE (high1)))
4378 case ENUMERAL_TYPE:
4379 if (TYPE_PRECISION (TREE_TYPE (high1))
4380 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (high1))))
4381 break;
4382 /* FALLTHROUGH */
4383 case INTEGER_TYPE:
4384 if (tree_int_cst_equal (high1,
4385 TYPE_MAX_VALUE (TREE_TYPE (high1))))
4386 high1 = 0;
4387 break;
4388 case POINTER_TYPE:
4389 if (TYPE_UNSIGNED (TREE_TYPE (high1))
4390 && integer_zerop (range_binop (PLUS_EXPR, NULL_TREE,
4391 high1, 1,
4392 integer_one_node, 1)))
4393 high1 = 0;
4394 break;
4395 default:
4396 break;
4399 /* The ranges might be also adjacent between the maximum and
4400 minimum values of the given type. For
4401 - [{min,-}, x] and - [y, {max,-}] ranges where x + 1 < y
4402 return + [x + 1, y - 1]. */
4403 if (low0 == 0 && high1 == 0)
4405 low = range_successor (high0);
4406 high = range_predecessor (low1);
4407 if (low == 0 || high == 0)
4408 return 0;
4410 in_p = 1;
4412 else
4413 return 0;
4416 else if (subset)
4417 in_p = 0, low = low0, high = high0;
4418 else
4419 in_p = 0, low = low0, high = high1;
4422 *pin_p = in_p, *plow = low, *phigh = high;
4423 return 1;
4427 /* Subroutine of fold, looking inside expressions of the form
4428 A op B ? A : C, where ARG0, ARG1 and ARG2 are the three operands
4429 of the COND_EXPR. This function is being used also to optimize
4430 A op B ? C : A, by reversing the comparison first.
4432 Return a folded expression whose code is not a COND_EXPR
4433 anymore, or NULL_TREE if no folding opportunity is found. */
4435 static tree
4436 fold_cond_expr_with_comparison (tree type, tree arg0, tree arg1, tree arg2)
4438 enum tree_code comp_code = TREE_CODE (arg0);
4439 tree arg00 = TREE_OPERAND (arg0, 0);
4440 tree arg01 = TREE_OPERAND (arg0, 1);
4441 tree arg1_type = TREE_TYPE (arg1);
4442 tree tem;
4444 STRIP_NOPS (arg1);
4445 STRIP_NOPS (arg2);
4447 /* If we have A op 0 ? A : -A, consider applying the following
4448 transformations:
4450 A == 0? A : -A same as -A
4451 A != 0? A : -A same as A
4452 A >= 0? A : -A same as abs (A)
4453 A > 0? A : -A same as abs (A)
4454 A <= 0? A : -A same as -abs (A)
4455 A < 0? A : -A same as -abs (A)
4457 None of these transformations work for modes with signed
4458 zeros. If A is +/-0, the first two transformations will
4459 change the sign of the result (from +0 to -0, or vice
4460 versa). The last four will fix the sign of the result,
4461 even though the original expressions could be positive or
4462 negative, depending on the sign of A.
4464 Note that all these transformations are correct if A is
4465 NaN, since the two alternatives (A and -A) are also NaNs. */
4466 if ((FLOAT_TYPE_P (TREE_TYPE (arg01))
4467 ? real_zerop (arg01)
4468 : integer_zerop (arg01))
4469 && ((TREE_CODE (arg2) == NEGATE_EXPR
4470 && operand_equal_p (TREE_OPERAND (arg2, 0), arg1, 0))
4471 /* In the case that A is of the form X-Y, '-A' (arg2) may
4472 have already been folded to Y-X, check for that. */
4473 || (TREE_CODE (arg1) == MINUS_EXPR
4474 && TREE_CODE (arg2) == MINUS_EXPR
4475 && operand_equal_p (TREE_OPERAND (arg1, 0),
4476 TREE_OPERAND (arg2, 1), 0)
4477 && operand_equal_p (TREE_OPERAND (arg1, 1),
4478 TREE_OPERAND (arg2, 0), 0))))
4479 switch (comp_code)
4481 case EQ_EXPR:
4482 case UNEQ_EXPR:
4483 tem = fold_convert (arg1_type, arg1);
4484 return pedantic_non_lvalue (fold_convert (type, negate_expr (tem)));
4485 case NE_EXPR:
4486 case LTGT_EXPR:
4487 return pedantic_non_lvalue (fold_convert (type, arg1));
4488 case UNGE_EXPR:
4489 case UNGT_EXPR:
4490 if (flag_trapping_math)
4491 break;
4492 /* Fall through. */
4493 case GE_EXPR:
4494 case GT_EXPR:
4495 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
4496 arg1 = fold_convert (lang_hooks.types.signed_type
4497 (TREE_TYPE (arg1)), arg1);
4498 tem = fold_build1 (ABS_EXPR, TREE_TYPE (arg1), arg1);
4499 return pedantic_non_lvalue (fold_convert (type, tem));
4500 case UNLE_EXPR:
4501 case UNLT_EXPR:
4502 if (flag_trapping_math)
4503 break;
4504 case LE_EXPR:
4505 case LT_EXPR:
4506 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
4507 arg1 = fold_convert (lang_hooks.types.signed_type
4508 (TREE_TYPE (arg1)), arg1);
4509 tem = fold_build1 (ABS_EXPR, TREE_TYPE (arg1), arg1);
4510 return negate_expr (fold_convert (type, tem));
4511 default:
4512 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
4513 break;
4516 /* A != 0 ? A : 0 is simply A, unless A is -0. Likewise
4517 A == 0 ? A : 0 is always 0 unless A is -0. Note that
4518 both transformations are correct when A is NaN: A != 0
4519 is then true, and A == 0 is false. */
4521 if (integer_zerop (arg01) && integer_zerop (arg2))
4523 if (comp_code == NE_EXPR)
4524 return pedantic_non_lvalue (fold_convert (type, arg1));
4525 else if (comp_code == EQ_EXPR)
4526 return build_int_cst (type, 0);
4529 /* Try some transformations of A op B ? A : B.
4531 A == B? A : B same as B
4532 A != B? A : B same as A
4533 A >= B? A : B same as max (A, B)
4534 A > B? A : B same as max (B, A)
4535 A <= B? A : B same as min (A, B)
4536 A < B? A : B same as min (B, A)
4538 As above, these transformations don't work in the presence
4539 of signed zeros. For example, if A and B are zeros of
4540 opposite sign, the first two transformations will change
4541 the sign of the result. In the last four, the original
4542 expressions give different results for (A=+0, B=-0) and
4543 (A=-0, B=+0), but the transformed expressions do not.
4545 The first two transformations are correct if either A or B
4546 is a NaN. In the first transformation, the condition will
4547 be false, and B will indeed be chosen. In the case of the
4548 second transformation, the condition A != B will be true,
4549 and A will be chosen.
4551 The conversions to max() and min() are not correct if B is
4552 a number and A is not. The conditions in the original
4553 expressions will be false, so all four give B. The min()
4554 and max() versions would give a NaN instead. */
4555 if (operand_equal_for_comparison_p (arg01, arg2, arg00)
4556 /* Avoid these transformations if the COND_EXPR may be used
4557 as an lvalue in the C++ front-end. PR c++/19199. */
4558 && (in_gimple_form
4559 || (strcmp (lang_hooks.name, "GNU C++") != 0
4560 && strcmp (lang_hooks.name, "GNU Objective-C++") != 0)
4561 || ! maybe_lvalue_p (arg1)
4562 || ! maybe_lvalue_p (arg2)))
4564 tree comp_op0 = arg00;
4565 tree comp_op1 = arg01;
4566 tree comp_type = TREE_TYPE (comp_op0);
4568 /* Avoid adding NOP_EXPRs in case this is an lvalue. */
4569 if (TYPE_MAIN_VARIANT (comp_type) == TYPE_MAIN_VARIANT (type))
4571 comp_type = type;
4572 comp_op0 = arg1;
4573 comp_op1 = arg2;
4576 switch (comp_code)
4578 case EQ_EXPR:
4579 return pedantic_non_lvalue (fold_convert (type, arg2));
4580 case NE_EXPR:
4581 return pedantic_non_lvalue (fold_convert (type, arg1));
4582 case LE_EXPR:
4583 case LT_EXPR:
4584 case UNLE_EXPR:
4585 case UNLT_EXPR:
4586 /* In C++ a ?: expression can be an lvalue, so put the
4587 operand which will be used if they are equal first
4588 so that we can convert this back to the
4589 corresponding COND_EXPR. */
4590 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
4592 comp_op0 = fold_convert (comp_type, comp_op0);
4593 comp_op1 = fold_convert (comp_type, comp_op1);
4594 tem = (comp_code == LE_EXPR || comp_code == UNLE_EXPR)
4595 ? fold_build2 (MIN_EXPR, comp_type, comp_op0, comp_op1)
4596 : fold_build2 (MIN_EXPR, comp_type, comp_op1, comp_op0);
4597 return pedantic_non_lvalue (fold_convert (type, tem));
4599 break;
4600 case GE_EXPR:
4601 case GT_EXPR:
4602 case UNGE_EXPR:
4603 case UNGT_EXPR:
4604 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
4606 comp_op0 = fold_convert (comp_type, comp_op0);
4607 comp_op1 = fold_convert (comp_type, comp_op1);
4608 tem = (comp_code == GE_EXPR || comp_code == UNGE_EXPR)
4609 ? fold_build2 (MAX_EXPR, comp_type, comp_op0, comp_op1)
4610 : fold_build2 (MAX_EXPR, comp_type, comp_op1, comp_op0);
4611 return pedantic_non_lvalue (fold_convert (type, tem));
4613 break;
4614 case UNEQ_EXPR:
4615 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
4616 return pedantic_non_lvalue (fold_convert (type, arg2));
4617 break;
4618 case LTGT_EXPR:
4619 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
4620 return pedantic_non_lvalue (fold_convert (type, arg1));
4621 break;
4622 default:
4623 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
4624 break;
4628 /* If this is A op C1 ? A : C2 with C1 and C2 constant integers,
4629 we might still be able to simplify this. For example,
4630 if C1 is one less or one more than C2, this might have started
4631 out as a MIN or MAX and been transformed by this function.
4632 Only good for INTEGER_TYPEs, because we need TYPE_MAX_VALUE. */
4634 if (INTEGRAL_TYPE_P (type)
4635 && TREE_CODE (arg01) == INTEGER_CST
4636 && TREE_CODE (arg2) == INTEGER_CST)
4637 switch (comp_code)
4639 case EQ_EXPR:
4640 /* We can replace A with C1 in this case. */
4641 arg1 = fold_convert (type, arg01);
4642 return fold_build3 (COND_EXPR, type, arg0, arg1, arg2);
4644 case LT_EXPR:
4645 /* If C1 is C2 + 1, this is min(A, C2). */
4646 if (! operand_equal_p (arg2, TYPE_MAX_VALUE (type),
4647 OEP_ONLY_CONST)
4648 && operand_equal_p (arg01,
4649 const_binop (PLUS_EXPR, arg2,
4650 integer_one_node, 0),
4651 OEP_ONLY_CONST))
4652 return pedantic_non_lvalue (fold_build2 (MIN_EXPR,
4653 type, arg1, arg2));
4654 break;
4656 case LE_EXPR:
4657 /* If C1 is C2 - 1, this is min(A, C2). */
4658 if (! operand_equal_p (arg2, TYPE_MIN_VALUE (type),
4659 OEP_ONLY_CONST)
4660 && operand_equal_p (arg01,
4661 const_binop (MINUS_EXPR, arg2,
4662 integer_one_node, 0),
4663 OEP_ONLY_CONST))
4664 return pedantic_non_lvalue (fold_build2 (MIN_EXPR,
4665 type, arg1, arg2));
4666 break;
4668 case GT_EXPR:
4669 /* If C1 is C2 - 1, this is max(A, C2). */
4670 if (! operand_equal_p (arg2, TYPE_MIN_VALUE (type),
4671 OEP_ONLY_CONST)
4672 && operand_equal_p (arg01,
4673 const_binop (MINUS_EXPR, arg2,
4674 integer_one_node, 0),
4675 OEP_ONLY_CONST))
4676 return pedantic_non_lvalue (fold_build2 (MAX_EXPR,
4677 type, arg1, arg2));
4678 break;
4680 case GE_EXPR:
4681 /* If C1 is C2 + 1, this is max(A, C2). */
4682 if (! operand_equal_p (arg2, TYPE_MAX_VALUE (type),
4683 OEP_ONLY_CONST)
4684 && operand_equal_p (arg01,
4685 const_binop (PLUS_EXPR, arg2,
4686 integer_one_node, 0),
4687 OEP_ONLY_CONST))
4688 return pedantic_non_lvalue (fold_build2 (MAX_EXPR,
4689 type, arg1, arg2));
4690 break;
4691 case NE_EXPR:
4692 break;
4693 default:
4694 gcc_unreachable ();
4697 return NULL_TREE;
4702 #ifndef LOGICAL_OP_NON_SHORT_CIRCUIT
4703 #define LOGICAL_OP_NON_SHORT_CIRCUIT (BRANCH_COST >= 2)
4704 #endif
4706 /* EXP is some logical combination of boolean tests. See if we can
4707 merge it into some range test. Return the new tree if so. */
4709 static tree
4710 fold_range_test (enum tree_code code, tree type, tree op0, tree op1)
4712 int or_op = (code == TRUTH_ORIF_EXPR
4713 || code == TRUTH_OR_EXPR);
4714 int in0_p, in1_p, in_p;
4715 tree low0, low1, low, high0, high1, high;
4716 tree lhs = make_range (op0, &in0_p, &low0, &high0);
4717 tree rhs = make_range (op1, &in1_p, &low1, &high1);
4718 tree tem;
4720 /* If this is an OR operation, invert both sides; we will invert
4721 again at the end. */
4722 if (or_op)
4723 in0_p = ! in0_p, in1_p = ! in1_p;
4725 /* If both expressions are the same, if we can merge the ranges, and we
4726 can build the range test, return it or it inverted. If one of the
4727 ranges is always true or always false, consider it to be the same
4728 expression as the other. */
4729 if ((lhs == 0 || rhs == 0 || operand_equal_p (lhs, rhs, 0))
4730 && merge_ranges (&in_p, &low, &high, in0_p, low0, high0,
4731 in1_p, low1, high1)
4732 && 0 != (tem = (build_range_check (type,
4733 lhs != 0 ? lhs
4734 : rhs != 0 ? rhs : integer_zero_node,
4735 in_p, low, high))))
4736 return or_op ? invert_truthvalue (tem) : tem;
4738 /* On machines where the branch cost is expensive, if this is a
4739 short-circuited branch and the underlying object on both sides
4740 is the same, make a non-short-circuit operation. */
4741 else if (LOGICAL_OP_NON_SHORT_CIRCUIT
4742 && lhs != 0 && rhs != 0
4743 && (code == TRUTH_ANDIF_EXPR
4744 || code == TRUTH_ORIF_EXPR)
4745 && operand_equal_p (lhs, rhs, 0))
4747 /* If simple enough, just rewrite. Otherwise, make a SAVE_EXPR
4748 unless we are at top level or LHS contains a PLACEHOLDER_EXPR, in
4749 which cases we can't do this. */
4750 if (simple_operand_p (lhs))
4751 return build2 (code == TRUTH_ANDIF_EXPR
4752 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
4753 type, op0, op1);
4755 else if (lang_hooks.decls.global_bindings_p () == 0
4756 && ! CONTAINS_PLACEHOLDER_P (lhs))
4758 tree common = save_expr (lhs);
4760 if (0 != (lhs = build_range_check (type, common,
4761 or_op ? ! in0_p : in0_p,
4762 low0, high0))
4763 && (0 != (rhs = build_range_check (type, common,
4764 or_op ? ! in1_p : in1_p,
4765 low1, high1))))
4766 return build2 (code == TRUTH_ANDIF_EXPR
4767 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
4768 type, lhs, rhs);
4772 return 0;
4775 /* Subroutine for fold_truthop: C is an INTEGER_CST interpreted as a P
4776 bit value. Arrange things so the extra bits will be set to zero if and
4777 only if C is signed-extended to its full width. If MASK is nonzero,
4778 it is an INTEGER_CST that should be AND'ed with the extra bits. */
4780 static tree
4781 unextend (tree c, int p, int unsignedp, tree mask)
4783 tree type = TREE_TYPE (c);
4784 int modesize = GET_MODE_BITSIZE (TYPE_MODE (type));
4785 tree temp;
4787 if (p == modesize || unsignedp)
4788 return c;
4790 /* We work by getting just the sign bit into the low-order bit, then
4791 into the high-order bit, then sign-extend. We then XOR that value
4792 with C. */
4793 temp = const_binop (RSHIFT_EXPR, c, size_int (p - 1), 0);
4794 temp = const_binop (BIT_AND_EXPR, temp, size_int (1), 0);
4796 /* We must use a signed type in order to get an arithmetic right shift.
4797 However, we must also avoid introducing accidental overflows, so that
4798 a subsequent call to integer_zerop will work. Hence we must
4799 do the type conversion here. At this point, the constant is either
4800 zero or one, and the conversion to a signed type can never overflow.
4801 We could get an overflow if this conversion is done anywhere else. */
4802 if (TYPE_UNSIGNED (type))
4803 temp = fold_convert (lang_hooks.types.signed_type (type), temp);
4805 temp = const_binop (LSHIFT_EXPR, temp, size_int (modesize - 1), 0);
4806 temp = const_binop (RSHIFT_EXPR, temp, size_int (modesize - p - 1), 0);
4807 if (mask != 0)
4808 temp = const_binop (BIT_AND_EXPR, temp,
4809 fold_convert (TREE_TYPE (c), mask), 0);
4810 /* If necessary, convert the type back to match the type of C. */
4811 if (TYPE_UNSIGNED (type))
4812 temp = fold_convert (type, temp);
4814 return fold_convert (type, const_binop (BIT_XOR_EXPR, c, temp, 0));
4817 /* Find ways of folding logical expressions of LHS and RHS:
4818 Try to merge two comparisons to the same innermost item.
4819 Look for range tests like "ch >= '0' && ch <= '9'".
4820 Look for combinations of simple terms on machines with expensive branches
4821 and evaluate the RHS unconditionally.
4823 For example, if we have p->a == 2 && p->b == 4 and we can make an
4824 object large enough to span both A and B, we can do this with a comparison
4825 against the object ANDed with the a mask.
4827 If we have p->a == q->a && p->b == q->b, we may be able to use bit masking
4828 operations to do this with one comparison.
4830 We check for both normal comparisons and the BIT_AND_EXPRs made this by
4831 function and the one above.
4833 CODE is the logical operation being done. It can be TRUTH_ANDIF_EXPR,
4834 TRUTH_AND_EXPR, TRUTH_ORIF_EXPR, or TRUTH_OR_EXPR.
4836 TRUTH_TYPE is the type of the logical operand and LHS and RHS are its
4837 two operands.
4839 We return the simplified tree or 0 if no optimization is possible. */
4841 static tree
4842 fold_truthop (enum tree_code code, tree truth_type, tree lhs, tree rhs)
4844 /* If this is the "or" of two comparisons, we can do something if
4845 the comparisons are NE_EXPR. If this is the "and", we can do something
4846 if the comparisons are EQ_EXPR. I.e.,
4847 (a->b == 2 && a->c == 4) can become (a->new == NEW).
4849 WANTED_CODE is this operation code. For single bit fields, we can
4850 convert EQ_EXPR to NE_EXPR so we need not reject the "wrong"
4851 comparison for one-bit fields. */
4853 enum tree_code wanted_code;
4854 enum tree_code lcode, rcode;
4855 tree ll_arg, lr_arg, rl_arg, rr_arg;
4856 tree ll_inner, lr_inner, rl_inner, rr_inner;
4857 HOST_WIDE_INT ll_bitsize, ll_bitpos, lr_bitsize, lr_bitpos;
4858 HOST_WIDE_INT rl_bitsize, rl_bitpos, rr_bitsize, rr_bitpos;
4859 HOST_WIDE_INT xll_bitpos, xlr_bitpos, xrl_bitpos, xrr_bitpos;
4860 HOST_WIDE_INT lnbitsize, lnbitpos, rnbitsize, rnbitpos;
4861 int ll_unsignedp, lr_unsignedp, rl_unsignedp, rr_unsignedp;
4862 enum machine_mode ll_mode, lr_mode, rl_mode, rr_mode;
4863 enum machine_mode lnmode, rnmode;
4864 tree ll_mask, lr_mask, rl_mask, rr_mask;
4865 tree ll_and_mask, lr_and_mask, rl_and_mask, rr_and_mask;
4866 tree l_const, r_const;
4867 tree lntype, rntype, result;
4868 int first_bit, end_bit;
4869 int volatilep;
4870 tree orig_lhs = lhs, orig_rhs = rhs;
4871 enum tree_code orig_code = code;
4873 /* Start by getting the comparison codes. Fail if anything is volatile.
4874 If one operand is a BIT_AND_EXPR with the constant one, treat it as if
4875 it were surrounded with a NE_EXPR. */
4877 if (TREE_SIDE_EFFECTS (lhs) || TREE_SIDE_EFFECTS (rhs))
4878 return 0;
4880 lcode = TREE_CODE (lhs);
4881 rcode = TREE_CODE (rhs);
4883 if (lcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (lhs, 1)))
4885 lhs = build2 (NE_EXPR, truth_type, lhs,
4886 build_int_cst (TREE_TYPE (lhs), 0));
4887 lcode = NE_EXPR;
4890 if (rcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (rhs, 1)))
4892 rhs = build2 (NE_EXPR, truth_type, rhs,
4893 build_int_cst (TREE_TYPE (rhs), 0));
4894 rcode = NE_EXPR;
4897 if (TREE_CODE_CLASS (lcode) != tcc_comparison
4898 || TREE_CODE_CLASS (rcode) != tcc_comparison)
4899 return 0;
4901 ll_arg = TREE_OPERAND (lhs, 0);
4902 lr_arg = TREE_OPERAND (lhs, 1);
4903 rl_arg = TREE_OPERAND (rhs, 0);
4904 rr_arg = TREE_OPERAND (rhs, 1);
4906 /* Simplify (x<y) && (x==y) into (x<=y) and related optimizations. */
4907 if (simple_operand_p (ll_arg)
4908 && simple_operand_p (lr_arg))
4910 tree result;
4911 if (operand_equal_p (ll_arg, rl_arg, 0)
4912 && operand_equal_p (lr_arg, rr_arg, 0))
4914 result = combine_comparisons (code, lcode, rcode,
4915 truth_type, ll_arg, lr_arg);
4916 if (result)
4917 return result;
4919 else if (operand_equal_p (ll_arg, rr_arg, 0)
4920 && operand_equal_p (lr_arg, rl_arg, 0))
4922 result = combine_comparisons (code, lcode,
4923 swap_tree_comparison (rcode),
4924 truth_type, ll_arg, lr_arg);
4925 if (result)
4926 return result;
4930 code = ((code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR)
4931 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR);
4933 /* If the RHS can be evaluated unconditionally and its operands are
4934 simple, it wins to evaluate the RHS unconditionally on machines
4935 with expensive branches. In this case, this isn't a comparison
4936 that can be merged. Avoid doing this if the RHS is a floating-point
4937 comparison since those can trap. */
4939 if (BRANCH_COST >= 2
4940 && ! FLOAT_TYPE_P (TREE_TYPE (rl_arg))
4941 && simple_operand_p (rl_arg)
4942 && simple_operand_p (rr_arg))
4944 /* Convert (a != 0) || (b != 0) into (a | b) != 0. */
4945 if (code == TRUTH_OR_EXPR
4946 && lcode == NE_EXPR && integer_zerop (lr_arg)
4947 && rcode == NE_EXPR && integer_zerop (rr_arg)
4948 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg))
4949 return build2 (NE_EXPR, truth_type,
4950 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
4951 ll_arg, rl_arg),
4952 build_int_cst (TREE_TYPE (ll_arg), 0));
4954 /* Convert (a == 0) && (b == 0) into (a | b) == 0. */
4955 if (code == TRUTH_AND_EXPR
4956 && lcode == EQ_EXPR && integer_zerop (lr_arg)
4957 && rcode == EQ_EXPR && integer_zerop (rr_arg)
4958 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg))
4959 return build2 (EQ_EXPR, truth_type,
4960 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
4961 ll_arg, rl_arg),
4962 build_int_cst (TREE_TYPE (ll_arg), 0));
4964 if (LOGICAL_OP_NON_SHORT_CIRCUIT)
4966 if (code != orig_code || lhs != orig_lhs || rhs != orig_rhs)
4967 return build2 (code, truth_type, lhs, rhs);
4968 return NULL_TREE;
4972 /* See if the comparisons can be merged. Then get all the parameters for
4973 each side. */
4975 if ((lcode != EQ_EXPR && lcode != NE_EXPR)
4976 || (rcode != EQ_EXPR && rcode != NE_EXPR))
4977 return 0;
4979 volatilep = 0;
4980 ll_inner = decode_field_reference (ll_arg,
4981 &ll_bitsize, &ll_bitpos, &ll_mode,
4982 &ll_unsignedp, &volatilep, &ll_mask,
4983 &ll_and_mask);
4984 lr_inner = decode_field_reference (lr_arg,
4985 &lr_bitsize, &lr_bitpos, &lr_mode,
4986 &lr_unsignedp, &volatilep, &lr_mask,
4987 &lr_and_mask);
4988 rl_inner = decode_field_reference (rl_arg,
4989 &rl_bitsize, &rl_bitpos, &rl_mode,
4990 &rl_unsignedp, &volatilep, &rl_mask,
4991 &rl_and_mask);
4992 rr_inner = decode_field_reference (rr_arg,
4993 &rr_bitsize, &rr_bitpos, &rr_mode,
4994 &rr_unsignedp, &volatilep, &rr_mask,
4995 &rr_and_mask);
4997 /* It must be true that the inner operation on the lhs of each
4998 comparison must be the same if we are to be able to do anything.
4999 Then see if we have constants. If not, the same must be true for
5000 the rhs's. */
5001 if (volatilep || ll_inner == 0 || rl_inner == 0
5002 || ! operand_equal_p (ll_inner, rl_inner, 0))
5003 return 0;
5005 if (TREE_CODE (lr_arg) == INTEGER_CST
5006 && TREE_CODE (rr_arg) == INTEGER_CST)
5007 l_const = lr_arg, r_const = rr_arg;
5008 else if (lr_inner == 0 || rr_inner == 0
5009 || ! operand_equal_p (lr_inner, rr_inner, 0))
5010 return 0;
5011 else
5012 l_const = r_const = 0;
5014 /* If either comparison code is not correct for our logical operation,
5015 fail. However, we can convert a one-bit comparison against zero into
5016 the opposite comparison against that bit being set in the field. */
5018 wanted_code = (code == TRUTH_AND_EXPR ? EQ_EXPR : NE_EXPR);
5019 if (lcode != wanted_code)
5021 if (l_const && integer_zerop (l_const) && integer_pow2p (ll_mask))
5023 /* Make the left operand unsigned, since we are only interested
5024 in the value of one bit. Otherwise we are doing the wrong
5025 thing below. */
5026 ll_unsignedp = 1;
5027 l_const = ll_mask;
5029 else
5030 return 0;
5033 /* This is analogous to the code for l_const above. */
5034 if (rcode != wanted_code)
5036 if (r_const && integer_zerop (r_const) && integer_pow2p (rl_mask))
5038 rl_unsignedp = 1;
5039 r_const = rl_mask;
5041 else
5042 return 0;
5045 /* After this point all optimizations will generate bit-field
5046 references, which we might not want. */
5047 if (! lang_hooks.can_use_bit_fields_p ())
5048 return 0;
5050 /* See if we can find a mode that contains both fields being compared on
5051 the left. If we can't, fail. Otherwise, update all constants and masks
5052 to be relative to a field of that size. */
5053 first_bit = MIN (ll_bitpos, rl_bitpos);
5054 end_bit = MAX (ll_bitpos + ll_bitsize, rl_bitpos + rl_bitsize);
5055 lnmode = get_best_mode (end_bit - first_bit, first_bit,
5056 TYPE_ALIGN (TREE_TYPE (ll_inner)), word_mode,
5057 volatilep);
5058 if (lnmode == VOIDmode)
5059 return 0;
5061 lnbitsize = GET_MODE_BITSIZE (lnmode);
5062 lnbitpos = first_bit & ~ (lnbitsize - 1);
5063 lntype = lang_hooks.types.type_for_size (lnbitsize, 1);
5064 xll_bitpos = ll_bitpos - lnbitpos, xrl_bitpos = rl_bitpos - lnbitpos;
5066 if (BYTES_BIG_ENDIAN)
5068 xll_bitpos = lnbitsize - xll_bitpos - ll_bitsize;
5069 xrl_bitpos = lnbitsize - xrl_bitpos - rl_bitsize;
5072 ll_mask = const_binop (LSHIFT_EXPR, fold_convert (lntype, ll_mask),
5073 size_int (xll_bitpos), 0);
5074 rl_mask = const_binop (LSHIFT_EXPR, fold_convert (lntype, rl_mask),
5075 size_int (xrl_bitpos), 0);
5077 if (l_const)
5079 l_const = fold_convert (lntype, l_const);
5080 l_const = unextend (l_const, ll_bitsize, ll_unsignedp, ll_and_mask);
5081 l_const = const_binop (LSHIFT_EXPR, l_const, size_int (xll_bitpos), 0);
5082 if (! integer_zerop (const_binop (BIT_AND_EXPR, l_const,
5083 fold_build1 (BIT_NOT_EXPR,
5084 lntype, ll_mask),
5085 0)))
5087 warning (0, "comparison is always %d", wanted_code == NE_EXPR);
5089 return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
5092 if (r_const)
5094 r_const = fold_convert (lntype, r_const);
5095 r_const = unextend (r_const, rl_bitsize, rl_unsignedp, rl_and_mask);
5096 r_const = const_binop (LSHIFT_EXPR, r_const, size_int (xrl_bitpos), 0);
5097 if (! integer_zerop (const_binop (BIT_AND_EXPR, r_const,
5098 fold_build1 (BIT_NOT_EXPR,
5099 lntype, rl_mask),
5100 0)))
5102 warning (0, "comparison is always %d", wanted_code == NE_EXPR);
5104 return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
5108 /* If the right sides are not constant, do the same for it. Also,
5109 disallow this optimization if a size or signedness mismatch occurs
5110 between the left and right sides. */
5111 if (l_const == 0)
5113 if (ll_bitsize != lr_bitsize || rl_bitsize != rr_bitsize
5114 || ll_unsignedp != lr_unsignedp || rl_unsignedp != rr_unsignedp
5115 /* Make sure the two fields on the right
5116 correspond to the left without being swapped. */
5117 || ll_bitpos - rl_bitpos != lr_bitpos - rr_bitpos)
5118 return 0;
5120 first_bit = MIN (lr_bitpos, rr_bitpos);
5121 end_bit = MAX (lr_bitpos + lr_bitsize, rr_bitpos + rr_bitsize);
5122 rnmode = get_best_mode (end_bit - first_bit, first_bit,
5123 TYPE_ALIGN (TREE_TYPE (lr_inner)), word_mode,
5124 volatilep);
5125 if (rnmode == VOIDmode)
5126 return 0;
5128 rnbitsize = GET_MODE_BITSIZE (rnmode);
5129 rnbitpos = first_bit & ~ (rnbitsize - 1);
5130 rntype = lang_hooks.types.type_for_size (rnbitsize, 1);
5131 xlr_bitpos = lr_bitpos - rnbitpos, xrr_bitpos = rr_bitpos - rnbitpos;
5133 if (BYTES_BIG_ENDIAN)
5135 xlr_bitpos = rnbitsize - xlr_bitpos - lr_bitsize;
5136 xrr_bitpos = rnbitsize - xrr_bitpos - rr_bitsize;
5139 lr_mask = const_binop (LSHIFT_EXPR, fold_convert (rntype, lr_mask),
5140 size_int (xlr_bitpos), 0);
5141 rr_mask = const_binop (LSHIFT_EXPR, fold_convert (rntype, rr_mask),
5142 size_int (xrr_bitpos), 0);
5144 /* Make a mask that corresponds to both fields being compared.
5145 Do this for both items being compared. If the operands are the
5146 same size and the bits being compared are in the same position
5147 then we can do this by masking both and comparing the masked
5148 results. */
5149 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask, 0);
5150 lr_mask = const_binop (BIT_IOR_EXPR, lr_mask, rr_mask, 0);
5151 if (lnbitsize == rnbitsize && xll_bitpos == xlr_bitpos)
5153 lhs = make_bit_field_ref (ll_inner, lntype, lnbitsize, lnbitpos,
5154 ll_unsignedp || rl_unsignedp);
5155 if (! all_ones_mask_p (ll_mask, lnbitsize))
5156 lhs = build2 (BIT_AND_EXPR, lntype, lhs, ll_mask);
5158 rhs = make_bit_field_ref (lr_inner, rntype, rnbitsize, rnbitpos,
5159 lr_unsignedp || rr_unsignedp);
5160 if (! all_ones_mask_p (lr_mask, rnbitsize))
5161 rhs = build2 (BIT_AND_EXPR, rntype, rhs, lr_mask);
5163 return build2 (wanted_code, truth_type, lhs, rhs);
5166 /* There is still another way we can do something: If both pairs of
5167 fields being compared are adjacent, we may be able to make a wider
5168 field containing them both.
5170 Note that we still must mask the lhs/rhs expressions. Furthermore,
5171 the mask must be shifted to account for the shift done by
5172 make_bit_field_ref. */
5173 if ((ll_bitsize + ll_bitpos == rl_bitpos
5174 && lr_bitsize + lr_bitpos == rr_bitpos)
5175 || (ll_bitpos == rl_bitpos + rl_bitsize
5176 && lr_bitpos == rr_bitpos + rr_bitsize))
5178 tree type;
5180 lhs = make_bit_field_ref (ll_inner, lntype, ll_bitsize + rl_bitsize,
5181 MIN (ll_bitpos, rl_bitpos), ll_unsignedp);
5182 rhs = make_bit_field_ref (lr_inner, rntype, lr_bitsize + rr_bitsize,
5183 MIN (lr_bitpos, rr_bitpos), lr_unsignedp);
5185 ll_mask = const_binop (RSHIFT_EXPR, ll_mask,
5186 size_int (MIN (xll_bitpos, xrl_bitpos)), 0);
5187 lr_mask = const_binop (RSHIFT_EXPR, lr_mask,
5188 size_int (MIN (xlr_bitpos, xrr_bitpos)), 0);
5190 /* Convert to the smaller type before masking out unwanted bits. */
5191 type = lntype;
5192 if (lntype != rntype)
5194 if (lnbitsize > rnbitsize)
5196 lhs = fold_convert (rntype, lhs);
5197 ll_mask = fold_convert (rntype, ll_mask);
5198 type = rntype;
5200 else if (lnbitsize < rnbitsize)
5202 rhs = fold_convert (lntype, rhs);
5203 lr_mask = fold_convert (lntype, lr_mask);
5204 type = lntype;
5208 if (! all_ones_mask_p (ll_mask, ll_bitsize + rl_bitsize))
5209 lhs = build2 (BIT_AND_EXPR, type, lhs, ll_mask);
5211 if (! all_ones_mask_p (lr_mask, lr_bitsize + rr_bitsize))
5212 rhs = build2 (BIT_AND_EXPR, type, rhs, lr_mask);
5214 return build2 (wanted_code, truth_type, lhs, rhs);
5217 return 0;
5220 /* Handle the case of comparisons with constants. If there is something in
5221 common between the masks, those bits of the constants must be the same.
5222 If not, the condition is always false. Test for this to avoid generating
5223 incorrect code below. */
5224 result = const_binop (BIT_AND_EXPR, ll_mask, rl_mask, 0);
5225 if (! integer_zerop (result)
5226 && simple_cst_equal (const_binop (BIT_AND_EXPR, result, l_const, 0),
5227 const_binop (BIT_AND_EXPR, result, r_const, 0)) != 1)
5229 if (wanted_code == NE_EXPR)
5231 warning (0, "%<or%> of unmatched not-equal tests is always 1");
5232 return constant_boolean_node (true, truth_type);
5234 else
5236 warning (0, "%<and%> of mutually exclusive equal-tests is always 0");
5237 return constant_boolean_node (false, truth_type);
5241 /* Construct the expression we will return. First get the component
5242 reference we will make. Unless the mask is all ones the width of
5243 that field, perform the mask operation. Then compare with the
5244 merged constant. */
5245 result = make_bit_field_ref (ll_inner, lntype, lnbitsize, lnbitpos,
5246 ll_unsignedp || rl_unsignedp);
5248 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask, 0);
5249 if (! all_ones_mask_p (ll_mask, lnbitsize))
5250 result = build2 (BIT_AND_EXPR, lntype, result, ll_mask);
5252 return build2 (wanted_code, truth_type, result,
5253 const_binop (BIT_IOR_EXPR, l_const, r_const, 0));
5256 /* Optimize T, which is a comparison of a MIN_EXPR or MAX_EXPR with a
5257 constant. */
5259 static tree
5260 optimize_minmax_comparison (enum tree_code code, tree type, tree op0, tree op1)
5262 tree arg0 = op0;
5263 enum tree_code op_code;
5264 tree comp_const = op1;
5265 tree minmax_const;
5266 int consts_equal, consts_lt;
5267 tree inner;
5269 STRIP_SIGN_NOPS (arg0);
5271 op_code = TREE_CODE (arg0);
5272 minmax_const = TREE_OPERAND (arg0, 1);
5273 consts_equal = tree_int_cst_equal (minmax_const, comp_const);
5274 consts_lt = tree_int_cst_lt (minmax_const, comp_const);
5275 inner = TREE_OPERAND (arg0, 0);
5277 /* If something does not permit us to optimize, return the original tree. */
5278 if ((op_code != MIN_EXPR && op_code != MAX_EXPR)
5279 || TREE_CODE (comp_const) != INTEGER_CST
5280 || TREE_CONSTANT_OVERFLOW (comp_const)
5281 || TREE_CODE (minmax_const) != INTEGER_CST
5282 || TREE_CONSTANT_OVERFLOW (minmax_const))
5283 return NULL_TREE;
5285 /* Now handle all the various comparison codes. We only handle EQ_EXPR
5286 and GT_EXPR, doing the rest with recursive calls using logical
5287 simplifications. */
5288 switch (code)
5290 case NE_EXPR: case LT_EXPR: case LE_EXPR:
5292 tree tem = optimize_minmax_comparison (invert_tree_comparison (code, false),
5293 type, op0, op1);
5294 if (tem)
5295 return invert_truthvalue (tem);
5296 return NULL_TREE;
5299 case GE_EXPR:
5300 return
5301 fold_build2 (TRUTH_ORIF_EXPR, type,
5302 optimize_minmax_comparison
5303 (EQ_EXPR, type, arg0, comp_const),
5304 optimize_minmax_comparison
5305 (GT_EXPR, type, arg0, comp_const));
5307 case EQ_EXPR:
5308 if (op_code == MAX_EXPR && consts_equal)
5309 /* MAX (X, 0) == 0 -> X <= 0 */
5310 return fold_build2 (LE_EXPR, type, inner, comp_const);
5312 else if (op_code == MAX_EXPR && consts_lt)
5313 /* MAX (X, 0) == 5 -> X == 5 */
5314 return fold_build2 (EQ_EXPR, type, inner, comp_const);
5316 else if (op_code == MAX_EXPR)
5317 /* MAX (X, 0) == -1 -> false */
5318 return omit_one_operand (type, integer_zero_node, inner);
5320 else if (consts_equal)
5321 /* MIN (X, 0) == 0 -> X >= 0 */
5322 return fold_build2 (GE_EXPR, type, inner, comp_const);
5324 else if (consts_lt)
5325 /* MIN (X, 0) == 5 -> false */
5326 return omit_one_operand (type, integer_zero_node, inner);
5328 else
5329 /* MIN (X, 0) == -1 -> X == -1 */
5330 return fold_build2 (EQ_EXPR, type, inner, comp_const);
5332 case GT_EXPR:
5333 if (op_code == MAX_EXPR && (consts_equal || consts_lt))
5334 /* MAX (X, 0) > 0 -> X > 0
5335 MAX (X, 0) > 5 -> X > 5 */
5336 return fold_build2 (GT_EXPR, type, inner, comp_const);
5338 else if (op_code == MAX_EXPR)
5339 /* MAX (X, 0) > -1 -> true */
5340 return omit_one_operand (type, integer_one_node, inner);
5342 else if (op_code == MIN_EXPR && (consts_equal || consts_lt))
5343 /* MIN (X, 0) > 0 -> false
5344 MIN (X, 0) > 5 -> false */
5345 return omit_one_operand (type, integer_zero_node, inner);
5347 else
5348 /* MIN (X, 0) > -1 -> X > -1 */
5349 return fold_build2 (GT_EXPR, type, inner, comp_const);
5351 default:
5352 return NULL_TREE;
5356 /* T is an integer expression that is being multiplied, divided, or taken a
5357 modulus (CODE says which and what kind of divide or modulus) by a
5358 constant C. See if we can eliminate that operation by folding it with
5359 other operations already in T. WIDE_TYPE, if non-null, is a type that
5360 should be used for the computation if wider than our type.
5362 For example, if we are dividing (X * 8) + (Y * 16) by 4, we can return
5363 (X * 2) + (Y * 4). We must, however, be assured that either the original
5364 expression would not overflow or that overflow is undefined for the type
5365 in the language in question.
5367 We also canonicalize (X + 7) * 4 into X * 4 + 28 in the hope that either
5368 the machine has a multiply-accumulate insn or that this is part of an
5369 addressing calculation.
5371 If we return a non-null expression, it is an equivalent form of the
5372 original computation, but need not be in the original type. */
5374 static tree
5375 extract_muldiv (tree t, tree c, enum tree_code code, tree wide_type)
5377 /* To avoid exponential search depth, refuse to allow recursion past
5378 three levels. Beyond that (1) it's highly unlikely that we'll find
5379 something interesting and (2) we've probably processed it before
5380 when we built the inner expression. */
5382 static int depth;
5383 tree ret;
5385 if (depth > 3)
5386 return NULL;
5388 depth++;
5389 ret = extract_muldiv_1 (t, c, code, wide_type);
5390 depth--;
5392 return ret;
5395 static tree
5396 extract_muldiv_1 (tree t, tree c, enum tree_code code, tree wide_type)
5398 tree type = TREE_TYPE (t);
5399 enum tree_code tcode = TREE_CODE (t);
5400 tree ctype = (wide_type != 0 && (GET_MODE_SIZE (TYPE_MODE (wide_type))
5401 > GET_MODE_SIZE (TYPE_MODE (type)))
5402 ? wide_type : type);
5403 tree t1, t2;
5404 int same_p = tcode == code;
5405 tree op0 = NULL_TREE, op1 = NULL_TREE;
5407 /* Don't deal with constants of zero here; they confuse the code below. */
5408 if (integer_zerop (c))
5409 return NULL_TREE;
5411 if (TREE_CODE_CLASS (tcode) == tcc_unary)
5412 op0 = TREE_OPERAND (t, 0);
5414 if (TREE_CODE_CLASS (tcode) == tcc_binary)
5415 op0 = TREE_OPERAND (t, 0), op1 = TREE_OPERAND (t, 1);
5417 /* Note that we need not handle conditional operations here since fold
5418 already handles those cases. So just do arithmetic here. */
5419 switch (tcode)
5421 case INTEGER_CST:
5422 /* For a constant, we can always simplify if we are a multiply
5423 or (for divide and modulus) if it is a multiple of our constant. */
5424 if (code == MULT_EXPR
5425 || integer_zerop (const_binop (TRUNC_MOD_EXPR, t, c, 0)))
5426 return const_binop (code, fold_convert (ctype, t),
5427 fold_convert (ctype, c), 0);
5428 break;
5430 case CONVERT_EXPR: case NON_LVALUE_EXPR: case NOP_EXPR:
5431 /* If op0 is an expression ... */
5432 if ((COMPARISON_CLASS_P (op0)
5433 || UNARY_CLASS_P (op0)
5434 || BINARY_CLASS_P (op0)
5435 || EXPRESSION_CLASS_P (op0))
5436 /* ... and is unsigned, and its type is smaller than ctype,
5437 then we cannot pass through as widening. */
5438 && ((TYPE_UNSIGNED (TREE_TYPE (op0))
5439 && ! (TREE_CODE (TREE_TYPE (op0)) == INTEGER_TYPE
5440 && TYPE_IS_SIZETYPE (TREE_TYPE (op0)))
5441 && (GET_MODE_SIZE (TYPE_MODE (ctype))
5442 > GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0)))))
5443 /* ... or this is a truncation (t is narrower than op0),
5444 then we cannot pass through this narrowing. */
5445 || (GET_MODE_SIZE (TYPE_MODE (type))
5446 < GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0))))
5447 /* ... or signedness changes for division or modulus,
5448 then we cannot pass through this conversion. */
5449 || (code != MULT_EXPR
5450 && (TYPE_UNSIGNED (ctype)
5451 != TYPE_UNSIGNED (TREE_TYPE (op0))))))
5452 break;
5454 /* Pass the constant down and see if we can make a simplification. If
5455 we can, replace this expression with the inner simplification for
5456 possible later conversion to our or some other type. */
5457 if ((t2 = fold_convert (TREE_TYPE (op0), c)) != 0
5458 && TREE_CODE (t2) == INTEGER_CST
5459 && ! TREE_CONSTANT_OVERFLOW (t2)
5460 && (0 != (t1 = extract_muldiv (op0, t2, code,
5461 code == MULT_EXPR
5462 ? ctype : NULL_TREE))))
5463 return t1;
5464 break;
5466 case ABS_EXPR:
5467 /* If widening the type changes it from signed to unsigned, then we
5468 must avoid building ABS_EXPR itself as unsigned. */
5469 if (TYPE_UNSIGNED (ctype) && !TYPE_UNSIGNED (type))
5471 tree cstype = (*lang_hooks.types.signed_type) (ctype);
5472 if ((t1 = extract_muldiv (op0, c, code, cstype)) != 0)
5474 t1 = fold_build1 (tcode, cstype, fold_convert (cstype, t1));
5475 return fold_convert (ctype, t1);
5477 break;
5479 /* FALLTHROUGH */
5480 case NEGATE_EXPR:
5481 if ((t1 = extract_muldiv (op0, c, code, wide_type)) != 0)
5482 return fold_build1 (tcode, ctype, fold_convert (ctype, t1));
5483 break;
5485 case MIN_EXPR: case MAX_EXPR:
5486 /* If widening the type changes the signedness, then we can't perform
5487 this optimization as that changes the result. */
5488 if (TYPE_UNSIGNED (ctype) != TYPE_UNSIGNED (type))
5489 break;
5491 /* MIN (a, b) / 5 -> MIN (a / 5, b / 5) */
5492 if ((t1 = extract_muldiv (op0, c, code, wide_type)) != 0
5493 && (t2 = extract_muldiv (op1, c, code, wide_type)) != 0)
5495 if (tree_int_cst_sgn (c) < 0)
5496 tcode = (tcode == MIN_EXPR ? MAX_EXPR : MIN_EXPR);
5498 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
5499 fold_convert (ctype, t2));
5501 break;
5503 case LSHIFT_EXPR: case RSHIFT_EXPR:
5504 /* If the second operand is constant, this is a multiplication
5505 or floor division, by a power of two, so we can treat it that
5506 way unless the multiplier or divisor overflows. Signed
5507 left-shift overflow is implementation-defined rather than
5508 undefined in C90, so do not convert signed left shift into
5509 multiplication. */
5510 if (TREE_CODE (op1) == INTEGER_CST
5511 && (tcode == RSHIFT_EXPR || TYPE_UNSIGNED (TREE_TYPE (op0)))
5512 /* const_binop may not detect overflow correctly,
5513 so check for it explicitly here. */
5514 && TYPE_PRECISION (TREE_TYPE (size_one_node)) > TREE_INT_CST_LOW (op1)
5515 && TREE_INT_CST_HIGH (op1) == 0
5516 && 0 != (t1 = fold_convert (ctype,
5517 const_binop (LSHIFT_EXPR,
5518 size_one_node,
5519 op1, 0)))
5520 && ! TREE_OVERFLOW (t1))
5521 return extract_muldiv (build2 (tcode == LSHIFT_EXPR
5522 ? MULT_EXPR : FLOOR_DIV_EXPR,
5523 ctype, fold_convert (ctype, op0), t1),
5524 c, code, wide_type);
5525 break;
5527 case PLUS_EXPR: case MINUS_EXPR:
5528 /* See if we can eliminate the operation on both sides. If we can, we
5529 can return a new PLUS or MINUS. If we can't, the only remaining
5530 cases where we can do anything are if the second operand is a
5531 constant. */
5532 t1 = extract_muldiv (op0, c, code, wide_type);
5533 t2 = extract_muldiv (op1, c, code, wide_type);
5534 if (t1 != 0 && t2 != 0
5535 && (code == MULT_EXPR
5536 /* If not multiplication, we can only do this if both operands
5537 are divisible by c. */
5538 || (multiple_of_p (ctype, op0, c)
5539 && multiple_of_p (ctype, op1, c))))
5540 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
5541 fold_convert (ctype, t2));
5543 /* If this was a subtraction, negate OP1 and set it to be an addition.
5544 This simplifies the logic below. */
5545 if (tcode == MINUS_EXPR)
5546 tcode = PLUS_EXPR, op1 = negate_expr (op1);
5548 if (TREE_CODE (op1) != INTEGER_CST)
5549 break;
5551 /* If either OP1 or C are negative, this optimization is not safe for
5552 some of the division and remainder types while for others we need
5553 to change the code. */
5554 if (tree_int_cst_sgn (op1) < 0 || tree_int_cst_sgn (c) < 0)
5556 if (code == CEIL_DIV_EXPR)
5557 code = FLOOR_DIV_EXPR;
5558 else if (code == FLOOR_DIV_EXPR)
5559 code = CEIL_DIV_EXPR;
5560 else if (code != MULT_EXPR
5561 && code != CEIL_MOD_EXPR && code != FLOOR_MOD_EXPR)
5562 break;
5565 /* If it's a multiply or a division/modulus operation of a multiple
5566 of our constant, do the operation and verify it doesn't overflow. */
5567 if (code == MULT_EXPR
5568 || integer_zerop (const_binop (TRUNC_MOD_EXPR, op1, c, 0)))
5570 op1 = const_binop (code, fold_convert (ctype, op1),
5571 fold_convert (ctype, c), 0);
5572 /* We allow the constant to overflow with wrapping semantics. */
5573 if (op1 == 0
5574 || (TREE_OVERFLOW (op1) && ! flag_wrapv))
5575 break;
5577 else
5578 break;
5580 /* If we have an unsigned type is not a sizetype, we cannot widen
5581 the operation since it will change the result if the original
5582 computation overflowed. */
5583 if (TYPE_UNSIGNED (ctype)
5584 && ! (TREE_CODE (ctype) == INTEGER_TYPE && TYPE_IS_SIZETYPE (ctype))
5585 && ctype != type)
5586 break;
5588 /* If we were able to eliminate our operation from the first side,
5589 apply our operation to the second side and reform the PLUS. */
5590 if (t1 != 0 && (TREE_CODE (t1) != code || code == MULT_EXPR))
5591 return fold_build2 (tcode, ctype, fold_convert (ctype, t1), op1);
5593 /* The last case is if we are a multiply. In that case, we can
5594 apply the distributive law to commute the multiply and addition
5595 if the multiplication of the constants doesn't overflow. */
5596 if (code == MULT_EXPR)
5597 return fold_build2 (tcode, ctype,
5598 fold_build2 (code, ctype,
5599 fold_convert (ctype, op0),
5600 fold_convert (ctype, c)),
5601 op1);
5603 break;
5605 case MULT_EXPR:
5606 /* We have a special case here if we are doing something like
5607 (C * 8) % 4 since we know that's zero. */
5608 if ((code == TRUNC_MOD_EXPR || code == CEIL_MOD_EXPR
5609 || code == FLOOR_MOD_EXPR || code == ROUND_MOD_EXPR)
5610 && TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
5611 && integer_zerop (const_binop (TRUNC_MOD_EXPR, op1, c, 0)))
5612 return omit_one_operand (type, integer_zero_node, op0);
5614 /* ... fall through ... */
5616 case TRUNC_DIV_EXPR: case CEIL_DIV_EXPR: case FLOOR_DIV_EXPR:
5617 case ROUND_DIV_EXPR: case EXACT_DIV_EXPR:
5618 /* If we can extract our operation from the LHS, do so and return a
5619 new operation. Likewise for the RHS from a MULT_EXPR. Otherwise,
5620 do something only if the second operand is a constant. */
5621 if (same_p
5622 && (t1 = extract_muldiv (op0, c, code, wide_type)) != 0)
5623 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
5624 fold_convert (ctype, op1));
5625 else if (tcode == MULT_EXPR && code == MULT_EXPR
5626 && (t1 = extract_muldiv (op1, c, code, wide_type)) != 0)
5627 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
5628 fold_convert (ctype, t1));
5629 else if (TREE_CODE (op1) != INTEGER_CST)
5630 return 0;
5632 /* If these are the same operation types, we can associate them
5633 assuming no overflow. */
5634 if (tcode == code
5635 && 0 != (t1 = const_binop (MULT_EXPR, fold_convert (ctype, op1),
5636 fold_convert (ctype, c), 0))
5637 && ! TREE_OVERFLOW (t1))
5638 return fold_build2 (tcode, ctype, fold_convert (ctype, op0), t1);
5640 /* If these operations "cancel" each other, we have the main
5641 optimizations of this pass, which occur when either constant is a
5642 multiple of the other, in which case we replace this with either an
5643 operation or CODE or TCODE.
5645 If we have an unsigned type that is not a sizetype, we cannot do
5646 this since it will change the result if the original computation
5647 overflowed. */
5648 if ((! TYPE_UNSIGNED (ctype)
5649 || (TREE_CODE (ctype) == INTEGER_TYPE && TYPE_IS_SIZETYPE (ctype)))
5650 && ! flag_wrapv
5651 && ((code == MULT_EXPR && tcode == EXACT_DIV_EXPR)
5652 || (tcode == MULT_EXPR
5653 && code != TRUNC_MOD_EXPR && code != CEIL_MOD_EXPR
5654 && code != FLOOR_MOD_EXPR && code != ROUND_MOD_EXPR)))
5656 if (integer_zerop (const_binop (TRUNC_MOD_EXPR, op1, c, 0)))
5657 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
5658 fold_convert (ctype,
5659 const_binop (TRUNC_DIV_EXPR,
5660 op1, c, 0)));
5661 else if (integer_zerop (const_binop (TRUNC_MOD_EXPR, c, op1, 0)))
5662 return fold_build2 (code, ctype, fold_convert (ctype, op0),
5663 fold_convert (ctype,
5664 const_binop (TRUNC_DIV_EXPR,
5665 c, op1, 0)));
5667 break;
5669 default:
5670 break;
5673 return 0;
5676 /* Return a node which has the indicated constant VALUE (either 0 or
5677 1), and is of the indicated TYPE. */
5679 tree
5680 constant_boolean_node (int value, tree type)
5682 if (type == integer_type_node)
5683 return value ? integer_one_node : integer_zero_node;
5684 else if (type == boolean_type_node)
5685 return value ? boolean_true_node : boolean_false_node;
5686 else
5687 return build_int_cst (type, value);
5691 /* Return true if expr looks like an ARRAY_REF and set base and
5692 offset to the appropriate trees. If there is no offset,
5693 offset is set to NULL_TREE. Base will be canonicalized to
5694 something you can get the element type from using
5695 TREE_TYPE (TREE_TYPE (base)). Offset will be the offset
5696 in bytes to the base. */
5698 static bool
5699 extract_array_ref (tree expr, tree *base, tree *offset)
5701 /* One canonical form is a PLUS_EXPR with the first
5702 argument being an ADDR_EXPR with a possible NOP_EXPR
5703 attached. */
5704 if (TREE_CODE (expr) == PLUS_EXPR)
5706 tree op0 = TREE_OPERAND (expr, 0);
5707 tree inner_base, dummy1;
5708 /* Strip NOP_EXPRs here because the C frontends and/or
5709 folders present us (int *)&x.a + 4B possibly. */
5710 STRIP_NOPS (op0);
5711 if (extract_array_ref (op0, &inner_base, &dummy1))
5713 *base = inner_base;
5714 if (dummy1 == NULL_TREE)
5715 *offset = TREE_OPERAND (expr, 1);
5716 else
5717 *offset = fold_build2 (PLUS_EXPR, TREE_TYPE (expr),
5718 dummy1, TREE_OPERAND (expr, 1));
5719 return true;
5722 /* Other canonical form is an ADDR_EXPR of an ARRAY_REF,
5723 which we transform into an ADDR_EXPR with appropriate
5724 offset. For other arguments to the ADDR_EXPR we assume
5725 zero offset and as such do not care about the ADDR_EXPR
5726 type and strip possible nops from it. */
5727 else if (TREE_CODE (expr) == ADDR_EXPR)
5729 tree op0 = TREE_OPERAND (expr, 0);
5730 if (TREE_CODE (op0) == ARRAY_REF)
5732 tree idx = TREE_OPERAND (op0, 1);
5733 *base = TREE_OPERAND (op0, 0);
5734 *offset = fold_build2 (MULT_EXPR, TREE_TYPE (idx), idx,
5735 array_ref_element_size (op0));
5737 else
5739 /* Handle array-to-pointer decay as &a. */
5740 if (TREE_CODE (TREE_TYPE (op0)) == ARRAY_TYPE)
5741 *base = TREE_OPERAND (expr, 0);
5742 else
5743 *base = expr;
5744 *offset = NULL_TREE;
5746 return true;
5748 /* The next canonical form is a VAR_DECL with POINTER_TYPE. */
5749 else if (SSA_VAR_P (expr)
5750 && TREE_CODE (TREE_TYPE (expr)) == POINTER_TYPE)
5752 *base = expr;
5753 *offset = NULL_TREE;
5754 return true;
5757 return false;
5761 /* Transform `a + (b ? x : y)' into `b ? (a + x) : (a + y)'.
5762 Transform, `a + (x < y)' into `(x < y) ? (a + 1) : (a + 0)'. Here
5763 CODE corresponds to the `+', COND to the `(b ? x : y)' or `(x < y)'
5764 expression, and ARG to `a'. If COND_FIRST_P is nonzero, then the
5765 COND is the first argument to CODE; otherwise (as in the example
5766 given here), it is the second argument. TYPE is the type of the
5767 original expression. Return NULL_TREE if no simplification is
5768 possible. */
5770 static tree
5771 fold_binary_op_with_conditional_arg (enum tree_code code,
5772 tree type, tree op0, tree op1,
5773 tree cond, tree arg, int cond_first_p)
5775 tree cond_type = cond_first_p ? TREE_TYPE (op0) : TREE_TYPE (op1);
5776 tree arg_type = cond_first_p ? TREE_TYPE (op1) : TREE_TYPE (op0);
5777 tree test, true_value, false_value;
5778 tree lhs = NULL_TREE;
5779 tree rhs = NULL_TREE;
5781 /* This transformation is only worthwhile if we don't have to wrap
5782 arg in a SAVE_EXPR, and the operation can be simplified on at least
5783 one of the branches once its pushed inside the COND_EXPR. */
5784 if (!TREE_CONSTANT (arg))
5785 return NULL_TREE;
5787 if (TREE_CODE (cond) == COND_EXPR)
5789 test = TREE_OPERAND (cond, 0);
5790 true_value = TREE_OPERAND (cond, 1);
5791 false_value = TREE_OPERAND (cond, 2);
5792 /* If this operand throws an expression, then it does not make
5793 sense to try to perform a logical or arithmetic operation
5794 involving it. */
5795 if (VOID_TYPE_P (TREE_TYPE (true_value)))
5796 lhs = true_value;
5797 if (VOID_TYPE_P (TREE_TYPE (false_value)))
5798 rhs = false_value;
5800 else
5802 tree testtype = TREE_TYPE (cond);
5803 test = cond;
5804 true_value = constant_boolean_node (true, testtype);
5805 false_value = constant_boolean_node (false, testtype);
5808 arg = fold_convert (arg_type, arg);
5809 if (lhs == 0)
5811 true_value = fold_convert (cond_type, true_value);
5812 if (cond_first_p)
5813 lhs = fold_build2 (code, type, true_value, arg);
5814 else
5815 lhs = fold_build2 (code, type, arg, true_value);
5817 if (rhs == 0)
5819 false_value = fold_convert (cond_type, false_value);
5820 if (cond_first_p)
5821 rhs = fold_build2 (code, type, false_value, arg);
5822 else
5823 rhs = fold_build2 (code, type, arg, false_value);
5826 test = fold_build3 (COND_EXPR, type, test, lhs, rhs);
5827 return fold_convert (type, test);
5831 /* Subroutine of fold() that checks for the addition of +/- 0.0.
5833 If !NEGATE, return true if ADDEND is +/-0.0 and, for all X of type
5834 TYPE, X + ADDEND is the same as X. If NEGATE, return true if X -
5835 ADDEND is the same as X.
5837 X + 0 and X - 0 both give X when X is NaN, infinite, or nonzero
5838 and finite. The problematic cases are when X is zero, and its mode
5839 has signed zeros. In the case of rounding towards -infinity,
5840 X - 0 is not the same as X because 0 - 0 is -0. In other rounding
5841 modes, X + 0 is not the same as X because -0 + 0 is 0. */
5843 static bool
5844 fold_real_zero_addition_p (tree type, tree addend, int negate)
5846 if (!real_zerop (addend))
5847 return false;
5849 /* Don't allow the fold with -fsignaling-nans. */
5850 if (HONOR_SNANS (TYPE_MODE (type)))
5851 return false;
5853 /* Allow the fold if zeros aren't signed, or their sign isn't important. */
5854 if (!HONOR_SIGNED_ZEROS (TYPE_MODE (type)))
5855 return true;
5857 /* Treat x + -0 as x - 0 and x - -0 as x + 0. */
5858 if (TREE_CODE (addend) == REAL_CST
5859 && REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (addend)))
5860 negate = !negate;
5862 /* The mode has signed zeros, and we have to honor their sign.
5863 In this situation, there is only one case we can return true for.
5864 X - 0 is the same as X unless rounding towards -infinity is
5865 supported. */
5866 return negate && !HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type));
5869 /* Subroutine of fold() that checks comparisons of built-in math
5870 functions against real constants.
5872 FCODE is the DECL_FUNCTION_CODE of the built-in, CODE is the comparison
5873 operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR, GE_EXPR or LE_EXPR. TYPE
5874 is the type of the result and ARG0 and ARG1 are the operands of the
5875 comparison. ARG1 must be a TREE_REAL_CST.
5877 The function returns the constant folded tree if a simplification
5878 can be made, and NULL_TREE otherwise. */
5880 static tree
5881 fold_mathfn_compare (enum built_in_function fcode, enum tree_code code,
5882 tree type, tree arg0, tree arg1)
5884 REAL_VALUE_TYPE c;
5886 if (BUILTIN_SQRT_P (fcode))
5888 tree arg = TREE_VALUE (TREE_OPERAND (arg0, 1));
5889 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg0));
5891 c = TREE_REAL_CST (arg1);
5892 if (REAL_VALUE_NEGATIVE (c))
5894 /* sqrt(x) < y is always false, if y is negative. */
5895 if (code == EQ_EXPR || code == LT_EXPR || code == LE_EXPR)
5896 return omit_one_operand (type, integer_zero_node, arg);
5898 /* sqrt(x) > y is always true, if y is negative and we
5899 don't care about NaNs, i.e. negative values of x. */
5900 if (code == NE_EXPR || !HONOR_NANS (mode))
5901 return omit_one_operand (type, integer_one_node, arg);
5903 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
5904 return fold_build2 (GE_EXPR, type, arg,
5905 build_real (TREE_TYPE (arg), dconst0));
5907 else if (code == GT_EXPR || code == GE_EXPR)
5909 REAL_VALUE_TYPE c2;
5911 REAL_ARITHMETIC (c2, MULT_EXPR, c, c);
5912 real_convert (&c2, mode, &c2);
5914 if (REAL_VALUE_ISINF (c2))
5916 /* sqrt(x) > y is x == +Inf, when y is very large. */
5917 if (HONOR_INFINITIES (mode))
5918 return fold_build2 (EQ_EXPR, type, arg,
5919 build_real (TREE_TYPE (arg), c2));
5921 /* sqrt(x) > y is always false, when y is very large
5922 and we don't care about infinities. */
5923 return omit_one_operand (type, integer_zero_node, arg);
5926 /* sqrt(x) > c is the same as x > c*c. */
5927 return fold_build2 (code, type, arg,
5928 build_real (TREE_TYPE (arg), c2));
5930 else if (code == LT_EXPR || code == LE_EXPR)
5932 REAL_VALUE_TYPE c2;
5934 REAL_ARITHMETIC (c2, MULT_EXPR, c, c);
5935 real_convert (&c2, mode, &c2);
5937 if (REAL_VALUE_ISINF (c2))
5939 /* sqrt(x) < y is always true, when y is a very large
5940 value and we don't care about NaNs or Infinities. */
5941 if (! HONOR_NANS (mode) && ! HONOR_INFINITIES (mode))
5942 return omit_one_operand (type, integer_one_node, arg);
5944 /* sqrt(x) < y is x != +Inf when y is very large and we
5945 don't care about NaNs. */
5946 if (! HONOR_NANS (mode))
5947 return fold_build2 (NE_EXPR, type, arg,
5948 build_real (TREE_TYPE (arg), c2));
5950 /* sqrt(x) < y is x >= 0 when y is very large and we
5951 don't care about Infinities. */
5952 if (! HONOR_INFINITIES (mode))
5953 return fold_build2 (GE_EXPR, type, arg,
5954 build_real (TREE_TYPE (arg), dconst0));
5956 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
5957 if (lang_hooks.decls.global_bindings_p () != 0
5958 || CONTAINS_PLACEHOLDER_P (arg))
5959 return NULL_TREE;
5961 arg = save_expr (arg);
5962 return fold_build2 (TRUTH_ANDIF_EXPR, type,
5963 fold_build2 (GE_EXPR, type, arg,
5964 build_real (TREE_TYPE (arg),
5965 dconst0)),
5966 fold_build2 (NE_EXPR, type, arg,
5967 build_real (TREE_TYPE (arg),
5968 c2)));
5971 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
5972 if (! HONOR_NANS (mode))
5973 return fold_build2 (code, type, arg,
5974 build_real (TREE_TYPE (arg), c2));
5976 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
5977 if (lang_hooks.decls.global_bindings_p () == 0
5978 && ! CONTAINS_PLACEHOLDER_P (arg))
5980 arg = save_expr (arg);
5981 return fold_build2 (TRUTH_ANDIF_EXPR, type,
5982 fold_build2 (GE_EXPR, type, arg,
5983 build_real (TREE_TYPE (arg),
5984 dconst0)),
5985 fold_build2 (code, type, arg,
5986 build_real (TREE_TYPE (arg),
5987 c2)));
5992 return NULL_TREE;
5995 /* Subroutine of fold() that optimizes comparisons against Infinities,
5996 either +Inf or -Inf.
5998 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
5999 GE_EXPR or LE_EXPR. TYPE is the type of the result and ARG0 and ARG1
6000 are the operands of the comparison. ARG1 must be a TREE_REAL_CST.
6002 The function returns the constant folded tree if a simplification
6003 can be made, and NULL_TREE otherwise. */
6005 static tree
6006 fold_inf_compare (enum tree_code code, tree type, tree arg0, tree arg1)
6008 enum machine_mode mode;
6009 REAL_VALUE_TYPE max;
6010 tree temp;
6011 bool neg;
6013 mode = TYPE_MODE (TREE_TYPE (arg0));
6015 /* For negative infinity swap the sense of the comparison. */
6016 neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg1));
6017 if (neg)
6018 code = swap_tree_comparison (code);
6020 switch (code)
6022 case GT_EXPR:
6023 /* x > +Inf is always false, if with ignore sNANs. */
6024 if (HONOR_SNANS (mode))
6025 return NULL_TREE;
6026 return omit_one_operand (type, integer_zero_node, arg0);
6028 case LE_EXPR:
6029 /* x <= +Inf is always true, if we don't case about NaNs. */
6030 if (! HONOR_NANS (mode))
6031 return omit_one_operand (type, integer_one_node, arg0);
6033 /* x <= +Inf is the same as x == x, i.e. isfinite(x). */
6034 if (lang_hooks.decls.global_bindings_p () == 0
6035 && ! CONTAINS_PLACEHOLDER_P (arg0))
6037 arg0 = save_expr (arg0);
6038 return fold_build2 (EQ_EXPR, type, arg0, arg0);
6040 break;
6042 case EQ_EXPR:
6043 case GE_EXPR:
6044 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX. */
6045 real_maxval (&max, neg, mode);
6046 return fold_build2 (neg ? LT_EXPR : GT_EXPR, type,
6047 arg0, build_real (TREE_TYPE (arg0), max));
6049 case LT_EXPR:
6050 /* x < +Inf is always equal to x <= DBL_MAX. */
6051 real_maxval (&max, neg, mode);
6052 return fold_build2 (neg ? GE_EXPR : LE_EXPR, type,
6053 arg0, build_real (TREE_TYPE (arg0), max));
6055 case NE_EXPR:
6056 /* x != +Inf is always equal to !(x > DBL_MAX). */
6057 real_maxval (&max, neg, mode);
6058 if (! HONOR_NANS (mode))
6059 return fold_build2 (neg ? GE_EXPR : LE_EXPR, type,
6060 arg0, build_real (TREE_TYPE (arg0), max));
6062 /* The transformation below creates non-gimple code and thus is
6063 not appropriate if we are in gimple form. */
6064 if (in_gimple_form)
6065 return NULL_TREE;
6067 temp = fold_build2 (neg ? LT_EXPR : GT_EXPR, type,
6068 arg0, build_real (TREE_TYPE (arg0), max));
6069 return fold_build1 (TRUTH_NOT_EXPR, type, temp);
6071 default:
6072 break;
6075 return NULL_TREE;
6078 /* Subroutine of fold() that optimizes comparisons of a division by
6079 a nonzero integer constant against an integer constant, i.e.
6080 X/C1 op C2.
6082 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
6083 GE_EXPR or LE_EXPR. TYPE is the type of the result and ARG0 and ARG1
6084 are the operands of the comparison. ARG1 must be a TREE_REAL_CST.
6086 The function returns the constant folded tree if a simplification
6087 can be made, and NULL_TREE otherwise. */
6089 static tree
6090 fold_div_compare (enum tree_code code, tree type, tree arg0, tree arg1)
6092 tree prod, tmp, hi, lo;
6093 tree arg00 = TREE_OPERAND (arg0, 0);
6094 tree arg01 = TREE_OPERAND (arg0, 1);
6095 unsigned HOST_WIDE_INT lpart;
6096 HOST_WIDE_INT hpart;
6097 bool unsigned_p = TYPE_UNSIGNED (TREE_TYPE (arg0));
6098 bool neg_overflow;
6099 int overflow;
6101 /* We have to do this the hard way to detect unsigned overflow.
6102 prod = int_const_binop (MULT_EXPR, arg01, arg1, 0); */
6103 overflow = mul_double_with_sign (TREE_INT_CST_LOW (arg01),
6104 TREE_INT_CST_HIGH (arg01),
6105 TREE_INT_CST_LOW (arg1),
6106 TREE_INT_CST_HIGH (arg1),
6107 &lpart, &hpart, unsigned_p);
6108 prod = build_int_cst_wide (TREE_TYPE (arg00), lpart, hpart);
6109 prod = force_fit_type (prod, -1, overflow, false);
6110 neg_overflow = false;
6112 if (unsigned_p)
6114 tmp = int_const_binop (MINUS_EXPR, arg01, integer_one_node, 0);
6115 lo = prod;
6117 /* Likewise hi = int_const_binop (PLUS_EXPR, prod, tmp, 0). */
6118 overflow = add_double_with_sign (TREE_INT_CST_LOW (prod),
6119 TREE_INT_CST_HIGH (prod),
6120 TREE_INT_CST_LOW (tmp),
6121 TREE_INT_CST_HIGH (tmp),
6122 &lpart, &hpart, unsigned_p);
6123 hi = build_int_cst_wide (TREE_TYPE (arg00), lpart, hpart);
6124 hi = force_fit_type (hi, -1, overflow | TREE_OVERFLOW (prod),
6125 TREE_CONSTANT_OVERFLOW (prod));
6127 else if (tree_int_cst_sgn (arg01) >= 0)
6129 tmp = int_const_binop (MINUS_EXPR, arg01, integer_one_node, 0);
6130 switch (tree_int_cst_sgn (arg1))
6132 case -1:
6133 neg_overflow = true;
6134 lo = int_const_binop (MINUS_EXPR, prod, tmp, 0);
6135 hi = prod;
6136 break;
6138 case 0:
6139 lo = fold_negate_const (tmp, TREE_TYPE (arg0));
6140 hi = tmp;
6141 break;
6143 case 1:
6144 hi = int_const_binop (PLUS_EXPR, prod, tmp, 0);
6145 lo = prod;
6146 break;
6148 default:
6149 gcc_unreachable ();
6152 else
6154 /* A negative divisor reverses the relational operators. */
6155 code = swap_tree_comparison (code);
6157 tmp = int_const_binop (PLUS_EXPR, arg01, integer_one_node, 0);
6158 switch (tree_int_cst_sgn (arg1))
6160 case -1:
6161 hi = int_const_binop (MINUS_EXPR, prod, tmp, 0);
6162 lo = prod;
6163 break;
6165 case 0:
6166 hi = fold_negate_const (tmp, TREE_TYPE (arg0));
6167 lo = tmp;
6168 break;
6170 case 1:
6171 neg_overflow = true;
6172 lo = int_const_binop (PLUS_EXPR, prod, tmp, 0);
6173 hi = prod;
6174 break;
6176 default:
6177 gcc_unreachable ();
6181 switch (code)
6183 case EQ_EXPR:
6184 if (TREE_OVERFLOW (lo) && TREE_OVERFLOW (hi))
6185 return omit_one_operand (type, integer_zero_node, arg00);
6186 if (TREE_OVERFLOW (hi))
6187 return fold_build2 (GE_EXPR, type, arg00, lo);
6188 if (TREE_OVERFLOW (lo))
6189 return fold_build2 (LE_EXPR, type, arg00, hi);
6190 return build_range_check (type, arg00, 1, lo, hi);
6192 case NE_EXPR:
6193 if (TREE_OVERFLOW (lo) && TREE_OVERFLOW (hi))
6194 return omit_one_operand (type, integer_one_node, arg00);
6195 if (TREE_OVERFLOW (hi))
6196 return fold_build2 (LT_EXPR, type, arg00, lo);
6197 if (TREE_OVERFLOW (lo))
6198 return fold_build2 (GT_EXPR, type, arg00, hi);
6199 return build_range_check (type, arg00, 0, lo, hi);
6201 case LT_EXPR:
6202 if (TREE_OVERFLOW (lo))
6204 tmp = neg_overflow ? integer_zero_node : integer_one_node;
6205 return omit_one_operand (type, tmp, arg00);
6207 return fold_build2 (LT_EXPR, type, arg00, lo);
6209 case LE_EXPR:
6210 if (TREE_OVERFLOW (hi))
6212 tmp = neg_overflow ? integer_zero_node : integer_one_node;
6213 return omit_one_operand (type, tmp, arg00);
6215 return fold_build2 (LE_EXPR, type, arg00, hi);
6217 case GT_EXPR:
6218 if (TREE_OVERFLOW (hi))
6220 tmp = neg_overflow ? integer_one_node : integer_zero_node;
6221 return omit_one_operand (type, tmp, arg00);
6223 return fold_build2 (GT_EXPR, type, arg00, hi);
6225 case GE_EXPR:
6226 if (TREE_OVERFLOW (lo))
6228 tmp = neg_overflow ? integer_one_node : integer_zero_node;
6229 return omit_one_operand (type, tmp, arg00);
6231 return fold_build2 (GE_EXPR, type, arg00, lo);
6233 default:
6234 break;
6237 return NULL_TREE;
6241 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6242 equality/inequality test, then return a simplified form of the test
6243 using a sign testing. Otherwise return NULL. TYPE is the desired
6244 result type. */
6246 static tree
6247 fold_single_bit_test_into_sign_test (enum tree_code code, tree arg0, tree arg1,
6248 tree result_type)
6250 /* If this is testing a single bit, we can optimize the test. */
6251 if ((code == NE_EXPR || code == EQ_EXPR)
6252 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
6253 && integer_pow2p (TREE_OPERAND (arg0, 1)))
6255 /* If we have (A & C) != 0 where C is the sign bit of A, convert
6256 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
6257 tree arg00 = sign_bit_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg0, 1));
6259 if (arg00 != NULL_TREE
6260 /* This is only a win if casting to a signed type is cheap,
6261 i.e. when arg00's type is not a partial mode. */
6262 && TYPE_PRECISION (TREE_TYPE (arg00))
6263 == GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (arg00))))
6265 tree stype = lang_hooks.types.signed_type (TREE_TYPE (arg00));
6266 return fold_build2 (code == EQ_EXPR ? GE_EXPR : LT_EXPR,
6267 result_type, fold_convert (stype, arg00),
6268 build_int_cst (stype, 0));
6272 return NULL_TREE;
6275 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6276 equality/inequality test, then return a simplified form of
6277 the test using shifts and logical operations. Otherwise return
6278 NULL. TYPE is the desired result type. */
6280 tree
6281 fold_single_bit_test (enum tree_code code, tree arg0, tree arg1,
6282 tree result_type)
6284 /* If this is testing a single bit, we can optimize the test. */
6285 if ((code == NE_EXPR || code == EQ_EXPR)
6286 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
6287 && integer_pow2p (TREE_OPERAND (arg0, 1)))
6289 tree inner = TREE_OPERAND (arg0, 0);
6290 tree type = TREE_TYPE (arg0);
6291 int bitnum = tree_log2 (TREE_OPERAND (arg0, 1));
6292 enum machine_mode operand_mode = TYPE_MODE (type);
6293 int ops_unsigned;
6294 tree signed_type, unsigned_type, intermediate_type;
6295 tree tem;
6297 /* First, see if we can fold the single bit test into a sign-bit
6298 test. */
6299 tem = fold_single_bit_test_into_sign_test (code, arg0, arg1,
6300 result_type);
6301 if (tem)
6302 return tem;
6304 /* Otherwise we have (A & C) != 0 where C is a single bit,
6305 convert that into ((A >> C2) & 1). Where C2 = log2(C).
6306 Similarly for (A & C) == 0. */
6308 /* If INNER is a right shift of a constant and it plus BITNUM does
6309 not overflow, adjust BITNUM and INNER. */
6310 if (TREE_CODE (inner) == RSHIFT_EXPR
6311 && TREE_CODE (TREE_OPERAND (inner, 1)) == INTEGER_CST
6312 && TREE_INT_CST_HIGH (TREE_OPERAND (inner, 1)) == 0
6313 && bitnum < TYPE_PRECISION (type)
6314 && 0 > compare_tree_int (TREE_OPERAND (inner, 1),
6315 bitnum - TYPE_PRECISION (type)))
6317 bitnum += TREE_INT_CST_LOW (TREE_OPERAND (inner, 1));
6318 inner = TREE_OPERAND (inner, 0);
6321 /* If we are going to be able to omit the AND below, we must do our
6322 operations as unsigned. If we must use the AND, we have a choice.
6323 Normally unsigned is faster, but for some machines signed is. */
6324 #ifdef LOAD_EXTEND_OP
6325 ops_unsigned = (LOAD_EXTEND_OP (operand_mode) == SIGN_EXTEND
6326 && !flag_syntax_only) ? 0 : 1;
6327 #else
6328 ops_unsigned = 1;
6329 #endif
6331 signed_type = lang_hooks.types.type_for_mode (operand_mode, 0);
6332 unsigned_type = lang_hooks.types.type_for_mode (operand_mode, 1);
6333 intermediate_type = ops_unsigned ? unsigned_type : signed_type;
6334 inner = fold_convert (intermediate_type, inner);
6336 if (bitnum != 0)
6337 inner = build2 (RSHIFT_EXPR, intermediate_type,
6338 inner, size_int (bitnum));
6340 if (code == EQ_EXPR)
6341 inner = fold_build2 (BIT_XOR_EXPR, intermediate_type,
6342 inner, integer_one_node);
6344 /* Put the AND last so it can combine with more things. */
6345 inner = build2 (BIT_AND_EXPR, intermediate_type,
6346 inner, integer_one_node);
6348 /* Make sure to return the proper type. */
6349 inner = fold_convert (result_type, inner);
6351 return inner;
6353 return NULL_TREE;
6356 /* Check whether we are allowed to reorder operands arg0 and arg1,
6357 such that the evaluation of arg1 occurs before arg0. */
6359 static bool
6360 reorder_operands_p (tree arg0, tree arg1)
6362 if (! flag_evaluation_order)
6363 return true;
6364 if (TREE_CONSTANT (arg0) || TREE_CONSTANT (arg1))
6365 return true;
6366 return ! TREE_SIDE_EFFECTS (arg0)
6367 && ! TREE_SIDE_EFFECTS (arg1);
6370 /* Test whether it is preferable two swap two operands, ARG0 and
6371 ARG1, for example because ARG0 is an integer constant and ARG1
6372 isn't. If REORDER is true, only recommend swapping if we can
6373 evaluate the operands in reverse order. */
6375 bool
6376 tree_swap_operands_p (tree arg0, tree arg1, bool reorder)
6378 STRIP_SIGN_NOPS (arg0);
6379 STRIP_SIGN_NOPS (arg1);
6381 if (TREE_CODE (arg1) == INTEGER_CST)
6382 return 0;
6383 if (TREE_CODE (arg0) == INTEGER_CST)
6384 return 1;
6386 if (TREE_CODE (arg1) == REAL_CST)
6387 return 0;
6388 if (TREE_CODE (arg0) == REAL_CST)
6389 return 1;
6391 if (TREE_CODE (arg1) == COMPLEX_CST)
6392 return 0;
6393 if (TREE_CODE (arg0) == COMPLEX_CST)
6394 return 1;
6396 if (TREE_CONSTANT (arg1))
6397 return 0;
6398 if (TREE_CONSTANT (arg0))
6399 return 1;
6401 if (optimize_size)
6402 return 0;
6404 if (reorder && flag_evaluation_order
6405 && (TREE_SIDE_EFFECTS (arg0) || TREE_SIDE_EFFECTS (arg1)))
6406 return 0;
6408 if (DECL_P (arg1))
6409 return 0;
6410 if (DECL_P (arg0))
6411 return 1;
6413 /* It is preferable to swap two SSA_NAME to ensure a canonical form
6414 for commutative and comparison operators. Ensuring a canonical
6415 form allows the optimizers to find additional redundancies without
6416 having to explicitly check for both orderings. */
6417 if (TREE_CODE (arg0) == SSA_NAME
6418 && TREE_CODE (arg1) == SSA_NAME
6419 && SSA_NAME_VERSION (arg0) > SSA_NAME_VERSION (arg1))
6420 return 1;
6422 return 0;
6425 /* Fold comparison ARG0 CODE ARG1 (with result in TYPE), where
6426 ARG0 is extended to a wider type. */
6428 static tree
6429 fold_widened_comparison (enum tree_code code, tree type, tree arg0, tree arg1)
6431 tree arg0_unw = get_unwidened (arg0, NULL_TREE);
6432 tree arg1_unw;
6433 tree shorter_type, outer_type;
6434 tree min, max;
6435 bool above, below;
6437 if (arg0_unw == arg0)
6438 return NULL_TREE;
6439 shorter_type = TREE_TYPE (arg0_unw);
6441 #ifdef HAVE_canonicalize_funcptr_for_compare
6442 /* Disable this optimization if we're casting a function pointer
6443 type on targets that require function pointer canonicalization. */
6444 if (HAVE_canonicalize_funcptr_for_compare
6445 && TREE_CODE (shorter_type) == POINTER_TYPE
6446 && TREE_CODE (TREE_TYPE (shorter_type)) == FUNCTION_TYPE)
6447 return NULL_TREE;
6448 #endif
6450 if (TYPE_PRECISION (TREE_TYPE (arg0)) <= TYPE_PRECISION (shorter_type))
6451 return NULL_TREE;
6453 arg1_unw = get_unwidened (arg1, shorter_type);
6455 /* If possible, express the comparison in the shorter mode. */
6456 if ((code == EQ_EXPR || code == NE_EXPR
6457 || TYPE_UNSIGNED (TREE_TYPE (arg0)) == TYPE_UNSIGNED (shorter_type))
6458 && (TREE_TYPE (arg1_unw) == shorter_type
6459 || (TREE_CODE (arg1_unw) == INTEGER_CST
6460 && (TREE_CODE (shorter_type) == INTEGER_TYPE
6461 || TREE_CODE (shorter_type) == BOOLEAN_TYPE)
6462 && int_fits_type_p (arg1_unw, shorter_type))))
6463 return fold_build2 (code, type, arg0_unw,
6464 fold_convert (shorter_type, arg1_unw));
6466 if (TREE_CODE (arg1_unw) != INTEGER_CST
6467 || TREE_CODE (shorter_type) != INTEGER_TYPE
6468 || !int_fits_type_p (arg1_unw, shorter_type))
6469 return NULL_TREE;
6471 /* If we are comparing with the integer that does not fit into the range
6472 of the shorter type, the result is known. */
6473 outer_type = TREE_TYPE (arg1_unw);
6474 min = lower_bound_in_type (outer_type, shorter_type);
6475 max = upper_bound_in_type (outer_type, shorter_type);
6477 above = integer_nonzerop (fold_relational_const (LT_EXPR, type,
6478 max, arg1_unw));
6479 below = integer_nonzerop (fold_relational_const (LT_EXPR, type,
6480 arg1_unw, min));
6482 switch (code)
6484 case EQ_EXPR:
6485 if (above || below)
6486 return omit_one_operand (type, integer_zero_node, arg0);
6487 break;
6489 case NE_EXPR:
6490 if (above || below)
6491 return omit_one_operand (type, integer_one_node, arg0);
6492 break;
6494 case LT_EXPR:
6495 case LE_EXPR:
6496 if (above)
6497 return omit_one_operand (type, integer_one_node, arg0);
6498 else if (below)
6499 return omit_one_operand (type, integer_zero_node, arg0);
6501 case GT_EXPR:
6502 case GE_EXPR:
6503 if (above)
6504 return omit_one_operand (type, integer_zero_node, arg0);
6505 else if (below)
6506 return omit_one_operand (type, integer_one_node, arg0);
6508 default:
6509 break;
6512 return NULL_TREE;
6515 /* Fold comparison ARG0 CODE ARG1 (with result in TYPE), where for
6516 ARG0 just the signedness is changed. */
6518 static tree
6519 fold_sign_changed_comparison (enum tree_code code, tree type,
6520 tree arg0, tree arg1)
6522 tree arg0_inner, tmp;
6523 tree inner_type, outer_type;
6525 if (TREE_CODE (arg0) != NOP_EXPR
6526 && TREE_CODE (arg0) != CONVERT_EXPR)
6527 return NULL_TREE;
6529 outer_type = TREE_TYPE (arg0);
6530 arg0_inner = TREE_OPERAND (arg0, 0);
6531 inner_type = TREE_TYPE (arg0_inner);
6533 #ifdef HAVE_canonicalize_funcptr_for_compare
6534 /* Disable this optimization if we're casting a function pointer
6535 type on targets that require function pointer canonicalization. */
6536 if (HAVE_canonicalize_funcptr_for_compare
6537 && TREE_CODE (inner_type) == POINTER_TYPE
6538 && TREE_CODE (TREE_TYPE (inner_type)) == FUNCTION_TYPE)
6539 return NULL_TREE;
6540 #endif
6542 if (TYPE_PRECISION (inner_type) != TYPE_PRECISION (outer_type))
6543 return NULL_TREE;
6545 if (TREE_CODE (arg1) != INTEGER_CST
6546 && !((TREE_CODE (arg1) == NOP_EXPR
6547 || TREE_CODE (arg1) == CONVERT_EXPR)
6548 && TREE_TYPE (TREE_OPERAND (arg1, 0)) == inner_type))
6549 return NULL_TREE;
6551 if (TYPE_UNSIGNED (inner_type) != TYPE_UNSIGNED (outer_type)
6552 && code != NE_EXPR
6553 && code != EQ_EXPR)
6554 return NULL_TREE;
6556 if (TREE_CODE (arg1) == INTEGER_CST)
6558 tmp = build_int_cst_wide (inner_type,
6559 TREE_INT_CST_LOW (arg1),
6560 TREE_INT_CST_HIGH (arg1));
6561 arg1 = force_fit_type (tmp, 0,
6562 TREE_OVERFLOW (arg1),
6563 TREE_CONSTANT_OVERFLOW (arg1));
6565 else
6566 arg1 = fold_convert (inner_type, arg1);
6568 return fold_build2 (code, type, arg0_inner, arg1);
6571 /* Tries to replace &a[idx] CODE s * delta with &a[idx CODE delta], if s is
6572 step of the array. Reconstructs s and delta in the case of s * delta
6573 being an integer constant (and thus already folded).
6574 ADDR is the address. MULT is the multiplicative expression.
6575 If the function succeeds, the new address expression is returned. Otherwise
6576 NULL_TREE is returned. */
6578 static tree
6579 try_move_mult_to_index (enum tree_code code, tree addr, tree op1)
6581 tree s, delta, step;
6582 tree ref = TREE_OPERAND (addr, 0), pref;
6583 tree ret, pos;
6584 tree itype;
6586 /* Canonicalize op1 into a possibly non-constant delta
6587 and an INTEGER_CST s. */
6588 if (TREE_CODE (op1) == MULT_EXPR)
6590 tree arg0 = TREE_OPERAND (op1, 0), arg1 = TREE_OPERAND (op1, 1);
6592 STRIP_NOPS (arg0);
6593 STRIP_NOPS (arg1);
6595 if (TREE_CODE (arg0) == INTEGER_CST)
6597 s = arg0;
6598 delta = arg1;
6600 else if (TREE_CODE (arg1) == INTEGER_CST)
6602 s = arg1;
6603 delta = arg0;
6605 else
6606 return NULL_TREE;
6608 else if (TREE_CODE (op1) == INTEGER_CST)
6610 delta = op1;
6611 s = NULL_TREE;
6613 else
6615 /* Simulate we are delta * 1. */
6616 delta = op1;
6617 s = integer_one_node;
6620 for (;; ref = TREE_OPERAND (ref, 0))
6622 if (TREE_CODE (ref) == ARRAY_REF)
6624 itype = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (ref, 0)));
6625 if (! itype)
6626 continue;
6628 step = array_ref_element_size (ref);
6629 if (TREE_CODE (step) != INTEGER_CST)
6630 continue;
6632 if (s)
6634 if (! tree_int_cst_equal (step, s))
6635 continue;
6637 else
6639 /* Try if delta is a multiple of step. */
6640 tree tmp = div_if_zero_remainder (EXACT_DIV_EXPR, delta, step);
6641 if (! tmp)
6642 continue;
6643 delta = tmp;
6646 break;
6649 if (!handled_component_p (ref))
6650 return NULL_TREE;
6653 /* We found the suitable array reference. So copy everything up to it,
6654 and replace the index. */
6656 pref = TREE_OPERAND (addr, 0);
6657 ret = copy_node (pref);
6658 pos = ret;
6660 while (pref != ref)
6662 pref = TREE_OPERAND (pref, 0);
6663 TREE_OPERAND (pos, 0) = copy_node (pref);
6664 pos = TREE_OPERAND (pos, 0);
6667 TREE_OPERAND (pos, 1) = fold_build2 (code, itype,
6668 fold_convert (itype,
6669 TREE_OPERAND (pos, 1)),
6670 fold_convert (itype, delta));
6672 return fold_build1 (ADDR_EXPR, TREE_TYPE (addr), ret);
6676 /* Fold A < X && A + 1 > Y to A < X && A >= Y. Normally A + 1 > Y
6677 means A >= Y && A != MAX, but in this case we know that
6678 A < X <= MAX. INEQ is A + 1 > Y, BOUND is A < X. */
6680 static tree
6681 fold_to_nonsharp_ineq_using_bound (tree ineq, tree bound)
6683 tree a, typea, type = TREE_TYPE (ineq), a1, diff, y;
6685 if (TREE_CODE (bound) == LT_EXPR)
6686 a = TREE_OPERAND (bound, 0);
6687 else if (TREE_CODE (bound) == GT_EXPR)
6688 a = TREE_OPERAND (bound, 1);
6689 else
6690 return NULL_TREE;
6692 typea = TREE_TYPE (a);
6693 if (!INTEGRAL_TYPE_P (typea)
6694 && !POINTER_TYPE_P (typea))
6695 return NULL_TREE;
6697 if (TREE_CODE (ineq) == LT_EXPR)
6699 a1 = TREE_OPERAND (ineq, 1);
6700 y = TREE_OPERAND (ineq, 0);
6702 else if (TREE_CODE (ineq) == GT_EXPR)
6704 a1 = TREE_OPERAND (ineq, 0);
6705 y = TREE_OPERAND (ineq, 1);
6707 else
6708 return NULL_TREE;
6710 if (TREE_TYPE (a1) != typea)
6711 return NULL_TREE;
6713 diff = fold_build2 (MINUS_EXPR, typea, a1, a);
6714 if (!integer_onep (diff))
6715 return NULL_TREE;
6717 return fold_build2 (GE_EXPR, type, a, y);
6720 /* Fold a sum or difference of at least one multiplication.
6721 Returns the folded tree or NULL if no simplification could be made. */
6723 static tree
6724 fold_plusminus_mult_expr (enum tree_code code, tree type, tree arg0, tree arg1)
6726 tree arg00, arg01, arg10, arg11;
6727 tree alt0 = NULL_TREE, alt1 = NULL_TREE, same;
6729 /* (A * C) +- (B * C) -> (A+-B) * C.
6730 (A * C) +- A -> A * (C+-1).
6731 We are most concerned about the case where C is a constant,
6732 but other combinations show up during loop reduction. Since
6733 it is not difficult, try all four possibilities. */
6735 if (TREE_CODE (arg0) == MULT_EXPR)
6737 arg00 = TREE_OPERAND (arg0, 0);
6738 arg01 = TREE_OPERAND (arg0, 1);
6740 else
6742 arg00 = arg0;
6743 arg01 = build_one_cst (type);
6745 if (TREE_CODE (arg1) == MULT_EXPR)
6747 arg10 = TREE_OPERAND (arg1, 0);
6748 arg11 = TREE_OPERAND (arg1, 1);
6750 else
6752 arg10 = arg1;
6753 arg11 = build_one_cst (type);
6755 same = NULL_TREE;
6757 if (operand_equal_p (arg01, arg11, 0))
6758 same = arg01, alt0 = arg00, alt1 = arg10;
6759 else if (operand_equal_p (arg00, arg10, 0))
6760 same = arg00, alt0 = arg01, alt1 = arg11;
6761 else if (operand_equal_p (arg00, arg11, 0))
6762 same = arg00, alt0 = arg01, alt1 = arg10;
6763 else if (operand_equal_p (arg01, arg10, 0))
6764 same = arg01, alt0 = arg00, alt1 = arg11;
6766 /* No identical multiplicands; see if we can find a common
6767 power-of-two factor in non-power-of-two multiplies. This
6768 can help in multi-dimensional array access. */
6769 else if (host_integerp (arg01, 0)
6770 && host_integerp (arg11, 0))
6772 HOST_WIDE_INT int01, int11, tmp;
6773 bool swap = false;
6774 tree maybe_same;
6775 int01 = TREE_INT_CST_LOW (arg01);
6776 int11 = TREE_INT_CST_LOW (arg11);
6778 /* Move min of absolute values to int11. */
6779 if ((int01 >= 0 ? int01 : -int01)
6780 < (int11 >= 0 ? int11 : -int11))
6782 tmp = int01, int01 = int11, int11 = tmp;
6783 alt0 = arg00, arg00 = arg10, arg10 = alt0;
6784 maybe_same = arg01;
6785 swap = true;
6787 else
6788 maybe_same = arg11;
6790 if (exact_log2 (abs (int11)) > 0 && int01 % int11 == 0)
6792 alt0 = fold_build2 (MULT_EXPR, TREE_TYPE (arg00), arg00,
6793 build_int_cst (TREE_TYPE (arg00),
6794 int01 / int11));
6795 alt1 = arg10;
6796 same = maybe_same;
6797 if (swap)
6798 maybe_same = alt0, alt0 = alt1, alt1 = maybe_same;
6802 if (same)
6803 return fold_build2 (MULT_EXPR, type,
6804 fold_build2 (code, type,
6805 fold_convert (type, alt0),
6806 fold_convert (type, alt1)),
6807 fold_convert (type, same));
6809 return NULL_TREE;
6812 /* Subroutine of native_encode_expr. Encode the INTEGER_CST
6813 specified by EXPR into the buffer PTR of length LEN bytes.
6814 Return the number of bytes placed in the buffer, or zero
6815 upon failure. */
6817 static int
6818 native_encode_int (tree expr, unsigned char *ptr, int len)
6820 tree type = TREE_TYPE (expr);
6821 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
6822 int byte, offset, word, words;
6823 unsigned char value;
6825 if (total_bytes > len)
6826 return 0;
6827 words = total_bytes / UNITS_PER_WORD;
6829 for (byte = 0; byte < total_bytes; byte++)
6831 int bitpos = byte * BITS_PER_UNIT;
6832 if (bitpos < HOST_BITS_PER_WIDE_INT)
6833 value = (unsigned char) (TREE_INT_CST_LOW (expr) >> bitpos);
6834 else
6835 value = (unsigned char) (TREE_INT_CST_HIGH (expr)
6836 >> (bitpos - HOST_BITS_PER_WIDE_INT));
6838 if (total_bytes > UNITS_PER_WORD)
6840 word = byte / UNITS_PER_WORD;
6841 if (WORDS_BIG_ENDIAN)
6842 word = (words - 1) - word;
6843 offset = word * UNITS_PER_WORD;
6844 if (BYTES_BIG_ENDIAN)
6845 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
6846 else
6847 offset += byte % UNITS_PER_WORD;
6849 else
6850 offset = BYTES_BIG_ENDIAN ? (total_bytes - 1) - byte : byte;
6851 ptr[offset] = value;
6853 return total_bytes;
6857 /* Subroutine of native_encode_expr. Encode the REAL_CST
6858 specified by EXPR into the buffer PTR of length LEN bytes.
6859 Return the number of bytes placed in the buffer, or zero
6860 upon failure. */
6862 static int
6863 native_encode_real (tree expr, unsigned char *ptr, int len)
6865 tree type = TREE_TYPE (expr);
6866 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
6867 int byte, offset, word, words;
6868 unsigned char value;
6870 /* There are always 32 bits in each long, no matter the size of
6871 the hosts long. We handle floating point representations with
6872 up to 192 bits. */
6873 long tmp[6];
6875 if (total_bytes > len)
6876 return 0;
6877 words = total_bytes / UNITS_PER_WORD;
6879 real_to_target (tmp, TREE_REAL_CST_PTR (expr), TYPE_MODE (type));
6881 for (byte = 0; byte < total_bytes; byte++)
6883 int bitpos = byte * BITS_PER_UNIT;
6884 value = (unsigned char) (tmp[bitpos / 32] >> (bitpos & 31));
6886 if (total_bytes > UNITS_PER_WORD)
6888 word = byte / UNITS_PER_WORD;
6889 if (FLOAT_WORDS_BIG_ENDIAN)
6890 word = (words - 1) - word;
6891 offset = word * UNITS_PER_WORD;
6892 if (BYTES_BIG_ENDIAN)
6893 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
6894 else
6895 offset += byte % UNITS_PER_WORD;
6897 else
6898 offset = BYTES_BIG_ENDIAN ? (total_bytes - 1) - byte : byte;
6899 ptr[offset] = value;
6901 return total_bytes;
6904 /* Subroutine of native_encode_expr. Encode the COMPLEX_CST
6905 specified by EXPR into the buffer PTR of length LEN bytes.
6906 Return the number of bytes placed in the buffer, or zero
6907 upon failure. */
6909 static int
6910 native_encode_complex (tree expr, unsigned char *ptr, int len)
6912 int rsize, isize;
6913 tree part;
6915 part = TREE_REALPART (expr);
6916 rsize = native_encode_expr (part, ptr, len);
6917 if (rsize == 0)
6918 return 0;
6919 part = TREE_IMAGPART (expr);
6920 isize = native_encode_expr (part, ptr+rsize, len-rsize);
6921 if (isize != rsize)
6922 return 0;
6923 return rsize + isize;
6927 /* Subroutine of native_encode_expr. Encode the VECTOR_CST
6928 specified by EXPR into the buffer PTR of length LEN bytes.
6929 Return the number of bytes placed in the buffer, or zero
6930 upon failure. */
6932 static int
6933 native_encode_vector (tree expr, unsigned char *ptr, int len)
6935 int i, size, offset, count;
6936 tree itype, elem, elements;
6938 offset = 0;
6939 elements = TREE_VECTOR_CST_ELTS (expr);
6940 count = TYPE_VECTOR_SUBPARTS (TREE_TYPE (expr));
6941 itype = TREE_TYPE (TREE_TYPE (expr));
6942 size = GET_MODE_SIZE (TYPE_MODE (itype));
6943 for (i = 0; i < count; i++)
6945 if (elements)
6947 elem = TREE_VALUE (elements);
6948 elements = TREE_CHAIN (elements);
6950 else
6951 elem = NULL_TREE;
6953 if (elem)
6955 if (native_encode_expr (elem, ptr+offset, len-offset) != size)
6956 return 0;
6958 else
6960 if (offset + size > len)
6961 return 0;
6962 memset (ptr+offset, 0, size);
6964 offset += size;
6966 return offset;
6970 /* Subroutine of fold_view_convert_expr. Encode the INTEGER_CST,
6971 REAL_CST, COMPLEX_CST or VECTOR_CST specified by EXPR into the
6972 buffer PTR of length LEN bytes. Return the number of bytes
6973 placed in the buffer, or zero upon failure. */
6975 static int
6976 native_encode_expr (tree expr, unsigned char *ptr, int len)
6978 switch (TREE_CODE (expr))
6980 case INTEGER_CST:
6981 return native_encode_int (expr, ptr, len);
6983 case REAL_CST:
6984 return native_encode_real (expr, ptr, len);
6986 case COMPLEX_CST:
6987 return native_encode_complex (expr, ptr, len);
6989 case VECTOR_CST:
6990 return native_encode_vector (expr, ptr, len);
6992 default:
6993 return 0;
6998 /* Subroutine of native_interpret_expr. Interpret the contents of
6999 the buffer PTR of length LEN as an INTEGER_CST of type TYPE.
7000 If the buffer cannot be interpreted, return NULL_TREE. */
7002 static tree
7003 native_interpret_int (tree type, unsigned char *ptr, int len)
7005 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7006 int byte, offset, word, words;
7007 unsigned char value;
7008 unsigned int HOST_WIDE_INT lo = 0;
7009 HOST_WIDE_INT hi = 0;
7011 if (total_bytes > len)
7012 return NULL_TREE;
7013 if (total_bytes * BITS_PER_UNIT > 2 * HOST_BITS_PER_WIDE_INT)
7014 return NULL_TREE;
7015 words = total_bytes / UNITS_PER_WORD;
7017 for (byte = 0; byte < total_bytes; byte++)
7019 int bitpos = byte * BITS_PER_UNIT;
7020 if (total_bytes > UNITS_PER_WORD)
7022 word = byte / UNITS_PER_WORD;
7023 if (WORDS_BIG_ENDIAN)
7024 word = (words - 1) - word;
7025 offset = word * UNITS_PER_WORD;
7026 if (BYTES_BIG_ENDIAN)
7027 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7028 else
7029 offset += byte % UNITS_PER_WORD;
7031 else
7032 offset = BYTES_BIG_ENDIAN ? (total_bytes - 1) - byte : byte;
7033 value = ptr[offset];
7035 if (bitpos < HOST_BITS_PER_WIDE_INT)
7036 lo |= (unsigned HOST_WIDE_INT) value << bitpos;
7037 else
7038 hi |= (unsigned HOST_WIDE_INT) value
7039 << (bitpos - HOST_BITS_PER_WIDE_INT);
7042 return force_fit_type (build_int_cst_wide (type, lo, hi),
7043 0, false, false);
7047 /* Subroutine of native_interpret_expr. Interpret the contents of
7048 the buffer PTR of length LEN as a REAL_CST of type TYPE.
7049 If the buffer cannot be interpreted, return NULL_TREE. */
7051 static tree
7052 native_interpret_real (tree type, unsigned char *ptr, int len)
7054 enum machine_mode mode = TYPE_MODE (type);
7055 int total_bytes = GET_MODE_SIZE (mode);
7056 int byte, offset, word, words;
7057 unsigned char value;
7058 /* There are always 32 bits in each long, no matter the size of
7059 the hosts long. We handle floating point representations with
7060 up to 192 bits. */
7061 REAL_VALUE_TYPE r;
7062 long tmp[6];
7064 total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7065 if (total_bytes > len || total_bytes > 24)
7066 return NULL_TREE;
7067 words = total_bytes / UNITS_PER_WORD;
7069 memset (tmp, 0, sizeof (tmp));
7070 for (byte = 0; byte < total_bytes; byte++)
7072 int bitpos = byte * BITS_PER_UNIT;
7073 if (total_bytes > UNITS_PER_WORD)
7075 word = byte / UNITS_PER_WORD;
7076 if (FLOAT_WORDS_BIG_ENDIAN)
7077 word = (words - 1) - word;
7078 offset = word * UNITS_PER_WORD;
7079 if (BYTES_BIG_ENDIAN)
7080 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7081 else
7082 offset += byte % UNITS_PER_WORD;
7084 else
7085 offset = BYTES_BIG_ENDIAN ? (total_bytes - 1) - byte : byte;
7086 value = ptr[offset];
7088 tmp[bitpos / 32] |= (unsigned long)value << (bitpos & 31);
7091 real_from_target (&r, tmp, mode);
7092 return build_real (type, r);
7096 /* Subroutine of native_interpret_expr. Interpret the contents of
7097 the buffer PTR of length LEN as a COMPLEX_CST of type TYPE.
7098 If the buffer cannot be interpreted, return NULL_TREE. */
7100 static tree
7101 native_interpret_complex (tree type, unsigned char *ptr, int len)
7103 tree etype, rpart, ipart;
7104 int size;
7106 etype = TREE_TYPE (type);
7107 size = GET_MODE_SIZE (TYPE_MODE (etype));
7108 if (size * 2 > len)
7109 return NULL_TREE;
7110 rpart = native_interpret_expr (etype, ptr, size);
7111 if (!rpart)
7112 return NULL_TREE;
7113 ipart = native_interpret_expr (etype, ptr+size, size);
7114 if (!ipart)
7115 return NULL_TREE;
7116 return build_complex (type, rpart, ipart);
7120 /* Subroutine of native_interpret_expr. Interpret the contents of
7121 the buffer PTR of length LEN as a VECTOR_CST of type TYPE.
7122 If the buffer cannot be interpreted, return NULL_TREE. */
7124 static tree
7125 native_interpret_vector (tree type, unsigned char *ptr, int len)
7127 tree etype, elem, elements;
7128 int i, size, count;
7130 etype = TREE_TYPE (type);
7131 size = GET_MODE_SIZE (TYPE_MODE (etype));
7132 count = TYPE_VECTOR_SUBPARTS (type);
7133 if (size * count > len)
7134 return NULL_TREE;
7136 elements = NULL_TREE;
7137 for (i = count - 1; i >= 0; i--)
7139 elem = native_interpret_expr (etype, ptr+(i*size), size);
7140 if (!elem)
7141 return NULL_TREE;
7142 elements = tree_cons (NULL_TREE, elem, elements);
7144 return build_vector (type, elements);
7148 /* Subroutine of fold_view_convert_expr. Interpret the contents of
7149 the buffer PTR of length LEN as a constant of type TYPE. For
7150 INTEGRAL_TYPE_P we return an INTEGER_CST, for SCALAR_FLOAT_TYPE_P
7151 we return a REAL_CST, etc... If the buffer cannot be interpreted,
7152 return NULL_TREE. */
7154 static tree
7155 native_interpret_expr (tree type, unsigned char *ptr, int len)
7157 switch (TREE_CODE (type))
7159 case INTEGER_TYPE:
7160 case ENUMERAL_TYPE:
7161 case BOOLEAN_TYPE:
7162 return native_interpret_int (type, ptr, len);
7164 case REAL_TYPE:
7165 return native_interpret_real (type, ptr, len);
7167 case COMPLEX_TYPE:
7168 return native_interpret_complex (type, ptr, len);
7170 case VECTOR_TYPE:
7171 return native_interpret_vector (type, ptr, len);
7173 default:
7174 return NULL_TREE;
7179 /* Fold a VIEW_CONVERT_EXPR of a constant expression EXPR to type
7180 TYPE at compile-time. If we're unable to perform the conversion
7181 return NULL_TREE. */
7183 static tree
7184 fold_view_convert_expr (tree type, tree expr)
7186 /* We support up to 512-bit values (for V8DFmode). */
7187 unsigned char buffer[64];
7188 int len;
7190 /* Check that the host and target are sane. */
7191 if (CHAR_BIT != 8 || BITS_PER_UNIT != 8)
7192 return NULL_TREE;
7194 len = native_encode_expr (expr, buffer, sizeof (buffer));
7195 if (len == 0)
7196 return NULL_TREE;
7198 return native_interpret_expr (type, buffer, len);
7202 /* Fold a unary expression of code CODE and type TYPE with operand
7203 OP0. Return the folded expression if folding is successful.
7204 Otherwise, return NULL_TREE. */
7206 tree
7207 fold_unary (enum tree_code code, tree type, tree op0)
7209 tree tem;
7210 tree arg0;
7211 enum tree_code_class kind = TREE_CODE_CLASS (code);
7213 gcc_assert (IS_EXPR_CODE_CLASS (kind)
7214 && TREE_CODE_LENGTH (code) == 1);
7216 arg0 = op0;
7217 if (arg0)
7219 if (code == NOP_EXPR || code == CONVERT_EXPR
7220 || code == FLOAT_EXPR || code == ABS_EXPR)
7222 /* Don't use STRIP_NOPS, because signedness of argument type
7223 matters. */
7224 STRIP_SIGN_NOPS (arg0);
7226 else
7228 /* Strip any conversions that don't change the mode. This
7229 is safe for every expression, except for a comparison
7230 expression because its signedness is derived from its
7231 operands.
7233 Note that this is done as an internal manipulation within
7234 the constant folder, in order to find the simplest
7235 representation of the arguments so that their form can be
7236 studied. In any cases, the appropriate type conversions
7237 should be put back in the tree that will get out of the
7238 constant folder. */
7239 STRIP_NOPS (arg0);
7243 if (TREE_CODE_CLASS (code) == tcc_unary)
7245 if (TREE_CODE (arg0) == COMPOUND_EXPR)
7246 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
7247 fold_build1 (code, type, TREE_OPERAND (arg0, 1)));
7248 else if (TREE_CODE (arg0) == COND_EXPR)
7250 tree arg01 = TREE_OPERAND (arg0, 1);
7251 tree arg02 = TREE_OPERAND (arg0, 2);
7252 if (! VOID_TYPE_P (TREE_TYPE (arg01)))
7253 arg01 = fold_build1 (code, type, arg01);
7254 if (! VOID_TYPE_P (TREE_TYPE (arg02)))
7255 arg02 = fold_build1 (code, type, arg02);
7256 tem = fold_build3 (COND_EXPR, type, TREE_OPERAND (arg0, 0),
7257 arg01, arg02);
7259 /* If this was a conversion, and all we did was to move into
7260 inside the COND_EXPR, bring it back out. But leave it if
7261 it is a conversion from integer to integer and the
7262 result precision is no wider than a word since such a
7263 conversion is cheap and may be optimized away by combine,
7264 while it couldn't if it were outside the COND_EXPR. Then return
7265 so we don't get into an infinite recursion loop taking the
7266 conversion out and then back in. */
7268 if ((code == NOP_EXPR || code == CONVERT_EXPR
7269 || code == NON_LVALUE_EXPR)
7270 && TREE_CODE (tem) == COND_EXPR
7271 && TREE_CODE (TREE_OPERAND (tem, 1)) == code
7272 && TREE_CODE (TREE_OPERAND (tem, 2)) == code
7273 && ! VOID_TYPE_P (TREE_OPERAND (tem, 1))
7274 && ! VOID_TYPE_P (TREE_OPERAND (tem, 2))
7275 && (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))
7276 == TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 2), 0)))
7277 && (! (INTEGRAL_TYPE_P (TREE_TYPE (tem))
7278 && (INTEGRAL_TYPE_P
7279 (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))))
7280 && TYPE_PRECISION (TREE_TYPE (tem)) <= BITS_PER_WORD)
7281 || flag_syntax_only))
7282 tem = build1 (code, type,
7283 build3 (COND_EXPR,
7284 TREE_TYPE (TREE_OPERAND
7285 (TREE_OPERAND (tem, 1), 0)),
7286 TREE_OPERAND (tem, 0),
7287 TREE_OPERAND (TREE_OPERAND (tem, 1), 0),
7288 TREE_OPERAND (TREE_OPERAND (tem, 2), 0)));
7289 return tem;
7291 else if (COMPARISON_CLASS_P (arg0))
7293 if (TREE_CODE (type) == BOOLEAN_TYPE)
7295 arg0 = copy_node (arg0);
7296 TREE_TYPE (arg0) = type;
7297 return arg0;
7299 else if (TREE_CODE (type) != INTEGER_TYPE)
7300 return fold_build3 (COND_EXPR, type, arg0,
7301 fold_build1 (code, type,
7302 integer_one_node),
7303 fold_build1 (code, type,
7304 integer_zero_node));
7308 switch (code)
7310 case NOP_EXPR:
7311 case FLOAT_EXPR:
7312 case CONVERT_EXPR:
7313 case FIX_TRUNC_EXPR:
7314 case FIX_CEIL_EXPR:
7315 case FIX_FLOOR_EXPR:
7316 case FIX_ROUND_EXPR:
7317 if (TREE_TYPE (op0) == type)
7318 return op0;
7320 /* If we have (type) (a CMP b) and type is an integral type, return
7321 new expression involving the new type. */
7322 if (COMPARISON_CLASS_P (op0) && INTEGRAL_TYPE_P (type))
7323 return fold_build2 (TREE_CODE (op0), type, TREE_OPERAND (op0, 0),
7324 TREE_OPERAND (op0, 1));
7326 /* Handle cases of two conversions in a row. */
7327 if (TREE_CODE (op0) == NOP_EXPR
7328 || TREE_CODE (op0) == CONVERT_EXPR)
7330 tree inside_type = TREE_TYPE (TREE_OPERAND (op0, 0));
7331 tree inter_type = TREE_TYPE (op0);
7332 int inside_int = INTEGRAL_TYPE_P (inside_type);
7333 int inside_ptr = POINTER_TYPE_P (inside_type);
7334 int inside_float = FLOAT_TYPE_P (inside_type);
7335 int inside_vec = TREE_CODE (inside_type) == VECTOR_TYPE;
7336 unsigned int inside_prec = TYPE_PRECISION (inside_type);
7337 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
7338 int inter_int = INTEGRAL_TYPE_P (inter_type);
7339 int inter_ptr = POINTER_TYPE_P (inter_type);
7340 int inter_float = FLOAT_TYPE_P (inter_type);
7341 int inter_vec = TREE_CODE (inter_type) == VECTOR_TYPE;
7342 unsigned int inter_prec = TYPE_PRECISION (inter_type);
7343 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
7344 int final_int = INTEGRAL_TYPE_P (type);
7345 int final_ptr = POINTER_TYPE_P (type);
7346 int final_float = FLOAT_TYPE_P (type);
7347 int final_vec = TREE_CODE (type) == VECTOR_TYPE;
7348 unsigned int final_prec = TYPE_PRECISION (type);
7349 int final_unsignedp = TYPE_UNSIGNED (type);
7351 /* In addition to the cases of two conversions in a row
7352 handled below, if we are converting something to its own
7353 type via an object of identical or wider precision, neither
7354 conversion is needed. */
7355 if (TYPE_MAIN_VARIANT (inside_type) == TYPE_MAIN_VARIANT (type)
7356 && (((inter_int || inter_ptr) && final_int)
7357 || (inter_float && final_float))
7358 && inter_prec >= final_prec)
7359 return fold_build1 (code, type, TREE_OPERAND (op0, 0));
7361 /* Likewise, if the intermediate and final types are either both
7362 float or both integer, we don't need the middle conversion if
7363 it is wider than the final type and doesn't change the signedness
7364 (for integers). Avoid this if the final type is a pointer
7365 since then we sometimes need the inner conversion. Likewise if
7366 the outer has a precision not equal to the size of its mode. */
7367 if ((((inter_int || inter_ptr) && (inside_int || inside_ptr))
7368 || (inter_float && inside_float)
7369 || (inter_vec && inside_vec))
7370 && inter_prec >= inside_prec
7371 && (inter_float || inter_vec
7372 || inter_unsignedp == inside_unsignedp)
7373 && ! (final_prec != GET_MODE_BITSIZE (TYPE_MODE (type))
7374 && TYPE_MODE (type) == TYPE_MODE (inter_type))
7375 && ! final_ptr
7376 && (! final_vec || inter_prec == inside_prec))
7377 return fold_build1 (code, type, TREE_OPERAND (op0, 0));
7379 /* If we have a sign-extension of a zero-extended value, we can
7380 replace that by a single zero-extension. */
7381 if (inside_int && inter_int && final_int
7382 && inside_prec < inter_prec && inter_prec < final_prec
7383 && inside_unsignedp && !inter_unsignedp)
7384 return fold_build1 (code, type, TREE_OPERAND (op0, 0));
7386 /* Two conversions in a row are not needed unless:
7387 - some conversion is floating-point (overstrict for now), or
7388 - some conversion is a vector (overstrict for now), or
7389 - the intermediate type is narrower than both initial and
7390 final, or
7391 - the intermediate type and innermost type differ in signedness,
7392 and the outermost type is wider than the intermediate, or
7393 - the initial type is a pointer type and the precisions of the
7394 intermediate and final types differ, or
7395 - the final type is a pointer type and the precisions of the
7396 initial and intermediate types differ.
7397 - the final type is a pointer type and the initial type not
7398 - the initial type is a pointer to an array and the final type
7399 not. */
7400 if (! inside_float && ! inter_float && ! final_float
7401 && ! inside_vec && ! inter_vec && ! final_vec
7402 && (inter_prec >= inside_prec || inter_prec >= final_prec)
7403 && ! (inside_int && inter_int
7404 && inter_unsignedp != inside_unsignedp
7405 && inter_prec < final_prec)
7406 && ((inter_unsignedp && inter_prec > inside_prec)
7407 == (final_unsignedp && final_prec > inter_prec))
7408 && ! (inside_ptr && inter_prec != final_prec)
7409 && ! (final_ptr && inside_prec != inter_prec)
7410 && ! (final_prec != GET_MODE_BITSIZE (TYPE_MODE (type))
7411 && TYPE_MODE (type) == TYPE_MODE (inter_type))
7412 && final_ptr == inside_ptr
7413 && ! (inside_ptr
7414 && TREE_CODE (TREE_TYPE (inside_type)) == ARRAY_TYPE
7415 && TREE_CODE (TREE_TYPE (type)) != ARRAY_TYPE))
7416 return fold_build1 (code, type, TREE_OPERAND (op0, 0));
7419 /* Handle (T *)&A.B.C for A being of type T and B and C
7420 living at offset zero. This occurs frequently in
7421 C++ upcasting and then accessing the base. */
7422 if (TREE_CODE (op0) == ADDR_EXPR
7423 && POINTER_TYPE_P (type)
7424 && handled_component_p (TREE_OPERAND (op0, 0)))
7426 HOST_WIDE_INT bitsize, bitpos;
7427 tree offset;
7428 enum machine_mode mode;
7429 int unsignedp, volatilep;
7430 tree base = TREE_OPERAND (op0, 0);
7431 base = get_inner_reference (base, &bitsize, &bitpos, &offset,
7432 &mode, &unsignedp, &volatilep, false);
7433 /* If the reference was to a (constant) zero offset, we can use
7434 the address of the base if it has the same base type
7435 as the result type. */
7436 if (! offset && bitpos == 0
7437 && TYPE_MAIN_VARIANT (TREE_TYPE (type))
7438 == TYPE_MAIN_VARIANT (TREE_TYPE (base)))
7439 return fold_convert (type, build_fold_addr_expr (base));
7442 if (TREE_CODE (op0) == MODIFY_EXPR
7443 && TREE_CONSTANT (TREE_OPERAND (op0, 1))
7444 /* Detect assigning a bitfield. */
7445 && !(TREE_CODE (TREE_OPERAND (op0, 0)) == COMPONENT_REF
7446 && DECL_BIT_FIELD (TREE_OPERAND (TREE_OPERAND (op0, 0), 1))))
7448 /* Don't leave an assignment inside a conversion
7449 unless assigning a bitfield. */
7450 tem = fold_build1 (code, type, TREE_OPERAND (op0, 1));
7451 /* First do the assignment, then return converted constant. */
7452 tem = build2 (COMPOUND_EXPR, TREE_TYPE (tem), op0, tem);
7453 TREE_NO_WARNING (tem) = 1;
7454 TREE_USED (tem) = 1;
7455 return tem;
7458 /* Convert (T)(x & c) into (T)x & (T)c, if c is an integer
7459 constants (if x has signed type, the sign bit cannot be set
7460 in c). This folds extension into the BIT_AND_EXPR. */
7461 if (INTEGRAL_TYPE_P (type)
7462 && TREE_CODE (type) != BOOLEAN_TYPE
7463 && TREE_CODE (op0) == BIT_AND_EXPR
7464 && TREE_CODE (TREE_OPERAND (op0, 1)) == INTEGER_CST)
7466 tree and = op0;
7467 tree and0 = TREE_OPERAND (and, 0), and1 = TREE_OPERAND (and, 1);
7468 int change = 0;
7470 if (TYPE_UNSIGNED (TREE_TYPE (and))
7471 || (TYPE_PRECISION (type)
7472 <= TYPE_PRECISION (TREE_TYPE (and))))
7473 change = 1;
7474 else if (TYPE_PRECISION (TREE_TYPE (and1))
7475 <= HOST_BITS_PER_WIDE_INT
7476 && host_integerp (and1, 1))
7478 unsigned HOST_WIDE_INT cst;
7480 cst = tree_low_cst (and1, 1);
7481 cst &= (HOST_WIDE_INT) -1
7482 << (TYPE_PRECISION (TREE_TYPE (and1)) - 1);
7483 change = (cst == 0);
7484 #ifdef LOAD_EXTEND_OP
7485 if (change
7486 && !flag_syntax_only
7487 && (LOAD_EXTEND_OP (TYPE_MODE (TREE_TYPE (and0)))
7488 == ZERO_EXTEND))
7490 tree uns = lang_hooks.types.unsigned_type (TREE_TYPE (and0));
7491 and0 = fold_convert (uns, and0);
7492 and1 = fold_convert (uns, and1);
7494 #endif
7496 if (change)
7498 tem = build_int_cst_wide (type, TREE_INT_CST_LOW (and1),
7499 TREE_INT_CST_HIGH (and1));
7500 tem = force_fit_type (tem, 0, TREE_OVERFLOW (and1),
7501 TREE_CONSTANT_OVERFLOW (and1));
7502 return fold_build2 (BIT_AND_EXPR, type,
7503 fold_convert (type, and0), tem);
7507 /* Convert (T1)((T2)X op Y) into (T1)X op Y, for pointer types T1 and
7508 T2 being pointers to types of the same size. */
7509 if (POINTER_TYPE_P (type)
7510 && BINARY_CLASS_P (arg0)
7511 && TREE_CODE (TREE_OPERAND (arg0, 0)) == NOP_EXPR
7512 && POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (arg0, 0))))
7514 tree arg00 = TREE_OPERAND (arg0, 0);
7515 tree t0 = type;
7516 tree t1 = TREE_TYPE (arg00);
7517 tree tt0 = TREE_TYPE (t0);
7518 tree tt1 = TREE_TYPE (t1);
7519 tree s0 = TYPE_SIZE (tt0);
7520 tree s1 = TYPE_SIZE (tt1);
7522 if (s0 && s1 && operand_equal_p (s0, s1, OEP_ONLY_CONST))
7523 return build2 (TREE_CODE (arg0), t0, fold_convert (t0, arg00),
7524 TREE_OPERAND (arg0, 1));
7527 /* Convert (T1)(~(T2)X) into ~(T1)X if T1 and T2 are integral types
7528 of the same precision, and X is a integer type not narrower than
7529 types T1 or T2, i.e. the cast (T2)X isn't an extension. */
7530 if (INTEGRAL_TYPE_P (type)
7531 && TREE_CODE (op0) == BIT_NOT_EXPR
7532 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
7533 && (TREE_CODE (TREE_OPERAND (op0, 0)) == NOP_EXPR
7534 || TREE_CODE (TREE_OPERAND (op0, 0)) == CONVERT_EXPR)
7535 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (op0)))
7537 tem = TREE_OPERAND (TREE_OPERAND (op0, 0), 0);
7538 if (INTEGRAL_TYPE_P (TREE_TYPE (tem))
7539 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (tem)))
7540 return fold_build1 (BIT_NOT_EXPR, type, fold_convert (type, tem));
7543 tem = fold_convert_const (code, type, arg0);
7544 return tem ? tem : NULL_TREE;
7546 case VIEW_CONVERT_EXPR:
7547 if (TREE_CODE (op0) == VIEW_CONVERT_EXPR)
7548 return fold_build1 (VIEW_CONVERT_EXPR, type, TREE_OPERAND (op0, 0));
7549 return fold_view_convert_expr (type, op0);
7551 case NEGATE_EXPR:
7552 tem = fold_negate_expr (arg0);
7553 if (tem)
7554 return fold_convert (type, tem);
7555 return NULL_TREE;
7557 case ABS_EXPR:
7558 if (TREE_CODE (arg0) == INTEGER_CST || TREE_CODE (arg0) == REAL_CST)
7559 return fold_abs_const (arg0, type);
7560 else if (TREE_CODE (arg0) == NEGATE_EXPR)
7561 return fold_build1 (ABS_EXPR, type, TREE_OPERAND (arg0, 0));
7562 /* Convert fabs((double)float) into (double)fabsf(float). */
7563 else if (TREE_CODE (arg0) == NOP_EXPR
7564 && TREE_CODE (type) == REAL_TYPE)
7566 tree targ0 = strip_float_extensions (arg0);
7567 if (targ0 != arg0)
7568 return fold_convert (type, fold_build1 (ABS_EXPR,
7569 TREE_TYPE (targ0),
7570 targ0));
7572 /* ABS_EXPR<ABS_EXPR<x>> = ABS_EXPR<x> even if flag_wrapv is on. */
7573 else if (tree_expr_nonnegative_p (arg0) || TREE_CODE (arg0) == ABS_EXPR)
7574 return arg0;
7576 /* Strip sign ops from argument. */
7577 if (TREE_CODE (type) == REAL_TYPE)
7579 tem = fold_strip_sign_ops (arg0);
7580 if (tem)
7581 return fold_build1 (ABS_EXPR, type, fold_convert (type, tem));
7583 return NULL_TREE;
7585 case CONJ_EXPR:
7586 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
7587 return fold_convert (type, arg0);
7588 if (TREE_CODE (arg0) == COMPLEX_EXPR)
7590 tree itype = TREE_TYPE (type);
7591 tree rpart = fold_convert (itype, TREE_OPERAND (arg0, 0));
7592 tree ipart = fold_convert (itype, TREE_OPERAND (arg0, 1));
7593 return fold_build2 (COMPLEX_EXPR, type, rpart, negate_expr (ipart));
7595 if (TREE_CODE (arg0) == COMPLEX_CST)
7597 tree itype = TREE_TYPE (type);
7598 tree rpart = fold_convert (itype, TREE_REALPART (arg0));
7599 tree ipart = fold_convert (itype, TREE_IMAGPART (arg0));
7600 return build_complex (type, rpart, negate_expr (ipart));
7602 if (TREE_CODE (arg0) == CONJ_EXPR)
7603 return fold_convert (type, TREE_OPERAND (arg0, 0));
7604 return NULL_TREE;
7606 case BIT_NOT_EXPR:
7607 if (TREE_CODE (arg0) == INTEGER_CST)
7608 return fold_not_const (arg0, type);
7609 else if (TREE_CODE (arg0) == BIT_NOT_EXPR)
7610 return TREE_OPERAND (arg0, 0);
7611 /* Convert ~ (-A) to A - 1. */
7612 else if (INTEGRAL_TYPE_P (type) && TREE_CODE (arg0) == NEGATE_EXPR)
7613 return fold_build2 (MINUS_EXPR, type, TREE_OPERAND (arg0, 0),
7614 build_int_cst (type, 1));
7615 /* Convert ~ (A - 1) or ~ (A + -1) to -A. */
7616 else if (INTEGRAL_TYPE_P (type)
7617 && ((TREE_CODE (arg0) == MINUS_EXPR
7618 && integer_onep (TREE_OPERAND (arg0, 1)))
7619 || (TREE_CODE (arg0) == PLUS_EXPR
7620 && integer_all_onesp (TREE_OPERAND (arg0, 1)))))
7621 return fold_build1 (NEGATE_EXPR, type, TREE_OPERAND (arg0, 0));
7622 /* Convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
7623 else if (TREE_CODE (arg0) == BIT_XOR_EXPR
7624 && (tem = fold_unary (BIT_NOT_EXPR, type,
7625 fold_convert (type,
7626 TREE_OPERAND (arg0, 0)))))
7627 return fold_build2 (BIT_XOR_EXPR, type, tem,
7628 fold_convert (type, TREE_OPERAND (arg0, 1)));
7629 else if (TREE_CODE (arg0) == BIT_XOR_EXPR
7630 && (tem = fold_unary (BIT_NOT_EXPR, type,
7631 fold_convert (type,
7632 TREE_OPERAND (arg0, 1)))))
7633 return fold_build2 (BIT_XOR_EXPR, type,
7634 fold_convert (type, TREE_OPERAND (arg0, 0)), tem);
7636 return NULL_TREE;
7638 case TRUTH_NOT_EXPR:
7639 /* The argument to invert_truthvalue must have Boolean type. */
7640 if (TREE_CODE (TREE_TYPE (arg0)) != BOOLEAN_TYPE)
7641 arg0 = fold_convert (boolean_type_node, arg0);
7643 /* Note that the operand of this must be an int
7644 and its values must be 0 or 1.
7645 ("true" is a fixed value perhaps depending on the language,
7646 but we don't handle values other than 1 correctly yet.) */
7647 tem = fold_truth_not_expr (arg0);
7648 if (!tem)
7649 return NULL_TREE;
7650 return fold_convert (type, tem);
7652 case REALPART_EXPR:
7653 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
7654 return fold_convert (type, arg0);
7655 if (TREE_CODE (arg0) == COMPLEX_EXPR)
7656 return omit_one_operand (type, TREE_OPERAND (arg0, 0),
7657 TREE_OPERAND (arg0, 1));
7658 if (TREE_CODE (arg0) == COMPLEX_CST)
7659 return fold_convert (type, TREE_REALPART (arg0));
7660 if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
7662 tree itype = TREE_TYPE (TREE_TYPE (arg0));
7663 tem = fold_build2 (TREE_CODE (arg0), itype,
7664 fold_build1 (REALPART_EXPR, itype,
7665 TREE_OPERAND (arg0, 0)),
7666 fold_build1 (REALPART_EXPR, itype,
7667 TREE_OPERAND (arg0, 1)));
7668 return fold_convert (type, tem);
7670 if (TREE_CODE (arg0) == CONJ_EXPR)
7672 tree itype = TREE_TYPE (TREE_TYPE (arg0));
7673 tem = fold_build1 (REALPART_EXPR, itype, TREE_OPERAND (arg0, 0));
7674 return fold_convert (type, tem);
7676 return NULL_TREE;
7678 case IMAGPART_EXPR:
7679 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
7680 return fold_convert (type, integer_zero_node);
7681 if (TREE_CODE (arg0) == COMPLEX_EXPR)
7682 return omit_one_operand (type, TREE_OPERAND (arg0, 1),
7683 TREE_OPERAND (arg0, 0));
7684 if (TREE_CODE (arg0) == COMPLEX_CST)
7685 return fold_convert (type, TREE_IMAGPART (arg0));
7686 if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
7688 tree itype = TREE_TYPE (TREE_TYPE (arg0));
7689 tem = fold_build2 (TREE_CODE (arg0), itype,
7690 fold_build1 (IMAGPART_EXPR, itype,
7691 TREE_OPERAND (arg0, 0)),
7692 fold_build1 (IMAGPART_EXPR, itype,
7693 TREE_OPERAND (arg0, 1)));
7694 return fold_convert (type, tem);
7696 if (TREE_CODE (arg0) == CONJ_EXPR)
7698 tree itype = TREE_TYPE (TREE_TYPE (arg0));
7699 tem = fold_build1 (IMAGPART_EXPR, itype, TREE_OPERAND (arg0, 0));
7700 return fold_convert (type, negate_expr (tem));
7702 return NULL_TREE;
7704 default:
7705 return NULL_TREE;
7706 } /* switch (code) */
7709 /* Fold a binary expression of code CODE and type TYPE with operands
7710 OP0 and OP1, containing either a MIN-MAX or a MAX-MIN combination.
7711 Return the folded expression if folding is successful. Otherwise,
7712 return NULL_TREE. */
7714 static tree
7715 fold_minmax (enum tree_code code, tree type, tree op0, tree op1)
7717 enum tree_code compl_code;
7719 if (code == MIN_EXPR)
7720 compl_code = MAX_EXPR;
7721 else if (code == MAX_EXPR)
7722 compl_code = MIN_EXPR;
7723 else
7724 gcc_unreachable ();
7726 /* MIN (MAX (a, b), b) == b.  */
7727 if (TREE_CODE (op0) == compl_code
7728 && operand_equal_p (TREE_OPERAND (op0, 1), op1, 0))
7729 return omit_one_operand (type, op1, TREE_OPERAND (op0, 0));
7731 /* MIN (MAX (b, a), b) == b.  */
7732 if (TREE_CODE (op0) == compl_code
7733 && operand_equal_p (TREE_OPERAND (op0, 0), op1, 0)
7734 && reorder_operands_p (TREE_OPERAND (op0, 1), op1))
7735 return omit_one_operand (type, op1, TREE_OPERAND (op0, 1));
7737 /* MIN (a, MAX (a, b)) == a.  */
7738 if (TREE_CODE (op1) == compl_code
7739 && operand_equal_p (op0, TREE_OPERAND (op1, 0), 0)
7740 && reorder_operands_p (op0, TREE_OPERAND (op1, 1)))
7741 return omit_one_operand (type, op0, TREE_OPERAND (op1, 1));
7743 /* MIN (a, MAX (b, a)) == a.  */
7744 if (TREE_CODE (op1) == compl_code
7745 && operand_equal_p (op0, TREE_OPERAND (op1, 1), 0)
7746 && reorder_operands_p (op0, TREE_OPERAND (op1, 0)))
7747 return omit_one_operand (type, op0, TREE_OPERAND (op1, 0));
7749 return NULL_TREE;
7752 /* Subroutine of fold_binary. This routine performs all of the
7753 transformations that are common to the equality/inequality
7754 operators (EQ_EXPR and NE_EXPR) and the ordering operators
7755 (LT_EXPR, LE_EXPR, GE_EXPR and GT_EXPR). Callers other than
7756 fold_binary should call fold_binary. Fold a comparison with
7757 tree code CODE and type TYPE with operands OP0 and OP1. Return
7758 the folded comparison or NULL_TREE. */
7760 static tree
7761 fold_comparison (enum tree_code code, tree type, tree op0, tree op1)
7763 tree arg0, arg1, tem;
7765 arg0 = op0;
7766 arg1 = op1;
7768 STRIP_SIGN_NOPS (arg0);
7769 STRIP_SIGN_NOPS (arg1);
7771 tem = fold_relational_const (code, type, arg0, arg1);
7772 if (tem != NULL_TREE)
7773 return tem;
7775 /* If one arg is a real or integer constant, put it last. */
7776 if (tree_swap_operands_p (arg0, arg1, true))
7777 return fold_build2 (swap_tree_comparison (code), type, op1, op0);
7779 /* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 +- C1. */
7780 if ((TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
7781 && (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
7782 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1))
7783 && !TYPE_UNSIGNED (TREE_TYPE (arg1))
7784 && !(flag_wrapv || flag_trapv))
7785 && (TREE_CODE (arg1) == INTEGER_CST
7786 && !TREE_OVERFLOW (arg1)))
7788 tree const1 = TREE_OPERAND (arg0, 1);
7789 tree const2 = arg1;
7790 tree variable = TREE_OPERAND (arg0, 0);
7791 tree lhs;
7792 int lhs_add;
7793 lhs_add = TREE_CODE (arg0) != PLUS_EXPR;
7795 lhs = fold_build2 (lhs_add ? PLUS_EXPR : MINUS_EXPR,
7796 TREE_TYPE (arg1), const2, const1);
7797 if (TREE_CODE (lhs) == TREE_CODE (arg1)
7798 && (TREE_CODE (lhs) != INTEGER_CST
7799 || !TREE_OVERFLOW (lhs)))
7800 return fold_build2 (code, type, variable, lhs);
7803 /* If this is a comparison of two exprs that look like an ARRAY_REF of the
7804 same object, then we can fold this to a comparison of the two offsets in
7805 signed size type. This is possible because pointer arithmetic is
7806 restricted to retain within an object and overflow on pointer differences
7807 is undefined as of 6.5.6/8 and /9 with respect to the signed ptrdiff_t. */
7808 if (POINTER_TYPE_P (TREE_TYPE (arg0))
7809 && !flag_wrapv && !flag_trapv)
7811 tree base0, offset0, base1, offset1;
7813 if (extract_array_ref (arg0, &base0, &offset0)
7814 && extract_array_ref (arg1, &base1, &offset1)
7815 && operand_equal_p (base0, base1, 0))
7817 tree signed_size_type_node;
7818 signed_size_type_node = signed_type_for (size_type_node);
7820 /* By converting to signed size type we cover middle-end pointer
7821 arithmetic which operates on unsigned pointer types of size
7822 type size and ARRAY_REF offsets which are properly sign or
7823 zero extended from their type in case it is narrower than
7824 size type. */
7825 if (offset0 == NULL_TREE)
7826 offset0 = build_int_cst (signed_size_type_node, 0);
7827 else
7828 offset0 = fold_convert (signed_size_type_node, offset0);
7829 if (offset1 == NULL_TREE)
7830 offset1 = build_int_cst (signed_size_type_node, 0);
7831 else
7832 offset1 = fold_convert (signed_size_type_node, offset1);
7834 return fold_build2 (code, type, offset0, offset1);
7838 /* Transform comparisons of the form X +- C1 CMP Y +- C2 to
7839 X CMP Y +- C2 +- C1 for signed X, Y. This is valid if
7840 the resulting offset is smaller in absolute value than the
7841 original one. */
7842 if (!(flag_wrapv || flag_trapv)
7843 && !TYPE_UNSIGNED (TREE_TYPE (arg0))
7844 && (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
7845 && (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
7846 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1)))
7847 && (TREE_CODE (arg1) == PLUS_EXPR || TREE_CODE (arg1) == MINUS_EXPR)
7848 && (TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
7849 && !TREE_OVERFLOW (TREE_OPERAND (arg1, 1))))
7851 tree const1 = TREE_OPERAND (arg0, 1);
7852 tree const2 = TREE_OPERAND (arg1, 1);
7853 tree variable1 = TREE_OPERAND (arg0, 0);
7854 tree variable2 = TREE_OPERAND (arg1, 0);
7855 tree cst;
7857 /* Put the constant on the side where it doesn't overflow and is
7858 of lower absolute value than before. */
7859 cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1)
7860 ? MINUS_EXPR : PLUS_EXPR,
7861 const2, const1, 0);
7862 if (!TREE_OVERFLOW (cst)
7863 && tree_int_cst_compare (const2, cst) == tree_int_cst_sgn (const2))
7864 return fold_build2 (code, type,
7865 variable1,
7866 fold_build2 (TREE_CODE (arg1), TREE_TYPE (arg1),
7867 variable2, cst));
7869 cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1)
7870 ? MINUS_EXPR : PLUS_EXPR,
7871 const1, const2, 0);
7872 if (!TREE_OVERFLOW (cst)
7873 && tree_int_cst_compare (const1, cst) == tree_int_cst_sgn (const1))
7874 return fold_build2 (code, type,
7875 fold_build2 (TREE_CODE (arg0), TREE_TYPE (arg0),
7876 variable1, cst),
7877 variable2);
7880 if (FLOAT_TYPE_P (TREE_TYPE (arg0)))
7882 tree targ0 = strip_float_extensions (arg0);
7883 tree targ1 = strip_float_extensions (arg1);
7884 tree newtype = TREE_TYPE (targ0);
7886 if (TYPE_PRECISION (TREE_TYPE (targ1)) > TYPE_PRECISION (newtype))
7887 newtype = TREE_TYPE (targ1);
7889 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
7890 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (TREE_TYPE (arg0)))
7891 return fold_build2 (code, type, fold_convert (newtype, targ0),
7892 fold_convert (newtype, targ1));
7894 /* (-a) CMP (-b) -> b CMP a */
7895 if (TREE_CODE (arg0) == NEGATE_EXPR
7896 && TREE_CODE (arg1) == NEGATE_EXPR)
7897 return fold_build2 (code, type, TREE_OPERAND (arg1, 0),
7898 TREE_OPERAND (arg0, 0));
7900 if (TREE_CODE (arg1) == REAL_CST)
7902 REAL_VALUE_TYPE cst;
7903 cst = TREE_REAL_CST (arg1);
7905 /* (-a) CMP CST -> a swap(CMP) (-CST) */
7906 if (TREE_CODE (arg0) == NEGATE_EXPR)
7907 return fold_build2 (swap_tree_comparison (code), type,
7908 TREE_OPERAND (arg0, 0),
7909 build_real (TREE_TYPE (arg1),
7910 REAL_VALUE_NEGATE (cst)));
7912 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
7913 /* a CMP (-0) -> a CMP 0 */
7914 if (REAL_VALUE_MINUS_ZERO (cst))
7915 return fold_build2 (code, type, arg0,
7916 build_real (TREE_TYPE (arg1), dconst0));
7918 /* x != NaN is always true, other ops are always false. */
7919 if (REAL_VALUE_ISNAN (cst)
7920 && ! HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg1))))
7922 tem = (code == NE_EXPR) ? integer_one_node : integer_zero_node;
7923 return omit_one_operand (type, tem, arg0);
7926 /* Fold comparisons against infinity. */
7927 if (REAL_VALUE_ISINF (cst))
7929 tem = fold_inf_compare (code, type, arg0, arg1);
7930 if (tem != NULL_TREE)
7931 return tem;
7935 /* If this is a comparison of a real constant with a PLUS_EXPR
7936 or a MINUS_EXPR of a real constant, we can convert it into a
7937 comparison with a revised real constant as long as no overflow
7938 occurs when unsafe_math_optimizations are enabled. */
7939 if (flag_unsafe_math_optimizations
7940 && TREE_CODE (arg1) == REAL_CST
7941 && (TREE_CODE (arg0) == PLUS_EXPR
7942 || TREE_CODE (arg0) == MINUS_EXPR)
7943 && TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
7944 && 0 != (tem = const_binop (TREE_CODE (arg0) == PLUS_EXPR
7945 ? MINUS_EXPR : PLUS_EXPR,
7946 arg1, TREE_OPERAND (arg0, 1), 0))
7947 && ! TREE_CONSTANT_OVERFLOW (tem))
7948 return fold_build2 (code, type, TREE_OPERAND (arg0, 0), tem);
7950 /* Likewise, we can simplify a comparison of a real constant with
7951 a MINUS_EXPR whose first operand is also a real constant, i.e.
7952 (c1 - x) < c2 becomes x > c1-c2. */
7953 if (flag_unsafe_math_optimizations
7954 && TREE_CODE (arg1) == REAL_CST
7955 && TREE_CODE (arg0) == MINUS_EXPR
7956 && TREE_CODE (TREE_OPERAND (arg0, 0)) == REAL_CST
7957 && 0 != (tem = const_binop (MINUS_EXPR, TREE_OPERAND (arg0, 0),
7958 arg1, 0))
7959 && ! TREE_CONSTANT_OVERFLOW (tem))
7960 return fold_build2 (swap_tree_comparison (code), type,
7961 TREE_OPERAND (arg0, 1), tem);
7963 /* Fold comparisons against built-in math functions. */
7964 if (TREE_CODE (arg1) == REAL_CST
7965 && flag_unsafe_math_optimizations
7966 && ! flag_errno_math)
7968 enum built_in_function fcode = builtin_mathfn_code (arg0);
7970 if (fcode != END_BUILTINS)
7972 tem = fold_mathfn_compare (fcode, code, type, arg0, arg1);
7973 if (tem != NULL_TREE)
7974 return tem;
7979 /* Convert foo++ == CONST into ++foo == CONST + INCR. */
7980 if (TREE_CONSTANT (arg1)
7981 && (TREE_CODE (arg0) == POSTINCREMENT_EXPR
7982 || TREE_CODE (arg0) == POSTDECREMENT_EXPR)
7983 /* This optimization is invalid for ordered comparisons
7984 if CONST+INCR overflows or if foo+incr might overflow.
7985 This optimization is invalid for floating point due to rounding.
7986 For pointer types we assume overflow doesn't happen. */
7987 && (POINTER_TYPE_P (TREE_TYPE (arg0))
7988 || (INTEGRAL_TYPE_P (TREE_TYPE (arg0))
7989 && (code == EQ_EXPR || code == NE_EXPR))))
7991 tree varop, newconst;
7993 if (TREE_CODE (arg0) == POSTINCREMENT_EXPR)
7995 newconst = fold_build2 (PLUS_EXPR, TREE_TYPE (arg0),
7996 arg1, TREE_OPERAND (arg0, 1));
7997 varop = build2 (PREINCREMENT_EXPR, TREE_TYPE (arg0),
7998 TREE_OPERAND (arg0, 0),
7999 TREE_OPERAND (arg0, 1));
8001 else
8003 newconst = fold_build2 (MINUS_EXPR, TREE_TYPE (arg0),
8004 arg1, TREE_OPERAND (arg0, 1));
8005 varop = build2 (PREDECREMENT_EXPR, TREE_TYPE (arg0),
8006 TREE_OPERAND (arg0, 0),
8007 TREE_OPERAND (arg0, 1));
8011 /* If VAROP is a reference to a bitfield, we must mask
8012 the constant by the width of the field. */
8013 if (TREE_CODE (TREE_OPERAND (varop, 0)) == COMPONENT_REF
8014 && DECL_BIT_FIELD (TREE_OPERAND (TREE_OPERAND (varop, 0), 1))
8015 && host_integerp (DECL_SIZE (TREE_OPERAND
8016 (TREE_OPERAND (varop, 0), 1)), 1))
8018 tree fielddecl = TREE_OPERAND (TREE_OPERAND (varop, 0), 1);
8019 HOST_WIDE_INT size = tree_low_cst (DECL_SIZE (fielddecl), 1);
8020 tree folded_compare, shift;
8022 /* First check whether the comparison would come out
8023 always the same. If we don't do that we would
8024 change the meaning with the masking. */
8025 folded_compare = fold_build2 (code, type,
8026 TREE_OPERAND (varop, 0), arg1);
8027 if (TREE_CODE (folded_compare) == INTEGER_CST)
8028 return omit_one_operand (type, folded_compare, varop);
8030 shift = build_int_cst (NULL_TREE,
8031 TYPE_PRECISION (TREE_TYPE (varop)) - size);
8032 shift = fold_convert (TREE_TYPE (varop), shift);
8033 newconst = fold_build2 (LSHIFT_EXPR, TREE_TYPE (varop),
8034 newconst, shift);
8035 newconst = fold_build2 (RSHIFT_EXPR, TREE_TYPE (varop),
8036 newconst, shift);
8039 return fold_build2 (code, type, varop, newconst);
8042 if (TREE_CODE (TREE_TYPE (arg0)) == INTEGER_TYPE
8043 && (TREE_CODE (arg0) == NOP_EXPR
8044 || TREE_CODE (arg0) == CONVERT_EXPR))
8046 /* If we are widening one operand of an integer comparison,
8047 see if the other operand is similarly being widened. Perhaps we
8048 can do the comparison in the narrower type. */
8049 tem = fold_widened_comparison (code, type, arg0, arg1);
8050 if (tem)
8051 return tem;
8053 /* Or if we are changing signedness. */
8054 tem = fold_sign_changed_comparison (code, type, arg0, arg1);
8055 if (tem)
8056 return tem;
8059 /* If this is comparing a constant with a MIN_EXPR or a MAX_EXPR of a
8060 constant, we can simplify it. */
8061 if (TREE_CODE (arg1) == INTEGER_CST
8062 && (TREE_CODE (arg0) == MIN_EXPR
8063 || TREE_CODE (arg0) == MAX_EXPR)
8064 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
8066 tem = optimize_minmax_comparison (code, type, op0, op1);
8067 if (tem)
8068 return tem;
8071 /* Simplify comparison of something with itself. (For IEEE
8072 floating-point, we can only do some of these simplifications.) */
8073 if (operand_equal_p (arg0, arg1, 0))
8075 switch (code)
8077 case EQ_EXPR:
8078 if (! FLOAT_TYPE_P (TREE_TYPE (arg0))
8079 || ! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0))))
8080 return constant_boolean_node (1, type);
8081 break;
8083 case GE_EXPR:
8084 case LE_EXPR:
8085 if (! FLOAT_TYPE_P (TREE_TYPE (arg0))
8086 || ! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0))))
8087 return constant_boolean_node (1, type);
8088 return fold_build2 (EQ_EXPR, type, arg0, arg1);
8090 case NE_EXPR:
8091 /* For NE, we can only do this simplification if integer
8092 or we don't honor IEEE floating point NaNs. */
8093 if (FLOAT_TYPE_P (TREE_TYPE (arg0))
8094 && HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0))))
8095 break;
8096 /* ... fall through ... */
8097 case GT_EXPR:
8098 case LT_EXPR:
8099 return constant_boolean_node (0, type);
8100 default:
8101 gcc_unreachable ();
8105 /* If we are comparing an expression that just has comparisons
8106 of two integer values, arithmetic expressions of those comparisons,
8107 and constants, we can simplify it. There are only three cases
8108 to check: the two values can either be equal, the first can be
8109 greater, or the second can be greater. Fold the expression for
8110 those three values. Since each value must be 0 or 1, we have
8111 eight possibilities, each of which corresponds to the constant 0
8112 or 1 or one of the six possible comparisons.
8114 This handles common cases like (a > b) == 0 but also handles
8115 expressions like ((x > y) - (y > x)) > 0, which supposedly
8116 occur in macroized code. */
8118 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) != INTEGER_CST)
8120 tree cval1 = 0, cval2 = 0;
8121 int save_p = 0;
8123 if (twoval_comparison_p (arg0, &cval1, &cval2, &save_p)
8124 /* Don't handle degenerate cases here; they should already
8125 have been handled anyway. */
8126 && cval1 != 0 && cval2 != 0
8127 && ! (TREE_CONSTANT (cval1) && TREE_CONSTANT (cval2))
8128 && TREE_TYPE (cval1) == TREE_TYPE (cval2)
8129 && INTEGRAL_TYPE_P (TREE_TYPE (cval1))
8130 && TYPE_MAX_VALUE (TREE_TYPE (cval1))
8131 && TYPE_MAX_VALUE (TREE_TYPE (cval2))
8132 && ! operand_equal_p (TYPE_MIN_VALUE (TREE_TYPE (cval1)),
8133 TYPE_MAX_VALUE (TREE_TYPE (cval2)), 0))
8135 tree maxval = TYPE_MAX_VALUE (TREE_TYPE (cval1));
8136 tree minval = TYPE_MIN_VALUE (TREE_TYPE (cval1));
8138 /* We can't just pass T to eval_subst in case cval1 or cval2
8139 was the same as ARG1. */
8141 tree high_result
8142 = fold_build2 (code, type,
8143 eval_subst (arg0, cval1, maxval,
8144 cval2, minval),
8145 arg1);
8146 tree equal_result
8147 = fold_build2 (code, type,
8148 eval_subst (arg0, cval1, maxval,
8149 cval2, maxval),
8150 arg1);
8151 tree low_result
8152 = fold_build2 (code, type,
8153 eval_subst (arg0, cval1, minval,
8154 cval2, maxval),
8155 arg1);
8157 /* All three of these results should be 0 or 1. Confirm they are.
8158 Then use those values to select the proper code to use. */
8160 if (TREE_CODE (high_result) == INTEGER_CST
8161 && TREE_CODE (equal_result) == INTEGER_CST
8162 && TREE_CODE (low_result) == INTEGER_CST)
8164 /* Make a 3-bit mask with the high-order bit being the
8165 value for `>', the next for '=', and the low for '<'. */
8166 switch ((integer_onep (high_result) * 4)
8167 + (integer_onep (equal_result) * 2)
8168 + integer_onep (low_result))
8170 case 0:
8171 /* Always false. */
8172 return omit_one_operand (type, integer_zero_node, arg0);
8173 case 1:
8174 code = LT_EXPR;
8175 break;
8176 case 2:
8177 code = EQ_EXPR;
8178 break;
8179 case 3:
8180 code = LE_EXPR;
8181 break;
8182 case 4:
8183 code = GT_EXPR;
8184 break;
8185 case 5:
8186 code = NE_EXPR;
8187 break;
8188 case 6:
8189 code = GE_EXPR;
8190 break;
8191 case 7:
8192 /* Always true. */
8193 return omit_one_operand (type, integer_one_node, arg0);
8196 if (save_p)
8197 return save_expr (build2 (code, type, cval1, cval2));
8198 return fold_build2 (code, type, cval1, cval2);
8203 /* Fold a comparison of the address of COMPONENT_REFs with the same
8204 type and component to a comparison of the address of the base
8205 object. In short, &x->a OP &y->a to x OP y and
8206 &x->a OP &y.a to x OP &y */
8207 if (TREE_CODE (arg0) == ADDR_EXPR
8208 && TREE_CODE (TREE_OPERAND (arg0, 0)) == COMPONENT_REF
8209 && TREE_CODE (arg1) == ADDR_EXPR
8210 && TREE_CODE (TREE_OPERAND (arg1, 0)) == COMPONENT_REF)
8212 tree cref0 = TREE_OPERAND (arg0, 0);
8213 tree cref1 = TREE_OPERAND (arg1, 0);
8214 if (TREE_OPERAND (cref0, 1) == TREE_OPERAND (cref1, 1))
8216 tree op0 = TREE_OPERAND (cref0, 0);
8217 tree op1 = TREE_OPERAND (cref1, 0);
8218 return fold_build2 (code, type,
8219 build_fold_addr_expr (op0),
8220 build_fold_addr_expr (op1));
8224 /* We can fold X/C1 op C2 where C1 and C2 are integer constants
8225 into a single range test. */
8226 if ((TREE_CODE (arg0) == TRUNC_DIV_EXPR
8227 || TREE_CODE (arg0) == EXACT_DIV_EXPR)
8228 && TREE_CODE (arg1) == INTEGER_CST
8229 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
8230 && !integer_zerop (TREE_OPERAND (arg0, 1))
8231 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1))
8232 && !TREE_OVERFLOW (arg1))
8234 tem = fold_div_compare (code, type, arg0, arg1);
8235 if (tem != NULL_TREE)
8236 return tem;
8239 return NULL_TREE;
8243 /* Subroutine of fold_binary. Optimize complex multiplications of the
8244 form z * conj(z), as pow(realpart(z),2) + pow(imagpart(z),2). The
8245 argument EXPR represents the expression "z" of type TYPE. */
8247 static tree
8248 fold_mult_zconjz (tree type, tree expr)
8250 tree itype = TREE_TYPE (type);
8251 tree rpart, ipart, tem;
8253 if (TREE_CODE (expr) == COMPLEX_EXPR)
8255 rpart = TREE_OPERAND (expr, 0);
8256 ipart = TREE_OPERAND (expr, 1);
8258 else if (TREE_CODE (expr) == COMPLEX_CST)
8260 rpart = TREE_REALPART (expr);
8261 ipart = TREE_IMAGPART (expr);
8263 else
8265 expr = save_expr (expr);
8266 rpart = fold_build1 (REALPART_EXPR, itype, expr);
8267 ipart = fold_build1 (IMAGPART_EXPR, itype, expr);
8270 rpart = save_expr (rpart);
8271 ipart = save_expr (ipart);
8272 tem = fold_build2 (PLUS_EXPR, itype,
8273 fold_build2 (MULT_EXPR, itype, rpart, rpart),
8274 fold_build2 (MULT_EXPR, itype, ipart, ipart));
8275 return fold_build2 (COMPLEX_EXPR, type, tem,
8276 fold_convert (itype, integer_zero_node));
8280 /* Fold a binary expression of code CODE and type TYPE with operands
8281 OP0 and OP1. Return the folded expression if folding is
8282 successful. Otherwise, return NULL_TREE. */
8284 tree
8285 fold_binary (enum tree_code code, tree type, tree op0, tree op1)
8287 enum tree_code_class kind = TREE_CODE_CLASS (code);
8288 tree arg0, arg1, tem;
8289 tree t1 = NULL_TREE;
8291 gcc_assert (IS_EXPR_CODE_CLASS (kind)
8292 && TREE_CODE_LENGTH (code) == 2
8293 && op0 != NULL_TREE
8294 && op1 != NULL_TREE);
8296 arg0 = op0;
8297 arg1 = op1;
8299 /* Strip any conversions that don't change the mode. This is
8300 safe for every expression, except for a comparison expression
8301 because its signedness is derived from its operands. So, in
8302 the latter case, only strip conversions that don't change the
8303 signedness.
8305 Note that this is done as an internal manipulation within the
8306 constant folder, in order to find the simplest representation
8307 of the arguments so that their form can be studied. In any
8308 cases, the appropriate type conversions should be put back in
8309 the tree that will get out of the constant folder. */
8311 if (kind == tcc_comparison)
8313 STRIP_SIGN_NOPS (arg0);
8314 STRIP_SIGN_NOPS (arg1);
8316 else
8318 STRIP_NOPS (arg0);
8319 STRIP_NOPS (arg1);
8322 /* Note that TREE_CONSTANT isn't enough: static var addresses are
8323 constant but we can't do arithmetic on them. */
8324 if ((TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
8325 || (TREE_CODE (arg0) == REAL_CST && TREE_CODE (arg1) == REAL_CST)
8326 || (TREE_CODE (arg0) == COMPLEX_CST && TREE_CODE (arg1) == COMPLEX_CST)
8327 || (TREE_CODE (arg0) == VECTOR_CST && TREE_CODE (arg1) == VECTOR_CST))
8329 if (kind == tcc_binary)
8330 tem = const_binop (code, arg0, arg1, 0);
8331 else if (kind == tcc_comparison)
8332 tem = fold_relational_const (code, type, arg0, arg1);
8333 else
8334 tem = NULL_TREE;
8336 if (tem != NULL_TREE)
8338 if (TREE_TYPE (tem) != type)
8339 tem = fold_convert (type, tem);
8340 return tem;
8344 /* If this is a commutative operation, and ARG0 is a constant, move it
8345 to ARG1 to reduce the number of tests below. */
8346 if (commutative_tree_code (code)
8347 && tree_swap_operands_p (arg0, arg1, true))
8348 return fold_build2 (code, type, op1, op0);
8350 /* ARG0 is the first operand of EXPR, and ARG1 is the second operand.
8352 First check for cases where an arithmetic operation is applied to a
8353 compound, conditional, or comparison operation. Push the arithmetic
8354 operation inside the compound or conditional to see if any folding
8355 can then be done. Convert comparison to conditional for this purpose.
8356 The also optimizes non-constant cases that used to be done in
8357 expand_expr.
8359 Before we do that, see if this is a BIT_AND_EXPR or a BIT_IOR_EXPR,
8360 one of the operands is a comparison and the other is a comparison, a
8361 BIT_AND_EXPR with the constant 1, or a truth value. In that case, the
8362 code below would make the expression more complex. Change it to a
8363 TRUTH_{AND,OR}_EXPR. Likewise, convert a similar NE_EXPR to
8364 TRUTH_XOR_EXPR and an EQ_EXPR to the inversion of a TRUTH_XOR_EXPR. */
8366 if ((code == BIT_AND_EXPR || code == BIT_IOR_EXPR
8367 || code == EQ_EXPR || code == NE_EXPR)
8368 && ((truth_value_p (TREE_CODE (arg0))
8369 && (truth_value_p (TREE_CODE (arg1))
8370 || (TREE_CODE (arg1) == BIT_AND_EXPR
8371 && integer_onep (TREE_OPERAND (arg1, 1)))))
8372 || (truth_value_p (TREE_CODE (arg1))
8373 && (truth_value_p (TREE_CODE (arg0))
8374 || (TREE_CODE (arg0) == BIT_AND_EXPR
8375 && integer_onep (TREE_OPERAND (arg0, 1)))))))
8377 tem = fold_build2 (code == BIT_AND_EXPR ? TRUTH_AND_EXPR
8378 : code == BIT_IOR_EXPR ? TRUTH_OR_EXPR
8379 : TRUTH_XOR_EXPR,
8380 boolean_type_node,
8381 fold_convert (boolean_type_node, arg0),
8382 fold_convert (boolean_type_node, arg1));
8384 if (code == EQ_EXPR)
8385 tem = invert_truthvalue (tem);
8387 return fold_convert (type, tem);
8390 if (TREE_CODE_CLASS (code) == tcc_binary
8391 || TREE_CODE_CLASS (code) == tcc_comparison)
8393 if (TREE_CODE (arg0) == COMPOUND_EXPR)
8394 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
8395 fold_build2 (code, type,
8396 TREE_OPERAND (arg0, 1), op1));
8397 if (TREE_CODE (arg1) == COMPOUND_EXPR
8398 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
8399 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg1, 0),
8400 fold_build2 (code, type,
8401 op0, TREE_OPERAND (arg1, 1)));
8403 if (TREE_CODE (arg0) == COND_EXPR || COMPARISON_CLASS_P (arg0))
8405 tem = fold_binary_op_with_conditional_arg (code, type, op0, op1,
8406 arg0, arg1,
8407 /*cond_first_p=*/1);
8408 if (tem != NULL_TREE)
8409 return tem;
8412 if (TREE_CODE (arg1) == COND_EXPR || COMPARISON_CLASS_P (arg1))
8414 tem = fold_binary_op_with_conditional_arg (code, type, op0, op1,
8415 arg1, arg0,
8416 /*cond_first_p=*/0);
8417 if (tem != NULL_TREE)
8418 return tem;
8422 switch (code)
8424 case PLUS_EXPR:
8425 /* A + (-B) -> A - B */
8426 if (TREE_CODE (arg1) == NEGATE_EXPR)
8427 return fold_build2 (MINUS_EXPR, type,
8428 fold_convert (type, arg0),
8429 fold_convert (type, TREE_OPERAND (arg1, 0)));
8430 /* (-A) + B -> B - A */
8431 if (TREE_CODE (arg0) == NEGATE_EXPR
8432 && reorder_operands_p (TREE_OPERAND (arg0, 0), arg1))
8433 return fold_build2 (MINUS_EXPR, type,
8434 fold_convert (type, arg1),
8435 fold_convert (type, TREE_OPERAND (arg0, 0)));
8436 /* Convert ~A + 1 to -A. */
8437 if (INTEGRAL_TYPE_P (type)
8438 && TREE_CODE (arg0) == BIT_NOT_EXPR
8439 && integer_onep (arg1))
8440 return fold_build1 (NEGATE_EXPR, type, TREE_OPERAND (arg0, 0));
8442 /* Handle (A1 * C1) + (A2 * C2) with A1, A2 or C1, C2 being the
8443 same or one. */
8444 if ((TREE_CODE (arg0) == MULT_EXPR
8445 || TREE_CODE (arg1) == MULT_EXPR)
8446 && (!FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations))
8448 tree tem = fold_plusminus_mult_expr (code, type, arg0, arg1);
8449 if (tem)
8450 return tem;
8453 if (! FLOAT_TYPE_P (type))
8455 if (integer_zerop (arg1))
8456 return non_lvalue (fold_convert (type, arg0));
8458 /* If we are adding two BIT_AND_EXPR's, both of which are and'ing
8459 with a constant, and the two constants have no bits in common,
8460 we should treat this as a BIT_IOR_EXPR since this may produce more
8461 simplifications. */
8462 if (TREE_CODE (arg0) == BIT_AND_EXPR
8463 && TREE_CODE (arg1) == BIT_AND_EXPR
8464 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
8465 && TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
8466 && integer_zerop (const_binop (BIT_AND_EXPR,
8467 TREE_OPERAND (arg0, 1),
8468 TREE_OPERAND (arg1, 1), 0)))
8470 code = BIT_IOR_EXPR;
8471 goto bit_ior;
8474 /* Reassociate (plus (plus (mult) (foo)) (mult)) as
8475 (plus (plus (mult) (mult)) (foo)) so that we can
8476 take advantage of the factoring cases below. */
8477 if (((TREE_CODE (arg0) == PLUS_EXPR
8478 || TREE_CODE (arg0) == MINUS_EXPR)
8479 && TREE_CODE (arg1) == MULT_EXPR)
8480 || ((TREE_CODE (arg1) == PLUS_EXPR
8481 || TREE_CODE (arg1) == MINUS_EXPR)
8482 && TREE_CODE (arg0) == MULT_EXPR))
8484 tree parg0, parg1, parg, marg;
8485 enum tree_code pcode;
8487 if (TREE_CODE (arg1) == MULT_EXPR)
8488 parg = arg0, marg = arg1;
8489 else
8490 parg = arg1, marg = arg0;
8491 pcode = TREE_CODE (parg);
8492 parg0 = TREE_OPERAND (parg, 0);
8493 parg1 = TREE_OPERAND (parg, 1);
8494 STRIP_NOPS (parg0);
8495 STRIP_NOPS (parg1);
8497 if (TREE_CODE (parg0) == MULT_EXPR
8498 && TREE_CODE (parg1) != MULT_EXPR)
8499 return fold_build2 (pcode, type,
8500 fold_build2 (PLUS_EXPR, type,
8501 fold_convert (type, parg0),
8502 fold_convert (type, marg)),
8503 fold_convert (type, parg1));
8504 if (TREE_CODE (parg0) != MULT_EXPR
8505 && TREE_CODE (parg1) == MULT_EXPR)
8506 return fold_build2 (PLUS_EXPR, type,
8507 fold_convert (type, parg0),
8508 fold_build2 (pcode, type,
8509 fold_convert (type, marg),
8510 fold_convert (type,
8511 parg1)));
8514 /* Try replacing &a[i1] + c * i2 with &a[i1 + i2], if c is step
8515 of the array. Loop optimizer sometimes produce this type of
8516 expressions. */
8517 if (TREE_CODE (arg0) == ADDR_EXPR)
8519 tem = try_move_mult_to_index (PLUS_EXPR, arg0, arg1);
8520 if (tem)
8521 return fold_convert (type, tem);
8523 else if (TREE_CODE (arg1) == ADDR_EXPR)
8525 tem = try_move_mult_to_index (PLUS_EXPR, arg1, arg0);
8526 if (tem)
8527 return fold_convert (type, tem);
8530 else
8532 /* See if ARG1 is zero and X + ARG1 reduces to X. */
8533 if (fold_real_zero_addition_p (TREE_TYPE (arg0), arg1, 0))
8534 return non_lvalue (fold_convert (type, arg0));
8536 /* Likewise if the operands are reversed. */
8537 if (fold_real_zero_addition_p (TREE_TYPE (arg1), arg0, 0))
8538 return non_lvalue (fold_convert (type, arg1));
8540 /* Convert X + -C into X - C. */
8541 if (TREE_CODE (arg1) == REAL_CST
8542 && REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg1)))
8544 tem = fold_negate_const (arg1, type);
8545 if (!TREE_OVERFLOW (arg1) || !flag_trapping_math)
8546 return fold_build2 (MINUS_EXPR, type,
8547 fold_convert (type, arg0),
8548 fold_convert (type, tem));
8551 if (flag_unsafe_math_optimizations
8552 && (TREE_CODE (arg0) == RDIV_EXPR || TREE_CODE (arg0) == MULT_EXPR)
8553 && (TREE_CODE (arg1) == RDIV_EXPR || TREE_CODE (arg1) == MULT_EXPR)
8554 && (tem = distribute_real_division (code, type, arg0, arg1)))
8555 return tem;
8557 /* Convert x+x into x*2.0. */
8558 if (operand_equal_p (arg0, arg1, 0)
8559 && SCALAR_FLOAT_TYPE_P (type))
8560 return fold_build2 (MULT_EXPR, type, arg0,
8561 build_real (type, dconst2));
8563 /* Convert a + (b*c + d*e) into (a + b*c) + d*e. */
8564 if (flag_unsafe_math_optimizations
8565 && TREE_CODE (arg1) == PLUS_EXPR
8566 && TREE_CODE (arg0) != MULT_EXPR)
8568 tree tree10 = TREE_OPERAND (arg1, 0);
8569 tree tree11 = TREE_OPERAND (arg1, 1);
8570 if (TREE_CODE (tree11) == MULT_EXPR
8571 && TREE_CODE (tree10) == MULT_EXPR)
8573 tree tree0;
8574 tree0 = fold_build2 (PLUS_EXPR, type, arg0, tree10);
8575 return fold_build2 (PLUS_EXPR, type, tree0, tree11);
8578 /* Convert (b*c + d*e) + a into b*c + (d*e +a). */
8579 if (flag_unsafe_math_optimizations
8580 && TREE_CODE (arg0) == PLUS_EXPR
8581 && TREE_CODE (arg1) != MULT_EXPR)
8583 tree tree00 = TREE_OPERAND (arg0, 0);
8584 tree tree01 = TREE_OPERAND (arg0, 1);
8585 if (TREE_CODE (tree01) == MULT_EXPR
8586 && TREE_CODE (tree00) == MULT_EXPR)
8588 tree tree0;
8589 tree0 = fold_build2 (PLUS_EXPR, type, tree01, arg1);
8590 return fold_build2 (PLUS_EXPR, type, tree00, tree0);
8595 bit_rotate:
8596 /* (A << C1) + (A >> C2) if A is unsigned and C1+C2 is the size of A
8597 is a rotate of A by C1 bits. */
8598 /* (A << B) + (A >> (Z - B)) if A is unsigned and Z is the size of A
8599 is a rotate of A by B bits. */
8601 enum tree_code code0, code1;
8602 code0 = TREE_CODE (arg0);
8603 code1 = TREE_CODE (arg1);
8604 if (((code0 == RSHIFT_EXPR && code1 == LSHIFT_EXPR)
8605 || (code1 == RSHIFT_EXPR && code0 == LSHIFT_EXPR))
8606 && operand_equal_p (TREE_OPERAND (arg0, 0),
8607 TREE_OPERAND (arg1, 0), 0)
8608 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0))))
8610 tree tree01, tree11;
8611 enum tree_code code01, code11;
8613 tree01 = TREE_OPERAND (arg0, 1);
8614 tree11 = TREE_OPERAND (arg1, 1);
8615 STRIP_NOPS (tree01);
8616 STRIP_NOPS (tree11);
8617 code01 = TREE_CODE (tree01);
8618 code11 = TREE_CODE (tree11);
8619 if (code01 == INTEGER_CST
8620 && code11 == INTEGER_CST
8621 && TREE_INT_CST_HIGH (tree01) == 0
8622 && TREE_INT_CST_HIGH (tree11) == 0
8623 && ((TREE_INT_CST_LOW (tree01) + TREE_INT_CST_LOW (tree11))
8624 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0, 0)))))
8625 return build2 (LROTATE_EXPR, type, TREE_OPERAND (arg0, 0),
8626 code0 == LSHIFT_EXPR ? tree01 : tree11);
8627 else if (code11 == MINUS_EXPR)
8629 tree tree110, tree111;
8630 tree110 = TREE_OPERAND (tree11, 0);
8631 tree111 = TREE_OPERAND (tree11, 1);
8632 STRIP_NOPS (tree110);
8633 STRIP_NOPS (tree111);
8634 if (TREE_CODE (tree110) == INTEGER_CST
8635 && 0 == compare_tree_int (tree110,
8636 TYPE_PRECISION
8637 (TREE_TYPE (TREE_OPERAND
8638 (arg0, 0))))
8639 && operand_equal_p (tree01, tree111, 0))
8640 return build2 ((code0 == LSHIFT_EXPR
8641 ? LROTATE_EXPR
8642 : RROTATE_EXPR),
8643 type, TREE_OPERAND (arg0, 0), tree01);
8645 else if (code01 == MINUS_EXPR)
8647 tree tree010, tree011;
8648 tree010 = TREE_OPERAND (tree01, 0);
8649 tree011 = TREE_OPERAND (tree01, 1);
8650 STRIP_NOPS (tree010);
8651 STRIP_NOPS (tree011);
8652 if (TREE_CODE (tree010) == INTEGER_CST
8653 && 0 == compare_tree_int (tree010,
8654 TYPE_PRECISION
8655 (TREE_TYPE (TREE_OPERAND
8656 (arg0, 0))))
8657 && operand_equal_p (tree11, tree011, 0))
8658 return build2 ((code0 != LSHIFT_EXPR
8659 ? LROTATE_EXPR
8660 : RROTATE_EXPR),
8661 type, TREE_OPERAND (arg0, 0), tree11);
8666 associate:
8667 /* In most languages, can't associate operations on floats through
8668 parentheses. Rather than remember where the parentheses were, we
8669 don't associate floats at all, unless the user has specified
8670 -funsafe-math-optimizations. */
8672 if (! FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations)
8674 tree var0, con0, lit0, minus_lit0;
8675 tree var1, con1, lit1, minus_lit1;
8677 /* Split both trees into variables, constants, and literals. Then
8678 associate each group together, the constants with literals,
8679 then the result with variables. This increases the chances of
8680 literals being recombined later and of generating relocatable
8681 expressions for the sum of a constant and literal. */
8682 var0 = split_tree (arg0, code, &con0, &lit0, &minus_lit0, 0);
8683 var1 = split_tree (arg1, code, &con1, &lit1, &minus_lit1,
8684 code == MINUS_EXPR);
8686 /* Only do something if we found more than two objects. Otherwise,
8687 nothing has changed and we risk infinite recursion. */
8688 if (2 < ((var0 != 0) + (var1 != 0)
8689 + (con0 != 0) + (con1 != 0)
8690 + (lit0 != 0) + (lit1 != 0)
8691 + (minus_lit0 != 0) + (minus_lit1 != 0)))
8693 /* Recombine MINUS_EXPR operands by using PLUS_EXPR. */
8694 if (code == MINUS_EXPR)
8695 code = PLUS_EXPR;
8697 var0 = associate_trees (var0, var1, code, type);
8698 con0 = associate_trees (con0, con1, code, type);
8699 lit0 = associate_trees (lit0, lit1, code, type);
8700 minus_lit0 = associate_trees (minus_lit0, minus_lit1, code, type);
8702 /* Preserve the MINUS_EXPR if the negative part of the literal is
8703 greater than the positive part. Otherwise, the multiplicative
8704 folding code (i.e extract_muldiv) may be fooled in case
8705 unsigned constants are subtracted, like in the following
8706 example: ((X*2 + 4) - 8U)/2. */
8707 if (minus_lit0 && lit0)
8709 if (TREE_CODE (lit0) == INTEGER_CST
8710 && TREE_CODE (minus_lit0) == INTEGER_CST
8711 && tree_int_cst_lt (lit0, minus_lit0))
8713 minus_lit0 = associate_trees (minus_lit0, lit0,
8714 MINUS_EXPR, type);
8715 lit0 = 0;
8717 else
8719 lit0 = associate_trees (lit0, minus_lit0,
8720 MINUS_EXPR, type);
8721 minus_lit0 = 0;
8724 if (minus_lit0)
8726 if (con0 == 0)
8727 return fold_convert (type,
8728 associate_trees (var0, minus_lit0,
8729 MINUS_EXPR, type));
8730 else
8732 con0 = associate_trees (con0, minus_lit0,
8733 MINUS_EXPR, type);
8734 return fold_convert (type,
8735 associate_trees (var0, con0,
8736 PLUS_EXPR, type));
8740 con0 = associate_trees (con0, lit0, code, type);
8741 return fold_convert (type, associate_trees (var0, con0,
8742 code, type));
8746 return NULL_TREE;
8748 case MINUS_EXPR:
8749 /* A - (-B) -> A + B */
8750 if (TREE_CODE (arg1) == NEGATE_EXPR)
8751 return fold_build2 (PLUS_EXPR, type, arg0, TREE_OPERAND (arg1, 0));
8752 /* (-A) - B -> (-B) - A where B is easily negated and we can swap. */
8753 if (TREE_CODE (arg0) == NEGATE_EXPR
8754 && (FLOAT_TYPE_P (type)
8755 || INTEGRAL_TYPE_P (type))
8756 && negate_expr_p (arg1)
8757 && reorder_operands_p (arg0, arg1))
8758 return fold_build2 (MINUS_EXPR, type, negate_expr (arg1),
8759 TREE_OPERAND (arg0, 0));
8760 /* Convert -A - 1 to ~A. */
8761 if (INTEGRAL_TYPE_P (type)
8762 && TREE_CODE (arg0) == NEGATE_EXPR
8763 && integer_onep (arg1))
8764 return fold_build1 (BIT_NOT_EXPR, type,
8765 fold_convert (type, TREE_OPERAND (arg0, 0)));
8767 /* Convert -1 - A to ~A. */
8768 if (INTEGRAL_TYPE_P (type)
8769 && integer_all_onesp (arg0))
8770 return fold_build1 (BIT_NOT_EXPR, type, arg1);
8772 if (! FLOAT_TYPE_P (type))
8774 if (integer_zerop (arg0))
8775 return negate_expr (fold_convert (type, arg1));
8776 if (integer_zerop (arg1))
8777 return non_lvalue (fold_convert (type, arg0));
8779 /* Fold A - (A & B) into ~B & A. */
8780 if (!TREE_SIDE_EFFECTS (arg0)
8781 && TREE_CODE (arg1) == BIT_AND_EXPR)
8783 if (operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0))
8784 return fold_build2 (BIT_AND_EXPR, type,
8785 fold_build1 (BIT_NOT_EXPR, type,
8786 TREE_OPERAND (arg1, 0)),
8787 arg0);
8788 if (operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
8789 return fold_build2 (BIT_AND_EXPR, type,
8790 fold_build1 (BIT_NOT_EXPR, type,
8791 TREE_OPERAND (arg1, 1)),
8792 arg0);
8795 /* Fold (A & ~B) - (A & B) into (A ^ B) - B, where B is
8796 any power of 2 minus 1. */
8797 if (TREE_CODE (arg0) == BIT_AND_EXPR
8798 && TREE_CODE (arg1) == BIT_AND_EXPR
8799 && operand_equal_p (TREE_OPERAND (arg0, 0),
8800 TREE_OPERAND (arg1, 0), 0))
8802 tree mask0 = TREE_OPERAND (arg0, 1);
8803 tree mask1 = TREE_OPERAND (arg1, 1);
8804 tree tem = fold_build1 (BIT_NOT_EXPR, type, mask0);
8806 if (operand_equal_p (tem, mask1, 0))
8808 tem = fold_build2 (BIT_XOR_EXPR, type,
8809 TREE_OPERAND (arg0, 0), mask1);
8810 return fold_build2 (MINUS_EXPR, type, tem, mask1);
8815 /* See if ARG1 is zero and X - ARG1 reduces to X. */
8816 else if (fold_real_zero_addition_p (TREE_TYPE (arg0), arg1, 1))
8817 return non_lvalue (fold_convert (type, arg0));
8819 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
8820 ARG0 is zero and X + ARG0 reduces to X, since that would mean
8821 (-ARG1 + ARG0) reduces to -ARG1. */
8822 else if (fold_real_zero_addition_p (TREE_TYPE (arg1), arg0, 0))
8823 return negate_expr (fold_convert (type, arg1));
8825 /* Fold &x - &x. This can happen from &x.foo - &x.
8826 This is unsafe for certain floats even in non-IEEE formats.
8827 In IEEE, it is unsafe because it does wrong for NaNs.
8828 Also note that operand_equal_p is always false if an operand
8829 is volatile. */
8831 if ((! FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations)
8832 && operand_equal_p (arg0, arg1, 0))
8833 return fold_convert (type, integer_zero_node);
8835 /* A - B -> A + (-B) if B is easily negatable. */
8836 if (negate_expr_p (arg1)
8837 && ((FLOAT_TYPE_P (type)
8838 /* Avoid this transformation if B is a positive REAL_CST. */
8839 && (TREE_CODE (arg1) != REAL_CST
8840 || REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg1))))
8841 || INTEGRAL_TYPE_P (type)))
8842 return fold_build2 (PLUS_EXPR, type,
8843 fold_convert (type, arg0),
8844 fold_convert (type, negate_expr (arg1)));
8846 /* Try folding difference of addresses. */
8848 HOST_WIDE_INT diff;
8850 if ((TREE_CODE (arg0) == ADDR_EXPR
8851 || TREE_CODE (arg1) == ADDR_EXPR)
8852 && ptr_difference_const (arg0, arg1, &diff))
8853 return build_int_cst_type (type, diff);
8856 /* Fold &a[i] - &a[j] to i-j. */
8857 if (TREE_CODE (arg0) == ADDR_EXPR
8858 && TREE_CODE (TREE_OPERAND (arg0, 0)) == ARRAY_REF
8859 && TREE_CODE (arg1) == ADDR_EXPR
8860 && TREE_CODE (TREE_OPERAND (arg1, 0)) == ARRAY_REF)
8862 tree aref0 = TREE_OPERAND (arg0, 0);
8863 tree aref1 = TREE_OPERAND (arg1, 0);
8864 if (operand_equal_p (TREE_OPERAND (aref0, 0),
8865 TREE_OPERAND (aref1, 0), 0))
8867 tree op0 = fold_convert (type, TREE_OPERAND (aref0, 1));
8868 tree op1 = fold_convert (type, TREE_OPERAND (aref1, 1));
8869 tree esz = array_ref_element_size (aref0);
8870 tree diff = build2 (MINUS_EXPR, type, op0, op1);
8871 return fold_build2 (MULT_EXPR, type, diff,
8872 fold_convert (type, esz));
8877 /* Try replacing &a[i1] - c * i2 with &a[i1 - i2], if c is step
8878 of the array. Loop optimizer sometimes produce this type of
8879 expressions. */
8880 if (TREE_CODE (arg0) == ADDR_EXPR)
8882 tem = try_move_mult_to_index (MINUS_EXPR, arg0, arg1);
8883 if (tem)
8884 return fold_convert (type, tem);
8887 if (flag_unsafe_math_optimizations
8888 && (TREE_CODE (arg0) == RDIV_EXPR || TREE_CODE (arg0) == MULT_EXPR)
8889 && (TREE_CODE (arg1) == RDIV_EXPR || TREE_CODE (arg1) == MULT_EXPR)
8890 && (tem = distribute_real_division (code, type, arg0, arg1)))
8891 return tem;
8893 /* Handle (A1 * C1) - (A2 * C2) with A1, A2 or C1, C2 being the
8894 same or one. */
8895 if ((TREE_CODE (arg0) == MULT_EXPR
8896 || TREE_CODE (arg1) == MULT_EXPR)
8897 && (!FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations))
8899 tree tem = fold_plusminus_mult_expr (code, type, arg0, arg1);
8900 if (tem)
8901 return tem;
8904 goto associate;
8906 case MULT_EXPR:
8907 /* (-A) * (-B) -> A * B */
8908 if (TREE_CODE (arg0) == NEGATE_EXPR && negate_expr_p (arg1))
8909 return fold_build2 (MULT_EXPR, type,
8910 fold_convert (type, TREE_OPERAND (arg0, 0)),
8911 fold_convert (type, negate_expr (arg1)));
8912 if (TREE_CODE (arg1) == NEGATE_EXPR && negate_expr_p (arg0))
8913 return fold_build2 (MULT_EXPR, type,
8914 fold_convert (type, negate_expr (arg0)),
8915 fold_convert (type, TREE_OPERAND (arg1, 0)));
8917 if (! FLOAT_TYPE_P (type))
8919 if (integer_zerop (arg1))
8920 return omit_one_operand (type, arg1, arg0);
8921 if (integer_onep (arg1))
8922 return non_lvalue (fold_convert (type, arg0));
8923 /* Transform x * -1 into -x. */
8924 if (integer_all_onesp (arg1))
8925 return fold_convert (type, negate_expr (arg0));
8926 /* Transform x * -C into -x * C if x is easily negatable. */
8927 if (TREE_CODE (arg1) == INTEGER_CST
8928 && tree_int_cst_sgn (arg1) == -1
8929 && negate_expr_p (arg0)
8930 && (tem = negate_expr (arg1)) != arg1
8931 && !TREE_OVERFLOW (tem))
8932 return fold_build2 (MULT_EXPR, type,
8933 negate_expr (arg0), tem);
8935 /* (a * (1 << b)) is (a << b) */
8936 if (TREE_CODE (arg1) == LSHIFT_EXPR
8937 && integer_onep (TREE_OPERAND (arg1, 0)))
8938 return fold_build2 (LSHIFT_EXPR, type, arg0,
8939 TREE_OPERAND (arg1, 1));
8940 if (TREE_CODE (arg0) == LSHIFT_EXPR
8941 && integer_onep (TREE_OPERAND (arg0, 0)))
8942 return fold_build2 (LSHIFT_EXPR, type, arg1,
8943 TREE_OPERAND (arg0, 1));
8945 if (TREE_CODE (arg1) == INTEGER_CST
8946 && 0 != (tem = extract_muldiv (op0,
8947 fold_convert (type, arg1),
8948 code, NULL_TREE)))
8949 return fold_convert (type, tem);
8951 /* Optimize z * conj(z) for integer complex numbers. */
8952 if (TREE_CODE (arg0) == CONJ_EXPR
8953 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
8954 return fold_mult_zconjz (type, arg1);
8955 if (TREE_CODE (arg1) == CONJ_EXPR
8956 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
8957 return fold_mult_zconjz (type, arg0);
8959 else
8961 /* Maybe fold x * 0 to 0. The expressions aren't the same
8962 when x is NaN, since x * 0 is also NaN. Nor are they the
8963 same in modes with signed zeros, since multiplying a
8964 negative value by 0 gives -0, not +0. */
8965 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0)))
8966 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0)))
8967 && real_zerop (arg1))
8968 return omit_one_operand (type, arg1, arg0);
8969 /* In IEEE floating point, x*1 is not equivalent to x for snans. */
8970 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
8971 && real_onep (arg1))
8972 return non_lvalue (fold_convert (type, arg0));
8974 /* Transform x * -1.0 into -x. */
8975 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
8976 && real_minus_onep (arg1))
8977 return fold_convert (type, negate_expr (arg0));
8979 /* Convert (C1/X)*C2 into (C1*C2)/X. */
8980 if (flag_unsafe_math_optimizations
8981 && TREE_CODE (arg0) == RDIV_EXPR
8982 && TREE_CODE (arg1) == REAL_CST
8983 && TREE_CODE (TREE_OPERAND (arg0, 0)) == REAL_CST)
8985 tree tem = const_binop (MULT_EXPR, TREE_OPERAND (arg0, 0),
8986 arg1, 0);
8987 if (tem)
8988 return fold_build2 (RDIV_EXPR, type, tem,
8989 TREE_OPERAND (arg0, 1));
8992 /* Strip sign operations from X in X*X, i.e. -Y*-Y -> Y*Y. */
8993 if (operand_equal_p (arg0, arg1, 0))
8995 tree tem = fold_strip_sign_ops (arg0);
8996 if (tem != NULL_TREE)
8998 tem = fold_convert (type, tem);
8999 return fold_build2 (MULT_EXPR, type, tem, tem);
9003 /* Optimize z * conj(z) for floating point complex numbers.
9004 Guarded by flag_unsafe_math_optimizations as non-finite
9005 imaginary components don't produce scalar results. */
9006 if (flag_unsafe_math_optimizations
9007 && TREE_CODE (arg0) == CONJ_EXPR
9008 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
9009 return fold_mult_zconjz (type, arg1);
9010 if (flag_unsafe_math_optimizations
9011 && TREE_CODE (arg1) == CONJ_EXPR
9012 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
9013 return fold_mult_zconjz (type, arg0);
9015 if (flag_unsafe_math_optimizations)
9017 enum built_in_function fcode0 = builtin_mathfn_code (arg0);
9018 enum built_in_function fcode1 = builtin_mathfn_code (arg1);
9020 /* Optimizations of root(...)*root(...). */
9021 if (fcode0 == fcode1 && BUILTIN_ROOT_P (fcode0))
9023 tree rootfn, arg, arglist;
9024 tree arg00 = TREE_VALUE (TREE_OPERAND (arg0, 1));
9025 tree arg10 = TREE_VALUE (TREE_OPERAND (arg1, 1));
9027 /* Optimize sqrt(x)*sqrt(x) as x. */
9028 if (BUILTIN_SQRT_P (fcode0)
9029 && operand_equal_p (arg00, arg10, 0)
9030 && ! HONOR_SNANS (TYPE_MODE (type)))
9031 return arg00;
9033 /* Optimize root(x)*root(y) as root(x*y). */
9034 rootfn = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
9035 arg = fold_build2 (MULT_EXPR, type, arg00, arg10);
9036 arglist = build_tree_list (NULL_TREE, arg);
9037 return build_function_call_expr (rootfn, arglist);
9040 /* Optimize expN(x)*expN(y) as expN(x+y). */
9041 if (fcode0 == fcode1 && BUILTIN_EXPONENT_P (fcode0))
9043 tree expfn = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
9044 tree arg = fold_build2 (PLUS_EXPR, type,
9045 TREE_VALUE (TREE_OPERAND (arg0, 1)),
9046 TREE_VALUE (TREE_OPERAND (arg1, 1)));
9047 tree arglist = build_tree_list (NULL_TREE, arg);
9048 return build_function_call_expr (expfn, arglist);
9051 /* Optimizations of pow(...)*pow(...). */
9052 if ((fcode0 == BUILT_IN_POW && fcode1 == BUILT_IN_POW)
9053 || (fcode0 == BUILT_IN_POWF && fcode1 == BUILT_IN_POWF)
9054 || (fcode0 == BUILT_IN_POWL && fcode1 == BUILT_IN_POWL))
9056 tree arg00 = TREE_VALUE (TREE_OPERAND (arg0, 1));
9057 tree arg01 = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg0,
9058 1)));
9059 tree arg10 = TREE_VALUE (TREE_OPERAND (arg1, 1));
9060 tree arg11 = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg1,
9061 1)));
9063 /* Optimize pow(x,y)*pow(z,y) as pow(x*z,y). */
9064 if (operand_equal_p (arg01, arg11, 0))
9066 tree powfn = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
9067 tree arg = fold_build2 (MULT_EXPR, type, arg00, arg10);
9068 tree arglist = tree_cons (NULL_TREE, arg,
9069 build_tree_list (NULL_TREE,
9070 arg01));
9071 return build_function_call_expr (powfn, arglist);
9074 /* Optimize pow(x,y)*pow(x,z) as pow(x,y+z). */
9075 if (operand_equal_p (arg00, arg10, 0))
9077 tree powfn = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
9078 tree arg = fold_build2 (PLUS_EXPR, type, arg01, arg11);
9079 tree arglist = tree_cons (NULL_TREE, arg00,
9080 build_tree_list (NULL_TREE,
9081 arg));
9082 return build_function_call_expr (powfn, arglist);
9086 /* Optimize tan(x)*cos(x) as sin(x). */
9087 if (((fcode0 == BUILT_IN_TAN && fcode1 == BUILT_IN_COS)
9088 || (fcode0 == BUILT_IN_TANF && fcode1 == BUILT_IN_COSF)
9089 || (fcode0 == BUILT_IN_TANL && fcode1 == BUILT_IN_COSL)
9090 || (fcode0 == BUILT_IN_COS && fcode1 == BUILT_IN_TAN)
9091 || (fcode0 == BUILT_IN_COSF && fcode1 == BUILT_IN_TANF)
9092 || (fcode0 == BUILT_IN_COSL && fcode1 == BUILT_IN_TANL))
9093 && operand_equal_p (TREE_VALUE (TREE_OPERAND (arg0, 1)),
9094 TREE_VALUE (TREE_OPERAND (arg1, 1)), 0))
9096 tree sinfn = mathfn_built_in (type, BUILT_IN_SIN);
9098 if (sinfn != NULL_TREE)
9099 return build_function_call_expr (sinfn,
9100 TREE_OPERAND (arg0, 1));
9103 /* Optimize x*pow(x,c) as pow(x,c+1). */
9104 if (fcode1 == BUILT_IN_POW
9105 || fcode1 == BUILT_IN_POWF
9106 || fcode1 == BUILT_IN_POWL)
9108 tree arg10 = TREE_VALUE (TREE_OPERAND (arg1, 1));
9109 tree arg11 = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg1,
9110 1)));
9111 if (TREE_CODE (arg11) == REAL_CST
9112 && ! TREE_CONSTANT_OVERFLOW (arg11)
9113 && operand_equal_p (arg0, arg10, 0))
9115 tree powfn = TREE_OPERAND (TREE_OPERAND (arg1, 0), 0);
9116 REAL_VALUE_TYPE c;
9117 tree arg, arglist;
9119 c = TREE_REAL_CST (arg11);
9120 real_arithmetic (&c, PLUS_EXPR, &c, &dconst1);
9121 arg = build_real (type, c);
9122 arglist = build_tree_list (NULL_TREE, arg);
9123 arglist = tree_cons (NULL_TREE, arg0, arglist);
9124 return build_function_call_expr (powfn, arglist);
9128 /* Optimize pow(x,c)*x as pow(x,c+1). */
9129 if (fcode0 == BUILT_IN_POW
9130 || fcode0 == BUILT_IN_POWF
9131 || fcode0 == BUILT_IN_POWL)
9133 tree arg00 = TREE_VALUE (TREE_OPERAND (arg0, 1));
9134 tree arg01 = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg0,
9135 1)));
9136 if (TREE_CODE (arg01) == REAL_CST
9137 && ! TREE_CONSTANT_OVERFLOW (arg01)
9138 && operand_equal_p (arg1, arg00, 0))
9140 tree powfn = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
9141 REAL_VALUE_TYPE c;
9142 tree arg, arglist;
9144 c = TREE_REAL_CST (arg01);
9145 real_arithmetic (&c, PLUS_EXPR, &c, &dconst1);
9146 arg = build_real (type, c);
9147 arglist = build_tree_list (NULL_TREE, arg);
9148 arglist = tree_cons (NULL_TREE, arg1, arglist);
9149 return build_function_call_expr (powfn, arglist);
9153 /* Optimize x*x as pow(x,2.0), which is expanded as x*x. */
9154 if (! optimize_size
9155 && operand_equal_p (arg0, arg1, 0))
9157 tree powfn = mathfn_built_in (type, BUILT_IN_POW);
9159 if (powfn)
9161 tree arg = build_real (type, dconst2);
9162 tree arglist = build_tree_list (NULL_TREE, arg);
9163 arglist = tree_cons (NULL_TREE, arg0, arglist);
9164 return build_function_call_expr (powfn, arglist);
9169 goto associate;
9171 case BIT_IOR_EXPR:
9172 bit_ior:
9173 if (integer_all_onesp (arg1))
9174 return omit_one_operand (type, arg1, arg0);
9175 if (integer_zerop (arg1))
9176 return non_lvalue (fold_convert (type, arg0));
9177 if (operand_equal_p (arg0, arg1, 0))
9178 return non_lvalue (fold_convert (type, arg0));
9180 /* ~X | X is -1. */
9181 if (TREE_CODE (arg0) == BIT_NOT_EXPR
9182 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
9184 t1 = build_int_cst (type, -1);
9185 t1 = force_fit_type (t1, 0, false, false);
9186 return omit_one_operand (type, t1, arg1);
9189 /* X | ~X is -1. */
9190 if (TREE_CODE (arg1) == BIT_NOT_EXPR
9191 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
9193 t1 = build_int_cst (type, -1);
9194 t1 = force_fit_type (t1, 0, false, false);
9195 return omit_one_operand (type, t1, arg0);
9198 /* Canonicalize (X & C1) | C2. */
9199 if (TREE_CODE (arg0) == BIT_AND_EXPR
9200 && TREE_CODE (arg1) == INTEGER_CST
9201 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
9203 unsigned HOST_WIDE_INT hi1, lo1, hi2, lo2, mlo, mhi;
9204 int width = TYPE_PRECISION (type);
9205 hi1 = TREE_INT_CST_HIGH (TREE_OPERAND (arg0, 1));
9206 lo1 = TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1));
9207 hi2 = TREE_INT_CST_HIGH (arg1);
9208 lo2 = TREE_INT_CST_LOW (arg1);
9210 /* If (C1&C2) == C1, then (X&C1)|C2 becomes (X,C2). */
9211 if ((hi1 & hi2) == hi1 && (lo1 & lo2) == lo1)
9212 return omit_one_operand (type, arg1, TREE_OPERAND (arg0, 0));
9214 if (width > HOST_BITS_PER_WIDE_INT)
9216 mhi = (unsigned HOST_WIDE_INT) -1
9217 >> (2 * HOST_BITS_PER_WIDE_INT - width);
9218 mlo = -1;
9220 else
9222 mhi = 0;
9223 mlo = (unsigned HOST_WIDE_INT) -1
9224 >> (HOST_BITS_PER_WIDE_INT - width);
9227 /* If (C1|C2) == ~0 then (X&C1)|C2 becomes X|C2. */
9228 if ((~(hi1 | hi2) & mhi) == 0 && (~(lo1 | lo2) & mlo) == 0)
9229 return fold_build2 (BIT_IOR_EXPR, type,
9230 TREE_OPERAND (arg0, 0), arg1);
9232 /* Minimize the number of bits set in C1, i.e. C1 := C1 & ~C2. */
9233 hi1 &= mhi;
9234 lo1 &= mlo;
9235 if ((hi1 & ~hi2) != hi1 || (lo1 & ~lo2) != lo1)
9236 return fold_build2 (BIT_IOR_EXPR, type,
9237 fold_build2 (BIT_AND_EXPR, type,
9238 TREE_OPERAND (arg0, 0),
9239 build_int_cst_wide (type,
9240 lo1 & ~lo2,
9241 hi1 & ~hi2)),
9242 arg1);
9245 /* (X & Y) | Y is (X, Y). */
9246 if (TREE_CODE (arg0) == BIT_AND_EXPR
9247 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
9248 return omit_one_operand (type, arg1, TREE_OPERAND (arg0, 0));
9249 /* (X & Y) | X is (Y, X). */
9250 if (TREE_CODE (arg0) == BIT_AND_EXPR
9251 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
9252 && reorder_operands_p (TREE_OPERAND (arg0, 1), arg1))
9253 return omit_one_operand (type, arg1, TREE_OPERAND (arg0, 1));
9254 /* X | (X & Y) is (Y, X). */
9255 if (TREE_CODE (arg1) == BIT_AND_EXPR
9256 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0)
9257 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 1)))
9258 return omit_one_operand (type, arg0, TREE_OPERAND (arg1, 1));
9259 /* X | (Y & X) is (Y, X). */
9260 if (TREE_CODE (arg1) == BIT_AND_EXPR
9261 && operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0)
9262 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
9263 return omit_one_operand (type, arg0, TREE_OPERAND (arg1, 0));
9265 t1 = distribute_bit_expr (code, type, arg0, arg1);
9266 if (t1 != NULL_TREE)
9267 return t1;
9269 /* Convert (or (not arg0) (not arg1)) to (not (and (arg0) (arg1))).
9271 This results in more efficient code for machines without a NAND
9272 instruction. Combine will canonicalize to the first form
9273 which will allow use of NAND instructions provided by the
9274 backend if they exist. */
9275 if (TREE_CODE (arg0) == BIT_NOT_EXPR
9276 && TREE_CODE (arg1) == BIT_NOT_EXPR)
9278 return fold_build1 (BIT_NOT_EXPR, type,
9279 build2 (BIT_AND_EXPR, type,
9280 TREE_OPERAND (arg0, 0),
9281 TREE_OPERAND (arg1, 0)));
9284 /* See if this can be simplified into a rotate first. If that
9285 is unsuccessful continue in the association code. */
9286 goto bit_rotate;
9288 case BIT_XOR_EXPR:
9289 if (integer_zerop (arg1))
9290 return non_lvalue (fold_convert (type, arg0));
9291 if (integer_all_onesp (arg1))
9292 return fold_build1 (BIT_NOT_EXPR, type, arg0);
9293 if (operand_equal_p (arg0, arg1, 0))
9294 return omit_one_operand (type, integer_zero_node, arg0);
9296 /* ~X ^ X is -1. */
9297 if (TREE_CODE (arg0) == BIT_NOT_EXPR
9298 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
9300 t1 = build_int_cst (type, -1);
9301 t1 = force_fit_type (t1, 0, false, false);
9302 return omit_one_operand (type, t1, arg1);
9305 /* X ^ ~X is -1. */
9306 if (TREE_CODE (arg1) == BIT_NOT_EXPR
9307 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
9309 t1 = build_int_cst (type, -1);
9310 t1 = force_fit_type (t1, 0, false, false);
9311 return omit_one_operand (type, t1, arg0);
9314 /* If we are XORing two BIT_AND_EXPR's, both of which are and'ing
9315 with a constant, and the two constants have no bits in common,
9316 we should treat this as a BIT_IOR_EXPR since this may produce more
9317 simplifications. */
9318 if (TREE_CODE (arg0) == BIT_AND_EXPR
9319 && TREE_CODE (arg1) == BIT_AND_EXPR
9320 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
9321 && TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
9322 && integer_zerop (const_binop (BIT_AND_EXPR,
9323 TREE_OPERAND (arg0, 1),
9324 TREE_OPERAND (arg1, 1), 0)))
9326 code = BIT_IOR_EXPR;
9327 goto bit_ior;
9330 /* (X | Y) ^ X -> Y & ~ X*/
9331 if (TREE_CODE (arg0) == BIT_IOR_EXPR
9332 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
9334 tree t2 = TREE_OPERAND (arg0, 1);
9335 t1 = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (arg1),
9336 arg1);
9337 t1 = fold_build2 (BIT_AND_EXPR, type, fold_convert (type, t2),
9338 fold_convert (type, t1));
9339 return t1;
9342 /* (Y | X) ^ X -> Y & ~ X*/
9343 if (TREE_CODE (arg0) == BIT_IOR_EXPR
9344 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
9346 tree t2 = TREE_OPERAND (arg0, 0);
9347 t1 = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (arg1),
9348 arg1);
9349 t1 = fold_build2 (BIT_AND_EXPR, type, fold_convert (type, t2),
9350 fold_convert (type, t1));
9351 return t1;
9354 /* X ^ (X | Y) -> Y & ~ X*/
9355 if (TREE_CODE (arg1) == BIT_IOR_EXPR
9356 && operand_equal_p (TREE_OPERAND (arg1, 0), arg0, 0))
9358 tree t2 = TREE_OPERAND (arg1, 1);
9359 t1 = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (arg0),
9360 arg0);
9361 t1 = fold_build2 (BIT_AND_EXPR, type, fold_convert (type, t2),
9362 fold_convert (type, t1));
9363 return t1;
9366 /* X ^ (Y | X) -> Y & ~ X*/
9367 if (TREE_CODE (arg1) == BIT_IOR_EXPR
9368 && operand_equal_p (TREE_OPERAND (arg1, 1), arg0, 0))
9370 tree t2 = TREE_OPERAND (arg1, 0);
9371 t1 = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (arg0),
9372 arg0);
9373 t1 = fold_build2 (BIT_AND_EXPR, type, fold_convert (type, t2),
9374 fold_convert (type, t1));
9375 return t1;
9378 /* Convert ~X ^ ~Y to X ^ Y. */
9379 if (TREE_CODE (arg0) == BIT_NOT_EXPR
9380 && TREE_CODE (arg1) == BIT_NOT_EXPR)
9381 return fold_build2 (code, type,
9382 fold_convert (type, TREE_OPERAND (arg0, 0)),
9383 fold_convert (type, TREE_OPERAND (arg1, 0)));
9385 /* Fold (X & 1) ^ 1 as (X & 1) == 0. */
9386 if (TREE_CODE (arg0) == BIT_AND_EXPR
9387 && integer_onep (TREE_OPERAND (arg0, 1))
9388 && integer_onep (arg1))
9389 return fold_build2 (EQ_EXPR, type, arg0,
9390 build_int_cst (TREE_TYPE (arg0), 0));
9392 /* Fold (X & Y) ^ Y as ~X & Y. */
9393 if (TREE_CODE (arg0) == BIT_AND_EXPR
9394 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
9396 tem = fold_convert (type, TREE_OPERAND (arg0, 0));
9397 return fold_build2 (BIT_AND_EXPR, type,
9398 fold_build1 (BIT_NOT_EXPR, type, tem),
9399 fold_convert (type, arg1));
9401 /* Fold (X & Y) ^ X as ~Y & X. */
9402 if (TREE_CODE (arg0) == BIT_AND_EXPR
9403 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
9404 && reorder_operands_p (TREE_OPERAND (arg0, 1), arg1))
9406 tem = fold_convert (type, TREE_OPERAND (arg0, 1));
9407 return fold_build2 (BIT_AND_EXPR, type,
9408 fold_build1 (BIT_NOT_EXPR, type, tem),
9409 fold_convert (type, arg1));
9411 /* Fold X ^ (X & Y) as X & ~Y. */
9412 if (TREE_CODE (arg1) == BIT_AND_EXPR
9413 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
9415 tem = fold_convert (type, TREE_OPERAND (arg1, 1));
9416 return fold_build2 (BIT_AND_EXPR, type,
9417 fold_convert (type, arg0),
9418 fold_build1 (BIT_NOT_EXPR, type, tem));
9420 /* Fold X ^ (Y & X) as ~Y & X. */
9421 if (TREE_CODE (arg1) == BIT_AND_EXPR
9422 && operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0)
9423 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
9425 tem = fold_convert (type, TREE_OPERAND (arg1, 0));
9426 return fold_build2 (BIT_AND_EXPR, type,
9427 fold_build1 (BIT_NOT_EXPR, type, tem),
9428 fold_convert (type, arg0));
9431 /* See if this can be simplified into a rotate first. If that
9432 is unsuccessful continue in the association code. */
9433 goto bit_rotate;
9435 case BIT_AND_EXPR:
9436 if (integer_all_onesp (arg1))
9437 return non_lvalue (fold_convert (type, arg0));
9438 if (integer_zerop (arg1))
9439 return omit_one_operand (type, arg1, arg0);
9440 if (operand_equal_p (arg0, arg1, 0))
9441 return non_lvalue (fold_convert (type, arg0));
9443 /* ~X & X is always zero. */
9444 if (TREE_CODE (arg0) == BIT_NOT_EXPR
9445 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
9446 return omit_one_operand (type, integer_zero_node, arg1);
9448 /* X & ~X is always zero. */
9449 if (TREE_CODE (arg1) == BIT_NOT_EXPR
9450 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
9451 return omit_one_operand (type, integer_zero_node, arg0);
9453 /* Canonicalize (X | C1) & C2 as (X & C2) | (C1 & C2). */
9454 if (TREE_CODE (arg0) == BIT_IOR_EXPR
9455 && TREE_CODE (arg1) == INTEGER_CST
9456 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
9457 return fold_build2 (BIT_IOR_EXPR, type,
9458 fold_build2 (BIT_AND_EXPR, type,
9459 TREE_OPERAND (arg0, 0), arg1),
9460 fold_build2 (BIT_AND_EXPR, type,
9461 TREE_OPERAND (arg0, 1), arg1));
9463 /* (X | Y) & Y is (X, Y). */
9464 if (TREE_CODE (arg0) == BIT_IOR_EXPR
9465 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
9466 return omit_one_operand (type, arg1, TREE_OPERAND (arg0, 0));
9467 /* (X | Y) & X is (Y, X). */
9468 if (TREE_CODE (arg0) == BIT_IOR_EXPR
9469 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
9470 && reorder_operands_p (TREE_OPERAND (arg0, 1), arg1))
9471 return omit_one_operand (type, arg1, TREE_OPERAND (arg0, 1));
9472 /* X & (X | Y) is (Y, X). */
9473 if (TREE_CODE (arg1) == BIT_IOR_EXPR
9474 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0)
9475 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 1)))
9476 return omit_one_operand (type, arg0, TREE_OPERAND (arg1, 1));
9477 /* X & (Y | X) is (Y, X). */
9478 if (TREE_CODE (arg1) == BIT_IOR_EXPR
9479 && operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0)
9480 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
9481 return omit_one_operand (type, arg0, TREE_OPERAND (arg1, 0));
9483 /* Fold (X ^ 1) & 1 as (X & 1) == 0. */
9484 if (TREE_CODE (arg0) == BIT_XOR_EXPR
9485 && integer_onep (TREE_OPERAND (arg0, 1))
9486 && integer_onep (arg1))
9488 tem = TREE_OPERAND (arg0, 0);
9489 return fold_build2 (EQ_EXPR, type,
9490 fold_build2 (BIT_AND_EXPR, TREE_TYPE (tem), tem,
9491 build_int_cst (TREE_TYPE (tem), 1)),
9492 build_int_cst (TREE_TYPE (tem), 0));
9494 /* Fold ~X & 1 as (X & 1) == 0. */
9495 if (TREE_CODE (arg0) == BIT_NOT_EXPR
9496 && integer_onep (arg1))
9498 tem = TREE_OPERAND (arg0, 0);
9499 return fold_build2 (EQ_EXPR, type,
9500 fold_build2 (BIT_AND_EXPR, TREE_TYPE (tem), tem,
9501 build_int_cst (TREE_TYPE (tem), 1)),
9502 build_int_cst (TREE_TYPE (tem), 0));
9505 /* Fold (X ^ Y) & Y as ~X & Y. */
9506 if (TREE_CODE (arg0) == BIT_XOR_EXPR
9507 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
9509 tem = fold_convert (type, TREE_OPERAND (arg0, 0));
9510 return fold_build2 (BIT_AND_EXPR, type,
9511 fold_build1 (BIT_NOT_EXPR, type, tem),
9512 fold_convert (type, arg1));
9514 /* Fold (X ^ Y) & X as ~Y & X. */
9515 if (TREE_CODE (arg0) == BIT_XOR_EXPR
9516 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
9517 && reorder_operands_p (TREE_OPERAND (arg0, 1), arg1))
9519 tem = fold_convert (type, TREE_OPERAND (arg0, 1));
9520 return fold_build2 (BIT_AND_EXPR, type,
9521 fold_build1 (BIT_NOT_EXPR, type, tem),
9522 fold_convert (type, arg1));
9524 /* Fold X & (X ^ Y) as X & ~Y. */
9525 if (TREE_CODE (arg1) == BIT_XOR_EXPR
9526 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
9528 tem = fold_convert (type, TREE_OPERAND (arg1, 1));
9529 return fold_build2 (BIT_AND_EXPR, type,
9530 fold_convert (type, arg0),
9531 fold_build1 (BIT_NOT_EXPR, type, tem));
9533 /* Fold X & (Y ^ X) as ~Y & X. */
9534 if (TREE_CODE (arg1) == BIT_XOR_EXPR
9535 && operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0)
9536 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
9538 tem = fold_convert (type, TREE_OPERAND (arg1, 0));
9539 return fold_build2 (BIT_AND_EXPR, type,
9540 fold_build1 (BIT_NOT_EXPR, type, tem),
9541 fold_convert (type, arg0));
9544 t1 = distribute_bit_expr (code, type, arg0, arg1);
9545 if (t1 != NULL_TREE)
9546 return t1;
9547 /* Simplify ((int)c & 0377) into (int)c, if c is unsigned char. */
9548 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) == NOP_EXPR
9549 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0))))
9551 unsigned int prec
9552 = TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0, 0)));
9554 if (prec < BITS_PER_WORD && prec < HOST_BITS_PER_WIDE_INT
9555 && (~TREE_INT_CST_LOW (arg1)
9556 & (((HOST_WIDE_INT) 1 << prec) - 1)) == 0)
9557 return fold_convert (type, TREE_OPERAND (arg0, 0));
9560 /* Convert (and (not arg0) (not arg1)) to (not (or (arg0) (arg1))).
9562 This results in more efficient code for machines without a NOR
9563 instruction. Combine will canonicalize to the first form
9564 which will allow use of NOR instructions provided by the
9565 backend if they exist. */
9566 if (TREE_CODE (arg0) == BIT_NOT_EXPR
9567 && TREE_CODE (arg1) == BIT_NOT_EXPR)
9569 return fold_build1 (BIT_NOT_EXPR, type,
9570 build2 (BIT_IOR_EXPR, type,
9571 TREE_OPERAND (arg0, 0),
9572 TREE_OPERAND (arg1, 0)));
9575 goto associate;
9577 case RDIV_EXPR:
9578 /* Don't touch a floating-point divide by zero unless the mode
9579 of the constant can represent infinity. */
9580 if (TREE_CODE (arg1) == REAL_CST
9581 && !MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg1)))
9582 && real_zerop (arg1))
9583 return NULL_TREE;
9585 /* Optimize A / A to 1.0 if we don't care about
9586 NaNs or Infinities. Skip the transformation
9587 for non-real operands. */
9588 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (arg0))
9589 && ! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0)))
9590 && ! HONOR_INFINITIES (TYPE_MODE (TREE_TYPE (arg0)))
9591 && operand_equal_p (arg0, arg1, 0))
9593 tree r = build_real (TREE_TYPE (arg0), dconst1);
9595 return omit_two_operands (type, r, arg0, arg1);
9598 /* The complex version of the above A / A optimization. */
9599 if (COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0))
9600 && operand_equal_p (arg0, arg1, 0))
9602 tree elem_type = TREE_TYPE (TREE_TYPE (arg0));
9603 if (! HONOR_NANS (TYPE_MODE (elem_type))
9604 && ! HONOR_INFINITIES (TYPE_MODE (elem_type)))
9606 tree r = build_real (elem_type, dconst1);
9607 /* omit_two_operands will call fold_convert for us. */
9608 return omit_two_operands (type, r, arg0, arg1);
9612 /* (-A) / (-B) -> A / B */
9613 if (TREE_CODE (arg0) == NEGATE_EXPR && negate_expr_p (arg1))
9614 return fold_build2 (RDIV_EXPR, type,
9615 TREE_OPERAND (arg0, 0),
9616 negate_expr (arg1));
9617 if (TREE_CODE (arg1) == NEGATE_EXPR && negate_expr_p (arg0))
9618 return fold_build2 (RDIV_EXPR, type,
9619 negate_expr (arg0),
9620 TREE_OPERAND (arg1, 0));
9622 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
9623 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
9624 && real_onep (arg1))
9625 return non_lvalue (fold_convert (type, arg0));
9627 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
9628 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
9629 && real_minus_onep (arg1))
9630 return non_lvalue (fold_convert (type, negate_expr (arg0)));
9632 /* If ARG1 is a constant, we can convert this to a multiply by the
9633 reciprocal. This does not have the same rounding properties,
9634 so only do this if -funsafe-math-optimizations. We can actually
9635 always safely do it if ARG1 is a power of two, but it's hard to
9636 tell if it is or not in a portable manner. */
9637 if (TREE_CODE (arg1) == REAL_CST)
9639 if (flag_unsafe_math_optimizations
9640 && 0 != (tem = const_binop (code, build_real (type, dconst1),
9641 arg1, 0)))
9642 return fold_build2 (MULT_EXPR, type, arg0, tem);
9643 /* Find the reciprocal if optimizing and the result is exact. */
9644 if (optimize)
9646 REAL_VALUE_TYPE r;
9647 r = TREE_REAL_CST (arg1);
9648 if (exact_real_inverse (TYPE_MODE(TREE_TYPE(arg0)), &r))
9650 tem = build_real (type, r);
9651 return fold_build2 (MULT_EXPR, type,
9652 fold_convert (type, arg0), tem);
9656 /* Convert A/B/C to A/(B*C). */
9657 if (flag_unsafe_math_optimizations
9658 && TREE_CODE (arg0) == RDIV_EXPR)
9659 return fold_build2 (RDIV_EXPR, type, TREE_OPERAND (arg0, 0),
9660 fold_build2 (MULT_EXPR, type,
9661 TREE_OPERAND (arg0, 1), arg1));
9663 /* Convert A/(B/C) to (A/B)*C. */
9664 if (flag_unsafe_math_optimizations
9665 && TREE_CODE (arg1) == RDIV_EXPR)
9666 return fold_build2 (MULT_EXPR, type,
9667 fold_build2 (RDIV_EXPR, type, arg0,
9668 TREE_OPERAND (arg1, 0)),
9669 TREE_OPERAND (arg1, 1));
9671 /* Convert C1/(X*C2) into (C1/C2)/X. */
9672 if (flag_unsafe_math_optimizations
9673 && TREE_CODE (arg1) == MULT_EXPR
9674 && TREE_CODE (arg0) == REAL_CST
9675 && TREE_CODE (TREE_OPERAND (arg1, 1)) == REAL_CST)
9677 tree tem = const_binop (RDIV_EXPR, arg0,
9678 TREE_OPERAND (arg1, 1), 0);
9679 if (tem)
9680 return fold_build2 (RDIV_EXPR, type, tem,
9681 TREE_OPERAND (arg1, 0));
9684 if (flag_unsafe_math_optimizations)
9686 enum built_in_function fcode0 = builtin_mathfn_code (arg0);
9687 enum built_in_function fcode1 = builtin_mathfn_code (arg1);
9689 /* Optimize sin(x)/cos(x) as tan(x). */
9690 if (((fcode0 == BUILT_IN_SIN && fcode1 == BUILT_IN_COS)
9691 || (fcode0 == BUILT_IN_SINF && fcode1 == BUILT_IN_COSF)
9692 || (fcode0 == BUILT_IN_SINL && fcode1 == BUILT_IN_COSL))
9693 && operand_equal_p (TREE_VALUE (TREE_OPERAND (arg0, 1)),
9694 TREE_VALUE (TREE_OPERAND (arg1, 1)), 0))
9696 tree tanfn = mathfn_built_in (type, BUILT_IN_TAN);
9698 if (tanfn != NULL_TREE)
9699 return build_function_call_expr (tanfn,
9700 TREE_OPERAND (arg0, 1));
9703 /* Optimize cos(x)/sin(x) as 1.0/tan(x). */
9704 if (((fcode0 == BUILT_IN_COS && fcode1 == BUILT_IN_SIN)
9705 || (fcode0 == BUILT_IN_COSF && fcode1 == BUILT_IN_SINF)
9706 || (fcode0 == BUILT_IN_COSL && fcode1 == BUILT_IN_SINL))
9707 && operand_equal_p (TREE_VALUE (TREE_OPERAND (arg0, 1)),
9708 TREE_VALUE (TREE_OPERAND (arg1, 1)), 0))
9710 tree tanfn = mathfn_built_in (type, BUILT_IN_TAN);
9712 if (tanfn != NULL_TREE)
9714 tree tmp = TREE_OPERAND (arg0, 1);
9715 tmp = build_function_call_expr (tanfn, tmp);
9716 return fold_build2 (RDIV_EXPR, type,
9717 build_real (type, dconst1), tmp);
9721 /* Optimize sin(x)/tan(x) as cos(x) if we don't care about
9722 NaNs or Infinities. */
9723 if (((fcode0 == BUILT_IN_SIN && fcode1 == BUILT_IN_TAN)
9724 || (fcode0 == BUILT_IN_SINF && fcode1 == BUILT_IN_TANF)
9725 || (fcode0 == BUILT_IN_SINL && fcode1 == BUILT_IN_TANL)))
9727 tree arg00 = TREE_VALUE (TREE_OPERAND (arg0, 1));
9728 tree arg01 = TREE_VALUE (TREE_OPERAND (arg1, 1));
9730 if (! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg00)))
9731 && ! HONOR_INFINITIES (TYPE_MODE (TREE_TYPE (arg00)))
9732 && operand_equal_p (arg00, arg01, 0))
9734 tree cosfn = mathfn_built_in (type, BUILT_IN_COS);
9736 if (cosfn != NULL_TREE)
9737 return build_function_call_expr (cosfn,
9738 TREE_OPERAND (arg0, 1));
9742 /* Optimize tan(x)/sin(x) as 1.0/cos(x) if we don't care about
9743 NaNs or Infinities. */
9744 if (((fcode0 == BUILT_IN_TAN && fcode1 == BUILT_IN_SIN)
9745 || (fcode0 == BUILT_IN_TANF && fcode1 == BUILT_IN_SINF)
9746 || (fcode0 == BUILT_IN_TANL && fcode1 == BUILT_IN_SINL)))
9748 tree arg00 = TREE_VALUE (TREE_OPERAND (arg0, 1));
9749 tree arg01 = TREE_VALUE (TREE_OPERAND (arg1, 1));
9751 if (! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg00)))
9752 && ! HONOR_INFINITIES (TYPE_MODE (TREE_TYPE (arg00)))
9753 && operand_equal_p (arg00, arg01, 0))
9755 tree cosfn = mathfn_built_in (type, BUILT_IN_COS);
9757 if (cosfn != NULL_TREE)
9759 tree tmp = TREE_OPERAND (arg0, 1);
9760 tmp = build_function_call_expr (cosfn, tmp);
9761 return fold_build2 (RDIV_EXPR, type,
9762 build_real (type, dconst1),
9763 tmp);
9768 /* Optimize pow(x,c)/x as pow(x,c-1). */
9769 if (fcode0 == BUILT_IN_POW
9770 || fcode0 == BUILT_IN_POWF
9771 || fcode0 == BUILT_IN_POWL)
9773 tree arg00 = TREE_VALUE (TREE_OPERAND (arg0, 1));
9774 tree arg01 = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg0, 1)));
9775 if (TREE_CODE (arg01) == REAL_CST
9776 && ! TREE_CONSTANT_OVERFLOW (arg01)
9777 && operand_equal_p (arg1, arg00, 0))
9779 tree powfn = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
9780 REAL_VALUE_TYPE c;
9781 tree arg, arglist;
9783 c = TREE_REAL_CST (arg01);
9784 real_arithmetic (&c, MINUS_EXPR, &c, &dconst1);
9785 arg = build_real (type, c);
9786 arglist = build_tree_list (NULL_TREE, arg);
9787 arglist = tree_cons (NULL_TREE, arg1, arglist);
9788 return build_function_call_expr (powfn, arglist);
9792 /* Optimize x/expN(y) into x*expN(-y). */
9793 if (BUILTIN_EXPONENT_P (fcode1))
9795 tree expfn = TREE_OPERAND (TREE_OPERAND (arg1, 0), 0);
9796 tree arg = negate_expr (TREE_VALUE (TREE_OPERAND (arg1, 1)));
9797 tree arglist = build_tree_list (NULL_TREE,
9798 fold_convert (type, arg));
9799 arg1 = build_function_call_expr (expfn, arglist);
9800 return fold_build2 (MULT_EXPR, type, arg0, arg1);
9803 /* Optimize x/pow(y,z) into x*pow(y,-z). */
9804 if (fcode1 == BUILT_IN_POW
9805 || fcode1 == BUILT_IN_POWF
9806 || fcode1 == BUILT_IN_POWL)
9808 tree powfn = TREE_OPERAND (TREE_OPERAND (arg1, 0), 0);
9809 tree arg10 = TREE_VALUE (TREE_OPERAND (arg1, 1));
9810 tree arg11 = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg1, 1)));
9811 tree neg11 = fold_convert (type, negate_expr (arg11));
9812 tree arglist = tree_cons(NULL_TREE, arg10,
9813 build_tree_list (NULL_TREE, neg11));
9814 arg1 = build_function_call_expr (powfn, arglist);
9815 return fold_build2 (MULT_EXPR, type, arg0, arg1);
9818 return NULL_TREE;
9820 case TRUNC_DIV_EXPR:
9821 case FLOOR_DIV_EXPR:
9822 /* Simplify A / (B << N) where A and B are positive and B is
9823 a power of 2, to A >> (N + log2(B)). */
9824 if (TREE_CODE (arg1) == LSHIFT_EXPR
9825 && (TYPE_UNSIGNED (type) || tree_expr_nonnegative_p (arg0)))
9827 tree sval = TREE_OPERAND (arg1, 0);
9828 if (integer_pow2p (sval) && tree_int_cst_sgn (sval) > 0)
9830 tree sh_cnt = TREE_OPERAND (arg1, 1);
9831 unsigned long pow2 = exact_log2 (TREE_INT_CST_LOW (sval));
9833 sh_cnt = fold_build2 (PLUS_EXPR, TREE_TYPE (sh_cnt),
9834 sh_cnt, build_int_cst (NULL_TREE, pow2));
9835 return fold_build2 (RSHIFT_EXPR, type,
9836 fold_convert (type, arg0), sh_cnt);
9839 /* Fall thru */
9841 case ROUND_DIV_EXPR:
9842 case CEIL_DIV_EXPR:
9843 case EXACT_DIV_EXPR:
9844 if (integer_onep (arg1))
9845 return non_lvalue (fold_convert (type, arg0));
9846 if (integer_zerop (arg1))
9847 return NULL_TREE;
9848 /* X / -1 is -X. */
9849 if (!TYPE_UNSIGNED (type)
9850 && TREE_CODE (arg1) == INTEGER_CST
9851 && TREE_INT_CST_LOW (arg1) == (unsigned HOST_WIDE_INT) -1
9852 && TREE_INT_CST_HIGH (arg1) == -1)
9853 return fold_convert (type, negate_expr (arg0));
9855 /* Convert -A / -B to A / B when the type is signed and overflow is
9856 undefined. */
9857 if (!TYPE_UNSIGNED (type) && !flag_wrapv
9858 && TREE_CODE (arg0) == NEGATE_EXPR
9859 && negate_expr_p (arg1))
9860 return fold_build2 (code, type, TREE_OPERAND (arg0, 0),
9861 negate_expr (arg1));
9862 if (!TYPE_UNSIGNED (type) && !flag_wrapv
9863 && TREE_CODE (arg1) == NEGATE_EXPR
9864 && negate_expr_p (arg0))
9865 return fold_build2 (code, type, negate_expr (arg0),
9866 TREE_OPERAND (arg1, 0));
9868 /* If arg0 is a multiple of arg1, then rewrite to the fastest div
9869 operation, EXACT_DIV_EXPR.
9871 Note that only CEIL_DIV_EXPR and FLOOR_DIV_EXPR are rewritten now.
9872 At one time others generated faster code, it's not clear if they do
9873 after the last round to changes to the DIV code in expmed.c. */
9874 if ((code == CEIL_DIV_EXPR || code == FLOOR_DIV_EXPR)
9875 && multiple_of_p (type, arg0, arg1))
9876 return fold_build2 (EXACT_DIV_EXPR, type, arg0, arg1);
9878 if (TREE_CODE (arg1) == INTEGER_CST
9879 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE)))
9880 return fold_convert (type, tem);
9882 return NULL_TREE;
9884 case CEIL_MOD_EXPR:
9885 case FLOOR_MOD_EXPR:
9886 case ROUND_MOD_EXPR:
9887 case TRUNC_MOD_EXPR:
9888 /* X % 1 is always zero, but be sure to preserve any side
9889 effects in X. */
9890 if (integer_onep (arg1))
9891 return omit_one_operand (type, integer_zero_node, arg0);
9893 /* X % 0, return X % 0 unchanged so that we can get the
9894 proper warnings and errors. */
9895 if (integer_zerop (arg1))
9896 return NULL_TREE;
9898 /* 0 % X is always zero, but be sure to preserve any side
9899 effects in X. Place this after checking for X == 0. */
9900 if (integer_zerop (arg0))
9901 return omit_one_operand (type, integer_zero_node, arg1);
9903 /* X % -1 is zero. */
9904 if (!TYPE_UNSIGNED (type)
9905 && TREE_CODE (arg1) == INTEGER_CST
9906 && TREE_INT_CST_LOW (arg1) == (unsigned HOST_WIDE_INT) -1
9907 && TREE_INT_CST_HIGH (arg1) == -1)
9908 return omit_one_operand (type, integer_zero_node, arg0);
9910 /* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
9911 i.e. "X % C" into "X & (C - 1)", if X and C are positive. */
9912 if ((code == TRUNC_MOD_EXPR || code == FLOOR_MOD_EXPR)
9913 && (TYPE_UNSIGNED (type) || tree_expr_nonnegative_p (arg0)))
9915 tree c = arg1;
9916 /* Also optimize A % (C << N) where C is a power of 2,
9917 to A & ((C << N) - 1). */
9918 if (TREE_CODE (arg1) == LSHIFT_EXPR)
9919 c = TREE_OPERAND (arg1, 0);
9921 if (integer_pow2p (c) && tree_int_cst_sgn (c) > 0)
9923 tree mask = fold_build2 (MINUS_EXPR, TREE_TYPE (arg1),
9924 arg1, integer_one_node);
9925 return fold_build2 (BIT_AND_EXPR, type,
9926 fold_convert (type, arg0),
9927 fold_convert (type, mask));
9931 /* X % -C is the same as X % C. */
9932 if (code == TRUNC_MOD_EXPR
9933 && !TYPE_UNSIGNED (type)
9934 && TREE_CODE (arg1) == INTEGER_CST
9935 && !TREE_CONSTANT_OVERFLOW (arg1)
9936 && TREE_INT_CST_HIGH (arg1) < 0
9937 && !flag_trapv
9938 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
9939 && !sign_bit_p (arg1, arg1))
9940 return fold_build2 (code, type, fold_convert (type, arg0),
9941 fold_convert (type, negate_expr (arg1)));
9943 /* X % -Y is the same as X % Y. */
9944 if (code == TRUNC_MOD_EXPR
9945 && !TYPE_UNSIGNED (type)
9946 && TREE_CODE (arg1) == NEGATE_EXPR
9947 && !flag_trapv)
9948 return fold_build2 (code, type, fold_convert (type, arg0),
9949 fold_convert (type, TREE_OPERAND (arg1, 0)));
9951 if (TREE_CODE (arg1) == INTEGER_CST
9952 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE)))
9953 return fold_convert (type, tem);
9955 return NULL_TREE;
9957 case LROTATE_EXPR:
9958 case RROTATE_EXPR:
9959 if (integer_all_onesp (arg0))
9960 return omit_one_operand (type, arg0, arg1);
9961 goto shift;
9963 case RSHIFT_EXPR:
9964 /* Optimize -1 >> x for arithmetic right shifts. */
9965 if (integer_all_onesp (arg0) && !TYPE_UNSIGNED (type))
9966 return omit_one_operand (type, arg0, arg1);
9967 /* ... fall through ... */
9969 case LSHIFT_EXPR:
9970 shift:
9971 if (integer_zerop (arg1))
9972 return non_lvalue (fold_convert (type, arg0));
9973 if (integer_zerop (arg0))
9974 return omit_one_operand (type, arg0, arg1);
9976 /* Since negative shift count is not well-defined,
9977 don't try to compute it in the compiler. */
9978 if (TREE_CODE (arg1) == INTEGER_CST && tree_int_cst_sgn (arg1) < 0)
9979 return NULL_TREE;
9981 /* Turn (a OP c1) OP c2 into a OP (c1+c2). */
9982 if (TREE_CODE (op0) == code && host_integerp (arg1, false)
9983 && TREE_INT_CST_LOW (arg1) < TYPE_PRECISION (type)
9984 && host_integerp (TREE_OPERAND (arg0, 1), false)
9985 && TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1)) < TYPE_PRECISION (type))
9987 HOST_WIDE_INT low = (TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1))
9988 + TREE_INT_CST_LOW (arg1));
9990 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
9991 being well defined. */
9992 if (low >= TYPE_PRECISION (type))
9994 if (code == LROTATE_EXPR || code == RROTATE_EXPR)
9995 low = low % TYPE_PRECISION (type);
9996 else if (TYPE_UNSIGNED (type) || code == LSHIFT_EXPR)
9997 return build_int_cst (type, 0);
9998 else
9999 low = TYPE_PRECISION (type) - 1;
10002 return fold_build2 (code, type, TREE_OPERAND (arg0, 0),
10003 build_int_cst (type, low));
10006 /* Transform (x >> c) << c into x & (-1<<c), or transform (x << c) >> c
10007 into x & ((unsigned)-1 >> c) for unsigned types. */
10008 if (((code == LSHIFT_EXPR && TREE_CODE (arg0) == RSHIFT_EXPR)
10009 || (TYPE_UNSIGNED (type)
10010 && code == RSHIFT_EXPR && TREE_CODE (arg0) == LSHIFT_EXPR))
10011 && host_integerp (arg1, false)
10012 && TREE_INT_CST_LOW (arg1) < TYPE_PRECISION (type)
10013 && host_integerp (TREE_OPERAND (arg0, 1), false)
10014 && TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1)) < TYPE_PRECISION (type))
10016 HOST_WIDE_INT low0 = TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1));
10017 HOST_WIDE_INT low1 = TREE_INT_CST_LOW (arg1);
10018 tree lshift;
10019 tree arg00;
10021 if (low0 == low1)
10023 arg00 = fold_convert (type, TREE_OPERAND (arg0, 0));
10025 lshift = build_int_cst (type, -1);
10026 lshift = int_const_binop (code, lshift, arg1, 0);
10028 return fold_build2 (BIT_AND_EXPR, type, arg00, lshift);
10032 /* Rewrite an LROTATE_EXPR by a constant into an
10033 RROTATE_EXPR by a new constant. */
10034 if (code == LROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST)
10036 tree tem = build_int_cst (NULL_TREE,
10037 GET_MODE_BITSIZE (TYPE_MODE (type)));
10038 tem = fold_convert (TREE_TYPE (arg1), tem);
10039 tem = const_binop (MINUS_EXPR, tem, arg1, 0);
10040 return fold_build2 (RROTATE_EXPR, type, arg0, tem);
10043 /* If we have a rotate of a bit operation with the rotate count and
10044 the second operand of the bit operation both constant,
10045 permute the two operations. */
10046 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
10047 && (TREE_CODE (arg0) == BIT_AND_EXPR
10048 || TREE_CODE (arg0) == BIT_IOR_EXPR
10049 || TREE_CODE (arg0) == BIT_XOR_EXPR)
10050 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10051 return fold_build2 (TREE_CODE (arg0), type,
10052 fold_build2 (code, type,
10053 TREE_OPERAND (arg0, 0), arg1),
10054 fold_build2 (code, type,
10055 TREE_OPERAND (arg0, 1), arg1));
10057 /* Two consecutive rotates adding up to the width of the mode can
10058 be ignored. */
10059 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
10060 && TREE_CODE (arg0) == RROTATE_EXPR
10061 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
10062 && TREE_INT_CST_HIGH (arg1) == 0
10063 && TREE_INT_CST_HIGH (TREE_OPERAND (arg0, 1)) == 0
10064 && ((TREE_INT_CST_LOW (arg1)
10065 + TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1)))
10066 == (unsigned int) GET_MODE_BITSIZE (TYPE_MODE (type))))
10067 return TREE_OPERAND (arg0, 0);
10069 return NULL_TREE;
10071 case MIN_EXPR:
10072 if (operand_equal_p (arg0, arg1, 0))
10073 return omit_one_operand (type, arg0, arg1);
10074 if (INTEGRAL_TYPE_P (type)
10075 && operand_equal_p (arg1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
10076 return omit_one_operand (type, arg1, arg0);
10077 tem = fold_minmax (MIN_EXPR, type, arg0, arg1);
10078 if (tem)
10079 return tem;
10080 goto associate;
10082 case MAX_EXPR:
10083 if (operand_equal_p (arg0, arg1, 0))
10084 return omit_one_operand (type, arg0, arg1);
10085 if (INTEGRAL_TYPE_P (type)
10086 && TYPE_MAX_VALUE (type)
10087 && operand_equal_p (arg1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
10088 return omit_one_operand (type, arg1, arg0);
10089 tem = fold_minmax (MAX_EXPR, type, arg0, arg1);
10090 if (tem)
10091 return tem;
10092 goto associate;
10094 case TRUTH_ANDIF_EXPR:
10095 /* Note that the operands of this must be ints
10096 and their values must be 0 or 1.
10097 ("true" is a fixed value perhaps depending on the language.) */
10098 /* If first arg is constant zero, return it. */
10099 if (integer_zerop (arg0))
10100 return fold_convert (type, arg0);
10101 case TRUTH_AND_EXPR:
10102 /* If either arg is constant true, drop it. */
10103 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
10104 return non_lvalue (fold_convert (type, arg1));
10105 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1)
10106 /* Preserve sequence points. */
10107 && (code != TRUTH_ANDIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
10108 return non_lvalue (fold_convert (type, arg0));
10109 /* If second arg is constant zero, result is zero, but first arg
10110 must be evaluated. */
10111 if (integer_zerop (arg1))
10112 return omit_one_operand (type, arg1, arg0);
10113 /* Likewise for first arg, but note that only the TRUTH_AND_EXPR
10114 case will be handled here. */
10115 if (integer_zerop (arg0))
10116 return omit_one_operand (type, arg0, arg1);
10118 /* !X && X is always false. */
10119 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
10120 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10121 return omit_one_operand (type, integer_zero_node, arg1);
10122 /* X && !X is always false. */
10123 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
10124 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10125 return omit_one_operand (type, integer_zero_node, arg0);
10127 /* A < X && A + 1 > Y ==> A < X && A >= Y. Normally A + 1 > Y
10128 means A >= Y && A != MAX, but in this case we know that
10129 A < X <= MAX. */
10131 if (!TREE_SIDE_EFFECTS (arg0)
10132 && !TREE_SIDE_EFFECTS (arg1))
10134 tem = fold_to_nonsharp_ineq_using_bound (arg0, arg1);
10135 if (tem && !operand_equal_p (tem, arg0, 0))
10136 return fold_build2 (code, type, tem, arg1);
10138 tem = fold_to_nonsharp_ineq_using_bound (arg1, arg0);
10139 if (tem && !operand_equal_p (tem, arg1, 0))
10140 return fold_build2 (code, type, arg0, tem);
10143 truth_andor:
10144 /* We only do these simplifications if we are optimizing. */
10145 if (!optimize)
10146 return NULL_TREE;
10148 /* Check for things like (A || B) && (A || C). We can convert this
10149 to A || (B && C). Note that either operator can be any of the four
10150 truth and/or operations and the transformation will still be
10151 valid. Also note that we only care about order for the
10152 ANDIF and ORIF operators. If B contains side effects, this
10153 might change the truth-value of A. */
10154 if (TREE_CODE (arg0) == TREE_CODE (arg1)
10155 && (TREE_CODE (arg0) == TRUTH_ANDIF_EXPR
10156 || TREE_CODE (arg0) == TRUTH_ORIF_EXPR
10157 || TREE_CODE (arg0) == TRUTH_AND_EXPR
10158 || TREE_CODE (arg0) == TRUTH_OR_EXPR)
10159 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg0, 1)))
10161 tree a00 = TREE_OPERAND (arg0, 0);
10162 tree a01 = TREE_OPERAND (arg0, 1);
10163 tree a10 = TREE_OPERAND (arg1, 0);
10164 tree a11 = TREE_OPERAND (arg1, 1);
10165 int commutative = ((TREE_CODE (arg0) == TRUTH_OR_EXPR
10166 || TREE_CODE (arg0) == TRUTH_AND_EXPR)
10167 && (code == TRUTH_AND_EXPR
10168 || code == TRUTH_OR_EXPR));
10170 if (operand_equal_p (a00, a10, 0))
10171 return fold_build2 (TREE_CODE (arg0), type, a00,
10172 fold_build2 (code, type, a01, a11));
10173 else if (commutative && operand_equal_p (a00, a11, 0))
10174 return fold_build2 (TREE_CODE (arg0), type, a00,
10175 fold_build2 (code, type, a01, a10));
10176 else if (commutative && operand_equal_p (a01, a10, 0))
10177 return fold_build2 (TREE_CODE (arg0), type, a01,
10178 fold_build2 (code, type, a00, a11));
10180 /* This case if tricky because we must either have commutative
10181 operators or else A10 must not have side-effects. */
10183 else if ((commutative || ! TREE_SIDE_EFFECTS (a10))
10184 && operand_equal_p (a01, a11, 0))
10185 return fold_build2 (TREE_CODE (arg0), type,
10186 fold_build2 (code, type, a00, a10),
10187 a01);
10190 /* See if we can build a range comparison. */
10191 if (0 != (tem = fold_range_test (code, type, op0, op1)))
10192 return tem;
10194 /* Check for the possibility of merging component references. If our
10195 lhs is another similar operation, try to merge its rhs with our
10196 rhs. Then try to merge our lhs and rhs. */
10197 if (TREE_CODE (arg0) == code
10198 && 0 != (tem = fold_truthop (code, type,
10199 TREE_OPERAND (arg0, 1), arg1)))
10200 return fold_build2 (code, type, TREE_OPERAND (arg0, 0), tem);
10202 if ((tem = fold_truthop (code, type, arg0, arg1)) != 0)
10203 return tem;
10205 return NULL_TREE;
10207 case TRUTH_ORIF_EXPR:
10208 /* Note that the operands of this must be ints
10209 and their values must be 0 or true.
10210 ("true" is a fixed value perhaps depending on the language.) */
10211 /* If first arg is constant true, return it. */
10212 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
10213 return fold_convert (type, arg0);
10214 case TRUTH_OR_EXPR:
10215 /* If either arg is constant zero, drop it. */
10216 if (TREE_CODE (arg0) == INTEGER_CST && integer_zerop (arg0))
10217 return non_lvalue (fold_convert (type, arg1));
10218 if (TREE_CODE (arg1) == INTEGER_CST && integer_zerop (arg1)
10219 /* Preserve sequence points. */
10220 && (code != TRUTH_ORIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
10221 return non_lvalue (fold_convert (type, arg0));
10222 /* If second arg is constant true, result is true, but we must
10223 evaluate first arg. */
10224 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1))
10225 return omit_one_operand (type, arg1, arg0);
10226 /* Likewise for first arg, but note this only occurs here for
10227 TRUTH_OR_EXPR. */
10228 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
10229 return omit_one_operand (type, arg0, arg1);
10231 /* !X || X is always true. */
10232 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
10233 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10234 return omit_one_operand (type, integer_one_node, arg1);
10235 /* X || !X is always true. */
10236 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
10237 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10238 return omit_one_operand (type, integer_one_node, arg0);
10240 goto truth_andor;
10242 case TRUTH_XOR_EXPR:
10243 /* If the second arg is constant zero, drop it. */
10244 if (integer_zerop (arg1))
10245 return non_lvalue (fold_convert (type, arg0));
10246 /* If the second arg is constant true, this is a logical inversion. */
10247 if (integer_onep (arg1))
10249 /* Only call invert_truthvalue if operand is a truth value. */
10250 if (TREE_CODE (TREE_TYPE (arg0)) != BOOLEAN_TYPE)
10251 tem = fold_build1 (TRUTH_NOT_EXPR, TREE_TYPE (arg0), arg0);
10252 else
10253 tem = invert_truthvalue (arg0);
10254 return non_lvalue (fold_convert (type, tem));
10256 /* Identical arguments cancel to zero. */
10257 if (operand_equal_p (arg0, arg1, 0))
10258 return omit_one_operand (type, integer_zero_node, arg0);
10260 /* !X ^ X is always true. */
10261 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
10262 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10263 return omit_one_operand (type, integer_one_node, arg1);
10265 /* X ^ !X is always true. */
10266 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
10267 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10268 return omit_one_operand (type, integer_one_node, arg0);
10270 return NULL_TREE;
10272 case EQ_EXPR:
10273 case NE_EXPR:
10274 tem = fold_comparison (code, type, op0, op1);
10275 if (tem != NULL_TREE)
10276 return tem;
10278 /* bool_var != 0 becomes bool_var. */
10279 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_zerop (arg1)
10280 && code == NE_EXPR)
10281 return non_lvalue (fold_convert (type, arg0));
10283 /* bool_var == 1 becomes bool_var. */
10284 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_onep (arg1)
10285 && code == EQ_EXPR)
10286 return non_lvalue (fold_convert (type, arg0));
10288 /* bool_var != 1 becomes !bool_var. */
10289 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_onep (arg1)
10290 && code == NE_EXPR)
10291 return fold_build1 (TRUTH_NOT_EXPR, type, arg0);
10293 /* bool_var == 0 becomes !bool_var. */
10294 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_zerop (arg1)
10295 && code == EQ_EXPR)
10296 return fold_build1 (TRUTH_NOT_EXPR, type, arg0);
10298 /* ~a != C becomes a != ~C where C is a constant. Likewise for ==. */
10299 if (TREE_CODE (arg0) == BIT_NOT_EXPR
10300 && TREE_CODE (arg1) == INTEGER_CST)
10301 return fold_build2 (code, type, TREE_OPERAND (arg0, 0),
10302 fold_build1 (BIT_NOT_EXPR, TREE_TYPE (arg1),
10303 arg1));
10305 /* If this is an equality comparison of the address of a non-weak
10306 object against zero, then we know the result. */
10307 if (TREE_CODE (arg0) == ADDR_EXPR
10308 && VAR_OR_FUNCTION_DECL_P (TREE_OPERAND (arg0, 0))
10309 && ! DECL_WEAK (TREE_OPERAND (arg0, 0))
10310 && integer_zerop (arg1))
10311 return constant_boolean_node (code != EQ_EXPR, type);
10313 /* If this is an equality comparison of the address of two non-weak,
10314 unaliased symbols neither of which are extern (since we do not
10315 have access to attributes for externs), then we know the result. */
10316 if (TREE_CODE (arg0) == ADDR_EXPR
10317 && VAR_OR_FUNCTION_DECL_P (TREE_OPERAND (arg0, 0))
10318 && ! DECL_WEAK (TREE_OPERAND (arg0, 0))
10319 && ! lookup_attribute ("alias",
10320 DECL_ATTRIBUTES (TREE_OPERAND (arg0, 0)))
10321 && ! DECL_EXTERNAL (TREE_OPERAND (arg0, 0))
10322 && TREE_CODE (arg1) == ADDR_EXPR
10323 && VAR_OR_FUNCTION_DECL_P (TREE_OPERAND (arg1, 0))
10324 && ! DECL_WEAK (TREE_OPERAND (arg1, 0))
10325 && ! lookup_attribute ("alias",
10326 DECL_ATTRIBUTES (TREE_OPERAND (arg1, 0)))
10327 && ! DECL_EXTERNAL (TREE_OPERAND (arg1, 0)))
10329 /* We know that we're looking at the address of two
10330 non-weak, unaliased, static _DECL nodes.
10332 It is both wasteful and incorrect to call operand_equal_p
10333 to compare the two ADDR_EXPR nodes. It is wasteful in that
10334 all we need to do is test pointer equality for the arguments
10335 to the two ADDR_EXPR nodes. It is incorrect to use
10336 operand_equal_p as that function is NOT equivalent to a
10337 C equality test. It can in fact return false for two
10338 objects which would test as equal using the C equality
10339 operator. */
10340 bool equal = TREE_OPERAND (arg0, 0) == TREE_OPERAND (arg1, 0);
10341 return constant_boolean_node (equal
10342 ? code == EQ_EXPR : code != EQ_EXPR,
10343 type);
10346 /* If this is an EQ or NE comparison of a constant with a PLUS_EXPR or
10347 a MINUS_EXPR of a constant, we can convert it into a comparison with
10348 a revised constant as long as no overflow occurs. */
10349 if (TREE_CODE (arg1) == INTEGER_CST
10350 && (TREE_CODE (arg0) == PLUS_EXPR
10351 || TREE_CODE (arg0) == MINUS_EXPR)
10352 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
10353 && 0 != (tem = const_binop (TREE_CODE (arg0) == PLUS_EXPR
10354 ? MINUS_EXPR : PLUS_EXPR,
10355 fold_convert (TREE_TYPE (arg0), arg1),
10356 TREE_OPERAND (arg0, 1), 0))
10357 && ! TREE_CONSTANT_OVERFLOW (tem))
10358 return fold_build2 (code, type, TREE_OPERAND (arg0, 0), tem);
10360 /* Similarly for a NEGATE_EXPR. */
10361 if (TREE_CODE (arg0) == NEGATE_EXPR
10362 && TREE_CODE (arg1) == INTEGER_CST
10363 && 0 != (tem = negate_expr (arg1))
10364 && TREE_CODE (tem) == INTEGER_CST
10365 && ! TREE_CONSTANT_OVERFLOW (tem))
10366 return fold_build2 (code, type, TREE_OPERAND (arg0, 0), tem);
10368 /* If we have X - Y == 0, we can convert that to X == Y and similarly
10369 for !=. Don't do this for ordered comparisons due to overflow. */
10370 if (TREE_CODE (arg0) == MINUS_EXPR
10371 && integer_zerop (arg1))
10372 return fold_build2 (code, type,
10373 TREE_OPERAND (arg0, 0), TREE_OPERAND (arg0, 1));
10375 /* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
10376 if (TREE_CODE (arg0) == ABS_EXPR
10377 && (integer_zerop (arg1) || real_zerop (arg1)))
10378 return fold_build2 (code, type, TREE_OPERAND (arg0, 0), arg1);
10380 /* If this is an EQ or NE comparison with zero and ARG0 is
10381 (1 << foo) & bar, convert it to (bar >> foo) & 1. Both require
10382 two operations, but the latter can be done in one less insn
10383 on machines that have only two-operand insns or on which a
10384 constant cannot be the first operand. */
10385 if (TREE_CODE (arg0) == BIT_AND_EXPR
10386 && integer_zerop (arg1))
10388 tree arg00 = TREE_OPERAND (arg0, 0);
10389 tree arg01 = TREE_OPERAND (arg0, 1);
10390 if (TREE_CODE (arg00) == LSHIFT_EXPR
10391 && integer_onep (TREE_OPERAND (arg00, 0)))
10392 return
10393 fold_build2 (code, type,
10394 build2 (BIT_AND_EXPR, TREE_TYPE (arg0),
10395 build2 (RSHIFT_EXPR, TREE_TYPE (arg00),
10396 arg01, TREE_OPERAND (arg00, 1)),
10397 fold_convert (TREE_TYPE (arg0),
10398 integer_one_node)),
10399 arg1);
10400 else if (TREE_CODE (TREE_OPERAND (arg0, 1)) == LSHIFT_EXPR
10401 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg0, 1), 0)))
10402 return
10403 fold_build2 (code, type,
10404 build2 (BIT_AND_EXPR, TREE_TYPE (arg0),
10405 build2 (RSHIFT_EXPR, TREE_TYPE (arg01),
10406 arg00, TREE_OPERAND (arg01, 1)),
10407 fold_convert (TREE_TYPE (arg0),
10408 integer_one_node)),
10409 arg1);
10412 /* If this is an NE or EQ comparison of zero against the result of a
10413 signed MOD operation whose second operand is a power of 2, make
10414 the MOD operation unsigned since it is simpler and equivalent. */
10415 if (integer_zerop (arg1)
10416 && !TYPE_UNSIGNED (TREE_TYPE (arg0))
10417 && (TREE_CODE (arg0) == TRUNC_MOD_EXPR
10418 || TREE_CODE (arg0) == CEIL_MOD_EXPR
10419 || TREE_CODE (arg0) == FLOOR_MOD_EXPR
10420 || TREE_CODE (arg0) == ROUND_MOD_EXPR)
10421 && integer_pow2p (TREE_OPERAND (arg0, 1)))
10423 tree newtype = lang_hooks.types.unsigned_type (TREE_TYPE (arg0));
10424 tree newmod = fold_build2 (TREE_CODE (arg0), newtype,
10425 fold_convert (newtype,
10426 TREE_OPERAND (arg0, 0)),
10427 fold_convert (newtype,
10428 TREE_OPERAND (arg0, 1)));
10430 return fold_build2 (code, type, newmod,
10431 fold_convert (newtype, arg1));
10434 /* Fold ((X >> C1) & C2) == 0 and ((X >> C1) & C2) != 0 where
10435 C1 is a valid shift constant, and C2 is a power of two, i.e.
10436 a single bit. */
10437 if (TREE_CODE (arg0) == BIT_AND_EXPR
10438 && TREE_CODE (TREE_OPERAND (arg0, 0)) == RSHIFT_EXPR
10439 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1))
10440 == INTEGER_CST
10441 && integer_pow2p (TREE_OPERAND (arg0, 1))
10442 && integer_zerop (arg1))
10444 tree itype = TREE_TYPE (arg0);
10445 unsigned HOST_WIDE_INT prec = TYPE_PRECISION (itype);
10446 tree arg001 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 1);
10448 /* Check for a valid shift count. */
10449 if (TREE_INT_CST_HIGH (arg001) == 0
10450 && TREE_INT_CST_LOW (arg001) < prec)
10452 tree arg01 = TREE_OPERAND (arg0, 1);
10453 tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
10454 unsigned HOST_WIDE_INT log2 = tree_log2 (arg01);
10455 /* If (C2 << C1) doesn't overflow, then ((X >> C1) & C2) != 0
10456 can be rewritten as (X & (C2 << C1)) != 0. */
10457 if ((log2 + TREE_INT_CST_LOW (arg01)) < prec)
10459 tem = fold_build2 (LSHIFT_EXPR, itype, arg01, arg001);
10460 tem = fold_build2 (BIT_AND_EXPR, itype, arg000, tem);
10461 return fold_build2 (code, type, tem, arg1);
10463 /* Otherwise, for signed (arithmetic) shifts,
10464 ((X >> C1) & C2) != 0 is rewritten as X < 0, and
10465 ((X >> C1) & C2) == 0 is rewritten as X >= 0. */
10466 else if (!TYPE_UNSIGNED (itype))
10467 return fold_build2 (code == EQ_EXPR ? GE_EXPR : LT_EXPR, type,
10468 arg000, build_int_cst (itype, 0));
10469 /* Otherwise, of unsigned (logical) shifts,
10470 ((X >> C1) & C2) != 0 is rewritten as (X,false), and
10471 ((X >> C1) & C2) == 0 is rewritten as (X,true). */
10472 else
10473 return omit_one_operand (type,
10474 code == EQ_EXPR ? integer_one_node
10475 : integer_zero_node,
10476 arg000);
10480 /* If this is an NE comparison of zero with an AND of one, remove the
10481 comparison since the AND will give the correct value. */
10482 if (code == NE_EXPR
10483 && integer_zerop (arg1)
10484 && TREE_CODE (arg0) == BIT_AND_EXPR
10485 && integer_onep (TREE_OPERAND (arg0, 1)))
10486 return fold_convert (type, arg0);
10488 /* If we have (A & C) == C where C is a power of 2, convert this into
10489 (A & C) != 0. Similarly for NE_EXPR. */
10490 if (TREE_CODE (arg0) == BIT_AND_EXPR
10491 && integer_pow2p (TREE_OPERAND (arg0, 1))
10492 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
10493 return fold_build2 (code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
10494 arg0, fold_convert (TREE_TYPE (arg0),
10495 integer_zero_node));
10497 /* If we have (A & C) != 0 or (A & C) == 0 and C is the sign
10498 bit, then fold the expression into A < 0 or A >= 0. */
10499 tem = fold_single_bit_test_into_sign_test (code, arg0, arg1, type);
10500 if (tem)
10501 return tem;
10503 /* If we have (A & C) == D where D & ~C != 0, convert this into 0.
10504 Similarly for NE_EXPR. */
10505 if (TREE_CODE (arg0) == BIT_AND_EXPR
10506 && TREE_CODE (arg1) == INTEGER_CST
10507 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10509 tree notc = fold_build1 (BIT_NOT_EXPR,
10510 TREE_TYPE (TREE_OPERAND (arg0, 1)),
10511 TREE_OPERAND (arg0, 1));
10512 tree dandnotc = fold_build2 (BIT_AND_EXPR, TREE_TYPE (arg0),
10513 arg1, notc);
10514 tree rslt = code == EQ_EXPR ? integer_zero_node : integer_one_node;
10515 if (integer_nonzerop (dandnotc))
10516 return omit_one_operand (type, rslt, arg0);
10519 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
10520 Similarly for NE_EXPR. */
10521 if (TREE_CODE (arg0) == BIT_IOR_EXPR
10522 && TREE_CODE (arg1) == INTEGER_CST
10523 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10525 tree notd = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (arg1), arg1);
10526 tree candnotd = fold_build2 (BIT_AND_EXPR, TREE_TYPE (arg0),
10527 TREE_OPERAND (arg0, 1), notd);
10528 tree rslt = code == EQ_EXPR ? integer_zero_node : integer_one_node;
10529 if (integer_nonzerop (candnotd))
10530 return omit_one_operand (type, rslt, arg0);
10533 /* If this is a comparison of a field, we may be able to simplify it. */
10534 if (((TREE_CODE (arg0) == COMPONENT_REF
10535 && lang_hooks.can_use_bit_fields_p ())
10536 || TREE_CODE (arg0) == BIT_FIELD_REF)
10537 /* Handle the constant case even without -O
10538 to make sure the warnings are given. */
10539 && (optimize || TREE_CODE (arg1) == INTEGER_CST))
10541 t1 = optimize_bit_field_compare (code, type, arg0, arg1);
10542 if (t1)
10543 return t1;
10546 /* Optimize comparisons of strlen vs zero to a compare of the
10547 first character of the string vs zero. To wit,
10548 strlen(ptr) == 0 => *ptr == 0
10549 strlen(ptr) != 0 => *ptr != 0
10550 Other cases should reduce to one of these two (or a constant)
10551 due to the return value of strlen being unsigned. */
10552 if (TREE_CODE (arg0) == CALL_EXPR
10553 && integer_zerop (arg1))
10555 tree fndecl = get_callee_fndecl (arg0);
10556 tree arglist;
10558 if (fndecl
10559 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
10560 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STRLEN
10561 && (arglist = TREE_OPERAND (arg0, 1))
10562 && TREE_CODE (TREE_TYPE (TREE_VALUE (arglist))) == POINTER_TYPE
10563 && ! TREE_CHAIN (arglist))
10565 tree iref = build_fold_indirect_ref (TREE_VALUE (arglist));
10566 return fold_build2 (code, type, iref,
10567 build_int_cst (TREE_TYPE (iref), 0));
10571 /* Fold (X >> C) != 0 into X < 0 if C is one less than the width
10572 of X. Similarly fold (X >> C) == 0 into X >= 0. */
10573 if (TREE_CODE (arg0) == RSHIFT_EXPR
10574 && integer_zerop (arg1)
10575 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10577 tree arg00 = TREE_OPERAND (arg0, 0);
10578 tree arg01 = TREE_OPERAND (arg0, 1);
10579 tree itype = TREE_TYPE (arg00);
10580 if (TREE_INT_CST_HIGH (arg01) == 0
10581 && TREE_INT_CST_LOW (arg01)
10582 == (unsigned HOST_WIDE_INT) (TYPE_PRECISION (itype) - 1))
10584 if (TYPE_UNSIGNED (itype))
10586 itype = lang_hooks.types.signed_type (itype);
10587 arg00 = fold_convert (itype, arg00);
10589 return fold_build2 (code == EQ_EXPR ? GE_EXPR : LT_EXPR,
10590 type, arg00, build_int_cst (itype, 0));
10594 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
10595 if (integer_zerop (arg1)
10596 && TREE_CODE (arg0) == BIT_XOR_EXPR)
10597 return fold_build2 (code, type, TREE_OPERAND (arg0, 0),
10598 TREE_OPERAND (arg0, 1));
10600 /* (X ^ Y) == Y becomes X == 0. We know that Y has no side-effects. */
10601 if (TREE_CODE (arg0) == BIT_XOR_EXPR
10602 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
10603 return fold_build2 (code, type, TREE_OPERAND (arg0, 0),
10604 build_int_cst (TREE_TYPE (arg1), 0));
10605 /* Likewise (X ^ Y) == X becomes Y == 0. X has no side-effects. */
10606 if (TREE_CODE (arg0) == BIT_XOR_EXPR
10607 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
10608 && reorder_operands_p (TREE_OPERAND (arg0, 1), arg1))
10609 return fold_build2 (code, type, TREE_OPERAND (arg0, 1),
10610 build_int_cst (TREE_TYPE (arg1), 0));
10612 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
10613 if (TREE_CODE (arg0) == BIT_XOR_EXPR
10614 && TREE_CODE (arg1) == INTEGER_CST
10615 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10616 return fold_build2 (code, type, TREE_OPERAND (arg0, 0),
10617 fold_build2 (BIT_XOR_EXPR, TREE_TYPE (arg1),
10618 TREE_OPERAND (arg0, 1), arg1));
10620 /* Fold (~X & C) == 0 into (X & C) != 0 and (~X & C) != 0 into
10621 (X & C) == 0 when C is a single bit. */
10622 if (TREE_CODE (arg0) == BIT_AND_EXPR
10623 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_NOT_EXPR
10624 && integer_zerop (arg1)
10625 && integer_pow2p (TREE_OPERAND (arg0, 1)))
10627 tem = fold_build2 (BIT_AND_EXPR, TREE_TYPE (arg0),
10628 TREE_OPERAND (TREE_OPERAND (arg0, 0), 0),
10629 TREE_OPERAND (arg0, 1));
10630 return fold_build2 (code == EQ_EXPR ? NE_EXPR : EQ_EXPR,
10631 type, tem, arg1);
10634 /* Fold ((X & C) ^ C) eq/ne 0 into (X & C) ne/eq 0, when the
10635 constant C is a power of two, i.e. a single bit. */
10636 if (TREE_CODE (arg0) == BIT_XOR_EXPR
10637 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
10638 && integer_zerop (arg1)
10639 && integer_pow2p (TREE_OPERAND (arg0, 1))
10640 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
10641 TREE_OPERAND (arg0, 1), OEP_ONLY_CONST))
10643 tree arg00 = TREE_OPERAND (arg0, 0);
10644 return fold_build2 (code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
10645 arg00, build_int_cst (TREE_TYPE (arg00), 0));
10648 /* Likewise, fold ((X ^ C) & C) eq/ne 0 into (X & C) ne/eq 0,
10649 when is C is a power of two, i.e. a single bit. */
10650 if (TREE_CODE (arg0) == BIT_AND_EXPR
10651 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_XOR_EXPR
10652 && integer_zerop (arg1)
10653 && integer_pow2p (TREE_OPERAND (arg0, 1))
10654 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
10655 TREE_OPERAND (arg0, 1), OEP_ONLY_CONST))
10657 tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
10658 tem = fold_build2 (BIT_AND_EXPR, TREE_TYPE (arg000),
10659 arg000, TREE_OPERAND (arg0, 1));
10660 return fold_build2 (code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
10661 tem, build_int_cst (TREE_TYPE (tem), 0));
10664 if (integer_zerop (arg1)
10665 && tree_expr_nonzero_p (arg0))
10667 tree res = constant_boolean_node (code==NE_EXPR, type);
10668 return omit_one_operand (type, res, arg0);
10670 return NULL_TREE;
10672 case LT_EXPR:
10673 case GT_EXPR:
10674 case LE_EXPR:
10675 case GE_EXPR:
10676 tem = fold_comparison (code, type, op0, op1);
10677 if (tem != NULL_TREE)
10678 return tem;
10680 /* Transform comparisons of the form X +- C CMP X. */
10681 if ((TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
10682 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
10683 && ((TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
10684 && !HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0))))
10685 || (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
10686 && !TYPE_UNSIGNED (TREE_TYPE (arg1))
10687 && !(flag_wrapv || flag_trapv))))
10689 tree arg01 = TREE_OPERAND (arg0, 1);
10690 enum tree_code code0 = TREE_CODE (arg0);
10691 int is_positive;
10693 if (TREE_CODE (arg01) == REAL_CST)
10694 is_positive = REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg01)) ? -1 : 1;
10695 else
10696 is_positive = tree_int_cst_sgn (arg01);
10698 /* (X - c) > X becomes false. */
10699 if (code == GT_EXPR
10700 && ((code0 == MINUS_EXPR && is_positive >= 0)
10701 || (code0 == PLUS_EXPR && is_positive <= 0)))
10702 return constant_boolean_node (0, type);
10704 /* Likewise (X + c) < X becomes false. */
10705 if (code == LT_EXPR
10706 && ((code0 == PLUS_EXPR && is_positive >= 0)
10707 || (code0 == MINUS_EXPR && is_positive <= 0)))
10708 return constant_boolean_node (0, type);
10710 /* Convert (X - c) <= X to true. */
10711 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1)))
10712 && code == LE_EXPR
10713 && ((code0 == MINUS_EXPR && is_positive >= 0)
10714 || (code0 == PLUS_EXPR && is_positive <= 0)))
10715 return constant_boolean_node (1, type);
10717 /* Convert (X + c) >= X to true. */
10718 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1)))
10719 && code == GE_EXPR
10720 && ((code0 == PLUS_EXPR && is_positive >= 0)
10721 || (code0 == MINUS_EXPR && is_positive <= 0)))
10722 return constant_boolean_node (1, type);
10724 if (TREE_CODE (arg01) == INTEGER_CST)
10726 /* Convert X + c > X and X - c < X to true for integers. */
10727 if (code == GT_EXPR
10728 && ((code0 == PLUS_EXPR && is_positive > 0)
10729 || (code0 == MINUS_EXPR && is_positive < 0)))
10730 return constant_boolean_node (1, type);
10732 if (code == LT_EXPR
10733 && ((code0 == MINUS_EXPR && is_positive > 0)
10734 || (code0 == PLUS_EXPR && is_positive < 0)))
10735 return constant_boolean_node (1, type);
10737 /* Convert X + c <= X and X - c >= X to false for integers. */
10738 if (code == LE_EXPR
10739 && ((code0 == PLUS_EXPR && is_positive > 0)
10740 || (code0 == MINUS_EXPR && is_positive < 0)))
10741 return constant_boolean_node (0, type);
10743 if (code == GE_EXPR
10744 && ((code0 == MINUS_EXPR && is_positive > 0)
10745 || (code0 == PLUS_EXPR && is_positive < 0)))
10746 return constant_boolean_node (0, type);
10750 /* Change X >= C to X > (C - 1) and X < C to X <= (C - 1) if C > 0.
10751 This transformation affects the cases which are handled in later
10752 optimizations involving comparisons with non-negative constants. */
10753 if (TREE_CODE (arg1) == INTEGER_CST
10754 && TREE_CODE (arg0) != INTEGER_CST
10755 && tree_int_cst_sgn (arg1) > 0)
10757 if (code == GE_EXPR)
10759 arg1 = const_binop (MINUS_EXPR, arg1,
10760 build_int_cst (TREE_TYPE (arg1), 1), 0);
10761 return fold_build2 (GT_EXPR, type, arg0,
10762 fold_convert (TREE_TYPE (arg0), arg1));
10764 if (code == LT_EXPR)
10766 arg1 = const_binop (MINUS_EXPR, arg1,
10767 build_int_cst (TREE_TYPE (arg1), 1), 0);
10768 return fold_build2 (LE_EXPR, type, arg0,
10769 fold_convert (TREE_TYPE (arg0), arg1));
10773 /* Comparisons with the highest or lowest possible integer of
10774 the specified size will have known values. */
10776 int width = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (arg1)));
10778 if (TREE_CODE (arg1) == INTEGER_CST
10779 && ! TREE_CONSTANT_OVERFLOW (arg1)
10780 && width <= 2 * HOST_BITS_PER_WIDE_INT
10781 && (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
10782 || POINTER_TYPE_P (TREE_TYPE (arg1))))
10784 HOST_WIDE_INT signed_max_hi;
10785 unsigned HOST_WIDE_INT signed_max_lo;
10786 unsigned HOST_WIDE_INT max_hi, max_lo, min_hi, min_lo;
10788 if (width <= HOST_BITS_PER_WIDE_INT)
10790 signed_max_lo = ((unsigned HOST_WIDE_INT) 1 << (width - 1))
10791 - 1;
10792 signed_max_hi = 0;
10793 max_hi = 0;
10795 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
10797 max_lo = ((unsigned HOST_WIDE_INT) 2 << (width - 1)) - 1;
10798 min_lo = 0;
10799 min_hi = 0;
10801 else
10803 max_lo = signed_max_lo;
10804 min_lo = ((unsigned HOST_WIDE_INT) -1 << (width - 1));
10805 min_hi = -1;
10808 else
10810 width -= HOST_BITS_PER_WIDE_INT;
10811 signed_max_lo = -1;
10812 signed_max_hi = ((unsigned HOST_WIDE_INT) 1 << (width - 1))
10813 - 1;
10814 max_lo = -1;
10815 min_lo = 0;
10817 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
10819 max_hi = ((unsigned HOST_WIDE_INT) 2 << (width - 1)) - 1;
10820 min_hi = 0;
10822 else
10824 max_hi = signed_max_hi;
10825 min_hi = ((unsigned HOST_WIDE_INT) -1 << (width - 1));
10829 if ((unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (arg1) == max_hi
10830 && TREE_INT_CST_LOW (arg1) == max_lo)
10831 switch (code)
10833 case GT_EXPR:
10834 return omit_one_operand (type, integer_zero_node, arg0);
10836 case GE_EXPR:
10837 return fold_build2 (EQ_EXPR, type, arg0, arg1);
10839 case LE_EXPR:
10840 return omit_one_operand (type, integer_one_node, arg0);
10842 case LT_EXPR:
10843 return fold_build2 (NE_EXPR, type, arg0, arg1);
10845 /* The GE_EXPR and LT_EXPR cases above are not normally
10846 reached because of previous transformations. */
10848 default:
10849 break;
10851 else if ((unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (arg1)
10852 == max_hi
10853 && TREE_INT_CST_LOW (arg1) == max_lo - 1)
10854 switch (code)
10856 case GT_EXPR:
10857 arg1 = const_binop (PLUS_EXPR, arg1, integer_one_node, 0);
10858 return fold_build2 (EQ_EXPR, type, arg0, arg1);
10859 case LE_EXPR:
10860 arg1 = const_binop (PLUS_EXPR, arg1, integer_one_node, 0);
10861 return fold_build2 (NE_EXPR, type, arg0, arg1);
10862 default:
10863 break;
10865 else if ((unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (arg1)
10866 == min_hi
10867 && TREE_INT_CST_LOW (arg1) == min_lo)
10868 switch (code)
10870 case LT_EXPR:
10871 return omit_one_operand (type, integer_zero_node, arg0);
10873 case LE_EXPR:
10874 return fold_build2 (EQ_EXPR, type, arg0, arg1);
10876 case GE_EXPR:
10877 return omit_one_operand (type, integer_one_node, arg0);
10879 case GT_EXPR:
10880 return fold_build2 (NE_EXPR, type, op0, op1);
10882 default:
10883 break;
10885 else if ((unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (arg1)
10886 == min_hi
10887 && TREE_INT_CST_LOW (arg1) == min_lo + 1)
10888 switch (code)
10890 case GE_EXPR:
10891 arg1 = const_binop (MINUS_EXPR, arg1, integer_one_node, 0);
10892 return fold_build2 (NE_EXPR, type, arg0, arg1);
10893 case LT_EXPR:
10894 arg1 = const_binop (MINUS_EXPR, arg1, integer_one_node, 0);
10895 return fold_build2 (EQ_EXPR, type, arg0, arg1);
10896 default:
10897 break;
10900 else if (!in_gimple_form
10901 && TREE_INT_CST_HIGH (arg1) == signed_max_hi
10902 && TREE_INT_CST_LOW (arg1) == signed_max_lo
10903 && TYPE_UNSIGNED (TREE_TYPE (arg1))
10904 /* signed_type does not work on pointer types. */
10905 && INTEGRAL_TYPE_P (TREE_TYPE (arg1)))
10907 /* The following case also applies to X < signed_max+1
10908 and X >= signed_max+1 because previous transformations. */
10909 if (code == LE_EXPR || code == GT_EXPR)
10911 tree st0, st1;
10912 st0 = lang_hooks.types.signed_type (TREE_TYPE (arg0));
10913 st1 = lang_hooks.types.signed_type (TREE_TYPE (arg1));
10914 return fold_build2 (code == LE_EXPR ? GE_EXPR: LT_EXPR,
10915 type, fold_convert (st0, arg0),
10916 build_int_cst (st1, 0));
10922 /* If we are comparing an ABS_EXPR with a constant, we can
10923 convert all the cases into explicit comparisons, but they may
10924 well not be faster than doing the ABS and one comparison.
10925 But ABS (X) <= C is a range comparison, which becomes a subtraction
10926 and a comparison, and is probably faster. */
10927 if (code == LE_EXPR
10928 && TREE_CODE (arg1) == INTEGER_CST
10929 && TREE_CODE (arg0) == ABS_EXPR
10930 && ! TREE_SIDE_EFFECTS (arg0)
10931 && (0 != (tem = negate_expr (arg1)))
10932 && TREE_CODE (tem) == INTEGER_CST
10933 && ! TREE_CONSTANT_OVERFLOW (tem))
10934 return fold_build2 (TRUTH_ANDIF_EXPR, type,
10935 build2 (GE_EXPR, type,
10936 TREE_OPERAND (arg0, 0), tem),
10937 build2 (LE_EXPR, type,
10938 TREE_OPERAND (arg0, 0), arg1));
10940 /* Convert ABS_EXPR<x> >= 0 to true. */
10941 if (code == GE_EXPR
10942 && tree_expr_nonnegative_p (arg0)
10943 && (integer_zerop (arg1)
10944 || (! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0)))
10945 && real_zerop (arg1))))
10946 return omit_one_operand (type, integer_one_node, arg0);
10948 /* Convert ABS_EXPR<x> < 0 to false. */
10949 if (code == LT_EXPR
10950 && tree_expr_nonnegative_p (arg0)
10951 && (integer_zerop (arg1) || real_zerop (arg1)))
10952 return omit_one_operand (type, integer_zero_node, arg0);
10954 /* If X is unsigned, convert X < (1 << Y) into X >> Y == 0
10955 and similarly for >= into !=. */
10956 if ((code == LT_EXPR || code == GE_EXPR)
10957 && TYPE_UNSIGNED (TREE_TYPE (arg0))
10958 && TREE_CODE (arg1) == LSHIFT_EXPR
10959 && integer_onep (TREE_OPERAND (arg1, 0)))
10960 return build2 (code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
10961 build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
10962 TREE_OPERAND (arg1, 1)),
10963 build_int_cst (TREE_TYPE (arg0), 0));
10965 if ((code == LT_EXPR || code == GE_EXPR)
10966 && TYPE_UNSIGNED (TREE_TYPE (arg0))
10967 && (TREE_CODE (arg1) == NOP_EXPR
10968 || TREE_CODE (arg1) == CONVERT_EXPR)
10969 && TREE_CODE (TREE_OPERAND (arg1, 0)) == LSHIFT_EXPR
10970 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg1, 0), 0)))
10971 return
10972 build2 (code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
10973 fold_convert (TREE_TYPE (arg0),
10974 build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
10975 TREE_OPERAND (TREE_OPERAND (arg1, 0),
10976 1))),
10977 build_int_cst (TREE_TYPE (arg0), 0));
10979 return NULL_TREE;
10981 case UNORDERED_EXPR:
10982 case ORDERED_EXPR:
10983 case UNLT_EXPR:
10984 case UNLE_EXPR:
10985 case UNGT_EXPR:
10986 case UNGE_EXPR:
10987 case UNEQ_EXPR:
10988 case LTGT_EXPR:
10989 if (TREE_CODE (arg0) == REAL_CST && TREE_CODE (arg1) == REAL_CST)
10991 t1 = fold_relational_const (code, type, arg0, arg1);
10992 if (t1 != NULL_TREE)
10993 return t1;
10996 /* If the first operand is NaN, the result is constant. */
10997 if (TREE_CODE (arg0) == REAL_CST
10998 && REAL_VALUE_ISNAN (TREE_REAL_CST (arg0))
10999 && (code != LTGT_EXPR || ! flag_trapping_math))
11001 t1 = (code == ORDERED_EXPR || code == LTGT_EXPR)
11002 ? integer_zero_node
11003 : integer_one_node;
11004 return omit_one_operand (type, t1, arg1);
11007 /* If the second operand is NaN, the result is constant. */
11008 if (TREE_CODE (arg1) == REAL_CST
11009 && REAL_VALUE_ISNAN (TREE_REAL_CST (arg1))
11010 && (code != LTGT_EXPR || ! flag_trapping_math))
11012 t1 = (code == ORDERED_EXPR || code == LTGT_EXPR)
11013 ? integer_zero_node
11014 : integer_one_node;
11015 return omit_one_operand (type, t1, arg0);
11018 /* Simplify unordered comparison of something with itself. */
11019 if ((code == UNLE_EXPR || code == UNGE_EXPR || code == UNEQ_EXPR)
11020 && operand_equal_p (arg0, arg1, 0))
11021 return constant_boolean_node (1, type);
11023 if (code == LTGT_EXPR
11024 && !flag_trapping_math
11025 && operand_equal_p (arg0, arg1, 0))
11026 return constant_boolean_node (0, type);
11028 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
11030 tree targ0 = strip_float_extensions (arg0);
11031 tree targ1 = strip_float_extensions (arg1);
11032 tree newtype = TREE_TYPE (targ0);
11034 if (TYPE_PRECISION (TREE_TYPE (targ1)) > TYPE_PRECISION (newtype))
11035 newtype = TREE_TYPE (targ1);
11037 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (TREE_TYPE (arg0)))
11038 return fold_build2 (code, type, fold_convert (newtype, targ0),
11039 fold_convert (newtype, targ1));
11042 return NULL_TREE;
11044 case COMPOUND_EXPR:
11045 /* When pedantic, a compound expression can be neither an lvalue
11046 nor an integer constant expression. */
11047 if (TREE_SIDE_EFFECTS (arg0) || TREE_CONSTANT (arg1))
11048 return NULL_TREE;
11049 /* Don't let (0, 0) be null pointer constant. */
11050 tem = integer_zerop (arg1) ? build1 (NOP_EXPR, type, arg1)
11051 : fold_convert (type, arg1);
11052 return pedantic_non_lvalue (tem);
11054 case COMPLEX_EXPR:
11055 if ((TREE_CODE (arg0) == REAL_CST
11056 && TREE_CODE (arg1) == REAL_CST)
11057 || (TREE_CODE (arg0) == INTEGER_CST
11058 && TREE_CODE (arg1) == INTEGER_CST))
11059 return build_complex (type, arg0, arg1);
11060 return NULL_TREE;
11062 case ASSERT_EXPR:
11063 /* An ASSERT_EXPR should never be passed to fold_binary. */
11064 gcc_unreachable ();
11066 default:
11067 return NULL_TREE;
11068 } /* switch (code) */
11071 /* Callback for walk_tree, looking for LABEL_EXPR.
11072 Returns tree TP if it is LABEL_EXPR. Otherwise it returns NULL_TREE.
11073 Do not check the sub-tree of GOTO_EXPR. */
11075 static tree
11076 contains_label_1 (tree *tp,
11077 int *walk_subtrees,
11078 void *data ATTRIBUTE_UNUSED)
11080 switch (TREE_CODE (*tp))
11082 case LABEL_EXPR:
11083 return *tp;
11084 case GOTO_EXPR:
11085 *walk_subtrees = 0;
11086 /* no break */
11087 default:
11088 return NULL_TREE;
11092 /* Checks whether the sub-tree ST contains a label LABEL_EXPR which is
11093 accessible from outside the sub-tree. Returns NULL_TREE if no
11094 addressable label is found. */
11096 static bool
11097 contains_label_p (tree st)
11099 return (walk_tree (&st, contains_label_1 , NULL, NULL) != NULL_TREE);
11102 /* Fold a ternary expression of code CODE and type TYPE with operands
11103 OP0, OP1, and OP2. Return the folded expression if folding is
11104 successful. Otherwise, return NULL_TREE. */
11106 tree
11107 fold_ternary (enum tree_code code, tree type, tree op0, tree op1, tree op2)
11109 tree tem;
11110 tree arg0 = NULL_TREE, arg1 = NULL_TREE;
11111 enum tree_code_class kind = TREE_CODE_CLASS (code);
11113 gcc_assert (IS_EXPR_CODE_CLASS (kind)
11114 && TREE_CODE_LENGTH (code) == 3);
11116 /* Strip any conversions that don't change the mode. This is safe
11117 for every expression, except for a comparison expression because
11118 its signedness is derived from its operands. So, in the latter
11119 case, only strip conversions that don't change the signedness.
11121 Note that this is done as an internal manipulation within the
11122 constant folder, in order to find the simplest representation of
11123 the arguments so that their form can be studied. In any cases,
11124 the appropriate type conversions should be put back in the tree
11125 that will get out of the constant folder. */
11126 if (op0)
11128 arg0 = op0;
11129 STRIP_NOPS (arg0);
11132 if (op1)
11134 arg1 = op1;
11135 STRIP_NOPS (arg1);
11138 switch (code)
11140 case COMPONENT_REF:
11141 if (TREE_CODE (arg0) == CONSTRUCTOR
11142 && ! type_contains_placeholder_p (TREE_TYPE (arg0)))
11144 unsigned HOST_WIDE_INT idx;
11145 tree field, value;
11146 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (arg0), idx, field, value)
11147 if (field == arg1)
11148 return value;
11150 return NULL_TREE;
11152 case COND_EXPR:
11153 /* Pedantic ANSI C says that a conditional expression is never an lvalue,
11154 so all simple results must be passed through pedantic_non_lvalue. */
11155 if (TREE_CODE (arg0) == INTEGER_CST)
11157 tree unused_op = integer_zerop (arg0) ? op1 : op2;
11158 tem = integer_zerop (arg0) ? op2 : op1;
11159 /* Only optimize constant conditions when the selected branch
11160 has the same type as the COND_EXPR. This avoids optimizing
11161 away "c ? x : throw", where the throw has a void type.
11162 Avoid throwing away that operand which contains label. */
11163 if ((!TREE_SIDE_EFFECTS (unused_op)
11164 || !contains_label_p (unused_op))
11165 && (! VOID_TYPE_P (TREE_TYPE (tem))
11166 || VOID_TYPE_P (type)))
11167 return pedantic_non_lvalue (tem);
11168 return NULL_TREE;
11170 if (operand_equal_p (arg1, op2, 0))
11171 return pedantic_omit_one_operand (type, arg1, arg0);
11173 /* If we have A op B ? A : C, we may be able to convert this to a
11174 simpler expression, depending on the operation and the values
11175 of B and C. Signed zeros prevent all of these transformations,
11176 for reasons given above each one.
11178 Also try swapping the arguments and inverting the conditional. */
11179 if (COMPARISON_CLASS_P (arg0)
11180 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
11181 arg1, TREE_OPERAND (arg0, 1))
11182 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
11184 tem = fold_cond_expr_with_comparison (type, arg0, op1, op2);
11185 if (tem)
11186 return tem;
11189 if (COMPARISON_CLASS_P (arg0)
11190 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
11191 op2,
11192 TREE_OPERAND (arg0, 1))
11193 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (op2))))
11195 tem = fold_truth_not_expr (arg0);
11196 if (tem && COMPARISON_CLASS_P (tem))
11198 tem = fold_cond_expr_with_comparison (type, tem, op2, op1);
11199 if (tem)
11200 return tem;
11204 /* If the second operand is simpler than the third, swap them
11205 since that produces better jump optimization results. */
11206 if (truth_value_p (TREE_CODE (arg0))
11207 && tree_swap_operands_p (op1, op2, false))
11209 /* See if this can be inverted. If it can't, possibly because
11210 it was a floating-point inequality comparison, don't do
11211 anything. */
11212 tem = fold_truth_not_expr (arg0);
11213 if (tem)
11214 return fold_build3 (code, type, tem, op2, op1);
11217 /* Convert A ? 1 : 0 to simply A. */
11218 if (integer_onep (op1)
11219 && integer_zerop (op2)
11220 /* If we try to convert OP0 to our type, the
11221 call to fold will try to move the conversion inside
11222 a COND, which will recurse. In that case, the COND_EXPR
11223 is probably the best choice, so leave it alone. */
11224 && type == TREE_TYPE (arg0))
11225 return pedantic_non_lvalue (arg0);
11227 /* Convert A ? 0 : 1 to !A. This prefers the use of NOT_EXPR
11228 over COND_EXPR in cases such as floating point comparisons. */
11229 if (integer_zerop (op1)
11230 && integer_onep (op2)
11231 && truth_value_p (TREE_CODE (arg0)))
11232 return pedantic_non_lvalue (fold_convert (type,
11233 invert_truthvalue (arg0)));
11235 /* A < 0 ? <sign bit of A> : 0 is simply (A & <sign bit of A>). */
11236 if (TREE_CODE (arg0) == LT_EXPR
11237 && integer_zerop (TREE_OPERAND (arg0, 1))
11238 && integer_zerop (op2)
11239 && (tem = sign_bit_p (TREE_OPERAND (arg0, 0), arg1)))
11240 return fold_convert (type,
11241 fold_build2 (BIT_AND_EXPR,
11242 TREE_TYPE (tem), tem,
11243 fold_convert (TREE_TYPE (tem), arg1)));
11245 /* (A >> N) & 1 ? (1 << N) : 0 is simply A & (1 << N). A & 1 was
11246 already handled above. */
11247 if (TREE_CODE (arg0) == BIT_AND_EXPR
11248 && integer_onep (TREE_OPERAND (arg0, 1))
11249 && integer_zerop (op2)
11250 && integer_pow2p (arg1))
11252 tree tem = TREE_OPERAND (arg0, 0);
11253 STRIP_NOPS (tem);
11254 if (TREE_CODE (tem) == RSHIFT_EXPR
11255 && TREE_CODE (TREE_OPERAND (tem, 1)) == INTEGER_CST
11256 && (unsigned HOST_WIDE_INT) tree_log2 (arg1) ==
11257 TREE_INT_CST_LOW (TREE_OPERAND (tem, 1)))
11258 return fold_build2 (BIT_AND_EXPR, type,
11259 TREE_OPERAND (tem, 0), arg1);
11262 /* A & N ? N : 0 is simply A & N if N is a power of two. This
11263 is probably obsolete because the first operand should be a
11264 truth value (that's why we have the two cases above), but let's
11265 leave it in until we can confirm this for all front-ends. */
11266 if (integer_zerop (op2)
11267 && TREE_CODE (arg0) == NE_EXPR
11268 && integer_zerop (TREE_OPERAND (arg0, 1))
11269 && integer_pow2p (arg1)
11270 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
11271 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
11272 arg1, OEP_ONLY_CONST))
11273 return pedantic_non_lvalue (fold_convert (type,
11274 TREE_OPERAND (arg0, 0)));
11276 /* Convert A ? B : 0 into A && B if A and B are truth values. */
11277 if (integer_zerop (op2)
11278 && truth_value_p (TREE_CODE (arg0))
11279 && truth_value_p (TREE_CODE (arg1)))
11280 return fold_build2 (TRUTH_ANDIF_EXPR, type,
11281 fold_convert (type, arg0),
11282 arg1);
11284 /* Convert A ? B : 1 into !A || B if A and B are truth values. */
11285 if (integer_onep (op2)
11286 && truth_value_p (TREE_CODE (arg0))
11287 && truth_value_p (TREE_CODE (arg1)))
11289 /* Only perform transformation if ARG0 is easily inverted. */
11290 tem = fold_truth_not_expr (arg0);
11291 if (tem)
11292 return fold_build2 (TRUTH_ORIF_EXPR, type,
11293 fold_convert (type, tem),
11294 arg1);
11297 /* Convert A ? 0 : B into !A && B if A and B are truth values. */
11298 if (integer_zerop (arg1)
11299 && truth_value_p (TREE_CODE (arg0))
11300 && truth_value_p (TREE_CODE (op2)))
11302 /* Only perform transformation if ARG0 is easily inverted. */
11303 tem = fold_truth_not_expr (arg0);
11304 if (tem)
11305 return fold_build2 (TRUTH_ANDIF_EXPR, type,
11306 fold_convert (type, tem),
11307 op2);
11310 /* Convert A ? 1 : B into A || B if A and B are truth values. */
11311 if (integer_onep (arg1)
11312 && truth_value_p (TREE_CODE (arg0))
11313 && truth_value_p (TREE_CODE (op2)))
11314 return fold_build2 (TRUTH_ORIF_EXPR, type,
11315 fold_convert (type, arg0),
11316 op2);
11318 return NULL_TREE;
11320 case CALL_EXPR:
11321 /* Check for a built-in function. */
11322 if (TREE_CODE (op0) == ADDR_EXPR
11323 && TREE_CODE (TREE_OPERAND (op0, 0)) == FUNCTION_DECL
11324 && DECL_BUILT_IN (TREE_OPERAND (op0, 0)))
11325 return fold_builtin (TREE_OPERAND (op0, 0), op1, false);
11326 return NULL_TREE;
11328 case BIT_FIELD_REF:
11329 if (TREE_CODE (arg0) == VECTOR_CST
11330 && type == TREE_TYPE (TREE_TYPE (arg0))
11331 && host_integerp (arg1, 1)
11332 && host_integerp (op2, 1))
11334 unsigned HOST_WIDE_INT width = tree_low_cst (arg1, 1);
11335 unsigned HOST_WIDE_INT idx = tree_low_cst (op2, 1);
11337 if (width != 0
11338 && simple_cst_equal (arg1, TYPE_SIZE (type)) == 1
11339 && (idx % width) == 0
11340 && (idx = idx / width)
11341 < TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)))
11343 tree elements = TREE_VECTOR_CST_ELTS (arg0);
11344 while (idx-- > 0 && elements)
11345 elements = TREE_CHAIN (elements);
11346 if (elements)
11347 return TREE_VALUE (elements);
11348 else
11349 return fold_convert (type, integer_zero_node);
11352 return NULL_TREE;
11354 default:
11355 return NULL_TREE;
11356 } /* switch (code) */
11359 /* Perform constant folding and related simplification of EXPR.
11360 The related simplifications include x*1 => x, x*0 => 0, etc.,
11361 and application of the associative law.
11362 NOP_EXPR conversions may be removed freely (as long as we
11363 are careful not to change the type of the overall expression).
11364 We cannot simplify through a CONVERT_EXPR, FIX_EXPR or FLOAT_EXPR,
11365 but we can constant-fold them if they have constant operands. */
11367 #ifdef ENABLE_FOLD_CHECKING
11368 # define fold(x) fold_1 (x)
11369 static tree fold_1 (tree);
11370 static
11371 #endif
11372 tree
11373 fold (tree expr)
11375 const tree t = expr;
11376 enum tree_code code = TREE_CODE (t);
11377 enum tree_code_class kind = TREE_CODE_CLASS (code);
11378 tree tem;
11380 /* Return right away if a constant. */
11381 if (kind == tcc_constant)
11382 return t;
11384 if (IS_EXPR_CODE_CLASS (kind))
11386 tree type = TREE_TYPE (t);
11387 tree op0, op1, op2;
11389 switch (TREE_CODE_LENGTH (code))
11391 case 1:
11392 op0 = TREE_OPERAND (t, 0);
11393 tem = fold_unary (code, type, op0);
11394 return tem ? tem : expr;
11395 case 2:
11396 op0 = TREE_OPERAND (t, 0);
11397 op1 = TREE_OPERAND (t, 1);
11398 tem = fold_binary (code, type, op0, op1);
11399 return tem ? tem : expr;
11400 case 3:
11401 op0 = TREE_OPERAND (t, 0);
11402 op1 = TREE_OPERAND (t, 1);
11403 op2 = TREE_OPERAND (t, 2);
11404 tem = fold_ternary (code, type, op0, op1, op2);
11405 return tem ? tem : expr;
11406 default:
11407 break;
11411 switch (code)
11413 case CONST_DECL:
11414 return fold (DECL_INITIAL (t));
11416 default:
11417 return t;
11418 } /* switch (code) */
11421 #ifdef ENABLE_FOLD_CHECKING
11422 #undef fold
11424 static void fold_checksum_tree (tree, struct md5_ctx *, htab_t);
11425 static void fold_check_failed (tree, tree);
11426 void print_fold_checksum (tree);
11428 /* When --enable-checking=fold, compute a digest of expr before
11429 and after actual fold call to see if fold did not accidentally
11430 change original expr. */
11432 tree
11433 fold (tree expr)
11435 tree ret;
11436 struct md5_ctx ctx;
11437 unsigned char checksum_before[16], checksum_after[16];
11438 htab_t ht;
11440 ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
11441 md5_init_ctx (&ctx);
11442 fold_checksum_tree (expr, &ctx, ht);
11443 md5_finish_ctx (&ctx, checksum_before);
11444 htab_empty (ht);
11446 ret = fold_1 (expr);
11448 md5_init_ctx (&ctx);
11449 fold_checksum_tree (expr, &ctx, ht);
11450 md5_finish_ctx (&ctx, checksum_after);
11451 htab_delete (ht);
11453 if (memcmp (checksum_before, checksum_after, 16))
11454 fold_check_failed (expr, ret);
11456 return ret;
11459 void
11460 print_fold_checksum (tree expr)
11462 struct md5_ctx ctx;
11463 unsigned char checksum[16], cnt;
11464 htab_t ht;
11466 ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
11467 md5_init_ctx (&ctx);
11468 fold_checksum_tree (expr, &ctx, ht);
11469 md5_finish_ctx (&ctx, checksum);
11470 htab_delete (ht);
11471 for (cnt = 0; cnt < 16; ++cnt)
11472 fprintf (stderr, "%02x", checksum[cnt]);
11473 putc ('\n', stderr);
11476 static void
11477 fold_check_failed (tree expr ATTRIBUTE_UNUSED, tree ret ATTRIBUTE_UNUSED)
11479 internal_error ("fold check: original tree changed by fold");
11482 static void
11483 fold_checksum_tree (tree expr, struct md5_ctx *ctx, htab_t ht)
11485 void **slot;
11486 enum tree_code code;
11487 struct tree_function_decl buf;
11488 int i, len;
11490 recursive_label:
11492 gcc_assert ((sizeof (struct tree_exp) + 5 * sizeof (tree)
11493 <= sizeof (struct tree_function_decl))
11494 && sizeof (struct tree_type) <= sizeof (struct tree_function_decl));
11495 if (expr == NULL)
11496 return;
11497 slot = htab_find_slot (ht, expr, INSERT);
11498 if (*slot != NULL)
11499 return;
11500 *slot = expr;
11501 code = TREE_CODE (expr);
11502 if (TREE_CODE_CLASS (code) == tcc_declaration
11503 && DECL_ASSEMBLER_NAME_SET_P (expr))
11505 /* Allow DECL_ASSEMBLER_NAME to be modified. */
11506 memcpy ((char *) &buf, expr, tree_size (expr));
11507 expr = (tree) &buf;
11508 SET_DECL_ASSEMBLER_NAME (expr, NULL);
11510 else if (TREE_CODE_CLASS (code) == tcc_type
11511 && (TYPE_POINTER_TO (expr) || TYPE_REFERENCE_TO (expr)
11512 || TYPE_CACHED_VALUES_P (expr)
11513 || TYPE_CONTAINS_PLACEHOLDER_INTERNAL (expr)))
11515 /* Allow these fields to be modified. */
11516 memcpy ((char *) &buf, expr, tree_size (expr));
11517 expr = (tree) &buf;
11518 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (expr) = 0;
11519 TYPE_POINTER_TO (expr) = NULL;
11520 TYPE_REFERENCE_TO (expr) = NULL;
11521 if (TYPE_CACHED_VALUES_P (expr))
11523 TYPE_CACHED_VALUES_P (expr) = 0;
11524 TYPE_CACHED_VALUES (expr) = NULL;
11527 md5_process_bytes (expr, tree_size (expr), ctx);
11528 fold_checksum_tree (TREE_TYPE (expr), ctx, ht);
11529 if (TREE_CODE_CLASS (code) != tcc_type
11530 && TREE_CODE_CLASS (code) != tcc_declaration
11531 && code != TREE_LIST)
11532 fold_checksum_tree (TREE_CHAIN (expr), ctx, ht);
11533 switch (TREE_CODE_CLASS (code))
11535 case tcc_constant:
11536 switch (code)
11538 case STRING_CST:
11539 md5_process_bytes (TREE_STRING_POINTER (expr),
11540 TREE_STRING_LENGTH (expr), ctx);
11541 break;
11542 case COMPLEX_CST:
11543 fold_checksum_tree (TREE_REALPART (expr), ctx, ht);
11544 fold_checksum_tree (TREE_IMAGPART (expr), ctx, ht);
11545 break;
11546 case VECTOR_CST:
11547 fold_checksum_tree (TREE_VECTOR_CST_ELTS (expr), ctx, ht);
11548 break;
11549 default:
11550 break;
11552 break;
11553 case tcc_exceptional:
11554 switch (code)
11556 case TREE_LIST:
11557 fold_checksum_tree (TREE_PURPOSE (expr), ctx, ht);
11558 fold_checksum_tree (TREE_VALUE (expr), ctx, ht);
11559 expr = TREE_CHAIN (expr);
11560 goto recursive_label;
11561 break;
11562 case TREE_VEC:
11563 for (i = 0; i < TREE_VEC_LENGTH (expr); ++i)
11564 fold_checksum_tree (TREE_VEC_ELT (expr, i), ctx, ht);
11565 break;
11566 default:
11567 break;
11569 break;
11570 case tcc_expression:
11571 case tcc_reference:
11572 case tcc_comparison:
11573 case tcc_unary:
11574 case tcc_binary:
11575 case tcc_statement:
11576 len = TREE_CODE_LENGTH (code);
11577 for (i = 0; i < len; ++i)
11578 fold_checksum_tree (TREE_OPERAND (expr, i), ctx, ht);
11579 break;
11580 case tcc_declaration:
11581 fold_checksum_tree (DECL_NAME (expr), ctx, ht);
11582 fold_checksum_tree (DECL_CONTEXT (expr), ctx, ht);
11583 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_COMMON))
11585 fold_checksum_tree (DECL_SIZE (expr), ctx, ht);
11586 fold_checksum_tree (DECL_SIZE_UNIT (expr), ctx, ht);
11587 fold_checksum_tree (DECL_INITIAL (expr), ctx, ht);
11588 fold_checksum_tree (DECL_ABSTRACT_ORIGIN (expr), ctx, ht);
11589 fold_checksum_tree (DECL_ATTRIBUTES (expr), ctx, ht);
11591 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_WITH_VIS))
11592 fold_checksum_tree (DECL_SECTION_NAME (expr), ctx, ht);
11594 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_NON_COMMON))
11596 fold_checksum_tree (DECL_VINDEX (expr), ctx, ht);
11597 fold_checksum_tree (DECL_RESULT_FLD (expr), ctx, ht);
11598 fold_checksum_tree (DECL_ARGUMENT_FLD (expr), ctx, ht);
11600 break;
11601 case tcc_type:
11602 if (TREE_CODE (expr) == ENUMERAL_TYPE)
11603 fold_checksum_tree (TYPE_VALUES (expr), ctx, ht);
11604 fold_checksum_tree (TYPE_SIZE (expr), ctx, ht);
11605 fold_checksum_tree (TYPE_SIZE_UNIT (expr), ctx, ht);
11606 fold_checksum_tree (TYPE_ATTRIBUTES (expr), ctx, ht);
11607 fold_checksum_tree (TYPE_NAME (expr), ctx, ht);
11608 if (INTEGRAL_TYPE_P (expr)
11609 || SCALAR_FLOAT_TYPE_P (expr))
11611 fold_checksum_tree (TYPE_MIN_VALUE (expr), ctx, ht);
11612 fold_checksum_tree (TYPE_MAX_VALUE (expr), ctx, ht);
11614 fold_checksum_tree (TYPE_MAIN_VARIANT (expr), ctx, ht);
11615 if (TREE_CODE (expr) == RECORD_TYPE
11616 || TREE_CODE (expr) == UNION_TYPE
11617 || TREE_CODE (expr) == QUAL_UNION_TYPE)
11618 fold_checksum_tree (TYPE_BINFO (expr), ctx, ht);
11619 fold_checksum_tree (TYPE_CONTEXT (expr), ctx, ht);
11620 break;
11621 default:
11622 break;
11626 #endif
11628 /* Fold a unary tree expression with code CODE of type TYPE with an
11629 operand OP0. Return a folded expression if successful. Otherwise,
11630 return a tree expression with code CODE of type TYPE with an
11631 operand OP0. */
11633 tree
11634 fold_build1_stat (enum tree_code code, tree type, tree op0 MEM_STAT_DECL)
11636 tree tem;
11637 #ifdef ENABLE_FOLD_CHECKING
11638 unsigned char checksum_before[16], checksum_after[16];
11639 struct md5_ctx ctx;
11640 htab_t ht;
11642 ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
11643 md5_init_ctx (&ctx);
11644 fold_checksum_tree (op0, &ctx, ht);
11645 md5_finish_ctx (&ctx, checksum_before);
11646 htab_empty (ht);
11647 #endif
11649 tem = fold_unary (code, type, op0);
11650 if (!tem)
11651 tem = build1_stat (code, type, op0 PASS_MEM_STAT);
11653 #ifdef ENABLE_FOLD_CHECKING
11654 md5_init_ctx (&ctx);
11655 fold_checksum_tree (op0, &ctx, ht);
11656 md5_finish_ctx (&ctx, checksum_after);
11657 htab_delete (ht);
11659 if (memcmp (checksum_before, checksum_after, 16))
11660 fold_check_failed (op0, tem);
11661 #endif
11662 return tem;
11665 /* Fold a binary tree expression with code CODE of type TYPE with
11666 operands OP0 and OP1. Return a folded expression if successful.
11667 Otherwise, return a tree expression with code CODE of type TYPE
11668 with operands OP0 and OP1. */
11670 tree
11671 fold_build2_stat (enum tree_code code, tree type, tree op0, tree op1
11672 MEM_STAT_DECL)
11674 tree tem;
11675 #ifdef ENABLE_FOLD_CHECKING
11676 unsigned char checksum_before_op0[16],
11677 checksum_before_op1[16],
11678 checksum_after_op0[16],
11679 checksum_after_op1[16];
11680 struct md5_ctx ctx;
11681 htab_t ht;
11683 ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
11684 md5_init_ctx (&ctx);
11685 fold_checksum_tree (op0, &ctx, ht);
11686 md5_finish_ctx (&ctx, checksum_before_op0);
11687 htab_empty (ht);
11689 md5_init_ctx (&ctx);
11690 fold_checksum_tree (op1, &ctx, ht);
11691 md5_finish_ctx (&ctx, checksum_before_op1);
11692 htab_empty (ht);
11693 #endif
11695 tem = fold_binary (code, type, op0, op1);
11696 if (!tem)
11697 tem = build2_stat (code, type, op0, op1 PASS_MEM_STAT);
11699 #ifdef ENABLE_FOLD_CHECKING
11700 md5_init_ctx (&ctx);
11701 fold_checksum_tree (op0, &ctx, ht);
11702 md5_finish_ctx (&ctx, checksum_after_op0);
11703 htab_empty (ht);
11705 if (memcmp (checksum_before_op0, checksum_after_op0, 16))
11706 fold_check_failed (op0, tem);
11708 md5_init_ctx (&ctx);
11709 fold_checksum_tree (op1, &ctx, ht);
11710 md5_finish_ctx (&ctx, checksum_after_op1);
11711 htab_delete (ht);
11713 if (memcmp (checksum_before_op1, checksum_after_op1, 16))
11714 fold_check_failed (op1, tem);
11715 #endif
11716 return tem;
11719 /* Fold a ternary tree expression with code CODE of type TYPE with
11720 operands OP0, OP1, and OP2. Return a folded expression if
11721 successful. Otherwise, return a tree expression with code CODE of
11722 type TYPE with operands OP0, OP1, and OP2. */
11724 tree
11725 fold_build3_stat (enum tree_code code, tree type, tree op0, tree op1, tree op2
11726 MEM_STAT_DECL)
11728 tree tem;
11729 #ifdef ENABLE_FOLD_CHECKING
11730 unsigned char checksum_before_op0[16],
11731 checksum_before_op1[16],
11732 checksum_before_op2[16],
11733 checksum_after_op0[16],
11734 checksum_after_op1[16],
11735 checksum_after_op2[16];
11736 struct md5_ctx ctx;
11737 htab_t ht;
11739 ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
11740 md5_init_ctx (&ctx);
11741 fold_checksum_tree (op0, &ctx, ht);
11742 md5_finish_ctx (&ctx, checksum_before_op0);
11743 htab_empty (ht);
11745 md5_init_ctx (&ctx);
11746 fold_checksum_tree (op1, &ctx, ht);
11747 md5_finish_ctx (&ctx, checksum_before_op1);
11748 htab_empty (ht);
11750 md5_init_ctx (&ctx);
11751 fold_checksum_tree (op2, &ctx, ht);
11752 md5_finish_ctx (&ctx, checksum_before_op2);
11753 htab_empty (ht);
11754 #endif
11756 tem = fold_ternary (code, type, op0, op1, op2);
11757 if (!tem)
11758 tem = build3_stat (code, type, op0, op1, op2 PASS_MEM_STAT);
11760 #ifdef ENABLE_FOLD_CHECKING
11761 md5_init_ctx (&ctx);
11762 fold_checksum_tree (op0, &ctx, ht);
11763 md5_finish_ctx (&ctx, checksum_after_op0);
11764 htab_empty (ht);
11766 if (memcmp (checksum_before_op0, checksum_after_op0, 16))
11767 fold_check_failed (op0, tem);
11769 md5_init_ctx (&ctx);
11770 fold_checksum_tree (op1, &ctx, ht);
11771 md5_finish_ctx (&ctx, checksum_after_op1);
11772 htab_empty (ht);
11774 if (memcmp (checksum_before_op1, checksum_after_op1, 16))
11775 fold_check_failed (op1, tem);
11777 md5_init_ctx (&ctx);
11778 fold_checksum_tree (op2, &ctx, ht);
11779 md5_finish_ctx (&ctx, checksum_after_op2);
11780 htab_delete (ht);
11782 if (memcmp (checksum_before_op2, checksum_after_op2, 16))
11783 fold_check_failed (op2, tem);
11784 #endif
11785 return tem;
11788 /* Perform constant folding and related simplification of initializer
11789 expression EXPR. These behave identically to "fold_buildN" but ignore
11790 potential run-time traps and exceptions that fold must preserve. */
11792 #define START_FOLD_INIT \
11793 int saved_signaling_nans = flag_signaling_nans;\
11794 int saved_trapping_math = flag_trapping_math;\
11795 int saved_rounding_math = flag_rounding_math;\
11796 int saved_trapv = flag_trapv;\
11797 int saved_folding_initializer = folding_initializer;\
11798 flag_signaling_nans = 0;\
11799 flag_trapping_math = 0;\
11800 flag_rounding_math = 0;\
11801 flag_trapv = 0;\
11802 folding_initializer = 1;
11804 #define END_FOLD_INIT \
11805 flag_signaling_nans = saved_signaling_nans;\
11806 flag_trapping_math = saved_trapping_math;\
11807 flag_rounding_math = saved_rounding_math;\
11808 flag_trapv = saved_trapv;\
11809 folding_initializer = saved_folding_initializer;
11811 tree
11812 fold_build1_initializer (enum tree_code code, tree type, tree op)
11814 tree result;
11815 START_FOLD_INIT;
11817 result = fold_build1 (code, type, op);
11819 END_FOLD_INIT;
11820 return result;
11823 tree
11824 fold_build2_initializer (enum tree_code code, tree type, tree op0, tree op1)
11826 tree result;
11827 START_FOLD_INIT;
11829 result = fold_build2 (code, type, op0, op1);
11831 END_FOLD_INIT;
11832 return result;
11835 tree
11836 fold_build3_initializer (enum tree_code code, tree type, tree op0, tree op1,
11837 tree op2)
11839 tree result;
11840 START_FOLD_INIT;
11842 result = fold_build3 (code, type, op0, op1, op2);
11844 END_FOLD_INIT;
11845 return result;
11848 #undef START_FOLD_INIT
11849 #undef END_FOLD_INIT
11851 /* Determine if first argument is a multiple of second argument. Return 0 if
11852 it is not, or we cannot easily determined it to be.
11854 An example of the sort of thing we care about (at this point; this routine
11855 could surely be made more general, and expanded to do what the *_DIV_EXPR's
11856 fold cases do now) is discovering that
11858 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
11860 is a multiple of
11862 SAVE_EXPR (J * 8)
11864 when we know that the two SAVE_EXPR (J * 8) nodes are the same node.
11866 This code also handles discovering that
11868 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
11870 is a multiple of 8 so we don't have to worry about dealing with a
11871 possible remainder.
11873 Note that we *look* inside a SAVE_EXPR only to determine how it was
11874 calculated; it is not safe for fold to do much of anything else with the
11875 internals of a SAVE_EXPR, since it cannot know when it will be evaluated
11876 at run time. For example, the latter example above *cannot* be implemented
11877 as SAVE_EXPR (I) * J or any variant thereof, since the value of J at
11878 evaluation time of the original SAVE_EXPR is not necessarily the same at
11879 the time the new expression is evaluated. The only optimization of this
11880 sort that would be valid is changing
11882 SAVE_EXPR (I) * SAVE_EXPR (SAVE_EXPR (J) * 8)
11884 divided by 8 to
11886 SAVE_EXPR (I) * SAVE_EXPR (J)
11888 (where the same SAVE_EXPR (J) is used in the original and the
11889 transformed version). */
11891 static int
11892 multiple_of_p (tree type, tree top, tree bottom)
11894 if (operand_equal_p (top, bottom, 0))
11895 return 1;
11897 if (TREE_CODE (type) != INTEGER_TYPE)
11898 return 0;
11900 switch (TREE_CODE (top))
11902 case BIT_AND_EXPR:
11903 /* Bitwise and provides a power of two multiple. If the mask is
11904 a multiple of BOTTOM then TOP is a multiple of BOTTOM. */
11905 if (!integer_pow2p (bottom))
11906 return 0;
11907 /* FALLTHRU */
11909 case MULT_EXPR:
11910 return (multiple_of_p (type, TREE_OPERAND (top, 0), bottom)
11911 || multiple_of_p (type, TREE_OPERAND (top, 1), bottom));
11913 case PLUS_EXPR:
11914 case MINUS_EXPR:
11915 return (multiple_of_p (type, TREE_OPERAND (top, 0), bottom)
11916 && multiple_of_p (type, TREE_OPERAND (top, 1), bottom));
11918 case LSHIFT_EXPR:
11919 if (TREE_CODE (TREE_OPERAND (top, 1)) == INTEGER_CST)
11921 tree op1, t1;
11923 op1 = TREE_OPERAND (top, 1);
11924 /* const_binop may not detect overflow correctly,
11925 so check for it explicitly here. */
11926 if (TYPE_PRECISION (TREE_TYPE (size_one_node))
11927 > TREE_INT_CST_LOW (op1)
11928 && TREE_INT_CST_HIGH (op1) == 0
11929 && 0 != (t1 = fold_convert (type,
11930 const_binop (LSHIFT_EXPR,
11931 size_one_node,
11932 op1, 0)))
11933 && ! TREE_OVERFLOW (t1))
11934 return multiple_of_p (type, t1, bottom);
11936 return 0;
11938 case NOP_EXPR:
11939 /* Can't handle conversions from non-integral or wider integral type. */
11940 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (top, 0))) != INTEGER_TYPE)
11941 || (TYPE_PRECISION (type)
11942 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (top, 0)))))
11943 return 0;
11945 /* .. fall through ... */
11947 case SAVE_EXPR:
11948 return multiple_of_p (type, TREE_OPERAND (top, 0), bottom);
11950 case INTEGER_CST:
11951 if (TREE_CODE (bottom) != INTEGER_CST
11952 || (TYPE_UNSIGNED (type)
11953 && (tree_int_cst_sgn (top) < 0
11954 || tree_int_cst_sgn (bottom) < 0)))
11955 return 0;
11956 return integer_zerop (const_binop (TRUNC_MOD_EXPR,
11957 top, bottom, 0));
11959 default:
11960 return 0;
11964 /* Return true if `t' is known to be non-negative. */
11967 tree_expr_nonnegative_p (tree t)
11969 if (t == error_mark_node)
11970 return 0;
11972 if (TYPE_UNSIGNED (TREE_TYPE (t)))
11973 return 1;
11975 switch (TREE_CODE (t))
11977 case SSA_NAME:
11978 /* Query VRP to see if it has recorded any information about
11979 the range of this object. */
11980 return ssa_name_nonnegative_p (t);
11982 case ABS_EXPR:
11983 /* We can't return 1 if flag_wrapv is set because
11984 ABS_EXPR<INT_MIN> = INT_MIN. */
11985 if (!(flag_wrapv && INTEGRAL_TYPE_P (TREE_TYPE (t))))
11986 return 1;
11987 break;
11989 case INTEGER_CST:
11990 return tree_int_cst_sgn (t) >= 0;
11992 case REAL_CST:
11993 return ! REAL_VALUE_NEGATIVE (TREE_REAL_CST (t));
11995 case PLUS_EXPR:
11996 if (FLOAT_TYPE_P (TREE_TYPE (t)))
11997 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0))
11998 && tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
12000 /* zero_extend(x) + zero_extend(y) is non-negative if x and y are
12001 both unsigned and at least 2 bits shorter than the result. */
12002 if (TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE
12003 && TREE_CODE (TREE_OPERAND (t, 0)) == NOP_EXPR
12004 && TREE_CODE (TREE_OPERAND (t, 1)) == NOP_EXPR)
12006 tree inner1 = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 0), 0));
12007 tree inner2 = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 1), 0));
12008 if (TREE_CODE (inner1) == INTEGER_TYPE && TYPE_UNSIGNED (inner1)
12009 && TREE_CODE (inner2) == INTEGER_TYPE && TYPE_UNSIGNED (inner2))
12011 unsigned int prec = MAX (TYPE_PRECISION (inner1),
12012 TYPE_PRECISION (inner2)) + 1;
12013 return prec < TYPE_PRECISION (TREE_TYPE (t));
12016 break;
12018 case MULT_EXPR:
12019 if (FLOAT_TYPE_P (TREE_TYPE (t)))
12021 /* x * x for floating point x is always non-negative. */
12022 if (operand_equal_p (TREE_OPERAND (t, 0), TREE_OPERAND (t, 1), 0))
12023 return 1;
12024 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0))
12025 && tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
12028 /* zero_extend(x) * zero_extend(y) is non-negative if x and y are
12029 both unsigned and their total bits is shorter than the result. */
12030 if (TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE
12031 && TREE_CODE (TREE_OPERAND (t, 0)) == NOP_EXPR
12032 && TREE_CODE (TREE_OPERAND (t, 1)) == NOP_EXPR)
12034 tree inner1 = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 0), 0));
12035 tree inner2 = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 1), 0));
12036 if (TREE_CODE (inner1) == INTEGER_TYPE && TYPE_UNSIGNED (inner1)
12037 && TREE_CODE (inner2) == INTEGER_TYPE && TYPE_UNSIGNED (inner2))
12038 return TYPE_PRECISION (inner1) + TYPE_PRECISION (inner2)
12039 < TYPE_PRECISION (TREE_TYPE (t));
12041 return 0;
12043 case BIT_AND_EXPR:
12044 case MAX_EXPR:
12045 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0))
12046 || tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
12048 case BIT_IOR_EXPR:
12049 case BIT_XOR_EXPR:
12050 case MIN_EXPR:
12051 case RDIV_EXPR:
12052 case TRUNC_DIV_EXPR:
12053 case CEIL_DIV_EXPR:
12054 case FLOOR_DIV_EXPR:
12055 case ROUND_DIV_EXPR:
12056 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0))
12057 && tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
12059 case TRUNC_MOD_EXPR:
12060 case CEIL_MOD_EXPR:
12061 case FLOOR_MOD_EXPR:
12062 case ROUND_MOD_EXPR:
12063 case SAVE_EXPR:
12064 case NON_LVALUE_EXPR:
12065 case FLOAT_EXPR:
12066 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0));
12068 case COMPOUND_EXPR:
12069 case MODIFY_EXPR:
12070 return tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
12072 case BIND_EXPR:
12073 return tree_expr_nonnegative_p (expr_last (TREE_OPERAND (t, 1)));
12075 case COND_EXPR:
12076 return tree_expr_nonnegative_p (TREE_OPERAND (t, 1))
12077 && tree_expr_nonnegative_p (TREE_OPERAND (t, 2));
12079 case NOP_EXPR:
12081 tree inner_type = TREE_TYPE (TREE_OPERAND (t, 0));
12082 tree outer_type = TREE_TYPE (t);
12084 if (TREE_CODE (outer_type) == REAL_TYPE)
12086 if (TREE_CODE (inner_type) == REAL_TYPE)
12087 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0));
12088 if (TREE_CODE (inner_type) == INTEGER_TYPE)
12090 if (TYPE_UNSIGNED (inner_type))
12091 return 1;
12092 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0));
12095 else if (TREE_CODE (outer_type) == INTEGER_TYPE)
12097 if (TREE_CODE (inner_type) == REAL_TYPE)
12098 return tree_expr_nonnegative_p (TREE_OPERAND (t,0));
12099 if (TREE_CODE (inner_type) == INTEGER_TYPE)
12100 return TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type)
12101 && TYPE_UNSIGNED (inner_type);
12104 break;
12106 case TARGET_EXPR:
12108 tree temp = TARGET_EXPR_SLOT (t);
12109 t = TARGET_EXPR_INITIAL (t);
12111 /* If the initializer is non-void, then it's a normal expression
12112 that will be assigned to the slot. */
12113 if (!VOID_TYPE_P (t))
12114 return tree_expr_nonnegative_p (t);
12116 /* Otherwise, the initializer sets the slot in some way. One common
12117 way is an assignment statement at the end of the initializer. */
12118 while (1)
12120 if (TREE_CODE (t) == BIND_EXPR)
12121 t = expr_last (BIND_EXPR_BODY (t));
12122 else if (TREE_CODE (t) == TRY_FINALLY_EXPR
12123 || TREE_CODE (t) == TRY_CATCH_EXPR)
12124 t = expr_last (TREE_OPERAND (t, 0));
12125 else if (TREE_CODE (t) == STATEMENT_LIST)
12126 t = expr_last (t);
12127 else
12128 break;
12130 if (TREE_CODE (t) == MODIFY_EXPR
12131 && TREE_OPERAND (t, 0) == temp)
12132 return tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
12134 return 0;
12137 case CALL_EXPR:
12139 tree fndecl = get_callee_fndecl (t);
12140 tree arglist = TREE_OPERAND (t, 1);
12141 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
12142 switch (DECL_FUNCTION_CODE (fndecl))
12144 CASE_FLT_FN (BUILT_IN_ACOS):
12145 CASE_FLT_FN (BUILT_IN_ACOSH):
12146 CASE_FLT_FN (BUILT_IN_CABS):
12147 CASE_FLT_FN (BUILT_IN_COSH):
12148 CASE_FLT_FN (BUILT_IN_ERFC):
12149 CASE_FLT_FN (BUILT_IN_EXP):
12150 CASE_FLT_FN (BUILT_IN_EXP10):
12151 CASE_FLT_FN (BUILT_IN_EXP2):
12152 CASE_FLT_FN (BUILT_IN_FABS):
12153 CASE_FLT_FN (BUILT_IN_FDIM):
12154 CASE_FLT_FN (BUILT_IN_HYPOT):
12155 CASE_FLT_FN (BUILT_IN_POW10):
12156 CASE_INT_FN (BUILT_IN_FFS):
12157 CASE_INT_FN (BUILT_IN_PARITY):
12158 CASE_INT_FN (BUILT_IN_POPCOUNT):
12159 /* Always true. */
12160 return 1;
12162 CASE_FLT_FN (BUILT_IN_SQRT):
12163 /* sqrt(-0.0) is -0.0. */
12164 if (!HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (t))))
12165 return 1;
12166 return tree_expr_nonnegative_p (TREE_VALUE (arglist));
12168 CASE_FLT_FN (BUILT_IN_ASINH):
12169 CASE_FLT_FN (BUILT_IN_ATAN):
12170 CASE_FLT_FN (BUILT_IN_ATANH):
12171 CASE_FLT_FN (BUILT_IN_CBRT):
12172 CASE_FLT_FN (BUILT_IN_CEIL):
12173 CASE_FLT_FN (BUILT_IN_ERF):
12174 CASE_FLT_FN (BUILT_IN_EXPM1):
12175 CASE_FLT_FN (BUILT_IN_FLOOR):
12176 CASE_FLT_FN (BUILT_IN_FMOD):
12177 CASE_FLT_FN (BUILT_IN_FREXP):
12178 CASE_FLT_FN (BUILT_IN_LCEIL):
12179 CASE_FLT_FN (BUILT_IN_LDEXP):
12180 CASE_FLT_FN (BUILT_IN_LFLOOR):
12181 CASE_FLT_FN (BUILT_IN_LLCEIL):
12182 CASE_FLT_FN (BUILT_IN_LLFLOOR):
12183 CASE_FLT_FN (BUILT_IN_LLRINT):
12184 CASE_FLT_FN (BUILT_IN_LLROUND):
12185 CASE_FLT_FN (BUILT_IN_LRINT):
12186 CASE_FLT_FN (BUILT_IN_LROUND):
12187 CASE_FLT_FN (BUILT_IN_MODF):
12188 CASE_FLT_FN (BUILT_IN_NEARBYINT):
12189 CASE_FLT_FN (BUILT_IN_POW):
12190 CASE_FLT_FN (BUILT_IN_RINT):
12191 CASE_FLT_FN (BUILT_IN_ROUND):
12192 CASE_FLT_FN (BUILT_IN_SIGNBIT):
12193 CASE_FLT_FN (BUILT_IN_SINH):
12194 CASE_FLT_FN (BUILT_IN_TANH):
12195 CASE_FLT_FN (BUILT_IN_TRUNC):
12196 /* True if the 1st argument is nonnegative. */
12197 return tree_expr_nonnegative_p (TREE_VALUE (arglist));
12199 CASE_FLT_FN (BUILT_IN_FMAX):
12200 /* True if the 1st OR 2nd arguments are nonnegative. */
12201 return tree_expr_nonnegative_p (TREE_VALUE (arglist))
12202 || tree_expr_nonnegative_p (TREE_VALUE (TREE_CHAIN (arglist)));
12204 CASE_FLT_FN (BUILT_IN_FMIN):
12205 /* True if the 1st AND 2nd arguments are nonnegative. */
12206 return tree_expr_nonnegative_p (TREE_VALUE (arglist))
12207 && tree_expr_nonnegative_p (TREE_VALUE (TREE_CHAIN (arglist)));
12209 CASE_FLT_FN (BUILT_IN_COPYSIGN):
12210 /* True if the 2nd argument is nonnegative. */
12211 return tree_expr_nonnegative_p (TREE_VALUE (TREE_CHAIN (arglist)));
12213 default:
12214 break;
12218 /* ... fall through ... */
12220 default:
12221 if (truth_value_p (TREE_CODE (t)))
12222 /* Truth values evaluate to 0 or 1, which is nonnegative. */
12223 return 1;
12226 /* We don't know sign of `t', so be conservative and return false. */
12227 return 0;
12230 /* Return true when T is an address and is known to be nonzero.
12231 For floating point we further ensure that T is not denormal.
12232 Similar logic is present in nonzero_address in rtlanal.h. */
12234 bool
12235 tree_expr_nonzero_p (tree t)
12237 tree type = TREE_TYPE (t);
12239 /* Doing something useful for floating point would need more work. */
12240 if (!INTEGRAL_TYPE_P (type) && !POINTER_TYPE_P (type))
12241 return false;
12243 switch (TREE_CODE (t))
12245 case SSA_NAME:
12246 /* Query VRP to see if it has recorded any information about
12247 the range of this object. */
12248 return ssa_name_nonzero_p (t);
12250 case ABS_EXPR:
12251 return tree_expr_nonzero_p (TREE_OPERAND (t, 0));
12253 case INTEGER_CST:
12254 /* We used to test for !integer_zerop here. This does not work correctly
12255 if TREE_CONSTANT_OVERFLOW (t). */
12256 return (TREE_INT_CST_LOW (t) != 0
12257 || TREE_INT_CST_HIGH (t) != 0);
12259 case PLUS_EXPR:
12260 if (!TYPE_UNSIGNED (type) && !flag_wrapv)
12262 /* With the presence of negative values it is hard
12263 to say something. */
12264 if (!tree_expr_nonnegative_p (TREE_OPERAND (t, 0))
12265 || !tree_expr_nonnegative_p (TREE_OPERAND (t, 1)))
12266 return false;
12267 /* One of operands must be positive and the other non-negative. */
12268 return (tree_expr_nonzero_p (TREE_OPERAND (t, 0))
12269 || tree_expr_nonzero_p (TREE_OPERAND (t, 1)));
12271 break;
12273 case MULT_EXPR:
12274 if (!TYPE_UNSIGNED (type) && !flag_wrapv)
12276 return (tree_expr_nonzero_p (TREE_OPERAND (t, 0))
12277 && tree_expr_nonzero_p (TREE_OPERAND (t, 1)));
12279 break;
12281 case NOP_EXPR:
12283 tree inner_type = TREE_TYPE (TREE_OPERAND (t, 0));
12284 tree outer_type = TREE_TYPE (t);
12286 return (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
12287 && tree_expr_nonzero_p (TREE_OPERAND (t, 0)));
12289 break;
12291 case ADDR_EXPR:
12293 tree base = get_base_address (TREE_OPERAND (t, 0));
12295 if (!base)
12296 return false;
12298 /* Weak declarations may link to NULL. */
12299 if (VAR_OR_FUNCTION_DECL_P (base))
12300 return !DECL_WEAK (base);
12302 /* Constants are never weak. */
12303 if (CONSTANT_CLASS_P (base))
12304 return true;
12306 return false;
12309 case COND_EXPR:
12310 return (tree_expr_nonzero_p (TREE_OPERAND (t, 1))
12311 && tree_expr_nonzero_p (TREE_OPERAND (t, 2)));
12313 case MIN_EXPR:
12314 return (tree_expr_nonzero_p (TREE_OPERAND (t, 0))
12315 && tree_expr_nonzero_p (TREE_OPERAND (t, 1)));
12317 case MAX_EXPR:
12318 if (tree_expr_nonzero_p (TREE_OPERAND (t, 0)))
12320 /* When both operands are nonzero, then MAX must be too. */
12321 if (tree_expr_nonzero_p (TREE_OPERAND (t, 1)))
12322 return true;
12324 /* MAX where operand 0 is positive is positive. */
12325 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0));
12327 /* MAX where operand 1 is positive is positive. */
12328 else if (tree_expr_nonzero_p (TREE_OPERAND (t, 1))
12329 && tree_expr_nonnegative_p (TREE_OPERAND (t, 1)))
12330 return true;
12331 break;
12333 case COMPOUND_EXPR:
12334 case MODIFY_EXPR:
12335 case BIND_EXPR:
12336 return tree_expr_nonzero_p (TREE_OPERAND (t, 1));
12338 case SAVE_EXPR:
12339 case NON_LVALUE_EXPR:
12340 return tree_expr_nonzero_p (TREE_OPERAND (t, 0));
12342 case BIT_IOR_EXPR:
12343 return tree_expr_nonzero_p (TREE_OPERAND (t, 1))
12344 || tree_expr_nonzero_p (TREE_OPERAND (t, 0));
12346 case CALL_EXPR:
12347 return alloca_call_p (t);
12349 default:
12350 break;
12352 return false;
12355 /* Given the components of a binary expression CODE, TYPE, OP0 and OP1,
12356 attempt to fold the expression to a constant without modifying TYPE,
12357 OP0 or OP1.
12359 If the expression could be simplified to a constant, then return
12360 the constant. If the expression would not be simplified to a
12361 constant, then return NULL_TREE. */
12363 tree
12364 fold_binary_to_constant (enum tree_code code, tree type, tree op0, tree op1)
12366 tree tem = fold_binary (code, type, op0, op1);
12367 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE;
12370 /* Given the components of a unary expression CODE, TYPE and OP0,
12371 attempt to fold the expression to a constant without modifying
12372 TYPE or OP0.
12374 If the expression could be simplified to a constant, then return
12375 the constant. If the expression would not be simplified to a
12376 constant, then return NULL_TREE. */
12378 tree
12379 fold_unary_to_constant (enum tree_code code, tree type, tree op0)
12381 tree tem = fold_unary (code, type, op0);
12382 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE;
12385 /* If EXP represents referencing an element in a constant string
12386 (either via pointer arithmetic or array indexing), return the
12387 tree representing the value accessed, otherwise return NULL. */
12389 tree
12390 fold_read_from_constant_string (tree exp)
12392 if (TREE_CODE (exp) == INDIRECT_REF || TREE_CODE (exp) == ARRAY_REF)
12394 tree exp1 = TREE_OPERAND (exp, 0);
12395 tree index;
12396 tree string;
12398 if (TREE_CODE (exp) == INDIRECT_REF)
12399 string = string_constant (exp1, &index);
12400 else
12402 tree low_bound = array_ref_low_bound (exp);
12403 index = fold_convert (sizetype, TREE_OPERAND (exp, 1));
12405 /* Optimize the special-case of a zero lower bound.
12407 We convert the low_bound to sizetype to avoid some problems
12408 with constant folding. (E.g. suppose the lower bound is 1,
12409 and its mode is QI. Without the conversion,l (ARRAY
12410 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
12411 +INDEX), which becomes (ARRAY+255+INDEX). Opps!) */
12412 if (! integer_zerop (low_bound))
12413 index = size_diffop (index, fold_convert (sizetype, low_bound));
12415 string = exp1;
12418 if (string
12419 && TYPE_MODE (TREE_TYPE (exp)) == TYPE_MODE (TREE_TYPE (TREE_TYPE (string)))
12420 && TREE_CODE (string) == STRING_CST
12421 && TREE_CODE (index) == INTEGER_CST
12422 && compare_tree_int (index, TREE_STRING_LENGTH (string)) < 0
12423 && (GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (TREE_TYPE (string))))
12424 == MODE_INT)
12425 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_TYPE (string)))) == 1))
12426 return fold_convert (TREE_TYPE (exp),
12427 build_int_cst (NULL_TREE,
12428 (TREE_STRING_POINTER (string)
12429 [TREE_INT_CST_LOW (index)])));
12431 return NULL;
12434 /* Return the tree for neg (ARG0) when ARG0 is known to be either
12435 an integer constant or real constant.
12437 TYPE is the type of the result. */
12439 static tree
12440 fold_negate_const (tree arg0, tree type)
12442 tree t = NULL_TREE;
12444 switch (TREE_CODE (arg0))
12446 case INTEGER_CST:
12448 unsigned HOST_WIDE_INT low;
12449 HOST_WIDE_INT high;
12450 int overflow = neg_double (TREE_INT_CST_LOW (arg0),
12451 TREE_INT_CST_HIGH (arg0),
12452 &low, &high);
12453 t = build_int_cst_wide (type, low, high);
12454 t = force_fit_type (t, 1,
12455 (overflow | TREE_OVERFLOW (arg0))
12456 && !TYPE_UNSIGNED (type),
12457 TREE_CONSTANT_OVERFLOW (arg0));
12458 break;
12461 case REAL_CST:
12462 t = build_real (type, REAL_VALUE_NEGATE (TREE_REAL_CST (arg0)));
12463 break;
12465 default:
12466 gcc_unreachable ();
12469 return t;
12472 /* Return the tree for abs (ARG0) when ARG0 is known to be either
12473 an integer constant or real constant.
12475 TYPE is the type of the result. */
12477 tree
12478 fold_abs_const (tree arg0, tree type)
12480 tree t = NULL_TREE;
12482 switch (TREE_CODE (arg0))
12484 case INTEGER_CST:
12485 /* If the value is unsigned, then the absolute value is
12486 the same as the ordinary value. */
12487 if (TYPE_UNSIGNED (type))
12488 t = arg0;
12489 /* Similarly, if the value is non-negative. */
12490 else if (INT_CST_LT (integer_minus_one_node, arg0))
12491 t = arg0;
12492 /* If the value is negative, then the absolute value is
12493 its negation. */
12494 else
12496 unsigned HOST_WIDE_INT low;
12497 HOST_WIDE_INT high;
12498 int overflow = neg_double (TREE_INT_CST_LOW (arg0),
12499 TREE_INT_CST_HIGH (arg0),
12500 &low, &high);
12501 t = build_int_cst_wide (type, low, high);
12502 t = force_fit_type (t, -1, overflow | TREE_OVERFLOW (arg0),
12503 TREE_CONSTANT_OVERFLOW (arg0));
12505 break;
12507 case REAL_CST:
12508 if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg0)))
12509 t = build_real (type, REAL_VALUE_NEGATE (TREE_REAL_CST (arg0)));
12510 else
12511 t = arg0;
12512 break;
12514 default:
12515 gcc_unreachable ();
12518 return t;
12521 /* Return the tree for not (ARG0) when ARG0 is known to be an integer
12522 constant. TYPE is the type of the result. */
12524 static tree
12525 fold_not_const (tree arg0, tree type)
12527 tree t = NULL_TREE;
12529 gcc_assert (TREE_CODE (arg0) == INTEGER_CST);
12531 t = build_int_cst_wide (type,
12532 ~ TREE_INT_CST_LOW (arg0),
12533 ~ TREE_INT_CST_HIGH (arg0));
12534 t = force_fit_type (t, 0, TREE_OVERFLOW (arg0),
12535 TREE_CONSTANT_OVERFLOW (arg0));
12537 return t;
12540 /* Given CODE, a relational operator, the target type, TYPE and two
12541 constant operands OP0 and OP1, return the result of the
12542 relational operation. If the result is not a compile time
12543 constant, then return NULL_TREE. */
12545 static tree
12546 fold_relational_const (enum tree_code code, tree type, tree op0, tree op1)
12548 int result, invert;
12550 /* From here on, the only cases we handle are when the result is
12551 known to be a constant. */
12553 if (TREE_CODE (op0) == REAL_CST && TREE_CODE (op1) == REAL_CST)
12555 const REAL_VALUE_TYPE *c0 = TREE_REAL_CST_PTR (op0);
12556 const REAL_VALUE_TYPE *c1 = TREE_REAL_CST_PTR (op1);
12558 /* Handle the cases where either operand is a NaN. */
12559 if (real_isnan (c0) || real_isnan (c1))
12561 switch (code)
12563 case EQ_EXPR:
12564 case ORDERED_EXPR:
12565 result = 0;
12566 break;
12568 case NE_EXPR:
12569 case UNORDERED_EXPR:
12570 case UNLT_EXPR:
12571 case UNLE_EXPR:
12572 case UNGT_EXPR:
12573 case UNGE_EXPR:
12574 case UNEQ_EXPR:
12575 result = 1;
12576 break;
12578 case LT_EXPR:
12579 case LE_EXPR:
12580 case GT_EXPR:
12581 case GE_EXPR:
12582 case LTGT_EXPR:
12583 if (flag_trapping_math)
12584 return NULL_TREE;
12585 result = 0;
12586 break;
12588 default:
12589 gcc_unreachable ();
12592 return constant_boolean_node (result, type);
12595 return constant_boolean_node (real_compare (code, c0, c1), type);
12598 /* From here on we only handle LT, LE, GT, GE, EQ and NE.
12600 To compute GT, swap the arguments and do LT.
12601 To compute GE, do LT and invert the result.
12602 To compute LE, swap the arguments, do LT and invert the result.
12603 To compute NE, do EQ and invert the result.
12605 Therefore, the code below must handle only EQ and LT. */
12607 if (code == LE_EXPR || code == GT_EXPR)
12609 tree tem = op0;
12610 op0 = op1;
12611 op1 = tem;
12612 code = swap_tree_comparison (code);
12615 /* Note that it is safe to invert for real values here because we
12616 have already handled the one case that it matters. */
12618 invert = 0;
12619 if (code == NE_EXPR || code == GE_EXPR)
12621 invert = 1;
12622 code = invert_tree_comparison (code, false);
12625 /* Compute a result for LT or EQ if args permit;
12626 Otherwise return T. */
12627 if (TREE_CODE (op0) == INTEGER_CST && TREE_CODE (op1) == INTEGER_CST)
12629 if (code == EQ_EXPR)
12630 result = tree_int_cst_equal (op0, op1);
12631 else if (TYPE_UNSIGNED (TREE_TYPE (op0)))
12632 result = INT_CST_LT_UNSIGNED (op0, op1);
12633 else
12634 result = INT_CST_LT (op0, op1);
12636 else
12637 return NULL_TREE;
12639 if (invert)
12640 result ^= 1;
12641 return constant_boolean_node (result, type);
12644 /* Build an expression for the a clean point containing EXPR with type TYPE.
12645 Don't build a cleanup point expression for EXPR which don't have side
12646 effects. */
12648 tree
12649 fold_build_cleanup_point_expr (tree type, tree expr)
12651 /* If the expression does not have side effects then we don't have to wrap
12652 it with a cleanup point expression. */
12653 if (!TREE_SIDE_EFFECTS (expr))
12654 return expr;
12656 /* If the expression is a return, check to see if the expression inside the
12657 return has no side effects or the right hand side of the modify expression
12658 inside the return. If either don't have side effects set we don't need to
12659 wrap the expression in a cleanup point expression. Note we don't check the
12660 left hand side of the modify because it should always be a return decl. */
12661 if (TREE_CODE (expr) == RETURN_EXPR)
12663 tree op = TREE_OPERAND (expr, 0);
12664 if (!op || !TREE_SIDE_EFFECTS (op))
12665 return expr;
12666 op = TREE_OPERAND (op, 1);
12667 if (!TREE_SIDE_EFFECTS (op))
12668 return expr;
12671 return build1 (CLEANUP_POINT_EXPR, type, expr);
12674 /* Build an expression for the address of T. Folds away INDIRECT_REF to
12675 avoid confusing the gimplify process. */
12677 tree
12678 build_fold_addr_expr_with_type (tree t, tree ptrtype)
12680 /* The size of the object is not relevant when talking about its address. */
12681 if (TREE_CODE (t) == WITH_SIZE_EXPR)
12682 t = TREE_OPERAND (t, 0);
12684 /* Note: doesn't apply to ALIGN_INDIRECT_REF */
12685 if (TREE_CODE (t) == INDIRECT_REF
12686 || TREE_CODE (t) == MISALIGNED_INDIRECT_REF)
12688 t = TREE_OPERAND (t, 0);
12689 if (TREE_TYPE (t) != ptrtype)
12690 t = build1 (NOP_EXPR, ptrtype, t);
12692 else
12694 tree base = t;
12696 while (handled_component_p (base))
12697 base = TREE_OPERAND (base, 0);
12698 if (DECL_P (base))
12699 TREE_ADDRESSABLE (base) = 1;
12701 t = build1 (ADDR_EXPR, ptrtype, t);
12704 return t;
12707 tree
12708 build_fold_addr_expr (tree t)
12710 return build_fold_addr_expr_with_type (t, build_pointer_type (TREE_TYPE (t)));
12713 /* Given a pointer value OP0 and a type TYPE, return a simplified version
12714 of an indirection through OP0, or NULL_TREE if no simplification is
12715 possible. */
12717 tree
12718 fold_indirect_ref_1 (tree type, tree op0)
12720 tree sub = op0;
12721 tree subtype;
12723 STRIP_NOPS (sub);
12724 subtype = TREE_TYPE (sub);
12725 if (!POINTER_TYPE_P (subtype))
12726 return NULL_TREE;
12728 if (TREE_CODE (sub) == ADDR_EXPR)
12730 tree op = TREE_OPERAND (sub, 0);
12731 tree optype = TREE_TYPE (op);
12732 /* *&p => p; make sure to handle *&"str"[cst] here. */
12733 if (type == optype)
12735 tree fop = fold_read_from_constant_string (op);
12736 if (fop)
12737 return fop;
12738 else
12739 return op;
12741 /* *(foo *)&fooarray => fooarray[0] */
12742 else if (TREE_CODE (optype) == ARRAY_TYPE
12743 && type == TREE_TYPE (optype))
12745 tree type_domain = TYPE_DOMAIN (optype);
12746 tree min_val = size_zero_node;
12747 if (type_domain && TYPE_MIN_VALUE (type_domain))
12748 min_val = TYPE_MIN_VALUE (type_domain);
12749 return build4 (ARRAY_REF, type, op, min_val, NULL_TREE, NULL_TREE);
12751 /* *(foo *)&complexfoo => __real__ complexfoo */
12752 else if (TREE_CODE (optype) == COMPLEX_TYPE
12753 && type == TREE_TYPE (optype))
12754 return fold_build1 (REALPART_EXPR, type, op);
12757 /* ((foo*)&complexfoo)[1] => __imag__ complexfoo */
12758 if (TREE_CODE (sub) == PLUS_EXPR
12759 && TREE_CODE (TREE_OPERAND (sub, 1)) == INTEGER_CST)
12761 tree op00 = TREE_OPERAND (sub, 0);
12762 tree op01 = TREE_OPERAND (sub, 1);
12763 tree op00type;
12765 STRIP_NOPS (op00);
12766 op00type = TREE_TYPE (op00);
12767 if (TREE_CODE (op00) == ADDR_EXPR
12768 && TREE_CODE (TREE_TYPE (op00type)) == COMPLEX_TYPE
12769 && type == TREE_TYPE (TREE_TYPE (op00type)))
12771 tree size = TYPE_SIZE_UNIT (type);
12772 if (tree_int_cst_equal (size, op01))
12773 return fold_build1 (IMAGPART_EXPR, type, TREE_OPERAND (op00, 0));
12777 /* *(foo *)fooarrptr => (*fooarrptr)[0] */
12778 if (TREE_CODE (TREE_TYPE (subtype)) == ARRAY_TYPE
12779 && type == TREE_TYPE (TREE_TYPE (subtype)))
12781 tree type_domain;
12782 tree min_val = size_zero_node;
12783 sub = build_fold_indirect_ref (sub);
12784 type_domain = TYPE_DOMAIN (TREE_TYPE (sub));
12785 if (type_domain && TYPE_MIN_VALUE (type_domain))
12786 min_val = TYPE_MIN_VALUE (type_domain);
12787 return build4 (ARRAY_REF, type, sub, min_val, NULL_TREE, NULL_TREE);
12790 return NULL_TREE;
12793 /* Builds an expression for an indirection through T, simplifying some
12794 cases. */
12796 tree
12797 build_fold_indirect_ref (tree t)
12799 tree type = TREE_TYPE (TREE_TYPE (t));
12800 tree sub = fold_indirect_ref_1 (type, t);
12802 if (sub)
12803 return sub;
12804 else
12805 return build1 (INDIRECT_REF, type, t);
12808 /* Given an INDIRECT_REF T, return either T or a simplified version. */
12810 tree
12811 fold_indirect_ref (tree t)
12813 tree sub = fold_indirect_ref_1 (TREE_TYPE (t), TREE_OPERAND (t, 0));
12815 if (sub)
12816 return sub;
12817 else
12818 return t;
12821 /* Strip non-trapping, non-side-effecting tree nodes from an expression
12822 whose result is ignored. The type of the returned tree need not be
12823 the same as the original expression. */
12825 tree
12826 fold_ignored_result (tree t)
12828 if (!TREE_SIDE_EFFECTS (t))
12829 return integer_zero_node;
12831 for (;;)
12832 switch (TREE_CODE_CLASS (TREE_CODE (t)))
12834 case tcc_unary:
12835 t = TREE_OPERAND (t, 0);
12836 break;
12838 case tcc_binary:
12839 case tcc_comparison:
12840 if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
12841 t = TREE_OPERAND (t, 0);
12842 else if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 0)))
12843 t = TREE_OPERAND (t, 1);
12844 else
12845 return t;
12846 break;
12848 case tcc_expression:
12849 switch (TREE_CODE (t))
12851 case COMPOUND_EXPR:
12852 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
12853 return t;
12854 t = TREE_OPERAND (t, 0);
12855 break;
12857 case COND_EXPR:
12858 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1))
12859 || TREE_SIDE_EFFECTS (TREE_OPERAND (t, 2)))
12860 return t;
12861 t = TREE_OPERAND (t, 0);
12862 break;
12864 default:
12865 return t;
12867 break;
12869 default:
12870 return t;
12874 /* Return the value of VALUE, rounded up to a multiple of DIVISOR.
12875 This can only be applied to objects of a sizetype. */
12877 tree
12878 round_up (tree value, int divisor)
12880 tree div = NULL_TREE;
12882 gcc_assert (divisor > 0);
12883 if (divisor == 1)
12884 return value;
12886 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
12887 have to do anything. Only do this when we are not given a const,
12888 because in that case, this check is more expensive than just
12889 doing it. */
12890 if (TREE_CODE (value) != INTEGER_CST)
12892 div = build_int_cst (TREE_TYPE (value), divisor);
12894 if (multiple_of_p (TREE_TYPE (value), value, div))
12895 return value;
12898 /* If divisor is a power of two, simplify this to bit manipulation. */
12899 if (divisor == (divisor & -divisor))
12901 tree t;
12903 t = build_int_cst (TREE_TYPE (value), divisor - 1);
12904 value = size_binop (PLUS_EXPR, value, t);
12905 t = build_int_cst (TREE_TYPE (value), -divisor);
12906 value = size_binop (BIT_AND_EXPR, value, t);
12908 else
12910 if (!div)
12911 div = build_int_cst (TREE_TYPE (value), divisor);
12912 value = size_binop (CEIL_DIV_EXPR, value, div);
12913 value = size_binop (MULT_EXPR, value, div);
12916 return value;
12919 /* Likewise, but round down. */
12921 tree
12922 round_down (tree value, int divisor)
12924 tree div = NULL_TREE;
12926 gcc_assert (divisor > 0);
12927 if (divisor == 1)
12928 return value;
12930 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
12931 have to do anything. Only do this when we are not given a const,
12932 because in that case, this check is more expensive than just
12933 doing it. */
12934 if (TREE_CODE (value) != INTEGER_CST)
12936 div = build_int_cst (TREE_TYPE (value), divisor);
12938 if (multiple_of_p (TREE_TYPE (value), value, div))
12939 return value;
12942 /* If divisor is a power of two, simplify this to bit manipulation. */
12943 if (divisor == (divisor & -divisor))
12945 tree t;
12947 t = build_int_cst (TREE_TYPE (value), -divisor);
12948 value = size_binop (BIT_AND_EXPR, value, t);
12950 else
12952 if (!div)
12953 div = build_int_cst (TREE_TYPE (value), divisor);
12954 value = size_binop (FLOOR_DIV_EXPR, value, div);
12955 value = size_binop (MULT_EXPR, value, div);
12958 return value;
12961 /* Returns the pointer to the base of the object addressed by EXP and
12962 extracts the information about the offset of the access, storing it
12963 to PBITPOS and POFFSET. */
12965 static tree
12966 split_address_to_core_and_offset (tree exp,
12967 HOST_WIDE_INT *pbitpos, tree *poffset)
12969 tree core;
12970 enum machine_mode mode;
12971 int unsignedp, volatilep;
12972 HOST_WIDE_INT bitsize;
12974 if (TREE_CODE (exp) == ADDR_EXPR)
12976 core = get_inner_reference (TREE_OPERAND (exp, 0), &bitsize, pbitpos,
12977 poffset, &mode, &unsignedp, &volatilep,
12978 false);
12979 core = build_fold_addr_expr (core);
12981 else
12983 core = exp;
12984 *pbitpos = 0;
12985 *poffset = NULL_TREE;
12988 return core;
12991 /* Returns true if addresses of E1 and E2 differ by a constant, false
12992 otherwise. If they do, E1 - E2 is stored in *DIFF. */
12994 bool
12995 ptr_difference_const (tree e1, tree e2, HOST_WIDE_INT *diff)
12997 tree core1, core2;
12998 HOST_WIDE_INT bitpos1, bitpos2;
12999 tree toffset1, toffset2, tdiff, type;
13001 core1 = split_address_to_core_and_offset (e1, &bitpos1, &toffset1);
13002 core2 = split_address_to_core_and_offset (e2, &bitpos2, &toffset2);
13004 if (bitpos1 % BITS_PER_UNIT != 0
13005 || bitpos2 % BITS_PER_UNIT != 0
13006 || !operand_equal_p (core1, core2, 0))
13007 return false;
13009 if (toffset1 && toffset2)
13011 type = TREE_TYPE (toffset1);
13012 if (type != TREE_TYPE (toffset2))
13013 toffset2 = fold_convert (type, toffset2);
13015 tdiff = fold_build2 (MINUS_EXPR, type, toffset1, toffset2);
13016 if (!cst_and_fits_in_hwi (tdiff))
13017 return false;
13019 *diff = int_cst_value (tdiff);
13021 else if (toffset1 || toffset2)
13023 /* If only one of the offsets is non-constant, the difference cannot
13024 be a constant. */
13025 return false;
13027 else
13028 *diff = 0;
13030 *diff += (bitpos1 - bitpos2) / BITS_PER_UNIT;
13031 return true;
13034 /* Simplify the floating point expression EXP when the sign of the
13035 result is not significant. Return NULL_TREE if no simplification
13036 is possible. */
13038 tree
13039 fold_strip_sign_ops (tree exp)
13041 tree arg0, arg1;
13043 switch (TREE_CODE (exp))
13045 case ABS_EXPR:
13046 case NEGATE_EXPR:
13047 arg0 = fold_strip_sign_ops (TREE_OPERAND (exp, 0));
13048 return arg0 ? arg0 : TREE_OPERAND (exp, 0);
13050 case MULT_EXPR:
13051 case RDIV_EXPR:
13052 if (HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (TREE_TYPE (exp))))
13053 return NULL_TREE;
13054 arg0 = fold_strip_sign_ops (TREE_OPERAND (exp, 0));
13055 arg1 = fold_strip_sign_ops (TREE_OPERAND (exp, 1));
13056 if (arg0 != NULL_TREE || arg1 != NULL_TREE)
13057 return fold_build2 (TREE_CODE (exp), TREE_TYPE (exp),
13058 arg0 ? arg0 : TREE_OPERAND (exp, 0),
13059 arg1 ? arg1 : TREE_OPERAND (exp, 1));
13060 break;
13062 default:
13063 break;
13065 return NULL_TREE;