2016-05-14 Fritz Reese <fritzoreese@gmail.com>
[official-gcc.git] / gcc / tree-vect-loop.c
blobd673c67b4a0adc4ef6c75dd0ffb412f151172a08
1 /* Loop Vectorization
2 Copyright (C) 2003-2016 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com> and
4 Ira Rosen <irar@il.ibm.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "target.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "gimple.h"
30 #include "cfghooks.h"
31 #include "tree-pass.h"
32 #include "ssa.h"
33 #include "optabs-tree.h"
34 #include "diagnostic-core.h"
35 #include "fold-const.h"
36 #include "stor-layout.h"
37 #include "cfganal.h"
38 #include "gimplify.h"
39 #include "gimple-iterator.h"
40 #include "gimplify-me.h"
41 #include "tree-ssa-loop-ivopts.h"
42 #include "tree-ssa-loop-manip.h"
43 #include "tree-ssa-loop-niter.h"
44 #include "cfgloop.h"
45 #include "params.h"
46 #include "tree-scalar-evolution.h"
47 #include "tree-vectorizer.h"
48 #include "gimple-fold.h"
49 #include "cgraph.h"
51 /* Loop Vectorization Pass.
53 This pass tries to vectorize loops.
55 For example, the vectorizer transforms the following simple loop:
57 short a[N]; short b[N]; short c[N]; int i;
59 for (i=0; i<N; i++){
60 a[i] = b[i] + c[i];
63 as if it was manually vectorized by rewriting the source code into:
65 typedef int __attribute__((mode(V8HI))) v8hi;
66 short a[N]; short b[N]; short c[N]; int i;
67 v8hi *pa = (v8hi*)a, *pb = (v8hi*)b, *pc = (v8hi*)c;
68 v8hi va, vb, vc;
70 for (i=0; i<N/8; i++){
71 vb = pb[i];
72 vc = pc[i];
73 va = vb + vc;
74 pa[i] = va;
77 The main entry to this pass is vectorize_loops(), in which
78 the vectorizer applies a set of analyses on a given set of loops,
79 followed by the actual vectorization transformation for the loops that
80 had successfully passed the analysis phase.
81 Throughout this pass we make a distinction between two types of
82 data: scalars (which are represented by SSA_NAMES), and memory references
83 ("data-refs"). These two types of data require different handling both
84 during analysis and transformation. The types of data-refs that the
85 vectorizer currently supports are ARRAY_REFS which base is an array DECL
86 (not a pointer), and INDIRECT_REFS through pointers; both array and pointer
87 accesses are required to have a simple (consecutive) access pattern.
89 Analysis phase:
90 ===============
91 The driver for the analysis phase is vect_analyze_loop().
92 It applies a set of analyses, some of which rely on the scalar evolution
93 analyzer (scev) developed by Sebastian Pop.
95 During the analysis phase the vectorizer records some information
96 per stmt in a "stmt_vec_info" struct which is attached to each stmt in the
97 loop, as well as general information about the loop as a whole, which is
98 recorded in a "loop_vec_info" struct attached to each loop.
100 Transformation phase:
101 =====================
102 The loop transformation phase scans all the stmts in the loop, and
103 creates a vector stmt (or a sequence of stmts) for each scalar stmt S in
104 the loop that needs to be vectorized. It inserts the vector code sequence
105 just before the scalar stmt S, and records a pointer to the vector code
106 in STMT_VINFO_VEC_STMT (stmt_info) (stmt_info is the stmt_vec_info struct
107 attached to S). This pointer will be used for the vectorization of following
108 stmts which use the def of stmt S. Stmt S is removed if it writes to memory;
109 otherwise, we rely on dead code elimination for removing it.
111 For example, say stmt S1 was vectorized into stmt VS1:
113 VS1: vb = px[i];
114 S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
115 S2: a = b;
117 To vectorize stmt S2, the vectorizer first finds the stmt that defines
118 the operand 'b' (S1), and gets the relevant vector def 'vb' from the
119 vector stmt VS1 pointed to by STMT_VINFO_VEC_STMT (stmt_info (S1)). The
120 resulting sequence would be:
122 VS1: vb = px[i];
123 S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
124 VS2: va = vb;
125 S2: a = b; STMT_VINFO_VEC_STMT (stmt_info (S2)) = VS2
127 Operands that are not SSA_NAMEs, are data-refs that appear in
128 load/store operations (like 'x[i]' in S1), and are handled differently.
130 Target modeling:
131 =================
132 Currently the only target specific information that is used is the
133 size of the vector (in bytes) - "TARGET_VECTORIZE_UNITS_PER_SIMD_WORD".
134 Targets that can support different sizes of vectors, for now will need
135 to specify one value for "TARGET_VECTORIZE_UNITS_PER_SIMD_WORD". More
136 flexibility will be added in the future.
138 Since we only vectorize operations which vector form can be
139 expressed using existing tree codes, to verify that an operation is
140 supported, the vectorizer checks the relevant optab at the relevant
141 machine_mode (e.g, optab_handler (add_optab, V8HImode)). If
142 the value found is CODE_FOR_nothing, then there's no target support, and
143 we can't vectorize the stmt.
145 For additional information on this project see:
146 http://gcc.gnu.org/projects/tree-ssa/vectorization.html
149 static void vect_estimate_min_profitable_iters (loop_vec_info, int *, int *);
151 /* Function vect_determine_vectorization_factor
153 Determine the vectorization factor (VF). VF is the number of data elements
154 that are operated upon in parallel in a single iteration of the vectorized
155 loop. For example, when vectorizing a loop that operates on 4byte elements,
156 on a target with vector size (VS) 16byte, the VF is set to 4, since 4
157 elements can fit in a single vector register.
159 We currently support vectorization of loops in which all types operated upon
160 are of the same size. Therefore this function currently sets VF according to
161 the size of the types operated upon, and fails if there are multiple sizes
162 in the loop.
164 VF is also the factor by which the loop iterations are strip-mined, e.g.:
165 original loop:
166 for (i=0; i<N; i++){
167 a[i] = b[i] + c[i];
170 vectorized loop:
171 for (i=0; i<N; i+=VF){
172 a[i:VF] = b[i:VF] + c[i:VF];
176 static bool
177 vect_determine_vectorization_factor (loop_vec_info loop_vinfo)
179 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
180 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
181 unsigned nbbs = loop->num_nodes;
182 unsigned int vectorization_factor = 0;
183 tree scalar_type;
184 gphi *phi;
185 tree vectype;
186 unsigned int nunits;
187 stmt_vec_info stmt_info;
188 unsigned i;
189 HOST_WIDE_INT dummy;
190 gimple *stmt, *pattern_stmt = NULL;
191 gimple_seq pattern_def_seq = NULL;
192 gimple_stmt_iterator pattern_def_si = gsi_none ();
193 bool analyze_pattern_stmt = false;
194 bool bool_result;
195 auto_vec<stmt_vec_info> mask_producers;
197 if (dump_enabled_p ())
198 dump_printf_loc (MSG_NOTE, vect_location,
199 "=== vect_determine_vectorization_factor ===\n");
201 for (i = 0; i < nbbs; i++)
203 basic_block bb = bbs[i];
205 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
206 gsi_next (&si))
208 phi = si.phi ();
209 stmt_info = vinfo_for_stmt (phi);
210 if (dump_enabled_p ())
212 dump_printf_loc (MSG_NOTE, vect_location, "==> examining phi: ");
213 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
214 dump_printf (MSG_NOTE, "\n");
217 gcc_assert (stmt_info);
219 if (STMT_VINFO_RELEVANT_P (stmt_info))
221 gcc_assert (!STMT_VINFO_VECTYPE (stmt_info));
222 scalar_type = TREE_TYPE (PHI_RESULT (phi));
224 if (dump_enabled_p ())
226 dump_printf_loc (MSG_NOTE, vect_location,
227 "get vectype for scalar type: ");
228 dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
229 dump_printf (MSG_NOTE, "\n");
232 vectype = get_vectype_for_scalar_type (scalar_type);
233 if (!vectype)
235 if (dump_enabled_p ())
237 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
238 "not vectorized: unsupported "
239 "data-type ");
240 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
241 scalar_type);
242 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
244 return false;
246 STMT_VINFO_VECTYPE (stmt_info) = vectype;
248 if (dump_enabled_p ())
250 dump_printf_loc (MSG_NOTE, vect_location, "vectype: ");
251 dump_generic_expr (MSG_NOTE, TDF_SLIM, vectype);
252 dump_printf (MSG_NOTE, "\n");
255 nunits = TYPE_VECTOR_SUBPARTS (vectype);
256 if (dump_enabled_p ())
257 dump_printf_loc (MSG_NOTE, vect_location, "nunits = %d\n",
258 nunits);
260 if (!vectorization_factor
261 || (nunits > vectorization_factor))
262 vectorization_factor = nunits;
266 for (gimple_stmt_iterator si = gsi_start_bb (bb);
267 !gsi_end_p (si) || analyze_pattern_stmt;)
269 tree vf_vectype;
271 if (analyze_pattern_stmt)
272 stmt = pattern_stmt;
273 else
274 stmt = gsi_stmt (si);
276 stmt_info = vinfo_for_stmt (stmt);
278 if (dump_enabled_p ())
280 dump_printf_loc (MSG_NOTE, vect_location,
281 "==> examining statement: ");
282 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
283 dump_printf (MSG_NOTE, "\n");
286 gcc_assert (stmt_info);
288 /* Skip stmts which do not need to be vectorized. */
289 if ((!STMT_VINFO_RELEVANT_P (stmt_info)
290 && !STMT_VINFO_LIVE_P (stmt_info))
291 || gimple_clobber_p (stmt))
293 if (STMT_VINFO_IN_PATTERN_P (stmt_info)
294 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
295 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
296 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
298 stmt = pattern_stmt;
299 stmt_info = vinfo_for_stmt (pattern_stmt);
300 if (dump_enabled_p ())
302 dump_printf_loc (MSG_NOTE, vect_location,
303 "==> examining pattern statement: ");
304 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
305 dump_printf (MSG_NOTE, "\n");
308 else
310 if (dump_enabled_p ())
311 dump_printf_loc (MSG_NOTE, vect_location, "skip.\n");
312 gsi_next (&si);
313 continue;
316 else if (STMT_VINFO_IN_PATTERN_P (stmt_info)
317 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
318 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
319 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
320 analyze_pattern_stmt = true;
322 /* If a pattern statement has def stmts, analyze them too. */
323 if (is_pattern_stmt_p (stmt_info))
325 if (pattern_def_seq == NULL)
327 pattern_def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info);
328 pattern_def_si = gsi_start (pattern_def_seq);
330 else if (!gsi_end_p (pattern_def_si))
331 gsi_next (&pattern_def_si);
332 if (pattern_def_seq != NULL)
334 gimple *pattern_def_stmt = NULL;
335 stmt_vec_info pattern_def_stmt_info = NULL;
337 while (!gsi_end_p (pattern_def_si))
339 pattern_def_stmt = gsi_stmt (pattern_def_si);
340 pattern_def_stmt_info
341 = vinfo_for_stmt (pattern_def_stmt);
342 if (STMT_VINFO_RELEVANT_P (pattern_def_stmt_info)
343 || STMT_VINFO_LIVE_P (pattern_def_stmt_info))
344 break;
345 gsi_next (&pattern_def_si);
348 if (!gsi_end_p (pattern_def_si))
350 if (dump_enabled_p ())
352 dump_printf_loc (MSG_NOTE, vect_location,
353 "==> examining pattern def stmt: ");
354 dump_gimple_stmt (MSG_NOTE, TDF_SLIM,
355 pattern_def_stmt, 0);
356 dump_printf (MSG_NOTE, "\n");
359 stmt = pattern_def_stmt;
360 stmt_info = pattern_def_stmt_info;
362 else
364 pattern_def_si = gsi_none ();
365 analyze_pattern_stmt = false;
368 else
369 analyze_pattern_stmt = false;
372 if (gimple_get_lhs (stmt) == NULL_TREE
373 /* MASK_STORE has no lhs, but is ok. */
374 && (!is_gimple_call (stmt)
375 || !gimple_call_internal_p (stmt)
376 || gimple_call_internal_fn (stmt) != IFN_MASK_STORE))
378 if (is_gimple_call (stmt))
380 /* Ignore calls with no lhs. These must be calls to
381 #pragma omp simd functions, and what vectorization factor
382 it really needs can't be determined until
383 vectorizable_simd_clone_call. */
384 if (!analyze_pattern_stmt && gsi_end_p (pattern_def_si))
386 pattern_def_seq = NULL;
387 gsi_next (&si);
389 continue;
391 if (dump_enabled_p ())
393 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
394 "not vectorized: irregular stmt.");
395 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt,
397 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
399 return false;
402 if (VECTOR_MODE_P (TYPE_MODE (gimple_expr_type (stmt))))
404 if (dump_enabled_p ())
406 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
407 "not vectorized: vector stmt in loop:");
408 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
409 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
411 return false;
414 bool_result = false;
416 if (STMT_VINFO_VECTYPE (stmt_info))
418 /* The only case when a vectype had been already set is for stmts
419 that contain a dataref, or for "pattern-stmts" (stmts
420 generated by the vectorizer to represent/replace a certain
421 idiom). */
422 gcc_assert (STMT_VINFO_DATA_REF (stmt_info)
423 || is_pattern_stmt_p (stmt_info)
424 || !gsi_end_p (pattern_def_si));
425 vectype = STMT_VINFO_VECTYPE (stmt_info);
427 else
429 gcc_assert (!STMT_VINFO_DATA_REF (stmt_info));
430 if (is_gimple_call (stmt)
431 && gimple_call_internal_p (stmt)
432 && gimple_call_internal_fn (stmt) == IFN_MASK_STORE)
433 scalar_type = TREE_TYPE (gimple_call_arg (stmt, 3));
434 else
435 scalar_type = TREE_TYPE (gimple_get_lhs (stmt));
437 /* Bool ops don't participate in vectorization factor
438 computation. For comparison use compared types to
439 compute a factor. */
440 if (TREE_CODE (scalar_type) == BOOLEAN_TYPE
441 && is_gimple_assign (stmt)
442 && gimple_assign_rhs_code (stmt) != COND_EXPR)
444 if (STMT_VINFO_RELEVANT_P (stmt_info))
445 mask_producers.safe_push (stmt_info);
446 bool_result = true;
448 if (gimple_code (stmt) == GIMPLE_ASSIGN
449 && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt))
450 == tcc_comparison
451 && TREE_CODE (TREE_TYPE (gimple_assign_rhs1 (stmt)))
452 != BOOLEAN_TYPE)
453 scalar_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
454 else
456 if (!analyze_pattern_stmt && gsi_end_p (pattern_def_si))
458 pattern_def_seq = NULL;
459 gsi_next (&si);
461 continue;
465 if (dump_enabled_p ())
467 dump_printf_loc (MSG_NOTE, vect_location,
468 "get vectype for scalar type: ");
469 dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
470 dump_printf (MSG_NOTE, "\n");
472 vectype = get_vectype_for_scalar_type (scalar_type);
473 if (!vectype)
475 if (dump_enabled_p ())
477 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
478 "not vectorized: unsupported "
479 "data-type ");
480 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
481 scalar_type);
482 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
484 return false;
487 if (!bool_result)
488 STMT_VINFO_VECTYPE (stmt_info) = vectype;
490 if (dump_enabled_p ())
492 dump_printf_loc (MSG_NOTE, vect_location, "vectype: ");
493 dump_generic_expr (MSG_NOTE, TDF_SLIM, vectype);
494 dump_printf (MSG_NOTE, "\n");
498 /* Don't try to compute VF out scalar types if we stmt
499 produces boolean vector. Use result vectype instead. */
500 if (VECTOR_BOOLEAN_TYPE_P (vectype))
501 vf_vectype = vectype;
502 else
504 /* The vectorization factor is according to the smallest
505 scalar type (or the largest vector size, but we only
506 support one vector size per loop). */
507 if (!bool_result)
508 scalar_type = vect_get_smallest_scalar_type (stmt, &dummy,
509 &dummy);
510 if (dump_enabled_p ())
512 dump_printf_loc (MSG_NOTE, vect_location,
513 "get vectype for scalar type: ");
514 dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
515 dump_printf (MSG_NOTE, "\n");
517 vf_vectype = get_vectype_for_scalar_type (scalar_type);
519 if (!vf_vectype)
521 if (dump_enabled_p ())
523 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
524 "not vectorized: unsupported data-type ");
525 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
526 scalar_type);
527 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
529 return false;
532 if ((GET_MODE_SIZE (TYPE_MODE (vectype))
533 != GET_MODE_SIZE (TYPE_MODE (vf_vectype))))
535 if (dump_enabled_p ())
537 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
538 "not vectorized: different sized vector "
539 "types in statement, ");
540 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
541 vectype);
542 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
543 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
544 vf_vectype);
545 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
547 return false;
550 if (dump_enabled_p ())
552 dump_printf_loc (MSG_NOTE, vect_location, "vectype: ");
553 dump_generic_expr (MSG_NOTE, TDF_SLIM, vf_vectype);
554 dump_printf (MSG_NOTE, "\n");
557 nunits = TYPE_VECTOR_SUBPARTS (vf_vectype);
558 if (dump_enabled_p ())
559 dump_printf_loc (MSG_NOTE, vect_location, "nunits = %d\n", nunits);
560 if (!vectorization_factor
561 || (nunits > vectorization_factor))
562 vectorization_factor = nunits;
564 if (!analyze_pattern_stmt && gsi_end_p (pattern_def_si))
566 pattern_def_seq = NULL;
567 gsi_next (&si);
572 /* TODO: Analyze cost. Decide if worth while to vectorize. */
573 if (dump_enabled_p ())
574 dump_printf_loc (MSG_NOTE, vect_location, "vectorization factor = %d\n",
575 vectorization_factor);
576 if (vectorization_factor <= 1)
578 if (dump_enabled_p ())
579 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
580 "not vectorized: unsupported data-type\n");
581 return false;
583 LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
585 for (i = 0; i < mask_producers.length (); i++)
587 tree mask_type = NULL;
589 stmt = STMT_VINFO_STMT (mask_producers[i]);
591 if (gimple_code (stmt) == GIMPLE_ASSIGN
592 && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)) == tcc_comparison
593 && TREE_CODE (TREE_TYPE (gimple_assign_rhs1 (stmt))) != BOOLEAN_TYPE)
595 scalar_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
596 mask_type = get_mask_type_for_scalar_type (scalar_type);
598 if (!mask_type)
600 if (dump_enabled_p ())
601 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
602 "not vectorized: unsupported mask\n");
603 return false;
606 else
608 tree rhs;
609 ssa_op_iter iter;
610 gimple *def_stmt;
611 enum vect_def_type dt;
613 FOR_EACH_SSA_TREE_OPERAND (rhs, stmt, iter, SSA_OP_USE)
615 if (!vect_is_simple_use (rhs, mask_producers[i]->vinfo,
616 &def_stmt, &dt, &vectype))
618 if (dump_enabled_p ())
620 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
621 "not vectorized: can't compute mask type "
622 "for statement, ");
623 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt,
625 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
627 return false;
630 /* No vectype probably means external definition.
631 Allow it in case there is another operand which
632 allows to determine mask type. */
633 if (!vectype)
634 continue;
636 if (!mask_type)
637 mask_type = vectype;
638 else if (TYPE_VECTOR_SUBPARTS (mask_type)
639 != TYPE_VECTOR_SUBPARTS (vectype))
641 if (dump_enabled_p ())
643 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
644 "not vectorized: different sized masks "
645 "types in statement, ");
646 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
647 mask_type);
648 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
649 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
650 vectype);
651 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
653 return false;
655 else if (VECTOR_BOOLEAN_TYPE_P (mask_type)
656 != VECTOR_BOOLEAN_TYPE_P (vectype))
658 if (dump_enabled_p ())
660 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
661 "not vectorized: mixed mask and "
662 "nonmask vector types in statement, ");
663 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
664 mask_type);
665 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
666 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
667 vectype);
668 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
670 return false;
674 /* We may compare boolean value loaded as vector of integers.
675 Fix mask_type in such case. */
676 if (mask_type
677 && !VECTOR_BOOLEAN_TYPE_P (mask_type)
678 && gimple_code (stmt) == GIMPLE_ASSIGN
679 && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)) == tcc_comparison)
680 mask_type = build_same_sized_truth_vector_type (mask_type);
683 /* No mask_type should mean loop invariant predicate.
684 This is probably a subject for optimization in
685 if-conversion. */
686 if (!mask_type)
688 if (dump_enabled_p ())
690 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
691 "not vectorized: can't compute mask type "
692 "for statement, ");
693 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt,
695 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
697 return false;
700 STMT_VINFO_VECTYPE (mask_producers[i]) = mask_type;
703 return true;
707 /* Function vect_is_simple_iv_evolution.
709 FORNOW: A simple evolution of an induction variables in the loop is
710 considered a polynomial evolution. */
712 static bool
713 vect_is_simple_iv_evolution (unsigned loop_nb, tree access_fn, tree * init,
714 tree * step)
716 tree init_expr;
717 tree step_expr;
718 tree evolution_part = evolution_part_in_loop_num (access_fn, loop_nb);
719 basic_block bb;
721 /* When there is no evolution in this loop, the evolution function
722 is not "simple". */
723 if (evolution_part == NULL_TREE)
724 return false;
726 /* When the evolution is a polynomial of degree >= 2
727 the evolution function is not "simple". */
728 if (tree_is_chrec (evolution_part))
729 return false;
731 step_expr = evolution_part;
732 init_expr = unshare_expr (initial_condition_in_loop_num (access_fn, loop_nb));
734 if (dump_enabled_p ())
736 dump_printf_loc (MSG_NOTE, vect_location, "step: ");
737 dump_generic_expr (MSG_NOTE, TDF_SLIM, step_expr);
738 dump_printf (MSG_NOTE, ", init: ");
739 dump_generic_expr (MSG_NOTE, TDF_SLIM, init_expr);
740 dump_printf (MSG_NOTE, "\n");
743 *init = init_expr;
744 *step = step_expr;
746 if (TREE_CODE (step_expr) != INTEGER_CST
747 && (TREE_CODE (step_expr) != SSA_NAME
748 || ((bb = gimple_bb (SSA_NAME_DEF_STMT (step_expr)))
749 && flow_bb_inside_loop_p (get_loop (cfun, loop_nb), bb))
750 || (!INTEGRAL_TYPE_P (TREE_TYPE (step_expr))
751 && (!SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr))
752 || !flag_associative_math)))
753 && (TREE_CODE (step_expr) != REAL_CST
754 || !flag_associative_math))
756 if (dump_enabled_p ())
757 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
758 "step unknown.\n");
759 return false;
762 return true;
765 /* Function vect_analyze_scalar_cycles_1.
767 Examine the cross iteration def-use cycles of scalar variables
768 in LOOP. LOOP_VINFO represents the loop that is now being
769 considered for vectorization (can be LOOP, or an outer-loop
770 enclosing LOOP). */
772 static void
773 vect_analyze_scalar_cycles_1 (loop_vec_info loop_vinfo, struct loop *loop)
775 basic_block bb = loop->header;
776 tree init, step;
777 auto_vec<gimple *, 64> worklist;
778 gphi_iterator gsi;
779 bool double_reduc;
781 if (dump_enabled_p ())
782 dump_printf_loc (MSG_NOTE, vect_location,
783 "=== vect_analyze_scalar_cycles ===\n");
785 /* First - identify all inductions. Reduction detection assumes that all the
786 inductions have been identified, therefore, this order must not be
787 changed. */
788 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
790 gphi *phi = gsi.phi ();
791 tree access_fn = NULL;
792 tree def = PHI_RESULT (phi);
793 stmt_vec_info stmt_vinfo = vinfo_for_stmt (phi);
795 if (dump_enabled_p ())
797 dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: ");
798 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
799 dump_printf (MSG_NOTE, "\n");
802 /* Skip virtual phi's. The data dependences that are associated with
803 virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
804 if (virtual_operand_p (def))
805 continue;
807 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_unknown_def_type;
809 /* Analyze the evolution function. */
810 access_fn = analyze_scalar_evolution (loop, def);
811 if (access_fn)
813 STRIP_NOPS (access_fn);
814 if (dump_enabled_p ())
816 dump_printf_loc (MSG_NOTE, vect_location,
817 "Access function of PHI: ");
818 dump_generic_expr (MSG_NOTE, TDF_SLIM, access_fn);
819 dump_printf (MSG_NOTE, "\n");
821 STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED (stmt_vinfo)
822 = initial_condition_in_loop_num (access_fn, loop->num);
823 STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo)
824 = evolution_part_in_loop_num (access_fn, loop->num);
827 if (!access_fn
828 || !vect_is_simple_iv_evolution (loop->num, access_fn, &init, &step)
829 || (LOOP_VINFO_LOOP (loop_vinfo) != loop
830 && TREE_CODE (step) != INTEGER_CST))
832 worklist.safe_push (phi);
833 continue;
836 gcc_assert (STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED (stmt_vinfo)
837 != NULL_TREE);
838 gcc_assert (STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo) != NULL_TREE);
840 if (dump_enabled_p ())
841 dump_printf_loc (MSG_NOTE, vect_location, "Detected induction.\n");
842 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_induction_def;
846 /* Second - identify all reductions and nested cycles. */
847 while (worklist.length () > 0)
849 gimple *phi = worklist.pop ();
850 tree def = PHI_RESULT (phi);
851 stmt_vec_info stmt_vinfo = vinfo_for_stmt (phi);
852 gimple *reduc_stmt;
853 bool nested_cycle;
855 if (dump_enabled_p ())
857 dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: ");
858 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
859 dump_printf (MSG_NOTE, "\n");
862 gcc_assert (!virtual_operand_p (def)
863 && STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_unknown_def_type);
865 nested_cycle = (loop != LOOP_VINFO_LOOP (loop_vinfo));
866 reduc_stmt = vect_force_simple_reduction (loop_vinfo, phi, !nested_cycle,
867 &double_reduc, false);
868 if (reduc_stmt)
870 if (double_reduc)
872 if (dump_enabled_p ())
873 dump_printf_loc (MSG_NOTE, vect_location,
874 "Detected double reduction.\n");
876 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_double_reduction_def;
877 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
878 vect_double_reduction_def;
880 else
882 if (nested_cycle)
884 if (dump_enabled_p ())
885 dump_printf_loc (MSG_NOTE, vect_location,
886 "Detected vectorizable nested cycle.\n");
888 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_nested_cycle;
889 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
890 vect_nested_cycle;
892 else
894 if (dump_enabled_p ())
895 dump_printf_loc (MSG_NOTE, vect_location,
896 "Detected reduction.\n");
898 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_reduction_def;
899 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
900 vect_reduction_def;
901 /* Store the reduction cycles for possible vectorization in
902 loop-aware SLP. */
903 LOOP_VINFO_REDUCTIONS (loop_vinfo).safe_push (reduc_stmt);
907 else
908 if (dump_enabled_p ())
909 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
910 "Unknown def-use cycle pattern.\n");
915 /* Function vect_analyze_scalar_cycles.
917 Examine the cross iteration def-use cycles of scalar variables, by
918 analyzing the loop-header PHIs of scalar variables. Classify each
919 cycle as one of the following: invariant, induction, reduction, unknown.
920 We do that for the loop represented by LOOP_VINFO, and also to its
921 inner-loop, if exists.
922 Examples for scalar cycles:
924 Example1: reduction:
926 loop1:
927 for (i=0; i<N; i++)
928 sum += a[i];
930 Example2: induction:
932 loop2:
933 for (i=0; i<N; i++)
934 a[i] = i; */
936 static void
937 vect_analyze_scalar_cycles (loop_vec_info loop_vinfo)
939 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
941 vect_analyze_scalar_cycles_1 (loop_vinfo, loop);
943 /* When vectorizing an outer-loop, the inner-loop is executed sequentially.
944 Reductions in such inner-loop therefore have different properties than
945 the reductions in the nest that gets vectorized:
946 1. When vectorized, they are executed in the same order as in the original
947 scalar loop, so we can't change the order of computation when
948 vectorizing them.
949 2. FIXME: Inner-loop reductions can be used in the inner-loop, so the
950 current checks are too strict. */
952 if (loop->inner)
953 vect_analyze_scalar_cycles_1 (loop_vinfo, loop->inner);
956 /* Transfer group and reduction information from STMT to its pattern stmt. */
958 static void
959 vect_fixup_reduc_chain (gimple *stmt)
961 gimple *firstp = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt));
962 gimple *stmtp;
963 gcc_assert (!GROUP_FIRST_ELEMENT (vinfo_for_stmt (firstp))
964 && GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)));
965 GROUP_SIZE (vinfo_for_stmt (firstp)) = GROUP_SIZE (vinfo_for_stmt (stmt));
968 stmtp = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt));
969 GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmtp)) = firstp;
970 stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (stmt));
971 if (stmt)
972 GROUP_NEXT_ELEMENT (vinfo_for_stmt (stmtp))
973 = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt));
975 while (stmt);
976 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (stmtp)) = vect_reduction_def;
979 /* Fixup scalar cycles that now have their stmts detected as patterns. */
981 static void
982 vect_fixup_scalar_cycles_with_patterns (loop_vec_info loop_vinfo)
984 gimple *first;
985 unsigned i;
987 FOR_EACH_VEC_ELT (LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo), i, first)
988 if (STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (first)))
990 gimple *next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (first));
991 while (next)
993 if (! STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (next)))
994 break;
995 next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next));
997 /* If not all stmt in the chain are patterns try to handle
998 the chain without patterns. */
999 if (! next)
1001 vect_fixup_reduc_chain (first);
1002 LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo)[i]
1003 = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (first));
1008 /* Function vect_get_loop_niters.
1010 Determine how many iterations the loop is executed and place it
1011 in NUMBER_OF_ITERATIONS. Place the number of latch iterations
1012 in NUMBER_OF_ITERATIONSM1.
1014 Return the loop exit condition. */
1017 static gcond *
1018 vect_get_loop_niters (struct loop *loop, tree *number_of_iterations,
1019 tree *number_of_iterationsm1)
1021 tree niters;
1023 if (dump_enabled_p ())
1024 dump_printf_loc (MSG_NOTE, vect_location,
1025 "=== get_loop_niters ===\n");
1027 niters = number_of_latch_executions (loop);
1028 *number_of_iterationsm1 = niters;
1030 /* We want the number of loop header executions which is the number
1031 of latch executions plus one.
1032 ??? For UINT_MAX latch executions this number overflows to zero
1033 for loops like do { n++; } while (n != 0); */
1034 if (niters && !chrec_contains_undetermined (niters))
1035 niters = fold_build2 (PLUS_EXPR, TREE_TYPE (niters), unshare_expr (niters),
1036 build_int_cst (TREE_TYPE (niters), 1));
1037 *number_of_iterations = niters;
1039 return get_loop_exit_condition (loop);
1043 /* Function bb_in_loop_p
1045 Used as predicate for dfs order traversal of the loop bbs. */
1047 static bool
1048 bb_in_loop_p (const_basic_block bb, const void *data)
1050 const struct loop *const loop = (const struct loop *)data;
1051 if (flow_bb_inside_loop_p (loop, bb))
1052 return true;
1053 return false;
1057 /* Function new_loop_vec_info.
1059 Create and initialize a new loop_vec_info struct for LOOP, as well as
1060 stmt_vec_info structs for all the stmts in LOOP. */
1062 static loop_vec_info
1063 new_loop_vec_info (struct loop *loop)
1065 loop_vec_info res;
1066 basic_block *bbs;
1067 gimple_stmt_iterator si;
1068 unsigned int i, nbbs;
1070 res = (loop_vec_info) xcalloc (1, sizeof (struct _loop_vec_info));
1071 res->kind = vec_info::loop;
1072 LOOP_VINFO_LOOP (res) = loop;
1074 bbs = get_loop_body (loop);
1076 /* Create/Update stmt_info for all stmts in the loop. */
1077 for (i = 0; i < loop->num_nodes; i++)
1079 basic_block bb = bbs[i];
1081 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
1083 gimple *phi = gsi_stmt (si);
1084 gimple_set_uid (phi, 0);
1085 set_vinfo_for_stmt (phi, new_stmt_vec_info (phi, res));
1088 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1090 gimple *stmt = gsi_stmt (si);
1091 gimple_set_uid (stmt, 0);
1092 set_vinfo_for_stmt (stmt, new_stmt_vec_info (stmt, res));
1096 /* CHECKME: We want to visit all BBs before their successors (except for
1097 latch blocks, for which this assertion wouldn't hold). In the simple
1098 case of the loop forms we allow, a dfs order of the BBs would the same
1099 as reversed postorder traversal, so we are safe. */
1101 free (bbs);
1102 bbs = XCNEWVEC (basic_block, loop->num_nodes);
1103 nbbs = dfs_enumerate_from (loop->header, 0, bb_in_loop_p,
1104 bbs, loop->num_nodes, loop);
1105 gcc_assert (nbbs == loop->num_nodes);
1107 LOOP_VINFO_BBS (res) = bbs;
1108 LOOP_VINFO_NITERSM1 (res) = NULL;
1109 LOOP_VINFO_NITERS (res) = NULL;
1110 LOOP_VINFO_NITERS_UNCHANGED (res) = NULL;
1111 LOOP_VINFO_COST_MODEL_THRESHOLD (res) = 0;
1112 LOOP_VINFO_VECTORIZABLE_P (res) = 0;
1113 LOOP_VINFO_PEELING_FOR_ALIGNMENT (res) = 0;
1114 LOOP_VINFO_VECT_FACTOR (res) = 0;
1115 LOOP_VINFO_LOOP_NEST (res) = vNULL;
1116 LOOP_VINFO_DATAREFS (res) = vNULL;
1117 LOOP_VINFO_DDRS (res) = vNULL;
1118 LOOP_VINFO_UNALIGNED_DR (res) = NULL;
1119 LOOP_VINFO_MAY_MISALIGN_STMTS (res) = vNULL;
1120 LOOP_VINFO_MAY_ALIAS_DDRS (res) = vNULL;
1121 LOOP_VINFO_GROUPED_STORES (res) = vNULL;
1122 LOOP_VINFO_REDUCTIONS (res) = vNULL;
1123 LOOP_VINFO_REDUCTION_CHAINS (res) = vNULL;
1124 LOOP_VINFO_SLP_INSTANCES (res) = vNULL;
1125 LOOP_VINFO_SLP_UNROLLING_FACTOR (res) = 1;
1126 LOOP_VINFO_TARGET_COST_DATA (res) = init_cost (loop);
1127 LOOP_VINFO_PEELING_FOR_GAPS (res) = false;
1128 LOOP_VINFO_PEELING_FOR_NITER (res) = false;
1129 LOOP_VINFO_OPERANDS_SWAPPED (res) = false;
1131 return res;
1135 /* Function destroy_loop_vec_info.
1137 Free LOOP_VINFO struct, as well as all the stmt_vec_info structs of all the
1138 stmts in the loop. */
1140 void
1141 destroy_loop_vec_info (loop_vec_info loop_vinfo, bool clean_stmts)
1143 struct loop *loop;
1144 basic_block *bbs;
1145 int nbbs;
1146 gimple_stmt_iterator si;
1147 int j;
1148 vec<slp_instance> slp_instances;
1149 slp_instance instance;
1150 bool swapped;
1152 if (!loop_vinfo)
1153 return;
1155 loop = LOOP_VINFO_LOOP (loop_vinfo);
1157 bbs = LOOP_VINFO_BBS (loop_vinfo);
1158 nbbs = clean_stmts ? loop->num_nodes : 0;
1159 swapped = LOOP_VINFO_OPERANDS_SWAPPED (loop_vinfo);
1161 for (j = 0; j < nbbs; j++)
1163 basic_block bb = bbs[j];
1164 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
1165 free_stmt_vec_info (gsi_stmt (si));
1167 for (si = gsi_start_bb (bb); !gsi_end_p (si); )
1169 gimple *stmt = gsi_stmt (si);
1171 /* We may have broken canonical form by moving a constant
1172 into RHS1 of a commutative op. Fix such occurrences. */
1173 if (swapped && is_gimple_assign (stmt))
1175 enum tree_code code = gimple_assign_rhs_code (stmt);
1177 if ((code == PLUS_EXPR
1178 || code == POINTER_PLUS_EXPR
1179 || code == MULT_EXPR)
1180 && CONSTANT_CLASS_P (gimple_assign_rhs1 (stmt)))
1181 swap_ssa_operands (stmt,
1182 gimple_assign_rhs1_ptr (stmt),
1183 gimple_assign_rhs2_ptr (stmt));
1186 /* Free stmt_vec_info. */
1187 free_stmt_vec_info (stmt);
1188 gsi_next (&si);
1192 free (LOOP_VINFO_BBS (loop_vinfo));
1193 vect_destroy_datarefs (loop_vinfo);
1194 free_dependence_relations (LOOP_VINFO_DDRS (loop_vinfo));
1195 LOOP_VINFO_LOOP_NEST (loop_vinfo).release ();
1196 LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).release ();
1197 LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo).release ();
1198 LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo).release ();
1199 slp_instances = LOOP_VINFO_SLP_INSTANCES (loop_vinfo);
1200 FOR_EACH_VEC_ELT (slp_instances, j, instance)
1201 vect_free_slp_instance (instance);
1203 LOOP_VINFO_SLP_INSTANCES (loop_vinfo).release ();
1204 LOOP_VINFO_GROUPED_STORES (loop_vinfo).release ();
1205 LOOP_VINFO_REDUCTIONS (loop_vinfo).release ();
1206 LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo).release ();
1208 destroy_cost_data (LOOP_VINFO_TARGET_COST_DATA (loop_vinfo));
1209 loop_vinfo->scalar_cost_vec.release ();
1211 free (loop_vinfo);
1212 loop->aux = NULL;
1216 /* Calculate the cost of one scalar iteration of the loop. */
1217 static void
1218 vect_compute_single_scalar_iteration_cost (loop_vec_info loop_vinfo)
1220 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1221 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
1222 int nbbs = loop->num_nodes, factor, scalar_single_iter_cost = 0;
1223 int innerloop_iters, i;
1225 /* Count statements in scalar loop. Using this as scalar cost for a single
1226 iteration for now.
1228 TODO: Add outer loop support.
1230 TODO: Consider assigning different costs to different scalar
1231 statements. */
1233 /* FORNOW. */
1234 innerloop_iters = 1;
1235 if (loop->inner)
1236 innerloop_iters = 50; /* FIXME */
1238 for (i = 0; i < nbbs; i++)
1240 gimple_stmt_iterator si;
1241 basic_block bb = bbs[i];
1243 if (bb->loop_father == loop->inner)
1244 factor = innerloop_iters;
1245 else
1246 factor = 1;
1248 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1250 gimple *stmt = gsi_stmt (si);
1251 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1253 if (!is_gimple_assign (stmt) && !is_gimple_call (stmt))
1254 continue;
1256 /* Skip stmts that are not vectorized inside the loop. */
1257 if (stmt_info
1258 && !STMT_VINFO_RELEVANT_P (stmt_info)
1259 && (!STMT_VINFO_LIVE_P (stmt_info)
1260 || !VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info)))
1261 && !STMT_VINFO_IN_PATTERN_P (stmt_info))
1262 continue;
1264 vect_cost_for_stmt kind;
1265 if (STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt)))
1267 if (DR_IS_READ (STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt))))
1268 kind = scalar_load;
1269 else
1270 kind = scalar_store;
1272 else
1273 kind = scalar_stmt;
1275 scalar_single_iter_cost
1276 += record_stmt_cost (&LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo),
1277 factor, kind, NULL, 0, vect_prologue);
1280 LOOP_VINFO_SINGLE_SCALAR_ITERATION_COST (loop_vinfo)
1281 = scalar_single_iter_cost;
1285 /* Function vect_analyze_loop_form_1.
1287 Verify that certain CFG restrictions hold, including:
1288 - the loop has a pre-header
1289 - the loop has a single entry and exit
1290 - the loop exit condition is simple enough, and the number of iterations
1291 can be analyzed (a countable loop). */
1293 bool
1294 vect_analyze_loop_form_1 (struct loop *loop, gcond **loop_cond,
1295 tree *number_of_iterationsm1,
1296 tree *number_of_iterations, gcond **inner_loop_cond)
1298 if (dump_enabled_p ())
1299 dump_printf_loc (MSG_NOTE, vect_location,
1300 "=== vect_analyze_loop_form ===\n");
1302 /* Different restrictions apply when we are considering an inner-most loop,
1303 vs. an outer (nested) loop.
1304 (FORNOW. May want to relax some of these restrictions in the future). */
1306 if (!loop->inner)
1308 /* Inner-most loop. We currently require that the number of BBs is
1309 exactly 2 (the header and latch). Vectorizable inner-most loops
1310 look like this:
1312 (pre-header)
1314 header <--------+
1315 | | |
1316 | +--> latch --+
1318 (exit-bb) */
1320 if (loop->num_nodes != 2)
1322 if (dump_enabled_p ())
1323 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1324 "not vectorized: control flow in loop.\n");
1325 return false;
1328 if (empty_block_p (loop->header))
1330 if (dump_enabled_p ())
1331 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1332 "not vectorized: empty loop.\n");
1333 return false;
1336 else
1338 struct loop *innerloop = loop->inner;
1339 edge entryedge;
1341 /* Nested loop. We currently require that the loop is doubly-nested,
1342 contains a single inner loop, and the number of BBs is exactly 5.
1343 Vectorizable outer-loops look like this:
1345 (pre-header)
1347 header <---+
1349 inner-loop |
1351 tail ------+
1353 (exit-bb)
1355 The inner-loop has the properties expected of inner-most loops
1356 as described above. */
1358 if ((loop->inner)->inner || (loop->inner)->next)
1360 if (dump_enabled_p ())
1361 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1362 "not vectorized: multiple nested loops.\n");
1363 return false;
1366 if (loop->num_nodes != 5)
1368 if (dump_enabled_p ())
1369 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1370 "not vectorized: control flow in loop.\n");
1371 return false;
1374 entryedge = loop_preheader_edge (innerloop);
1375 if (entryedge->src != loop->header
1376 || !single_exit (innerloop)
1377 || single_exit (innerloop)->dest != EDGE_PRED (loop->latch, 0)->src)
1379 if (dump_enabled_p ())
1380 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1381 "not vectorized: unsupported outerloop form.\n");
1382 return false;
1385 /* Analyze the inner-loop. */
1386 tree inner_niterm1, inner_niter;
1387 if (! vect_analyze_loop_form_1 (loop->inner, inner_loop_cond,
1388 &inner_niterm1, &inner_niter, NULL))
1390 if (dump_enabled_p ())
1391 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1392 "not vectorized: Bad inner loop.\n");
1393 return false;
1396 if (!expr_invariant_in_loop_p (loop, inner_niter))
1398 if (dump_enabled_p ())
1399 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1400 "not vectorized: inner-loop count not"
1401 " invariant.\n");
1402 return false;
1405 if (dump_enabled_p ())
1406 dump_printf_loc (MSG_NOTE, vect_location,
1407 "Considering outer-loop vectorization.\n");
1410 if (!single_exit (loop)
1411 || EDGE_COUNT (loop->header->preds) != 2)
1413 if (dump_enabled_p ())
1415 if (!single_exit (loop))
1416 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1417 "not vectorized: multiple exits.\n");
1418 else if (EDGE_COUNT (loop->header->preds) != 2)
1419 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1420 "not vectorized: too many incoming edges.\n");
1422 return false;
1425 /* We assume that the loop exit condition is at the end of the loop. i.e,
1426 that the loop is represented as a do-while (with a proper if-guard
1427 before the loop if needed), where the loop header contains all the
1428 executable statements, and the latch is empty. */
1429 if (!empty_block_p (loop->latch)
1430 || !gimple_seq_empty_p (phi_nodes (loop->latch)))
1432 if (dump_enabled_p ())
1433 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1434 "not vectorized: latch block not empty.\n");
1435 return false;
1438 /* Make sure there exists a single-predecessor exit bb: */
1439 if (!single_pred_p (single_exit (loop)->dest))
1441 edge e = single_exit (loop);
1442 if (!(e->flags & EDGE_ABNORMAL))
1444 split_loop_exit_edge (e);
1445 if (dump_enabled_p ())
1446 dump_printf (MSG_NOTE, "split exit edge.\n");
1448 else
1450 if (dump_enabled_p ())
1451 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1452 "not vectorized: abnormal loop exit edge.\n");
1453 return false;
1457 *loop_cond = vect_get_loop_niters (loop, number_of_iterations,
1458 number_of_iterationsm1);
1459 if (!*loop_cond)
1461 if (dump_enabled_p ())
1462 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1463 "not vectorized: complicated exit condition.\n");
1464 return false;
1467 if (!*number_of_iterations
1468 || chrec_contains_undetermined (*number_of_iterations))
1470 if (dump_enabled_p ())
1471 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1472 "not vectorized: number of iterations cannot be "
1473 "computed.\n");
1474 return false;
1477 if (integer_zerop (*number_of_iterations))
1479 if (dump_enabled_p ())
1480 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1481 "not vectorized: number of iterations = 0.\n");
1482 return false;
1485 return true;
1488 /* Analyze LOOP form and return a loop_vec_info if it is of suitable form. */
1490 loop_vec_info
1491 vect_analyze_loop_form (struct loop *loop)
1493 tree number_of_iterations, number_of_iterationsm1;
1494 gcond *loop_cond, *inner_loop_cond = NULL;
1496 if (! vect_analyze_loop_form_1 (loop, &loop_cond, &number_of_iterationsm1,
1497 &number_of_iterations, &inner_loop_cond))
1498 return NULL;
1500 loop_vec_info loop_vinfo = new_loop_vec_info (loop);
1501 LOOP_VINFO_NITERSM1 (loop_vinfo) = number_of_iterationsm1;
1502 LOOP_VINFO_NITERS (loop_vinfo) = number_of_iterations;
1503 LOOP_VINFO_NITERS_UNCHANGED (loop_vinfo) = number_of_iterations;
1505 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
1507 if (dump_enabled_p ())
1509 dump_printf_loc (MSG_NOTE, vect_location,
1510 "Symbolic number of iterations is ");
1511 dump_generic_expr (MSG_NOTE, TDF_DETAILS, number_of_iterations);
1512 dump_printf (MSG_NOTE, "\n");
1516 STMT_VINFO_TYPE (vinfo_for_stmt (loop_cond)) = loop_exit_ctrl_vec_info_type;
1517 if (inner_loop_cond)
1518 STMT_VINFO_TYPE (vinfo_for_stmt (inner_loop_cond))
1519 = loop_exit_ctrl_vec_info_type;
1521 gcc_assert (!loop->aux);
1522 loop->aux = loop_vinfo;
1523 return loop_vinfo;
1528 /* Scan the loop stmts and dependent on whether there are any (non-)SLP
1529 statements update the vectorization factor. */
1531 static void
1532 vect_update_vf_for_slp (loop_vec_info loop_vinfo)
1534 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1535 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
1536 int nbbs = loop->num_nodes;
1537 unsigned int vectorization_factor;
1538 int i;
1540 if (dump_enabled_p ())
1541 dump_printf_loc (MSG_NOTE, vect_location,
1542 "=== vect_update_vf_for_slp ===\n");
1544 vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1545 gcc_assert (vectorization_factor != 0);
1547 /* If all the stmts in the loop can be SLPed, we perform only SLP, and
1548 vectorization factor of the loop is the unrolling factor required by
1549 the SLP instances. If that unrolling factor is 1, we say, that we
1550 perform pure SLP on loop - cross iteration parallelism is not
1551 exploited. */
1552 bool only_slp_in_loop = true;
1553 for (i = 0; i < nbbs; i++)
1555 basic_block bb = bbs[i];
1556 for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
1557 gsi_next (&si))
1559 gimple *stmt = gsi_stmt (si);
1560 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1561 if (STMT_VINFO_IN_PATTERN_P (stmt_info)
1562 && STMT_VINFO_RELATED_STMT (stmt_info))
1564 stmt = STMT_VINFO_RELATED_STMT (stmt_info);
1565 stmt_info = vinfo_for_stmt (stmt);
1567 if ((STMT_VINFO_RELEVANT_P (stmt_info)
1568 || VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info)))
1569 && !PURE_SLP_STMT (stmt_info))
1570 /* STMT needs both SLP and loop-based vectorization. */
1571 only_slp_in_loop = false;
1575 if (only_slp_in_loop)
1576 vectorization_factor = LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo);
1577 else
1578 vectorization_factor
1579 = least_common_multiple (vectorization_factor,
1580 LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo));
1582 LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
1583 if (dump_enabled_p ())
1584 dump_printf_loc (MSG_NOTE, vect_location,
1585 "Updating vectorization factor to %d\n",
1586 vectorization_factor);
1589 /* Function vect_analyze_loop_operations.
1591 Scan the loop stmts and make sure they are all vectorizable. */
1593 static bool
1594 vect_analyze_loop_operations (loop_vec_info loop_vinfo)
1596 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1597 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
1598 int nbbs = loop->num_nodes;
1599 int i;
1600 stmt_vec_info stmt_info;
1601 bool need_to_vectorize = false;
1602 bool ok;
1604 if (dump_enabled_p ())
1605 dump_printf_loc (MSG_NOTE, vect_location,
1606 "=== vect_analyze_loop_operations ===\n");
1608 for (i = 0; i < nbbs; i++)
1610 basic_block bb = bbs[i];
1612 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
1613 gsi_next (&si))
1615 gphi *phi = si.phi ();
1616 ok = true;
1618 stmt_info = vinfo_for_stmt (phi);
1619 if (dump_enabled_p ())
1621 dump_printf_loc (MSG_NOTE, vect_location, "examining phi: ");
1622 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
1623 dump_printf (MSG_NOTE, "\n");
1625 if (virtual_operand_p (gimple_phi_result (phi)))
1626 continue;
1628 /* Inner-loop loop-closed exit phi in outer-loop vectorization
1629 (i.e., a phi in the tail of the outer-loop). */
1630 if (! is_loop_header_bb_p (bb))
1632 /* FORNOW: we currently don't support the case that these phis
1633 are not used in the outerloop (unless it is double reduction,
1634 i.e., this phi is vect_reduction_def), cause this case
1635 requires to actually do something here. */
1636 if ((!STMT_VINFO_RELEVANT_P (stmt_info)
1637 || STMT_VINFO_LIVE_P (stmt_info))
1638 && STMT_VINFO_DEF_TYPE (stmt_info)
1639 != vect_double_reduction_def)
1641 if (dump_enabled_p ())
1642 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1643 "Unsupported loop-closed phi in "
1644 "outer-loop.\n");
1645 return false;
1648 /* If PHI is used in the outer loop, we check that its operand
1649 is defined in the inner loop. */
1650 if (STMT_VINFO_RELEVANT_P (stmt_info))
1652 tree phi_op;
1653 gimple *op_def_stmt;
1655 if (gimple_phi_num_args (phi) != 1)
1656 return false;
1658 phi_op = PHI_ARG_DEF (phi, 0);
1659 if (TREE_CODE (phi_op) != SSA_NAME)
1660 return false;
1662 op_def_stmt = SSA_NAME_DEF_STMT (phi_op);
1663 if (gimple_nop_p (op_def_stmt)
1664 || !flow_bb_inside_loop_p (loop, gimple_bb (op_def_stmt))
1665 || !vinfo_for_stmt (op_def_stmt))
1666 return false;
1668 if (STMT_VINFO_RELEVANT (vinfo_for_stmt (op_def_stmt))
1669 != vect_used_in_outer
1670 && STMT_VINFO_RELEVANT (vinfo_for_stmt (op_def_stmt))
1671 != vect_used_in_outer_by_reduction)
1672 return false;
1675 continue;
1678 gcc_assert (stmt_info);
1680 if (STMT_VINFO_LIVE_P (stmt_info))
1682 /* FORNOW: not yet supported. */
1683 if (dump_enabled_p ())
1684 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1685 "not vectorized: value used after loop.\n");
1686 return false;
1689 if (STMT_VINFO_RELEVANT (stmt_info) == vect_used_in_scope
1690 && STMT_VINFO_DEF_TYPE (stmt_info) != vect_induction_def)
1692 /* A scalar-dependence cycle that we don't support. */
1693 if (dump_enabled_p ())
1694 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1695 "not vectorized: scalar dependence cycle.\n");
1696 return false;
1699 if (STMT_VINFO_RELEVANT_P (stmt_info))
1701 need_to_vectorize = true;
1702 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def)
1703 ok = vectorizable_induction (phi, NULL, NULL);
1706 if (!ok)
1708 if (dump_enabled_p ())
1710 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1711 "not vectorized: relevant phi not "
1712 "supported: ");
1713 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, phi, 0);
1714 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
1716 return false;
1720 for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
1721 gsi_next (&si))
1723 gimple *stmt = gsi_stmt (si);
1724 if (!gimple_clobber_p (stmt)
1725 && !vect_analyze_stmt (stmt, &need_to_vectorize, NULL))
1726 return false;
1728 } /* bbs */
1730 /* All operations in the loop are either irrelevant (deal with loop
1731 control, or dead), or only used outside the loop and can be moved
1732 out of the loop (e.g. invariants, inductions). The loop can be
1733 optimized away by scalar optimizations. We're better off not
1734 touching this loop. */
1735 if (!need_to_vectorize)
1737 if (dump_enabled_p ())
1738 dump_printf_loc (MSG_NOTE, vect_location,
1739 "All the computation can be taken out of the loop.\n");
1740 if (dump_enabled_p ())
1741 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1742 "not vectorized: redundant loop. no profit to "
1743 "vectorize.\n");
1744 return false;
1747 return true;
1751 /* Function vect_analyze_loop_2.
1753 Apply a set of analyses on LOOP, and create a loop_vec_info struct
1754 for it. The different analyses will record information in the
1755 loop_vec_info struct. */
1756 static bool
1757 vect_analyze_loop_2 (loop_vec_info loop_vinfo, bool &fatal)
1759 bool ok;
1760 int max_vf = MAX_VECTORIZATION_FACTOR;
1761 int min_vf = 2;
1762 unsigned int n_stmts = 0;
1764 /* The first group of checks is independent of the vector size. */
1765 fatal = true;
1767 /* Find all data references in the loop (which correspond to vdefs/vuses)
1768 and analyze their evolution in the loop. */
1770 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
1772 loop_p loop = LOOP_VINFO_LOOP (loop_vinfo);
1773 if (!find_loop_nest (loop, &LOOP_VINFO_LOOP_NEST (loop_vinfo)))
1775 if (dump_enabled_p ())
1776 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1777 "not vectorized: loop nest containing two "
1778 "or more consecutive inner loops cannot be "
1779 "vectorized\n");
1780 return false;
1783 for (unsigned i = 0; i < loop->num_nodes; i++)
1784 for (gimple_stmt_iterator gsi = gsi_start_bb (bbs[i]);
1785 !gsi_end_p (gsi); gsi_next (&gsi))
1787 gimple *stmt = gsi_stmt (gsi);
1788 if (is_gimple_debug (stmt))
1789 continue;
1790 ++n_stmts;
1791 if (!find_data_references_in_stmt (loop, stmt,
1792 &LOOP_VINFO_DATAREFS (loop_vinfo)))
1794 if (is_gimple_call (stmt) && loop->safelen)
1796 tree fndecl = gimple_call_fndecl (stmt), op;
1797 if (fndecl != NULL_TREE)
1799 cgraph_node *node = cgraph_node::get (fndecl);
1800 if (node != NULL && node->simd_clones != NULL)
1802 unsigned int j, n = gimple_call_num_args (stmt);
1803 for (j = 0; j < n; j++)
1805 op = gimple_call_arg (stmt, j);
1806 if (DECL_P (op)
1807 || (REFERENCE_CLASS_P (op)
1808 && get_base_address (op)))
1809 break;
1811 op = gimple_call_lhs (stmt);
1812 /* Ignore #pragma omp declare simd functions
1813 if they don't have data references in the
1814 call stmt itself. */
1815 if (j == n
1816 && !(op
1817 && (DECL_P (op)
1818 || (REFERENCE_CLASS_P (op)
1819 && get_base_address (op)))))
1820 continue;
1824 if (dump_enabled_p ())
1825 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1826 "not vectorized: loop contains function "
1827 "calls or data references that cannot "
1828 "be analyzed\n");
1829 return false;
1833 /* Analyze the data references and also adjust the minimal
1834 vectorization factor according to the loads and stores. */
1836 ok = vect_analyze_data_refs (loop_vinfo, &min_vf);
1837 if (!ok)
1839 if (dump_enabled_p ())
1840 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1841 "bad data references.\n");
1842 return false;
1845 /* Classify all cross-iteration scalar data-flow cycles.
1846 Cross-iteration cycles caused by virtual phis are analyzed separately. */
1847 vect_analyze_scalar_cycles (loop_vinfo);
1849 vect_pattern_recog (loop_vinfo);
1851 vect_fixup_scalar_cycles_with_patterns (loop_vinfo);
1853 /* Analyze the access patterns of the data-refs in the loop (consecutive,
1854 complex, etc.). FORNOW: Only handle consecutive access pattern. */
1856 ok = vect_analyze_data_ref_accesses (loop_vinfo);
1857 if (!ok)
1859 if (dump_enabled_p ())
1860 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1861 "bad data access.\n");
1862 return false;
1865 /* Data-flow analysis to detect stmts that do not need to be vectorized. */
1867 ok = vect_mark_stmts_to_be_vectorized (loop_vinfo);
1868 if (!ok)
1870 if (dump_enabled_p ())
1871 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1872 "unexpected pattern.\n");
1873 return false;
1876 /* While the rest of the analysis below depends on it in some way. */
1877 fatal = false;
1879 /* Analyze data dependences between the data-refs in the loop
1880 and adjust the maximum vectorization factor according to
1881 the dependences.
1882 FORNOW: fail at the first data dependence that we encounter. */
1884 ok = vect_analyze_data_ref_dependences (loop_vinfo, &max_vf);
1885 if (!ok
1886 || max_vf < min_vf)
1888 if (dump_enabled_p ())
1889 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1890 "bad data dependence.\n");
1891 return false;
1894 ok = vect_determine_vectorization_factor (loop_vinfo);
1895 if (!ok)
1897 if (dump_enabled_p ())
1898 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1899 "can't determine vectorization factor.\n");
1900 return false;
1902 if (max_vf < LOOP_VINFO_VECT_FACTOR (loop_vinfo))
1904 if (dump_enabled_p ())
1905 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1906 "bad data dependence.\n");
1907 return false;
1910 /* Compute the scalar iteration cost. */
1911 vect_compute_single_scalar_iteration_cost (loop_vinfo);
1913 int saved_vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1914 HOST_WIDE_INT estimated_niter;
1915 unsigned th;
1916 int min_scalar_loop_bound;
1918 /* Check the SLP opportunities in the loop, analyze and build SLP trees. */
1919 ok = vect_analyze_slp (loop_vinfo, n_stmts);
1920 if (!ok)
1921 return false;
1923 /* If there are any SLP instances mark them as pure_slp. */
1924 bool slp = vect_make_slp_decision (loop_vinfo);
1925 if (slp)
1927 /* Find stmts that need to be both vectorized and SLPed. */
1928 vect_detect_hybrid_slp (loop_vinfo);
1930 /* Update the vectorization factor based on the SLP decision. */
1931 vect_update_vf_for_slp (loop_vinfo);
1934 /* This is the point where we can re-start analysis with SLP forced off. */
1935 start_over:
1937 /* Now the vectorization factor is final. */
1938 unsigned vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1939 gcc_assert (vectorization_factor != 0);
1941 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo) && dump_enabled_p ())
1942 dump_printf_loc (MSG_NOTE, vect_location,
1943 "vectorization_factor = %d, niters = "
1944 HOST_WIDE_INT_PRINT_DEC "\n", vectorization_factor,
1945 LOOP_VINFO_INT_NITERS (loop_vinfo));
1947 HOST_WIDE_INT max_niter
1948 = max_stmt_executions_int (LOOP_VINFO_LOOP (loop_vinfo));
1949 if ((LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1950 && (LOOP_VINFO_INT_NITERS (loop_vinfo) < vectorization_factor))
1951 || (max_niter != -1
1952 && (unsigned HOST_WIDE_INT) max_niter < vectorization_factor))
1954 if (dump_enabled_p ())
1955 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1956 "not vectorized: iteration count smaller than "
1957 "vectorization factor.\n");
1958 return false;
1961 /* Analyze the alignment of the data-refs in the loop.
1962 Fail if a data reference is found that cannot be vectorized. */
1964 ok = vect_analyze_data_refs_alignment (loop_vinfo);
1965 if (!ok)
1967 if (dump_enabled_p ())
1968 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1969 "bad data alignment.\n");
1970 return false;
1973 /* Prune the list of ddrs to be tested at run-time by versioning for alias.
1974 It is important to call pruning after vect_analyze_data_ref_accesses,
1975 since we use grouping information gathered by interleaving analysis. */
1976 ok = vect_prune_runtime_alias_test_list (loop_vinfo);
1977 if (!ok)
1979 if (dump_enabled_p ())
1980 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1981 "number of versioning for alias "
1982 "run-time tests exceeds %d "
1983 "(--param vect-max-version-for-alias-checks)\n",
1984 PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS));
1985 return false;
1988 /* This pass will decide on using loop versioning and/or loop peeling in
1989 order to enhance the alignment of data references in the loop. */
1990 ok = vect_enhance_data_refs_alignment (loop_vinfo);
1991 if (!ok)
1993 if (dump_enabled_p ())
1994 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1995 "bad data alignment.\n");
1996 return false;
1999 if (slp)
2001 /* Analyze operations in the SLP instances. Note this may
2002 remove unsupported SLP instances which makes the above
2003 SLP kind detection invalid. */
2004 unsigned old_size = LOOP_VINFO_SLP_INSTANCES (loop_vinfo).length ();
2005 vect_slp_analyze_operations (LOOP_VINFO_SLP_INSTANCES (loop_vinfo),
2006 LOOP_VINFO_TARGET_COST_DATA (loop_vinfo));
2007 if (LOOP_VINFO_SLP_INSTANCES (loop_vinfo).length () != old_size)
2008 goto again;
2011 /* Scan all the remaining operations in the loop that are not subject
2012 to SLP and make sure they are vectorizable. */
2013 ok = vect_analyze_loop_operations (loop_vinfo);
2014 if (!ok)
2016 if (dump_enabled_p ())
2017 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2018 "bad operation or unsupported loop bound.\n");
2019 return false;
2022 /* Analyze cost. Decide if worth while to vectorize. */
2023 int min_profitable_estimate, min_profitable_iters;
2024 vect_estimate_min_profitable_iters (loop_vinfo, &min_profitable_iters,
2025 &min_profitable_estimate);
2027 if (min_profitable_iters < 0)
2029 if (dump_enabled_p ())
2030 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2031 "not vectorized: vectorization not profitable.\n");
2032 if (dump_enabled_p ())
2033 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2034 "not vectorized: vector version will never be "
2035 "profitable.\n");
2036 goto again;
2039 min_scalar_loop_bound = ((PARAM_VALUE (PARAM_MIN_VECT_LOOP_BOUND)
2040 * vectorization_factor) - 1);
2042 /* Use the cost model only if it is more conservative than user specified
2043 threshold. */
2044 th = (unsigned) min_scalar_loop_bound;
2045 if (min_profitable_iters
2046 && (!min_scalar_loop_bound
2047 || min_profitable_iters > min_scalar_loop_bound))
2048 th = (unsigned) min_profitable_iters;
2050 LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo) = th;
2052 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
2053 && LOOP_VINFO_INT_NITERS (loop_vinfo) <= th)
2055 if (dump_enabled_p ())
2056 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2057 "not vectorized: vectorization not profitable.\n");
2058 if (dump_enabled_p ())
2059 dump_printf_loc (MSG_NOTE, vect_location,
2060 "not vectorized: iteration count smaller than user "
2061 "specified loop bound parameter or minimum profitable "
2062 "iterations (whichever is more conservative).\n");
2063 goto again;
2066 estimated_niter
2067 = estimated_stmt_executions_int (LOOP_VINFO_LOOP (loop_vinfo));
2068 if (estimated_niter != -1
2069 && ((unsigned HOST_WIDE_INT) estimated_niter
2070 <= MAX (th, (unsigned)min_profitable_estimate)))
2072 if (dump_enabled_p ())
2073 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2074 "not vectorized: estimated iteration count too "
2075 "small.\n");
2076 if (dump_enabled_p ())
2077 dump_printf_loc (MSG_NOTE, vect_location,
2078 "not vectorized: estimated iteration count smaller "
2079 "than specified loop bound parameter or minimum "
2080 "profitable iterations (whichever is more "
2081 "conservative).\n");
2082 goto again;
2085 /* Decide whether we need to create an epilogue loop to handle
2086 remaining scalar iterations. */
2087 th = ((LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo) + 1)
2088 / LOOP_VINFO_VECT_FACTOR (loop_vinfo))
2089 * LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2091 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
2092 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
2094 if (ctz_hwi (LOOP_VINFO_INT_NITERS (loop_vinfo)
2095 - LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo))
2096 < exact_log2 (LOOP_VINFO_VECT_FACTOR (loop_vinfo)))
2097 LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo) = true;
2099 else if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo)
2100 || (tree_ctz (LOOP_VINFO_NITERS (loop_vinfo))
2101 < (unsigned)exact_log2 (LOOP_VINFO_VECT_FACTOR (loop_vinfo))
2102 /* In case of versioning, check if the maximum number of
2103 iterations is greater than th. If they are identical,
2104 the epilogue is unnecessary. */
2105 && ((!LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo)
2106 && !LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
2107 || (unsigned HOST_WIDE_INT) max_niter > th)))
2108 LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo) = true;
2110 /* If an epilogue loop is required make sure we can create one. */
2111 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
2112 || LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo))
2114 if (dump_enabled_p ())
2115 dump_printf_loc (MSG_NOTE, vect_location, "epilog loop required\n");
2116 if (!vect_can_advance_ivs_p (loop_vinfo)
2117 || !slpeel_can_duplicate_loop_p (LOOP_VINFO_LOOP (loop_vinfo),
2118 single_exit (LOOP_VINFO_LOOP
2119 (loop_vinfo))))
2121 if (dump_enabled_p ())
2122 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2123 "not vectorized: can't create required "
2124 "epilog loop\n");
2125 goto again;
2129 gcc_assert (vectorization_factor
2130 == (unsigned)LOOP_VINFO_VECT_FACTOR (loop_vinfo));
2132 /* Ok to vectorize! */
2133 return true;
2135 again:
2136 /* Try again with SLP forced off but if we didn't do any SLP there is
2137 no point in re-trying. */
2138 if (!slp)
2139 return false;
2141 /* If there are reduction chains re-trying will fail anyway. */
2142 if (! LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo).is_empty ())
2143 return false;
2145 /* Likewise if the grouped loads or stores in the SLP cannot be handled
2146 via interleaving or lane instructions. */
2147 slp_instance instance;
2148 slp_tree node;
2149 unsigned i, j;
2150 FOR_EACH_VEC_ELT (LOOP_VINFO_SLP_INSTANCES (loop_vinfo), i, instance)
2152 stmt_vec_info vinfo;
2153 vinfo = vinfo_for_stmt
2154 (SLP_TREE_SCALAR_STMTS (SLP_INSTANCE_TREE (instance))[0]);
2155 if (! STMT_VINFO_GROUPED_ACCESS (vinfo))
2156 continue;
2157 vinfo = vinfo_for_stmt (STMT_VINFO_GROUP_FIRST_ELEMENT (vinfo));
2158 unsigned int size = STMT_VINFO_GROUP_SIZE (vinfo);
2159 tree vectype = STMT_VINFO_VECTYPE (vinfo);
2160 if (! vect_store_lanes_supported (vectype, size)
2161 && ! vect_grouped_store_supported (vectype, size))
2162 return false;
2163 FOR_EACH_VEC_ELT (SLP_INSTANCE_LOADS (instance), j, node)
2165 vinfo = vinfo_for_stmt (SLP_TREE_SCALAR_STMTS (node)[0]);
2166 vinfo = vinfo_for_stmt (STMT_VINFO_GROUP_FIRST_ELEMENT (vinfo));
2167 size = STMT_VINFO_GROUP_SIZE (vinfo);
2168 vectype = STMT_VINFO_VECTYPE (vinfo);
2169 if (! vect_load_lanes_supported (vectype, size)
2170 && ! vect_grouped_load_supported (vectype, size))
2171 return false;
2175 if (dump_enabled_p ())
2176 dump_printf_loc (MSG_NOTE, vect_location,
2177 "re-trying with SLP disabled\n");
2179 /* Roll back state appropriately. No SLP this time. */
2180 slp = false;
2181 /* Restore vectorization factor as it were without SLP. */
2182 LOOP_VINFO_VECT_FACTOR (loop_vinfo) = saved_vectorization_factor;
2183 /* Free the SLP instances. */
2184 FOR_EACH_VEC_ELT (LOOP_VINFO_SLP_INSTANCES (loop_vinfo), j, instance)
2185 vect_free_slp_instance (instance);
2186 LOOP_VINFO_SLP_INSTANCES (loop_vinfo).release ();
2187 /* Reset SLP type to loop_vect on all stmts. */
2188 for (i = 0; i < LOOP_VINFO_LOOP (loop_vinfo)->num_nodes; ++i)
2190 basic_block bb = LOOP_VINFO_BBS (loop_vinfo)[i];
2191 for (gimple_stmt_iterator si = gsi_start_bb (bb);
2192 !gsi_end_p (si); gsi_next (&si))
2194 stmt_vec_info stmt_info = vinfo_for_stmt (gsi_stmt (si));
2195 STMT_SLP_TYPE (stmt_info) = loop_vect;
2196 if (STMT_VINFO_IN_PATTERN_P (stmt_info))
2198 stmt_info = vinfo_for_stmt (STMT_VINFO_RELATED_STMT (stmt_info));
2199 STMT_SLP_TYPE (stmt_info) = loop_vect;
2200 for (gimple_stmt_iterator pi
2201 = gsi_start (STMT_VINFO_PATTERN_DEF_SEQ (stmt_info));
2202 !gsi_end_p (pi); gsi_next (&pi))
2204 gimple *pstmt = gsi_stmt (pi);
2205 STMT_SLP_TYPE (vinfo_for_stmt (pstmt)) = loop_vect;
2210 /* Free optimized alias test DDRS. */
2211 LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo).release ();
2212 /* Reset target cost data. */
2213 destroy_cost_data (LOOP_VINFO_TARGET_COST_DATA (loop_vinfo));
2214 LOOP_VINFO_TARGET_COST_DATA (loop_vinfo)
2215 = init_cost (LOOP_VINFO_LOOP (loop_vinfo));
2216 /* Reset assorted flags. */
2217 LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo) = false;
2218 LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) = false;
2219 LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo) = 0;
2221 goto start_over;
2224 /* Function vect_analyze_loop.
2226 Apply a set of analyses on LOOP, and create a loop_vec_info struct
2227 for it. The different analyses will record information in the
2228 loop_vec_info struct. */
2229 loop_vec_info
2230 vect_analyze_loop (struct loop *loop)
2232 loop_vec_info loop_vinfo;
2233 unsigned int vector_sizes;
2235 /* Autodetect first vector size we try. */
2236 current_vector_size = 0;
2237 vector_sizes = targetm.vectorize.autovectorize_vector_sizes ();
2239 if (dump_enabled_p ())
2240 dump_printf_loc (MSG_NOTE, vect_location,
2241 "===== analyze_loop_nest =====\n");
2243 if (loop_outer (loop)
2244 && loop_vec_info_for_loop (loop_outer (loop))
2245 && LOOP_VINFO_VECTORIZABLE_P (loop_vec_info_for_loop (loop_outer (loop))))
2247 if (dump_enabled_p ())
2248 dump_printf_loc (MSG_NOTE, vect_location,
2249 "outer-loop already vectorized.\n");
2250 return NULL;
2253 while (1)
2255 /* Check the CFG characteristics of the loop (nesting, entry/exit). */
2256 loop_vinfo = vect_analyze_loop_form (loop);
2257 if (!loop_vinfo)
2259 if (dump_enabled_p ())
2260 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2261 "bad loop form.\n");
2262 return NULL;
2265 bool fatal = false;
2266 if (vect_analyze_loop_2 (loop_vinfo, fatal))
2268 LOOP_VINFO_VECTORIZABLE_P (loop_vinfo) = 1;
2270 return loop_vinfo;
2273 destroy_loop_vec_info (loop_vinfo, true);
2275 vector_sizes &= ~current_vector_size;
2276 if (fatal
2277 || vector_sizes == 0
2278 || current_vector_size == 0)
2279 return NULL;
2281 /* Try the next biggest vector size. */
2282 current_vector_size = 1 << floor_log2 (vector_sizes);
2283 if (dump_enabled_p ())
2284 dump_printf_loc (MSG_NOTE, vect_location,
2285 "***** Re-trying analysis with "
2286 "vector size %d\n", current_vector_size);
2291 /* Function reduction_code_for_scalar_code
2293 Input:
2294 CODE - tree_code of a reduction operations.
2296 Output:
2297 REDUC_CODE - the corresponding tree-code to be used to reduce the
2298 vector of partial results into a single scalar result, or ERROR_MARK
2299 if the operation is a supported reduction operation, but does not have
2300 such a tree-code.
2302 Return FALSE if CODE currently cannot be vectorized as reduction. */
2304 static bool
2305 reduction_code_for_scalar_code (enum tree_code code,
2306 enum tree_code *reduc_code)
2308 switch (code)
2310 case MAX_EXPR:
2311 *reduc_code = REDUC_MAX_EXPR;
2312 return true;
2314 case MIN_EXPR:
2315 *reduc_code = REDUC_MIN_EXPR;
2316 return true;
2318 case PLUS_EXPR:
2319 *reduc_code = REDUC_PLUS_EXPR;
2320 return true;
2322 case MULT_EXPR:
2323 case MINUS_EXPR:
2324 case BIT_IOR_EXPR:
2325 case BIT_XOR_EXPR:
2326 case BIT_AND_EXPR:
2327 *reduc_code = ERROR_MARK;
2328 return true;
2330 default:
2331 return false;
2336 /* Error reporting helper for vect_is_simple_reduction below. GIMPLE statement
2337 STMT is printed with a message MSG. */
2339 static void
2340 report_vect_op (int msg_type, gimple *stmt, const char *msg)
2342 dump_printf_loc (msg_type, vect_location, "%s", msg);
2343 dump_gimple_stmt (msg_type, TDF_SLIM, stmt, 0);
2344 dump_printf (msg_type, "\n");
2348 /* Detect SLP reduction of the form:
2350 #a1 = phi <a5, a0>
2351 a2 = operation (a1)
2352 a3 = operation (a2)
2353 a4 = operation (a3)
2354 a5 = operation (a4)
2356 #a = phi <a5>
2358 PHI is the reduction phi node (#a1 = phi <a5, a0> above)
2359 FIRST_STMT is the first reduction stmt in the chain
2360 (a2 = operation (a1)).
2362 Return TRUE if a reduction chain was detected. */
2364 static bool
2365 vect_is_slp_reduction (loop_vec_info loop_info, gimple *phi,
2366 gimple *first_stmt)
2368 struct loop *loop = (gimple_bb (phi))->loop_father;
2369 struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
2370 enum tree_code code;
2371 gimple *current_stmt = NULL, *loop_use_stmt = NULL, *first, *next_stmt;
2372 stmt_vec_info use_stmt_info, current_stmt_info;
2373 tree lhs;
2374 imm_use_iterator imm_iter;
2375 use_operand_p use_p;
2376 int nloop_uses, size = 0, n_out_of_loop_uses;
2377 bool found = false;
2379 if (loop != vect_loop)
2380 return false;
2382 lhs = PHI_RESULT (phi);
2383 code = gimple_assign_rhs_code (first_stmt);
2384 while (1)
2386 nloop_uses = 0;
2387 n_out_of_loop_uses = 0;
2388 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
2390 gimple *use_stmt = USE_STMT (use_p);
2391 if (is_gimple_debug (use_stmt))
2392 continue;
2394 /* Check if we got back to the reduction phi. */
2395 if (use_stmt == phi)
2397 loop_use_stmt = use_stmt;
2398 found = true;
2399 break;
2402 if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
2404 loop_use_stmt = use_stmt;
2405 nloop_uses++;
2407 else
2408 n_out_of_loop_uses++;
2410 /* There are can be either a single use in the loop or two uses in
2411 phi nodes. */
2412 if (nloop_uses > 1 || (n_out_of_loop_uses && nloop_uses))
2413 return false;
2416 if (found)
2417 break;
2419 /* We reached a statement with no loop uses. */
2420 if (nloop_uses == 0)
2421 return false;
2423 /* This is a loop exit phi, and we haven't reached the reduction phi. */
2424 if (gimple_code (loop_use_stmt) == GIMPLE_PHI)
2425 return false;
2427 if (!is_gimple_assign (loop_use_stmt)
2428 || code != gimple_assign_rhs_code (loop_use_stmt)
2429 || !flow_bb_inside_loop_p (loop, gimple_bb (loop_use_stmt)))
2430 return false;
2432 /* Insert USE_STMT into reduction chain. */
2433 use_stmt_info = vinfo_for_stmt (loop_use_stmt);
2434 if (current_stmt)
2436 current_stmt_info = vinfo_for_stmt (current_stmt);
2437 GROUP_NEXT_ELEMENT (current_stmt_info) = loop_use_stmt;
2438 GROUP_FIRST_ELEMENT (use_stmt_info)
2439 = GROUP_FIRST_ELEMENT (current_stmt_info);
2441 else
2442 GROUP_FIRST_ELEMENT (use_stmt_info) = loop_use_stmt;
2444 lhs = gimple_assign_lhs (loop_use_stmt);
2445 current_stmt = loop_use_stmt;
2446 size++;
2449 if (!found || loop_use_stmt != phi || size < 2)
2450 return false;
2452 /* Swap the operands, if needed, to make the reduction operand be the second
2453 operand. */
2454 lhs = PHI_RESULT (phi);
2455 next_stmt = GROUP_FIRST_ELEMENT (vinfo_for_stmt (current_stmt));
2456 while (next_stmt)
2458 if (gimple_assign_rhs2 (next_stmt) == lhs)
2460 tree op = gimple_assign_rhs1 (next_stmt);
2461 gimple *def_stmt = NULL;
2463 if (TREE_CODE (op) == SSA_NAME)
2464 def_stmt = SSA_NAME_DEF_STMT (op);
2466 /* Check that the other def is either defined in the loop
2467 ("vect_internal_def"), or it's an induction (defined by a
2468 loop-header phi-node). */
2469 if (def_stmt
2470 && gimple_bb (def_stmt)
2471 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
2472 && (is_gimple_assign (def_stmt)
2473 || is_gimple_call (def_stmt)
2474 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2475 == vect_induction_def
2476 || (gimple_code (def_stmt) == GIMPLE_PHI
2477 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2478 == vect_internal_def
2479 && !is_loop_header_bb_p (gimple_bb (def_stmt)))))
2481 lhs = gimple_assign_lhs (next_stmt);
2482 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
2483 continue;
2486 return false;
2488 else
2490 tree op = gimple_assign_rhs2 (next_stmt);
2491 gimple *def_stmt = NULL;
2493 if (TREE_CODE (op) == SSA_NAME)
2494 def_stmt = SSA_NAME_DEF_STMT (op);
2496 /* Check that the other def is either defined in the loop
2497 ("vect_internal_def"), or it's an induction (defined by a
2498 loop-header phi-node). */
2499 if (def_stmt
2500 && gimple_bb (def_stmt)
2501 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
2502 && (is_gimple_assign (def_stmt)
2503 || is_gimple_call (def_stmt)
2504 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2505 == vect_induction_def
2506 || (gimple_code (def_stmt) == GIMPLE_PHI
2507 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2508 == vect_internal_def
2509 && !is_loop_header_bb_p (gimple_bb (def_stmt)))))
2511 if (dump_enabled_p ())
2513 dump_printf_loc (MSG_NOTE, vect_location, "swapping oprnds: ");
2514 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, next_stmt, 0);
2515 dump_printf (MSG_NOTE, "\n");
2518 swap_ssa_operands (next_stmt,
2519 gimple_assign_rhs1_ptr (next_stmt),
2520 gimple_assign_rhs2_ptr (next_stmt));
2521 update_stmt (next_stmt);
2523 if (CONSTANT_CLASS_P (gimple_assign_rhs1 (next_stmt)))
2524 LOOP_VINFO_OPERANDS_SWAPPED (loop_info) = true;
2526 else
2527 return false;
2530 lhs = gimple_assign_lhs (next_stmt);
2531 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
2534 /* Save the chain for further analysis in SLP detection. */
2535 first = GROUP_FIRST_ELEMENT (vinfo_for_stmt (current_stmt));
2536 LOOP_VINFO_REDUCTION_CHAINS (loop_info).safe_push (first);
2537 GROUP_SIZE (vinfo_for_stmt (first)) = size;
2539 return true;
2543 /* Function vect_is_simple_reduction_1
2545 (1) Detect a cross-iteration def-use cycle that represents a simple
2546 reduction computation. We look for the following pattern:
2548 loop_header:
2549 a1 = phi < a0, a2 >
2550 a3 = ...
2551 a2 = operation (a3, a1)
2555 a3 = ...
2556 loop_header:
2557 a1 = phi < a0, a2 >
2558 a2 = operation (a3, a1)
2560 such that:
2561 1. operation is commutative and associative and it is safe to
2562 change the order of the computation (if CHECK_REDUCTION is true)
2563 2. no uses for a2 in the loop (a2 is used out of the loop)
2564 3. no uses of a1 in the loop besides the reduction operation
2565 4. no uses of a1 outside the loop.
2567 Conditions 1,4 are tested here.
2568 Conditions 2,3 are tested in vect_mark_stmts_to_be_vectorized.
2570 (2) Detect a cross-iteration def-use cycle in nested loops, i.e.,
2571 nested cycles, if CHECK_REDUCTION is false.
2573 (3) Detect cycles of phi nodes in outer-loop vectorization, i.e., double
2574 reductions:
2576 a1 = phi < a0, a2 >
2577 inner loop (def of a3)
2578 a2 = phi < a3 >
2580 (4) Detect condition expressions, ie:
2581 for (int i = 0; i < N; i++)
2582 if (a[i] < val)
2583 ret_val = a[i];
2587 static gimple *
2588 vect_is_simple_reduction (loop_vec_info loop_info, gimple *phi,
2589 bool check_reduction, bool *double_reduc,
2590 bool need_wrapping_integral_overflow,
2591 enum vect_reduction_type *v_reduc_type)
2593 struct loop *loop = (gimple_bb (phi))->loop_father;
2594 struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
2595 edge latch_e = loop_latch_edge (loop);
2596 tree loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
2597 gimple *def_stmt, *def1 = NULL, *def2 = NULL, *phi_use_stmt = NULL;
2598 enum tree_code orig_code, code;
2599 tree op1, op2, op3 = NULL_TREE, op4 = NULL_TREE;
2600 tree type;
2601 int nloop_uses;
2602 tree name;
2603 imm_use_iterator imm_iter;
2604 use_operand_p use_p;
2605 bool phi_def;
2607 *double_reduc = false;
2608 *v_reduc_type = TREE_CODE_REDUCTION;
2610 /* If CHECK_REDUCTION is true, we assume inner-most loop vectorization,
2611 otherwise, we assume outer loop vectorization. */
2612 gcc_assert ((check_reduction && loop == vect_loop)
2613 || (!check_reduction && flow_loop_nested_p (vect_loop, loop)));
2615 name = PHI_RESULT (phi);
2616 /* ??? If there are no uses of the PHI result the inner loop reduction
2617 won't be detected as possibly double-reduction by vectorizable_reduction
2618 because that tries to walk the PHI arg from the preheader edge which
2619 can be constant. See PR60382. */
2620 if (has_zero_uses (name))
2621 return NULL;
2622 nloop_uses = 0;
2623 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
2625 gimple *use_stmt = USE_STMT (use_p);
2626 if (is_gimple_debug (use_stmt))
2627 continue;
2629 if (!flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
2631 if (dump_enabled_p ())
2632 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2633 "intermediate value used outside loop.\n");
2635 return NULL;
2638 nloop_uses++;
2639 if (nloop_uses > 1)
2641 if (dump_enabled_p ())
2642 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2643 "reduction used in loop.\n");
2644 return NULL;
2647 phi_use_stmt = use_stmt;
2650 if (TREE_CODE (loop_arg) != SSA_NAME)
2652 if (dump_enabled_p ())
2654 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2655 "reduction: not ssa_name: ");
2656 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, loop_arg);
2657 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
2659 return NULL;
2662 def_stmt = SSA_NAME_DEF_STMT (loop_arg);
2663 if (!def_stmt)
2665 if (dump_enabled_p ())
2666 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2667 "reduction: no def_stmt.\n");
2668 return NULL;
2671 if (!is_gimple_assign (def_stmt) && gimple_code (def_stmt) != GIMPLE_PHI)
2673 if (dump_enabled_p ())
2675 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, def_stmt, 0);
2676 dump_printf (MSG_NOTE, "\n");
2678 return NULL;
2681 if (is_gimple_assign (def_stmt))
2683 name = gimple_assign_lhs (def_stmt);
2684 phi_def = false;
2686 else
2688 name = PHI_RESULT (def_stmt);
2689 phi_def = true;
2692 nloop_uses = 0;
2693 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
2695 gimple *use_stmt = USE_STMT (use_p);
2696 if (is_gimple_debug (use_stmt))
2697 continue;
2698 if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
2699 nloop_uses++;
2700 if (nloop_uses > 1)
2702 if (dump_enabled_p ())
2703 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2704 "reduction used in loop.\n");
2705 return NULL;
2709 /* If DEF_STMT is a phi node itself, we expect it to have a single argument
2710 defined in the inner loop. */
2711 if (phi_def)
2713 op1 = PHI_ARG_DEF (def_stmt, 0);
2715 if (gimple_phi_num_args (def_stmt) != 1
2716 || TREE_CODE (op1) != SSA_NAME)
2718 if (dump_enabled_p ())
2719 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2720 "unsupported phi node definition.\n");
2722 return NULL;
2725 def1 = SSA_NAME_DEF_STMT (op1);
2726 if (gimple_bb (def1)
2727 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
2728 && loop->inner
2729 && flow_bb_inside_loop_p (loop->inner, gimple_bb (def1))
2730 && is_gimple_assign (def1)
2731 && flow_bb_inside_loop_p (loop->inner, gimple_bb (phi_use_stmt)))
2733 if (dump_enabled_p ())
2734 report_vect_op (MSG_NOTE, def_stmt,
2735 "detected double reduction: ");
2737 *double_reduc = true;
2738 return def_stmt;
2741 return NULL;
2744 code = orig_code = gimple_assign_rhs_code (def_stmt);
2746 /* We can handle "res -= x[i]", which is non-associative by
2747 simply rewriting this into "res += -x[i]". Avoid changing
2748 gimple instruction for the first simple tests and only do this
2749 if we're allowed to change code at all. */
2750 if (code == MINUS_EXPR
2751 && (op1 = gimple_assign_rhs1 (def_stmt))
2752 && TREE_CODE (op1) == SSA_NAME
2753 && SSA_NAME_DEF_STMT (op1) == phi)
2754 code = PLUS_EXPR;
2756 if (code == COND_EXPR)
2758 if (check_reduction)
2759 *v_reduc_type = COND_REDUCTION;
2761 else if (!commutative_tree_code (code) || !associative_tree_code (code))
2763 if (dump_enabled_p ())
2764 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2765 "reduction: not commutative/associative: ");
2766 return NULL;
2769 if (get_gimple_rhs_class (code) != GIMPLE_BINARY_RHS)
2771 if (code != COND_EXPR)
2773 if (dump_enabled_p ())
2774 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2775 "reduction: not binary operation: ");
2777 return NULL;
2780 op3 = gimple_assign_rhs1 (def_stmt);
2781 if (COMPARISON_CLASS_P (op3))
2783 op4 = TREE_OPERAND (op3, 1);
2784 op3 = TREE_OPERAND (op3, 0);
2787 op1 = gimple_assign_rhs2 (def_stmt);
2788 op2 = gimple_assign_rhs3 (def_stmt);
2790 if (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op2) != SSA_NAME)
2792 if (dump_enabled_p ())
2793 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2794 "reduction: uses not ssa_names: ");
2796 return NULL;
2799 else
2801 op1 = gimple_assign_rhs1 (def_stmt);
2802 op2 = gimple_assign_rhs2 (def_stmt);
2804 if (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op2) != SSA_NAME)
2806 if (dump_enabled_p ())
2807 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2808 "reduction: uses not ssa_names: ");
2810 return NULL;
2814 type = TREE_TYPE (gimple_assign_lhs (def_stmt));
2815 if ((TREE_CODE (op1) == SSA_NAME
2816 && !types_compatible_p (type,TREE_TYPE (op1)))
2817 || (TREE_CODE (op2) == SSA_NAME
2818 && !types_compatible_p (type, TREE_TYPE (op2)))
2819 || (op3 && TREE_CODE (op3) == SSA_NAME
2820 && !types_compatible_p (type, TREE_TYPE (op3)))
2821 || (op4 && TREE_CODE (op4) == SSA_NAME
2822 && !types_compatible_p (type, TREE_TYPE (op4))))
2824 if (dump_enabled_p ())
2826 dump_printf_loc (MSG_NOTE, vect_location,
2827 "reduction: multiple types: operation type: ");
2828 dump_generic_expr (MSG_NOTE, TDF_SLIM, type);
2829 dump_printf (MSG_NOTE, ", operands types: ");
2830 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2831 TREE_TYPE (op1));
2832 dump_printf (MSG_NOTE, ",");
2833 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2834 TREE_TYPE (op2));
2835 if (op3)
2837 dump_printf (MSG_NOTE, ",");
2838 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2839 TREE_TYPE (op3));
2842 if (op4)
2844 dump_printf (MSG_NOTE, ",");
2845 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2846 TREE_TYPE (op4));
2848 dump_printf (MSG_NOTE, "\n");
2851 return NULL;
2854 /* Check that it's ok to change the order of the computation.
2855 Generally, when vectorizing a reduction we change the order of the
2856 computation. This may change the behavior of the program in some
2857 cases, so we need to check that this is ok. One exception is when
2858 vectorizing an outer-loop: the inner-loop is executed sequentially,
2859 and therefore vectorizing reductions in the inner-loop during
2860 outer-loop vectorization is safe. */
2862 if (*v_reduc_type != COND_REDUCTION
2863 && check_reduction)
2865 /* CHECKME: check for !flag_finite_math_only too? */
2866 if (SCALAR_FLOAT_TYPE_P (type) && !flag_associative_math)
2868 /* Changing the order of operations changes the semantics. */
2869 if (dump_enabled_p ())
2870 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2871 "reduction: unsafe fp math optimization: ");
2872 return NULL;
2874 else if (INTEGRAL_TYPE_P (type))
2876 if (!operation_no_trapping_overflow (type, code))
2878 /* Changing the order of operations changes the semantics. */
2879 if (dump_enabled_p ())
2880 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2881 "reduction: unsafe int math optimization"
2882 " (overflow traps): ");
2883 return NULL;
2885 if (need_wrapping_integral_overflow
2886 && !TYPE_OVERFLOW_WRAPS (type)
2887 && operation_can_overflow (code))
2889 /* Changing the order of operations changes the semantics. */
2890 if (dump_enabled_p ())
2891 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2892 "reduction: unsafe int math optimization"
2893 " (overflow doesn't wrap): ");
2894 return NULL;
2897 else if (SAT_FIXED_POINT_TYPE_P (type))
2899 /* Changing the order of operations changes the semantics. */
2900 if (dump_enabled_p ())
2901 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2902 "reduction: unsafe fixed-point math optimization: ");
2903 return NULL;
2907 /* Reduction is safe. We're dealing with one of the following:
2908 1) integer arithmetic and no trapv
2909 2) floating point arithmetic, and special flags permit this optimization
2910 3) nested cycle (i.e., outer loop vectorization). */
2911 if (TREE_CODE (op1) == SSA_NAME)
2912 def1 = SSA_NAME_DEF_STMT (op1);
2914 if (TREE_CODE (op2) == SSA_NAME)
2915 def2 = SSA_NAME_DEF_STMT (op2);
2917 if (code != COND_EXPR
2918 && ((!def1 || gimple_nop_p (def1)) && (!def2 || gimple_nop_p (def2))))
2920 if (dump_enabled_p ())
2921 report_vect_op (MSG_NOTE, def_stmt, "reduction: no defs for operands: ");
2922 return NULL;
2925 /* Check that one def is the reduction def, defined by PHI,
2926 the other def is either defined in the loop ("vect_internal_def"),
2927 or it's an induction (defined by a loop-header phi-node). */
2929 if (def2 && def2 == phi
2930 && (code == COND_EXPR
2931 || !def1 || gimple_nop_p (def1)
2932 || !flow_bb_inside_loop_p (loop, gimple_bb (def1))
2933 || (def1 && flow_bb_inside_loop_p (loop, gimple_bb (def1))
2934 && (is_gimple_assign (def1)
2935 || is_gimple_call (def1)
2936 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1))
2937 == vect_induction_def
2938 || (gimple_code (def1) == GIMPLE_PHI
2939 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1))
2940 == vect_internal_def
2941 && !is_loop_header_bb_p (gimple_bb (def1)))))))
2943 if (dump_enabled_p ())
2944 report_vect_op (MSG_NOTE, def_stmt, "detected reduction: ");
2945 return def_stmt;
2948 if (def1 && def1 == phi
2949 && (code == COND_EXPR
2950 || !def2 || gimple_nop_p (def2)
2951 || !flow_bb_inside_loop_p (loop, gimple_bb (def2))
2952 || (def2 && flow_bb_inside_loop_p (loop, gimple_bb (def2))
2953 && (is_gimple_assign (def2)
2954 || is_gimple_call (def2)
2955 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2))
2956 == vect_induction_def
2957 || (gimple_code (def2) == GIMPLE_PHI
2958 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2))
2959 == vect_internal_def
2960 && !is_loop_header_bb_p (gimple_bb (def2)))))))
2962 if (check_reduction
2963 && orig_code != MINUS_EXPR)
2965 if (code == COND_EXPR)
2967 /* No current known use where this case would be useful. */
2968 if (dump_enabled_p ())
2969 report_vect_op (MSG_NOTE, def_stmt,
2970 "detected reduction: cannot currently swap "
2971 "operands for cond_expr");
2972 return NULL;
2975 /* Swap operands (just for simplicity - so that the rest of the code
2976 can assume that the reduction variable is always the last (second)
2977 argument). */
2978 if (dump_enabled_p ())
2979 report_vect_op (MSG_NOTE, def_stmt,
2980 "detected reduction: need to swap operands: ");
2982 swap_ssa_operands (def_stmt, gimple_assign_rhs1_ptr (def_stmt),
2983 gimple_assign_rhs2_ptr (def_stmt));
2985 if (CONSTANT_CLASS_P (gimple_assign_rhs1 (def_stmt)))
2986 LOOP_VINFO_OPERANDS_SWAPPED (loop_info) = true;
2988 else
2990 if (dump_enabled_p ())
2991 report_vect_op (MSG_NOTE, def_stmt, "detected reduction: ");
2994 return def_stmt;
2997 /* Try to find SLP reduction chain. */
2998 if (check_reduction && code != COND_EXPR
2999 && vect_is_slp_reduction (loop_info, phi, def_stmt))
3001 if (dump_enabled_p ())
3002 report_vect_op (MSG_NOTE, def_stmt,
3003 "reduction: detected reduction chain: ");
3005 return def_stmt;
3008 if (dump_enabled_p ())
3009 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
3010 "reduction: unknown pattern: ");
3012 return NULL;
3015 /* Wrapper around vect_is_simple_reduction_1, which will modify code
3016 in-place if it enables detection of more reductions. Arguments
3017 as there. */
3019 gimple *
3020 vect_force_simple_reduction (loop_vec_info loop_info, gimple *phi,
3021 bool check_reduction, bool *double_reduc,
3022 bool need_wrapping_integral_overflow)
3024 enum vect_reduction_type v_reduc_type;
3025 return vect_is_simple_reduction (loop_info, phi, check_reduction,
3026 double_reduc,
3027 need_wrapping_integral_overflow,
3028 &v_reduc_type);
3031 /* Calculate cost of peeling the loop PEEL_ITERS_PROLOGUE times. */
3033 vect_get_known_peeling_cost (loop_vec_info loop_vinfo, int peel_iters_prologue,
3034 int *peel_iters_epilogue,
3035 stmt_vector_for_cost *scalar_cost_vec,
3036 stmt_vector_for_cost *prologue_cost_vec,
3037 stmt_vector_for_cost *epilogue_cost_vec)
3039 int retval = 0;
3040 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
3042 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
3044 *peel_iters_epilogue = vf/2;
3045 if (dump_enabled_p ())
3046 dump_printf_loc (MSG_NOTE, vect_location,
3047 "cost model: epilogue peel iters set to vf/2 "
3048 "because loop iterations are unknown .\n");
3050 /* If peeled iterations are known but number of scalar loop
3051 iterations are unknown, count a taken branch per peeled loop. */
3052 retval = record_stmt_cost (prologue_cost_vec, 1, cond_branch_taken,
3053 NULL, 0, vect_prologue);
3054 retval = record_stmt_cost (prologue_cost_vec, 1, cond_branch_taken,
3055 NULL, 0, vect_epilogue);
3057 else
3059 int niters = LOOP_VINFO_INT_NITERS (loop_vinfo);
3060 peel_iters_prologue = niters < peel_iters_prologue ?
3061 niters : peel_iters_prologue;
3062 *peel_iters_epilogue = (niters - peel_iters_prologue) % vf;
3063 /* If we need to peel for gaps, but no peeling is required, we have to
3064 peel VF iterations. */
3065 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) && !*peel_iters_epilogue)
3066 *peel_iters_epilogue = vf;
3069 stmt_info_for_cost *si;
3070 int j;
3071 if (peel_iters_prologue)
3072 FOR_EACH_VEC_ELT (*scalar_cost_vec, j, si)
3073 retval += record_stmt_cost (prologue_cost_vec,
3074 si->count * peel_iters_prologue,
3075 si->kind, NULL, si->misalign,
3076 vect_prologue);
3077 if (*peel_iters_epilogue)
3078 FOR_EACH_VEC_ELT (*scalar_cost_vec, j, si)
3079 retval += record_stmt_cost (epilogue_cost_vec,
3080 si->count * *peel_iters_epilogue,
3081 si->kind, NULL, si->misalign,
3082 vect_epilogue);
3084 return retval;
3087 /* Function vect_estimate_min_profitable_iters
3089 Return the number of iterations required for the vector version of the
3090 loop to be profitable relative to the cost of the scalar version of the
3091 loop. */
3093 static void
3094 vect_estimate_min_profitable_iters (loop_vec_info loop_vinfo,
3095 int *ret_min_profitable_niters,
3096 int *ret_min_profitable_estimate)
3098 int min_profitable_iters;
3099 int min_profitable_estimate;
3100 int peel_iters_prologue;
3101 int peel_iters_epilogue;
3102 unsigned vec_inside_cost = 0;
3103 int vec_outside_cost = 0;
3104 unsigned vec_prologue_cost = 0;
3105 unsigned vec_epilogue_cost = 0;
3106 int scalar_single_iter_cost = 0;
3107 int scalar_outside_cost = 0;
3108 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
3109 int npeel = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
3110 void *target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
3112 /* Cost model disabled. */
3113 if (unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
3115 dump_printf_loc (MSG_NOTE, vect_location, "cost model disabled.\n");
3116 *ret_min_profitable_niters = 0;
3117 *ret_min_profitable_estimate = 0;
3118 return;
3121 /* Requires loop versioning tests to handle misalignment. */
3122 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
3124 /* FIXME: Make cost depend on complexity of individual check. */
3125 unsigned len = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).length ();
3126 (void) add_stmt_cost (target_cost_data, len, vector_stmt, NULL, 0,
3127 vect_prologue);
3128 dump_printf (MSG_NOTE,
3129 "cost model: Adding cost of checks for loop "
3130 "versioning to treat misalignment.\n");
3133 /* Requires loop versioning with alias checks. */
3134 if (LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
3136 /* FIXME: Make cost depend on complexity of individual check. */
3137 unsigned len = LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo).length ();
3138 (void) add_stmt_cost (target_cost_data, len, vector_stmt, NULL, 0,
3139 vect_prologue);
3140 dump_printf (MSG_NOTE,
3141 "cost model: Adding cost of checks for loop "
3142 "versioning aliasing.\n");
3145 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
3146 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
3147 (void) add_stmt_cost (target_cost_data, 1, cond_branch_taken, NULL, 0,
3148 vect_prologue);
3150 /* Count statements in scalar loop. Using this as scalar cost for a single
3151 iteration for now.
3153 TODO: Add outer loop support.
3155 TODO: Consider assigning different costs to different scalar
3156 statements. */
3158 scalar_single_iter_cost
3159 = LOOP_VINFO_SINGLE_SCALAR_ITERATION_COST (loop_vinfo);
3161 /* Add additional cost for the peeled instructions in prologue and epilogue
3162 loop.
3164 FORNOW: If we don't know the value of peel_iters for prologue or epilogue
3165 at compile-time - we assume it's vf/2 (the worst would be vf-1).
3167 TODO: Build an expression that represents peel_iters for prologue and
3168 epilogue to be used in a run-time test. */
3170 if (npeel < 0)
3172 peel_iters_prologue = vf/2;
3173 dump_printf (MSG_NOTE, "cost model: "
3174 "prologue peel iters set to vf/2.\n");
3176 /* If peeling for alignment is unknown, loop bound of main loop becomes
3177 unknown. */
3178 peel_iters_epilogue = vf/2;
3179 dump_printf (MSG_NOTE, "cost model: "
3180 "epilogue peel iters set to vf/2 because "
3181 "peeling for alignment is unknown.\n");
3183 /* If peeled iterations are unknown, count a taken branch and a not taken
3184 branch per peeled loop. Even if scalar loop iterations are known,
3185 vector iterations are not known since peeled prologue iterations are
3186 not known. Hence guards remain the same. */
3187 (void) add_stmt_cost (target_cost_data, 1, cond_branch_taken,
3188 NULL, 0, vect_prologue);
3189 (void) add_stmt_cost (target_cost_data, 1, cond_branch_not_taken,
3190 NULL, 0, vect_prologue);
3191 (void) add_stmt_cost (target_cost_data, 1, cond_branch_taken,
3192 NULL, 0, vect_epilogue);
3193 (void) add_stmt_cost (target_cost_data, 1, cond_branch_not_taken,
3194 NULL, 0, vect_epilogue);
3195 stmt_info_for_cost *si;
3196 int j;
3197 FOR_EACH_VEC_ELT (LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo), j, si)
3199 struct _stmt_vec_info *stmt_info
3200 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
3201 (void) add_stmt_cost (target_cost_data,
3202 si->count * peel_iters_prologue,
3203 si->kind, stmt_info, si->misalign,
3204 vect_prologue);
3205 (void) add_stmt_cost (target_cost_data,
3206 si->count * peel_iters_epilogue,
3207 si->kind, stmt_info, si->misalign,
3208 vect_epilogue);
3211 else
3213 stmt_vector_for_cost prologue_cost_vec, epilogue_cost_vec;
3214 stmt_info_for_cost *si;
3215 int j;
3216 void *data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
3218 prologue_cost_vec.create (2);
3219 epilogue_cost_vec.create (2);
3220 peel_iters_prologue = npeel;
3222 (void) vect_get_known_peeling_cost (loop_vinfo, peel_iters_prologue,
3223 &peel_iters_epilogue,
3224 &LOOP_VINFO_SCALAR_ITERATION_COST
3225 (loop_vinfo),
3226 &prologue_cost_vec,
3227 &epilogue_cost_vec);
3229 FOR_EACH_VEC_ELT (prologue_cost_vec, j, si)
3231 struct _stmt_vec_info *stmt_info
3232 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
3233 (void) add_stmt_cost (data, si->count, si->kind, stmt_info,
3234 si->misalign, vect_prologue);
3237 FOR_EACH_VEC_ELT (epilogue_cost_vec, j, si)
3239 struct _stmt_vec_info *stmt_info
3240 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
3241 (void) add_stmt_cost (data, si->count, si->kind, stmt_info,
3242 si->misalign, vect_epilogue);
3245 prologue_cost_vec.release ();
3246 epilogue_cost_vec.release ();
3249 /* FORNOW: The scalar outside cost is incremented in one of the
3250 following ways:
3252 1. The vectorizer checks for alignment and aliasing and generates
3253 a condition that allows dynamic vectorization. A cost model
3254 check is ANDED with the versioning condition. Hence scalar code
3255 path now has the added cost of the versioning check.
3257 if (cost > th & versioning_check)
3258 jmp to vector code
3260 Hence run-time scalar is incremented by not-taken branch cost.
3262 2. The vectorizer then checks if a prologue is required. If the
3263 cost model check was not done before during versioning, it has to
3264 be done before the prologue check.
3266 if (cost <= th)
3267 prologue = scalar_iters
3268 if (prologue == 0)
3269 jmp to vector code
3270 else
3271 execute prologue
3272 if (prologue == num_iters)
3273 go to exit
3275 Hence the run-time scalar cost is incremented by a taken branch,
3276 plus a not-taken branch, plus a taken branch cost.
3278 3. The vectorizer then checks if an epilogue is required. If the
3279 cost model check was not done before during prologue check, it
3280 has to be done with the epilogue check.
3282 if (prologue == 0)
3283 jmp to vector code
3284 else
3285 execute prologue
3286 if (prologue == num_iters)
3287 go to exit
3288 vector code:
3289 if ((cost <= th) | (scalar_iters-prologue-epilogue == 0))
3290 jmp to epilogue
3292 Hence the run-time scalar cost should be incremented by 2 taken
3293 branches.
3295 TODO: The back end may reorder the BBS's differently and reverse
3296 conditions/branch directions. Change the estimates below to
3297 something more reasonable. */
3299 /* If the number of iterations is known and we do not do versioning, we can
3300 decide whether to vectorize at compile time. Hence the scalar version
3301 do not carry cost model guard costs. */
3302 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
3303 || LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
3304 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
3306 /* Cost model check occurs at versioning. */
3307 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
3308 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
3309 scalar_outside_cost += vect_get_stmt_cost (cond_branch_not_taken);
3310 else
3312 /* Cost model check occurs at prologue generation. */
3313 if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) < 0)
3314 scalar_outside_cost += 2 * vect_get_stmt_cost (cond_branch_taken)
3315 + vect_get_stmt_cost (cond_branch_not_taken);
3316 /* Cost model check occurs at epilogue generation. */
3317 else
3318 scalar_outside_cost += 2 * vect_get_stmt_cost (cond_branch_taken);
3322 /* Complete the target-specific cost calculations. */
3323 finish_cost (LOOP_VINFO_TARGET_COST_DATA (loop_vinfo), &vec_prologue_cost,
3324 &vec_inside_cost, &vec_epilogue_cost);
3326 vec_outside_cost = (int)(vec_prologue_cost + vec_epilogue_cost);
3328 if (dump_enabled_p ())
3330 dump_printf_loc (MSG_NOTE, vect_location, "Cost model analysis: \n");
3331 dump_printf (MSG_NOTE, " Vector inside of loop cost: %d\n",
3332 vec_inside_cost);
3333 dump_printf (MSG_NOTE, " Vector prologue cost: %d\n",
3334 vec_prologue_cost);
3335 dump_printf (MSG_NOTE, " Vector epilogue cost: %d\n",
3336 vec_epilogue_cost);
3337 dump_printf (MSG_NOTE, " Scalar iteration cost: %d\n",
3338 scalar_single_iter_cost);
3339 dump_printf (MSG_NOTE, " Scalar outside cost: %d\n",
3340 scalar_outside_cost);
3341 dump_printf (MSG_NOTE, " Vector outside cost: %d\n",
3342 vec_outside_cost);
3343 dump_printf (MSG_NOTE, " prologue iterations: %d\n",
3344 peel_iters_prologue);
3345 dump_printf (MSG_NOTE, " epilogue iterations: %d\n",
3346 peel_iters_epilogue);
3349 /* Calculate number of iterations required to make the vector version
3350 profitable, relative to the loop bodies only. The following condition
3351 must hold true:
3352 SIC * niters + SOC > VIC * ((niters-PL_ITERS-EP_ITERS)/VF) + VOC
3353 where
3354 SIC = scalar iteration cost, VIC = vector iteration cost,
3355 VOC = vector outside cost, VF = vectorization factor,
3356 PL_ITERS = prologue iterations, EP_ITERS= epilogue iterations
3357 SOC = scalar outside cost for run time cost model check. */
3359 if ((scalar_single_iter_cost * vf) > (int) vec_inside_cost)
3361 if (vec_outside_cost <= 0)
3362 min_profitable_iters = 1;
3363 else
3365 min_profitable_iters = ((vec_outside_cost - scalar_outside_cost) * vf
3366 - vec_inside_cost * peel_iters_prologue
3367 - vec_inside_cost * peel_iters_epilogue)
3368 / ((scalar_single_iter_cost * vf)
3369 - vec_inside_cost);
3371 if ((scalar_single_iter_cost * vf * min_profitable_iters)
3372 <= (((int) vec_inside_cost * min_profitable_iters)
3373 + (((int) vec_outside_cost - scalar_outside_cost) * vf)))
3374 min_profitable_iters++;
3377 /* vector version will never be profitable. */
3378 else
3380 if (LOOP_VINFO_LOOP (loop_vinfo)->force_vectorize)
3381 warning_at (vect_location, OPT_Wopenmp_simd, "vectorization "
3382 "did not happen for a simd loop");
3384 if (dump_enabled_p ())
3385 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3386 "cost model: the vector iteration cost = %d "
3387 "divided by the scalar iteration cost = %d "
3388 "is greater or equal to the vectorization factor = %d"
3389 ".\n",
3390 vec_inside_cost, scalar_single_iter_cost, vf);
3391 *ret_min_profitable_niters = -1;
3392 *ret_min_profitable_estimate = -1;
3393 return;
3396 dump_printf (MSG_NOTE,
3397 " Calculated minimum iters for profitability: %d\n",
3398 min_profitable_iters);
3400 min_profitable_iters =
3401 min_profitable_iters < vf ? vf : min_profitable_iters;
3403 /* Because the condition we create is:
3404 if (niters <= min_profitable_iters)
3405 then skip the vectorized loop. */
3406 min_profitable_iters--;
3408 if (dump_enabled_p ())
3409 dump_printf_loc (MSG_NOTE, vect_location,
3410 " Runtime profitability threshold = %d\n",
3411 min_profitable_iters);
3413 *ret_min_profitable_niters = min_profitable_iters;
3415 /* Calculate number of iterations required to make the vector version
3416 profitable, relative to the loop bodies only.
3418 Non-vectorized variant is SIC * niters and it must win over vector
3419 variant on the expected loop trip count. The following condition must hold true:
3420 SIC * niters > VIC * ((niters-PL_ITERS-EP_ITERS)/VF) + VOC + SOC */
3422 if (vec_outside_cost <= 0)
3423 min_profitable_estimate = 1;
3424 else
3426 min_profitable_estimate = ((vec_outside_cost + scalar_outside_cost) * vf
3427 - vec_inside_cost * peel_iters_prologue
3428 - vec_inside_cost * peel_iters_epilogue)
3429 / ((scalar_single_iter_cost * vf)
3430 - vec_inside_cost);
3432 min_profitable_estimate --;
3433 min_profitable_estimate = MAX (min_profitable_estimate, min_profitable_iters);
3434 if (dump_enabled_p ())
3435 dump_printf_loc (MSG_NOTE, vect_location,
3436 " Static estimate profitability threshold = %d\n",
3437 min_profitable_estimate);
3439 *ret_min_profitable_estimate = min_profitable_estimate;
3442 /* Writes into SEL a mask for a vec_perm, equivalent to a vec_shr by OFFSET
3443 vector elements (not bits) for a vector of mode MODE. */
3444 static void
3445 calc_vec_perm_mask_for_shift (enum machine_mode mode, unsigned int offset,
3446 unsigned char *sel)
3448 unsigned int i, nelt = GET_MODE_NUNITS (mode);
3450 for (i = 0; i < nelt; i++)
3451 sel[i] = (i + offset) & (2*nelt - 1);
3454 /* Checks whether the target supports whole-vector shifts for vectors of mode
3455 MODE. This is the case if _either_ the platform handles vec_shr_optab, _or_
3456 it supports vec_perm_const with masks for all necessary shift amounts. */
3457 static bool
3458 have_whole_vector_shift (enum machine_mode mode)
3460 if (optab_handler (vec_shr_optab, mode) != CODE_FOR_nothing)
3461 return true;
3463 if (direct_optab_handler (vec_perm_const_optab, mode) == CODE_FOR_nothing)
3464 return false;
3466 unsigned int i, nelt = GET_MODE_NUNITS (mode);
3467 unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
3469 for (i = nelt/2; i >= 1; i/=2)
3471 calc_vec_perm_mask_for_shift (mode, i, sel);
3472 if (!can_vec_perm_p (mode, false, sel))
3473 return false;
3475 return true;
3478 /* Return the reduction operand (with index REDUC_INDEX) of STMT. */
3480 static tree
3481 get_reduction_op (gimple *stmt, int reduc_index)
3483 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
3485 case GIMPLE_SINGLE_RHS:
3486 gcc_assert (TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt))
3487 == ternary_op);
3488 return TREE_OPERAND (gimple_assign_rhs1 (stmt), reduc_index);
3489 case GIMPLE_UNARY_RHS:
3490 return gimple_assign_rhs1 (stmt);
3491 case GIMPLE_BINARY_RHS:
3492 return (reduc_index
3493 ? gimple_assign_rhs2 (stmt) : gimple_assign_rhs1 (stmt));
3494 case GIMPLE_TERNARY_RHS:
3495 return gimple_op (stmt, reduc_index + 1);
3496 default:
3497 gcc_unreachable ();
3501 /* TODO: Close dependency between vect_model_*_cost and vectorizable_*
3502 functions. Design better to avoid maintenance issues. */
3504 /* Function vect_model_reduction_cost.
3506 Models cost for a reduction operation, including the vector ops
3507 generated within the strip-mine loop, the initial definition before
3508 the loop, and the epilogue code that must be generated. */
3510 static bool
3511 vect_model_reduction_cost (stmt_vec_info stmt_info, enum tree_code reduc_code,
3512 int ncopies, int reduc_index)
3514 int prologue_cost = 0, epilogue_cost = 0;
3515 enum tree_code code;
3516 optab optab;
3517 tree vectype;
3518 gimple *stmt, *orig_stmt;
3519 tree reduction_op;
3520 machine_mode mode;
3521 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3522 struct loop *loop = NULL;
3523 void *target_cost_data;
3525 if (loop_vinfo)
3527 loop = LOOP_VINFO_LOOP (loop_vinfo);
3528 target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
3530 else
3531 target_cost_data = BB_VINFO_TARGET_COST_DATA (STMT_VINFO_BB_VINFO (stmt_info));
3533 /* Condition reductions generate two reductions in the loop. */
3534 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == COND_REDUCTION)
3535 ncopies *= 2;
3537 /* Cost of reduction op inside loop. */
3538 unsigned inside_cost = add_stmt_cost (target_cost_data, ncopies, vector_stmt,
3539 stmt_info, 0, vect_body);
3540 stmt = STMT_VINFO_STMT (stmt_info);
3542 reduction_op = get_reduction_op (stmt, reduc_index);
3544 vectype = get_vectype_for_scalar_type (TREE_TYPE (reduction_op));
3545 if (!vectype)
3547 if (dump_enabled_p ())
3549 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3550 "unsupported data-type ");
3551 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
3552 TREE_TYPE (reduction_op));
3553 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3555 return false;
3558 mode = TYPE_MODE (vectype);
3559 orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
3561 if (!orig_stmt)
3562 orig_stmt = STMT_VINFO_STMT (stmt_info);
3564 code = gimple_assign_rhs_code (orig_stmt);
3566 /* Add in cost for initial definition.
3567 For cond reduction we have four vectors: initial index, step, initial
3568 result of the data reduction, initial value of the index reduction. */
3569 int prologue_stmts = STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
3570 == COND_REDUCTION ? 4 : 1;
3571 prologue_cost += add_stmt_cost (target_cost_data, prologue_stmts,
3572 scalar_to_vec, stmt_info, 0,
3573 vect_prologue);
3575 /* Determine cost of epilogue code.
3577 We have a reduction operator that will reduce the vector in one statement.
3578 Also requires scalar extract. */
3580 if (!loop || !nested_in_vect_loop_p (loop, orig_stmt))
3582 if (reduc_code != ERROR_MARK)
3584 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == COND_REDUCTION)
3586 /* An EQ stmt and an COND_EXPR stmt. */
3587 epilogue_cost += add_stmt_cost (target_cost_data, 2,
3588 vector_stmt, stmt_info, 0,
3589 vect_epilogue);
3590 /* Reduction of the max index and a reduction of the found
3591 values. */
3592 epilogue_cost += add_stmt_cost (target_cost_data, 2,
3593 vec_to_scalar, stmt_info, 0,
3594 vect_epilogue);
3595 /* A broadcast of the max value. */
3596 epilogue_cost += add_stmt_cost (target_cost_data, 1,
3597 scalar_to_vec, stmt_info, 0,
3598 vect_epilogue);
3600 else
3602 epilogue_cost += add_stmt_cost (target_cost_data, 1, vector_stmt,
3603 stmt_info, 0, vect_epilogue);
3604 epilogue_cost += add_stmt_cost (target_cost_data, 1,
3605 vec_to_scalar, stmt_info, 0,
3606 vect_epilogue);
3609 else
3611 int vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype));
3612 tree bitsize =
3613 TYPE_SIZE (TREE_TYPE (gimple_assign_lhs (orig_stmt)));
3614 int element_bitsize = tree_to_uhwi (bitsize);
3615 int nelements = vec_size_in_bits / element_bitsize;
3617 optab = optab_for_tree_code (code, vectype, optab_default);
3619 /* We have a whole vector shift available. */
3620 if (VECTOR_MODE_P (mode)
3621 && optab_handler (optab, mode) != CODE_FOR_nothing
3622 && have_whole_vector_shift (mode))
3624 /* Final reduction via vector shifts and the reduction operator.
3625 Also requires scalar extract. */
3626 epilogue_cost += add_stmt_cost (target_cost_data,
3627 exact_log2 (nelements) * 2,
3628 vector_stmt, stmt_info, 0,
3629 vect_epilogue);
3630 epilogue_cost += add_stmt_cost (target_cost_data, 1,
3631 vec_to_scalar, stmt_info, 0,
3632 vect_epilogue);
3634 else
3635 /* Use extracts and reduction op for final reduction. For N
3636 elements, we have N extracts and N-1 reduction ops. */
3637 epilogue_cost += add_stmt_cost (target_cost_data,
3638 nelements + nelements - 1,
3639 vector_stmt, stmt_info, 0,
3640 vect_epilogue);
3644 if (dump_enabled_p ())
3645 dump_printf (MSG_NOTE,
3646 "vect_model_reduction_cost: inside_cost = %d, "
3647 "prologue_cost = %d, epilogue_cost = %d .\n", inside_cost,
3648 prologue_cost, epilogue_cost);
3650 return true;
3654 /* Function vect_model_induction_cost.
3656 Models cost for induction operations. */
3658 static void
3659 vect_model_induction_cost (stmt_vec_info stmt_info, int ncopies)
3661 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3662 void *target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
3663 unsigned inside_cost, prologue_cost;
3665 /* loop cost for vec_loop. */
3666 inside_cost = add_stmt_cost (target_cost_data, ncopies, vector_stmt,
3667 stmt_info, 0, vect_body);
3669 /* prologue cost for vec_init and vec_step. */
3670 prologue_cost = add_stmt_cost (target_cost_data, 2, scalar_to_vec,
3671 stmt_info, 0, vect_prologue);
3673 if (dump_enabled_p ())
3674 dump_printf_loc (MSG_NOTE, vect_location,
3675 "vect_model_induction_cost: inside_cost = %d, "
3676 "prologue_cost = %d .\n", inside_cost, prologue_cost);
3680 /* Function get_initial_def_for_induction
3682 Input:
3683 STMT - a stmt that performs an induction operation in the loop.
3684 IV_PHI - the initial value of the induction variable
3686 Output:
3687 Return a vector variable, initialized with the first VF values of
3688 the induction variable. E.g., for an iv with IV_PHI='X' and
3689 evolution S, for a vector of 4 units, we want to return:
3690 [X, X + S, X + 2*S, X + 3*S]. */
3692 static tree
3693 get_initial_def_for_induction (gimple *iv_phi)
3695 stmt_vec_info stmt_vinfo = vinfo_for_stmt (iv_phi);
3696 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
3697 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
3698 tree vectype;
3699 int nunits;
3700 edge pe = loop_preheader_edge (loop);
3701 struct loop *iv_loop;
3702 basic_block new_bb;
3703 tree new_vec, vec_init, vec_step, t;
3704 tree new_name;
3705 gimple *new_stmt;
3706 gphi *induction_phi;
3707 tree induc_def, vec_def, vec_dest;
3708 tree init_expr, step_expr;
3709 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
3710 int i;
3711 int ncopies;
3712 tree expr;
3713 stmt_vec_info phi_info = vinfo_for_stmt (iv_phi);
3714 bool nested_in_vect_loop = false;
3715 gimple_seq stmts;
3716 imm_use_iterator imm_iter;
3717 use_operand_p use_p;
3718 gimple *exit_phi;
3719 edge latch_e;
3720 tree loop_arg;
3721 gimple_stmt_iterator si;
3722 basic_block bb = gimple_bb (iv_phi);
3723 tree stepvectype;
3724 tree resvectype;
3726 /* Is phi in an inner-loop, while vectorizing an enclosing outer-loop? */
3727 if (nested_in_vect_loop_p (loop, iv_phi))
3729 nested_in_vect_loop = true;
3730 iv_loop = loop->inner;
3732 else
3733 iv_loop = loop;
3734 gcc_assert (iv_loop == (gimple_bb (iv_phi))->loop_father);
3736 latch_e = loop_latch_edge (iv_loop);
3737 loop_arg = PHI_ARG_DEF_FROM_EDGE (iv_phi, latch_e);
3739 step_expr = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (phi_info);
3740 gcc_assert (step_expr != NULL_TREE);
3742 pe = loop_preheader_edge (iv_loop);
3743 init_expr = PHI_ARG_DEF_FROM_EDGE (iv_phi,
3744 loop_preheader_edge (iv_loop));
3746 vectype = get_vectype_for_scalar_type (TREE_TYPE (init_expr));
3747 resvectype = get_vectype_for_scalar_type (TREE_TYPE (PHI_RESULT (iv_phi)));
3748 gcc_assert (vectype);
3749 nunits = TYPE_VECTOR_SUBPARTS (vectype);
3750 ncopies = vf / nunits;
3752 gcc_assert (phi_info);
3753 gcc_assert (ncopies >= 1);
3755 /* Convert the step to the desired type. */
3756 stmts = NULL;
3757 step_expr = gimple_convert (&stmts, TREE_TYPE (vectype), step_expr);
3758 if (stmts)
3760 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
3761 gcc_assert (!new_bb);
3764 /* Find the first insertion point in the BB. */
3765 si = gsi_after_labels (bb);
3767 /* Create the vector that holds the initial_value of the induction. */
3768 if (nested_in_vect_loop)
3770 /* iv_loop is nested in the loop to be vectorized. init_expr had already
3771 been created during vectorization of previous stmts. We obtain it
3772 from the STMT_VINFO_VEC_STMT of the defining stmt. */
3773 vec_init = vect_get_vec_def_for_operand (init_expr, iv_phi);
3774 /* If the initial value is not of proper type, convert it. */
3775 if (!useless_type_conversion_p (vectype, TREE_TYPE (vec_init)))
3777 new_stmt
3778 = gimple_build_assign (vect_get_new_ssa_name (vectype,
3779 vect_simple_var,
3780 "vec_iv_"),
3781 VIEW_CONVERT_EXPR,
3782 build1 (VIEW_CONVERT_EXPR, vectype,
3783 vec_init));
3784 vec_init = gimple_assign_lhs (new_stmt);
3785 new_bb = gsi_insert_on_edge_immediate (loop_preheader_edge (iv_loop),
3786 new_stmt);
3787 gcc_assert (!new_bb);
3788 set_vinfo_for_stmt (new_stmt,
3789 new_stmt_vec_info (new_stmt, loop_vinfo));
3792 else
3794 vec<constructor_elt, va_gc> *v;
3796 /* iv_loop is the loop to be vectorized. Create:
3797 vec_init = [X, X+S, X+2*S, X+3*S] (S = step_expr, X = init_expr) */
3798 stmts = NULL;
3799 new_name = gimple_convert (&stmts, TREE_TYPE (vectype), init_expr);
3801 vec_alloc (v, nunits);
3802 bool constant_p = is_gimple_min_invariant (new_name);
3803 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, new_name);
3804 for (i = 1; i < nunits; i++)
3806 /* Create: new_name_i = new_name + step_expr */
3807 new_name = gimple_build (&stmts, PLUS_EXPR, TREE_TYPE (new_name),
3808 new_name, step_expr);
3809 if (!is_gimple_min_invariant (new_name))
3810 constant_p = false;
3811 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, new_name);
3813 if (stmts)
3815 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
3816 gcc_assert (!new_bb);
3819 /* Create a vector from [new_name_0, new_name_1, ..., new_name_nunits-1] */
3820 if (constant_p)
3821 new_vec = build_vector_from_ctor (vectype, v);
3822 else
3823 new_vec = build_constructor (vectype, v);
3824 vec_init = vect_init_vector (iv_phi, new_vec, vectype, NULL);
3828 /* Create the vector that holds the step of the induction. */
3829 if (nested_in_vect_loop)
3830 /* iv_loop is nested in the loop to be vectorized. Generate:
3831 vec_step = [S, S, S, S] */
3832 new_name = step_expr;
3833 else
3835 /* iv_loop is the loop to be vectorized. Generate:
3836 vec_step = [VF*S, VF*S, VF*S, VF*S] */
3837 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)))
3839 expr = build_int_cst (integer_type_node, vf);
3840 expr = fold_convert (TREE_TYPE (step_expr), expr);
3842 else
3843 expr = build_int_cst (TREE_TYPE (step_expr), vf);
3844 new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
3845 expr, step_expr);
3846 if (TREE_CODE (step_expr) == SSA_NAME)
3847 new_name = vect_init_vector (iv_phi, new_name,
3848 TREE_TYPE (step_expr), NULL);
3851 t = unshare_expr (new_name);
3852 gcc_assert (CONSTANT_CLASS_P (new_name)
3853 || TREE_CODE (new_name) == SSA_NAME);
3854 stepvectype = get_vectype_for_scalar_type (TREE_TYPE (new_name));
3855 gcc_assert (stepvectype);
3856 new_vec = build_vector_from_val (stepvectype, t);
3857 vec_step = vect_init_vector (iv_phi, new_vec, stepvectype, NULL);
3860 /* Create the following def-use cycle:
3861 loop prolog:
3862 vec_init = ...
3863 vec_step = ...
3864 loop:
3865 vec_iv = PHI <vec_init, vec_loop>
3867 STMT
3869 vec_loop = vec_iv + vec_step; */
3871 /* Create the induction-phi that defines the induction-operand. */
3872 vec_dest = vect_get_new_vect_var (vectype, vect_simple_var, "vec_iv_");
3873 induction_phi = create_phi_node (vec_dest, iv_loop->header);
3874 set_vinfo_for_stmt (induction_phi,
3875 new_stmt_vec_info (induction_phi, loop_vinfo));
3876 induc_def = PHI_RESULT (induction_phi);
3878 /* Create the iv update inside the loop */
3879 new_stmt = gimple_build_assign (vec_dest, PLUS_EXPR, induc_def, vec_step);
3880 vec_def = make_ssa_name (vec_dest, new_stmt);
3881 gimple_assign_set_lhs (new_stmt, vec_def);
3882 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
3883 set_vinfo_for_stmt (new_stmt, new_stmt_vec_info (new_stmt, loop_vinfo));
3885 /* Set the arguments of the phi node: */
3886 add_phi_arg (induction_phi, vec_init, pe, UNKNOWN_LOCATION);
3887 add_phi_arg (induction_phi, vec_def, loop_latch_edge (iv_loop),
3888 UNKNOWN_LOCATION);
3891 /* In case that vectorization factor (VF) is bigger than the number
3892 of elements that we can fit in a vectype (nunits), we have to generate
3893 more than one vector stmt - i.e - we need to "unroll" the
3894 vector stmt by a factor VF/nunits. For more details see documentation
3895 in vectorizable_operation. */
3897 if (ncopies > 1)
3899 stmt_vec_info prev_stmt_vinfo;
3900 /* FORNOW. This restriction should be relaxed. */
3901 gcc_assert (!nested_in_vect_loop);
3903 /* Create the vector that holds the step of the induction. */
3904 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)))
3906 expr = build_int_cst (integer_type_node, nunits);
3907 expr = fold_convert (TREE_TYPE (step_expr), expr);
3909 else
3910 expr = build_int_cst (TREE_TYPE (step_expr), nunits);
3911 new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
3912 expr, step_expr);
3913 if (TREE_CODE (step_expr) == SSA_NAME)
3914 new_name = vect_init_vector (iv_phi, new_name,
3915 TREE_TYPE (step_expr), NULL);
3916 t = unshare_expr (new_name);
3917 gcc_assert (CONSTANT_CLASS_P (new_name)
3918 || TREE_CODE (new_name) == SSA_NAME);
3919 new_vec = build_vector_from_val (stepvectype, t);
3920 vec_step = vect_init_vector (iv_phi, new_vec, stepvectype, NULL);
3922 vec_def = induc_def;
3923 prev_stmt_vinfo = vinfo_for_stmt (induction_phi);
3924 for (i = 1; i < ncopies; i++)
3926 /* vec_i = vec_prev + vec_step */
3927 new_stmt = gimple_build_assign (vec_dest, PLUS_EXPR,
3928 vec_def, vec_step);
3929 vec_def = make_ssa_name (vec_dest, new_stmt);
3930 gimple_assign_set_lhs (new_stmt, vec_def);
3932 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
3933 if (!useless_type_conversion_p (resvectype, vectype))
3935 new_stmt
3936 = gimple_build_assign
3937 (vect_get_new_vect_var (resvectype, vect_simple_var,
3938 "vec_iv_"),
3939 VIEW_CONVERT_EXPR,
3940 build1 (VIEW_CONVERT_EXPR, resvectype,
3941 gimple_assign_lhs (new_stmt)));
3942 gimple_assign_set_lhs (new_stmt,
3943 make_ssa_name
3944 (gimple_assign_lhs (new_stmt), new_stmt));
3945 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
3947 set_vinfo_for_stmt (new_stmt,
3948 new_stmt_vec_info (new_stmt, loop_vinfo));
3949 STMT_VINFO_RELATED_STMT (prev_stmt_vinfo) = new_stmt;
3950 prev_stmt_vinfo = vinfo_for_stmt (new_stmt);
3954 if (nested_in_vect_loop)
3956 /* Find the loop-closed exit-phi of the induction, and record
3957 the final vector of induction results: */
3958 exit_phi = NULL;
3959 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, loop_arg)
3961 gimple *use_stmt = USE_STMT (use_p);
3962 if (is_gimple_debug (use_stmt))
3963 continue;
3965 if (!flow_bb_inside_loop_p (iv_loop, gimple_bb (use_stmt)))
3967 exit_phi = use_stmt;
3968 break;
3971 if (exit_phi)
3973 stmt_vec_info stmt_vinfo = vinfo_for_stmt (exit_phi);
3974 /* FORNOW. Currently not supporting the case that an inner-loop induction
3975 is not used in the outer-loop (i.e. only outside the outer-loop). */
3976 gcc_assert (STMT_VINFO_RELEVANT_P (stmt_vinfo)
3977 && !STMT_VINFO_LIVE_P (stmt_vinfo));
3979 STMT_VINFO_VEC_STMT (stmt_vinfo) = new_stmt;
3980 if (dump_enabled_p ())
3982 dump_printf_loc (MSG_NOTE, vect_location,
3983 "vector of inductions after inner-loop:");
3984 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, new_stmt, 0);
3985 dump_printf (MSG_NOTE, "\n");
3991 if (dump_enabled_p ())
3993 dump_printf_loc (MSG_NOTE, vect_location,
3994 "transform induction: created def-use cycle: ");
3995 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, induction_phi, 0);
3996 dump_printf (MSG_NOTE, "\n");
3997 dump_gimple_stmt (MSG_NOTE, TDF_SLIM,
3998 SSA_NAME_DEF_STMT (vec_def), 0);
3999 dump_printf (MSG_NOTE, "\n");
4002 STMT_VINFO_VEC_STMT (phi_info) = induction_phi;
4003 if (!useless_type_conversion_p (resvectype, vectype))
4005 new_stmt = gimple_build_assign (vect_get_new_vect_var (resvectype,
4006 vect_simple_var,
4007 "vec_iv_"),
4008 VIEW_CONVERT_EXPR,
4009 build1 (VIEW_CONVERT_EXPR, resvectype,
4010 induc_def));
4011 induc_def = make_ssa_name (gimple_assign_lhs (new_stmt), new_stmt);
4012 gimple_assign_set_lhs (new_stmt, induc_def);
4013 si = gsi_after_labels (bb);
4014 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
4015 set_vinfo_for_stmt (new_stmt,
4016 new_stmt_vec_info (new_stmt, loop_vinfo));
4017 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (new_stmt))
4018 = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (induction_phi));
4021 return induc_def;
4025 /* Function get_initial_def_for_reduction
4027 Input:
4028 STMT - a stmt that performs a reduction operation in the loop.
4029 INIT_VAL - the initial value of the reduction variable
4031 Output:
4032 ADJUSTMENT_DEF - a tree that holds a value to be added to the final result
4033 of the reduction (used for adjusting the epilog - see below).
4034 Return a vector variable, initialized according to the operation that STMT
4035 performs. This vector will be used as the initial value of the
4036 vector of partial results.
4038 Option1 (adjust in epilog): Initialize the vector as follows:
4039 add/bit or/xor: [0,0,...,0,0]
4040 mult/bit and: [1,1,...,1,1]
4041 min/max/cond_expr: [init_val,init_val,..,init_val,init_val]
4042 and when necessary (e.g. add/mult case) let the caller know
4043 that it needs to adjust the result by init_val.
4045 Option2: Initialize the vector as follows:
4046 add/bit or/xor: [init_val,0,0,...,0]
4047 mult/bit and: [init_val,1,1,...,1]
4048 min/max/cond_expr: [init_val,init_val,...,init_val]
4049 and no adjustments are needed.
4051 For example, for the following code:
4053 s = init_val;
4054 for (i=0;i<n;i++)
4055 s = s + a[i];
4057 STMT is 's = s + a[i]', and the reduction variable is 's'.
4058 For a vector of 4 units, we want to return either [0,0,0,init_val],
4059 or [0,0,0,0] and let the caller know that it needs to adjust
4060 the result at the end by 'init_val'.
4062 FORNOW, we are using the 'adjust in epilog' scheme, because this way the
4063 initialization vector is simpler (same element in all entries), if
4064 ADJUSTMENT_DEF is not NULL, and Option2 otherwise.
4066 A cost model should help decide between these two schemes. */
4068 tree
4069 get_initial_def_for_reduction (gimple *stmt, tree init_val,
4070 tree *adjustment_def)
4072 stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
4073 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
4074 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
4075 tree scalar_type = TREE_TYPE (init_val);
4076 tree vectype = get_vectype_for_scalar_type (scalar_type);
4077 int nunits;
4078 enum tree_code code = gimple_assign_rhs_code (stmt);
4079 tree def_for_init;
4080 tree init_def;
4081 tree *elts;
4082 int i;
4083 bool nested_in_vect_loop = false;
4084 REAL_VALUE_TYPE real_init_val = dconst0;
4085 int int_init_val = 0;
4086 gimple *def_stmt = NULL;
4087 gimple_seq stmts = NULL;
4089 gcc_assert (vectype);
4090 nunits = TYPE_VECTOR_SUBPARTS (vectype);
4092 gcc_assert (POINTER_TYPE_P (scalar_type) || INTEGRAL_TYPE_P (scalar_type)
4093 || SCALAR_FLOAT_TYPE_P (scalar_type));
4095 if (nested_in_vect_loop_p (loop, stmt))
4096 nested_in_vect_loop = true;
4097 else
4098 gcc_assert (loop == (gimple_bb (stmt))->loop_father);
4100 /* In case of double reduction we only create a vector variable to be put
4101 in the reduction phi node. The actual statement creation is done in
4102 vect_create_epilog_for_reduction. */
4103 if (adjustment_def && nested_in_vect_loop
4104 && TREE_CODE (init_val) == SSA_NAME
4105 && (def_stmt = SSA_NAME_DEF_STMT (init_val))
4106 && gimple_code (def_stmt) == GIMPLE_PHI
4107 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
4108 && vinfo_for_stmt (def_stmt)
4109 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
4110 == vect_double_reduction_def)
4112 *adjustment_def = NULL;
4113 return vect_create_destination_var (init_val, vectype);
4116 /* In case of a nested reduction do not use an adjustment def as
4117 that case is not supported by the epilogue generation correctly
4118 if ncopies is not one. */
4119 if (adjustment_def && nested_in_vect_loop)
4121 *adjustment_def = NULL;
4122 return vect_get_vec_def_for_operand (init_val, stmt);
4125 switch (code)
4127 case WIDEN_SUM_EXPR:
4128 case DOT_PROD_EXPR:
4129 case SAD_EXPR:
4130 case PLUS_EXPR:
4131 case MINUS_EXPR:
4132 case BIT_IOR_EXPR:
4133 case BIT_XOR_EXPR:
4134 case MULT_EXPR:
4135 case BIT_AND_EXPR:
4136 /* ADJUSMENT_DEF is NULL when called from
4137 vect_create_epilog_for_reduction to vectorize double reduction. */
4138 if (adjustment_def)
4139 *adjustment_def = init_val;
4141 if (code == MULT_EXPR)
4143 real_init_val = dconst1;
4144 int_init_val = 1;
4147 if (code == BIT_AND_EXPR)
4148 int_init_val = -1;
4150 if (SCALAR_FLOAT_TYPE_P (scalar_type))
4151 def_for_init = build_real (scalar_type, real_init_val);
4152 else
4153 def_for_init = build_int_cst (scalar_type, int_init_val);
4155 /* Create a vector of '0' or '1' except the first element. */
4156 elts = XALLOCAVEC (tree, nunits);
4157 for (i = nunits - 2; i >= 0; --i)
4158 elts[i + 1] = def_for_init;
4160 /* Option1: the first element is '0' or '1' as well. */
4161 if (adjustment_def)
4163 elts[0] = def_for_init;
4164 init_def = build_vector (vectype, elts);
4165 break;
4168 /* Option2: the first element is INIT_VAL. */
4169 elts[0] = init_val;
4170 if (TREE_CONSTANT (init_val))
4171 init_def = build_vector (vectype, elts);
4172 else
4174 vec<constructor_elt, va_gc> *v;
4175 vec_alloc (v, nunits);
4176 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, init_val);
4177 for (i = 1; i < nunits; ++i)
4178 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, elts[i]);
4179 init_def = build_constructor (vectype, v);
4182 break;
4184 case MIN_EXPR:
4185 case MAX_EXPR:
4186 case COND_EXPR:
4187 if (adjustment_def)
4189 *adjustment_def = NULL_TREE;
4190 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_vinfo) != COND_REDUCTION)
4192 init_def = vect_get_vec_def_for_operand (init_val, stmt);
4193 break;
4196 init_val = gimple_convert (&stmts, TREE_TYPE (vectype), init_val);
4197 if (! gimple_seq_empty_p (stmts))
4198 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
4199 init_def = build_vector_from_val (vectype, init_val);
4200 break;
4202 default:
4203 gcc_unreachable ();
4206 return init_def;
4209 /* Function vect_create_epilog_for_reduction
4211 Create code at the loop-epilog to finalize the result of a reduction
4212 computation.
4214 VECT_DEFS is list of vector of partial results, i.e., the lhs's of vector
4215 reduction statements.
4216 STMT is the scalar reduction stmt that is being vectorized.
4217 NCOPIES is > 1 in case the vectorization factor (VF) is bigger than the
4218 number of elements that we can fit in a vectype (nunits). In this case
4219 we have to generate more than one vector stmt - i.e - we need to "unroll"
4220 the vector stmt by a factor VF/nunits. For more details see documentation
4221 in vectorizable_operation.
4222 REDUC_CODE is the tree-code for the epilog reduction.
4223 REDUCTION_PHIS is a list of the phi-nodes that carry the reduction
4224 computation.
4225 REDUC_INDEX is the index of the operand in the right hand side of the
4226 statement that is defined by REDUCTION_PHI.
4227 DOUBLE_REDUC is TRUE if double reduction phi nodes should be handled.
4228 SLP_NODE is an SLP node containing a group of reduction statements. The
4229 first one in this group is STMT.
4230 INDUCTION_INDEX is the index of the loop for condition reductions.
4231 Otherwise it is undefined.
4233 This function:
4234 1. Creates the reduction def-use cycles: sets the arguments for
4235 REDUCTION_PHIS:
4236 The loop-entry argument is the vectorized initial-value of the reduction.
4237 The loop-latch argument is taken from VECT_DEFS - the vector of partial
4238 sums.
4239 2. "Reduces" each vector of partial results VECT_DEFS into a single result,
4240 by applying the operation specified by REDUC_CODE if available, or by
4241 other means (whole-vector shifts or a scalar loop).
4242 The function also creates a new phi node at the loop exit to preserve
4243 loop-closed form, as illustrated below.
4245 The flow at the entry to this function:
4247 loop:
4248 vec_def = phi <null, null> # REDUCTION_PHI
4249 VECT_DEF = vector_stmt # vectorized form of STMT
4250 s_loop = scalar_stmt # (scalar) STMT
4251 loop_exit:
4252 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
4253 use <s_out0>
4254 use <s_out0>
4256 The above is transformed by this function into:
4258 loop:
4259 vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
4260 VECT_DEF = vector_stmt # vectorized form of STMT
4261 s_loop = scalar_stmt # (scalar) STMT
4262 loop_exit:
4263 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
4264 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
4265 v_out2 = reduce <v_out1>
4266 s_out3 = extract_field <v_out2, 0>
4267 s_out4 = adjust_result <s_out3>
4268 use <s_out4>
4269 use <s_out4>
4272 static void
4273 vect_create_epilog_for_reduction (vec<tree> vect_defs, gimple *stmt,
4274 int ncopies, enum tree_code reduc_code,
4275 vec<gimple *> reduction_phis,
4276 int reduc_index, bool double_reduc,
4277 slp_tree slp_node, tree induction_index)
4279 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4280 stmt_vec_info prev_phi_info;
4281 tree vectype;
4282 machine_mode mode;
4283 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4284 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo), *outer_loop = NULL;
4285 basic_block exit_bb;
4286 tree scalar_dest;
4287 tree scalar_type;
4288 gimple *new_phi = NULL, *phi;
4289 gimple_stmt_iterator exit_gsi;
4290 tree vec_dest;
4291 tree new_temp = NULL_TREE, new_dest, new_name, new_scalar_dest;
4292 gimple *epilog_stmt = NULL;
4293 enum tree_code code = gimple_assign_rhs_code (stmt);
4294 gimple *exit_phi;
4295 tree bitsize;
4296 tree adjustment_def = NULL;
4297 tree vec_initial_def = NULL;
4298 tree reduction_op, expr, def, initial_def = NULL;
4299 tree orig_name, scalar_result;
4300 imm_use_iterator imm_iter, phi_imm_iter;
4301 use_operand_p use_p, phi_use_p;
4302 gimple *use_stmt, *orig_stmt, *reduction_phi = NULL;
4303 bool nested_in_vect_loop = false;
4304 auto_vec<gimple *> new_phis;
4305 auto_vec<gimple *> inner_phis;
4306 enum vect_def_type dt = vect_unknown_def_type;
4307 int j, i;
4308 auto_vec<tree> scalar_results;
4309 unsigned int group_size = 1, k, ratio;
4310 auto_vec<tree> vec_initial_defs;
4311 auto_vec<gimple *> phis;
4312 bool slp_reduc = false;
4313 tree new_phi_result;
4314 gimple *inner_phi = NULL;
4316 if (slp_node)
4317 group_size = SLP_TREE_SCALAR_STMTS (slp_node).length ();
4319 if (nested_in_vect_loop_p (loop, stmt))
4321 outer_loop = loop;
4322 loop = loop->inner;
4323 nested_in_vect_loop = true;
4324 gcc_assert (!slp_node);
4327 reduction_op = get_reduction_op (stmt, reduc_index);
4329 vectype = get_vectype_for_scalar_type (TREE_TYPE (reduction_op));
4330 gcc_assert (vectype);
4331 mode = TYPE_MODE (vectype);
4333 /* 1. Create the reduction def-use cycle:
4334 Set the arguments of REDUCTION_PHIS, i.e., transform
4336 loop:
4337 vec_def = phi <null, null> # REDUCTION_PHI
4338 VECT_DEF = vector_stmt # vectorized form of STMT
4341 into:
4343 loop:
4344 vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
4345 VECT_DEF = vector_stmt # vectorized form of STMT
4348 (in case of SLP, do it for all the phis). */
4350 /* Get the loop-entry arguments. */
4351 enum vect_def_type initial_def_dt = vect_unknown_def_type;
4352 if (slp_node)
4353 vect_get_vec_defs (reduction_op, NULL_TREE, stmt, &vec_initial_defs,
4354 NULL, slp_node, reduc_index);
4355 else
4357 /* Get at the scalar def before the loop, that defines the initial value
4358 of the reduction variable. */
4359 gimple *def_stmt = SSA_NAME_DEF_STMT (reduction_op);
4360 initial_def = PHI_ARG_DEF_FROM_EDGE (def_stmt,
4361 loop_preheader_edge (loop));
4362 vect_is_simple_use (initial_def, loop_vinfo, &def_stmt, &initial_def_dt);
4363 vec_initial_def = get_initial_def_for_reduction (stmt, initial_def,
4364 &adjustment_def);
4365 vec_initial_defs.create (1);
4366 vec_initial_defs.quick_push (vec_initial_def);
4369 /* Set phi nodes arguments. */
4370 FOR_EACH_VEC_ELT (reduction_phis, i, phi)
4372 tree vec_init_def, def;
4373 gimple_seq stmts;
4374 vec_init_def = force_gimple_operand (vec_initial_defs[i], &stmts,
4375 true, NULL_TREE);
4376 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
4377 def = vect_defs[i];
4378 for (j = 0; j < ncopies; j++)
4380 if (j != 0)
4382 phi = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi));
4383 if (nested_in_vect_loop)
4384 vec_init_def
4385 = vect_get_vec_def_for_stmt_copy (initial_def_dt,
4386 vec_init_def);
4389 /* Set the loop-entry arg of the reduction-phi. */
4391 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
4392 == INTEGER_INDUC_COND_REDUCTION)
4394 /* Initialise the reduction phi to zero. This prevents initial
4395 values of non-zero interferring with the reduction op. */
4396 gcc_assert (ncopies == 1);
4397 gcc_assert (i == 0);
4399 tree vec_init_def_type = TREE_TYPE (vec_init_def);
4400 tree zero_vec = build_zero_cst (vec_init_def_type);
4402 add_phi_arg (as_a <gphi *> (phi), zero_vec,
4403 loop_preheader_edge (loop), UNKNOWN_LOCATION);
4405 else
4406 add_phi_arg (as_a <gphi *> (phi), vec_init_def,
4407 loop_preheader_edge (loop), UNKNOWN_LOCATION);
4409 /* Set the loop-latch arg for the reduction-phi. */
4410 if (j > 0)
4411 def = vect_get_vec_def_for_stmt_copy (vect_unknown_def_type, def);
4413 add_phi_arg (as_a <gphi *> (phi), def, loop_latch_edge (loop),
4414 UNKNOWN_LOCATION);
4416 if (dump_enabled_p ())
4418 dump_printf_loc (MSG_NOTE, vect_location,
4419 "transform reduction: created def-use cycle: ");
4420 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
4421 dump_printf (MSG_NOTE, "\n");
4422 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, SSA_NAME_DEF_STMT (def), 0);
4423 dump_printf (MSG_NOTE, "\n");
4428 /* 2. Create epilog code.
4429 The reduction epilog code operates across the elements of the vector
4430 of partial results computed by the vectorized loop.
4431 The reduction epilog code consists of:
4433 step 1: compute the scalar result in a vector (v_out2)
4434 step 2: extract the scalar result (s_out3) from the vector (v_out2)
4435 step 3: adjust the scalar result (s_out3) if needed.
4437 Step 1 can be accomplished using one the following three schemes:
4438 (scheme 1) using reduc_code, if available.
4439 (scheme 2) using whole-vector shifts, if available.
4440 (scheme 3) using a scalar loop. In this case steps 1+2 above are
4441 combined.
4443 The overall epilog code looks like this:
4445 s_out0 = phi <s_loop> # original EXIT_PHI
4446 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
4447 v_out2 = reduce <v_out1> # step 1
4448 s_out3 = extract_field <v_out2, 0> # step 2
4449 s_out4 = adjust_result <s_out3> # step 3
4451 (step 3 is optional, and steps 1 and 2 may be combined).
4452 Lastly, the uses of s_out0 are replaced by s_out4. */
4455 /* 2.1 Create new loop-exit-phis to preserve loop-closed form:
4456 v_out1 = phi <VECT_DEF>
4457 Store them in NEW_PHIS. */
4459 exit_bb = single_exit (loop)->dest;
4460 prev_phi_info = NULL;
4461 new_phis.create (vect_defs.length ());
4462 FOR_EACH_VEC_ELT (vect_defs, i, def)
4464 for (j = 0; j < ncopies; j++)
4466 tree new_def = copy_ssa_name (def);
4467 phi = create_phi_node (new_def, exit_bb);
4468 set_vinfo_for_stmt (phi, new_stmt_vec_info (phi, loop_vinfo));
4469 if (j == 0)
4470 new_phis.quick_push (phi);
4471 else
4473 def = vect_get_vec_def_for_stmt_copy (dt, def);
4474 STMT_VINFO_RELATED_STMT (prev_phi_info) = phi;
4477 SET_PHI_ARG_DEF (phi, single_exit (loop)->dest_idx, def);
4478 prev_phi_info = vinfo_for_stmt (phi);
4482 /* The epilogue is created for the outer-loop, i.e., for the loop being
4483 vectorized. Create exit phis for the outer loop. */
4484 if (double_reduc)
4486 loop = outer_loop;
4487 exit_bb = single_exit (loop)->dest;
4488 inner_phis.create (vect_defs.length ());
4489 FOR_EACH_VEC_ELT (new_phis, i, phi)
4491 tree new_result = copy_ssa_name (PHI_RESULT (phi));
4492 gphi *outer_phi = create_phi_node (new_result, exit_bb);
4493 SET_PHI_ARG_DEF (outer_phi, single_exit (loop)->dest_idx,
4494 PHI_RESULT (phi));
4495 set_vinfo_for_stmt (outer_phi, new_stmt_vec_info (outer_phi,
4496 loop_vinfo));
4497 inner_phis.quick_push (phi);
4498 new_phis[i] = outer_phi;
4499 prev_phi_info = vinfo_for_stmt (outer_phi);
4500 while (STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi)))
4502 phi = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi));
4503 new_result = copy_ssa_name (PHI_RESULT (phi));
4504 outer_phi = create_phi_node (new_result, exit_bb);
4505 SET_PHI_ARG_DEF (outer_phi, single_exit (loop)->dest_idx,
4506 PHI_RESULT (phi));
4507 set_vinfo_for_stmt (outer_phi, new_stmt_vec_info (outer_phi,
4508 loop_vinfo));
4509 STMT_VINFO_RELATED_STMT (prev_phi_info) = outer_phi;
4510 prev_phi_info = vinfo_for_stmt (outer_phi);
4515 exit_gsi = gsi_after_labels (exit_bb);
4517 /* 2.2 Get the relevant tree-code to use in the epilog for schemes 2,3
4518 (i.e. when reduc_code is not available) and in the final adjustment
4519 code (if needed). Also get the original scalar reduction variable as
4520 defined in the loop. In case STMT is a "pattern-stmt" (i.e. - it
4521 represents a reduction pattern), the tree-code and scalar-def are
4522 taken from the original stmt that the pattern-stmt (STMT) replaces.
4523 Otherwise (it is a regular reduction) - the tree-code and scalar-def
4524 are taken from STMT. */
4526 orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
4527 if (!orig_stmt)
4529 /* Regular reduction */
4530 orig_stmt = stmt;
4532 else
4534 /* Reduction pattern */
4535 stmt_vec_info stmt_vinfo = vinfo_for_stmt (orig_stmt);
4536 gcc_assert (STMT_VINFO_IN_PATTERN_P (stmt_vinfo));
4537 gcc_assert (STMT_VINFO_RELATED_STMT (stmt_vinfo) == stmt);
4540 code = gimple_assign_rhs_code (orig_stmt);
4541 /* For MINUS_EXPR the initial vector is [init_val,0,...,0], therefore,
4542 partial results are added and not subtracted. */
4543 if (code == MINUS_EXPR)
4544 code = PLUS_EXPR;
4546 scalar_dest = gimple_assign_lhs (orig_stmt);
4547 scalar_type = TREE_TYPE (scalar_dest);
4548 scalar_results.create (group_size);
4549 new_scalar_dest = vect_create_destination_var (scalar_dest, NULL);
4550 bitsize = TYPE_SIZE (scalar_type);
4552 /* In case this is a reduction in an inner-loop while vectorizing an outer
4553 loop - we don't need to extract a single scalar result at the end of the
4554 inner-loop (unless it is double reduction, i.e., the use of reduction is
4555 outside the outer-loop). The final vector of partial results will be used
4556 in the vectorized outer-loop, or reduced to a scalar result at the end of
4557 the outer-loop. */
4558 if (nested_in_vect_loop && !double_reduc)
4559 goto vect_finalize_reduction;
4561 /* SLP reduction without reduction chain, e.g.,
4562 # a1 = phi <a2, a0>
4563 # b1 = phi <b2, b0>
4564 a2 = operation (a1)
4565 b2 = operation (b1) */
4566 slp_reduc = (slp_node && !GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)));
4568 /* In case of reduction chain, e.g.,
4569 # a1 = phi <a3, a0>
4570 a2 = operation (a1)
4571 a3 = operation (a2),
4573 we may end up with more than one vector result. Here we reduce them to
4574 one vector. */
4575 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
4577 tree first_vect = PHI_RESULT (new_phis[0]);
4578 tree tmp;
4579 gassign *new_vec_stmt = NULL;
4581 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4582 for (k = 1; k < new_phis.length (); k++)
4584 gimple *next_phi = new_phis[k];
4585 tree second_vect = PHI_RESULT (next_phi);
4587 tmp = build2 (code, vectype, first_vect, second_vect);
4588 new_vec_stmt = gimple_build_assign (vec_dest, tmp);
4589 first_vect = make_ssa_name (vec_dest, new_vec_stmt);
4590 gimple_assign_set_lhs (new_vec_stmt, first_vect);
4591 gsi_insert_before (&exit_gsi, new_vec_stmt, GSI_SAME_STMT);
4594 new_phi_result = first_vect;
4595 if (new_vec_stmt)
4597 new_phis.truncate (0);
4598 new_phis.safe_push (new_vec_stmt);
4601 else
4602 new_phi_result = PHI_RESULT (new_phis[0]);
4604 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == COND_REDUCTION)
4606 /* For condition reductions, we have a vector (NEW_PHI_RESULT) containing
4607 various data values where the condition matched and another vector
4608 (INDUCTION_INDEX) containing all the indexes of those matches. We
4609 need to extract the last matching index (which will be the index with
4610 highest value) and use this to index into the data vector.
4611 For the case where there were no matches, the data vector will contain
4612 all default values and the index vector will be all zeros. */
4614 /* Get various versions of the type of the vector of indexes. */
4615 tree index_vec_type = TREE_TYPE (induction_index);
4616 gcc_checking_assert (TYPE_UNSIGNED (index_vec_type));
4617 tree index_scalar_type = TREE_TYPE (index_vec_type);
4618 tree index_vec_cmp_type = build_same_sized_truth_vector_type
4619 (index_vec_type);
4621 /* Get an unsigned integer version of the type of the data vector. */
4622 int scalar_precision = GET_MODE_PRECISION (TYPE_MODE (scalar_type));
4623 tree scalar_type_unsigned = make_unsigned_type (scalar_precision);
4624 tree vectype_unsigned = build_vector_type
4625 (scalar_type_unsigned, TYPE_VECTOR_SUBPARTS (vectype));
4627 /* First we need to create a vector (ZERO_VEC) of zeros and another
4628 vector (MAX_INDEX_VEC) filled with the last matching index, which we
4629 can create using a MAX reduction and then expanding.
4630 In the case where the loop never made any matches, the max index will
4631 be zero. */
4633 /* Vector of {0, 0, 0,...}. */
4634 tree zero_vec = make_ssa_name (vectype);
4635 tree zero_vec_rhs = build_zero_cst (vectype);
4636 gimple *zero_vec_stmt = gimple_build_assign (zero_vec, zero_vec_rhs);
4637 gsi_insert_before (&exit_gsi, zero_vec_stmt, GSI_SAME_STMT);
4639 /* Find maximum value from the vector of found indexes. */
4640 tree max_index = make_ssa_name (index_scalar_type);
4641 gimple *max_index_stmt = gimple_build_assign (max_index, REDUC_MAX_EXPR,
4642 induction_index);
4643 gsi_insert_before (&exit_gsi, max_index_stmt, GSI_SAME_STMT);
4645 /* Vector of {max_index, max_index, max_index,...}. */
4646 tree max_index_vec = make_ssa_name (index_vec_type);
4647 tree max_index_vec_rhs = build_vector_from_val (index_vec_type,
4648 max_index);
4649 gimple *max_index_vec_stmt = gimple_build_assign (max_index_vec,
4650 max_index_vec_rhs);
4651 gsi_insert_before (&exit_gsi, max_index_vec_stmt, GSI_SAME_STMT);
4653 /* Next we compare the new vector (MAX_INDEX_VEC) full of max indexes
4654 with the vector (INDUCTION_INDEX) of found indexes, choosing values
4655 from the data vector (NEW_PHI_RESULT) for matches, 0 (ZERO_VEC)
4656 otherwise. Only one value should match, resulting in a vector
4657 (VEC_COND) with one data value and the rest zeros.
4658 In the case where the loop never made any matches, every index will
4659 match, resulting in a vector with all data values (which will all be
4660 the default value). */
4662 /* Compare the max index vector to the vector of found indexes to find
4663 the position of the max value. */
4664 tree vec_compare = make_ssa_name (index_vec_cmp_type);
4665 gimple *vec_compare_stmt = gimple_build_assign (vec_compare, EQ_EXPR,
4666 induction_index,
4667 max_index_vec);
4668 gsi_insert_before (&exit_gsi, vec_compare_stmt, GSI_SAME_STMT);
4670 /* Use the compare to choose either values from the data vector or
4671 zero. */
4672 tree vec_cond = make_ssa_name (vectype);
4673 gimple *vec_cond_stmt = gimple_build_assign (vec_cond, VEC_COND_EXPR,
4674 vec_compare, new_phi_result,
4675 zero_vec);
4676 gsi_insert_before (&exit_gsi, vec_cond_stmt, GSI_SAME_STMT);
4678 /* Finally we need to extract the data value from the vector (VEC_COND)
4679 into a scalar (MATCHED_DATA_REDUC). Logically we want to do a OR
4680 reduction, but because this doesn't exist, we can use a MAX reduction
4681 instead. The data value might be signed or a float so we need to cast
4682 it first.
4683 In the case where the loop never made any matches, the data values are
4684 all identical, and so will reduce down correctly. */
4686 /* Make the matched data values unsigned. */
4687 tree vec_cond_cast = make_ssa_name (vectype_unsigned);
4688 tree vec_cond_cast_rhs = build1 (VIEW_CONVERT_EXPR, vectype_unsigned,
4689 vec_cond);
4690 gimple *vec_cond_cast_stmt = gimple_build_assign (vec_cond_cast,
4691 VIEW_CONVERT_EXPR,
4692 vec_cond_cast_rhs);
4693 gsi_insert_before (&exit_gsi, vec_cond_cast_stmt, GSI_SAME_STMT);
4695 /* Reduce down to a scalar value. */
4696 tree data_reduc = make_ssa_name (scalar_type_unsigned);
4697 optab ot = optab_for_tree_code (REDUC_MAX_EXPR, vectype_unsigned,
4698 optab_default);
4699 gcc_assert (optab_handler (ot, TYPE_MODE (vectype_unsigned))
4700 != CODE_FOR_nothing);
4701 gimple *data_reduc_stmt = gimple_build_assign (data_reduc,
4702 REDUC_MAX_EXPR,
4703 vec_cond_cast);
4704 gsi_insert_before (&exit_gsi, data_reduc_stmt, GSI_SAME_STMT);
4706 /* Convert the reduced value back to the result type and set as the
4707 result. */
4708 tree data_reduc_cast = build1 (VIEW_CONVERT_EXPR, scalar_type,
4709 data_reduc);
4710 epilog_stmt = gimple_build_assign (new_scalar_dest, data_reduc_cast);
4711 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
4712 gimple_assign_set_lhs (epilog_stmt, new_temp);
4713 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4714 scalar_results.safe_push (new_temp);
4717 /* 2.3 Create the reduction code, using one of the three schemes described
4718 above. In SLP we simply need to extract all the elements from the
4719 vector (without reducing them), so we use scalar shifts. */
4720 else if (reduc_code != ERROR_MARK && !slp_reduc)
4722 tree tmp;
4723 tree vec_elem_type;
4725 /*** Case 1: Create:
4726 v_out2 = reduc_expr <v_out1> */
4728 if (dump_enabled_p ())
4729 dump_printf_loc (MSG_NOTE, vect_location,
4730 "Reduce using direct vector reduction.\n");
4732 vec_elem_type = TREE_TYPE (TREE_TYPE (new_phi_result));
4733 if (!useless_type_conversion_p (scalar_type, vec_elem_type))
4735 tree tmp_dest =
4736 vect_create_destination_var (scalar_dest, vec_elem_type);
4737 tmp = build1 (reduc_code, vec_elem_type, new_phi_result);
4738 epilog_stmt = gimple_build_assign (tmp_dest, tmp);
4739 new_temp = make_ssa_name (tmp_dest, epilog_stmt);
4740 gimple_assign_set_lhs (epilog_stmt, new_temp);
4741 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4743 tmp = build1 (NOP_EXPR, scalar_type, new_temp);
4745 else
4746 tmp = build1 (reduc_code, scalar_type, new_phi_result);
4748 epilog_stmt = gimple_build_assign (new_scalar_dest, tmp);
4749 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
4750 gimple_assign_set_lhs (epilog_stmt, new_temp);
4751 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4753 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
4754 == INTEGER_INDUC_COND_REDUCTION)
4756 /* Earlier we set the initial value to be zero. Check the result
4757 and if it is zero then replace with the original initial
4758 value. */
4759 tree zero = build_zero_cst (scalar_type);
4760 tree zcompare = build2 (EQ_EXPR, boolean_type_node, new_temp, zero);
4762 tmp = make_ssa_name (new_scalar_dest);
4763 epilog_stmt = gimple_build_assign (tmp, COND_EXPR, zcompare,
4764 initial_def, new_temp);
4765 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4766 new_temp = tmp;
4769 scalar_results.safe_push (new_temp);
4771 else
4773 bool reduce_with_shift = have_whole_vector_shift (mode);
4774 int element_bitsize = tree_to_uhwi (bitsize);
4775 int vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype));
4776 tree vec_temp;
4778 /* Regardless of whether we have a whole vector shift, if we're
4779 emulating the operation via tree-vect-generic, we don't want
4780 to use it. Only the first round of the reduction is likely
4781 to still be profitable via emulation. */
4782 /* ??? It might be better to emit a reduction tree code here, so that
4783 tree-vect-generic can expand the first round via bit tricks. */
4784 if (!VECTOR_MODE_P (mode))
4785 reduce_with_shift = false;
4786 else
4788 optab optab = optab_for_tree_code (code, vectype, optab_default);
4789 if (optab_handler (optab, mode) == CODE_FOR_nothing)
4790 reduce_with_shift = false;
4793 if (reduce_with_shift && !slp_reduc)
4795 int nelements = vec_size_in_bits / element_bitsize;
4796 unsigned char *sel = XALLOCAVEC (unsigned char, nelements);
4798 int elt_offset;
4800 tree zero_vec = build_zero_cst (vectype);
4801 /*** Case 2: Create:
4802 for (offset = nelements/2; offset >= 1; offset/=2)
4804 Create: va' = vec_shift <va, offset>
4805 Create: va = vop <va, va'>
4806 } */
4808 tree rhs;
4810 if (dump_enabled_p ())
4811 dump_printf_loc (MSG_NOTE, vect_location,
4812 "Reduce using vector shifts\n");
4814 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4815 new_temp = new_phi_result;
4816 for (elt_offset = nelements / 2;
4817 elt_offset >= 1;
4818 elt_offset /= 2)
4820 calc_vec_perm_mask_for_shift (mode, elt_offset, sel);
4821 tree mask = vect_gen_perm_mask_any (vectype, sel);
4822 epilog_stmt = gimple_build_assign (vec_dest, VEC_PERM_EXPR,
4823 new_temp, zero_vec, mask);
4824 new_name = make_ssa_name (vec_dest, epilog_stmt);
4825 gimple_assign_set_lhs (epilog_stmt, new_name);
4826 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4828 epilog_stmt = gimple_build_assign (vec_dest, code, new_name,
4829 new_temp);
4830 new_temp = make_ssa_name (vec_dest, epilog_stmt);
4831 gimple_assign_set_lhs (epilog_stmt, new_temp);
4832 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4835 /* 2.4 Extract the final scalar result. Create:
4836 s_out3 = extract_field <v_out2, bitpos> */
4838 if (dump_enabled_p ())
4839 dump_printf_loc (MSG_NOTE, vect_location,
4840 "extract scalar result\n");
4842 rhs = build3 (BIT_FIELD_REF, scalar_type, new_temp,
4843 bitsize, bitsize_zero_node);
4844 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
4845 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
4846 gimple_assign_set_lhs (epilog_stmt, new_temp);
4847 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4848 scalar_results.safe_push (new_temp);
4850 else
4852 /*** Case 3: Create:
4853 s = extract_field <v_out2, 0>
4854 for (offset = element_size;
4855 offset < vector_size;
4856 offset += element_size;)
4858 Create: s' = extract_field <v_out2, offset>
4859 Create: s = op <s, s'> // For non SLP cases
4860 } */
4862 if (dump_enabled_p ())
4863 dump_printf_loc (MSG_NOTE, vect_location,
4864 "Reduce using scalar code.\n");
4866 vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype));
4867 FOR_EACH_VEC_ELT (new_phis, i, new_phi)
4869 int bit_offset;
4870 if (gimple_code (new_phi) == GIMPLE_PHI)
4871 vec_temp = PHI_RESULT (new_phi);
4872 else
4873 vec_temp = gimple_assign_lhs (new_phi);
4874 tree rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp, bitsize,
4875 bitsize_zero_node);
4876 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
4877 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
4878 gimple_assign_set_lhs (epilog_stmt, new_temp);
4879 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4881 /* In SLP we don't need to apply reduction operation, so we just
4882 collect s' values in SCALAR_RESULTS. */
4883 if (slp_reduc)
4884 scalar_results.safe_push (new_temp);
4886 for (bit_offset = element_bitsize;
4887 bit_offset < vec_size_in_bits;
4888 bit_offset += element_bitsize)
4890 tree bitpos = bitsize_int (bit_offset);
4891 tree rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp,
4892 bitsize, bitpos);
4894 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
4895 new_name = make_ssa_name (new_scalar_dest, epilog_stmt);
4896 gimple_assign_set_lhs (epilog_stmt, new_name);
4897 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4899 if (slp_reduc)
4901 /* In SLP we don't need to apply reduction operation, so
4902 we just collect s' values in SCALAR_RESULTS. */
4903 new_temp = new_name;
4904 scalar_results.safe_push (new_name);
4906 else
4908 epilog_stmt = gimple_build_assign (new_scalar_dest, code,
4909 new_name, new_temp);
4910 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
4911 gimple_assign_set_lhs (epilog_stmt, new_temp);
4912 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4917 /* The only case where we need to reduce scalar results in SLP, is
4918 unrolling. If the size of SCALAR_RESULTS is greater than
4919 GROUP_SIZE, we reduce them combining elements modulo
4920 GROUP_SIZE. */
4921 if (slp_reduc)
4923 tree res, first_res, new_res;
4924 gimple *new_stmt;
4926 /* Reduce multiple scalar results in case of SLP unrolling. */
4927 for (j = group_size; scalar_results.iterate (j, &res);
4928 j++)
4930 first_res = scalar_results[j % group_size];
4931 new_stmt = gimple_build_assign (new_scalar_dest, code,
4932 first_res, res);
4933 new_res = make_ssa_name (new_scalar_dest, new_stmt);
4934 gimple_assign_set_lhs (new_stmt, new_res);
4935 gsi_insert_before (&exit_gsi, new_stmt, GSI_SAME_STMT);
4936 scalar_results[j % group_size] = new_res;
4939 else
4940 /* Not SLP - we have one scalar to keep in SCALAR_RESULTS. */
4941 scalar_results.safe_push (new_temp);
4945 vect_finalize_reduction:
4947 if (double_reduc)
4948 loop = loop->inner;
4950 /* 2.5 Adjust the final result by the initial value of the reduction
4951 variable. (When such adjustment is not needed, then
4952 'adjustment_def' is zero). For example, if code is PLUS we create:
4953 new_temp = loop_exit_def + adjustment_def */
4955 if (adjustment_def)
4957 gcc_assert (!slp_reduc);
4958 if (nested_in_vect_loop)
4960 new_phi = new_phis[0];
4961 gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) == VECTOR_TYPE);
4962 expr = build2 (code, vectype, PHI_RESULT (new_phi), adjustment_def);
4963 new_dest = vect_create_destination_var (scalar_dest, vectype);
4965 else
4967 new_temp = scalar_results[0];
4968 gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) != VECTOR_TYPE);
4969 expr = build2 (code, scalar_type, new_temp, adjustment_def);
4970 new_dest = vect_create_destination_var (scalar_dest, scalar_type);
4973 epilog_stmt = gimple_build_assign (new_dest, expr);
4974 new_temp = make_ssa_name (new_dest, epilog_stmt);
4975 gimple_assign_set_lhs (epilog_stmt, new_temp);
4976 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4977 if (nested_in_vect_loop)
4979 set_vinfo_for_stmt (epilog_stmt,
4980 new_stmt_vec_info (epilog_stmt, loop_vinfo));
4981 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (epilog_stmt)) =
4982 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (new_phi));
4984 if (!double_reduc)
4985 scalar_results.quick_push (new_temp);
4986 else
4987 scalar_results[0] = new_temp;
4989 else
4990 scalar_results[0] = new_temp;
4992 new_phis[0] = epilog_stmt;
4995 /* 2.6 Handle the loop-exit phis. Replace the uses of scalar loop-exit
4996 phis with new adjusted scalar results, i.e., replace use <s_out0>
4997 with use <s_out4>.
4999 Transform:
5000 loop_exit:
5001 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
5002 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
5003 v_out2 = reduce <v_out1>
5004 s_out3 = extract_field <v_out2, 0>
5005 s_out4 = adjust_result <s_out3>
5006 use <s_out0>
5007 use <s_out0>
5009 into:
5011 loop_exit:
5012 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
5013 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
5014 v_out2 = reduce <v_out1>
5015 s_out3 = extract_field <v_out2, 0>
5016 s_out4 = adjust_result <s_out3>
5017 use <s_out4>
5018 use <s_out4> */
5021 /* In SLP reduction chain we reduce vector results into one vector if
5022 necessary, hence we set here GROUP_SIZE to 1. SCALAR_DEST is the LHS of
5023 the last stmt in the reduction chain, since we are looking for the loop
5024 exit phi node. */
5025 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
5027 gimple *dest_stmt = SLP_TREE_SCALAR_STMTS (slp_node)[group_size - 1];
5028 /* Handle reduction patterns. */
5029 if (STMT_VINFO_RELATED_STMT (vinfo_for_stmt (dest_stmt)))
5030 dest_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (dest_stmt));
5032 scalar_dest = gimple_assign_lhs (dest_stmt);
5033 group_size = 1;
5036 /* In SLP we may have several statements in NEW_PHIS and REDUCTION_PHIS (in
5037 case that GROUP_SIZE is greater than vectorization factor). Therefore, we
5038 need to match SCALAR_RESULTS with corresponding statements. The first
5039 (GROUP_SIZE / number of new vector stmts) scalar results correspond to
5040 the first vector stmt, etc.
5041 (RATIO is equal to (GROUP_SIZE / number of new vector stmts)). */
5042 if (group_size > new_phis.length ())
5044 ratio = group_size / new_phis.length ();
5045 gcc_assert (!(group_size % new_phis.length ()));
5047 else
5048 ratio = 1;
5050 for (k = 0; k < group_size; k++)
5052 if (k % ratio == 0)
5054 epilog_stmt = new_phis[k / ratio];
5055 reduction_phi = reduction_phis[k / ratio];
5056 if (double_reduc)
5057 inner_phi = inner_phis[k / ratio];
5060 if (slp_reduc)
5062 gimple *current_stmt = SLP_TREE_SCALAR_STMTS (slp_node)[k];
5064 orig_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (current_stmt));
5065 /* SLP statements can't participate in patterns. */
5066 gcc_assert (!orig_stmt);
5067 scalar_dest = gimple_assign_lhs (current_stmt);
5070 phis.create (3);
5071 /* Find the loop-closed-use at the loop exit of the original scalar
5072 result. (The reduction result is expected to have two immediate uses -
5073 one at the latch block, and one at the loop exit). */
5074 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
5075 if (!flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p)))
5076 && !is_gimple_debug (USE_STMT (use_p)))
5077 phis.safe_push (USE_STMT (use_p));
5079 /* While we expect to have found an exit_phi because of loop-closed-ssa
5080 form we can end up without one if the scalar cycle is dead. */
5082 FOR_EACH_VEC_ELT (phis, i, exit_phi)
5084 if (outer_loop)
5086 stmt_vec_info exit_phi_vinfo = vinfo_for_stmt (exit_phi);
5087 gphi *vect_phi;
5089 /* FORNOW. Currently not supporting the case that an inner-loop
5090 reduction is not used in the outer-loop (but only outside the
5091 outer-loop), unless it is double reduction. */
5092 gcc_assert ((STMT_VINFO_RELEVANT_P (exit_phi_vinfo)
5093 && !STMT_VINFO_LIVE_P (exit_phi_vinfo))
5094 || double_reduc);
5096 if (double_reduc)
5097 STMT_VINFO_VEC_STMT (exit_phi_vinfo) = inner_phi;
5098 else
5099 STMT_VINFO_VEC_STMT (exit_phi_vinfo) = epilog_stmt;
5100 if (!double_reduc
5101 || STMT_VINFO_DEF_TYPE (exit_phi_vinfo)
5102 != vect_double_reduction_def)
5103 continue;
5105 /* Handle double reduction:
5107 stmt1: s1 = phi <s0, s2> - double reduction phi (outer loop)
5108 stmt2: s3 = phi <s1, s4> - (regular) reduc phi (inner loop)
5109 stmt3: s4 = use (s3) - (regular) reduc stmt (inner loop)
5110 stmt4: s2 = phi <s4> - double reduction stmt (outer loop)
5112 At that point the regular reduction (stmt2 and stmt3) is
5113 already vectorized, as well as the exit phi node, stmt4.
5114 Here we vectorize the phi node of double reduction, stmt1, and
5115 update all relevant statements. */
5117 /* Go through all the uses of s2 to find double reduction phi
5118 node, i.e., stmt1 above. */
5119 orig_name = PHI_RESULT (exit_phi);
5120 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
5122 stmt_vec_info use_stmt_vinfo;
5123 stmt_vec_info new_phi_vinfo;
5124 tree vect_phi_init, preheader_arg, vect_phi_res, init_def;
5125 basic_block bb = gimple_bb (use_stmt);
5126 gimple *use;
5128 /* Check that USE_STMT is really double reduction phi
5129 node. */
5130 if (gimple_code (use_stmt) != GIMPLE_PHI
5131 || gimple_phi_num_args (use_stmt) != 2
5132 || bb->loop_father != outer_loop)
5133 continue;
5134 use_stmt_vinfo = vinfo_for_stmt (use_stmt);
5135 if (!use_stmt_vinfo
5136 || STMT_VINFO_DEF_TYPE (use_stmt_vinfo)
5137 != vect_double_reduction_def)
5138 continue;
5140 /* Create vector phi node for double reduction:
5141 vs1 = phi <vs0, vs2>
5142 vs1 was created previously in this function by a call to
5143 vect_get_vec_def_for_operand and is stored in
5144 vec_initial_def;
5145 vs2 is defined by INNER_PHI, the vectorized EXIT_PHI;
5146 vs0 is created here. */
5148 /* Create vector phi node. */
5149 vect_phi = create_phi_node (vec_initial_def, bb);
5150 new_phi_vinfo = new_stmt_vec_info (vect_phi,
5151 loop_vec_info_for_loop (outer_loop));
5152 set_vinfo_for_stmt (vect_phi, new_phi_vinfo);
5154 /* Create vs0 - initial def of the double reduction phi. */
5155 preheader_arg = PHI_ARG_DEF_FROM_EDGE (use_stmt,
5156 loop_preheader_edge (outer_loop));
5157 init_def = get_initial_def_for_reduction (stmt,
5158 preheader_arg, NULL);
5159 vect_phi_init = vect_init_vector (use_stmt, init_def,
5160 vectype, NULL);
5162 /* Update phi node arguments with vs0 and vs2. */
5163 add_phi_arg (vect_phi, vect_phi_init,
5164 loop_preheader_edge (outer_loop),
5165 UNKNOWN_LOCATION);
5166 add_phi_arg (vect_phi, PHI_RESULT (inner_phi),
5167 loop_latch_edge (outer_loop), UNKNOWN_LOCATION);
5168 if (dump_enabled_p ())
5170 dump_printf_loc (MSG_NOTE, vect_location,
5171 "created double reduction phi node: ");
5172 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, vect_phi, 0);
5173 dump_printf (MSG_NOTE, "\n");
5176 vect_phi_res = PHI_RESULT (vect_phi);
5178 /* Replace the use, i.e., set the correct vs1 in the regular
5179 reduction phi node. FORNOW, NCOPIES is always 1, so the
5180 loop is redundant. */
5181 use = reduction_phi;
5182 for (j = 0; j < ncopies; j++)
5184 edge pr_edge = loop_preheader_edge (loop);
5185 SET_PHI_ARG_DEF (use, pr_edge->dest_idx, vect_phi_res);
5186 use = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (use));
5192 phis.release ();
5193 if (nested_in_vect_loop)
5195 if (double_reduc)
5196 loop = outer_loop;
5197 else
5198 continue;
5201 phis.create (3);
5202 /* Find the loop-closed-use at the loop exit of the original scalar
5203 result. (The reduction result is expected to have two immediate uses,
5204 one at the latch block, and one at the loop exit). For double
5205 reductions we are looking for exit phis of the outer loop. */
5206 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
5208 if (!flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
5210 if (!is_gimple_debug (USE_STMT (use_p)))
5211 phis.safe_push (USE_STMT (use_p));
5213 else
5215 if (double_reduc && gimple_code (USE_STMT (use_p)) == GIMPLE_PHI)
5217 tree phi_res = PHI_RESULT (USE_STMT (use_p));
5219 FOR_EACH_IMM_USE_FAST (phi_use_p, phi_imm_iter, phi_res)
5221 if (!flow_bb_inside_loop_p (loop,
5222 gimple_bb (USE_STMT (phi_use_p)))
5223 && !is_gimple_debug (USE_STMT (phi_use_p)))
5224 phis.safe_push (USE_STMT (phi_use_p));
5230 FOR_EACH_VEC_ELT (phis, i, exit_phi)
5232 /* Replace the uses: */
5233 orig_name = PHI_RESULT (exit_phi);
5234 scalar_result = scalar_results[k];
5235 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
5236 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
5237 SET_USE (use_p, scalar_result);
5240 phis.release ();
5245 /* Function is_nonwrapping_integer_induction.
5247 Check if STMT (which is part of loop LOOP) both increments and
5248 does not cause overflow. */
5250 static bool
5251 is_nonwrapping_integer_induction (gimple *stmt, struct loop *loop)
5253 stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
5254 tree base = STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED (stmt_vinfo);
5255 tree step = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo);
5256 tree lhs_type = TREE_TYPE (gimple_phi_result (stmt));
5257 widest_int ni, max_loop_value, lhs_max;
5258 bool overflow = false;
5260 /* Make sure the loop is integer based. */
5261 if (TREE_CODE (base) != INTEGER_CST
5262 || TREE_CODE (step) != INTEGER_CST)
5263 return false;
5265 /* Check that the induction increments. */
5266 if (tree_int_cst_sgn (step) == -1)
5267 return false;
5269 /* Check that the max size of the loop will not wrap. */
5271 if (TYPE_OVERFLOW_UNDEFINED (lhs_type))
5272 return true;
5274 if (! max_stmt_executions (loop, &ni))
5275 return false;
5277 max_loop_value = wi::mul (wi::to_widest (step), ni, TYPE_SIGN (lhs_type),
5278 &overflow);
5279 if (overflow)
5280 return false;
5282 max_loop_value = wi::add (wi::to_widest (base), max_loop_value,
5283 TYPE_SIGN (lhs_type), &overflow);
5284 if (overflow)
5285 return false;
5287 return (wi::min_precision (max_loop_value, TYPE_SIGN (lhs_type))
5288 <= TYPE_PRECISION (lhs_type));
5291 /* Function vectorizable_reduction.
5293 Check if STMT performs a reduction operation that can be vectorized.
5294 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
5295 stmt to replace it, put it in VEC_STMT, and insert it at GSI.
5296 Return FALSE if not a vectorizable STMT, TRUE otherwise.
5298 This function also handles reduction idioms (patterns) that have been
5299 recognized in advance during vect_pattern_recog. In this case, STMT may be
5300 of this form:
5301 X = pattern_expr (arg0, arg1, ..., X)
5302 and it's STMT_VINFO_RELATED_STMT points to the last stmt in the original
5303 sequence that had been detected and replaced by the pattern-stmt (STMT).
5305 This function also handles reduction of condition expressions, for example:
5306 for (int i = 0; i < N; i++)
5307 if (a[i] < value)
5308 last = a[i];
5309 This is handled by vectorising the loop and creating an additional vector
5310 containing the loop indexes for which "a[i] < value" was true. In the
5311 function epilogue this is reduced to a single max value and then used to
5312 index into the vector of results.
5314 In some cases of reduction patterns, the type of the reduction variable X is
5315 different than the type of the other arguments of STMT.
5316 In such cases, the vectype that is used when transforming STMT into a vector
5317 stmt is different than the vectype that is used to determine the
5318 vectorization factor, because it consists of a different number of elements
5319 than the actual number of elements that are being operated upon in parallel.
5321 For example, consider an accumulation of shorts into an int accumulator.
5322 On some targets it's possible to vectorize this pattern operating on 8
5323 shorts at a time (hence, the vectype for purposes of determining the
5324 vectorization factor should be V8HI); on the other hand, the vectype that
5325 is used to create the vector form is actually V4SI (the type of the result).
5327 Upon entry to this function, STMT_VINFO_VECTYPE records the vectype that
5328 indicates what is the actual level of parallelism (V8HI in the example), so
5329 that the right vectorization factor would be derived. This vectype
5330 corresponds to the type of arguments to the reduction stmt, and should *NOT*
5331 be used to create the vectorized stmt. The right vectype for the vectorized
5332 stmt is obtained from the type of the result X:
5333 get_vectype_for_scalar_type (TREE_TYPE (X))
5335 This means that, contrary to "regular" reductions (or "regular" stmts in
5336 general), the following equation:
5337 STMT_VINFO_VECTYPE == get_vectype_for_scalar_type (TREE_TYPE (X))
5338 does *NOT* necessarily hold for reduction patterns. */
5340 bool
5341 vectorizable_reduction (gimple *stmt, gimple_stmt_iterator *gsi,
5342 gimple **vec_stmt, slp_tree slp_node)
5344 tree vec_dest;
5345 tree scalar_dest;
5346 tree loop_vec_def0 = NULL_TREE, loop_vec_def1 = NULL_TREE;
5347 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
5348 tree vectype_out = STMT_VINFO_VECTYPE (stmt_info);
5349 tree vectype_in = NULL_TREE;
5350 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
5351 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
5352 enum tree_code code, orig_code, epilog_reduc_code;
5353 machine_mode vec_mode;
5354 int op_type;
5355 optab optab, reduc_optab;
5356 tree new_temp = NULL_TREE;
5357 gimple *def_stmt;
5358 enum vect_def_type dt;
5359 gphi *new_phi = NULL;
5360 tree scalar_type;
5361 bool is_simple_use;
5362 gimple *orig_stmt;
5363 stmt_vec_info orig_stmt_info;
5364 tree expr = NULL_TREE;
5365 int i;
5366 int ncopies;
5367 int epilog_copies;
5368 stmt_vec_info prev_stmt_info, prev_phi_info;
5369 bool single_defuse_cycle = false;
5370 tree reduc_def = NULL_TREE;
5371 gimple *new_stmt = NULL;
5372 int j;
5373 tree ops[3];
5374 bool nested_cycle = false, found_nested_cycle_def = false;
5375 gimple *reduc_def_stmt = NULL;
5376 bool double_reduc = false, dummy;
5377 basic_block def_bb;
5378 struct loop * def_stmt_loop, *outer_loop = NULL;
5379 tree def_arg;
5380 gimple *def_arg_stmt;
5381 auto_vec<tree> vec_oprnds0;
5382 auto_vec<tree> vec_oprnds1;
5383 auto_vec<tree> vect_defs;
5384 auto_vec<gimple *> phis;
5385 int vec_num;
5386 tree def0, def1, tem, op0, op1 = NULL_TREE;
5387 bool first_p = true;
5388 tree cr_index_scalar_type = NULL_TREE, cr_index_vector_type = NULL_TREE;
5389 gimple *cond_expr_induction_def_stmt = NULL;
5391 /* In case of reduction chain we switch to the first stmt in the chain, but
5392 we don't update STMT_INFO, since only the last stmt is marked as reduction
5393 and has reduction properties. */
5394 if (GROUP_FIRST_ELEMENT (stmt_info)
5395 && GROUP_FIRST_ELEMENT (stmt_info) != stmt)
5397 stmt = GROUP_FIRST_ELEMENT (stmt_info);
5398 first_p = false;
5401 if (nested_in_vect_loop_p (loop, stmt))
5403 outer_loop = loop;
5404 loop = loop->inner;
5405 nested_cycle = true;
5408 /* 1. Is vectorizable reduction? */
5409 /* Not supportable if the reduction variable is used in the loop, unless
5410 it's a reduction chain. */
5411 if (STMT_VINFO_RELEVANT (stmt_info) > vect_used_in_outer
5412 && !GROUP_FIRST_ELEMENT (stmt_info))
5413 return false;
5415 /* Reductions that are not used even in an enclosing outer-loop,
5416 are expected to be "live" (used out of the loop). */
5417 if (STMT_VINFO_RELEVANT (stmt_info) == vect_unused_in_scope
5418 && !STMT_VINFO_LIVE_P (stmt_info))
5419 return false;
5421 /* Make sure it was already recognized as a reduction computation. */
5422 if (STMT_VINFO_DEF_TYPE (vinfo_for_stmt (stmt)) != vect_reduction_def
5423 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (stmt)) != vect_nested_cycle)
5424 return false;
5426 /* 2. Has this been recognized as a reduction pattern?
5428 Check if STMT represents a pattern that has been recognized
5429 in earlier analysis stages. For stmts that represent a pattern,
5430 the STMT_VINFO_RELATED_STMT field records the last stmt in
5431 the original sequence that constitutes the pattern. */
5433 orig_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt));
5434 if (orig_stmt)
5436 orig_stmt_info = vinfo_for_stmt (orig_stmt);
5437 gcc_assert (STMT_VINFO_IN_PATTERN_P (orig_stmt_info));
5438 gcc_assert (!STMT_VINFO_IN_PATTERN_P (stmt_info));
5441 /* 3. Check the operands of the operation. The first operands are defined
5442 inside the loop body. The last operand is the reduction variable,
5443 which is defined by the loop-header-phi. */
5445 gcc_assert (is_gimple_assign (stmt));
5447 /* Flatten RHS. */
5448 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
5450 case GIMPLE_SINGLE_RHS:
5451 op_type = TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt));
5452 if (op_type == ternary_op)
5454 tree rhs = gimple_assign_rhs1 (stmt);
5455 ops[0] = TREE_OPERAND (rhs, 0);
5456 ops[1] = TREE_OPERAND (rhs, 1);
5457 ops[2] = TREE_OPERAND (rhs, 2);
5458 code = TREE_CODE (rhs);
5460 else
5461 return false;
5462 break;
5464 case GIMPLE_BINARY_RHS:
5465 code = gimple_assign_rhs_code (stmt);
5466 op_type = TREE_CODE_LENGTH (code);
5467 gcc_assert (op_type == binary_op);
5468 ops[0] = gimple_assign_rhs1 (stmt);
5469 ops[1] = gimple_assign_rhs2 (stmt);
5470 break;
5472 case GIMPLE_TERNARY_RHS:
5473 code = gimple_assign_rhs_code (stmt);
5474 op_type = TREE_CODE_LENGTH (code);
5475 gcc_assert (op_type == ternary_op);
5476 ops[0] = gimple_assign_rhs1 (stmt);
5477 ops[1] = gimple_assign_rhs2 (stmt);
5478 ops[2] = gimple_assign_rhs3 (stmt);
5479 break;
5481 case GIMPLE_UNARY_RHS:
5482 return false;
5484 default:
5485 gcc_unreachable ();
5487 /* The default is that the reduction variable is the last in statement. */
5488 int reduc_index = op_type - 1;
5489 if (code == MINUS_EXPR)
5490 reduc_index = 0;
5492 if (code == COND_EXPR && slp_node)
5493 return false;
5495 scalar_dest = gimple_assign_lhs (stmt);
5496 scalar_type = TREE_TYPE (scalar_dest);
5497 if (!POINTER_TYPE_P (scalar_type) && !INTEGRAL_TYPE_P (scalar_type)
5498 && !SCALAR_FLOAT_TYPE_P (scalar_type))
5499 return false;
5501 /* Do not try to vectorize bit-precision reductions. */
5502 if ((TYPE_PRECISION (scalar_type)
5503 != GET_MODE_PRECISION (TYPE_MODE (scalar_type))))
5504 return false;
5506 /* All uses but the last are expected to be defined in the loop.
5507 The last use is the reduction variable. In case of nested cycle this
5508 assumption is not true: we use reduc_index to record the index of the
5509 reduction variable. */
5510 for (i = 0; i < op_type; i++)
5512 if (i == reduc_index)
5513 continue;
5515 /* The condition of COND_EXPR is checked in vectorizable_condition(). */
5516 if (i == 0 && code == COND_EXPR)
5517 continue;
5519 is_simple_use = vect_is_simple_use (ops[i], loop_vinfo,
5520 &def_stmt, &dt, &tem);
5521 if (!vectype_in)
5522 vectype_in = tem;
5523 gcc_assert (is_simple_use);
5525 if (dt != vect_internal_def
5526 && dt != vect_external_def
5527 && dt != vect_constant_def
5528 && dt != vect_induction_def
5529 && !(dt == vect_nested_cycle && nested_cycle))
5530 return false;
5532 if (dt == vect_nested_cycle)
5534 found_nested_cycle_def = true;
5535 reduc_def_stmt = def_stmt;
5536 reduc_index = i;
5539 if (i == 1 && code == COND_EXPR && dt == vect_induction_def)
5540 cond_expr_induction_def_stmt = def_stmt;
5543 is_simple_use = vect_is_simple_use (ops[reduc_index], loop_vinfo,
5544 &def_stmt, &dt, &tem);
5545 if (!vectype_in)
5546 vectype_in = tem;
5547 gcc_assert (is_simple_use);
5548 if (!found_nested_cycle_def)
5549 reduc_def_stmt = def_stmt;
5551 if (reduc_def_stmt && gimple_code (reduc_def_stmt) != GIMPLE_PHI)
5552 return false;
5554 if (!(dt == vect_reduction_def
5555 || dt == vect_nested_cycle
5556 || ((dt == vect_internal_def || dt == vect_external_def
5557 || dt == vect_constant_def || dt == vect_induction_def)
5558 && nested_cycle && found_nested_cycle_def)))
5560 /* For pattern recognized stmts, orig_stmt might be a reduction,
5561 but some helper statements for the pattern might not, or
5562 might be COND_EXPRs with reduction uses in the condition. */
5563 gcc_assert (orig_stmt);
5564 return false;
5567 enum vect_reduction_type v_reduc_type;
5568 gimple *tmp = vect_is_simple_reduction (loop_vinfo, reduc_def_stmt,
5569 !nested_cycle, &dummy, false,
5570 &v_reduc_type);
5572 /* If we have a condition reduction, see if we can simplify it further. */
5573 if (v_reduc_type == COND_REDUCTION
5574 && cond_expr_induction_def_stmt != NULL
5575 && is_nonwrapping_integer_induction (cond_expr_induction_def_stmt, loop))
5577 if (dump_enabled_p ())
5578 dump_printf_loc (MSG_NOTE, vect_location,
5579 "condition expression based on integer induction.\n");
5580 STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) = INTEGER_INDUC_COND_REDUCTION;
5582 else
5583 STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) = v_reduc_type;
5585 if (orig_stmt)
5586 gcc_assert (tmp == orig_stmt
5587 || GROUP_FIRST_ELEMENT (vinfo_for_stmt (tmp)) == orig_stmt);
5588 else
5589 /* We changed STMT to be the first stmt in reduction chain, hence we
5590 check that in this case the first element in the chain is STMT. */
5591 gcc_assert (stmt == tmp
5592 || GROUP_FIRST_ELEMENT (vinfo_for_stmt (tmp)) == stmt);
5594 if (STMT_VINFO_LIVE_P (vinfo_for_stmt (reduc_def_stmt)))
5595 return false;
5597 if (slp_node || PURE_SLP_STMT (stmt_info))
5598 ncopies = 1;
5599 else
5600 ncopies = (LOOP_VINFO_VECT_FACTOR (loop_vinfo)
5601 / TYPE_VECTOR_SUBPARTS (vectype_in));
5603 gcc_assert (ncopies >= 1);
5605 vec_mode = TYPE_MODE (vectype_in);
5607 if (code == COND_EXPR)
5609 /* Only call during the analysis stage, otherwise we'll lose
5610 STMT_VINFO_TYPE. */
5611 if (!vec_stmt && !vectorizable_condition (stmt, gsi, NULL,
5612 ops[reduc_index], 0, NULL))
5614 if (dump_enabled_p ())
5615 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5616 "unsupported condition in reduction\n");
5617 return false;
5620 else
5622 /* 4. Supportable by target? */
5624 if (code == LSHIFT_EXPR || code == RSHIFT_EXPR
5625 || code == LROTATE_EXPR || code == RROTATE_EXPR)
5627 /* Shifts and rotates are only supported by vectorizable_shifts,
5628 not vectorizable_reduction. */
5629 if (dump_enabled_p ())
5630 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5631 "unsupported shift or rotation.\n");
5632 return false;
5635 /* 4.1. check support for the operation in the loop */
5636 optab = optab_for_tree_code (code, vectype_in, optab_default);
5637 if (!optab)
5639 if (dump_enabled_p ())
5640 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5641 "no optab.\n");
5643 return false;
5646 if (optab_handler (optab, vec_mode) == CODE_FOR_nothing)
5648 if (dump_enabled_p ())
5649 dump_printf (MSG_NOTE, "op not supported by target.\n");
5651 if (GET_MODE_SIZE (vec_mode) != UNITS_PER_WORD
5652 || LOOP_VINFO_VECT_FACTOR (loop_vinfo)
5653 < vect_min_worthwhile_factor (code))
5654 return false;
5656 if (dump_enabled_p ())
5657 dump_printf (MSG_NOTE, "proceeding using word mode.\n");
5660 /* Worthwhile without SIMD support? */
5661 if (!VECTOR_MODE_P (TYPE_MODE (vectype_in))
5662 && LOOP_VINFO_VECT_FACTOR (loop_vinfo)
5663 < vect_min_worthwhile_factor (code))
5665 if (dump_enabled_p ())
5666 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5667 "not worthwhile without SIMD support.\n");
5669 return false;
5673 /* 4.2. Check support for the epilog operation.
5675 If STMT represents a reduction pattern, then the type of the
5676 reduction variable may be different than the type of the rest
5677 of the arguments. For example, consider the case of accumulation
5678 of shorts into an int accumulator; The original code:
5679 S1: int_a = (int) short_a;
5680 orig_stmt-> S2: int_acc = plus <int_a ,int_acc>;
5682 was replaced with:
5683 STMT: int_acc = widen_sum <short_a, int_acc>
5685 This means that:
5686 1. The tree-code that is used to create the vector operation in the
5687 epilog code (that reduces the partial results) is not the
5688 tree-code of STMT, but is rather the tree-code of the original
5689 stmt from the pattern that STMT is replacing. I.e, in the example
5690 above we want to use 'widen_sum' in the loop, but 'plus' in the
5691 epilog.
5692 2. The type (mode) we use to check available target support
5693 for the vector operation to be created in the *epilog*, is
5694 determined by the type of the reduction variable (in the example
5695 above we'd check this: optab_handler (plus_optab, vect_int_mode])).
5696 However the type (mode) we use to check available target support
5697 for the vector operation to be created *inside the loop*, is
5698 determined by the type of the other arguments to STMT (in the
5699 example we'd check this: optab_handler (widen_sum_optab,
5700 vect_short_mode)).
5702 This is contrary to "regular" reductions, in which the types of all
5703 the arguments are the same as the type of the reduction variable.
5704 For "regular" reductions we can therefore use the same vector type
5705 (and also the same tree-code) when generating the epilog code and
5706 when generating the code inside the loop. */
5708 if (orig_stmt)
5710 /* This is a reduction pattern: get the vectype from the type of the
5711 reduction variable, and get the tree-code from orig_stmt. */
5712 gcc_assert (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
5713 == TREE_CODE_REDUCTION);
5714 orig_code = gimple_assign_rhs_code (orig_stmt);
5715 gcc_assert (vectype_out);
5716 vec_mode = TYPE_MODE (vectype_out);
5718 else
5720 /* Regular reduction: use the same vectype and tree-code as used for
5721 the vector code inside the loop can be used for the epilog code. */
5722 orig_code = code;
5724 if (code == MINUS_EXPR)
5725 orig_code = PLUS_EXPR;
5727 /* For simple condition reductions, replace with the actual expression
5728 we want to base our reduction around. */
5729 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
5730 == INTEGER_INDUC_COND_REDUCTION)
5731 orig_code = MAX_EXPR;
5734 if (nested_cycle)
5736 def_bb = gimple_bb (reduc_def_stmt);
5737 def_stmt_loop = def_bb->loop_father;
5738 def_arg = PHI_ARG_DEF_FROM_EDGE (reduc_def_stmt,
5739 loop_preheader_edge (def_stmt_loop));
5740 if (TREE_CODE (def_arg) == SSA_NAME
5741 && (def_arg_stmt = SSA_NAME_DEF_STMT (def_arg))
5742 && gimple_code (def_arg_stmt) == GIMPLE_PHI
5743 && flow_bb_inside_loop_p (outer_loop, gimple_bb (def_arg_stmt))
5744 && vinfo_for_stmt (def_arg_stmt)
5745 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_arg_stmt))
5746 == vect_double_reduction_def)
5747 double_reduc = true;
5750 epilog_reduc_code = ERROR_MARK;
5752 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == TREE_CODE_REDUCTION
5753 || STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
5754 == INTEGER_INDUC_COND_REDUCTION)
5756 if (reduction_code_for_scalar_code (orig_code, &epilog_reduc_code))
5758 reduc_optab = optab_for_tree_code (epilog_reduc_code, vectype_out,
5759 optab_default);
5760 if (!reduc_optab)
5762 if (dump_enabled_p ())
5763 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5764 "no optab for reduction.\n");
5766 epilog_reduc_code = ERROR_MARK;
5768 else if (optab_handler (reduc_optab, vec_mode) == CODE_FOR_nothing)
5770 if (dump_enabled_p ())
5771 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5772 "reduc op not supported by target.\n");
5774 epilog_reduc_code = ERROR_MARK;
5777 /* When epilog_reduc_code is ERROR_MARK then a reduction will be
5778 generated in the epilog using multiple expressions. This does not
5779 work for condition reductions. */
5780 if (epilog_reduc_code == ERROR_MARK
5781 && STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
5782 == INTEGER_INDUC_COND_REDUCTION)
5784 if (dump_enabled_p ())
5785 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5786 "no reduc code for scalar code.\n");
5787 return false;
5790 else
5792 if (!nested_cycle || double_reduc)
5794 if (dump_enabled_p ())
5795 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5796 "no reduc code for scalar code.\n");
5798 return false;
5802 else
5804 int scalar_precision = GET_MODE_PRECISION (TYPE_MODE (scalar_type));
5805 cr_index_scalar_type = make_unsigned_type (scalar_precision);
5806 cr_index_vector_type = build_vector_type
5807 (cr_index_scalar_type, TYPE_VECTOR_SUBPARTS (vectype_out));
5809 epilog_reduc_code = REDUC_MAX_EXPR;
5810 optab = optab_for_tree_code (REDUC_MAX_EXPR, cr_index_vector_type,
5811 optab_default);
5812 if (optab_handler (optab, TYPE_MODE (cr_index_vector_type))
5813 == CODE_FOR_nothing)
5815 if (dump_enabled_p ())
5816 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5817 "reduc max op not supported by target.\n");
5818 return false;
5822 if ((double_reduc
5823 || STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == COND_REDUCTION
5824 || STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
5825 == INTEGER_INDUC_COND_REDUCTION)
5826 && ncopies > 1)
5828 if (dump_enabled_p ())
5829 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5830 "multiple types in double reduction or condition "
5831 "reduction.\n");
5832 return false;
5835 /* In case of widenning multiplication by a constant, we update the type
5836 of the constant to be the type of the other operand. We check that the
5837 constant fits the type in the pattern recognition pass. */
5838 if (code == DOT_PROD_EXPR
5839 && !types_compatible_p (TREE_TYPE (ops[0]), TREE_TYPE (ops[1])))
5841 if (TREE_CODE (ops[0]) == INTEGER_CST)
5842 ops[0] = fold_convert (TREE_TYPE (ops[1]), ops[0]);
5843 else if (TREE_CODE (ops[1]) == INTEGER_CST)
5844 ops[1] = fold_convert (TREE_TYPE (ops[0]), ops[1]);
5845 else
5847 if (dump_enabled_p ())
5848 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5849 "invalid types in dot-prod\n");
5851 return false;
5855 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == COND_REDUCTION)
5857 widest_int ni;
5859 if (! max_loop_iterations (loop, &ni))
5861 if (dump_enabled_p ())
5862 dump_printf_loc (MSG_NOTE, vect_location,
5863 "loop count not known, cannot create cond "
5864 "reduction.\n");
5865 return false;
5867 /* Convert backedges to iterations. */
5868 ni += 1;
5870 /* The additional index will be the same type as the condition. Check
5871 that the loop can fit into this less one (because we'll use up the
5872 zero slot for when there are no matches). */
5873 tree max_index = TYPE_MAX_VALUE (cr_index_scalar_type);
5874 if (wi::geu_p (ni, wi::to_widest (max_index)))
5876 if (dump_enabled_p ())
5877 dump_printf_loc (MSG_NOTE, vect_location,
5878 "loop size is greater than data size.\n");
5879 return false;
5883 if (!vec_stmt) /* transformation not required. */
5885 if (first_p
5886 && !vect_model_reduction_cost (stmt_info, epilog_reduc_code, ncopies,
5887 reduc_index))
5888 return false;
5889 STMT_VINFO_TYPE (stmt_info) = reduc_vec_info_type;
5890 return true;
5893 /** Transform. **/
5895 if (dump_enabled_p ())
5896 dump_printf_loc (MSG_NOTE, vect_location, "transform reduction.\n");
5898 /* FORNOW: Multiple types are not supported for condition. */
5899 if (code == COND_EXPR)
5900 gcc_assert (ncopies == 1);
5902 /* Create the destination vector */
5903 vec_dest = vect_create_destination_var (scalar_dest, vectype_out);
5905 /* In case the vectorization factor (VF) is bigger than the number
5906 of elements that we can fit in a vectype (nunits), we have to generate
5907 more than one vector stmt - i.e - we need to "unroll" the
5908 vector stmt by a factor VF/nunits. For more details see documentation
5909 in vectorizable_operation. */
5911 /* If the reduction is used in an outer loop we need to generate
5912 VF intermediate results, like so (e.g. for ncopies=2):
5913 r0 = phi (init, r0)
5914 r1 = phi (init, r1)
5915 r0 = x0 + r0;
5916 r1 = x1 + r1;
5917 (i.e. we generate VF results in 2 registers).
5918 In this case we have a separate def-use cycle for each copy, and therefore
5919 for each copy we get the vector def for the reduction variable from the
5920 respective phi node created for this copy.
5922 Otherwise (the reduction is unused in the loop nest), we can combine
5923 together intermediate results, like so (e.g. for ncopies=2):
5924 r = phi (init, r)
5925 r = x0 + r;
5926 r = x1 + r;
5927 (i.e. we generate VF/2 results in a single register).
5928 In this case for each copy we get the vector def for the reduction variable
5929 from the vectorized reduction operation generated in the previous iteration.
5932 if (STMT_VINFO_RELEVANT (stmt_info) == vect_unused_in_scope)
5934 single_defuse_cycle = true;
5935 epilog_copies = 1;
5937 else
5938 epilog_copies = ncopies;
5940 prev_stmt_info = NULL;
5941 prev_phi_info = NULL;
5942 if (slp_node)
5943 vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
5944 else
5946 vec_num = 1;
5947 vec_oprnds0.create (1);
5948 if (op_type == ternary_op)
5949 vec_oprnds1.create (1);
5952 phis.create (vec_num);
5953 vect_defs.create (vec_num);
5954 if (!slp_node)
5955 vect_defs.quick_push (NULL_TREE);
5957 for (j = 0; j < ncopies; j++)
5959 if (j == 0 || !single_defuse_cycle)
5961 for (i = 0; i < vec_num; i++)
5963 /* Create the reduction-phi that defines the reduction
5964 operand. */
5965 new_phi = create_phi_node (vec_dest, loop->header);
5966 set_vinfo_for_stmt (new_phi,
5967 new_stmt_vec_info (new_phi, loop_vinfo));
5968 if (j == 0 || slp_node)
5969 phis.quick_push (new_phi);
5973 if (code == COND_EXPR)
5975 gcc_assert (!slp_node);
5976 vectorizable_condition (stmt, gsi, vec_stmt,
5977 PHI_RESULT (phis[0]),
5978 reduc_index, NULL);
5979 /* Multiple types are not supported for condition. */
5980 break;
5983 /* Handle uses. */
5984 if (j == 0)
5986 op0 = ops[!reduc_index];
5987 if (op_type == ternary_op)
5989 if (reduc_index == 0)
5990 op1 = ops[2];
5991 else
5992 op1 = ops[1];
5995 if (slp_node)
5996 vect_get_vec_defs (op0, op1, stmt, &vec_oprnds0, &vec_oprnds1,
5997 slp_node, -1);
5998 else
6000 loop_vec_def0 = vect_get_vec_def_for_operand (ops[!reduc_index],
6001 stmt);
6002 vec_oprnds0.quick_push (loop_vec_def0);
6003 if (op_type == ternary_op)
6005 loop_vec_def1 = vect_get_vec_def_for_operand (op1, stmt);
6006 vec_oprnds1.quick_push (loop_vec_def1);
6010 else
6012 if (!slp_node)
6014 enum vect_def_type dt;
6015 gimple *dummy_stmt;
6017 vect_is_simple_use (ops[!reduc_index], loop_vinfo,
6018 &dummy_stmt, &dt);
6019 loop_vec_def0 = vect_get_vec_def_for_stmt_copy (dt,
6020 loop_vec_def0);
6021 vec_oprnds0[0] = loop_vec_def0;
6022 if (op_type == ternary_op)
6024 vect_is_simple_use (op1, loop_vinfo, &dummy_stmt, &dt);
6025 loop_vec_def1 = vect_get_vec_def_for_stmt_copy (dt,
6026 loop_vec_def1);
6027 vec_oprnds1[0] = loop_vec_def1;
6031 if (single_defuse_cycle)
6032 reduc_def = gimple_assign_lhs (new_stmt);
6034 STMT_VINFO_RELATED_STMT (prev_phi_info) = new_phi;
6037 FOR_EACH_VEC_ELT (vec_oprnds0, i, def0)
6039 if (slp_node)
6040 reduc_def = PHI_RESULT (phis[i]);
6041 else
6043 if (!single_defuse_cycle || j == 0)
6044 reduc_def = PHI_RESULT (new_phi);
6047 def1 = ((op_type == ternary_op)
6048 ? vec_oprnds1[i] : NULL);
6049 if (op_type == binary_op)
6051 if (reduc_index == 0)
6052 expr = build2 (code, vectype_out, reduc_def, def0);
6053 else
6054 expr = build2 (code, vectype_out, def0, reduc_def);
6056 else
6058 if (reduc_index == 0)
6059 expr = build3 (code, vectype_out, reduc_def, def0, def1);
6060 else
6062 if (reduc_index == 1)
6063 expr = build3 (code, vectype_out, def0, reduc_def, def1);
6064 else
6065 expr = build3 (code, vectype_out, def0, def1, reduc_def);
6069 new_stmt = gimple_build_assign (vec_dest, expr);
6070 new_temp = make_ssa_name (vec_dest, new_stmt);
6071 gimple_assign_set_lhs (new_stmt, new_temp);
6072 vect_finish_stmt_generation (stmt, new_stmt, gsi);
6074 if (slp_node)
6076 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
6077 vect_defs.quick_push (new_temp);
6079 else
6080 vect_defs[0] = new_temp;
6083 if (slp_node)
6084 continue;
6086 if (j == 0)
6087 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
6088 else
6089 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
6091 prev_stmt_info = vinfo_for_stmt (new_stmt);
6092 prev_phi_info = vinfo_for_stmt (new_phi);
6095 tree indx_before_incr, indx_after_incr, cond_name = NULL;
6097 /* Finalize the reduction-phi (set its arguments) and create the
6098 epilog reduction code. */
6099 if ((!single_defuse_cycle || code == COND_EXPR) && !slp_node)
6101 new_temp = gimple_assign_lhs (*vec_stmt);
6102 vect_defs[0] = new_temp;
6104 /* For cond reductions we want to create a new vector (INDEX_COND_EXPR)
6105 which is updated with the current index of the loop for every match of
6106 the original loop's cond_expr (VEC_STMT). This results in a vector
6107 containing the last time the condition passed for that vector lane.
6108 The first match will be a 1 to allow 0 to be used for non-matching
6109 indexes. If there are no matches at all then the vector will be all
6110 zeroes. */
6111 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == COND_REDUCTION)
6113 int nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
6114 int k;
6116 gcc_assert (gimple_assign_rhs_code (*vec_stmt) == VEC_COND_EXPR);
6118 /* First we create a simple vector induction variable which starts
6119 with the values {1,2,3,...} (SERIES_VECT) and increments by the
6120 vector size (STEP). */
6122 /* Create a {1,2,3,...} vector. */
6123 tree *vtemp = XALLOCAVEC (tree, nunits_out);
6124 for (k = 0; k < nunits_out; ++k)
6125 vtemp[k] = build_int_cst (cr_index_scalar_type, k + 1);
6126 tree series_vect = build_vector (cr_index_vector_type, vtemp);
6128 /* Create a vector of the step value. */
6129 tree step = build_int_cst (cr_index_scalar_type, nunits_out);
6130 tree vec_step = build_vector_from_val (cr_index_vector_type, step);
6132 /* Create an induction variable. */
6133 gimple_stmt_iterator incr_gsi;
6134 bool insert_after;
6135 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
6136 create_iv (series_vect, vec_step, NULL_TREE, loop, &incr_gsi,
6137 insert_after, &indx_before_incr, &indx_after_incr);
6139 /* Next create a new phi node vector (NEW_PHI_TREE) which starts
6140 filled with zeros (VEC_ZERO). */
6142 /* Create a vector of 0s. */
6143 tree zero = build_zero_cst (cr_index_scalar_type);
6144 tree vec_zero = build_vector_from_val (cr_index_vector_type, zero);
6146 /* Create a vector phi node. */
6147 tree new_phi_tree = make_ssa_name (cr_index_vector_type);
6148 new_phi = create_phi_node (new_phi_tree, loop->header);
6149 set_vinfo_for_stmt (new_phi,
6150 new_stmt_vec_info (new_phi, loop_vinfo));
6151 add_phi_arg (new_phi, vec_zero, loop_preheader_edge (loop),
6152 UNKNOWN_LOCATION);
6154 /* Now take the condition from the loops original cond_expr
6155 (VEC_STMT) and produce a new cond_expr (INDEX_COND_EXPR) which for
6156 every match uses values from the induction variable
6157 (INDEX_BEFORE_INCR) otherwise uses values from the phi node
6158 (NEW_PHI_TREE).
6159 Finally, we update the phi (NEW_PHI_TREE) to take the value of
6160 the new cond_expr (INDEX_COND_EXPR). */
6162 /* Turn the condition from vec_stmt into an ssa name. */
6163 gimple_stmt_iterator vec_stmt_gsi = gsi_for_stmt (*vec_stmt);
6164 tree ccompare = gimple_assign_rhs1 (*vec_stmt);
6165 tree ccompare_name = make_ssa_name (TREE_TYPE (ccompare));
6166 gimple *ccompare_stmt = gimple_build_assign (ccompare_name,
6167 ccompare);
6168 gsi_insert_before (&vec_stmt_gsi, ccompare_stmt, GSI_SAME_STMT);
6169 gimple_assign_set_rhs1 (*vec_stmt, ccompare_name);
6170 update_stmt (*vec_stmt);
6172 /* Create a conditional, where the condition is taken from vec_stmt
6173 (CCOMPARE_NAME), then is the induction index (INDEX_BEFORE_INCR)
6174 and else is the phi (NEW_PHI_TREE). */
6175 tree index_cond_expr = build3 (VEC_COND_EXPR, cr_index_vector_type,
6176 ccompare_name, indx_before_incr,
6177 new_phi_tree);
6178 cond_name = make_ssa_name (cr_index_vector_type);
6179 gimple *index_condition = gimple_build_assign (cond_name,
6180 index_cond_expr);
6181 gsi_insert_before (&incr_gsi, index_condition, GSI_SAME_STMT);
6182 stmt_vec_info index_vec_info = new_stmt_vec_info (index_condition,
6183 loop_vinfo);
6184 STMT_VINFO_VECTYPE (index_vec_info) = cr_index_vector_type;
6185 set_vinfo_for_stmt (index_condition, index_vec_info);
6187 /* Update the phi with the vec cond. */
6188 add_phi_arg (new_phi, cond_name, loop_latch_edge (loop),
6189 UNKNOWN_LOCATION);
6193 vect_create_epilog_for_reduction (vect_defs, stmt, epilog_copies,
6194 epilog_reduc_code, phis, reduc_index,
6195 double_reduc, slp_node, cond_name);
6197 return true;
6200 /* Function vect_min_worthwhile_factor.
6202 For a loop where we could vectorize the operation indicated by CODE,
6203 return the minimum vectorization factor that makes it worthwhile
6204 to use generic vectors. */
6206 vect_min_worthwhile_factor (enum tree_code code)
6208 switch (code)
6210 case PLUS_EXPR:
6211 case MINUS_EXPR:
6212 case NEGATE_EXPR:
6213 return 4;
6215 case BIT_AND_EXPR:
6216 case BIT_IOR_EXPR:
6217 case BIT_XOR_EXPR:
6218 case BIT_NOT_EXPR:
6219 return 2;
6221 default:
6222 return INT_MAX;
6227 /* Function vectorizable_induction
6229 Check if PHI performs an induction computation that can be vectorized.
6230 If VEC_STMT is also passed, vectorize the induction PHI: create a vectorized
6231 phi to replace it, put it in VEC_STMT, and add it to the same basic block.
6232 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
6234 bool
6235 vectorizable_induction (gimple *phi,
6236 gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
6237 gimple **vec_stmt)
6239 stmt_vec_info stmt_info = vinfo_for_stmt (phi);
6240 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
6241 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
6242 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
6243 int nunits = TYPE_VECTOR_SUBPARTS (vectype);
6244 int ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
6245 tree vec_def;
6247 gcc_assert (ncopies >= 1);
6248 /* FORNOW. These restrictions should be relaxed. */
6249 if (nested_in_vect_loop_p (loop, phi))
6251 imm_use_iterator imm_iter;
6252 use_operand_p use_p;
6253 gimple *exit_phi;
6254 edge latch_e;
6255 tree loop_arg;
6257 if (ncopies > 1)
6259 if (dump_enabled_p ())
6260 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6261 "multiple types in nested loop.\n");
6262 return false;
6265 exit_phi = NULL;
6266 latch_e = loop_latch_edge (loop->inner);
6267 loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
6268 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, loop_arg)
6270 gimple *use_stmt = USE_STMT (use_p);
6271 if (is_gimple_debug (use_stmt))
6272 continue;
6274 if (!flow_bb_inside_loop_p (loop->inner, gimple_bb (use_stmt)))
6276 exit_phi = use_stmt;
6277 break;
6280 if (exit_phi)
6282 stmt_vec_info exit_phi_vinfo = vinfo_for_stmt (exit_phi);
6283 if (!(STMT_VINFO_RELEVANT_P (exit_phi_vinfo)
6284 && !STMT_VINFO_LIVE_P (exit_phi_vinfo)))
6286 if (dump_enabled_p ())
6287 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6288 "inner-loop induction only used outside "
6289 "of the outer vectorized loop.\n");
6290 return false;
6295 if (!STMT_VINFO_RELEVANT_P (stmt_info))
6296 return false;
6298 /* FORNOW: SLP not supported. */
6299 if (STMT_SLP_TYPE (stmt_info))
6300 return false;
6302 gcc_assert (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def);
6304 if (gimple_code (phi) != GIMPLE_PHI)
6305 return false;
6307 if (!vec_stmt) /* transformation not required. */
6309 STMT_VINFO_TYPE (stmt_info) = induc_vec_info_type;
6310 if (dump_enabled_p ())
6311 dump_printf_loc (MSG_NOTE, vect_location,
6312 "=== vectorizable_induction ===\n");
6313 vect_model_induction_cost (stmt_info, ncopies);
6314 return true;
6317 /** Transform. **/
6319 if (dump_enabled_p ())
6320 dump_printf_loc (MSG_NOTE, vect_location, "transform induction phi.\n");
6322 vec_def = get_initial_def_for_induction (phi);
6323 *vec_stmt = SSA_NAME_DEF_STMT (vec_def);
6324 return true;
6327 /* Function vectorizable_live_operation.
6329 STMT computes a value that is used outside the loop. Check if
6330 it can be supported. */
6332 bool
6333 vectorizable_live_operation (gimple *stmt,
6334 gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
6335 gimple **vec_stmt)
6337 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
6338 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
6339 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
6340 tree op;
6341 gimple *def_stmt;
6342 ssa_op_iter iter;
6344 gcc_assert (STMT_VINFO_LIVE_P (stmt_info));
6346 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def)
6347 return false;
6349 if (!is_gimple_assign (stmt))
6351 if (gimple_call_internal_p (stmt)
6352 && gimple_call_internal_fn (stmt) == IFN_GOMP_SIMD_LANE
6353 && gimple_call_lhs (stmt)
6354 && loop->simduid
6355 && TREE_CODE (gimple_call_arg (stmt, 0)) == SSA_NAME
6356 && loop->simduid
6357 == SSA_NAME_VAR (gimple_call_arg (stmt, 0)))
6359 edge e = single_exit (loop);
6360 basic_block merge_bb = e->dest;
6361 imm_use_iterator imm_iter;
6362 use_operand_p use_p;
6363 tree lhs = gimple_call_lhs (stmt);
6365 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
6367 gimple *use_stmt = USE_STMT (use_p);
6368 if (gimple_code (use_stmt) == GIMPLE_PHI
6369 && gimple_bb (use_stmt) == merge_bb)
6371 if (vec_stmt)
6373 tree vfm1
6374 = build_int_cst (unsigned_type_node,
6375 loop_vinfo->vectorization_factor - 1);
6376 SET_PHI_ARG_DEF (use_stmt, e->dest_idx, vfm1);
6378 return true;
6383 return false;
6386 if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
6387 return false;
6389 /* FORNOW. CHECKME. */
6390 if (nested_in_vect_loop_p (loop, stmt))
6391 return false;
6393 /* FORNOW: support only if all uses are invariant. This means
6394 that the scalar operations can remain in place, unvectorized.
6395 The original last scalar value that they compute will be used. */
6396 FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_USE)
6398 enum vect_def_type dt = vect_uninitialized_def;
6400 if (!vect_is_simple_use (op, loop_vinfo, &def_stmt, &dt))
6402 if (dump_enabled_p ())
6403 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6404 "use not simple.\n");
6405 return false;
6408 if (dt != vect_external_def && dt != vect_constant_def)
6409 return false;
6412 /* No transformation is required for the cases we currently support. */
6413 return true;
6416 /* Kill any debug uses outside LOOP of SSA names defined in STMT. */
6418 static void
6419 vect_loop_kill_debug_uses (struct loop *loop, gimple *stmt)
6421 ssa_op_iter op_iter;
6422 imm_use_iterator imm_iter;
6423 def_operand_p def_p;
6424 gimple *ustmt;
6426 FOR_EACH_PHI_OR_STMT_DEF (def_p, stmt, op_iter, SSA_OP_DEF)
6428 FOR_EACH_IMM_USE_STMT (ustmt, imm_iter, DEF_FROM_PTR (def_p))
6430 basic_block bb;
6432 if (!is_gimple_debug (ustmt))
6433 continue;
6435 bb = gimple_bb (ustmt);
6437 if (!flow_bb_inside_loop_p (loop, bb))
6439 if (gimple_debug_bind_p (ustmt))
6441 if (dump_enabled_p ())
6442 dump_printf_loc (MSG_NOTE, vect_location,
6443 "killing debug use\n");
6445 gimple_debug_bind_reset_value (ustmt);
6446 update_stmt (ustmt);
6448 else
6449 gcc_unreachable ();
6456 /* This function builds ni_name = number of iterations. Statements
6457 are emitted on the loop preheader edge. */
6459 static tree
6460 vect_build_loop_niters (loop_vec_info loop_vinfo)
6462 tree ni = unshare_expr (LOOP_VINFO_NITERS (loop_vinfo));
6463 if (TREE_CODE (ni) == INTEGER_CST)
6464 return ni;
6465 else
6467 tree ni_name, var;
6468 gimple_seq stmts = NULL;
6469 edge pe = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
6471 var = create_tmp_var (TREE_TYPE (ni), "niters");
6472 ni_name = force_gimple_operand (ni, &stmts, false, var);
6473 if (stmts)
6474 gsi_insert_seq_on_edge_immediate (pe, stmts);
6476 return ni_name;
6481 /* This function generates the following statements:
6483 ni_name = number of iterations loop executes
6484 ratio = ni_name / vf
6485 ratio_mult_vf_name = ratio * vf
6487 and places them on the loop preheader edge. */
6489 static void
6490 vect_generate_tmps_on_preheader (loop_vec_info loop_vinfo,
6491 tree ni_name,
6492 tree *ratio_mult_vf_name_ptr,
6493 tree *ratio_name_ptr)
6495 tree ni_minus_gap_name;
6496 tree var;
6497 tree ratio_name;
6498 tree ratio_mult_vf_name;
6499 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
6500 edge pe = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
6501 tree log_vf;
6503 log_vf = build_int_cst (TREE_TYPE (ni_name), exact_log2 (vf));
6505 /* If epilogue loop is required because of data accesses with gaps, we
6506 subtract one iteration from the total number of iterations here for
6507 correct calculation of RATIO. */
6508 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
6510 ni_minus_gap_name = fold_build2 (MINUS_EXPR, TREE_TYPE (ni_name),
6511 ni_name,
6512 build_one_cst (TREE_TYPE (ni_name)));
6513 if (!is_gimple_val (ni_minus_gap_name))
6515 var = create_tmp_var (TREE_TYPE (ni_name), "ni_gap");
6516 gimple *stmts = NULL;
6517 ni_minus_gap_name = force_gimple_operand (ni_minus_gap_name, &stmts,
6518 true, var);
6519 gsi_insert_seq_on_edge_immediate (pe, stmts);
6522 else
6523 ni_minus_gap_name = ni_name;
6525 /* Create: ratio = ni >> log2(vf) */
6526 /* ??? As we have ni == number of latch executions + 1, ni could
6527 have overflown to zero. So avoid computing ratio based on ni
6528 but compute it using the fact that we know ratio will be at least
6529 one, thus via (ni - vf) >> log2(vf) + 1. */
6530 ratio_name
6531 = fold_build2 (PLUS_EXPR, TREE_TYPE (ni_name),
6532 fold_build2 (RSHIFT_EXPR, TREE_TYPE (ni_name),
6533 fold_build2 (MINUS_EXPR, TREE_TYPE (ni_name),
6534 ni_minus_gap_name,
6535 build_int_cst
6536 (TREE_TYPE (ni_name), vf)),
6537 log_vf),
6538 build_int_cst (TREE_TYPE (ni_name), 1));
6539 if (!is_gimple_val (ratio_name))
6541 var = create_tmp_var (TREE_TYPE (ni_name), "bnd");
6542 gimple *stmts = NULL;
6543 ratio_name = force_gimple_operand (ratio_name, &stmts, true, var);
6544 gsi_insert_seq_on_edge_immediate (pe, stmts);
6546 *ratio_name_ptr = ratio_name;
6548 /* Create: ratio_mult_vf = ratio << log2 (vf). */
6550 if (ratio_mult_vf_name_ptr)
6552 ratio_mult_vf_name = fold_build2 (LSHIFT_EXPR, TREE_TYPE (ratio_name),
6553 ratio_name, log_vf);
6554 if (!is_gimple_val (ratio_mult_vf_name))
6556 var = create_tmp_var (TREE_TYPE (ni_name), "ratio_mult_vf");
6557 gimple *stmts = NULL;
6558 ratio_mult_vf_name = force_gimple_operand (ratio_mult_vf_name, &stmts,
6559 true, var);
6560 gsi_insert_seq_on_edge_immediate (pe, stmts);
6562 *ratio_mult_vf_name_ptr = ratio_mult_vf_name;
6565 return;
6569 /* Function vect_transform_loop.
6571 The analysis phase has determined that the loop is vectorizable.
6572 Vectorize the loop - created vectorized stmts to replace the scalar
6573 stmts in the loop, and update the loop exit condition. */
6575 void
6576 vect_transform_loop (loop_vec_info loop_vinfo)
6578 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
6579 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
6580 int nbbs = loop->num_nodes;
6581 int i;
6582 tree ratio = NULL;
6583 int vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
6584 bool grouped_store;
6585 bool slp_scheduled = false;
6586 gimple *stmt, *pattern_stmt;
6587 gimple_seq pattern_def_seq = NULL;
6588 gimple_stmt_iterator pattern_def_si = gsi_none ();
6589 bool transform_pattern_stmt = false;
6590 bool check_profitability = false;
6591 int th;
6592 /* Record number of iterations before we started tampering with the profile. */
6593 gcov_type expected_iterations = expected_loop_iterations_unbounded (loop);
6595 if (dump_enabled_p ())
6596 dump_printf_loc (MSG_NOTE, vect_location, "=== vec_transform_loop ===\n");
6598 /* If profile is inprecise, we have chance to fix it up. */
6599 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
6600 expected_iterations = LOOP_VINFO_INT_NITERS (loop_vinfo);
6602 /* Use the more conservative vectorization threshold. If the number
6603 of iterations is constant assume the cost check has been performed
6604 by our caller. If the threshold makes all loops profitable that
6605 run at least the vectorization factor number of times checking
6606 is pointless, too. */
6607 th = LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo);
6608 if (th >= LOOP_VINFO_VECT_FACTOR (loop_vinfo) - 1
6609 && !LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
6611 if (dump_enabled_p ())
6612 dump_printf_loc (MSG_NOTE, vect_location,
6613 "Profitability threshold is %d loop iterations.\n",
6614 th);
6615 check_profitability = true;
6618 /* Version the loop first, if required, so the profitability check
6619 comes first. */
6621 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
6622 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
6624 vect_loop_versioning (loop_vinfo, th, check_profitability);
6625 check_profitability = false;
6628 tree ni_name = vect_build_loop_niters (loop_vinfo);
6629 LOOP_VINFO_NITERS_UNCHANGED (loop_vinfo) = ni_name;
6631 /* Peel the loop if there are data refs with unknown alignment.
6632 Only one data ref with unknown store is allowed. */
6634 if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo))
6636 vect_do_peeling_for_alignment (loop_vinfo, ni_name,
6637 th, check_profitability);
6638 check_profitability = false;
6639 /* The above adjusts LOOP_VINFO_NITERS, so cause ni_name to
6640 be re-computed. */
6641 ni_name = NULL_TREE;
6644 /* If the loop has a symbolic number of iterations 'n' (i.e. it's not a
6645 compile time constant), or it is a constant that doesn't divide by the
6646 vectorization factor, then an epilog loop needs to be created.
6647 We therefore duplicate the loop: the original loop will be vectorized,
6648 and will compute the first (n/VF) iterations. The second copy of the loop
6649 will remain scalar and will compute the remaining (n%VF) iterations.
6650 (VF is the vectorization factor). */
6652 if (LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo)
6653 || LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
6655 tree ratio_mult_vf;
6656 if (!ni_name)
6657 ni_name = vect_build_loop_niters (loop_vinfo);
6658 vect_generate_tmps_on_preheader (loop_vinfo, ni_name, &ratio_mult_vf,
6659 &ratio);
6660 vect_do_peeling_for_loop_bound (loop_vinfo, ni_name, ratio_mult_vf,
6661 th, check_profitability);
6663 else if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
6664 ratio = build_int_cst (TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo)),
6665 LOOP_VINFO_INT_NITERS (loop_vinfo) / vectorization_factor);
6666 else
6668 if (!ni_name)
6669 ni_name = vect_build_loop_niters (loop_vinfo);
6670 vect_generate_tmps_on_preheader (loop_vinfo, ni_name, NULL, &ratio);
6673 /* 1) Make sure the loop header has exactly two entries
6674 2) Make sure we have a preheader basic block. */
6676 gcc_assert (EDGE_COUNT (loop->header->preds) == 2);
6678 split_edge (loop_preheader_edge (loop));
6680 /* FORNOW: the vectorizer supports only loops which body consist
6681 of one basic block (header + empty latch). When the vectorizer will
6682 support more involved loop forms, the order by which the BBs are
6683 traversed need to be reconsidered. */
6685 for (i = 0; i < nbbs; i++)
6687 basic_block bb = bbs[i];
6688 stmt_vec_info stmt_info;
6690 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
6691 gsi_next (&si))
6693 gphi *phi = si.phi ();
6694 if (dump_enabled_p ())
6696 dump_printf_loc (MSG_NOTE, vect_location,
6697 "------>vectorizing phi: ");
6698 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
6699 dump_printf (MSG_NOTE, "\n");
6701 stmt_info = vinfo_for_stmt (phi);
6702 if (!stmt_info)
6703 continue;
6705 if (MAY_HAVE_DEBUG_STMTS && !STMT_VINFO_LIVE_P (stmt_info))
6706 vect_loop_kill_debug_uses (loop, phi);
6708 if (!STMT_VINFO_RELEVANT_P (stmt_info)
6709 && !STMT_VINFO_LIVE_P (stmt_info))
6710 continue;
6712 if (STMT_VINFO_VECTYPE (stmt_info)
6713 && (TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info))
6714 != (unsigned HOST_WIDE_INT) vectorization_factor)
6715 && dump_enabled_p ())
6716 dump_printf_loc (MSG_NOTE, vect_location, "multiple-types.\n");
6718 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def)
6720 if (dump_enabled_p ())
6721 dump_printf_loc (MSG_NOTE, vect_location, "transform phi.\n");
6722 vect_transform_stmt (phi, NULL, NULL, NULL, NULL);
6726 pattern_stmt = NULL;
6727 for (gimple_stmt_iterator si = gsi_start_bb (bb);
6728 !gsi_end_p (si) || transform_pattern_stmt;)
6730 bool is_store;
6732 if (transform_pattern_stmt)
6733 stmt = pattern_stmt;
6734 else
6736 stmt = gsi_stmt (si);
6737 /* During vectorization remove existing clobber stmts. */
6738 if (gimple_clobber_p (stmt))
6740 unlink_stmt_vdef (stmt);
6741 gsi_remove (&si, true);
6742 release_defs (stmt);
6743 continue;
6747 if (dump_enabled_p ())
6749 dump_printf_loc (MSG_NOTE, vect_location,
6750 "------>vectorizing statement: ");
6751 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
6752 dump_printf (MSG_NOTE, "\n");
6755 stmt_info = vinfo_for_stmt (stmt);
6757 /* vector stmts created in the outer-loop during vectorization of
6758 stmts in an inner-loop may not have a stmt_info, and do not
6759 need to be vectorized. */
6760 if (!stmt_info)
6762 gsi_next (&si);
6763 continue;
6766 if (MAY_HAVE_DEBUG_STMTS && !STMT_VINFO_LIVE_P (stmt_info))
6767 vect_loop_kill_debug_uses (loop, stmt);
6769 if (!STMT_VINFO_RELEVANT_P (stmt_info)
6770 && !STMT_VINFO_LIVE_P (stmt_info))
6772 if (STMT_VINFO_IN_PATTERN_P (stmt_info)
6773 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
6774 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
6775 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
6777 stmt = pattern_stmt;
6778 stmt_info = vinfo_for_stmt (stmt);
6780 else
6782 gsi_next (&si);
6783 continue;
6786 else if (STMT_VINFO_IN_PATTERN_P (stmt_info)
6787 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
6788 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
6789 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
6790 transform_pattern_stmt = true;
6792 /* If pattern statement has def stmts, vectorize them too. */
6793 if (is_pattern_stmt_p (stmt_info))
6795 if (pattern_def_seq == NULL)
6797 pattern_def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info);
6798 pattern_def_si = gsi_start (pattern_def_seq);
6800 else if (!gsi_end_p (pattern_def_si))
6801 gsi_next (&pattern_def_si);
6802 if (pattern_def_seq != NULL)
6804 gimple *pattern_def_stmt = NULL;
6805 stmt_vec_info pattern_def_stmt_info = NULL;
6807 while (!gsi_end_p (pattern_def_si))
6809 pattern_def_stmt = gsi_stmt (pattern_def_si);
6810 pattern_def_stmt_info
6811 = vinfo_for_stmt (pattern_def_stmt);
6812 if (STMT_VINFO_RELEVANT_P (pattern_def_stmt_info)
6813 || STMT_VINFO_LIVE_P (pattern_def_stmt_info))
6814 break;
6815 gsi_next (&pattern_def_si);
6818 if (!gsi_end_p (pattern_def_si))
6820 if (dump_enabled_p ())
6822 dump_printf_loc (MSG_NOTE, vect_location,
6823 "==> vectorizing pattern def "
6824 "stmt: ");
6825 dump_gimple_stmt (MSG_NOTE, TDF_SLIM,
6826 pattern_def_stmt, 0);
6827 dump_printf (MSG_NOTE, "\n");
6830 stmt = pattern_def_stmt;
6831 stmt_info = pattern_def_stmt_info;
6833 else
6835 pattern_def_si = gsi_none ();
6836 transform_pattern_stmt = false;
6839 else
6840 transform_pattern_stmt = false;
6843 if (STMT_VINFO_VECTYPE (stmt_info))
6845 unsigned int nunits
6846 = (unsigned int)
6847 TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info));
6848 if (!STMT_SLP_TYPE (stmt_info)
6849 && nunits != (unsigned int) vectorization_factor
6850 && dump_enabled_p ())
6851 /* For SLP VF is set according to unrolling factor, and not
6852 to vector size, hence for SLP this print is not valid. */
6853 dump_printf_loc (MSG_NOTE, vect_location, "multiple-types.\n");
6856 /* SLP. Schedule all the SLP instances when the first SLP stmt is
6857 reached. */
6858 if (STMT_SLP_TYPE (stmt_info))
6860 if (!slp_scheduled)
6862 slp_scheduled = true;
6864 if (dump_enabled_p ())
6865 dump_printf_loc (MSG_NOTE, vect_location,
6866 "=== scheduling SLP instances ===\n");
6868 vect_schedule_slp (loop_vinfo);
6871 /* Hybrid SLP stmts must be vectorized in addition to SLP. */
6872 if (!vinfo_for_stmt (stmt) || PURE_SLP_STMT (stmt_info))
6874 if (!transform_pattern_stmt && gsi_end_p (pattern_def_si))
6876 pattern_def_seq = NULL;
6877 gsi_next (&si);
6879 continue;
6883 /* -------- vectorize statement ------------ */
6884 if (dump_enabled_p ())
6885 dump_printf_loc (MSG_NOTE, vect_location, "transform statement.\n");
6887 grouped_store = false;
6888 is_store = vect_transform_stmt (stmt, &si, &grouped_store, NULL, NULL);
6889 if (is_store)
6891 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
6893 /* Interleaving. If IS_STORE is TRUE, the vectorization of the
6894 interleaving chain was completed - free all the stores in
6895 the chain. */
6896 gsi_next (&si);
6897 vect_remove_stores (GROUP_FIRST_ELEMENT (stmt_info));
6899 else
6901 /* Free the attached stmt_vec_info and remove the stmt. */
6902 gimple *store = gsi_stmt (si);
6903 free_stmt_vec_info (store);
6904 unlink_stmt_vdef (store);
6905 gsi_remove (&si, true);
6906 release_defs (store);
6909 /* Stores can only appear at the end of pattern statements. */
6910 gcc_assert (!transform_pattern_stmt);
6911 pattern_def_seq = NULL;
6913 else if (!transform_pattern_stmt && gsi_end_p (pattern_def_si))
6915 pattern_def_seq = NULL;
6916 gsi_next (&si);
6918 } /* stmts in BB */
6919 } /* BBs in loop */
6921 slpeel_make_loop_iterate_ntimes (loop, ratio);
6923 /* Reduce loop iterations by the vectorization factor. */
6924 scale_loop_profile (loop, GCOV_COMPUTE_SCALE (1, vectorization_factor),
6925 expected_iterations / vectorization_factor);
6926 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
6927 && loop->nb_iterations_upper_bound != 0)
6928 loop->nb_iterations_upper_bound = loop->nb_iterations_upper_bound - 1;
6929 loop->nb_iterations_upper_bound
6930 = wi::udiv_floor (loop->nb_iterations_upper_bound + 1,
6931 vectorization_factor) - 1;
6933 if (loop->any_estimate)
6935 loop->nb_iterations_estimate
6936 = wi::udiv_floor (loop->nb_iterations_estimate, vectorization_factor);
6937 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
6938 && loop->nb_iterations_estimate != 0)
6939 loop->nb_iterations_estimate = loop->nb_iterations_estimate - 1;
6942 if (dump_enabled_p ())
6944 dump_printf_loc (MSG_NOTE, vect_location,
6945 "LOOP VECTORIZED\n");
6946 if (loop->inner)
6947 dump_printf_loc (MSG_NOTE, vect_location,
6948 "OUTER LOOP VECTORIZED\n");
6949 dump_printf (MSG_NOTE, "\n");
6952 /* Free SLP instances here because otherwise stmt reference counting
6953 won't work. */
6954 slp_instance instance;
6955 FOR_EACH_VEC_ELT (LOOP_VINFO_SLP_INSTANCES (loop_vinfo), i, instance)
6956 vect_free_slp_instance (instance);
6957 LOOP_VINFO_SLP_INSTANCES (loop_vinfo).release ();
6960 /* The code below is trying to perform simple optimization - revert
6961 if-conversion for masked stores, i.e. if the mask of a store is zero
6962 do not perform it and all stored value producers also if possible.
6963 For example,
6964 for (i=0; i<n; i++)
6965 if (c[i])
6967 p1[i] += 1;
6968 p2[i] = p3[i] +2;
6970 this transformation will produce the following semi-hammock:
6972 if (!mask__ifc__42.18_165 == { 0, 0, 0, 0, 0, 0, 0, 0 })
6974 vect__11.19_170 = MASK_LOAD (vectp_p1.20_168, 0B, mask__ifc__42.18_165);
6975 vect__12.22_172 = vect__11.19_170 + vect_cst__171;
6976 MASK_STORE (vectp_p1.23_175, 0B, mask__ifc__42.18_165, vect__12.22_172);
6977 vect__18.25_182 = MASK_LOAD (vectp_p3.26_180, 0B, mask__ifc__42.18_165);
6978 vect__19.28_184 = vect__18.25_182 + vect_cst__183;
6979 MASK_STORE (vectp_p2.29_187, 0B, mask__ifc__42.18_165, vect__19.28_184);
6983 void
6984 optimize_mask_stores (struct loop *loop)
6986 basic_block *bbs = get_loop_body (loop);
6987 unsigned nbbs = loop->num_nodes;
6988 unsigned i;
6989 basic_block bb;
6990 gimple_stmt_iterator gsi;
6991 gimple *stmt;
6992 auto_vec<gimple *> worklist;
6994 vect_location = find_loop_location (loop);
6995 /* Pick up all masked stores in loop if any. */
6996 for (i = 0; i < nbbs; i++)
6998 bb = bbs[i];
6999 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
7000 gsi_next (&gsi))
7002 stmt = gsi_stmt (gsi);
7003 if (is_gimple_call (stmt)
7004 && gimple_call_internal_p (stmt)
7005 && gimple_call_internal_fn (stmt) == IFN_MASK_STORE)
7006 worklist.safe_push (stmt);
7010 free (bbs);
7011 if (worklist.is_empty ())
7012 return;
7014 /* Loop has masked stores. */
7015 while (!worklist.is_empty ())
7017 gimple *last, *last_store;
7018 edge e, efalse;
7019 tree mask;
7020 basic_block store_bb, join_bb;
7021 gimple_stmt_iterator gsi_to;
7022 tree vdef, new_vdef;
7023 gphi *phi;
7024 tree vectype;
7025 tree zero;
7027 last = worklist.pop ();
7028 mask = gimple_call_arg (last, 2);
7029 bb = gimple_bb (last);
7030 /* Create new bb. */
7031 e = split_block (bb, last);
7032 join_bb = e->dest;
7033 store_bb = create_empty_bb (bb);
7034 add_bb_to_loop (store_bb, loop);
7035 e->flags = EDGE_TRUE_VALUE;
7036 efalse = make_edge (bb, store_bb, EDGE_FALSE_VALUE);
7037 /* Put STORE_BB to likely part. */
7038 efalse->probability = PROB_UNLIKELY;
7039 store_bb->frequency = PROB_ALWAYS - EDGE_FREQUENCY (efalse);
7040 make_edge (store_bb, join_bb, EDGE_FALLTHRU);
7041 if (dom_info_available_p (CDI_DOMINATORS))
7042 set_immediate_dominator (CDI_DOMINATORS, store_bb, bb);
7043 if (dump_enabled_p ())
7044 dump_printf_loc (MSG_NOTE, vect_location,
7045 "Create new block %d to sink mask stores.",
7046 store_bb->index);
7047 /* Create vector comparison with boolean result. */
7048 vectype = TREE_TYPE (mask);
7049 zero = build_zero_cst (vectype);
7050 stmt = gimple_build_cond (EQ_EXPR, mask, zero, NULL_TREE, NULL_TREE);
7051 gsi = gsi_last_bb (bb);
7052 gsi_insert_after (&gsi, stmt, GSI_SAME_STMT);
7053 /* Create new PHI node for vdef of the last masked store:
7054 .MEM_2 = VDEF <.MEM_1>
7055 will be converted to
7056 .MEM.3 = VDEF <.MEM_1>
7057 and new PHI node will be created in join bb
7058 .MEM_2 = PHI <.MEM_1, .MEM_3>
7060 vdef = gimple_vdef (last);
7061 new_vdef = make_ssa_name (gimple_vop (cfun), last);
7062 gimple_set_vdef (last, new_vdef);
7063 phi = create_phi_node (vdef, join_bb);
7064 add_phi_arg (phi, new_vdef, EDGE_SUCC (store_bb, 0), UNKNOWN_LOCATION);
7066 /* Put all masked stores with the same mask to STORE_BB if possible. */
7067 while (true)
7069 gimple_stmt_iterator gsi_from;
7070 gimple *stmt1 = NULL;
7072 /* Move masked store to STORE_BB. */
7073 last_store = last;
7074 gsi = gsi_for_stmt (last);
7075 gsi_from = gsi;
7076 /* Shift GSI to the previous stmt for further traversal. */
7077 gsi_prev (&gsi);
7078 gsi_to = gsi_start_bb (store_bb);
7079 gsi_move_before (&gsi_from, &gsi_to);
7080 /* Setup GSI_TO to the non-empty block start. */
7081 gsi_to = gsi_start_bb (store_bb);
7082 if (dump_enabled_p ())
7084 dump_printf_loc (MSG_NOTE, vect_location,
7085 "Move stmt to created bb\n");
7086 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, last, 0);
7088 /* Move all stored value producers if possible. */
7089 while (!gsi_end_p (gsi))
7091 tree lhs;
7092 imm_use_iterator imm_iter;
7093 use_operand_p use_p;
7094 bool res;
7096 /* Skip debug statements. */
7097 if (is_gimple_debug (gsi_stmt (gsi)))
7099 gsi_prev (&gsi);
7100 continue;
7102 stmt1 = gsi_stmt (gsi);
7103 /* Do not consider statements writing to memory or having
7104 volatile operand. */
7105 if (gimple_vdef (stmt1)
7106 || gimple_has_volatile_ops (stmt1))
7107 break;
7108 gsi_from = gsi;
7109 gsi_prev (&gsi);
7110 lhs = gimple_get_lhs (stmt1);
7111 if (!lhs)
7112 break;
7114 /* LHS of vectorized stmt must be SSA_NAME. */
7115 if (TREE_CODE (lhs) != SSA_NAME)
7116 break;
7118 if (!VECTOR_TYPE_P (TREE_TYPE (lhs)))
7120 /* Remove dead scalar statement. */
7121 if (has_zero_uses (lhs))
7123 gsi_remove (&gsi_from, true);
7124 continue;
7128 /* Check that LHS does not have uses outside of STORE_BB. */
7129 res = true;
7130 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
7132 gimple *use_stmt;
7133 use_stmt = USE_STMT (use_p);
7134 if (is_gimple_debug (use_stmt))
7135 continue;
7136 if (gimple_bb (use_stmt) != store_bb)
7138 res = false;
7139 break;
7142 if (!res)
7143 break;
7145 if (gimple_vuse (stmt1)
7146 && gimple_vuse (stmt1) != gimple_vuse (last_store))
7147 break;
7149 /* Can move STMT1 to STORE_BB. */
7150 if (dump_enabled_p ())
7152 dump_printf_loc (MSG_NOTE, vect_location,
7153 "Move stmt to created bb\n");
7154 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt1, 0);
7156 gsi_move_before (&gsi_from, &gsi_to);
7157 /* Shift GSI_TO for further insertion. */
7158 gsi_prev (&gsi_to);
7160 /* Put other masked stores with the same mask to STORE_BB. */
7161 if (worklist.is_empty ()
7162 || gimple_call_arg (worklist.last (), 2) != mask
7163 || worklist.last () != stmt1)
7164 break;
7165 last = worklist.pop ();
7167 add_phi_arg (phi, gimple_vuse (last_store), e, UNKNOWN_LOCATION);