2015-05-01 Paolo Carlini <paolo.carlini@oracle.com>
[official-gcc.git] / gcc / ada / sem_util.adb
blob48d9e52b752d7d9af90cbdc1ec49e9ab3e7df533
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ U T I L --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Casing; use Casing;
29 with Checks; use Checks;
30 with Debug; use Debug;
31 with Elists; use Elists;
32 with Errout; use Errout;
33 with Exp_Ch11; use Exp_Ch11;
34 with Exp_Disp; use Exp_Disp;
35 with Exp_Unst; use Exp_Unst;
36 with Exp_Util; use Exp_Util;
37 with Fname; use Fname;
38 with Freeze; use Freeze;
39 with Lib; use Lib;
40 with Lib.Xref; use Lib.Xref;
41 with Namet.Sp; use Namet.Sp;
42 with Nlists; use Nlists;
43 with Nmake; use Nmake;
44 with Output; use Output;
45 with Restrict; use Restrict;
46 with Rident; use Rident;
47 with Rtsfind; use Rtsfind;
48 with Sem; use Sem;
49 with Sem_Aux; use Sem_Aux;
50 with Sem_Attr; use Sem_Attr;
51 with Sem_Ch6; use Sem_Ch6;
52 with Sem_Ch8; use Sem_Ch8;
53 with Sem_Ch13; use Sem_Ch13;
54 with Sem_Disp; use Sem_Disp;
55 with Sem_Eval; use Sem_Eval;
56 with Sem_Prag; use Sem_Prag;
57 with Sem_Res; use Sem_Res;
58 with Sem_Warn; use Sem_Warn;
59 with Sem_Type; use Sem_Type;
60 with Sinfo; use Sinfo;
61 with Sinput; use Sinput;
62 with Stand; use Stand;
63 with Style;
64 with Stringt; use Stringt;
65 with Targparm; use Targparm;
66 with Tbuild; use Tbuild;
67 with Ttypes; use Ttypes;
68 with Uname; use Uname;
70 with GNAT.HTable; use GNAT.HTable;
72 package body Sem_Util is
74 ----------------------------------------
75 -- Global Variables for New_Copy_Tree --
76 ----------------------------------------
78 -- These global variables are used by New_Copy_Tree. See description of the
79 -- body of this subprogram for details. Global variables can be safely used
80 -- by New_Copy_Tree, since there is no case of a recursive call from the
81 -- processing inside New_Copy_Tree.
83 NCT_Hash_Threshold : constant := 20;
84 -- If there are more than this number of pairs of entries in the map, then
85 -- Hash_Tables_Used will be set, and the hash tables will be initialized
86 -- and used for the searches.
88 NCT_Hash_Tables_Used : Boolean := False;
89 -- Set to True if hash tables are in use
91 NCT_Table_Entries : Nat := 0;
92 -- Count entries in table to see if threshold is reached
94 NCT_Hash_Table_Setup : Boolean := False;
95 -- Set to True if hash table contains data. We set this True if we setup
96 -- the hash table with data, and leave it set permanently from then on,
97 -- this is a signal that second and subsequent users of the hash table
98 -- must clear the old entries before reuse.
100 subtype NCT_Header_Num is Int range 0 .. 511;
101 -- Defines range of headers in hash tables (512 headers)
103 -----------------------
104 -- Local Subprograms --
105 -----------------------
107 function Build_Component_Subtype
108 (C : List_Id;
109 Loc : Source_Ptr;
110 T : Entity_Id) return Node_Id;
111 -- This function builds the subtype for Build_Actual_Subtype_Of_Component
112 -- and Build_Discriminal_Subtype_Of_Component. C is a list of constraints,
113 -- Loc is the source location, T is the original subtype.
115 function Has_Enabled_Property
116 (Item_Id : Entity_Id;
117 Property : Name_Id) return Boolean;
118 -- Subsidiary to routines Async_xxx_Enabled and Effective_xxx_Enabled.
119 -- Determine whether an abstract state or a variable denoted by entity
120 -- Item_Id has enabled property Property.
122 function Has_Null_Extension (T : Entity_Id) return Boolean;
123 -- T is a derived tagged type. Check whether the type extension is null.
124 -- If the parent type is fully initialized, T can be treated as such.
126 function Is_Fully_Initialized_Variant (Typ : Entity_Id) return Boolean;
127 -- Subsidiary to Is_Fully_Initialized_Type. For an unconstrained type
128 -- with discriminants whose default values are static, examine only the
129 -- components in the selected variant to determine whether all of them
130 -- have a default.
132 ------------------------------
133 -- Abstract_Interface_List --
134 ------------------------------
136 function Abstract_Interface_List (Typ : Entity_Id) return List_Id is
137 Nod : Node_Id;
139 begin
140 if Is_Concurrent_Type (Typ) then
142 -- If we are dealing with a synchronized subtype, go to the base
143 -- type, whose declaration has the interface list.
145 -- Shouldn't this be Declaration_Node???
147 Nod := Parent (Base_Type (Typ));
149 if Nkind (Nod) = N_Full_Type_Declaration then
150 return Empty_List;
151 end if;
153 elsif Ekind (Typ) = E_Record_Type_With_Private then
154 if Nkind (Parent (Typ)) = N_Full_Type_Declaration then
155 Nod := Type_Definition (Parent (Typ));
157 elsif Nkind (Parent (Typ)) = N_Private_Type_Declaration then
158 if Present (Full_View (Typ))
159 and then
160 Nkind (Parent (Full_View (Typ))) = N_Full_Type_Declaration
161 then
162 Nod := Type_Definition (Parent (Full_View (Typ)));
164 -- If the full-view is not available we cannot do anything else
165 -- here (the source has errors).
167 else
168 return Empty_List;
169 end if;
171 -- Support for generic formals with interfaces is still missing ???
173 elsif Nkind (Parent (Typ)) = N_Formal_Type_Declaration then
174 return Empty_List;
176 else
177 pragma Assert
178 (Nkind (Parent (Typ)) = N_Private_Extension_Declaration);
179 Nod := Parent (Typ);
180 end if;
182 elsif Ekind (Typ) = E_Record_Subtype then
183 Nod := Type_Definition (Parent (Etype (Typ)));
185 elsif Ekind (Typ) = E_Record_Subtype_With_Private then
187 -- Recurse, because parent may still be a private extension. Also
188 -- note that the full view of the subtype or the full view of its
189 -- base type may (both) be unavailable.
191 return Abstract_Interface_List (Etype (Typ));
193 else pragma Assert ((Ekind (Typ)) = E_Record_Type);
194 if Nkind (Parent (Typ)) = N_Formal_Type_Declaration then
195 Nod := Formal_Type_Definition (Parent (Typ));
196 else
197 Nod := Type_Definition (Parent (Typ));
198 end if;
199 end if;
201 return Interface_List (Nod);
202 end Abstract_Interface_List;
204 --------------------------------
205 -- Add_Access_Type_To_Process --
206 --------------------------------
208 procedure Add_Access_Type_To_Process (E : Entity_Id; A : Entity_Id) is
209 L : Elist_Id;
211 begin
212 Ensure_Freeze_Node (E);
213 L := Access_Types_To_Process (Freeze_Node (E));
215 if No (L) then
216 L := New_Elmt_List;
217 Set_Access_Types_To_Process (Freeze_Node (E), L);
218 end if;
220 Append_Elmt (A, L);
221 end Add_Access_Type_To_Process;
223 --------------------------
224 -- Add_Block_Identifier --
225 --------------------------
227 procedure Add_Block_Identifier (N : Node_Id; Id : out Entity_Id) is
228 Loc : constant Source_Ptr := Sloc (N);
230 begin
231 pragma Assert (Nkind (N) = N_Block_Statement);
233 -- The block already has a label, return its entity
235 if Present (Identifier (N)) then
236 Id := Entity (Identifier (N));
238 -- Create a new block label and set its attributes
240 else
241 Id := New_Internal_Entity (E_Block, Current_Scope, Loc, 'B');
242 Set_Etype (Id, Standard_Void_Type);
243 Set_Parent (Id, N);
245 Set_Identifier (N, New_Occurrence_Of (Id, Loc));
246 Set_Block_Node (Id, Identifier (N));
247 end if;
248 end Add_Block_Identifier;
250 -----------------------
251 -- Add_Contract_Item --
252 -----------------------
254 procedure Add_Contract_Item (Prag : Node_Id; Id : Entity_Id) is
255 Items : Node_Id := Contract (Id);
257 procedure Add_Classification;
258 -- Prepend Prag to the list of classifications
260 procedure Add_Contract_Test_Case;
261 -- Prepend Prag to the list of contract and test cases
263 procedure Add_Pre_Post_Condition;
264 -- Prepend Prag to the list of pre- and postconditions
266 ------------------------
267 -- Add_Classification --
268 ------------------------
270 procedure Add_Classification is
271 begin
272 Set_Next_Pragma (Prag, Classifications (Items));
273 Set_Classifications (Items, Prag);
274 end Add_Classification;
276 ----------------------------
277 -- Add_Contract_Test_Case --
278 ----------------------------
280 procedure Add_Contract_Test_Case is
281 begin
282 Set_Next_Pragma (Prag, Contract_Test_Cases (Items));
283 Set_Contract_Test_Cases (Items, Prag);
284 end Add_Contract_Test_Case;
286 ----------------------------
287 -- Add_Pre_Post_Condition --
288 ----------------------------
290 procedure Add_Pre_Post_Condition is
291 begin
292 Set_Next_Pragma (Prag, Pre_Post_Conditions (Items));
293 Set_Pre_Post_Conditions (Items, Prag);
294 end Add_Pre_Post_Condition;
296 -- Local variables
298 Prag_Nam : Name_Id;
300 -- Start of processing for Add_Contract_Item
302 begin
303 -- A contract must contain only pragmas
305 pragma Assert (Nkind (Prag) = N_Pragma);
306 Prag_Nam := Pragma_Name (Prag);
308 -- Create a new contract when adding the first item
310 if No (Items) then
311 Items := Make_Contract (Sloc (Id));
312 Set_Contract (Id, Items);
313 end if;
315 -- Contract items related to [generic] packages or instantiations. The
316 -- applicable pragmas are:
317 -- Abstract_States
318 -- Initial_Condition
319 -- Initializes
320 -- Part_Of (instantiation only)
322 if Ekind_In (Id, E_Generic_Package, E_Package) then
323 if Nam_In (Prag_Nam, Name_Abstract_State,
324 Name_Initial_Condition,
325 Name_Initializes)
326 then
327 Add_Classification;
329 -- Indicator Part_Of must be associated with a package instantiation
331 elsif Prag_Nam = Name_Part_Of and then Is_Generic_Instance (Id) then
332 Add_Classification;
334 -- The pragma is not a proper contract item
336 else
337 raise Program_Error;
338 end if;
340 -- Contract items related to package bodies. The applicable pragmas are:
341 -- Refined_States
343 elsif Ekind (Id) = E_Package_Body then
344 if Prag_Nam = Name_Refined_State then
345 Add_Classification;
347 -- The pragma is not a proper contract item
349 else
350 raise Program_Error;
351 end if;
353 -- Contract items related to subprogram or entry declarations. The
354 -- applicable pragmas are:
355 -- Contract_Cases
356 -- Depends
357 -- Extensions_Visible
358 -- Global
359 -- Postcondition
360 -- Precondition
361 -- Test_Case
363 elsif Ekind_In (Id, E_Entry, E_Entry_Family)
364 or else Is_Generic_Subprogram (Id)
365 or else Is_Subprogram (Id)
366 then
367 if Nam_In (Prag_Nam, Name_Postcondition, Name_Precondition) then
368 Add_Pre_Post_Condition;
370 elsif Nam_In (Prag_Nam, Name_Contract_Cases, Name_Test_Case) then
371 Add_Contract_Test_Case;
373 elsif Nam_In (Prag_Nam, Name_Depends,
374 Name_Extensions_Visible,
375 Name_Global)
376 then
377 Add_Classification;
379 -- The pragma is not a proper contract item
381 else
382 raise Program_Error;
383 end if;
385 -- Contract items related to subprogram bodies. Applicable pragmas are:
386 -- Postcondition
387 -- Precondition
388 -- Refined_Depends
389 -- Refined_Global
390 -- Refined_Post
392 elsif Ekind (Id) = E_Subprogram_Body then
393 if Nam_In (Prag_Nam, Name_Refined_Depends, Name_Refined_Global) then
394 Add_Classification;
396 elsif Nam_In (Prag_Nam, Name_Postcondition,
397 Name_Precondition,
398 Name_Refined_Post)
399 then
400 Add_Pre_Post_Condition;
402 -- The pragma is not a proper contract item
404 else
405 raise Program_Error;
406 end if;
408 -- Contract items related to variables. Applicable pragmas are:
409 -- Async_Readers
410 -- Async_Writers
411 -- Effective_Reads
412 -- Effective_Writes
413 -- Part_Of
415 elsif Ekind (Id) = E_Variable then
416 if Nam_In (Prag_Nam, Name_Async_Readers,
417 Name_Async_Writers,
418 Name_Effective_Reads,
419 Name_Effective_Writes,
420 Name_Part_Of)
421 then
422 Add_Classification;
424 -- The pragma is not a proper contract item
426 else
427 raise Program_Error;
428 end if;
429 end if;
430 end Add_Contract_Item;
432 ----------------------------
433 -- Add_Global_Declaration --
434 ----------------------------
436 procedure Add_Global_Declaration (N : Node_Id) is
437 Aux_Node : constant Node_Id := Aux_Decls_Node (Cunit (Current_Sem_Unit));
439 begin
440 if No (Declarations (Aux_Node)) then
441 Set_Declarations (Aux_Node, New_List);
442 end if;
444 Append_To (Declarations (Aux_Node), N);
445 Analyze (N);
446 end Add_Global_Declaration;
448 --------------------------------
449 -- Address_Integer_Convert_OK --
450 --------------------------------
452 function Address_Integer_Convert_OK (T1, T2 : Entity_Id) return Boolean is
453 begin
454 if Allow_Integer_Address
455 and then ((Is_Descendent_Of_Address (T1)
456 and then Is_Private_Type (T1)
457 and then Is_Integer_Type (T2))
458 or else
459 (Is_Descendent_Of_Address (T2)
460 and then Is_Private_Type (T2)
461 and then Is_Integer_Type (T1)))
462 then
463 return True;
464 else
465 return False;
466 end if;
467 end Address_Integer_Convert_OK;
469 -----------------
470 -- Addressable --
471 -----------------
473 -- For now, just 8/16/32/64. but analyze later if AAMP is special???
475 function Addressable (V : Uint) return Boolean is
476 begin
477 return V = Uint_8 or else
478 V = Uint_16 or else
479 V = Uint_32 or else
480 V = Uint_64;
481 end Addressable;
483 function Addressable (V : Int) return Boolean is
484 begin
485 return V = 8 or else
486 V = 16 or else
487 V = 32 or else
488 V = 64;
489 end Addressable;
491 ---------------------------------
492 -- Aggregate_Constraint_Checks --
493 ---------------------------------
495 procedure Aggregate_Constraint_Checks
496 (Exp : Node_Id;
497 Check_Typ : Entity_Id)
499 Exp_Typ : constant Entity_Id := Etype (Exp);
501 begin
502 if Raises_Constraint_Error (Exp) then
503 return;
504 end if;
506 -- Ada 2005 (AI-230): Generate a conversion to an anonymous access
507 -- component's type to force the appropriate accessibility checks.
509 -- Ada 2005 (AI-231): Generate conversion to the null-excluding
510 -- type to force the corresponding run-time check
512 if Is_Access_Type (Check_Typ)
513 and then ((Is_Local_Anonymous_Access (Check_Typ))
514 or else (Can_Never_Be_Null (Check_Typ)
515 and then not Can_Never_Be_Null (Exp_Typ)))
516 then
517 Rewrite (Exp, Convert_To (Check_Typ, Relocate_Node (Exp)));
518 Analyze_And_Resolve (Exp, Check_Typ);
519 Check_Unset_Reference (Exp);
520 end if;
522 -- This is really expansion activity, so make sure that expansion is
523 -- on and is allowed. In GNATprove mode, we also want check flags to
524 -- be added in the tree, so that the formal verification can rely on
525 -- those to be present. In GNATprove mode for formal verification, some
526 -- treatment typically only done during expansion needs to be performed
527 -- on the tree, but it should not be applied inside generics. Otherwise,
528 -- this breaks the name resolution mechanism for generic instances.
530 if not Expander_Active
531 and (Inside_A_Generic or not Full_Analysis or not GNATprove_Mode)
532 then
533 return;
534 end if;
536 -- First check if we have to insert discriminant checks
538 if Has_Discriminants (Exp_Typ) then
539 Apply_Discriminant_Check (Exp, Check_Typ);
541 -- Next emit length checks for array aggregates
543 elsif Is_Array_Type (Exp_Typ) then
544 Apply_Length_Check (Exp, Check_Typ);
546 -- Finally emit scalar and string checks. If we are dealing with a
547 -- scalar literal we need to check by hand because the Etype of
548 -- literals is not necessarily correct.
550 elsif Is_Scalar_Type (Exp_Typ)
551 and then Compile_Time_Known_Value (Exp)
552 then
553 if Is_Out_Of_Range (Exp, Base_Type (Check_Typ)) then
554 Apply_Compile_Time_Constraint_Error
555 (Exp, "value not in range of}??", CE_Range_Check_Failed,
556 Ent => Base_Type (Check_Typ),
557 Typ => Base_Type (Check_Typ));
559 elsif Is_Out_Of_Range (Exp, Check_Typ) then
560 Apply_Compile_Time_Constraint_Error
561 (Exp, "value not in range of}??", CE_Range_Check_Failed,
562 Ent => Check_Typ,
563 Typ => Check_Typ);
565 elsif not Range_Checks_Suppressed (Check_Typ) then
566 Apply_Scalar_Range_Check (Exp, Check_Typ);
567 end if;
569 -- Verify that target type is also scalar, to prevent view anomalies
570 -- in instantiations.
572 elsif (Is_Scalar_Type (Exp_Typ)
573 or else Nkind (Exp) = N_String_Literal)
574 and then Is_Scalar_Type (Check_Typ)
575 and then Exp_Typ /= Check_Typ
576 then
577 if Is_Entity_Name (Exp)
578 and then Ekind (Entity (Exp)) = E_Constant
579 then
580 -- If expression is a constant, it is worthwhile checking whether
581 -- it is a bound of the type.
583 if (Is_Entity_Name (Type_Low_Bound (Check_Typ))
584 and then Entity (Exp) = Entity (Type_Low_Bound (Check_Typ)))
585 or else
586 (Is_Entity_Name (Type_High_Bound (Check_Typ))
587 and then Entity (Exp) = Entity (Type_High_Bound (Check_Typ)))
588 then
589 return;
591 else
592 Rewrite (Exp, Convert_To (Check_Typ, Relocate_Node (Exp)));
593 Analyze_And_Resolve (Exp, Check_Typ);
594 Check_Unset_Reference (Exp);
595 end if;
597 -- Could use a comment on this case ???
599 else
600 Rewrite (Exp, Convert_To (Check_Typ, Relocate_Node (Exp)));
601 Analyze_And_Resolve (Exp, Check_Typ);
602 Check_Unset_Reference (Exp);
603 end if;
605 end if;
606 end Aggregate_Constraint_Checks;
608 -----------------------
609 -- Alignment_In_Bits --
610 -----------------------
612 function Alignment_In_Bits (E : Entity_Id) return Uint is
613 begin
614 return Alignment (E) * System_Storage_Unit;
615 end Alignment_In_Bits;
617 ---------------------------------
618 -- Append_Inherited_Subprogram --
619 ---------------------------------
621 procedure Append_Inherited_Subprogram (S : Entity_Id) is
622 Par : constant Entity_Id := Alias (S);
623 -- The parent subprogram
625 Scop : constant Entity_Id := Scope (Par);
626 -- The scope of definition of the parent subprogram
628 Typ : constant Entity_Id := Defining_Entity (Parent (S));
629 -- The derived type of which S is a primitive operation
631 Decl : Node_Id;
632 Next_E : Entity_Id;
634 begin
635 if Ekind (Current_Scope) = E_Package
636 and then In_Private_Part (Current_Scope)
637 and then Has_Private_Declaration (Typ)
638 and then Is_Tagged_Type (Typ)
639 and then Scop = Current_Scope
640 then
641 -- The inherited operation is available at the earliest place after
642 -- the derived type declaration ( RM 7.3.1 (6/1)). This is only
643 -- relevant for type extensions. If the parent operation appears
644 -- after the type extension, the operation is not visible.
646 Decl := First
647 (Visible_Declarations
648 (Package_Specification (Current_Scope)));
649 while Present (Decl) loop
650 if Nkind (Decl) = N_Private_Extension_Declaration
651 and then Defining_Entity (Decl) = Typ
652 then
653 if Sloc (Decl) > Sloc (Par) then
654 Next_E := Next_Entity (Par);
655 Set_Next_Entity (Par, S);
656 Set_Next_Entity (S, Next_E);
657 return;
659 else
660 exit;
661 end if;
662 end if;
664 Next (Decl);
665 end loop;
666 end if;
668 -- If partial view is not a type extension, or it appears before the
669 -- subprogram declaration, insert normally at end of entity list.
671 Append_Entity (S, Current_Scope);
672 end Append_Inherited_Subprogram;
674 -----------------------------------------
675 -- Apply_Compile_Time_Constraint_Error --
676 -----------------------------------------
678 procedure Apply_Compile_Time_Constraint_Error
679 (N : Node_Id;
680 Msg : String;
681 Reason : RT_Exception_Code;
682 Ent : Entity_Id := Empty;
683 Typ : Entity_Id := Empty;
684 Loc : Source_Ptr := No_Location;
685 Rep : Boolean := True;
686 Warn : Boolean := False)
688 Stat : constant Boolean := Is_Static_Expression (N);
689 R_Stat : constant Node_Id :=
690 Make_Raise_Constraint_Error (Sloc (N), Reason => Reason);
691 Rtyp : Entity_Id;
693 begin
694 if No (Typ) then
695 Rtyp := Etype (N);
696 else
697 Rtyp := Typ;
698 end if;
700 Discard_Node
701 (Compile_Time_Constraint_Error (N, Msg, Ent, Loc, Warn => Warn));
703 if not Rep then
704 return;
705 end if;
707 -- Now we replace the node by an N_Raise_Constraint_Error node
708 -- This does not need reanalyzing, so set it as analyzed now.
710 Rewrite (N, R_Stat);
711 Set_Analyzed (N, True);
713 Set_Etype (N, Rtyp);
714 Set_Raises_Constraint_Error (N);
716 -- Now deal with possible local raise handling
718 Possible_Local_Raise (N, Standard_Constraint_Error);
720 -- If the original expression was marked as static, the result is
721 -- still marked as static, but the Raises_Constraint_Error flag is
722 -- always set so that further static evaluation is not attempted.
724 if Stat then
725 Set_Is_Static_Expression (N);
726 end if;
727 end Apply_Compile_Time_Constraint_Error;
729 ---------------------------
730 -- Async_Readers_Enabled --
731 ---------------------------
733 function Async_Readers_Enabled (Id : Entity_Id) return Boolean is
734 begin
735 return Has_Enabled_Property (Id, Name_Async_Readers);
736 end Async_Readers_Enabled;
738 ---------------------------
739 -- Async_Writers_Enabled --
740 ---------------------------
742 function Async_Writers_Enabled (Id : Entity_Id) return Boolean is
743 begin
744 return Has_Enabled_Property (Id, Name_Async_Writers);
745 end Async_Writers_Enabled;
747 --------------------------------------
748 -- Available_Full_View_Of_Component --
749 --------------------------------------
751 function Available_Full_View_Of_Component (T : Entity_Id) return Boolean is
752 ST : constant Entity_Id := Scope (T);
753 SCT : constant Entity_Id := Scope (Component_Type (T));
754 begin
755 return In_Open_Scopes (ST)
756 and then In_Open_Scopes (SCT)
757 and then Scope_Depth (ST) >= Scope_Depth (SCT);
758 end Available_Full_View_Of_Component;
760 -------------------
761 -- Bad_Attribute --
762 -------------------
764 procedure Bad_Attribute
765 (N : Node_Id;
766 Nam : Name_Id;
767 Warn : Boolean := False)
769 begin
770 Error_Msg_Warn := Warn;
771 Error_Msg_N ("unrecognized attribute&<<", N);
773 -- Check for possible misspelling
775 Error_Msg_Name_1 := First_Attribute_Name;
776 while Error_Msg_Name_1 <= Last_Attribute_Name loop
777 if Is_Bad_Spelling_Of (Nam, Error_Msg_Name_1) then
778 Error_Msg_N -- CODEFIX
779 ("\possible misspelling of %<<", N);
780 exit;
781 end if;
783 Error_Msg_Name_1 := Error_Msg_Name_1 + 1;
784 end loop;
785 end Bad_Attribute;
787 --------------------------------
788 -- Bad_Predicated_Subtype_Use --
789 --------------------------------
791 procedure Bad_Predicated_Subtype_Use
792 (Msg : String;
793 N : Node_Id;
794 Typ : Entity_Id;
795 Suggest_Static : Boolean := False)
797 Gen : Entity_Id;
799 begin
800 -- Avoid cascaded errors
802 if Error_Posted (N) then
803 return;
804 end if;
806 if Inside_A_Generic then
807 Gen := Current_Scope;
808 while Present (Gen) and then Ekind (Gen) /= E_Generic_Package loop
809 Gen := Scope (Gen);
810 end loop;
812 if No (Gen) then
813 return;
814 end if;
816 if Is_Generic_Formal (Typ) and then Is_Discrete_Type (Typ) then
817 Set_No_Predicate_On_Actual (Typ);
818 end if;
820 elsif Has_Predicates (Typ) then
821 if Is_Generic_Actual_Type (Typ) then
823 -- The restriction on loop parameters is only that the type
824 -- should have no dynamic predicates.
826 if Nkind (Parent (N)) = N_Loop_Parameter_Specification
827 and then not Has_Dynamic_Predicate_Aspect (Typ)
828 and then Is_OK_Static_Subtype (Typ)
829 then
830 return;
831 end if;
833 Gen := Current_Scope;
834 while not Is_Generic_Instance (Gen) loop
835 Gen := Scope (Gen);
836 end loop;
838 pragma Assert (Present (Gen));
840 if Ekind (Gen) = E_Package and then In_Package_Body (Gen) then
841 Error_Msg_Warn := SPARK_Mode /= On;
842 Error_Msg_FE (Msg & "<<", N, Typ);
843 Error_Msg_F ("\Program_Error [<<", N);
845 Insert_Action (N,
846 Make_Raise_Program_Error (Sloc (N),
847 Reason => PE_Bad_Predicated_Generic_Type));
849 else
850 Error_Msg_FE (Msg & "<<", N, Typ);
851 end if;
853 else
854 Error_Msg_FE (Msg, N, Typ);
855 end if;
857 -- Emit an optional suggestion on how to remedy the error if the
858 -- context warrants it.
860 if Suggest_Static and then Has_Static_Predicate (Typ) then
861 Error_Msg_FE ("\predicate of & should be marked static", N, Typ);
862 end if;
863 end if;
864 end Bad_Predicated_Subtype_Use;
866 -----------------------------------------
867 -- Bad_Unordered_Enumeration_Reference --
868 -----------------------------------------
870 function Bad_Unordered_Enumeration_Reference
871 (N : Node_Id;
872 T : Entity_Id) return Boolean
874 begin
875 return Is_Enumeration_Type (T)
876 and then Warn_On_Unordered_Enumeration_Type
877 and then not Is_Generic_Type (T)
878 and then Comes_From_Source (N)
879 and then not Has_Pragma_Ordered (T)
880 and then not In_Same_Extended_Unit (N, T);
881 end Bad_Unordered_Enumeration_Reference;
883 --------------------------
884 -- Build_Actual_Subtype --
885 --------------------------
887 function Build_Actual_Subtype
888 (T : Entity_Id;
889 N : Node_Or_Entity_Id) return Node_Id
891 Loc : Source_Ptr;
892 -- Normally Sloc (N), but may point to corresponding body in some cases
894 Constraints : List_Id;
895 Decl : Node_Id;
896 Discr : Entity_Id;
897 Hi : Node_Id;
898 Lo : Node_Id;
899 Subt : Entity_Id;
900 Disc_Type : Entity_Id;
901 Obj : Node_Id;
903 begin
904 Loc := Sloc (N);
906 if Nkind (N) = N_Defining_Identifier then
907 Obj := New_Occurrence_Of (N, Loc);
909 -- If this is a formal parameter of a subprogram declaration, and
910 -- we are compiling the body, we want the declaration for the
911 -- actual subtype to carry the source position of the body, to
912 -- prevent anomalies in gdb when stepping through the code.
914 if Is_Formal (N) then
915 declare
916 Decl : constant Node_Id := Unit_Declaration_Node (Scope (N));
917 begin
918 if Nkind (Decl) = N_Subprogram_Declaration
919 and then Present (Corresponding_Body (Decl))
920 then
921 Loc := Sloc (Corresponding_Body (Decl));
922 end if;
923 end;
924 end if;
926 else
927 Obj := N;
928 end if;
930 if Is_Array_Type (T) then
931 Constraints := New_List;
932 for J in 1 .. Number_Dimensions (T) loop
934 -- Build an array subtype declaration with the nominal subtype and
935 -- the bounds of the actual. Add the declaration in front of the
936 -- local declarations for the subprogram, for analysis before any
937 -- reference to the formal in the body.
939 Lo :=
940 Make_Attribute_Reference (Loc,
941 Prefix =>
942 Duplicate_Subexpr_No_Checks (Obj, Name_Req => True),
943 Attribute_Name => Name_First,
944 Expressions => New_List (
945 Make_Integer_Literal (Loc, J)));
947 Hi :=
948 Make_Attribute_Reference (Loc,
949 Prefix =>
950 Duplicate_Subexpr_No_Checks (Obj, Name_Req => True),
951 Attribute_Name => Name_Last,
952 Expressions => New_List (
953 Make_Integer_Literal (Loc, J)));
955 Append (Make_Range (Loc, Lo, Hi), Constraints);
956 end loop;
958 -- If the type has unknown discriminants there is no constrained
959 -- subtype to build. This is never called for a formal or for a
960 -- lhs, so returning the type is ok ???
962 elsif Has_Unknown_Discriminants (T) then
963 return T;
965 else
966 Constraints := New_List;
968 -- Type T is a generic derived type, inherit the discriminants from
969 -- the parent type.
971 if Is_Private_Type (T)
972 and then No (Full_View (T))
974 -- T was flagged as an error if it was declared as a formal
975 -- derived type with known discriminants. In this case there
976 -- is no need to look at the parent type since T already carries
977 -- its own discriminants.
979 and then not Error_Posted (T)
980 then
981 Disc_Type := Etype (Base_Type (T));
982 else
983 Disc_Type := T;
984 end if;
986 Discr := First_Discriminant (Disc_Type);
987 while Present (Discr) loop
988 Append_To (Constraints,
989 Make_Selected_Component (Loc,
990 Prefix =>
991 Duplicate_Subexpr_No_Checks (Obj),
992 Selector_Name => New_Occurrence_Of (Discr, Loc)));
993 Next_Discriminant (Discr);
994 end loop;
995 end if;
997 Subt := Make_Temporary (Loc, 'S', Related_Node => N);
998 Set_Is_Internal (Subt);
1000 Decl :=
1001 Make_Subtype_Declaration (Loc,
1002 Defining_Identifier => Subt,
1003 Subtype_Indication =>
1004 Make_Subtype_Indication (Loc,
1005 Subtype_Mark => New_Occurrence_Of (T, Loc),
1006 Constraint =>
1007 Make_Index_Or_Discriminant_Constraint (Loc,
1008 Constraints => Constraints)));
1010 Mark_Rewrite_Insertion (Decl);
1011 return Decl;
1012 end Build_Actual_Subtype;
1014 ---------------------------------------
1015 -- Build_Actual_Subtype_Of_Component --
1016 ---------------------------------------
1018 function Build_Actual_Subtype_Of_Component
1019 (T : Entity_Id;
1020 N : Node_Id) return Node_Id
1022 Loc : constant Source_Ptr := Sloc (N);
1023 P : constant Node_Id := Prefix (N);
1024 D : Elmt_Id;
1025 Id : Node_Id;
1026 Index_Typ : Entity_Id;
1028 Desig_Typ : Entity_Id;
1029 -- This is either a copy of T, or if T is an access type, then it is
1030 -- the directly designated type of this access type.
1032 function Build_Actual_Array_Constraint return List_Id;
1033 -- If one or more of the bounds of the component depends on
1034 -- discriminants, build actual constraint using the discriminants
1035 -- of the prefix.
1037 function Build_Actual_Record_Constraint return List_Id;
1038 -- Similar to previous one, for discriminated components constrained
1039 -- by the discriminant of the enclosing object.
1041 -----------------------------------
1042 -- Build_Actual_Array_Constraint --
1043 -----------------------------------
1045 function Build_Actual_Array_Constraint return List_Id is
1046 Constraints : constant List_Id := New_List;
1047 Indx : Node_Id;
1048 Hi : Node_Id;
1049 Lo : Node_Id;
1050 Old_Hi : Node_Id;
1051 Old_Lo : Node_Id;
1053 begin
1054 Indx := First_Index (Desig_Typ);
1055 while Present (Indx) loop
1056 Old_Lo := Type_Low_Bound (Etype (Indx));
1057 Old_Hi := Type_High_Bound (Etype (Indx));
1059 if Denotes_Discriminant (Old_Lo) then
1060 Lo :=
1061 Make_Selected_Component (Loc,
1062 Prefix => New_Copy_Tree (P),
1063 Selector_Name => New_Occurrence_Of (Entity (Old_Lo), Loc));
1065 else
1066 Lo := New_Copy_Tree (Old_Lo);
1068 -- The new bound will be reanalyzed in the enclosing
1069 -- declaration. For literal bounds that come from a type
1070 -- declaration, the type of the context must be imposed, so
1071 -- insure that analysis will take place. For non-universal
1072 -- types this is not strictly necessary.
1074 Set_Analyzed (Lo, False);
1075 end if;
1077 if Denotes_Discriminant (Old_Hi) then
1078 Hi :=
1079 Make_Selected_Component (Loc,
1080 Prefix => New_Copy_Tree (P),
1081 Selector_Name => New_Occurrence_Of (Entity (Old_Hi), Loc));
1083 else
1084 Hi := New_Copy_Tree (Old_Hi);
1085 Set_Analyzed (Hi, False);
1086 end if;
1088 Append (Make_Range (Loc, Lo, Hi), Constraints);
1089 Next_Index (Indx);
1090 end loop;
1092 return Constraints;
1093 end Build_Actual_Array_Constraint;
1095 ------------------------------------
1096 -- Build_Actual_Record_Constraint --
1097 ------------------------------------
1099 function Build_Actual_Record_Constraint return List_Id is
1100 Constraints : constant List_Id := New_List;
1101 D : Elmt_Id;
1102 D_Val : Node_Id;
1104 begin
1105 D := First_Elmt (Discriminant_Constraint (Desig_Typ));
1106 while Present (D) loop
1107 if Denotes_Discriminant (Node (D)) then
1108 D_Val := Make_Selected_Component (Loc,
1109 Prefix => New_Copy_Tree (P),
1110 Selector_Name => New_Occurrence_Of (Entity (Node (D)), Loc));
1112 else
1113 D_Val := New_Copy_Tree (Node (D));
1114 end if;
1116 Append (D_Val, Constraints);
1117 Next_Elmt (D);
1118 end loop;
1120 return Constraints;
1121 end Build_Actual_Record_Constraint;
1123 -- Start of processing for Build_Actual_Subtype_Of_Component
1125 begin
1126 -- Why the test for Spec_Expression mode here???
1128 if In_Spec_Expression then
1129 return Empty;
1131 -- More comments for the rest of this body would be good ???
1133 elsif Nkind (N) = N_Explicit_Dereference then
1134 if Is_Composite_Type (T)
1135 and then not Is_Constrained (T)
1136 and then not (Is_Class_Wide_Type (T)
1137 and then Is_Constrained (Root_Type (T)))
1138 and then not Has_Unknown_Discriminants (T)
1139 then
1140 -- If the type of the dereference is already constrained, it is an
1141 -- actual subtype.
1143 if Is_Array_Type (Etype (N))
1144 and then Is_Constrained (Etype (N))
1145 then
1146 return Empty;
1147 else
1148 Remove_Side_Effects (P);
1149 return Build_Actual_Subtype (T, N);
1150 end if;
1151 else
1152 return Empty;
1153 end if;
1154 end if;
1156 if Ekind (T) = E_Access_Subtype then
1157 Desig_Typ := Designated_Type (T);
1158 else
1159 Desig_Typ := T;
1160 end if;
1162 if Ekind (Desig_Typ) = E_Array_Subtype then
1163 Id := First_Index (Desig_Typ);
1164 while Present (Id) loop
1165 Index_Typ := Underlying_Type (Etype (Id));
1167 if Denotes_Discriminant (Type_Low_Bound (Index_Typ))
1168 or else
1169 Denotes_Discriminant (Type_High_Bound (Index_Typ))
1170 then
1171 Remove_Side_Effects (P);
1172 return
1173 Build_Component_Subtype
1174 (Build_Actual_Array_Constraint, Loc, Base_Type (T));
1175 end if;
1177 Next_Index (Id);
1178 end loop;
1180 elsif Is_Composite_Type (Desig_Typ)
1181 and then Has_Discriminants (Desig_Typ)
1182 and then not Has_Unknown_Discriminants (Desig_Typ)
1183 then
1184 if Is_Private_Type (Desig_Typ)
1185 and then No (Discriminant_Constraint (Desig_Typ))
1186 then
1187 Desig_Typ := Full_View (Desig_Typ);
1188 end if;
1190 D := First_Elmt (Discriminant_Constraint (Desig_Typ));
1191 while Present (D) loop
1192 if Denotes_Discriminant (Node (D)) then
1193 Remove_Side_Effects (P);
1194 return
1195 Build_Component_Subtype (
1196 Build_Actual_Record_Constraint, Loc, Base_Type (T));
1197 end if;
1199 Next_Elmt (D);
1200 end loop;
1201 end if;
1203 -- If none of the above, the actual and nominal subtypes are the same
1205 return Empty;
1206 end Build_Actual_Subtype_Of_Component;
1208 -----------------------------
1209 -- Build_Component_Subtype --
1210 -----------------------------
1212 function Build_Component_Subtype
1213 (C : List_Id;
1214 Loc : Source_Ptr;
1215 T : Entity_Id) return Node_Id
1217 Subt : Entity_Id;
1218 Decl : Node_Id;
1220 begin
1221 -- Unchecked_Union components do not require component subtypes
1223 if Is_Unchecked_Union (T) then
1224 return Empty;
1225 end if;
1227 Subt := Make_Temporary (Loc, 'S');
1228 Set_Is_Internal (Subt);
1230 Decl :=
1231 Make_Subtype_Declaration (Loc,
1232 Defining_Identifier => Subt,
1233 Subtype_Indication =>
1234 Make_Subtype_Indication (Loc,
1235 Subtype_Mark => New_Occurrence_Of (Base_Type (T), Loc),
1236 Constraint =>
1237 Make_Index_Or_Discriminant_Constraint (Loc,
1238 Constraints => C)));
1240 Mark_Rewrite_Insertion (Decl);
1241 return Decl;
1242 end Build_Component_Subtype;
1244 ----------------------------------
1245 -- Build_Default_Init_Cond_Call --
1246 ----------------------------------
1248 function Build_Default_Init_Cond_Call
1249 (Loc : Source_Ptr;
1250 Obj_Id : Entity_Id;
1251 Typ : Entity_Id) return Node_Id
1253 Proc_Id : constant Entity_Id := Default_Init_Cond_Procedure (Typ);
1254 Formal_Typ : constant Entity_Id := Etype (First_Formal (Proc_Id));
1256 begin
1257 return
1258 Make_Procedure_Call_Statement (Loc,
1259 Name => New_Occurrence_Of (Proc_Id, Loc),
1260 Parameter_Associations => New_List (
1261 Make_Unchecked_Type_Conversion (Loc,
1262 Subtype_Mark => New_Occurrence_Of (Formal_Typ, Loc),
1263 Expression => New_Occurrence_Of (Obj_Id, Loc))));
1264 end Build_Default_Init_Cond_Call;
1266 ----------------------------------------------
1267 -- Build_Default_Init_Cond_Procedure_Bodies --
1268 ----------------------------------------------
1270 procedure Build_Default_Init_Cond_Procedure_Bodies (Priv_Decls : List_Id) is
1271 procedure Build_Default_Init_Cond_Procedure_Body (Typ : Entity_Id);
1272 -- If type Typ is subject to pragma Default_Initial_Condition, build the
1273 -- body of the procedure which verifies the assumption of the pragma at
1274 -- run time. The generated body is added after the type declaration.
1276 --------------------------------------------
1277 -- Build_Default_Init_Cond_Procedure_Body --
1278 --------------------------------------------
1280 procedure Build_Default_Init_Cond_Procedure_Body (Typ : Entity_Id) is
1281 Param_Id : Entity_Id;
1282 -- The entity of the sole formal parameter of the default initial
1283 -- condition procedure.
1285 procedure Replace_Type_Reference (N : Node_Id);
1286 -- Replace a single reference to type Typ with a reference to formal
1287 -- parameter Param_Id.
1289 ----------------------------
1290 -- Replace_Type_Reference --
1291 ----------------------------
1293 procedure Replace_Type_Reference (N : Node_Id) is
1294 begin
1295 Rewrite (N, New_Occurrence_Of (Param_Id, Sloc (N)));
1296 end Replace_Type_Reference;
1298 procedure Replace_Type_References is
1299 new Replace_Type_References_Generic (Replace_Type_Reference);
1301 -- Local variables
1303 Loc : constant Source_Ptr := Sloc (Typ);
1304 Prag : constant Node_Id :=
1305 Get_Pragma (Typ, Pragma_Default_Initial_Condition);
1306 Proc_Id : constant Entity_Id := Default_Init_Cond_Procedure (Typ);
1307 Spec_Decl : constant Node_Id := Unit_Declaration_Node (Proc_Id);
1308 Body_Decl : Node_Id;
1309 Expr : Node_Id;
1310 Stmt : Node_Id;
1312 -- Start of processing for Build_Default_Init_Cond_Procedure_Body
1314 begin
1315 -- The procedure should be generated only for [sub]types subject to
1316 -- pragma Default_Initial_Condition. Types that inherit the pragma do
1317 -- not get this specialized procedure.
1319 pragma Assert (Has_Default_Init_Cond (Typ));
1320 pragma Assert (Present (Prag));
1321 pragma Assert (Present (Proc_Id));
1323 -- Nothing to do if the body was already built
1325 if Present (Corresponding_Body (Spec_Decl)) then
1326 return;
1327 end if;
1329 Param_Id := First_Formal (Proc_Id);
1331 -- The pragma has an argument. Note that the argument is analyzed
1332 -- after all references to the current instance of the type are
1333 -- replaced.
1335 if Present (Pragma_Argument_Associations (Prag)) then
1336 Expr :=
1337 Get_Pragma_Arg (First (Pragma_Argument_Associations (Prag)));
1339 if Nkind (Expr) = N_Null then
1340 Stmt := Make_Null_Statement (Loc);
1342 -- Preserve the original argument of the pragma by replicating it.
1343 -- Replace all references to the current instance of the type with
1344 -- references to the formal parameter.
1346 else
1347 Expr := New_Copy_Tree (Expr);
1348 Replace_Type_References (Expr, Typ);
1350 -- Generate:
1351 -- pragma Check (Default_Initial_Condition, <Expr>);
1353 Stmt :=
1354 Make_Pragma (Loc,
1355 Pragma_Identifier =>
1356 Make_Identifier (Loc, Name_Check),
1358 Pragma_Argument_Associations => New_List (
1359 Make_Pragma_Argument_Association (Loc,
1360 Expression =>
1361 Make_Identifier (Loc,
1362 Chars => Name_Default_Initial_Condition)),
1363 Make_Pragma_Argument_Association (Loc,
1364 Expression => Expr)));
1365 end if;
1367 -- Otherwise the pragma appears without an argument
1369 else
1370 Stmt := Make_Null_Statement (Loc);
1371 end if;
1373 -- Generate:
1374 -- procedure <Typ>Default_Init_Cond (I : <Typ>) is
1375 -- begin
1376 -- <Stmt>;
1377 -- end <Typ>Default_Init_Cond;
1379 Body_Decl :=
1380 Make_Subprogram_Body (Loc,
1381 Specification =>
1382 Copy_Separate_Tree (Specification (Spec_Decl)),
1383 Declarations => Empty_List,
1384 Handled_Statement_Sequence =>
1385 Make_Handled_Sequence_Of_Statements (Loc,
1386 Statements => New_List (Stmt)));
1388 -- Link the spec and body of the default initial condition procedure
1389 -- to prevent the generation of a duplicate body.
1391 Set_Corresponding_Body (Spec_Decl, Defining_Entity (Body_Decl));
1392 Set_Corresponding_Spec (Body_Decl, Proc_Id);
1394 Insert_After_And_Analyze (Declaration_Node (Typ), Body_Decl);
1395 end Build_Default_Init_Cond_Procedure_Body;
1397 -- Local variables
1399 Decl : Node_Id;
1400 Typ : Entity_Id;
1402 -- Start of processing for Build_Default_Init_Cond_Procedure_Bodies
1404 begin
1405 -- Inspect the private declarations looking for [sub]type declarations
1407 Decl := First (Priv_Decls);
1408 while Present (Decl) loop
1409 if Nkind_In (Decl, N_Full_Type_Declaration,
1410 N_Subtype_Declaration)
1411 then
1412 Typ := Defining_Entity (Decl);
1414 -- Guard against partially decorate types due to previous errors
1416 if Is_Type (Typ) then
1418 -- If the type is subject to pragma Default_Initial_Condition,
1419 -- generate the body of the internal procedure which verifies
1420 -- the assertion of the pragma at run time.
1422 if Has_Default_Init_Cond (Typ) then
1423 Build_Default_Init_Cond_Procedure_Body (Typ);
1425 -- A derived type inherits the default initial condition
1426 -- procedure from its parent type.
1428 elsif Has_Inherited_Default_Init_Cond (Typ) then
1429 Inherit_Default_Init_Cond_Procedure (Typ);
1430 end if;
1431 end if;
1432 end if;
1434 Next (Decl);
1435 end loop;
1436 end Build_Default_Init_Cond_Procedure_Bodies;
1438 ---------------------------------------------------
1439 -- Build_Default_Init_Cond_Procedure_Declaration --
1440 ---------------------------------------------------
1442 procedure Build_Default_Init_Cond_Procedure_Declaration (Typ : Entity_Id) is
1443 Loc : constant Source_Ptr := Sloc (Typ);
1444 Prag : constant Node_Id :=
1445 Get_Pragma (Typ, Pragma_Default_Initial_Condition);
1446 Proc_Id : Entity_Id;
1448 begin
1449 -- The procedure should be generated only for types subject to pragma
1450 -- Default_Initial_Condition. Types that inherit the pragma do not get
1451 -- this specialized procedure.
1453 pragma Assert (Has_Default_Init_Cond (Typ));
1454 pragma Assert (Present (Prag));
1456 -- Nothing to do if default initial condition procedure already built
1458 if Present (Default_Init_Cond_Procedure (Typ)) then
1459 return;
1460 end if;
1462 Proc_Id :=
1463 Make_Defining_Identifier (Loc,
1464 Chars => New_External_Name (Chars (Typ), "Default_Init_Cond"));
1466 -- Associate default initial condition procedure with the private type
1468 Set_Ekind (Proc_Id, E_Procedure);
1469 Set_Is_Default_Init_Cond_Procedure (Proc_Id);
1470 Set_Default_Init_Cond_Procedure (Typ, Proc_Id);
1472 -- Generate:
1473 -- procedure <Typ>Default_Init_Cond (Inn : <Typ>);
1475 Insert_After_And_Analyze (Prag,
1476 Make_Subprogram_Declaration (Loc,
1477 Specification =>
1478 Make_Procedure_Specification (Loc,
1479 Defining_Unit_Name => Proc_Id,
1480 Parameter_Specifications => New_List (
1481 Make_Parameter_Specification (Loc,
1482 Defining_Identifier => Make_Temporary (Loc, 'I'),
1483 Parameter_Type => New_Occurrence_Of (Typ, Loc))))));
1484 end Build_Default_Init_Cond_Procedure_Declaration;
1486 ---------------------------
1487 -- Build_Default_Subtype --
1488 ---------------------------
1490 function Build_Default_Subtype
1491 (T : Entity_Id;
1492 N : Node_Id) return Entity_Id
1494 Loc : constant Source_Ptr := Sloc (N);
1495 Disc : Entity_Id;
1497 Bas : Entity_Id;
1498 -- The base type that is to be constrained by the defaults
1500 begin
1501 if not Has_Discriminants (T) or else Is_Constrained (T) then
1502 return T;
1503 end if;
1505 Bas := Base_Type (T);
1507 -- If T is non-private but its base type is private, this is the
1508 -- completion of a subtype declaration whose parent type is private
1509 -- (see Complete_Private_Subtype in Sem_Ch3). The proper discriminants
1510 -- are to be found in the full view of the base. Check that the private
1511 -- status of T and its base differ.
1513 if Is_Private_Type (Bas)
1514 and then not Is_Private_Type (T)
1515 and then Present (Full_View (Bas))
1516 then
1517 Bas := Full_View (Bas);
1518 end if;
1520 Disc := First_Discriminant (T);
1522 if No (Discriminant_Default_Value (Disc)) then
1523 return T;
1524 end if;
1526 declare
1527 Act : constant Entity_Id := Make_Temporary (Loc, 'S');
1528 Constraints : constant List_Id := New_List;
1529 Decl : Node_Id;
1531 begin
1532 while Present (Disc) loop
1533 Append_To (Constraints,
1534 New_Copy_Tree (Discriminant_Default_Value (Disc)));
1535 Next_Discriminant (Disc);
1536 end loop;
1538 Decl :=
1539 Make_Subtype_Declaration (Loc,
1540 Defining_Identifier => Act,
1541 Subtype_Indication =>
1542 Make_Subtype_Indication (Loc,
1543 Subtype_Mark => New_Occurrence_Of (Bas, Loc),
1544 Constraint =>
1545 Make_Index_Or_Discriminant_Constraint (Loc,
1546 Constraints => Constraints)));
1548 Insert_Action (N, Decl);
1549 Analyze (Decl);
1550 return Act;
1551 end;
1552 end Build_Default_Subtype;
1554 --------------------------------------------
1555 -- Build_Discriminal_Subtype_Of_Component --
1556 --------------------------------------------
1558 function Build_Discriminal_Subtype_Of_Component
1559 (T : Entity_Id) return Node_Id
1561 Loc : constant Source_Ptr := Sloc (T);
1562 D : Elmt_Id;
1563 Id : Node_Id;
1565 function Build_Discriminal_Array_Constraint return List_Id;
1566 -- If one or more of the bounds of the component depends on
1567 -- discriminants, build actual constraint using the discriminants
1568 -- of the prefix.
1570 function Build_Discriminal_Record_Constraint return List_Id;
1571 -- Similar to previous one, for discriminated components constrained by
1572 -- the discriminant of the enclosing object.
1574 ----------------------------------------
1575 -- Build_Discriminal_Array_Constraint --
1576 ----------------------------------------
1578 function Build_Discriminal_Array_Constraint return List_Id is
1579 Constraints : constant List_Id := New_List;
1580 Indx : Node_Id;
1581 Hi : Node_Id;
1582 Lo : Node_Id;
1583 Old_Hi : Node_Id;
1584 Old_Lo : Node_Id;
1586 begin
1587 Indx := First_Index (T);
1588 while Present (Indx) loop
1589 Old_Lo := Type_Low_Bound (Etype (Indx));
1590 Old_Hi := Type_High_Bound (Etype (Indx));
1592 if Denotes_Discriminant (Old_Lo) then
1593 Lo := New_Occurrence_Of (Discriminal (Entity (Old_Lo)), Loc);
1595 else
1596 Lo := New_Copy_Tree (Old_Lo);
1597 end if;
1599 if Denotes_Discriminant (Old_Hi) then
1600 Hi := New_Occurrence_Of (Discriminal (Entity (Old_Hi)), Loc);
1602 else
1603 Hi := New_Copy_Tree (Old_Hi);
1604 end if;
1606 Append (Make_Range (Loc, Lo, Hi), Constraints);
1607 Next_Index (Indx);
1608 end loop;
1610 return Constraints;
1611 end Build_Discriminal_Array_Constraint;
1613 -----------------------------------------
1614 -- Build_Discriminal_Record_Constraint --
1615 -----------------------------------------
1617 function Build_Discriminal_Record_Constraint return List_Id is
1618 Constraints : constant List_Id := New_List;
1619 D : Elmt_Id;
1620 D_Val : Node_Id;
1622 begin
1623 D := First_Elmt (Discriminant_Constraint (T));
1624 while Present (D) loop
1625 if Denotes_Discriminant (Node (D)) then
1626 D_Val :=
1627 New_Occurrence_Of (Discriminal (Entity (Node (D))), Loc);
1628 else
1629 D_Val := New_Copy_Tree (Node (D));
1630 end if;
1632 Append (D_Val, Constraints);
1633 Next_Elmt (D);
1634 end loop;
1636 return Constraints;
1637 end Build_Discriminal_Record_Constraint;
1639 -- Start of processing for Build_Discriminal_Subtype_Of_Component
1641 begin
1642 if Ekind (T) = E_Array_Subtype then
1643 Id := First_Index (T);
1644 while Present (Id) loop
1645 if Denotes_Discriminant (Type_Low_Bound (Etype (Id)))
1646 or else
1647 Denotes_Discriminant (Type_High_Bound (Etype (Id)))
1648 then
1649 return Build_Component_Subtype
1650 (Build_Discriminal_Array_Constraint, Loc, T);
1651 end if;
1653 Next_Index (Id);
1654 end loop;
1656 elsif Ekind (T) = E_Record_Subtype
1657 and then Has_Discriminants (T)
1658 and then not Has_Unknown_Discriminants (T)
1659 then
1660 D := First_Elmt (Discriminant_Constraint (T));
1661 while Present (D) loop
1662 if Denotes_Discriminant (Node (D)) then
1663 return Build_Component_Subtype
1664 (Build_Discriminal_Record_Constraint, Loc, T);
1665 end if;
1667 Next_Elmt (D);
1668 end loop;
1669 end if;
1671 -- If none of the above, the actual and nominal subtypes are the same
1673 return Empty;
1674 end Build_Discriminal_Subtype_Of_Component;
1676 ------------------------------
1677 -- Build_Elaboration_Entity --
1678 ------------------------------
1680 procedure Build_Elaboration_Entity (N : Node_Id; Spec_Id : Entity_Id) is
1681 Loc : constant Source_Ptr := Sloc (N);
1682 Decl : Node_Id;
1683 Elab_Ent : Entity_Id;
1685 procedure Set_Package_Name (Ent : Entity_Id);
1686 -- Given an entity, sets the fully qualified name of the entity in
1687 -- Name_Buffer, with components separated by double underscores. This
1688 -- is a recursive routine that climbs the scope chain to Standard.
1690 ----------------------
1691 -- Set_Package_Name --
1692 ----------------------
1694 procedure Set_Package_Name (Ent : Entity_Id) is
1695 begin
1696 if Scope (Ent) /= Standard_Standard then
1697 Set_Package_Name (Scope (Ent));
1699 declare
1700 Nam : constant String := Get_Name_String (Chars (Ent));
1701 begin
1702 Name_Buffer (Name_Len + 1) := '_';
1703 Name_Buffer (Name_Len + 2) := '_';
1704 Name_Buffer (Name_Len + 3 .. Name_Len + Nam'Length + 2) := Nam;
1705 Name_Len := Name_Len + Nam'Length + 2;
1706 end;
1708 else
1709 Get_Name_String (Chars (Ent));
1710 end if;
1711 end Set_Package_Name;
1713 -- Start of processing for Build_Elaboration_Entity
1715 begin
1716 -- Ignore call if already constructed
1718 if Present (Elaboration_Entity (Spec_Id)) then
1719 return;
1721 -- Ignore in ASIS mode, elaboration entity is not in source and plays
1722 -- no role in analysis.
1724 elsif ASIS_Mode then
1725 return;
1727 -- See if we need elaboration entity. We always need it for the dynamic
1728 -- elaboration model, since it is needed to properly generate the PE
1729 -- exception for access before elaboration.
1731 elsif Dynamic_Elaboration_Checks then
1732 null;
1734 -- For the static model, we don't need the elaboration counter if this
1735 -- unit is sure to have no elaboration code, since that means there
1736 -- is no elaboration unit to be called. Note that we can't just decide
1737 -- after the fact by looking to see whether there was elaboration code,
1738 -- because that's too late to make this decision.
1740 elsif Restriction_Active (No_Elaboration_Code) then
1741 return;
1743 -- Similarly, for the static model, we can skip the elaboration counter
1744 -- if we have the No_Multiple_Elaboration restriction, since for the
1745 -- static model, that's the only purpose of the counter (to avoid
1746 -- multiple elaboration).
1748 elsif Restriction_Active (No_Multiple_Elaboration) then
1749 return;
1750 end if;
1752 -- Here we need the elaboration entity
1754 -- Construct name of elaboration entity as xxx_E, where xxx is the unit
1755 -- name with dots replaced by double underscore. We have to manually
1756 -- construct this name, since it will be elaborated in the outer scope,
1757 -- and thus will not have the unit name automatically prepended.
1759 Set_Package_Name (Spec_Id);
1760 Add_Str_To_Name_Buffer ("_E");
1762 -- Create elaboration counter
1764 Elab_Ent := Make_Defining_Identifier (Loc, Chars => Name_Find);
1765 Set_Elaboration_Entity (Spec_Id, Elab_Ent);
1767 Decl :=
1768 Make_Object_Declaration (Loc,
1769 Defining_Identifier => Elab_Ent,
1770 Object_Definition =>
1771 New_Occurrence_Of (Standard_Short_Integer, Loc),
1772 Expression => Make_Integer_Literal (Loc, Uint_0));
1774 Push_Scope (Standard_Standard);
1775 Add_Global_Declaration (Decl);
1776 Pop_Scope;
1778 -- Reset True_Constant indication, since we will indeed assign a value
1779 -- to the variable in the binder main. We also kill the Current_Value
1780 -- and Last_Assignment fields for the same reason.
1782 Set_Is_True_Constant (Elab_Ent, False);
1783 Set_Current_Value (Elab_Ent, Empty);
1784 Set_Last_Assignment (Elab_Ent, Empty);
1786 -- We do not want any further qualification of the name (if we did not
1787 -- do this, we would pick up the name of the generic package in the case
1788 -- of a library level generic instantiation).
1790 Set_Has_Qualified_Name (Elab_Ent);
1791 Set_Has_Fully_Qualified_Name (Elab_Ent);
1792 end Build_Elaboration_Entity;
1794 --------------------------------
1795 -- Build_Explicit_Dereference --
1796 --------------------------------
1798 procedure Build_Explicit_Dereference
1799 (Expr : Node_Id;
1800 Disc : Entity_Id)
1802 Loc : constant Source_Ptr := Sloc (Expr);
1804 begin
1805 -- An entity of a type with a reference aspect is overloaded with
1806 -- both interpretations: with and without the dereference. Now that
1807 -- the dereference is made explicit, set the type of the node properly,
1808 -- to prevent anomalies in the backend. Same if the expression is an
1809 -- overloaded function call whose return type has a reference aspect.
1811 if Is_Entity_Name (Expr) then
1812 Set_Etype (Expr, Etype (Entity (Expr)));
1814 elsif Nkind (Expr) = N_Function_Call then
1815 Set_Etype (Expr, Etype (Name (Expr)));
1816 end if;
1818 Set_Is_Overloaded (Expr, False);
1820 -- The expression will often be a generalized indexing that yields a
1821 -- container element that is then dereferenced, in which case the
1822 -- generalized indexing call is also non-overloaded.
1824 if Nkind (Expr) = N_Indexed_Component
1825 and then Present (Generalized_Indexing (Expr))
1826 then
1827 Set_Is_Overloaded (Generalized_Indexing (Expr), False);
1828 end if;
1830 Rewrite (Expr,
1831 Make_Explicit_Dereference (Loc,
1832 Prefix =>
1833 Make_Selected_Component (Loc,
1834 Prefix => Relocate_Node (Expr),
1835 Selector_Name => New_Occurrence_Of (Disc, Loc))));
1836 Set_Etype (Prefix (Expr), Etype (Disc));
1837 Set_Etype (Expr, Designated_Type (Etype (Disc)));
1838 end Build_Explicit_Dereference;
1840 -----------------------------------
1841 -- Cannot_Raise_Constraint_Error --
1842 -----------------------------------
1844 function Cannot_Raise_Constraint_Error (Expr : Node_Id) return Boolean is
1845 begin
1846 if Compile_Time_Known_Value (Expr) then
1847 return True;
1849 elsif Do_Range_Check (Expr) then
1850 return False;
1852 elsif Raises_Constraint_Error (Expr) then
1853 return False;
1855 else
1856 case Nkind (Expr) is
1857 when N_Identifier =>
1858 return True;
1860 when N_Expanded_Name =>
1861 return True;
1863 when N_Selected_Component =>
1864 return not Do_Discriminant_Check (Expr);
1866 when N_Attribute_Reference =>
1867 if Do_Overflow_Check (Expr) then
1868 return False;
1870 elsif No (Expressions (Expr)) then
1871 return True;
1873 else
1874 declare
1875 N : Node_Id;
1877 begin
1878 N := First (Expressions (Expr));
1879 while Present (N) loop
1880 if Cannot_Raise_Constraint_Error (N) then
1881 Next (N);
1882 else
1883 return False;
1884 end if;
1885 end loop;
1887 return True;
1888 end;
1889 end if;
1891 when N_Type_Conversion =>
1892 if Do_Overflow_Check (Expr)
1893 or else Do_Length_Check (Expr)
1894 or else Do_Tag_Check (Expr)
1895 then
1896 return False;
1897 else
1898 return Cannot_Raise_Constraint_Error (Expression (Expr));
1899 end if;
1901 when N_Unchecked_Type_Conversion =>
1902 return Cannot_Raise_Constraint_Error (Expression (Expr));
1904 when N_Unary_Op =>
1905 if Do_Overflow_Check (Expr) then
1906 return False;
1907 else
1908 return Cannot_Raise_Constraint_Error (Right_Opnd (Expr));
1909 end if;
1911 when N_Op_Divide |
1912 N_Op_Mod |
1913 N_Op_Rem
1915 if Do_Division_Check (Expr)
1916 or else
1917 Do_Overflow_Check (Expr)
1918 then
1919 return False;
1920 else
1921 return
1922 Cannot_Raise_Constraint_Error (Left_Opnd (Expr))
1923 and then
1924 Cannot_Raise_Constraint_Error (Right_Opnd (Expr));
1925 end if;
1927 when N_Op_Add |
1928 N_Op_And |
1929 N_Op_Concat |
1930 N_Op_Eq |
1931 N_Op_Expon |
1932 N_Op_Ge |
1933 N_Op_Gt |
1934 N_Op_Le |
1935 N_Op_Lt |
1936 N_Op_Multiply |
1937 N_Op_Ne |
1938 N_Op_Or |
1939 N_Op_Rotate_Left |
1940 N_Op_Rotate_Right |
1941 N_Op_Shift_Left |
1942 N_Op_Shift_Right |
1943 N_Op_Shift_Right_Arithmetic |
1944 N_Op_Subtract |
1945 N_Op_Xor
1947 if Do_Overflow_Check (Expr) then
1948 return False;
1949 else
1950 return
1951 Cannot_Raise_Constraint_Error (Left_Opnd (Expr))
1952 and then
1953 Cannot_Raise_Constraint_Error (Right_Opnd (Expr));
1954 end if;
1956 when others =>
1957 return False;
1958 end case;
1959 end if;
1960 end Cannot_Raise_Constraint_Error;
1962 -----------------------------------------
1963 -- Check_Dynamically_Tagged_Expression --
1964 -----------------------------------------
1966 procedure Check_Dynamically_Tagged_Expression
1967 (Expr : Node_Id;
1968 Typ : Entity_Id;
1969 Related_Nod : Node_Id)
1971 begin
1972 pragma Assert (Is_Tagged_Type (Typ));
1974 -- In order to avoid spurious errors when analyzing the expanded code,
1975 -- this check is done only for nodes that come from source and for
1976 -- actuals of generic instantiations.
1978 if (Comes_From_Source (Related_Nod)
1979 or else In_Generic_Actual (Expr))
1980 and then (Is_Class_Wide_Type (Etype (Expr))
1981 or else Is_Dynamically_Tagged (Expr))
1982 and then Is_Tagged_Type (Typ)
1983 and then not Is_Class_Wide_Type (Typ)
1984 then
1985 Error_Msg_N ("dynamically tagged expression not allowed!", Expr);
1986 end if;
1987 end Check_Dynamically_Tagged_Expression;
1989 --------------------------
1990 -- Check_Fully_Declared --
1991 --------------------------
1993 procedure Check_Fully_Declared (T : Entity_Id; N : Node_Id) is
1994 begin
1995 if Ekind (T) = E_Incomplete_Type then
1997 -- Ada 2005 (AI-50217): If the type is available through a limited
1998 -- with_clause, verify that its full view has been analyzed.
2000 if From_Limited_With (T)
2001 and then Present (Non_Limited_View (T))
2002 and then Ekind (Non_Limited_View (T)) /= E_Incomplete_Type
2003 then
2004 -- The non-limited view is fully declared
2006 null;
2008 else
2009 Error_Msg_NE
2010 ("premature usage of incomplete}", N, First_Subtype (T));
2011 end if;
2013 -- Need comments for these tests ???
2015 elsif Has_Private_Component (T)
2016 and then not Is_Generic_Type (Root_Type (T))
2017 and then not In_Spec_Expression
2018 then
2019 -- Special case: if T is the anonymous type created for a single
2020 -- task or protected object, use the name of the source object.
2022 if Is_Concurrent_Type (T)
2023 and then not Comes_From_Source (T)
2024 and then Nkind (N) = N_Object_Declaration
2025 then
2026 Error_Msg_NE
2027 ("type of& has incomplete component",
2028 N, Defining_Identifier (N));
2029 else
2030 Error_Msg_NE
2031 ("premature usage of incomplete}",
2032 N, First_Subtype (T));
2033 end if;
2034 end if;
2035 end Check_Fully_Declared;
2037 -------------------------------------
2038 -- Check_Function_Writable_Actuals --
2039 -------------------------------------
2041 procedure Check_Function_Writable_Actuals (N : Node_Id) is
2042 Writable_Actuals_List : Elist_Id := No_Elist;
2043 Identifiers_List : Elist_Id := No_Elist;
2044 Error_Node : Node_Id := Empty;
2046 procedure Collect_Identifiers (N : Node_Id);
2047 -- In a single traversal of subtree N collect in Writable_Actuals_List
2048 -- all the actuals of functions with writable actuals, and in the list
2049 -- Identifiers_List collect all the identifiers that are not actuals of
2050 -- functions with writable actuals. If a writable actual is referenced
2051 -- twice as writable actual then Error_Node is set to reference its
2052 -- second occurrence, the error is reported, and the tree traversal
2053 -- is abandoned.
2055 function Get_Function_Id (Call : Node_Id) return Entity_Id;
2056 -- Return the entity associated with the function call
2058 procedure Preanalyze_Without_Errors (N : Node_Id);
2059 -- Preanalyze N without reporting errors. Very dubious, you can't just
2060 -- go analyzing things more than once???
2062 -------------------------
2063 -- Collect_Identifiers --
2064 -------------------------
2066 procedure Collect_Identifiers (N : Node_Id) is
2068 function Check_Node (N : Node_Id) return Traverse_Result;
2069 -- Process a single node during the tree traversal to collect the
2070 -- writable actuals of functions and all the identifiers which are
2071 -- not writable actuals of functions.
2073 function Contains (List : Elist_Id; N : Node_Id) return Boolean;
2074 -- Returns True if List has a node whose Entity is Entity (N)
2076 -------------------------
2077 -- Check_Function_Call --
2078 -------------------------
2080 function Check_Node (N : Node_Id) return Traverse_Result is
2081 Is_Writable_Actual : Boolean := False;
2082 Id : Entity_Id;
2084 begin
2085 if Nkind (N) = N_Identifier then
2087 -- No analysis possible if the entity is not decorated
2089 if No (Entity (N)) then
2090 return Skip;
2092 -- Don't collect identifiers of packages, called functions, etc
2094 elsif Ekind_In (Entity (N), E_Package,
2095 E_Function,
2096 E_Procedure,
2097 E_Entry)
2098 then
2099 return Skip;
2101 -- Analyze if N is a writable actual of a function
2103 elsif Nkind (Parent (N)) = N_Function_Call then
2104 declare
2105 Call : constant Node_Id := Parent (N);
2106 Actual : Node_Id;
2107 Formal : Node_Id;
2109 begin
2110 Id := Get_Function_Id (Call);
2112 -- In case of previous error, no check is possible
2114 if No (Id) then
2115 return Abandon;
2116 end if;
2118 Formal := First_Formal (Id);
2119 Actual := First_Actual (Call);
2120 while Present (Actual) and then Present (Formal) loop
2121 if Actual = N then
2122 if Ekind_In (Formal, E_Out_Parameter,
2123 E_In_Out_Parameter)
2124 then
2125 Is_Writable_Actual := True;
2126 end if;
2128 exit;
2129 end if;
2131 Next_Formal (Formal);
2132 Next_Actual (Actual);
2133 end loop;
2134 end;
2135 end if;
2137 if Is_Writable_Actual then
2138 if Contains (Writable_Actuals_List, N) then
2139 Error_Msg_NE
2140 ("value may be affected by call to& "
2141 & "because order of evaluation is arbitrary", N, Id);
2142 Error_Node := N;
2143 return Abandon;
2144 end if;
2146 Append_New_Elmt (N, To => Writable_Actuals_List);
2148 else
2149 if Identifiers_List = No_Elist then
2150 Identifiers_List := New_Elmt_List;
2151 end if;
2153 Append_Unique_Elmt (N, Identifiers_List);
2154 end if;
2155 end if;
2157 return OK;
2158 end Check_Node;
2160 --------------
2161 -- Contains --
2162 --------------
2164 function Contains
2165 (List : Elist_Id;
2166 N : Node_Id) return Boolean
2168 pragma Assert (Nkind (N) in N_Has_Entity);
2170 Elmt : Elmt_Id;
2172 begin
2173 if List = No_Elist then
2174 return False;
2175 end if;
2177 Elmt := First_Elmt (List);
2178 while Present (Elmt) loop
2179 if Entity (Node (Elmt)) = Entity (N) then
2180 return True;
2181 else
2182 Next_Elmt (Elmt);
2183 end if;
2184 end loop;
2186 return False;
2187 end Contains;
2189 ------------------
2190 -- Do_Traversal --
2191 ------------------
2193 procedure Do_Traversal is new Traverse_Proc (Check_Node);
2194 -- The traversal procedure
2196 -- Start of processing for Collect_Identifiers
2198 begin
2199 if Present (Error_Node) then
2200 return;
2201 end if;
2203 if Nkind (N) in N_Subexpr and then Is_OK_Static_Expression (N) then
2204 return;
2205 end if;
2207 Do_Traversal (N);
2208 end Collect_Identifiers;
2210 ---------------------
2211 -- Get_Function_Id --
2212 ---------------------
2214 function Get_Function_Id (Call : Node_Id) return Entity_Id is
2215 Nam : constant Node_Id := Name (Call);
2216 Id : Entity_Id;
2218 begin
2219 if Nkind (Nam) = N_Explicit_Dereference then
2220 Id := Etype (Nam);
2221 pragma Assert (Ekind (Id) = E_Subprogram_Type);
2223 elsif Nkind (Nam) = N_Selected_Component then
2224 Id := Entity (Selector_Name (Nam));
2226 elsif Nkind (Nam) = N_Indexed_Component then
2227 Id := Entity (Selector_Name (Prefix (Nam)));
2229 else
2230 Id := Entity (Nam);
2231 end if;
2233 return Id;
2234 end Get_Function_Id;
2236 ---------------------------
2237 -- Preanalyze_Expression --
2238 ---------------------------
2240 procedure Preanalyze_Without_Errors (N : Node_Id) is
2241 Status : constant Boolean := Get_Ignore_Errors;
2242 begin
2243 Set_Ignore_Errors (True);
2244 Preanalyze (N);
2245 Set_Ignore_Errors (Status);
2246 end Preanalyze_Without_Errors;
2248 -- Start of processing for Check_Function_Writable_Actuals
2250 begin
2251 -- The check only applies to Ada 2012 code, and only to constructs that
2252 -- have multiple constituents whose order of evaluation is not specified
2253 -- by the language.
2255 if Ada_Version < Ada_2012
2256 or else (not (Nkind (N) in N_Op)
2257 and then not (Nkind (N) in N_Membership_Test)
2258 and then not Nkind_In (N, N_Range,
2259 N_Aggregate,
2260 N_Extension_Aggregate,
2261 N_Full_Type_Declaration,
2262 N_Function_Call,
2263 N_Procedure_Call_Statement,
2264 N_Entry_Call_Statement))
2265 or else (Nkind (N) = N_Full_Type_Declaration
2266 and then not Is_Record_Type (Defining_Identifier (N)))
2268 -- In addition, this check only applies to source code, not to code
2269 -- generated by constraint checks.
2271 or else not Comes_From_Source (N)
2272 then
2273 return;
2274 end if;
2276 -- If a construct C has two or more direct constituents that are names
2277 -- or expressions whose evaluation may occur in an arbitrary order, at
2278 -- least one of which contains a function call with an in out or out
2279 -- parameter, then the construct is legal only if: for each name N that
2280 -- is passed as a parameter of mode in out or out to some inner function
2281 -- call C2 (not including the construct C itself), there is no other
2282 -- name anywhere within a direct constituent of the construct C other
2283 -- than the one containing C2, that is known to refer to the same
2284 -- object (RM 6.4.1(6.17/3)).
2286 case Nkind (N) is
2287 when N_Range =>
2288 Collect_Identifiers (Low_Bound (N));
2289 Collect_Identifiers (High_Bound (N));
2291 when N_Op | N_Membership_Test =>
2292 declare
2293 Expr : Node_Id;
2295 begin
2296 Collect_Identifiers (Left_Opnd (N));
2298 if Present (Right_Opnd (N)) then
2299 Collect_Identifiers (Right_Opnd (N));
2300 end if;
2302 if Nkind_In (N, N_In, N_Not_In)
2303 and then Present (Alternatives (N))
2304 then
2305 Expr := First (Alternatives (N));
2306 while Present (Expr) loop
2307 Collect_Identifiers (Expr);
2309 Next (Expr);
2310 end loop;
2311 end if;
2312 end;
2314 when N_Full_Type_Declaration =>
2315 declare
2316 function Get_Record_Part (N : Node_Id) return Node_Id;
2317 -- Return the record part of this record type definition
2319 function Get_Record_Part (N : Node_Id) return Node_Id is
2320 Type_Def : constant Node_Id := Type_Definition (N);
2321 begin
2322 if Nkind (Type_Def) = N_Derived_Type_Definition then
2323 return Record_Extension_Part (Type_Def);
2324 else
2325 return Type_Def;
2326 end if;
2327 end Get_Record_Part;
2329 Comp : Node_Id;
2330 Def_Id : Entity_Id := Defining_Identifier (N);
2331 Rec : Node_Id := Get_Record_Part (N);
2333 begin
2334 -- No need to perform any analysis if the record has no
2335 -- components
2337 if No (Rec) or else No (Component_List (Rec)) then
2338 return;
2339 end if;
2341 -- Collect the identifiers starting from the deepest
2342 -- derivation. Done to report the error in the deepest
2343 -- derivation.
2345 loop
2346 if Present (Component_List (Rec)) then
2347 Comp := First (Component_Items (Component_List (Rec)));
2348 while Present (Comp) loop
2349 if Nkind (Comp) = N_Component_Declaration
2350 and then Present (Expression (Comp))
2351 then
2352 Collect_Identifiers (Expression (Comp));
2353 end if;
2355 Next (Comp);
2356 end loop;
2357 end if;
2359 exit when No (Underlying_Type (Etype (Def_Id)))
2360 or else Base_Type (Underlying_Type (Etype (Def_Id)))
2361 = Def_Id;
2363 Def_Id := Base_Type (Underlying_Type (Etype (Def_Id)));
2364 Rec := Get_Record_Part (Parent (Def_Id));
2365 end loop;
2366 end;
2368 when N_Subprogram_Call |
2369 N_Entry_Call_Statement =>
2370 declare
2371 Id : constant Entity_Id := Get_Function_Id (N);
2372 Formal : Node_Id;
2373 Actual : Node_Id;
2375 begin
2376 Formal := First_Formal (Id);
2377 Actual := First_Actual (N);
2378 while Present (Actual) and then Present (Formal) loop
2379 if Ekind_In (Formal, E_Out_Parameter,
2380 E_In_Out_Parameter)
2381 then
2382 Collect_Identifiers (Actual);
2383 end if;
2385 Next_Formal (Formal);
2386 Next_Actual (Actual);
2387 end loop;
2388 end;
2390 when N_Aggregate |
2391 N_Extension_Aggregate =>
2392 declare
2393 Assoc : Node_Id;
2394 Choice : Node_Id;
2395 Comp_Expr : Node_Id;
2397 begin
2398 -- Handle the N_Others_Choice of array aggregates with static
2399 -- bounds. There is no need to perform this analysis in
2400 -- aggregates without static bounds since we cannot evaluate
2401 -- if the N_Others_Choice covers several elements. There is
2402 -- no need to handle the N_Others choice of record aggregates
2403 -- since at this stage it has been already expanded by
2404 -- Resolve_Record_Aggregate.
2406 if Is_Array_Type (Etype (N))
2407 and then Nkind (N) = N_Aggregate
2408 and then Present (Aggregate_Bounds (N))
2409 and then Compile_Time_Known_Bounds (Etype (N))
2410 and then Expr_Value (High_Bound (Aggregate_Bounds (N)))
2412 Expr_Value (Low_Bound (Aggregate_Bounds (N)))
2413 then
2414 declare
2415 Count_Components : Uint := Uint_0;
2416 Num_Components : Uint;
2417 Others_Assoc : Node_Id;
2418 Others_Choice : Node_Id := Empty;
2419 Others_Box_Present : Boolean := False;
2421 begin
2422 -- Count positional associations
2424 if Present (Expressions (N)) then
2425 Comp_Expr := First (Expressions (N));
2426 while Present (Comp_Expr) loop
2427 Count_Components := Count_Components + 1;
2428 Next (Comp_Expr);
2429 end loop;
2430 end if;
2432 -- Count the rest of elements and locate the N_Others
2433 -- choice (if any)
2435 Assoc := First (Component_Associations (N));
2436 while Present (Assoc) loop
2437 Choice := First (Choices (Assoc));
2438 while Present (Choice) loop
2439 if Nkind (Choice) = N_Others_Choice then
2440 Others_Assoc := Assoc;
2441 Others_Choice := Choice;
2442 Others_Box_Present := Box_Present (Assoc);
2444 -- Count several components
2446 elsif Nkind_In (Choice, N_Range,
2447 N_Subtype_Indication)
2448 or else (Is_Entity_Name (Choice)
2449 and then Is_Type (Entity (Choice)))
2450 then
2451 declare
2452 L, H : Node_Id;
2453 begin
2454 Get_Index_Bounds (Choice, L, H);
2455 pragma Assert
2456 (Compile_Time_Known_Value (L)
2457 and then Compile_Time_Known_Value (H));
2458 Count_Components :=
2459 Count_Components
2460 + Expr_Value (H) - Expr_Value (L) + 1;
2461 end;
2463 -- Count single component. No other case available
2464 -- since we are handling an aggregate with static
2465 -- bounds.
2467 else
2468 pragma Assert (Is_OK_Static_Expression (Choice)
2469 or else Nkind (Choice) = N_Identifier
2470 or else Nkind (Choice) = N_Integer_Literal);
2472 Count_Components := Count_Components + 1;
2473 end if;
2475 Next (Choice);
2476 end loop;
2478 Next (Assoc);
2479 end loop;
2481 Num_Components :=
2482 Expr_Value (High_Bound (Aggregate_Bounds (N))) -
2483 Expr_Value (Low_Bound (Aggregate_Bounds (N))) + 1;
2485 pragma Assert (Count_Components <= Num_Components);
2487 -- Handle the N_Others choice if it covers several
2488 -- components
2490 if Present (Others_Choice)
2491 and then (Num_Components - Count_Components) > 1
2492 then
2493 if not Others_Box_Present then
2495 -- At this stage, if expansion is active, the
2496 -- expression of the others choice has not been
2497 -- analyzed. Hence we generate a duplicate and
2498 -- we analyze it silently to have available the
2499 -- minimum decoration required to collect the
2500 -- identifiers.
2502 if not Expander_Active then
2503 Comp_Expr := Expression (Others_Assoc);
2504 else
2505 Comp_Expr :=
2506 New_Copy_Tree (Expression (Others_Assoc));
2507 Preanalyze_Without_Errors (Comp_Expr);
2508 end if;
2510 Collect_Identifiers (Comp_Expr);
2512 if Writable_Actuals_List /= No_Elist then
2514 -- As suggested by Robert, at current stage we
2515 -- report occurrences of this case as warnings.
2517 Error_Msg_N
2518 ("writable function parameter may affect "
2519 & "value in other component because order "
2520 & "of evaluation is unspecified??",
2521 Node (First_Elmt (Writable_Actuals_List)));
2522 end if;
2523 end if;
2524 end if;
2525 end;
2526 end if;
2528 -- Handle ancestor part of extension aggregates
2530 if Nkind (N) = N_Extension_Aggregate then
2531 Collect_Identifiers (Ancestor_Part (N));
2532 end if;
2534 -- Handle positional associations
2536 if Present (Expressions (N)) then
2537 Comp_Expr := First (Expressions (N));
2538 while Present (Comp_Expr) loop
2539 if not Is_OK_Static_Expression (Comp_Expr) then
2540 Collect_Identifiers (Comp_Expr);
2541 end if;
2543 Next (Comp_Expr);
2544 end loop;
2545 end if;
2547 -- Handle discrete associations
2549 if Present (Component_Associations (N)) then
2550 Assoc := First (Component_Associations (N));
2551 while Present (Assoc) loop
2553 if not Box_Present (Assoc) then
2554 Choice := First (Choices (Assoc));
2555 while Present (Choice) loop
2557 -- For now we skip discriminants since it requires
2558 -- performing the analysis in two phases: first one
2559 -- analyzing discriminants and second one analyzing
2560 -- the rest of components since discriminants are
2561 -- evaluated prior to components: too much extra
2562 -- work to detect a corner case???
2564 if Nkind (Choice) in N_Has_Entity
2565 and then Present (Entity (Choice))
2566 and then Ekind (Entity (Choice)) = E_Discriminant
2567 then
2568 null;
2570 elsif Box_Present (Assoc) then
2571 null;
2573 else
2574 if not Analyzed (Expression (Assoc)) then
2575 Comp_Expr :=
2576 New_Copy_Tree (Expression (Assoc));
2577 Set_Parent (Comp_Expr, Parent (N));
2578 Preanalyze_Without_Errors (Comp_Expr);
2579 else
2580 Comp_Expr := Expression (Assoc);
2581 end if;
2583 Collect_Identifiers (Comp_Expr);
2584 end if;
2586 Next (Choice);
2587 end loop;
2588 end if;
2590 Next (Assoc);
2591 end loop;
2592 end if;
2593 end;
2595 when others =>
2596 return;
2597 end case;
2599 -- No further action needed if we already reported an error
2601 if Present (Error_Node) then
2602 return;
2603 end if;
2605 -- Check if some writable argument of a function is referenced
2607 if Writable_Actuals_List /= No_Elist
2608 and then Identifiers_List /= No_Elist
2609 then
2610 declare
2611 Elmt_1 : Elmt_Id;
2612 Elmt_2 : Elmt_Id;
2614 begin
2615 Elmt_1 := First_Elmt (Writable_Actuals_List);
2616 while Present (Elmt_1) loop
2617 Elmt_2 := First_Elmt (Identifiers_List);
2618 while Present (Elmt_2) loop
2619 if Entity (Node (Elmt_1)) = Entity (Node (Elmt_2)) then
2620 case Nkind (Parent (Node (Elmt_2))) is
2621 when N_Aggregate |
2622 N_Component_Association |
2623 N_Component_Declaration =>
2624 Error_Msg_N
2625 ("value may be affected by call in other "
2626 & "component because they are evaluated "
2627 & "in unspecified order",
2628 Node (Elmt_2));
2630 when N_In | N_Not_In =>
2631 Error_Msg_N
2632 ("value may be affected by call in other "
2633 & "alternative because they are evaluated "
2634 & "in unspecified order",
2635 Node (Elmt_2));
2637 when others =>
2638 Error_Msg_N
2639 ("value of actual may be affected by call in "
2640 & "other actual because they are evaluated "
2641 & "in unspecified order",
2642 Node (Elmt_2));
2643 end case;
2644 end if;
2646 Next_Elmt (Elmt_2);
2647 end loop;
2649 Next_Elmt (Elmt_1);
2650 end loop;
2651 end;
2652 end if;
2653 end Check_Function_Writable_Actuals;
2655 --------------------------------
2656 -- Check_Implicit_Dereference --
2657 --------------------------------
2659 procedure Check_Implicit_Dereference (N : Node_Id; Typ : Entity_Id) is
2660 Disc : Entity_Id;
2661 Desig : Entity_Id;
2662 Nam : Node_Id;
2664 begin
2665 if Nkind (N) = N_Indexed_Component
2666 and then Present (Generalized_Indexing (N))
2667 then
2668 Nam := Generalized_Indexing (N);
2669 else
2670 Nam := N;
2671 end if;
2673 if Ada_Version < Ada_2012
2674 or else not Has_Implicit_Dereference (Base_Type (Typ))
2675 then
2676 return;
2678 elsif not Comes_From_Source (N)
2679 and then Nkind (N) /= N_Indexed_Component
2680 then
2681 return;
2683 elsif Is_Entity_Name (Nam) and then Is_Type (Entity (Nam)) then
2684 null;
2686 else
2687 Disc := First_Discriminant (Typ);
2688 while Present (Disc) loop
2689 if Has_Implicit_Dereference (Disc) then
2690 Desig := Designated_Type (Etype (Disc));
2691 Add_One_Interp (Nam, Disc, Desig);
2693 -- If the node is a generalized indexing, add interpretation
2694 -- to that node as well, for subsequent resolution.
2696 if Nkind (N) = N_Indexed_Component then
2697 Add_One_Interp (N, Disc, Desig);
2698 end if;
2700 -- If the operation comes from a generic unit and the context
2701 -- is a selected component, the selector name may be global
2702 -- and set in the instance already. Remove the entity to
2703 -- force resolution of the selected component, and the
2704 -- generation of an explicit dereference if needed.
2706 if In_Instance
2707 and then Nkind (Parent (Nam)) = N_Selected_Component
2708 then
2709 Set_Entity (Selector_Name (Parent (Nam)), Empty);
2710 end if;
2712 exit;
2713 end if;
2715 Next_Discriminant (Disc);
2716 end loop;
2717 end if;
2718 end Check_Implicit_Dereference;
2720 ----------------------------------
2721 -- Check_Internal_Protected_Use --
2722 ----------------------------------
2724 procedure Check_Internal_Protected_Use (N : Node_Id; Nam : Entity_Id) is
2725 S : Entity_Id;
2726 Prot : Entity_Id;
2728 begin
2729 S := Current_Scope;
2730 while Present (S) loop
2731 if S = Standard_Standard then
2732 return;
2734 elsif Ekind (S) = E_Function
2735 and then Ekind (Scope (S)) = E_Protected_Type
2736 then
2737 Prot := Scope (S);
2738 exit;
2739 end if;
2741 S := Scope (S);
2742 end loop;
2744 if Scope (Nam) = Prot and then Ekind (Nam) /= E_Function then
2746 -- An indirect function call (e.g. a callback within a protected
2747 -- function body) is not statically illegal. If the access type is
2748 -- anonymous and is the type of an access parameter, the scope of Nam
2749 -- will be the protected type, but it is not a protected operation.
2751 if Ekind (Nam) = E_Subprogram_Type
2752 and then
2753 Nkind (Associated_Node_For_Itype (Nam)) = N_Function_Specification
2754 then
2755 null;
2757 elsif Nkind (N) = N_Subprogram_Renaming_Declaration then
2758 Error_Msg_N
2759 ("within protected function cannot use protected "
2760 & "procedure in renaming or as generic actual", N);
2762 elsif Nkind (N) = N_Attribute_Reference then
2763 Error_Msg_N
2764 ("within protected function cannot take access of "
2765 & " protected procedure", N);
2767 else
2768 Error_Msg_N
2769 ("within protected function, protected object is constant", N);
2770 Error_Msg_N
2771 ("\cannot call operation that may modify it", N);
2772 end if;
2773 end if;
2774 end Check_Internal_Protected_Use;
2776 ---------------------------------------
2777 -- Check_Later_Vs_Basic_Declarations --
2778 ---------------------------------------
2780 procedure Check_Later_Vs_Basic_Declarations
2781 (Decls : List_Id;
2782 During_Parsing : Boolean)
2784 Body_Sloc : Source_Ptr;
2785 Decl : Node_Id;
2787 function Is_Later_Declarative_Item (Decl : Node_Id) return Boolean;
2788 -- Return whether Decl is considered as a declarative item.
2789 -- When During_Parsing is True, the semantics of Ada 83 is followed.
2790 -- When During_Parsing is False, the semantics of SPARK is followed.
2792 -------------------------------
2793 -- Is_Later_Declarative_Item --
2794 -------------------------------
2796 function Is_Later_Declarative_Item (Decl : Node_Id) return Boolean is
2797 begin
2798 if Nkind (Decl) in N_Later_Decl_Item then
2799 return True;
2801 elsif Nkind (Decl) = N_Pragma then
2802 return True;
2804 elsif During_Parsing then
2805 return False;
2807 -- In SPARK, a package declaration is not considered as a later
2808 -- declarative item.
2810 elsif Nkind (Decl) = N_Package_Declaration then
2811 return False;
2813 -- In SPARK, a renaming is considered as a later declarative item
2815 elsif Nkind (Decl) in N_Renaming_Declaration then
2816 return True;
2818 else
2819 return False;
2820 end if;
2821 end Is_Later_Declarative_Item;
2823 -- Start of Check_Later_Vs_Basic_Declarations
2825 begin
2826 Decl := First (Decls);
2828 -- Loop through sequence of basic declarative items
2830 Outer : while Present (Decl) loop
2831 if not Nkind_In (Decl, N_Subprogram_Body, N_Package_Body, N_Task_Body)
2832 and then Nkind (Decl) not in N_Body_Stub
2833 then
2834 Next (Decl);
2836 -- Once a body is encountered, we only allow later declarative
2837 -- items. The inner loop checks the rest of the list.
2839 else
2840 Body_Sloc := Sloc (Decl);
2842 Inner : while Present (Decl) loop
2843 if not Is_Later_Declarative_Item (Decl) then
2844 if During_Parsing then
2845 if Ada_Version = Ada_83 then
2846 Error_Msg_Sloc := Body_Sloc;
2847 Error_Msg_N
2848 ("(Ada 83) decl cannot appear after body#", Decl);
2849 end if;
2850 else
2851 Error_Msg_Sloc := Body_Sloc;
2852 Check_SPARK_05_Restriction
2853 ("decl cannot appear after body#", Decl);
2854 end if;
2855 end if;
2857 Next (Decl);
2858 end loop Inner;
2859 end if;
2860 end loop Outer;
2861 end Check_Later_Vs_Basic_Declarations;
2863 -------------------------
2864 -- Check_Nested_Access --
2865 -------------------------
2867 procedure Check_Nested_Access (N : Node_Id; Ent : Entity_Id) is
2868 Scop : constant Entity_Id := Current_Scope;
2869 Current_Subp : Entity_Id;
2870 Enclosing : Entity_Id;
2872 begin
2873 -- Currently only enabled for VM back-ends for efficiency, should we
2874 -- enable it more systematically? Probably not unless someone actually
2875 -- needs it. It will be needed for C generation and is activated if the
2876 -- Opt.Unnest_Subprogram_Mode flag is set True.
2878 if (VM_Target /= No_VM or else Unnest_Subprogram_Mode)
2879 and then Scope (Ent) /= Empty
2880 and then not Is_Library_Level_Entity (Ent)
2882 -- Comment the exclusion of imported entities ???
2884 and then not Is_Imported (Ent)
2885 then
2886 -- In both the VM case and in Unnest_Subprogram_Mode, we mark
2887 -- variables, constants, and loop parameters.
2889 if Ekind_In (Ent, E_Variable, E_Constant, E_Loop_Parameter) then
2890 null;
2892 -- In Unnest_Subprogram_Mode, we also mark types and formals
2894 elsif Unnest_Subprogram_Mode
2895 and then (Is_Type (Ent) or else Is_Formal (Ent))
2896 then
2897 null;
2899 -- All other cases, do not mark
2901 else
2902 return;
2903 end if;
2905 -- Get current subprogram that is relevant
2907 if Is_Subprogram (Scop)
2908 or else Is_Generic_Subprogram (Scop)
2909 or else Is_Entry (Scop)
2910 then
2911 Current_Subp := Scop;
2912 else
2913 Current_Subp := Current_Subprogram;
2914 end if;
2916 Enclosing := Enclosing_Subprogram (Ent);
2918 -- Set flag if uplevel reference
2920 if Enclosing /= Empty and then Enclosing /= Current_Subp then
2921 if Is_Type (Ent) then
2922 Check_Uplevel_Reference_To_Type (Ent);
2923 else
2924 Set_Has_Uplevel_Reference (Ent, True);
2926 if Unnest_Subprogram_Mode then
2927 Set_Has_Uplevel_Reference (Current_Subp, True);
2928 Note_Uplevel_Reference (N, Enclosing);
2929 end if;
2930 end if;
2931 end if;
2932 end if;
2933 end Check_Nested_Access;
2935 ---------------------------
2936 -- Check_No_Hidden_State --
2937 ---------------------------
2939 procedure Check_No_Hidden_State (Id : Entity_Id) is
2940 function Has_Null_Abstract_State (Pkg : Entity_Id) return Boolean;
2941 -- Determine whether the entity of a package denoted by Pkg has a null
2942 -- abstract state.
2944 -----------------------------
2945 -- Has_Null_Abstract_State --
2946 -----------------------------
2948 function Has_Null_Abstract_State (Pkg : Entity_Id) return Boolean is
2949 States : constant Elist_Id := Abstract_States (Pkg);
2951 begin
2952 -- Check first available state of related package. A null abstract
2953 -- state always appears as the sole element of the state list.
2955 return
2956 Present (States)
2957 and then Is_Null_State (Node (First_Elmt (States)));
2958 end Has_Null_Abstract_State;
2960 -- Local variables
2962 Context : Entity_Id := Empty;
2963 Not_Visible : Boolean := False;
2964 Scop : Entity_Id;
2966 -- Start of processing for Check_No_Hidden_State
2968 begin
2969 pragma Assert (Ekind_In (Id, E_Abstract_State, E_Variable));
2971 -- Find the proper context where the object or state appears
2973 Scop := Scope (Id);
2974 while Present (Scop) loop
2975 Context := Scop;
2977 -- Keep track of the context's visibility
2979 Not_Visible := Not_Visible or else In_Private_Part (Context);
2981 -- Prevent the search from going too far
2983 if Context = Standard_Standard then
2984 return;
2986 -- Objects and states that appear immediately within a subprogram or
2987 -- inside a construct nested within a subprogram do not introduce a
2988 -- hidden state. They behave as local variable declarations.
2990 elsif Is_Subprogram (Context) then
2991 return;
2993 -- When examining a package body, use the entity of the spec as it
2994 -- carries the abstract state declarations.
2996 elsif Ekind (Context) = E_Package_Body then
2997 Context := Spec_Entity (Context);
2998 end if;
3000 -- Stop the traversal when a package subject to a null abstract state
3001 -- has been found.
3003 if Ekind_In (Context, E_Generic_Package, E_Package)
3004 and then Has_Null_Abstract_State (Context)
3005 then
3006 exit;
3007 end if;
3009 Scop := Scope (Scop);
3010 end loop;
3012 -- At this point we know that there is at least one package with a null
3013 -- abstract state in visibility. Emit an error message unconditionally
3014 -- if the entity being processed is a state because the placement of the
3015 -- related package is irrelevant. This is not the case for objects as
3016 -- the intermediate context matters.
3018 if Present (Context)
3019 and then (Ekind (Id) = E_Abstract_State or else Not_Visible)
3020 then
3021 Error_Msg_N ("cannot introduce hidden state &", Id);
3022 Error_Msg_NE ("\package & has null abstract state", Id, Context);
3023 end if;
3024 end Check_No_Hidden_State;
3026 ------------------------------------------
3027 -- Check_Potentially_Blocking_Operation --
3028 ------------------------------------------
3030 procedure Check_Potentially_Blocking_Operation (N : Node_Id) is
3031 S : Entity_Id;
3033 begin
3034 -- N is one of the potentially blocking operations listed in 9.5.1(8).
3035 -- When pragma Detect_Blocking is active, the run time will raise
3036 -- Program_Error. Here we only issue a warning, since we generally
3037 -- support the use of potentially blocking operations in the absence
3038 -- of the pragma.
3040 -- Indirect blocking through a subprogram call cannot be diagnosed
3041 -- statically without interprocedural analysis, so we do not attempt
3042 -- to do it here.
3044 S := Scope (Current_Scope);
3045 while Present (S) and then S /= Standard_Standard loop
3046 if Is_Protected_Type (S) then
3047 Error_Msg_N
3048 ("potentially blocking operation in protected operation??", N);
3049 return;
3050 end if;
3052 S := Scope (S);
3053 end loop;
3054 end Check_Potentially_Blocking_Operation;
3056 ---------------------------------
3057 -- Check_Result_And_Post_State --
3058 ---------------------------------
3060 procedure Check_Result_And_Post_State (Subp_Id : Entity_Id) is
3061 procedure Check_Result_And_Post_State_In_Pragma
3062 (Prag : Node_Id;
3063 Result_Seen : in out Boolean);
3064 -- Determine whether pragma Prag mentions attribute 'Result and whether
3065 -- the pragma contains an expression that evaluates differently in pre-
3066 -- and post-state. Prag is a [refined] postcondition or a contract-cases
3067 -- pragma. Result_Seen is set when the pragma mentions attribute 'Result
3069 function Has_In_Out_Parameter (Subp_Id : Entity_Id) return Boolean;
3070 -- Determine whether subprogram Subp_Id contains at least one IN OUT
3071 -- formal parameter.
3073 -------------------------------------------
3074 -- Check_Result_And_Post_State_In_Pragma --
3075 -------------------------------------------
3077 procedure Check_Result_And_Post_State_In_Pragma
3078 (Prag : Node_Id;
3079 Result_Seen : in out Boolean)
3081 procedure Check_Expression (Expr : Node_Id);
3082 -- Perform the 'Result and post-state checks on a given expression
3084 function Is_Function_Result (N : Node_Id) return Traverse_Result;
3085 -- Attempt to find attribute 'Result in a subtree denoted by N
3087 function Is_Trivial_Boolean (N : Node_Id) return Boolean;
3088 -- Determine whether source node N denotes "True" or "False"
3090 function Mentions_Post_State (N : Node_Id) return Boolean;
3091 -- Determine whether a subtree denoted by N mentions any construct
3092 -- that denotes a post-state.
3094 procedure Check_Function_Result is
3095 new Traverse_Proc (Is_Function_Result);
3097 ----------------------
3098 -- Check_Expression --
3099 ----------------------
3101 procedure Check_Expression (Expr : Node_Id) is
3102 begin
3103 if not Is_Trivial_Boolean (Expr) then
3104 Check_Function_Result (Expr);
3106 if not Mentions_Post_State (Expr) then
3107 if Pragma_Name (Prag) = Name_Contract_Cases then
3108 Error_Msg_NE
3109 ("contract case does not check the outcome of calling "
3110 & "&?T?", Expr, Subp_Id);
3112 elsif Pragma_Name (Prag) = Name_Refined_Post then
3113 Error_Msg_NE
3114 ("refined postcondition does not check the outcome of "
3115 & "calling &?T?", Prag, Subp_Id);
3117 else
3118 Error_Msg_NE
3119 ("postcondition does not check the outcome of calling "
3120 & "&?T?", Prag, Subp_Id);
3121 end if;
3122 end if;
3123 end if;
3124 end Check_Expression;
3126 ------------------------
3127 -- Is_Function_Result --
3128 ------------------------
3130 function Is_Function_Result (N : Node_Id) return Traverse_Result is
3131 begin
3132 if Is_Attribute_Result (N) then
3133 Result_Seen := True;
3134 return Abandon;
3136 -- Continue the traversal
3138 else
3139 return OK;
3140 end if;
3141 end Is_Function_Result;
3143 ------------------------
3144 -- Is_Trivial_Boolean --
3145 ------------------------
3147 function Is_Trivial_Boolean (N : Node_Id) return Boolean is
3148 begin
3149 return
3150 Comes_From_Source (N)
3151 and then Is_Entity_Name (N)
3152 and then (Entity (N) = Standard_True
3153 or else
3154 Entity (N) = Standard_False);
3155 end Is_Trivial_Boolean;
3157 -------------------------
3158 -- Mentions_Post_State --
3159 -------------------------
3161 function Mentions_Post_State (N : Node_Id) return Boolean is
3162 Post_State_Seen : Boolean := False;
3164 function Is_Post_State (N : Node_Id) return Traverse_Result;
3165 -- Attempt to find a construct that denotes a post-state. If this
3166 -- is the case, set flag Post_State_Seen.
3168 -------------------
3169 -- Is_Post_State --
3170 -------------------
3172 function Is_Post_State (N : Node_Id) return Traverse_Result is
3173 Ent : Entity_Id;
3175 begin
3176 if Nkind_In (N, N_Explicit_Dereference, N_Function_Call) then
3177 Post_State_Seen := True;
3178 return Abandon;
3180 elsif Nkind_In (N, N_Expanded_Name, N_Identifier) then
3181 Ent := Entity (N);
3183 -- The entity may be modifiable through an implicit
3184 -- dereference.
3186 if No (Ent)
3187 or else Ekind (Ent) in Assignable_Kind
3188 or else (Is_Access_Type (Etype (Ent))
3189 and then Nkind (Parent (N)) =
3190 N_Selected_Component)
3191 then
3192 Post_State_Seen := True;
3193 return Abandon;
3194 end if;
3196 elsif Nkind (N) = N_Attribute_Reference then
3197 if Attribute_Name (N) = Name_Old then
3198 return Skip;
3200 elsif Attribute_Name (N) = Name_Result then
3201 Post_State_Seen := True;
3202 return Abandon;
3203 end if;
3204 end if;
3206 return OK;
3207 end Is_Post_State;
3209 procedure Find_Post_State is new Traverse_Proc (Is_Post_State);
3211 -- Start of processing for Mentions_Post_State
3213 begin
3214 Find_Post_State (N);
3216 return Post_State_Seen;
3217 end Mentions_Post_State;
3219 -- Local variables
3221 Expr : constant Node_Id :=
3222 Get_Pragma_Arg
3223 (First (Pragma_Argument_Associations (Prag)));
3224 Nam : constant Name_Id := Pragma_Name (Prag);
3225 CCase : Node_Id;
3227 -- Start of processing for Check_Result_And_Post_State_In_Pragma
3229 begin
3230 -- Examine all consequences
3232 if Nam = Name_Contract_Cases then
3233 CCase := First (Component_Associations (Expr));
3234 while Present (CCase) loop
3235 Check_Expression (Expression (CCase));
3237 Next (CCase);
3238 end loop;
3240 -- Examine the expression of a postcondition
3242 else pragma Assert (Nam_In (Nam, Name_Postcondition,
3243 Name_Refined_Post));
3244 Check_Expression (Expr);
3245 end if;
3246 end Check_Result_And_Post_State_In_Pragma;
3248 --------------------------
3249 -- Has_In_Out_Parameter --
3250 --------------------------
3252 function Has_In_Out_Parameter (Subp_Id : Entity_Id) return Boolean is
3253 Formal : Entity_Id;
3255 begin
3256 -- Traverse the formals looking for an IN OUT parameter
3258 Formal := First_Formal (Subp_Id);
3259 while Present (Formal) loop
3260 if Ekind (Formal) = E_In_Out_Parameter then
3261 return True;
3262 end if;
3264 Next_Formal (Formal);
3265 end loop;
3267 return False;
3268 end Has_In_Out_Parameter;
3270 -- Local variables
3272 Items : constant Node_Id := Contract (Subp_Id);
3273 Subp_Decl : constant Node_Id := Unit_Declaration_Node (Subp_Id);
3274 Case_Prag : Node_Id := Empty;
3275 Post_Prag : Node_Id := Empty;
3276 Prag : Node_Id;
3277 Seen_In_Case : Boolean := False;
3278 Seen_In_Post : Boolean := False;
3279 Spec_Id : Entity_Id;
3281 -- Start of processing for Check_Result_And_Post_State
3283 begin
3284 -- The lack of attribute 'Result or a post-state is classified as a
3285 -- suspicious contract. Do not perform the check if the corresponding
3286 -- swich is not set.
3288 if not Warn_On_Suspicious_Contract then
3289 return;
3291 -- Nothing to do if there is no contract
3293 elsif No (Items) then
3294 return;
3295 end if;
3297 -- Retrieve the entity of the subprogram spec (if any)
3299 if Nkind (Subp_Decl) = N_Subprogram_Body
3300 and then Present (Corresponding_Spec (Subp_Decl))
3301 then
3302 Spec_Id := Corresponding_Spec (Subp_Decl);
3304 elsif Nkind (Subp_Decl) = N_Subprogram_Body_Stub
3305 and then Present (Corresponding_Spec_Of_Stub (Subp_Decl))
3306 then
3307 Spec_Id := Corresponding_Spec_Of_Stub (Subp_Decl);
3309 else
3310 Spec_Id := Subp_Id;
3311 end if;
3313 -- Examine all postconditions for attribute 'Result and a post-state
3315 Prag := Pre_Post_Conditions (Items);
3316 while Present (Prag) loop
3317 if Nam_In (Pragma_Name (Prag), Name_Postcondition,
3318 Name_Refined_Post)
3319 and then not Error_Posted (Prag)
3320 then
3321 Post_Prag := Prag;
3322 Check_Result_And_Post_State_In_Pragma (Prag, Seen_In_Post);
3323 end if;
3325 Prag := Next_Pragma (Prag);
3326 end loop;
3328 -- Examine the contract cases of the subprogram for attribute 'Result
3329 -- and a post-state.
3331 Prag := Contract_Test_Cases (Items);
3332 while Present (Prag) loop
3333 if Pragma_Name (Prag) = Name_Contract_Cases
3334 and then not Error_Posted (Prag)
3335 then
3336 Case_Prag := Prag;
3337 Check_Result_And_Post_State_In_Pragma (Prag, Seen_In_Case);
3338 end if;
3340 Prag := Next_Pragma (Prag);
3341 end loop;
3343 -- Do not emit any errors if the subprogram is not a function
3345 if not Ekind_In (Spec_Id, E_Function, E_Generic_Function) then
3346 null;
3348 -- Regardless of whether the function has postconditions or contract
3349 -- cases, or whether they mention attribute 'Result, an IN OUT formal
3350 -- parameter is always treated as a result.
3352 elsif Has_In_Out_Parameter (Spec_Id) then
3353 null;
3355 -- The function has both a postcondition and contract cases and they do
3356 -- not mention attribute 'Result.
3358 elsif Present (Case_Prag)
3359 and then not Seen_In_Case
3360 and then Present (Post_Prag)
3361 and then not Seen_In_Post
3362 then
3363 Error_Msg_N
3364 ("neither postcondition nor contract cases mention function "
3365 & "result?T?", Post_Prag);
3367 -- The function has contract cases only and they do not mention
3368 -- attribute 'Result.
3370 elsif Present (Case_Prag) and then not Seen_In_Case then
3371 Error_Msg_N ("contract cases do not mention result?T?", Case_Prag);
3373 -- The function has postconditions only and they do not mention
3374 -- attribute 'Result.
3376 elsif Present (Post_Prag) and then not Seen_In_Post then
3377 Error_Msg_N
3378 ("postcondition does not mention function result?T?", Post_Prag);
3379 end if;
3380 end Check_Result_And_Post_State;
3382 ------------------------------
3383 -- Check_Unprotected_Access --
3384 ------------------------------
3386 procedure Check_Unprotected_Access
3387 (Context : Node_Id;
3388 Expr : Node_Id)
3390 Cont_Encl_Typ : Entity_Id;
3391 Pref_Encl_Typ : Entity_Id;
3393 function Enclosing_Protected_Type (Obj : Node_Id) return Entity_Id;
3394 -- Check whether Obj is a private component of a protected object.
3395 -- Return the protected type where the component resides, Empty
3396 -- otherwise.
3398 function Is_Public_Operation return Boolean;
3399 -- Verify that the enclosing operation is callable from outside the
3400 -- protected object, to minimize false positives.
3402 ------------------------------
3403 -- Enclosing_Protected_Type --
3404 ------------------------------
3406 function Enclosing_Protected_Type (Obj : Node_Id) return Entity_Id is
3407 begin
3408 if Is_Entity_Name (Obj) then
3409 declare
3410 Ent : Entity_Id := Entity (Obj);
3412 begin
3413 -- The object can be a renaming of a private component, use
3414 -- the original record component.
3416 if Is_Prival (Ent) then
3417 Ent := Prival_Link (Ent);
3418 end if;
3420 if Is_Protected_Type (Scope (Ent)) then
3421 return Scope (Ent);
3422 end if;
3423 end;
3424 end if;
3426 -- For indexed and selected components, recursively check the prefix
3428 if Nkind_In (Obj, N_Indexed_Component, N_Selected_Component) then
3429 return Enclosing_Protected_Type (Prefix (Obj));
3431 -- The object does not denote a protected component
3433 else
3434 return Empty;
3435 end if;
3436 end Enclosing_Protected_Type;
3438 -------------------------
3439 -- Is_Public_Operation --
3440 -------------------------
3442 function Is_Public_Operation return Boolean is
3443 S : Entity_Id;
3444 E : Entity_Id;
3446 begin
3447 S := Current_Scope;
3448 while Present (S) and then S /= Pref_Encl_Typ loop
3449 if Scope (S) = Pref_Encl_Typ then
3450 E := First_Entity (Pref_Encl_Typ);
3451 while Present (E)
3452 and then E /= First_Private_Entity (Pref_Encl_Typ)
3453 loop
3454 if E = S then
3455 return True;
3456 end if;
3458 Next_Entity (E);
3459 end loop;
3460 end if;
3462 S := Scope (S);
3463 end loop;
3465 return False;
3466 end Is_Public_Operation;
3468 -- Start of processing for Check_Unprotected_Access
3470 begin
3471 if Nkind (Expr) = N_Attribute_Reference
3472 and then Attribute_Name (Expr) = Name_Unchecked_Access
3473 then
3474 Cont_Encl_Typ := Enclosing_Protected_Type (Context);
3475 Pref_Encl_Typ := Enclosing_Protected_Type (Prefix (Expr));
3477 -- Check whether we are trying to export a protected component to a
3478 -- context with an equal or lower access level.
3480 if Present (Pref_Encl_Typ)
3481 and then No (Cont_Encl_Typ)
3482 and then Is_Public_Operation
3483 and then Scope_Depth (Pref_Encl_Typ) >=
3484 Object_Access_Level (Context)
3485 then
3486 Error_Msg_N
3487 ("??possible unprotected access to protected data", Expr);
3488 end if;
3489 end if;
3490 end Check_Unprotected_Access;
3492 ------------------------
3493 -- Collect_Interfaces --
3494 ------------------------
3496 procedure Collect_Interfaces
3497 (T : Entity_Id;
3498 Ifaces_List : out Elist_Id;
3499 Exclude_Parents : Boolean := False;
3500 Use_Full_View : Boolean := True)
3502 procedure Collect (Typ : Entity_Id);
3503 -- Subsidiary subprogram used to traverse the whole list
3504 -- of directly and indirectly implemented interfaces
3506 -------------
3507 -- Collect --
3508 -------------
3510 procedure Collect (Typ : Entity_Id) is
3511 Ancestor : Entity_Id;
3512 Full_T : Entity_Id;
3513 Id : Node_Id;
3514 Iface : Entity_Id;
3516 begin
3517 Full_T := Typ;
3519 -- Handle private types and subtypes
3521 if Use_Full_View
3522 and then Is_Private_Type (Typ)
3523 and then Present (Full_View (Typ))
3524 then
3525 Full_T := Full_View (Typ);
3527 if Ekind (Full_T) = E_Record_Subtype then
3528 Full_T := Full_View (Etype (Typ));
3529 end if;
3530 end if;
3532 -- Include the ancestor if we are generating the whole list of
3533 -- abstract interfaces.
3535 if Etype (Full_T) /= Typ
3537 -- Protect the frontend against wrong sources. For example:
3539 -- package P is
3540 -- type A is tagged null record;
3541 -- type B is new A with private;
3542 -- type C is new A with private;
3543 -- private
3544 -- type B is new C with null record;
3545 -- type C is new B with null record;
3546 -- end P;
3548 and then Etype (Full_T) /= T
3549 then
3550 Ancestor := Etype (Full_T);
3551 Collect (Ancestor);
3553 if Is_Interface (Ancestor) and then not Exclude_Parents then
3554 Append_Unique_Elmt (Ancestor, Ifaces_List);
3555 end if;
3556 end if;
3558 -- Traverse the graph of ancestor interfaces
3560 if Is_Non_Empty_List (Abstract_Interface_List (Full_T)) then
3561 Id := First (Abstract_Interface_List (Full_T));
3562 while Present (Id) loop
3563 Iface := Etype (Id);
3565 -- Protect against wrong uses. For example:
3566 -- type I is interface;
3567 -- type O is tagged null record;
3568 -- type Wrong is new I and O with null record; -- ERROR
3570 if Is_Interface (Iface) then
3571 if Exclude_Parents
3572 and then Etype (T) /= T
3573 and then Interface_Present_In_Ancestor (Etype (T), Iface)
3574 then
3575 null;
3576 else
3577 Collect (Iface);
3578 Append_Unique_Elmt (Iface, Ifaces_List);
3579 end if;
3580 end if;
3582 Next (Id);
3583 end loop;
3584 end if;
3585 end Collect;
3587 -- Start of processing for Collect_Interfaces
3589 begin
3590 pragma Assert (Is_Tagged_Type (T) or else Is_Concurrent_Type (T));
3591 Ifaces_List := New_Elmt_List;
3592 Collect (T);
3593 end Collect_Interfaces;
3595 ----------------------------------
3596 -- Collect_Interface_Components --
3597 ----------------------------------
3599 procedure Collect_Interface_Components
3600 (Tagged_Type : Entity_Id;
3601 Components_List : out Elist_Id)
3603 procedure Collect (Typ : Entity_Id);
3604 -- Subsidiary subprogram used to climb to the parents
3606 -------------
3607 -- Collect --
3608 -------------
3610 procedure Collect (Typ : Entity_Id) is
3611 Tag_Comp : Entity_Id;
3612 Parent_Typ : Entity_Id;
3614 begin
3615 -- Handle private types
3617 if Present (Full_View (Etype (Typ))) then
3618 Parent_Typ := Full_View (Etype (Typ));
3619 else
3620 Parent_Typ := Etype (Typ);
3621 end if;
3623 if Parent_Typ /= Typ
3625 -- Protect the frontend against wrong sources. For example:
3627 -- package P is
3628 -- type A is tagged null record;
3629 -- type B is new A with private;
3630 -- type C is new A with private;
3631 -- private
3632 -- type B is new C with null record;
3633 -- type C is new B with null record;
3634 -- end P;
3636 and then Parent_Typ /= Tagged_Type
3637 then
3638 Collect (Parent_Typ);
3639 end if;
3641 -- Collect the components containing tags of secondary dispatch
3642 -- tables.
3644 Tag_Comp := Next_Tag_Component (First_Tag_Component (Typ));
3645 while Present (Tag_Comp) loop
3646 pragma Assert (Present (Related_Type (Tag_Comp)));
3647 Append_Elmt (Tag_Comp, Components_List);
3649 Tag_Comp := Next_Tag_Component (Tag_Comp);
3650 end loop;
3651 end Collect;
3653 -- Start of processing for Collect_Interface_Components
3655 begin
3656 pragma Assert (Ekind (Tagged_Type) = E_Record_Type
3657 and then Is_Tagged_Type (Tagged_Type));
3659 Components_List := New_Elmt_List;
3660 Collect (Tagged_Type);
3661 end Collect_Interface_Components;
3663 -----------------------------
3664 -- Collect_Interfaces_Info --
3665 -----------------------------
3667 procedure Collect_Interfaces_Info
3668 (T : Entity_Id;
3669 Ifaces_List : out Elist_Id;
3670 Components_List : out Elist_Id;
3671 Tags_List : out Elist_Id)
3673 Comps_List : Elist_Id;
3674 Comp_Elmt : Elmt_Id;
3675 Comp_Iface : Entity_Id;
3676 Iface_Elmt : Elmt_Id;
3677 Iface : Entity_Id;
3679 function Search_Tag (Iface : Entity_Id) return Entity_Id;
3680 -- Search for the secondary tag associated with the interface type
3681 -- Iface that is implemented by T.
3683 ----------------
3684 -- Search_Tag --
3685 ----------------
3687 function Search_Tag (Iface : Entity_Id) return Entity_Id is
3688 ADT : Elmt_Id;
3689 begin
3690 if not Is_CPP_Class (T) then
3691 ADT := Next_Elmt (Next_Elmt (First_Elmt (Access_Disp_Table (T))));
3692 else
3693 ADT := Next_Elmt (First_Elmt (Access_Disp_Table (T)));
3694 end if;
3696 while Present (ADT)
3697 and then Is_Tag (Node (ADT))
3698 and then Related_Type (Node (ADT)) /= Iface
3699 loop
3700 -- Skip secondary dispatch table referencing thunks to user
3701 -- defined primitives covered by this interface.
3703 pragma Assert (Has_Suffix (Node (ADT), 'P'));
3704 Next_Elmt (ADT);
3706 -- Skip secondary dispatch tables of Ada types
3708 if not Is_CPP_Class (T) then
3710 -- Skip secondary dispatch table referencing thunks to
3711 -- predefined primitives.
3713 pragma Assert (Has_Suffix (Node (ADT), 'Y'));
3714 Next_Elmt (ADT);
3716 -- Skip secondary dispatch table referencing user-defined
3717 -- primitives covered by this interface.
3719 pragma Assert (Has_Suffix (Node (ADT), 'D'));
3720 Next_Elmt (ADT);
3722 -- Skip secondary dispatch table referencing predefined
3723 -- primitives.
3725 pragma Assert (Has_Suffix (Node (ADT), 'Z'));
3726 Next_Elmt (ADT);
3727 end if;
3728 end loop;
3730 pragma Assert (Is_Tag (Node (ADT)));
3731 return Node (ADT);
3732 end Search_Tag;
3734 -- Start of processing for Collect_Interfaces_Info
3736 begin
3737 Collect_Interfaces (T, Ifaces_List);
3738 Collect_Interface_Components (T, Comps_List);
3740 -- Search for the record component and tag associated with each
3741 -- interface type of T.
3743 Components_List := New_Elmt_List;
3744 Tags_List := New_Elmt_List;
3746 Iface_Elmt := First_Elmt (Ifaces_List);
3747 while Present (Iface_Elmt) loop
3748 Iface := Node (Iface_Elmt);
3750 -- Associate the primary tag component and the primary dispatch table
3751 -- with all the interfaces that are parents of T
3753 if Is_Ancestor (Iface, T, Use_Full_View => True) then
3754 Append_Elmt (First_Tag_Component (T), Components_List);
3755 Append_Elmt (Node (First_Elmt (Access_Disp_Table (T))), Tags_List);
3757 -- Otherwise search for the tag component and secondary dispatch
3758 -- table of Iface
3760 else
3761 Comp_Elmt := First_Elmt (Comps_List);
3762 while Present (Comp_Elmt) loop
3763 Comp_Iface := Related_Type (Node (Comp_Elmt));
3765 if Comp_Iface = Iface
3766 or else Is_Ancestor (Iface, Comp_Iface, Use_Full_View => True)
3767 then
3768 Append_Elmt (Node (Comp_Elmt), Components_List);
3769 Append_Elmt (Search_Tag (Comp_Iface), Tags_List);
3770 exit;
3771 end if;
3773 Next_Elmt (Comp_Elmt);
3774 end loop;
3775 pragma Assert (Present (Comp_Elmt));
3776 end if;
3778 Next_Elmt (Iface_Elmt);
3779 end loop;
3780 end Collect_Interfaces_Info;
3782 ---------------------
3783 -- Collect_Parents --
3784 ---------------------
3786 procedure Collect_Parents
3787 (T : Entity_Id;
3788 List : out Elist_Id;
3789 Use_Full_View : Boolean := True)
3791 Current_Typ : Entity_Id := T;
3792 Parent_Typ : Entity_Id;
3794 begin
3795 List := New_Elmt_List;
3797 -- No action if the if the type has no parents
3799 if T = Etype (T) then
3800 return;
3801 end if;
3803 loop
3804 Parent_Typ := Etype (Current_Typ);
3806 if Is_Private_Type (Parent_Typ)
3807 and then Present (Full_View (Parent_Typ))
3808 and then Use_Full_View
3809 then
3810 Parent_Typ := Full_View (Base_Type (Parent_Typ));
3811 end if;
3813 Append_Elmt (Parent_Typ, List);
3815 exit when Parent_Typ = Current_Typ;
3816 Current_Typ := Parent_Typ;
3817 end loop;
3818 end Collect_Parents;
3820 ----------------------------------
3821 -- Collect_Primitive_Operations --
3822 ----------------------------------
3824 function Collect_Primitive_Operations (T : Entity_Id) return Elist_Id is
3825 B_Type : constant Entity_Id := Base_Type (T);
3826 B_Decl : constant Node_Id := Original_Node (Parent (B_Type));
3827 B_Scope : Entity_Id := Scope (B_Type);
3828 Op_List : Elist_Id;
3829 Formal : Entity_Id;
3830 Is_Prim : Boolean;
3831 Is_Type_In_Pkg : Boolean;
3832 Formal_Derived : Boolean := False;
3833 Id : Entity_Id;
3835 function Match (E : Entity_Id) return Boolean;
3836 -- True if E's base type is B_Type, or E is of an anonymous access type
3837 -- and the base type of its designated type is B_Type.
3839 -----------
3840 -- Match --
3841 -----------
3843 function Match (E : Entity_Id) return Boolean is
3844 Etyp : Entity_Id := Etype (E);
3846 begin
3847 if Ekind (Etyp) = E_Anonymous_Access_Type then
3848 Etyp := Designated_Type (Etyp);
3849 end if;
3851 -- In Ada 2012 a primitive operation may have a formal of an
3852 -- incomplete view of the parent type.
3854 return Base_Type (Etyp) = B_Type
3855 or else
3856 (Ada_Version >= Ada_2012
3857 and then Ekind (Etyp) = E_Incomplete_Type
3858 and then Full_View (Etyp) = B_Type);
3859 end Match;
3861 -- Start of processing for Collect_Primitive_Operations
3863 begin
3864 -- For tagged types, the primitive operations are collected as they
3865 -- are declared, and held in an explicit list which is simply returned.
3867 if Is_Tagged_Type (B_Type) then
3868 return Primitive_Operations (B_Type);
3870 -- An untagged generic type that is a derived type inherits the
3871 -- primitive operations of its parent type. Other formal types only
3872 -- have predefined operators, which are not explicitly represented.
3874 elsif Is_Generic_Type (B_Type) then
3875 if Nkind (B_Decl) = N_Formal_Type_Declaration
3876 and then Nkind (Formal_Type_Definition (B_Decl)) =
3877 N_Formal_Derived_Type_Definition
3878 then
3879 Formal_Derived := True;
3880 else
3881 return New_Elmt_List;
3882 end if;
3883 end if;
3885 Op_List := New_Elmt_List;
3887 if B_Scope = Standard_Standard then
3888 if B_Type = Standard_String then
3889 Append_Elmt (Standard_Op_Concat, Op_List);
3891 elsif B_Type = Standard_Wide_String then
3892 Append_Elmt (Standard_Op_Concatw, Op_List);
3894 else
3895 null;
3896 end if;
3898 -- Locate the primitive subprograms of the type
3900 else
3901 -- The primitive operations appear after the base type, except
3902 -- if the derivation happens within the private part of B_Scope
3903 -- and the type is a private type, in which case both the type
3904 -- and some primitive operations may appear before the base
3905 -- type, and the list of candidates starts after the type.
3907 if In_Open_Scopes (B_Scope)
3908 and then Scope (T) = B_Scope
3909 and then In_Private_Part (B_Scope)
3910 then
3911 Id := Next_Entity (T);
3913 -- In Ada 2012, If the type has an incomplete partial view, there
3914 -- may be primitive operations declared before the full view, so
3915 -- we need to start scanning from the incomplete view, which is
3916 -- earlier on the entity chain.
3918 elsif Nkind (Parent (B_Type)) = N_Full_Type_Declaration
3919 and then Present (Incomplete_View (Parent (B_Type)))
3920 then
3921 Id := Defining_Entity (Incomplete_View (Parent (B_Type)));
3923 else
3924 Id := Next_Entity (B_Type);
3925 end if;
3927 -- Set flag if this is a type in a package spec
3929 Is_Type_In_Pkg :=
3930 Is_Package_Or_Generic_Package (B_Scope)
3931 and then
3932 Nkind (Parent (Declaration_Node (First_Subtype (T)))) /=
3933 N_Package_Body;
3935 while Present (Id) loop
3937 -- Test whether the result type or any of the parameter types of
3938 -- each subprogram following the type match that type when the
3939 -- type is declared in a package spec, is a derived type, or the
3940 -- subprogram is marked as primitive. (The Is_Primitive test is
3941 -- needed to find primitives of nonderived types in declarative
3942 -- parts that happen to override the predefined "=" operator.)
3944 -- Note that generic formal subprograms are not considered to be
3945 -- primitive operations and thus are never inherited.
3947 if Is_Overloadable (Id)
3948 and then (Is_Type_In_Pkg
3949 or else Is_Derived_Type (B_Type)
3950 or else Is_Primitive (Id))
3951 and then Nkind (Parent (Parent (Id)))
3952 not in N_Formal_Subprogram_Declaration
3953 then
3954 Is_Prim := False;
3956 if Match (Id) then
3957 Is_Prim := True;
3959 else
3960 Formal := First_Formal (Id);
3961 while Present (Formal) loop
3962 if Match (Formal) then
3963 Is_Prim := True;
3964 exit;
3965 end if;
3967 Next_Formal (Formal);
3968 end loop;
3969 end if;
3971 -- For a formal derived type, the only primitives are the ones
3972 -- inherited from the parent type. Operations appearing in the
3973 -- package declaration are not primitive for it.
3975 if Is_Prim
3976 and then (not Formal_Derived or else Present (Alias (Id)))
3977 then
3978 -- In the special case of an equality operator aliased to
3979 -- an overriding dispatching equality belonging to the same
3980 -- type, we don't include it in the list of primitives.
3981 -- This avoids inheriting multiple equality operators when
3982 -- deriving from untagged private types whose full type is
3983 -- tagged, which can otherwise cause ambiguities. Note that
3984 -- this should only happen for this kind of untagged parent
3985 -- type, since normally dispatching operations are inherited
3986 -- using the type's Primitive_Operations list.
3988 if Chars (Id) = Name_Op_Eq
3989 and then Is_Dispatching_Operation (Id)
3990 and then Present (Alias (Id))
3991 and then Present (Overridden_Operation (Alias (Id)))
3992 and then Base_Type (Etype (First_Entity (Id))) =
3993 Base_Type (Etype (First_Entity (Alias (Id))))
3994 then
3995 null;
3997 -- Include the subprogram in the list of primitives
3999 else
4000 Append_Elmt (Id, Op_List);
4001 end if;
4002 end if;
4003 end if;
4005 Next_Entity (Id);
4007 -- For a type declared in System, some of its operations may
4008 -- appear in the target-specific extension to System.
4010 if No (Id)
4011 and then B_Scope = RTU_Entity (System)
4012 and then Present_System_Aux
4013 then
4014 B_Scope := System_Aux_Id;
4015 Id := First_Entity (System_Aux_Id);
4016 end if;
4017 end loop;
4018 end if;
4020 return Op_List;
4021 end Collect_Primitive_Operations;
4023 -----------------------------------
4024 -- Compile_Time_Constraint_Error --
4025 -----------------------------------
4027 function Compile_Time_Constraint_Error
4028 (N : Node_Id;
4029 Msg : String;
4030 Ent : Entity_Id := Empty;
4031 Loc : Source_Ptr := No_Location;
4032 Warn : Boolean := False) return Node_Id
4034 Msgc : String (1 .. Msg'Length + 3);
4035 -- Copy of message, with room for possible ?? or << and ! at end
4037 Msgl : Natural;
4038 Wmsg : Boolean;
4039 Eloc : Source_Ptr;
4041 -- Start of processing for Compile_Time_Constraint_Error
4043 begin
4044 -- If this is a warning, convert it into an error if we are in code
4045 -- subject to SPARK_Mode being set ON.
4047 Error_Msg_Warn := SPARK_Mode /= On;
4049 -- A static constraint error in an instance body is not a fatal error.
4050 -- we choose to inhibit the message altogether, because there is no
4051 -- obvious node (for now) on which to post it. On the other hand the
4052 -- offending node must be replaced with a constraint_error in any case.
4054 -- No messages are generated if we already posted an error on this node
4056 if not Error_Posted (N) then
4057 if Loc /= No_Location then
4058 Eloc := Loc;
4059 else
4060 Eloc := Sloc (N);
4061 end if;
4063 -- Copy message to Msgc, converting any ? in the message into
4064 -- < instead, so that we have an error in GNATprove mode.
4066 Msgl := Msg'Length;
4068 for J in 1 .. Msgl loop
4069 if Msg (J) = '?' and then (J = 1 or else Msg (J) /= ''') then
4070 Msgc (J) := '<';
4071 else
4072 Msgc (J) := Msg (J);
4073 end if;
4074 end loop;
4076 -- Message is a warning, even in Ada 95 case
4078 if Msg (Msg'Last) = '?' or else Msg (Msg'Last) = '<' then
4079 Wmsg := True;
4081 -- In Ada 83, all messages are warnings. In the private part and
4082 -- the body of an instance, constraint_checks are only warnings.
4083 -- We also make this a warning if the Warn parameter is set.
4085 elsif Warn
4086 or else (Ada_Version = Ada_83 and then Comes_From_Source (N))
4087 then
4088 Msgl := Msgl + 1;
4089 Msgc (Msgl) := '<';
4090 Msgl := Msgl + 1;
4091 Msgc (Msgl) := '<';
4092 Wmsg := True;
4094 elsif In_Instance_Not_Visible then
4095 Msgl := Msgl + 1;
4096 Msgc (Msgl) := '<';
4097 Msgl := Msgl + 1;
4098 Msgc (Msgl) := '<';
4099 Wmsg := True;
4101 -- Otherwise we have a real error message (Ada 95 static case)
4102 -- and we make this an unconditional message. Note that in the
4103 -- warning case we do not make the message unconditional, it seems
4104 -- quite reasonable to delete messages like this (about exceptions
4105 -- that will be raised) in dead code.
4107 else
4108 Wmsg := False;
4109 Msgl := Msgl + 1;
4110 Msgc (Msgl) := '!';
4111 end if;
4113 -- One more test, skip the warning if the related expression is
4114 -- statically unevaluated, since we don't want to warn about what
4115 -- will happen when something is evaluated if it never will be
4116 -- evaluated.
4118 if not Is_Statically_Unevaluated (N) then
4119 Error_Msg_Warn := SPARK_Mode /= On;
4121 if Present (Ent) then
4122 Error_Msg_NEL (Msgc (1 .. Msgl), N, Ent, Eloc);
4123 else
4124 Error_Msg_NEL (Msgc (1 .. Msgl), N, Etype (N), Eloc);
4125 end if;
4127 if Wmsg then
4129 -- Check whether the context is an Init_Proc
4131 if Inside_Init_Proc then
4132 declare
4133 Conc_Typ : constant Entity_Id :=
4134 Corresponding_Concurrent_Type
4135 (Entity (Parameter_Type (First
4136 (Parameter_Specifications
4137 (Parent (Current_Scope))))));
4139 begin
4140 -- Don't complain if the corresponding concurrent type
4141 -- doesn't come from source (i.e. a single task/protected
4142 -- object).
4144 if Present (Conc_Typ)
4145 and then not Comes_From_Source (Conc_Typ)
4146 then
4147 Error_Msg_NEL
4148 ("\& [<<", N, Standard_Constraint_Error, Eloc);
4150 else
4151 if GNATprove_Mode then
4152 Error_Msg_NEL
4153 ("\& would have been raised for objects of this "
4154 & "type", N, Standard_Constraint_Error, Eloc);
4155 else
4156 Error_Msg_NEL
4157 ("\& will be raised for objects of this type??",
4158 N, Standard_Constraint_Error, Eloc);
4159 end if;
4160 end if;
4161 end;
4163 else
4164 Error_Msg_NEL ("\& [<<", N, Standard_Constraint_Error, Eloc);
4165 end if;
4167 else
4168 Error_Msg ("\static expression fails Constraint_Check", Eloc);
4169 Set_Error_Posted (N);
4170 end if;
4171 end if;
4172 end if;
4174 return N;
4175 end Compile_Time_Constraint_Error;
4177 -----------------------
4178 -- Conditional_Delay --
4179 -----------------------
4181 procedure Conditional_Delay (New_Ent, Old_Ent : Entity_Id) is
4182 begin
4183 if Has_Delayed_Freeze (Old_Ent) and then not Is_Frozen (Old_Ent) then
4184 Set_Has_Delayed_Freeze (New_Ent);
4185 end if;
4186 end Conditional_Delay;
4188 ----------------------------
4189 -- Contains_Refined_State --
4190 ----------------------------
4192 function Contains_Refined_State (Prag : Node_Id) return Boolean is
4193 function Has_State_In_Dependency (List : Node_Id) return Boolean;
4194 -- Determine whether a dependency list mentions a state with a visible
4195 -- refinement.
4197 function Has_State_In_Global (List : Node_Id) return Boolean;
4198 -- Determine whether a global list mentions a state with a visible
4199 -- refinement.
4201 function Is_Refined_State (Item : Node_Id) return Boolean;
4202 -- Determine whether Item is a reference to an abstract state with a
4203 -- visible refinement.
4205 -----------------------------
4206 -- Has_State_In_Dependency --
4207 -----------------------------
4209 function Has_State_In_Dependency (List : Node_Id) return Boolean is
4210 Clause : Node_Id;
4211 Output : Node_Id;
4213 begin
4214 -- A null dependency list does not mention any states
4216 if Nkind (List) = N_Null then
4217 return False;
4219 -- Dependency clauses appear as component associations of an
4220 -- aggregate.
4222 elsif Nkind (List) = N_Aggregate
4223 and then Present (Component_Associations (List))
4224 then
4225 Clause := First (Component_Associations (List));
4226 while Present (Clause) loop
4228 -- Inspect the outputs of a dependency clause
4230 Output := First (Choices (Clause));
4231 while Present (Output) loop
4232 if Is_Refined_State (Output) then
4233 return True;
4234 end if;
4236 Next (Output);
4237 end loop;
4239 -- Inspect the outputs of a dependency clause
4241 if Is_Refined_State (Expression (Clause)) then
4242 return True;
4243 end if;
4245 Next (Clause);
4246 end loop;
4248 -- If we get here, then none of the dependency clauses mention a
4249 -- state with visible refinement.
4251 return False;
4253 -- An illegal pragma managed to sneak in
4255 else
4256 raise Program_Error;
4257 end if;
4258 end Has_State_In_Dependency;
4260 -------------------------
4261 -- Has_State_In_Global --
4262 -------------------------
4264 function Has_State_In_Global (List : Node_Id) return Boolean is
4265 Item : Node_Id;
4267 begin
4268 -- A null global list does not mention any states
4270 if Nkind (List) = N_Null then
4271 return False;
4273 -- Simple global list or moded global list declaration
4275 elsif Nkind (List) = N_Aggregate then
4277 -- The declaration of a simple global list appear as a collection
4278 -- of expressions.
4280 if Present (Expressions (List)) then
4281 Item := First (Expressions (List));
4282 while Present (Item) loop
4283 if Is_Refined_State (Item) then
4284 return True;
4285 end if;
4287 Next (Item);
4288 end loop;
4290 -- The declaration of a moded global list appears as a collection
4291 -- of component associations where individual choices denote
4292 -- modes.
4294 else
4295 Item := First (Component_Associations (List));
4296 while Present (Item) loop
4297 if Has_State_In_Global (Expression (Item)) then
4298 return True;
4299 end if;
4301 Next (Item);
4302 end loop;
4303 end if;
4305 -- If we get here, then the simple/moded global list did not
4306 -- mention any states with a visible refinement.
4308 return False;
4310 -- Single global item declaration
4312 elsif Is_Entity_Name (List) then
4313 return Is_Refined_State (List);
4315 -- An illegal pragma managed to sneak in
4317 else
4318 raise Program_Error;
4319 end if;
4320 end Has_State_In_Global;
4322 ----------------------
4323 -- Is_Refined_State --
4324 ----------------------
4326 function Is_Refined_State (Item : Node_Id) return Boolean is
4327 Elmt : Node_Id;
4328 Item_Id : Entity_Id;
4330 begin
4331 if Nkind (Item) = N_Null then
4332 return False;
4334 -- States cannot be subject to attribute 'Result. This case arises
4335 -- in dependency relations.
4337 elsif Nkind (Item) = N_Attribute_Reference
4338 and then Attribute_Name (Item) = Name_Result
4339 then
4340 return False;
4342 -- Multiple items appear as an aggregate. This case arises in
4343 -- dependency relations.
4345 elsif Nkind (Item) = N_Aggregate
4346 and then Present (Expressions (Item))
4347 then
4348 Elmt := First (Expressions (Item));
4349 while Present (Elmt) loop
4350 if Is_Refined_State (Elmt) then
4351 return True;
4352 end if;
4354 Next (Elmt);
4355 end loop;
4357 -- If we get here, then none of the inputs or outputs reference a
4358 -- state with visible refinement.
4360 return False;
4362 -- Single item
4364 else
4365 Item_Id := Entity_Of (Item);
4367 return
4368 Present (Item_Id)
4369 and then Ekind (Item_Id) = E_Abstract_State
4370 and then Has_Visible_Refinement (Item_Id);
4371 end if;
4372 end Is_Refined_State;
4374 -- Local variables
4376 Arg : constant Node_Id :=
4377 Get_Pragma_Arg (First (Pragma_Argument_Associations (Prag)));
4378 Nam : constant Name_Id := Pragma_Name (Prag);
4380 -- Start of processing for Contains_Refined_State
4382 begin
4383 if Nam = Name_Depends then
4384 return Has_State_In_Dependency (Arg);
4386 else pragma Assert (Nam = Name_Global);
4387 return Has_State_In_Global (Arg);
4388 end if;
4389 end Contains_Refined_State;
4391 -------------------------
4392 -- Copy_Component_List --
4393 -------------------------
4395 function Copy_Component_List
4396 (R_Typ : Entity_Id;
4397 Loc : Source_Ptr) return List_Id
4399 Comp : Node_Id;
4400 Comps : constant List_Id := New_List;
4402 begin
4403 Comp := First_Component (Underlying_Type (R_Typ));
4404 while Present (Comp) loop
4405 if Comes_From_Source (Comp) then
4406 declare
4407 Comp_Decl : constant Node_Id := Declaration_Node (Comp);
4408 begin
4409 Append_To (Comps,
4410 Make_Component_Declaration (Loc,
4411 Defining_Identifier =>
4412 Make_Defining_Identifier (Loc, Chars (Comp)),
4413 Component_Definition =>
4414 New_Copy_Tree
4415 (Component_Definition (Comp_Decl), New_Sloc => Loc)));
4416 end;
4417 end if;
4419 Next_Component (Comp);
4420 end loop;
4422 return Comps;
4423 end Copy_Component_List;
4425 -------------------------
4426 -- Copy_Parameter_List --
4427 -------------------------
4429 function Copy_Parameter_List (Subp_Id : Entity_Id) return List_Id is
4430 Loc : constant Source_Ptr := Sloc (Subp_Id);
4431 Plist : List_Id;
4432 Formal : Entity_Id;
4434 begin
4435 if No (First_Formal (Subp_Id)) then
4436 return No_List;
4437 else
4438 Plist := New_List;
4439 Formal := First_Formal (Subp_Id);
4440 while Present (Formal) loop
4441 Append
4442 (Make_Parameter_Specification (Loc,
4443 Defining_Identifier =>
4444 Make_Defining_Identifier (Sloc (Formal),
4445 Chars => Chars (Formal)),
4446 In_Present => In_Present (Parent (Formal)),
4447 Out_Present => Out_Present (Parent (Formal)),
4448 Parameter_Type =>
4449 New_Occurrence_Of (Etype (Formal), Loc),
4450 Expression =>
4451 New_Copy_Tree (Expression (Parent (Formal)))),
4452 Plist);
4454 Next_Formal (Formal);
4455 end loop;
4456 end if;
4458 return Plist;
4459 end Copy_Parameter_List;
4461 --------------------------------
4462 -- Corresponding_Generic_Type --
4463 --------------------------------
4465 function Corresponding_Generic_Type (T : Entity_Id) return Entity_Id is
4466 Inst : Entity_Id;
4467 Gen : Entity_Id;
4468 Typ : Entity_Id;
4470 begin
4471 if not Is_Generic_Actual_Type (T) then
4472 return Any_Type;
4474 -- If the actual is the actual of an enclosing instance, resolution
4475 -- was correct in the generic.
4477 elsif Nkind (Parent (T)) = N_Subtype_Declaration
4478 and then Is_Entity_Name (Subtype_Indication (Parent (T)))
4479 and then
4480 Is_Generic_Actual_Type (Entity (Subtype_Indication (Parent (T))))
4481 then
4482 return Any_Type;
4484 else
4485 Inst := Scope (T);
4487 if Is_Wrapper_Package (Inst) then
4488 Inst := Related_Instance (Inst);
4489 end if;
4491 Gen :=
4492 Generic_Parent
4493 (Specification (Unit_Declaration_Node (Inst)));
4495 -- Generic actual has the same name as the corresponding formal
4497 Typ := First_Entity (Gen);
4498 while Present (Typ) loop
4499 if Chars (Typ) = Chars (T) then
4500 return Typ;
4501 end if;
4503 Next_Entity (Typ);
4504 end loop;
4506 return Any_Type;
4507 end if;
4508 end Corresponding_Generic_Type;
4510 ---------------------------
4511 -- Corresponding_Spec_Of --
4512 ---------------------------
4514 function Corresponding_Spec_Of (Subp_Decl : Node_Id) return Entity_Id is
4515 begin
4516 if Nkind (Subp_Decl) = N_Subprogram_Body
4517 and then Present (Corresponding_Spec (Subp_Decl))
4518 then
4519 return Corresponding_Spec (Subp_Decl);
4521 elsif Nkind (Subp_Decl) = N_Subprogram_Body_Stub
4522 and then Present (Corresponding_Spec_Of_Stub (Subp_Decl))
4523 then
4524 return Corresponding_Spec_Of_Stub (Subp_Decl);
4526 else
4527 return Defining_Entity (Subp_Decl);
4528 end if;
4529 end Corresponding_Spec_Of;
4531 --------------------
4532 -- Current_Entity --
4533 --------------------
4535 -- The currently visible definition for a given identifier is the
4536 -- one most chained at the start of the visibility chain, i.e. the
4537 -- one that is referenced by the Node_Id value of the name of the
4538 -- given identifier.
4540 function Current_Entity (N : Node_Id) return Entity_Id is
4541 begin
4542 return Get_Name_Entity_Id (Chars (N));
4543 end Current_Entity;
4545 -----------------------------
4546 -- Current_Entity_In_Scope --
4547 -----------------------------
4549 function Current_Entity_In_Scope (N : Node_Id) return Entity_Id is
4550 E : Entity_Id;
4551 CS : constant Entity_Id := Current_Scope;
4553 Transient_Case : constant Boolean := Scope_Is_Transient;
4555 begin
4556 E := Get_Name_Entity_Id (Chars (N));
4557 while Present (E)
4558 and then Scope (E) /= CS
4559 and then (not Transient_Case or else Scope (E) /= Scope (CS))
4560 loop
4561 E := Homonym (E);
4562 end loop;
4564 return E;
4565 end Current_Entity_In_Scope;
4567 -------------------
4568 -- Current_Scope --
4569 -------------------
4571 function Current_Scope return Entity_Id is
4572 begin
4573 if Scope_Stack.Last = -1 then
4574 return Standard_Standard;
4575 else
4576 declare
4577 C : constant Entity_Id :=
4578 Scope_Stack.Table (Scope_Stack.Last).Entity;
4579 begin
4580 if Present (C) then
4581 return C;
4582 else
4583 return Standard_Standard;
4584 end if;
4585 end;
4586 end if;
4587 end Current_Scope;
4589 ------------------------
4590 -- Current_Subprogram --
4591 ------------------------
4593 function Current_Subprogram return Entity_Id is
4594 Scop : constant Entity_Id := Current_Scope;
4595 begin
4596 if Is_Subprogram_Or_Generic_Subprogram (Scop) then
4597 return Scop;
4598 else
4599 return Enclosing_Subprogram (Scop);
4600 end if;
4601 end Current_Subprogram;
4603 ----------------------------------
4604 -- Deepest_Type_Access_Level --
4605 ----------------------------------
4607 function Deepest_Type_Access_Level (Typ : Entity_Id) return Uint is
4608 begin
4609 if Ekind (Typ) = E_Anonymous_Access_Type
4610 and then not Is_Local_Anonymous_Access (Typ)
4611 and then Nkind (Associated_Node_For_Itype (Typ)) = N_Object_Declaration
4612 then
4613 -- Typ is the type of an Ada 2012 stand-alone object of an anonymous
4614 -- access type.
4616 return
4617 Scope_Depth (Enclosing_Dynamic_Scope
4618 (Defining_Identifier
4619 (Associated_Node_For_Itype (Typ))));
4621 -- For generic formal type, return Int'Last (infinite).
4622 -- See comment preceding Is_Generic_Type call in Type_Access_Level.
4624 elsif Is_Generic_Type (Root_Type (Typ)) then
4625 return UI_From_Int (Int'Last);
4627 else
4628 return Type_Access_Level (Typ);
4629 end if;
4630 end Deepest_Type_Access_Level;
4632 ---------------------
4633 -- Defining_Entity --
4634 ---------------------
4636 function Defining_Entity (N : Node_Id) return Entity_Id is
4637 K : constant Node_Kind := Nkind (N);
4638 Err : Entity_Id := Empty;
4640 begin
4641 case K is
4642 when
4643 N_Subprogram_Declaration |
4644 N_Abstract_Subprogram_Declaration |
4645 N_Subprogram_Body |
4646 N_Package_Declaration |
4647 N_Subprogram_Renaming_Declaration |
4648 N_Subprogram_Body_Stub |
4649 N_Generic_Subprogram_Declaration |
4650 N_Generic_Package_Declaration |
4651 N_Formal_Subprogram_Declaration |
4652 N_Expression_Function
4654 return Defining_Entity (Specification (N));
4656 when
4657 N_Component_Declaration |
4658 N_Defining_Program_Unit_Name |
4659 N_Discriminant_Specification |
4660 N_Entry_Body |
4661 N_Entry_Declaration |
4662 N_Entry_Index_Specification |
4663 N_Exception_Declaration |
4664 N_Exception_Renaming_Declaration |
4665 N_Formal_Object_Declaration |
4666 N_Formal_Package_Declaration |
4667 N_Formal_Type_Declaration |
4668 N_Full_Type_Declaration |
4669 N_Implicit_Label_Declaration |
4670 N_Incomplete_Type_Declaration |
4671 N_Loop_Parameter_Specification |
4672 N_Number_Declaration |
4673 N_Object_Declaration |
4674 N_Object_Renaming_Declaration |
4675 N_Package_Body_Stub |
4676 N_Parameter_Specification |
4677 N_Private_Extension_Declaration |
4678 N_Private_Type_Declaration |
4679 N_Protected_Body |
4680 N_Protected_Body_Stub |
4681 N_Protected_Type_Declaration |
4682 N_Single_Protected_Declaration |
4683 N_Single_Task_Declaration |
4684 N_Subtype_Declaration |
4685 N_Task_Body |
4686 N_Task_Body_Stub |
4687 N_Task_Type_Declaration
4689 return Defining_Identifier (N);
4691 when N_Subunit =>
4692 return Defining_Entity (Proper_Body (N));
4694 when
4695 N_Function_Instantiation |
4696 N_Function_Specification |
4697 N_Generic_Function_Renaming_Declaration |
4698 N_Generic_Package_Renaming_Declaration |
4699 N_Generic_Procedure_Renaming_Declaration |
4700 N_Package_Body |
4701 N_Package_Instantiation |
4702 N_Package_Renaming_Declaration |
4703 N_Package_Specification |
4704 N_Procedure_Instantiation |
4705 N_Procedure_Specification
4707 declare
4708 Nam : constant Node_Id := Defining_Unit_Name (N);
4710 begin
4711 if Nkind (Nam) in N_Entity then
4712 return Nam;
4714 -- For Error, make up a name and attach to declaration
4715 -- so we can continue semantic analysis
4717 elsif Nam = Error then
4718 Err := Make_Temporary (Sloc (N), 'T');
4719 Set_Defining_Unit_Name (N, Err);
4721 return Err;
4723 -- If not an entity, get defining identifier
4725 else
4726 return Defining_Identifier (Nam);
4727 end if;
4728 end;
4730 when
4731 N_Block_Statement |
4732 N_Loop_Statement
4734 return Entity (Identifier (N));
4736 when others =>
4737 raise Program_Error;
4739 end case;
4740 end Defining_Entity;
4742 --------------------------
4743 -- Denotes_Discriminant --
4744 --------------------------
4746 function Denotes_Discriminant
4747 (N : Node_Id;
4748 Check_Concurrent : Boolean := False) return Boolean
4750 E : Entity_Id;
4752 begin
4753 if not Is_Entity_Name (N) or else No (Entity (N)) then
4754 return False;
4755 else
4756 E := Entity (N);
4757 end if;
4759 -- If we are checking for a protected type, the discriminant may have
4760 -- been rewritten as the corresponding discriminal of the original type
4761 -- or of the corresponding concurrent record, depending on whether we
4762 -- are in the spec or body of the protected type.
4764 return Ekind (E) = E_Discriminant
4765 or else
4766 (Check_Concurrent
4767 and then Ekind (E) = E_In_Parameter
4768 and then Present (Discriminal_Link (E))
4769 and then
4770 (Is_Concurrent_Type (Scope (Discriminal_Link (E)))
4771 or else
4772 Is_Concurrent_Record_Type (Scope (Discriminal_Link (E)))));
4774 end Denotes_Discriminant;
4776 -------------------------
4777 -- Denotes_Same_Object --
4778 -------------------------
4780 function Denotes_Same_Object (A1, A2 : Node_Id) return Boolean is
4781 Obj1 : Node_Id := A1;
4782 Obj2 : Node_Id := A2;
4784 function Has_Prefix (N : Node_Id) return Boolean;
4785 -- Return True if N has attribute Prefix
4787 function Is_Renaming (N : Node_Id) return Boolean;
4788 -- Return true if N names a renaming entity
4790 function Is_Valid_Renaming (N : Node_Id) return Boolean;
4791 -- For renamings, return False if the prefix of any dereference within
4792 -- the renamed object_name is a variable, or any expression within the
4793 -- renamed object_name contains references to variables or calls on
4794 -- nonstatic functions; otherwise return True (RM 6.4.1(6.10/3))
4796 ----------------
4797 -- Has_Prefix --
4798 ----------------
4800 function Has_Prefix (N : Node_Id) return Boolean is
4801 begin
4802 return
4803 Nkind_In (N,
4804 N_Attribute_Reference,
4805 N_Expanded_Name,
4806 N_Explicit_Dereference,
4807 N_Indexed_Component,
4808 N_Reference,
4809 N_Selected_Component,
4810 N_Slice);
4811 end Has_Prefix;
4813 -----------------
4814 -- Is_Renaming --
4815 -----------------
4817 function Is_Renaming (N : Node_Id) return Boolean is
4818 begin
4819 return Is_Entity_Name (N)
4820 and then Present (Renamed_Entity (Entity (N)));
4821 end Is_Renaming;
4823 -----------------------
4824 -- Is_Valid_Renaming --
4825 -----------------------
4827 function Is_Valid_Renaming (N : Node_Id) return Boolean is
4829 function Check_Renaming (N : Node_Id) return Boolean;
4830 -- Recursive function used to traverse all the prefixes of N
4832 function Check_Renaming (N : Node_Id) return Boolean is
4833 begin
4834 if Is_Renaming (N)
4835 and then not Check_Renaming (Renamed_Entity (Entity (N)))
4836 then
4837 return False;
4838 end if;
4840 if Nkind (N) = N_Indexed_Component then
4841 declare
4842 Indx : Node_Id;
4844 begin
4845 Indx := First (Expressions (N));
4846 while Present (Indx) loop
4847 if not Is_OK_Static_Expression (Indx) then
4848 return False;
4849 end if;
4851 Next_Index (Indx);
4852 end loop;
4853 end;
4854 end if;
4856 if Has_Prefix (N) then
4857 declare
4858 P : constant Node_Id := Prefix (N);
4860 begin
4861 if Nkind (N) = N_Explicit_Dereference
4862 and then Is_Variable (P)
4863 then
4864 return False;
4866 elsif Is_Entity_Name (P)
4867 and then Ekind (Entity (P)) = E_Function
4868 then
4869 return False;
4871 elsif Nkind (P) = N_Function_Call then
4872 return False;
4873 end if;
4875 -- Recursion to continue traversing the prefix of the
4876 -- renaming expression
4878 return Check_Renaming (P);
4879 end;
4880 end if;
4882 return True;
4883 end Check_Renaming;
4885 -- Start of processing for Is_Valid_Renaming
4887 begin
4888 return Check_Renaming (N);
4889 end Is_Valid_Renaming;
4891 -- Start of processing for Denotes_Same_Object
4893 begin
4894 -- Both names statically denote the same stand-alone object or parameter
4895 -- (RM 6.4.1(6.5/3))
4897 if Is_Entity_Name (Obj1)
4898 and then Is_Entity_Name (Obj2)
4899 and then Entity (Obj1) = Entity (Obj2)
4900 then
4901 return True;
4902 end if;
4904 -- For renamings, the prefix of any dereference within the renamed
4905 -- object_name is not a variable, and any expression within the
4906 -- renamed object_name contains no references to variables nor
4907 -- calls on nonstatic functions (RM 6.4.1(6.10/3)).
4909 if Is_Renaming (Obj1) then
4910 if Is_Valid_Renaming (Obj1) then
4911 Obj1 := Renamed_Entity (Entity (Obj1));
4912 else
4913 return False;
4914 end if;
4915 end if;
4917 if Is_Renaming (Obj2) then
4918 if Is_Valid_Renaming (Obj2) then
4919 Obj2 := Renamed_Entity (Entity (Obj2));
4920 else
4921 return False;
4922 end if;
4923 end if;
4925 -- No match if not same node kind (such cases are handled by
4926 -- Denotes_Same_Prefix)
4928 if Nkind (Obj1) /= Nkind (Obj2) then
4929 return False;
4931 -- After handling valid renamings, one of the two names statically
4932 -- denoted a renaming declaration whose renamed object_name is known
4933 -- to denote the same object as the other (RM 6.4.1(6.10/3))
4935 elsif Is_Entity_Name (Obj1) then
4936 if Is_Entity_Name (Obj2) then
4937 return Entity (Obj1) = Entity (Obj2);
4938 else
4939 return False;
4940 end if;
4942 -- Both names are selected_components, their prefixes are known to
4943 -- denote the same object, and their selector_names denote the same
4944 -- component (RM 6.4.1(6.6/3)
4946 elsif Nkind (Obj1) = N_Selected_Component then
4947 return Denotes_Same_Object (Prefix (Obj1), Prefix (Obj2))
4948 and then
4949 Entity (Selector_Name (Obj1)) = Entity (Selector_Name (Obj2));
4951 -- Both names are dereferences and the dereferenced names are known to
4952 -- denote the same object (RM 6.4.1(6.7/3))
4954 elsif Nkind (Obj1) = N_Explicit_Dereference then
4955 return Denotes_Same_Object (Prefix (Obj1), Prefix (Obj2));
4957 -- Both names are indexed_components, their prefixes are known to denote
4958 -- the same object, and each of the pairs of corresponding index values
4959 -- are either both static expressions with the same static value or both
4960 -- names that are known to denote the same object (RM 6.4.1(6.8/3))
4962 elsif Nkind (Obj1) = N_Indexed_Component then
4963 if not Denotes_Same_Object (Prefix (Obj1), Prefix (Obj2)) then
4964 return False;
4965 else
4966 declare
4967 Indx1 : Node_Id;
4968 Indx2 : Node_Id;
4970 begin
4971 Indx1 := First (Expressions (Obj1));
4972 Indx2 := First (Expressions (Obj2));
4973 while Present (Indx1) loop
4975 -- Indexes must denote the same static value or same object
4977 if Is_OK_Static_Expression (Indx1) then
4978 if not Is_OK_Static_Expression (Indx2) then
4979 return False;
4981 elsif Expr_Value (Indx1) /= Expr_Value (Indx2) then
4982 return False;
4983 end if;
4985 elsif not Denotes_Same_Object (Indx1, Indx2) then
4986 return False;
4987 end if;
4989 Next (Indx1);
4990 Next (Indx2);
4991 end loop;
4993 return True;
4994 end;
4995 end if;
4997 -- Both names are slices, their prefixes are known to denote the same
4998 -- object, and the two slices have statically matching index constraints
4999 -- (RM 6.4.1(6.9/3))
5001 elsif Nkind (Obj1) = N_Slice
5002 and then Denotes_Same_Object (Prefix (Obj1), Prefix (Obj2))
5003 then
5004 declare
5005 Lo1, Lo2, Hi1, Hi2 : Node_Id;
5007 begin
5008 Get_Index_Bounds (Etype (Obj1), Lo1, Hi1);
5009 Get_Index_Bounds (Etype (Obj2), Lo2, Hi2);
5011 -- Check whether bounds are statically identical. There is no
5012 -- attempt to detect partial overlap of slices.
5014 return Denotes_Same_Object (Lo1, Lo2)
5015 and then
5016 Denotes_Same_Object (Hi1, Hi2);
5017 end;
5019 -- In the recursion, literals appear as indexes
5021 elsif Nkind (Obj1) = N_Integer_Literal
5022 and then
5023 Nkind (Obj2) = N_Integer_Literal
5024 then
5025 return Intval (Obj1) = Intval (Obj2);
5027 else
5028 return False;
5029 end if;
5030 end Denotes_Same_Object;
5032 -------------------------
5033 -- Denotes_Same_Prefix --
5034 -------------------------
5036 function Denotes_Same_Prefix (A1, A2 : Node_Id) return Boolean is
5038 begin
5039 if Is_Entity_Name (A1) then
5040 if Nkind_In (A2, N_Selected_Component, N_Indexed_Component)
5041 and then not Is_Access_Type (Etype (A1))
5042 then
5043 return Denotes_Same_Object (A1, Prefix (A2))
5044 or else Denotes_Same_Prefix (A1, Prefix (A2));
5045 else
5046 return False;
5047 end if;
5049 elsif Is_Entity_Name (A2) then
5050 return Denotes_Same_Prefix (A1 => A2, A2 => A1);
5052 elsif Nkind_In (A1, N_Selected_Component, N_Indexed_Component, N_Slice)
5053 and then
5054 Nkind_In (A2, N_Selected_Component, N_Indexed_Component, N_Slice)
5055 then
5056 declare
5057 Root1, Root2 : Node_Id;
5058 Depth1, Depth2 : Int := 0;
5060 begin
5061 Root1 := Prefix (A1);
5062 while not Is_Entity_Name (Root1) loop
5063 if not Nkind_In
5064 (Root1, N_Selected_Component, N_Indexed_Component)
5065 then
5066 return False;
5067 else
5068 Root1 := Prefix (Root1);
5069 end if;
5071 Depth1 := Depth1 + 1;
5072 end loop;
5074 Root2 := Prefix (A2);
5075 while not Is_Entity_Name (Root2) loop
5076 if not Nkind_In (Root2, N_Selected_Component,
5077 N_Indexed_Component)
5078 then
5079 return False;
5080 else
5081 Root2 := Prefix (Root2);
5082 end if;
5084 Depth2 := Depth2 + 1;
5085 end loop;
5087 -- If both have the same depth and they do not denote the same
5088 -- object, they are disjoint and no warning is needed.
5090 if Depth1 = Depth2 then
5091 return False;
5093 elsif Depth1 > Depth2 then
5094 Root1 := Prefix (A1);
5095 for J in 1 .. Depth1 - Depth2 - 1 loop
5096 Root1 := Prefix (Root1);
5097 end loop;
5099 return Denotes_Same_Object (Root1, A2);
5101 else
5102 Root2 := Prefix (A2);
5103 for J in 1 .. Depth2 - Depth1 - 1 loop
5104 Root2 := Prefix (Root2);
5105 end loop;
5107 return Denotes_Same_Object (A1, Root2);
5108 end if;
5109 end;
5111 else
5112 return False;
5113 end if;
5114 end Denotes_Same_Prefix;
5116 ----------------------
5117 -- Denotes_Variable --
5118 ----------------------
5120 function Denotes_Variable (N : Node_Id) return Boolean is
5121 begin
5122 return Is_Variable (N) and then Paren_Count (N) = 0;
5123 end Denotes_Variable;
5125 -----------------------------
5126 -- Depends_On_Discriminant --
5127 -----------------------------
5129 function Depends_On_Discriminant (N : Node_Id) return Boolean is
5130 L : Node_Id;
5131 H : Node_Id;
5133 begin
5134 Get_Index_Bounds (N, L, H);
5135 return Denotes_Discriminant (L) or else Denotes_Discriminant (H);
5136 end Depends_On_Discriminant;
5138 -------------------------
5139 -- Designate_Same_Unit --
5140 -------------------------
5142 function Designate_Same_Unit
5143 (Name1 : Node_Id;
5144 Name2 : Node_Id) return Boolean
5146 K1 : constant Node_Kind := Nkind (Name1);
5147 K2 : constant Node_Kind := Nkind (Name2);
5149 function Prefix_Node (N : Node_Id) return Node_Id;
5150 -- Returns the parent unit name node of a defining program unit name
5151 -- or the prefix if N is a selected component or an expanded name.
5153 function Select_Node (N : Node_Id) return Node_Id;
5154 -- Returns the defining identifier node of a defining program unit
5155 -- name or the selector node if N is a selected component or an
5156 -- expanded name.
5158 -----------------
5159 -- Prefix_Node --
5160 -----------------
5162 function Prefix_Node (N : Node_Id) return Node_Id is
5163 begin
5164 if Nkind (N) = N_Defining_Program_Unit_Name then
5165 return Name (N);
5166 else
5167 return Prefix (N);
5168 end if;
5169 end Prefix_Node;
5171 -----------------
5172 -- Select_Node --
5173 -----------------
5175 function Select_Node (N : Node_Id) return Node_Id is
5176 begin
5177 if Nkind (N) = N_Defining_Program_Unit_Name then
5178 return Defining_Identifier (N);
5179 else
5180 return Selector_Name (N);
5181 end if;
5182 end Select_Node;
5184 -- Start of processing for Designate_Same_Unit
5186 begin
5187 if Nkind_In (K1, N_Identifier, N_Defining_Identifier)
5188 and then
5189 Nkind_In (K2, N_Identifier, N_Defining_Identifier)
5190 then
5191 return Chars (Name1) = Chars (Name2);
5193 elsif Nkind_In (K1, N_Expanded_Name,
5194 N_Selected_Component,
5195 N_Defining_Program_Unit_Name)
5196 and then
5197 Nkind_In (K2, N_Expanded_Name,
5198 N_Selected_Component,
5199 N_Defining_Program_Unit_Name)
5200 then
5201 return
5202 (Chars (Select_Node (Name1)) = Chars (Select_Node (Name2)))
5203 and then
5204 Designate_Same_Unit (Prefix_Node (Name1), Prefix_Node (Name2));
5206 else
5207 return False;
5208 end if;
5209 end Designate_Same_Unit;
5211 ------------------------------------------
5212 -- function Dynamic_Accessibility_Level --
5213 ------------------------------------------
5215 function Dynamic_Accessibility_Level (Expr : Node_Id) return Node_Id is
5216 E : Entity_Id;
5217 Loc : constant Source_Ptr := Sloc (Expr);
5219 function Make_Level_Literal (Level : Uint) return Node_Id;
5220 -- Construct an integer literal representing an accessibility level
5221 -- with its type set to Natural.
5223 ------------------------
5224 -- Make_Level_Literal --
5225 ------------------------
5227 function Make_Level_Literal (Level : Uint) return Node_Id is
5228 Result : constant Node_Id := Make_Integer_Literal (Loc, Level);
5229 begin
5230 Set_Etype (Result, Standard_Natural);
5231 return Result;
5232 end Make_Level_Literal;
5234 -- Start of processing for Dynamic_Accessibility_Level
5236 begin
5237 if Is_Entity_Name (Expr) then
5238 E := Entity (Expr);
5240 if Present (Renamed_Object (E)) then
5241 return Dynamic_Accessibility_Level (Renamed_Object (E));
5242 end if;
5244 if Is_Formal (E) or else Ekind_In (E, E_Variable, E_Constant) then
5245 if Present (Extra_Accessibility (E)) then
5246 return New_Occurrence_Of (Extra_Accessibility (E), Loc);
5247 end if;
5248 end if;
5249 end if;
5251 -- Unimplemented: Ptr.all'Access, where Ptr has Extra_Accessibility ???
5253 case Nkind (Expr) is
5255 -- For access discriminant, the level of the enclosing object
5257 when N_Selected_Component =>
5258 if Ekind (Entity (Selector_Name (Expr))) = E_Discriminant
5259 and then Ekind (Etype (Entity (Selector_Name (Expr)))) =
5260 E_Anonymous_Access_Type
5261 then
5262 return Make_Level_Literal (Object_Access_Level (Expr));
5263 end if;
5265 when N_Attribute_Reference =>
5266 case Get_Attribute_Id (Attribute_Name (Expr)) is
5268 -- For X'Access, the level of the prefix X
5270 when Attribute_Access =>
5271 return Make_Level_Literal
5272 (Object_Access_Level (Prefix (Expr)));
5274 -- Treat the unchecked attributes as library-level
5276 when Attribute_Unchecked_Access |
5277 Attribute_Unrestricted_Access =>
5278 return Make_Level_Literal (Scope_Depth (Standard_Standard));
5280 -- No other access-valued attributes
5282 when others =>
5283 raise Program_Error;
5284 end case;
5286 when N_Allocator =>
5288 -- Unimplemented: depends on context. As an actual parameter where
5289 -- formal type is anonymous, use
5290 -- Scope_Depth (Current_Scope) + 1.
5291 -- For other cases, see 3.10.2(14/3) and following. ???
5293 null;
5295 when N_Type_Conversion =>
5296 if not Is_Local_Anonymous_Access (Etype (Expr)) then
5298 -- Handle type conversions introduced for a rename of an
5299 -- Ada 2012 stand-alone object of an anonymous access type.
5301 return Dynamic_Accessibility_Level (Expression (Expr));
5302 end if;
5304 when others =>
5305 null;
5306 end case;
5308 return Make_Level_Literal (Type_Access_Level (Etype (Expr)));
5309 end Dynamic_Accessibility_Level;
5311 -----------------------------------
5312 -- Effective_Extra_Accessibility --
5313 -----------------------------------
5315 function Effective_Extra_Accessibility (Id : Entity_Id) return Entity_Id is
5316 begin
5317 if Present (Renamed_Object (Id))
5318 and then Is_Entity_Name (Renamed_Object (Id))
5319 then
5320 return Effective_Extra_Accessibility (Entity (Renamed_Object (Id)));
5321 else
5322 return Extra_Accessibility (Id);
5323 end if;
5324 end Effective_Extra_Accessibility;
5326 -----------------------------
5327 -- Effective_Reads_Enabled --
5328 -----------------------------
5330 function Effective_Reads_Enabled (Id : Entity_Id) return Boolean is
5331 begin
5332 return Has_Enabled_Property (Id, Name_Effective_Reads);
5333 end Effective_Reads_Enabled;
5335 ------------------------------
5336 -- Effective_Writes_Enabled --
5337 ------------------------------
5339 function Effective_Writes_Enabled (Id : Entity_Id) return Boolean is
5340 begin
5341 return Has_Enabled_Property (Id, Name_Effective_Writes);
5342 end Effective_Writes_Enabled;
5344 ------------------------------
5345 -- Enclosing_Comp_Unit_Node --
5346 ------------------------------
5348 function Enclosing_Comp_Unit_Node (N : Node_Id) return Node_Id is
5349 Current_Node : Node_Id;
5351 begin
5352 Current_Node := N;
5353 while Present (Current_Node)
5354 and then Nkind (Current_Node) /= N_Compilation_Unit
5355 loop
5356 Current_Node := Parent (Current_Node);
5357 end loop;
5359 if Nkind (Current_Node) /= N_Compilation_Unit then
5360 return Empty;
5361 else
5362 return Current_Node;
5363 end if;
5364 end Enclosing_Comp_Unit_Node;
5366 --------------------------
5367 -- Enclosing_CPP_Parent --
5368 --------------------------
5370 function Enclosing_CPP_Parent (Typ : Entity_Id) return Entity_Id is
5371 Parent_Typ : Entity_Id := Typ;
5373 begin
5374 while not Is_CPP_Class (Parent_Typ)
5375 and then Etype (Parent_Typ) /= Parent_Typ
5376 loop
5377 Parent_Typ := Etype (Parent_Typ);
5379 if Is_Private_Type (Parent_Typ) then
5380 Parent_Typ := Full_View (Base_Type (Parent_Typ));
5381 end if;
5382 end loop;
5384 pragma Assert (Is_CPP_Class (Parent_Typ));
5385 return Parent_Typ;
5386 end Enclosing_CPP_Parent;
5388 ----------------------------
5389 -- Enclosing_Generic_Body --
5390 ----------------------------
5392 function Enclosing_Generic_Body
5393 (N : Node_Id) return Node_Id
5395 P : Node_Id;
5396 Decl : Node_Id;
5397 Spec : Node_Id;
5399 begin
5400 P := Parent (N);
5401 while Present (P) loop
5402 if Nkind (P) = N_Package_Body
5403 or else Nkind (P) = N_Subprogram_Body
5404 then
5405 Spec := Corresponding_Spec (P);
5407 if Present (Spec) then
5408 Decl := Unit_Declaration_Node (Spec);
5410 if Nkind (Decl) = N_Generic_Package_Declaration
5411 or else Nkind (Decl) = N_Generic_Subprogram_Declaration
5412 then
5413 return P;
5414 end if;
5415 end if;
5416 end if;
5418 P := Parent (P);
5419 end loop;
5421 return Empty;
5422 end Enclosing_Generic_Body;
5424 ----------------------------
5425 -- Enclosing_Generic_Unit --
5426 ----------------------------
5428 function Enclosing_Generic_Unit
5429 (N : Node_Id) return Node_Id
5431 P : Node_Id;
5432 Decl : Node_Id;
5433 Spec : Node_Id;
5435 begin
5436 P := Parent (N);
5437 while Present (P) loop
5438 if Nkind (P) = N_Generic_Package_Declaration
5439 or else Nkind (P) = N_Generic_Subprogram_Declaration
5440 then
5441 return P;
5443 elsif Nkind (P) = N_Package_Body
5444 or else Nkind (P) = N_Subprogram_Body
5445 then
5446 Spec := Corresponding_Spec (P);
5448 if Present (Spec) then
5449 Decl := Unit_Declaration_Node (Spec);
5451 if Nkind (Decl) = N_Generic_Package_Declaration
5452 or else Nkind (Decl) = N_Generic_Subprogram_Declaration
5453 then
5454 return Decl;
5455 end if;
5456 end if;
5457 end if;
5459 P := Parent (P);
5460 end loop;
5462 return Empty;
5463 end Enclosing_Generic_Unit;
5465 -------------------------------
5466 -- Enclosing_Lib_Unit_Entity --
5467 -------------------------------
5469 function Enclosing_Lib_Unit_Entity
5470 (E : Entity_Id := Current_Scope) return Entity_Id
5472 Unit_Entity : Entity_Id;
5474 begin
5475 -- Look for enclosing library unit entity by following scope links.
5476 -- Equivalent to, but faster than indexing through the scope stack.
5478 Unit_Entity := E;
5479 while (Present (Scope (Unit_Entity))
5480 and then Scope (Unit_Entity) /= Standard_Standard)
5481 and not Is_Child_Unit (Unit_Entity)
5482 loop
5483 Unit_Entity := Scope (Unit_Entity);
5484 end loop;
5486 return Unit_Entity;
5487 end Enclosing_Lib_Unit_Entity;
5489 -----------------------
5490 -- Enclosing_Package --
5491 -----------------------
5493 function Enclosing_Package (E : Entity_Id) return Entity_Id is
5494 Dynamic_Scope : constant Entity_Id := Enclosing_Dynamic_Scope (E);
5496 begin
5497 if Dynamic_Scope = Standard_Standard then
5498 return Standard_Standard;
5500 elsif Dynamic_Scope = Empty then
5501 return Empty;
5503 elsif Ekind_In (Dynamic_Scope, E_Package, E_Package_Body,
5504 E_Generic_Package)
5505 then
5506 return Dynamic_Scope;
5508 else
5509 return Enclosing_Package (Dynamic_Scope);
5510 end if;
5511 end Enclosing_Package;
5513 --------------------------
5514 -- Enclosing_Subprogram --
5515 --------------------------
5517 function Enclosing_Subprogram (E : Entity_Id) return Entity_Id is
5518 Dynamic_Scope : constant Entity_Id := Enclosing_Dynamic_Scope (E);
5520 begin
5521 if Dynamic_Scope = Standard_Standard then
5522 return Empty;
5524 elsif Dynamic_Scope = Empty then
5525 return Empty;
5527 elsif Ekind (Dynamic_Scope) = E_Subprogram_Body then
5528 return Corresponding_Spec (Parent (Parent (Dynamic_Scope)));
5530 elsif Ekind (Dynamic_Scope) = E_Block
5531 or else Ekind (Dynamic_Scope) = E_Return_Statement
5532 then
5533 return Enclosing_Subprogram (Dynamic_Scope);
5535 elsif Ekind (Dynamic_Scope) = E_Task_Type then
5536 return Get_Task_Body_Procedure (Dynamic_Scope);
5538 elsif Ekind (Dynamic_Scope) = E_Limited_Private_Type
5539 and then Present (Full_View (Dynamic_Scope))
5540 and then Ekind (Full_View (Dynamic_Scope)) = E_Task_Type
5541 then
5542 return Get_Task_Body_Procedure (Full_View (Dynamic_Scope));
5544 -- No body is generated if the protected operation is eliminated
5546 elsif Convention (Dynamic_Scope) = Convention_Protected
5547 and then not Is_Eliminated (Dynamic_Scope)
5548 and then Present (Protected_Body_Subprogram (Dynamic_Scope))
5549 then
5550 return Protected_Body_Subprogram (Dynamic_Scope);
5552 else
5553 return Dynamic_Scope;
5554 end if;
5555 end Enclosing_Subprogram;
5557 ------------------------
5558 -- Ensure_Freeze_Node --
5559 ------------------------
5561 procedure Ensure_Freeze_Node (E : Entity_Id) is
5562 FN : Node_Id;
5563 begin
5564 if No (Freeze_Node (E)) then
5565 FN := Make_Freeze_Entity (Sloc (E));
5566 Set_Has_Delayed_Freeze (E);
5567 Set_Freeze_Node (E, FN);
5568 Set_Access_Types_To_Process (FN, No_Elist);
5569 Set_TSS_Elist (FN, No_Elist);
5570 Set_Entity (FN, E);
5571 end if;
5572 end Ensure_Freeze_Node;
5574 ----------------
5575 -- Enter_Name --
5576 ----------------
5578 procedure Enter_Name (Def_Id : Entity_Id) is
5579 C : constant Entity_Id := Current_Entity (Def_Id);
5580 E : constant Entity_Id := Current_Entity_In_Scope (Def_Id);
5581 S : constant Entity_Id := Current_Scope;
5583 begin
5584 Generate_Definition (Def_Id);
5586 -- Add new name to current scope declarations. Check for duplicate
5587 -- declaration, which may or may not be a genuine error.
5589 if Present (E) then
5591 -- Case of previous entity entered because of a missing declaration
5592 -- or else a bad subtype indication. Best is to use the new entity,
5593 -- and make the previous one invisible.
5595 if Etype (E) = Any_Type then
5596 Set_Is_Immediately_Visible (E, False);
5598 -- Case of renaming declaration constructed for package instances.
5599 -- if there is an explicit declaration with the same identifier,
5600 -- the renaming is not immediately visible any longer, but remains
5601 -- visible through selected component notation.
5603 elsif Nkind (Parent (E)) = N_Package_Renaming_Declaration
5604 and then not Comes_From_Source (E)
5605 then
5606 Set_Is_Immediately_Visible (E, False);
5608 -- The new entity may be the package renaming, which has the same
5609 -- same name as a generic formal which has been seen already.
5611 elsif Nkind (Parent (Def_Id)) = N_Package_Renaming_Declaration
5612 and then not Comes_From_Source (Def_Id)
5613 then
5614 Set_Is_Immediately_Visible (E, False);
5616 -- For a fat pointer corresponding to a remote access to subprogram,
5617 -- we use the same identifier as the RAS type, so that the proper
5618 -- name appears in the stub. This type is only retrieved through
5619 -- the RAS type and never by visibility, and is not added to the
5620 -- visibility list (see below).
5622 elsif Nkind (Parent (Def_Id)) = N_Full_Type_Declaration
5623 and then Ekind (Def_Id) = E_Record_Type
5624 and then Present (Corresponding_Remote_Type (Def_Id))
5625 then
5626 null;
5628 -- Case of an implicit operation or derived literal. The new entity
5629 -- hides the implicit one, which is removed from all visibility,
5630 -- i.e. the entity list of its scope, and homonym chain of its name.
5632 elsif (Is_Overloadable (E) and then Is_Inherited_Operation (E))
5633 or else Is_Internal (E)
5634 then
5635 declare
5636 Prev : Entity_Id;
5637 Prev_Vis : Entity_Id;
5638 Decl : constant Node_Id := Parent (E);
5640 begin
5641 -- If E is an implicit declaration, it cannot be the first
5642 -- entity in the scope.
5644 Prev := First_Entity (Current_Scope);
5645 while Present (Prev) and then Next_Entity (Prev) /= E loop
5646 Next_Entity (Prev);
5647 end loop;
5649 if No (Prev) then
5651 -- If E is not on the entity chain of the current scope,
5652 -- it is an implicit declaration in the generic formal
5653 -- part of a generic subprogram. When analyzing the body,
5654 -- the generic formals are visible but not on the entity
5655 -- chain of the subprogram. The new entity will become
5656 -- the visible one in the body.
5658 pragma Assert
5659 (Nkind (Parent (Decl)) = N_Generic_Subprogram_Declaration);
5660 null;
5662 else
5663 Set_Next_Entity (Prev, Next_Entity (E));
5665 if No (Next_Entity (Prev)) then
5666 Set_Last_Entity (Current_Scope, Prev);
5667 end if;
5669 if E = Current_Entity (E) then
5670 Prev_Vis := Empty;
5672 else
5673 Prev_Vis := Current_Entity (E);
5674 while Homonym (Prev_Vis) /= E loop
5675 Prev_Vis := Homonym (Prev_Vis);
5676 end loop;
5677 end if;
5679 if Present (Prev_Vis) then
5681 -- Skip E in the visibility chain
5683 Set_Homonym (Prev_Vis, Homonym (E));
5685 else
5686 Set_Name_Entity_Id (Chars (E), Homonym (E));
5687 end if;
5688 end if;
5689 end;
5691 -- This section of code could use a comment ???
5693 elsif Present (Etype (E))
5694 and then Is_Concurrent_Type (Etype (E))
5695 and then E = Def_Id
5696 then
5697 return;
5699 -- If the homograph is a protected component renaming, it should not
5700 -- be hiding the current entity. Such renamings are treated as weak
5701 -- declarations.
5703 elsif Is_Prival (E) then
5704 Set_Is_Immediately_Visible (E, False);
5706 -- In this case the current entity is a protected component renaming.
5707 -- Perform minimal decoration by setting the scope and return since
5708 -- the prival should not be hiding other visible entities.
5710 elsif Is_Prival (Def_Id) then
5711 Set_Scope (Def_Id, Current_Scope);
5712 return;
5714 -- Analogous to privals, the discriminal generated for an entry index
5715 -- parameter acts as a weak declaration. Perform minimal decoration
5716 -- to avoid bogus errors.
5718 elsif Is_Discriminal (Def_Id)
5719 and then Ekind (Discriminal_Link (Def_Id)) = E_Entry_Index_Parameter
5720 then
5721 Set_Scope (Def_Id, Current_Scope);
5722 return;
5724 -- In the body or private part of an instance, a type extension may
5725 -- introduce a component with the same name as that of an actual. The
5726 -- legality rule is not enforced, but the semantics of the full type
5727 -- with two components of same name are not clear at this point???
5729 elsif In_Instance_Not_Visible then
5730 null;
5732 -- When compiling a package body, some child units may have become
5733 -- visible. They cannot conflict with local entities that hide them.
5735 elsif Is_Child_Unit (E)
5736 and then In_Open_Scopes (Scope (E))
5737 and then not Is_Immediately_Visible (E)
5738 then
5739 null;
5741 -- Conversely, with front-end inlining we may compile the parent body
5742 -- first, and a child unit subsequently. The context is now the
5743 -- parent spec, and body entities are not visible.
5745 elsif Is_Child_Unit (Def_Id)
5746 and then Is_Package_Body_Entity (E)
5747 and then not In_Package_Body (Current_Scope)
5748 then
5749 null;
5751 -- Case of genuine duplicate declaration
5753 else
5754 Error_Msg_Sloc := Sloc (E);
5756 -- If the previous declaration is an incomplete type declaration
5757 -- this may be an attempt to complete it with a private type. The
5758 -- following avoids confusing cascaded errors.
5760 if Nkind (Parent (E)) = N_Incomplete_Type_Declaration
5761 and then Nkind (Parent (Def_Id)) = N_Private_Type_Declaration
5762 then
5763 Error_Msg_N
5764 ("incomplete type cannot be completed with a private " &
5765 "declaration", Parent (Def_Id));
5766 Set_Is_Immediately_Visible (E, False);
5767 Set_Full_View (E, Def_Id);
5769 -- An inherited component of a record conflicts with a new
5770 -- discriminant. The discriminant is inserted first in the scope,
5771 -- but the error should be posted on it, not on the component.
5773 elsif Ekind (E) = E_Discriminant
5774 and then Present (Scope (Def_Id))
5775 and then Scope (Def_Id) /= Current_Scope
5776 then
5777 Error_Msg_Sloc := Sloc (Def_Id);
5778 Error_Msg_N ("& conflicts with declaration#", E);
5779 return;
5781 -- If the name of the unit appears in its own context clause, a
5782 -- dummy package with the name has already been created, and the
5783 -- error emitted. Try to continue quietly.
5785 elsif Error_Posted (E)
5786 and then Sloc (E) = No_Location
5787 and then Nkind (Parent (E)) = N_Package_Specification
5788 and then Current_Scope = Standard_Standard
5789 then
5790 Set_Scope (Def_Id, Current_Scope);
5791 return;
5793 else
5794 Error_Msg_N ("& conflicts with declaration#", Def_Id);
5796 -- Avoid cascaded messages with duplicate components in
5797 -- derived types.
5799 if Ekind_In (E, E_Component, E_Discriminant) then
5800 return;
5801 end if;
5802 end if;
5804 if Nkind (Parent (Parent (Def_Id))) =
5805 N_Generic_Subprogram_Declaration
5806 and then Def_Id =
5807 Defining_Entity (Specification (Parent (Parent (Def_Id))))
5808 then
5809 Error_Msg_N ("\generic units cannot be overloaded", Def_Id);
5810 end if;
5812 -- If entity is in standard, then we are in trouble, because it
5813 -- means that we have a library package with a duplicated name.
5814 -- That's hard to recover from, so abort.
5816 if S = Standard_Standard then
5817 raise Unrecoverable_Error;
5819 -- Otherwise we continue with the declaration. Having two
5820 -- identical declarations should not cause us too much trouble.
5822 else
5823 null;
5824 end if;
5825 end if;
5826 end if;
5828 -- If we fall through, declaration is OK, at least OK enough to continue
5830 -- If Def_Id is a discriminant or a record component we are in the midst
5831 -- of inheriting components in a derived record definition. Preserve
5832 -- their Ekind and Etype.
5834 if Ekind_In (Def_Id, E_Discriminant, E_Component) then
5835 null;
5837 -- If a type is already set, leave it alone (happens when a type
5838 -- declaration is reanalyzed following a call to the optimizer).
5840 elsif Present (Etype (Def_Id)) then
5841 null;
5843 -- Otherwise, the kind E_Void insures that premature uses of the entity
5844 -- will be detected. Any_Type insures that no cascaded errors will occur
5846 else
5847 Set_Ekind (Def_Id, E_Void);
5848 Set_Etype (Def_Id, Any_Type);
5849 end if;
5851 -- Inherited discriminants and components in derived record types are
5852 -- immediately visible. Itypes are not.
5854 -- Unless the Itype is for a record type with a corresponding remote
5855 -- type (what is that about, it was not commented ???)
5857 if Ekind_In (Def_Id, E_Discriminant, E_Component)
5858 or else
5859 ((not Is_Record_Type (Def_Id)
5860 or else No (Corresponding_Remote_Type (Def_Id)))
5861 and then not Is_Itype (Def_Id))
5862 then
5863 Set_Is_Immediately_Visible (Def_Id);
5864 Set_Current_Entity (Def_Id);
5865 end if;
5867 Set_Homonym (Def_Id, C);
5868 Append_Entity (Def_Id, S);
5869 Set_Public_Status (Def_Id);
5871 -- Declaring a homonym is not allowed in SPARK ...
5873 if Present (C) and then Restriction_Check_Required (SPARK_05) then
5874 declare
5875 Enclosing_Subp : constant Node_Id := Enclosing_Subprogram (Def_Id);
5876 Enclosing_Pack : constant Node_Id := Enclosing_Package (Def_Id);
5877 Other_Scope : constant Node_Id := Enclosing_Dynamic_Scope (C);
5879 begin
5880 -- ... unless the new declaration is in a subprogram, and the
5881 -- visible declaration is a variable declaration or a parameter
5882 -- specification outside that subprogram.
5884 if Present (Enclosing_Subp)
5885 and then Nkind_In (Parent (C), N_Object_Declaration,
5886 N_Parameter_Specification)
5887 and then not Scope_Within_Or_Same (Other_Scope, Enclosing_Subp)
5888 then
5889 null;
5891 -- ... or the new declaration is in a package, and the visible
5892 -- declaration occurs outside that package.
5894 elsif Present (Enclosing_Pack)
5895 and then not Scope_Within_Or_Same (Other_Scope, Enclosing_Pack)
5896 then
5897 null;
5899 -- ... or the new declaration is a component declaration in a
5900 -- record type definition.
5902 elsif Nkind (Parent (Def_Id)) = N_Component_Declaration then
5903 null;
5905 -- Don't issue error for non-source entities
5907 elsif Comes_From_Source (Def_Id)
5908 and then Comes_From_Source (C)
5909 then
5910 Error_Msg_Sloc := Sloc (C);
5911 Check_SPARK_05_Restriction
5912 ("redeclaration of identifier &#", Def_Id);
5913 end if;
5914 end;
5915 end if;
5917 -- Warn if new entity hides an old one
5919 if Warn_On_Hiding and then Present (C)
5921 -- Don't warn for record components since they always have a well
5922 -- defined scope which does not confuse other uses. Note that in
5923 -- some cases, Ekind has not been set yet.
5925 and then Ekind (C) /= E_Component
5926 and then Ekind (C) /= E_Discriminant
5927 and then Nkind (Parent (C)) /= N_Component_Declaration
5928 and then Ekind (Def_Id) /= E_Component
5929 and then Ekind (Def_Id) /= E_Discriminant
5930 and then Nkind (Parent (Def_Id)) /= N_Component_Declaration
5932 -- Don't warn for one character variables. It is too common to use
5933 -- such variables as locals and will just cause too many false hits.
5935 and then Length_Of_Name (Chars (C)) /= 1
5937 -- Don't warn for non-source entities
5939 and then Comes_From_Source (C)
5940 and then Comes_From_Source (Def_Id)
5942 -- Don't warn unless entity in question is in extended main source
5944 and then In_Extended_Main_Source_Unit (Def_Id)
5946 -- Finally, the hidden entity must be either immediately visible or
5947 -- use visible (i.e. from a used package).
5949 and then
5950 (Is_Immediately_Visible (C)
5951 or else
5952 Is_Potentially_Use_Visible (C))
5953 then
5954 Error_Msg_Sloc := Sloc (C);
5955 Error_Msg_N ("declaration hides &#?h?", Def_Id);
5956 end if;
5957 end Enter_Name;
5959 ---------------
5960 -- Entity_Of --
5961 ---------------
5963 function Entity_Of (N : Node_Id) return Entity_Id is
5964 Id : Entity_Id;
5966 begin
5967 Id := Empty;
5969 if Is_Entity_Name (N) then
5970 Id := Entity (N);
5972 -- Follow a possible chain of renamings to reach the root renamed
5973 -- object.
5975 while Present (Id) and then Present (Renamed_Object (Id)) loop
5976 if Is_Entity_Name (Renamed_Object (Id)) then
5977 Id := Entity (Renamed_Object (Id));
5978 else
5979 Id := Empty;
5980 exit;
5981 end if;
5982 end loop;
5983 end if;
5985 return Id;
5986 end Entity_Of;
5988 --------------------------
5989 -- Explain_Limited_Type --
5990 --------------------------
5992 procedure Explain_Limited_Type (T : Entity_Id; N : Node_Id) is
5993 C : Entity_Id;
5995 begin
5996 -- For array, component type must be limited
5998 if Is_Array_Type (T) then
5999 Error_Msg_Node_2 := T;
6000 Error_Msg_NE
6001 ("\component type& of type& is limited", N, Component_Type (T));
6002 Explain_Limited_Type (Component_Type (T), N);
6004 elsif Is_Record_Type (T) then
6006 -- No need for extra messages if explicit limited record
6008 if Is_Limited_Record (Base_Type (T)) then
6009 return;
6010 end if;
6012 -- Otherwise find a limited component. Check only components that
6013 -- come from source, or inherited components that appear in the
6014 -- source of the ancestor.
6016 C := First_Component (T);
6017 while Present (C) loop
6018 if Is_Limited_Type (Etype (C))
6019 and then
6020 (Comes_From_Source (C)
6021 or else
6022 (Present (Original_Record_Component (C))
6023 and then
6024 Comes_From_Source (Original_Record_Component (C))))
6025 then
6026 Error_Msg_Node_2 := T;
6027 Error_Msg_NE ("\component& of type& has limited type", N, C);
6028 Explain_Limited_Type (Etype (C), N);
6029 return;
6030 end if;
6032 Next_Component (C);
6033 end loop;
6035 -- The type may be declared explicitly limited, even if no component
6036 -- of it is limited, in which case we fall out of the loop.
6037 return;
6038 end if;
6039 end Explain_Limited_Type;
6041 -------------------------------
6042 -- Extensions_Visible_Status --
6043 -------------------------------
6045 function Extensions_Visible_Status
6046 (Id : Entity_Id) return Extensions_Visible_Mode
6048 Arg : Node_Id;
6049 Decl : Node_Id;
6050 Expr : Node_Id;
6051 Prag : Node_Id;
6052 Subp : Entity_Id;
6054 begin
6055 -- When a formal parameter is subject to Extensions_Visible, the pragma
6056 -- is stored in the contract of related subprogram.
6058 if Is_Formal (Id) then
6059 Subp := Scope (Id);
6061 elsif Is_Subprogram_Or_Generic_Subprogram (Id) then
6062 Subp := Id;
6064 -- No other construct carries this pragma
6066 else
6067 return Extensions_Visible_None;
6068 end if;
6070 Prag := Get_Pragma (Subp, Pragma_Extensions_Visible);
6072 -- In certain cases analysis may request the Extensions_Visible status
6073 -- of an expression function before the pragma has been analyzed yet.
6074 -- Inspect the declarative items after the expression function looking
6075 -- for the pragma (if any).
6077 if No (Prag) and then Is_Expression_Function (Subp) then
6078 Decl := Next (Unit_Declaration_Node (Subp));
6079 while Present (Decl) loop
6080 if Nkind (Decl) = N_Pragma
6081 and then Pragma_Name (Decl) = Name_Extensions_Visible
6082 then
6083 Prag := Decl;
6084 exit;
6086 -- A source construct ends the region where Extensions_Visible may
6087 -- appear, stop the traversal. An expanded expression function is
6088 -- no longer a source construct, but it must still be recognized.
6090 elsif Comes_From_Source (Decl)
6091 or else
6092 (Nkind_In (Decl, N_Subprogram_Body,
6093 N_Subprogram_Declaration)
6094 and then Is_Expression_Function (Defining_Entity (Decl)))
6095 then
6096 exit;
6097 end if;
6099 Next (Decl);
6100 end loop;
6101 end if;
6103 -- Extract the value from the Boolean expression (if any)
6105 if Present (Prag) then
6106 Arg := First (Pragma_Argument_Associations (Prag));
6108 if Present (Arg) then
6109 Expr := Get_Pragma_Arg (Arg);
6111 -- When the associated subprogram is an expression function, the
6112 -- argument of the pragma may not have been analyzed.
6114 if not Analyzed (Expr) then
6115 Preanalyze_And_Resolve (Expr, Standard_Boolean);
6116 end if;
6118 -- Guard against cascading errors when the argument of pragma
6119 -- Extensions_Visible is not a valid static Boolean expression.
6121 if Error_Posted (Expr) then
6122 return Extensions_Visible_None;
6124 elsif Is_True (Expr_Value (Expr)) then
6125 return Extensions_Visible_True;
6127 else
6128 return Extensions_Visible_False;
6129 end if;
6131 -- Otherwise the aspect or pragma defaults to True
6133 else
6134 return Extensions_Visible_True;
6135 end if;
6137 -- Otherwise aspect or pragma Extensions_Visible is not inherited or
6138 -- directly specified. In SPARK code, its value defaults to "False".
6140 elsif SPARK_Mode = On then
6141 return Extensions_Visible_False;
6143 -- In non-SPARK code, aspect or pragma Extensions_Visible defaults to
6144 -- "True".
6146 else
6147 return Extensions_Visible_True;
6148 end if;
6149 end Extensions_Visible_Status;
6151 -----------------
6152 -- Find_Actual --
6153 -----------------
6155 procedure Find_Actual
6156 (N : Node_Id;
6157 Formal : out Entity_Id;
6158 Call : out Node_Id)
6160 Parnt : constant Node_Id := Parent (N);
6161 Actual : Node_Id;
6163 begin
6164 if Nkind_In (Parnt, N_Indexed_Component, N_Selected_Component)
6165 and then N = Prefix (Parnt)
6166 then
6167 Find_Actual (Parnt, Formal, Call);
6168 return;
6170 elsif Nkind (Parnt) = N_Parameter_Association
6171 and then N = Explicit_Actual_Parameter (Parnt)
6172 then
6173 Call := Parent (Parnt);
6175 elsif Nkind (Parnt) in N_Subprogram_Call then
6176 Call := Parnt;
6178 else
6179 Formal := Empty;
6180 Call := Empty;
6181 return;
6182 end if;
6184 -- If we have a call to a subprogram look for the parameter. Note that
6185 -- we exclude overloaded calls, since we don't know enough to be sure
6186 -- of giving the right answer in this case.
6188 if Nkind_In (Call, N_Function_Call, N_Procedure_Call_Statement)
6189 and then Is_Entity_Name (Name (Call))
6190 and then Present (Entity (Name (Call)))
6191 and then Is_Overloadable (Entity (Name (Call)))
6192 and then not Is_Overloaded (Name (Call))
6193 then
6194 -- If node is name in call it is not an actual
6196 if N = Name (Call) then
6197 Call := Empty;
6198 Formal := Empty;
6199 return;
6200 end if;
6202 -- Fall here if we are definitely a parameter
6204 Actual := First_Actual (Call);
6205 Formal := First_Formal (Entity (Name (Call)));
6206 while Present (Formal) and then Present (Actual) loop
6207 if Actual = N then
6208 return;
6210 -- An actual that is the prefix in a prefixed call may have
6211 -- been rewritten in the call, after the deferred reference
6212 -- was collected. Check if sloc and kinds and names match.
6214 elsif Sloc (Actual) = Sloc (N)
6215 and then Nkind (Actual) = N_Identifier
6216 and then Nkind (Actual) = Nkind (N)
6217 and then Chars (Actual) = Chars (N)
6218 then
6219 return;
6221 else
6222 Actual := Next_Actual (Actual);
6223 Formal := Next_Formal (Formal);
6224 end if;
6225 end loop;
6226 end if;
6228 -- Fall through here if we did not find matching actual
6230 Formal := Empty;
6231 Call := Empty;
6232 end Find_Actual;
6234 ---------------------------
6235 -- Find_Body_Discriminal --
6236 ---------------------------
6238 function Find_Body_Discriminal
6239 (Spec_Discriminant : Entity_Id) return Entity_Id
6241 Tsk : Entity_Id;
6242 Disc : Entity_Id;
6244 begin
6245 -- If expansion is suppressed, then the scope can be the concurrent type
6246 -- itself rather than a corresponding concurrent record type.
6248 if Is_Concurrent_Type (Scope (Spec_Discriminant)) then
6249 Tsk := Scope (Spec_Discriminant);
6251 else
6252 pragma Assert (Is_Concurrent_Record_Type (Scope (Spec_Discriminant)));
6254 Tsk := Corresponding_Concurrent_Type (Scope (Spec_Discriminant));
6255 end if;
6257 -- Find discriminant of original concurrent type, and use its current
6258 -- discriminal, which is the renaming within the task/protected body.
6260 Disc := First_Discriminant (Tsk);
6261 while Present (Disc) loop
6262 if Chars (Disc) = Chars (Spec_Discriminant) then
6263 return Discriminal (Disc);
6264 end if;
6266 Next_Discriminant (Disc);
6267 end loop;
6269 -- That loop should always succeed in finding a matching entry and
6270 -- returning. Fatal error if not.
6272 raise Program_Error;
6273 end Find_Body_Discriminal;
6275 -------------------------------------
6276 -- Find_Corresponding_Discriminant --
6277 -------------------------------------
6279 function Find_Corresponding_Discriminant
6280 (Id : Node_Id;
6281 Typ : Entity_Id) return Entity_Id
6283 Par_Disc : Entity_Id;
6284 Old_Disc : Entity_Id;
6285 New_Disc : Entity_Id;
6287 begin
6288 Par_Disc := Original_Record_Component (Original_Discriminant (Id));
6290 -- The original type may currently be private, and the discriminant
6291 -- only appear on its full view.
6293 if Is_Private_Type (Scope (Par_Disc))
6294 and then not Has_Discriminants (Scope (Par_Disc))
6295 and then Present (Full_View (Scope (Par_Disc)))
6296 then
6297 Old_Disc := First_Discriminant (Full_View (Scope (Par_Disc)));
6298 else
6299 Old_Disc := First_Discriminant (Scope (Par_Disc));
6300 end if;
6302 if Is_Class_Wide_Type (Typ) then
6303 New_Disc := First_Discriminant (Root_Type (Typ));
6304 else
6305 New_Disc := First_Discriminant (Typ);
6306 end if;
6308 while Present (Old_Disc) and then Present (New_Disc) loop
6309 if Old_Disc = Par_Disc then
6310 return New_Disc;
6311 end if;
6313 Next_Discriminant (Old_Disc);
6314 Next_Discriminant (New_Disc);
6315 end loop;
6317 -- Should always find it
6319 raise Program_Error;
6320 end Find_Corresponding_Discriminant;
6322 ----------------------------------
6323 -- Find_Enclosing_Iterator_Loop --
6324 ----------------------------------
6326 function Find_Enclosing_Iterator_Loop (Id : Entity_Id) return Entity_Id is
6327 Constr : Node_Id;
6328 S : Entity_Id;
6330 begin
6331 -- Traverse the scope chain looking for an iterator loop. Such loops are
6332 -- usually transformed into blocks, hence the use of Original_Node.
6334 S := Id;
6335 while Present (S) and then S /= Standard_Standard loop
6336 if Ekind (S) = E_Loop
6337 and then Nkind (Parent (S)) = N_Implicit_Label_Declaration
6338 then
6339 Constr := Original_Node (Label_Construct (Parent (S)));
6341 if Nkind (Constr) = N_Loop_Statement
6342 and then Present (Iteration_Scheme (Constr))
6343 and then Nkind (Iterator_Specification
6344 (Iteration_Scheme (Constr))) =
6345 N_Iterator_Specification
6346 then
6347 return S;
6348 end if;
6349 end if;
6351 S := Scope (S);
6352 end loop;
6354 return Empty;
6355 end Find_Enclosing_Iterator_Loop;
6357 ------------------------------------
6358 -- Find_Loop_In_Conditional_Block --
6359 ------------------------------------
6361 function Find_Loop_In_Conditional_Block (N : Node_Id) return Node_Id is
6362 Stmt : Node_Id;
6364 begin
6365 Stmt := N;
6367 if Nkind (Stmt) = N_If_Statement then
6368 Stmt := First (Then_Statements (Stmt));
6369 end if;
6371 pragma Assert (Nkind (Stmt) = N_Block_Statement);
6373 -- Inspect the statements of the conditional block. In general the loop
6374 -- should be the first statement in the statement sequence of the block,
6375 -- but the finalization machinery may have introduced extra object
6376 -- declarations.
6378 Stmt := First (Statements (Handled_Statement_Sequence (Stmt)));
6379 while Present (Stmt) loop
6380 if Nkind (Stmt) = N_Loop_Statement then
6381 return Stmt;
6382 end if;
6384 Next (Stmt);
6385 end loop;
6387 -- The expansion of attribute 'Loop_Entry produced a malformed block
6389 raise Program_Error;
6390 end Find_Loop_In_Conditional_Block;
6392 --------------------------
6393 -- Find_Overlaid_Entity --
6394 --------------------------
6396 procedure Find_Overlaid_Entity
6397 (N : Node_Id;
6398 Ent : out Entity_Id;
6399 Off : out Boolean)
6401 Expr : Node_Id;
6403 begin
6404 -- We are looking for one of the two following forms:
6406 -- for X'Address use Y'Address
6408 -- or
6410 -- Const : constant Address := expr;
6411 -- ...
6412 -- for X'Address use Const;
6414 -- In the second case, the expr is either Y'Address, or recursively a
6415 -- constant that eventually references Y'Address.
6417 Ent := Empty;
6418 Off := False;
6420 if Nkind (N) = N_Attribute_Definition_Clause
6421 and then Chars (N) = Name_Address
6422 then
6423 Expr := Expression (N);
6425 -- This loop checks the form of the expression for Y'Address,
6426 -- using recursion to deal with intermediate constants.
6428 loop
6429 -- Check for Y'Address
6431 if Nkind (Expr) = N_Attribute_Reference
6432 and then Attribute_Name (Expr) = Name_Address
6433 then
6434 Expr := Prefix (Expr);
6435 exit;
6437 -- Check for Const where Const is a constant entity
6439 elsif Is_Entity_Name (Expr)
6440 and then Ekind (Entity (Expr)) = E_Constant
6441 then
6442 Expr := Constant_Value (Entity (Expr));
6444 -- Anything else does not need checking
6446 else
6447 return;
6448 end if;
6449 end loop;
6451 -- This loop checks the form of the prefix for an entity, using
6452 -- recursion to deal with intermediate components.
6454 loop
6455 -- Check for Y where Y is an entity
6457 if Is_Entity_Name (Expr) then
6458 Ent := Entity (Expr);
6459 return;
6461 -- Check for components
6463 elsif
6464 Nkind_In (Expr, N_Selected_Component, N_Indexed_Component)
6465 then
6466 Expr := Prefix (Expr);
6467 Off := True;
6469 -- Anything else does not need checking
6471 else
6472 return;
6473 end if;
6474 end loop;
6475 end if;
6476 end Find_Overlaid_Entity;
6478 -------------------------
6479 -- Find_Parameter_Type --
6480 -------------------------
6482 function Find_Parameter_Type (Param : Node_Id) return Entity_Id is
6483 begin
6484 if Nkind (Param) /= N_Parameter_Specification then
6485 return Empty;
6487 -- For an access parameter, obtain the type from the formal entity
6488 -- itself, because access to subprogram nodes do not carry a type.
6489 -- Shouldn't we always use the formal entity ???
6491 elsif Nkind (Parameter_Type (Param)) = N_Access_Definition then
6492 return Etype (Defining_Identifier (Param));
6494 else
6495 return Etype (Parameter_Type (Param));
6496 end if;
6497 end Find_Parameter_Type;
6499 -----------------------------------
6500 -- Find_Placement_In_State_Space --
6501 -----------------------------------
6503 procedure Find_Placement_In_State_Space
6504 (Item_Id : Entity_Id;
6505 Placement : out State_Space_Kind;
6506 Pack_Id : out Entity_Id)
6508 Context : Entity_Id;
6510 begin
6511 -- Assume that the item does not appear in the state space of a package
6513 Placement := Not_In_Package;
6514 Pack_Id := Empty;
6516 -- Climb the scope stack and examine the enclosing context
6518 Context := Scope (Item_Id);
6519 while Present (Context) and then Context /= Standard_Standard loop
6520 if Ekind (Context) = E_Package then
6521 Pack_Id := Context;
6523 -- A package body is a cut off point for the traversal as the item
6524 -- cannot be visible to the outside from this point on. Note that
6525 -- this test must be done first as a body is also classified as a
6526 -- private part.
6528 if In_Package_Body (Context) then
6529 Placement := Body_State_Space;
6530 return;
6532 -- The private part of a package is a cut off point for the
6533 -- traversal as the item cannot be visible to the outside from
6534 -- this point on.
6536 elsif In_Private_Part (Context) then
6537 Placement := Private_State_Space;
6538 return;
6540 -- When the item appears in the visible state space of a package,
6541 -- continue to climb the scope stack as this may not be the final
6542 -- state space.
6544 else
6545 Placement := Visible_State_Space;
6547 -- The visible state space of a child unit acts as the proper
6548 -- placement of an item.
6550 if Is_Child_Unit (Context) then
6551 return;
6552 end if;
6553 end if;
6555 -- The item or its enclosing package appear in a construct that has
6556 -- no state space.
6558 else
6559 Placement := Not_In_Package;
6560 return;
6561 end if;
6563 Context := Scope (Context);
6564 end loop;
6565 end Find_Placement_In_State_Space;
6567 ------------------------
6568 -- Find_Specific_Type --
6569 ------------------------
6571 function Find_Specific_Type (CW : Entity_Id) return Entity_Id is
6572 Typ : Entity_Id := Root_Type (CW);
6574 begin
6575 if Ekind (Typ) = E_Incomplete_Type then
6576 if From_Limited_With (Typ) then
6577 Typ := Non_Limited_View (Typ);
6578 else
6579 Typ := Full_View (Typ);
6580 end if;
6581 end if;
6583 if Is_Private_Type (Typ)
6584 and then not Is_Tagged_Type (Typ)
6585 and then Present (Full_View (Typ))
6586 then
6587 return Full_View (Typ);
6588 else
6589 return Typ;
6590 end if;
6591 end Find_Specific_Type;
6593 -----------------------------
6594 -- Find_Static_Alternative --
6595 -----------------------------
6597 function Find_Static_Alternative (N : Node_Id) return Node_Id is
6598 Expr : constant Node_Id := Expression (N);
6599 Val : constant Uint := Expr_Value (Expr);
6600 Alt : Node_Id;
6601 Choice : Node_Id;
6603 begin
6604 Alt := First (Alternatives (N));
6606 Search : loop
6607 if Nkind (Alt) /= N_Pragma then
6608 Choice := First (Discrete_Choices (Alt));
6609 while Present (Choice) loop
6611 -- Others choice, always matches
6613 if Nkind (Choice) = N_Others_Choice then
6614 exit Search;
6616 -- Range, check if value is in the range
6618 elsif Nkind (Choice) = N_Range then
6619 exit Search when
6620 Val >= Expr_Value (Low_Bound (Choice))
6621 and then
6622 Val <= Expr_Value (High_Bound (Choice));
6624 -- Choice is a subtype name. Note that we know it must
6625 -- be a static subtype, since otherwise it would have
6626 -- been diagnosed as illegal.
6628 elsif Is_Entity_Name (Choice)
6629 and then Is_Type (Entity (Choice))
6630 then
6631 exit Search when Is_In_Range (Expr, Etype (Choice),
6632 Assume_Valid => False);
6634 -- Choice is a subtype indication
6636 elsif Nkind (Choice) = N_Subtype_Indication then
6637 declare
6638 C : constant Node_Id := Constraint (Choice);
6639 R : constant Node_Id := Range_Expression (C);
6641 begin
6642 exit Search when
6643 Val >= Expr_Value (Low_Bound (R))
6644 and then
6645 Val <= Expr_Value (High_Bound (R));
6646 end;
6648 -- Choice is a simple expression
6650 else
6651 exit Search when Val = Expr_Value (Choice);
6652 end if;
6654 Next (Choice);
6655 end loop;
6656 end if;
6658 Next (Alt);
6659 pragma Assert (Present (Alt));
6660 end loop Search;
6662 -- The above loop *must* terminate by finding a match, since
6663 -- we know the case statement is valid, and the value of the
6664 -- expression is known at compile time. When we fall out of
6665 -- the loop, Alt points to the alternative that we know will
6666 -- be selected at run time.
6668 return Alt;
6669 end Find_Static_Alternative;
6671 ------------------
6672 -- First_Actual --
6673 ------------------
6675 function First_Actual (Node : Node_Id) return Node_Id is
6676 N : Node_Id;
6678 begin
6679 if No (Parameter_Associations (Node)) then
6680 return Empty;
6681 end if;
6683 N := First (Parameter_Associations (Node));
6685 if Nkind (N) = N_Parameter_Association then
6686 return First_Named_Actual (Node);
6687 else
6688 return N;
6689 end if;
6690 end First_Actual;
6692 -----------------------
6693 -- Gather_Components --
6694 -----------------------
6696 procedure Gather_Components
6697 (Typ : Entity_Id;
6698 Comp_List : Node_Id;
6699 Governed_By : List_Id;
6700 Into : Elist_Id;
6701 Report_Errors : out Boolean)
6703 Assoc : Node_Id;
6704 Variant : Node_Id;
6705 Discrete_Choice : Node_Id;
6706 Comp_Item : Node_Id;
6708 Discrim : Entity_Id;
6709 Discrim_Name : Node_Id;
6710 Discrim_Value : Node_Id;
6712 begin
6713 Report_Errors := False;
6715 if No (Comp_List) or else Null_Present (Comp_List) then
6716 return;
6718 elsif Present (Component_Items (Comp_List)) then
6719 Comp_Item := First (Component_Items (Comp_List));
6721 else
6722 Comp_Item := Empty;
6723 end if;
6725 while Present (Comp_Item) loop
6727 -- Skip the tag of a tagged record, the interface tags, as well
6728 -- as all items that are not user components (anonymous types,
6729 -- rep clauses, Parent field, controller field).
6731 if Nkind (Comp_Item) = N_Component_Declaration then
6732 declare
6733 Comp : constant Entity_Id := Defining_Identifier (Comp_Item);
6734 begin
6735 if not Is_Tag (Comp) and then Chars (Comp) /= Name_uParent then
6736 Append_Elmt (Comp, Into);
6737 end if;
6738 end;
6739 end if;
6741 Next (Comp_Item);
6742 end loop;
6744 if No (Variant_Part (Comp_List)) then
6745 return;
6746 else
6747 Discrim_Name := Name (Variant_Part (Comp_List));
6748 Variant := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
6749 end if;
6751 -- Look for the discriminant that governs this variant part.
6752 -- The discriminant *must* be in the Governed_By List
6754 Assoc := First (Governed_By);
6755 Find_Constraint : loop
6756 Discrim := First (Choices (Assoc));
6757 exit Find_Constraint when Chars (Discrim_Name) = Chars (Discrim)
6758 or else (Present (Corresponding_Discriminant (Entity (Discrim)))
6759 and then
6760 Chars (Corresponding_Discriminant (Entity (Discrim))) =
6761 Chars (Discrim_Name))
6762 or else Chars (Original_Record_Component (Entity (Discrim)))
6763 = Chars (Discrim_Name);
6765 if No (Next (Assoc)) then
6766 if not Is_Constrained (Typ)
6767 and then Is_Derived_Type (Typ)
6768 and then Present (Stored_Constraint (Typ))
6769 then
6770 -- If the type is a tagged type with inherited discriminants,
6771 -- use the stored constraint on the parent in order to find
6772 -- the values of discriminants that are otherwise hidden by an
6773 -- explicit constraint. Renamed discriminants are handled in
6774 -- the code above.
6776 -- If several parent discriminants are renamed by a single
6777 -- discriminant of the derived type, the call to obtain the
6778 -- Corresponding_Discriminant field only retrieves the last
6779 -- of them. We recover the constraint on the others from the
6780 -- Stored_Constraint as well.
6782 declare
6783 D : Entity_Id;
6784 C : Elmt_Id;
6786 begin
6787 D := First_Discriminant (Etype (Typ));
6788 C := First_Elmt (Stored_Constraint (Typ));
6789 while Present (D) and then Present (C) loop
6790 if Chars (Discrim_Name) = Chars (D) then
6791 if Is_Entity_Name (Node (C))
6792 and then Entity (Node (C)) = Entity (Discrim)
6793 then
6794 -- D is renamed by Discrim, whose value is given in
6795 -- Assoc.
6797 null;
6799 else
6800 Assoc :=
6801 Make_Component_Association (Sloc (Typ),
6802 New_List
6803 (New_Occurrence_Of (D, Sloc (Typ))),
6804 Duplicate_Subexpr_No_Checks (Node (C)));
6805 end if;
6806 exit Find_Constraint;
6807 end if;
6809 Next_Discriminant (D);
6810 Next_Elmt (C);
6811 end loop;
6812 end;
6813 end if;
6814 end if;
6816 if No (Next (Assoc)) then
6817 Error_Msg_NE (" missing value for discriminant&",
6818 First (Governed_By), Discrim_Name);
6819 Report_Errors := True;
6820 return;
6821 end if;
6823 Next (Assoc);
6824 end loop Find_Constraint;
6826 Discrim_Value := Expression (Assoc);
6828 if not Is_OK_Static_Expression (Discrim_Value) then
6830 -- If the variant part is governed by a discriminant of the type
6831 -- this is an error. If the variant part and the discriminant are
6832 -- inherited from an ancestor this is legal (AI05-120) unless the
6833 -- components are being gathered for an aggregate, in which case
6834 -- the caller must check Report_Errors.
6836 if Scope (Original_Record_Component
6837 ((Entity (First (Choices (Assoc)))))) = Typ
6838 then
6839 Error_Msg_FE
6840 ("value for discriminant & must be static!",
6841 Discrim_Value, Discrim);
6842 Why_Not_Static (Discrim_Value);
6843 end if;
6845 Report_Errors := True;
6846 return;
6847 end if;
6849 Search_For_Discriminant_Value : declare
6850 Low : Node_Id;
6851 High : Node_Id;
6853 UI_High : Uint;
6854 UI_Low : Uint;
6855 UI_Discrim_Value : constant Uint := Expr_Value (Discrim_Value);
6857 begin
6858 Find_Discrete_Value : while Present (Variant) loop
6859 Discrete_Choice := First (Discrete_Choices (Variant));
6860 while Present (Discrete_Choice) loop
6861 exit Find_Discrete_Value when
6862 Nkind (Discrete_Choice) = N_Others_Choice;
6864 Get_Index_Bounds (Discrete_Choice, Low, High);
6866 UI_Low := Expr_Value (Low);
6867 UI_High := Expr_Value (High);
6869 exit Find_Discrete_Value when
6870 UI_Low <= UI_Discrim_Value
6871 and then
6872 UI_High >= UI_Discrim_Value;
6874 Next (Discrete_Choice);
6875 end loop;
6877 Next_Non_Pragma (Variant);
6878 end loop Find_Discrete_Value;
6879 end Search_For_Discriminant_Value;
6881 if No (Variant) then
6882 Error_Msg_NE
6883 ("value of discriminant & is out of range", Discrim_Value, Discrim);
6884 Report_Errors := True;
6885 return;
6886 end if;
6888 -- If we have found the corresponding choice, recursively add its
6889 -- components to the Into list.
6891 Gather_Components
6892 (Empty, Component_List (Variant), Governed_By, Into, Report_Errors);
6893 end Gather_Components;
6895 ------------------------
6896 -- Get_Actual_Subtype --
6897 ------------------------
6899 function Get_Actual_Subtype (N : Node_Id) return Entity_Id is
6900 Typ : constant Entity_Id := Etype (N);
6901 Utyp : Entity_Id := Underlying_Type (Typ);
6902 Decl : Node_Id;
6903 Atyp : Entity_Id;
6905 begin
6906 if No (Utyp) then
6907 Utyp := Typ;
6908 end if;
6910 -- If what we have is an identifier that references a subprogram
6911 -- formal, or a variable or constant object, then we get the actual
6912 -- subtype from the referenced entity if one has been built.
6914 if Nkind (N) = N_Identifier
6915 and then
6916 (Is_Formal (Entity (N))
6917 or else Ekind (Entity (N)) = E_Constant
6918 or else Ekind (Entity (N)) = E_Variable)
6919 and then Present (Actual_Subtype (Entity (N)))
6920 then
6921 return Actual_Subtype (Entity (N));
6923 -- Actual subtype of unchecked union is always itself. We never need
6924 -- the "real" actual subtype. If we did, we couldn't get it anyway
6925 -- because the discriminant is not available. The restrictions on
6926 -- Unchecked_Union are designed to make sure that this is OK.
6928 elsif Is_Unchecked_Union (Base_Type (Utyp)) then
6929 return Typ;
6931 -- Here for the unconstrained case, we must find actual subtype
6932 -- No actual subtype is available, so we must build it on the fly.
6934 -- Checking the type, not the underlying type, for constrainedness
6935 -- seems to be necessary. Maybe all the tests should be on the type???
6937 elsif (not Is_Constrained (Typ))
6938 and then (Is_Array_Type (Utyp)
6939 or else (Is_Record_Type (Utyp)
6940 and then Has_Discriminants (Utyp)))
6941 and then not Has_Unknown_Discriminants (Utyp)
6942 and then not (Ekind (Utyp) = E_String_Literal_Subtype)
6943 then
6944 -- Nothing to do if in spec expression (why not???)
6946 if In_Spec_Expression then
6947 return Typ;
6949 elsif Is_Private_Type (Typ) and then not Has_Discriminants (Typ) then
6951 -- If the type has no discriminants, there is no subtype to
6952 -- build, even if the underlying type is discriminated.
6954 return Typ;
6956 -- Else build the actual subtype
6958 else
6959 Decl := Build_Actual_Subtype (Typ, N);
6960 Atyp := Defining_Identifier (Decl);
6962 -- If Build_Actual_Subtype generated a new declaration then use it
6964 if Atyp /= Typ then
6966 -- The actual subtype is an Itype, so analyze the declaration,
6967 -- but do not attach it to the tree, to get the type defined.
6969 Set_Parent (Decl, N);
6970 Set_Is_Itype (Atyp);
6971 Analyze (Decl, Suppress => All_Checks);
6972 Set_Associated_Node_For_Itype (Atyp, N);
6973 Set_Has_Delayed_Freeze (Atyp, False);
6975 -- We need to freeze the actual subtype immediately. This is
6976 -- needed, because otherwise this Itype will not get frozen
6977 -- at all, and it is always safe to freeze on creation because
6978 -- any associated types must be frozen at this point.
6980 Freeze_Itype (Atyp, N);
6981 return Atyp;
6983 -- Otherwise we did not build a declaration, so return original
6985 else
6986 return Typ;
6987 end if;
6988 end if;
6990 -- For all remaining cases, the actual subtype is the same as
6991 -- the nominal type.
6993 else
6994 return Typ;
6995 end if;
6996 end Get_Actual_Subtype;
6998 -------------------------------------
6999 -- Get_Actual_Subtype_If_Available --
7000 -------------------------------------
7002 function Get_Actual_Subtype_If_Available (N : Node_Id) return Entity_Id is
7003 Typ : constant Entity_Id := Etype (N);
7005 begin
7006 -- If what we have is an identifier that references a subprogram
7007 -- formal, or a variable or constant object, then we get the actual
7008 -- subtype from the referenced entity if one has been built.
7010 if Nkind (N) = N_Identifier
7011 and then
7012 (Is_Formal (Entity (N))
7013 or else Ekind (Entity (N)) = E_Constant
7014 or else Ekind (Entity (N)) = E_Variable)
7015 and then Present (Actual_Subtype (Entity (N)))
7016 then
7017 return Actual_Subtype (Entity (N));
7019 -- Otherwise the Etype of N is returned unchanged
7021 else
7022 return Typ;
7023 end if;
7024 end Get_Actual_Subtype_If_Available;
7026 ------------------------
7027 -- Get_Body_From_Stub --
7028 ------------------------
7030 function Get_Body_From_Stub (N : Node_Id) return Node_Id is
7031 begin
7032 return Proper_Body (Unit (Library_Unit (N)));
7033 end Get_Body_From_Stub;
7035 ---------------------
7036 -- Get_Cursor_Type --
7037 ---------------------
7039 function Get_Cursor_Type
7040 (Aspect : Node_Id;
7041 Typ : Entity_Id) return Entity_Id
7043 Assoc : Node_Id;
7044 Func : Entity_Id;
7045 First_Op : Entity_Id;
7046 Cursor : Entity_Id;
7048 begin
7049 -- If error already detected, return
7051 if Error_Posted (Aspect) then
7052 return Any_Type;
7053 end if;
7055 -- The cursor type for an Iterable aspect is the return type of a
7056 -- non-overloaded First primitive operation. Locate association for
7057 -- First.
7059 Assoc := First (Component_Associations (Expression (Aspect)));
7060 First_Op := Any_Id;
7061 while Present (Assoc) loop
7062 if Chars (First (Choices (Assoc))) = Name_First then
7063 First_Op := Expression (Assoc);
7064 exit;
7065 end if;
7067 Next (Assoc);
7068 end loop;
7070 if First_Op = Any_Id then
7071 Error_Msg_N ("aspect Iterable must specify First operation", Aspect);
7072 return Any_Type;
7073 end if;
7075 Cursor := Any_Type;
7077 -- Locate function with desired name and profile in scope of type
7079 Func := First_Entity (Scope (Typ));
7080 while Present (Func) loop
7081 if Chars (Func) = Chars (First_Op)
7082 and then Ekind (Func) = E_Function
7083 and then Present (First_Formal (Func))
7084 and then Etype (First_Formal (Func)) = Typ
7085 and then No (Next_Formal (First_Formal (Func)))
7086 then
7087 if Cursor /= Any_Type then
7088 Error_Msg_N
7089 ("Operation First for iterable type must be unique", Aspect);
7090 return Any_Type;
7091 else
7092 Cursor := Etype (Func);
7093 end if;
7094 end if;
7096 Next_Entity (Func);
7097 end loop;
7099 -- If not found, no way to resolve remaining primitives.
7101 if Cursor = Any_Type then
7102 Error_Msg_N
7103 ("No legal primitive operation First for Iterable type", Aspect);
7104 end if;
7106 return Cursor;
7107 end Get_Cursor_Type;
7109 -------------------------------
7110 -- Get_Default_External_Name --
7111 -------------------------------
7113 function Get_Default_External_Name (E : Node_Or_Entity_Id) return Node_Id is
7114 begin
7115 Get_Decoded_Name_String (Chars (E));
7117 if Opt.External_Name_Imp_Casing = Uppercase then
7118 Set_Casing (All_Upper_Case);
7119 else
7120 Set_Casing (All_Lower_Case);
7121 end if;
7123 return
7124 Make_String_Literal (Sloc (E),
7125 Strval => String_From_Name_Buffer);
7126 end Get_Default_External_Name;
7128 --------------------------
7129 -- Get_Enclosing_Object --
7130 --------------------------
7132 function Get_Enclosing_Object (N : Node_Id) return Entity_Id is
7133 begin
7134 if Is_Entity_Name (N) then
7135 return Entity (N);
7136 else
7137 case Nkind (N) is
7138 when N_Indexed_Component |
7139 N_Slice |
7140 N_Selected_Component =>
7142 -- If not generating code, a dereference may be left implicit.
7143 -- In thoses cases, return Empty.
7145 if Is_Access_Type (Etype (Prefix (N))) then
7146 return Empty;
7147 else
7148 return Get_Enclosing_Object (Prefix (N));
7149 end if;
7151 when N_Type_Conversion =>
7152 return Get_Enclosing_Object (Expression (N));
7154 when others =>
7155 return Empty;
7156 end case;
7157 end if;
7158 end Get_Enclosing_Object;
7160 ---------------------------
7161 -- Get_Enum_Lit_From_Pos --
7162 ---------------------------
7164 function Get_Enum_Lit_From_Pos
7165 (T : Entity_Id;
7166 Pos : Uint;
7167 Loc : Source_Ptr) return Node_Id
7169 Btyp : Entity_Id := Base_Type (T);
7170 Lit : Node_Id;
7172 begin
7173 -- In the case where the literal is of type Character, Wide_Character
7174 -- or Wide_Wide_Character or of a type derived from them, there needs
7175 -- to be some special handling since there is no explicit chain of
7176 -- literals to search. Instead, an N_Character_Literal node is created
7177 -- with the appropriate Char_Code and Chars fields.
7179 if Is_Standard_Character_Type (T) then
7180 Set_Character_Literal_Name (UI_To_CC (Pos));
7181 return
7182 Make_Character_Literal (Loc,
7183 Chars => Name_Find,
7184 Char_Literal_Value => Pos);
7186 -- For all other cases, we have a complete table of literals, and
7187 -- we simply iterate through the chain of literal until the one
7188 -- with the desired position value is found.
7190 else
7191 if Is_Private_Type (Btyp) and then Present (Full_View (Btyp)) then
7192 Btyp := Full_View (Btyp);
7193 end if;
7195 Lit := First_Literal (Btyp);
7196 for J in 1 .. UI_To_Int (Pos) loop
7197 Next_Literal (Lit);
7198 end loop;
7200 return New_Occurrence_Of (Lit, Loc);
7201 end if;
7202 end Get_Enum_Lit_From_Pos;
7204 ------------------------
7205 -- Get_Generic_Entity --
7206 ------------------------
7208 function Get_Generic_Entity (N : Node_Id) return Entity_Id is
7209 Ent : constant Entity_Id := Entity (Name (N));
7210 begin
7211 if Present (Renamed_Object (Ent)) then
7212 return Renamed_Object (Ent);
7213 else
7214 return Ent;
7215 end if;
7216 end Get_Generic_Entity;
7218 -------------------------------------
7219 -- Get_Incomplete_View_Of_Ancestor --
7220 -------------------------------------
7222 function Get_Incomplete_View_Of_Ancestor (E : Entity_Id) return Entity_Id is
7223 Cur_Unit : constant Entity_Id := Cunit_Entity (Current_Sem_Unit);
7224 Par_Scope : Entity_Id;
7225 Par_Type : Entity_Id;
7227 begin
7228 -- The incomplete view of an ancestor is only relevant for private
7229 -- derived types in child units.
7231 if not Is_Derived_Type (E)
7232 or else not Is_Child_Unit (Cur_Unit)
7233 then
7234 return Empty;
7236 else
7237 Par_Scope := Scope (Cur_Unit);
7238 if No (Par_Scope) then
7239 return Empty;
7240 end if;
7242 Par_Type := Etype (Base_Type (E));
7244 -- Traverse list of ancestor types until we find one declared in
7245 -- a parent or grandparent unit (two levels seem sufficient).
7247 while Present (Par_Type) loop
7248 if Scope (Par_Type) = Par_Scope
7249 or else Scope (Par_Type) = Scope (Par_Scope)
7250 then
7251 return Par_Type;
7253 elsif not Is_Derived_Type (Par_Type) then
7254 return Empty;
7256 else
7257 Par_Type := Etype (Base_Type (Par_Type));
7258 end if;
7259 end loop;
7261 -- If none found, there is no relevant ancestor type.
7263 return Empty;
7264 end if;
7265 end Get_Incomplete_View_Of_Ancestor;
7267 ----------------------
7268 -- Get_Index_Bounds --
7269 ----------------------
7271 procedure Get_Index_Bounds (N : Node_Id; L, H : out Node_Id) is
7272 Kind : constant Node_Kind := Nkind (N);
7273 R : Node_Id;
7275 begin
7276 if Kind = N_Range then
7277 L := Low_Bound (N);
7278 H := High_Bound (N);
7280 elsif Kind = N_Subtype_Indication then
7281 R := Range_Expression (Constraint (N));
7283 if R = Error then
7284 L := Error;
7285 H := Error;
7286 return;
7288 else
7289 L := Low_Bound (Range_Expression (Constraint (N)));
7290 H := High_Bound (Range_Expression (Constraint (N)));
7291 end if;
7293 elsif Is_Entity_Name (N) and then Is_Type (Entity (N)) then
7294 if Error_Posted (Scalar_Range (Entity (N))) then
7295 L := Error;
7296 H := Error;
7298 elsif Nkind (Scalar_Range (Entity (N))) = N_Subtype_Indication then
7299 Get_Index_Bounds (Scalar_Range (Entity (N)), L, H);
7301 else
7302 L := Low_Bound (Scalar_Range (Entity (N)));
7303 H := High_Bound (Scalar_Range (Entity (N)));
7304 end if;
7306 else
7307 -- N is an expression, indicating a range with one value
7309 L := N;
7310 H := N;
7311 end if;
7312 end Get_Index_Bounds;
7314 ---------------------------------
7315 -- Get_Iterable_Type_Primitive --
7316 ---------------------------------
7318 function Get_Iterable_Type_Primitive
7319 (Typ : Entity_Id;
7320 Nam : Name_Id) return Entity_Id
7322 Funcs : constant Node_Id := Find_Value_Of_Aspect (Typ, Aspect_Iterable);
7323 Assoc : Node_Id;
7325 begin
7326 if No (Funcs) then
7327 return Empty;
7329 else
7330 Assoc := First (Component_Associations (Funcs));
7331 while Present (Assoc) loop
7332 if Chars (First (Choices (Assoc))) = Nam then
7333 return Entity (Expression (Assoc));
7334 end if;
7336 Assoc := Next (Assoc);
7337 end loop;
7339 return Empty;
7340 end if;
7341 end Get_Iterable_Type_Primitive;
7343 ----------------------------------
7344 -- Get_Library_Unit_Name_string --
7345 ----------------------------------
7347 procedure Get_Library_Unit_Name_String (Decl_Node : Node_Id) is
7348 Unit_Name_Id : constant Unit_Name_Type := Get_Unit_Name (Decl_Node);
7350 begin
7351 Get_Unit_Name_String (Unit_Name_Id);
7353 -- Remove seven last character (" (spec)" or " (body)")
7355 Name_Len := Name_Len - 7;
7356 pragma Assert (Name_Buffer (Name_Len + 1) = ' ');
7357 end Get_Library_Unit_Name_String;
7359 ------------------------
7360 -- Get_Name_Entity_Id --
7361 ------------------------
7363 function Get_Name_Entity_Id (Id : Name_Id) return Entity_Id is
7364 begin
7365 return Entity_Id (Get_Name_Table_Int (Id));
7366 end Get_Name_Entity_Id;
7368 ------------------------------
7369 -- Get_Name_From_CTC_Pragma --
7370 ------------------------------
7372 function Get_Name_From_CTC_Pragma (N : Node_Id) return String_Id is
7373 Arg : constant Node_Id :=
7374 Get_Pragma_Arg (First (Pragma_Argument_Associations (N)));
7375 begin
7376 return Strval (Expr_Value_S (Arg));
7377 end Get_Name_From_CTC_Pragma;
7379 -----------------------
7380 -- Get_Parent_Entity --
7381 -----------------------
7383 function Get_Parent_Entity (Unit : Node_Id) return Entity_Id is
7384 begin
7385 if Nkind (Unit) = N_Package_Body
7386 and then Nkind (Original_Node (Unit)) = N_Package_Instantiation
7387 then
7388 return Defining_Entity
7389 (Specification (Instance_Spec (Original_Node (Unit))));
7390 elsif Nkind (Unit) = N_Package_Instantiation then
7391 return Defining_Entity (Specification (Instance_Spec (Unit)));
7392 else
7393 return Defining_Entity (Unit);
7394 end if;
7395 end Get_Parent_Entity;
7396 -------------------
7397 -- Get_Pragma_Id --
7398 -------------------
7400 function Get_Pragma_Id (N : Node_Id) return Pragma_Id is
7401 begin
7402 return Get_Pragma_Id (Pragma_Name (N));
7403 end Get_Pragma_Id;
7405 -----------------------
7406 -- Get_Reason_String --
7407 -----------------------
7409 procedure Get_Reason_String (N : Node_Id) is
7410 begin
7411 if Nkind (N) = N_String_Literal then
7412 Store_String_Chars (Strval (N));
7414 elsif Nkind (N) = N_Op_Concat then
7415 Get_Reason_String (Left_Opnd (N));
7416 Get_Reason_String (Right_Opnd (N));
7418 -- If not of required form, error
7420 else
7421 Error_Msg_N
7422 ("Reason for pragma Warnings has wrong form", N);
7423 Error_Msg_N
7424 ("\must be string literal or concatenation of string literals", N);
7425 return;
7426 end if;
7427 end Get_Reason_String;
7429 ---------------------------
7430 -- Get_Referenced_Object --
7431 ---------------------------
7433 function Get_Referenced_Object (N : Node_Id) return Node_Id is
7434 R : Node_Id;
7436 begin
7437 R := N;
7438 while Is_Entity_Name (R)
7439 and then Present (Renamed_Object (Entity (R)))
7440 loop
7441 R := Renamed_Object (Entity (R));
7442 end loop;
7444 return R;
7445 end Get_Referenced_Object;
7447 ------------------------
7448 -- Get_Renamed_Entity --
7449 ------------------------
7451 function Get_Renamed_Entity (E : Entity_Id) return Entity_Id is
7452 R : Entity_Id;
7454 begin
7455 R := E;
7456 while Present (Renamed_Entity (R)) loop
7457 R := Renamed_Entity (R);
7458 end loop;
7460 return R;
7461 end Get_Renamed_Entity;
7463 -------------------------
7464 -- Get_Subprogram_Body --
7465 -------------------------
7467 function Get_Subprogram_Body (E : Entity_Id) return Node_Id is
7468 Decl : Node_Id;
7470 begin
7471 Decl := Unit_Declaration_Node (E);
7473 if Nkind (Decl) = N_Subprogram_Body then
7474 return Decl;
7476 -- The below comment is bad, because it is possible for
7477 -- Nkind (Decl) to be an N_Subprogram_Body_Stub ???
7479 else -- Nkind (Decl) = N_Subprogram_Declaration
7481 if Present (Corresponding_Body (Decl)) then
7482 return Unit_Declaration_Node (Corresponding_Body (Decl));
7484 -- Imported subprogram case
7486 else
7487 return Empty;
7488 end if;
7489 end if;
7490 end Get_Subprogram_Body;
7492 ---------------------------
7493 -- Get_Subprogram_Entity --
7494 ---------------------------
7496 function Get_Subprogram_Entity (Nod : Node_Id) return Entity_Id is
7497 Subp : Node_Id;
7498 Subp_Id : Entity_Id;
7500 begin
7501 if Nkind (Nod) = N_Accept_Statement then
7502 Subp := Entry_Direct_Name (Nod);
7504 elsif Nkind (Nod) = N_Slice then
7505 Subp := Prefix (Nod);
7507 else
7508 Subp := Name (Nod);
7509 end if;
7511 -- Strip the subprogram call
7513 loop
7514 if Nkind_In (Subp, N_Explicit_Dereference,
7515 N_Indexed_Component,
7516 N_Selected_Component)
7517 then
7518 Subp := Prefix (Subp);
7520 elsif Nkind_In (Subp, N_Type_Conversion,
7521 N_Unchecked_Type_Conversion)
7522 then
7523 Subp := Expression (Subp);
7525 else
7526 exit;
7527 end if;
7528 end loop;
7530 -- Extract the entity of the subprogram call
7532 if Is_Entity_Name (Subp) then
7533 Subp_Id := Entity (Subp);
7535 if Ekind (Subp_Id) = E_Access_Subprogram_Type then
7536 Subp_Id := Directly_Designated_Type (Subp_Id);
7537 end if;
7539 if Is_Subprogram (Subp_Id) then
7540 return Subp_Id;
7541 else
7542 return Empty;
7543 end if;
7545 -- The search did not find a construct that denotes a subprogram
7547 else
7548 return Empty;
7549 end if;
7550 end Get_Subprogram_Entity;
7552 -----------------------------
7553 -- Get_Task_Body_Procedure --
7554 -----------------------------
7556 function Get_Task_Body_Procedure (E : Entity_Id) return Node_Id is
7557 begin
7558 -- Note: A task type may be the completion of a private type with
7559 -- discriminants. When performing elaboration checks on a task
7560 -- declaration, the current view of the type may be the private one,
7561 -- and the procedure that holds the body of the task is held in its
7562 -- underlying type.
7564 -- This is an odd function, why not have Task_Body_Procedure do
7565 -- the following digging???
7567 return Task_Body_Procedure (Underlying_Type (Root_Type (E)));
7568 end Get_Task_Body_Procedure;
7570 -----------------------
7571 -- Has_Access_Values --
7572 -----------------------
7574 function Has_Access_Values (T : Entity_Id) return Boolean is
7575 Typ : constant Entity_Id := Underlying_Type (T);
7577 begin
7578 -- Case of a private type which is not completed yet. This can only
7579 -- happen in the case of a generic format type appearing directly, or
7580 -- as a component of the type to which this function is being applied
7581 -- at the top level. Return False in this case, since we certainly do
7582 -- not know that the type contains access types.
7584 if No (Typ) then
7585 return False;
7587 elsif Is_Access_Type (Typ) then
7588 return True;
7590 elsif Is_Array_Type (Typ) then
7591 return Has_Access_Values (Component_Type (Typ));
7593 elsif Is_Record_Type (Typ) then
7594 declare
7595 Comp : Entity_Id;
7597 begin
7598 -- Loop to Check components
7600 Comp := First_Component_Or_Discriminant (Typ);
7601 while Present (Comp) loop
7603 -- Check for access component, tag field does not count, even
7604 -- though it is implemented internally using an access type.
7606 if Has_Access_Values (Etype (Comp))
7607 and then Chars (Comp) /= Name_uTag
7608 then
7609 return True;
7610 end if;
7612 Next_Component_Or_Discriminant (Comp);
7613 end loop;
7614 end;
7616 return False;
7618 else
7619 return False;
7620 end if;
7621 end Has_Access_Values;
7623 ------------------------------
7624 -- Has_Compatible_Alignment --
7625 ------------------------------
7627 function Has_Compatible_Alignment
7628 (Obj : Entity_Id;
7629 Expr : Node_Id) return Alignment_Result
7631 function Has_Compatible_Alignment_Internal
7632 (Obj : Entity_Id;
7633 Expr : Node_Id;
7634 Default : Alignment_Result) return Alignment_Result;
7635 -- This is the internal recursive function that actually does the work.
7636 -- There is one additional parameter, which says what the result should
7637 -- be if no alignment information is found, and there is no definite
7638 -- indication of compatible alignments. At the outer level, this is set
7639 -- to Unknown, but for internal recursive calls in the case where types
7640 -- are known to be correct, it is set to Known_Compatible.
7642 ---------------------------------------
7643 -- Has_Compatible_Alignment_Internal --
7644 ---------------------------------------
7646 function Has_Compatible_Alignment_Internal
7647 (Obj : Entity_Id;
7648 Expr : Node_Id;
7649 Default : Alignment_Result) return Alignment_Result
7651 Result : Alignment_Result := Known_Compatible;
7652 -- Holds the current status of the result. Note that once a value of
7653 -- Known_Incompatible is set, it is sticky and does not get changed
7654 -- to Unknown (the value in Result only gets worse as we go along,
7655 -- never better).
7657 Offs : Uint := No_Uint;
7658 -- Set to a factor of the offset from the base object when Expr is a
7659 -- selected or indexed component, based on Component_Bit_Offset and
7660 -- Component_Size respectively. A negative value is used to represent
7661 -- a value which is not known at compile time.
7663 procedure Check_Prefix;
7664 -- Checks the prefix recursively in the case where the expression
7665 -- is an indexed or selected component.
7667 procedure Set_Result (R : Alignment_Result);
7668 -- If R represents a worse outcome (unknown instead of known
7669 -- compatible, or known incompatible), then set Result to R.
7671 ------------------
7672 -- Check_Prefix --
7673 ------------------
7675 procedure Check_Prefix is
7676 begin
7677 -- The subtlety here is that in doing a recursive call to check
7678 -- the prefix, we have to decide what to do in the case where we
7679 -- don't find any specific indication of an alignment problem.
7681 -- At the outer level, we normally set Unknown as the result in
7682 -- this case, since we can only set Known_Compatible if we really
7683 -- know that the alignment value is OK, but for the recursive
7684 -- call, in the case where the types match, and we have not
7685 -- specified a peculiar alignment for the object, we are only
7686 -- concerned about suspicious rep clauses, the default case does
7687 -- not affect us, since the compiler will, in the absence of such
7688 -- rep clauses, ensure that the alignment is correct.
7690 if Default = Known_Compatible
7691 or else
7692 (Etype (Obj) = Etype (Expr)
7693 and then (Unknown_Alignment (Obj)
7694 or else
7695 Alignment (Obj) = Alignment (Etype (Obj))))
7696 then
7697 Set_Result
7698 (Has_Compatible_Alignment_Internal
7699 (Obj, Prefix (Expr), Known_Compatible));
7701 -- In all other cases, we need a full check on the prefix
7703 else
7704 Set_Result
7705 (Has_Compatible_Alignment_Internal
7706 (Obj, Prefix (Expr), Unknown));
7707 end if;
7708 end Check_Prefix;
7710 ----------------
7711 -- Set_Result --
7712 ----------------
7714 procedure Set_Result (R : Alignment_Result) is
7715 begin
7716 if R > Result then
7717 Result := R;
7718 end if;
7719 end Set_Result;
7721 -- Start of processing for Has_Compatible_Alignment_Internal
7723 begin
7724 -- If Expr is a selected component, we must make sure there is no
7725 -- potentially troublesome component clause, and that the record is
7726 -- not packed.
7728 if Nkind (Expr) = N_Selected_Component then
7730 -- Packed record always generate unknown alignment
7732 if Is_Packed (Etype (Prefix (Expr))) then
7733 Set_Result (Unknown);
7734 end if;
7736 -- Check prefix and component offset
7738 Check_Prefix;
7739 Offs := Component_Bit_Offset (Entity (Selector_Name (Expr)));
7741 -- If Expr is an indexed component, we must make sure there is no
7742 -- potentially troublesome Component_Size clause and that the array
7743 -- is not bit-packed.
7745 elsif Nkind (Expr) = N_Indexed_Component then
7746 declare
7747 Typ : constant Entity_Id := Etype (Prefix (Expr));
7748 Ind : constant Node_Id := First_Index (Typ);
7750 begin
7751 -- Bit packed array always generates unknown alignment
7753 if Is_Bit_Packed_Array (Typ) then
7754 Set_Result (Unknown);
7755 end if;
7757 -- Check prefix and component offset
7759 Check_Prefix;
7760 Offs := Component_Size (Typ);
7762 -- Small optimization: compute the full offset when possible
7764 if Offs /= No_Uint
7765 and then Offs > Uint_0
7766 and then Present (Ind)
7767 and then Nkind (Ind) = N_Range
7768 and then Compile_Time_Known_Value (Low_Bound (Ind))
7769 and then Compile_Time_Known_Value (First (Expressions (Expr)))
7770 then
7771 Offs := Offs * (Expr_Value (First (Expressions (Expr)))
7772 - Expr_Value (Low_Bound ((Ind))));
7773 end if;
7774 end;
7775 end if;
7777 -- If we have a null offset, the result is entirely determined by
7778 -- the base object and has already been computed recursively.
7780 if Offs = Uint_0 then
7781 null;
7783 -- Case where we know the alignment of the object
7785 elsif Known_Alignment (Obj) then
7786 declare
7787 ObjA : constant Uint := Alignment (Obj);
7788 ExpA : Uint := No_Uint;
7789 SizA : Uint := No_Uint;
7791 begin
7792 -- If alignment of Obj is 1, then we are always OK
7794 if ObjA = 1 then
7795 Set_Result (Known_Compatible);
7797 -- Alignment of Obj is greater than 1, so we need to check
7799 else
7800 -- If we have an offset, see if it is compatible
7802 if Offs /= No_Uint and Offs > Uint_0 then
7803 if Offs mod (System_Storage_Unit * ObjA) /= 0 then
7804 Set_Result (Known_Incompatible);
7805 end if;
7807 -- See if Expr is an object with known alignment
7809 elsif Is_Entity_Name (Expr)
7810 and then Known_Alignment (Entity (Expr))
7811 then
7812 ExpA := Alignment (Entity (Expr));
7814 -- Otherwise, we can use the alignment of the type of
7815 -- Expr given that we already checked for
7816 -- discombobulating rep clauses for the cases of indexed
7817 -- and selected components above.
7819 elsif Known_Alignment (Etype (Expr)) then
7820 ExpA := Alignment (Etype (Expr));
7822 -- Otherwise the alignment is unknown
7824 else
7825 Set_Result (Default);
7826 end if;
7828 -- If we got an alignment, see if it is acceptable
7830 if ExpA /= No_Uint and then ExpA < ObjA then
7831 Set_Result (Known_Incompatible);
7832 end if;
7834 -- If Expr is not a piece of a larger object, see if size
7835 -- is given. If so, check that it is not too small for the
7836 -- required alignment.
7838 if Offs /= No_Uint then
7839 null;
7841 -- See if Expr is an object with known size
7843 elsif Is_Entity_Name (Expr)
7844 and then Known_Static_Esize (Entity (Expr))
7845 then
7846 SizA := Esize (Entity (Expr));
7848 -- Otherwise, we check the object size of the Expr type
7850 elsif Known_Static_Esize (Etype (Expr)) then
7851 SizA := Esize (Etype (Expr));
7852 end if;
7854 -- If we got a size, see if it is a multiple of the Obj
7855 -- alignment, if not, then the alignment cannot be
7856 -- acceptable, since the size is always a multiple of the
7857 -- alignment.
7859 if SizA /= No_Uint then
7860 if SizA mod (ObjA * Ttypes.System_Storage_Unit) /= 0 then
7861 Set_Result (Known_Incompatible);
7862 end if;
7863 end if;
7864 end if;
7865 end;
7867 -- If we do not know required alignment, any non-zero offset is a
7868 -- potential problem (but certainly may be OK, so result is unknown).
7870 elsif Offs /= No_Uint then
7871 Set_Result (Unknown);
7873 -- If we can't find the result by direct comparison of alignment
7874 -- values, then there is still one case that we can determine known
7875 -- result, and that is when we can determine that the types are the
7876 -- same, and no alignments are specified. Then we known that the
7877 -- alignments are compatible, even if we don't know the alignment
7878 -- value in the front end.
7880 elsif Etype (Obj) = Etype (Expr) then
7882 -- Types are the same, but we have to check for possible size
7883 -- and alignments on the Expr object that may make the alignment
7884 -- different, even though the types are the same.
7886 if Is_Entity_Name (Expr) then
7888 -- First check alignment of the Expr object. Any alignment less
7889 -- than Maximum_Alignment is worrisome since this is the case
7890 -- where we do not know the alignment of Obj.
7892 if Known_Alignment (Entity (Expr))
7893 and then UI_To_Int (Alignment (Entity (Expr))) <
7894 Ttypes.Maximum_Alignment
7895 then
7896 Set_Result (Unknown);
7898 -- Now check size of Expr object. Any size that is not an
7899 -- even multiple of Maximum_Alignment is also worrisome
7900 -- since it may cause the alignment of the object to be less
7901 -- than the alignment of the type.
7903 elsif Known_Static_Esize (Entity (Expr))
7904 and then
7905 (UI_To_Int (Esize (Entity (Expr))) mod
7906 (Ttypes.Maximum_Alignment * Ttypes.System_Storage_Unit))
7907 /= 0
7908 then
7909 Set_Result (Unknown);
7911 -- Otherwise same type is decisive
7913 else
7914 Set_Result (Known_Compatible);
7915 end if;
7916 end if;
7918 -- Another case to deal with is when there is an explicit size or
7919 -- alignment clause when the types are not the same. If so, then the
7920 -- result is Unknown. We don't need to do this test if the Default is
7921 -- Unknown, since that result will be set in any case.
7923 elsif Default /= Unknown
7924 and then (Has_Size_Clause (Etype (Expr))
7925 or else
7926 Has_Alignment_Clause (Etype (Expr)))
7927 then
7928 Set_Result (Unknown);
7930 -- If no indication found, set default
7932 else
7933 Set_Result (Default);
7934 end if;
7936 -- Return worst result found
7938 return Result;
7939 end Has_Compatible_Alignment_Internal;
7941 -- Start of processing for Has_Compatible_Alignment
7943 begin
7944 -- If Obj has no specified alignment, then set alignment from the type
7945 -- alignment. Perhaps we should always do this, but for sure we should
7946 -- do it when there is an address clause since we can do more if the
7947 -- alignment is known.
7949 if Unknown_Alignment (Obj) then
7950 Set_Alignment (Obj, Alignment (Etype (Obj)));
7951 end if;
7953 -- Now do the internal call that does all the work
7955 return Has_Compatible_Alignment_Internal (Obj, Expr, Unknown);
7956 end Has_Compatible_Alignment;
7958 ----------------------
7959 -- Has_Declarations --
7960 ----------------------
7962 function Has_Declarations (N : Node_Id) return Boolean is
7963 begin
7964 return Nkind_In (Nkind (N), N_Accept_Statement,
7965 N_Block_Statement,
7966 N_Compilation_Unit_Aux,
7967 N_Entry_Body,
7968 N_Package_Body,
7969 N_Protected_Body,
7970 N_Subprogram_Body,
7971 N_Task_Body,
7972 N_Package_Specification);
7973 end Has_Declarations;
7975 ---------------------------------
7976 -- Has_Defaulted_Discriminants --
7977 ---------------------------------
7979 function Has_Defaulted_Discriminants (Typ : Entity_Id) return Boolean is
7980 begin
7981 return Has_Discriminants (Typ)
7982 and then Present (First_Discriminant (Typ))
7983 and then Present (Discriminant_Default_Value
7984 (First_Discriminant (Typ)));
7985 end Has_Defaulted_Discriminants;
7987 -------------------
7988 -- Has_Denormals --
7989 -------------------
7991 function Has_Denormals (E : Entity_Id) return Boolean is
7992 begin
7993 return Is_Floating_Point_Type (E) and then Denorm_On_Target;
7994 end Has_Denormals;
7996 -------------------------------------------
7997 -- Has_Discriminant_Dependent_Constraint --
7998 -------------------------------------------
8000 function Has_Discriminant_Dependent_Constraint
8001 (Comp : Entity_Id) return Boolean
8003 Comp_Decl : constant Node_Id := Parent (Comp);
8004 Subt_Indic : Node_Id;
8005 Constr : Node_Id;
8006 Assn : Node_Id;
8008 begin
8009 -- Discriminants can't depend on discriminants
8011 if Ekind (Comp) = E_Discriminant then
8012 return False;
8014 else
8015 Subt_Indic := Subtype_Indication (Component_Definition (Comp_Decl));
8017 if Nkind (Subt_Indic) = N_Subtype_Indication then
8018 Constr := Constraint (Subt_Indic);
8020 if Nkind (Constr) = N_Index_Or_Discriminant_Constraint then
8021 Assn := First (Constraints (Constr));
8022 while Present (Assn) loop
8023 case Nkind (Assn) is
8024 when N_Subtype_Indication |
8025 N_Range |
8026 N_Identifier
8028 if Depends_On_Discriminant (Assn) then
8029 return True;
8030 end if;
8032 when N_Discriminant_Association =>
8033 if Depends_On_Discriminant (Expression (Assn)) then
8034 return True;
8035 end if;
8037 when others =>
8038 null;
8039 end case;
8041 Next (Assn);
8042 end loop;
8043 end if;
8044 end if;
8045 end if;
8047 return False;
8048 end Has_Discriminant_Dependent_Constraint;
8050 --------------------------
8051 -- Has_Enabled_Property --
8052 --------------------------
8054 function Has_Enabled_Property
8055 (Item_Id : Entity_Id;
8056 Property : Name_Id) return Boolean
8058 function State_Has_Enabled_Property return Boolean;
8059 -- Determine whether a state denoted by Item_Id has the property enabled
8061 function Variable_Has_Enabled_Property return Boolean;
8062 -- Determine whether a variable denoted by Item_Id has the property
8063 -- enabled.
8065 --------------------------------
8066 -- State_Has_Enabled_Property --
8067 --------------------------------
8069 function State_Has_Enabled_Property return Boolean is
8070 Decl : constant Node_Id := Parent (Item_Id);
8071 Opt : Node_Id;
8072 Opt_Nam : Node_Id;
8073 Prop : Node_Id;
8074 Prop_Nam : Node_Id;
8075 Props : Node_Id;
8077 begin
8078 -- The declaration of an external abstract state appears as an
8079 -- extension aggregate. If this is not the case, properties can never
8080 -- be set.
8082 if Nkind (Decl) /= N_Extension_Aggregate then
8083 return False;
8084 end if;
8086 -- When External appears as a simple option, it automatically enables
8087 -- all properties.
8089 Opt := First (Expressions (Decl));
8090 while Present (Opt) loop
8091 if Nkind (Opt) = N_Identifier
8092 and then Chars (Opt) = Name_External
8093 then
8094 return True;
8095 end if;
8097 Next (Opt);
8098 end loop;
8100 -- When External specifies particular properties, inspect those and
8101 -- find the desired one (if any).
8103 Opt := First (Component_Associations (Decl));
8104 while Present (Opt) loop
8105 Opt_Nam := First (Choices (Opt));
8107 if Nkind (Opt_Nam) = N_Identifier
8108 and then Chars (Opt_Nam) = Name_External
8109 then
8110 Props := Expression (Opt);
8112 -- Multiple properties appear as an aggregate
8114 if Nkind (Props) = N_Aggregate then
8116 -- Simple property form
8118 Prop := First (Expressions (Props));
8119 while Present (Prop) loop
8120 if Chars (Prop) = Property then
8121 return True;
8122 end if;
8124 Next (Prop);
8125 end loop;
8127 -- Property with expression form
8129 Prop := First (Component_Associations (Props));
8130 while Present (Prop) loop
8131 Prop_Nam := First (Choices (Prop));
8133 -- The property can be represented in two ways:
8134 -- others => <value>
8135 -- <property> => <value>
8137 if Nkind (Prop_Nam) = N_Others_Choice
8138 or else (Nkind (Prop_Nam) = N_Identifier
8139 and then Chars (Prop_Nam) = Property)
8140 then
8141 return Is_True (Expr_Value (Expression (Prop)));
8142 end if;
8144 Next (Prop);
8145 end loop;
8147 -- Single property
8149 else
8150 return Chars (Props) = Property;
8151 end if;
8152 end if;
8154 Next (Opt);
8155 end loop;
8157 return False;
8158 end State_Has_Enabled_Property;
8160 -----------------------------------
8161 -- Variable_Has_Enabled_Property --
8162 -----------------------------------
8164 function Variable_Has_Enabled_Property return Boolean is
8165 function Is_Enabled (Prag : Node_Id) return Boolean;
8166 -- Determine whether property pragma Prag (if present) denotes an
8167 -- enabled property.
8169 ----------------
8170 -- Is_Enabled --
8171 ----------------
8173 function Is_Enabled (Prag : Node_Id) return Boolean is
8174 Arg2 : Node_Id;
8176 begin
8177 if Present (Prag) then
8178 Arg2 := Next (First (Pragma_Argument_Associations (Prag)));
8180 -- The pragma has an optional Boolean expression, the related
8181 -- property is enabled only when the expression evaluates to
8182 -- True.
8184 if Present (Arg2) then
8185 return Is_True (Expr_Value (Get_Pragma_Arg (Arg2)));
8187 -- Otherwise the lack of expression enables the property by
8188 -- default.
8190 else
8191 return True;
8192 end if;
8194 -- The property was never set in the first place
8196 else
8197 return False;
8198 end if;
8199 end Is_Enabled;
8201 -- Local variables
8203 AR : constant Node_Id :=
8204 Get_Pragma (Item_Id, Pragma_Async_Readers);
8205 AW : constant Node_Id :=
8206 Get_Pragma (Item_Id, Pragma_Async_Writers);
8207 ER : constant Node_Id :=
8208 Get_Pragma (Item_Id, Pragma_Effective_Reads);
8209 EW : constant Node_Id :=
8210 Get_Pragma (Item_Id, Pragma_Effective_Writes);
8212 -- Start of processing for Variable_Has_Enabled_Property
8214 begin
8215 -- A non-effectively volatile object can never possess external
8216 -- properties.
8218 if not Is_Effectively_Volatile (Item_Id) then
8219 return False;
8221 -- External properties related to variables come in two flavors -
8222 -- explicit and implicit. The explicit case is characterized by the
8223 -- presence of a property pragma with an optional Boolean flag. The
8224 -- property is enabled when the flag evaluates to True or the flag is
8225 -- missing altogether.
8227 elsif Property = Name_Async_Readers and then Is_Enabled (AR) then
8228 return True;
8230 elsif Property = Name_Async_Writers and then Is_Enabled (AW) then
8231 return True;
8233 elsif Property = Name_Effective_Reads and then Is_Enabled (ER) then
8234 return True;
8236 elsif Property = Name_Effective_Writes and then Is_Enabled (EW) then
8237 return True;
8239 -- The implicit case lacks all property pragmas
8241 elsif No (AR) and then No (AW) and then No (ER) and then No (EW) then
8242 return True;
8244 else
8245 return False;
8246 end if;
8247 end Variable_Has_Enabled_Property;
8249 -- Start of processing for Has_Enabled_Property
8251 begin
8252 -- Abstract states and variables have a flexible scheme of specifying
8253 -- external properties.
8255 if Ekind (Item_Id) = E_Abstract_State then
8256 return State_Has_Enabled_Property;
8258 elsif Ekind (Item_Id) = E_Variable then
8259 return Variable_Has_Enabled_Property;
8261 -- Otherwise a property is enabled when the related item is effectively
8262 -- volatile.
8264 else
8265 return Is_Effectively_Volatile (Item_Id);
8266 end if;
8267 end Has_Enabled_Property;
8269 --------------------
8270 -- Has_Infinities --
8271 --------------------
8273 function Has_Infinities (E : Entity_Id) return Boolean is
8274 begin
8275 return
8276 Is_Floating_Point_Type (E)
8277 and then Nkind (Scalar_Range (E)) = N_Range
8278 and then Includes_Infinities (Scalar_Range (E));
8279 end Has_Infinities;
8281 --------------------
8282 -- Has_Interfaces --
8283 --------------------
8285 function Has_Interfaces
8286 (T : Entity_Id;
8287 Use_Full_View : Boolean := True) return Boolean
8289 Typ : Entity_Id := Base_Type (T);
8291 begin
8292 -- Handle concurrent types
8294 if Is_Concurrent_Type (Typ) then
8295 Typ := Corresponding_Record_Type (Typ);
8296 end if;
8298 if not Present (Typ)
8299 or else not Is_Record_Type (Typ)
8300 or else not Is_Tagged_Type (Typ)
8301 then
8302 return False;
8303 end if;
8305 -- Handle private types
8307 if Use_Full_View and then Present (Full_View (Typ)) then
8308 Typ := Full_View (Typ);
8309 end if;
8311 -- Handle concurrent record types
8313 if Is_Concurrent_Record_Type (Typ)
8314 and then Is_Non_Empty_List (Abstract_Interface_List (Typ))
8315 then
8316 return True;
8317 end if;
8319 loop
8320 if Is_Interface (Typ)
8321 or else
8322 (Is_Record_Type (Typ)
8323 and then Present (Interfaces (Typ))
8324 and then not Is_Empty_Elmt_List (Interfaces (Typ)))
8325 then
8326 return True;
8327 end if;
8329 exit when Etype (Typ) = Typ
8331 -- Handle private types
8333 or else (Present (Full_View (Etype (Typ)))
8334 and then Full_View (Etype (Typ)) = Typ)
8336 -- Protect frontend against wrong sources with cyclic derivations
8338 or else Etype (Typ) = T;
8340 -- Climb to the ancestor type handling private types
8342 if Present (Full_View (Etype (Typ))) then
8343 Typ := Full_View (Etype (Typ));
8344 else
8345 Typ := Etype (Typ);
8346 end if;
8347 end loop;
8349 return False;
8350 end Has_Interfaces;
8352 ---------------------------------
8353 -- Has_No_Obvious_Side_Effects --
8354 ---------------------------------
8356 function Has_No_Obvious_Side_Effects (N : Node_Id) return Boolean is
8357 begin
8358 -- For now, just handle literals, constants, and non-volatile
8359 -- variables and expressions combining these with operators or
8360 -- short circuit forms.
8362 if Nkind (N) in N_Numeric_Or_String_Literal then
8363 return True;
8365 elsif Nkind (N) = N_Character_Literal then
8366 return True;
8368 elsif Nkind (N) in N_Unary_Op then
8369 return Has_No_Obvious_Side_Effects (Right_Opnd (N));
8371 elsif Nkind (N) in N_Binary_Op or else Nkind (N) in N_Short_Circuit then
8372 return Has_No_Obvious_Side_Effects (Left_Opnd (N))
8373 and then
8374 Has_No_Obvious_Side_Effects (Right_Opnd (N));
8376 elsif Nkind (N) = N_Expression_With_Actions
8377 and then Is_Empty_List (Actions (N))
8378 then
8379 return Has_No_Obvious_Side_Effects (Expression (N));
8381 elsif Nkind (N) in N_Has_Entity then
8382 return Present (Entity (N))
8383 and then Ekind_In (Entity (N), E_Variable,
8384 E_Constant,
8385 E_Enumeration_Literal,
8386 E_In_Parameter,
8387 E_Out_Parameter,
8388 E_In_Out_Parameter)
8389 and then not Is_Volatile (Entity (N));
8391 else
8392 return False;
8393 end if;
8394 end Has_No_Obvious_Side_Effects;
8396 ------------------------
8397 -- Has_Null_Exclusion --
8398 ------------------------
8400 function Has_Null_Exclusion (N : Node_Id) return Boolean is
8401 begin
8402 case Nkind (N) is
8403 when N_Access_Definition |
8404 N_Access_Function_Definition |
8405 N_Access_Procedure_Definition |
8406 N_Access_To_Object_Definition |
8407 N_Allocator |
8408 N_Derived_Type_Definition |
8409 N_Function_Specification |
8410 N_Subtype_Declaration =>
8411 return Null_Exclusion_Present (N);
8413 when N_Component_Definition |
8414 N_Formal_Object_Declaration |
8415 N_Object_Renaming_Declaration =>
8416 if Present (Subtype_Mark (N)) then
8417 return Null_Exclusion_Present (N);
8418 else pragma Assert (Present (Access_Definition (N)));
8419 return Null_Exclusion_Present (Access_Definition (N));
8420 end if;
8422 when N_Discriminant_Specification =>
8423 if Nkind (Discriminant_Type (N)) = N_Access_Definition then
8424 return Null_Exclusion_Present (Discriminant_Type (N));
8425 else
8426 return Null_Exclusion_Present (N);
8427 end if;
8429 when N_Object_Declaration =>
8430 if Nkind (Object_Definition (N)) = N_Access_Definition then
8431 return Null_Exclusion_Present (Object_Definition (N));
8432 else
8433 return Null_Exclusion_Present (N);
8434 end if;
8436 when N_Parameter_Specification =>
8437 if Nkind (Parameter_Type (N)) = N_Access_Definition then
8438 return Null_Exclusion_Present (Parameter_Type (N));
8439 else
8440 return Null_Exclusion_Present (N);
8441 end if;
8443 when others =>
8444 return False;
8446 end case;
8447 end Has_Null_Exclusion;
8449 ------------------------
8450 -- Has_Null_Extension --
8451 ------------------------
8453 function Has_Null_Extension (T : Entity_Id) return Boolean is
8454 B : constant Entity_Id := Base_Type (T);
8455 Comps : Node_Id;
8456 Ext : Node_Id;
8458 begin
8459 if Nkind (Parent (B)) = N_Full_Type_Declaration
8460 and then Present (Record_Extension_Part (Type_Definition (Parent (B))))
8461 then
8462 Ext := Record_Extension_Part (Type_Definition (Parent (B)));
8464 if Present (Ext) then
8465 if Null_Present (Ext) then
8466 return True;
8467 else
8468 Comps := Component_List (Ext);
8470 -- The null component list is rewritten during analysis to
8471 -- include the parent component. Any other component indicates
8472 -- that the extension was not originally null.
8474 return Null_Present (Comps)
8475 or else No (Next (First (Component_Items (Comps))));
8476 end if;
8477 else
8478 return False;
8479 end if;
8481 else
8482 return False;
8483 end if;
8484 end Has_Null_Extension;
8486 -------------------------------
8487 -- Has_Overriding_Initialize --
8488 -------------------------------
8490 function Has_Overriding_Initialize (T : Entity_Id) return Boolean is
8491 BT : constant Entity_Id := Base_Type (T);
8492 P : Elmt_Id;
8494 begin
8495 if Is_Controlled (BT) then
8496 if Is_RTU (Scope (BT), Ada_Finalization) then
8497 return False;
8499 elsif Present (Primitive_Operations (BT)) then
8500 P := First_Elmt (Primitive_Operations (BT));
8501 while Present (P) loop
8502 declare
8503 Init : constant Entity_Id := Node (P);
8504 Formal : constant Entity_Id := First_Formal (Init);
8505 begin
8506 if Ekind (Init) = E_Procedure
8507 and then Chars (Init) = Name_Initialize
8508 and then Comes_From_Source (Init)
8509 and then Present (Formal)
8510 and then Etype (Formal) = BT
8511 and then No (Next_Formal (Formal))
8512 and then (Ada_Version < Ada_2012
8513 or else not Null_Present (Parent (Init)))
8514 then
8515 return True;
8516 end if;
8517 end;
8519 Next_Elmt (P);
8520 end loop;
8521 end if;
8523 -- Here if type itself does not have a non-null Initialize operation:
8524 -- check immediate ancestor.
8526 if Is_Derived_Type (BT)
8527 and then Has_Overriding_Initialize (Etype (BT))
8528 then
8529 return True;
8530 end if;
8531 end if;
8533 return False;
8534 end Has_Overriding_Initialize;
8536 --------------------------------------
8537 -- Has_Preelaborable_Initialization --
8538 --------------------------------------
8540 function Has_Preelaborable_Initialization (E : Entity_Id) return Boolean is
8541 Has_PE : Boolean;
8543 procedure Check_Components (E : Entity_Id);
8544 -- Check component/discriminant chain, sets Has_PE False if a component
8545 -- or discriminant does not meet the preelaborable initialization rules.
8547 ----------------------
8548 -- Check_Components --
8549 ----------------------
8551 procedure Check_Components (E : Entity_Id) is
8552 Ent : Entity_Id;
8553 Exp : Node_Id;
8555 function Is_Preelaborable_Expression (N : Node_Id) return Boolean;
8556 -- Returns True if and only if the expression denoted by N does not
8557 -- violate restrictions on preelaborable constructs (RM-10.2.1(5-9)).
8559 ---------------------------------
8560 -- Is_Preelaborable_Expression --
8561 ---------------------------------
8563 function Is_Preelaborable_Expression (N : Node_Id) return Boolean is
8564 Exp : Node_Id;
8565 Assn : Node_Id;
8566 Choice : Node_Id;
8567 Comp_Type : Entity_Id;
8568 Is_Array_Aggr : Boolean;
8570 begin
8571 if Is_OK_Static_Expression (N) then
8572 return True;
8574 elsif Nkind (N) = N_Null then
8575 return True;
8577 -- Attributes are allowed in general, even if their prefix is a
8578 -- formal type. (It seems that certain attributes known not to be
8579 -- static might not be allowed, but there are no rules to prevent
8580 -- them.)
8582 elsif Nkind (N) = N_Attribute_Reference then
8583 return True;
8585 -- The name of a discriminant evaluated within its parent type is
8586 -- defined to be preelaborable (10.2.1(8)). Note that we test for
8587 -- names that denote discriminals as well as discriminants to
8588 -- catch references occurring within init procs.
8590 elsif Is_Entity_Name (N)
8591 and then
8592 (Ekind (Entity (N)) = E_Discriminant
8593 or else (Ekind_In (Entity (N), E_Constant, E_In_Parameter)
8594 and then Present (Discriminal_Link (Entity (N)))))
8595 then
8596 return True;
8598 elsif Nkind (N) = N_Qualified_Expression then
8599 return Is_Preelaborable_Expression (Expression (N));
8601 -- For aggregates we have to check that each of the associations
8602 -- is preelaborable.
8604 elsif Nkind_In (N, N_Aggregate, N_Extension_Aggregate) then
8605 Is_Array_Aggr := Is_Array_Type (Etype (N));
8607 if Is_Array_Aggr then
8608 Comp_Type := Component_Type (Etype (N));
8609 end if;
8611 -- Check the ancestor part of extension aggregates, which must
8612 -- be either the name of a type that has preelaborable init or
8613 -- an expression that is preelaborable.
8615 if Nkind (N) = N_Extension_Aggregate then
8616 declare
8617 Anc_Part : constant Node_Id := Ancestor_Part (N);
8619 begin
8620 if Is_Entity_Name (Anc_Part)
8621 and then Is_Type (Entity (Anc_Part))
8622 then
8623 if not Has_Preelaborable_Initialization
8624 (Entity (Anc_Part))
8625 then
8626 return False;
8627 end if;
8629 elsif not Is_Preelaborable_Expression (Anc_Part) then
8630 return False;
8631 end if;
8632 end;
8633 end if;
8635 -- Check positional associations
8637 Exp := First (Expressions (N));
8638 while Present (Exp) loop
8639 if not Is_Preelaborable_Expression (Exp) then
8640 return False;
8641 end if;
8643 Next (Exp);
8644 end loop;
8646 -- Check named associations
8648 Assn := First (Component_Associations (N));
8649 while Present (Assn) loop
8650 Choice := First (Choices (Assn));
8651 while Present (Choice) loop
8652 if Is_Array_Aggr then
8653 if Nkind (Choice) = N_Others_Choice then
8654 null;
8656 elsif Nkind (Choice) = N_Range then
8657 if not Is_OK_Static_Range (Choice) then
8658 return False;
8659 end if;
8661 elsif not Is_OK_Static_Expression (Choice) then
8662 return False;
8663 end if;
8665 else
8666 Comp_Type := Etype (Choice);
8667 end if;
8669 Next (Choice);
8670 end loop;
8672 -- If the association has a <> at this point, then we have
8673 -- to check whether the component's type has preelaborable
8674 -- initialization. Note that this only occurs when the
8675 -- association's corresponding component does not have a
8676 -- default expression, the latter case having already been
8677 -- expanded as an expression for the association.
8679 if Box_Present (Assn) then
8680 if not Has_Preelaborable_Initialization (Comp_Type) then
8681 return False;
8682 end if;
8684 -- In the expression case we check whether the expression
8685 -- is preelaborable.
8687 elsif
8688 not Is_Preelaborable_Expression (Expression (Assn))
8689 then
8690 return False;
8691 end if;
8693 Next (Assn);
8694 end loop;
8696 -- If we get here then aggregate as a whole is preelaborable
8698 return True;
8700 -- All other cases are not preelaborable
8702 else
8703 return False;
8704 end if;
8705 end Is_Preelaborable_Expression;
8707 -- Start of processing for Check_Components
8709 begin
8710 -- Loop through entities of record or protected type
8712 Ent := E;
8713 while Present (Ent) loop
8715 -- We are interested only in components and discriminants
8717 Exp := Empty;
8719 case Ekind (Ent) is
8720 when E_Component =>
8722 -- Get default expression if any. If there is no declaration
8723 -- node, it means we have an internal entity. The parent and
8724 -- tag fields are examples of such entities. For such cases,
8725 -- we just test the type of the entity.
8727 if Present (Declaration_Node (Ent)) then
8728 Exp := Expression (Declaration_Node (Ent));
8729 end if;
8731 when E_Discriminant =>
8733 -- Note: for a renamed discriminant, the Declaration_Node
8734 -- may point to the one from the ancestor, and have a
8735 -- different expression, so use the proper attribute to
8736 -- retrieve the expression from the derived constraint.
8738 Exp := Discriminant_Default_Value (Ent);
8740 when others =>
8741 goto Check_Next_Entity;
8742 end case;
8744 -- A component has PI if it has no default expression and the
8745 -- component type has PI.
8747 if No (Exp) then
8748 if not Has_Preelaborable_Initialization (Etype (Ent)) then
8749 Has_PE := False;
8750 exit;
8751 end if;
8753 -- Require the default expression to be preelaborable
8755 elsif not Is_Preelaborable_Expression (Exp) then
8756 Has_PE := False;
8757 exit;
8758 end if;
8760 <<Check_Next_Entity>>
8761 Next_Entity (Ent);
8762 end loop;
8763 end Check_Components;
8765 -- Start of processing for Has_Preelaborable_Initialization
8767 begin
8768 -- Immediate return if already marked as known preelaborable init. This
8769 -- covers types for which this function has already been called once
8770 -- and returned True (in which case the result is cached), and also
8771 -- types to which a pragma Preelaborable_Initialization applies.
8773 if Known_To_Have_Preelab_Init (E) then
8774 return True;
8775 end if;
8777 -- If the type is a subtype representing a generic actual type, then
8778 -- test whether its base type has preelaborable initialization since
8779 -- the subtype representing the actual does not inherit this attribute
8780 -- from the actual or formal. (but maybe it should???)
8782 if Is_Generic_Actual_Type (E) then
8783 return Has_Preelaborable_Initialization (Base_Type (E));
8784 end if;
8786 -- All elementary types have preelaborable initialization
8788 if Is_Elementary_Type (E) then
8789 Has_PE := True;
8791 -- Array types have PI if the component type has PI
8793 elsif Is_Array_Type (E) then
8794 Has_PE := Has_Preelaborable_Initialization (Component_Type (E));
8796 -- A derived type has preelaborable initialization if its parent type
8797 -- has preelaborable initialization and (in the case of a derived record
8798 -- extension) if the non-inherited components all have preelaborable
8799 -- initialization. However, a user-defined controlled type with an
8800 -- overriding Initialize procedure does not have preelaborable
8801 -- initialization.
8803 elsif Is_Derived_Type (E) then
8805 -- If the derived type is a private extension then it doesn't have
8806 -- preelaborable initialization.
8808 if Ekind (Base_Type (E)) = E_Record_Type_With_Private then
8809 return False;
8810 end if;
8812 -- First check whether ancestor type has preelaborable initialization
8814 Has_PE := Has_Preelaborable_Initialization (Etype (Base_Type (E)));
8816 -- If OK, check extension components (if any)
8818 if Has_PE and then Is_Record_Type (E) then
8819 Check_Components (First_Entity (E));
8820 end if;
8822 -- Check specifically for 10.2.1(11.4/2) exception: a controlled type
8823 -- with a user defined Initialize procedure does not have PI. If
8824 -- the type is untagged, the control primitives come from a component
8825 -- that has already been checked.
8827 if Has_PE
8828 and then Is_Controlled (E)
8829 and then Is_Tagged_Type (E)
8830 and then Has_Overriding_Initialize (E)
8831 then
8832 Has_PE := False;
8833 end if;
8835 -- Private types not derived from a type having preelaborable init and
8836 -- that are not marked with pragma Preelaborable_Initialization do not
8837 -- have preelaborable initialization.
8839 elsif Is_Private_Type (E) then
8840 return False;
8842 -- Record type has PI if it is non private and all components have PI
8844 elsif Is_Record_Type (E) then
8845 Has_PE := True;
8846 Check_Components (First_Entity (E));
8848 -- Protected types must not have entries, and components must meet
8849 -- same set of rules as for record components.
8851 elsif Is_Protected_Type (E) then
8852 if Has_Entries (E) then
8853 Has_PE := False;
8854 else
8855 Has_PE := True;
8856 Check_Components (First_Entity (E));
8857 Check_Components (First_Private_Entity (E));
8858 end if;
8860 -- Type System.Address always has preelaborable initialization
8862 elsif Is_RTE (E, RE_Address) then
8863 Has_PE := True;
8865 -- In all other cases, type does not have preelaborable initialization
8867 else
8868 return False;
8869 end if;
8871 -- If type has preelaborable initialization, cache result
8873 if Has_PE then
8874 Set_Known_To_Have_Preelab_Init (E);
8875 end if;
8877 return Has_PE;
8878 end Has_Preelaborable_Initialization;
8880 ---------------------------
8881 -- Has_Private_Component --
8882 ---------------------------
8884 function Has_Private_Component (Type_Id : Entity_Id) return Boolean is
8885 Btype : Entity_Id := Base_Type (Type_Id);
8886 Component : Entity_Id;
8888 begin
8889 if Error_Posted (Type_Id)
8890 or else Error_Posted (Btype)
8891 then
8892 return False;
8893 end if;
8895 if Is_Class_Wide_Type (Btype) then
8896 Btype := Root_Type (Btype);
8897 end if;
8899 if Is_Private_Type (Btype) then
8900 declare
8901 UT : constant Entity_Id := Underlying_Type (Btype);
8902 begin
8903 if No (UT) then
8904 if No (Full_View (Btype)) then
8905 return not Is_Generic_Type (Btype)
8906 and then
8907 not Is_Generic_Type (Root_Type (Btype));
8908 else
8909 return not Is_Generic_Type (Root_Type (Full_View (Btype)));
8910 end if;
8911 else
8912 return not Is_Frozen (UT) and then Has_Private_Component (UT);
8913 end if;
8914 end;
8916 elsif Is_Array_Type (Btype) then
8917 return Has_Private_Component (Component_Type (Btype));
8919 elsif Is_Record_Type (Btype) then
8920 Component := First_Component (Btype);
8921 while Present (Component) loop
8922 if Has_Private_Component (Etype (Component)) then
8923 return True;
8924 end if;
8926 Next_Component (Component);
8927 end loop;
8929 return False;
8931 elsif Is_Protected_Type (Btype)
8932 and then Present (Corresponding_Record_Type (Btype))
8933 then
8934 return Has_Private_Component (Corresponding_Record_Type (Btype));
8936 else
8937 return False;
8938 end if;
8939 end Has_Private_Component;
8941 ----------------------
8942 -- Has_Signed_Zeros --
8943 ----------------------
8945 function Has_Signed_Zeros (E : Entity_Id) return Boolean is
8946 begin
8947 return Is_Floating_Point_Type (E) and then Signed_Zeros_On_Target;
8948 end Has_Signed_Zeros;
8950 ------------------------------
8951 -- Has_Significant_Contract --
8952 ------------------------------
8954 function Has_Significant_Contract (Subp_Id : Entity_Id) return Boolean is
8955 Subp_Nam : constant Name_Id := Chars (Subp_Id);
8957 begin
8958 -- _Finalizer procedure
8960 if Subp_Nam = Name_uFinalizer then
8961 return False;
8963 -- _Postconditions procedure
8965 elsif Subp_Nam = Name_uPostconditions then
8966 return False;
8968 -- Predicate function
8970 elsif Ekind (Subp_Id) = E_Function
8971 and then Is_Predicate_Function (Subp_Id)
8972 then
8973 return False;
8975 -- TSS subprogram
8977 elsif Get_TSS_Name (Subp_Id) /= TSS_Null then
8978 return False;
8980 else
8981 return True;
8982 end if;
8983 end Has_Significant_Contract;
8985 -----------------------------
8986 -- Has_Static_Array_Bounds --
8987 -----------------------------
8989 function Has_Static_Array_Bounds (Typ : Node_Id) return Boolean is
8990 Ndims : constant Nat := Number_Dimensions (Typ);
8992 Index : Node_Id;
8993 Low : Node_Id;
8994 High : Node_Id;
8996 begin
8997 -- Unconstrained types do not have static bounds
8999 if not Is_Constrained (Typ) then
9000 return False;
9001 end if;
9003 -- First treat string literals specially, as the lower bound and length
9004 -- of string literals are not stored like those of arrays.
9006 -- A string literal always has static bounds
9008 if Ekind (Typ) = E_String_Literal_Subtype then
9009 return True;
9010 end if;
9012 -- Treat all dimensions in turn
9014 Index := First_Index (Typ);
9015 for Indx in 1 .. Ndims loop
9017 -- In case of an illegal index which is not a discrete type, return
9018 -- that the type is not static.
9020 if not Is_Discrete_Type (Etype (Index))
9021 or else Etype (Index) = Any_Type
9022 then
9023 return False;
9024 end if;
9026 Get_Index_Bounds (Index, Low, High);
9028 if Error_Posted (Low) or else Error_Posted (High) then
9029 return False;
9030 end if;
9032 if Is_OK_Static_Expression (Low)
9033 and then
9034 Is_OK_Static_Expression (High)
9035 then
9036 null;
9037 else
9038 return False;
9039 end if;
9041 Next (Index);
9042 end loop;
9044 -- If we fall through the loop, all indexes matched
9046 return True;
9047 end Has_Static_Array_Bounds;
9049 ----------------
9050 -- Has_Stream --
9051 ----------------
9053 function Has_Stream (T : Entity_Id) return Boolean is
9054 E : Entity_Id;
9056 begin
9057 if No (T) then
9058 return False;
9060 elsif Is_RTE (Root_Type (T), RE_Root_Stream_Type) then
9061 return True;
9063 elsif Is_Array_Type (T) then
9064 return Has_Stream (Component_Type (T));
9066 elsif Is_Record_Type (T) then
9067 E := First_Component (T);
9068 while Present (E) loop
9069 if Has_Stream (Etype (E)) then
9070 return True;
9071 else
9072 Next_Component (E);
9073 end if;
9074 end loop;
9076 return False;
9078 elsif Is_Private_Type (T) then
9079 return Has_Stream (Underlying_Type (T));
9081 else
9082 return False;
9083 end if;
9084 end Has_Stream;
9086 ----------------
9087 -- Has_Suffix --
9088 ----------------
9090 function Has_Suffix (E : Entity_Id; Suffix : Character) return Boolean is
9091 begin
9092 Get_Name_String (Chars (E));
9093 return Name_Buffer (Name_Len) = Suffix;
9094 end Has_Suffix;
9096 ----------------
9097 -- Add_Suffix --
9098 ----------------
9100 function Add_Suffix (E : Entity_Id; Suffix : Character) return Name_Id is
9101 begin
9102 Get_Name_String (Chars (E));
9103 Add_Char_To_Name_Buffer (Suffix);
9104 return Name_Find;
9105 end Add_Suffix;
9107 -------------------
9108 -- Remove_Suffix --
9109 -------------------
9111 function Remove_Suffix (E : Entity_Id; Suffix : Character) return Name_Id is
9112 begin
9113 pragma Assert (Has_Suffix (E, Suffix));
9114 Get_Name_String (Chars (E));
9115 Name_Len := Name_Len - 1;
9116 return Name_Find;
9117 end Remove_Suffix;
9119 --------------------------
9120 -- Has_Tagged_Component --
9121 --------------------------
9123 function Has_Tagged_Component (Typ : Entity_Id) return Boolean is
9124 Comp : Entity_Id;
9126 begin
9127 if Is_Private_Type (Typ) and then Present (Underlying_Type (Typ)) then
9128 return Has_Tagged_Component (Underlying_Type (Typ));
9130 elsif Is_Array_Type (Typ) then
9131 return Has_Tagged_Component (Component_Type (Typ));
9133 elsif Is_Tagged_Type (Typ) then
9134 return True;
9136 elsif Is_Record_Type (Typ) then
9137 Comp := First_Component (Typ);
9138 while Present (Comp) loop
9139 if Has_Tagged_Component (Etype (Comp)) then
9140 return True;
9141 end if;
9143 Next_Component (Comp);
9144 end loop;
9146 return False;
9148 else
9149 return False;
9150 end if;
9151 end Has_Tagged_Component;
9153 ----------------------------
9154 -- Has_Volatile_Component --
9155 ----------------------------
9157 function Has_Volatile_Component (Typ : Entity_Id) return Boolean is
9158 Comp : Entity_Id;
9160 begin
9161 if Has_Volatile_Components (Typ) then
9162 return True;
9164 elsif Is_Array_Type (Typ) then
9165 return Is_Volatile (Component_Type (Typ));
9167 elsif Is_Record_Type (Typ) then
9168 Comp := First_Component (Typ);
9169 while Present (Comp) loop
9170 if Is_Volatile_Object (Comp) then
9171 return True;
9172 end if;
9174 Comp := Next_Component (Comp);
9175 end loop;
9176 end if;
9178 return False;
9179 end Has_Volatile_Component;
9181 -------------------------
9182 -- Implementation_Kind --
9183 -------------------------
9185 function Implementation_Kind (Subp : Entity_Id) return Name_Id is
9186 Impl_Prag : constant Node_Id := Get_Rep_Pragma (Subp, Name_Implemented);
9187 Arg : Node_Id;
9188 begin
9189 pragma Assert (Present (Impl_Prag));
9190 Arg := Last (Pragma_Argument_Associations (Impl_Prag));
9191 return Chars (Get_Pragma_Arg (Arg));
9192 end Implementation_Kind;
9194 --------------------------
9195 -- Implements_Interface --
9196 --------------------------
9198 function Implements_Interface
9199 (Typ_Ent : Entity_Id;
9200 Iface_Ent : Entity_Id;
9201 Exclude_Parents : Boolean := False) return Boolean
9203 Ifaces_List : Elist_Id;
9204 Elmt : Elmt_Id;
9205 Iface : Entity_Id := Base_Type (Iface_Ent);
9206 Typ : Entity_Id := Base_Type (Typ_Ent);
9208 begin
9209 if Is_Class_Wide_Type (Typ) then
9210 Typ := Root_Type (Typ);
9211 end if;
9213 if not Has_Interfaces (Typ) then
9214 return False;
9215 end if;
9217 if Is_Class_Wide_Type (Iface) then
9218 Iface := Root_Type (Iface);
9219 end if;
9221 Collect_Interfaces (Typ, Ifaces_List);
9223 Elmt := First_Elmt (Ifaces_List);
9224 while Present (Elmt) loop
9225 if Is_Ancestor (Node (Elmt), Typ, Use_Full_View => True)
9226 and then Exclude_Parents
9227 then
9228 null;
9230 elsif Node (Elmt) = Iface then
9231 return True;
9232 end if;
9234 Next_Elmt (Elmt);
9235 end loop;
9237 return False;
9238 end Implements_Interface;
9240 ------------------------------------
9241 -- In_Assertion_Expression_Pragma --
9242 ------------------------------------
9244 function In_Assertion_Expression_Pragma (N : Node_Id) return Boolean is
9245 Par : Node_Id;
9246 Prag : Node_Id := Empty;
9248 begin
9249 -- Climb the parent chain looking for an enclosing pragma
9251 Par := N;
9252 while Present (Par) loop
9253 if Nkind (Par) = N_Pragma then
9254 Prag := Par;
9255 exit;
9257 -- Precondition-like pragmas are expanded into if statements, check
9258 -- the original node instead.
9260 elsif Nkind (Original_Node (Par)) = N_Pragma then
9261 Prag := Original_Node (Par);
9262 exit;
9264 -- The expansion of attribute 'Old generates a constant to capture
9265 -- the result of the prefix. If the parent traversal reaches
9266 -- one of these constants, then the node technically came from a
9267 -- postcondition-like pragma. Note that the Ekind is not tested here
9268 -- because N may be the expression of an object declaration which is
9269 -- currently being analyzed. Such objects carry Ekind of E_Void.
9271 elsif Nkind (Par) = N_Object_Declaration
9272 and then Constant_Present (Par)
9273 and then Stores_Attribute_Old_Prefix (Defining_Entity (Par))
9274 then
9275 return True;
9277 -- Prevent the search from going too far
9279 elsif Is_Body_Or_Package_Declaration (Par) then
9280 return False;
9281 end if;
9283 Par := Parent (Par);
9284 end loop;
9286 return
9287 Present (Prag)
9288 and then Assertion_Expression_Pragma (Get_Pragma_Id (Prag));
9289 end In_Assertion_Expression_Pragma;
9291 -----------------
9292 -- In_Instance --
9293 -----------------
9295 function In_Instance return Boolean is
9296 Curr_Unit : constant Entity_Id := Cunit_Entity (Current_Sem_Unit);
9297 S : Entity_Id;
9299 begin
9300 S := Current_Scope;
9301 while Present (S) and then S /= Standard_Standard loop
9302 if Ekind_In (S, E_Function, E_Package, E_Procedure)
9303 and then Is_Generic_Instance (S)
9304 then
9305 -- A child instance is always compiled in the context of a parent
9306 -- instance. Nevertheless, the actuals are not analyzed in an
9307 -- instance context. We detect this case by examining the current
9308 -- compilation unit, which must be a child instance, and checking
9309 -- that it is not currently on the scope stack.
9311 if Is_Child_Unit (Curr_Unit)
9312 and then Nkind (Unit (Cunit (Current_Sem_Unit))) =
9313 N_Package_Instantiation
9314 and then not In_Open_Scopes (Curr_Unit)
9315 then
9316 return False;
9317 else
9318 return True;
9319 end if;
9320 end if;
9322 S := Scope (S);
9323 end loop;
9325 return False;
9326 end In_Instance;
9328 ----------------------
9329 -- In_Instance_Body --
9330 ----------------------
9332 function In_Instance_Body return Boolean is
9333 S : Entity_Id;
9335 begin
9336 S := Current_Scope;
9337 while Present (S) and then S /= Standard_Standard loop
9338 if Ekind_In (S, E_Function, E_Procedure)
9339 and then Is_Generic_Instance (S)
9340 then
9341 return True;
9343 elsif Ekind (S) = E_Package
9344 and then In_Package_Body (S)
9345 and then Is_Generic_Instance (S)
9346 then
9347 return True;
9348 end if;
9350 S := Scope (S);
9351 end loop;
9353 return False;
9354 end In_Instance_Body;
9356 -----------------------------
9357 -- In_Instance_Not_Visible --
9358 -----------------------------
9360 function In_Instance_Not_Visible return Boolean is
9361 S : Entity_Id;
9363 begin
9364 S := Current_Scope;
9365 while Present (S) and then S /= Standard_Standard loop
9366 if Ekind_In (S, E_Function, E_Procedure)
9367 and then Is_Generic_Instance (S)
9368 then
9369 return True;
9371 elsif Ekind (S) = E_Package
9372 and then (In_Package_Body (S) or else In_Private_Part (S))
9373 and then Is_Generic_Instance (S)
9374 then
9375 return True;
9376 end if;
9378 S := Scope (S);
9379 end loop;
9381 return False;
9382 end In_Instance_Not_Visible;
9384 ------------------------------
9385 -- In_Instance_Visible_Part --
9386 ------------------------------
9388 function In_Instance_Visible_Part return Boolean is
9389 S : Entity_Id;
9391 begin
9392 S := Current_Scope;
9393 while Present (S) and then S /= Standard_Standard loop
9394 if Ekind (S) = E_Package
9395 and then Is_Generic_Instance (S)
9396 and then not In_Package_Body (S)
9397 and then not In_Private_Part (S)
9398 then
9399 return True;
9400 end if;
9402 S := Scope (S);
9403 end loop;
9405 return False;
9406 end In_Instance_Visible_Part;
9408 ---------------------
9409 -- In_Package_Body --
9410 ---------------------
9412 function In_Package_Body return Boolean is
9413 S : Entity_Id;
9415 begin
9416 S := Current_Scope;
9417 while Present (S) and then S /= Standard_Standard loop
9418 if Ekind (S) = E_Package and then In_Package_Body (S) then
9419 return True;
9420 else
9421 S := Scope (S);
9422 end if;
9423 end loop;
9425 return False;
9426 end In_Package_Body;
9428 --------------------------------
9429 -- In_Parameter_Specification --
9430 --------------------------------
9432 function In_Parameter_Specification (N : Node_Id) return Boolean is
9433 PN : Node_Id;
9435 begin
9436 PN := Parent (N);
9437 while Present (PN) loop
9438 if Nkind (PN) = N_Parameter_Specification then
9439 return True;
9440 end if;
9442 PN := Parent (PN);
9443 end loop;
9445 return False;
9446 end In_Parameter_Specification;
9448 --------------------------
9449 -- In_Pragma_Expression --
9450 --------------------------
9452 function In_Pragma_Expression (N : Node_Id; Nam : Name_Id) return Boolean is
9453 P : Node_Id;
9454 begin
9455 P := Parent (N);
9456 loop
9457 if No (P) then
9458 return False;
9459 elsif Nkind (P) = N_Pragma and then Pragma_Name (P) = Nam then
9460 return True;
9461 else
9462 P := Parent (P);
9463 end if;
9464 end loop;
9465 end In_Pragma_Expression;
9467 -------------------------------------
9468 -- In_Reverse_Storage_Order_Object --
9469 -------------------------------------
9471 function In_Reverse_Storage_Order_Object (N : Node_Id) return Boolean is
9472 Pref : Node_Id;
9473 Btyp : Entity_Id := Empty;
9475 begin
9476 -- Climb up indexed components
9478 Pref := N;
9479 loop
9480 case Nkind (Pref) is
9481 when N_Selected_Component =>
9482 Pref := Prefix (Pref);
9483 exit;
9485 when N_Indexed_Component =>
9486 Pref := Prefix (Pref);
9488 when others =>
9489 Pref := Empty;
9490 exit;
9491 end case;
9492 end loop;
9494 if Present (Pref) then
9495 Btyp := Base_Type (Etype (Pref));
9496 end if;
9498 return Present (Btyp)
9499 and then (Is_Record_Type (Btyp) or else Is_Array_Type (Btyp))
9500 and then Reverse_Storage_Order (Btyp);
9501 end In_Reverse_Storage_Order_Object;
9503 --------------------------------------
9504 -- In_Subprogram_Or_Concurrent_Unit --
9505 --------------------------------------
9507 function In_Subprogram_Or_Concurrent_Unit return Boolean is
9508 E : Entity_Id;
9509 K : Entity_Kind;
9511 begin
9512 -- Use scope chain to check successively outer scopes
9514 E := Current_Scope;
9515 loop
9516 K := Ekind (E);
9518 if K in Subprogram_Kind
9519 or else K in Concurrent_Kind
9520 or else K in Generic_Subprogram_Kind
9521 then
9522 return True;
9524 elsif E = Standard_Standard then
9525 return False;
9526 end if;
9528 E := Scope (E);
9529 end loop;
9530 end In_Subprogram_Or_Concurrent_Unit;
9532 ---------------------
9533 -- In_Visible_Part --
9534 ---------------------
9536 function In_Visible_Part (Scope_Id : Entity_Id) return Boolean is
9537 begin
9538 return Is_Package_Or_Generic_Package (Scope_Id)
9539 and then In_Open_Scopes (Scope_Id)
9540 and then not In_Package_Body (Scope_Id)
9541 and then not In_Private_Part (Scope_Id);
9542 end In_Visible_Part;
9544 --------------------------------
9545 -- Incomplete_Or_Partial_View --
9546 --------------------------------
9548 function Incomplete_Or_Partial_View (Id : Entity_Id) return Entity_Id is
9549 function Inspect_Decls
9550 (Decls : List_Id;
9551 Taft : Boolean := False) return Entity_Id;
9552 -- Check whether a declarative region contains the incomplete or partial
9553 -- view of Id.
9555 -------------------
9556 -- Inspect_Decls --
9557 -------------------
9559 function Inspect_Decls
9560 (Decls : List_Id;
9561 Taft : Boolean := False) return Entity_Id
9563 Decl : Node_Id;
9564 Match : Node_Id;
9566 begin
9567 Decl := First (Decls);
9568 while Present (Decl) loop
9569 Match := Empty;
9571 if Taft then
9572 if Nkind (Decl) = N_Incomplete_Type_Declaration then
9573 Match := Defining_Identifier (Decl);
9574 end if;
9576 else
9577 if Nkind_In (Decl, N_Private_Extension_Declaration,
9578 N_Private_Type_Declaration)
9579 then
9580 Match := Defining_Identifier (Decl);
9581 end if;
9582 end if;
9584 if Present (Match)
9585 and then Present (Full_View (Match))
9586 and then Full_View (Match) = Id
9587 then
9588 return Match;
9589 end if;
9591 Next (Decl);
9592 end loop;
9594 return Empty;
9595 end Inspect_Decls;
9597 -- Local variables
9599 Prev : Entity_Id;
9601 -- Start of processing for Incomplete_Or_Partial_View
9603 begin
9604 -- Deferred constant or incomplete type case
9606 Prev := Current_Entity_In_Scope (Id);
9608 if Present (Prev)
9609 and then (Is_Incomplete_Type (Prev) or else Ekind (Prev) = E_Constant)
9610 and then Present (Full_View (Prev))
9611 and then Full_View (Prev) = Id
9612 then
9613 return Prev;
9614 end if;
9616 -- Private or Taft amendment type case
9618 declare
9619 Pkg : constant Entity_Id := Scope (Id);
9620 Pkg_Decl : Node_Id := Pkg;
9622 begin
9623 if Present (Pkg) and then Ekind (Pkg) = E_Package then
9624 while Nkind (Pkg_Decl) /= N_Package_Specification loop
9625 Pkg_Decl := Parent (Pkg_Decl);
9626 end loop;
9628 -- It is knows that Typ has a private view, look for it in the
9629 -- visible declarations of the enclosing scope. A special case
9630 -- of this is when the two views have been exchanged - the full
9631 -- appears earlier than the private.
9633 if Has_Private_Declaration (Id) then
9634 Prev := Inspect_Decls (Visible_Declarations (Pkg_Decl));
9636 -- Exchanged view case, look in the private declarations
9638 if No (Prev) then
9639 Prev := Inspect_Decls (Private_Declarations (Pkg_Decl));
9640 end if;
9642 return Prev;
9644 -- Otherwise if this is the package body, then Typ is a potential
9645 -- Taft amendment type. The incomplete view should be located in
9646 -- the private declarations of the enclosing scope.
9648 elsif In_Package_Body (Pkg) then
9649 return Inspect_Decls (Private_Declarations (Pkg_Decl), True);
9650 end if;
9651 end if;
9652 end;
9654 -- The type has no incomplete or private view
9656 return Empty;
9657 end Incomplete_Or_Partial_View;
9659 -----------------------------------------
9660 -- Inherit_Default_Init_Cond_Procedure --
9661 -----------------------------------------
9663 procedure Inherit_Default_Init_Cond_Procedure (Typ : Entity_Id) is
9664 Par_Typ : constant Entity_Id := Etype (Typ);
9666 begin
9667 -- A derived type inherits the default initial condition procedure of
9668 -- its parent type.
9670 if No (Default_Init_Cond_Procedure (Typ)) then
9671 Set_Default_Init_Cond_Procedure
9672 (Typ, Default_Init_Cond_Procedure (Par_Typ));
9673 end if;
9674 end Inherit_Default_Init_Cond_Procedure;
9676 ----------------------------
9677 -- Inherit_Rep_Item_Chain --
9678 ----------------------------
9680 procedure Inherit_Rep_Item_Chain (Typ : Entity_Id; From_Typ : Entity_Id) is
9681 From_Item : constant Node_Id := First_Rep_Item (From_Typ);
9682 Item : Node_Id := Empty;
9683 Last_Item : Node_Id := Empty;
9685 begin
9686 -- Reach the end of the destination type's chain (if any) and capture
9687 -- the last item.
9689 Item := First_Rep_Item (Typ);
9690 while Present (Item) loop
9692 -- Do not inherit a chain that has been inherited already
9694 if Item = From_Item then
9695 return;
9696 end if;
9698 Last_Item := Item;
9699 Item := Next_Rep_Item (Item);
9700 end loop;
9702 -- When the destination type has a rep item chain, the chain of the
9703 -- source type is appended to it.
9705 if Present (Last_Item) then
9706 Set_Next_Rep_Item (Last_Item, From_Item);
9708 -- Otherwise the destination type directly inherits the rep item chain
9709 -- of the source type (if any).
9711 else
9712 Set_First_Rep_Item (Typ, From_Item);
9713 end if;
9714 end Inherit_Rep_Item_Chain;
9716 ---------------------------------
9717 -- Inherit_Subprogram_Contract --
9718 ---------------------------------
9720 procedure Inherit_Subprogram_Contract
9721 (Subp : Entity_Id;
9722 From_Subp : Entity_Id)
9724 procedure Inherit_Pragma (Prag_Id : Pragma_Id);
9725 -- Propagate a pragma denoted by Prag_Id from From_Subp's contract to
9726 -- Subp's contract.
9728 --------------------
9729 -- Inherit_Pragma --
9730 --------------------
9732 procedure Inherit_Pragma (Prag_Id : Pragma_Id) is
9733 Prag : constant Node_Id := Get_Pragma (From_Subp, Prag_Id);
9734 New_Prag : Node_Id;
9736 begin
9737 -- A pragma cannot be part of more than one First_Pragma/Next_Pragma
9738 -- chains, therefore the node must be replicated. The new pragma is
9739 -- flagged is inherited for distrinction purposes.
9741 if Present (Prag) then
9742 New_Prag := New_Copy_Tree (Prag);
9743 Set_Is_Inherited (New_Prag);
9745 Add_Contract_Item (New_Prag, Subp);
9746 end if;
9747 end Inherit_Pragma;
9749 -- Start of processing for Inherit_Subprogram_Contract
9751 begin
9752 -- Inheritance is carried out only when both entities are subprograms
9753 -- with contracts.
9755 if Is_Subprogram_Or_Generic_Subprogram (Subp)
9756 and then Is_Subprogram_Or_Generic_Subprogram (From_Subp)
9757 and then Present (Contract (From_Subp))
9758 then
9759 Inherit_Pragma (Pragma_Extensions_Visible);
9760 end if;
9761 end Inherit_Subprogram_Contract;
9763 ---------------------------------
9764 -- Insert_Explicit_Dereference --
9765 ---------------------------------
9767 procedure Insert_Explicit_Dereference (N : Node_Id) is
9768 New_Prefix : constant Node_Id := Relocate_Node (N);
9769 Ent : Entity_Id := Empty;
9770 Pref : Node_Id;
9771 I : Interp_Index;
9772 It : Interp;
9773 T : Entity_Id;
9775 begin
9776 Save_Interps (N, New_Prefix);
9778 Rewrite (N,
9779 Make_Explicit_Dereference (Sloc (Parent (N)),
9780 Prefix => New_Prefix));
9782 Set_Etype (N, Designated_Type (Etype (New_Prefix)));
9784 if Is_Overloaded (New_Prefix) then
9786 -- The dereference is also overloaded, and its interpretations are
9787 -- the designated types of the interpretations of the original node.
9789 Set_Etype (N, Any_Type);
9791 Get_First_Interp (New_Prefix, I, It);
9792 while Present (It.Nam) loop
9793 T := It.Typ;
9795 if Is_Access_Type (T) then
9796 Add_One_Interp (N, Designated_Type (T), Designated_Type (T));
9797 end if;
9799 Get_Next_Interp (I, It);
9800 end loop;
9802 End_Interp_List;
9804 else
9805 -- Prefix is unambiguous: mark the original prefix (which might
9806 -- Come_From_Source) as a reference, since the new (relocated) one
9807 -- won't be taken into account.
9809 if Is_Entity_Name (New_Prefix) then
9810 Ent := Entity (New_Prefix);
9811 Pref := New_Prefix;
9813 -- For a retrieval of a subcomponent of some composite object,
9814 -- retrieve the ultimate entity if there is one.
9816 elsif Nkind_In (New_Prefix, N_Selected_Component,
9817 N_Indexed_Component)
9818 then
9819 Pref := Prefix (New_Prefix);
9820 while Present (Pref)
9821 and then Nkind_In (Pref, N_Selected_Component,
9822 N_Indexed_Component)
9823 loop
9824 Pref := Prefix (Pref);
9825 end loop;
9827 if Present (Pref) and then Is_Entity_Name (Pref) then
9828 Ent := Entity (Pref);
9829 end if;
9830 end if;
9832 -- Place the reference on the entity node
9834 if Present (Ent) then
9835 Generate_Reference (Ent, Pref);
9836 end if;
9837 end if;
9838 end Insert_Explicit_Dereference;
9840 ------------------------------------------
9841 -- Inspect_Deferred_Constant_Completion --
9842 ------------------------------------------
9844 procedure Inspect_Deferred_Constant_Completion (Decls : List_Id) is
9845 Decl : Node_Id;
9847 begin
9848 Decl := First (Decls);
9849 while Present (Decl) loop
9851 -- Deferred constant signature
9853 if Nkind (Decl) = N_Object_Declaration
9854 and then Constant_Present (Decl)
9855 and then No (Expression (Decl))
9857 -- No need to check internally generated constants
9859 and then Comes_From_Source (Decl)
9861 -- The constant is not completed. A full object declaration or a
9862 -- pragma Import complete a deferred constant.
9864 and then not Has_Completion (Defining_Identifier (Decl))
9865 then
9866 Error_Msg_N
9867 ("constant declaration requires initialization expression",
9868 Defining_Identifier (Decl));
9869 end if;
9871 Decl := Next (Decl);
9872 end loop;
9873 end Inspect_Deferred_Constant_Completion;
9875 -----------------------------
9876 -- Install_Generic_Formals --
9877 -----------------------------
9879 procedure Install_Generic_Formals (Subp_Id : Entity_Id) is
9880 E : Entity_Id;
9882 begin
9883 pragma Assert (Is_Generic_Subprogram (Subp_Id));
9885 E := First_Entity (Subp_Id);
9886 while Present (E) loop
9887 Install_Entity (E);
9888 Next_Entity (E);
9889 end loop;
9890 end Install_Generic_Formals;
9892 -----------------------------
9893 -- Is_Actual_Out_Parameter --
9894 -----------------------------
9896 function Is_Actual_Out_Parameter (N : Node_Id) return Boolean is
9897 Formal : Entity_Id;
9898 Call : Node_Id;
9899 begin
9900 Find_Actual (N, Formal, Call);
9901 return Present (Formal) and then Ekind (Formal) = E_Out_Parameter;
9902 end Is_Actual_Out_Parameter;
9904 -------------------------
9905 -- Is_Actual_Parameter --
9906 -------------------------
9908 function Is_Actual_Parameter (N : Node_Id) return Boolean is
9909 PK : constant Node_Kind := Nkind (Parent (N));
9911 begin
9912 case PK is
9913 when N_Parameter_Association =>
9914 return N = Explicit_Actual_Parameter (Parent (N));
9916 when N_Subprogram_Call =>
9917 return Is_List_Member (N)
9918 and then
9919 List_Containing (N) = Parameter_Associations (Parent (N));
9921 when others =>
9922 return False;
9923 end case;
9924 end Is_Actual_Parameter;
9926 --------------------------------
9927 -- Is_Actual_Tagged_Parameter --
9928 --------------------------------
9930 function Is_Actual_Tagged_Parameter (N : Node_Id) return Boolean is
9931 Formal : Entity_Id;
9932 Call : Node_Id;
9933 begin
9934 Find_Actual (N, Formal, Call);
9935 return Present (Formal) and then Is_Tagged_Type (Etype (Formal));
9936 end Is_Actual_Tagged_Parameter;
9938 ---------------------
9939 -- Is_Aliased_View --
9940 ---------------------
9942 function Is_Aliased_View (Obj : Node_Id) return Boolean is
9943 E : Entity_Id;
9945 begin
9946 if Is_Entity_Name (Obj) then
9947 E := Entity (Obj);
9949 return
9950 (Is_Object (E)
9951 and then
9952 (Is_Aliased (E)
9953 or else (Present (Renamed_Object (E))
9954 and then Is_Aliased_View (Renamed_Object (E)))))
9956 or else ((Is_Formal (E)
9957 or else Ekind_In (E, E_Generic_In_Out_Parameter,
9958 E_Generic_In_Parameter))
9959 and then Is_Tagged_Type (Etype (E)))
9961 or else (Is_Concurrent_Type (E) and then In_Open_Scopes (E))
9963 -- Current instance of type, either directly or as rewritten
9964 -- reference to the current object.
9966 or else (Is_Entity_Name (Original_Node (Obj))
9967 and then Present (Entity (Original_Node (Obj)))
9968 and then Is_Type (Entity (Original_Node (Obj))))
9970 or else (Is_Type (E) and then E = Current_Scope)
9972 or else (Is_Incomplete_Or_Private_Type (E)
9973 and then Full_View (E) = Current_Scope)
9975 -- Ada 2012 AI05-0053: the return object of an extended return
9976 -- statement is aliased if its type is immutably limited.
9978 or else (Is_Return_Object (E)
9979 and then Is_Limited_View (Etype (E)));
9981 elsif Nkind (Obj) = N_Selected_Component then
9982 return Is_Aliased (Entity (Selector_Name (Obj)));
9984 elsif Nkind (Obj) = N_Indexed_Component then
9985 return Has_Aliased_Components (Etype (Prefix (Obj)))
9986 or else
9987 (Is_Access_Type (Etype (Prefix (Obj)))
9988 and then Has_Aliased_Components
9989 (Designated_Type (Etype (Prefix (Obj)))));
9991 elsif Nkind_In (Obj, N_Unchecked_Type_Conversion, N_Type_Conversion) then
9992 return Is_Tagged_Type (Etype (Obj))
9993 and then Is_Aliased_View (Expression (Obj));
9995 elsif Nkind (Obj) = N_Explicit_Dereference then
9996 return Nkind (Original_Node (Obj)) /= N_Function_Call;
9998 else
9999 return False;
10000 end if;
10001 end Is_Aliased_View;
10003 -------------------------
10004 -- Is_Ancestor_Package --
10005 -------------------------
10007 function Is_Ancestor_Package
10008 (E1 : Entity_Id;
10009 E2 : Entity_Id) return Boolean
10011 Par : Entity_Id;
10013 begin
10014 Par := E2;
10015 while Present (Par) and then Par /= Standard_Standard loop
10016 if Par = E1 then
10017 return True;
10018 end if;
10020 Par := Scope (Par);
10021 end loop;
10023 return False;
10024 end Is_Ancestor_Package;
10026 ----------------------
10027 -- Is_Atomic_Object --
10028 ----------------------
10030 function Is_Atomic_Object (N : Node_Id) return Boolean is
10032 function Object_Has_Atomic_Components (N : Node_Id) return Boolean;
10033 -- Determines if given object has atomic components
10035 function Is_Atomic_Prefix (N : Node_Id) return Boolean;
10036 -- If prefix is an implicit dereference, examine designated type
10038 ----------------------
10039 -- Is_Atomic_Prefix --
10040 ----------------------
10042 function Is_Atomic_Prefix (N : Node_Id) return Boolean is
10043 begin
10044 if Is_Access_Type (Etype (N)) then
10045 return
10046 Has_Atomic_Components (Designated_Type (Etype (N)));
10047 else
10048 return Object_Has_Atomic_Components (N);
10049 end if;
10050 end Is_Atomic_Prefix;
10052 ----------------------------------
10053 -- Object_Has_Atomic_Components --
10054 ----------------------------------
10056 function Object_Has_Atomic_Components (N : Node_Id) return Boolean is
10057 begin
10058 if Has_Atomic_Components (Etype (N))
10059 or else Is_Atomic (Etype (N))
10060 then
10061 return True;
10063 elsif Is_Entity_Name (N)
10064 and then (Has_Atomic_Components (Entity (N))
10065 or else Is_Atomic (Entity (N)))
10066 then
10067 return True;
10069 elsif Nkind (N) = N_Selected_Component
10070 and then Is_Atomic (Entity (Selector_Name (N)))
10071 then
10072 return True;
10074 elsif Nkind (N) = N_Indexed_Component
10075 or else Nkind (N) = N_Selected_Component
10076 then
10077 return Is_Atomic_Prefix (Prefix (N));
10079 else
10080 return False;
10081 end if;
10082 end Object_Has_Atomic_Components;
10084 -- Start of processing for Is_Atomic_Object
10086 begin
10087 -- Predicate is not relevant to subprograms
10089 if Is_Entity_Name (N) and then Is_Overloadable (Entity (N)) then
10090 return False;
10092 elsif Is_Atomic (Etype (N))
10093 or else (Is_Entity_Name (N) and then Is_Atomic (Entity (N)))
10094 then
10095 return True;
10097 elsif Nkind (N) = N_Selected_Component
10098 and then Is_Atomic (Entity (Selector_Name (N)))
10099 then
10100 return True;
10102 elsif Nkind (N) = N_Indexed_Component
10103 or else Nkind (N) = N_Selected_Component
10104 then
10105 return Is_Atomic_Prefix (Prefix (N));
10107 else
10108 return False;
10109 end if;
10110 end Is_Atomic_Object;
10112 -------------------------
10113 -- Is_Attribute_Result --
10114 -------------------------
10116 function Is_Attribute_Result (N : Node_Id) return Boolean is
10117 begin
10118 return Nkind (N) = N_Attribute_Reference
10119 and then Attribute_Name (N) = Name_Result;
10120 end Is_Attribute_Result;
10122 ------------------------------------
10123 -- Is_Body_Or_Package_Declaration --
10124 ------------------------------------
10126 function Is_Body_Or_Package_Declaration (N : Node_Id) return Boolean is
10127 begin
10128 return Nkind_In (N, N_Entry_Body,
10129 N_Package_Body,
10130 N_Package_Declaration,
10131 N_Protected_Body,
10132 N_Subprogram_Body,
10133 N_Task_Body);
10134 end Is_Body_Or_Package_Declaration;
10136 -----------------------
10137 -- Is_Bounded_String --
10138 -----------------------
10140 function Is_Bounded_String (T : Entity_Id) return Boolean is
10141 Under : constant Entity_Id := Underlying_Type (Root_Type (T));
10143 begin
10144 -- Check whether T is ultimately derived from Ada.Strings.Superbounded.
10145 -- Super_String, or one of the [Wide_]Wide_ versions. This will
10146 -- be True for all the Bounded_String types in instances of the
10147 -- Generic_Bounded_Length generics, and for types derived from those.
10149 return Present (Under)
10150 and then (Is_RTE (Root_Type (Under), RO_SU_Super_String) or else
10151 Is_RTE (Root_Type (Under), RO_WI_Super_String) or else
10152 Is_RTE (Root_Type (Under), RO_WW_Super_String));
10153 end Is_Bounded_String;
10155 -------------------------
10156 -- Is_Child_Or_Sibling --
10157 -------------------------
10159 function Is_Child_Or_Sibling
10160 (Pack_1 : Entity_Id;
10161 Pack_2 : Entity_Id) return Boolean
10163 function Distance_From_Standard (Pack : Entity_Id) return Nat;
10164 -- Given an arbitrary package, return the number of "climbs" necessary
10165 -- to reach scope Standard_Standard.
10167 procedure Equalize_Depths
10168 (Pack : in out Entity_Id;
10169 Depth : in out Nat;
10170 Depth_To_Reach : Nat);
10171 -- Given an arbitrary package, its depth and a target depth to reach,
10172 -- climb the scope chain until the said depth is reached. The pointer
10173 -- to the package and its depth a modified during the climb.
10175 ----------------------------
10176 -- Distance_From_Standard --
10177 ----------------------------
10179 function Distance_From_Standard (Pack : Entity_Id) return Nat is
10180 Dist : Nat;
10181 Scop : Entity_Id;
10183 begin
10184 Dist := 0;
10185 Scop := Pack;
10186 while Present (Scop) and then Scop /= Standard_Standard loop
10187 Dist := Dist + 1;
10188 Scop := Scope (Scop);
10189 end loop;
10191 return Dist;
10192 end Distance_From_Standard;
10194 ---------------------
10195 -- Equalize_Depths --
10196 ---------------------
10198 procedure Equalize_Depths
10199 (Pack : in out Entity_Id;
10200 Depth : in out Nat;
10201 Depth_To_Reach : Nat)
10203 begin
10204 -- The package must be at a greater or equal depth
10206 if Depth < Depth_To_Reach then
10207 raise Program_Error;
10208 end if;
10210 -- Climb the scope chain until the desired depth is reached
10212 while Present (Pack) and then Depth /= Depth_To_Reach loop
10213 Pack := Scope (Pack);
10214 Depth := Depth - 1;
10215 end loop;
10216 end Equalize_Depths;
10218 -- Local variables
10220 P_1 : Entity_Id := Pack_1;
10221 P_1_Child : Boolean := False;
10222 P_1_Depth : Nat := Distance_From_Standard (P_1);
10223 P_2 : Entity_Id := Pack_2;
10224 P_2_Child : Boolean := False;
10225 P_2_Depth : Nat := Distance_From_Standard (P_2);
10227 -- Start of processing for Is_Child_Or_Sibling
10229 begin
10230 pragma Assert
10231 (Ekind (Pack_1) = E_Package and then Ekind (Pack_2) = E_Package);
10233 -- Both packages denote the same entity, therefore they cannot be
10234 -- children or siblings.
10236 if P_1 = P_2 then
10237 return False;
10239 -- One of the packages is at a deeper level than the other. Note that
10240 -- both may still come from differen hierarchies.
10242 -- (root) P_2
10243 -- / \ :
10244 -- X P_2 or X
10245 -- : :
10246 -- P_1 P_1
10248 elsif P_1_Depth > P_2_Depth then
10249 Equalize_Depths
10250 (Pack => P_1,
10251 Depth => P_1_Depth,
10252 Depth_To_Reach => P_2_Depth);
10253 P_1_Child := True;
10255 -- (root) P_1
10256 -- / \ :
10257 -- P_1 X or X
10258 -- : :
10259 -- P_2 P_2
10261 elsif P_2_Depth > P_1_Depth then
10262 Equalize_Depths
10263 (Pack => P_2,
10264 Depth => P_2_Depth,
10265 Depth_To_Reach => P_1_Depth);
10266 P_2_Child := True;
10267 end if;
10269 -- At this stage the package pointers have been elevated to the same
10270 -- depth. If the related entities are the same, then one package is a
10271 -- potential child of the other:
10273 -- P_1
10274 -- :
10275 -- X became P_1 P_2 or vica versa
10276 -- :
10277 -- P_2
10279 if P_1 = P_2 then
10280 if P_1_Child then
10281 return Is_Child_Unit (Pack_1);
10283 else pragma Assert (P_2_Child);
10284 return Is_Child_Unit (Pack_2);
10285 end if;
10287 -- The packages may come from the same package chain or from entirely
10288 -- different hierarcies. To determine this, climb the scope stack until
10289 -- a common root is found.
10291 -- (root) (root 1) (root 2)
10292 -- / \ | |
10293 -- P_1 P_2 P_1 P_2
10295 else
10296 while Present (P_1) and then Present (P_2) loop
10298 -- The two packages may be siblings
10300 if P_1 = P_2 then
10301 return Is_Child_Unit (Pack_1) and then Is_Child_Unit (Pack_2);
10302 end if;
10304 P_1 := Scope (P_1);
10305 P_2 := Scope (P_2);
10306 end loop;
10307 end if;
10309 return False;
10310 end Is_Child_Or_Sibling;
10312 -----------------------------
10313 -- Is_Concurrent_Interface --
10314 -----------------------------
10316 function Is_Concurrent_Interface (T : Entity_Id) return Boolean is
10317 begin
10318 return Is_Interface (T)
10319 and then
10320 (Is_Protected_Interface (T)
10321 or else Is_Synchronized_Interface (T)
10322 or else Is_Task_Interface (T));
10323 end Is_Concurrent_Interface;
10325 ---------------------------
10326 -- Is_Container_Element --
10327 ---------------------------
10329 function Is_Container_Element (Exp : Node_Id) return Boolean is
10330 Loc : constant Source_Ptr := Sloc (Exp);
10331 Pref : constant Node_Id := Prefix (Exp);
10333 Call : Node_Id;
10334 -- Call to an indexing aspect
10336 Cont_Typ : Entity_Id;
10337 -- The type of the container being accessed
10339 Elem_Typ : Entity_Id;
10340 -- Its element type
10342 Indexing : Entity_Id;
10343 Is_Const : Boolean;
10344 -- Indicates that constant indexing is used, and the element is thus
10345 -- a constant.
10347 Ref_Typ : Entity_Id;
10348 -- The reference type returned by the indexing operation
10350 begin
10351 -- If C is a container, in a context that imposes the element type of
10352 -- that container, the indexing notation C (X) is rewritten as:
10354 -- Indexing (C, X).Discr.all
10356 -- where Indexing is one of the indexing aspects of the container.
10357 -- If the context does not require a reference, the construct can be
10358 -- rewritten as
10360 -- Element (C, X)
10362 -- First, verify that the construct has the proper form
10364 if not Expander_Active then
10365 return False;
10367 elsif Nkind (Pref) /= N_Selected_Component then
10368 return False;
10370 elsif Nkind (Prefix (Pref)) /= N_Function_Call then
10371 return False;
10373 else
10374 Call := Prefix (Pref);
10375 Ref_Typ := Etype (Call);
10376 end if;
10378 if not Has_Implicit_Dereference (Ref_Typ)
10379 or else No (First (Parameter_Associations (Call)))
10380 or else not Is_Entity_Name (Name (Call))
10381 then
10382 return False;
10383 end if;
10385 -- Retrieve type of container object, and its iterator aspects
10387 Cont_Typ := Etype (First (Parameter_Associations (Call)));
10388 Indexing := Find_Value_Of_Aspect (Cont_Typ, Aspect_Constant_Indexing);
10389 Is_Const := False;
10391 if No (Indexing) then
10393 -- Container should have at least one indexing operation
10395 return False;
10397 elsif Entity (Name (Call)) /= Entity (Indexing) then
10399 -- This may be a variable indexing operation
10401 Indexing := Find_Value_Of_Aspect (Cont_Typ, Aspect_Variable_Indexing);
10403 if No (Indexing)
10404 or else Entity (Name (Call)) /= Entity (Indexing)
10405 then
10406 return False;
10407 end if;
10409 else
10410 Is_Const := True;
10411 end if;
10413 Elem_Typ := Find_Value_Of_Aspect (Cont_Typ, Aspect_Iterator_Element);
10415 if No (Elem_Typ) or else Entity (Elem_Typ) /= Etype (Exp) then
10416 return False;
10417 end if;
10419 -- Check that the expression is not the target of an assignment, in
10420 -- which case the rewriting is not possible.
10422 if not Is_Const then
10423 declare
10424 Par : Node_Id;
10426 begin
10427 Par := Exp;
10428 while Present (Par)
10429 loop
10430 if Nkind (Parent (Par)) = N_Assignment_Statement
10431 and then Par = Name (Parent (Par))
10432 then
10433 return False;
10435 -- A renaming produces a reference, and the transformation
10436 -- does not apply.
10438 elsif Nkind (Parent (Par)) = N_Object_Renaming_Declaration then
10439 return False;
10441 elsif Nkind_In
10442 (Nkind (Parent (Par)), N_Function_Call,
10443 N_Procedure_Call_Statement,
10444 N_Entry_Call_Statement)
10445 then
10446 -- Check that the element is not part of an actual for an
10447 -- in-out parameter.
10449 declare
10450 F : Entity_Id;
10451 A : Node_Id;
10453 begin
10454 F := First_Formal (Entity (Name (Parent (Par))));
10455 A := First (Parameter_Associations (Parent (Par)));
10456 while Present (F) loop
10457 if A = Par and then Ekind (F) /= E_In_Parameter then
10458 return False;
10459 end if;
10461 Next_Formal (F);
10462 Next (A);
10463 end loop;
10464 end;
10466 -- E_In_Parameter in a call: element is not modified.
10468 exit;
10469 end if;
10471 Par := Parent (Par);
10472 end loop;
10473 end;
10474 end if;
10476 -- The expression has the proper form and the context requires the
10477 -- element type. Retrieve the Element function of the container and
10478 -- rewrite the construct as a call to it.
10480 declare
10481 Op : Elmt_Id;
10483 begin
10484 Op := First_Elmt (Primitive_Operations (Cont_Typ));
10485 while Present (Op) loop
10486 exit when Chars (Node (Op)) = Name_Element;
10487 Next_Elmt (Op);
10488 end loop;
10490 if No (Op) then
10491 return False;
10493 else
10494 Rewrite (Exp,
10495 Make_Function_Call (Loc,
10496 Name => New_Occurrence_Of (Node (Op), Loc),
10497 Parameter_Associations => Parameter_Associations (Call)));
10498 Analyze_And_Resolve (Exp, Entity (Elem_Typ));
10499 return True;
10500 end if;
10501 end;
10502 end Is_Container_Element;
10504 -----------------------
10505 -- Is_Constant_Bound --
10506 -----------------------
10508 function Is_Constant_Bound (Exp : Node_Id) return Boolean is
10509 begin
10510 if Compile_Time_Known_Value (Exp) then
10511 return True;
10513 elsif Is_Entity_Name (Exp) and then Present (Entity (Exp)) then
10514 return Is_Constant_Object (Entity (Exp))
10515 or else Ekind (Entity (Exp)) = E_Enumeration_Literal;
10517 elsif Nkind (Exp) in N_Binary_Op then
10518 return Is_Constant_Bound (Left_Opnd (Exp))
10519 and then Is_Constant_Bound (Right_Opnd (Exp))
10520 and then Scope (Entity (Exp)) = Standard_Standard;
10522 else
10523 return False;
10524 end if;
10525 end Is_Constant_Bound;
10527 --------------------------------------
10528 -- Is_Controlling_Limited_Procedure --
10529 --------------------------------------
10531 function Is_Controlling_Limited_Procedure
10532 (Proc_Nam : Entity_Id) return Boolean
10534 Param_Typ : Entity_Id := Empty;
10536 begin
10537 if Ekind (Proc_Nam) = E_Procedure
10538 and then Present (Parameter_Specifications (Parent (Proc_Nam)))
10539 then
10540 Param_Typ := Etype (Parameter_Type (First (
10541 Parameter_Specifications (Parent (Proc_Nam)))));
10543 -- In this case where an Itype was created, the procedure call has been
10544 -- rewritten.
10546 elsif Present (Associated_Node_For_Itype (Proc_Nam))
10547 and then Present (Original_Node (Associated_Node_For_Itype (Proc_Nam)))
10548 and then
10549 Present (Parameter_Associations
10550 (Associated_Node_For_Itype (Proc_Nam)))
10551 then
10552 Param_Typ :=
10553 Etype (First (Parameter_Associations
10554 (Associated_Node_For_Itype (Proc_Nam))));
10555 end if;
10557 if Present (Param_Typ) then
10558 return
10559 Is_Interface (Param_Typ)
10560 and then Is_Limited_Record (Param_Typ);
10561 end if;
10563 return False;
10564 end Is_Controlling_Limited_Procedure;
10566 -----------------------------
10567 -- Is_CPP_Constructor_Call --
10568 -----------------------------
10570 function Is_CPP_Constructor_Call (N : Node_Id) return Boolean is
10571 begin
10572 return Nkind (N) = N_Function_Call
10573 and then Is_CPP_Class (Etype (Etype (N)))
10574 and then Is_Constructor (Entity (Name (N)))
10575 and then Is_Imported (Entity (Name (N)));
10576 end Is_CPP_Constructor_Call;
10578 --------------------
10579 -- Is_Declaration --
10580 --------------------
10582 function Is_Declaration (N : Node_Id) return Boolean is
10583 begin
10584 case Nkind (N) is
10585 when N_Abstract_Subprogram_Declaration |
10586 N_Exception_Declaration |
10587 N_Exception_Renaming_Declaration |
10588 N_Full_Type_Declaration |
10589 N_Generic_Function_Renaming_Declaration |
10590 N_Generic_Package_Declaration |
10591 N_Generic_Package_Renaming_Declaration |
10592 N_Generic_Procedure_Renaming_Declaration |
10593 N_Generic_Subprogram_Declaration |
10594 N_Number_Declaration |
10595 N_Object_Declaration |
10596 N_Object_Renaming_Declaration |
10597 N_Package_Declaration |
10598 N_Package_Renaming_Declaration |
10599 N_Private_Extension_Declaration |
10600 N_Private_Type_Declaration |
10601 N_Subprogram_Declaration |
10602 N_Subprogram_Renaming_Declaration |
10603 N_Subtype_Declaration =>
10604 return True;
10606 when others =>
10607 return False;
10608 end case;
10609 end Is_Declaration;
10611 -----------------
10612 -- Is_Delegate --
10613 -----------------
10615 function Is_Delegate (T : Entity_Id) return Boolean is
10616 Desig_Type : Entity_Id;
10618 begin
10619 if VM_Target /= CLI_Target then
10620 return False;
10621 end if;
10623 -- Access-to-subprograms are delegates in CIL
10625 if Ekind (T) = E_Access_Subprogram_Type then
10626 return True;
10627 end if;
10629 if not Is_Access_Type (T) then
10631 -- A delegate is a managed pointer. If no designated type is defined
10632 -- it means that it's not a delegate.
10634 return False;
10635 end if;
10637 Desig_Type := Etype (Directly_Designated_Type (T));
10639 if not Is_Tagged_Type (Desig_Type) then
10640 return False;
10641 end if;
10643 -- Test if the type is inherited from [mscorlib]System.Delegate
10645 while Etype (Desig_Type) /= Desig_Type loop
10646 if Chars (Scope (Desig_Type)) /= No_Name
10647 and then Is_Imported (Scope (Desig_Type))
10648 and then Get_Name_String (Chars (Scope (Desig_Type))) = "delegate"
10649 then
10650 return True;
10651 end if;
10653 Desig_Type := Etype (Desig_Type);
10654 end loop;
10656 return False;
10657 end Is_Delegate;
10659 ----------------------------------------------
10660 -- Is_Dependent_Component_Of_Mutable_Object --
10661 ----------------------------------------------
10663 function Is_Dependent_Component_Of_Mutable_Object
10664 (Object : Node_Id) return Boolean
10666 function Is_Declared_Within_Variant (Comp : Entity_Id) return Boolean;
10667 -- Returns True if and only if Comp is declared within a variant part
10669 --------------------------------
10670 -- Is_Declared_Within_Variant --
10671 --------------------------------
10673 function Is_Declared_Within_Variant (Comp : Entity_Id) return Boolean is
10674 Comp_Decl : constant Node_Id := Parent (Comp);
10675 Comp_List : constant Node_Id := Parent (Comp_Decl);
10676 begin
10677 return Nkind (Parent (Comp_List)) = N_Variant;
10678 end Is_Declared_Within_Variant;
10680 P : Node_Id;
10681 Prefix_Type : Entity_Id;
10682 P_Aliased : Boolean := False;
10683 Comp : Entity_Id;
10685 Deref : Node_Id := Object;
10686 -- Dereference node, in something like X.all.Y(2)
10688 -- Start of processing for Is_Dependent_Component_Of_Mutable_Object
10690 begin
10691 -- Find the dereference node if any
10693 while Nkind_In (Deref, N_Indexed_Component,
10694 N_Selected_Component,
10695 N_Slice)
10696 loop
10697 Deref := Prefix (Deref);
10698 end loop;
10700 -- Ada 2005: If we have a component or slice of a dereference,
10701 -- something like X.all.Y (2), and the type of X is access-to-constant,
10702 -- Is_Variable will return False, because it is indeed a constant
10703 -- view. But it might be a view of a variable object, so we want the
10704 -- following condition to be True in that case.
10706 if Is_Variable (Object)
10707 or else (Ada_Version >= Ada_2005
10708 and then Nkind (Deref) = N_Explicit_Dereference)
10709 then
10710 if Nkind (Object) = N_Selected_Component then
10711 P := Prefix (Object);
10712 Prefix_Type := Etype (P);
10714 if Is_Entity_Name (P) then
10715 if Ekind (Entity (P)) = E_Generic_In_Out_Parameter then
10716 Prefix_Type := Base_Type (Prefix_Type);
10717 end if;
10719 if Is_Aliased (Entity (P)) then
10720 P_Aliased := True;
10721 end if;
10723 -- A discriminant check on a selected component may be expanded
10724 -- into a dereference when removing side-effects. Recover the
10725 -- original node and its type, which may be unconstrained.
10727 elsif Nkind (P) = N_Explicit_Dereference
10728 and then not (Comes_From_Source (P))
10729 then
10730 P := Original_Node (P);
10731 Prefix_Type := Etype (P);
10733 else
10734 -- Check for prefix being an aliased component???
10736 null;
10738 end if;
10740 -- A heap object is constrained by its initial value
10742 -- Ada 2005 (AI-363): Always assume the object could be mutable in
10743 -- the dereferenced case, since the access value might denote an
10744 -- unconstrained aliased object, whereas in Ada 95 the designated
10745 -- object is guaranteed to be constrained. A worst-case assumption
10746 -- has to apply in Ada 2005 because we can't tell at compile
10747 -- time whether the object is "constrained by its initial value"
10748 -- (despite the fact that 3.10.2(26/2) and 8.5.1(5/2) are semantic
10749 -- rules (these rules are acknowledged to need fixing).
10751 if Ada_Version < Ada_2005 then
10752 if Is_Access_Type (Prefix_Type)
10753 or else Nkind (P) = N_Explicit_Dereference
10754 then
10755 return False;
10756 end if;
10758 else pragma Assert (Ada_Version >= Ada_2005);
10759 if Is_Access_Type (Prefix_Type) then
10761 -- If the access type is pool-specific, and there is no
10762 -- constrained partial view of the designated type, then the
10763 -- designated object is known to be constrained.
10765 if Ekind (Prefix_Type) = E_Access_Type
10766 and then not Object_Type_Has_Constrained_Partial_View
10767 (Typ => Designated_Type (Prefix_Type),
10768 Scop => Current_Scope)
10769 then
10770 return False;
10772 -- Otherwise (general access type, or there is a constrained
10773 -- partial view of the designated type), we need to check
10774 -- based on the designated type.
10776 else
10777 Prefix_Type := Designated_Type (Prefix_Type);
10778 end if;
10779 end if;
10780 end if;
10782 Comp :=
10783 Original_Record_Component (Entity (Selector_Name (Object)));
10785 -- As per AI-0017, the renaming is illegal in a generic body, even
10786 -- if the subtype is indefinite.
10788 -- Ada 2005 (AI-363): In Ada 2005 an aliased object can be mutable
10790 if not Is_Constrained (Prefix_Type)
10791 and then (not Is_Indefinite_Subtype (Prefix_Type)
10792 or else
10793 (Is_Generic_Type (Prefix_Type)
10794 and then Ekind (Current_Scope) = E_Generic_Package
10795 and then In_Package_Body (Current_Scope)))
10797 and then (Is_Declared_Within_Variant (Comp)
10798 or else Has_Discriminant_Dependent_Constraint (Comp))
10799 and then (not P_Aliased or else Ada_Version >= Ada_2005)
10800 then
10801 return True;
10803 -- If the prefix is of an access type at this point, then we want
10804 -- to return False, rather than calling this function recursively
10805 -- on the access object (which itself might be a discriminant-
10806 -- dependent component of some other object, but that isn't
10807 -- relevant to checking the object passed to us). This avoids
10808 -- issuing wrong errors when compiling with -gnatc, where there
10809 -- can be implicit dereferences that have not been expanded.
10811 elsif Is_Access_Type (Etype (Prefix (Object))) then
10812 return False;
10814 else
10815 return
10816 Is_Dependent_Component_Of_Mutable_Object (Prefix (Object));
10817 end if;
10819 elsif Nkind (Object) = N_Indexed_Component
10820 or else Nkind (Object) = N_Slice
10821 then
10822 return Is_Dependent_Component_Of_Mutable_Object (Prefix (Object));
10824 -- A type conversion that Is_Variable is a view conversion:
10825 -- go back to the denoted object.
10827 elsif Nkind (Object) = N_Type_Conversion then
10828 return
10829 Is_Dependent_Component_Of_Mutable_Object (Expression (Object));
10830 end if;
10831 end if;
10833 return False;
10834 end Is_Dependent_Component_Of_Mutable_Object;
10836 ---------------------
10837 -- Is_Dereferenced --
10838 ---------------------
10840 function Is_Dereferenced (N : Node_Id) return Boolean is
10841 P : constant Node_Id := Parent (N);
10842 begin
10843 return Nkind_In (P, N_Selected_Component,
10844 N_Explicit_Dereference,
10845 N_Indexed_Component,
10846 N_Slice)
10847 and then Prefix (P) = N;
10848 end Is_Dereferenced;
10850 ----------------------
10851 -- Is_Descendent_Of --
10852 ----------------------
10854 function Is_Descendent_Of (T1 : Entity_Id; T2 : Entity_Id) return Boolean is
10855 T : Entity_Id;
10856 Etyp : Entity_Id;
10858 begin
10859 pragma Assert (Nkind (T1) in N_Entity);
10860 pragma Assert (Nkind (T2) in N_Entity);
10862 T := Base_Type (T1);
10864 -- Immediate return if the types match
10866 if T = T2 then
10867 return True;
10869 -- Comment needed here ???
10871 elsif Ekind (T) = E_Class_Wide_Type then
10872 return Etype (T) = T2;
10874 -- All other cases
10876 else
10877 loop
10878 Etyp := Etype (T);
10880 -- Done if we found the type we are looking for
10882 if Etyp = T2 then
10883 return True;
10885 -- Done if no more derivations to check
10887 elsif T = T1
10888 or else T = Etyp
10889 then
10890 return False;
10892 -- Following test catches error cases resulting from prev errors
10894 elsif No (Etyp) then
10895 return False;
10897 elsif Is_Private_Type (T) and then Etyp = Full_View (T) then
10898 return False;
10900 elsif Is_Private_Type (Etyp) and then Full_View (Etyp) = T then
10901 return False;
10902 end if;
10904 T := Base_Type (Etyp);
10905 end loop;
10906 end if;
10907 end Is_Descendent_Of;
10909 -----------------------------
10910 -- Is_Effectively_Volatile --
10911 -----------------------------
10913 function Is_Effectively_Volatile (Id : Entity_Id) return Boolean is
10914 begin
10915 if Is_Type (Id) then
10917 -- An arbitrary type is effectively volatile when it is subject to
10918 -- pragma Atomic or Volatile.
10920 if Is_Volatile (Id) then
10921 return True;
10923 -- An array type is effectively volatile when it is subject to pragma
10924 -- Atomic_Components or Volatile_Components or its compolent type is
10925 -- effectively volatile.
10927 elsif Is_Array_Type (Id) then
10928 return
10929 Has_Volatile_Components (Id)
10930 or else
10931 Is_Effectively_Volatile (Component_Type (Base_Type (Id)));
10933 else
10934 return False;
10935 end if;
10937 -- Otherwise Id denotes an object
10939 else
10940 return
10941 Is_Volatile (Id)
10942 or else Has_Volatile_Components (Id)
10943 or else Is_Effectively_Volatile (Etype (Id));
10944 end if;
10945 end Is_Effectively_Volatile;
10947 ------------------------------------
10948 -- Is_Effectively_Volatile_Object --
10949 ------------------------------------
10951 function Is_Effectively_Volatile_Object (N : Node_Id) return Boolean is
10952 begin
10953 if Is_Entity_Name (N) then
10954 return Is_Effectively_Volatile (Entity (N));
10956 elsif Nkind (N) = N_Expanded_Name then
10957 return Is_Effectively_Volatile (Entity (N));
10959 elsif Nkind (N) = N_Indexed_Component then
10960 return Is_Effectively_Volatile_Object (Prefix (N));
10962 elsif Nkind (N) = N_Selected_Component then
10963 return
10964 Is_Effectively_Volatile_Object (Prefix (N))
10965 or else
10966 Is_Effectively_Volatile_Object (Selector_Name (N));
10968 else
10969 return False;
10970 end if;
10971 end Is_Effectively_Volatile_Object;
10973 ----------------------------
10974 -- Is_Expression_Function --
10975 ----------------------------
10977 function Is_Expression_Function (Subp : Entity_Id) return Boolean is
10978 Decl : Node_Id;
10980 begin
10981 if Ekind (Subp) /= E_Function then
10982 return False;
10984 else
10985 Decl := Unit_Declaration_Node (Subp);
10986 return Nkind (Decl) = N_Subprogram_Declaration
10987 and then
10988 (Nkind (Original_Node (Decl)) = N_Expression_Function
10989 or else
10990 (Present (Corresponding_Body (Decl))
10991 and then
10992 Nkind (Original_Node
10993 (Unit_Declaration_Node
10994 (Corresponding_Body (Decl)))) =
10995 N_Expression_Function));
10996 end if;
10997 end Is_Expression_Function;
10999 -----------------------
11000 -- Is_EVF_Expression --
11001 -----------------------
11003 function Is_EVF_Expression (N : Node_Id) return Boolean is
11004 Orig_N : constant Node_Id := Original_Node (N);
11005 Alt : Node_Id;
11006 Expr : Node_Id;
11007 Id : Entity_Id;
11009 begin
11010 -- Detect a reference to a formal parameter of a specific tagged type
11011 -- whose related subprogram is subject to pragma Expresions_Visible with
11012 -- value "False".
11014 if Is_Entity_Name (N) and then Present (Entity (N)) then
11015 Id := Entity (N);
11017 return
11018 Is_Formal (Id)
11019 and then Is_Specific_Tagged_Type (Etype (Id))
11020 and then Extensions_Visible_Status (Id) =
11021 Extensions_Visible_False;
11023 -- A case expression is an EVF expression when it contains at least one
11024 -- EVF dependent_expression. Note that a case expression may have been
11025 -- expanded, hence the use of Original_Node.
11027 elsif Nkind (Orig_N) = N_Case_Expression then
11028 Alt := First (Alternatives (Orig_N));
11029 while Present (Alt) loop
11030 if Is_EVF_Expression (Expression (Alt)) then
11031 return True;
11032 end if;
11034 Next (Alt);
11035 end loop;
11037 -- An if expression is an EVF expression when it contains at least one
11038 -- EVF dependent_expression. Note that an if expression may have been
11039 -- expanded, hence the use of Original_Node.
11041 elsif Nkind (Orig_N) = N_If_Expression then
11042 Expr := Next (First (Expressions (Orig_N)));
11043 while Present (Expr) loop
11044 if Is_EVF_Expression (Expr) then
11045 return True;
11046 end if;
11048 Next (Expr);
11049 end loop;
11051 -- A qualified expression or a type conversion is an EVF expression when
11052 -- its operand is an EVF expression.
11054 elsif Nkind_In (N, N_Qualified_Expression,
11055 N_Unchecked_Type_Conversion,
11056 N_Type_Conversion)
11057 then
11058 return Is_EVF_Expression (Expression (N));
11060 -- Attributes 'Loop_Entry, 'Old and 'Update are an EVF expression when
11061 -- their prefix denotes an EVF expression.
11063 elsif Nkind (N) = N_Attribute_Reference
11064 and then Nam_In (Attribute_Name (N), Name_Loop_Entry,
11065 Name_Old,
11066 Name_Update)
11067 then
11068 return Is_EVF_Expression (Prefix (N));
11069 end if;
11071 return False;
11072 end Is_EVF_Expression;
11074 --------------
11075 -- Is_False --
11076 --------------
11078 function Is_False (U : Uint) return Boolean is
11079 begin
11080 return (U = 0);
11081 end Is_False;
11083 ---------------------------
11084 -- Is_Fixed_Model_Number --
11085 ---------------------------
11087 function Is_Fixed_Model_Number (U : Ureal; T : Entity_Id) return Boolean is
11088 S : constant Ureal := Small_Value (T);
11089 M : Urealp.Save_Mark;
11090 R : Boolean;
11091 begin
11092 M := Urealp.Mark;
11093 R := (U = UR_Trunc (U / S) * S);
11094 Urealp.Release (M);
11095 return R;
11096 end Is_Fixed_Model_Number;
11098 -------------------------------
11099 -- Is_Fully_Initialized_Type --
11100 -------------------------------
11102 function Is_Fully_Initialized_Type (Typ : Entity_Id) return Boolean is
11103 begin
11104 -- Scalar types
11106 if Is_Scalar_Type (Typ) then
11108 -- A scalar type with an aspect Default_Value is fully initialized
11110 -- Note: Iniitalize/Normalize_Scalars also ensure full initialization
11111 -- of a scalar type, but we don't take that into account here, since
11112 -- we don't want these to affect warnings.
11114 return Has_Default_Aspect (Typ);
11116 elsif Is_Access_Type (Typ) then
11117 return True;
11119 elsif Is_Array_Type (Typ) then
11120 if Is_Fully_Initialized_Type (Component_Type (Typ))
11121 or else (Ada_Version >= Ada_2012 and then Has_Default_Aspect (Typ))
11122 then
11123 return True;
11124 end if;
11126 -- An interesting case, if we have a constrained type one of whose
11127 -- bounds is known to be null, then there are no elements to be
11128 -- initialized, so all the elements are initialized.
11130 if Is_Constrained (Typ) then
11131 declare
11132 Indx : Node_Id;
11133 Indx_Typ : Entity_Id;
11134 Lbd, Hbd : Node_Id;
11136 begin
11137 Indx := First_Index (Typ);
11138 while Present (Indx) loop
11139 if Etype (Indx) = Any_Type then
11140 return False;
11142 -- If index is a range, use directly
11144 elsif Nkind (Indx) = N_Range then
11145 Lbd := Low_Bound (Indx);
11146 Hbd := High_Bound (Indx);
11148 else
11149 Indx_Typ := Etype (Indx);
11151 if Is_Private_Type (Indx_Typ) then
11152 Indx_Typ := Full_View (Indx_Typ);
11153 end if;
11155 if No (Indx_Typ) or else Etype (Indx_Typ) = Any_Type then
11156 return False;
11157 else
11158 Lbd := Type_Low_Bound (Indx_Typ);
11159 Hbd := Type_High_Bound (Indx_Typ);
11160 end if;
11161 end if;
11163 if Compile_Time_Known_Value (Lbd)
11164 and then
11165 Compile_Time_Known_Value (Hbd)
11166 then
11167 if Expr_Value (Hbd) < Expr_Value (Lbd) then
11168 return True;
11169 end if;
11170 end if;
11172 Next_Index (Indx);
11173 end loop;
11174 end;
11175 end if;
11177 -- If no null indexes, then type is not fully initialized
11179 return False;
11181 -- Record types
11183 elsif Is_Record_Type (Typ) then
11184 if Has_Discriminants (Typ)
11185 and then
11186 Present (Discriminant_Default_Value (First_Discriminant (Typ)))
11187 and then Is_Fully_Initialized_Variant (Typ)
11188 then
11189 return True;
11190 end if;
11192 -- We consider bounded string types to be fully initialized, because
11193 -- otherwise we get false alarms when the Data component is not
11194 -- default-initialized.
11196 if Is_Bounded_String (Typ) then
11197 return True;
11198 end if;
11200 -- Controlled records are considered to be fully initialized if
11201 -- there is a user defined Initialize routine. This may not be
11202 -- entirely correct, but as the spec notes, we are guessing here
11203 -- what is best from the point of view of issuing warnings.
11205 if Is_Controlled (Typ) then
11206 declare
11207 Utyp : constant Entity_Id := Underlying_Type (Typ);
11209 begin
11210 if Present (Utyp) then
11211 declare
11212 Init : constant Entity_Id :=
11213 (Find_Prim_Op
11214 (Underlying_Type (Typ), Name_Initialize));
11216 begin
11217 if Present (Init)
11218 and then Comes_From_Source (Init)
11219 and then not
11220 Is_Predefined_File_Name
11221 (File_Name (Get_Source_File_Index (Sloc (Init))))
11222 then
11223 return True;
11225 elsif Has_Null_Extension (Typ)
11226 and then
11227 Is_Fully_Initialized_Type
11228 (Etype (Base_Type (Typ)))
11229 then
11230 return True;
11231 end if;
11232 end;
11233 end if;
11234 end;
11235 end if;
11237 -- Otherwise see if all record components are initialized
11239 declare
11240 Ent : Entity_Id;
11242 begin
11243 Ent := First_Entity (Typ);
11244 while Present (Ent) loop
11245 if Ekind (Ent) = E_Component
11246 and then (No (Parent (Ent))
11247 or else No (Expression (Parent (Ent))))
11248 and then not Is_Fully_Initialized_Type (Etype (Ent))
11250 -- Special VM case for tag components, which need to be
11251 -- defined in this case, but are never initialized as VMs
11252 -- are using other dispatching mechanisms. Ignore this
11253 -- uninitialized case. Note that this applies both to the
11254 -- uTag entry and the main vtable pointer (CPP_Class case).
11256 and then (Tagged_Type_Expansion or else not Is_Tag (Ent))
11257 then
11258 return False;
11259 end if;
11261 Next_Entity (Ent);
11262 end loop;
11263 end;
11265 -- No uninitialized components, so type is fully initialized.
11266 -- Note that this catches the case of no components as well.
11268 return True;
11270 elsif Is_Concurrent_Type (Typ) then
11271 return True;
11273 elsif Is_Private_Type (Typ) then
11274 declare
11275 U : constant Entity_Id := Underlying_Type (Typ);
11277 begin
11278 if No (U) then
11279 return False;
11280 else
11281 return Is_Fully_Initialized_Type (U);
11282 end if;
11283 end;
11285 else
11286 return False;
11287 end if;
11288 end Is_Fully_Initialized_Type;
11290 ----------------------------------
11291 -- Is_Fully_Initialized_Variant --
11292 ----------------------------------
11294 function Is_Fully_Initialized_Variant (Typ : Entity_Id) return Boolean is
11295 Loc : constant Source_Ptr := Sloc (Typ);
11296 Constraints : constant List_Id := New_List;
11297 Components : constant Elist_Id := New_Elmt_List;
11298 Comp_Elmt : Elmt_Id;
11299 Comp_Id : Node_Id;
11300 Comp_List : Node_Id;
11301 Discr : Entity_Id;
11302 Discr_Val : Node_Id;
11304 Report_Errors : Boolean;
11305 pragma Warnings (Off, Report_Errors);
11307 begin
11308 if Serious_Errors_Detected > 0 then
11309 return False;
11310 end if;
11312 if Is_Record_Type (Typ)
11313 and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
11314 and then Nkind (Type_Definition (Parent (Typ))) = N_Record_Definition
11315 then
11316 Comp_List := Component_List (Type_Definition (Parent (Typ)));
11318 Discr := First_Discriminant (Typ);
11319 while Present (Discr) loop
11320 if Nkind (Parent (Discr)) = N_Discriminant_Specification then
11321 Discr_Val := Expression (Parent (Discr));
11323 if Present (Discr_Val)
11324 and then Is_OK_Static_Expression (Discr_Val)
11325 then
11326 Append_To (Constraints,
11327 Make_Component_Association (Loc,
11328 Choices => New_List (New_Occurrence_Of (Discr, Loc)),
11329 Expression => New_Copy (Discr_Val)));
11330 else
11331 return False;
11332 end if;
11333 else
11334 return False;
11335 end if;
11337 Next_Discriminant (Discr);
11338 end loop;
11340 Gather_Components
11341 (Typ => Typ,
11342 Comp_List => Comp_List,
11343 Governed_By => Constraints,
11344 Into => Components,
11345 Report_Errors => Report_Errors);
11347 -- Check that each component present is fully initialized
11349 Comp_Elmt := First_Elmt (Components);
11350 while Present (Comp_Elmt) loop
11351 Comp_Id := Node (Comp_Elmt);
11353 if Ekind (Comp_Id) = E_Component
11354 and then (No (Parent (Comp_Id))
11355 or else No (Expression (Parent (Comp_Id))))
11356 and then not Is_Fully_Initialized_Type (Etype (Comp_Id))
11357 then
11358 return False;
11359 end if;
11361 Next_Elmt (Comp_Elmt);
11362 end loop;
11364 return True;
11366 elsif Is_Private_Type (Typ) then
11367 declare
11368 U : constant Entity_Id := Underlying_Type (Typ);
11370 begin
11371 if No (U) then
11372 return False;
11373 else
11374 return Is_Fully_Initialized_Variant (U);
11375 end if;
11376 end;
11378 else
11379 return False;
11380 end if;
11381 end Is_Fully_Initialized_Variant;
11383 ----------------------------
11384 -- Is_Inherited_Operation --
11385 ----------------------------
11387 function Is_Inherited_Operation (E : Entity_Id) return Boolean is
11388 pragma Assert (Is_Overloadable (E));
11389 Kind : constant Node_Kind := Nkind (Parent (E));
11390 begin
11391 return Kind = N_Full_Type_Declaration
11392 or else Kind = N_Private_Extension_Declaration
11393 or else Kind = N_Subtype_Declaration
11394 or else (Ekind (E) = E_Enumeration_Literal
11395 and then Is_Derived_Type (Etype (E)));
11396 end Is_Inherited_Operation;
11398 -------------------------------------
11399 -- Is_Inherited_Operation_For_Type --
11400 -------------------------------------
11402 function Is_Inherited_Operation_For_Type
11403 (E : Entity_Id;
11404 Typ : Entity_Id) return Boolean
11406 begin
11407 -- Check that the operation has been created by the type declaration
11409 return Is_Inherited_Operation (E)
11410 and then Defining_Identifier (Parent (E)) = Typ;
11411 end Is_Inherited_Operation_For_Type;
11413 -----------------
11414 -- Is_Iterator --
11415 -----------------
11417 function Is_Iterator (Typ : Entity_Id) return Boolean is
11418 Ifaces_List : Elist_Id;
11419 Iface_Elmt : Elmt_Id;
11420 Iface : Entity_Id;
11422 begin
11423 if Is_Class_Wide_Type (Typ)
11424 and then Nam_In (Chars (Etype (Typ)), Name_Forward_Iterator,
11425 Name_Reversible_Iterator)
11426 and then
11427 Is_Predefined_File_Name
11428 (Unit_File_Name (Get_Source_Unit (Etype (Typ))))
11429 then
11430 return True;
11432 elsif not Is_Tagged_Type (Typ) or else not Is_Derived_Type (Typ) then
11433 return False;
11435 elsif Present (Find_Value_Of_Aspect (Typ, Aspect_Iterable)) then
11436 return True;
11438 else
11439 Collect_Interfaces (Typ, Ifaces_List);
11441 Iface_Elmt := First_Elmt (Ifaces_List);
11442 while Present (Iface_Elmt) loop
11443 Iface := Node (Iface_Elmt);
11444 if Chars (Iface) = Name_Forward_Iterator
11445 and then
11446 Is_Predefined_File_Name
11447 (Unit_File_Name (Get_Source_Unit (Iface)))
11448 then
11449 return True;
11450 end if;
11452 Next_Elmt (Iface_Elmt);
11453 end loop;
11455 return False;
11456 end if;
11457 end Is_Iterator;
11459 ------------
11460 -- Is_LHS --
11461 ------------
11463 -- We seem to have a lot of overlapping functions that do similar things
11464 -- (testing for left hand sides or lvalues???).
11466 function Is_LHS (N : Node_Id) return Is_LHS_Result is
11467 P : constant Node_Id := Parent (N);
11469 begin
11470 -- Return True if we are the left hand side of an assignment statement
11472 if Nkind (P) = N_Assignment_Statement then
11473 if Name (P) = N then
11474 return Yes;
11475 else
11476 return No;
11477 end if;
11479 -- Case of prefix of indexed or selected component or slice
11481 elsif Nkind_In (P, N_Indexed_Component, N_Selected_Component, N_Slice)
11482 and then N = Prefix (P)
11483 then
11484 -- Here we have the case where the parent P is N.Q or N(Q .. R).
11485 -- If P is an LHS, then N is also effectively an LHS, but there
11486 -- is an important exception. If N is of an access type, then
11487 -- what we really have is N.all.Q (or N.all(Q .. R)). In either
11488 -- case this makes N.all a left hand side but not N itself.
11490 -- If we don't know the type yet, this is the case where we return
11491 -- Unknown, since the answer depends on the type which is unknown.
11493 if No (Etype (N)) then
11494 return Unknown;
11496 -- We have an Etype set, so we can check it
11498 elsif Is_Access_Type (Etype (N)) then
11499 return No;
11501 -- OK, not access type case, so just test whole expression
11503 else
11504 return Is_LHS (P);
11505 end if;
11507 -- All other cases are not left hand sides
11509 else
11510 return No;
11511 end if;
11512 end Is_LHS;
11514 -----------------------------
11515 -- Is_Library_Level_Entity --
11516 -----------------------------
11518 function Is_Library_Level_Entity (E : Entity_Id) return Boolean is
11519 begin
11520 -- The following is a small optimization, and it also properly handles
11521 -- discriminals, which in task bodies might appear in expressions before
11522 -- the corresponding procedure has been created, and which therefore do
11523 -- not have an assigned scope.
11525 if Is_Formal (E) then
11526 return False;
11527 end if;
11529 -- Normal test is simply that the enclosing dynamic scope is Standard
11531 return Enclosing_Dynamic_Scope (E) = Standard_Standard;
11532 end Is_Library_Level_Entity;
11534 --------------------------------
11535 -- Is_Limited_Class_Wide_Type --
11536 --------------------------------
11538 function Is_Limited_Class_Wide_Type (Typ : Entity_Id) return Boolean is
11539 begin
11540 return
11541 Is_Class_Wide_Type (Typ)
11542 and then (Is_Limited_Type (Typ) or else From_Limited_With (Typ));
11543 end Is_Limited_Class_Wide_Type;
11545 ---------------------------------
11546 -- Is_Local_Variable_Reference --
11547 ---------------------------------
11549 function Is_Local_Variable_Reference (Expr : Node_Id) return Boolean is
11550 begin
11551 if not Is_Entity_Name (Expr) then
11552 return False;
11554 else
11555 declare
11556 Ent : constant Entity_Id := Entity (Expr);
11557 Sub : constant Entity_Id := Enclosing_Subprogram (Ent);
11558 begin
11559 if not Ekind_In (Ent, E_Variable, E_In_Out_Parameter) then
11560 return False;
11561 else
11562 return Present (Sub) and then Sub = Current_Subprogram;
11563 end if;
11564 end;
11565 end if;
11566 end Is_Local_Variable_Reference;
11568 -------------------------
11569 -- Is_Object_Reference --
11570 -------------------------
11572 function Is_Object_Reference (N : Node_Id) return Boolean is
11574 function Is_Internally_Generated_Renaming (N : Node_Id) return Boolean;
11575 -- Determine whether N is the name of an internally-generated renaming
11577 --------------------------------------
11578 -- Is_Internally_Generated_Renaming --
11579 --------------------------------------
11581 function Is_Internally_Generated_Renaming (N : Node_Id) return Boolean is
11582 P : Node_Id;
11584 begin
11585 P := N;
11586 while Present (P) loop
11587 if Nkind (P) = N_Object_Renaming_Declaration then
11588 return not Comes_From_Source (P);
11589 elsif Is_List_Member (P) then
11590 return False;
11591 end if;
11593 P := Parent (P);
11594 end loop;
11596 return False;
11597 end Is_Internally_Generated_Renaming;
11599 -- Start of processing for Is_Object_Reference
11601 begin
11602 if Is_Entity_Name (N) then
11603 return Present (Entity (N)) and then Is_Object (Entity (N));
11605 else
11606 case Nkind (N) is
11607 when N_Indexed_Component | N_Slice =>
11608 return
11609 Is_Object_Reference (Prefix (N))
11610 or else Is_Access_Type (Etype (Prefix (N)));
11612 -- In Ada 95, a function call is a constant object; a procedure
11613 -- call is not.
11615 when N_Function_Call =>
11616 return Etype (N) /= Standard_Void_Type;
11618 -- Attributes 'Input, 'Old and 'Result produce objects
11620 when N_Attribute_Reference =>
11621 return
11622 Nam_In
11623 (Attribute_Name (N), Name_Input, Name_Old, Name_Result);
11625 when N_Selected_Component =>
11626 return
11627 Is_Object_Reference (Selector_Name (N))
11628 and then
11629 (Is_Object_Reference (Prefix (N))
11630 or else Is_Access_Type (Etype (Prefix (N))));
11632 when N_Explicit_Dereference =>
11633 return True;
11635 -- A view conversion of a tagged object is an object reference
11637 when N_Type_Conversion =>
11638 return Is_Tagged_Type (Etype (Subtype_Mark (N)))
11639 and then Is_Tagged_Type (Etype (Expression (N)))
11640 and then Is_Object_Reference (Expression (N));
11642 -- An unchecked type conversion is considered to be an object if
11643 -- the operand is an object (this construction arises only as a
11644 -- result of expansion activities).
11646 when N_Unchecked_Type_Conversion =>
11647 return True;
11649 -- Allow string literals to act as objects as long as they appear
11650 -- in internally-generated renamings. The expansion of iterators
11651 -- may generate such renamings when the range involves a string
11652 -- literal.
11654 when N_String_Literal =>
11655 return Is_Internally_Generated_Renaming (Parent (N));
11657 -- AI05-0003: In Ada 2012 a qualified expression is a name.
11658 -- This allows disambiguation of function calls and the use
11659 -- of aggregates in more contexts.
11661 when N_Qualified_Expression =>
11662 if Ada_Version < Ada_2012 then
11663 return False;
11664 else
11665 return Is_Object_Reference (Expression (N))
11666 or else Nkind (Expression (N)) = N_Aggregate;
11667 end if;
11669 when others =>
11670 return False;
11671 end case;
11672 end if;
11673 end Is_Object_Reference;
11675 -----------------------------------
11676 -- Is_OK_Variable_For_Out_Formal --
11677 -----------------------------------
11679 function Is_OK_Variable_For_Out_Formal (AV : Node_Id) return Boolean is
11680 begin
11681 Note_Possible_Modification (AV, Sure => True);
11683 -- We must reject parenthesized variable names. Comes_From_Source is
11684 -- checked because there are currently cases where the compiler violates
11685 -- this rule (e.g. passing a task object to its controlled Initialize
11686 -- routine). This should be properly documented in sinfo???
11688 if Paren_Count (AV) > 0 and then Comes_From_Source (AV) then
11689 return False;
11691 -- A variable is always allowed
11693 elsif Is_Variable (AV) then
11694 return True;
11696 -- Generalized indexing operations are rewritten as explicit
11697 -- dereferences, and it is only during resolution that we can
11698 -- check whether the context requires an access_to_variable type.
11700 elsif Nkind (AV) = N_Explicit_Dereference
11701 and then Ada_Version >= Ada_2012
11702 and then Nkind (Original_Node (AV)) = N_Indexed_Component
11703 and then Present (Etype (Original_Node (AV)))
11704 and then Has_Implicit_Dereference (Etype (Original_Node (AV)))
11705 then
11706 return not Is_Access_Constant (Etype (Prefix (AV)));
11708 -- Unchecked conversions are allowed only if they come from the
11709 -- generated code, which sometimes uses unchecked conversions for out
11710 -- parameters in cases where code generation is unaffected. We tell
11711 -- source unchecked conversions by seeing if they are rewrites of
11712 -- an original Unchecked_Conversion function call, or of an explicit
11713 -- conversion of a function call or an aggregate (as may happen in the
11714 -- expansion of a packed array aggregate).
11716 elsif Nkind (AV) = N_Unchecked_Type_Conversion then
11717 if Nkind_In (Original_Node (AV), N_Function_Call, N_Aggregate) then
11718 return False;
11720 elsif Comes_From_Source (AV)
11721 and then Nkind (Original_Node (Expression (AV))) = N_Function_Call
11722 then
11723 return False;
11725 elsif Nkind (Original_Node (AV)) = N_Type_Conversion then
11726 return Is_OK_Variable_For_Out_Formal (Expression (AV));
11728 else
11729 return True;
11730 end if;
11732 -- Normal type conversions are allowed if argument is a variable
11734 elsif Nkind (AV) = N_Type_Conversion then
11735 if Is_Variable (Expression (AV))
11736 and then Paren_Count (Expression (AV)) = 0
11737 then
11738 Note_Possible_Modification (Expression (AV), Sure => True);
11739 return True;
11741 -- We also allow a non-parenthesized expression that raises
11742 -- constraint error if it rewrites what used to be a variable
11744 elsif Raises_Constraint_Error (Expression (AV))
11745 and then Paren_Count (Expression (AV)) = 0
11746 and then Is_Variable (Original_Node (Expression (AV)))
11747 then
11748 return True;
11750 -- Type conversion of something other than a variable
11752 else
11753 return False;
11754 end if;
11756 -- If this node is rewritten, then test the original form, if that is
11757 -- OK, then we consider the rewritten node OK (for example, if the
11758 -- original node is a conversion, then Is_Variable will not be true
11759 -- but we still want to allow the conversion if it converts a variable).
11761 elsif Original_Node (AV) /= AV then
11763 -- In Ada 2012, the explicit dereference may be a rewritten call to a
11764 -- Reference function.
11766 if Ada_Version >= Ada_2012
11767 and then Nkind (Original_Node (AV)) = N_Function_Call
11768 and then
11769 Has_Implicit_Dereference (Etype (Name (Original_Node (AV))))
11770 then
11771 return True;
11773 else
11774 return Is_OK_Variable_For_Out_Formal (Original_Node (AV));
11775 end if;
11777 -- All other non-variables are rejected
11779 else
11780 return False;
11781 end if;
11782 end Is_OK_Variable_For_Out_Formal;
11784 -----------------------------------
11785 -- Is_Partially_Initialized_Type --
11786 -----------------------------------
11788 function Is_Partially_Initialized_Type
11789 (Typ : Entity_Id;
11790 Include_Implicit : Boolean := True) return Boolean
11792 begin
11793 if Is_Scalar_Type (Typ) then
11794 return False;
11796 elsif Is_Access_Type (Typ) then
11797 return Include_Implicit;
11799 elsif Is_Array_Type (Typ) then
11801 -- If component type is partially initialized, so is array type
11803 if Is_Partially_Initialized_Type
11804 (Component_Type (Typ), Include_Implicit)
11805 then
11806 return True;
11808 -- Otherwise we are only partially initialized if we are fully
11809 -- initialized (this is the empty array case, no point in us
11810 -- duplicating that code here).
11812 else
11813 return Is_Fully_Initialized_Type (Typ);
11814 end if;
11816 elsif Is_Record_Type (Typ) then
11818 -- A discriminated type is always partially initialized if in
11819 -- all mode
11821 if Has_Discriminants (Typ) and then Include_Implicit then
11822 return True;
11824 -- A tagged type is always partially initialized
11826 elsif Is_Tagged_Type (Typ) then
11827 return True;
11829 -- Case of non-discriminated record
11831 else
11832 declare
11833 Ent : Entity_Id;
11835 Component_Present : Boolean := False;
11836 -- Set True if at least one component is present. If no
11837 -- components are present, then record type is fully
11838 -- initialized (another odd case, like the null array).
11840 begin
11841 -- Loop through components
11843 Ent := First_Entity (Typ);
11844 while Present (Ent) loop
11845 if Ekind (Ent) = E_Component then
11846 Component_Present := True;
11848 -- If a component has an initialization expression then
11849 -- the enclosing record type is partially initialized
11851 if Present (Parent (Ent))
11852 and then Present (Expression (Parent (Ent)))
11853 then
11854 return True;
11856 -- If a component is of a type which is itself partially
11857 -- initialized, then the enclosing record type is also.
11859 elsif Is_Partially_Initialized_Type
11860 (Etype (Ent), Include_Implicit)
11861 then
11862 return True;
11863 end if;
11864 end if;
11866 Next_Entity (Ent);
11867 end loop;
11869 -- No initialized components found. If we found any components
11870 -- they were all uninitialized so the result is false.
11872 if Component_Present then
11873 return False;
11875 -- But if we found no components, then all the components are
11876 -- initialized so we consider the type to be initialized.
11878 else
11879 return True;
11880 end if;
11881 end;
11882 end if;
11884 -- Concurrent types are always fully initialized
11886 elsif Is_Concurrent_Type (Typ) then
11887 return True;
11889 -- For a private type, go to underlying type. If there is no underlying
11890 -- type then just assume this partially initialized. Not clear if this
11891 -- can happen in a non-error case, but no harm in testing for this.
11893 elsif Is_Private_Type (Typ) then
11894 declare
11895 U : constant Entity_Id := Underlying_Type (Typ);
11896 begin
11897 if No (U) then
11898 return True;
11899 else
11900 return Is_Partially_Initialized_Type (U, Include_Implicit);
11901 end if;
11902 end;
11904 -- For any other type (are there any?) assume partially initialized
11906 else
11907 return True;
11908 end if;
11909 end Is_Partially_Initialized_Type;
11911 ------------------------------------
11912 -- Is_Potentially_Persistent_Type --
11913 ------------------------------------
11915 function Is_Potentially_Persistent_Type (T : Entity_Id) return Boolean is
11916 Comp : Entity_Id;
11917 Indx : Node_Id;
11919 begin
11920 -- For private type, test corresponding full type
11922 if Is_Private_Type (T) then
11923 return Is_Potentially_Persistent_Type (Full_View (T));
11925 -- Scalar types are potentially persistent
11927 elsif Is_Scalar_Type (T) then
11928 return True;
11930 -- Record type is potentially persistent if not tagged and the types of
11931 -- all it components are potentially persistent, and no component has
11932 -- an initialization expression.
11934 elsif Is_Record_Type (T)
11935 and then not Is_Tagged_Type (T)
11936 and then not Is_Partially_Initialized_Type (T)
11937 then
11938 Comp := First_Component (T);
11939 while Present (Comp) loop
11940 if not Is_Potentially_Persistent_Type (Etype (Comp)) then
11941 return False;
11942 else
11943 Next_Entity (Comp);
11944 end if;
11945 end loop;
11947 return True;
11949 -- Array type is potentially persistent if its component type is
11950 -- potentially persistent and if all its constraints are static.
11952 elsif Is_Array_Type (T) then
11953 if not Is_Potentially_Persistent_Type (Component_Type (T)) then
11954 return False;
11955 end if;
11957 Indx := First_Index (T);
11958 while Present (Indx) loop
11959 if not Is_OK_Static_Subtype (Etype (Indx)) then
11960 return False;
11961 else
11962 Next_Index (Indx);
11963 end if;
11964 end loop;
11966 return True;
11968 -- All other types are not potentially persistent
11970 else
11971 return False;
11972 end if;
11973 end Is_Potentially_Persistent_Type;
11975 --------------------------------
11976 -- Is_Potentially_Unevaluated --
11977 --------------------------------
11979 function Is_Potentially_Unevaluated (N : Node_Id) return Boolean is
11980 Par : Node_Id;
11981 Expr : Node_Id;
11983 begin
11984 Expr := N;
11985 Par := Parent (N);
11987 -- A postcondition whose expression is a short-circuit is broken down
11988 -- into individual aspects for better exception reporting. The original
11989 -- short-circuit expression is rewritten as the second operand, and an
11990 -- occurrence of 'Old in that operand is potentially unevaluated.
11991 -- See Sem_ch13.adb for details of this transformation.
11993 if Nkind (Original_Node (Par)) = N_And_Then then
11994 return True;
11995 end if;
11997 while not Nkind_In (Par, N_If_Expression,
11998 N_Case_Expression,
11999 N_And_Then,
12000 N_Or_Else,
12001 N_In,
12002 N_Not_In)
12003 loop
12004 Expr := Par;
12005 Par := Parent (Par);
12007 -- If the context is not an expression, or if is the result of
12008 -- expansion of an enclosing construct (such as another attribute)
12009 -- the predicate does not apply.
12011 if Nkind (Par) not in N_Subexpr
12012 or else not Comes_From_Source (Par)
12013 then
12014 return False;
12015 end if;
12016 end loop;
12018 if Nkind (Par) = N_If_Expression then
12019 return Is_Elsif (Par) or else Expr /= First (Expressions (Par));
12021 elsif Nkind (Par) = N_Case_Expression then
12022 return Expr /= Expression (Par);
12024 elsif Nkind_In (Par, N_And_Then, N_Or_Else) then
12025 return Expr = Right_Opnd (Par);
12027 elsif Nkind_In (Par, N_In, N_Not_In) then
12028 return Expr /= Left_Opnd (Par);
12030 else
12031 return False;
12032 end if;
12033 end Is_Potentially_Unevaluated;
12035 ---------------------------------
12036 -- Is_Protected_Self_Reference --
12037 ---------------------------------
12039 function Is_Protected_Self_Reference (N : Node_Id) return Boolean is
12041 function In_Access_Definition (N : Node_Id) return Boolean;
12042 -- Returns true if N belongs to an access definition
12044 --------------------------
12045 -- In_Access_Definition --
12046 --------------------------
12048 function In_Access_Definition (N : Node_Id) return Boolean is
12049 P : Node_Id;
12051 begin
12052 P := Parent (N);
12053 while Present (P) loop
12054 if Nkind (P) = N_Access_Definition then
12055 return True;
12056 end if;
12058 P := Parent (P);
12059 end loop;
12061 return False;
12062 end In_Access_Definition;
12064 -- Start of processing for Is_Protected_Self_Reference
12066 begin
12067 -- Verify that prefix is analyzed and has the proper form. Note that
12068 -- the attributes Elab_Spec, Elab_Body, Elab_Subp_Body and UET_Address,
12069 -- which also produce the address of an entity, do not analyze their
12070 -- prefix because they denote entities that are not necessarily visible.
12071 -- Neither of them can apply to a protected type.
12073 return Ada_Version >= Ada_2005
12074 and then Is_Entity_Name (N)
12075 and then Present (Entity (N))
12076 and then Is_Protected_Type (Entity (N))
12077 and then In_Open_Scopes (Entity (N))
12078 and then not In_Access_Definition (N);
12079 end Is_Protected_Self_Reference;
12081 -----------------------------
12082 -- Is_RCI_Pkg_Spec_Or_Body --
12083 -----------------------------
12085 function Is_RCI_Pkg_Spec_Or_Body (Cunit : Node_Id) return Boolean is
12087 function Is_RCI_Pkg_Decl_Cunit (Cunit : Node_Id) return Boolean;
12088 -- Return True if the unit of Cunit is an RCI package declaration
12090 ---------------------------
12091 -- Is_RCI_Pkg_Decl_Cunit --
12092 ---------------------------
12094 function Is_RCI_Pkg_Decl_Cunit (Cunit : Node_Id) return Boolean is
12095 The_Unit : constant Node_Id := Unit (Cunit);
12097 begin
12098 if Nkind (The_Unit) /= N_Package_Declaration then
12099 return False;
12100 end if;
12102 return Is_Remote_Call_Interface (Defining_Entity (The_Unit));
12103 end Is_RCI_Pkg_Decl_Cunit;
12105 -- Start of processing for Is_RCI_Pkg_Spec_Or_Body
12107 begin
12108 return Is_RCI_Pkg_Decl_Cunit (Cunit)
12109 or else
12110 (Nkind (Unit (Cunit)) = N_Package_Body
12111 and then Is_RCI_Pkg_Decl_Cunit (Library_Unit (Cunit)));
12112 end Is_RCI_Pkg_Spec_Or_Body;
12114 -----------------------------------------
12115 -- Is_Remote_Access_To_Class_Wide_Type --
12116 -----------------------------------------
12118 function Is_Remote_Access_To_Class_Wide_Type
12119 (E : Entity_Id) return Boolean
12121 begin
12122 -- A remote access to class-wide type is a general access to object type
12123 -- declared in the visible part of a Remote_Types or Remote_Call_
12124 -- Interface unit.
12126 return Ekind (E) = E_General_Access_Type
12127 and then (Is_Remote_Call_Interface (E) or else Is_Remote_Types (E));
12128 end Is_Remote_Access_To_Class_Wide_Type;
12130 -----------------------------------------
12131 -- Is_Remote_Access_To_Subprogram_Type --
12132 -----------------------------------------
12134 function Is_Remote_Access_To_Subprogram_Type
12135 (E : Entity_Id) return Boolean
12137 begin
12138 return (Ekind (E) = E_Access_Subprogram_Type
12139 or else (Ekind (E) = E_Record_Type
12140 and then Present (Corresponding_Remote_Type (E))))
12141 and then (Is_Remote_Call_Interface (E) or else Is_Remote_Types (E));
12142 end Is_Remote_Access_To_Subprogram_Type;
12144 --------------------
12145 -- Is_Remote_Call --
12146 --------------------
12148 function Is_Remote_Call (N : Node_Id) return Boolean is
12149 begin
12150 if Nkind (N) not in N_Subprogram_Call then
12152 -- An entry call cannot be remote
12154 return False;
12156 elsif Nkind (Name (N)) in N_Has_Entity
12157 and then Is_Remote_Call_Interface (Entity (Name (N)))
12158 then
12159 -- A subprogram declared in the spec of a RCI package is remote
12161 return True;
12163 elsif Nkind (Name (N)) = N_Explicit_Dereference
12164 and then Is_Remote_Access_To_Subprogram_Type
12165 (Etype (Prefix (Name (N))))
12166 then
12167 -- The dereference of a RAS is a remote call
12169 return True;
12171 elsif Present (Controlling_Argument (N))
12172 and then Is_Remote_Access_To_Class_Wide_Type
12173 (Etype (Controlling_Argument (N)))
12174 then
12175 -- Any primitive operation call with a controlling argument of
12176 -- a RACW type is a remote call.
12178 return True;
12179 end if;
12181 -- All other calls are local calls
12183 return False;
12184 end Is_Remote_Call;
12186 ----------------------
12187 -- Is_Renamed_Entry --
12188 ----------------------
12190 function Is_Renamed_Entry (Proc_Nam : Entity_Id) return Boolean is
12191 Orig_Node : Node_Id := Empty;
12192 Subp_Decl : Node_Id := Parent (Parent (Proc_Nam));
12194 function Is_Entry (Nam : Node_Id) return Boolean;
12195 -- Determine whether Nam is an entry. Traverse selectors if there are
12196 -- nested selected components.
12198 --------------
12199 -- Is_Entry --
12200 --------------
12202 function Is_Entry (Nam : Node_Id) return Boolean is
12203 begin
12204 if Nkind (Nam) = N_Selected_Component then
12205 return Is_Entry (Selector_Name (Nam));
12206 end if;
12208 return Ekind (Entity (Nam)) = E_Entry;
12209 end Is_Entry;
12211 -- Start of processing for Is_Renamed_Entry
12213 begin
12214 if Present (Alias (Proc_Nam)) then
12215 Subp_Decl := Parent (Parent (Alias (Proc_Nam)));
12216 end if;
12218 -- Look for a rewritten subprogram renaming declaration
12220 if Nkind (Subp_Decl) = N_Subprogram_Declaration
12221 and then Present (Original_Node (Subp_Decl))
12222 then
12223 Orig_Node := Original_Node (Subp_Decl);
12224 end if;
12226 -- The rewritten subprogram is actually an entry
12228 if Present (Orig_Node)
12229 and then Nkind (Orig_Node) = N_Subprogram_Renaming_Declaration
12230 and then Is_Entry (Name (Orig_Node))
12231 then
12232 return True;
12233 end if;
12235 return False;
12236 end Is_Renamed_Entry;
12238 ----------------------------
12239 -- Is_Reversible_Iterator --
12240 ----------------------------
12242 function Is_Reversible_Iterator (Typ : Entity_Id) return Boolean is
12243 Ifaces_List : Elist_Id;
12244 Iface_Elmt : Elmt_Id;
12245 Iface : Entity_Id;
12247 begin
12248 if Is_Class_Wide_Type (Typ)
12249 and then Chars (Etype (Typ)) = Name_Reversible_Iterator
12250 and then Is_Predefined_File_Name
12251 (Unit_File_Name (Get_Source_Unit (Etype (Typ))))
12252 then
12253 return True;
12255 elsif not Is_Tagged_Type (Typ) or else not Is_Derived_Type (Typ) then
12256 return False;
12258 else
12259 Collect_Interfaces (Typ, Ifaces_List);
12261 Iface_Elmt := First_Elmt (Ifaces_List);
12262 while Present (Iface_Elmt) loop
12263 Iface := Node (Iface_Elmt);
12264 if Chars (Iface) = Name_Reversible_Iterator
12265 and then
12266 Is_Predefined_File_Name
12267 (Unit_File_Name (Get_Source_Unit (Iface)))
12268 then
12269 return True;
12270 end if;
12272 Next_Elmt (Iface_Elmt);
12273 end loop;
12274 end if;
12276 return False;
12277 end Is_Reversible_Iterator;
12279 ----------------------
12280 -- Is_Selector_Name --
12281 ----------------------
12283 function Is_Selector_Name (N : Node_Id) return Boolean is
12284 begin
12285 if not Is_List_Member (N) then
12286 declare
12287 P : constant Node_Id := Parent (N);
12288 begin
12289 return Nkind_In (P, N_Expanded_Name,
12290 N_Generic_Association,
12291 N_Parameter_Association,
12292 N_Selected_Component)
12293 and then Selector_Name (P) = N;
12294 end;
12296 else
12297 declare
12298 L : constant List_Id := List_Containing (N);
12299 P : constant Node_Id := Parent (L);
12300 begin
12301 return (Nkind (P) = N_Discriminant_Association
12302 and then Selector_Names (P) = L)
12303 or else
12304 (Nkind (P) = N_Component_Association
12305 and then Choices (P) = L);
12306 end;
12307 end if;
12308 end Is_Selector_Name;
12310 -------------------------------------
12311 -- Is_SPARK_05_Initialization_Expr --
12312 -------------------------------------
12314 function Is_SPARK_05_Initialization_Expr (N : Node_Id) return Boolean is
12315 Is_Ok : Boolean;
12316 Expr : Node_Id;
12317 Comp_Assn : Node_Id;
12318 Orig_N : constant Node_Id := Original_Node (N);
12320 begin
12321 Is_Ok := True;
12323 if not Comes_From_Source (Orig_N) then
12324 goto Done;
12325 end if;
12327 pragma Assert (Nkind (Orig_N) in N_Subexpr);
12329 case Nkind (Orig_N) is
12330 when N_Character_Literal |
12331 N_Integer_Literal |
12332 N_Real_Literal |
12333 N_String_Literal =>
12334 null;
12336 when N_Identifier |
12337 N_Expanded_Name =>
12338 if Is_Entity_Name (Orig_N)
12339 and then Present (Entity (Orig_N)) -- needed in some cases
12340 then
12341 case Ekind (Entity (Orig_N)) is
12342 when E_Constant |
12343 E_Enumeration_Literal |
12344 E_Named_Integer |
12345 E_Named_Real =>
12346 null;
12347 when others =>
12348 if Is_Type (Entity (Orig_N)) then
12349 null;
12350 else
12351 Is_Ok := False;
12352 end if;
12353 end case;
12354 end if;
12356 when N_Qualified_Expression |
12357 N_Type_Conversion =>
12358 Is_Ok := Is_SPARK_05_Initialization_Expr (Expression (Orig_N));
12360 when N_Unary_Op =>
12361 Is_Ok := Is_SPARK_05_Initialization_Expr (Right_Opnd (Orig_N));
12363 when N_Binary_Op |
12364 N_Short_Circuit |
12365 N_Membership_Test =>
12366 Is_Ok := Is_SPARK_05_Initialization_Expr (Left_Opnd (Orig_N))
12367 and then
12368 Is_SPARK_05_Initialization_Expr (Right_Opnd (Orig_N));
12370 when N_Aggregate |
12371 N_Extension_Aggregate =>
12372 if Nkind (Orig_N) = N_Extension_Aggregate then
12373 Is_Ok :=
12374 Is_SPARK_05_Initialization_Expr (Ancestor_Part (Orig_N));
12375 end if;
12377 Expr := First (Expressions (Orig_N));
12378 while Present (Expr) loop
12379 if not Is_SPARK_05_Initialization_Expr (Expr) then
12380 Is_Ok := False;
12381 goto Done;
12382 end if;
12384 Next (Expr);
12385 end loop;
12387 Comp_Assn := First (Component_Associations (Orig_N));
12388 while Present (Comp_Assn) loop
12389 Expr := Expression (Comp_Assn);
12391 -- Note: test for Present here needed for box assocation
12393 if Present (Expr)
12394 and then not Is_SPARK_05_Initialization_Expr (Expr)
12395 then
12396 Is_Ok := False;
12397 goto Done;
12398 end if;
12400 Next (Comp_Assn);
12401 end loop;
12403 when N_Attribute_Reference =>
12404 if Nkind (Prefix (Orig_N)) in N_Subexpr then
12405 Is_Ok := Is_SPARK_05_Initialization_Expr (Prefix (Orig_N));
12406 end if;
12408 Expr := First (Expressions (Orig_N));
12409 while Present (Expr) loop
12410 if not Is_SPARK_05_Initialization_Expr (Expr) then
12411 Is_Ok := False;
12412 goto Done;
12413 end if;
12415 Next (Expr);
12416 end loop;
12418 -- Selected components might be expanded named not yet resolved, so
12419 -- default on the safe side. (Eg on sparklex.ads)
12421 when N_Selected_Component =>
12422 null;
12424 when others =>
12425 Is_Ok := False;
12426 end case;
12428 <<Done>>
12429 return Is_Ok;
12430 end Is_SPARK_05_Initialization_Expr;
12432 ----------------------------------
12433 -- Is_SPARK_05_Object_Reference --
12434 ----------------------------------
12436 function Is_SPARK_05_Object_Reference (N : Node_Id) return Boolean is
12437 begin
12438 if Is_Entity_Name (N) then
12439 return Present (Entity (N))
12440 and then
12441 (Ekind_In (Entity (N), E_Constant, E_Variable)
12442 or else Ekind (Entity (N)) in Formal_Kind);
12444 else
12445 case Nkind (N) is
12446 when N_Selected_Component =>
12447 return Is_SPARK_05_Object_Reference (Prefix (N));
12449 when others =>
12450 return False;
12451 end case;
12452 end if;
12453 end Is_SPARK_05_Object_Reference;
12455 -----------------------------
12456 -- Is_Specific_Tagged_Type --
12457 -----------------------------
12459 function Is_Specific_Tagged_Type (Typ : Entity_Id) return Boolean is
12460 Full_Typ : Entity_Id;
12462 begin
12463 -- Handle private types
12465 if Is_Private_Type (Typ) and then Present (Full_View (Typ)) then
12466 Full_Typ := Full_View (Typ);
12467 else
12468 Full_Typ := Typ;
12469 end if;
12471 -- A specific tagged type is a non-class-wide tagged type
12473 return Is_Tagged_Type (Full_Typ) and not Is_Class_Wide_Type (Full_Typ);
12474 end Is_Specific_Tagged_Type;
12476 ------------------
12477 -- Is_Statement --
12478 ------------------
12480 function Is_Statement (N : Node_Id) return Boolean is
12481 begin
12482 return
12483 Nkind (N) in N_Statement_Other_Than_Procedure_Call
12484 or else Nkind (N) = N_Procedure_Call_Statement;
12485 end Is_Statement;
12487 --------------------------------------------------
12488 -- Is_Subprogram_Stub_Without_Prior_Declaration --
12489 --------------------------------------------------
12491 function Is_Subprogram_Stub_Without_Prior_Declaration
12492 (N : Node_Id) return Boolean
12494 begin
12495 -- A subprogram stub without prior declaration serves as declaration for
12496 -- the actual subprogram body. As such, it has an attached defining
12497 -- entity of E_[Generic_]Function or E_[Generic_]Procedure.
12499 return Nkind (N) = N_Subprogram_Body_Stub
12500 and then Ekind (Defining_Entity (N)) /= E_Subprogram_Body;
12501 end Is_Subprogram_Stub_Without_Prior_Declaration;
12503 ---------------------------------
12504 -- Is_Synchronized_Tagged_Type --
12505 ---------------------------------
12507 function Is_Synchronized_Tagged_Type (E : Entity_Id) return Boolean is
12508 Kind : constant Entity_Kind := Ekind (Base_Type (E));
12510 begin
12511 -- A task or protected type derived from an interface is a tagged type.
12512 -- Such a tagged type is called a synchronized tagged type, as are
12513 -- synchronized interfaces and private extensions whose declaration
12514 -- includes the reserved word synchronized.
12516 return (Is_Tagged_Type (E)
12517 and then (Kind = E_Task_Type
12518 or else
12519 Kind = E_Protected_Type))
12520 or else
12521 (Is_Interface (E)
12522 and then Is_Synchronized_Interface (E))
12523 or else
12524 (Ekind (E) = E_Record_Type_With_Private
12525 and then Nkind (Parent (E)) = N_Private_Extension_Declaration
12526 and then (Synchronized_Present (Parent (E))
12527 or else Is_Synchronized_Interface (Etype (E))));
12528 end Is_Synchronized_Tagged_Type;
12530 -----------------
12531 -- Is_Transfer --
12532 -----------------
12534 function Is_Transfer (N : Node_Id) return Boolean is
12535 Kind : constant Node_Kind := Nkind (N);
12537 begin
12538 if Kind = N_Simple_Return_Statement
12539 or else
12540 Kind = N_Extended_Return_Statement
12541 or else
12542 Kind = N_Goto_Statement
12543 or else
12544 Kind = N_Raise_Statement
12545 or else
12546 Kind = N_Requeue_Statement
12547 then
12548 return True;
12550 elsif (Kind = N_Exit_Statement or else Kind in N_Raise_xxx_Error)
12551 and then No (Condition (N))
12552 then
12553 return True;
12555 elsif Kind = N_Procedure_Call_Statement
12556 and then Is_Entity_Name (Name (N))
12557 and then Present (Entity (Name (N)))
12558 and then No_Return (Entity (Name (N)))
12559 then
12560 return True;
12562 elsif Nkind (Original_Node (N)) = N_Raise_Statement then
12563 return True;
12565 else
12566 return False;
12567 end if;
12568 end Is_Transfer;
12570 -------------
12571 -- Is_True --
12572 -------------
12574 function Is_True (U : Uint) return Boolean is
12575 begin
12576 return (U /= 0);
12577 end Is_True;
12579 --------------------------------------
12580 -- Is_Unchecked_Conversion_Instance --
12581 --------------------------------------
12583 function Is_Unchecked_Conversion_Instance (Id : Entity_Id) return Boolean is
12584 Gen_Par : Entity_Id;
12586 begin
12587 -- Look for a function whose generic parent is the predefined intrinsic
12588 -- function Unchecked_Conversion.
12590 if Ekind (Id) = E_Function then
12591 Gen_Par := Generic_Parent (Parent (Id));
12593 return
12594 Present (Gen_Par)
12595 and then Chars (Gen_Par) = Name_Unchecked_Conversion
12596 and then Is_Intrinsic_Subprogram (Gen_Par)
12597 and then Is_Predefined_File_Name
12598 (Unit_File_Name (Get_Source_Unit (Gen_Par)));
12599 end if;
12601 return False;
12602 end Is_Unchecked_Conversion_Instance;
12604 -------------------------------
12605 -- Is_Universal_Numeric_Type --
12606 -------------------------------
12608 function Is_Universal_Numeric_Type (T : Entity_Id) return Boolean is
12609 begin
12610 return T = Universal_Integer or else T = Universal_Real;
12611 end Is_Universal_Numeric_Type;
12613 -------------------
12614 -- Is_Value_Type --
12615 -------------------
12617 function Is_Value_Type (T : Entity_Id) return Boolean is
12618 begin
12619 return VM_Target = CLI_Target
12620 and then Nkind (T) in N_Has_Chars
12621 and then Chars (T) /= No_Name
12622 and then Get_Name_String (Chars (T)) = "valuetype";
12623 end Is_Value_Type;
12625 ----------------------------
12626 -- Is_Variable_Size_Array --
12627 ----------------------------
12629 function Is_Variable_Size_Array (E : Entity_Id) return Boolean is
12630 Idx : Node_Id;
12632 begin
12633 pragma Assert (Is_Array_Type (E));
12635 -- Check if some index is initialized with a non-constant value
12637 Idx := First_Index (E);
12638 while Present (Idx) loop
12639 if Nkind (Idx) = N_Range then
12640 if not Is_Constant_Bound (Low_Bound (Idx))
12641 or else not Is_Constant_Bound (High_Bound (Idx))
12642 then
12643 return True;
12644 end if;
12645 end if;
12647 Idx := Next_Index (Idx);
12648 end loop;
12650 return False;
12651 end Is_Variable_Size_Array;
12653 -----------------------------
12654 -- Is_Variable_Size_Record --
12655 -----------------------------
12657 function Is_Variable_Size_Record (E : Entity_Id) return Boolean is
12658 Comp : Entity_Id;
12659 Comp_Typ : Entity_Id;
12661 begin
12662 pragma Assert (Is_Record_Type (E));
12664 Comp := First_Entity (E);
12665 while Present (Comp) loop
12666 Comp_Typ := Etype (Comp);
12668 -- Recursive call if the record type has discriminants
12670 if Is_Record_Type (Comp_Typ)
12671 and then Has_Discriminants (Comp_Typ)
12672 and then Is_Variable_Size_Record (Comp_Typ)
12673 then
12674 return True;
12676 elsif Is_Array_Type (Comp_Typ)
12677 and then Is_Variable_Size_Array (Comp_Typ)
12678 then
12679 return True;
12680 end if;
12682 Next_Entity (Comp);
12683 end loop;
12685 return False;
12686 end Is_Variable_Size_Record;
12688 -----------------
12689 -- Is_Variable --
12690 -----------------
12692 function Is_Variable
12693 (N : Node_Id;
12694 Use_Original_Node : Boolean := True) return Boolean
12696 Orig_Node : Node_Id;
12698 function In_Protected_Function (E : Entity_Id) return Boolean;
12699 -- Within a protected function, the private components of the enclosing
12700 -- protected type are constants. A function nested within a (protected)
12701 -- procedure is not itself protected. Within the body of a protected
12702 -- function the current instance of the protected type is a constant.
12704 function Is_Variable_Prefix (P : Node_Id) return Boolean;
12705 -- Prefixes can involve implicit dereferences, in which case we must
12706 -- test for the case of a reference of a constant access type, which can
12707 -- can never be a variable.
12709 ---------------------------
12710 -- In_Protected_Function --
12711 ---------------------------
12713 function In_Protected_Function (E : Entity_Id) return Boolean is
12714 Prot : Entity_Id;
12715 S : Entity_Id;
12717 begin
12718 -- E is the current instance of a type
12720 if Is_Type (E) then
12721 Prot := E;
12723 -- E is an object
12725 else
12726 Prot := Scope (E);
12727 end if;
12729 if not Is_Protected_Type (Prot) then
12730 return False;
12732 else
12733 S := Current_Scope;
12734 while Present (S) and then S /= Prot loop
12735 if Ekind (S) = E_Function and then Scope (S) = Prot then
12736 return True;
12737 end if;
12739 S := Scope (S);
12740 end loop;
12742 return False;
12743 end if;
12744 end In_Protected_Function;
12746 ------------------------
12747 -- Is_Variable_Prefix --
12748 ------------------------
12750 function Is_Variable_Prefix (P : Node_Id) return Boolean is
12751 begin
12752 if Is_Access_Type (Etype (P)) then
12753 return not Is_Access_Constant (Root_Type (Etype (P)));
12755 -- For the case of an indexed component whose prefix has a packed
12756 -- array type, the prefix has been rewritten into a type conversion.
12757 -- Determine variable-ness from the converted expression.
12759 elsif Nkind (P) = N_Type_Conversion
12760 and then not Comes_From_Source (P)
12761 and then Is_Array_Type (Etype (P))
12762 and then Is_Packed (Etype (P))
12763 then
12764 return Is_Variable (Expression (P));
12766 else
12767 return Is_Variable (P);
12768 end if;
12769 end Is_Variable_Prefix;
12771 -- Start of processing for Is_Variable
12773 begin
12774 -- Check if we perform the test on the original node since this may be a
12775 -- test of syntactic categories which must not be disturbed by whatever
12776 -- rewriting might have occurred. For example, an aggregate, which is
12777 -- certainly NOT a variable, could be turned into a variable by
12778 -- expansion.
12780 if Use_Original_Node then
12781 Orig_Node := Original_Node (N);
12782 else
12783 Orig_Node := N;
12784 end if;
12786 -- Definitely OK if Assignment_OK is set. Since this is something that
12787 -- only gets set for expanded nodes, the test is on N, not Orig_Node.
12789 if Nkind (N) in N_Subexpr and then Assignment_OK (N) then
12790 return True;
12792 -- Normally we go to the original node, but there is one exception where
12793 -- we use the rewritten node, namely when it is an explicit dereference.
12794 -- The generated code may rewrite a prefix which is an access type with
12795 -- an explicit dereference. The dereference is a variable, even though
12796 -- the original node may not be (since it could be a constant of the
12797 -- access type).
12799 -- In Ada 2005 we have a further case to consider: the prefix may be a
12800 -- function call given in prefix notation. The original node appears to
12801 -- be a selected component, but we need to examine the call.
12803 elsif Nkind (N) = N_Explicit_Dereference
12804 and then Nkind (Orig_Node) /= N_Explicit_Dereference
12805 and then Present (Etype (Orig_Node))
12806 and then Is_Access_Type (Etype (Orig_Node))
12807 then
12808 -- Note that if the prefix is an explicit dereference that does not
12809 -- come from source, we must check for a rewritten function call in
12810 -- prefixed notation before other forms of rewriting, to prevent a
12811 -- compiler crash.
12813 return
12814 (Nkind (Orig_Node) = N_Function_Call
12815 and then not Is_Access_Constant (Etype (Prefix (N))))
12816 or else
12817 Is_Variable_Prefix (Original_Node (Prefix (N)));
12819 -- in Ada 2012, the dereference may have been added for a type with
12820 -- a declared implicit dereference aspect. Check that it is not an
12821 -- access to constant.
12823 elsif Nkind (N) = N_Explicit_Dereference
12824 and then Present (Etype (Orig_Node))
12825 and then Ada_Version >= Ada_2012
12826 and then Has_Implicit_Dereference (Etype (Orig_Node))
12827 then
12828 return not Is_Access_Constant (Etype (Prefix (N)));
12830 -- A function call is never a variable
12832 elsif Nkind (N) = N_Function_Call then
12833 return False;
12835 -- All remaining checks use the original node
12837 elsif Is_Entity_Name (Orig_Node)
12838 and then Present (Entity (Orig_Node))
12839 then
12840 declare
12841 E : constant Entity_Id := Entity (Orig_Node);
12842 K : constant Entity_Kind := Ekind (E);
12844 begin
12845 return (K = E_Variable
12846 and then Nkind (Parent (E)) /= N_Exception_Handler)
12847 or else (K = E_Component
12848 and then not In_Protected_Function (E))
12849 or else K = E_Out_Parameter
12850 or else K = E_In_Out_Parameter
12851 or else K = E_Generic_In_Out_Parameter
12853 -- Current instance of type. If this is a protected type, check
12854 -- we are not within the body of one of its protected functions.
12856 or else (Is_Type (E)
12857 and then In_Open_Scopes (E)
12858 and then not In_Protected_Function (E))
12860 or else (Is_Incomplete_Or_Private_Type (E)
12861 and then In_Open_Scopes (Full_View (E)));
12862 end;
12864 else
12865 case Nkind (Orig_Node) is
12866 when N_Indexed_Component | N_Slice =>
12867 return Is_Variable_Prefix (Prefix (Orig_Node));
12869 when N_Selected_Component =>
12870 return (Is_Variable (Selector_Name (Orig_Node))
12871 and then Is_Variable_Prefix (Prefix (Orig_Node)))
12872 or else
12873 (Nkind (N) = N_Expanded_Name
12874 and then Scope (Entity (N)) = Entity (Prefix (N)));
12876 -- For an explicit dereference, the type of the prefix cannot
12877 -- be an access to constant or an access to subprogram.
12879 when N_Explicit_Dereference =>
12880 declare
12881 Typ : constant Entity_Id := Etype (Prefix (Orig_Node));
12882 begin
12883 return Is_Access_Type (Typ)
12884 and then not Is_Access_Constant (Root_Type (Typ))
12885 and then Ekind (Typ) /= E_Access_Subprogram_Type;
12886 end;
12888 -- The type conversion is the case where we do not deal with the
12889 -- context dependent special case of an actual parameter. Thus
12890 -- the type conversion is only considered a variable for the
12891 -- purposes of this routine if the target type is tagged. However,
12892 -- a type conversion is considered to be a variable if it does not
12893 -- come from source (this deals for example with the conversions
12894 -- of expressions to their actual subtypes).
12896 when N_Type_Conversion =>
12897 return Is_Variable (Expression (Orig_Node))
12898 and then
12899 (not Comes_From_Source (Orig_Node)
12900 or else
12901 (Is_Tagged_Type (Etype (Subtype_Mark (Orig_Node)))
12902 and then
12903 Is_Tagged_Type (Etype (Expression (Orig_Node)))));
12905 -- GNAT allows an unchecked type conversion as a variable. This
12906 -- only affects the generation of internal expanded code, since
12907 -- calls to instantiations of Unchecked_Conversion are never
12908 -- considered variables (since they are function calls).
12910 when N_Unchecked_Type_Conversion =>
12911 return Is_Variable (Expression (Orig_Node));
12913 when others =>
12914 return False;
12915 end case;
12916 end if;
12917 end Is_Variable;
12919 ---------------------------
12920 -- Is_Visibly_Controlled --
12921 ---------------------------
12923 function Is_Visibly_Controlled (T : Entity_Id) return Boolean is
12924 Root : constant Entity_Id := Root_Type (T);
12925 begin
12926 return Chars (Scope (Root)) = Name_Finalization
12927 and then Chars (Scope (Scope (Root))) = Name_Ada
12928 and then Scope (Scope (Scope (Root))) = Standard_Standard;
12929 end Is_Visibly_Controlled;
12931 ------------------------
12932 -- Is_Volatile_Object --
12933 ------------------------
12935 function Is_Volatile_Object (N : Node_Id) return Boolean is
12937 function Is_Volatile_Prefix (N : Node_Id) return Boolean;
12938 -- If prefix is an implicit dereference, examine designated type
12940 function Object_Has_Volatile_Components (N : Node_Id) return Boolean;
12941 -- Determines if given object has volatile components
12943 ------------------------
12944 -- Is_Volatile_Prefix --
12945 ------------------------
12947 function Is_Volatile_Prefix (N : Node_Id) return Boolean is
12948 Typ : constant Entity_Id := Etype (N);
12950 begin
12951 if Is_Access_Type (Typ) then
12952 declare
12953 Dtyp : constant Entity_Id := Designated_Type (Typ);
12955 begin
12956 return Is_Volatile (Dtyp)
12957 or else Has_Volatile_Components (Dtyp);
12958 end;
12960 else
12961 return Object_Has_Volatile_Components (N);
12962 end if;
12963 end Is_Volatile_Prefix;
12965 ------------------------------------
12966 -- Object_Has_Volatile_Components --
12967 ------------------------------------
12969 function Object_Has_Volatile_Components (N : Node_Id) return Boolean is
12970 Typ : constant Entity_Id := Etype (N);
12972 begin
12973 if Is_Volatile (Typ)
12974 or else Has_Volatile_Components (Typ)
12975 then
12976 return True;
12978 elsif Is_Entity_Name (N)
12979 and then (Has_Volatile_Components (Entity (N))
12980 or else Is_Volatile (Entity (N)))
12981 then
12982 return True;
12984 elsif Nkind (N) = N_Indexed_Component
12985 or else Nkind (N) = N_Selected_Component
12986 then
12987 return Is_Volatile_Prefix (Prefix (N));
12989 else
12990 return False;
12991 end if;
12992 end Object_Has_Volatile_Components;
12994 -- Start of processing for Is_Volatile_Object
12996 begin
12997 if Nkind (N) = N_Defining_Identifier then
12998 return Is_Volatile (N) or else Is_Volatile (Etype (N));
13000 elsif Nkind (N) = N_Expanded_Name then
13001 return Is_Volatile_Object (Entity (N));
13003 elsif Is_Volatile (Etype (N))
13004 or else (Is_Entity_Name (N) and then Is_Volatile (Entity (N)))
13005 then
13006 return True;
13008 elsif Nkind_In (N, N_Indexed_Component, N_Selected_Component)
13009 and then Is_Volatile_Prefix (Prefix (N))
13010 then
13011 return True;
13013 elsif Nkind (N) = N_Selected_Component
13014 and then Is_Volatile (Entity (Selector_Name (N)))
13015 then
13016 return True;
13018 else
13019 return False;
13020 end if;
13021 end Is_Volatile_Object;
13023 ---------------------------
13024 -- Itype_Has_Declaration --
13025 ---------------------------
13027 function Itype_Has_Declaration (Id : Entity_Id) return Boolean is
13028 begin
13029 pragma Assert (Is_Itype (Id));
13030 return Present (Parent (Id))
13031 and then Nkind_In (Parent (Id), N_Full_Type_Declaration,
13032 N_Subtype_Declaration)
13033 and then Defining_Entity (Parent (Id)) = Id;
13034 end Itype_Has_Declaration;
13036 -------------------------
13037 -- Kill_Current_Values --
13038 -------------------------
13040 procedure Kill_Current_Values
13041 (Ent : Entity_Id;
13042 Last_Assignment_Only : Boolean := False)
13044 begin
13045 if Is_Assignable (Ent) then
13046 Set_Last_Assignment (Ent, Empty);
13047 end if;
13049 if Is_Object (Ent) then
13050 if not Last_Assignment_Only then
13051 Kill_Checks (Ent);
13052 Set_Current_Value (Ent, Empty);
13054 -- Do not reset the Is_Known_[Non_]Null and Is_Known_Valid flags
13055 -- for a constant. Once the constant is elaborated, its value is
13056 -- not changed, therefore the associated flags that describe the
13057 -- value should not be modified either.
13059 if Ekind (Ent) = E_Constant then
13060 null;
13062 -- Non-constant entities
13064 else
13065 if not Can_Never_Be_Null (Ent) then
13066 Set_Is_Known_Non_Null (Ent, False);
13067 end if;
13069 Set_Is_Known_Null (Ent, False);
13071 -- Reset the Is_Known_Valid flag unless the type is always
13072 -- valid. This does not apply to a loop parameter because its
13073 -- bounds are defined by the loop header and therefore always
13074 -- valid.
13076 if not Is_Known_Valid (Etype (Ent))
13077 and then Ekind (Ent) /= E_Loop_Parameter
13078 then
13079 Set_Is_Known_Valid (Ent, False);
13080 end if;
13081 end if;
13082 end if;
13083 end if;
13084 end Kill_Current_Values;
13086 procedure Kill_Current_Values (Last_Assignment_Only : Boolean := False) is
13087 S : Entity_Id;
13089 procedure Kill_Current_Values_For_Entity_Chain (E : Entity_Id);
13090 -- Clear current value for entity E and all entities chained to E
13092 ------------------------------------------
13093 -- Kill_Current_Values_For_Entity_Chain --
13094 ------------------------------------------
13096 procedure Kill_Current_Values_For_Entity_Chain (E : Entity_Id) is
13097 Ent : Entity_Id;
13098 begin
13099 Ent := E;
13100 while Present (Ent) loop
13101 Kill_Current_Values (Ent, Last_Assignment_Only);
13102 Next_Entity (Ent);
13103 end loop;
13104 end Kill_Current_Values_For_Entity_Chain;
13106 -- Start of processing for Kill_Current_Values
13108 begin
13109 -- Kill all saved checks, a special case of killing saved values
13111 if not Last_Assignment_Only then
13112 Kill_All_Checks;
13113 end if;
13115 -- Loop through relevant scopes, which includes the current scope and
13116 -- any parent scopes if the current scope is a block or a package.
13118 S := Current_Scope;
13119 Scope_Loop : loop
13121 -- Clear current values of all entities in current scope
13123 Kill_Current_Values_For_Entity_Chain (First_Entity (S));
13125 -- If scope is a package, also clear current values of all private
13126 -- entities in the scope.
13128 if Is_Package_Or_Generic_Package (S)
13129 or else Is_Concurrent_Type (S)
13130 then
13131 Kill_Current_Values_For_Entity_Chain (First_Private_Entity (S));
13132 end if;
13134 -- If this is a not a subprogram, deal with parents
13136 if not Is_Subprogram (S) then
13137 S := Scope (S);
13138 exit Scope_Loop when S = Standard_Standard;
13139 else
13140 exit Scope_Loop;
13141 end if;
13142 end loop Scope_Loop;
13143 end Kill_Current_Values;
13145 --------------------------
13146 -- Kill_Size_Check_Code --
13147 --------------------------
13149 procedure Kill_Size_Check_Code (E : Entity_Id) is
13150 begin
13151 if (Ekind (E) = E_Constant or else Ekind (E) = E_Variable)
13152 and then Present (Size_Check_Code (E))
13153 then
13154 Remove (Size_Check_Code (E));
13155 Set_Size_Check_Code (E, Empty);
13156 end if;
13157 end Kill_Size_Check_Code;
13159 --------------------------
13160 -- Known_To_Be_Assigned --
13161 --------------------------
13163 function Known_To_Be_Assigned (N : Node_Id) return Boolean is
13164 P : constant Node_Id := Parent (N);
13166 begin
13167 case Nkind (P) is
13169 -- Test left side of assignment
13171 when N_Assignment_Statement =>
13172 return N = Name (P);
13174 -- Function call arguments are never lvalues
13176 when N_Function_Call =>
13177 return False;
13179 -- Positional parameter for procedure or accept call
13181 when N_Procedure_Call_Statement |
13182 N_Accept_Statement
13184 declare
13185 Proc : Entity_Id;
13186 Form : Entity_Id;
13187 Act : Node_Id;
13189 begin
13190 Proc := Get_Subprogram_Entity (P);
13192 if No (Proc) then
13193 return False;
13194 end if;
13196 -- If we are not a list member, something is strange, so
13197 -- be conservative and return False.
13199 if not Is_List_Member (N) then
13200 return False;
13201 end if;
13203 -- We are going to find the right formal by stepping forward
13204 -- through the formals, as we step backwards in the actuals.
13206 Form := First_Formal (Proc);
13207 Act := N;
13208 loop
13209 -- If no formal, something is weird, so be conservative
13210 -- and return False.
13212 if No (Form) then
13213 return False;
13214 end if;
13216 Prev (Act);
13217 exit when No (Act);
13218 Next_Formal (Form);
13219 end loop;
13221 return Ekind (Form) /= E_In_Parameter;
13222 end;
13224 -- Named parameter for procedure or accept call
13226 when N_Parameter_Association =>
13227 declare
13228 Proc : Entity_Id;
13229 Form : Entity_Id;
13231 begin
13232 Proc := Get_Subprogram_Entity (Parent (P));
13234 if No (Proc) then
13235 return False;
13236 end if;
13238 -- Loop through formals to find the one that matches
13240 Form := First_Formal (Proc);
13241 loop
13242 -- If no matching formal, that's peculiar, some kind of
13243 -- previous error, so return False to be conservative.
13244 -- Actually this also happens in legal code in the case
13245 -- where P is a parameter association for an Extra_Formal???
13247 if No (Form) then
13248 return False;
13249 end if;
13251 -- Else test for match
13253 if Chars (Form) = Chars (Selector_Name (P)) then
13254 return Ekind (Form) /= E_In_Parameter;
13255 end if;
13257 Next_Formal (Form);
13258 end loop;
13259 end;
13261 -- Test for appearing in a conversion that itself appears
13262 -- in an lvalue context, since this should be an lvalue.
13264 when N_Type_Conversion =>
13265 return Known_To_Be_Assigned (P);
13267 -- All other references are definitely not known to be modifications
13269 when others =>
13270 return False;
13272 end case;
13273 end Known_To_Be_Assigned;
13275 ---------------------------
13276 -- Last_Source_Statement --
13277 ---------------------------
13279 function Last_Source_Statement (HSS : Node_Id) return Node_Id is
13280 N : Node_Id;
13282 begin
13283 N := Last (Statements (HSS));
13284 while Present (N) loop
13285 exit when Comes_From_Source (N);
13286 Prev (N);
13287 end loop;
13289 return N;
13290 end Last_Source_Statement;
13292 ----------------------------------
13293 -- Matching_Static_Array_Bounds --
13294 ----------------------------------
13296 function Matching_Static_Array_Bounds
13297 (L_Typ : Node_Id;
13298 R_Typ : Node_Id) return Boolean
13300 L_Ndims : constant Nat := Number_Dimensions (L_Typ);
13301 R_Ndims : constant Nat := Number_Dimensions (R_Typ);
13303 L_Index : Node_Id;
13304 R_Index : Node_Id;
13305 L_Low : Node_Id;
13306 L_High : Node_Id;
13307 L_Len : Uint;
13308 R_Low : Node_Id;
13309 R_High : Node_Id;
13310 R_Len : Uint;
13312 begin
13313 if L_Ndims /= R_Ndims then
13314 return False;
13315 end if;
13317 -- Unconstrained types do not have static bounds
13319 if not Is_Constrained (L_Typ) or else not Is_Constrained (R_Typ) then
13320 return False;
13321 end if;
13323 -- First treat specially the first dimension, as the lower bound and
13324 -- length of string literals are not stored like those of arrays.
13326 if Ekind (L_Typ) = E_String_Literal_Subtype then
13327 L_Low := String_Literal_Low_Bound (L_Typ);
13328 L_Len := String_Literal_Length (L_Typ);
13329 else
13330 L_Index := First_Index (L_Typ);
13331 Get_Index_Bounds (L_Index, L_Low, L_High);
13333 if Is_OK_Static_Expression (L_Low)
13334 and then
13335 Is_OK_Static_Expression (L_High)
13336 then
13337 if Expr_Value (L_High) < Expr_Value (L_Low) then
13338 L_Len := Uint_0;
13339 else
13340 L_Len := (Expr_Value (L_High) - Expr_Value (L_Low)) + 1;
13341 end if;
13342 else
13343 return False;
13344 end if;
13345 end if;
13347 if Ekind (R_Typ) = E_String_Literal_Subtype then
13348 R_Low := String_Literal_Low_Bound (R_Typ);
13349 R_Len := String_Literal_Length (R_Typ);
13350 else
13351 R_Index := First_Index (R_Typ);
13352 Get_Index_Bounds (R_Index, R_Low, R_High);
13354 if Is_OK_Static_Expression (R_Low)
13355 and then
13356 Is_OK_Static_Expression (R_High)
13357 then
13358 if Expr_Value (R_High) < Expr_Value (R_Low) then
13359 R_Len := Uint_0;
13360 else
13361 R_Len := (Expr_Value (R_High) - Expr_Value (R_Low)) + 1;
13362 end if;
13363 else
13364 return False;
13365 end if;
13366 end if;
13368 if (Is_OK_Static_Expression (L_Low)
13369 and then
13370 Is_OK_Static_Expression (R_Low))
13371 and then Expr_Value (L_Low) = Expr_Value (R_Low)
13372 and then L_Len = R_Len
13373 then
13374 null;
13375 else
13376 return False;
13377 end if;
13379 -- Then treat all other dimensions
13381 for Indx in 2 .. L_Ndims loop
13382 Next (L_Index);
13383 Next (R_Index);
13385 Get_Index_Bounds (L_Index, L_Low, L_High);
13386 Get_Index_Bounds (R_Index, R_Low, R_High);
13388 if (Is_OK_Static_Expression (L_Low) and then
13389 Is_OK_Static_Expression (L_High) and then
13390 Is_OK_Static_Expression (R_Low) and then
13391 Is_OK_Static_Expression (R_High))
13392 and then (Expr_Value (L_Low) = Expr_Value (R_Low)
13393 and then
13394 Expr_Value (L_High) = Expr_Value (R_High))
13395 then
13396 null;
13397 else
13398 return False;
13399 end if;
13400 end loop;
13402 -- If we fall through the loop, all indexes matched
13404 return True;
13405 end Matching_Static_Array_Bounds;
13407 -------------------
13408 -- May_Be_Lvalue --
13409 -------------------
13411 function May_Be_Lvalue (N : Node_Id) return Boolean is
13412 P : constant Node_Id := Parent (N);
13414 begin
13415 case Nkind (P) is
13417 -- Test left side of assignment
13419 when N_Assignment_Statement =>
13420 return N = Name (P);
13422 -- Test prefix of component or attribute. Note that the prefix of an
13423 -- explicit or implicit dereference cannot be an l-value.
13425 when N_Attribute_Reference =>
13426 return N = Prefix (P)
13427 and then Name_Implies_Lvalue_Prefix (Attribute_Name (P));
13429 -- For an expanded name, the name is an lvalue if the expanded name
13430 -- is an lvalue, but the prefix is never an lvalue, since it is just
13431 -- the scope where the name is found.
13433 when N_Expanded_Name =>
13434 if N = Prefix (P) then
13435 return May_Be_Lvalue (P);
13436 else
13437 return False;
13438 end if;
13440 -- For a selected component A.B, A is certainly an lvalue if A.B is.
13441 -- B is a little interesting, if we have A.B := 3, there is some
13442 -- discussion as to whether B is an lvalue or not, we choose to say
13443 -- it is. Note however that A is not an lvalue if it is of an access
13444 -- type since this is an implicit dereference.
13446 when N_Selected_Component =>
13447 if N = Prefix (P)
13448 and then Present (Etype (N))
13449 and then Is_Access_Type (Etype (N))
13450 then
13451 return False;
13452 else
13453 return May_Be_Lvalue (P);
13454 end if;
13456 -- For an indexed component or slice, the index or slice bounds is
13457 -- never an lvalue. The prefix is an lvalue if the indexed component
13458 -- or slice is an lvalue, except if it is an access type, where we
13459 -- have an implicit dereference.
13461 when N_Indexed_Component | N_Slice =>
13462 if N /= Prefix (P)
13463 or else (Present (Etype (N)) and then Is_Access_Type (Etype (N)))
13464 then
13465 return False;
13466 else
13467 return May_Be_Lvalue (P);
13468 end if;
13470 -- Prefix of a reference is an lvalue if the reference is an lvalue
13472 when N_Reference =>
13473 return May_Be_Lvalue (P);
13475 -- Prefix of explicit dereference is never an lvalue
13477 when N_Explicit_Dereference =>
13478 return False;
13480 -- Positional parameter for subprogram, entry, or accept call.
13481 -- In older versions of Ada function call arguments are never
13482 -- lvalues. In Ada 2012 functions can have in-out parameters.
13484 when N_Subprogram_Call |
13485 N_Entry_Call_Statement |
13486 N_Accept_Statement
13488 if Nkind (P) = N_Function_Call and then Ada_Version < Ada_2012 then
13489 return False;
13490 end if;
13492 -- The following mechanism is clumsy and fragile. A single flag
13493 -- set in Resolve_Actuals would be preferable ???
13495 declare
13496 Proc : Entity_Id;
13497 Form : Entity_Id;
13498 Act : Node_Id;
13500 begin
13501 Proc := Get_Subprogram_Entity (P);
13503 if No (Proc) then
13504 return True;
13505 end if;
13507 -- If we are not a list member, something is strange, so be
13508 -- conservative and return True.
13510 if not Is_List_Member (N) then
13511 return True;
13512 end if;
13514 -- We are going to find the right formal by stepping forward
13515 -- through the formals, as we step backwards in the actuals.
13517 Form := First_Formal (Proc);
13518 Act := N;
13519 loop
13520 -- If no formal, something is weird, so be conservative and
13521 -- return True.
13523 if No (Form) then
13524 return True;
13525 end if;
13527 Prev (Act);
13528 exit when No (Act);
13529 Next_Formal (Form);
13530 end loop;
13532 return Ekind (Form) /= E_In_Parameter;
13533 end;
13535 -- Named parameter for procedure or accept call
13537 when N_Parameter_Association =>
13538 declare
13539 Proc : Entity_Id;
13540 Form : Entity_Id;
13542 begin
13543 Proc := Get_Subprogram_Entity (Parent (P));
13545 if No (Proc) then
13546 return True;
13547 end if;
13549 -- Loop through formals to find the one that matches
13551 Form := First_Formal (Proc);
13552 loop
13553 -- If no matching formal, that's peculiar, some kind of
13554 -- previous error, so return True to be conservative.
13555 -- Actually happens with legal code for an unresolved call
13556 -- where we may get the wrong homonym???
13558 if No (Form) then
13559 return True;
13560 end if;
13562 -- Else test for match
13564 if Chars (Form) = Chars (Selector_Name (P)) then
13565 return Ekind (Form) /= E_In_Parameter;
13566 end if;
13568 Next_Formal (Form);
13569 end loop;
13570 end;
13572 -- Test for appearing in a conversion that itself appears in an
13573 -- lvalue context, since this should be an lvalue.
13575 when N_Type_Conversion =>
13576 return May_Be_Lvalue (P);
13578 -- Test for appearance in object renaming declaration
13580 when N_Object_Renaming_Declaration =>
13581 return True;
13583 -- All other references are definitely not lvalues
13585 when others =>
13586 return False;
13588 end case;
13589 end May_Be_Lvalue;
13591 -----------------------
13592 -- Mark_Coextensions --
13593 -----------------------
13595 procedure Mark_Coextensions (Context_Nod : Node_Id; Root_Nod : Node_Id) is
13596 Is_Dynamic : Boolean;
13597 -- Indicates whether the context causes nested coextensions to be
13598 -- dynamic or static
13600 function Mark_Allocator (N : Node_Id) return Traverse_Result;
13601 -- Recognize an allocator node and label it as a dynamic coextension
13603 --------------------
13604 -- Mark_Allocator --
13605 --------------------
13607 function Mark_Allocator (N : Node_Id) return Traverse_Result is
13608 begin
13609 if Nkind (N) = N_Allocator then
13610 if Is_Dynamic then
13611 Set_Is_Dynamic_Coextension (N);
13613 -- If the allocator expression is potentially dynamic, it may
13614 -- be expanded out of order and require dynamic allocation
13615 -- anyway, so we treat the coextension itself as dynamic.
13616 -- Potential optimization ???
13618 elsif Nkind (Expression (N)) = N_Qualified_Expression
13619 and then Nkind (Expression (Expression (N))) = N_Op_Concat
13620 then
13621 Set_Is_Dynamic_Coextension (N);
13622 else
13623 Set_Is_Static_Coextension (N);
13624 end if;
13625 end if;
13627 return OK;
13628 end Mark_Allocator;
13630 procedure Mark_Allocators is new Traverse_Proc (Mark_Allocator);
13632 -- Start of processing Mark_Coextensions
13634 begin
13635 case Nkind (Context_Nod) is
13637 -- Comment here ???
13639 when N_Assignment_Statement =>
13640 Is_Dynamic := Nkind (Expression (Context_Nod)) = N_Allocator;
13642 -- An allocator that is a component of a returned aggregate
13643 -- must be dynamic.
13645 when N_Simple_Return_Statement =>
13646 declare
13647 Expr : constant Node_Id := Expression (Context_Nod);
13648 begin
13649 Is_Dynamic :=
13650 Nkind (Expr) = N_Allocator
13651 or else
13652 (Nkind (Expr) = N_Qualified_Expression
13653 and then Nkind (Expression (Expr)) = N_Aggregate);
13654 end;
13656 -- An alloctor within an object declaration in an extended return
13657 -- statement is of necessity dynamic.
13659 when N_Object_Declaration =>
13660 Is_Dynamic := Nkind (Root_Nod) = N_Allocator
13661 or else
13662 Nkind (Parent (Context_Nod)) = N_Extended_Return_Statement;
13664 -- This routine should not be called for constructs which may not
13665 -- contain coextensions.
13667 when others =>
13668 raise Program_Error;
13669 end case;
13671 Mark_Allocators (Root_Nod);
13672 end Mark_Coextensions;
13674 ----------------------
13675 -- Needs_One_Actual --
13676 ----------------------
13678 function Needs_One_Actual (E : Entity_Id) return Boolean is
13679 Formal : Entity_Id;
13681 begin
13682 -- Ada 2005 or later, and formals present
13684 if Ada_Version >= Ada_2005 and then Present (First_Formal (E)) then
13685 Formal := Next_Formal (First_Formal (E));
13686 while Present (Formal) loop
13687 if No (Default_Value (Formal)) then
13688 return False;
13689 end if;
13691 Next_Formal (Formal);
13692 end loop;
13694 return True;
13696 -- Ada 83/95 or no formals
13698 else
13699 return False;
13700 end if;
13701 end Needs_One_Actual;
13703 ------------------------
13704 -- New_Copy_List_Tree --
13705 ------------------------
13707 function New_Copy_List_Tree (List : List_Id) return List_Id is
13708 NL : List_Id;
13709 E : Node_Id;
13711 begin
13712 if List = No_List then
13713 return No_List;
13715 else
13716 NL := New_List;
13717 E := First (List);
13719 while Present (E) loop
13720 Append (New_Copy_Tree (E), NL);
13721 E := Next (E);
13722 end loop;
13724 return NL;
13725 end if;
13726 end New_Copy_List_Tree;
13728 --------------------------------------------------
13729 -- New_Copy_Tree Auxiliary Data and Subprograms --
13730 --------------------------------------------------
13732 use Atree.Unchecked_Access;
13733 use Atree_Private_Part;
13735 -- Our approach here requires a two pass traversal of the tree. The
13736 -- first pass visits all nodes that eventually will be copied looking
13737 -- for defining Itypes. If any defining Itypes are found, then they are
13738 -- copied, and an entry is added to the replacement map. In the second
13739 -- phase, the tree is copied, using the replacement map to replace any
13740 -- Itype references within the copied tree.
13742 -- The following hash tables are used if the Map supplied has more
13743 -- than hash threshold entries to speed up access to the map. If
13744 -- there are fewer entries, then the map is searched sequentially
13745 -- (because setting up a hash table for only a few entries takes
13746 -- more time than it saves.
13748 function New_Copy_Hash (E : Entity_Id) return NCT_Header_Num;
13749 -- Hash function used for hash operations
13751 -------------------
13752 -- New_Copy_Hash --
13753 -------------------
13755 function New_Copy_Hash (E : Entity_Id) return NCT_Header_Num is
13756 begin
13757 return Nat (E) mod (NCT_Header_Num'Last + 1);
13758 end New_Copy_Hash;
13760 ---------------
13761 -- NCT_Assoc --
13762 ---------------
13764 -- The hash table NCT_Assoc associates old entities in the table
13765 -- with their corresponding new entities (i.e. the pairs of entries
13766 -- presented in the original Map argument are Key-Element pairs).
13768 package NCT_Assoc is new Simple_HTable (
13769 Header_Num => NCT_Header_Num,
13770 Element => Entity_Id,
13771 No_Element => Empty,
13772 Key => Entity_Id,
13773 Hash => New_Copy_Hash,
13774 Equal => Types."=");
13776 ---------------------
13777 -- NCT_Itype_Assoc --
13778 ---------------------
13780 -- The hash table NCT_Itype_Assoc contains entries only for those
13781 -- old nodes which have a non-empty Associated_Node_For_Itype set.
13782 -- The key is the associated node, and the element is the new node
13783 -- itself (NOT the associated node for the new node).
13785 package NCT_Itype_Assoc is new Simple_HTable (
13786 Header_Num => NCT_Header_Num,
13787 Element => Entity_Id,
13788 No_Element => Empty,
13789 Key => Entity_Id,
13790 Hash => New_Copy_Hash,
13791 Equal => Types."=");
13793 -------------------
13794 -- New_Copy_Tree --
13795 -------------------
13797 function New_Copy_Tree
13798 (Source : Node_Id;
13799 Map : Elist_Id := No_Elist;
13800 New_Sloc : Source_Ptr := No_Location;
13801 New_Scope : Entity_Id := Empty) return Node_Id
13803 Actual_Map : Elist_Id := Map;
13804 -- This is the actual map for the copy. It is initialized with the
13805 -- given elements, and then enlarged as required for Itypes that are
13806 -- copied during the first phase of the copy operation. The visit
13807 -- procedures add elements to this map as Itypes are encountered.
13808 -- The reason we cannot use Map directly, is that it may well be
13809 -- (and normally is) initialized to No_Elist, and if we have mapped
13810 -- entities, we have to reset it to point to a real Elist.
13812 function Assoc (N : Node_Or_Entity_Id) return Node_Id;
13813 -- Called during second phase to map entities into their corresponding
13814 -- copies using Actual_Map. If the argument is not an entity, or is not
13815 -- in Actual_Map, then it is returned unchanged.
13817 procedure Build_NCT_Hash_Tables;
13818 -- Builds hash tables (number of elements >= threshold value)
13820 function Copy_Elist_With_Replacement
13821 (Old_Elist : Elist_Id) return Elist_Id;
13822 -- Called during second phase to copy element list doing replacements
13824 procedure Copy_Itype_With_Replacement (New_Itype : Entity_Id);
13825 -- Called during the second phase to process a copied Itype. The actual
13826 -- copy happened during the first phase (so that we could make the entry
13827 -- in the mapping), but we still have to deal with the descendents of
13828 -- the copied Itype and copy them where necessary.
13830 function Copy_List_With_Replacement (Old_List : List_Id) return List_Id;
13831 -- Called during second phase to copy list doing replacements
13833 function Copy_Node_With_Replacement (Old_Node : Node_Id) return Node_Id;
13834 -- Called during second phase to copy node doing replacements
13836 procedure Visit_Elist (E : Elist_Id);
13837 -- Called during first phase to visit all elements of an Elist
13839 procedure Visit_Field (F : Union_Id; N : Node_Id);
13840 -- Visit a single field, recursing to call Visit_Node or Visit_List
13841 -- if the field is a syntactic descendent of the current node (i.e.
13842 -- its parent is Node N).
13844 procedure Visit_Itype (Old_Itype : Entity_Id);
13845 -- Called during first phase to visit subsidiary fields of a defining
13846 -- Itype, and also create a copy and make an entry in the replacement
13847 -- map for the new copy.
13849 procedure Visit_List (L : List_Id);
13850 -- Called during first phase to visit all elements of a List
13852 procedure Visit_Node (N : Node_Or_Entity_Id);
13853 -- Called during first phase to visit a node and all its subtrees
13855 -----------
13856 -- Assoc --
13857 -----------
13859 function Assoc (N : Node_Or_Entity_Id) return Node_Id is
13860 E : Elmt_Id;
13861 Ent : Entity_Id;
13863 begin
13864 if not Has_Extension (N) or else No (Actual_Map) then
13865 return N;
13867 elsif NCT_Hash_Tables_Used then
13868 Ent := NCT_Assoc.Get (Entity_Id (N));
13870 if Present (Ent) then
13871 return Ent;
13872 else
13873 return N;
13874 end if;
13876 -- No hash table used, do serial search
13878 else
13879 E := First_Elmt (Actual_Map);
13880 while Present (E) loop
13881 if Node (E) = N then
13882 return Node (Next_Elmt (E));
13883 else
13884 E := Next_Elmt (Next_Elmt (E));
13885 end if;
13886 end loop;
13887 end if;
13889 return N;
13890 end Assoc;
13892 ---------------------------
13893 -- Build_NCT_Hash_Tables --
13894 ---------------------------
13896 procedure Build_NCT_Hash_Tables is
13897 Elmt : Elmt_Id;
13898 Ent : Entity_Id;
13899 begin
13900 if NCT_Hash_Table_Setup then
13901 NCT_Assoc.Reset;
13902 NCT_Itype_Assoc.Reset;
13903 end if;
13905 Elmt := First_Elmt (Actual_Map);
13906 while Present (Elmt) loop
13907 Ent := Node (Elmt);
13909 -- Get new entity, and associate old and new
13911 Next_Elmt (Elmt);
13912 NCT_Assoc.Set (Ent, Node (Elmt));
13914 if Is_Type (Ent) then
13915 declare
13916 Anode : constant Entity_Id :=
13917 Associated_Node_For_Itype (Ent);
13919 begin
13920 if Present (Anode) then
13922 -- Enter a link between the associated node of the
13923 -- old Itype and the new Itype, for updating later
13924 -- when node is copied.
13926 NCT_Itype_Assoc.Set (Anode, Node (Elmt));
13927 end if;
13928 end;
13929 end if;
13931 Next_Elmt (Elmt);
13932 end loop;
13934 NCT_Hash_Tables_Used := True;
13935 NCT_Hash_Table_Setup := True;
13936 end Build_NCT_Hash_Tables;
13938 ---------------------------------
13939 -- Copy_Elist_With_Replacement --
13940 ---------------------------------
13942 function Copy_Elist_With_Replacement
13943 (Old_Elist : Elist_Id) return Elist_Id
13945 M : Elmt_Id;
13946 New_Elist : Elist_Id;
13948 begin
13949 if No (Old_Elist) then
13950 return No_Elist;
13952 else
13953 New_Elist := New_Elmt_List;
13955 M := First_Elmt (Old_Elist);
13956 while Present (M) loop
13957 Append_Elmt (Copy_Node_With_Replacement (Node (M)), New_Elist);
13958 Next_Elmt (M);
13959 end loop;
13960 end if;
13962 return New_Elist;
13963 end Copy_Elist_With_Replacement;
13965 ---------------------------------
13966 -- Copy_Itype_With_Replacement --
13967 ---------------------------------
13969 -- This routine exactly parallels its phase one analog Visit_Itype,
13971 procedure Copy_Itype_With_Replacement (New_Itype : Entity_Id) is
13972 begin
13973 -- Translate Next_Entity, Scope and Etype fields, in case they
13974 -- reference entities that have been mapped into copies.
13976 Set_Next_Entity (New_Itype, Assoc (Next_Entity (New_Itype)));
13977 Set_Etype (New_Itype, Assoc (Etype (New_Itype)));
13979 if Present (New_Scope) then
13980 Set_Scope (New_Itype, New_Scope);
13981 else
13982 Set_Scope (New_Itype, Assoc (Scope (New_Itype)));
13983 end if;
13985 -- Copy referenced fields
13987 if Is_Discrete_Type (New_Itype) then
13988 Set_Scalar_Range (New_Itype,
13989 Copy_Node_With_Replacement (Scalar_Range (New_Itype)));
13991 elsif Has_Discriminants (Base_Type (New_Itype)) then
13992 Set_Discriminant_Constraint (New_Itype,
13993 Copy_Elist_With_Replacement
13994 (Discriminant_Constraint (New_Itype)));
13996 elsif Is_Array_Type (New_Itype) then
13997 if Present (First_Index (New_Itype)) then
13998 Set_First_Index (New_Itype,
13999 First (Copy_List_With_Replacement
14000 (List_Containing (First_Index (New_Itype)))));
14001 end if;
14003 if Is_Packed (New_Itype) then
14004 Set_Packed_Array_Impl_Type (New_Itype,
14005 Copy_Node_With_Replacement
14006 (Packed_Array_Impl_Type (New_Itype)));
14007 end if;
14008 end if;
14009 end Copy_Itype_With_Replacement;
14011 --------------------------------
14012 -- Copy_List_With_Replacement --
14013 --------------------------------
14015 function Copy_List_With_Replacement
14016 (Old_List : List_Id) return List_Id
14018 New_List : List_Id;
14019 E : Node_Id;
14021 begin
14022 if Old_List = No_List then
14023 return No_List;
14025 else
14026 New_List := Empty_List;
14028 E := First (Old_List);
14029 while Present (E) loop
14030 Append (Copy_Node_With_Replacement (E), New_List);
14031 Next (E);
14032 end loop;
14034 return New_List;
14035 end if;
14036 end Copy_List_With_Replacement;
14038 --------------------------------
14039 -- Copy_Node_With_Replacement --
14040 --------------------------------
14042 function Copy_Node_With_Replacement
14043 (Old_Node : Node_Id) return Node_Id
14045 New_Node : Node_Id;
14047 procedure Adjust_Named_Associations
14048 (Old_Node : Node_Id;
14049 New_Node : Node_Id);
14050 -- If a call node has named associations, these are chained through
14051 -- the First_Named_Actual, Next_Named_Actual links. These must be
14052 -- propagated separately to the new parameter list, because these
14053 -- are not syntactic fields.
14055 function Copy_Field_With_Replacement
14056 (Field : Union_Id) return Union_Id;
14057 -- Given Field, which is a field of Old_Node, return a copy of it
14058 -- if it is a syntactic field (i.e. its parent is Node), setting
14059 -- the parent of the copy to poit to New_Node. Otherwise returns
14060 -- the field (possibly mapped if it is an entity).
14062 -------------------------------
14063 -- Adjust_Named_Associations --
14064 -------------------------------
14066 procedure Adjust_Named_Associations
14067 (Old_Node : Node_Id;
14068 New_Node : Node_Id)
14070 Old_E : Node_Id;
14071 New_E : Node_Id;
14073 Old_Next : Node_Id;
14074 New_Next : Node_Id;
14076 begin
14077 Old_E := First (Parameter_Associations (Old_Node));
14078 New_E := First (Parameter_Associations (New_Node));
14079 while Present (Old_E) loop
14080 if Nkind (Old_E) = N_Parameter_Association
14081 and then Present (Next_Named_Actual (Old_E))
14082 then
14083 if First_Named_Actual (Old_Node)
14084 = Explicit_Actual_Parameter (Old_E)
14085 then
14086 Set_First_Named_Actual
14087 (New_Node, Explicit_Actual_Parameter (New_E));
14088 end if;
14090 -- Now scan parameter list from the beginning,to locate
14091 -- next named actual, which can be out of order.
14093 Old_Next := First (Parameter_Associations (Old_Node));
14094 New_Next := First (Parameter_Associations (New_Node));
14096 while Nkind (Old_Next) /= N_Parameter_Association
14097 or else Explicit_Actual_Parameter (Old_Next) /=
14098 Next_Named_Actual (Old_E)
14099 loop
14100 Next (Old_Next);
14101 Next (New_Next);
14102 end loop;
14104 Set_Next_Named_Actual
14105 (New_E, Explicit_Actual_Parameter (New_Next));
14106 end if;
14108 Next (Old_E);
14109 Next (New_E);
14110 end loop;
14111 end Adjust_Named_Associations;
14113 ---------------------------------
14114 -- Copy_Field_With_Replacement --
14115 ---------------------------------
14117 function Copy_Field_With_Replacement
14118 (Field : Union_Id) return Union_Id
14120 begin
14121 if Field = Union_Id (Empty) then
14122 return Field;
14124 elsif Field in Node_Range then
14125 declare
14126 Old_N : constant Node_Id := Node_Id (Field);
14127 New_N : Node_Id;
14129 begin
14130 -- If syntactic field, as indicated by the parent pointer
14131 -- being set, then copy the referenced node recursively.
14133 if Parent (Old_N) = Old_Node then
14134 New_N := Copy_Node_With_Replacement (Old_N);
14136 if New_N /= Old_N then
14137 Set_Parent (New_N, New_Node);
14138 end if;
14140 -- For semantic fields, update possible entity reference
14141 -- from the replacement map.
14143 else
14144 New_N := Assoc (Old_N);
14145 end if;
14147 return Union_Id (New_N);
14148 end;
14150 elsif Field in List_Range then
14151 declare
14152 Old_L : constant List_Id := List_Id (Field);
14153 New_L : List_Id;
14155 begin
14156 -- If syntactic field, as indicated by the parent pointer,
14157 -- then recursively copy the entire referenced list.
14159 if Parent (Old_L) = Old_Node then
14160 New_L := Copy_List_With_Replacement (Old_L);
14161 Set_Parent (New_L, New_Node);
14163 -- For semantic list, just returned unchanged
14165 else
14166 New_L := Old_L;
14167 end if;
14169 return Union_Id (New_L);
14170 end;
14172 -- Anything other than a list or a node is returned unchanged
14174 else
14175 return Field;
14176 end if;
14177 end Copy_Field_With_Replacement;
14179 -- Start of processing for Copy_Node_With_Replacement
14181 begin
14182 if Old_Node <= Empty_Or_Error then
14183 return Old_Node;
14185 elsif Has_Extension (Old_Node) then
14186 return Assoc (Old_Node);
14188 else
14189 New_Node := New_Copy (Old_Node);
14191 -- If the node we are copying is the associated node of a
14192 -- previously copied Itype, then adjust the associated node
14193 -- of the copy of that Itype accordingly.
14195 if Present (Actual_Map) then
14196 declare
14197 E : Elmt_Id;
14198 Ent : Entity_Id;
14200 begin
14201 -- Case of hash table used
14203 if NCT_Hash_Tables_Used then
14204 Ent := NCT_Itype_Assoc.Get (Old_Node);
14206 if Present (Ent) then
14207 Set_Associated_Node_For_Itype (Ent, New_Node);
14208 end if;
14210 -- Case of no hash table used
14212 else
14213 E := First_Elmt (Actual_Map);
14214 while Present (E) loop
14215 if Is_Itype (Node (E))
14216 and then
14217 Old_Node = Associated_Node_For_Itype (Node (E))
14218 then
14219 Set_Associated_Node_For_Itype
14220 (Node (Next_Elmt (E)), New_Node);
14221 end if;
14223 E := Next_Elmt (Next_Elmt (E));
14224 end loop;
14225 end if;
14226 end;
14227 end if;
14229 -- Recursively copy descendents
14231 Set_Field1
14232 (New_Node, Copy_Field_With_Replacement (Field1 (New_Node)));
14233 Set_Field2
14234 (New_Node, Copy_Field_With_Replacement (Field2 (New_Node)));
14235 Set_Field3
14236 (New_Node, Copy_Field_With_Replacement (Field3 (New_Node)));
14237 Set_Field4
14238 (New_Node, Copy_Field_With_Replacement (Field4 (New_Node)));
14239 Set_Field5
14240 (New_Node, Copy_Field_With_Replacement (Field5 (New_Node)));
14242 -- Adjust Sloc of new node if necessary
14244 if New_Sloc /= No_Location then
14245 Set_Sloc (New_Node, New_Sloc);
14247 -- If we adjust the Sloc, then we are essentially making
14248 -- a completely new node, so the Comes_From_Source flag
14249 -- should be reset to the proper default value.
14251 Nodes.Table (New_Node).Comes_From_Source :=
14252 Default_Node.Comes_From_Source;
14253 end if;
14255 -- If the node is call and has named associations,
14256 -- set the corresponding links in the copy.
14258 if (Nkind (Old_Node) = N_Function_Call
14259 or else Nkind (Old_Node) = N_Entry_Call_Statement
14260 or else
14261 Nkind (Old_Node) = N_Procedure_Call_Statement)
14262 and then Present (First_Named_Actual (Old_Node))
14263 then
14264 Adjust_Named_Associations (Old_Node, New_Node);
14265 end if;
14267 -- Reset First_Real_Statement for Handled_Sequence_Of_Statements.
14268 -- The replacement mechanism applies to entities, and is not used
14269 -- here. Eventually we may need a more general graph-copying
14270 -- routine. For now, do a sequential search to find desired node.
14272 if Nkind (Old_Node) = N_Handled_Sequence_Of_Statements
14273 and then Present (First_Real_Statement (Old_Node))
14274 then
14275 declare
14276 Old_F : constant Node_Id := First_Real_Statement (Old_Node);
14277 N1, N2 : Node_Id;
14279 begin
14280 N1 := First (Statements (Old_Node));
14281 N2 := First (Statements (New_Node));
14283 while N1 /= Old_F loop
14284 Next (N1);
14285 Next (N2);
14286 end loop;
14288 Set_First_Real_Statement (New_Node, N2);
14289 end;
14290 end if;
14291 end if;
14293 -- All done, return copied node
14295 return New_Node;
14296 end Copy_Node_With_Replacement;
14298 -----------------
14299 -- Visit_Elist --
14300 -----------------
14302 procedure Visit_Elist (E : Elist_Id) is
14303 Elmt : Elmt_Id;
14304 begin
14305 if Present (E) then
14306 Elmt := First_Elmt (E);
14308 while Elmt /= No_Elmt loop
14309 Visit_Node (Node (Elmt));
14310 Next_Elmt (Elmt);
14311 end loop;
14312 end if;
14313 end Visit_Elist;
14315 -----------------
14316 -- Visit_Field --
14317 -----------------
14319 procedure Visit_Field (F : Union_Id; N : Node_Id) is
14320 begin
14321 if F = Union_Id (Empty) then
14322 return;
14324 elsif F in Node_Range then
14326 -- Copy node if it is syntactic, i.e. its parent pointer is
14327 -- set to point to the field that referenced it (certain
14328 -- Itypes will also meet this criterion, which is fine, since
14329 -- these are clearly Itypes that do need to be copied, since
14330 -- we are copying their parent.)
14332 if Parent (Node_Id (F)) = N then
14333 Visit_Node (Node_Id (F));
14334 return;
14336 -- Another case, if we are pointing to an Itype, then we want
14337 -- to copy it if its associated node is somewhere in the tree
14338 -- being copied.
14340 -- Note: the exclusion of self-referential copies is just an
14341 -- optimization, since the search of the already copied list
14342 -- would catch it, but it is a common case (Etype pointing
14343 -- to itself for an Itype that is a base type).
14345 elsif Has_Extension (Node_Id (F))
14346 and then Is_Itype (Entity_Id (F))
14347 and then Node_Id (F) /= N
14348 then
14349 declare
14350 P : Node_Id;
14352 begin
14353 P := Associated_Node_For_Itype (Node_Id (F));
14354 while Present (P) loop
14355 if P = Source then
14356 Visit_Node (Node_Id (F));
14357 return;
14358 else
14359 P := Parent (P);
14360 end if;
14361 end loop;
14363 -- An Itype whose parent is not being copied definitely
14364 -- should NOT be copied, since it does not belong in any
14365 -- sense to the copied subtree.
14367 return;
14368 end;
14369 end if;
14371 elsif F in List_Range and then Parent (List_Id (F)) = N then
14372 Visit_List (List_Id (F));
14373 return;
14374 end if;
14375 end Visit_Field;
14377 -----------------
14378 -- Visit_Itype --
14379 -----------------
14381 procedure Visit_Itype (Old_Itype : Entity_Id) is
14382 New_Itype : Entity_Id;
14383 E : Elmt_Id;
14384 Ent : Entity_Id;
14386 begin
14387 -- Itypes that describe the designated type of access to subprograms
14388 -- have the structure of subprogram declarations, with signatures,
14389 -- etc. Either we duplicate the signatures completely, or choose to
14390 -- share such itypes, which is fine because their elaboration will
14391 -- have no side effects.
14393 if Ekind (Old_Itype) = E_Subprogram_Type then
14394 return;
14395 end if;
14397 New_Itype := New_Copy (Old_Itype);
14399 -- The new Itype has all the attributes of the old one, and
14400 -- we just copy the contents of the entity. However, the back-end
14401 -- needs different names for debugging purposes, so we create a
14402 -- new internal name for it in all cases.
14404 Set_Chars (New_Itype, New_Internal_Name ('T'));
14406 -- If our associated node is an entity that has already been copied,
14407 -- then set the associated node of the copy to point to the right
14408 -- copy. If we have copied an Itype that is itself the associated
14409 -- node of some previously copied Itype, then we set the right
14410 -- pointer in the other direction.
14412 if Present (Actual_Map) then
14414 -- Case of hash tables used
14416 if NCT_Hash_Tables_Used then
14418 Ent := NCT_Assoc.Get (Associated_Node_For_Itype (Old_Itype));
14420 if Present (Ent) then
14421 Set_Associated_Node_For_Itype (New_Itype, Ent);
14422 end if;
14424 Ent := NCT_Itype_Assoc.Get (Old_Itype);
14425 if Present (Ent) then
14426 Set_Associated_Node_For_Itype (Ent, New_Itype);
14428 -- If the hash table has no association for this Itype and
14429 -- its associated node, enter one now.
14431 else
14432 NCT_Itype_Assoc.Set
14433 (Associated_Node_For_Itype (Old_Itype), New_Itype);
14434 end if;
14436 -- Case of hash tables not used
14438 else
14439 E := First_Elmt (Actual_Map);
14440 while Present (E) loop
14441 if Associated_Node_For_Itype (Old_Itype) = Node (E) then
14442 Set_Associated_Node_For_Itype
14443 (New_Itype, Node (Next_Elmt (E)));
14444 end if;
14446 if Is_Type (Node (E))
14447 and then Old_Itype = Associated_Node_For_Itype (Node (E))
14448 then
14449 Set_Associated_Node_For_Itype
14450 (Node (Next_Elmt (E)), New_Itype);
14451 end if;
14453 E := Next_Elmt (Next_Elmt (E));
14454 end loop;
14455 end if;
14456 end if;
14458 if Present (Freeze_Node (New_Itype)) then
14459 Set_Is_Frozen (New_Itype, False);
14460 Set_Freeze_Node (New_Itype, Empty);
14461 end if;
14463 -- Add new association to map
14465 if No (Actual_Map) then
14466 Actual_Map := New_Elmt_List;
14467 end if;
14469 Append_Elmt (Old_Itype, Actual_Map);
14470 Append_Elmt (New_Itype, Actual_Map);
14472 if NCT_Hash_Tables_Used then
14473 NCT_Assoc.Set (Old_Itype, New_Itype);
14475 else
14476 NCT_Table_Entries := NCT_Table_Entries + 1;
14478 if NCT_Table_Entries > NCT_Hash_Threshold then
14479 Build_NCT_Hash_Tables;
14480 end if;
14481 end if;
14483 -- If a record subtype is simply copied, the entity list will be
14484 -- shared. Thus cloned_Subtype must be set to indicate the sharing.
14486 if Ekind_In (Old_Itype, E_Record_Subtype, E_Class_Wide_Subtype) then
14487 Set_Cloned_Subtype (New_Itype, Old_Itype);
14488 end if;
14490 -- Visit descendents that eventually get copied
14492 Visit_Field (Union_Id (Etype (Old_Itype)), Old_Itype);
14494 if Is_Discrete_Type (Old_Itype) then
14495 Visit_Field (Union_Id (Scalar_Range (Old_Itype)), Old_Itype);
14497 elsif Has_Discriminants (Base_Type (Old_Itype)) then
14498 -- ??? This should involve call to Visit_Field
14499 Visit_Elist (Discriminant_Constraint (Old_Itype));
14501 elsif Is_Array_Type (Old_Itype) then
14502 if Present (First_Index (Old_Itype)) then
14503 Visit_Field (Union_Id (List_Containing
14504 (First_Index (Old_Itype))),
14505 Old_Itype);
14506 end if;
14508 if Is_Packed (Old_Itype) then
14509 Visit_Field (Union_Id (Packed_Array_Impl_Type (Old_Itype)),
14510 Old_Itype);
14511 end if;
14512 end if;
14513 end Visit_Itype;
14515 ----------------
14516 -- Visit_List --
14517 ----------------
14519 procedure Visit_List (L : List_Id) is
14520 N : Node_Id;
14521 begin
14522 if L /= No_List then
14523 N := First (L);
14525 while Present (N) loop
14526 Visit_Node (N);
14527 Next (N);
14528 end loop;
14529 end if;
14530 end Visit_List;
14532 ----------------
14533 -- Visit_Node --
14534 ----------------
14536 procedure Visit_Node (N : Node_Or_Entity_Id) is
14538 -- Start of processing for Visit_Node
14540 begin
14541 -- Handle case of an Itype, which must be copied
14543 if Has_Extension (N) and then Is_Itype (N) then
14545 -- Nothing to do if already in the list. This can happen with an
14546 -- Itype entity that appears more than once in the tree.
14547 -- Note that we do not want to visit descendents in this case.
14549 -- Test for already in list when hash table is used
14551 if NCT_Hash_Tables_Used then
14552 if Present (NCT_Assoc.Get (Entity_Id (N))) then
14553 return;
14554 end if;
14556 -- Test for already in list when hash table not used
14558 else
14559 declare
14560 E : Elmt_Id;
14561 begin
14562 if Present (Actual_Map) then
14563 E := First_Elmt (Actual_Map);
14564 while Present (E) loop
14565 if Node (E) = N then
14566 return;
14567 else
14568 E := Next_Elmt (Next_Elmt (E));
14569 end if;
14570 end loop;
14571 end if;
14572 end;
14573 end if;
14575 Visit_Itype (N);
14576 end if;
14578 -- Visit descendents
14580 Visit_Field (Field1 (N), N);
14581 Visit_Field (Field2 (N), N);
14582 Visit_Field (Field3 (N), N);
14583 Visit_Field (Field4 (N), N);
14584 Visit_Field (Field5 (N), N);
14585 end Visit_Node;
14587 -- Start of processing for New_Copy_Tree
14589 begin
14590 Actual_Map := Map;
14592 -- See if we should use hash table
14594 if No (Actual_Map) then
14595 NCT_Hash_Tables_Used := False;
14597 else
14598 declare
14599 Elmt : Elmt_Id;
14601 begin
14602 NCT_Table_Entries := 0;
14604 Elmt := First_Elmt (Actual_Map);
14605 while Present (Elmt) loop
14606 NCT_Table_Entries := NCT_Table_Entries + 1;
14607 Next_Elmt (Elmt);
14608 Next_Elmt (Elmt);
14609 end loop;
14611 if NCT_Table_Entries > NCT_Hash_Threshold then
14612 Build_NCT_Hash_Tables;
14613 else
14614 NCT_Hash_Tables_Used := False;
14615 end if;
14616 end;
14617 end if;
14619 -- Hash table set up if required, now start phase one by visiting
14620 -- top node (we will recursively visit the descendents).
14622 Visit_Node (Source);
14624 -- Now the second phase of the copy can start. First we process
14625 -- all the mapped entities, copying their descendents.
14627 if Present (Actual_Map) then
14628 declare
14629 Elmt : Elmt_Id;
14630 New_Itype : Entity_Id;
14631 begin
14632 Elmt := First_Elmt (Actual_Map);
14633 while Present (Elmt) loop
14634 Next_Elmt (Elmt);
14635 New_Itype := Node (Elmt);
14636 Copy_Itype_With_Replacement (New_Itype);
14637 Next_Elmt (Elmt);
14638 end loop;
14639 end;
14640 end if;
14642 -- Now we can copy the actual tree
14644 return Copy_Node_With_Replacement (Source);
14645 end New_Copy_Tree;
14647 -------------------------
14648 -- New_External_Entity --
14649 -------------------------
14651 function New_External_Entity
14652 (Kind : Entity_Kind;
14653 Scope_Id : Entity_Id;
14654 Sloc_Value : Source_Ptr;
14655 Related_Id : Entity_Id;
14656 Suffix : Character;
14657 Suffix_Index : Nat := 0;
14658 Prefix : Character := ' ') return Entity_Id
14660 N : constant Entity_Id :=
14661 Make_Defining_Identifier (Sloc_Value,
14662 New_External_Name
14663 (Chars (Related_Id), Suffix, Suffix_Index, Prefix));
14665 begin
14666 Set_Ekind (N, Kind);
14667 Set_Is_Internal (N, True);
14668 Append_Entity (N, Scope_Id);
14669 Set_Public_Status (N);
14671 if Kind in Type_Kind then
14672 Init_Size_Align (N);
14673 end if;
14675 return N;
14676 end New_External_Entity;
14678 -------------------------
14679 -- New_Internal_Entity --
14680 -------------------------
14682 function New_Internal_Entity
14683 (Kind : Entity_Kind;
14684 Scope_Id : Entity_Id;
14685 Sloc_Value : Source_Ptr;
14686 Id_Char : Character) return Entity_Id
14688 N : constant Entity_Id := Make_Temporary (Sloc_Value, Id_Char);
14690 begin
14691 Set_Ekind (N, Kind);
14692 Set_Is_Internal (N, True);
14693 Append_Entity (N, Scope_Id);
14695 if Kind in Type_Kind then
14696 Init_Size_Align (N);
14697 end if;
14699 return N;
14700 end New_Internal_Entity;
14702 -----------------
14703 -- Next_Actual --
14704 -----------------
14706 function Next_Actual (Actual_Id : Node_Id) return Node_Id is
14707 N : Node_Id;
14709 begin
14710 -- If we are pointing at a positional parameter, it is a member of a
14711 -- node list (the list of parameters), and the next parameter is the
14712 -- next node on the list, unless we hit a parameter association, then
14713 -- we shift to using the chain whose head is the First_Named_Actual in
14714 -- the parent, and then is threaded using the Next_Named_Actual of the
14715 -- Parameter_Association. All this fiddling is because the original node
14716 -- list is in the textual call order, and what we need is the
14717 -- declaration order.
14719 if Is_List_Member (Actual_Id) then
14720 N := Next (Actual_Id);
14722 if Nkind (N) = N_Parameter_Association then
14723 return First_Named_Actual (Parent (Actual_Id));
14724 else
14725 return N;
14726 end if;
14728 else
14729 return Next_Named_Actual (Parent (Actual_Id));
14730 end if;
14731 end Next_Actual;
14733 procedure Next_Actual (Actual_Id : in out Node_Id) is
14734 begin
14735 Actual_Id := Next_Actual (Actual_Id);
14736 end Next_Actual;
14738 -----------------------
14739 -- Normalize_Actuals --
14740 -----------------------
14742 -- Chain actuals according to formals of subprogram. If there are no named
14743 -- associations, the chain is simply the list of Parameter Associations,
14744 -- since the order is the same as the declaration order. If there are named
14745 -- associations, then the First_Named_Actual field in the N_Function_Call
14746 -- or N_Procedure_Call_Statement node points to the Parameter_Association
14747 -- node for the parameter that comes first in declaration order. The
14748 -- remaining named parameters are then chained in declaration order using
14749 -- Next_Named_Actual.
14751 -- This routine also verifies that the number of actuals is compatible with
14752 -- the number and default values of formals, but performs no type checking
14753 -- (type checking is done by the caller).
14755 -- If the matching succeeds, Success is set to True and the caller proceeds
14756 -- with type-checking. If the match is unsuccessful, then Success is set to
14757 -- False, and the caller attempts a different interpretation, if there is
14758 -- one.
14760 -- If the flag Report is on, the call is not overloaded, and a failure to
14761 -- match can be reported here, rather than in the caller.
14763 procedure Normalize_Actuals
14764 (N : Node_Id;
14765 S : Entity_Id;
14766 Report : Boolean;
14767 Success : out Boolean)
14769 Actuals : constant List_Id := Parameter_Associations (N);
14770 Actual : Node_Id := Empty;
14771 Formal : Entity_Id;
14772 Last : Node_Id := Empty;
14773 First_Named : Node_Id := Empty;
14774 Found : Boolean;
14776 Formals_To_Match : Integer := 0;
14777 Actuals_To_Match : Integer := 0;
14779 procedure Chain (A : Node_Id);
14780 -- Add named actual at the proper place in the list, using the
14781 -- Next_Named_Actual link.
14783 function Reporting return Boolean;
14784 -- Determines if an error is to be reported. To report an error, we
14785 -- need Report to be True, and also we do not report errors caused
14786 -- by calls to init procs that occur within other init procs. Such
14787 -- errors must always be cascaded errors, since if all the types are
14788 -- declared correctly, the compiler will certainly build decent calls.
14790 -----------
14791 -- Chain --
14792 -----------
14794 procedure Chain (A : Node_Id) is
14795 begin
14796 if No (Last) then
14798 -- Call node points to first actual in list
14800 Set_First_Named_Actual (N, Explicit_Actual_Parameter (A));
14802 else
14803 Set_Next_Named_Actual (Last, Explicit_Actual_Parameter (A));
14804 end if;
14806 Last := A;
14807 Set_Next_Named_Actual (Last, Empty);
14808 end Chain;
14810 ---------------
14811 -- Reporting --
14812 ---------------
14814 function Reporting return Boolean is
14815 begin
14816 if not Report then
14817 return False;
14819 elsif not Within_Init_Proc then
14820 return True;
14822 elsif Is_Init_Proc (Entity (Name (N))) then
14823 return False;
14825 else
14826 return True;
14827 end if;
14828 end Reporting;
14830 -- Start of processing for Normalize_Actuals
14832 begin
14833 if Is_Access_Type (S) then
14835 -- The name in the call is a function call that returns an access
14836 -- to subprogram. The designated type has the list of formals.
14838 Formal := First_Formal (Designated_Type (S));
14839 else
14840 Formal := First_Formal (S);
14841 end if;
14843 while Present (Formal) loop
14844 Formals_To_Match := Formals_To_Match + 1;
14845 Next_Formal (Formal);
14846 end loop;
14848 -- Find if there is a named association, and verify that no positional
14849 -- associations appear after named ones.
14851 if Present (Actuals) then
14852 Actual := First (Actuals);
14853 end if;
14855 while Present (Actual)
14856 and then Nkind (Actual) /= N_Parameter_Association
14857 loop
14858 Actuals_To_Match := Actuals_To_Match + 1;
14859 Next (Actual);
14860 end loop;
14862 if No (Actual) and Actuals_To_Match = Formals_To_Match then
14864 -- Most common case: positional notation, no defaults
14866 Success := True;
14867 return;
14869 elsif Actuals_To_Match > Formals_To_Match then
14871 -- Too many actuals: will not work
14873 if Reporting then
14874 if Is_Entity_Name (Name (N)) then
14875 Error_Msg_N ("too many arguments in call to&", Name (N));
14876 else
14877 Error_Msg_N ("too many arguments in call", N);
14878 end if;
14879 end if;
14881 Success := False;
14882 return;
14883 end if;
14885 First_Named := Actual;
14887 while Present (Actual) loop
14888 if Nkind (Actual) /= N_Parameter_Association then
14889 Error_Msg_N
14890 ("positional parameters not allowed after named ones", Actual);
14891 Success := False;
14892 return;
14894 else
14895 Actuals_To_Match := Actuals_To_Match + 1;
14896 end if;
14898 Next (Actual);
14899 end loop;
14901 if Present (Actuals) then
14902 Actual := First (Actuals);
14903 end if;
14905 Formal := First_Formal (S);
14906 while Present (Formal) loop
14908 -- Match the formals in order. If the corresponding actual is
14909 -- positional, nothing to do. Else scan the list of named actuals
14910 -- to find the one with the right name.
14912 if Present (Actual)
14913 and then Nkind (Actual) /= N_Parameter_Association
14914 then
14915 Next (Actual);
14916 Actuals_To_Match := Actuals_To_Match - 1;
14917 Formals_To_Match := Formals_To_Match - 1;
14919 else
14920 -- For named parameters, search the list of actuals to find
14921 -- one that matches the next formal name.
14923 Actual := First_Named;
14924 Found := False;
14925 while Present (Actual) loop
14926 if Chars (Selector_Name (Actual)) = Chars (Formal) then
14927 Found := True;
14928 Chain (Actual);
14929 Actuals_To_Match := Actuals_To_Match - 1;
14930 Formals_To_Match := Formals_To_Match - 1;
14931 exit;
14932 end if;
14934 Next (Actual);
14935 end loop;
14937 if not Found then
14938 if Ekind (Formal) /= E_In_Parameter
14939 or else No (Default_Value (Formal))
14940 then
14941 if Reporting then
14942 if (Comes_From_Source (S)
14943 or else Sloc (S) = Standard_Location)
14944 and then Is_Overloadable (S)
14945 then
14946 if No (Actuals)
14947 and then
14948 Nkind_In (Parent (N), N_Procedure_Call_Statement,
14949 N_Function_Call,
14950 N_Parameter_Association)
14951 and then Ekind (S) /= E_Function
14952 then
14953 Set_Etype (N, Etype (S));
14955 else
14956 Error_Msg_Name_1 := Chars (S);
14957 Error_Msg_Sloc := Sloc (S);
14958 Error_Msg_NE
14959 ("missing argument for parameter & "
14960 & "in call to % declared #", N, Formal);
14961 end if;
14963 elsif Is_Overloadable (S) then
14964 Error_Msg_Name_1 := Chars (S);
14966 -- Point to type derivation that generated the
14967 -- operation.
14969 Error_Msg_Sloc := Sloc (Parent (S));
14971 Error_Msg_NE
14972 ("missing argument for parameter & "
14973 & "in call to % (inherited) #", N, Formal);
14975 else
14976 Error_Msg_NE
14977 ("missing argument for parameter &", N, Formal);
14978 end if;
14979 end if;
14981 Success := False;
14982 return;
14984 else
14985 Formals_To_Match := Formals_To_Match - 1;
14986 end if;
14987 end if;
14988 end if;
14990 Next_Formal (Formal);
14991 end loop;
14993 if Formals_To_Match = 0 and then Actuals_To_Match = 0 then
14994 Success := True;
14995 return;
14997 else
14998 if Reporting then
15000 -- Find some superfluous named actual that did not get
15001 -- attached to the list of associations.
15003 Actual := First (Actuals);
15004 while Present (Actual) loop
15005 if Nkind (Actual) = N_Parameter_Association
15006 and then Actual /= Last
15007 and then No (Next_Named_Actual (Actual))
15008 then
15009 Error_Msg_N ("unmatched actual & in call",
15010 Selector_Name (Actual));
15011 exit;
15012 end if;
15014 Next (Actual);
15015 end loop;
15016 end if;
15018 Success := False;
15019 return;
15020 end if;
15021 end Normalize_Actuals;
15023 --------------------------------
15024 -- Note_Possible_Modification --
15025 --------------------------------
15027 procedure Note_Possible_Modification (N : Node_Id; Sure : Boolean) is
15028 Modification_Comes_From_Source : constant Boolean :=
15029 Comes_From_Source (Parent (N));
15031 Ent : Entity_Id;
15032 Exp : Node_Id;
15034 begin
15035 -- Loop to find referenced entity, if there is one
15037 Exp := N;
15038 loop
15039 Ent := Empty;
15041 if Is_Entity_Name (Exp) then
15042 Ent := Entity (Exp);
15044 -- If the entity is missing, it is an undeclared identifier,
15045 -- and there is nothing to annotate.
15047 if No (Ent) then
15048 return;
15049 end if;
15051 elsif Nkind (Exp) = N_Explicit_Dereference then
15052 declare
15053 P : constant Node_Id := Prefix (Exp);
15055 begin
15056 -- In formal verification mode, keep track of all reads and
15057 -- writes through explicit dereferences.
15059 if GNATprove_Mode then
15060 SPARK_Specific.Generate_Dereference (N, 'm');
15061 end if;
15063 if Nkind (P) = N_Selected_Component
15064 and then Present (Entry_Formal (Entity (Selector_Name (P))))
15065 then
15066 -- Case of a reference to an entry formal
15068 Ent := Entry_Formal (Entity (Selector_Name (P)));
15070 elsif Nkind (P) = N_Identifier
15071 and then Nkind (Parent (Entity (P))) = N_Object_Declaration
15072 and then Present (Expression (Parent (Entity (P))))
15073 and then Nkind (Expression (Parent (Entity (P)))) =
15074 N_Reference
15075 then
15076 -- Case of a reference to a value on which side effects have
15077 -- been removed.
15079 Exp := Prefix (Expression (Parent (Entity (P))));
15080 goto Continue;
15082 else
15083 return;
15084 end if;
15085 end;
15087 elsif Nkind_In (Exp, N_Type_Conversion,
15088 N_Unchecked_Type_Conversion)
15089 then
15090 Exp := Expression (Exp);
15091 goto Continue;
15093 elsif Nkind_In (Exp, N_Slice,
15094 N_Indexed_Component,
15095 N_Selected_Component)
15096 then
15097 -- Special check, if the prefix is an access type, then return
15098 -- since we are modifying the thing pointed to, not the prefix.
15099 -- When we are expanding, most usually the prefix is replaced
15100 -- by an explicit dereference, and this test is not needed, but
15101 -- in some cases (notably -gnatc mode and generics) when we do
15102 -- not do full expansion, we need this special test.
15104 if Is_Access_Type (Etype (Prefix (Exp))) then
15105 return;
15107 -- Otherwise go to prefix and keep going
15109 else
15110 Exp := Prefix (Exp);
15111 goto Continue;
15112 end if;
15114 -- All other cases, not a modification
15116 else
15117 return;
15118 end if;
15120 -- Now look for entity being referenced
15122 if Present (Ent) then
15123 if Is_Object (Ent) then
15124 if Comes_From_Source (Exp)
15125 or else Modification_Comes_From_Source
15126 then
15127 -- Give warning if pragma unmodified given and we are
15128 -- sure this is a modification.
15130 if Has_Pragma_Unmodified (Ent) and then Sure then
15131 Error_Msg_NE ("??pragma Unmodified given for &!", N, Ent);
15132 end if;
15134 Set_Never_Set_In_Source (Ent, False);
15135 end if;
15137 Set_Is_True_Constant (Ent, False);
15138 Set_Current_Value (Ent, Empty);
15139 Set_Is_Known_Null (Ent, False);
15141 if not Can_Never_Be_Null (Ent) then
15142 Set_Is_Known_Non_Null (Ent, False);
15143 end if;
15145 -- Follow renaming chain
15147 if (Ekind (Ent) = E_Variable or else Ekind (Ent) = E_Constant)
15148 and then Present (Renamed_Object (Ent))
15149 then
15150 Exp := Renamed_Object (Ent);
15152 -- If the entity is the loop variable in an iteration over
15153 -- a container, retrieve container expression to indicate
15154 -- possible modification.
15156 if Present (Related_Expression (Ent))
15157 and then Nkind (Parent (Related_Expression (Ent))) =
15158 N_Iterator_Specification
15159 then
15160 Exp := Original_Node (Related_Expression (Ent));
15161 end if;
15163 goto Continue;
15165 -- The expression may be the renaming of a subcomponent of an
15166 -- array or container. The assignment to the subcomponent is
15167 -- a modification of the container.
15169 elsif Comes_From_Source (Original_Node (Exp))
15170 and then Nkind_In (Original_Node (Exp), N_Selected_Component,
15171 N_Indexed_Component)
15172 then
15173 Exp := Prefix (Original_Node (Exp));
15174 goto Continue;
15175 end if;
15177 -- Generate a reference only if the assignment comes from
15178 -- source. This excludes, for example, calls to a dispatching
15179 -- assignment operation when the left-hand side is tagged. In
15180 -- GNATprove mode, we need those references also on generated
15181 -- code, as these are used to compute the local effects of
15182 -- subprograms.
15184 if Modification_Comes_From_Source or GNATprove_Mode then
15185 Generate_Reference (Ent, Exp, 'm');
15187 -- If the target of the assignment is the bound variable
15188 -- in an iterator, indicate that the corresponding array
15189 -- or container is also modified.
15191 if Ada_Version >= Ada_2012
15192 and then Nkind (Parent (Ent)) = N_Iterator_Specification
15193 then
15194 declare
15195 Domain : constant Node_Id := Name (Parent (Ent));
15197 begin
15198 -- TBD : in the full version of the construct, the
15199 -- domain of iteration can be given by an expression.
15201 if Is_Entity_Name (Domain) then
15202 Generate_Reference (Entity (Domain), Exp, 'm');
15203 Set_Is_True_Constant (Entity (Domain), False);
15204 Set_Never_Set_In_Source (Entity (Domain), False);
15205 end if;
15206 end;
15207 end if;
15208 end if;
15210 Check_Nested_Access (N, Ent);
15211 end if;
15213 Kill_Checks (Ent);
15215 -- If we are sure this is a modification from source, and we know
15216 -- this modifies a constant, then give an appropriate warning.
15218 if Overlays_Constant (Ent)
15219 and then (Modification_Comes_From_Source and Sure)
15220 then
15221 declare
15222 A : constant Node_Id := Address_Clause (Ent);
15223 begin
15224 if Present (A) then
15225 declare
15226 Exp : constant Node_Id := Expression (A);
15227 begin
15228 if Nkind (Exp) = N_Attribute_Reference
15229 and then Attribute_Name (Exp) = Name_Address
15230 and then Is_Entity_Name (Prefix (Exp))
15231 then
15232 Error_Msg_Sloc := Sloc (A);
15233 Error_Msg_NE
15234 ("constant& may be modified via address "
15235 & "clause#??", N, Entity (Prefix (Exp)));
15236 end if;
15237 end;
15238 end if;
15239 end;
15240 end if;
15242 return;
15243 end if;
15245 <<Continue>>
15246 null;
15247 end loop;
15248 end Note_Possible_Modification;
15250 -------------------------
15251 -- Object_Access_Level --
15252 -------------------------
15254 -- Returns the static accessibility level of the view denoted by Obj. Note
15255 -- that the value returned is the result of a call to Scope_Depth. Only
15256 -- scope depths associated with dynamic scopes can actually be returned.
15257 -- Since only relative levels matter for accessibility checking, the fact
15258 -- that the distance between successive levels of accessibility is not
15259 -- always one is immaterial (invariant: if level(E2) is deeper than
15260 -- level(E1), then Scope_Depth(E1) < Scope_Depth(E2)).
15262 function Object_Access_Level (Obj : Node_Id) return Uint is
15263 function Is_Interface_Conversion (N : Node_Id) return Boolean;
15264 -- Determine whether N is a construct of the form
15265 -- Some_Type (Operand._tag'Address)
15266 -- This construct appears in the context of dispatching calls.
15268 function Reference_To (Obj : Node_Id) return Node_Id;
15269 -- An explicit dereference is created when removing side-effects from
15270 -- expressions for constraint checking purposes. In this case a local
15271 -- access type is created for it. The correct access level is that of
15272 -- the original source node. We detect this case by noting that the
15273 -- prefix of the dereference is created by an object declaration whose
15274 -- initial expression is a reference.
15276 -----------------------------
15277 -- Is_Interface_Conversion --
15278 -----------------------------
15280 function Is_Interface_Conversion (N : Node_Id) return Boolean is
15281 begin
15282 return Nkind (N) = N_Unchecked_Type_Conversion
15283 and then Nkind (Expression (N)) = N_Attribute_Reference
15284 and then Attribute_Name (Expression (N)) = Name_Address;
15285 end Is_Interface_Conversion;
15287 ------------------
15288 -- Reference_To --
15289 ------------------
15291 function Reference_To (Obj : Node_Id) return Node_Id is
15292 Pref : constant Node_Id := Prefix (Obj);
15293 begin
15294 if Is_Entity_Name (Pref)
15295 and then Nkind (Parent (Entity (Pref))) = N_Object_Declaration
15296 and then Present (Expression (Parent (Entity (Pref))))
15297 and then Nkind (Expression (Parent (Entity (Pref)))) = N_Reference
15298 then
15299 return (Prefix (Expression (Parent (Entity (Pref)))));
15300 else
15301 return Empty;
15302 end if;
15303 end Reference_To;
15305 -- Local variables
15307 E : Entity_Id;
15309 -- Start of processing for Object_Access_Level
15311 begin
15312 if Nkind (Obj) = N_Defining_Identifier
15313 or else Is_Entity_Name (Obj)
15314 then
15315 if Nkind (Obj) = N_Defining_Identifier then
15316 E := Obj;
15317 else
15318 E := Entity (Obj);
15319 end if;
15321 if Is_Prival (E) then
15322 E := Prival_Link (E);
15323 end if;
15325 -- If E is a type then it denotes a current instance. For this case
15326 -- we add one to the normal accessibility level of the type to ensure
15327 -- that current instances are treated as always being deeper than
15328 -- than the level of any visible named access type (see 3.10.2(21)).
15330 if Is_Type (E) then
15331 return Type_Access_Level (E) + 1;
15333 elsif Present (Renamed_Object (E)) then
15334 return Object_Access_Level (Renamed_Object (E));
15336 -- Similarly, if E is a component of the current instance of a
15337 -- protected type, any instance of it is assumed to be at a deeper
15338 -- level than the type. For a protected object (whose type is an
15339 -- anonymous protected type) its components are at the same level
15340 -- as the type itself.
15342 elsif not Is_Overloadable (E)
15343 and then Ekind (Scope (E)) = E_Protected_Type
15344 and then Comes_From_Source (Scope (E))
15345 then
15346 return Type_Access_Level (Scope (E)) + 1;
15348 else
15349 -- Aliased formals take their access level from the point of call.
15350 -- This is smaller than the level of the subprogram itself.
15352 if Is_Formal (E) and then Is_Aliased (E) then
15353 return Type_Access_Level (Etype (E));
15355 else
15356 return Scope_Depth (Enclosing_Dynamic_Scope (E));
15357 end if;
15358 end if;
15360 elsif Nkind (Obj) = N_Selected_Component then
15361 if Is_Access_Type (Etype (Prefix (Obj))) then
15362 return Type_Access_Level (Etype (Prefix (Obj)));
15363 else
15364 return Object_Access_Level (Prefix (Obj));
15365 end if;
15367 elsif Nkind (Obj) = N_Indexed_Component then
15368 if Is_Access_Type (Etype (Prefix (Obj))) then
15369 return Type_Access_Level (Etype (Prefix (Obj)));
15370 else
15371 return Object_Access_Level (Prefix (Obj));
15372 end if;
15374 elsif Nkind (Obj) = N_Explicit_Dereference then
15376 -- If the prefix is a selected access discriminant then we make a
15377 -- recursive call on the prefix, which will in turn check the level
15378 -- of the prefix object of the selected discriminant.
15380 -- In Ada 2012, if the discriminant has implicit dereference and
15381 -- the context is a selected component, treat this as an object of
15382 -- unknown scope (see below). This is necessary in compile-only mode;
15383 -- otherwise expansion will already have transformed the prefix into
15384 -- a temporary.
15386 if Nkind (Prefix (Obj)) = N_Selected_Component
15387 and then Ekind (Etype (Prefix (Obj))) = E_Anonymous_Access_Type
15388 and then
15389 Ekind (Entity (Selector_Name (Prefix (Obj)))) = E_Discriminant
15390 and then
15391 (not Has_Implicit_Dereference
15392 (Entity (Selector_Name (Prefix (Obj))))
15393 or else Nkind (Parent (Obj)) /= N_Selected_Component)
15394 then
15395 return Object_Access_Level (Prefix (Obj));
15397 -- Detect an interface conversion in the context of a dispatching
15398 -- call. Use the original form of the conversion to find the access
15399 -- level of the operand.
15401 elsif Is_Interface (Etype (Obj))
15402 and then Is_Interface_Conversion (Prefix (Obj))
15403 and then Nkind (Original_Node (Obj)) = N_Type_Conversion
15404 then
15405 return Object_Access_Level (Original_Node (Obj));
15407 elsif not Comes_From_Source (Obj) then
15408 declare
15409 Ref : constant Node_Id := Reference_To (Obj);
15410 begin
15411 if Present (Ref) then
15412 return Object_Access_Level (Ref);
15413 else
15414 return Type_Access_Level (Etype (Prefix (Obj)));
15415 end if;
15416 end;
15418 else
15419 return Type_Access_Level (Etype (Prefix (Obj)));
15420 end if;
15422 elsif Nkind_In (Obj, N_Type_Conversion, N_Unchecked_Type_Conversion) then
15423 return Object_Access_Level (Expression (Obj));
15425 elsif Nkind (Obj) = N_Function_Call then
15427 -- Function results are objects, so we get either the access level of
15428 -- the function or, in the case of an indirect call, the level of the
15429 -- access-to-subprogram type. (This code is used for Ada 95, but it
15430 -- looks wrong, because it seems that we should be checking the level
15431 -- of the call itself, even for Ada 95. However, using the Ada 2005
15432 -- version of the code causes regressions in several tests that are
15433 -- compiled with -gnat95. ???)
15435 if Ada_Version < Ada_2005 then
15436 if Is_Entity_Name (Name (Obj)) then
15437 return Subprogram_Access_Level (Entity (Name (Obj)));
15438 else
15439 return Type_Access_Level (Etype (Prefix (Name (Obj))));
15440 end if;
15442 -- For Ada 2005, the level of the result object of a function call is
15443 -- defined to be the level of the call's innermost enclosing master.
15444 -- We determine that by querying the depth of the innermost enclosing
15445 -- dynamic scope.
15447 else
15448 Return_Master_Scope_Depth_Of_Call : declare
15450 function Innermost_Master_Scope_Depth
15451 (N : Node_Id) return Uint;
15452 -- Returns the scope depth of the given node's innermost
15453 -- enclosing dynamic scope (effectively the accessibility
15454 -- level of the innermost enclosing master).
15456 ----------------------------------
15457 -- Innermost_Master_Scope_Depth --
15458 ----------------------------------
15460 function Innermost_Master_Scope_Depth
15461 (N : Node_Id) return Uint
15463 Node_Par : Node_Id := Parent (N);
15465 begin
15466 -- Locate the nearest enclosing node (by traversing Parents)
15467 -- that Defining_Entity can be applied to, and return the
15468 -- depth of that entity's nearest enclosing dynamic scope.
15470 while Present (Node_Par) loop
15471 case Nkind (Node_Par) is
15472 when N_Component_Declaration |
15473 N_Entry_Declaration |
15474 N_Formal_Object_Declaration |
15475 N_Formal_Type_Declaration |
15476 N_Full_Type_Declaration |
15477 N_Incomplete_Type_Declaration |
15478 N_Loop_Parameter_Specification |
15479 N_Object_Declaration |
15480 N_Protected_Type_Declaration |
15481 N_Private_Extension_Declaration |
15482 N_Private_Type_Declaration |
15483 N_Subtype_Declaration |
15484 N_Function_Specification |
15485 N_Procedure_Specification |
15486 N_Task_Type_Declaration |
15487 N_Body_Stub |
15488 N_Generic_Instantiation |
15489 N_Proper_Body |
15490 N_Implicit_Label_Declaration |
15491 N_Package_Declaration |
15492 N_Single_Task_Declaration |
15493 N_Subprogram_Declaration |
15494 N_Generic_Declaration |
15495 N_Renaming_Declaration |
15496 N_Block_Statement |
15497 N_Formal_Subprogram_Declaration |
15498 N_Abstract_Subprogram_Declaration |
15499 N_Entry_Body |
15500 N_Exception_Declaration |
15501 N_Formal_Package_Declaration |
15502 N_Number_Declaration |
15503 N_Package_Specification |
15504 N_Parameter_Specification |
15505 N_Single_Protected_Declaration |
15506 N_Subunit =>
15508 return Scope_Depth
15509 (Nearest_Dynamic_Scope
15510 (Defining_Entity (Node_Par)));
15512 when others =>
15513 null;
15514 end case;
15516 Node_Par := Parent (Node_Par);
15517 end loop;
15519 pragma Assert (False);
15521 -- Should never reach the following return
15523 return Scope_Depth (Current_Scope) + 1;
15524 end Innermost_Master_Scope_Depth;
15526 -- Start of processing for Return_Master_Scope_Depth_Of_Call
15528 begin
15529 return Innermost_Master_Scope_Depth (Obj);
15530 end Return_Master_Scope_Depth_Of_Call;
15531 end if;
15533 -- For convenience we handle qualified expressions, even though they
15534 -- aren't technically object names.
15536 elsif Nkind (Obj) = N_Qualified_Expression then
15537 return Object_Access_Level (Expression (Obj));
15539 -- Ditto for aggregates. They have the level of the temporary that
15540 -- will hold their value.
15542 elsif Nkind (Obj) = N_Aggregate then
15543 return Object_Access_Level (Current_Scope);
15545 -- Otherwise return the scope level of Standard. (If there are cases
15546 -- that fall through to this point they will be treated as having
15547 -- global accessibility for now. ???)
15549 else
15550 return Scope_Depth (Standard_Standard);
15551 end if;
15552 end Object_Access_Level;
15554 ---------------------------------
15555 -- Original_Aspect_Pragma_Name --
15556 ---------------------------------
15558 function Original_Aspect_Pragma_Name (N : Node_Id) return Name_Id is
15559 Item : Node_Id;
15560 Item_Nam : Name_Id;
15562 begin
15563 pragma Assert (Nkind_In (N, N_Aspect_Specification, N_Pragma));
15565 Item := N;
15567 -- The pragma was generated to emulate an aspect, use the original
15568 -- aspect specification.
15570 if Nkind (Item) = N_Pragma and then From_Aspect_Specification (Item) then
15571 Item := Corresponding_Aspect (Item);
15572 end if;
15574 -- Retrieve the name of the aspect/pragma. Note that Pre, Pre_Class,
15575 -- Post and Post_Class rewrite their pragma identifier to preserve the
15576 -- original name.
15577 -- ??? this is kludgey
15579 if Nkind (Item) = N_Pragma then
15580 Item_Nam := Chars (Original_Node (Pragma_Identifier (Item)));
15582 else
15583 pragma Assert (Nkind (Item) = N_Aspect_Specification);
15584 Item_Nam := Chars (Identifier (Item));
15585 end if;
15587 -- Deal with 'Class by converting the name to its _XXX form
15589 if Class_Present (Item) then
15590 if Item_Nam = Name_Invariant then
15591 Item_Nam := Name_uInvariant;
15593 elsif Item_Nam = Name_Post then
15594 Item_Nam := Name_uPost;
15596 elsif Item_Nam = Name_Pre then
15597 Item_Nam := Name_uPre;
15599 elsif Nam_In (Item_Nam, Name_Type_Invariant,
15600 Name_Type_Invariant_Class)
15601 then
15602 Item_Nam := Name_uType_Invariant;
15604 -- Nothing to do for other cases (e.g. a Check that derived from
15605 -- Pre_Class and has the flag set). Also we do nothing if the name
15606 -- is already in special _xxx form.
15608 end if;
15609 end if;
15611 return Item_Nam;
15612 end Original_Aspect_Pragma_Name;
15614 --------------------------------------
15615 -- Original_Corresponding_Operation --
15616 --------------------------------------
15618 function Original_Corresponding_Operation (S : Entity_Id) return Entity_Id
15620 Typ : constant Entity_Id := Find_Dispatching_Type (S);
15622 begin
15623 -- If S is an inherited primitive S2 the original corresponding
15624 -- operation of S is the original corresponding operation of S2
15626 if Present (Alias (S))
15627 and then Find_Dispatching_Type (Alias (S)) /= Typ
15628 then
15629 return Original_Corresponding_Operation (Alias (S));
15631 -- If S overrides an inherited subprogram S2 the original corresponding
15632 -- operation of S is the original corresponding operation of S2
15634 elsif Present (Overridden_Operation (S)) then
15635 return Original_Corresponding_Operation (Overridden_Operation (S));
15637 -- otherwise it is S itself
15639 else
15640 return S;
15641 end if;
15642 end Original_Corresponding_Operation;
15644 ----------------------
15645 -- Policy_In_Effect --
15646 ----------------------
15648 function Policy_In_Effect (Policy : Name_Id) return Name_Id is
15649 function Policy_In_List (List : Node_Id) return Name_Id;
15650 -- Determine the the mode of a policy in a N_Pragma list
15652 --------------------
15653 -- Policy_In_List --
15654 --------------------
15656 function Policy_In_List (List : Node_Id) return Name_Id is
15657 Arg : Node_Id;
15658 Expr : Node_Id;
15659 Prag : Node_Id;
15661 begin
15662 Prag := List;
15663 while Present (Prag) loop
15664 Arg := First (Pragma_Argument_Associations (Prag));
15665 Expr := Get_Pragma_Arg (Arg);
15667 -- The current Check_Policy pragma matches the requested policy,
15668 -- return the second argument which denotes the policy identifier.
15670 if Chars (Expr) = Policy then
15671 return Chars (Get_Pragma_Arg (Next (Arg)));
15672 end if;
15674 Prag := Next_Pragma (Prag);
15675 end loop;
15677 return No_Name;
15678 end Policy_In_List;
15680 -- Local variables
15682 Kind : Name_Id;
15684 -- Start of processing for Policy_In_Effect
15686 begin
15687 if not Is_Valid_Assertion_Kind (Policy) then
15688 raise Program_Error;
15689 end if;
15691 -- Inspect all policy pragmas that appear within scopes (if any)
15693 Kind := Policy_In_List (Check_Policy_List);
15695 -- Inspect all configuration policy pragmas (if any)
15697 if Kind = No_Name then
15698 Kind := Policy_In_List (Check_Policy_List_Config);
15699 end if;
15701 -- The context lacks policy pragmas, determine the mode based on whether
15702 -- assertions are enabled at the configuration level. This ensures that
15703 -- the policy is preserved when analyzing generics.
15705 if Kind = No_Name then
15706 if Assertions_Enabled_Config then
15707 Kind := Name_Check;
15708 else
15709 Kind := Name_Ignore;
15710 end if;
15711 end if;
15713 return Kind;
15714 end Policy_In_Effect;
15716 ----------------------------------
15717 -- Predicate_Tests_On_Arguments --
15718 ----------------------------------
15720 function Predicate_Tests_On_Arguments (Subp : Entity_Id) return Boolean is
15721 begin
15722 -- Always test predicates on indirect call
15724 if Ekind (Subp) = E_Subprogram_Type then
15725 return True;
15727 -- Do not test predicates on call to generated default Finalize, since
15728 -- we are not interested in whether something we are finalizing (and
15729 -- typically destroying) satisfies its predicates.
15731 elsif Chars (Subp) = Name_Finalize
15732 and then not Comes_From_Source (Subp)
15733 then
15734 return False;
15736 -- Do not test predicates on any internally generated routines
15738 elsif Is_Internal_Name (Chars (Subp)) then
15739 return False;
15741 -- Do not test predicates on call to Init_Proc, since if needed the
15742 -- predicate test will occur at some other point.
15744 elsif Is_Init_Proc (Subp) then
15745 return False;
15747 -- Do not test predicates on call to predicate function, since this
15748 -- would cause infinite recursion.
15750 elsif Ekind (Subp) = E_Function
15751 and then (Is_Predicate_Function (Subp)
15752 or else
15753 Is_Predicate_Function_M (Subp))
15754 then
15755 return False;
15757 -- For now, no other exceptions
15759 else
15760 return True;
15761 end if;
15762 end Predicate_Tests_On_Arguments;
15764 -----------------------
15765 -- Private_Component --
15766 -----------------------
15768 function Private_Component (Type_Id : Entity_Id) return Entity_Id is
15769 Ancestor : constant Entity_Id := Base_Type (Type_Id);
15771 function Trace_Components
15772 (T : Entity_Id;
15773 Check : Boolean) return Entity_Id;
15774 -- Recursive function that does the work, and checks against circular
15775 -- definition for each subcomponent type.
15777 ----------------------
15778 -- Trace_Components --
15779 ----------------------
15781 function Trace_Components
15782 (T : Entity_Id;
15783 Check : Boolean) return Entity_Id
15785 Btype : constant Entity_Id := Base_Type (T);
15786 Component : Entity_Id;
15787 P : Entity_Id;
15788 Candidate : Entity_Id := Empty;
15790 begin
15791 if Check and then Btype = Ancestor then
15792 Error_Msg_N ("circular type definition", Type_Id);
15793 return Any_Type;
15794 end if;
15796 if Is_Private_Type (Btype) and then not Is_Generic_Type (Btype) then
15797 if Present (Full_View (Btype))
15798 and then Is_Record_Type (Full_View (Btype))
15799 and then not Is_Frozen (Btype)
15800 then
15801 -- To indicate that the ancestor depends on a private type, the
15802 -- current Btype is sufficient. However, to check for circular
15803 -- definition we must recurse on the full view.
15805 Candidate := Trace_Components (Full_View (Btype), True);
15807 if Candidate = Any_Type then
15808 return Any_Type;
15809 else
15810 return Btype;
15811 end if;
15813 else
15814 return Btype;
15815 end if;
15817 elsif Is_Array_Type (Btype) then
15818 return Trace_Components (Component_Type (Btype), True);
15820 elsif Is_Record_Type (Btype) then
15821 Component := First_Entity (Btype);
15822 while Present (Component)
15823 and then Comes_From_Source (Component)
15824 loop
15825 -- Skip anonymous types generated by constrained components
15827 if not Is_Type (Component) then
15828 P := Trace_Components (Etype (Component), True);
15830 if Present (P) then
15831 if P = Any_Type then
15832 return P;
15833 else
15834 Candidate := P;
15835 end if;
15836 end if;
15837 end if;
15839 Next_Entity (Component);
15840 end loop;
15842 return Candidate;
15844 else
15845 return Empty;
15846 end if;
15847 end Trace_Components;
15849 -- Start of processing for Private_Component
15851 begin
15852 return Trace_Components (Type_Id, False);
15853 end Private_Component;
15855 ---------------------------
15856 -- Primitive_Names_Match --
15857 ---------------------------
15859 function Primitive_Names_Match (E1, E2 : Entity_Id) return Boolean is
15861 function Non_Internal_Name (E : Entity_Id) return Name_Id;
15862 -- Given an internal name, returns the corresponding non-internal name
15864 ------------------------
15865 -- Non_Internal_Name --
15866 ------------------------
15868 function Non_Internal_Name (E : Entity_Id) return Name_Id is
15869 begin
15870 Get_Name_String (Chars (E));
15871 Name_Len := Name_Len - 1;
15872 return Name_Find;
15873 end Non_Internal_Name;
15875 -- Start of processing for Primitive_Names_Match
15877 begin
15878 pragma Assert (Present (E1) and then Present (E2));
15880 return Chars (E1) = Chars (E2)
15881 or else
15882 (not Is_Internal_Name (Chars (E1))
15883 and then Is_Internal_Name (Chars (E2))
15884 and then Non_Internal_Name (E2) = Chars (E1))
15885 or else
15886 (not Is_Internal_Name (Chars (E2))
15887 and then Is_Internal_Name (Chars (E1))
15888 and then Non_Internal_Name (E1) = Chars (E2))
15889 or else
15890 (Is_Predefined_Dispatching_Operation (E1)
15891 and then Is_Predefined_Dispatching_Operation (E2)
15892 and then Same_TSS (E1, E2))
15893 or else
15894 (Is_Init_Proc (E1) and then Is_Init_Proc (E2));
15895 end Primitive_Names_Match;
15897 -----------------------
15898 -- Process_End_Label --
15899 -----------------------
15901 procedure Process_End_Label
15902 (N : Node_Id;
15903 Typ : Character;
15904 Ent : Entity_Id)
15906 Loc : Source_Ptr;
15907 Nam : Node_Id;
15908 Scop : Entity_Id;
15910 Label_Ref : Boolean;
15911 -- Set True if reference to end label itself is required
15913 Endl : Node_Id;
15914 -- Gets set to the operator symbol or identifier that references the
15915 -- entity Ent. For the child unit case, this is the identifier from the
15916 -- designator. For other cases, this is simply Endl.
15918 procedure Generate_Parent_Ref (N : Node_Id; E : Entity_Id);
15919 -- N is an identifier node that appears as a parent unit reference in
15920 -- the case where Ent is a child unit. This procedure generates an
15921 -- appropriate cross-reference entry. E is the corresponding entity.
15923 -------------------------
15924 -- Generate_Parent_Ref --
15925 -------------------------
15927 procedure Generate_Parent_Ref (N : Node_Id; E : Entity_Id) is
15928 begin
15929 -- If names do not match, something weird, skip reference
15931 if Chars (E) = Chars (N) then
15933 -- Generate the reference. We do NOT consider this as a reference
15934 -- for unreferenced symbol purposes.
15936 Generate_Reference (E, N, 'r', Set_Ref => False, Force => True);
15938 if Style_Check then
15939 Style.Check_Identifier (N, E);
15940 end if;
15941 end if;
15942 end Generate_Parent_Ref;
15944 -- Start of processing for Process_End_Label
15946 begin
15947 -- If no node, ignore. This happens in some error situations, and
15948 -- also for some internally generated structures where no end label
15949 -- references are required in any case.
15951 if No (N) then
15952 return;
15953 end if;
15955 -- Nothing to do if no End_Label, happens for internally generated
15956 -- constructs where we don't want an end label reference anyway. Also
15957 -- nothing to do if Endl is a string literal, which means there was
15958 -- some prior error (bad operator symbol)
15960 Endl := End_Label (N);
15962 if No (Endl) or else Nkind (Endl) = N_String_Literal then
15963 return;
15964 end if;
15966 -- Reference node is not in extended main source unit
15968 if not In_Extended_Main_Source_Unit (N) then
15970 -- Generally we do not collect references except for the extended
15971 -- main source unit. The one exception is the 'e' entry for a
15972 -- package spec, where it is useful for a client to have the
15973 -- ending information to define scopes.
15975 if Typ /= 'e' then
15976 return;
15978 else
15979 Label_Ref := False;
15981 -- For this case, we can ignore any parent references, but we
15982 -- need the package name itself for the 'e' entry.
15984 if Nkind (Endl) = N_Designator then
15985 Endl := Identifier (Endl);
15986 end if;
15987 end if;
15989 -- Reference is in extended main source unit
15991 else
15992 Label_Ref := True;
15994 -- For designator, generate references for the parent entries
15996 if Nkind (Endl) = N_Designator then
15998 -- Generate references for the prefix if the END line comes from
15999 -- source (otherwise we do not need these references) We climb the
16000 -- scope stack to find the expected entities.
16002 if Comes_From_Source (Endl) then
16003 Nam := Name (Endl);
16004 Scop := Current_Scope;
16005 while Nkind (Nam) = N_Selected_Component loop
16006 Scop := Scope (Scop);
16007 exit when No (Scop);
16008 Generate_Parent_Ref (Selector_Name (Nam), Scop);
16009 Nam := Prefix (Nam);
16010 end loop;
16012 if Present (Scop) then
16013 Generate_Parent_Ref (Nam, Scope (Scop));
16014 end if;
16015 end if;
16017 Endl := Identifier (Endl);
16018 end if;
16019 end if;
16021 -- If the end label is not for the given entity, then either we have
16022 -- some previous error, or this is a generic instantiation for which
16023 -- we do not need to make a cross-reference in this case anyway. In
16024 -- either case we simply ignore the call.
16026 if Chars (Ent) /= Chars (Endl) then
16027 return;
16028 end if;
16030 -- If label was really there, then generate a normal reference and then
16031 -- adjust the location in the end label to point past the name (which
16032 -- should almost always be the semicolon).
16034 Loc := Sloc (Endl);
16036 if Comes_From_Source (Endl) then
16038 -- If a label reference is required, then do the style check and
16039 -- generate an l-type cross-reference entry for the label
16041 if Label_Ref then
16042 if Style_Check then
16043 Style.Check_Identifier (Endl, Ent);
16044 end if;
16046 Generate_Reference (Ent, Endl, 'l', Set_Ref => False);
16047 end if;
16049 -- Set the location to point past the label (normally this will
16050 -- mean the semicolon immediately following the label). This is
16051 -- done for the sake of the 'e' or 't' entry generated below.
16053 Get_Decoded_Name_String (Chars (Endl));
16054 Set_Sloc (Endl, Sloc (Endl) + Source_Ptr (Name_Len));
16056 else
16057 -- In SPARK mode, no missing label is allowed for packages and
16058 -- subprogram bodies. Detect those cases by testing whether
16059 -- Process_End_Label was called for a body (Typ = 't') or a package.
16061 if Restriction_Check_Required (SPARK_05)
16062 and then (Typ = 't' or else Ekind (Ent) = E_Package)
16063 then
16064 Error_Msg_Node_1 := Endl;
16065 Check_SPARK_05_Restriction
16066 ("`END &` required", Endl, Force => True);
16067 end if;
16068 end if;
16070 -- Now generate the e/t reference
16072 Generate_Reference (Ent, Endl, Typ, Set_Ref => False, Force => True);
16074 -- Restore Sloc, in case modified above, since we have an identifier
16075 -- and the normal Sloc should be left set in the tree.
16077 Set_Sloc (Endl, Loc);
16078 end Process_End_Label;
16080 ----------------
16081 -- Referenced --
16082 ----------------
16084 function Referenced (Id : Entity_Id; Expr : Node_Id) return Boolean is
16085 Seen : Boolean := False;
16087 function Is_Reference (N : Node_Id) return Traverse_Result;
16088 -- Determine whether node N denotes a reference to Id. If this is the
16089 -- case, set global flag Seen to True and stop the traversal.
16091 ------------------
16092 -- Is_Reference --
16093 ------------------
16095 function Is_Reference (N : Node_Id) return Traverse_Result is
16096 begin
16097 if Is_Entity_Name (N)
16098 and then Present (Entity (N))
16099 and then Entity (N) = Id
16100 then
16101 Seen := True;
16102 return Abandon;
16103 else
16104 return OK;
16105 end if;
16106 end Is_Reference;
16108 procedure Inspect_Expression is new Traverse_Proc (Is_Reference);
16110 -- Start of processing for Referenced
16112 begin
16113 Inspect_Expression (Expr);
16114 return Seen;
16115 end Referenced;
16117 ------------------------------------
16118 -- References_Generic_Formal_Type --
16119 ------------------------------------
16121 function References_Generic_Formal_Type (N : Node_Id) return Boolean is
16123 function Process (N : Node_Id) return Traverse_Result;
16124 -- Process one node in search for generic formal type
16126 -------------
16127 -- Process --
16128 -------------
16130 function Process (N : Node_Id) return Traverse_Result is
16131 begin
16132 if Nkind (N) in N_Has_Entity then
16133 declare
16134 E : constant Entity_Id := Entity (N);
16135 begin
16136 if Present (E) then
16137 if Is_Generic_Type (E) then
16138 return Abandon;
16139 elsif Present (Etype (E))
16140 and then Is_Generic_Type (Etype (E))
16141 then
16142 return Abandon;
16143 end if;
16144 end if;
16145 end;
16146 end if;
16148 return Atree.OK;
16149 end Process;
16151 function Traverse is new Traverse_Func (Process);
16152 -- Traverse tree to look for generic type
16154 begin
16155 if Inside_A_Generic then
16156 return Traverse (N) = Abandon;
16157 else
16158 return False;
16159 end if;
16160 end References_Generic_Formal_Type;
16162 --------------------
16163 -- Remove_Homonym --
16164 --------------------
16166 procedure Remove_Homonym (E : Entity_Id) is
16167 Prev : Entity_Id := Empty;
16168 H : Entity_Id;
16170 begin
16171 if E = Current_Entity (E) then
16172 if Present (Homonym (E)) then
16173 Set_Current_Entity (Homonym (E));
16174 else
16175 Set_Name_Entity_Id (Chars (E), Empty);
16176 end if;
16178 else
16179 H := Current_Entity (E);
16180 while Present (H) and then H /= E loop
16181 Prev := H;
16182 H := Homonym (H);
16183 end loop;
16185 -- If E is not on the homonym chain, nothing to do
16187 if Present (H) then
16188 Set_Homonym (Prev, Homonym (E));
16189 end if;
16190 end if;
16191 end Remove_Homonym;
16193 ---------------------
16194 -- Rep_To_Pos_Flag --
16195 ---------------------
16197 function Rep_To_Pos_Flag (E : Entity_Id; Loc : Source_Ptr) return Node_Id is
16198 begin
16199 return New_Occurrence_Of
16200 (Boolean_Literals (not Range_Checks_Suppressed (E)), Loc);
16201 end Rep_To_Pos_Flag;
16203 --------------------
16204 -- Require_Entity --
16205 --------------------
16207 procedure Require_Entity (N : Node_Id) is
16208 begin
16209 if Is_Entity_Name (N) and then No (Entity (N)) then
16210 if Total_Errors_Detected /= 0 then
16211 Set_Entity (N, Any_Id);
16212 else
16213 raise Program_Error;
16214 end if;
16215 end if;
16216 end Require_Entity;
16218 -------------------------------
16219 -- Requires_State_Refinement --
16220 -------------------------------
16222 function Requires_State_Refinement
16223 (Spec_Id : Entity_Id;
16224 Body_Id : Entity_Id) return Boolean
16226 function Mode_Is_Off (Prag : Node_Id) return Boolean;
16227 -- Given pragma SPARK_Mode, determine whether the mode is Off
16229 -----------------
16230 -- Mode_Is_Off --
16231 -----------------
16233 function Mode_Is_Off (Prag : Node_Id) return Boolean is
16234 Mode : Node_Id;
16236 begin
16237 -- The default SPARK mode is On
16239 if No (Prag) then
16240 return False;
16241 end if;
16243 Mode := Get_Pragma_Arg (First (Pragma_Argument_Associations (Prag)));
16245 -- Then the pragma lacks an argument, the default mode is On
16247 if No (Mode) then
16248 return False;
16249 else
16250 return Chars (Mode) = Name_Off;
16251 end if;
16252 end Mode_Is_Off;
16254 -- Start of processing for Requires_State_Refinement
16256 begin
16257 -- A package that does not define at least one abstract state cannot
16258 -- possibly require refinement.
16260 if No (Abstract_States (Spec_Id)) then
16261 return False;
16263 -- The package instroduces a single null state which does not merit
16264 -- refinement.
16266 elsif Has_Null_Abstract_State (Spec_Id) then
16267 return False;
16269 -- Check whether the package body is subject to pragma SPARK_Mode. If
16270 -- it is and the mode is Off, the package body is considered to be in
16271 -- regular Ada and does not require refinement.
16273 elsif Mode_Is_Off (SPARK_Pragma (Body_Id)) then
16274 return False;
16276 -- The body's SPARK_Mode may be inherited from a similar pragma that
16277 -- appears in the private declarations of the spec. The pragma we are
16278 -- interested appears as the second entry in SPARK_Pragma.
16280 elsif Present (SPARK_Pragma (Spec_Id))
16281 and then Mode_Is_Off (Next_Pragma (SPARK_Pragma (Spec_Id)))
16282 then
16283 return False;
16285 -- The spec defines at least one abstract state and the body has no way
16286 -- of circumventing the refinement.
16288 else
16289 return True;
16290 end if;
16291 end Requires_State_Refinement;
16293 ------------------------------
16294 -- Requires_Transient_Scope --
16295 ------------------------------
16297 -- A transient scope is required when variable-sized temporaries are
16298 -- allocated in the primary or secondary stack, or when finalization
16299 -- actions must be generated before the next instruction.
16301 function Requires_Transient_Scope (Id : Entity_Id) return Boolean is
16302 Typ : constant Entity_Id := Underlying_Type (Id);
16304 -- Start of processing for Requires_Transient_Scope
16306 begin
16307 -- This is a private type which is not completed yet. This can only
16308 -- happen in a default expression (of a formal parameter or of a
16309 -- record component). Do not expand transient scope in this case
16311 if No (Typ) then
16312 return False;
16314 -- Do not expand transient scope for non-existent procedure return
16316 elsif Typ = Standard_Void_Type then
16317 return False;
16319 -- Elementary types do not require a transient scope
16321 elsif Is_Elementary_Type (Typ) then
16322 return False;
16324 -- Generally, indefinite subtypes require a transient scope, since the
16325 -- back end cannot generate temporaries, since this is not a valid type
16326 -- for declaring an object. It might be possible to relax this in the
16327 -- future, e.g. by declaring the maximum possible space for the type.
16329 elsif Is_Indefinite_Subtype (Typ) then
16330 return True;
16332 -- Functions returning tagged types may dispatch on result so their
16333 -- returned value is allocated on the secondary stack. Controlled
16334 -- type temporaries need finalization.
16336 elsif Is_Tagged_Type (Typ)
16337 or else Has_Controlled_Component (Typ)
16338 then
16339 return not Is_Value_Type (Typ);
16341 -- Record type
16343 elsif Is_Record_Type (Typ) then
16344 declare
16345 Comp : Entity_Id;
16346 begin
16347 Comp := First_Entity (Typ);
16348 while Present (Comp) loop
16349 if Ekind (Comp) = E_Component
16350 and then Requires_Transient_Scope (Etype (Comp))
16351 then
16352 return True;
16353 else
16354 Next_Entity (Comp);
16355 end if;
16356 end loop;
16357 end;
16359 return False;
16361 -- String literal types never require transient scope
16363 elsif Ekind (Typ) = E_String_Literal_Subtype then
16364 return False;
16366 -- Array type. Note that we already know that this is a constrained
16367 -- array, since unconstrained arrays will fail the indefinite test.
16369 elsif Is_Array_Type (Typ) then
16371 -- If component type requires a transient scope, the array does too
16373 if Requires_Transient_Scope (Component_Type (Typ)) then
16374 return True;
16376 -- Otherwise, we only need a transient scope if the size depends on
16377 -- the value of one or more discriminants.
16379 else
16380 return Size_Depends_On_Discriminant (Typ);
16381 end if;
16383 -- All other cases do not require a transient scope
16385 else
16386 return False;
16387 end if;
16388 end Requires_Transient_Scope;
16390 --------------------------
16391 -- Reset_Analyzed_Flags --
16392 --------------------------
16394 procedure Reset_Analyzed_Flags (N : Node_Id) is
16396 function Clear_Analyzed (N : Node_Id) return Traverse_Result;
16397 -- Function used to reset Analyzed flags in tree. Note that we do
16398 -- not reset Analyzed flags in entities, since there is no need to
16399 -- reanalyze entities, and indeed, it is wrong to do so, since it
16400 -- can result in generating auxiliary stuff more than once.
16402 --------------------
16403 -- Clear_Analyzed --
16404 --------------------
16406 function Clear_Analyzed (N : Node_Id) return Traverse_Result is
16407 begin
16408 if not Has_Extension (N) then
16409 Set_Analyzed (N, False);
16410 end if;
16412 return OK;
16413 end Clear_Analyzed;
16415 procedure Reset_Analyzed is new Traverse_Proc (Clear_Analyzed);
16417 -- Start of processing for Reset_Analyzed_Flags
16419 begin
16420 Reset_Analyzed (N);
16421 end Reset_Analyzed_Flags;
16423 ------------------------
16424 -- Restore_SPARK_Mode --
16425 ------------------------
16427 procedure Restore_SPARK_Mode (Mode : SPARK_Mode_Type) is
16428 begin
16429 SPARK_Mode := Mode;
16430 end Restore_SPARK_Mode;
16432 --------------------------------
16433 -- Returns_Unconstrained_Type --
16434 --------------------------------
16436 function Returns_Unconstrained_Type (Subp : Entity_Id) return Boolean is
16437 begin
16438 return Ekind (Subp) = E_Function
16439 and then not Is_Scalar_Type (Etype (Subp))
16440 and then not Is_Access_Type (Etype (Subp))
16441 and then not Is_Constrained (Etype (Subp));
16442 end Returns_Unconstrained_Type;
16444 ----------------------------
16445 -- Root_Type_Of_Full_View --
16446 ----------------------------
16448 function Root_Type_Of_Full_View (T : Entity_Id) return Entity_Id is
16449 Rtyp : constant Entity_Id := Root_Type (T);
16451 begin
16452 -- The root type of the full view may itself be a private type. Keep
16453 -- looking for the ultimate derivation parent.
16455 if Is_Private_Type (Rtyp) and then Present (Full_View (Rtyp)) then
16456 return Root_Type_Of_Full_View (Full_View (Rtyp));
16457 else
16458 return Rtyp;
16459 end if;
16460 end Root_Type_Of_Full_View;
16462 ---------------------------
16463 -- Safe_To_Capture_Value --
16464 ---------------------------
16466 function Safe_To_Capture_Value
16467 (N : Node_Id;
16468 Ent : Entity_Id;
16469 Cond : Boolean := False) return Boolean
16471 begin
16472 -- The only entities for which we track constant values are variables
16473 -- which are not renamings, constants, out parameters, and in out
16474 -- parameters, so check if we have this case.
16476 -- Note: it may seem odd to track constant values for constants, but in
16477 -- fact this routine is used for other purposes than simply capturing
16478 -- the value. In particular, the setting of Known[_Non]_Null.
16480 if (Ekind (Ent) = E_Variable and then No (Renamed_Object (Ent)))
16481 or else
16482 Ekind_In (Ent, E_Constant, E_Out_Parameter, E_In_Out_Parameter)
16483 then
16484 null;
16486 -- For conditionals, we also allow loop parameters and all formals,
16487 -- including in parameters.
16489 elsif Cond and then Ekind_In (Ent, E_Loop_Parameter, E_In_Parameter) then
16490 null;
16492 -- For all other cases, not just unsafe, but impossible to capture
16493 -- Current_Value, since the above are the only entities which have
16494 -- Current_Value fields.
16496 else
16497 return False;
16498 end if;
16500 -- Skip if volatile or aliased, since funny things might be going on in
16501 -- these cases which we cannot necessarily track. Also skip any variable
16502 -- for which an address clause is given, or whose address is taken. Also
16503 -- never capture value of library level variables (an attempt to do so
16504 -- can occur in the case of package elaboration code).
16506 if Treat_As_Volatile (Ent)
16507 or else Is_Aliased (Ent)
16508 or else Present (Address_Clause (Ent))
16509 or else Address_Taken (Ent)
16510 or else (Is_Library_Level_Entity (Ent)
16511 and then Ekind (Ent) = E_Variable)
16512 then
16513 return False;
16514 end if;
16516 -- OK, all above conditions are met. We also require that the scope of
16517 -- the reference be the same as the scope of the entity, not counting
16518 -- packages and blocks and loops.
16520 declare
16521 E_Scope : constant Entity_Id := Scope (Ent);
16522 R_Scope : Entity_Id;
16524 begin
16525 R_Scope := Current_Scope;
16526 while R_Scope /= Standard_Standard loop
16527 exit when R_Scope = E_Scope;
16529 if not Ekind_In (R_Scope, E_Package, E_Block, E_Loop) then
16530 return False;
16531 else
16532 R_Scope := Scope (R_Scope);
16533 end if;
16534 end loop;
16535 end;
16537 -- We also require that the reference does not appear in a context
16538 -- where it is not sure to be executed (i.e. a conditional context
16539 -- or an exception handler). We skip this if Cond is True, since the
16540 -- capturing of values from conditional tests handles this ok.
16542 if Cond then
16543 return True;
16544 end if;
16546 declare
16547 Desc : Node_Id;
16548 P : Node_Id;
16550 begin
16551 Desc := N;
16553 -- Seems dubious that case expressions are not handled here ???
16555 P := Parent (N);
16556 while Present (P) loop
16557 if Nkind (P) = N_If_Statement
16558 or else Nkind (P) = N_Case_Statement
16559 or else (Nkind (P) in N_Short_Circuit
16560 and then Desc = Right_Opnd (P))
16561 or else (Nkind (P) = N_If_Expression
16562 and then Desc /= First (Expressions (P)))
16563 or else Nkind (P) = N_Exception_Handler
16564 or else Nkind (P) = N_Selective_Accept
16565 or else Nkind (P) = N_Conditional_Entry_Call
16566 or else Nkind (P) = N_Timed_Entry_Call
16567 or else Nkind (P) = N_Asynchronous_Select
16568 then
16569 return False;
16571 else
16572 Desc := P;
16573 P := Parent (P);
16575 -- A special Ada 2012 case: the original node may be part
16576 -- of the else_actions of a conditional expression, in which
16577 -- case it might not have been expanded yet, and appears in
16578 -- a non-syntactic list of actions. In that case it is clearly
16579 -- not safe to save a value.
16581 if No (P)
16582 and then Is_List_Member (Desc)
16583 and then No (Parent (List_Containing (Desc)))
16584 then
16585 return False;
16586 end if;
16587 end if;
16588 end loop;
16589 end;
16591 -- OK, looks safe to set value
16593 return True;
16594 end Safe_To_Capture_Value;
16596 ---------------
16597 -- Same_Name --
16598 ---------------
16600 function Same_Name (N1, N2 : Node_Id) return Boolean is
16601 K1 : constant Node_Kind := Nkind (N1);
16602 K2 : constant Node_Kind := Nkind (N2);
16604 begin
16605 if (K1 = N_Identifier or else K1 = N_Defining_Identifier)
16606 and then (K2 = N_Identifier or else K2 = N_Defining_Identifier)
16607 then
16608 return Chars (N1) = Chars (N2);
16610 elsif (K1 = N_Selected_Component or else K1 = N_Expanded_Name)
16611 and then (K2 = N_Selected_Component or else K2 = N_Expanded_Name)
16612 then
16613 return Same_Name (Selector_Name (N1), Selector_Name (N2))
16614 and then Same_Name (Prefix (N1), Prefix (N2));
16616 else
16617 return False;
16618 end if;
16619 end Same_Name;
16621 -----------------
16622 -- Same_Object --
16623 -----------------
16625 function Same_Object (Node1, Node2 : Node_Id) return Boolean is
16626 N1 : constant Node_Id := Original_Node (Node1);
16627 N2 : constant Node_Id := Original_Node (Node2);
16628 -- We do the tests on original nodes, since we are most interested
16629 -- in the original source, not any expansion that got in the way.
16631 K1 : constant Node_Kind := Nkind (N1);
16632 K2 : constant Node_Kind := Nkind (N2);
16634 begin
16635 -- First case, both are entities with same entity
16637 if K1 in N_Has_Entity and then K2 in N_Has_Entity then
16638 declare
16639 EN1 : constant Entity_Id := Entity (N1);
16640 EN2 : constant Entity_Id := Entity (N2);
16641 begin
16642 if Present (EN1) and then Present (EN2)
16643 and then (Ekind_In (EN1, E_Variable, E_Constant)
16644 or else Is_Formal (EN1))
16645 and then EN1 = EN2
16646 then
16647 return True;
16648 end if;
16649 end;
16650 end if;
16652 -- Second case, selected component with same selector, same record
16654 if K1 = N_Selected_Component
16655 and then K2 = N_Selected_Component
16656 and then Chars (Selector_Name (N1)) = Chars (Selector_Name (N2))
16657 then
16658 return Same_Object (Prefix (N1), Prefix (N2));
16660 -- Third case, indexed component with same subscripts, same array
16662 elsif K1 = N_Indexed_Component
16663 and then K2 = N_Indexed_Component
16664 and then Same_Object (Prefix (N1), Prefix (N2))
16665 then
16666 declare
16667 E1, E2 : Node_Id;
16668 begin
16669 E1 := First (Expressions (N1));
16670 E2 := First (Expressions (N2));
16671 while Present (E1) loop
16672 if not Same_Value (E1, E2) then
16673 return False;
16674 else
16675 Next (E1);
16676 Next (E2);
16677 end if;
16678 end loop;
16680 return True;
16681 end;
16683 -- Fourth case, slice of same array with same bounds
16685 elsif K1 = N_Slice
16686 and then K2 = N_Slice
16687 and then Nkind (Discrete_Range (N1)) = N_Range
16688 and then Nkind (Discrete_Range (N2)) = N_Range
16689 and then Same_Value (Low_Bound (Discrete_Range (N1)),
16690 Low_Bound (Discrete_Range (N2)))
16691 and then Same_Value (High_Bound (Discrete_Range (N1)),
16692 High_Bound (Discrete_Range (N2)))
16693 then
16694 return Same_Name (Prefix (N1), Prefix (N2));
16696 -- All other cases, not clearly the same object
16698 else
16699 return False;
16700 end if;
16701 end Same_Object;
16703 ---------------
16704 -- Same_Type --
16705 ---------------
16707 function Same_Type (T1, T2 : Entity_Id) return Boolean is
16708 begin
16709 if T1 = T2 then
16710 return True;
16712 elsif not Is_Constrained (T1)
16713 and then not Is_Constrained (T2)
16714 and then Base_Type (T1) = Base_Type (T2)
16715 then
16716 return True;
16718 -- For now don't bother with case of identical constraints, to be
16719 -- fiddled with later on perhaps (this is only used for optimization
16720 -- purposes, so it is not critical to do a best possible job)
16722 else
16723 return False;
16724 end if;
16725 end Same_Type;
16727 ----------------
16728 -- Same_Value --
16729 ----------------
16731 function Same_Value (Node1, Node2 : Node_Id) return Boolean is
16732 begin
16733 if Compile_Time_Known_Value (Node1)
16734 and then Compile_Time_Known_Value (Node2)
16735 and then Expr_Value (Node1) = Expr_Value (Node2)
16736 then
16737 return True;
16738 elsif Same_Object (Node1, Node2) then
16739 return True;
16740 else
16741 return False;
16742 end if;
16743 end Same_Value;
16745 -----------------------------
16746 -- Save_SPARK_Mode_And_Set --
16747 -----------------------------
16749 procedure Save_SPARK_Mode_And_Set
16750 (Context : Entity_Id;
16751 Mode : out SPARK_Mode_Type)
16753 begin
16754 -- Save the current mode in effect
16756 Mode := SPARK_Mode;
16758 -- Do not consider illegal or partially decorated constructs
16760 if Ekind (Context) = E_Void or else Error_Posted (Context) then
16761 null;
16763 elsif Present (SPARK_Pragma (Context)) then
16764 SPARK_Mode := Get_SPARK_Mode_From_Pragma (SPARK_Pragma (Context));
16765 end if;
16766 end Save_SPARK_Mode_And_Set;
16768 -------------------------
16769 -- Scalar_Part_Present --
16770 -------------------------
16772 function Scalar_Part_Present (T : Entity_Id) return Boolean is
16773 C : Entity_Id;
16775 begin
16776 if Is_Scalar_Type (T) then
16777 return True;
16779 elsif Is_Array_Type (T) then
16780 return Scalar_Part_Present (Component_Type (T));
16782 elsif Is_Record_Type (T) or else Has_Discriminants (T) then
16783 C := First_Component_Or_Discriminant (T);
16784 while Present (C) loop
16785 if Scalar_Part_Present (Etype (C)) then
16786 return True;
16787 else
16788 Next_Component_Or_Discriminant (C);
16789 end if;
16790 end loop;
16791 end if;
16793 return False;
16794 end Scalar_Part_Present;
16796 ------------------------
16797 -- Scope_Is_Transient --
16798 ------------------------
16800 function Scope_Is_Transient return Boolean is
16801 begin
16802 return Scope_Stack.Table (Scope_Stack.Last).Is_Transient;
16803 end Scope_Is_Transient;
16805 ------------------
16806 -- Scope_Within --
16807 ------------------
16809 function Scope_Within (Scope1, Scope2 : Entity_Id) return Boolean is
16810 Scop : Entity_Id;
16812 begin
16813 Scop := Scope1;
16814 while Scop /= Standard_Standard loop
16815 Scop := Scope (Scop);
16817 if Scop = Scope2 then
16818 return True;
16819 end if;
16820 end loop;
16822 return False;
16823 end Scope_Within;
16825 --------------------------
16826 -- Scope_Within_Or_Same --
16827 --------------------------
16829 function Scope_Within_Or_Same (Scope1, Scope2 : Entity_Id) return Boolean is
16830 Scop : Entity_Id;
16832 begin
16833 Scop := Scope1;
16834 while Scop /= Standard_Standard loop
16835 if Scop = Scope2 then
16836 return True;
16837 else
16838 Scop := Scope (Scop);
16839 end if;
16840 end loop;
16842 return False;
16843 end Scope_Within_Or_Same;
16845 --------------------
16846 -- Set_Convention --
16847 --------------------
16849 procedure Set_Convention (E : Entity_Id; Val : Snames.Convention_Id) is
16850 begin
16851 Basic_Set_Convention (E, Val);
16853 if Is_Type (E)
16854 and then Is_Access_Subprogram_Type (Base_Type (E))
16855 and then Has_Foreign_Convention (E)
16856 then
16858 -- A convention pragma in an instance may apply to the subtype
16859 -- created for a formal, in which case we have already verified
16860 -- that conventions of actual and formal match and there is nothing
16861 -- to flag on the subtype.
16863 if In_Instance then
16864 null;
16865 else
16866 Set_Can_Use_Internal_Rep (E, False);
16867 end if;
16868 end if;
16870 -- If E is an object or component, and the type of E is an anonymous
16871 -- access type with no convention set, then also set the convention of
16872 -- the anonymous access type. We do not do this for anonymous protected
16873 -- types, since protected types always have the default convention.
16875 if Present (Etype (E))
16876 and then (Is_Object (E)
16877 or else Ekind (E) = E_Component
16879 -- Allow E_Void (happens for pragma Convention appearing
16880 -- in the middle of a record applying to a component)
16882 or else Ekind (E) = E_Void)
16883 then
16884 declare
16885 Typ : constant Entity_Id := Etype (E);
16887 begin
16888 if Ekind_In (Typ, E_Anonymous_Access_Type,
16889 E_Anonymous_Access_Subprogram_Type)
16890 and then not Has_Convention_Pragma (Typ)
16891 then
16892 Basic_Set_Convention (Typ, Val);
16893 Set_Has_Convention_Pragma (Typ);
16895 -- And for the access subprogram type, deal similarly with the
16896 -- designated E_Subprogram_Type if it is also internal (which
16897 -- it always is?)
16899 if Ekind (Typ) = E_Anonymous_Access_Subprogram_Type then
16900 declare
16901 Dtype : constant Entity_Id := Designated_Type (Typ);
16902 begin
16903 if Ekind (Dtype) = E_Subprogram_Type
16904 and then Is_Itype (Dtype)
16905 and then not Has_Convention_Pragma (Dtype)
16906 then
16907 Basic_Set_Convention (Dtype, Val);
16908 Set_Has_Convention_Pragma (Dtype);
16909 end if;
16910 end;
16911 end if;
16912 end if;
16913 end;
16914 end if;
16915 end Set_Convention;
16917 ------------------------
16918 -- Set_Current_Entity --
16919 ------------------------
16921 -- The given entity is to be set as the currently visible definition of its
16922 -- associated name (i.e. the Node_Id associated with its name). All we have
16923 -- to do is to get the name from the identifier, and then set the
16924 -- associated Node_Id to point to the given entity.
16926 procedure Set_Current_Entity (E : Entity_Id) is
16927 begin
16928 Set_Name_Entity_Id (Chars (E), E);
16929 end Set_Current_Entity;
16931 ---------------------------
16932 -- Set_Debug_Info_Needed --
16933 ---------------------------
16935 procedure Set_Debug_Info_Needed (T : Entity_Id) is
16937 procedure Set_Debug_Info_Needed_If_Not_Set (E : Entity_Id);
16938 pragma Inline (Set_Debug_Info_Needed_If_Not_Set);
16939 -- Used to set debug info in a related node if not set already
16941 --------------------------------------
16942 -- Set_Debug_Info_Needed_If_Not_Set --
16943 --------------------------------------
16945 procedure Set_Debug_Info_Needed_If_Not_Set (E : Entity_Id) is
16946 begin
16947 if Present (E) and then not Needs_Debug_Info (E) then
16948 Set_Debug_Info_Needed (E);
16950 -- For a private type, indicate that the full view also needs
16951 -- debug information.
16953 if Is_Type (E)
16954 and then Is_Private_Type (E)
16955 and then Present (Full_View (E))
16956 then
16957 Set_Debug_Info_Needed (Full_View (E));
16958 end if;
16959 end if;
16960 end Set_Debug_Info_Needed_If_Not_Set;
16962 -- Start of processing for Set_Debug_Info_Needed
16964 begin
16965 -- Nothing to do if argument is Empty or has Debug_Info_Off set, which
16966 -- indicates that Debug_Info_Needed is never required for the entity.
16967 -- Nothing to do if entity comes from a predefined file. Library files
16968 -- are compiled without debug information, but inlined bodies of these
16969 -- routines may appear in user code, and debug information on them ends
16970 -- up complicating debugging the user code.
16972 if No (T)
16973 or else Debug_Info_Off (T)
16974 then
16975 return;
16977 elsif In_Inlined_Body
16978 and then Is_Predefined_File_Name
16979 (Unit_File_Name (Get_Source_Unit (Sloc (T))))
16980 then
16981 Set_Needs_Debug_Info (T, False);
16982 end if;
16984 -- Set flag in entity itself. Note that we will go through the following
16985 -- circuitry even if the flag is already set on T. That's intentional,
16986 -- it makes sure that the flag will be set in subsidiary entities.
16988 Set_Needs_Debug_Info (T);
16990 -- Set flag on subsidiary entities if not set already
16992 if Is_Object (T) then
16993 Set_Debug_Info_Needed_If_Not_Set (Etype (T));
16995 elsif Is_Type (T) then
16996 Set_Debug_Info_Needed_If_Not_Set (Etype (T));
16998 if Is_Record_Type (T) then
16999 declare
17000 Ent : Entity_Id := First_Entity (T);
17001 begin
17002 while Present (Ent) loop
17003 Set_Debug_Info_Needed_If_Not_Set (Ent);
17004 Next_Entity (Ent);
17005 end loop;
17006 end;
17008 -- For a class wide subtype, we also need debug information
17009 -- for the equivalent type.
17011 if Ekind (T) = E_Class_Wide_Subtype then
17012 Set_Debug_Info_Needed_If_Not_Set (Equivalent_Type (T));
17013 end if;
17015 elsif Is_Array_Type (T) then
17016 Set_Debug_Info_Needed_If_Not_Set (Component_Type (T));
17018 declare
17019 Indx : Node_Id := First_Index (T);
17020 begin
17021 while Present (Indx) loop
17022 Set_Debug_Info_Needed_If_Not_Set (Etype (Indx));
17023 Indx := Next_Index (Indx);
17024 end loop;
17025 end;
17027 -- For a packed array type, we also need debug information for
17028 -- the type used to represent the packed array. Conversely, we
17029 -- also need it for the former if we need it for the latter.
17031 if Is_Packed (T) then
17032 Set_Debug_Info_Needed_If_Not_Set (Packed_Array_Impl_Type (T));
17033 end if;
17035 if Is_Packed_Array_Impl_Type (T) then
17036 Set_Debug_Info_Needed_If_Not_Set (Original_Array_Type (T));
17037 end if;
17039 elsif Is_Access_Type (T) then
17040 Set_Debug_Info_Needed_If_Not_Set (Directly_Designated_Type (T));
17042 elsif Is_Private_Type (T) then
17043 Set_Debug_Info_Needed_If_Not_Set (Full_View (T));
17045 elsif Is_Protected_Type (T) then
17046 Set_Debug_Info_Needed_If_Not_Set (Corresponding_Record_Type (T));
17048 elsif Is_Scalar_Type (T) then
17050 -- If the subrange bounds are materialized by dedicated constant
17051 -- objects, also include them in the debug info to make sure the
17052 -- debugger can properly use them.
17054 if Present (Scalar_Range (T))
17055 and then Nkind (Scalar_Range (T)) = N_Range
17056 then
17057 declare
17058 Low_Bnd : constant Node_Id := Type_Low_Bound (T);
17059 High_Bnd : constant Node_Id := Type_High_Bound (T);
17061 begin
17062 if Is_Entity_Name (Low_Bnd) then
17063 Set_Debug_Info_Needed_If_Not_Set (Entity (Low_Bnd));
17064 end if;
17066 if Is_Entity_Name (High_Bnd) then
17067 Set_Debug_Info_Needed_If_Not_Set (Entity (High_Bnd));
17068 end if;
17069 end;
17070 end if;
17071 end if;
17072 end if;
17073 end Set_Debug_Info_Needed;
17075 ----------------------------
17076 -- Set_Entity_With_Checks --
17077 ----------------------------
17079 procedure Set_Entity_With_Checks (N : Node_Id; Val : Entity_Id) is
17080 Val_Actual : Entity_Id;
17081 Nod : Node_Id;
17082 Post_Node : Node_Id;
17084 begin
17085 -- Unconditionally set the entity
17087 Set_Entity (N, Val);
17089 -- The node to post on is the selector in the case of an expanded name,
17090 -- and otherwise the node itself.
17092 if Nkind (N) = N_Expanded_Name then
17093 Post_Node := Selector_Name (N);
17094 else
17095 Post_Node := N;
17096 end if;
17098 -- Check for violation of No_Fixed_IO
17100 if Restriction_Check_Required (No_Fixed_IO)
17101 and then
17102 ((RTU_Loaded (Ada_Text_IO)
17103 and then (Is_RTE (Val, RE_Decimal_IO)
17104 or else
17105 Is_RTE (Val, RE_Fixed_IO)))
17107 or else
17108 (RTU_Loaded (Ada_Wide_Text_IO)
17109 and then (Is_RTE (Val, RO_WT_Decimal_IO)
17110 or else
17111 Is_RTE (Val, RO_WT_Fixed_IO)))
17113 or else
17114 (RTU_Loaded (Ada_Wide_Wide_Text_IO)
17115 and then (Is_RTE (Val, RO_WW_Decimal_IO)
17116 or else
17117 Is_RTE (Val, RO_WW_Fixed_IO))))
17119 -- A special extra check, don't complain about a reference from within
17120 -- the Ada.Interrupts package itself!
17122 and then not In_Same_Extended_Unit (N, Val)
17123 then
17124 Check_Restriction (No_Fixed_IO, Post_Node);
17125 end if;
17127 -- Remaining checks are only done on source nodes. Note that we test
17128 -- for violation of No_Fixed_IO even on non-source nodes, because the
17129 -- cases for checking violations of this restriction are instantiations
17130 -- where the reference in the instance has Comes_From_Source False.
17132 if not Comes_From_Source (N) then
17133 return;
17134 end if;
17136 -- Check for violation of No_Abort_Statements, which is triggered by
17137 -- call to Ada.Task_Identification.Abort_Task.
17139 if Restriction_Check_Required (No_Abort_Statements)
17140 and then (Is_RTE (Val, RE_Abort_Task))
17142 -- A special extra check, don't complain about a reference from within
17143 -- the Ada.Task_Identification package itself!
17145 and then not In_Same_Extended_Unit (N, Val)
17146 then
17147 Check_Restriction (No_Abort_Statements, Post_Node);
17148 end if;
17150 if Val = Standard_Long_Long_Integer then
17151 Check_Restriction (No_Long_Long_Integers, Post_Node);
17152 end if;
17154 -- Check for violation of No_Dynamic_Attachment
17156 if Restriction_Check_Required (No_Dynamic_Attachment)
17157 and then RTU_Loaded (Ada_Interrupts)
17158 and then (Is_RTE (Val, RE_Is_Reserved) or else
17159 Is_RTE (Val, RE_Is_Attached) or else
17160 Is_RTE (Val, RE_Current_Handler) or else
17161 Is_RTE (Val, RE_Attach_Handler) or else
17162 Is_RTE (Val, RE_Exchange_Handler) or else
17163 Is_RTE (Val, RE_Detach_Handler) or else
17164 Is_RTE (Val, RE_Reference))
17166 -- A special extra check, don't complain about a reference from within
17167 -- the Ada.Interrupts package itself!
17169 and then not In_Same_Extended_Unit (N, Val)
17170 then
17171 Check_Restriction (No_Dynamic_Attachment, Post_Node);
17172 end if;
17174 -- Check for No_Implementation_Identifiers
17176 if Restriction_Check_Required (No_Implementation_Identifiers) then
17178 -- We have an implementation defined entity if it is marked as
17179 -- implementation defined, or is defined in a package marked as
17180 -- implementation defined. However, library packages themselves
17181 -- are excluded (we don't want to flag Interfaces itself, just
17182 -- the entities within it).
17184 if (Is_Implementation_Defined (Val)
17185 or else
17186 (Present (Scope (Val))
17187 and then Is_Implementation_Defined (Scope (Val))))
17188 and then not (Ekind_In (Val, E_Package, E_Generic_Package)
17189 and then Is_Library_Level_Entity (Val))
17190 then
17191 Check_Restriction (No_Implementation_Identifiers, Post_Node);
17192 end if;
17193 end if;
17195 -- Do the style check
17197 if Style_Check
17198 and then not Suppress_Style_Checks (Val)
17199 and then not In_Instance
17200 then
17201 if Nkind (N) = N_Identifier then
17202 Nod := N;
17203 elsif Nkind (N) = N_Expanded_Name then
17204 Nod := Selector_Name (N);
17205 else
17206 return;
17207 end if;
17209 -- A special situation arises for derived operations, where we want
17210 -- to do the check against the parent (since the Sloc of the derived
17211 -- operation points to the derived type declaration itself).
17213 Val_Actual := Val;
17214 while not Comes_From_Source (Val_Actual)
17215 and then Nkind (Val_Actual) in N_Entity
17216 and then (Ekind (Val_Actual) = E_Enumeration_Literal
17217 or else Is_Subprogram_Or_Generic_Subprogram (Val_Actual))
17218 and then Present (Alias (Val_Actual))
17219 loop
17220 Val_Actual := Alias (Val_Actual);
17221 end loop;
17223 -- Renaming declarations for generic actuals do not come from source,
17224 -- and have a different name from that of the entity they rename, so
17225 -- there is no style check to perform here.
17227 if Chars (Nod) = Chars (Val_Actual) then
17228 Style.Check_Identifier (Nod, Val_Actual);
17229 end if;
17230 end if;
17232 Set_Entity (N, Val);
17233 end Set_Entity_With_Checks;
17235 ------------------------
17236 -- Set_Name_Entity_Id --
17237 ------------------------
17239 procedure Set_Name_Entity_Id (Id : Name_Id; Val : Entity_Id) is
17240 begin
17241 Set_Name_Table_Int (Id, Int (Val));
17242 end Set_Name_Entity_Id;
17244 ---------------------
17245 -- Set_Next_Actual --
17246 ---------------------
17248 procedure Set_Next_Actual (Ass1_Id : Node_Id; Ass2_Id : Node_Id) is
17249 begin
17250 if Nkind (Parent (Ass1_Id)) = N_Parameter_Association then
17251 Set_First_Named_Actual (Parent (Ass1_Id), Ass2_Id);
17252 end if;
17253 end Set_Next_Actual;
17255 ----------------------------------
17256 -- Set_Optimize_Alignment_Flags --
17257 ----------------------------------
17259 procedure Set_Optimize_Alignment_Flags (E : Entity_Id) is
17260 begin
17261 if Optimize_Alignment = 'S' then
17262 Set_Optimize_Alignment_Space (E);
17263 elsif Optimize_Alignment = 'T' then
17264 Set_Optimize_Alignment_Time (E);
17265 end if;
17266 end Set_Optimize_Alignment_Flags;
17268 -----------------------
17269 -- Set_Public_Status --
17270 -----------------------
17272 procedure Set_Public_Status (Id : Entity_Id) is
17273 S : constant Entity_Id := Current_Scope;
17275 function Within_HSS_Or_If (E : Entity_Id) return Boolean;
17276 -- Determines if E is defined within handled statement sequence or
17277 -- an if statement, returns True if so, False otherwise.
17279 ----------------------
17280 -- Within_HSS_Or_If --
17281 ----------------------
17283 function Within_HSS_Or_If (E : Entity_Id) return Boolean is
17284 N : Node_Id;
17285 begin
17286 N := Declaration_Node (E);
17287 loop
17288 N := Parent (N);
17290 if No (N) then
17291 return False;
17293 elsif Nkind_In (N, N_Handled_Sequence_Of_Statements,
17294 N_If_Statement)
17295 then
17296 return True;
17297 end if;
17298 end loop;
17299 end Within_HSS_Or_If;
17301 -- Start of processing for Set_Public_Status
17303 begin
17304 -- Everything in the scope of Standard is public
17306 if S = Standard_Standard then
17307 Set_Is_Public (Id);
17309 -- Entity is definitely not public if enclosing scope is not public
17311 elsif not Is_Public (S) then
17312 return;
17314 -- An object or function declaration that occurs in a handled sequence
17315 -- of statements or within an if statement is the declaration for a
17316 -- temporary object or local subprogram generated by the expander. It
17317 -- never needs to be made public and furthermore, making it public can
17318 -- cause back end problems.
17320 elsif Nkind_In (Parent (Id), N_Object_Declaration,
17321 N_Function_Specification)
17322 and then Within_HSS_Or_If (Id)
17323 then
17324 return;
17326 -- Entities in public packages or records are public
17328 elsif Ekind (S) = E_Package or Is_Record_Type (S) then
17329 Set_Is_Public (Id);
17331 -- The bounds of an entry family declaration can generate object
17332 -- declarations that are visible to the back-end, e.g. in the
17333 -- the declaration of a composite type that contains tasks.
17335 elsif Is_Concurrent_Type (S)
17336 and then not Has_Completion (S)
17337 and then Nkind (Parent (Id)) = N_Object_Declaration
17338 then
17339 Set_Is_Public (Id);
17340 end if;
17341 end Set_Public_Status;
17343 -----------------------------
17344 -- Set_Referenced_Modified --
17345 -----------------------------
17347 procedure Set_Referenced_Modified (N : Node_Id; Out_Param : Boolean) is
17348 Pref : Node_Id;
17350 begin
17351 -- Deal with indexed or selected component where prefix is modified
17353 if Nkind_In (N, N_Indexed_Component, N_Selected_Component) then
17354 Pref := Prefix (N);
17356 -- If prefix is access type, then it is the designated object that is
17357 -- being modified, which means we have no entity to set the flag on.
17359 if No (Etype (Pref)) or else Is_Access_Type (Etype (Pref)) then
17360 return;
17362 -- Otherwise chase the prefix
17364 else
17365 Set_Referenced_Modified (Pref, Out_Param);
17366 end if;
17368 -- Otherwise see if we have an entity name (only other case to process)
17370 elsif Is_Entity_Name (N) and then Present (Entity (N)) then
17371 Set_Referenced_As_LHS (Entity (N), not Out_Param);
17372 Set_Referenced_As_Out_Parameter (Entity (N), Out_Param);
17373 end if;
17374 end Set_Referenced_Modified;
17376 ----------------------------
17377 -- Set_Scope_Is_Transient --
17378 ----------------------------
17380 procedure Set_Scope_Is_Transient (V : Boolean := True) is
17381 begin
17382 Scope_Stack.Table (Scope_Stack.Last).Is_Transient := V;
17383 end Set_Scope_Is_Transient;
17385 -------------------
17386 -- Set_Size_Info --
17387 -------------------
17389 procedure Set_Size_Info (T1, T2 : Entity_Id) is
17390 begin
17391 -- We copy Esize, but not RM_Size, since in general RM_Size is
17392 -- subtype specific and does not get inherited by all subtypes.
17394 Set_Esize (T1, Esize (T2));
17395 Set_Has_Biased_Representation (T1, Has_Biased_Representation (T2));
17397 if Is_Discrete_Or_Fixed_Point_Type (T1)
17398 and then
17399 Is_Discrete_Or_Fixed_Point_Type (T2)
17400 then
17401 Set_Is_Unsigned_Type (T1, Is_Unsigned_Type (T2));
17402 end if;
17404 Set_Alignment (T1, Alignment (T2));
17405 end Set_Size_Info;
17407 --------------------
17408 -- Static_Boolean --
17409 --------------------
17411 function Static_Boolean (N : Node_Id) return Uint is
17412 begin
17413 Analyze_And_Resolve (N, Standard_Boolean);
17415 if N = Error
17416 or else Error_Posted (N)
17417 or else Etype (N) = Any_Type
17418 then
17419 return No_Uint;
17420 end if;
17422 if Is_OK_Static_Expression (N) then
17423 if not Raises_Constraint_Error (N) then
17424 return Expr_Value (N);
17425 else
17426 return No_Uint;
17427 end if;
17429 elsif Etype (N) = Any_Type then
17430 return No_Uint;
17432 else
17433 Flag_Non_Static_Expr
17434 ("static boolean expression required here", N);
17435 return No_Uint;
17436 end if;
17437 end Static_Boolean;
17439 --------------------
17440 -- Static_Integer --
17441 --------------------
17443 function Static_Integer (N : Node_Id) return Uint is
17444 begin
17445 Analyze_And_Resolve (N, Any_Integer);
17447 if N = Error
17448 or else Error_Posted (N)
17449 or else Etype (N) = Any_Type
17450 then
17451 return No_Uint;
17452 end if;
17454 if Is_OK_Static_Expression (N) then
17455 if not Raises_Constraint_Error (N) then
17456 return Expr_Value (N);
17457 else
17458 return No_Uint;
17459 end if;
17461 elsif Etype (N) = Any_Type then
17462 return No_Uint;
17464 else
17465 Flag_Non_Static_Expr
17466 ("static integer expression required here", N);
17467 return No_Uint;
17468 end if;
17469 end Static_Integer;
17471 --------------------------
17472 -- Statically_Different --
17473 --------------------------
17475 function Statically_Different (E1, E2 : Node_Id) return Boolean is
17476 R1 : constant Node_Id := Get_Referenced_Object (E1);
17477 R2 : constant Node_Id := Get_Referenced_Object (E2);
17478 begin
17479 return Is_Entity_Name (R1)
17480 and then Is_Entity_Name (R2)
17481 and then Entity (R1) /= Entity (R2)
17482 and then not Is_Formal (Entity (R1))
17483 and then not Is_Formal (Entity (R2));
17484 end Statically_Different;
17486 --------------------------------------
17487 -- Subject_To_Loop_Entry_Attributes --
17488 --------------------------------------
17490 function Subject_To_Loop_Entry_Attributes (N : Node_Id) return Boolean is
17491 Stmt : Node_Id;
17493 begin
17494 Stmt := N;
17496 -- The expansion mechanism transform a loop subject to at least one
17497 -- 'Loop_Entry attribute into a conditional block. Infinite loops lack
17498 -- the conditional part.
17500 if Nkind_In (Stmt, N_Block_Statement, N_If_Statement)
17501 and then Nkind (Original_Node (N)) = N_Loop_Statement
17502 then
17503 Stmt := Original_Node (N);
17504 end if;
17506 return
17507 Nkind (Stmt) = N_Loop_Statement
17508 and then Present (Identifier (Stmt))
17509 and then Present (Entity (Identifier (Stmt)))
17510 and then Has_Loop_Entry_Attributes (Entity (Identifier (Stmt)));
17511 end Subject_To_Loop_Entry_Attributes;
17513 -----------------------------
17514 -- Subprogram_Access_Level --
17515 -----------------------------
17517 function Subprogram_Access_Level (Subp : Entity_Id) return Uint is
17518 begin
17519 if Present (Alias (Subp)) then
17520 return Subprogram_Access_Level (Alias (Subp));
17521 else
17522 return Scope_Depth (Enclosing_Dynamic_Scope (Subp));
17523 end if;
17524 end Subprogram_Access_Level;
17526 -------------------------------
17527 -- Support_Atomic_Primitives --
17528 -------------------------------
17530 function Support_Atomic_Primitives (Typ : Entity_Id) return Boolean is
17531 Size : Int;
17533 begin
17534 -- Verify the alignment of Typ is known
17536 if not Known_Alignment (Typ) then
17537 return False;
17538 end if;
17540 if Known_Static_Esize (Typ) then
17541 Size := UI_To_Int (Esize (Typ));
17543 -- If the Esize (Object_Size) is unknown at compile time, look at the
17544 -- RM_Size (Value_Size) which may have been set by an explicit rep item.
17546 elsif Known_Static_RM_Size (Typ) then
17547 Size := UI_To_Int (RM_Size (Typ));
17549 -- Otherwise, the size is considered to be unknown.
17551 else
17552 return False;
17553 end if;
17555 -- Check that the size of the component is 8, 16, 32 or 64 bits and that
17556 -- Typ is properly aligned.
17558 case Size is
17559 when 8 | 16 | 32 | 64 =>
17560 return Size = UI_To_Int (Alignment (Typ)) * 8;
17561 when others =>
17562 return False;
17563 end case;
17564 end Support_Atomic_Primitives;
17566 -----------------
17567 -- Trace_Scope --
17568 -----------------
17570 procedure Trace_Scope (N : Node_Id; E : Entity_Id; Msg : String) is
17571 begin
17572 if Debug_Flag_W then
17573 for J in 0 .. Scope_Stack.Last loop
17574 Write_Str (" ");
17575 end loop;
17577 Write_Str (Msg);
17578 Write_Name (Chars (E));
17579 Write_Str (" from ");
17580 Write_Location (Sloc (N));
17581 Write_Eol;
17582 end if;
17583 end Trace_Scope;
17585 -----------------------
17586 -- Transfer_Entities --
17587 -----------------------
17589 procedure Transfer_Entities (From : Entity_Id; To : Entity_Id) is
17590 procedure Set_Public_Status_Of (Id : Entity_Id);
17591 -- Set the Is_Public attribute of arbitrary entity Id by calling routine
17592 -- Set_Public_Status. If successfull and Id denotes a record type, set
17593 -- the Is_Public attribute of its fields.
17595 --------------------------
17596 -- Set_Public_Status_Of --
17597 --------------------------
17599 procedure Set_Public_Status_Of (Id : Entity_Id) is
17600 Field : Entity_Id;
17602 begin
17603 if not Is_Public (Id) then
17604 Set_Public_Status (Id);
17606 -- When the input entity is a public record type, ensure that all
17607 -- its internal fields are also exposed to the linker. The fields
17608 -- of a class-wide type are never made public.
17610 if Is_Public (Id)
17611 and then Is_Record_Type (Id)
17612 and then not Is_Class_Wide_Type (Id)
17613 then
17614 Field := First_Entity (Id);
17615 while Present (Field) loop
17616 Set_Is_Public (Field);
17617 Next_Entity (Field);
17618 end loop;
17619 end if;
17620 end if;
17621 end Set_Public_Status_Of;
17623 -- Local variables
17625 Full_Id : Entity_Id;
17626 Id : Entity_Id;
17628 -- Start of processing for Transfer_Entities
17630 begin
17631 Id := First_Entity (From);
17633 if Present (Id) then
17635 -- Merge the entity chain of the source scope with that of the
17636 -- destination scope.
17638 if Present (Last_Entity (To)) then
17639 Set_Next_Entity (Last_Entity (To), Id);
17640 else
17641 Set_First_Entity (To, Id);
17642 end if;
17644 Set_Last_Entity (To, Last_Entity (From));
17646 -- Inspect the entities of the source scope and update their Scope
17647 -- attribute.
17649 while Present (Id) loop
17650 Set_Scope (Id, To);
17651 Set_Public_Status_Of (Id);
17653 -- Handle an internally generated full view for a private type
17655 if Is_Private_Type (Id)
17656 and then Present (Full_View (Id))
17657 and then Is_Itype (Full_View (Id))
17658 then
17659 Full_Id := Full_View (Id);
17661 Set_Scope (Full_Id, To);
17662 Set_Public_Status_Of (Full_Id);
17663 end if;
17665 Next_Entity (Id);
17666 end loop;
17668 Set_First_Entity (From, Empty);
17669 Set_Last_Entity (From, Empty);
17670 end if;
17671 end Transfer_Entities;
17673 -----------------------
17674 -- Type_Access_Level --
17675 -----------------------
17677 function Type_Access_Level (Typ : Entity_Id) return Uint is
17678 Btyp : Entity_Id;
17680 begin
17681 Btyp := Base_Type (Typ);
17683 -- Ada 2005 (AI-230): For most cases of anonymous access types, we
17684 -- simply use the level where the type is declared. This is true for
17685 -- stand-alone object declarations, and for anonymous access types
17686 -- associated with components the level is the same as that of the
17687 -- enclosing composite type. However, special treatment is needed for
17688 -- the cases of access parameters, return objects of an anonymous access
17689 -- type, and, in Ada 95, access discriminants of limited types.
17691 if Is_Access_Type (Btyp) then
17692 if Ekind (Btyp) = E_Anonymous_Access_Type then
17694 -- If the type is a nonlocal anonymous access type (such as for
17695 -- an access parameter) we treat it as being declared at the
17696 -- library level to ensure that names such as X.all'access don't
17697 -- fail static accessibility checks.
17699 if not Is_Local_Anonymous_Access (Typ) then
17700 return Scope_Depth (Standard_Standard);
17702 -- If this is a return object, the accessibility level is that of
17703 -- the result subtype of the enclosing function. The test here is
17704 -- little complicated, because we have to account for extended
17705 -- return statements that have been rewritten as blocks, in which
17706 -- case we have to find and the Is_Return_Object attribute of the
17707 -- itype's associated object. It would be nice to find a way to
17708 -- simplify this test, but it doesn't seem worthwhile to add a new
17709 -- flag just for purposes of this test. ???
17711 elsif Ekind (Scope (Btyp)) = E_Return_Statement
17712 or else
17713 (Is_Itype (Btyp)
17714 and then Nkind (Associated_Node_For_Itype (Btyp)) =
17715 N_Object_Declaration
17716 and then Is_Return_Object
17717 (Defining_Identifier
17718 (Associated_Node_For_Itype (Btyp))))
17719 then
17720 declare
17721 Scop : Entity_Id;
17723 begin
17724 Scop := Scope (Scope (Btyp));
17725 while Present (Scop) loop
17726 exit when Ekind (Scop) = E_Function;
17727 Scop := Scope (Scop);
17728 end loop;
17730 -- Treat the return object's type as having the level of the
17731 -- function's result subtype (as per RM05-6.5(5.3/2)).
17733 return Type_Access_Level (Etype (Scop));
17734 end;
17735 end if;
17736 end if;
17738 Btyp := Root_Type (Btyp);
17740 -- The accessibility level of anonymous access types associated with
17741 -- discriminants is that of the current instance of the type, and
17742 -- that's deeper than the type itself (AARM 3.10.2 (12.3.21)).
17744 -- AI-402: access discriminants have accessibility based on the
17745 -- object rather than the type in Ada 2005, so the above paragraph
17746 -- doesn't apply.
17748 -- ??? Needs completion with rules from AI-416
17750 if Ada_Version <= Ada_95
17751 and then Ekind (Typ) = E_Anonymous_Access_Type
17752 and then Present (Associated_Node_For_Itype (Typ))
17753 and then Nkind (Associated_Node_For_Itype (Typ)) =
17754 N_Discriminant_Specification
17755 then
17756 return Scope_Depth (Enclosing_Dynamic_Scope (Btyp)) + 1;
17757 end if;
17758 end if;
17760 -- Return library level for a generic formal type. This is done because
17761 -- RM(10.3.2) says that "The statically deeper relationship does not
17762 -- apply to ... a descendant of a generic formal type". Rather than
17763 -- checking at each point where a static accessibility check is
17764 -- performed to see if we are dealing with a formal type, this rule is
17765 -- implemented by having Type_Access_Level and Deepest_Type_Access_Level
17766 -- return extreme values for a formal type; Deepest_Type_Access_Level
17767 -- returns Int'Last. By calling the appropriate function from among the
17768 -- two, we ensure that the static accessibility check will pass if we
17769 -- happen to run into a formal type. More specifically, we should call
17770 -- Deepest_Type_Access_Level instead of Type_Access_Level whenever the
17771 -- call occurs as part of a static accessibility check and the error
17772 -- case is the case where the type's level is too shallow (as opposed
17773 -- to too deep).
17775 if Is_Generic_Type (Root_Type (Btyp)) then
17776 return Scope_Depth (Standard_Standard);
17777 end if;
17779 return Scope_Depth (Enclosing_Dynamic_Scope (Btyp));
17780 end Type_Access_Level;
17782 ------------------------------------
17783 -- Type_Without_Stream_Operation --
17784 ------------------------------------
17786 function Type_Without_Stream_Operation
17787 (T : Entity_Id;
17788 Op : TSS_Name_Type := TSS_Null) return Entity_Id
17790 BT : constant Entity_Id := Base_Type (T);
17791 Op_Missing : Boolean;
17793 begin
17794 if not Restriction_Active (No_Default_Stream_Attributes) then
17795 return Empty;
17796 end if;
17798 if Is_Elementary_Type (T) then
17799 if Op = TSS_Null then
17800 Op_Missing :=
17801 No (TSS (BT, TSS_Stream_Read))
17802 or else No (TSS (BT, TSS_Stream_Write));
17804 else
17805 Op_Missing := No (TSS (BT, Op));
17806 end if;
17808 if Op_Missing then
17809 return T;
17810 else
17811 return Empty;
17812 end if;
17814 elsif Is_Array_Type (T) then
17815 return Type_Without_Stream_Operation (Component_Type (T), Op);
17817 elsif Is_Record_Type (T) then
17818 declare
17819 Comp : Entity_Id;
17820 C_Typ : Entity_Id;
17822 begin
17823 Comp := First_Component (T);
17824 while Present (Comp) loop
17825 C_Typ := Type_Without_Stream_Operation (Etype (Comp), Op);
17827 if Present (C_Typ) then
17828 return C_Typ;
17829 end if;
17831 Next_Component (Comp);
17832 end loop;
17834 return Empty;
17835 end;
17837 elsif Is_Private_Type (T) and then Present (Full_View (T)) then
17838 return Type_Without_Stream_Operation (Full_View (T), Op);
17839 else
17840 return Empty;
17841 end if;
17842 end Type_Without_Stream_Operation;
17844 ----------------------------
17845 -- Unique_Defining_Entity --
17846 ----------------------------
17848 function Unique_Defining_Entity (N : Node_Id) return Entity_Id is
17849 begin
17850 return Unique_Entity (Defining_Entity (N));
17851 end Unique_Defining_Entity;
17853 -------------------
17854 -- Unique_Entity --
17855 -------------------
17857 function Unique_Entity (E : Entity_Id) return Entity_Id is
17858 U : Entity_Id := E;
17859 P : Node_Id;
17861 begin
17862 case Ekind (E) is
17863 when E_Constant =>
17864 if Present (Full_View (E)) then
17865 U := Full_View (E);
17866 end if;
17868 when Type_Kind =>
17869 if Present (Full_View (E)) then
17870 U := Full_View (E);
17871 end if;
17873 when E_Package_Body =>
17874 P := Parent (E);
17876 if Nkind (P) = N_Defining_Program_Unit_Name then
17877 P := Parent (P);
17878 end if;
17880 U := Corresponding_Spec (P);
17882 when E_Subprogram_Body =>
17883 P := Parent (E);
17885 if Nkind (P) = N_Defining_Program_Unit_Name then
17886 P := Parent (P);
17887 end if;
17889 P := Parent (P);
17891 if Nkind (P) = N_Subprogram_Body_Stub then
17892 if Present (Library_Unit (P)) then
17894 -- Get to the function or procedure (generic) entity through
17895 -- the body entity.
17897 U :=
17898 Unique_Entity (Defining_Entity (Get_Body_From_Stub (P)));
17899 end if;
17900 else
17901 U := Corresponding_Spec (P);
17902 end if;
17904 when Formal_Kind =>
17905 if Present (Spec_Entity (E)) then
17906 U := Spec_Entity (E);
17907 end if;
17909 when others =>
17910 null;
17911 end case;
17913 return U;
17914 end Unique_Entity;
17916 -----------------
17917 -- Unique_Name --
17918 -----------------
17920 function Unique_Name (E : Entity_Id) return String is
17922 -- Names of E_Subprogram_Body or E_Package_Body entities are not
17923 -- reliable, as they may not include the overloading suffix. Instead,
17924 -- when looking for the name of E or one of its enclosing scope, we get
17925 -- the name of the corresponding Unique_Entity.
17927 function Get_Scoped_Name (E : Entity_Id) return String;
17928 -- Return the name of E prefixed by all the names of the scopes to which
17929 -- E belongs, except for Standard.
17931 ---------------------
17932 -- Get_Scoped_Name --
17933 ---------------------
17935 function Get_Scoped_Name (E : Entity_Id) return String is
17936 Name : constant String := Get_Name_String (Chars (E));
17937 begin
17938 if Has_Fully_Qualified_Name (E)
17939 or else Scope (E) = Standard_Standard
17940 then
17941 return Name;
17942 else
17943 return Get_Scoped_Name (Unique_Entity (Scope (E))) & "__" & Name;
17944 end if;
17945 end Get_Scoped_Name;
17947 -- Start of processing for Unique_Name
17949 begin
17950 if E = Standard_Standard then
17951 return Get_Name_String (Name_Standard);
17953 elsif Scope (E) = Standard_Standard
17954 and then not (Ekind (E) = E_Package or else Is_Subprogram (E))
17955 then
17956 return Get_Name_String (Name_Standard) & "__" &
17957 Get_Name_String (Chars (E));
17959 elsif Ekind (E) = E_Enumeration_Literal then
17960 return Unique_Name (Etype (E)) & "__" & Get_Name_String (Chars (E));
17962 else
17963 return Get_Scoped_Name (Unique_Entity (E));
17964 end if;
17965 end Unique_Name;
17967 ---------------------
17968 -- Unit_Is_Visible --
17969 ---------------------
17971 function Unit_Is_Visible (U : Entity_Id) return Boolean is
17972 Curr : constant Node_Id := Cunit (Current_Sem_Unit);
17973 Curr_Entity : constant Entity_Id := Cunit_Entity (Current_Sem_Unit);
17975 function Unit_In_Parent_Context (Par_Unit : Node_Id) return Boolean;
17976 -- For a child unit, check whether unit appears in a with_clause
17977 -- of a parent.
17979 function Unit_In_Context (Comp_Unit : Node_Id) return Boolean;
17980 -- Scan the context clause of one compilation unit looking for a
17981 -- with_clause for the unit in question.
17983 ----------------------------
17984 -- Unit_In_Parent_Context --
17985 ----------------------------
17987 function Unit_In_Parent_Context (Par_Unit : Node_Id) return Boolean is
17988 begin
17989 if Unit_In_Context (Par_Unit) then
17990 return True;
17992 elsif Is_Child_Unit (Defining_Entity (Unit (Par_Unit))) then
17993 return Unit_In_Parent_Context (Parent_Spec (Unit (Par_Unit)));
17995 else
17996 return False;
17997 end if;
17998 end Unit_In_Parent_Context;
18000 ---------------------
18001 -- Unit_In_Context --
18002 ---------------------
18004 function Unit_In_Context (Comp_Unit : Node_Id) return Boolean is
18005 Clause : Node_Id;
18007 begin
18008 Clause := First (Context_Items (Comp_Unit));
18009 while Present (Clause) loop
18010 if Nkind (Clause) = N_With_Clause then
18011 if Library_Unit (Clause) = U then
18012 return True;
18014 -- The with_clause may denote a renaming of the unit we are
18015 -- looking for, eg. Text_IO which renames Ada.Text_IO.
18017 elsif
18018 Renamed_Entity (Entity (Name (Clause))) =
18019 Defining_Entity (Unit (U))
18020 then
18021 return True;
18022 end if;
18023 end if;
18025 Next (Clause);
18026 end loop;
18028 return False;
18029 end Unit_In_Context;
18031 -- Start of processing for Unit_Is_Visible
18033 begin
18034 -- The currrent unit is directly visible
18036 if Curr = U then
18037 return True;
18039 elsif Unit_In_Context (Curr) then
18040 return True;
18042 -- If the current unit is a body, check the context of the spec
18044 elsif Nkind (Unit (Curr)) = N_Package_Body
18045 or else
18046 (Nkind (Unit (Curr)) = N_Subprogram_Body
18047 and then not Acts_As_Spec (Unit (Curr)))
18048 then
18049 if Unit_In_Context (Library_Unit (Curr)) then
18050 return True;
18051 end if;
18052 end if;
18054 -- If the spec is a child unit, examine the parents
18056 if Is_Child_Unit (Curr_Entity) then
18057 if Nkind (Unit (Curr)) in N_Unit_Body then
18058 return
18059 Unit_In_Parent_Context
18060 (Parent_Spec (Unit (Library_Unit (Curr))));
18061 else
18062 return Unit_In_Parent_Context (Parent_Spec (Unit (Curr)));
18063 end if;
18065 else
18066 return False;
18067 end if;
18068 end Unit_Is_Visible;
18070 ------------------------------
18071 -- Universal_Interpretation --
18072 ------------------------------
18074 function Universal_Interpretation (Opnd : Node_Id) return Entity_Id is
18075 Index : Interp_Index;
18076 It : Interp;
18078 begin
18079 -- The argument may be a formal parameter of an operator or subprogram
18080 -- with multiple interpretations, or else an expression for an actual.
18082 if Nkind (Opnd) = N_Defining_Identifier
18083 or else not Is_Overloaded (Opnd)
18084 then
18085 if Etype (Opnd) = Universal_Integer
18086 or else Etype (Opnd) = Universal_Real
18087 then
18088 return Etype (Opnd);
18089 else
18090 return Empty;
18091 end if;
18093 else
18094 Get_First_Interp (Opnd, Index, It);
18095 while Present (It.Typ) loop
18096 if It.Typ = Universal_Integer
18097 or else It.Typ = Universal_Real
18098 then
18099 return It.Typ;
18100 end if;
18102 Get_Next_Interp (Index, It);
18103 end loop;
18105 return Empty;
18106 end if;
18107 end Universal_Interpretation;
18109 ---------------
18110 -- Unqualify --
18111 ---------------
18113 function Unqualify (Expr : Node_Id) return Node_Id is
18114 begin
18115 -- Recurse to handle unlikely case of multiple levels of qualification
18117 if Nkind (Expr) = N_Qualified_Expression then
18118 return Unqualify (Expression (Expr));
18120 -- Normal case, not a qualified expression
18122 else
18123 return Expr;
18124 end if;
18125 end Unqualify;
18127 -----------------------
18128 -- Visible_Ancestors --
18129 -----------------------
18131 function Visible_Ancestors (Typ : Entity_Id) return Elist_Id is
18132 List_1 : Elist_Id;
18133 List_2 : Elist_Id;
18134 Elmt : Elmt_Id;
18136 begin
18137 pragma Assert (Is_Record_Type (Typ) and then Is_Tagged_Type (Typ));
18139 -- Collect all the parents and progenitors of Typ. If the full-view of
18140 -- private parents and progenitors is available then it is used to
18141 -- generate the list of visible ancestors; otherwise their partial
18142 -- view is added to the resulting list.
18144 Collect_Parents
18145 (T => Typ,
18146 List => List_1,
18147 Use_Full_View => True);
18149 Collect_Interfaces
18150 (T => Typ,
18151 Ifaces_List => List_2,
18152 Exclude_Parents => True,
18153 Use_Full_View => True);
18155 -- Join the two lists. Avoid duplications because an interface may
18156 -- simultaneously be parent and progenitor of a type.
18158 Elmt := First_Elmt (List_2);
18159 while Present (Elmt) loop
18160 Append_Unique_Elmt (Node (Elmt), List_1);
18161 Next_Elmt (Elmt);
18162 end loop;
18164 return List_1;
18165 end Visible_Ancestors;
18167 ----------------------
18168 -- Within_Init_Proc --
18169 ----------------------
18171 function Within_Init_Proc return Boolean is
18172 S : Entity_Id;
18174 begin
18175 S := Current_Scope;
18176 while not Is_Overloadable (S) loop
18177 if S = Standard_Standard then
18178 return False;
18179 else
18180 S := Scope (S);
18181 end if;
18182 end loop;
18184 return Is_Init_Proc (S);
18185 end Within_Init_Proc;
18187 ------------------
18188 -- Within_Scope --
18189 ------------------
18191 function Within_Scope (E : Entity_Id; S : Entity_Id) return Boolean is
18192 SE : Entity_Id;
18193 begin
18194 SE := Scope (E);
18195 loop
18196 if SE = S then
18197 return True;
18198 elsif SE = Standard_Standard then
18199 return False;
18200 else
18201 SE := Scope (SE);
18202 end if;
18203 end loop;
18204 end Within_Scope;
18206 ----------------
18207 -- Wrong_Type --
18208 ----------------
18210 procedure Wrong_Type (Expr : Node_Id; Expected_Type : Entity_Id) is
18211 Found_Type : constant Entity_Id := First_Subtype (Etype (Expr));
18212 Expec_Type : constant Entity_Id := First_Subtype (Expected_Type);
18214 Matching_Field : Entity_Id;
18215 -- Entity to give a more precise suggestion on how to write a one-
18216 -- element positional aggregate.
18218 function Has_One_Matching_Field return Boolean;
18219 -- Determines if Expec_Type is a record type with a single component or
18220 -- discriminant whose type matches the found type or is one dimensional
18221 -- array whose component type matches the found type. In the case of
18222 -- one discriminant, we ignore the variant parts. That's not accurate,
18223 -- but good enough for the warning.
18225 ----------------------------
18226 -- Has_One_Matching_Field --
18227 ----------------------------
18229 function Has_One_Matching_Field return Boolean is
18230 E : Entity_Id;
18232 begin
18233 Matching_Field := Empty;
18235 if Is_Array_Type (Expec_Type)
18236 and then Number_Dimensions (Expec_Type) = 1
18237 and then Covers (Etype (Component_Type (Expec_Type)), Found_Type)
18238 then
18239 -- Use type name if available. This excludes multidimensional
18240 -- arrays and anonymous arrays.
18242 if Comes_From_Source (Expec_Type) then
18243 Matching_Field := Expec_Type;
18245 -- For an assignment, use name of target
18247 elsif Nkind (Parent (Expr)) = N_Assignment_Statement
18248 and then Is_Entity_Name (Name (Parent (Expr)))
18249 then
18250 Matching_Field := Entity (Name (Parent (Expr)));
18251 end if;
18253 return True;
18255 elsif not Is_Record_Type (Expec_Type) then
18256 return False;
18258 else
18259 E := First_Entity (Expec_Type);
18260 loop
18261 if No (E) then
18262 return False;
18264 elsif not Ekind_In (E, E_Discriminant, E_Component)
18265 or else Nam_In (Chars (E), Name_uTag, Name_uParent)
18266 then
18267 Next_Entity (E);
18269 else
18270 exit;
18271 end if;
18272 end loop;
18274 if not Covers (Etype (E), Found_Type) then
18275 return False;
18277 elsif Present (Next_Entity (E))
18278 and then (Ekind (E) = E_Component
18279 or else Ekind (Next_Entity (E)) = E_Discriminant)
18280 then
18281 return False;
18283 else
18284 Matching_Field := E;
18285 return True;
18286 end if;
18287 end if;
18288 end Has_One_Matching_Field;
18290 -- Start of processing for Wrong_Type
18292 begin
18293 -- Don't output message if either type is Any_Type, or if a message
18294 -- has already been posted for this node. We need to do the latter
18295 -- check explicitly (it is ordinarily done in Errout), because we
18296 -- are using ! to force the output of the error messages.
18298 if Expec_Type = Any_Type
18299 or else Found_Type = Any_Type
18300 or else Error_Posted (Expr)
18301 then
18302 return;
18304 -- If one of the types is a Taft-Amendment type and the other it its
18305 -- completion, it must be an illegal use of a TAT in the spec, for
18306 -- which an error was already emitted. Avoid cascaded errors.
18308 elsif Is_Incomplete_Type (Expec_Type)
18309 and then Has_Completion_In_Body (Expec_Type)
18310 and then Full_View (Expec_Type) = Etype (Expr)
18311 then
18312 return;
18314 elsif Is_Incomplete_Type (Etype (Expr))
18315 and then Has_Completion_In_Body (Etype (Expr))
18316 and then Full_View (Etype (Expr)) = Expec_Type
18317 then
18318 return;
18320 -- In an instance, there is an ongoing problem with completion of
18321 -- type derived from private types. Their structure is what Gigi
18322 -- expects, but the Etype is the parent type rather than the
18323 -- derived private type itself. Do not flag error in this case. The
18324 -- private completion is an entity without a parent, like an Itype.
18325 -- Similarly, full and partial views may be incorrect in the instance.
18326 -- There is no simple way to insure that it is consistent ???
18328 -- A similar view discrepancy can happen in an inlined body, for the
18329 -- same reason: inserted body may be outside of the original package
18330 -- and only partial views are visible at the point of insertion.
18332 elsif In_Instance or else In_Inlined_Body then
18333 if Etype (Etype (Expr)) = Etype (Expected_Type)
18334 and then
18335 (Has_Private_Declaration (Expected_Type)
18336 or else Has_Private_Declaration (Etype (Expr)))
18337 and then No (Parent (Expected_Type))
18338 then
18339 return;
18341 elsif Nkind (Parent (Expr)) = N_Qualified_Expression
18342 and then Entity (Subtype_Mark (Parent (Expr))) = Expected_Type
18343 then
18344 return;
18346 elsif Is_Private_Type (Expected_Type)
18347 and then Present (Full_View (Expected_Type))
18348 and then Covers (Full_View (Expected_Type), Etype (Expr))
18349 then
18350 return;
18351 end if;
18352 end if;
18354 -- An interesting special check. If the expression is parenthesized
18355 -- and its type corresponds to the type of the sole component of the
18356 -- expected record type, or to the component type of the expected one
18357 -- dimensional array type, then assume we have a bad aggregate attempt.
18359 if Nkind (Expr) in N_Subexpr
18360 and then Paren_Count (Expr) /= 0
18361 and then Has_One_Matching_Field
18362 then
18363 Error_Msg_N ("positional aggregate cannot have one component", Expr);
18364 if Present (Matching_Field) then
18365 if Is_Array_Type (Expec_Type) then
18366 Error_Msg_NE
18367 ("\write instead `&''First ='> ...`", Expr, Matching_Field);
18369 else
18370 Error_Msg_NE
18371 ("\write instead `& ='> ...`", Expr, Matching_Field);
18372 end if;
18373 end if;
18375 -- Another special check, if we are looking for a pool-specific access
18376 -- type and we found an E_Access_Attribute_Type, then we have the case
18377 -- of an Access attribute being used in a context which needs a pool-
18378 -- specific type, which is never allowed. The one extra check we make
18379 -- is that the expected designated type covers the Found_Type.
18381 elsif Is_Access_Type (Expec_Type)
18382 and then Ekind (Found_Type) = E_Access_Attribute_Type
18383 and then Ekind (Base_Type (Expec_Type)) /= E_General_Access_Type
18384 and then Ekind (Base_Type (Expec_Type)) /= E_Anonymous_Access_Type
18385 and then Covers
18386 (Designated_Type (Expec_Type), Designated_Type (Found_Type))
18387 then
18388 Error_Msg_N -- CODEFIX
18389 ("result must be general access type!", Expr);
18390 Error_Msg_NE -- CODEFIX
18391 ("add ALL to }!", Expr, Expec_Type);
18393 -- Another special check, if the expected type is an integer type,
18394 -- but the expression is of type System.Address, and the parent is
18395 -- an addition or subtraction operation whose left operand is the
18396 -- expression in question and whose right operand is of an integral
18397 -- type, then this is an attempt at address arithmetic, so give
18398 -- appropriate message.
18400 elsif Is_Integer_Type (Expec_Type)
18401 and then Is_RTE (Found_Type, RE_Address)
18402 and then Nkind_In (Parent (Expr), N_Op_Add, N_Op_Subtract)
18403 and then Expr = Left_Opnd (Parent (Expr))
18404 and then Is_Integer_Type (Etype (Right_Opnd (Parent (Expr))))
18405 then
18406 Error_Msg_N
18407 ("address arithmetic not predefined in package System",
18408 Parent (Expr));
18409 Error_Msg_N
18410 ("\possible missing with/use of System.Storage_Elements",
18411 Parent (Expr));
18412 return;
18414 -- If the expected type is an anonymous access type, as for access
18415 -- parameters and discriminants, the error is on the designated types.
18417 elsif Ekind (Expec_Type) = E_Anonymous_Access_Type then
18418 if Comes_From_Source (Expec_Type) then
18419 Error_Msg_NE ("expected}!", Expr, Expec_Type);
18420 else
18421 Error_Msg_NE
18422 ("expected an access type with designated}",
18423 Expr, Designated_Type (Expec_Type));
18424 end if;
18426 if Is_Access_Type (Found_Type)
18427 and then not Comes_From_Source (Found_Type)
18428 then
18429 Error_Msg_NE
18430 ("\\found an access type with designated}!",
18431 Expr, Designated_Type (Found_Type));
18432 else
18433 if From_Limited_With (Found_Type) then
18434 Error_Msg_NE ("\\found incomplete}!", Expr, Found_Type);
18435 Error_Msg_Qual_Level := 99;
18436 Error_Msg_NE -- CODEFIX
18437 ("\\missing `WITH &;", Expr, Scope (Found_Type));
18438 Error_Msg_Qual_Level := 0;
18439 else
18440 Error_Msg_NE ("found}!", Expr, Found_Type);
18441 end if;
18442 end if;
18444 -- Normal case of one type found, some other type expected
18446 else
18447 -- If the names of the two types are the same, see if some number
18448 -- of levels of qualification will help. Don't try more than three
18449 -- levels, and if we get to standard, it's no use (and probably
18450 -- represents an error in the compiler) Also do not bother with
18451 -- internal scope names.
18453 declare
18454 Expec_Scope : Entity_Id;
18455 Found_Scope : Entity_Id;
18457 begin
18458 Expec_Scope := Expec_Type;
18459 Found_Scope := Found_Type;
18461 for Levels in Int range 0 .. 3 loop
18462 if Chars (Expec_Scope) /= Chars (Found_Scope) then
18463 Error_Msg_Qual_Level := Levels;
18464 exit;
18465 end if;
18467 Expec_Scope := Scope (Expec_Scope);
18468 Found_Scope := Scope (Found_Scope);
18470 exit when Expec_Scope = Standard_Standard
18471 or else Found_Scope = Standard_Standard
18472 or else not Comes_From_Source (Expec_Scope)
18473 or else not Comes_From_Source (Found_Scope);
18474 end loop;
18475 end;
18477 if Is_Record_Type (Expec_Type)
18478 and then Present (Corresponding_Remote_Type (Expec_Type))
18479 then
18480 Error_Msg_NE ("expected}!", Expr,
18481 Corresponding_Remote_Type (Expec_Type));
18482 else
18483 Error_Msg_NE ("expected}!", Expr, Expec_Type);
18484 end if;
18486 if Is_Entity_Name (Expr)
18487 and then Is_Package_Or_Generic_Package (Entity (Expr))
18488 then
18489 Error_Msg_N ("\\found package name!", Expr);
18491 elsif Is_Entity_Name (Expr)
18492 and then Ekind_In (Entity (Expr), E_Procedure, E_Generic_Procedure)
18493 then
18494 if Ekind (Expec_Type) = E_Access_Subprogram_Type then
18495 Error_Msg_N
18496 ("found procedure name, possibly missing Access attribute!",
18497 Expr);
18498 else
18499 Error_Msg_N
18500 ("\\found procedure name instead of function!", Expr);
18501 end if;
18503 elsif Nkind (Expr) = N_Function_Call
18504 and then Ekind (Expec_Type) = E_Access_Subprogram_Type
18505 and then Etype (Designated_Type (Expec_Type)) = Etype (Expr)
18506 and then No (Parameter_Associations (Expr))
18507 then
18508 Error_Msg_N
18509 ("found function name, possibly missing Access attribute!",
18510 Expr);
18512 -- Catch common error: a prefix or infix operator which is not
18513 -- directly visible because the type isn't.
18515 elsif Nkind (Expr) in N_Op
18516 and then Is_Overloaded (Expr)
18517 and then not Is_Immediately_Visible (Expec_Type)
18518 and then not Is_Potentially_Use_Visible (Expec_Type)
18519 and then not In_Use (Expec_Type)
18520 and then Has_Compatible_Type (Right_Opnd (Expr), Expec_Type)
18521 then
18522 Error_Msg_N
18523 ("operator of the type is not directly visible!", Expr);
18525 elsif Ekind (Found_Type) = E_Void
18526 and then Present (Parent (Found_Type))
18527 and then Nkind (Parent (Found_Type)) = N_Full_Type_Declaration
18528 then
18529 Error_Msg_NE ("\\found premature usage of}!", Expr, Found_Type);
18531 else
18532 Error_Msg_NE ("\\found}!", Expr, Found_Type);
18533 end if;
18535 -- A special check for cases like M1 and M2 = 0 where M1 and M2 are
18536 -- of the same modular type, and (M1 and M2) = 0 was intended.
18538 if Expec_Type = Standard_Boolean
18539 and then Is_Modular_Integer_Type (Found_Type)
18540 and then Nkind_In (Parent (Expr), N_Op_And, N_Op_Or, N_Op_Xor)
18541 and then Nkind (Right_Opnd (Parent (Expr))) in N_Op_Compare
18542 then
18543 declare
18544 Op : constant Node_Id := Right_Opnd (Parent (Expr));
18545 L : constant Node_Id := Left_Opnd (Op);
18546 R : constant Node_Id := Right_Opnd (Op);
18548 begin
18549 -- The case for the message is when the left operand of the
18550 -- comparison is the same modular type, or when it is an
18551 -- integer literal (or other universal integer expression),
18552 -- which would have been typed as the modular type if the
18553 -- parens had been there.
18555 if (Etype (L) = Found_Type
18556 or else
18557 Etype (L) = Universal_Integer)
18558 and then Is_Integer_Type (Etype (R))
18559 then
18560 Error_Msg_N
18561 ("\\possible missing parens for modular operation", Expr);
18562 end if;
18563 end;
18564 end if;
18566 -- Reset error message qualification indication
18568 Error_Msg_Qual_Level := 0;
18569 end if;
18570 end Wrong_Type;
18572 end Sem_Util;