1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Aspects
; use Aspects
;
27 with Atree
; use Atree
;
28 with Checks
; use Checks
;
29 with Debug
; use Debug
;
30 with Einfo
; use Einfo
;
31 with Elists
; use Elists
;
32 with Errout
; use Errout
;
33 with Expander
; use Expander
;
34 with Exp_Ch6
; use Exp_Ch6
;
35 with Exp_Ch7
; use Exp_Ch7
;
36 with Exp_Ch9
; use Exp_Ch9
;
37 with Exp_Dbug
; use Exp_Dbug
;
38 with Exp_Disp
; use Exp_Disp
;
39 with Exp_Tss
; use Exp_Tss
;
40 with Exp_Util
; use Exp_Util
;
41 with Fname
; use Fname
;
42 with Freeze
; use Freeze
;
43 with Ghost
; use Ghost
;
44 with Inline
; use Inline
;
45 with Itypes
; use Itypes
;
46 with Lib
.Xref
; use Lib
.Xref
;
47 with Layout
; use Layout
;
48 with Namet
; use Namet
;
50 with Nlists
; use Nlists
;
51 with Nmake
; use Nmake
;
53 with Output
; use Output
;
54 with Restrict
; use Restrict
;
55 with Rident
; use Rident
;
56 with Rtsfind
; use Rtsfind
;
58 with Sem_Aux
; use Sem_Aux
;
59 with Sem_Cat
; use Sem_Cat
;
60 with Sem_Ch3
; use Sem_Ch3
;
61 with Sem_Ch4
; use Sem_Ch4
;
62 with Sem_Ch5
; use Sem_Ch5
;
63 with Sem_Ch8
; use Sem_Ch8
;
64 with Sem_Ch10
; use Sem_Ch10
;
65 with Sem_Ch12
; use Sem_Ch12
;
66 with Sem_Ch13
; use Sem_Ch13
;
67 with Sem_Dim
; use Sem_Dim
;
68 with Sem_Disp
; use Sem_Disp
;
69 with Sem_Dist
; use Sem_Dist
;
70 with Sem_Elim
; use Sem_Elim
;
71 with Sem_Eval
; use Sem_Eval
;
72 with Sem_Mech
; use Sem_Mech
;
73 with Sem_Prag
; use Sem_Prag
;
74 with Sem_Res
; use Sem_Res
;
75 with Sem_Util
; use Sem_Util
;
76 with Sem_Type
; use Sem_Type
;
77 with Sem_Warn
; use Sem_Warn
;
78 with Sinput
; use Sinput
;
79 with Stand
; use Stand
;
80 with Sinfo
; use Sinfo
;
81 with Sinfo
.CN
; use Sinfo
.CN
;
82 with Snames
; use Snames
;
83 with Stringt
; use Stringt
;
85 with Stylesw
; use Stylesw
;
86 with Targparm
; use Targparm
;
87 with Tbuild
; use Tbuild
;
88 with Uintp
; use Uintp
;
89 with Urealp
; use Urealp
;
90 with Validsw
; use Validsw
;
92 package body Sem_Ch6
is
94 May_Hide_Profile
: Boolean := False;
95 -- This flag is used to indicate that two formals in two subprograms being
96 -- checked for conformance differ only in that one is an access parameter
97 -- while the other is of a general access type with the same designated
98 -- type. In this case, if the rest of the signatures match, a call to
99 -- either subprogram may be ambiguous, which is worth a warning. The flag
100 -- is set in Compatible_Types, and the warning emitted in
101 -- New_Overloaded_Entity.
103 -----------------------
104 -- Local Subprograms --
105 -----------------------
107 procedure Analyze_Function_Return
(N
: Node_Id
);
108 -- Subsidiary to Analyze_Return_Statement. Called when the return statement
109 -- applies to a [generic] function.
111 procedure Analyze_Generic_Subprogram_Body
(N
: Node_Id
; Gen_Id
: Entity_Id
);
112 -- Analyze a generic subprogram body. N is the body to be analyzed, and
113 -- Gen_Id is the defining entity Id for the corresponding spec.
115 procedure Analyze_Null_Procedure
117 Is_Completion
: out Boolean);
118 -- A null procedure can be a declaration or (Ada 2012) a completion
120 procedure Analyze_Return_Statement
(N
: Node_Id
);
121 -- Common processing for simple and extended return statements
123 procedure Analyze_Return_Type
(N
: Node_Id
);
124 -- Subsidiary to Process_Formals: analyze subtype mark in function
125 -- specification in a context where the formals are visible and hide
128 procedure Analyze_Subprogram_Body_Helper
(N
: Node_Id
);
129 -- Does all the real work of Analyze_Subprogram_Body. This is split out so
130 -- that we can use RETURN but not skip the debug output at the end.
132 function Can_Override_Operator
(Subp
: Entity_Id
) return Boolean;
133 -- Returns true if Subp can override a predefined operator.
135 procedure Check_Conformance
138 Ctype
: Conformance_Type
;
140 Conforms
: out Boolean;
141 Err_Loc
: Node_Id
:= Empty
;
142 Get_Inst
: Boolean := False;
143 Skip_Controlling_Formals
: Boolean := False);
144 -- Given two entities, this procedure checks that the profiles associated
145 -- with these entities meet the conformance criterion given by the third
146 -- parameter. If they conform, Conforms is set True and control returns
147 -- to the caller. If they do not conform, Conforms is set to False, and
148 -- in addition, if Errmsg is True on the call, proper messages are output
149 -- to complain about the conformance failure. If Err_Loc is non_Empty
150 -- the error messages are placed on Err_Loc, if Err_Loc is empty, then
151 -- error messages are placed on the appropriate part of the construct
152 -- denoted by New_Id. If Get_Inst is true, then this is a mode conformance
153 -- against a formal access-to-subprogram type so Get_Instance_Of must
156 procedure Check_Subprogram_Order
(N
: Node_Id
);
157 -- N is the N_Subprogram_Body node for a subprogram. This routine applies
158 -- the alpha ordering rule for N if this ordering requirement applicable.
160 procedure Check_Returns
164 Proc
: Entity_Id
:= Empty
);
165 -- Called to check for missing return statements in a function body, or for
166 -- returns present in a procedure body which has No_Return set. HSS is the
167 -- handled statement sequence for the subprogram body. This procedure
168 -- checks all flow paths to make sure they either have return (Mode = 'F',
169 -- used for functions) or do not have a return (Mode = 'P', used for
170 -- No_Return procedures). The flag Err is set if there are any control
171 -- paths not explicitly terminated by a return in the function case, and is
172 -- True otherwise. Proc is the entity for the procedure case and is used
173 -- in posting the warning message.
175 procedure Check_Untagged_Equality
(Eq_Op
: Entity_Id
);
176 -- In Ada 2012, a primitive equality operator on an untagged record type
177 -- must appear before the type is frozen, and have the same visibility as
178 -- that of the type. This procedure checks that this rule is met, and
179 -- otherwise emits an error on the subprogram declaration and a warning
180 -- on the earlier freeze point if it is easy to locate. In Ada 2012 mode,
181 -- this routine outputs errors (or warnings if -gnatd.E is set). In earlier
182 -- versions of Ada, warnings are output if Warn_On_Ada_2012_Incompatibility
183 -- is set, otherwise the call has no effect.
185 procedure Enter_Overloaded_Entity
(S
: Entity_Id
);
186 -- This procedure makes S, a new overloaded entity, into the first visible
187 -- entity with that name.
189 function Is_Non_Overriding_Operation
191 New_E
: Entity_Id
) return Boolean;
192 -- Enforce the rule given in 12.3(18): a private operation in an instance
193 -- overrides an inherited operation only if the corresponding operation
194 -- was overriding in the generic. This needs to be checked for primitive
195 -- operations of types derived (in the generic unit) from formal private
196 -- or formal derived types.
198 procedure Make_Inequality_Operator
(S
: Entity_Id
);
199 -- Create the declaration for an inequality operator that is implicitly
200 -- created by a user-defined equality operator that yields a boolean.
202 procedure Set_Formal_Validity
(Formal_Id
: Entity_Id
);
203 -- Formal_Id is an formal parameter entity. This procedure deals with
204 -- setting the proper validity status for this entity, which depends on
205 -- the kind of parameter and the validity checking mode.
207 ---------------------------------------------
208 -- Analyze_Abstract_Subprogram_Declaration --
209 ---------------------------------------------
211 procedure Analyze_Abstract_Subprogram_Declaration
(N
: Node_Id
) is
212 Designator
: constant Entity_Id
:=
213 Analyze_Subprogram_Specification
(Specification
(N
));
214 Scop
: constant Entity_Id
:= Current_Scope
;
217 -- The abstract subprogram declaration may be subject to pragma Ghost
218 -- with policy Ignore. Set the mode now to ensure that any nodes
219 -- generated during analysis and expansion are properly flagged as
223 Check_SPARK_05_Restriction
("abstract subprogram is not allowed", N
);
225 Generate_Definition
(Designator
);
227 Set_Is_Abstract_Subprogram
(Designator
);
228 New_Overloaded_Entity
(Designator
);
229 Check_Delayed_Subprogram
(Designator
);
231 Set_Categorization_From_Scope
(Designator
, Scop
);
233 -- An abstract subprogram declared within a Ghost region is rendered
234 -- Ghost (SPARK RM 6.9(2)).
236 if Comes_From_Source
(Designator
) and then Ghost_Mode
> None
then
237 Set_Is_Ghost_Entity
(Designator
);
240 if Ekind
(Scope
(Designator
)) = E_Protected_Type
then
242 ("abstract subprogram not allowed in protected type", N
);
244 -- Issue a warning if the abstract subprogram is neither a dispatching
245 -- operation nor an operation that overrides an inherited subprogram or
246 -- predefined operator, since this most likely indicates a mistake.
248 elsif Warn_On_Redundant_Constructs
249 and then not Is_Dispatching_Operation
(Designator
)
250 and then not Present
(Overridden_Operation
(Designator
))
251 and then (not Is_Operator_Symbol_Name
(Chars
(Designator
))
252 or else Scop
/= Scope
(Etype
(First_Formal
(Designator
))))
255 ("abstract subprogram is not dispatching or overriding?r?", N
);
258 Generate_Reference_To_Formals
(Designator
);
259 Check_Eliminated
(Designator
);
261 if Has_Aspects
(N
) then
262 Analyze_Aspect_Specifications
(N
, Designator
);
264 end Analyze_Abstract_Subprogram_Declaration
;
266 ---------------------------------
267 -- Analyze_Expression_Function --
268 ---------------------------------
270 procedure Analyze_Expression_Function
(N
: Node_Id
) is
271 Loc
: constant Source_Ptr
:= Sloc
(N
);
272 LocX
: constant Source_Ptr
:= Sloc
(Expression
(N
));
273 Expr
: constant Node_Id
:= Expression
(N
);
274 Spec
: constant Node_Id
:= Specification
(N
);
279 -- If the expression is a completion, Prev is the entity whose
280 -- declaration is completed. Def_Id is needed to analyze the spec.
287 -- This is one of the occasions on which we transform the tree during
288 -- semantic analysis. If this is a completion, transform the expression
289 -- function into an equivalent subprogram body, and analyze it.
291 -- Expression functions are inlined unconditionally. The back-end will
292 -- determine whether this is possible.
294 Inline_Processing_Required
:= True;
296 -- Create a specification for the generated body. Types and defauts in
297 -- the profile are copies of the spec, but new entities must be created
298 -- for the unit name and the formals.
300 New_Spec
:= New_Copy_Tree
(Spec
);
301 Set_Defining_Unit_Name
(New_Spec
,
302 Make_Defining_Identifier
(Sloc
(Defining_Unit_Name
(Spec
)),
303 Chars
(Defining_Unit_Name
(Spec
))));
305 if Present
(Parameter_Specifications
(New_Spec
)) then
307 Formal_Spec
: Node_Id
;
311 Formal_Spec
:= First
(Parameter_Specifications
(New_Spec
));
313 -- Create a new formal parameter at the same source position
315 while Present
(Formal_Spec
) loop
316 Def
:= Defining_Identifier
(Formal_Spec
);
317 Set_Defining_Identifier
(Formal_Spec
,
318 Make_Defining_Identifier
(Sloc
(Def
),
319 Chars
=> Chars
(Def
)));
325 Prev
:= Current_Entity_In_Scope
(Defining_Entity
(Spec
));
327 -- If there are previous overloadable entities with the same name,
328 -- check whether any of them is completed by the expression function.
329 -- In a generic context a formal subprogram has no completion.
332 and then Is_Overloadable
(Prev
)
333 and then not Is_Formal_Subprogram
(Prev
)
335 Def_Id
:= Analyze_Subprogram_Specification
(Spec
);
336 Prev
:= Find_Corresponding_Spec
(N
);
338 -- The previous entity may be an expression function as well, in
339 -- which case the redeclaration is illegal.
342 and then Nkind
(Original_Node
(Unit_Declaration_Node
(Prev
))) =
343 N_Expression_Function
345 Error_Msg_Sloc
:= Sloc
(Prev
);
346 Error_Msg_N
("& conflicts with declaration#", Def_Id
);
351 Ret
:= Make_Simple_Return_Statement
(LocX
, Expression
(N
));
354 Make_Subprogram_Body
(Loc
,
355 Specification
=> New_Spec
,
356 Declarations
=> Empty_List
,
357 Handled_Statement_Sequence
=>
358 Make_Handled_Sequence_Of_Statements
(LocX
,
359 Statements
=> New_List
(Ret
)));
361 -- If the expression completes a generic subprogram, we must create a
362 -- separate node for the body, because at instantiation the original
363 -- node of the generic copy must be a generic subprogram body, and
364 -- cannot be a expression function. Otherwise we just rewrite the
365 -- expression with the non-generic body.
367 if Present
(Prev
) and then Ekind
(Prev
) = E_Generic_Function
then
368 Insert_After
(N
, New_Body
);
370 -- Propagate any aspects or pragmas that apply to the expression
371 -- function to the proper body when the expression function acts
374 if Has_Aspects
(N
) then
375 Move_Aspects
(N
, To
=> New_Body
);
378 Relocate_Pragmas_To_Body
(New_Body
);
380 Rewrite
(N
, Make_Null_Statement
(Loc
));
381 Set_Has_Completion
(Prev
, False);
384 Set_Is_Inlined
(Prev
);
386 -- If the expression function is a completion, the previous declaration
387 -- must come from source. We know already that appears in the current
388 -- scope. The entity itself may be internally created if within a body
392 and then Comes_From_Source
(Parent
(Prev
))
393 and then not Is_Formal_Subprogram
(Prev
)
395 Set_Has_Completion
(Prev
, False);
397 -- An expression function that is a completion freezes the
398 -- expression. This means freezing the return type, and if it is
399 -- an access type, freezing its designated type as well.
401 -- Note that we cannot defer this freezing to the analysis of the
402 -- expression itself, because a freeze node might appear in a nested
403 -- scope, leading to an elaboration order issue in gigi.
405 Freeze_Before
(N
, Etype
(Prev
));
407 if Is_Access_Type
(Etype
(Prev
)) then
408 Freeze_Before
(N
, Designated_Type
(Etype
(Prev
)));
411 -- For navigation purposes, indicate that the function is a body
413 Generate_Reference
(Prev
, Defining_Entity
(N
), 'b', Force
=> True);
414 Rewrite
(N
, New_Body
);
416 -- Correct the parent pointer of the aspect specification list to
417 -- reference the rewritten node.
419 if Has_Aspects
(N
) then
420 Set_Parent
(Aspect_Specifications
(N
), N
);
423 -- Propagate any pragmas that apply to the expression function to the
424 -- proper body when the expression function acts as a completion.
425 -- Aspects are automatically transfered because of node rewriting.
427 Relocate_Pragmas_To_Body
(N
);
430 -- Prev is the previous entity with the same name, but it is can
431 -- be an unrelated spec that is not completed by the expression
432 -- function. In that case the relevant entity is the one in the body.
433 -- Not clear that the backend can inline it in this case ???
435 if Has_Completion
(Prev
) then
436 Set_Is_Inlined
(Prev
);
438 -- The formals of the expression function are body formals,
439 -- and do not appear in the ali file, which will only contain
440 -- references to the formals of the original subprogram spec.
447 F1
:= First_Formal
(Def_Id
);
448 F2
:= First_Formal
(Prev
);
450 while Present
(F1
) loop
451 Set_Spec_Entity
(F1
, F2
);
458 Set_Is_Inlined
(Defining_Entity
(New_Body
));
461 -- If this is not a completion, create both a declaration and a body, so
462 -- that the expression can be inlined whenever possible.
465 -- An expression function that is not a completion is not a
466 -- subprogram declaration, and thus cannot appear in a protected
469 if Nkind
(Parent
(N
)) = N_Protected_Definition
then
471 ("an expression function is not a legal protected operation", N
);
474 Rewrite
(N
, Make_Subprogram_Declaration
(Loc
, Specification
=> Spec
));
476 -- Correct the parent pointer of the aspect specification list to
477 -- reference the rewritten node.
479 if Has_Aspects
(N
) then
480 Set_Parent
(Aspect_Specifications
(N
), N
);
485 -- Within a generic pre-analyze the original expression for name
486 -- capture. The body is also generated but plays no role in
487 -- this because it is not part of the original source.
489 if Inside_A_Generic
then
491 Id
: constant Entity_Id
:= Defining_Entity
(N
);
494 Set_Has_Completion
(Id
);
496 Install_Formals
(Id
);
497 Preanalyze_Spec_Expression
(Expr
, Etype
(Id
));
502 Set_Is_Inlined
(Defining_Entity
(N
));
504 -- Establish the linkages between the spec and the body. These are
505 -- used when the expression function acts as the prefix of attribute
506 -- 'Access in order to freeze the original expression which has been
507 -- moved to the generated body.
509 Set_Corresponding_Body
(N
, Defining_Entity
(New_Body
));
510 Set_Corresponding_Spec
(New_Body
, Defining_Entity
(N
));
512 -- To prevent premature freeze action, insert the new body at the end
513 -- of the current declarations, or at the end of the package spec.
514 -- However, resolve usage names now, to prevent spurious visibility
515 -- on later entities. Note that the function can now be called in
516 -- the current declarative part, which will appear to be prior to
517 -- the presence of the body in the code. There are nevertheless no
518 -- order of elaboration issues because all name resolution has taken
519 -- place at the point of declaration.
522 Decls
: List_Id
:= List_Containing
(N
);
523 Par
: constant Node_Id
:= Parent
(Decls
);
524 Id
: constant Entity_Id
:= Defining_Entity
(N
);
527 -- If this is a wrapper created for in an instance for a formal
528 -- subprogram, insert body after declaration, to be analyzed when
529 -- the enclosing instance is analyzed.
532 and then Is_Generic_Actual_Subprogram
(Defining_Entity
(N
))
534 Insert_After
(N
, New_Body
);
537 if Nkind
(Par
) = N_Package_Specification
538 and then Decls
= Visible_Declarations
(Par
)
539 and then Present
(Private_Declarations
(Par
))
540 and then not Is_Empty_List
(Private_Declarations
(Par
))
542 Decls
:= Private_Declarations
(Par
);
545 Insert_After
(Last
(Decls
), New_Body
);
547 Install_Formals
(Id
);
549 -- Preanalyze the expression for name capture, except in an
550 -- instance, where this has been done during generic analysis,
551 -- and will be redone when analyzing the body.
554 Expr
: constant Node_Id
:= Expression
(Ret
);
557 Set_Parent
(Expr
, Ret
);
559 if not In_Instance
then
560 Preanalyze_Spec_Expression
(Expr
, Etype
(Id
));
569 -- If the return expression is a static constant, we suppress warning
570 -- messages on unused formals, which in most cases will be noise.
572 Set_Is_Trivial_Subprogram
(Defining_Entity
(New_Body
),
573 Is_OK_Static_Expression
(Expr
));
574 end Analyze_Expression_Function
;
576 ----------------------------------------
577 -- Analyze_Extended_Return_Statement --
578 ----------------------------------------
580 procedure Analyze_Extended_Return_Statement
(N
: Node_Id
) is
582 Check_Compiler_Unit
("extended return statement", N
);
583 Analyze_Return_Statement
(N
);
584 end Analyze_Extended_Return_Statement
;
586 ----------------------------
587 -- Analyze_Function_Call --
588 ----------------------------
590 procedure Analyze_Function_Call
(N
: Node_Id
) is
591 Actuals
: constant List_Id
:= Parameter_Associations
(N
);
592 Func_Nam
: constant Node_Id
:= Name
(N
);
598 -- A call of the form A.B (X) may be an Ada 2005 call, which is
599 -- rewritten as B (A, X). If the rewriting is successful, the call
600 -- has been analyzed and we just return.
602 if Nkind
(Func_Nam
) = N_Selected_Component
603 and then Name
(N
) /= Func_Nam
604 and then Is_Rewrite_Substitution
(N
)
605 and then Present
(Etype
(N
))
610 -- If error analyzing name, then set Any_Type as result type and return
612 if Etype
(Func_Nam
) = Any_Type
then
613 Set_Etype
(N
, Any_Type
);
617 -- Otherwise analyze the parameters
619 if Present
(Actuals
) then
620 Actual
:= First
(Actuals
);
621 while Present
(Actual
) loop
623 Check_Parameterless_Call
(Actual
);
629 end Analyze_Function_Call
;
631 -----------------------------
632 -- Analyze_Function_Return --
633 -----------------------------
635 procedure Analyze_Function_Return
(N
: Node_Id
) is
636 Loc
: constant Source_Ptr
:= Sloc
(N
);
637 Stm_Entity
: constant Entity_Id
:= Return_Statement_Entity
(N
);
638 Scope_Id
: constant Entity_Id
:= Return_Applies_To
(Stm_Entity
);
640 R_Type
: constant Entity_Id
:= Etype
(Scope_Id
);
641 -- Function result subtype
643 procedure Check_Limited_Return
(Expr
: Node_Id
);
644 -- Check the appropriate (Ada 95 or Ada 2005) rules for returning
645 -- limited types. Used only for simple return statements.
646 -- Expr is the expression returned.
648 procedure Check_Return_Subtype_Indication
(Obj_Decl
: Node_Id
);
649 -- Check that the return_subtype_indication properly matches the result
650 -- subtype of the function, as required by RM-6.5(5.1/2-5.3/2).
652 --------------------------
653 -- Check_Limited_Return --
654 --------------------------
656 procedure Check_Limited_Return
(Expr
: Node_Id
) is
658 -- Ada 2005 (AI-318-02): Return-by-reference types have been
659 -- removed and replaced by anonymous access results. This is an
660 -- incompatibility with Ada 95. Not clear whether this should be
661 -- enforced yet or perhaps controllable with special switch. ???
663 -- A limited interface that is not immutably limited is OK.
665 if Is_Limited_Interface
(R_Type
)
667 not (Is_Task_Interface
(R_Type
)
668 or else Is_Protected_Interface
(R_Type
)
669 or else Is_Synchronized_Interface
(R_Type
))
673 elsif Is_Limited_Type
(R_Type
)
674 and then not Is_Interface
(R_Type
)
675 and then Comes_From_Source
(N
)
676 and then not In_Instance_Body
677 and then not OK_For_Limited_Init_In_05
(R_Type
, Expr
)
681 if Ada_Version
>= Ada_2005
682 and then not Debug_Flag_Dot_L
683 and then not GNAT_Mode
686 ("(Ada 2005) cannot copy object of a limited type "
687 & "(RM-2005 6.5(5.5/2))", Expr
);
689 if Is_Limited_View
(R_Type
) then
691 ("\return by reference not permitted in Ada 2005", Expr
);
694 -- Warn in Ada 95 mode, to give folks a heads up about this
697 -- In GNAT mode, this is just a warning, to allow it to be
698 -- evilly turned off. Otherwise it is a real error.
700 -- In a generic context, simplify the warning because it makes
701 -- no sense to discuss pass-by-reference or copy.
703 elsif Warn_On_Ada_2005_Compatibility
or GNAT_Mode
then
704 if Inside_A_Generic
then
706 ("return of limited object not permitted in Ada 2005 "
707 & "(RM-2005 6.5(5.5/2))?y?", Expr
);
709 elsif Is_Limited_View
(R_Type
) then
711 ("return by reference not permitted in Ada 2005 "
712 & "(RM-2005 6.5(5.5/2))?y?", Expr
);
715 ("cannot copy object of a limited type in Ada 2005 "
716 & "(RM-2005 6.5(5.5/2))?y?", Expr
);
719 -- Ada 95 mode, compatibility warnings disabled
722 return; -- skip continuation messages below
725 if not Inside_A_Generic
then
727 ("\consider switching to return of access type", Expr
);
728 Explain_Limited_Type
(R_Type
, Expr
);
731 end Check_Limited_Return
;
733 -------------------------------------
734 -- Check_Return_Subtype_Indication --
735 -------------------------------------
737 procedure Check_Return_Subtype_Indication
(Obj_Decl
: Node_Id
) is
738 Return_Obj
: constant Node_Id
:= Defining_Identifier
(Obj_Decl
);
740 R_Stm_Type
: constant Entity_Id
:= Etype
(Return_Obj
);
741 -- Subtype given in the extended return statement (must match R_Type)
743 Subtype_Ind
: constant Node_Id
:=
744 Object_Definition
(Original_Node
(Obj_Decl
));
746 R_Type_Is_Anon_Access
: constant Boolean :=
748 E_Anonymous_Access_Subprogram_Type
,
749 E_Anonymous_Access_Protected_Subprogram_Type
,
750 E_Anonymous_Access_Type
);
751 -- True if return type of the function is an anonymous access type
752 -- Can't we make Is_Anonymous_Access_Type in einfo ???
754 R_Stm_Type_Is_Anon_Access
: constant Boolean :=
755 Ekind_In
(R_Stm_Type
,
756 E_Anonymous_Access_Subprogram_Type
,
757 E_Anonymous_Access_Protected_Subprogram_Type
,
758 E_Anonymous_Access_Type
);
759 -- True if type of the return object is an anonymous access type
761 procedure Error_No_Match
(N
: Node_Id
);
762 -- Output error messages for case where types do not statically
763 -- match. N is the location for the messages.
769 procedure Error_No_Match
(N
: Node_Id
) is
772 ("subtype must statically match function result subtype", N
);
774 if not Predicates_Match
(R_Stm_Type
, R_Type
) then
775 Error_Msg_Node_2
:= R_Type
;
777 ("\predicate of& does not match predicate of&",
782 -- Start of processing for Check_Return_Subtype_Indication
785 -- First, avoid cascaded errors
787 if Error_Posted
(Obj_Decl
) or else Error_Posted
(Subtype_Ind
) then
791 -- "return access T" case; check that the return statement also has
792 -- "access T", and that the subtypes statically match:
793 -- if this is an access to subprogram the signatures must match.
795 if R_Type_Is_Anon_Access
then
796 if R_Stm_Type_Is_Anon_Access
then
798 Ekind
(Designated_Type
(R_Stm_Type
)) /= E_Subprogram_Type
800 if Base_Type
(Designated_Type
(R_Stm_Type
)) /=
801 Base_Type
(Designated_Type
(R_Type
))
802 or else not Subtypes_Statically_Match
(R_Stm_Type
, R_Type
)
804 Error_No_Match
(Subtype_Mark
(Subtype_Ind
));
808 -- For two anonymous access to subprogram types, the
809 -- types themselves must be type conformant.
811 if not Conforming_Types
812 (R_Stm_Type
, R_Type
, Fully_Conformant
)
814 Error_No_Match
(Subtype_Ind
);
819 Error_Msg_N
("must use anonymous access type", Subtype_Ind
);
822 -- If the return object is of an anonymous access type, then report
823 -- an error if the function's result type is not also anonymous.
825 elsif R_Stm_Type_Is_Anon_Access
826 and then not R_Type_Is_Anon_Access
828 Error_Msg_N
("anonymous access not allowed for function with "
829 & "named access result", Subtype_Ind
);
831 -- Subtype indication case: check that the return object's type is
832 -- covered by the result type, and that the subtypes statically match
833 -- when the result subtype is constrained. Also handle record types
834 -- with unknown discriminants for which we have built the underlying
835 -- record view. Coverage is needed to allow specific-type return
836 -- objects when the result type is class-wide (see AI05-32).
838 elsif Covers
(Base_Type
(R_Type
), Base_Type
(R_Stm_Type
))
839 or else (Is_Underlying_Record_View
(Base_Type
(R_Stm_Type
))
843 Underlying_Record_View
(Base_Type
(R_Stm_Type
))))
845 -- A null exclusion may be present on the return type, on the
846 -- function specification, on the object declaration or on the
849 if Is_Access_Type
(R_Type
)
851 (Can_Never_Be_Null
(R_Type
)
852 or else Null_Exclusion_Present
(Parent
(Scope_Id
))) /=
853 Can_Never_Be_Null
(R_Stm_Type
)
855 Error_No_Match
(Subtype_Ind
);
858 -- AI05-103: for elementary types, subtypes must statically match
860 if Is_Constrained
(R_Type
)
861 or else Is_Access_Type
(R_Type
)
863 if not Subtypes_Statically_Match
(R_Stm_Type
, R_Type
) then
864 Error_No_Match
(Subtype_Ind
);
868 -- All remaining cases are illegal
870 -- Note: previous versions of this subprogram allowed the return
871 -- value to be the ancestor of the return type if the return type
872 -- was a null extension. This was plainly incorrect.
876 ("wrong type for return_subtype_indication", Subtype_Ind
);
878 end Check_Return_Subtype_Indication
;
880 ---------------------
881 -- Local Variables --
882 ---------------------
887 -- Start of processing for Analyze_Function_Return
890 Set_Return_Present
(Scope_Id
);
892 if Nkind
(N
) = N_Simple_Return_Statement
then
893 Expr
:= Expression
(N
);
895 -- Guard against a malformed expression. The parser may have tried to
896 -- recover but the node is not analyzable.
898 if Nkind
(Expr
) = N_Error
then
899 Set_Etype
(Expr
, Any_Type
);
900 Expander_Mode_Save_And_Set
(False);
904 -- The resolution of a controlled [extension] aggregate associated
905 -- with a return statement creates a temporary which needs to be
906 -- finalized on function exit. Wrap the return statement inside a
907 -- block so that the finalization machinery can detect this case.
908 -- This early expansion is done only when the return statement is
909 -- not part of a handled sequence of statements.
911 if Nkind_In
(Expr
, N_Aggregate
,
912 N_Extension_Aggregate
)
913 and then Needs_Finalization
(R_Type
)
914 and then Nkind
(Parent
(N
)) /= N_Handled_Sequence_Of_Statements
917 Make_Block_Statement
(Loc
,
918 Handled_Statement_Sequence
=>
919 Make_Handled_Sequence_Of_Statements
(Loc
,
920 Statements
=> New_List
(Relocate_Node
(N
)))));
928 -- Ada 2005 (AI-251): If the type of the returned object is
929 -- an access to an interface type then we add an implicit type
930 -- conversion to force the displacement of the "this" pointer to
931 -- reference the secondary dispatch table. We cannot delay the
932 -- generation of this implicit conversion until the expansion
933 -- because in this case the type resolution changes the decoration
934 -- of the expression node to match R_Type; by contrast, if the
935 -- returned object is a class-wide interface type then it is too
936 -- early to generate here the implicit conversion since the return
937 -- statement may be rewritten by the expander into an extended
938 -- return statement whose expansion takes care of adding the
939 -- implicit type conversion to displace the pointer to the object.
942 and then Serious_Errors_Detected
= 0
943 and then Is_Access_Type
(R_Type
)
944 and then Nkind
(Expr
) /= N_Null
945 and then Is_Interface
(Designated_Type
(R_Type
))
946 and then Is_Progenitor
(Designated_Type
(R_Type
),
947 Designated_Type
(Etype
(Expr
)))
949 Rewrite
(Expr
, Convert_To
(R_Type
, Relocate_Node
(Expr
)));
953 Resolve
(Expr
, R_Type
);
954 Check_Limited_Return
(Expr
);
957 -- RETURN only allowed in SPARK as the last statement in function
959 if Nkind
(Parent
(N
)) /= N_Handled_Sequence_Of_Statements
961 (Nkind
(Parent
(Parent
(N
))) /= N_Subprogram_Body
962 or else Present
(Next
(N
)))
964 Check_SPARK_05_Restriction
965 ("RETURN should be the last statement in function", N
);
969 Check_SPARK_05_Restriction
("extended RETURN is not allowed", N
);
970 Obj_Decl
:= Last
(Return_Object_Declarations
(N
));
972 -- Analyze parts specific to extended_return_statement:
975 Has_Aliased
: constant Boolean := Aliased_Present
(Obj_Decl
);
976 HSS
: constant Node_Id
:= Handled_Statement_Sequence
(N
);
979 Expr
:= Expression
(Obj_Decl
);
981 -- Note: The check for OK_For_Limited_Init will happen in
982 -- Analyze_Object_Declaration; we treat it as a normal
983 -- object declaration.
985 Set_Is_Return_Object
(Defining_Identifier
(Obj_Decl
));
988 Check_Return_Subtype_Indication
(Obj_Decl
);
990 if Present
(HSS
) then
993 if Present
(Exception_Handlers
(HSS
)) then
995 -- ???Has_Nested_Block_With_Handler needs to be set.
996 -- Probably by creating an actual N_Block_Statement.
997 -- Probably in Expand.
1003 -- Mark the return object as referenced, since the return is an
1004 -- implicit reference of the object.
1006 Set_Referenced
(Defining_Identifier
(Obj_Decl
));
1008 Check_References
(Stm_Entity
);
1010 -- Check RM 6.5 (5.9/3)
1013 if Ada_Version
< Ada_2012
then
1015 -- Shouldn't this test Warn_On_Ada_2012_Compatibility ???
1016 -- Can it really happen (extended return???)
1019 ("aliased only allowed for limited return objects "
1020 & "in Ada 2012??", N
);
1022 elsif not Is_Limited_View
(R_Type
) then
1024 ("aliased only allowed for limited return objects", N
);
1030 -- Case of Expr present
1034 -- Defend against previous errors
1036 and then Nkind
(Expr
) /= N_Empty
1037 and then Present
(Etype
(Expr
))
1039 -- Apply constraint check. Note that this is done before the implicit
1040 -- conversion of the expression done for anonymous access types to
1041 -- ensure correct generation of the null-excluding check associated
1042 -- with null-excluding expressions found in return statements.
1044 Apply_Constraint_Check
(Expr
, R_Type
);
1046 -- Ada 2005 (AI-318-02): When the result type is an anonymous access
1047 -- type, apply an implicit conversion of the expression to that type
1048 -- to force appropriate static and run-time accessibility checks.
1050 if Ada_Version
>= Ada_2005
1051 and then Ekind
(R_Type
) = E_Anonymous_Access_Type
1053 Rewrite
(Expr
, Convert_To
(R_Type
, Relocate_Node
(Expr
)));
1054 Analyze_And_Resolve
(Expr
, R_Type
);
1056 -- If this is a local anonymous access to subprogram, the
1057 -- accessibility check can be applied statically. The return is
1058 -- illegal if the access type of the return expression is declared
1059 -- inside of the subprogram (except if it is the subtype indication
1060 -- of an extended return statement).
1062 elsif Ekind
(R_Type
) = E_Anonymous_Access_Subprogram_Type
then
1063 if not Comes_From_Source
(Current_Scope
)
1064 or else Ekind
(Current_Scope
) = E_Return_Statement
1069 Scope_Depth
(Scope
(Etype
(Expr
))) >= Scope_Depth
(Scope_Id
)
1071 Error_Msg_N
("cannot return local access to subprogram", N
);
1074 -- The expression cannot be of a formal incomplete type
1076 elsif Ekind
(Etype
(Expr
)) = E_Incomplete_Type
1077 and then Is_Generic_Type
(Etype
(Expr
))
1080 ("cannot return expression of a formal incomplete type", N
);
1083 -- If the result type is class-wide, then check that the return
1084 -- expression's type is not declared at a deeper level than the
1085 -- function (RM05-6.5(5.6/2)).
1087 if Ada_Version
>= Ada_2005
1088 and then Is_Class_Wide_Type
(R_Type
)
1090 if Type_Access_Level
(Etype
(Expr
)) >
1091 Subprogram_Access_Level
(Scope_Id
)
1094 ("level of return expression type is deeper than "
1095 & "class-wide function!", Expr
);
1099 -- Check incorrect use of dynamically tagged expression
1101 if Is_Tagged_Type
(R_Type
) then
1102 Check_Dynamically_Tagged_Expression
1108 -- ??? A real run-time accessibility check is needed in cases
1109 -- involving dereferences of access parameters. For now we just
1110 -- check the static cases.
1112 if (Ada_Version
< Ada_2005
or else Debug_Flag_Dot_L
)
1113 and then Is_Limited_View
(Etype
(Scope_Id
))
1114 and then Object_Access_Level
(Expr
) >
1115 Subprogram_Access_Level
(Scope_Id
)
1117 -- Suppress the message in a generic, where the rewriting
1120 if Inside_A_Generic
then
1125 Make_Raise_Program_Error
(Loc
,
1126 Reason
=> PE_Accessibility_Check_Failed
));
1129 Error_Msg_Warn
:= SPARK_Mode
/= On
;
1130 Error_Msg_N
("cannot return a local value by reference<<", N
);
1131 Error_Msg_NE
("\& [<<", N
, Standard_Program_Error
);
1135 if Known_Null
(Expr
)
1136 and then Nkind
(Parent
(Scope_Id
)) = N_Function_Specification
1137 and then Null_Exclusion_Present
(Parent
(Scope_Id
))
1139 Apply_Compile_Time_Constraint_Error
1141 Msg
=> "(Ada 2005) null not allowed for "
1142 & "null-excluding return??",
1143 Reason
=> CE_Null_Not_Allowed
);
1146 -- RM 6.5 (5.4/3): accessibility checks also apply if the return object
1147 -- has no initializing expression.
1149 elsif Ada_Version
> Ada_2005
and then Is_Class_Wide_Type
(R_Type
) then
1150 if Type_Access_Level
(Etype
(Defining_Identifier
(Obj_Decl
))) >
1151 Subprogram_Access_Level
(Scope_Id
)
1154 ("level of return expression type is deeper than "
1155 & "class-wide function!", Obj_Decl
);
1158 end Analyze_Function_Return
;
1160 -------------------------------------
1161 -- Analyze_Generic_Subprogram_Body --
1162 -------------------------------------
1164 procedure Analyze_Generic_Subprogram_Body
1168 Gen_Decl
: constant Node_Id
:= Unit_Declaration_Node
(Gen_Id
);
1169 Kind
: constant Entity_Kind
:= Ekind
(Gen_Id
);
1170 Body_Id
: Entity_Id
;
1175 -- Copy body and disable expansion while analyzing the generic For a
1176 -- stub, do not copy the stub (which would load the proper body), this
1177 -- will be done when the proper body is analyzed.
1179 if Nkind
(N
) /= N_Subprogram_Body_Stub
then
1180 New_N
:= Copy_Generic_Node
(N
, Empty
, Instantiating
=> False);
1185 Spec
:= Specification
(N
);
1187 -- Within the body of the generic, the subprogram is callable, and
1188 -- behaves like the corresponding non-generic unit.
1190 Body_Id
:= Defining_Entity
(Spec
);
1192 if Kind
= E_Generic_Procedure
1193 and then Nkind
(Spec
) /= N_Procedure_Specification
1195 Error_Msg_N
("invalid body for generic procedure ", Body_Id
);
1198 elsif Kind
= E_Generic_Function
1199 and then Nkind
(Spec
) /= N_Function_Specification
1201 Error_Msg_N
("invalid body for generic function ", Body_Id
);
1205 Set_Corresponding_Body
(Gen_Decl
, Body_Id
);
1207 if Has_Completion
(Gen_Id
)
1208 and then Nkind
(Parent
(N
)) /= N_Subunit
1210 Error_Msg_N
("duplicate generic body", N
);
1213 Set_Has_Completion
(Gen_Id
);
1216 if Nkind
(N
) = N_Subprogram_Body_Stub
then
1217 Set_Ekind
(Defining_Entity
(Specification
(N
)), Kind
);
1219 Set_Corresponding_Spec
(N
, Gen_Id
);
1222 if Nkind
(Parent
(N
)) = N_Compilation_Unit
then
1223 Set_Cunit_Entity
(Current_Sem_Unit
, Defining_Entity
(N
));
1226 -- Make generic parameters immediately visible in the body. They are
1227 -- needed to process the formals declarations. Then make the formals
1228 -- visible in a separate step.
1230 Push_Scope
(Gen_Id
);
1234 First_Ent
: Entity_Id
;
1237 First_Ent
:= First_Entity
(Gen_Id
);
1240 while Present
(E
) and then not Is_Formal
(E
) loop
1245 Set_Use
(Generic_Formal_Declarations
(Gen_Decl
));
1247 -- Now generic formals are visible, and the specification can be
1248 -- analyzed, for subsequent conformance check.
1250 Body_Id
:= Analyze_Subprogram_Specification
(Spec
);
1252 -- Make formal parameters visible
1256 -- E is the first formal parameter, we loop through the formals
1257 -- installing them so that they will be visible.
1259 Set_First_Entity
(Gen_Id
, E
);
1260 while Present
(E
) loop
1266 -- Visible generic entity is callable within its own body
1268 Set_Ekind
(Gen_Id
, Ekind
(Body_Id
));
1269 Set_Ekind
(Body_Id
, E_Subprogram_Body
);
1270 Set_Convention
(Body_Id
, Convention
(Gen_Id
));
1271 Set_Is_Obsolescent
(Body_Id
, Is_Obsolescent
(Gen_Id
));
1272 Set_Scope
(Body_Id
, Scope
(Gen_Id
));
1274 -- Inherit the "ghostness" of the generic spec. Note that this
1275 -- property is not directly inherited as the body may be subject
1276 -- to a different Ghost assertion policy.
1278 if Is_Ghost_Entity
(Gen_Id
) or else Ghost_Mode
> None
then
1279 Set_Is_Ghost_Entity
(Body_Id
);
1281 -- The Ghost policy in effect at the point of declaration and at
1282 -- the point of completion must match (SPARK RM 6.9(15)).
1284 Check_Ghost_Completion
(Gen_Id
, Body_Id
);
1287 Check_Fully_Conformant
(Body_Id
, Gen_Id
, Body_Id
);
1289 if Nkind
(N
) = N_Subprogram_Body_Stub
then
1291 -- No body to analyze, so restore state of generic unit
1293 Set_Ekind
(Gen_Id
, Kind
);
1294 Set_Ekind
(Body_Id
, Kind
);
1296 if Present
(First_Ent
) then
1297 Set_First_Entity
(Gen_Id
, First_Ent
);
1304 -- If this is a compilation unit, it must be made visible explicitly,
1305 -- because the compilation of the declaration, unlike other library
1306 -- unit declarations, does not. If it is not a unit, the following
1307 -- is redundant but harmless.
1309 Set_Is_Immediately_Visible
(Gen_Id
);
1310 Reference_Body_Formals
(Gen_Id
, Body_Id
);
1312 if Is_Child_Unit
(Gen_Id
) then
1313 Generate_Reference
(Gen_Id
, Scope
(Gen_Id
), 'k', False);
1316 Set_Actual_Subtypes
(N
, Current_Scope
);
1318 Set_SPARK_Pragma
(Body_Id
, SPARK_Mode_Pragma
);
1319 Set_SPARK_Pragma_Inherited
(Body_Id
, True);
1321 Analyze_Declarations
(Declarations
(N
));
1323 Analyze
(Handled_Statement_Sequence
(N
));
1325 Save_Global_References
(Original_Node
(N
));
1327 -- Prior to exiting the scope, include generic formals again (if any
1328 -- are present) in the set of local entities.
1330 if Present
(First_Ent
) then
1331 Set_First_Entity
(Gen_Id
, First_Ent
);
1334 Check_References
(Gen_Id
);
1337 Process_End_Label
(Handled_Statement_Sequence
(N
), 't', Current_Scope
);
1339 Check_Subprogram_Order
(N
);
1341 -- Outside of its body, unit is generic again
1343 Set_Ekind
(Gen_Id
, Kind
);
1344 Generate_Reference
(Gen_Id
, Body_Id
, 'b', Set_Ref
=> False);
1347 Style
.Check_Identifier
(Body_Id
, Gen_Id
);
1351 end Analyze_Generic_Subprogram_Body
;
1353 ----------------------------
1354 -- Analyze_Null_Procedure --
1355 ----------------------------
1357 procedure Analyze_Null_Procedure
1359 Is_Completion
: out Boolean)
1361 Loc
: constant Source_Ptr
:= Sloc
(N
);
1362 Spec
: constant Node_Id
:= Specification
(N
);
1363 Designator
: Entity_Id
;
1365 Null_Body
: Node_Id
:= Empty
;
1369 -- Capture the profile of the null procedure before analysis, for
1370 -- expansion at the freeze point and at each point of call. The body is
1371 -- used if the procedure has preconditions, or if it is a completion. In
1372 -- the first case the body is analyzed at the freeze point, in the other
1373 -- it replaces the null procedure declaration.
1376 Make_Subprogram_Body
(Loc
,
1377 Specification
=> New_Copy_Tree
(Spec
),
1378 Declarations
=> New_List
,
1379 Handled_Statement_Sequence
=>
1380 Make_Handled_Sequence_Of_Statements
(Loc
,
1381 Statements
=> New_List
(Make_Null_Statement
(Loc
))));
1383 -- Create new entities for body and formals
1385 Set_Defining_Unit_Name
(Specification
(Null_Body
),
1386 Make_Defining_Identifier
1387 (Sloc
(Defining_Entity
(N
)),
1388 Chars
(Defining_Entity
(N
))));
1390 Form
:= First
(Parameter_Specifications
(Specification
(Null_Body
)));
1391 while Present
(Form
) loop
1392 Set_Defining_Identifier
(Form
,
1393 Make_Defining_Identifier
1394 (Sloc
(Defining_Identifier
(Form
)),
1395 Chars
(Defining_Identifier
(Form
))));
1399 -- Determine whether the null procedure may be a completion of a generic
1400 -- suprogram, in which case we use the new null body as the completion
1401 -- and set minimal semantic information on the original declaration,
1402 -- which is rewritten as a null statement.
1404 Prev
:= Current_Entity_In_Scope
(Defining_Entity
(Spec
));
1406 if Present
(Prev
) and then Is_Generic_Subprogram
(Prev
) then
1407 Insert_Before
(N
, Null_Body
);
1408 Set_Ekind
(Defining_Entity
(N
), Ekind
(Prev
));
1410 Rewrite
(N
, Make_Null_Statement
(Loc
));
1411 Analyze_Generic_Subprogram_Body
(Null_Body
, Prev
);
1412 Is_Completion
:= True;
1416 -- Resolve the types of the formals now, because the freeze point
1417 -- may appear in a different context, e.g. an instantiation.
1419 Form
:= First
(Parameter_Specifications
(Specification
(Null_Body
)));
1420 while Present
(Form
) loop
1421 if Nkind
(Parameter_Type
(Form
)) /= N_Access_Definition
then
1422 Find_Type
(Parameter_Type
(Form
));
1425 No
(Access_To_Subprogram_Definition
(Parameter_Type
(Form
)))
1427 Find_Type
(Subtype_Mark
(Parameter_Type
(Form
)));
1430 -- The case of a null procedure with a formal that is an
1431 -- access_to_subprogram type, and that is used as an actual
1432 -- in an instantiation is left to the enthusiastic reader.
1441 -- If there are previous overloadable entities with the same name,
1442 -- check whether any of them is completed by the null procedure.
1444 if Present
(Prev
) and then Is_Overloadable
(Prev
) then
1445 Designator
:= Analyze_Subprogram_Specification
(Spec
);
1446 Prev
:= Find_Corresponding_Spec
(N
);
1449 if No
(Prev
) or else not Comes_From_Source
(Prev
) then
1450 Designator
:= Analyze_Subprogram_Specification
(Spec
);
1451 Set_Has_Completion
(Designator
);
1453 -- Signal to caller that this is a procedure declaration
1455 Is_Completion
:= False;
1457 -- Null procedures are always inlined, but generic formal subprograms
1458 -- which appear as such in the internal instance of formal packages,
1459 -- need no completion and are not marked Inline.
1462 and then Nkind
(N
) /= N_Formal_Concrete_Subprogram_Declaration
1464 Set_Corresponding_Body
(N
, Defining_Entity
(Null_Body
));
1465 Set_Body_To_Inline
(N
, Null_Body
);
1466 Set_Is_Inlined
(Designator
);
1470 -- The null procedure is a completion. We unconditionally rewrite
1471 -- this as a null body (even if expansion is not active), because
1472 -- there are various error checks that are applied on this body
1473 -- when it is analyzed (e.g. correct aspect placement).
1475 if Has_Completion
(Prev
) then
1476 Error_Msg_Sloc
:= Sloc
(Prev
);
1477 Error_Msg_NE
("duplicate body for & declared#", N
, Prev
);
1480 Is_Completion
:= True;
1481 Rewrite
(N
, Null_Body
);
1484 end Analyze_Null_Procedure
;
1486 -----------------------------
1487 -- Analyze_Operator_Symbol --
1488 -----------------------------
1490 -- An operator symbol such as "+" or "and" may appear in context where the
1491 -- literal denotes an entity name, such as "+"(x, y) or in context when it
1492 -- is just a string, as in (conjunction = "or"). In these cases the parser
1493 -- generates this node, and the semantics does the disambiguation. Other
1494 -- such case are actuals in an instantiation, the generic unit in an
1495 -- instantiation, and pragma arguments.
1497 procedure Analyze_Operator_Symbol
(N
: Node_Id
) is
1498 Par
: constant Node_Id
:= Parent
(N
);
1501 if (Nkind
(Par
) = N_Function_Call
and then N
= Name
(Par
))
1502 or else Nkind
(Par
) = N_Function_Instantiation
1503 or else (Nkind
(Par
) = N_Indexed_Component
and then N
= Prefix
(Par
))
1504 or else (Nkind
(Par
) = N_Pragma_Argument_Association
1505 and then not Is_Pragma_String_Literal
(Par
))
1506 or else Nkind
(Par
) = N_Subprogram_Renaming_Declaration
1507 or else (Nkind
(Par
) = N_Attribute_Reference
1508 and then Attribute_Name
(Par
) /= Name_Value
)
1510 Find_Direct_Name
(N
);
1513 Change_Operator_Symbol_To_String_Literal
(N
);
1516 end Analyze_Operator_Symbol
;
1518 -----------------------------------
1519 -- Analyze_Parameter_Association --
1520 -----------------------------------
1522 procedure Analyze_Parameter_Association
(N
: Node_Id
) is
1524 Analyze
(Explicit_Actual_Parameter
(N
));
1525 end Analyze_Parameter_Association
;
1527 ----------------------------
1528 -- Analyze_Procedure_Call --
1529 ----------------------------
1531 procedure Analyze_Procedure_Call
(N
: Node_Id
) is
1532 Loc
: constant Source_Ptr
:= Sloc
(N
);
1533 P
: constant Node_Id
:= Name
(N
);
1534 Actuals
: constant List_Id
:= Parameter_Associations
(N
);
1538 procedure Analyze_Call_And_Resolve
;
1539 -- Do Analyze and Resolve calls for procedure call
1540 -- At end, check illegal order dependence.
1542 ------------------------------
1543 -- Analyze_Call_And_Resolve --
1544 ------------------------------
1546 procedure Analyze_Call_And_Resolve
is
1548 if Nkind
(N
) = N_Procedure_Call_Statement
then
1550 Resolve
(N
, Standard_Void_Type
);
1554 end Analyze_Call_And_Resolve
;
1556 -- Start of processing for Analyze_Procedure_Call
1559 -- The syntactic construct: PREFIX ACTUAL_PARAMETER_PART can denote
1560 -- a procedure call or an entry call. The prefix may denote an access
1561 -- to subprogram type, in which case an implicit dereference applies.
1562 -- If the prefix is an indexed component (without implicit dereference)
1563 -- then the construct denotes a call to a member of an entire family.
1564 -- If the prefix is a simple name, it may still denote a call to a
1565 -- parameterless member of an entry family. Resolution of these various
1566 -- interpretations is delicate.
1570 -- If this is a call of the form Obj.Op, the call may have been
1571 -- analyzed and possibly rewritten into a block, in which case
1574 if Analyzed
(N
) then
1578 -- If there is an error analyzing the name (which may have been
1579 -- rewritten if the original call was in prefix notation) then error
1580 -- has been emitted already, mark node and return.
1582 if Error_Posted
(N
) or else Etype
(Name
(N
)) = Any_Type
then
1583 Set_Etype
(N
, Any_Type
);
1587 -- The name of the procedure call may reference an entity subject to
1588 -- pragma Ghost with policy Ignore. Set the mode now to ensure that any
1589 -- nodes generated during analysis and expansion are properly flagged as
1594 -- Otherwise analyze the parameters
1596 if Present
(Actuals
) then
1597 Actual
:= First
(Actuals
);
1599 while Present
(Actual
) loop
1601 Check_Parameterless_Call
(Actual
);
1606 -- Special processing for Elab_Spec, Elab_Body and Elab_Subp_Body calls
1608 if Nkind
(P
) = N_Attribute_Reference
1609 and then Nam_In
(Attribute_Name
(P
), Name_Elab_Spec
,
1611 Name_Elab_Subp_Body
)
1613 if Present
(Actuals
) then
1615 ("no parameters allowed for this call", First
(Actuals
));
1619 Set_Etype
(N
, Standard_Void_Type
);
1622 elsif Is_Entity_Name
(P
)
1623 and then Is_Record_Type
(Etype
(Entity
(P
)))
1624 and then Remote_AST_I_Dereference
(P
)
1628 elsif Is_Entity_Name
(P
)
1629 and then Ekind
(Entity
(P
)) /= E_Entry_Family
1631 if Is_Access_Type
(Etype
(P
))
1632 and then Ekind
(Designated_Type
(Etype
(P
))) = E_Subprogram_Type
1633 and then No
(Actuals
)
1634 and then Comes_From_Source
(N
)
1636 Error_Msg_N
("missing explicit dereference in call", N
);
1639 Analyze_Call_And_Resolve
;
1641 -- If the prefix is the simple name of an entry family, this is
1642 -- a parameterless call from within the task body itself.
1644 elsif Is_Entity_Name
(P
)
1645 and then Nkind
(P
) = N_Identifier
1646 and then Ekind
(Entity
(P
)) = E_Entry_Family
1647 and then Present
(Actuals
)
1648 and then No
(Next
(First
(Actuals
)))
1650 -- Can be call to parameterless entry family. What appears to be the
1651 -- sole argument is in fact the entry index. Rewrite prefix of node
1652 -- accordingly. Source representation is unchanged by this
1656 Make_Indexed_Component
(Loc
,
1658 Make_Selected_Component
(Loc
,
1659 Prefix
=> New_Occurrence_Of
(Scope
(Entity
(P
)), Loc
),
1660 Selector_Name
=> New_Occurrence_Of
(Entity
(P
), Loc
)),
1661 Expressions
=> Actuals
);
1662 Set_Name
(N
, New_N
);
1663 Set_Etype
(New_N
, Standard_Void_Type
);
1664 Set_Parameter_Associations
(N
, No_List
);
1665 Analyze_Call_And_Resolve
;
1667 elsif Nkind
(P
) = N_Explicit_Dereference
then
1668 if Ekind
(Etype
(P
)) = E_Subprogram_Type
then
1669 Analyze_Call_And_Resolve
;
1671 Error_Msg_N
("expect access to procedure in call", P
);
1674 -- The name can be a selected component or an indexed component that
1675 -- yields an access to subprogram. Such a prefix is legal if the call
1676 -- has parameter associations.
1678 elsif Is_Access_Type
(Etype
(P
))
1679 and then Ekind
(Designated_Type
(Etype
(P
))) = E_Subprogram_Type
1681 if Present
(Actuals
) then
1682 Analyze_Call_And_Resolve
;
1684 Error_Msg_N
("missing explicit dereference in call ", N
);
1687 -- If not an access to subprogram, then the prefix must resolve to the
1688 -- name of an entry, entry family, or protected operation.
1690 -- For the case of a simple entry call, P is a selected component where
1691 -- the prefix is the task and the selector name is the entry. A call to
1692 -- a protected procedure will have the same syntax. If the protected
1693 -- object contains overloaded operations, the entity may appear as a
1694 -- function, the context will select the operation whose type is Void.
1696 elsif Nkind
(P
) = N_Selected_Component
1697 and then Ekind_In
(Entity
(Selector_Name
(P
)), E_Entry
,
1701 Analyze_Call_And_Resolve
;
1703 elsif Nkind
(P
) = N_Selected_Component
1704 and then Ekind
(Entity
(Selector_Name
(P
))) = E_Entry_Family
1705 and then Present
(Actuals
)
1706 and then No
(Next
(First
(Actuals
)))
1708 -- Can be call to parameterless entry family. What appears to be the
1709 -- sole argument is in fact the entry index. Rewrite prefix of node
1710 -- accordingly. Source representation is unchanged by this
1714 Make_Indexed_Component
(Loc
,
1715 Prefix
=> New_Copy
(P
),
1716 Expressions
=> Actuals
);
1717 Set_Name
(N
, New_N
);
1718 Set_Etype
(New_N
, Standard_Void_Type
);
1719 Set_Parameter_Associations
(N
, No_List
);
1720 Analyze_Call_And_Resolve
;
1722 -- For the case of a reference to an element of an entry family, P is
1723 -- an indexed component whose prefix is a selected component (task and
1724 -- entry family), and whose index is the entry family index.
1726 elsif Nkind
(P
) = N_Indexed_Component
1727 and then Nkind
(Prefix
(P
)) = N_Selected_Component
1728 and then Ekind
(Entity
(Selector_Name
(Prefix
(P
)))) = E_Entry_Family
1730 Analyze_Call_And_Resolve
;
1732 -- If the prefix is the name of an entry family, it is a call from
1733 -- within the task body itself.
1735 elsif Nkind
(P
) = N_Indexed_Component
1736 and then Nkind
(Prefix
(P
)) = N_Identifier
1737 and then Ekind
(Entity
(Prefix
(P
))) = E_Entry_Family
1740 Make_Selected_Component
(Loc
,
1741 Prefix
=> New_Occurrence_Of
(Scope
(Entity
(Prefix
(P
))), Loc
),
1742 Selector_Name
=> New_Occurrence_Of
(Entity
(Prefix
(P
)), Loc
));
1743 Rewrite
(Prefix
(P
), New_N
);
1745 Analyze_Call_And_Resolve
;
1747 -- In Ada 2012. a qualified expression is a name, but it cannot be a
1748 -- procedure name, so the construct can only be a qualified expression.
1750 elsif Nkind
(P
) = N_Qualified_Expression
1751 and then Ada_Version
>= Ada_2012
1753 Rewrite
(N
, Make_Code_Statement
(Loc
, Expression
=> P
));
1756 -- Anything else is an error
1759 Error_Msg_N
("invalid procedure or entry call", N
);
1761 end Analyze_Procedure_Call
;
1763 ------------------------------
1764 -- Analyze_Return_Statement --
1765 ------------------------------
1767 procedure Analyze_Return_Statement
(N
: Node_Id
) is
1769 pragma Assert
(Nkind_In
(N
, N_Simple_Return_Statement
,
1770 N_Extended_Return_Statement
));
1772 Returns_Object
: constant Boolean :=
1773 Nkind
(N
) = N_Extended_Return_Statement
1775 (Nkind
(N
) = N_Simple_Return_Statement
1776 and then Present
(Expression
(N
)));
1777 -- True if we're returning something; that is, "return <expression>;"
1778 -- or "return Result : T [:= ...]". False for "return;". Used for error
1779 -- checking: If Returns_Object is True, N should apply to a function
1780 -- body; otherwise N should apply to a procedure body, entry body,
1781 -- accept statement, or extended return statement.
1783 function Find_What_It_Applies_To
return Entity_Id
;
1784 -- Find the entity representing the innermost enclosing body, accept
1785 -- statement, or extended return statement. If the result is a callable
1786 -- construct or extended return statement, then this will be the value
1787 -- of the Return_Applies_To attribute. Otherwise, the program is
1788 -- illegal. See RM-6.5(4/2).
1790 -----------------------------
1791 -- Find_What_It_Applies_To --
1792 -----------------------------
1794 function Find_What_It_Applies_To
return Entity_Id
is
1795 Result
: Entity_Id
:= Empty
;
1798 -- Loop outward through the Scope_Stack, skipping blocks, loops,
1799 -- and postconditions.
1801 for J
in reverse 0 .. Scope_Stack
.Last
loop
1802 Result
:= Scope_Stack
.Table
(J
).Entity
;
1803 exit when not Ekind_In
(Result
, E_Block
, E_Loop
)
1804 and then Chars
(Result
) /= Name_uPostconditions
;
1807 pragma Assert
(Present
(Result
));
1809 end Find_What_It_Applies_To
;
1811 -- Local declarations
1813 Scope_Id
: constant Entity_Id
:= Find_What_It_Applies_To
;
1814 Kind
: constant Entity_Kind
:= Ekind
(Scope_Id
);
1815 Loc
: constant Source_Ptr
:= Sloc
(N
);
1816 Stm_Entity
: constant Entity_Id
:=
1818 (E_Return_Statement
, Current_Scope
, Loc
, 'R');
1820 -- Start of processing for Analyze_Return_Statement
1823 Set_Return_Statement_Entity
(N
, Stm_Entity
);
1825 Set_Etype
(Stm_Entity
, Standard_Void_Type
);
1826 Set_Return_Applies_To
(Stm_Entity
, Scope_Id
);
1828 -- Place Return entity on scope stack, to simplify enforcement of 6.5
1829 -- (4/2): an inner return statement will apply to this extended return.
1831 if Nkind
(N
) = N_Extended_Return_Statement
then
1832 Push_Scope
(Stm_Entity
);
1835 -- Check that pragma No_Return is obeyed. Don't complain about the
1836 -- implicitly-generated return that is placed at the end.
1838 if No_Return
(Scope_Id
) and then Comes_From_Source
(N
) then
1839 Error_Msg_N
("RETURN statement not allowed (No_Return)", N
);
1842 -- Warn on any unassigned OUT parameters if in procedure
1844 if Ekind
(Scope_Id
) = E_Procedure
then
1845 Warn_On_Unassigned_Out_Parameter
(N
, Scope_Id
);
1848 -- Check that functions return objects, and other things do not
1850 if Kind
= E_Function
or else Kind
= E_Generic_Function
then
1851 if not Returns_Object
then
1852 Error_Msg_N
("missing expression in return from function", N
);
1855 elsif Kind
= E_Procedure
or else Kind
= E_Generic_Procedure
then
1856 if Returns_Object
then
1857 Error_Msg_N
("procedure cannot return value (use function)", N
);
1860 elsif Kind
= E_Entry
or else Kind
= E_Entry_Family
then
1861 if Returns_Object
then
1862 if Is_Protected_Type
(Scope
(Scope_Id
)) then
1863 Error_Msg_N
("entry body cannot return value", N
);
1865 Error_Msg_N
("accept statement cannot return value", N
);
1869 elsif Kind
= E_Return_Statement
then
1871 -- We are nested within another return statement, which must be an
1872 -- extended_return_statement.
1874 if Returns_Object
then
1875 if Nkind
(N
) = N_Extended_Return_Statement
then
1877 ("extended return statement cannot be nested (use `RETURN;`)",
1880 -- Case of a simple return statement with a value inside extended
1881 -- return statement.
1885 ("return nested in extended return statement cannot return "
1886 & "value (use `RETURN;`)", N
);
1891 Error_Msg_N
("illegal context for return statement", N
);
1894 if Ekind_In
(Kind
, E_Function
, E_Generic_Function
) then
1895 Analyze_Function_Return
(N
);
1897 elsif Ekind_In
(Kind
, E_Procedure
, E_Generic_Procedure
) then
1898 Set_Return_Present
(Scope_Id
);
1901 if Nkind
(N
) = N_Extended_Return_Statement
then
1905 Kill_Current_Values
(Last_Assignment_Only
=> True);
1906 Check_Unreachable_Code
(N
);
1908 Analyze_Dimension
(N
);
1909 end Analyze_Return_Statement
;
1911 -------------------------------------
1912 -- Analyze_Simple_Return_Statement --
1913 -------------------------------------
1915 procedure Analyze_Simple_Return_Statement
(N
: Node_Id
) is
1917 if Present
(Expression
(N
)) then
1918 Mark_Coextensions
(N
, Expression
(N
));
1921 Analyze_Return_Statement
(N
);
1922 end Analyze_Simple_Return_Statement
;
1924 -------------------------
1925 -- Analyze_Return_Type --
1926 -------------------------
1928 procedure Analyze_Return_Type
(N
: Node_Id
) is
1929 Designator
: constant Entity_Id
:= Defining_Entity
(N
);
1930 Typ
: Entity_Id
:= Empty
;
1933 -- Normal case where result definition does not indicate an error
1935 if Result_Definition
(N
) /= Error
then
1936 if Nkind
(Result_Definition
(N
)) = N_Access_Definition
then
1937 Check_SPARK_05_Restriction
1938 ("access result is not allowed", Result_Definition
(N
));
1940 -- Ada 2005 (AI-254): Handle anonymous access to subprograms
1943 AD
: constant Node_Id
:=
1944 Access_To_Subprogram_Definition
(Result_Definition
(N
));
1946 if Present
(AD
) and then Protected_Present
(AD
) then
1947 Typ
:= Replace_Anonymous_Access_To_Protected_Subprogram
(N
);
1949 Typ
:= Access_Definition
(N
, Result_Definition
(N
));
1953 Set_Parent
(Typ
, Result_Definition
(N
));
1954 Set_Is_Local_Anonymous_Access
(Typ
);
1955 Set_Etype
(Designator
, Typ
);
1957 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
1959 Null_Exclusion_Static_Checks
(N
);
1961 -- Subtype_Mark case
1964 Find_Type
(Result_Definition
(N
));
1965 Typ
:= Entity
(Result_Definition
(N
));
1966 Set_Etype
(Designator
, Typ
);
1968 -- Unconstrained array as result is not allowed in SPARK
1970 if Is_Array_Type
(Typ
) and then not Is_Constrained
(Typ
) then
1971 Check_SPARK_05_Restriction
1972 ("returning an unconstrained array is not allowed",
1973 Result_Definition
(N
));
1976 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
1978 Null_Exclusion_Static_Checks
(N
);
1980 -- If a null exclusion is imposed on the result type, then create
1981 -- a null-excluding itype (an access subtype) and use it as the
1982 -- function's Etype. Note that the null exclusion checks are done
1983 -- right before this, because they don't get applied to types that
1984 -- do not come from source.
1986 if Is_Access_Type
(Typ
) and then Null_Exclusion_Present
(N
) then
1987 Set_Etype
(Designator
,
1988 Create_Null_Excluding_Itype
1991 Scope_Id
=> Scope
(Current_Scope
)));
1993 -- The new subtype must be elaborated before use because
1994 -- it is visible outside of the function. However its base
1995 -- type may not be frozen yet, so the reference that will
1996 -- force elaboration must be attached to the freezing of
1999 -- If the return specification appears on a proper body,
2000 -- the subtype will have been created already on the spec.
2002 if Is_Frozen
(Typ
) then
2003 if Nkind
(Parent
(N
)) = N_Subprogram_Body
2004 and then Nkind
(Parent
(Parent
(N
))) = N_Subunit
2008 Build_Itype_Reference
(Etype
(Designator
), Parent
(N
));
2012 Ensure_Freeze_Node
(Typ
);
2015 IR
: constant Node_Id
:= Make_Itype_Reference
(Sloc
(N
));
2017 Set_Itype
(IR
, Etype
(Designator
));
2018 Append_Freeze_Actions
(Typ
, New_List
(IR
));
2023 Set_Etype
(Designator
, Typ
);
2026 if Ekind
(Typ
) = E_Incomplete_Type
2027 and then Is_Value_Type
(Typ
)
2031 elsif Ekind
(Typ
) = E_Incomplete_Type
2032 or else (Is_Class_Wide_Type
(Typ
)
2033 and then Ekind
(Root_Type
(Typ
)) = E_Incomplete_Type
)
2035 -- AI05-0151: Tagged incomplete types are allowed in all formal
2036 -- parts. Untagged incomplete types are not allowed in bodies.
2037 -- As a consequence, limited views cannot appear in a basic
2038 -- declaration that is itself within a body, because there is
2039 -- no point at which the non-limited view will become visible.
2041 if Ada_Version
>= Ada_2012
then
2042 if From_Limited_With
(Typ
) and then In_Package_Body
then
2044 ("invalid use of incomplete type&",
2045 Result_Definition
(N
), Typ
);
2047 -- The return type of a subprogram body cannot be of a
2048 -- formal incomplete type.
2050 elsif Is_Generic_Type
(Typ
)
2051 and then Nkind
(Parent
(N
)) = N_Subprogram_Body
2054 ("return type cannot be a formal incomplete type",
2055 Result_Definition
(N
));
2057 elsif Is_Class_Wide_Type
(Typ
)
2058 and then Is_Generic_Type
(Root_Type
(Typ
))
2059 and then Nkind
(Parent
(N
)) = N_Subprogram_Body
2062 ("return type cannot be a formal incomplete type",
2063 Result_Definition
(N
));
2065 elsif Is_Tagged_Type
(Typ
) then
2068 -- Use is legal in a thunk generated for an operation
2069 -- inherited from a progenitor.
2071 elsif Is_Thunk
(Designator
)
2072 and then Present
(Non_Limited_View
(Typ
))
2076 elsif Nkind
(Parent
(N
)) = N_Subprogram_Body
2077 or else Nkind_In
(Parent
(Parent
(N
)), N_Accept_Statement
,
2081 ("invalid use of untagged incomplete type&",
2085 -- The type must be completed in the current package. This
2086 -- is checked at the end of the package declaration when
2087 -- Taft-amendment types are identified. If the return type
2088 -- is class-wide, there is no required check, the type can
2089 -- be a bona fide TAT.
2091 if Ekind
(Scope
(Current_Scope
)) = E_Package
2092 and then In_Private_Part
(Scope
(Current_Scope
))
2093 and then not Is_Class_Wide_Type
(Typ
)
2095 Append_Elmt
(Designator
, Private_Dependents
(Typ
));
2100 ("invalid use of incomplete type&", Designator
, Typ
);
2105 -- Case where result definition does indicate an error
2108 Set_Etype
(Designator
, Any_Type
);
2110 end Analyze_Return_Type
;
2112 -----------------------------
2113 -- Analyze_Subprogram_Body --
2114 -----------------------------
2116 procedure Analyze_Subprogram_Body
(N
: Node_Id
) is
2117 Loc
: constant Source_Ptr
:= Sloc
(N
);
2118 Body_Spec
: constant Node_Id
:= Specification
(N
);
2119 Body_Id
: constant Entity_Id
:= Defining_Entity
(Body_Spec
);
2122 if Debug_Flag_C
then
2123 Write_Str
("==> subprogram body ");
2124 Write_Name
(Chars
(Body_Id
));
2125 Write_Str
(" from ");
2126 Write_Location
(Loc
);
2131 Trace_Scope
(N
, Body_Id
, " Analyze subprogram: ");
2133 -- The real work is split out into the helper, so it can do "return;"
2134 -- without skipping the debug output:
2136 Analyze_Subprogram_Body_Helper
(N
);
2138 if Debug_Flag_C
then
2140 Write_Str
("<== subprogram body ");
2141 Write_Name
(Chars
(Body_Id
));
2142 Write_Str
(" from ");
2143 Write_Location
(Loc
);
2146 end Analyze_Subprogram_Body
;
2148 --------------------------------------
2149 -- Analyze_Subprogram_Body_Contract --
2150 --------------------------------------
2152 procedure Analyze_Subprogram_Body_Contract
(Body_Id
: Entity_Id
) is
2153 Body_Decl
: constant Node_Id
:= Unit_Declaration_Node
(Body_Id
);
2155 procedure Analyze_Completion_Contract
(Spec_Id
: Entity_Id
);
2156 -- Analyze all delayed pragmas chained on the contract of subprogram
2157 -- body Body_Id as if they appeared at the end of a declarative region.
2158 -- Spec_Id denotes the corresponding spec. The aspects in question are:
2161 -- Note that pragma Refined_Post is analyzed immediately
2163 ---------------------------------
2164 -- Analyze_Completion_Contract --
2165 ---------------------------------
2167 procedure Analyze_Completion_Contract
(Spec_Id
: Entity_Id
) is
2168 Items
: constant Node_Id
:= Contract
(Body_Id
);
2171 Ref_Depends
: Node_Id
:= Empty
;
2172 Ref_Global
: Node_Id
:= Empty
;
2175 -- All subprograms carry a contract, but for some it is not
2176 -- significant and should not be processed.
2178 if not Has_Significant_Contract
(Spec_Id
) then
2181 elsif Present
(Items
) then
2183 -- Locate and store pragmas Refined_Depends and Refined_Global
2184 -- since their order of analysis matters.
2186 Prag
:= Classifications
(Items
);
2187 while Present
(Prag
) loop
2188 Prag_Nam
:= Pragma_Name
(Prag
);
2190 if Prag_Nam
= Name_Refined_Depends
then
2191 Ref_Depends
:= Prag
;
2193 elsif Prag_Nam
= Name_Refined_Global
then
2197 Prag
:= Next_Pragma
(Prag
);
2201 -- Analyze Refined_Global first as Refined_Depends may mention items
2202 -- classified in the global refinement.
2204 if Present
(Ref_Global
) then
2205 Analyze_Refined_Global_In_Decl_Part
(Ref_Global
);
2208 -- Refined_Depends must be analyzed after Refined_Global in order to
2209 -- see the modes of all global refinements.
2211 if Present
(Ref_Depends
) then
2212 Analyze_Refined_Depends_In_Decl_Part
(Ref_Depends
);
2214 end Analyze_Completion_Contract
;
2218 Mode
: SPARK_Mode_Type
;
2219 Spec_Id
: Entity_Id
;
2221 -- Start of processing for Analyze_Subprogram_Body_Contract
2224 -- When a subprogram body declaration is illegal, its defining entity is
2225 -- left unanalyzed. There is nothing left to do in this case because the
2226 -- body lacks a contract, or even a proper Ekind.
2228 if Ekind
(Body_Id
) = E_Void
then
2232 -- Due to the timing of contract analysis, delayed pragmas may be
2233 -- subject to the wrong SPARK_Mode, usually that of the enclosing
2234 -- context. To remedy this, restore the original SPARK_Mode of the
2235 -- related subprogram body.
2237 Save_SPARK_Mode_And_Set
(Body_Id
, Mode
);
2239 if Nkind
(Body_Decl
) = N_Subprogram_Body_Stub
then
2240 Spec_Id
:= Corresponding_Spec_Of_Stub
(Body_Decl
);
2242 Spec_Id
:= Corresponding_Spec
(Body_Decl
);
2245 -- The subprogram body is a completion, analyze all delayed pragmas that
2246 -- apply. Note that when the body is stand alone, the pragmas are always
2247 -- analyzed on the spot.
2249 if Present
(Spec_Id
) then
2250 Analyze_Completion_Contract
(Spec_Id
);
2253 -- Ensure that the contract cases or postconditions mention 'Result or
2254 -- define a post-state.
2256 Check_Result_And_Post_State
(Body_Id
);
2258 -- Restore the SPARK_Mode of the enclosing context after all delayed
2259 -- pragmas have been analyzed.
2261 Restore_SPARK_Mode
(Mode
);
2262 end Analyze_Subprogram_Body_Contract
;
2264 ------------------------------------
2265 -- Analyze_Subprogram_Body_Helper --
2266 ------------------------------------
2268 -- This procedure is called for regular subprogram bodies, generic bodies,
2269 -- and for subprogram stubs of both kinds. In the case of stubs, only the
2270 -- specification matters, and is used to create a proper declaration for
2271 -- the subprogram, or to perform conformance checks.
2273 procedure Analyze_Subprogram_Body_Helper
(N
: Node_Id
) is
2274 Loc
: constant Source_Ptr
:= Sloc
(N
);
2275 Body_Spec
: constant Node_Id
:= Specification
(N
);
2276 Body_Id
: Entity_Id
:= Defining_Entity
(Body_Spec
);
2277 Prev_Id
: constant Entity_Id
:= Current_Entity_In_Scope
(Body_Id
);
2278 Conformant
: Boolean;
2280 Prot_Typ
: Entity_Id
:= Empty
;
2281 Spec_Id
: Entity_Id
;
2282 Spec_Decl
: Node_Id
:= Empty
;
2284 Last_Real_Spec_Entity
: Entity_Id
:= Empty
;
2285 -- When we analyze a separate spec, the entity chain ends up containing
2286 -- the formals, as well as any itypes generated during analysis of the
2287 -- default expressions for parameters, or the arguments of associated
2288 -- precondition/postcondition pragmas (which are analyzed in the context
2289 -- of the spec since they have visibility on formals).
2291 -- These entities belong with the spec and not the body. However we do
2292 -- the analysis of the body in the context of the spec (again to obtain
2293 -- visibility to the formals), and all the entities generated during
2294 -- this analysis end up also chained to the entity chain of the spec.
2295 -- But they really belong to the body, and there is circuitry to move
2296 -- them from the spec to the body.
2298 -- However, when we do this move, we don't want to move the real spec
2299 -- entities (first para above) to the body. The Last_Real_Spec_Entity
2300 -- variable points to the last real spec entity, so we only move those
2301 -- chained beyond that point. It is initialized to Empty to deal with
2302 -- the case where there is no separate spec.
2304 procedure Analyze_Aspects_On_Body_Or_Stub
;
2305 -- Analyze the aspect specifications of a subprogram body [stub]. It is
2306 -- assumed that N has aspects.
2308 function Body_Has_Contract
return Boolean;
2309 -- Check whether unanalyzed body has an aspect or pragma that may
2310 -- generate a SPARK contract.
2312 procedure Check_Anonymous_Return
;
2313 -- Ada 2005: if a function returns an access type that denotes a task,
2314 -- or a type that contains tasks, we must create a master entity for
2315 -- the anonymous type, which typically will be used in an allocator
2316 -- in the body of the function.
2318 procedure Check_Inline_Pragma
(Spec
: in out Node_Id
);
2319 -- Look ahead to recognize a pragma that may appear after the body.
2320 -- If there is a previous spec, check that it appears in the same
2321 -- declarative part. If the pragma is Inline_Always, perform inlining
2322 -- unconditionally, otherwise only if Front_End_Inlining is requested.
2323 -- If the body acts as a spec, and inlining is required, we create a
2324 -- subprogram declaration for it, in order to attach the body to inline.
2325 -- If pragma does not appear after the body, check whether there is
2326 -- an inline pragma before any local declarations.
2328 procedure Check_Missing_Return
;
2329 -- Checks for a function with a no return statements, and also performs
2330 -- the warning checks implemented by Check_Returns. In formal mode, also
2331 -- verify that a function ends with a RETURN and that a procedure does
2332 -- not contain any RETURN.
2334 function Disambiguate_Spec
return Entity_Id
;
2335 -- When a primitive is declared between the private view and the full
2336 -- view of a concurrent type which implements an interface, a special
2337 -- mechanism is used to find the corresponding spec of the primitive
2340 procedure Exchange_Limited_Views
(Subp_Id
: Entity_Id
);
2341 -- Ada 2012 (AI05-0151): Detect whether the profile of Subp_Id contains
2342 -- incomplete types coming from a limited context and swap their limited
2343 -- views with the non-limited ones.
2345 function Is_Private_Concurrent_Primitive
2346 (Subp_Id
: Entity_Id
) return Boolean;
2347 -- Determine whether subprogram Subp_Id is a primitive of a concurrent
2348 -- type that implements an interface and has a private view.
2350 procedure Set_Trivial_Subprogram
(N
: Node_Id
);
2351 -- Sets the Is_Trivial_Subprogram flag in both spec and body of the
2352 -- subprogram whose body is being analyzed. N is the statement node
2353 -- causing the flag to be set, if the following statement is a return
2354 -- of an entity, we mark the entity as set in source to suppress any
2355 -- warning on the stylized use of function stubs with a dummy return.
2357 procedure Verify_Overriding_Indicator
;
2358 -- If there was a previous spec, the entity has been entered in the
2359 -- current scope previously. If the body itself carries an overriding
2360 -- indicator, check that it is consistent with the known status of the
2363 -------------------------------------
2364 -- Analyze_Aspects_On_Body_Or_Stub --
2365 -------------------------------------
2367 procedure Analyze_Aspects_On_Body_Or_Stub
is
2368 procedure Diagnose_Misplaced_Aspects
;
2369 -- Subprogram body [stub] N has aspects, but they are not properly
2370 -- placed. Provide precise diagnostics depending on the aspects
2373 --------------------------------
2374 -- Diagnose_Misplaced_Aspects --
2375 --------------------------------
2377 procedure Diagnose_Misplaced_Aspects
is
2381 -- The current aspect along with its name and id
2383 procedure SPARK_Aspect_Error
(Ref_Nam
: Name_Id
);
2384 -- Emit an error message concerning SPARK aspect Asp. Ref_Nam is
2385 -- the name of the refined version of the aspect.
2387 ------------------------
2388 -- SPARK_Aspect_Error --
2389 ------------------------
2391 procedure SPARK_Aspect_Error
(Ref_Nam
: Name_Id
) is
2393 -- The corresponding spec already contains the aspect in
2394 -- question and the one appearing on the body must be the
2397 -- procedure P with Global ...;
2398 -- procedure P with Global ... is ... end P;
2402 if Has_Aspect
(Spec_Id
, Asp_Id
) then
2403 Error_Msg_Name_1
:= Asp_Nam
;
2405 -- Subunits cannot carry aspects that apply to a subprogram
2408 if Nkind
(Parent
(N
)) = N_Subunit
then
2409 Error_Msg_N
("aspect % cannot apply to a subunit", Asp
);
2412 Error_Msg_Name_2
:= Ref_Nam
;
2413 Error_Msg_N
("aspect % should be %", Asp
);
2416 -- Otherwise the aspect must appear in the spec, not in the
2420 -- procedure P with Global ... is ... end P;
2424 ("aspect specification must appear in subprogram "
2425 & "declaration", Asp
);
2427 end SPARK_Aspect_Error
;
2429 -- Start of processing for Diagnose_Misplaced_Aspects
2432 -- Iterate over the aspect specifications and emit specific errors
2433 -- where applicable.
2435 Asp
:= First
(Aspect_Specifications
(N
));
2436 while Present
(Asp
) loop
2437 Asp_Nam
:= Chars
(Identifier
(Asp
));
2438 Asp_Id
:= Get_Aspect_Id
(Asp_Nam
);
2440 -- Do not emit errors on aspects that can appear on a
2441 -- subprogram body. This scenario occurs when the aspect
2442 -- specification list contains both misplaced and properly
2445 if Aspect_On_Body_Or_Stub_OK
(Asp_Id
) then
2448 -- Special diagnostics for SPARK aspects
2450 elsif Asp_Nam
= Name_Depends
then
2451 SPARK_Aspect_Error
(Name_Refined_Depends
);
2453 elsif Asp_Nam
= Name_Global
then
2454 SPARK_Aspect_Error
(Name_Refined_Global
);
2456 elsif Asp_Nam
= Name_Post
then
2457 SPARK_Aspect_Error
(Name_Refined_Post
);
2461 ("aspect specification must appear in subprogram "
2462 & "declaration", Asp
);
2467 end Diagnose_Misplaced_Aspects
;
2469 -- Start of processing for Analyze_Aspects_On_Body_Or_Stub
2472 -- Language-defined aspects cannot be associated with a subprogram
2473 -- body [stub] if the subprogram has a spec. Certain implementation
2474 -- defined aspects are allowed to break this rule (for list, see
2475 -- table Aspect_On_Body_Or_Stub_OK).
2477 if Present
(Spec_Id
) and then not Aspects_On_Body_Or_Stub_OK
(N
) then
2478 Diagnose_Misplaced_Aspects
;
2480 Analyze_Aspect_Specifications
(N
, Body_Id
);
2482 end Analyze_Aspects_On_Body_Or_Stub
;
2484 -----------------------
2485 -- Body_Has_Contract --
2486 -----------------------
2488 function Body_Has_Contract
return Boolean is
2489 Decls
: constant List_Id
:= Declarations
(N
);
2496 -- Check for unanalyzed aspects in the body that will
2497 -- generate a contract.
2499 if Present
(Aspect_Specifications
(N
)) then
2500 A_Spec
:= First
(Aspect_Specifications
(N
));
2501 while Present
(A_Spec
) loop
2502 A
:= Get_Aspect_Id
(Chars
(Identifier
(A_Spec
)));
2504 if A
= Aspect_Contract_Cases
or else
2505 A
= Aspect_Depends
or else
2506 A
= Aspect_Global
or else
2507 A
= Aspect_Pre
or else
2508 A
= Aspect_Precondition
or else
2509 A
= Aspect_Post
or else
2510 A
= Aspect_Postcondition
2519 -- Check for pragmas that may generate a contract
2521 if Present
(Decls
) then
2522 Decl
:= First
(Decls
);
2523 while Present
(Decl
) loop
2524 if Nkind
(Decl
) = N_Pragma
then
2525 P_Id
:= Get_Pragma_Id
(Pragma_Name
(Decl
));
2527 if P_Id
= Pragma_Contract_Cases
or else
2528 P_Id
= Pragma_Depends
or else
2529 P_Id
= Pragma_Global
or else
2530 P_Id
= Pragma_Pre
or else
2531 P_Id
= Pragma_Precondition
or else
2532 P_Id
= Pragma_Post
or else
2533 P_Id
= Pragma_Postcondition
2544 end Body_Has_Contract
;
2546 ----------------------------
2547 -- Check_Anonymous_Return --
2548 ----------------------------
2550 procedure Check_Anonymous_Return
is
2556 if Present
(Spec_Id
) then
2562 if Ekind
(Scop
) = E_Function
2563 and then Ekind
(Etype
(Scop
)) = E_Anonymous_Access_Type
2564 and then not Is_Thunk
(Scop
)
2566 -- Skip internally built functions which handle the case of
2567 -- a null access (see Expand_Interface_Conversion)
2569 and then not (Is_Interface
(Designated_Type
(Etype
(Scop
)))
2570 and then not Comes_From_Source
(Parent
(Scop
)))
2572 and then (Has_Task
(Designated_Type
(Etype
(Scop
)))
2574 (Is_Class_Wide_Type
(Designated_Type
(Etype
(Scop
)))
2576 Is_Limited_Record
(Designated_Type
(Etype
(Scop
)))))
2577 and then Expander_Active
2579 -- Avoid cases with no tasking support
2581 and then RTE_Available
(RE_Current_Master
)
2582 and then not Restriction_Active
(No_Task_Hierarchy
)
2585 Make_Object_Declaration
(Loc
,
2586 Defining_Identifier
=>
2587 Make_Defining_Identifier
(Loc
, Name_uMaster
),
2588 Constant_Present
=> True,
2589 Object_Definition
=>
2590 New_Occurrence_Of
(RTE
(RE_Master_Id
), Loc
),
2592 Make_Explicit_Dereference
(Loc
,
2593 New_Occurrence_Of
(RTE
(RE_Current_Master
), Loc
)));
2595 if Present
(Declarations
(N
)) then
2596 Prepend
(Decl
, Declarations
(N
));
2598 Set_Declarations
(N
, New_List
(Decl
));
2601 Set_Master_Id
(Etype
(Scop
), Defining_Identifier
(Decl
));
2602 Set_Has_Master_Entity
(Scop
);
2604 -- Now mark the containing scope as a task master
2607 while Nkind
(Par
) /= N_Compilation_Unit
loop
2608 Par
:= Parent
(Par
);
2609 pragma Assert
(Present
(Par
));
2611 -- If we fall off the top, we are at the outer level, and
2612 -- the environment task is our effective master, so nothing
2616 (Par
, N_Task_Body
, N_Block_Statement
, N_Subprogram_Body
)
2618 Set_Is_Task_Master
(Par
, True);
2623 end Check_Anonymous_Return
;
2625 -------------------------
2626 -- Check_Inline_Pragma --
2627 -------------------------
2629 procedure Check_Inline_Pragma
(Spec
: in out Node_Id
) is
2633 function Is_Inline_Pragma
(N
: Node_Id
) return Boolean;
2634 -- True when N is a pragma Inline or Inline_Always that applies
2635 -- to this subprogram.
2637 -----------------------
2638 -- Is_Inline_Pragma --
2639 -----------------------
2641 function Is_Inline_Pragma
(N
: Node_Id
) return Boolean is
2644 Nkind
(N
) = N_Pragma
2646 (Pragma_Name
(N
) = Name_Inline_Always
2647 or else (Front_End_Inlining
2648 and then Pragma_Name
(N
) = Name_Inline
))
2651 (Expression
(First
(Pragma_Argument_Associations
(N
)))) =
2653 end Is_Inline_Pragma
;
2655 -- Start of processing for Check_Inline_Pragma
2658 if not Expander_Active
then
2662 if Is_List_Member
(N
)
2663 and then Present
(Next
(N
))
2664 and then Is_Inline_Pragma
(Next
(N
))
2668 elsif Nkind
(N
) /= N_Subprogram_Body_Stub
2669 and then Present
(Declarations
(N
))
2670 and then Is_Inline_Pragma
(First
(Declarations
(N
)))
2672 Prag
:= First
(Declarations
(N
));
2678 if Present
(Prag
) then
2679 if Present
(Spec_Id
) then
2680 if In_Same_List
(N
, Unit_Declaration_Node
(Spec_Id
)) then
2685 -- Create a subprogram declaration, to make treatment uniform
2688 Subp
: constant Entity_Id
:=
2689 Make_Defining_Identifier
(Loc
, Chars
(Body_Id
));
2690 Decl
: constant Node_Id
:=
2691 Make_Subprogram_Declaration
(Loc
,
2693 New_Copy_Tree
(Specification
(N
)));
2696 Set_Defining_Unit_Name
(Specification
(Decl
), Subp
);
2698 if Present
(First_Formal
(Body_Id
)) then
2699 Plist
:= Copy_Parameter_List
(Body_Id
);
2700 Set_Parameter_Specifications
2701 (Specification
(Decl
), Plist
);
2704 Insert_Before
(N
, Decl
);
2707 Set_Has_Pragma_Inline
(Subp
);
2709 if Pragma_Name
(Prag
) = Name_Inline_Always
then
2710 Set_Is_Inlined
(Subp
);
2711 Set_Has_Pragma_Inline_Always
(Subp
);
2714 -- Prior to copying the subprogram body to create a template
2715 -- for it for subsequent inlining, remove the pragma from
2716 -- the current body so that the copy that will produce the
2717 -- new body will start from a completely unanalyzed tree.
2719 if Nkind
(Parent
(Prag
)) = N_Subprogram_Body
then
2720 Rewrite
(Prag
, Make_Null_Statement
(Sloc
(Prag
)));
2727 end Check_Inline_Pragma
;
2729 --------------------------
2730 -- Check_Missing_Return --
2731 --------------------------
2733 procedure Check_Missing_Return
is
2735 Missing_Ret
: Boolean;
2738 if Nkind
(Body_Spec
) = N_Function_Specification
then
2739 if Present
(Spec_Id
) then
2745 if Return_Present
(Id
) then
2746 Check_Returns
(HSS
, 'F', Missing_Ret
);
2749 Set_Has_Missing_Return
(Id
);
2752 elsif Is_Generic_Subprogram
(Id
)
2753 or else not Is_Machine_Code_Subprogram
(Id
)
2755 Error_Msg_N
("missing RETURN statement in function body", N
);
2758 -- If procedure with No_Return, check returns
2760 elsif Nkind
(Body_Spec
) = N_Procedure_Specification
2761 and then Present
(Spec_Id
)
2762 and then No_Return
(Spec_Id
)
2764 Check_Returns
(HSS
, 'P', Missing_Ret
, Spec_Id
);
2767 -- Special checks in SPARK mode
2769 if Nkind
(Body_Spec
) = N_Function_Specification
then
2771 -- In SPARK mode, last statement of a function should be a return
2774 Stat
: constant Node_Id
:= Last_Source_Statement
(HSS
);
2777 and then not Nkind_In
(Stat
, N_Simple_Return_Statement
,
2778 N_Extended_Return_Statement
)
2780 Check_SPARK_05_Restriction
2781 ("last statement in function should be RETURN", Stat
);
2785 -- In SPARK mode, verify that a procedure has no return
2787 elsif Nkind
(Body_Spec
) = N_Procedure_Specification
then
2788 if Present
(Spec_Id
) then
2794 -- Would be nice to point to return statement here, can we
2795 -- borrow the Check_Returns procedure here ???
2797 if Return_Present
(Id
) then
2798 Check_SPARK_05_Restriction
2799 ("procedure should not have RETURN", N
);
2802 end Check_Missing_Return
;
2804 -----------------------
2805 -- Disambiguate_Spec --
2806 -----------------------
2808 function Disambiguate_Spec
return Entity_Id
is
2809 Priv_Spec
: Entity_Id
;
2812 procedure Replace_Types
(To_Corresponding
: Boolean);
2813 -- Depending on the flag, replace the type of formal parameters of
2814 -- Body_Id if it is a concurrent type implementing interfaces with
2815 -- the corresponding record type or the other way around.
2817 procedure Replace_Types
(To_Corresponding
: Boolean) is
2819 Formal_Typ
: Entity_Id
;
2822 Formal
:= First_Formal
(Body_Id
);
2823 while Present
(Formal
) loop
2824 Formal_Typ
:= Etype
(Formal
);
2826 if Is_Class_Wide_Type
(Formal_Typ
) then
2827 Formal_Typ
:= Root_Type
(Formal_Typ
);
2830 -- From concurrent type to corresponding record
2832 if To_Corresponding
then
2833 if Is_Concurrent_Type
(Formal_Typ
)
2834 and then Present
(Corresponding_Record_Type
(Formal_Typ
))
2837 (Corresponding_Record_Type
(Formal_Typ
)))
2840 Corresponding_Record_Type
(Formal_Typ
));
2843 -- From corresponding record to concurrent type
2846 if Is_Concurrent_Record_Type
(Formal_Typ
)
2847 and then Present
(Interfaces
(Formal_Typ
))
2850 Corresponding_Concurrent_Type
(Formal_Typ
));
2854 Next_Formal
(Formal
);
2858 -- Start of processing for Disambiguate_Spec
2861 -- Try to retrieve the specification of the body as is. All error
2862 -- messages are suppressed because the body may not have a spec in
2863 -- its current state.
2865 Spec_N
:= Find_Corresponding_Spec
(N
, False);
2867 -- It is possible that this is the body of a primitive declared
2868 -- between a private and a full view of a concurrent type. The
2869 -- controlling parameter of the spec carries the concurrent type,
2870 -- not the corresponding record type as transformed by Analyze_
2871 -- Subprogram_Specification. In such cases, we undo the change
2872 -- made by the analysis of the specification and try to find the
2875 -- Note that wrappers already have their corresponding specs and
2876 -- bodies set during their creation, so if the candidate spec is
2877 -- a wrapper, then we definitely need to swap all types to their
2878 -- original concurrent status.
2881 or else Is_Primitive_Wrapper
(Spec_N
)
2883 -- Restore all references of corresponding record types to the
2884 -- original concurrent types.
2886 Replace_Types
(To_Corresponding
=> False);
2887 Priv_Spec
:= Find_Corresponding_Spec
(N
, False);
2889 -- The current body truly belongs to a primitive declared between
2890 -- a private and a full view. We leave the modified body as is,
2891 -- and return the true spec.
2893 if Present
(Priv_Spec
)
2894 and then Is_Private_Primitive
(Priv_Spec
)
2899 -- In case that this is some sort of error, restore the original
2900 -- state of the body.
2902 Replace_Types
(To_Corresponding
=> True);
2906 end Disambiguate_Spec
;
2908 ----------------------------
2909 -- Exchange_Limited_Views --
2910 ----------------------------
2912 procedure Exchange_Limited_Views
(Subp_Id
: Entity_Id
) is
2913 procedure Detect_And_Exchange
(Id
: Entity_Id
);
2914 -- Determine whether Id's type denotes an incomplete type associated
2915 -- with a limited with clause and exchange the limited view with the
2918 -------------------------
2919 -- Detect_And_Exchange --
2920 -------------------------
2922 procedure Detect_And_Exchange
(Id
: Entity_Id
) is
2923 Typ
: constant Entity_Id
:= Etype
(Id
);
2926 if Ekind
(Typ
) = E_Incomplete_Type
2927 and then From_Limited_With
(Typ
)
2928 and then Present
(Non_Limited_View
(Typ
))
2930 Set_Etype
(Id
, Non_Limited_View
(Typ
));
2932 end Detect_And_Exchange
;
2938 -- Start of processing for Exchange_Limited_Views
2941 if No
(Subp_Id
) then
2944 -- Do not process subprogram bodies as they already use the non-
2945 -- limited view of types.
2947 elsif not Ekind_In
(Subp_Id
, E_Function
, E_Procedure
) then
2951 -- Examine all formals and swap views when applicable
2953 Formal
:= First_Formal
(Subp_Id
);
2954 while Present
(Formal
) loop
2955 Detect_And_Exchange
(Formal
);
2957 Next_Formal
(Formal
);
2960 -- Process the return type of a function
2962 if Ekind
(Subp_Id
) = E_Function
then
2963 Detect_And_Exchange
(Subp_Id
);
2965 end Exchange_Limited_Views
;
2967 -------------------------------------
2968 -- Is_Private_Concurrent_Primitive --
2969 -------------------------------------
2971 function Is_Private_Concurrent_Primitive
2972 (Subp_Id
: Entity_Id
) return Boolean
2974 Formal_Typ
: Entity_Id
;
2977 if Present
(First_Formal
(Subp_Id
)) then
2978 Formal_Typ
:= Etype
(First_Formal
(Subp_Id
));
2980 if Is_Concurrent_Record_Type
(Formal_Typ
) then
2981 if Is_Class_Wide_Type
(Formal_Typ
) then
2982 Formal_Typ
:= Root_Type
(Formal_Typ
);
2985 Formal_Typ
:= Corresponding_Concurrent_Type
(Formal_Typ
);
2988 -- The type of the first formal is a concurrent tagged type with
2992 Is_Concurrent_Type
(Formal_Typ
)
2993 and then Is_Tagged_Type
(Formal_Typ
)
2994 and then Has_Private_Declaration
(Formal_Typ
);
2998 end Is_Private_Concurrent_Primitive
;
3000 ----------------------------
3001 -- Set_Trivial_Subprogram --
3002 ----------------------------
3004 procedure Set_Trivial_Subprogram
(N
: Node_Id
) is
3005 Nxt
: constant Node_Id
:= Next
(N
);
3008 Set_Is_Trivial_Subprogram
(Body_Id
);
3010 if Present
(Spec_Id
) then
3011 Set_Is_Trivial_Subprogram
(Spec_Id
);
3015 and then Nkind
(Nxt
) = N_Simple_Return_Statement
3016 and then No
(Next
(Nxt
))
3017 and then Present
(Expression
(Nxt
))
3018 and then Is_Entity_Name
(Expression
(Nxt
))
3020 Set_Never_Set_In_Source
(Entity
(Expression
(Nxt
)), False);
3022 end Set_Trivial_Subprogram
;
3024 ---------------------------------
3025 -- Verify_Overriding_Indicator --
3026 ---------------------------------
3028 procedure Verify_Overriding_Indicator
is
3030 if Must_Override
(Body_Spec
) then
3031 if Nkind
(Spec_Id
) = N_Defining_Operator_Symbol
3032 and then Operator_Matches_Spec
(Spec_Id
, Spec_Id
)
3036 elsif not Present
(Overridden_Operation
(Spec_Id
)) then
3038 ("subprogram& is not overriding", Body_Spec
, Spec_Id
);
3040 -- Overriding indicators aren't allowed for protected subprogram
3041 -- bodies (see the Confirmation in Ada Comment AC95-00213). Change
3042 -- this to a warning if -gnatd.E is enabled.
3044 elsif Ekind
(Scope
(Spec_Id
)) = E_Protected_Type
then
3045 Error_Msg_Warn
:= Error_To_Warning
;
3047 ("<<overriding indicator not allowed for protected "
3048 & "subprogram body", Body_Spec
);
3051 elsif Must_Not_Override
(Body_Spec
) then
3052 if Present
(Overridden_Operation
(Spec_Id
)) then
3054 ("subprogram& overrides inherited operation",
3055 Body_Spec
, Spec_Id
);
3057 elsif Nkind
(Spec_Id
) = N_Defining_Operator_Symbol
3058 and then Operator_Matches_Spec
(Spec_Id
, Spec_Id
)
3061 ("subprogram& overrides predefined operator ",
3062 Body_Spec
, Spec_Id
);
3064 -- Overriding indicators aren't allowed for protected subprogram
3065 -- bodies (see the Confirmation in Ada Comment AC95-00213). Change
3066 -- this to a warning if -gnatd.E is enabled.
3068 elsif Ekind
(Scope
(Spec_Id
)) = E_Protected_Type
then
3069 Error_Msg_Warn
:= Error_To_Warning
;
3072 ("<<overriding indicator not allowed "
3073 & "for protected subprogram body", Body_Spec
);
3075 -- If this is not a primitive operation, then the overriding
3076 -- indicator is altogether illegal.
3078 elsif not Is_Primitive
(Spec_Id
) then
3080 ("overriding indicator only allowed "
3081 & "if subprogram is primitive", Body_Spec
);
3084 -- If checking the style rule and the operation overrides, then
3085 -- issue a warning about a missing overriding_indicator. Protected
3086 -- subprogram bodies are excluded from this style checking, since
3087 -- they aren't primitives (even though their declarations can
3088 -- override) and aren't allowed to have an overriding_indicator.
3091 and then Present
(Overridden_Operation
(Spec_Id
))
3092 and then Ekind
(Scope
(Spec_Id
)) /= E_Protected_Type
3094 pragma Assert
(Unit_Declaration_Node
(Body_Id
) = N
);
3095 Style
.Missing_Overriding
(N
, Body_Id
);
3098 and then Can_Override_Operator
(Spec_Id
)
3099 and then not Is_Predefined_File_Name
3100 (Unit_File_Name
(Get_Source_Unit
(Spec_Id
)))
3102 pragma Assert
(Unit_Declaration_Node
(Body_Id
) = N
);
3103 Style
.Missing_Overriding
(N
, Body_Id
);
3105 end Verify_Overriding_Indicator
;
3107 -- Start of processing for Analyze_Subprogram_Body_Helper
3110 -- Generic subprograms are handled separately. They always have a
3111 -- generic specification. Determine whether current scope has a
3112 -- previous declaration.
3114 -- If the subprogram body is defined within an instance of the same
3115 -- name, the instance appears as a package renaming, and will be hidden
3116 -- within the subprogram.
3118 if Present
(Prev_Id
)
3119 and then not Is_Overloadable
(Prev_Id
)
3120 and then (Nkind
(Parent
(Prev_Id
)) /= N_Package_Renaming_Declaration
3121 or else Comes_From_Source
(Prev_Id
))
3123 if Is_Generic_Subprogram
(Prev_Id
) then
3126 -- The corresponding spec may be subject to pragma Ghost with
3127 -- policy Ignore. Set the mode now to ensure that any nodes
3128 -- generated during analysis and expansion are properly flagged
3129 -- as ignored Ghost.
3131 Set_Ghost_Mode
(N
, Spec_Id
);
3132 Set_Is_Compilation_Unit
(Body_Id
, Is_Compilation_Unit
(Spec_Id
));
3133 Set_Is_Child_Unit
(Body_Id
, Is_Child_Unit
(Spec_Id
));
3135 Analyze_Generic_Subprogram_Body
(N
, Spec_Id
);
3137 if Nkind
(N
) = N_Subprogram_Body
then
3138 HSS
:= Handled_Statement_Sequence
(N
);
3139 Check_Missing_Return
;
3145 -- Previous entity conflicts with subprogram name. Attempting to
3146 -- enter name will post error.
3148 Enter_Name
(Body_Id
);
3152 -- Non-generic case, find the subprogram declaration, if one was seen,
3153 -- or enter new overloaded entity in the current scope. If the
3154 -- Current_Entity is the Body_Id itself, the unit is being analyzed as
3155 -- part of the context of one of its subunits. No need to redo the
3158 elsif Prev_Id
= Body_Id
and then Has_Completion
(Body_Id
) then
3162 Body_Id
:= Analyze_Subprogram_Specification
(Body_Spec
);
3164 if Nkind
(N
) = N_Subprogram_Body_Stub
3165 or else No
(Corresponding_Spec
(N
))
3167 if Is_Private_Concurrent_Primitive
(Body_Id
) then
3168 Spec_Id
:= Disambiguate_Spec
;
3170 -- The corresponding spec may be subject to pragma Ghost with
3171 -- policy Ignore. Set the mode now to ensure that any nodes
3172 -- generated during analysis and expansion are properly flagged
3173 -- as ignored Ghost.
3175 Set_Ghost_Mode
(N
, Spec_Id
);
3178 Spec_Id
:= Find_Corresponding_Spec
(N
);
3180 -- The corresponding spec may be subject to pragma Ghost with
3181 -- policy Ignore. Set the mode now to ensure that any nodes
3182 -- generated during analysis and expansion are properly flagged
3183 -- as ignored Ghost.
3185 Set_Ghost_Mode
(N
, Spec_Id
);
3187 -- In GNATprove mode, if the body has no previous spec, create
3188 -- one so that the inlining machinery can operate properly.
3189 -- Transfer aspects, if any, to the new spec, so that they
3190 -- are legal and can be processed ahead of the body.
3191 -- We make two copies of the given spec, one for the new
3192 -- declaration, and one for the body.
3194 if No
(Spec_Id
) and then GNATprove_Mode
3196 -- Inlining does not apply during pre-analysis of code
3198 and then Full_Analysis
3200 -- Inlining only applies to full bodies, not stubs
3202 and then Nkind
(N
) /= N_Subprogram_Body_Stub
3204 -- Inlining only applies to bodies in the source code, not to
3205 -- those generated by the compiler. In particular, expression
3206 -- functions, whose body is generated by the compiler, are
3207 -- treated specially by GNATprove.
3209 and then Comes_From_Source
(Body_Id
)
3211 -- This cannot be done for a compilation unit, which is not
3212 -- in a context where we can insert a new spec.
3214 and then Is_List_Member
(N
)
3216 -- Inlining only applies to subprograms without contracts,
3217 -- as a contract is a sign that GNATprove should perform a
3218 -- modular analysis of the subprogram instead of a contextual
3219 -- analysis at each call site. The same test is performed in
3220 -- Inline.Can_Be_Inlined_In_GNATprove_Mode. It is repeated
3221 -- here in another form (because the contract has not
3222 -- been attached to the body) to avoid frontend errors in
3223 -- case pragmas are used instead of aspects, because the
3224 -- corresponding pragmas in the body would not be transferred
3225 -- to the spec, leading to legality errors.
3227 and then not Body_Has_Contract
3230 Body_Spec
: constant Node_Id
:=
3231 Copy_Separate_Tree
(Specification
(N
));
3232 New_Decl
: constant Node_Id
:=
3233 Make_Subprogram_Declaration
(Loc
,
3234 Copy_Separate_Tree
(Specification
(N
)));
3236 SPARK_Mode_Aspect
: Node_Id
;
3238 Prag
, Aspect
: Node_Id
;
3241 Insert_Before
(N
, New_Decl
);
3242 Move_Aspects
(From
=> N
, To
=> New_Decl
);
3244 -- Mark the newly moved aspects as not analyzed, so that
3245 -- their effect on New_Decl is properly analyzed.
3247 Aspect
:= First
(Aspect_Specifications
(New_Decl
));
3248 while Present
(Aspect
) loop
3249 Set_Analyzed
(Aspect
, False);
3255 -- The analysis of the generated subprogram declaration
3256 -- may have introduced pragmas that need to be analyzed.
3258 Prag
:= Next
(New_Decl
);
3259 while Prag
/= N
loop
3264 Spec_Id
:= Defining_Entity
(New_Decl
);
3266 -- As Body_Id originally comes from source, mark the new
3267 -- Spec_Id as such, which is required so that calls to
3268 -- this subprogram are registered in the local effects
3269 -- stored in ALI files for GNATprove.
3271 Set_Comes_From_Source
(Spec_Id
, True);
3273 -- If aspect SPARK_Mode was specified on the body, it
3274 -- needs to be repeated on the generated decl and the
3275 -- body. Since the original aspect was moved to the
3276 -- generated decl, copy it for the body.
3278 if Has_Aspect
(Spec_Id
, Aspect_SPARK_Mode
) then
3279 SPARK_Mode_Aspect
:=
3280 New_Copy
(Find_Aspect
(Spec_Id
, Aspect_SPARK_Mode
));
3281 Set_Analyzed
(SPARK_Mode_Aspect
, False);
3282 Aspects
:= New_List
(SPARK_Mode_Aspect
);
3283 Set_Aspect_Specifications
(N
, Aspects
);
3286 Set_Specification
(N
, Body_Spec
);
3287 Body_Id
:= Analyze_Subprogram_Specification
(Body_Spec
);
3288 Set_Corresponding_Spec
(N
, Spec_Id
);
3293 -- If this is a duplicate body, no point in analyzing it
3295 if Error_Posted
(N
) then
3299 -- A subprogram body should cause freezing of its own declaration,
3300 -- but if there was no previous explicit declaration, then the
3301 -- subprogram will get frozen too late (there may be code within
3302 -- the body that depends on the subprogram having been frozen,
3303 -- such as uses of extra formals), so we force it to be frozen
3304 -- here. Same holds if the body and spec are compilation units.
3305 -- Finally, if the return type is an anonymous access to protected
3306 -- subprogram, it must be frozen before the body because its
3307 -- expansion has generated an equivalent type that is used when
3308 -- elaborating the body.
3310 -- An exception in the case of Ada 2012, AI05-177: The bodies
3311 -- created for expression functions do not freeze.
3314 and then Nkind
(Original_Node
(N
)) /= N_Expression_Function
3316 Freeze_Before
(N
, Body_Id
);
3318 elsif Nkind
(Parent
(N
)) = N_Compilation_Unit
then
3319 Freeze_Before
(N
, Spec_Id
);
3321 elsif Is_Access_Subprogram_Type
(Etype
(Body_Id
)) then
3322 Freeze_Before
(N
, Etype
(Body_Id
));
3326 Spec_Id
:= Corresponding_Spec
(N
);
3328 -- The corresponding spec may be subject to pragma Ghost with
3329 -- policy Ignore. Set the mode now to ensure that any nodes
3330 -- generated during analysis and expansion are properly flagged
3331 -- as ignored Ghost.
3333 Set_Ghost_Mode
(N
, Spec_Id
);
3337 -- Previously we scanned the body to look for nested subprograms, and
3338 -- rejected an inline directive if nested subprograms were present,
3339 -- because the back-end would generate conflicting symbols for the
3340 -- nested bodies. This is now unnecessary.
3342 -- Look ahead to recognize a pragma Inline that appears after the body
3344 Check_Inline_Pragma
(Spec_Id
);
3346 -- Deal with special case of a fully private operation in the body of
3347 -- the protected type. We must create a declaration for the subprogram,
3348 -- in order to attach the protected subprogram that will be used in
3349 -- internal calls. We exclude compiler generated bodies from the
3350 -- expander since the issue does not arise for those cases.
3353 and then Comes_From_Source
(N
)
3354 and then Is_Protected_Type
(Current_Scope
)
3356 Spec_Id
:= Build_Private_Protected_Declaration
(N
);
3359 -- If a separate spec is present, then deal with freezing issues
3361 if Present
(Spec_Id
) then
3362 Spec_Decl
:= Unit_Declaration_Node
(Spec_Id
);
3363 Verify_Overriding_Indicator
;
3365 -- In general, the spec will be frozen when we start analyzing the
3366 -- body. However, for internally generated operations, such as
3367 -- wrapper functions for inherited operations with controlling
3368 -- results, the spec may not have been frozen by the time we expand
3369 -- the freeze actions that include the bodies. In particular, extra
3370 -- formals for accessibility or for return-in-place may need to be
3371 -- generated. Freeze nodes, if any, are inserted before the current
3372 -- body. These freeze actions are also needed in ASIS mode to enable
3373 -- the proper back-annotations.
3375 if not Is_Frozen
(Spec_Id
)
3376 and then (Expander_Active
or ASIS_Mode
)
3378 -- Force the generation of its freezing node to ensure proper
3379 -- management of access types in the backend.
3381 -- This is definitely needed for some cases, but it is not clear
3382 -- why, to be investigated further???
3384 Set_Has_Delayed_Freeze
(Spec_Id
);
3385 Freeze_Before
(N
, Spec_Id
);
3389 -- Place subprogram on scope stack, and make formals visible. If there
3390 -- is a spec, the visible entity remains that of the spec.
3392 if Present
(Spec_Id
) then
3393 Generate_Reference
(Spec_Id
, Body_Id
, 'b', Set_Ref
=> False);
3395 if Is_Child_Unit
(Spec_Id
) then
3396 Generate_Reference
(Spec_Id
, Scope
(Spec_Id
), 'k', False);
3400 Style
.Check_Identifier
(Body_Id
, Spec_Id
);
3403 Set_Is_Compilation_Unit
(Body_Id
, Is_Compilation_Unit
(Spec_Id
));
3404 Set_Is_Child_Unit
(Body_Id
, Is_Child_Unit
(Spec_Id
));
3406 if Is_Abstract_Subprogram
(Spec_Id
) then
3407 Error_Msg_N
("an abstract subprogram cannot have a body", N
);
3411 Set_Convention
(Body_Id
, Convention
(Spec_Id
));
3412 Set_Has_Completion
(Spec_Id
);
3414 -- Inherit the "ghostness" of the subprogram spec. Note that this
3415 -- property is not directly inherited as the body may be subject
3416 -- to a different Ghost assertion policy.
3418 if Is_Ghost_Entity
(Spec_Id
) or else Ghost_Mode
> None
then
3419 Set_Is_Ghost_Entity
(Body_Id
);
3421 -- The Ghost policy in effect at the point of declaration and
3422 -- at the point of completion must match (SPARK RM 6.9(15)).
3424 Check_Ghost_Completion
(Spec_Id
, Body_Id
);
3427 if Is_Protected_Type
(Scope
(Spec_Id
)) then
3428 Prot_Typ
:= Scope
(Spec_Id
);
3431 -- If this is a body generated for a renaming, do not check for
3432 -- full conformance. The check is redundant, because the spec of
3433 -- the body is a copy of the spec in the renaming declaration,
3434 -- and the test can lead to spurious errors on nested defaults.
3436 if Present
(Spec_Decl
)
3437 and then not Comes_From_Source
(N
)
3439 (Nkind
(Original_Node
(Spec_Decl
)) =
3440 N_Subprogram_Renaming_Declaration
3441 or else (Present
(Corresponding_Body
(Spec_Decl
))
3443 Nkind
(Unit_Declaration_Node
3444 (Corresponding_Body
(Spec_Decl
))) =
3445 N_Subprogram_Renaming_Declaration
))
3449 -- Conversely, the spec may have been generated for specless body
3450 -- with an inline pragma.
3452 elsif Comes_From_Source
(N
)
3453 and then not Comes_From_Source
(Spec_Id
)
3454 and then Has_Pragma_Inline
(Spec_Id
)
3461 Fully_Conformant
, True, Conformant
, Body_Id
);
3464 -- If the body is not fully conformant, we have to decide if we
3465 -- should analyze it or not. If it has a really messed up profile
3466 -- then we probably should not analyze it, since we will get too
3467 -- many bogus messages.
3469 -- Our decision is to go ahead in the non-fully conformant case
3470 -- only if it is at least mode conformant with the spec. Note
3471 -- that the call to Check_Fully_Conformant has issued the proper
3472 -- error messages to complain about the lack of conformance.
3475 and then not Mode_Conformant
(Body_Id
, Spec_Id
)
3481 if Spec_Id
/= Body_Id
then
3482 Reference_Body_Formals
(Spec_Id
, Body_Id
);
3485 Set_Ekind
(Body_Id
, E_Subprogram_Body
);
3487 if Nkind
(N
) = N_Subprogram_Body_Stub
then
3488 Set_Corresponding_Spec_Of_Stub
(N
, Spec_Id
);
3493 Set_Corresponding_Spec
(N
, Spec_Id
);
3495 -- Ada 2005 (AI-345): If the operation is a primitive operation
3496 -- of a concurrent type, the type of the first parameter has been
3497 -- replaced with the corresponding record, which is the proper
3498 -- run-time structure to use. However, within the body there may
3499 -- be uses of the formals that depend on primitive operations
3500 -- of the type (in particular calls in prefixed form) for which
3501 -- we need the original concurrent type. The operation may have
3502 -- several controlling formals, so the replacement must be done
3505 if Comes_From_Source
(Spec_Id
)
3506 and then Present
(First_Entity
(Spec_Id
))
3507 and then Ekind
(Etype
(First_Entity
(Spec_Id
))) = E_Record_Type
3508 and then Is_Tagged_Type
(Etype
(First_Entity
(Spec_Id
)))
3509 and then Present
(Interfaces
(Etype
(First_Entity
(Spec_Id
))))
3510 and then Present
(Corresponding_Concurrent_Type
3511 (Etype
(First_Entity
(Spec_Id
))))
3514 Typ
: constant Entity_Id
:= Etype
(First_Entity
(Spec_Id
));
3518 Form
:= First_Formal
(Spec_Id
);
3519 while Present
(Form
) loop
3520 if Etype
(Form
) = Typ
then
3521 Set_Etype
(Form
, Corresponding_Concurrent_Type
(Typ
));
3529 -- Make the formals visible, and place subprogram on scope stack.
3530 -- This is also the point at which we set Last_Real_Spec_Entity
3531 -- to mark the entities which will not be moved to the body.
3533 Install_Formals
(Spec_Id
);
3534 Last_Real_Spec_Entity
:= Last_Entity
(Spec_Id
);
3536 -- Within an instance, add local renaming declarations so that
3537 -- gdb can retrieve the values of actuals more easily. This is
3538 -- only relevant if generating code (and indeed we definitely
3539 -- do not want these definitions -gnatc mode, because that would
3542 if Is_Generic_Instance
(Spec_Id
)
3543 and then Is_Wrapper_Package
(Current_Scope
)
3544 and then Expander_Active
3546 Build_Subprogram_Instance_Renamings
(N
, Current_Scope
);
3549 Push_Scope
(Spec_Id
);
3551 -- Make sure that the subprogram is immediately visible. For
3552 -- child units that have no separate spec this is indispensable.
3553 -- Otherwise it is safe albeit redundant.
3555 Set_Is_Immediately_Visible
(Spec_Id
);
3558 Set_Corresponding_Body
(Unit_Declaration_Node
(Spec_Id
), Body_Id
);
3559 Set_Is_Obsolescent
(Body_Id
, Is_Obsolescent
(Spec_Id
));
3560 Set_Scope
(Body_Id
, Scope
(Spec_Id
));
3562 -- Case of subprogram body with no previous spec
3565 -- Check for style warning required
3569 -- Only apply check for source level subprograms for which checks
3570 -- have not been suppressed.
3572 and then Comes_From_Source
(Body_Id
)
3573 and then not Suppress_Style_Checks
(Body_Id
)
3575 -- No warnings within an instance
3577 and then not In_Instance
3579 -- No warnings for expression functions
3581 and then Nkind
(Original_Node
(N
)) /= N_Expression_Function
3583 Style
.Body_With_No_Spec
(N
);
3586 New_Overloaded_Entity
(Body_Id
);
3588 if Nkind
(N
) /= N_Subprogram_Body_Stub
then
3589 Set_Acts_As_Spec
(N
);
3590 Generate_Definition
(Body_Id
);
3592 (Body_Id
, Body_Id
, 'b', Set_Ref
=> False, Force
=> True);
3593 Install_Formals
(Body_Id
);
3595 Push_Scope
(Body_Id
);
3598 -- For stubs and bodies with no previous spec, generate references to
3601 Generate_Reference_To_Formals
(Body_Id
);
3604 -- Set SPARK_Mode from context
3606 Set_SPARK_Pragma
(Body_Id
, SPARK_Mode_Pragma
);
3607 Set_SPARK_Pragma_Inherited
(Body_Id
, True);
3609 -- If the return type is an anonymous access type whose designated type
3610 -- is the limited view of a class-wide type and the non-limited view is
3611 -- available, update the return type accordingly.
3613 if Ada_Version
>= Ada_2005
and then Comes_From_Source
(N
) then
3619 Rtyp
:= Etype
(Current_Scope
);
3621 if Ekind
(Rtyp
) = E_Anonymous_Access_Type
then
3622 Etyp
:= Directly_Designated_Type
(Rtyp
);
3624 if Is_Class_Wide_Type
(Etyp
)
3625 and then From_Limited_With
(Etyp
)
3627 Set_Directly_Designated_Type
3628 (Etype
(Current_Scope
), Available_View
(Etyp
));
3634 -- If this is the proper body of a stub, we must verify that the stub
3635 -- conforms to the body, and to the previous spec if one was present.
3636 -- We know already that the body conforms to that spec. This test is
3637 -- only required for subprograms that come from source.
3639 if Nkind
(Parent
(N
)) = N_Subunit
3640 and then Comes_From_Source
(N
)
3641 and then not Error_Posted
(Body_Id
)
3642 and then Nkind
(Corresponding_Stub
(Parent
(N
))) =
3643 N_Subprogram_Body_Stub
3646 Old_Id
: constant Entity_Id
:=
3648 (Specification
(Corresponding_Stub
(Parent
(N
))));
3650 Conformant
: Boolean := False;
3653 if No
(Spec_Id
) then
3654 Check_Fully_Conformant
(Body_Id
, Old_Id
);
3658 (Body_Id
, Old_Id
, Fully_Conformant
, False, Conformant
);
3660 if not Conformant
then
3662 -- The stub was taken to be a new declaration. Indicate that
3665 Set_Has_Completion
(Old_Id
, False);
3671 Set_Has_Completion
(Body_Id
);
3672 Check_Eliminated
(Body_Id
);
3674 if Nkind
(N
) = N_Subprogram_Body_Stub
then
3676 -- Analyze any aspect specifications that appear on the subprogram
3679 if Has_Aspects
(N
) then
3680 Analyze_Aspects_On_Body_Or_Stub
;
3683 -- Stop the analysis now as the stub cannot be inlined, plus it does
3684 -- not have declarative or statement lists.
3689 -- Handle frontend inlining
3691 -- Note: Normally we don't do any inlining if expansion is off, since
3692 -- we won't generate code in any case. An exception arises in GNATprove
3693 -- mode where we want to expand some calls in place, even with expansion
3694 -- disabled, since the inlining eases formal verification.
3696 if not GNATprove_Mode
3697 and then Expander_Active
3698 and then Serious_Errors_Detected
= 0
3699 and then Present
(Spec_Id
)
3700 and then Has_Pragma_Inline
(Spec_Id
)
3702 -- Legacy implementation (relying on frontend inlining)
3704 if not Back_End_Inlining
then
3705 if (Has_Pragma_Inline_Always
(Spec_Id
)
3706 and then not Opt
.Disable_FE_Inline_Always
)
3708 (Has_Pragma_Inline
(Spec_Id
) and then Front_End_Inlining
3709 and then not Opt
.Disable_FE_Inline
)
3711 Build_Body_To_Inline
(N
, Spec_Id
);
3714 -- New implementation (relying on backend inlining)
3717 if Has_Pragma_Inline_Always
(Spec_Id
)
3718 or else Optimization_Level
> 0
3720 -- Handle function returning an unconstrained type
3722 if Comes_From_Source
(Body_Id
)
3723 and then Ekind
(Spec_Id
) = E_Function
3724 and then Returns_Unconstrained_Type
(Spec_Id
)
3726 -- If function builds in place, i.e. returns a limited type,
3727 -- inlining cannot be done.
3729 and then not Is_Limited_Type
(Etype
(Spec_Id
))
3731 Check_And_Split_Unconstrained_Function
(N
, Spec_Id
, Body_Id
);
3735 Subp_Body
: constant Node_Id
:=
3736 Unit_Declaration_Node
(Body_Id
);
3737 Subp_Decl
: constant List_Id
:= Declarations
(Subp_Body
);
3740 -- Do not pass inlining to the backend if the subprogram
3741 -- has declarations or statements which cannot be inlined
3742 -- by the backend. This check is done here to emit an
3743 -- error instead of the generic warning message reported
3744 -- by the GCC backend (ie. "function might not be
3747 if Present
(Subp_Decl
)
3748 and then Has_Excluded_Declaration
(Spec_Id
, Subp_Decl
)
3752 elsif Has_Excluded_Statement
3755 (Handled_Statement_Sequence
(Subp_Body
)))
3759 -- If the backend inlining is available then at this
3760 -- stage we only have to mark the subprogram as inlined.
3761 -- The expander will take care of registering it in the
3762 -- table of subprograms inlined by the backend a part of
3763 -- processing calls to it (cf. Expand_Call)
3766 Set_Is_Inlined
(Spec_Id
);
3773 -- In GNATprove mode, inline only when there is a separate subprogram
3774 -- declaration for now, as inlining of subprogram bodies acting as
3775 -- declarations, or subprogram stubs, are not supported by frontend
3776 -- inlining. This inlining should occur after analysis of the body, so
3777 -- that it is known whether the value of SPARK_Mode applicable to the
3778 -- body, which can be defined by a pragma inside the body.
3780 elsif GNATprove_Mode
3781 and then Full_Analysis
3782 and then not Inside_A_Generic
3783 and then Present
(Spec_Id
)
3784 and then Nkind
(Parent
(Parent
(Spec_Id
))) = N_Subprogram_Declaration
3785 and then Can_Be_Inlined_In_GNATprove_Mode
(Spec_Id
, Body_Id
)
3786 and then not Body_Has_Contract
3788 Build_Body_To_Inline
(N
, Spec_Id
);
3791 -- Ada 2005 (AI-262): In library subprogram bodies, after the analysis
3792 -- of the specification we have to install the private withed units.
3793 -- This holds for child units as well.
3795 if Is_Compilation_Unit
(Body_Id
)
3796 or else Nkind
(Parent
(N
)) = N_Compilation_Unit
3798 Install_Private_With_Clauses
(Body_Id
);
3801 Check_Anonymous_Return
;
3803 -- Set the Protected_Formal field of each extra formal of the protected
3804 -- subprogram to reference the corresponding extra formal of the
3805 -- subprogram that implements it. For regular formals this occurs when
3806 -- the protected subprogram's declaration is expanded, but the extra
3807 -- formals don't get created until the subprogram is frozen. We need to
3808 -- do this before analyzing the protected subprogram's body so that any
3809 -- references to the original subprogram's extra formals will be changed
3810 -- refer to the implementing subprogram's formals (see Expand_Formal).
3812 if Present
(Spec_Id
)
3813 and then Is_Protected_Type
(Scope
(Spec_Id
))
3814 and then Present
(Protected_Body_Subprogram
(Spec_Id
))
3817 Impl_Subp
: constant Entity_Id
:=
3818 Protected_Body_Subprogram
(Spec_Id
);
3819 Prot_Ext_Formal
: Entity_Id
:= Extra_Formals
(Spec_Id
);
3820 Impl_Ext_Formal
: Entity_Id
:= Extra_Formals
(Impl_Subp
);
3822 while Present
(Prot_Ext_Formal
) loop
3823 pragma Assert
(Present
(Impl_Ext_Formal
));
3824 Set_Protected_Formal
(Prot_Ext_Formal
, Impl_Ext_Formal
);
3825 Next_Formal_With_Extras
(Prot_Ext_Formal
);
3826 Next_Formal_With_Extras
(Impl_Ext_Formal
);
3831 -- Now we can go on to analyze the body
3833 HSS
:= Handled_Statement_Sequence
(N
);
3834 Set_Actual_Subtypes
(N
, Current_Scope
);
3836 -- Add a declaration for the Protection object, renaming declarations
3837 -- for discriminals and privals and finally a declaration for the entry
3838 -- family index (if applicable). This form of early expansion is done
3839 -- when the Expander is active because Install_Private_Data_Declarations
3840 -- references entities which were created during regular expansion. The
3841 -- subprogram entity must come from source, and not be an internally
3842 -- generated subprogram.
3845 and then Present
(Prot_Typ
)
3846 and then Present
(Spec_Id
)
3847 and then Comes_From_Source
(Spec_Id
)
3848 and then not Is_Eliminated
(Spec_Id
)
3850 Install_Private_Data_Declarations
3851 (Sloc
(N
), Spec_Id
, Prot_Typ
, N
, Declarations
(N
));
3854 -- Ada 2012 (AI05-0151): Incomplete types coming from a limited context
3855 -- may now appear in parameter and result profiles. Since the analysis
3856 -- of a subprogram body may use the parameter and result profile of the
3857 -- spec, swap any limited views with their non-limited counterpart.
3859 if Ada_Version
>= Ada_2012
then
3860 Exchange_Limited_Views
(Spec_Id
);
3863 -- Analyze any aspect specifications that appear on the subprogram body
3865 if Has_Aspects
(N
) then
3866 Analyze_Aspects_On_Body_Or_Stub
;
3869 Analyze_Declarations
(Declarations
(N
));
3871 -- Verify that the SPARK_Mode of the body agrees with that of its spec
3873 if Present
(Spec_Id
) and then Present
(SPARK_Pragma
(Body_Id
)) then
3874 if Present
(SPARK_Pragma
(Spec_Id
)) then
3875 if Get_SPARK_Mode_From_Pragma
(SPARK_Pragma
(Spec_Id
)) = Off
3877 Get_SPARK_Mode_From_Pragma
(SPARK_Pragma
(Body_Id
)) = On
3879 Error_Msg_Sloc
:= Sloc
(SPARK_Pragma
(Body_Id
));
3880 Error_Msg_N
("incorrect application of SPARK_Mode#", N
);
3881 Error_Msg_Sloc
:= Sloc
(SPARK_Pragma
(Spec_Id
));
3883 ("\value Off was set for SPARK_Mode on & #", N
, Spec_Id
);
3886 elsif Nkind
(Parent
(Parent
(Spec_Id
))) = N_Subprogram_Body_Stub
then
3890 Error_Msg_Sloc
:= Sloc
(SPARK_Pragma
(Body_Id
));
3891 Error_Msg_N
("incorrect application of SPARK_Mode #", N
);
3892 Error_Msg_Sloc
:= Sloc
(Spec_Id
);
3894 ("\no value was set for SPARK_Mode on & #", N
, Spec_Id
);
3898 -- When a subprogram body appears inside a package, its contract is
3899 -- analyzed at the end of the package body declarations. This is due
3900 -- to the delay with respect of the package contract upon which the
3901 -- body contract may depend. When the subprogram body is stand alone
3902 -- and acts as a compilation unit, this delay is not necessary.
3904 if Nkind
(Parent
(N
)) = N_Compilation_Unit
then
3905 Analyze_Subprogram_Body_Contract
(Body_Id
);
3908 -- Deal with preconditions, [refined] postconditions, Contract_Cases,
3909 -- invariants and predicates associated with body and its spec. Since
3910 -- there is no routine Expand_Declarations which would otherwise deal
3911 -- with the contract expansion, generate all necessary mechanisms to
3912 -- verify the contract assertions now.
3914 Expand_Subprogram_Contract
(N
);
3916 -- If SPARK_Mode for body is not On, disable frontend inlining for this
3917 -- subprogram in GNATprove mode, as its body should not be analyzed.
3920 and then GNATprove_Mode
3921 and then Present
(Spec_Id
)
3922 and then Nkind
(Parent
(Parent
(Spec_Id
))) = N_Subprogram_Declaration
3924 Set_Body_To_Inline
(Parent
(Parent
(Spec_Id
)), Empty
);
3925 Set_Is_Inlined_Always
(Spec_Id
, False);
3928 -- Check completion, and analyze the statements
3931 Inspect_Deferred_Constant_Completion
(Declarations
(N
));
3934 -- Deal with end of scope processing for the body
3936 Process_End_Label
(HSS
, 't', Current_Scope
);
3938 Check_Subprogram_Order
(N
);
3939 Set_Analyzed
(Body_Id
);
3941 -- If we have a separate spec, then the analysis of the declarations
3942 -- caused the entities in the body to be chained to the spec id, but
3943 -- we want them chained to the body id. Only the formal parameters
3944 -- end up chained to the spec id in this case.
3946 if Present
(Spec_Id
) then
3948 -- We must conform to the categorization of our spec
3950 Validate_Categorization_Dependency
(N
, Spec_Id
);
3952 -- And if this is a child unit, the parent units must conform
3954 if Is_Child_Unit
(Spec_Id
) then
3955 Validate_Categorization_Dependency
3956 (Unit_Declaration_Node
(Spec_Id
), Spec_Id
);
3959 -- Here is where we move entities from the spec to the body
3961 -- Case where there are entities that stay with the spec
3963 if Present
(Last_Real_Spec_Entity
) then
3965 -- No body entities (happens when the only real spec entities come
3966 -- from precondition and postcondition pragmas).
3968 if No
(Last_Entity
(Body_Id
)) then
3970 (Body_Id
, Next_Entity
(Last_Real_Spec_Entity
));
3972 -- Body entities present (formals), so chain stuff past them
3976 (Last_Entity
(Body_Id
), Next_Entity
(Last_Real_Spec_Entity
));
3979 Set_Next_Entity
(Last_Real_Spec_Entity
, Empty
);
3980 Set_Last_Entity
(Body_Id
, Last_Entity
(Spec_Id
));
3981 Set_Last_Entity
(Spec_Id
, Last_Real_Spec_Entity
);
3983 -- Case where there are no spec entities, in this case there can be
3984 -- no body entities either, so just move everything.
3986 -- If the body is generated for an expression function, it may have
3987 -- been preanalyzed already, if 'access was applied to it.
3990 if Nkind
(Original_Node
(Unit_Declaration_Node
(Spec_Id
))) /=
3991 N_Expression_Function
3993 pragma Assert
(No
(Last_Entity
(Body_Id
)));
3997 Set_First_Entity
(Body_Id
, First_Entity
(Spec_Id
));
3998 Set_Last_Entity
(Body_Id
, Last_Entity
(Spec_Id
));
3999 Set_First_Entity
(Spec_Id
, Empty
);
4000 Set_Last_Entity
(Spec_Id
, Empty
);
4004 Check_Missing_Return
;
4006 -- Now we are going to check for variables that are never modified in
4007 -- the body of the procedure. But first we deal with a special case
4008 -- where we want to modify this check. If the body of the subprogram
4009 -- starts with a raise statement or its equivalent, or if the body
4010 -- consists entirely of a null statement, then it is pretty obvious that
4011 -- it is OK to not reference the parameters. For example, this might be
4012 -- the following common idiom for a stubbed function: statement of the
4013 -- procedure raises an exception. In particular this deals with the
4014 -- common idiom of a stubbed function, which appears something like:
4016 -- function F (A : Integer) return Some_Type;
4019 -- raise Program_Error;
4023 -- Here the purpose of X is simply to satisfy the annoying requirement
4024 -- in Ada that there be at least one return, and we certainly do not
4025 -- want to go posting warnings on X that it is not initialized. On
4026 -- the other hand, if X is entirely unreferenced that should still
4029 -- What we do is to detect these cases, and if we find them, flag the
4030 -- subprogram as being Is_Trivial_Subprogram and then use that flag to
4031 -- suppress unwanted warnings. For the case of the function stub above
4032 -- we have a special test to set X as apparently assigned to suppress
4039 -- Skip initial labels (for one thing this occurs when we are in
4040 -- front end ZCX mode, but in any case it is irrelevant), and also
4041 -- initial Push_xxx_Error_Label nodes, which are also irrelevant.
4043 Stm
:= First
(Statements
(HSS
));
4044 while Nkind
(Stm
) = N_Label
4045 or else Nkind
(Stm
) in N_Push_xxx_Label
4050 -- Do the test on the original statement before expansion
4053 Ostm
: constant Node_Id
:= Original_Node
(Stm
);
4056 -- If explicit raise statement, turn on flag
4058 if Nkind
(Ostm
) = N_Raise_Statement
then
4059 Set_Trivial_Subprogram
(Stm
);
4061 -- If null statement, and no following statements, turn on flag
4063 elsif Nkind
(Stm
) = N_Null_Statement
4064 and then Comes_From_Source
(Stm
)
4065 and then No
(Next
(Stm
))
4067 Set_Trivial_Subprogram
(Stm
);
4069 -- Check for explicit call cases which likely raise an exception
4071 elsif Nkind
(Ostm
) = N_Procedure_Call_Statement
then
4072 if Is_Entity_Name
(Name
(Ostm
)) then
4074 Ent
: constant Entity_Id
:= Entity
(Name
(Ostm
));
4077 -- If the procedure is marked No_Return, then likely it
4078 -- raises an exception, but in any case it is not coming
4079 -- back here, so turn on the flag.
4082 and then Ekind
(Ent
) = E_Procedure
4083 and then No_Return
(Ent
)
4085 Set_Trivial_Subprogram
(Stm
);
4093 -- Check for variables that are never modified
4099 -- If there is a separate spec, then transfer Never_Set_In_Source
4100 -- flags from out parameters to the corresponding entities in the
4101 -- body. The reason we do that is we want to post error flags on
4102 -- the body entities, not the spec entities.
4104 if Present
(Spec_Id
) then
4105 E1
:= First_Entity
(Spec_Id
);
4106 while Present
(E1
) loop
4107 if Ekind
(E1
) = E_Out_Parameter
then
4108 E2
:= First_Entity
(Body_Id
);
4109 while Present
(E2
) loop
4110 exit when Chars
(E1
) = Chars
(E2
);
4114 if Present
(E2
) then
4115 Set_Never_Set_In_Source
(E2
, Never_Set_In_Source
(E1
));
4123 -- Check references in body
4125 Check_References
(Body_Id
);
4128 -- Check for nested subprogram, and mark outer level subprogram if so
4134 if Present
(Spec_Id
) then
4141 Ent
:= Enclosing_Subprogram
(Ent
);
4142 exit when No
(Ent
) or else Is_Subprogram
(Ent
);
4145 if Present
(Ent
) then
4146 Set_Has_Nested_Subprogram
(Ent
);
4149 end Analyze_Subprogram_Body_Helper
;
4151 ---------------------------------
4152 -- Analyze_Subprogram_Contract --
4153 ---------------------------------
4155 procedure Analyze_Subprogram_Contract
(Subp_Id
: Entity_Id
) is
4156 procedure Save_Global_References_In_List
(First_Prag
: Node_Id
);
4157 -- Save all global references in contract-related source pragma found in
4158 -- the list starting from pragma First_Prag.
4160 ------------------------------------
4161 -- Save_Global_References_In_List --
4162 ------------------------------------
4164 procedure Save_Global_References_In_List
(First_Prag
: Node_Id
) is
4169 while Present
(Prag
) loop
4170 if Comes_From_Source
(Prag
)
4171 and then Nam_In
(Pragma_Name
(Prag
), Name_Contract_Cases
,
4173 Name_Extensions_Visible
,
4179 Save_Global_References
(Original_Node
(Prag
));
4182 Prag
:= Next_Pragma
(Prag
);
4184 end Save_Global_References_In_List
;
4188 Items
: constant Node_Id
:= Contract
(Subp_Id
);
4189 Subp_Decl
: constant Node_Id
:= Unit_Declaration_Node
(Subp_Id
);
4190 Depends
: Node_Id
:= Empty
;
4191 Global
: Node_Id
:= Empty
;
4192 Mode
: SPARK_Mode_Type
;
4195 Restore_Scope
: Boolean := False;
4197 -- Start of processing for Analyze_Subprogram_Contract
4200 -- All subprograms carry a contract, but for some it is not significant
4201 -- and should not be processed.
4203 if not Has_Significant_Contract
(Subp_Id
) then
4207 -- Due to the timing of contract analysis, delayed pragmas may be
4208 -- subject to the wrong SPARK_Mode, usually that of the enclosing
4209 -- context. To remedy this, restore the original SPARK_Mode of the
4210 -- related subprogram body.
4212 Save_SPARK_Mode_And_Set
(Subp_Id
, Mode
);
4214 -- Ensure that the formal parameters are visible when analyzing all
4217 if not In_Open_Scopes
(Subp_Id
) then
4218 Restore_Scope
:= True;
4219 Push_Scope
(Subp_Id
);
4221 if Is_Generic_Subprogram
(Subp_Id
) then
4222 Install_Generic_Formals
(Subp_Id
);
4224 Install_Formals
(Subp_Id
);
4228 if Present
(Items
) then
4230 -- Analyze pre- and postconditions
4232 Prag
:= Pre_Post_Conditions
(Items
);
4233 while Present
(Prag
) loop
4234 Analyze_Pre_Post_Condition_In_Decl_Part
(Prag
);
4235 Prag
:= Next_Pragma
(Prag
);
4238 -- Analyze contract-cases and test-cases
4240 Prag
:= Contract_Test_Cases
(Items
);
4241 while Present
(Prag
) loop
4242 Prag_Nam
:= Pragma_Name
(Prag
);
4244 if Prag_Nam
= Name_Contract_Cases
then
4245 Analyze_Contract_Cases_In_Decl_Part
(Prag
);
4247 pragma Assert
(Prag_Nam
= Name_Test_Case
);
4248 Analyze_Test_Case_In_Decl_Part
(Prag
);
4251 Prag
:= Next_Pragma
(Prag
);
4254 -- Analyze classification pragmas
4256 Prag
:= Classifications
(Items
);
4257 while Present
(Prag
) loop
4258 Prag_Nam
:= Pragma_Name
(Prag
);
4260 if Prag_Nam
= Name_Depends
then
4263 elsif Prag_Nam
= Name_Global
then
4266 -- Note that pragma Extensions_Visible has already been analyzed
4270 Prag
:= Next_Pragma
(Prag
);
4273 -- Analyze Global first as Depends may mention items classified in
4274 -- the global categorization.
4276 if Present
(Global
) then
4277 Analyze_Global_In_Decl_Part
(Global
);
4280 -- Depends must be analyzed after Global in order to see the modes of
4281 -- all global items.
4283 if Present
(Depends
) then
4284 Analyze_Depends_In_Decl_Part
(Depends
);
4287 -- Ensure that the contract cases or postconditions mention 'Result
4288 -- or define a post-state.
4290 Check_Result_And_Post_State
(Subp_Id
);
4293 -- The aspects and contract-related source pragmas associated with a
4294 -- generic subprogram are treated separately from the declaration as
4295 -- they need to be analyzed when the subprogram contract is analyzed.
4296 -- Once this is done, global references can be successfully saved.
4298 if Nkind
(Subp_Decl
) = N_Generic_Subprogram_Declaration
then
4300 -- Save all global references found in the aspect specifications of
4301 -- the parameter profile of the generic subprogram.
4303 Save_Global_References_In_Aspects
(Original_Node
(Subp_Decl
));
4305 -- Save all global references found in contract-related source
4306 -- pragmas. These pragmas usually appear after the declaration of
4307 -- the generic subprogram, either in the same declarative part or
4308 -- in the Pragmas_After list when the generic subprogram is a
4309 -- compilation unit.
4311 if Present
(Items
) then
4312 Save_Global_References_In_List
(Pre_Post_Conditions
(Items
));
4313 Save_Global_References_In_List
(Contract_Test_Cases
(Items
));
4314 Save_Global_References_In_List
(Classifications
(Items
));
4318 if Restore_Scope
then
4322 -- Restore the SPARK_Mode of the enclosing context after all delayed
4323 -- pragmas have been analyzed.
4325 Restore_SPARK_Mode
(Mode
);
4326 end Analyze_Subprogram_Contract
;
4328 ------------------------------------
4329 -- Analyze_Subprogram_Declaration --
4330 ------------------------------------
4332 procedure Analyze_Subprogram_Declaration
(N
: Node_Id
) is
4333 Scop
: constant Entity_Id
:= Current_Scope
;
4334 Designator
: Entity_Id
;
4336 Is_Completion
: Boolean;
4337 -- Indicates whether a null procedure declaration is a completion
4340 -- The subprogram declaration may be subject to pragma Ghost with policy
4341 -- Ignore. Set the mode now to ensure that any nodes generated during
4342 -- analysis and expansion are properly flagged as ignored Ghost.
4346 -- Null procedures are not allowed in SPARK
4348 if Nkind
(Specification
(N
)) = N_Procedure_Specification
4349 and then Null_Present
(Specification
(N
))
4351 Check_SPARK_05_Restriction
("null procedure is not allowed", N
);
4353 if Is_Protected_Type
(Current_Scope
) then
4354 Error_Msg_N
("protected operation cannot be a null procedure", N
);
4357 Analyze_Null_Procedure
(N
, Is_Completion
);
4359 if Is_Completion
then
4361 -- The null procedure acts as a body, nothing further is needed.
4367 Designator
:= Analyze_Subprogram_Specification
(Specification
(N
));
4369 -- A reference may already have been generated for the unit name, in
4370 -- which case the following call is redundant. However it is needed for
4371 -- declarations that are the rewriting of an expression function.
4373 Generate_Definition
(Designator
);
4375 -- Set SPARK mode from current context (may be overwritten later with
4376 -- explicit pragma).
4378 Set_SPARK_Pragma
(Designator
, SPARK_Mode_Pragma
);
4379 Set_SPARK_Pragma_Inherited
(Designator
);
4381 -- A subprogram declared within a Ghost region is automatically Ghost
4382 -- (SPARK RM 6.9(2)).
4384 if Comes_From_Source
(Designator
) and then Ghost_Mode
> None
then
4385 Set_Is_Ghost_Entity
(Designator
);
4388 if Debug_Flag_C
then
4389 Write_Str
("==> subprogram spec ");
4390 Write_Name
(Chars
(Designator
));
4391 Write_Str
(" from ");
4392 Write_Location
(Sloc
(N
));
4397 Validate_RCI_Subprogram_Declaration
(N
);
4398 New_Overloaded_Entity
(Designator
);
4399 Check_Delayed_Subprogram
(Designator
);
4401 -- If the type of the first formal of the current subprogram is a non-
4402 -- generic tagged private type, mark the subprogram as being a private
4403 -- primitive. Ditto if this is a function with controlling result, and
4404 -- the return type is currently private. In both cases, the type of the
4405 -- controlling argument or result must be in the current scope for the
4406 -- operation to be primitive.
4408 if Has_Controlling_Result
(Designator
)
4409 and then Is_Private_Type
(Etype
(Designator
))
4410 and then Scope
(Etype
(Designator
)) = Current_Scope
4411 and then not Is_Generic_Actual_Type
(Etype
(Designator
))
4413 Set_Is_Private_Primitive
(Designator
);
4415 elsif Present
(First_Formal
(Designator
)) then
4417 Formal_Typ
: constant Entity_Id
:=
4418 Etype
(First_Formal
(Designator
));
4420 Set_Is_Private_Primitive
(Designator
,
4421 Is_Tagged_Type
(Formal_Typ
)
4422 and then Scope
(Formal_Typ
) = Current_Scope
4423 and then Is_Private_Type
(Formal_Typ
)
4424 and then not Is_Generic_Actual_Type
(Formal_Typ
));
4428 -- Ada 2005 (AI-251): Abstract interface primitives must be abstract
4431 if Ada_Version
>= Ada_2005
4432 and then Comes_From_Source
(N
)
4433 and then Is_Dispatching_Operation
(Designator
)
4440 if Has_Controlling_Result
(Designator
) then
4441 Etyp
:= Etype
(Designator
);
4444 E
:= First_Entity
(Designator
);
4446 and then Is_Formal
(E
)
4447 and then not Is_Controlling_Formal
(E
)
4455 if Is_Access_Type
(Etyp
) then
4456 Etyp
:= Directly_Designated_Type
(Etyp
);
4459 if Is_Interface
(Etyp
)
4460 and then not Is_Abstract_Subprogram
(Designator
)
4461 and then not (Ekind
(Designator
) = E_Procedure
4462 and then Null_Present
(Specification
(N
)))
4464 Error_Msg_Name_1
:= Chars
(Defining_Entity
(N
));
4466 -- Specialize error message based on procedures vs. functions,
4467 -- since functions can't be null subprograms.
4469 if Ekind
(Designator
) = E_Procedure
then
4471 ("interface procedure % must be abstract or null", N
);
4474 ("interface function % must be abstract", N
);
4480 -- What is the following code for, it used to be
4482 -- ??? Set_Suppress_Elaboration_Checks
4483 -- ??? (Designator, Elaboration_Checks_Suppressed (Designator));
4485 -- The following seems equivalent, but a bit dubious
4487 if Elaboration_Checks_Suppressed
(Designator
) then
4488 Set_Kill_Elaboration_Checks
(Designator
);
4491 if Scop
/= Standard_Standard
and then not Is_Child_Unit
(Designator
) then
4492 Set_Categorization_From_Scope
(Designator
, Scop
);
4495 -- For a compilation unit, check for library-unit pragmas
4497 Push_Scope
(Designator
);
4498 Set_Categorization_From_Pragmas
(N
);
4499 Validate_Categorization_Dependency
(N
, Designator
);
4503 -- For a compilation unit, set body required. This flag will only be
4504 -- reset if a valid Import or Interface pragma is processed later on.
4506 if Nkind
(Parent
(N
)) = N_Compilation_Unit
then
4507 Set_Body_Required
(Parent
(N
), True);
4509 if Ada_Version
>= Ada_2005
4510 and then Nkind
(Specification
(N
)) = N_Procedure_Specification
4511 and then Null_Present
(Specification
(N
))
4514 ("null procedure cannot be declared at library level", N
);
4518 Generate_Reference_To_Formals
(Designator
);
4519 Check_Eliminated
(Designator
);
4521 if Debug_Flag_C
then
4523 Write_Str
("<== subprogram spec ");
4524 Write_Name
(Chars
(Designator
));
4525 Write_Str
(" from ");
4526 Write_Location
(Sloc
(N
));
4530 if Is_Protected_Type
(Current_Scope
) then
4532 -- Indicate that this is a protected operation, because it may be
4533 -- used in subsequent declarations within the protected type.
4535 Set_Convention
(Designator
, Convention_Protected
);
4538 List_Inherited_Pre_Post_Aspects
(Designator
);
4540 if Has_Aspects
(N
) then
4541 Analyze_Aspect_Specifications
(N
, Designator
);
4543 end Analyze_Subprogram_Declaration
;
4545 --------------------------------------
4546 -- Analyze_Subprogram_Specification --
4547 --------------------------------------
4549 -- Reminder: N here really is a subprogram specification (not a subprogram
4550 -- declaration). This procedure is called to analyze the specification in
4551 -- both subprogram bodies and subprogram declarations (specs).
4553 function Analyze_Subprogram_Specification
(N
: Node_Id
) return Entity_Id
is
4554 Designator
: constant Entity_Id
:= Defining_Entity
(N
);
4555 Formals
: constant List_Id
:= Parameter_Specifications
(N
);
4557 -- Start of processing for Analyze_Subprogram_Specification
4560 -- User-defined operator is not allowed in SPARK, except as a renaming
4562 if Nkind
(Defining_Unit_Name
(N
)) = N_Defining_Operator_Symbol
4563 and then Nkind
(Parent
(N
)) /= N_Subprogram_Renaming_Declaration
4565 Check_SPARK_05_Restriction
4566 ("user-defined operator is not allowed", N
);
4569 -- Proceed with analysis. Do not emit a cross-reference entry if the
4570 -- specification comes from an expression function, because it may be
4571 -- the completion of a previous declaration. It is is not, the cross-
4572 -- reference entry will be emitted for the new subprogram declaration.
4574 if Nkind
(Parent
(N
)) /= N_Expression_Function
then
4575 Generate_Definition
(Designator
);
4578 if Nkind
(N
) = N_Function_Specification
then
4579 Set_Ekind
(Designator
, E_Function
);
4580 Set_Mechanism
(Designator
, Default_Mechanism
);
4582 Set_Ekind
(Designator
, E_Procedure
);
4583 Set_Etype
(Designator
, Standard_Void_Type
);
4586 -- Flag Is_Inlined_Always is True by default, and reversed to False for
4587 -- those subprograms which could be inlined in GNATprove mode (because
4588 -- Body_To_Inline is non-Empty) but cannot be inlined.
4590 if GNATprove_Mode
then
4591 Set_Is_Inlined_Always
(Designator
);
4594 -- Introduce new scope for analysis of the formals and the return type
4596 Set_Scope
(Designator
, Current_Scope
);
4598 if Present
(Formals
) then
4599 Push_Scope
(Designator
);
4600 Process_Formals
(Formals
, N
);
4602 -- Check dimensions in N for formals with default expression
4604 Analyze_Dimension_Formals
(N
, Formals
);
4606 -- Ada 2005 (AI-345): If this is an overriding operation of an
4607 -- inherited interface operation, and the controlling type is
4608 -- a synchronized type, replace the type with its corresponding
4609 -- record, to match the proper signature of an overriding operation.
4610 -- Same processing for an access parameter whose designated type is
4611 -- derived from a synchronized interface.
4613 if Ada_Version
>= Ada_2005
then
4616 Formal_Typ
: Entity_Id
;
4617 Rec_Typ
: Entity_Id
;
4618 Desig_Typ
: Entity_Id
;
4621 Formal
:= First_Formal
(Designator
);
4622 while Present
(Formal
) loop
4623 Formal_Typ
:= Etype
(Formal
);
4625 if Is_Concurrent_Type
(Formal_Typ
)
4626 and then Present
(Corresponding_Record_Type
(Formal_Typ
))
4628 Rec_Typ
:= Corresponding_Record_Type
(Formal_Typ
);
4630 if Present
(Interfaces
(Rec_Typ
)) then
4631 Set_Etype
(Formal
, Rec_Typ
);
4634 elsif Ekind
(Formal_Typ
) = E_Anonymous_Access_Type
then
4635 Desig_Typ
:= Designated_Type
(Formal_Typ
);
4637 if Is_Concurrent_Type
(Desig_Typ
)
4638 and then Present
(Corresponding_Record_Type
(Desig_Typ
))
4640 Rec_Typ
:= Corresponding_Record_Type
(Desig_Typ
);
4642 if Present
(Interfaces
(Rec_Typ
)) then
4643 Set_Directly_Designated_Type
(Formal_Typ
, Rec_Typ
);
4648 Next_Formal
(Formal
);
4655 -- The subprogram scope is pushed and popped around the processing of
4656 -- the return type for consistency with call above to Process_Formals
4657 -- (which itself can call Analyze_Return_Type), and to ensure that any
4658 -- itype created for the return type will be associated with the proper
4661 elsif Nkind
(N
) = N_Function_Specification
then
4662 Push_Scope
(Designator
);
4663 Analyze_Return_Type
(N
);
4669 if Nkind
(N
) = N_Function_Specification
then
4671 -- Deal with operator symbol case
4673 if Nkind
(Designator
) = N_Defining_Operator_Symbol
then
4674 Valid_Operator_Definition
(Designator
);
4677 May_Need_Actuals
(Designator
);
4679 -- Ada 2005 (AI-251): If the return type is abstract, verify that
4680 -- the subprogram is abstract also. This does not apply to renaming
4681 -- declarations, where abstractness is inherited, and to subprogram
4682 -- bodies generated for stream operations, which become renamings as
4685 -- In case of primitives associated with abstract interface types
4686 -- the check is applied later (see Analyze_Subprogram_Declaration).
4688 if not Nkind_In
(Original_Node
(Parent
(N
)),
4689 N_Subprogram_Renaming_Declaration
,
4690 N_Abstract_Subprogram_Declaration
,
4691 N_Formal_Abstract_Subprogram_Declaration
)
4693 if Is_Abstract_Type
(Etype
(Designator
))
4694 and then not Is_Interface
(Etype
(Designator
))
4697 ("function that returns abstract type must be abstract", N
);
4699 -- Ada 2012 (AI-0073): Extend this test to subprograms with an
4700 -- access result whose designated type is abstract.
4702 elsif Nkind
(Result_Definition
(N
)) = N_Access_Definition
4704 not Is_Class_Wide_Type
(Designated_Type
(Etype
(Designator
)))
4705 and then Is_Abstract_Type
(Designated_Type
(Etype
(Designator
)))
4706 and then Ada_Version
>= Ada_2012
4708 Error_Msg_N
("function whose access result designates "
4709 & "abstract type must be abstract", N
);
4715 end Analyze_Subprogram_Specification
;
4717 -----------------------
4718 -- Check_Conformance --
4719 -----------------------
4721 procedure Check_Conformance
4722 (New_Id
: Entity_Id
;
4724 Ctype
: Conformance_Type
;
4726 Conforms
: out Boolean;
4727 Err_Loc
: Node_Id
:= Empty
;
4728 Get_Inst
: Boolean := False;
4729 Skip_Controlling_Formals
: Boolean := False)
4731 procedure Conformance_Error
(Msg
: String; N
: Node_Id
:= New_Id
);
4732 -- Sets Conforms to False. If Errmsg is False, then that's all it does.
4733 -- If Errmsg is True, then processing continues to post an error message
4734 -- for conformance error on given node. Two messages are output. The
4735 -- first message points to the previous declaration with a general "no
4736 -- conformance" message. The second is the detailed reason, supplied as
4737 -- Msg. The parameter N provide information for a possible & insertion
4738 -- in the message, and also provides the location for posting the
4739 -- message in the absence of a specified Err_Loc location.
4741 -----------------------
4742 -- Conformance_Error --
4743 -----------------------
4745 procedure Conformance_Error
(Msg
: String; N
: Node_Id
:= New_Id
) is
4752 if No
(Err_Loc
) then
4758 Error_Msg_Sloc
:= Sloc
(Old_Id
);
4761 when Type_Conformant
=>
4762 Error_Msg_N
-- CODEFIX
4763 ("not type conformant with declaration#!", Enode
);
4765 when Mode_Conformant
=>
4766 if Nkind
(Parent
(Old_Id
)) = N_Full_Type_Declaration
then
4768 ("not mode conformant with operation inherited#!",
4772 ("not mode conformant with declaration#!", Enode
);
4775 when Subtype_Conformant
=>
4776 if Nkind
(Parent
(Old_Id
)) = N_Full_Type_Declaration
then
4778 ("not subtype conformant with operation inherited#!",
4782 ("not subtype conformant with declaration#!", Enode
);
4785 when Fully_Conformant
=>
4786 if Nkind
(Parent
(Old_Id
)) = N_Full_Type_Declaration
then
4787 Error_Msg_N
-- CODEFIX
4788 ("not fully conformant with operation inherited#!",
4791 Error_Msg_N
-- CODEFIX
4792 ("not fully conformant with declaration#!", Enode
);
4796 Error_Msg_NE
(Msg
, Enode
, N
);
4798 end Conformance_Error
;
4802 Old_Type
: constant Entity_Id
:= Etype
(Old_Id
);
4803 New_Type
: constant Entity_Id
:= Etype
(New_Id
);
4804 Old_Formal
: Entity_Id
;
4805 New_Formal
: Entity_Id
;
4806 Access_Types_Match
: Boolean;
4807 Old_Formal_Base
: Entity_Id
;
4808 New_Formal_Base
: Entity_Id
;
4810 -- Start of processing for Check_Conformance
4815 -- We need a special case for operators, since they don't appear
4818 if Ctype
= Type_Conformant
then
4819 if Ekind
(New_Id
) = E_Operator
4820 and then Operator_Matches_Spec
(New_Id
, Old_Id
)
4826 -- If both are functions/operators, check return types conform
4828 if Old_Type
/= Standard_Void_Type
4830 New_Type
/= Standard_Void_Type
4832 -- If we are checking interface conformance we omit controlling
4833 -- arguments and result, because we are only checking the conformance
4834 -- of the remaining parameters.
4836 if Has_Controlling_Result
(Old_Id
)
4837 and then Has_Controlling_Result
(New_Id
)
4838 and then Skip_Controlling_Formals
4842 elsif not Conforming_Types
(Old_Type
, New_Type
, Ctype
, Get_Inst
) then
4843 if Ctype
>= Subtype_Conformant
4844 and then not Predicates_Match
(Old_Type
, New_Type
)
4847 ("\predicate of return type does not match!", New_Id
);
4850 ("\return type does not match!", New_Id
);
4856 -- Ada 2005 (AI-231): In case of anonymous access types check the
4857 -- null-exclusion and access-to-constant attributes match.
4859 if Ada_Version
>= Ada_2005
4860 and then Ekind
(Etype
(Old_Type
)) = E_Anonymous_Access_Type
4862 (Can_Never_Be_Null
(Old_Type
) /= Can_Never_Be_Null
(New_Type
)
4863 or else Is_Access_Constant
(Etype
(Old_Type
)) /=
4864 Is_Access_Constant
(Etype
(New_Type
)))
4866 Conformance_Error
("\return type does not match!", New_Id
);
4870 -- If either is a function/operator and the other isn't, error
4872 elsif Old_Type
/= Standard_Void_Type
4873 or else New_Type
/= Standard_Void_Type
4875 Conformance_Error
("\functions can only match functions!", New_Id
);
4879 -- In subtype conformant case, conventions must match (RM 6.3.1(16)).
4880 -- If this is a renaming as body, refine error message to indicate that
4881 -- the conflict is with the original declaration. If the entity is not
4882 -- frozen, the conventions don't have to match, the one of the renamed
4883 -- entity is inherited.
4885 if Ctype
>= Subtype_Conformant
then
4886 if Convention
(Old_Id
) /= Convention
(New_Id
) then
4887 if not Is_Frozen
(New_Id
) then
4890 elsif Present
(Err_Loc
)
4891 and then Nkind
(Err_Loc
) = N_Subprogram_Renaming_Declaration
4892 and then Present
(Corresponding_Spec
(Err_Loc
))
4894 Error_Msg_Name_1
:= Chars
(New_Id
);
4896 Name_Ada
+ Convention_Id
'Pos (Convention
(New_Id
));
4897 Conformance_Error
("\prior declaration for% has convention %!");
4900 Conformance_Error
("\calling conventions do not match!");
4905 elsif Is_Formal_Subprogram
(Old_Id
)
4906 or else Is_Formal_Subprogram
(New_Id
)
4908 Conformance_Error
("\formal subprograms not allowed!");
4911 -- Pragma Ghost behaves as a convention in the context of subtype
4912 -- conformance (SPARK RM 6.9(5)). Do not check internally generated
4913 -- subprograms as their spec may reside in a Ghost region and their
4914 -- body not, or vice versa.
4916 elsif Comes_From_Source
(Old_Id
)
4917 and then Comes_From_Source
(New_Id
)
4918 and then Is_Ghost_Entity
(Old_Id
) /= Is_Ghost_Entity
(New_Id
)
4920 Conformance_Error
("\ghost modes do not match!");
4925 -- Deal with parameters
4927 -- Note: we use the entity information, rather than going directly
4928 -- to the specification in the tree. This is not only simpler, but
4929 -- absolutely necessary for some cases of conformance tests between
4930 -- operators, where the declaration tree simply does not exist.
4932 Old_Formal
:= First_Formal
(Old_Id
);
4933 New_Formal
:= First_Formal
(New_Id
);
4934 while Present
(Old_Formal
) and then Present
(New_Formal
) loop
4935 if Is_Controlling_Formal
(Old_Formal
)
4936 and then Is_Controlling_Formal
(New_Formal
)
4937 and then Skip_Controlling_Formals
4939 -- The controlling formals will have different types when
4940 -- comparing an interface operation with its match, but both
4941 -- or neither must be access parameters.
4943 if Is_Access_Type
(Etype
(Old_Formal
))
4945 Is_Access_Type
(Etype
(New_Formal
))
4947 goto Skip_Controlling_Formal
;
4950 ("\access parameter does not match!", New_Formal
);
4954 -- Ada 2012: Mode conformance also requires that formal parameters
4955 -- be both aliased, or neither.
4957 if Ctype
>= Mode_Conformant
and then Ada_Version
>= Ada_2012
then
4958 if Is_Aliased
(Old_Formal
) /= Is_Aliased
(New_Formal
) then
4960 ("\aliased parameter mismatch!", New_Formal
);
4964 if Ctype
= Fully_Conformant
then
4966 -- Names must match. Error message is more accurate if we do
4967 -- this before checking that the types of the formals match.
4969 if Chars
(Old_Formal
) /= Chars
(New_Formal
) then
4970 Conformance_Error
("\name& does not match!", New_Formal
);
4972 -- Set error posted flag on new formal as well to stop
4973 -- junk cascaded messages in some cases.
4975 Set_Error_Posted
(New_Formal
);
4979 -- Null exclusion must match
4981 if Null_Exclusion_Present
(Parent
(Old_Formal
))
4983 Null_Exclusion_Present
(Parent
(New_Formal
))
4985 -- Only give error if both come from source. This should be
4986 -- investigated some time, since it should not be needed ???
4988 if Comes_From_Source
(Old_Formal
)
4990 Comes_From_Source
(New_Formal
)
4993 ("\null exclusion for& does not match", New_Formal
);
4995 -- Mark error posted on the new formal to avoid duplicated
4996 -- complaint about types not matching.
4998 Set_Error_Posted
(New_Formal
);
5003 -- Ada 2005 (AI-423): Possible access [sub]type and itype match. This
5004 -- case occurs whenever a subprogram is being renamed and one of its
5005 -- parameters imposes a null exclusion. For example:
5007 -- type T is null record;
5008 -- type Acc_T is access T;
5009 -- subtype Acc_T_Sub is Acc_T;
5011 -- procedure P (Obj : not null Acc_T_Sub); -- itype
5012 -- procedure Ren_P (Obj : Acc_T_Sub) -- subtype
5015 Old_Formal_Base
:= Etype
(Old_Formal
);
5016 New_Formal_Base
:= Etype
(New_Formal
);
5019 Old_Formal_Base
:= Get_Instance_Of
(Old_Formal_Base
);
5020 New_Formal_Base
:= Get_Instance_Of
(New_Formal_Base
);
5023 Access_Types_Match
:= Ada_Version
>= Ada_2005
5025 -- Ensure that this rule is only applied when New_Id is a
5026 -- renaming of Old_Id.
5028 and then Nkind
(Parent
(Parent
(New_Id
))) =
5029 N_Subprogram_Renaming_Declaration
5030 and then Nkind
(Name
(Parent
(Parent
(New_Id
)))) in N_Has_Entity
5031 and then Present
(Entity
(Name
(Parent
(Parent
(New_Id
)))))
5032 and then Entity
(Name
(Parent
(Parent
(New_Id
)))) = Old_Id
5034 -- Now handle the allowed access-type case
5036 and then Is_Access_Type
(Old_Formal_Base
)
5037 and then Is_Access_Type
(New_Formal_Base
)
5039 -- The type kinds must match. The only exception occurs with
5040 -- multiple generics of the form:
5043 -- type F is private; type A is private;
5044 -- type F_Ptr is access F; type A_Ptr is access A;
5045 -- with proc F_P (X : F_Ptr); with proc A_P (X : A_Ptr);
5046 -- package F_Pack is ... package A_Pack is
5047 -- package F_Inst is
5048 -- new F_Pack (A, A_Ptr, A_P);
5050 -- When checking for conformance between the parameters of A_P
5051 -- and F_P, the type kinds of F_Ptr and A_Ptr will not match
5052 -- because the compiler has transformed A_Ptr into a subtype of
5053 -- F_Ptr. We catch this case in the code below.
5055 and then (Ekind
(Old_Formal_Base
) = Ekind
(New_Formal_Base
)
5057 (Is_Generic_Type
(Old_Formal_Base
)
5058 and then Is_Generic_Type
(New_Formal_Base
)
5059 and then Is_Internal
(New_Formal_Base
)
5060 and then Etype
(Etype
(New_Formal_Base
)) =
5062 and then Directly_Designated_Type
(Old_Formal_Base
) =
5063 Directly_Designated_Type
(New_Formal_Base
)
5064 and then ((Is_Itype
(Old_Formal_Base
)
5065 and then Can_Never_Be_Null
(Old_Formal_Base
))
5067 (Is_Itype
(New_Formal_Base
)
5068 and then Can_Never_Be_Null
(New_Formal_Base
)));
5070 -- Types must always match. In the visible part of an instance,
5071 -- usual overloading rules for dispatching operations apply, and
5072 -- we check base types (not the actual subtypes).
5074 if In_Instance_Visible_Part
5075 and then Is_Dispatching_Operation
(New_Id
)
5077 if not Conforming_Types
5078 (T1
=> Base_Type
(Etype
(Old_Formal
)),
5079 T2
=> Base_Type
(Etype
(New_Formal
)),
5081 Get_Inst
=> Get_Inst
)
5082 and then not Access_Types_Match
5084 Conformance_Error
("\type of & does not match!", New_Formal
);
5088 elsif not Conforming_Types
5089 (T1
=> Old_Formal_Base
,
5090 T2
=> New_Formal_Base
,
5092 Get_Inst
=> Get_Inst
)
5093 and then not Access_Types_Match
5095 -- Don't give error message if old type is Any_Type. This test
5096 -- avoids some cascaded errors, e.g. in case of a bad spec.
5098 if Errmsg
and then Old_Formal_Base
= Any_Type
then
5101 if Ctype
>= Subtype_Conformant
5103 not Predicates_Match
(Old_Formal_Base
, New_Formal_Base
)
5106 ("\predicate of & does not match!", New_Formal
);
5109 ("\type of & does not match!", New_Formal
);
5116 -- For mode conformance, mode must match
5118 if Ctype
>= Mode_Conformant
then
5119 if Parameter_Mode
(Old_Formal
) /= Parameter_Mode
(New_Formal
) then
5120 if not Ekind_In
(New_Id
, E_Function
, E_Procedure
)
5121 or else not Is_Primitive_Wrapper
(New_Id
)
5123 Conformance_Error
("\mode of & does not match!", New_Formal
);
5127 T
: constant Entity_Id
:= Find_Dispatching_Type
(New_Id
);
5129 if Is_Protected_Type
(Corresponding_Concurrent_Type
(T
))
5131 Error_Msg_PT
(New_Id
, Ultimate_Alias
(Old_Id
));
5134 ("\mode of & does not match!", New_Formal
);
5141 -- Part of mode conformance for access types is having the same
5142 -- constant modifier.
5144 elsif Access_Types_Match
5145 and then Is_Access_Constant
(Old_Formal_Base
) /=
5146 Is_Access_Constant
(New_Formal_Base
)
5149 ("\constant modifier does not match!", New_Formal
);
5154 if Ctype
>= Subtype_Conformant
then
5156 -- Ada 2005 (AI-231): In case of anonymous access types check
5157 -- the null-exclusion and access-to-constant attributes must
5158 -- match. For null exclusion, we test the types rather than the
5159 -- formals themselves, since the attribute is only set reliably
5160 -- on the formals in the Ada 95 case, and we exclude the case
5161 -- where Old_Formal is marked as controlling, to avoid errors
5162 -- when matching completing bodies with dispatching declarations
5163 -- (access formals in the bodies aren't marked Can_Never_Be_Null).
5165 if Ada_Version
>= Ada_2005
5166 and then Ekind
(Etype
(Old_Formal
)) = E_Anonymous_Access_Type
5167 and then Ekind
(Etype
(New_Formal
)) = E_Anonymous_Access_Type
5169 ((Can_Never_Be_Null
(Etype
(Old_Formal
)) /=
5170 Can_Never_Be_Null
(Etype
(New_Formal
))
5172 not Is_Controlling_Formal
(Old_Formal
))
5174 Is_Access_Constant
(Etype
(Old_Formal
)) /=
5175 Is_Access_Constant
(Etype
(New_Formal
)))
5177 -- Do not complain if error already posted on New_Formal. This
5178 -- avoids some redundant error messages.
5180 and then not Error_Posted
(New_Formal
)
5182 -- It is allowed to omit the null-exclusion in case of stream
5183 -- attribute subprograms. We recognize stream subprograms
5184 -- through their TSS-generated suffix.
5187 TSS_Name
: constant TSS_Name_Type
:= Get_TSS_Name
(New_Id
);
5190 if TSS_Name
/= TSS_Stream_Read
5191 and then TSS_Name
/= TSS_Stream_Write
5192 and then TSS_Name
/= TSS_Stream_Input
5193 and then TSS_Name
/= TSS_Stream_Output
5195 -- Here we have a definite conformance error. It is worth
5196 -- special casing the error message for the case of a
5197 -- controlling formal (which excludes null).
5199 if Is_Controlling_Formal
(New_Formal
) then
5200 Error_Msg_Node_2
:= Scope
(New_Formal
);
5202 ("\controlling formal & of & excludes null, "
5203 & "declaration must exclude null as well",
5206 -- Normal case (couldn't we give more detail here???)
5210 ("\type of & does not match!", New_Formal
);
5219 -- Full conformance checks
5221 if Ctype
= Fully_Conformant
then
5223 -- We have checked already that names match
5225 if Parameter_Mode
(Old_Formal
) = E_In_Parameter
then
5227 -- Check default expressions for in parameters
5230 NewD
: constant Boolean :=
5231 Present
(Default_Value
(New_Formal
));
5232 OldD
: constant Boolean :=
5233 Present
(Default_Value
(Old_Formal
));
5235 if NewD
or OldD
then
5237 -- The old default value has been analyzed because the
5238 -- current full declaration will have frozen everything
5239 -- before. The new default value has not been analyzed,
5240 -- so analyze it now before we check for conformance.
5243 Push_Scope
(New_Id
);
5244 Preanalyze_Spec_Expression
5245 (Default_Value
(New_Formal
), Etype
(New_Formal
));
5249 if not (NewD
and OldD
)
5250 or else not Fully_Conformant_Expressions
5251 (Default_Value
(Old_Formal
),
5252 Default_Value
(New_Formal
))
5255 ("\default expression for & does not match!",
5264 -- A couple of special checks for Ada 83 mode. These checks are
5265 -- skipped if either entity is an operator in package Standard,
5266 -- or if either old or new instance is not from the source program.
5268 if Ada_Version
= Ada_83
5269 and then Sloc
(Old_Id
) > Standard_Location
5270 and then Sloc
(New_Id
) > Standard_Location
5271 and then Comes_From_Source
(Old_Id
)
5272 and then Comes_From_Source
(New_Id
)
5275 Old_Param
: constant Node_Id
:= Declaration_Node
(Old_Formal
);
5276 New_Param
: constant Node_Id
:= Declaration_Node
(New_Formal
);
5279 -- Explicit IN must be present or absent in both cases. This
5280 -- test is required only in the full conformance case.
5282 if In_Present
(Old_Param
) /= In_Present
(New_Param
)
5283 and then Ctype
= Fully_Conformant
5286 ("\(Ada 83) IN must appear in both declarations",
5291 -- Grouping (use of comma in param lists) must be the same
5292 -- This is where we catch a misconformance like:
5295 -- A : Integer; B : Integer
5297 -- which are represented identically in the tree except
5298 -- for the setting of the flags More_Ids and Prev_Ids.
5300 if More_Ids
(Old_Param
) /= More_Ids
(New_Param
)
5301 or else Prev_Ids
(Old_Param
) /= Prev_Ids
(New_Param
)
5304 ("\grouping of & does not match!", New_Formal
);
5310 -- This label is required when skipping controlling formals
5312 <<Skip_Controlling_Formal
>>
5314 Next_Formal
(Old_Formal
);
5315 Next_Formal
(New_Formal
);
5318 if Present
(Old_Formal
) then
5319 Conformance_Error
("\too few parameters!");
5322 elsif Present
(New_Formal
) then
5323 Conformance_Error
("\too many parameters!", New_Formal
);
5326 end Check_Conformance
;
5328 -----------------------
5329 -- Check_Conventions --
5330 -----------------------
5332 procedure Check_Conventions
(Typ
: Entity_Id
) is
5333 Ifaces_List
: Elist_Id
;
5335 procedure Check_Convention
(Op
: Entity_Id
);
5336 -- Verify that the convention of inherited dispatching operation Op is
5337 -- consistent among all subprograms it overrides. In order to minimize
5338 -- the search, Search_From is utilized to designate a specific point in
5339 -- the list rather than iterating over the whole list once more.
5341 ----------------------
5342 -- Check_Convention --
5343 ----------------------
5345 procedure Check_Convention
(Op
: Entity_Id
) is
5346 Op_Conv
: constant Convention_Id
:= Convention
(Op
);
5347 Iface_Conv
: Convention_Id
;
5348 Iface_Elmt
: Elmt_Id
;
5349 Iface_Prim_Elmt
: Elmt_Id
;
5350 Iface_Prim
: Entity_Id
;
5353 Iface_Elmt
:= First_Elmt
(Ifaces_List
);
5354 while Present
(Iface_Elmt
) loop
5356 First_Elmt
(Primitive_Operations
(Node
(Iface_Elmt
)));
5357 while Present
(Iface_Prim_Elmt
) loop
5358 Iface_Prim
:= Node
(Iface_Prim_Elmt
);
5359 Iface_Conv
:= Convention
(Iface_Prim
);
5361 if Is_Interface_Conformant
(Typ
, Iface_Prim
, Op
)
5362 and then Iface_Conv
/= Op_Conv
5365 ("inconsistent conventions in primitive operations", Typ
);
5367 Error_Msg_Name_1
:= Chars
(Op
);
5368 Error_Msg_Name_2
:= Get_Convention_Name
(Op_Conv
);
5369 Error_Msg_Sloc
:= Sloc
(Op
);
5371 if Comes_From_Source
(Op
) or else No
(Alias
(Op
)) then
5372 if not Present
(Overridden_Operation
(Op
)) then
5373 Error_Msg_N
("\\primitive % defined #", Typ
);
5376 ("\\overriding operation % with "
5377 & "convention % defined #", Typ
);
5380 else pragma Assert
(Present
(Alias
(Op
)));
5381 Error_Msg_Sloc
:= Sloc
(Alias
(Op
));
5382 Error_Msg_N
("\\inherited operation % with "
5383 & "convention % defined #", Typ
);
5386 Error_Msg_Name_1
:= Chars
(Op
);
5387 Error_Msg_Name_2
:= Get_Convention_Name
(Iface_Conv
);
5388 Error_Msg_Sloc
:= Sloc
(Iface_Prim
);
5389 Error_Msg_N
("\\overridden operation % with "
5390 & "convention % defined #", Typ
);
5392 -- Avoid cascading errors
5397 Next_Elmt
(Iface_Prim_Elmt
);
5400 Next_Elmt
(Iface_Elmt
);
5402 end Check_Convention
;
5406 Prim_Op
: Entity_Id
;
5407 Prim_Op_Elmt
: Elmt_Id
;
5409 -- Start of processing for Check_Conventions
5412 if not Has_Interfaces
(Typ
) then
5416 Collect_Interfaces
(Typ
, Ifaces_List
);
5418 -- The algorithm checks every overriding dispatching operation against
5419 -- all the corresponding overridden dispatching operations, detecting
5420 -- differences in conventions.
5422 Prim_Op_Elmt
:= First_Elmt
(Primitive_Operations
(Typ
));
5423 while Present
(Prim_Op_Elmt
) loop
5424 Prim_Op
:= Node
(Prim_Op_Elmt
);
5426 -- A small optimization: skip the predefined dispatching operations
5427 -- since they always have the same convention.
5429 if not Is_Predefined_Dispatching_Operation
(Prim_Op
) then
5430 Check_Convention
(Prim_Op
);
5433 Next_Elmt
(Prim_Op_Elmt
);
5435 end Check_Conventions
;
5437 ------------------------------
5438 -- Check_Delayed_Subprogram --
5439 ------------------------------
5441 procedure Check_Delayed_Subprogram
(Designator
: Entity_Id
) is
5444 procedure Possible_Freeze
(T
: Entity_Id
);
5445 -- T is the type of either a formal parameter or of the return type.
5446 -- If T is not yet frozen and needs a delayed freeze, then the
5447 -- subprogram itself must be delayed. If T is the limited view of an
5448 -- incomplete type the subprogram must be frozen as well, because
5449 -- T may depend on local types that have not been frozen yet.
5451 ---------------------
5452 -- Possible_Freeze --
5453 ---------------------
5455 procedure Possible_Freeze
(T
: Entity_Id
) is
5457 if Has_Delayed_Freeze
(T
) and then not Is_Frozen
(T
) then
5458 Set_Has_Delayed_Freeze
(Designator
);
5460 elsif Is_Access_Type
(T
)
5461 and then Has_Delayed_Freeze
(Designated_Type
(T
))
5462 and then not Is_Frozen
(Designated_Type
(T
))
5464 Set_Has_Delayed_Freeze
(Designator
);
5466 elsif Ekind
(T
) = E_Incomplete_Type
5467 and then From_Limited_With
(T
)
5469 Set_Has_Delayed_Freeze
(Designator
);
5471 -- AI05-0151: In Ada 2012, Incomplete types can appear in the profile
5472 -- of a subprogram or entry declaration.
5474 elsif Ekind
(T
) = E_Incomplete_Type
5475 and then Ada_Version
>= Ada_2012
5477 Set_Has_Delayed_Freeze
(Designator
);
5480 end Possible_Freeze
;
5482 -- Start of processing for Check_Delayed_Subprogram
5485 -- All subprograms, including abstract subprograms, may need a freeze
5486 -- node if some formal type or the return type needs one.
5488 Possible_Freeze
(Etype
(Designator
));
5489 Possible_Freeze
(Base_Type
(Etype
(Designator
))); -- needed ???
5491 -- Need delayed freeze if any of the formal types themselves need
5492 -- a delayed freeze and are not yet frozen.
5494 F
:= First_Formal
(Designator
);
5495 while Present
(F
) loop
5496 Possible_Freeze
(Etype
(F
));
5497 Possible_Freeze
(Base_Type
(Etype
(F
))); -- needed ???
5501 -- Mark functions that return by reference. Note that it cannot be
5502 -- done for delayed_freeze subprograms because the underlying
5503 -- returned type may not be known yet (for private types)
5505 if not Has_Delayed_Freeze
(Designator
) and then Expander_Active
then
5507 Typ
: constant Entity_Id
:= Etype
(Designator
);
5508 Utyp
: constant Entity_Id
:= Underlying_Type
(Typ
);
5510 if Is_Limited_View
(Typ
) then
5511 Set_Returns_By_Ref
(Designator
);
5512 elsif Present
(Utyp
) and then CW_Or_Has_Controlled_Part
(Utyp
) then
5513 Set_Returns_By_Ref
(Designator
);
5517 end Check_Delayed_Subprogram
;
5519 ------------------------------------
5520 -- Check_Discriminant_Conformance --
5521 ------------------------------------
5523 procedure Check_Discriminant_Conformance
5528 Old_Discr
: Entity_Id
:= First_Discriminant
(Prev
);
5529 New_Discr
: Node_Id
:= First
(Discriminant_Specifications
(N
));
5530 New_Discr_Id
: Entity_Id
;
5531 New_Discr_Type
: Entity_Id
;
5533 procedure Conformance_Error
(Msg
: String; N
: Node_Id
);
5534 -- Post error message for conformance error on given node. Two messages
5535 -- are output. The first points to the previous declaration with a
5536 -- general "no conformance" message. The second is the detailed reason,
5537 -- supplied as Msg. The parameter N provide information for a possible
5538 -- & insertion in the message.
5540 -----------------------
5541 -- Conformance_Error --
5542 -----------------------
5544 procedure Conformance_Error
(Msg
: String; N
: Node_Id
) is
5546 Error_Msg_Sloc
:= Sloc
(Prev_Loc
);
5547 Error_Msg_N
-- CODEFIX
5548 ("not fully conformant with declaration#!", N
);
5549 Error_Msg_NE
(Msg
, N
, N
);
5550 end Conformance_Error
;
5552 -- Start of processing for Check_Discriminant_Conformance
5555 while Present
(Old_Discr
) and then Present
(New_Discr
) loop
5556 New_Discr_Id
:= Defining_Identifier
(New_Discr
);
5558 -- The subtype mark of the discriminant on the full type has not
5559 -- been analyzed so we do it here. For an access discriminant a new
5562 if Nkind
(Discriminant_Type
(New_Discr
)) = N_Access_Definition
then
5564 Access_Definition
(N
, Discriminant_Type
(New_Discr
));
5567 Analyze
(Discriminant_Type
(New_Discr
));
5568 New_Discr_Type
:= Etype
(Discriminant_Type
(New_Discr
));
5570 -- Ada 2005: if the discriminant definition carries a null
5571 -- exclusion, create an itype to check properly for consistency
5572 -- with partial declaration.
5574 if Is_Access_Type
(New_Discr_Type
)
5575 and then Null_Exclusion_Present
(New_Discr
)
5578 Create_Null_Excluding_Itype
5579 (T
=> New_Discr_Type
,
5580 Related_Nod
=> New_Discr
,
5581 Scope_Id
=> Current_Scope
);
5585 if not Conforming_Types
5586 (Etype
(Old_Discr
), New_Discr_Type
, Fully_Conformant
)
5588 Conformance_Error
("type of & does not match!", New_Discr_Id
);
5591 -- Treat the new discriminant as an occurrence of the old one,
5592 -- for navigation purposes, and fill in some semantic
5593 -- information, for completeness.
5595 Generate_Reference
(Old_Discr
, New_Discr_Id
, 'r');
5596 Set_Etype
(New_Discr_Id
, Etype
(Old_Discr
));
5597 Set_Scope
(New_Discr_Id
, Scope
(Old_Discr
));
5602 if Chars
(Old_Discr
) /= Chars
(Defining_Identifier
(New_Discr
)) then
5603 Conformance_Error
("name & does not match!", New_Discr_Id
);
5607 -- Default expressions must match
5610 NewD
: constant Boolean :=
5611 Present
(Expression
(New_Discr
));
5612 OldD
: constant Boolean :=
5613 Present
(Expression
(Parent
(Old_Discr
)));
5616 if NewD
or OldD
then
5618 -- The old default value has been analyzed and expanded,
5619 -- because the current full declaration will have frozen
5620 -- everything before. The new default values have not been
5621 -- expanded, so expand now to check conformance.
5624 Preanalyze_Spec_Expression
5625 (Expression
(New_Discr
), New_Discr_Type
);
5628 if not (NewD
and OldD
)
5629 or else not Fully_Conformant_Expressions
5630 (Expression
(Parent
(Old_Discr
)),
5631 Expression
(New_Discr
))
5635 ("default expression for & does not match!",
5642 -- In Ada 83 case, grouping must match: (A,B : X) /= (A : X; B : X)
5644 if Ada_Version
= Ada_83
then
5646 Old_Disc
: constant Node_Id
:= Declaration_Node
(Old_Discr
);
5649 -- Grouping (use of comma in param lists) must be the same
5650 -- This is where we catch a misconformance like:
5653 -- A : Integer; B : Integer
5655 -- which are represented identically in the tree except
5656 -- for the setting of the flags More_Ids and Prev_Ids.
5658 if More_Ids
(Old_Disc
) /= More_Ids
(New_Discr
)
5659 or else Prev_Ids
(Old_Disc
) /= Prev_Ids
(New_Discr
)
5662 ("grouping of & does not match!", New_Discr_Id
);
5668 Next_Discriminant
(Old_Discr
);
5672 if Present
(Old_Discr
) then
5673 Conformance_Error
("too few discriminants!", Defining_Identifier
(N
));
5676 elsif Present
(New_Discr
) then
5678 ("too many discriminants!", Defining_Identifier
(New_Discr
));
5681 end Check_Discriminant_Conformance
;
5683 ----------------------------
5684 -- Check_Fully_Conformant --
5685 ----------------------------
5687 procedure Check_Fully_Conformant
5688 (New_Id
: Entity_Id
;
5690 Err_Loc
: Node_Id
:= Empty
)
5693 pragma Warnings
(Off
, Result
);
5696 (New_Id
, Old_Id
, Fully_Conformant
, True, Result
, Err_Loc
);
5697 end Check_Fully_Conformant
;
5699 ---------------------------
5700 -- Check_Mode_Conformant --
5701 ---------------------------
5703 procedure Check_Mode_Conformant
5704 (New_Id
: Entity_Id
;
5706 Err_Loc
: Node_Id
:= Empty
;
5707 Get_Inst
: Boolean := False)
5710 pragma Warnings
(Off
, Result
);
5713 (New_Id
, Old_Id
, Mode_Conformant
, True, Result
, Err_Loc
, Get_Inst
);
5714 end Check_Mode_Conformant
;
5716 --------------------------------
5717 -- Check_Overriding_Indicator --
5718 --------------------------------
5720 procedure Check_Overriding_Indicator
5722 Overridden_Subp
: Entity_Id
;
5723 Is_Primitive
: Boolean)
5729 -- No overriding indicator for literals
5731 if Ekind
(Subp
) = E_Enumeration_Literal
then
5734 elsif Ekind
(Subp
) = E_Entry
then
5735 Decl
:= Parent
(Subp
);
5737 -- No point in analyzing a malformed operator
5739 elsif Nkind
(Subp
) = N_Defining_Operator_Symbol
5740 and then Error_Posted
(Subp
)
5745 Decl
:= Unit_Declaration_Node
(Subp
);
5748 if Nkind_In
(Decl
, N_Subprogram_Body
,
5749 N_Subprogram_Body_Stub
,
5750 N_Subprogram_Declaration
,
5751 N_Abstract_Subprogram_Declaration
,
5752 N_Subprogram_Renaming_Declaration
)
5754 Spec
:= Specification
(Decl
);
5756 elsif Nkind
(Decl
) = N_Entry_Declaration
then
5763 -- The overriding operation is type conformant with the overridden one,
5764 -- but the names of the formals are not required to match. If the names
5765 -- appear permuted in the overriding operation, this is a possible
5766 -- source of confusion that is worth diagnosing. Controlling formals
5767 -- often carry names that reflect the type, and it is not worthwhile
5768 -- requiring that their names match.
5770 if Present
(Overridden_Subp
)
5771 and then Nkind
(Subp
) /= N_Defining_Operator_Symbol
5778 Form1
:= First_Formal
(Subp
);
5779 Form2
:= First_Formal
(Overridden_Subp
);
5781 -- If the overriding operation is a synchronized operation, skip
5782 -- the first parameter of the overridden operation, which is
5783 -- implicit in the new one. If the operation is declared in the
5784 -- body it is not primitive and all formals must match.
5786 if Is_Concurrent_Type
(Scope
(Subp
))
5787 and then Is_Tagged_Type
(Scope
(Subp
))
5788 and then not Has_Completion
(Scope
(Subp
))
5790 Form2
:= Next_Formal
(Form2
);
5793 if Present
(Form1
) then
5794 Form1
:= Next_Formal
(Form1
);
5795 Form2
:= Next_Formal
(Form2
);
5798 while Present
(Form1
) loop
5799 if not Is_Controlling_Formal
(Form1
)
5800 and then Present
(Next_Formal
(Form2
))
5801 and then Chars
(Form1
) = Chars
(Next_Formal
(Form2
))
5803 Error_Msg_Node_2
:= Alias
(Overridden_Subp
);
5804 Error_Msg_Sloc
:= Sloc
(Error_Msg_Node_2
);
5806 ("& does not match corresponding formal of&#",
5811 Next_Formal
(Form1
);
5812 Next_Formal
(Form2
);
5817 -- If there is an overridden subprogram, then check that there is no
5818 -- "not overriding" indicator, and mark the subprogram as overriding.
5819 -- This is not done if the overridden subprogram is marked as hidden,
5820 -- which can occur for the case of inherited controlled operations
5821 -- (see Derive_Subprogram), unless the inherited subprogram's parent
5822 -- subprogram is not itself hidden. (Note: This condition could probably
5823 -- be simplified, leaving out the testing for the specific controlled
5824 -- cases, but it seems safer and clearer this way, and echoes similar
5825 -- special-case tests of this kind in other places.)
5827 if Present
(Overridden_Subp
)
5828 and then (not Is_Hidden
(Overridden_Subp
)
5830 (Nam_In
(Chars
(Overridden_Subp
), Name_Initialize
,
5833 and then Present
(Alias
(Overridden_Subp
))
5834 and then not Is_Hidden
(Alias
(Overridden_Subp
))))
5836 if Must_Not_Override
(Spec
) then
5837 Error_Msg_Sloc
:= Sloc
(Overridden_Subp
);
5839 if Ekind
(Subp
) = E_Entry
then
5841 ("entry & overrides inherited operation #", Spec
, Subp
);
5844 ("subprogram & overrides inherited operation #", Spec
, Subp
);
5847 -- Special-case to fix a GNAT oddity: Limited_Controlled is declared
5848 -- as an extension of Root_Controlled, and thus has a useless Adjust
5849 -- operation. This operation should not be inherited by other limited
5850 -- controlled types. An explicit Adjust for them is not overriding.
5852 elsif Must_Override
(Spec
)
5853 and then Chars
(Overridden_Subp
) = Name_Adjust
5854 and then Is_Limited_Type
(Etype
(First_Formal
(Subp
)))
5855 and then Present
(Alias
(Overridden_Subp
))
5857 Is_Predefined_File_Name
5858 (Unit_File_Name
(Get_Source_Unit
(Alias
(Overridden_Subp
))))
5860 Error_Msg_NE
("subprogram & is not overriding", Spec
, Subp
);
5862 elsif Is_Subprogram
(Subp
) then
5863 if Is_Init_Proc
(Subp
) then
5866 elsif No
(Overridden_Operation
(Subp
)) then
5868 -- For entities generated by Derive_Subprograms the overridden
5869 -- operation is the inherited primitive (which is available
5870 -- through the attribute alias)
5872 if (Is_Dispatching_Operation
(Subp
)
5873 or else Is_Dispatching_Operation
(Overridden_Subp
))
5874 and then not Comes_From_Source
(Overridden_Subp
)
5875 and then Find_Dispatching_Type
(Overridden_Subp
) =
5876 Find_Dispatching_Type
(Subp
)
5877 and then Present
(Alias
(Overridden_Subp
))
5878 and then Comes_From_Source
(Alias
(Overridden_Subp
))
5880 Set_Overridden_Operation
(Subp
, Alias
(Overridden_Subp
));
5881 Inherit_Subprogram_Contract
(Subp
, Alias
(Overridden_Subp
));
5884 Set_Overridden_Operation
(Subp
, Overridden_Subp
);
5885 Inherit_Subprogram_Contract
(Subp
, Overridden_Subp
);
5890 -- If primitive flag is set or this is a protected operation, then
5891 -- the operation is overriding at the point of its declaration, so
5892 -- warn if necessary. Otherwise it may have been declared before the
5893 -- operation it overrides and no check is required.
5896 and then not Must_Override
(Spec
)
5897 and then (Is_Primitive
5898 or else Ekind
(Scope
(Subp
)) = E_Protected_Type
)
5900 Style
.Missing_Overriding
(Decl
, Subp
);
5903 -- If Subp is an operator, it may override a predefined operation, if
5904 -- it is defined in the same scope as the type to which it applies.
5905 -- In that case Overridden_Subp is empty because of our implicit
5906 -- representation for predefined operators. We have to check whether the
5907 -- signature of Subp matches that of a predefined operator. Note that
5908 -- first argument provides the name of the operator, and the second
5909 -- argument the signature that may match that of a standard operation.
5910 -- If the indicator is overriding, then the operator must match a
5911 -- predefined signature, because we know already that there is no
5912 -- explicit overridden operation.
5914 elsif Nkind
(Subp
) = N_Defining_Operator_Symbol
then
5915 if Must_Not_Override
(Spec
) then
5917 -- If this is not a primitive or a protected subprogram, then
5918 -- "not overriding" is illegal.
5921 and then Ekind
(Scope
(Subp
)) /= E_Protected_Type
5923 Error_Msg_N
("overriding indicator only allowed "
5924 & "if subprogram is primitive", Subp
);
5926 elsif Can_Override_Operator
(Subp
) then
5928 ("subprogram& overrides predefined operator ", Spec
, Subp
);
5931 elsif Must_Override
(Spec
) then
5932 if No
(Overridden_Operation
(Subp
))
5933 and then not Can_Override_Operator
(Subp
)
5935 Error_Msg_NE
("subprogram & is not overriding", Spec
, Subp
);
5938 elsif not Error_Posted
(Subp
)
5939 and then Style_Check
5940 and then Can_Override_Operator
(Subp
)
5942 not Is_Predefined_File_Name
5943 (Unit_File_Name
(Get_Source_Unit
(Subp
)))
5945 -- If style checks are enabled, indicate that the indicator is
5946 -- missing. However, at the point of declaration, the type of
5947 -- which this is a primitive operation may be private, in which
5948 -- case the indicator would be premature.
5950 if Has_Private_Declaration
(Etype
(Subp
))
5951 or else Has_Private_Declaration
(Etype
(First_Formal
(Subp
)))
5955 Style
.Missing_Overriding
(Decl
, Subp
);
5959 elsif Must_Override
(Spec
) then
5960 if Ekind
(Subp
) = E_Entry
then
5961 Error_Msg_NE
("entry & is not overriding", Spec
, Subp
);
5963 Error_Msg_NE
("subprogram & is not overriding", Spec
, Subp
);
5966 -- If the operation is marked "not overriding" and it's not primitive
5967 -- then an error is issued, unless this is an operation of a task or
5968 -- protected type (RM05-8.3.1(3/2-4/2)). Error cases where "overriding"
5969 -- has been specified have already been checked above.
5971 elsif Must_Not_Override
(Spec
)
5972 and then not Is_Primitive
5973 and then Ekind
(Subp
) /= E_Entry
5974 and then Ekind
(Scope
(Subp
)) /= E_Protected_Type
5977 ("overriding indicator only allowed if subprogram is primitive",
5981 end Check_Overriding_Indicator
;
5987 -- Note: this procedure needs to know far too much about how the expander
5988 -- messes with exceptions. The use of the flag Exception_Junk and the
5989 -- incorporation of knowledge of Exp_Ch11.Expand_Local_Exception_Handlers
5990 -- works, but is not very clean. It would be better if the expansion
5991 -- routines would leave Original_Node working nicely, and we could use
5992 -- Original_Node here to ignore all the peculiar expander messing ???
5994 procedure Check_Returns
5998 Proc
: Entity_Id
:= Empty
)
6002 procedure Check_Statement_Sequence
(L
: List_Id
);
6003 -- Internal recursive procedure to check a list of statements for proper
6004 -- termination by a return statement (or a transfer of control or a
6005 -- compound statement that is itself internally properly terminated).
6007 ------------------------------
6008 -- Check_Statement_Sequence --
6009 ------------------------------
6011 procedure Check_Statement_Sequence
(L
: List_Id
) is
6016 function Assert_False
return Boolean;
6017 -- Returns True if Last_Stm is a pragma Assert (False) that has been
6018 -- rewritten as a null statement when assertions are off. The assert
6019 -- is not active, but it is still enough to kill the warning.
6025 function Assert_False
return Boolean is
6026 Orig
: constant Node_Id
:= Original_Node
(Last_Stm
);
6029 if Nkind
(Orig
) = N_Pragma
6030 and then Pragma_Name
(Orig
) = Name_Assert
6031 and then not Error_Posted
(Orig
)
6034 Arg
: constant Node_Id
:=
6035 First
(Pragma_Argument_Associations
(Orig
));
6036 Exp
: constant Node_Id
:= Expression
(Arg
);
6038 return Nkind
(Exp
) = N_Identifier
6039 and then Chars
(Exp
) = Name_False
;
6049 Raise_Exception_Call
: Boolean;
6050 -- Set True if statement sequence terminated by Raise_Exception call
6051 -- or a Reraise_Occurrence call.
6053 -- Start of processing for Check_Statement_Sequence
6056 Raise_Exception_Call
:= False;
6058 -- Get last real statement
6060 Last_Stm
:= Last
(L
);
6062 -- Deal with digging out exception handler statement sequences that
6063 -- have been transformed by the local raise to goto optimization.
6064 -- See Exp_Ch11.Expand_Local_Exception_Handlers for details. If this
6065 -- optimization has occurred, we are looking at something like:
6068 -- original stmts in block
6072 -- goto L1; | omitted if No_Exception_Propagation
6077 -- goto L3; -- skip handler when exception not raised
6079 -- <<L1>> -- target label for local exception
6093 -- and what we have to do is to dig out the estmts1 and estmts2
6094 -- sequences (which were the original sequences of statements in
6095 -- the exception handlers) and check them.
6097 if Nkind
(Last_Stm
) = N_Label
and then Exception_Junk
(Last_Stm
) then
6102 exit when Nkind
(Stm
) /= N_Block_Statement
;
6103 exit when not Exception_Junk
(Stm
);
6106 exit when Nkind
(Stm
) /= N_Label
;
6107 exit when not Exception_Junk
(Stm
);
6108 Check_Statement_Sequence
6109 (Statements
(Handled_Statement_Sequence
(Next
(Stm
))));
6114 exit when Nkind
(Stm
) /= N_Goto_Statement
;
6115 exit when not Exception_Junk
(Stm
);
6119 -- Don't count pragmas
6121 while Nkind
(Last_Stm
) = N_Pragma
6123 -- Don't count call to SS_Release (can happen after Raise_Exception)
6126 (Nkind
(Last_Stm
) = N_Procedure_Call_Statement
6128 Nkind
(Name
(Last_Stm
)) = N_Identifier
6130 Is_RTE
(Entity
(Name
(Last_Stm
)), RE_SS_Release
))
6132 -- Don't count exception junk
6135 (Nkind_In
(Last_Stm
, N_Goto_Statement
,
6137 N_Object_Declaration
)
6138 and then Exception_Junk
(Last_Stm
))
6139 or else Nkind
(Last_Stm
) in N_Push_xxx_Label
6140 or else Nkind
(Last_Stm
) in N_Pop_xxx_Label
6142 -- Inserted code, such as finalization calls, is irrelevant: we only
6143 -- need to check original source.
6145 or else Is_Rewrite_Insertion
(Last_Stm
)
6150 -- Here we have the "real" last statement
6152 Kind
:= Nkind
(Last_Stm
);
6154 -- Transfer of control, OK. Note that in the No_Return procedure
6155 -- case, we already diagnosed any explicit return statements, so
6156 -- we can treat them as OK in this context.
6158 if Is_Transfer
(Last_Stm
) then
6161 -- Check cases of explicit non-indirect procedure calls
6163 elsif Kind
= N_Procedure_Call_Statement
6164 and then Is_Entity_Name
(Name
(Last_Stm
))
6166 -- Check call to Raise_Exception procedure which is treated
6167 -- specially, as is a call to Reraise_Occurrence.
6169 -- We suppress the warning in these cases since it is likely that
6170 -- the programmer really does not expect to deal with the case
6171 -- of Null_Occurrence, and thus would find a warning about a
6172 -- missing return curious, and raising Program_Error does not
6173 -- seem such a bad behavior if this does occur.
6175 -- Note that in the Ada 2005 case for Raise_Exception, the actual
6176 -- behavior will be to raise Constraint_Error (see AI-329).
6178 if Is_RTE
(Entity
(Name
(Last_Stm
)), RE_Raise_Exception
)
6180 Is_RTE
(Entity
(Name
(Last_Stm
)), RE_Reraise_Occurrence
)
6182 Raise_Exception_Call
:= True;
6184 -- For Raise_Exception call, test first argument, if it is
6185 -- an attribute reference for a 'Identity call, then we know
6186 -- that the call cannot possibly return.
6189 Arg
: constant Node_Id
:=
6190 Original_Node
(First_Actual
(Last_Stm
));
6192 if Nkind
(Arg
) = N_Attribute_Reference
6193 and then Attribute_Name
(Arg
) = Name_Identity
6200 -- If statement, need to look inside if there is an else and check
6201 -- each constituent statement sequence for proper termination.
6203 elsif Kind
= N_If_Statement
6204 and then Present
(Else_Statements
(Last_Stm
))
6206 Check_Statement_Sequence
(Then_Statements
(Last_Stm
));
6207 Check_Statement_Sequence
(Else_Statements
(Last_Stm
));
6209 if Present
(Elsif_Parts
(Last_Stm
)) then
6211 Elsif_Part
: Node_Id
:= First
(Elsif_Parts
(Last_Stm
));
6214 while Present
(Elsif_Part
) loop
6215 Check_Statement_Sequence
(Then_Statements
(Elsif_Part
));
6223 -- Case statement, check each case for proper termination
6225 elsif Kind
= N_Case_Statement
then
6229 Case_Alt
:= First_Non_Pragma
(Alternatives
(Last_Stm
));
6230 while Present
(Case_Alt
) loop
6231 Check_Statement_Sequence
(Statements
(Case_Alt
));
6232 Next_Non_Pragma
(Case_Alt
);
6238 -- Block statement, check its handled sequence of statements
6240 elsif Kind
= N_Block_Statement
then
6246 (Handled_Statement_Sequence
(Last_Stm
), Mode
, Err1
);
6255 -- Loop statement. If there is an iteration scheme, we can definitely
6256 -- fall out of the loop. Similarly if there is an exit statement, we
6257 -- can fall out. In either case we need a following return.
6259 elsif Kind
= N_Loop_Statement
then
6260 if Present
(Iteration_Scheme
(Last_Stm
))
6261 or else Has_Exit
(Entity
(Identifier
(Last_Stm
)))
6265 -- A loop with no exit statement or iteration scheme is either
6266 -- an infinite loop, or it has some other exit (raise/return).
6267 -- In either case, no warning is required.
6273 -- Timed entry call, check entry call and delay alternatives
6275 -- Note: in expanded code, the timed entry call has been converted
6276 -- to a set of expanded statements on which the check will work
6277 -- correctly in any case.
6279 elsif Kind
= N_Timed_Entry_Call
then
6281 ECA
: constant Node_Id
:= Entry_Call_Alternative
(Last_Stm
);
6282 DCA
: constant Node_Id
:= Delay_Alternative
(Last_Stm
);
6285 -- If statement sequence of entry call alternative is missing,
6286 -- then we can definitely fall through, and we post the error
6287 -- message on the entry call alternative itself.
6289 if No
(Statements
(ECA
)) then
6292 -- If statement sequence of delay alternative is missing, then
6293 -- we can definitely fall through, and we post the error
6294 -- message on the delay alternative itself.
6296 -- Note: if both ECA and DCA are missing the return, then we
6297 -- post only one message, should be enough to fix the bugs.
6298 -- If not we will get a message next time on the DCA when the
6301 elsif No
(Statements
(DCA
)) then
6304 -- Else check both statement sequences
6307 Check_Statement_Sequence
(Statements
(ECA
));
6308 Check_Statement_Sequence
(Statements
(DCA
));
6313 -- Conditional entry call, check entry call and else part
6315 -- Note: in expanded code, the conditional entry call has been
6316 -- converted to a set of expanded statements on which the check
6317 -- will work correctly in any case.
6319 elsif Kind
= N_Conditional_Entry_Call
then
6321 ECA
: constant Node_Id
:= Entry_Call_Alternative
(Last_Stm
);
6324 -- If statement sequence of entry call alternative is missing,
6325 -- then we can definitely fall through, and we post the error
6326 -- message on the entry call alternative itself.
6328 if No
(Statements
(ECA
)) then
6331 -- Else check statement sequence and else part
6334 Check_Statement_Sequence
(Statements
(ECA
));
6335 Check_Statement_Sequence
(Else_Statements
(Last_Stm
));
6341 -- If we fall through, issue appropriate message
6345 -- Kill warning if last statement is a raise exception call,
6346 -- or a pragma Assert (False). Note that with assertions enabled,
6347 -- such a pragma has been converted into a raise exception call
6348 -- already, so the Assert_False is for the assertions off case.
6350 if not Raise_Exception_Call
and then not Assert_False
then
6352 -- In GNATprove mode, it is an error to have a missing return
6354 Error_Msg_Warn
:= SPARK_Mode
/= On
;
6356 -- Issue error message or warning
6359 ("RETURN statement missing following this statement<<!",
6362 ("\Program_Error ]<<!", Last_Stm
);
6365 -- Note: we set Err even though we have not issued a warning
6366 -- because we still have a case of a missing return. This is
6367 -- an extremely marginal case, probably will never be noticed
6368 -- but we might as well get it right.
6372 -- Otherwise we have the case of a procedure marked No_Return
6375 if not Raise_Exception_Call
then
6376 if GNATprove_Mode
then
6378 ("implied return after this statement "
6379 & "would have raised Program_Error", Last_Stm
);
6382 ("implied return after this statement "
6383 & "will raise Program_Error??", Last_Stm
);
6386 Error_Msg_Warn
:= SPARK_Mode
/= On
;
6388 ("\procedure & is marked as No_Return<<!", Last_Stm
, Proc
);
6392 RE
: constant Node_Id
:=
6393 Make_Raise_Program_Error
(Sloc
(Last_Stm
),
6394 Reason
=> PE_Implicit_Return
);
6396 Insert_After
(Last_Stm
, RE
);
6400 end Check_Statement_Sequence
;
6402 -- Start of processing for Check_Returns
6406 Check_Statement_Sequence
(Statements
(HSS
));
6408 if Present
(Exception_Handlers
(HSS
)) then
6409 Handler
:= First_Non_Pragma
(Exception_Handlers
(HSS
));
6410 while Present
(Handler
) loop
6411 Check_Statement_Sequence
(Statements
(Handler
));
6412 Next_Non_Pragma
(Handler
);
6417 ----------------------------
6418 -- Check_Subprogram_Order --
6419 ----------------------------
6421 procedure Check_Subprogram_Order
(N
: Node_Id
) is
6423 function Subprogram_Name_Greater
(S1
, S2
: String) return Boolean;
6424 -- This is used to check if S1 > S2 in the sense required by this test,
6425 -- for example nameab < namec, but name2 < name10.
6427 -----------------------------
6428 -- Subprogram_Name_Greater --
6429 -----------------------------
6431 function Subprogram_Name_Greater
(S1
, S2
: String) return Boolean is
6436 -- Deal with special case where names are identical except for a
6437 -- numerical suffix. These are handled specially, taking the numeric
6438 -- ordering from the suffix into account.
6441 while S1
(L1
) in '0' .. '9' loop
6446 while S2
(L2
) in '0' .. '9' loop
6450 -- If non-numeric parts non-equal, do straight compare
6452 if S1
(S1
'First .. L1
) /= S2
(S2
'First .. L2
) then
6455 -- If non-numeric parts equal, compare suffixed numeric parts. Note
6456 -- that a missing suffix is treated as numeric zero in this test.
6460 while L1
< S1
'Last loop
6462 N1
:= N1
* 10 + Character'Pos (S1
(L1
)) - Character'Pos ('0');
6466 while L2
< S2
'Last loop
6468 N2
:= N2
* 10 + Character'Pos (S2
(L2
)) - Character'Pos ('0');
6473 end Subprogram_Name_Greater
;
6475 -- Start of processing for Check_Subprogram_Order
6478 -- Check body in alpha order if this is option
6481 and then Style_Check_Order_Subprograms
6482 and then Nkind
(N
) = N_Subprogram_Body
6483 and then Comes_From_Source
(N
)
6484 and then In_Extended_Main_Source_Unit
(N
)
6488 renames Scope_Stack
.Table
6489 (Scope_Stack
.Last
).Last_Subprogram_Name
;
6491 Body_Id
: constant Entity_Id
:=
6492 Defining_Entity
(Specification
(N
));
6495 Get_Decoded_Name_String
(Chars
(Body_Id
));
6498 if Subprogram_Name_Greater
6499 (LSN
.all, Name_Buffer
(1 .. Name_Len
))
6501 Style
.Subprogram_Not_In_Alpha_Order
(Body_Id
);
6507 LSN
:= new String'(Name_Buffer (1 .. Name_Len));
6510 end Check_Subprogram_Order;
6512 ------------------------------
6513 -- Check_Subtype_Conformant --
6514 ------------------------------
6516 procedure Check_Subtype_Conformant
6517 (New_Id : Entity_Id;
6519 Err_Loc : Node_Id := Empty;
6520 Skip_Controlling_Formals : Boolean := False;
6521 Get_Inst : Boolean := False)
6524 pragma Warnings (Off, Result);
6527 (New_Id, Old_Id, Subtype_Conformant, True, Result, Err_Loc,
6528 Skip_Controlling_Formals => Skip_Controlling_Formals,
6529 Get_Inst => Get_Inst);
6530 end Check_Subtype_Conformant;
6532 ---------------------------
6533 -- Check_Type_Conformant --
6534 ---------------------------
6536 procedure Check_Type_Conformant
6537 (New_Id : Entity_Id;
6539 Err_Loc : Node_Id := Empty)
6542 pragma Warnings (Off, Result);
6545 (New_Id, Old_Id, Type_Conformant, True, Result, Err_Loc);
6546 end Check_Type_Conformant;
6548 ---------------------------
6549 -- Can_Override_Operator --
6550 ---------------------------
6552 function Can_Override_Operator (Subp : Entity_Id) return Boolean is
6556 if Nkind (Subp) /= N_Defining_Operator_Symbol then
6560 Typ := Base_Type (Etype (First_Formal (Subp)));
6562 -- Check explicitly that the operation is a primitive of the type
6564 return Operator_Matches_Spec (Subp, Subp)
6565 and then not Is_Generic_Type (Typ)
6566 and then Scope (Subp) = Scope (Typ)
6567 and then not Is_Class_Wide_Type (Typ);
6569 end Can_Override_Operator;
6571 ----------------------
6572 -- Conforming_Types --
6573 ----------------------
6575 function Conforming_Types
6578 Ctype : Conformance_Type;
6579 Get_Inst : Boolean := False) return Boolean
6581 Type_1 : Entity_Id := T1;
6582 Type_2 : Entity_Id := T2;
6583 Are_Anonymous_Access_To_Subprogram_Types : Boolean := False;
6585 function Base_Types_Match (T1, T2 : Entity_Id) return Boolean;
6586 -- If neither T1 nor T2 are generic actual types, or if they are in
6587 -- different scopes (e.g. parent and child instances), then verify that
6588 -- the base types are equal. Otherwise T1 and T2 must be on the same
6589 -- subtype chain. The whole purpose of this procedure is to prevent
6590 -- spurious ambiguities in an instantiation that may arise if two
6591 -- distinct generic types are instantiated with the same actual.
6593 function Find_Designated_Type (T : Entity_Id) return Entity_Id;
6594 -- An access parameter can designate an incomplete type. If the
6595 -- incomplete type is the limited view of a type from a limited_
6596 -- with_clause, check whether the non-limited view is available. If
6597 -- it is a (non-limited) incomplete type, get the full view.
6599 function Matches_Limited_With_View (T1, T2 : Entity_Id) return Boolean;
6600 -- Returns True if and only if either T1 denotes a limited view of T2
6601 -- or T2 denotes a limited view of T1. This can arise when the limited
6602 -- with view of a type is used in a subprogram declaration and the
6603 -- subprogram body is in the scope of a regular with clause for the
6604 -- same unit. In such a case, the two type entities can be considered
6605 -- identical for purposes of conformance checking.
6607 ----------------------
6608 -- Base_Types_Match --
6609 ----------------------
6611 function Base_Types_Match (T1, T2 : Entity_Id) return Boolean is
6612 BT1 : constant Entity_Id := Base_Type (T1);
6613 BT2 : constant Entity_Id := Base_Type (T2);
6619 elsif BT1 = BT2 then
6621 -- The following is too permissive. A more precise test should
6622 -- check that the generic actual is an ancestor subtype of the
6625 -- See code in Find_Corresponding_Spec that applies an additional
6626 -- filter to handle accidental amiguities in instances.
6628 return not Is_Generic_Actual_Type (T1)
6629 or else not Is_Generic_Actual_Type (T2)
6630 or else Scope (T1) /= Scope (T2);
6632 -- If T2 is a generic actual type it is declared as the subtype of
6633 -- the actual. If that actual is itself a subtype we need to use its
6634 -- own base type to check for compatibility.
6636 elsif Ekind (BT2) = Ekind (T2) and then BT1 = Base_Type (BT2) then
6639 elsif Ekind (BT1) = Ekind (T1) and then BT2 = Base_Type (BT1) then
6645 end Base_Types_Match;
6647 --------------------------
6648 -- Find_Designated_Type --
6649 --------------------------
6651 function Find_Designated_Type (T : Entity_Id) return Entity_Id is
6655 Desig := Directly_Designated_Type (T);
6657 if Ekind (Desig) = E_Incomplete_Type then
6659 -- If regular incomplete type, get full view if available
6661 if Present (Full_View (Desig)) then
6662 Desig := Full_View (Desig);
6664 -- If limited view of a type, get non-limited view if available,
6665 -- and check again for a regular incomplete type.
6667 elsif Present (Non_Limited_View (Desig)) then
6668 Desig := Get_Full_View (Non_Limited_View (Desig));
6673 end Find_Designated_Type;
6675 -------------------------------
6676 -- Matches_Limited_With_View --
6677 -------------------------------
6679 function Matches_Limited_With_View (T1, T2 : Entity_Id) return Boolean is
6681 -- In some cases a type imported through a limited_with clause, and
6682 -- its nonlimited view are both visible, for example in an anonymous
6683 -- access-to-class-wide type in a formal, or when building the body
6684 -- for a subprogram renaming after the subprogram has been frozen.
6685 -- In these cases Both entities designate the same type. In addition,
6686 -- if one of them is an actual in an instance, it may be a subtype of
6687 -- the non-limited view of the other.
6689 if From_Limited_With (T1)
6690 and then (T2 = Available_View (T1)
6691 or else Is_Subtype_Of (T2, Available_View (T1)))
6695 elsif From_Limited_With (T2)
6696 and then (T1 = Available_View (T2)
6697 or else Is_Subtype_Of (T1, Available_View (T2)))
6701 elsif From_Limited_With (T1)
6702 and then From_Limited_With (T2)
6703 and then Available_View (T1) = Available_View (T2)
6710 end Matches_Limited_With_View;
6712 -- Start of processing for Conforming_Types
6715 -- The context is an instance association for a formal access-to-
6716 -- subprogram type; the formal parameter types require mapping because
6717 -- they may denote other formal parameters of the generic unit.
6720 Type_1 := Get_Instance_Of (T1);
6721 Type_2 := Get_Instance_Of (T2);
6724 -- If one of the types is a view of the other introduced by a limited
6725 -- with clause, treat these as conforming for all purposes.
6727 if Matches_Limited_With_View (T1, T2) then
6730 elsif Base_Types_Match (Type_1, Type_2) then
6731 return Ctype <= Mode_Conformant
6732 or else Subtypes_Statically_Match (Type_1, Type_2);
6734 elsif Is_Incomplete_Or_Private_Type (Type_1)
6735 and then Present (Full_View (Type_1))
6736 and then Base_Types_Match (Full_View (Type_1), Type_2)
6738 return Ctype <= Mode_Conformant
6739 or else Subtypes_Statically_Match (Full_View (Type_1), Type_2);
6741 elsif Ekind (Type_2) = E_Incomplete_Type
6742 and then Present (Full_View (Type_2))
6743 and then Base_Types_Match (Type_1, Full_View (Type_2))
6745 return Ctype <= Mode_Conformant
6746 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
6748 elsif Is_Private_Type (Type_2)
6749 and then In_Instance
6750 and then Present (Full_View (Type_2))
6751 and then Base_Types_Match (Type_1, Full_View (Type_2))
6753 return Ctype <= Mode_Conformant
6754 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
6757 -- Ada 2005 (AI-254): Anonymous access-to-subprogram types must be
6758 -- treated recursively because they carry a signature. As far as
6759 -- conformance is concerned, convention plays no role, and either
6760 -- or both could be access to protected subprograms.
6762 Are_Anonymous_Access_To_Subprogram_Types :=
6763 Ekind_In (Type_1, E_Anonymous_Access_Subprogram_Type,
6764 E_Anonymous_Access_Protected_Subprogram_Type)
6766 Ekind_In (Type_2, E_Anonymous_Access_Subprogram_Type,
6767 E_Anonymous_Access_Protected_Subprogram_Type);
6769 -- Test anonymous access type case. For this case, static subtype
6770 -- matching is required for mode conformance (RM 6.3.1(15)). We check
6771 -- the base types because we may have built internal subtype entities
6772 -- to handle null-excluding types (see Process_Formals).
6774 if (Ekind (Base_Type (Type_1)) = E_Anonymous_Access_Type
6776 Ekind (Base_Type (Type_2)) = E_Anonymous_Access_Type)
6778 -- Ada 2005 (AI-254)
6780 or else Are_Anonymous_Access_To_Subprogram_Types
6783 Desig_1 : Entity_Id;
6784 Desig_2 : Entity_Id;
6787 -- In Ada 2005, access constant indicators must match for
6788 -- subtype conformance.
6790 if Ada_Version >= Ada_2005
6791 and then Ctype >= Subtype_Conformant
6793 Is_Access_Constant (Type_1) /= Is_Access_Constant (Type_2)
6798 Desig_1 := Find_Designated_Type (Type_1);
6799 Desig_2 := Find_Designated_Type (Type_2);
6801 -- If the context is an instance association for a formal
6802 -- access-to-subprogram type; formal access parameter designated
6803 -- types require mapping because they may denote other formal
6804 -- parameters of the generic unit.
6807 Desig_1 := Get_Instance_Of (Desig_1);
6808 Desig_2 := Get_Instance_Of (Desig_2);
6811 -- It is possible for a Class_Wide_Type to be introduced for an
6812 -- incomplete type, in which case there is a separate class_ wide
6813 -- type for the full view. The types conform if their Etypes
6814 -- conform, i.e. one may be the full view of the other. This can
6815 -- only happen in the context of an access parameter, other uses
6816 -- of an incomplete Class_Wide_Type are illegal.
6818 if Is_Class_Wide_Type (Desig_1)
6820 Is_Class_Wide_Type (Desig_2)
6824 (Etype (Base_Type (Desig_1)),
6825 Etype (Base_Type (Desig_2)), Ctype);
6827 elsif Are_Anonymous_Access_To_Subprogram_Types then
6828 if Ada_Version < Ada_2005 then
6829 return Ctype = Type_Conformant
6831 Subtypes_Statically_Match (Desig_1, Desig_2);
6833 -- We must check the conformance of the signatures themselves
6837 Conformant : Boolean;
6840 (Desig_1, Desig_2, Ctype, False, Conformant);
6846 return Base_Type (Desig_1) = Base_Type (Desig_2)
6847 and then (Ctype = Type_Conformant
6849 Subtypes_Statically_Match (Desig_1, Desig_2));
6853 -- Otherwise definitely no match
6856 if ((Ekind (Type_1) = E_Anonymous_Access_Type
6857 and then Is_Access_Type (Type_2))
6858 or else (Ekind (Type_2) = E_Anonymous_Access_Type
6859 and then Is_Access_Type (Type_1)))
6862 (Designated_Type (Type_1), Designated_Type (Type_2), Ctype)
6864 May_Hide_Profile := True;
6869 end Conforming_Types;
6871 --------------------------
6872 -- Create_Extra_Formals --
6873 --------------------------
6875 procedure Create_Extra_Formals (E : Entity_Id) is
6877 First_Extra : Entity_Id := Empty;
6878 Last_Extra : Entity_Id;
6879 Formal_Type : Entity_Id;
6880 P_Formal : Entity_Id := Empty;
6882 function Add_Extra_Formal
6883 (Assoc_Entity : Entity_Id;
6886 Suffix : String) return Entity_Id;
6887 -- Add an extra formal to the current list of formals and extra formals.
6888 -- The extra formal is added to the end of the list of extra formals,
6889 -- and also returned as the result. These formals are always of mode IN.
6890 -- The new formal has the type Typ, is declared in Scope, and its name
6891 -- is given by a concatenation of the name of Assoc_Entity and Suffix.
6892 -- The following suffixes are currently used. They should not be changed
6893 -- without coordinating with CodePeer, which makes use of these to
6894 -- provide better messages.
6896 -- O denotes the Constrained bit.
6897 -- L denotes the accessibility level.
6898 -- BIP_xxx denotes an extra formal for a build-in-place function. See
6899 -- the full list in exp_ch6.BIP_Formal_Kind.
6901 ----------------------
6902 -- Add_Extra_Formal --
6903 ----------------------
6905 function Add_Extra_Formal
6906 (Assoc_Entity : Entity_Id;
6909 Suffix : String) return Entity_Id
6911 EF : constant Entity_Id :=
6912 Make_Defining_Identifier (Sloc (Assoc_Entity),
6913 Chars => New_External_Name (Chars (Assoc_Entity),
6917 -- A little optimization. Never generate an extra formal for the
6918 -- _init operand of an initialization procedure, since it could
6921 if Chars (Formal) = Name_uInit then
6925 Set_Ekind (EF, E_In_Parameter);
6926 Set_Actual_Subtype (EF, Typ);
6927 Set_Etype (EF, Typ);
6928 Set_Scope (EF, Scope);
6929 Set_Mechanism (EF, Default_Mechanism);
6930 Set_Formal_Validity (EF);
6932 if No (First_Extra) then
6934 Set_Extra_Formals (Scope, First_Extra);
6937 if Present (Last_Extra) then
6938 Set_Extra_Formal (Last_Extra, EF);
6944 end Add_Extra_Formal;
6946 -- Start of processing for Create_Extra_Formals
6949 -- We never generate extra formals if expansion is not active because we
6950 -- don't need them unless we are generating code.
6952 if not Expander_Active then
6956 -- No need to generate extra formals in interface thunks whose target
6957 -- primitive has no extra formals.
6959 if Is_Thunk (E) and then No (Extra_Formals (Thunk_Entity (E))) then
6963 -- If this is a derived subprogram then the subtypes of the parent
6964 -- subprogram's formal parameters will be used to determine the need
6965 -- for extra formals.
6967 if Is_Overloadable (E) and then Present (Alias (E)) then
6968 P_Formal := First_Formal (Alias (E));
6971 Last_Extra := Empty;
6972 Formal := First_Formal (E);
6973 while Present (Formal) loop
6974 Last_Extra := Formal;
6975 Next_Formal (Formal);
6978 -- If Extra_formals were already created, don't do it again. This
6979 -- situation may arise for subprogram types created as part of
6980 -- dispatching calls (see Expand_Dispatching_Call)
6982 if Present (Last_Extra) and then Present (Extra_Formal (Last_Extra)) then
6986 -- If the subprogram is a predefined dispatching subprogram then don't
6987 -- generate any extra constrained or accessibility level formals. In
6988 -- general we suppress these for internal subprograms (by not calling
6989 -- Freeze_Subprogram and Create_Extra_Formals at all), but internally
6990 -- generated stream attributes do get passed through because extra
6991 -- build-in-place formals are needed in some cases (limited 'Input
).
6993 if Is_Predefined_Internal_Operation
(E
) then
6994 goto Test_For_Func_Result_Extras
;
6997 Formal
:= First_Formal
(E
);
6998 while Present
(Formal
) loop
7000 -- Create extra formal for supporting the attribute 'Constrained.
7001 -- The case of a private type view without discriminants also
7002 -- requires the extra formal if the underlying type has defaulted
7005 if Ekind
(Formal
) /= E_In_Parameter
then
7006 if Present
(P_Formal
) then
7007 Formal_Type
:= Etype
(P_Formal
);
7009 Formal_Type
:= Etype
(Formal
);
7012 -- Do not produce extra formals for Unchecked_Union parameters.
7013 -- Jump directly to the end of the loop.
7015 if Is_Unchecked_Union
(Base_Type
(Formal_Type
)) then
7016 goto Skip_Extra_Formal_Generation
;
7019 if not Has_Discriminants
(Formal_Type
)
7020 and then Ekind
(Formal_Type
) in Private_Kind
7021 and then Present
(Underlying_Type
(Formal_Type
))
7023 Formal_Type
:= Underlying_Type
(Formal_Type
);
7026 -- Suppress the extra formal if formal's subtype is constrained or
7027 -- indefinite, or we're compiling for Ada 2012 and the underlying
7028 -- type is tagged and limited. In Ada 2012, a limited tagged type
7029 -- can have defaulted discriminants, but 'Constrained is required
7030 -- to return True, so the formal is never needed (see AI05-0214).
7031 -- Note that this ensures consistency of calling sequences for
7032 -- dispatching operations when some types in a class have defaults
7033 -- on discriminants and others do not (and requiring the extra
7034 -- formal would introduce distributed overhead).
7036 -- If the type does not have a completion yet, treat as prior to
7037 -- Ada 2012 for consistency.
7039 if Has_Discriminants
(Formal_Type
)
7040 and then not Is_Constrained
(Formal_Type
)
7041 and then not Is_Indefinite_Subtype
(Formal_Type
)
7042 and then (Ada_Version
< Ada_2012
7043 or else No
(Underlying_Type
(Formal_Type
))
7045 (Is_Limited_Type
(Formal_Type
)
7048 (Underlying_Type
(Formal_Type
)))))
7050 Set_Extra_Constrained
7051 (Formal
, Add_Extra_Formal
(Formal
, Standard_Boolean
, E
, "O"));
7055 -- Create extra formal for supporting accessibility checking. This
7056 -- is done for both anonymous access formals and formals of named
7057 -- access types that are marked as controlling formals. The latter
7058 -- case can occur when Expand_Dispatching_Call creates a subprogram
7059 -- type and substitutes the types of access-to-class-wide actuals
7060 -- for the anonymous access-to-specific-type of controlling formals.
7061 -- Base_Type is applied because in cases where there is a null
7062 -- exclusion the formal may have an access subtype.
7064 -- This is suppressed if we specifically suppress accessibility
7065 -- checks at the package level for either the subprogram, or the
7066 -- package in which it resides. However, we do not suppress it
7067 -- simply if the scope has accessibility checks suppressed, since
7068 -- this could cause trouble when clients are compiled with a
7069 -- different suppression setting. The explicit checks at the
7070 -- package level are safe from this point of view.
7072 if (Ekind
(Base_Type
(Etype
(Formal
))) = E_Anonymous_Access_Type
7073 or else (Is_Controlling_Formal
(Formal
)
7074 and then Is_Access_Type
(Base_Type
(Etype
(Formal
)))))
7076 (Explicit_Suppress
(E
, Accessibility_Check
)
7078 Explicit_Suppress
(Scope
(E
), Accessibility_Check
))
7081 or else Present
(Extra_Accessibility
(P_Formal
)))
7083 Set_Extra_Accessibility
7084 (Formal
, Add_Extra_Formal
(Formal
, Standard_Natural
, E
, "L"));
7087 -- This label is required when skipping extra formal generation for
7088 -- Unchecked_Union parameters.
7090 <<Skip_Extra_Formal_Generation
>>
7092 if Present
(P_Formal
) then
7093 Next_Formal
(P_Formal
);
7096 Next_Formal
(Formal
);
7099 <<Test_For_Func_Result_Extras
>>
7101 -- Ada 2012 (AI05-234): "the accessibility level of the result of a
7102 -- function call is ... determined by the point of call ...".
7104 if Needs_Result_Accessibility_Level
(E
) then
7105 Set_Extra_Accessibility_Of_Result
7106 (E
, Add_Extra_Formal
(E
, Standard_Natural
, E
, "L"));
7109 -- Ada 2005 (AI-318-02): In the case of build-in-place functions, add
7110 -- appropriate extra formals. See type Exp_Ch6.BIP_Formal_Kind.
7112 if Ada_Version
>= Ada_2005
and then Is_Build_In_Place_Function
(E
) then
7114 Result_Subt
: constant Entity_Id
:= Etype
(E
);
7115 Full_Subt
: constant Entity_Id
:= Available_View
(Result_Subt
);
7116 Formal_Typ
: Entity_Id
;
7118 Discard
: Entity_Id
;
7119 pragma Warnings
(Off
, Discard
);
7122 -- In the case of functions with unconstrained result subtypes,
7123 -- add a 4-state formal indicating whether the return object is
7124 -- allocated by the caller (1), or should be allocated by the
7125 -- callee on the secondary stack (2), in the global heap (3), or
7126 -- in a user-defined storage pool (4). For the moment we just use
7127 -- Natural for the type of this formal. Note that this formal
7128 -- isn't usually needed in the case where the result subtype is
7129 -- constrained, but it is needed when the function has a tagged
7130 -- result, because generally such functions can be called in a
7131 -- dispatching context and such calls must be handled like calls
7132 -- to a class-wide function.
7134 if Needs_BIP_Alloc_Form
(E
) then
7137 (E
, Standard_Natural
,
7138 E
, BIP_Formal_Suffix
(BIP_Alloc_Form
));
7140 -- Add BIP_Storage_Pool, in case BIP_Alloc_Form indicates to
7141 -- use a user-defined pool. This formal is not added on
7142 -- .NET/JVM/ZFP as those targets do not support pools.
7144 if VM_Target
= No_VM
7145 and then RTE_Available
(RE_Root_Storage_Pool_Ptr
)
7149 (E
, RTE
(RE_Root_Storage_Pool_Ptr
),
7150 E
, BIP_Formal_Suffix
(BIP_Storage_Pool
));
7154 -- In the case of functions whose result type needs finalization,
7155 -- add an extra formal which represents the finalization master.
7157 if Needs_BIP_Finalization_Master
(E
) then
7160 (E
, RTE
(RE_Finalization_Master_Ptr
),
7161 E
, BIP_Formal_Suffix
(BIP_Finalization_Master
));
7164 -- When the result type contains tasks, add two extra formals: the
7165 -- master of the tasks to be created, and the caller's activation
7168 if Has_Task
(Full_Subt
) then
7171 (E
, RTE
(RE_Master_Id
),
7172 E
, BIP_Formal_Suffix
(BIP_Task_Master
));
7175 (E
, RTE
(RE_Activation_Chain_Access
),
7176 E
, BIP_Formal_Suffix
(BIP_Activation_Chain
));
7179 -- All build-in-place functions get an extra formal that will be
7180 -- passed the address of the return object within the caller.
7183 Create_Itype
(E_Anonymous_Access_Type
, E
, Scope_Id
=> Scope
(E
));
7185 Set_Directly_Designated_Type
(Formal_Typ
, Result_Subt
);
7186 Set_Etype
(Formal_Typ
, Formal_Typ
);
7187 Set_Depends_On_Private
7188 (Formal_Typ
, Has_Private_Component
(Formal_Typ
));
7189 Set_Is_Public
(Formal_Typ
, Is_Public
(Scope
(Formal_Typ
)));
7190 Set_Is_Access_Constant
(Formal_Typ
, False);
7192 -- Ada 2005 (AI-50217): Propagate the attribute that indicates
7193 -- the designated type comes from the limited view (for back-end
7196 Set_From_Limited_With
7197 (Formal_Typ
, From_Limited_With
(Result_Subt
));
7199 Layout_Type
(Formal_Typ
);
7203 (E
, Formal_Typ
, E
, BIP_Formal_Suffix
(BIP_Object_Access
));
7206 end Create_Extra_Formals
;
7208 -----------------------------
7209 -- Enter_Overloaded_Entity --
7210 -----------------------------
7212 procedure Enter_Overloaded_Entity
(S
: Entity_Id
) is
7213 E
: Entity_Id
:= Current_Entity_In_Scope
(S
);
7214 C_E
: Entity_Id
:= Current_Entity
(S
);
7218 Set_Has_Homonym
(E
);
7219 Set_Has_Homonym
(S
);
7222 Set_Is_Immediately_Visible
(S
);
7223 Set_Scope
(S
, Current_Scope
);
7225 -- Chain new entity if front of homonym in current scope, so that
7226 -- homonyms are contiguous.
7228 if Present
(E
) and then E
/= C_E
then
7229 while Homonym
(C_E
) /= E
loop
7230 C_E
:= Homonym
(C_E
);
7233 Set_Homonym
(C_E
, S
);
7237 Set_Current_Entity
(S
);
7242 if Is_Inherited_Operation
(S
) then
7243 Append_Inherited_Subprogram
(S
);
7245 Append_Entity
(S
, Current_Scope
);
7248 Set_Public_Status
(S
);
7250 if Debug_Flag_E
then
7251 Write_Str
("New overloaded entity chain: ");
7252 Write_Name
(Chars
(S
));
7255 while Present
(E
) loop
7256 Write_Str
(" "); Write_Int
(Int
(E
));
7263 -- Generate warning for hiding
7266 and then Comes_From_Source
(S
)
7267 and then In_Extended_Main_Source_Unit
(S
)
7274 -- Warn unless genuine overloading. Do not emit warning on
7275 -- hiding predefined operators in Standard (these are either an
7276 -- (artifact of our implicit declarations, or simple noise) but
7277 -- keep warning on a operator defined on a local subtype, because
7278 -- of the real danger that different operators may be applied in
7279 -- various parts of the program.
7281 -- Note that if E and S have the same scope, there is never any
7282 -- hiding. Either the two conflict, and the program is illegal,
7283 -- or S is overriding an implicit inherited subprogram.
7285 if Scope
(E
) /= Scope
(S
)
7286 and then (not Is_Overloadable
(E
)
7287 or else Subtype_Conformant
(E
, S
))
7288 and then (Is_Immediately_Visible
(E
)
7290 Is_Potentially_Use_Visible
(S
))
7292 if Scope
(E
) /= Standard_Standard
then
7293 Error_Msg_Sloc
:= Sloc
(E
);
7294 Error_Msg_N
("declaration of & hides one #?h?", S
);
7296 elsif Nkind
(S
) = N_Defining_Operator_Symbol
7298 Scope
(Base_Type
(Etype
(First_Formal
(S
)))) /= Scope
(S
)
7301 ("declaration of & hides predefined operator?h?", S
);
7306 end Enter_Overloaded_Entity
;
7308 -----------------------------
7309 -- Check_Untagged_Equality --
7310 -----------------------------
7312 procedure Check_Untagged_Equality
(Eq_Op
: Entity_Id
) is
7313 Typ
: constant Entity_Id
:= Etype
(First_Formal
(Eq_Op
));
7314 Decl
: constant Node_Id
:= Unit_Declaration_Node
(Eq_Op
);
7318 -- This check applies only if we have a subprogram declaration with an
7319 -- untagged record type.
7321 if Nkind
(Decl
) /= N_Subprogram_Declaration
7322 or else not Is_Record_Type
(Typ
)
7323 or else Is_Tagged_Type
(Typ
)
7328 -- In Ada 2012 case, we will output errors or warnings depending on
7329 -- the setting of debug flag -gnatd.E.
7331 if Ada_Version
>= Ada_2012
then
7332 Error_Msg_Warn
:= Debug_Flag_Dot_EE
;
7334 -- In earlier versions of Ada, nothing to do unless we are warning on
7335 -- Ada 2012 incompatibilities (Warn_On_Ada_2012_Incompatibility set).
7338 if not Warn_On_Ada_2012_Compatibility
then
7343 -- Cases where the type has already been frozen
7345 if Is_Frozen
(Typ
) then
7347 -- If the type is not declared in a package, or if we are in the body
7348 -- of the package or in some other scope, the new operation is not
7349 -- primitive, and therefore legal, though suspicious. Should we
7350 -- generate a warning in this case ???
7352 if Ekind
(Scope
(Typ
)) /= E_Package
7353 or else Scope
(Typ
) /= Current_Scope
7357 -- If the type is a generic actual (sub)type, the operation is not
7358 -- primitive either because the base type is declared elsewhere.
7360 elsif Is_Generic_Actual_Type
(Typ
) then
7363 -- Here we have a definite error of declaration after freezing
7366 if Ada_Version
>= Ada_2012
then
7368 ("equality operator must be declared before type & is "
7369 & "frozen (RM 4.5.2 (9.8)) (Ada 2012)<<", Eq_Op
, Typ
);
7371 -- In Ada 2012 mode with error turned to warning, output one
7372 -- more warning to warn that the equality operation may not
7373 -- compose. This is the consequence of ignoring the error.
7375 if Error_Msg_Warn
then
7376 Error_Msg_N
("\equality operation may not compose??", Eq_Op
);
7381 ("equality operator must be declared before type& is "
7382 & "frozen (RM 4.5.2 (9.8)) (Ada 2012)?y?", Eq_Op
, Typ
);
7385 -- If we are in the package body, we could just move the
7386 -- declaration to the package spec, so add a message saying that.
7388 if In_Package_Body
(Scope
(Typ
)) then
7389 if Ada_Version
>= Ada_2012
then
7391 ("\move declaration to package spec<<", Eq_Op
);
7394 ("\move declaration to package spec (Ada 2012)?y?", Eq_Op
);
7397 -- Otherwise try to find the freezing point
7400 Obj_Decl
:= Next
(Parent
(Typ
));
7401 while Present
(Obj_Decl
) and then Obj_Decl
/= Decl
loop
7402 if Nkind
(Obj_Decl
) = N_Object_Declaration
7403 and then Etype
(Defining_Identifier
(Obj_Decl
)) = Typ
7405 -- Freezing point, output warnings
7407 if Ada_Version
>= Ada_2012
then
7409 ("type& is frozen by declaration??", Obj_Decl
, Typ
);
7411 ("\an equality operator cannot be declared after "
7416 ("type& is frozen by declaration (Ada 2012)?y?",
7419 ("\an equality operator cannot be declared after "
7420 & "this point (Ada 2012)?y?",
7432 -- Here if type is not frozen yet. It is illegal to have a primitive
7433 -- equality declared in the private part if the type is visible.
7435 elsif not In_Same_List
(Parent
(Typ
), Decl
)
7436 and then not Is_Limited_Type
(Typ
)
7438 -- Shouldn't we give an RM reference here???
7440 if Ada_Version
>= Ada_2012
then
7442 ("equality operator appears too late<<", Eq_Op
);
7445 ("equality operator appears too late (Ada 2012)?y?", Eq_Op
);
7448 -- No error detected
7453 end Check_Untagged_Equality
;
7455 -----------------------------
7456 -- Find_Corresponding_Spec --
7457 -----------------------------
7459 function Find_Corresponding_Spec
7461 Post_Error
: Boolean := True) return Entity_Id
7463 Spec
: constant Node_Id
:= Specification
(N
);
7464 Designator
: constant Entity_Id
:= Defining_Entity
(Spec
);
7468 function Different_Generic_Profile
(E
: Entity_Id
) return Boolean;
7469 -- Even if fully conformant, a body may depend on a generic actual when
7470 -- the spec does not, or vice versa, in which case they were distinct
7471 -- entities in the generic.
7473 -------------------------------
7474 -- Different_Generic_Profile --
7475 -------------------------------
7477 function Different_Generic_Profile
(E
: Entity_Id
) return Boolean is
7480 function Same_Generic_Actual
(T1
, T2
: Entity_Id
) return Boolean;
7481 -- Check that the types of corresponding formals have the same
7482 -- generic actual if any. We have to account for subtypes of a
7483 -- generic formal, declared between a spec and a body, which may
7484 -- appear distinct in an instance but matched in the generic, and
7485 -- the subtype may be used either in the spec or the body of the
7486 -- subprogram being checked.
7488 -------------------------
7489 -- Same_Generic_Actual --
7490 -------------------------
7492 function Same_Generic_Actual
(T1
, T2
: Entity_Id
) return Boolean is
7494 function Is_Declared_Subtype
(S1
, S2
: Entity_Id
) return Boolean;
7495 -- Predicate to check whether S1 is a subtype of S2 in the source
7498 -------------------------
7499 -- Is_Declared_Subtype --
7500 -------------------------
7502 function Is_Declared_Subtype
(S1
, S2
: Entity_Id
) return Boolean is
7504 return Comes_From_Source
(Parent
(S1
))
7505 and then Nkind
(Parent
(S1
)) = N_Subtype_Declaration
7506 and then Is_Entity_Name
(Subtype_Indication
(Parent
(S1
)))
7507 and then Entity
(Subtype_Indication
(Parent
(S1
))) = S2
;
7508 end Is_Declared_Subtype
;
7510 -- Start of processing for Same_Generic_Actual
7513 return Is_Generic_Actual_Type
(T1
) = Is_Generic_Actual_Type
(T2
)
7514 or else Is_Declared_Subtype
(T1
, T2
)
7515 or else Is_Declared_Subtype
(T2
, T1
);
7516 end Same_Generic_Actual
;
7518 -- Start of processing for Different_Generic_Profile
7521 if not In_Instance
then
7524 elsif Ekind
(E
) = E_Function
7525 and then not Same_Generic_Actual
(Etype
(E
), Etype
(Designator
))
7530 F1
:= First_Formal
(Designator
);
7531 F2
:= First_Formal
(E
);
7532 while Present
(F1
) loop
7533 if not Same_Generic_Actual
(Etype
(F1
), Etype
(F2
)) then
7542 end Different_Generic_Profile
;
7544 -- Start of processing for Find_Corresponding_Spec
7547 E
:= Current_Entity
(Designator
);
7548 while Present
(E
) loop
7550 -- We are looking for a matching spec. It must have the same scope,
7551 -- and the same name, and either be type conformant, or be the case
7552 -- of a library procedure spec and its body (which belong to one
7553 -- another regardless of whether they are type conformant or not).
7555 if Scope
(E
) = Current_Scope
then
7556 if Current_Scope
= Standard_Standard
7557 or else (Ekind
(E
) = Ekind
(Designator
)
7558 and then Type_Conformant
(E
, Designator
))
7560 -- Within an instantiation, we know that spec and body are
7561 -- subtype conformant, because they were subtype conformant in
7562 -- the generic. We choose the subtype-conformant entity here as
7563 -- well, to resolve spurious ambiguities in the instance that
7564 -- were not present in the generic (i.e. when two different
7565 -- types are given the same actual). If we are looking for a
7566 -- spec to match a body, full conformance is expected.
7570 -- Inherit the convention and "ghostness" of the matching
7571 -- spec to ensure proper full and subtype conformance.
7573 Set_Convention
(Designator
, Convention
(E
));
7575 if Is_Ghost_Entity
(E
) then
7576 Set_Is_Ghost_Entity
(Designator
);
7579 -- Skip past subprogram bodies and subprogram renamings that
7580 -- may appear to have a matching spec, but that aren't fully
7581 -- conformant with it. That can occur in cases where an
7582 -- actual type causes unrelated homographs in the instance.
7584 if Nkind_In
(N
, N_Subprogram_Body
,
7585 N_Subprogram_Renaming_Declaration
)
7586 and then Present
(Homonym
(E
))
7587 and then not Fully_Conformant
(Designator
, E
)
7591 elsif not Subtype_Conformant
(Designator
, E
) then
7594 elsif Different_Generic_Profile
(E
) then
7599 -- Ada 2012 (AI05-0165): For internally generated bodies of
7600 -- null procedures locate the internally generated spec. We
7601 -- enforce mode conformance since a tagged type may inherit
7602 -- from interfaces several null primitives which differ only
7603 -- in the mode of the formals.
7605 if not (Comes_From_Source
(E
))
7606 and then Is_Null_Procedure
(E
)
7607 and then not Mode_Conformant
(Designator
, E
)
7611 -- For null procedures coming from source that are completions,
7612 -- analysis of the generated body will establish the link.
7614 elsif Comes_From_Source
(E
)
7615 and then Nkind
(Spec
) = N_Procedure_Specification
7616 and then Null_Present
(Spec
)
7620 elsif not Has_Completion
(E
) then
7621 if Nkind
(N
) /= N_Subprogram_Body_Stub
then
7622 Set_Corresponding_Spec
(N
, E
);
7625 Set_Has_Completion
(E
);
7628 elsif Nkind
(Parent
(N
)) = N_Subunit
then
7630 -- If this is the proper body of a subunit, the completion
7631 -- flag is set when analyzing the stub.
7635 -- If E is an internal function with a controlling result that
7636 -- was created for an operation inherited by a null extension,
7637 -- it may be overridden by a body without a previous spec (one
7638 -- more reason why these should be shunned). In that case we
7639 -- remove the generated body if present, because the current
7640 -- one is the explicit overriding.
7642 elsif Ekind
(E
) = E_Function
7643 and then Ada_Version
>= Ada_2005
7644 and then not Comes_From_Source
(E
)
7645 and then Has_Controlling_Result
(E
)
7646 and then Is_Null_Extension
(Etype
(E
))
7647 and then Comes_From_Source
(Spec
)
7649 Set_Has_Completion
(E
, False);
7652 and then Nkind
(Parent
(E
)) = N_Function_Specification
7655 (Unit_Declaration_Node
7656 (Corresponding_Body
(Unit_Declaration_Node
(E
))));
7660 -- If expansion is disabled, or if the wrapper function has
7661 -- not been generated yet, this a late body overriding an
7662 -- inherited operation, or it is an overriding by some other
7663 -- declaration before the controlling result is frozen. In
7664 -- either case this is a declaration of a new entity.
7670 -- If the body already exists, then this is an error unless
7671 -- the previous declaration is the implicit declaration of a
7672 -- derived subprogram. It is also legal for an instance to
7673 -- contain type conformant overloadable declarations (but the
7674 -- generic declaration may not), per 8.3(26/2).
7676 elsif No
(Alias
(E
))
7677 and then not Is_Intrinsic_Subprogram
(E
)
7678 and then not In_Instance
7681 Error_Msg_Sloc
:= Sloc
(E
);
7683 if Is_Imported
(E
) then
7685 ("body not allowed for imported subprogram & declared#",
7688 Error_Msg_NE
("duplicate body for & declared#", N
, E
);
7692 -- Child units cannot be overloaded, so a conformance mismatch
7693 -- between body and a previous spec is an error.
7695 elsif Is_Child_Unit
(E
)
7697 Nkind
(Unit_Declaration_Node
(Designator
)) = N_Subprogram_Body
7699 Nkind
(Parent
(Unit_Declaration_Node
(Designator
))) =
7704 ("body of child unit does not match previous declaration", N
);
7712 -- On exit, we know that no previous declaration of subprogram exists
7715 end Find_Corresponding_Spec
;
7717 ----------------------
7718 -- Fully_Conformant --
7719 ----------------------
7721 function Fully_Conformant
(New_Id
, Old_Id
: Entity_Id
) return Boolean is
7724 Check_Conformance
(New_Id
, Old_Id
, Fully_Conformant
, False, Result
);
7726 end Fully_Conformant
;
7728 ----------------------------------
7729 -- Fully_Conformant_Expressions --
7730 ----------------------------------
7732 function Fully_Conformant_Expressions
7733 (Given_E1
: Node_Id
;
7734 Given_E2
: Node_Id
) return Boolean
7736 E1
: constant Node_Id
:= Original_Node
(Given_E1
);
7737 E2
: constant Node_Id
:= Original_Node
(Given_E2
);
7738 -- We always test conformance on original nodes, since it is possible
7739 -- for analysis and/or expansion to make things look as though they
7740 -- conform when they do not, e.g. by converting 1+2 into 3.
7742 function FCE
(Given_E1
, Given_E2
: Node_Id
) return Boolean
7743 renames Fully_Conformant_Expressions
;
7745 function FCL
(L1
, L2
: List_Id
) return Boolean;
7746 -- Compare elements of two lists for conformance. Elements have to be
7747 -- conformant, and actuals inserted as default parameters do not match
7748 -- explicit actuals with the same value.
7750 function FCO
(Op_Node
, Call_Node
: Node_Id
) return Boolean;
7751 -- Compare an operator node with a function call
7757 function FCL
(L1
, L2
: List_Id
) return Boolean is
7761 if L1
= No_List
then
7767 if L2
= No_List
then
7773 -- Compare two lists, skipping rewrite insertions (we want to compare
7774 -- the original trees, not the expanded versions).
7777 if Is_Rewrite_Insertion
(N1
) then
7779 elsif Is_Rewrite_Insertion
(N2
) then
7785 elsif not FCE
(N1
, N2
) then
7798 function FCO
(Op_Node
, Call_Node
: Node_Id
) return Boolean is
7799 Actuals
: constant List_Id
:= Parameter_Associations
(Call_Node
);
7804 or else Entity
(Op_Node
) /= Entity
(Name
(Call_Node
))
7809 Act
:= First
(Actuals
);
7811 if Nkind
(Op_Node
) in N_Binary_Op
then
7812 if not FCE
(Left_Opnd
(Op_Node
), Act
) then
7819 return Present
(Act
)
7820 and then FCE
(Right_Opnd
(Op_Node
), Act
)
7821 and then No
(Next
(Act
));
7825 -- Start of processing for Fully_Conformant_Expressions
7828 -- Non-conformant if paren count does not match. Note: if some idiot
7829 -- complains that we don't do this right for more than 3 levels of
7830 -- parentheses, they will be treated with the respect they deserve.
7832 if Paren_Count
(E1
) /= Paren_Count
(E2
) then
7835 -- If same entities are referenced, then they are conformant even if
7836 -- they have different forms (RM 8.3.1(19-20)).
7838 elsif Is_Entity_Name
(E1
) and then Is_Entity_Name
(E2
) then
7839 if Present
(Entity
(E1
)) then
7840 return Entity
(E1
) = Entity
(E2
)
7841 or else (Chars
(Entity
(E1
)) = Chars
(Entity
(E2
))
7842 and then Ekind
(Entity
(E1
)) = E_Discriminant
7843 and then Ekind
(Entity
(E2
)) = E_In_Parameter
);
7845 elsif Nkind
(E1
) = N_Expanded_Name
7846 and then Nkind
(E2
) = N_Expanded_Name
7847 and then Nkind
(Selector_Name
(E1
)) = N_Character_Literal
7848 and then Nkind
(Selector_Name
(E2
)) = N_Character_Literal
7850 return Chars
(Selector_Name
(E1
)) = Chars
(Selector_Name
(E2
));
7853 -- Identifiers in component associations don't always have
7854 -- entities, but their names must conform.
7856 return Nkind
(E1
) = N_Identifier
7857 and then Nkind
(E2
) = N_Identifier
7858 and then Chars
(E1
) = Chars
(E2
);
7861 elsif Nkind
(E1
) = N_Character_Literal
7862 and then Nkind
(E2
) = N_Expanded_Name
7864 return Nkind
(Selector_Name
(E2
)) = N_Character_Literal
7865 and then Chars
(E1
) = Chars
(Selector_Name
(E2
));
7867 elsif Nkind
(E2
) = N_Character_Literal
7868 and then Nkind
(E1
) = N_Expanded_Name
7870 return Nkind
(Selector_Name
(E1
)) = N_Character_Literal
7871 and then Chars
(E2
) = Chars
(Selector_Name
(E1
));
7873 elsif Nkind
(E1
) in N_Op
and then Nkind
(E2
) = N_Function_Call
then
7874 return FCO
(E1
, E2
);
7876 elsif Nkind
(E2
) in N_Op
and then Nkind
(E1
) = N_Function_Call
then
7877 return FCO
(E2
, E1
);
7879 -- Otherwise we must have the same syntactic entity
7881 elsif Nkind
(E1
) /= Nkind
(E2
) then
7884 -- At this point, we specialize by node type
7891 FCL
(Expressions
(E1
), Expressions
(E2
))
7893 FCL
(Component_Associations
(E1
),
7894 Component_Associations
(E2
));
7897 if Nkind
(Expression
(E1
)) = N_Qualified_Expression
7899 Nkind
(Expression
(E2
)) = N_Qualified_Expression
7901 return FCE
(Expression
(E1
), Expression
(E2
));
7903 -- Check that the subtype marks and any constraints
7908 Indic1
: constant Node_Id
:= Expression
(E1
);
7909 Indic2
: constant Node_Id
:= Expression
(E2
);
7914 if Nkind
(Indic1
) /= N_Subtype_Indication
then
7916 Nkind
(Indic2
) /= N_Subtype_Indication
7917 and then Entity
(Indic1
) = Entity
(Indic2
);
7919 elsif Nkind
(Indic2
) /= N_Subtype_Indication
then
7921 Nkind
(Indic1
) /= N_Subtype_Indication
7922 and then Entity
(Indic1
) = Entity
(Indic2
);
7925 if Entity
(Subtype_Mark
(Indic1
)) /=
7926 Entity
(Subtype_Mark
(Indic2
))
7931 Elt1
:= First
(Constraints
(Constraint
(Indic1
)));
7932 Elt2
:= First
(Constraints
(Constraint
(Indic2
)));
7933 while Present
(Elt1
) and then Present
(Elt2
) loop
7934 if not FCE
(Elt1
, Elt2
) then
7947 when N_Attribute_Reference
=>
7949 Attribute_Name
(E1
) = Attribute_Name
(E2
)
7950 and then FCL
(Expressions
(E1
), Expressions
(E2
));
7954 Entity
(E1
) = Entity
(E2
)
7955 and then FCE
(Left_Opnd
(E1
), Left_Opnd
(E2
))
7956 and then FCE
(Right_Opnd
(E1
), Right_Opnd
(E2
));
7958 when N_Short_Circuit | N_Membership_Test
=>
7960 FCE
(Left_Opnd
(E1
), Left_Opnd
(E2
))
7962 FCE
(Right_Opnd
(E1
), Right_Opnd
(E2
));
7964 when N_Case_Expression
=>
7970 if not FCE
(Expression
(E1
), Expression
(E2
)) then
7974 Alt1
:= First
(Alternatives
(E1
));
7975 Alt2
:= First
(Alternatives
(E2
));
7977 if Present
(Alt1
) /= Present
(Alt2
) then
7979 elsif No
(Alt1
) then
7983 if not FCE
(Expression
(Alt1
), Expression
(Alt2
))
7984 or else not FCL
(Discrete_Choices
(Alt1
),
7985 Discrete_Choices
(Alt2
))
7996 when N_Character_Literal
=>
7998 Char_Literal_Value
(E1
) = Char_Literal_Value
(E2
);
8000 when N_Component_Association
=>
8002 FCL
(Choices
(E1
), Choices
(E2
))
8004 FCE
(Expression
(E1
), Expression
(E2
));
8006 when N_Explicit_Dereference
=>
8008 FCE
(Prefix
(E1
), Prefix
(E2
));
8010 when N_Extension_Aggregate
=>
8012 FCL
(Expressions
(E1
), Expressions
(E2
))
8013 and then Null_Record_Present
(E1
) =
8014 Null_Record_Present
(E2
)
8015 and then FCL
(Component_Associations
(E1
),
8016 Component_Associations
(E2
));
8018 when N_Function_Call
=>
8020 FCE
(Name
(E1
), Name
(E2
))
8022 FCL
(Parameter_Associations
(E1
),
8023 Parameter_Associations
(E2
));
8025 when N_If_Expression
=>
8027 FCL
(Expressions
(E1
), Expressions
(E2
));
8029 when N_Indexed_Component
=>
8031 FCE
(Prefix
(E1
), Prefix
(E2
))
8033 FCL
(Expressions
(E1
), Expressions
(E2
));
8035 when N_Integer_Literal
=>
8036 return (Intval
(E1
) = Intval
(E2
));
8041 when N_Operator_Symbol
=>
8043 Chars
(E1
) = Chars
(E2
);
8045 when N_Others_Choice
=>
8048 when N_Parameter_Association
=>
8050 Chars
(Selector_Name
(E1
)) = Chars
(Selector_Name
(E2
))
8051 and then FCE
(Explicit_Actual_Parameter
(E1
),
8052 Explicit_Actual_Parameter
(E2
));
8054 when N_Qualified_Expression
=>
8056 FCE
(Subtype_Mark
(E1
), Subtype_Mark
(E2
))
8058 FCE
(Expression
(E1
), Expression
(E2
));
8060 when N_Quantified_Expression
=>
8061 if not FCE
(Condition
(E1
), Condition
(E2
)) then
8065 if Present
(Loop_Parameter_Specification
(E1
))
8066 and then Present
(Loop_Parameter_Specification
(E2
))
8069 L1
: constant Node_Id
:=
8070 Loop_Parameter_Specification
(E1
);
8071 L2
: constant Node_Id
:=
8072 Loop_Parameter_Specification
(E2
);
8076 Reverse_Present
(L1
) = Reverse_Present
(L2
)
8078 FCE
(Defining_Identifier
(L1
),
8079 Defining_Identifier
(L2
))
8081 FCE
(Discrete_Subtype_Definition
(L1
),
8082 Discrete_Subtype_Definition
(L2
));
8085 elsif Present
(Iterator_Specification
(E1
))
8086 and then Present
(Iterator_Specification
(E2
))
8089 I1
: constant Node_Id
:= Iterator_Specification
(E1
);
8090 I2
: constant Node_Id
:= Iterator_Specification
(E2
);
8094 FCE
(Defining_Identifier
(I1
),
8095 Defining_Identifier
(I2
))
8097 Of_Present
(I1
) = Of_Present
(I2
)
8099 Reverse_Present
(I1
) = Reverse_Present
(I2
)
8100 and then FCE
(Name
(I1
), Name
(I2
))
8101 and then FCE
(Subtype_Indication
(I1
),
8102 Subtype_Indication
(I2
));
8105 -- The quantified expressions used different specifications to
8106 -- walk their respective ranges.
8114 FCE
(Low_Bound
(E1
), Low_Bound
(E2
))
8116 FCE
(High_Bound
(E1
), High_Bound
(E2
));
8118 when N_Real_Literal
=>
8119 return (Realval
(E1
) = Realval
(E2
));
8121 when N_Selected_Component
=>
8123 FCE
(Prefix
(E1
), Prefix
(E2
))
8125 FCE
(Selector_Name
(E1
), Selector_Name
(E2
));
8129 FCE
(Prefix
(E1
), Prefix
(E2
))
8131 FCE
(Discrete_Range
(E1
), Discrete_Range
(E2
));
8133 when N_String_Literal
=>
8135 S1
: constant String_Id
:= Strval
(E1
);
8136 S2
: constant String_Id
:= Strval
(E2
);
8137 L1
: constant Nat
:= String_Length
(S1
);
8138 L2
: constant Nat
:= String_Length
(S2
);
8145 for J
in 1 .. L1
loop
8146 if Get_String_Char
(S1
, J
) /=
8147 Get_String_Char
(S2
, J
)
8157 when N_Type_Conversion
=>
8159 FCE
(Subtype_Mark
(E1
), Subtype_Mark
(E2
))
8161 FCE
(Expression
(E1
), Expression
(E2
));
8165 Entity
(E1
) = Entity
(E2
)
8167 FCE
(Right_Opnd
(E1
), Right_Opnd
(E2
));
8169 when N_Unchecked_Type_Conversion
=>
8171 FCE
(Subtype_Mark
(E1
), Subtype_Mark
(E2
))
8173 FCE
(Expression
(E1
), Expression
(E2
));
8175 -- All other node types cannot appear in this context. Strictly
8176 -- we should raise a fatal internal error. Instead we just ignore
8177 -- the nodes. This means that if anyone makes a mistake in the
8178 -- expander and mucks an expression tree irretrievably, the result
8179 -- will be a failure to detect a (probably very obscure) case
8180 -- of non-conformance, which is better than bombing on some
8181 -- case where two expressions do in fact conform.
8188 end Fully_Conformant_Expressions
;
8190 ----------------------------------------
8191 -- Fully_Conformant_Discrete_Subtypes --
8192 ----------------------------------------
8194 function Fully_Conformant_Discrete_Subtypes
8195 (Given_S1
: Node_Id
;
8196 Given_S2
: Node_Id
) return Boolean
8198 S1
: constant Node_Id
:= Original_Node
(Given_S1
);
8199 S2
: constant Node_Id
:= Original_Node
(Given_S2
);
8201 function Conforming_Bounds
(B1
, B2
: Node_Id
) return Boolean;
8202 -- Special-case for a bound given by a discriminant, which in the body
8203 -- is replaced with the discriminal of the enclosing type.
8205 function Conforming_Ranges
(R1
, R2
: Node_Id
) return Boolean;
8206 -- Check both bounds
8208 -----------------------
8209 -- Conforming_Bounds --
8210 -----------------------
8212 function Conforming_Bounds
(B1
, B2
: Node_Id
) return Boolean is
8214 if Is_Entity_Name
(B1
)
8215 and then Is_Entity_Name
(B2
)
8216 and then Ekind
(Entity
(B1
)) = E_Discriminant
8218 return Chars
(B1
) = Chars
(B2
);
8221 return Fully_Conformant_Expressions
(B1
, B2
);
8223 end Conforming_Bounds
;
8225 -----------------------
8226 -- Conforming_Ranges --
8227 -----------------------
8229 function Conforming_Ranges
(R1
, R2
: Node_Id
) return Boolean is
8232 Conforming_Bounds
(Low_Bound
(R1
), Low_Bound
(R2
))
8234 Conforming_Bounds
(High_Bound
(R1
), High_Bound
(R2
));
8235 end Conforming_Ranges
;
8237 -- Start of processing for Fully_Conformant_Discrete_Subtypes
8240 if Nkind
(S1
) /= Nkind
(S2
) then
8243 elsif Is_Entity_Name
(S1
) then
8244 return Entity
(S1
) = Entity
(S2
);
8246 elsif Nkind
(S1
) = N_Range
then
8247 return Conforming_Ranges
(S1
, S2
);
8249 elsif Nkind
(S1
) = N_Subtype_Indication
then
8251 Entity
(Subtype_Mark
(S1
)) = Entity
(Subtype_Mark
(S2
))
8254 (Range_Expression
(Constraint
(S1
)),
8255 Range_Expression
(Constraint
(S2
)));
8259 end Fully_Conformant_Discrete_Subtypes
;
8261 --------------------
8262 -- Install_Entity --
8263 --------------------
8265 procedure Install_Entity
(E
: Entity_Id
) is
8266 Prev
: constant Entity_Id
:= Current_Entity
(E
);
8268 Set_Is_Immediately_Visible
(E
);
8269 Set_Current_Entity
(E
);
8270 Set_Homonym
(E
, Prev
);
8273 ---------------------
8274 -- Install_Formals --
8275 ---------------------
8277 procedure Install_Formals
(Id
: Entity_Id
) is
8280 F
:= First_Formal
(Id
);
8281 while Present
(F
) loop
8285 end Install_Formals
;
8287 -----------------------------
8288 -- Is_Interface_Conformant --
8289 -----------------------------
8291 function Is_Interface_Conformant
8292 (Tagged_Type
: Entity_Id
;
8293 Iface_Prim
: Entity_Id
;
8294 Prim
: Entity_Id
) return Boolean
8296 -- The operation may in fact be an inherited (implicit) operation
8297 -- rather than the original interface primitive, so retrieve the
8298 -- ultimate ancestor.
8300 Iface
: constant Entity_Id
:=
8301 Find_Dispatching_Type
(Ultimate_Alias
(Iface_Prim
));
8302 Typ
: constant Entity_Id
:= Find_Dispatching_Type
(Prim
);
8304 function Controlling_Formal
(Prim
: Entity_Id
) return Entity_Id
;
8305 -- Return the controlling formal of Prim
8307 ------------------------
8308 -- Controlling_Formal --
8309 ------------------------
8311 function Controlling_Formal
(Prim
: Entity_Id
) return Entity_Id
is
8315 E
:= First_Entity
(Prim
);
8316 while Present
(E
) loop
8317 if Is_Formal
(E
) and then Is_Controlling_Formal
(E
) then
8325 end Controlling_Formal
;
8329 Iface_Ctrl_F
: constant Entity_Id
:= Controlling_Formal
(Iface_Prim
);
8330 Prim_Ctrl_F
: constant Entity_Id
:= Controlling_Formal
(Prim
);
8332 -- Start of processing for Is_Interface_Conformant
8335 pragma Assert
(Is_Subprogram
(Iface_Prim
)
8336 and then Is_Subprogram
(Prim
)
8337 and then Is_Dispatching_Operation
(Iface_Prim
)
8338 and then Is_Dispatching_Operation
(Prim
));
8340 pragma Assert
(Is_Interface
(Iface
)
8341 or else (Present
(Alias
(Iface_Prim
))
8344 (Find_Dispatching_Type
(Ultimate_Alias
(Iface_Prim
)))));
8346 if Prim
= Iface_Prim
8347 or else not Is_Subprogram
(Prim
)
8348 or else Ekind
(Prim
) /= Ekind
(Iface_Prim
)
8349 or else not Is_Dispatching_Operation
(Prim
)
8350 or else Scope
(Prim
) /= Scope
(Tagged_Type
)
8352 or else Base_Type
(Typ
) /= Base_Type
(Tagged_Type
)
8353 or else not Primitive_Names_Match
(Iface_Prim
, Prim
)
8357 -- The mode of the controlling formals must match
8359 elsif Present
(Iface_Ctrl_F
)
8360 and then Present
(Prim_Ctrl_F
)
8361 and then Ekind
(Iface_Ctrl_F
) /= Ekind
(Prim_Ctrl_F
)
8365 -- Case of a procedure, or a function whose result type matches the
8366 -- result type of the interface primitive, or a function that has no
8367 -- controlling result (I or access I).
8369 elsif Ekind
(Iface_Prim
) = E_Procedure
8370 or else Etype
(Prim
) = Etype
(Iface_Prim
)
8371 or else not Has_Controlling_Result
(Prim
)
8373 return Type_Conformant
8374 (Iface_Prim
, Prim
, Skip_Controlling_Formals
=> True);
8376 -- Case of a function returning an interface, or an access to one. Check
8377 -- that the return types correspond.
8379 elsif Implements_Interface
(Typ
, Iface
) then
8380 if (Ekind
(Etype
(Prim
)) = E_Anonymous_Access_Type
)
8382 (Ekind
(Etype
(Iface_Prim
)) = E_Anonymous_Access_Type
)
8387 Type_Conformant
(Prim
, Ultimate_Alias
(Iface_Prim
),
8388 Skip_Controlling_Formals
=> True);
8394 end Is_Interface_Conformant
;
8396 ---------------------------------
8397 -- Is_Non_Overriding_Operation --
8398 ---------------------------------
8400 function Is_Non_Overriding_Operation
8401 (Prev_E
: Entity_Id
;
8402 New_E
: Entity_Id
) return Boolean
8406 G_Typ
: Entity_Id
:= Empty
;
8408 function Get_Generic_Parent_Type
(F_Typ
: Entity_Id
) return Entity_Id
;
8409 -- If F_Type is a derived type associated with a generic actual subtype,
8410 -- then return its Generic_Parent_Type attribute, else return Empty.
8412 function Types_Correspond
8413 (P_Type
: Entity_Id
;
8414 N_Type
: Entity_Id
) return Boolean;
8415 -- Returns true if and only if the types (or designated types in the
8416 -- case of anonymous access types) are the same or N_Type is derived
8417 -- directly or indirectly from P_Type.
8419 -----------------------------
8420 -- Get_Generic_Parent_Type --
8421 -----------------------------
8423 function Get_Generic_Parent_Type
(F_Typ
: Entity_Id
) return Entity_Id
is
8429 if Is_Derived_Type
(F_Typ
)
8430 and then Nkind
(Parent
(F_Typ
)) = N_Full_Type_Declaration
8432 -- The tree must be traversed to determine the parent subtype in
8433 -- the generic unit, which unfortunately isn't always available
8434 -- via semantic attributes. ??? (Note: The use of Original_Node
8435 -- is needed for cases where a full derived type has been
8438 Defn
:= Type_Definition
(Original_Node
(Parent
(F_Typ
)));
8439 if Nkind
(Defn
) = N_Derived_Type_Definition
then
8440 Indic
:= Subtype_Indication
(Defn
);
8442 if Nkind
(Indic
) = N_Subtype_Indication
then
8443 G_Typ
:= Entity
(Subtype_Mark
(Indic
));
8445 G_Typ
:= Entity
(Indic
);
8448 if Nkind
(Parent
(G_Typ
)) = N_Subtype_Declaration
8449 and then Present
(Generic_Parent_Type
(Parent
(G_Typ
)))
8451 return Generic_Parent_Type
(Parent
(G_Typ
));
8457 end Get_Generic_Parent_Type
;
8459 ----------------------
8460 -- Types_Correspond --
8461 ----------------------
8463 function Types_Correspond
8464 (P_Type
: Entity_Id
;
8465 N_Type
: Entity_Id
) return Boolean
8467 Prev_Type
: Entity_Id
:= Base_Type
(P_Type
);
8468 New_Type
: Entity_Id
:= Base_Type
(N_Type
);
8471 if Ekind
(Prev_Type
) = E_Anonymous_Access_Type
then
8472 Prev_Type
:= Designated_Type
(Prev_Type
);
8475 if Ekind
(New_Type
) = E_Anonymous_Access_Type
then
8476 New_Type
:= Designated_Type
(New_Type
);
8479 if Prev_Type
= New_Type
then
8482 elsif not Is_Class_Wide_Type
(New_Type
) then
8483 while Etype
(New_Type
) /= New_Type
loop
8484 New_Type
:= Etype
(New_Type
);
8485 if New_Type
= Prev_Type
then
8491 end Types_Correspond
;
8493 -- Start of processing for Is_Non_Overriding_Operation
8496 -- In the case where both operations are implicit derived subprograms
8497 -- then neither overrides the other. This can only occur in certain
8498 -- obscure cases (e.g., derivation from homographs created in a generic
8501 if Present
(Alias
(Prev_E
)) and then Present
(Alias
(New_E
)) then
8504 elsif Ekind
(Current_Scope
) = E_Package
8505 and then Is_Generic_Instance
(Current_Scope
)
8506 and then In_Private_Part
(Current_Scope
)
8507 and then Comes_From_Source
(New_E
)
8509 -- We examine the formals and result type of the inherited operation,
8510 -- to determine whether their type is derived from (the instance of)
8511 -- a generic type. The first such formal or result type is the one
8514 Formal
:= First_Formal
(Prev_E
);
8515 while Present
(Formal
) loop
8516 F_Typ
:= Base_Type
(Etype
(Formal
));
8518 if Ekind
(F_Typ
) = E_Anonymous_Access_Type
then
8519 F_Typ
:= Designated_Type
(F_Typ
);
8522 G_Typ
:= Get_Generic_Parent_Type
(F_Typ
);
8523 exit when Present
(G_Typ
);
8525 Next_Formal
(Formal
);
8528 if No
(G_Typ
) and then Ekind
(Prev_E
) = E_Function
then
8529 G_Typ
:= Get_Generic_Parent_Type
(Base_Type
(Etype
(Prev_E
)));
8536 -- If the generic type is a private type, then the original operation
8537 -- was not overriding in the generic, because there was no primitive
8538 -- operation to override.
8540 if Nkind
(Parent
(G_Typ
)) = N_Formal_Type_Declaration
8541 and then Nkind
(Formal_Type_Definition
(Parent
(G_Typ
))) =
8542 N_Formal_Private_Type_Definition
8546 -- The generic parent type is the ancestor of a formal derived
8547 -- type declaration. We need to check whether it has a primitive
8548 -- operation that should be overridden by New_E in the generic.
8552 P_Formal
: Entity_Id
;
8553 N_Formal
: Entity_Id
;
8557 Prim_Elt
: Elmt_Id
:= First_Elmt
(Primitive_Operations
(G_Typ
));
8560 while Present
(Prim_Elt
) loop
8561 P_Prim
:= Node
(Prim_Elt
);
8563 if Chars
(P_Prim
) = Chars
(New_E
)
8564 and then Ekind
(P_Prim
) = Ekind
(New_E
)
8566 P_Formal
:= First_Formal
(P_Prim
);
8567 N_Formal
:= First_Formal
(New_E
);
8568 while Present
(P_Formal
) and then Present
(N_Formal
) loop
8569 P_Typ
:= Etype
(P_Formal
);
8570 N_Typ
:= Etype
(N_Formal
);
8572 if not Types_Correspond
(P_Typ
, N_Typ
) then
8576 Next_Entity
(P_Formal
);
8577 Next_Entity
(N_Formal
);
8580 -- Found a matching primitive operation belonging to the
8581 -- formal ancestor type, so the new subprogram is
8585 and then No
(N_Formal
)
8586 and then (Ekind
(New_E
) /= E_Function
8589 (Etype
(P_Prim
), Etype
(New_E
)))
8595 Next_Elmt
(Prim_Elt
);
8598 -- If no match found, then the new subprogram does not override
8599 -- in the generic (nor in the instance).
8601 -- If the type in question is not abstract, and the subprogram
8602 -- is, this will be an error if the new operation is in the
8603 -- private part of the instance. Emit a warning now, which will
8604 -- make the subsequent error message easier to understand.
8606 if not Is_Abstract_Type
(F_Typ
)
8607 and then Is_Abstract_Subprogram
(Prev_E
)
8608 and then In_Private_Part
(Current_Scope
)
8610 Error_Msg_Node_2
:= F_Typ
;
8612 ("private operation& in generic unit does not override "
8613 & "any primitive operation of& (RM 12.3 (18))??",
8623 end Is_Non_Overriding_Operation
;
8625 -------------------------------------
8626 -- List_Inherited_Pre_Post_Aspects --
8627 -------------------------------------
8629 procedure List_Inherited_Pre_Post_Aspects
(E
: Entity_Id
) is
8631 if Opt
.List_Inherited_Aspects
8632 and then Is_Subprogram_Or_Generic_Subprogram
(E
)
8635 Subps
: constant Subprogram_List
:= Inherited_Subprograms
(E
);
8640 for Index
in Subps
'Range loop
8641 Items
:= Contract
(Subps
(Index
));
8643 if Present
(Items
) then
8644 Prag
:= Pre_Post_Conditions
(Items
);
8645 while Present
(Prag
) loop
8646 Error_Msg_Sloc
:= Sloc
(Prag
);
8648 if Class_Present
(Prag
)
8649 and then not Split_PPC
(Prag
)
8651 if Pragma_Name
(Prag
) = Name_Precondition
then
8653 ("info: & inherits `Pre''Class` aspect from "
8657 ("info: & inherits `Post''Class` aspect from "
8662 Prag
:= Next_Pragma
(Prag
);
8668 end List_Inherited_Pre_Post_Aspects
;
8670 ------------------------------
8671 -- Make_Inequality_Operator --
8672 ------------------------------
8674 -- S is the defining identifier of an equality operator. We build a
8675 -- subprogram declaration with the right signature. This operation is
8676 -- intrinsic, because it is always expanded as the negation of the
8677 -- call to the equality function.
8679 procedure Make_Inequality_Operator
(S
: Entity_Id
) is
8680 Loc
: constant Source_Ptr
:= Sloc
(S
);
8683 Op_Name
: Entity_Id
;
8685 FF
: constant Entity_Id
:= First_Formal
(S
);
8686 NF
: constant Entity_Id
:= Next_Formal
(FF
);
8689 -- Check that equality was properly defined, ignore call if not
8696 A
: constant Entity_Id
:=
8697 Make_Defining_Identifier
(Sloc
(FF
),
8698 Chars
=> Chars
(FF
));
8700 B
: constant Entity_Id
:=
8701 Make_Defining_Identifier
(Sloc
(NF
),
8702 Chars
=> Chars
(NF
));
8705 Op_Name
:= Make_Defining_Operator_Symbol
(Loc
, Name_Op_Ne
);
8707 Formals
:= New_List
(
8708 Make_Parameter_Specification
(Loc
,
8709 Defining_Identifier
=> A
,
8711 New_Occurrence_Of
(Etype
(First_Formal
(S
)),
8712 Sloc
(Etype
(First_Formal
(S
))))),
8714 Make_Parameter_Specification
(Loc
,
8715 Defining_Identifier
=> B
,
8717 New_Occurrence_Of
(Etype
(Next_Formal
(First_Formal
(S
))),
8718 Sloc
(Etype
(Next_Formal
(First_Formal
(S
)))))));
8721 Make_Subprogram_Declaration
(Loc
,
8723 Make_Function_Specification
(Loc
,
8724 Defining_Unit_Name
=> Op_Name
,
8725 Parameter_Specifications
=> Formals
,
8726 Result_Definition
=>
8727 New_Occurrence_Of
(Standard_Boolean
, Loc
)));
8729 -- Insert inequality right after equality if it is explicit or after
8730 -- the derived type when implicit. These entities are created only
8731 -- for visibility purposes, and eventually replaced in the course
8732 -- of expansion, so they do not need to be attached to the tree and
8733 -- seen by the back-end. Keeping them internal also avoids spurious
8734 -- freezing problems. The declaration is inserted in the tree for
8735 -- analysis, and removed afterwards. If the equality operator comes
8736 -- from an explicit declaration, attach the inequality immediately
8737 -- after. Else the equality is inherited from a derived type
8738 -- declaration, so insert inequality after that declaration.
8740 if No
(Alias
(S
)) then
8741 Insert_After
(Unit_Declaration_Node
(S
), Decl
);
8742 elsif Is_List_Member
(Parent
(S
)) then
8743 Insert_After
(Parent
(S
), Decl
);
8745 Insert_After
(Parent
(Etype
(First_Formal
(S
))), Decl
);
8748 Mark_Rewrite_Insertion
(Decl
);
8749 Set_Is_Intrinsic_Subprogram
(Op_Name
);
8752 Set_Has_Completion
(Op_Name
);
8753 Set_Corresponding_Equality
(Op_Name
, S
);
8754 Set_Is_Abstract_Subprogram
(Op_Name
, Is_Abstract_Subprogram
(S
));
8756 end Make_Inequality_Operator
;
8758 ----------------------
8759 -- May_Need_Actuals --
8760 ----------------------
8762 procedure May_Need_Actuals
(Fun
: Entity_Id
) is
8767 F
:= First_Formal
(Fun
);
8769 while Present
(F
) loop
8770 if No
(Default_Value
(F
)) then
8778 Set_Needs_No_Actuals
(Fun
, B
);
8779 end May_Need_Actuals
;
8781 ---------------------
8782 -- Mode_Conformant --
8783 ---------------------
8785 function Mode_Conformant
(New_Id
, Old_Id
: Entity_Id
) return Boolean is
8788 Check_Conformance
(New_Id
, Old_Id
, Mode_Conformant
, False, Result
);
8790 end Mode_Conformant
;
8792 ---------------------------
8793 -- New_Overloaded_Entity --
8794 ---------------------------
8796 procedure New_Overloaded_Entity
8798 Derived_Type
: Entity_Id
:= Empty
)
8800 Overridden_Subp
: Entity_Id
:= Empty
;
8801 -- Set if the current scope has an operation that is type-conformant
8802 -- with S, and becomes hidden by S.
8804 Is_Primitive_Subp
: Boolean;
8805 -- Set to True if the new subprogram is primitive
8808 -- Entity that S overrides
8810 Prev_Vis
: Entity_Id
:= Empty
;
8811 -- Predecessor of E in Homonym chain
8813 procedure Check_For_Primitive_Subprogram
8814 (Is_Primitive
: out Boolean;
8815 Is_Overriding
: Boolean := False);
8816 -- If the subprogram being analyzed is a primitive operation of the type
8817 -- of a formal or result, set the Has_Primitive_Operations flag on the
8818 -- type, and set Is_Primitive to True (otherwise set to False). Set the
8819 -- corresponding flag on the entity itself for later use.
8821 procedure Check_Synchronized_Overriding
8822 (Def_Id
: Entity_Id
;
8823 Overridden_Subp
: out Entity_Id
);
8824 -- First determine if Def_Id is an entry or a subprogram either defined
8825 -- in the scope of a task or protected type, or is a primitive of such
8826 -- a type. Check whether Def_Id overrides a subprogram of an interface
8827 -- implemented by the synchronized type, return the overridden entity
8830 function Is_Private_Declaration
(E
: Entity_Id
) return Boolean;
8831 -- Check that E is declared in the private part of the current package,
8832 -- or in the package body, where it may hide a previous declaration.
8833 -- We can't use In_Private_Part by itself because this flag is also
8834 -- set when freezing entities, so we must examine the place of the
8835 -- declaration in the tree, and recognize wrapper packages as well.
8837 function Is_Overriding_Alias
8839 New_E
: Entity_Id
) return Boolean;
8840 -- Check whether new subprogram and old subprogram are both inherited
8841 -- from subprograms that have distinct dispatch table entries. This can
8842 -- occur with derivations from instances with accidental homonyms. The
8843 -- function is conservative given that the converse is only true within
8844 -- instances that contain accidental overloadings.
8846 ------------------------------------
8847 -- Check_For_Primitive_Subprogram --
8848 ------------------------------------
8850 procedure Check_For_Primitive_Subprogram
8851 (Is_Primitive
: out Boolean;
8852 Is_Overriding
: Boolean := False)
8858 function Visible_Part_Type
(T
: Entity_Id
) return Boolean;
8859 -- Returns true if T is declared in the visible part of the current
8860 -- package scope; otherwise returns false. Assumes that T is declared
8863 procedure Check_Private_Overriding
(T
: Entity_Id
);
8864 -- Checks that if a primitive abstract subprogram of a visible
8865 -- abstract type is declared in a private part, then it must override
8866 -- an abstract subprogram declared in the visible part. Also checks
8867 -- that if a primitive function with a controlling result is declared
8868 -- in a private part, then it must override a function declared in
8869 -- the visible part.
8871 ------------------------------
8872 -- Check_Private_Overriding --
8873 ------------------------------
8875 procedure Check_Private_Overriding
(T
: Entity_Id
) is
8877 function Overrides_Visible_Function
8878 (Partial_View
: Entity_Id
) return Boolean;
8879 -- True if S overrides a function in the visible part. The
8880 -- overridden function could be explicitly or implicitly declared.
8882 function Overrides_Visible_Function
8883 (Partial_View
: Entity_Id
) return Boolean
8886 if not Is_Overriding
or else not Has_Homonym
(S
) then
8890 if not Present
(Partial_View
) then
8894 -- Search through all the homonyms H of S in the current
8895 -- package spec, and return True if we find one that matches.
8896 -- Note that Parent (H) will be the declaration of the
8897 -- partial view of T for a match.
8904 exit when not Present
(H
) or else Scope
(H
) /= Scope
(S
);
8908 N_Private_Extension_Declaration
,
8909 N_Private_Type_Declaration
)
8910 and then Defining_Identifier
(Parent
(H
)) = Partial_View
8918 end Overrides_Visible_Function
;
8920 -- Start of processing for Check_Private_Overriding
8923 if Is_Package_Or_Generic_Package
(Current_Scope
)
8924 and then In_Private_Part
(Current_Scope
)
8925 and then Visible_Part_Type
(T
)
8926 and then not In_Instance
8928 if Is_Abstract_Type
(T
)
8929 and then Is_Abstract_Subprogram
(S
)
8930 and then (not Is_Overriding
8931 or else not Is_Abstract_Subprogram
(E
))
8933 Error_Msg_N
("abstract subprograms must be visible "
8934 & "(RM 3.9.3(10))!", S
);
8936 elsif Ekind
(S
) = E_Function
then
8938 Partial_View
: constant Entity_Id
:=
8939 Incomplete_Or_Partial_View
(T
);
8942 if not Overrides_Visible_Function
(Partial_View
) then
8944 -- Here, S is "function ... return T;" declared in
8945 -- the private part, not overriding some visible
8946 -- operation. That's illegal in the tagged case
8947 -- (but not if the private type is untagged).
8949 if ((Present
(Partial_View
)
8950 and then Is_Tagged_Type
(Partial_View
))
8951 or else (not Present
(Partial_View
)
8952 and then Is_Tagged_Type
(T
)))
8953 and then T
= Base_Type
(Etype
(S
))
8956 ("private function with tagged result must"
8957 & " override visible-part function", S
);
8959 ("\move subprogram to the visible part"
8960 & " (RM 3.9.3(10))", S
);
8962 -- AI05-0073: extend this test to the case of a
8963 -- function with a controlling access result.
8965 elsif Ekind
(Etype
(S
)) = E_Anonymous_Access_Type
8966 and then Is_Tagged_Type
(Designated_Type
(Etype
(S
)))
8968 not Is_Class_Wide_Type
8969 (Designated_Type
(Etype
(S
)))
8970 and then Ada_Version
>= Ada_2012
8973 ("private function with controlling access "
8974 & "result must override visible-part function",
8977 ("\move subprogram to the visible part"
8978 & " (RM 3.9.3(10))", S
);
8984 end Check_Private_Overriding
;
8986 -----------------------
8987 -- Visible_Part_Type --
8988 -----------------------
8990 function Visible_Part_Type
(T
: Entity_Id
) return Boolean is
8991 P
: constant Node_Id
:= Unit_Declaration_Node
(Scope
(T
));
8995 -- If the entity is a private type, then it must be declared in a
8998 if Ekind
(T
) in Private_Kind
then
9002 -- Otherwise, we traverse the visible part looking for its
9003 -- corresponding declaration. We cannot use the declaration
9004 -- node directly because in the private part the entity of a
9005 -- private type is the one in the full view, which does not
9006 -- indicate that it is the completion of something visible.
9008 N
:= First
(Visible_Declarations
(Specification
(P
)));
9009 while Present
(N
) loop
9010 if Nkind
(N
) = N_Full_Type_Declaration
9011 and then Present
(Defining_Identifier
(N
))
9012 and then T
= Defining_Identifier
(N
)
9016 elsif Nkind_In
(N
, N_Private_Type_Declaration
,
9017 N_Private_Extension_Declaration
)
9018 and then Present
(Defining_Identifier
(N
))
9019 and then T
= Full_View
(Defining_Identifier
(N
))
9028 end Visible_Part_Type
;
9030 -- Start of processing for Check_For_Primitive_Subprogram
9033 Is_Primitive
:= False;
9035 if not Comes_From_Source
(S
) then
9038 -- If subprogram is at library level, it is not primitive operation
9040 elsif Current_Scope
= Standard_Standard
then
9043 elsif (Is_Package_Or_Generic_Package
(Current_Scope
)
9044 and then not In_Package_Body
(Current_Scope
))
9045 or else Is_Overriding
9047 -- For function, check return type
9049 if Ekind
(S
) = E_Function
then
9050 if Ekind
(Etype
(S
)) = E_Anonymous_Access_Type
then
9051 F_Typ
:= Designated_Type
(Etype
(S
));
9056 B_Typ
:= Base_Type
(F_Typ
);
9058 if Scope
(B_Typ
) = Current_Scope
9059 and then not Is_Class_Wide_Type
(B_Typ
)
9060 and then not Is_Generic_Type
(B_Typ
)
9062 Is_Primitive
:= True;
9063 Set_Has_Primitive_Operations
(B_Typ
);
9064 Set_Is_Primitive
(S
);
9065 Check_Private_Overriding
(B_Typ
);
9069 -- For all subprograms, check formals
9071 Formal
:= First_Formal
(S
);
9072 while Present
(Formal
) loop
9073 if Ekind
(Etype
(Formal
)) = E_Anonymous_Access_Type
then
9074 F_Typ
:= Designated_Type
(Etype
(Formal
));
9076 F_Typ
:= Etype
(Formal
);
9079 B_Typ
:= Base_Type
(F_Typ
);
9081 if Ekind
(B_Typ
) = E_Access_Subtype
then
9082 B_Typ
:= Base_Type
(B_Typ
);
9085 if Scope
(B_Typ
) = Current_Scope
9086 and then not Is_Class_Wide_Type
(B_Typ
)
9087 and then not Is_Generic_Type
(B_Typ
)
9089 Is_Primitive
:= True;
9090 Set_Is_Primitive
(S
);
9091 Set_Has_Primitive_Operations
(B_Typ
);
9092 Check_Private_Overriding
(B_Typ
);
9095 Next_Formal
(Formal
);
9098 -- Special case: An equality function can be redefined for a type
9099 -- occurring in a declarative part, and won't otherwise be treated as
9100 -- a primitive because it doesn't occur in a package spec and doesn't
9101 -- override an inherited subprogram. It's important that we mark it
9102 -- primitive so it can be returned by Collect_Primitive_Operations
9103 -- and be used in composing the equality operation of later types
9104 -- that have a component of the type.
9106 elsif Chars
(S
) = Name_Op_Eq
9107 and then Etype
(S
) = Standard_Boolean
9109 B_Typ
:= Base_Type
(Etype
(First_Formal
(S
)));
9111 if Scope
(B_Typ
) = Current_Scope
9113 Base_Type
(Etype
(Next_Formal
(First_Formal
(S
)))) = B_Typ
9114 and then not Is_Limited_Type
(B_Typ
)
9116 Is_Primitive
:= True;
9117 Set_Is_Primitive
(S
);
9118 Set_Has_Primitive_Operations
(B_Typ
);
9119 Check_Private_Overriding
(B_Typ
);
9122 end Check_For_Primitive_Subprogram
;
9124 -----------------------------------
9125 -- Check_Synchronized_Overriding --
9126 -----------------------------------
9128 procedure Check_Synchronized_Overriding
9129 (Def_Id
: Entity_Id
;
9130 Overridden_Subp
: out Entity_Id
)
9132 Ifaces_List
: Elist_Id
;
9136 function Matches_Prefixed_View_Profile
9137 (Prim_Params
: List_Id
;
9138 Iface_Params
: List_Id
) return Boolean;
9139 -- Determine whether a subprogram's parameter profile Prim_Params
9140 -- matches that of a potentially overridden interface subprogram
9141 -- Iface_Params. Also determine if the type of first parameter of
9142 -- Iface_Params is an implemented interface.
9144 -----------------------------------
9145 -- Matches_Prefixed_View_Profile --
9146 -----------------------------------
9148 function Matches_Prefixed_View_Profile
9149 (Prim_Params
: List_Id
;
9150 Iface_Params
: List_Id
) return Boolean
9152 Iface_Id
: Entity_Id
;
9153 Iface_Param
: Node_Id
;
9154 Iface_Typ
: Entity_Id
;
9155 Prim_Id
: Entity_Id
;
9156 Prim_Param
: Node_Id
;
9157 Prim_Typ
: Entity_Id
;
9159 function Is_Implemented
9160 (Ifaces_List
: Elist_Id
;
9161 Iface
: Entity_Id
) return Boolean;
9162 -- Determine if Iface is implemented by the current task or
9165 --------------------
9166 -- Is_Implemented --
9167 --------------------
9169 function Is_Implemented
9170 (Ifaces_List
: Elist_Id
;
9171 Iface
: Entity_Id
) return Boolean
9173 Iface_Elmt
: Elmt_Id
;
9176 Iface_Elmt
:= First_Elmt
(Ifaces_List
);
9177 while Present
(Iface_Elmt
) loop
9178 if Node
(Iface_Elmt
) = Iface
then
9182 Next_Elmt
(Iface_Elmt
);
9188 -- Start of processing for Matches_Prefixed_View_Profile
9191 Iface_Param
:= First
(Iface_Params
);
9192 Iface_Typ
:= Etype
(Defining_Identifier
(Iface_Param
));
9194 if Is_Access_Type
(Iface_Typ
) then
9195 Iface_Typ
:= Designated_Type
(Iface_Typ
);
9198 Prim_Param
:= First
(Prim_Params
);
9200 -- The first parameter of the potentially overridden subprogram
9201 -- must be an interface implemented by Prim.
9203 if not Is_Interface
(Iface_Typ
)
9204 or else not Is_Implemented
(Ifaces_List
, Iface_Typ
)
9209 -- The checks on the object parameters are done, move onto the
9210 -- rest of the parameters.
9212 if not In_Scope
then
9213 Prim_Param
:= Next
(Prim_Param
);
9216 Iface_Param
:= Next
(Iface_Param
);
9217 while Present
(Iface_Param
) and then Present
(Prim_Param
) loop
9218 Iface_Id
:= Defining_Identifier
(Iface_Param
);
9219 Iface_Typ
:= Find_Parameter_Type
(Iface_Param
);
9221 Prim_Id
:= Defining_Identifier
(Prim_Param
);
9222 Prim_Typ
:= Find_Parameter_Type
(Prim_Param
);
9224 if Ekind
(Iface_Typ
) = E_Anonymous_Access_Type
9225 and then Ekind
(Prim_Typ
) = E_Anonymous_Access_Type
9226 and then Is_Concurrent_Type
(Designated_Type
(Prim_Typ
))
9228 Iface_Typ
:= Designated_Type
(Iface_Typ
);
9229 Prim_Typ
:= Designated_Type
(Prim_Typ
);
9232 -- Case of multiple interface types inside a parameter profile
9234 -- (Obj_Param : in out Iface; ...; Param : Iface)
9236 -- If the interface type is implemented, then the matching type
9237 -- in the primitive should be the implementing record type.
9239 if Ekind
(Iface_Typ
) = E_Record_Type
9240 and then Is_Interface
(Iface_Typ
)
9241 and then Is_Implemented
(Ifaces_List
, Iface_Typ
)
9243 if Prim_Typ
/= Typ
then
9247 -- The two parameters must be both mode and subtype conformant
9249 elsif Ekind
(Iface_Id
) /= Ekind
(Prim_Id
)
9251 Conforming_Types
(Iface_Typ
, Prim_Typ
, Subtype_Conformant
)
9260 -- One of the two lists contains more parameters than the other
9262 if Present
(Iface_Param
) or else Present
(Prim_Param
) then
9267 end Matches_Prefixed_View_Profile
;
9269 -- Start of processing for Check_Synchronized_Overriding
9272 Overridden_Subp
:= Empty
;
9274 -- Def_Id must be an entry or a subprogram. We should skip predefined
9275 -- primitives internally generated by the frontend; however at this
9276 -- stage predefined primitives are still not fully decorated. As a
9277 -- minor optimization we skip here internally generated subprograms.
9279 if (Ekind
(Def_Id
) /= E_Entry
9280 and then Ekind
(Def_Id
) /= E_Function
9281 and then Ekind
(Def_Id
) /= E_Procedure
)
9282 or else not Comes_From_Source
(Def_Id
)
9287 -- Search for the concurrent declaration since it contains the list
9288 -- of all implemented interfaces. In this case, the subprogram is
9289 -- declared within the scope of a protected or a task type.
9291 if Present
(Scope
(Def_Id
))
9292 and then Is_Concurrent_Type
(Scope
(Def_Id
))
9293 and then not Is_Generic_Actual_Type
(Scope
(Def_Id
))
9295 Typ
:= Scope
(Def_Id
);
9298 -- The enclosing scope is not a synchronized type and the subprogram
9301 elsif No
(First_Formal
(Def_Id
)) then
9304 -- The subprogram has formals and hence it may be a primitive of a
9308 Typ
:= Etype
(First_Formal
(Def_Id
));
9310 if Is_Access_Type
(Typ
) then
9311 Typ
:= Directly_Designated_Type
(Typ
);
9314 if Is_Concurrent_Type
(Typ
)
9315 and then not Is_Generic_Actual_Type
(Typ
)
9319 -- This case occurs when the concurrent type is declared within
9320 -- a generic unit. As a result the corresponding record has been
9321 -- built and used as the type of the first formal, we just have
9322 -- to retrieve the corresponding concurrent type.
9324 elsif Is_Concurrent_Record_Type
(Typ
)
9325 and then not Is_Class_Wide_Type
(Typ
)
9326 and then Present
(Corresponding_Concurrent_Type
(Typ
))
9328 Typ
:= Corresponding_Concurrent_Type
(Typ
);
9336 -- There is no overriding to check if is an inherited operation in a
9337 -- type derivation on for a generic actual.
9339 Collect_Interfaces
(Typ
, Ifaces_List
);
9341 if Is_Empty_Elmt_List
(Ifaces_List
) then
9345 -- Determine whether entry or subprogram Def_Id overrides a primitive
9346 -- operation that belongs to one of the interfaces in Ifaces_List.
9349 Candidate
: Entity_Id
:= Empty
;
9350 Hom
: Entity_Id
:= Empty
;
9351 Subp
: Entity_Id
:= Empty
;
9354 -- Traverse the homonym chain, looking for a potentially
9355 -- overridden subprogram that belongs to an implemented
9358 Hom
:= Current_Entity_In_Scope
(Def_Id
);
9359 while Present
(Hom
) loop
9363 or else not Is_Overloadable
(Subp
)
9364 or else not Is_Primitive
(Subp
)
9365 or else not Is_Dispatching_Operation
(Subp
)
9366 or else not Present
(Find_Dispatching_Type
(Subp
))
9367 or else not Is_Interface
(Find_Dispatching_Type
(Subp
))
9371 -- Entries and procedures can override abstract or null
9372 -- interface procedures.
9374 elsif (Ekind
(Def_Id
) = E_Procedure
9375 or else Ekind
(Def_Id
) = E_Entry
)
9376 and then Ekind
(Subp
) = E_Procedure
9377 and then Matches_Prefixed_View_Profile
9378 (Parameter_Specifications
(Parent
(Def_Id
)),
9379 Parameter_Specifications
(Parent
(Subp
)))
9383 -- For an overridden subprogram Subp, check whether the mode
9384 -- of its first parameter is correct depending on the kind
9385 -- of synchronized type.
9388 Formal
: constant Node_Id
:= First_Formal
(Candidate
);
9391 -- In order for an entry or a protected procedure to
9392 -- override, the first parameter of the overridden
9393 -- routine must be of mode "out", "in out" or
9394 -- access-to-variable.
9396 if Ekind_In
(Candidate
, E_Entry
, E_Procedure
)
9397 and then Is_Protected_Type
(Typ
)
9398 and then Ekind
(Formal
) /= E_In_Out_Parameter
9399 and then Ekind
(Formal
) /= E_Out_Parameter
9400 and then Nkind
(Parameter_Type
(Parent
(Formal
))) /=
9405 -- All other cases are OK since a task entry or routine
9406 -- does not have a restriction on the mode of the first
9407 -- parameter of the overridden interface routine.
9410 Overridden_Subp
:= Candidate
;
9415 -- Functions can override abstract interface functions
9417 elsif Ekind
(Def_Id
) = E_Function
9418 and then Ekind
(Subp
) = E_Function
9419 and then Matches_Prefixed_View_Profile
9420 (Parameter_Specifications
(Parent
(Def_Id
)),
9421 Parameter_Specifications
(Parent
(Subp
)))
9422 and then Etype
(Result_Definition
(Parent
(Def_Id
))) =
9423 Etype
(Result_Definition
(Parent
(Subp
)))
9427 -- If an inherited subprogram is implemented by a protected
9428 -- function, then the first parameter of the inherited
9429 -- subprogram shall be of mode in, but not an
9430 -- access-to-variable parameter (RM 9.4(11/9)
9432 if Present
(First_Formal
(Subp
))
9433 and then Ekind
(First_Formal
(Subp
)) = E_In_Parameter
9435 (not Is_Access_Type
(Etype
(First_Formal
(Subp
)))
9437 Is_Access_Constant
(Etype
(First_Formal
(Subp
))))
9439 Overridden_Subp
:= Subp
;
9444 Hom
:= Homonym
(Hom
);
9447 -- After examining all candidates for overriding, we are left with
9448 -- the best match which is a mode incompatible interface routine.
9450 if In_Scope
and then Present
(Candidate
) then
9451 Error_Msg_PT
(Def_Id
, Candidate
);
9454 Overridden_Subp
:= Candidate
;
9457 end Check_Synchronized_Overriding
;
9459 ----------------------------
9460 -- Is_Private_Declaration --
9461 ----------------------------
9463 function Is_Private_Declaration
(E
: Entity_Id
) return Boolean is
9464 Priv_Decls
: List_Id
;
9465 Decl
: constant Node_Id
:= Unit_Declaration_Node
(E
);
9468 if Is_Package_Or_Generic_Package
(Current_Scope
)
9469 and then In_Private_Part
(Current_Scope
)
9472 Private_Declarations
(Package_Specification
(Current_Scope
));
9474 return In_Package_Body
(Current_Scope
)
9476 (Is_List_Member
(Decl
)
9477 and then List_Containing
(Decl
) = Priv_Decls
)
9478 or else (Nkind
(Parent
(Decl
)) = N_Package_Specification
9481 (Defining_Entity
(Parent
(Decl
)))
9482 and then List_Containing
(Parent
(Parent
(Decl
))) =
9487 end Is_Private_Declaration
;
9489 --------------------------
9490 -- Is_Overriding_Alias --
9491 --------------------------
9493 function Is_Overriding_Alias
9495 New_E
: Entity_Id
) return Boolean
9497 AO
: constant Entity_Id
:= Alias
(Old_E
);
9498 AN
: constant Entity_Id
:= Alias
(New_E
);
9500 return Scope
(AO
) /= Scope
(AN
)
9501 or else No
(DTC_Entity
(AO
))
9502 or else No
(DTC_Entity
(AN
))
9503 or else DT_Position
(AO
) = DT_Position
(AN
);
9504 end Is_Overriding_Alias
;
9506 -- Start of processing for New_Overloaded_Entity
9509 -- We need to look for an entity that S may override. This must be a
9510 -- homonym in the current scope, so we look for the first homonym of
9511 -- S in the current scope as the starting point for the search.
9513 E
:= Current_Entity_In_Scope
(S
);
9515 -- Ada 2005 (AI-251): Derivation of abstract interface primitives.
9516 -- They are directly added to the list of primitive operations of
9517 -- Derived_Type, unless this is a rederivation in the private part
9518 -- of an operation that was already derived in the visible part of
9519 -- the current package.
9521 if Ada_Version
>= Ada_2005
9522 and then Present
(Derived_Type
)
9523 and then Present
(Alias
(S
))
9524 and then Is_Dispatching_Operation
(Alias
(S
))
9525 and then Present
(Find_Dispatching_Type
(Alias
(S
)))
9526 and then Is_Interface
(Find_Dispatching_Type
(Alias
(S
)))
9528 -- For private types, when the full-view is processed we propagate to
9529 -- the full view the non-overridden entities whose attribute "alias"
9530 -- references an interface primitive. These entities were added by
9531 -- Derive_Subprograms to ensure that interface primitives are
9534 -- Inside_Freeze_Actions is non zero when S corresponds with an
9535 -- internal entity that links an interface primitive with its
9536 -- covering primitive through attribute Interface_Alias (see
9537 -- Add_Internal_Interface_Entities).
9539 if Inside_Freezing_Actions
= 0
9540 and then Is_Package_Or_Generic_Package
(Current_Scope
)
9541 and then In_Private_Part
(Current_Scope
)
9542 and then Nkind
(Parent
(E
)) = N_Private_Extension_Declaration
9543 and then Nkind
(Parent
(S
)) = N_Full_Type_Declaration
9544 and then Full_View
(Defining_Identifier
(Parent
(E
)))
9545 = Defining_Identifier
(Parent
(S
))
9546 and then Alias
(E
) = Alias
(S
)
9548 Check_Operation_From_Private_View
(S
, E
);
9549 Set_Is_Dispatching_Operation
(S
);
9554 Enter_Overloaded_Entity
(S
);
9555 Check_Dispatching_Operation
(S
, Empty
);
9556 Check_For_Primitive_Subprogram
(Is_Primitive_Subp
);
9562 -- If there is no homonym then this is definitely not overriding
9565 Enter_Overloaded_Entity
(S
);
9566 Check_Dispatching_Operation
(S
, Empty
);
9567 Check_For_Primitive_Subprogram
(Is_Primitive_Subp
);
9569 -- If subprogram has an explicit declaration, check whether it has an
9570 -- overriding indicator.
9572 if Comes_From_Source
(S
) then
9573 Check_Synchronized_Overriding
(S
, Overridden_Subp
);
9575 -- (Ada 2012: AI05-0125-1): If S is a dispatching operation then
9576 -- it may have overridden some hidden inherited primitive. Update
9577 -- Overridden_Subp to avoid spurious errors when checking the
9578 -- overriding indicator.
9580 if Ada_Version
>= Ada_2012
9581 and then No
(Overridden_Subp
)
9582 and then Is_Dispatching_Operation
(S
)
9583 and then Present
(Overridden_Operation
(S
))
9585 Overridden_Subp
:= Overridden_Operation
(S
);
9588 Check_Overriding_Indicator
9589 (S
, Overridden_Subp
, Is_Primitive
=> Is_Primitive_Subp
);
9592 -- If there is a homonym that is not overloadable, then we have an
9593 -- error, except for the special cases checked explicitly below.
9595 elsif not Is_Overloadable
(E
) then
9597 -- Check for spurious conflict produced by a subprogram that has the
9598 -- same name as that of the enclosing generic package. The conflict
9599 -- occurs within an instance, between the subprogram and the renaming
9600 -- declaration for the package. After the subprogram, the package
9601 -- renaming declaration becomes hidden.
9603 if Ekind
(E
) = E_Package
9604 and then Present
(Renamed_Object
(E
))
9605 and then Renamed_Object
(E
) = Current_Scope
9606 and then Nkind
(Parent
(Renamed_Object
(E
))) =
9607 N_Package_Specification
9608 and then Present
(Generic_Parent
(Parent
(Renamed_Object
(E
))))
9611 Set_Is_Immediately_Visible
(E
, False);
9612 Enter_Overloaded_Entity
(S
);
9613 Set_Homonym
(S
, Homonym
(E
));
9614 Check_Dispatching_Operation
(S
, Empty
);
9615 Check_Overriding_Indicator
(S
, Empty
, Is_Primitive
=> False);
9617 -- If the subprogram is implicit it is hidden by the previous
9618 -- declaration. However if it is dispatching, it must appear in the
9619 -- dispatch table anyway, because it can be dispatched to even if it
9620 -- cannot be called directly.
9622 elsif Present
(Alias
(S
)) and then not Comes_From_Source
(S
) then
9623 Set_Scope
(S
, Current_Scope
);
9625 if Is_Dispatching_Operation
(Alias
(S
)) then
9626 Check_Dispatching_Operation
(S
, Empty
);
9632 Error_Msg_Sloc
:= Sloc
(E
);
9634 -- Generate message, with useful additional warning if in generic
9636 if Is_Generic_Unit
(E
) then
9637 Error_Msg_N
("previous generic unit cannot be overloaded", S
);
9638 Error_Msg_N
("\& conflicts with declaration#", S
);
9640 Error_Msg_N
("& conflicts with declaration#", S
);
9646 -- E exists and is overloadable
9649 Check_Synchronized_Overriding
(S
, Overridden_Subp
);
9651 -- Loop through E and its homonyms to determine if any of them is
9652 -- the candidate for overriding by S.
9654 while Present
(E
) loop
9656 -- Definitely not interesting if not in the current scope
9658 if Scope
(E
) /= Current_Scope
then
9661 -- A function can overload the name of an abstract state. The
9662 -- state can be viewed as a function with a profile that cannot
9663 -- be matched by anything.
9665 elsif Ekind
(S
) = E_Function
9666 and then Ekind
(E
) = E_Abstract_State
9668 Enter_Overloaded_Entity
(S
);
9671 -- Ada 2012 (AI05-0165): For internally generated bodies of null
9672 -- procedures locate the internally generated spec. We enforce
9673 -- mode conformance since a tagged type may inherit from
9674 -- interfaces several null primitives which differ only in
9675 -- the mode of the formals.
9677 elsif not Comes_From_Source
(S
)
9678 and then Is_Null_Procedure
(S
)
9679 and then not Mode_Conformant
(E
, S
)
9683 -- Check if we have type conformance
9685 elsif Type_Conformant
(E
, S
) then
9687 -- If the old and new entities have the same profile and one
9688 -- is not the body of the other, then this is an error, unless
9689 -- one of them is implicitly declared.
9691 -- There are some cases when both can be implicit, for example
9692 -- when both a literal and a function that overrides it are
9693 -- inherited in a derivation, or when an inherited operation
9694 -- of a tagged full type overrides the inherited operation of
9695 -- a private extension. Ada 83 had a special rule for the
9696 -- literal case. In Ada 95, the later implicit operation hides
9697 -- the former, and the literal is always the former. In the
9698 -- odd case where both are derived operations declared at the
9699 -- same point, both operations should be declared, and in that
9700 -- case we bypass the following test and proceed to the next
9701 -- part. This can only occur for certain obscure cases in
9702 -- instances, when an operation on a type derived from a formal
9703 -- private type does not override a homograph inherited from
9704 -- the actual. In subsequent derivations of such a type, the
9705 -- DT positions of these operations remain distinct, if they
9708 if Present
(Alias
(S
))
9709 and then (No
(Alias
(E
))
9710 or else Comes_From_Source
(E
)
9711 or else Is_Abstract_Subprogram
(S
)
9713 (Is_Dispatching_Operation
(E
)
9714 and then Is_Overriding_Alias
(E
, S
)))
9715 and then Ekind
(E
) /= E_Enumeration_Literal
9717 -- When an derived operation is overloaded it may be due to
9718 -- the fact that the full view of a private extension
9719 -- re-inherits. It has to be dealt with.
9721 if Is_Package_Or_Generic_Package
(Current_Scope
)
9722 and then In_Private_Part
(Current_Scope
)
9724 Check_Operation_From_Private_View
(S
, E
);
9727 -- In any case the implicit operation remains hidden by the
9728 -- existing declaration, which is overriding. Indicate that
9729 -- E overrides the operation from which S is inherited.
9731 if Present
(Alias
(S
)) then
9732 Set_Overridden_Operation
(E
, Alias
(S
));
9733 Inherit_Subprogram_Contract
(E
, Alias
(S
));
9736 Set_Overridden_Operation
(E
, S
);
9737 Inherit_Subprogram_Contract
(E
, S
);
9740 if Comes_From_Source
(E
) then
9741 Check_Overriding_Indicator
(E
, S
, Is_Primitive
=> False);
9746 -- Within an instance, the renaming declarations for actual
9747 -- subprograms may become ambiguous, but they do not hide each
9750 elsif Ekind
(E
) /= E_Entry
9751 and then not Comes_From_Source
(E
)
9752 and then not Is_Generic_Instance
(E
)
9753 and then (Present
(Alias
(E
))
9754 or else Is_Intrinsic_Subprogram
(E
))
9755 and then (not In_Instance
9756 or else No
(Parent
(E
))
9757 or else Nkind
(Unit_Declaration_Node
(E
)) /=
9758 N_Subprogram_Renaming_Declaration
)
9760 -- A subprogram child unit is not allowed to override an
9761 -- inherited subprogram (10.1.1(20)).
9763 if Is_Child_Unit
(S
) then
9765 ("child unit overrides inherited subprogram in parent",
9770 if Is_Non_Overriding_Operation
(E
, S
) then
9771 Enter_Overloaded_Entity
(S
);
9773 if No
(Derived_Type
)
9774 or else Is_Tagged_Type
(Derived_Type
)
9776 Check_Dispatching_Operation
(S
, Empty
);
9782 -- E is a derived operation or an internal operator which
9783 -- is being overridden. Remove E from further visibility.
9784 -- Furthermore, if E is a dispatching operation, it must be
9785 -- replaced in the list of primitive operations of its type
9786 -- (see Override_Dispatching_Operation).
9788 Overridden_Subp
:= E
;
9794 Prev
:= First_Entity
(Current_Scope
);
9795 while Present
(Prev
) and then Next_Entity
(Prev
) /= E
loop
9799 -- It is possible for E to be in the current scope and
9800 -- yet not in the entity chain. This can only occur in a
9801 -- generic context where E is an implicit concatenation
9802 -- in the formal part, because in a generic body the
9803 -- entity chain starts with the formals.
9805 -- In GNATprove mode, a wrapper for an operation with
9806 -- axiomatization may be a homonym of another declaration
9807 -- for an actual subprogram (needs refinement ???).
9811 and then GNATprove_Mode
9813 Nkind
(Original_Node
(Unit_Declaration_Node
(S
))) =
9814 N_Subprogram_Renaming_Declaration
9818 pragma Assert
(Chars
(E
) = Name_Op_Concat
);
9823 -- E must be removed both from the entity_list of the
9824 -- current scope, and from the visibility chain.
9826 if Debug_Flag_E
then
9827 Write_Str
("Override implicit operation ");
9828 Write_Int
(Int
(E
));
9832 -- If E is a predefined concatenation, it stands for four
9833 -- different operations. As a result, a single explicit
9834 -- declaration does not hide it. In a possible ambiguous
9835 -- situation, Disambiguate chooses the user-defined op,
9836 -- so it is correct to retain the previous internal one.
9838 if Chars
(E
) /= Name_Op_Concat
9839 or else Ekind
(E
) /= E_Operator
9841 -- For nondispatching derived operations that are
9842 -- overridden by a subprogram declared in the private
9843 -- part of a package, we retain the derived subprogram
9844 -- but mark it as not immediately visible. If the
9845 -- derived operation was declared in the visible part
9846 -- then this ensures that it will still be visible
9847 -- outside the package with the proper signature
9848 -- (calls from outside must also be directed to this
9849 -- version rather than the overriding one, unlike the
9850 -- dispatching case). Calls from inside the package
9851 -- will still resolve to the overriding subprogram
9852 -- since the derived one is marked as not visible
9853 -- within the package.
9855 -- If the private operation is dispatching, we achieve
9856 -- the overriding by keeping the implicit operation
9857 -- but setting its alias to be the overriding one. In
9858 -- this fashion the proper body is executed in all
9859 -- cases, but the original signature is used outside
9862 -- If the overriding is not in the private part, we
9863 -- remove the implicit operation altogether.
9865 if Is_Private_Declaration
(S
) then
9866 if not Is_Dispatching_Operation
(E
) then
9867 Set_Is_Immediately_Visible
(E
, False);
9869 -- Work done in Override_Dispatching_Operation,
9870 -- so nothing else needs to be done here.
9876 -- Find predecessor of E in Homonym chain
9878 if E
= Current_Entity
(E
) then
9881 Prev_Vis
:= Current_Entity
(E
);
9882 while Homonym
(Prev_Vis
) /= E
loop
9883 Prev_Vis
:= Homonym
(Prev_Vis
);
9887 if Prev_Vis
/= Empty
then
9889 -- Skip E in the visibility chain
9891 Set_Homonym
(Prev_Vis
, Homonym
(E
));
9894 Set_Name_Entity_Id
(Chars
(E
), Homonym
(E
));
9897 Set_Next_Entity
(Prev
, Next_Entity
(E
));
9899 if No
(Next_Entity
(Prev
)) then
9900 Set_Last_Entity
(Current_Scope
, Prev
);
9905 Enter_Overloaded_Entity
(S
);
9907 -- For entities generated by Derive_Subprograms the
9908 -- overridden operation is the inherited primitive
9909 -- (which is available through the attribute alias).
9911 if not (Comes_From_Source
(E
))
9912 and then Is_Dispatching_Operation
(E
)
9913 and then Find_Dispatching_Type
(E
) =
9914 Find_Dispatching_Type
(S
)
9915 and then Present
(Alias
(E
))
9916 and then Comes_From_Source
(Alias
(E
))
9918 Set_Overridden_Operation
(S
, Alias
(E
));
9919 Inherit_Subprogram_Contract
(S
, Alias
(E
));
9921 -- Normal case of setting entity as overridden
9923 -- Note: Static_Initialization and Overridden_Operation
9924 -- attributes use the same field in subprogram entities.
9925 -- Static_Initialization is only defined for internal
9926 -- initialization procedures, where Overridden_Operation
9927 -- is irrelevant. Therefore the setting of this attribute
9928 -- must check whether the target is an init_proc.
9930 elsif not Is_Init_Proc
(S
) then
9931 Set_Overridden_Operation
(S
, E
);
9932 Inherit_Subprogram_Contract
(S
, E
);
9935 Check_Overriding_Indicator
(S
, E
, Is_Primitive
=> True);
9937 -- If S is a user-defined subprogram or a null procedure
9938 -- expanded to override an inherited null procedure, or a
9939 -- predefined dispatching primitive then indicate that E
9940 -- overrides the operation from which S is inherited.
9942 if Comes_From_Source
(S
)
9944 (Present
(Parent
(S
))
9946 Nkind
(Parent
(S
)) = N_Procedure_Specification
9948 Null_Present
(Parent
(S
)))
9950 (Present
(Alias
(E
))
9952 Is_Predefined_Dispatching_Operation
(Alias
(E
)))
9954 if Present
(Alias
(E
)) then
9955 Set_Overridden_Operation
(S
, Alias
(E
));
9956 Inherit_Subprogram_Contract
(S
, Alias
(E
));
9960 if Is_Dispatching_Operation
(E
) then
9962 -- An overriding dispatching subprogram inherits the
9963 -- convention of the overridden subprogram (AI-117).
9965 Set_Convention
(S
, Convention
(E
));
9966 Check_Dispatching_Operation
(S
, E
);
9969 Check_Dispatching_Operation
(S
, Empty
);
9972 Check_For_Primitive_Subprogram
9973 (Is_Primitive_Subp
, Is_Overriding
=> True);
9974 goto Check_Inequality
;
9977 -- Apparent redeclarations in instances can occur when two
9978 -- formal types get the same actual type. The subprograms in
9979 -- in the instance are legal, even if not callable from the
9980 -- outside. Calls from within are disambiguated elsewhere.
9981 -- For dispatching operations in the visible part, the usual
9982 -- rules apply, and operations with the same profile are not
9985 elsif (In_Instance_Visible_Part
9986 and then not Is_Dispatching_Operation
(E
))
9987 or else In_Instance_Not_Visible
9991 -- Here we have a real error (identical profile)
9994 Error_Msg_Sloc
:= Sloc
(E
);
9996 -- Avoid cascaded errors if the entity appears in
9997 -- subsequent calls.
9999 Set_Scope
(S
, Current_Scope
);
10001 -- Generate error, with extra useful warning for the case
10002 -- of a generic instance with no completion.
10004 if Is_Generic_Instance
(S
)
10005 and then not Has_Completion
(E
)
10008 ("instantiation cannot provide body for&", S
);
10009 Error_Msg_N
("\& conflicts with declaration#", S
);
10011 Error_Msg_N
("& conflicts with declaration#", S
);
10018 -- If one subprogram has an access parameter and the other
10019 -- a parameter of an access type, calls to either might be
10020 -- ambiguous. Verify that parameters match except for the
10021 -- access parameter.
10023 if May_Hide_Profile
then
10029 F1
:= First_Formal
(S
);
10030 F2
:= First_Formal
(E
);
10031 while Present
(F1
) and then Present
(F2
) loop
10032 if Is_Access_Type
(Etype
(F1
)) then
10033 if not Is_Access_Type
(Etype
(F2
))
10034 or else not Conforming_Types
10035 (Designated_Type
(Etype
(F1
)),
10036 Designated_Type
(Etype
(F2
)),
10039 May_Hide_Profile
:= False;
10043 not Conforming_Types
10044 (Etype
(F1
), Etype
(F2
), Type_Conformant
)
10046 May_Hide_Profile
:= False;
10053 if May_Hide_Profile
10057 Error_Msg_NE
("calls to& may be ambiguous??", S
, S
);
10066 -- On exit, we know that S is a new entity
10068 Enter_Overloaded_Entity
(S
);
10069 Check_For_Primitive_Subprogram
(Is_Primitive_Subp
);
10070 Check_Overriding_Indicator
10071 (S
, Overridden_Subp
, Is_Primitive
=> Is_Primitive_Subp
);
10073 -- Overloading is not allowed in SPARK, except for operators
10075 if Nkind
(S
) /= N_Defining_Operator_Symbol
then
10076 Error_Msg_Sloc
:= Sloc
(Homonym
(S
));
10077 Check_SPARK_05_Restriction
10078 ("overloading not allowed with entity#", S
);
10081 -- If S is a derived operation for an untagged type then by
10082 -- definition it's not a dispatching operation (even if the parent
10083 -- operation was dispatching), so Check_Dispatching_Operation is not
10084 -- called in that case.
10086 if No
(Derived_Type
)
10087 or else Is_Tagged_Type
(Derived_Type
)
10089 Check_Dispatching_Operation
(S
, Empty
);
10093 -- If this is a user-defined equality operator that is not a derived
10094 -- subprogram, create the corresponding inequality. If the operation is
10095 -- dispatching, the expansion is done elsewhere, and we do not create
10096 -- an explicit inequality operation.
10098 <<Check_Inequality
>>
10099 if Chars
(S
) = Name_Op_Eq
10100 and then Etype
(S
) = Standard_Boolean
10101 and then Present
(Parent
(S
))
10102 and then not Is_Dispatching_Operation
(S
)
10104 Make_Inequality_Operator
(S
);
10105 Check_Untagged_Equality
(S
);
10107 end New_Overloaded_Entity
;
10109 ---------------------
10110 -- Process_Formals --
10111 ---------------------
10113 procedure Process_Formals
10115 Related_Nod
: Node_Id
)
10117 Param_Spec
: Node_Id
;
10118 Formal
: Entity_Id
;
10119 Formal_Type
: Entity_Id
;
10123 Num_Out_Params
: Nat
:= 0;
10124 First_Out_Param
: Entity_Id
:= Empty
;
10125 -- Used for setting Is_Only_Out_Parameter
10127 function Designates_From_Limited_With
(Typ
: Entity_Id
) return Boolean;
10128 -- Determine whether an access type designates a type coming from a
10131 function Is_Class_Wide_Default
(D
: Node_Id
) return Boolean;
10132 -- Check whether the default has a class-wide type. After analysis the
10133 -- default has the type of the formal, so we must also check explicitly
10134 -- for an access attribute.
10136 ----------------------------------
10137 -- Designates_From_Limited_With --
10138 ----------------------------------
10140 function Designates_From_Limited_With
(Typ
: Entity_Id
) return Boolean is
10141 Desig
: Entity_Id
:= Typ
;
10144 if Is_Access_Type
(Desig
) then
10145 Desig
:= Directly_Designated_Type
(Desig
);
10148 if Is_Class_Wide_Type
(Desig
) then
10149 Desig
:= Root_Type
(Desig
);
10153 Ekind
(Desig
) = E_Incomplete_Type
10154 and then From_Limited_With
(Desig
);
10155 end Designates_From_Limited_With
;
10157 ---------------------------
10158 -- Is_Class_Wide_Default --
10159 ---------------------------
10161 function Is_Class_Wide_Default
(D
: Node_Id
) return Boolean is
10163 return Is_Class_Wide_Type
(Designated_Type
(Etype
(D
)))
10164 or else (Nkind
(D
) = N_Attribute_Reference
10165 and then Attribute_Name
(D
) = Name_Access
10166 and then Is_Class_Wide_Type
(Etype
(Prefix
(D
))));
10167 end Is_Class_Wide_Default
;
10169 -- Start of processing for Process_Formals
10172 -- In order to prevent premature use of the formals in the same formal
10173 -- part, the Ekind is left undefined until all default expressions are
10174 -- analyzed. The Ekind is established in a separate loop at the end.
10176 Param_Spec
:= First
(T
);
10177 while Present
(Param_Spec
) loop
10178 Formal
:= Defining_Identifier
(Param_Spec
);
10179 Set_Never_Set_In_Source
(Formal
, True);
10180 Enter_Name
(Formal
);
10182 -- Case of ordinary parameters
10184 if Nkind
(Parameter_Type
(Param_Spec
)) /= N_Access_Definition
then
10185 Find_Type
(Parameter_Type
(Param_Spec
));
10186 Ptype
:= Parameter_Type
(Param_Spec
);
10188 if Ptype
= Error
then
10192 Formal_Type
:= Entity
(Ptype
);
10194 if Is_Incomplete_Type
(Formal_Type
)
10196 (Is_Class_Wide_Type
(Formal_Type
)
10197 and then Is_Incomplete_Type
(Root_Type
(Formal_Type
)))
10199 -- Ada 2005 (AI-326): Tagged incomplete types allowed in
10200 -- primitive operations, as long as their completion is
10201 -- in the same declarative part. If in the private part
10202 -- this means that the type cannot be a Taft-amendment type.
10203 -- Check is done on package exit. For access to subprograms,
10204 -- the use is legal for Taft-amendment types.
10206 -- Ada 2012: tagged incomplete types are allowed as generic
10207 -- formal types. They do not introduce dependencies and the
10208 -- corresponding generic subprogram does not have a delayed
10209 -- freeze, because it does not need a freeze node. However,
10210 -- it is still the case that untagged incomplete types cannot
10211 -- be Taft-amendment types and must be completed in private
10212 -- part, so the subprogram must appear in the list of private
10213 -- dependents of the type.
10215 if Is_Tagged_Type
(Formal_Type
)
10216 or else (Ada_Version
>= Ada_2012
10217 and then not From_Limited_With
(Formal_Type
)
10218 and then not Is_Generic_Type
(Formal_Type
))
10220 if Ekind
(Scope
(Current_Scope
)) = E_Package
10221 and then not Is_Generic_Type
(Formal_Type
)
10222 and then not Is_Class_Wide_Type
(Formal_Type
)
10225 (Parent
(T
), N_Access_Function_Definition
,
10226 N_Access_Procedure_Definition
)
10230 To
=> Private_Dependents
(Base_Type
(Formal_Type
)));
10232 -- Freezing is delayed to ensure that Register_Prim
10233 -- will get called for this operation, which is needed
10234 -- in cases where static dispatch tables aren't built.
10235 -- (Note that the same is done for controlling access
10236 -- parameter cases in function Access_Definition.)
10238 if not Is_Thunk
(Current_Scope
) then
10239 Set_Has_Delayed_Freeze
(Current_Scope
);
10244 -- Special handling of Value_Type for CIL case
10246 elsif Is_Value_Type
(Formal_Type
) then
10249 elsif not Nkind_In
(Parent
(T
), N_Access_Function_Definition
,
10250 N_Access_Procedure_Definition
)
10252 -- AI05-0151: Tagged incomplete types are allowed in all
10253 -- formal parts. Untagged incomplete types are not allowed
10254 -- in bodies. Limited views of either kind are not allowed
10255 -- if there is no place at which the non-limited view can
10256 -- become available.
10258 -- Incomplete formal untagged types are not allowed in
10259 -- subprogram bodies (but are legal in their declarations).
10261 if Is_Generic_Type
(Formal_Type
)
10262 and then not Is_Tagged_Type
(Formal_Type
)
10263 and then Nkind
(Parent
(Related_Nod
)) = N_Subprogram_Body
10266 ("invalid use of formal incomplete type", Param_Spec
);
10268 elsif Ada_Version
>= Ada_2012
then
10269 if Is_Tagged_Type
(Formal_Type
)
10270 and then (not From_Limited_With
(Formal_Type
)
10271 or else not In_Package_Body
)
10275 elsif Nkind_In
(Parent
(Parent
(T
)), N_Accept_Statement
,
10276 N_Accept_Alternative
,
10281 ("invalid use of untagged incomplete type&",
10282 Ptype
, Formal_Type
);
10287 ("invalid use of incomplete type&",
10288 Param_Spec
, Formal_Type
);
10290 -- Further checks on the legality of incomplete types
10291 -- in formal parts are delayed until the freeze point
10292 -- of the enclosing subprogram or access to subprogram.
10296 elsif Ekind
(Formal_Type
) = E_Void
then
10298 ("premature use of&",
10299 Parameter_Type
(Param_Spec
), Formal_Type
);
10302 -- Ada 2012 (AI-142): Handle aliased parameters
10304 if Ada_Version
>= Ada_2012
10305 and then Aliased_Present
(Param_Spec
)
10307 Set_Is_Aliased
(Formal
);
10310 -- Ada 2005 (AI-231): Create and decorate an internal subtype
10311 -- declaration corresponding to the null-excluding type of the
10312 -- formal in the enclosing scope. Finally, replace the parameter
10313 -- type of the formal with the internal subtype.
10315 if Ada_Version
>= Ada_2005
10316 and then Null_Exclusion_Present
(Param_Spec
)
10318 if not Is_Access_Type
(Formal_Type
) then
10320 ("`NOT NULL` allowed only for an access type", Param_Spec
);
10323 if Can_Never_Be_Null
(Formal_Type
)
10324 and then Comes_From_Source
(Related_Nod
)
10327 ("`NOT NULL` not allowed (& already excludes null)",
10328 Param_Spec
, Formal_Type
);
10332 Create_Null_Excluding_Itype
10334 Related_Nod
=> Related_Nod
,
10335 Scope_Id
=> Scope
(Current_Scope
));
10337 -- If the designated type of the itype is an itype that is
10338 -- not frozen yet, we set the Has_Delayed_Freeze attribute
10339 -- on the access subtype, to prevent order-of-elaboration
10340 -- issues in the backend.
10343 -- type T is access procedure;
10344 -- procedure Op (O : not null T);
10346 if Is_Itype
(Directly_Designated_Type
(Formal_Type
))
10348 not Is_Frozen
(Directly_Designated_Type
(Formal_Type
))
10350 Set_Has_Delayed_Freeze
(Formal_Type
);
10355 -- An access formal type
10359 Access_Definition
(Related_Nod
, Parameter_Type
(Param_Spec
));
10361 -- No need to continue if we already notified errors
10363 if not Present
(Formal_Type
) then
10367 -- Ada 2005 (AI-254)
10370 AD
: constant Node_Id
:=
10371 Access_To_Subprogram_Definition
10372 (Parameter_Type
(Param_Spec
));
10374 if Present
(AD
) and then Protected_Present
(AD
) then
10376 Replace_Anonymous_Access_To_Protected_Subprogram
10382 Set_Etype
(Formal
, Formal_Type
);
10384 -- Deal with default expression if present
10386 Default
:= Expression
(Param_Spec
);
10388 if Present
(Default
) then
10389 Check_SPARK_05_Restriction
10390 ("default expression is not allowed", Default
);
10392 if Out_Present
(Param_Spec
) then
10394 ("default initialization only allowed for IN parameters",
10398 -- Do the special preanalysis of the expression (see section on
10399 -- "Handling of Default Expressions" in the spec of package Sem).
10401 Preanalyze_Spec_Expression
(Default
, Formal_Type
);
10403 -- An access to constant cannot be the default for
10404 -- an access parameter that is an access to variable.
10406 if Ekind
(Formal_Type
) = E_Anonymous_Access_Type
10407 and then not Is_Access_Constant
(Formal_Type
)
10408 and then Is_Access_Type
(Etype
(Default
))
10409 and then Is_Access_Constant
(Etype
(Default
))
10412 ("formal that is access to variable cannot be initialized "
10413 & "with an access-to-constant expression", Default
);
10416 -- Check that the designated type of an access parameter's default
10417 -- is not a class-wide type unless the parameter's designated type
10418 -- is also class-wide.
10420 if Ekind
(Formal_Type
) = E_Anonymous_Access_Type
10421 and then not Designates_From_Limited_With
(Formal_Type
)
10422 and then Is_Class_Wide_Default
(Default
)
10423 and then not Is_Class_Wide_Type
(Designated_Type
(Formal_Type
))
10426 ("access to class-wide expression not allowed here", Default
);
10429 -- Check incorrect use of dynamically tagged expressions
10431 if Is_Tagged_Type
(Formal_Type
) then
10432 Check_Dynamically_Tagged_Expression
10434 Typ
=> Formal_Type
,
10435 Related_Nod
=> Default
);
10439 -- Ada 2005 (AI-231): Static checks
10441 if Ada_Version
>= Ada_2005
10442 and then Is_Access_Type
(Etype
(Formal
))
10443 and then Can_Never_Be_Null
(Etype
(Formal
))
10445 Null_Exclusion_Static_Checks
(Param_Spec
);
10448 -- The following checks are relevant when SPARK_Mode is on as these
10449 -- are not standard Ada legality rules.
10451 if SPARK_Mode
= On
then
10452 if Ekind_In
(Scope
(Formal
), E_Function
, E_Generic_Function
) then
10454 -- A function cannot have a parameter of mode IN OUT or OUT
10457 if Ekind_In
(Formal
, E_In_Out_Parameter
, E_Out_Parameter
) then
10459 ("function cannot have parameter of mode `OUT` or "
10460 & "`IN OUT`", Formal
);
10462 -- A function cannot have an effectively volatile formal
10463 -- parameter (SPARK RM 7.1.3(10)).
10465 elsif Is_Effectively_Volatile
(Formal
) then
10467 ("function cannot have a volatile formal parameter",
10471 -- A procedure cannot have an effectively volatile formal
10472 -- parameter of mode IN because it behaves as a constant
10473 -- (SPARK RM 7.1.3(6)).
10475 elsif Ekind
(Scope
(Formal
)) = E_Procedure
10476 and then Ekind
(Formal
) = E_In_Parameter
10477 and then Is_Effectively_Volatile
(Formal
)
10480 ("formal parameter of mode `IN` cannot be volatile", Formal
);
10488 -- If this is the formal part of a function specification, analyze the
10489 -- subtype mark in the context where the formals are visible but not
10490 -- yet usable, and may hide outer homographs.
10492 if Nkind
(Related_Nod
) = N_Function_Specification
then
10493 Analyze_Return_Type
(Related_Nod
);
10496 -- Now set the kind (mode) of each formal
10498 Param_Spec
:= First
(T
);
10499 while Present
(Param_Spec
) loop
10500 Formal
:= Defining_Identifier
(Param_Spec
);
10501 Set_Formal_Mode
(Formal
);
10503 if Ekind
(Formal
) = E_In_Parameter
then
10504 Set_Default_Value
(Formal
, Expression
(Param_Spec
));
10506 if Present
(Expression
(Param_Spec
)) then
10507 Default
:= Expression
(Param_Spec
);
10509 if Is_Scalar_Type
(Etype
(Default
)) then
10510 if Nkind
(Parameter_Type
(Param_Spec
)) /=
10511 N_Access_Definition
10513 Formal_Type
:= Entity
(Parameter_Type
(Param_Spec
));
10517 (Related_Nod
, Parameter_Type
(Param_Spec
));
10520 Apply_Scalar_Range_Check
(Default
, Formal_Type
);
10524 elsif Ekind
(Formal
) = E_Out_Parameter
then
10525 Num_Out_Params
:= Num_Out_Params
+ 1;
10527 if Num_Out_Params
= 1 then
10528 First_Out_Param
:= Formal
;
10531 elsif Ekind
(Formal
) = E_In_Out_Parameter
then
10532 Num_Out_Params
:= Num_Out_Params
+ 1;
10535 -- Skip remaining processing if formal type was in error
10537 if Etype
(Formal
) = Any_Type
or else Error_Posted
(Formal
) then
10538 goto Next_Parameter
;
10541 -- Force call by reference if aliased
10543 if Is_Aliased
(Formal
) then
10544 Set_Mechanism
(Formal
, By_Reference
);
10546 -- Warn if user asked this to be passed by copy
10548 if Convention
(Formal_Type
) = Convention_Ada_Pass_By_Copy
then
10550 ("cannot pass aliased parameter & by copy??", Formal
);
10553 -- Force mechanism if type has Convention Ada_Pass_By_Ref/Copy
10555 elsif Convention
(Formal_Type
) = Convention_Ada_Pass_By_Copy
then
10556 Set_Mechanism
(Formal
, By_Copy
);
10558 elsif Convention
(Formal_Type
) = Convention_Ada_Pass_By_Reference
then
10559 Set_Mechanism
(Formal
, By_Reference
);
10566 if Present
(First_Out_Param
) and then Num_Out_Params
= 1 then
10567 Set_Is_Only_Out_Parameter
(First_Out_Param
);
10569 end Process_Formals
;
10571 ----------------------------
10572 -- Reference_Body_Formals --
10573 ----------------------------
10575 procedure Reference_Body_Formals
(Spec
: Entity_Id
; Bod
: Entity_Id
) is
10580 if Error_Posted
(Spec
) then
10584 -- Iterate over both lists. They may be of different lengths if the two
10585 -- specs are not conformant.
10587 Fs
:= First_Formal
(Spec
);
10588 Fb
:= First_Formal
(Bod
);
10589 while Present
(Fs
) and then Present
(Fb
) loop
10590 Generate_Reference
(Fs
, Fb
, 'b');
10592 if Style_Check
then
10593 Style
.Check_Identifier
(Fb
, Fs
);
10596 Set_Spec_Entity
(Fb
, Fs
);
10597 Set_Referenced
(Fs
, False);
10601 end Reference_Body_Formals
;
10603 -------------------------
10604 -- Set_Actual_Subtypes --
10605 -------------------------
10607 procedure Set_Actual_Subtypes
(N
: Node_Id
; Subp
: Entity_Id
) is
10609 Formal
: Entity_Id
;
10611 First_Stmt
: Node_Id
:= Empty
;
10612 AS_Needed
: Boolean;
10615 -- If this is an empty initialization procedure, no need to create
10616 -- actual subtypes (small optimization).
10618 if Ekind
(Subp
) = E_Procedure
and then Is_Null_Init_Proc
(Subp
) then
10622 Formal
:= First_Formal
(Subp
);
10623 while Present
(Formal
) loop
10624 T
:= Etype
(Formal
);
10626 -- We never need an actual subtype for a constrained formal
10628 if Is_Constrained
(T
) then
10629 AS_Needed
:= False;
10631 -- If we have unknown discriminants, then we do not need an actual
10632 -- subtype, or more accurately we cannot figure it out. Note that
10633 -- all class-wide types have unknown discriminants.
10635 elsif Has_Unknown_Discriminants
(T
) then
10636 AS_Needed
:= False;
10638 -- At this stage we have an unconstrained type that may need an
10639 -- actual subtype. For sure the actual subtype is needed if we have
10640 -- an unconstrained array type.
10642 elsif Is_Array_Type
(T
) then
10645 -- The only other case needing an actual subtype is an unconstrained
10646 -- record type which is an IN parameter (we cannot generate actual
10647 -- subtypes for the OUT or IN OUT case, since an assignment can
10648 -- change the discriminant values. However we exclude the case of
10649 -- initialization procedures, since discriminants are handled very
10650 -- specially in this context, see the section entitled "Handling of
10651 -- Discriminants" in Einfo.
10653 -- We also exclude the case of Discrim_SO_Functions (functions used
10654 -- in front end layout mode for size/offset values), since in such
10655 -- functions only discriminants are referenced, and not only are such
10656 -- subtypes not needed, but they cannot always be generated, because
10657 -- of order of elaboration issues.
10659 elsif Is_Record_Type
(T
)
10660 and then Ekind
(Formal
) = E_In_Parameter
10661 and then Chars
(Formal
) /= Name_uInit
10662 and then not Is_Unchecked_Union
(T
)
10663 and then not Is_Discrim_SO_Function
(Subp
)
10667 -- All other cases do not need an actual subtype
10670 AS_Needed
:= False;
10673 -- Generate actual subtypes for unconstrained arrays and
10674 -- unconstrained discriminated records.
10677 if Nkind
(N
) = N_Accept_Statement
then
10679 -- If expansion is active, the formal is replaced by a local
10680 -- variable that renames the corresponding entry of the
10681 -- parameter block, and it is this local variable that may
10682 -- require an actual subtype.
10684 if Expander_Active
then
10685 Decl
:= Build_Actual_Subtype
(T
, Renamed_Object
(Formal
));
10687 Decl
:= Build_Actual_Subtype
(T
, Formal
);
10690 if Present
(Handled_Statement_Sequence
(N
)) then
10692 First
(Statements
(Handled_Statement_Sequence
(N
)));
10693 Prepend
(Decl
, Statements
(Handled_Statement_Sequence
(N
)));
10694 Mark_Rewrite_Insertion
(Decl
);
10696 -- If the accept statement has no body, there will be no
10697 -- reference to the actuals, so no need to compute actual
10704 Decl
:= Build_Actual_Subtype
(T
, Formal
);
10705 Prepend
(Decl
, Declarations
(N
));
10706 Mark_Rewrite_Insertion
(Decl
);
10709 -- The declaration uses the bounds of an existing object, and
10710 -- therefore needs no constraint checks.
10712 Analyze
(Decl
, Suppress
=> All_Checks
);
10714 -- We need to freeze manually the generated type when it is
10715 -- inserted anywhere else than in a declarative part.
10717 if Present
(First_Stmt
) then
10718 Insert_List_Before_And_Analyze
(First_Stmt
,
10719 Freeze_Entity
(Defining_Identifier
(Decl
), N
));
10721 -- Ditto if the type has a dynamic predicate, because the
10722 -- generated function will mention the actual subtype.
10724 elsif Has_Dynamic_Predicate_Aspect
(T
) then
10725 Insert_List_Before_And_Analyze
(Decl
,
10726 Freeze_Entity
(Defining_Identifier
(Decl
), N
));
10729 if Nkind
(N
) = N_Accept_Statement
10730 and then Expander_Active
10732 Set_Actual_Subtype
(Renamed_Object
(Formal
),
10733 Defining_Identifier
(Decl
));
10735 Set_Actual_Subtype
(Formal
, Defining_Identifier
(Decl
));
10739 Next_Formal
(Formal
);
10741 end Set_Actual_Subtypes
;
10743 ---------------------
10744 -- Set_Formal_Mode --
10745 ---------------------
10747 procedure Set_Formal_Mode
(Formal_Id
: Entity_Id
) is
10748 Spec
: constant Node_Id
:= Parent
(Formal_Id
);
10751 -- Note: we set Is_Known_Valid for IN parameters and IN OUT parameters
10752 -- since we ensure that corresponding actuals are always valid at the
10753 -- point of the call.
10755 if Out_Present
(Spec
) then
10756 if Ekind_In
(Scope
(Formal_Id
), E_Function
, E_Generic_Function
) then
10758 -- [IN] OUT parameters allowed for functions in Ada 2012
10760 if Ada_Version
>= Ada_2012
then
10762 -- Even in Ada 2012 operators can only have IN parameters
10764 if Is_Operator_Symbol_Name
(Chars
(Scope
(Formal_Id
))) then
10765 Error_Msg_N
("operators can only have IN parameters", Spec
);
10768 if In_Present
(Spec
) then
10769 Set_Ekind
(Formal_Id
, E_In_Out_Parameter
);
10771 Set_Ekind
(Formal_Id
, E_Out_Parameter
);
10774 Set_Has_Out_Or_In_Out_Parameter
(Scope
(Formal_Id
), True);
10776 -- But not in earlier versions of Ada
10779 Error_Msg_N
("functions can only have IN parameters", Spec
);
10780 Set_Ekind
(Formal_Id
, E_In_Parameter
);
10783 elsif In_Present
(Spec
) then
10784 Set_Ekind
(Formal_Id
, E_In_Out_Parameter
);
10787 Set_Ekind
(Formal_Id
, E_Out_Parameter
);
10788 Set_Never_Set_In_Source
(Formal_Id
, True);
10789 Set_Is_True_Constant
(Formal_Id
, False);
10790 Set_Current_Value
(Formal_Id
, Empty
);
10794 Set_Ekind
(Formal_Id
, E_In_Parameter
);
10797 -- Set Is_Known_Non_Null for access parameters since the language
10798 -- guarantees that access parameters are always non-null. We also set
10799 -- Can_Never_Be_Null, since there is no way to change the value.
10801 if Nkind
(Parameter_Type
(Spec
)) = N_Access_Definition
then
10803 -- Ada 2005 (AI-231): In Ada 95, access parameters are always non-
10804 -- null; In Ada 2005, only if then null_exclusion is explicit.
10806 if Ada_Version
< Ada_2005
10807 or else Can_Never_Be_Null
(Etype
(Formal_Id
))
10809 Set_Is_Known_Non_Null
(Formal_Id
);
10810 Set_Can_Never_Be_Null
(Formal_Id
);
10813 -- Ada 2005 (AI-231): Null-exclusion access subtype
10815 elsif Is_Access_Type
(Etype
(Formal_Id
))
10816 and then Can_Never_Be_Null
(Etype
(Formal_Id
))
10818 Set_Is_Known_Non_Null
(Formal_Id
);
10820 -- We can also set Can_Never_Be_Null (thus preventing some junk
10821 -- access checks) for the case of an IN parameter, which cannot
10822 -- be changed, or for an IN OUT parameter, which can be changed but
10823 -- not to a null value. But for an OUT parameter, the initial value
10824 -- passed in can be null, so we can't set this flag in that case.
10826 if Ekind
(Formal_Id
) /= E_Out_Parameter
then
10827 Set_Can_Never_Be_Null
(Formal_Id
);
10831 Set_Mechanism
(Formal_Id
, Default_Mechanism
);
10832 Set_Formal_Validity
(Formal_Id
);
10833 end Set_Formal_Mode
;
10835 -------------------------
10836 -- Set_Formal_Validity --
10837 -------------------------
10839 procedure Set_Formal_Validity
(Formal_Id
: Entity_Id
) is
10841 -- If no validity checking, then we cannot assume anything about the
10842 -- validity of parameters, since we do not know there is any checking
10843 -- of the validity on the call side.
10845 if not Validity_Checks_On
then
10848 -- If validity checking for parameters is enabled, this means we are
10849 -- not supposed to make any assumptions about argument values.
10851 elsif Validity_Check_Parameters
then
10854 -- If we are checking in parameters, we will assume that the caller is
10855 -- also checking parameters, so we can assume the parameter is valid.
10857 elsif Ekind
(Formal_Id
) = E_In_Parameter
10858 and then Validity_Check_In_Params
10860 Set_Is_Known_Valid
(Formal_Id
, True);
10862 -- Similar treatment for IN OUT parameters
10864 elsif Ekind
(Formal_Id
) = E_In_Out_Parameter
10865 and then Validity_Check_In_Out_Params
10867 Set_Is_Known_Valid
(Formal_Id
, True);
10869 end Set_Formal_Validity
;
10871 ------------------------
10872 -- Subtype_Conformant --
10873 ------------------------
10875 function Subtype_Conformant
10876 (New_Id
: Entity_Id
;
10877 Old_Id
: Entity_Id
;
10878 Skip_Controlling_Formals
: Boolean := False) return Boolean
10882 Check_Conformance
(New_Id
, Old_Id
, Subtype_Conformant
, False, Result
,
10883 Skip_Controlling_Formals
=> Skip_Controlling_Formals
);
10885 end Subtype_Conformant
;
10887 ---------------------
10888 -- Type_Conformant --
10889 ---------------------
10891 function Type_Conformant
10892 (New_Id
: Entity_Id
;
10893 Old_Id
: Entity_Id
;
10894 Skip_Controlling_Formals
: Boolean := False) return Boolean
10898 May_Hide_Profile
:= False;
10900 (New_Id
, Old_Id
, Type_Conformant
, False, Result
,
10901 Skip_Controlling_Formals
=> Skip_Controlling_Formals
);
10903 end Type_Conformant
;
10905 -------------------------------
10906 -- Valid_Operator_Definition --
10907 -------------------------------
10909 procedure Valid_Operator_Definition
(Designator
: Entity_Id
) is
10912 Id
: constant Name_Id
:= Chars
(Designator
);
10916 F
:= First_Formal
(Designator
);
10917 while Present
(F
) loop
10920 if Present
(Default_Value
(F
)) then
10922 ("default values not allowed for operator parameters",
10925 -- For function instantiations that are operators, we must check
10926 -- separately that the corresponding generic only has in-parameters.
10927 -- For subprogram declarations this is done in Set_Formal_Mode. Such
10928 -- an error could not arise in earlier versions of the language.
10930 elsif Ekind
(F
) /= E_In_Parameter
then
10931 Error_Msg_N
("operators can only have IN parameters", F
);
10937 -- Verify that user-defined operators have proper number of arguments
10938 -- First case of operators which can only be unary
10940 if Nam_In
(Id
, Name_Op_Not
, Name_Op_Abs
) then
10943 -- Case of operators which can be unary or binary
10945 elsif Nam_In
(Id
, Name_Op_Add
, Name_Op_Subtract
) then
10946 N_OK
:= (N
in 1 .. 2);
10948 -- All other operators can only be binary
10956 ("incorrect number of arguments for operator", Designator
);
10960 and then Base_Type
(Etype
(Designator
)) = Standard_Boolean
10961 and then not Is_Intrinsic_Subprogram
(Designator
)
10964 ("explicit definition of inequality not allowed", Designator
);
10966 end Valid_Operator_Definition
;