2015-05-01 Paolo Carlini <paolo.carlini@oracle.com>
[official-gcc.git] / gcc / ada / s-osprim-mingw.adb
blob13c5354b0d72b1f3bc282c38775cb83e7ccb9d0c
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS --
4 -- --
5 -- S Y S T E M . O S _ P R I M I T I V E S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1998-2015, Free Software Foundation, Inc. --
10 -- --
11 -- GNARL is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
17 -- --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
21 -- --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
26 -- --
27 -- GNARL was developed by the GNARL team at Florida State University. --
28 -- Extensive contributions were provided by Ada Core Technologies, Inc. --
29 -- --
30 ------------------------------------------------------------------------------
32 -- This is the NT version of this package
34 with System.Task_Lock;
35 with System.Win32.Ext;
37 package body System.OS_Primitives is
39 use System.Task_Lock;
40 use System.Win32;
41 use System.Win32.Ext;
43 ----------------------------------------
44 -- Data for the high resolution clock --
45 ----------------------------------------
47 Tick_Frequency : aliased LARGE_INTEGER;
48 -- Holds frequency of high-performance counter used by Clock
49 -- Windows NT uses a 1_193_182 Hz counter on PCs.
51 Base_Monotonic_Ticks : LARGE_INTEGER;
52 -- Holds the Tick count for the base monotonic time
54 Base_Monotonic_Clock : Duration;
55 -- Holds the current clock for monotonic clock's base time
57 type Clock_Data is record
58 Base_Ticks : LARGE_INTEGER;
59 -- Holds the Tick count for the base time
61 Base_Time : Long_Long_Integer;
62 -- Holds the base time used to check for system time change, used with
63 -- the standard clock.
65 Base_Clock : Duration;
66 -- Holds the current clock for the standard clock's base time
67 end record;
69 type Clock_Data_Access is access all Clock_Data;
71 -- Two base clock buffers. This is used to be able to update a buffer while
72 -- the other buffer is read. The point is that we do not want to use a lock
73 -- inside the Clock routine for performance reasons. We still use a lock
74 -- in the Get_Base_Time which is called very rarely. Current is a pointer,
75 -- the pragma Atomic is there to ensure that the value can be set or read
76 -- atomically. That's it, when Get_Base_Time has updated a buffer the
77 -- switch to the new value is done by changing Current pointer.
79 First, Second : aliased Clock_Data;
81 Current : Clock_Data_Access := First'Access;
82 pragma Atomic (Current);
84 -- The following signature is to detect change on the base clock data
85 -- above. The signature is a modular type, it will wrap around without
86 -- raising an exception. We would need to have exactly 2**32 updates of
87 -- the base data for the changes to get undetected.
89 type Signature_Type is mod 2**32;
90 Signature : Signature_Type := 0;
91 pragma Atomic (Signature);
93 procedure Get_Base_Time (Data : in out Clock_Data);
94 -- Retrieve the base time and base ticks. These values will be used by
95 -- clock to compute the current time by adding to it a fraction of the
96 -- performance counter. This is for the implementation of a high-resolution
97 -- clock. Note that this routine does not change the base monotonic values
98 -- used by the monotonic clock.
100 -----------
101 -- Clock --
102 -----------
104 -- This implementation of clock provides high resolution timer values
105 -- using QueryPerformanceCounter. This call return a 64 bits values (based
106 -- on the 8253 16 bits counter). This counter is updated every 1/1_193_182
107 -- times per seconds. The call to QueryPerformanceCounter takes 6
108 -- microsecs to complete.
110 function Clock return Duration is
111 Max_Shift : constant Duration := 2.0;
112 Hundreds_Nano_In_Sec : constant Long_Long_Float := 1.0E7;
113 Data : Clock_Data;
114 Current_Ticks : aliased LARGE_INTEGER;
115 Elap_Secs_Tick : Duration;
116 Elap_Secs_Sys : Duration;
117 Now : aliased Long_Long_Integer;
118 Sig1, Sig2 : Signature_Type;
120 begin
121 -- Try ten times to get a coherent set of base data. For this we just
122 -- check that the signature hasn't changed during the copy of the
123 -- current data.
125 -- This loop will always be done once if there is no interleaved call
126 -- to Get_Base_Time.
128 for K in 1 .. 10 loop
129 Sig1 := Signature;
130 Data := Current.all;
131 Sig2 := Signature;
132 exit when Sig1 = Sig2;
133 end loop;
135 if QueryPerformanceCounter (Current_Ticks'Access) = Win32.FALSE then
136 return 0.0;
137 end if;
139 GetSystemTimeAsFileTime (Now'Access);
141 Elap_Secs_Sys :=
142 Duration (Long_Long_Float (abs (Now - Data.Base_Time)) /
143 Hundreds_Nano_In_Sec);
145 Elap_Secs_Tick :=
146 Duration (Long_Long_Float (Current_Ticks - Data.Base_Ticks) /
147 Long_Long_Float (Tick_Frequency));
149 -- If we have a shift of more than Max_Shift seconds we resynchronize
150 -- the Clock. This is probably due to a manual Clock adjustment, a DST
151 -- adjustment or an NTP synchronisation. And we want to adjust the time
152 -- for this system (non-monotonic) clock.
154 if abs (Elap_Secs_Sys - Elap_Secs_Tick) > Max_Shift then
155 Get_Base_Time (Data);
157 Elap_Secs_Tick :=
158 Duration (Long_Long_Float (Current_Ticks - Data.Base_Ticks) /
159 Long_Long_Float (Tick_Frequency));
160 end if;
162 return Data.Base_Clock + Elap_Secs_Tick;
163 end Clock;
165 -------------------
166 -- Get_Base_Time --
167 -------------------
169 procedure Get_Base_Time (Data : in out Clock_Data) is
171 -- The resolution for GetSystemTime is 1 millisecond
173 -- The time to get both base times should take less than 1 millisecond.
174 -- Therefore, the elapsed time reported by GetSystemTime between both
175 -- actions should be null.
177 epoch_1970 : constant := 16#19D_B1DE_D53E_8000#; -- win32 UTC epoch
178 system_time_ns : constant := 100; -- 100 ns per tick
179 Sec_Unit : constant := 10#1#E9;
181 Max_Elapsed : constant LARGE_INTEGER :=
182 LARGE_INTEGER (Tick_Frequency / 100_000);
183 -- Look for a precision of 0.01 ms
185 Sig : constant Signature_Type := Signature;
187 Loc_Ticks, Ctrl_Ticks : aliased LARGE_INTEGER;
188 Loc_Time, Ctrl_Time : aliased Long_Long_Integer;
189 Elapsed : LARGE_INTEGER;
190 Current_Max : LARGE_INTEGER := LARGE_INTEGER'Last;
191 New_Data : Clock_Data_Access;
193 begin
194 -- Here we must be sure that both of these calls are done in a short
195 -- amount of time. Both are base time and should in theory be taken
196 -- at the very same time.
198 -- The goal of the following loop is to synchronize the system time
199 -- with the Win32 performance counter by getting a base offset for both.
200 -- Using these offsets it is then possible to compute actual time using
201 -- a performance counter which has a better precision than the Win32
202 -- time API.
204 -- Try at most 10 times to reach the best synchronisation (below 1
205 -- millisecond) otherwise the runtime will use the best value reached
206 -- during the runs.
208 Lock;
210 -- First check that the current value has not been updated. This
211 -- could happen if another task has called Clock at the same time
212 -- and that Max_Shift has been reached too.
214 -- But if the current value has been changed just before we entered
215 -- into the critical section, we can safely return as the current
216 -- base data (time, clock, ticks) have already been updated.
218 if Sig /= Signature then
219 Unlock;
220 return;
221 end if;
223 -- Check for the unused data buffer and set New_Data to point to it
225 if Current = First'Access then
226 New_Data := Second'Access;
227 else
228 New_Data := First'Access;
229 end if;
231 for K in 1 .. 10 loop
232 if QueryPerformanceCounter (Loc_Ticks'Access) = Win32.FALSE then
233 pragma Assert
234 (Standard.False,
235 "Could not query high performance counter in Clock");
236 null;
237 end if;
239 GetSystemTimeAsFileTime (Ctrl_Time'Access);
241 -- Scan for clock tick, will take up to 16ms/1ms depending on PC.
242 -- This cannot be an infinite loop or the system hardware is badly
243 -- damaged.
245 loop
246 GetSystemTimeAsFileTime (Loc_Time'Access);
248 if QueryPerformanceCounter (Ctrl_Ticks'Access) = Win32.FALSE then
249 pragma Assert
250 (Standard.False,
251 "Could not query high performance counter in Clock");
252 null;
253 end if;
255 exit when Loc_Time /= Ctrl_Time;
256 Loc_Ticks := Ctrl_Ticks;
257 end loop;
259 -- Check elapsed Performance Counter between samples
260 -- to choose the best one.
262 Elapsed := Ctrl_Ticks - Loc_Ticks;
264 if Elapsed < Current_Max then
265 New_Data.Base_Time := Loc_Time;
266 New_Data.Base_Ticks := Loc_Ticks;
267 Current_Max := Elapsed;
269 -- Exit the loop when we have reached the expected precision
271 exit when Elapsed <= Max_Elapsed;
272 end if;
273 end loop;
275 New_Data.Base_Clock :=
276 Duration
277 (Long_Long_Float
278 ((New_Data.Base_Time - epoch_1970) * system_time_ns) /
279 Long_Long_Float (Sec_Unit));
281 -- At this point all the base values have been set into the new data
282 -- record. Change the pointer (atomic operation) to these new values.
284 Current := New_Data;
285 Data := New_Data.all;
287 -- Set new signature for this data set
289 Signature := Signature + 1;
291 Unlock;
293 exception
294 when others =>
295 Unlock;
296 raise;
297 end Get_Base_Time;
299 ---------------------
300 -- Monotonic_Clock --
301 ---------------------
303 function Monotonic_Clock return Duration is
304 Current_Ticks : aliased LARGE_INTEGER;
305 Elap_Secs_Tick : Duration;
307 begin
308 if QueryPerformanceCounter (Current_Ticks'Access) = Win32.FALSE then
309 return 0.0;
311 else
312 Elap_Secs_Tick :=
313 Duration (Long_Long_Float (Current_Ticks - Base_Monotonic_Ticks) /
314 Long_Long_Float (Tick_Frequency));
315 return Base_Monotonic_Clock + Elap_Secs_Tick;
316 end if;
317 end Monotonic_Clock;
319 -----------------
320 -- Timed_Delay --
321 -----------------
323 procedure Timed_Delay (Time : Duration; Mode : Integer) is
325 function Mode_Clock return Duration;
326 pragma Inline (Mode_Clock);
327 -- Return the current clock value using either the monotonic clock or
328 -- standard clock depending on the Mode value.
330 ----------------
331 -- Mode_Clock --
332 ----------------
334 function Mode_Clock return Duration is
335 begin
336 case Mode is
337 when Absolute_RT =>
338 return Monotonic_Clock;
339 when others =>
340 return Clock;
341 end case;
342 end Mode_Clock;
344 -- Local Variables
346 Base_Time : constant Duration := Mode_Clock;
347 -- Base_Time is used to detect clock set backward, in this case we
348 -- cannot ensure the delay accuracy.
350 Rel_Time : Duration;
351 Abs_Time : Duration;
352 Check_Time : Duration := Base_Time;
354 -- Start of processing for Timed Delay
356 begin
357 if Mode = Relative then
358 Rel_Time := Time;
359 Abs_Time := Time + Check_Time;
360 else
361 Rel_Time := Time - Check_Time;
362 Abs_Time := Time;
363 end if;
365 if Rel_Time > 0.0 then
366 loop
367 Sleep (DWORD (Rel_Time * 1000.0));
368 Check_Time := Mode_Clock;
370 exit when Abs_Time <= Check_Time or else Check_Time < Base_Time;
372 Rel_Time := Abs_Time - Check_Time;
373 end loop;
374 end if;
375 end Timed_Delay;
377 ----------------
378 -- Initialize --
379 ----------------
381 Initialized : Boolean := False;
383 procedure Initialize is
384 begin
385 if Initialized then
386 return;
387 end if;
389 Initialized := True;
391 -- Get starting time as base
393 if QueryPerformanceFrequency (Tick_Frequency'Access) = Win32.FALSE then
394 raise Program_Error with
395 "cannot get high performance counter frequency";
396 end if;
398 Get_Base_Time (Current.all);
400 -- Keep base clock and ticks for the monotonic clock. These values
401 -- should never be changed to ensure proper behavior of the monotonic
402 -- clock.
404 Base_Monotonic_Clock := Current.Base_Clock;
405 Base_Monotonic_Ticks := Current.Base_Ticks;
406 end Initialize;
408 end System.OS_Primitives;